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Introduction

Und jedem Anfang
wohnt ein Zauber inne

(HERMANN HESSE)

Representation theory of algebras

Representation theory in general deals with abstract algebraic structures by
studying their representations. These representations are translations into
the language of vector spaces and linear maps inheriting essential properties
of the original object. By this approach, it becomes possible to study rather
difficult algebraic objects using methods of linear algebra, an area considered
well-understood. The structures which can be treated in this way include
groups, Lie algebras and algebras. The latter ones, especially algebras associ-
ated to quivers, are in the central focus of interest of this work.

One of the main problems arising in that context is the classification of rep-
resentations of finite dimensional algebras up to isomorphism, in particular
finite dimensional representations. In general, this is far from being solved,
because the set of these isomorphism classes is too big. To make that state-
ment precise consider a theorem of Victor Kac, stating that for an algebra
associated to a so-called wild quiver the problem of classifying the indecom-
posable representations depends on arbitrarily many continuous parameters
(c.f. [22]], [13]). For the so-called wild algebras the problem is essentially of
the same quality, which implies that the standard toolbox of representation
theoryf] cannot be applied here.

lc.f. for example [fid]



A different approach though is to handle these continuous phenomena us-
ing tools from algebraic geometry, that means considering the isomorphism
classes of representations as points in a suitable space and trying to analyse
the geometric properties of the resulting objects called moduli spaces. A spe-
cial class of moduli spaces is formed by so called non-commutative Hilbert
schemes explained in [chapter 1.

This work investigates some geometric properties of the non-commutative
Hilbert schemes assigned to quiver algebras and uses the results to construct
operators on the Borel-Moore homology groups of these. Some applications
are presented linking the results to earlier works by Markus Reineke [17] and
Yakuo Teranishi [22].

Structure of this work

In a short collection of facts and notations of the representation
theory of quivers resp. quiver algebras is given and the corresponding mod-
uli spaces will be introduced. In order to obtain some very desirable geo-
metric properties of the moduli spaces, there will be a slight modification in
the formulation of the moduli problem: Instead of parametrising just iso-
morphism classes of representations, a framing datum will be added which
basically consists of some additional linear maps and a stability condition.
The advantage of this approach is that one obtains, for example, that the res-
ulting moduli spaces are always smooth. In general, that does not hold for
moduli spaces of polystable representations for coprime dimension vectors,
see [5]. Hence, this special class of moduli spaces is called “smooth mod-
els”, details of this construction as well as the rest of this chapter have been
published in a joint work with Markus Reineke in [j5]].

As a main result, we construct an algebraic cell decomposition in
for a special class of smooth models, extending [17] where this result
is proved in the special case of the m-loop quiver. These moduli spaces will



be called non-commutative Hilbert schemes, since, similar to Hilbert schemes
of points in an affine variety, they parametrise the left ideals of finite codi-
mension in a quiver algebra.

The main instrument used in the construction of the cell decomposition is
a combinatorial calculus of trees and forests. This is derived from a cover-
ing quiver for any given quiver resolving oriented cycles and multiple edges,
which will be introduced in detail in Definition 1.2.2.

Besides, we obtain a combinatorial formula for the Betti numbers of the
non-commutative Hilbert schemes, and therefore also for the correspond-
ing Poincaré polynomial, see Corollary 1.2.18. As a third result, functional
equations for the generating functions of the Betti numbers are obtained in
this chapter.

presents the facts and notations for Borel-Moore homology used

in this work. This special homology theory is a very powerful tool to handle
even singular varieties. For smooth compact manifolds it coincides with sin-
gular homology, but also works here for nilpotent non-commutative Hilbert
schemes in [chapter 3, which are not necessarily smooth. Instead, they are
projective which makes them well suited for the construction of the operat-
ors in Borel-Moore homology later.
The content of that chapter is mostly following [4], where the essential facts
about Borel-Moore homology are listed in a comprehensive form. Most of
the skipped proofs in this section can be found in [11]. For the original in-
troduction the reader should refer to [{].

In chapter 3, the tools developed in will be applied to the set-
ting from Ehapter 1. Here we make a slight modification restricting to the
nilpotent non-commutative Hilbert schemes. They have a cell decomposi-
tion analogous to the non-commutative Hilbert schemes; the cells are even
parametrised by the same objects. Therefore, most of the properties stated in
also hold in this case.

The main reason to use Borel-Moore homology in this context is the exist-
ence of fundamental classes in Borel-Moore homology corresponding to the



closures of the cells arising from the cell decomposition constructed earlier.
These are generators of the respective homology groups.

The main result of this chapter is the definition of generation operators in
Borel-Moore homology using a technique called correspondences which is
applied in the context of Hilbert schemes of points on surfaces in [16] to
construct a Heisenberg algebra. In our case, they turn the direct sum of all
homology groups of the non-commutative Hilbert schemes into a geometric
model for the Fock space. In the special case of the m-loop quiver one can
even derive the structure of a bigraded algebra here which is conjectured to
work in a more general setting, c.f. [Conjecture 3.3.3. This method is ex-
plained for example in [Y4, section 2.7] and makes use of the properties of
Borel-Moore homology introduced in chapter 2. In this situation the fun-
damental classes come in quite handy, since they allow to calculate the op-
erators explicitely in terms of fundamental classes associated to the closures
of the cells. In chapter 1, a combinatorial parametrisation for them is given
which is used in the following to derive a combinatorial way of calculating
this convolution product in Borel-Moore homology using trees and forests.

Secondly, we present a description of the cell closures in the case of the nil-
potent non-commutative Hilbert schemes.

Finally, in the last chapter we give an algebraic realisation of the functional
equations from [hapter 1. In the context of chapter 3, this amounts to giving
some complements and analogies to shed some light onto various aspects
of the convolution algebra conjectured there. For that purpose
presents an algebra isomorphism to a so-called cable algebra generated by
cable diagrams. This construction belongs to the class of diagram algebras.
Another very well known example of this class are Temperley-Lieb algebras
introduced in [21]. Although there are certain similarities in the diagrams,
the composition of diagrams used in this case is a different one.

In pection 4.2}, we take a functional equation for the Hilbert series of the non-
commutative Hilbert schemes as a motivation to find an isomorphism cor-
responding to this between two algebras one of which is the convolution al-




gebra conjectured in chapter 3. Together these two sections can give an idea
of how the Betti numbers of the non-commutative Hilbert schemes behave,
and how this behaviour is related to the structure of the convolution algebra.
The second main result of this chapter is a link between the algebra structure
on a vector space with a basis parametrised by trees and non-commutative
Invariant Theory: The topic discussed in relates such an algebra
— which can be thought of as the convolution algebra from - to the
algebra of invariants under the operation of SL (V") on the tensor algebra of a
vector space V. In the general situation, there is a monomorphism of graded
algebras, which specialises to an isomorphism for Q = L,, with m = 1 or
m = 2. The construction of the SL,,-invariants used here is due to [22].
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1 Geometry of
non-commutative Hilbert
schemes

Geometry is to open up my mind
so I may see

what has always been behind
the illusions that time
and space construct.

(Davip HENDERSON, [g])

In this chapter, we give a short introduction to the notations of quiver repres-
entations and the corresponding moduli spaces. Furthermore, this chapter
contains the details of the construction of non-commutative Hilbert schemes
for quiver algebras. A close investigation of their geometric properties re-
veals amongst others an algebraic cell decomposition generalising a result by
Markus Reineke for the case of the m-loop quiver.

Using a combinatorial model of trees and forests, we give an explicit for-
mula for the Euler characteristic of the non-commutative Hilbert schemes
and functional equations for the generating function.

Even though the first definitions also hold for general fields, we shall always
assume [ = C. The combinatorial setting of this cell decomposition will be
used later in chapter 3 and chapter 4 for explicit computations.
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1.1 Quiver representations

Definition 1.1.1 (Quiver) A quiver () consists of two sets ()g and (); and
maps t, h: Q1 - Qo.

One can think of (g as a set of vertices and ()1 as a set of arrows « with tail
t (o) and head h (). Having that in mind, elements of ); are sometimes
written as a: t (o) = h («).

A quiver @ is called finite, if Qg and Q1 are finite sets. We will always
assume any quiver to be finite in the context of this work.

A subquiver .S of a quiver () is a quiver S such that Sy € Qg and 5] € Q1.
The maps ¢ and h corresponding to S are the restrictions of the correspond-
ing maps of ) to .Sy.

A subquiver is called full, if for all ¢, r € Sy the following condition holds:

{aqg—>r|ae@i}cS.

Example 1.1.2 From now on we will recur to the following quiver () as a
standard example:

Definition 1.1.3 (Quiver representation) Let () be a quiver and C a field. A
representation M of () over C consists of

« C-vector spaces (M; ), and

12



o linear maps (Ma:Mt(a) - Mh(a))ate'

The vector d = (dim M; )., € N Qo is called the dimension vector of M.
A map between quiver representations

¥ ((Mi)ier ) (Ma)aeQ1) - <(Ni)ier ) (Na)aeQ1)

is a tuple of linear maps (y;: M; — N;) ieQy> Such that for all arrows a € Q1
the following holds: ¢} (o) © Mo = Na © 9y(q)- This allows us to consider
the Abelian category formed by the representations of () and morphisms as
above; this category is equivalent to the category of left modules of the path
algebra k£Q). Under this equivalence the notions of isomorphisms and sub-
representations translate as follows:

A map as above is called an isomorphism if all maps (¢; ) s, are isomorph-
isms.

A subrepresentation W of V' is a representation W of () with a map of
representations ¢: W — V such that all ¢;: W; — V; for i € () are injective.

Definition 1.1.4 (Euler form) Let (Q be a quiver. Define the so called Euler
form on N Qo by

(a, b) = Z aqbq - Z at(a)bh(a) (a, be NQ()) .
q€Qo ae@q
This form is sometimes also called Ringel form.

Consider the variety
Ry (Q) = @ Hom (C%e), @)
aeQq
R;(Q) is called representation space. It carries a natural operation of the

group
GLg4 = H GLg4, (€)
i€Qo

13



via
-1
(9)icn (Ma)acq, = (9(e © Mo © 9i) .o,
It is not hard to see that the orbits of this operation correspond in a natural
way to the isomorphism classes of representations of ) of dimension vec-
tor d.

Definition 1.1.5 Let ) be a quiver. A path in @) is a sequence of arrows
at,...,qp € Q1 with hoy = toy,q for all @. Consider the path algebra C Q)
generated by all paths in () where the product is given by

wXxXw =

, Jwa” if hw =tw’
0 else

where w.w’ denotes the concatenation of paths. This defines an associative
C-algebra.
Note that in each vertex i € () one has the empty path e; in that vertex.

For a representation M of () and a path w = o5 . .. v, consisting of arrows
al,...,qp € Qqlet My, := My, o--- o M,, be the composition of linear
maps.

Fix the following notions: h (w) = h () and t (w) =t (a).

The subset of Ry (Q)) consisting of all simple representations will be de-
noted by R}, (Q), this is an open, but possibly empty, subset of Ry (Q).
The same holds for the subset RZSimp (Q) of all semisimple representations

of Q.

Example 1.1.6 1. Let () be a quiver without oriented cycles. Then the
simple representations are precisely the representations E; with di-
mension vector (; ; )jer for i € Q.

2. Let () be the quiver

14



Then the representation given by My = My = Cand M, = Mg =id is
simple.

3. Let ) be the quiver
o
1 e——e 2

Then the representation given by M; = My = C and M, (z) = ax for
some a € C is not simple, since there exists a non-trivial subrepresent-

ation given by M7 = 0, M4 = C and M/, = 0.

4. Let @ be the quiver with two loops, that is Qo = {i} and Q1 = {a, 5}.
In this situation the simple representations of dimension 2 are the pairs
of 2 x 2 matrices without simultaneous eigenspaces.

Michael Artin showed in [{] the existence of a complex algebraic variety
(not necessarily smooth, though) M;Slmp (Q) parametrising the isomorph-
ism classes of semisimple representations of ) of dimension vector d. This
M7"™ (Q) is an affine variety.

Furthermore, [[i]] proves that there is a smooth complex algebraic variety
M7™ (Q) parametrising the isomorphism classes of simple representations
of ) with dimension vector d; the variety Msimp (Q) can be obtained as the

geometric quotient of Rzimp (Q) by the action of GLg.

Definition 1.1.7 (Extended quiver representation) Let () be a quiver and
assume given dimension vectors d,n € N ()o; we will denote such a triple
(Q,d,n) as a quiver datum . An extended representation of () of dimension
vectors d, n consists of

15



« C-vector spaces (V;) g, and (M;),.q, of dimensions dim V; = n; and
dim M; = d; for all i € Qg as well as

o linear maps (f;: Vi - M;),q, and (Ma:Mt(a) - Mh(a))ate.

The corresponding extended representation space is given by

Ryy (Q) = @ Hom (CH@, C) e @ Hom (C™,C%).
aEQl iEQO

On R, (@), we have an operation of the group GL via
(gi)ieQO ) ((Ma)ate ) (fi)ieQO)

= ((Qh(a) o Moo gt_({x))aecgl (gie fi)z‘er) :

Two extended representations

((Ma)ate ’ (fi)ier) and ((M, )ate (fi,)ieQO)

are equivalent if there exists an isomorphism of representations y: M — M’
such that f/ = ¢; o f; for all i € Q. Then the orbits of the group operation
of GLg4 on Ry, (Q) correspond naturally to equivalence classes of extended
representations.

Alternatively, the following description of extended representations of )
is also possible (c.f. [, chapter 3]): Let d,n be two dimension vectors for )
and denote by Q" the extended quiver with

Qr=Qou{oo} and
Qr =Q1u{Cioo>ilieQo, j=1,...,n}.

Then the extended representations of () for dimension vectors d,n € N Q)
correspond to representations of Q" for the dimension vector d where d; = d;

16



for i € Qo and ds = 1. This is obvious by the following: Choose bases
U1,...,Up, of V; fori € Qg and set

G =fil () G=1,...,ni i€Qo).

Definition 1.1.8 (Stability) An extended representation (M, f) of @ for di-
mension vectors d, n € N Qg is called stable if the images of the f; for i € Qg
generate the representation M.

The open subset of R ,, (@) of all stable representations of ) of dimension
vectors d,n € N () is denoted by Rflt’n (@). One can easily see that the op-
eration of GLg (@) on R, (Q) restricts to an operation on Rfit,n (Q).

Remark 1.1.9 M is generated by the images of the f; for i € Q) if there are
bases (v; )j=1,...,m of the vector spaces V; such that each M; for i € Q) is
,wherew = ..., is

spanned by elements of the form (wag (UM))Z w
a word in the alphabet )1 with hag = tas 1 for all s. Note that this implies

h(w) = 1.
Example 1.1.10 Let () be the quiver

(0%

G2

Then the extended representation given by V = C, M = (my,mg) ~ C2,
f (x) = axmy + bxmy for some a, b,z € C and M, = id is not stable, since
M is not generated by the image of V.

: . . Myy M :
If in the same setting M, is given by ( Mo Moy ) with

(aMl,l + bM271) b+ (aM271 + ngg) a,

then (M, f) is stable, since (f (v) , My f (v)) for some v € V \ {0} forms a
basis of M.

17



Alastair King showed in [14] that there exists a smooth complex algeb-
raic variety M3 (Q) parametrising the isomorphism classes of stable rep-
resentations. Via the notion of stability introduced in [j5], this also holds for
extended representations. This variety is given as the geometric quotient of
Ry, (Q) by the action of GLg.

Definition 1.1.11 (Non-commutative Hilbert Scheme) Denote by
Hilbg,, (Q) = Mg, (Q)

the non-commutative Hilbert scheme for the quiver datum (Q, d,n).

In the special case of the m-loop quiver with n = 1, the elements of the Hil-
bert scheme Hilby; (Q) correspond to left ideals in the path algebra C Q:
Let (M, f) € Hilbg (Q). Then M is a C Q-module and thus corresponds
to an ideal I (M, f) by the following

0~ 1(M,f)~>CQ—M 0,

where the morphism C Q) — M is given by 1 — f (v). Under this construc-
tion factor representations correspond to subideals as one can see from the
following diagram of exact sequences:

0 0
l !
I(L,h) s I(L/M.h)
l l
CQ cQ
| l
0—M—L——L/Mh—0

| |

0 0

18



In coordinates this can be written as follows: Assume (M, f) € Ug, is given
by
Muf()= 3 pwwMof@)  (weC(S:)).

Seow’<w

Then (M, f) corresponds to the ideal

IT(M,f)y={w- > pwww cCq
Swow’<w weC(Ss)

with codime g I = dim M.

1.2 Cell decomposition

In this section, we construct an algebraic cell decomposition for the non-
commutative Hilbert schemes of a quiver (). In the following, this construc-
tion will be used to compute the Betti numbers of the non-commutative Hil-
bert schemes and to give a formula for the Poincaré polynomial.

Definition 1.2.1 (Algebraic cell decomposition) For a variety X an algeb-
raic cell decomposition is a filtration by closed algebraic subsets

X=Xp2X12---2X,12X;=0,

such that X; \ X, is isomorphic to an affine space fori =0,...,s - 1.
The varieties X; \ X1 are called cells.

If a variety X has an algebraic cell decomposition, then all odd homology
groups vanish, see for example [6, Appendix B].

For the construction of a cell decomposition, we apply a method from [17]:
1. We will construct a covering of Hilbg,, (Q) by open affine subsets Ug,
which 2. will then be modified to a stratification into disjoint subsets Zg by
cutting out intersections in a suitable way. 3. The crucial point in the whole
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proof is now to show that these strata are isomorphic to affine spaces. To
achieve this we will make use of a combinatorial technique to enumerate the
cells by certain forests. This tool was developed in [17] and will be generalised

to arbitrary quivers in fubsection 1.2.1].

1.2.1 Trees and Forests

Definition 1.2.2 (Trees and Forests) A treel isa connected quiver without
cycles, such that for all ¢ € T} there exists at most one v € T with h () = gq.
This implies for example that every tree 7" has a unique root, that is a vertex
to € Tp such that there exists no v € T} with h () = .

A subtree of a tree T is a full connected subquiver S of 7', which is closed
under predecessors, i. e. for all s € Sp and all T 5> a:r — s we have r € Sp.
A quiver F, whose connected components are trees, is called a forest; a sub-
forest F' of F is a forest ' such that the components of F' are subtrees of
the trees in F.

Example 1.2.3 Take following tree:

N,
NN

Among its subtrees are the following:

N RN

o/ \o o/ \o and o/ \o o/ \o
but not
o/o\o o/o\o
o/ \o o"/ \o or o’/ \o o/ \o

20



the first one is not a tree, the second one is not closed under predecessors.

Let (Q,d,n) be a quiver datum. For ¢ € Qo define a tree Ty, as follows: the
vertices of T, are paths in () starting in ¢. There is an arrow c: w — w' in
Ty, if there is an arrow & € @1 such that w’ = wa. Here wa means the path
which can be obtained by appending & at w in h (w).

Definition 1.2.4 Denote by F;, (Q) the forest consisting of n, copies of T},
for all g € Q.
The vertices in F,, (@) can be written as (g, ¢, w) for g € Qo, i € {1,...,ng4}
and w a path in () starting in ¢. This denotes the vertex w in the i-th copy of
T,in F, (Q).

Remark 1.2.5 All Tj, for ¢ € Qg are trees, since 1. they are connected by
construction (vertices correspond to paths starting in g, thus are connected
to the root corresponding to the empty path in ¢) and 2. every vertex — apart
from the root given by the empty path in ¢ - has exactly one predecessor,
which can be obtained by cutting off the last arrow of the corresponding path
in Q). 3. If () does not have oriented cycles, all covering quivers are finite.

Example 1.2.6 For the quiver () from one obtains the trees
depicted in [Figure 1.1.

Using these trees it is now possible to construct the index set which will
later be used to parametrise the cells of a non-commutative Hilbert scheme
Hilbg,, (Q). This set will consist of certain subforests of F, (Q).

Example 1.2.7 Let () be the quiver

B
e
a b 4 ¢

21
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Figure 1.1: Covering trees Ty, for () from
Ty 1
() o——e b
VE o—8
QYE e—8 QY ~§ e——e O[3

ayd e——e ayo3 yoye ec——se iy

|
+

Ty T3

e ot () 0
5 e——e 0f3

dve e——s 7y Ts

070 s——e 070f3 () e



Then one obtains the trees
T, Ty T,

B ° ,B .
.L./aﬁ 0/5 b

T ‘)7\; 0

Choosing for example n = (1,1,1) € NQp as a dimension vector implies
that 7, (Q)) consists of one copy of each of these trees T, T} and T:

B B e
a /Oﬁ ./ﬁ

Oe &7\0;7 <>%; 0.

The marked vertex has the description (a, 1, af3).

Example 1.2.8 Let () be the quiver

p
.L)./_\.
a b\;/c

which looks very similar to the last one, but has very different properties as
we will see. This change introduces an oriented cycle to () which makes the
covering trees infinitely long:

Ta Tb Tc
o;oio—’?» 0L0—7» .. oi)o—?»
0O ¢ of 0 5 0 7

23



Choosing n = (1,0,1) determines F,, ((Q) as consisting of one copy of T,
and one copy of 7.

Example 1.2.9 For the m-loop quiver all covering trees are infinite m-ary
trees. Thus, F,, (@) consists of n copies of the infinite m-ary tree.

Ordering vertices and forests

The aim is to construct a total ordering of the subtrees of F,, (Q)). After
constructing an affine covering for the non-commutative Hilbert schemes
whose sheets are parametrised by the subtrees of F,, (@), we can use this
total ordering to make the covering disjoint by cutting off from each sheet
the intersection with sheets of smaller order. Several steps will be needed to
construct this order which implies the construction of preliminary orders on
related sets. The whole process of constructing this order is almost canonical
apart from two choices one has to make right in the beginning.

step 1 Choose an arbitrary total ordering on the vertices of () and for each
pair (¢,7) € Qo a total ordering of the arrows from i to j in Q;.

step 2 This gives a total ordering on the set of arrows of () as follows: For
two arrows it — j and B:k — £in Q1 with ¢, 5, k, ¢ € Qg define
a < f3 if one of the following conditions holds:

a) ¢ = kand j = £ and a < § in the chosen order on the arrows
between ¢ and 7,

b) i =k and j < £ in the chosen order of (g,
¢) i < k in the chosen order of ().
step 3 By means of the lexicographic order, this allows us to compare paths

in @) as they are words in the alphabet ();. Thus we have an order on
the set of vertices of the trees 7}, for ¢ € Qo: Let w = o1 ..., and

24



step 4

step 5

step 6

w' = 31 ... s be two vertices in T}, that is paths in Q). Define w < w’
if one of the following conditions holds:

a) w is a proper subword of w’ or
b) «j < By in the order on the arrows of () where k € N is minimal

such that o, # B

This can now be used to define an order on the vertices in F,, (@) by
setting (q,4,w) < (¢',4’,w") if one of the following conditions holds:

a) ¢ < ¢’ in the order on Q) defined in ftem 1,
b) g=¢ andi<i inN,

¢) ¢=4q',i=1i"andw < w'in the order of the vertices of T}, defined
in ftem 3.

Furthermore, define an order on the subforests of F,, (Q). For that
purpose we will use again the lexicographic order.

For two such subforests S = {z1 <+~ <zj} and " = {2} <--- < z}}
define S < S” if one of the following two conditions holds:

a) k>/lor

b) k =/and x, < . in the order on the vertices of F,, (@) defined
in ftem 4, where 7 € {1,...,k} is chosen minimal with respect
to the property z, # .

The order on Q) allows us to enumerate the trees in F,, (@) by setting
(g,9) < (¢',1") forq,q" e Qo,i € {1,...,ngtandi' € {1,... ,ny}if
a) ¢ < ¢’ in the order defined in or

b) ¢=¢ andi<i inN.
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For an index (g,%) denote by succ (g,i) the unique smallest index
greater than (g, ), which is

(g,i+1), ifi<n,
(¢',1), if i = ng,

succ (q,1) = {

where ¢’ =min{ge Qo | ¢ > ¢, ng > 0}.

An affine covering

Let (@, d,n) be a quiver datum and (M, f) an extended representation. Fix
bases (vg,i);_; . of V;, for g € Q. For a finite subforest S.. of F,, (Q) let

..... n

Us. = {((Maducoy + (o) ) € Hilbun (Q) | @D}

where

((My o fq) (vg,i)) (giw)es, 18 abasis of M, for all r € Q. (1.1)
h(w)=r

Definition 1.2.10 (Corona) For a subforest S, of F,, (Q) let C' (S,) be the
set of all vertices (g,i,w) € F, (Q) subject to one of the following condi-
tions:

a) w=aj...oqp ¢ Sgiandw’ ==y ... 0y1 € Sy, where S ; + @, or
b) w=()and S, ; = @.

C (S.) is called the corona of S..

Lemma 1.2.11 All Ug, for subforests S, of F;, (Q) are isomorphic to affine
spaces.
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Proor For (M, f) € Ug, and (q,i,w) € C (S, ) one can write uniquely
waq (vq,i) = 2 )‘(q,i,w),(q’,i’,w’)Mw’fq’ ('Uq’,i’)
(q’,i’,w’)GS*
and assigning to (M, f) the coefficient A4 ; ), (47,7 1) induces an algebraic
function A (g ; w),(¢,i"w): Us. — C. Thus, Ug, is isomorphic to an affine

space under the isomorphism given by the functions (A(q7i7w)7 (q,ﬂ-,,w,)) for
(q,7,w) € C(S+) and (q,i,w) € S.. ]

Thus the sets Ug, are open subsets of Hilbg ,, (Q), since the defining con-
dition is equivalent to the non-vanishing of the following determinant:

det (My, (fq (v47i)))(q,i,w)65* #0.

Furthermore, it is easy to see, that these sets Ug, cover Hilbg,, (@), be-
cause the stability condition asserts that every point in Hilbg,, (Q) corres-
ponds to a representation which is generated by im f.

In the future, the notation (M, f) € Ug, will be used dropping indices if
the respective quiver is obvious. (M, f) will denote a class in Hilbg ,, (Q) as
well as an extended representation where the actual meaning is obvious from
the context.

The set of all subforests .S, of F, (Q) such that Hilbg,, (Q) 2 Usg, # @ is
denoted by @4 ,, (Q). For S, € @, this implies

|S*| = (# {(quvw) €S, | h(w) :j})jEQo =d

and each such S, appears in 4, (@), thus we have
Pap (Q) = {5 © Fn (Q) [1S:] = d}.

Lemma 1.2.12 Let (M, f) € Hilb,,, (Q) and S, be a subforest of F,, (Q)
such that the vectors (M, o f; (vw))(q i w)es, are linearly independent.

Then there is a subforest S} of F,, (Q) with S, ¢ S/ such that (M, f) € Ug:.
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ProoF Use a downward induction on |S.,|. For |S,| = d there is nothing to
prove. B
Let S, =S, uC (S*) and
Up = (waq (Uq,i»(q,i,w)e& )
) h(w)=r
Ur = (Myfq (Uf],i)>(q,i,w)€§* (reQo)-
h(w)=r

Here one obviously has, due to S, 2 S,

Y, dimU, > ) dimU,.
reQo reQo

Note that both sides are equal, if and only if U, = M, for all r € o, because
Hilbg, (Q) is generated as a representation by im f and (im f),. ¢ U, for
all 7 € Qo.

If this is a proper inequality on the other hand, there exists a vertex (g, i, w) €
S. N S, such that My, fy (vg,i) ¢ Up(uw)- Replacing S, by S, U {(g,i,w)}
S.u {(q,i,w)}| > |9,

yields and thus completes the induction. a

For a quiver datum (@, d,n) and a finite subforest S, of F,, (Q) define
Zg, € Usg, as

Zs. = { (M) e+ () ) € Hilba (@) | (D) and @3}

where

waq (Uq,i) € <Mw'fq' (’Uq'fi’))(q,i,w)>(q’,i',w')eS* (1.2)
h(w)=h(w")

forall (q,7,w) € C (S,).
These sets are obviously isomorphic to affine spaces, since they arise from the
affine spaces Ug, by setting a fixed set of coordinates to zero. In order to see
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that they are the desired cells, one has to show that they actually form a de-
composition of Hilbg ,, (Q). This follows immediately from [Theorem 1.2.13,

which is the main theorem of this chapter.

Theorem 1.2.13 Let (Q,d, n) be a quiver datum and S, a finite subforest of
Fn (Q). Then
Zs, =Us,~ U Ug. (1.3)
S;<S>{-

Corollary 1.2.14 For a quiver datum (Q, d, n) there is a cell decomposition
of Hilbg,, (Q), the cells of which are parametrised by @4, (Q).

Proor Enumerate the forests in ®,,, (Q) as S! < -+ < S¢ according to the
order defined above, and let

Ay = Ag = Hilbg, (Q)~ U Zst.
8! <8k

All Ay, are closed subvarieties of Hilbg ,, (@), and we have a filtration

Hﬂbdm (Q) = A1 D:-+D Ag I} AZ+1 =,
where A; \ A;,1 ~ Zsi is isomorphic to an affine spacefori=1,...,¢. O

To prove [Theorem 1.2.13 we will show both inclusions of formula (1.3

separately.

Lemma 1.2.15

ZS* c US* N\ U US;-
Sh<Sx

Proor The inclusion Zg, ¢ Ug, is clear by definition.
Assume Zg, N Ugr <, Ug: # @, for instance Zg, N Ug: # @ fora S}, < S,,
and choose some representative (M, f) for a class in this intersection.
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Let (¢,7) with g € Qo and i € {1,...,n,} be maximal with respect to the
property that Sy v = Sy, ;s for all (¢',i") < (g,4). Because of S, < S, it
follows that S’ < Ssuce(q,i) holds and therefore one of the following

suce(q,i)

cases:

S;ucc(qﬂ.) > ‘Ssucc(q,i) |+ Since (M, f) representsa classin Ug: , the elements
My fq (vg i) for (¢',i',w) € S, are linearly independent. Thus it
follows that

Z dim (My, fo (Uq’,i’)>h(w):s 2 Z |Sé’,i’ )
(¢, w)eFn(Q) (¢',i")suce(q;i)
(q',i")<suce(q,3)

s€Qo

By assumption one has

|S(;/’i/ > Z |Sql’il| .
(¢',i")<suce(q;i) (¢',i")<suce(q;i)
Since (M, f) represents a class in Zg,, it follows from
that
S Seel= Y dimMafy ()
(q’,i’)gsucc(q,i) (qlvilvw)ef’ﬂ(Q)
(¢'+")<suce(q,i)
s€Qo

Altogether this is a contradiction, so this case cannot occur.

S/

suce(q,i)

= ‘Ssucc(q,i) ‘: Let

Ssucc(q,i) = {wl <o < ’u)g},
/

suce(q,i) ~ {wi <eer< wz}

and k be minimal with respect to the property w; < wy. That includes
two cases:
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1. If wy, is not a proper subword of wy, then it is in Ssuce(q,i)> Since
trees are closed under taking predecessors. But that contradicts
the minimality of .

2. Otherwise let wy, = (a1...a,) and wy, = (o ...al,) and s be
chosen minimal such that os1 # o, and thus a; < ag1.
Let furthermore (g, %) := succ (g, 1).

Then @ := (o ... asal, ) satisfies

(3,4,0) € Syee(qiy N C (Sx)-

Together with this is a contradiction as follows: Be-
cause (M, f) represents a class in Zg, , the following holds:

M f7 (vg7) € (Mur for (Vi) 5504 ' y<(@iim) -
h(w)=h()
The indices on the right side are contained in S}, because of the
assumed minimality of s, so the left hand side has to be linearly
independent from the right hand side, since (M, f) represents a
classin Ug: . O

Lemma 1.2.16

Zg, 2Ug, U USQ-
SQ<S*

PrROOF Again we prove this lemma by contradiction. For that purpose, as-
sume there exists a class in (U 5. NUsr<s, U Si) \ Zg, for a subforest S,
of F,, (Q). Let (M, f) represent such a class. For (M, f) this violates
atleast in one point; let (¢, 7, w) € C (.S, ) be minimal with respect
to that property, i. e.

waq (Uq,i) ¢ <Mw’fq’ (Uq',i')>S*9(q',i’,w’)<(q,i,w) .
h(w")=h(w)
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Let S = {w1 <--- <wp < ...}, where w), is maximal with w,, < w. Note
that this implies

(q,i,wp) # max {(q',i’,w") € S.}.

Define another forest S, by setting Sy = Sy for all (¢/,i') < (g,4).
Furthermore, let S, ; := {w) <--- <w, < w}. Because of the minimality of
(gq,1,w) the requirements of are satisfied for S, so one can
extend S, to a forest S’ such that (M, f) represents a class in U, 57

Then one of the following cases is true:

1. S}y = Sy forall (¢',i) < (¢,%). In this case we have Spi < Sqi
because S (’1 ; is an extension of S, ; which contains all w; < --- < w), <
w. For the smallest vertex (g, i,w) € S« with (q,¢,w) > (q,i,wp) one
haS (Q7 Il‘? w) < (Q7 7;7 /lI))'

!
2. ‘Squi,

> |Syr.i7| for some (¢',i") < (q,1).

In both cases we obtain S} < S,. Hence (M, f) € Ug: contradicts the initial
assumption. O

Remark 1.2.17 For a subforest S, of F,, (Q)) define
D (S.)={((g.5,w),(¢"7",w')) € C(S.) x S« [ (¢i",w') < (g4, w)}
and let d (S.) := |D (.S4)|- Then one can easily see that

dim Zg, =d (S,). (1.4)

As already stated, we know that given an algebraic cell decomposition of
the non-commutative Hilbert scheme, the number of n-dimensional cells
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is just the 2n-th Betti number. The i-th Betti number b; (Hilby,, (Q)) is
defined as

bi (Hilbg,, (Q)) := dimg H; (Hilbg,, (Q), Q)

where H; (Hilbdm (@), Q)) denotes the i-th singular homology group with
rational coeflicients. The Betti numbers appear in the so called Poincaré poly-
nomial, which is their generating function:

Pt (@) (9) = 2 bi (Hilbg,, (Q)) ¢"-
i=0

Corollary 1.2.18 One obtains the following formula for the Poincaré poly-
nomial of Hilb, ,, (Q):

Piibg @) (@O = D g dm s,
S*E':I)ri,n(Q)

Example 1.2.19 Consider the following quiver Q:

2
0 =e—> Y

“()?

.
1

with dimension vectors d = (1,2) and n = (1,0). Then the cells of the cor-
responding non-commutative Hilbert scheme Hilb ,, (@) are parametrised
by the trees

0,0 0,0 0 0
0 0 0. e B
ay & ase ad Mg gy B3N

The corresponding cells have dimensions 3,2,2,1 and o, respectively.
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1.2.2 Multipartitions

The previous section contains the construction of a cell decomposition for
the non-commutative Hilbert schemes. For this purpose certain subforests
of F,, (Q) were used to parametrise the cells. From this we obtained a de-
scription of the Betti numbers in terms of these forests.

A different combinatorial description of the Betti numbers can be derived
from [j5, Theorem 6.2], where so called multipartitions appear as exponents
in the Poincaré polynomial:

P, (@) (1) = "D 57 4P
’ PRV

where Ag,, is the set of admissible multipartitions that will be defined in
Definition 1.2.2d. This identity comes from counting rational points of the
Hilbert scheme over finite fields and reordering by exponents of ¢ ~*. Com-
paring coefficients, it is natural to ask for the relation between these two
classes of objects, resp. for an explicit bijection. Following this approach,
in this section we will proove a generalisation of [20, Proposition 6.2.1].

Definition 1.2.20 (Multipartitions) A multipartition A for a quiver datum
(Q,d,n) is atuple (A7), o, of partitions

/\q:(A‘{z~--z>\§q20).

Such a multipartition is called admissible if the A\] € N are subject to the
following condition:

For all 0 < e < d there is a g € Qg such that )\quq_eq <ng—(e,17). (1.5)

Here 17 denotes the vector (d4,),. Qo €N Qo-. The set of all multipartitions
satisfying this condition will be denoted by A ,,. In [5]] this set is called Sy ,,
this is changed here to avoid any confusion with the subforests of 7, (Q).
Let [\ = ¥ c0, ijl A! be the weight of a multipartition A.
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Construct a map ¢: @4, (Q) = Ag,, as follows: For Sy € @4, (Q) define
2 (8.) = (A1) g, with

A= #{(d,i',w") e C(S.) | h(w') = qand #M (¢, i, w') > i},
where
M(q',i' w') = {(q,i,w) € Sx | h(w) =h(w"), (q,i,w) > (¢,i',w")}.
This will be the bijection mentioned above.

Lemma 1.2.21 This map ¢:®q,, (Q) - Ay, is well defined, i.e. ¢ (Sx)
satisfies forall Sy € @4, (Q).

ProoF Let0 < e < d,and for (¢,%,w) € S, define the set M~ (¢',4',w’) as
{(¢,3,w) € S [ h(w) = h(w') A(g,i,w) < (7', w')}.

Choose (g,i,w) € S, minimal with respect to the property |M~ (q,i,w)| =
en(w) + 1 and let g := h (w).

By definition )\gqueq counts those vertices in C' (S, ) which point towards
g and for which there exist at least d, — e, greater vertices in S, with the
same property. Here we mean the order of the vertices in F,, (Q) as defined
on page p5. Since S. contains exactly d, vertices pointing towards g, this
condition is equivalent to the following: there exist at most e, smaller vertices
in S, pointing towards q.
Therefore, we count the possibilities for a vertex pointing towards ¢ to appear
in S, or C'(S.), which is smaller than the (e, + 1)-th such “g-vertex” in
S.. Vertices with this property either do not have a predecessor, then they
are precisely one of the roots of the n, trees with root q. Or they have a
predecessor r € (o, and because of the minimality of ¢ there can be at most
e, smaller r-vertices.
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If w = (), then one of the roots does not appear, since it acts already as the
eq +1-th g-vertex in S,.. Otherwise, one of the predecessors does not appear,
since it is the predecessor of the (e, + 1)-th g-vertex.

In each case one still has to substract the g-vertices in S,; there are precisely
eq of them.

Altogether, )\Zq_eq has an upper bound:

q _ _ _ q
)\dq_eqan+QZ er—eg—1<ng—(e 17). o
157q

It remains to show that this map ¢ is bijective. Since both ®,,, (@) and
A4y (Q) are finite and of the same cardinality (c. f. and [j5,

Theorem 6.2]), it suffices to prove that ¢ is injective.

Lemma 1.2.22 The map ¢: 4, (Q) - Ay, defined above is injective.

ProoF Let S, > S’ be two subforests of F,, (Q) of dimension type d and
choose (¢q,i,w) € S, N S, maximal with respect to the property, that for all
(¢',i',w'") € S, u S, with (¢,i',w") < (g,4,w) the condition (¢’,",w") €
S,.nS% holds. Because of S, > S’ the immediate successor (¢, i, w) € S,US.,
bigger than (¢, 7, w) is contained in S, N C'(S,). Let qo := h (w) and (\) :=
0 (S.)aswellas (\') := ¢ (S.) and (g, %, w) be the (m + 1)-th vertex in S,
pointing towards qo.

Since the number of vertices of S, and S., pointing towards ¢ is equal, we
can deduce, that there must be at least one more vertex in C (S, ) smaller
than the (m + 1)-th vertex pointing towards ¢y than there are vertices in
C' (S%) subject to this condition with respect to S’, instead of S.. This is due
to the fact, that we know all these vertices for S!, and for S, all those and
additionally (g,,w) satisfy this condition. But this means A% > A/ and
hence in particular A # \'. o

Example 1.2.23 As an example take the quiver
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together with dimension vectors d = n = (2,2). Then T}, is an infinite line,
and so is Tp. Therefore F,, (@) consists of two copies of each of them. The
subforests of dimension type d which parametrize the cells are listed in Table
[L.1 together with the corresponding multipartitions.

Table 1.1: List of forests/ multipartitions for example

Forest Multipartition
1 | ((O,a,aB,aba),2,3,2) | (0,0]0,0)
2 | (O a.aB),2,0),2) (0,0]1,0)
3 ((()7a’aﬁ)a®7®’()) (0’0 | 270)
4 | ((0,2),(0,a),2,2) (1,010,0)
5 ((()7a)’()’()7®) (1’0|170)
6 | ((0),a),0,2,0) (1,0]2,0)
7 (((),OJ),@,((),,B),@) (270|070)
8 | ((0),a),2,2.(0),8)) (2,0]1,0)
9 [ (0:(0,2),0,2) (0,0]1,1)
10 | ((),(0),),2,0) (0,0]2,1)
11| (0,0,0,0) (0,0]2,2)
12 | ((),2,(0),8,a),2) (1,0]1,1)
13 | (0),2,(0,8),0) (1,0]2,1)
14 (()7®7()7(()7/8)) (2’0|171)
15 | (0),2,2,(0),8,82)) (1,0]2,2)
16 | (2,((),a,ab,aBa),2,@) | (1,1]0,0)
17 (@,(),(a,aﬁ),(),@) (171 | 170)
18 | (2,((),a.aB),(),2) (1,1]2,0)
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Table 1.1: List of forests/ multipartitions for example (cont.)

Forest Multipartition
19 (®7(()7a)7(()7ﬁ)’®) (271 | 0’0)
20 | (2,(0),2),2,(0),8)) (2,1]1,0)
21 | (2,0),(0),8,8a),2) (1,1]1,1)
22 | (2,0),(0,8),0) (1,1]2,1)
23 | (2,0),0,(0.8)) (2,1]1,1)
24 (®>()7®(()3B75a)) (1a1 | 272)
25 | (2,2,(0), B, Ba, BaB) @) | (2,2]0,0)
26 | (2,2,(0,8).(0,8)) (2,2]1,0)
27 | (2,2,2,(0),8,Ba,8aB)) | (2,2]1,1)

1.3 An explicit formula for the Euler characteristic

Taking the formula for the Poincaré polynomial from Corollary 1.2.18, one

obtains the Euler characteristic of the non-commutative Hilbert schemes as

)

Ptitbg @) (D)= Y 12dimZs, - @,
S*Ecbd,n(Q)

since all odd homology groups vanish as mentioned earlier. In [17, Corol-
lary 4.5] the author derives a formula for the Euler characteristic from this by
using a formular for the enumeration of “plain forests” from [2d, Theorem
5.3.10] in the case of the m-loop quiver. However, in the general case this
method does not apply anymore in the same way. Therefore in the follow-
ing an explicit formula for the Euler characteristics of the non-commutative
Hilbert schemes is given extending the m-loop case in [17, Corollary 4.5].

Definition 1.3.1 For d € N and variables x = (21, ...,z,) and k ¢ N¢ define
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powers

For k,n € N define

An easy consequence of that definition is the following generalisation of the
usual binomial formula for variables x, y as in Definition 1.3.1 and n € N%:

n_ (M) ok, ek
(z+y) :Z( ):Uy ) (1.6)
im0 \k
Here the sum runs over all k e N® with 0 < k; <n;fori=1,...,dand z +y

denotes the component-wise summation.

Let x (Hilbg,, (Q)) denote the Euler characteristic of Hilb,,, (Q) and
write

Fh(t)= % x(Hilbgy(Q))t*
deNo Qo

for the generating functions of these Euler characteristics. These are con-
sidered as formal power series in |Qq| variables with coefficients in Q. In
[17, Corollary 5.8] a fundamental equation for these generating functions in
the case of () = L, is given, which we can now extend to the general case:

Proposition 1.3.2 For n € Ny Qo the formal power series F{; (t) are the
uniquely determined elements of Q [[Z Qo ]] satisfying the following func-
tional equations:

F5t) =[] F5 @)™ (n €Ny Qo) (1.7)
i€Qo
Fy(t)=1+t; [T FL®)™  (i€Qo). (1.8)
JjeQo
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where

riji=HaeQi|ta=i, ha=j}  (i,j€Qo)

denotes the number of arrows in () from ¢ to j and ¢ = (0; ; )j <Q, as adimen-
sion vector.

Proor Comparing coefficients in ([.7), this equation is equivalent to the
following:

x (Hilbg,, (Q)) = T ﬁzx(Hﬂbei,j,i)

i€Qo j=1 e
such that 3, 5 ¢; ; = d. This corresponds directly to the decomposition of
each subforest of 7, (@) of dimension type d into its components.

The second equation follows similarly from the decomposition of a tree
starting in ¢ into the root 7 and the trees with one of the successors of ¢:

> x (Hilbgi (Q)) = Y |®a| = @il + D [®ail,

d d T &
and for d > i we can decompose any forest of dimension d with root 7 into the
root and 7; ; possibly empty subforests with root j for j € Q9. Comparing

coeflicients yields the desired equation. o

To derive a formula for the coefficients of the functions satisfying these
functional equations the multivariate Lagrange inversion is used following

[2].

Definition 1.3.3 (Tree Derivation) Let D be a graph with ¢ := |Dy|, z =
(z1,...,x¢) a vector of variables and f = (f1,..., fr) € Q[[X1,... ,X[]]E
a vector of formal power series.

40



Then the derivation of f by D is defined as

0

of
9L . i (@).
8D ]1;10 agl 8$h0¢ !

ta=j

In the situation of let [t?] f denote the coefficient of ¢?
in f.

Theorem 1.3.4 ([2, Theorem 2]) Let g, fi,..., f¢ be formal power series in
x = (x1,...,2¢) with f; (0) # 0 fori = 1,...,£. Then the set of functional
equations

wi=tifi (w (t)) (i=1,...,£) (1.9)
uniquely determines w; as formal power series in ¢, and one has the following
equation for the coeflicients of w = (wq, ..., wy):

R:] (N N /8 10)
[]g (w (@) = - ]2 77 )

(1.10)
1 ds T

where the sum runs over all trees 7 with 7o = {0,1,...,¢} and all edges
directed away from 0.

Let £ = |Qo|. Comparing formula (1.9) and formula (1.8}, one observes

that [? satisfies ifand only if w; := [ 1 satisfies

for
fi(x) = H (1 +9cj)”’j .
j€Qo

Using one has

FP (1) = (w(t) + 1) 0 3 (”)wk

k=0 k
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Thus, in order to obtain a formula for the Euler characteristics, that is for
the coeflicients of F", one has to set g () := z". Then f (0) = 1 and thus

can be applied to the situation and gives:

x(Fiban (@) = 3 () (1) ()

k=0

n (@)
Z( )Hlld [dl]; oT '

For the computation of the right hand side some calculations are necessary.
One has

(H o )f OF (H f—t) [T (1)

beQo be@ ceQo

beQo 8tb beQo tb CGQO

To avoid confusion, in the following we will write a ? b for arrows in 7 and

a — b for those in (). One has

a(tk, D), (t))
oT

B . Z
ET()((aEb@tb)(tk (t )""’fzfl (t)))

i ; (Ogb 8tb) al—QIO (al:[>b oty ) fa (1)

=™

Q
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k- b Yae (da a=2a b)
:Z H k‘b t Zo?b . H H da"”a,b (t+1) o " ?b
T O?b aEQoa?b
k- b
ST k|7 | TT T daras
T O?b aera?b

Z‘“QO (da’f'a—za—n, b)

5 T (Zaer (dara - Za?b b))tp

p=0 p
=SV I & IT I1 daras
T O?b aeQo a?b

ZaeQO (dﬂ"rﬂ«fza—)b b)
2 7 (Zaer (dara - Za?b b))thrkZo?b b.
p=0 p
From here it is obvious that all summands will vanish where
e T has an arrow 0 — b with k;, =0 (note: 0 < k <n) or

o T contains an arrow a — b that cannot be found in ()4, since in that
case 7, , and hence the whole product will vanish.

Therefore it is sufficient to sum over the spanning subtrees of ().
Taking the coefficient of t~! here means choosing p such that

p+k-— Z b=d-1 <— p=d-k- Z b.
0—b 0—>b
Since 7 can assumed to be a spanning tree of (), one sees that the condi-
tion 0 7rL> b is equivalent to a = b for some a € (). Hence this can be
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reformulated as
p=d-k- z b.

a—b
T
aeQo

In the above formula the coefficient of 41 has the form

> (i
k=0 k HiEQo di

'Z(H k”) M | T | (tere~Zt)

a—b i€Qo d=k- Ya—b b
(l€60 agQo

with r, = (T‘ayb) b This can be written as follows:

(nb _ 1) Zaer (dara,b - Za?c 6b,c)
dp = kb = Ya—cp,c
T
agQo

np ZCEQO dcrc,b - ZC?B 51),@
H daTap ceQo
kp

a?b dp — kp — Zc?e Ope
aer CGQO

220 -(7)

and setting formally r( j, := ny, for b € Qg and dp := 1 one obtains

Using
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Proposition 1.3.5 The Euler characteristic x (Hﬂbd’n (Q)) can be written
as

(1.11)

Ha?b dara,b n+ Zaer dara -1
d-1 '

7 Ilieqo di

where 7 is running over all spanning trees of Q.

Remark 1.3.6 In the case of the m-loop quiver one has only one vertex and
thus exactly one spanning tree 7 : 0 — 1. Therefore the above formula
simplyfies to

E(md+n—1)_ n (md+n—1)
d\ d-1 ) (m-1)d+n d ’

which is exactly the formula given in [17, Corollary 4.5].
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2 Borel-Moore Homology

This chapter contains a brief overview of a special homology theory which
is called Borel-Moore Homology. It is named after Armand Borel and James
Moore who developed it in [3].The facts presented here are based mostly on
[4, chapters 2.6 and 2.7] and sometimes also on [6, Appendix B]. Facts about
homology used in this chapter can be found in [11] and [8].

If not mentioned otherwise all homology groups are with rational coefhi-
cients. All topological spaces in this chapter are assumed to be locally com-
pact spaces X with the homotopy type of a finite CTW -complex. They should
admit a closed embedding into a countable at infinity C'*°-manifold and
there should always be an open neighbourhood U > X such that X is a
homotopy retract of U. These properties are always satisfied for real and
complex algebraic varieties which will be our main target of interest.

In the general setting of a prominent application of this homology
theory is explained. Starting from the usual convolution product on sets and
the convolution by integration on smooth compact manifolds this approach
is translated and extended to the situation of varieties using Borel-Moore
homology. This will later be used in to construct operators in Borel-
Moore homology of non-commutative Hilbert schemes.
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2.1 Basic facts and properties

If not explicitly mentioned otherwise, we are using the usual C-topology
on manifolds in this section; nonetheless, all relevant statements can be ex-
pressed in the context of algebraic varieties using the Zariski topology instead
due to [19].

Definition 2.1.1 (Borel-Moore Homology) For a topological space X, let
CBM (X)) be the chain complex of infinite singular chains ¥.3°, a;0; where
a; € C and o; is a singular simplex, and the sum is finite in the following
sense: For any compact set D c X there are only finitely many non-zero
coefficients a; such that D nsuppo; # @. The usual boundary map 0 on
singular chains is well-defined on this complex, too, because the faces of any
simplex are still subject to the same finiteness condition.

Define the Borel-Moore homology as the homology groups of this complex:

1M (X) := Ho (CPM (X)), 0).

We see from this definition, that for compact spaces the notions of singular
homology and Borel-Moore homology coincide.

Remark 2.1.2 The following alternative definitions are equivalent to
ftion 2.1}

1. Set H*M (X)) := H, (X, 00 ), where X = X U {oo} is the one-point
compactification of X.

2. For an arbitrary compactification X of X such that ()_( XX ) isa
CW-pair, there is an isomorphism H?™ (X) ~ H, (X, X \ X).

Also the following lemma can serve as an equivalent definition for Borel-
Moore homology groups:
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Lemma 2.1.3 (Poincaré Duality) If X can be embededded into a smooth,
oriented manifold M of real dimension m as a closed subset which is a proper
deformation retract of another closed neighbourhood, then we have a canon-
ical isomorphism

M (X) = H™ (M, M\ X).

The conditions are satisfied for example if X is a complex algebraic variety
and M is a smooth complex algebraic variety. In the light of this lemma we
can understand the relation between Borel-Moore homology and singular
cohomology to be the same as the relation between singular homology and
cohomology with compact support.

Lemma 2.1.4 (Fundamental Class) A complex algebraic variety X determ-
ines a fundamental class [ X | in Borel-Moore homology.

If X hasirreducible components X7, ..., X,,, [ X] is the sum of fundamental
classes Y7 1 [ X;].

Corollary 2.1.5 Let X be a complex algebraic variety and U c X a closed
subvariety. Then there is a fundamental class [U] € Hg?r/{m v (X).

This fundamental class is defined to be the image of [U ] € Hg%\r/[nw v (U) under
the pushforward map coming from the inclusion ¢: U — X.

Lemma 2.1.6 If an algebraic variety X has a filtration X = X;>--- 2> X =
@ by closed algebraic subsets, such that X; \ X, is the disjoint union of af-
fine pieces U; ; ~ C"(%7) for all 4, then the fundamental classes of the closures
[Wj] form an additive base of the vector spaces H2M (X).
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In particular, if X has an algebraic cell decomposition as in Definition 1.2.1],
the fundamental classes of the cell closures form a basis of HEM (X).

In contrast to singular homology, Borel-Moore homology is not a covari-
ant functor with respect to regular maps. This can be seen by considering the
alternate definition given above: One has to ensure that foramap f: X - Y
also the induced map f:X > Y with f (00) = oo is continuous. This can be
guaranteed by restricting to proper maps:

Lemma 2.1.7 (Proper Pushforward) Borel-Moore homology is a covariant
functor with respect to proper maps, that is for any proper map f: X - Y
there is a morphism in Borel-Moore homology

ferm (X) - HM(Y).
For a closed subvariety Z c X this satisfies
12 [F(2)).
Since any proper algebraic morphism is also a proper map in C-topology, this

lemma also holds in the context of algebraic varieties.

Lemma 2.1.8 (Restriction) Let U c X be an open subset with inclusion
map v:U — X. Then we have a natural restriction morphism

M (X) > M (U).

Details about this and an alternative construction can be found in [ 1]].

Lemma 2.1.9 (Long exact sequence) Let F' c X be a closed subset with the
complement U := X \ F;writei: ' - X and j: U — X for the correspond-
ing embeddings. Being a closed embedding ¢ is in particular proper, so we
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have maps i, and j* as above. They give rise to a long exact sequence:

] ip
o HEM(F) 5 HEM(X) S HEM (U) - HEM (F) > ..

Lemma 2.1.10 (Smooth Pullback) Let X be a locally compact space and
p:j( - X

alocally trivial fibration with smooth oriented fiber ', such that all transition

functions of the fibration preserve the orientation of the fiber. In particular,

these conditions are satisfied if p is Zariski locally trivial. Then we have a
natural pullback morphism

P HM (X)) = Hi r (X) -
This has the property that it restricts to the map ¢ — ¢ x [F'] where the
product comes from the Kiinneth formula in Borel Moore homology on any
open subset U ¢ X such that p:p~! (U) — U is trivial. That means for any
cartesian square
UxF (L) Xv
m P

ety

the induced square commutes:
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! Ho+dim|RF (X)

Ho+dianF (U X F)
¢ ox [F) p

H,(U)

H, (X)

Assume given spaces Z, S, S, a morphism f:Z — S and a Zariski locally
trivial morphism ¢: .S — S with smooth fiber. Set Z := Z x g S and form the
natural cartesian diagram

Then one has a well-defined pullback homomorphism
P M (2) > 1M (2)
in Borel-Moore homology given by the smooth pullback.

Proposition 2.1.11 (Base change) If furthermore f:Z — S is proper, then
also the following diagram commutes:

=*

o™ (2) HM(2)
: s
- p*
HEM(9) HM(9)
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The proof of this can be found in [ 1].

2.2 Convolution products

Assume there are given three finite sets M7, My and M3 and let C' (M) be
the finite dimensional vector space of C-valued functions on M. Define then
a convolution product:

fi3(mi,m3) = (fi2 * fa3) (m1,m3)

= Y fi2(mi,me)- fas (ma, ms)

mQGMQ

for f; ; € C (M; x Mj) and m; € M;. Switching from finite sets to compact
oriented manifolds with C*°-functions the sum becomes an integral.

The goal of this section is to make a similar approach in Borel-Moore ho-
mology, that is to define a map

HEM (M x M) — T2 (N1 2)

for some k € N. By setting P 5 = M x My x Ny 2 one can then obtain the
setting above as a special case. For this purpose assume a variety P o such
that py o: P1 o = M x My is a Zariski locally trivial morphism with fiber F'
and py 2: P12 = Nj 2 a proper morphism. Let Z; ¢ M; and Z3 ¢ M be two
closed subvarieties. They induce fundamental classes [ 71 ] € Hg%m z, (My)
resp. [Za] € Hgf‘fnm 7, (M2) according to Lemma 2.1.4. Then for U open
with My x My c U such that py 5 |;; is trivial, gives that pj ,
satisfies:

piZZ[Zl]><[ZQ]:[Z1><Z2]I—>[Zl><ZQ]><[F]=[Z1><ZQ><F].

53



Since p1 2 was assumed to be proper, according to there is a
natural morphism

(Pr2), HM(Pr2) - HM (N12)

satisfying

(1), : [Z1% Zox F1 = [0 (Z1 < Z2 % F))|.

To show that the so defined convolution product is associative we have to
prove that

1. in diagram in there exists an isomorphism from the top to
the bottom making this diagram commutative, and that

2. also the induced diagram in Borel-Moore homology commutes.
Here the top square and the bottom square are fibre products.

The first claim can be proved in a straightforward way by diagram chase.
All one has to do is to give an isomorphism

p: Prox M3 XNy pxns Pr2;3 = My x Pog XN, 5 Prias

such that

P1;2,30 T2 0P = P1,2;3 © T2 and

id xpo, 3 0 T 0 ps = p1 2 x id o7ry.

Given that this isomorphism p exists, the second item on the list can be
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Figure 2.1: Associativity of a convolution product in Borel-Moore homology

Py o x M3 XNy oxns Pr2;3

T2
™1

Py o x M3 Pio3

P12 xid _
P1,2;3
. \ AZ;?)
prexid b

MlxMQXMg N123

M1 X N2’3 _
id x P.3 P1;2,3
idxpa3 P1~k

My x Py 3 XppxNy 5 P23
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proved as follows:

(P1.2:3), (P1,23)" (P12 x1d), (p1,2 xid)"
=(P1,2:3), (m2), (m1)" (p1,2 xid)”
= (P1,2;3m2),, ((p12 xid) m)"
= (P1;2,372p), ((id xpa3) T1p)”
=(P1:2,3), (72), p«p™ (71)" (id xpa3)”
=(P123), (T2), (71)" (id xp23)”
=(P132,3), (P1;2,3)" (Id xP23), (id xp2;3)”*
using p.p* = id, since p is an isomorphism, given 71 and p; 2 x id are Zariski

locally trivial and 73 and py 2.3 proper. The respective conditions have to be
satisfied for the lower half of the diagram.
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3 Operators on Hilbert
Schemes

Mathematical science is in my
opinion an indivisible whole, an
organism whose vitality is
conditioned upon the connection
of its parts.

(DAvID HILBERT)

This chapter gives an application of the techniques presented in to
the non-commutative Hilbert schemes constructed in in the special
case of the m-loop quiver L,,. The operators defined here on the nilpotent
non-commutative Hilbert schemes can be used for an implementation of a
Fock space. This is in analogy of the construction by Hiraku Nakajima in
[16] for Hilb" (A2) where the result is a Heisenberg algebra.

We will restrict to the nilpotent Hilbert schemes which will be introduced
first. The reason for this restriction can be seen in the proof of Cemma 3.2.3,
Furthermore, we give a description of the cell closures for the nilpotent non-
commutative Hilbert schemes.



3.1 Nilpotent Hilbert Schemes

Recall the definition of the non-commutative Hilbert schemes from
fon 11.1]

Definition 3.1.1 (Nilpotent Hilbert Scheme) Let (Q,d,n) be some quiver
datum. The nilpotent Hilbert scheme Hilbg’n (Q) consists of those points
(M, f) e Hilbg,, (Q) such that M,, is nilpotent for all cycles w in Q.

Equivalently, Hilbgyn (Q) can be defined as the zero fibre of the Hilbert-
Chow morphism

m:Hilbg, (Q) > Mg (Q), (M, f)» M

which is projective (c.f. [5]). Here M (Q) = R5' (Q) / GLg, where we
denote by R%' (Q) the variety of semistable representations of dimension
type d of ). Therefore the nilpotent Hilbert schemes are projective, but not
necessarily smooth.

The nilpotent Hilbert schemes Hilbg}n (Q) are covered by open subsets
Ug* for a subforest S, of F,, (Q)) with

0 -11.0
US* = {(M7f) € Hllbd,n (Q) ’ ()} .
Unlike the situation for the usual non-commutative Hilbert schemes which
is described in Cemma 1.2.11), in the nilpotent case the sets U are not ne-

cessarily isomorphic to affine spaces as the following example illustrates:

Example 3.1.2 Let () := Lo be the 2-loop quiver and S, be the tree

./.\.
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Then M € Ug* has the form
0 0 O 0 0 0
My=11 Xa M|, Mg=|0 pa pb
0 Ac A 1 pe pd

where ( a 3) is nilpotent and A, i1 € C.
This can be seen as follows: For (M, f) € Ug* we can assume M to be of

the form
0 a d 0 g j
Ma(l b e) Mgz(O h k)
0 ¢ f 1 ¢ 7

Since all cycles have to be nilpotent, this implies especially that both of these
matrices have to be nilpotent. But that is equivalent to the condition that the
characteristic polynomial is of the form

det (\E — M) = A = det (AE - Mp).

From this condition we can deduce immediately
b=-f, -b? = ce +a, cd+af =0,
h=-0, -h®=ik+g,  ij+gl=0.
Furthermore, the second or third column vector of any of these matrices have

to vanish under M, and Mg, since they can be written as a word of length
two applied to f (1). That yields

a ab+ cd
OMa'(b)(a+b2+ce), (3.1)

c bc+cf

d ae + df
OMa-(e)(d+be+ef) (3.2)

f ce + f2
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and analogously for M instead of M,, or the column vectors of M3 instead
of those of M.

The second row in formula (3.2) implies 0 = d + be + ef = d + be — be = d
using b = —f from above. Similarly the first row of implies
0O=ab+cd=abandthusa =0orb = 0,butb =0impliesc =0ore =0
using the third row of and hence also a = 0 using —b? = ce + a.

Analogously one obtains g = j = 0. It is now clear that % has to be a
nilpotent matrix so as 7; IZ’ since now we know that M,, f and Mg f span a
subrepresentation.

Since all cycles have to be nilpotent, the two nilpotent submatrices obvi-

ously have to be proportional.

However, the following is easy to see:

Lemma 3.1.3 The nilpotent Hilbert schemes have a cell decomposition and
the cells are given as

z§, ={(M, f) UL, | B3}
with

M, fq (Uq,i) € <Mw’fq’ (vq',i'))(q,i,w)>(q'7’i',w')ES* ((g,1,w) € C(S4)).
(¢’ w') #(q,5,w)
h(w)=h(w")

(3.3)

PrOOF Assume this condition does not hold. Let (M, f) € Zg* and choose
(g,1,w) € C (S4) minimal with

Mgimf= 2 Hagim).(giw)Maiwf
(g,i,w)eSx
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such that (57 ) (g.i,w) * 0 for some predecessor w << w of w with h (w) =

h(w)and q =q,1i = 1.

For such (q,i,w) let j ((¢,4,%), (q,4,w)) denote the point given by
(¢,%,wj ((¢,4,0), (¢,4,w))) = (q,i,w).

Let p (w) denote the maximal predecessor of w, that is w = p (w) « for some

o € Q1. Choose w' such that
7"=5 ((@.4,w),(g,1,0"))
=min {] (((77 %,'Ll_)) ’ ((ja ga w)) | w << w, H(g,i,0),(g,i,w) # 0} :

Then by the minimality condition of w’ and (g, 7,w) and the defining con-
dition of Zg, one has

Mj/M(qu’w)f = Z ~ :U’/(qj,w),(q,i,w)M(Qvivw)f
Sy3(q,i,w)<(q,i,w)

where ME -

i), (@) + 0 for
w' := min {w << W | prg # 0}

By assumption such a @’ does always exist.
Choose w" such that

5" =i ((g.i,0),(g,5,w"))
=min {5 (7,3, ), (3,5,w)) | w << B, 1{35 59 @iy 0}
and obtain coefficients ;" and @” from replacing M, by Mjj» such that

"
H(giw),(giar) * V-
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Continuning inductively gives a cycle j = j';" ... such that
4
MM g5 pwy) [ # 0 (LeN).

But that contradicts the nilpotency of (M, f) we assumed. Note that this
cycle is finite due to the defining condition of Zg, and since (g,%,w) has
only finitely many predecessors. Therefore the assumption was wrong and
Zg* has the form claimed above. o

The sets Zg* are isomorphic to affine spaces as in the case mentioned before;
this follows because Z_arises from Zg, by setting a fixed set of coordinates
to zero, which can be seen by comparing formula (1.2) and formula (3.3).
Also in this case the formula

z3, =Ug, ~ U Ug
51<8S.,

holds: Zs, = Us, \ Ugr<g, Us, implies

Zs, =Zs, nHilbg , (Q)

=(Us,~ U Usg |nHiLY, (Q)=Ug ~ U U.
51<8, S§1<S,

This means that the combinatorics of the cells is the same as in the general

case described in chapter 1.
For a subforest S, € ®4,, (Q) define a quiver () (S«) consisting of

o vertices Q (S ), = (S«), and

. . YAy N -
o ATTOWS O/(qi ), (¢',i" ')t (€51, w) = (¢',i,w') if

- q¢=¢,1=1and w' = wa for some o € Q1,
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- wa € C(S,) for some a € Q1 with h (w) = h (w") and

(¢'.i',w'") < (q,i,w), (q',i",0") % (q,i,0).

For dimension vectors d,n € NQ define dimension vectors d and 7 for
@ (S.) by setting

J(q,i,w) =1 ((q,Z,UI) € S*)v

Mgiw) = 0wy ((g:7,w) €5,).
@ (S.) contains no oriented cycles because arrows to predecessors are expli-
citely excluded, hence the nilpotency condition is empty, therefore all rep-

resentations of @) (.S ) are nilpotent.
The set R . (Q (S+)) consists of tuples of scalars

(Ao (i) (i) D)) s

where the first tuple runs over all arrows in @ (.S, ) and the second one over
those tuples (g, %) where S, ;) # @. Formally we set ¢, ; (y) = 0if Sy ; = @.
On Rj; - (Q(S.)) one has an operation of the group

GL;(Q(S.))= [ GLi.

(q,i,w)eS*

Let M; for j € Qo be the vector space with basis vectors

(M (g1 ) (qsiwyes. -
h(w)=j
and V; the vector space given by basis vectors

(UJJ)’L:l,,TLJ '
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Define a map
0 Ry (Q(S0)) = Ran (@), o (p) = (M, f)
with
Mo (M(giw)) = 2. Agi.) (a7 Pt )
Q(5)130(g,5,w),(a" " w")

and
fq(vgi) = Pq,iM(q,i,())-

It is easy to see that o is injective.
GL;(Q (S+)) can be embedded into GL, (Q) by setting

9 Migim) = IaiawyMaiw) (9= (9aim) qiwes. )
Here g is invertible, since g ;) € GL1.
Lemma 3.1.4 The map o defined above is GL ; (Q (S ))-invariant.

PrOOF Letpe R;. (Q(S.)) be given by

(M. (airwn) » (b))
Then for g € GL; (Q (S«)) one has

g-p= ((9<q',z",w'>A(q,z‘,wmq',z",w')giql,i,w)) : (g(q,i,()>¢<q,z'))) -

Hence (M, f) := o (gp) is given by

fq (vgs) = 94,1, Pa,iM(q,i,()) = 9 fq (vg,i)
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and

M, (m(qvi,w))

-1
= E g(ql’ilvw’) )\(‘Li:w)v(qlrilvw/)g(%ivw)m(q/’i”w’)
Q(S*)13a(q,7,',w),(q/,i,,’w/)
h(a)=h(w")

_ -1
- Z g(q/,i/’u}/)A(q,i,w),(q/,i’,w’)m(q’,i’,w’)g(qyi{w)
Q(S*)19a(q,i,w),(q’,i’,w’)
h(a)=h(w")
-1
= g Z A((171'711))7((1’72',711},)TrL((1,72',7’[1),)‘g(q,i,u))
Q(S*)19a(q,i,w),(q’,i’,w')
h(a)=h(w")
-1
= 9Mag™ (M) - D
Let w = a1 ...y be an oriented cycle in @ and (M, f) = o (p) as above.
Then one has
k
My (m(r,j,x)) = Z H )\aé:(%yié:wl)v(‘nﬂ»i£+l7w£+1)m(Qk+1:ik+17wk+l)’
w' 4=

where the sum runs over all words

—/ _
w= (al)(!I1,i1,w1),((1271'27w2) T (ak)(‘Zk»ik’wk)v(QkJrlvilﬁl’wk+1)

in @ (S.) with (q1,41,w1) = (7,4, x). By definition of @ (S.) one has

(rhjax) < (Qk+17ik+17wk+1) or

(qk+17ik+lawk+l) < (Tajax)7 and (Qk+17ik+lawk+1) £ (Tv.jvx)

for all m i with non-vanishing coefficient. Hence by reordering
(qr+1,%k+1,WE+1)

the basis vectors according to this condition, one sees that the matrix repres-

enting M, is similar to an upper triangular matrix and thus A/, is nilpotent.
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Thus the composition of o with the quotient map
is GL; (Q (S«))-invariant and therefore induces a map
@:Hilbg - (Q (S.)) = Hilby, (Q).

This gives a description of the closures of the cells as follows:

Proposition 3.1.5 Letd,n € NQ and S, c F, (Q) be a subforest. Then we
have

73, = Hilbjs.) s, (Q(S4))-

Proor Both Hilbgm (Q) as well as Hﬂbg(s*)m(s*) (Q (S+)) contain a cell

Zg* and o maps these cells onto each other. The isomorphism of cells extends
to an embedding of projective varieties as mentioned above

Hllbg(S*),n(S*) (Q (S*)) g Hllbg,n (Q) :

By construction, Hilb%ﬁ (Q (5.)) contains Z2 as the generic cell, hence
the closure is Hilb% - (Q(S4)). Thus, the image of this projective morphism

is closed and irreducible due to [15] and contains Zg*. Therefore this is the
closure of Zg*. 0

3.2 Convolution Operators

From now on we shall restrict to the special class of quivers ) = L,, and
n = 1; in this case f amounts to the choice of a vector in the representa-
tion. To implement the convolution operators using the setup presented in

66



one has to define a variety in the products of Hilbert schemes with
morphisms to each component. That is

P, € HilbY (Q) x Hilbl,, (Q)

Pd,e
T2
!
(@)

Hilb, . (Q)

such that in

Hilb§

the projection onto the second component 7 | P, 1s proper and the projec-
tion onto the first component 7y |p, is Zariski locally trivial. At this point
one of the reasons for the restriction to nilpotent non-commutative Hilbert
schemes becomes obvious: This guarantees that 75 is projective and there-

fore proper, which is the statement of Lemma 3.2.4.
Let

Py = {(% ’;f))) | @} € Hilbg (Q) x Hilb,. (@) (3.4)

subject to the condition
I(L)cI(M). (35)

One can immediately see that in this setting L has some subrepresentation
N of dimension e, such that L / N ~ M. This shows that for M ¢ Ug* the

elements (Ly,h),,.g, arelinearly independent, so according to

there exists a tree extension S, of Sy such that L € Ug .

Lemma 3.2.1 The set P; . defined above is closed.
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Proor Consider the set Pdﬁ of representations of () of dimension vector d

resp. d + e satisfying formula (3.5). This is closed in Rg (Q) x Rgse (Q) ac-

cording to [18, Lemma 2.2]. Adding an additional vector to each representa-
tion and reducing to the case where these vectors are stable for the respective
representations gives a closed set

Pae={((M, f),(L,h)) | I(L,h) I (M,f)}< R} xRy,
This is stable under the action of GL4 x GL4,., hence the quotient Py . is
closed. O

Example 3.2.2 Let () = Lo and

Mo = Mg = (0),
Then P; » = Hilb{ (Q) x HilbJ (Q). Note however, in general it is not true
that inclusion from (B.4) is an equation.

Theorem 3.2.3 The projection

77—1:Pd,e - Hllbg (Q)

is a Zariski locally trivial morphism.

PrOOF Let (M, f),(M’, f') € U3 and (L,h) € Fy. Denote by Fy :=
711 (M, f) the fibre of 711 over (M, f). By definition I (L, k) is a subideal
of I (M, f), thus there is a subrepresentation N of L such that L can be

written as
M 0
L_(X N).

M0
,-_
L'_(X N)'

Define L' € HilbY, _ by
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This implies I (L', h) < I (M', f") and I (L', h) has codimension e. Since
L is nilpotent, the same holds for N. By definition also M’ is nilpotent and
therefore any matrix consisting of the columns of L’ as one can easily see by
multiplication of block matrices. Thus one obtains (L', h) € HilbY, . (Q).

Also the stability of L' follows from the stability of L with an argument that
is to some extent similar to Lemma 1.2.12. The difference is that here we do
not a priori have the stability condition, in fact, as we prove the stability here
it turns out to be the same argument. Starting with (M, f), (M’, f') e UZ,
one has a linearly independent system (Lq,h) g, . Assume (L, ) € U}, for
some R, with subtree S, and define

Vw::{w'eR*|w'<w}US* (w e Ry)

and
@ :=min {w' € R, | L h e (L;U,,h)w,,evw,} .
If (1)’10 such w exists, then also L’ has a basis of type R., so we have (L', h) €
gﬁ;e‘:rwise (Lgh — Lh) € (Lyh),,.g, by definition of L, and thus
(Lish) Luh)

weVpu{w} { weVgu{w} -

But this gives a contradiction between the definition of w and (L, h) € UI%*,
since the latter requires the left hand side to be linearly independent, whereas
the first one requires the opposite for the right hand side. But both sides
contain the same number of vectors.

Thus ((M'.f"),(L',h)) € Pye. This gives a map
oM Py = Fae, (ML f), (L) = (M7, f7), (L, R)).

Obviously this is an isomorphism, too, since the inverse map is given by go%.

69



Because Hilbg (Q) is covered by open sets Ug* we have a commutative
diagram

't (Ug*) - Ug* x F
sl
P1,2
Us,
This proves that 7 is Zariski locally trivial. i

Lemma 3.2.4 The projection

Tt Py — HilbY,, (Q)

onto the third factor is proper.

Proor This is evident from the fact, that w5 is a morphism between pro-
jective varieties, and hence projective. But projective morphisms are always
proper (c. f. [7, Theorem I1.4.9]). O

Lemma 3.2.5 The morphism mo: Py — HilbY,, (Q) is generically a bijec-
tion.

PROOF Assume L € Z%, then L contains an e-dimensional subrepresent-
ation IV spanned by the basis vectors corresponding to the e vertices con-
structed as follows:

Start with the minimal vertex w € T} such that wa € C' (T) for all « € Q1.
If e = 1, the corresponding base vector spans a one-dimensional subrepres-
entation. Otherwise assume w = wa for some & € (J;. Let 5 be minimal
with respect to the property w3 € Ty, § > a. Add wSw’ where w' is min-
imal with respect to the property that wpw'y € C (T) for all v € T, or
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if no such f exists add w, and obtain a two-dimensional subrepresentation
spanned by the corresponding base vectors. Continuing analogously for e
steps. By the defining condition of Z. 0*, this yields a subrepresentation NV of
L. Note that this holds only for the nilpotent case, otherwise the existence of
a subrepresentation cannot be guaranteed!

Let M := L/ N with f (v) := h (v) + N. That shows (M, L) € Py.

This proves that 7y is generically surjective. On the other hand we can see
that 7y is generically injective, since in the generic case there exists at most
one subrepresentation of dimension e. ]

Definition 3.2.6 (Tree Grafting) Let S., S, € 71 (L;,) be two trees. Define
a tree S, xS, € Fi(Ly,) by the following: For (S.), = {w1,...,we},
(S1)o ={wf,...,wy} and @ := min {w € C ()} set

(S%n81), = (Sa)gu{wwy,. .., wwp}

and define arrows
1. a;w - w' fora € (L), w,w’ € S, and w' = wa,
2. cvww - ww' for a € (Lyy,) 1, w,w’ € S, and v’ = way,

3. cvw = wif w = wa

Example 3.2.7 The following table illustrates the grafting of trees:
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S* Si S* >\Si

[ ) [ ./.\.
\. \. \.
(0.8 | {0.8) | {0.0,08,6)
%

[ ] ./.\. ./.\.
(O} | {008} | {0.0.0% 08}
./ \.

./.\. [ ] ./
O8] {0} | {00025}

Denote by 77 := ((), Qyeney af‘l) the minimal subtree of F; (L,,) with
e vertices. If L € Zgw* . 7e> then the vertices in (S, xT) \ S, span a sub-
representation as mentioned in the proof of Lemma 3.2.5. Let w be the min-
imal vertex in this set, then w € C'(.S,) and because of the defining condi-
tion of Zg* and the definition of S, » T one has My = 0 in the quotient as
above. Furthermore, for w € C' (S. »T¢) N C (Sy) with Ly, = ¥ A’
it follows that @ < w’ if Ay # O because of the defining condition of
VA s, » e~ Moreover, it is clear that w < w' for all w’' € (S, xTE) N\ S, and
w € C(S »T¢) n C(Sy) with Ay # 0. Hence I (L) is a subideal of
I(M)and M € Z3 .

Lemma 3.2.8 Under the composition 72 o 77! the closure of the cell Z_& is
mapped to the closure of the cell associated to the tree S, » T which is ob-
tained by identifying () € T = {(), a1, ...,a5 '} with min {w e C (S.)}.

ProoF For L € Zg* . e there exists M € Zg* with (M, L) € P, . as shown
above.
Since 7 is proper, it follows that 75 o 7771 (Zg* ) is closed. Therefore using

0
the above it contains 2 S nTe
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On the other hand for M € ZJ = Hilb? (Q (S,)) any L € Hilb), . (Q)
with I (L) < I (M) is a representatlon of Q (S, »T¥) of dimension type
d + ¢ and thus an element of Hllbg (Q (S« »TY)), since this contains all
equivalence classes (M, f) of dimension d+¢ where (M f) e, arelinearly
independent. Using the embedding o this corresponds to Zg* .7e- Hence

Ty 0yt (Zg*) Z0 . 7o and therefore

g 0y " (Zg) Z3,, re- O

From this setting one obtains operators G for e € N on

P M (Hllb (Lm)) by meansof
deN

6o (28] - [rom () - (7).

These will be called operators of degree e.
The dual operators G_. can be defined as

_ —0] ieq e
G[22]- 23, €S, =80T
: 0 otherwise.
They satisfy
G oG = Gab for sgna =sgnborb >0,
Ga+b°Fb fOI‘aZO’b<0_

where Fy, is defined as follows: Let Q1 = {1 <+ < ay} and for S, € Fi (Q)
let p (S.) :=max{peN|al eS,}. Then

Fy ([Zs.])
_ [Z_&] if {afas|s>1, p(S«)—|b|<r<p(S:)}cC(Sy)
"o otherwise
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Hence one also has
(Ga o Gb) 0Ge=GapoGe=Gappre=Goo (Gb 0 Gc)

for all a, b, c € Z. Thus they form a monoid with the neutral element G/

3.3 Open Question

The open question in this setting is the following: Is it possible to modify
P, . to a Zariski-closed set

Py € Hilbg (Q) x Hilb¢ (Q) x Hilbg, . (Q)

AN

HilbY (Q) x Hilb? (Q) HilbY, _ (Q)

such that for the projections

1 2 is Zariski locally trivial, 73 is proper and
-1 (75— - >
T3 0T 9 (Zg* XZT*) =Zg, 1.7 (3.6)
Under this assumption one would obtain using the results from

Proposition 3.3.1 There is a natural convolution product in Borel-Moore
homology:

M (Hilbg (Q)) x H (Hilbg (Q)) - HM (Hilbg,. (Q)) -
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Applying to this product gives

Proposition 3.3.2 The convolution product from [Proposition 3.3.1] can be
calculated in terms of fundamental classes associated to the cell closures:

BAREAR I

In this case the result would be a geometric realisation of an algebra with a
convolution product whose combinatorial data arises from the tree structure
of the cells. Some purely combinatorial aspects of this algebra can be found

in Fhaper 4.
Conjecture 3.3.3 Let ) = L,,, be the m-loop quiver. Then
cm = HM (Hilby (Q))
deN

is an associative graded algebra where the product is given by the convolu-
tion product defined in Proposition 3.3.1. It will be called the convolution
algebra of the nilpotent Hilbert scheme.

Assuming this, the following is easy to obtain:

Corollary 3.3.4 Let Q1 = {a1 <--- < oy, }. Asan algebra c(m) g generated
by the fundamental classes corresponding to trees S, such that oy ¢ S..

Proor This is obvious from the definition of S, » T%. m]

C(™) also has another grading given by the dimensions of the cells; this
makes C"™) a bigraded algebra as follows:

d(d-1)

cm-@em - @ cff
deN deN =0
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where L
ci"™ =([Zs,] | dim Zs, = i).

The convolution is compatible with that grading, that is it can be written as

*:C’O(l?) X C’é?) — C(m)

d+e,i+j+k

for some k € N.

In [Theorem 4.2.3, even a third grading on C'™) is derived from an iso-
morphism between C™) and the tensor algebra of a shifted (m — 1)-fold

product of C'("™),
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Chapter 4

4 Applications

The greatest mathematicians, as
Archimedes, Newton and Gaufs,
always united theory and
applications in equal measure.

(FeLIX KLEIN)

In this chapter we give an algebraic realisation of the functional equations
for the Euler characteristic presented in Ehapter 1|. Using the conjecture from
Ehapter 3, fection 4.2 becomes a statement about the internal structure of the
convolution algebra of non-commutative Hilbert schemes.

Furthermore, we present a link between the algebra structure on a vector
space with a basis given by trees and non-commutative Invariant Theory. In
particular, this applies to the convolution algebra conjectured in Fhapter 3 In
it is proved that the convolution algebras are isomorphic to certain
cable algebras. This comes from a combinatorial bijection between m-ary
trees and cable diagrams which can be found in [20], where both classes of
objects are stated to parametrise the Catalan numbers.




4.1 The Cable Algebra

4.1.1 Cable Diagrams

Definition 4.1.1 (m-ary arc) An me-ary arc is a line connecting m vertices,
such that each vertex is passed exactly once.

Definition 4.1.2 (Cable Diagram) Let d,m € N and define an m-ary cable
diagram of weight d to consist of dm vertices connected by d m-ary arcs
without intersections such that each vertex is hit by exactly one arc.

Denote by A”}" the sets of all m-ary cable diagrams of weight d.

Example 4.1.3 Let m = 2 and d = 3. Then there are the following cable
diagrams:

Definition 4.1.4 Define the so called cable algebra D™ as a vector space by
D™= CAY,
d=0

where C M denotes the vector space spanned by basis elements m € M. This
becomes an algebra by means of the non-commutative multiplication

«DJf x D > DJ.,
which can be defined using the following operation on the basis elements:

For ¢q € A" and c. € A" let ¢q * c. be the diagram in A7} A obtained by
concatenating ¢4 and c, to a new diagram c4c,.
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Example 4.1.5 There are the following convolution products in degree 2 and
3:

)
)
)
)

e o = e o o o
N N N N N Y
o o X e o o o = e e o o o o
N N _ /)
o o X e o o o = e e o o o o

)
Y
)
y
)
)

:
)
)
)

.
.
.
.
X
.
.
|
°
°
.
.
.
.

Remark 4.1.6 It is easy to see that D™ is generated as an algebra by those
diagrams with an m-ary arc including the first and the last vertex.

4.1.2 Tree Diagrams

Let T7" be the set of m-ary trees with d vertices for d, m € N. As in
denote by C (T") the corona of a tree T'. In an m-ary tree each
vertex = has m potential successors, the set C' (x) of which will be denoted
as the corona of this vertex.

The following is easy to see:

c(T)= | C(z)\Th.

xeTp
Definition 4.1.7 Define a product
T < T > Tgte (S, T) = SXT

where S » T arises from S by attaching 7" identifying the root of 7" with the
smallest vertex in C' (5).
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Remark 4.1.8 This definition turns
™ :=pC1y
d=0

into a non-commutative algebra. It is generated by those trees which do not
contain the smallest possible edge starting in the root.

Assuming [Conjecture 3.3.3, the algebra 7" is isomorphic to the convolu-

tion algebra in Borel-Moore homology for the nilpotent Hilbert schemes of

the quiver L,,, conjectured in Ehapter 3.

Theorem 4.1.9 For each m € N there is an isomorphism of graded algebras

:D™ ST

ProoOF Take a cable diagram I" € A’ for d € N and construct a tree in 17"
from I as follows: Because the arcs in I' are free of intersections, for every
me-ary arc 7y € I there are exactly two possibilities:

1. The leftmost leg of y is the leftmost leg of T',
2. the first leg in I lying left of +y is the k-th leg of some arc .

In the first case v (7y) is the root of the tree to construct. In the second case
¥ () is attached to the m — k + 1-th vertex in the corona of ¢ (7).

This map is bijective, since it can be reversed as follows: for any vertex
v, which is attached as the k-th vertex in the corona of some other vertex
v/, insert an m-ary arc immediately right of the m — k + 1-th leg of the arc
corresponding to /’. The root of the tree which has no predecessor is mapped
to the arc with the leftmost leg.
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Under this bijection, the appending of cable diagrams corresponds to the
attaching of trees at the smallest vertex in the corona. Therefore the two con-
volution structures are compatible, hence this gives an isomorphism of al-
gebras.

Furthermore, v is obviously compatible with the grading. m]

Example 4.1.10 Under this bijection the trees corresponding to the cable

diagrams from are the following:

S S . N\
/ AN VRN / AN

4.2 Functional equation

Let V be an N-graded vector space. Then the tensor space V®" is a graded
vector space via
(V®n)zz U W1®'“®wn'
L1+-+Llp =L

We denote by V' [ k] the graded vector space obtained from V' by shifting the
graduation by k. Let

T(V):= ver

neNg

the tensor algebra of V with the grading inherited from V"

TV)e= U Vo0V,

Oy ++Ls=0
seN
Denote by
Hy (t) =) dim V,t"
n>0
the Hilbert series of V.
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Remark 4.2.1 One has the functional equation

1
Hrpeyy (t) = T @)

Proor Using the geometric series one obtains

1 = ¢
THy () _Z(:)HV(t)

which is the claimed identity. o

Recall the functional equation for the generating function of the Poincaré
polynomials of the non-commutative Hilbert schemes from formula (1.8).
Here the left hand side is the Hilbert series of C(""). This motivates the ques-
tion for a morphism of algebras reflecting this functional equation, that is we
expect an algebra X (™) such that the right hand side of is the
Hilbert series of X ™) and an isomorphism of algebras ¥: C'(™) — X (™),

This question is answered in

Theorem 4.2.2 There is an isomorphism of graded algebras

v cm T((c<m>)®m_1 [1]) |
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The Hilbert series of the algebras here are precisely those in formula (1.8).

ProOF Define

(7D (7] e[ ] e e (2o el ])

Here for S, define
St = {weF (L) | o tweS,, af ¢ w} (ieN)

and

Si={weF(Q)|ajawesS}  (j=1,...,m-1).

The fact that this defines an isomorphism is evident from the inverse map
which makes the following assignment:

([Z&]@m@[zg;J)@f([%]@m@[zzzl])

[25]-175.]

where for trees 5’; in F,, (Q) a tree S’ is constructed by an operation called
grafting, which is defined in [17, Definition 5.1]. The product is the convolu-
tion product assumed in chapter 3.

Since this isomorphism is compatible with the convolution product by
definition, it induces a grading on the tensor algebra that makes it a graded
isomorphism. This can be obtained by the following procedure: Consider

(C(m) )®m—l

as a graded vector space via

((C<m>)®m‘1)€:: U (C(m))a@'“@(c(m))m_l'

Lr+-+Llpp_1=L
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Then the induced grading on T’ ((C’ (m) )®m71 [1]) is the one corresponding
to the primary grading on C,, given by

ci” = (281111 =)

under the isomorphism ¥ defined above. O

4.3 SL,,-Invariants

In we saw that m-ary trees used for parametrising the cells

in the non-commutative Hilbert scheme of the m-loop quiver are in bijection
to m-ary cable diagrams. This is a generalisation of [2d, Exercise 6.19] where
this can be found for m = 2. The author gives a list of 66 different classes of
objects which are enumerated by the Catalan numbers; amongst others that
list includes standard Young tableaux with 2 rows. Here we use the following
definition from [§]:

Definition 4.3.1 (Young diagram) A Young diagram is a collection of rows
of boxes, with a non-increasing number of boxes in each row. The number
of boxes of a Young diagram Y will be denoted by |Y|.

A Young diagram is called rectangular if each row has the same number of
boxes.

Definition 4.3.2 (Standard Young tableau) A standard Young tableau con-
sists of a Young diagram Y and a filling of the boxes in Y with the numbers
from 1 to |Y|, which is increasing along each row (from the left to the right)
and each column from top to bottom.
Fori € {1,...,|Y]} let cy (i) denote the column in which i appears in Y’
and analogously 7y (i) the row in Y.

Let V' ~ C™ be a vector space. Then one has the standard operation of
the group SL,,, := SL,,, (C) on V. This operation extends to an operation of
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SL,, on the tensor algebra T (V') via
g U1 Q- ® VU= guL ® - Q gU; (g€SLy, v;eV).

In this situation one is interested in the structure of the invariant ring of this
operation, which will be denoted T’ (V)SL’”. This problem was solved in
[22]. The author uses a special class of standard Young tableaux, namely those
which are rectangular, to parametrise the generators of the invariant ring of
the operation of SL,,, on the tensor algebra 7' (V). In fact, Teranishi deals
with a more general setting, which is only interesting here in the special case
mentioned above.

Let ey, ..., e, denote the standard basis of V' and let Y be a rectangular
standard Young tableau with m rows and d columns. Because of the special
form of Y the map

{1,....md} - {1,....m} x{1,...,d}, i~ (ry (i),cy (1))

SLmn

is a bijection. To each Y we can associate a generator of 7' (1) which is

given as:

md
> sgn(o; ); ® €ou (i) (ry (i)
(7);€(Sm)* =t

where sgn (o )j := [1; sgn 0. The multiplication of these generators corres-
ponds to the following operation on the Young tableaux: Let Y7, Y5 be two
rectangular standard Young diagrams with m rows and define Y7 &Y5 as the
diagram obtained by appending Y3 at the right end of 7. Here Y5 denotes
the diagram arising from Y5 by replacing each entry i with ¢ + |Y7].

Definition 4.3.3 (Indecomposable Young Tableau) A rectangular standard
Young tableau Y is called indecomposable if there are no two rectangular
standard Young tableaux Y7, Y5 such that Y = Y1 &Y5.
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Example 4.3.4 Let d = m = 2. Then the Young tableau

Yi=

corresponds to the generator
e1®e1Q®er®er+e1®eErV®er®e]+tea®e1 VeI ®er+er®er Ve Vey.

Setting

Y2 =

one obtains

12|57

Y10Y; =
16923468

It is also clear that Y] is indecomposable whereas Y5 can be written as

RENENRENSEY

Theorem 4.3.5 The set of generators associated to indecomposable rectan-
gular Young tableaux forms a free system of generators of T’ (V)SL’".

Proor This is [22], Theorem 3.3]. O

Definition 4.3.6 (Admissible Young Tableaux) Take a rectangular standard
Young tableau Y with m rows. Y is called admissible if one of the following
conditions holds foralli € {1,...,|Y]}:

1oy (i) =1,

2. Ty(i):Ty(i—l)-i-l,
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3. ry (i) =ry (max{k<i|ry (k+1)=1Ary (k) #m}) + 1.

Extending the bijection between cable diagrams resp. binary trees and
rectangular standard Young tableaux with two rows from [2d, Exercise 6.19],
it is possible to give an injective map from the set of m-ary cable diagrams
into the set of rectangular standard Young tableaux with m rows. The num-
ber of arcs corresponds to the number of columns under this injection. This
works as follows: Write the number 7 into the field (¢ (i) ,a (4)), where £ (7)
denotes the number of the leg of the m-ary arc hitting ¢ and

(i) max{j <, £(j)=£(i)}+1, ifthe maximum exists,
a(i)=
1, otherwise.

The Young tableaux in the image of this injection are precisely those which
are admissible in the notion of Definition 4.3.6. This can be seen as follows:
For arectangular standard Young tableau, we can construct the preimage: Let
k be the number of columns and {1, ..., km} the set of vertices of the cable
diagram to be constructed. Construct a graph with these vertices connecting
the vertex ¢ to the vertex

max{j<i|(j)=L()-1}  (£(5)>1).

The resulting graph consists of m-ary arcs and the conditions for the Young
tableau to be admissible guarantee that the resulting graph has no intersect-
ing arcs and thus meets our definition of an m-ary cable diagram. It is easy
to see that this diagram is a preimage of the original Young tableau under the
map given above.

Furthermore, one can easily see that appending of cable diagrams corres-
ponds to the special appending operation on Young tableaux defined above.
Therefore, the product of two admissible Young tableaux is admissible, too.

Example 4.3.7 Let m = 3 and d = 3. Then one has the pairs of cable dia-
grams and admissible Young tableaux depicted in [Figure 4.1].
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N
v
o
N
v
N
N
oo

1|3 |7 1217 1/3|6
248 3158 21 4|7
5(6109 4161]9 819

YN YT YT YT YN YT
@ O 0 0 O o o o o © ¢ o O O o O O O © o O 0o O°o O o o o

3|5 134 12
246 2|57 35
7189 6 (8|9 4819

YT\ YT YT\ YT\
e 6 o o o o o o o ®e 6 o o o o o o o ® o o o o o o o o

1215 1214 10213
31618 31518 416]|8
41719 61719 50719

YT\ YT\ YT ) YN
®e 6 o o o o o o o ®e 6 o o o o o o o ® 6 o o o o o o o

Figure 4.1: Cable diagrams and corresponding Young tableaux form = d = 3
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Using the results of this gives

Theorem 4.3.8 Let V be a complex vector space of dimension m € N. Then
there is a monomorphism of graded algebras

cm o (v)Stm (4.1)
In the special cases m = 1 or m = 2 this monomorphism is an isomorphism.

Example 4.3.9 Consider once more the case d = 2 and m = 3. It is easy to
see that the two Young tableaux

1|2
314 2
6 4|6

are irreducible, hence in this setting C' (3) is isomorphic to a proper subal-
gebra of T' (C3)SL3.

PROOF One obtains a monomorphism by mapping the generators corres-
ponding to the cable diagrams to those corresponding to the associated ad-
missible Young tableaux as constructed earlier. This respects the product
given by concatenation of cable diagrams.

The graded subalgebra of T" (V') given as the image of this monomorphism
can be described as follows: It is spanned as a vector space by all admissible
rectangular standard Young tableaux with the product from appending dia-
grams as defined above. The fact that these generate a subalgebra is clear from
the definition of the product. As proved earlier in this section, this algebra is
isomorphic to the cable algebra C'"™) and hence proves the claim.

It is also clear from that for m < 2 all standard Young
tableaux are admissible. Hence the monomorphism from is
an isomorphism of algebras. ]
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