
Network Flow Problems

with Uncertain Input Data

in the Context of

Supply Chain Management Applications

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften - Dr. rer. nat. -

am Fachbereich C - Mathematik und Naturwissenschaften - der

Bergischen Universität Wuppertal vorgelegte

genehmigte Dissertation

von

Simone Gast

2010

Tag der mündlichen Prüfung: 17.12.2010
Vorsitzende der Prüfungskommission: Prof. Dr. Kathrin Klamroth
Erstgutachter: Prof. Dr. Kathrin Klamroth
Zweitgutachter: Prof. Dr. Stefan Bock

2

Die Dissertation kann wie folgt zitiert werden:

urn:nbn:de:hbz:468-20110209-125227-0
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20110209-125227-0]

Zusammenfassung

In Anbetracht der zunehmenden Komplexität von Supply Chains gewinnt die

Optimierung von Supply Chains zunehmend an Bedeutung. In vielen Fällen sind

jedoch die Eingangsdaten der Supply Chains nicht exakt bekannt, weshalb eine

Reihe an Unsicherheitsfaktoren entlang der gesamten Supply Chain auftreten

kann. Im industriellen Bereich sind Datenunsicherheiten große Risikofaktoren,

die erkannt und abgedeckt werden müssen. Daher ist es oftmals nicht ratsam, die

Realität durch ein einfaches deterministisches Optimierungsmodell abzubilden.

Die Betrachtung von Unsicherheiten in mathematischen Optimierungsproble-

men erfordert die Entwicklung von speziellen Methoden. Etablierte Konzepte

zur Behandlung von Unsicherheiten sind Methoden aus dem Bereich der Ro-

busten Optimierung und der Stochastischen Programmierung. In dieser Arbeit

werden verschiedene existierende Ansätze untersucht und speziell auf Supply

Chain Probleme erweitert und angepasst. Zusätzlich werden neue heuristis-

che Optimierungsmethoden entwickelt, welche zu neuen Robustheitskonzepten

führen.

Der Schwerpunkt liegt dabei insbesondere auf der Anwendbarkeit der entwickel-

ten Konzepte auf reale Probleme. Um die entwickelten Algorithmen zu unter-

suchen und zu validieren, wird ein Referenzmodell in der Form eines Supply

Chain Netzwerks realer Größe, basierend auf realen Eingangsdaten, entwick-

elt. Die verschiedenen präsentierten Optimierungskonzepte werden auf das Ref-

erenzmodell angewendet und die Ergebnisse verglichen.

3

Abstract

In view of the increasing complexity of supply chains, the optimization of supply

chains becomes more and more important. However, in many cases, the input

data of supply chains are not known exactly, consequence of which is that a

great variety of uncertainty factors can occur along the supply chain. In the

industry, data uncertainties are significant risk factors that must be detected

and considered. Therefore it is often not advisable to represent the reality by

means of a simple deterministic optimization model.

The consideration of uncertainties in mathematical optimization problems re-

quires the development of particular methods. Established concepts for dealing

with uncertainty are methods of Robust Optimization and Stochastic Program-

ming. In this thesis, various existing approaches will be examined and extended

to specially suit supply chain problems. In addition, the development of heuris-

tic optimization methods leads to new robustness concepts.

In particular, the main emphasis is on the applicability of the developed con-

cepts to real-world problems. In order to examine and validate the developed

algorithms, a reference model in the form of a supply chain network of realistic

size, based on real-world input data including uncertainty, is developed. The

different presented optimization concepts are applied to the reference model and

the results are compared.

4

Contents

1 Introduction 23

2 Mathematical Background 31

2.1 Graphs . 31

2.2 Linear Optimization . 32

2.3 Network Flows . 33

2.3.1 Network Optimization . 33

2.3.2 Multicommodity Flows 34

2.4 Multicriteria Optimization . 35

2.5 Probability Theory . 36

2.5.1 Discrete Probability Spaces 36

2.5.2 Continuous Probability Spaces 37

3 Problem Formulation and Objectives 39

3.1 Network Representation of Supply Chain Problems 39

3.2 Uncertainties in Supply Chains 40

3.3 Literature Review . 41

3.3.1 Network Flow Problems 42

3.3.2 Robust Optimization . 44

3.3.3 Stochastic Programming 46

3.3.4 Ant Colony Optimization 48

3.3.5 Heuristics in Supply Chain Management 50

3.4 Challenges . 51

5

CONTENTS

4 Adaption of the ACO Metaheuristic to Network Flow Prob-

lems 53

4.1 The Ant Colony Optimization Metaheuristic 53

4.2 ACO for Single-Commodity Flows 54

4.2.1 Construction Graph . 55

4.2.2 Constraints . 56

4.2.3 Initialization of the Pheromone Trails 56

4.2.4 Heuristic Information . 57

4.2.5 Solution Construction . 58

4.2.6 Update of the Pheromone Trails 61

4.3 ACO for Multicommodity Flows 63

4.4 Convergence Theory . 64

5 Avoiding Small Amounts of Flow in Minimum Cost Network

Flow Problems 71

5.1 Application of the Ant Colony Optimization Metaheuristic to the

TMCFP . 73

5.1.1 Parameters . 73

5.1.2 Penalty Costs . 73

5.1.3 Stopping Criterion . 74

5.1.4 Variation . 74

5.2 An Exact Approach using SOS 2 Conditions 74

5.2.1 Approximation of Nonlinear Functions using SOS 2 Con-

ditions . 74

5.2.2 TMCFP with SOS 2 Conditions 78

5.3 Branching for SOS 2 Conditions 87

5.4 Example-Problems . 90

5.4.1 Avoiding Small Flows Example 1 90

5.4.2 Avoiding Small Flows Example 2 94

5.4.3 Avoiding Small Flows Example 3 95

5.5 Summary and Conclusions . 99

6

CONTENTS

6 Robust Optimization in Network Flows: Uncertain Costs 101

6.1 Problem Formulation and Objectives 101

6.2 Approach of Bertsimas and Sim 102

6.2.1 Model Formulation . 102

6.2.2 Extension to Multicommodity Flows 103

6.2.3 Non-Integer Values for the Robustness Parameter 112

6.3 Ant Algorithm . 113

6.3.1 Uniformly Distributed Costs 113

6.3.2 Gaussian Distributed Costs 115

6.3.3 Arbitrary Distribution . 116

6.4 Problems . 117

6.4.1 Single-Commodity Uncertain Cost Example 117

6.4.2 Single-Commodity Triangular Distributed Cost Example . 122

6.4.3 Summary . 124

6.5 Summary and Conclusions . 125

7 Transformation of Uncertain Demands to Uncertain Costs 127

7.1 Transformation using Additional Information: Penalty and Stor-

age Costs . 128

7.1.1 The Transformation Process 128

7.1.2 Uncertain Demands Transformation Example 1 131

7.2 General Approach . 135

7.2.1 The Transformation Process 135

7.2.2 Interpretation . 137

7.2.3 Uncertain Demands Transformation Example 2 139

7.3 Summary and Conclusions . 145

8 Robust Optimization in Network Flows: Uncertain Demands 147

8.1 Problem Formulation and Objectives 147

8.2 Ant Algorithm . 148

8.2.1 Modification of the Network 149

7

CONTENTS

8.2.2 Realization of Uncertain Demands 152

8.2.3 Variations . 153

8.2.4 Supplements for the Multicommodity Version 154

8.2.5 Multicommodity Uncertain Demands Example 156

8.3 Recoverable Robustness . 159

8.3.1 Linear Programming Recovery 160

8.3.2 Coincidental Covering . 163

8.3.3 Translation of the Demand Scenarios 169

8.3.4 Extension to Multicommodity Flows 171

8.3.5 Recoverable Robustness Example 172

8.4 Summary and Conclusions . 178

9 Stochastic Programming: Uncertain Demand 179

9.1 Two-Stage Linear Recourse Problems 179

9.1.1 Problem Formulation . 180

9.1.2 The L-Shaped Method . 181

9.1.3 Application to Supply Chain Problems 181

9.2 Extension of the L-Shaped Algorithm to Multicommodity Flows 182

9.2.1 The Multicommodity L-Shaped Method 183

9.2.2 Proof of Correctness and Convergence 185

9.2.3 Multicommodity Two-Stage Example 189

9.3 Recourse by Interexchange . 192

9.3.1 Introduction of the Interexchange Recourse Scheme . . . 193

9.3.2 Multicommodity Interexchange Two-Stage Example . . . 194

9.4 Inventory Management . 197

9.4.1 Network Extension for Inventory Management 198

9.4.2 Multicommodity Inventory Management Two-Stage Ex-

ample . 200

9.5 Summary and Conclusions . 203

10 A Multicriteria Perspective 205

8

CONTENTS

10.1 Scalarizations of the Multicriteria Optimization Problem 207

10.1.1 e-Constraint Scalarization 207

10.1.2 Weighted Sum Scalarization 208

10.1.3 Further Scalarizations . 209

10.2 Relations between the Scalarizations 212

10.3 Sensitivity for the e-Constraint Scalarization 215

10.4 Summary and Conclusions . 219

11 Computational Results: Numerical Tests 221

11.1 Random Network Generation . 221

11.2 Threshold Minimum Cost Flow Problem 222

11.3 Uncertain Costs . 229

11.4 Uncertain Demands . 236

11.5 Summary and Conclusions . 253

12 Computational Results: Reference Model 255

12.1 Ant Algorithm for Uncertain Demands 260

12.2 Transformation of Uncertain Demands to Uncertain Costs 265

12.3 Recoverable Robustness . 271

12.4 Stochastic Two-Stage Linear Recourse Problem 275

12.4.1 Single Time Period . 276

12.4.2 Recourse by Interexchange 281

12.4.3 Inventory Management: Multiple Time Periods 284

12.5 Summary and Conclusions . 288

13 Final Conclusion and Future Research 291

List of Abbreviations 299

9

CONTENTS

10

List of Figures

3.1 Layered network . 40

4.1 Construction graph . 56

5.1 Optimal and desired solution of a minimum cost flow problem . . 72

5.2 Piecewise linear approximation of a nonlinear function 75

5.3 Desired cost function for arc ei 79

5.4 Cost assignment for arc ei . 80

5.5 Structure of matrix A≤ of the inequality constraints (λ-method) 84

5.6 Structure of matrix A= of the equality constraints (λ-method) . 84

5.7 Structure of matrix A≤ of the inequality constraints (δ-method) 86

5.8 Structure of matrix A= of the equality constraints (δ-method) . . 87

5.9 Avoiding small flows example 1: Minimum cost flow problem . . 91

5.10 Avoiding small flows example 1: Optimal solution of the original

minimum cost flow problem . 92

5.11 Example cost assignments . 93

5.12 Avoiding small flows example 1: Optimal solution of the thres-

hold minimum cost flow problem 93

5.13 Avoiding small flows example 2: Minimum cost flow problem . . 94

5.14 Avoiding small flows example 2: Optimal solution of the original

minimum cost flow problem . 94

5.15 Avoiding small flows example 2: Optimal solution of the thresh-

old minimum cost flow problem 95

5.16 Avoiding small flows example 3: Minimum cost flow problem . . 95

11

LIST OF FIGURES

5.17 Avoiding small flows example 3: Optimal solution of the original

minimum cost flow problem . 96

5.18 Avoiding small flows example 3: Ant solution of the threshold

minimum cost flow problem . 97

5.19 Avoiding small flows example 3: Optimal solution of the thresh-

old minimum cost flow problem 97

6.1 Insertion of new arcs . 106

6.2 Multicommodity uncertain cost example: Multicommodity min-

imum cost flow problem . 108

6.3 Multicommodity uncertain cost example: Solution for Γ = 0 . . . 109

6.4 Multicommodity uncertain cost example: Robust solution for

Γ = 6 . 110

6.5 Multicommodity uncertain cost example: Robust solution for

Γ = 11 . 111

6.6 Density function for uniformly distributed costs in [c, c + d] for

nominal cost c = 3 and extra cost d = 5 114

6.7 Density functions for Gaussian distributed costs in [c, c + d] for

nominal cost c = 3 and extra cost d = 5 for Γ = 0, 0.25, 0.5, 0.75

and 1 . 116

6.8 Single-commodity uncertain cost example: Minimum cost flow

problem . 117

6.9 Single-commodity uncertain cost example: Optimal solution of

the minimum cost flow problem 118

6.10 Single-commodity uncertain cost example: Comparison of best

case and worst case costs and expected cost values for different

values of Γ: Bertsimas/Sim and ant algorithm (Gaussian dis-

tributed costs) . 121

6.11 Single-commodity triangular distributed cost example: Flows be-

tween node layers 2 and 3 for Bertsimas and Sim 123

6.12 Single-commodity triangular distributed cost example: Flows be-

tween node layers 2 and 3 for the ant algorithm 123

7.1 Network with uncertain demand at node i 128

7.2 Network extension near node i 128

12

LIST OF FIGURES

7.3 Network extension near node i with arc data 129

7.4 Transformed network with additional arc from s to j 129

7.5 Transformed network with uncertain costs 130

7.6 Uncertain demands transformation example 1: Minimum cost

flow problem with uncertain demands 131

7.7 Uncertain demands transformation example 1: Transformed net-

work . 132

7.8 Flow units of extra demand which are not delivered to the de-

mand nodes . 133

7.9 Total flow units which are delivered to the demand nodes 134

7.10 Uncertain demands transformation example 2: Minimum cost

flow problem with uncertain demands 139

7.11 Uncertain demands transformation example 2: Optimal solution

(nominal demand) . 140

7.12 Uncertain demands transformation example 2: Optimal solution

(full demand) . 140

7.13 Uncertain demands transformation example 2: Extended network 142

8.1 Network with uncertain demands at nodes i, j and k 149

8.2 Single-sink network . 149

8.3 Extended network for uncertain demands at nodes i, j and k . . 150

8.4 Extended network: Capacity change 150

8.5 Extended network: Visibility on additional arcs 151

8.6 Multicommodity uncertain demands example: Minimum cost flow

problem with uncertain demands 156

8.7 Multicommodity uncertain demands example: Distribution of

possible and delivered uncertain demand 158

8.8 Multicommodity uncertain demands example: Delivered uncer-

tain demand for commodities 1 and 2 158

8.9 Recoverable robustness - 2-dimensional example: Network 164

8.10 Recoverable robustness - 2-dimensional example: Unscaled and

scaled scenario set . 165

8.11 Recoverable robustness - 2-dimensional example: Optimal solution165

13

LIST OF FIGURES

8.12 Recoverable robustness - 2-dimensional example: Image set of

the recovery vectors . 166

8.13 Recoverable robustness - 2-dimensional example: Translated im-

ages of the recoverable solutions S1 167

8.14 Recoverable robustness - 2-dimensional example: Translated im-

ages of the recoverable solutions S∞ 167

8.15 Recoverable robustness - 2-dimensional example: Images of the

recoverable solutions . 168

8.16 Recoverable robustness: 2-dimensional example: Optimal solu-

tion and covered uncertainty set 169

8.17 Recoverable robustness: Scenario sets S∞ and S1
T 170

8.18 Recoverable robustness example: Network 173

9.1 Multicommodity two-stage example: Two-stage problem with

uncertain demands . 190

9.2 Multicommodity interexchange two-stage example: Two-stage

problem with uncertain demand and interexchange recourse . . . 195

9.3 Multicommodity interexchange two-stage example: Interexchange

for products 1 and 2 . 197

9.4 Extended network for two time periods 198

9.5 Matrix duplication for the inventory management problem 199

9.6 Additional constraints for the inventory management problem (I) 199

9.7 Additional constraints for the inventory management problem

(II) for the case TP = 3 . 200

9.8 Constraints for the inventory management problem 200

9.9 Multicommodity inventory management two-stage example: Two-

stage problem with uncertain demands and inventory management201

11.1 Numerical tests - threshold problem: Ants vs. SOS2 B&B vs. CSA226

11.2 Numerical tests - threshold problem: Ants vs. CSA 228

11.3 Numerical tests - uncertain cost problem: Best case (Γ = 0) . . . 233

11.4 Numerical tests - uncertain cost problem: Worst case (Γ = 1) . . 234

11.5 Numerical tests - uncertain cost problem: Running time in seconds235

14

LIST OF FIGURES

12.1 Reference model: Multicommodity minimum cost flow problem . 256

12.2 Reference model - ant algorithm: Delivered extra demand for

different values of Γ . 261

12.3 Reference model - ant algorithm: Change in the delivered extra

demand for increased storage costs for commodity 2 263

12.4 Reference model - ant algorithm: Change in the delivered extra

demand for increased penalty costs for commodities 1 and 2 at

warehouses WH11, WH12, WH13, WH14 and WH15 264

12.5 Reference model - ant algorithm: Percentual change in the deliv-

ered extra demand for increased penalty costs for commodities 1

and 2 at warehouses WH11, WH12, WH13, WH14 and WH15 . . 265

12.6 Reference model - transformation algorithm: Delivered extra de-

mand for different values of Γ . 267

12.7 Reference model - transformation algorithm: Change in the de-

livered extra demand for increased storage costs for commodity

2 . 268

12.8 Reference model - transformation algorithm: Change in the de-

livered extra demand for increased penalty costs for commodities

1 and 2 at warehouses WH11, WH12, WH13, WH14 and WH15 . 270

12.9 Reference model - transformation algorithm: Percentual change

in the delivered extra demand for increased penalty costs for com-

modities 1 and 2 at warehouses WH11, WH12, WH13, WH14 and

WH15 . 270

12.10Reference model - recoverable problem: Delivered extra demand

in percent . 272

12.11Reference model - recoverable problem: Change in the delivered

extra demand for increased storage costs for commodity 2 273

12.12Reference model - recoverable problem: Change in the delivered

extra demand for increased penalty costs for commodities 1 and

2 at warehouses WH11, WH12, WH13, WH14 and WH15 274

12.13Reference model - recoverable problem: Percentual change in the

delivered extra demand for increased penalty costs for commodi-

ties 1 and 2 at warehouses WH11, WH12, WH13, WH14 and

WH15 . 275

15

LIST OF FIGURES

12.14Reference model - two-stage problem: delivered extra demand in

percent . 277

12.15Reference model - two-stage problem: Change in the delivered

extra demand for increased storage costs for commodity 2 278

12.16Reference model - two-stage problem: Change in the delivered

extra demand for increased penalty costs for commodities 1 and

2 at warehouses WH11, WH12, WH13, WH14 and WH15 280

12.17Reference model - recoverable problem: Percentual change in the

delivered extra demand for increased penalty costs for commodi-

ties 1 and 2 at warehouses WH11, WH12, WH13, WH14 and

WH15 . 280

12.18Reference model - two-stage problem: Interexchange for com-

modity 1 . 283

12.19Reference model - multiple time periods: Inventory management 287

16

List of Tables

4.1 Ant algorithm notation . 65

5.1 Avoiding small amounts of flow: Numerical comparison 98

6.1 Multicommodity uncertain cost example: Best case and worst

case costs . 111

6.2 Corresponding values for Γ in Bertsimas and Sim and the ant

algorithm . 119

6.3 Single-commodity uncertain cost example: Robust solutions (Bert-

simas and Sim) . 119

6.4 Single-commodity uncertain cost example: Robust solution (ant

algorithm - uniformly distributed costs, average run) 119

6.5 Single-commodity uncertain cost example: Robust solutions (ant

algorithm - Gaussian distributed costs, average runs) 120

6.6 Single-commodity uncertain cost example: Expected cost values

for the optimal solutions for different values of Γ: Bertsimas/Sim

and ant algorithm (Gaussian distributed costs) 121

6.7 Single-commodity triangular distributed cost example: Triangu-

lar distribution of the cost values 122

6.8 Single-commodity triangular distributed cost example: Compar-

ison of the results of Bertsimas and Sim and the ant algorithm . 124

7.1 Uncertain demands transformation example 1: Penalty and stor-

age costs . 132

7.2 Flow units of extra demand which are not delivered to the de-

mand nodes . 133

17

LIST OF TABLES

7.3 Total number of flow units which are delivered to the demand

nodes . 134

7.4 Uncertain demands transformation example 2: Longest path for

nominal and full demand . 141

7.5 Uncertain demands transformation example 2: Added arcs 141

7.6 Uncertain demands transformation example 2: Robust optimal

supply for 0 ≤ Γ ≤ 0.8 . 143

7.7 Uncertain demands transformation example 2: Robust optimal

supply for 0.9 ≤ Γ ≤ 1.3 . 143

7.8 Uncertain demands transformation example 2: Robust optimal

supply for 1.4 ≤ Γ ≤ 1.7 . 144

7.9 Uncertain demands transformation example 2: Robust optimal

supply for 1.8 ≤ Γ ≤ 1.9 . 144

7.10 Uncertain demands transformation example 2: Robust optimal

supply for 2.0 ≤ Γ ≤ 2.3 . 144

7.11 Uncertain demands transformation example 2: Robust optimal

supply for 2.4 ≤ Γ ≤ 2.8 . 145

7.12 Uncertain demands transformation example 2: Robust optimal

supply for 2.9 ≤ Γ ≤ 5.0 . 145

8.1 Multicommodity uncertain demands example: Penalty and stor-

age costs . 157

8.2 Multicommodity uncertain demands example: Delivered demand

at demand nodes for different runs of the ant algorithm 157

8.3 Recoverable robustness example: Minimum recovery budget -

transport to demand nodes . 174

8.4 Recoverable robustness example: Minimum recovery budget -

production, recovery and total cost 174

8.5 Recoverable robustness example: Increased recovery budget -

transport to demand nodes . 175

8.6 Recoverable robustness example: Increased recovery budget -

production, recovery and total cost 175

8.7 Recoverable robustness example: Recovery budget as optimiza-

tion variable - transport to demand nodes 176

18

LIST OF TABLES

8.8 Recoverable robustness example: Recovery budget as optimiza-

tion variable - production, recovery and total cost 176

8.9 Recoverable robustness example: Translated demand scenarios -

transport to demand nodes . 176

8.10 Recoverable robustness example: Translated demand scenarios -

production, recovery and total cost 177

8.11 Recoverable robustness example: Summary 177

9.1 Multicommodity two-stage example: Demand scenarios 191

9.2 Multicommodity two-stage example: Penalty and storage costs

for commodities 1 and 2 . 191

9.3 Multicommodity two-stage example: Delivered units in optimal

solution . 191

9.4 Multicommodity two-stage example: Penalty and storage costs

in an optimal solution . 192

9.5 Multicommodity interexchange two-stage example: Arc cost for

the interexchange arcs for commodities 1 and 2 195

9.6 Multicommodity interexchange two-stage example: Delivered units

in the first stage of the optimal solution 196

9.7 Multicommodity interexchange two-stage example: Delivered units

including interexchange (second stage) 196

9.8 Multicommodity interexchange two-stage example: Penalty and

storage costs in optimal solution 196

9.9 Multicommodity inventory management two-stage example: De-

mand scenarios . 202

9.10 Multicommodity inventorymanagement two-stage example: Penalty

and storage costs for commodities 1 and 2 202

9.11 Multicommodity inventory management two-stage example: Op-

timal solution . 203

11.1 Random layered networks for the TMCFP 223

11.2 TMCFP - ant algorithm: Parameter settings 224

11.3 Numerical tests - threshold problem: Results 226

11.4 Random layered networks for the MCFP with uncertain cost . . 230

19

LIST OF TABLES

11.5 Uncertain costs - ant algorithm: Parameter settings 230

11.6 Numerical tests - uncertain cost problem: Results 233

11.7 Random layered networks for the MCFP with uncertain demands 237

11.8 Uncertain demands - ant algorithm: Parameter settings 237

11.9 Results for network D001 . 238

11.10Results for network D002 . 240

11.11Results for network D003 . 241

11.12Results for network D004 . 243

11.13Results for network D005 . 244

11.14Results for network D006 . 246

11.15Results for network D007 . 247

11.16Results for network D008 . 249

11.17Results for network D009 . 250

11.18Results for network D010 . 252

12.1 Reference model: Arc capacities 257

12.2 Reference model: Bundle capacities 257

12.3 Reference model: Arc costs . 258

12.4 Reference model: Demands . 259

12.5 Reference model: Penalty and storage costs 259

12.6 Reference model - ant algorithm: Parameter settings 260

12.7 Reference model - ant algorithm: Delivered extra demand for

different values of Γ . 261

12.8 Reference model - ant algorithm: Delivered demand for original

and increased storage costs for commodity 2 262

12.9 Reference model - ant algorithm: Delivered extra demand for

original and increased penalty costs for commodities 1 and 2 . . 264

12.10Reference model - transformation algorithm: Ant algorithm pa-

rameter settings . 265

12.11Reference model - transformation algorithm: Delivered extra de-

mand for different values of Γ . 266

20

LIST OF TABLES

12.12Reference model - transformation algorithm: Delivered demand

for original and increased storage costs for commodity 2 268

12.13Reference model - transformation algorithm: Delivered extra de-

mand for original and increased penalty costs for commodities 1

and 2 . 269

12.14Reference model - recoverable problem: Delivered demand at

warehouses 1 to 15 . 271

12.15Reference model - recoverable problem: Delivered demand for

increased storage costs for commodity 2 272

12.16Reference model - recoverable problem: Delivered extra demand

for original and increased penalty costs for commodities 1 and 2 274

12.17Reference model - two-stage problem: Demand scenarios 276

12.18Reference model - two-stage problem: Delivered demand at ware-

houses 1 to 15 . 277

12.19Reference model - two-stage problem: Delivered demand for in-

creased storage costs for commodity 2 278

12.20Reference model - two-stage problem: Delivered extra demand

for original and increased penalty costs for commodities 1 and 2 279

12.21Reference model - two-stage problem: Interexchange 282

12.22Reference model - multiple time periods: Demand scenarios . . . 285

12.23Reference model - multiple time periods: Optimal solution 285

12.24Reference model - multiple time periods: Inventory management 286

21

LIST OF TABLES

22

Chapter 1

Introduction

Nowadays, the manufacturing process of a commodity is not only a single pro-

cess, but a chain of processes that comprises not only one, but several different

organizations. In the literature, this chain is called supply chain. According

to J.T. Mentzer, see [69], a supply chain is a network of organizations that are

linked by upstream and downstream flows of products, services, finances and

information from a source to a customer.

As stated in [69], the definition of the term “supply chain management” dif-

fers across authors. In this thesis, the term supply chain management denotes

the planning and management of various tasks concerning supply chains, for

example the choice of suppliers, the production and processing and tasks in

logistics.

Supply chain management is an important research area in Operations Research.

The supply chain optimization is based on input data like volumes of orders,

production locations, routes and costs of transport or product portfolio.

For details about supply chain management and logistics, we refer the reader to

[69] and [88].

One of the major aims of manufacturers is a cost-saving production process.

However, in some cases, costs can not be handled as fixed data. A typical

example is the fluctuating oil price which immensely influences all production

and transportation costs.

Furthermore, a manufacturer has to optimize the production volume: A safety

stock which is too large results in high storage costs, while a too small safety

stock involves the risk that customers cannot be delivered in out-of-stock situa-

tions. One of the main difficulties in this optimization process is the fact, that

23

the demand can not be predicted precisely.

In this thesis we consider the problem of data uncertainties in supply chains

modeled as network flow problems. The subject of this thesis arises from a

research project with the German industry partners Axxom Software AG and

Henkel KGaA.

Uncertainties can occur along the entire supply chain. A typical risk factor is

uncertainty in cost values, for example fluctuating transportation costs due to an

instable oil price. Moreover, the demand values in supply chains often cannot be

predicted precisely, as they are affected by various factors like customer behavior

or seasonal fluctuations. These two kinds of uncertainties will be in the focus

of this thesis.

The classical approach of modeling supply chain problems with uncertain input

data is to formulate deterministic surrogate problems and solve them using

various scenario sets of input data, for example best case, average case and

worst case. Then every scenario corresponds to a different configuration of the

input data.

This classical approach has several drawbacks: The number of possible scenarios

can be very high, consequently a large number of optimization problems must be

solved. If only a limited number of scenarios is considered, the actually realized

scenario is possibly not covered by the scenario set. Furthermore, the optimal

solutions for different scenario sets in general cannot be combined to a global

optimal solution.

Hence, new approaches for dealing with uncertainty in supply chain problems

must be developed.

This thesis is organized as follows.

In Chapter 2, we give a short introduction to the mathematical fields needed in

this thesis.

In Chapter 3, we describe the problem and arising challenges in detail. Further-

more, we give a survey over previous developments in research in the concerned

mathematical fields.

In Chapter 4, the Ant Colony Optimization metaheuristic is adapted to solve

Supply Chain Management problems that are modeled as Network Flow Prob-

lems.

In Chapter 5, we examine the avoidance of small amounts of flow in supply

chain networks. We develop an approach based on the Ant Colony Optimization

metaheuristic as well as a Branch and Bound method using a special branching

24

CHAPTER 1. INTRODUCTION

scheme based on SOS 2 conditions.

In Chapter 6, we propose methods to deal with data uncertainty in the cost

values that are based on Robust Optimization. First, we extend an existing

approach of D. Bertsimas and M. Sim from single-commodity to multicommod-

ity flow problems. Additionally, we combine ideas of Robust Optimization and

the Ant Colony Optimization metaheuristic and develop an ant algorithm for

network flow problems with uncertain cost.

In Chapter 7, we describe the transformation of uncertain demands to uncertain

costs. We develop an algorithm using additional information about costs arising

due to supply deficiency and surplus delivery. In addition, a general algorithm

is developed in case that no additional information is available.

In Chapter 8, algorithms for supply chain problems with uncertain demands

are examined. First, we extend the Ant Colony Optimization metaheuristic

concept and develop an ant algorithm for network flow problems with uncertain

demand values. Moreover, we adapt the concept of recoverable robustness to

supply chain problems with uncertainty in the demand values.

In Chapter 9, we propose various methods based on Stochastic Programming

in order to solve supply chain problems with uncertain demands. We extend

the existing approach of the two-stage model to multicommodity problems and

introduce a new recourse scheme. Furthermore, we examine time-expanded

networks in order to solve inventory management problems.

In Chapter 10, the supply chain optimization problem with uncertain demands

is regarded from a multicriteria perspective. In particular, we elaborate the

relation between the recoverable robustness approach and the Stochastic Pro-

gramming concept.

In Chapter 11, the developed heuristic optimization methods are evaluated by

means of several fully layered networks, which are generated at random.

In Chapter 12, the proposed methods are examined in the context of a reference

model developed in cooperation with Axxom and Henkel, which represents a

typical supply chain network. Different algorithms proposed in previous chap-

ters are applied to this reference model.

Finally, Chapter 13 gives a conclusion and an outlook to future research prospects.

Parts of this thesis were previously published:

• The general transformation algorithm of uncertain demands into uncertain

costs, given in Chapter 7, was previously published in [45].

• In parts, the Stochastic Programming methods concerning supply chain

25

problems with uncertain demands, presented in Chapter 9, were previously

published in [28].

• To some extent, the computational results of Chapter 12 were previously

published in [29].

26

Einführung

In der heutigen Zeit ist der Herstellungsprozess eines Gutes nicht einfach ein

einzelner Prozess, sondern eine Kette aus Prozessen, die nicht nur eine, son-

dern mehrere verschiedene Einrichtungen einschließen. In der Literatur wird

diese Kette als Supply Chain bezeichnet. Gemäß J.T. Mentzer, siehe [69], ist

eine Supply Chain ein Netzwerk aus Einrichtungen, die durch auf- und abwärts

fließende Flüsse aus Produkten, Dienstleistungen, Finanzen und Informationen

von einer Quelle zu einem Kunden verbunden sind.

Wie in [69] dargelegt, unterscheidet sich die Definition des Begriffs “Supply

Chain” von Autor zu Autor. In dieser Arbeit bezeichnet der Begriff Supply

Chain Management die Planung und das Management von verschiedenen Auf-

gaben innerhalb einer Supply Chain, beispielsweise die Wahl der Lieferanten, die

Produktion sowie die Ablaufsteuerung und Aufgaben im Bereich der Logistik.

Supply Chain Management ist ein bedeutender Forschungsbereich im Bereich

Operations Research. Die Supply Chain Optimierung basiert auf Eingangsdaten

wie dem Bestellvolumen, Produktionsstandorten, Transportrouten und -kosten

oder dem Produktportfolio.

Für Details zu den Themen Supply Chain Management und Logistik sei der

Leser auf [69] und [88] verwiesen.

Eines der Hauptziele von Herstellerfirmen ist ein kostensparender Produktions-

prozess. In manchen Fällen können Kosten jedoch nicht als unveränderliche

Daten behandelt werden. Ein typisches Beispiel hierfür ist der schwankende

Ölpreis, der immensen Einfluss auf die Produktions- und Transportkosten hat.

Weiterhin muss eine Herstellerfirma ihren Produktionsumfang optimieren: Ein

zu hoher Sicherheitsbestand zieht zu hohe Lagerkosten nach sich, während ein

zu niedriger Sicherheitsbestand das Risiko beinhaltet, dass Kunden im Falle

leerer Lager nicht mehr beliefert werden können. Eine der Hauptschwierigkeiten

in diesem Optimierungsprozess ist die Tatsache, dass der Bedarf nicht präzise

vorausgesagt werden kann.

27

In dieser Arbeit betrachten wir das Problem von Datenunsicherheiten in Sup-

ply Chains modelliert als Netzwerkflussproblem. Das Thema dieser Arbeit ist

aus einem gemeinsamen Forschungsprojekt mit den deutschen Industriepartnern

Axxom Software AG und Henkel KGaA entstanden.

Unsicherheiten können entlang der gesamten Supply Chain entstehen. Ein typi-

scher Risikofaktor ist Unsicherheit in den Kostenwerten, beispielsweise schwan-

kende Transportkosten aufgrund eines instabilen Ölpreises. Darüber hinaus

können Bedarfswerte in Supply Chains oftmals nicht genau vorausgesagt wer-

den, da sie durch verschiedene Faktoren wie Kundenverhalten oder saisonale

Schwankungen beeinflusst werden. Diese zwei Arten von Unsicherheiten wer-

den im Fokus dieser Arbeit stehen.

Der klassische Ansatz zur Modellierung von Supply Chain Problemen mit un-

sicheren Eingangsdaten ist die Formulierung von deterministischen Ersatzprob-

lemen, welche für verschiedene Szenarienmengen an Eingangsdaten gelöst wer-

den, beispielsweise Bestfall, Durchschnittlicher Fall und Schlimmstfall. Dann

entspricht jedes Szenario einer unterschiedlichen Konfiguration der Eingangs-

daten.

Dieser klassische Ansatz hat verschiedene Nachteile: Die Anzahl an möglichen

Szenarien kann sehr hoch sein. Folglich muss eine große Anzahl an Opti-

mierungsproblemen gelöst werden. Falls nur eine begrenzte Menge an Sze-

narien betrachtet wird, ist möglicherweise das tatsächlich realisierte Szenario

nicht durch diese Szenarienmenge abgedeckt. Weiterhin können im Allgemeinen

die optimalen Lösungen für verschiedene Szenarienmengen nicht zu einer global

optimalen Lösung kombiniert werden.

Folglich müssen neue Ansätze zum Umgang mit Unsicherheiten in Supply Chains

entwickelt werden.

Diese Arbeit ist wie folgt aufgebaut:

In Kapitel 2 wird eine kurze Einführung in die mathematischen Felder gegeben,

die in dieser Arbeit benötigt werden.

In Kapitel 3 wird die Problemstellung und daraus hervorgehende Heraus-

forderungen im Detail beschrieben. Weiterhin wird eine Übersicht über frühere

Forschungsergebnisse in den jeweiligen mathematischen Feldern gegeben.

In Kapitel 4 wird die Ant Colony Optimization Metaheuristik auf die Lösung

von Supply Chain Problemen, welche als Netzwerkflussprobleme formuliert sind,

angepasst.

In Kapitel 5 wird die Vermeidung von kleinen Flussmengen in Supply Chain Net-

zwerken beschrieben. Dazu werden ein Ansatz basierend auf der Ant Colony

28

CHAPTER 1. INTRODUCTION

Optimization Metaheuristik sowie ein Branch-and-Bound Verfahren unter Ver-

wendung eines speziellen Branchingschemas, basierend auf SOS 2 Bedingungen,

entwickelt.

In Kapitel 6 werden Verfahren zur Behandlung unsicherer Eingangsdaten

beschrieben, welche auf Robuster Optimierung basieren. Zunächst wird ein

bereits existierender Ansatz von D. Bertsimas und M. Sim von Netzwerk-

flussproblemen mit einem Gut (single-commodity) auf Netzwerkflussprobleme

mit mehreren Gütern (multicommodity) erweitert. Zusätzlich werden Ideen der

Robusten Optimierung und der Ant Colony Optimization Metaheuristik kom-

biniert und ein Ameisenalgorithmus zur Lösung von Netzwerkflussproblemen

mit unsicheren Kosten entwickelt.

In Kapitel 7 wird die Transformation von unsicheren Bedarfswerten auf un-

sichere Kostenwerte beschrieben. Ein Algorithmus, der Zusatzinformationen

über Kosten, die durch zu geringe Liefermengen oder überzählig gelieferte Güter

entstehen, verwertet, wird entwickelt. Zusätzlich wird ein allgemeiner Algorith-

mus für den Fall, dass derartige Informationen nicht vorliegen, entwickelt.

In Kapitel 8 werden Algorithmen für Supply Chain Probleme mit unsicherem

Bedarf untersucht. Zunächst wird das Konzept der Ant Colony Optimization

Metaheuristik erweitert und ein Ameisenalgorithmus für Netzwerkflussprobleme

mit unsicheren Bedarfswerten entwickelt. Weiterhin wird das Konzept der Re-

coverable Robustness an Supply Chain Probleme mit Unsicherheiten in den

Bedarfswerten angepasst.

In Kapitel 9 werden verschiedene Methoden zur Lösung von Supply Chain

Problemen mit unsicherem Bedarf vorgestellt, welche auf Stochastischer Pro-

grammierung basieren. Der bereits existierende Ansatz des Two-Stage Ver-

fahrens wird auf Multicommodity-Probleme erweitert und ein neues Kompen-

sationsschema eingeführt. Darüber hinaus werden zeitexpandierte Netzwerke

zur Lösung von Bestandsmanagementproblemen untersucht.

In Kapitel 10 wird das Supply Chain Optimierungsproblem mit unsicherem

Bedarf aus einer multikriteriellen Perspektive betrachtet. Insbesondere werden

dabei Zusammenhänge zwischen dem Ansatz der Recoverable Robustness und

dem Konzept der Stochastischen Programmierung herausgearbeitet.

In Kapitel 11 werden die entwickelten heuristischen Optimierungsverfahren an

Hand verschiedener vollständig geschichteter Netzwerke (fully layered networks)

evaluiert, welche zufallsgestützt generiert werden.

In Kapitel 12 werden die vorgestellten Verfahren im Kontext eines Referenzmod-

ells untersucht, welches in Zusammenarbeit mit Axxom und Henkel entwickelt

29

wurde und ein typisches Supply Chain Netzwerk darstellt. Verschiedene Opti-

mierungsalgorithmen, welche in den voranstehenden Kapiteln vorgestellt wur-

den, werden auf dieses Referenzmodell angewendet.

Schließlich gibt Kapitel 13 ein abschließendes Fazit sowie einen Ausblick auf

potentielle zukünftige Forschungsbereiche.

Teile dieser Arbeit wurden zuvor veröffentlicht:

• Der allgemeine Transformationsalgorithmus von unsicherem Bedarf in un-

sichere Kosten, beschrieben in Kapitel 7, wurde zuvor veröffentlicht in

[45].

• Zu Teilen wurden die Verfahren der Stochastischen Programmierung be-

treffend der Supply Chain Probleme mit unsicherem Bedarf, vorgestellt in

Kapitel 9, in [28] veröffentlicht.

• Zu Teilen wurden die numerischen Ergebnisse aus Kapitel 12 in [29]

veröffentlicht.

30

Chapter 2

Mathematical Background

This chapter contains a brief overview regarding some mathematical fields which

are important for this thesis. First, a brief introduction to graph theory is given.

Moreover, we consider the formulation of linear optimization and network flow

problems. Furthermore, we state the basic concepts of Multicriteria Optimiza-

tion. Finally, discrete and continuous probability spaces in probability theory

are introduced.

2.1 Graphs

In this section, a short introduction to the basic concepts of graphs is given. The

given descriptions are based on the books of M. Aigner [5] and H. Hamacher

and K. Klamroth [55].

A graph G = (N ,A) consists of a finite set of nodes (vertices) N and a finite set

of arcs (edges) A. An arc is defined by two endpoints i, j ∈ N and is denoted

by [i, j].

A directed graph G = (N ,A) is a graph, where a direction is associated with

each arc. An arc of a directed graph consists of a start node i ∈ A and an end

node j ∈ A and is denoted by (i, j). A directed graph is also called digraph.

A path P in G is a sequence of nodes P = (i1, i2, . . . , il) where ip ∈ N , p =

1, . . . , l, and
{

ep = [ip, ip+1] ∈ A for graphs
ep = (ip, ip+1) ∈ A or (ip+1, ip) ∈ A for digraphs

and ip 6= ip+1 ∀p = 1, . . . , l − 1.

A (di-)path P = (i1, i2, . . . , il) is called a (di-)cycle if il = i1.

31

2.2. LINEAR OPTIMIZATION

A (di-)graph G is called connected, if every pair of nodes in A is connected by

a path.

A (di-)graph G is called acyclic if G does not contain a (di-)cycle.

Let n := |N | be the number of nodes and m := |A| be the number of arcs. The

adjacency matrix AD = AD(G) of a (di-)graph G is an n×n-matrix defined by

aij =

{

1 if [i, j] ∈ A (or (i, j) ∈ A respectively, for digraphs)
0 otherwise

Let A = {e1, . . . , em}. The node-arc incidence matrix A = A(G) of a graph G

is an n×m-matrix defined by

aij =

{

1 if i is endpoint of ej
0 otherwise

The incidence matrix A = A(G) of a digraph G is an n×m-matrix defined by

aij =







1 if i is start node of ej
−1 if i is end node of ej
0 otherwise

2.2 Linear Optimization

The given definitions are based on the book of G.L. Nemhauser, A.H.G. Rinnooy

Kan and M.J. Todd, see [74].

A general linear optimization problem, also called linear program (LP), can be

given in the inequality form

min c⊤x

s.t. Ax ≤ b (2.1)

x ≥ 0

and in the standard form

min c⊤x

s.t. Ax = b (2.2)

x ≥ 0

32

CHAPTER 2. MATHEMATICAL BACKGROUND

where x ∈ Rn, c ∈ Rn, b ∈ Rm and A ∈ Rm×n. These two forms are completely

equivalent.

The set S = {x ∈ Rn : Ax = b, x ≤ 0} is called the feasible region and an

x ∈ S is called a feasible solution of the LP in standard form. An x∗ ∈ S

with cx∗ ≤ cx ∀x ∈ S is called an optimal solution of the linear optimization

problem.

There exist very efficient methods to solve linear optimization problems. One

example is the Simplex Method, which was developed by G. Dantzig in 1947.

For details, see [55] or [74], for example. Furthermore, a class of algorithms

called interior point methods can be efficiently applied on linear optimization

problems, see [96] for details.

2.3 Network Flows

In this section, we will give a short introduction to network flows.

2.3.1 Network Optimization

The introduction to Network Optimization follows the books of R.K. Ahuja,

T.L. Magnanti and J.B. Orlin, see [4], and H. Hamacher and K. Klamroth, see

[55].

Let G = (N ,A) be a connected digraph with node set N and arc set A. For

every node i ∈ N , a value bi ∈ Z gives the information about supply (if bi > 0)

and demand (if bi < 0) in the respective node. Node i is called a transshipment

node if bi = 0. We usually assume that
∑

i∈N
bi = 0. The decision variables xij

represent the flow on an arc (i, j) ∈ A. The cost per flow unit on arc (i, j) is

given by cij , while lij und uij with lij ≤ uij define the lower and upper capacity

bounds on arc (i, j), respectively.

The Network Flow Problem (NFP) is defined as

min
∑

(i,j)∈A

cijxij

s.t.
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = bi ∀i ∈ N (2.3)

lij ≤ xij ≤ uij ∀(i, j) ∈ A.

33

2.3. NETWORK FLOWS

The NFP is also called Minimum Cost Flow Problem (MCFP).

In matrix form, the NFP can also be written as

min c⊤x

s.t. Ax = b (2.4)

l ≤ x ≤ u

where A is the node-arc incidence matrix of G.

The equality constraints in (2.3) and (2.4) are called mass balance constraints

or flow conservation constraints. The inequality constraints are referred to as

flow bound constraints.

Each network containing arcs with nonzero lower bounds can be transformed to

an equivalent network with zero lower bounds only (see [4]). Furthermore, each

network can be transformed to a single-source single-sink network (see [55]).

In many cases, all arc and node data are assumed to be integral. In practice,

this so-called integrality assumption is not very restrictive, because rational

data can be converted into integer data by multiplication with a suitably large

number. Furthermore, irrational numbers are transformed to rational numbers

when represented on a computer, anyway.

For solving minimum cost flow problems, there exist a variety of efficient algo-

rithms (see Subsection 3.3.1), for example the Cost Scaling Algorithm and the

Network Simplex Method. An exhaustive survey on various algorithms can be

found in [4], for example.

The network flow model is a static model that has no underlying temporal

dimensions. In order to obtain a dynamic network flow model, we can generate

a copy of the static network for each point in time. Furthermore, the static

networks are connected via arcs as temporal linkages. The resulting dynamic

network is called time-expanded network. See [4] for details.

2.3.2 Multicommodity Flows

In Subsection 2.3.1, we considered network models composed of one commod-

ity which is sent from the source node(s) to the sink node(s). A network flow

problem with multiple commodities sharing the same network facilities is called

Multicommodity Flow Problem (MFP). According to [4], the MFP for p com-

modities is defined as follows:

34

CHAPTER 2. MATHEMATICAL BACKGROUND

min

p
∑

k=1

ckxk

s.t.

p
∑

k=1

xk
ij ≤ κij ∀(i, j) ∈ A (2.5)

Axk = bk k = 1, . . . , p

0 ≤ xk
ij ≤ uk

ij ∀(i, j) ∈ A, k = 1, . . . , p

where A is the node-arc incidence matrix of the network graph G = (N ,A).
ck defines the cost values in matrix form for commodity k, xk

ij and xk the flow

values for arc (i, j) and in matrix form, uk
ij the upper capacity bounds for arc

(i, j) and bk gives the information about supply and demand in matrix form.

The first constraint can be explained as follows: As the individual commodities

must share common arc capacities, the so-called bundle constraints

p
∑

k=1

xk
ij ≤ κij ∀(i, j) ∈ A

restrict the total flow
p
∑

k=1

xk
ij of all commodities on arc (i, j) to at most κij . As

without the bundle constraints, the MFP could be decomposed into p single-

commodity problems, these constraints are also called complicating constraints.

Due to the special problem structure, most solution methods are based on de-

composition methods (see [38]).

2.4 Multicriteria Optimization

The basic definitions given in this section are based on the book of M. Ehrgott,

see [36].

In connection with Multicriteria Optimization, we shall use the following nota-

tions concerning orders in Rn as given in [36]. Let x, y ∈ Rn.

Notation Definition

x ≤ y if xi ≤ yi, i = 1, . . . , n
x < y if xi ≤ yi, i = 1, . . . , n; x 6= y

35

2.5. PROBABILITY THEORY

Let X be the feasible set for the optimization problem and fi : X → R scalar

objective functions, i = 1, . . . , Q. Then the multicriteria optimization problem

(MOP) can be written as

vmin (f1(x), . . . , fQ(x)) (2.6)

s.t. x ∈ X

Let f(x) := (f1(x), . . . , fQ(x)).

A solution x∗ of Problem (2.6) is called Pareto optimal if there is no x ∈ X

such that f(x) < f(x∗). A solution x∗ is called weakly Pareto optimal if there

is no x ∈ X such that fi(x) < fi(x
∗) for all i = 1, . . . , Q. A solution x∗ is called

strictly Pareto optimal if there is no x ∈ X , x 6= x∗, such that f(x) ≤ f(x∗).

The set of all Pareto optimal solutions is called the Pareto set.

If x∗ is Pareto optimal, f(x∗) is called efficient. If x∗ is weakly Pareto optimal,

f(x∗) is called weakly efficient. The set of all efficient points is called the efficient

set.

If x1, x2 ∈ X and f(x1) < f(x2), we say that x1 dominates x2 and f(x1)

dominates f(x2).

A scalarization is a single-objective problem that combines different objective

functions and constraints into a single objective optimization problem, where

the aim is to find all efficient points of the initial multiobjective problem by

repeatedly solving the single-objective optimization problem with varying pa-

rameters.

2.5 Probability Theory

In this section, we give a short overview over some important terms and defini-

tions in probability theory following the books of U. Krengel, see [63], and A.

Papoulis, see [78].

2.5.1 Discrete Probability Spaces

Let Ω be a non-empty, at most countable set. A function P : Ω→ [0, 1] is called

a probability mass, if

36

CHAPTER 2. MATHEMATICAL BACKGROUND

P (Ω) = 1

P (A) ≥ 0 ∀A ⊆ Ω (2.7)

P (

∞
⋃

i=1

Ai) =

∞
∑

i=1

P (Ai) for any series of pairwise disjoint Ai ∈ Ω

The pair (Ω, P) is called a discrete probability space.

Let (Ω, P) be a discrete probability space and χ an arbitrary set. Then a

function X : Ω→ χ is called a χ-valued random variable.

A probability mass PX on χX := {X(ω) : ω ∈ Ω} where PX(x) = P ({ω ∈ Ω :

X(ω) = x}) is called the distribution function of X .

If (Ω, P) is a discrete probability space and X a real-valued random variable,

the expected value E(X) of X is defined as E(X) =
∑

ω∈Ω

X(ω)P (ω).

If E(X2) exists, the variance of X is defined as V ar(X) = E((X − E(X))2).

The standard deviation of X is defined as σX =
√

V ar(X).

2.5.2 Continuous Probability Spaces

Let Ω be a non-empty set and A a σ-algebra of subsets of Ω. A function P :

A → [0, 1] is called probability mass if

P (Ω) = 1

P (A) ≥ 0 ∀A ∈ A (2.8)

P (

∞
⋃

i=1

Ai) =

∞
∑

i=1

P (Ai) for pairwise disjoint Ai ∈ A

The triplet (Ω,A, P) is called probability space. The pair (Ω,A) is called mea-

surable space.

A function F : R→ [0, 1] is called distribution function, if F is continuous from

the right, monotonically increasing, lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

A nonnegative function f : R → R+
0 with

∞
∫

−∞

f(x) dx = 1 is called density

function.

If f is a density function, then F (x) =
x
∫

−∞

f(t) dt is a distribution function.

37

2.5. PROBABILITY THEORY

Let (Ω,A) and (Ω′,A′) be measurable spaces. A function f : Ω → Ω′ is called

measurable, if f−1(A′) ∈ A for all A′ ∈ A′.

Let (Ω,A, P) be a probability space and let (Ω′,A′) be a measurable space. A

random variable X is a measurable function X : Ω→ Ω′.

The distribution of X is a probability mass PX defined by PX(A′) = P (X ∈
A′). If X is real-valued, the distribution function is FX(x) = P (X ≤ x)

= PX(]−∞, x]). If the distribution of X has a density function f , we shortly

say that X has the density f .

The expected value or mean of X is defined as E(X) =
∫

Ω

X dP . If X has a

density f then E(X) =
∞
∫

−∞

xf(x) dx.

The variance of X is defined by V ar(X) = E[(X − E(X))2]. σX =
√

V ar(X)

is called the standard-deviation of X .

The distribution with density function

ϕµ,σ2(x) =
1

σ
√
2π

exp

(

− (x− µ)2

2σ2

)

is called the Gaussian distribution or normal distribution with expected value

µ and variance σ2, short N (µ, σ2).

38

Chapter 3

Problem Formulation and

Objectives

The optimization of supply chains depends on diverse input data. Dependent

on volumes of orders, routes and costs of transport and diverse commodities,

the entire supply chain shall be optimized. When modeling a supply chain as

optimization problem, a compromise between a simple and tractable model and

a model that sufficiently represents the reality is needed.

3.1 Network Representation of Supply Chain

Problems

One possible model of a supply chain is the network representation as a network

G with nodes N and arcs A, cost values, demand data and capacity restrictions.

Then the corresponding optimization problem is a network flow problem.

As for the advantages concerning computational tractability, the network rep-

resentation is maintained as a base model, both in the research project with

Axxom Software AG and Henkel KGaA in general and in particular in this

thesis.

In the context of the supply chain applications in our research project, a supply

chain model consists of various supply chain stages. Examples are transporta-

tion of raw materials, production and distribution stages. In practice, these

stages must be processed successively.

Therefore, except as noted otherwise, we always assume in the following that

39

3.2. UNCERTAINTIES IN SUPPLY CHAINS

the network G is a layered network. The term layered network is defined as

follows:

Definition 3.1. A network G = (N ,A) with node set N and arc set A is called

a layered network with s layers if the node set can be partitioned into s subsets

l1, . . . , ls, such that the following conditions hold:

1. For every node i ∈ lk, k = 1, . . . , s − 1: For every arc (i, j) ∈ A it holds

that node j ∈ lk+1.

2. For every node i ∈ lk, k = 2, . . . , s: For every arc (j, i) ∈ A it holds that

node j ∈ lk−1.

3. There are no incoming arcs for nodes in l1. There are no outgoing arcs

for nodes in ls.

The subsets lk, k = 1, . . . , s, are called layers.

A layered network G is called fully layered, if for every node i ∈ lk, k =

1, . . . , s− 1 and for every node j ∈ lk+1, the arc (i, j) is contained in the arc set

A.

Figure 3.1: Layered network

3.2 Uncertainties in Supply Chains

In the industry, data uncertainties, which can occur along the entire supply

chain, are significant risk factors. Target figures like the total cost or the service

level can significantly be influenced by data uncertainty.

Typical risk factors are:

40

CHAPTER 3. PROBLEM FORMULATION AND OBJECTIVES

• Uncertainties in costs:

– raw material cost

– production and processing cost

– logistics and stock cost

• Uncertainties in demand:

– customer behavior

– seasonal fluctuation

– fluctuations in economic activity

– competitor behavior

If the uncertainty in demand is very high, the safety stock must usually

be increased in order to avoid an “out-of-stock” situation.

There exist more risk factors like capacity fluctuations, failures of machines

or fluctuations in material quality, for example. These risk factors will not be

considered in this thesis, because we want to focus on the two major risk factors,

uncertainties in costs and uncertainties in demand.

3.3 Literature Review

In this thesis, we focus on supply chain management problems that are formu-

lated as Network Flow Problems. Therefore we give a short literature review

concerning algorithmic approaches for minimum cost flow problems and network

flow problems in supply chains first.

In order to deal with uncertainty, various mathematical methods exist. Two

major fields have been established: Robust Optimization and Stochastic Pro-

gramming. We give a brief overview over the developments in these two fields,

as the research in the following chapters of this thesis is based on concepts from

the fields Robust Optimization and Stochastic Programming in large part.

Furthermore, we will develop Robust Optimization methods based on the Ant

Colony Optimization metaheuristic in this thesis. We therefore give a short

literature survey concerning Ant Colony Optimization.

Finally, we review other heuristic approaches in the context of supply chain

management applications.

The literature on the covered mathematical fields is exhaustive, such that we

can only give a small sample of references here. We will focus on well-established

41

3.3. LITERATURE REVIEW

references as well as papers that are specially of interest in the context of this

thesis.

3.3.1 Network Flow Problems

MinimumCost Flow Problems There exist a variety of algorithms for solv-

ing minimum cost flow problems, which can be divided in two main classes: Fea-

sible Flow Algorithms (FFA) and Optimal Infeasible Flow Algorithms (OIFA),

see [97]. Feasible Flow Algorithms start with an arbitrary feasible solution and

generate a new feasible solution in each iteration, until the optimal solution

is found. Optimal Infeasible Flow Algorithms use infeasible flows during the

optimization process which comply with optimality conditions and which are

adapted until all flow conservation and capacity constraints are satisfied.

Important representatives of the FFA class are the Cycle Canceling Algorithm,

the Cost Scaling Algorithm and some implementations of the Network Simplex

Algorithm.

The Cycle Canceling Algorithm was developed by M. Klein in 1967, see [60].

The algorithm improves the objective function by searching negative cost cycles

in the residual network and augmenting the flow on these cycles. Klein demon-

strates the approach by means of assignment and transportation problems.

The Cost Scaling technique was developed independently by H. Röck in 1980,

see [82], and R.G. Bland and D.L. Jensen in 1985, see [19] and [20]. The

Cost Scaling Algorithm uses a successive approximation technique based on

cost scaling. The algorithm of Röck was improved by A.V. Goldberg and R.E.

Tarjan in [50]. Further improvements by R.K. Ahuja et al., see [3], and J.B.

Orlin, see [76], followed.

The Network Simplex Algorithm is a specialized version of the linear program-

ming simplex method. The operations of the network simplex method can be

simplified compared to linear programming due to the spanning tree structure of

bases of the minimum cost flow problem. A variety of Network Simplex imple-

mentations can be found in the literature, see [59] for example. Some variations

of the Network Simplex Algorithm belong to the FFA class.

Important representatives of the OIFA class are the Successive Shortest Path

Algorithm, the Capacity Scaling Algorithm and the Parametric and Dual Net-

work Simplex Algorithm.

The Successive Shortest Path Algorithm was proposed by J. Edmonds and R.M.

Karp, see [35]. Starting with the zero-flow, the algorithm compensates imbal-

ances between nodes with surplus flow and nodes with flow deficiency, until

42

CHAPTER 3. PROBLEM FORMULATION AND OBJECTIVES

the flow conservation constraints are satisfied for all nodes. The reduced cost

optimality criterion is maintained throughout the optimization process.

The Capacity Scaling Algorithm was presented by J. Edmonds and R.M. Karp,

see [35]. The algorithm is a variation of the Successive Shortest Path Algo-

rithm. The running time of the original algorithm is enhanced by the following

improvement: In every iteration only those shortest paths are considered on

which a minimum amount of flow can be sent.

The Parametric and the Dual Network Simplex Algorithm are variations of

the Network Simplex Algorithm which belong to the OIFA class. During the

optimization phase of the Parametric Network Simplex Algorithm, the flow con-

servation constraints are violated, while the Dual Network Simplex Algorithm

violates the capacity constraints. In [2], R.K. Ahuja et al. describe a Parametric

Network Simplex Algorithm. In [6], A.I. Ali et al. give an implementation of

the Dual Network Simplex Algorithm using dual re-optimization procedures.

As we can only give a short cross-section of algorithms for minimum cost flow

problems in this context, we refer the reader to [4] for an exhaustive survey.

Supply Chain Problems The modeling of supply chain problems as mini-

mum cost flow problems is a wide-spread approach. As the list of supply chain

applications modeled as minimum cost flow problems is exhaustive, we can only

give a small sample of references here.

In [57], W.S. Jewell formulates the warehousing and distribution of a seasonal

product as minimum cost flow problem.

In [34], R.C. Dorsey et al. model a multifacility, multiproduct production

scheduling problem as minimum cost flow problem. A finite planning horizon

of discrete production periods is considered. Standard network flow algorithms

as well as special purpose algorithms are applied.

In [41], J.R. Evans proposes the modeling of dynamic multistage production

and inventory planning problems as single commodity network flow problems.

In particular, single period problems are examined in detail.

In recent years, new approaches in theory and practice of minimum cost flow

problems were developed, integrating different mathematical fields. We will give

two examples for this:

In [26], S.-W. Chioua examines a minimum cost product flow in a supply chain

network consisting of manufacturers, retailers and consumers. A combinatorial

approximation algorithm based on simplicial decomposition is presented.

43

3.3. LITERATURE REVIEW

In [49], M. Ghateea and S.M. Hashemi consider fuzzy supply and demand in

network design problems, modeled as multi-objective fuzzy minimum cost flow

problems. In particular, the most optimistic and the most pessimistic solutions

are examined.

Time-Expanded Networks The theory of time-expanded networks is an

important feature in recent applications of network flow problems. We will give

a small sample of references here:

In [54], H.W. Hamacher and S. Tifecki model building evacuation problems as

time-expanded network flow problem. The simultaneous handling of various

objective functions by means of lexicographical optimization is examined.

In [61], E. Köhler et al. examine time-expanded networks in the context of

applications in road traffic control. A special focus is on flow-dependent transit

times on the arcs.

In [43], L. Fleischer and M. Skutella examine the storage of flow at intermedi-

ate nodes in time-expanded minimum cost flow problems. A capacity scaling

method for time-expanded minimum cost flow problems with costs proportional

to transit times is proposed.

M. Skutella summarizes the research concerning dynamic flows in [89]. Research

results starting from the first approach to time-expanded networks by L.R. Ford

and D.R. Fulkerson ([44]) as well as recent applications are covered.

3.3.2 Robust Optimization

Robust Optimization Models Robust Optimization is an approach to ad-

dress optimization problems with uncertain input data. The goal of Robust

Optimization is to find a solution to the optimization problem, which can cope

best with all possible realizations of the uncertain data. In general, this solution

is not optimal for every realization of the uncertain input data, but performs

well even in the worst case. In many cases, Robust Optimization deals with

uncertain input parameters which are known only within certain bounds.

The first robust approach for linear optimization problems was presented by

A.L. Soyster in 1973 (see [90]). Soyster proposes a linear optimization model

which leads to a solution that is feasible for all input data. However, this

approach generates rather over-conservative solutions.

In [72], J.M. Mulvey et al. present a scenario based robust approach. The

model combines solution robustness and model robustness. A main feature of

44

CHAPTER 3. PROBLEM FORMULATION AND OBJECTIVES

the approach of Mulvey et al. is the fact that the robust solutions contain

common components for all scenarios as well as components which are scenario

specific. However, the computational efforts for large problem instances can be

very high.

Less conservative robust models were proposed by A. Ben-Tal and A. Nemirovski

starting from 1998 (see [11], [12] and [13], for example) as well as L. El-Ghaoui

et al. (see [39] and [40]). In these papers, uncertain linear problems with

ellipsoidal uncertainties are considered, which allow the approximation of more

complex uncertainty sets. The resulting robust optimization problems, called

robust counterparts, involve conic quadratic problems.

A robust approach which allows to control the level of conservatism in the

robust solution was proposed by D. Bertsimas and M. Sim (see [14] and [15]).

A robustness parameter specifies the number of coefficients that are allowed

to change such that the optimal solution can be guaranteed to be feasible.

Moreover, the approach of Bertsimas and Sim is directly applicable to discrete

optimization problems. In [16], an application on optimal control of supply

chains subject to stochastic demand is presented.

P. Kouvelis and G. Yu present a scenario-based robust framework specially

designed for discrete optimization problems (see [62]). A drawback of their

approach is the fact, that the robust counterpart of many polynomially solvable

discrete optimization problems is NP-hard.

In [64] and [91], the new approach recoverable robustness of S. Stiller et al. is

presented. In recoverable robustness, the aim is to find solutions to an opti-

mization problem with uncertain input data, which can be made feasible, or

recovered, within a given budget for all possible situations. The optimization

process consists of two phases, a planning phase and a recovery phase.

M. Fischetti and M. Monaci propose a robustness concept called Light Robust-

ness in [42]. Light Robustness is based on the approach given by Bertsimas and

Sim ([14]). The aim is to balance a possible violation of the constraints and the

quality of the solution concerning the objective function value.

In [85], A. Schöbel and A. Kratz analyze the so-called price of robustness, i.e. the

trade-off between the best possible solution and a robust solution. A bicriteria

problem is formulated by adding the trade-off as an additional objective function

to the original problem. The bicriteria approach is developed in the context of

aperiodic timetabling problems.

For a detailed survey on the major existing robust approaches in the context of

Network Flow Problems, see [46].

45

3.3. LITERATURE REVIEW

Supply Chain Problems In the context of supply chain problems, Robust

Optimization has been successfully applied. We give some example references

here.

In [98], C.-S. Yu and H.-L. Li propose a Robust Optimization model for stochas-

tic logistic problems, inspired by the approach of Mulvey et al. ([72]). Yu and Li

focus on linear logistic models with a scenario-based data set. In comparison to

the original approach of Mulvey et al., the number of variables and constraints

of the robust problem is decreased, resulting in a lower running time of the

method of Yu and Li. The computational performance of the model is demon-

strated by means of two logistic management examples. However, even though

the resulting robust counterpart of a linear problem remains linear when apply-

ing the method of Yu and Li, the robust formulation of a network flow problem

can no longer be represented as a network flow problem.

In [16], D. Bertsimas and A. Thiele present a Robust Optimization approach for

the problem of optimally controlling a supply chain in discrete time. Uncertain

demand values in the supply chain without specific distribution are considered.

The optimization method is based on the robust optimization framework of

Bertsimas and Sim ([14], [15]). The resulting optimization model is a linear

programming problem in case that no fixed costs occur along the supply chain

and a mixed integer programming problem otherwise. In contrast to the ap-

proach presented in this thesis, the supply chain problem is not modeled as a

network flow problem.

In [1], E. Adida and G. Perakis examine demand uncertainty in dynamic pricing

and inventory control problems. A robust approach based on a demand-based

fluid model is presented. The optimization model includes linear and convex

functions. As a dynamic problem setting is considered, the coefficients of the

input data are time-dependent, such that the optimal pricing and production

policy in the fluid model are determined for a time horizon. In contrast to the

time-discrete network flow problem representation in this thesis, the model of

Adida and Perakis is a time-continuous one.

3.3.3 Stochastic Programming

Another framework for modeling optimization problems with uncertain input

data is Stochastic Programming. In contrast to Robust Optimization, Stochas-

tic Programming works with given or estimated probability distributions of the

uncertain input data in general. The optimal policy of a Stochastic Program-

ming model is to find a solution that is feasible for all (or almost all) possible

data realizations and that minimizes the expectation of a cost function which

46

CHAPTER 3. PROBLEM FORMULATION AND OBJECTIVES

is dependent on the random variables.

Two-Stage Linear Programming A comprehensively studied model in Sto-

chastic Programming is the two-stage linear program, see [18] and [22], for

example. In the first stage, one decision is made for all possible scenarios. In

the second stage, after uncertainty is disclosed, a recourse decision is made for

each scenario that can compensate bad effects that might result for the specific

scenario from the first stage decision.

There exist various methods for solving two-stage linear programs, the so-called

L-shaped algorithm being the best known one, see [18], for example. In [65],

J. Linderoth and S. Wright propose serial and asynchronous versions of the

L-shaped algorithm as well as a trust-region method. In [86], R. Schultz et

al. describe a framework using Gröbner basis methods for solving stochastic

problems with integer recourse.

Chance Constraint Model Another important model is the so-called chance

constraint model, see [58] and [80] for example. In the chance constraint model,

constraints need not hold almost surely, but with some probability level. In

addition, A. Prékopa examines the maximization of the probability that the

constraints are satisfied in [80].

Supply Chain Problems Stochastic Programming has successfully been ap-

plied to supply chain problems. We give a small sample of references here.

In [7], K.-P. Arnold examines the planning of transport and storage in the con-

text of distribution planning on the basis of stochastic planning models, where a

main focus lies on the applicability of the developed concepts in practice. Arnold

considers both static (single time period) and dynamic (multiple time periods)

transportation problems. For single time period problems, various Stochastic

Programming policies are demonstrated, including both the two-stage method

and the chance constraint model. The multiple time period problems are con-

sidered under two perspectives: a formulation as a deterministic linear program

as well an application of dynamic programming techniques are examined.

In [79], W.B. Powell and H. Topaloglu examine freight transportation prob-

lems with uncertain input data, formulated as linear programming problems.

In this context, Powell and Topaloglu consider resource allocation problems us-

ing concepts from Stochastic Programming and in particular model the freight

transportation problem as two-stage linear program, exploiting the underlying

network structure. Various different classes of applications are examined and

47

3.3. LITERATURE REVIEW

a case study based on the distribution of freight cars for a railroad is carried

through.

J. Böttcher examines transportation and transshipment problems as well as lo-

cation/transport problems in [22]. The two-stage method as well as the chance-

constraint model are regarded. In the context of the two-stage method, Böttcher

distinguishes deterministic and stochastic compensation in the second stage.

Furthermore, an optimization method similar to the general L-shaped method,

called cutting plane method of van Slyke and Wets, is discussed. The practical

applicability of the Stochastic Programming methods is demonstrated by means

of different example applications.

In [27], P. Dächert gives a survey over Stochastic Programming in the context of

Supply Chain Management applications. She applies the two-stage method as

well as the chance constraint model to several single-commodity production and

transportation planning problems with uncertain demand. The thesis of Dächert

covers the problem class of supply chain problems with network representation.

3.3.4 Ant Colony Optimization

ACO Theory The first Ant Colony Optimization (ACO) approach was de-

veloped in 1996 by M. Dorigo et al., see [32], known under the name of Ant Sys-

tem (AS). The main application was the Classical Traveling Salesman Problem,

though the applicability to other optimization problems was also shown in [32].

Various variants of the ACO metaheuristic were developed in order to improve

the performance of the ant algorithm.

The main idea of the Elitist Strategy for Ant System (EAS), see [33], is the re-

inforcement of the pheromone trails of the best-so-far solution in each iteration.

In the Rank-based Ant System (ASrank), see [33], the best solutions that are

found are ranked according to the quality of the solutions. Only the best so-

lutions obtain new pheromone, where the amount of pheromone is multiplied

with the rank number of the solution.

In [92], T. Stützle and H. Hoos present a variant called Max-Min Ant System

(MMAS), where only the iteration-best or best-so-far ant is allowed to drop

pheromone in each iteration and where the pheromone levels are bounded be-

low and above by iteration dependent pheromone bounds. Furthermore, the

pheromone trails are reinitialized as soon as a stagnation behavior occurs.

48

CHAPTER 3. PROBLEM FORMULATION AND OBJECTIVES

Industrial Applications and Supply Chain Problems In recent years, a

large variety of ant algorithms and applications to industrial problems, including

supply chain management problems, has appeared. As the list of industrial

applications of ACO techniques is exhaustive, we can only give a small sample

of references here.

K. Doerner et al. examine the full truckload transportation problem in [31],

using a hybrid ACO approach. The objective is to minimize the total costs,

consisting of fixed costs occurring per vehicle that is brought into use and vari-

able costs depending on the traveled distance. A problem specific heuristic is

developed for the initialization of the pheromone trails and for the solution con-

struction. Supply chain stages different from the transportation stage are not

considered in the paper of Doerner et al.

The application of a hybrid algorithm called Beam-ACO to supply chain man-

agement problems is presented by A. Caldeira et al. in [23]. Beam-ACO fuses

Beam-Search and Ant Colony Optimization and was initially presented in the

context of job-shop problems (see [21]). The different operational activities

within the supply chain are solved using ACO techniques, where the pheromone

information is used for information exchange in the supply chain. The algorithm

optimizes the supplying, the distributer and the logistic agents of a supply chain.

In [87], C.A. Silva et al. propose a decentralized supply chain management

concept based on a multi-agent system, where the corresponding optimization

problem is formulated as a set of distributed supply chain problems. As in [23],

the pheromone matrix of the ACO metaheuristic is used to achieve information

exchange within the supply chain. The coordination of the colony agents of the

different supply chain members is realized in a multi-agent system.

In [24], F.T.S. Chan and N. Kumar propose a design technique for supply chain

networks based on a multiple ACO technique with main focus on the allocation

of customers to distribution centers. The goal is to design an efficient supply

chain network which balances the transit time and customers service, which

distinguishes the paper of Chan and Kumar and this thesis, where the focus is

on the cost-efficient strategic and operational planning of supply chain networks.

Stochastic Optimization Problems Though there exist many applications

of the ACO metaheuristic to supply chain problems, most of these models are

developed for deterministic optimization problems. However, the use of the Ant

Colony Optimization metaheuristic concept for solving stochastic optimization

problems has received more attention in recent years.

In [53], T.J. Gutjahr proposes an Ant Colony Optimization based algorithm

49

3.3. LITERATURE REVIEW

for solving stochastic combinatorial optimization problems with deterministic

constraints. The objective function, which is the expected value of a random

variable, is estimated using Monte-Carlo sampling.

In [17], M. Birattari et al. present an algorithm for combinatorial optimization

problems under uncertainty, which is based on Ant Colony Optimization and

on F-Race. The algorithm is evaluated on the probabilistic Traveling Salesman

Problem.

In [8], P. Balaprakash et al. examine Ant Colony Optimization algorithms for

the probabilistic Traveling Salesman Problem, where the cost of the solutions

constructed by the ants is evaluated by an empirical estimation approach.

In this thesis, we want to apply the ACO to supply chain problems with uncer-

tain input data by the introduction of concepts of Robust Optimization in the

ACO metaheuristic.

3.3.5 Heuristics in Supply Chain Management

Apart from Ant Colony Optimization, various other heuristics have successfully

been applied to supply chain management problems. We will give a small sample

of references here:

General Heuristics In [52], H. Gunnarsson and M. Rönnqvist propose two

heuristic approaches to the planning of production and distribution for a pulp

company including transportation of raw materials, production mix and con-

tents, inventory management, distribution and customers’ orders. The first

presented heuristic approach is based on a rolling planning horizon, while the

second heuristic approach is based on Lagrangian decomposition and subgradi-

ent optimization.

Genetic Algorithm In [81], P. Radhakrishnan et al. examine the determi-

nation of the optimal level of inventory at different stages in a supply chain. An

approach based on genetic algorithms is presented.

In [73], D. Naso et al. propose a hybrid genetic algorithm approach combined

with constructive heuristics for the delivery of ready-mixed concrete. A case

study concerning ready-mixed concrete delivery based on industrial data is pro-

vided.

Simulated Annealing In [56], V. Jayaraman and A. Ross examine the design

and management of distribution networks. The optimal design of the distribu-

50

CHAPTER 3. PROBLEM FORMULATION AND OBJECTIVES

tion system as well as utilization strategies are generated using a simulated

annealing approach.

In [67], S. Afshin Mansouri considers a bicriteria sequencing problem concerning

successive stages of a supply chain. The handling of two competing objective

functions by means of a multi-objective simulated annealing approach is exam-

ined.

3.4 Challenges

In supply chain management, an additional objective for cost efficiency arises:

Usually, it is cheaper (per unit) to produce, process and transport large amounts

of the same commodity instead of small amounts. We call this objective the

avoidance of small amounts of flow. As this additional claim is not regarded

by the existing approaches, we will develop a new approach which respects the

claim of avoidance of small amounts in Chapter 5.

A second goal is to adapt existing approaches to multicommodity supply chain

problems. We will extend the approaches of Bertsimas and Sim as well as

the two-stage linear programming approach to multicommodity problems, cf.

Chapters 6 and 9.

Another challenge is the inclusion of inventory management strategies into ex-

isting approaches. The challenge consists of the insertion of a time component

in a so-far time-independent model. We will consider inventory management

strategies in the context of Stochastic Programming in Chapter 9.

A drawback of some existing approaches is the size and complexity of the un-

derlying models and resulting optimization problems. Therefore, a fourth goal

is the development of models and methods that can handle large supply chain

problems with uncertain input data. In Chapters 6 to 9, diverse optimization

approaches for this purpose are developed. These approaches will be examined

and evaluated on a reference model based on real-world data, which will be

developed in Chapter 12.

51

3.4. CHALLENGES

52

Chapter 4

Adaption of the ACO

Metaheuristic to Network

Flow Problems

In this chapter, we give a short description of the ACO metaheuristic. Sub-

sequently, we describe the adaption of the ACO metaheuristic to network flow

problems.

4.1 The Ant Colony Optimization Metaheuris-

tic

The Ant Colony Optimization (ACO) metaheuristic is a population-based meta-

heuristic which was originally applied to combinatorial optimization problems.

The metaheuristic is inspired by the natural ants’ foraging behavior: Ants are

able to find the shortest path to a food source by exploiting pheromone trails

which they deposit on the ground while moving.

In ACO, ants traverse a construction graph in order to construct solutions to the

combinatorial optimization problem. The decisions, which arcs of the construc-

tion graph are chosen by an ant, are based on the pheromone trails of preceding

ants and of heuristic information of the arcs. Once the solution construction is

finished, the pheromone trails on the arcs are updated.

The ACO metaheuristic is (cf. [33]):

53

4.2. ACO FOR SINGLE-COMMODITY FLOWS

Algorithm 4.1 ACO metaheuristic

1: set parameters, initialize pheromone trails

2: SCHEDULE ACTIVITIES

3: ConstructAntSolutions

4: DaemonActions {optional}
5: UpdatePheromones

6: END SCHEDULE ACTIVITIES

Here DaemonActions denote actions which can only be executed by a daemon

possessing global knowledge and not by single ants, like laying down pheromone

on the trails of the iteration best solution, for example.

For details concerning the ACO metaheuristic, see [33].

The ACO metaheuristic has two main features that justify the application to

supply chain problems with uncertain input data:

(i) The ACO metaheuristic is random-based. Therefore the introduction

of (random based) uncertainty data into the construction graph seems

straightforward - see Chapters 6 and 8.

(ii) The ants’ behavior of following other ants by following their pheromone

trails is unique for the ACO metaheuristic compared to other heuristics

like Genetic Algorithms or Simulated Annealing. This behavior turns out

to be the key for the fulfillment of a practical requirement in supply chain

practice, the avoidance of small amounts of flow - see Chapter 5.

Nevertheless, we naturally do not want to exclude the possibility of modeling

the supply chain problems by other heuristic methods hereby.

4.2 ACO for Single-Commodity Flows

In this section, we consider the adaption of the ACO optimization to network

flow problems. Let G = (N ,A) be a given single-source single-sink layered

network with source node s and sink node t, integral cost values cij and integral

capacity constraints uij for all arcs (i, j) ∈ A.

We consider the following minimum cost flow problem for a layered single-source

single-sink network G:

54

CHAPTER 4. ADAPTION OF THE ACO METAHEURISTIC TO

NETWORK FLOW PROBLEMS

min
∑

(i,j)∈A

cijxij

s.t.
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = bi ∀i ∈ N (4.1)

0 ≤ xij ≤ uij ∀(i, j) ∈ A.

Let the minimum cost flow problem be feasible.

The basic idea for the application of the ACO metaheuristic to the minimum

cost flow problem is to replace flow units by ants. For every flow unit of the

supply at the source node, we set an ant at this node. Then all ants choose

their way through the network until they reach the sink node. The tracks of the

ants represent the routing of the flow units as a solution.

We slightly adapt the ACO metaheuristic to our purpose:

Algorithm 4.2 Adapted ACO metaheuristic

1: set parameters

2: initialize pheromone trails

3: while stopping criterion is not fulfilled do

4: construct ant solution

5: update pheromone trails

6: end while

In the following subsections, we describe in detail the adaption of the ACO

metaheuristic to the single-commodity minimum cost flow problem. Our def-

initions are mainly guided by the basic ACO metaheuristic as given in [33].

Additions concerning bounds for the pheromone trails and heuristic informa-

tion are inspired by the ideas given in [92].

4.2.1 Construction Graph

The construction graph is identical to the network flow problem graph G. All

ants start their walk at the source node of the given network. At each node

they choose one of the outgoing arcs and pass on to the next node. The ants’

walk is finished at the sink node.

55

4.2. ACO FOR SINGLE-COMMODITY FLOWS

1 3

s t

2 4

(a) Ants at source node (start)

1 3

s t

2 4

(b) The ants’ walk

1 3

s t

2 4

(c) Ants at sink node (finish)

Figure 4.1: Construction graph

4.2.2 Constraints

The walk of the ants is constrained by the arc capacities: For each arc (i, j) ∈ A
with capacity uij , no more than uij ants per iteration are allowed to walk on

this arc.

4.2.3 Initialization of the Pheromone Trails

If no additional information is available, a uniform initialization of the pheromone

trails is adequate.

A better initialization of the pheromone trails can be obtained by the optimal

solution of the original minimum cost flow problem 4.1:

The MCFP can be solved efficiently by a special-purpose network flow algorithm,

for example the Cost Scaling Algorithm (CSA). Let x∗ be the optimal solution

of the original minimum cost flow problem. Then we initialize the pheromone

trails τij for all arcs (i, j) ∈ A as follows:

τij :=















τmin if x̄∗ +
x∗

ij−x̄∗

x∗

max
< τmin

x̄∗ +
x∗

ij−x̄∗

x∗

max
if τmin ≤ x̄∗ +

x∗

ij−x̄∗

x∗

max
≤ τmax

τmax if τmax < x̄∗ +
x∗

ij−x̄∗

x∗

max

(4.2)

56

CHAPTER 4. ADAPTION OF THE ACO METAHEURISTIC TO

NETWORK FLOW PROBLEMS

where x̄∗ is the average flow over all arcs and x∗
max is the maximum flow on one

arcs with respect to the optimal solution x∗.

As arcs with pheromone trails equal to zero have a probability of 0 to be chosen

by any ant, we impose a lower pheromone bound τmin > 0 for all arcs (i, j), for

example τmin = 1. Furthermore, we restrict the pheromone trails by an upper

pheromone bound τmax, in order to avoid that particular arcs accumulate too

much pheromone and therefore become too attractive.

A second reasonable choice would be the direct initialization of the pheromone

trails by the optimal solution of the minimum cost flow problem:

τij :=







τmin if x∗
ij < τmin

x∗
ij if τmin ≤ x∗

ij ≤ τmax

τmax if τmax < x∗
ij

(4.3)

The advantage of the pheromone initialization (4.2) is the fact that the variance

of the pheromone levels is smaller than for initialization (4.3), as it is bundled

around x̄∗. Consequently, the (dis-)favoring of different arcs is not too strong.

However, the computation of initialization (4.3) is slightly faster, which can be

advantageous in large networks.

4.2.4 Heuristic Information

The heuristic information ηij , also called visibility, for arc (i, j) is defined de-

pendent on the cost value cij .

Let c̄ be the arithmetic average cost over all arcs and cmax the maximum cost

over all arcs. We assume the following condition for each cost value cij :

cij ≤ c̄ · cmax + 1. (4.4)

In practice, this assumption is not restrictive, as for c̄ ≥ 1 the condition is

always fulfilled. As c is assumed to be integral, the condition could be violated

only for networks where many cost values are less or equal to 0.

Then we define the visibility as

ηij := c̄− cij − c̄

cmax

. (4.5)

57

4.2. ACO FOR SINGLE-COMMODITY FLOWS

The visibility is always positive because of the condition (4.4).

If all cost values are positive and the integrality assumption holds, another

reasonable choice would be

ηij :=







1

cij
if cij > 0

1 if cij = 0
(4.6)

This straightforward choice corresponds to the standard calculation of the heuris-

tic values in the ant algorithm for the Traveling Salesman Problem, see [33].

As for the calculation of the pheromone bounds, it holds that the variance in

(4.5) is smaller, while the computation of the heuristic information in (4.6) is

slightly faster. Furthermore, for very large cost values, the choice (4.6) would

produce values very close to 0, such that in that case (4.5) would be the better

choice.

Moreover, a lower visibility bound ηmin can be imposed in order to avoid that

expensive arcs have a too low visibility.

The heuristic information is essential for the generation of cheap solutions.

Without the heuristic information, which is based on the arc cost, the ants

would generate a solution where as many ants as possible use the same arcs, no

matter how expensive these arcs are.

The combination of pheromone information and heuristic information helps the

ants to construct a solution which is rather cheap and where many ants use the

same arcs.

4.2.5 Solution Construction

Each ant starts its walk at the source node. At each step, the ant chooses

one outgoing arc of the current node at random and walks to the end node of

the chosen arc. When choosing the next arc, the capacity conditions must be

respected: each arc has a limited capacity, i.e. only a certain number of ants

may use this arc. If the maximum number was already reached by previously

walking ants, the arc cannot be chosen by any ant anymore.

The process of choosing an arc can be implemented as follows: The interval [0, 1]

is subdivided into several subintervals according to the number of outgoing arcs

and their respective probability. Then a random number in [0, 1] is generated.

Dependent on the subinterval, in which the generated random number lies, the

respective arc is chosen as next arc.

58

CHAPTER 4. ADAPTION OF THE ACO METAHEURISTIC TO

NETWORK FLOW PROBLEMS

The capacity constraints on the arcs may lead to a dead end, if for a node the

capacity of all outgoing arcs is already fully exhausted. If an ant reaches a dead

end, the dead end node is added to a tabu list and the ant starts its walk again

at the source node. The ant (and all following ants) are not allowed to choose

arcs leading to a node in the tabu list, in order to avoid a repeated choice of

dead end nodes.

It might happen that for a specific ant it is not possible to reach the sink node

due to the path choice of the preceding ants. This means that for this ant, the

source node is finally added to the tabu list and therefore the continuation of

the solution construction is no longer possible. In this case, all ants must start

over again. As the ants’ walk is random based, the ants will finally be able to

construct a feasible solution:

Proposition 4.1. The ants will finally be able to construct a feasible solution.

Proof. Let 0 < p ≤ 1 be the probability that the ants construct a feasible

solution in one try θ. Then the probability for not constructing a feasible

solution in try θ is 1− p.

We can calculate the probability P for finding at least once a feasible solution

in the first θ tries:

P (a feasible solution is founduntil try θ) = 1− (1− p)θ (4.7)

Therefore, we have in the limit:

P (a feasible solution is finallyfound) = lim
θ→∞

1− (1− p)θ

= 1− lim
θ→∞

(1 − p)θ (4.8)

= 1− 0

= 1

The walk of one ant is finished when the ant reaches the sink node.

As the capacity conditions (maximum number of ants per arc) have to be re-

spected, the ants must walk successively.

59

4.2. ACO FOR SINGLE-COMMODITY FLOWS

Let uR
ij be the remaining capacity of arc (i, j), i.e. the maximum capacity uij

minus the number of ants that have already used this arc so far in the current

iteration.

The calculation of the arc probability pij for the selection of an arc (i, j) which

has a remaining arc capacity uR
ij greater than 0 is based on the values for the

arc visibility ηij and the arc pheromone level τij :

pij =
ηαijτ

β
ij

∑

k:(i,k)∈A

uR
ik>0

ηαikτ
β
ik

(4.9)

Here α ≥ 0 and β ≥ 0 are two parameters that determine the relative influence

of the pheromone trails and the visibilities. If α = 0, only the pheromone trails

would be taken into account without any heuristic bias. If β = 0, the arc

probability would be influenced by heuristic values only. Reasonable values for

α and β often have to be determined experimentally.

Note that in the sum in the denominator of (4.9), we consider only arcs having

a positive remaining capacity.

The pseudo-code for the solution construction is given in the following algorithm.

The term “current node” is considered as a variable. The value of the variable

“current node” corresponds to the actual location of the ant. Let N be the

number of ants.

Algorithm 4.3 construct ant solution

1: set remaining capacity for all arcs to original arc capacity

2: set tabu list to ∅
3: for ant k = 1 to N do

4: set current node to source node.

5: while current node not equal to sink node do

6: for all outgoing arcs of the current node do

7: if end node of the arc is on the tabu list then

8: set arc probability to 0

9: else if remaining arc capacity = 0 then

10: set arc probability to 0

11: else

12: calculate arc probability considering arc visibility and arc

pheromone level

13: end if

14: end for

60

CHAPTER 4. ADAPTION OF THE ACO METAHEURISTIC TO

NETWORK FLOW PROBLEMS

15: if arcs with strict positive probability exist then

16: choose next arc a

17: set current node ← end node of arc a

18: else

19: if current node is the source node then

20: reset pheromone trails and restart algorithm (goto (1))

21: else

22: add current node to tabu list

23: restart ant at source node (goto (4))

24: end if

25: end if

26: end while

27: lower remaining capacity for all visited arcs by 1

28: end for

4.2.6 Update of the Pheromone Trails

The pheromone trails must be updated after each iteration such that the pheromone

values on arcs visited by more ants are increased and pheromone values on arcs

visited by fewer ants are decreased. The pheromone update is processed after

each iteration, i.e. when all ants have finished their walk.

First, all pheromone values are decreased by evaporating pheromone on all arcs.

For all arcs (i, j) ∈ A, the pheromone level τij is set to

τij := (1− ρ)τij . (4.10)

where ρ ∈ [0, 1]. ρ is called evaporation factor.

After evaporation, the pheromone values on all arcs must be increased propor-

tional to the number of ants which chose that arc in the current iteration. That

means that arcs not being chosen by any ant receive no new pheromone. We

increase the pheromone level τij on arc (i, j) according to the following rule:

τij := τij +

N
∑

k=1

△τkij (4.11)

where △τkij is the amount of new pheromone on arc (i, j) ∈ A laid down by ant

k. One possible choice for △τkij would be

61

4.2. ACO FOR SINGLE-COMMODITY FLOWS

△τkij :=

{

1 if arc (i, j) was chosen by ant k
0 else

(4.12)

However, this choice does not respect the total cost of the constructed solution

in the amount of pheromone laid down. Here the term “constructed solution”

denotes the combination of the chosen paths of all ants in the current iteration,

not only the current path of one single ant. In order to comprise the total cost

of the current solution in the update of the pheromone trails in iteration l, we

introduce a factor ωl which is multiplied to △τkij :

ωl =

{

1 in iteration l = 1
total cost of the best-so-far solution
total cost of the current solution

in iteration l ≥ 2
(4.13)

Because of the pheromone evaporation, the pheromone levels for arcs which

are not chosen by any ant would converge to zero and therefore would be very

unlikely to be chosen in later iterations. To avoid this exclusion of arcs, we

respect the lower pheromone bound τmin on all arcs (i, j). Furthermore we

respect the upper pheromone bound τmax to prevent all arcs from accumulating

too much pheromone.

Let qlf (x) be the function of the pheromone update for a solution x in iteration

l:

qlf (x) := (1− ρ)τij + ωl

N
∑

k=1

△τkij (4.14)

Then in iteration l the pheromone on arc (i, j) is updated as follows:

τ lij :=















τmin if qlf (x) < τmin

(1− ρ)τij + ωl

N
∑

k=1

△τkij if τmin ≤ qlf (x) ≤ τmax

τmax if τmax < qlf (x)

(4.15)

Alternatively, the pheromone update can be restricted to the cost minimal

“best-so-far” solution only, as this was proposed in the Max-Min Ant System

(MMAS), see [92]. This means that the costs of the currently constructed so-

lution are compared to the costs of the cheapest ever found solution. If the new

62

CHAPTER 4. ADAPTION OF THE ACO METAHEURISTIC TO

NETWORK FLOW PROBLEMS

solution is cheaper, the pheromone update is performed according to the ants’

paths in the new solution. If not, the pheromone update is performed based on

the ants’ paths of the best-so-far solution.

Note that for this alternative pheromone update, the cost minimal solution

“best-so-far” solution must be saved in each iteration.

4.3 ACO for Multicommodity Flows

The ACO metaheuristic for single-commodity flows can be extended to multi-

commodity flows. Let p be the number of commodities.

Let bk denote the supply at the source node for commodity k, k = 1, . . . , p.

Then the total number of ants at the source node is
p
∑

k=1

bk. Each ant is firmly

associated to one commodity, i.e. we have bk ants for commodity k, k = 1, . . . , p.

Construction Graph The construction graph is equal to the construction

graph of the single-commodity problem.

Constraints On the arcs of the construction graph, we now have two different

capacity constraints for each ant. The capacity constraints as well as the bundle

constraints must be respected. Let k be the commodity associated with the

currently considered ant a. Then ant a can only use arc (i, j) if no more than

uk
ij − 1 ants which are associated with commodity k have used arc (i, j) so far

and if no more than κij − 1 ants have used arc (i, j) so far, all in all.

Heuristic Information As we have different arc costs for different commodi-

ties (and therefore for different ants), the heuristic information has to be defined

dependent on the commodities. The visibilities are defined as in the single-

commodity case using ckij as cost value for arc (i, j) and ants corresponding to

commodity k.

Pheromone Trails We have no longer one pheromone trail on every arc,

but p different pheromone trails. Each ant can only lay down pheromone on

the pheromone trail corresponding to the ant’s commodity. The pheromone

initialization as well as the pheromone update are performed as described for

single-commodity flows.

63

4.4. CONVERGENCE THEORY

Solution Construction The solution construction is performed as in the

single-commodity case, whereas each ant considers only the heuristic and

pheromone values corresponding to its associated commodity.

Alternatively, the arc probability in the solution construction could be influenced

by both the pheromone of the respective commodity of the ant as well as by

the total amount of pheromone over all commodities, for example in a weighted

sum. By this means, the number of used arcs is not only reduced per commodity,

but over all commodities. However, if there exist arcs that are cheap for some

commodities but expensive for other commodities, this can lead to increased

total costs.

Succession of the Ants An important issue is the succession of the ants. If

the succession of the ants corresponded to the succession of the commodities, i.e.

the ants associated to commodity 1 started first, ants associated to commodity

2 second, and so on, the ants of commodities early in the succession would be

treated with favor, as early starting ants have a greater range of arcs left, where

the common capacity is not exhausted yet.

As we do not want to favor any commodity, we randomize the succession of the

ants in each iteration. At the beginning of the ant algorithm, we sort the ants

according to an arbitrary criterion and put them into an ordered list. In each

iteration, we shuffle this ant list and let then start the ants successively.

4.4 Convergence Theory

When considering optimization with the ACO metaheuristic, the following ques-

tion arises: On what terms does the ant algorithm find a global optimal solution?

As before, we assume that an optimal solution exists.

In this section, we will give an overview regarding convergence theory in ACO,

based on [33]. We maintain the notation given by M. Dorigo and T. Stützle in

[33], slightly adapted to our version of the ant algorithm.

64

CHAPTER 4. ADAPTION OF THE ACO METAHEURISTIC TO

NETWORK FLOW PROBLEMS

G construction graph
E arcs in the construction graph
qf (x) function of the pheromone update
M maximum number of outgoing arcs over all nodes in G
N number of ants
l number of layers in the construction graph

Table 4.1: Ant algorithm notation

For the first part of this section, the following assumption (4.4.1) holds:

• ∃ ηmin > 0, ∃ ηmax <∞ : ηmin ≤ ηij(θ) ≤ ηmax ∀(i, j) ∈ E, ∀ iterations θ

• ∃ τmin > 0 : τmin ≤ τij(θ) ∀(i, j) ∈ E, ∀ iterations θ

• x∗ is an optimal solution

This means that the heuristic data are bounded by fixed upper and lower bounds

and that the pheromone levels are bounded below, where the lower bounds

have to be greater than 0. In the most frequently applied variants of the ant

algorithm, these assumptions can be easily fulfilled.

The following proposition, given by M. Dorigo and T. Stützle in [33], shows that

the maximum possible pheromone level is bounded on all arcs.

Proposition 4.2. For every arc (i, j) ∈ E holds:

lim
θ→∞

τij(θ) ≤ τmax :=
qf (x

∗)

1− ρ

Furthermore, M. Dorigo and T. Stützle show in [33] that under assumption

(4.4.1), the ant algorithm eventually finds an optimal solution:

Theorem 4.3. Let P ∗(θ) be the probability for the ant algorithm to find an

optimal solution at least once in the first θ iterations. For arbitrary ǫ > 0 and

sufficiently large θ, we have P ∗(θ) ≥ 1− ǫ and lim
θ→∞

P ∗(θ) = 1.

Proof. Let i be a fixed node in G. For every outgoing arc (i, j), it holds for

every ant that

pij ≥ p̂min :=
ταminη

β
min

(M − 1)ταmaxη
β
max + ταminη

β
min

> 0. (4.16)

65

4.4. CONVERGENCE THEORY

This estimation holds because the ant has at mostM possibilities for its decision,

where in the worst case arc (i, j) has pheromone level τmin and visibility ηmin

and all other arcs (at most M − 1) have pheromone level τmax and visibility

ηmax. It holds that p̂min > 0, because τmin, τmax, ηmin and ηmax are greater

than 0.

Hence, every arc (i, j) is chosen with a probability greater or equal to p̂min.

Therefore every solution, consisting of l arcs per ant, having a total number

of N ants, can be generated in each iteration with a probability p̂ ≥ p̂N ·l
min.

This also holds for the optimal solution. The probability for not finding an

optimal solution in the first θ iterations is therefore smaller or equal to (1− p̂)θ.

Consequently, the probability P ∗(θ) to find an optimal solution at least once in

the first θ iterations is P ∗(θ) ≥ P̂ ∗(θ) := 1− (1 − p̂)θ.

For a sufficiently large θ and arbitrary ǫ > 0, we have (1− p̂)θ ≤ ǫ and therefore

1− (1− p̂)θ ≥ 1− ǫ.

Furthermore, we have lim
θ→∞

(1− (1− p̂)θ) = 1.

For the remaining part of this section, the following assumptions (4.4.2) hold:

• ∃ ηmin > 0, ∃ ηmax <∞ : ηmin ≤ ηij(θ) ≤ ηmax ∀(i, j) ∈ E, ∀ iterations θ

• ∃ τmin(θ) > 0 : τmin(θ) ≤ τij(θ) ∀(i, j) ∈ E, ∀ iterations θ

• M ≥ 2 (nontrivial problem)

This means that the heuristic data are bounded by fixed upper and lower

bounds. The pheromone levels, however, are bounded below by an iteration

dependent value.

In addition, we assume that only the best-so-far solution obtains new pheromone,

which we proposed as an alternative in Subsection 4.2.6.

The following lemmata, previously given in [99], are needed in order to prove

Theorem 4.6 below.

Lemma 4.4. Let x ∈ R. Then:

x < 1⇒ ln(1− x) ≤ −x

Proof. For x ≥ −1 it holds that

66

CHAPTER 4. ADAPTION OF THE ACO METAHEURISTIC TO

NETWORK FLOW PROBLEMS

exp(x)− (x + 1) =

∞
∑

ν=0

xν

ν!
− (

x1

1!
+

x0

0!
)

=
x2

2!
(1 +

x

3
) +

x4

4!
(1 +

x

5
) + . . . (4.17)

≥ 0

With (4.17), it holds that

1 + x ≤ exp(x) ∀x > −1 ⇒ 1− x ≤ exp(−x) ∀x < 1

⇒ ln(1− x) ≤ −x ∀x < 1 (4.18)

Lemma 4.5.
∞
∑

θ=1

1

(ln(θ + 1))i
diverges for i > 0.

Proof. Let i > 0.

Let θ > 3, y := ln θ and k ∈ N0 such that k < i ≤ k + 1. Then y ≥ 1 and it

holds:

exp(y) =
∞
∑

ν=0

yν

ν!

=

k
∑

ν=0

yν

ν!
+

yk+1

(k + 1)!
+

∞
∑

ν=k+2

yν

ν!

≥ yk+1

(k + 1)!
(4.19)

≥ yi

(k + 1)!

and therefore

exp(y)(k + 1)! ≥ yi (4.20)

and

67

4.4. CONVERGENCE THEORY

θ(k + 1)! ≥ (ln θ)i (4.21)

Consequently, we have

1

(ln θ)i
≥ 1

θ(k + 1)!
(4.22)

As
∞
∑

θ=2

1

θ(k + 1)!
diverges, we have

∞
∑

θ=2

1

(ln θ)i
and therefore

∞
∑

θ=1

1

(ln(θ + 1))i
di-

verges, too.

M. Dorigo and T. Stützle show in [33] that for suitably chosen τmin(θ), the ant

algorithm eventually finds an optimal solution:

Theorem 4.6. ∀θ ≥ 1 let τmin(θ) := d
ln(θ+1) , where d = const. and dα <

M·τα
maxη

β
max·(ln 2)α

η
β

min

. Let P ∗(θ) be the probability, that in the first θ iterations at

least one optimal solution is found. Then lim
θ→∞

P ∗(θ) = 1.

Proof. Let x∗ be an arbitrary optimal solution. Let Bθ be the event, that in

iteration θ an optimal solution is found for the first time.

Then P ∗(θ) = P (
⋃θ

i=1 Bi) and 1− P ∗(θ) = P (¬⋃θ

i=1 Bi) = P (
⋂θ

i=1 ¬Bi).

Now we consider P (
⋂θ

i=1 ¬Bi), the probability, that an optimal solution is not

found within the first θ iterations. We want to show that 0 is an upper bound

for this probability.

The event
⋂θ

i=1 ¬Bi implies that x∗ is not found within the first θ iterations.

Therefore we have:

P (
θ
⋂

i=1

¬Bi) ≤ P (x∗is never found). (4.23)

As shown in the proof of Theorem 4.3, it can be guaranteed that in iteration θ

at node i every feasible decision can be made with a probability pmin, where

pmin ≥ p̂min(θ) :=
τmin(θ)

αηβmin

ταmaxη
β
max(M − 1) + τmin(θ)αη

β
min

≥ τmin(θ)
αηβmin

M · ταmaxη
β
max

=: p̂′min(θ) > 0. (4.24)

68

CHAPTER 4. ADAPTION OF THE ACO METAHEURISTIC TO

NETWORK FLOW PROBLEMS

Then the probability for the construction of the optimal solution x∗ is p̂min(θ) ≥
p̂′min(θ)

N ·l.

Consequently, the following estimation holds:

P (x∗is never found) ≤
∞
∏

θ=1

(1− (p̂′min(θ))
N ·l)

=

∞
∏

θ=1



1−
(

τmin(θ)
αηβmin

M · ταmaxη
β
max

)N ·l


 (4.25)

We want to show that the product on the right hand side is equal to 0. We

consider the logarithm of the product given above, which is defined because of

0 < p̂′min(θ) < 1 for M ≥ 2.

We have that:

ln





∞
∏

θ=1



1−
(

τmin(θ)
αηβmin

M · ταmaxη
β
max

)N ·l






 =
∞
∑

θ=1

ln



1−
(

τmin(θ)
αηβmin

M · ταmaxη
β
max

)N ·l




=
∞
∑

θ=1

ln






1−





(

d
ln(θ+1)

)α

ηβmin

M · ταmaxη
β
max





N ·l





=

∞
∑

θ=1

ln

[

1−
(

D

(ln(θ + 1))α

)N ·l
]

≤
∞
∑

θ=1

−
(

D

(ln(θ + 1))α

)N ·l

= −DN ·l
∞
∑

θ=1

1

(ln(θ + 1))αNl

= −∞ (4.26)

with D =
dαη

β
min

M·τα
maxη

β
max

= const.

It follows that

ln





∞
∏

θ=1



1−
(

τmin(θ)
αηβmin

M · ταmaxη
β
max

)N ·l






 = −∞ (4.27)

69

4.4. CONVERGENCE THEORY

and

∞
∏

θ=1



1−
(

τmin(θ)
αηβmin

M · ταmaxη
β
max

)N ·l


 = 0. (4.28)

Therefore the probability never to find x∗ is equal to 0 and consequently

P (
⋂∞

i=1 ¬Bi) = 0. Since we have P ∗(θ) = 1 − P (
⋂θ

i=1 ¬Bi), it holds that

lim
θ→∞

P ∗(θ) = 1.

Theorem 4.3 shows that the ant algorithm guarantees to find an optimal solu-

tion, if the pheromone trails are bounded below by a fixed lower bound. The-

orem 4.6 extends this result to a lower bound of the pheromone level which

decreases to 0 logarithmically.

As already stated in [33], we have to note that Theorem 4.6 can not be proved for

an exponentially fast decrement of the pheromone levels as given by a constant

pheromone evaporation rate without additional lower bound. This means that

in practice, a fixed or logarithmically decreasing lower pheromone bound must

be introduced in order to guarantee that an optimal solution is found. As we

introduced a fixed lower bound in the models proposed in Sections 4.2 and 4.3,

we ensure that our ant algorithms find an optimal solution.

However, Theorems 4.3 and 4.6 do not make a statement about the necessary

time or number of iterations which is required to find an optimal solution. In

the worst case, this time can be astronomically large.

70

Chapter 5

Avoiding Small Amounts of

Flow in Minimum Cost

Network Flow Problems

The optimal solutions of minimum cost network flow problems possibly contain

many small amounts of flow on diverse arcs. In practice, however, small amounts

of flow are often not desired.

Consider for example the production planning process for a given commodity. If

the optimal solution contains many different production sites with only a small

amount of production output per site, all of these sites must be configured to

produce the commodity, but only a small amount of the commodity is produced

on each production site. Usually in practice, a solution which contains fewer

different production sites would be preferred, even if it is slightly more expensive,

because of the savings in configuration expenditure.

The following figure illustrates the optimal solution to a given minimum cost

flow problem and a possibly more desired solution which respects the additional

goal of avoiding small amounts of flow.

71

2 5

1 8

4 7

7,
20

7, 20

8, 10

8, 2

9,
12

9, 8

7, 12

7,
8

20 −20

(a) MCFP network with costs, capacities and

supply/demand

2 5

1 8

4 7

12

8

10

2

2

6

12

8

20 −20

(b) Optimal solution: eight arcs used, total

cost 448

2 5

1 8

4 7

20

12

8

12

8

20 −20

(c) Desired solution: five arcs used, total cost

460

Figure 5.1: Optimal and desired solution of a minimum cost flow problem

Let G = (N ,A) be a given network with node set N and arc set A. Let n = |N |
be the number of nodes and m = |A| the number of arcs. Let c ∈ (R+

0)
m

be

the corresponding cost vector, u ∈ (R+)
m

the capacity vector, A ∈ Rn×m the

node-arc incidence matrix and b ∈ Rn the vector of supply and demand.

As the notation “small flow” is rather vague, we specify a threshold value θi for

every arc i ∈ A. Then a “small flow” on arc i is a flow greater than zero and

smaller than θi. Hence we want to avoid positive flows which do not exceed the

threshold values, if this is possible.

In the following, we call the minimum cost flow problem with the additional

goal of surpassing the threshold values (if possible) the threshold minimum cost

flow problem (TMCFP).

There are different approaches to solve this problem. The introduction of lower

bounds for the flows on the arcs is not leading to the desired model as the

possibility of sending no flow on these arcs is excluded. Another possibility

to model this problem is through the definition of nonlinear cost functions.

The drawback of this approach clearly is the fact that the LP structure of the

problem is destroyed.

In this chapter, we consider both a heuristic approach and an exact approach

to deal with this problem. In the heuristic approach, we apply the Ant Colony

Optimization metaheuristic to solve the given problem. In the exact approach,

72

CHAPTER 5. AVOIDING SMALL AMOUNTS OF FLOW IN MINIMUM

COST NETWORK FLOW PROBLEMS

we define piecewise linear cost functions on the arcs. In order to exploit the

linear structure of the problem, we formulate the optimization problem using so-

called SOS 2 conditions, which will be introduced in Section 5.2. This approach

requires the introduction of integer variables. Finally, we combine the heuristic

and the exact approach in a special-purpose Branch and Bound algorithm for

this problem.

5.1 Application of the Ant Colony Optimization

Metaheuristic to the TMCFP

In order to apply the ACO metaheuristic for minimum cost flow problems, which

we proposed in Chapter 4, to the threshold minimum cost flow problem, we must

add some specifications and extensions.

For simplification, we initially assume that the threshold value θi is equal for

all arcs ei ∈ A. Let θ be this threshold value.

5.1.1 Parameters

For solving the minimum cost flow problem with the additional goal of avoiding

small amounts of flow, the number s of ants must be equal to the supply at the

source node.

A suitable setting for the parameters α and β, which appear in the calculation

of the arc probabilities, see Subsection 4.2.5, is chosen experimentally. In our

test runs, the choice α = 1 and β = 3 turned out to be reasonable.

The pheromone evaporation factor ρ was also determined experimentally. ρ =

0.25 seemed to be a reasonable choice.

5.1.2 Penalty Costs

One possibility to enforce the influence of the threshold value θ even more is

the introduction of penalty costs.

When calculating the total cost of the current solution, we penalize arcs where

the amount of flow, i.e. the amount of ants, are greater than zero but less than

the threshold value. Therefore we introduce a penalization cost value cmax,

which is greater or equal to the maximum possible cost that can arise on any

arc (i, j) in the network (arc cost times flow value). If the amount of ants are

73

5.2. AN EXACT APPROACH USING SOS 2 CONDITIONS

greater than zero and less than the threshold value, we set the cost for using

this arc to cmax.

As the costs of a penalized arc are constant within the interval]0, θ[, the total

cost will not rise if more ants use this arc and will even be reduced if the amount

of ants surpasses the threshold value.

If different threshold values θi for arcs ei ∈ A are given, the penalty costs can

be modeled analogously.

5.1.3 Stopping Criterion

Possible stopping criteria are a maximum number of iterations or stagnation in

the solution construction, i.e. when finally the same solution is constructed by

the ants in each iteration.

5.1.4 Variation

The main idea of the variation is the following: When ant a has chosen its path

pa through the network, we want to exploit the maximal capacity for this path.

First, we determine the maximal remaining capacity u for the chosen path. Here

we consider the remaining capacity u before ant a has walked over the path pa.

Let u be the minimum of all remaining arc capacity values for all arcs included

in path pa. After ant a has finished its walk, we manipulate the next u− 1 ants

such that they choose the same path pa as ant a.

In the test runs, this variation turned out to produce similar results as the

original algorithm, but was significantly faster in finding good solutions.

5.2 An Exact Approach using SOS 2 Conditions

In this section, we present an exact approach to the threshold minimum cost

flow problem using so called SOS 2 conditions.

5.2.1 Approximation of Nonlinear Functions using SOS 2

Conditions

In this subsection, we introduce the so called Special Ordered Set of Type 2

condition in the context of the approximation of nonlinear functions by piecewise

74

CHAPTER 5. AVOIDING SMALL AMOUNTS OF FLOW IN MINIMUM

COST NETWORK FLOW PROBLEMS

linear ones as proposed in [71]. We consider a nonlinear function of the form

f : [a, b]→ R.

In order to obtain grid points x1, . . . , xk with corresponding function values

f(x1), . . . , f(xk), the interval [a, b] is divided such that a = x1 ≤ x2 ≤ · · · ≤
xk = b. Using the grid points, the function can be approximated by a piecewise

linear function.

Figure 5.2: Piecewise linear approximation of a nonlinear function

In order to approximate the function f by a piecewise linear function, we intro-

duce new variables λj for every grid point (xj , f(xj)). The goal is to approx-

imate the function value f(x) for arbitrary x ∈ [a, b] by the following convex

combination:

x =

k
∑

j=1

xjλj (5.1)

f(x) ≈
k
∑

j=1

f(xj)λj (5.2)

k
∑

j=1

λj = 1 (5.3)

λj ≥ 0 j = 1, . . . , k (5.4)

λ ∈ SOS 2 (5.5)

The last condition λ ∈ SOS 2 has the following meaning: At most two entries

of λ = (λ1, . . . , λk) are positive, and if two are positive they must be adjacent.

This condition is called the Special Ordered Set of Type 2 condition, briefly SOS

2 condition.

75

5.2. AN EXACT APPROACH USING SOS 2 CONDITIONS

This condition can be modeled implicitly by incorporating it into the branching

phase of a Branch and Bound algorithm, see [9] and [10], for example.

Alternatively, the SOS 2 condition can be modeled explicitly via binary vari-

ables. This method is called the lambda method or the convex combination

method, see [71].

In addition, there exists an alternative binary approach called the delta method

or the incremental method, see [71].

In recent years, new approaches concerning SOS2 and MIP formulations were

developed:

In [94], J.P. Vielma et al. analyse several MIP formulations for mixed integer

programs with piecewise linear continuous cost functions with special focus on

non-convex piecewise fcuntions. Theoretical properties and relative computa-

tional performance are compared. Moreover, an extension to piecewise linear

lower semicontinuous functions is presented.

In [95], J.P. Vielma et al. present an SOS2 based formulation for lower semi-

continuous functions. Their approach extends a branch-and-cut algorithm for

linear programs with piecewise linear continuous cost functions. A computa-

tional analysis using the CPLEX solver is carried through.

The Lambda Method

The lambda method models the SOS 2 condition explicitly by introducing new

binary variables yj , j = 1, . . . , k − 1 corresponding to the k − 1 segments of

[a, b], given by the grid points. The additional constraint

k−1
∑

j=1

yj = 1

ensures that exactly one segment of [a, b] is selected. By adding the constraints

λ1 ≤ y1

λj ≤ yj−1 + yj j = 2, . . . , k − 1

λk ≤ yk−1

we ensure that only the λ-variables which are adjacent to the chosen segment

can be positive.

76

CHAPTER 5. AVOIDING SMALL AMOUNTS OF FLOW IN MINIMUM

COST NETWORK FLOW PROBLEMS

Hence, the piecewise linear approximation of f(x) can be described by the fol-

lowing mixed integer linear formulation:

x =

k
∑

j=1

xjλj (5.6)

f(x) ≈
k
∑

j=1

f(xj)λj (5.7)

k
∑

j=1

λj = 1 (5.8)

k−1
∑

j=1

yj = 1 (5.9)

λ1 ≤ y1 (5.10)

λj ≤ yj−1 + yj j = 2, . . . , k − 1 (5.11)

λk ≤ yk−1 (5.12)

λj ≥ 0 j = 1, . . . , k (5.13)

yj ∈ {0, 1} j = 1, . . . , k − 1 (5.14)

The Delta Method

The so-called delta method describes the linear interpolation of the grid points by

using continuous variables δj , j = 1, . . . , k−1, corresponding to the subintervals

[xj , xj+1] of [a, b] and binary variables wj , j = 1, . . . , k− 2. Then the piecewise

linear approximation of f(x) is given by

x = a+

k−1
∑

j=1

(xj+1 − xj) · δj (5.15)

f(x) ≈ f(a) +

k−1
∑

j=1

(f(xj+1)− f(xj)) · δj (5.16)

δ fulfills the filling condition (5.17)

The filling condition for the δ-variables is defined as follows:

If δj > 0 with 2 ≤ j ≤ k − 1 then δl = 1 for 1 ≤ l < j. (5.18)

77

5.2. AN EXACT APPROACH USING SOS 2 CONDITIONS

The filling condition guarantees that if interval [xj , xj+1], 2 ≤ j ≤ k − 1, is

chosen, i.e. δj > 0, then all intervals [xl, xl+1] to its left must also be used

completely, i.e. δl = 1, 1 ≤ l < j.

The filling condition can be modeled explicitly by the introduction of binary

variables wj , j = 1, . . . , k − 2 and additional constraints:

δj+1 ≤ wj j = 1, . . . , k − 2 (5.19)

wj ≤ δj j = 1, . . . , k − 2 (5.20)

0 ≤ δj ≤ 1 j = 1, . . . , k − 1 (5.21)

wj ∈ {0, 1} j = 1, . . . , k − 2 (5.22)

Then the conditions (5.19) and (5.20) ensure the filling condition for the δ-

variables.

All in all, the piecewise linear approximation of f(x) can be described by the

following mixed integer linear formulation:

x = a+

k−1
∑

j=1

(xj+1 − xj) · δj

f(x) ≈ f(a) +

k−1
∑

j=1

(f(xj+1)− f(xj)) · δj

δj+1 ≤ wj j = 1, . . . , k − 2 (5.23)

wj ≤ δj j = 1, . . . , k − 2

0 ≤ δj ≤ 1 j = 1, . . . , k − 1

wj ∈ {0, 1} j = 1, . . . , k − 2

In [77], it is shown that the bounds produced by the linear programming relax-

ation of the lambda method are always worse than the bounds for the relaxation

of the delta method. Therefore, in practice, the delta method is computationally

superior to the lambda method.

5.2.2 TMCFP with SOS 2 Conditions

Now we consider the threshold minimum cost flow problem

78

CHAPTER 5. AVOIDING SMALL AMOUNTS OF FLOW IN MINIMUM

COST NETWORK FLOW PROBLEMS

min c⊤x
s.t. Ax = b

0 ≤ x ≤ u
(5.24)

where x ∈ Rm, c ∈ (R+
0)

m, u ∈ (R+)
m
, A ∈ Rn×m and b ∈ Rn.

Let ci be the cost given for i ∈ A, umax = max
i

ui and cmax = umax · max
i

ci.

Let θi be the threshold value for arc i, i.e. the minimum amount of flow that is

desired on arc ei if the flow is not zero.

Now we consider each arc ei, i = 1, . . . ,m, separately.

In order to respect the threshold value for arc ei, we would choose a discontin-

uous cost function. The following figure visualizes the desired cost function:

Figure 5.3: Desired cost function for arc ei

For xi = 0 or θi ≤ xi ≤ ui the cost is identical to the cost of the original

minimum cost flow problem.

For 0 ≤ xi ≤ θi the cost is constant with a cost value of cmax, where cmax is

greater or equal to the maximum possible cost that can arise on any arc ei ∈ A
in the network. This choice is due to the following consideration: Any feasible

solution with xi = 0 or θi ≤ xi ≤ ui for all arcs ei ∈ A, if one exists, is then less

expensive than a solution with 0 < xi < θi. If no such solution exists, i.e. there

has to be at least one arc ei with 0 < xi < θi, the number of those arcs will

be as small as possible, as the cost value cmax arises for all used arcs ei with

0 < xi < θi.

Now we want to approximate the discontinuous cost function by a piecewise

linear cost function.

79

5.2. AN EXACT APPROACH USING SOS 2 CONDITIONS

First we define grid points as described in Subsection 5.2.1. For every i =

1, . . . ,m we choose the x-coordinates x1
i , ..., x

5
i of the grid points such that

x1
i = x2

i = 0
x3
i = x4

i = θi
x5
i = ui.

If ui < θi, we choose the x-coordinates x1
i , ..., x

5
i of the grid points such that

x1
i = x2

i = 0
x3
i = x4

i = x5
i = ui.

The case ui < θi is possible for example if the same threshold value shall be

chosen for every arc in the network. Note that for ui < θi, the grid points x4
i

and x5
i are not necessary and could be dropped in order to reduce the number

of optimization variables and conditions. For uniformity of notation, however,

we will keep five grid points per arc in the following considerations.

The y-coordinates of the five grid points are given by the following assignment:

c(x1
i) = 0

c(x2
i) = c(x3

i) = cmax

c(x4
i) = cix

4
i

c(x5
i) = cix

5
i

if θi ≤ ui, and
c(x1

i) = 0
c(x2

i) = c(x3
i) = c(x4

i) = c(x5
i) = cmax

if ui < θi. Here ci denotes the i-th component of the cost vector c of the

minimum cost flow problem.

The following figure visualizes the cost assignment for an arc ei where θi < ui.

Figure 5.4: Cost assignment for arc ei

80

CHAPTER 5. AVOIDING SMALL AMOUNTS OF FLOW IN MINIMUM

COST NETWORK FLOW PROBLEMS

Note that if the range of the costs varies considerably for different arcs ei ∈ A,
it is possible to choose the value cmax differently than described above or even

to choose different values cmax
i for different arcs ei ∈ A.

Furthermore it is possible to introduce threshold values θi only for some arcs

ei ∈ A. For example, in production and transportation networks, the threshold

values could only be introduced for the nodes representing the production pro-

cess. Then the increase of the size of the resulting optimization problem is

reduced.

For the rest of this chapter, we assume that we have threshold values on all arcs,

that the cost values on all arcs lie within a small range and that θi < ui for all

arcs.

Application of the Lambda Method

For every arc ei, i = 1, . . . ,m, we introduce the λ-variables λj
i , j = 1, . . . , 5,

0 ≤ λj
i ≤ 1, corresponding to the grid points xj

i . Assuming that for every

i, i = 1, . . . ,m, the SOS 2 condition holds for the corresponding λ-variables

λj
i , j = 1, . . . , 5, xi ∈ [0, ui] can be represented as

xi =

5
∑

j=1

λj
ix

j
i .

Note that for xi = x1
i = x2

i or xi = x3
i = x4

i this representation is not unique.

For xi 6= xj
i , j = 1, . . . , 4, the representation is unique because of the SOS 2

condition.

Then the new overall cost function is

c(x) :=

m
∑

i=1

c(xi)

=

m
∑

i=1

c(

5
∑

j=1

λj
ix

j
i)

=

m
∑

i=1

5
∑

j=1

c(xj
i)λ

j
i

=: ĉ⊤λ =: ĉ(λ)

where

81

5.2. AN EXACT APPROACH USING SOS 2 CONDITIONS

λ := (λ1
1, . . . , λ

1
m, . . . , λ5

1, . . . , λ
5
m)⊤

ĉ := (c(x1
1), . . . , c(x

1
m), . . . , c(x5

1), . . . , c(x
5
m))⊤.

Obviously ĉ(λ) is a well defined linear function depending on λ.

Additionally, the constraints Ax = b of the minimum cost flow problem must

be transformed to constraints dependent on λ instead of x.

We have

Ax = b

⇔ Akx = bk k = 1, . . . , n

⇔
m
∑

i=1

Akixi = bk k = 1, . . . , n

⇔
m
∑

i=1

Aki

5
∑

j=1

xj
iλ

j
i = bk k = 1, . . . , n

⇔: Âλ = b

where

Â = (Ak1x
1
1, . . . , Akmx1

m, . . . , Ak1x
5
1, . . . , Akmx5

m)k=1,...,n

and λ as given above.

Now we replace the optimization variables x by the new continuous variables λ.

In order to satisfy the SOS 2 conditions, we insert the binary variables y and

the corresponding constraints.

The resulting mixed-integer problem is of the following structure:

82

CHAPTER 5. AVOIDING SMALL AMOUNTS OF FLOW IN MINIMUM

COST NETWORK FLOW PROBLEMS

min
m
∑

i=1

5
∑

j=1

c(xj
i)λ

j
i

s.t.
m
∑

i=1

Aki

5
∑

j=1

xj
iλ

j
i = bk k = 1, . . . , n

0 ≤
5
∑

j=1

xj
iλ

j
i ≤ ui i = 1, . . . ,m (∗∗)

5
∑

j=1

λj
i = 1 i = 1, . . . ,m

4
∑

j=1

yji = 1 i = 1, . . . ,m

λ1
i ≤ y1i i = 1, . . . ,m

λj
i ≤ yj−1

i + yji i = 1, . . . ,m, j = 2, 3, 4
λ5
i ≤ y4i i = 1, . . . ,m

λj
i ≥ 0 i = 1, . . . ,m, j = 1, . . . , 5

yji ∈ {0, 1} i = 1, . . . ,m, j = 1, . . . , 4

(5.25)

Because of

0 ≤ λj
i ≤ 1, i = 1, . . . ,m, j = 1, . . . , 5,

xj
i ≥ 0, i = 1, . . . ,m, j = 1, . . . , 5,

xj
i ≤ x5

i , i = 1, . . . ,m, j = 1, . . . , 5

and

5
∑

j=1

λj
i = 1, i = 1, . . . , 5

we have

0 ≤
5
∑

j=1

xj
iλ

j
i ≤ x5

i

5
∑

j=1

λj
i = x5

i = ui, i = 1, . . . ,m

such that the constraint (∗∗) is redundant.

In order to write the optimization problem in an extended standard form

containing equality and inequality constraints, we rearrange the optimization

problem such that the inequality constraints take the form A≤(λ, y) ≤ b≤

and the equality constraints take the form A=(λ, y) = b=, where λ :=

(λ1
1, . . . , λ

1
m, . . . , λ5

1, . . . , λ
5
m) and y := (y11 , . . . , y

1
m, . . . , y41 , . . . , y

4
m).

Then the matrix A≤ is of the following form:

83

5.2. AN EXACT APPROACH USING SOS 2 CONDITIONS

Im −Im
Im −Im −Im

Im −Im −Im
Im −Im −Im

Im −Im

Figure 5.5: Structure of matrix A≤ of the inequality constraints (λ-method)

Here Im denotes the identity matrix of dimension m. Empty rectangles denote

zero-filled m×m-matrices.

The vector b≤ is a zero vector.

The matrix A= is of the following form:

∗ ∗ ∗
Im Im Im Im Im

Im Im Im Im

Figure 5.6: Structure of matrix A= of the equality constraints (λ-method)

Rectangles filled with a ∗ denote matrices of size n × m which have non-zero

entries on the positions corresponding to the 1s and −1s in the incidence matrix

A of the graph of the given minimum cost flow problem. Im denotes the identity

matrix of dimension m. Empty rectangles denote zero-filled n×m-matrices and

zero-filled m×m-matrices, respectively.

The vector b= is (b, 1, . . . , 1, 1, . . . , 1)⊤.

The optimization problem has 5m+4m = 9m optimization variables and 5m+

3m = 8m constraints.

Application of the Delta Method

For every arc ei, i = 1, . . . ,m, we introduce the δ-variables δji , j = 1, . . . , 4,

0 ≤ δji ≤ 1, corresponding to the subintervals [xj
i , x

j+1
i] of [0, ui]. Assuming

that the filling condition holds, xi ∈ [0, ui] can be represented as

xi =

4
∑

j=1

(xj+1
i − xj

i) · δji .

Note that for xi = x1
i = x2

i or xi = x3
i = x4

i this representation is not unique.

For xi 6= xj
i , j = 1, . . . , 4, the representation is unique because of the filling

condition.

84

CHAPTER 5. AVOIDING SMALL AMOUNTS OF FLOW IN MINIMUM

COST NETWORK FLOW PROBLEMS

Now we consider the new overall cost function

c(x) :=

m
∑

i=1

c(xi)

=

m
∑

i=1

c(

4
∑

j=1

(xj+1
i − xj

i) · δji)

=

m
∑

i=1

4
∑

j=1

(c(xj+1
i)− c(xj

i)) · δji

=: ĉ⊤δ =: ĉ(δ)

where

δ := (δ11 , . . . , δ
1
m, . . . , δ41 , . . . , δ

4
m)⊤

ĉ := (c(x2
1)− c(x1

1), . . . , c(x
2
m)− c(x1

m), . . . , c(x5
1)− c(x4

1), . . . , c(x
5
m)− c(x4

m))⊤.

We can see that ĉ(δ) is a well defined linear function depending on δ.

In addition to the transformation of the cost function, we must also transform

the linear constraints Ax = b of the minimum cost flow problem to constraints

dependent on δ instead of x.

We have

Ax = b

⇔ Akx = bk k = 1, . . . , n

⇔
m
∑

i=1

Akixi = bk k = 1, . . . , n

⇔
m
∑

i=1

Aki

4
∑

j=1

(xj+1
i − xj

i) · δji = bk k = 1, . . . , n

⇔: Âδ = b

where

Â = (Ak1(x
2
1−x1

1), . . . , Akm(x2
m−x1

m), . . . , Ak1(x
5
1−x4

1), . . . , Akm(x5
m−x4

m))k=1,...,n

and δ as given above.

85

5.2. AN EXACT APPROACH USING SOS 2 CONDITIONS

Consequently, we can replace the optimization variables x by the new continuous

variables δ. Additionally we insert the binary variables w and the corresponding

constraints in order to satisfy the filling condition.

The resulting mixed-integer problem is of the following structure:

min
m
∑

i=1

4
∑

j=1

(c(xj+1
i)− c(xj

i)) · δji

s.t.
m
∑

i=1

Aki

4
∑

j=1

(xj+1
i − xj

i) · δji = bk k = 1, . . . , n

0 ≤
4
∑

j=1

(xj+1
i − xj

i) · δji ≤ ui i = 1, . . . ,m (∗∗)

δj+1
i ≤ wj

i i = 1, . . . ,m, j = 1, 2, 3

wj
i ≤ δji i = 1, . . . ,m, j = 1, 2, 3

0 ≤ δji ≤ 1 i = 1, . . . ,m, j = 1, . . . , 4

wj
i ∈ {0, 1} i = 1, . . . ,m, j = 1, 2, 3

(5.26)

Because of

0 ≤ δji ≤ 1, i = 1, . . . ,m, j = 1, . . . , 4

and

xj
i ≥ 0, i = 1, . . . ,m, j = 1, . . . , 5

we have

0 ≤
4
∑

j=1

(xj+1
i − xj

i) · δji ≤
4
∑

j=1

(xj+1
i − xj

i) = x5
i − x1

i = ui − 0 = ui, i = 1, . . . ,m

such that the constraint (∗∗) is redundant.

Now we rearrange the optimization problem such that the inequality con-

straints take the form A≤(δ, ω) ≤ b≤ and the equality constraints take

the form A=(δ, ω) = b=, where δ := (δ11 , . . . , δ
1
m, . . . , δ41 , . . . , δ

4
m) and ω :=

(ω1
1 , . . . , ω

1
m, . . . , ω3

1 , . . . , ω
3
m).

Then the matrix A≤ is of the following form:

Im −Im
Im −Im

Im −Im
−Im Im

−Im Im
−Im Im

Figure 5.7: Structure of matrix A≤ of the inequality constraints (δ-method)

86

CHAPTER 5. AVOIDING SMALL AMOUNTS OF FLOW IN MINIMUM

COST NETWORK FLOW PROBLEMS

Here Im denotes the identity matrix of dimension m. Empty rectangles denote

zero-filled m×m-matrices. Moreover, we can state the following proposition:

Proposition 5.1. The matrix A≤ is totally unimodular.

Proof. A≤ is a (0, 1,−1)-matrix with no more than two nonzero entries in each

column. Furthermore we have
∑

i (a≤)ij = 0 if column j contains two nonzero

coefficients. Then A≤ is totally unimodular (cf. [75]).

b≤ is the zero vector.

The matrix A= is of the following form:

∗ ∗

Figure 5.8: Structure of matrix A= of the equality constraints (δ-method)

Rectangles filled with a ∗ denote matrices of size n × m which have non-zero

entries on the positions corresponding to the 1s and −1s in the incidence matrix

A of the graph of the given minimum cost flow problem. Empty rectangles

denote zero-filled n×m-matrices.

b= is the supply/demand-vector b.

The optimization problem has 4m+3m = 7m optimization variables and 6m+

m = 7m constraints.

5.3 Branching for SOS 2 Conditions

Instead of introducing binary variables in order to guarantee the SOS 2 condition

for the λ-variables in the lambda method, it is possible to incorporate these

conditions directly into the branching phase of a Branch and Bound (B&B)

algorithm.

First we consider a set of consecutive variables {λ1, . . . , λs}. This set of λ-

variables is said to be SOS 2, if at most two of these variables are nonzero and

if exactly two of them are nonzero, they must be adjacent.

Instead of branching on individual variables, the classical branching idea for

SOS 2 conditions, as presented in [9] and [10], for example, is to branch on sets

of variables. So, if there are two nonnegative λ-variables λk and λl, which are

not adjacent, we choose one of them and generate two new problems. If we

choose λk as branching variable, we add the equation
k
∑

j=1

λj = 1 to subproblem

87

5.3. BRANCHING FOR SOS 2 CONDITIONS

1 and the equation
s
∑

j=k

λj = 1 to subproblem 2. Strategies for the selection of

the branching variable are presented in the literature cited above.

We will now consider a Branch and Bound algorithm which is adapted to the

TMCFP as presented in Subsection 5.2.2. Remember that we have several sets

of λ-variables λi = {λ1
i , . . . , λ

5
i }, one for each arc i = 1, . . . ,m, and we require

each set λi to be SOS 2.

The optimization problem is

(P) =



















































min
λ

m
∑

i=1

5
∑

j=1

c(xj
i)λ

j
i

s.t.
m
∑

i=1

Aki

5
∑

j=1

xj
iλ

j
i = bk k = 1, . . . , n

5
∑

j=1

λj
i = 1 i = 1, . . . ,m

λj
i ≥ 0 i = 1, . . . ,m, j = 1, . . . , 5

λi ∈ SOS 2 i = 1, . . . ,m

(5.27)

where xj
i , i = 1, . . . ,m, j = 1, . . . , 5, c, A and b as defined in Subsection 5.2.2.

We propose the following Branch and Bound algorithm:

Algorithm 5.1 Branch and Bound algorithm for the threshold minimum cost

flow problem (SOS 2 B&B method)

1: let L be a list of unsolved problems; set L := {(P)}
2: apply the ant algorithm to (P)

3: if the ant algorithm doesn’t find a feasible solution then

4: let z̄ :=∞ be an upper bound for (P)

5: else

6: let λ̃ be the ant solution with cost z̃

7: let z̄ := z̃ be an upper bound for (P)

8: end if

88

CHAPTER 5. AVOIDING SMALL AMOUNTS OF FLOW IN MINIMUM

COST NETWORK FLOW PROBLEMS

9: while L is not empty do

10: choose a problem P from L

11: solve the SOS 2 relaxation of P

12: let λ∗ be an optimal solution

13: let z
¯P

:=
m
∑

i=1

5
∑

j=1

c(xj
i)λ

∗j
i be a lower bound for P

14: if λ∗
i ∈ SOS 2 for i = 1, . . . ,m then

15: if z̄ > z
¯P

then

16: z̄ := z
¯P

17: λ̃ := λ∗

18: delete all P ′ from L where z
¯P

′ ≥ z̄

19: end if

20: goto 9

21: end if

22: divide P into subproblems and add them to L

23: end while

24: if λ̃ exists then

25: λ̃ is an optimal solution to (P)

26: else

27: (P) is infeasible

28: end if

Note that (P) denotes problem (5.27), while P is any problem in L.

In order to obtain a tight upper bound, we first apply the ant algorithm which

we proposed in Section 5.1 to the threshold minimum cost flow problem in step

2. It is possible that the ant algorithm doesn’t find a feasible solution in a

reasonable time (though there might exist one!). In this case, we set the upper

bound to ∞.

The SOS 2 relaxation of problem P in step 11 is the problem P without the

SOS 2 condition for λi, i = 1, . . . , n.

For the branching phase, step 22, we suggest the following procedure. First

choose i∗ ∈ {1, . . . , n} such that λi∗ /∈ SOS 2. Then create three subproblems:

Add the equation
1
∑

j=1

λj
i∗ = 1 to subproblem 1, the equation

3
∑

j=2

λj
i∗ = 1 to

subproblem 2 and the equation
5
∑

j=4

λj
i∗ = 1 to subproblem 3.

In subproblem 1, the flow on arc i∗ is restricted to be zero. In subproblem 2,

the flow on arc i∗ is restricted to be greater or equal to zero and smaller or equal

to the threshold value θi∗ . In subproblem 3, the flow on arc i∗ is restricted to

89

5.4. EXAMPLE-PROBLEMS

be greater or equal to the threshold value θi∗ .

This procedure excludes the possibility that λ1
i∗ > 0 and λ2

i∗ > 0 at the same

time (case 1) or λ3
i∗ > 0 and λ4

i∗ > 0 at the same time (case 2). Regarding the

fact that x1
i∗ = x2

i∗ and x3
i∗ = x4

i∗ and the definition of the new cost function

c in Subsection 5.2.2, it becomes obvious that in a minimization problem the

optimal solution would never comprise the cases mentioned above. Instead, in

an optimal solution we would always have λ1
i∗ = 1 and λ2

i∗ = 0 in case 1 or

λ3
i∗ = 0 and λ4

i∗ = 1 in case 2.

In step 10, we suggest choosing subproblems of types 1 and 3 prior to subprob-

lems of type 2 as next problems from L.

In order to accelerate the Branch and Bound algorithm, diverse strategies for

the choice of the next subproblem, for example best-first or best-projection,

should be tried.

Summing up the arguments, we can state the following theorem:

Theorem 5.2. Algorithm 5.1 terminates with an optimal solution of the thresh-

old minimum cost problem, if one exists, or proves that the TMCFP is infeasible.

5.4 Example-Problems

Now we examine the approach described the previous subsections for three ex-

ample threshold minimum cost flow problems.

In the first problem, the construction of a solution that respects the goal of

surpassing the threshold value is possible. We compare the optimal solution of

the MCFP and the TMCFP. Furthermore, we illustrate the cost assignments

for two arcs.

In the second problem, where it is not possible to find a solution where the

threshold value is exceeded on every arc, we show that with the threshold model

a reasonable solution is constructed nevertheless.

In the third problem, we compare the computational performance of the different

presented models for the TMCFP.

5.4.1 Avoiding Small Flows Example 1

We consider the following MCFP

90

CHAPTER 5. AVOIDING SMALL AMOUNTS OF FLOW IN MINIMUM

COST NETWORK FLOW PROBLEMS

2 5

1 3 6 8

4 7

1,
10

3, 10

2, 10

1, 3

5, 10 2,
3

4, 10

4,
5

5, 5

0, 10

0, 10

0,
10

10 −10

Figure 5.9: Avoiding small flows example 1: Minimum cost flow problem

where c, u on the arcs denotes the cost and the capacity, respectively.

The numbering of the arcs (i, j) is lexicographical.

The problem can formally be written as

min c⊤x
s.t. Ax = b

0 ≤ x ≤ u

where

c = (1, 3, 2, 1, 5, 2, 4, 4, 5, 0, 0, 0)⊤

A =

























1 1 1 0 0 0 0 0 0 0 0 0
−1 0 0 1 1 0 0 0 0 0 0 0
0 −1 0 0 0 1 1 0 0 0 0 0
0 0 −1 0 0 0 0 1 1 0 0 0
0 0 0 −1 0 −1 0 0 0 1 0 0
0 0 0 0 0 0 −1 −1 0 0 1 0
0 0 0 0 −1 0 0 0 −1 0 0 1
0 0 0 0 0 0 0 0 0 −1 −1 −1

























b = (10, 0, 0, 0, 0, 0, 0,−10)⊤

u = (10, 10, 10, 3, 10, 3, 10, 5, 5, 10, 10, 10)⊤

The optimal solution to this problem is x = (3, 3, 4, 3, 0, 3, 0, 4, 0, 6, 4, 0)⊤ with

a total cost of 45.

91

5.4. EXAMPLE-PROBLEMS

2 5

1 3 6 8

4 7

3

3

4

3

3

4

6

4
10 −10

Figure 5.10: Avoiding small flows example 1: Optimal solution of the original min-

imum cost flow problem

Now we consider the corresponding TMCFP with threshold value 4. That means

we introduce the additional goal that for all arcs having a positive flow, the

amount of flow shall be greater or equal to 4, so we have θi = 4, i = 1, . . . ,m.

Considering the given values for costs and capacities, we have

cmax = umax ·max
i

ci = u5 · c5 = 10 · 5 = 50.

For all arcs except arc (2, 5) and arc (3, 5) we have θi < ui. We define therefore

the grid points xj
i in the following way:

i 1 2 3 4 5 6 7 8 9 10 11 12

x1
i 0 0 0 0 0 0 0 0 0 0 0 0

x2
i 0 0 0 0 0 0 0 0 0 0 0 0

x3
i 4 4 4 3 4 3 4 4 4 4 4 4

x4
i 4 4 4 3 4 3 4 4 4 4 4 4

x5
i 10 10 10 3 10 3 10 5 5 10 10 10

The corresponding cost functions are defined as given in Subsection 5.2.2.

The following figure illustrates the cost assignment for arcs (4,6) and (2,5).

(a) Cost assignment for arc (4,6)

92

CHAPTER 5. AVOIDING SMALL AMOUNTS OF FLOW IN MINIMUM

COST NETWORK FLOW PROBLEMS

(b) Cost assignment for arc (2,5)

Figure 5.11: Example cost assignments

We can see that small amounts of flow, i.e. amounts smaller than θi, are more

expensive than large amounts of flow exploiting the full capacity of an arc with

capacity greater than θi. Nevertheless it is still possible to send small amounts

of flow if this can not be avoided.

As we defined the cost function to be constant on the interval]0, θi[, we increase

the possibility of getting only some “larger” small amounts of flow, but not many

very small amounts of flow.

Solving the threshold minimum cost flow problem with one of the methods de-

scribed above leads to an optimal solution x = (10, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 10)⊤

with a total cost of 60.

2 5

1 3 6 8

4 7

10

10

10

10 −10

Figure 5.12: Avoiding small flows example 1: Optimal solution of the threshold

minimum cost flow problem

The total cost for this solution in the original network is also 60.

In the solution of the original MCFP, we have four arcs carrying an amount of

flow smaller than 4 and greater than 0. In the new solution of the TMCFP, all

arcs have an amount of flow greater or equal to 4 or equal to 0.

93

5.4. EXAMPLE-PROBLEMS

5.4.2 Avoiding Small Flows Example 2

Now we consider the following minimum cost flow problem

2 5

1 3 6 8

4 7

1,
4

2, 10

1, 4

2, 3

1, 3

3, 10

3, 10

2,
3

1, 3

1, 10

1, 4

1,
4

10 −10

Figure 5.13: Avoiding small flows example 2: Minimum cost flow problem

The optimal solution to this problem is x = (3, 3, 4, 3, 0, 3, 0, 4, 0, 6, 4, 0)⊤ with

a total cost of 40.

2 5

1 3 6 8

4 7

4

2

4

3

1

2

1

3

4

2

4

10 −10

Figure 5.14: Avoiding small flows example 2: Optimal solution of the original min-

imum cost flow problem

The threshold value is set to θi = 4, i = 1, . . . ,m. In the original optimal

solution, we have seven arcs that carry an amount of flow smaller than four. All

in all, 11 out of 12 arcs are used in the optimal solution.

Considering the given values for costs and capacity, we have

cmax = umax ·max
i

ci = 10 · 3 = 30.

The optimal solution of the threshold minimum cost flow problem is then

94

CHAPTER 5. AVOIDING SMALL AMOUNTS OF FLOW IN MINIMUM

COST NETWORK FLOW PROBLEMS

2 5

1 3 6 8

4 7

2

8

2

4

4

2

4

4

10 −10

Figure 5.15: Avoiding small flows example 2: Optimal solution of the threshold

minimum cost flow problem

The total cost for this solution in the original network is 56.

We can see that on three arcs the amount of flow is not respecting the threshold

value. This is due to the structure of the network: If we removed all arcs having

a capacity smaller than four, the network flow problem would be infeasible.

However, our approach reduces the number of arcs having a flow smaller than

the threshold value.

5.4.3 Avoiding Small Flows Example 3

We consider the following minimum cost flow problem, which was previously

discussed in [45]:

5 9 14

2 10 15

1 3 6 11 16 19

4 7 12 17

8 13 18

1,
30

2, 30

3, 50

1,
30

2, 30

2, 30

3, 50

1, 20

1, 20

1, 30

2, 30

3, 30

1, 10

3,
50

4, 50

1, 20

1, 10

3,
30

2, 30

1
,
2
0

3,
10

1, 30

3,
20

1, 10

3, 10

1,
10

1, 10

0, 25

0, 25

0, 20

0,
10

0,
10

90 −90

Figure 5.16: Avoiding small flows example 3: Minimum cost flow problem

The optimal solution to this problem is shown below. The optimal solution has

95

5.4. EXAMPLE-PROBLEMS

a total cost of 675 and contains 27 arcs with positive flow, where 3 arcs have a

flow value greater than 0 and smaller than 10.

5 9 14

2 10 15

1 3 6 11 16 19

4 7 12 17

8 13 18

30

30

30

20

10

20

30

15

5

10

10

20

30

5

10

5

2
0

10
10

10

10

10

25

25

20

10

10

90 −90

Figure 5.17: Avoiding small flows example 3: Optimal solution of the original min-

imum cost flow problem

We set the threshold values θi = 10, i = 1, . . . ,m. The optimal solution of the

original problem contains three arcs with an amount of flow smaller than 10.

Considering the given values for costs and capacity, we have cmax = 200.

The ant algorithm produces the following solution for parameter settings α = 3,

β = 3:

96

CHAPTER 5. AVOIDING SMALL AMOUNTS OF FLOW IN MINIMUM

COST NETWORK FLOW PROBLEMS

5 9 14

2 10 15

1 3 6 11 16 19

4 7 12 17

8 13 18

30

30

30

30

30

30

10

20

20

10

30

10

20

1
5

5

20

10

10

25

25

20

10

10

90 −90

Figure 5.18: Avoiding small flows example 3: Ant solution of the threshold minimum

cost flow problem

The ant solution has a total cost of 710 (regarding the cost values in the original

network) and contains 23 arcs with positive flow, where 1 arc has a flow value

greater than 0 and smaller than 10.

The optimal solution of the threshold minimum cost flow problem is then

5 9 14

2 10 15

1 3 6 11 16 19

4 7 12 17

8 13 18

30

30

30

30

30

30

15

15

20

10

30

15

15

1
0

10

20

10

10

25

25

20

10

10

90 −90

Figure 5.19: Avoiding small flows example 3: Optimal solution of the threshold

minimum cost flow problem

In the optimal solution of the threshold minimum cost flow problem, 23 arcs

have a positive flow. No arc with positive flow carries an amount of flow smaller

97

5.4. EXAMPLE-PROBLEMS

than 10. The total cost of this solution is 715 (regarding the cost values in the

original network).

The following table lists a running time comparison for the λ and δ-method

and the SOS 2 B&B method for the avoiding small flows example 3. The

comparisons are all based on a standard Branch and Bound implementation

for mixed-integer programs in Matlab. For the SOS2 B&B method, only the

branching scheme was modified as explained in Section 5.3. The ant algorithm

was implemented in Java. All test runs were performed on a standard PC with

Pentium Dual-Core 1.60GHz.

algorithm running time remark

δ-method 13.2 seconds
λ-method 179.2 seconds
SOS2 B&B method 10.4 seconds upper bound =∞ (no ant preprocessing)
SOS2 B&B method 4.2 seconds upper bound from ant preprocessing
ant algorithm 0.21 seconds (*)

Table 5.1: Avoiding small amounts of flow: Numerical comparison

Note that the ant algorithm (*) did not find the optimal solution of the TMCFP.

As already shown in [77], the running time comparison confirms that the δ-

method is computationally superior to the λ-method. However, the SOS2 B&B

method leads to an even shorter computation time, even when running the

algorithm without the ant algorithm preprocessing (i.e. with upper bound set

to ∞ at the initialization of the algorithm). This is due to the fact that the

branching scheme is specially adapted to the problem structure, while for the λ-

and δ-method, a general branching scheme is used. Utilizing the ant algorithm

preprocessing and therefore a tighter upper bound leads to a reduction of the

running time of almost 60%.

The running time of the standalone version of the ant algorithm is considerably

less than for the exact methods. However, the ant algorithm does not find the

optimal solution of the TMCFP: The ant solution contains as many arcs with

positive flow as the exact solution (23 arcs) and has a total cost of 710 which

is slightly less than the total cost of the exact solution (715). However, the

threshold goal is violated for one arc. In comparison to the optimal solution

of the original MCFP, the number of arcs not exceeding the threshold value is

reduced from 3 to 1. Therefore, for large networks, where the running time of the

algorithms might be critical, the ant algorithm may be a reasonable compromise

between solution quality and computational effort.

98

CHAPTER 5. AVOIDING SMALL AMOUNTS OF FLOW IN MINIMUM

COST NETWORK FLOW PROBLEMS

5.5 Summary and Conclusions

The optimal solutions of MCFPs often contain many small amounts of flow on

diverse arcs. In practice, however, small amounts of flow are not desired in many

cases. Solutions with each arc having either a flow of zero or a flow exceeding

a certain threshold value would be preferred, even if they are more expensive.

Two solution methods for this kind of problem, called the threshold minimum

cost flow problem, were developed:

In Section 5.1, a heuristic method based on the ACO metaheuristic was pre-

sented. The ants’ behavior of following other ants by following their pheromone

trails leads to solutions where the number of ants on each arc, and therefore

the corresponding flow, is either zero or relatively large. The introduction of

penalty costs for constructed solutions that violate the threshold claim enforces

this effect.

In Section 5.2, an exact approach using a linearization of non-continuous cost

functions with the help of SOS 2 conditions, was developed. Two binary ap-

proaches for modeling the SOS 2 conditions as binary variables, the lambda

method and the delta method, were presented.

In Section 5.3, a Branch and Bound method for solving the TMCFP was de-

veloped. The method is based on the SOS 2 formulation and relaxation of the

TMCFP and uses a special branching scheme based on SOS conditions. Using

the heuristic solution of the ant algorithm of Section 5.1 as first upper bound,

the computation time of the B&B method can be reduced significantly.

The presented approaches were applied to example problems in Section 5.4. A

running time comparison shows that concerning the computational time, the

ant algorithm is superior to the SOS 2 based approaches. Furthermore, the

SOS 2 Branch and Bound method, which was presented in Section 5.3, has a

shorter computation time than a general Branch and Bound method, which was

applied to the problem formulations of the lambda and delta method. However,

it has to be kept in mind that the ant algorithm as heuristic method does not

guarantee to find an optimal solution.

99

5.5. SUMMARY AND CONCLUSIONS

100

Chapter 6

Robust Optimization in

Network Flows: Uncertain

Costs

In this chapter, we consider network flow problems with uncertain costs. We

first give a short introduction into the problem formulation and objectives. Then

we give a short description of the existing approach of Bertsimas and Sim [14].

Subsequently, we extend their approach to multicommodity flows. Furthermore,

we introduce uncertain costs into the ant algorithm described in Chapter 4.

Finally, we compare the results of the approaches for different distributions of

the uncertain cost values.

6.1 Problem Formulation and Objectives

In network flow problems, the cost values on the arcs can be subject to uncer-

tainty, where not necessarily all arcs must be concerned. The aim is to find

a solution which can cope best with all possible realizations of the uncertain

data in some sense. In case of uncertain costs, this means that the calculated

solution will not become extremely expensive, no matter which cost values are

actually realized.

In the considered approaches, the level of robustness can be controlled by a

robustness parameter. The robustness level can be chosen anywhere between

maximum risk, i.e. only the minimum cost values are considered for all arcs, and

maximum robustness, i.e. the maximum cost values on every arc are considered.

101

6.2. APPROACH OF BERTSIMAS AND SIM

In Robust Optimization, the distribution of the uncertainty values is usually not

considered - the uncertainty data are given in interval form. This differs from

the Stochastic Programming approach, see Chapter 9, where the distribution of

the uncertainty values is taken into account. Though in Robust Optimization

the uncertainty values are a priori considered as equally distributed, a robust-

ness parameter can regulate to which region of the uncertainty interval more

importance is assigned.

6.2 Approach of Bertsimas and Sim

In [14], D. Bertsimas and M. Sim propose a general approach to Robust Op-

timization which is extended to a robust approach for solving network flow

problems with uncertain cost. Based on this approach, Bertsimas and Sim de-

velop an efficient algorithm for solving single-commodity minimum cost network

flow problems with uncertainty in the cost vector.

6.2.1 Model Formulation

In the following, the fundamentals of the robust approach of Bertsimas and Sim

are explained. For details, see [14].

A given network G = (N ,A) and the corresponding minimum cost network flow

problem

min
∑

(i,j)∈A

c̃ijxij

s.t.
∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji = bi ∀i ∈ N

0 ≤ xij ≤ uij ∀(i, j) ∈ A

are considered, where c̃ij ∈ [cij , cij + dij], cij , dij ≥ 0, (i, j) ∈ A. cij is the

nominal cost on arc (i, j), while dij describes the possible uncertainty in the

cost value on arc (i, j). dij will also be called the (maximum) possible extra

cost.

Let Γ be a given number with Γ ∈ {0, . . . , |J |}, where J = {(i, j) : dij > 0}. The
parameter Γ regulates the robustness in the objective function: It determines

the number of arcs where cost fluctuations are expected. The goal is to find an

optimal solution that minimizes the objective function for all scenarios where

at most Γ cost coefficients are assumed to change within the given uncertainty

interval. This means that we want to be protected against all cases, where up

to Γ cost coefficients are allowed to take at most their worst case value cij +dij ,

while the other cost coefficients take their nominal cost value cij .

102

CHAPTER 6. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN COSTS

The robust minimum cost network flow problem is then

min
∑

(i,j)∈A

cijxij + max
{S:S⊆J,|S|≤Γ}

∑

(i,j)∈S

dijxij

s.t.
∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji = bi ∀i ∈ N

0 ≤ xij ≤ uij ∀(i, j) ∈ A.

By formulating the dual of the inner maximization problem and applying strong

duality, Bertsimas and Sim show in [14] that this problem is equivalent to

min
θ≥0

Z(θ)

where

Z(θ) =



















Γθ + min
∑

(i,j)∈A

cijxij +
∑

(i,j)∈J

dijmax{xij − θ
dij

, 0}

s.t.
∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji = bi ∀i ∈ N

0 ≤ xij ≤ uij ∀(i, j) ∈ A

It is shown in [14] that Z(θ) can be evaluated by solving a minimum cost flow

problem and that Z(θ) is a convex function of θ.

Bertsimas and Sim propose a bisection method in order to solve the robust

minimum cost flow problem. The major advantage of their approach is the

fact, that the solution of the robust problem can be obtained by solving a series

of network flow problems. A disadvantage is that in practice, the number of

network flow problems that need to be solved can be very high.

6.2.2 Extension to Multicommodity Flows

The approach of Bertsimas and Sim, as proposed in [14], can efficiently be

applied to network flow problems, such that a robust minimum cost flow problem

can be solved by solving a collection of modified nominal minimum cost flow

problems.

While Bertsimas and Sim consider single-commodity minimum cost flow prob-

lems only, we extend their approach to multicommodity minimum cost flow

problems.

Let p be the number of commodities and K := {1, . . . , p}. Let G = (N ,A)
be a directed graph with cost ckij and capacity uk

ij for every arc (i, j) ∈ A and

commodity k ∈ K and bundle constraints κij for every arc (i, j) ∈ A. The

bundle constraints κij restrict the total flow of all commodities on arc (i, j),

cf. Section 2.3.2. Let bki be the supply/demand values for node i ∈ N and

commodity k ∈ K.

Then the multicommodity minimum cost flow problem is given as:

103

6.2. APPROACH OF BERTSIMAS AND SIM

min
p
∑

k=1

∑

(i,j)∈A

ckijx
k
ij

s.t.
∑

j:(i,j)∈A

xk
ij −

∑

j:(j,i)∈A

xk
ji = bki i ∈ N , k ∈ K

p
∑

k=1

xk
ij ≤ κij (i, j) ∈ A

0 ≤ xk
ij ≤ uk

ij (i, j) ∈ A, k ∈ K

(6.1)

This formulation corresponds exactly to the formulation of problem (2.5), which

was partially written in matrix form.

Let X be the set of feasible solutions of problem (6.1).

Now we consider uncertainty in the cost vector. Let dij := (d1ij , . . . , d
p
ij), d

k
ij ≥

0, (i, j) ∈ A, k = 1, . . . , p such that the actual costs for commodity k on arc (i, j)

take a value in [ckij , c
k
ij + dkij]. Let JK := {(k, i, j) : dkij > 0}.

The robust multicommodity minimum cost flow problem is:

min
p
∑

k=1

∑

(i,j)∈A

ckijx
k
ij + max

{S:S⊆JK,|S|≤Γ}

∑

(k,i,j)∈S

dkijx
k
ij

s.t. x ∈ X.

(6.2)

where Γ ∈ [0, |A| · p]. Problem (6.2) can be rewritten as follows:

min
x∈X

(
p
∑

k=1

∑

(i,j)∈A

ckijx
k
ij+ max

v

∑

(k,i,j)∈JK

dkijx
k
ijv

k
ij)

s.t. 0 ≤ vkij ≤ 1 (k, i, j) ∈ JK
∑

(k,i,j)∈JK

vkij ≤ Γ.

(6.3)

For a fixed x ∈ X , the dual of the inner maximization problem of problem (6.3)

is:

min
θ,y

Γθ +
∑

(k,i,j)∈JK

ykij

s.t. ykij + θ ≥ dkijx
k
ij (k, i, j) ∈ JK

ykij ≥ 0 (k, i, j) ∈ JK
θ ≥ 0.

(6.4)

Applying strong duality, we can rewrite problem (6.3) as follows:

min
x∈X

p
∑

k=1

∑

(i,j)∈A

ckijx
k
ij+ min

θ,y
(Γθ +

∑

(k,i,j)∈JK

ykij)

s.t. ykij + θ ≥ dkijx
k
ij (k, i, j) ∈ JK

ykij ≥ 0 (k, i, j) ∈ JK
θ ≥ 0.

(6.5)

As the optimization variables in problem (6.5) are coupled and therefore the

outer and inner minimization problem have to be solved simultaneously, problem

104

CHAPTER 6. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN COSTS

(6.5) can be rewritten as:

min
x,θ,y

p
∑

k=1

∑

(i,j)∈A

ckijx
k
ij + Γθ +

∑

(k,i,j)∈JK

ykij

s.t. ykij + θ ≥ dkijx
k
ij (k, i, j) ∈ JK

ykij ≥ 0 (k, i, j) ∈ JK
θ ≥ 0
x ∈ X.

(6.6)

Problem (6.6) is equivalent to the following problem:

min
θ≥0

Z(θ) (6.7)

where

Z(θ) = Γθ+ min
x,y

(

p
∑

k=1

∑

(i,j)∈A

ckijx
k
ij +

∑

(k,i,j)∈JK

ykij

)

s.t. ykij ≥ dkijx
k
ij − θ (k, i, j) ∈ JK

ykij ≥ 0 (k, i, j) ∈ JK
θ ≥ 0
x ∈ X.

(6.8)

Eliminating the variables ykij in equation (6.8), we obtain

Z(θ) = Γθ+ min
x

(

p
∑

k=1

∑

(i,j)∈A

ckijx
k
ij +

∑

(k,i,j)∈JK

dkij max{xk
ij − θ

dk
ij

, 0}
)

s.t. x ∈ X.

(6.9)

Now we consider the minimization problem given in equation (6.9) for fixed

θ ≥ 0:

min
x

p
∑

k=1

∑

(i,j)∈A

ckijx
k
ij +

∑

(k,i,j)∈JK

dkij max
(

xk
ij − θ

dk
ij

, 0
)

s.t. x ∈ X.

(6.10)

Our goal is to solve problem (6.10) as a multicommodity minimum cost flow

problem. We have to modify the underlying graph G = (N ,A). For every arc

(i, j) we introduce two new nodes i′ and j′. Furthermore, we insert four new

arcs (i, i′), (i′, j′), (j′, j) and (i′, j) and remove the original arc (i, j). The costs,

capacities and bundle constraints are set as follows:

105

6.2. APPROACH OF BERTSIMAS AND SIM

ckii′ = ckij uk
ii′ = uk

ij κii′ = κij

cki′j′ = dkij uk
i′j′ =∞ κi′j′ =∞

ckj′j = 0 uk
j′j =∞ κj′j =∞

cki′j = 0 uk
i′j=

θ

dkij
κi′j =∞

i j

ckij , u
k
ij , κij

=⇒

j′

i i′ j

ckij , u
k
ij , κij

0, θ

dk
ij

,∞

d
k

ij
,∞

,∞

0,
∞

,
∞

Figure 6.1: Insertion of new arcs

Let the modified graph be G′ = (N ′,A′).

Theorem 6.1. For fixed θ, problem (6.10) can be solved by solving the multi-

commodity minimum cost flow problem corresponding to G′ = (N ′,A′).

Proof. Consider an optimal solution x of problem (6.10) transfered to the con-

text of the graph G′. If xk
ij ≤ θ

dk
ij

for a given commodity k and a given arc

(i, j) ∈ A with (k, i, j) ∈ JK , then in G′ the flow would be routed along the arcs

(i, i′) and (i′, j). The arising cost is

ckii′x
k
ij + cki′jx

k
ij = ckijx

k
ij .

If xk
ij ≥ θ

dk
ij

for a given commodity k and a given arc (i, j) ∈ A with (k, i, j) ∈ JK ,

then in G′ the flow would be first routed along the arc (i, i′). Then an amount

of θ
dk
ij

would be routed along arc (i′, j) and the excess amount xk
ij − θ

dk
ij

would

be routed along (i′, j′) and (j′, j). The arising cost is

ckii′x
k
ij + cki′j

θ
dk
ij

+ cki′j′
(

xk
ij − θ

dk
ij

)

+ cj′j

(

xk
ij − θ

dk
ij

)

= ckijx
k
ij + dkij

(

xk
ij − θ

dk
ij

)

.

The bundle constraint κi′j on arc (i′, j) is irrelevant as the actual bundle capacity

is determined by the bundle constraint on arc (i, i′) and therefore equal to the

bundle constraint on the original arc (i, j). The contribution to cost matches

the objective function of problem (6.10).

106

CHAPTER 6. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN COSTS

Furthermore, an optimal solution x∗ in G′ corresponds to a solution in G, as

the capacity constraints on arc (i, i′) in G′ and likewise on arc (i, j) in G are

uk
ij for commodity k and the bundle capacity is κij . Moreover, the sum of flows

on arcs (i′, j) and (i′, j′) as well as on arcs (i′, j) and (j′, j′) in G′ is indirectly

limited by the same capacity bounds, as the arc (i, i′) is the only incoming arc

in node i′ in G′.

Theorem 6.2. Z(θ) is a convex function of θ.

Proof. Let θ1, θ2 ≥ 0. Let (x1, y1) and (x2, y2) be the optimal solutions of

problem (6.8) corresponding to θ1 and θ2, respectively. The feasible region of

problem (6.8) is convex, so for all λ ∈ [0, 1] it holds that (λx1 +(1−λ)x2, λy1+

(1 − λ)y2) is feasible to the problem with θ = λθ1 + (1− λ)θ2. Consequently,

λZ(θ1) + (1− λ)Z(θ2) = λ



Γθ1 +

p
∑

k=1

∑

(i,j)∈A

ckij(x1)
k
ij +

∑

(k,i,j)∈JK

(y1)
k
ij



+

(1 − λ)



Γθ2 +

p
∑

k=1

∑

(i,j)∈A

ckij(x2)
k
ij +

∑

(k,i,j)∈JK

(y2)
k
ij





= Γ(λθ1 + (1− λ)θ2)+

p
∑

k=1

∑

(i,j)∈A

(

ckij(λ(x1)
k
ij + (1− λ)(x2)

k
ij

)

+

∑

(k,i,j)∈JK

(

λ(y1)
k
ij + (1− λ)(y2)

k
ij

)

≥ Z(λθ1 + (1 − λ)θ2)

Algorithm

Using the results of Theorems 6.1 and 6.2, we propose the following algorithm to

find the optimal solution θ∗ of Problem (6.7). The algorithm bisects an interval

[p, q] in which θ∗ is to be found. The stopping criterion is the length of interval

[p, q], i.e. the algorithm terminates as soon as an interval of maximum length

lSTOP is found, in which θ∗ is sure to lie.

Instead of searching for the minimum of Z(θ) by a bisection method, as proposed

in [14] and Algorithm 6.1, other search techniques like the more efficient golden

section method could be applied.

107

6.2. APPROACH OF BERTSIMAS AND SIM

Algorithm 6.1 Multicommodity Bertsimas and Sim Algorithm

1: Let the robust multicommodity minimum cost flow problem be given by the

graph G = (N ,A).
2: Let Γ ∈ [0, Γ̄] be the given robustness parameter, θ̄ := max

k∈K,(i,j)∈A
uk
ijd

k
ij ,

Γ̄ := |{(k, i, j) : dkij > 0}| = |JK | and lSTOP the desired interval length.

3: Evaluate Z(θ) for θ = 0, 14 θ̄,
1
2 θ̄,

3
4 θ̄, θ̄. Respecting the convexity of Z, de-

termine p and q such that θ∗ ∈ [p, q]: [p, q] = [0, 12 θ̄] or [p, q] = [14 θ̄,
3
4 θ̄] or

[p, q] = [12 θ̄, θ̄].

4: Until |q − p| ≤ lSTOP :

1. Evaluate Z(34p+
1
4q) and Z(14p+

3
4q).

2. Update the interval [p, q]: [p, q] = [p, 1
2p+

1
2q] or [p, q] = [34p+

1
4q,

1
4p+

3
4q] or [p, q] = [12p+

1
2q, q] such that θ∗ ∈ [p, q].

5: θ∗ belongs to interval [p, q]. Set θ∗ = 1
2 (p+ q). STOP.

The network flow corresponding to θ∗ is the solution to problem (6.8), which is

determined by the evaluation of Z. Z can be evaluated by solving a multicom-

modity MCFP.

Multicommodity Uncertain Cost Example

In the following, we consider a 2-commodity minimum cost flow problem with

uncertain cost consisting of 10 nodes and 17 arcs as illustrated below.

2 4 6

9

1 7

10

3 5 8

2 +
[0
, 1
]
3
,
10

10
, 1
5

1
+
[0, 3]

2
+
[0, 1] , 15

15 , 15

3 + [0, 2]
3 + [0, 2]

,
15
15

, 15

4
4 , 1515 , 15

4
4
,
15

15
, 1
5

3 + [0, 2]
3 + [0, 2]

,
15
15

, 15

1 + [0, 3]
1 + [0, 3]

,
5
5
, 5

2
2 , 5

5 , 53
3 , 5

5 , 5

4
4
,
5

5
, 5

3
3
,
5
5
, 5

2 + [0, 2]
2 + [0, 2]

,
5
5
, 5

0
0 , 5

0 , 5

0
0 , 0

5 , 5

0
0
,
8
0
, 8

0
0
,
2

0
, 2

0
0
,
0
5
, 5

15
10

−15
0

0
−10

Figure 6.2: Multicommodity uncertain cost example: Multicommodity minimum

cost flow problem

The numbers on the arcs indicate the cost, the capacity and the bundle con-

straint. The upper line denotes commodity 1, the lower line commodity 2. The

108

CHAPTER 6. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN COSTS

cost values are written in the form c+[0, d], which means that the nominal cost

is c and the possible extra cost is at most d. Note that some arcs, e.g. arcs (2, 4)

and (4, 6) are relatively cheap in the nominal cost ckij but have a high potential

extra cost dkij .

In our example we have Γ̄ = |{(k, i, j) : dkij > 0}| = 11.

The robust problem with Γ = 0 is equivalent to the original 2-commodity min-

imum cost flow problem, as Γ = 0 means that no cost variation is considered.

For Γ = 0, the following solution is obtained:

2 4 6

9

1 7

10

3 5 8

6.7
0

8.30

6.70

8.30

3.04

3.000.66
1.
96

5.0
0

1.34

5.00

8.00

2.
00

15

−15

(a) Commodity 1

2 4 6

9

1 7

10

3 5 8

3.3
0

6.70

3.30

6.70

1.96

1.33
3.
04

3.66

5

5

10

−10

(b) Commodity 2

Figure 6.3: Multicommodity uncertain cost example: Solution for Γ = 0

For Γ = 0, we obtain a best case cost of 167 (i.e. for all arcs (i, j) ∈ A and all

commodities k, the minimum cost ckij is considered as actual cost) and a worst

case cost of 280 (i.e. for all arcs (i, j) ∈ A and all commodities k, the maximum

cost ckij + dkij is considered as actual cost).

Now we consider a medium robust value for Γ, i.e. Γ = 6. This means that we

consider the scenarios where at most 6 cost values ckij vary in [ckij , c
k
ij + dkij]. We

solve the robust multicommodity minimum cost flow problem by applying the

algorithm given above and we obtain the following solution.

109

6.2. APPROACH OF BERTSIMAS AND SIM

2 4 6

9

1 7

10

3 5 8

10
.00

5.00

3.00

7.00
2.
00

3.00

2.00

3.00

3.
00

5.0
0

2.00

5.00

8.00

2.
00

15

−15

(a) Commodity 1

2 4 6

9

1 7

10

3 5 8

4.2
5

5.75

2.76

1.50
2.
24

3.50

3.00

2.00

2.
00

3.00

5.00

5.00

10

−10

(b) Commodity 2

Figure 6.4: Multicommodity uncertain cost example: Robust solution for Γ = 6

For Γ = 6, we obtain a best case cost of 184 and a worst case cost of 264. We

can see that potentially expensive arcs like arcs (2, 4) and (4, 6) are used less

than for Γ = 0, whereas arcs without potential extra cost like arcs (2, 5) and

(3, 4), which hadn’t been used for Γ = 0, now have a real positive flow in the

optimal solution.

Now we consider the maximum value Γ = Γ̄ = 11. That means we consider the

robust problem with cost variation for all arc/commodity combinations with

uncertain costs.

2 4 6

9

1 7

10

3 5 8

10
.00

5.00

10.00
5.
00

1.235

3.500.26

3.
76
5

4.5
0

1.74

5.00

8.00

2.
00

15

−15

(a) Commodity 1

110

CHAPTER 6. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN COSTS

2 4 6

9

1 7

10

3 5 8

3.4
9

6.51

3.49

6.
51

3.765

2.75
1.
23
5

2.25

5.00

5.00

10

−10

(b) Commodity 2

Figure 6.5: Multicommodity uncertain cost example: Robust solution for Γ = 11

For Γ = 11, we obtain a solution with a best case cost of 197.5 and a worst case

cost of 252. Considering the arcs (2, 4),(2, 5),(3, 4) and (3, 5), we can clearly see

that for the most conservative choice of Γ, arcs with a potential high costs are

avoided (arcs (2, 4) and (3, 5)) whereas arcs with a higher nominal cost but no

potential extra cost are preferred (arcs (2, 5) and (3, 4)).

The following table shows the best case and worst case cost for the solutions for

different values of Γ.

Γ best case worst case

0 167.00 280.30
1 167.00 278.00
2 174.76 272.29
3 177.00 270.36
4 177.60 269.78
5 180.57 267.27
6 183.99 264.26
7 186.18 262.91
8 187.84 261.23
9 195.84 253.41
10 197.51 252.00
11 197.51 252.00

Table 6.1: Multicommodity uncertain cost example: Best case and worst case costs

As we would expect, for rising Γ the best case cost increases while the worst

case cost decreases, as higher values of Γ enforce more conservative solutions.

Coupled Uncertainty

In practice, there are scenarios where data uncertainty is not stochastically

independent. Consider for example a transportation network, where some arcs

111

6.2. APPROACH OF BERTSIMAS AND SIM

represent transportation on the road and the remaining arcs transportation on

the rail. Let the data uncertainty for the road arcs be given by the fluctuations

of the oil price. Then it is likely that for rising oil prices, the actual price for

transportation on the road will be higher for all arcs representing transportation

on the road.

A possibility for coupled uncertainty in multicommodity flow problems could

be the following: If the cost on one arc is subject to uncertainty, then all com-

modities are effected simultaneously. Consider again a transportation network.

Let arc (i, j) represent transportation on the road by a certain transportation

company from i to j. If the transportation company increases their prices for

transportation, the price for transportation will be higher for all commodities

simultaneously.

One solution to this problem for a problem with coupled uncertainty of the type

mentioned secondly is to choose only values of Γ which are a multiple of p, where

p is the number of commodities. Remember that according to Bertsimas and

Sim, Γ represents the maximum number of arcs where uncertainty is actually

considered, where each arc is multiply counted, once for each commodity having

an uncertain cost value on this arc. If Γ is a multiple of p, it cannot happen

that for one specific arc (i, j) the uncertainty is considered for less than all

p commodities: In Problem (6.2), the maximum over all contemplable 3-tuples

(k, i, j) is considered, which means that the 3-tuples (1, i, j), (2, i, j), . . ., (p, i, j)

are comprised in every case, if Γ is a multiple of p.

6.2.3 Non-Integer Values for the Robustness Parameter

In Subsections 6.2.1 and 6.2.2, we required the robustness parameter Γ to be

integral.

In [14], Bertsimas and Sim propose a general robust approach for arbitrary

mixed integer programming problems, which is the basis for the robust ap-

proach for network flow problems, which we presented in Subsection 6.2.1. In

the general robust approach, Bertsimas and Sim allow Γ to take non-integer

values. We will shortly summarize the explanations given in [14], adapted to

the minimum cost flow problem:

As defined in Subsection 6.2.1, let J := {(i, j) : dij > 0}. Then |J | is the

maximum number of arcs with possible cost fluctuations. Now let the robustness

parameter Γ be an arbitrary, not necessarily integral, value in [0, |J |]. Then

a non-integral value Γ has the following meaning: Up to ⌊Γ⌋ of the possibly

fluctuating cost coefficients are allowed to take at most their worst case value

112

CHAPTER 6. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN COSTS

cij + dij . In addition, one cost coefficient is allowed to take at most the value

cij + (Γ− ⌊Γ⌋)dij , i.e. this value may fluctuate by (Γ− ⌊Γ⌋)dij .

As the robust approach for network flow problems, as presented in [14], is a spe-

cial case of the general robust approach for arbitrary mixed integer programming

problems, the non-integer value concept for the robustness parameter is directly

applicable for the robust approach for network flow problems in Subsection 6.2.1.

The extension of the non-integer value concept for the robustness parameter to

multicommodity flow problems, as presented in Subsection 6.2.2, can be realized

analogously.

6.3 Ant Algorithm

The algorithm of Bertsimas and Sim for single-commodity flows and the ex-

tension to multicommodity flows is a suitable approach for minimum cost flow

problems with uncertain costs. However, for large networks, the computational

effort is considerably large, most notably in the multicommodity case, as a series

of deterministic minimum cost flow problems must be solved.

In this section, we present an extension of the ant algorithm, which we pro-

posed in Chapter 4, to uncertain costs. As the ant algorithm is random-based

and therefore contains stochastic components, the introduction of uncertain cost

data into the algorithm is straightforward. We will especially focus on uniformly

distributed costs and Gaussian distributed costs, but we will also consider arbi-

trary distributions.

The extension is applicable to both the single-commodity and the multicom-

modity ant algorithm.

6.3.1 Uniformly Distributed Costs

Let ckij be the nominal cost on arc (i, j) for commodity k and dkij ≥ 0 the possible

extra cost. Now we assume, that all possible cost values in [ckij , c
k
ij + dkij] are

equally likely, i.e. we have a uniform distribution of the costs in [ckij , c
k
ij + dkij].

113

6.3. ANT ALGORITHM

c c + 0.25*d c + 0.5*d c + 0.75*d c +d
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 6.6: Density function for uniformly distributed costs in [c, c+ d] for nominal

cost c = 3 and extra cost d = 5

The basic idea is the following: For every arc and every commodity, we have an

interval [ckij , c
k
ij +dkij] of possible cost values. At the beginning of each iteration,

we generate a random cost value ĉkij out of this interval and set the current arc

cost for arc (i, j) and commodity k for this iteration to ĉkij .

First, we consider an arc (i, j) with low nominal cost ckij and high extra cost

dkij . With growing number of iterations, the ants are confronted with different

arc costs on the same arc. The visibility information makes the same arc rather

attractive in some iterations, if a low cost value is generated, or less attractive,

if a high cost value is generated. Consequently, an arc with high extra costs dkij
will be chosen by more ants in some iterations and less ants in other iterations

and therefore will receive more or less pheromone.

By contrast, an arc (i′, j′) with a nominal cost cki′j′ that is slightly higher than

ckij and with extra cost dki′j′ = 0 has a constant visibility over all iterations,

which is only slightly lower than the best case visibility of arc (i, j) but much

higher than the worst case visibility of arc (i, j). This arc is more attractive

than arc (i, j) in average and will therefore receive more pheromone at long

sight.

With an increasing number of iterations, the ants are confronted with a variety

of different cost values on the uncertain arcs and therefore the pheromone levels

on the arcs will level off in the sense that arcs that are a good choice for the

majority of uncertain cost values will have a higher pheromone level, arcs that

are a rather bad choice will have a lower pheromone level. An appropriate choice

of the pheromone evaporation rate is important: If the pheromone evaporation

is too low, arcs that were a good choice in early iterations might settle in all

constructed solutions even though they aren’t a good choice in general. If the

evaporation rate is too high, valuable collected information might be lost too

soon.

114

CHAPTER 6. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN COSTS

6.3.2 Gaussian Distributed Costs

Again, we consider an interval [ckij , c
k
ij + dkij] of possible arc costs for arc (i, j)

and commodity k.

We introduce a robustness parameter Γ ∈ [0, 1] in order to control the level of

robustness of the ant solution. We define that for Γ = 0 the solution shall be

minimally robust and for Γ = 1 the solution shall be maximally robust. When

increasing Γ from 0 to 1, the solution shall become more and more robust.

As proposed in Subsection 6.3.1, we generate a random cost value in [ckij , c
k
ij+dkij]

for arc (i, j) and commodity k at the beginning of each iteration.

However, as we want to respect the robustness parameter Γ, we can not use

a uniform distribution as before. Instead, we generate cost values that have a

Gaussian distribution.

The expected value of the Gaussian distribution is set to µk
ij = ckij + Γdkij .

The standard deviation is set to σk
ij = 1

4d
k
ij . Furthermore, the distribution is

truncated at the interval boundaries ckij and ckij + dkij .

The expected value µ has a direct impact on the generated cost values: For a

low value of Γ, the expected generated cost values are near the lower interval

boundary ckij , for a high value of Γ they are more likely to be near the upper

interval boundary ckij + dkij .

The choice of σ is based on the fact that approximately 95.45% of all values

have a deviation less or equal to 2σ to the mean value.

c c + 0.5*d c + dc + 0.25*d c + 0.75*d
0

0.1

0.2

0.3

0.4

0.5

0.6

(a) Γ = 0

c c + 0.25*d c + 0.5*d c + 0.75*d c + d
0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Γ = 0.25

115

6.3. ANT ALGORITHM

c c + 0.25*d c + 0.5*d c + 0.75*d c + d
0

0.1

0.2

0.3

0.4

0.5

0.6

(c) Γ = 0.5

c c + 0.25*d c + 0.5*d c + 0.75*d c + d
0

0.1

0.2

0.3

0.4

0.5

0.6

(d) Γ = 0.75

c c + 0.25*d c + 0.5*d c + 0.75*d c + d
0

0.1

0.2

0.3

0.4

0.5

0.6

(e) Γ = 1

Figure 6.7: Density functions for Gaussian distributed costs in [c, c+ d] for nominal

cost c = 3 and extra cost d = 5 for Γ = 0, 0.25, 0.5, 0.75 and 1

In practice, we generate a cost value with the Gaussian distribution N(µk
ij , σ

k
ij

2
)

without truncation. If the generated value lies outside the interval [ckij , c
k
ij+dkij],

we generate a new cost value and continue this procedure until we generate a

cost value that lies inside the interval.

6.3.3 Arbitrary Distribution

The ant algorithm can easily be extended from the Gaussian distribution to

an arbitrary distribution. If the distribution of the uncertain input data is

known, we can generate the cost values according to this distribution in each

iteration. The approach of Bertsimas and Sim, on the contrary, can not use the

additional information about the distribution of the uncertain input data even

if it is known.

Note that a fixed given distribution for the ant algorithm means that we have no

longer a robustness parameter, as the robustness parameter was introduced in

order to shift the expected value of the Gaussian distribution for the generation

of less or more expensive cost values in case that no information about the

distribution is given.

116

CHAPTER 6. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN COSTS

6.4 Problems

In this section, we examine two example problems. We apply the presented

methods and compare the results.

6.4.1 Single-Commodity Uncertain Cost Example

In this section, we apply the proposed robust ant algorithms to an example NFP

and compare the results to the robust approach of Bertsimas and Sim.

We consider the minimum cost flow problem defined by the following digraph:

12

7 13

2 4 8 14

1 5 9 15 18

3 6 10 16

11 17

10
0,
15
0

105, 150

3, 100

4, 100

4,
90

3,
90

2, 90

2,
60

3, 60

3,
50 2,

60

1, 60
2, 603, 50

4,
50

3, 50

2, 40

4,
40

6, 20

5, 40

2,
60

4, 60

6, 50

3,
60

2,
60

2, 60

2,
60

2, 60

2,
50

2, 50

2, 50

6,
20

4,
40

3,
40

2, 40

0
, 20

0, 30

0, 60

0, 30

0,
20

0,
40

200 −200

Figure 6.8: Single-commodity uncertain cost example: Minimum cost flow problem

Note that this network does not exactly correspond to the definition of a layered

network (see Definition 3.1), as we have three arcs going from layer 3 directly to

layer 5. In practice, this effect can occur for example if in two successive distri-

bution stages intermediate storage can be omitted. Note that by the insertion

of new dummy nodes in layer 4 and splitting each of the concerned arcs into

two arcs from layer 3 to layer 4 and from layer 4 to layer 5, the network can

easily be transformed into a layered network.

The numbering of the arcs is lexicographically ordered.

117

6.4. PROBLEMS

The minimum cost flow problem has the optimal solution x =

(150, 50, 80, 70, 0, 0, 50, 20, 60, 0, 0, 0, 60, 10, 0, 0, 0, 10, 40, 0, 20, 0, 0, 0, 20, 30, 30,

30, 0, 20, 0, 20, 30, 60, 30, 20, 40)⊤.

12

7 13

2 4 8 14

1 5 9 15 18

3 6 10 16

11 17

15
0

50

80

70

50

20

60

60

10

10

40

20

30

30

30

30

20

40

20
30

60

30

20

40

200 −200

Figure 6.9: Single-commodity uncertain cost example: Optimal solution of the min-

imum cost flow problem

Now we introduce uncertain costs on arcs (2, 4), (2, 5) and (3, 6). We add a

possible extra cost of 10 per arc.

Note that the robustness parameter Γ in the algorithm of Bertsimas and Sim

is not fully consistent with the robustness parameter Γ in the ant algorithm

with Gaussian distributed costs. Both algorithms have a minimal robustness

parameter of 0. The maximum value of the robustness parameter of the algo-

rithm of Bertsimas and Sim equates the number of arcs with uncertain data

and is therefore equal to 3. The maximum value of the robustness parameter of

the ant algorithm is fixed to 1. With fixed minimum and maximum values for

the robustness parameter, we can obtain some corresponding values for Γ for

the example network with three arcs with uncertain input data by dividing the

robustness parameter interval into four equal parts. The relations are given in

the following table:

118

CHAPTER 6. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN COSTS

Γ in ant algorithm Γ in Bertsimas and Sim

0 0
0.25 0.75
0.5 1.5

0.75 2.25
1.0 3

Table 6.2: Corresponding values for Γ in Bertsimas and Sim and the ant algorithm

Note that we no longer require Γ to be integral for the algorithm of Bertsimas

and Sim, see Subsection 6.2.3 for details.

The algorithm of Bertsimas and Sim gives the following results for different

values of Γ.

Γ best case worst case

0 21680 23638
0.75 21680 23651
1.5 22142 22938

2.25 22165 22915
3 22240 22740

Table 6.3: Single-commodity uncertain cost example: Robust solutions (Bertsimas

and Sim)

Now we examine the single-commodity uncertain cost example using the ant

algorithm. As the ant algorithm is a random-based metaheuristic, we cannot

simply state the result of one run of the ant algorithm, but have to consider

multiple runs. As a “result” of the ant algorithm, we can consider a “typical”

run, if most runs result in the same solution, or the average of all runs and the

maximum deviation, if the runs differ notably.

First, we consider uniformly distributed costs as proposed in Subsection 6.3.1.

The results given below are the results of an average run.

best case worst case

21921.5 23256.5

Table 6.4: Single-commodity uncertain cost example: Robust solution (ant algorithm

- uniformly distributed costs, average run)

119

6.4. PROBLEMS

In our test series, we had 20 runs of the ant algorithm. The maximum deviations

were −0.64% and +0.86% for the best case cost and −1.01% and +1.21% for

the worst case cost.

When comparing the results of the ant algorithm to the results of Bertsimas

and Sim, we can see that the solution of the ant algorithm is a little less robust

than the solution of Bertsimas and Sim for Γ = 1.5 but is more robust than the

solution for Γ = 0.75. We use Γ = 1.5 as reference value as this is the average

value of all possible values for 0 ≤ Γ ≤ 3 and therefore corresponds best to the

uniformly distributed costs in the ant algorithm.

Furthermore, we examine the application of the ant algorithm with Gaussian

distributed costs, as presented in Subsection 6.3.2, to the multicommodity un-

certain cost example. Again, we consider the results of an average run per value

of Γ.

Γ best case worst case deviation (bc) deviation (wc)

0 21721 23681 −0.05% +0.18% −0.68% +0.33%
0.25 21818 23148 −0.31% +0.28% −0.73% +0.61%
0.5 21875 22995 −0.16% +0.16% −0.07% +0.20%
0.75 22300 22810 −0.40% +0.04% −0.00% +0.00%

1 22310 22810 −0.00% +0.00% −0.00% +0.00%

Table 6.5: Single-commodity uncertain cost example: Robust solutions (ant algo-

rithm - Gaussian distributed costs, average runs)

In our test series, we had 20 runs of the ant algorithm per value of Γ.

The results can be directly compared to the results of the algorithm of Bertsimas

and Sim considering Table 6.2. Furthermore, we compare the expected cost

values for the optimal solutions for different values of Γ, both for the algorithm

of Bertsimas and Sim and the ant algorithm. We consider the Γ values of the

ant algorithm, where Γ ∈ [0, 1]. Then for a given Γ, we expect the actual cost

value on each arc (i, j) ∈ A to be (1 − Γ)cij + Γdij . Consequently, for a given

value of Γ ∈ [0, 1], the expected cost value of a solution x∗ can be calculated as

((1− Γ)c+ Γd)⊤x∗ = (1− Γ)c⊤x∗ + Γd⊤x∗ (6.11)

= (1− Γ) · (best case cost) + Γ · (worst case cost).

We obtain the following expected cost values:

120

CHAPTER 6. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN COSTS

Γ Bertsimas & Sim ant algorithm

0 21680 21721
0.25 22173 22151
0.5 22540 22435
0.75 22728 22683

1 22740 22810

Table 6.6: Single-commodity uncertain cost example: Expected cost values for the

optimal solutions for different values of Γ: Bertsimas/Sim and ant algo-

rithm (Gaussian distributed costs)

The following figure illustrates the best case and worst case costs of both algo-

rithms and compares the expected values for the optimal solutions for different

values of Γ.

(a) Best case cost (b) Worst case cost

(c) Best case / worst case cost (d) Expected values

Figure 6.10: Single-commodity uncertain cost example: Comparison of best case

and worst case costs and expected cost values for different values of Γ:

Bertsimas/Sim and ant algorithm (Gaussian distributed costs)

121

6.4. PROBLEMS

Note that in our figures, we use the Γ values which correspond to the ant

algorithm.

6.4.2 Single-Commodity Triangular Distributed Cost Ex-

ample

We consider again the network of the single-commodity uncertain cost exam-

ple, where the cost values of arcs (2, 4), (2, 5) and (3, 6) shall be subject to

uncertainty with a possible extra cost of 10 per arc. This time, we consider a

triangular distribution of the cost values on these arcs. The following table lists

the minimum, maximum and most probable cost values on these arcs.

arc minimum

cost value

most

probable

cost value

maximum

cost value

(2, 4) 3 5 13
(2, 5) 4 12 14
(3, 6) 2 4 12

Table 6.7: Single-commodity triangular distributed cost example: Triangular distri-

bution of the cost values

The algorithm of Bertsimas and Sim only considers cost data given in the form

of an interval [cij , cij + dij]. Hence, given distributions of the cost values within

the interval bounds are not used by the algorithm. However, even though the

algorithm of Bertsimas and Sim a priori is not perfectly suitable for solving

problems with given distributions, we want to test the algorithm of Bertsimas

and Sim on the triangular distribution and compare the results to the results of

the ant algorithm.

In our example, arcs (2, 4), (2, 5) and (3, 6) all have a possible extra cost of 10.

For arcs (2, 4) and (3, 6), however, the most probable cost value is much lower

than for arc (2, 5). The following figure illustrates the flow between node layers

2 and 3 (subgraph given by nodes 2 to 6) of the example network for the optimal

solution of the algorithm of Bertsimas and Sim for different values of Γ.

122

CHAPTER 6. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN COSTS

2 4

5

3 6

80

70

50

(a) Γ = 0

2 4

5

3 6

36.7

36.7

89
.9

36.7

(b) Γ = 1

2 4

5

3 6

25

25

35

90

25

(c) Γ = 1.5

2 4

5

3 6

25

25

35

90

25

(d) Γ = 2

2 4

5

3 6

50

60

90

(e) Γ = 3

Figure 6.11: Single-commodity triangular distributed cost example: Flows between

node layers 2 and 3 for Bertsimas and Sim

As we would expect, the algorithm of Bertsimas and Sim does not respect the

fact that the most probable cost value for arc (2, 5) is much higher than the one

for arcs (2, 4) and (3, 6). Therefore, even in the most robust case (Γ = 3), 50

flow units are sent on arc (2, 5) and none on arcs (2, 4) and (3, 6).

Now we modify the ant algorithm such that it generates cost data that corre-

spond to the triangular distribution for arcs (2, 4), (2, 5) and (3, 6). This results

in the following flow between node layers 2 and 3 of the example network:

2 4

5

3 6

100

10

90

Figure 6.12: Single-commodity triangular distributed cost example: Flows between

node layers 2 and 3 for the ant algorithm

We can see that no flow units are sent on the possibly most expensive arc (2, 5).

123

6.4. PROBLEMS

The following tables list the best case cost, most probable case cost, expected

case cost and worst case cost for the algorithms of Bertsimas and Sim and the

ant algorithm. Note that the expected cost for arc (2, 4) is 7, for arc (2, 5) is 10

and for arc (3, 6) is 6.

Γ best case most probable

case

expected case worst case

0 21680 22500 22620 23680
1 21990 22430 22679 23090

1.5 22165 22290 22515 22915
2 22165 22290 22515 22915
3 22240 22640 22540 22740

(a) Bertsimas and Sim

best case most probable

case

expected case worst case

22000 22200 22400 23000

(b) Ant algorithm

Table 6.8: Single-commodity triangular distributed cost example: Comparison of the

results of Bertsimas and Sim and the ant algorithm

For all values of Γ, the algorithm of Bertsimas and Sim produces a solution

that has a most probable cost which is higher than for the ant algorithm. If

we compare the solution of Bertsimas and Sim for Γ = 1.5, which has the

lowest most probable cost, to the solution of the ant algorithm, we can see that

both best case and most probable case cost are higher for Bertsimas and Sim,

while the worst case cost is slightly lower. For Γ = 3, the most robust case of

Bertsimas and Sim, the most probable case cost is significantly higher than for

the ant algorithm.

6.4.3 Summary

It can be clearly seen that the ant algorithm is more flexible and adaptable than

the algorithm of Bertsimas and Sim, if more information about the distribution

of the uncertain cost values is known. This is due to the fact that the algorithm

of Bertsimas and Sim only considers the uncertainty interval data, but ignores

information about distributions, if given.

An important advantage of the ant algorithm in comparison to the algorithm of

Bertsimas and Sim is the computational time for network flow problems with a

124

CHAPTER 6. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN COSTS

large number of arcs having uncertain input data. Considering a supply chain

network with a fixed number of arcs, we first examine the problem for a small

number of arcs actually having uncertain input data and then the same network

with a large number of arcs with uncertain input data. While the running time

of the algorithm of Bertsimas and Sim increases immensely, it remains almost

constant for the ant algorithm: The number of arcs having uncertain input

data influences the ant algorithm only in the way that at the beginning of each

iteration, a specific cost value has to be generated for every uncertain arc, which

is not computationally intensive.

However, the fact that the ant algorithm does not guarantee to find a global

optimal solution has to be kept in mind.

6.5 Summary and Conclusions

In this chapter, network flow problems with uncertain cost values on the arcs

were examined. For every arc subject to uncertainty, a nominal cost value and

a maximum extra cost value were considered. Both an exact and a heuristic

solution to this kind of problem were developed:

In Section 6.2, the Robust Optimization based method for network flow prob-

lems with uncertain costs, which was proposed by D. Bertsimas and M. Sim in

[14], was extended from single-commodity to multicommodity problems.

In Section 6.3, an ACO based heuristic method for network flow problems with

uncertain costs is presented. The introduction of uncertain cost data is in line

with the random-based stochastic components of the ant algorithm in the so-

lution construction process. The presented method is suitable for both single-

commodity and multicommodity problems.

For both approaches, the level of robustness can be controlled via a robustness

parameter Γ.

The presented approaches were applied to example problems in 6.4. A main

difference of the two approaches is the fact that the algorithm of Bertsimas and

Sim does not consider the distribution of the uncertainty values, while the ant

algorithm can easily be adapted to diverse probability distributions. Concerning

the computational time, the ant algorithm was superior to the algorithm of

Bertsimas and Sim in our test runs. However, it has to be kept in mind that

the ant algorithm does not guarantee to find a global optimal solution.

125

6.5. SUMMARY AND CONCLUSIONS

126

Chapter 7

Transformation of

Uncertain Demands to

Uncertain Costs

In the previous chapter, we presented algorithms for supply chain problems with

uncertain cost values. However, there is another important type of uncertainty

in supply chains: Uncertainty in demand.

In the context of supply chain management, the demand is situated at the end

of the supply chain in the form of a warehouse or a customer, for example. We

assume wlog that the demand arises at a warehouse and will therefore use the

term “warehouse” as a synonym for a demand node in the following.

If the demand in a supply chain is subject to uncertainty, we want to find a

production and transportation strategy which can cope best with the uncertain

demand values - that means that we have to find a compromise between a

full safety stock production and the risk of deficiency at the warehouses. As

deficiency can be “worse” - i.e. more expensive - at some warehouses, we have

to decide which warehouses should be delivered with extra product units.

In this chapter, we describe the transformation of uncertain demands to uncer-

tain costs in a given network G = (N ,A). Our goal is to apply the algorithms

for supply chain problems with uncertain costs, which we presented in Chapter

6, to supply chain problems with uncertain demands.

We assume in the following that G is a layered network with positive costs only,

where all demand nodes (warehouses) are situated in the last layer. For the

127

7.1. TRANSFORMATION USING ADDITIONAL INFORMATION:

PENALTY AND STORAGE COSTS

definition of the term layered network, see Section 4.2.

7.1 Transformation using Additional Informa-

tion: Penalty and Storage Costs

This section describes the transformation of uncertain demands to uncertain

costs using additional information. The additional information is given in the

form of penalty costs in case of deficiency and storage costs for surplus delivery.

Let G = (N ,A) be a given single-source supply chain network with source node

s. Let i be a demand node with nominal demand bi. Now we consider uncertain

demand in node i. Let zi be the possible extra demand in node i.

s

. . .

. . .

. . .
i⇒

ր
−→
ց

ց
−→
ր

⇒ [|bi|, |bi|+ |zi|]

Figure 7.1: Network with uncertain demand at node i

In a fixed time-period, a warehouse is supplied with a specific amount of goods.

If not all units of this delivery can be sold, they have to be stored at the

warehouse. The warehouse charges a storage cost of cstorage per unit to be

stored. However, if the current demand at the warehouse is higher than the

amount of goods which were supplied, the warehouse charges a penalty cost of

cpenalty per unavailable unit.

7.1.1 The Transformation Process

The additional information given by penalty and storage costs can be used when

transforming uncertain demands to uncertain costs.

Let node i be a demand node. First we replace the original node i by new nodes

i,, i′ and j and three new arcs:

i j

i′

Figure 7.2: Network extension near node i

128

CHAPTER 7. TRANSFORMATION OF UNCERTAIN DEMANDS TO

UNCERTAIN COSTS

The demand at node i is transferred to node j and set to the full demand bi+zi.

The demand at node i is consequently set to 0.

The arc (i, j) represents the path of the flow of the basic demand bi. As we

assume that the basic demand is always requested, the cost cij on arc (i, j) is

set to 0, that means that no additional costs occur.

The arcs (i, i′) and (i′, j) represent the path of the flow of the additional demand

zi. The cost of the path (i, i′, j) is set to cstorage in order to represent the storage

of additional units.

s

. . .

. . .

. . .
i j

i′

0, |bi|
c storage

, |z
i | 0,

|z i|

⇒
ր
−→
ց

ց
−→
ր

⇒ |bi|+ |zi|

Figure 7.3: Network extension near node i with arc data

Now we introduce an additional arc from the source node s to node j with

capacity |zi|. This arc is introduced with the intent to represent the path of

flow units which do not pass the production and delivery cycle and are therefore

not delivered to the demand nodes and consequently evoke penalty costs, if the

demand at the demand node is not satisfied.

s

. . .

. . .

. . .
i j

i′

0, |bi|
c storage

, |z
i | 0,

|z i|

?, |zi|

⇒
ր
−→
ց

ց
−→
ր

⇒ |bi|+ |zi|

Figure 7.4: Transformed network with additional arc from s to j

We set the nominal costs of the additional arc (s, j) to −cstorage. This effects

that the higher the storage cost, the more attractive is the additional arc.

Moreover, we want to embed both penalty costs and uncertainty in the demand

in the cost value of the additional arc (s, j).

According to the construction of our extended network, in an optimal solution

129

7.1. TRANSFORMATION USING ADDITIONAL INFORMATION:

PENALTY AND STORAGE COSTS

the basic demand bi is always sent through the network via node i and arc (i, j).

The costs for this flow are equal to the costs in the original network, as the cost

on arc (i, j) is 0. In the extended network, it is possible to send the extra

demand zi either “through” the network via the nodes i and i′ or “around” the

network via arc (s, j).

We want to treat the uncertain demand in the following way: In the most

“optimistic” case, we assume that the current demand at the demand node i

is the minimum (basic) demand bi. Therefore in this case, we want all extra

units of flow to use the additional arc (s, j). In the most “pessimistic” case, we

assume that the current demand at the demand node i is the maximum (basic

plus extra) demand bi + zi. In this case, each unit of flow which is sent via the

additional arc (s, j) evokes penalty costs in the amount of cpenalty .

In order to model this situation, we introduce uncertain costs on arc (s, j). As

stated above, the nominal cost on arc (s, j) is −cstorage. Now we add extra

costs lying in the interval [0, cstorage + cpenalty]. Hence we have negative costs

in the amount of −cstorage in the most optimistic case and positive costs in the

amount of cpenalty in the most pessimistic case.

s

. . .

. . .

. . .
i j

i′

0, |bi|
c storage

, |z
i | 0,

|z i|

−cstorage + [0, cstorage + cpenalty], |zi|

⇒
ր
−→
ց

ց
−→
ր

⇒ |bi|+ |zi|

Figure 7.5: Transformed network with uncertain costs

Finally, the whole transformation process has transformed a network with un-

certain demand data into a network with uncertain cost data.

Note that an alternative model for the cost values on the additional arcs is

imaginable: The nominal costs on the additional arcs are set to 0, the extra costs

to cpenalty . For this model, it likewise holds that the higher the transportation

cost through the network and the higher the storage cost, the more attractive

is the additional arc. In this alternative cost model, the storage costs only

effect the cost values on arc (i, i′), while in the cost value setting proposed in

Figure 7.5, the storage costs concern both arc (s, j) and arc (i, i′). Therefore,

we propose to select the alternative cost model for problems where the influence

130

CHAPTER 7. TRANSFORMATION OF UNCERTAIN DEMANDS TO

UNCERTAIN COSTS

of the storage costs is considered less essential and where the main focus is on

the penalty costs.

7.1.2 Uncertain Demands Transformation Example 1

We consider a minimum cost flow problem with uncertain demands. The given

network corresponds to a supply chain planning problem, where uncertain de-

mands arise at the nodes corresponding to warehouses.

The supply chain network consists of five node layers: The first node layer (node

1) is the source layer, the second node layer (nodes 2 to 4) is the production layer,

the third node layer (nodes 5 to 8) is the layer of supra regional warehouses,

the fourth node layer (nodes 9 to 13) is the layer of regional warehouses and the

fifth node layer (nodes 14 to 18) is the customer node layer, i.e. the demand

nodes. The demand intervals are given at the right hand side of the demand

nodes.

In our example, the warehouse nodes are nodes 14 to 18. The parameters at

the demand nodes specify the uncertainty intervals of the demands.

5 9 14

2 10 15

1 3 6 11 16

4 7 12 17

8 13 18

1,
30

2, 30

3, 50

1,
30

2, 30

2, 30

3, 50

1, 20

1, 20

1, 30

2, 30

3, 30

1, 10

3,
50

4, 50

1, 20

1, 10

3,
30

2, 30

1
,
2
0

3,
10

1, 30

3,
20

1, 10

3, 10

1,
10

1, 10

⇒ [18, 25]

⇒ [20, 25]

⇒ [15, 20]

⇒ [8, 10]

⇒ [6, 10]

Figure 7.6: Uncertain demands transformation example 1: Minimum cost flow prob-

lem with uncertain demands

The following table lists the penalty and storage costs at the warehouse nodes.

131

7.1. TRANSFORMATION USING ADDITIONAL INFORMATION:

PENALTY AND STORAGE COSTS

node 14 15 16 17 18

penalty cost 40 30 30 30 30
storage cost 4 4 4 12 12

Table 7.1: Uncertain demands transformation example 1: Penalty and storage costs

We modify the network by applying the rules to transform uncertain demand

into uncertain costs which we presented above. The transformed network is

shown in the following figure.

5 9 14 20

19

2 10 15 22

21

1 3 6 11 16 24

23

4 7 12 17 26

25

8 13 18 28

27

[−
4,

44
], 7

[−4, 34
], 5

[−4, 34], 5

[−12, 42], 2

[−12, 42], 4

1
,
3
0

2, 30

3
,
5
0

1
,
3
0

2
,
3
0

2
,
3
0

3
,
5
0

1, 20

1
,
2
0

1, 30

2
,
3
0

3, 30

1
,
1
0

3
,
5
0

4, 50

1, 20

1
,
1
0

3
,
3
0

2, 30

1
,
2
0

3
,
1
0

1, 30

3
,
2
0

1, 10

3
,
1
0

1
,
1
0

1, 10

0, 18

4, 7

0,
7

0, 20

4, 5

0,
5

0, 15

4, 5

0,
5

0, 8

12, 2

0,
2

0, 6

12, 4

0,
4

90

⇒ 25

⇒ 25

⇒ 20

⇒ 10

⇒ 10

Figure 7.7: Uncertain demands transformation example 1: Transformed network

Now we have a minimum cost flow problem with uncertain costs. This problem

can be solved using the algorithm of Bertsimas and Sim or the ant algorithm

with Gaussian distributed costs. We apply both algorithms to the minimum

132

CHAPTER 7. TRANSFORMATION OF UNCERTAIN DEMANDS TO

UNCERTAIN COSTS

cost flow problem and calculate the optimal solution for several values of Γ.

The following tables list the number of flow units of extra demand which are

not delivered to the demand nodes but along the additional arcs around the

original network. We consider several values of Γ.

H
H
H

H
H

node

Γ
0 1.25 2.5 3.75 5

14 7 3.96 2.25 0 0
15 5 5 2.84 0 0
16 5 5 2.84 0 0
17 2 2 2 0 0
18 4 3.52 2 0 0

(a) Bertsimas and Sim

H
H
H
H
H

node

Γ
0 0.25 0.5 0.75 1

14 7 2.9 0.3 0 0
15 5 4.4 1.6 0.2 0
16 5 4.6 1.5 0.2 0
17 2 2 1.6 1 0
18 4 4 3.6 1 0

(b) Ant algorithm

Table 7.2: Flow units of extra demand which are not delivered to the demand nodes

The following figure illustrates the table data.

(a) Bertsimas and Sim (b) Ant algorithm

Figure 7.8: Flow units of extra demand which are not delivered to the demand nodes

Note that for the demand nodes 15 and 16, the number of flow units which are

not delivered is (almost) identical.

We can see that for both algorithms, in the minimally robust case (Γ = 0)

all extra demand units are not delivered to the demand nodes, hence sent to

the sink node via the additional arcs. In the maximally robust case (Γ = 5 and

Γ = 1, respectively), no extra demand unit is sent via the additional arcs. In the

intermediate robust cases, the number of not delivered demand units decreases

133

7.1. TRANSFORMATION USING ADDITIONAL INFORMATION:

PENALTY AND STORAGE COSTS

for decreasing values of Γ.

The following tables list the total number of flow units which are delivered to

the demand nodes along the arcs of the original network.

H
H
H
H
H

node

Γ
0 1.25 2.5 3.75 5

14 18 21.04 22.75 25 25
15 20 20 22.16 25 25
16 15 15 17.16 20 20
17 8 8 8 10 10
18 6 6.48 8 10 10

(a) Bertsimas and Sim

H
H
H
H
H

node

Γ
0 0.25 0.5 0.75 1

14 18 22.1 24.7 25 25
15 20 20.6 23.4 24.8 25
16 15 15.4 18.5 19.8 20
17 8 8 8.4 9 10
18 6 6 6.4 9 10

(b) Ant algorithm

Table 7.3: Total number of flow units which are delivered to the demand nodes

The following figure illustrates the table data.

(a) Bertsimas and Sim (b) Ant algorithm

Figure 7.9: Total flow units which are delivered to the demand nodes

For both algorithms, we can see that for demand node 14, extra demand units

are delivered already for lower values of Γ. This coincides with our expectation,

as for demand node 14, the penalty cost is higher than for demand nodes 15 to

18.

When considering the demand nodes 17 and 18, which have the highest storage

costs, only the ant algorithm behaves like we expected: For higher values of Γ,

the amount of not delivered extra demand units for demand nodes 17 and 18 is

higher than for demand nodes 14 to 16, because of the higher storage cost.

134

CHAPTER 7. TRANSFORMATION OF UNCERTAIN DEMANDS TO

UNCERTAIN COSTS

The algorithm of Bertsimas and Sim, however, reduces the amount of not de-

livered demand more uniformly. First the demand nodes with greater amount

of uncertain demand units are delivered until all demand nodes have the same

remaining amount of not delivered uncertain demand. Then the remaining

amount of not delivered uncertain demand is reduced uniformly.

All in all, the general behavior of both algorithms corresponds to our expecta-

tions. When considering the solutions in detail, the ant algorithm meets our

expectations more precisely. This is presumably due to the fact that in the

transformation process, the fluctuations in the demand values and the resulting

cost intervals, respectively, are not modeled exactly.

7.2 General Approach

In this section, we describe a general approach for the transformation of uncer-

tain demands to uncertain costs, if no additional information about penalty and

storage costs is available.

Let Γ̄ = |{i : bi < 0, i ∈ N}| denote the number of demand nodes.

We introduce a robustness parameter Γ ∈ [0, Γ̄], which controls the level of

robustness of the robust solution. Note the we do not require Γ to be integral.

Our approach has to satisfy the following criteria:

• For Γ = 0, only the nominal demand is considered.

• For Γ = Γ̄, the full demand (basic plus extra demand) is considered.

• Nodes with shorter distance to the source are prioritized to nodes with

greater distance, i.e. if only an insufficient amount of extra units are

available for all demand nodes, nodes with a short distance to the source

node shall be served first, because the transportation costs are lower.

In this context, a shorter distance of node i to the source means that there exists

a cheaper path from the source to node i.

7.2.1 The Transformation Process

In order to transform the given network G with uncertain demands to a network

G̃ with uncertain costs, the following transformation rules are applied:

135

7.2. GENERAL APPROACH

1. Solve the minimum cost network flow problem for the original network

with nominal demand. For every node i with bi < 0, determine the longest

used path from the source node to node i and save the value as lnominali.

2. Solve the minimum cost network flow problem for the original network

with full (nominal plus extra) demand. For every node i with bi < 0,

determine the longest used path from the source node to node i and save

the value as lfulli. Determine the maximum value lfullmax = max
i∈N

lfulli.

3. For every node j with bj < 0 and zj < 0, where |zj | is the possible extra

demand, insert two new nodes i′ and j′ and modify the corresponding

arcs:

• For every arc (i, j), insert a new arc (i, i′) with cost cii′ = cij and

capacity uii′ = uij and delete the arc (i, j).

• Insert a new arc (i′, j) with cost ci′j = 0 and capacity ui′j = −bj.

• Insert a new arc (i′, j′) with cost ci′j′ = 2 and capacity ui′j′ = −zj.

• Insert a new arc (j′, j) with cost cj′j = 0 and capacity uj′j =∞.

i1

i2 j

i3

c
i
1 j , u

i
1 j

ci2j , ui2j

c i 3
j
, u

i 3
j

=⇒

i1

i2 i′ j

i3 j′

c
i
1 j , u

i
1 j

ci2j , ui2j

c i 3
j
, u

i 3
j

0,−bj

2,−
z
j

0,
∞

Consider an arbitrary path p from the source node to node i′ with integer

cost c. We set the cost value of arc (i′, j′) to ci′j′ = 2. By this means,

we maintain the possibility to insert a new path from the source node to

node j which is more expensive than path p (cost c), less expensive than

path p plus arc (i′, j′) (cost c+2) and still has integer costs, i.e. cost c+1.

4. For every node j with bj < 0 and zj < 0, insert a new arc from the

source node s to node j. These arcs will be called “additional arcs” in the

following.

• Set the cost csj = lnominalj + 1, where lnominalj is the value cal-

culated in step 1.

136

CHAPTER 7. TRANSFORMATION OF UNCERTAIN DEMANDS TO

UNCERTAIN COSTS

• Set the capacity to usj = −zj.
• Set the uncertainty for the cost on arc (s, j) to dsj = lfullmax+3−csj,
where lfullmax is the value calculated in step 2.

The cost values csj are chosen higher than the costs of the longest used

path in the nominal demand minimum cost flow problem (cf. step 1).

The purpose of this choice is that if we consider the extended network

with nominal demand only, the optimal solution uses the same arcs as in

the original network. The capacity values usj are set to the values of the

possible extra demand in node j. The uncertain cost values dsj are chosen

such that every additional arc has the same maximum cost of lfullmax+3.

The addition of 3 to lfullmax ensures that in the worst case (i.e. the actual

cost is cij + dij for arc (i, j) ∈ A), it is more expensive to send flow via

(s, j) than via nodes i′ and j′ as defined in step 3.

5. Adapt the supply and demand:

• For every node i with bi < 0, set the demand to the full demand

bi + zi.

• Set the supply for the source node bs = −
∑

i:bi<0

(bi + zi).

There exist alternative models for the cost values on the additional arcs, for

example a demand node specific choice of the cost values: dsj = lfullj+3− csj.

Note that alternative cost models lead to a slightly different interpretation of

the definition of robustness in this context.

7.2.2 Interpretation

The flow in the extended network can be interpreted as follows: The flow on

the additional arcs, inserted in step 4, represents flow, which is not actually

sent “through” the network but is sent “around” it. In reality, this amount of

flow would not be produced, would not be sent through the network - would

not even exist. It represents the possible extra demand which is not supplied.

The flow on the arcs added in step 3 represents the flow which is sent “through”

the network. In fact the flow goes through the original network and strains the

capacities. In reality, this amount of flow would be produced and sent through

the network to the points of demand. It represents the possible extra demand

which is supplied.

The transformed network can now be solved with either the ant algorithm or

the algorithm of Bertsimas and Sim for uncertain cost. For interpretation, we

137

7.2. GENERAL APPROACH

apply different values of the robustness parameter Γ. Recall that for the ant

algorithm, Γ ∈ [0, 1], while for the algorithm of Bertsimas and Sim, we have

Γ ∈ [0, Γ̄]. Γ = 1 in the ant algorithms corresponds to Γ = Γ̄ in the algorithm

of Bertsimas and Sim.

If the interpretation given above is respected, we can see that the transformation

rules fulfill the given requirements:

• For Γ = 0, only the nominal cost is considered for every arc. The possible

extra costs (uncertainty) are not considered. Since the nominal costs on

the additional arcs are chosen greater than the costs for the longest used

path in the minimum cost flow problem with nominal demand and smaller

than the costs on the path which must be chosen for extra demand, for

Γ = 0 the flow corresponding to the extra demand would choose the way

on the additional arcs.

• For Γ = 1 (ant algorithm) and Γ = Γ̄ (Bertsimas and Sim), the maximum

possible cost is considered for every arc. Since the nominal plus the extra

costs on the additional arcs are chosen such that these costs are greater

than the costs for the longest used path in the minimum cost flow problem

with full demand, for a maximum Γ the flow corresponding to the extra

demand would choose the way on the arcs corresponding to the arcs in

the original network and not on the additional arcs.

• The maximum cost values csj+dsj are chosen equally for all additional arcs

(s, j). For nodes j with short paths from the source node to node j (i.e.

low costs csj), the range from nominal costs to maximum costs is greater

than for nodes with longer paths from the source node. This implies

that the uncertainty dsj in the costs is higher for these additional arcs

and therefore for greater values of Γ, these arcs will be (partly) avoided.

Therefore nodes with shorter distance to the source will be supplied with

extra flow units prior to nodes with longer distance to the source node.

We sum up the arguments in the following proposition:

Proposition 7.1. The transformation process described in Subsection 7.2.1

satisfies the following requirements:

1. For Γ = 0, no additional demand is delivered to the demand nodes.

2. For Γ = 1 (ant algorithm) and Γ = Γ̄ (Bertsimas & Sim), the complete

additional demand is delivered to the demand nodes.

3. Demand nodes with shorter distance to the source node are supplied prior

to demand nodes with longer distance.

138

CHAPTER 7. TRANSFORMATION OF UNCERTAIN DEMANDS TO

UNCERTAIN COSTS

7.2.3 Uncertain Demands Transformation Example 2

In the following, the general transformation algorithm is applied on an exam-

ple network. Note that the network corresponds to the Uncertain Demands

Transformation Example 1, see Figure 7.6.

5 9 14

2 10 15

1 3 6 11 16

4 7 12 17

8 13 18

1,
30

2, 30

3, 50

1,
30

2, 30

2, 30

3, 50

1, 20

1, 20

1, 30

2, 30

3, 30

1, 10

3,
50

4, 50

1, 20

1, 10

3,
30

2, 30

1
,
2
0

3,
10

1, 30

3,
20

1, 10

3, 10

1,
10

1, 10

⇒ [18, 25]

⇒ [20, 25]

⇒ [15, 20]

⇒ [8, 10]

⇒ [6, 10]

Figure 7.10: Uncertain demands transformation example 2: Minimum cost flow

problem with uncertain demands

Considering the minimum cost network flow problem for the given network with

nominal demand, the following solution with nominal cost 432 is obtained:

139

7.2. GENERAL APPROACH

5 9 14

2 10 15

1 3 6 11 16

4 7 12 17

8 13 18

30

30

7

15

15

30

7

10

5

15

16

14

7

10

5

1
8

5

15

8

6

67

−18

−20

−15

−8

−6

Figure 7.11: Uncertain demands transformation example 2: Optimal solution (nom-

inal demand)

Considering the minimum cost network flow problem for the given network with

full demand, the following solution is obtained:

5 9 14

2 10 15

1 3 6 11 16

4 7 12 17

8 13 18

30

30

30

20

10

20

30

15

5

10

10

20

30

5

10

5

2
0

10

10

10

10

10

90

−25

−25

−20

−10

−10

Figure 7.12: Uncertain demands transformation example 2: Optimal solution (full

demand)

The nominal cost is 675.

140

CHAPTER 7. TRANSFORMATION OF UNCERTAIN DEMANDS TO

UNCERTAIN COSTS

The following table lists the longest paths for nominal demand and full demand:

node j longest path (nominal demand)

lnominalj

longest path (full demand) lfullj

14 8 10
15 12 12
16 5 12
17 6 6
18 6 6

Table 7.4: Uncertain demands transformation example 2: Longest path for nominal

and full demand

Consequently, we have lfullmax = 12.

According to the transformation rules, the following arcs with nominal cost,

extra cost and capacities have to be added:

arc (s, j) nominal cost csj extra cost dsj capacity usj

(1, 14) 9 6 7
(1, 15) 13 2 5
(1, 16) 6 9 5
(1, 17) 7 8 2
(1, 18) 7 8 4

Table 7.5: Uncertain demands transformation example 2: Added arcs

The application of the transformation rules result in the following extended

network:

141

7.2. GENERAL APPROACH

5 9 20 14

21

2 10 22 15

23

1 3 6 11 24 16

25

4 7 12 26 17

27

8 13 28 18

29

[9,
15

], 7

[13,
15],

5

[6, 15], 5

[7, 15], 2

[7, 15], 4

1
,
3
0

2, 30

3
,
5
0

1
,
3
0

2
,
3
0

2
,
3
0

3
,
5
0

1, 20

1
,
2
0

1, 30

2
,
3
0

3, 30

1
,
1
0

3
,
5
0

4, 50

1, 20

1
,
1
0

3
,
3
0

2, 30

1
,
2
0

3
,
1
0

1, 30

3
,
2
0

1, 10

3
,
1
0

1
,
1
0

1, 10

0, 18

2, 7

0,
7

0, 20

2, 5

0,
5

0, 15

2, 5

0,
5

0, 8

2, 2

0,
2

0, 6

2, 4

0,
4

90

−25

−25

−20

−10

−10

Figure 7.13: Uncertain demands transformation example 2: Extended network

Now the Robust Optimization problem is solved using the algorithm for network

flow problems with uncertain costs of Bertsimas and Sim as proposed in [14] for

different values of Γ. Note that the choice of the algorithm of Bertsimas and

Sim is exemplarily and that we might as well evaluate the problem using the

ant algorithm for uncertain costs as proposed in Section 6.3. For this example

problem, we want to make a complete analysis of possible values of Γ the focal

point.

We calculated the optimal solution for values from Γ = 0.0 to Γ = 5.0 in steps

of 0.1.

For 0 ≤ Γ ≤ 0.8, we obtain the following optimal supply at the demand nodes:

142

CHAPTER 7. TRANSFORMATION OF UNCERTAIN DEMANDS TO

UNCERTAIN COSTS

node total supply extra supply

14 18 0
15 20 0
16 15 0
17 8 0
18 6 0

Table 7.6: Uncertain demands transformation example 2: Robust optimal supply for

0 ≤ Γ ≤ 0.8

Here the total supply is the nominal supply plus the extra supply, where extra

supply denotes the number of extra units that are sent to the demand nodes via

the original network.

Obviously, the claim, that for Γ = 0 the supply may not exceed the nominal

demand, is fulfilled.

For 0.9 ≤ Γ ≤ 1.3 we obtain the following solution:

node total supply extra supply

14 18 0
15 20 0
16 15 1

3
1
3

17 8 0
18 6 0

Table 7.7: Uncertain demands transformation example 2: Robust optimal supply for

0.9 ≤ Γ ≤ 1.3

Obviously, the first node, for which there is extra supply, is node 16. This is

due to the fact that the uncertainty in the costs on the additional arc (1, 16) is

greater than the uncertainty in the costs for the other additional arcs. Moreover,

the extra demand of node 16 is relatively high.

For 1.4 ≤ Γ ≤ 1.7, the following solution is obtained:

143

7.2. GENERAL APPROACH

node total supply extra supply

14 19.7 1.7
15 20 0
16 16.4 1.4
17 8 0
18 6 0

Table 7.8: Uncertain demands transformation example 2: Robust optimal supply for

1.4 ≤ Γ ≤ 1.7

Extra supply is now given for nodes 14 and 16. Both nodes have a relatively

high extra demand as well as greater uncertainty in the costs on the additional

arcs (1, 14) and (1, 16).

For 1.8 ≤ Γ ≤ 1.9, the following solution is obtained:

node total supply extra supply

14 20 2
15 20 0
16 16.7 1.7
17 8 0
18 6.25 0.25

Table 7.9: Uncertain demands transformation example 2: Robust optimal supply for

1.8 ≤ Γ ≤ 1.9

The extra supply for nodes 14 and 16 is further increased. Node 18 is also

delivered with extra supply because of the uncertainty in the cost vector on arc

(1, 18). Though the arc (1, 17) has equal values in cost and uncertainty, there

is no extra supply for node 17, because the extra demand is less than the extra

demand of node 18.

For 2.0 ≤ Γ ≤ 2.3, the following solution is obtained:

node total supply extra supply

14 22.3 4.3
15 20 0
16 18.2 3.2
17 8 0
18 8 2

Table 7.10: Uncertain demands transformation example 2: Robust optimal supply

for 2.0 ≤ Γ ≤ 2.3

144

CHAPTER 7. TRANSFORMATION OF UNCERTAIN DEMANDS TO

UNCERTAIN COSTS

The extra supply for nodes 14, 16 and 18 is further increased.

For 2.4 ≤ Γ ≤ 2.8, the following solution is obtained:

node total supply extra supply

14 23.3 5.3
15 20 0
16 18.9 3.9
17 8.75 0.75
18 8.75 2.75

Table 7.11: Uncertain demands transformation example 2: Robust optimal supply

for 2.4 ≤ Γ ≤ 2.8

While node 15 still is not delivered with extra supply because of the relatively

low uncertainty on arc (1, 15), node 17 is now delivered with extra supply. Note

that for the demand nodes 17 and 18, the amount of demand units that are not

delivered to these nodes are of equal value.

For 2.9 ≤ Γ ≤ 5.0, the following solution is obtained:

node total supply extra supply

14 25 7
15 25 5
16 20 5
17 10 2
18 10 4

Table 7.12: Uncertain demands transformation example 2: Robust optimal supply

for 2.9 ≤ Γ ≤ 5.0

As it was claimed, for Γ = 5, a solution is obtained, where the extra supply

is delivered completely for all nodes. There is no flow on the additional arcs

(1, 14), . . ., (1, 18).

7.3 Summary and Conclusions

In this chapter, we examined network flow problems with uncertain demands.

Due to the fact that for NFPs with uncertain costs, efficient algorithms exist,

the aim was to develop a transformation model in order to transform NFPs with

uncertain demands into NFPs with uncertain costs.

145

7.3. SUMMARY AND CONCLUSIONS

Two different transformation processes were proposed, dependent on how much

information about the network input data is known: The first transformation is

based on additional information about the cost values, which is given in the form

of penalty costs in case of supply deficiency and storage costs for surplus deliv-

ery. In case that no additional information is available, we developed a general

transformation scheme which is applicable without additional input data.

The major advantage of the proposed algorithms is the fact that the efficient

algorithms for NFPs with uncertain costs, cf. Chapter 6, can be applied to the

transformed problems.

In the case that additional information, i.e. penalty and storage costs, is avail-

able, the transformation process can be carried through very quickly by the

insertion of new nodes and arcs. If penalty and storage cost values are not

available, additional information is generated by determining longest paths in

the network and by solving several minimum cost flow problems in the original

network. Using this information, additional nodes and arcs are inserted. For

both transformation processes, the increase in network size is moderate: Two

new nodes and four new arcs per demand node are inserted.

However, it has to be taken into account that the transformation models are

not exact models. In Section 8.3, an exact approach for network flow problems

with uncertain demands, based on the concept of recoverable robustness, will

be presented. In Chapter 9, a Stochastic Programming approach for multicom-

modity NFPs will be developed. Furthermore, we will examine an ACO based

algorithm for single-commodity and multicommodity NFPs in Section 8.2.

146

Chapter 8

Robust Optimization in

Network Flows: Uncertain

Demands

In the previous chapters, we considered supply chain problems with uncertain

costs as well as possible transformations of uncertain demands to uncertain costs

such that we could solve the uncertain demands problems using the uncertain

costs algorithms.

In this section, we will develop special purpose robust algorithms for dealing

with uncertain demands.

8.1 Problem Formulation and Objectives

Given a directed network G = (N ,A) with finite node set N and finite arc set

A, the minimum cost network flow problem

minimize
∑

(i,j)∈A

cijxij

s.t.
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = bi ∀i ∈ N

0 ≤ xij ≤ uij ∀(i, j) ∈ A

is considered, where cij denotes the cost values on arc (i, j), xij denotes the flow

on arc (i, j), bi denotes the nominal supply/demand for node i and uij denotes

the capacity on arc (i, j).

In the following, network flow problems are considered where the underlying

147

8.2. ANT ALGORITHM

network is a single-source network without dicycles. Moreover, it is assumed

that only positive costs arise, that means cij ≥ 0, (i, j) ∈ A.

We consider a problem with uncertain demands in the sense that the demand can

only be predicted to be within a certain interval. In particular, let bi < 0, i ∈ A,
be the upper bound of this interval, referred to as “nominal demand”, and let

bi + zi, i ∈ A with zi ≤ 0 be the respective lower bound. |zi|, i ∈ A, is the

maximum possible “extra demand”.

For every demand node, we introduce two types of costs: If the actual demand

of a demand node i is higher than the number of flow units arriving at the

demand node, a penalty cost cpenaltyi per unavailable unit is charged. If the

actual demand of a demand node is lower than the number of flow units arriving

at the demand node, a storage cost cstoragei per redundant unit is charged, cf.

Section 7.1.

We introduce a robustness parameter Γ ∈ [0, 1], which controls the level of

robustness of the robust solution. We have the following aims:

1. For Γ = 0, only the nominal demand shall be delivered to the demand

nodes.

2. For Γ = 1, the full demand (nominal plus extra demand) shall be delivered

to the demand nodes.

3. For increasing Γ, more units shall be delivered to the demand nodes. The

choice, which demand nodes are to be prioritized, shall be dependent on

the total resulting cost. Here, arc costs, penalty costs and storage costs

shall be regarded.

The involvement of penalty and storage costs corresponds exactly to the ideas

given in Section 7.1: If one demand node has higher penalty costs than other

demand nodes, this demand node shall be delivered with extra units prior to

demand nodes with lower penalty cost. If one demand node has higher storage

costs than other demand nodes, extra demand units shall be directed to demand

nodes with lower storage costs.

8.2 Ant Algorithm

In this section, we want to adapt the ACO metaheuristic for minimum cost

flow problems, which we presented in Chapter 4, directly to minimum cost flow

problems with uncertain demands, i.e. without using a transformation to a

network flow problem with uncertain costs as in Chapter 7.

148

CHAPTER 8. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN DEMANDS

Let G = (N ,A) be a single-source network with uncertain demand at the de-

mand nodes, i.e. nodes i where bi < 0. Let zi ≤ 0 be the possible extra demand

at node i.

. . .
. . .
. . . i

s

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
j

. . .
. . .
. . . k

⇒
ր
−→
ց

ց
−→
ր

⇒ [|bi|, |bi|+ |zi|]

ց

ր
⇒ [|bj |, |bj|+ |zj |]

ց
−→
ր

⇒ [|bk|, |bk|+ |zk|]

Figure 8.1: Network with uncertain demands at nodes i, j and k

8.2.1 Modification of the Network

First, we extend G to a single-sink network by adding a new sink node t and

arcs from the original demand nodes to t.

. . . i

s

. . .

. . .

. . .

. . .

. . .

. . .
j t

. . . k

⇒
ր
−→
ց

ց
−→
ր

ց

ր

ց
−→
ր

⇒ ∑

l=i,j,k

|bl|+ |zl|

Figure 8.2: Single-sink network

The basic idea of our adapted ant algorithm is the following: We want the

first
∑

i:bi<0

|bi| ants for the nominal demand, in the following referred to as basic

ants, to find their path through the original network as specified in Chapter

4. In addition, we introduce a further set of ants for the extra demand, in the

following referred to as extra ants. The extra ants shall have the choice whether

to walk “through” the network or “around” the network: We introduce a new

source node for the extra ants as well as two additional arcs, where one arc is a

direct connection from the new source node to the sink node and the other arc

149

8.2. ANT ALGORITHM

is a connection from the new sink node to the old sink node.

. . . i

s1 s2

. . .

. . .

. . .

. . .

. . .

. . .
j t

. . . k

∑

l=i,j,k

|zl| ⇒

⇑
∑

l=i,j,k

|bl|

ր
−→
ց

ց
−→
ր

ց

ր

ց
−→
ր

⇒∑

l=i,j,k

|bl|+|zl|

Figure 8.3: Extended network for uncertain demands at nodes i, j and k

In our ant algorithm, the basic ants start their walk at node s2, the original

source node. The extra ants start their walk at node s1, the new source node.

As we want to ensure that the basic ants choose their path such that the nominal

demand at the original demand nodes is fulfilled correctly, we have to adapt the

capacities at the arcs from the original demand nodes to the sink node t. For

the run of the basic ants, we set the capacity of an arc from an original demand

node i to the sink node t to |bi|. As the number of basic ants is
∑

i:bi<0

|bi|, it

is guaranteed that exactly |bi| ants walk past node i and therefore the nominal

demand at node i is fulfilled. At the beginning of the run of the extra ants, we

change the capacity of the arcs mentioned above to |bi| + |zi|, such that up to

|zi| extra ants can walk past node i.

i

j t

k

|b
i |

|bj |

|bk
|

(a) Run of the basic ants

i

j t

k

|b
i | +

|z
i |

|bj | + |zj |

|bk
| +

|zk
|

(b) Run of the extra ants

Figure 8.4: Extended network: Capacity change

The capacity of the additional arcs (s1, s2) and (s1, t) is set to
∑

i:bi<0

|zi|. Hence
all extra ants can choose either one additional arc or the other without capacity

150

CHAPTER 8. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN DEMANDS

restriction.

The visibility of the additional arcs is set in dependence of the robustness pa-

rameter Γ: The visibility of the additional arc which leads from the new source

node to the sink node is set to 1 − Γ, the visibility of the additional arc which

leads from the new source node to the old source node is set to Γ. Note that we

actually need not define cost values for the additional arcs, as for the calculation

of the arc probability, pheromone trails and visibilities are sufficient.

s1 s2 . . . t
ηs1s2 = Γ

ηs1t = 1− Γ

∑

l=i,j,k

|zl| ⇒

⇑
∑

l=i,j,k

|bl|

⇒ ∑

l=i,j,k

|bl|+ |zl|

Figure 8.5: Extended network: Visibility on additional arcs

The choice of the visibilities for the arcs (s1, t) and (s1, s2) can be explained as

follows: If the pheromone values are not considered, the percentage of ants that

use the additional arc will be near to 1 − Γ, while the percentage of ants that

actually walk through the original network will be near to Γ. This corresponds

to the intended definition of the robustness parameter Γ: For small Γ, more

ants use the additional arc, which corresponds to the fact that more flow units

are not delivered to the demand nodes. For higher values of Γ, more ants walk

through the original network, which corresponds to the fact that more flow units

are delivered to the demand nodes.

Now we examine different values of the robustness parameter Γ:

For Γ = 0, the additional arc from node s1 to node t has a visibility of 1, while

the additional arc from node s1 to node s2 has a visibility of 0. This means

that all extra ants at node s1 will choose arc (s1, t) and therefore all extra flow

units will be sent around the network. As we have a visibility of 0 on one arc,

the pheromone levels can not influence the decision of the ants.

For Γ = 1, the additional arc from s1 to t has a visibility of 0, while the

additional arc from s1 to s2 has a visibility of 1. This means that all extra ants

at node s1 will choose arc (s1, s2) and therefore all extra flow units will be sent

through the network. As we have a visibility of 0 on one arc, the pheromone

levels can not influence the decision of the ants.

151

8.2. ANT ALGORITHM

For 0 ≤ Γ ≤ 1, the visibility of the additional arc from s1 to t corresponds to the

current value of Γ, the visibility of arc (s1, s2) is 1−Γ. In the first iteration, the

pheromone level on both arcs is set to 1, which means that the ants’ decision

is only based on the current value of Γ. With increasing number of iterations,

pheromone can accumulate more or less on both additional arcs and therefore

the ants are able to tend towards one arc or the other.

Note that if a positive lower bound is imposed on the visibility values, both arcs

(s1, t) and (s1, s2) have a strict positive probability to be chosen for all values

of Γ.

It is very important to impose upper bounds for the pheromone trails on the

additional arcs. If these upper bounds are not imposed, the extra ants are very

likely to choose the same additional arc, that means that either all extra ants

walk on additional arc (s1, t) or all extra ants walk on additional arc (s1, s2).

As we already mentioned in Section 4.2.5, it is possible that an ant reaches a

dead end during its walk. If this happens, we add the dead end node to the

tabu list of the ant and let the ant start over again.

In this case, we have to pay special attention to extra ants. An extra ant can

only reach a dead end if it is walking through the original network via arc

(s1, s2). It is not possible to reach a dead end when using arc (s1, t). Therefore,

a restarting extra ant at node s1 must remember its first decision at this node,

either to walk on arc (s1, s2) or to walk on arc (s1, t), and repeat this choice at

a restart. If this determination was not respected, the probability for choosing

arc (s1, t) would actually be increased.

8.2.2 Realization of Uncertain Demands

As proposed in Section 6.3 for uncertain cost values, we address the uncertain

input values of the minimum cost flow problem by generating random input

values in each iteration.

In the context of uncertain demands, for any demand node i in the original net-

work, we generate a random demand value in [bi+zi, bi] at the beginning of each

iteration. As we want to respect the robustness parameter Γ, we generate Gaus-

sian distributed demand values where the distribution function is dependent on

Γ.

The expected value µi of the Gaussian distribution N(µi, σ
2
i) is set to µi =

bi + Γzi. The standard deviation σi is set to σi = 1
4 |zi|. Furthermore, the

distribution is truncated at the interval boundaries bi + zi and bi.

152

CHAPTER 8. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN DEMANDS

The influence of the robustness parameter Γ on the expected value µi makes

sure that for high values of Γ, the generated demand value is likely to be near

the lower interval bound bi+zi, while for low values of Γ, the generated demand

value is likely to be near the upper interval bound bi (note that bi and zi are

negative values).

The choice of the standard deviation guarantees that approximately 95.45%

of the generated demand values lie within the uncertainty interval [bi + zi, bi].

However, in practice, this choice can lead to widespread demand data for large

intervals [bi+ zi, bi], such that in this case, a smaller standard deviation may be

appropriate.

The generated random demand value is referred to as current demand.

After all ants, i.e. basic and extra ants, have finished their walk in an iteration,

the constructed solution is evaluated using the generated demand value, the arc

cost, the storage cost and the penalty cost. First, the nominal flow cost (arc cost

times flow) is evaluated. In addition, for every demand node i in the original

network, the current demand is compared to the flow on arc (i, t).

If the flow on arc (i, t) is greater than the current demand at node i, we add a

storage cost of cstoragei per redundant unit of flow to the nominal flow cost.

If the flow on arc (i, t) is smaller than the current demand at node i, we add a

penalty cost of cpenaltyi per unavailable unit of flow to the nominal flow cost.

As in our original ant algorithm in Chapter 4, one unit of pheromone is laid down

per ant and per arc at the end of each iteration l. This amount of pheromone

is multiplied with the pheromone factor ωl, where ωl is defined as follows:

ωl :=

{

1 in iteration l = 1
total cost of the best-so-far solution
total cost of the current solution

in iteration l ≥ 2.

Then we have 0 ≤ ωl ≤ 1. If ωl takes a too small or too wide variety of values, it

can be raised to the power of a value ςpher ≥ 0 in order to avoid early stagnation

behavior in the ant algorithm.

8.2.3 Variations

Separation A possible variation for a minimum cost flow problem with un-

certain demands is to separate it into two subproblems and then solve them

independently:

1. First solve the minimum cost flow problem for the nominal demands only.

153

8.2. ANT ALGORITHM

As this problem is deterministic, efficient exact algorithms as the CSA can

be applied.

2. Then set up a new minimum cost flow problem for the extra demands.

The network structure and the arc costs remain unaffected. The uncertain

demand is set to [0, extra demand] at the demand nodes. The original arc

capacity is reduced by the amount of flow of the optimal solution of the

minimum cost flow problem for the nominal demand. Solve this minimum

cost flow problem with uncertain demands with the ant algorithm.

3. Combine the two solutions.

A disadvantage of this procedure is the fact, that the two subproblems are

solved independently and therefore no information is shared. However, the

advantage of the variation is that subproblem 1 is deterministic and can be

solved exactly and only subproblem 2, which is usually smaller than the original

problem because of a smaller number of involved ants, is subject to uncertainty

and is solved by a heuristic.

Multicommodity The ACO metaheuristic for minimum cost flow problems

with uncertain demands can be adapted to multicommodity minimum cost flow

problems with uncertain demands by the means proposed in Section 4.3. Note

that initially all ants corresponding to the nominal demand of any commodity

have to finish their walk before the extra ants of any commodity start.

Arbitrary Distributions In case that the distribution of the uncertain de-

mand values is known or can be approximated, the ant algorithm can be easily

adapted. Then the demand values can be generated according to the given

distribution instead of the proposed Gaussian distribution N(µi, σ
2
i).

8.2.4 Supplements for the Multicommodity Version

The multicommodity version of the ant algorithm for uncertain demands pro-

vides the possibility to enforce the influence of storage and penalty costs.

We modify the visibilities of the additional arcs (s1, s2) and (s1, t) in the fol-

lowing way:

Let

154

CHAPTER 8. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN DEMANDS

ωstorage
k :=

∑

i:bk
i
<0

(cstorage)ki

1
p

p
∑

l=1

∑

i:bl
i
<0

(cstorage)li

(8.1)

and

ωpenalty
k :=

∑

i:bk
i
<0

(cpenalty)
k

i

1
p

p
∑

l=1

∑

i:bl
i
<0

(cpenalty)
l

i

(8.2)

for commodity k.

Here (cstorage)ki denotes the storage cost for demand node i and commodity k.

(cpenalty)
k

i denotes the penalty cost for demand node i and commodity k.

Then ωstorage
k determines the proportion of the total possible storage costs for

commodity k in relation to the average total possible storage costs over all

commodities. Analogously, ωpenalty
k determines the ratio of the total possible

penalty costs for commodity k and the average total possible penalty costs over

all commodities.

Then we set the visibilities of the additional arcs to

ηks1s2 := Γ
ωpenalty
k

ωstorage
k

(8.3)

ηks1t := (1 − Γ)
ωstorage
k

ωpenalty
k

(8.4)

This choice ensures that for a commodity k with higher relative penalty costs

and/or lower relative storage costs, the visibility of the additional arc (s1, t) and

therefore the probability of choosing this arc is decreased. Simultaneously, the

visibility of the arc (s1, s2) is increased. This, in turn, means that for commodity

k, more ants will walk through the network than for commodities with lower

penalty costs and/or higher storage costs.

If ωstorage
k and ωpenalty

k take values which are too “far” away from 1.0, we propose

to introduce two parameters ςstoragearc and ςpenaltyarc and raise ωstorage
k to the power

of ςstoragearc and ωpenalty
k to the power of ςpenaltyarc , respectively. This avoids early

stagnation behavior in the ant algorithm.

155

8.2. ANT ALGORITHM

Note that these supplements can also be applied to the single-commodity prob-

lem in order to enforce the influence of penalty and storage costs on the decision

of the ants whether to walk through the original network via arc (s1, s2) or to

walk around it via the additional arc (s1, t).

8.2.5 Multicommodity Uncertain Demands Example

In this subsection, we apply the proposed ant algorithm to a multicommodity

minimum cost flow problem with uncertain demands. We consider two different

commodities. The following figure illustrates the structure of the underlying

network. The arc labels refer to the cost and capacity values for every commod-

ity and to the bundle capacity.

5 9 14

2 10 15

1 3 6 11 16

4 7 12 17

8 13 18

1,
30

1,
30

,
30

2, 30
2, 30

, 30

3
, 50

3
, 50

, 50

1,
30

1,
30

,
30

2
, 30

2
, 30

, 30

2
, 30

2
, 30

, 30

3
, 50

3
, 50

, 50

1, 20
1, 20

, 20

1
, 20

1
, 20

, 20

1, 30
1, 30

, 30

2
, 30

2
, 30

, 30

3, 30
3, 30

, 30

1
, 10

1
, 10

, 10

3,
50

3,
50

,
50

4, 50
4, 50

, 50

1, 20
1, 20

, 20

2
, 10

2
, 10

, 10

3,
30

3,
30

,
30

2, 30
2, 30

, 30

1
,
2
0

1
,
2
0

,
2
0

3
,
1
0

3
,
1
0

,
1
0

1, 30
1, 30

, 30

3,
20

3,
20

,
20

1, 10
1, 10

, 10

3
, 10

3
, 10

, 10

1,
10

1,
10

,
10

1, 10
1, 10

, 10

⇒ [10, 14]
⇒ [8, 11]

⇒ [5, 6]
⇒ [15, 19]

⇒ [7, 8]
⇒ [8, 12]

⇒ [6, 7]
⇒ [2, 3]

⇒ [3, 5]
⇒ [3, 5]

Figure 8.6: Multicommodity uncertain demands example: Minimum cost flow prob-

lem with uncertain demands

The underlying network structure corresponds to the networks given in Figures

7.6 and 7.10.

We impose penalty costs for not delivered flow units, which would actually have

been requested at the demand nodes, as well as storage costs for supplementary

delivered flow units which need to be stored at the demand nodes.

156

CHAPTER 8. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN DEMANDS

node 14 15 16 17 18

penalty cost 18 18 18 24 24
storage cost 1 1 1 1 1

(a) Commodity 1

node 14 15 16 17 18

penalty cost 12 12 12 12 12
storage cost 2 2 2 2 2

(b) Commodity 2

Table 8.1: Multicommodity uncertain demands example: Penalty and storage costs

We apply the ant algorithm to the multicommodity uncertain demands example

problem and examine the results.

As expected, for Γ = 0, which is the least robust case, no extra units are sent

to the demand nodes. In the maximally robust case, i.e. Γ = 1, the full extra

demand is sent to the demand nodes.

We examine in detail the intermediate robust case Γ = 0.5. The following table

lists the delivered flow units at the demand nodes 14 to 18 for commodities 1

and 2.

run 14 15 16 17 18

1 12 5 7 7 5
2 12 5 7 7 5
3 13 6 7 7 4
4 12 5 7 7 4
5 14 5 7 7 4
6 14 5 7 7 4
7 14 5 8 7 4
8 14 5 8 7 4
9 12 5 7 7 5

10 13 5 7 7 5
11 13 5 8 7 5
12 13 6 7 7 5
13 13 5 7 7 5
14 13 5 7 7 5
15 11 5 7 7 5
16 13 5 7 7 5
17 11 5 8 7 5
18 14 5 7 7 4
19 13 5 8 7 4
20 12 5 7 7 4

average 12.80 5.10 7.25 7.00 4.55

(a) Commodity 1

run 14 15 16 17 18

1 10 15 8 3 5
2 11 15 10 3 5
3 10 16 8 2 3
4 10 16 8 2 4
5 11 16 9 2 5
6 9 16 8 2 3
7 11 16 10 2 3
8 11 16 8 3 5
9 9 15 8 3 4

10 11 15 8 3 4
11 9 15 8 3 5
12 9 16 8 3 3
13 10 15 10 3 5
14 11 15 8 3 4
15 10 15 8 3 4
16 11 15 8 3 3
17 9 15 8 3 4
18 11 16 8 3 3
19 10 15 8 3 3
20 10 15 9 3 3

average 10.15 15.40 8.40 2.75 3.90

(b) Commodity 2

Table 8.2: Multicommodity uncertain demands example: Delivered demand at de-

mand nodes for different runs of the ant algorithm

We can see that for different runs of the ant algorithm, we obtain different

solutions. This is due to the fact, that the ant algorithm is random based

and moreover, the random generation of the demands differs from run to run.

157

8.2. ANT ALGORITHM

Therefore it is not recommended to consider one single ant run only.

In the following, we consider the results of an average run.

For commodity 1, we have a possible extra demand of 9 units, for commodity

2 of 13 units, i.e. 41% of the overall additional demand is associated with

commodity 1, 59% with commodity 2.

Examining the penalty and storage costs, we can see that for commodity 1, the

penalty costs are higher and the storage costs are lower than for commodity 2.

We can see that the ant solution reflects this fact: For commodity 1, 63% of

the possible extra demand is actually delivered, while only 33% of the possible

extra demand of commodity 2 is delivered.

(a) Possible extra demand (b) Delivered extra demand

Figure 8.7: Multicommodity uncertain demands example: Distribution of possible

and delivered uncertain demand

The following figure illustrates the delivered uncertain demand (in percent), on

the average, at the demand nodes for commodities 1 and 2.

(a) Commodity 1 (b) Commodity 2

Figure 8.8: Multicommodity uncertain demands example: Delivered uncertain de-

mand for commodities 1 and 2

158

CHAPTER 8. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN DEMANDS

For commodity 1, we can see that for nodes 17 and 18 the amount of delivered

extra units is higher than for nodes 14, 15 and 16. This is due to the higher

penalty costs for nodes 17 and 18.

For both commodities, the amount of delivered extra units to node 14 is rela-

tively high. This can be explained by the fact that there exists a very cheap

path (1, 2, 5, 9, 14) from the source node to node 14 which is cheaper than any

other path from the source node to a demand node. Therefore it is relatively

cheap to send extra units to node 14.

This example shows that the heuristic ant algorithm gives a good idea or trend.

However, different runs can differ notably, such that it is recommended to con-

sider more than one run for a specific optimization problem.

Both the ant algorithm for uncertain demand and the transformation based

algorithms, which were proposed in Section 7.1, exploit the information given by

penalty and storage costs. The control of the level of robustness by a robustness

parameter Γ is directly given for the ant algorithm. The optimization problem

with uncertain cost values, which is generated by the transformation algorithm

in Section 7.1, can also be solved using a robustness parameter with the ant

algorithm for uncertain costs or the algorithm of Bertsimas and Sim. It is very

hard to recommend one approach or the other in a special situation. We will

compare the results of the two approaches by means of a reference model in

Chapter 12.

8.3 Recoverable Robustness

In this section, we will discuss an alternative approach for modeling robust-

ness, called recoverable robustness. The recoverable robustness model is spe-

cially suited for supply chain problems with uncertain demands, as it considers

uncertainties in the matrix and the right-hand side of the constraints of an

optimization problem.

Recoverable robustness is a recent approach of S. Stiller et al., see [64] and [91],

in Robust Optimization. The aim is to find solutions to optimization problems,

which can be made feasible - or recovered - within a given budget. The recovery

possibilities are formalized via a class A of admissible recovery algorithms.

According to [91], a solution x of the original optimization problem is recovery

robust against the imperfection of information (scenarios) and for the limited

recovery possibilities (recovery budget), if for all scenarios a feasible solution

can be recovered from x by means of an admissible recovery algorithm.

159

8.3. RECOVERABLE ROBUSTNESS

The optimization process consists of two phases, a planning phase and a recovery

phase. In the planning phase, a solution x is computed, which can possibly

become infeasible in the realized scenario. Furthermore, an admissible recovery

algorithm is chosen. In the recovery phase, the chosen recovery algorithm is

used to make x feasible in the realized scenario.

For details concerning the framework of recoverable robustness, see [64] and

[91].

8.3.1 Linear Programming Recovery

In [91], S. Stiller presents basic results for recovery robust optimization prob-

lems (RROP), where the original optimization problem as well as the recovery

problem are linear programs. In particular, linear programs with inequality

constraints only are considered.

We modify the considerations of S. Stiller such that they fit exactly our problem

structure. As before, we consider supply chain problems formulated as MCFPs.

In this chapter, we focus on uncertainty in the demand values. Let S be a closed

scenario set for the uncertain demand values hs.

We consider the following formulation of a linear supply chain problem:

min
x

c⊤x

s.t. Ax ≤ b (8.5)

Aeqx = beq

Tx = h

where c, x ∈ Rm, A ∈ Rn1×m, b ∈ Rn1 , Aeq ∈ Rn2×m and beq ∈ Rn2 . Ax ≤ b

contains the capacity constraints and Aeqx = beq contains the flow conservation

constraints for transshipment nodes (i.e. nodes that are neither source node

nor sink node). Furthermore, we have the equality constraints Tx = h, which

ensure that the demand h is delivered to the demand nodes, where T ∈ Rl×m,

h ∈ Rl and l is the number of demand nodes.

When considering uncertain demand values, we have to determine a recovery

algorithm for solutions x that have to be turned to a feasible solution for the

realized scenario. Inspired by simple recourse in two-stage stochastic program-

ming, see [18] and Chapter 9, we choose W = [Il,−Il] as recovery matrix, where

Il is the l-dimensional unit matrix. The matrix W specifies how deficiencies in

160

CHAPTER 8. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN DEMANDS

demand can be compensated. In case of deficiency, for every demand node, the

number of delivered demand units can be smaller or greater than the actual de-

mand. In order to satisfy the actual demand, we have to add or subtract missing

or surplus units, which leads to a compensation matrix W as given above.

Let ys be the compensation vector for scenario s ∈ S. Let d ∈ R2l be the

cost vector for penalty and storage costs for missing or surplus demand units,

respectively. Let D be the total recovery budget.

Note that according to our problem formulation, the possibility that for a specific

demand node both penalty and storage costs accrue is not excluded explicitly.

This could be the case if the recovery budget is extremely high. In practice,

however, the recovery budget is generally small enough to avoid solutions.

Let hmin ∈ Rl be the vector of the minimum demand values at the demand

nodes. Then we add the inequality constraints Tx ≥ hmin in order to guarantee

that the minimum demand hmin is always distributed to the demand nodes.

Then the RROP can be formulated as follows:

min
x

c⊤x

s.t. Ax ≤ b

Aeqx = beq

Tx ≥ hmin

x ≥ 0

∀hs ∈ S ∃ys ∈ R2l : (8.6)

Tx+Wys = hs

d⊤ys ≤ D ys ≥ 0

For linear programs, we call the RROP linear recovery robust program, short

LRP.

For every demand node i, let [hmin
i , hmax

i] be the uncertainty interval for the

demand values. We assume for this moment that all uncertainty intervals have

the same length △.

Let S := S1 := {hs : ‖hs − hmin‖1 ≤ △, hs − hmin ≥ 0} be the considered

scenario set, as proposed in [91]. Here ‖ ·‖1 denotes the L1-norm, where ‖x‖1 =
m
∑

i=1

|xi| for x = (x1, . . . , xm)⊤ ∈ Rm. Note that S1 should be a subset of

[hmin
1 , hmax

1] × . . . × [hmin
l , hmax

l], as if it was not, the worst case hmax would

always have to be recovered which leads to over-conservative solutions.

161

8.3. RECOVERABLE ROBUSTNESS

We consider the following LRP:

min
x

c⊤x

s.t. Ax ≤ b

Aeqx = beq

Tx ≥ hmin

x ≥ 0

∀i ∈ {0, . . . , l} : (8.7)

Tx+Wyi = hmin +△ei

d⊤yi ≤ D yi ≥ 0

Here ei denotes the i-th l-dimensional unit vector for i = 1, . . . , l and the l-

dimensional zero vector for i = 0.

Theorem 8.1. If S = S1, an optimal solution of problem (8.7) is also an

optimal solution to problem (8.6).

Proof. Let (x∗, y∗0 , . . . , y
∗
l) be an optimal solution of problem (8.7). Let hi =

hmin +△ei, i = 0, . . . , l and SLRP = {hi : i = 0, . . . , l}. Obviously, problem

(8.7) is equivalent to the RROP for the scenario set SLRP .

Furthermore, we have that S1 is the set of convex combinations of vectors

hi, i = 0, . . . , l, i.e. S1 = {h : h =
l
∑

i=0

λihi,
l
∑

i=0

λi = 1, λi ≥ 0, i = 0, . . . , l}.

Therefore, we have SLRP ⊆ S1 and consequently, it holds that c⊤x ≥ c⊤x∗ for

all feasible solutions x of problem (8.6).

Finally, we must show that x∗ is feasible for problem (8.6). It is sufficient to

show that for every h ∈ S1, x∗ can be recovered within the given recovery

budget D.

Let h := (h1, . . . , hl) ∈ S1 be arbitrarily chosen. Let yi be the recovery vector

corresponding to hi. Then there exists λi ≥ 0, i = 0, . . . , l such that h =
l
∑

i=0

λihi

and
l
∑

i=0

λi = 1.

Let y =
l
∑

i=0

λiyi. Then

162

CHAPTER 8. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN DEMANDS

Tx∗ +Wy = (

l
∑

i=0

λi)Tx
∗ +W (

l
∑

i=0

λiyi)

=

l
∑

i=0

λi(Tx
∗ +Wyi) (8.8)

=

l
∑

i=0

λihi

= h.

and

d⊤y = d⊤(

l
∑

i=0

λiyi)

=

l
∑

i=0

λi(d
⊤yi) (8.9)

≤
l
∑

i=0

λiD

= D.

With (8.8) and (8.9), we can show that for arbitrary h ∈ S1, x∗ can be recovered

within the given budget by a recovery vector y and therefore x∗ is feasible for

S1. Since c⊤x ≥ c⊤x∗ for all feasible solutions x of problem (8.6), as we showed

above, x∗ is an optimal solution of problem (8.6).

Theorem 8.1 can analogously be extended to LRPs with a scenario set S which

is a convex polytope. Then it is sufficient to solve the corresponding LRP where

only the extreme points of S are considered as scenarios.

In practice, the uncertainty intervals will vary in length from node to node. Let

△i be the length of the uncertainty interval of node i. By scaling row i of T ,

W and h by △
△i

, we can transform the optimization problem into an equivalent

problem and have equal uncertainty interval lengths for all demand nodes.

8.3.2 Coincidental Covering

The scenario set S1 corresponds to the ball around hmin in the 1-norm with

radius △, truncated to the positive orthant relative to hmin. As we could see

163

8.3. RECOVERABLE ROBUSTNESS

in Subsection 8.3.1, the LRP corresponding to the scenario set S1 can easily be

solved. In practice, however, the uncertainty set S1 can be too small. Given a

minimum demand value and a possible fluctuation△ for every demand node, the

largest (scaled) scenario set of interest would be S∞ := {hs : ‖hs − hmin‖∞ ≤
△, hs − hmin ≥ 0}. For example, the case where the demand is maximal at

two or more demand nodes is contained in S∞, but not in S1: If in S1 at one

demand node i, the maximum demand hmax
i is considered, the demand at all

other demand nodes can only be minimal.

However, in many cases, we experience the so-called coincidental covering effect.

According to S. Stiller, see [91], a robust solution for a certain scenario set

possibly also covers other scenarios outside the scenario set, that originally were

not intended to be covered.

We will discuss the effect of coincidental covering by means of a supply chain

network with two demand nodes.

2 4

1

3 5

c = 10

c
=
20

c
=
22

c = 15

12

18

20

20

⇒ [15, 20]

⇒ [10, 20]

Figure 8.9: Recoverable robustness - 2-dimensional example: Network

The penalty cost for delivery deficiency is 24 for both demand nodes, the storage

cost for surplus delivery is 4. The recovery budget is 180. In this model, the

recovery budget is the amount which is available for covering the sum of penalty

and storage costs in this network.

As we have a possible demand uncertainty of 5 units for demand node 4 and a

possible demand uncertainty of 10 units for demand node 5, we have to scale

the second row of the matrices T and W as well as h by the factor 1
2 in order

to obtain a common △-value for both demand nodes, here △ = 5.

As scenario set, we consider again the scenario set S1 as illustrated in the figure

below.

164

CHAPTER 8. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN DEMANDS

Figure 8.10: Recoverable robustness - 2-dimensional example: Unscaled and scaled

scenario set

The optimal recovery robust solution of the 2-dimensional example is x =

(12, 0, 3, 12.5)⊤:

2 4

1

3 5

12

15.5

12

3

12.5

⇒ [15]

⇒ [12.5]

Figure 8.11: Recoverable robustness - 2-dimensional example: Optimal solution

With d and D given, we can determine all feasible recovery vectors y via the

inequality d⊤y ≤ D. With the scaled matrix W , we obtain that the images

of all admissible recovery vectors, i.e. Wy, lie in the convex hull of (7.5, 0)⊤,

(0, 3.75)⊤, (−45, 0)⊤ and (0, −22.5)⊤.

165

8.3. RECOVERABLE ROBUSTNESS

Figure 8.12: Recoverable robustness - 2-dimensional example: Image set of the re-

covery vectors

The recovery condition Tx+Wy = h of the RROP can be rewritten as follows:

Wy = −Tx+ h (8.10)

This means that for all recoverable solutions x, the negative image of x, trans-

lated by h, must lie in the image set of the recovery vectors. As h is subject to

uncertainty, we have that −Tx+hs must lie within the image set of the recovery

vectors for all hs ∈ S. In our example, this means that −Tx + hmin plus the

triangle corresponding to the uncertain demand scenarios S1, see Figure 8.10,

must lie within the image set of the recovery vectors.

In Figure 8.13, we illustrate again the image set of the recovery vectors Wy.

Furthermore, we determine the translated image set of the recoverable solutions

−Tx+ h. This image set consists of all points where the complete uncertainty

region (red triangle) can be appended such that it still lies completely inside

the image set Wy.

166

CHAPTER 8. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN DEMANDS

Figure 8.13: Recoverable robustness - 2-dimensional example: Translated images of

the recoverable solutions S1

Let S∞ := {hs : ‖hs− hmin‖∞ ≤ △, hs− hmin ≥ 0} be the maximum (scaled)

scenario set for the demand values. Let us suppose for the moment, that the

uncertainty scenario set is S∞. If we choose S∞ as scenario set, the translated

image set of the recoverable solutions is smaller than in case of S1, having the

following shape:

Figure 8.14: Recoverable robustness - 2-dimensional example: Translated images of

the recoverable solutions S∞

167

8.3. RECOVERABLE ROBUSTNESS

Now we return to the scenario set S1. The following figure illustrates the (not

translated) image set of the recovery vectors as well as the images of the recov-

erable solutions of the 2-dimensional example.

Figure 8.15: Recoverable robustness - 2-dimensional example: Images of the recov-

erable solutions

As stated above, a solution x is recoverable, if the negative image of x, translated

by hmin plus the demand triangle, lies within the image set of the recovery

vectors. In practice, for a recoverable solution x, often “more” than the demand

triangle lies within the image set of the recovery vectors. This corresponds to

demand values that are coincidentally covered.

Let again S∞ := {hs : ‖hs − hmin‖∞ ≤ △, hs − hmin ≥ 0} be the maximum

(scaled) scenario set for the demand values. When calculating optimal solutions

for the RROP with scenario set S1, parts of S∞ \S1 are coincidentally covered.

The following figure illustrates the optimal solution and the (coincidentally)

covered uncertainty set for the 2-dimensional example.

168

CHAPTER 8. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN DEMANDS

Figure 8.16: Recoverable robustness: 2-dimensional example: Optimal solution and

covered uncertainty set

In the two-dimensional example, the scenario set S1 contains 50% of the demand

scenarios in S∞. However, the optimal solution x covers 75% of the scenarios

in S∞, that means that 25% of S∞ are covered coincidentally and only 25% of

S∞ are not covered.

In practice, the coincidental covering range reaches from no coincidental covering

to a total covering of S∞.

As it can be seen in Figure 8.16, the region which is coincidentally covered is

not restricted to S∞: In our example, the (scaled) scenario point (7.5, 0), for

example, which is not contained in S∞, is also coincidentally covered by the

solution x.

8.3.3 Translation of the Demand Scenarios

As stated in the section before, the scenario set S∞ possibly contains scenarios

that are not (coincidentally) covered by the optimal solution for scenario set S1.

In this section, we propose a translation of the demand scenarios such that the

covered scenario set is more conservative, i.e. that it contains “more” scenarios

of S∞ than S1 does. Additionally, we want to keep the structure of S1 such

that the calculation of the optimal solution of the LRP does not become more

complicated.

Instead of using hmin as base demand vector, we set h̄ := 1
l

l
∑

i=1

hi as base

demand, where (h1, . . . , hl) is the demand vector of the given scenario. We

169

8.3. RECOVERABLE ROBUSTNESS

maintain △ as radius for the new scenario set S1
T := {hs : ‖hs − h̄‖1 ≤ △}.

Note that contrary to the definition of S1, hs is not necessarily greater or equal

to h̄, as otherwise scenarios with low demand values like the scenario hmin would

not be covered.

The following figure illustrates the relation between the original scenario set S∞

and S1
T . The (scaled) scenario set S∞ corresponds to a square in dimension 2

and a cube in dimension 3, with origin hmin and edge length△. The scenario set

S1
T is a square rhombus in dimension 2 and a regular octahedron in dimension

3 with center h̄ and radius △.

(a) Dimension 2 (b) Dimension 3

Figure 8.17: Recoverable robustness: Scenario sets S∞ and S1

T

For dimensions higher than 2, it holds that S∞ * S1
T . In dimension 2, the

intersection of S∞ and S1
T is the complete square S∞ , while in dimension 3,

the intersection is a cuboctahedron.

Note that the new scenario set S1
T contains new extreme points that are included

in neither S1 nor S∞. However, as all extreme points of the uncertainty set

are considered as scenarios in the recovery stage, these extreme points have an

influence on the recovery stage. The extreme point of S1
T in the positive orthant

corresponds to higher demand values at all demand nodes than intended in S1

or S∞. In practice, of course, we do not want to obtain solutions that actually

deliver demand corresponding to demand values of S1
T \ S∞. Therefore we add

an additional constraint to the LRP that guarantees that not more than hmax

units are delivered to the demand nodes. Note that nevertheless the extreme

points of S1
T are considered in the recovery stage.

Consequently, as new extreme demand scenarios have to be recovered for sce-

nario set S1
T , the recovery budget D possibly has to be increased when using

scenario set S1
T instead of S1. For the 2-dimensional example, the recovery bud-

170

CHAPTER 8. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN DEMANDS

get D must be increased to 300 in order to ensure the recovery of all possible

scenarios of S1
T .

As we consider a 2-dimensional uncertainty set, 100% of the scenarios in S∞

are covered by S1
T .

We have to note that when using the scenario set ST
1 for a problem with more

than two demand nodes, it is not ensured that lower demand values, including

hmin, can be recovered within the given recovery budget (see Figure 8.17).

The question arises, which scenario set is the better choice in practice. We

recommend the use of S1 for supply chain problems where only small deviations

in demand are expected, because these deviations are likely to be covered by the

scenario set S1. In case that greater deviations in demand are to be expected,

we recommend the use of S1
T , as the solutions generated using this scenario set

are more conservative in the sense that more units are delivered to the demand

nodes.

8.3.4 Extension to Multicommodity Flows

The extension of the general recoverable robustness concept to multicommodity

flows is straightforward. Let p be the number of commodities and κ the bundle

capacity. Then the multicommodity RROP can be formulated as follows:

min
x

p
∑

k=1

ck
⊤
xk

s.t. Akxk ≤ bk k = 1, . . . , p

p
∑

k=1

Akxk ≤ κ

Ak
eqx

k = bkeq k = 1, . . . , p (8.11)

T kx ≥ hkmin
k = 1, . . . , p

∀hs :== (h1
s, . . . , h

p
s) ∈ S ∃ys ∈ R2l×p :

T kxk +W kyks = hk
s , k = 1, . . . , p
p
∑

k=1

dk
⊤
yks ≤ D

The choice of the scenario set is critical. The standard scenario set S1 := {hs =

(h1
s, . . . , h

p
s) : ‖hs − hmin‖1 ≤ △, hs − hmin ≥ 0, hmin := (h1min

, . . . , hpmin)}

171

8.3. RECOVERABLE ROBUSTNESS

covers the cases with maximum demand for one commodity at one demand node

at a time. However, a case with maximum demand for two commodities at one

demand node would not be covered by S1. For a large number of commodities

it seems not likely that there is only one deviation for one product at a time,

such that S1 possibly is no suitable scenario set.

We propose a new scenario set Smulti. Let hmax
k denote the demand vector

with maximum demand at all demand nodes for commodity k and minimum

demand at all demand nodes for commodities v where v = 1, . . . , p and v 6= k.

Furthermore, let hmax
0 := hmin. Then let Smulti := {hs =

p
∑

k=0

λkh
max
k , 0 ≤

λk ≤ 1, k = 0, . . . , p,
p
∑

k=0

λk = 1} be the multicommodity scenario set.

This scenario set Smulti covers all scenarios where the demand is maximal for

one commodity and minimal for all other commodities as well as mixed cases.

This scenario set is not very conservative, as for example scenarios where the

demand is maximal for two commodities are not covered. However, in practice,

the coincidental covering effect (see Subsection 8.3.2) often helps to cover more

scenarios than actually intended.

As in the single-commodity case - see Subsection 8.3.3 - the scenario set Smulti

can be translated in order to obtain a more conservative scenario set. Besides,

the definition of other scenario sets is possible, e.g. a scenario set with maximum

demand for all commodities at one demand node and minimum demand for all

commodities in the other demand nodes.

8.3.5 Recoverable Robustness Example

In this subsection, we apply the recoverable robustness approach to a supply

chain management example. We consider a production and transportation net-

work with 18 nodes and 27 arcs where five nodes are demand nodes.

Again, we consider the same network structure as in Figures 7.6, 7.10 and 8.6.

172

CHAPTER 8. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN DEMANDS

5 9 14

2 10 15

1 3 6 11 16

4 7 12 17

8 13 18

1,
30

2, 30
2, 30

3, 50

1, 20

1, 20

1, 30

2, 30

3, 30

1, 103,
50

4, 50

1, 20

1, 10
3,
30

2, 30

1,
20 3,

10

1, 30

3,
20

1, 10

3, 10
1,
10

1, 10

⇒

30

30

50

80

60

60

30

30

⇒ [18, 25]

⇒ [20, 25]

⇒ [15, 20]

⇒ [8, 10]

⇒ [6, 10]

Figure 8.18: Recoverable robustness example: Network

The numbers on the arcs denote costs and capacity restrictions. The numbers

on the nodes denote capacity restrictions on the nodes: If node i has a capacity

of vi ≥ 0, then the sum of the incoming (outgoing) flow units over all incoming

(outgoing) arcs must be less or equal to vi.

The given capacity restrictions on the arcs correspond to capacity restrictions

in the production and transportation process. The capacity restrictions on the

nodes correspond to storing capacity restrictions at the respective location.

The costs on the arcs correspond to the costs for the respective supply chain

stage, i.e. production and transportation costs.

At the demand nodes, storage costs of 4 per surplus unit and penalty costs of

20 per unavailable unit are imposed.

As scenario set, we consider S1. We scale the demand scenarios such that△ = 7.

For the calculation of the (coincidental) covering percentage, we use the software

polymake, see [47], in order to calculate the intersections and volumes of the

involved polyhedra.

Minimum recovery budget First, we solve the LRP with the minimum pos-

sible recovery budget. The minimum possible recovery budget can be obtained

by solving a problem of the form

173

8.3. RECOVERABLE ROBUSTNESS

min
x,yi,D

D

s.t. Ax ≤ b

Aeqx = beq

Tx ≥ hmin

∀i ∈ {0, . . . , l} : (8.12)

Tx+Wyi = hmin +△ei

d⊤yi ≤ D

In our example problem, we have a minimum recovery budget of D = 75.333.

The following table lists the number of demand units that are transported to

the demand nodes in the optimal solution.

node 14 node 15 node 16 node 17 node 18

24.0000 24.3333 19.3333 9.8333 9.5000

Table 8.3: Recoverable robustness example: Minimum recovery budget - transport

to demand nodes

As we can see, the numbers of delivered units are close to the upper demand

bounds for all demand nodes. This is due to the facts that penalty costs are much

higher than storage costs and that the recovery budget is strongly restricted.

Due to the high number of delivered units, the production and transportation

cost, for simplicity referred to as production cost in the following, is rather high,

such that we have a high “expected” total cost (production cost + recovery

budget).

production cost 490.33

recovery budget 75.33

total cost 565.67

Table 8.4: Recoverable robustness example: Minimum recovery budget - production,

recovery and total cost

We examine the (coincidental) covering of the demand scenarios in S∞ by this

solution. As we noticed before, the optimal solution with a minimum recovery

174

CHAPTER 8. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN DEMANDS

budget is rather conservative, i.e. many demand units are delivered. Hence it

is not surprising that this solution covers 100% of the scenarios in S∞.

Increased recovery budget Now we increase the recovery budget to D = 90

in order to obtain a less conservative solution. The delivered demand units are

listed in the following table:

node 14 node 15 node 16 node 17 node 18

20.2222 20.5556 15.5556 8.0000 6.0000

Table 8.5: Recoverable robustness example: Increased recovery budget - transport

to demand nodes

For all demand nodes, the number of delivered units is smaller than before.

This is due to the facts that less delivered units mean less production costs and

that the recovery budget is high enough to compensate potential deficiencies.

The production cost is less than for the minimum recovery budget, where less

deficiency can be compensated.

production cost 389.50

recovery budget 90.00

total cost 479.50

Table 8.6: Recoverable robustness example: Increased recovery budget - production,

recovery and total cost

As the optimal solution for the increased recovery budget is less conservative,

the (coincidental) covering of the scenarios in S∞ is smaller than before: 19.92%.

Recovery budget as optimization variable In practice, the recovery bud-

get sometimes is not given as a fixed value. As we could see before, it is difficult

to determine a reasonable recovery budget. One possible approach to this diffi-

culty is to switch over from a fixed recovery budget to a variable recovery budget.

This means that we consider D as an optimization variable and minimize over

the total cost c⊤x+D instead of the original network cost c⊤x only.

The optimization terminates with D = 106.67 as an optimal recovery budget.

The following table lists the delivered units at the demand nodes for the optimal

solution:

175

8.3. RECOVERABLE ROBUSTNESS

node 14 node 15 node 16 node 17 node 18

19.6667 20.0000 15.0000 8.0000 6.0000

Table 8.7: Recoverable robustness example: Recovery budget as optimization vari-

able - transport to demand nodes

The number of delivered units is close to the lower bound for node 14 and is

the lower bound for nodes 15 to 18. The relatively high recovery budget allows

the acceptance of high penalty costs while the production cost is decreased.

production cost 340.67

recovery budget 106.67

total cost 447.33

Table 8.8: Recoverable robustness example: Recovery budget as optimization vari-

able - production, recovery and total cost

The (coincidental) covering of the scenarios in S∞ is only 5.43% in this case.

Translated demand scenarios In order to obtain a conservative solution, we

translate the demand scenarios according to the translation given in Subsection

(8.3.3). Again, we consider the recovery budgetD as an optimization variable, as

we do not want an overly conservative solution with minimum recovery budget.

The optimal solution has a recovery budget of D = 106.67 and delivers the

following number of units to the demand nodes:

node 14 node 15 node 16 node 17 node 18

21.0667 21.0000 16.0000 8.0000 6.0000

Table 8.9: Recoverable robustness example: Translated demand scenarios - transport

to demand nodes

We observe that more demand units are delivered than for the non-translated

demand scenarios. Consequently, we have higher production and total costs:

176

CHAPTER 8. ROBUST OPTIMIZATION IN NETWORK FLOWS:

UNCERTAIN DEMANDS

production cost 377.93

recovery budget 106.67

total cost 484.60

Table 8.10: Recoverable robustness example: Translated demand scenarios - produc-

tion, recovery and total cost

For the translated demand scenarios, we have a (coincidental) covering of 35.30%

of the demand scenarios in S∞, which is significantly more than for the non-

translated demand scenarios.

Summary The following tables summarizes the covering and cost values of

the four variations.

minimum

recovery

budget

increased

recovery

budget

variable re-

covery bud-

get

translated

demand

scenarios

(coincidental) covering 100% 19.92% 5.43% 35.30%

production cost 490.33 389.50 340.67 377.93

recovery budget 75.33 90.00 106.67 106.67

total cost 565.67 479.50 447.33 484.60

Table 8.11: Recoverable robustness example: Summary

Obviously, we always have to find a trade-off between low production cost and

low recovery budget. For a low recovery budget, on the one hand the produc-

tion and transportation cost is significantly higher than for a higher recovery

budget, but on the other hand the percentage of (coincidental) covering is also

significantly higher.

In practice, we have to decide between the different possibilities as the case

arises. In cases where large deviations from the nominal demand values are to

be expected, a more conservative solution would be advisable. In cases where

only small deviations from the nominal demand values are to be expected, a

less conservative solution can be expected to cause less expenses.

177

8.4. SUMMARY AND CONCLUSIONS

8.4 Summary and Conclusions

In this chapter, we examined network flow problems with uncertain demands,

where for every demand node, a nominal demand value as well as a maximum

possible extra demand value is given. Furthermore, we assumed that additional

information in the form of penalty costs for supply deficiency and storage costs

for surplus delivery is given.

In Section 8.2, an ACO based heuristic model for network flow problems with

uncertain demands was presented. The underlying network is transformed by

including new nodes and arcs. In each ant iteration, current demand values

are randomly generated within the given bounds. Two sets of ants, one cor-

responding to the nominal demand units and one corresponding to the extra

demand units, successively construct solutions in the extended network, leading

to a robust solution.

In Section 8.3, the recoverable robustness model proposed by S. Stiller et al.

([64], [91]) was adapted to network flow problems with uncertain demands. The

optimization is processed in two phases, a planning phase and a recovery phase.

The compensation costs, i.e. the total sum of penalty and storage costs, are

limited by a recovery budget. We showed that in practice, often more demand

scenarios than originally comprised in the scenario set are covered by the optimal

solution of recoverable robustness problem, which is called coincidental covering

effect.

Both approaches are applicable to single-commodity and multicommdity net-

work flow problems with uncertain demands. In contrast to the ant algorithm

proposed in Section 8.2, the level of robustness can not be controlled via a

robustness parameter in the recoverable robustness approach.

178

Chapter 9

Stochastic Programming:

Uncertain Demand

In order to model optimization problems with uncertain input data, Stochastic

Programming is a widely used alternative to Robust Optimization. In this

chapter, we examine network flow problems with uncertain demands. First, we

shortly recapitulate the concept of two-stage linear recourse problems following

the book of J. Birge and F. Louveaux ([18]) and then extend the model to

multicommodity problems. Subsequently, we discuss a special recourse scheme

for supply chain problems.

9.1 Two-Stage Linear Recourse Problems

The two-stage model is a scenario-based approach which separates an optimiza-

tion problem with uncertain input data in two stages. In the first stage, a

scenario independent decision is made before information about the actual data

realization is known. In the second stage, after uncertainty is disclosed, a sec-

ond decision - the so-called recourse decision - is made in order to compensate

violations of the constraints. In the following, we will consider fixed recourse,

i.e. problems where the compensation matrix is not subject to uncertainty.

The special feature of the two-stage method is the compensation of constraint

violations in the second stage. In general, the two-stage method is applicable

to both uncertain cost values and uncertain demand values. However, in case

of uncertain cost values, the first-stage solutions are always feasible for all sce-

narios. In contrast to that, constraint violations in the first stage are prevalent

179

9.1. TWO-STAGE LINEAR RECOURSE PROBLEMS

in problems with uncertain demand values. Therefore, we concentrate on un-

certain demand values, as for this kind of problem, the full potential of the

two-stage method can be demonstrated.

9.1.1 Problem Formulation

According to [18], a two-stage linear recourse problem with fixed recourse is

given as

min c⊤x+ Eξ[min q(ω)⊤y(ω)]

s.t. Ax = b

T (ω)x+Wy(ω) = h(ω) (9.1)

x ≥ 0

y(ω) ≥ 0

Here c ∈ Rm1 , b ∈ Rn1 and A ∈ Rn1×m1 correspond to the first stage decision

x. These vectors and matrices are not subject to uncertainty. W ∈ Rn2×m2

is called the recourse matrix and is assumed to be fixed here. In the second

stage, random events ω ∈ Ω may realize. For a given ω, the second stage

decision is represented by y(ω). The second stage data q(ω) ∈ Rm2 , h(ω) ∈ Rn2

and T (ω) ∈ Rn2×m2 are known vectors and matrices, respectively, for a given

realization ω. T is called the technology matrix. Eξ denotes the expected values

dependent on the random vector ξ := (T, h, q).

Let

Q(x, ξ(ω)) := min
y
{q(ω)⊤y|Wy = h(ω)− T (ω)x, y ≥ 0} (9.2)

be the recourse function and

Q(x) := EξQ(x, ξ(ω)). (9.3)

the expected value of the recourse function.

Then problem (9.1) is equivalent to

min c⊤x+Q(x)
s.t. Ax = b (9.4)

x ≥ 0

180

CHAPTER 9. STOCHASTIC PROGRAMMING: UNCERTAIN DEMAND

Problem (9.4) is called the deterministic equivalent problem.

If the random vector ξ has K possible realizations ξk = (Tk, hk, qk), where

realization k has a probability of pk ≥ 0, k = 1, . . . ,K with
K
∑

k=1

pk = 1, the

two-stage problem can be represented in the so-called extensive form:

min c⊤x+

K
∑

k=1

pkq
⊤
k yk

s.t. Ax = b

Tkx+Wyk = hk k = 1, . . . ,K (9.5)

x ≥ 0

yk ≥ 0 k = 1, . . . ,K.

There exists a variety of possibilities to model the recourse functions, see [18]

for details.

9.1.2 The L-Shaped Method

In [18] and [22], various solution methods for two-stage linear recourse problems

are presented. One of the most established solution methods for two-stage linear

recourse problems where ξ has finite support, is the L-shaped method, which is a

cutting plane technique. In the L-shaped algorithm, the stochastic optimization

problem is separated into a master problem in x and several subproblems which

are needed to exactly evaluate the recourse function.

The L-shaped algorithm consists of several steps. In step 1, the master problem

is solved. Step 2 checks the feasibility of x with the help of the subproblems.

If necessary, a feasibility cut is added to the master problem. For a feasible x,

optimality is checked in step 3. If required, optimality cuts are added to the

master problem. The procedure is repeated until x is feasible and optimal for

problem (9.4).

For details concerning the L-shaped method, see [18].

9.1.3 Application to Supply Chain Problems

As the two-stage model and the L-shaped algorithm are generally applicable

models, they can be applied to single-commodity as well as multicommodity

problems. If the (unmodified) L-shaped algorithm is applied to a multicom-

modity problem, however, the feasibility cuts and optimality cuts that are added

181

9.2. EXTENSION OF THE L-SHAPED ALGORITHM TO

MULTICOMMODITY FLOWS

to the master problem in steps 2 and 3, respectively, concern all commodities,

no matter if each individual commodity violates feasibility or optimality. This

means that redundant constraints are added and let the optimization problem

grow unnecessarily. However, if the recourse functions for different commodities

are independent, we can add feasibility and optimality cuts only for those prod-

ucts that violate feasibility and optimality. Hence the resulting optimization

problems in the L-shaped algorithm grow less quickly.

In the following chapter, we will examine multicommodity two-stage problems

and formulate the L-shaped method for multicommodity problems with inde-

pendent recourse.

9.2 Extension of the L-Shaped Algorithm to Mul-

ticommodity Flows

We consider a multicommodity production and transportation planning supply

chain problem with uncertain demand. Let N be the number of commodities

and K the number of scenarios. Let pnk denote the probability of realization k

for commodity n where
K
∑

k=1

pnk = 1, n = 1, . . . , N . We consider independent

recourse functions for different products. Then we can formulate the supply

chain problem as a two-stage linear problem in extensive form:

min

N
∑

n=1

cn⊤xn +

N
∑

n=1

K
∑

k=1

pnkq
n
k
⊤ynk

s.t. Anxn ≤ bn n = 1, . . . , N

N
∑

n=1

Anxn ≤ κ (9.6)

T n
k x

n +Wnynk = hn
k k = 1, . . . ,K, n = 1, . . . , N

xn ≥ 0 n = 1, . . . , N

ynk ≥ 0 k = 1, . . . ,K, n = 1, . . . , N.

In Problem (9.6), the bundle constraints of the multicommodity problem are

given in
N
∑

n=1
Anxn ≤ κ, where κ ∈ Rn1 .

Note that in the context of multicommodity NFPs, the matrix An describes

possible transportation paths in the given network and bn denotes the capacity

182

CHAPTER 9. STOCHASTIC PROGRAMMING: UNCERTAIN DEMAND

restrictions, where every line of An corresponds to a capacity bound (the cor-

responding entry of bn). Therefore, the structure of the matrix An is not the

structure of a node-arc incidence matrix.

Note that in most practical cases, An is identical for n = 1, . . . , N .

In the standard formulation of two-stage linear recourse problem with fixed re-

course as given in [18], see (9.1), the constraints Ax = b are given in equality

form. In our special case, all corresponding constraints are inequality con-

straints, which can be transformed to equality constraints by the introduction

of slack variables. On the other hand, equality constraints Ax = b can be for-

mulated as inequality constraints as Ax ≤ b and −Ax ≤ −b. As we want to

apply the theory presented in this Section to multicommodity NFPs later, we

will formulate the constraints as inequality constraints in the following.

9.2.1 The Multicommodity L-Shaped Method

The L-shaped method, as given in [18], can be extended for the multicommodity

two-stage problem (9.6). The separation of master problem and subproblems

as well as the basic steps 1 (solve the master problem), 2 (check feasibility, add

feasibility cuts) and 3 (check optimality, add optimality cuts) can be retained.

The multicommodity L-shaped algorithm proceeds as follows:

Algorithm 9.1 Multicommodity L-shaped Algorithm

1: step 0: set r = s = ν = 0 and ΩD = ∅, ΩE = ∅
2: step 1: set ν = ν + 1

3: solve the LP

min z =
N
∑

n=1

cn⊤xn +
N
∑

n=1

θn (9.7)

s.t.

N
∑

n=1

Anxn ≤ κ,

Anxn ≤ bn, n = 1, . . . , N

Dn
l x

n ≥ dnl , l = 1, . . . , r, n = 1, . . . , N : (l, n) ∈ ΩD

(9.8)

En
l x

n + θn ≥ enl , l = 1, . . . , s, n = 1, . . . , N : (l, n) ∈ ΩE

(9.9)

xn ≥ 0, θn ∈ R n = 1, . . . , N.

183

9.2. EXTENSION OF THE L-SHAPED ALGORITHM TO

MULTICOMMODITY FLOWS

4: let (xν , θν) be an optimal solution where xν := (x1ν , . . . , xNν
)T and θν :=

(θ1
ν
, . . . , θN

ν
)T .

if the condition (9.9) does not exist, set θnν = −∞ for n = 1, . . . , N and do

not consider θnν in the calculation of xν .

5: step 2:

6: for k = 1, . . . ,K, n = 1, . . . , N do

7: solve the LP

min wn
k
′ = e⊤vn+ + e⊤vn−

s.t. Wnyn + Ivn+ − Ivn− = hn
k − T n

k x
nν (9.10)

yn ≥ 0, vn+ ≥ 0, vn− ≥ 0,

where e⊤ = (1, . . . , 1) and I is the identity matrix

8: if wn
k
′ > 0 then

9: set k′ := k

10: break: goto line 13

11: end if

12: end for

13: if wn
k
′ > 0 for a k ∈ {1, . . . ,K} and an n ∈ {1, . . . , N} then

14: for all n ∈ 1, . . . , N with wn
k′

′ > 0 do

15: let (σn
k′)ν be the corresponding dual solution

16: define Dn
r+1 := (σn

k′)νT n
k′

17: define dnr+1 := (σn
k′)νhn

k′

18: set ΩD := ΩD ∪ {(r + 1, n)}
19: end for

20: set r := r + 1

21: goto step 1 (line 2)

22: else

23: goto step 3 (line 25)

24: end if

25: step 3:

26: for k = 1, . . . ,K, n = 1, . . . , N do

27: solve the LP

min qnk y
n

s.t. Wnyn = hn
k − T n

k x
nν , (9.11)

yn ≥ 0,

28: end for

184

CHAPTER 9. STOCHASTIC PROGRAMMING: UNCERTAIN DEMAND

29: let πn
k
ν be the corresponding dual solution to the optimal solution of problem

k of type (9.11) for commodity n

30: define En
s+1 =

K
∑

k=1

pk · (πn
k
ν)⊤T n

k , n = 1, . . . , N

31: define ens+1 =
K
∑

k=1

pk · (πn
k
ν)⊤hn

k , n = 1, . . . , N

32: let wnν = ens+1 − En
s+1x

nν , n = 1, . . . , N

33: if for all n = 1, . . . , N : θnν ≥ wnν then

34: STOP.

35: xν is an optimal solution

36: else

37: for all n = 1, . . . , N with θnν < wnν do

38: set ΩE = ΩE ∪ {(s+ 1, n)}, s = s+ 1

39: end for

40: goto step 1 (line 2)

41: end if

As indicated before, the feasibility of first-stage decisions xn for commodities

n = 1, . . . , N is examined in step 2. If xn is not second-stage feasible for one or

several n, feasibility cuts are added. In step 3, the optimality of xn is examined

and one or several optimality cuts are added.

The major difference of the multicommodity L-shaped algorithm when com-

pared to the single-commodity version is the fact, that we do not only add one

feasibility or optimality cut in steps 2 and 3, but one cut for each commodity

where feasibility and optimality, respectively, is violated.

9.2.2 Proof of Correctness and Convergence

Now we give a constructive proof of correctness and convergence of the mul-

ticommodity L-shaped algorithm, which follows the ideas given by Birge and

Louveaux in [18] for the single-commodity version.

Let

Qn(xn, ξ(ω)) = min
yn
{qn(ω)⊤yn|Wnyn = hn(ω)− T n(ω)xn, yn ≥ 0} (9.12)

and

Qn(xn) = EξQ
n(xn, ξ(ω)) (9.13)

185

9.2. EXTENSION OF THE L-SHAPED ALGORITHM TO

MULTICOMMODITY FLOWS

Moreover, let

X1 = {x|Anxn ≤ bn, n = 1, . . . , N,

N
∑

n=1

Anxn ≤ κ, x ≥ 0} (9.14)

X2 = {x|Qn(xn) <∞, n = 1, . . . , N} (9.15)

where x = (x1, . . . , xN).

Then the stochastic problem is

min
x

N
∑

n=1

cn⊤xn +

N
∑

n=1

Qn(xn) (9.16)

s.t. x ∈ X1 ∩X2

and can be rewritten as

min
x,θ

N
∑

n=1

cn⊤xn +

N
∑

n=1

θn

s.t. Qn(xn) ≤ θn n = 1, . . . , N (9.17)

x ∈ X1 ∩X2

with θ = (θ1, . . . , θN) and θn ∈ R, n = 1, . . . , N , as additional optimization

variables.

First, we show that Qn(xn, ξ(ω)) is a convex function in xn, n = 1, . . . , N .

The concatenation of a convex and a linear function is a convex function, see

[83]:

Lemma 9.1. Let f(y) : Rl2 → R be a convex function in y and g(x) : Rl1 → Rl2

a linear function in x. Then the concatenation (f ◦ g)(x) : Rl1 → R is a convex

function in x.

Proof. Consider arbitrary vectors x1 ∈ Rl1 and x2 ∈ Rl1 and an arbitrary

λ ∈ [0, 1]. Then we have:

f(g(λx1 + (1− λ)x2) = f(λg(x1) + (1− λ)g(x2)) (9.18)

≤ λf(g(x1)) + (1 − λ)f(g(x2))

Furthermore, Birge and Louveaux show in [18] that in the case that ξ is a finite

random variable, X2 is a convex set. As X1 clearly is a convex set because it is

a polytope, it holds that X1∩X2 is a convex set if ξ is a finite random variable,

because the intersection of two convex sets is convex.

With the help of Lemma 9.1, we can prove the following lemma:

186

CHAPTER 9. STOCHASTIC PROGRAMMING: UNCERTAIN DEMAND

Lemma 9.2. If ξ is a finite random variable, Qn(xn, ξ(ω)) = min
yn
{qn(ω)⊤yn|

Wnyn = hn(ω) − T n(ω)xn, yn ≥ 0} is a convex function in xn, n = 1, . . . , N ,

for x = (x1, . . . , xN) ∈ X1 ∩X2.

Proof. For this moment, we consider Qn(xn, ξ(ω)) as a function of xn for an

arbitrary fixed value ξ(ω). Then qn(ω), hn(ω) and T n(ω) are fixed values,

independent of xn. Then hn(ω)− T n(ω)xn is a linear function in xn.

It is sufficient to consider f(b) = min
a
{qn⊤a|Wna = b} and to show that f is a

convex function in b, as then the convexity of Qn(xn, ξ(ω)) in xn follows with

Lemma 9.1. Here qn represents qn(ω) for any fixed ω, a substitutes yn and b

substitutes hn(ω)− T n(ω)xn for simplicity in notation.

Consider arbitrary vectors b1 and b2 as well as a convex combination bλ :=

λb1 + (1 − λ)b2 where λ ∈ [0, 1]. Let a1 and a2 be an optimal solution of

min
a
{qn⊤a|Wna = b} for b = b1 and b = b2, respectively.

Because of

Wn(λa1 + (1− λ)a2) = λWna1 + (1− λ)Wna2 = λb1 + (1− λ)b2 = bλ,

we have λa1 + (1 − λ)a2 is a feasible solution of min
a
{qn⊤a|Wna = bλ}. Let aλ

be an optimal solution of min
a
{qn⊤a|Wna = bλ}. Then we have

f(bλ) = qn⊤aλ

≤ qn⊤(λa1 + (1− λ)a2)

= λqn⊤a1 + (1− λ)qn⊤a2

= λf(b1) + (1− λ)f(b2).

We can now show the correctness and termination of the multicommodity L-

shaped algorithm.

Theorem 9.3. If ξ is a finite random variable, the multicommodity L-shaped

algorithm converges to an optimal solution, if there exists one, or proves that

problem (9.16) is infeasible.

Proof. First we show that the multicommodity L-shaped algorithm terminates

when applied on problem (9.17), which is equivalent to problem (9.16).

In step 3 in iteration ν of the algorithm, problem (9.11) is solved for every

k = 1, . . . ,K and every n = 1, . . . , N in order to get optimal dual solutions πn
k
ν ,

187

9.2. EXTENSION OF THE L-SHAPED ALGORITHM TO

MULTICOMMODITY FLOWS

k = 1, . . . ,K, n = 1, . . . , N . By strong duality, for every k = 1, . . . ,K and every

n = 1, . . . , N , we have

Qn(xnν , ξk) = (πn
k
ν)⊤(hn

k − T n
k x

nν), (9.19)

as for the dual, a finite optimal solution could be found and therefore the primal

problem also has a finite solution, where the two objective function values are

equal.

According to [48], the subgradient inequality f(x)−f(y) ≥ ▽f(y)⊤(x−y) holds
for convex functions f : X ⊆ Rn → R, where x, y ∈ X .

As Qn(xn, ξk) is convex in x, which we proved in Lemma 9.2, the inequality

given above holds for Qn(xn, ξk) and we have

Qn(xn, ξk) ≥ Qn(0, ξk) +▽Qn(0, ξk)(x
n − 0)

= (πn
k
ν)⊤hn

k − (πn
k
ν)⊤T n

k 0 + (−(πn
k
ν)⊤T n

k)x
n (9.20)

= (πn
k
ν)⊤hn

k − (πn
k
ν)⊤T n

k x
n.

When calculating the expected value of relations (9.19) and (9.20), we get

Qn(xnν) = E(πnν)⊤(hn − T nxnν) =

K
∑

k=1

pnk (π
n
k
ν)⊤(hn

k − T n
k x

nν) (9.21)

and

Qn(xn) ≥ E(πnν)⊤(hn − T nxn) =
K
∑

k=1

pnk (π
n
k
ν)⊤hn

k −
(

K
∑

k=1

pnk (π
n
k
ν)⊤T n

k

)

xn,

(9.22)

respectively.

Because of the constraint θn ≥ Qn(xn) in (9.17), a pair (xn, θn) are only feasible

for this problem, if θn ≥ E((πnν)⊤(hn − T nxn)), which corresponds exactly to

inequality (9.9).

On the other hand, if (xν , θν) is optimal for (9.17), it follows that θnν =

Qn(xnν), as θn is bounded below in (9.17) by θn ≥ Qn(xn). This holds if

θnν = E((πnν)⊤(hn − T nxnν)), therefore if θnν = wnν .

Should θnν < Qn(xnν) from step 3 of the algorithm, then none of the previously

defined cuts forces θn ≥ Qn(xn) and a new cut must be defined.

The claim that the algorithm converges in a finite number of iterations to an

optimal solution follows by the fact that for every (k, n), k = 1, . . . ,K, n =

1, . . . , N , only a finite number of possibilities for the dual solutions πn
k
ν exists,

188

CHAPTER 9. STOCHASTIC PROGRAMMING: UNCERTAIN DEMAND

as every dual solution is defined by one of the finite number of different bases

of (9.11) which are independent of xν .

Now we have to prove that only a finite number of constraints (9.8) is neces-

sary in order to guarantee that x = (x1, . . . , xN) ∈ X2. These constraints are

generated in step 2 of the algorithm.

The claim that x = (x1, . . . , xN) ∈ X2 is equivalent to

x ∈ {x| ∀k = 1, . . . ,K ∃y = (y1, . . . , yN) ≥ 0

s.t. Wnyn = hn
k − T n

k x
n ∀n = 1, . . . , N}. (9.23)

This is equivalent to

hk − Tkx ∈ posW, k = 1, . . . ,K, (9.24)

where hk = (h1
k, . . . , h

N
k), Tk = (T 1

k , . . . , T
N
k) and posW , the positive hull of

Wn, is defined as

posW = {t = (t1, . . . , tN)|Wnyn = tn, yn ≥ 0, n = 1, . . . , N}. (9.25)

In step 2, we check whether this condition is satisfied for the current xν . If

this condition is not satisfied, that means that hn
k − T n

k x
nν 6∈ posWn for a k ∈

{1, . . . ,K} and an n ∈ {1, . . . , N}, where posWn = {tn|Wnyn = tn, yn ≥ 0},
a hyperplane must exist which separates posWn and hn

k − T n
k x

nν . Hence, this

hyperplane must satisfy σn
k
⊤tn ≤ 0 for all tn ∈ posWn and σn

k
⊤(hn

k −T n
k x

nν) >

0. In order to obtain such a hyperplane, we replace σn
k by the dual solution σn

k
ν

which we calculated in step 2.

The fact that wn
k
′ is always strictly positive for some (n, k) is equivalent to

(σn
k
ν)⊤(hn

k − T n
k x

nν) > 0 due to duality. Furthermore we have (σn
k
ν)⊤Wn ≤ 0,

as σn
k
ν is an optimal dual solution and therefore the reduced costs of yn must

be nonnegative.

A necessary condition for x ∈ X2 is that σn
k
⊤(hn

k − T n
k x

nν) ≤ 0 for all n =

1, . . . , N , that means wn
k
′ = 0 for all k = 1, . . . ,K and all n = 1, . . . , N . Conse-

quently, only a finite number of constraints (9.8) may exist. This is true because

there exists only a finite number of possible bases for Problem (9.10), which is

solved in step 2. This is obvious since X2 is a convex polyhedron for finite

random variables ξ.

9.2.3 Multicommodity Two-Stage Example

In this example, we apply a special type of recourse, the so-called simple re-

course. This type of recourse offers several advantages in the application of

189

9.2. EXTENSION OF THE L-SHAPED ALGORITHM TO

MULTICOMMODITY FLOWS

the multicommodity L-shaped algorithm. As simple recourse is a general type

of complete recourse, the first-stage decision x is always feasible and step 2

is redundant. Furthermore, the calculation of the dual variables in step 3 is

simplified. See [18] for details.

In the case of production and transportation problems, simple recourse corre-

sponds to a penalization of deficiency or surplus at the demand nodes. For a

simple recourse problem, we have W = [I,−I], where I is the identity matrix.

The following figure illustrates the network structure of the given supply chain

problem for two commodities.

5 9 14

2 10 15

1 3 6 11 16

4 7 12 17

8 13 18

1
1

,
30

39
,
60

2
2 , 3039 ,

60

2
2 , 3039 ,

60

3
3 , 5065 ,

100

1
1
,
20
26

, 40

1
1 , 20

26 , 40

1
1
,
30
39

, 60

2
2 , 30

39 , 60

3
3
,
30
39

, 60

1
1 , 10

13 , 203
3
,
50

65
, 1

00

4
4
,
50
65

, 100

1
1
,
20
26

, 40

1
1 , 10

13 , 203
3
,
30

39
, 6

0

2
2
,
30
39

, 60

1
1

,
2
0

2
6

,
4
0

3
3

,
10

13
,
20

1
1
,
30
39

, 60

3
3
,
20

26
, 4

0

1
1
,
10
13

, 20

3
3 , 10

13 , 201
1
,
10

13
, 2

0

1
1
,
10
13

, 20

⇒

⇒

30

30

50

80

60

60

30

30

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

Figure 9.1: Multicommodity two-stage example: Two-stage problem with uncertain

demands

Again,the underlying network has the same structure as in Figures 7.6, 7.10,

8.6 and 8.18.

The arc data in Figure 9.1 have the following meaning: Upper line: cost and

capacity for commodity 1. Lower line: cost and capacity for commodity 2.

Middle line: bundle capacity.

The values above the nodes give the capacity restrictions for the nodes (maxi-

mum flow that is allowed to pass the node).

Additionally, we have the following input data for the two-stage formulation:

190

CHAPTER 9. STOCHASTIC PROGRAMMING: UNCERTAIN DEMAND

scenario product node 14 node 15 node 16 node 17 node 18

scenario 1 product 1 25.0 25.0 20.0 10.0 10.0
product 2 30.0 30.0 24.0 12.0 12.0

scenario 2 product 1 27.5 27.5 22.0 11.0 11.0
product 2 33.0 33.0 26.4 13.2 13.2

Table 9.1: Multicommodity two-stage example: Demand scenarios

node 14 node 15 node 16 node 17 node 18

penalty cost 40 30 30 30 30
storage cost 4 4 4 12 12

Table 9.2: Multicommodity two-stage example: Penalty and storage costs for com-

modities 1 and 2

Each of the two scenarios has a probability of 0.5.

We apply the multicommodity L-shaped algorithm to the given problem. After

20 iterations, we obtain the following solution:

product node 14 node 15 node 16 node 17 node 18

product 1 30.0000 25.3336 20.6657 12.0000 10.9132
product 2 33.0000 28.2689 22.7318 13.2000 12.1902

Table 9.3: Multicommodity two-stage example: Delivered units in optimal solution

This solution causes the following storage and penalty costs per commodity and

scenario:

191

9.3. RECOURSE BY INTEREXCHANGE

scenario product node 14 node 15 node 16 node 17 node 18

scenario 1 product 1 0.0000 0.0000 0.0000 0.0000 0.0000
product 2 0.0000 0.0000 0.0000 0.0000 0.0000

scenario 2 product 1 0.0000 4.6664 3.3343 0.0000 1.0868
product 2 0.0000 4.7311 3.6682 0.0000 1.0098

(a) Penalty costs

scenario product node 14 node 15 node 16 node 17 node 18

scenario 1 product 1 5.0000 0.3336 0.6657 2.0000 0.9132
product 2 5.5000 0.7689 0.7318 2.2000 1.1902

scenario 2 product 1 0.0000 0.0000 0.0000 0.0000 0.0000
product 2 0.0000 0.0000 0.0000 0.0000 0.0000

(b) Storage costs

Table 9.4: Multicommodity two-stage example: Penalty and storage costs in an op-

timal solution

The solution meets our expectations: For demand node 14 the maximum pos-

sible amount of units is delivered for both products 1 and 2, as for this node

the penalty costs are higher than for other demand nodes. For demand nodes

17 and 18, the storage cost is higher than for the other demand nodes. For

demand node 18, less than the maximum possible amount is sent to this node.

For demand node 17, however, a very cheap production and transportation path

exists (path (1, 3, 7, 13, 17)), such that the maximum possible amount of units

is delivered to this demand node, though storage costs are rather high.

Note that the multicommodity two-stage example partially corresponds to the

recoverable robustness example which we examined in Subsection 8.3.5, except

for different scenario sets. In Chapter 10, we will examine the relations between

the Stochastic Programming approach and the recoverable robustness model in

detail.

9.3 Recourse by Interexchange

In the multicommodity two-stage example, we considered the recourse of defi-

ciency by a penalization of over- and underproduction (simple recourse). For

supply chain problems, however, we propose a new recourse concept - the in-

terexchange recourse scheme. The interexchange recourse scheme is a gener-

alization of a transport and transshipment example, which was given by J.

Böttcher in [22].

192

CHAPTER 9. STOCHASTIC PROGRAMMING: UNCERTAIN DEMAND

9.3.1 Introduction of the Interexchange Recourse Scheme

When considering a production and transportation network with uncertain de-

mands, the following situation is likely to happen in case that the demand

predictions are not reliable: At one demand node, we have a surplus of goods,

while at another demand node, we have a deficiency of goods. In such a sit-

uation, it would make sense to interexchange goods between the two demand

nodes. This possibility of interexchange will now be integrated in our two-stage

model by adding it to the simple recourse scheme, which we will maintain in

parallel.

We have to add new arcs between the demand nodes in the underlying net-

work. Every pair of demand nodes must be connected by two arcs, one in each

direction.

Furthermore, the compensation matrix W must be modified in order to allow

the possibility of interexchange in the recourse. Therefore we add to W one

column per new interexchange arc with -1 at the position corresponding to the

arc’s start node and 1 at the arc’s end node. The original columns of W remain

unchanged, as these columns represent the compensation of deficiency using

penalty and storage costs.

Additionally, we have to add capacity restrictions in order to guarantee that

the amount of units that can be interexchanged from one node is limited by

the number of units that are actually delivered to this node in the first stage.

We introduce a new matrix CR for these capacity restrictions and add the

constraints

CRy − Tx ≤ 0 (9.26)

to the two-stage problem. CR is a matrix containing the values 0, 1 and -1,

where every interexchange arc is identified by a pair of 1 and -1 in one column.

Furthermore, we can add capacity restrictions for the interexchange arcs as well

as bundle capacities in the multicommodity case.

Moreover, we have to fix the cost values for the interexchange arcs.

In practice, the cost values on the transportation arcs and the interexchange

arcs correspond to the real transportation costs on these paths. Due to the

triangle inequality, the transport via another location is more expensive than

the direct transport. Therefore, in general the direct transport path will be

preferred.

193

9.3. RECOURSE BY INTEREXCHANGE

Since the actual demand is not known in the first stage, when the transport

routing is fixed, it may occur that, after the realization of the random variable,

at one demand node more units than delivered are required, while at another

demand node there is a surplus of delivered units. Instead of paying penalty

and storage costs at both demand nodes, it may be less expensive to send the

surplus units from one node to another via the interexchange arcs. Hence the

interexchange arcs will be used despite of the valid triangle inequality for the

transportation costs between the concerned nodes.

If no cost values for the interexchange arcs are available, we recommend the

following procedure. We respect the following constraints:

• Costs for arcs between the same two nodes must be equal, no matter of

the direction.

• Sending units via interexchange arcs must not be cheaper than sending

units via the direct path without using interexchange arcs.

In order to fulfill the second constraint for a pair of demand nodes, all possible

paths from a production node to these demand nodes must be considered. The

minimum cost value for the corresponding interexchange arc is then bounded

below by the maximum over all absolute difference values of the path costs.

The cost value for the interexchange must be set higher than this lower bound

in order to guarantee that interexchange is strictly more expensive than direct

sending.

9.3.2 Multicommodity Interexchange Two-Stage Example

The interexchange recourse scheme is demonstrated by means of an example.

We consider again the network given in the multicommodity two-stage example

in Subsection 9.2.3. New arcs have to be added between the demand nodes

for the interexchange recourse. All in all, 20 new arcs have to be added to the

network.

194

CHAPTER 9. STOCHASTIC PROGRAMMING: UNCERTAIN DEMAND

5 9 14

2 10 15

1 3 6 11 16

4 7 12 17

8 13 18

1
1

,
3
0

3
9

,
6
0

2
2 , 3

03
9 ,
6
0

2
2 , 3

03
9 ,
6
0

3
3 , 5

06
5 ,
1
0
0

1
1
,
20
26

, 40

1
1 , 20

26 , 40

1
1
,
30
39

, 60

2
2 , 30

39 , 60

3
3
,
30
39

, 60

1
1 , 10

13 , 203
3
,
50

65
, 1

00

4
4
,
50
65

, 100

1
1
,
20
26

, 40

1
1 , 10

13 , 20

3
3
,
30

39
, 6

0

2
2
,
30
39

, 60

1
1

,
2
0

2
6

,
4
0

3
3
,
10

13
, 2

0

1
1
,
30
39

, 60

3
3
,
20

26
, 4

0

1
1
,
10
13

, 20

3
3 , 10

13 , 20

1
1
,
10

13
, 2

0

1
1
,
10
13

, 20

⇒

⇒

30

30

50

80

60

60

30

30

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

Figure 9.2: Multicommodity interexchange two-stage example: Two-stage problem

with uncertain demand and interexchange recourse

The network structure corresponds to the structure used in previous examples,

cf. Figures 7.6, 7.10, 8.6 and 9.1.

Again, we consider two scenarios with demand data as well as penalty and

storage cost data as given in the multicommodity two-stage example.

Furthermore, we have the following cost values on the interexchange arcs:

node 14 15 16 17 18
14 3 3 1 3
15 3 1 3 1
16 3 1 3 1
17 1 3 3 3
18 3 1 1 3

Table 9.5: Multicommodity interexchange two-stage example: Arc cost for the in-

terexchange arcs for commodities 1 and 2

For every interexchange arc, the maximum capacity per product is set to 20 and

the bundle capacity is set to 50.

We apply the multicommodity L-shaped algorithm to the two-stage problem.

The algorithm terminates after 14 iterations with the following optimal solution:

195

9.3. RECOURSE BY INTEREXCHANGE

product node 14 node 15 node 16 node 17 node 18

product 1 26.7076 25.0448 23.2031 16.7013 13.4268
product 2 31.1660 29.5409 24.3376 16.3874 13.4845

Table 9.6: Multicommodity interexchange two-stage example: Delivered units in the

first stage of the optimal solution

scenario product node 14 node 15 node 16 node 17 node 18

scenario 1 product 1 33.4089 26.9363 24.7385 10.0000 10.0000
product 2 36.5534 30.6700 25.6930 11.0000 11.0000

scenario 2 product 1 30.0000 27.4333 23.6504 12.0000 12.0000
product 2 33.0000 30.4012 25.1151 13.2000 13.2000

Table 9.7: Multicommodity interexchange two-stage example: Delivered units in-

cluding interexchange (second stage)

scenario product node 14 node 15 node 16 node 17 node 18

scenario 1 product 1 0.0000 0.0000 0.0000 0.0000 0.0000
product 2 0.0000 0.0000 0.0000 0.0000 0.0000

scenario 2 product 1 0.0000 2.5667 0.3496 0.0000 0.0000
product 2 0.0000 2.5988 1.2849 0.0000 0.0000

(a) Penalty costs

scenario product node 14 node 15 node 16 node 17 node 18

scenario 1 product 1 8.4089 1.9363 4.7385 0.0000 0.0000
product 2 9.0534 3.1700 3.6930 0.0000 0.0000

scenario 2 product 1 0.0000 0.0000 0.0000 0.0000 0.0000
product 2 0.0000 0.0000 0.0000 0.0000 0.0000

(b) Storage costs

Table 9.8: Multicommodity interexchange two-stage example: Penalty and storage

costs in optimal solution

The following figure illustrates the interexchange for the two products in the

two scenarios.

196

CHAPTER 9. STOCHASTIC PROGRAMMING: UNCERTAIN DEMAND

k = 1 : 14 14 k = 2 : 14 14

15 15 15 15

16 16 16 16

17 17 17 17

18 18 18 18

product 1 product 2 product 1 product 2

6.7

1.9

1.5

−6.7

−3.4

5.4

1.1

1.4

−5.4

−2.5

1
.
5

6
.
7

1
.
9

1
.
4

5
.
4

1
.
1

3.3

2.4

1.2

−4.7

−1.2

1.8

0.9

0.8

−3.2

−0.3
0
.
2

1
.
2

0
.
2

3
.
3

1
.
2

0
.
7

0
.
7

0
.
1

1
.
8

0
.
2

Figure 9.3: Multicommodity interexchange two-stage example: Interexchange for

products 1 and 2

Again, the solution meets our expectations. When considering the interex-

change, we can see that from demand nodes 17 and 18, the delivered surplus

is distributed to other nodes, as for nodes 17 and 18 the storage cost is higher

than for the other demand nodes. Most of the surplus is delivered to demand

node 14 in order to guarantee that the demand at this node is fulfilled in any

case, as the penalty cost is higher at node 14 than at node 15 and 16 and the

storage costs are equal for nodes 14, 15 and 16.

Concluding, we want to compare the solution of the multicommodity interex-

change example to the solution of the nominal multicommodity two-stage exam-

ple (see Section 9.2.3). The objective value of the multicommodity interexchange

problem is 1549, which is less than the objective value of 1610 of the multicom-

modity two-stage example. This means that, as we would have expected, the

additional compensation possibility of interexchange allows cheaper solutions

than simple recourse only.

9.4 Inventory Management

So far, we only considered supply chain management problems for a single time

period. Especially in the case of supply chain problems with uncertain demand,

the consideration of multiple time periods is an important challenge, as there

exists the possibility to store goods from one time period to another. The pre-

197

9.4. INVENTORY MANAGEMENT

production and storage of goods is important for time periods with very high

demand, where it is not possible to produce enough goods just in time. A

maximum storage capacity as well as storage costs are limiting factors for the

product storage.

The task of a possible storage of goods between different time periods is called

inventory management in the following. Note that we still consider uncertainty

in the demand values.

9.4.1 Network Extension for Inventory Management

Let TP be the number of considered time periods. Then we have to duplicate

the single-period network such that we have TP identical copies of it. In order

to connect the single-period networks, we insert the arcs (i(t), i(t + 1)), t =

1, . . . , TP − 1 for all demand nodes i, where i(t), t = 1, . . . , TP denotes the

node i of the single-period network in time period t. These arcs are called

inventory management arcs in the following.

In our model, we assume that the transportation of goods that is planned for one

time period can always be processed within this time period and we therefore

neglect the time which is necessary for the transport. In different models, espe-

cially in continuous supply chain models like, for example the model of Herty

et al. ([51]), the transportation time is integrated in the model.

The following figure illustrates the network extension for two time periods. The

dashed lines symbolize the inventory management arcs.

1 3

s t

2 4

1 3

s t

2 4

Figure 9.4: Extended network for two time periods

198

CHAPTER 9. STOCHASTIC PROGRAMMING: UNCERTAIN DEMAND

On the inventory management arcs, we have to impose storage costs, as these

arcs model the storage of units from one time period to another. One possible

choice for the storage costs is the assignment of the same storage costs which

we impose in the recourse function.

The single-period constraints must be modified. Let A be the single-period

inequality constraint matrix corresponding to the network structure and Aeq

the single-period equality constraint matrix corresponding to additional equality

constraints like flow conservation constraints.

Then we have to duplicate the matrices for every time period:

A 0 . . . 0
0 A 0
...

. . .
...

0 0 . . . A
Aeq 0 . . . 0

0 Aeq 0
...

. . .
...

0 0 . . . Aeq

Figure 9.5: Matrix duplication for the inventory management problem

In addition, we have to add the inventory management arcs to the inequality

matrix as shown for TP = 3 and l demand nodes:

A 0 0
0

0−Il
0 A 0

0 0
Il −Il

0 0 A 0
0
Il

Figure 9.6: Additional constraints for the inventory management problem (I)

Here Il is the l-dimensional identity matrix.

Moreover, we have to ensure that the number of units that is stored by inventory

management at one demand node in a specific time period is less or equal to

the number of units that actually arrives at the demand node. Let T be the

part of A which specifies how many units arrive at the demand nodes. Then

the additional constraints can be represented by:

199

9.4. INVENTORY MANAGEMENT

−T 0 0 Il 0
0 −T 0 −Il Il
0 0 −T 0 −Il

Figure 9.7: Additional constraints for the inventory management problem (II) for

the case TP = 3

for TP = 3 and l demand nodes.

All in all, the constraints for an inventory management problem have the fol-

lowing structure, illustrated for TP = 3 and l demand nodes:

A 0 0
0 0

≤

b
-Il 0

0 A 0
0 0

b
Il -Il

0 0 A
0 0

b
0 Il

−T 0 0 Il 0 0
0 −T 0 -Il Il ≤ 0
0 0 −T 0 -Il 0

Aeq 0 0 0 0 beq
0 Aeq 0 0 0 = beq
0 0 Aeq 0 0 beq

Figure 9.8: Constraints for the inventory management problem

In Figure 9.8, we can see how the size of the constraint matrix and therefore the

complexity of the optimization problem increases with the number of considered

time periods. As in the single-period problem, the application of a special

purpose algorithm like the (multicommodity) L-shaped algorithm instead of a

standard linear programming approach is therefore advisable.

If the number of time periods is very large, the computational time increases

rapidly. However, in practice, typical periods under consideration are 3 months

partitioned in time periods of 13 weeks or 1 year partitioned in time periods of

12 months.

9.4.2 Multicommodity Inventory Management Two-Stage

Example

The inventory management approach is not only applicable on single-commodity

problems. We can combine the multicommodity L-shaped algorithm with the

200

CHAPTER 9. STOCHASTIC PROGRAMMING: UNCERTAIN DEMAND

inventory management approach and then apply it on a multicommodity inven-

tory management problem.

In the following, we consider an inventory management problem for two com-

modities and two time-periods. The following figure illustrates the problem

structure.

5 9 14

2 10 15

1 3 6 11 16

4 7 12 17

8 13 18

5 9 14

2 10 15

1 3 6 11 16

4 7 12 17

8 13 18

1
1

,
3
0

3
9

,
6
0

2
2 , 3

03
9 ,
6
0

2
2 , 3

03
9 ,
6
0

3
3 , 5

06
5 ,
1
0
0

1
1
,
20
26

, 40

1
1 , 20

26 , 40

1
1
,
30
39

, 60

2
2 , 30

39 , 60

3
3
,
30
39

, 60

1
1 , 10

13 , 203
3
,
50

65
, 1

00

4
4
,
50
65

, 100

1
1
,
20
26

, 40

1
1 , 10

13 , 203
3
,
30

39
, 6

0

2
2
,
30
39

, 60

1
1

,
2
0

2
6

,
4
0

3
3

,
1
0

1
3

,
2
0

1
1
,
30
39

, 60

3
3
,
20

26
, 4

0

1
1
,
10
13

, 20

3
3 , 10

13 , 201
1
,
10

13
, 2

0

1
1
,
10
13

, 20

⇒

⇒

30

30

50

80

60

60

30

30

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

1
1

,
3
0

3
9

,
6
0

2
2 , 3

03
9 ,
6
0

2
2 , 3

03
9 ,
6
0

3
3 , 5

06
5 ,
1
0
0

1
1
,
20
26

, 40

1
1 , 20

26 , 40

1
1
,
30
39

, 60

2
2 , 30

39 , 60

3
3
,
30
39

, 60

1
1 , 10

13 , 203
3
,
50

65
, 1

00

4
4
,
50
65

, 100

1
1
,
20
26

, 40

1
1 , 10

13 , 203
3
,
30

39
, 6

0

2
2
,
30
39

, 60

1
1

,
2
0

2
6

,
4
0

3
3

,
1
0

1
3

,
2
0

1
1
,
30
39

, 60

3
3
,
20

26
, 4

0

1
1
,
10
13

, 20

3
3 , 10

13 , 201
1
,
10

13
, 2

0

1
1
,
10
13

, 20

⇒

⇒

30

30

50

80

60

60

30

30

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

Figure 9.9: Multicommodity inventory management two-stage example: Two-stage

problem with uncertain demands and inventory management

Again, the network structure corresponds to the structure used in previous

examples, cf. Figures 7.6, 7.10, 8.6, 9.1 and 9.2.

For the demand nodes 14 to 18, we have the following demand scenarios:

201

9.4. INVENTORY MANAGEMENT

time period scenario product node 14 node 15 node 16 node 17 node 18

period 1 scenario 1 product 1 25.00 25.00 20.00 10.00 10.00
product 2 30.00 30.00 24.00 12.00 12.00

scenario 2 product 1 27.50 27.50 22.00 11.00 11.00
product 2 33.00 33.00 26.40 13.20 13.20

period 2 scenario 1 product 1 32.50 32.50 26.00 13.00 13.00
product 2 39.00 39.00 31.20 15.60 15.60

scenario 2 product 1 35.75 35.75 28.60 14.30 14.30
product 2 42.90 42.90 34.32 17.16 17.16

Table 9.9: Multicommodity inventory management two-stage example: Demand sce-

narios

Again, we consider simple recourse with the following penalty and storage costs:

node 14 node 15 node 16 node 17 node 18

penalty cost 40 30 30 30 30
storage cost 4 4 4 12 12

Table 9.10: Multicommodity inventory management two-stage example: Penalty

and storage costs for commodities 1 and 2

We apply the multicommodity L-shaped algorithm to the two-stage problem.

After 45 iterations, the algorithm terminates with the following optimal solution.

time period 1 time period 2
node 13 14 15 16 17 13 14 15 16 17

demand sc 1 25.00 25.00 20.00 10.00 10.00 32.50 32.50 26.00 13.00 13.00
demand sc 2 27.50 27.50 22.00 11.00 11.00 35.75 35.75 28.60 14.30 14.30

transport 28.38 25.77 21.26 12 10.58 29.12 22.54 21.29 15.56 13
storage -3.38 -0.77 -1.26 0 0 3.38 0.77 1.26 0 0

total 25 25 20 12 10.58 32.5 23.3 22.55 15.56 13

(a) Commodity 1

202

CHAPTER 9. STOCHASTIC PROGRAMMING: UNCERTAIN DEMAND

time period 1 time period 2
node 13 14 15 16 17 13 14 15 16 17

demand sc 1 30.00 30.00 24.00 12.00 12.00 39.00 39.00 31.20 15.60 15.60
demand sc 2 33.00 33.00 26.40 13.20 13.20 42.90 42.90 34.32 17.16 17.16

transport 31.95 28.64 24 13.2 12.42 31.3 30.2 25.56 17.14 14.3
storage -4.45 -1.14 -2 0 0 4.45 1.14 2 0 0

total 27.5 27.5 22 13.2 12.42 35.75 31.34 27.56 17.14 14.3

(b) Commodity 2

Table 9.11: Multicommodity inventory management two-stage example: Optimal so-

lution

In our example, the demand values in time period 2 are higher than the demand

values in time period 1. Due to tight capacity restrictions, it is not possible to

produce the desired amount of goods in the second time period. Hence, we have

a surplus production in time period 1, where we have free capacities, and some

units are stored until time period 2 in order to avoid too high penalty costs.

The total cost (production, transportation, penalty and storage costs) for the

two-period problem is 4551.4. If we optimize the two single-period problems sep-

arately without a possibility of inventory management, the total cost is 4667.9.

9.5 Summary and Conclusions

In this chapter, we proposed a Stochastic Programming approach to network

flow problems with uncertain demands, based on the concept of two-stage linear

recourse problems.

In Section 9.2, the two-stage model was extended from single-commodity to mul-

ticommodity network flow problems with uncertain demands. In order to solve

the resulting optimization problems, the multicommodity L-shaped algorithm

was proposed. For this algorithm, correctness and convergence were proven.

In Section 9.3, a new recourse scheme was introduced. The interexchange re-

course scheme balances surplus and deficiency of goods by interexchange be-

tween demand nodes.

In Section 9.4, we examined supply chain problems for multiple time periods.

We introduced the possibility of preproduction and storage of goods in case that

it is not possible to produce enough goods just in time in time periods with very

high demand.

203

9.5. SUMMARY AND CONCLUSIONS

Both the interexchange recourse scheme and the inventory management ap-

proach can be applied to single-commodity and multicommodity problems.

Furthermore, the interexchange recourse scheme can be combined with the in-

ventory management approach for inventory management problems, i.e. the

balancing of surplus and deficiency of goods by interexchange between demand

nodes can also be introduced in inventory management problems where several

time periods are considered.

The Stochastic Programming approach is an exact method, such that the mul-

ticommodity L-shaped algorithm as well as its interexchange und inventory

management extensions terminate with an exact solution, if one exists. How-

ever, this involves large size optimization models for complex problem instances.

Especially the inventory management approach, where several time periods are

considered, results in large optimization problems.

204

Chapter 10

A Multicriteria Perspective

By taking a multicriteria perspective, we want to examine the relation between

the LRP from recoverable robustness, as presented in Section 8.3, and the Two-

Stage Problem from Stochastic Programming, as presented in Chapter 9.

We consider a linear supply chain problem with uncertain demand. Let S =

{h0 := hmin, h1 := hmin+△e1, . . . , hl := hmin+△el} be the scenario set of the

demand scenarios. Recall that hmin ∈ Rl denotes the minimum demand, △ the

length of the uncertainty interval and ei the i-th l-dimensional unit vector for

i = 1, . . . , l and the l-dimensional zero vector for i = 0. In this context, l is the

number of demand nodes.

As before, let x ∈ Rm be the vector of optimization variables of the original

optimization problem (“first stage”) and yi ∈ R2l the vector of recovery or

compensation variables (“second stage”) for scenario i where i = 0, . . . , l.

The LRP for the given scenario set S can be formulated as follows:

205

min
x,yi

c⊤x

s.t. Ax ≤ b

Aeqx = beq

Tx ≥ hmin

x ≥ 0 (10.1)

∀i ∈ {0, . . . , l} :
Tx+Wyi = hi

d⊤yi ≤ D

yi ≥ 0

Recall that in the context of supply chain problems, c ∈ Rm denotes the pro-

duction and transportation cost. Ax ≤ b with A ∈ Rn1×m and b ∈ Rn1 contains

the capacity constraints. Aeqx = beq with Aeq ∈ Rn2×m and beq ∈ Rn2 con-

tains the flow conservation constraints for transshipment nodes. The constraint

Tx ≥ hmin with T ∈ Rl×m and hmin ∈ Rl ensures that at least the minimum

demand hmin is delivered to the demand nodes. hi ∈ Rl, i ∈ {0, . . . , l} are the

demand vectors. The matrix W ∈ Rl×2l specifies how deficiencies in demand

can be compensated. d ∈ R2l denotes the cost vector for penalty and storage

costs for missing or surplus demand units, respectively. D denotes the total

recovery budget.

Keeping this nomenclature of the input data of the LRP, the two-stage problem

corresponding to the scenario set S is:

min c⊤x+
l
∑

i=0

pid
⊤yi

s.t. Ax ≤ b

Aeqx = beq

Tx ≥ hmin

Tx+Wyi = hi i = 0, . . . , l (10.2)

x ≥ 0

yi ≥ 0 i = 0, . . . , l.

Here pi denotes the probability for scenario i.

206

CHAPTER 10. A MULTICRITERIA PERSPECTIVE

We consider the supply chain problem from a multicriteria point of view. As

before, we want to minimize the production and transportation costs c⊤x. Fur-

thermore, for every scenario i, i = 0, . . . , l, we want to minimize the recovery

or compensation cost d⊤yi. The additional equality and inequality constraints

concerning flow conservation and capacity constraints remain unchanged. Then

the multicriteria optimization problem (MOP) can be formulated as follows:

vmin (c⊤x, d⊤y0, . . . , d⊤yl)

s.t. Ax ≤ b

Aeqx = beq

Tx+Wyi = hi i = 0, . . . , l (10.3)

x ≥ 0

yi ≥ 0 i = 0, . . . , l

10.1 Scalarizations of the Multicriteria Optimiza-

tion Problem

In this section, we examine two types of scalarizations of the MOP (10.3). The

general introduction to scalarizations follows the book of M. Ehrgott, see [36].

We consider the general multicriteria optimization problem of the form

vmin (f1(x), . . . , fQ(x)) (10.4)

s.t. x ∈ X

10.1.1 e-Constraint Scalarization

Let k ∈ {1, . . . , Q}.

A scalarized problem of the type

min
x∈X

fk(x) (10.5)

s.t. fi(x) ≤ ǫi i = 1, . . . , Q, i 6= k

207

10.1. SCALARIZATIONS OF THE MULTICRITERIA OPTIMIZATION

PROBLEM

where ǫi ∈ R, i = 1, . . . , Q, i 6= k, is called ǫ-constraint scalarization of the

MOP, short (Pk(ǫ)).

The ǫ-constraint scalarization has the following properties (see [36]):

Theorem 10.1. 1. Let x∗ be an optimal solution of the ǫ-constraint scalar-

ization (10.5) for some k. Then x∗ is a weakly Pareto-optimal solution of

the MOP (10.4).

2. Let x∗ be a unique optimal solution of the ǫ-constraint scalarization (10.5)

for some k. Then x∗ is a Pareto-optimal solution of the MOP (10.4).

3. The solution x∗ ∈ X is Pareto optimal if and only if there exists an ǫ∗

such that x∗ is an optimal solution of (Pk(ǫ
∗)) for all k = 1, . . . , Q.

We have the following relation between the MOP (10.3) and the LRP (10.1):

Theorem 10.2. The LRP (10.1) is an ǫ-constraint scalarization of the multi-

criteria problem (10.3).

Proof. Set ǫi = D, i = 0, . . . , l, where D is the recovery budget of the LRP.

10.1.2 Weighted Sum Scalarization

A scalarized problem of the MOP of the type

min
x∈X

Q
∑

i=1

λifi(x), (10.6)

where λi ≥ 0, i = 1, . . . , Q, λ 6= (0, . . . , 0) is called weighted sum scalarization

of the MOP. In the literature, it is frequently required that
Q
∑

i=1

λi = 1. Note

that if λsum :=
Q
∑

i=1

λi 6= 1 with λsum 6= 0, the normalized scalarization can be

obtained using λ̃i :=
λi

λsum

as weight factors.

The weighted sum scalarization has the following properties (see [36]):

Theorem 10.3. 1. Let x∗ be an optimal solution of the weighted sum scalar-

ization (10.6). Then x∗ is weakly Pareto-optimal for the MOP (10.4).

2. Let x∗ be an optimal solution of the weighted sum scalarization (10.6) with

λi > 0, i = 1, . . . , Q. Then x∗ is Pareto-optimal for the MOP (10.4).

208

CHAPTER 10. A MULTICRITERIA PERSPECTIVE

3. Let x∗ be a unique optimal solution of the weighted sum scalarization

(10.6) with λi ≥ 0, i = 1, . . . , Q. Then x∗ is strictly Pareto-optimal

for the MOP (10.4).

4. Let X be a convex set and f1,. . . ,fQ be convex functions. Let x∗ be a

weakly Pareto-optimal solution of the MOP (10.4). Then there exist λi ≥
0, i = 1, . . . , Q, such that x∗ is the optimal solution of the weighted sum

scalarization (10.6).

5. Let X be a convex set and f1,. . . ,fQ be convex functions. Let x∗ be a

Pareto-optimal solution of the MOP (10.4). Then there exist λ ∈ RQ
+\{0},

such that x∗ is the optimal solution of the weighted sum scalarization

(10.6).

Then the following relation between the MOP (10.3) and the two-stage problem

(10.2) holds:

Theorem 10.4. The two-stage problem (10.2) is a weighted sum scalarization

of the multicriteria problem (10.3).

Proof. Set λ0 = 1 and λi+1 = pi, i = 0, . . . , l, where pi is the probability of

scenario i. Then the objective function of problem (10.2) can be formulated as

a weighted sum of the objective functions of the MOP:

c⊤x+

l
∑

i=0

pid
⊤yi = λ0c

⊤x+ λ1d
⊤y0 + . . .+ λl+1d

⊤yl

10.1.3 Further Scalarizations

Based on the book of M. Ehrgott, see [36], we will present further scalarization

techniques and their relevance in the context of the multicriteria problem (10.3).

The Hybrid Scalarization The hybrid scalarization is a combination of the

weighted sum scalarization and the ǫ-constraint scalarization. The objective of

the scalarized problem is a weighted sum function. Additionally, constraints on

all objectives are added.

Let x0 be an arbitrary feasible solution of the MOP (10.4). Then the hybrid

scalarization is

209

10.1. SCALARIZATIONS OF THE MULTICRITERIA OPTIMIZATION

PROBLEM

min
x∈X

Q
∑

i=1

λifi(x) (10.7)

s.t. fi(x) ≤ fi(x
0) i = 1, . . . , Q,

where λi ≥ 0, i = 1, . . . , Q.

The hybrid scalarization has the following properties (see [36]):

Theorem 10.5. 1. Let λi ≥ 0, i = 1, . . . , Q and λi > 0 for at least one

i. If a feasible solution x∗ ∈ X is optimal for problem (10.7), then x∗ is

Pareto-optimal for the multicriteria problem (10.4).

2. Let x∗ be a Pareto-optimal solution for problem (10.4). Then there exists

λi ≥ 0, i = 1, . . . , Q and λi > 0 for at least one i and a feasible solution

x0 such that x∗ is optimal for (10.7).

In the context of the multicriteria supply chain problem (10.3), the hybrid scalar-

ization can be formulated as follows. Let λi := pi be the probability of scenario

i, i = 0, . . . , l. Let (x0, y00 , . . . , y
0
l) be an arbitrary feasible solution of the MOP

(10.3). Then a meaningful hybrid scalarization of (10.3) is:

min c⊤x+
l
∑

i=0

pid
⊤yi

s.t. d⊤yi ≤ d⊤y0i i = 0, . . . , l

Ax ≤ b

Aeqx = beq (10.8)

Tx+Wyi = hi i = 0, . . . , l

x ≥ 0

yi ≥ 0 i = 0, . . . , l

The objective function of the hybrid scalarization corresponds to the total costs

in the supply chain network plus the expected value of the recovery costs. Ad-

ditionally, the recovery costs for each scenario are restricted by the costs given

by the start solution x0.

The Elastic Constraint Scalarization In practice, the ǫ-constraint scalar-

ization (10.5) is often hard to solve due to the added constraints fi(x) ≤ ǫi.

210

CHAPTER 10. A MULTICRITERIA PERSPECTIVE

The elastic constraint scalarization relaxes these constraints and penalizes their

violation in the objective function.

Let k ∈ {1, . . . ,K}.

Then the elastic constraint scalarization of the MOP (10.4) is

min
x∈X

fk(x) +

Q
∑

i=1
i6=k

µisi (10.9)

s.t.fi(x)− si ≤ ǫi i = 1, . . . , Q, i 6= k (10.10)

si ≥ 0 i = 1, . . . , Q, i 6= k

where µi ≥ 0, i = 1, . . . , Q, i 6= k and ǫi ∈ R, i = 1, . . . , Q, i 6= k.

The elastic constraint scalarization has the following properties (see [36]):

Theorem 10.6. 1. Let (x∗, s∗) be an optimal solution of the elastic con-

straint scalarization (10.9). Then x∗ is weakly Pareto-optimal for the

multicriteria problem (10.4).

2. Let (x∗, s∗) be a unique optimal solution of the elastic constraint scalar-

ization (10.9). Then x∗ is strictly Pareto-optimal for the multicriteria

problem (10.4).

3. Let x∗ be Pareto-optimal for the MOP (10.4). Then for all k = 1, . . . , Q

there exists ǫ, µ and s∗ such that (x∗, s∗) is an optimal solution of the

elastic constraint scalarization (10.9).

In the context of the multicriteria supply chain problem (10.3), the elastic con-

straint scalarization can be formulated as follows.

211

10.2. RELATIONS BETWEEN THE SCALARIZATIONS

min c⊤x+

l
∑

i=0

µisi

s.t. d⊤yi − si ≤ Di i = 0, . . . , l

Ax ≤ b

Aeqx = beq (10.11)

Tx+Wyi = hi i = 0, . . . , l

x ≥ 0

yi ≥ 0 i = 0, . . . , l

si ≥ 0 i = 0, . . . , l

(10.12)

For every scenario i, i = 0, . . . , l, upper bounds Di for the recovery costs are

given. The objective function penalizes the exceedance of these upper bound

values, where the violation of the desired upper bound values is weighted with

a weight factor µi for each scenario i.

10.2 Relations between the Scalarizations

In this section, we examine the relations between the ǫ-constraint scalarization

and the weighted sum scalarization.

In [36], M. Ehrgott gives the following theorem for a general multicriteria prob-

lem vminx∈X(f1(x), . . . , fQ(x)), its weighted sum formulation and the corre-

sponding ǫ-constraint problem (Pk(ǫ)).

Theorem 10.7. 1. Suppose x̂ is optimal for min
x∈X

Q
∑

i=1

λifi(x). If λk > 0,

k ∈ {1, . . . , Q}, there exists ǫ̂ such that x̂ solves (Pk(ǫ̂)), too.

2. Suppose X is a convex set and fi : Rn → R are convex functions. If x̂ is

an optimal solution of (Pk(ǫ̂)) for some k and ǫ̂, there exists λ ∈ RQ
+ \ {0}

such that x̂ is optimal for min
x∈X

Q
∑

i=1

λifi(x).

We want to apply the general theorem 10.7, given by Chankong and Haimes

(see [36] and [25]), to the scalarizations of the MOP (10.3) and examine the

relation between the LRP (10.1) and the two-stage problem (10.2).

In order to apply the first part of Theorem 10.7 to the scalarizations of the

MOP (10.3), we must relax the recovery constraints in the LRP such that for

212

CHAPTER 10. A MULTICRITERIA PERSPECTIVE

every scenario i, an individual recovery budget Di can be given, i = 0, . . . , l.

Then the following theorem holds:

Theorem 10.8. Suppose (x̂, ŷ0, . . . , ŷl) is optimal for the two-stage problem

(10.2). Then (x̂, ŷ0, . . . , ŷl) also solves the LRP (10.1) with Di := d⊤ŷi, i =

0, . . . , l.

Proof. As (x̂, ŷ0, . . . , ŷl) is optimal for problem (10.2), we have

c⊤x+

l
∑

i=0

pid
⊤yi − (c⊤x̂+

l
∑

i=0

pid
⊤ŷi) ≥ 0 for all feasible x. (10.13)

Suppose (x̂, ŷ0, . . . , ŷl) is not optimal for the LRP (10.1) with Di := d⊤ŷi,

i = 0, . . . , l. For any (x̃, ỹ0, . . . , ỹl) with c⊤x̃ < c⊤x̂ and d⊤ỹi ≤ d⊤ŷi = Di,

i = 0, . . . , l, we have

c⊤x̃− c⊤x̂+

l
∑

i=0

pi(d
⊤ỹi − d⊤ŷi) < 0,

which contradicts (10.13).

Finally, we examine the second part of Theorem 10.7.

Theorem 10.9. Suppose that (x̂, ŷ0, . . . , ŷl) is optimal for the LRP (10.1).

Let µ̄i, i = 0, . . . , l, be the optimal Lagrange multipliers corresponding to the

constraint functions d⊤yi ≤ D. Then (x̂, ŷ0, . . . , ŷl) is optimal for the two-stage

problem (10.2) with pi = µ̄i.

Proof. Let f(x, y0, . . . , yl) = c⊤x and fi(x, y0, . . . , yl) = d⊤yi, i = 0, . . . , l.

Let gj(x, y0, . . . , yl) ≥ 0, j ∈ J , denote the inequality constraints in prob-

lem (10.3), i.e. −Ax + b ≥ 0, x ≥ 0 and yi ≥ 0, i = 0, . . . , l, line by line. Let

hs(x, y0, . . . , yl) = 0, s ∈ S denote the equality constraints in problem (10.3),

i.e. Aeqx − beq = 0 and Tx + Wyi − hi = 0, i = 0, . . . , l, line by line. Note

that these constraints also appear in the problems (10.1) and (10.2) without

any modification.

For simplicity, let x̄ := (x̂, ŷ0, . . . , ŷl) in the following.

As (10.1) is a linear program and x̄ is optimal for problem (10.1), x̄ is a

KKT point for problem (10.1). The KKT conditions for problem (10.1) at

(x̂, ŷ0, . . . , ŷl) are:

213

10.2. RELATIONS BETWEEN THE SCALARIZATIONS

▽f(x̄) +

l
∑

i=0

µ̄i▽fi(x̄)−
∑

j∈J

ν̄j▽gj(x̄)−
∑

s∈S

ξ̄s▽hs(x̄) = 0

µ̄i(D − fi(x̄)) = 0, i = 0, . . . , l

ν̄j(gj(x̄)) = 0, j ∈ J (10.14)

µ̄i ≥ 0, i = 0, . . . , l

ν̄j ≥ 0, j ∈ J

ξ̄s ∈ R, s ∈ S

In contrast to the standard formulation of the KKT conditions, we consider

inequality constraints gj(x, y0, . . . , yl) ≥ 0, j ∈ J instead of gj(x, y0, . . . , yl) ≤
0, j ∈ J . Therefore we have to put a minus sign in front of the sum

∑

j∈J

ν̄j▽gj(x̄).

Concerning the sum
∑

s∈S

ξ̄s▽hs(x̄), which corresponds to the equality constraints,

a minus or plus sign is not mandatory. In this context, we use the minus sign

in order to treat both types of contraints equally.

Now we consider the two-stage problem (10.2) with pi = µ̄i:

min c⊤x+

l
∑

i=0

µ̄id
⊤yi

s.t. Ax ≤ b

Aeqx = beq

Tx+Wyi = hi i = 0, . . . , l (10.15)

x ≥ 0

yi ≥ 0 i = 0, . . . , l

The KKT conditions for problem (10.15) at a point x̃ are:

▽f(x̃) +

l
∑

i=0

µ̄i▽fi(x̃)−
∑

j∈J

ν̃j▽gj(x̃)−
∑

s∈S

ξ̃s▽hs(x̃) = 0

ν̃j(gj(x̃)) = 0, j ∈ J (10.16)

ν̃j ≥ 0, j ∈ J

ξ̃s ∈ R, s ∈ S

214

CHAPTER 10. A MULTICRITERIA PERSPECTIVE

Note that we again have minus signs in front of the sums corresponding to the

inequality and equality constraints.

Then x̄ = (x̂, ŷ0, . . . , ŷl) is a KKT point for problem (10.15) with ν̃j := ν̄j ,

j ∈ J , and ξ̃s = ξ̄s, s ∈ S.

As problem (10.15) is linear and therefore convex, x̄ is optimal for problem

(10.15).

In the original two-stage optimization problem, pi corresponds to the probability

of scenario i. In general, the Lagrange multipliers µ̄i are not necessarily smaller

than 1 and do not sum up to 1 over all scenarios. Let M̄ :=
l
∑

i=0

µ̄i. Then

the weighted sum problem of Theorem 10.9 corresponds to a two-stage problem

with scenario set S with probabilities p̄i =
µ̄i

M̄
, i = 0, . . . , l and a weight factor

1

M̄
in the first stage objective function c⊤x.

Theorems 10.8 and 10.9 show that the LRP (10.1) and the two-stage problem

(10.2) can be transformed into each other under certain conditions: When con-

sidering a two-stage problem of the form (10.2), it can be transformed into an

LRP with the additional condition that the recovery budget can possibly take a

different value for each scenario. When considering an LRP of the form (10.1),

it can be transformed into a two-stage problem where the first stage objective

function is weighted with a factor
1

M̄
. Then the (transformed) LRP (10.1) can

be solved using efficient cutting plane algorithms like the L-shaped algorithm

(see Subsection 9.2.1).

10.3 Sensitivity for the e-Constraint Scalariza-

tion

In this section, we examine the sensitivity for the LRP (10.1) for modifications

of the recovery budget D.

Consider the general ǫ-constraint scalarization (Pk(ǫ))

215

10.3. SENSITIVITY FOR THE E-CONSTRAINT SCALARIZATION

min fk(x)

s.t. fi(x) ≤ ǫi i = 1, . . . , Q, i 6= k

gj(x) ≥ 0 j = 1, . . . , p (10.17)

hl(x) = 0 l = 1, . . . , q

x ∈ Rn

with real-valued functions fi, i = 1, . . . , Q, gj, j = 1, . . . , p and hl, l = 1, . . . , q.

Let x∗ be a local optimal solution of the problem (Pk(ǫ
∗)) with optimal Lagrange

multipliers µ∗
i ∈ R+ for i = 1, . . . , Q, i 6= k, ν∗ ∈ Rp

+ and ξ∗ ∈ Rq. Then we

define the following index sets:

I+ := {i ∈ {1, . . . , Q} \ {k}|fi(x∗) = ǫ∗i , µ∗
i > 0}

I0 := {i ∈ {1, . . . , Q} \ {k}|fi(x∗) = ǫ∗i , µ∗
i = 0} (10.18)

I− := {i ∈ {1, . . . , Q} \ {k}|fi(x∗) < ǫ∗i , µ∗
i = 0}

and

J+ := {j ∈ J |gj(x∗) = 0, ν∗j > 0}
J0 := {j ∈ J |gj(x∗) = 0, ν∗j = 0} (10.19)

J− := {j ∈ J |gj(x∗) > 0, ν∗j = 0}

Based on the results of V. Chankong and Y.Y. Haimes, see [25], we can state

the following theorem and proof.

Theorem 10.10. Let fi, i = 1, . . . , Q, gj, j = 1, . . . , p and hl, l = 1, . . . , q

be linear functions. Let ǫ∗ ∈ RQ−1. Let x∗ be a non-degenerate solution of

(Pk(ǫ
∗)) and let µ∗

i denote the optimal Lagrange multipliers corresponding to

the constraint fi(x) ≤ ǫ∗i , i 6= k.

Then

(i) For all i = 1, . . . , Q, i 6= k, it holds that

∂fk(x
∗)

∂ǫi
= −µ∗

i (10.20)

216

CHAPTER 10. A MULTICRITERIA PERSPECTIVE

(ii) Let x(ǫ) denote the minimal solution of (Pk(ǫ)). Then there exists a neigh-

borhood N(ǫ∗) of ǫ∗ such that

fi(x(ǫ)) = ǫi for all i ∈ I+, for all ǫ ∈ N(ǫ∗). (10.21)

Proof. Consider a linear instance of (Pk(ǫ
∗)). Let bǫ∗ :=

(ǫ∗1, . . . , ǫ
∗
k−1, ǫ

∗
k+1, . . . , ǫ

∗
Q, 0, . . . , 0)

⊤ be the right hand side of the constraints

of (Pk(ǫ
∗)).

Let x∗ be a non-degenerate optimal solution of (Pk(ǫ
∗)) with optimal basis

Bǫ∗ and π∗ the corresponding shadow prices (also called dual prices or simplex

multipliers, see [30]).

π∗ = (−µ∗
1, . . . ,−µ∗

k−1,−µ∗
k+1, . . . ,−µ∗

Q, ν
∗
1 , . . . , ν

∗
p , ξ

∗
1 , . . . , ξ

∗
q). (10.22)

As µ∗
i , i = 1, . . . , Q, i 6= k correspond to the constraints fi(x) ≤ ǫ∗i in (Pk(ǫ

∗)),

which are formulated as ≤-constraints, µ∗
i have negative signs, i = 1, . . . , Q,

i 6= k.

Let xBǫ∗
be the optimal basic variables, let ABǫ∗

be the coefficient matrix of

the optimal basic variables and cBǫ∗
the cost coefficients corresponding to the

optimal basic variables. As ABǫ∗
is regular, the inverse matrix exists and π∗ =

c⊤Bǫ∗
A−1

Bǫ∗
.

Then

xBǫ∗
= A−1

Bǫ∗
bǫ∗ (10.23)

and consequently

fk(x
∗) = c⊤Bǫ∗

xBǫ∗
= c⊤Bǫ∗

A−1
Bǫ∗

bǫ∗ = π∗⊤bǫ∗ (10.24)

As x∗ is a non-degenerate solution, each component of xBǫ∗
is nonzero, there

exists a neighborhood N(ǫ∗) of ǫ∗ such that for all ǫ in N(ǫ∗), the optimal set

of basic variables does not change. Hence, we have

217

10.3. SENSITIVITY FOR THE E-CONSTRAINT SCALARIZATION

Bǫ = Bǫ∗ (10.25)

ABǫ
= ABǫ∗

(10.26)

cBǫ
= cBǫ∗

(10.27)

πBǫ
= πBǫ∗

:= π∗, (10.28)

where πBǫ
denotes the simplex multipliers of problem (Pk(ǫ)), corresponding to

the optimal basis Bǫ.

Furthermore, we have

xBǫ
= A−1

Bǫ∗
bǫ. (10.29)

Then xBǫ
is a continuously differentiable linear function in ǫ.

Since fk(xBǫ
) = π∗bǫ for all ǫ in N(ǫ∗), we can conclude that

∂fk(x
∗)

∂ǫi
= −µ∗

i ∀i = 1, . . . , Q, i 6= k (10.30)

and (i) follows.

According to the construction ofN(ǫ∗), for all ǫ inN(ǫ∗), the optimal set of basic

variables does not change. Therefore, for all constraints i of problem (Pk(ǫ
∗))

that are active at x∗ and where µi > 0, i.e. for all i ∈ I+, the constraints

are also active at x(ǫ) for problem (Pk(ǫ)), as active constraints remain active.

Hence, we have

fi(x(ǫ)) = ǫi ∀i ∈ I+, ∀ǫ ∈ N(ǫ∗). (10.31)

and (ii) follows.

Following the interpretation of the sensitivity analysis given in [37], we can now

apply the results of Theorem 10.10 on the LRP (10.1).

Let f(x, y0, . . . , yl) = c⊤x and fi(x, y0, . . . , yl) = d⊤yi, i = 0, . . . , l.

Let gj(x, y0, . . . , yl) ≥ 0, j ∈ J , denote the inequality constraints and

218

CHAPTER 10. A MULTICRITERIA PERSPECTIVE

hs(x, y0, . . . , yl) = 0, s ∈ S, the equality constraints in problem (10.1). Let

x̄ := (x̂, ŷ0, . . . , ŷl) be a non-degenerate optimal solution of problem (10.1) with

Lagrange multipliers µ̄i to the constraints fi(x) ≤ D for i = 0, . . . , l.

Now we consider problem (10.1) with modified recovery budget D̃. If D̃ lies in

an appropriate neighborhood of the original recovery budget D, the following

approximation holds for the objective function f(x):

f(x(D̃)) ≈ f(x̄) +

l
∑

i=0

∂f(x̄)

∂ǫi
(D̃ −D) = c⊤x̄−

l
∑

i=0

µ̄i(D̃ −D), (10.32)

where x(D̃) denotes the minimal solution of problem (10.1) with recovery budget

D̃. This means that if the recovery budget is increased (decreased) within a

neighborhood of the original recovery budget D, the total cost in the objective

function is decreased (increased) by the absolute value of the difference in the

recovery budget times the sum over µ̄i.

Furthermore, we have

fi(x(D̃)) = d⊤ŷi(D̃) = D̃ (10.33)

for the active constraints of the problem with original recovery budget. This

means that for the modified recovery budget, the budget will be fully exploited

for all scenarios in which it was fully exploited for the unmodified recovery

budget.

10.4 Summary and Conclusions

In this chapter, we drew a link between the recoverable robustness approach for

network flow problems with uncertain demands, as it was proposed in Section

8.3, and the two-stage model from Stochastic Programming as presented in

Chapter 9.

The two problem formulations are linked via a multicriteria optimization prob-

lem: We showed in Section 10.1 that the recoverable robustness problem is an

ǫ-constraint scalarization of this MOP, while the two-stage problem is a weighted

sum formulation of the same MOP.

In two theorems, we showed in Section 10.2 that the recoverable robustness

problem and the two-stage problem can be transformed into each other under

219

10.4. SUMMARY AND CONCLUSIONS

certain conditions. That means that if these conditions are fulfilled, the special

properties and algorithms of one problem type are applicable to the other prob-

lem type, e.g. the (transformed) recoverable robustness problem can be solved

using Stochastic Programming techniques like the L-shaped algorithm.

Finally, we examined the sensitivity of the recoverable robustness problem for

modifications of the recovery budget in Section 10.3. We showed in which way

the total cost value is decreased (increased), if the recovery budget is increased

(decreased) in a neighborhood of the original recovery budget.

220

Chapter 11

Computational Results:

Numerical Tests

In this chapter, we evaluate the heuristic methods, which were developed in this

thesis, by means of several example networks. In particular, we examine the

different implementations of the ant algorithm, i.e. the ant algorithm for the

threshold minimum cost flow problem, the ant algorithm for minimum cost flow

problems with uncertain costs and the ant algorithm for minimum cost flow

problems with uncertain demands.

As introduced in Section 3.1, we focus on network flow problems where the

underlying network is a layered network. In particular, the numerical tests are

carried through on the basis of randomly generated fully layered networks.

11.1 Random Network Generation

For the numerical tests, we need to generate a considerable quantity of layered

networks. Therefore, a layered network generator was developed, which allows

the random generation of fully layered networks on the basis of several input

parameters.

The layered network generator has the following input parameters:

• number of node layers in the layered network

• minimum/maximum number of nodes per layer: For every node layer, the

actual number of nodes is a random number within these bounds

221

11.2. THRESHOLD MINIMUM COST FLOW PROBLEM

• lower/upper cost bound: For every arc, a random cost value within these

bounds is generated

• lower/upper capacity bound: For every arc, a random capacity value

within these bounds is generated

• number of commodities

As we want to generate single-source single-sink networks, both the first and the

last layer contain exactly one node. The number of nodes in the other layers is

generated at random, respecting the minimum and maximum number of nodes

per layer.

We generate fully layered networks, that means that each node, except the sink

node, is connected via an arc with each node of the following layer. Costs

and capacities on these arcs are generated at random within the given bounds.

In order to avoid infeasible network flow problems, we set the capacity to the

maximum value for all outgoing arcs of the source node. Note that this approach

does not guarantee the feasibility of the generated network flow problems.

The nodes in the next to last layer are considered as the demand nodes. The

(random generated) capacities on the incoming arcs of the sink node determine

the demand values of these demand nodes. The supply at the source node is

therefore given by the sum over the capacities of the incoming arcs of the sink

node.

For the generation of the networks for the specific problem types (TMCFP,

MCFP with uncertain costs or uncertain demands), additional input parameters

are required and will be specified later.

11.2 Threshold Minimum Cost Flow Problem

In this section, we examine the computation time and performance of the SOS

2 Branch and Bound method, see Section 5.3, and the ant algorithm for the

threshold minimum cost flow problem (TMCFP), as proposed in Section 5.1.

In order to be able to interpret the results, we calculate the optimal solution

of the corresponding minimum cost flow problem for every network, using the

Cost Scaling Algorithm for evaluation.

For the numerical tests, 50 random layered networks were generated, grouped

in five groups according to the number of layers. The following table lists the

node and arc data: number of layers, nodes and arcs, lower and upper cost and

capacity bounds, threshold value and number of commodities.

222

CHAPTER 11. COMPUTATIONAL RESULTS: NUMERICAL TESTS

network #layers # nodes # arcs nodes per layer cost capacity threshold com

T001 5 18 66 4 – 8 0 – 5 3 – 10 5 1
T002 5 23 117 4 – 8 0 – 5 3 – 10 5 1
T003 5 17 63 4 – 8 0 – 5 3 – 10 5 1
T004 5 20 75 4 – 8 0 – 5 3 – 10 5 1
T005 5 17 60 4 – 8 0 – 5 3 – 10 5 1
T006 5 14 40 4 – 8 0 – 5 3 – 10 5 1
T007 5 17 55 4 – 8 0 – 5 3 – 10 5 1
T008 5 23 117 4 – 8 0 – 5 3 – 10 5 1
T009 5 17 60 4 – 8 0 – 5 3 – 10 5 1
T010 5 22 108 4 – 8 0 – 5 3 – 10 5 1

T011 10 48 241 4 – 8 0 – 10 3 – 20 5 1
T012 10 48 245 4 – 8 0 – 10 3 – 20 5 1
T013 10 48 248 4 – 8 0 – 10 3 – 20 5 1
T014 10 43 177 4 – 8 0 – 10 3 – 20 5 1
T015 10 57 362 4 – 8 0 – 10 3 – 20 5 1
T016 10 46 219 4 – 8 0 – 10 3 – 20 5 1
T017 10 50 249 4 – 8 0 – 10 3 – 20 5 1
T018 10 44 191 4 – 8 0 – 10 3 – 20 5 1
T019 10 49 256 4 – 8 0 – 10 3 – 20 5 1
T020 10 55 337 4 – 8 0 – 10 3 – 20 5 1

T021 15 101 711 5 – 10 0 – 10 3 – 20 5 1
T022 15 101 710 5 – 10 0 – 10 3 – 20 5 1
T023 15 97 637 5 – 10 0 – 10 3 – 20 5 1
T024 15 109 843 5 – 10 0 – 10 3 – 20 5 1
T025 15 83 485 5 – 10 0 – 10 3 – 20 5 1
T026 15 97 665 5 – 10 0 – 10 3 – 20 5 1
T027 15 100 703 5 – 10 0 – 10 3 – 20 5 1
T028 15 107 835 5 – 10 0 – 10 3 – 20 5 1
T029 15 112 860 5 – 10 0 – 10 3 – 20 5 1
T030 15 103 752 5 – 10 0 – 10 3 – 20 5 1

T031 20 141 1054 5 – 10 5 – 20 5 – 20 7 1
T032 20 135 937 5 – 10 5 – 20 5 – 20 7 1
T033 20 139 1026 5 – 10 5 – 20 5 – 20 7 1
T034 20 133 917 5 – 10 5 – 20 5 – 20 7 1
T035 20 137 972 5 – 10 5 – 20 5 – 20 7 1
T036 20 137 974 5 – 10 5 – 20 5 – 20 7 1
T037 20 134 935 5 – 10 5 – 20 5 – 20 7 1
T038 20 126 818 5 – 10 5 – 20 5 – 20 7 1
T039 20 139 970 5 – 10 5 – 20 5 – 20 7 1
T040 20 147 1136 5 – 10 5 – 20 5 – 20 7 1

T041 25 177 1251 5 – 10 5 – 20 5 – 20 10 1
T042 25 188 1449 5 – 10 5 – 20 5 – 20 10 1
T043 25 183 1358 5 – 10 5 – 20 5 – 20 10 1
T044 25 187 1439 5 – 10 5 – 20 5 – 20 10 1
T045 25 176 1269 5 – 10 5 – 20 5 – 20 10 1
T046 25 177 1282 5 – 10 5 – 20 5 – 20 10 1
T047 25 181 1322 5 – 10 5 – 20 5 – 20 10 1
T048 25 175 1213 5 – 10 5 – 20 5 – 20 10 1
T049 25 164 1130 5 – 10 5 – 20 5 – 20 10 1
T050 25 180 1309 5 – 10 5 – 20 5 – 20 10 1

Table 11.1: Random layered networks for the TMCFP

223

11.2. THRESHOLD MINIMUM COST FLOW PROBLEM

We apply the ant algorithm and the SOS 2 Branch and Bound method to

these example problems. In order to evaluate the quality of the results, we

additionally state the exact results for the corresponding MCFP, calculated by

the Cost Scaling Algorithm.

For the runs of the ant algorithm, we choose the parameter settings as given in

the following table:

parameter setting

α 1.0

β 3.0

ρ 0.25

parameter setting

ηmin 0.2

τmin 1.0

τmax 20.0

Table 11.2: TMCFP - ant algorithm: Parameter settings

The choice of the parameters α, β and ρ corresponds to the recommendation

given in Subsection 5.1.1. ηmin = 0.1 or ηmin = 0.2 are standard settings. The

limiting values for τ were chosen dependent on the scale of the demand values,

which corresponds to the number of ants in the network.

For each TMCFP, we run the ant algorithm 10 times. Out of these runs, we

calculate the average running times, costs and threshold violations as represen-

tative for the ant algorithm.

For both the ant algorithm and the SOS 2 Branch and Bound method, we

measure the running time. Furthermore, we count the number of arcs, where

the threshold claim is violated (“threshold violation”), i.e. where the amount

of flow is greater than zero but less than a certain threshold value. In addition,

we compare the cost values for the ant algorithm, the SOS 2 B&B method and

the CSA algorithm.

The following table lists the results for networks T001 to T050: running time

in seconds (�), total cost and threshold violation.

224

CHAPTER 11. COMPUTATIONAL RESULTS: NUMERICAL TESTS� cost threshold violation
network ants SOS2 ants SOS2 CSA ants SOS2 CSA

T001 0.28 82.50 372 370 342 7 0 18
T002 0.29 10914.21 261 227 215 7 0 12
T003 0.20 11297.68 137 153 121 6 2 8
T004 0.35 7404.40 297 269 260 10 1 17
T005 0.18 5762.81 102 151 89 9 3 10
T006 0.16 220.12 272 274 253 6 0 10
T007 0.27 224.06 300 302 270 8 0 15
T008 0.34 17283.01 166 177 146 6 0 11
T009 0.22 9632.45 308 310 289 6 0 9
T010 0.29 35341.28 304 311 224 10 1 22

T011 1.53 - 1602 - 1278 10 - 21
T012 1.16 - 1305 - 1017 7 - 17
T013 1.29 - 1253 - 905 11 - 17
T014 1.13 - 1890 - 1584 7 - 18
T015 1.66 - 880 - 661 10 - 22
T016 1.17 - 2010 - 1635 9 - 15
T017 1.88 - 2429 - 1825 11 - 22
T018 1.01 - 1512 - 1246 8 - 22
T019 1.36 - 1286 - 925 4 - 13
T020 1.47 - 1155 - 930 10 - 29

T021 8.27 - 2696 - 1692 25 - 45
T022 7.19 - 1585 - 853 9 - 33
T023 7.72 - 2713 - 1884 28 - 42
T024 9.84 - 2165 - 1130 18 - 55
T025 4.26 - 2733 - 1876 15 - 32
T026 7.69 - 1162 - 862 16 - 28
T027 8.18 - 2549 - 1532 17 - 31
T028 9.48 - 2607 - 2032 18 - 43
T029 11.54 - 3355 - 2340 22 - 33
T030 10.18 - 3319 - 2294 23 - 51

T031 24.07 - 14160 - 10759 37 - 89
T032 20.38 - 20818 - 17145 46 - 73
T033 23.10 - 18112 - 13075 38 - 97
T034 18.55 - 17776 - 13883 37 - 74
T035 24.86 - 21168 - 16869 36 - 84
T036 24.44 - 16877 - 12914 38 - 85
T037 21.27 - 17751 - 14042 43 - 62
T038 16.97 - 15925 - 11797 37 - 68
T039 22.06 - 19428 - 15094 46 - 82
T040 26.62 - 12761 - 9363 34 - 85

225

11.2. THRESHOLD MINIMUM COST FLOW PROBLEM� cost threshold violation
network ants SOS2 ants SOS2 CSA ants SOS2 CSA

T041 56.98 - 28605 - 20407 78 - 188
T042 64.90 - 25471 - 17382 78 - 180
T043 62.26 - 29213 - 21304 86 - 196
T044 66.22 - 27945 - 20366 79 - 175
T045 52.92 - 21288 - 15106 61 - 148
T046 52.58 - 22232 - 16383 66 - 149
T047 55.99 - 18067 - 12308 60 - 153
T048 53.14 - 26156 - 19641 77 - 169
T049 39.40 - 11650 - 7650 42 - 110
T050 49.70 - 24805 - 17926 83 - 174

Table 11.3: Numerical tests - threshold problem: Results

The running time is given in seconds.

When applying the SOS 2 Branch and Bound method, we observe that it is only

applicable in a reasonable time for the smallest problem instances (five layers).

The running time increases immensely with growing problem sizes. Therefore

we didn’t run the SOS 2 B&B method for networks T011 to T050. However, as

the SOS 2 B&B method is an exact method, the obtained results for networks

T001 to T010 are optimal.

First, we examine the results for networks T001 to T010 in detail. The following

figure illustrates the nominal costs of the solutions of the different optimization

methods as well as the corresponding threshold violation.

(a) Total cost (b) Threshold violation

Figure 11.1: Numerical tests - threshold problem: Ants vs. SOS2 B&B vs. CSA

As we would expect, both the ant algorithm and the SOS 2 Branch and Bound

method reduce the number of threshold violations, while the total cost increases.

However, the SOS2 B&B method reduces the number of threshold violations to

226

CHAPTER 11. COMPUTATIONAL RESULTS: NUMERICAL TESTS

the absolute minimum, while the average threshold violation reduction of the

ant algorithm is 40%, compared to the threshold violations of the CSA.

In return, the nominal costs of the solutions of the ant algorithm and the SOS

2 B&B method are higher than the costs of the CSA solutions. In 8 out of

10 cases, the solution of the SOS 2 B&B is most expensive. In the remaining

cases, the solutions of the ant algorithm are more expensive than the SOS2 B&B

solutions.

Considering the performance concerning the nominal cost value and the thresh-

old violations, we observe that the ant algorithm can not keep up with the SOS

2 B&B method. In contrast, a comparison of the running time shows that the

SOS 2 B&B method is outperformed by the ant algorithm in this respect.

When examining the running time of the SOS 2 Branch and Bound method,

we can see that the running time isn’t stable for problems with similar problem

size: The fastest running time, 82.50 seconds (network T001), is over 400 times

faster than the slowest one, 35341.28 seconds (network T010). Therefore, the

running time for a problem of a certain size cannot be predicted in advance.

In contrast, the running time of the ant algorithm is both stable and fast for a

specific problem size and lies within a range of 0.16 to 0.35 seconds for all ten

problem instances.

In order to further evaluate the results obtained by the ant algorithm, we take a

closer look at the results of the ant algorithm compared with those of the CSA

for the networks T001 to T050.

(a) Total cost

227

11.2. THRESHOLD MINIMUM COST FLOW PROBLEM

(b) Threshold violation

Figure 11.2: Numerical tests - threshold problem: Ants vs. CSA

The average reduction of the threshold violation by the ant algorithm is 50%,

compared to the CSA solution. In return, the cost of the ant solution is 34%

higher on the average.

The maximum reduction of the threshold violation is 73% for network T022.

The maximum increase in cost is 92% for network T024.

Especially for the larger network instances, the percentage of threshold viola-

tion reduction is rather high: We observe an average reduction of 57% for the

networks with 25 layers (T041 to T050).

We can see that the ant algorithm is able to significantly reduce the number

of arcs where the threshold claim is violated. However, the price to pay is

a not insignificant increase in the total cost. In practice, the advantages and

disadvantages of cheap solutions containing many small amounts of flow and

more expensive solutions with considerably less small amounts of flow must

be weighted: If small amounts of flow cause large additional costs, which can

not be expressed as cost values in the underlying network and therefore are

ignored during the optimization, a solution which has higher nominal costs

(in the network), but reduces the number of small amounts of flow, might be

favorable. If the problem instance is not too large and the running time is not

critical, the SOS 2 B&B method might be the best choice.

228

CHAPTER 11. COMPUTATIONAL RESULTS: NUMERICAL TESTS

11.3 Uncertain Costs

In this section, we compare the computation time and performance of the ant

algorithm for Gaussian distributed costs, as presented in Subsection 6.3.2, and

the results of the multicommodity extension of the algorithm of Bertsimas & Sim

for minimum cost flow problems with uncertain costs, as presented in Section

6.2.

Again, we randomly generate fully layered networks for the computational tests.

For the random generation of fully layered networks with uncertain cost values,

we have one additional input parameter:

• extra cost bound: For every arc, a random extra cost value between 0 and

the extra cost bound is generated per commodity

We consider both single-commodity and multicommodity minimum cost flow

problems with uncertain cost values.

For the numerical tests, 30 random layered networks were generated, grouped

in three groups according to the number of layers:

nodes extra
network #layers # nodes # arcs per layer cost capacity cost com

C001 5 21 75 4 – 8 0 – 10 3 – 20 5 1
C002 5 16 50 4 – 8 0 – 10 3 – 20 5 1
C003 5 22 90 4 – 8 0 – 10 3 – 20 5 1
C004 5 19 77 4 – 8 0 – 10 3 – 20 5 1
C005 5 16 50 4 – 8 0 – 10 3 – 20 5 1
C006 5 23 117 4 – 8 0 – 10 3 – 20 5 1
C007 5 21 91 4 – 8 0 – 10 3 – 20 5 1
C008 5 18 66 4 – 8 0 – 10 3 – 20 5 1
C009 5 20 90 4 – 8 0 – 10 3 – 20 5 5
C010 5 19 77 4 – 8 0 – 10 3 – 20 5 5

C011 10 56 332 4 – 8 0 – 10 3 – 20 5 1
C012 10 48 243 4 – 8 0 – 10 3 – 20 5 1
C013 10 44 194 4 – 8 0 – 10 3 – 20 5 1
C014 10 51 270 4 – 8 0 – 10 3 – 20 5 1
C015 10 48 254 4 – 8 0 – 10 3 – 20 5 1
C016 10 50 265 4 – 8 0 – 10 3 – 20 5 1
C017 10 49 257 4 – 8 0 – 10 3 – 20 5 1
C018 10 49 254 4 – 8 0 – 10 3 – 20 5 1
C019 10 50 252 4 – 8 0 – 10 3 – 20 5 5
C020 10 48 253 4 – 8 0 – 10 3 – 20 5 5

229

11.3. UNCERTAIN COSTS

nodes extra
network #layers # nodes # arcs per layer cost capacity cost com

C021 15 103 731 5 – 10 5 – 20 3 – 20 10 1
C022 15 96 641 5 – 10 5 – 20 3 – 20 10 1
C023 15 108 843 5 – 10 5 – 20 3 – 20 10 1
C024 15 97 642 5 – 10 5 – 20 3 – 20 10 1
C025 15 93 612 5 – 10 5 – 20 3 – 20 10 1
C026 15 102 734 5 – 10 5 – 20 3 – 20 10 1
C027 15 104 761 5 – 10 5 – 20 3 – 20 10 1
C028 15 94 602 5 – 10 5 – 20 3 – 20 10 1
C029 15 96 637 5 – 10 5 – 20 3 – 20 10 5
C030 15 93 601 5 – 10 5 – 20 3 – 20 10 5

Table 11.4: Random layered networks for the MCFP with uncertain cost

Both the ant algorithm and the algorithm of Bertsimas and Sim provide a

robustness parameter Γ to control the level of robustness of the solution. In our

test runs, we consider three different robustness levels for each network: Γ = 0,

Γ = 0.5 and Γ = 1.

For the runs of the ant algorithm for uncertain cost values, we choose the pa-

rameter settings as given in the following table:

parameter setting

α 3.0

β 3.0

ρ 0.25

parameter setting

ηmin 0.1

τmin 1.0

τmax 20.0

Table 11.5: Uncertain costs - ant algorithm: Parameter settings

The settings for the parameters α, β, ρ, ηmin and τmin are our standard settings

for the ant algorithm for uncertain cost values. The upper pheromone bound

τmax was chosen dependent on the scale of the demand values, which corresponds

to the number of ants in the network.

Differing from the settings given in Subsection 6.3.2 for the random generation

of the cost values, the standard deviation σk
ij for arc (i, j) and commodity k is

set to σk
ij :=

1
20d

k
ij , where d

k
ij is the extra cost value for arc (i, j) and commodity

k. This modification is based on the fact that the cost intervals are relatively

large. The choice of the factor 1
20 instead of 1

4 , which was used in Subsection

6.3.2, ensures that the generated cost values are not spread too widely over the

whole cost interval.

230

CHAPTER 11. COMPUTATIONAL RESULTS: NUMERICAL TESTS

As before, we consider the average of 10 runs as representative for the ant

algorithm.

The following table lists the results of the runs for each network and the three

values of the robustness parameter Γ: running time in seconds (�), best case

and worst case costs for the ant algorithm and the algorithm of Bertsimas and

Sim (B&S).

� best case worst case
network Γ ants B&S ants B&S ants B&S

C001 0 1.06 4.33 921 894 1632 1619
0.5 0.88 4.78 937 929 1616 1597
1 1.12 4.62 941 920 1606 1591

C002 0 0.96 2.83 957 953 1462 1460
0.5 0.59 2.89 968 1042 1460 1435
1 0.51 2.89 1077 1037 1433 1433

C003 0 1.06 4.51 1113 1092 1843 1841
0.5 1.00 5.22 1133 1149 1846 1821
1 1.16 5.34 1170 1149 1839 1821

C004 0 0.44 5.72 627 600 1091 1080
0.5 0.36 4.76 612 640 1082 1078
1 0.41 4.71 619 640 1085 1078

C005 0 0.56 3.57 468 467 1098 1098
0.5 0.43 3.34 468 509 1098 1097
1 0.43 3.33 514 509 1097 1097

C006 0 0.82 6.63 508 501 1424 1420
0.5 0.76 7.59 510 606 1421 1420
1 0.77 7.59 580 606 1421 1420

C007 0 0.66 5.15 561 534 1301 1296
0.5 0.71 5.18 572 660 1307 1296
1 0.75 5.18 736 660 1298 1296

C008 0 0.80 3.23 1303 1290 1948 1932
0.5 0.85 3.77 1318 1312 1949 1928
1 0.71 3.76 1319 1312 1933 1928

C009 0 8.23 55.98 2955 2481 5265 5042
0.5 7.17 63.05 3160 2802 5237 5010
1 6.97 63.06 3576 2802 5329 5010

C010 0 10.50 47.70 4066 3568 7040 6788
0.5 9.89 45.60 4266 3764 7058 6725
1 9.78 44.76 4652 3764 7171 6725

C011 0 4.58 52.30 1081 1001 3173 3149
0.5 2.93 50.58 1063 1624 3146 3157
1 3.33 53.62 1471 1417 3144 3117

C012 0 2.59 38.85 1324 1269 2886 2873

231

11.3. UNCERTAIN COSTS � best case worst case
network Γ ants B&S ants B&S ants B&S

0.5 2.50 35.94 1406 1528 2903 2838
1 2.34 36.30 1621 1528 2874 2838

C013 0 2.72 20.92 1517 1449 2912 2877
0.5 1.99 23.27 1529 1630 2890 2838
1 1.84 23.60 1693 1630 2876 2838

C014 0 1.81 37.14 659 585 1484 1449
0.5 1.25 34.46 692 734 1462 1444
1 1.13 34.42 782 734 1459 1444

C015 0 1.97 33.59 1007 837 2396 2325
0.5 1.58 33.66 907 1125 2318 2310
1 1.57 33.37 1194 1125 2342 2310

C016 0 2.80 34.77 1494 1331 3071 3034
0.5 2.27 33.09 1520 1717 3070 3018
1 2.41 32.74 1841 1717 3038 3018

C017 0 2.79 36.42 917 832 2738 2718
0.5 2.36 33.20 873 1235 2699 2690
1 2.39 32.34 1122 1235 2699 2690

C018 0 1.46 40.94 418 364 1462 1462
0.5 1.20 35.09 394 575 1461 1460
1 1.25 35.65 559 575 1460 1460

C019 0 64.61 519.78 10430 8205 20288 19433
0.5 56.08 511.87 11456 9610 20501 19248
1 53.96 507.05 13432 9610 21101 19248

C020 0 38.80 562.72 6444 4901 13980 13363
0.5 33.76 534.04 7613 6106 14195 13307
1 31.97 526.83 9294 6106 14713 13307

C021 0 10.76 166.92 12023 11335 21822 21683
0.5 10.56 183.88 12132 15570 21741 21528
1 10.36 157.28 14616 14308 21361 21232

C022 0 6.00 132.89 7478 7151 14100 14009
0.5 5.83 134.01 7566 9568 14067 13882
1 5.95 135.71 9229 9316 13815 13714

C023 0 11.34 187.39 12294 11655 22883 22748
0.5 10.31 204.35 12401 16030 22780 22560
1 11.17 183.76 15384 14925 22488 22317

C024 0 9.58 121.69 9480 9159 17093 17016
0.5 8.09 131.93 9809 12011 17036 16864
1 9.81 127.52 11541 11198 16822 16690

C025 0 6.66 114.40 9873 9329 17720 17571
0.5 8.84 137.18 10000 11701 17648 17410
1 7.66 115.62 11429 11244 17426 17305

C026 0 6.48 166.61 6753 6498 12889 12846
0.5 5.94 175.38 7197 9188 12804 12691
1 5.78 166.08 8524 8496 12664 12515

C027 0 6.72 177.34 6811 6506 14040 13994
0.5 5.79 185.84 7196 9737 14013 13819
1 7.05 163.38 9528 8979 13718 13618

C028 0 5.43 120.68 7552 7335 14821 14780
0.5 5.32 136.28 7850 10220 14823 14671
1 5.84 122.66 9488 9428 14568 14482

232

CHAPTER 11. COMPUTATIONAL RESULTS: NUMERICAL TESTS� best case worst case
network Γ ants B&S ants B&S ants B&S

C029 0 84.52 *) 42505 - 58735 -
0.5 77.65 *) 46410 - 59408 -
1 78.91 *) 46917 - 59383 -

C030 0 129.97 *) 55677 - 75780 -
0.5 126.32 *) 60867 - 76336 -
1 124.59 *) 62219 - 76718 -

Table 11.6: Numerical tests - uncertain cost problem: Results

The symbol *) indicates that no solution was found for the networks C029 and

C030 for the algorithm of Bertsimas and Sim, as for these problem instances an

out-of-memory exception occurred.

First, we examine the results of the ant algorithm and the algorithm of Bertsimas

and Sim with regard to the best case and worst case cost.

When considering the best case cost, we examine the minimally robust case

Γ = 0. The following figure illustrates the best case cost for the three groups of

networks.

(a) 5 layers (b) 10 layers

(c) 15 layers

Figure 11.3: Numerical tests - uncertain cost problem: Best case (Γ = 0)

233

11.3. UNCERTAIN COSTS

We can see that the best case costs calculated by the algorithm of Bertsimas and

Sim are superior to those of the ant algorithm, especially in the multicommodity

case. This result meets our expectations, as the ant algorithm is heuristic, while

the algorithm of Bertsimas and Sim is an exact method.

On average, the best case cost calculated by the ant algorithm is 6% higher in

the single-commodity case and 23% in the multicommodity case. The maximum

increase in the best case cost is 15% in the single-commodity case (network

C018) and 31% in the multicommodity case (network C020).

Next, we regard the worst case costs. The worst case costs are examined for the

maximally robust case Γ = 1. The worst case costs are illustrated in the figure

below:

(a) 5 layers (b) 10 layers

(c) 15 layers

Figure 11.4: Numerical tests - uncertain cost problem: Worst case (Γ = 1)

On average, the worst case cost in the single-commodity case calculated by the

ant algorithm is 1% higher than the worst case cost calculated by the algorithm

of Bertsimas and Sim. In the multicommodity case, the worst case cost of the

ant algorithm is 8% higher, on average.

The maximum increase in the worst case cost is 1% in the single-commodity

234

CHAPTER 11. COMPUTATIONAL RESULTS: NUMERICAL TESTS

case (several networks, for example networks C001, C003, C004) and 11% in

the multicommodity case (network C020).

We observe that in the single-commodity case, the increase in the best case

cost is moderate, while the increase in the worst case cost is very low. In

the multicommodity case, however, increases are higher, due to the growing

complexity of the problems in the multicommodity case.

Finally, we turn towards the running time comparison. The following figure

illustrates the running time of the two algorithms for the test networks C001 to

C028.

Figure 11.5: Numerical tests - uncertain cost problem: Running time in seconds

We can clearly see how fast the running time of the algorithm of Bertsimas

and Sim increases with growing network size and growing number of commodi-

ties. The ant algorithm shows a significantly lower running time even for large

networks and several commodities.

Note again that the running time for networks C029 and C030 is not stated

for the algorithm of Bertsimas and Sim, because of the out-of-memory error.

In contrary, the ant algorithm terminated after approximately 82 seconds for

network C029 and after approximately 125 seconds for network C030.

To sum up, for smaller problem instances, the algorithm of Bertsimas and Sim

seems to be the better choice because of its superiority concerning the solu-

tion quality, while for larger problem instances, the ant algorithm provides a

reasonable trade-off between computational time and performance.

235

11.4. UNCERTAIN DEMANDS

11.4 Uncertain Demands

In this section, we examine the ant algorithm for network flow problems with

uncertain demands as presented in Section 8.2. For each test network, we ex-

amine different robustness levels. The aim of the tests is to verify that with an

increasing robustness parameter, the solution of the ant algorithm becomes more

robust in the sense that more demand units are distributed. Furthermore, we

want to evaluate the stability of the ant algorithm, i.e. we want to test whether

several runs of the ant algorithm lead to equal results or differ immensely.

For the random generation of layered networks, we have five additional input

parameters:

• lower/upper penalty cost bound: For every arc, a random penalty cost

value within these bounds is generated

• lower/upper storage cost bound: For every arc, a random storage cost

value within these bounds is generated

• additional capacity bound: For every outgoing arc of the nodes in the

next to last layer (demand nodes), a random additional capacity value is

generated

The additional capacity values on the outgoing arcs of the nodes in the next

to last layer, which we consider to be the demand nodes, correspond to the

additional demand values for these demand nodes.

We generate ten fully layered networks with uncertain demands, where we con-

sider networks from 5 to 25 node layers with 1 or 3 commodities. The following

table lists the information about the generated networks:

236

CHAPTER 11. COMPUTATIONAL RESULTS: NUMERICAL TESTS

nodes extra penalty storage
network layers nodes arcs com p. layer cost capacity dem. cost cost

D001 5 22 104 1 4 – 8 0 – 5 3 – 10 5 10 – 20 1 – 5
D002 5 23 112 3 4 – 8 0 – 5 3 – 10 5 10 – 20 1 – 5

D003 10 68 467 1 5 – 10 0 – 10 3 – 20 5 30 – 50 3 – 5
D004 10 68 458 3 5 – 10 0 – 10 3 – 20 5 30 – 50 3 – 5

D005 15 97 652 1 5 – 10 5 – 20 5 – 20 10 100 – 150 5 – 10
D006 15 114 882 3 5 – 10 5 – 20 5 – 20 10 100 – 150 5 – 10

D007 20 141 1039 1 5 – 10 5 – 20 5 – 20 10 150 – 200 10 – 15
D008 20 147 1121 3 5 – 10 5 – 20 5 – 20 10 150 – 200 10 – 15

D009 25 176 1280 1 5 – 10 10 – 25 10 – 20 12 400 – 500 10 – 20
D010 25 172 1208 3 5 – 10 10 – 25 10 – 20 12 400 – 500 10 – 20

Table 11.7: Random layered networks for the MCFP with uncertain demands

We regard three different robustness levels for each network: Γ = 0, Γ = 0.5

and Γ = 1.

The parameter settings for the ant algorithm are the following:

parameter setting

α 1.0

β 1.0

ρ 0.25

ηmin 0.2

τmin 1.0

τmax 20.0

parameter setting

ςpher 2.0

ςstoragedemand 1.0

ςpenaltydemand 0.5

ςstorageedge 0.1

ςpenaltyedge 0.2

Table 11.8: Uncertain demands - ant algorithm: Parameter settings

The settings for the parameters α, β, ρ, ηmin and τmin are our standard set-

tings for the ant algorithm for uncertain demand values. The limiting value for

τmax was chosen dependent on the scale of the demand values. The remain-

ing parameters ςpher, ςstoragedemand, ς
penalty
demand, ς

storage
edge and ςpenaltyedge were determined

experimentally.

The following tables list the results for each network and each of the 30 runs

per network (ten per robustness level) as well as the average of the ten runs per

robustness level.

We list the respective robustness parameter, the running time (in seconds), the

total sent demand and the sent demand for all demand nodes.

237

11.4. UNCERTAIN DEMANDS

run total sent demand node
no. Γ � demand 15 16 17 18 19 20 21

1 0.0 0.63 45 3 3 10 3 10 10 6
2 0.0 0.66 45 3 3 10 3 10 10 6
3 0.0 0.67 45 3 3 10 3 10 10 6
4 0.0 0.64 45 3 3 10 3 10 10 6
5 0.0 0.66 45 3 3 10 3 10 10 6
6 0.0 0.64 45 3 3 10 3 10 10 6
7 0.0 0.61 45 3 3 10 3 10 10 6
8 0.0 0.58 45 3 3 10 3 10 10 6
9 0.0 0.64 45 3 3 10 3 10 10 6

10 0.0 0.66 45 3 3 10 3 10 10 6

average 0.64 45 3 3 10 3 10 10 6

11 0.5 0.75 56 5 4 10 5 14 11 7
12 0.5 0.78 54 5 4 10 3 14 11 7
13 0.5 0.75 51 3 5 10 3 13 10 7
14 0.5 0.77 53 5 4 10 4 14 10 6
15 0.5 0.75 53 5 4 10 4 14 10 6
16 0.5 0.78 54 5 4 11 5 12 10 7
17 0.5 0.77 54 5 4 11 3 14 11 6
18 0.5 0.77 56 5 6 11 3 14 10 7
19 0.5 0.77 57 5 6 11 4 14 11 6
20 0.5 0.70 55 5 6 11 3 14 10 6

average 0.76 54.3 4.8 4.7 10.5 3.7 13.7 10.4 6.5

21 1.0 3.58 60 5 6 12 5 14 11 7
22 1.0 3.64 58 5 5 12 4 14 11 7
23 1.0 3.56 60 5 5 10 8 14 11 7
24 1.0 3.67 60 5 5 12 6 14 11 7
25 1.0 3.53 60 4 6 12 6 14 11 7
26 1.0 3.49 60 5 6 12 5 14 11 7
27 1.0 3.48 60 5 6 12 6 14 11 6
28 1.0 3.61 59 5 6 11 5 14 11 7
29 1.0 3.63 59 4 5 12 7 14 10 7
30 1.0 3.47 60 5 6 12 5 14 11 7

average 3.57 59.6 4.8 5.6 11.7 5.7 14.0 10.9 6.9

Table 11.9: Results for network D001

238

CHAPTER 11. COMPUTATIONAL RESULTS: NUMERICAL TESTS

run total sent demand node
no. Γ � com demand 17 18 19 20 21 22

1 0.0 3.03 1 37 4 9 5 9 5 5
2 36 10 7 7 3 3 6
3 42 6 10 8 5 7 6

2 0.0 3.05 1 37 4 9 5 9 5 5
2 36 10 7 7 3 3 6
3 42 6 10 8 5 7 6

3 0.0 3.05 1 37 4 9 5 9 5 5
2 36 10 7 7 3 3 6
3 42 6 10 8 5 7 6

4 0.0 3.03 1 37 4 9 5 9 5 5
2 36 10 7 7 3 3 6
3 42 6 10 8 5 7 6

5 0.0 3.05 1 37 4 9 5 9 5 5
2 36 10 7 7 3 3 6
3 42 6 10 8 5 7 6

6 0.0 3.05 1 37 4 9 5 9 5 5
2 36 10 7 7 3 3 6
3 42 6 10 8 5 7 6

7 0.0 3.05 1 37 4 9 5 9 5 5
2 36 10 7 7 3 3 6
3 42 6 10 8 5 7 6

8 0.0 3.05 1 37 4 9 5 9 5 5
2 36 10 7 7 3 3 6
3 42 6 10 8 5 7 6

9 0.0 3.08 1 37 4 9 5 9 5 5
2 36 10 7 7 3 3 6
3 42 6 10 8 5 7 6

10 0.0 3.03 1 37 4 9 5 9 5 5
2 36 10 7 7 3 3 6
3 42 6 10 8 5 7 6

average 3.05 1 37 4 9 5 9 5 5
2 36 10 7 7 3 3 6
3 42 6 10 8 5 7 6

11 0.5 3.81 1 45 8 10 6 9 7 5
2 39 10 7 7 5 4 6
3 49 7 11 8 5 10 8

12 0.5 3.72 1 41 7 10 5 9 5 5
2 41 10 7 7 6 5 6
3 52 7 13 9 5 10 8

13 0.5 3.61 1 42 8 10 5 9 5 5
2 40 10 7 8 5 3 7
3 49 7 10 9 5 10 8

14 0.5 3.7 1 41 8 9 5 9 5 5
2 40 10 7 7 6 3 7
3 47 7 11 9 5 7 8

15 0.5 3.77 1 44 8 10 5 9 6 6
2 40 10 7 7 6 3 7
3 47 7 10 9 5 8 8

16 0.5 3.78 1 45 8 10 5 10 7 5
2 40 10 7 7 5 3 8
3 44 6 10 8 5 7 8

239

11.4. UNCERTAIN DEMANDS

run total sent demand node
no. Γ � com demand 17 18 19 20 21 22

17 0.5 3.81 1 47 8 10 6 10 8 5
2 37 10 7 7 4 3 6
3 46 7 10 9 5 9 6

18 0.5 3.94 1 46 8 9 6 12 6 5
2 41 10 7 7 6 3 8
3 50 7 11 9 5 10 8

19 0.5 3.75 1 44 8 10 5 9 7 5
2 43 10 7 8 6 4 8
3 47 7 10 9 5 8 8

20 0.5 3.73 1 40 6 10 5 9 5 5
2 40 10 7 7 6 3 7
3 50 7 11 9 5 10 8

average 3.76 1 43.5 7.7 9.8 5.3 9.5 6.1 5.1
2 40.1 10.0 7.0 7.2 5.5 3.4 7.0
3 48.1 6.9 10.7 8.8 5.0 8.9 7.8

21 1.0 5.28 1 51 8 10 6 13 8 6
2 45 10 7 8 6 6 8
3 54 7 14 9 5 11 8

22 1.0 5.23 1 51 8 10 6 13 8 6
2 45 10 7 8 6 6 8
3 54 7 14 9 5 11 8

23 1.0 5.19 1 51 8 10 6 13 8 6
2 45 10 7 8 6 6 8
3 54 7 14 9 5 11 8

24 1.0 5.28 1 51 8 10 6 13 8 6
2 45 10 7 8 6 6 8
3 54 7 14 9 5 11 8

25 1.0 5.25 1 51 8 10 6 13 8 6
2 45 10 7 8 6 6 8
3 54 7 14 9 5 11 8

26 1.0 5.37 1 51 8 10 6 13 8 6
2 45 10 7 8 6 6 8
3 54 7 14 9 5 11 8

27 1.0 5.20 1 51 8 10 6 13 8 6
2 45 10 7 8 6 6 8
3 54 7 14 9 5 11 8

28 1.0 5.23 1 51 8 10 6 13 8 6
2 45 10 7 8 6 6 8
3 54 7 14 9 5 11 8

29 1.0 5.25 1 51 8 10 6 13 8 6
2 45 10 7 8 6 6 8
3 54 7 14 9 5 11 8

30 1.0 5.19 1 51 8 10 6 13 8 6
2 45 10 7 8 6 6 8
3 54 7 14 9 5 11 8

average 5.26 1 51 8 10 6 13 8 6
2 45 10 7 8 6 6 8
3 54 7 14 9 5 11 8

Table 11.10: Results for network D002

240

CHAPTER 11. COMPUTATIONAL RESULTS: NUMERICAL TESTS

run total sent demand node
no. Γ � demand 58 59 60 61 62 63 64 65 66 67

1 0.0 3.25 117 3 15 6 13 5 16 7 19 17 16
2 0.0 3.63 117 3 15 6 13 5 16 7 19 17 16
3 0.0 3.20 117 3 15 6 13 5 16 7 19 17 16
4 0.0 3.31 117 3 15 6 13 5 16 7 19 17 16
5 0.0 4.00 117 3 15 6 13 5 16 7 19 17 16
6 0.0 3.72 117 3 15 6 13 5 16 7 19 17 16
7 0.0 3.30 117 3 15 6 13 5 16 7 19 17 16
8 0.0 3.28 117 3 15 6 13 5 16 7 19 17 16
9 0.0 3.94 117 3 15 6 13 5 16 7 19 17 16

10 0.0 3.28 117 3 15 6 13 5 16 7 19 17 16

average 3.49 117 3 15 6 13 5 16 7 19 17 16

11 0.5 4.39 124 3 15 7 13 5 17 7 24 17 16
12 0.5 3.67 117 3 15 6 13 5 16 7 19 17 16
13 0.5 4.78 128 4 18 8 15 5 17 8 20 17 16
14 0.5 3.97 129 4 18 6 14 5 16 8 23 17 18
15 0.5 4.39 124 3 15 7 14 5 16 8 22 17 17
16 0.5 4.13 128 5 15 7 15 5 17 8 22 17 17
17 0.5 3.69 126 3 18 7 15 5 16 8 21 17 16
18 0.5 4.52 124 3 15 7 15 5 16 7 21 17 18
19 0.5 3.67 124 3 15 7 15 5 17 7 21 17 17
20 0.5 3.69 124 4 16 8 13 5 17 7 19 17 18

average 4.09 124.8 3.5 16.0 7.0 14.2 5.0 16.5 7.5 21.2 17.0 16.9

21 1.0 6.08 136 6 18 8 15 5 17 8 24 17 18
22 1.0 6.08 136 6 18 8 15 5 17 8 24 17 18
23 1.0 5.89 136 6 18 8 15 5 17 8 24 17 18
24 1.0 5.08 136 6 18 8 15 5 17 8 24 17 18
25 1.0 5.92 136 6 18 8 15 5 17 8 24 17 18
26 1.0 5.03 136 6 18 8 15 5 17 8 24 17 18
27 1.0 5.97 136 6 18 8 15 5 17 8 24 17 18
28 1.0 5.14 136 6 18 8 15 5 17 8 24 17 18
29 1.0 6.06 136 6 18 8 15 5 17 8 24 17 18
30 1.0 5.08 136 6 18 8 15 5 17 8 24 17 18

average 5.63 136 6 18 8 15 5 17 8 24 17 18

Table 11.11: Results for network D003

241

11.4. UNCERTAIN DEMANDS

run total sent demand node
no. Γ � com demand 58 59 60 61 62 63 64 65 66 67

1 0.0 37.18 1 113 11 17 8 12 7 9 14 9 7 19
2 97 8 14 7 6 17 11 9 6 10 9
3 99 9 5 19 11 13 3 12 5 19 3

2 0.0 36.42 1 113 11 17 8 12 7 9 14 9 7 19
2 97 8 14 7 6 17 11 9 6 10 9
3 99 9 5 19 11 13 3 12 5 19 3

3 0.0 36.38 1 113 11 17 8 12 7 9 14 9 7 19
2 97 8 14 7 6 17 11 9 6 10 9
3 99 9 5 19 11 13 3 12 5 19 3

4 0.0 36.38 1 113 11 17 8 12 7 9 14 9 7 19
2 97 8 14 7 6 17 11 9 6 10 9
3 99 9 5 19 11 13 3 12 5 19 3

5 0.0 36.48 1 113 11 17 8 12 7 9 14 9 7 19
2 97 8 14 7 6 17 11 9 6 10 9
3 99 9 5 19 11 13 3 12 5 19 3

6 0.0 36.57 1 113 11 17 8 12 7 9 14 9 7 19
2 97 8 14 7 6 17 11 9 6 10 9
3 99 9 5 19 11 13 3 12 5 19 3

7 0.0 37.32 1 113 11 17 8 12 7 9 14 9 7 19
2 97 8 14 7 6 17 11 9 6 10 9
3 99 9 5 19 11 13 3 12 5 19 3

8 0.0 36.03 1 113 11 17 8 12 7 9 14 9 7 19
2 97 8 14 7 6 17 11 9 6 10 9
3 99 9 5 19 11 13 3 12 5 19 3

9 0.0 36.58 1 113 11 17 8 12 7 9 14 9 7 19
0.0 2 97 8 14 7 6 17 11 9 6 10 9
0.0 3 99 9 5 19 11 13 3 12 5 19 3

10 0.0 36.47 1 113 11 17 8 12 7 9 14 9 7 19
0.0 36.47 2 97 8 14 7 6 17 11 9 6 10 9
0.0 36.47 3 99 9 5 19 11 13 3 12 5 19 3

average 36.59 1 113 11 17 8 12 7 9 14 9 7 19
2 97 8 14 7 6 17 11 9 6 10 9
3 99 9 5 19 11 13 3 12 5 19 3

11 0.5 41.71 1 123 12 17 13 13 7 10 14 9 8 20
2 112 9 14 8 9 17 11 14 7 11 12
3 110 9 7 19 11 13 7 15 6 20 3

12 0.5 41.35 1 127 13 18 13 13 7 11 14 10 8 20
2 107 9 14 7 9 17 13 10 6 13 9
3 106 9 6 19 11 13 7 12 7 19 3

13 0.5 42.74 1 127 13 17 13 13 7 11 14 11 8 20
2 106 9 14 7 9 17 11 13 6 11 9
3 107 9 7 19 11 13 6 15 5 19 3

14 0.5 41.73 1 121 11 17 11 12 7 11 14 11 7 20
2 110 9 14 7 9 17 12 14 6 13 9
3 110 9 7 20 11 13 7 15 5 20 3

15 0.5 42.04 1 125 13 17 11 13 7 11 14 10 9 20
2 106 9 14 7 9 17 11 11 6 13 9
3 107 9 6 20 11 13 5 15 6 19 3

16 0.5 41.94 1 125 12 17 12 12 7 11 15 11 8 20
2 118 9 15 9 9 17 12 14 7 13 13
3 105 9 6 19 11 13 5 14 6 19 3

242

CHAPTER 11. COMPUTATIONAL RESULTS: NUMERICAL TESTS

run total sent demand node
no. Γ � com demand 58 59 60 61 62 63 64 65 66 67

17 0.5 42.06 1 125 13 17 12 12 7 11 14 11 8 20
2 109 9 14 7 9 17 13 10 6 13 11
3 109 10 7 20 11 13 7 14 5 19 3

18 0.5 42.05 1 126 13 17 13 12 7 11 14 9 10 20
2 113 9 16 8 9 17 11 14 6 13 10
3 112 10 7 19 11 13 7 15 7 20 3

19 0.5 40.87 1 122 13 17 11 12 7 9 15 11 8 19
2 112 9 14 9 9 17 15 10 6 13 10
3 104 9 7 19 11 13 3 13 6 20 3

20 0.5 42.01 1 129 13 18 13 13 7 11 15 10 9 20
2 110 9 15 8 9 17 11 13 6 13 9
3 108 9 6 19 11 13 7 14 7 19 3

average 41.85 1 125 12.6 17.2 12.2 12.5 7.0 10.7 14.3 10.3 8.3 19.9
2 110.3 9.0 14.4 7.7 9.0 17.0 12.0 12.3 6.2 12.6 10.1
3 107.8 9.2 6.6 19.3 11.0 13.0 6.1 14.2 6.0 19.4 3.0

21 1.0 55.68 1 138 13 22 13 13 7 11 16 11 12 20
2 124 9 17 9 9 17 16 14 7 13 13
3 115 11 7 21 11 13 7 15 7 20 3

22 1.0 55.78 1 138 13 22 13 13 7 11 16 11 12 20
2 124 9 17 9 9 17 16 14 7 13 13
3 115 11 7 21 11 13 7 15 7 20 3

23 1.0 55.83 1 138 13 22 13 13 7 11 16 11 12 20
2 124 9 17 9 9 17 16 14 7 13 13
3 115 11 7 21 11 13 7 15 7 20 3

24 1.0 55.84 1 138 13 22 13 13 7 11 16 11 12 20
2 124 9 17 9 9 17 16 14 7 13 13
3 115 11 7 21 11 13 7 15 7 20 3

25 1.0 56.26 1 138 13 22 13 13 7 11 16 11 12 20
2 124 9 17 9 9 17 16 14 7 13 13
3 115 11 7 21 11 13 7 15 7 20 3

26 1.0 57.97 1 138 13 22 13 13 7 11 16 11 12 20
2 124 9 17 9 9 17 16 14 7 13 13
3 115 11 7 21 11 13 7 15 7 20 3

27 1.0 55.53 1 138 13 22 13 13 7 11 16 11 12 20
2 124 9 17 9 9 17 16 14 7 13 13
3 115 11 7 21 11 13 7 15 7 20 3

28 1.0 56.91 1 138 13 22 13 13 7 11 16 11 12 20
2 124 9 17 9 9 17 16 14 7 13 13
3 115 11 7 21 11 13 7 15 7 20 3

29 1.0 58.30 1 138 13 22 13 13 7 11 16 11 12 20
2 124 9 17 9 9 17 16 14 7 13 13
3 115 11 7 21 11 13 7 15 7 20 3

30 1.0 56.92 1 138 13 22 13 13 7 11 16 11 12 20
2 124 9 17 9 9 17 16 14 7 13 13
3 115 11 7 21 11 13 7 15 7 20 3

average 56.23 1 138 13 22 13 13 7 11 16 11 12 20
2 124 9 17 9 9 17 16 14 7 13 13
3 115 11 7 21 11 13 7 15 7 20 3

Table 11.12: Results for network D004

243

11.4. UNCERTAIN DEMANDS

run total sent demand node
no. Γ � demand 92 93 94 95 96

1 0.0 2.56 82 17 17 18 12 18
2 0.0 2.66 82 17 17 18 12 18
3 0.0 2.63 82 17 17 18 12 18
4 0.0 2.78 82 17 17 18 12 18
5 0.0 2.73 82 17 17 18 12 18
6 0.0 2.73 82 17 17 18 12 18
7 0.0 2.70 82 17 17 18 12 18
8 0.0 2.64 82 17 17 18 12 18
9 0.0 2.70 82 17 17 18 12 18

10 0.0 2.64 82 17 17 18 12 18

average 2.68 82 17 17 18 12 18

11 0.5 3.00 94 20 20 21 15 18
12 0.5 3.28 93 23 18 19 15 18
13 0.5 3.11 93 19 19 21 16 18
14 0.5 3.09 96 21 20 20 17 18
15 0.5 3.47 96 23 20 19 16 18
16 0.5 3.27 98 20 21 22 17 18
17 0.5 3.41 98 23 20 19 18 18
18 0.5 3.41 94 21 21 20 14 18
19 0.5 3.25 98 22 21 22 15 18
20 0.5 3.09 93 19 21 21 14 18

average 3.24 95.3 21.1 20.1 20.4 15.7 18.0

21 1.0 4.55 106 24 21 22 21 18
22 1.0 4.14 106 24 21 22 21 18
23 1.0 4.17 106 24 21 22 21 18
24 1.0 4.17 106 24 21 22 21 18
25 1.0 4.22 106 24 21 22 21 18
26 1.0 4.19 105 24 21 22 20 18
27 1.0 4.17 106 24 21 22 21 18
28 1.0 4.22 106 24 21 22 21 18
29 1.0 4.20 105 23 21 22 21 18
30 1.0 4.50 106 24 21 22 21 18

average 4.25 105.8 23.9 21 22 20.9 18

Table 11.13: Results for network D005

244

CHAPTER 11. COMPUTATIONAL RESULTS: NUMERICAL TESTS

run total sent demand node
no. Γ � com demand 104 105 106 107 108 109 110 111 112 113

1 0.0 48.81 1 112 13 8 17 9 12 10 10 11 15 7
2 121 10 7 18 13 5 16 9 14 19 10
3 110 12 11 13 6 11 7 11 16 10 13

2 0.0 48.23 1 112 13 8 17 9 12 10 10 11 15 7
2 121 10 7 18 13 5 16 9 14 19 10
3 110 12 11 13 6 11 7 11 16 10 13

3 0.0 50.33 1 112 13 8 17 9 12 10 10 11 15 7
2 121 10 7 18 13 5 16 9 14 19 10
3 110 12 11 13 6 11 7 11 16 10 13

4 0.0 49.14 1 112 13 8 17 9 12 10 10 11 15 7
2 121 10 7 18 13 5 16 9 14 19 10
3 110 12 11 13 6 11 7 11 16 10 13

5 0.0 49.36 1 112 13 8 17 9 12 10 10 11 15 7
2 121 10 7 18 13 5 16 9 14 19 10
3 110 12 11 13 6 11 7 11 16 10 13

6 0.0 49.52 1 112 13 8 17 9 12 10 10 11 15 7
2 121 10 7 18 13 5 16 9 14 19 10
3 110 12 11 13 6 11 7 11 16 10 13

7 0.0 49.31 1 112 13 8 17 9 12 10 10 11 15 7
2 121 10 7 18 13 5 16 9 14 19 10
3 110 12 11 13 6 11 7 11 16 10 13

8 0.0 49.22 1 112 13 8 17 9 12 10 10 11 15 7
2 121 10 7 18 13 5 16 9 14 19 10
3 110 12 11 13 6 11 7 11 16 10 13

9 0.0 48.07 1 112 13 8 17 9 12 10 10 11 15 7
2 121 10 7 18 13 5 16 9 14 19 10
3 110 12 11 13 6 11 7 11 16 10 13

10 0.0 48.82 1 112 13 8 17 9 12 10 10 11 15 7
2 121 10 7 18 13 5 16 9 14 19 10
3 110 12 11 13 6 11 7 11 16 10 13

average 49.11 1 112 13 8 17 9 12 10 10 11 15 7
2 121 10 7 18 13 5 16 9 14 19 10
3 110 12 11 13 6 11 7 11 16 10 13

11 0.5 69.26 1 142 16 8 18 10 13 15 12 15 23 12
2 135 12 8 19 13 6 17 10 15 19 16
3 140 15 12 15 11 15 12 12 19 14 15

12 0.5 67.67 1 135 13 8 18 15 13 14 13 16 17 8
2 136 12 8 19 17 6 17 10 17 19 11
3 134 15 15 13 11 13 10 12 19 11 15

13 0.5 68.61 1 132 16 8 18 11 13 13 10 14 21 8
2 136 12 8 19 16 5 17 9 19 19 12
3 142 16 12 16 11 14 10 12 19 18 14

14 0.5 68.46 1 141 15 8 18 12 13 13 15 16 21 10
2 133 12 8 18 14 5 17 10 15 19 15
3 143 15 14 16 13 17 10 12 18 13 15

15 0.5 68.11 1 141 15 8 18 11 13 15 14 15 21 11
2 136 12 9 19 18 6 16 10 14 19 13
3 142 16 16 16 8 16 8 12 19 16 15

16 0.5 68.37 1 135 15 8 18 10 13 13 14 16 19 9
2 133 11 8 19 14 6 17 10 17 19 12
3 136 12 12 16 10 17 9 12 18 15 15

245

11.4. UNCERTAIN DEMANDS

run total sent demand node
no. Γ � com demand 104 105 106 107 108 109 110 111 112 113

17 0.5 68.79 1 138 16 8 18 11 13 15 13 16 19 9
2 136 12 9 19 17 6 17 10 17 19 10
3 139 15 13 16 6 14 15 12 19 14 15

18 0.5 68.22 1 138 16 8 18 15 13 13 12 13 19 11
2 138 12 9 19 18 6 17 10 18 19 10
3 141 15 15 15 10 16 8 12 19 16 15

19 0.5 68.62 1 136 15 8 18 12 13 12 15 16 20 7
2 135 12 8 19 17 6 17 10 14 19 13
3 142 17 12 16 10 15 12 12 19 14 15

20 0.5 65.00 1 136 16 8 18 12 13 12 13 15 19 10
2 140 12 9 19 16 6 17 10 19 19 13
3 140 18 14 16 9 16 7 12 19 14 15

average 68.11 1 137.4 15.3 8.0 18.0 11.9 13.0 13.5 13.1 15.2 19.9 9.5
2 135.8 11.9 8.4 18.9 16.0 5.8 16.9 9.9 16.5 19.0 12.5
3 139.9 15.4 13.5 15.5 9.9 15.3 10.1 12.0 18.8 14.5 14.9

21 1.0 107.46 1 161 16 8 18 18 13 15 18 17 24 14
2 154 12 9 19 23 6 17 10 19 19 20
3 170 19 18 16 16 20 16 12 19 19 15

22 1.0 107.84 1 161 16 8 18 18 13 15 18 17 24 14
2 154 12 9 19 23 6 17 10 19 19 20
3 170 19 18 16 16 20 16 12 19 19 15

23 1.0 107.06 1 161 16 8 18 18 13 15 18 17 24 14
2 154 12 9 19 23 6 17 10 19 19 20
3 170 19 18 16 16 20 16 12 19 19 15

24 1.0 106.89 1 161 16 8 18 18 13 15 18 17 24 14
2 154 12 9 19 23 6 17 10 19 19 20
3 170 19 18 16 16 20 16 12 19 19 15

25 1.0 105.53 1 161 16 8 18 18 13 15 18 17 24 14
2 154 12 9 19 23 6 17 10 19 19 20
3 170 19 18 16 16 20 16 12 19 19 15

26 1.0 105.43 1 161 16 8 18 18 13 15 18 17 24 14
2 154 12 9 19 23 6 17 10 19 19 20
3 170 19 18 16 16 20 16 12 19 19 15

27 1.0 107.64 1 161 16 8 18 18 13 15 18 17 24 14
2 154 12 9 19 23 6 17 10 19 19 20
3 170 19 18 16 16 20 16 12 19 19 15

28 1.0 108.53 1 161 16 8 18 18 13 15 18 17 24 14
2 154 12 9 19 23 6 17 10 19 19 20
3 170 19 18 16 16 20 16 12 19 19 15

29 1.0 105.81 1 161 16 8 18 18 13 15 18 17 24 14
2 154 12 9 19 23 6 17 10 19 19 20
3 170 19 18 16 16 20 16 12 19 19 15

30 1.0 105.23 1 161 16 8 18 18 13 15 18 17 24 14
2 154 12 9 19 23 6 17 10 19 19 20
3 170 19 18 16 16 20 16 12 19 19 15

average 106.74 1 161 16 8 18 18 13 15 18 17 24 14
2 154 12 9 19 23 6 17 10 19 19 20
3 170 19 18 16 16 20 16 12 19 19 15

Table 11.14: Results for network D006

246

CHAPTER 11. COMPUTATIONAL RESULTS: NUMERICAL TESTS

run total sent demand node
no. Γ � demand 136 137 138 139 140

1 0.0 3.16 58 13 19 10 8 8
2 0.0 2.95 58 13 19 10 8 8
3 0.0 3.06 58 13 19 10 8 8
4 0.0 3.05 58 13 19 10 8 8
5 0.0 3.06 58 13 19 10 8 8
6 0.0 3.08 58 13 19 10 8 8
7 0.0 3.03 58 13 19 10 8 8
8 0.0 3.06 58 13 19 10 8 8
9 0.0 3.00 58 13 19 10 8 8

10 0.0 3.08 58 13 19 10 8 8

average 3.05 58 13 19 10 8 8

11 0.5 3.88 66 13 21 10 11 11
12 0.5 3.88 65 13 22 10 11 9
13 0.5 3.81 66 13 21 10 11 11
14 0.5 3.92 67 13 24 10 10 10
15 0.5 3.77 65 13 22 10 10 10
16 0.5 3.83 65 13 22 10 9 11
17 0.5 3.75 64 13 22 10 10 9
18 0.5 3.91 63 13 24 10 8 8
19 0.5 3.83 65 13 24 10 9 9
20 0.5 3.84 66 13 23 10 8 12

average 3.84 65.2 13.0 22.5 10.0 9.7 10.0

21 1.0 5.02 73 13 24 10 11 15
22 1.0 5.14 73 13 24 10 11 15
23 1.0 5.08 73 13 24 10 11 15
24 1.0 5.06 73 13 24 10 11 15
25 1.0 5.16 73 13 24 10 11 15
26 1.0 5.11 73 13 24 10 11 15
27 1.0 5.08 73 13 24 10 11 15
28 1.0 5.09 73 13 24 10 11 15
29 1.0 5.20 73 13 24 10 11 15
30 1.0 5.03 73 13 24 10 11 15

average 5.1 73 13 24 10 11 15

Table 11.15: Results for network D007

247

11.4. UNCERTAIN DEMANDS

run total sent demand node
no. Γ � com demand 140 141 142 143 144 145 146

1 0.0 50.72 1 96 15 16 15 16 16 13 5
2 102 11 17 19 17 19 9 10
3 72 6 6 13 20 8 14 5

2 0.0 50.40 1 96 15 16 15 16 16 13 5
2 102 11 17 19 17 19 9 10
3 72 6 6 13 20 8 14 5

3 0.0 50.40 1 96 15 16 15 16 16 13 5
2 102 11 17 19 17 19 9 10
3 72 6 6 13 20 8 14 5

4 0.0 50.44 1 96 15 16 15 16 16 13 5
2 102 11 17 19 17 19 9 10
3 72 6 6 13 20 8 14 5

5 0.0 51.15 1 96 15 16 15 16 16 13 5
2 102 11 17 19 17 19 9 10
3 72 6 6 13 20 8 14 5

6 0.0 51.08 1 96 15 16 15 16 16 13 5
2 102 11 17 19 17 19 9 10
3 72 6 6 13 20 8 14 5

7 0.0 50.65 1 96 15 16 15 16 16 13 5
2 102 11 17 19 17 19 9 10
3 72 6 6 13 20 8 14 5

8 0.0 50.70 1 96 15 16 15 16 16 13 5
2 102 11 17 19 17 19 9 10
3 72 6 6 13 20 8 14 5

9 0.0 51.08 1 96 15 16 15 16 16 13 5
2 102 11 17 19 17 19 9 10
3 72 6 6 13 20 8 14 5

10 0.0 51.00 1 96 15 16 15 16 16 13 5
2 102 11 17 19 17 19 9 10
3 72 6 6 13 20 8 14 5

average 50.74 1 96 15 16 15 16 16 13 5
2 102 11 17 19 17 19 9 10
3 72 6 6 13 20 8 14 5

11 0.5 68.20 1 116 19 20 16 21 18 16 6
2 123 14 18 22 22 20 14 13
3 87 8 8 13 23 11 17 7

12 0.5 68.2 1 120 22 20 16 21 19 16 6
2 124 14 20 22 20 20 13 15
3 88 8 9 15 23 11 15 7

13 0.5 68.45 1 118 19 18 16 23 19 17 6
2 124 12 19 25 21 20 12 15
3 90 8 7 17 24 11 16 7

14 0.5 68.17 1 113 17 19 16 21 18 16 6
2 124 14 20 25 20 20 12 13
3 89 7 9 14 24 11 17 7

15 0.5 67.97 1 111 19 18 16 18 18 16 6
2 124 14 21 23 21 20 13 12
3 87 6 7 15 24 10 16 9

16 0.5 68.37 1 113 19 20 16 17 19 16 6
2 123 14 22 22 21 20 12 12
3 90 7 9 18 24 10 17 5

248

CHAPTER 11. COMPUTATIONAL RESULTS: NUMERICAL TESTS

run total sent demand node
no. Γ � com demand 140 141 142 143 144 145 146

17 0.5 67.37 1 119 16 20 16 21 19 21 6
2 122 14 19 25 20 20 12 12
3 85 8 8 16 21 10 17 5

18 0.5 68.26 1 113 17 20 16 23 16 15 6
2 124 14 20 21 20 20 16 13
3 88 8 9 18 22 8 17 6

19 0.5 69.42 1 117 19 18 16 21 18 19 6
2 126 14 22 19 23 20 17 11
3 91 8 8 17 24 11 17 6

20 0.5 68.18 1 113 16 20 16 20 19 16 6
2 120 14 20 23 22 20 9 12
3 88 8 6 17 23 9 17 8

average 68.26 1 115.3 18.3 19.3 16.0 20.6 18.3 16.8 6.0
2 123.4 13.8 20.1 22.7 21.0 20.0 13.0 12.8
3 88.3 7.6 8.0 16.0 23.2 10.2 16.6 6.7

21 1.0 106.45 1 133 25 20 16 25 19 22 6
2 143 14 22 25 26 20 18 18
3 105 8 9 23 24 11 17 13

22 1.0 104.95 1 133 25 20 16 25 19 22 6
2 143 14 22 25 26 20 18 18
3 105 8 9 23 24 11 17 13

23 1.0 105.81 1 133 25 20 16 25 19 22 6
2 143 14 22 25 26 20 18 18
3 105 8 9 23 24 11 17 13

24 1.0 103.42 1 133 25 20 16 25 19 22 6
2 143 14 22 25 26 20 18 18
3 105 8 9 23 24 11 17 13

25 1.0 104.36 1 133 25 20 16 25 19 22 6
2 143 14 22 25 26 20 18 18
3 105 8 9 23 24 11 17 13

26 1.0 105.18 1 133 25 20 16 25 19 22 6
2 143 14 22 25 26 20 18 18
3 105 8 9 23 24 11 17 13

27 1.0 104.95 1 133 25 20 16 25 19 22 6
2 143 14 22 25 26 20 18 18
3 105 8 9 23 24 11 17 13

28 1.0 106.72 1 133 25 20 16 25 19 22 6
2 143 14 22 25 26 20 18 18
3 105 8 9 23 24 11 17 13

29 1.0 103.89 1 133 25 20 16 25 19 22 6
2 143 14 22 25 26 20 18 18
3 105 8 9 23 24 11 17 13

30 1.0 103.98 1 133 25 20 16 25 19 22 6
2 143 14 22 25 26 20 18 18
3 105 8 9 23 24 11 17 13

average 105.08 1 133 25 20 16 25 19 22 6
2 143 14 22 25 26 20 18 18
3 105 8 9 23 24 11 17 13

Table 11.16: Results for network D008

249

11.4. UNCERTAIN DEMANDS

run total sent demand node
no. Γ � demand 171 172 173 174 175

1 0.0 5.28 79 19 15 20 10 15
2 0.0 5.33 79 19 15 20 10 15
3 0.0 5.17 79 19 15 20 10 15
4 0.0 5.17 79 19 15 20 10 15
5 0.0 5.31 79 19 15 20 10 15
6 0.0 4.83 79 19 15 20 10 15
7 0.0 5.28 79 19 15 20 10 15
8 0.0 5.28 79 19 15 20 10 15
9 0.0 5.27 79 19 15 20 10 15

10 0.0 5.25 79 19 15 20 10 15

average 5.22 79 19 15 20 10 15

11 0.5 6.38 87 20 15 25 12 15
12 0.5 6.42 91 24 15 24 12 16
13 0.5 6.34 87 24 15 20 12 16
14 0.5 6.27 87 20 15 24 12 16
15 0.5 6.42 86 24 15 21 10 16
16 0.5 6.44 88 25 15 21 11 16
17 0.5 6.52 85 22 15 22 11 15
18 0.5 6.44 87 21 15 24 12 15
19 0.5 6.11 91 26 15 23 11 16
20 0.5 6.44 88 21 15 24 12 16

average 6.38 87.7 22.7 15.0 22.8 11.5 15.7

21 1.0 8.09 97 26 15 28 12 16
22 1.0 8.16 97 26 15 28 12 16
23 1.0 8.16 97 26 15 28 12 16
24 1.0 7.91 97 26 15 28 12 16
25 1.0 8.08 97 26 15 28 12 16
26 1.0 8.12 97 26 15 28 12 16
27 1.0 8.12 97 26 15 28 12 16
28 1.0 8.05 97 26 15 28 12 16
29 1.0 8.14 97 26 15 28 12 16
30 1.0 8.17 96 25 15 28 12 16

average 8.10 96.9 25.9 15 28 12 16

Table 11.17: Results for network D009

250

CHAPTER 11. COMPUTATIONAL RESULTS: NUMERICAL TESTS

run total sent demand node
no. Γ � com demand 165 166 167 168 169 170 171

1 0.0 64.73 1 104 19 11 15 11 13 17 18
2 120 14 18 18 19 17 19 15
3 96 15 16 15 12 16 10 12

2 0.0 64.00 1 104 19 11 15 11 13 17 18
2 120 14 18 18 19 17 19 15
3 96 15 16 15 12 16 10 12

3 0.0 64.64 1 104 19 11 15 11 13 17 18
2 120 14 18 18 19 17 19 15
3 96 15 16 15 12 16 10 12

4 0.0 60.83 1 104 19 11 15 11 13 17 18
2 120 14 18 18 19 17 19 15
3 96 15 16 15 12 16 10 12

5 0.0 63.83 1 104 19 11 15 11 13 17 18
2 120 14 18 18 19 17 19 15
3 96 15 16 15 12 16 10 12

6 0.0 66.81 1 104 19 11 15 11 13 17 18
2 120 14 18 18 19 17 19 15
3 96 15 16 15 12 16 10 12

7 0.0 61.26 1 104 19 11 15 11 13 17 18
2 120 14 18 18 19 17 19 15
3 96 15 16 15 12 16 10 12

8 0.0 64.79 1 104 19 11 15 11 13 17 18
2 120 14 18 18 19 17 19 15
3 96 15 16 15 12 16 10 12

9 0.0 64.50 1 104 19 11 15 11 13 17 18
2 120 14 18 18 19 17 19 15
3 96 15 16 15 12 16 10 12

10 0.0 64.36 1 104 19 11 15 11 13 17 18
2 120 14 18 18 19 17 19 15
3 96 15 16 15 12 16 10 12

average 63.93 1 104 19 11 15 11 13 17 18
2 120 14 18 18 19 17 19 15
3 96 15 16 15 12 16 10 12

11 0.5 84.09 1 121 24 15 15 15 15 17 20
2 132 15 20 18 24 18 19 18
3 113 16 19 18 14 18 12 16

12 0.5 79.55 1 124 23 13 15 14 18 17 24
2 131 15 20 18 20 18 20 20
3 114 17 19 16 14 18 16 14

13 0.5 83.45 1 123 22 15 15 15 17 17 22
2 131 15 19 18 25 18 21 15
3 113 17 18 21 15 18 10 14

14 0.5 83.29 1 122 22 15 15 16 16 17 21
2 132 15 19 18 21 18 21 20
3 110 16 17 17 13 18 13 16

15 0.5 81.37 1 120 22 12 15 12 20 17 22
2 132 15 19 18 21 18 21 20
3 108 17 17 16 13 18 14 13

16 0.5 79.42 1 123 20 15 15 18 16 17 22
2 129 15 18 18 23 18 21 16
3 114 15 20 21 16 18 10 14

251

11.4. UNCERTAIN DEMANDS

run total sent demand node
no. Γ � com demand 165 166 167 168 169 170 171

17 0.5 80.01 1 127 27 15 15 15 14 17 24
2 130 15 20 18 22 18 20 17
3 111 17 19 16 13 18 12 16

18 0.5 80.59 1 123 20 13 15 16 18 17 24
2 133 15 20 18 25 18 21 16
3 114 17 18 20 17 18 10 14

19 0.5 79.59 1 120 21 15 15 17 15 17 20
2 133 15 19 18 21 18 25 17
3 118 17 19 20 17 18 11 16

20 0.5 82.14 1 125 24 14 15 18 16 17 21
2 128 15 19 18 20 18 21 17
3 111 16 20 18 15 16 12 14

average 81.35 1 122.8 22.5 14.2 15.0 15.6 16.5 17.0 22.0
2 131.1 15.0 19.3 18.0 22.2 18.0 21.0 17.6
3 112.6 16.5 18.6 18.3 14.7 17.8 12.0 14.7

21 1.0 119.45 1 140 28 15 15 20 20 17 25
2 144 15 20 18 25 18 28 20
3 131 17 20 23 17 18 16 20

22 1.0 114.03 1 140 28 15 15 20 20 17 25
2 144 15 20 18 25 18 28 20
3 131 17 20 23 17 18 16 20

23 1.0 114.89 1 140 28 15 15 20 20 17 25
2 144 15 20 18 25 18 28 20
3 131 17 20 23 17 18 16 20

24 1.0 115.30 1 140 28 15 15 20 20 17 25
2 144 15 20 18 25 18 28 20
3 131 17 20 23 17 18 16 20

25 1.0 119.25 1 140 28 15 15 20 20 17 25
2 144 15 20 18 25 18 28 20
3 131 17 20 23 17 18 16 20

26 1.0 113.63 1 140 28 15 15 20 20 17 25
2 144 15 20 18 25 18 28 20
3 131 17 20 23 17 18 16 20

27 1.0 119.34 1 140 28 15 15 20 20 17 25
2 144 15 20 18 25 18 28 20
3 131 17 20 23 17 18 16 20

28 1.0 117.78 1 140 28 15 15 20 20 17 25
2 144 15 20 18 25 18 28 20
3 131 17 20 23 17 18 16 20

29 1.0 121.31 1 140 28 15 15 20 20 17 25
2 144 15 20 18 25 18 28 20
3 131 17 20 23 17 18 16 20

30 1.0 115.43 1 140 28 15 15 20 20 17 25
2 144 15 20 18 25 18 28 20
3 131 17 20 23 17 18 16 20

average 117.22 1 140 28 15 15 20 20 17 25
2 144 15 20 18 25 18 28 20
3 131 17 20 23 17 18 16 20

Table 11.18: Results for network D010

252

CHAPTER 11. COMPUTATIONAL RESULTS: NUMERICAL TESTS

For all problem instances, the amount of delivered demand units increases with

an increasing value of Γ. Hence the objective, that an increasing value of Γ

leads to a solution which is more robust is fulfilled.

We can observe that the ant algorithm runs very stable, especially for Γ = 0 and

Γ = 1.0. This means that when comparing the 10 runs for one problem instance

and a fixed value of Γ, the different runs do not differ notably. For Γ = 0 and

Γ = 1.0, we often experienced 10 identical solutions for the demand delivery.

For Γ = 0.5, differences between the runs occur, but they are still moderate.

These observations hold for both the single-commodity and the multicommodity

problem instances.

For all problem instances, we can see that the computational time increases with

increasing value of Γ. For larger values of Γ, the generated demand values at the

demand nodes are larger in general. Therefore, more ants will choose their way

through the original network instead of using the additional arcs which directly

lead to the sink node. Having fixed capacities on the arcs, it then becomes more

difficult for the ants to find a cheap free path to the sink node and therefore the

probability of dead lock situations, which lead to a restart of all ants, increases.

This leads to larger computational times.

For the largest considered problem instance, network D010 (25 layers, 172 nodes,

1208 arcs, 3 commodities), the average computational time is 117 seconds (case

Γ = 1.0). In view of the problem size, which corresponds to realistic problem

sizes in practice, the running time is rather low. This indicates that real-world

problem instances are computationally tractable with the ant algorithm.

11.5 Summary and Conclusions

In this chapter, the heuristic methods that were developed in this thesis were

evaluated by means of randomly generated fully layered networks.

In Section 11.2, computation time and performance of the SOS 2 Branch and

Bound method, see Section 5.3, the ant algorithm for the threshold minimum

cost flow problem (TMCFP), as proposed in Section 5.1 and the Cost Scaling

Algorithm were compared by means of several TMCFPs.

While the SOS 2 B&B method expectedly has the best performance concerning

total cost and threshold violations, its computation time increases immensely

with growing problem sizes. The ant algorithm significantly reduces the number

of threshold violations, compared to the CSA solutions, and has a faster running

times than the SOS 2 B&B method. However, a significant increase in the total

253

11.5. SUMMARY AND CONCLUSIONS

cost, compared to the solutions of the CSA, is to be observed.

Therefore, for MCFPs with additional threshold claims, for large problem in-

stances, the advantages and disadvantages of cheap solutions violating the thresh-

old claims and more expensive solutions that violate the threshold claims on

significantly less arcs, must be weighted in order to choose either the CSA or

the ant algorithm. For small problem instances, we recommend the exact SOS

2 B&B method.

In Section 11.3, computation time and performance of the ant algorithm for

Gaussian distributed costs, as presented in Subsection 6.3.2, and the results of

the multicommodity extension of the algorithm of Bertsimas & Sim for mini-

mum cost flow problems with uncertain costs, as presented in Section 6.2, were

compared by means of several MCFPs with uncertain costs.

As it was to be expected, the exact algorithm of Bertsimas and Sim is superior

in solution quality, i.e. the total costs (best case and worst case) of the Bert-

simas and Sim solutions are lower than those of the ant solutions. Concerning

the running time, the ant algorithm is significantly faster for large problem in-

stances and for multicommodity problems. Furthermore, the trade-off between

computational time and performance is reasonable.

In Section 11.4, the ant algorithm for NFPs with uncertain demands, as pre-

sented in Section 8.2, was examined, where solution robustness, stability and

computational time were in the focus of the test runs.

For all considered problem instances, the ant solutions became more robust with

an increasing value of Γ.

Concerning stability, we observed that the ant algorithm runs very stable for

extreme values of Γ, i.e. Γ = 0 and Γ = 1 and stable with moderate fluctuations

for an intermediate value of Γ, i.e. Γ = 0.5. These observations hold for both

the single-commodity and the multicommodity case.

For both single-commodity and multicommodity problem instances, the com-

putational time of the ant algorithm was rather low. Therefore the algorithm

might be suitable even for problem instances in real-world size.

254

Chapter 12

Computational Results:

Reference Model

According to [93], a reference model is a model which represents a class of issues

and serves as a point of reference for the development of specific models.

In order to construct a reference model for a supply chain network, we focus on

the production and transportation stages of a supply chain. We consider a real-

world supply chain network with uncertain demands. The aim is to compare

the results of different presented optimization approaches for this problem. We

refer to this model as “reference model”.

The reference model is based on a real-world network structure and real-world

input data given by the industry partner Henkel KGaA.

In the first stage of the supply chain, the resources are mixed to produce different

products in eight possible mixing lines in six different production sites. After

mixing, an interexchange of the mixed products between the different lines and

sites is possible, but not mandatory.

In the next stage, the mixed products are filled into their final containers (bot-

tles, cans, cartons, etc.) in the filling lines of the same six production sites.

Both the filling and mixing lines have a limited capacity which is dependent on

the respective commodity.

After filling, the final products are transported to their next destination, to one

out of 15 warehouses. At the warehouses, the products are ready for distribution

to the customers or for storage.

Several hundred commodities are grouped to four major commodity groups.

255

Each commodity group can be represented by a characteristic commodity for

this group, therefore we focus on four commodities in the following.

First we give all input data, i.e. the network structure and the costs and ca-

pacities, for the reference model. Afterwards, we apply different optimization

approaches, which we presented in previous chapters, to the reference model.

The following figure illustrates the structure of the underlying network.

2 8 16 22 28 36 42

43

9 29 44

3 17 23 37 45

10 30 46

47

4 11 18 24 31 38 48

1 49

5 12 19 25 32 39 50

51

13 33 52

6 20 26 40 53

14 34 54

55

7 15 21 27 35 41 56

=⇒

=⇒

=⇒

=⇒

=⇒

=⇒

=⇒

=⇒

=⇒

=⇒

=⇒

=⇒

=⇒

=⇒

=⇒

mixing transport filling transport

Figure 12.1: Reference model: Multicommodity minimum cost flow problem

The different layers of the network correspond to the stages of the supply chain

planning: Mixing, transportation, filling and again transportation of the prod-

ucts. Nodes 8 to 15 correspond to the mixing lines of six different production

plants. Nodes 28 to 35 correspond to the filling lines. There is a possibility of

transportation between the mixing and the filling process. After the filling, the

products are transported to different warehouses, nodes 42 to 56.

256

CHAPTER 12. COMPUTATIONAL RESULTS: REFERENCE MODEL

We have costs for mixing, filling and transportation. The warehouses have a

certain basic demand of the products as well as a possible extra demand. The

specific input data is given in the following tables.

XXXXXXcommodity

arc
(2, 8) (3, 9) (3, 10) (4, 11) (5, 12) (6, 13) (6, 14) (7, 15)

1 2340 0 0 1121 897 1872 1872 897
2 1276 0 0 2226 1781 1781 1781 1021
3 0 2197 2197 0 0 977 1757 977
4 0 844 844 0 0 584 584 675

(a) Capacities on “mix” arcs

XXXXXXcommodity

arc
(22, 28) (23, 29) (23, 30) (24, 31) (25, 32) (26, 33) (26, 34) (27, 35)

1 1959 0 0 909 782 1522 1749 948
2 949 0 0 216 1634 1691 1684 872
3 0 1878 1655 0 0 845 1542 956
4 0 781 664 0 0 516 533 753

(b) Capacities on “fill” arcs

Table 12.1: Reference model: Arc capacities

The arc capacity for all not mentioned arcs is infinity.

(2, 8) (3, 9) (3, 10) (4, 11) (5, 12) (6, 13) (6, 14) (7, 15)

3276 3076 3076 3116 2493 2621 2621 1429

(a) Bundle capacities on “mix” arcs

(22, 28) (23, 29) (23, 30) (24, 31) (25, 32) (26, 33) (26, 34) (27, 35)

2743 2629 2317 1273 2288 2367 2449 1338

(b) Bundle capacities on “fill” arcs

Table 12.2: Reference model: Bundle capacities

The bundle capacity for all not mentioned arcs is infinity.

257

XXXXXXcommodity

arc
(2, 8) (3, 9) (3, 10) (4, 11) (5, 12) (6, 13) (6, 14) (7, 15)

1 2 100000 100000 1 2 2 1 2
2 1 100000 100000 1 1 2 2 1
3 100000 1 1 100000 100000 1 1 2
4 100000 1 2 100000 100000 1 1 1

(a) Costs on “mix” arcs

XXXXXXcommodity

arc
(22, 28) (23, 29) (23, 30) (24, 31) (25, 32) (26, 33) (26, 34) (27, 35)

1 9 100000 100000 5 12 8 5 5
2 10 100000 100000 8 12 10 5 12
3 100000 7 6 100000 100000 11 10 6
4 100000 4 7 100000 100000 5 5 3

(b) Costs on “fill” arcs

P
P
P
PPnode

node
22 23 24 25 26 27

16 0 0 9 36 19 34
17 0 0 9 36 19 34
18 9 9 0 34 18 22
19 36 36 34 0 3 22
20 19 19 18 3 0 23
21 34 34 22 22 23 0

(c) Costs on “transportation”

arcs for commodities 1 and

2

P
P
P
PPnode

node
22 23 24 25 26 27

16 0 0 5 17 9 16
17 0 0 5 17 9 16
18 5 5 0 16 9 10
19 17 17 16 0 2 10
20 9 9 9 2 0 11
21 16 16 10 10 11 0

(d) Costs on “transportation”

arcs for commodities 3 and

4

P
P
P
PPnode

node
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

36 3 11 14 10 34 12 4 5 12 22 36 35 43 36 5
37 10 36 6 9 34 22 34 10 11 22 36 3 36 34 5
38 7 19 54 9 11 12 18 40 18 22 25 16 66 25 31
39 10 34 3 11 14 19 22 19 18 23 24 34 36 23 28
40 9 34 10 36 6 16 22 22 17 20 24 34 42 36 34
41 9 11 7 19 54 6 7 12 3 53 35 42 34 23 24

(e) Costs on “transportation” arcs for commodities 1 and

2

P
P
P
PPnode

node
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

36 2 5 7 5 16 6 2 2 6 10 17 17 21 17 3
37 5 17 3 5 16 11 16 5 5 10 17 2 17 16 3
38 4 9 26 4 5 6 9 19 9 11 12 8 32 12 15
39 5 16 2 5 7 9 10 9 9 11 12 16 17 11 13
40 5 16 5 17 3 8 11 10 8 9 11 17 20 17 16
41 4 5 4 9 26 3 4 6 2 26 17 20 16 11 12

(f) Costs on “transportation” arcs for commodities 3 and

4

Table 12.3: Reference model: Arc costs

The arc cost for all not mentioned arcs is zero.

Note that some mix and fill arcs have a cost value of 100000 for certain com-

modities. As it can be seen in Table 12.1, these arcs have a capacity of 0 for the

respective commodities and are therefore not feasible for these commodities.

258

CHAPTER 12. COMPUTATIONAL RESULTS: REFERENCE MODEL

XXXXXXcommodity

node
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

1 103 101 104 103 104 78 77 107 115 97 138 103 92 89 90
2 80 83 77 78 81 67 62 88 89 75 119 86 74 72 74
3 80 79 75 73 79 58 58 87 85 73 107 77 74 64 66
4 16 17 17 16 17 13 13 19 19 17 24 17 16 14 15

(a) Nominal demand

XXXXXXcommodity

node
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

1 30 30 31 30 31 23 23 32 34 29 41 31 27 26 26
2 24 24 23 23 24 20 18 26 26 22 35 25 22 21 22
3 23 23 22 22 23 17 17 26 25 21 32 23 22 19 19
4 4 5 5 5 5 3 4 5 5 5 7 5 4 4 4

(b) Extra demand

Table 12.4: Reference model: Demands

The demand for all not mentioned nodes is zero. The maximum demand per

demand node (warehouse) and commodity is the sum of nominal and extra

demand.

For all demand nodes, we have storage and penalty costs.

XXXXXXcommodity

node
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

1 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35
2 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49
3 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57
4 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82

(a) Penalty costs

XXXXXXcommodity

node
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

(b) Storage costs

Table 12.5: Reference model: Penalty and storage costs

In the following sections, we apply the ant algorithm for uncertain demands,

the transformation algorithm of uncertain demands to uncertain costs, the re-

coverable robustness algorithm and the multicommodity L-shaped algorithm to

the reference model.

259

12.1. ANT ALGORITHM FOR UNCERTAIN DEMANDS

12.1 Ant Algorithm for Uncertain Demands

In order to apply the ant algorithm for uncertain demands, we extend the net-

work to a single-source-single-sink network as described in Section 8.2.1.

We use the following parameter settings:

parameter setting

α 3.0

β 1.0

ρ 0.5

ηmin 0.2

τmin 1.0

τmax 110

parameter setting

ςpher 2.0

ςstoragedemand 1.0

ςpenaltydemand 0.5

ςstorageedge 0.1

ςpenaltyedge 0.2

Table 12.6: Reference model - ant algorithm: Parameter settings

The settings for the parameters α, β, ρ, ηmin and τmin are our standard settings

for the ant algorithm for uncertain demand values, cf. Section 11.4. The upper

pheromone bound τmax was chosen experimentally dependent on the scale of

the demand values. The settings for the parameters ςpher, ςstoragedemand, ς
penalty
demand,

ςstorageedge and ςpenaltyedge were taken over from the numerical tests in Section 11.4.

In order to draw meaningful conclusions, we do not only consider one run of the

ant algorithm, but the average of 20 runs. This is important because the results

of the random-based ant algorithm slightly differ from run to run.

First, we consider the extra demand at the warehouses (nodes 42 to 56). As the

robustness parameter Γ controls the level of protection against data uncertainty,

we expect that for Γ = 0, no extra demand is delivered to the warehouses, for

Γ = 1 the full extra demand is delivered to the warehouses and for increasing

Γ, the amount of delivered extra demand is also increasing.

We examine the results for Γ = 0, Γ = 0.1, . . ., Γ = 1. The following table

presents the total delivered extra demand at the warehouses for these values of

Γ.

260

CHAPTER 12. COMPUTATIONAL RESULTS: REFERENCE MODEL

P
P
P
P
P
P
P
P
P

commodity

Γ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 0 0 0 0 64.5 164.8 293.8 396.8 444 444 444
2 0 0 0 1.1 70.8 165.3 262.7 325.7 355 355 355
3 0 0 0 1.6 78.9 168.8 260.8 312.5 334 334 334
4 0 0 0 0.9 19.5 42.7 58.1 66.1 69 69 69

Table 12.7: Reference model - ant algorithm: Delivered extra demand for different

values of Γ

The following figure illustrates the table data.

(a) Total extra demand

(b) Percentaged extra demand

Figure 12.2: Reference model - ant algorithm: Delivered extra demand for different

values of Γ

261

12.1. ANT ALGORITHM FOR UNCERTAIN DEMANDS

The increase of the amount of delivered extra demand with increasing Γ corre-

sponds to our expectations. But we have to note that the first units of extra

demand are not delivered until Γ = 0.3 and that already for Γ = 0.8, the full

extra demand is delivered.

As the penalty costs are increasing from commodity 1 to commodity 4, i.e.

commodity 4 has the highest penalty cost, we can observe that for a fixed value

of Γ, where 0.3 ≤ Γ ≤ 0.8, most extra demand (in percent) is delivered for

commodity 4 and least for commodity 1.

In the following, we consider the medium robust case Γ = 0.5 in detail.

Increased Storage Costs Now we want to examine the change in the deliv-

ered extra demand for increased storage cost. For this purpose, we increase the

storage cost of commodity 2 from 6 to 24 at all warehouses.

The following table lists the delivered demand at warehouses (wh) 1 to 15 for

Γ = 0.5 and all commodities (com).

H
H
Hcom

wh
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 124.2 109.6 110.8 111 110.3 85.1 93.8 123.4 142.9 104.4 144.2 113.2 99.3 96.1 97.5
2 101.9 92.6 87.4 86.9 90.6 73.9 72.3 109.1 112 82.1 126.8 95.1 81.7 77.3 80.6
3 103 86 85 80.3 85.6 66.6 62.4 113 90.7 86.8 125.1 85 79.6 82.7 72
4 20 19.5 19.7 19.1 19.4 14.9 15.5 24 20.6 19.8 28.8 19.3 18.3 18 16.8

(a) Original storage costs

H
H
Hcom

wh
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 129.4 109.3 114.3 111.3 112.8 89.1 96.5 127 145.7 106.6 144.9 113.7 99.9 95.7 98
2 99.9 90.3 82.2 82.8 87.7 72.4 68.2 105.2 113 78.9 123.3 92 79.9 76.4 79.4
3 103 92.4 89.9 85.2 86.4 70.1 66.6 113 95.9 82.3 120 87.9 86.5 83 77.2
4 20 21 20.1 18.8 20.2 15.9 16.2 24 22.7 19.2 27.3 20.7 18.7 18 17.6

(b) Increased storage costs

Table 12.8: Reference model - ant algorithm: Delivered demand for original and

increased storage costs for commodity 2

As we would expect, the amount of delivered demand of commodity 2 is reduced,

as surplus units of this commodity could probably cause higher storage costs.

The amount of delivered demand of commodities 1, 3 and 4 is increased, as the

storage of these products is comparatively cheaper now.

262

CHAPTER 12. COMPUTATIONAL RESULTS: REFERENCE MODEL

Figure 12.3: Reference model - ant algorithm: Change in the delivered extra demand

for increased storage costs for commodity 2

Figure 12.3 shows the change in the delivered extra demand for the case that

the storage costs for commodity 2 are increased. Here the average change per

commodity is considered.

Increased Penalty Costs Moreover, we examine an increase of the penalty

costs for warehouses 11 to 15 and commodities 1 and 2 only. We expect that

for these warehouses and these commodities, the amount of delivered extra

demand will be increased, as possibly missing units would cause higher penalty

costs than before. Again, we consider the medium robust case only, i.e. Γ = 0.5.

The penalty costs for commodities 1 and 2 and warehouses 11 to 15 are doubled.

H
H
H
H
H
H

wh

com
1 2 sum

11 144.2 126.8 271
12 113.2 95.1 208.3
13 99.3 81.7 181
14 96.1 77.3 173.4
15 97.5 80.6 178.1

(a) Original penalty cost: Commodities

1 and 2

H
H
H
H
H
H

wh

com
1 2 sum

11 148.9 132.1 281
12 114.7 97.2 211.9
13 110.2 81.9 192.1
14 96.3 81.7 178
15 98.2 83 181.2

(b) Increased penalty costs: Commodi-

ties 1 and 2

263

12.1. ANT ALGORITHM FOR UNCERTAIN DEMANDS

H
H
H
H
H
H

wh

com
3 4 sum

11 125.1 28.8 153.9
12 85 19.3 104.3
13 79.6 18.3 97.9
14 82.7 18 100.7
15 72 16.8 88.8

(c) Original penalty costs: Commodi-

ties 3 and 4

H
H
H
H
H
H

wh

com
3 4 sum

11 125.1 29.6 154.7
12 83.5 19.4 102.9
13 78.9 18.2 97.1
14 79.9 17.7 97.6
15 72.8 16.3 89.1

(d) Increased penalty costs: Com-

modities 3 and 4

Table 12.9: Reference model - ant algorithm: Delivered extra demand for original

and increased penalty costs for commodities 1 and 2

For warehouses 1 to 10, the amount of delivered demand units remains constant.

The following figures illustrates the table data.

(a) Commodities 1 and 2 (b) Commodities 3 and 4

Figure 12.4: Reference model - ant algorithm: Change in the delivered extra de-

mand for increased penalty costs for commodities 1 and 2 at warehouses

WH11, WH12, WH13, WH14 and WH15

264

CHAPTER 12. COMPUTATIONAL RESULTS: REFERENCE MODEL

(a) Commodities 1 and 2 (b) Commodities 3 and 4

Figure 12.5: Reference model - ant algorithm: Percentual change in the delivered

extra demand for increased penalty costs for commodities 1 and 2 at

warehouses WH11, WH12, WH13, WH14 and WH15

We can see that for warehouses 11 to 15, the amount of delivered extra demand

for commodities 1 and 2 is slightly higher than before the increase of the penalty

costs. For commodities 3 and 4, however, the amount of delivered extra demand

is nearly equal or marginally lower than before.

12.2 Transformation of Uncertain Demands to

Uncertain Costs

In this section, we apply the transformation of uncertain demands to uncertain

costs algorithm which we presented in Section 7.1. In order to solve the resulting

uncertain cost problem, we apply the ant algorithm for uncertain cost values,

as presented in Section 6.3.

The parameter setting for the ant algorithm is the following:

parameter setting

α 1.0

β 1.0

ρ 0.5

ηmin 0.001

parameter setting

τmin 1.0

τmax 110

ςpher 5.0

Table 12.10: Reference model - transformation algorithm: Ant algorithm parameter

settings

265

12.2. TRANSFORMATION OF UNCERTAIN DEMANDS TO UNCERTAIN

COSTS

The settings for the parameters α, β and τmin are our standard settings for the

ant algorithm for uncertain cost values. We decided to increase the pheromone

evaporation coefficient ρ to 0.5, such that it is easier for the ants to drop infor-

mation about solutions which were only valueable for the current iteration’s cost

values. As the additional arcs have rather high cost values, we had to decrease

the lower bound for the visibility values τmin, because otherwise, all additional

arcs would have the same visibility τmin. The setting for the upper pheromone

bound τmax was taken over from Section 12.1. In order to avoid early stagnation

behavior, we introduce a parameter ςpher as defined in Section 8.2 and set it to

5.0.

Differing from the settings given in Subsection 6.3.2 for the random generation

of the cost values, the standard deviation σk
ij for arc (i, j) and commodity k is

set to σk
ij :=

1
40d

k
ij , where d

k
ij is the extra cost value for arc (i, j) and commodity

k. This modification is based on the fact that the cost intervals for the reference

model are very large. The choice of the factor 1
20 instead of 1

4 , which was used in

Subsection 6.3.2, ensures that the generated cost values are not “too far” from

the expected value ckij + Γdkij .

After the transformation of uncertain demands to uncertain costs, we apply the

ant algorithm to the new robust optimization problem for different values of Γ,

specifically Γ = 0, 0.1, . . . , 1.

In the following table, the delivered extra demand units in the optimal solution

are listed.

P
P
P
P
P
P
P

P
P

commodity

Γ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 0 0 0 2.7 16.0 50.4 112.1 203.4 334.0 423.8 444
2 0 0 0 11.6 39.7 91.0 150.9 206.7 286.6 350.0 355
3 0 0 5 32.0 65.5 121.2 170.3 215.4 284.6 332.0 334
4 0 1 8 16.0 27.6 35.4 45.0 54.3 62.6 69.0 69

Table 12.11: Reference model - transformation algorithm: Delivered extra demand

for different values of Γ

The following figure illustrates the table data.

266

CHAPTER 12. COMPUTATIONAL RESULTS: REFERENCE MODEL

(a) Total extra demand

(b) Percentaged extra demand

Figure 12.6: Reference model - transformation algorithm: Delivered extra demand

for different values of Γ

As we expected, the amount of delivered extra units increases with increasing

Γ. In contrast to the ant algorithm for uncertain demands, cf. Figure 12.2, the

number of delivered extra units increases more uniformly in the whole interval

0 ≤ Γ ≤ 1.

We can see that the different commodities are delivered with extra demand in

decreasing order of the corresponding penalty costs, i.e. commodity 4, which

has the highest penalty costs, receives (percentaged) most extra units while

commodity 1, which has the lowest penalty costs, receives (percentaged) least

extra units. This behavior matches matches the behavior of the ant algorithm

for uncertain demands, cf. Figure 12.2.

Again, we consider the medium robust case Γ = 0.5 in detail.

267

12.2. TRANSFORMATION OF UNCERTAIN DEMANDS TO UNCERTAIN

COSTS

Increased Storage Costs In order to examine the change in the delivered

extra demand for increased storage cost, we increase the storage cost of com-

modity 2 from 6 to 24 at all warehouses. The following tables lists the delivered

extra units for original and modified storage costs.

H
H
Hcom

wh
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 107.3 101.7 105.9 103.8 107.5 79.6 81.1 119.8 125.2 98.7 141.9 104.8 92.7 91.4 90
2 90 84.4 85 82.1 87.3 73.7 66.2 101 100.9 82.1 127.7 88.4 76.3 76.9 74
3 92.8 83.9 84.8 79.5 85.8 64.5 63 102.3 93.6 83.7 123.7 81.8 77.2 73.3 66.3
4 18.6 18.8 19.9 18.2 19.9 14.4 15 22.2 21.3 20.3 29.4 18.9 17.2 16.4 15.9

(a) Original storage costs

H
H
Hcom

wh
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 111.6 101.1 107.3 103.2 106 80.8 81.7 119.8 125.2 97.7 144.7 105 93.7 91 90
2 88.6 83.8 82.8 80.2 85.9 71.2 63.2 100.7 99.2 79.3 122.9 87.9 73.9 73.1 73
3 92 83.3 85.4 80.3 86.3 66.1 63.4 104 93.4 83 123.6 83.1 79.4 73.2 66.1
4 18.8 18.2 19.2 18.3 19.6 15.1 15.3 22.9 21 20.5 28.6 19.3 17.8 16.9 16.4

(b) Increased storage costs

Table 12.12: Reference model - transformation algorithm: Delivered demand for

original and increased storage costs for commodity 2

The following illustrates the table data.

Figure 12.7: Reference model - transformation algorithm: Change in the delivered

extra demand for increased storage costs for commodity 2

For increased storage costs for commodity 2, the delivered extra demand for

commodity 2 is approx. 2.2% lower than for the original penalty costs. For

commodities 1, 3 and 4, the delivered extra demand is approx. 0.5% higher

than before. These results corresponds with our expectations and are in general

comparable to the behavior of the ant algorithm for uncertain demands, cf.

268

CHAPTER 12. COMPUTATIONAL RESULTS: REFERENCE MODEL

Figure 12.3. However, for the transformation algorithm, the change in the

number of delivered extra demand units is lower.

Increased Penalty Costs Moreover, we consider a doubling in the penalty

costs for commodities 1 and 2 at warehouses 11 to 15. We obtain the following

results:

H
H
H
H
H
H

wh

com
1 2 sum

11 141.9 127.7 269.6
12 104.8 88.4 193.2
13 92.7 76.3 169
14 91.4 76.9 168.3
15 90 74 164

(a) Original penalty costs: Commodi-

ties 1 and 2

H
H
H
H
H
H

wh

com
1 2 sum

11 154 138.4 292.4
12 106 92.8 198.8
13 99.2 82.6 181.8
14 98.2 79.4 177.6
15 90 76.9 166.9

(b) Increased penalty costs: Com-

modities 1 and 2

H
H
H
H
H
H

wh

com
3 4 sum

11 123.7 29.4 153.1
12 81.8 18.9 100.7
13 77.2 17.2 94.4
14 73.3 16.4 89.7
15 66.3 15.9 82.2

(c) Original penalty costs: Commodi-

ties 3 and 4

H
H
H
H
H
H

wh

com
3 4 sum

11 118.6 27.9 146.5
12 78.8 18.9 97.7
13 74.8 17.2 92
14 68 15.8 83.8
15 66.1 15.3 81.4

(d) Increased penalty costs: Com-

modities 3 and 4

Table 12.13: Reference model - transformation algorithm: Delivered extra demand

for original and increased penalty costs for commodities 1 and 2

The following figures illustrates the table data.

269

12.2. TRANSFORMATION OF UNCERTAIN DEMANDS TO UNCERTAIN

COSTS

(a) Commodities 1 and 2 (b) Commodities 3 and 4

Figure 12.8: Reference model - transformation algorithm: Change in the delivered

extra demand for increased penalty costs for commodities 1 and 2 at

warehouses WH11, WH12, WH13, WH14 and WH15

(a) Commodities 1 and 2 (b) Commodities 3 and 4

Figure 12.9: Reference model - transformation algorithm: Percentual change in the

delivered extra demand for increased penalty costs for commodities 1

and 2 at warehouses WH11, WH12, WH13, WH14 and WH15

For commodities 1 and 2, the delivered demand at warehouses 11 to 15 is higher

for the modified penalty costs than for the original penalty costs, while the

delivered extra demand at warehouses 11 to 15 is lower than before.

The change in the delivered extra demand is comparable to the results of ant

algorithm for uncertain demands, cf. Figures 12.4 and 12.5, with only small

differences in the amounts of delivered extra units.

270

CHAPTER 12. COMPUTATIONAL RESULTS: REFERENCE MODEL

In general, the results of the transformation algorithm are similar to those of the

ant algorithm for uncertain demands in Section 12.1. However, small differences

concerning the influence of the robustness parameter can be recognized. For

the ant algorithm for uncertain demands, the increase of the number of sent

extra demand units is limited to the interval from Γ = 0.3 to Γ = 0.8. For

the transformation algorithm, the increase of sent additional demand units is

distributed over the whole interval [0, 1] for Γ. However, the relation between

the curves for the four different commodities is similar for both approaches.

12.3 Recoverable Robustness

In this section, we apply the theory of recoverable robustness (see Section 8.3)

to the reference model.

We choose a translated demand scenario set, as proposed in Section 8.3.3, based

on the lower and upper demand bounds given at the beginning of this chapter.

As a fixed value for the recovery budget is not given in advance, we add the

recovery budget D as an optimization variable with weight 1 to the objective

function, such that the objective function corresponds to the total cost c⊤x+D.

The delivered demand in the optimal solution of the LRP is listed in the follow-

ing table. The recovery budget in the optimal solution is 15500.

H
H
Hcom

wh
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 110.5 108.5 111.8 110.5 111.8 83.8 82.8 137.7 123.5 104.3 147.5 110.8 98.8 95.5 96.5
2 110 89 82.8 83.8 87 72 66.5 120.5 95.5 80.5 127.8 92.3 79.5 77.3 79.5
3 108.8 84.8 87.5 78.5 84.8 69.0 62.3 93.5 91.3 85.1 122.2 82.8 79.5 87.8 70.8
4 17 18.3 18.3 17.3 18.3 13.8 14 21 20.3 18.3 25.8 18.3 17 15 16

Table 12.14: Reference model - recoverable problem: Delivered demand at ware-

houses 1 to 15

The following figure illustrates the delivered extra demand in percent at the

warehouses 1 to 15.

271

12.3. RECOVERABLE ROBUSTNESS

Figure 12.10: Reference model - recoverable problem: Delivered extra demand in

percent

Figure 12.10 shows the delivered extra demand, where the average change per

commodity is considered.

As we would expect, the percentaged extra demand increases from commodity

1 to commodity 3, since the penalty costs also increase from commodity 1 to 3.

However, for commodity 4, which has even higher penalty costs than commodity

3, the percentaged delivered extra demand is less than for the other commodities.

This can be explained by the fact that the total number of demand units is

much less for commodity 4 than for the other commodities, while the recovery

budget is fixed over all commodities. Hence for commodity 4, the percentage of

unavailable units that can be cushioned by the recovery budget is higher than

for the other commodities.

As in the recoverable robustness approach, the robustness of the solution is

not controllable via a robustness parameter, a detailled comparison with the

results of the ant algorithm for uncertain demands, cf. Section 12.1, and the

transformation algorithm, cf. Section 12.2, is rather difficult. However, we

note that the low amount of delivered extra demand units for commodity 4 is a

special characteristic of the recoverable robustness approach.

Increased Storage Costs Now we consider the LRP with increased storage

costs for commodity 2. The optimal recovery budget is now 16503.

H
H
Hcom

wh
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 110.5 108.5 111.8 110.5 111.8 83.8 82.8 115 123.5 104.3 147.5 110.8 98.8 95.5 96.5
2 86 89 82.75 83.8 87 72 66.5 119.4 95.5 80.5 127.8 92.3 79.5 77.3 79.5
3 108.8 84.8 83.9 78.5 84.8 65.6 62.3 93.5 91.3 81.5 118 82.8 79.5 87.8 70.8
4 17 18.3 18.3 17.3 18.3 13.8 14 21 20.3 18.3 25.8 18.3 17 15 16

Table 12.15: Reference model - recoverable problem: Delivered demand for increased

storage costs for commodity 2

272

CHAPTER 12. COMPUTATIONAL RESULTS: REFERENCE MODEL

Figure 12.11: Reference model - recoverable problem: Change in the delivered extra

demand for increased storage costs for commodity 2

As before for the ant algorithm for uncertain demands, see Figures 12.3 and 12.7,

the amount of delivered demand of commodity 2 is reduced, as this could proba-

bly cause higher storage costs. The amount of delivered demand of commodities

1 and 3 is also reduced due to the higher recovery budget, which implicates that

a higher total sum of recovery costs can be coped with. Note again that the

limited recovery budget is a special constraint for the recoverable robustness ap-

proach. For commodity 4, there is no further reduction as for this commodity

already fewer extra units were delivered than for all other commodities.

Increased Penalty Costs Finally, we examine the effects of an increase of

the penalty costs for commodities 1 and 2 at warehouses 1 to 15. The optimal

recovery budget is 13121.

H
H
H
H
H
H

wh

com
1 2 sum

11 147.5 127.8 275.3
12 110.8 92.3 203
13 98.8 79.5 178.3
14 95.5 77.3 172.8
15 96.5 79.5 176

(a) Original penalty costs: Commodi-

ties 1 and 2

H
H
H
H
H
H

wh

com
1 2 sum

11 189.5 162.8 352.3
12 141.78 117.3 259
13 125.8 101.5 227.3
14 121.5 98.3 219.8
15 96.5 79.5 176

(b) Increased penalty costs: Commodi-

ties 1 and 2

273

12.3. RECOVERABLE ROBUSTNESS

H
H
H
H
H
H

wh

com
3 4 sum

11 122.3 25.8 147.9
12 82.8 18.3 101
13 79.5 17 96.5
14 87.8 15 102.8
15 70.8 16 86.8

(c) Original penalty costs: Commodi-

ties 3 and 4

H
H
H
H

H
H

wh

com
3 4 sum

11 147 25.8 172.8
12 82.8 18.3 101
13 79.5 17 96.5
14 87.8 15 102.8
15 70.8 16 86.8

(d) Increased penalty costs: Com-

modities 3 and 4

Table 12.16: Reference model - recoverable problem: Delivered extra demand for

original and increased penalty costs for commodities 1 and 2

The change in the delivered extra demand is illustrated in the following figures.

(a) Commodities 1 and 2 (b) Commodities 3 and 4

Figure 12.12: Reference model - recoverable problem: Change in the delivered ex-

tra demand for increased penalty costs for commodities 1 and 2 at

warehouses WH11, WH12, WH13, WH14 and WH15

274

CHAPTER 12. COMPUTATIONAL RESULTS: REFERENCE MODEL

(a) Commodities 1 and 2 (b) Commodities 3 and 4

Figure 12.13: Reference model - recoverable problem: Percentual change in the de-

livered extra demand for increased penalty costs for commodities 1

and 2 at warehouses WH11, WH12, WH13, WH14 and WH15

For commodities 1 and 2 and for warehouses 11 to 14, the number of delivered

units increases, for warehouse 15, it remains stable. For commodities 3 and

4, the number of delivered units remains stable at warehouses 12 to 15 and

increased for warehouse 11. Though these results differ from those given in

Figures 12.4, 12.5, 12.8 and 12.9 for the ant algorithm for uncertain demands

and the transformation algorithm, the general tendency of the changes in extra

demand units is similar.

The decrease of the recovery budget can be explained by the fact that higher

penalty costs lead to a higher amount of produced units in order to avoid these

costs. Then the number of possible unavailable units decreases and the recovery

budget can be decreased.

12.4 Stochastic Two-Stage Linear Recourse Prob-

lem

Finally, we consider the given supply chain problem as stochastic two-stage

linear recourse problem. In order to solve the resulting optimization problem,

we apply the multicommodity version of the L-shaped algorithm, which we

developed in Section 9.2.

275

12.4. STOCHASTIC TWO-STAGE LINEAR RECOURSE PROBLEM

12.4.1 Single Time Period

For the two-stage linear recourse problem, we consider not only the lower and

upper bounds for the uncertain demand values, but three different scenarios

(sc) with a probability of
1

3
each. The demand data for scenarios 1, 2 and 3 are

given in the table below.

H
H
H
H
H

sc

wh
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 133 131 135 133 135 101 100 139 149 126 179 134 119 115 116
2 118 131 110 106 130 90 77 130 132 111 137 105 119 110 92
3 103 101 104 103 104 78 77 107 115 97 138 103 92 89 90

(a) Commodity 1

H
H
H
H
H

sc

wh
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 104 107 100 101 105 87 80 114 115 97 154 111 96 93 96
2 104 99 80 90 105 80 64 88 110 90 140 111 74 81 85
3 80 83 77 78 81 67 62 88 89 75 119 86 74 72 74

(b) Commodity 2

H
H
H
H
H

sc

wh
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 103 102 97 95 102 75 75 113 110 94 139 100 96 83 85
2 81 90 77 76 100 66 60 109 100 80 107 88 96 83 77
3 80 79 75 73 79 58 58 87 85 73 107 77 74 64 66

(c) Commodity 3

H
H
H
H
H

sc

wh
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 20 22 22 21 22 16 17 24 24 22 31 22 20 18 19
2 20 18 17 20 22 13 17 22 22 19 30 18 16 15 19
3 16 17 17 16 17 13 13 20 19 17 24 17 16 14 15

(d) Commodity 4

Table 12.17: Reference model - two-stage problem: Demand scenarios

These demand scenarios were also given by the industry partner Henkel KGaA.

We have the following relation between the interval data for the demand uncer-

tainty, as given at the beginning of this chapter, and the demand scenarios given

above: The demand value of the first scenario corresponds to the upper bound

of the uncertainty interval. The demand value of the third scenario corresponds

to the lower bound of the uncertainty interval. The demand value of the second

scenario is any value of the uncertainty interval, which corresponds to a likely

scenario in practice. The demand value of the second scenario therefore deter-

276

CHAPTER 12. COMPUTATIONAL RESULTS: REFERENCE MODEL

mines, which region of the uncertainty interval is more likely. This differs from

the robust approaches, where all interval values are implicitly assumed to be

equally likely.

As a recourse model, we consider simple recourse with the given penalty and

storage costs.

In contrast to the algorithms considered in Section 12.1 and in Section 12.2,

we don’t have a robustness parameter for the two-stage model. We apply the

multicommodity L-shaped algorithm, which we developed in Section 9.2 to the

two-stage problem and obtain the following solution after 112 iterations:

H
H
H
H
H

com

wh
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 118 131 110 106 130 90 77 130 132 111 138 105 119 110 90
2 104 99 80 90 105 80 64 114 110 90 140 111 74 81 74
3 103 102 97 95 102 75 75 113 100 94 139 100 96 83 77
4 20 22 22 21 22 16 17 24 24 22 31 22 20 18 19

Table 12.18: Reference model - two-stage problem: Delivered demand at warehouses

1 to 15

The following figure illustrates the table data.

Figure 12.14: Reference model - two-stage problem: delivered extra demand in per-

cent

Figure 12.14 shows the delivered extra demand, where the average change per

commodity is considered.

We can see that for commodity 4, which has the highest penalty costs, the full

extra demand is delivered, while for commodity 1, which has the lowest penalty

costs, only 87% of the extra demand is delivered. Due to capacity restrictions,

it is not possible to send the full demand for all commodities.

277

12.4. STOCHASTIC TWO-STAGE LINEAR RECOURSE PROBLEM

When comparing the results in Figure 12.14 with those of the recoverable ro-

bustness approach, see Figure 12.10, we observe that for both approaches, for all

commodities more than 80% of the extra demand units are actually devliered.

When comparing these approaches, we have to keep in mind that the two-stage

approach is scenario-based, while the recoverable robustness approach is based

on interval data for the uncertain demand values.

Increased Storage Costs As before, we examine increased storage costs for

commodity 2. The costs are increased from 6 to 24. The following table lists

the delivered demand for the modified storage costs.

H
H
H

H
H

com

wh
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 118 131 110 106 130 90 77 130 132 111 138 105 119 110 90
2 104 99 80 90 105 80 64 88 110 90 140 111 74 81 74
3 103 102 97 95 102 75 75 113 100 94 139 100 96 83 77
4 20 22 22 21 22 16 17 24 24 22 31 22 20 18 19

Table 12.19: Reference model - two-stage problem: Delivered demand for increased

storage costs for commodity 2

The change in the delivered extra demand for increased storage costs for com-

modity 2 is illustrated in the following figure.

Figure 12.15: Reference model - two-stage problem: Change in the delivered extra

demand for increased storage costs for commodity 2

The delivered extra demand for commodity 2 is decreased, as a result of the

increased storage costs. However, in contrast to the previous results, see Fig-

ures 12.3, 12.7 and 12.11, the delivered extra demand for commodities 1, 3 and

4 remains unchanged. Differences to the ant algorithm for uncertain demands

278

CHAPTER 12. COMPUTATIONAL RESULTS: REFERENCE MODEL

and the transformation algorithm, where the resulting problems are also solved

by an ant algorithm, the L-shaped algorithm calculates its results based on the

absolute values of the input data, while the ant algorithms calculate arc proba-

bilities based on a ratio of the different cost values of different commodities. For

the recoverable robustness approach, the modification of the penalty costs leads

to a change in the recovery budget, which directly has effects on all commodities.

Increased Penalty Costs Finally, we examine increased penalty costs for

commodities 1 and 2 at warehouses 11 to 15. The following tables list the

delivered extra demand for original and increased penalty costs.

H
H
H
H
H
H

wh

com
1 2 sum

11 138 140 278
12 105 111 216
13 119 74 193
14 110 81 191
15 90 74 164

(a) Original penalty costs: Com-

modities 1 and 2

H
H
H
H
H
H

wh

com
1 2 sum

11 179 154 333
12 134 111 245
13 119 96 215
14 115 93 208
15 92 85 177

(b) Increased penalty costs: Com-

modities 1 and 2

H
H
H
H
H
H

wh

com
3 4 sum

11 139 31 170
12 100 22 122
13 96 20 116
14 83 18 101
15 77 19 96

(c) Original penalty costs: Com-

modities 3 and 4

H
H
H
H
H
H

wh

com
3 4 sum

11 139 31 170
12 100 22 122
13 96 20 116
14 83 18 101
15 77 19 96

(d) Increased penalty costs:

Commodities 3 and 4

Table 12.20: Reference model - two-stage problem: Delivered extra demand for orig-

inal and increased penalty costs for commodities 1 and 2

The following figures illustrates the table data.

279

12.4. STOCHASTIC TWO-STAGE LINEAR RECOURSE PROBLEM

(a) Commodities 1 and 2 (b) Commodities 3 and 4

Figure 12.16: Reference model - two-stage problem: Change in the delivered ex-

tra demand for increased penalty costs for commodities 1 and 2 at

warehouses WH11, WH12, WH13, WH14 and WH15

(a) Commodities 1 and 2 (b) Commodities 3 and 4

Figure 12.17: Reference model - recoverable problem: Percentual change in the de-

livered extra demand for increased penalty costs for commodities 1

and 2 at warehouses WH11, WH12, WH13, WH14 and WH15

For commodities 1 and 2, the delivered extra demand is increased at the con-

cerned warehouses. For commodities 3 and 4, the delivered extra demand re-

mains unchanged. Again, the L-shaped algorithm delivers different results than

the other considered optimization models, see Figures 12.4, 12.5, 12.8, 12.9,

12.12 and 12.13, in this context. As we already explained in the context of

increased storage costs, differences to the ant algorithms can be explained by

the fact that for the ant algorithms the calculation of arc probabilities is based

on cost ratios, while the L-shaped algorithm calculates its results based on ab-

280

CHAPTER 12. COMPUTATIONAL RESULTS: REFERENCE MODEL

solute values. For the recoverable robustness approach, the effects of a modified

recovery budget has to be kept in mind.

12.4.2 Recourse by Interexchange

Now we add the possibility of recourse by interexchange to the reference model

network. Here we want to apply the interexchange recourse approach for two-

stage problems, which was given in Section 9.3.

As before, we consider three demand scenarios as given in Subsection 12.4.1.

The following tables list the total transport to the demand nodes before interex-

change, the interexchange for scenarios 1,2 and 3, as well as the total delivered

amounts for scenarios 1, 2 and 3.

node 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

transport 133 45 104 52 104 101 102 216 132 148 179 146 147 89 0

interexchange 1 0 0 8 17 22 0 -2 -77 0 -22 0 -12 -28 20 74
interexchange 2 -15 86 6 54 26 -11 -25 -86 0 -37 -42 -41 -28 21 92
interexchange 3 -20 56 0 51 0 -16 -20 -20 0 -10 -40 -40 -31 0 90

total 1 133 45 112 69 126 101 100 139 132 126 179 134 119 109 74
total 2 118 131 110 106 130 90 77 130 132 111 137 105 119 110 92
total 3 113 101 104 103 104 85 82 196 132 138 139 106 116 89 90

(a) Commodity 1

node 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

transport 116 79 96 77 83 82 60 183 121 98 150 93 63 100 0

interexchange 1 -12 20 0 9 0 0 0 -69 -6 -1 0 0 20 -7 46
interexchange 2 -12 20 -16 13 22 -2 4 -95 -11 -8 -10 18 10 -19 85
interexchange 3 -20 4 -2 1 0 0 2 -20 -15 -14 0 0 11 -20 74

total 1 104 99 96 86 83 82 60 114 115 97 150 93 83 93 46
total 2 104 99 80 90 105 80 64 88 110 90 140 111 74 81 85
total 3 96 83 93 78 83 82 62 163 105 84 150 93 74 80 74

(b) Commodity 2

node 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

transport 113 102 97 95 102 75 75 113 100 94 139 100 96 102 66

interexchange 1 -10 0 0 0 0 0 0 0 10 0 0 0 0 -19 19
interexchange 2 0 0 0 -11 0 0 0 0 0 0 0 0 0 0 11
interexchange 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

total 1 103 102 97 95 102 75 75 113 110 94 139 100 96 83 85
total 2 113 102 97 84 102 75 75 113 100 94 139 100 96 102 77
total 3 113 102 97 95 102 75 75 113 100 94 139 100 96 102 66

(c) Commodity 3

281

12.4. STOCHASTIC TWO-STAGE LINEAR RECOURSE PROBLEM

node 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

transport 33 22 22 21 22 16 17 24 19 22 31 22 16 18 15

interexchange 1 -13 0 0 0 0 0 0 0 5 0 0 0 4 0 4
interexchange 2 0 0 -4 0 0 -3 0 0 3 0 0 0 0 0 4
interexchange 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

total 1 20 22 22 21 22 16 17 24 24 22 31 22 20 18 19
total 2 33 22 18 21 22 13 17 24 22 22 31 22 16 18 19
total 3 33 22 22 21 22 16 17 24 19 22 31 22 16 18 15

(d) Commodity 4

Table 12.21: Reference model - two-stage problem: Interexchange

The following figure illustrates the interexchange for commodity 1 in detail.

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

2
0

2
0

1
2

1
7

2

2
0

2
0

2
0

2

8

(a) Scenario 1

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

2
0

8

6

1
2
0

5
2
0

1
8

2
0

2
0

2
0

1
1
3

2
0

1
7

1

1
0

1
1

2
0

2
0

1
5

(b) Scenario 2

282

CHAPTER 12. COMPUTATIONAL RESULTS: REFERENCE MODEL

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

2
0

2
0

1
6

2
0

1
0

2
0

2
0

2
0

1
1

2
0

2
0

(c) Scenario 3

Figure 12.18: Reference model - two-stage problem: Interexchange for commodity 1

The total cost (production, transportation, penalty and storage costs) of the

reference model with the possibility of interexchange is 78043. Without the

possibility of interexchange, the total cost is 81023. Clearly, the additional

possibility of recourse by interexchange reduces the total cost of the respective

optimal solution.

283

12.4. STOCHASTIC TWO-STAGE LINEAR RECOURSE PROBLEM

12.4.3 Inventory Management: Multiple Time Periods

Now we want to consider the reference model network for multiple time peri-

ods. Here we want to apply the inventory management approach for two-stage

problems, which was given in Section 9.4.

We consider four time periods with increasing demands at the warehouses from

period 1 to period 4. The increasing demands could be due to a wide-area

marketing campaign, for example. As we do not consider the time periods sepa-

rately, we are able to produce goods in advance and store them until the effects

of the marketing campaign take place. This is called inventory management.

Again, we consider three demand scenarios per time period. The following tables

list the demand scenarios for warehouses 1 to 15 for four time periods.

com sc WH1 WH2 WH3 WH4 WH5 WH6 WH7 WH8 WH9 WH10 WH11 WH12 WH13 WH14 WH15

1 1 35.4 34.8 36 35.7 35.7 26.7 26.7 36.9 39.6 33.3 47.7 35.7 31.8 30.6 30.9
2 35.4 34.8 36 35.7 35.7 26.7 26.7 36.9 39.6 33.3 47.7 35.7 31.8 30.6 30.9
3 24.6 24.3 25.2 24.9 24.9 18.6 18.6 25.8 27.6 23.4 33.3 24.9 22.2 21.3 21.6

2 1 27.9 28.5 26.7 27 28.2 23.1 21.6 30.3 30.6 26.1 41.1 29.7 25.8 24.9 25.5
2 47.4 48.6 45.3 45.9 48 39.3 36.6 51.3 52.5 44.4 70.2 50.4 43.8 42.6 43.5
3 47.4 48.6 45.3 45.9 48 39.3 36.6 18 18.3 15.6 24.6 17.7 15.3 42.6 15.3

3 1 27.6 27.3 25.8 25.2 27.3 20.1 20.1 30 29.4 25.2 36.9 26.4 25.5 22.2 22.5
2 46.8 46.5 44.1 43.2 46.5 34.2 34.2 51.3 50.1 42.9 63 45 43.8 37.8 38.7
3 44.1 43.8 41.4 40.5 43.8 32.4 32.4 48 47.1 40.2 59.4 42.3 41.1 35.7 36.3

4 1 5.4 5.7 6 5.7 5.7 4.5 4.5 6.6 6.6 6 8.1 6 5.4 4.8 5.1
2 3.3 3.3 3.6 3.3 3.3 2.7 2.7 6.6 6.6 6 8.1 6 5.4 2.7 5.1
3 5.4 5.7 6 5.7 5.7 4.5 4.5 6.6 6.6 6 8.1 6 5.4 4.8 5.1

(a) Time period 1

com sc WH1 WH2 WH3 WH4 WH5 WH6 WH7 WH8 WH9 WH10 WH11 WH12 WH13 WH14 WH15

1 1 127.6 130.9 125.4 129.8 127.6 104.5 96.8 145.2 146.3 118.8 187 130.9 121 114.4 107.8
2 127.6 130.9 125.4 129.8 127.6 104.5 96.8 145.2 146.3 118.8 187 130.9 121 114.4 107.8
3 89.1 91.3 86.9 90.2 89.1 72.6 68.2 101.2 102.3 83.6 130.9 91.3 84.7 80.3 75.9

2 1 97.9 100.1 99 100.1 101.2 79.2 80.3 108.9 108.9 96.8 149.6 104.5 94.6 91.3 88
2 167.2 170.5 169.4 170.5 172.7 135.3 136.4 185.9 184.8 165 254.1 178.2 161.7 155.1 149.6
3 167.2 170.5 169.4 170.5 172.7 135.3 136.4 64.9 64.9 58.3 89.1 62.7 57.2 155.1 52.8

3 1 100.1 97.9 101.2 100.1 96.8 74.8 80.3 106.7 111.1 93.5 144.1 102.3 85.8 88 90.2
2 170.5 166.1 171.6 170.5 166.1 127.6 137.5 181.5 190.3 158.4 244.2 173.8 146.3 150.7 154
3 160.6 156.2 161.7 160.6 156.2 119.9 128.7 170.5 179.3 149.6 229.9 163.9 137.5 141.9 144.1

4 1 20.9 19.8 20.9 20.9 20.9 16.5 16.5 24.2 24.2 20.9 30.8 20.9 19.8 18.7 19.8
2 12.1 12.1 12.1 12.1 12.1 9.9 9.9 24.2 24.2 20.9 30.8 20.9 19.8 11 19.8
3 20.9 19.8 20.9 20.9 20.9 16.5 16.5 24.2 24.2 20.9 30.8 20.9 19.8 18.7 19.8

(b) Time period 2

com sc WH1 WH2 WH3 WH4 WH5 WH6 WH7 WH8 WH9 WH10 WH11 WH12 WH13 WH14 WH15

1 1 226 222 232 226 228 176 186 258 262 232 334 232 212 206 214
2 226 222 232 226 228 176 186 258 262 232 334 232 212 206 214
3 158 156 162 158 158 122 130 180 182 162 234 162 148 144 150

2 1 190 178 190 180 182 142 148 198 208 180 266 202 170 158 168
2 324 304 324 308 310 242 252 338 354 306 452 344 290 268 286
3 324 304 324 308 310 242 252 118 124 108 160 120 102 268 100

3 1 182 180 174 174 176 134 146 194 204 168 252 194 164 156 154
2 312 306 296 296 298 230 250 328 346 286 430 330 280 264 264
3 294 288 278 278 282 216 236 310 326 270 404 310 264 250 248

4 1 38 40 38 38 36 30 30 40 42 38 58 40 36 34 36
2 22 24 22 22 22 18 18 40 42 38 58 40 36 20 36
3 38 40 38 38 36 30 30 40 42 38 58 40 36 34 36

(c) Time period 3

284

CHAPTER 12. COMPUTATIONAL RESULTS: REFERENCE MODEL

com sc WH1 WH2 WH3 WH4 WH5 WH6 WH7 WH8 WH9 WH10 WH11 WH12 WH13 WH14 WH15

1 1 324.8 310.8 305.2 336 308 252 260.4 341.6 358.4 313.6 462 333.2 294 291.2 288.4
2 324.8 310.8 305.2 336 308 252 260.4 341.6 358.4 313.6 462 333.2 294 291.2 288.4
3 226.8 218.4 212.8 235.2 215.6 176.4 182 238 249.2 218.4 322 232.4 204.4 204.4 201.6

2 1 249.2 260.4 252 254.8 257.6 196 212.8 285.6 274.4 249.2 355.6 277.2 246.4 226.8 240.8
2 422.8 445.2 428.4 436.8 439.6 336 361.2 487.2 464.8 425.6 604.8 473.2 417.2 386.4 411.6
3 422.8 445.2 428.4 436.8 439.6 336 361.2 170.8 162.4 148.4 212.8 165.2 145.6 386.4 142.8

3 1 252 257.6 243.6 252 252 201.6 190.4 266 266 229.6 344.4 249.2 232.4 224 221.2
2 428.4 436.8 411.6 428.4 428.4 341.6 327.6 453.6 453.6 392 585.2 425.6 397.6 380.8 378
3 403.2 411.6 389.2 403.2 403.2 322 308 428.4 425.6 369.6 551.6 400.4 375.2 358.4 355.6

4 1 56 56 53.2 53.2 53.2 42 44.8 58.8 61.6 50.4 81.2 53.2 50.4 47.6 50.4
2 33.6 33.6 30.8 30.8 30.8 25.2 25.2 58.8 61.6 50.4 81.2 53.2 50.4 28 50.4
3 56 56 53.2 53.2 53.2 42 44.8 58.8 61.6 50.4 81.2 53.2 50.4 47.6 50.4

(d) Time period 4

Table 12.22: Reference model - multiple time periods: Demand scenarios

Now we apply the multicommodity L-shaped algorithm to the two-stage inven-

tory management problem, which terminates after 1319 iterations.

In the following tables, the delivered units for warehouses 1 to 15 are listed per

time period and per commodity. The number of delivered units already contains

the units which were produced in previous time periods and stored until needed.

com WH1 WH2 WH3 WH4 WH5 WH6 WH7 WH8 WH9 WH10 WH11 WH12 WH13 WH14 WH15

1 35.4 34.8 36 35.7 35.7 26.7 26.7 36.9 39.6 33.3 47.7 35.7 31.8 30.6 21.6
2 47.4 48.6 45.3 45.9 48 39.3 36.6 51.3 30.6 26.1 41.1 29.7 25.8 42.6 15.3
3 46.8 46.5 44.1 43.2 46.5 34.2 34.2 51.3 47.1 42.9 63 45 43.8 37.8 36.3
4 5.4 5.7 6 5.7 5.7 4.5 4.5 6.6 6.6 6 8.1 6 5.4 4.8 5.1

(a) Time period 1

com WH1 WH2 WH3 WH4 WH5 WH6 WH7 WH8 WH9 WH10 WH11 WH12 WH13 WH14 WH15

1 127.6 130.9 125.4 129.8 127.6 104.5 96.8 145.2 146.3 118.8 187 130.9 121 114.4 0
2 167.2 170.5 169.4 170.5 172.7 135.3 136.4 185.9 108.9 96.8 149.6 104.5 94.6 155.1 52.8
3 170.5 166.1 171.6 170.5 166.1 127.6 137.5 181.5 179.3 149.6 229.9 173.8 146.3 150.7 144.1
4 20.9 19.8 20.9 20.9 20.9 16.5 16.5 24.2 24.2 20.9 30.8 20.9 19.8 18.7 19.8

(b) Time period 2

com WH1 WH2 WH3 WH4 WH5 WH6 WH7 WH8 WH9 WH10 WH11 WH12 WH13 WH14 WH15

1 226 222 232 226 228 176 186 258 262 162 234 232 212 206 0
2 324 178 324 308 310 142 163.1 338 208 180 266 120 102 268 0
3 312 306 296 296 298 230 250 328 326 270 404 330 264 264 248
4 38 40 38 38 36 30 30 40 42 38 58 40 36 34 36

(c) Time period 3

com WH1 WH2 WH3 WH4 WH5 WH6 WH7 WH8 WH9 WH10 WH11 WH12 WH13 WH14 WH15

1 324.8 218.4 305.2 235.2 308 252 260.4 341.6 358.4 218.4 322 316.8 294 291.2 0
2 249.2 260.4 252 436.8 439.6 196 212.8 487.2 274.4 148.4 212.8 165.2 145.6 226.8 0
3 403.2 411.6 389.2 403.2 403.2 322 308 453.6 425.6 369.6 551.6 400.4 375.2 358.4 221.2
4 56 56 53.2 53.2 53.2 42 44.8 58.8 61.6 50.4 81.2 53.2 50.4 47.6 50.4

(d) Time period 4

Table 12.23: Reference model - multiple time periods: Optimal solution

The following table lists the number of units that are stored due to inventory

management reasons. Negative numbers represent numbers of units that are

produced in the current time period and stored. Positive numbers represent

285

12.4. STOCHASTIC TWO-STAGE LINEAR RECOURSE PROBLEM

numbers of units that are stored from previous time periods up to the current

time period.

H
H
H
H
H

wh

per
1 2 3 4

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 -103 103
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0
10 0 -162 162 0
11 0 -275.1 234 41.1
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0

(a) Commodity 1

H
H
H
H
H

wh

per
1 2 3 4

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 -47 47 0
7 -123.9 123.9 0 0
8 0 0 0 0
9 0 0 0 0
10 0 0 0 0
11 -311.6 149.6 162 0
12 0 0 0 0
13 0 -108.9 49.1 59.8
14 0 0 0 0
15 0 0 0 0

(b) Commodity 2

H
H
H
H
H

wh

per
1 2 3 4

1 0 0 -241.4 241.4
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0
10 -149.6 149.6 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0

(c) Commodity 3

H
H
H
H
H

wh

per
1 2 3 4

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0

(d) Commodity 4

Table 12.24: Reference model - multiple time periods: Inventory management

The following figure illustrates the table data.

286

CHAPTER 12. COMPUTATIONAL RESULTS: REFERENCE MODEL

(a) Commodity 1 (b) Commodity 2

(c) Commodity 3

Figure 12.19: Reference model - multiple time periods: Inventory management

As we have relatively low demand values in time period 1, average demand

values in time period 2 and relatively high demand values in time period 3

and 4, we have a surplus production in the early time periods and store these

units for later time periods with higher demands. Note that due to capacity

restrictions in the production process, only a limited number of extra units can

be produced in each time period.

The total cost (production, transportation, penalty and storage costs) for the

four-period problem is 725480. If we optimize the four single-period prob-

lems separately without a possibility of inventory management, the total cost is

728135.

287

12.5. SUMMARY AND CONCLUSIONS

12.5 Summary and Conclusions

In this chapter, we developed a reference supply chain example, modeling the

production and transportation process, which was based on real-world input

data. We focused on data uncertainties in the demand values at the warehouses

at the end of the supply chain process.

We applied four different algorithms to the reference model: the ant algorithm,

the transformation algorithm, the recoverable robustness algorithm and the L-

shaped algorithm. Therefore we could validate that all these algorithms are

applicable to real-world supply chain problems.

In general, all algorithms except the recoverable robustness algorithm lead to a

similar result: The increasing penalty costs from commodity 1 to commodity 4

are respected in the way that the percentaged delivered extra demand increases

from commodity 1 to commodity 4. The results for commodity 4 slightly differ

in the recoverable robustness algorithm, as commodity 4 only contributes with

a small total number of units and the recovery robustness algorithm is the only

one with a fixed recovery budget.

When considering increased storage costs for one commodity at all warehouses,

all algorithms decrease the delivered extra demand for this commodity and all

algorithms except the recoverable robustness approach either increase or keep

the amount of delivered extra demand for all other commodities stable.

The increase of penalty costs for two commodities at five out of fifteen ware-

houses leads to an increase of delivered extra demand for these commodities at

these warehouses, while the amount of delivered extra demand remains more or

less stable or is decreased for the other commodities.

Two algorithms - the ant algorithm and the transformation algorithm - provide

a robustness parameter, which allows to control the level of conservatism of

the solution. For both algorithms, we can see that for an increasing robustness

parameter, the amount of delivered extra demand increases, which corresponds

to our expectations of an increasingly robust solution.

The question arises, which algorithm to choose in practice. This depends on

the given situation:

The ant algorithm is suitable for large problems, as it is a fast heuristic algo-

rithm. The additional feature of the ant algorithm, the avoidance of small flows,

is unique for the ant algorithm. A disadvantage of the ant algorithm as heuristic

method is the fact that, depending on the stopping criterion, not every run will

result in the optimal solution and not even in the same solution.

288

CHAPTER 12. COMPUTATIONAL RESULTS: REFERENCE MODEL

The transformation offers the possibility to apply one of the algorithms for opti-

mization problems with uncertain costs, for example the algorithm of Bertsimas

and Sim or the ant algorithm for uncertain costs, in order to obtain an exact or

a heuristic solution of the transformed problem.

Both the ant algorithm for uncertain demands and the transformation algorithm

(where the corresponding optimization problem can be solved using either the

ant algorithm for uncertain costs or the algorithm of Bertsimas and Sim) allow

to control the level of conservatism of the solution by a robustness parameter.

The other algorithms do not offer this feature.

The recoverable robustness algorithm is the only algorithm that has the feature

of limited recovery (or compensation) costs. No matter which scenario of the

uncertain input data is realized, the recovery costs cannot surpass the fixed

recovery budget.

For scenario-based input data, the two-stage model is suitable, as it respects the

given scenarios and calculates the exact solution for the considered Stochastic

Programming model. It has to be considered that the expected value of the

compensation costs is minimized, which means that in the worst case, these

costs can be rather high. However, in case that the number of scenarios is very

high, the performance of the L-shaped algorithm will be too slow. In this case,

an approximation of the scenario data by interval data and the usage of one of

the other algorithms is recommended.

289

12.5. SUMMARY AND CONCLUSIONS

290

Chapter 13

Final Conclusion and

Future Research

In this thesis, we examined various approaches for modeling and optimizing

supply chain problems with uncertain input data, where the main focus was on

uncertain cost values and uncertain demand values. The resulting algorithms

were validated on test data and a real-world supply chain network.

In Chapter 3, Section 3.4, four major challenges in supply chain management

with uncertain input data were identified. In the following, it is explained how

these challenges were met in this thesis:

Avoidance of small amounts of flow In Chapter 5, both an exact method

and a heuristic method were developed for addressing the problem of avoiding

small amounts of flow in supply chain problems. In MCFPs, the optimal solu-

tion possibly contains many small amounts of flow on diverse arcs. In practice,

however, small amounts of flow are often not desired, such that a more expen-

sive solution, where for every arc the flow is either zero or surpasses a certain

threshold value, is preferred. We developed two solution methods: An exact

method, most suitable for small scale supply chain problems, which is based on

a Branch and Bound method with a special branching scheme, and a heuristic

method that is based on the ACO metaheuristic.

This ACO based optimization concept was extended to ACO based algorithms

for supply chain problems with uncertain costs, cf. Chapter 6, and algorithms

for supply chain problems with uncertain demands, cf. Chapter 8. These al-

gorithms combine ideas of the ACO metaheuristic with the concept of Robust

291

Optimization. For both types of these ant algorithms, it is possible to control

the level of robustness via a robustness parameter. A special feature of the ant

algorithm for uncertain costs is the extensibility to different probability distri-

butions of the uncertain cost values, e.g. Gaussian distribution or triangular

distribution.

Extension of existing approaches to multicommodity problems Two

major existing approaches in optimization under uncertainty were extended

from single-commodity to multicommodity problems. In Chapter 6, the Robust

Optimization approach for network flow problems with uncertain cost values

of D. Bertsimas and M. Sim ([14]) was extended such that it can now cope

with more than one commodity. An optimization algorithm based on a bisec-

tion method was proposed. In contrast to the developed ant algorithms for

uncertain cost values, this algorithm does not consider the distribution of the

uncertainty values.

In Chapter 9, the L-shaped algorithm (see [18]), which is one of the stan-

dard algorithms to solve two-stage linear problems, was modified to exactly

suit multicommodity supply chain problems with uncertain demand values. In

the Stochastic Programming approach, information about the distribution of the

uncertain input data is used. Correctness and convergence of the multicommod-

ity L-shaped algorithm were proven. Furthermore, two extensions concerning

recourse by interexchange and inventory management problems were developed.

In addition, the recoverable robustness model proposed by S. Stiller et al. (see

[64], [91]) was extended to supply chain problems with uncertain demands in

Chapter 8. The presented approach is applicable to both single-commodity

and multicommodity problems. The optimization process of the recoverable

robustness approach consists of a planning phase and a recovery phase. The

special feature of this approach is the fact that the costs for compensation in

the recovery phase are limited in advance. We showed that in practice often

more demand scenarios than originally intended are covered by the optimal

solution of a recoverable robustness problem. This effect is called coincidental

covering.

In Chapter 10, a link between the recoverable robustness approach for network

flow problems with uncertain demands and the two-stage model from Stochastic

Programming was drawn. The two approaches are linked via a multicriteria

optimization problem: The recoverable robustness problem is an ǫ-constraint

scalarization of this problem, while the Stochastic Programming problem is a

weighted sum formulation of the same MOP. Furthermore, it was shown that the

292

CHAPTER 13. FINAL CONCLUSION AND FUTURE RESEARCH

recoverable robustness problem and the two-stage problem can be transformed

into each other under certain conditions.

Inventory management strategies We proposed a concept for considering

inventory management problems in Chapter 9. The process of inventory man-

agement introduces the possibility of preproduction and storage of goods in case

that it is not possible to produce enough goods just in time in time periods with

very high demand. Limiting factors are storage capacities and storage costs.

The proposed inventory management approach is based on Stochastic Program-

ming. The underlying single period network is multiplied and the single net-

works for each time period are connected by arcs representing possible storage

from one time period to the next. Cost and capacity values on the connecting

arcs represent storage costs and capacities per time period.

The inventory management problem is examined in the context of uncertain

demand values in all time periods. The complexity of the resulting linear opti-

mization problem increases rapidly with the number of considered time periods

and the number of demand scenarios, such that the use of special purpose al-

gorithms like the L-shaped algorithm instead of standard linear programming

algorithms are advisable.

The presented inventory management approach is applicable to both single-

commodity and multicommodity problems. Furthermore, a combination with

the proposed interexchange recourse scheme, see Section 9.3, is possible.

Applicability to real-world problems In Chapter 11, the heuristic ant

algorithms, which were proposed in Chapters 5, 6 and 8, were evaluated nu-

merically. For this purpose, various fully layered networks were generated at

random. By means of these test runs, we examined computational time, perfor-

mance and stability of the ant algorithm for the TMCFP, as proposed in Section

5.1, the ant algorithm for Gaussian distributed costs, as presented in Subsection

6.3.2 and the ant algorithm for NFPs with uncertain demands as presented in

Section 8.2. Results were compared with the SOS 2 Branch and Bound method,

see Section 5.3, and the CSA for the TMCFP. For the NFP with uncertain costs,

results were compared with the multicommodity extension of the algorithm of

Bertsimas & Sim, see Section 6.2. For all considered problem categories, the

ACO metaheuristic based algorithms provide a reasonable trade-off between so-

lution quality and computational time. Furthermore, the ant algorithms run

stable for both single-commodity and multicommodity problems.

In Chapter 12, the proposed algorithms for supply chain problems with uncer-

293

tain demand data were validated by means of a reference model with real-world

network structure and real-world input data. In the reference model, the fill-

ing, mixing and transportation stages of a supply chain were modeled. For the

demand nodes that represent the warehouses, uncertainty in the demand values

was considered. Different robustness levels as well as effects of modifications of

penalty and storage costs were examined. The results showed that real-world

problems are computationally tractable by our algorithms. Furthermore, advan-

tages and disadvantages of the different algorithms concerning different problem

types were identified: The network size, the number of scenarios, the control of

the level of robustness by means of a robustness parameter and the limitation

of the compensation costs influence the selection of the most suitable algorithm.

Future Research Still there remain many topics of interest for future re-

search. Different directions for future research are suggested:

This thesis is focused on uncertainties in cost and demand data. Another possi-

ble source of uncertainty lies in grid failure, i.e. the failure of nodes and arcs in

the supply chain network. In real-world problems, production machines can be

temporarily unavailable, which corresponds to a failure of a node. Furthermore,

transportation arcs can be unavailable due to weather conditions or technical

failure of the transportation means.

Moreover, deviations in the production or transport capacities can occur. If

for example only two out of three identical production machines are available,

the production capacity is decreased to two thirds of the original capacity. As

different types of machines have different failure probabilities, a consideration of

this type of capacity deviation can be of interest for supply chain optimization.

Another topic of interest is the modeling and design of a supply chain. Instead of

optimizing an existing supply chain with uncertain input data, the possible data

fluctuations can already be taken into account when designing a supply chain

network, like this is done in the context of fuzzy minimum cost flow problems

in [49], for example. Then failure probabilities, fluctuations of costs as well as

possible production and transport volumes are regarded during the modeling

process und will therefore lead to a robust network design.

In order to handle large instances of supply chain optimization problems, we

have developed a heuristic algorithm based on the ACO metaheuristic. In princi-

ple, this algorithm can be applied to time expanded networks without additional

changes, such that inventory management problems can be solved. However, the

ant algorithm does not consider the special structure of the multiple period net-

work. Future research could focus on finding an even more specialized algorithm

294

CHAPTER 13. FINAL CONCLUSION AND FUTURE RESEARCH

for inventory management problems, which better exploits the data structure

of the time expanded networks.

295

296

Acknowledgements

First of all, I would like to thank my supervisor, Prof. Dr. Kathrin Klamroth,

for her support and guidance throughout the research project and especially for

her invaluable suggestions during this work.

Furthermore I would like to recognize many valuable contributions from my

research partner in Erlangen, Alexander Keimer. A big thank you to Petra

Dächert for her advice concerning Stochastic Programming and her selfless as-

sistance in all kinds of problems.

I thank the cooperation partners of Axxom Software AG, Dr. Mirko Eick-

hoff and Dr. Tobias Gerken, and Henkel KGaA, Dr. Marco Lescher and Axel

Richter, for their input concerning real-world supply chain problems and rele-

vant questions in supply chain practice. Thank you to the Bayerische Forschungss-

tiftung, who financially supported our common research project. I wish to ex-

press my gratitude to Prof. Dr. Günter Leugering, who enabled this research

work at the Institute of Applied Mathematics at the University of Erlangen-

Nürnberg.

In this context, I would like to give a special thank you to Kerstin Dächert,

who proposed me as a member of the research team. Thank you to Sebastian

Stiegler and my employer, the IABGmbH, for giving me the opportunity to take

part in the research project.

I want to thank Sebastian Stiller for the inspiring discussions concerning recov-

erable robustness. Thank you also to Dr. Gabriele Eichfelder for her advice

concerning Multicriteria Optimization Problems.

A heartfelt thank you to Marc Layer for introducing me into the fascinating

world of rock climbing, which turned out to be the perfect method to clear my

mind and to regain my strength in stressful times.

Finally I want to thank my family. The encouragement and support from my

beloved husband Thorsten was a powerful source of inspiration and energy. A

special thought is devoted to my parents for their never-ending support.

Höhenkirchen in 2010,

Simone Gast

297

298

List of Abbreviations

ACO Ant Colony Optimization

B&B Branch and Bound

bc best case

com commodity

CSA Cost Scaling Algorithm

FFA Feasible Flow Algorithms

LP Linear Program

LRP Linear Recovery Robust Problem

MCFP Minimum Cost Flow Problem

MFP Multicommodity Flow Problem

MOP Multicriteria Optimization Problem

NFP Network Flow Problem

OIFA Optimal Infeasible Flow Algorithms

per (time) period

RROP Recovery Robust Optimization Problem

sc scenario

SCM Supply Chain Management

SOS2 Special Ordered Set of Type 2

TMCFP Threshold Minimum Cost Flow Problem

wc worst case

299

wh warehouse

wlog without loss of generality

300

Bibliography

[1] E. Adida and G. Perakis. A robust optimization approach to dynamic pric-

ing and inventory control with no backorders. Mathematical Programming,

107(1–2):97–129, 2006.

[2] R.K. Ahuja, J.L. Batra, and S.K. Gupta. A parametric algorithm for the

convex cost network flow and related problems. European Journal of Op-

erational Research, 16:222–235, 1984.

[3] R.K. Ahuja, A.V. Goldberg, J.B. Orlin, and R.E. Tarjan. Finding

minimum-cost flows by double scaling. Technical report, Princeton Uni-

versity, 1988.

[4] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Al-

gorithms, and Applications. Prentice Hall, 1993.

[5] M. Aigner. Diskrete Mathematik. Vieweg, 2001.

[6] A.I. Ali, R. Padman, and H. Thiagarajan. Dual algorithms for pure network

problems. Operations Research, 37:159–171, 1989.

[7] K.-P. Arnold. Stochastische Transportprobleme. Kov̌ac, 1986.

[8] P. Balaprakash, M. Birattari, T. Stützle, Z. Yuan, and M. Dorigo.

Estimation-based ant colony optimization and local search for the prob-

abilistic traveling salesman problem. Swarm Intelligence, 3(3):223–242,

2009.

[9] E.M.L. Beale and J.J.H. Forrest. Global optimization using special ordered

sets. Mathematical Programming, 10:52–69, 1976.

[10] E.M.L. Beale and J.A. Tomlin. Special facilities in a general mathemat-

ical programming system for non-convex problems using ordered sets of

variables. In J. Lawrence, editor, Proceedings of the Fifth International

Conference on Operations Research, pages 447–454, London, 1970. Tavis-

tock Publications.

301

BIBLIOGRAPHY

[11] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Operations

Research, 23:769–805, 1998.

[12] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear pro-

grams. Operations Research Letters, 25:1–13, 1999.

[13] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming

problems contaminated with uncertain data. Mathematical Program, A

88:411–424, 2000.

[14] D. Bertsimas and M.Sim. Robust discrete optimization and network flows.

Mathematical Programming, B 98:49–71, 2003.

[15] D. Bertsimas and M.Sim. The price of robustness. Operations Research,

52:35–53, 2004.

[16] D. Bertsimas and A. Thiele. A robust optimization approach to supply

chain management . volume 3064 of Lecture Notes in Computer Science,

pages 145 – 156. Springer, 2004.

[17] M. Birattari, P. Balaprakash, and M. Dorigo. The ACO/F-race algorithm

for combinatorial optimization under uncertainty. In Metaheuristics, vol-

ume 39 of Operations Research/Computer Science Interfaces Series, pages

189 – 203. Springer, 2007.

[18] J.R. Birge and F. Louveaux. Introduction to Stochastic Programming.

Springer, 1997.

[19] R.G. Bland and D.L. Jensen. On the computational behavior of a

polynomial-time network flow algorithm. Technical report, School of Op-

erations Research and Industrial Engineering, Cornell University, 1985.

[20] R.G. Bland and D.L. Jensen. On the computational behavior of a

polynomial-time network flow algorithm. Mathematical Programming,

54(1):1 – 39, 1992.

[21] C. Blum. Beam-aco - hybridizing ant colony optimization with beam search:

An application to open shop scheduling. Computers and Operations Re-

search, 32:1565 – 1591, 2005.

[22] J. Böttcher. Stochastische lineare Programme mit Kompensation.

Athenäum Verlag, 1989.

[23] J. Caldeira, R. Azevedo, C.A. Silva, and J.M. Sousa. Beam-ACO dis-

tributed optimization applied to supply-chain management . In Founda-

tions of Fuzzy Logic and Soft Computing, volume 4529 of Lecture Notes in

Computer Science, pages 799 – 809. Springer, 2007.

302

BIBLIOGRAPHY

[24] F.T.S. Chan and N. Kumar. Effective allocation of customers to distribu-

tion centres: A multiple ant colony optimization approach. Robotics and

Computer-Integrated Manufacturing, 25:1–12, 2009.

[25] V. Chankong and Y.Y. Haimes. Multiobjective Decision Making. North-

Holland, 1983.

[26] S.-W. Chioua. A combinatorial approximation algorithm for supply

chain network flow problems. Applied Mathematics and Computation,

186(2):1526–1536, 2007.

[27] P. Dächert. Produktions- und Transportnetzwerke mit Bedarfsschwankun-

gen: Eine Anwendung der Stochastischen Optimierung. Diploma thesis,

University of Erlangen-Nürnberg, 2008.

[28] P. Dächert and S. Gast. Erweiterungen des Two-Stage Modells für Sup-

ply Chain Probleme. Technical report, No. 22, University of Erlangen-

Nürnberg, 2009.

[29] P. Dächert, S. Gast, and A. Keimer. Modellierung und Betrachtung von

Supply Chains mit schwankenden Eingangsgrößen anhand verschiedener

Referenzmodelle. Technical report, No. 23, University of Erlangen-

Nürnberg, 2009.

[30] U. Diwekar. Introduction to Applied Optimization. Springer Netherlands,

2003.

[31] K. Doerner, R.F. Hartl, and M. Reimann. A hybrid ACO algorithm for

the full truckload transportation problem. Technical report, University of

Vienna, 2001.

[32] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization

by a colony of cooperating agents. IEEE Transactions on Systems, Man,

and Cybernetics-Part B, 26:29–41, 1996.

[33] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, 2004.

[34] R.C. Dorsey, T.J. Hodgson, and H.D. Ratliff. A network approach to a

multi-facility, multi-product production scheduling problem without back-

ordering. Managment Science, 21:813–822, 1975.

[35] J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic ef-

ficiency for network flow problems. Journal of the ACM, 19(2):248–264,

1972.

303

BIBLIOGRAPHY

[36] M. Ehrgott. Multicriteria Optimization. Lecture Notes in Economics and

Mathematical Systems. Springer, 2000.

[37] G. Eichfelder. Adaptive Scalarization Methods in Multiobjective Optimiza-

tion. Springer, 2008.

[38] H.A. Eiselt and C.-L. Sandblom. Integer Programming and Network Models.

Springer, 2000.

[39] L. El-Ghaoui and H. Lebret. Robust solutions to least-square problems to

uncertain data matrices. SIAM Journal on Matrix Analysis and Applica-

tions, 18:1035–1064, 1997.

[40] L. El-Ghaoui, F. Oustry, and H. Lebret. Robust solutions to uncertain

semidefinite programs. SIAM Journal on Optimization, 9:33–52, 1998.

[41] J.R. Evans. Some network flow models and heuristics for multiproduct

production and inventory planning. AIIE Transactions, 9:75–81, 1977.

[42] M. Fischetti and M. Monaci. Light robustness. Technical report,

ARRIVAL-TR-0119, ARRIVAL project, 2008.

[43] L. Fleischer and M. Skutella. Minimum cost flows over time without in-

termediate storage. In Proceedings of the fourteenth annual ACM-SIAM

symposium on Discrete algorithms, pages 66 – 75. Society for Industrial

and Applied Mathematics, 2003.

[44] L.R. Ford and D.R. Fulkerson. Constructing maximum dynamic flows from

static flows. Operations Research, 6:419–433, 1958.

[45] S. Gast. Applying robust optimization to network flow problems with un-

certain demand. Technical report, No. 19, University of Erlangen-Nürnberg,

2008.

[46] S. Gast and A. Keimer. Robust optimization in network flows. Technical

report, No. 20, University of Erlangen-Nürnberg, 2009.

[47] E. Gawrilow and M. Joswig. polymake. www.polymake.de.

[48] C. Geiger and C. Kanzow. Numerische Verfahren zur Lösung unre-

stringierter Optimierungsaufgaben. Springer, 1999.

[49] M. Ghateea and S.M. Hashemi. Application of fuzzy minimum cost flow

problems to network design under uncertainty. Fuzzy Sets and Systems,

160(22):3263–3289, 2009.

304

BIBLIOGRAPHY

[50] A.V. Goldberg and R.E. Tarjan. Finding minimum-cost circulations by

successive approximation. Mathematics of Operations Research, 15(3):430–

466, 1990.

[51] S. Göttlich, H. Herty, C. Kirchner, and A. Klar. Optimal control for contin-

uous supply network models. Networks and heterogeneous media, 1(4):675–

688, 2006.

[52] H. Gunnarsson and M. Rönnqvist. Solving a multi-period supply chain

problem for a pulp company using heuristics – an application to Södra Cell

AB. International Journal of Production Economics, 116(1):75–94, 2008.

[53] W.J. Gutjahr. A Converging ACO Algorithm for Stochastic Combinatorial

Optimization. In Stochastic Algorithms: Foundations and Applications,

volume 2827 of Lecture Notes in Computer Science, pages 10 – 25. Springer,

2003.

[54] H. W. Hamacher and S. Tifecki. On the use of lexicographic min cost flows

in evacuation modeling. Naval Research Logistics, 34:487–503, 1987.

[55] H.W. Hamacher and K. Klamroth. Lineare und Netzwerk-Optimierung -

Linear and Network-Optimization. Vieweg, 2000.

[56] V. Jayaraman and A. Ross. A simulated annealing methodology to distri-

bution network design and management. European Journal of Operational

Research, 144(3):629–645, 2003.

[57] W.S. Jewell. Warehousing and distribution of a seasonal product. Naval

Research Logistics Quarterly, 4:29–34, 1957.

[58] P. Kall and S.W. Wallace. Stochastic Programming. Wiley, Chichester,

1995.

[59] J.L. Kennington and R.V. Helgason. Algorithms for Network Programming.

Wiley, New York, 1980.

[60] M. Klein. A primal method for minimal cost flows with applications to the

assignment and transportation problems. Management Science, 14:205–

220, 1967.

[61] E. Köhler, K. Langkau, and M. Skutella. Time-expanded graphs for flow-

dependent transit times. volume 2461 of Lecture Notes in Computer Sci-

ence, pages 49–56. Springer, 2002.

[62] P. Kouvelis and G. Yu. Robust Discrete Optimization and its Applications.

Kluwer Academic Publishers, Amsterdam, 1997.

305

BIBLIOGRAPHY

[63] U. Krengel. Einführung in die Wahrscheinlichkeitstheorie und Statistik.

Vieweg, 2005.

[64] C. Liebchen, M. Lübbecke, R. Möhring, and S. Stiller. Recoverable robust-

ness. Technical report, ARRIVAl-TR-0066, ARRIVAL-Project, 2007.

[65] J. Linderoth and S. Wright. Decomposition algorithms for stochastic pro-

gramming on a computational grid. Computational Optimization and Ap-

plications, 24:207–250, 2003.

[66] P.D. Loewen. Convex Analysis with Applications. Lecture Notes, 2001.

[67] S. Afshin Mansouri. A simulated annealing approach to a bi-criteria se-

quencing problem in a two-stage supply chain. Computers & Industrial

Engineering, 50(1–2):105–119, 2006.

[68] A. Martin, M. Möller, and S. Moritz. Mixed integer models for the station-

ary case of gas network optimization. Mathematical Programming, 105:563–

582, 2006.

[69] J.T. Mentzer. Supply Chain Management. Sage Publications, 2001.

[70] K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer, 2004.

[71] S. Moritz. A Mixed Integer Approach for the Transient Case of Gas Network

Optimization. PhD thesis, Technische Universität Darmstadt, 2006.

[72] J.M. Mulvey, R.J. Vanderbei, and S.A. Zenios. Robust optimization of

large-scale systems. Operations Research, 43:264–281, 1995.

[73] D. Naso, M. Surico, B. Turchiano, and U. Kaymak. Genetic algorithms for

supply-chain scheduling: A case study in the distribution of ready-mixed

concrete. European Journal of Operational Research, 177(3):2069–2099,

2007.

[74] G.L. Nemhauser, A.H.G. Rinnooy Kan, and M.J.Todd. Optimization. El-

sevier, 1989.

[75] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization.

Wiley, 1988.

[76] J.B. Orlin. A faster strongly polynomial minimum cost flow algorithm.

Operations Research, 41:338–350, 1993.

[77] M. Padberg. Approximating separable nonlinear functions via mixed zero-

one programs. Operations Research Letters, 27:1–5, 2000.

306

BIBLIOGRAPHY

[78] A. Papoulis. Probability, Random Variables and Stochastic Processes.

McGraw-Hill, 1984.

[79] W.B. Powell and H. Topaloglu. Stochastic Programming in Transporta-

tion and Logistics. In A. Ruszczynski and A. Shapiro, editors, Stochastic

Programming, volume 10 of Handbooks in Operations Research and Man-

agement Science. Elsevier Science, 2003.

[80] A. Prékopa. Probabilistic Programming. In A. Ruszczynski and A. Shapiro,

editors, Stochastic Programming, volume 10 of Handbooks in Operations

Research and Management Science. Elsevier Science, 2003.

[81] P. Radhakrishnan, V.M. Prasad, and M.R. Gopalan. Optimizing inventory

using genetic algorithm for efficient supply chain management. Journal of

Computer Science, 5(3):233–241, 2009.

[82] H. Röck. Scaling techniques for minimal cost network flows. Discrete

Structures and Algorithms, pages 181 – 191. Hanser, 1980.

[83] R.T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[84] A.P. Ruszczynski and A. Shapiro. Stochastic Programming Models. In

A. Ruszczynski and A. Shapiro, editors, Stochastic Programming, vol-

ume 10 of Handbooks in Operations Research and Management Science.

Elsevier Science, 2003.

[85] A. Schöbel and A. Kratz. A bicriteria approach for robust timetabling.

Robust and Online Large-Scale Optimization, pages 119 – 144, 2009.

[86] R. Schultz, L. Stougie, and M.H. van der Vlerk. Solving stochastic problems

with integer recourse by enumeration: A framework using Gröbner basis

reductions. Mathematical Programming, 83:229–252, 1998.

[87] C.A. Silva, J.M.C. Sousa, T.A. Runkler, and J.M.G. Costa. Distributed

supply chain management using ant colony optimization. European Journal

of Operational Research, 199:349 – 358, 2009.

[88] D. Simchi-Levi, Xin Chen, and J. Bramel. Logic Of Logistics. Theory,

Algorithms, and Applications for Logistics Management. Springer, 2004.

[89] M. Skutella. An introduction to network flows over time. Research Trends

in Combinatorial Optimization, pages 451–482. Springer, 2009.

[90] A.L. Soyster. Convex programming with set-inclusive constraints and appli-

cations to inexact linear programming. Operations Research, 21:1154–1157,

1973.

307

BIBLIOGRAPHY

[91] S. Stiller. Extending Concepts of Reliability. Network Creation Games,

Real-time Scheduling, and Robust Optimization. PhD thesis, Technische

Universität Berlin, 2008.

[92] T. Stützle and H.H. Hoos. Max-min ant system. Journal of Future Gener-

ation Computer Systems, 16:889–914, 2000.

[93] O. Thomas. Das Referenzmodellverständnis in der Wirtschaftsinfor-

matik. IWi – Veröffentlichungen des Instituts für Wirtschaftsinformatik im

Deutschen Forschungszentrum für Künstliche Intelligenz, 187:1–35, 2006.

[94] J.P. Vielma, S. Ahmed, and G.L. Nemhauser. Mixed-integer models for

nonseparable piecewise linear optimization: unifying framework and exten-

sions. Operations Research, 58(2):303–315, 2010.

[95] J.P. Vielma, A.B. Keha, and G.L. Nemhauser. Nonconvex, lower semicon-

tinuous piecewise linear optimization. Discrete Optimization, 5:467–488,

2008.

[96] S.J. Wright. Primal-Dual Interior-Point Methods. Society for Industrial

and Applied Mathematics (SIAM), 1997.

[97] C. Yildiz. Knickminimales Orthogonales Zeichnen Planarer Graphen im

Kandinsky Modell. PhD thesis, Technische Universität Wien, 2005.

[98] C.-S. Yu and H.-L. Li. A robust optimization model for stochastic logistic

problems. International Journal of Production Economics, 64(1–3):385–

397, 2000.

[99] S. Zeiner. Vergleichende Untersuchung von mathematischen Verfahren zur

Optimierung des Betriebs verfahrenstechnischer Systeme. Diploma thesis,

University of Erlangen-Nürnberg, 2006.

308

	Introduction
	Mathematical Background
	Graphs
	Linear Optimization
	Network Flows
	Network Optimization
	Multicommodity Flows

	Multicriteria Optimization
	Probability Theory
	Discrete Probability Spaces
	Continuous Probability Spaces

	Problem Formulation and Objectives
	Network Representation of Supply Chain Problems
	Uncertainties in Supply Chains
	Literature Review
	Network Flow Problems
	Robust Optimization
	Stochastic Programming
	Ant Colony Optimization
	Heuristics in Supply Chain Management

	Challenges

	Adaption of the ACO Metaheuristic to Network Flow Problems
	The Ant Colony Optimization Metaheuristic
	ACO for Single-Commodity Flows
	Construction Graph
	Constraints
	Initialization of the Pheromone Trails
	Heuristic Information
	Solution Construction
	Update of the Pheromone Trails

	ACO for Multicommodity Flows
	Convergence Theory

	Avoiding Small Amounts of Flow in Minimum Cost Network Flow Problems
	Application of the Ant Colony Optimization Metaheuristic to the TMCFP
	Parameters
	Penalty Costs
	Stopping Criterion
	Variation

	An Exact Approach using SOS 2 Conditions
	Approximation of Nonlinear Functions using SOS 2 Conditions
	TMCFP with SOS 2 Conditions

	Branching for SOS 2 Conditions
	Example-Problems
	Avoiding Small Flows Example 1
	Avoiding Small Flows Example 2
	Avoiding Small Flows Example 3

	Summary and Conclusions

	Robust Optimization in Network Flows: Uncertain Costs
	Problem Formulation and Objectives
	Approach of Bertsimas and Sim
	Model Formulation
	Extension to Multicommodity Flows
	Non-Integer Values for the Robustness Parameter

	Ant Algorithm
	Uniformly Distributed Costs
	Gaussian Distributed Costs
	Arbitrary Distribution

	Problems
	Single-Commodity Uncertain Cost Example
	Single-Commodity Triangular Distributed Cost Example
	Summary

	Summary and Conclusions

	Transformation of Uncertain Demands to Uncertain Costs
	Transformation using Additional Information: Penalty and Storage Costs
	The Transformation Process
	Uncertain Demands Transformation Example 1

	General Approach
	The Transformation Process
	Interpretation
	Uncertain Demands Transformation Example 2

	Summary and Conclusions

	Robust Optimization in Network Flows: Uncertain Demands
	Problem Formulation and Objectives
	Ant Algorithm
	Modification of the Network
	Realization of Uncertain Demands
	Variations
	Supplements for the Multicommodity Version
	Multicommodity Uncertain Demands Example

	Recoverable Robustness
	Linear Programming Recovery
	Coincidental Covering
	Translation of the Demand Scenarios
	Extension to Multicommodity Flows
	Recoverable Robustness Example

	Summary and Conclusions

	Stochastic Programming: Uncertain Demand
	Two-Stage Linear Recourse Problems
	Problem Formulation
	The L-Shaped Method
	Application to Supply Chain Problems

	Extension of the L-Shaped Algorithm to Multicommodity Flows
	The Multicommodity L-Shaped Method
	Proof of Correctness and Convergence
	Multicommodity Two-Stage Example

	Recourse by Interexchange
	Introduction of the Interexchange Recourse Scheme
	Multicommodity Interexchange Two-Stage Example

	Inventory Management
	Network Extension for Inventory Management
	Multicommodity Inventory Management Two-Stage Example

	Summary and Conclusions

	A Multicriteria Perspective
	Scalarizations of the Multicriteria Optimization Problem
	e-Constraint Scalarization
	Weighted Sum Scalarization
	Further Scalarizations

	Relations between the Scalarizations
	Sensitivity for the e-Constraint Scalarization
	Summary and Conclusions

	Computational Results: Numerical Tests
	Random Network Generation
	Threshold Minimum Cost Flow Problem
	Uncertain Costs
	Uncertain Demands
	Summary and Conclusions

	Computational Results: Reference Model
	Ant Algorithm for Uncertain Demands
	Transformation of Uncertain Demands to Uncertain Costs
	Recoverable Robustness
	Stochastic Two-Stage Linear Recourse Problem
	Single Time Period
	Recourse by Interexchange
	Inventory Management: Multiple Time Periods

	Summary and Conclusions

	Final Conclusion and Future Research
	List of Abbreviations

