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Zusammenfassung

Diese Arbeit beschäftigt sich mit Problemen aus der multikriteriellen Optimierung
und beschreibt, wie multikriterielle Optimierungsmethoden zur Lösung von einkri-
teriellen Problemen genutzt werden können. Während aus traditioneller Sicht meist
Lösungsmethoden aus der einkriteriellen Optimierung dazu benutzt werden, effizien-
te Lösungen eines gegebenen multikriteriellen Problems zu bestimmen, gehen wir in
dieser Arbeit den umgekehrten Weg. Hierfür werden zwei unterschiedliche Ansätze
verfolgt. Auf der einen Seite benutzen wir Lösungskonzepte aus der multikriteriellen
Optimierung direkt dazu, optimale Lösungen für einkriterielle Probleme zu bestim-
men. Auf der anderen Seite verfolgen wir das Ziel, Lösungsverfahren für einkriterielle
Probleme zu verbessern, indem wir durch eine multikriterielle Beschreibung des gege-
benen Problems zusätzliche Informationen in die Problemlösung einfließen lassen.
In den einführenden Kapiteln 1 bis 3 werden zunächst die theoretischen Grundlagen
der in dieser Arbeit behandelten Ideen anhand allgemeiner ein- und multikriteriel-
ler Optimierungsprobleme vorgestellt. Dabei gehen wir detaillierter auf einkriterielle
Probleme ein, die sich als ε-Constraint oder Gewichtete-Summen-Ansatz eines multi-
kriteriellen Problems interpretieren lassen. Zusätzlich präsentieren wir eine erweiterte
Suchstrategie für die alternierende Block-Such-Methode für einkriterielle Probleme,
die auf einer multikriteriellen Erweiterung des Problems beruht.
Die Arbeit gliedert sich im Anschluss in zwei thematisch unterschiedliche Abschnitte.
Der erste Abschnitt (Kapitel 4 bis 10) beschäftigt sich mit kombinatorischer Opti-
mierung. Neben den oben genannten Aspekten beleuchten wir hier zusätzlich die Fra-
ge des Zusammenhangs der effizienten Menge von kombinatorischen Problemen. Der
zweite Abschnitt (Kapitel 11 bis 13) widmet sich hingegen bikonvexen Optimierungs-
problemen. Dabei steht vor allem das Verbindungsstandort-Problem aus der Standort-
Theorie im Mittelpunkt.

Der erste Teil des ersten Abschnitts (Kapitel 4 bis 6) geht v.a. der Frage nach, wie
multikriterielle Lösungsansätze zur Bestimmung optimaler Lösungen für einkriterielle
kombinatorische Optimierungsprobleme genutzt werden können. Dabei diskutieren wir
neben einkriteriellen Problemen mit zusätzlichen Nebenbedingungen auch Probleme,
deren Zielfunktion sich als Summe verschiedenartiger Funktionstypen, wie Summen-
und Bottleneck-Zielfunktionen, schreiben lässt. Diese Probleme werden in der Litera-
tur oftmals auch als algebraische Summationsprobleme bezeichnet. Hierfür wiederholen
wir in Kapitel 4 zunächst die wichtigsten Resultate für Probleme mit Summen- und
Bottleneck-Zielfunktionen sowohl für den einkriteriellen als auch für den multikrite-
riellen Fall. Neben einem kurzen Literaturüberblick präsentieren wir in diesem Kapi-
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tel zusätzlich ein verallgemeinertes Lösungsverfahren für multikriterielle Bottleneck-
Probleme.

Kapitel 5 beschäftigt sich mit verallgemeinerten Bottleneck-Problemen. Anstelle des
größten Kostenkoeffizienten einer zulässigen Lösung soll nun der k.-größte Koeffizi-
ent minimiert werden. Dies führt zum Begriff der k-max-Optimierungsprobleme. Wir
zeigen für den einkriteriellen Fall, dass sich diese Probleme mit Hilfe einer Folge von
binären Summationsproblemen lösen lassen. Für den multikriteriellen Fall präsentieren
wir einen modifizierten ε-Constraint-Ansatz, um effiziente Lösungen des Problems zu
generieren.

Kapitel 6 widmet sich ausführlicher multikriteriellen Ansätzen zur Bestimmung op-
timaler Lösungen von einkriteriellen kombinatorischen Optimierungsproblemen. Im
ersten Teil werden zunächst einkriterielle Probleme mit einer zusätzlichen Nebenbe-
dingung betrachtet. Wir präsentieren einen verallgemeinerten bikriteriellen Ansatz für
dieses Problem, mit dessen Hilfe eine optimale Lösung des Ausgangsproblems bestimmt
werden kann. Der zweite Teil des Kapitels beschäftigt sich mit algebraischen Summati-
onsproblemen. Wir zeigen, wie die in den Kapiteln 4 und 5 vorgestellten Algorithmen
für multikriterielle Probleme mit Summen-, Bottleneck und k-max-Zielfunktionen da-
zu benutzt werden können, um diese Probleme zu lösen. Dabei nehmen wir zunächst
Bezug auf spezielle Probleme aus der Literatur und diskutieren anschließend daraus
abgeleitete, verallgemeinerte Problemstellungen.

Der zweite Teil des ersten Abschnitts (Kapitel 7 bis 10) befasst sich vorwiegend mit
Zusammenhangseigenschaften der effizienten Menge von multikriteriellen kombinato-
rischen Optimierungsproblemen. Da es sich bei kombinatorischen Optimierungspro-
blemen um diskrete Probleme handelt, benutzen wir graphentheoretische Konzepte
um den Zusammenhang der effizienten Menge zu definieren. Ist die effiziente Menge
eines gegebenen Problems zusammenhängend, so kann diese mit Hilfe einfacher Algo-
rithmen, basierend auf Nachbarschaftssuche, komplett bestimmt werden. In Kapitel 7
beschäftigen wir uns zunächst mit geeigneten Definitionen der Benachbartheit von effi-
zienten Lösungen. Danach untersuchen wir den Zusammenhang der effizienten Menge
für eine Vielzahl klassischer kombinatorischer Probleme und zeigen, dass die effiziente
Menge für diese Probleme im Allgemeinen nicht zusammenhängend ist. Anhand einer
numerischen Studie für unterschiedliche Varianten von Rucksack-Problemen gehen wir
weiterhin auf die Häufigkeit des Auftretens dieses Phänomens ein.

Kapitel 8 beschäftigt sich mit Zusammenhangseigenschaften der effizienten Menge für
kombinatorische Probleme mit Bottleneck-Zielfunktionen. Wir weisen anhand eines
allgemein gültigen Gegenbeispiels nach, dass auch in diesem Fall die effiziente Men-
ge für viele Klassen von kombinatorischen Problemen nicht zusammenhängend ist.
Der zweite Teil des Kapitels 8 widmet sich bikriteriellen Rucksack-Problemen mit
Bottleneck-Zielfunktionen. Dabei zeigen wir unter anderem, dass - im Gegensatz zur
effizienten Menge - die Menge der schwach-effizienten Lösungen dieses Problems stets
zusammenhängend ist.

Die abschließenden Kapiteln 9 und 10 beschäftigen sich mit speziellen Klassen von
kombinatorischen Problemen, für die der Nachweis des Zusammenhangs der effizienten
Menge erbracht werden kann.

In Kapitel 9 werden dabei zunächst Rucksack-Probleme mit binären Gewichten behan-
delt. Ausgehend von einem Rucksack-Problem mit zwei Gleichheits-Nebenbedingungen
auf den binären Gewichten, entwickeln wir einen Greedy-Algorithmus, mit dessen Hil-
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fe die nicht-dominierte Menge des unrestringierten trikriteriellen Optimierungspro-
blems mit zwei binären Zielfunktionen effizient berechnet werden kann. Anhand nu-
merischer Untersuchungen weisen wir nach, dass es mit Hilfe des Algorithmus unter
anderem möglich ist, Instanzen mit über einer Million Items und 180 Milliarden nicht-
dominierten Punkten in weniger als 30 Minuten zu lösen. Zusätzlich benutzen wir
diesen Algorithmus, um den Zusammenhang der effizienten Menge für dieses spezielle
Problem zu beweisen.
Kapitel 10 widmet sich einer speziellen Klasse von bikriteriellen Matroid-Problemen,
bei der eine der beiden Zielfunktionen als binär vorausgesetzt wird. Auch für dieses
Problem ist es möglich, den Zusammenhang der effizienten Menge mittels eines modi-
fizierten Lösungsverfahrens aus der Literatur nachzuweisen.

Der zweite Abschnitt dieser Arbeit widmet sich bikonvexen Optimierungsproblemen.
Eine Funktion heißt dabei bikonvex, wenn sich die gegebene Variablenmenge der Funk-
tion so in zwei disjunkte Teilmengen aufteilen lässt, dass die daraus resultierenden
Teilfunktionen jeweils konvex in einem Teil der Variablen sind, sobald der andere Teil
der Variablen als fest angenommen wird. Eine Teilmenge des Rn wird in diesem Zusam-
menhang als bikonvex bezeichnet, falls sie eine entsprechende Eigenschaft für Mengen
erfüllt.
Kapitel 11 gibt zunächst einen generellen Überblick über die wichtigsten Resultate für
bikonvexe Mengen, Funktionen und Optimierungsprobleme. Dabei beweisen wir unter
anderem, dass sich das Maximum einer bikonvexen Funktion über einer bikonvexen
Menge stets auf dem Rand der Menge befindet. Weiterhin untersuchen wir Konvergen-
zeigenschaften der alternierenden konvexen Suche, die auf dem alternierenden Lösen
der induzierten konvexen Teilprobleme basiert. Wir zeigen, dass die Folge der durch
diese Methode generierten Punkte unter schwachen Voraussetzungen gegen einen sta-
tionären Punkt des Ausgangsproblems konvergiert.
Kapitel 12 beschäftigt sich mit einer erweiterte Suchstrategie für bikonvexe Optimie-
rungsprobleme, die auf den bereits in Kapitel 3 präsentierten Ideen für die alternie-
rende Block-Such-Methode beruht. Dabei wird die spezielle Struktur des bikonvexen
Problems genutzt, um durch einen bikriteriellen Ansatz zusätzliche Informationen über
das gegebene Problem zu erhalten. Neben den beiden Zielfunktionen der konvexen Un-
terprobleme verwenden wir dabei zusätzlich Gradienten-Informationen dieser Funktio-
nen als weiteres Kriterium, um die Qualität der aus der alternierenden konvexen Suche
(als Spezialfall der alternierende Block-Such-Methode) resultierenden lokalen Optima
heuristisch zu verbessern.
Abschließend widmet sich Kapitel 13 dem Verbindungsstandort-Problem in der Ebene.
Bei diesem speziellen Problem aus der Standort-Theorie werden Flüsse zwischen exi-
stierenden Standorten betrachtet. Jeder dieser Flüsse muss dabei einen Verbindungs-
knoten durchlaufen. Ziel ist es, einerseits günstige Standorte für die Verbindungsknoten
zu wählen, und andererseits eine geeignete Aufteilung der Flüsse auf diese zu bestim-
men, so dass entstehende Transportkosten minimiert werden. Wir zeigen zunächst, dass
sich das gegebene Standort-Problem als bikonvexes Optimierungsproblem formulieren
lässt und diskutieren im Anschluss, wie sich die in Kapitel 12 präsentierte erweiter-
te Suchstrategie auf dieses Problem anwenden lässt. Wir diskutieren unter anderem
mehrere Varianten dieser erweiterten Strategie und vergleichen diese Varianten mit
dem ursprünglichen Ansatz der alternierenden konvexen Suche anhand detaillierter,
numerischer Tests der vorgeschlagenen Algorithmen.





Abstract

This thesis deals with problems from multiple objective optimization and describes how
methods of this field of optimization can be used to solve single objective problems.
While traditionally methods from single objective optimization are frequently used to
determine efficient solutions of a given multiple objective problem, we want to take the
reverse approach in this thesis. Thereby, two different concepts are in the main focus.
On the one hand, we use solution concepts from multiple objective optimization to
directly derive optimal solutions for single objective problems. On the other hand, we
aim to improve existing solution concepts for single objective problems by exploiting
additional information induced by a multiple objective description of the considered
single objective problem.
In the preliminary Chapters 1 to 3 the theoretical background of the ideas presented
in this thesis is discussed based on generalized single and multiple objective problem
formulations. We concentrate on single objective problems that can be interpreted
as an ε-constraint or a weighted sum version of a multiple objective optimization. In
addition, we suggest an enhanced search strategy for the alternate block search method
for the single objective problems, that is based on a multiple objective extension of
the problem.
Starting from Chapter 4, the remainder of this thesis is partitioned into two parts. The
first part (Chapters 4 to 10) deals with combinatorial optimization problems. Besides
the above mentioned aspects, we additionally discuss the connectedness of the efficient
set for this kind of problems. The second part (Chapters 11 to 13) is dedicated to
biconvex optimization. In this context, we mainly focus on the connection location-
allocation problem from location theory.

The first chapters of Part I (Chapters 4 to 6) deal with the question of how multiple
objective solution approaches can be used to solve single objective combinatorial opti-
mization problems. We mainly concentrate on constrained versions of single objective
problems as well as on problems, where the objective function is given as the sum of
different types of objectives like sum and bottleneck functions. The latter problems are
frequently called algebraic sum problems in the literature. For this purpose, we recall
the most important results for combinatorial optimization problems with sum and bot-
tleneck objectives for the single as well as the multiple objective case in Chapter 4. In
addition to a short survey of the existing literature, we present a generalized solution
approach for multiple objective combinatorial problems with bottleneck objectives.
Chapter 5 is dedicated to generalized bottleneck problems. Instead of minimizing
the largest cost coefficient of a feasible solution, the kth largest coefficient has to be
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minimized. This leads to the notion of a k-max optimization problem. We show that
an optimal solution for the single objective problem can be determined by solving a
sequence of single objective binary sum problems. For the multiple objective case, we
use a modified ε-constraint approach to generate efficient solutions of the considered
problem.

Chapter 6 is devoted to single objective combinatorial problems with one side con-
straint as well as problems with algebraic sum objectives. We show how algorithms
for multiple objective problems with sum, bottleneck or k-max objective that have
been presented in the Chapters 4 and 5 can be used to solve this kind of problems.
Based on special classes of algebraic sum problems stated in the literature, we present
solution approaches for generalized versions of these problems.

The remaining chapters of Part I (Chapters 7 to 10) are dedicated to the connectedness
of the efficient set for combinatorial optimization problems. As combinatorial problems
belong to the class of discrete optimization problems, we use concepts from graph
theory to define the connectedness of the efficient set. When the efficient set of a
given problem is known to be connected, the set itself can be determined by means
of simple local search techniques. In Chapter 7 we discuss appropriate definitions for
the adjacency of efficient solutions. We further show that the efficient set for most of
the classical problems from combinatorial optimization is not connected in general. In
addition, we perform numerical tests for different variants of the knapsack problem to
analyze the likelihood that problems with non-connected efficient set occur in randomly
generated problem instances.

The first part of Chapter 8 deals with the connectedness of the efficient set for combi-
natorial problems with bottleneck objectives. We give a general counter-example that
shows that also in this case a non-connected efficient set can be expected for many
classes of combinatorial problems. In the second part of this chapter, the biobjective
binary knapsack problem with bottleneck objectives is discussed in more detail. We
prove, amongst others, that the set of weakly-efficient solutions - in contrast to the
efficient set - is always connected for this specific problem.

Chapters 9 and 10 are dedicated to special classes of combinatorial problems for which
the connectedness of the efficient set can be proven. In Chapter 9 a class of knapsack
problems with binary weights is discussed. Based on a knapsack problem with equal-
ity constraints on the binary weights, we develop a greedy algorithm that can be used
to efficiently determine the non-dominated set of the associated triobjective uncon-
strained combinatorial optimization problem with two binary objectives. A numerical
study shows that the algorithm can be used to solve instances with more than one
million items and 180 billions non-dominated solutions within less than 30 minutes
of CPU-time. In addition, we use this algorithm to prove the connectedness of the
efficient set for this special type of optimization problem.

Chapter 10 deals with biobjective optimization problems on matroids where one of the
two objectives is assumed to take binary values only. For this problem, the connected-
ness of the efficient set can be proven by means of a modified version of an algorithm
that can be found in the literature for matroid intersection problems.

The second part of this thesis is dedicated to biconvex optimization. A function is
called biconvex, if its set of variables can be partitioned into two disjoint blocks such
that the resulting two subfunctions are convex with respect to one block if the other
block is assumed to be fixed. In this context, a subset of Rn is called biconvex if it
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satisfies an analogous property for sets.
At first, Chapter 11 surveys the most important results on biconvex sets, functions and
optimization problems. Amongst others, we show that the maximum of a biconvex
function on a biconvex set is always attained on the boundary of the given set. In
addition, we discuss convergence properties of the alternate convex search method
that is based on alternately solving the induced convex subproblems. We show that
under mild assumptions on the problem the sequence of generated points converges to
a stationary point.
An enhanced search strategy for biconvex optimization problems, that is based on
the ideas for the alternate block search method already discussed in Chapter 3, is
presented in Chapter 12. Thereby, the special structure of the biconvex problem is
used to obtain additional information that is induced by a biobjective interpretation
of the given problem. In addition to the two objectives of the respective convex
subproblems we additionally use gradient information of these functions as further
objectives to heuristically improve the quality of the local minima that result from
applying the alternate convex search method that can be seen as a special version of
the more general alternate block search method.
The connection location-allocation problem in the R2-plane is finally treated in Chap-
ter 13. In this problem from location theory we are given flows between existing
facilities where each flow must additionally pass a connection facility. The aim is to
find favorable locations for these connection facilities and low-priced allocations of the
given flows to these locations in order to minimize transportation costs. Initially, we
show that this problem can be formulated as a biconvex optimization problem. We
further discuss how the search strategies presented in Chapter 12 can be applied to
this specific problem. Amongst others, we present several enhanced versions of this
method and compare these variants to the original alternate convex search approach
by means of detailed numerical tests of the proposed algorithms.





Chapter 1
Introduction

Taking the right decisions is one of the main aspects in everyday life. While most of
the decisions we are faced with during the day, like which clothes to wear or when to
have lunch, can be taken by routine and only affect the next moments of our life, others
do not only have a deep impact on our own well-being, but also on the well-being of
others. If a decision has to be made with respect to only a single criterion, it is often
quite simple to find a satisfying solution for the problem.

However, only in rare cases important decisions are influenced by a single criterion.
Often several independent and conflicting aspects have to be taken into account. Based
on these different criteria, one is faced with the problem to find the ‘‘best’’ alternative
among many possible decisions.

From a mathematical point of view, the notion of optimality for a problem that de-
pends on a single criterion is straightforward. The situation changes if more than one
objective is considered. Given two feasible solutions, it is not immediately clear which
one we have to choose, when the first solution is better with respect to criterion A,
while the second is more satisfactory for criterion B. However, if the first solution is
at least as good as the second in all the considered criteria and strictly better in at
least one, we rather choose the first solution but not the second.

This approach leads to the concept of Pareto optimality for multiple objective opti-
mization problems, formally introduced by Vilfredo Pareto and Francis Edgeworth in
the late 19th century. In this context, a feasible solution is called (Edgeworth-)Pareto
optimal or efficient if it cannot be improved with respect to one criterion without
worsening at least one other criterion. While single objective optimization is in the
main focus of research since a long time, multiple objective optimization was rarely
discussed until the middle of the last century.

A common approach in multiple objective optimization is to solve a sequence of scalar-
izations to associated single objective optimization problems in order to generate differ-
ent efficient solutions of the multiple objective problem. The ideas of these approaches
go back to the middle of the last century.

In contrast, solution concepts from multiple objective optimization are scarcely used
to solve single objective optimization problems, since multiple objective problems are
generally as least as hard to solve as their single objective counterparts. However,
multiple objective optimization yields a good basis to generalize and combine seemingly
different approaches from single objective optimization, as we will show in this thesis.
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Due to the growing interest in multiple objective optimization, the research on al-
ternative solution concepts for these kind of problems has increased during the last
decades. Nowadays, there exists a vast number of different solution concepts, both
exact and heuristic, that can be applied to solve multiple objective problems.

In addition to solution approaches for continuous problems, also new solution concepts
for multiple objective versions of discrete and combinatorial optimization problems are
in the focus of current research. While many of the classical combinatorial problems
can be treated efficiently, when a single objective problem is considered, their multiple
objective counterparts can be solved exactly only for small to medium sized instances
in a reasonable amount of time. Often, a deeper insight into the specific structure of the
considered multiple objective combinatorial problem is necessary, to derive appropriate
and satisfying solution concepts to efficiently derive non-dominated solutions for the
considered problem. However, if such solution concepts exist, we show how they can
be used to improve existing and to derive new solution concepts for single objective
problems, not only limited to the combinatorial case.

Outline of this Thesis

The aim of this thesis is twofold. On the one hand, we investigate structural properties
of the efficient set of multiple objective combinatorial optimization problems. These
specific properties can be used to derive fast and efficient solution methods that no
longer depend on any scalarizations of the considered multiple objective problem. On
the other hand, we show how ideas and solution techniques from multiple objective
optimization can be used to gain new insight into the structure and solution concepts
for special classes of single objective problems. In this context, we do not restrict our-
selves to combinatorial problems only, but we further show, how ideas from continuous
multiple objective optimization can be used to improve existing solution approaches
for special types of problems from location theory.
The content of this dissertation can be divided into two main parts focusing on the
two topics stated above: Part I (Chapters 4 to 10) is dedicated to combinatorial
optimization, while we consider biconvex optimization problems in Part II (Chapters 11
to 13) of this thesis.

After a short introduction to the most important concepts and definitions from single
and multiple objective optimization in Chapter 2, we present the theoretical back-
ground of our approaches in Chapter 3. While we mainly concentrate on combinato-
rial and biconvex optimization problems in the remainder of this thesis, we already
discuss the main concepts and ideas of how we use multiple objective optimization to
solve single objective problems in this preliminary chapter. There, we do not focus
on any special types of optimization problems, but we discuss how constrained single
objective problems as well as problems, where the objective is given as the weighted
sum of different types of functions can be solved by means of a multiple objective
approach. In addition, we present an enhanced version of the alternate block search
strategy that is frequently used to calculate local optima for general, non-linear op-
timization problems. Given a partitioning of the set of variables into several disjoint
blocks, the optimization problem is iteratively solved in a single block of variables,
while the remaining blocks are fixed. We introduce a multiple objective-based ap-
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proach to improve this solution method. Besides the original objective function, we
try to exploit additional information on the potential improvement of the objective
value with respect to the variables that are kept fix during the solution process. We
introduce the notion of the descent potential to measure this information.

Part I of this thesis deals with combinatorial optimization. Chapter 4 gives a short
introduction to the most important definitions and general concepts from this field of
optimization. We summarize the results on combinatorial optimization problems with
sum objectives especially for the multiple objective case, and we additionally present a
generalized solution approach for multiple objective combinatorial problems involving
bottleneck objectives.
In the subsequent Chapter 5 we consider a generalized notion of a bottleneck objective.
Given a combinatorial problem, we are no longer interested in minimizing the largest
cost coefficient of a feasible solution, which corresponds to a bottleneck problem, but
we rather want to optimize the kth largest cost coefficient contained in a feasible
solution. This leads to the notion of a k-max objective. We show that the resulting
single objective optimization problem can be solved in polynomial time, whenever this
holds true for an associated combinatorial problem with a binary sum objective. In
addition, we present an efficient solution method for solving multiple objective k-max
optimization problems with an additional sum objective. We further discuss the notion
of a k-min objective and show that problems involving this objective can be solved by
means of the same concepts as for the k-max case.
In Chapter 6 we first summarize some ideas from Chapter 3, and discuss how special
types of single objective combinatorial problems can be solved by means of approaches
from multiple objective optimization. In the first part of the chapter, we generalize
multiple objective-based solution concepts from the literature that are frequently used
to solve single objective combinatorial optimization problems with an additional side
constraint. The second part of the chapter deals with combinatorial problems with
algebraic sum objectives. We apply solution approaches from Chapters 4 and 5 to
show, how these types of problems can be solved using solution concepts from multiple
objective optimization. In addition, we summarize the literature for three special
classes of algebraic sum problems and discuss generalized versions of these problems.
We show that all these problems can be modeled and solved by means of associated
multiple objective k-max optimization problems.
The remainder of the Part I is dedicated to the connectedness of the efficient set of
multiple objective combinatorial optimization problems. When the efficient set of a
given class of combinatorial problems is known to be connected independently from
the considered instance, the complete efficient set of a given problem instance can be
determined by applying a simple local search strategy that is based on the adjacency
of the efficient solutions.
We investigate classical combinatorial optimization problems in Chapter 7. Based
on two different definitions for the adjacency of efficient solutions, we show that the
property of a connected efficient set does not hold for the considered classes in general.
We further provide numerical studies on the occurrence of an unconnected efficient set
for different variants of the knapsack problem.
While we focus on connectedness of the efficient set for combinatorial problems with
sum objectives in Chapter 7, Chapter 8 addresses multiple objective problems with
bottleneck objectives. While we have to treat each class of combinatorial problems
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in Chapter 7 separately, we present a generalized counter-example for combinatorial
problems with multiple bottleneck objectives in Chapter 8 that can be applied to
several classes simultaneously. In addition, we develop an algorithm for the biobjective
knapsack problem with bottleneck objectives. Based on this algorithm, we prove that
the set of weakly efficient solutions is always connected for this specific type of knapsack
problem. In addition, we derive a non-trivial sufficient condition for the connectedness
of the efficient set for this special class of knapsack problems.
Chapter 9 deals with single objective knapsack problems with binary weights. We
introduce a simple greedy strategy to solve the single objective problem with two
equality constraints on the binary weights. We further make use of this approach to
derive a greedy algorithm for the unconstrained triobjective optimization problem with
two binary objectives, and show that our algorithm is optimal in terms of the expected
worst case time complexity for the considered problem. Based on the correctness of our
approach, we are able to prove the connectedness of the efficient set for this special type
of triobjective optimization problem. In addition, we use an adapted variant of the
algorithm for the triobjective problem to solve the knapsack problem with inequality
constraints on the binary weights.
Matroid problems are considered in Chapter 10, where one of the two objectives is
assumed to take binary values only. We present a modified version of an algorithm
known from the literature that was originally developed to solve the problem with an
equality constraint on the binary objective. We further use this algorithm to prove
the connectedness of the efficient set of this specific problem. In more detail, we show
that the set of efficient solutions consists of supported efficient solutions only.

Part II of this dissertation is devoted to biconvex optimization problems. A real-
valued function is called biconvex if there exist two disjoint blocks of variables such
that the given function is convex with respect to one block of variables while the
other remains fixed. We summarize the most important properties of biconvex sets,
functions and optimization problems in Chapter 11. Amongst others, we state a
new and interesting result for biconvex maximization problems on biconvex sets. In
more detail, we show that the maximum of a biconvex function on a biconvex set is
always attained on the boundary of the given set. In addition, we provide a detailed
analysis of existing solution concepts for biconvex minimization problems that exploit
the biconvex structure of a given problem. We mainly concentrate on the alternate
convex search that can be seen as a special case of the alternate block search strategy,
already introduced in a more general framework in Chapter 3.
Chapter 12 relates the idea of the enhanced search technique for the alternate block
search method presented in Chapter 3 to the alternate convex search method for bi-
convex optimization problems introduced in Chapter 11. We use gradient information
to measure the descent potential with respect to the block of variables that remain
fixed during consecutive iterations of the alternate convex search method. In addition,
we discuss how the resulting augmented alternate convex search method can be used
to solve biconvex optimization problems in practice.
Finally, Chapter 13 is devoted to a special biconvex optimization problem from location
theory. In more detail, we focus on the connection location-allocation problem in the
plane. Based on the biconvex structure of the problem, the alternate convex search
method (also called location-allocation algorithm in this context) is frequently used
to derive local minima for the given problem. We show that the performance of this
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algorithm can be heuristically improved if the enhanced version of the alternate block
search strategy that has been developed in Chapter 12 is used. In addition, we provide
detailed numerical results on different versions of the augmented location-allocation
algorithm presented in this chapter and compare these enhanced approaches to the
original version of the algorithm.





Chapter 2
Basic Notation and Concepts

The focus of this thesis is multiple objective optimization and its implications to
single objective optimization, especially for biconvex and combinatorial optimization
problems. It is assumed that the reader is familiar with the basic ideas of linear and
non-linear optimization, convex optimization, discrete and combinatorial optimization,
as well as multiple objective optimization. For a deeper insight into these topics,
we refer, for example, to the books of Bazaraa et al. [13], Boyd and Vandenberghe
[25], Ehrgott [54], Hamacher and Klamroth [92], Miettinen [143], Nemhauser and
Wolsey [150] and Steuer [197]. For the basic ideas on computational complexity issues,
we refer to the book of Garey and Johnson [71]. In the following, we give a short
introduction to the most important concepts and definitions from single as well as
multiple objective optimization. Furthermore, we introduce the basic notation, that
is used in the remainder of this work.
A single objective optimization problem (SOP) is a problem of the form

min f(x)

s.t. x ∈ X,
(SOP)

with non-empty feasible set X ⊆ Rn and real-valued objective function f : X → R.
For SOP a point x ∈ X is called optimal or optimal solution if f(x) ≤ f(x′) for all
x′ ∈ X. Moreover, x ∈ X is called local optimal or local optimal solution if there
exists a neighborhood Ux ⊆ X containing x in its interior such that f(x) ≤ f(x′) for
all x′ ∈ Ux.
A set X ⊆ Rn is called convex if for x1, x2 ∈ X it holds that λx1 + (1 − λ)x2 ∈ X
for all λ ∈ [0, 1]. A function f : X → R is called convex if f(λx1 + (1 − λ)x2) ≤
λf(x1) + (1 − λ)f(x2) for all x1, x2 ∈ X and λ ∈ [0, 1]. An SOP is called convex if
both f and X are convex. For a detailed introduction to biconvex optimization, we
refer to Chapter 11.
A multiple objective optimization problem (MOP) or multiple criteria optimization
problem is given by

min f(x) = (f1(x), . . . , fp(x))⊤

s.t. x ∈ X,
(MOP)

with vector-valued objective function f : X → Rp and feasible set X ⊆ Rn, where Rn

is also called decision space. f consists of p ∈ N real valued objectives fi : X → R for
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i = 1, . . . , p. The set Y := {f(x) : x ∈ X} = f(X) ⊆ Rp denotes the image of the
feasible set in the objective space Rp and is called set of attainable outcomes. For the
case that p = 2, we refer to a biobjective optimization problem. If p = 3, we call MOP
a triobjective optimization problem. Note that in the case that p = 1, MOP simplifies
to SOP with objective function f .
Since there does not exist a canonical ordering on the Euclidian vector space Rp

whenever p ≥ 2, we use the following concepts of componentwise ordering :

y1 ≦ y2 :⇔ y1
i ≤ y2

i , i = 1, . . . , p,

y1 ≤ y2 :⇔ y1
i ≤ y2

i , i = 1, . . . , p and y1 6= y2,

y1 < y2 :⇔ y1
i < y2

i , i = 1, . . . , p.

Following the Pareto concept of optimality, we say that a feasible point x1 ∈ X domi-
nates a point x2 ∈ X if f(x1) ≤ f(x2). If strict inequality holds for all p components,
i.e. f(x1) < f(x2), then x1 strongly dominates x2. If there does not exist any feasible
point that dominates x ∈ X, we say that x is an efficient solution of MOP. For the
case that there exists no feasible point that strongly dominates x ∈ X, we say that x is
weakly-efficient for MOP. If there is no x2 ∈ X, x2 6= x1, such that f(x2) ≦ f(x1), x1

is called strictly efficient. Note that strict efficiency is the multiple objective analogon
to unique optimal solutions for SOP. According to these definitions, the efficient set
XE and the weakly efficient set XwE are defined by

XE := {x ∈ X : there exists no x̄ ∈ X with f(x̄) ≤ f(x)},
XwE := {x ∈ X : there exists no x̄ ∈ X with f(x̄) < f(x)}.

Using the vector-valued mapping f , the images of these sets YN := f(XE) and
YwN := f(XwE) are called the non-dominated set and the weakly non-dominated set,
respectively. In this context, a point y2 ∈ Rp is called dominated by y1 ∈ Rp if y1 ≤ y2,
and it is called strongly dominated by y1 if y1 < y2 holds. The non-dominated set YN is
called externally stable if for each dominated point y ∈ Y there exists a non-dominated
point y′ ∈ YN that dominates y. In continuous optimization YN is known to be exter-
nally stable if Y ⊆ Rp is non-empty and compact, i.e. closed and bounded (cf. Ehrgott
[54]). For example, compactness of Y is given, when X is compact and the considered
p objective functions are continuous (cf. Forster [65]). For the case that a discrete
optimization problem is considered, YN is externally stable if, for example, Y consists
of a finite set of singletons.
Let y1 = (y1

1, . . . , y
1
p) and y2 = (y2

1, . . . , y
2
p) be two vectors. The lexicographical ordering

“≤lex” is defined as

y1 ≤lex y2 :⇐⇒ y1 = y2 or y1
i < y2

i for i = min{j : y1
j 6= y2

j , j ∈ (1, . . . , p)},

where it is assumed that the index vector (1, . . . , p) corresponds to an ordered tuple of p
integers. Let π = (π(1), . . . , π(p)) be any permutation of (1, . . . , p). The vector x1 ∈ X
is said to be lexicographically optimal with respect to π if there does not exist another
vector x2 ∈ X such that fπ(x1) ≤lex fπ(x2), where fπ(x1) = (fπ(1)(x

1), . . . , fπ(p)(x
1))

and fπ(x2) = (fπ(1)(x
2), . . . , fπ(p)(x

2)). Note that if x1 is lexicographically optimal for
an arbitrary permutation π, x1 is also efficient.
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Let yI
i = inf{fi(x) : x ∈ X} for all i ∈ {1, . . . , p}. Then the point yI := (yI

1, . . . , y
I
p)

is called the ideal point. Given yN
i = min{fi(x) : x ∈ XE} for all i ∈ {1, . . . , p}, then

the point yN := (yN
1 , . . . , yN

p ) is said to be the Nadir point of the given problem. Note
that while yI can be computed by solving p independent single objective problems, the
computation of yN involves an optimization over the efficient set. No efficient methods
for this problem are known for general MOPs, whenever p > 2 (cf. Ehrgott [54]).
For the case that f consists of p linear objective functions and X forms a polyhedral
set in Rn, MOP is called multiple objective linear programming problem (MLP). If
further integrality conditions are added to the feasible set X, we refer to a multiple
objective integer linear programming problem (MILP) or a discrete MOP in a more
general setting. For a more detailed introduction to (multiple objective) combinatorial
optimization, we refer to Chapter 4.
For λ ∈ R

p

≧ := {y ∈ Rp : yi ≥ 0}, the single objective optimization problem

min
p∑

i=1

λifi(x)

s.t. x ∈ X,
(Pλ)

is called weighted sum (scalarization) problem of MOP. It is well-known that each
optimal solution of this problem is efficient, whenever λ ∈ R

p
> := {y ∈ Rp : yi >

0} holds (cf. Ehrgott [54]). This being the situation, we call an efficient solution
x ∈ XE supported efficient (solution) if there exists λ ∈ R

p
> such that x optimal

for Problem (Pλ). Its corresponding image y = f(x) in the objective space is called
supported non-dominated (solution). Otherwise, x and y are called non-supported
(solutions). Already Geoffrion [78] and Isermann [108] showed that every efficient
solution of MLP corresponds to an optimal solution of Problem (Pλ) for an appropriate
λ ∈ R

p
>. Note that this is no longer the case when general non-convex optimization

problems are considered. In this context it is also important to notice that for MILPs
unsupported efficient solutions may exist, even for the case that the constraint matrix
of the considered problem is known to be totally unimodular.
Let j ∈ {1, . . . , p} be arbitrary but fixed and let ε ∈ Rp. Then the single objective
optimization problem

min fj(x)

s.t. fi(x) ≤ εi i = 1, . . . , p, i 6= j,

x ∈ X,

(Pε)

is called ε-constraint problem (with respect to the right hand side vector ε ∈ Rp). Note
that the component εj of this vector is not relevant for solving Problem (Pε). A first
extensive discussion of this problem can be found in Chankong and Haimes [36]. It is
well-known that every optimal solution of Problem (Pε) is at least a weakly efficient
solution of the corresponding MOP, and that a feasible solution x ∈ X is efficient for
MOP if and only if there exists a vector ε ∈ Rp such that x is optimal solution of
Problem (Pε) for all j = 1, . . . , p (cf. Ehrgott [54]). In contrast to the weighted sum
method, all efficient solutions can be generated by applying the ε-constraint method to
MOP, even in the case of a general non-linear multiple objective optimization problem.





Chapter 3
From Single to Multiple Objective
Optimization and Back - General Ideas of
this Work

From a historical point of view, multiple objective optimization is mostly considered as
a generalization of single objective optimization, since methods from single objective
optimization are frequently used to develop new solution concepts for solving multiple
objective optimization problems. However, we take the reverse approach in this thesis
and show how concepts and solution concepts from multiple objective optimization
can be used to gain a new insight into the structure of single objective optimization
problems. In this context, we mainly focus on combinatorial optimization problems in
the first part and on biconvex optimization problems in the second part of this work,
respectively.

However, the theoretical background of our ideas is not limited to these two special
classes of optimization problems only, but can also be applied to many problems from
other fields of optimization. Hence, we do not restrict ourselves to special types of
problems in the following, but we develop the theoretical background of our approaches
that are presented in the remainder of this work based on general problem formulations.
Hereby, we mainly focus on two different aspects in the following.

In the first two sections of this chapter, we show how multiple objective approaches
can be used to solve constrained single objective optimization problems as well as
optimization problems where the objective function corresponds to a weighted sum
of different sub-objectives. Based on the single objective problem description, we
formulate an associated multiple objective optimization problem and show that there
exists at least one efficient solution of this multiple objective problem that is also
optimal for the original single objective problem, as long as a weak assumption on the
non-dominated set of the associated multiple objective problem is met. The general
idea of our approach is also illustrated in Figure 3.1.

In a third section, we discuss a heuristic multiple objective approach for solving single
objective problems. For these problems it is assumed that the set of variables can
be partitioned into disjoint blocks of variables such that the resulting single objective
subproblems can be solved efficiently, when only a single block of variables is optimized,
while the remaining blocks are fixed. The main idea of our heuristic approach is trying
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Figure 3.1: Instead of solving the SOP directly, it is remodeled as an MOP. The optimal
solution of the single objective problem is obtained by filtering the efficient set of the associated
multiple objective problem for this solution.

to exploit additional descent information that is implicitly contained in the blocks of
fixed variables. This information is normally disregarded, when the given problem is
solved with respect to the active variables.
While the impact of multiple objective optimization on single objective optimization
problems was not in the focus of research until the end of the last millennium, the
number of publications in this field of research has increased over the last decade. How-
ever, the literature mainly concentrates on constrained single objective optimization
problems. In this context, especially in the field of evolutionary algorithms, multiple
objective approaches are frequently used to handle these types of problems.
We omit a detailed review of the existing literature related to this topic, since a
comprehensive survey was given by Mezura-Montes and Coello Coello [141] in the book
of Knowles et al. [117]. We rather recall from this survey that the evolutionary methods
stated in the literature can be partitioned into two different classes of approaches,
based on the way how the given constrained problem is transformed into a multiple
objective problem:
On the one hand, there exist methods that transform the given problem into an uncon-
strained biobjective optimization problem. Besides the original objective, the sum of
constraint violations is used as an additional criterion. On the other hand, there exist
solution techniques that treat each given constraint function as an additional objec-
tive. Hence, instead of the constrained problem, an unconstrained multiple objective
optimization problem has to be solved. We also make use of this idea in Section 3.1
of this chapter.
From a more theoretical point of view, Klamroth and Tind [114] discussed how the
most common solution techniques from multiple objective optimization are related
to constrained single objective optimization problems and vice versa. Starting from
a constrained problem, an associated unconstrained multiple objective optimization
problem is formulated. Amongst others, the authors showed that many classical solu-
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tion approaches have correspondences in the respective classes of optimization prob-
lems. Furthermore, an approximation scheme, based on the results in Klamroth et al.
[115] was presented that can be used to approximate the optimal solutions as well as
the Lagrange multipliers of convex constrained programming problems.

The close relationship between multiple objective optimization and constrained sin-
gle objective optimization was also discussed for several other types of optimization
problems. Amongst others, Fletcher and Leyffer [60] used the idea of accumulating
the sum of constraint violations in an additional objective. Instead of solving the
constrained problem, the authors considered the biobjective problem involving the
original objective and the sum of constraint violations. The authors suggested a filter
SQP method for non-linear programming problems to solve the biobjective problem.
Amongst others, this method additionally makes use of dominance relations between
the two given objective functions.

Carosi et al. [33] related vector optimization to semidefinite optimization, and finally
the connections between Lagrangian relaxations and multiple objective optimization
was discussed in Boyd and Vandenberghe [25]. For a further review on multiple objec-
tive approaches for solving constrained combinatorial optimization problems, we refer
to Chapter 6.

In addition to constrained optimization problems also multiple objective approaches for
solving classical single objective combinatorial optimization problems were presented
in the literature. Neumann and Wegener [151] discussed an evolutionary multiple ob-
jective approach that solves the minimum spanning tree problem. Besides the original
objective function, the authors used the number of connected components induced by
a given set of edges as additional objective in the fitness function of their evolution-
ary algorithm. By a rigorous asymptotic analysis of the expected optimization time,
they showed that their approach is superior to other “single objective” evolutionary
algorithms in the case of randomly chosen dense graphs.

In Neumann and Wegener [152] the authors additionally investigated, whether evolu-
tionary multiple objective approaches can be used to solve the single-source shortest
path problem. The authors used a simple evolutionary algorithm to derive an op-
timal solution for the problem. The fitness function of their algorithm is based on
a multiple objective representation of feasible paths from the start node to all other
nodes contained in the graph. The authors concluded that their approach is an effi-
cient heuristic that is able to solve the single-source shortest path problem within an
expected optimization time of O(n3).

In contrast to constrained optimization problems, multiple objective optimization solu-
tion approaches were rarely applied to single objective optimization problems, where
the objective is given as a weighted sum of different sub-objectives. The literature
mainly concentrates on the field of combinatorial optimization. For a detailed discus-
sion of the related ideas, we refer to Chapter 6 of this work.

The remainder of this chapter is organized as follows. In Sections 3.1 and 3.2 we present
the theoretical background for solving constrained as well as weighted sum type single
objective optimization problems based on multiple objective solution approaches. In
the subsequent section, the main ideas of an enhanced version of the alternate block
search method that is based on a multiple objective approach are discussed. We finally
summarize our results in Section 3.4 and give a further outlook on how the remainder
of this work is organized with respect to the general ideas presented in this chapter.
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3.1 Constrained Single Objective Optimization

Problems

In order to generate efficient solutions of a multiple objective optimization problem, a
common technique is to transform the given multiple objective problem into a related
single objective optimization problem by means of an appropriate scalarization, like
the ε-constraint method, presented in Chankong and Haimes [36] (cf. also Chapter 2).
The aim of this section is to reverse the traditional relation between the multiple
objective problem and its related single objective ε-constraint problem formulation.
Given the constrained version of a single objective optimization problem, we show how
ideas and approaches from multiple objective optimization can be used to derive an
optimal solution for these types of optimization problems. From the introduction of
this chapter we recall that the ideas presented in the section were already applied to
several types of optimization problems in the literature. In addition, Klamroth and
Tind [114] investigated interrelation between constrained optimization and multiple
objective optimization in a more general framework. We mainly follow their ideas in
the remainder of this section.
Let f, g1, . . . , gp : Rn → R denote p + 1 real-valued objective functions, where p ≥ 1,
and let X ⊆ Rn be a non-empty and compact subset of Rn. Then, a constrained single
objective optimization problem (CSOP) is formally given by

min f(x)

s.t. gi(x) ≤ εi i = 1, . . . , p,

x ∈ X,

(CSOP)

where εi ∈ R for i = 1, . . . , p. In the reverse direction to the ε-constraint method,
we transform the given constrained single objective problem into a multiple objective
optimization problem that is formally given by

min G(x) = (f(x), g1(x), . . . , gp(x))⊤

s.t. x ∈ X.
(AMOPε)

Based on the notation used in Klamroth and Tind [114], we refer to Problem (AMOPε)
as the multiple objective optimization problem associated to Problem (CSOP). Con-
sidering the relation between the two above stated problems from the opposite point of
view, Problem (CSOP) is nothing else than a constrained version of the unconstrained,
multiple objective Problem (AMOPε), where individual constraints are set on the p
different objectives g1, . . . , gp.
To simplify the reasoning in the following, we assume that Problem (CSOP) is feasible
and that at least one optimal solution exists. Furthermore, we assume that the non-
dominated set of Problem (AMOPε) is externally stable, i.e. for each dominated vector
y ∈ G(X) there exists a non-dominated vector ỹ ∈ G(X) that dominates y. Since the
feasible set X is assumed to be compact, both of the assumptions are met, if, for
example, the involved objectives are assumed to be continuous (cf. Chapter 2).
The following theorem that can be found amongst others in the book of Steuer [197]
relates the optimal solutions of Problem (CSOP) with the efficient solutions of Prob-
lem (AMOPε) and vice versa.
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Theorem 3.1 Let the non-dominated set of Problem (AMOPε) be externally stable.
Then it holds:

1. Given an optimal solution of Problem (CSOP), this solution is at least weakly
efficient for Problem (AMOPε). Furthermore, the set of optimal solutions of
Problem (CSOP) contains at least one efficient solution of Problem (AMOPε).

2. There exists an efficient solution of Problem (AMOPε) that is also optimal for
Problem (CSOP).

Proof: The first part of the theorem is a classical result for the ε-constraint approach
shown in Chankong and Haimes [36]. For the second part, let

x = argmin
x∈XE

{f(x) : gi(x) ≤ εi, i = 1, . . . , p}. (3.1)

We show that x is optimal for Problem (CSOP). Assume that this is not the case, i.e.
there exists another feasible solution x̃ ∈ X \XE satisfying gi(x) ≤ εi for i = 1, . . . , p
such that f(x̃) < f(x). Since the non-dominated set of Problem (AMOPε) is externally
stable by assumption, there exists x′ ∈ XE such that x̃ is dominated by x′. But this
implies that x′ is feasible for Problem (CSOP) and that f(x′) ≤ f(x̃) < f(x), which
contradicts the choice of x. �

Theorem 3.1 shows that we can find an optimal solution of Problem (CSOP) within the
efficient set of the associated multiple objective problem. Hence, solution techniques
from multiple objective optimization can be used to derive an optimal solution for the
constrained single objective problem. More formally, this approach can be stated as
follows:

(1.) Formulate the associated multiple objective optimization Problem (AMOPε).

(2.) Use solution techniques from multiple objective optimization to determine a com-
plete set of efficient solutions for Problem (AMOPε).

(3.) Use Equation (3.1) to determine an optimal solution of Problem (CSOP) within
the efficient set of Problem (AMOPε).

As we mainly focus on combinatorial optimization problems in the next part of this
work, we remark that all the results presented in this section remain valid, if Prob-
lem (CSOP) corresponds to a discrete optimization problem. In this case, the set X
normally corresponds to a finite set of distinct singletons.
From a practical point of view, one might argue whether it is a reasonable approach to
solve a single objective problem by means of the above described procedure based on
the associated multiple objective problem formulation. Besides the fact that multiple
objective problems are in general much harder to solve compared to their single objec-
tive counterparts, a complete set of efficient solution of the associated problem has to
be determined to derive the single solution we are only interested in. Hence, the prac-
tical application of the above stated approach may be limited to only a small number
of optimization problems. However, as already suggested by the large number of pub-
lications related to the topic of this section, a multiple objective-based approach seems
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to be one of the most promising ways to calculate an optimal solution for constrained
optimization problems.

Especially for practical applications, the associated multiple objective problem that
is given by Problem (AMOPε) may be of particular interest, whenever the struc-
ture of the feasible set X of Problem (CSOP) is well-known in advance. As the
additional side constraints destroy the simple structure of the single objective prob-
lem, a multiple objective based approach seems to be favorable. This is especially
the case, when there exist efficient algorithms to solve the unconstrained version of
Problem (CSOP). Hence, multiple objective solution approaches that disregard the
constraints of Problem (CSOP) can be used to determine parts of the non-dominated
set of Problem (AMOPε), or even the complete set itself. This could be done, for
example, by applying an appropriate weighted sum approach to Problem (AMOPε).
As was also observed, for example, by Boyd and Vandenberghe [25] this approach cor-
responds to the Lagrangian relaxation of Problem (AMOPε) which is formally given
by

min f(x) +
∑p

i=1 λigi(x)

s.t. x ∈ X

with Lagrangian multipliers λi ≥ 0 for i = 1, . . . , p.

Hence especially in this case, the associated multiple objective reformulation of the
problem yields an efficient way to (approximately) solve the given constrained prob-
lem. For further details on this approach, we refer to Section 6.1. There, a general
solution concept for solving combinatorial optimization problems with an additional
side constraint is presented that makes use of the above described ideas.

We finally give another interesting application, why the associated multiple objective
problem could be considered for solving constrained problems in practice. We focus
on the discrete case in the following. However, the ideas presented in the remainder
of this section are not only limited to this specific case, but can easily be extended to
constrained versions of continuous optimization problems, too.

Let a constrained single objective optimization problem be given. It is assumed that
the feasible set X consists of different solutions, also called scenarios in the following,
that may correspond to different investments of an enterprise that can be realized. The
objective function f : X → R measures the costs that result from the realization of
the scenario x ∈ X. In contrast, the constraint functions g1, . . . , gp : X → R describe
p different budget functions that measure how much money gi(x) has to be spent from
budget i to realize x ∈ X. In this case, the right hand side values ε1, · · · , εp determine
the maximum amount of money that is allowed to be used from budget i.

From the mathematical point of view, the right hand side values ε1, . . . , εp impose
strict upper bounds on the budget functions g1, . . . , gp that are not allowed to be
exceeded by a feasible solution. But this normally implies that a lot of scenarios are
excluded from the optimization process in advance, although they may only violate
a small number of the given constraints. Furthermore, some of these scenarios may
correspond to favorable solutions of the decision maker, when small violations of the
bounds can be accepted.

To give a small example for the two-dimensional case, we refer to Figure 3.2. There, the
optimal solution of the constrained problem, where the right hand side value is fixed
to ε, is given by a representative of the point G1. In contrast, the representatives of G2



3.2 Weighted Single Objective Sum Problems 17

6

-
f

g

??

ε

6

-
f

g

ε̃

G1

G2

G1

G2

??

Figure 3.2: In the left subfigure, the non-dominated point G1 defines the optimal solution of
the constrained problem, while the point G2 is infeasible, although it is better with respect to
f . When the bound on g is relaxed by only a small amount from ε to ε̃, G2 becomes feasible
and hence optimal for the constrained problem depicted in the right subfigure. In this case,
the value of f can be improved significantly as compared to the original constrained problem
only by means of a small relaxation of the bound on g.

correspond to infeasible solutions of the constrained problem, although the constraint
on g is only violated slightly. Hence, only a small increase of right hand side value ε
to ε̃ leads to a strong improvement with respect to the objective function f , as the
previously infeasible solution G2 becomes feasible.

More generally, a too restrictive choice of the right hand side values εi may exclude
solutions that occasionally could be preferred by a potential decision maker since only
small violations of the given constraints have to be accepted to improve the given ob-
jective function f . However, it is not clear in advance which magnitude of violations of
the side constraints has to be accepted that result in a significant improvement of the
objective function f . Hence, instead of solving the original Problem (CSOP), a com-
plete set X ′ of efficient solutions of the associated multiple objective problem (AMOPε)
can be determined and presented to the final decision maker. Since the set X ′ con-
tains alternative favorable solutions of the original problem, the decision maker can
decide himself, whether a scenario that corresponds to an infeasible solution of the
original problem is realized, or whether the optimal solution of the original problem
is favorable.

3.2 Weighted Single Objective Sum Problems

In this section we discuss how multiple objective optimization can be used to solve
optimization problems, where the objective is given as a weighted sum of different sub-
objectives involving strictly positive weights. We proceed similar to the last section.

Let f1, . . . , fp : Rn → R be p real-valued objective functions, where p ≥ 2, and let
X ⊆ Rn be a non-empty, compact subset of Rn. Furthermore, let λi ∈ R+ := {x ∈
R : x > 0} for i = 1, . . . , p. Then the weighted single objective sum problem (WSOP)
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is formally given by

min λ1f1(x) + . . . + λpfp(x)

s.t. x ∈ X.
(WSOP)

Similar to the idea used in the previous section for Problem (CSOP), we reinterpret
the given single objective problem as a weighted sum scalarization of the more general
multiple objective optimization problem

min F (x) = (f1(x), . . . , fp(x))⊤

s.t. x ∈ X.
(AMOPλ)

Using the same notation as in the case of Problem (AMOPε), we refer to Prob-
lem (AMOPλ) as the multiple objective optimization problem associated to Prob-
lem (WSOP). From a multiple objective point of view, Problem (WSOP) is a weighted
sum scalarization of the objective functions of Problem (AMOPλ) with strictly positive
weights.
Similar to Section 3.1, we assume in the following that there always exists an optimal
solution for a given instance of Problem (WSOP), as well as that the non-dominated
set of Problem (AMOPλ) is externally stable. We make use of the results for the
weighted sum approach originally proposed by Steuer [197] to prove:

Theorem 3.2 Let the non-dominated set of Problem (AMOPλ) be externally stable.
Then it holds:

1. If x is an optimal solution of Problem (WSOP), then x is also efficient for
Problem (AMOPλ).

2. There exists an efficient solution of Problem (AMOPλ) which is also optimal for
Problem (WSOP).

Proof: Since λi > 0 for all i = 1, . . . , p by assumption, the first part follows directly
from the corresponding property for the weighted sum scalarization for multiple ob-
jective problems (see Steuer [197]). For the second part, let

x = argmin
x∈XE

{λ1f1(x) + . . . + λpfp(x)}. (3.2)

We show that x is optimal for Problem (WSOP). Assume that this is not the case,
i.e. there exists x̃ ∈ X \ XE such that

∑p
i=1 λifi(x̃) <

∑p
i=1 λifi(x). Since F (X) is

externally stable by assumption, there exists x′ ∈ XE that dominates x̃, i.e. fi(x
′) ≤

fi(x̃) for all i = 1, . . . , p where at least one given inequality is strict. But since λi > 0
for all i = 1, . . . , p, this implies that

p
∑

i=1

λifi(x
′) <

p
∑

i=1

λifi(x̃) <

p
∑

i=1

λifi(x),

which contradicts the choice of x ∈ XE. �

Theorem 3.2 implies that given an optimal solution to Problem (WSOP), it is auto-
matically contained in the efficient set of the associated multiple objective problem.
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Hence, a procedure similar to the one described in Section 3.1 for solving constrained
single objective optimization problems, can be used to derive an optimal solution for
Problem (WSOP). Note that in this case, Equation (3.2) instead of Equation (3.1)
has to be used to calculate the optimal solution we are looking for.
Also in the case of Problem (WSOP) one might argue why a multiple objective-based
approach should be used to solve the given single objective problem. Especially for
the case, when the number of involved objectives is large, much redundant information
may be calculated that is of no further use for the solution of the considered single
objective problem. However, we will see in Section 6.2 that there exist several solution
approaches for special classes of combinatorial optimization problems in the literature
that implicitly make use of the ideas described in this section.
Since combinatorial problems belong to the class of discrete optimization problems, it
is important to mention that all the results stated in this section remain valid, when
the assumption that X is a compact subset of Rp is replaced by X being a finite set
of elements. Note that in this case, the external stability of F (X) is automatically
ensured, due to the fact that F (X) is of finite cardinality.

3.3 An Enhanced Alternate Block Search Strategy

for Single Objective Optimization Problems

In this section we present the theoretical background of an enhanced block search
strategy for single objective optimization problems that is based on a multiple objective
approach. When a block search method is applied, the set of n > 1 variables of a
single objective (non-linear) optimization problem is partitioned into p ≤ n different
blocks of variables. Subsequently, the optimization problem is solved by consecutively
optimizing the given objective function with respect to a specific block of variables,
while the other blocks remain fixed. Under suitable convexity assumptions (see, e.g.,
Bertsekas and Tsitsiklis [18]), it can be shown that the sequence of generated points
converge to a stationary point of the given problem. We refer to this solution approach
as alternate block search method in the remainder of this work. Note that this method
is also known as block-relaxation method (cf. de Leeuw [46]) in the literature. For the
case that p = n, this given approach simplifies to the cyclic coordinate method (cf.,
e.g., Bazaraa et al. [13]).
While non-linear optimization problems are hard to solve in general, the alternate
block search method may benefit from the fact that the resulting subproblems are
much easier to handle as compared to the overall problem. This especially holds true,
when a given problem can be decomposed into a sequence of convex subproblems,
while the overall problem is known to be non-convex in general. For more details
on the convergence of the alternate block search method for these special types of
problems, we refer, amongst others, to Bazaraa et al. [13], de Leeuw [46] and Wendell
and Hurter Jr. [215], as well as Section 11.3 of this work.
When a block search strategy is used to solve a single objective optimization prob-
lem, optimization is only performed on the active block of variables, while potential
information contained in the other blocks is disregarded during the complete solution
process. Hence, although the sequence of generated points may quickly converge to a
stationary point of a given problem, no further information on the quality of the found
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solution with respect to the global optimum can be given in general. If the considered
problem is known to have a large number of local minima, numerous restarts of the
alternate block search method have to be performed to improve the quality of the
found local optimum with respect to the given objective function. However, even by
applying a multi-start version of the above described method, it cannot be guaranteed
that the global minimum of a given problem is found within a certain amount of time.
In the remainder of this section, we present the theoretical background of a heuristic
approach inspired by multiple objective optimization that can be used to potentially
improve the performance of the alternate block search method. The approach is based
on the idea of exploiting additional information that is contained in the blocks of fixed
variables during the solution process. In more detail, we try to incorporate information
on the expected improvement of the objective value with respect to the blocks of
fixed variables, while optimization is performed on the active block. If the expected
improvement with respect to the fixed blocks does not fall below a predefined threshold
value, a suitable improvement in the next iteration of the method can be expected with
respect to these blocks. Especially during the first iterations of the alternate block
search method this information can be of interest, as using this additional information
may result in a better local optimal solution at the end of the search process as
compared to the original method.
However, as the application of the above described ideas neither implies a guaranteed
convergence to an improved solution with respect to the given objective nor that the
global minimum of a given problem can be found, the described approach must be
seen as a heuristic method to improve the quality of a calculated solution with respect
to the global optimum of the problem. In the following, we describe this enhanced
approach in more detail.
Let X1 ⊆ Rn1, . . . , Xp ⊆ Rnp denote p ≥ 2 non-empty sets and let B ⊆ X1× . . .×Xp.
For i ∈ I := {1, . . . , p} we define the xi-sections of B by

Bi = {x ∈ Xi : (x1, . . . , xi−1, x, xi+1, . . . , xp) ∈ B}.
Furthermore, let f : B → R be a given function on X1 × . . . × Xp. Then, the
optimization problem considered in this section is formally given by

min {f(x1, . . . , xp) : (x1, . . . , xp) ∈ B} (BP)

To simplify the notation in the following, we define for arbitrary but fixed i ∈ I
the function fi : Bi → R, fi(x) := f(x1, . . . , xi−1, x, xi+1, . . . , xp) where the variables
xj ∈ Xj, j ∈ I \ {i}, are assumed to be fixed. Applying the alternate block search
method, we have to iteratively solve p optimization problems of the form

min {fi(x) : x ∈ Bi}, (BPi)

for i ∈ I. A short algorithmic description of the alternate block search strategy for
Problem (BP) can be found in Algorithm 3.1. The algorithm stops when no significant
improvement with respect to the given objective f is detected in two consecutive
iterations, or if a prescribed number of iterations is reached.
Let i ∈ I be arbitrary but fixed. For j ∈ I \ {i} we assume that the function

πij :

{

Bi → R

x 7→ πij(x1, . . . , xj , . . . , xi−1, x, xi+1, . . . , xp)
(3.3)
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Algorithm 3.1 Alternate Block Search Algorithm

Input: An instance of Problem (BP).
Output: A point y ∈ B.
1: Choose an arbitrary starting point y = (x1, . . . , xp) ∈ B.
2: while no stopping criterion is satisfied do
3: for i=1 to p do
4: Find an optimal solution x⋆ ∈ Bi such that x⋆ is optimal for Problem (BPi).
5: Set xi = x⋆.
6: end for
7: end while
8: return y.

measures the potential improvement of the objective value with respect to the block of
fixed variables xj ∈ Xj , when the variables contained in the block Xi are considered as
active. We call πij the descent potential for block xj with respect to the active block
xi. It is assumed in the following that πij(x) ≥ 0 for all x ∈ Xi, and that πij(x) = 0
if and only if f cannot be improved in the point (x1, . . . , xj , . . . , xi−1, x, xi+1, . . . , xp)
with respect to the fixed variables xj . We do not go into further details, how the
functions πij can be defined in practice, but we refer to Chapter 12 where the enhanced
approach of the alternate block search strategy for biconvex optimization problems (cf.
Chapter 11) is discussed in more detail. However, if a given point (x1, . . . , xp) ∈ B
corresponds to a stationary point of f , this implies that πij = 0 for all i ∈ I and
j ∈ I \ {i}.
Instead of solving Problem (BPi) for a fixed i ∈ I directly, we additionally include the
descent information provided by the p−1 functions πij in the blocks of fixed variables
to the optimization process. This implies that while we aim to minimize fi in the
block of active variables, we additionally want to maximize the p− 1 different descent
potentials with respect to the blocks of fixed variables. This enhanced approach results
in solving the multiple objective optimization problem

min Fi(x) = (fi(x),−πi1(x), . . . ,−πij(x), . . . ,−πip(x))⊤

s.t. x ∈ Bi,
(MOBPi)

with p objectives, where j ∈ I \ {i}. The following theorem relates global optimal
solutions of Problem (BPi) with efficient solutions of Problem (MOBPi) and vice versa
under the assumption that the non-dominated set of Problem (MOBPi) is externally
stable.

Theorem 3.3 Let the non-dominated set of Problem (MOBPi) be externally stable.
Then it holds:

1. All global optimal solutions of Problem (BPi) are at least weakly-efficient for
Problem (MOBPi). Furthermore, the set of global optimal solutions of Prob-
lem (BPi) contains at least one efficient solution of Problem (MOBPi).

2. There exists an efficient solution of Problem (MOBPi) that is global optimal for
Problem (BPi).
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Proof: For the first part of the theorem, let x ∈ Bi denote a global optimum of Prob-
lem (BPi), and we assume that x is not weakly-efficient for Problem (MOBPi). Then,
there exists x̄ ∈ Bi that strongly dominates x. But this implies that fi(x̄) < fi(x),
which contradicts the global optimality of x. Hence, x is at least weakly-efficient.
If x is not contained in the efficient set of Problem (MOBPi), the external stabil-
ity of the non-dominated set of Problem (MOBPi) guarantees the existence of an
efficient solution x⋆ dominating x, i.e. fi(x

⋆) ≤ fi(x). However, since x is global op-
timal for Problem (BPi), this implies that fi(x) ≤ fi(x

⋆). Hence, we conclude that
fi(x

⋆) = fi(x) and x⋆ corresponds to a global optimal solution of Problem (BPi) that
is contained in the efficient set of Problem (MOBPi).
For the second part, we set x = argminx∈XE

{fi(x)}, where XE denotes the efficient set

of Problem (MOBPi). We claim that x is a global optimum of Problem (BPi). Assume
that this is not the case, i.e. there exists x̃ ∈ Bi \XE such that fi(x̃) < fi(x). Since
the non-dominated set of Problem (MOBPi) is externally stable, there exists x′ ∈ XE

such that x̃ is dominated by x′. But this further implies and that f(x′) ≤ f(x̃) < f(x),
which contradicts the choice of x. �

Note that the results of the last theorem are similar to the results stated in Theo-
rem 3.1, where the relation between a constrained single objective problem and its
associated multiple objective counterpart is described. Theorem 3.3 ensures that the
efficient set of the extended, multiple objective problem contains at least one global
optimum of its single objective counterpart. However, if no further properties of the
objective function fi are known in advance, determining the global optimum of Prob-
lem (BPi) by means of the extended Problem (MOBPi) is at least as difficult as solving
Problem (BPi) itself.

In each step of the enhanced alternate block search method we determine a set of rep-
resentative solutions for Problem (MOBPi) instead of solving Problem (BPi) directly.
According to a given criterion defined by the decision maker, an efficient solution of
Problem (MOBPi) is chosen as the new value for the block containing the variables
xi ∈ Xi in the next iterations. While in the first iterations, solutions with a larger
expected improvement of the objective value with respect to several blocks of fixed
variables may be favorable as compared to the descent potentials provided by the
optimal solutions of the Problems (BPi), the latter solutions can be of interest in
later iterations of the enhanced version, since they ensure the convergence to a local
minimum of the given problem.

However, since we have to solve a sequence of multiple objective instead of single
objective problems in each iteration of the enhanced alternated block search method,
the numerical complexity of finding a local minimum for Problem (BP) is significantly
increased, compared to the original version of the method. Especially in the case when
the p individual subproblems (BPi) can be solved efficiently, the enhanced approach
leads to a large increase of CPU time in general. One of the main reasons for this can
be seen in the fact that we have to calculate a complete set of efficient solutions in
each iteration, although only one of these solutions is selected at the end. However,
the above described approach may lead to a significant improvement of the quality
of the local minimum as compared to the solution obtained by the original method.
Hence, especially when a given problem has many local optimal solutions, the multiple
objective approach provides a reasonable alternative method to derive local optima
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for the considered problem.
To additionally decrease the numerical complexity of the enhanced method several ap-
proaches seem reasonable. For example, one might think about limiting the number of
considered blocks of fixed variables for the multiple objective problem formulation to
a small number of blocks that will be optimized in the subsequent iterations. Alterna-
tively, smaller blocks of variables could be combined into a single block to significantly
decrease the number of additional objectives that have to be considered during the
solution process. Moreover, as we are only interested in a single solution of Prob-
lem (BPi) at the end, the number of calculated efficient solutions could be decreased
to a fixed constant, and the updated value of the variables contained in the active
block is chosen from this smaller set of alternatives.
As we are only interested in the theoretical background of the ideas of how multiple
objective optimization can be used to solve single objective problems in this chapter,
we neither go into further details on how the functions πij may be defined in practice,
nor we discuss how the extended multiple objective problems (cf. Problem (MOBPi))
should be solved, when the enhanced method is applied.
We refer to Chapter 12 where the enhanced alternate block search method is discussed
in more detail for biconvex optimization problems. However, all the ideas and results
that will be stated in Chapter 12 are not limited to the biconvex case, but they can
easily be generalized and applied to any other (non-linear) single objective optimization
problem. For an application of the ideas developed in this section, we further refer to
Chapter 13 where an adapted version of the enhanced alternate block search method
is applied to solve the connection location-allocation problem in the plane.

3.4 Conclusions and Organization of the Remain-

der of this Work

In this chapter we discussed how ideas from multiple objective optimization can be used
to solve single objective optimization problems. Although the proposed approaches
generally imply that instead of a single solution, a complete set of efficient solutions has
to be calculated, multiple objective-based approaches seem suitable to gain a deeper
insight into the specific structures of single objective problems.
In more detail, we showed how constrained as well as scalarized single objective op-
timization problems can be solved by means of associated multiple objective problem
formulations. While traditionally, weighted sum as well as ε-constraint approaches are
used to solve multiple objective problems, we took the reverse way and modeled the
given single objective problems in a more general multiple objective framework. This
implies that solution concepts for multiple objective optimization problems that are
not directly related to single objective optimization can be used to solve the single
objective problem. However, by using a multiple objective approach we have to ac-
cept that the complexity of the considered single objective problem is increased, as
additional calculations have to be performed that may be of no further use during
the solution process. However, we saw that multiple objective-based approaches were
already frequently used in the literature to solve single objective problems.
We restricted ourselves to multiple objective reinterpretations of the ε-constraint and
the weighted sum approach in this chapter. However, there exist further solution
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concepts from multiple objective optimization that can be interpreted as an associated
multiple objective problem formulation of a single objective problem. For example,
the compromise programming method (cf., e.g., Ehrgott [54] and Miettinen [143])
with squared Euclidian distance can be interpreted as an associated multiple objective
problem formulation of a least squares problem from adjustment theory (cf., e.g.,
Teunissen [201]). Generally, least squares methods are used to approximate solutions
for overdetermined systems of linear equations. In this context, an optimal solution
of the single objective optimization problem

min
{
‖Ax− b‖22 , x ∈ Rn

}
, (3.4)

where x ∈ Rn, b ∈ Rm, A ∈ Rm×n, where m ≥ n, and ‖ · ‖ denotes the squared
Euclidian distance, has to be determined. Considering the right hand side vector
b = z0 as the ideal point of the problem, Problem (3.4) can be reformulated as

min ‖z0 − z‖22
s.t. Ax = z

x ∈ Rn, z ∈ Rm.

(3.5)

From a different point of view, Problem (3.5) can be seen as a compromise program-
ming scalarization of a multiple objective problem with m objectives, where the in-
volved objectives correspond to the components of the vector b−z, and the feasible set
of the problem is defined by the given side constraint. This alternative interpretation
of the least-squares problem could be in the focus of further research.
Besides to the approaches discussed above, we further presented an enhanced version
of the well-known alternate block search method for general optimization problems.
Applying this method, a local optimal solution of a given single objective problem
is derived by iteratively solving the problem in a block of active variables, while the
variables contained in the other blocks remain unchanged. We introduced the idea
of using additional information on the improvement of the objective value that is
contained in the blocks of fixed variables. While this information is disregarded by
the original method, we proposed a heuristic approach that is based on a multiple
objective reformulation of the involved subproblem that additionally makes use of this
information to improve the quality of local optimal solutions calculated by the original
method. This enhanced approach is of special interest whenever the subproblems in
the block of active variables can be solved efficiently, while the overall problem is hard
to solve in general.

We finally relate the different topics discussed in this chapter to the remaining parts
of this work. While the ideas presented in Sections 3.1 and 3.2 are applied to combina-
torial optimization problems in Part I (Chapters 4 to 10) of this thesis, the enhanced
block search approach is discussed for biconvex optimization problems in further de-
tails in Part II (Chapters 11 to 13).
In Part I, Chapter 4 serves to summarize the main ideas and concepts from the field of
combinatorial optimization. We distinguish between single and multiple objective com-
binatorial problems with sum and bottleneck objectives, respectively. In Chapter 5,
we generalize the concept of a bottleneck objective and present solution approaches
for solving single as well as multiple objective k-max optimization problems, that we
further exploit in Chapter 6.
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In Chapter 6, we directly apply the ideas developed in Sections 3.1 and 3.2 to solve
single constrained combinatorial optimization problems as well as combinatorial prob-
lems with an algebraic sum objective. For the first problem, we make use of the
idea that the associated multiple objective optimization problem can be solved by a
weighted sum approach to derive a coarse approximation of the optimal solution of
the constrained problem, whenever the single objective combinatorial problem is effi-
ciently solvable. The optimal solution for the constrained problem is finally obtained,
for example, by the application of a local search method. For the second problem we
show that many algorithms already stated in the literature for solving combinatorial
problems with an algebraic sum objective are implicitly based on the ideas developed
in Section 3.2. We show that single objective problems are often solved by means of
methods that can be related to more general solution concepts that can also be used
to solve the associated multiple objective optimization problem.
The remaining chapters of Part I deal with the connectedness of efficient solutions
for multiple objective combinatorial optimization problems. A connected efficient set
would, amongst others, imply that an optimal solution of a constrained single objective
problem could be found by means of simple local search techniques. Unfortunately,
the efficient set is not connected in general for most of the classical combinatorial
optimization problems, independent from the objective functions that are considered
(cf. Chapters 7 and 8).
Finally, two special classes of combinatorial optimization problems are discussed in
Chapter 9 and Chapter 10 for which the connectedness of the efficient set can be
proven. Especially for the triobjective unconstrained optimization problem with two
binary objectives (cf. Chapter 9), we make use of the ideas presented in Section 3.1.
Starting from an algorithm for the single objective problem with equality constraints
on the binary objectives, we derive an efficient solution approach for the triobjective
unconstrained combinatorial optimization problem. Based on this approach we turn
to the original problem with two binary inequality constraints, and derive an efficient
algorithm based on the results for the associated multiple objective problem.
Part II of the thesis is dedicated to biconvex optimization problems. Chapter 11 mainly
summarizes the most important facts on biconvex sets and optimization problems
with biconvex functions that can be found in the literature. In addition, we present
some new results for biconvex maximization problems. Chapter 12 refers to the ideas
developed in Section 3.3. We present an enhanced version of the alternate convex
search method that is frequently used to derive local optima for biconvex optimization
problems.
Finally, Chapter 13 deals with the connection location-allocation problem in the plane.
We show that this specific problem from location theory can be formulated as a bi-
convex optimization problem. Based on the ideas presented in Chapter 12, we develop
an enhanced search strategy that is based on the alternate convex search technique.
Numerical experiments suggest that the presented enhanced versions of this technique
can be used as an alternative solution approach to heuristically improve the quality of
the resulting local minima compared to solutions that result from the original version
of the method.
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Combinatorial Optimization





Chapter 4
Theoretical Background of Combinatorial
Optimization

In Chapter 3 we introduced the general idea of how solution techniques from multi-
ple objective optimization can be used to derive optimal solutions for single objective
problems. In the first part of this thesis we apply these ideas to appropriate opti-
mization problems from the field of combinatorial optimization. In more detail, we
show how the methods developed in Sections 3.1 and 3.2 can be transferred to single
objective combinatorial optimization problems with additional constraints, as well as
to problems where the objective is given as the algebraic sum of different types of
objectives. These approaches are discussed in more detail especially in Chapter 6 and
Chapter 9. Aiming at efficient solution methods for such multiple objective combina-
torial optimization problems, we additionally investigate in Chapter 7 and Chapter 8
whether the idea of applying neighborhood search techniques is an appropriate method
to determine the complete non-dominated set of a given combinatorial problem.
Since combinatorial optimization problems can be seen as special cases of general
discrete optimization problems, not all solution concepts from continuous optimization
can be directly applied to the combinatorial case. Hence, we formally introduce the
most important definitions and concepts of this special class of optimization problems
in the following. For this purpose we mainly focus on problems with more than one
objective following the main ideas stated in Ehrgott [54] and Miettinen [143]. For a
detailed overview on combinatorial optimization problems with refer to Nemhauser
and Wolsey [150] and Schrijver [189]. Recent surveys on existing methods for solving
combinatorial optimization problems with multiple objectives can be found in Ehrgott
and Gandibleux [55, 56].
Let the set E = {e1, . . . , en} be a finite set of n ∈ N different elements, and let X ⊆
P(E), where P(E) denotes the power set of E . Then, a multiple objective combinatorial
optimization problem (MCOP) is given by

min f(S) = (f1(S), . . . , fp(S))⊤

s.t. S ∈ X ,
(MCOP)

where f : X → Zp consists of p ∈ N integer valued objective functions fi : X → Z

for i = 1, . . . , p. In this context, the set E is called ground set, the set X feasible
set and Y = f(X ) denotes the set of attainable outcomes. Any S ∈ X is called
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Figure 4.1: Non-dominated frontier of a MCOP. Filled dots correspond to non-dominated
points, while empty dots are dominated. The non-dominated points y1, y3, y6 and y9 corre-
spond to extreme non-dominated points, while y7, also located on the non-dominated frontier,
is only supported non-dominated. The points y2, y4, y5 and y8 are non-supported.

a feasible solution. In general, the function vector f consists of a special type of
objective functions. Frequently, these functions correspond to sum- or bottleneck-
type objectives. But of course, both types may also occur simultaneously in special
MCOPs, and other types of objective functions are possible. For more details, we
refer to the following sections and Chapter 5, respectively, where the different types
of problems and appropriate solution approaches are discussed in more detail. Note
that an instance of MCOP is completely described by the triple (E ,X , f).

Special types of combinatorial optimization problems which satisfy the above given
definition are, amongst others, minimum spanning tree and shortest path problems
on graphs, as well as knapsack problems and linear assignment problems. We refer to
all these different types of problems as special classes of combinatorial optimization
problems.
We recall that an algorithm is called polynomial time algorithm if there exists a poly-
nomial p such that the running time of the algorithm is within O(p(n)). Otherwise,
the algorithm is said to be exponential. While for a large number of classes of com-
binatorial optimization problems with only one objective there exist polynomial time
algorithms to solve these problems, this is in general no longer the case when more
than one objective is considered.
Furthermore, the majority of all MCOPs is intractable, which means that there does
not exist a polynomial p such that the cardinality of the set of non-dominated solutions
YN is of order O(p(n)), i.e. YN can be exponential in the size of an instance. This is
even the case for unconstrained MCOPs (cf. Ehrgott [54]).
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However, when the non-dominated set is known to be of polynomial size, the cardinal-
ity of the efficient set can still be exponential. In this case, one is usually interested
in determining the complete set of non-dominated solutions YN in the objective space
and a corresponding efficient representative from XE in the decision space, rather than
the complete set XE itself. In this context, two (efficient) solutions S1 and S2 are called
equivalent if f(S1) = f(S2). Any subset X ′ ⊆ X is called a complete set of efficient
solutions whenever f(X ′) = YN holds. Note that the binary relation R, defined by

S1RS2 ⇐⇒ f(S1) = f(S2) S1, S2 ∈ XE,

introduces an equivalence relation on the set of efficient solutions of a given MCOP.
Each non-dominated vector in the objective space corresponds to an equivalence class
of this relation and vice versa. Hence, an efficient solution S ∈ XE can also be
seen as a representative of the non-dominated vector y = f(S) ∈ YN. In this context,
determining a minimal complete set of efficient solutions means to find a representative
for each non-dominated point located in the objective space.

Let conv(·) denote the convex hull operator. The non-dominated frontier of an MCOP
is the non-dominated set of conv(Y), i.e. {y ∈ conv(Y) : conv(Y) ∩ (y −R

p

≧) = {y}}
(cf. Figure 4.1). Note that, while Y is a discrete set of singletons in Rp, the non-
dominated frontier forms a continuous curve in the objective space.

For MCOPs it is well-known that for the case that p = 2, the non-dominated frontier
is given as a piecewise linear curve. The extreme-points (also called breakpoints)
of this curve are called extreme non-dominated points and its representatives in the
decision space are said to be extreme efficient solutions. An efficient solution S ∈ XE is
supported if and only if its image y = f(S) is an element of the non-dominated frontier
(but not necessarily an extreme-point of it). This implies that non-supported non-
dominated solutions are dominated by points located on the non-dominated frontier
but that do not correspond to feasible outcomes of a given MCOP (cf. Figure 4.1).

In the early papers on multiple objective combinatorial optimization, most authors
focused on supported efficient solutions, i.e. solutions that can be found by solving
a sequence of weighted sum problems of the given objective functions, and ignored
the existence of non-supported efficient solutions. However, Melamed [132] showed
that both, the size of the set of supported as well as the set of non-supported efficient
solutions can be of exponential size. Numerical studies on the knapsack problem
provided by Visée et al. [208] show that the number of supported efficient solutions
may grow linearly with the problem size, while the number of non-supported solutions
grows exponentially.

Note that we focus on exact solution methods in the following, i.e. on methods that
ensure that the complete set of non-dominated solutions can be determined. For a
detailed overview on approximation methods as well as heuristics and metaheuristics
for solving multiple objective combinatorial optimization problems we refer to the two
surveys of Ehrgott and Gandibleux [55, 56].

In the following sections, we review existing and present some new solution concepts
for (multiple objective) combinatorial optimization problems that do not depend on
the special structure of a given class of combinatorial problems, but on the type of
the objective function(s) involved. We focus on problems with sum- and bottleneck-
objectives.



32 4. Theoretical Background of Combinatorial Optimization

4.1 Combinatorial Optimization with Sum

Objectives

In this section we consider combinatorial optimization problems with sum objective(s).
For the single objective case, there exists a large number of methods and algorithms
to solve problems for special classes of combinatorial sum problems. In this context,
we refer, amongst others, to the books of Nemhauser and Wolsey [150] and Schrijver
[189].
In the following, we primarily interested in general solution concepts which can be ap-
plied to any class of combinatorial optimization problems rather than comprehensively
surveying the existing literature for a special class of problems. Hence, we mainly focus
on basic solution concepts for general (multiple objective) combinatorial problems, and
we only include special remarks and comments on the existing literature for special
classes whenever it seems necessary.

4.1.1 Single Objective Optimization

Let E denote a finite ground set of n different elements and let X ⊆ P(E) denote the
feasible set. Furthermore, let a cost function c : E → Z be given. Then, a combinatorial
sum problem (CSP) is formally given by

min
∑

e∈S

{c(e)}

s.t. S ∈ X .
(CSP)

Because of the finite structure of CSP one may suggest to solve this problem by a total
enumeration of all feasible solutions. Obviously, this solution concept does not depend
on the given class of combinatorial problems, but the application of this approach is
limited to instances with only a small number of feasible solutions.
In addition to this general solution concept, there exist carefully designed algorithms
depending on the considered class of CSPs that explore special properties of this class
in an efficient manner. In this context, we refer, for example, to the algorithms of Prim
and Kruskal for the minimum spanning tree problem or the algorithm of Dijkstra for
the shortest path problem (see, e.g., Hamacher and Klamroth [92]).
Besides these approaches, there also exist more general solution concepts that are
mostly applied to NP-hard combinatorial sum problems. For example, dynamic pro-
gramming approaches and branch-&-bound procedures can be used to solve these kind
of problems. For further details, we refer, amongst others, to the books of Nemhauser
and Wolsey [150], Schrijver [189] and Kellerer et al. [113], where the latter is devoted
to all kinds of knapsack problems.

4.1.2 Multiple Objective Optimization

After the short introduction to combinatorial optimization problems with a single sum
objective, we deal with the multiple objective case in the following. Let c1, . . . , cp :
E → Z denote p different cost functions on the ground set E . For i = 1, . . . , p we define
p different sum objectives fi : X → Z, fi(S) =

∑

e∈S ci(e) on the feasible set X . Then,
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the multiple objective combinatorial sum problem (MCSP) can be stated as follows:

min (f1(S), . . . , fp(S))⊤ = (
∑

e∈S

c1(e), . . . ,
∑

e∈S

cp(e))
⊤

s.t. S ∈ X .
(MCSP)

Note that also for these types of problems, dynamic programming approaches as well
as branch-&-bound procedures are widely used in the literature, especially for the case
when the underlying single objective problem is already NP-hard. For a survey of
such methods, we refer to Ehrgott and Gandibleux [55, 56].
In addition to these two approaches, the following solution concept is widely used in the
literature, especially when there exist efficient algorithms to solve the corresponding
single objective problem:

(1.) Based on an efficient algorithm for the single objective problem, calculate a com-
plete subset of the set of supported efficient solutions. This is done by subse-
quently solving a sequence of weighted sum problems, where the weights for these
problems are implicitly defined by the supported solutions found so far.

(2.) Use the supported non-dominated points from the first step to narrow down the
search space, where potentially non-supported non-dominated points may be lo-
cated, and determine a complete subset of the remaining non-supported efficient
solutions of the given problem.

The above stated approach is also called two-phase method in the literature and is
mostly applied to biobjective problems where the single objective counterpart can be
solved in a polynomial amount of time. To the best of our knowledge, this method was
used for the first time by Aggarwal et al. [2] to solve the minimum spanning tree with
an additional side constraint by means of a biobjective approach (cf. also Section 3.1).
Some years later, Hamacher and Ruhe [96] applied this method to approximate the set
of non-dominated points for a biobjective minimum spanning tree problem. Moreover,
Ulungu and Teghem [206] used this approach to solve general biobjective combinatorial
problems, and after that it was applied to many different classes of combinatorial
problems.
In Phase 1, the approach takes advantage of the fact that there exist efficient (poly-
nomial time) algorithms to solve the single objective version of the considered com-
binatorial problem. Hence, a complete subset of extreme supported efficient solutions
can be calculated in a straightforward way, as long as the cardinality of this set is
polynomially bounded. Note that the set of supported solutions is of exponential size
in general, since all feasible solutions may correspond to optimal solutions of a given
weighted sum problem. Normally, solutions that have been found so far are used to
determine a new weight vector λ for the weighted sum problem that has to be solved
next. This approach is also referred to as dichotomic search.
In Phase 2, a complete set of the remaining non-supported solutions is determined.
Information from supported solutions calculated in Phase 1 is used to considerably
reduce the search space and the potential location of non-supported points in the
objective space. In the biobjective case, only triangles defined by two consecutive
supported non-dominated solutions have to be explored (cf. Figure 4.1). Normally,
lower and upper bounds as well as reduced costs are additionally used to search for
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non-supported points in an efficient manner. Unfortunately, NP-hard problems have
to be solved to find a complete set of non-supported efficient solutions in general.
Instead of giving a complete survey of articles dealing with the two-phase method
for special classes of combinatorial problems, we rather summarize general solution
concepts in the following that can be used to determine (all) non-supported non-
dominated solutions of a given MCOP. Note that such approaches can especially be
used in Phase 2 of the above stated two-phase method.

In the biobjective case, one of the most common ideas to determine non-supported
points is to enumerate all potentially non-dominated points which are located in the
triangle between two consecutive supported points in the objective space. This can
be done, for example, by considering not only the best, but also the second, third,
. . ., k-best solution of a weighted sum problem, where the weight λ is defined by
two consecutive supported points in the objective space (cf., for example, Steiner and
Radzik [196] for the biobjective minimum spanning tree problem or Przybylski et al.
[169] for the biobjective assignment problem). In the latter article, also a combination
of the two-phase method with a population based heuristic to improve computational
performance was suggested. Note that the enumeration of all k-best solutions can also
be started from the two lexicographically optimal solutions and the two-phase method
does not have to be applied.

Another promising approach is to use neighborhood search techniques to determine
non-supported efficient solutions. The success of such an approach crucially depends
on the considered definition of a neighborhood. We discuss this topic in more detail
in Chapter 7. In particular, we will show that the set of efficient solutions is not
connected in general, where connectedness of a discrete set of points is defined based
on the connectivity of a graph. Hence, when a neighborhood search techniques is
applied, it is not guaranteed to find the complete set of non-dominated points in
general. Nevertheless, using local search seems to be a promising approach for classes
of combinatorial optimization problems where the single objective version is already
NP-hard.

For example, in Paquete and Stützle [160] the biobjective traveling salesman problem
is considered. In Phase 1, only a single optimal solution to one of the two objective
functions was calculated which was used as a starting solution in Phase 2 to search for
non-dominated solutions exploiting a sequence of different formulations of the consid-
ered problem based on different aggregations of the objectives. The same problem was
also considered by Lust and Teghem [126]. Applying the two-phase method, in Phase
1 a good approximation of the supported non-dominated points was generated, while
in Phase 2, a local search strategy was used to approximate the set of non-supported
solutions of the considered problem.

Moreover, an ε-constraint approach seems to be suitable to generate non-supported
points located between the supported ones in the objective space. Hamacher et al.
[94] proposed a so-called Box-Algorithm for the biobjective case which is based on
solving a sequence of lexicographical ε-constraint problems. Since the lexicographical
ordering is complete, it is ensured that an optimal solution of the lexicographical
problem is always efficient for the considered biobjective problem and the drawback
of generating weakly efficient solutions is avoided. For the biobjective case, in each
step of the algorithm the rectangle spanned by subsequent non-dominated points is
bisected by setting an ε-constraint on one of the two objectives and a lexicographical
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ε-constraint problem is solved. This is repeated until either all non-dominated points
are found or a certain predefined quality on the approximation of the non-dominated
set is met. Numerical studies of this approach and numerical comparisons to other
solution techniques can also be found in Ruzika [184]. Note that in these references the
algorithm is directly applied to the considered problem without using the two-phase
method.
Besides the already stated approaches, also reference point based methods can be used
to determine non-supported points in the objective space. Given a (local) ideal point
yI of the problem defined by a certain number of already calculated non-dominated
points, one tries to find the image of a feasible solution that minimizes the distance to
the considered ideal point. The method is also referred to as compromise programming
method in the literature (cf. Yu [220]). Frequently, the weighted Tchebycheff norm

min
S∈X

{

max
i=1,...,p

{ωi|fi(S)− yI
i |}
}

,

where ωi ∈ (0, 1),
∑p

i=1 ωi = 1, is used to measure the distance between yI and the set
of attainable outcomes. Since the solutions that are calculated by this approach only
correspond to weakly efficient solutions for the overall problem in general, either a test
for efficiency has to be performed (which normally means that a reoptimization of the
found solution has to be performed), or an augmented weighted Tchebycheff norm

min
S∈X

({

max
i=1,...,p

{ωi|fi(S)− yI
i |}
}

+ ρ

p
∑

i=1

|fi(S)− yI
i |
)

(4.1)

with ρ > 0 has to be used to guarantee the efficiency of the found solution (cf. Steuer
and Choo [198]). Sayin and Kouvelis [186] presented an algorithm for solving general
biobjective MCOPs using the compromise programming method in combination with
the weighted Tchebycheff norm. Starting from the two lexicographical optima of the
problem, new non-dominated solutions are generated by applying the compromise
programming method to locally defined ideal points based on subsequent solutions
that already have been determined. If a new non-dominated point is found, this
point is inserted between the two old ones that have defined the local ideal point,
and two new problems have to be solved. If no new solution is found, the complete
rectangle between the considered two subsequent solutions is discarded since no further
non-dominated solutions can be found inside. Obviously, this algorithm can also be
applied in Phase 2 of the two-phase method to determine all non-supported points
between subsequent supported ones.
We finally remark that also approaches based on polyhedral gauges can be used to
determine non-supported non-dominated solutions. Klamroth et al. [115] presented
an algorithm that generates piecewise linear approximations of the non-dominated set
for continuous biobjective optimization problems. Their suggested algorithm is based
on a polyhedral gauge that defines an oblique norm in R2 (cf. also Schandl et al.
[187, 188]). The piecewise linear structure of the level sets of such norms is used
to generate an approximation of the non-dominated set. During the course of the
algorithm, the approximation is iteratively refined by points from the non-dominated
set that minimize the distance to a (local) ideal or Nadir point. In this case, the
distance function is induced by the oblique norm that additionally takes the already
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determined solutions into account. In the discrete case, a similar approach can be used
to generate non-supported solutions of a given combinatorial problem.
Of course, in addition to the methods stated above there also exist a large number
of solution methods for special classes of MCOPs which can often be seen as general-
izations of special methods developed to solve the single objective counterpart. For a
survey of these methods we once more refer to Ehrgott and Gandibleux [55, 56].

4.2 Combinatorial Optimization with Bottleneck

Objectives

Besides the sum objectives, also bottleneck objectives are one of the most common
objective functions in combinatorial optimization. Given a finite set S of different
elements from a ground set that are associated to some costs, a bottleneck function
returns the maximum cost value of the elements contained in S. Since the set of
different objective values of a bottleneck function is polynomially bounded by the
cardinality of the underlying ground set, one might think that optimization problems
with bottleneck objectives are in general much easier to handle compared to their sum
objective counterparts. Unfortunately, there exist classes of combinatorial problems
for which this is not the case. Only to mention one, the bottleneck traveling salesman
problem is proven to be NP-complete (cf. Garey and Johnson [71]). Nevertheless,
we show in the following that the single as well as the multiple objective version
of combinatorial bottleneck problems can be solved by means of a simple threshold
approach that can independently be applied to any class of combinatorial optimization
problems.

4.2.1 Single Objective Optimization

Let a ground set E containing n elements and a feasible set X ⊆ P(E) be given.
Furthermore, let c : E → Z denote a scalar cost function on the elements of E . Then,
a combinatorial bottleneck problem (CBP) is a single objective optimization problem
of the form

min max
e∈S
{c(e)}

s.t. S ∈ X .
(CBP)

Note that CBPs are also called min-max problems in the literature, since the objective
is to minimize the maximum cost value of a feasible solution. In addition to these
kind of problems, also max-min problems are frequently considered in the literature.
Instead of minimizing the maximum cost value, the minimum cost value of a feasible
solution has to be maximized. But since it holds that

max
e∈S
{c(e)} = −min

e∈S
{−c(e)},

results and algorithms for max-min problems can easily be transferred to the min-max
case and vice versa.
In the following, we shortly survey existing general solution approaches for Prob-
lem (CBP) that can be found in the literature. We mainly focus on the so-called
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threshold algorithm that further builds the basis for a solution approach derived for
the multiple objective case in the next subsection.

Motivated by problems from location theory, Krarup and Pruzan [118] showed already
in the early 80’s that an optimal solution of CBP can be determined by solving an
associated CSP when an appropriate transformation of the given cost function c is
applied. Based on certain properties that have to be satisfied by such a transformation,
a whole class of suitable transformations was derived in this article. Amongst others,
all functions of the type f(c) = cβ that raise the given cost coefficients to the power of
β ≥ 1 are contained in this class. In addition, the authors showed that there exists a
certain threshold value β̄ ≥ 1 such that the above stated result is valid for all β ≥ β̄.

An alternative, non-parametric transformation from CBP to CSP was suggested in
Jorgensen and Powell [111] that only depends on the number of (different) cost coef-
ficients of c. Based on a non-increasing ordering of the ground set E with respect to
the cost function c, each cost coefficient ci := c(ei) is identified with a positive integer.
This integer ensures that if ci is optimal for the given CBP, the optimal solution of
CSP with respect to the transformed cost vector only contains the elements up to ei.
Other elements ej , where j > i, whose modified cost coefficients are larger than the
sum of all modified coefficients corresponding to ek, k < j, are not contained in this
solution. If the n cost coefficients of c are assumed to be pairwise different, the modi-
fied cost vector may correspond to the vector (0, 1, 2, 4, . . . , 2n−2). The authors showed
that each solution of the sum problem is optimal for the bottleneck problem, but not
necessarily vice versa. Due to the limitation of the approach to only small-sized prob-
lem instances in practice (the number of elements in E is not allowed to exceed the
maximum word length of a computer), also modifications of the stated approach were
discussed in this article.

Besides the ordinary bottleneck problem, also lexicographic versions of CBP were
treated in the literature. Still, the largest cost coefficient has to be minimized in the
first place. But among all optimal solutions to this CBP, one is interested in the
solution that also optimizes the second largest cost coefficient, then the third largest
and so on. We refer amongst others to the articles of Della Croce et al. [47] and
Sokkalingam and Aneja [193] in this context.

In the remainder of this subsection, we discuss a slightly more general approach to
solve CBP, the so-called threshold algorithm. Note that the idea of using a threshold
approach was introduced for the first time by Edmonds and Fulkerson [51] in the
context of bottleneck extrema.

To simplify the notation in the following, we set b : X → Z, b(S) = maxe∈S{c(e)}.
While for combinatorial sum problems, there does not exist a general algorithm that
works simultaneously for all classes of combinatorial optimization problems (except of
the total enumeration of all feasible solutions), the following simple approach can be
used to solve Problem (CBP) independently of the class of the combinatorial problems:

Given a feasible solution S ∈ X , all elements e ∈ E satisfying c(e) ≥ b(S) are deleted
from the ground set E , and a new feasible solution is determined. If such a solution
S ′ exists, it is automatically ensured that b(S ′) < b(S) holds and once more, all
elements c(e) ≥ b(S ′) can be removed from the ground set. This procedure is iteratively
repeated until no further feasible solution can be found. Then, the last solution that
was feasible for the modified problem is also optimal for Problem (CBP) and its cost
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Algorithm 4.1 Threshold Algorithm for Combinatorial Bottleneck Problems

Input: An instance (E ,X , f) of CBP
Output: Optimal solution S∗ and its corresponding objective value b∗.
1: while E 6= ∅ do
2: Find a feasible solution S∗ ∈ X .
3: Determine threshold value b∗ := b(S∗) = max

e∈S∗
{c(e)}.

4: Set E = E \ {e ∈ E : c(e) ≥ b∗}.
5: Update the feasible set X = X ∩ P(E).
6: end while
7: return (S∗, f ∗).

automatically determines the optimal objective value. A short outline of this approach
can be found in Algorithm 4.1. To further improve this approach, it can be combined
with a bisection of the ground set in each iteration of the algorithm. Assuming that
the elements of E are sorted in non-decreasing order with respect to the cost function
c, it can be concluded that:

Theorem 4.1 Algorithm 4.1 is correct and solves CBP in O(T log(n)), where n is
the number of elements contained in the ground set, and T denotes the time to solve
the specific feasibility problem.

Note that for combinatorial problems on graphs or networks it is normally quite simple
to delete elements from the ground set, since these elements correspond to edges of the
given graph or network, and the feasible set is updated automatically. However, besides
these problems there also exist many combinatorial problems, where the feasible set X
cannot be updated in a straightforward way, since it is defined by a set of constraints.
Hence, discarding elements from the feasible set X may not be an easy task. In
this case, an adapted version of the above described approach can be used that was
suggested, amongst others, by Jorgensen and Powell [111].
Given a prescribed threshold value b∗ , the costs of the elements that exceed b∗ are
set to ∞. Then, a sum problem in the modified cost function is solved. If the optimal
objective value of this new problem is finite, there exists a feasible solution whose
maximum cost value is less than the current threshold value b∗ and the value can be
updated. Otherwise the solution found in the last iteration must be optimal.
Combining the above described approach with a bisection of the ground set in each
iteration, results in an algorithm that solves the given problem in O(T log n), where
T now denotes the time to solve the corresponding sum problem with respect to the
modified cost function. Note that a similar approach will be used in Chapter 5 to derive
an algorithm that does not minimize the largest, but the kth largest cost coefficient
contained in a feasible solution.
We finally remark that depending on the considered class of combinatorial optimization
problems there exist algorithms that solve the specific CBP with lower time complexity
than Algorithm 4.1 does, although these algorithms are also based on a threshold
approach. For example, Camerini et al. [32] showed that the bottleneck spanning tree
problem on an undirected graph G = (V, A) can be solved within O(|A|). Gabow and
Tarjan [68] extended this results to the case of a directed graph and presented similar
results for the bottleneck maximum cardinality matching problem.
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Furthermore, Punnen and Nair [175] presented an improved algorithm for the bottle-
neck biconnected subgraph problem, studied for the first time in the article of Parker
[162], where, amongst others, the above stated threshold approach is applied to the
considered problem. In addition to these two articles that also deal with the bottle-
neck traveling salesman problem, the article of Garfinkel and Gilbert [72], where the
bottleneck TSP is discussed, has to be mentioned. Note that this problem is proven to
be NP-complete in general (cf. Garey and Johnson [71]). Finally, several variants for
solving bottleneck assignment problems were discussed in the book of Burkard et al.
[29].
Concerning the complexity of solving a given CBP, Punnen [171] stated an interesting
result. Let |E| = n. Given an algorithm that solves a CBP in O(ξ(n)) assuming
that the elements from E are already sorted in non-decreasing order, the author ap-
plied a threshold approach to show that in this case, the CBP with unsorted costs
can be solved within O(ξ(n) log⋆(n)), where log⋆(n) = min{i : log(i)(n) ≤ 1}, and
log(i+1)(x) = log(log(i)(x)) with log(0)(x) = x. The author concluded that, if the com-
plexity of the algorithm that solves the bottleneck problem for sorted costs is less than
that of sorting n numbers (which is of complexity O(n log(n))), this implies that the
threshold approach presented in [171] solves the problem for unsorted costs faster than
an approach that first sorts the elements according to their costs, and then solves the
problem by applying the algorithm for the sorted costs.

4.2.2 Multiple Objective Optimization

In this subsection we deal with the multiple objective version of a CBP. After a short
survey of the existing literature, we present a generalized solution approach that can
be applied to any given class of combinatorial optimization problems.
In the following, let c1, . . . , cp : E → Z denote p different cost functions on the ground
set E . For i = 1, . . . , p we define bi : X → Z, bi(S) = maxe∈S{ci(e)}. Furthermore, let
f : X → Z denote an additional objective function of arbitrary type. It is assumed in
the following that there exists an algorithm that solves the single objective problem
(E ,X , f) in a reasonable amount of time for each given instance of a special class
of combinatorial optimization problems. We are interested in solving the multiple
objective combinatorial bottleneck problem (MCBP)

min (f(S), b1(S), . . . , bp(S))⊤

s.t. S ∈ X ,
(MCBP)

consisting of p + 1 objective functions.
MCBPs are mostly considered for special classes of combinatorial optimization prob-
lems in the literature. Only to mention a few, Melamed and Sigal [133, 134, 135, 136,
137, 138] and Melamed et al. [139] numerically analyzed the fraction of supported
non-dominated solutions among the set of non-dominated solutions for the linear as-
signment, the minimum spanning tree, the asymmetric traveling salesman and the
knapsack problem with either two or three bottleneck objectives or one sum and one
or two bottleneck objectives, respectively. The main result of their numerical investi-
gations is the fact that in their tests the relative number of non-supported solutions
in the objective space only depended on the cardinality of the set of non-dominated
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solutions itself, but not on any special features of the considered problem like the
type of the objective functions, the range of the cost coefficients (which are chosen
independently and uniformly distributed in certain intervals) or the type of the input
data (integer or real). Interestingly, they further reported for the minimum spanning
tree as well as the assignment problem that the ratio of supported non-dominated
solutions is substantially larger for problems involving three objectives as compared
to their biobjective counterparts. Furthermore, their investigations showed that the
number of supported non-dominated solutions that do not correspond to extreme non-
dominated points, i.e. to extreme-points of the non-dominated frontier of the problem,
exceeds the number of extreme non-dominated solutions when passing from two to
three objectives.

Besides the articles of Melamed and Sigal there exist a number of publications that deal
with the multiple objective shortest path problem. Polynomial algorithms considering
a sum- and a bottleneck-objective are presented by Hansen [98], Martins [129], Berman
et al. [17] and Pelegrin and Fernandez [165]. Note that in the article of Martins [129]
besides a sum objective also a minratio objective was considered. Gandibleux et al.
[69] presented an algorithm for solving a multiple objective shortest-path problem
involving q sum and an additional bottleneck objective based on the label setting
algorithm developed by Martins [128]. More recently, shortest path problems involving
two bottleneck- and a sum-objective were analyzed by Pinto et al. [166]. The authors
solved the triobjective problem by a similar approach as the one that we will present
in a more general framework at the end of this subsection.

Minoux [144] as well as Punnen and Nair [176] propose algorithms for solving the single
objective problem involving the algebraic sum of a sum and a bottleneck objective
based on a biobjective approach. We further discuss their algorithms in Section 6.2.

We only briefly mention that MCBPs are also considered for the combinatorial classes
of transportation problems (cf. Srinivasan and Thompson [195]), spanning tree prob-
lems (cf. Punnen and Aneja [172]) and location problems (cf. Hamacher et al. [93]),
generally involving a sum and several bottleneck objectives.

In the remainder of this subsection, we generalize the solution approaches that are
presented, amongst others, in the articles of Melamed and Sigal [134, 137] for the
minimum spanning tree and the assignment problem involving two or three objective
functions, in Melamed et al. [139] for the biobjective knapsack problem, as well as
in various articles on the shortest-path problems that have been stated above. In
contrast to these articles, our approach is not limited to the case of only one or two
given bottleneck objectives, but we present an algorithm that can be applied to any
combinatorial optimization problem consisting of p ∈ N bottleneck objectives and
an additional objective function f of arbitrary type. To the best of our knowledge,
this approach has not yet been presented in a general framework, i.e. independent of
any special class of combinatorial problems, and its correctness was not proven in the
literature before.

For ε = (ε1, . . . , εp) ∈ Rp, we consider the following constrained formulation of Prob-
lem (MCBP):

min f(S)

s.t. bi(S) ≤ εi, i = 1, . . . , p,

S ∈ X .

(4.2)
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From Chankong and Haimes [36] we recall that each optimal solution of Problem (4.2)
is at least a weakly-efficient for Problem (MCBP). However, the non-dominated solu-
tions that are obtained by solving Problem (4.2) crucially depend on the chosen right
hand side components εi ∈ R (i = 1, . . . , p). Since in general, the exact values of these
components are not known in advance (especially when the functions on the left hand
side correspond to sum objectives), in the worst case the complete range of involved
cost coefficients has to be scanned to determine a complete set of efficient solutions.

Fortunately, this drawback is no longer valid when MCBPs are considered. Since for
each i ∈ {1, . . . , p} and S ∈ X , bi(S) takes at most n distinct values contained in
the set ci(E) := {ci(e) : e ∈ E}, all possible right hand side values are known in
advance. Furthermore, their cardinality is polynomially bounded by O(n). Since for
each combination of the right hand side components εi, at most a single non-dominated
solution exists, this additionally implies that the cardinality of the non-dominated set
is polynomially bounded by O(np). Based on this observation, we can derive a solution
approach that determines a complete set of efficient solutions for a given MCBP: We
iteratively solve Problem (4.2) for all combinations of right hand side values contained
in the sets ci(E) (i = 1, . . . , p), followed by a filter step to exclude weakly efficient
solutions that are not contained in the efficient set of the given problem.

We further discuss the special properties of Problem (4.2) in the following. Let εi =
ci(e) for an arbitrary but fixed element e ∈ E and index i ∈ {1, . . . , p}. We consider
the ith constraint of Problem (4.2) that is formally given by bi(S) ≤ εi. Obviously, this
constraint implies that a solution S ∈ X is feasible if and only if its maximum cost
coefficient with respect to the cost function ci is at most εi. Hence, as for the single
objective case, εi can be treated as a threshold value for the set ci(E). By eliminating
all elements from the ground set satisfying ci(e) > εi for some i ∈ {1, . . . , p}, it
is automatically ensured that the constraint bi(S) ≤ εi is satisfied by all solutions
that are still feasible for the reduced problem. Hence, Problem (4.2) can be solved
by considering an unconstrained single objective combinatorial optimization problem
(E ′,X ′, f) with objective function f , where E ′ ⊆ E and X ′ = {S ∈ X : bi(S) ≤ εi, i =
1, . . . , p}.
Since for many combinatorial problems, the feasible set X is not given explicitly, a
slightly different approach can be used to solve Problem (4.2). This approach can
be seen as a generalization of the one stated in the previous subsection for the single
objective case. We assume in the following that the objective function f depends on a
given cost function w on the elements of the ground set E . To indicate this dependence,
we replace f by fw.

Let ε ∈ Rp such that εi ∈ ci(E) for all i ∈ {1, . . . , p}. Instead of removing the elements
from E that do not satisfy the constraint bi(S) ≤ εi, we define a modified cost function
w̃ : E → w(E) ∪ {+∞}, where

w̃(e) =

{

w(e), if ci(e) ≤ εi ∀i ∈ {1, . . . , p},
+∞, otherwise.

Based on this modified cost function w̃, we solve the unconstrained single objective
combinatorial optimization problem which is given by (E ,X , fw̃).
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Algorithm 4.2 Threshold Algorithm for solving MCBP

Input: An instance (E ,X , (fw, b1, . . . , bp)) of MCBP
Output: A complete subset X ⋆ ⊆ XE.
1: Set X ⋆ = ∅ and C = c1(E)× · · · × cp(E) for i = 1, . . . , m.
2: for All possible combinations of bounds ε ∈ C do
3: for All e ∈ E do
4: if ci(e) ≤ εi for all i ∈ {1, . . . , p} then
5: Set w̃(e) = w(e).
6: else
7: Set w̃(e) = +∞.
8: end if
9: end for

10: Solve the unconstrained problem (E ,X , fw̃) → S⋆.
11: if fw̃(S⋆) <∞ then
12: Update X ⋆ = X ⋆ ∪ {S⋆}.
13: end if
14: end for
15: Filter X ⋆ for dominated solutions.
16: return X ⋆.

Lemma 4.2 If the optimal objective value of the instance (E ,X , fw̃) is finite, the
solution obtained is both feasible as well as optimal for Problem (4.2) with respect to
the considered right hand side vector ε ∈ Rp. Otherwise, Problem (4.2) is infeasible.

Proof: Let S denote the optimal solution of the instance (E ,X , fw̃), and let fw̃(S) <∞.
The construction of w̃ implies that ci(e) ≤ εi for all e ∈ S and i ∈ {1, . . . , p}, and
hence, S is feasible for (4.2) and fw̃(S) = fw(S) holds.
Now assume that S is not optimal for Problem (4.2). Then there exists S⋆ ∈ X with
fw(S⋆) < fw(S) satisfying bi(S

⋆) ≤ εi for all i ∈ {1, . . . , p} which means that ci(e) ≤ εi

for all e ∈ S⋆ and i ∈ {1, . . . , p}. Hence, fw̃(S⋆) = fw(S⋆) < fw(S) = fw̃(S) which
contradicts the optimality of S for the instance (E ,X , fw̃).
On the other hand, if the optimal objective value is not finite, there do not exist
feasible solutions satisfying ci(e) ≤ εi for all i ∈ {1, . . . , p} simultaneously. Hence,
Problem (4.2) is infeasible. �

As a result of Lemma 4.2, Problem (4.2) can be solved without explicitly deleting
elements from the ground set E . After a simple modification of the costs of the
given cost function w, an unconstrained problem with objective fw̃ has to be solved.
We use this fact in Algorithm 4.2, where a complete set of the efficient solutions of
Problem (MCBP) is determined by solving at most O(np) ε-constraint problems. Note
that since an optimal solution of Problem (4.2) is only weakly efficient in general, an
efficiency check has to be performed at the end of the algorithm.

Theorem 4.3 Algorithm 4.2 is correct and solves MCBP in O(np ·T ), where n is the
number of elements contained in the ground set, p is the number of bottleneck objectives
and T denotes the time to solve the unconstrained combinatorial problem with respect
to the modified objective function fw̃.
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Theorem 4.3 implies that the considered MCBP is solvable in polynomial time, when-
ever this holds true for the single objective problem (E ,X , fw) and p is assumed to be
fixed. To reduce the number of constrained problems that have to be solved during
the course of the algorithm, we suggest to fix the bounds on the bottleneck objectives
in lexicographically decreasing order with respect to the index of the objective.

First, the unconstrained bottleneck problem is solved, to derive a first solution candi-
date S1. In the next iteration, the bounds εi for bi are fixed to bi(S

1) for i = 1, . . . , p−1,
while the bound on bp is set to the next smaller cost coefficient that precedes bp(S

1)
with respect to cp. Then, the bottleneck problem is resolved to derive a new optimal
solution S2 and the next threshold value εp is given by the next smaller cost coefficient
that precedes bp(S

2) with respect to cp, while the remaining bounds on b1, . . . , bp−1

remain fixed. This procedure is repeated, until the corresponding bottleneck problem
is detected to be infeasible for the first time. Then, the constraint on bp is relaxed,
since decreasing the bound would automatically lead to further infeasible problems. In
addition, the bound on bp−1 is now set to the next smaller cost coefficient with respect
to cp−1, to derive new threshold values for bp for the subsequent iterations. Note that
the bounds on b1, . . . , bp−2 still remain fixed.

More generally, if for a fixed index j ∈ {2, . . . , p} an infeasible problem is detected,
since the constraint bj(S) ≤ εj cannot be satisfied by any feasible solution, it is useless
to decrease the right hand side of this constraint, since the resulting problem would
still be infeasible. Hence, instead of decreasing the cost bound for bj , all the constraints
on bj , bj+1, . . . , bp are relaxed and the bound on bj−1 is moved to the next smaller cost
coefficient with respect to cj−1. In the next iteration, new bounds for bj , bj+1, . . . , bp

are derived for the subsequent iterations. This further implies that the bounds on
bj , . . . , bp−1 remain fixed, while the bound on bp moves from large to small cost values
with respect to cp, until the infeasibility of the corresponding bottleneck problem is
detected for the first time. Then, the constraint on bp is relaxed again, and the bound
on bp−1 is set to the next smaller cost coefficient with respect to cp−1 to derive a new
threshold value for bp.

This procedure has to be repeated, until the problem becomes infeasible for the first
time, after the bound on b1 has moved to the next smaller cost coefficient with respect
to c1 in the previous iteration. Then, it is automatically implied that the ε-constraint
problem has been solved for all possible right hand side values that result in a feasible
single objective bottleneck problem, and the procedure stops.

For further applications of Algorithm 4.2 we refer to Section 6.2 where modified ver-
sions of this algorithm are used to solve scalarized versions of multiple objective com-
binatorial problems involving the algebraic sum of a sum and several bottleneck ob-
jectives. In addition, a special version of Algorithm 4.2 is used in Section 8.2 to solve
the biobjective binary knapsack problem with two bottleneck objectives.

4.3 Conclusions and Further Ideas

Since the research in the field of multiple objective combinatorial optimization has
grown strongly over the last decades, it is impossible to give a comprehensive and
detailed survey of the existing literature in only a few pages. In this chapter, we
restricted ourselves to survey only those solution approaches that can be used inde-
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pendently of any specific class of combinatorial problems. After a short review of the
most important definitions and concepts of multiple objective combinatorial optimiza-
tion, we summarized existing solution approaches in multiple objective combinatorial
optimization for the two most common objective functions used in the literature. In
addition, we presented a generalized solution approach for combinatorial problems
with an arbitrary number of bottleneck objectives that is based on solving a sequence
of single objective unconstrained combinatorial problems.
For further research directions, we remark that there already exist many solution
approaches and algorithms based on the two-phase method applied to a variety of
biobjective combinatorial optimization problems. In contrast, the literature on triob-
jective problems for this method is very scarce. Due to the fact that the scalarized
problems in the first phase of this method can be solved efficiently by an appropriate
algorithm for the associated single objective problem, it seems to be reasonable to
further focus on generalized solution concepts that can be applied in the second phase
of this method.
Unfortunately, not all approaches discussed in this chapter can be generalized to higher
dimensions in a straightforward way. For example, considering the Box-Algorithm
stated in Hamacher et al. [94] for the biobjective case, it is not clear in advance how
the splitting procedure for the 2-dimensional boxes can be generalized to p-dimensions,
where p ≥ 3. In this regard, neighborhood search techniques seem to be a promising
approach, since their performance is not directly related to the number of given objec-
tives. However, the success of such an approach crucially depends on the considered
definition of adjacency of efficient solutions and the value of the cost coefficients of the
different objective functions involved, as we will show in Chapter 7.
Concerning the compromise programming method mentioned in Section 4.1, only a
rather weak general performance of this method is reported in the literature, since the
involved subproblems are usually NP-complete (cf., e.g., Murthy and Her [147] for
the shortest path problem). Nevertheless, improved solution concepts based on this
method are of interest. For example, when an augmented weighted Tchebycheff norm
is used to calculate the non-dominated solutions of the multiple objective problem,
an appropriate weight parameter ρ (cf. Equation (4.1)) is normally chosen in advance
and kept fixed throughout the solution process. However, the (numerical) performance
of this specific solution approach crucially depends on the choice of this parameter
that actually determines, whether all non-dominated solutions of the problem can be
found or not (cf. Steuer [197] for further details). Hence, an adaptive choice of this
parameter dependent on the coordinates of the involved (local) ideal and Nadir points
can improve the general performance of this solution approach. For further details, we
refer to Dächert et al. [44].
Finally, improvement versions of Algorithm 4.2 for special classes of combinatorial
problems could be of interest. Since the individual cost coefficients of w̃ only differ
slightly in consecutive iterations of the algorithm, it could be investigated whether op-
timal solutions from preceding iterations can be used to derive an optimal solution for
the current subproblem. Such an approach may result in an improved time complexity
dependent on the considered class of combinatorial problems.



Chapter 5
Combinatorial Optimization with k-max
Objectives

Besides sum and bottleneck objectives that are discussed in Chapter 4, also other
types of objectives may be of interest to model special problems in combinatorial
optimization, where common types of objectives fail to describe the given problem
appropriately. In this chapter we present a bottleneck-like objective function that does
not take into account the largest, but the kth largest cost coefficient of a given feasible
solution. We present solution approaches for the single as well as for the multiple
objective case involving this special type of objective in the context of minimization
problems. Based on the presented results we derive similar approaches for the case
when the kth smallest cost coefficient of a feasible solution has to be minimized.
We assume throughout this chapter that a ground set E of n distinct elements is given.
Furthermore, X ⊆ P(E) denotes a subset of the power set of E , also called the feasible
set. We restrict ourselves in this chapter to combinatorial optimization problems where
|S| ≥ m is ensured for some m ∈ {1, . . . , n} and all S ∈ X .
This chapter is organized as follows: In Section 5.1 we discuss the concept of a k-
max objective function and present an algorithm that solves the k-max minimization
problem. In Section 5.2 we deal with the multiple objective case, while we transfer
the results for k-max objectives to the case that the kth smallest cost coefficient of a
feasible solution has to be minimized in Section 5.3. We conclude in Section 5.4.
We remark that the results presented in Section 5.1 are already published in Gorski
and Ruzika [88]. In addition we note that the special types of objectives treated in
this chapter where independently investigated by Turner [203]. For detailed results we
refer to Turner [204].

5.1 Single Objective k-max Optimization Problems

In this first section we consider combinatorial optimization problems where the kth

largest cost coefficient of a feasible solution has to be minimized. We assume in the
following that |S| = m holds true for all S ∈ X , since this simplifies the notation.
Equivalent results for the case that |S| ≥ m for all S ∈ X can easily be derived from
the results we present in the remainder of this section.
Let c : E → Z be a cost function on the elements of the ground set E . We assume that
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the elements of E are renumbered such that c(e1) ≤ . . . ≤ c(en). Let S = {ei1
, . . . , eim

}
be a feasible solution with 1 ≤ i1 < . . . < im ≤ n. We define an operator k -max which
yields the kth largest among the elements of S, i.e.,

k -max(S) = k -max
e∈S

c(e) = c(eim−k+1
).

The problem of minimizing the kth largest cost coefficient can now be concisely for-
mulated as

min k -max
e∈S
{c(e)}

s.t. S ∈ X .
(kMAX)

We refer to this problem as k-max optimization problem (kMAX). The special case
k = 1 is the well-known bottleneck or min-max problem, already treated in Section 4.2.
We introduce the following convention concerning the notation of the problem: If we
refer to Problem (kMAX) and its specific objective function in a general way, we speak
of a k-max problem and of a k-max objective. If a special instance of the problem
is considered for a fixed k ∈ {1, . . . , m} , we write k -maxe∈S{c(e)} or equivalently
k -max(S).
Problems of type (kMAX) have not been intensely studied in the literature before.
However, the notation of the kth largest element of a feasible set S can be found in
Punnen and Aneja [174]. There, the minimization of the maximum deviation of the
cost coefficients of a feasible solution S ∈ X to its kth largest coefficient is discussed
for general combinatorial optimization problems.
Although Problem (kMAX) has not been considered, there exist several other inter-
esting generalizations of CBPs. Some of them shall be mentioned in the following
since they slightly resemble Problem (kMAX). In Punnen et al. [178] the ground set
E is partitioned into p non-empty disjoint subsets. For feasible S ∈ X the objective
is to minimize the sum of costs of those elements which have maximum cost in the
subsets S∩Ek for k = 1, . . . , p. The considered problem generalizes combinatorial bot-
tleneck problems (CBP) and combinatorial sum problems (CSP) simultaneously, since
for p = 1 the problem simplifies to a CBP, while a CSP has to be solved for p = |E|.
A generalized CSP is discussed in Punnen and Aneja [173]. Instead of minimizing the
complete sum of all cost coefficients of a feasible solution, only the sum of the k largest
cost coefficients is considered (cf. also Section 6.2). Note that this approach also con-
tains the bottleneck case, since for k = 1 the problem simplifies to a CBP, while for
k ≥ max{|S| : S ∈ X} an ordinary CSP has to be solved. In lexicographic CBP
(see Della Croce et al. [47], Sokkalingam and Aneja [193]), the largest cost coefficient
has to be minimized in the first place. Among all optimal solutions to this CBP, the
second largest cost coefficient has to be optimized, then the third largest and so on.
Moreover, there exist several studies on CBPs with fixed cardinality (for a survey, we
refer to Ehrgott et al. [57]), i.e. |S| = m for all S ∈ X is required.

5.1.1 An Algorithm for Solving Single Objective k-max
Problems

The algorithm for solving Problem (kMAX) presented in this subsection is applicable
to general combinatorial optimization problems, since we only require the solution of
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Algorithm 5.1 Bisection Algorithm for k-max Optimization Problems

Input: A ground set E , a set of feasible solutions X ⊂ P(E), and k ∈ N.
Output: A feasible solution S ∈ X being optimal to Problem (kMAX).
1: Sort elements e ∈ E such that c(ei) ≤ c(ei+1).
2: LB← 1
3: UB← n
4: j ← ⌈n

2
⌉

5: while |UB− LB| > 0 do
6: Assign costs dj to each e ∈ E .
7: Solve Problem (SP). Denote S the optimal solution and d(S) the optimal value.
8: if dj(S) < k then
9: UB← j

10: else
11: LB← j + 1
12: end if
13: j ← LB + ⌊UB−LB

2
⌋

14: end while
15: Solve Problem (SP). Denote S the optimal solution and d(S) the optimal value.
16: return S.

a sequence of CSPs. We utilize bisection search for the kth largest cost coefficient
in an optimal solution: In each iteration, we decide whether there exists a solution
whose kth largest cost coefficient is smaller than a given cost coefficient c(ei), for a
fixed i ∈ {1, . . . , n}. This decision is based on the solution of a sum problem having
the same feasible set as Problem (kMAX).
Given j ∈ N with 1 ≤ j ≤ n, we assign auxiliary costs to each element in the ground
set by setting

dj(ei) :=

{

0, if i ≤ j

1, if i > j.

The sum problem which is iteratively solved during the algorithm is given by

min
S∈X

dj(S) :=
∑

e∈S

dj(e). (SP)

Since the costs are binary, Problem (SP) may be easier to solve than general CSPs over
the same feasible set. Indeed, there exist combinatorial optimization problems where
solving the sum objective problem is NP-hard in general, while for only two distinct
cost coefficients on E there exists a polynomial time algorithm to solve problems of
type (SP) (see Ravi et al. [181] and Section 5.1.2).
An outline of our algorithm can be found in Algorithm 5.1. Note that for given
k ∈ {1, . . . , n}, the upper bound UB also could be initialized by n− k + 1 instead of
n in Line 3 of Algorithm 5.1. Furthermore, the index m − k + 1 could alternatively
be used as an initial value of the lower bound LB (cf. Line 2). In the following, we
consider finiteness and correctness of our approach.

Theorem 5.1 Algorithm 5.1 terminates in a finite number of steps. The solution S
it returns is optimal for Problem (kMAX).
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Proof: In each iteration the value of LB or UB is increased or decreased by at least
one unit, respectively. Therefore, termination is guaranteed. We prove the validity of
the following loop-invariant which implies the correctness of the algorithm.

In each iteration of the while-loop, the index of the kth largest element of
an optimal solution to Problem (kMAX) is contained in the set {t ∈ N :
LB ≤ t ≤ UB}.

Initialization: Lines 2 and 3 ensure that the loop invariant is valid at the start of
the first iteration.

Maintenance: In each iteration, a cost value of zero is assigned to all elements having
an index smaller or equal to j. All other elements is assigned a cost value of one.
Note that Problem (kMAX) and Problem (SP) have the same feasible set. We
denote an optimal solution of Problem (kMAX) by Sopt. The objective function
value dj(S) of Problem (SP) counts the minimum number of elements in S that
have an index larger than j.

Case 1: Let dj(S) < k.
Then there exists a feasible solution whose kth largest element of S is at most
c(ej). Therefore, the index of the kth largest element of Sopt is contained in
{LB, . . . , j}.

Case 2: Let dj(S) ≥ k.
By contradiction, suppose that the cost of the kth largest element of Sopt is
less or equal to c(ej). Consider the value dj(S

opt). It is dj(S
opt) < k which

is a contradiction to S being optimal for Problem (SP). Thus, the index of
the kth largest element of Sopt is contained in the set {j + 1, . . . , UB}.

Termination: We repeat the while-loop until UB = LB. In this case, j = UB = LB
and c(ej) is the optimal objective function value.

Due to the validity of the loop invariant, Line 15 ensures that an optimal solution S
of Problem (kMAX) with k -max(S) = c(ej) is returned. �

However, it cannot be guaranteed that the optimal solution S of Problem (SP) gener-
ated in the last iteration of the while-loop is also optimal for Problem (kMAX) (cf.
the example in Section 5.1.2). Therefore, Problem (SP) has to be solved once more in
Line 15 after the optimal value for j has been found.

Lemma 5.2 In the while-loop of Algorithm 5.1 at least one optimal solution S of
Problem (kMAX) is computed when solving Problems (SP) in Line 7. More precisely,
S is the optimal solution to the Problem (SP) for which the upper bound UB was
updated the last time before the stopping criterion of the while-loop was satisfied.

Proof: Let S denote the optimal solution to the Problem (SP), for which the upper
bound was updated the last time before the stopping criterion of the while-loop was
satisfied, and let c(ei) := k -max(S). By contradiction, suppose that S is not optimal
for Problem (kMAX), i.e., there exists another feasible solution S⋆ ∈ X such that
c(ei⋆) := k -max(S⋆) < c(ei), i⋆ < i. Without loss of generality we assume that UB = i
holds true at the end of the iteration, when the solution S is obtained. Otherwise,
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we have to perform at least one more subsequent iteration where the upper bound
will be updated. Since the optimal i⋆ has to be contained in set {LB, . . . , UB − 1}
according to the loop-invariant, we have to perform at least one more iteration. Due
to the definition of S, all subsequent iterations will never lead to an update of the
upper bound UB until the stopping criterion is met. Hence, i⋆ 6∈ {LB, . . . , j} for all
LB ≤ j ≤ UB − 1 and after the final iteration i⋆ = LB = UB = i holds true. This
contradicts our assumption. �

Due to Lemma 5.2, Line 15 in Algorithm 5.1 can be omitted when storing the solution
S which has led to an update of the upper bound UB at the end of the while-loop.
At termination, this solution is returned by the algorithm.
Note that in the course of iterations, an optimal solution to Problem (kMAX) is not
always necessarily contained in the current set of optimal solutions to Problem (SP).
Especially in earlier iterations only a coarse estimation of the position of the optimal
cost coefficient to Problem (kMAX) is available. Thus, there may exist many feasible
solutions having a better value with respect to the current objective dj of Problem (SP)
than optimal solutions of Problem (kMAX).
Finally, we analyze the running time of our algorithm.

Theorem 5.3 The running time of Algorithm 5.1 is in O(T log n), where T denotes
the time needed for solving Problem (SP).

Proof: First, we note that n elements can be sorted inO(n log n) which can be assumed
to be in O(T log n). Line 13 guarantees that the while-loop is bisected in every
iteration. Consequently, there are log n many iterations. Line 6 is in O(n), Line 7 is
in O(T ), all other operations in O(1) and, thus, the running time follows. �

5.1.2 Example

To demonstrate the properties of Algorithm 5.1 introduced in Section 5.1.1 we consider
the k-max cardinality constrained knapsack problem

min
S∈X

k -max
e∈S
{c(e)} (5.1)

with ground set E = {e1, . . . , en} and feasible set

X = {S ∈ P(E) : |S| = m ∧
∑

e∈S

p(e) ≥ const.}

for arbitrary but fixed 0 ≤ m ≤ n and 0 ≤ k ≤ m. The vectors c ∈ Rn and p ∈ Rn are
called cost vector and profit vector, respectively. It is well known that the cardinality
constrained knapsack problem with sum objective is NP-hard in general (see Mazzola
and Schantz [131]). However, if the cost vector c is binary, i.e. c ∈ {0, 1}n, as it is the
case for Problem (SP), we propose the following approach:

1. Partition the ground set E = E0 ∪ E1 into two disjoint subsets Ei := {e ∈ E :
c(e) = i}, i ∈ {0, 1}.

2. Sort the elements of E0 and E1 in non-increasing order according to their profit
p(e).
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c(e) 1 2 3 4 5 6 7 8 9 10 11 ∑

e∈S

p(e)
p(e) 45 54 21 10 14 58 15 56 17 43 27

S1 1 1 0 0 0 1 0 1 0 1 1 283

S2 1 1 1 0 0 1 0 1 0 1 0 277

S3 1 1 0 0 0 1 0 1 1 1 0 273

S4 1 1 0 0 0 1 1 1 0 1 0 271

S5 1 1 0 0 1 1 0 1 0 1 0 270

S6 1 1 0 1 0 1 0 1 0 1 0 266

S7 1 1 1 0 0 1 0 1 0 0 1 261

Table 5.1: In the first two rows the assigned values to c and p are listed, while in the
subsequent rows the feasible solutions of (5.2) are shown.

3. Construct a first solution candidate S that contains the first m most profitable
elements of E0 if |E0| ≥ m, or all elements of E0 and the m− |E0| most profitable
elements of E1 if |E0| < m, respectively.

4. If the solution S satisfies the constraint

∑

e∈S

p(e) ≥ const.,

it must be optimal by construction.

5. Otherwise iteratively replace the most unprofitable element eout := argmin{p(e) :
e ∈ (S ∩ E0)} of S ∩ E0 by the most profitable element ein := argmax{p(e) : e ∈
(E1 \ S)} of E1 \ S until the sum constraint (4) is met for the first time. If this
is never the case, the given problem is infeasible.

We state:

Lemma 5.4 The presented approach solves the binary sum-version of the cardinality
constrained knapsack problem within a polynomial amount of time.

As the proof of Lemma 5.4 is straightforward, we leave the details to the reader. As
a consequence of Lemma 5.4, Problem (5.1) can also be solved in polynomial time
although the same problem with sum objective is NP-hard in general.
In the following we consider the 4 -max cardinality constrained knapsack problem with
the ground set E = {e1, . . . , e11} and the feasible set

X :=

{

S ∈ P(E) : |S| = 6 ∧
∑

e∈S

p(e) ≥ 261

}

, (5.2)

where the profits p and the costs c are specified in the first two rows of Table 5.1.
This problem has seven feasible solutions S1, . . . , S7. They are also listed in Table 5.1.
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Iteration Sopt dj(S
opt) LB UB j |UB− LB|

prior to 1st − − 1 11 6 10

1st {S2, S5, S6, S7} 2 1 6 3 5

2nd {S2, S7} 3 1 3 2 2

3rd {S1, . . . , S7} 4 3 3 3 0

Table 5.2: The rows give the values of the algorithm before and after each iteration.

Note that c(ei) = i for all i ∈ {1, . . . , 11}. Obviously, the solutions S2 and S7 are both
optimal for the given 4 -max-problem with 4 -max(S2) = 4 -max(S7) = c(e3) = 3.

The values assigned to the variables LB, UB, and j during the course of Algorithm 5.1
as well as the set of optimal solutions for each subproblem (SP) and the optimal
objective values with respect to dj can be found in Table 5.2.

The algorithm stops after three iterations. In the first two iterations, the optimal
objective value of dj is less than k = 4. In these cases the upper bound UB is updated
using the current value of j. In the last iteration, the optimal objective value of dj

equals 4, and the lower bound LB is updated to j +1. This leads to UB = LB = j = 3
and the stopping criterion of the while-loop is satisfied.

In the first iteration the set of optimal solutions for the subproblem (SP) consists of the
four feasible solutions S2, S5, S6, and S7, while in the second iteration S2 and S7 are
optimal for Problem (5.1). In the third iteration, all feasible solutions of Problem (5.1)
are also optimal for Problem (SP). According to the loop-invariant used in the proof
of Theorem 5.1, j = 3 corresponds to the index of the optimal objective value of
Problem (5.1). Due to Lemma 5.2, S2 and S7 are both optimal for Problem (5.1),
since they are optimal for Problem (SP) in the iteration in which the upper bound
is updated the last time before the stopping criterion of the while-loop is met. Note
that the optimal solution S obtained when solving Problem (SP) the last time during
the while-loop does not have to correspond to an optimal solution of Problem (5.1)
since, for example, S = S1 is possible.

5.1.3 Further Applications

Despite the fact that Problem (kMAX) generalizes CBPs, it may enable the modeling
of many real world problems which could not have been easily formulated so far. We
want to demonstrate briefly its potential in image registration (cf. also Section 11.3).

In general registration problems, two given data sets have to be rendered in a joint
coordinate system such that corresponding features of these data sets are aligned.
Such data sets normally correspond to 2- or 3-dimensional images as it is the case,
for example, in medical image registration (see, e.g., Zitová and Flusser [223] for
more details). For a given model set A of n distinct points in the plane (which
may correspond for example to characteristic points of a given reference image) and
an image set B of the same cardinality (one may think of characteristic points in a
template image), it is assumed that the points in B correspond to points in A but
are afflicted with some data errors. The goal is to find the best possible assignment
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between the points of the two sets such that some distance measure between each
pair of aligned points is as small as possible (see, e.g., Stiglmayr et al. [199]). Neither
minimizing the average deviation of the points (which would be modeled by a CSP)
nor the worst case assignment (this corresponds to a CBP) adequately deals with the
noise-induced errors in the set B. Instead, it seems more suitable to disregard those
k−1 pairs of points which are furthest apart from each other. These k−1 assignments
are considered outliers due to noise, and the task in the optimization problem is to
minimize the kth largest distance in the assignment of set B to set A. However, the
optimal choice of the accepted number of outliers (i.e. the parameter k) is critical
and crucially depends on the given problem instance and the applied point extraction
method.

5.2 Multiple Objective k-max Optimization

Problems

Analogous to Section 4.2, where multiple objective problems with several bottleneck
objectives are considered, we are interested in multiple objective problems with p + 1
objective functions in the following, where the first objective f : X → Z is of arbitrary
type, while the p other objectives g1, . . . , gp : X → Z correspond to k-max objective
functions.
Let k1, . . . , kp ∈ {1, . . . , m} be arbitrary but fixed integers and let c1, . . . , cp : E → Z

be p different cost functions on the ground set E . For i ∈ {1, . . . , p} the p k-max
objective functions are given by

gi(S) = ki -max(S) = ki -max
e∈S

{ci(e)}.

The considered multiple objective k-max optimization problem (MkMAX) is given by

min (f(S), g1(S), . . . , gp(S))⊤ = (f(S), k1 -max(S), . . . , kp-max(S))⊤

s.t. S ∈ X .
(MkMAX)

Note that each function gi can take at most n−ki +1 different values which are known
in advance. Hence, we state:

Lemma 5.5 The cardinality of the non-dominated set YN of Problem (MkMAX) is
within O(np).

Proof: Let an instance of Problem (MkMAX) be given. Since for each combination of
the (n− ki + 1)p different values of the vector (g1(S), . . . , gp(S))⊤ there exists at most
one value of f(S) which leads to a non-dominated solution, (n − ki + 1)p is a strict
upper bound on the set of non-dominated points in the objective space. �

As in the bottleneck case (cf. Section 4.2), an ε-constraint approach is suitable to solve
Problem (MkMAX). The corresponding problem formulation is given by

min f(S)

s.t. gi(S) ≤ εi, i = 1, . . . , p,

S ∈ X ,

(5.3)
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where εi ∈ {ci(e1), . . . , ci(en)} for i = 1, . . . , p. Since there is no obvious way how
to handle the side constraints gi(S) ≤ εi compared to the case of the bottleneck
objectives, where, for example, all items e ∈ E satisfying ci(e) > εi for at least one
i ∈ {1, . . . , p} can be simply deleted from the ground set E , we use the following
auxiliary construction adopted from the single objective case:
Let i ∈ {1, . . . , p}. For fixed ji ∈ {1, . . . , n}, we define a cost indicator for gi by setting

τji
:= ci(eji

).

We assign auxiliary weights to each element of the ground set by

wji
(et) :=

{

0, if ci(et) ≤ τji
,

1, if ci(et) > τji
,

where t ∈ {1, . . . , n}. The new ith auxiliary function fji
: X → N is now given by

fji
(S) :=

∑

e∈S

wji
(e).

Let J := (j1, . . . , jp). Instead of solving Problem (5.3) directly, we consider the auxil-
iary problem

min f(S)

s.t. fji
(S) ≤ ki − 1, i = 1, . . . , p,

S ∈ X .

(AJ)

where ji ∈ {1, . . . , n} is uniquely determined by the right hand side values εi of
Problem (5.3) for i = 1, . . . , p. In more detail, ji is given by the index t ∈ {1, . . . , n}
such that ci(et) = εi holds true.
Problem (AJ) can be interpreted as follows: For each i ∈ {1, . . . , p}, the side constraint
fji

(S) ≤ k − 1 introduces an additional knapsack constraint to the single objective
combinatorial optimization problem with objective function f . These side constraints
can be seen as counters on the cardinality of the most expensive elements from E
which are contained in a feasible solution with respect to the given cost functions ci.
For fixed ji only up to k − 1 of these most expensive elements with respect to the
cost function ci are allowed to be included in a feasible solution, where the threshold
value τji

indicates which elements have to be considered as “expensive” and which
not. So the problem can also be seen as a multiple choice version of the considered
combinatorial optimization problem.
In the following, we relate optimal solutions of Problem (AJ) to efficient solutions of
Problem (MkMAX) and vice versa.

Theorem 5.6 Let SJ denote an optimal solution of Problem (AJ) for some J =
(j1, . . . , jp). Then SJ is a weakly efficient solution of Problem (MkMAX).

Proof: Assume that SJ is not a weakly efficient solution of Problem (MkMAX), i.e.
there exists S⋆ ∈ X such that f(S⋆) < f(SJ) and

ki -max
e∈S⋆

{ci(e)} < ki -max
e∈SJ

{ci(e)} ∀i ∈ {1, . . . , p}. (5.4)
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Since SJ is feasible for Problem (AJ),

ki -max
e∈SJ

{ci(e)} ≤ τji

for i = 1, . . . , p by the construction of fji
. Using (5.4), we obtain that S⋆ is also

feasible for Problem (AJ) and f(S⋆) < f(SJ). This contradicts the optimality of SJ

for Problem (AJ). �

In order to strengthen the result of Theorem 5.6, i.e. to obtain efficiency, uniqueness
of the optimal solution of Problem (AJ) yields a sufficient condition.

Theorem 5.7 Let SJ be a unique optimal solution of Problem (AJ) for some J =
(j1, . . . , jp). Then SJ is a strictly efficient solution of Problem (MkMAX).

Proof: Assume that SJ is not a strictly efficient solution of Problem (MkMAX), i.e.
there exists S⋆ ∈ X , S⋆ 6= SJ , such that

f(S⋆) < f(SJ) and ki -max
e∈S⋆

{ci(e)} ≤ ki -max
e∈SJ

{ci(e)} ∀i ∈ {1, . . . , p},

or
f(S⋆) ≤ f(SJ) and ki -max

e∈S⋆

{ci(e)} ≤ ki -max
e∈SJ

{ci(e)} ∀i ∈ {1, . . . , p},

and there exists at least one index t ∈ {1, . . . , p} such that

kt -max
e∈S⋆

{ct(e)} < kt -max
e∈SJ

{ct(e)}.

Applying the same reasoning as in the proof of Theorem 5.6 shows that S⋆ is feasi-
ble for Problem (AJ) in both cases. But since SJ is the unique optimal solution of
Problem (AJ), this implies that f(SJ) < f(S) for all feasible S. Hence, it holds that
f(SJ) < f(S⋆) which leads to a contradiction. �

For efficient solutions of Problem (MkMAX), we state:

Theorem 5.8 If S⋆ is an efficient solution of Problem (MkMAX), then there exists
J = (j1, . . . , jp) ∈ {1, . . . , n}p such that S⋆ is optimal for Problem (AJ).

Proof: Let S⋆ be an efficient solution of Problem (MkMAX). For each i ∈ {1, . . . , p}
let ji ∈ {1, . . . , n} denote the index of that element e ∈ E which corresponds to the
ki-max of S⋆. We set τji

= ci(eji
), and we claim that S⋆ is an optimal solution to

Problem (AJ) for J = (j1, . . . , jp).

Assume that this is not the case. Then there exists a feasible Ŝ ∈ X with f(Ŝ) < f(S⋆)
and fji

(Ŝ) ≤ ki − 1 for i = 1, . . . , p. By the choice of ji, fji
(S⋆) = ki − 1 and

hence fji
(Ŝ) ≤ fji

(S⋆). But this means by the definition of Problem (AJ) and wji

that ki -max(Ŝ) ≤ ki -max(S⋆) for all i ∈ {1, . . . , p}. Hence, Ŝ dominates S⋆ which
contradicts the efficiency of S⋆. �

Note that the above stated results on the relation between optimal solutions of Prob-
lem (AJ) and efficient solutions of Problem (MkMAX) are equivalent to the results
for the general ε-constraint approach for solving MCOPs (cf. Chankong and Haimes
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Algorithm 5.2 Algorithm for Problem (MkMAX)

Input: An instance (E ,X , (f, g1, . . . , gp)) of Problem (MkMAX).
Output: A complete subset X ⋆ ⊆ XE.
1: Set X⋆ = ∅ and J = {1, . . . , n}p.
2: for All J ∈ J do
3: Determine the optimal solution S⋆ of the constrained optimization Prob-

lem (AJ), whenever it is feasible.
4: Update X ⋆ = X ⋆ ∪ {S⋆}.
5: end for
6: Filter X ⋆ for dominated solutions.
7: return X ⋆.

[36]). But since Problem (AJ) is just a remodeling of the ε-constraint Problem (5.3),
this is not surprising.
The algorithmic consequence of Theorem 5.6 and Theorem 5.8 can be found in Algo-
rithm 5.2. The algorithm determines a complete set of the efficient solutions for any
instance of Problem (MkMAX). As the solution concept of Algorithm 5.2 is similar to
the concept used in Section 4.2 for multiple objective bottleneck problems, we suggest
to handle the bounds on the k-max objectives similar to the approach described for Al-
gorithm 4.2 in the above mentioned section. To shorten the algorithmic presentation,
the case that Problem (AJ) is infeasible is not treated separately in Algorithm 5.2.
Since an ε-constraint approach is used to solve an MCOP, a filtering for dominated
solutions has to be performed at the end of the algorithm.

Theorem 5.9 Algorithm 5.2 correctly determines the set of non-dominated solutions
YN in O(np · T ), where T denotes the maximum time for solving the subproblem (AJ)
in each step of the algorithm.

Proof: Applying Theorem 5.6 and Theorem 5.8 we construct a subset of the weakly effi-
cient set that contains all efficient solutions of Problem (MkMAX). Since Problem (AJ)
is solved for all possible combinations of indices, the set X ⋆ which is returned after
filtering the dominated solutions corresponds to a complete set of efficient solutions.
Hence, the complete non-dominated set YN is calculated by Algorithm 5.2. The stated
time bound follows directly from Lemma 5.5 and from the fact that we have to solve
at most np modified ε-constraint problems given by Problem (AJ). �

Theorem 5.9 states a theoretical time bound that is independent from any special class
of combinatorial problem. Since constrained versions of single objective combinatorial
optimization problems that can be solved in polynomial time are NP-hard problems
in general, even if the minimum spanning tree (cf. Aggarwal et al. [2]) or the shortest-
path problem (cf. Garey and Johnson [71]) is considered, Problem (AJ) is in general
NP-hard to solve. Nevertheless, due to the simple binary structure of the auxiliary
sum objective function fji

, it may be possible to derive algorithms that are able to
solve this special type of problem in a polynomial amount of time depending on the
considered class of combinatorial problems. In this case, also Problem (MkMAX) is
solvable in polynomial time due to Theorem 5.9.
We close this section with a short discussion of such a special type of combinatorial
problem that is also treated in a generalized framework in Chapter 10. In more
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detail, we consider the biobjective minimum spanning tree problem, where one of the
objective functions is given as a k-max objective. Let a connected graph G = (V, A) be
given, where V and A denote the set of nodes and the set of edges of G, respectively.
Furthermore, let f and g1 = k1 -max(S) denote an arbitrary sum objective and a k-max
objective, respectively, where k1 ∈ {2, . . . , |V |−1}. We use the results from Chapter 10,
where biobjective matroid problems with a binary sum objective are discussed. For
the minimum spanning tree problem under consideration, Problem (AJ) is equivalent
to Problem (BMP≤) defined in Section 10.2, where the right hand side value for this
specific problem is given by k1−1. In Section 10.3 we show that an algorithm proposed
by Gabow and Tarjan [67] can be used to solve Problem (AJ) efficiently. The authors
stated a time bound of O(m + n · log(n)) for their approach, where |V | = n and
|A| = m. Hence, we conclude:

Corollary 5.10 The biobjective minimum spanning tree problem on a connected graph
G = (V, A) involving an arbitrary sum objective and a k-max objective can be solved
in O(m2 + mn log(n)), where |V | = n and |A| = m.

5.3 Optimization with k-min Objectives

We close this section with a short discussion of optimization problems with k-min
objective(s). Since this type of function is closely related to a k-max objective, we will
not go into all details, but we briefly state the main results that can be derived from
the previous two sections.

Let c : E → Z denote a cost function on the elements of E . We assume that the
elements of E are given numbered in non-decreasing order with respect to their cost
values. Let S = {ei1

, . . . , eim
} be a feasible solution, where 1 ≤ i1 < . . . < im ≤ n. We

define the operator k -min which yields the kth smallest among the elements of S, i.e.,

k -min(S) = k -min
e∈S

c(e) = c(eik).

To establish a connection between a k-min and k-max objective, we recall the well-
known fact that for all S ⊆ E it holds true that

max{c(e) : e ∈ S} = −min{−c(e) : e ∈ S}.

A similar relation can be proven for the two new types of objectives.

Lemma 5.11 Let S ⊆ E such that |S| = m with 1 ≤ m ≤ n. Furthermore, let
k ∈ {1, . . . , m} and k⋆ = m− k + 1. Then,

k -max
e∈S
{c(e)} = − k -min

e∈S
{−c(e)} = − k ⋆-max

e∈S
{−c(e)},

or equivalently,

− k -max
e∈S
{c(e)} = k -min

e∈S
{−c(e)} = k ⋆-max

e∈S
{−c(e)}.
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Proof: Note that we will mainly use the second equation in the following. Hence, we
omit to give a proof for the first and focus on the second. Since the transformation
of the cost values from c(e) to −c(e) for all e ∈ E implies a reversion of the ordering
relation on the elements in E , the first equality is obviously true. Furthermore, since
the cardinality of S is a fixed constant, the kth smallest element of S is automatically
the (m−k +1)th largest element of S, too. Hence, the second equality is also valid. �

Similar to Problem (kMAX), the problem of minimizing the kth smallest among the
cost coefficients of a feasible solution is given by

min k -min
e∈S
{c(e)}

s.t. S ∈ X ,
(kMIN)

Lemma 5.11 yields an approach how Problem (kMIN) can be solved, when all feasible
sets contained in X are of the same cardinality, i.e. |S| = m for all S ∈ X where
m ∈ {1, . . . , n} is a fixed constant. Instead of minimizing the kth smallest element of
S, we minimize the (m − k + 1)th largest element of S for the same cost function c.
Since there are no further restrictions for the cost coefficients used in Algorithm 5.1,
this algorithm can be used to solve Problem (kMIN).
If the cardinality of feasible solutions varies, i.e. if there exist S1, S2 ∈ X such that
|S1| 6= |S2|, only the first equality of Lemma 5.11 is valid, while the second can no
longer be applied simultaneously to all feasible solutions, since now m depends on S.
For this case, we propose the following approach whose main idea is similar to the idea
presented in Section 5.1:
For a fixed index j ∈ N, where 1 ≤ j ≤ n, we define auxiliary costs for each element
in the ground set by

dj(ei) :=

{

1, if i ≤ j,

0, if i > j,

i.e. exactly in the reverse order as it was the case in Section 5.1.1 for a given k-max
objective. Instead of solving Problem (SP), we now iteratively solve

max
S∈X

dj(S) :=
∑

e∈S

dj(e). (5.5)

If the maximum value of Problem (5.5) is at least k, there exists a feasible solution such
that its kth smallest element has an index that is not larger than j. Hence, an index
that is at most j has to be the one that corresponds to the minimum cost coefficient
that has to be determined. If the maximum value of Problem (5.5) is strictly smaller
than k, there does not exist a feasible solution such that its kth smallest element has an
index that is at most j. We conclude that the index of the optimal cost coefficient is
at least j +1. Hence, we can apply a bisection algorithm which is similar to Algorithm
5.1 to solve Problem (kMIN). According to Theorem 5.3 we state:

Corollary 5.12 Problem (kMIN) can be solved within O(T log(n)) where T denotes
the time needed for solving Problem (5.5).

We further remark that

max
S∈X

{

k -min
e∈S
{c(e)}

}

= −min
S∈X

{

− k -min
e∈S
{c(e)}

}

= −min
S∈X

{

k -max
e∈S
{−c(e)}

}
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holds true, according to Lemma 5.11. Hence, the problem of maximizing the kth

smallest among the cost coefficients of a feasible solution can be solved by applying
Algorithm 5.1 to a corresponding k-max optimization problem using the transformed
cost function c̃, where c̃(e) = −c(e) for all e ∈ E .
In the remainder of the section, we focus on the multiple objective case. First, we show
how a constraint on a k-min objective can be transformed into a constraint similar
to the one derived in Section 5.2 for a k-max objective to solve multiple objective
optimization problems involving this type of objective. To keep the notation as simple
as possible, we just describe how a single constraint of the form “g(S) ≤ c(e)”, where
g(S) = k -min(S) and e ∈ E , can be transformed into an equivalent constraint based
on a similar binary transformation as for the case of a k-max objective.
Let ej ∈ E arbitrary but fixed. To ensure that the kth smallest cost coefficient of a
feasible solution S ∈ X is at most τj := c(ej), we once more define auxiliary costs by
setting

wj(e) :=

{

0, if c(e) > τj

1, if c(e) ≤ τj .

Let fj(S) =
∑

e∈S wj(e). Then, the side constraint “g(S) ≤ c(ej)” is equivalent to the
constraint “fj(S) ≥ k”: If the kth smallest cost coefficient of S is at most c(ej), then
S must contain at least k elements that have a cost value that does not exceed the
threshold value τj. On the other hand, if the kth smallest element of S is larger than
c(ej), S cannot contain more than k − 1 elements of costs less or equal to c(ej).
We conclude that the same approach as the one presented in Section 5.2 can be used
to solve an MCOP involving an objective function f of arbitrary type and p k-min
objectives. Furthermore, a similar time bound as the one stated in Theorem 5.9 is
valid for this type of optimization problem.
We finally combine the two different objectives into one common multiple objective
problem. Let a feasible set X ⊆ P(E), p + q cost functions ci : E → Z, as well as a
function f of arbitrary type, p k-max objectives gi(S) = ki -max(S) (i = 1, . . . , p) and
q k-min objectives gt(S) = kt -min(S) (t = p + 1, . . . , p + q) be given. We assume that
|S| ≥ m for all S ∈ X . Furthermore, let the cost function cj be associated with the
corresponding objective gj for all j ∈ {1, . . . , p+ q}. Given gj, we further assume that
kj ∈ {1, . . . , m} for all j ∈ {1, . . . , p+ q}. Note that several of the given cost functions
may coincide. If this is the case, we further assume that the corresponding objectives
do not describe the same element of S for all feasible S, i.e. if ci(e) = cj(e) for all e ∈ E
and some indices i, j ∈ {1, . . . , p + q}, i 6= j, then there exist S1, S2 ∈ X such that
gi(S1) 6= gj(S2). We define the multiple objective mixed k-min/k-max optimization
problem (MIXED) by

min (f(S), g1(S), . . . , gp(S), gp+1(S), . . . , gp+q(S))⊤

s.t. S ∈ X .
(MIXED)

Applying the two different transformations for the k-max objectives (cf. Section 5.2)
and the k-min objectives given in this section, we deduce the transformed ε-constraint
problem that has to be solved at most O(np+q) times to generate the complete non-
dominated set of Problem (MIXED). Let J := (j1, . . . , jp+q), where ji ∈ {1, . . . , n}
and let fji

and fjp+t
denote the transformed objective functions for the given p k-max
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and q k-min objectives, respectively, where i ∈ {1, . . . , p} and t ∈ {1, . . . , q}. Then,
the associated ε-constraint problem is given by

min f(S)

s.t. fji
(S) ≤ ki − 1, i = 1, . . . , p,

fjp+t
(S) ≥ kp+t, t = 1, . . . , q,

S ∈ X .

(MJ)

Using similar proofs as in the previous section, it is easy to show that given a vector
J , each optimal solution of Problem (MJ) is at least weakly efficient for Problem
(MIXED). Furthermore, for each efficient solution S of Problem (MIXED) there exists
a vector J such that S is optimal for Problem (MJ ). Hence, an algorithm similar to
Algorithm 5.2 can be deduced that determines a complete set of efficient solutions of
Problem (MIXED).

Corollary 5.13 The set of all non-dominated solutions YN of Problem (MIXED) can
be determined in O(T · np+q), where T denotes the time that is needed to solve Prob-
lem (MJ).

Once more, if Problem (MJ ) can be solved in polynomial time, also the non-dominated
set of Problem (MIXED) can be determined in a polynomial amount of time.

5.4 Conclusions and Further Ideas

In this chapter we discussed two different types of objective functions for combinatorial
problems which can be seen as a generalization of the bottleneck objective. The task
is to find a feasible solution S ∈ X either minimizing the kth largest or the kth smallest
cost coefficient of S. Algorithms to solve these two types of problems were proposed.
Both algorithms are based on a successive reformulation of the considered problem
as a simple sum problem with binary costs over the same feasible set. Based on this
reformulation technique of the single objective problem, we derived an ε-constraint
approach for solving multiple objective problems with an arbitrary number of k-max
and/or k-min objectives.
Further research on combinatorial optimization problems involving k-max objectives
could be manifold. For the single objective case, one might focus on the develop-
ment of efficient algorithms that solve special classes of combinatorial optimization
problems with a binary sum objective, since these problems correspond to the sub-
problems that have to be solved to find the optimal solution of a single objective k-max
problem. Furthermore, one can focus on multiple objective problems with several k-
max objectives. In general, the presented solution approach implies that a sequence
of (multiply) constrained single objective combinatorial problems has to be considered
that are NP-hard to solve. However, the derived polynomial time algorithm for the
biobjective minimum spanning tree problem with a sum and a k -max objective (cf.
Corollary 5.10) encourages the hope that due to the simple structure of the involved
subproblems, the overall problem is still solvable in a polynomial amount of time for
special classes of combinatorial problems.
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Furthermore, the complexity of such an algorithm could be improved, depending on
the considered class of combinatorial problems. For instance, one can investigate
whether it is possible that an optimal solution obtained in a previous iteration of
Algorithm 5.2 presented in Section 5.2 can be used as a “warm start solution” for
the next ε-constraint problem. Since only a few values of the involved cost functions
change, the former optimal solution is either feasible for the new problem, or it could
at least provide a good lower or upper bound on the optimal objective value of the
new subproblem that has to be solved.
Following the ideas presented in Chapter 3, we finally remark that instead of solving the
constraint Problem (AJ) in Algorithm 5.2 directly, an alternative approach based on
the associated multiple objective optimization problem formulation could be favorable.
Due to the simple structure of Problem (AJ), neighborhood search techniques (based
on a simple exchange of items from the ground set) could be used to determine efficient
solutions for the associated multiple objective problem with binary objectives that
correspond to optimal solutions of Problem (AJ). Of course, if such an approach is
applied, it must be guaranteed that the set of efficient solutions is connected with
respect to the considered swap operation. For more details on this topic, we refer to
Chapter 7. To motivate this approach we briefly mention that, for example in the
case of biobjective matroid problems for an arbitrary and a binary sum objective,
the important property of the connectedness of the efficient set can be proven (cf.
Chapter 10). In this case, it is automatically guaranteed that the underlying k-max
problem can be solved in a polynomial amount of time (cf. Corollary 5.10).



Chapter 6
Solving Single Objective Combinatorial
Problems with Multiple Objective
Approaches

While it is common to use single objective optimization approaches to solve multiple
objective problems, we want to take the reverse approach in this chapter. Given a
single objective combinatorial optimization problem, we model the problem in a more
general multiple objective framework based on the ideas developed in Chapter 3 of this
work. We focus on constrained versions of single objective combinatorial problems as
well as on combinatorial problems with an algebraic sum objective in the following
(cf. Sections 3.1 and 3.2 for more details). Based on associated multiple objective
problem formulations of such problems, we show that many solution concepts stated
in the literature can be interpreted as special versions of the more general approaches
for multiple objective combinatorial problems presented in the Chapters 4 and 5. We
further make use of this idea to present new solution concepts for special types of
problems with algebraic sum objective. Amongst others, we show that these types of
problems are solvable in a polynomial amount of time, whenever this holds true for
the appropriate single objective subproblems that have to be solved in each iteration
of the presented solution approach.
This chapter is organized as follows: In the first section we consider single objective
combinatorial problems with an additional side constraint. In Section 6.2 we discuss
combinatorial problems with an algebraic sum objective. We distinguish the two cases
whether the involved objectives are defined on a single or on different cost functions
on the ground set, followed by a recapitulation of our results in Section 6.3.

6.1 Constrained Single Objective Problems

In this section we deal with constrained versions of single objective combinatorial op-
timization problems and show how multiple objective solution approaches can be used
to solve such problems. However, since up to now efficient algorithms that solve mul-
tiple objective combinatorial problems with more than two objectives are scarce, we
restrict ourselves in the following to combinatorial sum problems with only a single
side constraint. We further discuss this assumption at the end of this section. In the
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following, we present a generalized version of a solution approach that has already
been successfully applied to solve constrained problems for individual classes of com-
binatorial optimization problems. Starting from a short summary of the results found
in the literature, we show how the general ideas developed in Section 3.1 can be used
to derive a generalized solution concept based on an associated biobjective reformula-
tion of the problem. Before we go into more details, we give a short description of the
problem under consideration.
Let E denote a ground set of n distinct elements, and let X ⊆ P(E) be a subset of
the powerset of E . Furthermore, let f, g : X → Z denote two sum objectives. Then, a
combinatorial optimization problem with a single constraint is formally defined by

min f(S)

s.t. g(S) ≤ ε

S ∈ X ,

(6.1)

where ε ∈ R. According to the notation from Section 3.1, the associated biobjective
combinatorial problem is given by

min F (S) = (f(S), g(S))⊤

s.t. S ∈ X .
(6.2)

From Theorem 3.1 in Section 3.1 we recall:

Corollary 6.1 It holds:

1. Every optimal solution of Problem (6.1) is at least weakly efficient for Prob-
lem (6.2), and the set of optimal solutions of Problem (6.1) contains at least one
efficient solution of Problem (6.2).

2. There exists an efficient solution of Problem (6.2) that is also optimal for Prob-
lem (6.1).

Corollary 6.1 is of particular interest, whenever there exist polynomial time algorithms
to solve Problem (6.2). However, it is beyond the focus of this section to give a complete
survey of special classes of multiple objective combinatorial optimization problems that
satisfy this property. Nevertheless, we refer to Chapter 10 of this work, where, amongst
others, the biobjective spanning tree problem with a binary sum objective is discussed.
We show that for this special case, the given biobjective problem can be solved in a
polynomial amount of time.
Unfortunately, such results appear to be exceptional. In general, Problem (6.1) as
well as Problem (6.2) are NP-hard to solve for most of the classical combinatorial
optimization problems, when no further information on at least one of the involved
objectives is given. In particular, this holds true for many classes of combinatorial
problems, where the unconstrained counterpart can be solved efficiently. For more
details on this topic, we refer to Garey and Johnson [71] for the shortest-path problem,
to Aggarwal et al. [2] for the minimum spanning tree and to Lieshout and Volgenant
[124] for the linear assignment problem.
However, the general solution approach we discuss in the following mainly addresses
classes of combinatorial problems, where at least the unconstrained version of the
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problem can be solved in a polynomial amount of time. We show that in this case, an
approach similar to the two-phase method for multiple objective combinatorial prob-
lems (cf. Section 4.1.2) is suitable to construct an optimal solution for Problem (6.1).
Similar to the first phase of the original method, we solve a sequence of weighted
sum scalarizations of the multiple objective problem. As we are only interested in
a single non-dominated solution of Problem (6.2) rather than in the complete set of
non-dominated solutions itself, we use the weighted sum scalarization of the biobjec-
tive problem to derive a first approximation of the optimal solution of Problem (6.1).
This can be done efficiently, whenever the unconstrained counterpart of the considered
combinatorial problem can be solved in a polynomial amount of time. As in the origi-
nal two-phase method, a local search technique is finally used to derive (or at least to
further approximate) the optimal solution of Problem (6.1).

It is important to remark that the approach we present in the remainder of this section
can be seen as a generalization of analogous solution concepts that already have been
successfully applied to many specific classes of combinatorial optimization problems.
We summarize the most important literature in the following.

We start with the literature on the single constrained minimum spanning tree problem.
Aggarwal et al. [2] as well as Hamacher and Ruhe [96] were the first who used a two
phase approach, similar to the one described above, to solve the single constrained
version of the minimum spanning tree problem. While in [2], a branch and discard
technique was used to calculate the optimal solution of the problem in the second
phase, Hamacher and Ruhe applied local search to derive the optimal solution. Later
on, also Ziegelmann [222] made use of a two phase approach. The author applied a
ranking approach in the second phase of the algorithm. Finally, Henn [102] discussed
the weight-constrained minimum spanning tree problem in his diploma thesis. Besides
a detailed overview on further approaches for solving this special type of problem, the
author presented an alternative two phase approach mainly based on the connected-
ness of the supported efficient trees of the biobjective problem, also proven in Ruzika
[184] (cf. Chapter 7 for further details on the connectedness of the efficient set). Tak-
ing advantage of this special property of the supported efficient spanning trees, an
efficient branch and bound scheme was presented to derive an optimal solution for the
constrained problem.

In addition to exact algorithms, also approximation schemes for the single constrained
minimum spanning tree problem were presented in the literature. For example, Xue
[219] derived a polynomial time approximation scheme for the problem that is mainly
based on applying the first phase of the above described procedure only. For a detailed
overview on further approximation schemes that are, amongst others, based on using
the Lagrangian dual of the considered problem (cf.,e.g., Ravi and Goesmans [180]), we
refer to Henn [102].

The constrained shortest path problem was considered by Aneja and Nair [7]. The
authors applied a parametric approach in the first phase of the algorithm to calculate
a sequence of supported efficient shortest paths. They wrongly claimed to calcu-
late the optimal solution for the constrained problem with their method, ignoring
the potential existence of non-supported efficient shortest paths that may be optimal
for the constrained problem. In addition to [7], Handler and Zang [97] and Beasley
and Christofides [15] presented two phase approaches to solve the single constrained
shortest path problem. While both methods solve the Lagrangian dual of the prob-
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lem in the first phase, Handler and Zang applied a k-best approach, while Beasley
and Christofides used a specially designed branch and bound technique to derive an
optimal solution of the constrained problem in the second phase. Ziegelmann [222]
presented label setting as well as label correction methods that can be applied in the
second phase of the above described procedure. Furthermore, numerical experiments
were performed to compare the different two phase approaches. Finally, Ruzika [184]
tackled the constrained shortest path problem in this dissertation. The author sug-
gested an efficient branch & bound approach that is based on the connectedness of the
supported efficient solutions of the associated biobjective shortest path problem (cf.
also Chapter 7). For an overview on further solution concepts that can be applied to
the constrained shortest path problem we refer to [222].
Finally, Aggarwal [1] presented a two phase approach for the constrained linear as-
signment problem. While in the first phase, the Lagrangian dual of the constrained
problem is solved, the author applied a ranking method that had been developed by
Murty [148] to derive an optimal solution for the constrained problem in the second
phase of the algorithm.
Besides these approaches developed for special classes of combinatorial problems,
Klamroth and Tind [114] investigated the relation between multiple objective opti-
mization and constrained optimization problems. Amongst others, the authors dis-
cussed how an optimal solution to a single constrained continuous problem can be
approximated only by means of an approach presented in Klamroth et al. [115]. This
specific approach uses polyhedral distance functions to construct inner and outer ap-
proximations of the non-dominated set for the associated biobjective optimization
problem.
In the following, we combine the main ideas of the solution concepts presented in the
above stated references from the literature, to derive a generalized solution approach
that can be applied to any combinatorial optimization problem with a single constraint.
Let f and g denote two different integer valued sum objectives, defined on the same
feasible set X . For λ ∈ [0, 1] let

min wλ(S) := λf(S) + (1− λ)g(S)

s.t. S ∈ X
(WS(λ))

denote the weighted sum scalarization of f and g. Furthermore, let Sf and Sg denote
the lexicographically optimal solutions with respect to (f, g) and (g, f), respectively.
We recall from Ehrgott [54] that an optimal solution of Problem (WS(λ)) is also
an efficient solution of Problem (6.2), whenever λ ∈ (0, 1). From the first part of
Chapter 4 we recall that such solutions are also called supported efficient solutions of
the problem. If in addition, such a solution corresponds to a breakpoint of the non-
dominated frontier of the biobjective problem, it is called extreme efficient solution.
In the following, let XsE denote the set of all supported efficient solutions. To exclude
trivial cases, we assume that Problem (6.1) is always feasible and that g(Sf) > ε, since
otherwise Sf is feasible and hence, optimal for Problem (6.1).
Similar to the two-phase method, our general approach also decomposes into two differ-
ent phases. In the first phase, we use an adaption of the dichotomic search technique
to find two supported efficient solutions S1 and S2 of Problem (6.2) that approxi-
mate the optimal objective value of Problem (6.1) as well as possible (cf. Figure 6.1).
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Figure 6.1: Phase I: Starting from the lexicographically optimal solutions Ff and Fg, a
sequence of weighted sum problems is solved to generate representatives (Sf , S1) of the points
Ff and F1 that encloses the optimal objective value. Note that dominated as well as non-
supported non-dominated solutions of the problem are neglected in the figure.
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Figure 6.2: F4, Fopt and F5 correspond to non-supported non-dominated points within
the triangle ∆. While the corresponding representative S4 is infeasible, Sopt is the optimal
solution of the problem.

In the second phase, we apply a local search for non-supported non-dominated so-
lutions that are contained in the triangle ∆ := conv({F (S1), F (S2), (f(S2), g(S1))}),
where conv(A) denotes the convex hull of a set A ⊆ R2 (cf. Figure 6.2). Then, an
optimal solution of Problem (6.1) is either given by S2, if all representatives of the
non-supported non-dominated solutions contained in ∆ correspond to infeasible solu-
tions of Problem (6.1). Otherwise, Equation (3.1) can be used to derive the optimal
solution for Problem (6.1). To simplify the notation in the following, we define:

Definition 6.2 Let Sopt denote an optimal solution of Problem (6.1). Furthermore,
let S1, S2 ∈ XsE such that f(S1) < f(Sopt) ≤ f(S2) and g(S2) ≤ g(Sopt) < g(S1) holds
true. We say that the ordered tuple (S1, S2) ∈ X 2

sE encloses the optimal objective value
of Problem (6.1), if for all S ∈ XsE we have that if S is feasible for Problem (6.2),
then f(S) ≥ f(S2), and if S is infeasible for Problem (6.2), then f(S) ≤ f(S1).

We mainly focus on the calculation of an enclosing tuple (S1, S2) ∈ X 2
sE in the following

and propose Algorithm 6.1 for its generation. The algorithm works as follows: We start
from the two lexicographically optimal solutions S1 = Sf and S2 = Sg of the given
problem. Then, we solve a sequence of weighted sum problems WS(λ) to generate new
supported efficient solutions of Problem (6.2) that approximate the optimal objective
value of Problem (6.1) within F (XsE). In each iteration of the algorithm, the new
parameter λ ∈ (0, 1) for Problem WS(λ) is chosen in such a way that the two supported
efficient solutions S1 and S2 lie on the same level curve with respect to the scalarized
objective function of Problem WS(λ) (cf. Line 3 of Algorithm 6.1 and Figure 6.1,
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Algorithm 6.1 PHASE I

Input: Objective function F = (f, g), right hand side value ε.
Output: A Tuple (S1, S2) ∈ X 2

sE that encloses the optimal solution of Problem (6.1).
1: Determine the two lexicographically optimal solutions S1 and S2 with respect to

(f, g) and (g, f), respectively.
2: loop
3: Set λ = (g(S1)− g(S2))/(f(S2)− f(S1) + g(S1)− g(S2)).
4: Solve Problem (WS(λ)) −→ S⋆.
5: if wλ(S

⋆) = wλ(S
1) then

5: break
6: end if
7: if g(S⋆) ≤ ε then
8: Set S1 = S⋆.
9: else

10: Set S2 = S⋆.
11: end if
12: end loop
13: Determine among all the alternative solutions of Problem (WS(λ)) the tuple

(S1, S2) that encloses the optimal solution of Problem (6.1).
14: return (S1, S2)

respectively). In this context, the specific value of λ given by

λ =
g(S1)− g(S2)

f(S2)− f(S1) + g(S1)− g(S2)
.

Note that for (x1, y1) := (f(S1), g(S1)) and (x2, y2) := (f(S2), g(S2)) we have that

λf(S1) + (1− λ)g(S1) =
y1 − y2

x2 − x1 + y1 − y2
· x1 +

x2 − x1

x2 − x1 + y1 − y2
· y1

=
x2 · y1 − x1 · y2

x2 − x1 + y1 − y2

=
y1 − y2

x2 − x1 + y1 − y2
· x2 +

x2 − x1

x2 − x1 + y1 − y2
· y2

= λf(S2) + (1− λ)g(S2).

If the optimal solution S⋆ ∈ XsE of Problem WS(λ) is infeasible for Problem (6.1),
we update the upper bound S1 of our approximation. Otherwise, the lower bound S2

is updated. Then, the next iteration starts.
The algorithm finally terminates, when the objective vector F (S⋆) as well as F (S1) and
F (S2) lie on the same level curve with respect to the objective function of the weighted
sum problem solved before. In this case, no further extreme efficient solution exists that
represents a component of a tuple that encloses the optimal objective value better than
the calculated (S1, S2) does. Nevertheless, for the last weighted sum problem solved,
there might exist alternative optimal solutions that do not correspond to extreme
efficient solutions, but that lie on the facet of the non-dominated frontier defined by
F (S1) and F (S2) (cf., e.g., the non-dominated solution F3 in Figure 6.2). Hence, all
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alternative optima of this weighted sum problem have to be checked whether there exist
better alternative optima that enclose the optimal objective value of Problem (6.1)
better than the tuple (S1, S2) returned by the loop.
We further remark that the case g(S⋆) = ε is not treated separately in Algorithm 6.1.
In this case, S⋆ obviously corresponds to an optimal solution of Problem (6.1). We
conclude:

Lemma 6.3 Algorithm 6.1 is correct and determines a tuple (S1, S2) ∈ X 2
sE that

encloses the optimal solution of Problem (6.1).

Proof: Let (S1, S2) denote the tuple that is calculated during the final cycle of the loop
between the Lines 2 and 12 of Algorithm 6.1. According to Line 13, the determination
of the best tuple among the optimal solutions of the final weighted sum problem WS(λ)
that encloses the optimal objective value is given as a black box algorithm. Hence,
it suffices to show that there does not exist another tuple (S̄1, S̄2) ∈ X 2

sE, such that
at least one of the two solutions S̄1 or S̄2 corresponds to an extreme efficient solution
of Problem (6.2) that is not optimal for the final weighted sum problem WS(λ) such
that (S̄1, S̄2) encloses the optimal objective value better than the tuple (S1, S2) does.
Assume that this would be the case. Let S⋆ denote the optimal solution of the last
weighted sum problem WS(λ) that has been solved before the tuple (S1, S2) is returned
by the loop. By Line 3 of Algorithm 6.1, the solutions S1 and S2 have been used to
define the parameter λ for this weighted sum problem. But since (S̄1, S̄2) encloses the
optimal objective value by assumption, Definition 6.2 automatically implies that

min{wλ(S̄
1), wλ(S̄

2)} < wλ(S
1) = wλ(S

2).

Hence, S1 or S2 is updated by S̄1 or S̄2, respectively, and another iteration is per-
formed. But this contradicts the assumption that the tuple (S1, S2) is returned at the
end of the final cycle of the loop. �

Note that the complexity of Algorithm 6.1 strongly depends on the cardinality of the
set F (XsE), as well as the cardinality of the set of alternative optimal solutions for the
single objective problems. While the cardinality of the first set may be polynomially
bounded for special classes of combinatorial problems (cf., e.g., Ruzika [184] for the
biobjective minimum spanning tree problem), the latter is of exponential size in gen-
eral. Hence, Line 13 of Algorithm 6.1 can be skipped, depending on the method used
in the second phase.
A brief outline of our complete algorithm also including the second phase can be found
in Algorithm 6.2. We omit a detailed discussion of the potential methods that can
be used in the second phase of Algorithm 6.2 to determine the non-supported non-
dominated points contained in the triangle ∆ (cf. Figure 6.2). We rather refer to the
above stated literature, as well as to Section 4.1.2 where potential solution concepts
have been presented. In general, the applied method crucially depends on the class
of combinatorial problems under consideration. Either a local search technique is
applied that exploits special properties of the given combinatorial problem, or special
methods are used to enumerate all non-supported non-dominated points contained in
the triangle ∆, as described for example in Section 4.1.2.
However, if the connectedness of the efficient set can be proven for the associated mul-
tiple objective Problem (6.2) (cf. Chapter 7 for more details), a local search technique
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Algorithm 6.2 Algorithm for solving Single Constrained Sum Problems

Input: Objective function F = (f, g), right hand side value ε.
Output: An optimal solution of Problem (6.1).
1: {PHASE I}

Determine the tuple (S1, S2) ∈ X 2
sE that encloses the optimal objective value of

Problem (6.1) by applying Algorithm 6.1.
2: {PHASE II}

Apply a local search technique to determine a complete set X ⋆ of efficient solutions
that represent the set of non-dominated solutions contained in the triangle ∆
defined by F (S1), F (S2) and (f(S2), g(S1)).

3: if g(S) > ε for all S ∈ X ⋆ then
4: return S2.
5: else
6: return S = argminS∈X ⋆{f(S) : g(S) ≤ ε}.
7: end if

that exploit the adjacency of efficient solutions seems to be favorable in the second
phase of Algorithm 6.2. In this case, the enclosing tuple calculated in the first phase
of the algorithm can be used as initial solutions for the local search. Unfortunately,
we show in Chapter 7 that the connectedness of the efficient set fails for most of the
classical problems from multiple objective combinatorial optimization. We summarize
our results in a final theorem.

Theorem 6.4 Algorithm 6.2 is correct and determines an optimal solution of Prob-
lem (6.1).

Proof: The theorem immediately follows from Lemma 6.3 and Corollary 6.1. �

We restricted ourselves in this section to single constrained combinatorial optimization
problems only. Nevertheless, the above described two phase approach can theoretically
be applied to higher-dimensional problems (i.e. to combinatorial optimization prob-
lems with several side constraints), too. However, the algorithms for the first as well
as for the second phase are no longer that easy to handle as in the biobjective case.
Considering the first phase of Algorithm 6.2, it is not clear in advance, which facet
of the approximated non-dominated frontier has to be chosen for the next iteration
of Algorithm 6.1. It may happen that although all representatives of the supported
non-dominated points that define a facet of the final non-dominated frontier corre-
spond to infeasible solutions of the constrained problem, while the facet itself contains
points whose representatives correspond to feasible solutions of the overall problem
(cf. also Klamroth and Tind [114] for an example for the continuous case). Hence,
unless no further information on the optimal solutions of Problem (6.2) is given, the
approximation in the first phase must be refined for all facets of the approximated
non-dominated frontier calculated so far.
Furthermore, it is also not obvious how the second phase of the algorithm can be
handled efficiently. In general, there exist more than one facet of the non-dominated
frontier defining a simplex that has to be scanned for potential non-supported non-
dominated solutions that may correspond to optimal solutions of the constrained prob-
lem. Hence, in the worst case all facets of the non-dominated frontier have to be
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checked for potential optimal solutions.
We finally remark that although Algorithm 6.2 is clearly designed for combinatorial
problems where the single objective problem can be solved efficiently, it also can be
applied to any other combinatorial problem that is already NP-hard for the uncon-
strained case.

6.2 Combinatorial Problems with Algebraic Sum

Objectives

In this section we consider single objective combinatorial problems where the objective
function is given as the sum of different types of objectives defined on a common
feasible set X . Note that such a sum is also called algebraic in the literature (cf., e.g.,
Minoux [144]). We discuss two different types of objectives in the following: Given
the algebraic sum of p (different) functions, we consider the case that either these p
functions are defined on p pairwise different cost functions on the ground set, or that
only a single cost function for all p objectives is given. Since the first case is already
almost completely covered by the results from Chapter 4 and Chapter 5, we mainly
focus on the latter in the following.
Based on problems from the literature, we show how these special types of problems
can be modeled and solved using the associated multiple objective reformulation of the
problem (cf. Section 3.2). Amongst others, we discuss existing solution approaches for
problems that aim to minimize the deviation between the cost coefficients of a feasible
solution. We show that most solution approaches that can be found in the literature
are closely related to the algorithms presented in Chapter 4 of this work. Based on
this observation, we present generalized versions of these problems and show that they
can be solved based on algorithms developed in Chapter 5. Note that we do not focus
on any special class of combinatorial problems in the following. We rather show how
the general ideas and algorithms of the multiple objective problems discussed in the
previous chapters can be used to solve combinatorial optimization problems with an
algebraic sum objective.
We start with a formal introduction of the considered problems in this section. Let
E denote a ground set of n distinct elements, and let X ⊆ P(E) be a subset of the
powerset of E . Furthermore, let f1, . . . , fp : X → Z denote p ≥ 2 different objective
functions of arbitrary type. Then, a combinatorial optimization problem with algebraic
sum objective is formally given by

min
p∑

i=1

fi(S)

s.t. S ∈ X .
(6.3)

Considering the p different summands of Problem (6.3) as independent objectives,
this problem can be seen as a scalarized version of the associated multiple objective
combinatorial problem

min F p(S) = (f1(S), . . . , fp(S))⊤

s.t. S ∈ X .
(6.4)
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From Theorem 3.2 in Section 3.2 we recall:

Corollary 6.5 It holds:

1. Every optimal solution of Problem (6.3) is also efficient for Problem (6.4).

2. There exists an efficient solution of Problem (6.4) that is also optimal for Prob-
lem (6.3).

Especially the second part of Corollary 6.5 is important for the problems we consider
in this section: Given the efficient set of Problem (6.4), we can derive an optimal
solution for Problem (6.3). According to the results from Section 3.2, this optimal
solution S⋆ ∈ XE is given by

S⋆ = argmin
S∈XE

{f1(S) + . . . + fp(S)} (6.5)

and corresponds to a supported efficient solution of Problem (6.4). However, applying
Equation (6.5) to derive the optimal solution of Problem (6.3) is not very useful in
practice. A complete set of efficient solutions has to be generated and filtered to derive
the solution S⋆ we are only interested in. Hence, the application of an algorithm that
originally was designed for solving a general multiple objective combinatorial problem
normally generates much redundant information that cannot further be used to derive
an optimal solution for Problem (6.3). However, we will see in the following that
many approaches in the literature implicitly make use of the above described multiple
objective reinterpretation of the problem. This is especially the case, when the involved
subproblems that result from this reinterpretation are solvable in an efficient manner.
To further reduce the storage of redundant information, the following modified version
of an algorithm that solves Problem (6.4) is commonly used in the literature: Let an
algorithm that determines a complete set X ′ of efficient solutions for the associated
multiple objective problem be given. Since only a single efficient solution among the
sets contained in X ′ is also optimal for Problem (6.3), only the best solution with
respect to the given objective function of Problem (6.3) is stored during the course of
the algorithm. If a new solution candidate is generated by an appropriate subroutine
of the algorithm, its objective value is compared to the value of the best solution
found so far. If the generated solution improves the objective value of Problem (6.3),
it replaces the former best solution. Otherwise, the solution is discarded.
If it is ensured that the given algorithm for the associated multiple objective problem
generates a complete set of efficient solutions, it obviously suffices to return the best
solution as well as its corresponding objective value at the end of the algorithm. Hence,
we assume in the following:

Remark 6.6 Whenever we refer to an algorithm from Chapter 4 and Chapter 5 in
the following subsections, it is assumed that only the best solution with respect to the
objective function of Problem (6.3) found so far is stored at the end of an iteration.
After the final iteration, only this stored solution as well as its corresponding objective
value is returned by the algorithm.

In the following subsections, we discuss complexity results of solution approaches that
are based on solving a sequence of single objective sum, bottleneck and k-max prob-
lems, respectively. To simplify the notation, let T S , TB and TK denote the time to
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solve an unconstrained sum, bottleneck and k-max optimization problem, respectively.
If an additional subscript is added, this subscript represent the number of binary con-
straints that additionally have to be considered when the specific problem is solved.
We will see in the following that these additional side constraints result from k-max
objectives that are used to model specific types of combinatorial optimization prob-
lems. For example, O(T S

k ) denotes the complexity of solving a single objective sum
problem with k binary side constraints, where k ≥ 1.

6.2.1 Algebraic Sums based on Different Cost Functions

In this subsection we focus on the case that the p different summands of the algebraic
sum objective are given based on p different cost functions ci : E → Z (i = 1, . . . , p)
on the ground set E .
We start with a brief review of the existing literature on this special type of combi-
natorial optimization problem. Note that most articles focus on the algebraic sum of
a sum and a bottleneck objective. Hence, we mainly summarize the results of this
specific problem in the following that was introduced by Minoux [144] in 1989. In this
specific article, the author showed that based on a modified version of the biobjec-
tive threshold algorithm (cf. Algorithm 4.2) presented in Section 4.2.2 it is possible to
derive an optimal solution for the algebraic sum problem within O(nT S) amount of
time. Note that this bound coincides with the bound stated in Theorem 4.3 for the
general biobjective threshold algorithm.

To reduce the number of subproblems that have to be solved in the course of Minoux’s
algorithm, Punnen [170] proposed an improved version of Algorithm 4.2 that decreases
the average number of involved subproblems. Although the general performance of
this improved version is reported to be much better, the proposed algorithm still has
a worst case time complexity of O(nT S).

Finally, Punnen and Nair [176] presented an approach that minimizes the algebraic
sum of a sum and a bottleneck objective for the minimum spanning tree problem.
Based on a specially designed data structure for the spanning trees of a graph, the
authors were able to solve this specific algebraic sum problem within O(m log(n)) time,
where n denotes the number of nodes and m the number of edges of the given graph.

In addition to the combinatorial versions of the problem, Punnen [170] also discussed
the LP-version of the algebraic sum problem under consideration. Different from
many other solution approaches that use n additional inequality constraints to han-
dle the bottleneck objective, a parametric approach is presented. Based on an LP-
reformulation of the problem, the n additional constraints on the bottleneck objective
are treated implicitly and not as additional constraints during the solution process of
the involved LPs.

Given an objective function fi, i ∈ {1, . . . , p}, it is assumed in the remainder of this
subsection that fi either corresponds to a sum, a bottleneck or a k-max objective (cf.
Chapters 4 and 5). Furthermore, given an instance of Problem (6.3), we briefly show
that the involved sum objectives can be recombined into a single objective of the same
type.

Let c1, . . . , cq denote q different cost functions on E , where 2 ≤ q ≤ p. Furthermore,
let f1, . . . , fq correspond to q different sum objectives, i.e. fi(S) =

∑

e∈S ci(e) for all
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i ∈ {1, . . . , q}. Then, the partial sum of these q objectives can be simplified to

q
∑

i=1

fi(S) =

q
∑

i=1

(
∑

e∈S

ci(e)

)

=
∑

e∈S

(
q
∑

i=1

ci(e)

)

=
∑

e∈S

c̃(e),

where c̃(e) =
∑q

i=1 ci(e) for fixed e ∈ E . Hence, the q sum objectives can be combined
to a single objective of the same type without affecting the overall objective value.
Unfortunately, this is no longer the case, when q different bottleneck or k-max objec-
tives are considered. In general, only

q
∑

i=1

k -max
e∈S
{ci(e)} ≤ k -max

e∈S

{
q
∑

i=1

ci(e)

}

holds true for these objectives. Hence, neither the bottleneck nor the k-max objectives
can be recombined to a single objective for the overall problem.
As the number of sum objectives can be reduced to one, a given instance of Prob-
lem (6.3) either simplifies to an optimization problem with a single sum objective,
or the associated multiple objective problem of the form (6.5) is equivalent to Prob-
lem (MCBP) and Problem (MkMAX) from Section 4.2.2 and Section 5.2, respectively.
This implies that the algorithms stated in these sections can be used to solve any com-
binatorial problem where the corresponding objective function is given as an algebraic
sum of a sum and several bottleneck, k-max and even k-min objectives. Hence, we
just summarize the results obtained for the different combinations of these objectives
from the last chapters and refer to the above stated sections for further information
on solution approaches and algorithms.

Corollary 6.7 Consider an instance of Problem (6.3) consisting of p bottleneck and
an additional sum-objective f . Then, Algorithm 4.2 can be applied to solve the problem.
In this case, the running time of this approach is in O(np T S).

In particular, Corollary 6.7 implies that the algorithms proposed by Minoux [144] and
Punnen [170] (cf. the literature review given above) for minimizing the algebraic sum
of a sum and a bottleneck objective can both be interpreted as specially designed
versions of the more general Algorithm 4.2.

Corollary 6.8 Consider an instance of Problem (6.3) consisting of p k-max and an
additional sum-objective f . Then, Algorithm 5.2 can be used to solve this problem
within O(np TK

p ) of time.

Note that similar results hold for the case that the summands of the algebraic sum
objective consist of k-min or combined k-max and k-min objectives (cf. Section 5.3).

6.2.2 Algebraic Sums based on a Single Cost Function

In this subsection we consider optimization problems where all functions that represent
summands of the given algebraic sum objective are defined based on a single cost
function c : E → Z. Starting from combinatorial problems already treated in the
literature, we present generalized versions of these problems, and we show that all of
these problems can be modeled by means of the three types of objectives discussed in
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Chapter 4 and Chapter 5: the sum, the bottleneck and the k-max/k-min objective.
Moreover, we discuss how multiple objective approaches can be used to solve these
types of problems.

We further remark that several problems, solution approaches and results stated in
this subsection were independently developed by Turner [203] and can be found in
Turner [204].

The following discussions are all based on the ideas and the results developed at the
beginning of this section and Section 3.2, respectively. Given a combinatorial op-
timization problem with an algebraic sum objective, we use the associated multiple
objective optimization problem to derive an optimal solution for the single objective
problem based on the results of Corollary 6.5. Taking into account that a single objec-
tive problem has to be solved, modified versions of the algorithmic schemes developed
for the multiple objective bottleneck (cf. Section 4.2.2), the k-max (cf. Section 5.2)
and the combined k-max/k-min problem (cf. Section 5.3) can be use to construct
appropriate algorithms for all the problems treated in the following (cf. Remark 6.6).
We further show that most algorithms proposed for the considered problems in the
literature correspond to carefully designed variants of the algorithms described in the
previous two chapters.

Note that it is not in the main focus of this section to derive new types of algorithms
that solve special types of problems already mentioned in the literature. We rather
want to show how these problems can be seen and modeled in an alternative multiple
objective framework which may lead to a deeper insight into the general structure of
such problems.

The remainder of this section is organized as follows: Each type of optimization prob-
lem is presented in an individual subsection. First, we introduce the problem and
give a short review of the existing literature. Then, we describe how the given prob-
lem can be solved based on the associated multiple objective problem formulation.
This is mainly done by referring to the specific algorithms developed in Chapter 4
and Chapter 5. Furthermore, we relate our suggested approaches to the approaches
already presented in the literature. At the end of each subsection, we present solution
approaches for generalized versions of the combinatorial problem that has been treated
in the specific subsection. We finally summarize our results in a last paragraph.

For all the problems stated in the following, we assume that each feasible solution
satisfies a minimal cardinality constraint, i.e. there exists an integer m ≥ 2 such that
|S| ≥ m holds true for all S ∈ X . If a fixed cardinality for all feasible solutions
is needed, it is mentioned in the specific subsection. For a survey on combinatorial
problems with fixed cardinality, we refer to Ehrgott et al. [57].

Balanced Combinatorial Optimization Problems

The class of balanced combinatorial optimization problems is a special type of an al-
gebraic sum of two bottleneck objectives. Given a ground set E of cardinality n, a set
of feasible solutions X and a scalar cost function c : E → X , the aim of the problem
is to minimize the range of the values contained in a feasible solution. Formally, the
problem is given by

min
S∈X

[

max
e∈S
{c(e)} −min

e∈S
{c(e)}

]

. (6.6)
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Balanced combinatorial optimization problems were introduced by Martello et al. [127].
Given a subroutine that solves a simple feasibility problem, the overall problem is
solved in this reference by iteratively scanning the range of the cost values contained
in a predefined interval. If the distinct values of c are sorted in increasing order, the
initial interval only contains the minimum cost coefficient. During the course of the
algorithm, the bounds on the range of the coefficients contained in the interval that is
scanned for feasible solutions is consecutively modified. If a feasible solution is found,
the lower bound on the range is increased by one unit, which results in a reduced
search interval in the next iteration. Otherwise, the upper bound is increased by one
unit which leads to an enlarged search range for the next iteration. The best solution
is recorded and the algorithm stops either when the complete range of the cost values
is scanned, or a solution with optimal cost of zero is found. The authors state a time
bound of O(n T ), where T denotes the time to solve the feasibility problem.

Duin and Volgenant [50] presented a similar approach, based on solving a sequence
of bottleneck optimization problems instead of numerous feasibility problems. At
the beginning of the algorithm, the ordinary bottleneck problem is solved. Then, the
minimum cost coefficient of the optimal solution is determined and used as a threshold
value. All cost coefficients smaller than the given threshold value are set to infinity
and the problem is resolved to derive the next larger threshold value. This procedure
is repeated until no further finite solution exists. In addition to this algorithm, the
authors presented an approach that solves the problem in a reverse order: Starting from
a maximal threshold value with respect to the involved cost coefficients, all coefficients
smaller than the threshold value are set to infinity and the bottleneck problem is solved
for the modified costs. If the optimal value of this problem is finite, the resulting
optimal solution is treated as a potential solution candidate for the overall problem.
In each step of the algorithm the threshold value is relaxed to the next smaller value
with respect to the original costs, and its original value is restored. The procedure
stops, when all cost coefficients are updated with their original values.

We further note that a modified version of the algorithm presented in Martello et al.
[127] was used in the book of Burkard et al. [29] to solve the balanced linear assignment
problem.

In addition to the standard problem, Punnen and Nair [177] discussed balanced op-
timization problems with an additional sum constraint. The authors developed an
solution approach that is mainly based on the algorithm presented in [127]. Given the
current search interval, a sum problem is solved instead of a feasibility problem. If
the considered problem is feasible, the resulting optimal solution is discarded if it does
not satisfy the given side constraint. Otherwise it is accepted as potential optimal
solution of the overall problem. Besides the constrained problem, also the biobjective
case as well as a scalarization of both objectives is discussed. Based on the algorithm
described above, a complexity of O(n2T ) is reported for both problems, where T de-
notes the time to solve the sum problem restricted to the current search interval for
the cost coefficients.

Finally, the lexicographic version of Problem (6.6) is considered in Punnen and Aneja
[174]. The authors transform the lexicographic problem into n independent lexico-
graphic bottleneck problems that have to be solved to find the optimal solution of the
overall problem.

We further remark that a continuous version of Problem (6.6) was discussed in Ahuja
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[3]. The author presented a solution approach for the balanced linear programming
problem that uses the relationship between the given balanced optimization prob-
lem and a parametric bottleneck linear programming problem. Different from other
solution approaches that transform the given optimization problem into a standard
LP by means of additional variables and side constraints, an optimal solution for the
balanced optimization problem is derived by solving the associated bottleneck linear
programming problem parametrically.
In the following, we solve Problem (6.6) based on the multiple objective approach
presented at the beginning of Section 6.2. We will see that this approach can be
considered as a generalization of the afore mentioned approaches from the literature.
Let an instance of Problem (6.6) be given. Since −min{c(e) : e ∈ S} = max{−c(e) :
e ∈ S} holds true for all S ∈ X , the associated biobjective combinatorial problem is
given by

min
S∈X

(

max
e∈S
{c(e)}, max

e∈S
{−c(e)}

)⊤

.

According to Section 4.2.2, this problem is a biobjective bottleneck problem, and
Algorithm 4.2 can be used to find an optimal solution for this problem within O(n T B)
time (cf. Theorem 4.3). If a fixed cardinality for all feasible solutions is ensured, i.e.
|S| = m for all S ∈ X , we further deduce from Lemma 5.11 that

max
e∈S
{c(e)} −min

e∈S
{c(e)} = max

e∈S
{c(e)}+ m-max

e∈S
{−c(e)}

also holds true. Hence, in this particular case, also Algorithm 5.2 can be used to solve
Problem (6.6).
Comparing Algorithm 4.2 with the algorithms stated in Martello et al. [127] and Duin
and Volgenant [50], we conclude that both algorithms from the literature are special
versions of the more general solution approaches presented in Section 4.2. From this
section we recall that a complete set of efficient solutions of a biobjective bottleneck
problem can be generated by solving a sequence of ε-constraint problems. Given
two bottleneck objectives this approach implies that each of the involved ε-constraint
problems can be reduced to a single objective unconstrained bottleneck problem based
on an appropriate modification of the involved cost coefficients. While the algorithm
stated in [50] directly exploits this solution approach, the algorithm presented in [127]
rather uses the idea that an optimal solution of a bottleneck problem can alternatively
be calculated by solving a sequence of feasibility problems (cf. also Section 4.2.1).
Hence, especially the algorithm of Duin and Volgenant [50] can be seen as an adapted
version of Algorithm 4.2 that takes advantage of the special structure of the given
combinatorial optimization problem.
We finally discuss a natural generalization of Problem (6.6) and its solution indepen-
dently suggested by Turner [203], where the two bottleneck objectives are replaced by
the corresponding k-max and k-min objectives, not yet treated in the literature. We
assume that |S| ≥ m for all S ∈ X . Furthermore, let k, l ∈ {1, . . . , m}, such that
k -max(S) ≥ l -min(S) holds true for all S ∈ X . Then, we define the (k,l)-balanced
optimization problem by

min
S∈X

[

k -max
e∈S
{c(e)} − l -min

e∈S
{c(e)}

]

. (6.7)
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Obviously, Problem (6.7) generalizes the balanced optimization problem that results
from Problem (6.7) when k = l = 1 is chosen. As a special case of Problem (6.7), the
(k, 1)-balanced spanning tree problem was already discussed Duin and Volgenant [50].
Since − l -min{c(e) : e ∈ S} = l -max{−c(e) : e ∈ S} holds true, Problem (6.7) is a
scalarized version of the associated biobjective k-max optimization problem

min
S∈X

(

k -max
e∈S
{c(e)}, l -max

e∈S
{−c(e)}

)⊤

.

Hence, Algorithm 5.2 can be used to derive an optimal solution for Problem (6.7). In
this case, one of the two k-max objectives has to be chosen as additional objective f .
Since additional side constraints do not influence the validity of Algorithm 5.1 for the
single objective k-max problem, applying the solution approach stated in Section 5.2
results in solving a sequence of binary sum problems with an additional binary con-
straint in each iteration of the algorithm. We summarize our results in the following
theorem.

Theorem 6.9 Let a (k, l)-balanced optimization problem be given. Algorithm 5.2 can
be used to derive an optimal solution for this problem within O(n TK

1 ) of time.

Note that besides Algorithm 5.2, also Algorithm 4.2 can be used to solve Problem (6.7),
for the special case that k = 1. This further holds true, whenever l = 1 and a fixed
cardinality for all feasible solutions is ensured for problem instance under consideration.

Minimum Deviation Problems

Let a ground set E of n different elements, a feasible set X ⊆ P(E) and a scalar cost
function c : E → Z be given. We assume that all sets S ∈ X satisfy a prescribed fixed
cardinality constraint, i.e. |S| = m holds true for all S ∈ X . Then, the minimum
deviation problem is given by

min
S∈X

∑

e∈S

[

max
e∈S
{c(e)} − c(e)

]

= |S| ·max
e∈S
{c(e)} −

∑

e∈S

c(e). (6.8)

Solving Problem (6.8) means to find a feasible solution that minimizes the sum of
deviations of its maximum cost component to all other components of the feasible
solution. Note that Problem (6.8) is closely related to balanced optimization problems.
This can be verified, when the sum of deviations is replaced by the maximum deviation
in the description of Problem (6.8). In this case we have that

max
e∈S

{

max
e∈S
{c(e)} − c(e)

}

= max
e∈S
{c(e)} −min

e∈S
{c(e)}.

Thus, for balanced optimization problems only the absolute deviation of the maximum
cost component from the minimum cost component of a feasible solution is relevant,
whereas for minimum deviation problems the complete sum of deviations has to be
optimized.
Problem (6.8) was firstly treated by Gupta and Punnen [89] in the literature. The
authors presented an threshold approach that solves the given problem withinO(n T S),
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where the related sum problem has to be solved for negative costs. Starting from a
feasible solution S that minimizes the sum of the negative costs of the given instance,
a first threshold value, defined as the maximum cost component of S, is calculated.
Then, all cost coefficients equal or larger than the given threshold value are set to
−∞. In the following, the sum problem is resolved for the modified costs to find a
new solution candidate. Based on this candidate a new threshold value is derived,
the cost coefficients are updated and the sum problem is resolved once more. This
procedure is repeated until the optimal objective value of the sum problem equals
−∞. When this is the case, the procedure stops and the best solution with respect
to the objective function of Problem (6.8) is returned by the algorithm. In addition
to Problem (6.8), also minimum deviation linear programs were considered by the
authors.
Another version of the above described solution approach was given by Duin and
Volgenant [50]. While the algorithm described in [89] solves the problem by setting
more and more cost coefficients equal to infinity, Duin and Volgenant solve the problem
in the reverse order: Given a fixed threshold value, all coefficients smaller than this
value are set to infinity and the minimizer of the sum problem with negative costs
is calculated. In the next iteration, the threshold value is set to the next smaller
cost value and the original values of all coefficients equal to or larger than the new
threshold value are restored. Then, the sum problem is resolved. The procedure
stops when the smallest cost coefficient is reached, and the optimal solution of the
minimum deviation problem is returned by the algorithm. Note that although this
procedure implies that the sum problem has to be solved for all different values of
the cost coefficients involved, the authors reported an improved complexity for the
minimum spanning tree problem as compared to the algorithm stated in [89]. Since
only a small reoptimization of the last optimal spanning tree has to be performed to
derive the optimal tree for the current iteration, the reverse algorithm of Duin and
Volgenant solves the problem within O(mn) time, while the algorithm stated in [89]
takes O(mn2) in general, where n denotes the number of nodes and m the number of
edges of the given graph.
In the following we concentrate on the multiple objective interpretation of Prob-
lem (6.8). By rearranging the summands of the given sum of deviations from the
maximum cost coefficient, we conclude that the given problem is equivalent to

min
S∈X

[

|S| ·max
e∈S
{c(e)}+

∑

e∈S

{−c(e)}
]

.

Hence, an optimal solution of Problem (6.8) must be contained in the efficient set of
the associated biobjective combinatorial problem

min
S∈X

(

max
e∈S
{c(e)},

∑

e∈S

{−c(e)}
)⊤

. (6.9)

Due to the results from Section 4.2.2, we conclude that Algorithm 4.2 can be used
to solve the minimum deviation problem within O(nT S) time, where T S denotes
the time to find the minimizer of the sum problem with negative weights (cf. The-
orem 4.3). Contrary to balanced optimization problems, the two given objectives of
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Problem (6.9) have to be multiplied by different factors to derive an optimal solution
for Problem (6.8). While the value of the sum objective remains unchanged, the bot-
tleneck objective has to be multiplied by a factor |S| (cf. also the general problem
formulation in Section 4.2.2).
Furthermore, comparing Algorithm 4.2 with the algorithms of Gupta and Punnen [89]
and Duin and Volgenant [50], we see that also these two algorithms can be interpreted
as special versions of the approach presented in Section 4.2.2.
We finally remark that the fixed cardinality constraint is essential for the generation
of the optimal solution for Problem (6.8) using the biobjective approach. When the
fixed cardinality constraint is dropped, it may happen that dominated solutions of
Problem (6.9) exist that are optimal for Problem (6.8), as the following example shows.

Example 6.10 Let a minimum deviation problem be given, where E = {e1, . . . , e5}
with c(e1) = 3, c(e2) = 2 and c(e3) = c(e4) = c(e5) = 1. Furthermore, let the only
two feasible solutions be defined by S1 = {e2, e3, e4, e5} and S2 := {e1, e5}. Then, S1

dominates S2 since

max
e∈S1

{c(e)} = 2 < 3 = max
e∈S2

{c(e)} and
∑

e∈S1

{−c(e)} = −5 < −4 =
∑

e∈S2

{−c(e)}.

However, S2 is optimal for Problem (6.8), since

|S2|·max
e∈S2

{c(e)}−
∑

e∈S2

c(e) = 2·3−4 = 2 < 3 = 4·2−5 = |S1|·max
e∈S1

{c(e)}−
∑

e∈S1

c(e).

Nevertheless, a modified version of Algorithm 4.2 can be used to solve the minimum
deviation problem for arbitrary feasible sets X , as long as it is ensured that the con-
strained problem is solved for all possible right hand side values contained in c(E). In
addition, it has to be guaranteed that the optimal solution of the sum problem that
is solved in each iteration of the algorithm, is of minimal cardinality with respect to
the alternative optima of this problem.
Besides to the sum of deviations from the maximum cost component of a feasible
solution, also the sum of deviations from the minimal component can be of interest.
The corresponding optimization problem is formally given by

min
S∈X

∑

e∈S

[

c(e)−min
e∈S
{c(e)}

]

=
∑

e∈S

c(e)− |S| ·min
e∈S
{c(e)}. (6.10)

Since ∑

e∈S

c(e)− |S| ·min
e∈S
{c(e)} =

∑

e∈S

c(e) + |S| ·max
e∈S
{−c(e)},

a biobjective approach, similar to the one stated above can be used to solve the
problem. In this case, Algorithm 4.2 has to be applied to the associated biobjective
bottleneck problem

min
S∈X

(

max
e∈S
{−c(e)},

∑

e∈S

{c(e)}
)⊤

.

We finally discuss a generalized version of the deviation problem, where the sum of
deviations to kth largest cost coefficient has to be minimized. We call this problem
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k-deviation problem which is formally given by

min
S∈X

∑

e∈S

| k -max
e∈S
{c(e)} − c(e)|. (6.11)

Note that the bottleneck-version of this problem was already treated in Punnen and
Aneja [174]. The authors solved the problem based on a simple cost modification
scheme. A time bound of O(n T B) is reported for their algorithm, where TB denotes
the time to solve the bottleneck problem using the modified cost coefficients.
In contrast to Punnen and Aneja [174], we use additional k-max objectives to re-
formulate Problem (6.11), and distinguish the two cases that 2 ≤ k ≤ ⌊m

2
⌋ and

⌊m
2
⌋ < k ≤ m− 1, where ⌊x⌋ = max{n ∈ N : n ≤ x}. Let 2 ≤ k ≤ ⌊m

2
⌋ first. We have

that:
∑

e∈S

| k -max
e∈S
{c(e)} − c(e)| =

=

k−1∑

t=1

(

t-max
e∈S
{c(e)} − k -max

e∈S
{c(e)}

)

+

m∑

t=k

(

k -max
e∈S
{c(e)} − t-max

e∈S
{c(e)}

)

=
k−1∑

t=1

t-max
e∈S
{c(e)} −

m∑

t=k

t-max
e∈S
{c(e)}+ (m− 2k + 2) · k -max

e∈S
{c(e)}

=
∑

e∈S

{−c(e)}+ 2 ·
k−1∑

t=1

t-max
e∈S
{c(e)}+ (m− 2k + 2) · k -max

e∈S
{c(e)}.

Hence, Problem (6.11) can be seen as a scalarized version of the associated (k + 1)-
objective optimization problem

min
S∈X

(
∑

e∈S

{−c(e)}, max
e∈S
{c(e)}, 2 -max

e∈S
{c(e)}, . . . , k -max

e∈S
{c(e)}

)⊤

.

According to the results from Section 5.2, Algorithm 5.2 can be used to derive an
optimal solution for this problem within O(nk T S

k ), where the sum problem has to be
solved for negative costs coefficients. As in the case of the ordinary deviation problem,
the value of the sum objective remains unchanged, while the k-max objectives have to
be multiplied by a factor of 2 and m − 2k + 2, respectively, to determine an optimal
solution for Problem (6.11).
For the second case, let ⌊m

2
⌋ < k ≤ m− 1. We use Lemma 5.11 to deduce that

∑

e∈S

| k -max
e∈S
{c(e)} − c(e)| =

=

k∑

t=1

(

t-max
e∈S
{c(e)} − k -max

e∈S
{c(e)}

)

+

m∑

t=k+1

(

k -max
e∈S
{c(e)} − t-max

e∈S
{c(e)}

)

=

k∑

t=1

t-max
e∈S
{c(e)} −

m∑

t=k+1

t-max
e∈S
{c(e)}+ (2k −m) · k ⋆-max

e∈S
{−c(e)}

=
∑

e∈S

{c(e)}+ 2 ·
m−k∑

t=1

t-max
e∈S
{−c(e)}+ (2k −m) · k ⋆-max

e∈S
{−c(e)},



80 6. Single and Multiple Objective Combinatorial Optimization Problems

where k⋆ = m− k + 1. This is a scalarized version of the associated (k⋆ + 1)-objective
optimization problem

min
S∈X

(
∑

e∈S

{c(e)}, max
e∈S
{−c(e)}, 2 -max

e∈S
{−c(e)}, . . . , k ⋆-max

e∈S
{−c(e)}

)⊤

,

where the optimal solution of this problem can be calculated by applying Algorithm 5.2
within O(nk⋆

T S
k⋆). In this case, the k-max objectives now have to be multiplied by

a factor of 2 and 2k − m, respectively. We summarize our results in the following
theorem.

Theorem 6.11 Let a k-deviation problem be given and let k⋆ = m−k +1. Then, this
problem can be solved by applying Algorithm 5.2 within O(nk T S

k ), if 2 ≤ k ≤ ⌊m
2
⌋,

and within O(nk⋆

T S
k⋆), if ⌊m

2
⌋ < k ≤ m− 1, respectively.

k-sum Optimization Problems

Let a ground set E of n different elements, a feasible set X ⊆ P(E) and a scalar cost
function c : E → Z be given. For each S = {et1 , . . . , et|S|

} ∈ X it is assumed that
c(et1) ≥ . . . ≥ c(et|S|

) holds true. Furthermore, let k ∈ {1, . . . , n} arbitrary but fixed
and set p = min{|S|, k}. Then, the k-sum optimization problem is to minimize the
sum of the p largest cost coefficients contained in a feasible solution and is formally
given by

min
S∈X

p
∑

i=1

c(eti). (6.12)

Note that Problem (6.12) simultaneously generalizes the sum as well the bottleneck
optimization problem. While for k = n an ordinary sum problem has to be solved, a
bottleneck problem is obtained for the choice k = 1.
Gupta and Punnen [90] showed that Problem (6.12) can be solved by a simple cost
modification scheme for the case that all feasible solutions have the same cardinality.
Given the d ≤ n different cost coefficients contained in c(E) in ascending order, the cost
coefficients are replaced by c̃(e) = max{c(ei), c(e)} in the ith iteration of the algorithm,
where i ∈ {1, . . . , d}. Then, the ordinary sum problem is solved for the modified costs
and the optimal solution is stored. After d iterations the best of these stored solutions
with respect to the given objective function is returned by the algorithm, since it can
be proven that this solution represents an optimal solution of Problem (6.12). The
algorithm takes O(nT + n2) time to solve the problem, where T denotes the time to
solve the sum problem for the modified costs. In addition to the k-sum problem, the
authors also considered the k-sum deviation problem. They presented an algorithm
that is based on solving at most n k-sum optimization problems. An overall time
bound of O(n2T ) is reported for this approach, where T is defined as stated above.
In Punnen and Aneja [173], the authors presented an improved version of their al-
gorithm from [90] that can be applied to an arbitrary feasible set X . For their new
approach, the authors assumed that only non-negative cost coefficients are given. Com-
pared to the original version of the algorithm stated in [90], the cost coefficients in the
ith iteration of the algorithm are now replaced by c̃(e) = max{c(e)−c(ei), 0}, while the
rest of the algorithm remains unchanged. Hence, the time bound of O(nT +n2) is also
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valid for the new algorithm. In addition to the improved algorithm, the authors fur-
ther presented a polynomial time ε-approximation scheme for Problem (6.12), based
on the assumption that there exists such an approximation scheme for the ordinary
sum problem of the considered combinatorial optimization problem.

In the following, we discuss the multiple objective interpretation of this problem that
can be used to solve the k-sum optimization problem for an arbitrary cost function
c : E → Z. We assume a minimal cardinality for all feasible solutions, i.e. there exists
m ≥ 1 such that |S| ≥ m for all S ∈ X . Furthermore, let k ∈ {1, . . . , m}. Instead
of sorting the cost coefficients in non-increasing order, we use the k-max objective to
model the problem. Thus, Problem (6.12) is equivalent to

min
S∈X

k∑

t=1

t-max
e∈S
{c(e)}. (6.13)

Hence, Problem (6.13) can be seen as a scalarized version of the associated multiple
objective combinatorial problem

min
S∈X

(

max
e∈S
{c(e)}, 2 -max

e∈S
{c(e)}, · · · , k -max

e∈S
{c(e)}

)⊤

. (6.14)

We distinguish the cases k = 2 and k > 2 in the following. If k = 2, Problem (6.14)
corresponds to a biobjective optimization problem of a bottleneck and a k-max objec-
tive. Hence, Algorithm 4.2 can be used to derive the optimal solution for the k-sum
problem in this case. According to Theorem 4.3 and Theorem 5.3, the resulting al-
gorithm solves the problem within O(n log(n)T ⋆) time. Here, T ⋆ denotes the time
to find the optimal solution of the binary sum problem that results from the k-max
optimization problem that has to be solved in each iteration of the algorithm. For
the case that all cost coefficients are given non-negative, we can compare the multiple
objective approach with the algorithm of Punnen and Aneja stated in [173]. Accord-
ing to the results stated above, we conclude that under the condition that the binary
version (i.e., all costs are in {0, 1}) of the considered combinatorial problem with sum
objective is easier to solve by a factor of O(log(n)) as compared to the general case,
Algorithm 4.2 is as least as good as the algorithm stated in [173] with respect to the
worst case time complexity. If this condition is not satisfied, the algorithm of Punnen
and Aneja should be rather used to solve the given problem for k = 2.

For the case that k > 2, Algorithm 4.2 no longer applies, since more than one k-
max objective has to be considered. However, Algorithm 5.2 can be used to solve the
problem instead. From Theorem 5.9 we recall that this can be done withinO(nk−1TK

k−1)
time. Since exactly one bottleneck and k − 1 k-max objectives are given, either the
bottleneck or one of the k-max objectives can be chosen as objective function for the
ε-constraint problem that has to be solved in each iteration of the algorithm. However,
in both cases Algorithm 4.2 results in a higher order of complexity, compared to the
Algorithm stated in [173]. Hence, the multiple objective approach for k ≥ 2 should be
seen as a generalized approach to model the k-sum problem rather than an efficient
approach to solve the given problem.

For the case that all feasible solutions have the same cardinality m, we further remark
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that we can use Lemma 5.11 to remodel the k-sum objective as

p
∑

i=1

c(eti) =
∑

e∈S

c(e) +
m−k∑

t=1

t-max
e∈S
{−c(e)}.

For the case that k = m−1 this problem simplifies to the minimum deviation problem
(cf. Problem (6.10)) stated in Section 6.2.2. Hence, once more Algorithm 4.2 can be
used to solve the problem. If k < m− 1, Algorithm 5.2 has to be used instead. Note
that in this case, the k-max objectives could also be replaced by the corresponding
k-min objectives, using Lemma 5.11.
For the generalized version of the k-sum optimization problem, let |S| ≥ m for some
m ∈ N and all S ∈ X . Furthermore, let 1 ≤ l ≤ k ≤ m. Applying the notation from
the beginning of this subsection, we can define the (l,k)-sum optimization problem by

min
S∈X

k∑

i=l

c(eti) =

k∑

t=l

t-max
e∈S
{c(e)}. (6.15)

Note that Problem (6.15) have been investigated in the context of location theory. In
this context, Problem (6.15) is also known as (k,l)-trimmed mean problem (cf., e.g.,
Nickel and Puerto [153]). Independently, these special types of problems are discussed
by Turner [204] who introduced the concept of universal combinatorial optimization
problems.
Having a closer look at Problem (6.15), we see that it generalizes several other prob-
lems, already treated in this section. For the choice l = 1, the original k-sum optimiza-
tion problem is obtained. If a fixed cardinality for all feasible solutions is assumed, the
given problem simplifies to the minimum deviation problem if l = 2 and k = m, while
Problem (6.10) is recovered by the choice l = 1 and k = m−1. Hence, Problem (6.15)
simultaneously generalizes both, the k-sum as well as the minimum deviation problem.
Since Problem (6.15) is the algebraic sum of (k − l + 1) k-max objectives, it can be
interpreted as scalarized version of the associated multiple objective problem

min
S∈X

(

l -max
e∈S
{c(e)}, · · · , k -max

e∈S
{c(e)}

)⊤

,

and once more, Algorithm 5.2 can be used to derive an optimal solution of Prob-
lem (6.15). Since (k−l+1) k-max objectives are given, the algorithm takesO(nk−lTK

k−l)
time to solve the problem.

Theorem 6.12 Let an (l,k)-sum optimization problem be given. Then, Algorithm 5.2
can be used to determine an optimal solution for the given problem within O(nk−lTK

k−l)
of time.

If a fixed cardinality for all feasible solutions is assumed, we can use Lemma 5.11 to
remodel the (l,k)-sum optimization problem as

k∑

t=l

t-max
e∈S
{c(e)} =

∑

e∈S

c(e)−
l−1∑

t=1

t-max
e∈S
{c(e)} −

m∑

t=k+1

t-max
e∈S
{c(e)}

=
∑

e∈S

c(e) +

m∑

t=m−l+2

t-max
e∈S
{−c(e)}+

m−k∑

t=1

t-max
e∈S
{−c(e)}. (6.16)
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Optimization Problem Fixed Cardinality Algorithm Complexity

Balanced Opt. Prob. no Algorithm 4.2 O(nT B)

(k,l)-Balanced Opt. Prob. no Algorithm 5.2 O(nTK
1 )

Minimum Deviation Prob. yes Algorithm 4.2 O(nT S)

k-Deviation Prob. yes Algorithm 5.2 O(nkT S
k )

k-Sum Opt. Prob. no Algorithm 5.2 O(nk−1TK
k−1)

(l,k)-Sum Opt. Prob. no Algorithm 5.2 O(nk−lTK
k−l)

Table 6.1: Summary of the treated optimization problems, where T S, TB and TK denote the
time to solve the corresponding sum, bottleneck and k-max optimization problem, respectively.
Subscripts represent the number of additional binary constraints that have to be considered
due to the additional k-max objectives involved.

Also in this case, Algorithm 5.2 solves the problem within O(nsT S
s ) time, where s =

m−k+l−1 and T S
s denotes the time to solve the sum problem for the original costs and

s additional binary constraints. Note that this alternative formulation can especially
be used to reduce the number of objectives. If k − l ≥ ⌈m

2
⌉ holds true, where ⌈m

2
⌉ =

min{n ∈ N : n ≥ x}, the number of objectives for the alternative formulation (6.16)
is at most ⌊m

2
⌋, and hence smaller than for the original formulation (6.15).

We finally remark that due to Lemma 5.11, the k-max objectives used in Prob-
lem (6.16) can be replaced by the corresponding k-min objectives resulting in an
alternative formulation.

Summary of the Results

In this subsection, we summarize and discuss the results that we derived for the combi-
natorial problems treated in the previous subsections. Table 6.1 gives a short overview
of the problems and the results we obtained for the respective multiple objective ap-
proach. Note that specific reformulations of the considered problems that are based
on a fixed cardinality assumption are omitted in the table.
As already discussed in the last subsections, we have seen that many approaches from
the literature that are used to solve the problems listed in Table 6.1 are based on a
similar idea: The given problem is implicitly understood as a scalarized version of a
general multiple objective combinatorial problem. A carefully designed version of an
algorithm that solves the multiple objective problem is used to derive a representative
of a (supported) non-dominated solution that corresponds to an optimal solution of the
scalarized problem. Hence, multiple objective optimization builds a good framework
to understand and solve most of these problems.
However, in general the multiple objective approach does not yield the most efficient
approach to solve Problem (6.3), when the involved objectives are defined based on a
single cost function. As in the case of the k-sum optimization problem, the multiple
objective approach takes in general much more time to solve the problem as compared
to the algorithm presented in Punnen and Aneja [173]. Nevertheless, it is a theo-
retically interesting result illuminating the relation between seemingly different kind
of problems: It is possible to reformulate all the considered problems and their gen-
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eralized versions as a scalarized version of an associated multiple objective problem,
simply using sum, bottleneck and k-max objective functions.

Concerning the complexity of the presented algorithms, we conclude from Table 6.1
that the given combinatorial problems are solvable in a polynomial amount of time,
whenever this holds true for the corresponding sum, bottleneck and k-max subprob-
lems that have to be solved in each iteration of the specific algorithm. Since for some
of the considered problems additional binary constraints have to be taken into account,
it may happen that the resulting constrained problems are harder to solve than their
unconstrained counterparts. Nevertheless, the multiple objective solution approach
has two important advantages: First, the involved side constraints are all of binary
type. We will show in Chapters 9 and 10 that there exist classes of combinatorial
problems that still can be solved in polynomial time although a binary constrained
problem has to be solved. Second, the structure of the involved side constraints does
not change that much during the course of the algorithm. Hence, as especially men-
tioned in Duin and Volgenant [50] for the minimum deviation spanning tree problem,
it may be possible to derive an optimal solution for the current iteration based on
previously calculated solutions. If this is the case, this may result in a decrease of
the complexity for the used solution approach. Thus, the overall complexity may de-
pend, amongst others, on the decision, whether the sequence of constrained problems
is solved from small to large costs or vice versa (cf. also [50]).

6.3 Conclusions and Further Ideas

Based on the ideas developed in Chapter 3, we investigated how multiple objective
solution approaches can be used to solve single objective combinatorial optimization
problems. Especially when a combinatorial problem with a single constraint is given,
we saw that the more general biobjective version of the problem can be used to calcu-
late a good approximation of the optimal solution within the set of supported efficient
solutions. If the unconstrained version of the problem is solvable in polynomial time
and the number of extreme supported efficient solution is polynomially bounded, such
a first approximation can be determined within a polynomial amount of time, too.
However, the quality of this approximation crucially depends on the given problem
instance.

In the second part of this chapter we dealt with combinatorial optimization problems
where the objective is given as the algebraic sum of different types of objective func-
tions. As such problems can be seen as scalarized versions of more general multiple
objective problems, the ideas developed in Section 3.2 especially apply to these special
types of combinatorial problems. Based on the associated multiple objective problem
formulations we showed that many algorithms presented in the literature can be inter-
preted as specially designed versions of more general algorithms that we discussed in
Chapters 4 and 5 for multiple objective optimization problems involving sum, bottle-
neck and k-max objectives. Based on this observation, we further made use of this idea
to derive solution concepts for generalized balanced, minimum deviation and k-sum
optimization problems. We showed that these generalized versions can be solved in a
polynomial amount of time, whenever this holds true for the constrained subproblems
that have to be solved to derive (weakly) efficient solutions of the associated multiple
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objective problem.
We finally remark that we did not focus on any special class of combinatorial opti-
mization problems in this chapter. Hence, especially for the optimization problems
discussed in Section 6.2.2 there may exist improved solution concepts that can be used
to develop appropriate algorithms for special classes of combinatorial problems, like
the assignment, the spanning tree or the shortest path problem. Given a specific class,
future research could focus on specially designed solution concepts for (generalized)
balanced, minimum deviation and k-sum optimization problems that use special prop-
erties of the given class of combinatorial problems. For more details on this topic, we
especially refer to Turner [204] where, amongst others, many of the above stated prob-
lems are discussed in a generalized approach to combinatorial optimization problems.
In addition, also the literature cited in the different sections could be of interest, as
improved versions of the more general algorithms applied to a specific class of combi-
natorial problems were already discussed in several articles.
If a new solution concept is based on a general algorithm presented in Section 6.2.2, it
could be further investigated whether solutions calculated in earlier iterations of the
algorithm can be used to derive an optimal solution for the current iteration. Since
the involved subproblems only change slightly during the course of the algorithm, it
may be possible to decrease the overall time complexity of the algorithm if special
properties of a class of combinatorial problems are used. However, this has to be
tested at the example of well-studied classes of combinatorial problems.





Chapter 7
Connectedness of Efficient Solutions in
Multiple Objective Combinatorial
Optimization

Structural properties of the efficient set of multiple objective combinatorial optimiza-
tion problems (MCOP) play a crucial role for the development of efficient solution
methods. A central question relates to the connectedness of the efficient set with
respect to combinatorially or topologically motivated neighborhood structures. A
positive answer to this question would provide a theoretical justification for the appli-
cation of fast neighborhood search techniques, not only for multiple objective but also
for appropriate formulations of single objective problems (cf. Chapters 3 and 6).

Given a multiple objective combinatorial problem where the single objective counter-
part can be solved in polynomial time, the connectedness of the efficient set would
imply that non-supported non-dominated solutions of the given problem could be
found in a reasonable amount of time, when the two-phase method is applied (cf.
Chapter 4 for further details).

In addition, neighborhood structures are often used in evolutionary approaches for
solving MCOPs (see, e.g., Ghosh and Dehuri [79] for a general survey on evolutionary
solution techniques for MCOPs). In these approaches, new solution candidates are
frequently generated by a mutation of already existing potentially efficient solutions
based on simple exchange operations of involved elements from the ground set. Hence,
the connectedness of the efficient set additionally plays an important role for the
development of efficient heuristics to solve MCOPs.

After reviewing the existing results on the connectedness of the efficient set, we present
two different concepts for defining adjacency of efficient solutions in multiple objective
combinatorial optimization in the following. Based on these two definitions and on al-
ready existing negative results for the connectedness of the efficient set for the multiple
objective minimum spanning tree problem (MSTP) and the multiple objective shortest
path problem (MSPP), we extend these results to most of the classical problems in
combinatorial optimization like the linear assignment problem, the knapsack problem
and the traveling salesman problem, amongst others. We further show that the con-
nectedness property also fails for the weakly efficient set of such problems in general.
In addition, we provide numerical investigations on the frequency of a non-connected
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efficient set for special classes of cardinality constrained knapsack problems.
We recall that in continuous optimization connectedness is defined in a topological
sense. A set S is called topologically connected if there do not exist nonempty open
sets S1 and S2 such that S ⊆ S1 ∪ S2 and S1 ∩ S2 = ∅.
For multiple objective linear programming problems (MLP) the efficient set and the
non-dominated set are topologically connected as shown by Naccache [149] and War-
burton [211], respectively. This definition is not directly applicable in combinatorial
optimization due to the discrete structure of the efficient set. Instead of the topological
connectedness, a graph theoretical definition can be used for MCOPs as described, for
example, in Ehrgott and Klamroth [58] and Paquete and Stützle [161].

Definition 7.1 For a given MCOP the adjacency graph of efficient solutions G =
(V,A) of the MCOP is defined as follows: V consists of all efficient solutions of the
given MCOP. An (undirected) edge is introduced between all pairs of nodes which are
adjacent with respect to the considered definition of adjacency for the given MCOP.
These edges form the set A.

The connectedness of the efficient set XE is now defined via the connectedness of an
undirected graph. We recall that an undirected graph G is said to be connected if
every pair of nodes is connected by a path.

Definition 7.2 The set XE of all efficient solutions of a given MCOP is said to be
connected if its corresponding adjacency graph G is connected.

Since for MCOPs the adjacency of two efficient solutions x and x′ can usually be
expressed by an application of some elementary move (i.e., x can be obtained from x′

by applying exactly one move), a neighborhood concept is introduced to the problem.
An efficient solution x′ is contained in the k-neighborhood of an efficient solution x if
x′ is reachable from x by applying at most k elementary moves. The minimum number
of elementary moves needed to get from x to x′ is called the distance between these
two solutions. Using this concept, the definition of the adjacency graph can be further
extended.

Definition 7.3 The weighted adjacency graph G′ = (V ′,A′) of efficient solutions is
defined as follows: G′ is a complete and undirected graph. Its set of nodes V ′ consists
of all efficient solutions of the given MCOP. The weight wij of an edge between two
nodes vi, vj ∈ V ′ is given by the distance between these two nodes with respect to the
considered neighborhood.

For each k ∈ N a subgraph G′k can be extracted from G′ that contains all the nodes
of G′ but only those edges which have a weight less or equal to k. Since G = G′1,
XE is connected if and only if G′1 is connected. If XE is not connected, the graph G′1
decomposes into at least two connected subgraphs which build a partition of G′1. More
generally we define:

Definition 7.4 A component or a cluster of efficient solutions at distance k is a
maximally connected subgraph of G′k.
If G′k is a connected graph, there exists exactly one component which is equal to G′k.
Otherwise, the set of all components build a partition of G′k.
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The literature on the connectedness of the set of efficient solutions in multiple objective
optimization is scarce. The first publications appeared in the seventies together with
the development of the multiple objective simplex method. In his fundamental work,
Isermann [109] showed that the set of basic feasible and fundamental solutions of MLPs
are connected and, thus, established the correctness of multiple objective simplex
methods. Two solutions of an MLP are said to be adjacent in the sense of Isermann
[109] if they have m−1 basic variables in common, where m denotes the length of the
basis. Naccache [149] established connectivity for more general problems with closed,
convex and K-compact objective spaces where K is a closed, convex and pointed cone.
Helbig [101] generalized this to locally convex spaces.

Lately, research on the connectedness of efficient solutions of MCOPs was coined by
assertions and falsifications. Martins [128] claimed that there always exists a sequence
of adjacent efficient paths connecting two arbitrary efficient paths for MSPP. How-
ever, Ehrgott and Klamroth [58] demonstrated the incorrectness of the connectedness
conjecture for MSPP and MSTP by a counter-example and, thus, disproved Martins
[128]. Ehrgott and Klamroth [58] showed that any graph can be extended in such a
way that the adjacency graph (of MSPP and MSTP) for the problem on the extended
graph is not connected. They conjectured that in practice, it is rather unlikely that the
adjacency graph of a specific MSTP is not connected. However, their numerical tests
included only 50 randomly generated graphs with a rather small number of nodes.

In Przybylski et al. [168], the example of Ehrgott and Klamroth [58] was used to show
the incorrectness of the algorithm of Sedeño-Noda and González-Mart́ın [190]. The
latter tried to find all efficient flows of a biobjective integer flow problem by a method
based on simplex pivots.

O’Sullivan and Walker [155] proposed two algorithms for the equally-weighted biob-
jective knapsack problem to determine the complete set of efficient solutions. Whether
the complete set can be generated, depends on “unproven characteristics of efficient
knapsacks” - the connectedness of the set of efficient solutions for this problem.

In da Silva et al. [43], the geometrical configuration of the non-dominated set for three
different models of the biobjective binary knapsack problem was discussed. Under a
cardinality constraint and the supplementary assumption that the sum of each pair of
the objective coefficients is constant, it was shown that the set of all efficient solutions
is connected. In this case, the non-dominated set consists of a line segment with slope
−1. An LP-based approach is used to define adjacency of two efficient solutions.

Gorski [83] recognized that the definition of adjacency is not canonical. One could
think of structural, problem-dependent definitions or of LP-based, problem indepen-
dent definitions. Based on ideas mentioned in Ehrgott and Klamroth [58], he aimed
at a formal definition of adjacency.

The numerical study of Paquete et al. [158] investigates the number of clusters of
near efficient solutions obtained with some local search algorithms for the multiple
objective traveling salesman problem. In Paquete and Stützle [161] statistics on the
clusters of near efficient solutions for the biobjective travelling salesman problem and
the biobjective quadratic assignment problem are reported. A stochastic local search
method was employed to retrieve the near optimal solutions. It should be pointed out
that neither the solutions obtained are guaranteed to be efficient, nor that all efficient
solutions are found by the local search method. Thus, the focus of this study is on the
performance assessment of local search for the two MCOPs mentioned.
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Some comments on the connectedness of efficient solutions for biobjective multimodal
assignment problems are also contained but not further perused in Pedersen [163].
Lust and Teghem [126] presented a two-phase Pareto local search method (cf. also
Paquete et al. [158]) that is based on a neighborhood search technique to find a good
approximation of the efficient set of the biobjective traveling salesman problem.
Finally, Ruzika [184] discussed a branch & bound approach for solving weight con-
strained shortest path and spanning tree problems, respectively. In the presented ap-
proach, the author made use of the connectedness of the supported efficient solutions
of the associated biobjective combinatorial problems to derive an efficient branching
rule for the specific problems.
While we focus on MCOPs with sum objectives in this chapter, the connectedness of
the efficient set for general MCOPs with bottleneck objectives is discussed in Chap-
ter 8.
The remainder of this chapter is organized as follows. In Section 7.1, we discuss differ-
ent definitions of adjacency of feasible solutions of a MCOP. We show that adjacency
may be defined based on appropriate IP-formulations of a given problem and using
the natural neighborhood of basic feasible solutions of linear programming. For many
concrete problems, however, it appears to be more convenient to consider a combi-
natorial neighborhood. In Section 7.2 we discuss and extend existing results for the
MSPP and the MSTP and present new connectedness results for other major classes of
MCOPs like the multiple objective knapsack problem (MOKP), the multiple objective
assignment problem (MOAP) and the multiple objective traveling salesman problem
(MTSP), amongst others. We report numerical tests on adjacency of efficient solu-
tions for the binary MOKP with bounded cardinalities and the binary multiple choice
MOKP in Section 7.3. Finally, we conclude in Section 7.4 with current and future
research ideas.
We further remark that the main results of this chapter are published as a technical
report (cf. Gorski et al. [84, 85]) and in Ruzika [184].

7.1 Categorizing Different Concepts of Adjacency

We distinguish between two essentially different concepts of adjacency of efficient so-
lutions:

• The adjacency of two efficient solutions is defined via the adjacency of basic
feasible solutions of an appropriate model of the MCOP as a multiple objective
integer linear programming problem (MILP), and its LP relaxation.

• The definition of adjacency is adapted to the special combinatorial structure of
the given MCOP.

While the latter concept has received some attention in the recent literature, for exam-
ple, in the context of neighborhood search algorithms (see, for example, Paquete and
Stützle [161]), the former has only been used so far for special types of MCOPs (cf.
Ehrgott and Klamroth [58], for the MSPP and the MSTP and da Silva et al. [43] for
binary knapsack problems). Subsequently, we formalize these two different concepts
of adjacency.
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7.1.1 MILP-based Definition of Adjacency and Appropriate
MILP Models

For the MILP-based definition, we assume that the MCOP can be formulated as a
combinatorial optimization problem with sum type objective functions as specified in
Definition 7.5 below.

Definition 7.5 Let E := {e1, . . . , en} be a nonempty finite set, let c = (c1, . . . , cp) :
E → Zp, p > 1, consists of p integer-valued weighting functions on the elements of E ,
and let X ⊆ P(E) be a subset of the powerset of E . A multiple objective combinatorial
sum problem is a problem of the form

min
(∑

e∈S c1(e), . . . ,
∑

e∈S cp(e)
)⊤

s.t. S ∈ X .
(7.1)

An instance of this problem is denoted by (E ,X , c).

In most cases, the feasible set X is not arbitrary but introduces a certain structure to
the problem. As it is well-known, every feasible solution S ∈ X of a MCOP (7.1) can
be identified with a binary vector x ∈ {0, 1}n by setting

xi :=

{

1 if ei ∈ S

0 otherwise.
(7.2)

The weight
∑

e∈S c(e) of a solution S and of its binary representation x can be
computed as Cx using an appropriate objective matrix C ∈ Zp×n with components
cij := ci(ej) for i = 1, . . . , p and j = 1 . . . , n (cf., e.g., Ehrgott [54]).

Theorem 7.6 Every multiple objective combinatorial sum problem (7.1) can be mod-
eled as an MILP of the form

min {Cx : Ax ≦ b, x ∈ {0, 1}n},

using variables x as defined in (7.2) and with an appropriate constraint matrix A ∈
Zm×n and right hand side vector b ∈ Zm, such that there is a one-to-one correspondence
between all feasible (and particularly all efficient) solutions of the two problems.

A proof of this observation can be found, for example, in Ehrgott [54]. We refer to a
formulation of a MCOP according to Theorem 7.6 as a canonical MILP formulation
of the MCOP. Note that a canonical MILP formulation is in general not unique. For
the sake of simplicity we assume in the following that a canonical MILP formulation
is given. This is, however, not a necessary assumption for our analysis. Namely,
instead of a canonical MILP formulation we may consider any MILP formulation of
the problem that satisfies the conditions of Definition 7.8 below, i.e., there is a one-
to-one correspondence between the feasible solutions of the MCOP and the extreme
points of the LP relaxation of the MILP.
Denote by U := {x ∈ {0, 1}n : Ax ≦ b}, P := {x ∈ [0, 1]n : Ax ≦ b} and P ∗ := {x ∈
Rn : x ∈ conv(U)} the feasible set of a canonical MILP formulation, the feasible set
of the LP relaxation of the MILP and the convex hull of all feasible solutions of the
MILP, respectively.
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Definition 7.7 If the polytope P of the LP relaxation of a canonical MILP formula-
tion coincides with the polytope P ∗, we say that min {Cx : Ax ≦ b, x ∈ {0, 1}n} is an
exact MILP formulation of the given MCOP.

In order to use an LP-based definition of adjacency, a one-to-one correspondence be-
tween feasible solutions of the MCOP and basic feasible solutions of the LP relaxation
of the corresponding MILP formulation is indispensable. Therefore, we restrict our
analysis to exact MILP formulations of a given MCOP. Note that otherwise there may
exist basic feasible solutions of the LP relaxation of the (non-exact) MILP formulation
that are not integer and that do not correspond to feasible solutions of the MCOP.
On the other hand, every feasible solution of the MCOP must correspond not only to
a feasible solution of its (exact) MILP formulation, but to a basic feasible (or extreme
point) solution of the LP relaxation of the MILP.

Definition 7.8 An MILP formulation of a given MCOP is called appropriate if it
satisfies the following two conditions:

• The MILP formulation is exact, i.e., P = P ∗.

• Every feasible solution of the MILP is an extreme point of P ∗.

Polyhedral theory can be used to show that for every MCOP at least one appropriate
MILP formulation exists.

Lemma 7.9 There exists at least one appropriate MILP formulation for every in-
stance (E ,X , c) of a MCOP.

Proof: Suppose that an arbitrary instance (E ,X , c) of a MCOP is given, let U denote
the set of all feasible binary vectors for the canonical formulation of the MCOP (cf.
Theorem 7.6), and let P ∗ denote the convex hull of U . Then an exact formulation of
the problem is given by

min {Cx : x ∈ U}. (7.3)

Since all vectors x ∈ U are binary, they are essential for the generation of the convex
hull P ∗ of U . Hence, problem (7.3) is equivalent to

min {Cx : x ∈ P ∗, x ∈ {0, 1}n}, (7.4)

and every feasible solution of this problem is an extreme point of P ∗. Moreover,
since all feasible vectors x ∈ U are essential for the generation of P ∗, there exists
a description of P ∗ by means of a finite set of linear inequalities of the form P ∗ =
{x ∈ Rn : Ãx ≦ b̃} with appropriate rational Ã ∈ Qm̃×n and b ∈ Zm̃ (see, for
example, Nemhauser and Wolsey [150]), yielding an appropriate MILP formulation
for problem (7.4) and hence for the MCOP. �

Note that the polytope P ∗ of an appropriate MILP formulation of MCOP does not
contain any integer points in its interior nor in the interior of any of its faces.
The following two properties can be derived for an appropriate MILP formulation of
a MCOP which will be used later for the LP-based definition of adjacency.

Lemma 7.10 If an MILP formulation of a MCOP is appropriate, then its LP relax-
ation, after transformation into standard form, has the following two properties:
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Figure 7.1: Definition of adjacency via an appropriate MILP formulation.

(M1) Every basic feasible solution corresponds to a feasible solution of the MCOP.

(M2) For every feasible solution of the MCOP there exists at least one basis such that
the solution of the MCOP is equal to the corresponding basic feasible solution of
the above LP relaxation of the MILP in standard form.

Proof: Follows immediately from the analysis above and from polyhedral theory. �

Lemma 7.11 Suppose that a MCOP is given by an (arbitrary binary) MILP formu-
lation. If the LP relaxation of the MILP, after transformation into standard form,
satisfies (M1) and (M2), then the MILP is an appropriate formulation of the MCOP.

Proof: Let the MILP formulation of the MCOP be given as min{Cx : Ax ≦ b, x ∈
{0, 1}n} and let U , P and P ∗ be defined as above. Furthermore, let Up denote the
finite set of all extreme points of P . Since we assumed that the MCOP is finite and
E 6= ∅, P is bounded and hence P = conv{up ∈ Up}.
First, we show that P = P ∗. By construction we have that P ∗ ⊆ P . To show that
also P ⊆ P ∗ suppose that, to the contrary, there exists an extreme point x0 ∈ Up ⊆ P
that is not contained in P ∗. Since x0 ∈ P , x0 satisfies Ax0 ≦ b and x0 ∈ [0, 1]n.
Furthermore, since x0 is an extreme point of P there exists a basic feasible solution of
the LP relaxation of the MILP (after transformation into standard form) corresponding
to x0. Hence, x0 ∈ {0, 1}n by (M1) and therefore x0 ∈ U , contradicting the assumption
that x0 6∈ P ∗.

Since (M2) and Theorem 7.6 imply that there is a one-to-one correspondence between
feasible solutions u of the MILP and feasible solution S ∈ X of the MCOP, the MILP
is indeed an appropriate formulation of the MCOP. �

Since the two properties (M1) and (M2) characterize appropriate MILP formulations
of MCOPs, they can be used for the definition of an LP-based concept of adjacency
for these problems. Figure 7.1 illustrates this idea. In this context, two bases of an
LP are called adjacent if they can be obtained from each other by one single pivot
operation.
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Definition 7.12 Let an appropriate MILP formulation of a MCOP be given. Two
feasible solutions x1 and x2 of the MCOP are called adjacent with respect to the given
MILP formulation if there exist two adjacent bases of the LP relaxation of the MILP
(after transformation into standard form) corresponding to x1 and x2, respectively.

Since by MLP theory all bases that represent efficient solutions of the LP relaxation
of the MILP in standard form are connected (see, for example, Ehrgott [54]), the
resulting adjacency graph always contains a connected subgraph representing these
solutions. Note that these solutions are always supported efficient solutions of the
MCOP.

The above definition of adjacency (and hence the resulting adjacency graph) depends
on the chosen appropriate MILP formulation of the given MCOP, which is in gen-
eral not unique. If different appropriate MILP formulations are used to model the
same MCOP, we can expect different results concerning the connectedness of efficient
solutions of the problem. In this context, Definitions 7.1 and 7.2 must always be
understood with respect to the chosen appropriate MILP formulation of a MCOP.

Note also that, using the above definitions of adjacency and connectedness, polyhedral
theory implies that the set of optimal solutions of a single objective combinatorial
optimization problem is always connected (or even unique). Therefore, the question
whether the corresponding multiple objective optimization problems have a connected
adjacency graph is in general non-trivial.

The following well-known fact from polyhedral theory shows that the last step in
Figure 7.1, i.e., the transformation of the LP relaxation of the MILP into standard
form, can as well be omitted in the definition of adjacency (Definition 7.12) since the
considered MILPs are always bounded problems.

Theorem 7.13 Let P = {x ∈ [0, 1]n : Ax ≦ b} be the feasible set of an LP and let Pst

denote the polyhedron obtained from P after transformation into standard from. Then
two extreme points of P are connected by an edge in P if and only if the corresponding
extreme points of Pst are connected by an edge in Pst.

7.1.2 Combinatorial Definitions of Adjacency

Combinatorial definitions of adjacency are usually based on simple operations that
transform one feasible solution of a specific problem class into another, “adjacent”
feasible solution. We call such operations (elementary) moves. An elementary move is
called efficient if it leads from one efficient solution of the problem to another efficient
solution. Two efficient solutions are called adjacent if one can be obtained from the
other by one efficient move.

Examples for elementary moves for specific problem classes are the insertion and dele-
tion of edges in a spanning tree, the modification of a matching along an alternating
cycle, or simply the swap of two bits in a binary solution vector. In single objective
optimization such elementary moves are frequently used in exact algorithms (e.g., the
negative dicycle algorithm for the minimum cost flow problem) as well as in heuris-
tic algorithms (e.g., the two-exchange heuristic for the TSP). Note that for specific
problem classes, a combinatorial definition of adjacency may in fact coincide with an
MILP-based definition of adjacency as discussed in Section 7.1.1.
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While for the MILP-based definition of adjacency the set of optimal solutions of the
single objective problem corresponding to a given MCOP is always connected in the
sense of Definition 7.1, this is not necessarily true for combinatorial definitions of
adjacency.
We call an elementary move for a given problem class canonical if the set of optimal
solutions of the corresponding single objective problem is connected for all problem in-
stances. Although non-canonical moves immediately imply non-connectedness results
also in the multiple objective case, such extensions may be used for the development
of heuristic methods based on neighborhood search (see, for example, Paquete and
Stützle [161]).
For some classes of combinatorial problems, an elementary move corresponds to a
move from one extreme point to another adjacent extreme point along an edge of
the polytope which is obtained by the LP relaxation of an MILP formulation of the
given combinatorial problem (cf. Definition 7.12). If the given MILP formulation is
appropriate in the sense of Definition 7.8, the corresponding elementary move is always
canonical. As an immediate consequence of Theorem 7.13, we finally state:

Theorem 7.14 Let a move-operation introduce a combinatorial definition of adja-
cency for a class of MCOPs for which also an appropriate MILP formulation exists,
and let P denote the polytope of its LP relaxation. If there is a one-to-one correspon-
dence between the set of all possible elementary moves between feasible solutions of
the MCOP and the edge-structure of P , i.e., solution x1 can be obtained from x2 by
an elementary move if and only if the x1, x2-corresponding extreme points of P are
connected by an edge in P , then the resulting adjacency graphs for the combinatorial
definition and the MILP-based definition of adjacency coincide.

7.2 Connectedness Results for Specific Combina-

torial Optimization Problems

In this section, adjacency of efficient solutions is comprehensively investigated for
various combinatorial optimization problems. Due to intended clarity and legibility,
each of these fundamental problems is treated in a separate paragraph. Each paragraph
contains - to the best of our knowledge - all results available in the literature. The
more significant part of this section yet contains two major components.
First, we investigate the question of adjacency of the graph of efficient solutions for
problems which have not been treated in the literature so far. Second, the concept
of adjacency of the graph of efficient solutions is extended and structural properties
of this graph, and its extensions are investigated. The latter is done exemplarily for
MSPP. Treating all of the combinatorial optimization problems in this section likewise
certainly goes beyond the scope of this thesis. Nevertheless, it should be emphasized
that analogous results can be achieved for other problems utilizing similar techniques.

7.2.1 Shortest Path Problems

Let G = (V, A) be a directed graph with source node s and sink node t. The multiple
objective shortest path problem (MSPP) can be formulated as
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Figure 7.2: Digraph from Ehrgott and Klamroth [58].

min(c1x, . . . , cpx)T

s.t.
n∑

j=1

xij −
n∑

j=1

xji =







1, if i = s

0, if i ∈ {1, . . . , n} \ {s, t}
−1, if i = t.

xij ∈ {0, 1}, ∀a = (i, j) ∈ A,

(7.5)

where the vectors c1, . . . , cp are assumed to be non-negative. Ehrgott and Klamroth
[58] called two efficient paths adjacent if they correspond to two adjacent basic feasible
solutions of the linear program (7.5). Gorski [83] showed that this LP formulation is
appropriate in the sense of Definition 7.8. Furthermore, in Ehrgott and Klamroth [58]
it is shown that every given graph G = (V, A) with cost vectors c1, . . . , cp : A → R+

can be extended in such a way that the adjacency graph of the MSPP on the extended
graph is not connected.
For this problem, a combinatorial definition of adjacency can be derived which is
equivalent to the MILP-based definition. Paths are associated with flows and the
residual flow of two paths is used to decide whether they are adjacent. A shortest
path P1 is adjacent to a shortest path P2 if the symmetric difference of their edge set
in the residual graph corresponds to a single cycle. Note that these definitions are
canonical extensions of the single objective case in the sense of Section 7.1.2.
In Figure 7.2 the digraph used in Ehrgott and Klamroth [58] is depicted. All efficient
paths are listed in Table 7.1 together with their cost values. It is easy to verify that P8

is not connected to any other efficient path. The adjacency graph has two connected
components, {P8} being a singleton and {Pi : 1 ≤ i ≤ 12, i 6= 8}. This implies the
following result.

Theorem 7.15 (Ehrgott and Klamroth [58]) The adjacency graphs of efficient
shortest paths are non-connected in general.

In the example of Ehrgott and Klamroth [58] the set of weakly efficient solutions
is connected. Consequently, an extension of the adjacency graph to weakly efficient
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Efficient Path Interm. Nodes Objective Vector

P1 s13 s22 s31 (1, 28)

P2 s13 s22 s33 (2, 24)

P3 s13 s23 s31 (8, 22)

P4 s13 s23 s33 (9, 18)

P5 s13 s21 s33 (12, 17)

P6 s11 s23 s33 (17, 16)

P7 s11 s21 s33 (20, 15)

P8 s12 s22 s32 (27, 14)

P9 s13 s23 s32 (28, 9)

P10 s13 s21 s32 (31, 8)

P11 s11 s23 s32 (36, 7)

P12 s11 s21 s32 (39, 6)

Table 7.1: All efficient paths of the graph depicted in Figure 7.2 from Ehrgott and Klamroth
[58]. Edges of paths which are common with the edges of P8 are marked with a box.

solutions may lead to a universally valid positive result concerning the connectedness
of the weakly efficient set for these special type of combinatorial problem. However,
a slight modification of the previous example, depicted in Figure 7.3, proves that this
extension also does not result in a connected adjacency graph in general. The resulting
efficient spanning trees are depicted in Figure 7.4. We state:

Theorem 7.16 The adjacency graphs of weakly efficient shortest paths are non-
connected in general.

In all examples so far, only two connected components of the adjacency graphs exist.
One of them consists of a single element, while the second comprises all other (weakly)
efficient solutions. Yet in general, we can derive the following structural property.

Theorem 7.17 In general, the number of connected components and the cardinality
of the components are exponentially large in the size of the input data.

Proof: Suppose we have k copies of the graph shown in Figure 7.3. The cost vectors of
copy k are multiplied by the factor 100k. These k copies are connected sequentially by
connecting node s4 of copy i, i = 1, . . . , k−1, with node s1 of copy i+1 using an edge
with costs (0, 0). The resulting adjacency graph has (19 · k− 1) edges and 2k different
connected components. The largest component subsumes 11k efficient solutions, the
second largest 11k−1 efficient solutions, and so on. �

Note that Ruzika [184] developed an efficient branch & bound algorithm for the weight
constrained shortest path problem that is based on the connectedness of the supported
efficient solutions of the associated biobjective problem formulation (cf. also Chapter 6
for this concept).
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Figure 7.3: Modified digraph from Ehrgott and Klamroth [58].

7.2.2 Minimum Spanning Tree Problems

Let G = (V, A) be an undirected graph with |V | = n nodes, and denote by A(S) :=
{a = [i, j] ∈ A : i, j ∈ S} the subset of edges in the subgraph of G induced by S ⊆ V .
The multiple objective spanning tree problem (MSTP) can be formulated as

min(c1x, . . . , cpx)T

s.t.
∑

a∈A

xa = n− 1

∑

a∈A(S)

xa ≤ |S| − 1 ∀S ⊆ V

xa ∈ {0, 1}.

(7.6)

In Ehrgott and Klamroth [58] a combinatorial definition of adjacency for efficient
spanning trees was considered. Two spanning trees are said to be adjacent if they have
n−2 edges in common. Non-connectivity of the adjacency graph was proven once more
by means of the graph from Figure 7.2, as there exists a one-to-one correspondence
between efficient shortest paths and efficient spanning trees of this specific problem.
It was also shown that every given graph can be extended in such a way that the
adjacency graph for the multiple objective spanning tree problem in the new graph is
non-connected. Gorski [83] showed that the MILP formulation (7.6) is appropriate in
the sense of Definition 7.8. The counter-example of Ehrgott and Klamroth [58] was
used to prove that the adjacency graph of MSTP is also non-connected in this case.

Since there is a one-to-one correspondence between the efficient shortest paths and
efficient spanning trees for the example given in Theorem 7.16 (see Figure 7.3), the
above results can be generalized similar to Theorem 7.17, using the same extensions
of the original example:

Corollary 7.18 The adjacency graph of (weakly) efficient spanning trees is in general
non-connected. Its number of connected components and the number of nodes in these
components can be exponentially large in the size of the input data.
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Figure 7.4: All efficient shortest paths for the example shown in Figure 7.3 and their
objective vectors.
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Note that for the spanning tree problem there exists a subclass of problems where the
adjacency graph for both the combinatorial and the MILP-based definition of adja-
cency is always connected. This subclass is the set of all graphs which contain exactly
one cycle. In addition, Ruzika [184] used the connectedness of the supported efficient
spanning trees to derive an efficient branch & bound scheme for solving the weight con-
strained minimum spanning tree problem based on the associated biobjective problem
formulation (cf. also Chapter 6 for this concept).
Moreover, we refer to Chapter 10, where, amongst others, the biobjective spanning
tree problem with a binary cost objective is discussed. We prove that the set of efficient
solutions for this specific problem is always connected with respect to the above stated
combinatorial definition of adjacency (cf. Corollary 10.15).

7.2.3 Minimum Cost Flow Problems

Let G = (V, A) be a directed graph with capacities uij ≥ 0 for every edge (i, j) ∈ A
and supply / demand values bi for every node i ∈ V . The multiple objective minimum
cost flow problem (MCFP) can be formulated as

min(c1x, . . . , cpx)T

s.t.
∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji = bi ∀ i ∈ N

0 ≤ xij ≤ uij ∀ (i, j) ∈ A.

(7.7)

For the MCFP two efficient solutions are said to be adjacent if there exists a pivot
operation between two bases corresponding to these solutions or, equivalently, if two
spanning trees representing the solutions exist which differ by one edge only. This
definition of adjacency is an extension of the definition for the shortest path problem
and the spanning tree problem. Using the counter-example of Ehrgott and Klamroth
[58] and arguing that the shortest path problem is a particular case of the minimum
cost flow problem, Przybylski et al. [168] conclude that the adjacency graph of the
minimum cost flow problem is not connected in general.

7.2.4 Optimization Problems on Matroids

A natural, combinatorial definition of adjacency for matroids is to call two solutions
(consisting of n elements each) adjacent if they have n − 1 elements in common.
Since the MSTP is an example for a multiple objective minimization problem on a
matroid for which we have shown non-connectedness with respect to this definition of
adjacency in Section 7.2.1, we can conclude that the adjacency graph of such problems
is in general non-connected.
However, we prove in Chapter 10 that the efficient set of the biobjective matroid
problem with an arbitrary and a binary sum objective is always connected, based on
a combinatorial definition of adjacency (cf. Corollary 10.15).

7.2.5 Binary Knapsack Problems

For the binary knapsack problem some results concerning the connectedness of the set
of efficient solutions can be found in the recent literature. In da Silva et al. [43], three
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different models of binary knapsack problems were studied and some connectedness
results using an MILP-based definition of adjacency were presented for very specific
problem classes. O’Sullivan and Walker [155] proposed two algorithms for the equally-
weighted biobjective knapsack problem using a combinatorial definition of adjacency.
These algorithms are only guaranteed to find the set of all efficient solutions under
the assumption that this set is connected. We review the ideas of these two papers
and show that the set of efficient solutions is in general non-connected neither in the
sense of adjacency in da Silva et al. [43] nor in the sense of adjacency in O’Sullivan
and Walker [155].

We consider a special class of binary knapsack problems with equal weights and
bounded cardinality, i.e.,

max (c1x, c2x)T

s.t.
n∑

i=1

xi = k

xi ∈ {0, 1} i = 1 . . . , n,

(7.8)

where cj
i ≥ 0 represents the value of item i on criterion j, k ∈ N with k ≤ n denotes

the number of items that can be selected, and variables xi = 1 if and only if item
i is included in the knapsack. Let KP (n, k) denote an instance of Problem (7.8).
Obviously, this problem has

(
n

k

)
feasible solutions. As mentioned in da Silva et al.

[43],Problem (7.8) can be relaxed to the case that at most k items have to be chosen.
Since all item values are non-negative, every efficient solution will have maximum
cardinality.

We start our analysis with a combinatorial definition of adjacency which is also used
in O’Sullivan and Walker [155].

Definition 7.19 Two efficient knapsacks x = (x1, . . . , xn)T and x′ = (x′
1, . . . , x

′
n)T of

KP (n, k) are called adjacent if x′ can be obtained from x by replacing one item in x
with one item of x′ which is not contained in x.

Note that this elementary move is canonical. Two efficient knapsacks x and x′ are

adjacent if and only if
n∑

i=1

|xi − x′
i|=2, i.e. if their Hamming distance is 2. For n ∈

{1, 2, 3, 4} or k ∈ {0, 1, n − 1, n} it is easy to see that KP (n, k) has a connected
adjacency graph.

Lemma 7.20 The adjacency graph of KP (n, k) is connected for n ∈ {1, 2, 3, 4} or
k ∈ {0, 1, n− 1, n}.

In da Silva et al. [43] another sufficient condition yielding a connected adjacency graph
is specified.

Theorem 7.21 (da Silva et al. [43]) Let an instance KP (n, k) be given such that
c1
i + c2

i = α for all i = 1, . . . , n and for some α ∈ N. Then all
(

n

k

)
feasible solutions are

efficient solutions of (7.8) and hence, the adjacency graph of the problem is connected.

Unfortunately, this connectedness result is no longer valid for the general case.
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Figure 7.5: Image of the feasible set of the counter-example used in the proof of Theo-
rem 7.22. The non-dominated set consists of two connected components, one indicated by
circles, the other - a singleton - indicated by a diamond.

Theorem 7.22 The adjacency graph of a binary knapsack problem of the form (7.8)
with adjacency defined as in Definition 7.19 is non-connected in general.

Proof: Consider KP (9, 3) with the objective function vectors

(
c1

c2

)

=

(

44 36 27 10 8 5 3 1 0

0 8 9 21 23 29 31 32 34

)

.

The problem has 84 feasible and 38 efficient solutions (cf. Figure 7.5). All efficient
solutions S1, . . . , S38 and their corresponding objective function vectors are listed in
Table 7.2. Using the plotted boxes it is easy to verify that the efficient solution S11 is
not adjacent to any other solution in the sense of Definition 7.19. Consequently, the
adjacency graph of the given problem which can be seen in Figure 7.6 is non-connected.
�

Note that the given counter-example in Theorem 7.22 is minimal in the sense that
deleting any combination of profit vectors from the problem always leads to a connected
adjacency graph, assuming that k = 3. We conclude:

Corollary 7.23 The algorithms proposed by O’Sullivan and Walker [155] for solving
the binary knapsack problem with equal weights and bounded cardinality fail to compute
the set of efficient solutions in general.
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C x x S

4 97 0 0 0 0 0 0 1 1 1 S1

6 95 0 0 0 0 0 1 0 1 1 S2

8 94 0 0 0 0 0 1 1 0 1 S3

9 92 0 0 0 0 0 1 1 1 0 S4

11 88 0 0 0 0 1 0 1 0 1 S5

13 86 0 0 0 1 0 0 1 0 1 S6

13 86 0 0 0 0 1 1 0 0 1 S7

15 84 0 0 0 1 0 1 0 0 1 S8

16 83 0 0 0 0 1 1 1 0 0 S9

18 81 0 0 0 1 0 1 1 0 0 S10

19 76 0 0 0 1 1 0 0 1 0 S11

28 75 0 0 1 0 0 0 0 1 1 S12

37 74 0 1 0 0 0 0 0 1 1 S13

39 73 0 1 0 0 0 0 1 0 1 S14

41 71 0 1 0 0 0 1 0 0 1 S15

42 69 0 1 0 0 0 1 0 1 0 S16

44 68 0 1 0 0 0 1 1 0 0 S17

45 66 1 0 0 0 0 0 0 1 1 S18

47 65 1 0 0 0 0 0 1 0 1 S19

49 63 1 0 0 0 0 1 0 0 1 S20

50 61 1 0 0 0 0 1 0 1 0 S21

52 60 1 0 0 0 0 1 1 0 0 S22

54 55 1 0 0 1 0 0 0 0 1 S23

55 54 1 0 0 0 1 0 1 0 0 S24

57 52 1 0 0 1 0 0 1 0 0 S25

57 52 1 0 0 0 1 1 0 0 0 S26

63 51 0 1 1 0 0 0 0 0 1 S27

64 49 0 1 1 0 0 0 0 1 0 S28

66 48 0 1 1 0 0 0 1 0 0 S29

68 46 0 1 1 0 0 1 0 0 0 S30

71 43 1 0 1 0 0 0 0 0 1 S31

80 42 1 1 0 0 0 0 0 0 1 S32

81 40 1 1 0 0 0 0 0 1 0 S33

83 39 1 1 0 0 0 0 1 0 0 S34

85 37 1 1 0 0 0 1 0 0 0 S35

88 31 1 1 0 0 1 0 0 0 0 S36

90 29 1 1 0 1 0 0 0 0 0 S37

107 17 1 1 1 0 0 0 0 0 0 S38

Table 7.2: All efficient solutions of the example used in the proof of Theorem 7.22.
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Figure 7.6: Adjacency graph of the non-connected example problem used in the proof of
Theorem 7.22.

In Section 7.3, we report about numerical results indicating the likelihood that a non-
connected adjacency graph of Problem (7.8) appears in randomly generated instances.
Note that for these investigations problems KP (n, k) with k > n

2
are not of interest

as they can be transformed into an equivalent knapsack problem where the decision
is which objects to leave out of a knapsack. The resulting problem can be interpreted
as KP (n, k̃) for k̃ ≤ n

2
.

Next, we concentrate on the MILP-based definition of adjacency which is considered
in da Silva et al. [43]. Since the MILP formulation (7.8) is canonical it can be extended
to an appropriate MILP formulation using the proof of Lemma 7.9. Let P := {x ∈
[0, 1]n :

∑n

i=1 xi = k} denote the feasible set of the LP relaxation of (7.8).

Lemma 7.24 Let n ≥ 5. Two extreme points u and v of the binary knapsack polytope
P = {x ∈ [0, 1]n :

∑n
i=1 xi = k} are connected by an edge if and only if u and v are

adjacent in the sense of Definition 7.19.

Proof: According to Geist and Rodin [73] it suffices to show that two extreme points
u and v of P are connected by an edge if and only if there does not exist two other
extreme points w1 and w2 of P , i.e., other feasible solutions of KP (n, k), such that

1

2
(w1 + w2) =

1

2
(u + v). (7.9)

First, let two feasible solutions u and v of KP (n, k) be given that are adjacent accord-
ing to Definition 7.19. By definition they differ in exactly one item in the knapsack.
Without loss of generality we assume that u1 = v2 = 1, u2 = v1 = 0 and ui = vi

for all i = 3, . . . , n. Suppose u and v are not connected by an edge in P , i.e., there
exist two other feasible solutions w1 and w2 satisfying equation (7.9). Since u and v
are equal starting from the third component and thus ui = vi = 0 or ui = vi = 1
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for i = 3, . . . , n, 1
2
(ui + vi) equals either 0 or 1 and hence w1

i = w2
i = ui = vi for all

i = 3, . . . , n must hold to satisfy (7.9). So, w1 and w2 can differ from u and v only
in the first two components which means that either wj

1 = wj
2 = 0 or wj

1 = wj
2 = 1

(j ∈ {1, 2}), which is impossible due to the constraint
∑n

i=1 wj
i = k. Hence, u and v

are connected by an edge in P .
Now, let u and v be not adjacent solutions in the sense of Definition 7.19. Then u and
v differ in at least two different items in each knapsack. Without loss of generality we
assume that the first and the second item is contained in u but not in v and the third
and the fourth item is contained v but not in u. We define

w1
i =







1 , if i ∈ {1, 3}
0 , if i ∈ {2, 4}
ui, if i ≥ 5

and w2
i =







1 , if i ∈ {2, 4}
0 , if i ∈ {1, 3}
vi, if i ≥ 5.

Then, w1 and w2 are feasible and both different from u and v. Equation (7.9) is
satisfied and hence u and v are not connected by an edge in P . �

According to Lemma 7.24, the adjacency structure of the efficient extreme points
of P coincides with the adjacency structure induced by Definition 7.19. Hence, the
adjacency graph with respect to the appropriate MILP formulation based on Prob-
lem (7.8) and the adjacency graph resulting from Definition 7.19 are the same (cf.
Theorem 7.14). Thus, Theorem 7.22 immediately implies the following result.

Corollary 7.25 In general, the set of efficient solutions of KP (n, k) is non-connected
with respect to the appropriate MILP formulation based on Problem (7.8).

Finally, we investigate a combinatorial definition of adjacency for another variant of
the knapsack problem, the so-called binary multiple choice knapsack problem with equal
weights.

max

(
n∑

i=1

ki∑

j=1

c1
ijxij ,

n∑

i=1

ki∑

j=1

c2
ijxij

)T

s.t.
ki∑

j=1

xij = 1, i = 1, . . . , n,

xij ∈ {0, 1}, i = 1 . . . , n, j = 1, . . . , ki.

(7.10)

The given problem can be interpreted as follows: Given n disjoint baskets B1, . . . , Bn

each having exactly ki items, the objective is to maximize the overall profit with the
restriction that exactly one item is chosen from each basket. Problem (7.10) is a
more structured knapsack problem compared to Problem (7.8) since items cannot be
combined arbitrarily. We consider the following combinatorial definition of adjacency.

Definition 7.26 Two efficient knapsacks x and x′ of the binary multiple choice knap-
sack problem with equal weights are called adjacent if x′ and x differ in one item in
exactly one basket Bi for an i ∈ {1, . . . , n}.

This definition of adjacency is again canonical since for single objective problems,
any maximal knapsack must contain an item with maximal profit from each basket.
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Alternative optimal solutions may exist if at least one basket contains more than one
item with maximal profit. All these optimal solutions are adjacent in the sense of
Definition 7.26.
In the multiple objective case the situation is, however, different. The counter-example
from Ehrgott and Klamroth [58] and its modification in Subsection 7.2.1 can be used
to establish the following result.

Theorem 7.27 The adjacency graph of (weakly) efficient solutions for the binary mul-
tiple choice knapsack problem with equal weights, where adjacency of two efficient so-
lutions is defined according to Definition 7.26, is non-connected in general.

Proof: In the counter-example for the MSPP given in the proof of Theorem 7.16 we
redefine the cost vectors cij of the three paths from node si to node si+1, i = 1, 2, 3,
via sij , j = 1, 2, 3, by setting

c̃q
ij = max{cq

ij : i, j = 1, 2, 3; q = 1, 2} − cq
ij

for i, j = 1, 2, 3 and q = 1, 2 and interpret the resulting vectors of the three paths from
the node si to node si+1 as profit vectors for basket Bi, i = 1, 2, 3. This results in the
three baskets

B1 =

{(
111

201

)

,

(
130

190

)

,

(
191

181

)}

, B2 =

{(
101

201

)

,

(
200

130

)

,

(
131

191

)}

,

B3 =

{(
201

11

)

,

(
0

140

)

,

(
191

51

)}

.

Since we have transformed the minimization problem into a maximization problem by
taking the negative value of each cost vector followed by a shift of these vectors by an
amount of max{cq

ij} = 201, there is a one-to-one correspondence between the efficient
solutions of the modified problem and the efficient solutions of the counter-example
considered in Theorem 7.16. The profit vectors of the resulting solutions K1, . . . , K12

are given by (603, 603)T − c(Pi) where c(Pi) corresponds to the cost vector of Pi in
Figure 7.4 for i = 1, . . . , 12. Items in at least two baskets have to be exchanged when
transforming K8 into Kj, j 6= 8 by elementary moves. Hence, K8 is not adjacent to
any other (weakly) efficient solution in the sense of Definition 7.26. �

Note that, since there is a one-to-one correspondence between the example used in the
proof of Theorem 7.27 and the example given in Theorem 7.16 (see Figure 7.3), the
above result can be generalized similar to Theorem 7.17, using the same extension of
the original example:

Corollary 7.28 In general, the number of connected components and the cardinality
of the components in the adjacency graph of a binary multiple choice knapsack problem
with equal weights, where adjacency of two efficient solutions is defined according to
Definition 7.26, are exponentially large in the size of the input data.

In Section 7.3.2 we additionally investigate the frequency with which a non-connected
adjacency graph for problem (7.10) occurs empirically in randomly generated in-
stances.
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7.2.6 General Knapsack Problems

Since the general knapsack problem subsumes the binary knapsack problem with
bounded cardinality discussed above as a special case, the general knapsack prob-
lem is in general non-connected as well if connectedness is defined, for example, based
on elementary moves similar to Section 7.2.5 above.

7.2.7 Integer Programming Problems with Fixed or Bounded

Cardinalities

The same reasoning as in Section 7.2.6 applies.

7.2.8 Unconstrained Binary Optimization Problems

Since, in general, the adjacency graph for the binary knapsack problem with equal
weights and bounded cardinality is non-connected for well-established definitions of
adjacency of efficient solutions (see Section 7.2.5), we focus on unconstrained binary
problems in this subsection since these problems possess even less structure. Formally,
an unconstrained binary problem is defined as follows:

max (c1x, c2x)
T

s.t. xi ∈ {0, 1}, i = 1, . . . , n.
(7.11)

We assume without loss of generality that c1
i · c2

i < 0 (but not necessarily c1
i < 0 and

c2
i > 0) for all i = 1, . . . , n. Otherwise either xi = 0 or xi = 1 in every efficient solution.

For Problem (7.11), the number of non-zero variables is not fixed, and hence, also
not known in advance. Consequently, an appropriate notion of adjacency is not evi-
dent. Nevertheless, Definition 7.26 can be transferred to this problem, considering the
following modified version of Problem (7.11).

max
(
c1x, c2x

)T

s.t. xi + yi = 1, i = 1, . . . , n

xi, yi ∈ {0, 1}, i = 1, . . . , n.

(7.12)

Clearly, either xi = 1 or yi = 1 holds, and
n∑

i=1

(xi + yi) = n. As a consequence,

the number of non-zero components of the feasible solution vector (x, y)T is exactly n.
This implies that solutions of Problem (7.12) are of the same cardinality. However, the
notion of adjacency for binary knapsack problems with fixed cardinality does not apply
directly to Problem (7.12), since the values of xi and yi, i = 1, . . . , n, cannot be chosen
independently as they are coupled by a side constraint. By introducing additional
zero cost vectors for each yi, i = 1, . . . , n, Problem (7.12) can be interpreted as a
binary multiple choice knapsack problem with equal weights where either xi or yi has
to be included in the knapsack, i = 1, . . . , n. Hence, Definition 7.26 can be applied to
Problem (7.12). Since this definition of adjacency for the extended problem results in
single ‘1-to-0’ or ‘0-to-1’ swaps in exactly one xi for Problem (7.11), we define:
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Definition 7.29 Two efficient solutions x and x′ of the unconstrained binary problem

are called adjacent if they differ in exactly one component, i.e. if
n∑

i=1

|xi − x′
i| = 1.

If we extend the last definition to all 2n feasible solutions of the problem which can
be identified with the set of all extreme points of the n-dimensional unit cube W :=
[0, 1]n, two feasible (efficient) solutions are adjacent if and only if they are connected
by an edge in W . But since W in combination with Problem (7.11) can be easily
modeled by an appropriate MILP formulation, the adjacency graph which results
from Definition 7.29 coincides with the adjacency graph of this appropriate MILP
formulation by Theorem 7.14. We state.

Theorem 7.30 The adjacency graph of an unconstrained binary problem of given
by Problem (7.11), where adjacency of two efficient solutions is defined according to
Definition 7.29, is non-connected in general.

Proof: Consider the following unconstrained binary problem with objective matrix

C =

(

−126 −121 −120 −103 −100 −97 −17 −13

100 94 90 74 73 68 23 7

)

.

The set of all efficient solutions of this problem consists of 110 vectors. It can
be shown that the efficient solution x = (0, 1, 0, 1, 1, 1, 0, 1)T with objective value
Cx = (−434, 316)T is not adjacent to any other efficient solution in the sense of Defi-
nition 7.29. �

Note that the given counter-example in Theorem 7.30 is minimal in the sense that
deleting any combination of profit vectors from the problem always leads to a connected
adjacency graph.

Corollary 7.31 Let an appropriate MILP formulation of problem (7.11) be given
where the polytope of the LP relaxation describes the n-dimensional unit cube [0, 1]n.
Then, the adjacency graph of the unconstrained binary problem with respect to the
given MILP formulation is non-connected in general.

While the efficient set for Problem (7.11) is not connected in general, we refer to
Chapter 9, where the triobjective unconstrained optimization problem with two binary
objectives is discussed. In Section 9.5 we prove that the efficient set of this specific
type of problem is always connected, based on a combinatorial definition of adjacency
(cf. Theorem 9.33).

7.2.9 Linear Assignment Problems

We consider two definitions of adjacency for the linear assignment problem: A combi-
natorial definition based on swapping rows in the assignment matrix, and an MILP-
based definition of adjacency. The biobjective linear assignment problem can be for-
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mulated as

min

(
n∑

i,j=1

c1
ijxij ,

n∑

i,j=1

c2
ijxij

)T

s.t.
n∑

i=1

xij = 1, j = 1, . . . , n,

n∑

j=1

xij = 1, i = 1, . . . , n,

xij ∈ {0, 1}, i, j = 1, . . . , n,

(7.13)

with objective coefficients c1
ij, c

2
ij ≥ 0 for all i, j = 1, . . . , n.

First, we consider an intuitive combinatorial definition of adjacency based on a simple
swap of two rows of the assignment matrix. This definition is not canonical, i.e., it
does not yield a connected graph of optimal solutions for the single objective version
of the problem:

Theorem 7.32 Swapping two rows of the assignment matrix of a single objective
linear assignment problem without changing the objective value does in general not
permit to construct the complete set of optimal solutions starting from an arbitrary
optimal solution.

Proof: Consider a single objective linear assignment problem with n = 4 and cost
matrix

C = (c1
ij)i,j=1,...,n =









1 ∞ 1 ∞
1 1 ∞ ∞
∞ ∞ 1 1

∞ 1 ∞ 1









.

This problem has two optimal assignments with value 4:
Assignment 1: x11 = x22 = x33 = x44 = 1 and xij = 0 otherwise.
Assignment 2: x13 = x21 = x34 = x42 = 1 and xij = 0 otherwise.
Clearly, these assignments cannot be obtained from each other by a single row swap.
�

Turning our attention to an MILP-based definition of adjacency using Problem (7.13),
we observe that the biobjective linear assignment problem is a special case of the
minimum cost flow problem (cf. Section 7.2.3). Thus, we can expect the existence of
a canonical definition of adjacency in this case. The matrix describing the assignment
polytope is totally unimodular (see, e.g., Nemhauser and Wolsey [150]) and, hence
formulation (7.13) is an appropriate MILP formulation. To simplify the discussion, we
use the following combinatorial interpretation of the resulting concept of adjacency.

Definition 7.33 Let G = (V1 ∪ V2, A) with |V1| = |V2| = n be a bipartite graph with
edge costs c1, c2 : A→ R that models a given instance of the biobjective linear assign-
ment problem, and let A1 and A2 be the edges selected in two different assignments.
We call the solutions corresponding to A1 and A2 adjacent if the graph induced by
A1 ∪ A2 contains exactly one cycle.
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G1 G2 G3 G1 ∪G2 G1 ∪G3 G2 ∪G3

Figure 7.7: All feasible assignments with finite costs for the subproblems Si in the proof of
Theorem 7.34 and their pairwise union.

According to Balinski and Russakoff [10], this combinatorial definition of adjacency
corresponds to the MILP-based definition of adjacency induced by the assignment
polytope P . Equivalently, two assignments A1 and A2 are adjacent if and only if their
symmetric difference A1△A2 = (A1 ∪A2) \ (A1 ∩A2) consists of exactly one cycle the
edges of which alternately belong to A1 and A2, respectively (cf.Hausmann [100]).
Since any pair of vertices of the assignment polytope is connected by a path of length
less than or equal to 2 (see, for example, Balinski and Russakoff [10], Hausmann [100]),
the generalized adjacency graph G′2 of Problem (7.13) is always connected. However,
if we restrict ourselves to direct adjacency according to Definition 7.33, the adjacency
graph G = G′1 of the biobjective linear assignment problem is non-connected in general.

Theorem 7.34 The adjacency graph G of (weakly) efficient solutions for the biob-
jective linear assignment problem using Definition 7.33 for characterizing adjacent
assignments is not connected in general.

Proof: We restructure the counter-example for the MSPP given in the proof of Theo-
rem 7.16. Consider the six cost-submatrices of a (9× 9) biobjective linear assignment
problem given by

C1
(1:3,1:3) =







0 0 ∞
10 71 0

∞ 90 0







, C1
(4:6,4:6) =







0 0 ∞
70 1 0

∞ 100 0







, C1
(7:9,7:9) =







0 0 ∞
10 201 0

∞ 0 0







,

C2
(1:3,1:3) =







0 0 ∞
20 11 0

∞ 0 0







, C2
(4:6,4:6) =







0 0 ∞
10 71 0

∞ 0 0







, C2
(7:9,7:9) =







0 0 ∞
150 61 0

∞ 190 0







,

and let all remaining cost coefficients be set to infinity. This problem decomposes
into three (3 × 3)-subproblems denoted by S1, S2 and S3, where each subproblem Si

has three solutions G1, G2 and G3 that have finite costs in both objectives. These
three solutions have the same structure for all three subproblems and are depicted in
Figure 7.7. Note that the cost vector of each solution Gj of subproblem Si is chosen
such that it corresponds to the cost vector of the path connecting node si with node
si+1 via node sij in Figure 7.3. Consequently, there is a one-to-one correspondence
between the efficient solutions of this instance of the biobjective linear assignment
problem and the efficient solutions of the biobjective shortest path problem shown in
Figure 7.4.



7.2 Connectedness Results for Specific Combinatorial Optimization Problems 111

From Figure 7.7 it can be seen that the pairwise union of two subgraphs Gi and
Gj , i 6= j, contains exactly one cycle. According to Definition 7.33, two efficient
assignments of the overall problem are thus adjacent if and only if they differ in
exactly one subproblem Si, i ∈ {1, 2, 3}. Since the efficient path P8 in Figure 7.4
differs from all other efficient paths in at least two connections, the corresponding
assignment (consisting of G2 in all three subproblems) differs from all other efficient
assignments in at least two subproblems and is thus not adjacent to any other efficient
assignment of the overall problem. �

Since, similar to the case of the binary multiple choice knapsack problem with equal
weights, there is a one-to-one correspondence between the example used in the proof
of Theorem 7.34 and the example given in Theorem 7.16, this example can be used
to generalize the above stated result similar to Theorem 7.17, using again the same
extension of the original example.

Corollary 7.35 In general, the number of connected components and the cardinality
of the components in the adjacency graph of the biobjective linear assignment problem,
where adjacency of two efficient solutions is defined according to Definition 7.33, are
exponentially large in the size of the input data.

7.2.10 Transportation and Transshipment Problem

Since this problem can be interpreted as a special case of the linear assignment problem
(see, e.g., Ehrgott and Gandibleux [55]), the non-connectedness result of Section 7.2.9
can be transferred.

7.2.11 The Traveling Salesman Problem

Paquete et al. [158] and Paquete and Stützle [161] introduced a combinatorial definition
of adjacency for the MTSP: Two feasible tours of the MTSP are called adjacent if
they differ in exactly four edges. Note that this definition corresponds to the 2-edge-
exchange neighborhood of the TSP. However, the 2-edge-exchange neighborhood does
not induce a canonical definition of adjacency.

Theorem 7.36 The set of optimal solutions of the single objective TSP is in general
non-connected with respect to the 2-edge-exchange neighborhood.

Proof: Consider the following instance of a symmetric TSP with five nodes and dis-
tance matrix D given by

D =












0 7 10 3 1001

7 0 3 10 1000

10 3 0 7 1000

3 10 7 0 1001

1001 1000 1000 1001 0












.

The problem has two optimal tours T1 = (1, 4, 3, 2, 5, 1) and T2 = (1, 4, 5, 3, 2, 1) with
cost c(T1) = c(T2) = 2014. However, T1 differs from T2 in six edges, i.e., T1 is only
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contained in the 3-edge-exchange neighborhood of T2 and not in its 2-edge-exchange
neighborhood. �

Note that the formulation of an alternative, MILP-based definition of adjacency is
not immediate in the case of the biobjective TSP as long as no appropriate MILP
formulation of the problem is available. Moreover, it isNP-complete to decide whether
two given vertices of the TSP-polytope are adjacent [157].

7.3 Numerical Results

All results in Section 7.2 are obtained from a worst-case analysis. Therefore, it is an
interesting question how frequently the phenomenon ‘non-connected adjacency graph’
occurs in practice. To learn more about the practical relevance of adjacency consider-
ations, we exemplarily conduct numerical studies for the biobjective binary knapsack
problem with bounded cardinality and the biobjective binary multiple choice knap-
sack problem (cf. Section 7.2.5). All in all, more than six million randomly generated
problem instances have been analyzed.
Before describing the design of the numerical experiments in more detail, we discuss
special properties of the problems under consideration. First, it is not sufficient to
compute just a single efficient solution for each non-dominated point. Instead, all
efficient solutions have to be found. Consequently, an algorithm enumerating all alter-
native solutions for the same non-dominated outcome is required. Second, after having
found all efficient solutions, their adjacency relationships have to be explored. The
set of efficient solutions has to be ordered or traversed several times, efficient solutions
have to be compared pairwise, and clusters of efficient solutions have to be calculated.
This post-solution analysis requires a substantial amount of computation time. Third,
non-connected adjacency graphs cannot be expected to occur with a high frequency
in randomly generated problem instances. Conclusions can therefore not be drawn on
the basis of just a few dozen instances. For each set-up thousands of instances have
to be generated and tested to yield representative results. Fourth, computation power
as well as computation time are limited.
Recapitulating, one can conclude that under these circumstances the instances treated
in our study have to be rather small and do not nearly match the sizes of state-of-the-
art benchmark problems.

7.3.1 Biobjective Binary Knapsack Problems with Bounded
Cardinality

For the computation of the efficient and non-dominated set of the generated instances
of the biobjective binary knapsack problem with bounded cardinality KP (n, k) we used
a dynamic programming approach for general multiple objective knapsack problems
developed in Klamroth and Wiecek [116]. Recent numerical tests of Bazgan et al. [14]
on a slightly extended version of this approach proved its efficiency for solving even
large scale bi- and multiple objective binary knapsack problems.
From Klamroth and Wiecek [116], we implemented Model III for the binary case. Using
this approach, we can solve k knapsack instances KP (n, 1), . . . , KP (n, k) simultane-
ously, i.e., without any additional computational cost. For each efficient solution of
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Meth. 10/9/10 20/10/10 30/15/10 40/20/10 60/30/10 80/40/20 100/50/20

1 50000 20000 1000 1000 - - -

2 50000 20000 1000 1000 - - -

3 50000 20000 1000 1000 - - -

4 50000 20000 1000 1000 - - -

5 50000 20000 1000 1000 - - -

6 50000 50000 50000 10000 10000 10000 1000

Table 7.3: Setup of computational experiments for the biobjective binary knapsack problem
with bounded cardinality.

one of the problem instances, we store a binary vector representing this solution in a
list. Recall from Section 7.2.5 that two efficient solutions are defined to be adjacent if
their Hamming distance is equal to two. Starting with the first efficient solution in the
list, we find all its neighbors (by pairwise computations of Hamming distances with
all the remaining solutions) in the list and mark them with a certain label. Different
labels signalize different adjacency clusters. We proceed likewise with the second solu-
tion in the list. Eventually, adjacency clusters have to be merged, i.e., markers have to
be re-assigned. After having processed all efficient solutions, the number of different
markers indicate the number of clusters.
The aim of the numerical study is to report the number of adjacency clusters of
randomly generated instances of KP (n, k) when

a) n increases,

b) k increases for fixed n, and

c) the objective coefficients are generated according to different methods.

We generated seven problem setups For each setup, we used six different methods
to generate the objective coefficients. In the first row of Table 7.3, we use a scheme
of the form Pos1/Pos2/Pos3 to code these seven setups. Pos1 specifies the total
number n of items. The upper bound k for the right hand side parameter of the
knapsack constraint is specified under Pos2. We determined the adjacency graph for
all possible right hand sides i ∈ {1, . . . , P os2}. Finally, the coefficients of the first
objective c1 were chosen in the interval [0, r], where r = Pos1 · Pos3. The coefficients
of the second objective c2 were chosen according to six different methods which were
motivated by the study of Pedersen et al. [164] and are described in the following.

Method 1: c1 was sorted in decreasing, c2 in increasing order to obtain pairwise
non-dominated profit vectors. Weakly-dominated vectors were omitted.

Method 2: The profit vectors p1 := (c1
1, c

2
1)

T = (r, 0)T and pn := (c1
n, c2

n)T = (0, r)T

were fixed at the beginning. The remaining vectors were chosen within the
triangle (0, 0)T , p1 and pn. Preferably pairwise non-dominated profit vectors
were generated. Only profit matrices with a few dominated profit vectors were
accepted.
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Meth. 10/9/10 20/10/10 30/15/10 40/20/10 60/30/10 80/40/20 100/50/20

1 0 0 0 2 - - -

2 0 2 1 1 - - -

3 0 2 0 0 - - -

4 0 1 0 0 - - -

5 0 1 1 0 - - -

6 0 0 0 0 0 1 0

Table 7.4: Number of instances with adjacency graph having more than one connected
component.

Method 3: The profit vectors were generated as in Method 2, but now within the
triangle (r, r)T , p1 and pn.

Method 4: The profit vectors p1 and pn were fixed like in Method 2. The remain-
ing vectors were generated spread around the concave part of the half circle
with midpoint (0, 0)T connecting the points p1 and pn. Preferably pairwise non-
dominated profit vectors were generated and profit matrices with only a few
dominated profit vectors were accepted.

Method 5: The profit vectors were generated as in Method 4, but now spread around
the convex half circle with midpoint (r, r)T connecting p1 and pn.

Method 6: The entries of the profit matrix were generated uniformly at random.

The entries of Table 7.3 correspond to the number of instances that were processed
for each of the setups. Note that these numbers are not always the same. Some setups
result in more difficult instances and thus, we could only process fewer instances in a
reasonable amount of time. A dash indicates that this setup was not tested due to its
numerical difficulty.
Table 7.4 presents the number of non-connected adjacency graphs that were found
for each setup. For the generated instances, only very few non-connected adjacency
graphs were found. Nevertheless, for each of the six data generation methods at least
one instance possessing a non-connected adjacency graph could be found. Based on
the small number of components, there do not seem to exist significant trends - neither
with respect to increasing k or n nor with respect to some particular generation method
for the data.
For the case of randomly generated profit matrices (Method 6), non-connected adja-
cency graphs seem to occur extremely rarely. As mentioned in da Silva et al. [43],
an item xi corresponding to a dominated profit vector pi can only be contained in
an efficient knapsack if at least one of the items xj corresponding to profit vectors
pj dominating pi is also contained in the knapsack. The set of all efficient solutions
of such a problem consists of a few number of elements and is more structured than
in the case when only pairwise non-dominated profit vectors are considered. For the
problem size (40/20/10), the maximum number of elements of an efficient set for a
problem instance generated by Method 6 is given by 290 while for the other methods
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Setup of test instances 20/5/10 20/10/10 20/15/10

Number of instances generated 10000 5000 1000

Instances having a non-connected adjacency graph 118 295 111

Table 7.5: Setup of computational experiments for the biobjective binary multiple choice
knapsack problem with uniform weights.

the maximum number does not fall below 1392 and has a maximum value of over 5300
elements for a problem instance generated by Method 2. Unfortunately, Method 6
seems to be the “standard” way to generate data when testing an algorithm numeri-
cally. Yet, for algorithms based on neighborhood search, this problem class seems to
be quite uninteresting.

7.3.2 Biobjective Binary Multiple Choice Knapsack

Problems

The second part of the numerical study is devoted to the biobjective binary multiple
choice knapsack problem also introduced in Section 7.2.5. Recall that this problem is
closely related to the biobjective binary knapsack problem with bounded cardinality.
Yet, this problem behaves quite differently with respect to the adjacency issue.

Suppose that a biobjective binary multiple choice knapsack problem is given with n
baskets and k possible items per basket. To obtain the set of efficient solutions XE, we
use a simple dynamic programming scheme. In the i-th step, i = 1, . . . , n, we combine
every solution being efficient for the problem with baskets B1, . . . , Bi−1, with the items
in basket i. Dominated solutions are deleted. The remaining solutions form the set
of efficient solutions for the problem with baskets B1, . . . , Bi−1. Note that the items
in each basket should be pairwise non-dominated since dominated items are never
included in an efficient solution. It should be pointed out that applying this scheme,
we solve in fact not only the problem for n baskets, but n different problems for i,
i = 1, . . . , n, baskets. Similar to the previous study, a post-optimality procedure is
applied to XE to retrieve the adjacency information.

We study the frequency of problems with non-connected adjacency graphs when

a) the number of baskets increases from 1 to n, and

b) the (fixed) number of items per basket increases.

As in Section 7.3.1, we use a scheme Pos1/Pos2/Pos3 coding the setup of the in-
stances. Pos1 indicates the number of baskets while the number of items per basket is
given in Pos2. The integer cost coefficients are taken from the interval [1, P os1 ·Pos3]
according to Method 1 in Section 7.3.1. Table 7.5 reports the setups and the number
of instances we have tested.

For each of the setups, Table 7.5 contains the number of instances possessing a non-
connected adjacency graph cumulated over all i = 1, . . . , 20 baskets. One obvious
difference to the results obtained in Section 7.3.1 is that non-connected adjacency
graphs occur far more often for this special type of knapsack problems.
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Figure 7.8: Number of instances per thousand (y-axis) with non-connected adjacency graph
for i = 1, . . . , 20 baskets (x-axis) for 5 (dotted line), 10 (dashed line), and 15 (solid line)
items per basket.

Figure 7.8 shows the (normalized) number of instances with non-connected adjacency
graph per thousand instances tested. Detailed results for each problem with i bas-
kets, i = 1, . . . , 20, are reported. The dotted line, the dashed line, and the solid line
correspond to the setups with 5, 10, and 15 items per basket, respectively. All curves
are (slightly) increasing, i.e., non-connectedness is detected more often when the num-
ber of baskets is increased. Furthermore, the more items per basket, the higher the
likelihood for having a non-connected adjacency graph.
Table 7.6 provides more details about the character of the clusters. Among those
instances with non-connected adjacency graph, two clusters appear more often than
three clusters. However, with increasing number of items per basket three clusters are
getting more likely. Interestingly, the maximal distance between clusters of instances
with two clusters only is never greater than 2. The maximal (pairwise) distance
between three clusters, however, can be as much as 8.
To summarize the discussion above, the two problems treated in this section behave
very differently with respect to adjacency although their combinatorial structure seems
quite similar. This shows how careful one has to be with statements about adjacency

Setup of test instances 20/5/10 20/10/10 20/15/10

Instances with one cluster 199882 99705 19889

Instances with two clusters 115 282 100

Instances with three clusters 3 13 11

Maximal distance between two clusters 2 2 2

Maximal distance between three clusters 3 4 8

Table 7.6: Number of connected components (clusters) in the adjacency graph and maximal
distance between two components for the biobjective binary multiple choice knapsack problem.
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and it also shows the limitations of our study: No results about larger instances,
about problems with more than two objective functions, and about other problems
are available so far.

7.4 Conclusions and Further Ideas

As in the case of single objective combinatorial optimization, the question of adjacency
of solutions is one of the core aspects in multiple objective combinatorial optimiza-
tion. The concept of adjacency of optimal solutions in multiple objective problems
certainly exceeds its single objective analogon in terms of complexity because of a
more involved optimality concept. Maybe it is due to this increased complexity that
research on this subject has widely been neglected. To the best of our knowledge there
does not exist (correct) exact algorithms for computing the set of efficient solutions
based on neighborhood structures apart from the algorithms that are presented in this
work (cf. Chapter 9 for specially structured unconstrained optimization problems and
Chapter 10 for a special class of matroid problems), nor does the literature formalize
different notions of adjacency. Beyond, adjacency of MCOPs has not been investigated
numerically.

The aim of this chapter was threefold. First, we formally introduced two different
concepts of adjacency. One class of adjacency concepts relies on problem-dependent
combinatorial structures, while the other one is based on appropriate models for the
problem and, ultimately, goes back to the definition of adjacency for multiple objective
linear programs. Second, we surveyed the current state of the art and supplement it
with our own findings. As a result, we listed eleven combinatorial optimization prob-
lems and discussed their adjacency properties. Third, we conducted numerical experi-
ments to analyze the adjacency structure of two special types of biobjective knapsack
problems. Although being structurally related and possessing a non-connected adja-
cency graph in general, these knapsack problems differ significantly in the practical
occurrence of adjacency.

The presented results should be understood as a first step towards an in-depth inves-
tigation of adjacency in MCOPs. In addition, several research directions seem to be
promising and are currently under investigation:

Although we proved the non-connectedness of many fundamental MCOPs in this chap-
ter, special variants of these problems might possess a connected adjacency graph (cf.
da Silva et al. [43] for knapsack problems and Chapter 9 and Chapter 10 for special
classes of unconstrained triobjective and biobjective matroid problems, respectively).
It seems that the choice and the range of the involved cost coefficients of the given
objectives play a crucial role for proving connectedness. Hence, further explorations of
the structure, the size and the geometry of the input data and the resulting connected
components should be carried out.

Another interesting stream of research is the development of new definitions of adja-
cency possibly yielding connected adjacency graphs for a wider class of MCOPs. Based
on this research, new ideas to prove the connectedness of the efficient set have to be
developed. Up to now, only two promising concepts exist: Either one suggests an algo-
rithm that is based on the connectedness of the efficient set and prove its correctness,
or one shows that all efficient solutions correspond to supported efficient solutions
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when an MILP-based definition of adjacency is considered. In this case, these solu-
tions always form a connected subgraph of the adjacency graph (cf. Section 7.1). Note
that we apply both ideas independently of each other in Chapter 9 and Chapter 10,
respectively, to prove connectedness of the efficient set for the problems considered in
these chapters.
Furthermore, we note that the connectedness of the efficient set is indeed a nice prop-
erty, but that it is not absolutely necessary to determine the non-dominated set of a
given problem. Since most of the classical multiple objective combinatorial optimiza-
tion problems are proven to be intractable, a complete enumeration of the efficient set
is not preferable. Hence, given a definition of adjacency for solutions in the decision
space, one could use this definition to map the idea of connectedness into the objective
space. In this case, two non-dominated solutions of a given problem are said to be
adjacent if there exist two representatives of these solutions that are adjacent in the
decision space. Obviously, the connectedness of the efficient set immediately implies
the connectedness of the non-dominated set, but not necessarily vice versa. Never-
theless, the existence of a complete set of connected efficient solutions in the decision
space, would suffice to determine the non-dominated set based on local search.
We finally remark that the structural results presented in Section 7.2 are based on a
worst-case analysis. Studying theoretically the average case gives detailed information
about the expected occurrence of adjacency in practical problems and might justify
the application of adjacency-based algorithms even for problems having non-connected
adjacency graphs in general. If an average-case analysis is not possible for some prob-
lems, intensive numerical investigations about the adjacency behavior might provide
empirical evidence for the effectiveness of adjacency-based algorithms.



Chapter 8
Connectedness Results for Combinatorial
Problems with Bottleneck Objectives

While we concentrated on combinatorial optimization problems with sum objectives in
Chapter 7, the natural question arises whether better results in terms of connectedness
of the efficient set can be achieved when other types of objectives are considered. In this
chapter we present some new results for multiple objective combinatorial optimization
problems with bottleneck objectives (MCBP).

From Section 4.2 we recall that these problems can be solved by a sequential re-
duction to single objective problems of the same class of combinatorial problems (cf.
Algorithm 4.2). Hence, the application of neighborhood search techniques is mainly
interesting for classes of combinatorial problems where the single objective version is
alreadyNP-hard to solve. Nevertheless, it seems to be worth discussing connectedness
properties of the (weakly) efficient set for general MCBPs.

In terms of connectedness of the efficient set XE, we recall from Definition 7.1 that,
given a definition for the adjacency of efficient solutions, XE is said to be connected
if and only if the corresponding adjacency graph G is connected. In this context,
a node of G represents an efficient solution of the given multiple objective problem.
Furthermore, two nodes are joined by an edge if and only they are adjacent with
respect to the considered definition of adjacency.

For a short review of the literature for MCBPs, we refer to Section 4.2.2. To the best
of our knowledge, results on the connectedness of the (weakly) efficient set for MCBPs
have not been presented in the literature before.

We remark that the focus of this chapter is twofold. In the first part, we state a counter-
example that shows that the set of efficient solutions for MCBPs is not connected in
general. While we had to treat each class of combinatorial optimization problems sep-
arately in Chapter 7 when sum objectives are considered, we give a counter-example
that can be applied to most classes of combinatorial optimization problems simulta-
neously here. This will be done in Section 8.1.

In Section 8.2, we present an algorithm that solves the fixed cardinality biobjective
binary knapsack problem with two bottleneck objectives in polynomial time, based on
the ideas developed in Section 4.2. We prove that the set of weakly efficient solutions
is always connected for this problem, while this is not the case for the efficient set by
the results from Section 8.1. We finally conclude in Section 8.3.
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8.1 Connectedness for General Combinatorial

Bottleneck Problems

In Chapter 7 we have shown that the set of efficient solutions of most of the classical
combinatorial optimization problems is not connected in general when sum objectives
are considered. We prove in this section that this result remains valid, when problems
with bottleneck objectives have to be solved instead. Different to the sum objective
case, we state a counter-example that can be applied to many classes of combinatorial
problems simultaneously. In more detail, given a definition for the adjacency of efficient
solutions, we can construct a general problem instance with only two efficient solutions
such that these two solutions differ in a maximum number of elements.

Definition 8.1 Let an instance of a multiple objective combinatorial optimization
problem be given, and let G′ = (V ′,A′) denote the weighted adjacency graph (cf. Defi-
nition 7.3) of the problem. Two efficient solutions are said to be at maximum distance
if the weight of the edge connecting the two nodes that correspond to these two solution
is maximal with respect to the considered definition of adjacency.

In general, the maximum distance between two efficient solutions crucially depends on
the considered class of combinatorial problems. For example, the maximum distance
between two efficient assignments equals two, assuming that the combinatorial defini-
tion of adjacency stated in Definition 7.33 is applied (cf. Section 7.2.9). In contrast,
using Definition 7.19 in the case of a binary knapsack problem with equal weights
and fixed cardinality treated in Section 7.2.5, two efficient solutions S1, S2 ∈ X are
at maximum distance, whenever we have that |S1 ∩ S2| = min{|S ∩ T |, S, T ∈ X}.
So, the maximum distance between two efficient solutions may further depend on the
cardinality of the involved feasible solutions.

Remark 8.2 We assume in the following that all feasible solutions of an instance
(E ,X , b) of an MCBP have the same cardinality, i.e. there exists k ∈ N, such that
|S1| = |S2| = k for all S1, S2 ∈ X .

Having a look back to Chapter 7, we see that most of the classical combinatorial
optimization problems satisfy the above stated condition. Moreover, Remark 8.2 im-
plicitly implies that the given definition of adjacency of efficient solutions has to be
based on an exchange of a prescribed number of elements contained in two different
efficient solutions. However, there exist classes of combinatorial optimization problems
where this definition is exclusively based on removing (or adding) a fixed number of
elements from (or to) an efficient solution to construct new efficient solutions (cf., e.g.,
Subsection 7.2.8 and Chapter 9 for unconstrained multiple objective combinatorial op-
timization problems). Hence, the main theorem of this section, which is stated next,
can be applied to many but not all classes of combinatorial optimization problems
simultaneously.

Theorem 8.3 Let a class of combinatorial optimization problems be given, where each
instance of this class satisfies the condition stated in Remark 8.2. Then there exist
instances (E ,X , b), where the objective function vector b = (b1, . . . , bp), p > 1, consists
of p bottleneck objectives involving p cost functions w1, . . . , wp on the elements of E ,
such that each pair of efficient solutions is at maximum distance.
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Proof: We start with a proof for p = 2. Let a class of combinatorial optimization prob-
lems be given that satisfies Remark 8.2. Furthermore, let S1, S2 ∈ X , S1 6= S2, denote
two feasible solutions that are at maximum distance, assuming that Definition 8.1 is
extended to the complete set of feasible solutions. We construct a problem instance of
the considered class, such that S1 and S2 correspond to the only two efficient solutions
of this problem. This shows the theorem for p = 2.
We partition the ground set E into the subsets E1 = S1\S2, E2 = S2\S1, E12 = S1∩S2

and E0 = E \ (S1 ∪ S2). As all feasible solutions have the same cardinality k ∈ N by
assumption, we have that E1 6= ∅ 6= E2, since otherwise this would imply that S1 = S2.
Furthermore, |S1 ∩ S2| < k has to be valid. For e ∈ E we define the following cost
function vector (w1(e), w2(e)) ∈ R2:

(

w1(e)

w2(e)

)

=







(3, 3)⊤, if e ∈ E0,

(1, 2)⊤, if e ∈ E1,

(2, 1)⊤, if e ∈ E2,

(1, 1)⊤, if e ∈ E12.

(8.1)

Let bi(S) = maxe∈S{wi(e)}, i ∈ {1, 2}, denote the two bottleneck objectives. Then for
S ∈ X we have that:

(

b1(S)

b2(S)

)

=







(1, 2)⊤, if S = S1,

(2, 1)⊤, if S = S2,

(2, 2)⊤, if S ( S1 ∪ S2, S1 6= S 6= S2,

(3, 3)⊤, if S ∩E0 6= ∅.
By construction, the considered instance (E ,X , (b1, b2)) has two efficient solutions S1

and S2 that are at maximum distance, and YN = {(1, 2), (2, 1)}. This completes the
proof for p = 2.
To extend the result to the case p > 2, we simply keep w1 and w2 as defined in (8.1)
and define wi(e) = 1 for all e ∈ E and i ∈ {3, . . . , p}. Obviously, S1 and S2 are still
the only two efficient solutions of the problem and are at maximum distance. This
completes the proof for the general case. �

Note that Remark 8.2 is essential for the validity of Theorem 8.3. If we drop the
assumption that all feasible solutions have the same cardinality, there may exist a
feasible solution S that is completely contained in E12 = S1 ∩ S2. But this would
imply that (b1(S), b2(S)) = (1, 1), and S1 and S2 would be dominated by S.
Moreover, the counter-example in the proof of Theorem 8.3 does not automatically
imply that the set of weakly efficient solutions of the considered instance is non-
connected in general. As in the case of combinatorial problems with several sum
objectives, the potential connectedness of the weakly efficient set for MCBPs strongly
depends on the considered class of combinatorial problems, i.e. its feasible set X , the
structure of the cost functions involved and the definition of adjacency used for the
problem.
For example, while Theorem 8.3 shows that the efficient set of the biobjective binary
knapsack problem with equal weights and fixed cardinality involving bottleneck objec-
tives is not connected in general, we prove in the next section that the weakly efficient
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set of this problem is always connected whenever Definition 7.19 is used to define the
adjacency of weakly efficient solutions. Furthermore, a simple sufficient condition for
the connectedness of XE based on the structure of the cost coefficients can be proven
for this problem (cf. Theorem 8.8).

8.2 Biobjective Binary Knapsack Problems with

Bottleneck Objectives

As already mentioned in the last section, we consider a special class of combinatorial
knapsack problems in the following. In more detail, we present an algorithm to solve
the biobjective binary knapsack problem with a fixed cardinality constraint involving
two bottleneck objectives that is based on the ideas stated in Section 4.2.2. Further-
more, we prove that, while the set of efficient solutions of this problem is not connected
in general, this property always holds for the set of weakly efficient solutions.
The single objective version

min max
1≤i≤n

{

cixi :
n∑

i=1

xi = k, xi ∈ {0, 1}, i = 1, . . . , n

}

, (BKP)

of the considered problem, where ci ∈ Z for i = 1, . . . , n and k ∈ {1, . . . , n} fixed,
was already studied by Xu and Liu [218]. An optimal solution of this problem can
be obtained by choosing the k lowest cost coefficients of the vector c = (c1, . . . , cn).
Starting from the set of optimal solutions for the problem, the authors defined an
optimal solution transformation graph G similar to the adjacency graph of efficient
solutions for a multiple objective combinatorial problem (cf. Definition 7.1), where
the node set of G corresponds to the optimal solutions of the problem. Two nodes
are joint by an edge if two optimal solutions have exactly two different components.
The authors proved that the resulting graph is edge-Hamiltonian, i.e. each edge is
contained in a Hamiltonian cycle of G. We recall that a Hamiltonian cycle of a graph
is a cycle that visits each node exactly once. Furthermore, an algorithm for generating
a Hamiltonian cycle in G is presented that enumerates all optimal solutions of the
given problem.
The remainder of this section is organized as follows: In the next subsection we formally
introduce the problem and our notation. In the subsequent subsection we present
our algorithm, followed by a short example. Finally, connectedness properties of the
(weakly) efficient set are discussed in Section 8.2.4.

8.2.1 Problem Formulation and Notation

Let a finite set E = {e1, . . . , en} of n different items be given, and let k ∈ {1, . . . , n} be
fixed. Furthermore, let X ⊆ P(E) denote the set of all subsets of E containing exactly
k items. Let w1, w2 : E → Z denote two weight functions on the elements of E , and
let bi : X → Z denote the bottleneck objective involving the weight wi for i = 1, 2.
Then, the biobjective binary knapsack problem with fixed cardinality (BBKP) with two
bottleneck objectives is given by

min
{
(b1(S), b2(S))⊤ : S ∈ X

}
. (8.2)
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The set of (weakly) efficient solutions of this problem is denoted by XE (and XwE,
respectively), while its image in the objective space is given by YN (and YwN). For
S ∈ X , let b(S) = (b1(S), b2(S)). Furthermore, let χ denote the bijective characteristic
mapping between the power set P(E) of E and the set of binary vectors {0, 1}n, where
for S ∈ X

χ(S) := (x1, . . . , xn) = x ∈ {0, 1}n, with xi =

{

1, ei ∈ S,

0, ei 6∈ S,

(cf. also Section 7.1). By setting cj
i = wj(ei) for i = 1, . . . , n and j = 1, 2, and defining

f = (f 1, f 2) where

f j :

{

{0, 1}n → Z,

X 7→ max {cj
ixi, i = 1, . . . , n},

for j ∈ {1, 2}, we can transform Problem (8.2) into the binary biobjective optimization
problem

min (f 1(X), f 2(X))
⊤

s.t.
n∑

i=1

xi = k,

xi ∈ {0, 1} ∀i ∈ {1, . . . , n}.

(BBKP)

By construction, we have that f(X) = CX where the matrix C ∈ Z2×n corresponds
to the transformed weights of the items from the ground set. In the following, we
mostly refer to the binary problem formulation and its corresponding notation (cf.
Problem (BBKP)), but change to the combinatorial one (cf. Problem (8.2)), whenever
it is necessary and simplifies the reasoning.
In the remainder of this section it is further assumed that the cost coefficients of the
first row of C are ordered in non-decreasing order, i.e. for the first objective vector
c1 it holds true that c1

1 ≤ c1
2 ≤ . . . ≤ c1

n. If two or more subsequent elements
of c1 coincide, we do not assume any a priori ordering in the second component c2.
Furthermore, two different columns of C may be the same.
Since two subsequent elements of the vector c1 may coincide, let ĉ1

i1
, . . . , ĉ1

im
, where

1 ≤ m ≤ n, denote the distinct cost coefficients of items from E with respect to
c1. Using these m pairwise different coefficients, we can partition E into m layers
Lj := {ei ∈ E : w1(ei) = ĉ1

ij
} where j ∈ {1, . . . , m}. We call Lj the jth layer of E .

Obviously, the set {L1, . . . , Lm} forms a partition of E . We further define

j0 := min

{

t ∈ {1, . . . , m} :

t∑

j=1

|Lj| ≥ k

}

and call Lj0 the marginal layer of E relative to k (with respect to the first objective).
For τ ∈ {0, . . . , m − j0} we set sτ =

∑j0+τ

j=1 |Lj|. Note that for τ ∈ {1, . . . , m − j0} it
holds that

k ≤ sτ−1 < sτ−1 + 1
(A)

≤ sτ

(B)

≤ n,

with equality in (A) if |Lj0+τ | = 1, and with equality in (B) if τ = m− j0.
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Finally, let

Dsτ
=
(
d1

sτ
, d2

sτ

)⊤
:=




c1
1 . . . c1

sτ

c2
1 . . . c2

sτ





denote the restriction of the matrix C to the first sτ columns for τ ∈ {0, . . . , m− j0}.

8.2.2 Algorithm for Solving the Biobjective Binary Knapsack
Problem

In the following, we present an algorithm that aims to generate the complete non-
dominated set YN of an instance of Problem (BBKP) only by means of implicitly
solving at most n different ε-constraint problems by a simple enumeration approach.
Any further scalarization of the two objectives is not needed. Using the algorithm
presented in Xu and Liu [218] for solving the single objective problem in each iteration
of the algorithm, even the complete set of efficient solutions XE can be determined.
Note that the cardinality of this set can be of exponential size, while the cardinality
of YN is bounded by n (cf. Section 4.2.2).

To simplify the notation in the remainder of this section, let BBKP (C, k) denote an
instance of Problem (BBKP), where C ∈ Z2×n and k ∈ {1, . . . , n}. In addition, let
BKP (c, k) correspond an instance of Problem (BKP), where ci ∈ Z for i = 1, . . . , n.
Based on the notation introduced in Subsection 8.2.1 we prove:

Lemma 8.4 Let Xs0
∈ {0, 1}s0 be an optimal solution of BKP(d2

s0
,k) with objective

value f 2
s0

. Then

X̂s0
:= (Xs0

, 0, . . . , 0
︸ ︷︷ ︸

s0+1,...,n

) ∈ {0, 1}n

is an efficient solution of BBKP (C, k), where the corresponding non-dominated ob-
jective vector is given by f(X̂s0

) = (c1
s0

, f 2
s0

).

Proof: Let Xs0
be an optimal solution of BKP(d2

s0
,k). Since by construction c1

s0
is

the kth largest coefficient of c1, there cannot exist any other feasible solution X̂ such
that f 1(X̂) < f 1(X̂s0

) = c1
s0

. Since f 2
s0

is the optimal objective value in the second
component with respect to all elements e ∈ E satisfying w1(e) ≤ c1

s0
, we cannot improve

the objective value in the second component of Ys0
without worsening the first. Hence,

f(X̂s0
) = (c1

s0
, f 2

s0
) is a non-dominated solution of BBKP (C, k) and X̂s0

is efficient.
�

Note that if s0 is equal to k, then f 2
s0

is just the maximum entry of the components of
d2

s0
, i.e. f 2

s0
= max{c2

1, . . . , c
2
s0
}. For completeness, we state the obvious fact that:

Corollary 8.5 If j0 = m, there exists exactly one non-dominated solution that can be
obtained by applying Lemma 8.4, i.e. |YN| = 1.

In the following we suppose that j0 < m. Let χ−1 : {0, 1}n → P(E) denote the inverse
function of the characteristic mapping χ defined in Subsection 8.2.1.
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Lemma 8.6 Let j0 < m, let τ ∈ {1, . . . , m− j0}, and let Xsτ
∈ {0, 1}sτ be an optimal

solution of BKP(d2
sτ

,k) with objective value f 2
sτ

. Furthermore, let f 2
sτ−1

denote the
optimal objective value of BKP(d2

sτ−1
,k). We set

X̂sτ
= (Xsτ

, 0, . . . , 0
︸ ︷︷ ︸

sτ+1,...,n

) ∈ {0, 1}n,

and, we define S := χ−1(X̂sτ
).

1. If f 2
sτ

< f 2
sτ−1

, S contains at least one element from Lj0+τ and X̂sτ
is efficient

for BBKP(C,k). The corresponding non-dominated vector f(X̂sτ
) is given by

(c1
sτ

, f 2
sτ

).

2. If f 2
sτ

= f 2
sτ−1

and S contains at least one element of Lj0+τ , then there exists

another feasible solution X̃ ∈ {0, 1}n whose restriction to the first sτ−1 compo-
nents is optimal for both BKP(d2

sτ−1
,k) and BKP(d2

sτ
,k), and hence dominates

f(X̂sτ
) = (c1

sτ
, f 2

sτ
) for BBKP(C,k).

Proof: Let τ ∈ {1, . . . , m − j0} be arbitrary but fixed. First, we suppose that
f 2

sτ
< f 2

sτ−1
. Then S must contain at least one element which is contained in Lj0+τ ,

otherwise the vector X̃ := (x̂1, . . . , x̂sτ−1
) would be feasible for BKP(d2

sτ−1
,k) with

objective value
f 2(X̃) = f 2

sτ
< f 2

sτ−1
.

This is a contradiction to the optimality of f 2
sτ−1

for BKP(d2
sτ−1

,k). Hence, f(X̂sτ
) =

(c1
sτ

, f 2
sτ

), with f 2
sτ

optimal for BKP(d2
sτ

,k).

If we want to improve f(X̂sτ
) in the second component, we have to consider an-

other feasible solution X̄ such that χ−1(X̄) contains at least one element of the set
⋃m

j=j0+τ+1 Lj if the label Lj0+τ+1 exists. But then f 1(X̄) > c1
sτ

by construction. Hence,

f(X̂sτ
) is a non-dominated solution of BBKP(C,k) and X̂sτ

is efficient. This shows
(1.).
Now suppose that f 2

sτ
= f 2

sτ−1
and that S contains at least one element of Lj0+τ . Let

X̂sτ−1
be an optimal solution of BKP(d2

sτ−1
,k). Obviously,

X̃ = (X̂sτ−1
, 0, . . . , 0
︸ ︷︷ ︸

sτ−1,...,sτ

)

is also feasible for BKP(d2
sτ

,k) with objective value f 2
sτ−1

= f 2
sτ

. Hence, X̃ is optimal for

BKP(d2
sτ

,k), and f(X̃) dominates f(X̂sτ
) = (c1

sτ
, f 2

sτ
), since c1

sτ−1
< c1

sτ
by construction.

�

If we consider the single objective problem BKP(d2
sτ

,k) from Lemma 8.6 in more detail,
we recognize that solving this problem is equivalent to finding the optimal solution of

min f 2(X)

s.t. f 1(X) ≤ ĉ1
j0+τ ,

n∑

i=1

xi = k,

xi ∈ {0, 1} ∀i ∈ {1, . . . , n}.

(8.3)
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Algorithm 8.1 Algorithm for solving the Biobjective Binary Knapsack Problem

Input: An instance (C,k) of Problem (BBKP).
Output: The set of non-dominated solutions YN.
1: Set YN = ∅.
2: Sort the first row of C in non-decreasing order.
3: Determine the layers L1, . . . , Lm and specify the marginal layer Lj0 and s0.
4: Solve the initial problem BKP(d2

s0
,k) → (c1

s0
, f 2

s0
).

5: YN ← (c1
s0

, f 2
s0

).
6: if j0 < m then
7: for τ = 1 to m− j0 do
8: Solve the problem BKP(d2

sτ
,k) → (c1

sτ
, f 2

sτ
).

9: if f 2
sτ

< f 2
sτ−1

then
10: YN ← (c1

sτ
, f 2

sτ
).

11: end if
12: end for
13: end if
14: return YN.

Hence, solving BKP(d2
sτ

,k) is nothing else than solving an ε-constraint problem for
BBKP(C,k) with f 2 as objective function and a constraint on f 1. From Chankong
and Haimes [36] we recall that if X̂ is an optimal solution of Problem (8.3), then X̂ is
at least weakly efficient. If X̂ is the unique optimal solution of Problem (8.3), i.e. of
BKP(d2

sτ
,k), then X̂ is efficient. So, Lemma 8.6 can be seen as a strengthened version

of this result adopted to the special structure of BBKP(C,k).
A short outline of the algorithm that solves Problem (BBKP) is given in Algorithm 8.1.
We restrict ourselves to the calculation of the non-dominated set YN only. Note that in
this case, each subproblem BKP(d2

sτ
,k) can be solved by an algorithm that calculates

the k-largest element in an unsorted list. This can be done in O(n) (cf. Cormen et al.
[42]). If, in addition, a complete set X ⋆ ⊆ X of efficient knapsacks is of interest, an
algorithm that returns the k largest elements of an unsorted list is needed. For fixed
k this is still possible in O(n) (cf. Cormen et al. [42]). If the complete efficient set has
to be calculated, the algorithm proposed in Xu and Liu [218] can be used. Note that
in this case no polynomial bound on the time complexity can be given, since the size
of XE can be exponential in general.

Theorem 8.7 Given an instance of Problem (BBKP), Algorithm 8.1 determines the
set of all non-dominated solutions YN in O(n2) time.

Proof: Since all solutions generated by Algorithm 8.1 correspond to non-dominated
solutions of BBKP(C,k) by Lemma 8.4 and Lemma 8.6, it suffices to show that given
a non-dominated solution of the problem, this solution will be generated during the
course of the algorithm.
So, let a non-dominated vector f(X) of BBKP(C,k) with corresponding efficient rep-
resentative X ∈ {0, 1}n be given, and define S := χ−1(X). Then, there exists at least
one element e ∈ (E ∩ S) such that e ∈ ⋃m

j=j0
Lj . Otherwise, X would not be feasible

for BBKP(C,k) by the definition of Lj0 .

We set α = max
{

t ∈ {0, . . . , m− j0} :
⋃j0+t

j=j0
Lj ∩ S 6= ∅

}

. If α = 0 or j0 = m, X
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and f(X) are generated by Lemma 8.4 and Corollary 8.5, respectively. Otherwise,
we consider Line 7 of Algorithm 8.1 for τ = α > 0. Since X is an optimal solution
of Problem (8.3) for the right hand side ĉ1

j0+τ = f 1(X), f(X) is generated when the
subproblem BKP(d2

sα
,k) is solved. Obviously, f(X) satisfies f 2(X) < f 2

sτ−1
, since oth-

erwise there would exist another feasible solution X̄ of BBKP(C,k) that dominates
X by Lemma 8.6. Hence, f(X) is added to YN which shows that f(X) is generated
during the course of the algorithm.
To prove the stated time complexity of O(n2), we note, that the first row of the matrix
C can be sorted in O(n log(n)). Determining the kth largest element in an unsorted
list can be done in O(n) time (cf. Cormen et al. [42]). This step has to be performed
at most O(n) times. So, the overall complexity of the algorithm is given by O(n2). �

Note that the time-complexity of Algorithm 8.1, stated in Theorem 8.7, coincides with
the time-complexity given in Theorem 4.3 for the general case. Indeed, Algorithm 8.1
can be seen as a special case of the general Algorithm 4.2, where the unconstrained
problem BKP(d2

sτ
,k), τ = 0, . . . , m, is solved in the Lines 4 and 8, respectively. El-

ements contained in layers with index higher than τ are ignored when solving this
subproblem, i.e. their weights are implicitly set to infinity.

8.2.3 Example

In this subsection, we give a short example for solving an instance of Problem (BBKP),
using the notation given in the previous subsections. So, let in the following E =
{e1, . . . , e10}, k = 3 and

C =

(

1 2 3 3 3 4 5 6 6 6

6 4 5 6 8 5 2 2 4 1

)

.

The given problem consists of the m = 6 layers L1 = {e1}, L2 = {e2}, L3 = {e3, e4, e5},
L4 = {e6}, L5 = {e7}, and L6 = {e8, e9, e10}. The marginal layer with respect to w1 is
L3, i.e. j0 = 3, s0 = 5 and

Ds0
=

(

1 2 3 3 3

6 4 5 6 8

)

.

In the first step, we have to solve BKP(d2
s0

,3), where d2
s0

= (6, 4, 5, 6, 8). The optimal
objective value is given by f 2

s0
= 6 and can be obtained by the feasible solutions

S1 = {e1, e2, e3}, S2 = {e1, e2, e4}, S3 = {e1, e3, e4} and S4 = {e2, e3, e4}. Obviously,
these four solutions are also feasible for BBKP(C,k) and lead to the same objective
vector f(χ(Si)) = (c1

s0
, f 2

s0
) = (3, 6), i = 1, . . . , 4, which is non-dominated according to

Lemma 8.4.
For τ = 1 we obtain that s1 = s0 + |L4| = 6 and d2

s1
= (6, 4, 5, 6, 8, 5). The optimal

objective value of BKP(d2
s1

,3) is given by f 2
s1

= 5 and can be obtained only by the
feasible solution S5 = {e2, e3, e6}. Since f 2

s1
= 5 < 6 = f 2

s0
, = f(χ(S5)) = (c1

s1
, f 2

s1
) =

(4, 5) is a non-dominated vector of BBKP(C,k) with efficient solution B5, according
to Lemma 8.6.
For τ = 2 we get that s2 = s1 + |L5| = 7 and d2

s2
= (6, 4, 5, 6, 8, 5, 2). The optimal

objective value of BKP(d2
s2

,3) is given by f 2
s2

= 5 and can be obtained by the four
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feasible solutions S5 = {e2, e3, e6}, S̃1 = {e2, e3, e7}, S̃2 = {e2, e6, e7}, S̃3 = {e3, e6, e7}.
The objective vector f(χ(S̃i)) = (c1

s2
, f 2

s2
) = (5, 5), i = 1, . . . , 3, is a dominated solu-

tion of BBKP(C,3), since it is dominated by f(χ(S5)) = (4, 5). Note that S5 is an
optimal solution for both BKP(d2

s1
,3) and BKP(d2

s2
,3), dominating S̃1, S̃2, S̃3, as stated

in Lemma 8.6.
Finally for τ = 3, we have that s3 = s2 + |L6| = 10 and d2

s3
= (6, 4, 5, 6, 8, 5, 2, 2, 4, 1).

The optimal objective value of BKP(d2
s3

,3) is given by f 2
s3

= 2 and can be only ob-
tained by the feasible solution S6 = {e2, e7, e8}. Since f 2

s3
= 2 < 5 = f 2

s2
, f(χ(S6)) =

(c1
s3

, f 2
s3

) = (6, 2) is a non-dominated solution of BBKP(C,3) with corresponding effi-
cient solution S6.
We conclude that the set of efficient solutions XE and the set of non-dominated solu-
tions YN of the considered instance BBKP(C,3), are given by XE = {S1, . . . , S6} and
YN = {(3, 6), (4, 5), (6, 2)}, respectively.

8.2.4 Connectedness of the (Weakly-)Efficient Set

In this final subsection we discuss connectedness properties of the (weakly) efficient
set for the biobjective binary knapsack problem with fixed cardinality based on the
results from Section 8.1. From Section 7.2.5 we recall that two efficient solutions
X1, X2 of Problem (BBKP) are called adjacent if and only if X2 can be obtained
from X1 by replacing one item in X1 with one item of X2 that is not contained in
X1, i.e. if their corresponding Hemming-distance dH(X1, X2) :=

∑n

i=1 |x1
i − x2

i | = 2
(cf. Definition 7.19). Since all feasible solutions of Problem (BBKP) have the same
cardinality by the definition of the problem, the condition stated in Remark 8.2 is
satisfied. Hence, the set of efficient solutions is not connected in general for these
types of problems, due to Theorem 8.3.
Despite this negative result, we will state a sufficient condition for the connectedness
of XE for Problem (BBKP), only using Algorithm 8.1 in the following. Furthermore,
we prove that the set of weakly efficient solutions is always connected for this type of
biobjective knapsack problem.

Theorem 8.8 The set XE of all efficient solutions of Problem (BBKP) is connected if
the two objective vectors c1 and c2 consist of pairwise different coefficients, respectively.

Proof: We use Algorithm 8.1 to prove this theorem. We assume that in the Lines 4
and 8 of the algorithm, not only the optimal solution of the subproblem is returned,
but also the complete set of optimal knapsacks, generating this solution.
Since the elements of E are sorted in non-decreasing order with respect to their weight
in the first component, it holds that c1

i < c1
j if and only of i < j (i, j ∈ {1, . . . , n}).

Since c1 consists of pairwise different elements, the labels Lj are singletons containing
exactly the element ej ∈ E , additionally m = n and s0 = j0 = k. For this reason, d2

sτ−1

and d2
sτ

differ exactly in the cost vector c2
k+τ in each iteration of the algorithm, where

τ ∈ {1, . . . , n− k}.
Since also c2 consists of pairwise different elements, all subproblems BKP(d2

sτ
,k) have

a unique optimal solution for τ ∈ {0, 1, . . . , n−k}. Since these not necessarily pairwise
different solutions are unique solutions of Problem (8.3) with appropriately chosen right
hand side coefficient, these solutions correspond to efficient solutions of the instance
BBKP(C,k) (cf. Chankong and Haimes [36]). More precisely, from Lemma 8.6 it
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follows that a new efficient solution is generated by solving BKP(d2
sτ

,k), where τ ∈
{1, . . . , n− k}, which is not yet contained in XE, if and only if c2

k+τ < f 2
sτ−1

. Note that
if c2

k+τ > f 2
sτ−1

, the uniquely determined optimal solution for problem BKP(d2
sτ−1

,k) is
also optimal for BKP(d2

sτ
,k).

Let τ ∈ {1, . . . , n−k}, and let Xsτ−1
be the solution which is optimal for BKP(d2

sτ−1
,k),

and let Xsτ
be optimal for BKP(d2

sτ
,k), supposing that

c2
k+τ ≤ f 2(Xsτ

) < f 2(Xsτ−1
) = f 2

sτ−1
.

Since Lk+τ = {ek+τ}, χ−1(Xsτ
) is obtained from χ−1(Xsτ−1

) by exchanging exactly
the element ek+τ ∈ χ−1(Xsτ

) with the uniquely determined element et ∈ χ−1(Xsτ−1
) \

χ−1(Xsτ
) satisfying w2(et) = f 2(Xsτ−1

). Hence, dH(Xsτ−1
, Xsτ

) = 2, and the two
efficient solutions Xsτ−1

and Xsτ
are adjacent. �

Since the first k − 1 smallest entries of c1 and c2, respectively, are not “essential” for
the value of the non-dominated objective vectors for an instance of BBKP(C,k) we
can still strengthen the last theorem:

Corollary 8.9 The set XE of all efficient solutions of Problem (BBKP) is connected
if the first n−k+1 largest components of c1 and c2 are pairwise different, respectively.

Note that the sufficient condition for the connectedness of XE in Corollary 8.9 cannot
be weakened to the case that only the n− k + 1 largest coefficients of one row of the
cost matrix C have to be pairwise different. If only c1 but not c2 satisfies this property,
XE does not have to be connected in general, as the following example shows.

Example 8.10 Let the matrix C be given by

C =

(

2 2 3 4

2 2 1 1

)

,

and consider the instance BBKP(C,2). The efficient set of this problem consists of the
two efficient solutions X1 = (1, 1, 0, 0) and X2 = (0, 0, 1, 1), where f(X1) = (2, 2) and
f(X2) = (4, 1), respectively. Obviously, these two solutions are not adjacent, since
dH(X1, X2) = 4, and XE is not connected.

For completeness, we recall from Theorem 8.3 in Section 8.1:

Corollary 8.11 Let N = 2n for n ∈ N. Then there exist matrices C ∈ Z2×N such
that for the resulting problem instance BBKP(C,n) the distance between all pairs of
efficient solutions of Problem (BBKP) is exactly n, i.e. at maximum.

Proof: Consider the problem instance given by the matrix C ∈ R2×N , where c1
i =

1 = c2
n+i and c2

i = 2 = c1
n+i for all i ∈ {1, . . . , n}. Then the instance BBKP(C,n) has

exactly two efficient solutions

X1 = (1, . . . , 1
︸ ︷︷ ︸

i=1,...,n

, 0, . . . , 0) and X2 = (0, . . . , 0, 1, . . . , 1
︸ ︷︷ ︸

i=n+1,...,N

)

with corresponding objective vectors (1, 2) and (2, 1), respectively. Since dH(X1, X2) =
N , exactly n exchanges are needed to generate X1 from X2 (and vice versa). �
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Figure 8.1: Left: For efficient S1 and S2 the weakly non-dominated points A, B and D can
be generated by an appropriate ε-constraint approach, while the point C is always dominated
by b(S1) or b(S2). Right: For subsequent non-dominated solutions b(S1) and b(S2) the point
b(S) must be weakly non-dominated for Problem (BBKP).

While the efficient set of the counter-example presented in the proof of Theorem 8.3 is
not connected, one can easily verify that the set of weakly efficient solutions satisfies
this property. In fact, all feasible solutions of the given problem instance are also
weakly efficient. We prove in the following that this result does not only hold for this
example problem, but that the set of weakly efficient solutions for Problem (BBKP)
is always connected, where the adjacency of weakly-efficient solutions is based on a
relaxed version of Definition 7.19.
To simplify the notation in the following, we use the combinatorial definition of the
biobjective binary knapsack problem with fixed cardinality given by Problem (8.2)
and its corresponding notation, rather than the notation of the problem description
induced by Problem (BBKP) (cf. Subsection 8.2.1 for further details). Furthermore, we
assume that k ≥ 2, since the weakly efficient set of Problem (BBKP) is automatically
connected for the case that k = 1.
Having a closer look at the given problem, we recognize that we have to consider
two different types of weakly efficient solutions: those that can be generated by an ε-
constraint approach, i.e. as a solution of the subproblem BKP(d2

sτ
,k) for an appropriate

τ ∈ {0, . . . , m−j0} and the others that are not optimal to any ε-constraint problem (cf.
point C in the left subfigure of Figure 8.1). In the biobjective case these solutions are
representatives of the weakly-efficient point (b1(S2), b2(S1)), where S1 and S2 denote
representatives of two subsequent non-dominated solutions with b1(S1) < b1(S2), i.e.
there does not exist S ∈ XE such that b1(S1) < b1(S) < b1(S2) and b2(S2) < b2(S) <
b2(S1) holds true, whenever (b1(S2), b2(S1)) is a feasible point in the objective space.
Obviously, these two types of weakly efficient solutions form a partition of XwE.

Lemma 8.12 Let S1 and S2 denote representatives of two subsequent non-dominated
solutions of Problem (BBKP). Then there exist feasible solutions S̄1, S̄2 ∈ X such that
b(S̄i) = (b1(S2), b2(S1)) and S̄i is adjacent to Si for i = 1, 2.

Proof: We show the lemma for i = 1, since the result for i = 2 follows by a simple
exchange of the indices. So, let S1 and S2 be given as defined above, i.e. it holds that
b1(S1) < b1(S2) and b2(S2) < b2(S1). For j ∈ {1, 2} and S ∈ X we define

Mj(S) = {e ∈ S : wj(e) = bj(S)}.

Since k ≥ 2 by assumption, we can choose e2 ∈M1(S2) arbitrary, but fixed. Obviously,
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e2 6∈ S1, since otherwise this would imply that b1(S1) < b1(S2) = w1(e2) ≤ b1(S1).
Now consider S := (S1 ∪ {e2}) \ {e1}, where e1 ∈ S1 \M2(S1) if |M2(S1)| = 1 and
e1 ∈ M2(S1), whenever |M2(S1)| > 1 holds. By construction, we have that |S| = k,
and b1(S) = w1(e2) = b1(S2) since w1(e) ≤ b1(S1) < b1(S2) holds true for all e ∈ S1.
Furthermore, b2(S) = b2(S1), since w2(e2) ≤ b2(S2) < b2(S1) and, by the choice of
e1, there exists at least one item e ∈ S ∩ (S1 \ {e1}) such that w2(e) = b2(S1). This
completes the proof. �

Since S1 and S2 are defined to be representatives of two subsequent non-dominated
solutions, S̄1, S̄2 are weakly efficient for Problem (BBKP), since if they would be
strongly dominated, this would imply that either b(S1) and b(S2) do not correspond
to two subsequent non-dominated solutions of the problem, or at least one of the two
points is dominated (cf. also the right subfigure of Figure 8.1).

Lemma 8.13 Let S1 and S2 denote representatives of two subsequent non-dominated
solutions of Problem (BBKP). Then there exists a sequence {Si} of weakly efficient
solutions, starting from S1 and ending in S2, such that subsequent elements of this
sequence are adjacent.

Proof: Let S ⊆ (S1∪S2) be arbitrary but fixed, such that |S| = k and S1 6= S 6= S2. We
prove that S is a weakly efficient solution of Problem (BBKP). Since k different items
from E always form a feasible knapsack of the problem, this automatically implies the
existence of the desired sequence.
Assume that S is strongly dominated by S̃ ∈ X . Since by construction w1(e) ≤ b1(S2)
and w2(e) ≤ b2(S1) holds for all e ∈ S, we may assume that S corresponds to a
representative of the point (b1(S2), b2(S1)) in the objective space (for the construction
of this solution, we refer to the proof of Lemma 8.12) that is dominated by S̃. Using
the right subfigure of Figure 8.1, we conclude that S̃ must be contained in Gi for an
i ∈ {1, . . . , 4}. This yields a contradiction, since S̃ cannot be contained neither in G1

(since S1 and S2 are defined to be representatives of two subsequent non-dominated
solutions of problem) nor in Gi (i = 2, 3, 4), since this would imply that either S1, S2

or even both efficient solutions would be dominated by S̃. �

We finally relate the weakly efficient solutions to the efficient solutions of the problem.

Lemma 8.14 Let S denote a weakly efficient solution of Problem (BBKP). Then
there exist an efficient solution S̄ ∈ X and a sequence {Si} of weakly efficient solutions,
starting from S and ending in S̄, such that subsequent elements of this sequence are
adjacent.

Proof: If S ∈ XE, there is nothing to show. So, let S ∈ (XwE \ XE). First, we assume
that S is optimal for the single objective knapsack problem with objective b1 and b2,
respectively. Hence, S corresponds to a node in the optimal solution transformation
graph defined in the introduction of Section 8.2 for this problem, and by a result of Xu
and Liu [218] there must exist a sequence of adjacent optimal solutions connecting S
with any other optimal solution of this specific problem. Since all these solutions are
weakly efficient for Problem (BBKP) (cf. Chankong and Haimes [36]) and at least one
of these solutions is contained in XE, as it corresponds to a lexicographic optimum of
Problem (BBKP), the lemma is proven for this case.
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It remains the case that S is not optimal for none of the two single objective knapsack
problems with objective b1 and b2, respectively. Hence, there must exist S1, S2 ∈ XE

such that b1(S1) ≤ b1(S) ≤ b1(S2) and b2(S2) ≤ b2(S) ≤ b2(S1), with at least one
strict inequality in each case, where b(S1) and b(S2) denote subsequent non-dominated
solutions of Problem (BBKP). First, consider the case that b(S) = (b1(S2), b2(S1)).
Following the same line of argument as in the proof of Lemma 8.13, it is easy to verify
that all knapsacks S̄ ⊆ (S1 ∪ S) with |S̄| = k correspond to weakly efficient solutions
of Problem (BBKP), and hence, S1 and S can be connected by a sequence of weakly-
efficient solutions.
For the remaining case that S is an optimal solution of an ε-constraint problem with
objective b2 (or b1) and an appropriately chosen constraint on the other objective, we
assume that b2(S) = b2(S1) and b1(S1) < b1(S) < b1(S2) holds in the following. For
the opposite case, just change the order of b1 and b2. By construction, S as well as
S1 are both optimal for the ε-constraint problem given by Problem (8.3) with right
hand side b1(S). Hence, both solutions correspond to nodes of the optimal solution
transformation graph of the single objective problem BKP(d2

sτ
,k) for an appropriately

chosen τ ∈ {1, . . . , m − j0}. By the results of Chankong and Haimes [36] and Xu
and Liu [218], there must exist a sequence of optimal solutions to this ε-constraint
problem, i.e. weakly efficient solutions of Problem (BBKP), connecting S with S1 such
that subsequent elements of this sequence are adjacent. �

Note once more that whenever we have that b(S) = (b1(S2), b2(S1)) in the proof of
Lemma 8.14, S is no longer an optimal solution of Problem (8.3) with right hand side
b1(S), since in this case also S2 is a feasible solution satisfying b2(S2) < b2(S) (cf.
Figure 8.1). We conclude:

Theorem 8.15 The set XwE of weakly efficient solutions for Problem (BBKP) is al-
ways connected.

Proof: By Lemma 8.14, each weakly efficient solution can be connected to an efficient
solution by a sequence that consists of weakly efficient solutions only. Furthermore,
by Lemma 8.13, two efficient solutions that correspond to representatives of two sub-
sequent non-dominated solutions of Problem (BBKP) can be connected by a sequence
of adjacent weakly efficient solutions. Hence, it suffices to show that two different
efficient representatives of the same non-dominated solution can also be connected by
a sequence of weakly efficient solutions. But this is once more implied by the results
of Chankong and Haimes [36] and Xu and Liu [218]. �

8.3 Conclusions and Further Ideas

In this chapter we investigated the connectedness of the efficient set for general multi-
ple objective combinatorial optimization problems with several bottleneck objectives.
Based on the main concepts and definitions for analyzing the connectedness of the
efficient set developed in Chapter 7, we showed that the efficient set is not connected
for most of the classical combinatorial problems, when bottleneck objectives are in-
volved. Actually, the presented counter-example does not depend on a special class of
combinatorial problems but rather on the cardinality of the feasible solutions. If all
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feasible solutions have the same cardinality, non-connectedness can be proven for the
general case.
Despite of this negative result, we further presented a solution approach for solving the
fixed cardinality constraint biobjective binary knapsack problem with two bottleneck
objectives. The developed algorithm can be seen as a special case of Algorithm 4.2
stated in Section 4.2.2. Based on this algorithm, we derived a sufficient condition for
the connectedness of the efficient set of this problem. Furthermore, also the connect-
edness of the weakly efficient set for arbitrary instances was proven. To the best of our
knowledge, this is the first non-trivial problem found so far, where the set of efficient
solutions is not connected in general, but where the weakly efficient set satisfies this
property independently from any special input data.
Concerning future streams of research on this topic, one might suggest to investigate,
whether the property of a connected weakly efficient set for the considered knapsack
problem still holds, when more than two bottleneck objectives are considered.
We already mentioned at the beginning of this chapter that neighborhood search based
solution concepts for multiple objective problems with bottleneck objectives are mainly
relevant for problems where the single objective problem is already NP-hard to solve
(like it is the case for the bottleneck traveling salesman problem). Hence, one could
focus on these problems and try to investigate, whether the weakly efficient set of
these problems is connected or not. Maybe it is also possible to derive conditions
under which the set of efficient solutions of such problems is ensured to be connected,
like it is possible for the considered knapsack problem in Section 8.2.4.





Chapter 9
Greedy Algorithms for a Class of Knapsack
Problems with Binary Weights

The binary multidimensional knapsack problem is a classical NP-hard problem with
many applications and for which several theoretical results are known (see, e.g., Wein-
gartner and Ness [213] and Kellerer et al. [113]). In general, the problem consists in
selecting a subset of given objects (or items) in such a way that the total profit of the
selected objects is maximized, while a set of m ≥ 1 knapsack constraints are satisfied.
Due to its complexity, exact algorithms can only solve small to medium sized instances
in a reasonable amount of time. For this reason, many heuristic procedures have been
proposed in the literature, for example in the articles of Chu and Beasley [38], Glover
and Kochenberger [80], Raidl and Gottlieb [179], Tavares et al. [200] and Vasquez and
Vimont [207], only to mention a few.

Following the ideas presented in Chapter 3, transforming the m constraints into m
minimizing objectives, we obtain a special case of the multiple objective unconstrained
combinatorial optimization problem (cf. also Section 7.2.8). This problem is also NP-
hard to solve (cf. [54]) and to the best of our knowledge no algorithm has been
proposed to solve it.

In this chapter, we consider the binary m-dimensional knapsack problem with binary
weight coefficients and the (m+1)-objective unconstrained optimization problem with
m binary criteria coefficients. We show that for m = 2, the problems above can be
solved to optimality in polynomial time by following a simple greedy strategy.

Two additional aspects are worthwhile noting. First, the greedy algorithm for the
triobjective unconstrained problem with binary criteria coefficients provides a con-
structive proof that the set of the efficient solutions for this problem is connected
according to a combinatorial definition of adjacency of efficient solutions for the given
problem. For the main concepts and results concerning the connectedness of the effi-
cient set, we refer to Chapter 7. Second, the cardinality of the non-dominated set is
bounded by a polynomial function of the number of items, which is often not the case
in multiple objective combinatorial optimization (see, e.g., Ehrgott [53]). The greedy
algorithm proposed in this chapter solves the triobjective problem in polynomial time
and takes constant amount of time to find each efficient solution after a pre-processing
step. We further show that the algorithm is optimal in terms of upper bound time
complexity. Additional numerical experiments indicate that this approach is indeed
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very efficient in practice.

The chapter is organized as follows. In Section 9.1, we introduce the notation and
the problems. Furthermore, we present the pre-processing phase that is common to
all algorithms described in this section. The greedy algorithm for the binary two-
dimensional problem with equality constraints is presented in Section 9.2. The algo-
rithms for the triobjective unconstrained problem and for the binary two-dimensional
problem with inequality constraints are discussed in Sections 9.3 and 9.4, respectively.
The results on the connectedness of the efficient set are proven in Section 9.5, and we
conclude in Section 9.6.

Note that the results presented in this chapter are also published as a technical report
in Gorski et al. [86].

9.1 Notation and Pre-Processing

Let E denote a set of n items. A subset S ⊆ E of items from E is called a knapsack in
the following. The set of all feasible knapsacks is denoted by X . For j ∈ {1, . . . , m},
the profit of each item s ∈ E and its weight at dimension j is given by p(s) > 0
and wj(s) ≥ 0, respectively. The maximum capacity of a knapsack at dimension j
is denoted by cj. We define by p(S) =

∑

s∈S p(s) and wj(S) =
∑

s∈S wj(s) the total
profit and the total weight at dimension j of the items in knapsack S, respectively.
In our particular case, we assume that wj(s) can only take binary values for all items
s ∈ E .
We define the binary m-dimensional knapsack problem with binary weights (m-KP≤)
as follows:

Definition 9.1 Given a finite set E , for each s ∈ E a profit p(s) > 0 and a weight
wj(s) ∈ {0, 1}, and a non-negative integer cj, find a subset S ∈ X such that p(S) is
maximal and wj(S) ≤ cj, for j = 1, . . . , m.

When m = 1, Problem (m-KP≤) simplifies to a sequential knapsack problem with
divisible weights, which is solvable in O(n log n) time (cf. Hartmann and Olmstead
[99]). We introduce the following special case of (m-KP≤), the binary m-dimensional
knapsack problem with equality constraints and binary weights (m-KP=):

Definition 9.2 Given a finite set E , for each s ∈ E a profit p(s) > 0 and a weight
wj(s) ∈ {0, 1}, and a non-negative integer cj, find a subset S ∈ X such that p(S) is
maximal and wj(S) = cj, for j = 1, . . . , m.

If we transform the m constraints of Problems (m-KP=) and (m-KP≤) into m objec-
tives to minimize (cf. also Chapter 3 for this idea), we obtain a variant of the multiple
objective unconstrained combinatorial optimization problem, the (m+1)-objective un-
constrained combinatorial optimization problem with m binary weights (m-MP), that
is defined as follows.

Definition 9.3 Given a finite set E , for each s ∈ E a profit p(s) > 0 and a weight
wj(s) ∈ {0, 1}, find a subset S ∈ X such that p(S) is maximal and wj(S) is minimal,
for j = 1, . . . , m.
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Figure 9.1: The hexagonal grid G in the R2-plane.

Note that Problem (m-MP) is nothing else then the associated multiple objective opti-
mization problem of Problem (m-KP≤) (cf. Section 3.1). The set of efficient knapsacks
of Problem (m-MP) is denoted by XE in the following, while its corresponding set of
non-dominated points in the objective space is given by YN.
We recall from Chankong and Haimes [36] that a given efficient knapsack of Prob-
lem (m-MP) corresponds to an optimal knapsack for Problem (m-KP≤) for appropri-
ately chosen, non-negative integers c1, . . . , cm. Moreover, if there exists an optimal
knapsack for Problem (m-KP≤) with non-negative integers c1, . . . , cm, then this knap-
sack is at least weakly-efficient for Problem (m-MP). Note that if there exists an
optimal knapsack for Problem (m-KP=) with non-negative integers c1, . . . , cm, this
knapsack may not even be weakly-efficient for Problem (m-MP) in general.
In the following, we are particularly interested in the two-dimensional case (m = 2)
of Problems (m-KP≤) and (m-KP=). For the latter problem, we denote the set of all
optimal knapsacks for the constraint (c1, c2) by S(c1, c2). If c1 = 0 (or c2 = 0) we
call S(0, c2) (or S(c1, 0)) a basis with respect to c2 (or c1). Moreover, ρ(c1, c2) denotes
the optimal profit value for this problem with constraint (c1, c2), i.e. ρ(c1, c2) = p(S)
where S ∈ S(c1, c2).
For the Problem (m-MP) with m = 2, we consider the problem of finding the set YN

since to find all efficient knapsacks is an intractable task (cf. Ehrgott [54]).
To illustrate the ideas developed in the following, we use a geometric interpretation of
the image of all feasible solutions for the two weight objectives w1 and w2 as a set

G :=
{(

w1(S), w2(S)
)
, S ⊆ E

}

that forms an hexagonal grid in the R2-plane (cf. Figure 9.1). Since for each combina-
tion of the weight objectives w1 and w2 there can exist at most a single non-dominated
solution, |G| ∈ O(n2) obviously defines a strict upper bound on the cardinality of the
non-dominated set.
In the following sections, we present greedy algorithms to solve the three problems
defined above. After a pre-processing phase, the algorithm solves Problem (2-KP=)
by inserting items into the knapsack according to a given sequence of items. The non-
dominated set of Problem (2-MP) is found by iteratively solving the previous problem
for several constraints. Finally, Problem (2-KP≤) is solved based on the results for
Problem (2-MP).
Note that the following pre-processing step is common to all algorithms presented in
this section. It consists of partitioning the set of items and sorting its elements with
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respect to their profit values. Without loss of generality, we assume that w1(s) +
w2(s) ≥ 1 for all items s of the problem. Note that items with null weights will only
augment the profit value of a knapsack. Therefore, we can remove those items, store
the sum of their profits and solve the problem for the remaining ones.
We partition the set of items according to their weights (w1(s), w2(s)) for all items
s and obtain three different sets where all elements in a set have the weights (1, 0),
(0, 1) and (1, 1), respectively. We denote these sets by R, U and D, respectively, and
their cardinalities by nR, nU and nD. Without loss of generality, we assume that
nU ≤ nR. Next, we sort the elements of each set in non-increasing order of the profit
values. We store the profit values of these items in the sequences r = (r1, r2, . . . , rnR

),
u = (u1, u2 . . . , unU

) and d = (d1, d2, . . . , dnD
).

In the following subsections, we will interleave between sequences of items and se-
quences of profits. The correspondence between an item in the sequence U , R or D
and its profit in the sequence u, r or d should be clear from the context.

9.2 The Knapsack Problem with Two Equality

Constraints

The greedy algorithm described in this section returns an optimal knapsack for Prob-
lem (2-KP=) for an arbitrary constraint (c1, c2) in G. The algorithm starts by finding
an optimal knapsack for a given basis and proceeds by filling it with items taken from
sets U , R and D based on the decomposition

(

w1(S)

w2(S)

)

=
(
c1 − c2

)
·
(

1

0

)

+ c2 ·
(

1

1

)

=

(

c1

c2

)

(9.1)

for c1 ≥ c2 and a similar decomposition for c2 ≥ c1, respectively.
For the sake of the explanation, we call as super-item a pair of items where one is
taken from set R and the other is taken from set U . A super-item has a weight (1, 1)
and its profit is the sum of the profits of the two items.
For the remaining results of this section, we state the following remark.

Remark 9.4 For a given constraint (c1, c2) ∈ G\{(0, 0)}, there is at least one optimal
knapsack that contains the first items from set U , R or D.

The first lemma states that it is easy to find the optimal profit value of knapsacks in
a basis.

Lemma 9.5 Let c1 ∈ {1, . . . , nR} and c2 ∈ {1, . . . , nU}. Then, for all knapsacks
S ∈ S(c1, 0) and S ′ ∈ S(0, c2) it holds

p(S) =

c1∑

i=1

ri and p(S ′) =

c2∑

i=1

ui.

Proof: Let S ∈ S(c1, 0). Obviously, knapsack S cannot contain any items of sets U and
D. Hence, we assume that S corresponds to the knapsack containing the first c1 items
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of R. Since the sequence r is sorted in non-increasing order, p(S) =
∑c1

i=1 ri is the
optimal profit criterion value of (2-KP=). A similar reasoning applies for S ′ ∈ S(0, c2).
�

Starting from an optimal knapsack in a basis, we establish the connection between
these knapsacks and optimal knapsacks in S(c1, c2).

Lemma 9.6 Let (c1, c2) ∈ G with 0 < c2 < c1. Then, there exists an optimal knapsack
S ∈ S(c1, c2) that contains all items of an optimal knapsack S ′ ∈ S(c1 − c2, 0).

Proof: Assume that the statement is false. Following Remark 9.4 and Lemma 9.5, let
S ′ ∈ S(c1 − c2, 0) contain the first c1 − c2 items of R and let S ∈ S(c1, c2) contain the
first k items of R. Clearly, k < c1 − c2, since otherwise S would contain all items of
S ′. Consider a knapsack S̃ that contains only the items from S that belong to R and
a knapsack S̄ that contains the remaining items from S. Then, S̄ only contains items
from U and D, i.e. w1(S̄)− w2(S̄) ≤ 0. However, since S is feasible, we have that

w1(S̄)− w2(S̄) = w1(S)− w1(S̃)−
(

w2(S)− w2(S̃)
)

= c1 − k −
(
c2 − 0

)

= c1 − c2 − k > c1 − c2 −
(
c1 − c2

)
= 0.

This contradicts our previous result. �

Clearly, a similar result to Lemma 9.6 can be obtained for the case that 0 < c1 < c2.
Lemma 9.6 suggests a greedy algorithm to solve Problem (2-KP=) for a given (c1, c2) ∈
G. Assume that 0 < c2 ≤ c1. First, fill the knapsack with the first c1 − c2 items from
R. Then repeat the following procedure c2 times:

(i) Select the three items with the largest profit in R, U and D, respectively, that are
not in the knapsack; let the two items from R and U correspond to a super-item.

(ii) From the item of D or the super-item of R and U , insert the one with the largest
profit into the knapsack.

Let D̄ denote the sequence of these last c2 (super-)items. The following theorem states
that the application of the above given procedure results in an optimal knapsack for
a given instance of (2-KP=) where 0 < c2 ≤ c1.

Theorem 9.7 Let (c1, c2) ∈ G such that 0 < c2 ≤ c1, and let S denote the knapsack
that includes the first c1 − c2 items from R and the c2 (super-)items from D̄. Then
S ∈ S(c1, c2).

Proof: According to the description above, S is a feasible knapsack and satisfies the
decomposition (9.1). Now, assume that S is not optimal, i.e. there exists another
feasible knapsack S ′ such that p(S ′) > p(S). According to the construction of S as
well as the result from Remark 9.4 and Lemma 9.6, we may assume that S ′ includes
the first c1−c2 elements of R. Therefore, the weights of the remaining items in S ′ must
sum up to (c2, c2), since otherwise S ′ would not be a feasible knapsack. However, this is
only possible if the cardinality of items from U and the cardinality of additional items
from R coincide since they do not augment the value of the two weight coefficients
simultaneously as all the items in D do. Hence, S ′ must contain a combination of
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items (aside from the first c1 − c2 items of R) whose total profit is equal to the sum
of the c2 profit values of (super-)items in D̄. However, this means that p(S ′) = p(S),
which contradicts the assumption that S is not in S(c1, c2). �

Using the same reasoning as above, we can construct an optimal knapsack for the case
where 0 < c1 < c2. This optimal knapsack contains the first c2 − c1 items of U and
the c2 items of the sequence D̄, which corresponds to the sequence of items from D
and appropriately combined super-items of R and the remaining items in U .

The algorithm for computing the optimal profit value for Problem (2-KP=) with con-
straint (c1, c2) is given by Algorithm A.1 in Appendix A. We assume without loss of
generality that dj, rc+i and ui always exist in the outline of Algorithm A.1. We omit
to give an additional outline for the case that 0 < c1 < c2.

Note that since sequences R, U and D are sorted according to the profits, we can find
the optimal knapsack in linear time after the pre-processing phase. The algorithm
takes O(n log n) time due to the sorting step at the pre-processing phase.

9.3 The Unconstrained Triobjective Optimization

Problem with Two Binary Weights

Based on the results of the previous section, we can derive a straight-forward algo-
rithm that finds the non-dominated set for Problem (2-MP) in polynomial time: First,
call the greedy algorithm to solve Problem (2-KP=) for every constraint (c1, c2) ∈ G
(see Section 9.2) and store each optimal profit found and corresponding weight vector
as a tuple; then, remove the dominated tuples. Clearly, the remaining set of tuples
corresponds to the non-dominated set of Problem (2-MP). Since the removal of domi-
nated tuples can be performed in O(n log n) [121], this algorithm has O(n3 log n) time
complexity. In this section we present an improvement on the algorithm above that
reduces the time complexity to O(n2). The resulting algorithm is optimal in terms of
upper bound time complexity.

The remaining parts of this section are organized as follows: After proving important
dominance relations for different pairs of (c1, c2) ∈ G, we derive a strict lower bound on
the cardinality of the non-dominated set. Using these results we further show that we
can find the non-dominated set of Problem (2-MP) without even applying the filtering
step to remove dominated knapsacks at the end.

In the following we will focus on the case that 0 < c2 ≤ c1 and only mention equivalent
results for the case that 0 < c1 < c2 briefly. Hence, let 0 < c2 ≤ c1, let c = c1 − c2

and let λ = min{nR− c, nU}. For a given basis S(c, 0), c ∈ {0, . . . , nR}, let D̄c denote
the sequence of λ (super-)items that are chosen according to the greedy algorithm
described in Section 9.2. Moreover, we store the profits of the elements in D̄c in the
sequence d̄c and the profits of the super-items in the sequence d̃c. In this case we say
that these sequences correspond to the given basis c. For the remaining results of this
section, we introduce the following corollary.

Corollary 9.8 Let (c1, c2) ∈ G such that c1 = nR + nD. Then there exists a sequence
{Si}i of knapsacks such that Si ∈ S(c1 − c2 + i, i) for i = 0, . . . , c2 and Si and Si+1

differ in exactly one (super-)item in the sequence D̄c1−c2.
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Figure 9.2: Sectors and Dominance.

Proof: The proof follows directly from Theorem 9.7. Let S0 ∈ S(c1 − c2, 0) be the
knapsack that contains the first c1 − c2 items of R and let Si contain all items from
S0 and the first i (super-)items in sequence D̄c1−c2 for i ∈ {1, . . . , c2}. Then, Si ∈
S(c1 − c2 + i, i) for i = 0, . . . , c2 and Si and Si+1 differ in exactly one (super-)item in
the sequence D̄c1−c2. �

Clearly, a similar result holds for the case that c2 = nU + nD. Corollary 9.8 suggests
that Problem (2-KP=) can be solved for several constraint values by starting from a
knapsack in a basis and subsequently adding c2 items from the sequence D̄c1−c2 for
c1 = nR + nD. By repeating this procedure for each basis, we obtain an algorithm
that finds the profit values of Problem (2-KP=) for all constraints in the grid G in
O(n2) time. Since O(n2) have to be filtered for dominance, the non-dominated set for
Problem (2-MP) can be found in O(n2 log n).
In the remaining part of this section, we will present an improved approach that
solves Problem (2-MP) in O(n2) time. In more detail, we will show in the following
that we may not need to consider the complete sequence D̄c as defined above and
that the removal of dominated knapsacks does not even need to be performed. For
this purpose, we have to split the grid G into three sectors G1, G2 and G3 defined as
follows: G1 corresponds to the points of the grid that do not lie under the line segment
connecting the points (0, 0) and (nU + nD, nU + nD); G2 consists of all points in the
grid between the line segments connecting the points (0, 0) and (nU + nD, nU + nD)
and the points (nR−nU , 0) and (nR +nD, nU +nD), respectively; the remaining points
of the grid form G3 (cf. also the left subfigure of Figure 9.2). Note that all integer
points on the border of two sectors belong to both sectors and that it is assumed that
nU ≤ nR.

9.3.1 Dominance Relations in G
In the following we establish dominance relations among points in G. For a con-
straint (c1, c2) ∈ G we know that a knapsack S ∈ S(c1, c2) can be dominated by any
other knapsack in S((c1, c2) − R2) ∩ G) and that S potentially dominates knapsacks
in S((c1, c2) + R2) ∩ G) by definition of Problem (2-MP) (cf. also Figure 9.2). In
addition, while knapsack S can never dominate (or be dominated by) knapsacks in
S(c1 +1, c2 +1) (or in S(c1− 1, c2− 1)) by the construction of the sequences in Corol-
lary 9.8, this can be the case for all knapsacks in S(c1 + 1, c2) or in S(c1, c2 + 1) (or in
S(c1 − 1, c2) or in S(c1, c2 − 1)). In the following we will focus on these cases.
To simplify the notation, we say that there exists horizontal dominance, to the right or
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from the left when an optimal knapsack to Problem (2-KP=) with constraint (c1, c2) ∈
G dominates (or is dominated by) his right (left) neighbor, i.e. an optimal knapsack
to Problem (2-KP=) with constraint (c1 + 1, c2) ∈ G (or (c1− 1, c2) ∈ G, respectively).
Furthermore, we say that we have vertical dominance, to the top or from the bottom
whenever an optimal knapsack to Problem (2-KP=) with constraint (c1, c2) ∈ G dom-
inates (or is dominated by) his top (bottom) neighbor, i.e. an optimal knapsack to
Problem (2-KP=) with constraint (c1, c2 + 1) ∈ G (or (c1, c2 − 1) ∈ G, respectively).
We will show in the following that vertical dominance can apply in G1 and G2 while
horizontal dominance is not possible in these sectors. For Sector G3 we will prove that
horizontal dominance is possible but never vertical dominance.
We start by introducing two lemmas that will be useful for deriving the main results
about vertical and horizontal dominance in the three sectors. Starting from a knapsack
S0 ∈ S(0, c) where c ∈ {0, . . . , nU} we have that

ρ(nU + nD − c, nU + nD) =

nU−c∑

i=1

ri +

nU∑

i=1

ui +

nD∑

i=1

di, (9.2)

in G1, according to Corollary 9.8. For c ∈ {0, . . . , nR − nU} and S0 ∈ S(c, 0) Corol-
lary 9.8 provides that

ρ(nU + nD + c, nU + nD) =

nU +c∑

i=1

ri +

nU∑

i=1

ui +

nD∑

i=1

di, (9.3)

in G2, whereas in G3 we have that

ρ(nR + nD, nR + nD − c) =

nR∑

i=1

ri +

nR−c∑

i=1

ui +

nD∑

i=1

di, (9.4)

where c ∈ {nR − nU , . . . , nR} and S0 ∈ S(c, 0). Since all profits are positive by
assumption, it follows from (9.2), (9.3) and (9.4):

Lemma 9.9 The finite sequences

{ρ(nD + i, nU + nD)}nR

i=0 and {ρ(nD + nR, nD + i)}nU

i=0

are strictly increasing.

Focusing on the Sectors G2 and G3 we establish the following relations.

Lemma 9.10 Let c ∈ {0, . . . , nR} and let the sequence d̄c correspond to the basis
S(c, 0).

1. Let c ∈ {0, . . . , nR − 1} and i ∈ {1, . . . , nR − c}. Then d̄c
k ≥ d̄c+i

k for all k ∈
{1, . . . , nD + min(nR − (c + i), nU)}.

2. Let c ∈ {0, . . . , nR−nU −1}. Then d̄c
k+1 ≤ d̄c+1

k for all k ∈ {1, . . . , nU +nD−1}.

3. Let c ∈ {nR − nU , . . . , nR − 1}. Then d̄c
k+1 ≤ d̄c+1

k for all k ∈ {1, . . . , nR + nD −
(c + 1)}.
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Proof: The proof of (1.) follows immediately from the construction of the sequences d̄c

and d̄c+i.
To prove (2.) we distinguish two cases. For the first case we assume that the first
element of the sequence d̄c corresponds to the profit of a super-item. Then, nD of
the remaining nU + nD − 1 elements of d̄c coincide with nD elements of d̄c+1 since
both sequences contain the nD profit values of the items in D. In addition, by the
construction of the super-items it holds that

d̃c
k+1 = rc+k+1 + uk+1 ≤ rc+k+1 + uk = d̃c+1

k

for all k ∈ {1, . . . , nU − 1}. Since the elements of the sequences are sorted in non-
increasing order, this implies that d̄c+1

k ≥ d̄c
k+1 for all k ∈ {1, . . . , nU + nD − 1}. For

the second case, let ℓ > 1 correspond to the index of the profit of the first super-item
contained in the sequence d̄c. For k ∈ {1, . . . , ℓ−2} it holds that d̄c

k = dk ≥ dk+1 = d̄c
k+1

by construction and, in addition, we have that d̄c
ℓ = d̃c

1 = rc+1 +u1 ≥ rc+2 +u1 = d̃c+1
1 .

This implies that d̄c+1
k = dk for k = 1, . . . , ℓ − 1 and Part (2.) is true at least until

k = ℓ. For the remaining indices we can apply the same reasoning as in the first
case taking into account that the remaining elements of the sequence d̄c and d̄c+1 only
coincide in the nD − (ℓ − 1) profit values dℓ, . . . , dnD

of items contained in D. This
completes the proof for the second case.
The proof of (3.) is similar to the proof of Part (2.). �

We will use Lemma 9.9 and Lemma 9.10 to derive results for vertical and horizontal
dominance between neighbor points in the same sector.

Theorem 9.11 For Sector G3 it holds:

1. Let (c1, c2) ∈ G such that nR − nU ≤ c1 − c2 ≤ nR − 1 and nR − nU ≤ c1 ≤
nR+nD−1. If S ∈ S(c1, c2) dominates S ′ ∈ S(c1+1, c2) then S̄ ∈ S(c1+j, c2+j)
also dominates S̄ ′ ∈ S(c1 + j + 1, c2 + j), where j ∈ {0, . . . , nD + nR − (c1 + 1)}.

2. Let c ∈ {nR−nU , . . . , nR−1} and let S ∈ S(c+i+1, i) and S ′ ∈ S(c+i+1, i+1),
where i ∈ {0, . . . , nR + nD − (c + 1)}. Then S does not dominate S ′.

Proof: To prove (1.), let S dominate S ′, i.e. p(S) ≥ p(S ′). Since according to

Lemma 9.10 it holds that d̄c1−c2

k ≥ d̄c1−c2+1
k for all k ∈ {1, . . . , nD +nR− (c1− c2 +1)},

we have that

p(S̄) = p(S) +

c2+j
∑

k=c2+1

d̄c1−c2

k ≥ p(S) +

c2+j
∑

k=c2+1

d̄c1−c2+1
k

≥ p(S ′) +

c2+j∑

k=c2+1

d̄c1−c2+1
k = p(S̄ ′),

for j ∈ {1, . . . , nD + nR − (c1 + 1)}. This implies that S̄ dominates S̄ ′.
To prove (2.), we assume that there exists an index i ∈ {0, . . . , nR + nD − (c + 1)}
such that S ∈ S(c + i + 1, i) dominates S ′ ∈ S(c + i + 1, i + 1). Using the fact that
d̄c+1

k ≥ d̄c
k+1 for all k ∈ {1, . . . , nR + nD − (c + 1)} from Lemma 9.10 this would imply

that S̄ ∈ S(nR + nD, nR + nD − (c + 1)) dominates S̄ ′ ∈ S(nR + nD, nR + nD − c) and
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hence ρ(nR +nD, nR +nD−(c+1)) ≥ ρ(nR +nD, nR +nD−c), which is a contradiction
to Lemma 9.9. �

We established that there can exist horizontal dominance but never vertical dominance
in Sector G3. Note that the same reasoning as in Part (1.) of Theorem 9.11 can be
applied for Sector G2 assuming that there is dominance to the right somewhere in this
sector. Nevertheless, the next theorem shows that the assumption of dominance to
the right is never met in G2.

Theorem 9.12 For Sector G2 it holds:

1. Let c ∈ {0, . . . , nR−nU −1} and let S ∈ S(c+ i, i) and S ′ ∈ S(c+ i+1, i), where
i ∈ {0, . . . , nU + nD}. Then S does not dominate S ′.

2. Let (c1, c2) ∈ G such that 1 ≤ c1 − c2 ≤ nR − nU and 0 ≤ c2 ≤ nU + nD − 1.
If S ∈ S(c1, c2) dominates S ′ ∈ S(c1, c2 + 1), then S̄ ∈ S(c1 + j, c2 + j) also
dominates S̄ ′ ∈ S(c1 + j, c2 + j + 1), where j ∈ {0, . . . , nU + nD − (c2 + 1)}.

Proof: The proofs for (1.) and (2.) follow the same line of argument as the proofs of
(2.) and (1.) in Theorem 9.11, respectively. To prove (1.), the first part of Lemma 9.10
has to be used, while the second result can be deduced from (2.) of Lemma 9.10. �

For Sector G1 we briefly state an analogous result to Lemma 9.10.

Lemma 9.13 Let c ∈ {0, . . . , nU} and let the sequence d̄c correspond to the basis
S(0, c).

1. Let c ∈ {0, . . . , nU − 1} and i ∈ {1, . . . , nU − c}. Then d̄c
k ≥ d̄c+i

k for all k ∈
{1, . . . , nU + nD − (c + i)}.

2. Let c ∈ {0, . . . , nU −1}. Then d̄c
k+1 ≤ d̄c+1

k for all k ∈ {1, . . . , nU +nD− (c+1)}.

Proof: The proofs follow the same idea as the proofs for Part (1.) and Part (3.) in
Lemma 9.10. �

We use Lemma 9.13 to derive that there cannot exist horizontal dominance in G1 but
that vertical dominance is possible.

Theorem 9.14 It holds:

1. Let (c1, c2) ∈ G such that 0 ≤ c2 − c1 ≤ nU − 1 and c2 ≤ nU + nD − 1. If
S ∈ S(c1, c2) dominates S ′ ∈ S(c1, c2+1) then S̄ ∈ S(c1+j, c2+j) also dominates
S̄ ′ ∈ S(c1 + j, c2 + j + 1), where j ∈ {0, . . . , nU + nD − (c2 + 1)}.

2. Let c ∈ {0, . . . , nU − 1} and let S ∈ S(i, c + i + 1) and S ′ ∈ S(i + 1, c + i + 1),
where i ∈ {0, . . . , nU + nD − (c + 1)}. Then S does not dominate S ′.

Proof: The proofs follow the same line of argument as the proofs for Theorem 9.12
using Lemma 9.13 instead of Lemma 9.10. �

To summarize, we have shown that there can be vertical dominance in Sectors G1 and
G2 and there can be horizontal dominance in Sector G3. We will use these properties
to show the following technical theorem which is very important for the next sections.
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-

6

ℓ

(c1 − c2, 0)

(c1, c2)

Figure 9.3: Construction of the line segment ℓ in the proof of Theorem 9.15 for (c1, c2) ∈ G2.

Theorem 9.15 Let S ∈ S(c1, c2), where c1 · c2 6= 0.

1. Let (c1, c2) ∈ G1∪G2. Then, S cannot be dominated by any knapsack S ′ satisfying
c2 ≥ w2(S ′) ≥ w1(S ′)+c2−c1. Furthermore, if S is dominated, then there exists a
knapsack S̄ ∈ S(c̄1, c̄2), where c̄1 = c1, c̄2 < c2, (c̄1, c̄2) ∈ G1∪G2 and p(S̄) ≥ p(S)
that dominates S.

2. Let (c1, c2) ∈ G3. Then S cannot be dominated by any knapsack S ′ satisfying
c1 ≥ w1(S ′) ≥ w2(S ′)+c1−c2. Furthermore, if S is dominated, then there exists
a knapsack S̄ ∈ S(c̄1, c̄2), where c̄1 < c1, c̄2 = c2, (c̄1, c̄2) ∈ G3 and p(S̄) ≥ p(S)
that dominates S.

Proof: We start with the proof of (1.). Let S ∈ S(c1, c2) be a dominated knapsack
and let (c1, c2) ∈ G1 ∪ G2 with c1 · c2 6= 0. Then, there exists a knapsack S̄ such that
p(S̄) ≥ p(S), w1(S̄) ≤ c1 and w2(S̄) ≤ c2 with at least one strict inequality. Without
loss of generality we may assume that S̄ ∈ S(c̄1, c̄2) where c̄i = wi(S̄) for i = 1, 2.
Since S ∈ S(c1, c2), we have that S̄ 6∈ S(c1, c2). Hence, c̄1 < c1 or c̄2 < c2. Assume
that c̄2 ≥ c̄1 + c2− c1, i.e. the point (c̄1, c̄2) does not lie underneath the line segment ℓ
connecting the point (c1, c2) with (0, c2−c1), if (c1, c2) ∈ G1, and (c1−c2, 0) if (c1, c2) ∈
G2, respectively (cf. also Figure 9.3). Using Equation (9.2) and Equation (9.3), we
conclude that the point (c̄1, c̄2) must lie above the line segment.
Without loss of generality we may assume now that c̄2 = c2 and c̄1 < c1 since otherwise
we can construct a new knapsack S̃ ∈ S(c̃1, c2) by applying Corollary 9.8, such that
p(S̃) > p(S̄) ≥ p(S) and c̃1 < c1.
First assume that p(S̄) > p(S). This implies that there exist two knapsacks S̄1 ∈
S(c̄1 + j, c2) and S̄2 ∈ S(c̄1 + j + 1, c2) for a fixed j ∈ {0, . . . , c1 − c̄1 − 1} such that
p(S̄1) > p(S̄2) and hence, S̄1 would dominate S̄2 to the right. However, this is not
possible in G1 ∪ G2 due to Theorem 9.12 and Theorem 9.14, respectively.
Hence, we have that p(S̄) = p(S). Assume that c̄1 = c1 − 1. This implies that S̄
dominates S to the right which is not possible. Hence, c̄1 ≤ c1 − 2 and there exists
another knapsack S̄1 ∈ S(c̄1 + 1, c2) such that p(S̄1) > p(S̄) since otherwise S̄1 would
be dominated from the left by S̄. But this implies once more that now p(S̄1) > p(S),
which is not possible in G1 ∪ G2.
We conclude that (c̄1, c̄2) must lie underneath the line segment ℓ. If c̄1 < c1 we use
once more Corollary 9.8 to construct a knapsack S̄ ∈ S(c̄1, c̄2), where c̄1 = c1, c̄2 < c2

is satisfied. Obviously, S̄ dominates S. Since there is no dominance to the top in
Sector G3 according to Theorem 9.11, we finally can assume that (c̄1, c̄2) ∈ G1 ∪ G2.
This proves (1.).
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By a similar line of argument, (2.) can be proven. �

9.3.2 Lower Bound on the Cardinality of the Non-dominated

Set

In this second part we establish a strict lower bound on the cardinality of the non-
dominated set YN using the dominance relations in the different sectors.

Remark 9.16 Without loss of generality we assume in the following that super-items
are always included first in an optimal knapsack if there exist other items in D having
the same profit value.

Applying the rule stated in Remark 9.16 does not change the profit value of an optimal
solution, but simplifies the reasoning in the following since tedious case differentiations
can be omitted. We start with the knapsacks that belong to a basis.

Lemma 9.17 Let c′ ∈ {0, . . . , nR} and c⋆ ∈ {1, . . . , nU}. Then, S ′ ∈ S(c′, 0) and
S⋆ ∈ S(0, c⋆) are efficient knapsacks of Problem (2-MP) with non-dominated objective
vectors (p(S ′), c′, 0) and (p(S⋆), 0, c⋆).

Proof: The efficiency of a knapsack that is contained in a basis follows immediately
from Lemma 9.5. �

Next we state that all optimal knapsacks to Problem (2-KP=) for constraints corre-
sponding to integer points on the common boundary line between G2 and G3 are also
efficient knapsacks of Problem (2-MP).

Lemma 9.18 Let (c1, c2) ∈ G such that c1 − c2 = nR − nU and S ∈ S(c1, c2). Then
S ∈ XE.

Proof: The lemma is an immediate consequence of Theorem 9.15 and Lemma 9.17. �

To complete the second part of this section, we finally show that optimal knapsacks
of Problem (2-KP=) for constraint vectors (c1, c2) contained in the rectangle

Q =
{
(x, y) ∈ R2 : x ∈ {0, 1, . . . , nR}, y ∈ {0, 1, . . . , nU}

}
,

also correspond to efficient knapsacks of Problem (2-MP).

Theorem 9.19 Let S ∈ ⋃

(c1,c2)∈Q

S(c1, c2). Then S ∈ XE.

Proof: We have to distinguish the three cases (c1, c2) ∈ Gi for i ∈ {1, 2, 3}. We give a
proof for Sector G2. The proofs for the two other sectors follow the same ideas as the
proof given below.
If (c1, c2) ∈ G2 ∩ G3, there is nothing to show according to Lemma 9.18. So let
(c1, c2) ∈ G2 \ G3. We assume that there exists a knapsack S̄ that dominates S.
According to Theorem 9.15 there exists a well-defined index c̄2 ∈ {0, . . . , c2 − 1} such
that S̄ ∈ S(c1, c̄2), and (c1, c̄2) ∈ G1 ∪ G2. Since (c1, c2) ∈ G2, also (c1, c̄2) ∈ G2 must
hold.
Next we show that we may assume that S̄ ∈ S(c1, c2− 1). Otherwise there must exist
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a fixed index i ∈ {0, . . . , c2− c̄2− 1} and S̄i ∈ S(c1, c̄2 + i) and S̄i+1 ∈ S(c1, c̄2 + i + 1)
such that p(S̄i) > p(S̄i+1). Setting S = S̄i+1 and S̄ = S̄i implies that S is dominated
by its neighbor S̄ from below.
Now let c = c1 − c2 and let µ denote the number of super-items contained in S̄. Note
that since (c1, c2) ∈ Q it holds that 0 ≤ µ ≤ c2 − 1 ≤ nU − 1 < nU . According
to Lemma 9.10 we know that d̄c

k ≥ d̄c+1
k ≥ d̄c

k+1 for all k ∈ {1, . . . , nD + nU − 1}.
This implies that S must contain at least µ but at most µ + 1 super-items, assuming
Remark 9.16 is valid. We get:

p(S̄)− p(S) = rc+1 +
c2−1∑

i=1

d̄c+1
i −

c2∑

i=1

d̄c
i (9.5)

= rc+1 +

µ
∑

i=1

d̃c+1
i +

c2−1−µ
∑

i=1

di −





µ
∑

i=1

d̃c
i +

c2−1−µ
∑

i=1

di + d̄c
c2





= rc+1 +

µ
∑

i=1

rc+1+i +

µ
∑

i=1

ui −
(

µ
∑

i=1

rc+i +

µ
∑

i=1

ui

)

− d̄c
c2

= rc+1+µ − d̄c
c2

= rc+1+µ −max (dc2−µ, rc+µ+1 + uµ+1) (9.6)

< rc+1+µ − rc+1+µ = 0.

Note that the element dc2−µ is not guaranteed to exist, but d̃c
µ+1 always exists since

µ + 1 ≤ nU . Hence, p(S̄) < p(S) and S cannot be dominated by S̄. �

We summarize the last results in the following corollary.

Corollary 9.20 |YN| ≥ (nU + 1) · (nR + 1) + nD.

Proof: The proof follows immediately from Lemma 9.17, Lemma 9.18 and Theo-
rem 9.19. �

At the end of the next section we will show that the stated lower bound on the
cardinality of the set of all non-dominated solutions is tight, i.e. there exist instances
such that equality holds in Corollary 9.20.

9.3.3 Avoiding the Filtering Step

The aim of this subsection is to show that we can omit the filtering step to remove
dominated knapsacks at the end. We state necessary and sufficient conditions on the
value of the profits of the items contained in R, U and D, respectively, which allow to
decide whether an optimal knapsack for (2-KP=) given by an element of the sequence
{Si}i stated in Corollary 9.8 is also an efficient knapsack of (2-MP).
We first concentrate on Sector G2 in the following and give a detailed outline of the
proofs implying our necessary and sufficient condition for this sector. Note that for
(c1, c2) ∈ G2 the maximal number of super-items contained in a feasible knapsack for
Problem (2-KP=) is restricted to nU . We start with the following lemma.

Lemma 9.21 Let (c1, c2) ∈ G2 where c2 > nU and let S ′ ∈ S(c1, c2 − 1) dominate
S ∈ S(c1, c2). Then, S and S ′ contain all nU super-items and rc1−c2+nU+1 ≥ dc2−nU

.
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Proof: Let µ and µ′ denote the number of super-items that are contained in S and S ′,
respectively. Applying Lemma 9.10 and Remark 9.16, we conclude that µ ∈ {µ′, µ′+1}
whenever µ < nU . By applying the same reasoning as in the proof of Theorem 9.19, it
implies that p(S ′) < p(S), and S ′ cannot dominate S. Hence, S must contain all nU

super-items.
Now, assume that S ′ does not contain all nU super-items but only nU − 1 although it
dominates S. Analyzing the elements of R, U , and D that are contained in S and S ′

leads to
0 ≤ p(S ′)− p(S) = −unU

< 0.

Hence, also S ′ must contain all super-items. Using Equation (9.6) from the proof of
Theorem 9.19 and knowing that µ = nU is maximal, we conclude that

0 ≤ p(S ′)− p(S) = rc1−c2+1+nU
− dc2−nU

.

Hence, rc1−c2+1+nU
≥ dc2−nU

. �

Note that Lemma 9.21 is valid for 0 ≤ c1−c2 < nR−nU , whereas for c1−c2 = nR−nU ,
S ∈ S(c1, c2) is always an efficient solution according to Lemma 9.18. We also take
care of this fact in the following lemma.

Lemma 9.22 Let (c1, c2) ∈ G2 with 0 ≤ c1 − c2 < nR − nU and nU < c2 < nU + nD,
and let S ′ ∈ S(c1, c2−1) dominate S ∈ S(c1, c2). Then S dominates S̄ ∈ S(c1, c2 +1).

Proof: Let S, S ′ and S̄ be given as defined above. According to Lemma 9.21, S must
contain all nU super-items and it holds that rc+1+nU

≥ dc2−nU
. We assume first that

(c1, c2) ∈ G2 \G1, i.e. c1 > c2. We use Lemma 9.10 to deduce that S̄ ∈ S(c1− c2−1, 0)
must also contain all nU super-items, since it contains an additional item compared to
S. We conclude that

p(S)− p(S̄) = rc1−c2+nU
− dc2−nU+1 ≥ rc1−c2+nU+1 − dc2−nU+1

≥ rc1−c2+nU+1 − dc2−nU
≥ 0.

If (c1, c2) ∈ G2 ∩ G1, i.e. c1 = c2, S̄ contains all nU − 1 super-items with respect to
its basis S(0, 1) according to Lemma 9.21. Adapting the chain of inequalities stated
above to this special case shows that S dominates S̄. �

We are now able to derive the main result for G2.

Theorem 9.23 Let (c1, c2) ∈ G2 with 0 ≤ c1 − c2 ≤ nR − nU − 1 and nU + 1 ≤ c2 ≤
nU + nD, and let S ∈ S(c1, c2). Then the following statements are equivalent:

(A) S 6∈ XE.

(B) S is dominated by S ′ ∈ S(c1, c2 − 1).

(C) rnU+c1−c2+1 ≥ dc2−nU
.

Proof: ’(B)⇒(A)’ is obviously true and the proof for ’(B)⇒(C)’ was already shown in
Lemma 9.21. We prove the implications ’(A)⇒(B)’ and ’(C)⇒(B)’ in the following.
To prove ’(A)⇒(B)’, let S ∈ S(c1, c2) be dominated by S̄ ∈ S(c̄1, c̄2) with c̄1 ≤ c1

and c̄2 ≤ c2 with at least one strict inequality. According to Theorem 9.15 we may
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assume that (c̄1, c̄2) ∈ G2, c̄1 = c1 and c̄2 < c2. Assume that S is not dominated by
S ′ ∈ S(c1, c2 − 1), i.e. c̄2 < c2 − 1 and p(S ′) < p(S) ≤ p(S̄). Then, there must exist a
fixed index i ∈ {0, . . . , c2− c̄2−2} and S̄i ∈ S(c1, c̄2+i) and S̄i+1 ∈ S(c1, c̄2+i+1) such
that p(S̄i) > p(S̄i+1) holds. But this implies that S̄i+1 is dominated by its neighbor
S̄i from below. By applying Lemma 9.22, also S must be dominated by its neighbor
from below, i.e. S ′ dominates S, which contradicts our assumption.
We show that ’(C)⇒(B)’. Since

rc1−c2+nU
+ unU

> rc1−c2+nU
≥ rc1−c2+nU+1 ≥ dc2−nU

,

S consists of all first c1− c2 items of R, all nU super-items and the first c2− nU items
of D. Furthermore, it holds that

rc1−c2+nU+1 + unU
> rc1−c2+nU+1 ≥ dc2−nU

,

and S ′ contains at most c2 − nU − 1 items of D, at most nU super-items and the first
c1− c2 + 1 items of R. But since (c2−nU − 1) + nU = c2− 1 and this is the number of
elements that are added to the knapsack in basis S(c1−c2, 0), S ′ must contain exactly
the above mentioned items. We conclude that

p(S ′)− P (S) = rc1−c2+nU+1 − dc2−nU
≥ 0.

This completes the proof. �

In Theorem 9.23 we have proven a necessary and sufficient condition for the efficiency of
an optimal knapsack S ∈ S(c1, c2) where (c1, c2) ∈ G2, which supersedes the filtering
for dominated solutions. Given the sequence {Si}i stated in Corollary 9.8 we stop
calculating the elements of this sequence when rc1−c2+nU+1 ≥ dc2−nU

is satisfied for the
first time. Starting from this element, all remaining knapsacks of the sequence will be
dominated by their neighbor from below. Hence, an additional filtering is no longer
needed.
By a similar line of argument as used in Lemma 9.21 and Lemma 9.22, it is possible
to prove similar results of Theorem 9.23 for G1 and G3.

Theorem 9.24 Let (c1, c2) ∈ G1 with 1 ≤ c2 − c1 ≤ nU and nU + 1 ≤ c2 ≤ nU + nD,
and let S ∈ S(c1, c2). Then the following statements are equivalent:

(A) S 6∈ XE.

(B) S is dominated by S ′ ∈ S(c1, c2 − 1).

(C) rnU+c1−c2+1 ≥ dc2−nU
.

For Sector G3 we get:

Theorem 9.25 Let (c1, c2) ∈ G3 with nR − nU + 1 ≤ c1 − c2 ≤ nR and nR + 1 ≤ c1 ≤
nR + nD, and let S ∈ S(c1, c2). Then the following statements are equivalent:

(A) S 6∈ XE.

(B) S is dominated by S ′ ∈ S(c1 − 1, c2).
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74 104 132 156 178 194 203 211

71 101 129 153 175 191 200 208 203

67 97 125 149 171 187 196 204 200 178

62 92 120 144 166 182 191 199 196 175 149

54 84 112 136 158 174 183 191 171 146

29 59 87 111 133 149 158 166 142

0 30 58 82 104 120 129 137

Table 9.1: Grid representation of all 65 optimal solutions for Problem (2-KP=) considered
in Section 9.3.4.

(C) unR−c1+c2+1 ≥ dc1−nR
.

The pseudo-code of the resulting algorithm for G2 is described by Algorithm A.2 in
Appendix A. For the sake of simplicity of the explanation, we assume that the non-
dominated vector (0, 0, 0) is computed at sector G2 in Algorithm A.2. We omit to state
the pseudo-code for G1 and G3 since it can be easily derived from Algorithm A.2 and
the results stated in this section.
Note that the last results imply that the lower bound on the number of non-dominated
solutions that was stated in Corollary 9.20 is tight. Assume that for a given instance
of (2-MP) we have that min{rnR

, unU
} > d1. Then the third criterion stated in the

Theorems 9.23 to 9.25 for the different sectors immediately implies that the bound
is tight. If, in contrast, max{r1, u1} < dnD

, the stated criteria imply that solving
(2-KP≤) for any (c1, c2) ∈ G will lead to a non-dominated solution of (m-MP).
We finally summarize our main result in the following theorem.

Theorem 9.26 Let an instance of Problem (2-MP) be given. Then, the set of all
non-dominated solutions YN for this problem can be determined within O(n2) time,
where no additional filtering for dominated solutions has to be performed.

Theorem 9.26 implies that the greedy algorithm presented for Problem (2-MP) is
optimal in terms of upper bound time complexity, since the cardinality of the non-
dominated set is bounded by O(n2).

9.3.4 Example

In this subsection we present a short example for the results obtained so far. Further-
more, we show that the lower bound on the number of non-dominated solutions given
in Corollary 9.20 is really tight in this case. So, let an instance of Problem (2-KP=)
be given by

R = [30, 28, 24, 22, 16, 9, 8], U = [29, 25, 8] and D = [5, 4, 3].

The 65 different solutions for all possible right hand side vectors c ∈ G of Prob-
lem (2-KP=) are shown in Table 9.1. Concerning the notation used in this table, it
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−− −− −− −− −− −− −− 211

−− −− −− −− −− −− −− 208 −−
−− −− −− −− −− −− −− 204 −− −−

62 92 120 144 166 182 191 199 −− −− −−
54 84 112 136 158 174 183 191 −− −−
29 59 87 111 133 149 158 166 −−
0 30 58 82 104 120 129 137

Table 9.2: Grid representation of all 35 non-dominated solutions for Problem (2-MP)
considered in Section 9.3.4.

is assumed that each replacement character in the scheme corresponds to an integer
two-dimensional vector in the plane where the origin can be found in the bottom left
corner. The complete scheme forms the hexagonal grid G. The given numbers repre-
sent the optimal profit values of Problem (2-KP=) where the two coordinates of the
replacement character correspond to the right hand side vector (c1, c2) of the specific
problem.
For example, the maximum profit value of the optimal knapsack S ∈ S(4, 2) is given
by p(S) = 158, while for S ′ ∈ S(2, 5) it holds true that p(S ′) = 71, and so on.
Applying the domination rules stated proven in this section, it can easily be verified
that the corresponding Problem (2-MP) hast exactly 35 non-dominated solutions, that
are shown in Table 9.2. Note that in this table, replacement character represented by
“−−” correspond to dominated solutions.
For the given example, the number of non-dominated solutions coincides with the lower
bound on the cardinality of the non-dominated set stated in Corollary 9.20, since

|YN| = 35 = 4 · 8 + 3 = (nU + 1) · (nR + 1) + nD.

Since min{rnR
, unU
} = min{8, 8} = 8 > 5 = d1, this result is also implied by the

criterion that is stated at the end of the last subsection.

9.3.5 Experimental Results

To verify the efficiency of our approach in practice, we implemented it in C and tested
it on a set of randomly generated instances.
We generated 100 instances for each of the sizes n ∈ {10×10i, 25×10i, 50×10i, 75×10i}
with i = 2, 3, 4. The profit values are positive integers uniformly distributed in the
range [1, 11]. Note that we chose a small range of profit values to avoid number
overflow for larger instances. In order to generate values for nR, nU and nD, we first
generated three real numbers randomly and uniformly distributed in the range [0, 1];
then, we normalized these values with respect to their sum; finally, we multiplied each
normalized value by n to obtain nR, nU and nD, respectively.
We ran our implementation on an Intel Core 2 Duo 2.33Ghz, 4MB cache L2, 4GB
RAM, with Windows Vista 32 bits, compiler MSVC 2008.
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n CPU-time (in secs.) |YN|
avg. std. avg. std.

1 000 0.00 0.00 182 329 42 472

2 500 0.01 0.00 1 116 855 256 644

5 000 0.04 0.01 4 478 076 1 192 776

7 500 0.09 0.02 9 786 613 2 388 547

10 000 0.15 0.02 18 211 143 3 919 746

25 000 0.97 0.19 117 716 464 26 611 280

50 000 3.80 0.79 448 329 030 110 881 051

75 000 8.10 2.12 980 416 031 275 287 540

100 000 14.73 3.62 1 766 044 758 469 409 790

250 000 93.81 22.74 11 267 090 109 3 036 879 464

500 000 381.11 89.58 44 872 436 605 11 436 272 293

750 000 877.49 178.36 102 117 237 786 23 926 930 515

1000 000 1542.83 333.52 179 661 247 582 41 598 896 050

Table 9.3: Average (avg.) and standard deviation (std.) of CPU-time in seconds taken by
the greedy algorithm and the size of the non-dominated set for randomly generated instances
of Problem (2-MP).

Table 9.3 shows the average and standard deviation of CPU-time in seconds taken
by our greedy algorithm, as well as the cardinality of the non-dominated set for the
randomly generated instances. They clearly indicate that our approach can perform
very fast.

For example, the algorithm solves instances with one million items and over 179 billion
of non-dominated solutions within less than 30 minutes on average.

9.4 The Knapsack Problem with Two Inequality

Constraints

Based on the results for solving Problem (2-MP), we can derive an efficient algorithm to
solve Problem (2-KP≤). From Chapter 3 we recall that if Problem (2-KP≤) is feasible,
i.e. c1 and c2 are chosen to be non-negative, an optimal knapsack S̄ to this problem
is contained in the efficient set of Problem (2-MP) (cf. Theorem 3.1). Obviously, for
such a knapsack it holds that p(S̄) ≥ p(S) for all S ∈ XE where wj(S) ≤ cj and
wj(S̄) ≤ cj, j = 1, 2, respectively. Hence, the results of Section 9.3 can be used to
solve Problem (2-KP≤).

We will show that we only need to consider one of the sequences {Si}i starting from an
efficient knapsack contained in an appropriately chosen basis to find an optimal solu-
tion for Problem (2-KP≤). The superscripts of the optimal knapsacks in the following
theorems indicate which element of the sequence {Si}i has to be calculated.
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To apply the results of Section 9.3 we need to consider an additional partition of each
sector G1, G2 and G3 as illustrated in Figure 9.4 and that is taken into account in the
following results. We start with Sector G2 and recall that there is no dominance to the
right in this sector and that an optimal knapsack of Problem (2-KP=) with respect to
(c1, c2) ∈ G2 correspond to a dominated knapsack of Problem (2-MP) if and only if it
is dominated by its neighbor from below.

Theorem 9.27 Let (c1, c2) ∈ G2.

1. If (c1, c2) ∈ Q or c1 − c2 = nR − nU , then Sc2 ∈ S(c1, c2) is an optimal knapsack
of Problem (2-KP≤).

2. Let (c1, c2) 6∈ Q, c1 − c2 6= nR − nU and c1 ≤ nR. If there exists an index j
such that j = min{i ∈ {0, . . . , (c2 − 1) − nU} : dc2−i−nU

> rnU+c1−c2+i+1}, then
Sc2−j ∈ S(c1, c2 − j) is an optimal knapsack of Problem (2-KP≤). Otherwise
SnU ∈ S(c1, nU) is optimal.

3. Let (c1, c2) 6∈ Q, c1 − c2 6= nR − nU and let c1 > nR. If there exists an index j
such that j = min{i ∈ {0, . . . , nR−nU −c1 + c2−1} : dc2−i−nU

> rnU+c1−c2+i+1},
then Sc2−j ∈ S(c1, c2−j) is an optimal knapsack of Problem (2-KP≤). Otherwise
Sc1−nR+nU ∈ S(c1, c1 − nR + nU) is optimal.

Proof: To prove (1.), let (c1, c2) ∈ Q and we assume that Sc2 ∈ S(c1, c2) is not
optimal for Problem (2-KP≤). Then there must exist another feasible knapsack S 6∈
S(c1, c2) satisfying p(S) > p(Sc2) and wj(S) ≤ wj(Sc2), j = 1, 2 with at least one
strict inequality. But this implies that S dominates Sc2, which is not possible due to
Theorem 9.19. Hence, Sc2 must be optimal. A similar reasoning in combination with
Lemma 9.18 can be applied for the case that c1 − c2 = nR − nU .
For (2.), let (c1, c2) 6∈ Q and c1 − c2 6= nR − nU , but c1 ≤ nR. Furthermore, let
S be an optimal knapsack of Problem (2-KP≤). Without loss of generality we may
assume that S ∈ XE and that there exist c̄1 ∈ {0, . . . , c1} and c̄2 ∈ {0, . . . , c2} such
that S ∈ S(c̄1, c̄2) where either c̄1 = c1 or c̄2 = c2 due to the Equations (9.2), (9.3)
and (9.4). Since there cannot be dominance to the right in the Sectors G1 and G2

according to Theorem 9.12 and Theorem 9.14 we conclude that c̄1 = c1. Now, define
j = min{i ∈ {0, . . . , (c2 − 1)− nU} : dc2−i−nU

> rnU+c1−c2+i+1} if the minimum exists.
Otherwise, let j = ∞. Note that the index nU + c1 − c2 + i + 1 is well-defined for all
i ∈ {0, . . . , (c2 − 1)− nU}, since obviously nU + c1 − c2 + i + 1 ≥ 1 and further

nU + c1 − c2 + i + 1 ≤ nU + nR − c2 + (c2 − nU − 1) + 1 = nR.

If j = 0, Sc2 ∈ S(c1, c2) must be optimal, since Sc2 is efficient due to Theorem 9.23 and
hence, p(S) must be maximal for all knapsacks S satisfying wj(S) ≤ cj for j = 1, 2.
Now, assume that 1 ≤ j < ∞ and let Sc2−j ∈ S(c1, c2 − j). Theorem 9.23 states
that a knapsack S ∈ S(c1, c̃2) is dominated by its neighbor from below whenever
c̃2 ∈ {c2 − j + 1, . . . , c2}. But this implies that p(S) ≤ p(Sc2−j) for all S ∈ S(c1, c̃2).
Since Sc2−j is efficient according to the same theorem, it follows that p(S) < p(Sc2−j)
for all S ∈ S(c1, c̃2) whenever c̃2 ∈ {0, . . . , c2 − j − 1}. This shows, that p(Sc2−j) is
optimal for Problem (2-KP≤). If j = ∞ this implies that all knapsacks S ∈ S(c1, c̄2)
are dominated by their neighbors from below for c̄2 ∈ {nU + 1, . . . , c2}. Let SnU ∈
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Figure 9.4: Illustration of the partition of G for Theorems 9.27, 9.28 and 9.29.

S(c1, nU). Since SnU is contained in Q, SnU is efficient by Theorem 9.19, and hence it
must be optimal for Problem (2-KP≤).
For (3.) we note that the proof for the case that c1 > nR follows the same line of
argument as the proof for the case c1 ≤ nR. In this case, Lemma 9.18 has to be used
instead of Theorem 9.19. Moreover, we remark that the index c2−i−nU is well-defined
for all i ∈ {0, . . . , nR− nU − c1 + c2− 1} since c2− i− nU ≤ c2− nU ≤ nD and further

c2 − i− nU ≥ c2 − (nR − nU − c1 + c2 − 1)− nU = c1 − nR + 1 > 1.

This completes the proof. �

For (c1, c2) ∈ G1 it is easy to verify that we can find an optimal knapsack S to
Problem (2-KP≤) such that S ∈ S(c1, c̄2) and (c1, c̄2) is also contained in G1, whenever
c1 ≤ nU holds. For the case that c1 > nU , it may happen that (c1, c̄2) is no longer
contained in G1 but in G2.

Theorem 9.28 Let (c1, c2) ∈ G1.

1. If (c1, c2) ∈ Q, then Sc1 ∈ S(c1, c2) is an optimal knapsack of Problem (2-KP≤).

2. Let (c1, c2) 6∈ Q and let c1 ≤ nU . If there exists an index j such that j = min{i ∈
{0, . . . , (c2 − 1) − nU} : dc2−i−nU

> rnU+c1−c2+i+1}, then Sc1 ∈ S(c1, c2 − j)
optimally solves Problem (2-KP≤). Otherwise Sc1 ∈ S(c1, nU) is optimal.

3. Let (c1, c2) 6∈ Q and let c1 > nU If there exists an index j such that j = min{i ∈
{0, . . . , c2 − c1 − 1} : dc2−i−nU

> rnU+c1−c2+i+1}, then Sc1 ∈ S(c1, c2 − j) is an
optimal knapsack of Problem (2-KP≤). Otherwise there exists c̄2 ∈ {nU , . . . , c1},
such that (c1, c̄2) ∈ G2 and S c̄2 ∈ S(c1, c̄2) is optimal for Problem (2-KP≤).

Proof: The proofs of the three cases are similar to the proofs of the corresponding
statements in Theorem 9.27. In the last two cases, the minimum may not exist since
either c1 = c2 or all knapsacks S ∈ S(c1, c̃2) with c̃2 ∈ {c1 + 1, . . . , c2} are dominated
by their neighbors from below. But both cases imply that there must exist an efficient
knapsack S ∈ S(c1, c̄2), where (c1, c̄2) ∈ G2 and c̄2 ∈ {nU , . . . , c1} holds. �

For the Sector G3 we find similar results compared to the other two sectors.

Theorem 9.29 Let (c1, c2) ∈ G3.

1. If (c1, c2) ∈ Q or c1 − c2 = nR − nU , then Sc2 ∈ S(c1, c2) is an optimal knapsack
of Problem (2-KP≤).
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2. Let (c1, c2) 6∈ Q, c1 − c2 ≥ nR − nU + 1 and let c2 ≤ nU . If there exists an index
j such that j = min{i ∈ {0, . . . , (c1 − 1) − nR} : dc1−i−nR

> unR−c1+c2+i+1},
then Sc2 ∈ S(c1 − j, c2) is an optimal knapsack of Problem (2-KP≤). Otherwise
Sc2 ∈ S(nR, c2) is optimal.

3. Let (c1, c2) 6∈ Q, c1− c2 ≥ nR−nU +1 and let c2 > nU . If there exists an index j
such that j = min{i ∈ {0, . . . , nU −nR + c1− c2−1} : dc1−i−nR

> rnR−c1+c2+i+1},
then Sc2 ∈ S(c1 − j, c2) is an optimal knapsack of Problem (2-KP≤). Otherwise
Sc2 ∈ S(nR − nU + c2, c2) is optimal.

The Theorems 9.27 to 9.29 show that we can determine an optimal knapsack to Prob-
lem (2-KP≤) by calculating a fixed number of elements of a sequence {Si}i used in
Corollary 9.8 for a knapsack S0 contained in an appropriately chosen basis. There-
fore, the algorithm for solving this problem has the same time complexity as the
greedy algorithm for (2-KP=) which is given by O(n log(n)) according to the results
of Subsection 9.2. The pseudo-code of the resulting algorithm for G2 is described by
Algorithm A.3 in Appendix A. The pseudo-code for G1 and G3 is omitted since it can
be easily derived from Algorithm A.3 and the results stated in this section.

9.5 Connectedness of the Efficient Set

Corollary 9.8 introduces an important result in terms of connectedness of efficient
knapsacks. For a deeper discussion on the connectedness of the efficient set of multiple
objective combinatorial optimization problems, we refer to Chapter 7. We define a
graph where the nodes represent the efficient knapsacks and edges are introduced
between all pairs of nodes that are adjacent with respect to the following definition of
k-change neighborhood:

Definition 9.30 (k-change neighborhood) Two knapsacks are neighbors with re-
spect to the k-change neighborhood if and only if one knapsack can be obtained from
the other by either adding or removing at most k items.

We say that the efficient set of Problem (2-MP) is connected if and only if the cor-
responding graph is connected. Note that Definition 9.30 generalizes the definition
of adjacent efficient solutions used in Section 7.2.8 for unconstrained multiple ob-
jective combinatorial optimization problems (cf. Definition 7.29). For k = 1 both
definitions and the MILP-based definition of adjacency on the unit cube [0, 1]n (where
n = nR +nU +nD) coincide for this problem, while for k > 2 an enlarged neighborhood
is considered. In this case, Definition 9.30 implies that a combinatorial definition of
adjacency considered. For the special problem discussed in Section 9.3, we state the
following result for the 2-change neighborhood:

Corollary 9.31 There exists a set of efficient knapsacks of Problem (2-MP) that is
connected with respect to the 2-change neighborhood and its image in the objective space
coincides with the non-dominated set.

Corollary 9.31 only states that a subset of the set of efficient knapsacks is connected
but not the complete set itself. However, this property applies to the complete set of
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efficient knapsacks if we consider also the following extended definition of neighbor-
hood:

Definition 9.32 (k-exchange neighborhood) Two knapsacks are neighbors with
respect to the k-exchange neighborhood if and only if one knapsack can be obtained
from the other by exchanging and adding or removing at most k items.

Note that in a k-change neighborhood it is only allowed to either add or remove k
items to or from a knapsack, respectively, while in a k-exchange neighborhood, we
can exchange a number of items and either add or remove another fixed number. For
example, exchanging a super-item by another one is considered as a 2-exchange, as
well as an exchange of a super-item by an item contained in D. In this case we have
to exchange one item and either add or remove another one. By the definition of
a k-exchange, a k-change is always a k-exchange, but not necessarily the other way
round.

Theorem 9.33 The set of efficient knapsacks of Problem (2-MP) is connected with
respect to the 2-exchange neighborhood.

Proof: According to Corollary 9.31 it suffices to show that for an efficient S ∈ S(c1, c2)
and an alternative efficient knapsack S̄ ∈ S(c1, c2), there exist a finite sequence of ef-
ficient knapsacks starting from S and ending by S̄, such that all knapsacks of this
sequence are contained in S(c1, c2) and subsequent knapsacks are neighbors with re-
spect to the 2-exchange.
For the case that S is contained in a basis S(c, 0) (or S(0, c)), alternative optima exist if
and only if the profit value rc (or uc) is not unique, i.e. if there exists c̃ ∈ {c+1, . . . , nR}
(or c̃ ∈ {c+1, . . . , nU}) such that rc = . . . = rc̃ (or uc = . . . = uc̃). But obviously all the
resulting efficient knapsacks are connected with respect to a 1-exchange neighborhood,
since we can exchange items having the same profit value one by one to construct an
appropriate sequence.
Now, let min{c1, c2} > 0. If for an efficient S ∈ S(c1, c2), there exists an alternative
efficient knapsack S̄ ∈ S(c1, c2), a similar reasoning as in the case of a basis applies.
Either a number of profit values in the sequences R and U are not unique or the
same property applies to the profit value d̄c1−c2

c2
, if c2 ≤ c1, or d̄c2−c1

c1
, if c1 < c2

of the sequence D̄c1−c2 or D̄c2−c1. But all the resulting alternative knapsacks are
connected with respect to a 2-exchange neighborhood, since in the worst case we have
to exchange a super-item by another super-item to construct an alternative efficient
knapsack. Hence, an appropriate sequence, starting from S and ending by S̄ such that
subsequent knapsacks are neighbors with respect to the 2-exchange neighborhood can
always be found within the set S(c1, c2). �

It is worth mentioning that the (proof of the) connectedness of the set of efficient
knapsacks is not based on the connectedness of supported efficient knapsacks that are
always connected (cf. Chapter 7), but that the proof is constructive.

9.6 Conclusions and Further Ideas

In this chapter we presented efficient algorithms to solve interesting special cases of
three NP-hard optimization problems within a polynomial amount of time. In par-
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Step Greedy Solution Optimal Solution

profit value 171 174 profit value

1 L 22 22 L

2 L + R 16 + 12 = 28 16 + 12 = 28 L + R

3 L + R 9 + 5 = 14 8 RL

4 D 40 40 D

5 D 39 39 D

6 R + LU 28 9 + 28 = 37 L + RU

Table 9.4: Steps of the greedy algorithm for an instance of Problem (3-KP=).

ticular, for the case of Problem (2-MP), our implementation of the algorithm is able
to find the complete non-dominated set in half an hour for instances with one million
items, which corresponds to more than 400 millions of distinct solutions on average.
This result is based on the fact that the non-dominated set of Problem (2-MP) can be
found within O(n2) time, where no additional filtering for dominated solutions has to
be applied during the course of the suggested algorithm. This further implies that the
presented algorithm is optimal in terms of upper bound time complexity. In addition
to this result, we proved that the set of efficient knapsacks is connected with respect
to a combinatorial definition of adjacency.

It is further important to mention that in this chapter we intensively made use of
the ideas developed in Chapter 3 to construct solution concepts for single objective
problems based on multiple objective approaches and vice versa. Starting from an algo-
rithm for the single objective problem (2-KP=), we developed an algorithm that solves
the triobjective unconstrained combinatorial optimization problem (2-MP). Then, we
went the way back to the single objective optimization problem (2-KP≤) and derived
an efficient algorithm for this problem, based on the results for the associated multiple
objective problem (2-MP).

Concerning further ideas for research on the problems presented in this chapter, one
could think about an extension of the presented algorithms to higher dimensional
problems involving more than two binary weight constraints. Unfortunately, we have
to remark that although the proposed greedy algorithm for Problem (2-KP=) may
suggest that this approach can be easily extended to higher dimensions (i.e. to more
than two binary constraints), depending only on the way the items are partitioned in
the pre-processing step and using a similar decomposition as in (9.1), this is not the
case, not even for the Problem (3-KP=), as shown in the following example.

Example 9.34 Consider an instance of Problem (3-KP=). We partition the set of
items according to their weights (w1(s), w2(s), w3(s)) for all items s and obtain seven
different sets where all elements in a set have the weights (1, 0, 0), (0, 1, 0), (0, 0, 1),
(1, 1, 0), (1, 0, 1), (0, 1, 1) and (1, 1, 1), respectively. We denote these sets by R, L, U ,
RL, RU , LU and D, respectively. Consider the following partitioning of items: R =
(12, 5, 4), L = (22, 16, 9), U = (7, 6, 5), RL = (8, 5, 4), RU = (28, 8, 7), LU = (24, 9, 7),
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D = (40, 39, 20), and a constraint given by c = (5, 6, 3), it holds that
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The left hand side of Table 9.4 shows which solutions would be included by the greedy
approach using the above decomposition while the right hand side shows the corre-
sponding decomposition of the optimal solution. Choosing the last element from L in
step 3 for the greedy solution is “the wrong choice” since it blocks all elements from
UR for further inclusion in better solutions.

From Example 9.34 we conclude that an extension to higher dimensional problems
cannot be longer based on a greedy strategy, but decision rules have to be found,
under which conditions specific items have to be included in an optimal knapsack for
a generalized Problem (m-KP=).
Furthermore, it could be of interest to prove positive results for the connectedness of
the set of efficient knapsacks in the case that m ≥ 3. Obviously, instead of using a
2-exchange neighborhood, an m-exchange neighborhood is potentially need to prove
connectedness results for the general case, whenever they may exist. Based on a
positive result, simple local search strategies (like the one proposed in Paquete et al.
[159]) could be used to solve the higher dimensional problem that are not directly
based on the greedy strategies suggested in this chapter for the case m = 2.
We finally remark that solution concepts for Problem (2-KP≤) with an additional
cardinality constraint could be investigated because of the following reason: Consider
a triobjective k-max optimization problem (cf. Chapter 5), involving a profit func-
tion p to maximize and two k-max objectives to minimize, where |S| = m (where
m < n) holds for all S contained in the feasible set X. The solution approach for
solving multiple objective k-max problems, suggested in Section 5.2, implies that the
given triobjective problem has to be transformed into a sequence of ε-constraint prob-
lems (AJ) (cf. Section 5.2), that have to be solved. Unfortunately, the structure of
these problems does not directly coincide with the structure of Problem (2-KP≤) for
an appropriate right hand side vector c ∈ G, since an additional cardinality constraint
on the feasible set is involved. Hence, developing an algorithm that solves Problem
(2-KP≤) with an additional cardinality constraint would imply that also the above
stated triobjective problem can be solved efficiently.
Note that one might also think about relaxing the cardinality constraint of the given
triobjective k-max problem to derive a new problem that can be solved by Algo-
rithm A.2 for Problem (2-KP≤) suggested in Appendix A. But this relaxation is obvi-
ously not reasonable, since the involved k-max objectives are no longer well-defined for
the resulting problem, since a minimum cardinality of feasible solutions can no longer
be guaranteed.



Chapter 10
Biobjective Optimization Problems on
Matroids with Binary Costs

Combinatorial optimization problems on matroids are frequently studied in the liter-
ature of classical combinatorial optimization. Indeed, the fundamental ideas, matroid
theory is based on, can already be found in the article of Whitney [217] from the
middle 1930’s. Reviewing the complete literature of this field is beyond the scope of
this chapter. For a deeper insight into the theory of matroids and its history we refer
the interested reader, for example, to the books of Kung [122] and Oxley [156].
In this chapter we discuss a specially structured biobjective optimization problem on
matroids. While the first objective can take arbitrary non-negative integer values,
the second objective is restricted to take binary values only. We prove that the non-
dominated set of such a problem can be determined based on swaps between elements
contained in different (efficient) bases of the problem. We take advantage of an algo-
rithm stated in Gabow and Tarjan [67] to derive a modified version of this algorithm
that is guaranteed to generate a complete set of efficient solutions of the given prob-
lem. Furthermore, we prove that the set of efficient solutions is always connected for
this special type of problem. To the best of our knowledge, this is the first non-trivial
problem on matroids where connectedness of XE can be established.
The remainder of this chapter is organized as follows. In Section 10.1 we recall the
main definitions and results from matroid theory that are relevant for the subsequent
sections. In Section 10.2 we introduce the biobjective matroid problem involving a
binary cost objective, and we give a short review of the existing literature related to
this special type of matroid problem. In Section 10.3 we show how the problem under
consideration can be solved efficiently, based on an algorithm developed by Gabow
and Tarjan [67]. We prove the connectedness of the efficient set for this special type
of problem in Section 10.4 and finally conclude in Section 10.5 with a short summary
of our results and further ideas of research.

10.1 Matroid Preliminaries

In this section we review some basic facts and concepts from matroid theory. We
concentrate on basic definitions and results that we need in the following sections. For
more details on matroid theory we refer to the books of Kung [122] and Oxley [156].
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Let E = {e1, . . . , en} denote a finite set of n ∈ N elements and |S| ∈ {0, . . . , n} the
cardinality of a subset S ⊆ E . A pair (E , I), where I is a subset of the power set P(E)
of E , is called independence system, if I 6= ∅, and if for S ∈ I and T ⊆ S, it is implied
that also T ∈ I holds. In this case, S ∈ I is called an independent set. A subset of E
that is not contained in I is called dependent.

For a given independence system (E , I), an independent set S ∈ I is called maximal,
if S ∪ {e} 6∈ I for all e ∈ E \ S. For T ⊆ E , rank(T ) := max{|S| : S ⊆ T, S ∈ I} is
called rank of T .

An independence system (E , I) is called matroid M, if for S, T ∈ I and |S| < |T | it
holds that there exists t ∈ T \S such that S∪{t} ∈ I. A maximal independent subset
of E is called basis of the matroid. The set of all bases is denoted by X in the following.
If S, T ∈ X and eS ∈ S \ T , then there exists another element eT ∈ T \ S such that
(S ∪ {eT}) \ {eS} also forms a basis of M (basis exchange property). Furthermore,
all sets contained in X have the same cardinality, i.e. for S, T ∈ X it holds that
|S| = rank(S) = rank(T ) = |T | = m for a fixed integer m ∈ {0, . . . , |E|}.
A minimal dependent set of a matroidM is called a cycle ofM. Given a basis B ∈ X
and an element e ∈ (E \B), then B∪{e} contains a uniquely determined cycle C(e, B)
(or only C for short) containing e. This cycle is also called the fundamental cycle of
e with respect to B.

If S ⊆ E , deleting S from M defines the matroid M− S. The ground set of this
matroid consists of all elements contained in E \ S. The independent sets of M− S
consist of the independent sets ofM that do not intersect S.

If S is an independent set ofM, contracting S gives the matroidM/S. The ground set
of this matroid once again consists of all elements contained in E \ S. Its independent
sets (and bases) are given by the sets T ⊆ (E \ S) such that T ∪ S is an independent
set (basis) ofM.

For each element e ∈ E we introduce p non-negative weights wi(e) ∈ R+
0 (i =

1, . . . , p). For S ⊆ E and i = 1, . . . , p we define wi(S) =
∑

e∈S wi(e) and set
w(S) = (w1(S), . . . , wp(S)). The multiple objective matroid problem (MOMP) is given
by

min w(S) = (w1(S) . . . , wp(S)) (MOMP)

s.t. S ∈ X .

The set of efficient bases of this problem is denoted by XE, and its corresponding set
of non-dominated solutions by YN = w(XE). We recall that an efficient basis S is
called supported efficient, if it is a minimizer of the non-trivial weighted sum problem
min{∑p

i=1 λiwi(S), S ∈ X} for λi ∈ (0, 1), i = 1, . . . , p and
∑p

i=1 λi = 1. Equivalently,
one can show that S is supported if and only if w(S) is an element of the non-dominated
frontier that is defined as non-dominated set of conv(Y), where Y = w(X ) (cf. also
Figure 4.1).

For the main concepts on the connectedness of the efficient set for Problem (MOMP)
as well as the definition of the efficiency graph for combinatorial problems, we refer
to Chapter 7. We recall from Section 7.2 that the efficiency graph G for optimization
problems on matroids is not connected in general, even for the case that also weakly
efficient bases are considered. Nevertheless, G contains a connected subgraph, since
the set of all supported efficient bases is always connected as shown in Ehrgott [52].
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Concerning the complexity of matroid problems we note that the single objective
version of Problem (MOMP) can be solved efficiently by a simple greedy strategy
(cf. Oxley [156]). By contrast, the decision problem of MOMP is proven to be NP-
complete in general Ehrgott [52].

As a special case of a matroid (E , I), we introduce the graphic matroid M(G) of a
connected graph G = (V, A), where V denotes the set of vertices and A is the set of
edges of G. For a graphic matroid, the ground set E is given by A, I corresponds
to all subgraphs of G that do not contain a cycle, and the set of bases X is given
by the set of all spanning trees of G. Note that an independent set of M is also
called forrest in graph theory. For a graphic matroid, Problem (MOMP) is called
multiple objective minimum spanning tree problem (MSTP). In the next sections we
will use graphic matroids to illustrate the discussion on general matroids. Concerning
the complexity of this special matroid, Chazelle [37] showed that the single objective
minimum spanning tree problem can be solved in O(α(|V |, |A|) · |A|), where α is the
classical functional inverse of the Ackermann’s function. Although MSTP is only a
special case of a multiple objective problem on matroids, it is also proven to be NP-
complete in general (cf. Camerini et al. [32]). For a detailed survey of existing results
and algorithms for MSTPs, we refer to the survey of Ruzika and Hamacher [185].

10.2 Problem Formulation and Notation

In this section we present the problem formulation of the biobjective matroid problem
involving a binary cost function, and we give a short survey of the existing literature
for this special type of problem. Furthermore, we introduce the notation we need for
the proofs in the subsequent sections.

Let a matroid M = (E , I) be given. We denote the set of all bases of M by X , and
we assume that rank(B) = m > 0 for all B ∈ X . Furthermore, let two different
cost functions c : E → N and b : E → {0, 1} on the elements of E be given. While
the first function c is assumed to have arbitrary non-negative integer coefficients, we
assume that the cost function b only takes binary values on elements of the ground
set. Then, the two different costs of a basis B ∈ X are given by c(B) =

∑

e∈B c(e) and
b(B) =

∑

e∈B b(e). The corresponding biobjective matroid problem with binary costs
(BBMP) is given by

min
B∈X

(c(B), b(B)) . (BBMP )

The set of efficient bases of Problem (BBMP ) is denoted by XE and its image under
the two cost objectives (c, b) by YN in the following. Note that, since b(X ) := {b(B) :
B ∈ X} ⊆ {0, . . . , m} is of size O(m), this also holds true for YN, i.e. YN is of
polynomial size.

One of the two ε-constraint versions of Problem (BBMP ) is given by

min c(B)

s.t. b(B) ≤ k,

B ∈ X ,

(BMP≤)
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where k ∈ {0, . . . , m} is a fixed bound on the binary cost function b. We recall from
Chankong and Haimes [36] that each optimal solution of Problem (BMP≤) is at least
weakly efficient for Problem (BBMP ). If the inequality constraint is substituted by
an equality constraint, we obtain

min c(B)

s.t. b(B) = k,

B ∈ X .

(BMP=)

While an optimal basis of Problem (BMP≤) is at least weakly efficient for Prob-
lem (BBMP ), an optimal solution of Problem (BMP=) may correspond to a domi-
nated solution of Problem (MOMP) in general.
We give another interpretation of Problems (BMP≤) and (BMP=) that is used in the
articles of Gabow and Tarjan [67] and Gusfield [91]: Given a matroidM = (E , I) and
a cost function c : E → N on the elements of E , we additionally assign two different
colors, red and green, to the elements of E . This defines a partition of the set E in
red and green elements. To establish a connection to the binary objective function b
of Problem (BMP=), we identify red elements r ∈ E with the binary cost b(r) = 0,
while green elements g ∈ E are of binary cost b(g) = 1. Then, Problem (BMP≤)
(and (BMP=)) consists of determining a minimum cost basis B ∈ X containing at
least (or exactly) m − k red elements from E . Hence, especially Problem (BMP=)
can be seen as a generalized version of a single objective matroid problem with an
additional constraint, where the original problem is obtained when E only consists of
red elements and k = 0.
Gabow and Tarjan [67] as well as Gusfield [91] presented an algorithm that solves
Problem (BMP=) for fixed k ∈ N. Note that while general constrained matroid prob-
lems are proven to be NP-complete (cf. Camerini et al. [32] for graphic matroids), we
will show in the following section that based on the (complexity) results of Gabow and
Tarjan [67], the non-dominated set of Problem (BBMP ) can be found in polynomial
time.
From a different point of view, Problem (BMP=) can additionally be interpreted as
a special case of a matroid intersection problem. We define a matroid M⋆ = (E , I⋆)
where every basis of M⋆ contains exactly k green and n − k red elements from E .
Obviously, (M⋆, E) is a partition matroid (cf., e.g., Gabow and Tarjan [67] for a general
definition). Hence, Problem (BMP=) consists of finding a minimum cost basis of both
matroids M and M⋆. For more details on general matroid intersection problems as
well as solution approaches we refer, amongst others, to the articles of Frank [66] and
Brezovec et al. [26].
Concerning the literature on problems on matroids that are closely related to those
studied in this chapter, the results for matroid problems with two colors were extended
to problems with multiple colors by Rendl and Leclerc [182] and Brezovec et al. [27],
respectively. In these articles, the ground set E is partitioned into k ≥ 2 disjoint
subsets such that elements from different subsets are assigned different colors. The
multicolor matroid problem aims to find a minimum cost basis such that a fixed upper
bound on the cardinality of elements from different subsets is not exceeded.
In Rendl and Leclerc [182], the authors start from an (in general infeasible) cost mini-
mal basis and perform cost minimal exchanges with elements that are not yet contained
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in the basis, until all cardinality constraints on the different colors are satisfied. Based
on similar ideas, Brezovec et al. [27] derived an algorithm that also takes a lower bound
on the number of unicolored elements in a basis into account. Srinivas [194] extended
the results for the case that linear inequalities on the cardinality of different colors are
given that are allowed to be in a feasible basis.
Finally, Hamacher and Rendl [95] considered general combinatorial optimization prob-
lems where a subdivision of the ground set into k ≥ 2 not necessarily disjoint subsets
is given such that each subset is assigned a different color. This implies that an ele-
ment of E may have different colors at the same time. The authors aimed to find a
cost minimal basis such that a fixed cardinality constraint on each color is satisfied.
Amongst others, the authors showed that this problem can be reduced to a paramet-
ric problem with pairwise disjoint colors, and they derived polynomial time bounds
for special classes of combinatorial optimization problems including colored bipartite
matching problems.
In the case of a graphic matroid, Darmann and Pferschy [45] developed a so called
cycle improvement algorithm to find an optimal solution for the constrained version
of Problem (BBMP ), where a fixed bound is set on the cost function c, while b is
treated as the only objective.
A short example of their approach is given in Example 10.5, contained in the next sec-
tion. We note that the theoretical results of this unpublished article are closely related
to those of Gabow and Tarjan [67].In more detail, the algorithm that is proposed by
Darmann and Pferschy [45] is outperformed by the algorithm stated in [67]. For more
details on this topic, we also refer to Section 10.3.
Finally, Climaco et al. [39] presented an algorithm to solve the biobjective minimal
cost/ minimal label spanning tree problem. In this problem, each edge of a given
graph is assigned a cost value and a label (color). While the first criterion aims to
minimize the cost of a spanning tree, the second criterion intends to find a solution
with a minimum number of different labels. Since it is already NP-hard to determine
the minimum label spanning tree on a given graph due to a result of Chang and Leu
[35], the considered problem is also NP-hard to solve.
To simplify the notation for the next sections, we introduce the following simple abbre-
viations for operations on sets: Let S ⊆ E be a set and let e, f ∈ E , then S + e denotes
the set S ∪ {e}, while S − f denotes the set S \ {f}, provided that f is contained in
S. To omit the use of multiple parenthesis, we constitute that operations on sets are
always performed from the left to the right. For example, S − f + e = (S \ {f})∪ {e}
means that first f is excluded from S, followed by the inclusion of e. Furthermore,
given S ⊆ E , Sc := E \ S denotes the complement of S in E .
In the following, we assume that the elements of the ground set E are partitioned with
respect to their binary value into the two subsets E0 and E1, where

E0 = {e ∈ E : b(e) = 0} and E1 = {e ∈ E : b(e) = 1}.

For i ∈ {0, . . . , m}, we define Xi := {B ∈ X : |B ∩ E0| = i} as the set of bases
containing exactly i elements of binary value zero. Furthermore, let

Si = {B ∈ Xi : c(B) ≤ c(B′) ∀B′ ∈ Xi}

denote the set of minimum cost bases contained in Xi. Note that any B ∈ Si is an
optimal basis of Problem (BMP=) with right hand side value k = m− i.
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10.3 Solving Biobjective Matroid Problems with

Binary Costs

In this section we present an algorithm that solves Problem (BBMP ) efficiently. In
more detail, we deduce from the results stated in Gabow and Tarjan [67] that each
instance of Problem (BBMP ) is solvable in a polynomial amount of time. Based
on the algorithm stated in [67], we present an adapted version of this algorithm that
generates the complete non-dominated set of Problem (BBMP ) based on a generated
sequence of optimal solutions for Problems (BMP=).
In the following Subsection 10.3.1, we present the main results we need to prove the
correctness of the proposed algorithm, as well as to show that the set of efficient
bases for Problem (BBMP ) is always connected (see Section 10.4), as it consists of
supported efficient bases only. We present our algorithm in Subsection 10.3.2.

10.3.1 Bases and Minimal Swaps

Before we define what is meant by the notion of a minimal swap for a given basis, we
recall the following stronger version of the simple basis exchange property for matroids,
that is needed in several proofs in this section. Note that this stronger version was
firstly proven in Brualdi [28].

Lemma 10.1 ([28]) Let B, B′ ∈ X . For e ∈ B \B′ there exists f ∈ B′ \B such that
both B − e + f and B′ − f + e are bases of the given matroid.

Given the partition E = E0 ∪ E1 stated in Section 10.2, we introduce the notion of a
swap between elements from E0 and E1.

Definition 10.2 Let B ∈ X . Then the swap (e, f) ( involving e, for f or for basis
B) is an ordered pair of elements, where it is assumed that e ∈ B ∩ E1, f ∈ E0 \ B
and B− e + f forms a basis of the given matroid. The cost of a swap (e, f) is defined
by c(e, f) := c(f) − c(e). A swap (e, f) is called minimal, if c(e, f) ≤ c(e, f ′) for all
f ′ ∈ E0 \B.

Note that a swap (e, f) for B always guarantees that the binary objective value of the
new basis B − e + f is improved, since an element from E1 is replaced by an element
from E0. Extending the notion of adjacency of efficient bases to the complete feasible
set X (i.e. to all bases) implies that B and B − e + f are always adjacent. Based on
this observation, we will prove the connectedness of the efficient set in Section 10.4.
Another important result needed for this proof is the following theorem already proven
in Gabow and Tarjan [67]: Given an optimal solution B ∈ Si−1, we can construct an
optimal solution contained in Si 6= ∅, based on a simple minimal swap for B.

Theorem 10.3 ([67]) Let B ∈ Si−1 for an i ∈ {1, . . . , m} and assume that Si 6= ∅.
If the swap (e, f) is minimal, then B − e + f is contained in Si.

Proof: We follow the ideas of the proof stated in Gabow and Tarjan [67]. Obviously,
it suffices to show that there exists a swap (e, f) for B such that B− e+ f ∈ Si holds.
Let B ∈ Si−1 and assume that Si 6= ∅. We choose B′ ∈ Si such that |B ∩ B′| is
maximum. Since b(B′) = m− i < m− i+1 = b(B), there exists f ∈ (B′ \B) such that
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Figure 10.1: Graph G = (V,A). Solid lines correspond to edges e with b(e) = 0 while the
dashed lines correspond to edges with b(e) = 1.

f ∈ E0. Applying the stronger version of the basis exchange property (Lemma 10.1),
there must exist an element e ∈ B \ B′ such that both T := B − e + f as well as
T ′ := B′ − f + e are bases of the given matroid. We show that e ∈ E1, i.e. b(e) = 1.
Assume that this is not the case, i.e. b(e) = 0. Then, b(T ) = b(B) and b(T ′) = b(B′),
and since B ∈ Si−1 and B′ ∈ Si it holds that

c(B) ≤ c(T ) = c(B)− c(e) + c(f) , i.e. c(e) ≥ c(f),

c(B′) ≤ c(T ′) = c(B′)− c(f) + c(e), i.e. c(f) ≥ c(e).

This implies that c(e) = c(f) and hence, c(T ′) = c(B′), i.e. T ∈ Si. Since by
construction, e ∈ (T ′ \B′), this implies that T ′ and B have more elements in common
than B′ and B do. But this contradicts the choice of B′.
Since e ∈ E1, this implies that b(T ) = b(B′) and b(T ′) = b(B). From the optimality
of B and B′ we finally conclude that

c(B′) ≤ c(T ) = c(B)− (c(e)− c(f)) = c(B)− c(T ′) + c(B′) ≤ c(B′).

Hence, c(T ) = c(B′), i.e. T ∈ Si, as desired. �

The proof of Theorem 10.3 implies that the constructed swap (e, f) for B is minimal
and further that any minimal swap for B ∈ Si−1 leads to an optimal basis B′ ∈ Si.
Following the ideas in Gabow and Tarjan [67], we deduce:

Corollary 10.4 Let s, t ∈ N with 0 ≤ s < t ≤ m such that Ss 6= ∅ 6= St. Then Si 6= ∅
for all i ∈ {s, . . . , t}.
Proof: The proof of the corollary follows immediately from the proof of Theorem 10.3:
Let B ∈ Ss 6= ∅ arbitrary but fixed. We choose B′ ∈ St 6= ∅ such that |B ∩ B′| is
maximum. The proof of Theorem 10.3 implies that Ss+1 6= ∅. By a simple induction
it follows that Si 6= ∅ for all i ∈ {s, . . . , t}. �

Given bases with a minimum and a maximum number of elements contained in E0,
Corollary 10.4 implies that there exist fixed lower and upper bounds l and u (satisfying
0 ≤ l ≤ u ≤ m), such that Si 6= ∅ for all i ∈ {l, . . . , u}. If B corresponds to a basis such
that |B∩E0| ≤ |B⋆∩E0| for all B⋆ ∈ X , we have that l = |B∩E0|, while u = |B′∩E0|,
where B′ is a basis such that |B′ ∩E0| is maximum for all bases contained in X .
Given an instance of Problem (BBMP ), Theorem 10.3 and Corollary 10.4 immediately
imply a simple algorithm to determine the non-dominated set of the problem: Since
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each efficient basis B of Problem (BBMP ) is also optimal for Problem (BMP=) for
the right hand side value k = b(B), i.e. B ∈ Sm−k, a superset of representatives
of the non-dominated set can be determined by swapping between the optimal bases
contained in Si for i = {l, . . . , u}.
Let Bl ∈ Sl, and set A0 := E0 \Bl. We iteratively apply the following procedure first
to Bl and then to the basis B that was generated in the last iteration, until no further
replacement is possible:

(1.) For all elements fi ∈ A0 find a minimal swap c(ei, fi) for fi and B, if it exists.

(2.) Determine an element fj ∈ A0 such that c(ej , fj) ≤ c(ei, fi) for all fi ∈ A0.

(3.) Generate a new basis B′ by performing the swap c(ej , fj) and delete fj from A0.

Note that the minimal swap in the first step of the above given procedure may not be
unique. In this case, we choose a swap with the minimal costs with respect to f ∈ A0.
We give a short example of this procedure on a graphic matroidM(G).

Example 10.5 Consider the graph G = (V, A) given in Figure 10.1, where solid lines
correspond to edges of binary costs zero, while the dashed lines represent edges of
binary costs one. Furthermore, the costs in the second objective c are given as stated
next to the particular edges in the figure. We aim to find the complete non-dominated
set for the graphic matroidM(G) using the above stated procedure.
The sequence of (optimal) spanning trees {T1, . . . , T5} generated by this procedure
can be found in Figure 10.2. Obviously, Ti ∈ Si holds true for all i ∈ {1, . . . , 5}. In
the left subfigure of Figure 10.2, the index of the optimal spanning tree Ti as well as
its corresponding objective vector are given. The corresponding spanning trees are
depicted in the middle of the figure, while on the right the minimal swap c(e, f) for f
and Ti for the current iteration is determined. Note that the edges stated in the “in”-
column correspond to the edges f ∈ A0, while the edges stated in the “out”-column
correspond to edges e ∈ Ti ∩ E1. A swap with the minimum cost c(e, f) is applied to
Ti to generate an optimal spanning tree Ti+1 ∈ Si+1. Furthermore, l = 1 and u = 5 in
this example. The set of non-dominated solutions for the considered problem is given
by YN = {(17, 4); (22, 3); (27, 2); (34, 1)}.
Note that the optimal spanning tree T1 ∈ S1 that contains exactly one edge from E0 is
dominated by the tree T2, since the swap with the minimum cost is negative, i.e. the
binary cost objective b as well as the cost objective c is improved by performing the
swap. Based on the index i = 2, the remaining spanning trees correspond to efficient
spanning trees of the problem and form a complete set of efficient solutions.

Darmann and Pferschy [45] showed in their unpublished article that applying the above
described procedure to a graphic matroidM(G) on a connected graph G = (V, A), it
is possible to find the minimum spanning tree with respect to the binary objective b
and a constraint on the cost objective c in O(|V |2|A|). We omit further details on their
algorithm here, as their approach is outperformed by the algorithm stated in [67].
The main drawback of the above described procedure is the fact that in each iteration
a number of O(m) minimal swaps has to be calculated, resulting in only a single swap
that is really performed at the end of the iteration. In this context, the calculation
of a minimal swap for a fixed element f ∈ A0 and a given basis Bi ∈ Si includes the
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Figure 10.2: The sequence of optimal spanning trees {T1, . . . , T5} for the considered problem
in Example 10.5. On the left: the index of the tree and the corresponding objective vector.
In the middle: Associated optimal spanning tree. On the right: Cost of the minimal swap
c(e, f) for f and Ti.

determination of the uniquely defined fundamental cycle, when f is added to Bi, as
well as the calculation of the element e ∈ Bi ∩ E1 with the maximum cost in c that
(potentially) will be excluded from Bi, when the swap (e, f) is chosen to be performed
at the end of the iteration.

We will show in Section 10.3.2 that the recursive procedure stated in Gabow and
Tarjan [67], where the size of the given matroid is bisected in each iteration, prevents
the calculation of numerous (minimal) swaps that will not be performed at the end of
an iteration. This clearly improves the running time of the algorithm.

In the remainder of this section we concentrate on the main results that will be needed
to prove that our modified version of the algorithm stated in [67] correctly determines
the complete set of non-dominated solutions of a given instance of Problem (BBMP ).
Based on the idea of swapping between optimal bases contained in Si for i = l, . . . , u,
we will show in the following that there exists a fixed index j ∈ {l, . . . , u} such that
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B ∈ Si is efficient, whenever i ≥ j holds.
Considering Example 10.5 once again, we notice that the sequence of costs that result
from the minimal swaps performed at the end of the individual iterations is strictly
increasing in the number of iterations. We prove in the following that this sequence
is non-decreasing in general. First, we state a lemma that is taken from Gabow and
Tarjan [67].

Lemma 10.6 ([67]) Let B denote a basis containing the element e ∈ (B ∩ E1). Let
(e, f) denote a minimal swap for B involving e and define B′ = B − e + f . Given
g ∈ E1 ∩ (B − e) arbitrary but fixed, let (g, h) and (g, h′) denote the minimal swap for
B and B′ involving g, respectively. Then, it holds that c(g, h) ≤ c(g, h′).

Proof: We follow the ideas of the proof stated in Gabow and Tarjan [67]. To simplify
the notation, we set T = B − g + h and T ′ = B′ − g + h′.
If (g, h′) is a feasible swap for B involving g, there is nothing to show, since the swap
(g, h) is minimal by definition.
Hence, we may assume that the swap (g, h′) is not a valid swap for B. Since g ∈ B\T ′,
Lemma 10.1 implies that there exists an element z ∈ T ′ \B = {f, h′} such that both,
B − g + z and T ′ − z + g are bases of the given matroid. Since the swap (g, h′) is
assumed to be infeasible for B, it follows that z = f . Since (g, h) is minimal for B
involving g, we conclude that c(g, h) ≤ c(g, f), i.e. c(h) ≤ c(f) holds true. Since
T ′ − f + g = B − e + h′ and (e, f) is minimal for B involving e, we further conclude
that c(e, f) ≤ c(e, h′), i.e. c(f) ≤ c(h′). Combining these two results implies that
c(h) ≤ c(f) ≤ c(h′), and hence,

c(g, h) = c(h)− c(g) ≤ c(h′)− c(g) = c(g, h′),

This completes the proof. �

Based on Lemma 10.6 we finally prove that the sequence of costs induced by the
minimal swaps is non-decreasing for increasing i ∈ {l, . . . , u}, whenever u ≥ l + 2
holds.

Theorem 10.7 Let u ≥ l + 2. For i ∈ {l, . . . , u − 1} let (ei, fi) denote a minimal
swap for Bi ∈ Si to generate Bi+1 ∈ Si+1. Then every sequence of minimal swaps
{c(ei, fi)}u−1

i=l is non-decreasing, i.e. c(ei, fi) ≤ c(ei+1, fi+1) for all i ∈ {l, . . . , u− 2}.

Proof: Let a sequence of minimal swaps be given. We choose i ∈ {l, . . . , u − 2}
arbitrary but fixed. Since ei ∈ Bi \ Bi+1, it holds that ei 6= ei+1. Furthermore,
ei+1 ∈ Bi since otherwise ei+1 would be contained in Bi+1 \ Bi, i.e. ei+1 = fi, where
1 = b(ei+1) = b(fi) = 0, which is not possible. Hence, ei+1 is contained in Bi − ei.
Let (ei+1, f) denote a minimal swap for B involving ei+1. Note that such a swap always
exists, since ei+1 ∈ Bi \ Bi+2, so there must exist an element z ∈ Bi+2 \ Bi such that
Bi − ei+1 + z ∈ X , according to the basis exchange property for matroids. But since
Bi+2 \Bi = {fi, fi+1}, (ei+1, z) always defines a feasible swap for B involving ei+1.
Since the minimal swap (ei, fi) is performed to generate Bi+1 from Bi, we conclude
that c(ei, fi) ≤ c(ei+1, f). If f = fi+1, there is nothing more to show. If f 6= fi+1, we
use Lemma 10.6 to deduce that c(ei+1, f) ≤ c(ei+1, fi+1), since the swap (ei+1, fi+1) is
minimal for Bi+1. Combining these two results also leads to c(ei, fi) ≤ c(ei+1, fi+1). �
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Since
c(Bi+1)− c(Bi) = c(fi)− c(ei) = c(ei, fi), (10.1)

we deduce from Theorem 10.7 that the minimal costs of bases B ∈ Si define a convex
function in i = |B ∩E0| ∈ {l, . . . , u}. This fact helps to solve the ε-constraint version
of Problem (BBMP ) (cf. Problem (BMP≤)) stated in Section 10.2.

Corollary 10.8 Let a feasible instance of Problem (BMP≤) with right hand side value
k ∈ {m− u, . . . , m− l} be given. If the basis with minimum costs is feasible, it is also
optimal. Otherwise, a basis B ∈ Sm−k is the optimal solution of the problem.

Proof: If the minimum cost basis B is feasible, it must be optimal. Otherwise, |B ∩
E1| > k, and some elements from this set have to be exchanged by elements from
E0 \ B to find an optimal solution. But since every sequence of minimal swaps is
non-decreasing according to Theorem 10.7, the optimal solution is obtained, when
an optimal solution B⋆ contains exactly k elements from E1. But this implies that
B⋆ ∈ Sm−k . �

From Theorem 10.7 we further deduce that if c and b are conflicting, there must
exist an index j ∈ {l, . . . , u} such that, based on this index, all subsequent bases
contained in the sequence {Bi}ui=j correspond to at least weakly efficient solutions of
Problem (BBMP ), since the value of the binary objective function b is decreased by
one unit when a swap from Bi to Bi+1 is performed, while the corresponding value of
the cost function c is not decreased. Obviously, this specific index j corresponds to
the minimum index i ∈ {l, . . . , u− 1}, such that c(ei, fi) ≥ 0 holds for the first time.
Consequently, we state:

Corollary 10.9 Let {Bi}ui=l denote the sequence of optimal bases such that Bi ∈ Si

for i ∈ {l, . . . , u}. Assume that u ≥ l + 2. If there exists an index j ∈ {l + 1, . . . , u}
such that c(Bj−1) < c(Bj), then c(Bi) < c(Bi+1) holds true for all i ∈ {j−1, . . . , u−1}.
Proof: Let j ∈ {l + 1, . . . , u} denote the index, where c(Bj−1) < c(Bj) holds true for
the first time. If j = u there is nothing to show. Otherwise, it suffices to prove that
c(Bj) < c(Bj+1) holds, too. From Equation (10.1) we deduce that c(ej−1, fj−1) > 0.
From Theorem 10.7 it follows that

c(Bj+1)− c(Bj) = c(ej, fj) ≥ c(ej−1, fj−1) > 0,

which implies that c(Bj) < c(Bj+1) holds true. �

Corollary 10.9 implies a method, how a minimal complete set X of efficient bases can
be generated. Starting from an optimal basis contained in Sl, we calculate a sequence
of minimal swaps {(ei, fi)}u−1

i=l , called the swap sequence in the following, that generates
a sequence of bases Bi contained in Si for ∈ {l+1, . . . , u}. Based on the index j where
c(ej , fj) > 0 holds for the first time, we add Bj as well as all subsequently calculated
bases to X. Note that in this case, Bj is lexicographically optimal with respect to c
and b. Corollary 10.9 implies that the remaining bases Bj+1, . . . , Bu also correspond
to efficient solutions of the problem, and hence they form a system of representatives
of the remaining non-dominated solutions contained in YN. Since no non-dominated
solution is missed by construction, the set X is a minimal complete set of efficient
bases of Problem (BBMP ). Hence, we have proven:
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Corollary 10.10 Let {Bi}ui=l denote the sequence of bases generated by a swap se-
quence and assume that u 6= l. If there exists a minimum index j ∈ {l, . . . , u − 1}
such that c(Bj) < c(Bj+1), then Bj is lexicographically optimal with respect to c and
b. Furthermore, X = {Bj, . . . , Bu} forms a minimal complete set of efficient solutions
and YN = {(c(Bi), b(Bi)), i = j, . . . , u}.

10.3.2 The Modified Algorithm of Gabow and Tarjan

In this subsection we present a modified version of the algorithm of Gabow and Tarjan
that takes into account the biobjective nature of Problem (BBMP ). We combine
their algorithm with the results of Corollary 10.10 to construct a new algorithm that
efficiently determines the complete set of non-dominated solutions for a given BBMP.
Since the algorithm of Gabow and Tarjan is already proven to generate a complete
swap sequence {(ei, fi)}u−1

i=l starting from Bl ∈ Sl and leading to Bu ∈ Su, we omit
detailed proofs for the correctness of this part of the algorithm, since it can be found
in all details in [67]. We rather explain the idea of how a complete swap sequence
is generated without calculating a multiplicity of unnecessary swaps that do not lead
to new efficient bases of the biobjective problem. After having stated our modified
algorithm, we give a small example of how it works in practice. In more detail, we
apply the algorithm to the graphic matroid already considered in Example 10.5.
To omit the calculation of unnecessary swaps in each iteration, Gabow and Tarjan use
the idea that the proofs of Theorem 10.3 and Corollary 10.4 are based on: Besides
Bl ∈ Sl, another optimal basis Bu ∈ Su is determined such that Bl and Bu coincide
on a maximum number of elements. According to the proofs of Theorem 10.3 and
Corollary 10.4 only those elements have to be swapped that are not contained in both
bases simultaneously. Note that given Bl, Bu coincides with Bl in a maximum number
of elements if the following two criteria are satisfied:

• Bu contains all elements from Bl ∩ E0.

• If u 6= m, i.e. B ∩E1 6= ∅ for B ∈ Su, then (Bu ∩E1) ⊆ (Bl ∩ E1) must hold.

Obviously, these two criteria ensure that both bases have as many elements in common
as possible. Furthermore, the remaining elements from E that are not contained in
Bu ∪ Bl are redundant and can be removed from the problem. Starting from this
reduced problem, the swap sequence is calculated by a recursive procedure based on
the following simple idea illustrated for the basis Bl:
Adding an element f from Bu \ Bl ⊆ E0 with minimum costs to Bl generates a
fundamental cycle C(f, Bl). If all the remaining elements of this fundamental cycle
(that are obviously all contained in Bl) are also elements from E1, the minimal swap
(e, f) for f induced by C(f, Bl) must be contained in the swap sequence, since no
other element of this cycle can give a better swap than the swap (e, f) does, when f
is added to Bl. If there exists an element f ∈ Bu \Bl such that C(f, Bl) also contains
elements e ∈ (Bl ∩ E0) (as it is always the case for the tree T1 in Example 10.5), a
minimal swap for f that will be contained in a final swap sequence cannot be deduced
immediately. In this case, the complete problem is split up into two new subproblems
on contracted matroids that do not intersect on the original ground set E , with the
hope that now adding f to the reduced problem implies that all remaining elements in
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Algorithm 10.1 Algorithm for Biobjective Matroid Problems with Binary Costs

Input: An instance ((M,X , (c, b)) of Problem (BBMP ).
Output: YN and a complete set X of efficient solutions.
1: X = ∅, YN = ∅.
2: Determine a minimal basis Bl with respect to c such that Bl contains a minimum

number of elements from E0.
3: Determine a minimal basis Bu with respect to c such that Bu contains a maximum

number of elements from E0, all elements from Bl ∩ E0 and only those elements
from E1 that are also contained in Bl.

4: Call P ((M− (Bl ∪Bu)
c)/(Bl ∩Bu), Bl \Bu, Bu \Bl) to generate a swap sequence.

5: Let {(ei, fi)}u−1
i=l denote the swap sequence found by Procedure P , where the swaps

are sorted in non-decreasing order with respect to their costs.
6: Set i = l, B = Bl, γ = c(Bl) and β = b(Bl).
7: while c(ei, fi) ≤ 0 do
8: Set B = B − ei + fi, γ = γ + c(ei, fi), β = β − 1 and i = i + 1.
9: end while

10: for j = i to u− 1 do
11: Set B = B − ej + fj , γ = γ + c(ej, fj) and β = β − 1.
12: Set X = X ∪ {B} and YN = YN ∪ {(γ, β)}.
13: end for
14: return X and YN.

the newly generated cycle are contained in E1. If this is still not the case, the problem
is split up once more.

Since the splitting of the problem can be done by preserving swaps that are already
guaranteed to be contained in a final swap sequence by the criterion given above (see
[67] for further details), the problem can be split until the ground set of the contracted
matroids consists of two single elements e ∈ Bl and f ∈ Bu only. Then, the swap (e, f)
is proven to be minimal and hence, must be contained in the final swap sequence.

To summarize more formally, the algorithm of Gabow and Tarjan is based on splits of
the original matroid into smaller parts, induced by a subsequent bisection of the sets
L = Bl \ Bu and U = Bu \ Bl. To keep the matroid problem feasible, the split of a
matroidM is performed by first partitioning the sets U and L into two subsets U1, U2

and G, L \G, respectively, such that on the one hand, U1 ⊆ E0 consists of the ⌊|U |/2⌋
smallest elements with respect to c and on the other hand, the set B = (L \ G) ∪ U1

forms a minimal basis forM with respect to c satisfying B ∩ E0 = U1. The problem
is split into two different subproblems on the contracted matroids (M− U2)/(L \G)
(where L = G and U = U1 in the next iteration) and (M− G)/U1 (with L = L \ G
and U = U2).

It is proven in [67] that this bisection of the problem preserve swaps that are contained
in the swap sequence we are looking for. Hence, it it guaranteed that when the ground
set of a contracted matroid finally consists of exactly one element e ∈ L ⊆ (Bl\Bu)∩E1

and one element f ∈ U ⊆ (Bu \Bl) ∩ E0, the swap (e, f) has to be an element of the
desired swap sequence.

Our algorithm that solves Problem (BBMP ) is formulated in Algorithm 10.1, while
a short outline of the bisection procedure that is recursively called during the course
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Algorithm 10.2 Procedure P (M, L, U) to generate the swap sequence ([67])

Input: A matroidM and two sets of elements L ⊆ Bl\Bu and U ⊆ Bu\Bl, |L| = |U |.
Output: A minimal swap (e, f) or two recursive calls of the procedure P .
1: if |U | = 1 then
2: return the swap (e, f), where L = {e} and U = {f}.
3: else
4: Let U1 be the set of ⌊|U |/2⌋ smallest elements with respect to c (contained in

E0) and set U2 = U \ U1.
5: Determine G ⊆ L such that B = (L\G)∪U1 forms a minimal basis forM with

respect to c satisfying B ∩ E0 = U1.
6: Call P ((M− U2)/(L \G), G, U1) to find the swaps for the elements in U1.
7: Call P ((M−G)/U1, L \G, U2) to find the swaps for the elements in U2.
8: end if

of Algorithm 10.1 is given in Algorithm 10.2.
Applying Algorithm 10.1, we start from a (contracted) matroid that is given by (M−
(Bl ∪Bu)

c)/(Bl ∩Bu)), whose ground set consists of all elements (Bl ∪Bu) \ (Bl∩Bu).
In the next step, Algorithm 10.2 is called and recursively applied until a complete
swap sequence is determined and returned. Since the calculated swaps may not be
sorted in non-decreasing order of their costs, we have to sort them. Then, we finally
apply the result of Corollary 10.10 to determine the complete non-dominated set YN

and a minimal set X of representatives.
However, in Line 5 of Algorithm 10.1 as well as in Line 4 of Algorithm 10.2 it may
happen that ties in the costs need to be broken. In [67], the following decision rule is
proposed to solve this problem:
We assume that the elements of E0 are sorted and indexed according to their costs c
in non-decreasing order. Then, in Line 4 of Algorithm 10.2 we always choose the first
⌊|U |/2⌋ elements from U , while, if there exist ties in the costs of the swap sequence
generated by Procedure P in Algorithm 10.1, we order those swaps in increasing order
of the indices with respect to the elements that are contained in E0. For further details
on the implementation (e.g., how the bases Bl and Bu can be found and how a matroid
can be contracted efficiently) and an additional iterative approach to generate a swap
sequence we once more refer to [67].
Furthermore, we remark that in Algorithm 10.1 we could replace the starting basis
Bl ∈ Sl by a lexicographically optimal basis B⋆ ∈ Si with respect to c and b, where
l ≤ i ≤ u. But since by the recursive calls of Algorithm 10.2, the desired swap
sequence can be generated efficiently, implying that a lexicographically optimal basis
is automatically found, the overall complexity of the algorithm will not be affected by
this simplification, also taking into account that already the basis Bl may be efficient.
We summarize the above given results for Algorithm 10.1 in the following theorem.

Theorem 10.11 Algorithm 10.1 is correct and returns a complete set of efficient
solutions as well as the non-dominated set.

Proof: The correctness of the algorithm follows immediately from the correctness of
the original algorithm stated in [67] in combination with Corollary 10.10. �

Concerning the complexity of Algorithm 10.1, it is not possible to state a general
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Figure 10.3: Contracted graphic matroids M1, M2 and M3 from Example 10.12. Solid lines
correspond to edges e with b(e) = 0 while the dashed lines correspond to edges with b(e) = 1.
The edges are identified by their cost value c.

time bound that applies to all matroid problems simultaneously, since an efficient im-
plementation of the algorithm always depends on the special type of the considered
matroid problem. For graphic matroids G = (V, A), Gabow and Tarjan [67] showed
that their algorithm solves the spanning tree problem within O(m + n · log(n)) time,
where |V | = n and |A| = m. Since the construction of X and YN additionally takes
at most O(m) time, the stated time bound is also valid for Algorithm 10.1 and out-
performs the solution procedure given in Section 10.3.1.

We close this section by applying Algorithm 10.1 to the graphic matroid of Exam-
ple 10.5. To simplify the notation, we identify the edges of the graph in Figure 10.1 by
their associated costs. Since the edge [1, 4] is not contained in any optimal spanning
tree, we can neglect it in the following. To distinguish the edge [2, 3] from the edge
[2, 4] that are both of cost 2, we denote the cost of [2, 3] by 2′.

Example 10.12 Consider the graphic matroid shown in Figure 10.1. We apply Algo-
rithm 10.1. The optimal bases Bl and Bu that have to be determined at the beginning
of the algorithm, correspond to the spanning trees T1 and T5, respectively, depicted
in Figure 10.2. Hence, Bl = {1, 2, 2′, 3, 4, 6} and Bu = {1, 4, 5, 7, 8, 9} and the proce-
dure P is called with P (M1, L1, U1), where L1 = {2, 2′, 3, 6}, U1 = {5, 7, 8, 9} and M1

corresponds to the graphic matroid depicted in Figure 10.3. Since |U1| = 4 < 1, the
minimal basis B1 = {2, 3, 5, 7} ⊃ {5, 7} = U1

1 is calculated, and hence, G1 = {2′, 6}.
Then, the procedure is recursively called with P (M2, L2, U2) and P (M3, L3, U3), re-
spectively, where L2 = G1, L3 = {2, 3}, U2 = U1

1 , U3 = {5, 7} and M2 and M3

correspond to the contracted graphic matroids that can be found in the bottom part
of Figure 10.3. According to the above stated criteria, the first call of P returns the
swaps (6, 5) and (2′, 7) after two more recursive calls of P .
Finally, the swaps (3, 8) and (2, 9) are returned by the call of P with M3. Also in this
case, P has to be called recursively twice. Hence, the sorted swap sequence is given
by the ordered set {(6, 5); (2′, 7); (3, 8); (2, 9)}. Obviously, this sequence corresponds
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to the swaps performed in Example 10.5. Applying the filter step of Algorithm 10.1
yields that YN = {(17, 4); (22, 3); (27, 2); (34, 1)} and X = {T2, . . . , T5} is the returned
complete set of efficient solutions.

Example 10.12 completes this section. To summarize our results, we have proven that
based on Corollary 10.4 it is possible to generate a complete set of efficient solutions
by consecutively exchanging elements from efficient bases with elements that are not
yet contained in any previously generated basis.

10.4 Connectedness of the Efficient Set

In this section we show that the set of efficient bases for BBMPs is always connected.
We recall from Chapter 7 that two efficient bases are said to be adjacent, if they
have m − 1 elements in common, where m corresponds to the rank of the matroid.
The efficient set is said to be connected, if its efficiency graph G is connected (cf.
Definition 7.1). The proof given in the following is based on the fact that each non-
dominated solution of the problem is a supported one, i.e. each point from YN is an
element of the non-dominated frontier of the given problem. We combine this result
with the result of Ehrgott [52], where it is shown that the set of supported efficient
solutions is always connected with respect to the above given definition of adjacency
for efficient bases.

We start with a short proof of a sufficient condition that indicates, whether the
non-dominated set consists of supported non-dominated solutions only or not. For
a general biobjective combinatorial minimization problem with non-dominated set
YN = {z1, . . . , zn} ⊂ R2, where n ≥ 3 and zi = (xi, yi) ∈ R2, with x1 < . . . < xn and
y1 > . . . > yn, we define the sequence of slopes {mi}n−1

i=1 of subsequent points of YN by
setting

mi =
yi+1 − yi

xi+1 − xi

.

Note that by this definition, it holds that mi ∈ (−∞, 0) for all i ∈ {1, . . . , n− 1}.

Theorem 10.13 If the sequence of slopes {mi}n−1
i=1 is non-decreasing, the set of non-

dominated solutions YN consists of supported non-dominated points only.

Proof: We prove the theorem by contradiction. So assume, that there exists a non-
dominated solution zt ∈ YN that does not correspond to a supported one, where
t ∈ {2, . . . , n − 1}. Since a non-dominated solution is supported if and only if it
is an element of the non-dominated frontier of the given problem, there must exist
supported non-dominated solutions zi, zj ∈ YN and λ ∈ (0, 1) such that the point
zλ = (xλ, yλ) := λzi + (1− λ)zj ∈ R2 strongly dominates zt, where 1 ≤ i < t < j ≤ n
holds. Note that zλ does not correspond to a feasible outcome of the given problem,
since otherwise zt would be dominated by zλ (cf. also Figure 4.1). Without loss of
generality, we may assume that i = 1 and t = 2.
Since x1 < xλ < x2 and yλ < y2 < y1 holds, we conclude that

(yλ − y1) · (x2 − x1) < (y2 − y1) · (x2 − x1) < (y2 − y1) · (xλ − x1) < 0.
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Since zλ is an element of the straight line connecting z1 and zj , it follows that

m⋆ :=
yj − y1

xj − x1

=
yλ − y1

xλ − x1

<
y2 − y1

x2 − x1

= m1.

But this is not possible, since by assumption m1 ≤ mi for all i ∈ {1, . . . , n}, and hence

yj = y1 +

j−1
∑

i=1

(yi+1 − yi) = y1 +

j−1
∑

i=1

mi · (xi+1 − xi)

≥ y1 + m1 ·
j−1
∑

i=1

(xi+1 − xi) = y1 + m1 · (xj − x1).

But this implies that m⋆ ≥ m1 which contradicts our previous result. �

Note that it can easily be proven that the converse of Theorem 10.13 also holds true.
This means that the non-dominated set YN consists of supported non-dominated points
only, if and only if the sequence of slopes {mi}n−1

i=1 is non-decreasing. In this case,
zi ∈ YN corresponds to a breakpoint of the non-dominated frontier if and only if
mi−1 < mi holds true for i ∈ {2, . . . , n− 1}.
Corollary 10.9 and Corollary 10.10 in combination with Theorem 10.13 imply one of
the main results of this chapter.

Theorem 10.14 Let a feasible instance of Problem (BBMP ) be given. Then the non-
dominated set YN of this problem consists of supported non-dominated points only.

Proof: We use the notation from Section 10.3. Let {(ei, fi)}u−1
i=l denote the swap

sequence for optimal Bi ∈ Si, i = l, . . . , u. Furthermore, let j ∈ {l, . . . , u} denote
the minimum index such that c(Bi) < c(Bi+1) holds for the first time. According to
Corollary 10.10, we have that YN = {(c(Bi), b(Bi)), i = j, . . . , u}. If |YN| ≤ 2, there
is nothing more to show. Otherwise, it suffices to show that the sequence of slopes
{mi}u−1

i=j , where

mi =
b(Bi+1)− b(Bi)

c(Bi+1)− c(Bi)
=

−1

c(Bi+1)− c(Bi)

is non decreasing, according to Theorem 10.13.
Let YN ≥ 3, i.e. j ≤ u − 2. Furthermore, let i ∈ {j, . . . , u − 2} arbitrary, but fixed.
According to Theorem 10.7 and Corollary 10.9 we have that

c(Bi+2)− c(Bi+1) = c(ei+1, fi+1) ≥ c(ei, fi) = c(Bi+1)− c(Bi) > 0,

But this implies that

mi+1 =
−1

c(Bi+2)− c(Bi+1)
≥ −1

c(Bi+1)− c(Bi)
= mi.

Hence, the sequence of slopes {mi}u−1
i=j of the non-dominated frontier of YN is non-

decreasing and consequently, YN consists of supported non-dominated points only. �

Note that supported non-dominated solutions may exist that do not correspond to
breakpoints of the non-dominated frontier of YN. For example, if the value of two
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consecutive minimal swaps (ei, fi) and (ei+1, fi+1) is the same, the non-dominated
solution (c(Bi+1), b(Bi+1)) is supported but does not correspond to a breakpoint of the
non-dominated frontier, since the slope of this part of the frontier does not change.
Since all points of YN are supported non-dominated solutions, i.e. all efficient bases
correspond to supported efficient solutions, we conclude, based on the fact that the
set of supported efficient solutions is always connected (cf. Ehrgott [52]), that the set
of efficient bases XE must be connected, where the adjacency of two efficient bases is
based on the definition used in Subsection 7.2.2 of Chapter 7.

Corollary 10.15 Let a feasible instance of Problem (BBMP ) be given. Then the set
of efficient solutions XE is connected.

Proof: Follows immediately from the fact that the restriction of the efficiency graph (cf.
Definition 7.1) to the (sub)graph of supported efficient solutions is always connected
due to Ehrgott [52], combined with the result of Theorem 10.14. �

10.5 Conclusions and Further Ideas

In this chapter we dealt with biobjective matroid problems involving a binary cost
objective. While the general biobjective matroid problem is proven to beNP-complete
(cf. Ehrgott [52]), we proved that the special structure of the binary objective allows
to solve the problem efficiently. For example, given a graphic matroid on a graph
G = (V, A) an upper time bound of O(m + n · log(n)) can be established, where
|V | = n and |A| = m.
The presented solution approach for solving biobjective matroid problems involving a
binary cost objective is based on an algorithm developed in Gabow and Tarjan [67] to
find a minimum cost basis satisfying an equality constraint on the number of elements
with binary cost zero. We showed that the main ideas of this algorithm can be used to
solve the given biobjective problem, too. Based on swaps between optimal solutions
for the equality constrained problem, we can derive a simple decision rule on the costs
of the involved swaps that allows to filter dominated solution from the problem.
While the set of efficient solutions for biobjective matroid problems is not connected in
general (cf. Chapter 7), we proved that in the special case of BBMPs, the efficient set
is always connected, since its non-dominated set consists of supported non-dominated
solutions only. To the best of our knowledge this is the first non-trivial problem on
matroids where connectedness of XE can be established.
This result should be seen as a starting point for a deeper discussion of the connected-
ness of the efficient set for this special type of problem for the case that not only one
but p binary objective functions (p ≥ 2) are considered. Since the non-dominated set
of this (p+1)-objective problem is still of polynomial size, the simple idea of exchang-
ing elements contained in different (efficient) bases may also apply to this problem
to generate the complete non-dominated set using simple swaps only. Since matroid
problems with multiple labels (or colors) can be seen as a special case of this more
general multiple objective problem, the articles of Rendl and Leclerc [182] and Bre-
zovec et al. [27], as well as the article of Hamacher and Rendl [95], where elements are
related to more than one label, may build a good starting point for further research
on this topic.
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Chapter 11
Biconvex Sets and Optimization with
Biconvex Functions

Biconvex optimization problems frequently occur in industrial applications, for exam-
ple, in the field of multifacility location or medical image registration. We review
theoretical results for biconvex sets and biconvex functions and survey existing meth-
ods and results for general biconvex optimization problems.
We recall that a set S ⊆ Rk is said to be convex if for any two points s1, s2 ∈ S the
line segment joining s1 and s2 is completely contained in S. A function f : S → R on
a convex set S is called convex, if

f(λs1 + (1− λ)s2) ≤ λf(s1) + (1− λ)f(s2)

is valid for all λ ∈ [0, 1] and s1, s2 ∈ S.
For the definition of biconvex sets and biconvex functions, let X ⊆ Rn and Y ⊆ Rm

be two non-empty, convex sets, and let B ⊆ X × Y . We define x- and y-sections of B
as follows:

Bx := {y ∈ Y : (x, y) ∈ B},
By := {x ∈ X : (x, y) ∈ B}.

Definition 11.1 The set B ⊆ X × Y is called a biconvex set on X × Y , or biconvex
for short, if Bx is convex for every x ∈ X and By is convex for every y ∈ Y .

The most important results on biconvex sets are summarized in Section 11.1.

Definition 11.2 A function f : B → R on a biconvex set B ⊆ X × Y is called a
biconvex function on B or biconvex for short, if

fx(·) := f(x, ·) : Bx → R

is a convex function on Bx for every fixed x ∈ X and

fy(·) := f(·, y) : By → R

is a convex function on By for every fixed y ∈ Y .
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From this definition, the definitions of biconcave, bilinear and biaffine functions are
obtained by replacing the property for fx and fy of being convex by the property of
being concave, linear, or affine, respectively. Since for a biconvex function f : B → R,
the function g := −f is biconcave on B, i.e., g(x, y) is concave on Bx in y for fixed
x ∈ X and g(x, y) is concave on By in x for fixed y ∈ Y , most of the results and
methods mentioned in this paper can directly be transferred to the biconcave case,
too.
In the first part of Section 11.2, we survey general properties of biconvex functions,
like arithmetical properties or results on the continuity of such functions, which mostly
result from the convex substructures of a biconvex function. In the second part, we
discuss results on biconvex maximization problems and show that a biconvex function
which attains its maximum in the relative interior of a given biconvex set B must be
constant throughout B, assuming rather weak topological properties on B. Further-
more, we survey separation theorems for biconvex functions which are mostly applied
in probability theory.

Definition 11.3 An optimization problem of the form

min {f(x, y) : (x, y) ∈ B} (11.1)

is said to be a biconvex optimization problem or biconvex for short, if the feasible set
B is biconvex on X × Y , and the objective function f is biconvex on B.

Different from convex optimization problems, biconvex problems are in general global
optimization problems which may have a large number of local minima. However, the
question arises whether the convex substructures of a biconvex optimization problem
can be utilized more efficiently for the solution of such problems than in the case of gen-
eral non-convex optimization problems. For this purpose, we discuss existing methods
and algorithms, specially designed for biconvex minimization problems which primar-
ily exploit the convex substructures of the problem and give examples for practical
applications in Section 11.3.
In this context, we only briefly mention bilinear problems, as there exist plenty of liter-
ature and methods, see, e.g., Horst and Tuy [105] for a survey. We rather concentrate
on minimization methods and algorithms which can be applied to general constrained
as well as unconstrained biconvex minimization problems. In particular, we review the
alternate convex search method, stated, e.g., in Wendell and Hurter Jr. [215], the global
optimization algorithm, developed by Floudas and Visweswaran [62] and an algorithm
for a special class of jointly constrained biconvex programming problems, given in Al-
Khayyal and Falk [5]. Note that the above mentioned methods and algorithms can
also be and are applied to bilinear problems in practice, (cf., e.g., Visweswaran and
Floudas [210]). We finally conclude in Section 11.4.
We additionally remark that the main results of this chapter are additionally published
in Gorski et al. [87].

11.1 Biconvex Sets

The goal of this section is to recall the main definitions and results obtained for bicon-
vex sets. Only a few papers exist in the literature where biconvex sets are investigated.
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B1

B2

Figure 11.1: Examples of biconvex sets which are non-convex (B1) and non-convex and
non-connected (B2), respectively.

The results presented here can be found in the papers of Aumann and Hart [9] and
Goh et al. [82]. In addition we give a short comparison between convex and biconvex
sets.

11.1.1 Elementary Properties

In this first subsection we recall elementary properties of biconvex sets. We start with
a characterization.

Theorem 11.4 (Aumann and Hart [9]) A set B ⊆ X × Y is biconvex if and only
if for all quadruples (x1, y1), (x1, y2), (x2, y1), (x2, y2) ∈ B it holds that for every
(λ, µ) ∈ [0, 1]× [0, 1]

(xλ, yµ) := ((1− λ)x1 + λx2, (1− µ)y1 + µy2) ∈ B.

Obviously, a biconvex set is not convex in general. As an example we consider the
letters “L” or “T” as a subset of R × R, which are biconvex but not convex. Even
worse, a biconvex set does not have to be connected in general, as the example

B2 = {(x, y) ∈ R2 : x, y > 0} ∪ {(x, y) ∈ R2 : (−x), (−y) > 0} (11.2)

shows (see Figure 11.1). If in contrast B is convex, we derive the following result.

Theorem 11.5 Let k > 1, let B ⊂ Rk be a convex set, and let (V1, V2) be an arbitrary
partition of the variable set V := {x1, . . . , xk} into two non-empty subsets. Then B is
biconvex on span(V1)× span(V2), where span(Vi) denotes the linear space generated by
Vi (i = 1, 2).

The converse of the last theorem is obviously false. For a counter-example in R2

consider again the letters “L” or “T”. For a more general counter-example in Rn, we
generalize the set B given in (11.2).

Example 11.6 Let k ≥ 2, and let the set B ⊂ Rk be given by

B = {z ∈ Rk : zi > 0, i = 1, . . . , k} ∪ {z ∈ Rk : zi < 0, i = 1, . . . , k}.
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Since B is not connected, it cannot be convex. Now let (V1, V2) be an arbitrary, but
fixed partition of the variable set V := {x1, . . . , xk} into two non-empty subsets. The
given set B is symmetric in all variables, thus we can rearrange the variables such that
we can suppose without loss of generality that the partition of V is given by V1 =
{x1, . . . , xν} and V2 = {xν+1, . . . , xk} with 1 ≤ ν ≤ k − 1, i.e., X := span(V1) = Rν

and Y := span(V2) = Rk−ν. Now choose x̂ ∈ X arbitrary, but fixed. Then

Bx̂ =







{y ∈ Y : yj > 0, j = 1 . . . , k − ν} : x̂i > 0, i = 1, . . . , ν.

∅ : ∃ i, j ∈ {1 . . . , ν}, i 6= j : xi · xj ≤ 0

{y ∈ Y : yj < 0, j = 1 . . . , k − ν} : x̂i < 0, i = 1, . . . , ν.

Obviously, in all the three cases, Bx̂ is convex. Similarly, it can be shown that Bŷ is
convex for every fixed ŷ ∈ Y . Hence, B is biconvex for the chosen partitioning of V .

11.1.2 Biconvex Combinations and the Biconvex Hull

In convex analysis, the concept of convex combinations of k given points in Rn and
their convex hull is well known and straight forward (see, e.g., Rockafellar [183]). In
Aumann and Hart [9] the concept of biconvex combinations as a special case of a
convex combination of k given points is introduced and investigated. We recall the
main ideas and results here.

Definition 11.7 Let (xi, yi) ∈ X × Y for i = 1, . . . , k. A convex combination

(x, y) =

k∑

i=1

λi(xi, yi),

(with
k∑

i=1

λi = 1, λi ≥ 0 for i = 1, . . . , k) is called biconvex combination or biconvex

for short, if x1 = · · · = xm = x or y1 = · · · = yk = y holds.

With the help of biconvex combinations another characterization for biconvex sets can
be formulated:

Theorem 11.8 (Aumann and Hart [9]) A set B ⊆ X × Y is biconvex if and only
if B contains all biconvex combinations of its elements.

As in the convex case, it is possible to define the biconvex hull of a given set A ⊆ X×Y .
To do this, we proceed as in the convex case and denote by H the intersection of all
biconvex sets that contain A.

Definition 11.9 Let A ⊆ X × Y be a given set. The set

H :=
⋂

{AI : A ⊆ AI , AI is biconvex}

is called biconvex hull of A and is denoted by biconv(A).

Theorem 11.10 (Aumann and Hart [9]) The set H as defined in Definition 11.9
is biconvex. Furthermore, H is the smallest biconvex set (in the sense of set inclusion),
which contains A.
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z1, w1

z2

z3

z4
z5

w2 w3

w4
w5

Figure 11.2: Illustration of Example 11.13.

As biconvex combinations are, by definition, a special case of convex combinations and
the convex hull conv(A) of a given set A consists of all convex combinations of the
elements of A (see, e.g., Rockafellar [183]), we have:

Lemma 11.11 Let A ⊆ X × Y be a given set. Then

biconv(A) ⊆ conv(A)

Aumann and Hart proposed in their paper another way to construct the biconvex hull
of a given set A. They defined an inductively given sequence {An}n∈N as follows:

A1 := A

An+1 := {(x, y) ∈ An : (x, y) is a biconvex combination of elements of An}.

Let H ′ :=
∞⋃

n=1

An denote the limit of this sequence.

Theorem 11.12 (Aumann and Hart [9]) The above constructed set H ′ is biconvex
and equals H, the biconvex hull of A.

It is important to mention that when applying the above procedure to the convex case
(i.e., for the construction of the convex hull of A), one iteration is sufficient as the
convex hull consists exactly of all convex combinations of its elements. In general,
there does not necessarily exist a finite number of sets An such that the union of these
sets build the biconvex hull of the given set A. To see this, consider the following
example.

Example 11.13 (Aumann and Hart [9]) Let X = Y = [0, 1]. For m ∈ N we
define

z1 = (0, 0), w1 = (0, 0)

z2m =

(

1− 1

2m−1
, 1− 3

2m+2

)

, w2m =

(

1− 1

2m−1
, 1− 1

2m

)

,

z2m+1 =

(

1− 3

2m+2
, 1− 1

2m

)

, w2m+1 =

(

1− 1

2m
, 1− 1

2m

)

.
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For n ≥ 2, wn is a biconvex combination of the points zn and wn−1, namely

wn =
4

5
zn +

1

5
wn−1.

Now, let the set A be given by {zn}n∈N. Then it is easy to see that wn ∈ An, but
wn 6∈ An−1 for every n ≥ 2 (see also Figure 11.2).
By adding the point (1, 1) to the set A, we obtain a closed and bounded set A with
An ( biconv(A) for all n ∈ N.

11.2 Biconvex Functions

In this section we present important properties of biconvex functions. As these types of
functions regularly appear in practice, biconvex functions and optimization problems
are widely discussed in the literature. Since we are interested in optimization with
biconvex functions f on subsets of Rn+m here, we focus on properties which are related
to these optimization problems.
Note that biconvex functions are of importance in other mathematical contexts, too.
For example, biconvex functions can be used to derive results on robust stability of
control systems in practical control engineering. For further details see Geng and
Huang [75] and Geng and Huang [76]. Furthermore, biconvex functions play an im-
portant role in martingale theory and can be used to characterize whether a Banach
space B is UMD (i.e., the space B has the unconditionality property for martingale
differences), or whether B is a Hilbert space or not. Here, we refer to Burkholder [30],
Aumann and Hart [9], Burkholder [31] and Lee [123]. Finally, Thibault [202], Jouak
and Thibault [112] and Borwein [24] published results concerning the continuity and
differentiability of (measurable) biconvex operators in topological vector spaces.
This section is organized as follows: The first subsection briefly reviews elementary
properties of biconvex functions. We extend these properties by a comparison to
convex functions. The next subsection summarizes results concerning continuity of
biconvex functions given in Aumann and Hart [9]. The last subsection deals with
the maximization of biconvex functions. Several known and some new results are
presented.

11.2.1 Elementary Properties

We start our summary with the most important elementary properties of biconvex
functions. Note that as mentioned at the beginning of this chapter, it is possible
to transform a biconvex function to a biconcave one, and vice versa, by multiplying
the given function by (−1). Similar to convex functions, biconvex functions can be
characterized by an interpolation property:

Theorem 11.14 (Goh et al. [82]) Let X ⊆ Rn and Y ⊆ Rm be two non-empty,
convex sets, and let f be a real-valued function on X × Y . f is biconvex if and only if
for all quadruples (x1, y1), (x1, y2), (x2, y1), (x2, y2) ∈ X × Y it holds, that for every
(λ, µ) ∈ [0, 1]× [0, 1]

f(xλ, yµ) ≤ (1− λ) (1− µ) f(x1, y1) + (1− λ) µ f(x1, y2) +

+λ (1− µ) f(x2, y1) + λ µ f(x2, y2),
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where (xλ, yµ) := ((1− λ)x1 + λx2, (1− µ)y1 + µy2).

So, as one-dimensional interpolation always overestimates a convex function, two-di-
mensional interpolation always overestimates a biconvex function. Moreover, as convex
functions have convex level sets, we state for the biconvex case:

Theorem 11.15 (Goh et al. [82]) Let X ⊆ Rn and Y ⊆ Rm be two non-empty,
convex sets, and let f be a real-valued function on X × Y . If f is biconvex on X × Y ,
then its level sets

Lc := {(x, y) ∈ X × Y : f(x, y) ≤ c}
are biconvex for every c ∈ R.

Like in the convex case, the converse of the last theorem is not true in general:

Example 11.16 Let the function f : R×R→ R, f(x, y) = x3 + y3 be given, and let
c ∈ R. Then,

(Lc)x̄ = {y ∈ Y : y3 ≤ c− x̄3} = ]−∞, sign(c− x̄3) 3
√

|c− x̄3|]

(Lc)ȳ = {x ∈ X : x3 ≤ c− ȳ3} = ]−∞, sign(c− ȳ3) 3
√

|c− ȳ3|]

are convex sets and hence, the level set Lc of f is biconvex. But obviously f is not
biconvex on R× R, since f0(x) = f(x, 0) = x3 is not a convex function on R.

Also many arithmetic properties that are valid for convex functions can be transferred
to the biconvex case.

Lemma 11.17 Let X ⊆ Rn and Y ⊆ Rm be two non-empty, convex sets, let µ ∈ R+

be a non-negative scalar, and let f, g : X × Y → R be two biconvex functions. Then
the functions h, t : X ×Y → R with h(x, y) := f(x, y)+ g(x, y) and t(x, y) := µf(x, y)
are biconvex, too.

Proof: The biconvexity of h and t follows immediately from Definition 11.2 for biconvex
functions and the fact that the above stated lemma is valid for convex functions, hence
for fx and gx (fy and gy, respectively), too, as they are convex for every fixed x ∈ X
(y ∈ Y ) by definition. �

For the composition of convex and biconvex functions we have:

Lemma 11.18 Let X ⊆ Rn and Y ⊆ Rm be two non-empty, convex sets, let f :
X × Y → R be a biconvex function, and let ϕ : R → R be a convex, non-decreasing
function. Then h(x, y) := ϕ(f(x, y)) is biconvex on X × Y .

Proof: For fixed x ∈ X and fixed y ∈ Y we consider the functions hx(y) := ϕ(fx(y))
and hy(x) := ϕ(fy(x)), respectively. Since Lemma 11.18 is valid for f convex (cf.
Rockafellar [183]), fx and fy are both convex functions by definition and ϕ is convex
and non-decreasing, hx and hy are convex, too. Hence, h is a biconvex function on
X × Y . �

Finally, we state a lemma concerning the pointwise supremum of biconvex functions.
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Lemma 11.19 The pointwise supremum of an arbitrary collection of biconvex func-
tions is biconvex.

Proof: Let I be an arbitrary index set, let f i : X × Y → R be biconvex for all i ∈ I,
and let f(x, y) := sup{f i(x, y), i ∈ I} be the pointwise supremum of these functions.
For fixed ȳ ∈ Y and arbitrary x ∈ X we have:

fȳ(x) = f(x, ȳ) = sup
i∈I

{f i(x, ȳ)} = sup
i∈I

{f i
ȳ(x)}.

Since the functions f i
ȳ are convex for all i ∈ I by assumption, fȳ, as pointwise supre-

mum of convex functions, is convex by Rockafellar [183], too. Similarly it can be shown
that fx̄ is convex on Y for every fixed x̄ ∈ X. Hence, f is biconvex. �

We close this subsection by a comparison between convex and biconvex functions.
Obviously:

Theorem 11.20 Let f : Rk → R (k > 1) be a convex function, and let (V1, V2) be an
arbitrary partition of the variable set V := {x1, . . . , xk} into two non-empty subsets.
Then f is biconvex on span(V1)× span(V2).

As in the case of biconvex sets, if a given function f is biconvex for every arbitrary
partition of the variable set, it has not to be convex in general. To see this, consider
the following example:

Example 11.21 Let n ≥ 2, let b :=
√

2n−1
2n(n−1)

, and let f : Rn+1 → R be defined by

f(x1, . . . , xn+1) =
1

2
(x2

1 + · · ·+ x2
n + x2

n+1) + b · xn+1 · (x1 + · · ·+ xn).

The partial derivatives of f are given by

∂f

∂xi

(x1, . . . , xn) =

{

xi + b · xn+1 , if i 6= n + 1

xn+1 + b · (x1 + · · ·+ xn) , if i = n + 1

and the Hessian matrix of f is

H(x) := Hess(f)(x) =












1 0 . . . 0 b

0 1 . . . 0 b
...

...
. . .

...
...

0 0 . . . 1 b

b b . . . b 1












∈M((n + 1)× (n + 1), R).

First, we show that f is biconvex for any partition of the variable set {x1, . . . , xn+1}
into two non-empty disjoint subsets. So let (V1, V2) be such a partition and let Y i =
span(Vi), i = 1, 2. We assume that xn+1 ∈ V2. Let I i denote the index set of the
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variables of Vi, and let ci := |I i| be the cardinality of I i (i = 1, 2). Then, the Hessian
matrix of fY i is given by

Hess(fY 2)(y1) =












1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

0 0 . . . 0 1












and Hess(fY 1)(y2) =












1 0 . . . 0 b

0 1 . . . 0 b
...

...
. . .

...
...

0 0 . . . 1 b

b b . . . b 1












,

where

y1 =(xi1
1
, . . . , xi1c1

) ∈ Y 1, i1j ∈ I1 ∀ j = 1, . . . , c1,

y2 =(xi2
1
, . . . , xi2c2−1

, xn+1) ∈ Y 2, i2k ∈ I2 ∀ k = 1, . . . , c2 − 1,

and Hess(fY 1) ∈ M(c2 × c2, R) and Hess(fY 2) ∈ M(c1 × c1, R). Obviously, Hess(fY 2)
is positive definite for all y1 ∈ Y 1 = Rc1 and hence, fY 2 is convex (cf. Floudas [64]).
To show the convexity of fY 1 , we calculate the eigenvalues of Hess(fY 1). They are
given by λ1 = 1 and λ2,3 = 1± b

√
c2 − 1. Since c2 ≤ n, it holds that λ2 > 0 and

λ3 = 1− b
√

c2 − 1 ≥ 1− b
√

n− 1 = 1−
√

1− 1

2n
> 0.

So, all eigenvalues of Hess(fY 1) are positive, i.e., Hess(fY 1) is positive definite, and
hence, fY 1 is convex, too.
Finally, we calculate the eigenvalues of H(x). They are given by λ1 = 1 and λ2,3 =
1± b

√
n. Since

λ3 = 1− b
√

n = 1−
√

1 +
1

2 (n− 1)
< 0,

H(x) has a negative eigenvalue. Hence, H(x) is indefinite for all x ∈ Rn+1 and f is
not convex on every open, convex set X ⊆ Rn+1.
Note that for a counter-example for a function from R2 to R, one can use the above
given function with b := 2.

11.2.2 Continuity of Biconvex Functions

One of the central results in convex analysis is the fact that a finite, real-valued, convex
function f is continuous throughout the interior of its domain C ⊆ Rn (cf. Rockafellar
[183]). Aumann and Hart [9] transferred this result to the biconvex case.

Definition 11.22 Let B ⊆ X × Y and let z = (x, y) ∈ B. The point z is called a
bi-relatively interior point of B, if z is in the interior of B relative to aff(projX(B))×
aff(projY (B)), where projX(B) and projY (B) denote the projection of B into the X-
and Y -space, respectively, and aff(C) is the affine space, generated by the set C.

From Rockafellar [183] we recall that an m-dimensional simplex is the convex hull of m
affinely independent vectors b1 . . . , bm ∈ Rn. A set S ⊆ Rn is called locally simplicial,
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if for each x ∈ S there exists a finite collection of simplices S1, . . . , Sm such that, for
some neighborhood U of x,

U ∩ (S1 ∪ · · · ∪ Sm) = U ∩ S.

Examples of locally simplicial sets are line segments, polyhedral convex sets, or rela-
tively open, convex sets. Note that a locally simplicial set does not need to be convex
or closed in general.

Definition 11.23 Let B ⊆ X×Y and let z = (x, y) ∈ B. We say that B is locally bi-
simplicial at z, if there exists a neighborhood U of x in X and a neighborhood V of y in
Y , a collection of simplices S1, . . . , Sk in X and a collection of simplices T1, . . . , Tl such
that for S :=

⋃k
i=1 Si and T :=

⋃l
i=1 Ti, S×T ⊆ B and (U×V )∩B = (U×V )∩(S×T ).

It holds:

Theorem 11.24 (Aumann and Hart [9]) Let f be a biconvex function on a bicon-
vex set B and let z ∈ B.

1. If z is a bi-relatively interior point of B, then f is lower-semi-continuous at z.

2. If B is locally bi-simplicial at z, then f is upper-semi-continuous at z.

Since for all bi-relatively interior points z of B, B is locally bi-simplicial at z as well,
it holds:

Corollary 11.25 Let f be a biconvex function on a biconvex set B. Then f is con-
tinuous at all bi-relatively interior points z ∈ B.

Note that only “directional continuity” (i.e., f(x, ·) : Y → R and f(·, y) : x → R are
continuous for all x ∈ X and y ∈ Y ) is not sufficient for a function f to be continuous
on an open set B ⊆ X × Y . A counter-example to this is given, for example, in the
book of Gelbaum and Olmsted [74].

11.2.3 The Maximum of a Biconvex Function

This subsection deals with the problem of finding the maximum of a biconvex function
over a given set contained in X × Y . We recall known results for this problem and
present a new result for the case that the maximum of a biconvex function is attained
in the interior of a biconvex set B when B has some additional topological properties.

In the convex case, it is well-known that the set of all points where the supremum of
a convex function relative to a given convex set C is attained, is given by a union of
faces of C (cf. Rockafellar [183]), i.e., that the supremum of a convex function over a
convex set C is attained at a boundary point of C if it exists. Al-Khayyal and Falk
[5] showed that this result is also valid for a continuous, biconvex function f over a
compact and convex set K ⊆ X×Y . (Actually, the result was proven for the minimum
of a biconcave function, which is equivalent.)
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Theorem 11.26 (Al-Khayyal and Falk [5]) Let X ⊆ Rn and Y ⊆ Rm be two non-
empty sets, let K ⊆ X×Y be compact and convex, and let f : K → R be a continuous,
biconvex function. Then the problem

max {f(x, y) : (x, y) ∈ K} (11.3)

has always a solution on ∂K, the boundary of K.

If the given set K is a product of two polytopes in X and Y , respectively, Geng and
Huang [76] stated:

Theorem 11.27 (Geng and Huang [76]) Let f : Rn × Rm → R be biconvex and
let S ⊂ Rn, T ⊂ Rm be polytopes with vertex sets S∗ and T ∗, respectively. Then

max
(x,y)∈S×T

f(x, y) = max
(x,y)∈S∗×T ∗

f(x, y). (11.4)

Note that in Geng and Huang [75] and Geng and Huang [76] the authors referred
to a proof of the above theorem given in Barmish [11]. Another proof and an outer
approximation algorithm for Problem (11.4), based on the above theorem, can be
found in Gao and Xu [70].
Horst and Thoai [104] presented a decomposition approach for the minimization of a
biconcave function over a polytope P ⊂ Rn+m where P is not separable in the sense
that it cannot be written as a product of two polytopes in Rn and Rm, respectively.
The authors used a combination of global optimization techniques such as branch
and bound, polyhedral outer approximation and projection of polyhedral sets onto a
subspace to design an algorithm for problems of the form

min {f(x, y) : x ∈ X, y ∈ Y, (x, y) ∈ D}, (11.5)

where X ⊂ Rn and Y ⊂ Rm are polytopes, D ⊂ Rn+m is a polyhedral set and f is bi-
concave. As special cases of Problem (11.5), jointly constrained bilinear programming
problems and separated jointly constrained biconcave programming problems of the
form f(x, y) = f1(x) + f2(y) are considered, amongst others.
Next we consider problems where the maximum of a biconvex function over a biconvex
set B lies in the relative interior ri(B) of the set B. For the convex case we recall:

Theorem 11.28 (Rockafellar [183]) Let f be a convex function and let C be a con-
vex set. If f attains its supremum relative to C at some point of the relative interior
of C, then f is constant throughout C.

Our aim is to prove that this result is also valid for the biconvex case if we make some
more topological assumptions on the given biconvex set B. In order to derive a proof
for this result we need some preliminary lemmas and definitions.

Definition 11.29 Let I = [a, b] ⊆ R be an interval and let γ : I → M be a continuous
function. Then γ is called a path with initial point γ(a) and terminal point γ(b).

Definition 11.30 Let M ⊆ Rn be a non-empty set. M is called path-connected if
for any two points m1, m2 ∈ M there exists a path γ : [a, b] → M with γ(a) = m1,
γ(b) = m2 and γ(t) ∈M for all t ∈ [a, b].
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Figure 11.3: Example of two L-shaped paths γ1 and γ2 joining m1 and m2 with inflection
points h1 and h2, respectively.

Definition 11.31 Let X ⊆ Rn and Y ⊆ Rm be two non-empty sets, let M ⊆ X × Y ,
let m1 := (x1, y1) ∈ M and m2 := (x2, y2) ∈ M , and let γ be a path in M joining m1

and m2. We call γ L-shaped if we can partition γ into two subpaths γ1 and γ2 such that
γ restricted to γ1 consists of the line segment joining m1 and the point h1 := (x1, y2)
(or h2 := (x2, y1)) and γ restricted to γ2 consists of the line segment joining h1 (or
h2)and m2. The intermediate point h1 (or h2) is called inflection point of γ. An
L-shaped path is said to be degenerate if x1 = x2 or y1 = y2.

If X, Y ⊆ R, an L-shaped path is a path of the form “L” or “¬” (cf. Figure 11.3).
Furthermore, we define:

Definition 11.32 Let X ⊆ Rn and Y ⊆ Rm be two non-empty sets, let M ⊆ X × Y ,
and let m1, m2 ∈ M . If there exists a (finite) sequence of L-shaped paths joining m1

and m2 which is completely contained in M , we say that m1 and m2 are (finitely)
L-connectable or (finitely) L-connected in M . The set M is (finitely) L-connected if
any two points in M are (finitely) L-connectable.

Due to the last definition it is obvious that every finitely L-connected set is path-
connected, whereas the converse is not true in general. If we consider, for example,
the line segment

M := {(x, y) ∈ [0; 1]× [0; 1] : (x, y) = λ (1, 0) + (1− λ) (0, 1), λ ∈ [0; 1]}

in [0; 1] × [0; 1], then M is path-connected, but any two points of M are not finitely
L-connectable in M . Now, for ε > 0 and x ∈ Rn, let

Kε(x) := {y ∈ Rn : ‖x− y‖ < ε}

denote the open ball around x with radius ε. Then the following lemma can easily be
proven by induction:

Lemma 11.33 Let X ⊆ Rn and Y ⊆ Rm be two non-empty sets and let I := {1 . . . , k}
be an index set. Furthermore, let k points mi ∈ X×Y be given and k positive numbers
εi such that Kεi

(mi) ⊆ X ×Y for all i ∈ I and the intersection Kεi
(mi)∩Kεi+1

(mi+1)
is not empty for all i = 1, . . . , k − 1. Then m1 and mk are finitely L-connectable in
⋃

i∈I Kεi
(mi) such that the resulting path contains the points mi, i ∈ I.

The proof of this lemma is obvious and can be performed as indicated in Figure 11.4.

Theorem 11.34 Let X ⊆ Rn and Y ⊆ Rm be two non-empty sets and let M ⊆ X×Y
be a non-empty, open, and path-connected set. Then M is finitely L-connected.
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Figure 11.4: Example of a sequence of L-shaped paths in Lemma 11.33.

Proof: Let m1, m2 ∈ M ⊆ X × Y be two arbitrary chosen points in M . Since by
assumption M is path-connected, there exist a, b ∈ R and a path γ : [a, b] → M with
γ(a) = m1, γ(b) = m2, and γ(t) ∈M for every t ∈ I := [a, b].
Since M is an open set, for every point γ(t) ∈ M on the curve there exists εt > 0 such
that Kεt

(γ(t)) is completely contained in M . Hence, {⋃t∈I Kεt
(γ(t))} builds an open

covering of the image set γ(I) of γ in M . Since γ(I) is known to be compact, there
exists t1, . . . , tn ∈ I, such that γ(I) is already covered by {⋃n

t=1 Kεti
(γ(ti))}.

Without loss of generality we suppose that t1 = a and tn = b, otherwise we add the
two balls Kεa

(γ(a)) and Kε
b
(γ(b)) to the finite open covering of γ(I). By eventually

deleting and rearranging the order of the open balls Kεti
(γ(ti)) we can reorder the

given finite covering in the way that the intersection of two consecutive open balls
Kεti

(γ(ti)) and Kεti+1
(γ(ti+1)) is non-empty.

Let the resulting covering be denoted again by {⋃n
t=1 Kεti

(γ(ti))}. Then this covering

satisfies all the assumptions made in Lemma 11.33. Hence, γ(t1) = m1 and γ(tn) = m2

are finitely L-connectable, which completes the proof. �

Now we can prove our main result:

Theorem 11.35 Let X ⊆ Rn and Y ⊆ Rm be two non-empty sets and let B ⊆ X×Y
be a biconvex set such that the interior of B is non-empty and path-connected with
∂(int(B)) = ∂B. Furthermore, let f : B → R be a continuous, biconvex function. If
the problem

max {f(x, y) : (x, y) ∈ B} (11.6)

has an optimal solution z∗ := (x∗, y∗) ∈ int(B), then f is constant throughout B.

Proof: We prove the theorem in two steps. First, we concentrate on points z ∈ B lying
in the interior of B and we show that f(z∗) = f(z) holds for all points z ∈ int(B). In
the second step we extend our results to points situated in B \ int(B).
So, let z∗ = (x∗, y∗) ∈ int(B) denote the optimal solution of problem (11.6). First,
consider the two functions

fx∗ : Bx∗ → R and fy∗ : By∗ → R,

where Bx∗ := {y ∈ Y : (x∗, y) ∈ B} and By∗ := {x ∈ X : (x, y∗) ∈ B}, respectively.
Since B is biconvex by assumption, the sets Bx∗ and By∗ are convex. Obviously,
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Figure 11.5: Illustration of the proof of Theorem 11.35 with two intermediate points z1 and
z2.

y∗ ∈ Bx∗ and x∗ ∈ By∗ hold. But since (x∗, y∗) is a point in int(B), y∗ and x∗ are
elements of ri(Bx∗) and ri(By∗), respectively. Hence, by Theorem 11.28, fx∗ and fy∗

are constant on Bx∗ and By∗ , respectively. So we have that

f(z) = f(z∗) ∀ z ∈ Bz∗ := {(x∗, y) : y ∈ Bx∗} ∪ {(x, y∗) : x ∈ By∗}.

Next, consider a point z1 = (x1, y1) ∈ int(B) which is L-connectable to z∗ throughout
int(B) by exactly one L-shaped path γ, and let h1 := (x∗, y1) ∈ int(B) denote the
inflection point of γ. Since h1 ∈ Bz∗ , f(h1) = f(z∗). Since B is biconvex, the set
By

1
:= {x ∈ X : (x, y1) ∈ B} is convex. Since h1 ∈ int(B), x∗ ∈ ri(By

1
). Hence,

fy
1
(x∗) ≥ fy

1
(x) holds for all x ∈ By

1
, and fy

1
is constant on By

1
by Theorem 11.28.

Since x1 ∈ By
1
, f(z1) = f(z∗). So we have proven that f(z) = f(z∗) for all z which

are L-connectable to z∗ by exactly one L-shaped path.
Finally, let z = (x, y) ∈ int(B) be arbitrarily chosen in int(B). Since int(B) is open
by definition and non-empty and path-connected by assumption, z∗ and z are finitely
L-connectable in int(B) by k L-shaped paths γk by Theorem 11.34 (see Figure 11.5).
Now, let m0 := z∗, mk = z, and let mi := (xi, yi) ∈ int(B) and hi := (xi−1, yi) ∈
int(B) (i = 1, . . . , k) denote the finite sequence of initial points and inflection points,
respectively, obtained by the sequence of L-shaped paths from z∗ to z.
Since Bxi

:= {y ∈ Y : (xi, y) ∈ B} and Byi
:= {x ∈ X : (x, yi) ∈ B} are convex sets by

assumption and yi−1, yi ∈ ri(Bxi−1
) and xi−1, xi ∈ ri(Byi

) for i = 1, . . . , k, respectively,
we have, following the same argumentation as above, that f is subsequently constant
on the L-shaped path γi joining mi−1 and mi with inflection point hi for i = 1, . . . , k,
i.e.,

f(z∗) = f(m0) = f(m1) = . . . = f(mk−1) = f(mk) = f(z).

Hence, f is constant throughout int(B). This completes the first step of the proof.
Now suppose that the point z ∈ B is an element of B \ int(B), i.e., z ∈ ∂B∩B. Since,
by assumption, ∂(int(B)) = ∂B, z ∈ ∂ int(B), i.e., there exists a sequence {zn}n∈N

converging to z such that zn ∈ int(B) for all n ∈ N. Since f is continuous on B and
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(i)

z∗

ẑ

B1

B2

z̃

(ii)

z∗

?�

6
z∗z̄ By∗

B

(iii)

Figure 11.6: Discussion of the assumptions made in Theorem 11.35.

equal to the constant f(z∗) on int(B), we get that

f(z) = f
(

lim
n→∞

zn

)

= lim
n→∞

f(zn) = lim
n→∞

f(z∗) = f(z∗).

Hence, f is constant throughout B. �

Before we conclude this subsection by reflecting on the assumptions made in Theo-
rem 11.35, we remark that for a set A ⊆ Rn it holds that

∂(int(A)) = ∂A ⇐⇒ cl(int(A)) = cl(A).

Hence, the assumption ∂(int(A)) = ∂A stated in the last theorem could be alterna-
tively replaced by cl(int(A)) = cl(A). Note that in set-theoretical topology a set which
equals the closure of its interior is called a regular (closed) set. As immediate corollary
of the last theorem, we additionally state:

Corollary 11.36 Let X ⊆ Rn and Y ⊆ Rm be two non-empty sets and let B ⊆ X×Y
be a biconvex, regular closed set such that the interior of B is non-empty and path-
connected. Furthermore, let f : B → R be a continuous, biconvex function. Then, f
attains its maximum in a boundary point of B.

Now consider Figure 11.6. In Figure 11.6(i) a set B is shown where the assumption
∂(int(B)) = ∂B is not valid, since the point ẑ is an element of ∂B \ ∂(int(B)), and
f(ẑ) can be chosen arbitrarily without effecting the biconvexity of f . In this case,
a biconvex function having a global maximum in z∗ ∈ int(B) does not need to be
constant throughout B since the point ẑ is not L-connectable to z∗ within B.
Figure 11.6(ii) shows the biconvex set B := R2

+∪ (−R2
+) where the interior of B is not

path-connected any more. If a biconvex function f takes its maximum in z∗ ∈ int(B2)
(B2 := −R2

+), then f has to be constant on B2 ∪ ∂B1, where B1 := R2
+, but not

necessarily on int(B1). For a counter-example consider the function f given on B as
follows:

f(z) =







1 , if z ∈ B2 ∪ ∂B1,

1−min{x, y}, if x ∈ [0, 1] or y ∈ [0, 1],

0 , if x > 1 and y > 1.
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Obviously, f is continuous and biconvex on B but not constant throughout B, although
B (but not int(B)) is path-connected, using z̃ passing from B1 to B2 and the other
way round.
Figure 11.6(iii) shows a set B which is not biconvex since the y∗-cut By∗ is not convex.
Hence, Theorem 11.35 is not applicable directly. Nevertheless, a biconvex function f
taking its global maximum in z∗ ∈ int(B) is constant throughout the given set since
every point z̄ ∈ int(B) is still L-connectable to z∗. Hence, the line of argumentation
of Theorem 11.35 is still valid, provided that the given set B can be partitioned into
appropriate biconvex subsets such that Theorem 11.35 is applicable in these subsets.
So, the biconvexity-assumption for the set B might be weakened.

11.2.4 Biconvexity and Separation

Aumann and Hart [9] stated several separation theorems for biconvex functions. In this
context, separation does not mean that we separate two biconvex sets by a biconvex
or bilinear function, but we determine the set of all points z ∈ B, B biconvex that
cannot be separated from a subset A ⊂ B of B by a biconvex function f . We give the
main results and ideas here. For further details, we refer to the original article. The
results for the convex case, which we state next, can also be found there.

Definition 11.37 Let C ⊆ Rn be a convex set and A ⊆ C. Then a point z ∈ C is
convex separated from A with respect to C if there exists a bounded convex function
f on C such that f(z) > sup f(A) := sup{f(a) : a ∈ A}. Furthermore, let ncs(C)
(= ncsA(C)) denote the set of all points z ∈ C that cannot be convex separated from
A.

For the set ncsA(C) we have:

Theorem 11.38 (Aumann and Hart [9]) Let C ⊆ Rn be a convex set and let A ⊆
C, then ncsA(C) is a convex set and

conv(A) ⊆ ncsA(C) ⊆ conv(A),

where conv(A) denotes the closure of the convex hull of A.

For biconvex sets this is as follows:

Definition 11.39 Let B ⊆ Rn×Rm be a biconvex set and A ⊆ B. Then a point z ∈ B
is biconvex separated from A with respect to B if there exists a bounded biconvex
function f on B such that f(z) > sup f(A) := sup{f(a) : a ∈ A}. Furthermore,
let nbs(B) (= nbsA(B)) denote the set of all points z ∈ B that cannot be biconvex
separated from A.

Obviously we have:

Lemma 11.40 (Aumann and Hart [9]) Let B ⊆ Rn × Rm be a biconvex set and
let A ⊆ B. Then z ∈ nbsA(B) if and only if z ∈ B and, for all biconvex functions f
defined on B, we have f(z) ≤ sup f(A).

As level sets of biconvex functions are biconvex by Theorem 11.15, for the set nbsA(B)
we have:
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Theorem 11.41 (Aumann and Hart [9]) Let B be a biconvex set and let A ⊆ B.
Then the set nbsA(B) is biconvex and

biconv(A) ⊆ nbsA(B).

Different to the convex case, for biconvex separation we have nbsA(B) 6⊂ biconv(A) in
general. For an example we refer to Aumann and Hart [9].
Furthermore, the set nbsA(B) depends on the given domain B, i.e., if A ⊂ B∗ ⊂ B
and B and B∗ are biconvex sets, then nbsA(B∗) ( nbsA(B) in general (cf. Aumann
and Hart [9]).
For more theorems dealing with the concept of biconvex separability of a point z ∈ B
from a given set A ⊆ B, we refer again to Aumann and Hart [9]. For example, one
can find results for the case that the separating biconvex function f additionally has
to be continuous on A.

11.3 Biconvex Minimization Problems

In the following we discuss biconvex minimization problems of the form given in Def-
inition 11.3. As mentioned in the beginning of this chapter, biconvex optimization
problems may have a large number of local minima as they are global optimization
problems in general. Nevertheless, there exist a couple of methods and algorithms
which exploit the convex substructures of a biconvex optimization problem in order
to solve such problems more efficiently than general global optimization methods do.
Of course, such methods can also be used to solve biconvex problems. For example,
in Goh et al. [82] subgradient descent methods or interior point methods were pro-
posed to solve a special class of non-smooth, biconvex minimization problems. Since
we are especially interested in biconvex optimization methods, we survey only those
algorithms and methods which utilize the biconvex structure of the given problem.
This section is organized as follows: In the first subsection, we discuss the notion of
partial optimality and recall a necessary optimality condition for biconvex problems
with separable constraints. In the following subsections we present methods and algo-
rithms for solving biconvex minimization problems of the form (11.1) that exploit the
biconvex structure of the problem. We give short algorithmic descriptions for every
solution approach and discuss convergence results and limitations of the considered
methods. In detail, we present the alternate convex search method as a special case
of block-relaxation methods (cf. Section 3.3), the global optimization algorithm, devel-
oped in Floudas and Visweswaran [62] and an algorithm for solving jointly constrained
biconvex programming problems using the so called convex envelope of a function f .

11.3.1 Partial Optimality

In the following let X ⊆ Rn and Y ⊆ Rm be two non-empty sets, let B ⊆ X × Y , and
let Bx and By denote the x-sections and y-sections of B, respectively.

Definition 11.42 Let f : B → R be a given function and let (x⋆, y⋆) ∈ B. Then,
(x⋆, y⋆) is called a partial optimum of f on B, if

f(x⋆, y⋆) ≤ f(x, y⋆) ∀x ∈ By⋆ and f(x⋆, y⋆) ≤ f(x⋆, y) ∀ y ∈ Bx⋆ .
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We recall:

Definition 11.43 Let f : Rn → R be a given function, let ζ ∈ Rn, and let the partial
derivatives of f in ζ exist. If ∇ f(ζ) = 0, then ζ is called a stationary point of f .

Obviously we have:

Theorem 11.44 Let f : B → R be partial differentiable at z⋆ ∈ int(B) and let z⋆ be
a partial optimum. Then, z⋆ is a stationary point of f in B.

Note that the converse of Theorem 11.44 is not true in general.

Example 11.45 Let z⋆ := (0, 0) ∈ R2 and let the function f : R2 → R be given by

f(x, y) = x3 · (x− 2) + y2.

Then ∇ f(z⋆) = 0 holds true, but for fixed y⋆ = 0 we have:

f(1, y⋆) = f(1, 0) = −1 < 0 = f(0, 0) = f(z⋆)

Hence, z⋆ is not a partial optimum.

However, if f is biconvex, we state:

Theorem 11.46 Let B be a biconvex set and let f : B → R be a differentiable,
biconvex function. Then, each stationary point of f is a partial optimum.

Proof: Let z⋆ := (x⋆, y⋆) be a stationary point of f in B. For fixed y⋆, the function
fy⋆ : By⋆ → R is convex, so

fy⋆(x) ≥ fy⋆(x⋆) +

(
∂

∂x1

fy⋆(x⋆), . . . ,
∂

∂xn

fy⋆(x⋆)

)t

(x− x⋆)

is valid for all x ∈ By⋆ (cf. Rockafellar [183]). Since x⋆ is also a stationary point of
fy⋆ , the second summand equals zero and hence

fy⋆(x) ≥ fy⋆(x⋆) ∀x ∈ By⋆ .

By symmetry of the problem we also have that

fx⋆(y) ≥ fx⋆(y⋆) ∀y ∈ Bx⋆

So, z⋆ is a partial optimum. �

Corollary 11.47 Let f : Rn × Rm → R be a differentiable, biconvex function. Then
a point z ∈ Rn+m is stationary if and only if z is a partial optimum.

Finally, we shortly review a necessary local optimality condition for the biconvex
minimization problem with separable constraints

min {f(x, y) : x ∈ X ⊆ Rn, y ∈ Y ⊆ Rm}. (11.7)

In the case of separable constraints, the notion of partial optimality of a point (x⋆, y⋆) ∈
X × Y simplifies to

f(x⋆, y⋆) ≤ f(x, y⋆) ∀x ∈ X and f(x⋆, y⋆) ≤ f(x⋆, y) ∀ y ∈ Y.
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Theorem 11.48 (Wendell and Hurter Jr. [215]) Let X ⊆ Rn and Y ⊆ Rm be
convex sets and let f : X × Y → R be a biconvex function with a partial optimum
in (x⋆, y⋆) ∈ X × Y . Furthermore, let U(y⋆) denote the set of all optimal solutions
to Problem (11.7) with y = y⋆, and let U(x⋆) be the set of optimal solutions to Prob-
lem (11.7) with x = x⋆. If (x⋆, y⋆) is a local optimal solution to Problem (11.7), then
it necessarily holds that

f(x⋆, y⋆) ≤ f(x, y) ∀x ∈ U(x⋆) ∀y ∈ U(y⋆). (11.8)

Note that the given local optimality condition is in general not sufficient.

Example 11.49 (Luenberger [125], mod.) We consider the biconvex minimiza-
tion problem

min {x3 − x2y + 2y2 : x ≥ 4, y ∈ [0; 10]}.
This problem has a partial optimum at (6, 9) that satisfies the condition (11.8) of the
last theorem, but that is not a local optimum.

11.3.2 Alternate Convex Search

Alternate convex search (ACS) is a minimization method which is a special case of
the block-relaxation methods already discussed in Section 3.3, where the variable set
is divided into disjoint blocks (cf. de Leeuw [46]). In every step, only the variables
of an active block are optimized while those of the other blocks are fixed. For ACS
we only consider the two blocks of variables defined by the convex subproblems that
are activated in cycles. Since the resulting subproblems are convex, efficient convex
minimization methods can be used to solve these subproblems. In the case that n =
m = 1, i.e., f : B ⊆ R2 → R, ACS can be seen as a special case of the cyclic
coordinate method (CCM) which is stated, e.g., in Bazaraa et al. [13]. A survey on
the ACS approach for convex as well as for biconvex objective functions can be found,
e.g., in Wendell and Hurter Jr. [215].
In the following we will show that under weak assumptions the set of all accumulation
points generated by ACS form a connected, compact set C and that each of these
points is a stationary point of f but that no better convergence results (like local or
global optimality properties) can be obtained in general.

Algorithm 11.1 (Alternate Convex Search)
Let a biconvex optimization problem in the sense of Definition 11.3 be given.

Step 1: Choose an arbitrary starting point z0 = (x0, y0) ∈ B and set i = 0.

Step 2: Solve for fixed yi the convex optimization problem

min {f(x, yi), x ∈ Byi
}. (11.9)

If there exists an optimal solution x⋆ ∈ Byi
to this problem, set xi+1 = x⋆, otherwise

STOP.

Step 3: Solve for fixed xi+1 the convex optimization problem

min {f(xi+1, y), y ∈ Bxi+1
}. (11.10)
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If there exists an optimal solution y⋆ ∈ Bxi+1
to this problem, set yi+1 = y⋆, otherwise

STOP.

Step 4: Set zi+1 = (xi+1, yi+1). If a stopping criterion is satisfied, then STOP,
otherwise augment i by 1 and go back to Step 2.

Remarks:

1. The order of the optimization problems in Step 2 and Step 3 can be reversed,
i.e., it is possible first to optimize in the y-variables, followed by an optimization
in the x-variables.

2. There are several ways to define the stopping criterion in Step 4 of the algorithm.
For example, one can consider the absolute value of the difference of zi−1 and
zi (or the difference in their objective values) or the relative increase in the z-
variable compared to the last iteration. The stopping criterion may also depend
on the special structure of the given biconvex objective function.

The following convergence properties of ACS are motivated by the results of Zangwill
[221], Meyer [140] and de Leeuw [46]. The results stated in these papers cannot be
applied directly to ACS, since in these papers it is assumed that the algorithmic map A
(see Definition 11.52 below) is uniformly compact on B (i.e., there exists B0 ⊆ B,
compact, such that A(z) ⊆ B0 for all z ∈ B) which is not true for ACS in general.
Note that for most of the following results only continuity of f is needed.

Theorem 11.50 Let B ⊆ Rn×Rm, let f : B → R be bounded from below, and let the
optimization problems (11.9) and (11.10) be solvable. Then the sequence {f(zi)}i∈N

generated by ACS converges monotonically.

Proof: Since the sequence of objective values {f(zi)}i∈N, generated by Algorithm 11.1,
is monotonically decreasing and f is bounded from below, the sequence {f(zi)}i∈N

converges to a limit value a ∈ R. �

The statement of Theorem 11.50 is relatively weak. The boundedness of the objective
function f only ensures the convergence of the sequence {f(zi)}i∈N but not automati-
cally the convergence of the sequence {zi}i∈N

. Indeed, there exist biconvex functions
where the sequence {f(zi)}i∈N

generated by ACS converges while the sequence {zi}i∈N

diverges. To see this, we consider the following example:

Example 11.51 Let the biconvex function f : R× R→ R be given by:

f(x, y) :=

{

(x− y)2 + 1
x+y+1

, if x ≥ −y

(x− y)2 + 1− x− y, if x < −y.

It is easy to check that for any starting point (x0, y0) ∈ R2 the generated sequence
{f(zi)}i∈N

converges to 0 while the sequence {zi}i∈N
diverges to infinity.

To give convergence results for the generated sequence {zi}i∈N
we introduce the algo-

rithmic map of the ACS algorithm. For a general definition of algorithmic maps we
refer to Bazaraa et al. [13].
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Definition 11.52 Let B ⊆ Rn × Rm, let zk = (xk, yk) ∈ B for k = 1, 2, and let
f : B → R be given. The map A : B → P(B) from B onto the power set P(B) of B
defined by z2 ∈ A(z1) if and only if

f(x2, y1) ≤ f(x, y1) ∀x ∈ By
1

and f(x2, y2) ≤ f(x2, y) ∀y ∈ Bx
2

is called the algorithmic map of the ACS algorithm.

Using the algorithmic map, the ACS algorithm can be described as the iterative se-
lection of a zi+1 ∈ A(zi). This means that zi+1 is a possible outcome of the algorithm
with starting point zi after one complete iteration.

Lemma 11.53 Let X ⊆ Rn and Y ⊆ Rm be closed sets and let f : X × Y → R be
continuous. Then the algorithmic map A is closed, i.e., it holds:

zi := (xi, yi)∈X × Y, lim
i→∞

(xi, yi) = (x⋆, y⋆) =: z⋆

z′i := (x′
i, y

′
i)∈A(zi), lim

i→∞
(x′

i, y
′
i) = (x′, y′) =: z′






=⇒ z′ ∈ A(z⋆).

Proof: Since z′i ∈ A(zi) for all i ∈ N we have that

f(x′
i, yi) ≤ f(x, yi) ∀x ∈ X and f(x′

i, y
′
i) ≤ f(x′

i, y) ∀y ∈ Y.

Since f is continuous by assumption we get that

f(x′, y⋆) = lim
i→∞

f(x′
i, yi) ≤ lim

i→∞
f(x, yi) = f(x, y⋆) ∀x ∈ X

and
f(x′, y′) = lim

i→∞
f(x′

i, y
′
i) ≤ lim

i→∞
f(x′

i, y) = f(x′, y) ∀y ∈ Y.

Hence, z′ ∈ A(z⋆). �

The following theorem states a condition for the limit of the sequence of points gen-
erated by ACS.

Theorem 11.54 Let X ⊆ Rn and Y ⊆ Rm be closed sets and let f : X × Y → R be
continuous. Let the sequence {zi}i∈N

generated by ACS converge to z⋆ ∈ X×Y . Then
z⋆ is a partial optimum.

Proof: The sequence {zi+1}i∈N
is convergent with limit point z⋆. Since the algorithmic

map A is closed by Lemma 11.53 and zi+1 ∈ A(zi) for all i ∈ N, also z⋆ is contained
in A(z⋆). Hence,

f(x⋆, y⋆) ≤ f(x, y⋆) ∀x ∈ X and f(x⋆, y⋆) ≤ f(x⋆, y) ∀y ∈ Y

and z⋆ is a partial optimum. �

Note that a similar result is mentioned in Wendell and Hurter Jr. [215] for X and Y
being compact sets. The next lemma ensures that, as long the algorithm generates new
points that are no partial optima, a descent in the objective values can be achieved
during one iteration.
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Lemma 11.55 Let B ⊆ Rn × Rm and f : B → R be given. Let the optimization
problems (11.9) and (11.10) be solvable and let z1 := (x1, y1) ∈ B and z2 := (x2, y2) ∈
A(z1).

1. If the optimal solution of Problem (11.9) with y = y1 is unique, then

z1 is not a partial optimum =⇒ f(z2) < f(z1).

2. If the optimal solution of Problem (11.10) with x = x2 is unique, then

z2 is not a partial optimum =⇒ f(z2) < f(z1).

3. If the optimal solutions of both Problem (11.9) with y = y1 and Problem (11.10)
with x = x2 are unique, then

z1 6= z2 =⇒ f(z2) < f(z1).

Proof: Obviously, it holds true that

f(z2) = f(x2, y2) ≤ f(x2, y1) ≤ f(x1, y1) = f(z1).

We assume that f(x2, y2) = f(x2, y1) = f(x1, y1) and show the reversed statements.
Since z2 ∈ A(z1),

f(x2, y1) ≤ f(x, y1) ∀x ∈ By
1

and f(x2, y2) ≤ f(x2, y) ∀y ∈ Bx
2
.

If the optimal solution of Problem (11.9) with y = y1 is unique, then x1 = x2 and
z1 is a partial optimum. If the optimal solution of Problem (11.10) with x = x2 is
unique, then y1 = y2 and z2 is a partial optimum. If the optimal solutions of both
Problem (11.9) with y = y1 and Problem (11.10) with x = x2 are unique, x1 = x2 and
y1 = y2, hence z1 = z2. �

Now the following theorem about the convergence of the sequence {zi}i∈N
can be stated

and proven.

Theorem 11.56 Let X ⊆ Rn and Y ⊆ Rm be closed sets and let f : X × Y → R be
continuous. Let the optimization problems (11.9) and (11.10) be solvable.

1. If the sequence {zi}i∈N generated by the ACS algorithm is contained in a compact
set, then the sequence has at least one accumulation point.

2. In addition, suppose that for each accumulation point z⋆ = (x⋆, y⋆) of the se-
quence {zi}i∈N the optimal solution of Problem (11.9) with y = y⋆ or the optimal
solution of Problem (11.10) with x = x⋆ is unique, then all accumulation points
are partial optima and have the same objective value.

3. Furthermore, if for each accumulation point z⋆ = (x⋆, y⋆) of the sequence {zi}i∈N

the optimal solutions of both Problem (11.9) with y = y⋆ and Problem (11.10)
with x = x⋆ are unique, then

lim
i→∞
‖zi+1 − zi‖ = 0

and the accumulation points form a compact continuum C (i.e., C is a connected,
compact set).
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Proof: The first part of the theorem follows immediately from the Bolzano-Weierstrass’
theorem (cf., e.g., Forster [65]).
By condition 1, the sequence {zi}i∈N has at least one accumulation point z⋆ := (x⋆, y⋆).
Thus we have a convergent subsequence {zk}k∈K with K ⊆ N that converges to z⋆.
Similarly, {zk+1}k∈K has an accumulation point z+ := (x+, y+) to which a subsequence
(zl+1)l∈K with L ⊆ K converges. By Lemma 11.53 and Theorem 11.50 it follows that
z+ ∈ A(z⋆) and f(z+) = f(z⋆). In the same manner we see that the sequence {zk−1}k∈K
has an accumulation point z− := (x−, y−) with z⋆ ∈ A(z−) and f(z⋆) = f(z−).
Now suppose that z⋆ is not a partial optimum even though condition 2 is satisfied.
Thus, one of the optimization problems (11.9) with y = y⋆ or (11.10) with x = x⋆

has a unique solution, and by Lemma 11.55, f(z+) < f(z⋆) or f(z⋆) < f(z−), which
gives a contradiction. Therefore, z⋆ must be a partial optimum. If there exist further
accumulation points, their objective values must equal f(z⋆) due to Theorem 11.50.
Suppose that additionally condition 3 is satisfied, but ‖zi+1−zi‖ > δ for infinitely many
i ∈ N and δ > 0. Then the sequences {zi}i∈N and {zi+1}i∈N again have accumulation
points z⋆ and z+ with ‖z+−z⋆‖ ≥ δ. In particular, z+ 6= z⋆. As above we see that z+ ∈
A(z⋆) and f(z+) = f(z⋆). But by Lemma 11.55 it follows that f(z+) < f(z⋆) which
gives a contradiction. Thus the sequence {‖zi+1 − zi‖}i∈N converges to 0, and since
{zi}i∈N is bounded the accumulation points form a compact continuum (cf. Ostrowski
[154]). �

Note that in Theorem 11.56 the Problems (11.9) and (11.10) must be uniquely solv-
able only for the set of accumulation points but not for an arbitrary element of the
sequence {zi}i∈N. For a biconvex function f uniqueness of the solutions is automati-
cally guaranteed in practice if, for example, f is strictly convex as a function of y for
fixed x and vice versa.
Unfortunately, Theorem 11.56 still does not guarantee the convergence of the sequence
{zi}i∈N but is close enough for all practical purposes. Note that statements similar to
Theorem 11.56 can be found in the literature, e.g., for CCM in Bazaraa et al. [13]. But
for ACS the assumptions of Theorem 11.56 are weaker since the biconvex structure is
used.

Corollary 11.57 Let X ⊆ Rn and Y ⊆ Rm be closed sets and let f : X × Y → R be
a differentiable function. Furthermore, let the sequence {zi}i∈N generated by the ACS
algorithm be contained in a compact set, and for each accumulation point z⋆ = (x⋆, y⋆)
of the sequence {zi}i∈N let the optimal solutions of both Problem (11.9) with y = y⋆

and Problem (11.10) with x = x⋆ be unique. Then all accumulation points z⋆ that lie
in the interior of X × Y are stationary points of f .

Proof: This is an immediate consequence of Theorem 11.46 and Theorem 11.56. �

It is obviously clear that for every stationary point z⋆ := (x⋆, y⋆) ∈ B of a differentiable,
biconvex function f there exists a non-empty set S of starting points such that z⋆ is
an outcome of the ACS algorithm when the optimal solutions of both Problem (11.9)
with y = y⋆ and Problem (11.10) with x = x⋆ are unique, since all points of the form
(x, y⋆) ∈ B will lead to z⋆ within one iteration. So theoretically, all stationary points
of f can be generated by ACS.
Furthermore, it can be shown that if the assumptions of Theorem 11.56 are satisfied
and X and Y are subsets of R (i.e., ACS simplifies to CCM), the generated compact
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continuum C simplifies to a singleton, i.e., the sequence {zi}i∈N is actually convergent.
Although an accumulation or limit point z⋆, generated by Algorithm 11.1, might be
a partial optimum, it neither has to be a global nor a local optimum to the given
biconvex optimization problem even if z⋆ is stationary, as stationary points can be
saddle points of the given function. To see this for the case when f is not everywhere
differentiable over its whole domain we consider:

Example 11.58 (Goh et al. [82]) Let the function f : R× R→ R be given by

f(x, y) := max {y − 2x, x− 2y,
1

4
(x2 + y2 − 16)}.

As the pointwise maximum of three convex functions f is convex and thus also biconvex
(cf. Lemma 11.19 and Theorem 11.20). Let M (1) and M (2) denote the points (−4, 2)
and (2,−4), respectively, and define two sets C(1) and C(2) by

C(1) = {z ∈ R2 : ‖z −M (1)‖ ≤ 6}
C(2) = {z ∈ R2 : ‖z −M (2)‖ ≤ 6}.

A calculation shows that

f(x, y) =







y − 2x for (x, y) ∈ C(1) ∩ {(x, y) ∈ R2 : x ≤ y}
x− 2y for (x, y) ∈ C(2) ∩ {(x, y) ∈ R2 : x ≥ y}

1
4
(x2 + y2 − 16) for (x, y) ∈ R2 \ (C(1) ∪ C(2)).

Furthermore, f is continuous but not everywhere differentiable, since it has non-
smooth transitions between the three regions defined above. Nevertheless, f has a
global minimum at z⋆ = (2, 2) and the two convex optimization problems (11.9) and
(11.10) given by the ACS algorithm are well-defined and always have unique solutions.
If this procedure is applied to f with a starting-point z0 = (x0, y0) ∈ R× [2,−4], the
algorithm will converge to the point ζ := (y0, y0) within one iteration. But ζ is clearly
not a minimum of f for y0 ∈]2,−4].
Due to the symmetry of the problem, the result remains true if the first optimization
in Step 2 of the algorithm is performed over the y-variables and x0 is given in the
interval [2,−4].

What might happen in the cases when the domain of f is not of the form X×Y or the
set of accumulation points is not a part of the interior of X×Y ? As the next example
shows it is possible that, depending on the starting point, the resulting limit point of
the ACS algorithm need not to be the global or a local minimum in most cases.

Example 11.59 (Floudas and Visweswaran [62], mod.) Consider the biaffine,
constrained minimization problem

min
x,y

−x + xy − y

s.t. −6x + 8y ≤ 3

3x− y ≤ 3

x, y ∈ [0; 1.5]
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Figure 11.7: The dashed lines mark the feasible set B of the problem in Example 11.59. The
bold line in the first picture illustrates the set of optimal solutions for varying y ∈ [0; 1.5] with
f optimized in x-direction. The bold line in the second picture shows the optimal solutions
for varying x ∈ [0; 1.5] with f optimized in y-direction, while in the third picture the bold
lines mark the set of possible outcomes M of the ACS algorithm depending on the chosen
starting point.

which has a local minimum at the boundary point z(1) = (0.916, 1.062) and a global
one at the boundary point z(2) = (1.167, 0.5). Denote the feasible set by B and the
objective function by f . Since the objective function is affine for fixed x or y in [0; 1.5],
the minimal value of f for fixed x or y is attained in a boundary point of B. If we
apply a constrained version of the ACS method to solve the problem given above, a
calculation shows that every point of the set

M := {(x, y) : 3x−y = 3, y ∈ [0; 1]}∪{(x, y) : −6x+8y = 3, y ∈]1; 1.125]}∪{(1.5, 1.5)}

is a possible outcome of the algorithm, depending on the chosen starting point (see
Figure 11.7). Furthermore, the set of starting points which lead to the global as
well as to the local optimum is a discrete point set, and for a starting point z0 with
y0 ∈ [0; 1[, only the choice y0 = 0.5 results in the global optimum. For y0 ∈ [0; 1[,
the local minimum z(1) is never obtained. Hence, the ACS algorithm applied to the
problem given above can provide a point which is far away from being a global or local
minimum of the problem.

To find the global optimum of a biconvex minimization problem by ACS, a multistart
version of ACS can be used (like, e.g., suggested in Goh et al. [82]). But as we have
seen in the last example, there is no guarantee to find the global optimum within a
reasonable amount of time or to be sure that the actual best minimum is the global
one.
We conclude this subsection with a survey of classes of optimization problems where
variants of the ACS method are frequently used to solve biconvex minimization prob-
lems in practice. One of these classes are the location-allocation problems (LAP) in
location theory. Examples for these types of problems are the multisource Weber prob-
lem (MWP), first formally stated by Cooper [40], or the K-connection location problem
(KCLP) in the plane (see Huang et al. [107]) which can be seen as an extension of the
classical MWP and is further discussed in Chapter 13.
In these problems from location theory, m new facilities (m > 1) have to be located in
the plane and allocated to a set of n given existing facilities (or demand points) such
that given demands of the existing facilities are satisfied and the total transportation
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cost between the existing and the new facilities is minimized. Note that the defini-
tion of the total transportation cost depends on the specific problem. This class of
optimization problems has a biconvex objective function which is neither convex nor
concave (cf. Cooper [40] for the MWP). A well-known heuristic approach to the clas-
sical MWP which can also be applied to general LAP’s is the alternate location and
allocation algorithm developed by Cooper [41] that alternates between a location and
an allocation phase until no further improvement can be achieved. This corresponds
to the ACS approach applied to the given LAP. A general survey on the application of
location-allocation methods in location theory can be found, for example, in Hodgson
et al. [103] and Plastria [167].
If we apply the above developed convergence results of the ACS algorithm to the
special cases of MWPs and KCLAPs, respectively, we can state that Theorem 11.50
holds true in both cases since the objective function is always non-negative. So, the
generated sequence of objective values always converges. Furthermore, since the m
new facilities lie within the convex hull of all existing facilities if the distance function
is chosen appropriately (this is true, e.g., for Euclidian distances) and the decision
variables are restricted to {0, 1}, also item (1.) in Theorem 11.56 applies in both
cases. But since neither the position of the new locations nor the partition of the
decision variables need to be unique in general, no further results in the decision space
can be given in general.
In medical image analysis an ACS approach can be used to register two medical images.
In general, a registration problem is a problem where two given data sets have to be
rendered in a joint coordinate system such that corresponding features of the two data
sets are aligned. In medical image registration the two data sets normally correspond
to 2- or 3-dimensional images, the template image T which has to be mapped onto the
reference image R by an appropriate transformation f which can be a rigid function,
i.e., a combination of rotations and translations, or a non-rigid function. In practice,
rigid transformations are used for registration when it is known that both images T
and R show the same part of the body but from a different perspective. Furthermore,
they are used to detect morphological changes of an organ (e.g. the growth of a tumor)
while non-rigid transformations are normally applied to compensate those changes.
One way to formulate the described registration problem is to select a set of charac-
teristical points X = {x1, . . . , xI} in the template image T and a set of corresponding
characteristical points Y = {y1, . . . , yJ} in the reference image R. Then, the transfor-
mation f : T → R is chosen from a set F of feasible transformations such that the
sum of the distances between each image point f(xi) ∈ R (xi ∈ X) and its closest
point yj ∈ Y in the reference set is minimized. This approach leads to the following
generalized biconvex assignment problem

min
f,z

I∑

i=1

J∑

j=1

zij‖f(xi)− yj‖2

s.t.
J∑

j=1

zij = 1, i = 1, . . . , I,

zij ∈ {0, 1}, i = 1, . . . , I, j = 1, . . . , J,

f ∈ F ,

(11.11)

where zij equals 1 if the point xi ∈ X is assigned to the point yj ∈ Y , i.e., yj is the
closest point to f(xi) in Y . Otherwise, zij is set to 0. Note that the binary constraints



11.3 Biconvex Minimization Problems 205

on the assignment variables zij can be relaxed to zij ∈ [0, 1] since the assignment
matrix is totally unimodular.

A common solution approach to Problem (11.11) is the iterative closest point (ICP)
algorithm which was developed by Besl and McKay [19] and corresponds to the ACS
approach. The algorithm alternates between an assignment step in which the points
f(xi) ∈ R are assigned to their closest neighbor in Y and a step in which a new
transformation function f is chosen until no further improvement is achieved. For
further details we refer to Zitová and Flusser [223] where a survey on image registration
can be found, and to Besl and McKay [19] for information on the ICP algorithm. From
the theoretical point of view, we get the same results as in the case of the LAPs. The
given objective function is always non-negative, so the sequence of objective values
produced by the ICP algorithm is convergent due to Theorem 11.50. Usually, the set
of all feasible transformations F can be restricted such that the transformations are
determined by only a finite number of parameters which are contained in a compact
subset of Rn. In this case, the feasible set of the problem is compact and the sequence
generated by the ICP algorithm has an accumulation point in the decision space by
Theorem 11.56. Since neither the chosen transformation nor the assignment variables
need to be unique, no further results can be obtained in general.

Another field where ACS is frequently used as a standard approach is the field of
(robust) control theory. For example, the biaffine matrix inequality (BMI) feasibility
problem, stated, e.g., in Goh et al. [82], can be solved by the ACS method. But since
the BMI problem has a non-smooth objective function, in general no global or local
minimum can be determined by using the ACS approach (cf. Example 11.58). So,
other non-convex optimization methods have to be considered to obtain an optimal
solution for the BMI problem. For further details see, e.g., Goh et al. [82] and Goh
et al. [81].

11.3.3 The Global Optimization Algorithm

In this subsection we review an algorithm for constrained biconvex minimization prob-
lems which exploits the convex substructure of the problem by a primal-relaxed dual
approach. The algorithm is called global optimization algorithm (GOP) and was de-
veloped by Floudas and Visweswaran [62]. The method follows decomposition ideas
introduced by Benders [16] and Geoffrion [77]. Like in the second step of the ACS
method, the constrained problem is firstly solved for a fixed value of the y-variables
which leads to an upper bound on the solution of the biconvex problem. This problem
is called primal problem. To get a lower bound to the solution, duality theory and
linear relaxation are applied. The resulting relaxed dual problem is solved for every
possible combination of bounds in a subset of the x-variables, the set of connected
x-variables. By iterating between the primal and the relaxed dual problem a finite
ε-convergence to the global optimum can be shown.

In the following, we focus on the assumptions that have to be satisfied by the given
biconvex minimization problem so that the GOP algorithm can be applied to this
problem. A deeper description of the mathematical background and a detailed outline
of the algorithm are given in Floudas and Visweswaran [62], Floudas and Visweswaran
[63] and the books Floudas [61] and Floudas [64]. We shortly review convergence
results and give a short survey on the optimization fields in which the algorithm is
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used.
We consider an optimization problem of the form

min
x,y

f(x, y)

s.t. g(x, y) ≤ 0

h(x, y) = 0

x ∈ X, y ∈ Y,

(11.12)

where X and Y are compact convex sets, and g(x, y) and h(x, y) are vectors of inequal-
ity and equality constraints. The functions must be differentiable and they must be
given in explicit form. Furthermore, the following conditions, denoted by Conditions
(A), need to be satisfied (cf. Floudas [64])

1. f is biconvex on X × Y .

2. g is biconvex on X × Y .

3. h is biaffine on X × Y .

4. An appropriate first order constraint qualification is satisfied for fixed y.

Note that, for example, in Floudas [64] partitioning and transformation methods for
the variable set of quadratic programming problems are suggested so that it is possible
to transform this class of problems into a problem of type (11.12) where Condition
(A) is satisfied automatically.
Now, let

V := {y : h(x, y) = 0, g(x, y) ≤ 0 for some x ∈ X},
then the following ε-convergence result for the GOP algorithm holds:

Theorem 11.60 (Floudas [64]) If X and Y are non-empty compact convex sets
satisfying that Y ⊂ V , f , g, and h are continuous on X × Y , the set U(y) of optimal
multipliers for the primal problem is non-empty for all y ∈ Y and uniformly bounded
in some neighborhood of each such point and Condition (A) is satisfied, then the GOP
algorithm terminates in a finite number of steps for any given ε > 0.

For the resulting solution it holds:

Corollary 11.61 (Floudas [64]) If the conditions stated in Theorem 11.60 hold, the
GOP algorithm will terminate at the global optimum of the biconvex minimization
problem.

What are the advantages and drawbacks of the GOP algorithm? As mentioned above,
one of the advantages of the algorithm is the fact that the primal problem which has
to be solved in the first step of each iteration is a convex problem. Hence, every local
optimum is the global minimum of the subproblem. Furthermore, the set of constraints
for the convex subproblem often simplifies to linear or quadratic constraints in the x-
variables so that the primal problem can be solved by any conventional non-linear
local optimization solver. As another advantage of this approach can be seen that the
relaxed dual problem has only to be solved in the connected x-variables. This might
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reduce the number of variables for which the relaxed dual problem has to be solved.
For further details see, e.g., Floudas [64].
The main drawback of the GOP algorithm is the fact that in each iteration of the
algorithm, 2|I| in general non-linear subproblems have to be solved to obtain a new
lower bound to the problem, where I denotes the set of the connected x-variables. In
fact, in each iteration a total enumeration of all possible assignments of the connected
x-variables to their lower and upper bounds is done and the relaxed dual problem is
solved for every combination of these bounds. In Floudas [64], several improvements
of the algorithm, depending on the structure of the given biconvex problem, are given
to reduce the number of relaxed dual problems.
The GOP algorithm is a useful tool for different classes of practical optimization prob-
lems. Visweswaran and Floudas [209], Visweswaran and Floudas [210], and Floudas
[64] discuss, amongst others, quadratic problems with linear constraints, quadrati-
cally constrained problems, and univariate polynomial problems. Furthermore, an
application to bilevel linear and quadratic problems, a practical approach to phase
and chemical equilibrium problems as well as an implementation and computational
studies of the GOP algorithm can be found there.
In Barmish et al. [12] a solution algorithm for some open robustness problems including
matrix polytope stability is stated which was influenced by the ideas of the GOP
approach. There, the optimization on the x-variables is carried out in the usual way
(i.e., for fixed y) to get a valid upper bound. The optimization on the y-variables
is done by a “relaxation” process where the relaxation is refined at each subsequent
iteration step. By an accumulation of the resulting constraints, better lower bounds
on the problem are obtained in each step of the iteration and an ε-convergence to the
optimum can be proven. Note that for the problems stated Barmish et al. [12], only a
finite number of linear programs have to be solved to get an ε-global optimum.
A convex minimization problem with an additional biconvex constraint is considered
in the paper of Tuyen and Muu [205]. There, a convex criterion function of a multiple
objective affine fractional problem has to be minimized over the set of all weakly
efficient solutions of the fractional problem. As in the GOP algorithm, Lagrangian
duality and a simplicial subdivision is used to develop a branch and bound algorithm
which is proven to converge to a global ε-optimal solution of the problem.

11.3.4 Jointly Constrained Biconvex Programming

In this subsection we concentrate on a special case of a jointly constrained biconvex
programming problem introduced by Al-Khayyal and Falk [5]. The specific problem
is given by

min
(x,y)

Φ(x, y) = f(x) + xty + g(y)

s.t. (x, y) ∈ S ∩ Ω,
(11.13)

where

1. Ω = {(x, y) : l ≤ x ≤ L, m ≤ y ≤M},

2. S is a closed, convex set, and

3. f and g are convex over S ∩ Ω.
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Since the functions f and g are convex, the objective function Φ is biconvex on S ∩Ω.
Problem (11.13) can be seen as a generalization of an ordinary bilinear programming
problem which is of the form

min
(x,y)

ctx + xtAy + dty

s.t. x ∈ X, y ∈ Y,
(11.14)

where c ∈ Rn and d ∈ Rn are given vectors, A is an (n× n)-matrix and X and Y are
polytopes in Rn. The above given biconvex problem is more general since it allows
joint constraints in (x, y) and non-linear, convex subfunctions f and g in Φ. The
bilinear Problem (11.14) can be transformed into the biconvex Problem (11.13) by
replacing the term xt (Ay) by xt z and including the linear constraint z = Ay among
the constraints defining the feasible set.
While bilinear problems of the form of Problem (11.14) always have extreme-point
solutions in X⋆ × Y ⋆ (cf. Horst and Tuy [105]), where X⋆ and Y ⋆ denote the set of
extreme-points of the polytopes X and Y , respectively, this is no longer the case for
biconvex problems of the form (11.13) (cf. Al-Khayyal and Falk [5]). Nevertheless, if
the objective function Φ is also a biconcave function which is optimized over a compact,
convex set C ⊂ Rn×Rn, then it can be shown that if the minimum of Φ over C exists,
it is achieved in at least one boundary point of C (cf. Al-Khayyal and Falk [5]).
Al-Khayyal and Falk [5] used a pattern of Falk and Soland [59] to develop a branch
and bound algorithm for solving the jointly constrained biconvex Problem (11.13).
The necessary bounds are obtained by employing convex envelopes.

Definition 11.62 (Floudas [64]) Let f be a lower semicontinuous function defined
on a non-empty convex set C ⊆ Rn. Then the convex envelope of f on C is a function
ΨC(f) : C → R that satisfies:

1. ΨC(f) is convex on C.

2. ΨC(f(x)) ≤ f(x) for all x ∈ C.

3. If h is any convex function defined on C such that h(x) ≤ f(x) for all x ∈ C,
then h(x) ≤ ΨC(f(x)) for all x ∈ C.

Note that the convex envelope of f is obtained by taking the pointwise supremum
of all convex (or linear) functions which underestimate f over C (cf. Al-Khayyal and
Falk [5]).
Since

ΨΩ(xty) =
n∑

i=1

ΨΩi
(xiyi) ∀ (x, y) ∈ Ω,

ΨΩ(xty) = xty ∀ (x, y) ∈ ∂Ω,

and ΨΩi
(xiyi) can easily be calculated (cf. Al-Khayyal and Falk [5]),

F (x, y) := f(x) + ΨΩ(xty) + g(y)

is a convex underestimator of Φ on S ∩Ω that coincides with Φ on ∂Ω and is used to
calculate lower bounds of the objective functions.
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Now the algorithm works as follows: In the first step the minimization Problem (11.13)
is solved with F instead of Φ as objective function which leads to an optimal point
z1 = (x1, y1) ∈ S ∩ Ω and valid lower and upper bounds F (z1) and Φ(z1). If F (z1) =
Φ(z1), then z1 is optimal. Otherwise, there exists at least one i ∈ {1, . . . , n} such that
ΨΩi

(xiyi) < xiyi. So, the index i that leads to the largest difference between xiyi and
ΨΩi

(xiyi) is chosen, and the ith rectangle Ωi is split up into four subrectangles. Then,
new bounds are calculated in each of the resulting four new hyper-rectangles. This
leads to a point z2 and new lower and upper bounds for f which can be shown to be
tighter than the bounds of the last iteration. If F (z2) = Φ(z2) the algorithm stops,
otherwise a new refinement is performed. By iteratively applying this procedure, it
can be shown that the algorithm converges to a global optimum of Problem (11.13).

Horst and Tuy [105] presented in their book a modified version of the algorithm which
differs from the original one in the choice of the new iterate zk and the subdivision
rule which is based on bisection there. In Al-Khayyal [4] the author strengthened the
algorithm by also evaluating the concave envelope of the problem. In Audet et al.
[8] a short overview of papers that concentrate on the application of the algorithm to
bilinear programming problems and quadratically constrained quadratic programming
problems is given.

Another algorithm for a special type of functions f and g of Problem (11.13) is de-
veloped in Sherali et al. [191] and Sherali et al. [192] for risk management problems.
Instead of working with the convex envelope, the authors used a specialized implemen-
tation of Geoffrion’s generalized Benders decomposition (see Geoffrion [77]). With the
help of a projection method and dual theory, an alternative graphical solution scheme
is proposed that enables the decision maker to interact subjectively with the optimiza-
tion process.

11.4 Conclusions and Further Ideas

In this chapter we gave a survey on optimization problems with biconvex sets and
biconvex functions and reviewed properties of these sets and functions given in the
literature. We stated a new result for the case that the maximum of a biconvex
function f is attained in the relative interior of a biconvex set B by assuming further,
rather weak topological properties on B. We showed that under these assumptions f
must be constant throughout B.

Existing methods and algorithms, specially designed for biconvex minimization prob-
lems which primarily exploit the convex substructures of the problem, were discussed
for the constrained as well as for the unconstrained case. In particular, we showed that
an alternating convex search approach, a primal-relaxed dual approach, as well as an
approach that uses the convex envelope of parts of the biconvex objective function
are suitable for solving biconvex optimization problems using the special properties
of these problems. For each of these methods different practical applications as well
as applications to the bilinear and biaffine case were discussed. We recalled that un-
der appropriate assumptions the primal-relaxed dual approach as well as the approach
that uses the convex envelope lead to a global optimum, while the alternating approach
in general only finds partial optima and stationary points of the objective function,
respectively. However, the advantage of this approach can be seen in the fact that it
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can be applied to any biconvex minimization problem while for the other approaches
additional properties for the given objective function as well as for the feasible set
must be satisfied.
Further fields of research related to biconvex sets and functions are separation theorems
of disjoint biconvex sets with biconvex functions (cf. Aumann and Hart [9]). Moreover,
improvements of the given minimization algorithms are of interest, especially of the
ACS method. Concerning this topic, we also refer to the Chapters 3, 12 and 13 of this
work.



Chapter 12
Augmented Alternate Convex Search for
Biconvex Optimization Problems

In this chapter we present an enhanced version of the alternate convex search method
for biconvex optimization problems. The original version of this approach was al-
ready discussed in further details in Section 11.3 of this work. We make use of the
theoretical ideas developed in Section 3.3 for the enhanced version of the alternate
block search strategy, to try to heuristically improve the performance of the original
alternate convex search method.

As already stated in Section 11.3, this method can be seen as a special case of the more
general alternate block search strategy, where only two disjoint blocks of variables
are given. In addition, the two resulting subproblems are assumed to be convex,
i.e. each local optimal solution of the induced subproblems is automatically a global
optimum (cf. Rockafellar [183]). While the incorporation of the descent potential for
the alternate block search strategy was only discussed from a theoretical point of view
in Section 3.3, we go into further details for the biconvex case in this chapter. Amongst
others, we show that gradient information can be used to define the descent potential
for the case that f is assumed to be continuously differentiable on its domain.

However, although we restrict ourselves to the case of only two disjoint blocks of
variables as well as to convex subproblems in the following, we note that all the ideas
that are presented in the remainder of this chapter can easily be generalized to the case
of more than two given blocks of variables and to the case of non-convex subproblems,
respectively.

We further remark that in Chapter 13 we make use of the ideas presented in this
chapter to heuristically improve the results that are obtained by applying the alternate
convex search method to solve a biconvex optimization problem from location theory.
In particular, we show how the ideas presented in this chapter can be used to solve
the connection location-allocation problem in the plane (cf. Huang [106] and Bischoff
[20]).

The remainder of this chapter is organized as follows: In the next section, we give a
short introduction to the problem formulation and the notation used throughout this
chapter. In Section 12.2 we discuss potential definitions of the descent potential for
the block of fixed variables, while the enhanced alternate convex search strategy is
presented in Section 12.3. We illustrate our ideas by means of an appropriate example



212 12. Augmented Alternate Convex Search

in Section 12.4 and we finally conclude in Section 12.5.

12.1 Notation and Problem Formulation

As we are dealing with biconvex functions in this chapter, we make use of the notation
introduced in Chapter 11. However, to make this chapter self-contained, we recall the
most important terms and definitions from Sections 3.3 and 11.3 of this work.
Let X ⊆ Rn and Y ⊆ Rm be two non-empty sets and let B ⊆ X × Y . For x ∈ X and
y ∈ Y , we define the x-sections and y-sections of B by

Bx = {y ∈ Y : (x, y) ∈ B} ⊆ Y and By = {x ∈ X : (x, y) ∈ B} ⊆ X,

respectively. Furthermore, let f : B → R be a continuously differentiable function on
X × Y . To simplify the notation, we define fx : Bx → R, fx(y) := f(x, y) for fixed
x ∈ X and fy : By → R, fy(x) := f(x, y) for fixed y ∈ Y , respectively. The biconvex
optimization problem considered in this chapter is given by

min {f(x, y) : (x, y) ∈ B}. (12.1)

From Definition 11.42 we recall that a point (x⋆, y⋆) ∈ B is called a partial optimum
of f in B if

f(x⋆, y⋆) ≤ f(x, y⋆) ∀x ∈ By⋆ and f(x⋆, y⋆) ≤ f(x⋆, y) ∀ y ∈ Bx⋆ .

For a detailed discussion of partial optimal solutions, we refer to Section 11.3. We recall
from Theorem 11.44 that each partial optimum (x⋆, y⋆) ∈ B of f is also a stationary
point, i.e. ∇ f(x⋆, y⋆) = 0 holds true, while the converse is not true in general (cf.
Example 11.45).
As an algorithmic description of the alternate convex search method is already given by
Algorithm 11.1 in Chapter 11, we omit a detailed outline here. Note that an alternative
description of this algorithm can be derived from Algorithm 3.1 in Chapter 3. We
further recall from Section 11.3 that the point z that is returned by Algorithm 11.1
corresponds to a stationary point of f , whenever some mild assumptions on f as well
as the feasible set are satisfied (cf. Corollary 11.57).
In the remainder of this section it is assumed that Problem (12.1) is hard to solve in
general, while the subproblems miny∈Bx

fx(y) and minx∈By
fy(x) are much easier to

handle for fixed x ∈ X and y ∈ Y , respectively, compared to the overall problem. As by
assumption, the functions fx and fy are convex for all x ∈ Bx and y ∈ By, respectively,
this especially holds true when the overall Problem (12.1) corresponds to a non-convex
optimization problem. However, as already mentioned in the introduction of this
chapter, the general ideas for the application of the enhanced alternate convex search
strategy presented in the following are not limited to problems where the involved
functions fx and fy are known to be convex, but they can also be applied to more
general non-linear optimization problems with two or more blocks of variables.

12.2 The Descent Potential

Based on the ideas presented in Section 3.3 of this work, we show how the descent
potential for the block of fixed variables can be defined in the case of a continuously
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differentiable function. In the following we distinguish between the two cases whether
B = Rn×Rm, i.e. the given Problem (12.1) corresponds to an unconstrained problem,
or whether B is given as a compact subset of X × Y . Note that the biconvexity of
the given objective function f is not a necessary criterion for the validity of the ideas
presented in this section. However, it ensures that all local optima that are found
during the iterations of the original alternate convex search method correspond to
global optima of the solved subproblems.
To motivate the mathematical definition of the descent potential given below from
a more general point of view, let g : Rn → R denote a continuously differentiable
function, and let x0, v ∈ Rn. Using the Taylor expansion of g in a neighborhood of x0,
g can locally be rewritten as

g(x0 + v) = g(x0) + 〈∇g(x0), v〉+ o(‖v‖),

where∇g denotes the gradient of g and 〈·, ·〉 corresponds to the standard scalar product
in Rn (cf. Forster [65]). This implies that in a neighborhood U(x0) of x0, g can locally
be approximated by

g(x0 + v) ≈ g(x0) + 〈g(x0), v〉,
where the real number 〈g(x0), v〉 indicates the potential change of g in the point x0

and direction v. Hence, to estimate the potential improvement of g in U(x0), we may
compute v ∈ Rn that corresponds to an optimal solution of the continuous optimization
problem

min{〈∇g(x0), v〉 : ‖v‖ = 1, v ∈ Rn}. (12.2)

From Bazaraa et al. [13] we recall that the optimal solution of Problem (12.2) cor-
responds to the direction of the steepest descent given by v0 := −∇g(x0)/‖∇g(x0)‖.
Since

〈∇g(x0), v0〉 = −〈∇g(x0),∇g(x0)〉
‖∇g(x0)‖

= −‖∇g(x0)‖,

the norm of the gradient of g is an appropriate choice for measuring the expected
potential improvement of g in a neighborhood of x0. If g is further assumed to be
convex, we recall from convex analysis that the first order Taylor approximation of
g in x0 is a global underestimator of the given function (cf. Boyd and Vandenberghe
[25]). In this case, the negative norm of the gradient of g in x0 provides a strict lower
bound on the expected improvement that can be achieved.
The situation completely changes if g is only defined on a compact subset S ⊆ Rn.
While the above stated results remain valid, whenever the point x0 ∈ S corresponds
to an interior point of S, i.e. there exists a neighborhood of x0 that is still completely
contained in S, this is no longer the case, if x0 belongs to the boundary of B. If
for v = −∇g(x, y) ∈ Rn and arbitrary λ > 0, the point x + λv does not belong the
feasible set S of Problem (12.1), the direction v does no longer correspond to a feasible
(descent) direction of g in x0. Hence, the information provided by the negative norm
of the gradient of g can no longer be used to measure the estimated improvement of
the objective value in a neighborhood of the point x0. Instead, the optimal solution
of the optimization problem

min{〈∇g(x0), v〉 : ‖v‖ = 1, ∃λ̄ > 0 : x0 + λv ∈ S ∀λ ≤ λ̄}, (12.3)
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has to be used to derive the desired information. However, since we want to evaluate
the descent information for a continuous set of points in the following, the above stated
optimization problem has to be solved for each point of the feasible set S in general,
as long as no further information on S or the function g are given.

In the following, we relate the above stated results to the optimization Problem (12.1)
under consideration. We start with the unconstrained case. Let B = Rn × Rm, and
let f : B → R be a continuously differentiable (biconvex) function. Furthermore, let
∇f(x, y) denote the gradient of f in the point (x, y) ∈ B. To simplify the notation,
we define

∇xf(x, y) =

(
∂f

∂x1
(x, y), . . . ,

∂f

∂xn

(x, y)

)⊤

and

∇yf(x, y) =

(
∂f

∂y1
(x, y), . . . ,

∂f

∂ym

(x, y)

)⊤

,

i.e. ∇f(x, y) = (∇xf(x, y),∇yf(x, y))⊤. According to the above stated results, the
norm of the gradient yields an appropriate measure of the expected potential improve-
ment in the point (x, y) ∈ B for fixed x ∈ Rn and y ∈ Rm, respectively.

Definition 12.1 Let (x, y) ∈ B be a feasible solution of Problem (12.1). Then, the
functions

πx :

{

B → R

(x, y) 7→ ‖∇xf(x, y)‖
and πy :

{

B → R

(x, y) 7→ ‖∇yf(x, y)‖

are called the descent potential of f with respect to x and y in the point (x, y), respec-
tively.

Note that the norm ‖ · ‖ is not specified in Definition 12.1. In practice, the (squared)
Euclidian or the maximum norm can be used.
To further simplify the notation, we define π̃y(x) = πy(x, y) for a fixed given y ∈ Rm

and all x ∈ Rn, as well as π̃x(y) = πx(x, y) for a fixed given x ∈ X and all y ∈ Bx.
Since f is assumed to be continuously differentiable, the functions πx and πy are
both continuous within their domain Rn and Rm, respectively. Furthermore, if the
point (x, y) ∈ B corresponds to a stationary point of f , this additionally implies that
πx(x, y) = πy(x, y) = 0, i.e. each stationary point is a point of minimum potential.
According to the results for the constrained case stated above, we remark that the
values of the above defined descent potentials have to be replaced by

πx(x, y) = |min{0, 〈∇xf(x, y), v0〉}| and

πy(x, y) = |min{0, 〈∇yf(x, y), v0〉}|,
(12.4)

respectively, where v0 corresponds to an optimal solution of Problem (12.3), when the
point (x, y) belongs to a boundary point of B for fixed x and y, respectively. While
for the unconstrained case, the negative gradient always points into the direction of
the steepest descent and is of positive length as long as no partial optimum of f is
reached, the optimal solution of Problem (12.3) may indicate that no further descent
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is possible in the considered point, i.e. 〈∇xf(x, y), v0〉 > 0 and 〈∇yf(x, y), v0〉 > 0
holds true, respectively. In this case, the descent potential for this point has to be
considered as zero.
Having a closer look at the alternate convex search algorithm (cf. Algorithm 11.1), the
main drawback of this approach can be seen in the fact that the quality of the returned
solution (i.e. its objective value compared to the global optimum of the given problem)
strongly depends on the initial starting solution (x0, y0) ∈ B. If the sequence of points
that is generated during the course of the algorithm is stuck in a neighborhood of a local
minimum of Problem (12.1), it will never leave this neighborhood, but the generated
sequence of points in the decision space converges to the local minimum. Hence,
already the initial solution chosen at the beginning of Algorithm 11.1 determines the
solution that will be found at the end, while potentially better local minima located
in other neighborhoods around the initial starting solution are disregarded by this
method.
However, especially in the first iterations of the algorithm, also the expected descent
with respect to the block of fixed variables may be of interest, when the problem is
solved for the active block. One might rather prefer stopping in a non-optimal point
with respect to the active variables, when the potential descent with respect to the
fixed variables is expected to be higher in this point compared to the potential descent
in the optimal solution of the subproblem. Hence, restarting from this non-optimal
point for the next subproblem may result in a better local or even the global optimum
of the given problem at the end of the algorithm.
Unfortunately, it cannot be guaranteed in general that the global optimum of the
problem can be found when additional gradient information is used, nor that the final
solution is a better local minimum as compared to the point that is generated without
using this additional information. Hence, the above described idea should be seen as a
heuristic approach to improve the solution that is obtained when the alternate convex
search method is applied. Numerical studies for the connection location-allocation
problem, provided in Chapter 13 of this work, show that this works very well in
practice, i.e., that an improvement with respect to the overall objective value can be
expected in many cases. For more details on this problem, we refer to Section 13.3.

12.3 The Augmented Alternate Convex Search

Algorithm

In this section, we further discuss the enhanced alternate convex search strategy based
on a biobjective approach. Let B ⊆ X×Y , where X ⊆ Rn and Y ⊆ Rm. Furthermore,
let (x, y) ∈ B. For fixed y ∈ Y , we consider the two objectives fy and π̃y, where the
first has to be minimized, while we are interested in a maximum of the second. The
resulting biobjective minimization problem is given by

min Fy(x) = (fy(x),−π̃y(x))⊤

s.t. x ∈ By.
(12.5)

Conversely, for fixed x ∈ Rn we have to consider the two objectives fx and π̃x which
results in the biobjective minimization problem
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Algorithm 12.1 Augmented Alternate Convex Search Algorithm

Input: An instance of Problem (12.1).
Output: A point (x, y) ∈ B.
1: Choose an arbitrary starting point (x0, y0) ∈ B and set i = 0.
2: while no stopping criterion is satisfied do
3: Determine a representative set X ′ ⊆ Byi

of efficient solutions of Problem (12.5).
4: Choose x ∈ X ′ according to a prescribed rule, and set xi+1 = x.
5: Determine a representative set Y ′ ⊆ Bxi+1

of efficient solutions of Problem (12.6).
6: Choose y ∈ Y ′ according to a prescribed rule, and set yi+1 = y.
7: Augment i by one unit.
8: end while
9: return (xi, yi).

min Fx(y) = (fx(y),−π̃x(y))⊤

s.t. y ∈ Bx.
(12.6)

Unfortunately, Problems (12.5) and (12.6) normally correspond to biobjective non-
linear optimization problems. Even for the case that B = Rn×Rm and both functions
fx and fy are known to be convex for all (x, y) ∈ B as it is the case here, the given
problems correspond to non-convex problems, since the derivative of a convex function
must not be convex in general. Hence, solution methods from non-linear optimization
have to be used to derive efficient solutions of the given problems. However, if the
main interest is to improve the performance of Algorithm 11.1, local efficient solutions
of Problems (12.5) and (12.6) may suffice to find better local minima at the end of the
algorithm.
A detailed outline of the augmented alternate convex search algorithm can be found
in Algorithm 12.1. By symmetry of the given Problems (12.5) and (12.6), we only
consider Problem (12.5), i.e. Lines 3 and 4 of Algorithm 12.1, in more detail.
As it is assumed that the subproblems for a fixed block of variables can be solved
efficiently, spending too much time in the determination of an appropriate representa-
tive set of efficient solutions for Problem (12.5) is not favorable in general. Although
further information on the descent potential π̃y are of interest, time-consuming cal-
culations of the non-dominated set should be avoided. This especially holds true if
the number of expected local minima of Problem (12.1) is small. In this case, also a
multi-start version of Algorithm 11.1 may be favorable. So, only a small number of
representatives of non-dominated solutions should be calculated for Problem (12.5) in
Line 3 of Algorithm 12.1.
In the subsequent step of Algorithm 12.1 (cf. Line 4) an appropriate solution candidate
from the set X ′ is chosen that has to satisfy a prescribed decision rule specified by the
decision maker. While during the first iterations, intermediate solutions xi ∈ X ′ with
a large descent potential π̃y are of interest, one is rather interested in optimal solutions
of the original single objective problem in later iterations of the algorithm to guarantee
its convergence. In practice, the specific implementation of this rule normally depends
on the considered optimization problem as well as on the specific interests of the
decision maker, as the applied rule has a large impact on the CPU time spent to solve
the problem. For a detailed discussion of appropriate, problem-dependent definitions
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of this rule, we also refer to Chapter 13, where an adapted version of Algorithm 12.1
is applied to derive local optima for the connection location-allocation problem in the
plane.

In the following, we shortly discuss the pros and cons of the two most frequently
used scalarization techniques (the ε-constraint and the weighted sum approach) to
determine (weakly) efficient solutions of Problem (12.5). In general, an ε-constraint
approach seems to be suitable to solve Problem (12.5). Formally, this problem is given
by

min fy(x)

s.t. π̃y(x) ≥ ε

x ∈ By.

(12.7)

On the one hand, the main advantage of this solution technique can be seen in the fact
that the desired level of π̃y can easily be handled by an adaptive choice of the parameter
ε. If a high value of π̃y is of interest, the parameter ε can be chosen accordingly. If
a faster convergence is desired at the end of the algorithm, the value on ε can be
decreased. Actually, fixing ε > 0 throughout the application of the alternate convex
search method implies that the algorithm will not converge to a stationary point of
f , since the additional side constraint on π̃y automatically implies that ∇yf(x, y) > 0
for all feasible solutions of Problem (12.7). However, if By is compact and fy attains
its minimum in a boundary point, this point still may satisfy the constraints for π̃y.
On the other hand, if the original subproblem with objective fy can be solved effi-
ciently, the additional constraint on π̃y may destroy the simple structure of the given
optimization problem. This is especially the case, when Problem (12.5) corresponds
to an unconstrained problem, i.e. By = Rn. Furthermore, the calculated solution
of Problem (12.7) may only correspond to a weakly non-dominated outcome of the
biobjective problem.
For this reason, also a weighted sum approach can be used to calculate supported
efficient solutions of Problem (12.7). For λ ∈ [0, 1] this approach is formally given by

min {λ fy(x)− (1− λ)π̃y(x) : x ∈ By}. (12.8)

However, while this approach preserves the underlying structure of the feasible set
By, an appropriate choice of the parameter λ seems to be critical in general, when
no further information on the objectives are given. Hence, Problem (12.8) must be
solved for several values of λ in [0, 1] to guarantee a prescribed bound on the descent
potential π̃y(x). Note that, analogous to the approach presented in Section 3.1 for
constrained single objective optimization problem, Problem (12.8) can be seen as the
Lagrangian relaxation of Problem (12.7).
As already mentioned above, if a non-zero descent potential is requested in the block
of fixed variables for each subproblem in Algorithm 11.1, the generated sequence of
points may never converge to a stationary point of Problem (12.1), as ‖∇f(x, y)‖ > 0
holds true at the end of each iteration. Furthermore, if, for fixed y, the points (x, y)
correspond to points on the boundary of B for all x ∈ By, solving Problems (12.7)
and (12.8) may implicitly imply that an additional optimization problem for each point
x ∈ By has to be solved, according to the definition of the descent potential (12.4) for
points on the boundary, as long as no further information on g and By are given.
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Hence, a mixed strategy involving steps that incorporate a non-zero descent potential
and steps that disregard the information contained in the block of fixed variables can
be used instead. While in the first iterations of Algorithm 12.1, higher values for π̃y

and π̃x may be favorable to avoid a fast convergence to an undesired local minimum
of the problem as well as generating points on the boundary of the feasible set, the
descent potential should be totally disregarded after a certain number of iterations
to guarantee the convergence of the algorithm. This can be done, for example, by
applying appropriate decision rules in Lines 4 and 6 of Algorithm 12.1. In this case,
the same convergence results as stated for Algorithm 11.1 in Section 11.3 can be
achieved. Of course, further variants like applying the biobjective approach only to
one of two subproblems in Algorithm 12.1 or using an additional annealing process for
ε, when an ε-constraint approach is used to solve the biobjective problem, can be of
interest.
To further decrease the additional CPU time that has to be spent to derive efficient
solutions of the involved biobjective problems, the calculation of a complete set of
representatives can be omitted, as in the end of an iteration we are interested in a
single (efficient) solution only. Hence, the number of calculated non-dominated points
of the biobjective subproblems could be restricted to only a small number of points.
However, since the presented enhanced alternate convex search strategy is a purely
heuristic concept to improve the performance of Algorithm 11.1, no profound changes
of the convergence results (like the guaranteed convergence to the global optimum of
the problem) compared to the original algorithm can be expected in general.
Before we close this chapter on the theoretical background of the enhanced alternate
convex search strategy with an illustrative example for the two-dimensional case, we
once more remark that the biconvexity of f is not a necessary property for the valid-
ity of the ideas presented in this section. For a practical application of the proposed
solution concept to a biconvex optimization problem, we refer to Chapter 13, where in-
tensive numerical studies are presented for the connection location-allocation problem
in the plane.

12.4 Illustrative Example

In this final section, we present an illustrative example of the enhanced alternate
convex search strategy suggested in Section 12.3. We consider the two-dimensional,
unconstrained optimization problem

min
x,y∈R

f(x, y) = x2y2 + 2x2y + 3x2 + 3xy2 − 2xy − x + 4y2.

For the given problem we have that

fy(x) = (y2 + 2y + 3)x2 + (3y2 − 2y − 1)x + 4y2,

fx(y) = (x2 + 3x + 4)y2 + (2x2 − 2x)y + 3x2 − x.

Since y2 + 2y + 3 > 0 for all y ∈ R and x2 + 3x + 4 > 0 for all x ∈ R, f is a biconvex
function. However, since the determinant of the Hessian H of f is given by

det(H(x, y)) = −12x2y2 − 36y2x− 20y2 − 24yx2 − 8yx + 56y − 4x2 + 52x + 44,
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Figure 12.1: Trajectories of the local minima of fy (yellow) and fx (green), respectively.
The intersection points of the trajectories correspond to the stationary points of the given
problem.

we have that det(H(0, 4)) = −52. Hence, f is non-convex in general. Solving the
involved subproblems min{fy(x) : x ∈ R} and min{fx(y) : y ∈ R}, respectively, show
that the trajectories of the local minima are given by

xsp(y) =

(−3y2 + 2y + 1

2y2 + 4y + 6
, y

)⊤

and ysp(x) =

(

x,
−x2 + x

x2 + 3x + 4

)⊤

,

for fixed y ∈ R and x ∈ R, respectively. The two trajectories are depicted in Fig-
ure 12.1, where the yellow curve corresponds to the trajectory xsp, while the green
one belongs to ysp. The trajectories intersect in the points z0 = (x0, y0) = (−1,−1),
z1 = (x1, y1) = (0.17, 0.03) and z2 = (x2, y2) = (−3.15,−2.65) that correspond to
the stationary points of f . Further calculations show that z0 with f(z0) = 2 corre-
sponds to a saddle point of f , while z1 with f(z1) = −0.88 and z2 with f(z2) = −6.73
represent a local and the global minimum of the given problem, respectively.
When Algorithm 11.1 is applied to the two different starting points shown in Fig-
ure 12.3a, we see that for the point where y < −1 (blue lines), the global maximum
of the problem is reached, while the sequence of generated points only converge to
the local maximum for the starting point satisfying y > −1 (white lines). A detailed
analysis of the resulting minima, depending on the initial value of y can be found in
Figure 12.2a. Note that since the first subproblem is solved for fixed y ∈ R, the final
point that is calculated by Algorithm 11.1 does not depend on the choice of x ∈ R.
It can be seen that for −1 < y < 7, the local minimum of f is obtained, while only
for the choice y ∈ {−1, 7} the saddle point of f is reached. For the remaining values



220 12. Augmented Alternate Convex Search

(a) Evaluation of the obtained objective values by
applying Algorithm 11.1 to different initial values
of y ∈ R.

(b) Evaluation of the minimum objective values
obtained for different setups of Algorithm 12.1.

Figure 12.2: Numerical comparison of Algorithm 11.1 and Algorithm 12.1, depending on
the chosen starting value of y ∈ R.

of y, Algorithm 11.1 already converges to the global minimum of the given problem.

An improved result can be obtained, when the augmented alternate convex search
algorithm (cf. Algorithm 12.1) is applied. In Figure 12.3b, the ε-constraint approach
is used to enforce a minimal descent potential of π̃y = 9 (blue line) and π̃y = 10
(white line) for the first iteration of Algorithm 12.1. Note that the red line results
from applying the original Algorithm 11.1. While for the choice π̃y = 9, still the local
minimum z1 is reached, Algorithm 12.1 converges to the global minimum z2 if π̃y = 10
is chosen.

A final evaluation of different setups for Algorithm 12.1 can be found in Figure 12.2b.
Depending on the initial value of y ∈ R, the overall minimum objective value is
depicted that is obtained by solving four different setups of Algorithm 12.1. These
setups enclose the cases that a minimal descent potential of ε = 10 or ε = 15 has to
be satisfied in the first iteration or in the first two iterations of Algorithm 12.1. The
obtained results clearly show an improved convergence rate to the global minimum of
the given problem, when Algorithm 12.1 is applied. However, there still exist initial
values of y that do not imply a convergence to the global optimum of the given problem.

12.5 Conclusions and Further Ideas

In this chapter we discussed an enhanced version of the alternate convex search tech-
nique for biconvex optimization problems that makes use of a multiple objective ap-
proach to the problem. Based on the ideas presented in Section 3.3 for the alternate
block search method, we derived an augmented alternate convex search algorithm that
additionally incorporates the idea of measuring the descent potential with respect to
the block of fixed variables during the iterations of the original method. While gradi-
ent information is used for the unconstrained case, additional optimization problems
may have to be considered, when the feasible set of the convex subproblem is com-
pact. As instead of a single objective problem a multiple objective problem has to
be solved in each iteration of the presented enhanced approach, we further discussed
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how combinations of both methods could be used to decrease the additional CPU time
that has to be spent to solve the involved biobjective subproblems. We further gave
an illustrative example for the enhanced approach in the R2-plane.
As for the constrained case, the presented approach implies that an additional opti-
mization problem has to be solved for non-interior points of the feasible set, appropriate
approximations of the descent potential for such points could be in the focus of further
research. Due to the linearity of the involved objective that has to be minimized (cf.
Problem (12.3)), it may be possible to derive lower bounds on the potential objective
improvement for such points (cf. also Chapter 13).
In addition, we restricted ourselves to optimization problems with only two blocks
of variables in this chapter. However, the combination of the ideas on an enhanced
approach for problems with more than two blocks from Section 3.3 with the definitions
for the descent potential presented in this chapter can be used to derive an enhanced
alternate block search strategy for an arbitrary number of blocks of variables. As a
consequence this new method can be applied to derive local optima for any non-linear
(unconstrained) single objective optimization problem. A practical application of this
approach to a real world problem could be of further interest.
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(a) Algorithm 11.1 applied to two different starting points. While for the starting
point with y > −1 (white lines), the algorithm converges only to the local minimum,
the global one is obtained for the point satisfying y < −1 (blue lines).

(b) Algorithm 12.1 applied to the starting point y > −1. While for the choice ε = 9
(blue line) for the minimal potential descent in the first iteration of the algorithm, still
the local minimum is obtained, the global one is reached for the choice ε = 10 (white
line).

Figure 12.3: An illustrative comparison of Algorithm 11.1 and Algorithm 12.1



Chapter 13
The Connection Location-Allocation
Problem in the Plane

In this chapter we deal with a special problem from location theory, the so-called con-
nection location-allocation problem in the plane. Given a finite set of existing facilities,
we consider the problem where directed flows between different source and target fa-
cilities have to be routed through connection facilities. In addition, these connection
facilities have to be located in the R2-plane such that the resulting total transportation
costs are minimized. In practical applications, these flows may correspond to goods
that have to pass a factory during the manufacturing process, or to people that have
to pass a control point, for example when they want to enter a stadium or cross the
border between two countries. For further real-world applications we refer amongst
others to the article of Montreuil and Ratliff [146] and the book of Mattfield [130].

The connection location-allocation problem is related to a variety of other well-known
location problems: the facility location-allocation problem, the p-median problem,
the hub location problem and the round-trip location problem. See, amongst others,
Wesolowski [216], Mirchandani and Francis [145], Alumur and Kara [6] as well as Chan
and Francis [34] for a detailed discussion of the mentioned location problems. For an
overview on location theory in general, we refer to Drezner and Hamacher [48] and
Nickel and Puerto [153].

However, the connection location-allocation problem itself is treated rarely in the
literature. Huang [106] introduced the problem in his dissertation. The author mainly
focused on discrete location problems with capacitated and uncapacitated connections,
respectively. In addition, also the continuous case was discussed shortly. Furthermore,
different distance functions, amongst others also polyhedral gauges, were used to model
the problem. The results of Huang on the (un)capacitated N -connection location
problem have also been published in Huang et al. [107].

In the recent literature, the continuous problem was tackled by Bischoff [20] in his
dissertation. Based on a generalized description of the given problem, the author
discussed theoretical properties like, for example, cluster properties and showed the
NP-hardness of the problem. Furthermore, a variety of solution methods both exact
and heuristic were presented, and extensions to problems with barriers and queues
were discussed. Parts of the author’s dissertation have been published in Bischoff
and Bayer [21], where connection location-allocation problems with polyhedral gauge
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distances were considered, in Bischoff and Dächert [22], where various meta-heuristic
approaches to the problem were compared and in Bischoff and Klamroth [23], where
two branch & bound methods for the connection location-allocation problems were
presented.

In the following, we show that the connection location-allocation problem can be mod-
eled as a biconvex optimization problem that often has a large number of local minima
in practice. Due to the biconvex structure of the problem, an alternate block search
strategy (cf. Section 3.3), i.e. the alternate convex search method (cf. Section 11.3)
in particular, is suitable to derive local minima of the given problem. In Location
Theory, this solution method is also known as alternate location-allocation algorithm
(cf. Cooper [40]). Given a partition of the set of variables into location variables and
allocation variables, a local minimum of the problem can be derived by alternately
solving the given problem for fixed location and allocation variables, respectively.

Based on the original version of the alternate location-allocation algorithm for the
connection location-allocation problem, we present modified versions of this algorithm
that incorporate the idea of the enhanced alternate convex search strategy, developed
in Chapter 12 of this work.

We further show numerically that the quality of the resulting local minima can be
improved, when the potential improvement of the objective value in the block of fixed
variables is taken into account as an additional criterion that has to be maximized dur-
ing parts of the optimization process. We further provide numerical results comparing
the quality of the local minima obtained by the common and the modified approach,
as well as the time taken to find these solutions.

This chapter is organized as follows: In the first section, we present a detailed prob-
lem formulation. In Section 13.2 we show that the given location problem can be
formulated as a biconvex optimization problem. We present our augmented location-
allocation algorithm in Section 13.3, based on the ideas presented in Section 3.3 and
Chapter 12, including numerical comparisons between the original and the enhanced
solution approach. Note that the detailed numerical results of our study can be found
in Appendix B of this work. We finally summarize our results and give a short outlook
in Section 13.4.

13.1 Notation and Problem Formulation

Let a set A = {a1, . . . , aL} of existing facilities in the R2-plane be given, i.e. al ∈ R2

for all l ∈ L, where L is the set of indices of these facilities. Furthermore, let a set
M of M flows be given, where each flow m ∈ M is associated with a source facility
asm
∈ A and a target facility atm ∈ A and an intensity wm > 0. Let X = {x1, . . . , xN}

denote the set of the N connection facilities given by their coordinates that have to
be located in the R2-plane, i.e. xn ∈ R2 for all n ∈ N . In this case, N denotes the set
of indices of these facilities.

We further assume that an arbitrary amount of flow can be routed through a connec-
tion facility, i.e. a limitation of the flow capacity for the new facilities is disregarded.
Furthermore, let d : R2 × R2 → R denote a distance function that measures the
distance between the existing and the connection facilities. Then, the connection
location-allocation problem in the plane (ConLoc) is given by
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Figure 13.1: An example for the connection location-allocation problem with 10 existing
facilities (blue), 10 flows (blue) and 3 connection facilities (orange and red, respectively).
Flows allocated to a specific connection facility have the same color as the corresponding
facility.

min
M∑

m=1

N∑

n=1

ymnwm (d(asm
, xn) + d(xn, atm))

s.t.
N∑

n=1

ymn = 1, ∀m ∈M

ymn ∈ {0, 1}, ∀m ∈M ∀n ∈ N
xn ∈ R2, ∀n ∈ N .

(ConLoc)

In this case, the binary variable ymn indicates, whether the flow m is allocated to the
new facility xn, i.e.

ymn =

{

1, if flow m is assigned to connection facility n,

0, otherwise.

The side constraint
∑N

n=1 ymn = 1 in Problem (ConLoc) ensures, that each flow m ∈
M is assigned to a connection location exactly once. Hence, the set of all feasible
assignments Y ∈ {0, 1}M×N is given by

Y =

{

Y ∈ {0, 1}M×N :
N∑

n=1

ymn = 1 ∀m ∈M
}

.

An illustrative example of Problem (ConLoc) can be found in Figure 13.1. In Bischoff
[20] it is shown that Problem (ConLoc) is NP-hard to solve in general. However, due
to the discrete structure of the decision variable Y ∈ Y , the given optimization problem
can theoretically be solved by a total enumeration of all feasible assignments contained
in Y . Unfortunately, the cardinality of Y , i.e. the number of feasible assignments, is
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bounded from below by the number of ways that a set of M elements can be partitioned
into N non-empty subset (cf., e.g., Cooper [40] and Bischoff [20]). This number is also
known as the Stirling number of the second kind and is given by

S(M, N) =
1

N !

N∑

n=0

(−1)n

(
N

n

)

(N − n)M .

As S(M, N) grows exponentially with increasing problem size, a total enumeration
approach is limited to very small instances of the given problem. However, S(M, N)
provides an upper bound on the number of local optima of Problem (ConLoc) if it is as-
sumed that for each given allocation vector the resulting location problem has a unique
optimal solution. Otherwise, an infinite number of local optima to Problem (ConLoc)
may exist.
In the remainder of this chapter, we consider Euclidian distances only. That is, for
a = (a1, a2) ∈ A and x = (x1, x2) ∈ X , let the distance function d in Problem (ConLoc)
be given by

d2(a, x) =
√

(a1 − x1)2 + (a2 − x2)2.

Huang et al. [107] showed that in the case of Euclidian distances, any optimal solu-
tion of Problem (ConLoc) satisfies the nice property that all connection locations are
located within the convex hull of the existing facilities.
If the flow m ∈M is assigned to a connection facility located at x ∈ R2, it incurs the
cost

cm(x) = wm (d2(asm
, x) + d2(x, atm)) . (13.1)

If the considered connection facility corresponds to facility n ∈ N, we refer to its special
costs by cmn = cm(xn) in the following. Note that if m is assigned to n, cmn forms one
of the m non-zero summands in the objective function of Problem (ConLoc).
We further recall the definition of a cone in Rn (cf., e.g., Jahn [110] and Rockafellar
[183]). Let C ⊆ Rn denote a non-empty subset of Rl, where n ∈ N. Then, the set C
is called a cone if for all x ∈ C and λ ≥ 0, also λx ∈ C holds true. For S ⊆ Rn,

cone(S) = {λs : λ ≥ 0 and s ∈ S}

is called the cone generated by S.

13.2 Biconvexity and the Location-Allocation

Algorithm

In this section we show that the objective function

f(X, Y ) =

M∑

m=1

N∑

n=1

ymnwm (d2(asm
, xn) + d2(xn, atm)) =

M∑

m=1

N∑

n=1

ymncm(xn)

of Problem (ConLoc) is biconvex (cf. Chapter 11), i.e. that the two functions f(X̄, Y )
and f(X, Ȳ ) are both convex for fixed X̄ ∈ R2 × RN and fixed Ȳ ∈ {0, 1}M×N ,
respectively. This implies that local search techniques like alternate convex search (cf.
Section 11.3) as a special case of the more general alternate block search method (cf.
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Section 3.3) can be applied to derive partial optima (cf. Definition 11.42) for the given
problem. In this context, (X⋆, Y ⋆) corresponds to a partial optimum if f(X⋆, Y ⋆) ≤
f(X, Y ⋆) for all X ∈ R2 × RN and f(X⋆, Y ⋆) ≤ f(X⋆, Y ) for all Y ∈ {0, 1}M×N . We
mainly follow the ideas presented in Bischoff [20] in the following.

13.2.1 Fixed Location Variables

We start with the case that a fixed location X̄ ∈ R2 × RN for the N connection
facilities is prescribed. Given the vector X̄, the costs that would arise if flow m ∈ M
was assigned to facility n ∈ N can easily be calculated by Equation (13.1) for all flows
contained in M. Let c̄mn denote the resulting costs in the following. Using the costs
c̄mn, Problem (ConLoc) simplifies to

min
M∑

m=1

N∑

n=1

ymnc̄mn

s.t.
N∑

n=1

ymn = 1, ∀m ∈ M

ymn ∈ {0, 1}, ∀m ∈ M ∀n ∈ N .

(AP)

Since each flow m has to be assigned to exactly one connection facility (due to the
constraint

∑N

n=1 ymn = 1), we conclude that for fixed m ∈M and Y ∈ Y
N∑

n=1

ymnc̄mn ≥ min{c̄mn : n ∈ N} (13.2)

is satisfied. Moreover, equality in (13.2) is obtained, whenever ymn⋆ = 1, where n⋆ ∈ N
corresponds to the index such that cmn⋆ = min{c̄mn : n ∈ N}. As the objective
function of Problem (AP) decomposes into M independent blocks of N non-negative
summands of the same type as the left hand side of (13.2), the inequality can be
applied to each block separately, i.e., we have that

M∑

m=1

N∑

n=1

ymnc̄mn ≥
M∑

m=1

min{c̄mn : n ∈ N} (13.3)

for all feasible assignments Y ∈ Y . Hence, the right hand side value of (13.3) provides
a lower bound on the optimal objective of Problem (AP). Considering Y ′ ∈ {0, 1}M×N ,
where

y′
mn⋆ =

{

1, if c̄mn⋆ ≤ c̄mn ∀n ∈ N ∧ y′
m1 = . . . = y′

m(n⋆−1) = 0,

0, otherwise,
(13.4)

for fixed m ∈M, further implies that

M∑

m=1

N∑

n=1

y′
mnc̄mn =

M∑

m=1

min{c̄mn : n ∈ N} ≥ min

{
M∑

m=1

N∑

n=1

ymnc̄mn, Y ∈ Y
}

.

As in addition, Y ′ is feasible for Problem (AP), it follows that Y ′ provides an optimal
solution of the considered assignment problem. Note that if the minimum costs for
fixed m ∈ M are not unique in the definition of Y ′, the flow can be assigned to the
facility with the minimum index n such that c̄mn is optimal for m. We summarize the
obtained results in the following theorem.
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Theorem 13.1 ([20]) Let a fixed location X̄ ∈ R2×RN of the N connection facilities
be given. Then, Problem (ConLoc) simplifies to the linear assignment problem (AP)
with optimal solution Y ′ as defined in (13.4). Its optimal objective value is given by
the right hand side value of (13.3).

Moreover as shown in Bischoff [20], the optimal objective value of Problem (AP)
additionally coincides with the optimal objective value of its linear relaxation. We
further make use of this result in Section 13.3 of this chapter. Note that in this case,
the binary constraints ymn ∈ {0, 1} are relaxed to 0 ≤ ymn ≤ 1 for all m ∈ M and
n ∈ N . Hence, Problem (AP) could be solved in fact by means of a standard LP-solver.

13.2.2 Fixed Allocation Variables

In the following we consider the case that the assignments of the M flows to the N
connection facilities are given and fixed. For a source facility i ∈ L, a target facility
j ∈ L and a connection n ∈ N we define

w̄ijn :=

{

wm, if there exists m ∈M : i = sm, j = tm, ȳmn = 1,

0 , otherwise.

Using this notation, Problem (ConLoc) can be rewritten as

min
N∑

n=1

(
L∑

i=1

L∑

j=1

w̄ijn (d2(ai, xn) + d2(xn, aj))

)

s.t. xn ∈ R2, ∀n ∈ N .

(13.5)

Since each summand of the objective function only depends on a fixed facility n ∈ N,
Problem (13.5) decomposes into a sequence of N independent unrestricted single-
facility location problems. In this case, each connection facility n ∈ N has to be
located such that the sum of costs associated to this facility is minimized. Before we
discuss how such problems can be solved efficiently in practice, we further conclude
by the symmetry of the Euclidian distance that for fixed facility n ∈ N we have that

L∑

i=1

L∑

j=1

w̄ijn(d2(ai, xn) + d2(xn, aj)) =

L∑

i=1

L∑

j=1

w̄ijnd2(ai, xn) +

L∑

i=1

L∑

j=1

w̄ijnd2(aj, xn)

=

L∑

i=1

L∑

j=1

w̄ijnd2(ai, xn) +

L∑

j=1

L∑

i=1

w̄jind2(ai, xn)

=
L∑

i=1

(
L∑

j=1

(w̄ijn + w̄jin)

)

d2(ai, xn)

=
L∑

i=1

w̄ind2(ai, xn),

where w̄in =
∑L

j=1(w̄ijn + w̄jin) equals the sum of flows associated with the source or
target facility i ∈ L. Hence, we have that

f(X, Ȳ ) =

N∑

n=1

L∑

i=1

w̄ind2(ai, xn).
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Algorithm 13.1 Weiszfeld Algorithm for the Weber Problem in R2

Input: Existing facilities a1, . . . , al and corresponding positive weights w1, . . . , wl.
Output: Approximate optimal location of the new facility x.
1: for l = 1 to L do
2: if Facility al satisfies Inequality (13.8) then
3: return al.
4: end if
5: end for
6: Choose a starting solution x0 ∈ R2.
7: Set the iteration counter i = 0.
8: while no stopping criterion is satisfied do
9: Set i = i + 1.

10: Set xi
1 =

(
∑L

l=1 wl

al1

d2(al, xi−1)

)(
∑L

l=1 wl

1

d2(al, xi−1)

)−1

.

11: Set xi
2 =

(
∑L

l=1 wl

al2

d2(al, xi−1)

)(
∑L

l=1 wl

1

d2(al, xi−1)

)−1

.

12: end while
13: return xi.

Since the Euclidian distance function d2 is convex, f(·, Ȳ ) : R2 × RN → R is the sum
of convex functions for each fixed assignment vector Ȳ ∈ Y and thus convex itself.
Furthermore, we conclude that

min f(X, Ȳ ) =

N∑

n=1

min
xn∈R2

{
L∑

i=1

w̄ind2(ai, xn)

}

. (13.6)

We have proven:

Theorem 13.2 ([20]) Let a fixed allocation vector Ȳ ∈ Y be given. Then, the given
Problem (ConLoc) simplifies to a sequence of N independent and convex single-facility
problems, where an optimal solution is given by the right hand side of (13.6).

In the remainder of this subsection, we shortly discuss how single-facility location
problems of the general form

min
x∈R2

g(x) :=
L∑

l=1

wld2(al, x), (13.7)

can be solved, assuming that wl > 0 holds true for all l ∈ {1, . . . , L}. Note that
Problem (13.7) is a well-known problem in location theory. It is also denoted as
Fermat-Weber problem and was introduced by Weber [212] in 1909. For a historical
review on Weber problems, we refer to Wesolowski [216].
Assuming that x = (x1, x2) ∈ R2 and a = (al1, al2) ∈ R2 for all l ∈ {1, . . . , L}, the
partial derivatives of g are given by

∂g(x)

∂xi

=

L∑

l=1

wl ·
xi − ali

d2(al, x)
, i ∈ {1, 2},



230 13. The Connection Location-Allocation Problem

Algorithm 13.2 Alternate Location-Allocation Algorithm for Problem (ConLoc)

Input: An instance of Problem (ConLoc).
Output: Location X of the connection facilities and corresponding assignment vector

Y .
1: Choose initial assignment vector Ȳ ∈ Y .
2: while no stopping criterion is satisfied do
3: Location step for fixed allocation vector Ȳ :

Solve the N single-facility location problems for the fixed allocation vector Ȳ
by applying the Weiszfeld algorithm 13.1 to generate the optimal locations X.

4: Allocation step for fixed locations X̄:
Solve the Assignment Problem (AP) for the fixed locations X̄ to generate the
optimal assignment vector Y .

5: end while
6: return Locations X with corresponding assignment vector Y .

whenever x 6= al for all l ∈ {1, . . . , L}. Since the necessary condition for a local

minimum ∂g(x)
∂xi

= 0 for i = 1, 2 cannot be solved for xi, a fix-point iteration method
is typically applied to approximate the optimal solution of the convex problem with
arbitrary exactness. This method is also known as Weiszfeld algorithm in the literature
and was originally published by Weiszfeld [214] in 1937. Independently, also Cooper
[40], Kuhn and Kuenne [120] as well as Miehle [142] published this solution approach
20 years later. A short outline of the algorithm can be found in Algorithm 13.1.
As the Weber function g is not differentiable in any point al ∈ R2, l = 1, . . . , L, the
existing facilities have to be checked for optimality in addition. Kuhn [119] proved
that the location of the new facility x coincides with the location of an existing facility
aj , j ∈ {1, . . . , L}, if and only if











L∑

l=1

l6=j

wl ·
aj1 − al1

d2(al, aj)






2

+






L∑

l=1

l6=j

wl ·
aj2 − al2

d2(al, aj)






2




1

2

≤ wj (13.8)

holds true. If this is not the case, a starting solution x0 is chosen and the while-loop of
Algorithm 13.1 is performed, until a prescribed stopping criterion is satisfied. As the
unique optimal solution of the Weber problem for the squared Euclidian distance is
usually relatively close to the optimal solution of Problem (13.7), this location is fre-
quently used as initial solution of Algorithm 13.1. In this case, x0 is given as the center
of gravity of the weighted locations of the existing facilities (cf., e.g., Drezner et al.
[49]). Concerning an appropriate choice for the stopping criterion of Algorithm 13.1, a
maximum number of iterations, a minimum change in the location of the new facility
(‖xi−xi−1‖ ≤ δ) or a minimum decrease in the objective value (|f(xi)− f(xi−1)| ≤ ε)
are used in general. For a survey on acceleration techniques for the Weiszfeld algo-
rithm, we refer to Bischoff [20].

13.2.3 The Location-Allocation Algorithm

Summarizing the results discussed in the last two subsections, we can conclude that
the objective function f of Problem (ConLoc) is indeed biconvex.
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Algorithm 13.3 Multi-Start Version of Algorithm 13.2

Input: An instance of Problem (ConLoc) and a prescribed number I of iterations.
Output: Best local minimum (X̂, Ŷ , f(X̂, Ŷ )) found for the prescribed number of

iterations.
1: Set i = 1, f̂ =∞ and initialize X̂ ∈ R2×N and Ŷ ∈ Y .
2: while i ≤ I do
3: Apply Algorithm 13.2 to determine a local optimal solution (X, Y ).
4: if f(X, Y ) < f̂ then
5: Set (X̂, Ŷ , f̂) = (X, Y, f(X, Y )).
6: end if
7: Set i = i + 1.
8: end while
9: return (X̂, Ŷ , f̂).

Corollary 13.3 The connection location-allocation problem in the plane can be for-
mulated as a biconvex optimization problem given by Problem (ConLoc). For fixed
locations, the problem simplifies to a simple assignment problem, while for fixed allo-
cation variables, the problem reduces to a sum of N single-facility location problems in
the plane.

Due to the biconvex structure of the problem, the alternate convex search strategy
introduced in Section 11.3 can be used to generate local optima of the given problem
in an efficient amount of time. This strategy can be seen as a special case of the
more general alternate block search technique, already described in Section 3.3. In
the context of location theory, this method is also called alternate location-allocation
algorithm in the literature and was initially introduced by Cooper [40] for the facility
location-allocation problem with Euclidian distances. A short outline of the algorithm
can be found in Algorithm 13.2.
Starting from a randomly generated allocation vector Ȳ ∈ Y , the location and the
allocation problems are iteratively solved for fixed Ȳ and X̄, respectively, until a stop-
ping criterion is satisfied. This is for example the case, when the allocation vector of
the last iteration coincides with the vector of the current iteration, since in this case
no further improvement of the objective can be expected in further iterations. Never-
theless, especially for larger problem instances a maximum number of iterations can
be prescribed, and the algorithm terminates, when the maximum number is exceeded.
However, instead of initializing the algorithm with a fixed allocation vector Ȳ , also
randomly generated locations X̄ of the connection facilities can be used. In this case,
the initial locations should preferably be chosen within the convex hull of the existing
facilities, as an optimal solution of Problem (ConLoc) also satisfies this property (cf.
Huang et al. [107]). Furthermore, the order of the location and the allocation step has
to be reversed in Algorithm 13.2.
Since the objective value of Problem (ConLoc) is improved in each iteration of the
algorithm, and the objective function f is bounded from below, the generated sequence
of solutions is guaranteed to converge to a partial optimal solution, i.e. a local minimum
of the problem (cf. also Chapter 11). However, the quality of the calculated local
minimum crucially depends on the initial assignment vector Ȳ or the given locations
X̄. Hence, the alternate location-allocation algorithm can only be seen as a local search



232 13. The Connection Location-Allocation Problem

strategy to solve the given problem. To improve the overall performance, a multi-start
version of Algorithm 13.2 can be applied to derive alternative local optima. The
algorithm returns the best solution found after a prescribed number of runs of the
original location-allocation algorithm. A short outline of this approach can be found
in Algorithm 13.3.
We further remark that Algorithm 13.2 as well as Algorithm 13.3 were used by Bischoff
and Dächert [22] as subroutines for heuristic approaches to solve Problem (ConLoc).
For other solution approaches to solve Problem (ConLoc), like exact branch & bound
techniques, we refer to Bischoff [20].

13.3 The Augmented Location-Allocation

Algorithm

The location-allocation algorithm (cf. Algorithm 13.2) described in the last section
yields an efficient and fast method to find a local optimum of Problem (ConLoc).
However, due to the large number of potential local minima of the given problem, the
quality of the solution that is found by the algorithm strongly depends on the initial
starting solution that is normally chosen at random. Due to the biconvex structure of
the problem, the enhanced alternate convex search strategy suggested in Chapter 12
can be applied to heuristically derive better local optima for the given location problem.
Based on the ideas presented in Chapter 12, we adapt the theoretical background of the
enhanced solution approach to the given problem from location theory in the following.
Furthermore, we provide detailed numerical studies comparing the enhanced search
concept to the original version of the location-allocation algorithm.
From Section 3.3 we recall that our enhanced solution concept is based on the idea
to additionally exploit descent information that is contained in the block of fixed
variables and that is normally disregarded when an alternate block search strategy like
Algorithm 13.2 is applied to solve the given optimization problem. We have shown in
Chapter 12 that for unconstrained subproblems, the norm of the gradient restricted
to the block of fixed variables can be used to represent this descent information, also
called the descent potential (cf. Definition 12.1).
While the original method tends to converge to a local minimum of the problem that is
located in a direct neighborhood of the starting solution, the enhanced version of the
method is capable to avoid a fast convergence to this local minimum, but heuristically
exploit local descent information to determine a potentially better local optimum of the
given problem. However, due to the large number of local minima and the heuristic
nature of the enhanced approach, a convergence to the global optimum of a given
problem instance cannot be guaranteed.
Contrary to the notation used in the previous sections, we write X instead of X̄ and
Y instead of Ȳ in the remainder of this section, whenever the location and allocation
variables are assumed to be fixed, respectively. However, it is always clear from the
context, whether X or Y are fixed or not.
The remainder of this section is organized as follows: In the following two subsections,
we present adapted versions of the definition of the descent potential given in Sec-
tion 12.2 that incorporate the special structure of the connection location-allocation
problem. Based on modified definitions of the descent potential for a fixed location
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vector X and allocation vector Y , we derive three different enhanced variants of the
original location-allocation algorithm (i.e. Algorithm 13.2) in Subsection 13.2. In the
final subsection, we present detailed numerical comparisons between the suggested
enhanced solution methods and (the multi-start version of) Algorithm 13.2.

13.3.1 The Descent Potential for Fixed Location Variables

We start with the definition of the descent potential πX for a fixed given location
vector X ∈ R2 × RN . Unlike the set Y of feasible allocations that is contained in a
compact subset of RM × RN by definition of Problem (ConLoc), the locations of the
N connection facilities are unrestricted. However, as the Euclidian distance is used to
measure the distance between the connection facilities contained in X and the existing
facilities from A, the objective function f of Problem (ConLoc) is not differentiable in
the locations of the existing facilities from A. We take care of this fact in the following.
For X ∈ R2×RN let n ∈ N such that xn = (xn1, xn2) 6= al for all l ∈ L. Furthermore,
let m ∈M. We use Equation (13.1) to state for i ∈ {1, 2} that

∂cm(X)

∂xni

= wm

(
xni − asmi

d2(asm
, xn)

+
xni − atmi

d2(xn, atm)

)

.

This implies that

∂f(X, Y )

∂xni

=

M∑

m=1

ymnwm

(
xni − asmi

d2(asm
, xn)

+
xni − atmi

d2(xn, atm)

)

,

whenever xn 6= al for all l ∈ L. Otherwise, f is not differentiable with respect to xn.
Hence, Definition 12.1 of the descent potential a for fixed location vector X cannot
be directly applied here. However, since f is continuously differentiable in all points
X ∈ R2×RN where none of the components of X coincide with a location of an existing
facility, we disregard these special components of the vector X in the definition of the
descent potential πX in the following. To simplify the notation, we set

ρni(X, Y ) =







∂f(X, Y )

∂xni

, if asm
6= xn 6= atm ∀m ∈M,

0 , otherwise,
(13.9)

and define:

Definition 13.4 Let a feasible solution (X, Y ) of Problem (ConLoc) be given. Then,
the descent potential πX of f with respect to the location vector X is given by

πX(X, Y ) = ‖∇Xf(X, Y )‖ =

(
N∑

n=1

2∑

i=1

(ρni(X, Y ))2

) 1

2

,

where ρni(X, Y ) is defined as in (13.9).

Although the definition of the descent potential with respect to the location vector
X is restricted to the components of X that do not coincide with the location of an
existing facility, we will see in the numerical studies presented in Subsection 13.3.4
that Definition 13.4 is an appropriate definition of the descent potential πX , especially
for larger problem instances.
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13.3.2 The Descent Potential for Fixed Allocation Variables

In this subsection, we discuss two different approaches how the descent potential πY

of f with respect to a fixed allocation vector Y can be defined. Since the coefficients
of Y are binary, a definition of the descent potential based on gradient information
does not seem to be an appropriate choice for this problem at first sight. However,
since there exists a solution of the linear programming relaxation of the problem that
is also optimal for the discrete problem (cf. Bischoff [20]), a gradient-based definition
of the descent potential πY can be derived, at least when relaxed binary constraints
are considered.

We present two different types of definitions in the following: One that is based on
the relaxation of the M individual allocation vectors to the complete interval [0, 1]
in each component, and another that is based on the discrete structure of the given
subproblem.

Let an instance of Problem (ConLoc) be given, and let m ∈ M and n ∈ N . Then,
the partial derivative of f with respect to the continuous allocation component ymn,
is given by

∂f(X, Y )

∂ymn

= wm (d2(asm
, xn) + d2(xn, atm)) = cm(xn) > 0. (13.10)

Hence, for a given allocation vector Y ∈ Y the objective function of the connection
location-allocation Problem can be rewritten as

f(X, Y ) = 〈∇Y f(X, Y ), Y 〉,

where 〈·, ·〉 denotes the standard scalar product in RM×N . In addition to the discrete
definition of the feasible set Y of all allocation vectors, let

Ỹ =

{

Y ∈ [0, 1]M×N :

N∑

n=1

ymn = 1 ∀m ∈ M
}

denote the linear programming relaxation of Y with respect to the binary variables. For

m ∈ M, we further define Ỹm =
{

y ∈ [0, 1]N :
∑N

n=1 ymn = 1
}

and Ym = Ỹm∩{0, 1}N .

Note that the sets Ỹ as well as Ỹ1, . . . , ỸM are convex, polyhedral sets by definition.
Hence, we can use Minkowski’s theorem (cf., e.g. Nemhauser and Wolsey [150]) to
further conclude that

Ỹm =

{

y ∈ RN : y =

N∑

n=1

λnen, λn ≥ 0 ∀n ∈ N ,

N∑

n=1

λn = 1

}

,

where e1, . . . , eN denote the N different unit vectors of RN . Due to the definition of
Ỹ , we have that Ỹ = Ỹ1 × . . .× ỸM . Unlike Subsection 13.3.1, where the locations of
the connection facilities do not have to satisfy further restrictions, a feasible allocation
vector to Problem (ConLoc) must be contained in the set Ỹ that corresponds to a
compact subset of RM × RN . Hence, Equation (12.3) rather than Definition 12.1 has
to be used to define the descent potential πY based on the relaxed set Ỹ .
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Definition 13.5 Let Y ∈ Y be arbitrary, but fixed. Then, the vector V ∈ RM×N is
called a feasible direction in Y if there exists λ̄ such that Y + λV ∈ Ỹ holds true for
all λ ∈ [0, λ̄].

By construction, V ∈ RM×N is a feasible direction in Y if and only if ym + λvm is an
element of Ỹm for all λ ∈ [0, λ̄] and m ∈M, where ym ∈ Ym ⊆ {0, 1}N and vm ∈ RN .

Given a feasible allocation vector Y ∈ Y , a further improvement with respect to
f can only be realized, when V corresponds to a feasible descent direction in Y ,
since otherwise the potential of an infeasible solution would be considered. Due to
the results from Section 12.2, the optimal descent direction for fixed Y is given by
V = −∇Y f(X, Y ) if an unconstrained problem is considered. Unfortunately, we have
that:

Lemma 13.6 Let Y ∈ Y. Then, V = −∇Y f(X, Y ) does not correspond to a feasible
direction in Y .

Proof: For arbitrary λ > 0, let Ȳ = Y −λ∇Y f(X, Y ). For arbitrary but fixed m ∈M,
we have that

N∑

n=1

ȳmn =
N∑

n=1

ymn − λ
N∑

n=1

cm(xn) <
N∑

n=1

ymn = 1,

since cm(xn) > 0 for all n ∈ N . Hence, Ȳ 6∈ Ỹ for all λ > 0. �

Due to Lemma 13.6, the negative gradient of f with respect to Y does not yield a fea-
sible direction for any Y ∈ Y . This shows that Definition 12.1 cannot be used to define
the descent potential πY of f with respect to Y , and we have to use Equation (12.3)
instead. Unfortunately, this implies that an additional optimization problem has to be
solved for all X ∈ R2×RN to derive an appropriate value of πY . However, we show in
the following that due to the linear structure of Problem (ConLoc) with respect to the
allocation variables, the optimal solution of the optimization problem that is induced
by Equation (12.3) can be given explicitly.

Let e1, . . . , eN denote the N different unit vectors of RN , and let m ∈M be arbitrary,
but fixed. By definition of Y ∈ Y , there exists j ∈ N such that ymj = 1, while ymi = 0
for all i ∈ Ij := N \ {j}. Let this index be denoted by jm in the following. Using this
notation, we conclude that ym = ejm

holds true. For m ∈M we further define

Sjm
= (conv{e1 − ejm

, . . . , ejm−1 − ejm
, ejm+1 − ejm

, . . . , eN − ejm
})

and Cm(ejm
) = cone(Sjm

),

where conv{A} denotes the convex hull of a set A ⊆ RN . By construction, ejm
+ Sjm

corresponds to the facet of Ỹm that faces the point ejm
∈ RN . We show:

Theorem 13.7 Let Y ∈ Y and let V ∈ RM×N . Then, V is a feasible direction with
respect to Y if and only if vm ∈ Cm(ejm

) holds true for all m ∈M.

Proof: Let V ∈ RM×N be a feasible direction with respect to Y . Hence, there exists
µ > 0 such that the point Y + µV ∈ Ỹ , i.e. ym + µvm ∈ Ỹm for all m ∈ M. Using
Minkowski’s theorem, we conclude that there exists λ ∈ RN , λn ≥ 0 for all n ∈ N ,
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∑N
n=1 λn = 1, such that ym + µvm =

∑N
n=1 λnen for all m ∈M. Hence, we have that

vm =
1

µ

(
N∑

n=1

λnen − ejm

)

=
1

µ

(
N∑

n=1

λn(en − ejm
)

)

=
∑

n∈Ijm

λn

µ
(en − ejm

) ∈ Cm(ejm
),

since λn

µ
≥ 0 holds true for all n ∈ Ijm

.

Conversely, let vm ∈ Cm(ejm
) for all m ∈ M. For n ∈ Ijm

there exist λn ≥ 0, such
that

vm =
∑

n∈Ijm

λn(en − ejm
) =

∑

n∈Ijm

λnen −
∑

n∈Ijm

λn · ym =
∑

n∈Ijm

λnen − τmym, (13.11)

where τm =
∑

n∈Ijm
λn. Note that if τm ≤ 1, Equation (13.11) automatically implies

that ym + vm ∈ Ỹm. Hence, by convexity of Ỹm, this also holds true for all ym + µ̃vm,
where µ̃ ∈ [0, 1].
We define

µ = min

{

1,
1

τ1
, . . . ,

1

τM

}

.

If µ = 1, ym + µvm ∈ Ỹm for all m ∈ M, since τm ≤ 1 holds true for all m ∈ M.
Otherwise, there exists m⋆ ∈M such that µ = τ−1

m⋆ . For fixed m ∈M we have that

µvm =
∑

n∈Ijm

λn

τm⋆

(en − ejm
) =

∑

n∈Ijm

λ̃nen −
τm

τm⋆

· ym,

where

λ̃n =
λn

τm⋆

≤ λn

τm

holds true for all n ∈ Ijm
. But this implies that

∑

n∈Ijm

λ̃n =
∑

n∈Ijm

λn

τm⋆

=
τm

τm⋆

≤ 1.

Hence, ym + µvm ∈ Ỹm holds true for all m ∈M. Since Ỹm is convex for all m ∈M,
this implies that Y + µ̃V ∈ Ỹ for all µ̃ ∈ [0, µ]. �

To derive a feasible descent direction V for fixed Y ∈ Y with a maximum potential, we
search for all feasible directions in Y that minimize the linear objective 〈∇Y f(X, Y ), V 〉
according to Equation (12.3). To guarantee feasibility of the resulting solution, the
components vm of V may no longer be arbitrary elements of the cone Cm(ejm

) for
m ∈ M, but they have to be contained within the set Ỹm−{ym} = {y−ym : y ∈ Ỹm}.
Hence, due to the linearity of f with respect to Y we are interested in the optimal
solution of the following linear optimization problem:

min 〈∇Y f(X, Y ), V 〉
s.t. V ∈ Ỹ − {Y }.

(13.12)
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Since the set Ỹ−{Y } is a non-empty, compact polyhedron, Problem (13.12) is feasible.
Furthermore, as the objective function is linear, this problem attains at least one global
minimum at a boundary point of the feasible set, due to the fundamental theorem of
linear programming (cf., e.g., Hamacher and Klamroth [92]). We give an alternative
proof in the following. Since the M components of the scalar product are independent,
we note that

min{〈∇Y f(X, Y ), V 〉 :V ∈ Ỹ − {Y }} =

=

M∑

m=1

min{〈∇Ym
f(X, Y ), vm〉 : vm ∈ Ỹm − {ym}},

where ∇Ym
f(X, Y ) denotes the restriction of ∇Y f(X, Y ) to the components of ym.

Hence, we have decomposed Problem (13.12), into M linear problems of the form

min 〈∇Ym
f(X, Y ), vm〉

s.t. vm ∈ Ỹm − {ym}.
(13.13)

To further simplify the notation, we set rmn := en − ejm
for fixed m ∈ M, all n ∈ N

and given Y ∈ Y .

Theorem 13.8 For given m ∈ M, the optimal solution of Problem (13.13) is given
by

r⋆
m = min

n∈N
{〈∇Ym

f(X, Y ), rmn〉}. (13.14)

Proof: Let vm ∈ Ỹm − {ym}, i.e. there exists λn ≥ 0, n ∈ Ijm
, where

∑

n∈Ijm
λn ≤ 1

such that vm =
∑

n∈Ijm
λnrmn. Keeping in mind that rmjm

equals the zero vector in

RN , we have that

〈∇Ym
f(X, Y ), vm〉 = 〈∇Ym

f(X, Y ),
∑

n∈Ijm

λnrmn〉 =
∑

n∈Ijm

λn 〈∇Ym
f(X, Y ), rmn〉

≥ min







∑

n∈Ijm

λn · min
n∈Ijm

〈∇Ym
f(X, Y ), rmn〉, 0







≥ min

{

min
n∈Ijm

〈∇Ym
f(X, Y ), rmn〉, 0

}

= min

{

min
n∈Ijm

〈∇Ym
f(X, Y ), rmn〉, 〈∇Ym

f(X, Y ), rmjm
〉
}

= r⋆
m.

This completes the proof. �

Theorem 13.8 shows that each optimal solution of Problem (13.13) corresponds to an
extreme-point of the feasible set Ỹm − {ym}. Given m ∈ M and n ∈ N , we further
conclude from (13.10) that

〈∇Ym
f(X, Y ), rmn〉 = 〈∇Ym

f(X, Y ), en〉 − 〈∇Ym
f(X, Y ), ejm

〉 = cm(xn)− cm(xjm
).

Hence, r⋆
m = min{cm(xn) − cm(xjm

) : n ∈ N}. We summarize our results in the
following corollary.
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Corollary 13.9 Let Y ∈ Y. Then, the optimal solution of Problem (13.12) corre-
sponds to an extreme-point of the feasible set Ỹ − {Y }. Its optimal objective value is
given by

∑

m∈M

min
n∈N
{cm(xn)− cm(xjm

)} .

Based on Equation (12.3), we finally define the descent potential for a fixed allocation
vector with respect to the relaxation of the feasible set Y to Ỹ . Let Y ∈ Y be given
and let V ∈ RM×N . Due to the linearity of f with respect to the allocation variables,
we have that

f(X, Y + V ) = f(X, Y ) + 〈∇Y f(X, Y ), V 〉.
Hence, the maximum descent potential of f for fixed Y in a feasible direction is given
by the optimal solution of Problem (13.12). According to the result of Corollary 13.9,
we define:

Definition 13.10 Let a feasible solution (X, Y ) of Problem (ConLoc) be given. Then,
the descent potential πc

Y of f with respect to the allocation vector Y is given by

πc
Y (X, Y ) =

∣
∣
∣
∣
∣

∑

m∈M

min
n∈N
{cm(xn)− cm(xjm

)}
∣
∣
∣
∣
∣
.

Note that if the allocation vector Y corresponds to an optimal solution, resulting from
the allocation step in Algorithm 13.2 for fixed X ∈ R2 × RN , we obviously have that
πc

Y (X, Y ) = 0, according to the results from Section 13.2.
Besides the above stated definition for the descent potential, we further consider a
definition that is based on counting the number of changes in the allocation vector
in two different feasible solutions of the problem. If the allocation vectors of two
subsequent iterations of Algorithm 13.2 differ strongly, a noticeable improvement of
the objective value can be expected, due to the fact that many allocations have changed
after the last location step. Hence, measuring the number of changes in the allocation
vector yields a promising approach to estimate descent information.

Definition 13.11 Let (X, Y ) denote a feasible solution of Problem (ConLoc), and let
Ȳ ∈ Y. Then, the descent potential πd

Y of the point (X, Y ) with respect to the allocation
vector Ȳ is given by

πd
Y (X, Y )[Ȳ ] =

1

2

M∑

m=1

N∑

n=1

|ymn − ȳnm|.

In contrast to Definition 13.10 the descent potential in the above definition is indepen-
dent of the improvement of the objective values, but measures the differences among
variables only. For the practical application of Definition 13.11 to the connection
location-allocation problem, we refer to the next subsection.

13.3.3 The Enhanced Versions of Algorithm 13.2

Due to the results from Section 13.2, the location as well as the allocation step of Al-
gorithm 13.2 can be implemented very efficiently. In contrast, applying the enhanced
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alternate convex search strategy developed in Chapter 12 to the connection location-
allocation problem would require to solve a large number of non-linear, mixed-integer
optimization problems in each step of Algorithm 12.1 to derive a subset of (weakly-
)efficient points for the biobjective optimization problems (12.5) and (12.6). Hence,
solving these biobjective problems for the complete feasible set of the individual sub-
problems would be too time-consuming compared to the efficiency of Algorithm 13.2.
In the following, we only concentrate on smaller subsets contained in the feasible sets
of these individual subproblems, to incorporate the idea of the descent potential.
During the location step, we focus on the feasible points that are automatically gener-
ated during the solution process of the M individual Weiszfeld algorithms. The feasible
set of the biobjective problem is restricted to the set of location vectors that result
from the intermediate iterations of these M algorithms. For the allocation step, the
feasible set of the biobjective problem involving πX is restricted to the set of all assign-
ment vectors that correspond to permutations of the changed assignments resulting
from the assignment vectors of the last and the current iteration. In more detail, our
considered modified versions of the location and allocation steps that incorporate the
idea of the descent potential are given as follows:

Modified location step using πc
Y : Let a fixed allocation vector Y ∈ Y be given.

The Weiszfeld Algorithm 13.1 is used to solve the induced M location subprob-
lems. After each iteration of the M individual Weiszfeld algorithms the descent
potential πc

Y of the intermediate locations xn for n ∈ N is calculated. The
location step is stopped when either the original stopping criteria for all M in-
dividual Weiszfeld algorithms are satisfied, or a decrease of πc

Y with respect to
the preceding iterations of the individual Weiszfeld algorithms is detected.

Modified location step using πd
Y : Let a fixed allocation vector Y ∈ Y be given.

The Weiszfeld Algorithm 13.1 is used to solve the induced M location subprob-
lems. After each iteration of the M individual algorithms, the optimal allocations
for the intermediate locations xn (n ∈ N ) are calculated. Then, πd

Y is used to
determine the descent potential of these intermediate solutions. The location
step is stopped, when either the original stopping criteria for all M individ-
ual Weiszfeld algorithms are satisfied, or a decrease in πd

Y with respect to the
preceding iteration is detected.

Modified allocation step using πX: Let a fixed location vector X ∈ R2 × RN be
given, and let Y 1 ∈ Y denote the assignment vector of the preceding iteration.
The original allocation step is used to determine an optimal assignment Y 2

for fixed X. Then, the number of changed assignments is determined. The
descent potential πX is calculated for all assignment vectors that correspond to
permutations of the changed assignments in the assignment vectors Y 1 and Y 2.
The assignment vector with the maximum descent potential πX is chosen as final
vector returned by the modified allocation step.

In the following, we relate the solutions obtained by applying one of the above described
modified location and allocation steps to the efficient solutions of the corresponding
biobjective optimization problems (12.5) and (12.6). According to the descriptions
given above, the modified location step is stopped, whenever a decrease in the partic-
ular descent potential is detected compared to the previous iteration. If it is assumed
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that the objective value of f with respect to X is improved in each call of the Weiszfeld
algorithms, the chosen solution X normally corresponds to an efficient solution of the
biobjective problem, restricted to the points calculated by the M individual Weiszfeld
algorithms for the different location problems. However, if the modified location step
is stopped because a decrease of the descent potential is detected, there still might
exist solutions that would be calculated in future iterations of the original method,
that could lead to an improved descent potential, and hence could dominate the chosen
solution. However, due to performance reasons for the enhanced solution approach,
we do not consider this possibility in our modified location step.
For the modified allocation step, we remark that the feasible set of the biobjective
subproblem is given by the set of all assignments from Y that correspond to an indi-
vidual exchange of assignments given by the vectors Y 1 and Y 2. As the number of
changes in the two assignment vectors is given by

τ =
1

2

M∑

m=1

N∑

n=1

|y1
mn − y2

mn|,

the cardinality of the feasible set is given by 2τ . All these 2τ permutations are tested
during the modified allocation step and the assignment that results in the highest de-
scent potential is used as new assignment vector. Hence, the lexicographically optimal
assignment with respect to πX that is contained in the restricted feasible set of the
biobjective subproblem is chosen for the next iteration.
In the remainder of this chapter, we use the notion of the augmented location-allocation
algorithm, whenever one of the two steps of the original alternate location-allocation
algorithm is replaced by the modified location and/or allocation step described above.
An algorithmic description of this algorithm can easily be derived from the one of
Algorithm 12.1 given in Chapter 12. Hence, we omit a detailed outline here. As in the
original version of the alternate location-allocation algorithm, a maximum number of
iterations should be prescribed to guarantee the termination of the algorithm. If the
maximum number of iterations is reached, the original version of the algorithm is ap-
plied to the returned solution, to guarantee that a local optimum of Problem (ConLoc)
is found.
However, our numerical studies show that for the considered instances the augmented
location-allocation algorithm terminates before the maximum number of iterations
is reached, when the termination criteria of the two different subproblems of Algo-
rithm 13.2 are also applied to the modified steps of the enhanced version of the algo-
rithm. One reason for this might be seen in the strongly restricted feasible sets of the
individual biobjective subproblems. For example, if πd

Y is used to calculate the de-
scent potential in the modified location step, the allocation vectors that are calculated
for the intermediate solutions of the M individual Weiszfeld algorithms may coincide
in each iteration. Hence, the solution that is returned by the modified location step
equals the solution that is obtained, when the descent potential πd

Y is not considered.

13.3.4 Numerical Results

We present detailed numerical comparisons between the alternate location-allocation
algorithm (cf. Algorithm 13.2) and the different variants of the augmented location-
allocation algorithm in the following, where the aims of our numerical studies are
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Symbol Alternate Location-Allocation Algorithm 13.2 with . . .

(LA) original location and allocation step.

(Lc
YA) modified location step applying descent potential πc

Y .

(Ld
YA) modified location step applying descent potential πd

Y .

(LAX) modified allocation step applying descent potential πX .

(Ld
YAX) modified loc. and alloc. step applying descent potential πd

Y and πX .

Table 13.1: Notation used for the algorithms used in Subsection 13.3.4.

twofold. In the first part of this subsection, Algorithm 13.2 is compared to four
enhanced variants of the original algorithm that make use of the modified location
and allocation steps defined in Subsection 13.3.3. Due to the additional CPU-time
that has to be spent to incorporate the idea of the descent potential in the several
variants of these algorithms, we further compare the solutions that are returned by
the different approaches within a fixed prescribed amount of time, in the second part
of this subsection.

To simplify the notation for the individual algorithms, we use the shortcuts that are
defined in Table 13.1. The numerical setups as well as detailed numerical results of
our study can be found in Appendix B. A summary of the main results concerning
the comparisons between the different algorithms is additionally listed in Table 13.2.
We mainly focus on the evaluation of the obtained results in the remainder of this
subsection.

We start with a comparison of Algorithm (LA) to its enhanced versions with modified
location step (cf. Tables B.3 to B.6 in Appendix B). Having a closer look at Table B.3
we conclude that Algorithm (Lc

YA) does not yield superior results to Algorithm (LA).
While Algorithm (Lc

YA) found a better local optimum for 670 test instances, the
original algorithm converged for 707 instances to a better local optimal solution, based
on the same initial solution for both algorithms (cf. also Table 13.2). Furthermore,
this result seems to be independent from the considered size of the test problems.
Concerning the CPU time (cf. Table B.4), Algorithm (LA) ran much faster than its
enhanced counterpart especially for larger problem instances, due to the numerous
additional calculations that have to be performed to evaluate the descent potential for
larger problem sizes.

The situation changes, when the discrete version πd
Y from Definition 13.11 is used to

measure the descent potential in the modified location step. Table B.5 shows that the
original algorithm was outperformed by Algorithm (Ld

YA), especially when problem
sizes larger than 19 were considered (cf. Table B.1 for the definition of the problem
sizes). From Table B.6 we conclude that the CPU time spent by Algorithm (Ld

YA)
did not increase that much as compared to Algorithm (Lc

YA). While for the latter,
the CPU time was larger by a factor of 35 compared to the CPU time used for the
original algorithm, this factor did not exceed a value of 6.3 for Algorithm (Ld

YA).
The reason for this can be seen in the fact that if the algorithm has nearly converged
to a local minimum in the allocation step, the allocation vectors that are calculated
for the intermediate solutions resulting from the individual iterations of the Weiszfeld
algorithms may coincide throughout the iterations. This results in a faster convergence
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Algorithm (LA)

Augmented Algorithms + − =

Algorithm (Lc
YA) 670 707 273

Algorithm (Ld
YA) 777 629 244

Algorithm (LAX) 845 761 44

Algorithm (Ld
YAX) 862 746 42

Best of (Ld
YA), (LAX), (Ld

YAX) 1232 248 170

Table 13.2: Summary of the numerical results from Appendix B. In each row the specific
algorithm is compared to Algorithm (LA) after 1650 runs of the involved algorithms, always
initialized with the same starting solutions.

of the enhanced algorithm for πd
Y .

Tables B.7 and B.8 compare Algorithm (LA) to its enhanced version with modified
allocation step. It can be seen that in more than 80 cases a better objective value
was obtained, when the enhanced version (LAX) was applied (cf. also Table 13.2).
This is especially the case for larger problem sizes, while the original version of the
algorithm was clearly superior, when only a few new connections have to be located in
the plane. Concerning the CPU time, Algorithm (LAX) was much slower compared to
Algorithm (LA), especially for larger problem sizes. Since the feasible set of the biob-
jective problem is given as the set of all possible permutations of changes contained in
two different allocation vectors, many additional calculations have to be performed to
evaluate the involved gradient information during the course of the modified allocation
step.

Finally, Tables B.9 and B.10 show the comparison between Algorithm (LA) and the
augmented location-allocation algorithm with modified location and allocation step,
i.e. Algorithm (Ld

YAX). Due to the numerical results from Tables B.3 to B.6, only
the descent potential πd

Y from Definition 13.11 was used during the location steps of
the enhanced version of the algorithm. The obtained results nearly coincide with the
results for Algorithm (LAX). While the original algorithm was better for smaller
instance sizes, it was clearly outperformed by the enhanced version for problem sizes
larger than 20. The CPU time of the Algorithm (Ld

YAX) is mainly influenced by the
modified allocation step. At maximum, the average time was longer by a factor of 100
as compared to the original version of the algorithm. However, the enhanced version
found a better local optimum in 116 cases.

Comparing Algorithm (Ld
YA) to Algorithm (LAX), we conclude from Table B.11 that

none of the two versions outperformed the other. Both algorithms found a better
optimal solution for more than 800 instances. As in the comparisons stated above,
Algorithm (LAX) seems to perform better for larger problem instances.

Table B.12 compares the best objective value obtained from the three enhanced ver-
sions of Algorithm 13.2 to the objective value that is obtained for Algorithm (LA),
based on the same starting solution for all four algorithms (cf. also Table 13.2). The
table shows that in almost 75% of all cases, at least one of the three enhanced versions
found a better local optimal solution than the original method. Algorithm (LA) was
better for only 15% of the analyzed instances.
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In Table B.13, the best objective values that were obtained, when all four algorithms
had been started with the same initial solutions, are related to the algorithms that
returned these specific objective values. It can be seen that Algorithm (LA) is outper-
formed by all three enhanced versions. Furthermore, Algorithm (Ld

YAX) seems to be
slightly better than the enhanced versions, where only one of the two modified steps
was used, since it found the best local minimum in over 30% of all cases. Once more,
this especially is the case for larger problem sizes.
The quality of the calculated local minima with respect to the used CPU time is
investigated in Table B.14, where the multi-start version of Algorithm (LA) (cf. Al-
gorithm 13.3) is compared to Algorithm (Ld

YAX) for problem sizes larger than 14 (cf.
Table B.1). The enhanced version was initialized with only 10 solutions and its CPU
time to solve these 10 problems was measured. Then Algorithm 13.3 was used to re-
peatedly solve the given instance until the CPU time of the enhanced version had been
exceeded. From Table B.14 we see that this time-based comparison of the algorithms
resulted in at maximum nearly 1000 additional restarts of Algorithm (LA) depending
on the given problem size. Furthermore, it can be concluded that Algorithm (LA)
performs much better than Algorithm (Ld

YAX), when the CPU time is considered as
additional criterion. However, the enhanced version still found a better local optimal
solution for some problem instances although Algorithm (LA) is restarted with up to
30 times more initial solutions.

Summarizing the numerical results stated in this subsection, we conclude that the
proposed biobjective approach based on measuring the descent potential contained
in the fixed set of variables can be seen as an alternative solution concept for Prob-
lem (ConLoc), when an alternate convex search strategy is used to solve the problem.
While the augmented location-allocation Algorithm (Lc

YA) was clearly outperformed
by Algorithm (LA), applying the descent potential πd

Y from Definition 13.11 clearly
improved the performance of the enhanced solution approach. The same observation
holds true, when πX from Definition 13.4 was used to measure the descent potential
in the modified allocation step. The combination of the two modified steps in Algo-
rithm (Ld

YAX) additionally improved the objective value of the resulting local optimal
solution.
However, the numerical tests show that for all four variants of the augmented location-
allocation algorithm it seems to be too restrictive to focus only on the points that are
calculated during the individual iterations of the original method. This especially
holds true, when πc

Y is used to measure the descent potential for fixed allocation
variables. Although the original method was outperformed for larger problem sizes,
Algorithm (LA) seems to be superior especially for smaller instances of the considered
problem.
In contrast, Table B.13 show that in most cases at least one of the three enhanced
search strategies outperformed the original version of the algorithm, when all four
versions were initialized with the same starting solution, especially when larger prob-
lem sizes were considered. As the number of local minima of Problem (ConLoc) is
expected to grow exponentially with the problem size (assuming that all solutions in
the individual location steps are unique), considering only 10 different starting so-
lutions for Algorithm (LA) seems to be insufficient to derive good local optima for
Problem (ConLoc) in general. In this case, the enhanced versions seem to be supe-
rior. However, our numerical studies also show that it is not evident in advance which
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modified version of the algorithm should be used to improve the objective value of the
resulting local optimum compared to Algorithm (LA).

Furthermore, due to the additional amount of calculations during the course of the
modified steps of Algorithm (LA), the original algorithm clearly outperforms its en-
hanced versions with respect to the CPU time spent to solve the problem. Taking this
as additional performance criterion to rate the four algorithms, we have seen that the
multi-start version of the original location-allocation algorithm (cf. Algorithm 13.3)
may converge to a better local optimum of Problem (ConLoc) in many more cases as
compared to the enhanced versions of the original algorithm.

We conclude that if Problem (ConLoc) has to be solved for a prescribed set of ini-
tial solutions, one of the modified versions of the original alternate location-allocation
algorithm should be used to solve Problem (ConLoc), especially when larger prob-
lem instances are considered, and the CPU time that is spent to solve the problem
is not of further interest. In all these cases, the augmented location-allocation algo-
rithm with modified location and allocation step, i.e. Algorithm (Ld

YAX) seems to
be the favorable choice. However, if the calculation of a good local optimum of Prob-
lem (ConLoc) within a prescribed amount of time is of interest, the multi-start version
of Algorithm (LA) should be used instead.

13.4 Conclusions and Further Ideas

In this chapter we discussed the connection location-allocation problem in the plane.
We showed that the problem can be formulated as a biconvex optimization problem
involving the set of location and allocation variables, respectively. If the locations of
the connections are fixed in the R2-plane, the optimization problem simplifies to a
simple assignment problem, while for prescribed allocations a fixed number of single-
facility location problems has to be solved. This can be done efficiently by means
of the Weiszfeld algorithm applied to the individual single-facility location problems.
Hence, the alternate convex search strategy described in Chapter 11 yields an efficient
way to derive local minima for the given problem from location theory.

However, since the local optimal solution that is obtained by applying the alternate
location-allocation algorithm strongly depends on the given initial solution, we applied
the enhanced alternate convex search strategy suggested in Chapter 12 of this work
to try to heuristically improve the quality of the calculated local minima. Due to the
mixed-integer structure of the given problem, we adapted the general definition of the
descent potential to fit the given problem.

We presented detailed numerical comparisons between the alternate location-allocation
algorithm and the different versions of the augmented location-allocation algorithm
developed in this chapter. We saw that in most cases, at least one of the modified
versions of the algorithm is capable to improve the objective value of the resulting
local minimum compared to the original version of the algorithm. However, due to
the additional numerical effort to incorporate the idea of the descent potential in
the modified location and allocation step, respectively, the multi-start version of the
alternate location-allocation algorithm seems to be more than competitive compared
to the multi-start version of the enhanced methods, especially when the main focus lies
on the spent CPU time. However, especially for larger problem sizes, the augmented
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location-allocation algorithm with modified location and allocation step outperforms
the original method with respect to the objective value of the resulting local optimal
solution.
For further fields of research, the application of the enhanced alternate convex search
strategy to other location-allocation problems from location theory can be of interest.
However, our numerical studies suggest that the application of the enhanced version
of the general location-allocation algorithm should be limited to problems with a large
number of local minima. Otherwise, a multi-start version of the original algorithm
or other meta-heuristic approaches seems to be more favorable. In this context, the
enhanced versions of the location-allocation algorithm for the connection location-
allocation problem that were presented in this chapter could additionally be compared
to the meta-heuristics proposed by Bischoff and Dächert [22].
Due to the biconvex structure of the connection location-allocation problem, also the
application of the global optimization algorithm (cf. Section 11.3.3) can be of interest to
derive the global optimum of the given problem. The main drawback of this approach
can be seen in the large number of relaxed dual subproblems that have to be solved
for every possible combination of bounds in the set of connected variables in each
iteration of this algorithm. Mathematical investigations show that this set can be
identified with the set of feasible allocation vectors of the problem that makes the
direct application of this approach impractical in practice. However, a branch & bound
procedure as suggested in Floudas [64] for the general global optimization algorithm
could be investigated, at least for smaller problem instances.





Chapter 14
Conclusions

In this thesis we dealt with multiple objective optimization and its implications for
single objective optimization problems. In more detail, we discussed how ideas and
solution concepts from multiple objective optimization can be used to gain a new in-
sight into special types of single objective optimization problems. In this context, we
focused on combinatorial optimization problems in Part I and on biconvex optimiza-
tion problems in Part II of this work. However, we already showed in the preliminary
Chapter 3 that the theoretical background and ideas of our approaches are not ex-
clusively limited to these two special fields of optimization. Independently from these
ideas, we additionally investigated important structural properties of the efficient set
of multiple objective combinatorial optimization problems.

While traditionally single objective approaches are used to solve multiple objective
problems, we took the reverse approach in this thesis. Given the constrained version
of a single objective problem, we showed that solution concepts from multiple objective
optimization can be used to derive an optimal solution for the single objective problem.
We further showed that this also holds true for single objective problems where the
corresponding objective is given as a weighted sum of different types of objectives.

We summarized the most important exact solution methods for multiple objective
combinatorial problems with sum objectives and generalized the existing results for
combinatorial problems with bottleneck objectives. In addition, we discussed the
notion of a generalized bottleneck objective yielding the kth largest cost coefficient of
a feasible solution. We showed that the resulting k-max optimization problem can
be solved within a polynomial amount of time, whenever an associated auxiliary sum
problem with binary costs satisfies this property.

We additionally used the presented solution approach for the single objective case to
derive an efficient algorithm for the multiple objective k-max optimization problem
with an additional sum objective. While combinatorial optimization problems with
sum objectives are intractable in general, we showed that the considered k-max op-
timization problem can be solved efficiently, whenever an associated single objective
optimization problem with binary constraints can be solved in a polynomial amount
of time.

Using the formulation of multiple objective combinatorial optimization problems with
bottleneck and k-max objectives, respectively, we further showed that most of the algo-
rithms for solving balanced combinatorial optimization problems, minimum deviation
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problems and k-sum optimization problems that can be found in the literature are
implicitly based on a multiple objective reinterpretation of the specific single objec-
tive optimization problem. We made use of this idea and derived solution approaches
for generalized versions of these optimization problems. We proved that the consid-
ered problems can be solved efficiently, whenever this holds true for their associated
multiple objective problem formulation.

Although we restricted ourselves to the multiple objective reinterpretation of the ε-
constraint and the weighted sum approach in this work, there exist other solution
concepts from multiple objective optimization whose problem formulations can be
seen as an associated formulation of a single objective problem. For example, we
showed in Chapter 3 that the compromise solution method with squared Euclidian
distance can be interpreted as an associated multiple objective problem formulation of
a least squares problem from adjustment theory. Further research could focus on this
and other reinterpretations of solution concepts from the field of multiple objective
optimization.

Another main topic of this thesis was the analysis of the connectedness of the efficient
set for multiple objective combinatorial optimization problems. If this set is known
to be connected for a given class of combinatorial problems, this would imply that
the complete set itself can be determined by means of simple local search techniques.
Based on two different approaches for defining the adjacency of efficient solutions,
we presented counter-examples that show that most of the classical combinatorial
problems do not yield a connected efficient set in general. In addition, we proved
that this further holds true, when multiple objective combinatorial problems with
bottleneck objectives are considered.

On the other hand, based on a greedy-like algorithm for the triobjective unconstrained
optimization problem with two binary objectives, we were able to prove the connected-
ness of the efficient set for this special type of problem. Moreover, we showed that our
suggested algorithm is optimal in terms of upper bound time complexity. Applying
this algorithm, we were able to solve instances with up to one million items and 180
billion non-dominated solutions within less than 30 minutes of CPU-time. In addition,
we discussed the biobjective matroid problem with at least one binary sum objective.
Also for this problem we proved the connectedness of the efficient set, based on a
modified version of an algorithm already stated in the literature.

From our results on the connectedness of the efficient set we conclude that this property
is a powerful tool that helps to solve multiple objective combinatorial optimization
problems efficiently. However, our investigations suggest that the connectedness of
this set mainly depends on the structure of the given cost coefficients involved in the
problem. When these coefficients are chosen by random, our numerical tests for the
biobjective binary knapsack problem with bounded cardinality from Chapter 7 showed
that instances with unconnected efficient set are rare, but however they exist. This
even holds true, when unconstrained biobjective optimization problems are considered.
In contrast, our results for multiple objective problems with binary objectives show
that whenever the values of the given cost coefficients are restricted to {0, 1}, i.e. the
cardinality of the non-dominated set is polynomially bounded, connectedness of the
efficient set for these specific types of problems can be proven.

Besides combinatorial optimization problems, we also dealt with biconvex optimiza-
tion problems. Different from general non-linear optimization problems, a biconvex
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problem has the nice property that the set of variables can be partitioned into two
disjoint blocks of variables such that the given problem decomposes into two convex
subproblems, whenever one of the blocks of variables is considered as fixed. From the
literature on biconvex problems we recalled that the alternate convex search method
can be used to derive stationary points of a given optimization problem. This solution
approach can be seen as a special version of the more general alternate block search
technique that was discussed in Chapter 3. In the latter chapter we additionally pre-
sented an enhanced version of this solution technique based on a multiple objective
solution approach.

We revisited this approach in Chapter 12 for the biconvex case. Besides the two
objectives of the convex subproblems, we used the idea of additionally exploiting
descent information that is contained in the fixed block of variables when the problem is
solved in the block of active variables. We discussed how this additional information
can be used to heuristically improve the results obtained by applying the alternate
convex search technique as a special variant of the more general alternate block search
strategy.

We further made use of this approach to derive local minima for the connection
location-allocation problem in the plane. Due to the biconvex structure of the problem
from location theory, the location-allocation algorithm as a special version of the more
general alternate convex search technique can be used to derive local minima of the
considered problem. We numerically showed that the results of this algorithm can be
improved by applying the proposed enhanced versions of the alternate convex search
technique.

However, due to the complex structure of the considered location problem, we had to
restrict the feasible set of our four enhanced versions of the original location-allocation
algorithm to a set of points that is implicitly calculated during the iterations of the
original method. Although this limitation seems quite restrictive, our numerical stud-
ies showed that at least one of the four proposed versions led to an improvement of
the objective value in most cases, assuming that all algorithms are initialized with
the same starting solution. If CPU-time is taken into account as additional criterion,
we saw that the multi-start version of the location-allocation algorithm performs bet-
ter compared to its enhanced versions, since numerous additional information has to
be gathered to evaluate the descent potential that is contained in the fixed block of
variables during the course of the original algorithm.

We mainly restricted ourselves to multiple objective approaches for solving biconvex
optimization problems in Part II of this thesis. However, the idea of measuring the
descent potential for a block of variables is not limited to the biconvex case, but can
also be applied to more general non-linear optimization problems based on the general
framework presented in Chapter 3. Due to the more complex definition of the descent
potential when constrained optimization problems are considered, a further application
of this approach should mainly focus on the unconstrained case.

To summarize our results, we finally conclude that multiple objective optimization
yields a powerful tool to analyze and exploit the structure of special classes of single
objective (combinatorial) optimization problems. Although a multiple objective-based
approach for solving a single objective problem implicitly implies that additional and
perhaps unnecessary information has to be gathered that may not be needed for fur-
ther calculations, this additional information can be used to significantly improve
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existing and derive new solution concepts for single objective problems, respectively.
In addition, concepts from multiple objective optimization may be the only way to
unify seemingly different approaches for single objective problems in a more general
framework.



Appendix A
Outline of the Greedy Algorithms of
Chapter 9

This part of the appendix contains the outline of the three greedy algorithms for
Problem (2-KP=), Problem (2-MP) and Problem (2-KP≤) discussed in Chapter 9.
For the notation used in the following, we refer to the specific sections of Chapter 9.
While Algorithm A.1 can be applied to any instance of Problem (2-KP=) satisfying
c1 ≥ c2 > 0 (cf. Section 9.2), Algorithm A.2 for Problem (2-MP) (cf. Section 9.3) and
Algorithm A.3 for Problem (2-KP≤) (cf. Section 9.4) are restricted to instances of the
individual problems where (c1, c2) ∈ G2 holds. Appropriate algorithms for the other
sectors can be derived from the algorithms stated here in combination with the results
presented in Chapter 9.
For Algorithm A.1 that computes the optimal profit value for Problem (2-KP=) with
constraint (c1, c2) , we assume without loss of generality that the profit values dj, rc+i

and ui always exist in the outline of the algorithm. For further details, we refer to
Section 9.2.
To simplify the notation of Algorithm A.2, we omit the case that c1 − c2 = 0. Fur-
thermore, it is assumed that the second stopping criterion given in Line 21 of Algo-
rithm A.2 is evaluated if and only if the first criterion is satisfied. Otherwise, the
considered indices of the sequences r and d may not be well-defined.
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Algorithm A.1 Greedy Algorithm for Problem (2-KP=)

Input: An instance of Problem (2-MP), assuming that c1 ≥ c2 > 0.
Output: Maximum profit criterion value p.
1: Pre-processing step (see Section 9.1).
2: i← 1
3: j ← 1
4: c← c1 − c2

5: p←∑c

k=1 rk

6: for ℓ = 1 to c2 do
7: if dj < rc+i + ui then
8: p← p + rc+i + ui

9: i← i + 1
10: else
11: p← p + dj

12: j ← j + 1
13: end if
14: ℓ← ℓ + 1
15: end for
16: return p
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Algorithm A.2 Greedy Algorithm for Problem (2-MP) in Sector G2

Input: An instance of Problem (2-MP).
Output: The non-dominated set YN(G2) in sector G2.
1: Pre-processing step (see Section 9.1).
2: b← 0
3: YN(G2)← ∅
4: for c = 1 to (nR − nU) do
5: b← b + rc

6: YN(G2)← YN(G2) ∪ {(c, 0, b)}
7: p← b
8: i← 1
9: j ← 1

10: if c < nR − nU then
11: repeat
12: if dj < rc+i + ui then
13: p← p + rc+i + ui

14: YN(G2)← YN(G2) ∪ {(c + i + j − 1, i + j − 1, p)}
15: i← i + 1
16: else
17: p← p + dj

18: YN(G2)← YN(G2) ∪ {(c + i + j − 1, i + j − 1, p)}
19: j ← j + 1
20: end if
21: until nU + 1 ≤ i + j − 1 ≤ nU + nD and then rnU+c+1 ≥ di+j−1−nU

22: else
23: while ≤ i + j − 1 ≤ nU + nD do
24: if dj < rc+i + ui then
25: p← p + rc+i + ui

26: YN(G2)← YN(G2) ∪ {(c + i + j − 1, i + j − 1, p)}
27: i← i + 1
28: else
29: p← p + dj

30: YN(G2)← YN(G2) ∪ {(c + i + j − 1, i + j − 1, p)}
31: j ← j + 1
32: end if
33: end while
34: end if
35: end for
36: return YN(G2)
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Algorithm A.3 Greedy Algorithm for Problem (2-KP≤)

Input: An instance of Problem (2-KP≤), assuming (c1, c2) ∈ G2.
Output: Maximum profit criterion value p.
1: Pre-processing step (see Section 9.1).
2: c← c1 − c2

3: if (c2 ≤ nU) or (c = nr − nU) then
4: p← value returned by Algorithm A.1 for (c1, c2)
5: else
6: i← 0
7: if c1 ≤ nR then
8: while (i ≤ c2 − 1− nU) and (dc2−i−nU

≤ rnU+c+i+1) do
9: i← i + 1

10: end while
11: if i > c2 − 1− nU then
12: p← value returned by Algorithm A.1 for (c1, nU)
13: else
14: p← value returned by Algorithm A.1 for (c1, c2 − i)
15: end if
16: else
17: while (i ≤ nR − nU − c− 1) and (dc2−i−nU

≤ rnU+c+i+1) do
18: i← i + 1
19: end while
20: if i > nR − nU − c− 1 then
21: p← value returned by Algorithm A.1 for (c1, c1 − nR + nU )
22: else
23: p← value returned by Algorithm A.1 for (c1, c2 − i)
24: end if
25: end if
26: end if
27: return p



Appendix B
Supplementary Numerical Results

We list the results of the numerical study for the connection location-allocation prob-
lem in the plane from Chapter 13 in this part of the appendix.

For our numerical studies, we investigated the test problems provided by Bischoff in
[20]. The 33 randomly generated test problems range from 5 existing facilities with 10
flows to 100 existing facilities with 4950 flows, respectively (cf. Table B.1). Each test
problem is once more subdivided into 5 samples of the same size.

Size L M N

1 5 10 3

2 6 15 3

3 7 21 4

4 8 28 4

5 9 36 5

6 10 45 5

7 11 55 6

8 12 66 6

9 13 78 7

10 14 91 8

11 15 105 8

Size L M N

12 16 120 8

13 17 136 9

14 18 153 9

15 19 171 10

16 20 190 10

17 22 231 11

18 24 276 12

19 26 325 13

20 28 378 14

21 30 435 15

22 35 595 18

Size L M N

23 40 780 20

24 45 990 23

25 50 1225 25

26 55 1484 30

27 60 1770 35

28 65 2080 40

29 70 2415 45

30 75 2775 50

31 80 3160 55

32 90 4005 65

33 100 4950 75

Table B.1: Problem sizes of the considered test instances. Here, L denotes the number of
flows, M corresponds to the number of existing facilities, and N represents the number of
connections to locate in the plane.

For each test instance the coordinates of the existing facilities al ∈ R2, l ∈ L, were
randomly generated within the set {0, . . . , 1000}. The intensity wm of each flow m ∈
M between a pair of existing facilities ai, aj , i, j ∈ L, i < j was chosen within the set
{5, . . . , 25}. Furthermore, the number of connections N to be located in the R2-plane
ranged within the set {3, . . . , 75}, increasing with the size of the test problems. For
more details, we refer to Table B.1.
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Symbol Objective value obtained for Algorithm 13.2 and the . . .

F original location and allocation step.

F c
Y modified location step applying descent potential πc

Y .

F d
Y modified location step applying descent potential πd

Y .

FX modified allocation step applying descent potential πX .

F d
XY modified Loc. and Alloc. step applying descent potential πd

Y and πX .

Table B.2: Notation used for the tables in this section.

All algorithms were implemented in Matlab and a Sun Fire V20z machine with two
AMD Opteron 2.4 GHz CPUs was used for the numerical studies.
The following tables show the comparison between the original alternate location-
allocation algorithm (cf. Algorithm 13.2) and the enhanced versions of the algorithm.
The notation that is used to evaluate the results can be found in Table B.2 and Table
13.1 in Section 13.3.4.
In Tables B.3 to B.6 the original alternate location-allocation Algorithm (LA) is com-
pared to the enhanced versions (Lc

YA) and (Ld
YA), where the descent potential πc

Y

and πd
Y is used, respectively. 10 arbitrarily generated initial solutions were used for

both algorithms and the 165 test problems and the resulting objective values were
compared. Furthermore, the CPU time of the Algorithm (LA) is related to its specific
enhanced version.
Tables B.7 and B.8 and Tables B.9 and B.10 show the comparison between Algorithm
(LA) and the enhanced versions (LAX) and (Ld

YAX), with modified allocation step
and modified location and allocation step, respectively. The same setting was used as
for the numerical investigations described above.
Table B.11 provides a comparison between Algorithm (Ld

YA) and Algorithm (LAX).
Also for this study, the same setting was used as described above.
The best objective value obtained from the three enhanced versions of Algorithm (LA)
is compared to the objective value calculated by Algorithm (LA) in Table B.12. All
four algorithms were initialized with the same 10 starting solutions and the mini-
mum objective value of the enhanced versions was compared to the objective value of
Algorithm (LA).
Table B.13 shows the number of the best objective values obtained for the four different
algorithms, initialized with the same starting solution in each run.
Finally, the multi-start version of Algorithm (LA) is compared to the augmented
location-allocation Algorithm (Ld

YAX) in Table B.14. First, Algorithm (Ld
YAX) was

started with 10 arbitrarily generated initial solutions and its CPU time was recorded.
Then, Algorithm (LA) was used to resolve the problem with at least the same 10 plus
additional starting solutions until the CPU time of the enhanced version was reached.
The table shows the number of restarts of the different methods and compares the
best objective values found for both algorithms.
Note that due to the numerical results from Tables B.3 to B.6, only the descent po-
tential πd

Y from Definition 13.11 was considered for the augmented location-allocation
Algorithm (Ld

YAX) with modified location and allocation step throughout the numer-
ical studies.
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Example 1 Example 2 Example 3 Example 4 Example 5 Σ

Size + − = + − = + − = + − = + − = + − =

1 1 3 6 1 1 8 0 2 8 3 1 6 1 2 7 6 9 35

2 4 4 2 1 2 7 4 3 3 2 1 7 1 1 8 12 11 27

3 3 0 7 0 4 6 1 3 6 1 2 7 4 1 5 9 10 31

4 0 3 7 2 3 5 3 3 4 1 1 8 4 2 4 10 12 28

5 6 2 2 4 3 3 4 2 4 0 4 6 5 3 2 19 14 17

6 2 6 2 3 3 4 4 4 2 4 5 1 4 3 3 17 21 12

7 2 5 3 5 4 1 3 5 2 7 1 2 4 3 3 21 18 11

8 2 1 7 3 5 2 3 4 3 1 4 5 4 1 5 13 15 22

9 3 4 3 1 8 1 4 2 4 1 8 1 4 4 2 13 26 11

10 3 3 4 3 4 3 3 4 3 4 3 3 1 8 1 14 22 14

11 4 6 0 2 7 1 3 4 3 3 4 3 5 5 0 17 26 7

12 5 4 1 6 2 2 5 3 2 4 4 2 5 2 3 25 15 10

13 5 4 1 6 4 0 2 2 6 3 6 1 9 1 0 25 17 8

14 4 6 0 3 5 2 5 4 1 5 5 0 6 3 1 23 23 4

15 4 4 2 3 5 2 6 2 2 5 4 1 5 5 0 23 20 7

16 4 4 2 3 6 1 4 5 1 5 4 1 2 6 2 18 25 7

17 3 6 1 5 5 0 4 6 0 3 5 2 7 2 1 22 24 4

18 5 4 1 4 6 0 2 6 2 3 7 0 5 3 2 19 26 5

19 4 5 1 6 4 0 4 4 2 3 6 1 2 7 1 19 26 5

20 4 6 0 5 4 1 7 3 0 3 7 0 6 4 0 25 24 1

21 5 5 0 7 3 0 4 6 0 5 4 1 5 4 1 26 22 2

22 7 3 0 4 4 2 6 4 0 6 4 0 2 8 0 25 23 2

23 8 2 0 5 4 1 2 8 0 7 3 0 2 6 2 24 23 3

24 4 6 0 4 6 0 7 3 0 5 5 0 5 5 0 25 25 0

25 7 3 0 2 8 0 5 5 0 5 5 0 2 8 0 21 29 0

26 6 4 0 6 4 0 6 4 0 5 5 0 5 5 0 28 22 0

27 5 5 0 4 6 0 5 5 0 7 3 0 5 5 0 26 24 0

28 5 5 0 4 6 0 5 5 0 7 3 0 5 5 0 26 24 0

29 6 4 0 5 5 0 6 4 0 7 3 0 4 6 0 28 22 0

30 5 5 0 4 6 0 5 5 0 5 5 0 4 6 0 23 27 0

31 4 6 0 4 6 0 6 4 0 5 5 0 6 4 0 25 25 0

32 6 4 0 4 6 0 5 5 0 5 5 0 6 4 0 26 24 0

33 4 6 0 2 8 0 4 6 0 3 7 0 4 6 0 17 33 0

Table B.3: Comparison of the objective values obtained from 10 runs of Algorithm (LA)
and Algorithm (Lc

YA). Each run is initialized with the same starting solution. Total: 1650
runs, (+) F c

Y better than F : 670, (−) F Y
c worse than F : 707, (=) F c

y equals to F : 273
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Algorithm (LA) Algorithm (Lc
YA) Quotient

Size t1min t1max t1av t2min t2max t2av t2av/t
1
av

1 0.00202 0.12928 0.00926 0.00194 0.10292 0.01135 1.22579

2 0.00444 0.03449 0.01288 0.00372 0.11248 0.04183 3.24751

3 0.00256 0.04628 0.01817 0.00253 0.13089 0.04078 2.24409

4 0.00627 0.03682 0.02086 0.00664 0.23592 0.07306 3.50232

5 0.01383 0.05476 0.02903 0.03828 0.28966 0.16029 5.52241

6 0.01282 0.09801 0.04099 0.01270 0.72664 0.25200 6.14792

7 0.02062 0.09790 0.05089 0.04083 0.63029 0.30743 6.04153

8 0.02260 0.10084 0.04614 0.06389 0.79103 0.32030 6.94232

9 0.01269 0.18089 0.05820 0.03335 0.88089 0.36994 6.35661

10 0.03137 0.12430 0.07270 0.25549 7.19239 0.69825 9.60439

11 0.03945 0.20553 0.08683 0.28116 1.83848 0.88417 10.18255

12 0.05312 0.18258 0.11258 0.43016 1.66408 1.11086 9.86739

13 0.06067 0.23709 0.10129 0.17352 2.56472 1.22766 12.11992

14 0.03626 0.25404 0.12778 0.19320 3.03597 1.33424 10.44214

15 0.08448 0.30821 0.15859 0.64888 4.26629 1.92818 12.15841

16 0.05621 0.27581 0.18813 0.93691 4.27380 2.18772 11.62898

17 0.14207 0.36207 0.23575 1.52903 5.41847 3.38712 14.36737

18 0.14741 0.55744 0.27688 1.66121 8.40566 4.00625 14.46904

19 0.23417 0.64870 0.32816 3.02130 10.23641 5.48388 16.71115

20 0.24990 0.86559 0.43395 3.46021 12.51452 7.36274 16.96667

21 0.23188 0.86929 0.45479 3.23481 16.56833 7.59787 16.70623

22 0.32229 1.20807 0.76569 6.60261 33.67643 15.95169 20.83301

23 0.58187 1.95168 0.97011 11.87721 40.02030 20.92713 21.57184

24 0.51736 2.01814 1.27666 16.26050 48.88119 29.68611 23.25302

25 1.03183 3.56492 1.77760 16.29898 89.68059 41.20576 23.18059

26 1.59495 4.71122 2.74198 40.45853 136.52315 66.25800 24.16431

27 1.94021 7.82469 3.32722 51.56203 194.32025 93.63637 28.14253

28 2.18603 6.30494 3.93397 52.51465 245.86611 114.98436 29.22859

29 3.66957 11.81777 5.59468 79.22246 393.26676 183.41932 32.78458

30 4.52615 16.78956 7.77156 130.02252 465.72653 244.55159 31.46752

31 5.54644 19.01240 9.28082 144.99561 479.48568 310.28586 33.43302

32 7.69273 30.39403 13.90885 203.82022 1096.73726 533.83034 38.38062

33 11.38564 41.83649 23.84498 365.19107 1849.56429 847.10644 35.52556

Table B.4: Comparison of the CPU time of Algorithm (LA) (t1) and Algorithm (Lc
YA)

(t2).
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Example 1 Example 2 Example 3 Example 4 Example 5 Σ

Size + − = + − = + − = + − = + − = + − =

1 1 1 8 1 0 9 0 1 9 1 0 9 1 0 9 4 2 44

2 4 1 5 0 1 9 3 3 4 2 1 7 2 1 7 11 7 32

3 2 0 8 3 0 7 2 1 7 1 1 8 2 1 7 10 3 37

4 1 0 9 4 0 6 4 0 6 4 1 5 2 4 4 15 5 30

5 6 1 3 4 1 5 4 1 5 4 2 4 5 1 4 23 6 21

6 3 2 5 2 4 4 3 5 2 3 5 2 1 5 4 12 21 17

7 3 6 1 4 4 2 4 5 1 8 0 2 2 6 2 21 21 8

8 3 4 3 6 3 1 6 2 2 7 1 2 4 3 3 26 13 11

9 4 4 2 4 5 1 6 4 0 3 5 2 5 5 0 22 23 5

10 8 2 0 1 6 3 0 5 5 3 5 2 4 5 1 16 23 11

11 5 4 1 3 6 1 6 3 1 3 6 1 5 4 1 22 23 5

12 5 5 0 3 6 1 6 3 1 3 6 1 6 3 1 23 23 4

13 4 5 1 5 5 0 4 2 4 4 5 1 7 3 0 24 20 6

14 6 4 0 5 5 0 6 4 0 4 5 1 7 2 1 28 20 2

15 5 5 0 6 2 2 4 5 1 6 4 0 4 5 1 25 21 4

16 6 4 0 4 6 0 7 3 0 5 5 0 6 4 0 28 22 0

17 8 2 0 6 4 0 5 5 0 5 5 0 9 1 0 33 17 0

18 4 6 0 7 3 0 7 2 1 6 4 0 3 7 0 27 22 1

19 6 4 0 9 1 0 5 3 2 5 5 0 5 5 0 30 18 2

20 4 6 0 6 3 1 3 7 0 3 6 1 8 2 0 24 24 2

21 5 5 0 8 2 0 4 6 0 4 6 0 5 3 2 26 22 2

22 6 4 0 6 4 0 7 3 0 5 5 0 6 4 0 30 20 0

23 5 5 0 4 6 0 4 6 0 4 6 0 7 3 0 24 26 0

24 4 6 0 6 4 0 6 4 0 4 6 0 5 5 0 25 25 0

25 6 4 0 3 7 0 8 2 0 3 7 0 8 2 0 28 22 0

26 4 6 0 3 7 0 4 6 0 6 4 0 4 6 0 21 29 0

27 6 4 0 8 2 0 4 6 0 7 3 0 7 3 0 32 18 0

28 3 7 0 7 3 0 5 5 0 6 4 0 7 3 0 28 22 0

29 6 4 0 8 2 0 4 6 0 6 4 0 8 2 0 32 18 0

30 6 4 0 4 6 0 5 5 0 5 5 0 6 4 0 26 24 0

31 5 5 0 5 5 0 4 6 0 6 4 0 5 5 0 25 25 0

32 5 5 0 6 4 0 8 2 0 7 3 0 6 4 0 32 18 0

33 7 3 0 4 6 0 4 6 0 4 6 0 5 5 0 24 26 0

Table B.5: Comparison of the objective values obtained from 10 runs of Algorithm (LA)
and Algorithm (Ld

YA). Each run is initialized with the same starting solution. Total: 1650
runs, (+) F d

y better than F : 777, (−) F d
y worse than F : 629, (=) F d

y is equal to F : 244
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Algorithm (LA) Algorithm (Ld
YA) Quotient

Size t1min t1max t1av t2min t2max t2av t2av/t
1
av

1 0.00203 0.15622 0.01247 0.00182 0.04827 0.02014 1.61507

2 0.00537 0.04749 0.01716 0.00849 0.09567 0.03774 2.19992

3 0.00253 0.05891 0.02263 0.00240 0.11642 0.04251 1.87902

4 0.00665 0.04965 0.02788 0.00949 0.12321 0.04872 1.74782

5 0.01543 0.06790 0.03863 0.02747 0.19888 0.09591 2.48280

6 0.01516 0.12451 0.05176 0.03203 0.33929 0.11662 2.25317

7 0.02464 0.11435 0.06339 0.05010 0.30117 0.16765 2.64451

8 0.02721 0.14392 0.05700 0.05666 0.37335 0.17315 3.03792

9 0.01566 0.22697 0.07561 0.05671 0.51424 0.25272 3.34232

10 0.03614 0.15069 0.09338 0.09111 0.51198 0.29979 3.21028

11 0.04639 0.26646 0.10946 0.14357 0.65335 0.34895 3.18785

12 0.06539 0.22102 0.13641 0.20950 0.94387 0.48278 3.53916

13 0.07684 0.27900 0.13738 0.12449 0.97735 0.45593 3.31868

14 0.04093 0.30161 0.16035 0.32665 1.03774 0.61257 3.82029

15 0.09730 0.37022 0.19130 0.36758 1.52182 0.71184 3.72096

16 0.07275 0.35323 0.23096 0.34573 1.52923 0.93367 4.04248

17 0.16164 0.43753 0.28513 0.55509 2.05087 1.09414 3.83736

18 0.18200 0.68000 0.33861 0.73672 2.38536 1.56006 4.60724

19 0.28029 0.75252 0.39737 0.93070 3.48230 1.87620 4.72148

20 0.28739 1.04054 0.51621 1.05160 4.12826 2.40885 4.66644

21 0.30740 1.06044 0.53631 1.45248 6.52625 2.87554 5.36174

22 0.40165 1.49979 0.92336 2.46241 9.61456 4.53446 4.91082

23 0.67683 2.30787 1.15826 4.08509 13.75457 6.66724 5.75625

24 0.59247 2.26815 1.49549 4.88890 22.03364 8.94810 5.98337

25 1.19778 4.01605 2.01867 6.93540 27.32444 12.04877 5.96867

26 1.89359 5.58069 3.19349 10.58886 32.97860 18.46635 5.78250

27 2.25508 9.18251 3.83377 14.82927 44.79809 26.70266 6.96513

28 2.57302 7.39033 4.59172 18.20970 52.29282 29.14138 6.34650

29 4.30439 13.35776 6.48891 27.54375 100.36404 38.34960 5.91002

30 5.30405 18.58331 8.85210 26.18843 119.41319 55.49840 6.26952

31 6.33473 21.23526 10.70743 42.02928 130.83510 64.88547 6.05985

32 8.60766 33.95924 15.66010 55.97478 215.94925 95.59561 6.10441

33 12.84767 46.04262 26.77315 71.05779 310.12853 164.44391 6.14212

Table B.6: Comparison of the CPU time of Algorithm (LA) (t1) and Algorithm (Ld
YA)

(t2).
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Example 1 Example 2 Example 3 Example 4 Example 5 Σ

Size + − = + − = + − = + − = + − = + − =

1 1 9 0 1 5 4 0 8 2 1 9 0 0 6 4 3 37 10

2 0 10 0 2 4 4 4 6 0 3 4 3 4 1 5 13 25 12

3 1 5 4 5 4 1 4 6 0 4 4 2 2 6 2 16 25 9

4 4 5 1 4 6 0 2 6 2 3 4 3 2 7 1 15 28 7

5 4 5 1 3 6 1 4 4 2 1 8 1 4 6 0 16 29 5

6 3 7 0 6 4 0 3 7 0 7 3 0 3 7 0 22 28 0

7 2 8 0 5 5 0 6 4 0 5 5 0 4 6 0 22 28 0

8 5 5 0 6 4 0 5 5 0 8 2 0 4 6 0 28 22 0

9 2 8 0 6 4 0 4 6 0 6 4 0 3 7 0 21 29 0

10 3 7 0 3 7 0 3 7 0 4 6 0 7 3 0 20 30 0

11 5 5 0 2 8 0 9 1 0 3 7 0 7 3 0 26 24 0

12 3 7 0 4 6 0 2 8 0 1 9 0 4 6 0 14 36 0

13 3 6 1 7 3 0 7 3 0 4 6 0 7 3 0 28 21 1

14 5 5 0 2 8 0 4 6 0 4 6 0 5 5 0 20 30 0

15 2 8 0 5 5 0 4 6 0 7 3 0 4 6 0 22 28 0

16 7 3 0 2 8 0 4 6 0 5 5 0 7 3 0 25 25 0

17 5 5 0 5 5 0 4 6 0 7 3 0 5 5 0 26 24 0

18 3 7 0 2 8 0 5 5 0 6 4 0 3 7 0 19 31 0

19 7 3 0 5 5 0 6 4 0 8 2 0 6 4 0 32 18 0

20 6 4 0 6 4 0 4 6 0 6 4 0 5 5 0 27 23 0

21 5 5 0 8 2 0 6 4 0 5 5 0 7 3 0 31 19 0

22 5 5 0 5 5 0 6 4 0 7 3 0 6 4 0 29 21 0

23 7 3 0 6 4 0 8 2 0 7 3 0 9 1 0 37 13 0

24 9 1 0 9 1 0 8 2 0 7 3 0 8 2 0 41 9 0

25 7 3 0 5 5 0 7 3 0 9 1 0 8 2 0 36 14 0

26 2 8 0 9 1 0 6 4 0 10 0 0 7 3 0 34 16 0

27 7 3 0 4 6 0 6 4 0 6 4 0 8 2 0 31 19 0

28 10 0 0 8 2 0 7 3 0 7 3 0 6 4 0 38 12 0

29 8 2 0 7 3 0 8 2 0 4 6 0 8 2 0 35 15 0

30 7 3 0 6 4 0 5 5 0 4 6 0 3 7 0 25 25 0

31 3 7 0 3 7 0 8 2 0 6 4 0 6 4 0 26 24 0

32 4 6 0 9 1 0 9 1 0 6 4 0 7 3 0 35 15 0

33 9 1 0 6 4 0 7 3 0 5 5 0 5 5 0 32 18 0

Table B.7: Comparison of the objective values obtained from 10 runs of Algorithm (LA)
and Algorithm (LAX). Each run is initialized with the same starting solution. Total: 1650
runs, (+) FX better than F : 845, (−) FX worse than F : 761, (=) FX is equal to F : 44
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Algorithm (LA) Algorithm (LAX) Quotient

Size t1min t1max t1av t2min t2max t2av t2av/t
1
av

1 0.00203 0.15622 0.01247 0.00100 0.03741 0.01279 1.02565

2 0.00537 0.04749 0.01716 0.00401 0.05118 0.01542 0.89861

3 0.00253 0.05891 0.02263 0.00285 0.06293 0.02683 1.18560

4 0.00665 0.04965 0.02788 0.00852 0.10013 0.03223 1.15630

5 0.01543 0.06790 0.03863 0.01801 0.09037 0.05090 1.31766

6 0.01516 0.12451 0.05176 0.02165 0.14004 0.06205 1.19883

7 0.02464 0.11435 0.06339 0.03857 0.16451 0.08608 1.35790

8 0.02721 0.14392 0.05700 0.05663 0.14982 0.09401 1.64937

9 0.01566 0.22697 0.07561 0.06668 0.23095 0.13729 1.81566

10 0.03614 0.15069 0.09338 0.10210 0.22619 0.17322 1.85491

11 0.04639 0.26646 0.10946 0.09764 0.39086 0.23472 2.14431

12 0.06539 0.22102 0.13641 0.15803 0.35926 0.25870 1.89649

13 0.07684 0.27900 0.13738 0.20334 0.54651 0.32394 2.35791

14 0.04093 0.30161 0.16035 0.16037 0.64148 0.38032 2.37185

15 0.09730 0.37022 0.19130 0.36381 0.72715 0.53752 2.80976

16 0.07275 0.35323 0.23096 0.39611 0.92507 0.61520 2.66362

17 0.16164 0.43753 0.28513 0.58540 1.29219 0.90071 3.15896

18 0.18200 0.68000 0.33861 0.91138 1.90129 1.30230 3.84601

19 0.28029 0.75252 0.39737 1.27363 2.95213 1.88111 4.73384

20 0.28739 1.04054 0.51621 1.71289 4.59404 2.58536 5.00838

21 0.30740 1.06044 0.53631 1.90339 6.83663 3.59644 6.70595

22 0.40165 1.49979 0.92336 4.52538 17.60455 8.49477 9.19984

23 0.67683 2.30787 1.15826 7.00516 23.99419 16.26965 14.04661

24 0.59247 2.26815 1.49549 19.42227 41.92320 30.09866 20.12623

25 1.19778 4.01605 2.01867 34.90645 85.74217 47.57345 23.56673

26 1.89359 5.58069 3.19349 34.36743 150.61091 89.86794 28.14102

27 2.25508 9.18251 3.83377 77.88469 234.72838 149.14225 38.90229

28 2.57302 7.39033 4.59172 117.46639 385.85798 238.05463 51.84428

29 4.30439 13.35776 6.48891 102.68581 604.01725 347.25682 53.51540

30 5.30405 18.58331 8.85210 329.40807 857.16449 555.45344 62.74819

31 6.33473 21.23526 10.70743 367.46909 1047.9815 694.93835 64.90243

32 8.60766 33.95924 15.66010 572.04506 1976.6717 1319.2815 84.24476

33 12.84767 46.04262 26.77315 842.84768 3865.3038 2657.1199 99.24568

Table B.8: Comparison of the CPU time of Algorithm (LA) (t1) and Algorithm (LAX)
(t2).
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Example 1 Example 2 Example 3 Example 4 Example 5 Σ

Size + − = + − = + − = + − = + − = + − =

1 2 8 0 0 6 4 0 8 2 1 8 1 1 4 5 4 34 12

2 0 10 0 2 3 5 2 8 0 4 3 3 4 2 4 12 26 12

3 1 5 4 4 5 1 7 3 0 5 4 1 3 5 2 20 22 8

4 3 6 1 4 6 0 1 6 3 2 6 2 1 9 0 11 33 6

5 7 3 0 3 7 0 4 5 1 1 8 1 4 6 0 19 29 2

6 4 6 0 5 5 0 3 7 0 6 4 0 2 8 0 20 30 0

7 3 7 0 5 5 0 6 4 0 6 4 0 1 9 0 21 29 0

8 3 7 0 8 2 0 3 7 0 4 6 0 4 5 1 22 27 1

9 2 8 0 6 4 0 2 8 0 5 5 0 6 4 0 21 29 0

10 4 6 0 1 9 0 3 7 0 5 5 0 7 3 0 20 30 0

11 4 6 0 4 6 0 6 4 0 4 6 0 6 4 0 24 26 0

12 6 4 0 3 7 0 5 5 0 2 8 0 4 6 0 20 30 0

13 5 4 1 7 3 0 6 4 0 4 6 0 8 2 0 30 19 1

14 6 4 0 1 9 0 2 8 0 5 5 0 6 4 0 20 30 0

15 5 5 0 7 3 0 7 3 0 5 5 0 2 8 0 26 24 0

16 6 4 0 3 7 0 4 6 0 7 3 0 4 6 0 24 26 0

17 5 5 0 5 5 0 4 6 0 8 2 0 8 2 0 30 20 0

18 3 7 0 5 5 0 5 5 0 6 4 0 6 4 0 25 25 0

19 6 4 0 5 5 0 4 6 0 7 3 0 5 5 0 27 23 0

20 6 4 0 7 3 0 6 4 0 4 6 0 7 3 0 30 20 0

21 5 5 0 5 5 0 7 3 0 5 5 0 4 6 0 26 24 0

22 6 4 0 5 5 0 9 1 0 5 5 0 7 3 0 32 18 0

23 7 3 0 7 3 0 7 3 0 8 2 0 10 0 0 39 11 0

24 6 4 0 8 2 0 6 4 0 6 4 0 9 1 0 35 15 0

25 7 3 0 5 5 0 7 3 0 8 2 0 9 1 0 36 14 0

26 3 7 0 8 2 0 8 2 0 9 1 0 7 3 0 35 15 0

27 7 3 0 5 5 0 6 4 0 9 1 0 7 3 0 34 16 0

28 8 2 0 7 3 0 6 4 0 5 5 0 6 4 0 32 18 0

29 4 6 0 8 2 0 8 2 0 3 7 0 8 2 0 31 19 0

30 7 3 0 6 4 0 7 3 0 8 2 0 4 6 0 32 18 0

31 4 6 0 5 5 0 9 1 0 6 4 0 7 3 0 31 19 0

32 8 2 0 9 1 0 9 1 0 4 6 0 6 4 0 36 14 0

33 10 0 0 7 3 0 8 2 0 9 1 0 3 7 0 37 13 0

Table B.9: Comparison of the objective values obtained from 10 runs of Algorithm (LA)
and Algorithm (Ld

YAX). Each run is initialized with the same starting solution. Total: 1650
runs, (+) F d

XY better than F : 862, (−) F d
XY worse than F : 746, (=) F d

XY is equal to F : 42
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Algorithm (LA) Algorithm (Ld
YAX) Quotient

Size t1min t1max t1av t2min t2max t2av t2av/t
1
av

1 0.00203 0.15622 0.01247 0.00110 0.05326 0.02218 1.77839

2 0.00537 0.04749 0.01716 0.01375 0.09477 0.03587 2.09097

3 0.00253 0.05891 0.02263 0.00297 0.20722 0.05294 2.33992

4 0.00665 0.04965 0.02788 0.01482 0.14048 0.06591 2.36452

5 0.01543 0.06790 0.03863 0.04405 0.20562 0.10866 2.81283

6 0.01516 0.12451 0.05176 0.03691 0.36322 0.13330 2.57530

7 0.02464 0.11435 0.06339 0.06756 0.45571 0.18934 2.98675

8 0.02721 0.14392 0.05700 0.10121 0.41049 0.22291 3.91082

9 0.01566 0.22697 0.07561 0.12313 0.49436 0.28145 3.72232

10 0.03614 0.15069 0.09338 0.17876 0.59532 0.36899 3.95133

11 0.04639 0.26646 0.10946 0.27244 0.94478 0.48588 4.43884

12 0.06539 0.22102 0.13641 0.33556 0.94292 0.55356 4.05799

13 0.07684 0.27900 0.13738 0.44589 1.25720 0.75318 5.48230

14 0.04093 0.30161 0.16035 0.39069 1.12334 0.80814 5.03992

15 0.09730 0.37022 0.19130 0.70727 1.93294 1.10880 5.79599

16 0.07275 0.35323 0.23096 0.81653 2.07075 1.21832 5.27495

17 0.16164 0.43753 0.28513 0.94886 2.35689 1.82383 6.39654

18 0.18200 0.68000 0.33861 1.59050 3.49585 2.59837 7.67364

19 0.28029 0.75252 0.39737 2.23993 5.78489 3.21206 8.08321

20 0.28739 1.04054 0.51621 2.83969 7.27309 4.53987 8.79466

21 0.30740 1.06044 0.53631 3.76659 9.53091 6.36103 11.86082

22 0.40165 1.49979 0.92336 8.12776 19.89230 11.98379 12.97845

23 0.67683 2.30787 1.15826 9.95763 31.19271 21.37547 18.45479

24 0.59247 2.26815 1.49549 14.54023 62.52007 40.41172 27.02231

25 1.19778 4.01605 2.01867 40.86355 110.08388 67.06312 33.22144

26 1.89359 5.58069 3.19349 38.82490 174.79150 106.28305 33.28120

27 2.25508 9.18251 3.83377 100.57446 259.97573 186.93286 48.75960

28 2.57302 7.39033 4.59172 115.50853 480.18852 268.03126 58.37268

29 4.30439 13.35776 6.48891 172.16565 696.18293 403.89053 62.24316

30 5.30405 18.58331 8.85210 175.92486 832.79162 580.43482 65.57027

31 6.33473 21.23526 10.70743 434.11182 1238.3994 799.00967 74.62197

32 8.60766 33.95924 15.66010 528.01068 2232.8246 1439.4020 91.91524

33 12.84767 46.04262 26.77315 1183.7017 4138.6535 2707.6997 101.13488

Table B.10: Comparison of the CPU time of Algorithm (LA) (t1) and Algorithm
(Ld

YAX)(t2).
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Example 1 Example 2 Example 3 Example 4 Example 5 Σ

Size + − = + − = + − = + − = + − = + − =

1 9 1 0 5 0 5 8 0 2 10 0 0 6 0 4 38 1 11

2 10 0 0 4 2 4 7 3 0 5 3 2 1 4 5 27 12 11

3 6 1 3 4 5 1 6 4 0 4 4 2 7 2 1 27 16 7

4 6 3 1 6 4 0 6 2 2 5 1 4 8 2 0 31 12 7

5 4 5 1 6 3 1 6 3 1 9 1 0 6 4 0 31 16 3

6 6 4 0 3 7 0 6 4 0 4 6 0 6 3 1 25 24 1

7 8 2 0 5 5 0 4 6 0 6 4 0 5 5 0 28 22 0

8 5 5 0 4 6 0 5 5 0 4 6 0 9 1 0 27 23 0

9 7 3 0 3 7 0 8 2 0 4 6 0 6 4 0 28 22 0

10 8 1 1 8 2 0 7 3 0 5 5 0 3 7 0 31 18 1

11 6 4 0 4 6 0 2 8 0 5 5 0 4 6 0 21 29 0

12 7 3 0 6 4 0 8 2 0 5 5 0 8 2 0 34 16 0

13 5 4 1 4 6 0 2 8 0 5 5 0 2 8 0 18 31 1

14 7 3 0 6 4 0 6 4 0 6 4 0 7 3 0 32 18 0

15 6 4 0 6 4 0 7 3 0 3 7 0 4 6 0 26 24 0

16 4 6 0 7 3 0 6 4 0 4 6 0 4 6 0 25 25 0

17 6 4 0 5 5 0 5 5 0 4 6 0 6 4 0 26 24 0

18 9 1 0 8 2 0 4 6 0 4 6 0 6 4 0 31 19 0

19 3 7 0 6 4 0 5 5 0 4 6 0 4 6 0 22 28 0

20 5 5 0 6 4 0 5 5 0 4 6 0 5 5 0 25 25 0

21 4 6 0 4 6 0 5 5 0 5 5 0 3 7 0 21 29 0

22 4 6 0 5 5 0 7 3 0 5 5 0 5 5 0 26 24 0

23 5 5 0 5 5 0 5 5 0 4 6 0 3 7 0 22 28 0

24 1 9 0 1 9 0 3 7 0 3 7 0 3 7 0 11 39 0

25 4 6 0 3 7 0 3 7 0 1 9 0 3 7 0 14 36 0

26 8 2 0 1 9 0 4 6 0 2 8 0 2 8 0 17 33 0

27 3 7 0 6 4 0 1 9 0 4 6 0 4 6 0 18 32 0

28 1 9 0 2 8 0 4 6 0 2 8 0 7 3 0 16 34 0

29 2 8 0 4 6 0 2 8 0 7 3 0 3 7 0 18 32 0

30 4 6 0 5 5 0 2 8 0 4 6 0 6 4 0 21 29 0

31 7 3 0 7 3 0 3 7 0 4 6 0 2 8 0 23 27 0

32 6 4 0 4 6 0 3 7 0 7 3 0 5 5 0 25 25 0

33 5 5 0 2 8 0 1 9 0 5 5 0 4 6 0 17 33 0

Table B.11: Comparison of the objective values obtained from 10 runs of Algorithm (Ld
YA)

and Algorithm (LAX). Each run is initialized with the same starting solution. Total: 1650
runs, (+) F d

Y better than FX : 802, (−) F d
Y worse than FX : 806, (=) F d

Y is equal to FX : 42
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Example 1 Example 2 Example 3 Example 4 Example 5 Σ

Size + − = + − = + − = + − = + − = + − =

1 2 1 7 1 0 9 0 1 9 1 0 9 2 0 8 6 2 42

2 4 1 5 2 1 7 5 2 3 6 0 4 5 1 4 22 5 23

3 2 0 8 8 0 2 7 0 3 6 0 4 4 0 6 27 0 23

4 4 0 6 7 0 3 6 0 4 6 0 4 3 2 5 26 2 22

5 9 0 1 4 1 5 5 0 5 5 0 5 8 0 2 31 1 18

6 6 1 3 7 2 1 6 4 0 7 1 2 4 3 3 30 11 9

7 5 5 0 7 2 1 6 3 1 8 0 2 6 3 1 32 13 5

8 7 1 2 9 1 0 9 0 1 9 1 0 5 1 4 39 4 7

9 6 2 2 7 2 1 6 4 0 7 2 1 8 2 0 34 12 4

10 8 2 0 3 5 2 3 4 3 6 4 0 8 2 0 28 17 5

11 8 2 0 5 4 1 10 0 0 5 4 1 8 2 0 36 12 2

12 9 1 0 7 3 0 8 1 1 4 5 1 6 3 1 34 13 3

13 7 2 1 8 2 0 9 1 0 7 3 0 9 1 0 40 9 1

14 8 2 0 5 5 0 7 3 0 7 3 0 8 1 1 35 14 1

15 7 3 0 8 0 2 7 2 1 9 1 0 6 4 0 37 10 3

16 8 2 0 6 4 0 8 2 0 9 1 0 8 2 0 39 11 0

17 9 1 0 8 2 0 7 3 0 10 0 0 10 0 0 44 6 0

18 8 2 0 8 2 0 8 2 0 9 1 0 7 3 0 40 10 0

19 9 1 0 9 1 0 6 2 2 10 0 0 8 2 0 42 6 2

20 7 3 0 10 0 0 7 3 0 7 3 0 9 1 0 40 10 0

21 9 1 0 10 0 0 9 1 0 7 3 0 8 2 0 43 7 0

22 7 3 0 9 1 0 9 1 0 7 3 0 10 0 0 42 8 0

23 9 1 0 8 2 0 9 1 0 8 2 0 10 0 0 44 6 0

24 10 0 0 9 1 0 9 1 0 9 1 0 10 0 0 47 3 0

25 8 2 0 6 4 0 9 1 0 9 1 0 10 0 0 42 8 0

26 6 4 0 10 0 0 8 2 0 10 0 0 8 2 0 42 8 0

27 9 1 0 9 1 0 9 1 0 10 0 0 10 0 0 47 3 0

28 10 0 0 9 1 0 8 2 0 8 2 0 8 2 0 43 7 0

29 10 0 0 10 0 0 9 1 0 9 1 0 9 1 0 47 3 0

30 9 1 0 9 1 0 8 2 0 9 1 0 6 4 0 41 9 0

31 7 3 0 8 2 0 9 1 0 9 1 0 9 1 0 42 8 0

32 9 1 0 10 0 0 10 0 0 9 1 0 10 0 0 48 2 0

33 10 0 0 9 1 0 8 2 0 10 0 0 5 5 0 42 8 0

Table B.12: Comparison of the objective values obtained from 10 runs of Algorithm (LA)
and the best objective value obtained from Algorithms (Ld

YA), (LAX) and (Ld
YAX). Total:

1650 runs, (+) min{F d
Y , FX , F d

XY } better than F : 1232, (−) min{F d
Y , FX , F d

XY } worse than
F : 248, (=) min{F d

Y , FX , F d
XY } is equal to F : 170
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Size A B C D

1 44 44 12 14

2 28 34 20 22

3 23 32 20 23

4 24 35 18 12

5 19 31 15 12

6 20 15 16 15

7 18 13 13 14

8 11 19 15 14

9 16 16 11 15

10 22 14 12 9

11 14 12 14 12

Size A B C D

12 16 13 6 18

13 10 11 19 14

14 15 16 11 9

15 13 15 11 15

16 11 11 11 17

17 6 14 11 20

18 10 12 10 18

19 8 16 13 15

20 10 13 13 14

21 7 7 19 17

22 8 9 10 23

Size A B C D

23 6 7 11 26

24 3 6 21 20

25 8 5 18 19

26 8 6 18 18

27 3 9 20 18

28 7 7 20 16

29 3 9 22 16

30 9 9 15 17

31 8 12 12 18

32 2 13 12 23

33 8 8 19 15

Table B.13: Number of the best objective values found by the Algorithms (LA), (Ld
YA),

(LAX) and (Ld
YAX).Total: 1650 runs, (A) F best: 418, (B) F d

Y best: 493, (C) FX best:
488, (D) F d

XY best: 548.

Alg. (LA) Alg. (Ld
YAX)

Size better restarts better restarts

15 5 57 0 10

16 4 60 1 10

17 2 63 3 10

18 5 67 0 10

19 2 83 3 10

20 4 88 1 10

21 3 122 2 10

22 4 141 1 10

23 3 171 2 10

24 2 251 3 10

Alg. (LA) Alg. (Ld
YAX)

Size better restarts better restarts

25 5 316 0 10

26 2 301 3 10

27 3 419 2 10

28 4 598 1 10

29 4 525 1 10

30 4 617 1 10

31 5 719 0 10

32 4 841 1 10

33 5 982 0 10

Table B.14: Comparison of the objective values obtained from the multi-start version of
Algorithm (LA) and Algorithm (Ld

YAX) for problem size 15 to 33. The modified version was
started with 10 arbitrary starting solutions and its CPU time was recorded. Then, Algorithm
(LA) was started with the 10 starting solutions also used for the enhanced version of the
algorithm plus additional starting solutions until the CPU time of the enhanced version was
reached. The total number of restarts can also be found in the table. F better than F d

XY : 70,
F d

XY better than F : 25
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[27] Brezovec, C., Cornuéjols, G., and Glover, F. (1988). A matroid algorithm and
its application to the efficient solution of two optimization problems on graphs.
Mathematical Programming, 42:471–487.



BIBLIOGRAPHY 271

[28] Brualdi, R. A. (1969). Comments on bases in dependence structures. Bulletin of
the Australian Mathematical Society, 1(2):161–167.

[29] Burkard, R., Dell’Amico, M., and Martello, S. (2009). Assignment Problem.
SIAM.

[30] Burkholder, D. (1981). A geometrical characterization of Banach spaces in
which martingale difference sequences are unconditional. The Annals of Probability,
9(6):997–1011.

[31] Burkholder, D. L. (1986). Lecture Notes in Mathematics, volume 1206 of Prob-
ability and Analysis (Varenna, 1985), chapter Martingales and Fourier analysis in
Banach spaces, pages 61–108. Springer-Verlag, Berlin.

[32] Camerini, P. M., Galbiati, G., and Maffioli, F. (1984). The complexity of multi-
constrained spanning tree problems. In Lovasz, L., editor, Theory of Algorithms,
pages 53–101. North-Holland, Amsterdam.

[33] Carosi, L., Jahn, J., and Martein, L. (2003). On the connections between semidef-
inite optimization and vector optimization. Journal of Interdisciplinary Mathemat-
ics, 6:219–229.

[34] Chan, A. and Francis, R. (1976). A round-trip location problem on a tree graph.
Transportation Science, 10:35–51.

[35] Chang, R. and Leu, S.-J. (1997). The minimum labeling spanning trees. Infor-
mation Processing Letters, 63(6):277–282.

[36] Chankong, V. and Haimes, Y. Y. (1983). Multiobjective Decision Making: Theory
and Methodology. Elsevier Science Publishing, New York.

[37] Chazelle, B. (2000). A minimum spanning tree algorithm with inverse-ackermann
type complexity. Journal of the ACM, 47(6):1028–1047.

[38] Chu, P. C. and Beasley, J. (1998). A genetic algorithm for the multiconstrained
knapsack problem. Journal of Heuristics, 4:63–86.

[39] Climaco, J. C. N., Captivo, M. E., and Pascoal, M. M. B. (2010). On the bicri-
terion - minimal cost/minimal label - spanning tree problem. European Journal of
Operational Research, 204:199–205.

[40] Cooper, L. (1963). Location-Allocation Problems. Operations Research, 11:331 –
343.

[41] Cooper, L. (1964). Heuristic methods for location-allocation problems. SIAM
Review, 6:37–53.

[42] Cormen, T. H., Stein, C., Leiserson, C. E., and Rivest, R. L. (2001). Introduction
to Algorithms. B&T.
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[197] Steuer, R. (1985). Multiple criteria optimization. Theory, computation, and
application. John Wiley & Sons, Inc., New York.

[198] Steuer, R. and Choo, E. (1983). An interactive weighted tchebycheff procedure
for multiple objective programming. Mathematical Programming, 26:326–344.

[199] Stiglmayr, M., Pfeuffer, F., and Klamroth, K. (2008). A branch and bound algo-
rithm for medical image registration. In Brimkov, V. E., Barneva, R. P., and Haupt-
man, H. A., editors, Proceedings of the 12th International Workshop on Combinato-
rial Image Analysis (IWCIA 08), volume 4958, pages 218–227, Berlin/Heidelberg.
Springer.

[200] Tavares, J., Pereira, F. B., and Costa, E. (2008). Multidimensional knapsack
problem: A fitness landscape analysis. IEEE Transaction on Systems, Man and
Cybernetics - Part B, 38(3):604–616.

[201] Teunissen, P. J. G. (2000). Adjustment Theory: An Introduction. VSSD.

[202] Thibault, L. (1984). Continuity of measurable convex and biconvex operators.
In Proceedings of the American Mathematical Society, volume 90, pages 281–284.

[203] Turner, L. (2010). private communication.

[204] Turner, L. (forthcoming). Universal combinatorial optimization problems.
Ph. D. Thesis.

[205] Tuyen, H. and Muu, L. (2001). Biconvex programming approach to optimiza-
tion over the weakly efficient set of a multiple objective affine fractional problem.
Operations Research Letters, 28:81–92.

[206] Ulungu, E. L. and Teghem, J. (1995). The two phases method: An efficient
procedure to solve bi-objective combinatorial optimization problems. Foundations
of Computing and Decision Sciences, 20:149165.

[207] Vasquez, M. and Vimont, Y. (2005). Improved results on the 0-1 multidimen-
sional knapsack problem. European Journal of Operational Research, 165:70–81.

[208] Visée, M., Pirlot, M., and Ulungu, E. L. (1998). Two-phases method and branch
and bound procedures to solve the bi-objective knapsack problem. Journal of Global
Optimization, 12:139–155.

[209] Visweswaran, V. and Floudas, C. (1990). A global optimization algorithm (GOP)
for certain classes of nonconvex NLPs: II. Application of theory and test problems.
Computers and Chemical Engineering, 14(12):1419 – 1434.

[210] Visweswaran, V. and Floudas, C. (1993). New properties and computational
improvement of the GOP algorithm for problems with quadratic objective function
and constraints. Journal of Global Optimization, 3(3):439–462.



BIBLIOGRAPHY 283

[211] Warburton, A. (1983). Quasiconcave vector maximization: Connectedness of
the sets of Pareto-optimal and weak Pareto-optimal alternatives. Journal of Opti-
mization Theory and Applications, 40:537–557.
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