
Overlapping and Nonoverlapping Orderings

for Preconditioning

David Fritzsche

July 27, 2010

ii

Die Dissertation kann wie folgt zitiert werden:

urn:nbn:de:hbz:468-20100930-113815-0
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20100930-113815-0]

iii

ABSTRACT

Several ordering techniques for block based preconditioning are presented.

The XPABLO algorithm as an extension of the original PABLO and TPABLO

algorithms incorporates as a preprocessing step a nonsymmetric permutation com-

bined with row and column scalings to obtain a large diagonal. A more general

parametrization can be implemented in XPABLO while keeping the original time

complexity of PABLO. It is shown that a block Gauss–Seidel preconditioner can be

implemented to have the same execution time as the corresponding block Jacobi

preconditioner. Experiments are presented showing that for certain classes of matri-

ces, the block Gauss–Seidel preconditioner used with the system permuted with the

XPABLO algorithm can outperform the best ILUTP preconditioners in a large set of

experiments.

The new OBGP algorithm extends a given nonoverlapping block ordering to an

overlapping ordering to be used for algebraic Schwarz preconditioners. It is shown by

experiments that using a multiplicative Schwarz preconditioner based on the extended

ordering instead of using a block Gauss–Seidel preconditioner based on the original

ordering can result in faster convergence.

iv

ACKNOWLEDGEMENTS

This thesis was written under the terms of the Agreement for a Jointly Supervised

Ph.D. Study Program in Mathematics between Bergische Universität Wuppertal and

Temple University - Of the Commonwealth System of Higher Education.

I want to thank my advisors Andreas Frommer and Daniel Szyld for all their

support and help during my time as a graduate student. Their guidance, their com-

ments, and their encouragements made this thesis possible. They made it possible

for me to work and study at the Temple University for more than two years and this

time has become an invaluable and unforgettable part of my life.

I also would like to thank the other members of my doctoral committees: Yury

Grabovsky and Benjamin Seibold at Temple University and Bruno Lang and Walter

Krämer at Bergische Universität Wuppertal. I am very grateful for their patience

and for their willingness to participate in the committee.

I want to thank Benjamin Seibold for providing me with a very useful set of test

problems. The numerical results obtained by solving these problems are an important

part of this thesis and the graph visualizations based on the known geometry for these

problems gave me some very helpful additional “feedback” on XPABLO and OBGP.

Last, but not least, I want to thank Sébastien Loisel. He gave me the idea of

working with level sets during the development of OBGP.

Their help and suggestions are very much appreciated.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . x

LIST OF ALGORITHMS . xi

CHAPTER

1. INTRODUCTION . 1

1.1 Test Problems . 3

1.1.1 University of Florida Sparse Matrix Collection 4

1.1.2 Poisson’s Equation . 4

2. PRELIMINARIES . 12

2.1 Krylov Subspace Methods . 12

2.2 Preconditioning . 13

2.2.1 Incomplete LU Factorization Preconditioners 14

2.3 Classes of Matrices . 16

2.4 Graph Theory Concepts . 17

vi

2.4.1 Directed and Undirected Graphs 18

2.4.2 Partitions, Covers and Permutations 22

2.4.3 Bipartite Graphs . 23

3. PABLO AND ITS VARIANTS 24

3.1 Some Notes on Literature on Reorderings for Preconditioners 26

3.2 Nonsymmetric Permutations and Diagonal Scalings 28

3.3 XPABLO: An Extension of PABLO and TPABLO 30

3.3.1 XPABLO Criteria and Parameters 30

3.3.2 XPABLO as a Generalization of PABLO and TPABLO 36

3.3.3 Implementation Details . 39

3.4 Analysis of XPABLO . 42

3.5 Practical Issues . 45

3.5.1 Robustness . 45

3.5.2 Choosing Parameters . 49

3.6 Efficient Block Gauss–Seidel Preconditioning 51

3.7 Numerical Experiments . 54

3.7.1 Comparison of PABLO, TPABLO1, and XPABLO 56

3.7.2 Comparison of XPABLO and ILU 63

3.8 Discussion . 66

4. OVERLAPPING PARTITIONING 71

4.1 Schwarz Methods and Preconditioners 72

4.1.1 The Block Gauss–Seidel Method 75

4.1.2 Algebraic Multiplicative Schwarz Method 79

4.1.3 Connectivity in the Multiplicative Schwarz Method 81

4.2 The OBGP Algorithm . 86

vii

4.2.1 Growing a Block . 87

4.2.2 Implementation . 94

4.3 Complexity Analysis of OBGP . 99

4.3.1 Dealing With Nodes With High Degree 103

4.4 Numerical Results . 104

4.5 Discussion . 104

5. PARTITIONING FOR UNSYMMETRIC PERMUTATIONS . . 113

5.1 More on Bipartite Graphs . 116

5.1.1 Partitions and Permutations 116

5.1.2 Balance . 121

5.2 The Unsymmetric PABLO algorithm 123

5.2.1 Selecting a Maximal Balanced Subset 126

5.2.2 Selecting a Maximal Balanced Subset Containing Fixed Nodes 127

5.3 Discussion . 128

6. CONCLUSIONS AND FUTURE WORK 130

BIBLIOGRAPHY . 132

APPENDICES

A. NOTATION . 137

viii

LIST OF TABLES

Table Page

1.1 Summary Information on the Test Matrices 10

1.2 Direct Solve Results for the Test Matrices 11

3.1 Replacement of Singular or Nearly Singular Blocks 46

3.2 Recommended XPABLO Criterion τ and Parameter Values 50

3.3 PABLO Solve Results for the Test Matrices 59

3.4 TPABLO1 Solve Results for the Test Matrices 60

3.5 XPABLO Solve Results for the Test Matrices 61

3.6 Comparison of PABLO, TPABLO1, and XPABLO Results 62

3.7 Comparison of XPABLO and ILUTP Results 65

3.8 ILUTP(10−2) Solve Results for the Test Matrices 68

3.9 ILUTP(10−3) Solve Results for the Test Matrices 69

3.10 ILUTP(10−4) Solve Results for the Test Matrices 70

4.1 Results for Adding All Candidate Nodes as Overlap 89

4.2 Comparison of XPABLO and XPABLO+OBGP(`) Results 105

4.3 XPABLO+OBGP(20) Results Using minbs = 800 and maxbs = 4000 . . 109

4.4 XPABLO+OBGP(5) Solve Results for the Test Matrices 110

4.5 XPABLO+OBGP(10) Solve Results for the Test Matrices 111

ix

4.6 XPABLO+OBGP(20) Solve Results for the Test Matrices 112

x

LIST OF FIGURES

Figure Page

1.1 Geometry of the 2d Point Cloud for Poisson’s Equation (n = 1000) . . . 7

1.2 Graph of LSQ_2D_1000 (n = 1000, nnz = 15 803) 8

1.3 Spy Plot of LSQ_2D_1000 . 9

2.1 Two Ways to Draw the Example Graph G 18

3.1 Illustration of the Fullness Criterion and the Connectivity Criterion . . . 32

3.2 Graph of LSQ_2D_1000 Showing XPABLO Blocks 37

3.3 Spy Plot of LSQ_2D_1000 After XPABLO Permutation 38

3.4 Spy Plots of GARON1 During Four Phases of the XPABLO Framework . . 57

4.1 Too Much Overlap in Multiplicative Schwarz Preconditioning 90

4.2 Level Sets L0(S) through L4(S) with Respect to the Node Set S 93

4.3 OBGP(6) Block Growth for LSQ_2D_1000 95

4.4 OBGP Block Growth Showing Edge Weights 97

4.5 Storage of Node Sets V (k) and N (k) . 99

4.6 Convergence Curves for MPS_2D_50000 106

5.1 Ordering of Rectangular Blocks in UPABLO 115

xi

LIST OF ALGORITHMS

Algorithm Page

3.1 XPABLO . 35

3.2 XPABLO with Implementation Details 40

4.1 Application of a Multiplicative Schwarz Preconditioner 82

4.2 Multiplicative Schwarz Preconditioned Matrix-Vector Multiplication . . . 82

4.3 Outline of the OBGP Algorithm . 87

4.4 Outline of the OBGP(`) Algorithm . 89

4.5 Basic Version of the OBGP(`) Algorithm 92

4.6 OBGP(`) . 98

5.1 The UPABLO Algorithm . 125

1

CHAPTER 1

INTRODUCTION

We consider a nonsingular linear system

Ax = b, A ∈ Rn×n, x, b ∈ Rn, (1.1)

where n is large and A is sparse. We do not assume A to be symmetric. Note that

we call a matrix sparse if most of its entries are zero. We use the nnz(A) to denote

the number of nonzeros in A, i.e.,

nnz(A) :=
∣∣∣{(i, j) : aij 6= 0

}∣∣∣.
Direct methods, based on Gaussian elimination, have reached a mature state

for the general system (1.1); see, e.g., [18], [20], [21], [24]. They may, however, suffer

from severe fill-in so that memory resources may become insufficient and/or execution

times may become too large.

An alternative is iterative methods, such as Krylov subspace methods, which

are discussed in section 2.1. In most cases they need less memory, but may suffer from

robustness problems or a lack of convergence. The key to robustness and convergence

for a broad range of different problems is to find good preconditioners. We will give

a short introduction to preconditioning in section 2.2.

2

In this thesis we explore several preconditioning techniques applicable for it-

erative methods for the general problem (1.1), see chapters 3, 4 and 5. In all of these

preconditioners we need to solve linear systems of (much) smaller size than (1.1).

Since we use direct methods to solve these smaller systems our approach can also be

viewed as a hybrid method between direct and iterative solvers.

At the end of this chapter we present our test problems. In Chapter 2, we

present some background material used in this thesis. In Chapter 3, which builds upon

[30], we introduce the XPABLO algorithm, a variant of the PABLO and TPABLO

algorithms. XPABLO finds a symmetric permutation of A such that the permuted

system has a q × q block structure, which can be used for block Jacobi and block

Gauss–Seidel preconditioning. We also discuss how XPABLO can be combined with

a preprocessing step, which permutes and scales the system such that the diagonal

is large compared to the off-diagonal part of the matrix. We also give some imple-

mentation details of the XPABLO algorithm and analyze its time complexity. In

section 3.5.1, we present some results on the robustness of XPABLO-based precondi-

tioning for H-matrices and spd matrices and discuss a way to handle singular blocks

of general matrices. Moreover, we show in Chapter 3 how a block Gauss–Seidel

preconditioner can be implemented to have the same execution time as the corre-

sponding block Jacobi preconditioner. Finally, extensive numerical experiments show

the robustness and low execution time of XPABLO-based preconditioning compared

to ILUTP-based preconditioning. In Chapter 4, we present the new OBGP algo-

rithm to grow an existing nonoverlapping block structure into an overlapping one.

We also reintroduce the block Gauss–Seidel method and introduce the multiplicative

Schwarz method. The block Gauss–Seidel method is presented using the same nota-

tion we later use for the presentation of the multiplicative Schwarz method. In this

3

way we can show that the block Gauss–Seidel method can be seen as the multiplica-

tive Schwarz method without overlap. Furthermore, we discuss how to implement

OBGP in an efficient way and analyze the time complexity of OBGP. We also present

numerical experiments, which show the benefit of adding overlap compared to not

adding overlap. In Chapter 5, we present our work toward an unsymmetric version

of XPABLO.

1.1 Test Problems

The test problems used in our numerical experiments come from two different sources

and cover several different application areas. Some of the test problems are from

the University of Florida Sparse Matrix Collection [17], and the others were kindly

provided by Benjamin Seibold; see 1.1.2.

Since the convergence of the iterative solver can depend on the given right-

hand side, we need to specify exactly what right-hand side is used in our experiments:

If a right-hand side b is provided with the matrix in [17], we use it as the right-hand

side for (1.1). If no right-hand side is provided, we use b := Ae, where e = (1, . . . , 1)T

is the vector of all ones. For the CAVITY16 and CAVITY26 matrices we use b := Ae as

the right-hand side since the provided solution vector was found to be inconsistent

with the provided right-hand side.

Some basic properties of our test matrices are summarized in Table 1.1. For

each matrix we show the dimension (n), the number of nonzeros (nnz), the 1-norm

condition estimate (Condest), the application area (Area) and the UF matrix group

(Group). The given condition estimate is the result of MATLAB’s condest function.

If no condition estimate is given, the computation failed for some reason, usually the

available memory was not sufficient. The application area and the matrix group are

given only for the UF test matrices.

4

In Table 1.2 we give results obtained by using a direct solver to solve the linear

systems of Table 1.1. We employed the UMFPACK [18] sparse (direct) solve package

via MATLAB’s backslash operator in the expression x = A \ b. In the results, oom

(out of memory) denotes that the available memory was not sufficient, i.e., MATLAB

gave an out of memory error for x = A \ b. For a “successful” run we give additional

information: The solving time, measured in seconds (Time), the relative residual norm

‖b − Ax‖/‖b‖ (Rel. Res.), and, if the exact solution x∗ is known, the relative error

norm ‖x∗− x‖/‖x∗‖ (Rel. Err.). For both the relative residual norm and the relative

error norm x denotes the solution computed by UMFPACK.

1.1.1 University of Florida Sparse Matrix Collection

The University of Florida Sparse Matrix collection (UF) [17] is a large collection of

publicly available sparse matrices coming from real applications. As of October 2009,

it contains 2272 matrices. We selected our test problems from two application areas:

Computational fluid dynamics (CFD) and semiconductor device simulation (SDS).

The UF matrix group describes the origin of a matrix.

1.1.2 Poisson’s Equation

Consider Poisson’s equation
−∆u = f in Ω

u = g on ΓD

∂u

∂n
= h on ΓN

(1.2)

where ΓD ∪ ΓN = ∂Ω.

Numerical methods can be used to convert the Poisson equation (1.2) into a

linear system of the form (1.1). Traditional approaches are finite difference methods

and finite element methods. Finite difference methods work well if the discretization

5

points are placed on a regular grid. However, a regular distribution of the discretiza-

tion points may not be possible if the geometry is complex or if the points are given

from the application. Finite element methods do not suffer from these drawbacks, but

they need a mesh and the construction of a mesh can be very expensive. The meshfree

finite difference approach which we shortly describe now allows to construct meshfree

finite difference stencils for discretization points not on a regular grid without the

costly meshing of finite element methods.

Let X = {x1, . . . ,xn} ⊂ Ω̄ be a point cloud, which consists of interior points

Xi ⊂ Ω and boundary points Xb ⊂ ∂Ω, i.e., X = Xi ∪ Xb. The point cloud is

meshfree, i.e., no information about connections between points is provided. The

meshfree finite difference approach converts problem (1.2) into a linear system

Aû = f̂ ,

where the vector û contains approximations ui to the values u(xi). The ith row of

the matrix A consists of the stencil corresponding to the point xi.

For our experiments we use discretizations kindly provided by Benjamin Sei-

bold. A detailed description of the different meshfree discretization approaches and

the test problem is given in [45]. In the following we give a short overview about these

provided discretizations. The problem is to solve Poisson’s equation (1.2) in the unit

square (for d = 2) or unit box (d = 3) with a ball cut out, i.e., Ω = [0, 1]d \B(m; 0.44)

where d is the dimension and B(m; r) denotes the ball with midpoint m and radius r.

The midpoint is m = (0.5, 1.1) for d = 2 and m = (0.5, 0.5, 1.1) for d = 3. Moreover,

to compare the accuracy of the different discretizations, the problems are constructed

such that the solution is known. Given g, choose f = ∆g and h = ∂g
∂n

so that (1.2)

6

has the known solution u = g. According to [45], the function g is set to

g(x1, x2) =
1

c2

(
x1 sin(x2 + 2) + x2 sin(2x2 + 1)

)
in 2d,

g(x1, x2, x3) =
1

c3

(
x1 sin(x2 + 2) + x2 sin(2x3 + 3) + x3 sin(3x1 + 1)

)
in 3d

with c2 and c3 such that max g −min g = 1.

The problem is discretized by a sequence of point clouds. The point clouds

have a uniform average density and a minimum separation of δ = 0.05. For a fixed

point cloud two different types of approximations for the derivative are considered:

The least squares (LSQ) approach and the minimal positive stencil (MPS) approach.

Figure 1.1 shows the geometry of the point cloud for n = 1000 points. Fig-

ure 1.2 shows a plot of the graph of the LSQ discretization for the point cloud shown

in Figure 1.1.

7

Figure 1.1. Geometry of the 2d Point Cloud for Poisson’s Equation (n = 1000)

8

Figure 1.2. Graph of LSQ_2D_1000 (n = 1000, nnz = 15 803)

9

0

1.6e+3

3.2e+3
1 100070 140 210 280 350 420 490 560 630 700 770 840 910

Figure 1.3. Spy Plot of LSQ_2D_1000

10

Table 1.1. Summary Information on the Test Matrices

Matrix n nz Condest Area Group

CAVITY16 4 562 137 887 1.39 · 10+7 CFD DRIVCAV
CAVITY26 4 562 138 040 1.19 · 10+8 CFD DRIVCAV
EX19 12 005 259 577 1.34 · 10+13 CFD FIDAP
EX35 19 716 227 872 8.76 · 10+12 CFD FIDAP
GARON1 3 175 84 723 1.46 · 10+7 CFD Garon
GARON2 13 535 373 235 9.54 · 10+7 CFD Garon
RAEFSKY2 3 242 293 551 1.08 · 10+4 CFD Simon
RAEFSKY3 21 200 1 488 768 4.53 · 10+11 CFD Simon
SHYY41 4 720 20 042 3.51 · 10+48 CFD Shyy
SHYY161 76 480 329 762 8.23 · 10+277 CFD Shyy

IGBT3 10 938 130 500 4.74 · 10+19 SDS Schenk ISEI
NMOS3 18 588 237 130 1.09 · 10+21 SDS Schenk ISEI
BARRIER2-1 113 076 2 129 496 – SDS Schenk ISEI
PARA-4 153 226 2 930 882 – SDS Schenk ISEI
PARA-8 155 924 2 094 873 – SDS Schenk ISEI
OHNE2 181 343 6 869 939 – SDS Schenk ISEI
2D_54019_HIGHK 54 019 486 129 7.55 · 1032 SDS Schenk IBMSDS
3D_51448_3D 51 448 537 038 – SDS Schenk IBMSDS
IBM_MATRIX_2 51 448 537 038 – SDS Schenk IBMSDS
MATRIX_9 103 430 1 205 518 – SDS Schenk IBMSDS
MATRIX-NEW_3 125 329 893 984 – SDS Schenk IBMSDS

LSQ_2d_1000 1000 15 803 5.60 · 10+4

LSQ_2d_2000 2000 33 716 1.50 · 10+5

LSQ_2d_5000 5000 91 339 8.03 · 10+5

LSQ_2d_10000 10 000 187 949 2.00 · 10+6

LSQ_2d_50000 50 000 978 621 2.71 · 10+7

LSQ_2d_100000 100 000 1 987 201 8.71 · 10+7

LSQ_2d_200000 200 000 4 010 198 2.08 · 10+8

LSQ_2d_400000 400 000 8 144 136 –
MPS_2d_10000 10 000 56 915 9.44 · 10+6

MPS_2d_50000 50 000 293 015 1.39 · 10+8

MPS_2d_100000 100 000 590 210 3.90 · 10+8

MPS_2d_200000 200 000 1 186 000 1.13 · 10+9

MPS_2d_400000 400 000 2 380 500 3.01 · 10+9

LSQ_3d_10000 10 000 309 153 1.66 · 10+4

LSQ_3d_50000 50 000 1 908 691 –
LSQ_3d_100000 100 000 4 138 471 –
LSQ_3d_200000 200 000 8 691 582 –
MPS_3d_10000 10 000 66 304 9.81 · 10+4

MPS_3d_50000 50 000 393 431 8.11 · 10+5

MPS_3d_100000 100 000 830 863 –
MPS_3d_200000 200 000 1 729 316 –

11

Table 1.2. Direct Solve Results for the Test Matrices

Matrix Time Rel. Res. Rel. Err.

CAVITY16 0.108 1.21 · 10−15 3.59 · 10−14

CAVITY26 0.094 7.04 · 10−16 2.58 · 10−13

EX19 0.141 3.51 · 10−16 1.06 · 10−8

EX35 0.21 6.05 · 10−16 2.7 · 10−8

GARON1 0.057 7.4 · 10−16 4.99 · 10−14

GARON2 0.393 8.87 · 10−16 1.06 · 10−13

RAEFSKY2 0.359 7.34 · 10−16 na
RAEFSKY3 1.17 2.42 · 10−16 na
SHYY41 0.021 1.44 · 10+8 3.54 · 10+26

SHYY161 0.716 1.23 · 10+236 1.71 · 10+255

IGBT3 0.183 2.03 · 10−12 na
NMOS3 0.45 6.24 · 10−15 na
BARRIER2-1 133.0 1.19 · 10−10 na
PARA-4 oom
PARA-8 oom
OHNE2 oom
2D_54019_HIGHK 1.18 3.14 · 10−15 na
3D_51448_3D 6.16 1.85 · 10−15 na
IBM_MATRIX_2 6.18 1.56 · 10−16 na
MATRIX_9 56.8 5.79 · 10−14 na
MATRIX-NEW_3 11.4 1.97 · 10−18 na

LSQ_2D_1000 0.012 7.03 · 10−13 1.13 · 10−15

LSQ_2D_2000 0.024 1.55 · 10−12 6.22 · 10−16

LSQ_2D_5000 0.113 5.18 · 10−12 1.61 · 10−15

LSQ_2D_10000 0.211 1.28 · 10−11 1.32 · 10−15

LSQ_2D_50000 1.98 9.86 · 10−11 5.49 · 10−15

LSQ_2D_100000 5.45 2.36 · 10−10 4.82 · 10−15

LSQ_2D_200000 15.2 5.43 · 10−10 1.42 · 10−14

LSQ_2D_400000 43.3 1.04 · 10−9 1.39 · 10−14

MPS_2D_10000 0.077 2.31 · 10−11 2.22 · 10−15

MPS_2D_50000 0.651 1.91 · 10−10 5.75 · 10−15

MPS_2D_100000 1.68 4.35 · 10−10 1.12 · 10−14

MPS_2D_200000 4.32 5.34 · 10−10 7.23 · 10−15

MPS_2D_400000 10.7 8.21 · 10−10 1.78 · 10−14

LSQ_3D_10000 1.02 1.79 · 10−13 3.75 · 10−16

LSQ_3D_50000 55.6 8.26 · 10−13 4.52 · 10−16

LSQ_3D_100000 oom
LSQ_3D_200000 oom
MPS_3D_10000 0.314 3.77 · 10−13 2.89 · 10−16

MPS_3D_50000 9.54 1.59 · 10−12 3.94 · 10−16

MPS_3D_100000 45.9 3.05 · 10−12 1.05 · 10−15

MPS_3D_200000 oom

12

CHAPTER 2

PRELIMINARIES

In this chapter we give a short overview over several topics that are touched in this

thesis but are not a main focus point of this thesis: Krylov subspace methods are

presented in section 2.1, preconditioning is introduced in section 2.2, several classes

of matrices are covered in section 2.3, and a short introduction to graph theory is

given in section 2.4.

2.1 Krylov Subspace Methods

In this section we present a very short overview of Krylov subspace methods. For a

detailed introduction we refer to the literature, see, e.g., [41].

Definition 2.1: The Krylov subspace Km(A, v) is defined as

Km(A, v) := span{v, Av, . . . , Am−1v}. 3

Let x0 be an initial approximation to the solution (often x0 = 0) and let

r0 = b − Ax0 be the initial residual. From now on we write just Km to denote

Km(A, r0). The “template” Krylov subspace methods compute iterates xm ∈ x0 +Km

such that they satisfy the Petrov-Galerkin condition

b− Axm ⊥ Lm,

13

where Lm is another subspace of dimension m. The GMRES method [42] used in

the numerical experiments uses Lm = AKm. It therefore belongs to the family of

minimal residual methods, since b − Axm ⊥ AKm is equivalent to minimizing the

residual norm ‖b− Axm‖2 over all vectors in x0 +Km, see [41, p. 133].

2.2 Preconditioning

Preconditioning describes the transformation of the original system (1.1) into an

equivalent system, i.e., a system with the same solution, such that the chosen iter-

ative method converges faster for the transformed system. As its basic operations

a preconditioned Krylov subspace method usually performs in each iteration one

matrix-vector multiplication with A and one application of the preconditioner, i.e.,

one has to solve a linear system Mz = v, where M is the preconditioner. A good

preconditioner contains as much information about the matrix A as possible while

allowing to solve Mz = v with low cost. Since these two goals contradict each other

in all practical cases there is no optimal preconditioner. The perfect preconditioner

in the sense of containing as much information about A would be M = A, i.e., the

transformed system (using left preconditioning, which will be explained later) would

be A−1Ax = A−1b. A Krylov subspace method would need only one iteration to

reach the solution, but the application of the preconditioner involves the solution of

a system like (1.1). The perfect preconditioner in the sense of being inexpensive to

apply would be M = I, the identity matrix, but the preconditioned system would be

the same as the un-preconditioned one.

There are three ways of applying a preconditioner, depending on how the

system (1.1) is transformed into the preconditioned system:

14

• We can apply the preconditioner from the left. The preconditioned system is

then

M−1Ax = M−1b.

• We can also apply the preconditioner from the right and get

AM−1y = b, x = M−1y.

• Finally, we can have a split preconditioner M = MLMR with the preconditioned

system

M−1
L AM−1

R y = M−1
L b, x = M−1

R y.

The preconditioned matrices M−1A, AM−1, and M−1
L AM−1

R are all similar and hence

have the same eigenvalues. Since for many Krylov subspace methods the convergence

is determined by the eigenvalues and their distribution, in many cases the conver-

gence will be pretty similar. This is particularly so for the conjugate gradients (CG)

method, where A and M are assumed to be symmetric positive definite. However, the

convergence of GMRES can be different depending on the type (left, right or split)

of preconditioning used, especially if M is ill conditioned; see [41, pp. 267–272] for a

comparison of left and right preconditioned GMRES.

We finally note that the residual obtained using right preconditioning in exact

arithmetic, represents a residual of the original system; see, e.g,. [4, p. 420], [41,

p. 270].

2.2.1 Incomplete LU Factorization Preconditioners

A widely used approach for preconditioning is based on computing an incomplete LU

(ILU) factorization LU ≈ A of A where L and U are triangular matrices. The ILU

15

preconditioner based on this factorization is then M = LU . Computing a complete

factorization LU = A is usually not feasible, otherwise we could use this factorization

to directly solve the linear system (1.1). A common problem is that the factors L

and U of a complete LU decomposition contain too many nonzero entries. Therefore,

in incomplete LU factorizations some of the nonzero entries of L and U are dropped.

There are many different approaches how to do this dropping, see, e.g., [41] for a

detailed description.

For the experiments in this thesis, we use MATLAB’s ilu function to com-

pute an incomplete LU factorization with threshold and pivoting using an ILUTP

approach, see [41, p. 312–314]. For a given matrix A, it computes a unit lower tri-

angular matrix L, an upper triangular matrix U and a permutation matrix P such

that

LU ≈ PA.

The dropping of small entries can be controlled by the drop tolerance (threshold)

parameter droptol . According to the MATLAB documentation (help ilu), the com-

puted factors L and U have the following properties: The off-diagonal nonzero entries

of U = (uij), i, j = 1, . . . , n satisfy

|uij| ≥ droptol · ‖A(j)‖, (2.1)

where A(j), j = 1, . . . , n, denotes the jth column of A. The diagonal entries ujj,

j = 1, . . . , n of U are retained even if they do not satisfy (2.1). The entries of

L = (lij), i, j = 1, . . . , n, are scaled by the pivot only after they are tested against the

local drop tolerance droptol‖A(j)‖. Therefore, for nonzeros in L we have

|lij| ≥ droptol · ‖A
(j)‖
|ujj|

.

16

2.3 Classes of Matrices

In this section we give the definitions of some classes of matrices. The definitions

are fairly standard and can also be found in many books, see, e.g., [41]. For the

definition of M -matrices and related classes see also [11]. In later chapters we will

give some results on robustness or convergence involving spd matrices, H-matrices or

M -matrices.

In the symmetric case a very import class are the positive definite matrices:

Definition 2.2: A square matrix A ∈ Rn×n is called symmetric positive definite

(spd) if A = AT and xTAx > 0 for all x 6= 0, x ∈ Rn. 3

Definition 2.3: A matrix A ∈ Rn×n is termed an H-matrix if there exist weights

uj > 0, j = 1, . . . , n, such that for all i = 1, . . . , n

|aii| · ui >
∑

j=1,...,n
j 6=i

|aij| · uj. 3

If the H-matrix condition holds with weights uj = 1, j = 1, . . . , n, the

matrix is called (strictly) diagonally dominant . Let A be an H-matrix and let

U = diag(u1, . . . , un). Then AU is strictly diagonally dominant.

Definition 2.4: The comparison matrix 〈A〉 of A is defined by

(
〈A〉
)
ij

:=

{
|aii| if i = j

−|aij| otherwise.
3

Definition 2.5: A square matrix A ∈ Rn×n is called Z-matrix if aij ≤ 0 for all i 6= j,

i, j = 1, . . . , n. A Z-matrix is called L-matrix if aii > 0 for all i = 1, . . . , n. 3

We say that a matrix A is nonnegative (positive) if its entries are nonnegative

(positive), i.e., if aij ≥ 0 (> 0) for all i, j = 1, . . . , n. We denote this by A ≥ 0

(A > 0). This notation is used in the same way for vectors.

17

Definition 2.6: A nonsingular Z-matrix A ∈ Rn×n is called an M-matrix if its

inverse is nonnegative, i.e., if A−1 ≥ 0. 3

Lemma 2.7: Every M -matrix A is an L-matrix, i.e., every M -matrix has strictly

positive diagonal entries.

Proof: Let C = A−1. Since AC = I we get (AC)ii =
∑

j=1,...,n aijcji = 1. Then

aiicii = 1−
∑

j=1,...,n
j 6=i

aijcji.

Since aijcji ≤ 0 the right hand side is at least 1 and hence aii > 0. 2

Theorem 2.8: The class of H-matrices contains the class of M -matrices, i.e., every

M -matrix is an H-matrix.

Proof: Let A ∈ Rn×n be an M -matrix. Let e = (1, . . . , 1)T ∈ Rn be the vector of ones

and let u = A−1e. Since A−1 is nonnegative so is u and by A−1 being nonsingular we

can even conclude that u > 0, i.e., uj > 0, j = 1, . . . , n. We will show that these ujs

are suitable weights for the H-matrix condition. We begin by observing that

Au = AA−1e = Ie = e > 0.

It follows that
∑

j=1,...,n aijuj > 0 for all i = 1, . . . , n. Since A is an M -matrix we

know that |aii| = aii and |aij| = −aij for i 6= j. Therefore,∑
j=1,...,n

aijuj > 0 ⇔ aiiui > −
∑

j=1,...,n
j 6=i

aijuj ⇔ |aii|ui >
∑

j=1,...,n
j 6=i

|aij|uj,

which shows that A is an H-matrix. 2

2.4 Graph Theory Concepts

In this chapter we introduce some basic graph theory concepts and notation used

throughout this thesis. For the reader familiar with graph theory we note that the

18

definitions of adjacency and incidence are somewhat nonstandard for the case of di-

rected graphs. Furthermore, the definition of a bipartite graph was chosen to simplify

the definition of the bipartite graph of a matrix.

2.4.1 Directed and Undirected Graphs

Definition 2.9: An undirected graph or simply graph is an ordered pair (V,E) of sets,

where E contains two-element subsets of V . The elements of V are called vertices or

nodes . The elements of E are called edges of the graph. The elements of an edge are

the endpoints of this edge. Edges are said to connect their endpoints. 3

Example 2.10: Let G = (V,E) be the graph with

V = {1, 2, 3, 4, 5}

and E =
{
{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}

}
.

Figure 2.1 shows two different ways to draw G.

1 2

3 4 5

(a)

1

23

4

5

(b)

Figure 2.1. Two Ways to Draw the Example Graph G

Definition 2.11: Let A ∈ Rn×n, A = (aij) be a symmetric matrix. The undirected

graph G(A) = (V,E) of A is given by V = {1, . . . , n} and

E =
{
{i, j}

∣∣ aij = aji 6= 0 and i 6= j
}
,

i.e., the edges of G(A) correspond to the off-diagonal nonzero entries of A. 3

19

Definition 2.12: A directed graph or digraph is an ordered pair (V,E), where E is

a set of pairs of elements of V . The terms vertex, node, edge and endpoints are used

as for undirected graphs. 3

The edges in a directed graph have a direction. An edge (v, w) is said to go

from v to w. Moreover, (v, w) and (w, v) are two different edges. In an undirected

graph {v, w} and {w, v} are the same edge.

In this thesis we mainly consider directed graphs. Therefore, for this thesis

a general graph which is not explicitly specified as being directed or undirected is

considered to be directed.

In a fashion similar to definition of the undirected graph of a symmetric matrix

we can define the directed graph of a general matrix:

Definition 2.13: The directed graph or digraph G(A) = (V,E) associated with A ∈

R
n×n is given by V = {1, . . . , n} and E =

{
(i, j)

∣∣ aij 6= 0 and i 6= j
}

. 3

For incidence between vertices and edges in a digraph we use a somewhat

nonstandard terminology. The general definition for both directed and undirected

graphs is the following:

Definition 2.14: Let G = (V,E) be a graph (directed or undirected). A vertex

v ∈ V and an edge e ∈ E are incident if v is one of the endpoints of e. The set of

edges incident to v ∈ V is denoted by inc(v) ⊂ E. 3

For directed graphs this definition of incidence is nonstandard, because we do

not distinguish between the starting point and the end point of an edge.

Definition 2.15: Let G = (V,E) be a graph (directed or undirected). Two vertices

v, w ∈ V are called adjacent if there is a connecting edge between them. In a directed

graph the vertices v and w are adjacent if (v, w) ∈ E or (w, v) ∈ E.

20

Let S ⊆ V be a set of vertices. The adjacency set adj(S) contains all vertices

which are not in S but which are adjacent to a vertex in S; i.e.,

adj(S) =
{
j ∈ V

∣∣ j 6∈ S and j is adjacent to some i ∈ S
}
. 3

A commonly used concept in this thesis is to obtain subgraphs by restricting

a graph to a subset of the vertex set.

Definition 2.16: Let G = (V,E) be a digraph and let V ′ ⊆ V be a vertex set. The

induced subdigraph G|V ′ = (V ′, E ′) is defined by E ′ =
{

(i, j) ∈ E
∣∣ i, j ∈ V ′}.

The induced subgraph G|V ′ = (V ′, E ′) of an undirected graph G = (V,E) is

defined by E ′ =
{
{i, j} ∈ E

∣∣ i, j ∈ V ′}. 3

Throughout this thesis we will use the restriction notation |V ′ to denote quan-

tities of an induced subgraph, e.g., adj|V ′(S) refers to the adjacency set of S in the

subgraph induced by V ′. Moreover, we write |E|V ′ to denote the cardinality of the

edge set E ′ of the induced subgraph G|V ′ = (V ′, E ′).

We will also use a generalization of incidence.

Definition 2.17: Let G = (V,E) be a digraph and let S ⊂ V be a node set. We

define inc(S) ⊂ E to be the set of edges in E which are incident to some node in S,

i.e.,

inc(S) =
⋃
v∈S

{e ∈ E | e incident to v}

= edges in G|S∪adj(S).

The set inc(S) is called the set of edges incident to S.

For two sets S, T ⊂ V we define

inc(S, T) := inc(S) ∩ inc(T)

21

to be the set of edges incident to both S and T . 3

Definition 2.18: Let G = (V,E) be an undirected graph. The degree of v ∈ V is

the number of edges incident to v, i.e.,

deg(v) :=
∣∣∣{{v, w} ∈ E}∣∣∣.

For a digraph G = (V,E) we use three different degrees:

degin(v) :=
∣∣∣{(w, v) ∈ E

}∣∣∣,
degout(v) :=

∣∣∣{(v, w) ∈ E
}∣∣∣,

and deg(v) := degin(v) + degout(v).

If V ′ ⊆ V , we write, in a slight abuse of the restriction notation, deg |V ′(i) to denote

deg(i) in the graph induced by V ′ ∪ {i}. 3

Remark 2.19: With our definition of incident the degree of a vertex is always the

number of incident edges, both in the undirected and the directed case, i.e., an equiv-

alent definition of deg(i) is

deg(i) :=
∣∣∣{e ∈ E | i is incident with e}

∣∣∣.
Lemma 2.20: If G(A) = (V,E) is the digraph of a matrix A with nnz(A) non-zero

elements, then ∑
q∈V

deg(q) ≤ 2 nnz(A).

Proof: The number of edges in G(A) is less than or equal to nnz(A). Each edge

in G is incident to exactly two vertices and is therefore counted exactly two times

22

when we add together all degrees. This proves Lemma 2.20. Note that we reach∑
q∈V deg(q) = 2 nnz(A), if the diagonal of A contains only zeros. 2

Definition 2.21: Let G = (V,E) and G ′ = (V ′, E ′) be digraphs. G and G ′ are

isomorphic, written G ∼= G ′, if there is a bijection f : V → V ′ such that (vi, vj) ∈ V if

and only if (f(vi), f(vj)) ∈ E ′. We write f((vi, vj)) to denote the edge (f(vi), f(vj)).

Two undirected graphs G = (V,E) and G ′ = (V ′, E ′) are isomorphic if there

is a bijection f : V → V ′ such that {vi, vj} ∈ E if and only if {f(vi), f(vj)} ∈ E ′. We

write f({vi, vj}) to denote the edge {f(vi), f(vj)} ∈ E ′. 3

2.4.2 Partitions, Covers and Permutations

Definition 2.22: A family V = {Vi}i=1,...,q of ordered nonempty subsets Vi ⊂ V is

called a cover of V if
⋃q
i=1 = V . A cover is called a partition if the sets Vi are pairwise

disjoint, i.e., if Vi ∩ Vj = ∅ for i 6= j. Let ni = |Vi|. We denote the ni = |Vi| elements

of Vi by v
(i)
1 , . . . , v

(i)
ni . 3

Note that the node sets V1 = {1, 2, 3} and V2 = {3, 1, 2} are the same sets,

but they do not have the same order. We will explicitly speak of ordered sets if the

order is important, see, e.g., Example 4.2 in section 4.1. If the order does not make

a difference we will just speak of sets.

A partition can be used to define a permutation of the elements of V :

Definition 2.23: Let Vq = {V1, . . . , Vq} be a partition of V = {1, . . . , n} with ni =

|Vi|. The permutation function π : V → V with respect to the partition Vq is defined

as π(1) = v
(1)
1 , . . . , π(n1) = v

(1)
n1 , π(n1 + 1) = v

(2)
1 , . . . , π(n) = v

(q)
nq . 3

The permutation with respect to a partition can also be understood as a map

π : V → V that groups the vertices 1, . . . , n, from V into the sets V1, . . . , Vq, i.e.,

V1 = {π(1), . . . , π(k1)}, V2 = {π(k1+1), . . . , π(k2)}, . . . , Vq = {π(kq−1+1), . . . , π(kq)},

with ki =
∑i

j=1 ni.

23

2.4.3 Bipartite Graphs

Definition 2.24: A bipartite graph B = (Vr, Vc, E) consists of two disjoint sets of

vertices (nodes), namely Vr and Vc, and a set of edges

E ⊂
{
{i, j}

∣∣ i ∈ Vr, j ∈ Vc}

connecting the vertices. The vertices in Vr are called row vertices (or row nodes) and

the vertices in Vc are called column vertices (or column nodes). 3

Definition 2.25: For a node set S ⊂ Vr ∪ Vc the induced subgraph is defined to be

the bipartite graph B′ = (Vr ∩ S, Vc ∩ S,E ′) where

E ′ =
{
e = {v, w} ∈ E

∣∣ v, w ∈ S}. 3

Definition 2.26: Let B = (Vr, Vc, E) be a bipartite graph with V = Vr∪Vc, m = |Vr|,

and n = |Vc|. The undirected graph G(V,E) is called the undirected graph associated

with B. 3

Definition 2.27: Let A ∈ Rm×n, A = (aij), i = 1, . . . ,m, j = 1, . . . , n be a matrix.

The bipartite graph B(A) = (Vr, Vc, E) of A consists of vertices Vr = {r1, . . . , rm},

Vc = {c1, . . . , cn} and edges

E =
{
{ri, cj}

∣∣ ai,j 6= 0
}
. 3

Remark 2.28: Let the bijection f : Vr ∪ Vc → {1, . . . ,m+ n} be defined by f(r1) =

1, . . . , f(rm) = m and f(c1) = m + 1, . . . , f(cn) = m + n. The undirected graph

G = (V,E) associated with B(A) is isomorphic to the undirected graph G̃ = G(Ã) of

the symmetric matrix

Ã =

[
0 A
AT 0

]
∈ R(m+n)×(m+n),

i.e., G ∼=f G̃.

24

CHAPTER 3

PABLO AND ITS VARIANTS

The original PABLO (parameterized block ordering) and TPABLO (threshold pa-

rameterized block ordering) algorithms are collections of algorithms which compute a

symmetric permutation P of a linear system Ax = b such that the permuted system

Âx̂ = b̂, where Â = PAP T , x̂ = Px, and b̂ = Pb, (3.1)

has a relatively full block diagonal with relatively large nonzero entries. Block sizes

are determined dynamically; see [5], [14], [15], [36].

The permutation found by PABLO or TPABLO can be used to determine a

preconditioner. In the simplest case the preconditioner is taken as the block diagonal

D̂ using the PABLO or TPABLO blocks. One then solves the permuted system (3.1)

using GMRES (or some other Krylov subspace method) with preconditioner D̂; see,

e.g., [33], [41], [46] for their description. To solve the preconditioning system D̂s = r,

a (complete) LU decomposition D̂ = L̂ Û is computed. Since this reduces to an LU

decomposition on each of the diagonal blocks, we can use readily available packages.

In our experiments we use UMFPACK [18] to compute the sparse LU decomposition

on each diagonal block. Moreover, the LU decomposition of D̂ can be done in parallel.

While PABLO determines the blocks for D̂ by just using structural information

of A given through its associated directed graph, the TPABLO variants also take the

25

size of entries in A into account, i.e., it works on the weighted directed graph of A

with edge weights corresponding to the magnitude of the matrix entries.

In this chapter, which builds upon [29] and [30], we propose and analyze

three extensions of the PABLO and TPABLO preconditioners. First, we apply a

nonsymmetric permutation to put large entries on the diagonal. We discuss this

in section 3.2. In section 3.3 we introduce new parametrizations to be used with

PABLO and TPABLO. We describe the resulting algorithmic framework, termed

XPABLO, in detail and analyze its computational complexity. XPABLO is more

general than PABLO and TPABLO, since it includes new criteria to produce the

blocking permutation, and it reduces to the previous versions for specific choices of

its parameters. In section 3.6 we discuss how one can use either the lower or the

upper block triangular part of the matrix as a preconditioner at the same cost as the

block diagonal preconditioner.

After reviewing several practical issues related to the implementation in sec-

tion 3.5, we finally give results of numerical experiments in section 3.7, including a

comparison with ILU preconditioning. In section 3.8, we present some concluding

remarks.

A short survey of the literature about reorderings for preconditioners is given

in section 3.1.

We conclude this introduction to the chapter by noting that PABLO vari-

ants have been applied successfully in the construction of preconditioners in settings

that are different from the one presented in this thesis. A slightly modified version of

PABLO has been used successfully in a parallel computing setting to build block diag-

onal preconditioners for difficult problems in computational fluid dynamics (CFD) and

chemical engineering; see, e.g., [26]. The threshold variants TPABLO and XPABLO

can be used as a method to find blocks with large entries in dense or sparse matrices.

26

Specifically, in [28], XPABLO is used to find such blocks to build preconditioners for

the CSYM method [13] for solving systems with complex symmetric matrices. The

situation there is that an efficient preconditioner has to be factorized into its complex

symmetric singular value decomposition, so that block diagonal preconditioners seem

to be the only practical way. In the examples presented in [28] the iteration count is

reduced by up to 30% when using this approach.

3.1 Some Notes on Literature on Reorderings for Preconditioners

In addition to the references already mentioned, several authors have explored re-

orderings and partitioning techniques to improve the robustness and performance of

different types of preconditioners.

The combination of reorderings and scalings with ILU preconditioners for solv-

ing highly indefinite and nonsymmetric systems is studied in [7]. The numerical ex-

periments show that the reliability and performance of ILU preconditioned Krylov

subspace methods can be drastically improved by applying nonsymmetric permuta-

tions to put large entries on the diagonal. The best results came from the maximum

product transversal algorithm with scaling (MPS), the same algorithm we recom-

mend and use as a preparation step in section 3.2. The experiments also show the

usefulness of additionally using a symmetric reordering. It was found in [7] that the

reverse Cuthill–McKee ordering (RCM) [21] gave good results in a majority of cases

and was therefore chosen as the default ordering.

Symmetric reorderings for ILU preconditioners for symmetric or nearly sym-

metric matrices with zero-free diagonal are studied in [9]. The experiments in the pa-

per cover the reorderings found by the Cuthill–McKee algorithm, the reverse Cuthill–

McKee algorithm and the multiple minimum degree algorithm [32]. Although all these

27

algorithms were designed for sparse direct solvers, they are found to be useful to im-

prove the performance of iterative (Krylov subspace) methods preconditioned with

incomplete LU factorizations. In many cases RCM was found to be best and in many

cases for which RCM was not best, it still gave good results. In this respect the

results in [9] are consistent with those from [7].

The influence of unsymmetric permutations on solving linear systems origi-

nating from semiconductor device simulation and from circuit simulation is studied

in [43]. The numerical results in [43] present both the effect on direct solvers and

on various preconditioners for Krylov subspace solvers. The authors conclude that

a maximum product transversal algorithm with scaling gives the best results and

they especially point out the significant (positive) impact on ILU preconditioning.

The combination of MPS and ILU was found to be on average the most efficient

preconditioner for the test problems, a result very similar to the one in [7].

Orderings for factorized sparse approximate inverse preconditioners (AINV)

preconditioners [41, p. 331–333] are studied in [10]. The numerical results show that

for these preconditioners minimum degree is best followed by nested dissection, while

reverse Cuthill–McKee and red-black orderings perform poorly. This shows, that the

effect of reorderings on the performance of AINV is very different, almost opposite,

to the effect on the performance of ILU.

A good overview on reordering for ILU preconditioning is also given in [41,

p. 333–337]. In the example results from [41] RCM performs best of the three com-

pared reordering techniques: RCM, minimum degree, and nested dissection.

For an overview–without numerical results–of the established algorithms in the

field of reordering strategies for preconditioning we cite also the appropriate sections

in the survey [4] and the technical report [25].

28

3.2 Nonsymmetric Permutations and Diagonal Scalings

The rationale for obtaining diagonals with large weight is heuristic: Large diagonals

tend to decrease the need for pivoting in a direct elimination method. ILU-type

preconditioners can also benefit greatly [7], [43]. Moreover, an iterative method with

diagonal preconditioner may be expected to converge more rapidly if the diagonal is

large compared to the off-diagonal part of the matrix.

Let B = (Vr, Vc, E) be the bipartite graph of A. An ordered subset T ⊆ E is

called a matching or transversal if no two edges in T are incident to the same node,

i.e., T consist of edges {i, j}, i ∈ {r1, . . . , rn}, j ∈ {c1, . . . , cn}, such that each row

node i and each column node j appears at most once. A transversal T is a maximum

transversal (or maximum matching) if it has maximum cardinality, i.e., |T | ≥ |T ′| for

all possible transversals T ′. If A ∈ Rn×n is not structurally singular, then a maximum

transversal T has cardinality |T | = n; see, e.g., [21]. In this case, T is called a perfect

matching and defines an n× n permutation matrix Σ with

(Σ)ij =

{
1 if {i, j} ∈ T,
0 otherwise.

Let σ be the permutation associated with Σ, i.e., for all x ∈ Rn

(Σx)i = xσ(i), i = 1, . . . , n.

As a consequence, for a maximum transversal of a not structurally singular matrix

A ∈ Rn×n, we have

(ΣA)ii = aσ(i),i 6= 0, i = 1, . . . , n.

In [22], two different types of transversals with respect to different notions of a

“weight” were introduced according to the following definition.

29

Definition 3.1: A maximum transversal T with corresponding permutation σ

(i) is a bottleneck transversal if it maximizes

min
i=1,...,n

|aσ(i),i|

over all maximum transversals, and

(ii) it is a maximum product transversal if it maximizes

n∏
i=1

|aσ(i),i|

over all maximum transversals. 3

The paper [22] proposes and analyzes various algorithms to compute bottle-

neck transversals. It is reported there that extensive testing shows that in practice

the computational complexity of these algorithms behaves like O(n+ nnz), although

the theoretical worst case upper bound is O(n · nnz).

An algorithm for computing maximum product transversals is given in [23].

It has been incorporated in the Harwell Subroutine Library (HSL) [40] as algorithm

MC64. As a by-product, when computing a maximum product transversal, MC64

also delivers diagonal scaling matrices Ĉ and R̂ such that

Â = Σ(R̂AĈ) (3.2)

is an I-matrix in the sense of [35]; i.e., |Âij| ≤ 1 for all i, j and Âii = 1, i = 1, . . . , n.

The time complexity bound for computing a maximum product transversal

as implemented in MC64 is O(n(nnz +n) log2 n). The tests in [23, p. 987] show that

finding a maximum product transversal is in almost all cases computationally more

expensive than finding a bottleneck transversal. Further tests show that in many

30

cases this is compensated by Â being easier to factorize or being better suited for

iterative solvers.

In this chapter, we use maximum product transversals and we always apply

the scaling computed by MC64; i.e., we always transform A into an I-matrix before

applying XPABLO. For our test problems in section 3.7 we found this to be always

superior to using the cheaper bottleneck transversal.

3.3 XPABLO: An Extension of PABLO and TPABLO

For a digraph G = (V,E), PABLO, TPABLO, and XPABLO produce a partition of

V into q disjoint, nonempty subsets Vκ, κ = 1, . . . , q (the “blocks”). These blocks

are built one at a time. We now describe how this is done, assuming the following

situation: Blocks V1, . . . , Vν−1 have already been built. Given the current block Vν and

a candidate vertex i ∈ adj |V (Vν) with V = V \
⋃ν−1
κ=1 Vκ, the algorithms decide whether

or not to incorporate i into the current block using a decision function (usually called

criterion) τ . After finishing a block its nodes are removed from the graph. XPABLO

uses three disjoint sets C, Q and B to hold the nodes still in the graph. The set

B denotes the current block being built, i.e., the elements of B will become the

νth block. The set Q ⊂ adj |V (B) contains the current candidate vertices, i.e., a

candidate vertex i will always come from Q. Finally, the set C contains all the

remaining vertices. Algorithm 3.1 (p. 35) and Algorithm 3.2 (p. 40) show in detail

how candidate vertices are selected; see also [36].

3.3.1 XPABLO Criteria and Parameters

The following definitions describe some basic criteria. They can be combined logically

to yield a variety of different criteria, including, as we shall see in section 3.3.2, the

traditional PABLO and TPABLO criteria.

31

Definition 3.2: Let G = (V,E) be a digraph, V ′ ⊆ V , and G ′ = (V ′, E ′) be the

subgraph induced by V ′. The fullness φ(V ′) of V ′ is defined as

φ(V ′) =

|E ′|

|V ′|2 − |V ′|
if |V ′| > 1,

0 if |V ′| ≤ 1.

3

The thus defined fullness measures the number of edges in G ′ compared to

the maximally possible number |V ′|2− |V ′| for a complete digraph. The definition of

φ({v}) = 0 follows PABLO in the interpretation that a graph with only one vertex is

empty, but other definitions may be useful depending on the problems one needs to

solve.

Given α > 0, in our generic situation, we say (see [36]) that vertex i satisfies

the fullness criterion (with fullness parameter α) if

φ
(
Vν ∪ {i}

)
≥ αφ(Vν). (FC)

Note that (FC) can be fulfilled even when α > 1.

Definition 3.3: If i is a vertex in a digraph G = (V,E) with deg(i) > 0, and if

V ′ ⊆ V , the connectivity of i with respect to V ′ is the fraction

deg |V ′(i)
deg(i)

. 3

In our generic situation, given β > 0, we say that vertex i satisfies the connec-

tivity criterion (with connectivity parameter β) if

deg |Vν (i) ≥ β deg |V (i). (CC)

The connectivity criterion means that in G|V at least a fraction β of all edges incident

with i have their other incident vertex in Vν . The criterion is never met if β > 1 (and

deg(i) > 0).

32

Example 3.4: Figure 3.1 illustrates the fullness and the connectivity criterion for

the digraph G(A) in terms of the pattern of the matrix A. The matrix is assumed to

be already symmetrically permuted such that the three blocks built up so far appear

first. The black diagonal entry corresponds to the candidate vertex which may end up

to be included into the third block. The fullness criterion requires that the grey parts

of row i and column i must not be too sparse. The connectivity criterion requires that

the hatched parts of these rows and columns should not contain too many elements

as compared to the grey parts. Row and column i are considered only together—not

individually. The white parts of row i and column i are not taken into consideration

when deciding on vertex i.

← row i

↑
column i

Figure 3.1. Illustration of the Fullness Criterion and the Connectivity Criterion

The PABLO algorithm of [36] adds a candidate vertex i ∈ adj |V (Vν) to the

current block Vν if and only if v satisfies the fullness or the connectivity criterion for

some prechosen parameters α and β. We formulate this by saying that PABLO uses

the criterion τ defined as

τ = FC ∨ CC. (PABLO)

33

The combined PABLO criterion uses only structural information of A. In its

threshold counterparts TPABLO1 and TPABLO2 (see [5], [14]), numerical values of

the matrix entries are also taken into account. For a precise statement, and also to

formulate our generalization XPABLO, we introduce additional notation and termi-

nology. From now on, we consider the digraph G(A) to be an edge-weighted digraph

where edge e = (i, j) has weight w(e) = |aij|. An edge e = (i, j) is called large if its

weight w(e) = |aij| is larger than a given threshold γ > 0, i.e., e is large if w(e) > γ.

In the same manner, we call matrix entries large if their magnitude is larger than γ.

Definition 3.5: Given A ∈ Rn×n and γ > 0, we write A>γ ∈ Rn×n for the matrix

(A>γ)ij =

{
aij if |aij| > γ,

0 otherwise.
3

We use the superscript notation >γ in an intuitive manner at various places.

For example, if G = G(A) is the digraph of A, then G>γ = G(A>γ). Another example

is the following definition.

Definition 3.6: Let G = (V,E) be a digraph, V ′ ⊆ V , and γ ≥ 0. The threshold

fullness φ>γ(V ′) of V ′ is the fullness φ(V ′) of V ′ in the graph G>γ. 3

In our generic situation, given a threshold parameter γ > 0 and a threshold

fullness parameter ϑ ∈ [0, 1], we say that i satisfies the threshold fullness criterion if

φ>γ
(
Vν ∪ {i}

)
≥ ϑ. (TFC)

In contrast to the plain fullness criterion, the threshold fullness criterion just

measures the fullness the new block Vν ∪ {i} has in A>γ without relating it to the

fullness of Vν .

Definition 3.7: Let G = (V,E) be a digraph, V ′ ⊆ V , and γ ≥ 0. If i is a vertex

with deg |V ′(i) > 0, the threshold connectivity of i with respect to V ′ is the fraction

deg |>γV ′ (i)
deg |V ′(i)

. 3

34

The threshold connectivity compares the number of large edges incident to i in

G|V ′ to all such edges. As opposed to plain connectivity according to Definition 3.3,

it does not consider any edges going to nodes outside V ′.

In our generic situation, given a threshold connectivity parameter ζ, we say

that the threshold connectivity criterion holds if

deg |>γVν (i) ≥ ζ deg |Vν (i). (TCC)

This criterion measures how many of the new entries of the current block are large.

An important choice for the threshold connectivity parameter is ζ = 1/(2n). For

this value of ζ, the right-hand side of (TCC) is always strictly less than one since

deg |Vν (i) < 2n for all i ∈ V . Hence for ζ = 1/(2n), the threshold connectivity

criterion holds if and only if deg |>γVν (i) ≥ 1, i.e., if and only if there is at least one

edge between i and the current block Vν with edge weight larger than γ.

In addition to the threshold parameter γ, XPABLO also accepts an additional

threshold parameter δ with 0 ≤ δ < γ, which is used to filter out nonzero matrix

entries with very small magnitude; i.e., XPABLO really works on the graph G(A>δ).

Note that δ changes only the graph on which XPABLO is operating and not the

underlying matrix.

Algorithm 3.1 shows the details of the way XPABLO works. In the loops over

all edges incident with a vertex i, a vertex j adjacent to i can appear twice, as j can

be adjacent to i through up to two edges. For the correctness of the updates it is

actually important to have j appear twice if there are two edges between i and j.

In our implementation of XPABLO we have two additional parameters to

control the size of blocks found by XPABLO. With minbs we can set the desired

minimum blocks size and with maxbs we can enforce a maximum block size. In

particular enforcing a maximum block size is important in many applications, as it

35

1: input: a digraph G(A) = (V,E) and a criterion τ
2: output: a partitioning {V1, . . . , Vq} of V
3: C := V , Q := ∅, B := ∅, q := 1
4: while C 6= ∅ do
5: remove a vertex i from C, and place it in B
6: for all edges e in inc(i) do
7: let j be the vertex adjacent to i through e
8: move j from C to Q if j ∈ C
9: end for

10: while Q 6= ∅ do
11: remove a vertex i from Q
12: if i fulfills the XPABLO criterion τ then
13: insert i into B
14: for all edges e in inc(i) do
15: let j be the vertex adjacent to i through e
16: move j from C to Q if j ∈ C
17: end for
18: if |B| > maxbs then
19: move all nodes in Q to C
20: end if
21: else
22: insert vertex i into C
23: end if
24: end while
25: set Vq := B and q := q + 1 {finish current block}
26: G := G|C
27: set B := ∅
28: end while
29: merge adjacent blocks of size < minbs if the size of the resulting block is ≥ maxbs

Algorithm 3.1. XPABLO

36

may otherwise happen that with the criteria and the parameters in use, the algorithm

would produce only one block, the whole matrix, and this is clearly not useful. To

enforce a maximum block size of maxbs we modify XPABLO so that it closes the

current block B as soon as it reaches this maximum size, which can easily done by

moving all nodes still in Q to C, see lines 18–20 in Algorithm 3.1.

We often also fix a minimum block size minbs . This minimum size is achieved

by merging adjacent blocks which are too small. Note that we do not merge blocks

if we would exceed the maximum block size, even if we retain small blocks.

Example 3.8: Figure 3.2 shows the blocks found by XPABLO for the graph of the

matrix LSQ_2d_1000. The block size was forced to be 250 by setting minbs = maxbs =

250. The blocks were found by XPABLO in the following order: black, blue, red,

green. Notice that the first three blocks (black, blue, and red) are connected, but the

last block (green) consist of five connected components. This comes from merging

five small blocks together.

Figure 3.3 shows a spy plot of the matrix after being permuted according to

the blocks found by XPABLO. For comparison we refer to the non-permuted spy plot

shown in Figure 1.3.

3.3.2 XPABLO as a Generalization of PABLO and TPABLO

We now have four criteria at hand upon which we can decide whether to include a new

vertex to a current block or not. These criteria can be logically combined resulting

in various XPABLO criteria, denoted by τ . The following list shows how XPABLO is

reduced to PABLO or TPABLO by choosing a specific criterion τ and specific values

for some of the parameters.

1. With τ = FC ∨ CC, XPABLO reduces to PABLO.

2. With τ = (FC ∨CC) ∧TCC and ζ = 1/(2n), XPABLO reduces to TPABLO1.

37

Figure 3.2. Graph of LSQ_2D_1000 Showing XPABLO Blocks

The graph shows the four blocks found by XPABLO (minbs = 250, maxbs = 250).
Edges inside a block are colored in the block color (black, blue, red, green), edges
between blocks are colored in grey.

38

0

1.6e+3

3.2e+3
1 100070 140 210 280 350 420 490 560 630 700 770 840 910

Figure 3.3. Spy Plot of LSQ_2D_1000 After XPABLO Permutation

Compare with Figure 1.3.

39

3. With τ = (FC ∨ CC) ∧ TFC and ϑ = 1, XPABLO reduces to TPABLO2.

Based on a series of numerical experiments, our default criterion for XPABLO is

τ = FC∨CC∨TCC with ζ = 1/(2n); see section 3.5.2 for a more detailed discussion

of XPABLO default parameters.

Once XPABLO has determined a partitioning of V into blocks V1, . . . , Vq, let

π be a permutation that groups the vertices 1, . . . , n, from V into these blocks; i.e.,

V1 = {π(1), . . . , π(k1)}, V2 = {π(k1+1), . . . , π(k2)}, . . . , Vq = {π(kq−1+1), . . . , π(kq)},

with ki =
∑i

i=j |Vj|. Then the permuted matrix PAP T is naturally partitioned

into q blocks of size |Vj|, the jth diagonal block corresponding to the vertex set

Vj. The threshold criteria may now be interpreted as placing large entries on these

diagonal blocks. This is made more precise in the following proposition which follows

immediately upon inspection of the various criteria.

Proposition 3.9: 1. If τ = (FC∨CC)∨TCC and ζ = 1/(2n), then all entries in

the off-diagonal blocks of PAP T have modulus less than γ.

2. If τ = (FC ∨ CC) ∧ TCC and ζ = 1, then all nonzero off-diagonal entries of

every diagonal block of PAP T have modulus greater than or equal to γ.

3.3.3 Implementation Details

Algorithm 3.2 now describes the XPABLO algorithm in more detail, cf. Algorithm 3.1.

In this section we will discuss several implementation details, many of them crucial

for the complexity analysis in section 3.4. Line numbers in this section refer to

Algorithm 3.2.

We first note that quantities needed for τ , such as deg |B, deg |>γB , etc., are al-

ways updated immediately. This allows a fast evaluation of τ which is very important

for the overall performance. Since the nodes of the graph are stored in C, Q and B

we access the original node set V only once at the very beginning of the algorithm to

40

1: input: a digraph G(A) = (V,E) and a criterion τ
2: output: a partitioning {V1, . . . , Vq} of V
3: C := V , Q := ∅, B := ∅, q := 1
4: set deg |B(i) := 0 and deg |>γB (i) := 0 for all i ∈ V
5: while C 6= ∅ do
6: remove a vertex i from C, and place it in B
7: set |E|B := 0, |E|>γB := 0, φ(B) := 0, φ>γ(B) := 0
8: for all edges e in inc(i) do
9: let j be the vertex adjacent to i through e

10: move j from C to Q if j ∈ C
11: deg |B(j) := deg |B(j) + 1
12: deg |>γB (j) := deg |>γB (j) + 1 if w(e) > γ
13: end for
14: while Q 6= ∅ do
15: remove a vertex i from Q
16: if i fulfills the XPABLO criterion τ then
17: insert i into B
18: set |E|B := |E|B + deg |B(i)
19: set |E|>γB := |E|>γB + deg |>γB (i)
20: update φ(B) and φ>γ(B) {this requires |E|B and |E|>γB }
21: for all edges e in inc(i) do
22: let j be the vertex adjacent to i through e
23: move j from C to Q if j ∈ C
24: deg |B(j) := deg |B(j) + 1
25: deg |>γB (j) := deg |>γB (j) + 1 if w(e) > γ
26: end for
27: if |B| > maxbs then
28: move all nodes in Q to C
29: end if
30: else
31: insert vertex i into C
32: end if
33: end while
34: set Vq := B and q := q + 1 {finish current block}
35: for all vertices i ∈ B do
36: for all edges e in inc(i) do
37: let j be the vertex adjacent to i through e
38: deg |B(j) := 0, deg |>γB (j) := 0, deg(j) := deg(j)− 1
39: end for
40: end for
41: G := G|C , B := ∅
42: end while
43: merge adjacent blocks of size < minbs if the size of the resulting block is ≥ maxbs

Algorithm 3.2. XPABLO with Implementation Details

41

copy it. Therefore, we do not need to reduce V during the algorithm. Morover, with

explicit updates of the degrees we notice that the algorithm is still correct if we leave

the graph unchanged, i.e., if we remove line 41. And in fact, in our implementation

we do not explicitly reduce the graph.

For the implementation of Q we use a queue, hence the symbol. This choice

is an implementation detail and not an intrinsic property of XPABLO. The only

operations performed with Q are insertions and removal of nodes. Which node gets

removed is up to the intrinsic properties of the data structure, i.e., XPABLO does not

need to remove a specific node or a node with some specific property. A queue has

time complexity O(1) for both operations (insert and remove). There are other data

structures, such as a stack, which would allow the same time complexity. We have

run internal experiments to compare using a queue and a stack to store Q. Although

the results for a specific problem were sometimes quite different, there was no general

trend to prefer a stack over a queue for implementing Q. Therefore, we decided to

continue to use a queue, which was already the data structure used for Q in PABLO

and TPABLO.

If we look carefully at the use of C we will notice that we have several opera-

tions which need to be performed very fast:

• Adding a node to C.

• Removing a (randomly selected) node from C.

• Removing a specific node from C.

• Checking whether a specific node is an element in C.

In our implementation we use a linked list with an external index, i.e., an index which

contains for each node in the graph a pointer to the position in C or the information

that the node is not an element of C. In this way, all the operations above have time

complexity O(1).

42

3.4 Analysis of XPABLO

Looking at Algorithm 3.2 we see two nested loops, the outer loop running until C is

empty and the inner loop running until Q is empty. Since Q can grow inside the inner

loop, we have to check if and when the loop and hence the algorithm terminates.

Lemma 3.10: The algorithm XPABLO (Algorithm 3.2) always terminates.

Proof: We basically follow the proof from [36, p. 816]. At any time in the algorithm

we have

|Q| ≤ n, |C| ≤ n, and |Q ∪ C| = |Q|+ |C| ≤ n.

The outer loop (Algorithm 3.2, lines 5–42) terminates because the size of C decreases

by at least one in each iteration (cf. line 7).

In the inner loop (lines 14–33), the number |Q ∪ C| does not increase, since

nodes moved to C come from Q and vice versa. Moreover, after each pass through the

inner loop, we have decreased either |Q ∪ C| or |Q|. In the first case we have moved

a vertex to B which can cause Q to increase. In the second case we have moved a

vertex from Q back to C.

With |Q| < n, there can be at most n−1 consecutive iterations of the inner loop

in which we decrease |Q| and leave |Q ∪ C| unchanged. Therefore, in n consecutive

iterations of the inner loop |Q ∪ C| gets decreased at least once. At the start of the

inner loop we have |Q ∪ C| < n. Thus after at most n2 iterations the inner loop must

terminate. 2

The time complexity of Algorithm 3.2 is given in the following result.

Theorem 3.11: The XPABLO algorithm can be implemented with time complexity

O
(
n+ nnz(A)

)
whenever an evaluation of criterion τ has cost O(1).

43

Proof: The general idea behind this proof originates from [36], where it was shown

that the entire PABLO algorithm has time complexity O
(
n+ nnz(A)

)
. Here we will

show that this time complexity also holds for XPABLO and hence also for TPABLO.

The line numbers cited refer to Algorithm 3.2.

We assume that G = G(A) is given stored in an adjacency list representation.

For the common sparse matrix formats we can obtain G(A) with cost O
(
n+nnz(A)

)
;

see, e.g., [19] and [21] for more information about sparse matrix formats.

Taking Q as a queue, C as a doubly linked list with an external index, and

B as a singly linked list, all insert and remove operations we use with these lists can

be done with cost O(1). Moving the contents of B to the newly created block Vν ,

ν = 1, . . . , q, can be done with cost O(|Vν |). In total for all blocks together the extra

cost is O(n).

The main observation to measure the time complexity of the inner loop is to

realize that each node v is inserted into Q at most deg(v) times: Vertices are added

to Q only when they are adjacent to some vertex i just inserted into B. A vertex i

never returns to Q or C once it is inserted into B. Therefore each vertex v in the

graph will be inserted at most deg(v) times into Q. Altogether there can be at most∑
w∈V deg(w) = 2 nnz(A) insertions into Q. Since each insert can be done in O(1)

operations, this sums up to O
(
nnz(A)

)
operations.

Consequently, moving vertices from Q back to C can be done in O(nnz(A))

operations, too.

XPABLO inserts a vertex i into B exactly n times. Every time a vertex i

is inserted into B, the values of deg |B(i) are updated for all j ∈ Q adjacent to i

(cf. lines 11 and 24). Analogously to the insertions into Q discussed above, in total

at most 2 nnz(A) updates have to be done. Since the whole adjacency list of i is

traversed, each update can be done in O(1) operations.

44

When XPABLO ends the inner loop, the vertices in B are removed from the

graph. This is done by updating the deg(w) value for all vertices w adjacent to any

vertex v ∈ B. This also is done in O(nnz(A)).

By assumption, the cost for testing criterion τ is O(1) as it is in PABLO.

Therefore, the additional work in XPABLO as compared to PABLO is that we have

to update the new quantities |E|>γB , φ>γ(B), and deg |>γB used in (TCC) and (TFC);

see lines 12 and 25 (updates of deg |>γB), line 19 (update of |E|>γB) and line 20 (update

of φ>γ(B)). These updates follow the ones to be done for |E|B, φ(B), and deg |B by

PABLO. In total, this means O(n) extra operations to update |E|>γB and φ>γ(B) and

O
(
nnz(A)

)
extra operations to update deg |>γB . This results in an additional cost of

O
(
n+ nnz(A)

)
.

The following table summarizes the time complexities of the various opera-

tions:

Operations Time complexity

Inserting vertices into Q O(nnz(A))

Moving vertices back to C O(nnz(A))

Inserting vertices into B O(n)

Updating |E|B, |E|>γB O(n)

Updating deg, degB, deg>γB O(nnz(A))

The total time complexity is then O
(
n + nnz(A)

)
, which establishes the the-

orem. 2

Let us note that in our practical implementations we indeed update |E|>γB ,

deg |>γB explicitly. This is in contrast to the implementation of TPABLO in [14]. As

is explained in [14], the implementation there is not more than d times as costly as

PABLO when d is the maximum degree in G. In our implementation we need a little

45

more memory, but require only about twice the work that PABLO does, independent

of d. Therefore, our implementation is in most cases faster than that in [14].

We defer a detailed discussion on how to choose an XPABLO criterion τ and

the various parameters (α, β, γ, ϑ, ζ) to the sections on practical issues and on

numerical results (sections 3.5 and 3.7).

3.5 Practical Issues

Before reporting on our numerical experiments, we address some practical issues when

using XPABLO in a preconditioning framework. We concentrate on the two main

issues, namely, numerical stability and the choice of a good set of values for all the

different XPABLO parameters.

3.5.1 Robustness

We consider the issue of numerical instability (or even the singularity) of the diagonal

blocks Di, i = 1, . . . , q, in the block triangular preconditioner M . If A is a general

nonsingular matrix, there is no guarantee that all the blocks Di are nonsingular, nor

that M is nonsingular. And even if all Di are nonsingular, they may still be highly

ill-conditioned. We mention that difficulties with singular or nearly singular blocks

were very rare in our numerical experiments using the recommended parameters, as

described in section 3.5.2. Problems with singular and nearly singular blocks are

handled as follows: Let Di ∈ Rni×ni , i ∈ {1, . . . , q}, be a problematic block. We

then go back to the XPABLO blocks and replace the corresponding ith XPABLO

block Vi = {v1, . . . , vni} by ni new blocks {v1}, . . . , {vni}. Since we have scaled and

permuted A to be an I-matrix, the diagonal entries of A are ±1 and hence the new

diagonal blocks are all nonsingular.

If M is the lower block triangular part of A, this is equivalent to replacing

Di (in M) by the lower triangular part of Di. In the same way we replace Di by

46

its upper triangular part for backward block Gauss–Seidel preconditioning and by its

diagonal for block Jacobi preconditioning. This is also summarized in Table 3.1. Since

A was scaled and permuted to be an I-matrix, the lower triangular part, the upper

triangular part, and the diagonal part of Di are all I-matrices and hence nonsingular,

even if Di is singular.

Table 3.1. Replacement of Singular or Nearly Singular Blocks

Preconditioner Di replaced by. . .

block Jacobi diagonal part

forward block Gauss–Seidel lower triangular part

backward block Gauss–Seidel upper triangular part

In our MATLAB implementation we use a simple but cheap test to determine

if we consider Di to be too ill-conditioned. Let e = (1, . . . , 1)T ∈ Rni be the vector

of all ones and let b = Die. Then we consider Di to be too ill-conditioned if∣∣∣∣∣1− ‖D̃−1
i b‖
‖e‖

∣∣∣∣∣ > √εM ,
where x = D̃−1

i b is computed by using the LU decomposition of Di to determine the

solution x of Dix = b. With εM we denote the machine precision (machine epsilon).

The problems described cannot occur for the class of spd matrices or the class

of H-matrices. Recall from Definition 2.3 that a matrix A is termed an H-matrix if

there exist weights uj > 0, j = 1, . . . , n, such that for all i = 1, . . . , n

|aii| · ui >
∑

j=1,...,n
j 6=i

|aij| · uj.

47

The class of H-matrices contains the class of M -matrices (see Theorem 2.8), and they

arise, e.g., in certain discretizations of (elliptic) boundary value problems; see, e.g.,

[11]. We have the following result.

Theorem 3.12: Assume that A ∈ Rn×n is an H-matrix or that A is symmetric and

positive definite. Then M in (3.4) is nonsingular; i.e., Dν is nonsingular for each

ν = 1, . . . , q.

Proof: Assume first that A is an H-matrix. Then M is also an H-matrix (with the

same weights uj as for A). Therefore, the diagonal blocks Dν of M are H-matrices

as well and they are thus nonsingular. Moreover, their LU factorizations can be

performed without pivoting; see, e.g., [1].

If A is symmetric positive definite, each of the blocks Dν , which are principal

submatrices of A, are symmetric positive definite as well. In particular, they are all

nonsingular and they admit a Cholesky factorization and an LU factorization without

pivoting. 2

Remark 3.13: The diagonal blocks Dν of A in Theorem 3.12 are as “well condi-

tioned” as A in the following sense:

If A is an H-matrix, then, by definition, |aii|ui −
∑n

j=1 |aij|uj > 0 for all

i = 1, . . . , n. If we replace A by D = diag(D1, . . . , Dq), then the left-hand side can

increase, but can not decrease, i.e.,

|aii|ui −
∑
j∈Vν

|aij|uj ≥ |aii|ui −
∑

j ∈ {1, . . . , n}

|aij|uj > 0, for all i ∈ Vν , ν = 1, . . . , q. (3.3)

Let 〈A〉 denote the comparison matrix of A (see Definition 2.4). If we let u =

(u1, . . . , un)T to be the vector of the H-matrix weights of A, then

〈D〉u ≥ 〈A〉u > 0.

48

Note that 〈A〉u can be seen as a measure of how strong the diagonal dominance of

AU with U = diag(u1, . . . , un) is.

If A is symmetric positive definite, then xTAx ≥ λmin‖x‖2
2 for x 6= 0, where

λmin is the smallest eigenvalue of A. For a vector xν ∈ Rnν let x̂ν ∈ Rn such that xν

is the νth block subvector of x̂ν , the remaining entries being zero. Then

xTνDνxν = x̂TνAx̂ν ≥ λmin‖x̂ν‖2
2 = λmin‖xν‖2

2,

i.e., the smallest eigenvalue of Dν , ν = 1, . . . , q is larger or equal than λmin.

In view of the maximum transversal transformation A → Σ(R̂AĈ) and the

two-sided XPABLO permutation A → PAP T , it is important to notice that the H-

matrix property, symmetry, and positive definiteness are preserved under any sym-

metric permutation and hence under the XPABLO permutation. In general, however,

symmetry and positive definiteness will not be conserved under the transversal trans-

formation. Morover, both the scaling and the unsymmetric permutation on its own

can destroy symmetry and positive definiteness.

The H-matrix property, on the other hand, is preserved under the I-matrix

scaling of MC64:

Theorem 3.14: Let A be an H-matrix and let Σ be a permutation matrix and let

R̂ and Ĉ be scaling matrices such that Â = Σ(R̂AĈ) is an I-matrix. Then Â is an

H-matrix.

Proof: We first note that the H-matrix property is preserved under the row permu-

tation Σ, which permutes the rows of A. It is also preserved under the row-scaling

R̂, since no row is scaled with zero. It remains to show that the column scaling Ĉ

preserves the H-matrix property. In our case it is sufficient to show that AĈ is an

H-matrix. Let uj, j = 1, . . . , n be the H-matrix weights of A. Now, let ûj = uj/|ĉjj|,

49

j = 1, . . . , n. Then

|aiiĉii| · ûi = |aii| · ui >
∑

j=1,...,n
j 6=i

|aij| · uj =
∑

j=1,...,n
j 6=i

|aij ĉjj| · ûj. 2

3.5.2 Choosing Parameters

We also have to carefully consider the choice of the XPABLO parameters and the

actual criterion τ . In practice, a first important point is that of fixing a minimum

and a maximum block size in Algorithm 3.2. With the following recommendations for

minimum and maximum block size we aim to improve the total solving time in serial

execution. Therefore, we do not need different blocks to be of the same or similar size

to each other. Moreover, we do not aim to have a fixed number of blocks. To optimize

the total time we have to find the right balance between a large block size, which

allows us to capture large parts of the matrix, and a small block size, which allows

us to factorize the block very fast. Notice, that the optimal block size—optimal in

having the smallest total execution time—can depend heavily on the computer used.

Even when we fix the problem and all involved algorithms and parameters. Thus,

the recommendations can only be a weak guidance. Modern sparse direct solvers are

often better suited to take advantage of a growing number of computation cores or a

growing cache size than the employed Krylov subspace solvers. Therefore, we expect

the optimal block sizes to increase in general if a newer and faster computer with

more memory is used. In this chapter we will present results using minbs = 200 and

maxbs = 1000, as we already did in [30].

The next, crucial, issue is that of finding adequate parameters and a suitable

XPABLO criterion τ . We performed a long series of computations on many test

problems, and we can give suggested values for most of the parameters resulting

in run times of the preconditioned iterative methods which are quite close to the

50

Table 3.2. Recommended XPABLO Criterion τ and Parameter Values

τ α β γ δ ζ

FC ∨ CC ∨ TCC 1.1 0.6
(∑
|aij|

)
/ nnz(A) 0.05 1/(2n)

individually best ones. For each given matrix better parameters could be found by

trying a variety of different parameter settings and then choosing the best one (with

respect to the resources being used, time, and storage). Of course, this is too costly

in practice.

The suggested choices for both block Jacobi and block Gauss–Seidel precon-

ditioning are presented in Table 3.2. If these recommendations are used, the only

difference between XPABLO and TPABLO1 is a change in τ . XPABLO has τ =

FC ∨CC ∨TCC and TPABLO1 has τ = (FC ∨CC) ∧TCC. The difference between

XPABLO and TPABLO1 might appear small, but in almost all cases XPABLO is

clearly to be preferred compared to TPABLO1.

As a last issue, we further discuss our choice for γ, the threshold parameter

used in (TCC) and (TFC). Of all the parameter recommendations, the one for γ is the

weakest in the sense that it is the most likely candidate for not being a good choice

for a particular problem. Therefore, we will present two different recommendations.

As shown in Table 3.2, the default choice of γ for XPABLO is the average of the

magnitudes of the nonzero entries, a quantity that can easily be computed and proved

to give good overall results in our experiments.

The second recommendation—which also gives good overall results and for

some problems even better results than the default choice—is the following. After

having scaled (and permuted) the matrix according to (3.2), it seems reasonable

to use γ as a “percentage” parameter; i.e., we choose γ such that a given fraction

γ′ ∈ [0, 1] of the nonzero elements are dropped when passing from A to A>γ. Since

51

we know the number |E| of nonzeros in A, finding the corresponding γ is an instance

of the kth largest element problem: γ is the value of the kth largest element of A with

k =
⌊
γ′|E|

⌋
. Note that the kth largest element problem can be solved with linear

complexity; i.e., its cost is O(|E|); see, e.g., [16].

3.6 Efficient Block Gauss–Seidel Preconditioning

Let A denote the matrix obtained after the preprocessing steps of section 3.2 and

after applying the XPABLO permutation P of section 3.3, i.e., A := P (ΣR̂AĈ)P T ,

where Σ is the permutation matrix found by MC64 and R̂ and Ĉ are the scaling

matrices found by MC64, cf. (3.2). Then A has a block structure

A =

A11 · · · A1q
...

. . .
...

Aq1 · · · Aqq

, Aij ∈ Rni×nj ,

with ni = |Vi| being the size of the blocks corresponding to the XPABLO permuta-

tion P . Each diagonal block Di = Aii in the block diagonal D = diag(D1, . . . , Dq)

should be (relatively) full and should have (relatively) large nonzero entries. Even

with A nonsingular, some of the diagonal blocks Di can be singular; see section 3.5.1

for a discussion of this issue. For the moment we assume all Di to be nonsingular.

We can compute the (row pivoted) LU factorization Di = ΠiL
′
iU
′
i for each

block, so that D = ΠL′ U ′, Π = diag(Π1, . . . ,Πq), L
′ = diag(L′1, . . . , L

′
q), and U ′ =

diag(U ′1, . . . , U
′
q), and we use this LU factorization of D when it comes to solving

linear systems of the form

Ds = r

in a preconditioned iterative method with preconditioner D. This block diagonal pre-

conditioning approach (with PABLO, TPABLO1, and TPABLO2) was used in [15],

where the numerical results were quite encouraging. Note that when the diagonal

52

block Di is dense, we could use the optimized dense matrix linear algebra code from

LAPACK to perform these factorizations very efficiently [2]. When they are sparse,

it is highly recommended to use a sparse factorization. For simplicity, we always use

the sparse factorization provided by UMFPACK [18]. This is motivated by the ob-

servation that in our experiments the diagonal blocks are mostly “very” sparse, since

small dense blocks are usually merged into larger sparse ones to obtain blocks of size

minbs or larger.

An obvious extension of this idea is to use block Gauss–Seidel preconditioning,

i.e., to include a block triangular part of A into the preconditioner. In the following

discussion we will use the lower block triangular part, i.e., a forward block Gauss–

Seidel iteration, as the preconditioner. It is easy to see that Proposition 3.15 below

also holds when the preconditioner M is the upper block triangular part of A.

Note that block Gauss–Seidel iteration without acceleration by a Krylov sub-

space method was used for the numerical experiments in the original PABLO paper

[36]. Using the established block structure the block Gauss–Seidel preconditioner

MGS can be written as

MGS =

D1 0 · · · 0

A21 D2
...

...
. . . 0

Aq1 Aq2 · · · Dq

. (3.4)

In a (left) preconditioned sparse iterative solver the preconditioned matrix-

vector multiplication

z = M−1Av (3.5)

with preconditioner M−1 is usually the most dominant operation in terms of execution

time. It is common to separate this operation into a matrix-vector multiplication

y = Av and a solve operation z = M−1y. This is done, e.g., in the MATLAB

interfaces to Krylov subspace methods like CG and GMRES. When we compute (3.5)

53

in this way, applying the block Gauss–Seidel preconditioner by computing z = M−1
GSy

is much more expensive than applying the block Jacobi preconditioner by computing

z = D−1y.

However, it is sometimes possible to compute (3.5) in a much more efficient

way if the matrix-vector product and the application of the preconditioner are not

separated. In the next result we show that this is the case for block Gauss–Seidel

preconditioning. The result is very similar to Eisenstat’s trick [27] to implement an

efficient preconditioned conjugate gradient (PCG) method for the class of precondi-

tioners of the form

M = (D̃ − L)D̃−1(D̃ − L)T

in which −L is the strict lower triangular part of A (A = D − L − LT) and D̃ is a

positive diagonal matrix, not necessarily the diagonal of A. This class includes, e.g.,

the symmetric Gauss–Seidel preconditioner M = (D−L)D−1(D−L)T . Several other

similar ideas are discussed in [37]. See also [38, pp. 208, 225] and [41, pp. 265ff].

Theorem 3.15: Let A ∈ Rn×n be a matrix with a q × q block structure such

that all diagonal blocks Di = Aii, i = 1, . . . , q, are nonsingular. We denote D =

diag(D1, . . . , Dq) to be the block diagonal part and MGS to be the lower block tri-

angular part (including the diagonal blocks) of A. The preconditioned matrix-vector

multiplications D−1Av and M−1
GSAv can both be done using exactly the same number

of operations.

Proof: Let z = M−1
GSAv and z̃ = D−1Av. For any vector w ∈ Rn we write wi to denote

the ith block, conformal with the block structure of A. We split A as A = D−L−U

into the block diagonal part D = diag(D1, . . . , Dq) (same as before), the block lower

triangular part L with Lij = −Aij for i > j, and the block upper triangular part U

with Uij = −Aij for i < j. Both L and U have a zero block diagonal.

54

Using this notation the block (lower) triangular preconditioner isMGS = D−L,

and we can rewrite the preconditioned matrix-vector multiplication as

M−1
GSAv = (D − L)−1(D − L− U)v

= (D − L)−1(D − L)v − (D − L)−1Uv

= v − (D − L)−1Uv.

If we set w = Uv and y = (D − L)−1w, we get zi = vi − yi, i = 1, . . . , q, where

yi = D−1
i

(
wi +

i−1∑
j=1

Lijyj

)
and wi =

q∑
j=i+1

Uijvj.

We can further simplify the formula for yi to

yi = −D−1
i

(
i−1∑
j=1

Aijyj +

q∑
j=i+1

Aijvj

)
. (3.6)

Following the same procedure, we write z̃ = D−1Av = v − ỹ and get z̃i = vi − ỹi,

where

ỹi = −D−1
i

(
i−1∑
j=1

Aijvj +

q∑
j=i+1

Aijvj

)
. (3.7)

But the computations (3.6) and (3.7) use the exact same number of operations if we

assume that dense vectors are employed. 2

3.7 Numerical Experiments

In this section we present numerical results using XPABLO as a tool for precondition-

ing. We start by showing the improvements of XPABLO over PABLO and TPABLO,

and then provide a detailed comparison of XPABLO and ILUTP as a tool for precon-

ditioning. All experiments were run on an Intel Core 2 processor. The test programs

are written in a mixture of MATLAB (version 7.7, release R2008b), C, C++, and For-

tran. The non-MATLAB code was compiled using version 4.1 of the GNU Compiler

55

Collection (GCC), identical optimization flags were used in all cases. For iterative

solving we use MATLAB’s gmres function, which uses Householder transformations

for the orthogonalization in the Arnoldi process, see also [49]. For computations that

are the same in the different preconditioned solvers, we use the same code—whether

it is compiled C/C++/Fortran code or MATLAB code. Therefore, we can somewhat

compare the execution times and not only the iteration counts. Note, however, that

the timings are not fully reliable. The experiments were run on a fairly standard

Laptop running Linux. Therefore, we always have several dozen other applications

running in parallel with our code and their behavior can influence the measured time

for our experiments, e.g., by filling the cache of the processor(s) with their own code

and/or data. Additionally, with issues like swapping and today’s complicated cache

hierarchies, it is possible that an experiment can influence the timings of later exper-

iments. We could possible eliminate most of these effects by rebooting the computer

after each experiment. In practice the observed unreliabilities in the timings were

way too small to justify such countermeasures.

Furthermore, we notice that the timings presented here can not be compared

with an optimized and fully compiled implementation. This is mostly due to the

involved MATLAB code. We give here just some of the factors contributing to MAT-

LAB’s performance being far from optimal:

• The code is often interpreted, even though a just-in-time compiler is employed

in modern MATLAB versions.

• Loops involve a considerably overhead compared to compiled languages so that,

e.g., a growing number of blocks from XPABLO brings a growing overhead in

the construction of the preconditioner and in each iteration step.

• The interface between MATLAB and the C/C++/Fortran part of our code

often requires otherwise unnecessary copies of data.

56

An overview of the test problems is given in section 1.1. Preliminary tests have

shown that the XPABLO framework can perform well for problems stemming from

computational fluid dynamics (CFD) and semiconductor device simulation. There-

fore, some test matrices were specifically chosen from these application areas. See

the application area column in Table 1.1. We note that PABLO was not designed

specifically to solve these kinds of problems. As noted in the introduction of this

chapter, a modified version of PABLO has been used before for problems in CFD

[26]. More information on solving systems from semiconductor device simulation can

be found in [43].

To illustrate the different phases of the XPABLO framework, Figure 3.4 shows

matrix plots of the matrix GARON1 during four different phases. The bottom right plot

shows the matrix of the system we are actually solving.

3.7.1 Comparison of PABLO, TPABLO1, and XPABLO

Table 3.6 shows the execution times and iteration counts using the XPABLO frame-

work compared to PABLO- and TPABLO1-based preconditioning. If the iteration

count is given in parentheses, this indicates that we did not observe convergence after

1000 iterations. In this case we show the iteration number for which the smallest pre-

conditioned relative residual norm was achieved for the first time, i.e., the iteration

number shown in parenthesis may be smaller than 1000 although we have computed

1000 iterations. Note that in such a case we essentially have stagnation, and the code

gives the “solution” computed at the last iteration number before stagnating. More

detailed results, including the relative residual norms ‖b− Ax‖/‖b‖ (Rel. Res.) and,

if the exact solution x∗ is known, the relative error norms ‖x∗ − x‖/‖x∗‖ (Rel. Err.),

are given in Table 3.3 (PABLO), Table 3.4 (TPABLO1), and Table 3.5 (XPABLO).

Note that we report unpreconditioned relative residuals in the Rel. Res. column. They

57

0

12

24
1 3175600 1200 1800 2400

0

0.5

1
1 3175600 1200 1800 2400

0

0.5

1
1 3175600 1200 1800 2400

0

0.5

1
1 3175600 1200 1800 2400

Figure 3.4. Spy Plots of GARON1 During Four Phases of the XPABLO Framework

Top left: The original matrix. Top right: The matrix scaled by MC64, but not yet
permuted to be an I-matrix. Bottom left: After scaling and permuting by MC64.
The matrix is now an I-matrix. Bottom right: The matrix after the XPABLO per-
mutation. Note the difference in scale between the top left and the other plots.

58

can not be compared with the preconditioned relative residuals used in the stopping

criterion of the iterative solver.

All parameters are set to the values described in section 3.5; in particular,

γ is set to the average of all nonzero entries. The block sizes were controlled by

minbs = 200 and maxbs = 1000. Only the criterion τ is varied. In all cases, we first

use MC64 to scale and permute the linear system. GMRES(50) is used as the solver

and we always use x0 = 0 as the initial approximation. The “preconditioner” is the

lower block triangular part of the scaled and permuted matrix, using the blocks found

by (T/X)PABLO. The real preconditioner is more complicated: Let M be the lower

block triangular part of the scaled and permuted matrix PΣR̂AĈP T , where P is the

XPABLO permutation, Σ is the permutation found by MC64 and R̂ and Ĉ are the

scaling matrices found by MC64. In our experiments we then use GMRES(50) to

solve

M−1PΣR̂︸ ︷︷ ︸
M−1
L

A ĈP T︸ ︷︷ ︸
M−1
R

y = M−1PΣR̂︸ ︷︷ ︸
M−1
L

b, x = ĈP T︸ ︷︷ ︸
M−1
R

y,

i.e., we actually use a split preconditioner. Let xk = M−1
R yk and yk be the kth approx-

imation to x and y, respectively. The (preconditioned) relative residual ‖rk‖/‖r0‖ is

then

preconditioned relative residual =
‖rk‖
‖r0‖

=
‖M−1

L (b− Axk)‖
‖M−1

L b‖
.

For comparison, the unpreconditioned relative residual norm reported in the Rel. Res.

column is

Rel. Res. =
‖b− Axk‖
‖b‖

.

Note that these two relative residual norms can be very different if M−1
L is ill-

conditioned.

59

Table 3.3. PABLO Solve Results for the Test Matrices

Matrix Time Iter Rel. Res. Rel. Err.

CAVITY16 3.35 346 6.992 · 10−8 1.158 · 10−5

CAVITY26 0.195 4 1.342 · 10+0 2.917 · 10+1

EX19 24.3 900 3.691 · 10−8 1.520 · 10+0

EX35 3.95 78 5.990 · 10−5 5.378 · 10+0

GARON1 1.92 265 2.096 · 10−8 7.825 · 10−7

GARON2 33.5 (1000) 1.788 · 10−4 4.099 · 10−2

RAEFSKY2 1.6 141 7.042 · 10−9 na
RAEFSKY3 66.2 (1000) 1.792 · 10−10 na
SHYY41 0.083 6 7.526 · 10−2 1.381 · 10+0

SHYY161 384.9 (200) 1.306 · 10+10 1.156 · 10+14

IGBT3 9.99 430 2.328 · 10−4 na
NMOS3 9.3 194 2.930 · 10−5 na
BARRIER2-1 869.5 (1000) 3.229 · 10−3 na
PARA-4 1031.9 692 5.002 · 10−5 na
PARA-8 967.6 621 6.409 · 10−10 na
OHNE2 2062.5 (1000) 6.501 · 10−3 na
2D_54019_HIGHK 197.8 (1000) 7.628 · 10−8 na
3D_51448_3D 168.4 816 2.797 · 10−12 na
IBM_MATRIX_2 206.0 (1000) 3.991 · 10−12 na
MATRIX_9 195.4 265 5.113 · 10−8 na
MATRIX-NEW_3 648.0 (1000) 5.859 · 10−8 na

LSQ_2D_1000 0.024 1 2.756 · 10−10 6.534 · 10−14

LSQ_2D_2000 0.116 21 3.758 · 10−5 1.606 · 10−8

LSQ_2D_5000 0.478 39 6.469 · 10−5 2.485 · 10−8

LSQ_2D_10000 1.39 51 1.709 · 10−4 6.226 · 10−8

LSQ_2D_50000 32.1 148 5.590 · 10−4 4.619 · 10−7

LSQ_2D_100000 144.8 204 1.080 · 10−3 7.570 · 10−7

LSQ_2D_200000 699.3 280 2.159 · 10−3 3.396 · 10−6

LSQ_2D_400000 5334.3 583 3.121 · 10−3 5.915 · 10−6

MPS_2D_10000 1.58 77 2.623 · 10−4 4.610 · 10−7

MPS_2D_50000 39 197 1.284 · 10−3 9.466 · 10−7

MPS_2D_100000 187.1 278 2.163 · 10−3 3.410 · 10−6

MPS_2D_200000 1261.2 517 2.153 · 10−3 5.752 · 10−6

MPS_2D_400000 7813.3 871 2.713 · 10−3 1.115 · 10−5

LSQ_3D_10000 0.68 21 6.939 · 10−6 2.658 · 10−8

LSQ_3D_50000 9.28 35 2.642 · 10−5 5.426 · 10−8

LSQ_3D_100000 36.6 44 3.119 · 10−5 9.324 · 10−8

LSQ_3D_200000 152.2 54 6.115 · 10−5 1.239 · 10−7

MPS_3D_10000 0.643 29 1.137 · 10−5 4.636 · 10−8

MPS_3D_50000 10.4 50 5.710 · 10−5 1.378 · 10−7

MPS_3D_100000 44.8 64 7.976 · 10−5 1.587 · 10−7

MPS_3D_200000 212.0 86 1.362 · 10−4 6.861 · 10−7

60

Table 3.4. TPABLO1 Solve Results for the Test Matrices

Matrix Time Iter Rel. Res. Rel. Err.

CAVITY16 2.36 241 5.696 · 10−8 8.019 · 10−6

CAVITY26 1.83 174 1.770 · 10−3 1.040 · 10+0

EX19 27.0 (950) 5.676 · 10−9 3.446 · 10−1

EX35 4.23 82 6.949 · 10−5 1.094 · 10+0

GARON1 1.66 228 2.518 · 10−8 1.257 · 10−6

GARON2 33.5 (1000) 1.129 · 10−6 1.639 · 10−4

RAEFSKY2 1.39 117 7.728 · 10−9 na
RAEFSKY3 66.9 (1000) 3.432 · 10−10 na
SHYY41 0.090 8 2.292 · 10−2 1.916 · 10+0

SHYY161 384.4 (1000) 4.485 · 10+3 1.382 · 10+7

IGBT3 15.3 619 7.567 · 10−4 na
NMOS3 34.6 733 1.542 · 10−6 na
BARRIER2-1 768.7 (1000) 8.220 · 10−4 na
PARA-4 703.1 539 4.080 · 10−5 na
PARA-8 659.1 483 7.799 · 10−10 na
OHNE2 1974.1 989 1.542 · 10−3 na
2D_54019_HIGHK 188.4 969 2.235 · 10−9 na
3D_51448_3D 89.9 484 8.200 · 10−12 na
IBM_MATRIX_2 81.3 439 9.072 · 10−12 na
MATRIX_9 211.2 298 7.014 · 10−8 na
MATRIX-NEW_3 602.0 (1000) 1.641 · 10−9 na

LSQ_2D_1000 0.023 1 2.755 · 10−10 6.550 · 10−14

LSQ_2D_2000 0.139 27 1.482 · 10−5 8.283 · 10−9

LSQ_2D_5000 0.486 38 6.298 · 10−5 2.259 · 10−8

LSQ_2D_10000 1.54 60 1.052 · 10−4 1.413 · 10−7

LSQ_2D_50000 35.3 162 4.615 · 10−4 8.076 · 10−7

LSQ_2D_100000 154.4 221 9.439 · 10−4 1.188 · 10−6

LSQ_2D_200000 836.9 340 1.736 · 10−3 3.335 · 10−6

LSQ_2D_400000 5866.6 653 2.899 · 10−3 4.776 · 10−6

MPS_2D_10000 1.94 97 2.325 · 10−4 5.015 · 10−7

MPS_2D_50000 46.5 265 1.047 · 10−3 2.991 · 10−6

MPS_2D_100000 288.5 495 2.070 · 10−3 3.475 · 10−6

MPS_2D_200000 1779.7 854 2.052 · 10−3 7.978 · 10−6

MPS_2D_400000 7648.7 (1000) 9.084 · 10−2 5.396 · 10−4

LSQ_3D_10000 0.602 20 7.752 · 10−6 1.908 · 10−8

LSQ_3D_50000 7.94 35 1.609 · 10−5 4.523 · 10−8

LSQ_3D_100000 30.5 43 3.014 · 10−5 5.987 · 10−8

LSQ_3D_200000 129.7 53 5.574 · 10−5 9.389 · 10−8

MPS_3D_10000 0.533 30 1.641 · 10−5 3.902 · 10−8

MPS_3D_50000 8.38 50 5.182 · 10−5 1.114 · 10−7

MPS_3D_100000 36.9 68 8.528 · 10−5 2.246 · 10−7

MPS_3D_200000 170.0 86 1.154 · 10−4 4.814 · 10−7

61

Table 3.5. XPABLO Solve Results for the Test Matrices

Matrix Time Iter Rel. Res. Rel. Err.

CAVITY16 0.601 49 4.544 · 10−8 1.718 · 10−6

CAVITY26 0.61 45 9.208 · 10−5 3.290 · 10−2

EX19 6.66 252 2.172 · 10−9 3.168 · 10−1

EX35 2.48 28 2.606 · 10−4 3.905 · 10−1

GARON1 0.333 37 2.294 · 10−8 8.023 · 10−7

GARON2 5.91 163 1.077 · 10−8 1.744 · 10−6

RAEFSKY2 0.665 39 1.106 · 10−8 na
RAEFSKY3 31.8 390 3.555 · 10−10 na
SHYY41 0.112 6 7.738 · 10−2 9.402 · 10−1

SHYY161 9.14 19 4.032 · 10+14 6.795 · 10+17

IGBT3 3.29 120 2.492 · 10−3 na
NMOS3 4.99 76 2.490 · 10−5 na
BARRIER2-1 854.5 680 2.845 · 10−5 na
PARA-4 519.0 210 2.241 · 10−5 na
PARA-8 196.8 72 3.205 · 10−10 na
OHNE2 1339.2 517 8.692 · 10−4 na
2D_54019_HIGHK 49.4 177 8.701 · 10−10 na
3D_51448_3D 16.2 44 3.762 · 10−11 na
IBM_MATRIX_2 15.2 42 1.114 · 10−10 na
MATRIX_9 139.5 142 1.629 · 10−7 na
MATRIX-NEW_3 80.9 93 5.423 · 10−11 na

LSQ_2D_1000 0.024 1 2.781 · 10−10 6.581 · 10−14

LSQ_2D_2000 0.084 15 3.824 · 10−5 7.961 · 10−9

LSQ_2D_5000 0.369 24 9.347 · 10−5 1.728 · 10−8

LSQ_2D_10000 1.04 34 2.007 · 10−4 3.845 · 10−8

LSQ_2D_50000 18.4 75 5.253 · 10−4 5.178 · 10−7

LSQ_2D_100000 88.4 111 1.049 · 10−3 6.596 · 10−7

LSQ_2D_200000 525.0 188 1.715 · 10−3 9.223 · 10−7

LSQ_2D_400000 2467.8 240 2.415 · 10−3 2.582 · 10−6

MPS_2D_10000 1.56 73 2.874 · 10−4 4.996 · 10−7

MPS_2D_50000 36.6 185 1.096 · 10−3 1.460 · 10−6

MPS_2D_100000 172.8 257 1.869 · 10−3 3.495 · 10−6

MPS_2D_200000 1019.8 418 1.943 · 10−3 3.972 · 10−6

MPS_2D_400000 6889.9 759 2.386 · 10−3 8.651 · 10−6

LSQ_3D_10000 0.779 18 3.247 · 10−6 6.528 · 10−9

LSQ_3D_50000 9.49 26 1.106 · 10−5 2.074 · 10−8

LSQ_3D_100000 33.2 31 2.626 · 10−5 4.299 · 10−8

LSQ_3D_200000 127.9 38 3.329 · 10−5 3.919 · 10−8

MPS_3D_10000 0.599 27 1.671 · 10−5 5.317 · 10−8

MPS_3D_50000 9.18 44 4.791 · 10−5 7.248 · 10−8

MPS_3D_100000 39.4 55 6.064 · 10−5 1.202 · 10−7

MPS_3D_200000 176.1 70 1.125 · 10−4 2.599 · 10−7

62

Table 3.6. Comparison of PABLO, TPABLO1, and XPABLO Results

Matrix PABLO TPABLO1 XPABLO
Time Iter Time Iter Time Iter

CAVITY16 3.35 346 2.36 241 0.601 49
CAVITY26 0.195 4 1.83 174 0.61 45
EX19 24.3 900 27.0 (950) 6.66 252
EX35 3.95 78 4.23 82 2.48 28
GARON1 1.92 265 1.66 228 0.333 37
GARON2 33.5 (1000) 33.5 (1000) 5.91 163
RAEFSKY2 1.6 141 1.39 117 0.665 39
RAEFSKY3 66.2 (1000) 66.9 (1000) 31.8 390
SHYY41 0.083 6 0.090 8 0.112 6
SHYY161 384.9 (200) 384.4 (1000) 9.14 19

IGBT3 9.99 430 15.3 619 3.29 120
NMOS3 9.3 194 34.6 733 4.99 76
BARRIER2-1 869.5 (1000) 768.7 (1000) 854.5 680
PARA-4 1031.9 692 703.1 539 519.0 210
PARA-8 967.6 621 659.1 483 196.8 72
OHNE2 2062.5 (1000) 1974.1 989 1339.2 517
2D_54019_HIGHK 197.8 (1000) 188.4 969 49.4 177
3D_51448_3D 168.4 816 89.9 484 16.2 44
IBM_MATRIX_2 206.0 (1000) 81.3 439 15.2 42
MATRIX_9 195.4 265 211.2 298 139.5 142
MATRIX-NEW_3 648.0 (1000) 602.0 (1000) 80.9 93

LSQ_2D_1000 0.024 1 0.023 1 0.024 1
LSQ_2D_2000 0.116 21 0.139 27 0.084 15
LSQ_2D_5000 0.478 39 0.486 38 0.369 24
LSQ_2D_10000 1.39 51 1.54 60 1.04 34
LSQ_2D_50000 32.1 148 35.3 162 18.4 75
LSQ_2D_100000 144.8 204 154.4 221 88.4 111
LSQ_2D_200000 699.3 280 836.9 340 525.0 188
LSQ_2D_400000 5334.3 583 5866.6 653 2467.8 240
MPS_2D_10000 1.58 77 1.94 97 1.56 73
MPS_2D_50000 39 197 46.5 265 36.6 185
MPS_2D_100000 187.1 278 288.5 495 172.8 257
MPS_2D_200000 1261.2 517 1779.7 854 1019.8 418
MPS_2D_400000 7813.3 871 7648.7 (1000) 6889.9 759

LSQ_3D_10000 0.68 21 0.602 20 0.779 18
LSQ_3D_50000 9.28 35 7.94 35 9.49 26
LSQ_3D_100000 36.6 44 30.5 43 33.2 31
LSQ_3D_200000 152.2 54 129.7 53 127.9 38
MPS_3D_10000 0.643 29 0.533 30 0.599 27
MPS_3D_50000 10.4 50 8.38 50 9.18 44
MPS_3D_100000 44.8 64 36.9 68 39.4 55
MPS_3D_200000 212.0 86 170.0 86 176.1 70

63

If the iteration count is given in parentheses, this indicates that we did not

observe convergence after 20 cycles of GMRES(50), i.e., after 1000 iterations. In

this case we show the iteration number for which the smallest preconditioned relative

residual norm was achieved, i.e., the iteration number shown in parenthesis may be

smaller than 1000 although we have computed 1000 iterations. The “solution” taken

for the computation of the (non-preconditioned) relative residual and relative error

norms is the approximation computed at the given iteration. For each matrix in

Table 3.6, the numbers in bold indicate the smallest execution time and the lowest

iteration number. More details on the stopping criterion are given later. Note that

PABLO-, TPABLO1-, or XPABLO-based preconditioners need only one iteration if

only one block is found by (T/X)PABLO. This happens, e.g., for the LSQ_2D_1000

matrix. The robustness and the performance of XPABLO compared to PABLO and

TPABLO1 can be readily appreciated.

3.7.2 Comparison of XPABLO and ILU

We now describe how we compare XPABLO with ILUTP as a tool for precondition-

ing. See section 2.2.1 for a short description of the ILUTP preconditioner used in the

experiments. In preliminary tests the three drop tolerances used in the experiments

(10−2, 10−3, and 10−4) have been found to be good values for the selected problems.

We use both XPABLO and ILUTP in conjunction with MC64; see section 3.2. We

additionally precede ILUTP with a reverse Cuthill–McKee ordering (RCM); this fol-

lows the recommendations in [8], [9], and [43]. We do not use RCM together with

XPABLO as our experiments have indicated that it does not further improve the

convergence.

64

As already mentioned, we use GMRES(50) as the iterative solver in all our

experiments. The stopping criterion is

‖rk‖/‖b̂‖ <
√
εM , (3.8)

where rk is the (preconditioned) residual at the kth iteration, b̂ is the preconditioned

right-hand side and εM is the machine precision (machine epsilon), i.e.,
√
εM ≈ 10−8,

since we use IEEE 754 double precision arithmetic. We also did tests with the alter-

native stopping criterion

‖rk‖2√
‖A‖∞‖A‖1 ‖xk‖2 + ‖b̂‖2

≤
√
εM ,

which is the default criterion in ILUPACK [12], based on the analysis in [3]; see also

[39]. Since the results were very similar and the full test cannot be done at each

iteration, we only show results using the relative residual stopping criterion (3.8).

The solver was stopped if no convergence is reached after 20 cycles of GMRES(50),

i.e., after 1000 iterations.

The results are summarized in Table 3.7. More detailed results, including the

relative residual and relative error norms, are given in Table 3.5 for XPABLO, Ta-

ble 3.8 for ILUTP(10−2), Table 3.9 for ILUTP(10−3), and Table 3.10 for ILUTP(10−4).

For the XPABLO-based preconditioners we use the recommended parameters de-

scribed in section 3.5. The block size limits were minbs = 200 and maxbs = 1000.

The notation is the same as in previous tables, see section 3.7.1 for a detailed descrip-

tion. A dagger (†) indicates that the incomplete LU decomposition failed. A double

dagger (‡) indicates that GMRES found the preconditioner to be too ill-conditioned.

In Table 3.7, the bold numbers indicate the smallest execution time and the lowest

iteration number in each row. The solving time is measured in seconds.

65

Table 3.7. Comparison of XPABLO and ILUTP Results

Matrix ILUTP(10−2) ILUTP(10−3) ILUTP(10−4) XPABLO
Time Iter Time Iter Time Iter Time Iter

CAVITY16 1.6 150 0.958 9 1.19 5 0.601 49
CAVITY26 0.802 25 0.989 7 1.24 4 0.61 45
EX19 15.9 (350) 16.3 (800) 23.8 (650) 6.66 252
EX35 22.3 (250) 23.1 (550) 23.1 (500) 2.48 28
GARON1 0.209 22 0.286 9 0.369 5 0.333 37
GARON2 4.25 194 1.93 19 3.49 8 5.91 163
RAEFSKY2 9.47 (1000) 2.17 20 3.62 7 0.665 39
RAEFSKY3 76 (300) 71.9 (1000) 28.9 20 31.8 390
SHYY41 – † – † 1.23 970 0.112 6
SHYY161 – † – † – † 9.14 19

IGBT3 – † 0.468 35 0.332 13 3.29 120
NMOS3 18.5 (800) 20.8 (1000) 1.19 15 4.99 76
BARRIER2-1 143.9 (850) 179.3 (500) 300.9 (1000) 854.5 680
PARA-4 297.6 (350) 265.5 (950) 461.1 (1000) 519.0 210
PARA-8 – † – † 383.5 (1000) 196.8 72
OHNE2 – ‡ 602.0 (550) 802.7 (1000) 1339.2 517
2D_54019_HIGHK 50 (650) 63.7 (1000) 14.6 29 49.4 177
3D_51448_3D 49.7 (100) 15.6 44 47.0 16 16.2 44
IBM_MATRIX_2 50.5 (100) 16.1 44 48.2 16 15.2 42
MATRIX_9 153.3 (650) 129.0 297 282.2 25 139.5 142
MATRIX-NEW_3 – † 223.9 (1000) 199.1 27 80.9 93

LSQ_2D_1000 0.024 10 0.026 6 0.032 4 0.024 1
LSQ_2D_2000 0.051 12 0.063 7 0.085 4 0.084 15
LSQ_2D_5000 0.148 15 0.22 9 0.352 5 0.369 24
LSQ_2D_10000 0.359 18 0.591 11 0.995 6 1.04 34
LSQ_2D_50000 2.87 32 4.34 17 9.76 10 18.4 75
LSQ_2D_100000 8.32 41 10.8 21 24.6 13 88.4 111
LSQ_2D_200000 24.1 56 26.0 26 66.8 16 525.0 188
LSQ_2D_400000 71.2 88 61.9 33 134.4 19 2467.8 240
MPS_2D_10000 0.181 21 0.189 11 0.32 7 1.56 73
MPS_2D_50000 1.95 39 1.56 18 2.65 11 36.6 185
MPS_2D_100000 6.63 49 4.02 22 6.65 13 172.8 257
MPS_2D_200000 32.7 116 10.0 26 16.2 16 1019.8 418
MPS_2D_400000 593.2 (1000) 25.8 32 37.6 19 6889.9 759

LSQ_3D_10000 0.939 12 2.0 8 4.17 5 0.779 18
LSQ_3D_50000 13.5 19 45.5 11 130.6 7 9.49 26
LSQ_3D_100000 44.0 22 176.0 12 510.9 8 33.2 31
LSQ_3D_200000 136.1 60 606.8 14 1743.7 9 127.9 38
MPS_3D_10000 0.242 12 0.565 7 1.13 5 0.599 27
MPS_3D_50000 2.96 20 10.9 11 28.8 7 9.18 44
MPS_3D_100000 9.33 30 36.4 13 119.3 8 39.4 55
MPS_3D_200000 55.0 132 101.7 16 399.7 10 176.1 70

66

3.8 Discussion

The comparison of PABLO, TPABLO1, and XPABLO (see Table 3.6) shows that

XPABLO is almost always the superior PABLO-based reordering for block Gauss–

Seidel preconditioning. This is true for both robustness and speed. Moreover, this

is not achieved using more memory, since the parameters and most importantly the

block size limits are the same in all (T/X)PABLO-based experiments.

If we compare the XPABLO solve results in Table 3.5 with the direct solve

results in Table 1.2, then the direct solver seems to be superior: The direct solver is

faster in almost all cases and in most cases by a factor of two or more. An exception

are the LSQ_3D_∗ and MPS_3D_∗ matrices. For these problems the XPABLO-based

solver is in general faster. On the other hand, the XPABLO-based solver usually

requires less memory than the direct solver. In the experiments the direct solver

failed for six of the test problems. In all six cases the solver failed because the

available memory was not sufficiently large. With the XPABLO-based approach the

amount of available memory was sufficient for all test problems.

As observed before, for small problems it can happen that XPABLO finds only

one block. Naturally, we recommend to use a direct solver in such a case. In general,

a direct solver should be used if the order of the matrix is less than or equal to the

maximum block size maxbs . Note that XPABLO could find more than one block for

a matrix of order maxbs . Even then we recommend to use a direct solver.

As it can be observed in Table 3.7, the XPABLO-based preconditioners can

perform better than the ILU-based ones in many cases, and in some cases much better.

In some examples the XPABLO-based preconditioners perform better, although the

iteration counts of the ILUTP-based preconditioners are lower. The reason for this is

that times for finding and, more importantly, factorizing the preconditioner are not

the same in both cases. Moreover, in many cases with ILUTP each iteration step is

67

more costly. With ILUTP we have to do a matrix-vector multiplication with A and a

preconditioning step with the incomplete factorization in each iteration. Whereas, in

the block Gauss-Seidel preconditioning we can employ an optimized preconditioned

matrix-vector multiplication as discussed in section 3.6.

On the other hand, for the meshfree discretizations of Poisson’s equation the

XPABLO approach is not doing as well. For these problems ILU-based precondi-

tioners seem to work very well, even compared to the results using a direct solver,

cf. Table 1.2. For the two-dimensional problems (LSQ_2D_∗ and MPS_2D_∗) the direct

solver is the best, by being both fast and robust, followed closely by ILUTP(10−3).

XPABLO, on the other hand, is not really competitive for these problems. For the

three-dimensional problems (LSQ_3D_∗ and MPS_3D_∗) the situation is different. Here,

ILUTP(10−2) seems to be the best overall choice, being consistently faster than the

direct solver. Moreover, the direct solver was not able to solve the largest problems,

because the available memory was not sufficient. ILUTP(10−2) did not suffer from

these problems. Moreover, the XPABLO-based preconditioners are much more com-

petitive for the three-dimensional problems than for the two-dimensional problems.

We note that XPABLO is the fastest for the LSQ_3D_∗ problems and not far behind

ILUTP(10−2) for the three-dimensional MPS discretizations.

While XPABLO is not always competitive with sophisticated ILU precondi-

tioners like ILUTP, we have seen that XPABLO can perform better than ILUT for

many CFD and semiconductor device simulation problems. XPABLO also gave en-

couraging results for the discretizations of Poisson’s equation in the three-dimensional

case.

68

Table 3.8. ILUTP(10−2) Solve Results for the Test Matrices

Matrix Time Iter Rel. Res. Rel. Err.

CAVITY16 1.6 150 4.202 · 10−8 5.340 · 10−7

CAVITY26 0.802 25 1.000 · 10−8 4.039 · 10−7

EX19 15.9 (350) 3.799 · 10+3 5.850 · 10+3

EX35 22.3 (250) 9.834 · 10+4 3.043 · 10+5

GARON1 0.209 22 5.243 · 10−9 2.270 · 10−7

GARON2 4.25 194 3.082 · 10−9 1.689 · 10−7

RAEFSKY2 9.47 (1000) 1.095 · 10+0 na
RAEFSKY3 76.0 (300) 2.551 · 10+2 na
SHYY41 – † – –
SHYY161 – † – –

IGBT3 – † – –
NMOS3 18.5 (800) 8.584 · 10+5 na
BARRIER2-1 143.9 (850) 1.488 · 10+13 na
PARA-4 297.6 (350) 7.076 · 10+7 na
PARA-8 – † – –
OHNE2 – ‡ – –
2D_54019_HIGHK 50.0 (650) 1.000 · 10+0 na
3D_51448_3D 49.7 (100) 1.001 · 10+0 na
IBM_MATRIX_2 50.5 (100) 1.009 · 10+0 na
MATRIX_9 153.3 (650) 2.547 · 10+4 na
MATRIX-NEW_3 – † – –

LSQ_2D_1000 0.024 10 3.300 · 10−6 1.068 · 10−9

LSQ_2D_2000 0.051 12 7.394 · 10−6 9.326 · 10−10

LSQ_2D_5000 0.148 15 3.925 · 10−5 1.867 · 10−9

LSQ_2D_10000 0.359 18 1.229 · 10−4 2.338 · 10−9

LSQ_2D_50000 2.87 32 3.942 · 10−4 1.020 · 10−9

LSQ_2D_100000 8.32 41 6.889 · 10−4 9.232 · 10−10

LSQ_2D_200000 24.1 56 1.461 · 10−3 1.277 · 10−9

LSQ_2D_400000 71.2 88 2.330 · 10−3 1.323 · 10−9

MPS_2D_10000 0.181 21 1.384 · 10−4 1.224 · 10−9

MPS_2D_50000 1.95 39 5.252 · 10−4 1.017 · 10−9

MPS_2D_100000 6.63 49 1.038 · 10−3 1.311 · 10−9

MPS_2D_200000 32.7 116 6.359 · 10−4 2.952 · 10−9

MPS_2D_400000 593.2 (1000) 2.712 · 10+0 5.886 · 10−5

LSQ_3D_10000 0.939 12 3.407 · 10−6 2.472 · 10−9

LSQ_3D_50000 13.5 19 2.110 · 10−5 4.589 · 10−9

LSQ_3D_100000 44.0 22 3.142 · 10−5 3.721 · 10−9

LSQ_3D_200000 136.1 60 5.565 · 10−5 1.108 · 10−8

MPS_3D_10000 0.242 12 1.827 · 10−5 6.503 · 10−9

MPS_3D_50000 2.96 20 4.415 · 10−5 3.917 · 10−9

MPS_3D_100000 9.33 30 5.733 · 10−5 2.845 · 10−9

MPS_3D_200000 55.0 132 1.086 · 10−4 7.972 · 10−9

69

Table 3.9. ILUTP(10−3) Solve Results for the Test Matrices

Matrix Time Iter Rel. Res. Rel. Err.

CAVITY16 0.958 9 1.732 · 10−8 2.267 · 10−7

CAVITY26 0.989 7 1.017 · 10−8 4.671 · 10−7

EX19 16.3 (800) 1.803 · 10+9 9.515 · 10+10

EX35 23.1 (550) 3.341 · 10+7 3.237 · 10+9

GARON1 0.286 9 4.079 · 10−9 2.127 · 10−7

GARON2 1.93 19 1.575 · 10−9 2.541 · 10−7

RAEFSKY2 2.17 20 3.772 · 10−9 na
RAEFSKY3 71.9 (1000) 5.590 · 10−3 na
SHYY41 – † – –
SHYY161 – † – –

IGBT3 0.468 35 1.652 · 10−6 na
NMOS3 20.8 (1000) 4.681 · 10+2 na
BARRIER2-1 179.3 (500) 8.186 · 10+1 na
PARA-4 265.5 (950) 4.050 · 10+7 na
PARA-8 – † – –
OHNE2 602.0 (550) 1.505 · 10+1 na
2D_54019_HIGHK 63.7 (1000) 8.610 · 10−9 na
3D_51448_3D 15.6 44 4.313 · 10−11 na
IBM_MATRIX_2 16.1 44 2.127 · 10−12 na
MATRIX_9 129.0 297 6.717 · 10−9 na
MATRIX-NEW_3 223.9 (1000) 2.610 · 10−7 na

LSQ_2D_1000 0.026 6 1.664 · 10−6 7.534 · 10−10

LSQ_2D_2000 0.063 7 5.227 · 10−6 1.107 · 10−9

LSQ_2D_5000 0.22 9 1.366 · 10−5 9.187 · 10−10

LSQ_2D_10000 0.591 11 2.812 · 10−5 7.768 · 10−10

LSQ_2D_50000 4.34 17 3.835 · 10−4 1.388 · 10−9

LSQ_2D_100000 10.8 21 6.911 · 10−4 1.010 · 10−9

LSQ_2D_200000 26.0 26 1.617 · 10−3 1.014 · 10−9

LSQ_2D_400000 61.9 33 1.491 · 10−3 6.337 · 10−10

MPS_2D_10000 0.189 11 1.854 · 10−4 2.789 · 10−9

MPS_2D_50000 1.56 18 3.036 · 10−4 9.645 · 10−10

MPS_2D_100000 4.02 22 3.941 · 10−4 6.888 · 10−10

MPS_2D_200000 10.0 26 5.201 · 10−4 9.104 · 10−10

MPS_2D_400000 25.8 32 5.917 · 10−4 9.799 · 10−10

LSQ_3D_10000 2.0 8 7.102 · 10−7 8.226 · 10−10

LSQ_3D_50000 45.5 11 3.074 · 10−6 1.053 · 10−9

LSQ_3D_100000 176.0 12 1.991 · 10−5 4.117 · 10−9

LSQ_3D_200000 606.8 14 3.216 · 10−5 3.588 · 10−9

MPS_3D_10000 0.565 7 6.883 · 10−6 3.735 · 10−9

MPS_3D_50000 10.9 11 9.483 · 10−6 1.273 · 10−9

MPS_3D_100000 36.4 13 3.308 · 10−5 2.379 · 10−9

MPS_3D_200000 101.7 16 5.606 · 10−5 2.110 · 10−9

70

Table 3.10. ILUTP(10−4) Solve Results for the Test Matrices

Matrix Time Iter Rel. Res. Rel. Err.

CAVITY16_PHD 1.19 5 1.347 · 10−9 4.110 · 10−8

CAVITY26_PHD 1.24 4 2.904 · 10−9 1.613 · 10−7

EX19 23.8 (650) 1.800 · 10+1 1.436 · 10+2

EX35 23.1 (500) 1.797 · 10+12 3.018 · 10+12

GARON1 0.369 5 1.813 · 10−10 6.128 · 10−9

GARON2 3.49 8 3.275 · 10−10 2.335 · 10−8

RAEFSKY2 3.62 7 7.545 · 10−10 na
RAEFSKY3 28.9 20 3.730 · 10−10 na
SHYY41 1.23 970 2.515 · 10−6 3.469 · 10+0

SHYY161 – † – –

IGBT3 0.332 13 1.584 · 10−7 na
NMOS3 1.19 15 1.638 · 10−7 na
BARRIER2-1 300.9 (1000) 1.644 · 10+0 na
PARA-4 461.1 (1000) 1.245 · 10+0 na
PARA-8 383.5 (1000) 5.763 · 10−3 na
OHNE2 802.7 (1000) 5.945 · 10+0 na
2D_54019_HIGHK 14.6 29 6.438 · 10−11 na
3D_51448_3D 47.0 16 2.134 · 10−11 na
IBM_MATRIX_2 48.2 16 1.342 · 10−10 na
MATRIX_9 282.2 25 1.491 · 10−7 na
MATRIX-NEW_3 199.1 27 1.970 · 10−10 na

LSQ_2D_1000 0.032 4 2.607 · 10−7 1.088 · 10−10

LSQ_2D_2000 0.085 4 1.084 · 10−5 2.748 · 10−9

LSQ_2D_5000 0.352 5 2.423 · 10−5 1.868 · 10−9

LSQ_2D_10000 0.995 6 9.720 · 10−5 3.222 · 10−9

LSQ_2D_50000 9.76 10 2.202 · 10−4 1.110 · 10−9

LSQ_2D_100000 24.6 13 3.037 · 10−4 4.884 · 10−10

LSQ_2D_200000 66.8 16 4.762 · 10−4 3.775 · 10−10

LSQ_2D_400000 134.4 19 1.339 · 10−3 4.766 · 10−10

MPS_2D_10000 0.32 7 1.813 · 10−5 4.185 · 10−10

MPS_2D_50000 2.65 11 1.453 · 10−4 6.785 · 10−10

MPS_2D_100000 6.65 13 4.121 · 10−4 8.168 · 10−10

MPS_2D_200000 16.2 16 1.383 · 10−4 3.875 · 10−10

MPS_2D_400000 37.6 19 2.823 · 10−4 7.434 · 10−10

LSQ_3D_10000 4.17 5 5.906 · 10−7 9.249 · 10−10

LSQ_3D_50000 130.6 7 2.326 · 10−6 1.173 · 10−9

LSQ_3D_100000 510.9 8 5.681 · 10−6 1.861 · 10−9

LSQ_3D_200000 1743.7 9 1.672 · 10−5 2.919 · 10−9

MPS_3D_10000 1.13 5 7.602 · 10−7 5.230 · 10−10

MPS_3D_50000 28.8 7 5.605 · 10−6 1.011 · 10−9

MPS_3D_100000 119.3 8 3.242 · 10−5 2.991 · 10−9

MPS_3D_200000 399.7 10 1.597 · 10−5 7.703 · 10−10

71

CHAPTER 4

OVERLAPPING PARTITIONING

Additive and multiplicative Schwarz preconditioners are known to be efficient for dis-

cretizations of (elliptic) partial differential equation problems involving a geometric

domain. They are based on decomposing the domain into a set of overlapping subdo-

mains in such a way that the restrictions of the original problem to each subdomain

are solvable; see, e.g., [44], [47], [48]. In our problem Ax = b, cf. equation (1.1), we

do not assume knowledge about the geometric domain, in fact the problem may not

involve a geometric domain at all. Recall that we assume A ∈ Rn×n to be a gen-

eral nonsingular square matrix, i.e., we do not assume any symmetry or definiteness.

Algebraic Schwarz methods are a generalization of the (geometric) Schwarz methods

that work without an underlying geometric domain by restricting the linear operator

A to overlapping subsets of the variables.

An important issue in applying algebraic Schwarz methods is the question

how to determine such overlapping subsets. In terms of the graph G = G(A) of

the matrix A we have to find overlapping subgraphs (“blocks”) of G. The OBGP

(Overlapping Blocks by Growing a Partition) algorithm is a new approach to compute

such overlapping subgraphs. As implied by its name, it works by taking an existing

non-overlapping partition and grows each block to include some vertices from other

blocks.

72

In section 4.1 we briefly introduce Schwarz methods. In section 4.2 we intro-

duce the OBGP algorithm. In section 4.2.2 we discuss implementation challenges and

how OBGP can be implemented to work in an efficient way. In section 4.3 we give a

detailed analysis of the time complexity of OBGP. We finally give results of numerical

experiments in section 4.4.

4.1 Schwarz Methods and Preconditioners

As a starting point of our introduction to Schwarz methods we will first reformulate

the block Gauss–Seidel method in section 4.1.1. As we will see in section 4.1.2, the

block Gauss–Seidel method and the multiplicative Schwarz method are related. To

make it easier to observe this relation we will use notation typically known from

domain decomposition to introduce the block Gauss–Seidel method; for comparison,

see, e.g., [6], [41, pp. 465ff].

Let A ∈ Rn×n be the matrix of the linear system Ax = b and V = {1, . . . , n}

the set of vertices in the directed graph G(A) associated with A; see section 2.4 for

more details on the graph of a matrix.

We let the nodes 1, . . . , n in V correspond to the unit vectors e1, . . . , en by

associating node k with unit vector ek. Furthermore, we associate a node set S with

the linear subspaces spanned by the unit vectors associated with the nodes in S. Then

V is associated with Rn and a subset S = {s1, . . . , sm} ⊂ V is associated with the

linear subspace span{es1 , . . . , esm} ⊂ Rn.

Definition 4.1: Let S = {s1, . . . , sm} ⊂ V be an ordered subset of the node set

V = {1, . . . , n}. The restriction operator RS ∈ Rm×n corresponding to S onto the

73

subspace associated with S is defined by

(RS)ij :=

{
1 if si = j,

0 otherwise.

The transpose RT
S of a restriction operator RS is the corresponding prolongation

operator . 3

Note that row k, k = 1, . . . ,m of RS is just the skth row of In.

Example 4.2: Let V = {1, . . . , 5} and let S = {1, 2, 4} and T = {4, 1, 2}. Then

RS =

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

 and RT =

0 0 0 1 0
1 0 0 0 0
0 1 0 0 0

.
Note that S = T but RS 6= RT .

Using MATLAB notation Definition 4.1 is equivalent to

RS : Rn → Rm,

y 7→ y(S).

In most cases we consider restrictions to an element of a cover or partition. In

order to simplify our notation we introduce the following abbreviation:

Definition 4.3: Let {Vi}i=1,...,q be a cover of V . Define Ri := RVi ∈ Rni×n. 3

Remark 4.4: Every restriction operator can also be written as Ri = EiPi, where

Ei = [Ini 0] ∈ Rni×n and Pi ∈ Rn×n is a permutation matrix depending on Vi. Then

RT
i Ri = (EiPi)

T (EiPi) = P T
i E

T
i EiPi = P T

i

[
Ini 0
0 0

]
Pi

= diag
(
χVi(1), . . . , χVi(n)

)
,

where χVi , i = 1, . . . , q, is the characteristic function of the set Vi.

74

Thus, RT
i Ri is a diagonal matrix with 1 on the diagonal in row k if k ∈ Vi and

0 otherwise. Hence, RT
i Ri is the orthogonal projector onto the subspace associated

with Vi.

We use the subscript notation also to indicate submatrices and subvectors:

Definition 4.5: Let {Vi}i=1,...,q be a cover of the node set V = {1, . . . , n}. The

submatrix Aij of a matrix A ∈ Rn×n is defined by

Aij := RiAR
T
j ∈ Rni×nj .

Let S = {s1, . . . , sm} ⊂ V be an ordered subset of V . The submatrix AS is defined

by

AS := RSAR
T
S ∈ Rm×m.

For simplicity, we will write Ai for Aii = AVi from now on. The subvector zi of a

vector z ∈ Rn is defined by

zi := Riz ∈ Rni . 3

Remark 4.6: The diagonal entries of Ai, i = 1, . . . , q are diagonal entries of A. As

before, we can write Ri as Ri = EiPi, where EI = [Ini 0] and Pi is a permutation

matrix. Then

Ai = RiAR
T
i = EiPiAP

T
i E

T
i = Ei(PiAP

T
i)ET

i .

The matrix PiAP
T
i has the same diagonal entries as A as it is a symmetric permutation

of A. The matrix Ai is the ni × ni upper left part of PiAP
T
i and hence its diagonal

entries are diagonal entries of A.

75

4.1.1 The Block Gauss–Seidel Method

Let {Vi}i=1,...,q be a partition of V , i.e., the subsets Vi are pairwise disjoint. Let P be

the permutation matrix which permutes (1, . . . , n)T into (v
(1)
1 , . . . , v

(1)
n1 , v

(2)
1 , . . . , v

(q)
nq)T .

Note that

P =

R1
...
Rq

. (4.1)

Then the permuted problem (PAP T)Px = Pb has a q × q block structure as follows
A1 A12 · · · A1q

A21 A2
...

...
. . .

...
Aq1 · · · · · · Aq

x1

x2
...
xq

 =

b1

b2
...
bq

. (4.2)

The “blocks” Aij in (4.2) are the same as the submatrices Aij in Definition 4.5. The

same holds for the subvectors xi and bi,

Example 4.7: Let A ∈ R5×5, q = 2, V1 = {1, 2, 4} and V2 = {5, 3}. Then

R1 =

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

,
R2 =

[
0 0 0 0 1
0 0 1 0 0

]
and the permuted matrix PAP T has the form

PAP T =

[
A1 A12

A21 A2

]
=

a11 a12 a14 a15 a13

a21 a22 a24 a25 a23

a41 a42 a44 a45 a43

a51 a52 a54 a55 a53

a31 a32 a34 a35 a33

.

76

Let Â := PAP T , x̂ = Px and b̂ = Pb, i.e.,

Â =

A1 A12 · · · A1q

A21 A2
...

...
. . .

...
Aq1 · · · · · · Aq

, x̂ =

x1

x2
...
xq

 and b̂ =

b1

b2
...
bq

.
Then Âx̂ = b̂ is just the permuted problem (4.2). Using the block structure shown

in (4.2), we split Â into Â = D − L − U , where D is the block diagonal part D =

diag(A1, . . . , Aq), L the block lower triangular part with Lij = −Aij for i > j, and U

the block upper triangular part Uij = −Aij for i < j. Both L and U have zero block

diagonal.

Using this notation, the block Gauss–Seidel iteration is defined by

(D − L)x̂(k+1) = Ux̂(k) + b̂. (4.3)

The new iterate x̂(k+1) from (4.3) can be computed blockwise, resulting in the iteration

x
(k+1)
i = A−1

i

(
bi −

∑
j<i

Aijx
(k+1)
j −

∑
j>i

Aijx
(k)
j

)
, i = 1, . . . , q, (4.4)

where x
(k)
i denotes the ith “block” of the kth iterate x̂(k). With x

(k)
i we also denote

the restriction Rix
(k) of x(k) = P−1x̂(k). Note that the ith block of x̂(k) is exactly the

same as the restriction Rix
(k) of vector x(k). Therefore, we do not distinguish between

these two interpretations of x
(k)
i .

Now we want to rewrite the block Gauss–Seidel iteration in a way that is useful

for defining the multiplicate Schwarz method. Let

ξ(k,i) =
(
x

(k+1)
1 , . . . , x

(k+1)
i , x

(k)
i+1, . . . , x

(k)
q

)T
be the ith intermediate iterate between x(k) and x(k+1), i.e., ξ(k,0) = x(k) and ξ(k,q) =

x(k+1). We use our usual restriction notation ξ
(k,i)
j = Rjξ

(k,i) to denote the restricted

77

intermediate iterates. The vectors ξ(k,i) and ξ(k,i−1) differ only in the ith block ξ
(k,i)
i =

x
(k+1)
i 6= x

(k)
i = ξ

(k,i−1)
i and hence we can express ξ

(k,i)
j as

ξ
(k,i)
j =

{
x

(k+1)
i if i = j,

ξ
(k,i−1)
j otherwise.

(4.5)

Then

ξ
(k,i)
i = x

(k+1)
i

(4.4)
= A−1

i

(
bi −

∑
j<i

Aijξ
(k,i−1)
j −

∑
j>i

Aijξ
(k,i−1)
j

)

= A−1
i

(
bi + Aiξ

(k,i−1)
i −

q∑
j=1

Aijξ
(k,i−1)
j

)

= ξ
(k,i−1)
i + A−1

i

(
bi −

q∑
j=1

Aijξ
(k,i−1)
j

)
.

We can rewrite (4.5) as

ξ
(k,i)
j =

ξ
(k,i−1)
i + A−1

i

(
bi −

∑q
j=1 Aijξ

(k,i−1)
j

)
if i = j,

ξ
(k,i−1)
j otherwise.

It follows that

ξ(k,i) = ξ(k,i−1) +RT
i A
−1
i

(
bi −

q∑
j=1

Aijξ
(k,i−1)
j

)
(4.6)

= ξ(k,i−1) +RT
i A
−1
i Ri

(
b− Aξ(k,i−1)

)
. (4.7)

Definition 4.8: Let S ⊂ V be any ordered subset of V . We define ΠS by ΠS :=

RT
SA
−1
S RSA. For a cover {Vi}i=1,...,q of V we define Πi := ΠVi . 3

To derive the stationary iteration form of the block Gauss–Seidel method, we

look at the errors. Let d(k,i) = A−1b− ξ(k,i) be the error of the intermediate iterates.

78

We can compute d(k,i) by

d(k,i) = A−1b− ξ(k,i) = A−1b− ξ(k,i−1) −RT
i A
−1
i Ri

(
b− Aξ(k,i−1)

)
= (A−1b− ξ(k,i−1))−RT

i A
−1
i RiA

(
A−1b− ξ(k,i−1)

)
= (I −RT

i A
−1
i RiA)(A−1b− ξ(k,i−1))

= (I −RT
i A
−1
i RiA)d(k,i−1)

= (I − Πi)d
(k,i−1).

Let

Qi = (I − Πi) · · · (I − Π1) and Q = Qq. (4.8)

Then the block Gauss–Seidel errors

e(k) = A−1b− x(k) (4.9)

satisfy the relation

e(k+1) = Qe(k). (4.10)

Combining (4.9) and (4.10) we get

x(k+1) = A−1b− e(k+1) = A−1b−Qe(k) = A−1b−Q(A−1b− x(k)),

from which we immediately get a formulation of the block Gauss–Seidel method as a

stationary iteration

x
(k+1)
GS = Qx(k) + (I −Q)A−1b. (4.11)

Note that this iteration formula can not be used directly since A−1b is not known.

However, there is a recursive procedure to compute z = (I −Q)A−1v for some vector

v in which A−1 cancels; see also [41]. For i ≥ 2 we have

I −Qi = I − (I − Πi)Qi−1 = (I −Qi−1) + Πi − Πi(I −Qi−1) (4.12)

79

and

(I −Qi)A
−1 = (I −Qi−1)A−1 + ΠiA

−1 − Πi(I −Qi−1)A−1

= (I −Qi−1)A−1 +RT
i A
−1
i Ri −RT

i A
−1
i RiA(I −Qi−1)A−1.

(4.13)

Let zi = (I −Qi)A
−1v, i = 1, . . . , q. Then

z1 = (I −Q1)A−1v = Π1A
−1v = RT

1A
−1
1 R1v

and zi = zi−1 +RT
i A
−1
i Ri(v − Azi−1) for i ≥ 2.

(4.14)

Formula (4.14) yields a recursive procedure to compute z = zq.

The stationary iteration form of the block Gauss–Seidel method is usually

derived in a different way; see, e.g., [41, pp. 110ff]: Assume we split A as A = D−L−U

into the block diagonal part D, the block lower triangular part −L, and the block

upper triangular part−U . Both L and U have a zero block diagonal, cf. Theorem 3.15.

Moreover, given a matrix splitting A = M −N , a stationary iteration can be defined

by

x(k+1) = M−1Nx(k) +M−1b.

For the block Gauss–Seidel iteration M = D − L and N = M − A = U , i.e., M

is the block lower triangular part (including diagonal) of A. This yields the block

Gauss–Seidel iteration

x(k+1) = (D − L)−1Ux(k) + (D − L)−1b,

which is the iteration given by (4.3); cf. (4.11).

4.1.2 Algebraic Multiplicative Schwarz Method

The Schwarz alternating method solves a partial differential equation on a domain

Ω which is the union of two (or more) overlapping subdomains. It works by solving

80

the equation alternatingly on the subdomains. In each local solve, the Dirichlet

boundary conditions on the artificial interface inside Ω are given by the latest available

approximation of the global solution. This new local solution is then used to update

the approximation for the global solution; see, e.g., [44], [47], [48].

The multiplicative Schwarz method is an abstract version of the original alter-

nating method applied to the solution of linear systems. The basic ideas are still the

same. We alternatingly use local solves to update the approximation of the global

solution. If we use the multiplicative Schwarz method purely algebraically, we also

refer to it as the algebraic multiplicative Schwarz method, which is the focus of this

chapter. For the convergence theory of algebraic multiplicative Schwarz methods we

refer to the literature; see, e.g., [6].

Let x(k) be the kth iterate of the (algebraic) multiplicative Schwarz method

and let ξ(k,i) be the ith intermediate iterate after the update stemming from the local

solve on the ith subdomain, i.e., ξ(k,0) = x(k) and ξ(k,q) = x(k+1), where q is the

number of subdomains. Here the (overlapping) subdomains are the linear subspaces

associated with a cover {Vi}i=1,...,q of {1, . . . , n}, where n is the order of our problem

Ax = b. The multiplicative Schwarz method computes ξ(k,i) by

ξ(k,i) := ξ(k,i−1) +RT
i A
−1
i Ri

(
b− Aξ(k,i−1)

)
, i = 1, . . . , q, (4.15)

where Ai and Ri are defined as before. Note that this computation is the same as the

computation of ξ(k,i) in (4.7). Therefore, the multiplicative Schwarz method without

overlap is just the block Gauss–Seidel method, i.e., the multiplicative Schwarz method

can be understood as an extension of the block Gauss–Seidel method, which allows

for overlapping blocks.

We can derive from this the stationary multiplicative Schwarz iteration in

exactly the same way we used for the block Gauss–Seidel method, i.e., the iteration

81

is

x
(k+1)
MS = Qx(k) + (I −Q)A−1b, (4.16)

where Q is defined by Q = (I − Πq) · · · (I − Π1), like we did in (4.8). As in the

block Gauss–Seidel case we can not use the iteration formula (4.16) directly, as we

do not know A−1b. The recursive procedure in (4.14) works in the same way for the

multiplicative Schwarz method.

From the stationary iteration we can easily derive the multiplicative Schwarz

preconditioner. The application of the multiplicative Schwarz preconditioner to a

vector v ∈ Rn consists of computing one iteration step of the multiplicative Schwarz

method using b = v as the right hand side and x(0) = 0 as the initial approximation.

Therefore,

M−1
MS = (I −Q)A−1. (4.17)

The (left) preconditioned matrix-vector multiplication M−1
MSAv, v ∈ Rn, can then be

computed by

M−1
MSAv = (I −Q)v. (4.18)

As discussed before, we dot not use (4.17) or (4.18) directly to obtain the result

of a precondition step or a preconditioned matrix-vector multiplication, respectively.

Algorithm 4.1 computes the application of a multiplicative Schwarz preconditioner;

the algorithm is based on the recursion (4.14). Algorithm 4.2 computes a precon-

ditioned matrix-vector multiplication. The recursion is based on (4.12) in the same

way (4.14) is based on (4.13).

4.1.3 Connectivity in the Multiplicative Schwarz Method

One might think that there might be problems with covers that have non-connected

sets. As we show now, this is not a problem, since there is a cover which is equiv-

alent (in a sense made precise later), which only has connected sets. We denote

82

1: input: vector v
2: output: z := M−1v {z := (I −Q)A−1v}
3: z := 0
4: for i = 1, . . . , q do
5: z := z + (RT

i A
−1
i Ri)(v − Az)

6: end for

Algorithm 4.1. Application of a Multiplicative Schwarz Preconditioner

1: input: vector v
2: output: z := M−1Av {z := (I −Q)v}
3: z := 0
4: for i = 1, . . . , q do
5: z := z + (RT

i A
−1
i RiA)(v − z)

6: end for

Algorithm 4.2. Multiplicative Schwarz Preconditioned Matrix-Vector Multiplication

the multiplicative Schwarz method based on the cover {Vi}i=1,...,q by MS({Vi}) =

MS(V1, . . . , Vq). If we apply the multiplicative Schwarz method for two different cov-

ers, we may end up with two different iterations. Let MS1 and MS2 be multiplicative

Schwarz iterations based on two different covers. We call MS1 and MS2 equivalent

if their iteration matrices QMS1 and QMS2 are equal; here QMS1 and QMS2 refer to Q

in (4.16). This definition of equivalence implies that x
(k+1)
MS1

and x
(k+1)
MS2

computed by

(4.16) are equal for all choices of x(k) and b.

In preparation for Theorem 4.10, we first present an auxiliary result.

Lemma 4.9: Let G(A) = (V,E) be the digraph of a matrix A ∈ Rn×n. Let S, U ⊂ V

be node sets. Then

RSAR
T
U = 0 and RUAR

T
S = 0 ⇔ inc(S, U) = ∅.

Proof: The submatrix RSAR
T
U is the submatrix of A computed by selecting rows

according to S and columns according to U , or in MATLAB notation we have

83

RSAR
T
U = A(S, U). Therefore, RSAR

T
U and RUAR

T
S both equal to zero is equiva-

lent to A having no nonzero matrix entry aij such that i ∈ S and j ∈ U or i ∈ U and

j ∈ S. In terms of the digraph of A, this is equivalent to having no edge between

a node in S and a node in U (regardless of the direction). Finally, we have no edge

between S and U if and only if inc(S, U) = ∅. 2

Theorem 4.10: Let G(A) = (V,E) be the digraph of a matrix A ∈ Rn×n. Let

{Vi}i=1,...,q be a cover of V . Let {Wj}j=1,...,r be a refinement of {Vi} for which there

exists a surjective map κ : {1, . . . , r} → {1, . . . , q} such that (a) κ is monotonically

increasing, (b) Wj ∩Wk = ∅ if κ(j) = κ(k), (c) the connected components of G|Wj
are

connected components of G|Vκ(j)
, and (d)

⋃
j∈κ−1(i) Wj = Vi for all i = 1, . . . , q. Then

the two multiplicative Schwarz methods MS({Vi}) and MS({Wj}) are equivalent.

Proof: Let Πi = RT
Vi
A−1
Vi
RViA, i = 1, . . . , q, and Π′j = RT

Wj
A−1
Wj
RWj

A, j = 1, . . . , r.

Furthermore, let Q = (I − Πq) · · · (I − Π1) and Q′ = (I − Π′r) · · · (I − Π′1). We have

to show Q = Q′ to prove equivalence of MS({Vi}) and MS({Wj}). Since by (a) the

set κ−1(i), i = 1, . . . , q, is a (nonempty) contiguous subset of {1, . . . , r}, we can show

Q = Q′ by showing

I − Πi =
∏

j∈κ−1(i)

(I − Π′j) for all i = 1, . . . , q. (4.19)

From now on, we assume i ∈ {1, . . . , q} to be fixed and without loss of generality

we assume κ−1(i) = {1, . . . ,m}. Let G ′ = G|Vi . For any j, k ∈ κ−1(i) with j 6= k

we know by assumption (b) that Wj ∩Wk = ∅. Together with (c) this implies that

inc(Wj,Wk) = ∅ and hence by Lemma 4.9 we have RWj
ART

Wk
= 0. Therefore,

Π′jΠ
′
k = RT

Wj
A−1
Wj
RWj

ART
Wk︸ ︷︷ ︸

=0

A−1
Wk
RWk

A = 0.

84

Thus (4.19) is equivalent to

Πi =
∑

j∈κ−1(i)

Π′j =
m∑
j=1

Π′j for all i = 1, . . . , q.

From (c) follows that in G ′ there is no edge between any two Wj and Wk with j, k ∈

κ−1(i), j 6= k. Assumption (d) states that Vi =
⋃
j=1,...,mWj and assumption (b) says

that this union is disjoint, i.e., Wj ∩Wk = ∅ for j 6= k. Putting all of this together,

we can find a permutation matrix P such that

AVi = P

AW1 0
. . .

0 AWm

P T .

Hence,

Πi = RT
Vi
A−1
Vi
RVi = RT

Vi
P

A
−1
W1

0
. . .

0 A−1
Wm

P TRVi

= RT
Vi
P

[
A−1
W1

0
0 0

]
P TRVi + · · ·+RT

Vi
P

[
0 0
0 A−1

Wm

]
P TRVi

= RT
W1
A−1
W1
RW1 + · · ·+RT

Wm
A−1
Wm

RWm

= Π′1 + · · ·+ Π′m. 2

The monotonicity of κ is a necessary condition for Theorem 4.10 as we will

show in the following example:

Example 4.11: Consider the 3× 3 matrix

A =

2 0 1
0 2 1
1 0 2

85

with the cover V1 = {1, 2}, V2 = {2, 3}. Then

R1 =

[
1 0 0
0 1 0

]
, A1 =

[
2 0
0 2

]
, A−1

1 =

[
0.5 0
0 0.5

]
,

R2 =

[
0 1 0
0 0 1

]
, A2 =

[
2 1
0 2

]
, A−1

2 =

[
0.5 −0.25
0 0.5

]
.

This yields

Π1 =

0.5 0 0
0 0.5 0
0 0 0

 · A =

1 0 0.5
0 1 0.5
0 0 0

Π2 =

0 0 0
0 0.5 −0.25
0 0 0.5

 · A =

 0 0 0
−0.25 1 0

0.5 0 1

and

Q = (I − Π2)(I − Π1) =

0 0 −0.5
0 0 −0.125
0 0 0.25

.
Let W1 = {1}, W2 = {2} and W3 = {2, 3} = V2, i.e., {Wj}j=1,2 is a refinement of

{Vi}i=1,2. With κ : {1, 2, 3} → {1, 2}, κ(1) = κ(2) = 1 and κ(3) = 2, all requirements

for Theorem 4.10 are fulfilled, i.e., we have Q = Q′. We can easily check that this is

indeed the case. Using the notation of the proof we have

AW1 = AW2 =
[

2
]

and A−1
W1

= A−1
W2

=
[
0.5
]

and hence

Π′1 =

1 0 0.5
0 0 0
0 0 0

, Π′2 =

0 0 0
0 1 0.5
0 0 0

, Π′3 =

 0 0 0
−0.25 1 0

0.5 0 1

.
Then

Q′ = (I − Π′3)(I − Π′2)(I − Π′1) =

0 0 −0.5
0 0 −0.125
0 0 0.25

 = Q.

86

Now we want to consider a case where we reorder {Wj} in such a ways that κ is

not monotonically increasing but still fulfills all other requirements for Theorem 4.10.

Let {W̃j}j=1,2,3 be the reordered cover with W̃1 = {2, 3} = V2, W̃2 = {1} and W̃3 =

{2}. The corresponding index map κ̃ from {W̃j} to {Vi} is κ̃(1) = 2, κ̃(2) = 1 and

κ̃(3) = 1. Then

Π̃1 =

 0 0 0
−0.25 1 0

0.5 0 1

, Π̃2 =

1 0 0.5
0 0 0
0 0 0

, Π̃3 =

0 0 0
0 1 0.5
0 0 0

and hence

Q̃ = (I − Π̃3)(I − Π̃2)(I − Π̃1) =

0.25 0 0
0.25 0 0
−0.5 0 0

 6= Q.

Theorem 4.10 shows that for the application of the multiplicative Schwarz

method, we can split the node sets of a cover into their connected components:

Corollary 4.12: Let G(A) = (V,E) be the digraph of a matrix A ∈ Rn×n. Let

{Vi}i=1,...,q be a cover of V . Let j ∈ {1, . . . , q} such that G|Vj is not connected. Let

C1, . . . , Cm be the connected components of G|Vj . Then

MS
(
V1, . . . , Vq

)
= MS

(
V1, . . . , Vj−1, C1, . . . , Cm, Vj+1, . . . , Vq

)
.

4.2 The OBGP Algorithm

The general idea of the OBGP algorithm (Overlapping Blocks by Growing a Partition)

is to take an existing non-overlapping partition, e.g., a partition computed by Metis

[34] or PABLO [14], [30], [36], and extend the blocks so that they have some overlap.

In this way, we can reuse existing high-quality graph partitioners. In addition, in

many applications we may have information about the problem which allows us to

87

easily find a good (non-overlapping) partition, e.g., when working on certain types of

discretizations of partial differential equations.

The extension of a block is done separately for each block in the partition and is

completely independent of the extensions of the other blocks. Our new graph-based

algorithm works very well in many cases where a simple matrix-based overlapping

strategy is not useful. An example of this will be presented together with the numer-

ical results in section 4.4.

4.2.1 Growing a Block

Let V1, . . . , Vq be an existing (non-overlapping) partition of V , i.e.,
⋃q
i=1 Vi = V and

Vi ∩ Vj = ∅, i 6= j. The task of OBGP is to grow this partition into an overlapping

cover Wi, . . . ,Wq with Wi) Vi. Algorithm 4.3 shows an outline of OBGP, which will

be explained in this section.

1: input: a digraph G(A) = (V,E)
and a (non-overlapping) partition {V1, . . . , Vq}

2: output: an (overlapping) cover {W1, . . . ,Wq} of V
3: for i = 1, . . . , q do {go through each block}
4: compute L := adj(Vi) {set of candidate nodes}
5: select nodes N ⊂ L for inclusion
6: Wi := Vi ∪N
7: end for

Algorithm 4.3. Outline of the OBGP Algorithm

In OBGP the growth of one block is independent of the growth of the other

blocks. Therefore, we only show how to grow one block. Let B = Vi for some

i = 1, . . . , q, be the ordered node set of a block we want to grow. For the remainder

of this section, we assume that the index i is fixed.

In order to contain the computational effort, we want to restrict the amount of

nodes considered for inclusion into B. We also want to grow existing blocks and not

add new ones. It is therefore desirable not to add a new connected component to the

88

block. Corollary 4.12 shows that adding a new connected component is equivalent to

adding a new block. Therefore, in OBGP only nodes directly adjacent to the current

block, i.e., nodes in adj(B), will be considered. We call these nodes candidate nodes .

Thus, in the basic version of OBGP we have Wi ⊂ Vi ∪ adj(Vi). This restriction

reduces the computational effort and is sufficient to guarantee that we do not add a

new connected component.

Note that we could end up with reducing the number of connected components

if B is not connected, i.e., it can happen that OBGP “connects” two or more of the

connected components of G|B by growing the block. If we use, e.g., XPABLO to find

the non-overlapping partition, it is not uncommon for a block to have more than one

connected component since XPABLO often merges small blocks, see section 3.5.2.

Having this background in mind, there is, as far as we know, no reason to assume

that connecting such components is “bad”. Therefore, we do not take measures to

prevent this from happening or even to just check for it.

To allow more overlap and more distant nodes to become candidate nodes, a

block can be extended several times in OBGP. Doing this ` times is called doing `

rounds. The OBGP variant where each block is grown by ` rounds is called OBGP(`).

Algorithm 4.4 shows the outline of OBGP(`). We denote the original block B by B(0)

and the grown block after k rounds by B(k), i.e., B(`) is the grown block computed

by OBGP(`). In round k, 1 ≤ k ≤ `, only nodes in adj(B(k−1)) are candidate nodes.

Therefore, as before, in the first round (k = 1) only nodes in adj(B) are candidate

nodes. However, the candidate nodes in round k > 1 need not to be in adj(B).

Adding all candidate nodes in round k, 1 ≤ k ≤ `, is equivalent to adding all

nodes in adj(B(k−1)) to the block. This can grow the blocks and hence the compu-

tational cost excessively. An example for such a behavior is the RAEFSKY2 matrix.

Although the iteration count reduces substantially by adding all candidate nodes as

89

1: input: a digraph G(A) = (V,E)
and a (non-overlapping) partition {V1, . . . , Vq}

2: output: an (overlapping) cover {W1, . . . ,Wq} of V
3: for i = 1, . . . , q do {go through each block}
4: B := Vi
5: for k = 1, . . . , ` do {` rounds}
6: compute L := adj(B) {set of candidate nodes}
7: select nodes N ⊂ L for inclusion
8: B := B ∪N
9: end for

10: Wi := B
11: end for

Algorithm 4.4. Outline of the OBGP(`) Algorithm

overlap in each round, the total solving time actually increases, i.e., the reduced it-

eration count does not compensate the additional time needed in each iteration and

in the setup of the preconditioner. In Table 4.1 we show the total solve times and

iteration counts for solving RAEFSKY2 using the different amounts of overlap. Note

that we do not add overlap if we do zero rounds. See Figure 4.1 for the corresponding

convergence curves.

Table 4.1. Results for Adding All Candidate Nodes as Overlap

Rounds of Adding Overlap Time Iter

zero rounds (no overlap) 0.665 39

one round 0.846 16

two rounds 1.388 10

three rounds 2.230 2

In any round k, k = 1, . . . , `, at most µ
(
|B(k−1)|

)
of the candidate nodes can

be selected for the extension, where µ : N→ N is a function chosen a priori.

There is also a total growth bound ν(|B|) ≥ 0, which limits the size of B(k)

for all k = 1, . . . , `, i.e., |B(k)| ≤ |B(0)| + ν(|B(0)|), k = 1, . . . , `. With both µ and ν,

90

0 5 10 15 20 25 30 35

10
−8

10
−6

10
−4

10
−2

10
0

iterations

re
la

tiv
e

re
si

du
al

s

GMRES(50) convergence

no overlap
one round
two rounds
four rounds

Figure 4.1. Too Much Overlap in Multiplicative Schwarz Preconditioning

The curves show the GMRES convergence for solving a linear system (matrix
RAEFSKY2) using the block Gauss–Seidel preconditioner (dashed curve) and several
multiplicative Schwarz preconditioners (solid curves). Note that the relative residuals
plotted in the graph are the relative residuals of the preconditioned systems. They
should not be compared with the norms in the “Rel. Res.” column of any results
table.

91

the user of OBGP can decide not to enforce any bounds, e.g., by setting µ, ν ≡ ∞.

In most applications we will have µ(|B(k)|) <
∣∣adj(B(k))

∣∣, i.e., in general we expect

to have more candidate nodes than the number of nodes we are allowed to add.

Therefore, OBGP needs to decide which candidate nodes are actually added to the

block. In order to do this, each candidate node is given a node weight and only nodes

with largest node weight are added to the block. In round k up to µ(|B(k−1)|) nodes

with largest weights from the candidate node set adj(B(k−1)) are used to grow the

block. We add all candidate nodes if the number of candidate nodes adj(B(k−1)) is

less than the limit µ(|B(k−1)|) and less than the number of nodes we can still add

according to the total growth bound ν, i.e., we add all candidate nodes if

∣∣adj(B(k−1))
∣∣ ≤ min

{
µ(|B(k−1)|)︸ ︷︷ ︸

number of nodes we can add in round k

,

total growth bound︷ ︸︸ ︷
ν(|B(0)|)−

(
|B(k−1)| − |B(0)|︸ ︷︷ ︸

number of nodes added in first k − 1 rounds

)}
.

Definition 4.13: Let G = (V,E) be a directed graph with edge weights wE(e), e ∈ E.

Let B ⊂ V be a set of nodes and j ∈ V . The weight w(j, B) of j with respect to B

is defined as

w(j, B) :=
∑

e∈inc({j},B)

|wE(e)| 3

As discussed before, the number of nodes to be added in round k is bounded

by µ = µ(|B(k−1)|). Typically we will set this bound to

µ
(
|B(k−1)|

)
= α ·

√∣∣B(k−1)
∣∣,

where α is a user-supplied positive constant. A typical value for α is α = 1, which was

found in our experiments to give good results. This definition of µ is motivated by the

size of the boundary in a graph stemming from a discretization of a two-dimensional

partial differential equation over a square domain. We will later see that this bound

µ also has nice consequences for the time complexity of OBGP, see Corollary 4.19.

92

The ingredients presented so far are put together in Algorithm 4.5, which

shows the basic version of OBGP(`). The set L in the algorithm is the set of candidate

nodes and N is the set of candidate nodes selected for extending the block. Note that

the loop over all blocks and the loop over all rounds could be exchanged without any

further modifications to the algorithm because the extension of a block is independent

of the other blocks. The complexity analysis presented later in this chapter will show

the advantages of running the ` rounds successively for a fixed block.

1: input: a digraph G(A) = (V,E) with edge-weights wE
and a (non-overlapping) partition {V1, . . . , Vq} of V

2: output: an (overlapping) cover {W1, . . . ,Wq} of V
3: for i = 1, . . . , q do {go through each block}
4: V

(0)
i = Vi

5: ν0 := ν(|V (0)
i |)

6: for k = 1, . . . , ` do {` rounds}
7: L := adj(V

(k−1)
i)

8: µ := µ(V
(k−1)
i)

9: compute weights w(v, V
(k−1)
i) for all v ∈ L

10: select nodes N ⊂ L with largest weights {|N | = min{|L|, µ, νk−1}}
11: V

(k)
i := V

(k−1)
i ∪N

12: νk := νk−1 − |N |. {νk ≥ 0 since |N | ≤ νk−1}
13: end for
14: Wi := V

(`)
i

15: end for

Algorithm 4.5. Basic Version of the OBGP(`) Algorithm

For the following observation we need to generalize the concept of the adja-

cency set adj(·) to level sets:

Definition 4.14: Let G = (V,E) be a graph and S ⊂ V . The kth level set Lk(S)

with respect to S is defined as

Lk(S) :=

S if k = 0,

adj(S) if k = 1,

adj
(
Lk−1(S)

)
\ Lk−2(S) if k > 1.

3

93

(a) S = L0(S) (b) L1(S) (c) L2(S)

(d) L3(S) (e) L4(S)

Figure 4.2. Level Sets L0(S) through L4(S) with Respect to the Node Set S

Figure 4.2 shows for some graph G = (V,E) and some node set S the level

sets L0(S) through L4(S).

Let B = B(0) = Vi, i ∈ {1, . . . , q}, be any block and let N (k) and L(k) be the

sets N and L computed in the kth round of adding nodes to B in Algorithm 4.5, i.e.,

N (k) ⊂ L(k) = L1(B(k−1)) and B(k) = B(k−1) ∪ N (k). The sets N (k) and L(k) can be

described in terms of level sets by

N (1) ⊂ L(1) = L1(B),

N (2) ⊂ L(2) = L1(B ∪N (1)),

...

N (k) ⊂ L(k) = L1

(
B ∪

k−1⋃
j=1

N (j)
)
.

94

In terms of levels set with respect to B, the relations

N (1) ⊂ L(1) = L1(B),

N (2) ⊂ L(2) ⊂ L1(B) ∪ L2(B),

...

and N (k) ⊂ L(k) ⊂
k⋃
j=1

Lj(B)

hold.

This shows the following result.

Proposition 4.15: A node added to a block in the kth round comes from one of the

first k level sets with respect to the original block from the non-overlapping partition.

Figure 4.3 illustrates the growth process of OBGP.

4.2.2 Implementation

In this section we discuss in detail all ingredients needed to implement Algorithm 4.5

in an efficient way. Let V
(0)
i = Vi be the ith non-overlapping block of a (non-

overlapping) partition {V1, . . . , Vq} of V . Let V
(k)
i be the block after the kth round

and Wi be the block after all ` rounds, i.e., Wi = V
(`)
i . Similar to the notation in the

previous section, let N
(k)
i and L

(k)
i be the sets N and L computed in the kth round

for block i. Since each block is considered separately, the index i will be omitted in

many cases where the statements hold for all i = 1, . . . , q.

In the case of multiple rounds, i.e., if ` > 1, we can update the set L of

candidate nodes going from one round to the next instead of computing it from

scratch in each round. We will see in section 4.3 that it is in fact much more efficient

to update L. In the kth round the new set of candidate nodes L(k) consists of the

previous candidate nodes from L(k−1) not added to the block in round k− 1, i.e., not

95

Figure 4.3. OBGP(6) Block Growth of LSQ_2D_1000

The figure shows how the fourth block (the green block) in Figure 3.2 is grown by
OBGP(6). The nodes in the original block are in black. The nodes added in round
one to six are shown in blue, cyan, green, yellow, orange and red, respectively. Edges
are shown in the color of the round in which they became edges inside the (grown)
block. Nodes and edges not inside the block after the sixth round are shown in grey.

96

in N (k−1), and nodes adjacent to N (k−1), which are not in the previous block V (k−1),

i.e.,

L(k) =
(
L(k−1) \N (k−1)

)
∪
(
L1(N (k−1)) \ V (k−1)

)
.

As a more detailed version of Algorithm 4.5, Algorithm 4.6 describes OBGP(`) using

updates of the candidate set. This algorithm also shows how the node weights w(v) =

w(v, V
(k−1)
i), v ∈ L, are computed and updated. Figure 4.4 shows how OBGP grows

a given block.

For a time and space efficient implementation of OBGP(`), the sets V
(k)
i ,

k = 0, . . . , `, and the set N are not stored separately. For a fixed block number i, the

invariants

V (k−1) ⊂ V (k), V (k−1) ∩N (k) = ∅ and V (k−1) ∪N (k) = V (k)

hold for k = 1, . . . , `. We can therefore store the node numbers of the nodes in these

sets as shown in Figure 4.5 in an integer vector of size n. Furthermore, this integer

vector can be reused for the different blocks as each block is grown independently of

the other blocks.

An important choice is the data structure for storing the set L. Several oper-

ations are done with L:

• Adding a node to L.

• Selecting and removing some nodes with largest weights.

• Iterating over the nodes in L. Note that it is not necessary to traverse the nodes

in a specific order.

• Changing the weight associated with a node in L.

97

1.5

1.0

2.4

1.0

1

2

3

4

5

6

7

8

1.0

0.4
0.5

1.0

0.5

1.0

0.5

1.0

9

10

11

12

1.0

0.8

1.2

0.8

1.5

0.5

0.2

(a) k = 1

1.0

2.2

1.0

1.6

1

2

3

4

5

6

7

8

9

101.0

1.0

1.0

0.8

1.2

0.8

11

12

1.5

0.5

0.2

1.0

0.4
0.5

0.5

1.0

0.5

(b) k = 2

1.0

1.2

1.5

0.5

1

2

3

4

5

6

7

8

9

10

11

12

11

12

1.0

1.0

1.5

0.5

0.2

1.0

0.4
0.5

0.5

1.0

0.5

1.0

0.8

1.2

0.8

(c) k = 3

1.0

0.5

1

2

3

4

5

6

7

8

9

10

11

12

11

12

1.0

0.5

1.0

0.4
0.5

0.5

1.0

0.5

1.0

1.0

0.8

1.2

0.8

1.5

0.2

(d) k = 4

Figure 4.4. OBGP Block Growth Showing Edge Weights

In each picture the current block B(k−1) is shown with a light grey background and
the set L of candidate nodes with a slightly darker grey background. The index k
is the counter of the current round, cf. Algorithms 4.5 and 4.6. The edges used to
compute the node weights are printed with thick lines. The computed node weights
are printed in a box right next to the nodes. Node weights printed in bold have been
changed from the previous round. The nodes selected for inclusion into the block are
marked by an extra circle around the node.

98

1: input: a digraph G(A) = (V,E) with edge-weights wE
and a (non-overlapping) partition {V1, . . . , Vq} of V

2: output: an (overlapping) cover {W1, . . . ,Wq} of V
3: set w(j) := 0, j = 1, . . . , n
4: for i = 1, . . . , q do {go through each block}
5: V

(0)
i := Vi

6: ν0 := ν(|V (0)
i |)

7: N (0) := Vi {newly added nodes}
8: L := ∅ {level set}
9: for k = 1, . . . , ` do

10: for all v ∈ N (k−1) do
11: for all e ∈ E incident to v do
12: if e connects v to some node v′ 6∈ V (k−1)

i then
13: w(v′) := w(v′) + |wE(e)|
14: if v′ 6∈ L then
15: L := L ∪ {v′}
16: end if
17: end if
18: end for
19: end for
20: select nodes N (k) ⊂ L with largest weights

{|N (k)| = min{|L|, µ(V
(k−1)
i), νk−1}}

21: L := L \N (k)

22: V
(k)
i := V

(k−1)
i ∪N (k)

23: w(j) := 0, j ∈ N (k)

24: νk := νk−1 − |N (k)|. {νk ≥ 0 since |N (k)| ≤ νk−1}
25: end for
26: w(j) := 0, j ∈ L {now we have w ≡ 0}
27: Wi := V

(`)
i

28: end for

Algorithm 4.6. OBGP(`)

99

k = 1
V (0) N (1)

V (1)

k = 2
V (1) N (2)

V (2)

k = 3
V (2) N (3)

V (3)

...

k = `
V (`−1) N (`)

V (`)

Figure 4.5. Storage of Node Sets V (k) and N (k)

The figure shows how to store V (k) and N (k) in OBGP(`) for a fixed block i. Only
one integer vector of size n is needed.

There is no single “best” data structure allowing all listed operations with

optimal time complexity. If we use, e.g., a linked list with an external index to store

L, adding nodes, iterating over the nodes and changing node weight all have time

complexity O(1), but selecting the node with largest weight is O(|L|). Overall, we

mainly want all operations to have a reasonable time complexity. The best compro-

mise we know of is to use a heap data structure. In section 4.3 and in our numerical

results in section 4.4, we use a binary heap. We refer to [16] for a detailed description

and analysis of binary heaps. If a binary heap is used, adding a node to L has time

complexity O(log |L|) and removing the largest node has time complexity O(log |L|).

In the following, “heap” will always mean “binary heap”, although the results hold

also for other kinds of heaps like binomial heaps or Fibonacci heaps. We again refer

to [16] for detailed information about binomial heaps and Fibonacci heaps.

4.3 Complexity Analysis of OBGP

In this section we assume that a heap data structure is used for storing L.

100

Theorem 4.16: Let L be stored in a heap. Then algorithm OBGP(`) can be imple-

mented in such a way that the time complexity is O(q · (nnz(A) + n log n)).

Proof: We will show that the time complexity for the computation of one particular

set Wi is O(nnz(A) +n log n); see lines 5–27 in Algorithm 4.6 for the necessary steps.

Updating w is done for edges incident to nodes in N (k), k = 0, . . . , ` − 1.

Note that N (k) ∩ N (k′) = ∅ for k 6= k′, i.e., for each node in V , the incident edges

are considered at most once and hence any edge in E is considered at most twice.

Therefore, the time complexity for updating w (line 13) is O(nnz(A)).

A node selected and removed from L (lines 20 and 21) is added to the block

and can therefore not be added to L again, see the condition in line 12. Therefore,

each node of V is added to L at most once and thus also selected and removed from L

at most once. An upper bound for |L| is n. This gives a time complexity of O(n log n)

for adding nodes to L and for selecting and removing nodes from L.

It is easy to see that the work outside the k-loop has time complexity O(n).

Adding this together, the time complexity for the computation of one Wi block is

O(nnz(A)+n log n). For q blocks the total time complexity results as O(q · (nnz(A)+

n log n)). 2

For many practical problem cases a tighter time complexity can be shown than

that of Theorem 4.16. For a more detailed analysis we have to use properties of the

bound function ν.

The following Lemma shows some basic results needed for Theorem 4.20.

Lemma 4.17: Let G = (V,E) be a directed graph and let d be the maximum degree,

i.e., d = maxv∈V deg(v). If the total growth of block B is bounded by |B|+ ν(|B|) ≤

cν |B|, where cν is a constant independent of |B|, then

1. |Wi| = O(|Vi|) and
∑q

i=1 |Wi| = O(n).

101

2. | inc(Wi)| ≤ d|Wi| ≤ dcν |Vi| and hence
∑q

i=1 | inc(Wi)| = O(dn).

Note that with a maximum degree of d the number of edges is O(dn).

Proof: 1. follows immediately from ν(|B|) ≤ cν |B| and
∑q

i=1O(|Vi|) = O(n).

2. The set inc(Wi) contains the edges considered by OBGP while computing

Wi. Since d is the maximum number of edges incident to a node, the number of edges

in inc(Wi) is bounded by | inc(Wi)| ≤ d|Wi|. Thus,

q∑
i=1

| inc(Wi)| ≤ d

q∑
i=1

|Wi| ≤ dcν

q∑
i=1

|Vi| = dcνn = O(dn). 2

We will show that with our suggested µ and a mild restriction on `, we auto-

matically fulfill the assumptions of Lemma 4.17. For this it is necessary to know by

how much a single block can grow in ` rounds:

Theorem 4.18: Let V1, . . . , Vq be a non-overlapping partition and let W1, . . . ,Wq

be the cover computed by OBGP(`). Let the number of nodes to be added to V
(k)
i ,

i = 1, . . . , q, k = 0, . . . , `, be bounded by

µ
(
|V (k)
i |
)

= α ·
√∣∣V (k)

i

∣∣. (4.20)

Then the size of Wi, i = 1, . . . , q, is bounded by

|Wi| ≤ |Vi|+ ` · µ
(
|Vi|
)

+
` (`− 1)α2

4
. (4.21)

Proof: Use induction over `. The inequality (4.21) clearly holds for ` = 0 and ` = 1.

Then for `+ 1

|V (`+1)
i | ≤ |V (`)

i |+ µ
(
|V (`)
i |
)

≤ |Vi|+ `µ
(
|Vi|
)

+
`(`− 1)α2

4
+ α

√∣∣V (`)
i

∣∣
≤ |Vi|+ `µ

(
|Vi
∣∣) +

`(`− 1)α2

4
+ α

√
|Vi|+ `µ

(
|Vi|
)

+
`(`− 1)α2

4
.

102

The identity (4.20) implies µ
(
|Vi|
)2

= α2|Vi| and hence

|V (`+1)
i | ≤ |Vi|+ `µ

(
|Vi|
)

+
`(`− 1)α2

4
+

√
µ
(
|Vi|
)2

+ `α2µ
(
|Vi|
)

+
`(`− 1)α4

4

≤ |Vi|+ `µ
(
|Vi|
)

+
`(`− 1)α2

4
+ µ
(
|Vi|
)

+
`α2

2

≤ |Vi|+ (`+ 1)µ
(
|Vi|
)

+
(`+ 1)`α2

4
. 2

Corollary 4.19: Let Vi be a node set of a partition {Vi}i=1,...,q of V . If µ(|Vi|) =

α
√
|Vi| and ` ≤

√
|Vi|, then the total growth of block B is bounded by cν |B|, i.e.,

with this choice of µ and ` the assumptions for Lemma 4.17 are satisfied.

Proof:

|Wi| ≤ |Vi|+ ` · µ
(
|Vi|
)

+
` (`− 1)α2

4

≤ |Vi|+ α|Vi|+
`2α2

4

≤ |Vi|+ α|Vi|+
α2

4
|Vi|

= (1 + α + α2/4)︸ ︷︷ ︸
=: cν

|Vi|. 2

Theorem 4.20: Let L be stored in a heap. Let d = maxv∈V deg(v) be the maximum

degree and let s = maxqi=1 |Vi| be the maximum block size of the non-overlapping

partition. Let the total block growth be bounded by |Wi| ≤ cν |Vi| for all i = 1, . . . , q.

Then the algorithm OBGP(`) can be implemented in such a way that the time com-

plexity is O(dn+ n log s).

Proof: From Lemma 4.17 follows that we consider O(dn) edges while growing all

blocks. The time for updating the node weights w is linear in the number of edges

considered, i.e., the total time for updating w is O(dn).

In total, at most cνn nodes are added and removed from L, since
∑q

i=1 |Wi| ≤

cνn. The maximum size of L is at most maxqi=1 | inc(Wi)| ≤ maxqi=1 d|Wi| ≤ dcνs.

103

Thus, the total time for adding nodes to L and removing the largest nodes from L is

bound by

cνnO
(
log(dcνs)

)
= cνnO(log d+ log cν + log s) = O

(
n(log d+ log s)

)
.

So far, we have ignored the phenomenon that nodes in the heap may change their

weight and hence may have to be moved to a different position inside the heap. In

Algorithm 4.6 we can see that the weight of a node can only grow, i.e., nodes only

move upwards inside the heap because of a changed weight. Over the time a particular

node stays in the heap, it could move from the bottom of the heap up to the top. This

is also the worst case scenario as the node can not move downwards again. Nodes

newly added to a heap are first put at the bottom and then moved up until they

reach their correct position. In the worst case, a newly added nodes has to be moved

up through the whole heap because the node belongs at the top. Therefore, the time

needed for moving a node up to the top due to weight changes is already included in

our worst case bound for the time for adding the node to the heap.

The total time complexity is then

O(dn) +O
(
n(log d+ log s)

)
= O(dn+ n log s) 2

Note that Corollary 4.19 shows that with our default choice of µ we attain the

total block growth bound for Theorem 4.20 as long as ` ≤
√
|Vi| for all i = 1, . . . , q,

i.e., with the default µ and ` not too large we do not have to bound the total block

growth explicitly by setting ν.

4.3.1 Dealing With Nodes With High Degree

Theorem 4.20 shows that the execution time of OBGP can be sensitive to the maxi-

mum degree d. If the original system has, e.g., dense or nearly dense rows or columns,

104

then d is O(n) and the worst case time complexity becomes O(n2). If this ever be-

comes a problem in practice, the situation can be resolved by “removing” the nodes

with high degree from the set of nodes considered for overlap, i.e., we let OBGP(`)

work on G|V \VH , where VH is the set of nodes with high degree. As the nodes in VH

are especially well connected to nodes outside their block, it may be helpful to add

them as another block, i.e., to use them as some kind of coarse-grid correction.

Since we did not observe severe problems with nodes of high degree in our test

cases, we let OBGP(`) always work on the whole graph.

4.4 Numerical Results

Table 4.2 shows a comparison of XPABLO-based block Gauss–Seidel precondition-

ing and multiplicative Schwarz preconditioning based on XPABLO+OBGP(`). The

notation is the same as in previous comparison tables, see section 3.7 for a detailed

description. A star (?) in the “Iter” column denotes that GMRES stagnated, i.e., two

consecutive iterates were the same.

Detailed results including relative residual and relative error norms are shown

in the following tables: In Table 4.4 for OBGP(5), Table 4.5 for OBGP(10), and

Table 4.6 for OBGP(20). Figure 4.6 shows GMRES(50) convergence curves for the

MPS_2D_50000 problem. Note that the relative residual norms plotted in the graph

are the relative residual norms of the preconditioned systems. They should not be

compared with the norms in the “Rel. Res.” column of any results table.

4.5 Discussion

The numerical results show impressively that adding overlap can improve the perfor-

mance of block-based iterative solvers, especially for the computational fluid dynamics

(CFD) problems and the semiconductor device simulation problems. For these prob-

lems the iteration count improves tremendously and, what is important for practical

105

Table 4.2. Comparison of XPABLO and XPABLO+OBGP(`) Results

Matrix XPABLO ` = 5 ` = 10 ` = 20
Time Iter Time Iter Time Iter Time Iter

CAVITY16 0.601 49 0.481 28 0.441 22 0.411 13
CAVITY26 0.61 45 0.578 33 0.519 24 0.533 19
EX19 6.66 252 0.969 101 0.827 51 0.801 51
EX35 2.48 28 2.85 28 2.22 20 1.64 10
GARON1 0.333 37 0.293 23 0.241 14 0.261 10
GARON2 5.91 163 6.01 135 3.96 79 2.68 40
RAEFSKY2 0.665 39 0.651 26 0.702 21 0.859 13
RAEFSKY3 31.8 390 20.2 198 15.6 138 9.15 62
SHYY41 0.112 6 – ? – ? – ?
SHYY161 9.14 19 395.0 (400) 399.9 (350) 415.3 (350)

IGBT3 3.29 120 1.31 35 0.901 21 0.842 14
NMOS3 4.99 76 2.3 29 2.27 26 1.89 16
BARRIER2-1 854.5 680 1213.6 (1000) 1242.8 (1000) 1309.7 (1000)
PARA-4 519.0 210 139.7 55 102.2 39 87.3 31
PARA-8 196.8 72 90.8 33 79.9 28 79.7 27
OHNE2 1339.2 517 598.3 240 335.4 128 161.3 53
2D_54019_HIGHK 49.4 177 22.8 81 20.0 68 15.6 47
3D_51448_3D 16.2 44 11.7 31 10.4 26 10.5 23
IBM_MATRIX_2 15.2 42 10.5 28 9.63 24 9.27 20
MATRIX_9 139.5 142 72.2 76 53.5 52 46.6 42
MATRIX-NEW_3 80.9 93 69.7 86 52.6 62 38.4 42

LSQ_2D_1000 0.024 1 0.024 1 0.024 1 0.070 1
LSQ_2D_2000 0.084 15 0.075 6 0.079 4 0.092 3
LSQ_2D_5000 0.369 24 0.297 12 0.294 9 0.325 6
LSQ_2D_10000 1.04 34 0.819 19 0.758 14 0.802 10
LSQ_2D_50000 18.4 75 11.9 41 9.89 31 9.1 23
LSQ_2D_100000 88.4 111 48.4 57 39.1 43 33.2 32
LSQ_2D_200000 525.0 188 259.0 96 177.9 61 178.1 46
LSQ_2D_400000 2467.8 240 1476.5 125 6025.3 89 oom
MPS_2D_10000 1.56 73 1.08 42 0.831 30 0.616 17
MPS_2D_50000 36.6 185 24.2 116 17.9 82 10.7 42
MPS_2D_100000 172.8 257 115.1 177 71 103 45.5 61
MPS_2D_200000 1019.8 418 509.1 225 506.5 180 222.9 92
MPS_2D_400000 6889.9 759 3087.2 387 2023.0 250 1354.0 146

LSQ_3D_10000 0.779 18 0.814 13 0.872 9 1.22 7
LSQ_3D_50000 9.49 26 9.41 21 9.85 18 11.4 13
LSQ_3D_100000 33.2 31 30.2 25 30.7 22 33.4 17
LSQ_3D_200000 127.9 38 144.8 31 110.6 28 1246.7 22
MPS_3D_10000 0.599 27 0.63 24 0.582 19 0.604 13
MPS_3D_50000 9.18 44 8.28 38 7.95 34 7.27 26
MPS_3D_100000 39.4 55 34.2 49 31.7 44 27.4 34
MPS_3D_200000 176.1 70 142.6 62 127.7 53 106.3 42

106

0 20 40 60 80 100 120 140 160 180

10
−8

10
−6

10
−4

10
−2

10
0

iterations

re
la

tiv
e

re
si

du
al

s

GMRES(50) convergence

XPABLO without overlap
XPABLO+OBGP(5)
XPABLO+OBGP(10)
XPABLO+OBGP(20)

Figure 4.6. Convergence Curves for MPS_2D_50000

Note that the relative residuals plotted in the graph are the relative residuals of
the preconditioned systems. They should not be compared with the norms in the
“Rel. Res.” column of any results table.

107

applications, also the total time needed to solve the linear system improves by adding

overlap. It is not uncommon for our test problems to see a speedup by a factor of two

or more. For the OHNE2 matrix the speedup factor is more than eight (161.3 seconds

for XPABLO+OBGP(20) compared to 1339.2 seconds for XPABLO). Recall that this

is an example, where both a direct method and ILU-based preconditioning failed to

solve the linear system at all.

Since we assume the multiplicative Schwarz preconditioner to be a better ap-

proximation of A if we increase the overlap or add overlap in the first place, it is not

surprising that we can in general see a decrease in the iteration count if we increase

the amount of overlap. This assumption is for general problems really only a heuristic

and we can observe some counterexamples from our test problems: With CAVITY26,

SHYY41, SHYY161, and BARRIER2-1 the iteration count does not always decrease when

the overlap is increased.

For M -matrices the assumption of getting a lower iteration count by adding

(more) overlap is based on the result that for M -matrices the multiplicative Schwarz

method converges faster if the amount of overlap is increased, see [6]. Note that the

MPS_2D_∗ and the MPS_3D_∗ matrices are M -matrices, see [45].

The lower iteration count achieved by adding overlap is paid by a higher com-

putation cost to setup the preconditioner and to apply it (or compute a precondi-

tioned matrix-vector multiplication) in each iteration step. The increased setup cost

and increased cost per iteration can be observed for several test problems, e.g., for

RAEFSKY2 and for LSQ_2D_200000. For RAEFSKY2 the XPABLO-based preconditioner

without overlap is the fastest, although the iteration count is reduced from 39 to 13 if

we compare XPABLO with XPABLO+OBGP(20). For LSQ_2D_200000 the iteration

count goes down from 61 to 46 in the step from ` = 10 to ` = 20, but the total solving

time does not improve.

108

Moreover, more memory is needed if we add more overlap. Problems from

the increased memory consumption can be seen for the LSQ_2D_400000 and the

LSQ_3D_200000 problems. For the first problem our solver ran out of memory for

` = 20. For the LSQ_3D_200000 problem the solver could finish for ` = 20 only with

severe swapping such that the total time for ` = 20 is more than ten times the total

time for ` = 10.

In general we can conclude that the amount of overlap needed to minimize the

total solving time is problem specific.

The failure to “solve” the SHYY41 and SHYY161 problems does not contradict

the general robustness of the XPABLO+OBGP(`) approach, since these two problems

are severely ill-conditioned: The 1-norm condition estimates are 3.51 ·1048 for SHYY41

and 8.23 · 10277 for SHYY161 and the relative error norms for the “solution” computed

by UMFPACK are 3.54 · 1026 and 1.71 · 10255, respectively.

For the meshfree discretizations we also see a general improvement of the it-

eration count by adding overlap. For most problems the total solving times can be

improved by adding overlap, but not always the best total time is achieved for the

maximal tested overlap (` = 20). We can observe that ` = 20 gave the best results

for the MPS discretizations, both in 2-D and in 3-D. For the LSQ discretizations a

smaller amount of overlap may be the best. More experiments would be needed to

come to a clear conclusion. Compared to the direct solver and to ILU-based precon-

ditioners, we can see the following patterns: For the two-dimensional problems there

is no big change in the overall picture, i.e., for (LSQ_2D_∗ and MPS_2D_∗) the direct

solver is still the best, followed closely by ILUTP(10−3). For the LSQ discretiza-

tions of the three-dimensional problem XPABLO-based preconditioners were already

superior to the direct solver and the best ILU-based preconditioners. Additionally,

we can seen further improvements of the XPABLO results by adding overlap. For

109

the MPS discretizations of the two-dimensional problem ILUTP(10−2) is the fastest

ILU-based preconditioner and XPABLO+OBGP(20) is the fastest XPABLO-based

preconditioner, with both being faster than the direct solver. In a direct comparison

ILUTP(10−2) is still two to three times faster than XPABLO+OBGP(20) for the 2-D

MPS discretizations. However, so far we have not optimized the XPABLO param-

eters or the overlap-parameter ` to these specific problem. The results in Table 4.3

show the effect of a simple increase of the XPABLO block sizes to minbs = 800 and

maxbs = 4000. For the largest three systems the total time is much lower than in the

experiments using the default blocks sizes minbs = 200 and maxbs = 1000. Moreover,

the measured total time of 39.5 seconds is 28 % lower than the best ILU-based total

time of 55.0 seconds (using ILUTP(10−2)).

Table 4.3. XPABLO+OBGP(20) Results Using minbs = 800 and maxbs = 4000

Matrix Time Iter Rel. Res. Rel. Err.

MPS_3D_10000 1.16 10 2.192 · 10−5 6.734 · 10−9

MPS_3D_50000 4.15 31 4.347 · 10−4 2.927 · 10−8

MPS_3D_100000 12.3 40 2.403 · 10−3 8.763 · 10−8

MPS_3D_200000 39.5 51 4.570 · 10−3 8.904 · 10−8

110

Table 4.4. XPABLO+OBGP(5) Solve Results for the Test Matrices

Matrix Time Iter Rel. Res. Rel. Err.

CAVITY16 0.481 28 8.763 · 10+0 7.491 · 10+1

CAVITY26 0.578 33 4.452 · 10+0 8.458 · 10+1

EX19 0.969 101 3.904 · 10+0 1.307 · 10+0

EX35 2.85 28 2.432 · 10+4 2.742 · 10+4

GARON1 0.293 23 1.273 · 10+0 1.938 · 10+2

GARON2 6.01 135 1.162 · 10+0 4.029 · 10+2

RAEFSKY2 0.651 26 3.468 · 10+0 na
RAEFSKY3 20.2 198 3.925 · 10+2 na
SHYY41 – ? – –
SHYY161 395.0 (400) 6.614 · 10−1 6.486 · 10−1

IGBT3 1.31 35 7.036 · 10+4 na
NMOS3 2.3 29 5.603 · 10+3 na
BARRIER2-1 1213.6 (1000) 1.814 · 10+4 na
PARA-4 139.7 55 2.031 · 10+4 na
PARA-8 90.8 33 1.013 · 10+0 na
OHNE2 598.3 240 5.614 · 10+5 na
2D_54019_HIGHK 22.8 81 2.412 · 10+1 na
3D_51448_3D 11.7 31 9.733 · 10−1 na
IBM_MATRIX_2 10.5 28 9.746 · 10−1 na
MATRIX_9 72.2 76 7.785 · 10+4 na
MATRIX-NEW_3 69.7 86 2.640 · 10+1 na

LSQ_2D_1000 0.024 1 2.782 · 10−10 6.631 · 10−14

LSQ_2D_2000 0.075 6 1.863 · 10−5 1.572 · 10−9

LSQ_2D_5000 0.297 12 5.000 · 10−5 1.316 · 10−9

LSQ_2D_10000 0.819 19 1.426 · 10−4 1.693 · 10−9

LSQ_2D_50000 11.9 41 6.628 · 10−3 9.723 · 10−9

LSQ_2D_100000 48.4 57 4.161 · 10−2 3.286 · 10−8

LSQ_2D_200000 259.0 96 2.183 · 10−1 1.095 · 10−7

LSQ_2D_400000 1476.5 125 1.905 · 10+0 3.865 · 10−7

MPS_2D_10000 1.08 42 2.115 · 10−3 9.862 · 10−9

MPS_2D_50000 24.2 116 4.751 · 10−1 4.806 · 10−7

MPS_2D_100000 115.1 177 1.964 · 10+0 8.619 · 10−7

MPS_2D_200000 509.1 225 2.845 · 10+0 8.258 · 10−7

MPS_2D_400000 3087.2 387 9.414 · 10+0 1.665 · 10−6

LSQ_3D_10000 0.814 13 8.407 · 10−6 5.757 · 10−9

LSQ_3D_50000 9.41 21 8.498 · 10−5 1.364 · 10−8

LSQ_3D_100000 30.2 25 4.178 · 10−4 3.628 · 10−8

LSQ_3D_200000 144.8 31 5.735 · 10−4 2.704 · 10−8

MPS_3D_10000 0.63 24 3.395 · 10−5 1.016 · 10−8

MPS_3D_50000 8.28 38 9.213 · 10−4 6.259 · 10−8

MPS_3D_100000 34.2 49 3.764 · 10−3 1.377 · 10−7

MPS_3D_200000 142.6 62 8.193 · 10−3 1.596 · 10−7

111

Table 4.5. XPABLO+OBGP(10) Solve Results for the Test Matrices

Matrix Time Iter Rel. Res. Rel. Err.

CAVITY16 0.441 22 8.763 · 10+0 7.491 · 10+1

CAVITY26 0.519 24 4.452 · 10+0 8.458 · 10+1

EX19 0.827 51 3.904 · 10+0 1.307 · 10+0

EX35 2.22 20 2.432 · 10+4 2.742 · 10+4

GARON1 0.241 14 1.273 · 10+0 1.938 · 10+2

GARON2 3.96 79 1.162 · 10+0 4.029 · 10+2

RAEFSKY2 0.702 21 3.468 · 10+0 na
RAEFSKY3 15.6 138 3.925 · 10+2 na
SHYY41 – ? – –
SHYY161 399.9 (350) 7.604 · 10−1 7.086 · 10−1

IGBT3 0.901 21 7.036 · 10+4 na
NMOS3 2.27 26 5.603 · 10+3 na
BARRIER2-1 1242.8 (1000) 1.808 · 10+4 na
PARA-4 102.2 39 2.031 · 10+4 na
PARA-8 79.9 28 1.013 · 10+0 na
OHNE2 335.4 128 5.615 · 10+5 na
2D_54019_HIGHK 20.0 68 2.412 · 10+1 na
3D_51448_3D 10.4 26 9.733 · 10−1 na
IBM_MATRIX_2 9.63 24 9.746 · 10−1 na
MATRIX_9 53.5 52 7.785 · 10+4 na
MATRIX-NEW_3 52.6 62 2.640 · 10+1 na

LSQ_2D_1000 0.024 1 2.782 · 10−10 6.631 · 10−14

LSQ_2D_2000 0.079 4 2.346 · 10−5 1.991 · 10−9

LSQ_2D_5000 0.294 9 1.313 · 10−5 3.488 · 10−10

LSQ_2D_10000 0.758 14 1.876 · 10−4 2.143 · 10−9

LSQ_2D_50000 9.89 31 5.228 · 10−3 7.563 · 10−9

LSQ_2D_100000 39.1 43 2.149 · 10−2 1.315 · 10−8

LSQ_2D_200000 177.9 61 1.826 · 10−1 6.349 · 10−8

LSQ_2D_400000 6025.3 89 6.521 · 10−1 1.059 · 10−7

MPS_2D_10000 0.831 30 3.413 · 10−3 1.567 · 10−8

MPS_2D_50000 17.9 82 1.864 · 10−1 1.498 · 10−7

MPS_2D_100000 71 103 3.189 · 10−1 1.381 · 10−7

MPS_2D_200000 506.5 180 1.847 · 10+0 6.190 · 10−7

MPS_2D_400000 2023.0 250 7.218 · 10+0 1.487 · 10−6

LSQ_3D_10000 0.872 9 4.100 · 10−6 2.898 · 10−9

LSQ_3D_50000 9.85 18 1.893 · 10−5 3.044 · 10−9

LSQ_3D_100000 30.7 22 7.986 · 10−5 6.963 · 10−9

LSQ_3D_200000 110.6 28 3.625 · 10−4 1.713 · 10−8

MPS_3D_10000 0.582 19 6.261 · 10−5 1.909 · 10−8

MPS_3D_50000 7.95 34 4.915 · 10−4 3.303 · 10−8

MPS_3D_100000 31.7 44 2.570 · 10−3 9.394 · 10−8

MPS_3D_200000 127.7 53 4.993 · 10−3 9.790 · 10−8

112

Table 4.6. XPABLO+OBGP(20) Solve Results for the Test Matrices

Matrix Time Iter Rel. Res. Rel. Err.

CAVITY16 0.411 13 8.763 · 10+0 7.491 · 10+1

CAVITY26 0.533 19 4.452 · 10+0 8.458 · 10+1

EX19 0.801 51 3.904 · 10+0 1.307 · 10+0

EX35 1.64 10 2.432 · 10+4 2.742 · 10+4

GARON1 0.261 10 1.273 · 10+0 1.938 · 10+2

GARON2 2.68 40 1.162 · 10+0 4.029 · 10+2

RAEFSKY2 0.859 13 3.468 · 10+0 na
RAEFSKY3 9.15 62 3.925 · 10+2 na
SHYY41 – ? – –
SHYY161 415.3 (350) 8.853 · 10−1 8.309 · 10−1

IGBT3 0.842 14 7.036 · 10+4 na
NMOS3 1.89 16 5.603 · 10+3 na
BARRIER2-1 1309.7 (1000) 6.552 · 10+5 na
PARA-4 87.3 31 2.031 · 10+4 na
PARA-8 79.7 27 1.013 · 10+0 na
OHNE2 161.3 53 5.615 · 10+5 na
2D_54019_HIGHK 15.6 47 2.412 · 10+1 na
3D_51448_3D 10.5 23 9.733 · 10−1 na
IBM_MATRIX_2 9.27 20 9.746 · 10−1 na
MATRIX_9 46.6 42 7.785 · 10+4 na
MATRIX-NEW_3 38.4 42 2.640 · 10+1 na

LSQ_2D_1000 0.070 1 2.782 · 10−10 6.631 · 10−14

LSQ_2D_2000 0.092 3 6.778 · 10−11 6.546 · 10−15

LSQ_2D_5000 0.325 6 1.338 · 10−4 3.545 · 10−9

LSQ_2D_10000 0.802 10 1.244 · 10−4 1.396 · 10−9

LSQ_2D_50000 9.1 23 3.150 · 10−3 4.534 · 10−9

LSQ_2D_100000 33.2 32 1.099 · 10−2 6.697 · 10−9

LSQ_2D_200000 178.1 46 2.400 · 10−2 6.353 · 10−9

LSQ_2D_400000 oom
MPS_2D_10000 0.616 17 6.522 · 10−4 3.167 · 10−9

MPS_2D_50000 10.7 42 2.388 · 10−2 1.455 · 10−8

MPS_2D_100000 45.5 61 3.319 · 10−1 1.146 · 10−7

MPS_2D_200000 222.9 92 3.601 · 10−1 8.148 · 10−8

MPS_2D_400000 1354.0 146 9.835 · 10−1 1.965 · 10−7

LSQ_3D_10000 1.22 7 6.277 · 10−7 4.416 · 10−10

LSQ_3D_50000 11.4 13 3.475 · 10−5 5.590 · 10−9

LSQ_3D_100000 33.4 17 1.699 · 10−4 1.480 · 10−8

LSQ_3D_200000 1246.7 22 1.533 · 10−4 7.249 · 10−9

MPS_3D_10000 0.604 13 8.171 · 10−6 2.447 · 10−9

MPS_3D_50000 7.27 26 4.827 · 10−4 3.258 · 10−8

MPS_3D_100000 27.4 34 1.279 · 10−3 4.679 · 10−8

MPS_3D_200000 106.3 42 3.819 · 10−3 7.469 · 10−8

113

CHAPTER 5

PARTITIONING FOR UNSYMMETRIC

PERMUTATIONS

In Chapter 3 we presented a preconditioning framework based on XPABLO in the

following manner:

1. Compute a maximum product transversal, i.e., compute scaling matrices R̂ and

Ĉ and a permutation matrix Σ such that Â = ΣR̂AĈ is an I-matrix.

2. Compute a permutation matrix P such that the blocks found by PABLO cor-

respond to diagonal blocks in PÂP T

Even if A is symmetric, Â will be in general nonsymmetric. Therefore, there is no

intrinsic reason to limit ourselves to symmetric permutations in step 2. Recall that

the goal of XPABLO is to find blocks such that the diagonal blocks are relatively full

and contain most of the large entries of the matrix and that the off-diagonal blocks

are very sparse and do not contain many large entries. This fits closely to block

Jacobi preconditioning. Our experiments (see section 3.7) have shown the usefulness

of block Gauss–Seidel preconditioning based on the block structure determined by

XPABLO. For this reason, it seems natural to try to modify XPABLO to find a block

structure that fits more closely to block Gauss–Seidel preconditioning, i.e., to have a

variant of XPABLO which concentrates most of the off-diagonal entries in the lower

triangular part. In this chapter we will present our work toward such a modified

114

XPABLO algorithm. To have more freedom to move matrix entries to the lower

triangular part, we decided to employ unsymmetric permutations, i.e., our modified

algorithm tries to find permutation matrices P and Q such that PÂQ is nearly block

triangular and has a (relatively) dense block diagonal. The blocks should correspond

to a partition found by our modified XPABLO. We call this approach Unsymmetric

PABLO (UPABLO).

The basic idea behind UPABLO is simple: We use a modified version of

XPABLO to find rectangular blocks. After we have found a block we split it into

a square part, which we will permute onto the diagonal, and the remaining part,

which we will permute into the strictly lower block triangular part of the (permuted)

matrix PÂQ. The trick is to order the blocks such that tall blocks (more rows than

columns) come before wide blocks (more columns than rows). This is illustrated in

Figure 5.1.

We have to note though, that preliminary testing showed the new approach

to perform poorly in practice. In fact, we did not find a problem for which UPABLO

based block Gauss–Seidel preconditioning was clearly superior to XPABLO based

block Gauss–Seidel preconditioning. Actually, in many cases the performance was

noticeably worse. Nevertheless, we think that the graph theoretical model of the re-

ordering problem presented in this chapter may be useful as a basis to find a PABLO-

like algorithm that fits more closely to block Gauss–Seidel preconditioning than the

XPABLO algorithm of Chapter 3. For the obvious reasons, we will not show numerical

results.

115

1

2

3

4

5

Figure 5.1. Ordering of Rectangular Blocks in UPABLO

The figure shows the matrix after being permuted according to the UPABLO block
structure. The rectangular blocks found by the modified XPABLO algorithm are
shown with a grey background. The square parts selected to become the diagonal
blocks are shown with a darker shade of grey. The numbers indicate the order in
which the blocks were found. Notice that the blocks are ordered in such a way that
they are all completely inside the lower block triangular part of the matrix. The
rectangular blocks do not need to be contiguous and we can not expect them to be
contiguous in the permuted matrix.

116

5.1 More on Bipartite Graphs

The directed graph of a matrix is not well suited for this new problem of finding an

unsymmetric permutation. A much more useful model is the bipartite graph of a

matrix; see section 2.4.3 for the definition used here.

We will often refer to the subset of row nodes or the subset of column nodes

of a given node set. The following notation will be used:

Definition 5.1: Let B = (Vr, Vc, E) be a bipartite graph and let S ⊆ Vr ∪ Vc be a

set of nodes. The set Sr of row nodes in S and the set Sc of column nodes in S are

defined as

Sr := S ∩ Vr and Sc := S ∩ Vc. 3

A subset of the nodes of the bipartite graph of a matrix induces a submatrix:

Definition 5.2: Let A ∈ Rm×n be a matrix with bipartite graph B = (Vr, Vc, E).

Let S ⊆ Vr ∪ Vc be a set of nodes with Sr, Sc 6= ∅. We write A|S to denote the

|Sr| × |Sc| submatrix

A|S := (aij), i, j such that ri ∈ Sr, cj ∈ Sc. 3

5.1.1 Partitions and Permutations

Definition 5.3: A partition of a bipartite graph B = (Vr, Vc, E) is a partition of the

node set V = Vr∪Vc. Let Vq = {V1, . . . , Vq} be such a partition of the bipartite graph

B = (Vr, Vc, E). The corresponding row partition Rq = {R1, . . . , Rq} and column

partition Cq = {C1, . . . , Cq} are defined by

Ri := Vi ∩ Vr and Ci := Vi ∩ Vc, i = 1, . . . , q,

respectively. 3

117

We define a special class of permutations for bipartite graphs, since we want

that row nodes stay row nodes and that column nodes stay column nodes under the

permutation.

Definition 5.4: Let B = (Vr, Vc, E) be a bipartite graph with V = Vr ∪ Vc. A

b-permutation on B is a Vr and Vc invariant permutation π : V → V on V , i.e., π is

a permutation on V with π(Vr) = Vr and π(Vc) = Vc. The permuted graph is defined

as π(B) := (Vr, Vc, E
′) with {ri, cj} ∈ E ′ if {π(ri), π(cj)} ∈ E.

We define the row permutation πr : Vr → Vr and the column permutation

πc : Vc → Vc corresponding to the b-permutation π by πr := π|Vr and πc := π|Vc . 3

To define permutations corresponding to a partition we use the permutations

corresponding to a partition of a node set as in Definition 2.23.

Definition 5.5: Let B = (Vr, Vc, E) be a bipartite graph and let V = Vr ∪ Vc. Let

Vq be a partition of B with row and column partitions Rq and Cq. Let π̄r be the

permutation corresponding to the partition Rq of the set Vr. Similarly, let π̄c be

the permutation corresponding to the partition Cq of the set Vc. The permutation

π : V → V defined by

π(v) :=

{
π̄r(v) if v ∈ Vr,
π̄c(v) if v ∈ Vc

is called the b-permutation π : V → V corresponding to Vq. 3

We notice that π is well-defined, since it is obviously Vr and Vc invariant,

i.e., π is a b-permutation in the sense of Definition 5.4. Moreover, since we consider

the partition Vq to consist of ordered sets, the row permutation π̄r and the column

permutation π̄c are unique. Hence, the b-permutation π is uniquely defined by Vq.

We finally note that the permutation π̄r in Definition 5.5 is identical to the

row permutation πr = π|Vr in Definition 5.4. The same goes for π̄c = π|Vc = πc.

118

Recall from Remark 2.28 that the undirected graph G = (Vr ∪ Vc, E) associ-

ated with the bipartite graph B(A) = (Vr, Vc, E) of a matrix A is isomorphic to the

undirected graph G̃ = (Ṽ , Ẽ) of the symmetric matrix

Ã =

[
0 A
AT 0

]
∈ R(m+n)×(m+n).

Let f be the bijection f : Vr∪Vc → {1, . . . ,m+n} defined by f(r1) = 1, . . . , f(rm) = m

and f(c1) = m+ 1, . . . , f(cn) = m+n; see Remark 2.28. Then Ṽ = {1, . . . ,m+n} =

f(V) and Ẽ = f(E) where f(E) = {f(e) | e ∈ E}; cf. Definition 2.21.

Let Vq be a partition of V = Vr ∪ Vc. Then Ṽq = f(Vq) = {f(V1), . . . , f(Vq)}

is a partition of Ṽ . The following Lemma will help us explore the question whether

the b-permutation corresponding to Vq is related to the permutation corresponding

to Ṽq.

Lemma 5.6: Let B = (Vr, Vc, E) be a bipartite graph with V = Vr ∪ Vc and let

f : V → Ṽ be the bijection that maps V to Ṽ = {1, . . . ,m + n}, where m = |Vr|

and n = |Vc|. Let Vq = {V1, . . . , Vq} be a partition of V . Then, the permuta-

tion π : V → V is the b-permutation corresponding to the partition Vq if and

only if π̃ = f ◦ π ◦ f−1 is the permutation corresponding to the partition Wq =

{f(R1), . . . , f(Rq), f(C1), . . . , f(Cq)} of the set Ṽ in the sense of Definition 2.23.

Proof: “⇒”: Let π be the b-permutation corresponding to the partition Vq. Then πr is

the permutation corresponding to the partition Rq of Vr and hence π̃r = f ◦ πr ◦ f−1

is the permutation corresponding to the partition {f(R1), . . . , f(Rq)} of f(Vr) =

{1, . . . ,m}. Similarly, π̃c = f ◦ πc ◦ f−1 is the permutation corresponding to the

partition {f(C1), . . . , f(Cq)} of f(Vc) = {m + 1, . . . ,m + n}. Together, this implies

119

the equality

π̃(v) =

{
π̃r(v) if v ≤ m,

π̃c(v) if v > m.

Then π̃ is the permutation corresponding to the partition Wq.

“⇐”: Let π̃ be the permutation corresponding to the partition Wq. Since the

Ri, i = 1, . . . , q, are disjoint and f is bijective we can observe that
⋃q
i=1 f(Ri) = f(Vr)

is a disjoint union, i.e., π̃ is f(Vr) invariant. Thus, π̃r := π̃|f(Vr) maps {1, . . . ,m} to

the ordered set f(R1) ∪ · · · ∪ f(Rq), i.e., π̃r is the permutation corresponding to the

partition f(Rq) = {f(R1), . . . , f(Rq)}. Similarly, π̃c := π̃|f(Vc) is the permutation

corresponding to the partition f(Cq) = {f(C1), . . . , f(Cq)}. Then π̄r = f−1 ◦ π̃r ◦ f is

the permutation corresponding to Rq and π̄c is the permutation corresponding to Cq,

i.e., π = f−1 ◦ π̃ ◦ f is the b-permutation corresponding to Vq. 2

According to the Lemma, the b-permutation π corresponding to Vq is related

to the permutation π̃ corresponding to Wq = {f(R1), . . . , f(Rq), f(C1), . . . , f(Cq)}

by the relation

π̃ ◦ f = f ◦ π.

The permutation π′ : Ṽ → Ṽ corresponding to the partition Ṽq could be quite

different, since Ṽq 6= Wq. Note that π′ will be in general neither f(Vr) nor f(Vc)

invariant.

We now want to discuss how a b-permutation corresponds to a permutation

of a matrix.

Definition 5.7: Let A ∈ Rm×n be a matrix with bipartite graph B = (Vr, Vc, E). Let

π be a b-permutation on B. Then π(A) denotes the permuted matrix PAQ, where

P is the permutation matrix corresponding to πr and Q is the permutation matrix

120

corresponding to πc, i.e.,

(
π(A)

)
ij

= (PAQ)ij = aπr(i),πc(j), i ∈ Vr, j ∈ Vc.

If C is a submatrix of A with bipartite graph B′ = (V ′r , V
′
c , E

′) we write π(C) to

denote the corresponding submatrix of π(A), i.e.,

(
π(C)

)
ij

= aπr(i),πc(j), i ∈ V ′r ⊂ Vr, j ∈ V ′c ⊂ Vc. 3

Lemma 5.8: If a matrix A is permuted in the sense of Definition 5.7, then the

bipartite graph of the permuted matrix is equal to the b-permuted bipartite graph of

the matrix, i.e., B(π(A)) = π(B(A)).

Proof: Let E be the set of edges of B(A), E1 the set of edges of B(π(A)) and E2 the

set of edges of π(B(A)). It is sufficient to show E1 = E2. Let e = {ri, cj} ∈ E1. Then

e ∈ E1 ⇔ (π(A))i,j 6= 0 ⇔ aπ(i),π(j) 6= 0 ⇔ {rπ(i), cπ(j)} ∈ E ⇔ e ∈ E2,

which finishes the proof. 2

Now, recall that B(A) is isomorphic to the undirected graph of

Ã =

[
0 A
AT 0

]
.

In the same way B(π(A)) is isomorphic to the undirected graph of[
0 π(A)

π(A)T 0

]
=

[
0 PAQ

QTATP T 0

]
,

where P is the permutation matrix corresponding to πr and Q is the permutation

matrix corresponding to πc.

121

Let Π be the permutation matrix

Π =

[
P 0
0 QT

]
.

Lemma 5.9: The undirected graph G(ΠÃΠT) and the bipartite graph B(PAQ) are

isomorphic, i.e., G(ΠÃΠT) ∼= B(PAQ).

Proof: The simple calculation

Π

[
0 A
AT 0

]
ΠT =

[
P 0
0 QT

][
0 A
AT 0

][
P T 0
0 Q

]
=

[
0 PAQ

(PAQ)T 0

]

shows that G(ΠÃΠT) and B(PAQ) are isomorphic. 2

Lemma 5.8 and Lemma 5.9 imply the isomorphisms

G(ΠÃΠT) ∼= B(PAQ) = B(π(A)) = π(B(A)).

Let π be the b-permutation corresponding to the partition Vq. Let Â = π(A)

be the matrix permuted according to Vq. Then Â has a q × q block structure

Â =

A11 · · · A1q
...

...
Aq1 · · · Aqq

 where Aij = A|Ri∪Cj = Â|π−1(Ri∪Cj).

Then Aii = A|Vi = Â|π−1(Vi). Notice that the blocks are in general not square, not

even the “diagonal” blocks Aii. Therefore, the Aii may not even be positioned along

the diagonal of Â. This block structure is called the block structure induced by the

partition Vq.

5.1.2 Balance

Often we need bipartite graphs where the set of row nodes and the set of column

nodes have the same size.

122

Definition 5.10: A bipartite graph B = (Vr, Vc, E) is called balanced if Vr and Vc

have the same size, i.e., if |Vr| = |Vc|.

A subset S ⊂ V of the nodes is called balanced if the induced subgraph B|S is

balanced.

A partition Vq = {V1, . . . , Vq} is called balanced if all sets Vi, i = 1, . . . , q, are

balanced. 3

Example 5.11: Let B = (Vr, Vc, E) with Vr = {r1, . . . , r8}, Vc = {c1, . . . , c8} be the

bipartite graph of the 8× 8 matrix A. Let V = {V1, V2, V3} with

V1 = {r1, r2, r3, r4, c1, c2},

V2 = {r5, r6, c3},

and V3 = {r7, r8, c4, c5, c6, c7, c8}

be a partition of B. The partition V induces the following 3× 3 block structure:

A =

× × × × ×
× ×

× × ×
× × × 0 × ×

× × ×
× ×

× × × × 0
× × × × ×

.

The diagonal entries are printed in bold with a slightly larger font. Note that the

partition V is not balanced and that the blocks A|V1 , A|V2 , and A|V3 are not square.

Moreover, some of the diagonal entries are not inside a block.

Lemma 5.12: Let A ∈ Rm×n be a matrix with bipartite graph B = (Vr, Vc, E). Let

Vq be a partition of B. Then, the partition Vq is balanced if and only if the matrix A

and all submatrices Aii, i = 1, . . . , q, induced by the partition are square.

123

Proof: If Vq is balanced then |(Vi)r| = |(Vi)c| for all i = 1, . . . , q. Therefore, the

induced submatrices are square. Furthermore, |Vr| =
∑q

i=1 |(Vi)r| =
∑q

i=1 |(Vi)c| =

|Vc| and therefore the whole matrix A is square.

If an induced submatrix Aii is square, then the corresponding node set Vi is

balanced. If now all Aii, i = 1, . . . , q, are square, then the partition Vq is balanced.2

Proposition 5.13: Let A ∈ Rm×n be a matrix with bipartite graph B = (Vr, Vc, E).

Let Vq be a partition of B. Let Â = PAQ be the b-permuted matrix according to the

partition Vq. Then, the matrix diag(A11, . . . , Aqq) is block diagonal if and only if Vq

is balanced.

Proof: Let D = diag(A11, . . . , Aqq). The matrix D is block diagonal if and only if all

Aii, i = 1, . . . , q, are square. Using this, Lemma 5.12 shows that D is block diagonal

if and only if Vq is balanced. 2

Recall that we intend to find a block diagonal structure suitable for block

Jacobi or block Gauss–Seidel preconditioning. Proposition 5.13 now tells us, that we

need to find a balanced partition.

5.2 The Unsymmetric PABLO algorithm

Now we show how we modify XPABLO to produce a balanced partition of a bipartite

graph. There are three modifications.

1. We let XPABLO run on the undirected graph associated with the bipartite

graph. In this way we can reuse most of XPABLOs internal structure. There is

one modification to XPABLO at this stage: After finishing a block, XPABLO

updates the degrees of the nodes adjacent to some node inside the block. It

may happen that the degree of a node becomes zero. We modify XPABLO to

additionally add these nodes to the block, even if maxbs was already reached.

124

2. After a block is computed by XPABLO we step in and select a maximal bal-

anced subset of the nodes in the block. We will discuss this in more details in

section 5.2.1 and section 5.2.2.

3. We reorder the blocks such that the non-square part of the block that we

chopped off will end up in the lower triangular part of the permuted matrix,

i.e., we not only produce diagonal blocks, but also permute the matrix into a

more triangular shape.

The exact working procedure is given in Algorithm 5.1. In the next sections

we will give more details about modifications 2 and 3.

Remark 5.14: Modification 1 adds nodes with zero degree to the current block, even

if maxbs was already reached. This is typically only a minor change to the way maxbs

works. We assume for a moment that maxbs is not used to enforce a maximum block

size. Let v be a node added to the block by the modified XPABLO, i.e., v has degree

zero after the block B is removed from the graph. Just before B is removed, the node

v has the property

deg |B(v) = deg(v). (5.1)

Since v is adjacent to B it gets tested for inclusion into B. Moreover, v gets tested

at some point where (5.1) holds. If the connectivity criterion is used with β ≤ 1,

then the node gets added to the block. Therefore, with our typical choices of τ and

β and with maxbs not in effect there are no nodes with property (5.1) after finishing

a block. In this case, the modification only changes the way maxbs works as it allows

some more nodes to slip through.

Before we discuss several possibilities to select a balanced subset of B we want

to show that it will always be possible to do so.

125

1: input: A balanced bipartite graph B = (Vr, Vc, E)
2: output: A balanced partition Vq = {V1, . . . , Vq} of B
3: set C := Vr ∪ Vc
4: set κ := 0 and λ := 0
5: while C 6= ∅ do
6: find block B ⊂ C in B|C using XPABLO {use modified XPABLO}
7: find maximal balanced subset B′ ⊂ B
8: if |(B \B′)c| = 0 then {no column nodes in B \B′}
9: set κ := κ+ 1

10: set V L
κ := B′

11: else {no row nodes in B \B′}
12: set λ = λ+ 1
13: set V R

λ := B′

14: end if
15: set C := C \B′
16: end while
17: set Vi := V L

i , i = 1, . . . , κ, and Vκ+j := V R
λ−j+1, j = 1, . . . , λ

18: set q := κ+ λ

Algorithm 5.1. The UPABLO Algorithm

Lemma 5.15: The node set B found in the UPABLO algorithm is either of size

|B| = 1 or contains a nonempty balanced subset.

Proof: The set C is always balanced during any step of the UPABLO algorithm. It

is initialized as a node set of a balanced bipartite graph, thus it is balanced in the

beginning. Only at one place in the algorithm (in line 15) nodes are removed from C.

Note that the set B′ that is removed from C is always a balanced set. Therefore, C

is always balanced. At the point where we select B ⊂ C using XPABLO (in line 6),

C is nonempty and hence |C| ≥ 2. Now, without loss of generality, we may assume

that the first node put into B is a row-node. Then the next nodes we check for

inclusion are all column-nodes and further row-nodes can only be added after adding

a column-node first. Thus we either add no additional node at all and get |B| = 1 or

we have at least one row-node and one column-node in B. 2

126

5.2.1 Selecting a Maximal Balanced Subset

One important step in UPABLO is to find a balanced subset of a given node set,

see line 7 in Algorithm 5.1. We will first state this problem as a general problem

in a bipartite graph of a matrix and present our approach to it. In section 5.2.2 we

will consider the case that we additionally have to keep certain “fixed” nodes in the

balanced subset.

Let B = (Vr, Vc, E) be the bipartite graph of the matrix A and let S ⊂ Vr ∪ Vc

be a (non-balanced) set of nodes. This task is to select a maximal balanced sub-

set T ⊂ S, i.e., to select a balanced subset having the maximal possible size |T | =

2 min{|Sr|, |Sc|}. The selection process should be fast and result in a T such that A|T

is well-conditioned and, if possible, sparse relative to A|S. With these two contradic-

tory goals it is not possible to give one best algorithm for the selection problem. To

simplify the discussion we assume—without loss of generality—that |Sr| > |Sc|, i.e.,

we assume that S contains more row nodes than column nodes.

To select a maximal balanced subset T of S we use a matching approach.

We apply the matching algorithm MC64 described in section 3.2 to find a maximum

matching M in B|S. If we assume A|S not to be structurally singular we have |M | =

|Sc| and the set T of nodes incident to the edges in M is a maximal balanced subset

of P . Moreover, if we also apply the scaling computed by MC64 we can transform

A|T into an I-matrix.

Alternatives: We considered some alternatives to the matching approach. We

could employ a QR decomposition or an LU decomposition, both with pivoting. The

pivot rows together with all columns would form the balanced subset.

A different alternative could be based on condition number estimations. We

would select the set of rows, which give us the “best” condition number estimate.

127

5.2.2 Selecting a Maximal Balanced Subset Containing Fixed Nodes

In the previous section we have shown several approaches to select a maximal balanced

subset B′ ⊂ B. We now concentrate on the observation that an “unlucky” selection of

nodes for the maximal balanced subset may restrict the selection of available nodes for

later constructed diagonal blocks such that one or more of them will be structurally

singular. Let B containm row nodes and n column nodes. For the following discussion

we assume that m ≥ n. In the case n > m we can simply work on the transposed

problem. Since we have more row nodes than column nodes it follows that all column

nodes of B will be in B′. Let

Z :=
{
v ∈ Br

∣∣∣ deg |C\B(v) = 0
}
, (5.2)

i.e., any node in Z is a row node which is only connected to column nodes in B and

therefore has degree zero in B|C\B. If such a node is not added into B′ it will induce a

zero row into the submatrix corresponding to B|C\B and therefore to the future block

it will end up in. If we do not put such a node into B′, we make at least one of the

“later” diagonal block structurally singular. If this node is instead added to B′ we

may avoid this. Depending on the size of Z relative to the size of Bc there are several

cases:

• If |Z| = 0, we select a balanced subset of B without fixing any nodes as described

in section 5.2.1.

• If |Z| ≥ |Bc| we basically do the same as in the case |Z| = 0 only replacing Br

with Z. If we actually have |Z| > |Bc|, it will not be possible to put all nodes

in Z into B′, i.e., we will definitely get some singular diagonal block(s).

• If 0 < |Z| < |Bc| we indeed select a balanced subset of B′ ⊂ B with the

constraint that Z ⊂ B′. The following two-step approach will find such a

128

balanced subset. In each step we use one of the methods from section 5.2.1 to

select a balanced subset without having fixed nodes.

1. Select a maximal balanced subset T1 of Z ∪ Bc. Since |Z| < |Bc| we have

Z ⊂ T1.

2. Select a maximal balanced subset T2 of B \ T1.

Then B′ = T1 ∪ T2 is a maximal balanced subset of B.

5.3 Discussion

An early prototype implementation of UPABLO did not contain any special technique

to prevent the submatrix corresponding to the subgraph B|C\B from becoming struc-

turally singular. But it turned out that this was a very common problem in practical

experiments. Therefore we implemented the technique described in section 5.2.2 to

protect against singular diagonal blocks. Even then the diagonal blocks were often

very ill-conditioned. As an experiment we modified the algorithm to allow for bal-

anced subsets with less than maximal size and implemented a subset selection in the

following way: For each rectangular block we computed a pivoted QR factorization

and dropped elements for which the diagonal entries of R became to small. Using

this technique we were able to attain reasonable well-conditioned diagonal blocks, but

the performance of the block Gauss–Seidel preconditioners based on these blocks was

still poor in the sense that we did not improve the iteration count compared to an

XPABLO-based block Gauss–Seidel preconditioner of similar size.

There are several points, which may contribute to the problems we have en-

countered with UPABLO:

First of all, using XPABLO on the undirected graph associated with the bi-

partite graph of the matrix is different from using XPABLO on the directed graph

129

of the matrix. Therefore, it could be that we would need different criteria and/or

different parameter settings to find the kind of rectangular blocks we want to find.

Secondly, finding an unsymmetric permutation of the matrix can also be

viewed as a matching problem, cf. section 3.2: We want to match each row in the

matrix with a column in the matrix such that the corresponding permuted matrix

has a lower triangular part which is heavier than the upper triangular part, i.e., we

want the permutation corresponding to the matching to permute as many entries of

the matrix as possible into the lower triangular part. We think that the UPABLO

approach to this matching problem is in conflict with the maximum product transver-

sal found by MC64. On the other hand, it is probably not a good idea to leave out

MC64, since MC64 is so important to the performance of XPABLO.

130

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

We have seen in Chapter 3 that XPABLO can be used to construct robust precon-

ditioners for many problems from computational fluid dynamics and semiconductor

device simulation. In general they performed better than ILUTP-based precondition-

ers. The accuracy of solutions obtained using ILUTP-based was found to be quite low

for the UF test problems, whereas the XPABLO-based preconditioners did not suffer

in the same way. This phenomenon deserves further study. When using XPABLO

for preconditioning we compute a sparse factorization of the diagonal blocks. This

factorization limits the size of the blocks to be found by XPABLO. Using inexact

solves on the diagonal blocks would allow for much larger blocks.

In Chapter 4, we have shown by experiments that the performance of a mul-

tiplicative Schwarz preconditioner without overlap, i.e., the performance of a block

Gauss–Seidel preconditioner, can be improved by adding overlap to the diagonal

blocks. We introduced with OBGP a new and fast algorithm to add overlap to exist-

ing blocks. The growing of a block is based purely on the entries of the matrix and

can therefore be applied in an algebraic way. The work on OBGP could be contin-

ued in several ways: OBGP could be used on top of other graph partitioners than

XPABLO, e.g., on top of Metis [34]. The covers found by OBGP could be used for

131

other Schwarz methods, e.g., for additive Schwarz and restricted additive Schwarz

methods. A parallel version of OBGP could be developed.

The graph-theoretical basis for an unsymmetric version of XPABLO was de-

veloped in Chapter 5. Several aspects of UPABLO deserve further study, e.g., the

question of finding a balanced subset of a bipartite node set and the question of better

combining the UPABLO matching problem with the maximum product transversal

found by MC64.

Using XPABLO and OBGP together is an useful and robust tool for precon-

ditioning, but so far only in a single-processor setting. Developing a parallel version

of XPABLO would face two big obstacles: First, doing the work of XPABLO in par-

allel. There is no obvious starting point for parallelization and several characteristics

of XPABLO are intrinsically serial, e.g., with XPABLO each block depends on the

previously found blocks and we do not know a priori which part of the graph is needed

to find a specific block. Secondly, the partition found by XPABLO is in most cases

not very useful in a parallel setting. In a parallel program we would want to balance

the computational effort and reduce the idle times. Therefore, we usually would want

XPABLO to find a given number of blocks such that all blocks are in some sense of

similar size, both is not done by XPABLO so far. While the graph partitioning phase

of XPABLO can not be parallelized without substantial changes to the algorithm, we

could parallelize the preconditioner by employing asynchronous methods; see [31]. On

the other hand, the role of XPABLO in a parallel application could be very different:

XPABLO could be employed for the task of locally solving a (smaller) linear system.

Furthermore, there is some potential for parallelization in the setup and application

of the preconditioners based on a XPABLO reordering.

132

BIBLIOGRAPHY

[1] G. Alefeld, Über die Durchführbarkeit des Gaußschen Algorithmus bei Glei-
chungen mit Intervallen als Koeffizienten, Computing Supplementum, 1 (1977),
pp. 15–19.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen, LAPACK Users’ Guide, SIAM, Society of Industrial and
Applied Mathematics, Philadelphia, third ed., 1999.

[3] M. Arioli, I. Duff, and D. Ruiz, Stopping criteria for iterative solvers,
SIAM Journal on Matrix Analysis and Applications, 13 (1992), pp. 138–144.

[4] M. Benzi, Preconditioning techniques for large linear systems: A survey, Journal
of Computational Physics, 182 (2002), pp. 418–477.

[5] M. Benzi, H. Choi, and D. B. Szyld, Threshold ordering for preconditioning
nonsymmetric problems, in Scientific Computing, Proceedings of the Workshop,
10–12 March 1997, Hong Kong, G. Golub, S.-H. Lui, F. Luk, and R. Plemmons,
eds., Singapore, 1997, Springer, pp. 159–165.

[6] M. Benzi, A. Frommer, R. Nabben, and D. B. Szyld, Algebraic theory
of multiplicative Schwarz methods, Numerische Mathematik, 89 (2001), pp. 605–
639.

[7] M. Benzi, J. C. Haws, and M. Tůma, Preconditioning highly indefinite
and nonsymmetric matrices, SIAM Journal on Scientific Computing, 22 (2000),
pp. 1333–1353.

[8] M. Benzi, W. Joubert, and G. Mateescu, Numerical experiments with
parallel orderings for ILU preconditioners, Electronic Transactions on Numerical
Analysis, 8 (1999), pp. 88–114.

[9] M. Benzi, D. B. Szyld, and A. van Duin, Orderings for incomplete factor-
ization preconditionings of nonsymmetric problems, SIAM Journal on Scientific
Computing, 20 (1999), pp. 1652–1670.

133

[10] M. Benzi and M. Tůma, Orderings for factored approximate inverse precon-
ditioning, SIAM Journal on Scientific Computing, 21 (2000), pp. 1851–1868.

[11] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical
Sciences, Classics in Applied Mathematics, SIAM, Philadelphia, PA, USA, 1994.
Corrected republication, with supplement, of work first published in 1979 by
Academic Press, New York.

[12] M. Bollhöfer and Y. Saad, ILUPACK - preconditioning software package,
release v1.0, May 14, 2004. Available online at http://ilupack.tu-bs.de/.

[13] A. Bunse-Gerstner and R. Stöver, On a conjugate gradient-type method
for solving complex symmetric linear systems, Linear Algebra and its Applica-
tions, 287 (1999), pp. 105–123.

[14] H. Choi and D. B. Szyld, Application of threshold partitioning of sparse ma-
trices to Markov chains, in IEEE International Computer Performance and De-
pendability Symposium IPDS’96, Urbana-Champaign, Illinois, IEEE Computer
Society Press, Los Alamitos, California, Sept. 1996, pp. 158–165.

[15] H. Choi and D. B. Szyld, Threshold ordering for preconditioning nonsym-
metric problems with highly varying coefficients, Tech. Rep. 96-51, Department
of Mathematics, Temple University, Philadelphia, May 1996.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, MIT Press, 3rd ed., 2009.

[17] T. A. Davis, University of Florida sparse matrix collection. Available online at
http://www.cise.ufl.edu/research/sparse/matrices/.

[18] , Algorithm 8xx: UMFPACK: an Unsymmetric-Pattern Multifrontal Method,
ACM Transactions on Mathematical Software, 30 (2004). Available online at
http://www.cise.ufl.edu/research/sparse/umfpack/.

[19] , Direct Methods for Sparse Linear Systems, Fundamentals of Algorithms,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA,
2006.

[20] I. S. Duff, MA57 - a code for the solution of sparse symmetric definite and
indefinite systems, ACM Transaction on Mathematical Software, 30 (2004),
pp. 118–144.

[21] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse
Matrices, Monographs on Numerical Analysis, Clarendon Press, Oxford, UK,
1986.

134

[22] I. S. Duff and J. Koster, The design and use of algorithms for permuting
large entries to the diagonal of sparse matrices, SIAM Journal on Matrix Analysis
and Applications, 20 (1999), pp. 889–901.

[23] , On algorithms for permuting large entries to the diagonal of a sparse ma-
trix, SIAM Journal on Matrix Analysis and Applications, 22 (2001), pp. 973–996.

[24] I. S. Duff and J. A. Scott, A parallel direct solver for large sparse highly
unsymmetric linear systems, ACM Transaction on Mathematical Software, 30
(2004), pp. 95–117.

[25] I. S. Duff and B. Uçar, Combinatorial problems in solving linear systems,
Tech. Rep. RAL-TR-2009-016, Rutherford Appleton Laboratory, Aug. 2009.

[26] L. C. Dutto, W. G. Habashi, and M. Fortin, Parallelizable block diagonal
preconditioners for the compressible Navier-Stokes equations, Computer Methods
in Applied Mechanics and Engineering, 117 (1994), pp. 15–47.

[27] S. C. Eisenstat, Efficient implementation of a class of preconditioned conju-
gate gradient methods, SIAM Journal on Scientific and Statistical Computing, 2
(1981), pp. 1–4.

[28] S. Fischer, Über auf Takagi-Faktorisierungen beruhende Präkonditionierer für
CSYM (On Takagi-factorization based preconditioners for CSYM), PhD thesis,
Department of Mathematics and Science, University of Wuppertal, Germany,
March 2006. In German.

[29] D. Fritzsche, Graph theoretical methods for preconditioners, Master’s thesis,
Department of Mathematics and Science, University of Wuppertal, Germany,
June 2004.

[30] D. Fritzsche, A. Frommer, and D. B. Szyld, Extensions of certain graph-
based algorithms for preconditioning, SIAM Journal on Scientific Computing, 29
(2007), pp. 2144–2161.

[31] A. Frommer and D. B. Szyld, On asynchronous iterations, Journal of Com-
putational and Applied Mathematics, 123 (2000), pp. 201–216.

[32] A. George and J. W. Liu, The evolution of the minimum degree ordering
algorithm, SIAM Review, 31 (1989), pp. 1–19.

[33] A. Greenbaum, Iterative methods for solving linear systems, vol. 17 of Fron-
tiers in Applied Mathematics, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1997.

135

[34] G. Karypis and V. Kumar, MeTis: Unstructured Graph Partitioning and
Sparse Matrix Ordering System, Version 4.0, Sept. 1998. User Manual, Univer-
sity of Minnesota, Department of Computer Science. Available online at
http://www.cs.umn.edu/~karypis/metis/metis/files/manual.ps.

[35] M. Olschowka and A. Neumaier, A new pivoting strategy for Gaussian
elimination, Linear Algebra and its Applications, 240 (1996), pp. 131–151.

[36] J. O’Neil and D. B. Szyld, A block ordering method for sparse matrices,
SIAM Journal on Scientific and Statistical Computing, 11 (1990), pp. 811–823.

[37] J. M. Ortega, Efficient implementations of certain iterative methods, SIAM
Journal on Scientific and Statistical Computing, 9 (1988), pp. 882–891.

[38] , Introduction to Parallel and Vector Solution of Linear Systems, Plenum
Press, New York, 1988.

[39] C. C. Paige and Z. Strakos, Residual and backward error bounds in mini-
mum residual Krylov subspace methods, SIAM Jourbal on Scientific Computing,
23 (2002), pp. 1898–1923.

[40] J. K. Reid and J. A. Scott, Guidelines for the development of HSL software,
2008 version, Tech. Rep. RAL-TR-2008-027, Rutherford Appleton Laboratory,
Aug. 2008.

[41] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial
and Applied Mathematics, Philadelphia, PA, second ed., 2003.

[42] Y. Saad and M. H. Schultz, GMRES: a generalized minimal residual algo-
rithm for solving nonsymmetric linear systems, SIAM Journal on Scientific and
Statistical Computing, 7 (1986), pp. 856–869.

[43] O. Schenk, S. Röllin, and A. Gupta, The effects of unsymmetric matrix
permutations and scalings in semiconductor device and circuit simulation, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 23
(2004), pp. 400–411.

[44] H. A. Schwarz, Über einen Grenzübergang durch alternierendes Verfahren,
Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 15 (1870),
pp. 272–286.

[45] B. Seibold, Minimal positive stencils in meshfree finite difference methods for
the poisson equation, Computer Methods in Applied Mechanics and Engineering,
198 (2008), pp. 592–601.

136

[46] V. Simoncini and D. B. Szyld, Recent computational developments in Krylov
subspace methods for linear systems, Numerical Linear Algebra with Applica-
tions, 14 (2007), pp. 1–59.

[47] B. F. Smith, P. E. Bjørstad, and W. Gropp, Domain Decomposition:
Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge
University Press, 1996.

[48] A. Toselli and O. B. Widlund, Domain Decomposition Methods - Algo-
rithms and Theory, vol. 34 of Springer Series in Computational Mathematics,
Springer, Berlin Heidelberg, 2005.

[49] H. F. Walker, Implementation of the GMRES method using Householder
transformations, SIAM Journal on Scientific and Statistical Computing, 9 (1988),
pp. 152–163.

137

APPENDIX A

NOTATION

〈A〉 comparison matrix of A; see Definition 2.4, p. 16

εM the machine precision (machine epsilon).

adj(V) set of nodes adjacent to V ; see Definition 2.15, p. 19.

B(A) bipartite graph of matrix A; see Definition 2.27, p. 23.

deg(v) degree of vertex (node) v. All incoming and outgoing edges are counted;

see Definition 2.18, p. 21.

G(A) directed graph of matrix A; see Definition 2.13, p. 19.

inc(v) set of edges incident to v; see Definition 2.14, p. 19.

inc(S, T) set of edges incident to both S and T ; see Definition 2.17, p. 20.

Lk(S) kth level set with respect to S; see Definition 4.14, p. 92.

nnz(A) number of nonzero entries in matrix A; see p. 1.

