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Introduction
Und jedem Anfang
wohnt ein Zauber inne

(H H)
Representation theory of algebras

Representation theory in general deals with abstract algebraic structures by
studying their representations. ese representations are translations into
the language of vector spaces and linear maps inheriting essential properties
of the original object. By this approach, it becomes possible to study rather
difficult algebraic objects usingmethods of linear algebra, an area considered
well-understood. e structures which can be treated in this way include
groups, Lie algebras and algebras. e latter ones, especially algebras associ-
ated to quivers, are in the central focus of interest of this work.
One of themain problems arising in that context is the classiĕcation of rep-

resentations of ĕnite dimensional algebras up to isomorphism, in particular
ĕnite dimensional representations. In general, this is far from being solved,
because the set of these isomorphism classes is too big. To make that state-
ment precise consider a theorem of Victor Kac, stating that for an algebra
associated to a so-called wild quiver the problem of classifying the indecom-
posable representations depends on arbitrarily many continuous parameters
(c. f. [], []). For the so-called wild algebras the problem is essentially of
the same quality, which implies that the standard toolbox of representation
theoryƬ cannot be applied here.

Ƭc. f. for example []
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A different approach though is to handle these continuous phenomena us-
ing tools from algebraic geometry, that means considering the isomorphism
classes of representations as points in a suitable space and trying to analyse
the geometric properties of the resulting objects calledmoduli spaces. A spe-
cial class of moduli spaces is formed by so called non-commutative Hilbert
schemes explained in chapter .
is work investigates some geometric properties of the non-commutative

Hilbert schemes assigned to quiver algebras and uses the results to construct
operators on the Borel-Moore homology groups of these. Some applications
are presented linking the results to earlier works byMarkus Reineke [] and
Yakuo Teranishi [].

Structure of this work

In chapter  a short collection of facts and notations of the representation
theory of quivers resp. quiver algebras is given and the corresponding mod-
uli spaces will be introduced. In order to obtain some very desirable geo-
metric properties of the moduli spaces, there will be a slight modiĕcation in
the formulation of the moduli problem: Instead of parametrising just iso-
morphism classes of representations, a framing datum will be added which
basically consists of some additional linear maps and a stability condition.
e advantage of this approach is that one obtains, for example, that the res-
ulting moduli spaces are always smooth. In general, that does not hold for
moduli spaces of polystable representations for coprime dimension vectors,
see []. Hence, this special class of moduli spaces is called “smooth mod-
els”, details of this construction as well as the rest of this chapter have been
published in a joint work with Markus Reineke in [].
As a main result, we construct an algebraic cell decomposition in sec-

tion . for a special class of smoothmodels, extending [] where this result
is proved in the special case of them-loop quiver. ese moduli spaces will
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be called non-commutative Hilbert schemes, since, similar to Hilbert schemes
of points in an affine variety, they parametrise the le ideals of ĕnite codi-
mension in a quiver algebra.
e main instrument used in the construction of the cell decomposition is
a combinatorial calculus of trees and forests. is is derived from a cover-
ing quiver for any given quiver resolving oriented cycles and multiple edges,
which will be introduced in detail in Deĕnition ...
Besides, we obtain a combinatorial formula for the Betti numbers of the
non-commutative Hilbert schemes, and therefore also for the correspond-
ing Poincaré polynomial, see Corollary ... As a third result, functional
equations for the generating functions of the Betti numbers are obtained in
this chapter.
Chapter  presents the facts and notations for Borel-Moore homology used

in this work. is special homology theory is a very powerful tool to handle
even singular varieties. For smooth compact manifolds it coincides with sin-
gular homology, but also works here for nilpotent non-commutative Hilbert
schemes in chapter , which are not necessarily smooth. Instead, they are
projective which makes them well suited for the construction of the operat-
ors in Borel-Moore homology later.
e content of that chapter is mostly following [], where the essential facts
about Borel-Moore homology are listed in a comprehensive form. Most of
the skipped proofs in this section can be found in []. For the original in-
troduction the reader should refer to [].
In chapter , the tools developed in chapter  will be applied to the set-

ting from chapter . Here we make a slight modiĕcation restricting to the
nilpotent non-commutative Hilbert schemes. ey have a cell decomposi-
tion analogous to the non-commutative Hilbert schemes; the cells are even
parametrised by the same objects. erefore, most of the properties stated in
chapter  also hold in this case.
e main reason to use Borel-Moore homology in this context is the exist-
ence of fundamental classes in Borel-Moore homology corresponding to the
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closures of the cells arising from the cell decomposition constructed earlier.
ese are generators of the respective homology groups.
e main result of this chapter is the deĕnition of generation operators in
Borel-Moore homology using a technique called correspondences which is
applied in the context of Hilbert schemes of points on surfaces in [] to
construct a Heisenberg algebra. In our case, they turn the direct sum of all
homology groups of the non-commutative Hilbert schemes into a geometric
model for the Fock space. In the special case of them-loop quiver one can
even derive the structure of a bigraded algebra here which is conjectured to
work in a more general setting, c. f. Conjecture ... is method is ex-
plained for example in [, section .] and makes use of the properties of
Borel-Moore homology introduced in chapter . In this situation the fun-
damental classes come in quite handy, since they allow to calculate the op-
erators explicitely in terms of fundamental classes associated to the closures
of the cells. In chapter , a combinatorial parametrisation for them is given
which is used in the following to derive a combinatorial way of calculating
this convolution product in Borel-Moore homology using trees and forests.
Secondly, we present a description of the cell closures in the case of the nil-
potent non-commutative Hilbert schemes.
Finally, in the last chapter we give an algebraic realisation of the functional

equations from chapter . In the context of chapter , this amounts to giving
some complements and analogies to shed some light onto various aspects
of the convolution algebra conjectured there. For that purpose section .
presents an algebra isomorphism to a so-called cable algebra generated by
cable diagrams. is construction belongs to the class of diagram algebras.
Another very well known example of this class are Temperley-Lieb algebras
introduced in []. Although there are certain similarities in the diagrams,
the composition of diagrams used in this case is a different one.
In section ., we take a functional equation for the Hilbert series of the non-
commutative Hilbert schemes as a motivation to ĕnd an isomorphism cor-
responding to this between two algebras one of which is the convolution al-
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gebra conjectured in chapter . Together these two sections can give an idea
of how the Betti numbers of the non-commutative Hilbert schemes behave,
and how this behaviour is related to the structure of the convolution algebra.
e secondmain result of this chapter is a link between the algebra structure
on a vector space with a basis parametrised by trees and non-commutative
Invariant eory: e topic discussed in section . relates such an algebra
– which can be thought of as the convolution algebra from chapter  – to the
algebra of invariants under the operation of SL (V ) on the tensor algebra of a
vector space V . In the general situation, there is a monomorphism of graded
algebras, which specialises to an isomorphism for Q = Lm with m = 1 or
m = 2. e construction of the SLm-invariants used here is due to [].
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 Chapter 

Geometry of
non-commutative Hilbert
schemes

Geometry is to open up my mind
so I may see

what has always been behind
the illusions that time
and space construct.

(D H, [])

In this chapter, we give a short introduction to the notations of quiver repres-
entations and the corresponding moduli spaces. Furthermore, this chapter
contains the details of the construction of non-commutativeHilbert schemes
for quiver algebras. A close investigation of their geometric properties re-
veals amongst others an algebraic cell decomposition generalising a result by
Markus Reineke for the case of them-loop quiver.
Using a combinatorial model of trees and forests, we give an explicit for-
mula for the Euler characteristic of the non-commutative Hilbert schemes
and functional equations for the generating function.
Even though the ĕrst deĕnitions also hold for general ĕelds, we shall always
assume F = C. e combinatorial setting of this cell decomposition will be
used later in chapter  and chapter  for explicit computations.
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. Quiver representations

Deĕnition .. (Quiver) A quiver Q consists of two sets Q0 and Q1 and
maps t, h∶Q1 → Q0.
One can think ofQ0 as a set of vertices andQ1 as a set of arrows α with tail
t (α) and head h (α). Having that in mind, elements of Q1 are sometimes
written as α∶ t (α)→ h (α).
A quiver Q is called ĕnite, if Q0 and Q1 are ĕnite sets. We will always

assume any quiver to be ĕnite in the context of this work.
A subquiver S of a quiverQ is a quiver S such that S0 ⊆ Q0 and S1 ⊆ Q1.

e maps t and h corresponding to S are the restrictions of the correspond-
ing maps ofQ to S1.
A subquiver is called full, if for all q, r ∈ S0 the following condition holds:

{α∶ q → r ∣ α ∈ Q1} ⊂ S1.

Example .. From now on we will recur to the following quiver Q as a
standard example:

...



..



..



..



..

.

α

.

β

.

γ

.

δ

.
ϵ

Deĕnition .. (Quiver representation) LetQ be a quiver and C a ĕeld. A
representationM ofQ over C consists of

• C-vector spaces (Mi)i∈Q0
and
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• linear maps (Mα∶Mt(α) →Mh(α))α∈Q1
.

e vector d = (dimMi)i∈Q0
∈ NQ0 is called the dimension vector ofM .

A map between quiver representations

φ∶ ((Mi)i∈Q0
, (Mα)α∈Q1

)→ ((Ni)i∈Q0
, (Nα)α∈Q1

)

is a tuple of linear maps (φi∶Mi → Ni)i∈Q0
, such that for all arrows α ∈ Q1

the following holds: φh(α) ○Mα = Nα ○ φt(α). is allows us to consider
the Abelian category formed by the representations of Q and morphisms as
above; this category is equivalent to the category of le modules of the path
algebra kQ. Under this equivalence the notions of isomorphisms and sub-
representations translate as follows:
Amap as above is called an isomorphism if allmaps (φi)i∈Q0

are isomorph-
isms.
A subrepresentation W of V is a representation W of Q with a map of

representations ι∶W → V such that all ιi∶Wi → Vi for i ∈ Q0 are injective.

Deĕnition .. (Euler form) Let Q be a quiver. Deĕne the so called Euler
form on NQ0 by

⟨a, b⟩ ∶= ∑
q∈Q0

aqbq − ∑
α∈Q1

at(α)bh(α) (a, b ∈ NQ0) .

is form is sometimes also called Ringel form.

Consider the variety

Rd (Q) ∶= ⊕
α∈Q1

Hom (Cdt(α) ,Cdh(α)) ;

Rd (Q) is called representation space. It carries a natural operation of the
group

GLd ∶= ∏
i∈Q0

GLdi (C)
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via
(gi)i∈Q0

⋅ (Mα)α∈Q1
= (gh(α) ○Mα ○ g−1t(α))α∈Q1

.

It is not hard to see that the orbits of this operation correspond in a natural
way to the isomorphism classes of representations of Q of dimension vec-
tor d.

Deĕnition .. Let Q be a quiver. A path in Q is a sequence of arrows
α1, . . . , αr ∈ Q1 with hαi = tαi+1 for all i. Consider the path algebra CQ
generated by all paths inQ where the product is given by

w ×w′ =
⎧⎪⎪⎨⎪⎪⎩

w.w′ if hw = tw′

0 else

where w.w′ denotes the concatenation of paths. is deĕnes an associative
C-algebra.
Note that in each vertex i ∈ Q0 one has the empty path ei in that vertex.

For a representationM ofQ and a pathw = α1 . . . αr consisting of arrows
α1, . . . , αr ∈ Q1 let Mw ∶= Mα1 ○ ⋅ ⋅ ⋅ ○Mαr be the composition of linear
maps.
Fix the following notions: h (w) = h (αr) and t (w) = t (α1).
e subset of Rd (Q) consisting of all simple representations will be de-

noted by Rsimp
d (Q), this is an open, but possibly empty, subset of Rd (Q).

e same holds for the subset Rssimp
d (Q) of all semisimple representations

ofQ.

Example .. . Let Q be a quiver without oriented cycles. en the
simple representations are precisely the representations Ei with di-
mension vector (δi,j)j∈Q0

for i ∈ Q0.

. LetQ be the quiver
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... .. .
α

.
β

en the representation given byM1 =M2 = C andMα =Mβ = id is
simple.

. LetQ be the quiver

... .. . α

en the representation given byM1 =M2 = C andMα (x) = ax for
some a ∈ C is not simple, since there exists a non-trivial subrepresent-
ation given byM ′

1 = 0,M ′
2 = C andM ′

α = 0.

. LetQ be the quiver with two loops, that isQ0 = {i} andQ1 = {α,β}.
In this situation the simple representations of dimension 2 are the pairs
of 2 × 2matrices without simultaneous eigenspaces.

Michael Artin showed in [] the existence of a complex algebraic variety
(not necessarily smooth, though)M ssimp

d (Q) parametrising the isomorph-
ism classes of semisimple representations of Q of dimension vector d. is
M

ssimp
d (Q) is an affine variety.

Furthermore, [] proves that there is a smooth complex algebraic variety
M

simp
d (Q) parametrising the isomorphism classes of simple representations

ofQ with dimension vector d; the varietyM simp
d (Q) can be obtained as the

geometric quotient ofRsimp
d (Q) by the action ofGLd.

Deĕnition .. (Extended quiver representation) Let Q be a quiver and
assume given dimension vectors d,n ∈ NQ0; we will denote such a triple
(Q,d,n) as a quiver datum . An extended representation of Q of dimension
vectors d,n consists of
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• C-vector spaces (Vi)i∈Q0
and (Mi)i∈Q0

of dimensionsdimVi = ni and
dimMi = di for all i ∈ Q0 as well as

• linear maps (fi∶Vi →Mi)i∈Q0
and (Mα∶Mt(α) →Mh(α))α∈Q1

.

e corresponding extended representation space is given by

Rd,n (Q) ∶= ⊕
α∈Q1

Hom (Cdt(α) ,Cdh(α))⊕ ⊕
i∈Q0

Hom (Cni ,Cdi) .

OnRd,n (Q), we have an operation of the groupGLd via

(gi)i∈Q0
⋅ ((Mα)α∈Q1

, (fi)i∈Q0
)

=((gh(α) ○Mα ○ g−1t(α))α∈Q1

, (gi ○ fi)i∈Q0
) .

Two extended representations

((Mα)α∈Q1
, (fi)i∈Q0

) and ((M ′
α)α∈Q1

, (f ′i)i∈Q0
)

are equivalent if there exists an isomorphism of representations φ∶M →M ′

such that f ′i = φi ○ fi for all i ∈ Q0. en the orbits of the group operation
ofGLd onRd,n (Q) correspond naturally to equivalence classes of extended
representations.
Alternatively, the following description of extended representations of Q

is also possible (c. f. [, chapter ]): Let d,n be two dimension vectors forQ
and denote by Q̂n the extended quiver with

Q̂n
0 = Q0 ∪ {∞} and

Q̂n
1 = Q1 ∪ {ζij ∶∞→ i ∣ i ∈ Q0, j = 1, . . . , ni} .

en the extended representations of Q for dimension vectors d,n ∈ NQ0

correspond to representations of Q̂n for the dimension vector d̂where d̂i = di
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for i ∈ Q0 and d̂∞ = 1. is is obvious by the following: Choose bases
v1, . . . , vni of Vi for i ∈ Q0 and set

ζij (1) = fi ∣ (vj) (j = 1, . . . , ni, i ∈ Q0) .

.

Deĕnition .. (Stability) An extended representation (M,f) ofQ for di-
mension vectors d,n ∈ NQ0 is called stable if the images of the fi for i ∈ Q0

generate the representationM .
e open subset of Rd,n (Q) of all stable representations ofQ of dimension
vectors d,n ∈ NQ0 is denoted by Rst

d,n (Q). One can easily see that the op-
eration ofGLd (Q) onRd,n (Q) restricts to an operation onRst

d,n (Q).

Remark .. M is generated by the images of the fi for i ∈ Q0 if there are
bases (vi,j)j=1,...,ni

of the vector spaces Vi such that eachMi for i ∈ Q0 is
spanned by elements of the form (Mwfℓ (vℓ,k))ℓ,k,w, wherew = α1 . . . αr is
a word in the alphabet Q1 with hαs = tαs+1 for all s. Note that this implies
h (w) = i.

Example .. LetQ be the quiver

...
α

en the extended representation given by V = C, M = ⟨m1,m2⟩ ≃ C2,
f (x) = axm1 + bxm2 for some a, b, x ∈ C andMα = id is not stable, since
M is not generated by the image of V .
If in the same settingMα is given by (M1,1 M1,2

M2,1 M2,2
) with

(aM1,1 + bM2,1) b ≠ (aM2,1 + bM2,2)a,

then (M,f) is stable, since (f (v) ,Mαf (v)) for some v ∈ V ∖ {0} forms a
basis ofM .
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Alastair King showed in [] that there exists a smooth complex algeb-
raic varietyM st

d,n (Q) parametrising the isomorphism classes of stable rep-
resentations. Via the notion of stability introduced in [], this also holds for
extended representations. is variety is given as the geometric quotient of
Rst

d,n (Q) by the action ofGLd.

Deĕnition .. (Non-commutative Hilbert Scheme) Denote by

Hilbd,n (Q) ∶=M st
d,n (Q)

the non-commutative Hilbert scheme for the quiver datum (Q,d,n).

In the special case of them-loop quiver with n = 1, the elements of the Hil-
bert scheme Hilbd,1 (Q) correspond to le ideals in the path algebra CQ:
Let (M,f) ∈ Hilbd,1 (Q). enM is a CQ-module and thus corresponds
to an ideal I (M,f) by the following

0→ I (M,f)→ CQ→M → 0,

where the morphism CQ →M is given by 1 ↦ f (v). Under this construc-
tion factor representations correspond to subideals as one can see from the
following diagram of exact sequences:

..

0

.

0

.

I (L,h)

.

I (L /M, h̄)

.

CQ

.

CQ

.0. M. L. L /M, h̄. 0.

0

.

0





In coordinates this can be written as follows: Assume (M,f) ∈ US∗ is given
by

Mwf (v) = ∑
S∗∋w′<w

µw,w′Mw′f (v) (w ∈ C (S∗)) .

en (M,f) corresponds to the ideal

I (M,f) ∶= ⟨w − ∑
S∗∋w′<w

µw,w′w
′⟩

w∈C(S∗)
⊂ CQ

with codimCQ I = dimM .

. Cell decomposition

In this section, we construct an algebraic cell decomposition for the non-
commutative Hilbert schemes of a quiverQ. In the following, this construc-
tion will be used to compute the Betti numbers of the non-commutative Hil-
bert schemes and to give a formula for the Poincaré polynomial.

Deĕnition .. (Algebraic cell decomposition) For a variety X an algeb-
raic cell decomposition is a ĕltration by closed algebraic subsets

X =X0 ⊇X1 ⊇ ⋅ ⋅ ⋅ ⊇Xs−1 ⊇Xs = ∅,

such thatXi ∖Xi+1 is isomorphic to an affine space for i = 0, . . . , s − 1.
e varietiesXi ∖Xi+1 are called cells.

If a varietyX has an algebraic cell decomposition, then all odd homology
groups vanish, see for example [, Appendix B].
For the construction of a cell decomposition, we apply amethod from []:

. We will construct a covering of Hilbd,n (Q) by open affine subsets US ,
which . will then be modiĕed to a stratiĕcation into disjoint subsets ZS by
cutting out intersections in a suitable way. . e crucial point in the whole
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proof is now to show that these strata are isomorphic to affine spaces. To
achieve this we will make use of a combinatorial technique to enumerate the
cells by certain forests. is toolwas developed in [] andwill be generalised
to arbitrary quivers in subsection ...

.. Trees and Forests

Deĕnition .. (Trees and Forests) A tree T is a connected quiver without
cycles, such that for all q ∈ T0 there exists at most one α ∈ T1 with h (α) = q.
is implies for example that every tree T has a unique root, that is a vertex
t0 ∈ T0 such that there exists no α ∈ T1 with h (α) = t0.
A subtree of a tree T is a full connected subquiver S of T , which is closed
under predecessors, i. e. for all s ∈ S0 and all T1 ∋ α∶ r → s we have r ∈ S0.
A quiver F , whose connected components are trees, is called a forest; a sub-
forest F ′ of F is a forest F ′ such that the components of F ′ are subtrees of
the trees in F .

Example .. Take following tree:
........

Among its subtrees are the following:
........

and

........

but not
........

or

........
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the ĕrst one is not a tree, the second one is not closed under predecessors.

Let (Q,d,n) be a quiver datum. For q ∈ Q0 deĕne a tree Tq as follows: the
vertices of Tq are paths in Q starting in q. ere is an arrow α∶w → w′ in
Tq , if there is an arrow ᾱ ∈ Q1 such that w′ = wᾱ. Here wᾱmeans the path
which can be obtained by appending ᾱ at w in h (w).

Deĕnition .. Denote by Fn (Q) the forest consisting of nq copies of Tq
for all q ∈ Q0.
e vertices in Fn (Q) can be written as (q, i,w) for q ∈ Q0, i ∈ {1, . . . , nq}
andw a path inQ starting in q. is denotes the vertexw in the i-th copy of
Tq in Fn (Q).

Remark .. All Tq for q ∈ Q0 are trees, since . they are connected by
construction (vertices correspond to paths starting in q, thus are connected
to the root corresponding to the empty path in q) and . every vertex – apart
from the root given by the empty path in q – has exactly one predecessor,
which can be obtained by cutting off the last arrow of the corresponding path
inQ. . IfQ does not have oriented cycles, all covering quivers are ĕnite.

Example .. For the quiver Q from Example .. one obtains the trees
depicted in Figure ..

Using these trees it is now possible to construct the index set which will
later be used to parametrise the cells of a non-commutative Hilbert scheme
Hilbd,n (Q). is set will consist of certain subforests of Fn (Q).

Example .. LetQ be the quiver

...
a

..
b

..
c

.α .
β

.
γ
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Figure .: Covering trees Tq forQ from Example ..

..

T1

..() ..

α

..

αβ

..

αγ

..

αγδ

..

αγϵ

..

αγδβ

. ..

T2

..() .. β..

γ

..

γδ

..

γϵ

..

γδβ

..

γδγ

..

γδγϵ

.

..

T4

.. ()..

δ

..ϵ ..

δβ

..

δγ

..

δγϵ

..

δγδ

..

δγδβ

. ..

T3

..() .

T5

..

()

.
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en one obtains the trees
Ta Tb Tc

...
()

..
α
.. αβ..

αγ

.ᾱ .
β̄

.
γ̄

...
()
.. β..

γ

.
β̄

.
γ̄

...
()

..

Choosing for example n = (1,1,1) ∈ NQ0 as a dimension vector implies
that Fn (Q) consists of one copy of each of these trees Ta, Tb and Tc:

...
()a

..
α
.. αβ..

αγ

..
()b

.. β..

γ

..
()c

.ᾱ .
β̄

.
γ̄

.
β̄

.
γ̄

emarked vertex has the description (a,1, αβ).

Example .. LetQ be the quiver

...
a

..
b

..
c

.α .
β

.
γ

which looks very similar to the last one, but has very different properties as
we will see. is change introduces an oriented cycle to Q which makes the
covering trees inĕnitely long:

Ta Tb Tc

...
()

..
α
..

αβ

. ….ᾱ . β̄. γ̄ ...
()
..

β

. . . .. β̄. γ̄ ...
()
..

γ
. . . .. γ̄. β̄
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Choosing n = (1,0,1) determines Fn (Q) as consisting of one copy of Ta
and one copy of Tc.

Example .. For the m-loop quiver all covering trees are inĕnite m-ary
trees. us, Fn (Q) consists of n copies of the inĕnitem-ary tree.

Ordering vertices and forests
e aim is to construct a total ordering of the subtrees of Fn (Q). Aer
constructing an affine covering for the non-commutative Hilbert schemes
whose sheets are parametrised by the subtrees of Fn (Q), we can use this
total ordering to make the covering disjoint by cutting off from each sheet
the intersection with sheets of smaller order. Several steps will be needed to
construct this order which implies the construction of preliminary orders on
related sets. e whole process of constructing this order is almost canonical
apart from two choices one has to make right in the beginning.

step  Choose an arbitrary total ordering on the vertices of Q and for each
pair (i, j) ∈ Q0 a total ordering of the arrows from i to j inQ1.

step  is gives a total ordering on the set of arrows of Q as follows: For
two arrows α∶ i → j and β∶k → ℓ in Q1 with i, j, k, ℓ ∈ Q0 deĕne
α < β if one of the following conditions holds:

a) i = k and j = ℓ and α < β in the chosen order on the arrows
between i and j,

b) i = k and j < ℓ in the chosen order ofQ0,

c) i < k in the chosen order ofQ0.

step  By means of the lexicographic order, this allows us to compare paths
inQ as they are words in the alphabetQ1. us we have an order on
the set of vertices of the trees Tq for q ∈ Q0: Let w = α1 . . . αr and
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w′ = β1 . . . βs be two vertices in Tq , that is paths inQ. Deĕnew < w′
if one of the following conditions holds:

a) w is a proper subword of w′ or

b) αk < βk in the order on the arrows ofQwhere k ∈ N is minimal
such that αk ≠ βk.

step  is can now be used to deĕne an order on the vertices in Fn (Q) by
setting (q, i,w) < (q′, i′,w′) if one of the following conditions holds:

a) q < q′ in the order onQ0 deĕned in item ,

b) q = q′ and i < i′ in N,

c) q = q′, i = i′ andw < w′ in the order of the vertices of Tq deĕned
in item .

step  Furthermore, deĕne an order on the subforests of Fn (Q). For that
purpose we will use again the lexicographic order.
For two such subforests S = {x1 < ⋅ ⋅ ⋅ < xk} and S′ = {x′1 < ⋅ ⋅ ⋅ < x′ℓ}
deĕne S < S′ if one of the following two conditions holds:

a) k > ℓ or

b) k = ℓ and xr < x′r in the order on the vertices ofFn (Q) deĕned
in item , where r ∈ {1, . . . , k} is chosen minimal with respect
to the property xr ≠ x′r.

step  e order onQ0 allows us to enumerate the trees inFn (Q) by setting
(q, i) < (q′, i′) for q, q′ ∈ Q0, i ∈ {1, . . . , nq} and i′ ∈ {1, . . . , nq′} if

a) q < q′ in the order deĕned in item  or

b) q = q′ and i < i′ in N.
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For an index (q, i) denote by succ (q, i) the unique smallest index
greater than (q, i), which is

succ (q, i) ∶=
⎧⎪⎪⎨⎪⎪⎩

(q, i + 1) , if i < nq
(q′,1) , if i = nq,

where q′ =min{q̄ ∈ Q0 ∣ q̄ > q, nq̄ > 0}.

An affine covering
Let (Q,d,n) be a quiver datum and (M,f) an extended representation. Fix
bases (vq,i)i=1,...,nq

of Vq for q ∈ Q0. For a ĕnite subforest S∗ of Fn (Q) let

US∗ ∶= {((Mα)α∈Q1
, (fq)q∈Q0

) ∈ Hilbd,n (Q) ∣ (.)}

where

((Mw ○ fq) (vq,i))(q,i,w)∈S∗
h(w)=r

is a basis ofMr for all r ∈ Q0. (.)

Deĕnition .. (Corona) For a subforest S∗ of Fn (Q) let C (S∗) be the
set of all vertices (q, i,w) ∈ Fn (Q) subject to one of the following condi-
tions:

a) w = α1 . . . αℓ ∉ Sq,i and w′ ∶= α1 . . . αℓ−1 ∈ Sq,i, where Sq,i ≠ ∅, or

b) w = () and Sq,i = ∅.

C (S∗) is called the corona of S∗.

Lemma .. All US∗ for subforests S∗ ofFn (Q) are isomorphic to affine
spaces.
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P For (M,f) ∈ US∗ and (q, i,w) ∈ C (S∗) one can write uniquely

Mwfq (vq,i) = ∑
(q′,i′,w′)∈S∗

λ(q,i,w),(q′,i′,w′)Mw′fq′ (vq′,i′)

and assigning to (M,f) the coefficient λ(q,i,w),(q′,i′,w′) induces an algebraic
function Λ(q,i,w),(q′,i′,w′)∶US∗ → C. us, US∗ is isomorphic to an affine
space under the isomorphism given by the functions (Λ(q,i,w),(q′,i′,w′)) for
(q, i,w) ∈ C (S∗) and (q, i,w) ∈ S∗. ◻

us the sets US∗ are open subsets ofHilbd,n (Q), since the deĕning con-
dition is equivalent to the non-vanishing of the following determinant:

det (Mw (fq (vq,i)))(q,i,w)∈S∗ ≠ 0.

Furthermore, it is easy to see, that these sets US∗ cover Hilbd,n (Q), be-
cause the stability condition asserts that every point in Hilbd,n (Q) corres-
ponds to a representation which is generated by im f .
In the future, the notation (M,f) ∈ US∗ will be used dropping indices if

the respective quiver is obvious. (M,f)will denote a class inHilbd,n (Q) as
well as an extended representation where the actual meaning is obvious from
the context.
e set of all subforests S∗ of Fn (Q) such that Hilbd,n (Q) ⊇ US∗ ≠ ∅ is

denoted by Φd,n (Q). For S∗ ∈ Φd,n this implies

∣S∗∣ ∶= (#{(q, i,w) ∈ S∗ ∣ h (w) = j})j∈Q0
= d

and each such S∗ appears in Φd,n (Q), thus we have

Φd,n (Q) = {S∗ ⊂ Fn (Q) ∣ ∣S∗∣ = d} .

Lemma .. Let (M,f) ∈ Hilbd,n (Q) and S̄∗ be a subforest of Fn (Q)
such that the vectors (Mw ○ fq (vq,i))(q,i,w)∈S̄∗ are linearly independent.
en there is a subforest S′∗ ofFn (Q)with S̄∗ ⊆ S′∗ such that (M,f) ∈ US′∗

.
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P Use a downward induction on ∣S̄∗∣. For ∣S̄∗∣ = d there is nothing to
prove.
Let S∗ = S̄∗ ∪C (S̄∗) and

Ur ∶= ⟨Mwfq (vq,i)⟩(q,i,w)∈S∗
h(w)=r

,

Ūr ∶= ⟨Mwfq (vq,i)⟩(q,i,w)∈S̄∗
h(w)=r

(r ∈ Q0) .

Here one obviously has, due to S∗ ⊇ S̄∗

∑
r∈Q0

dimUr ≥ ∑
r∈Q0

dim Ūr.

Note that both sides are equal, if and only if Ur =Mr for all r ∈ Q0, because
Hilbd,n (Q) is generated as a representation by im f and (im f)r ⊆ Ur for
all r ∈ Q0.
If this is a proper inequality on the other hand, there exists a vertex (q, i,w) ∈
S∗ ∖ S̄∗ such thatMwfq (vq,i) ∉ Ūh(w). Replacing S̄∗ by S̄∗ ∪ {(q, i,w)}
yields ∣S̄∗ ∪ {(q, i,w)}∣ > ∣S̄∗∣ and thus completes the induction. ◻

For a quiver datum (Q,d,n) and a ĕnite subforest S∗ of Fn (Q) deĕne
ZS∗ ⊆ US∗ as

ZS∗ ∶= {((Mα)α∈Q1
, (fq)q∈Q0

) ∈ Hilbd,n (Q) ∣ (.) and (.)} ,

where
Mwfq (vq,i) ∈ ⟨Mw′fq′ (vq′,i′)⟩(q,i,w)>(q′,i′,w′)∈S∗

h(w)=h(w′)
(.)

for all (q, i,w) ∈ C (S∗).
ese sets are obviously isomorphic to affine spaces, since they arise from the
affine spaces US∗ by setting a ĕxed set of coordinates to zero. In order to see
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that they are the desired cells, one has to show that they actually form a de-
composition ofHilbd,n (Q). is follows immediately fromeorem ..,
which is the main theorem of this chapter.

eorem .. Let (Q,d,n) be a quiver datum and S∗ a ĕnite subforest of
Fn (Q). en

ZS∗ = US∗ ∖ ⋃
S′∗<S∗

US′∗
. (.)

Corollary .. For a quiver datum (Q,d,n) there is a cell decomposition
of Hilbd,n (Q), the cells of which are parametrised by Φd,n (Q).

P Enumerate the forests in Φd,n (Q) as S1
∗ < ⋅ ⋅ ⋅ < Sℓ

∗ according to the
order deĕned above, and let

Ak ∶= ASk
∗
∶= Hilbd,n (Q) ∖ ⋃

S′∗<Sk
∗

ZS′∗
.

All Ak are closed subvarieties of Hilbd,n (Q), and we have a ĕltration

Hilbd,n (Q) = A1 ⊃ ⋅ ⋅ ⋅ ⊃ Aℓ ⊃ Aℓ+1 ∶= ∅,

where Ai ∖Ai+1 ≃ ZSi
∗
is isomorphic to an affine space for i = 1, . . . , ℓ. ◻

To prove eorem .. we will show both inclusions of formula (.)
separately.

Lemma ..
ZS∗ ⊆ US∗ ∖ ⋃

S′∗<S∗
US′∗

.

P e inclusion ZS∗ ⊆ US∗ is clear by deĕnition.
Assume ZS∗ ∩⋃S′∗<S∗ US′∗

≠ ∅, for instance ZS∗ ∩ US′∗
≠ ∅ for a S′∗ < S∗,

and choose some representative (M,f) for a class in this intersection.
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Let (q, i) with q ∈ Q0 and i ∈ {1, . . . , nq} be maximal with respect to the
property that Sq′,i′ = S′q′,i′ for all (q′, i′) ≤ (q, i). Because of S′∗ < S∗ it
follows that S′succ(q,i) < Ssucc(q,i) holds and therefore one of the following
cases:

∣S′succ(q,i)∣ > ∣Ssucc(q,i)∣: Since (M,f) represents a class inUS′∗
, the elements

Mwfq′ (vq′,i′) for (q′, i′,w) ∈ S′∗ are linearly independent. us it
follows that

∑
(q′,i′,w)∈Fn(Q)
(q′,i′)≤succ(q,i)

s∈Q0

dim ⟨Mwfq′ (vq′,i′)⟩h(w)=s ≥ ∑
(q′,i′)≤succ(q,i)

∣S′q′,i′ ∣ .

By assumption one has

∑
(q′,i′)≤succ(q,i)

∣S′q′,i′ ∣ > ∑
(q′,i′)≤succ(q,i)

∣Sq′,i′ ∣ .

Since (M,f) represents a class in ZS∗ , it follows from formula (.)
that

∑
(q′,i′)≤succ(q,i)

∣Sq′,i′ ∣ = ∑
(q′,i′,w)∈Fn(Q)
(q′,i′)≤succ(q,i)

s∈Q0

dim ⟨Mwfq′ (vq′,i′)⟩h(w)=s .

Altogether this is a contradiction, so this case cannot occur.

∣S′succ(q,i)∣ = ∣Ssucc(q,i)∣: Let

Ssucc(q,i) = {w1 < ⋅ ⋅ ⋅ < wℓ} ,
S′succ(q,i) = {w

′
1 < ⋅ ⋅ ⋅ < w′ℓ}

and k be minimal with respect to the propertyw′k < wk. at includes
two cases:
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. If w′k is not a proper subword of wk, then it is in Ssucc(q,i), since
trees are closed under taking predecessors. But that contradicts
the minimality of k.

. Otherwise let wk = (α1 . . . αr) and w′k = (α
′
1 . . . α

′
r′) and s be

chosen minimal such that αs+1 ≠ α′s+1 and thus α′s+1 < αs+1.
Let furthermore (q̄, ī) ∶= succ (q, i).
en w̄ ∶= (α1 . . . αsα

′
s+1) satisĕes

(q̄, ī, w̄) ∈ S′succ(q,i) ∩C (S∗) .

Together with formula (.) this is a contradiction as follows: Be-
cause (M,f) represents a class in ZS∗ , the following holds:

Mw̄fq̄ (vq̄,̄i) ∈ ⟨Mw′fq′ (vq′,i′)⟩S∗∋(q′,i′,w′)<(q̄,̄i,w̄)
h(w)=h(w̄)

.

e indices on the right side are contained in S′∗ because of the
assumed minimality of s, so the le hand side has to be linearly
independent from the right hand side, since (M,f) represents a
class in US′∗

. ◻

Lemma ..
ZS∗ ⊇ US∗ ∖ ⋃

S′∗<S∗
US′∗

.

P Again we prove this lemma by contradiction. For that purpose, as-
sume there exists a class in (US∗ ∖⋃S′∗<S∗ US′∗

) ∖ ZS∗ for a subforest S∗
of Fn (Q). Let (M,f) represent such a class. For (M,f) this violates for-
mula (.) at least in one point; let (q, i,w) ∈ C (S∗) beminimal with respect
to that property, i. e.

Mwfq (vq,i) ∉ ⟨Mw′fq′ (vq′,i′)⟩S∗∋(q′,i′,w′)<(q,i,w)
h(w′)=h(w)

.
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Let Sq,i = {w1 < ⋅ ⋅ ⋅ < wp < . . .}, where wp is maximal with wp < w. Note
that this implies

(q, i,wp) ≠max{(q′, i′,w′) ∈ S∗} .

Deĕne another forest S̄∗ by setting S̄q′,i′ = Sq′,i′ for all (q′, i′) < (q, i).
Furthermore, let S̄q,i ∶= {w1 < ⋅ ⋅ ⋅ < wp < w}. Because of the minimality of
(q, i,w) the requirements of Lemma .. are satisĕed for S̄∗, so one can
extend S̄∗ to a forest S′∗ such that (M,f) represents a class in US′∗

.
en one of the following cases is true:

. S′q′,i′ = Sq′,i′ for all (q′, i′) < (q, i). In this case we have S′q,i < Sq,i
because S′q,i is an extension of S̄q,i which contains all wi < ⋅ ⋅ ⋅ < wp <
w. For the smallest vertex (q̄, ī, w̄) ∈ S∗ with (q̄, ī, w̄) > (q, i,wp) one
has (q, i,w) < (q̄, ī, w̄).

. ∣S′q′,i′ ∣ > ∣Sq′,i′ ∣ for some (q′, i′) < (q, i).

In both cases we obtain S′∗ < S∗. Hence (M,f) ∈ US′∗
contradicts the initial

assumption. ◻

Remark .. For a subforest S∗ of Fn (Q) deĕne

D (S∗) ∶= {((q, i,w) , (q′, i′,w′)) ∈ C (S∗) × S∗ ∣ (q′, i′,w′) < (q, i,w)}

and let d (S∗) ∶= ∣D (S∗)∣. en one can easily see that

dimZS∗ = d (S∗) . (.)

As already stated, we know that given an algebraic cell decomposition of
the non-commutative Hilbert scheme, the number of n-dimensional cells
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is just the 2n-th Betti number. e i-th Betti number bi (Hilbd,n (Q)) is
deĕned as

bi (Hilbd,n (Q)) ∶= dimQHi (Hilbd,n (Q) ,Q) ,

where Hi (Hilbd,n (Q) ,Q) denotes the i-th singular homology group with
rational coefficients. e Betti numbers appear in the so called Poincaré poly-
nomial, which is their generating function:

PHilbd,n(Q) (q) =
∞
∑
i=0
bi (Hilbd,n (Q)) qi.

Corollary .. One obtains the following formula for the Poincaré poly-
nomial of Hilbd,n (Q):

PHilbd,n(Q) (q) = ∑
S∗∈Φd,n(Q)

q2dimZS∗ .

Example .. Consider the following quiverQ:

...



...
α

.
β

. γ.δ

with dimension vectors d = (1,2) and n = (1,0). en the cells of the cor-
responding non-commutative Hilbert schemeHilbd,n (Q) are parametrised
by the trees

...() ..
α

..

αγ

...() ..
α

..

αδ

...() ..
α

..
β

...() ..
β

..

βγ

...() ..
β

..

βδ

e corresponding cells have dimensions ,,, and , respectively.
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.. Multipartitions

e previous section contains the construction of a cell decomposition for
the non-commutative Hilbert schemes. For this purpose certain subforests
of Fn (Q) were used to parametrise the cells. From this we obtained a de-
scription of the Betti numbers in terms of these forests.
A different combinatorial description of the Betti numbers can be derived
from [, eorem .], where so called multipartitions appear as exponents
in the Poincaré polynomial:

PHilbd,n(Q) (t) = t
n⋅d−⟨d,d⟩ ∑

λ∈Λd,n

t∣λ∣

where Λd,n is the set of admissible multipartitions that will be deĕned in
Deĕnition ... is identity comes from counting rational points of the
Hilbert scheme over ĕnite ĕelds and reordering by exponents of t−1. Com-
paring coefficients, it is natural to ask for the relation between these two
classes of objects, resp. for an explicit bijection. Following this approach,
in this section we will proove a generalisation of [, Proposition ..].

Deĕnition .. (Multipartitions) A multipartition λ for a quiver datum
(Q,d,n) is a tuple (λq)q∈Q0

of partitions

λq = (λq1 ≥ ⋅ ⋅ ⋅ ≥ λ
q
dq
≥ 0) .

Such a multipartition is called admissible if the λqi ∈ N are subject to the
following condition:

For all 0 ≤ e < d there is a q ∈ Q0 such that λqdq−eq < nq − ⟨e,1
q⟩ . (.)

Here 1q denotes the vector (δq,r)r∈Q0
∈ NQ0. e set of all multipartitions

satisfying this condition will be denoted byΛd,n. In [] this set is called Sd,n,
this is changed here to avoid any confusion with the subforests of Fn (Q).
Let ∣λ∣ ∶= ∑q∈Q0∑

dq
i=1 λ

q
i be the weight of a multipartition λ.
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Construct a map φ∶Φd,n (Q)→ Λd,n as follows: For S∗ ∈ Φd,n (Q) deĕne
φ (S∗) ∶= (λq)q∈Q0

with

λqi ∶=#{(q
′, i′,w′) ∈ C (S∗) ∣ h (w′) = q and#M (q′, i′,w′) ≥ i} ,

where

M (q′, i′,w′) ∶= {(q, i,w) ∈ S∗ ∣ h (w) = h (w′) , (q, i,w) > (q′, i′,w′)} .

is will be the bijection mentioned above.

Lemma .. is map φ∶Φd,n (Q) → Λd,n is well deĕned, i. e. φ (S∗)
satisĕes formula (.) for all S∗ ∈ Φd,n (Q).

P Let 0 ≤ e < d, and for (q, i,w) ∈ S∗ deĕne the setM− (q′, i′,w′) as

{(q, i,w) ∈ S∗ ∣ h (w) = h (w′) ∧ (q, i,w) < (q′, i′,w′)} .

Choose (q̄, ī, w̄) ∈ S∗ minimal with respect to the property ∣M− (q̄, ī, w̄)∣ =
eh(w̄) + 1 and let q ∶= h (w̄).
By deĕnition λqdq−eq counts those vertices in C (S∗) which point towards

q and for which there exist at least dq − eq greater vertices in S∗ with the
same property. Here we mean the order of the vertices in Fn (Q) as deĕned
on page . Since S∗ contains exactly dq vertices pointing towards q, this
condition is equivalent to the following: there exist atmost eq smaller vertices
in S∗ pointing towards q.
erefore, we count the possibilities for a vertex pointing towards q to appear
in S∗ or C (S∗), which is smaller than the (eq + 1)-th such “q-vertex” in
S∗. Vertices with this property either do not have a predecessor, then they
are precisely one of the roots of the nq trees with root q. Or they have a
predecessor r ∈ Q0, and because of the minimality of q there can be at most
er smaller r-vertices.
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If w̄ = (), then one of the roots does not appear, since it acts already as the
eq +1-th q-vertex in S∗. Otherwise, one of the predecessors does not appear,
since it is the predecessor of the (eq + 1)-th q-vertex.
In each case one still has to substract the q-vertices in S∗; there are precisely
eq of them.
Altogether, λqdq−eq has an upper bound:

λqdq−eq ≤ nq + ∑
Q1∋r→q

er − eq − 1 < nq − ⟨e,1q⟩ . ◻

It remains to show that this map φ is bijective. Since both Φd,n (Q) and
Λd,n (Q) are ĕnite and of the same cardinality (c. f. Corollary .. and [,
eorem .]), it suffices to prove that φ is injective.

Lemma .. emap φ∶Φd,n (Q)→ Λd,n deĕned above is injective.

P Let S∗ > S′∗ be two subforests of Fn (Q) of dimension type d and
choose (q, i,w) ∈ S∗ ∩ S′∗ maximal with respect to the property, that for all
(q′, i′,w′) ∈ S∗ ∪ S′∗ with (q′, i′,w′) ≤ (q, i,w) the condition (q′, i′,w′) ∈
S∗∩S′∗ holds. Because ofS∗ > S′∗ the immediate successor (q̄, ī, w̄) ∈ S∗∪S′∗
bigger than (q, i,w) is contained in S′∗ ∩C (S∗). Let q0 ∶= h (w̄) and (λ) ∶=
φ (S∗) as well as (λ′) ∶= φ (S′∗) and (q̄, ī, w̄) be the (m + 1)-th vertex in S′∗
pointing towards q0.
Since the number of vertices of S∗ and S′∗ pointing towards q0 is equal, we
can deduce, that there must be at least one more vertex in C (S∗) smaller
than the (m + 1)-th vertex pointing towards q0 than there are vertices in
C (S′∗) subject to this condition with respect to S′∗ instead of S∗. is is due
to the fact, that we know all these vertices for S′∗, and for S∗ all those and
additionally (q̄, ī, w̄) satisfy this condition. But this means λq0m > λ′q0m and
hence in particular λ ≠ λ′. ◻

Example .. As an example take the quiver
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..a. b.
α

.

β

together with dimension vectors d = n = (2,2). en Ta is an inĕnite line,
and so is Tb. erefore Fn (Q) consists of two copies of each of them. e
subforests of dimension type dwhich parametrize the cells are listed in Table
. together with the corresponding multipartitions.

Table .: List of forests/ multipartitions for example ..
Forest Multipartition

 (((), α,αβ,αβα) ,∅,∅,∅) (0,0 ∣ 0,0)
 (((), α,αβ) ,∅, (),∅) (0,0 ∣ 1,0)
 (((), α,αβ) ,∅,∅, ()) (0,0 ∣ 2,0)
 (((), α) , ((), α) ,∅,∅) (1,0 ∣ 0,0)
 (((), α) , (), (),∅) (1,0 ∣ 1,0)
 (((), α) , (),∅, ()) (1,0 ∣ 2,0)
 (((), α) ,∅, ((), β) ,∅) (2,0 ∣ 0,0)
 (((), α) ,∅,∅, ((), β)) (2,0 ∣ 1,0)
 ((), ((), α) , (),∅) (0,0 ∣ 1,1)
 ((), ((), α) ,∅, ()) (0,0 ∣ 2,1)
 ((), (), (), ()) (0,0 ∣ 2,2)
 ((),∅, ((), β, βα) ,∅) (1,0 ∣ 1,1)
 ((),∅, ((), β) , ()) (1,0 ∣ 2,1)
 ((),∅, (), ((), β)) (2,0 ∣ 1,1)
 ((),∅,∅, ((), β, βα)) (1,0 ∣ 2,2)
 (∅, ((), α,αβ,αβα) ,∅,∅) (1,1 ∣ 0,0)
 (∅, (), (α,αβ) , (),∅) (1,1 ∣ 1,0)
 (∅, ((), α,αβ) , (),∅) (1,1 ∣ 2,0)
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Table .: List of forests/ multipartitions for example .. (cont.)
Forest Multipartition

 (∅, ((), α) , ((), β) ,∅) (2,1 ∣ 0,0)
 (∅, ((), α) ,∅, ((), β)) (2,1 ∣ 1,0)
 (∅, (), ((), β, βα) ,∅) (1,1 ∣ 1,1)
 (∅, (), ((), β) , ()) (1,1 ∣ 2,1)
 (∅, (), (), ((), β)) (2,1 ∣ 1,1)
 (∅, (),∅ ((), β, βα)) (1,1 ∣ 2,2)
 (∅,∅, ((), β, βα, βαβ) ,∅) (2,2 ∣ 0,0)
 (∅,∅, ((), β) , ((), β)) (2,2 ∣ 1,0)
 (∅,∅,∅, ((), β, βα, βαβ)) (2,2 ∣ 1,1)

. An explicit formula for the Euler characteristic

Taking the formula for the Poincaré polynomial from Corollary .., one
obtains the Euler characteristic of the non-commutative Hilbert schemes as

PHilbd,n(Q) (1) = ∑
S∗∈Φd,n(Q)

12dimZS∗ = ∣Φd,n∣ ,

since all odd homology groups vanish as mentioned earlier. In [, Corol-
lary .] the author derives a formula for the Euler characteristic from this by
using a formular for the enumeration of “plain forests” from [, eorem
..] in the case of the m-loop quiver. However, in the general case this
method does not apply anymore in the same way. erefore in the follow-
ing an explicit formula for the Euler characteristics of the non-commutative
Hilbert schemes is given extending them-loop case in [, Corollary .].

Deĕnition .. For d ∈ N and variables x = (x1, . . . , xd) and k ∈ Nd deĕne
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powers

xd ∶=
d

∏
i=1
xdii .

For k,n ∈ Nd deĕne

(n
k
) ∶=

d

∏
i=1
(ni
ki
).

An easy consequence of that deĕnition is the following generalisation of the
usual binomial formula for variables x, y as in Deĕnition .. and n ∈ Nd:

(x + y)n =
n

∑
k=0
(n
k
)xkyn−k. (.)

Here the sum runs over all k ∈ Nd with 0 ≤ ki ≤ ni for i = 1, . . . , d and x + y
denotes the component-wise summation.
Let χ (Hilbd,n (Q)) denote the Euler characteristic of Hilbd,n (Q) and

write
Fn
Q (t) ∶= ∑

d∈N0 Q0

χ (Hilbd,n (Q)) td

for the generating functions of these Euler characteristics. ese are con-
sidered as formal power series in ∣Q0∣ variables with coefficients in Q. In
[, Corollary .] a fundamental equation for these generating functions in
the case ofQ = Lm is given, which we can now extend to the general case:

Proposition .. For n ∈ N0Q0 the formal power series Fn
Q (t) are the

uniquely determined elements of Q [[ZQ0]] satisfying the following func-
tional equations:

Fn
Q (t) = ∏

i∈Q0

F i
Q (t)

ni (n ∈ N0Q0) (.)

F i
Q (t) = 1 + ti ∏

j∈Q0

F j
Q (t)

ri,j (i ∈ Q0) . (.)
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where

ri,j ∶= ∣{α ∈ Q1 ∣ tα = i, hα = j}∣ (i, j ∈ Q0)

denotes the number of arrows inQ from i to j and i = (δi,j)j∈Q0
as a dimen-

sion vector.

P Comparing coefficients in (.), this equation is equivalent to the
following:

χ (Hilbd,n (Q)) = ∏
i∈Q0

ni

∏
j=1
∑
e

χ (Hilbei,j ,i)

such that ∑i,j ei,j = d. is corresponds directly to the decomposition of
each subforest of Fn (Q) of dimension type d into its components.
e second equation follows similarly from the decomposition of a tree

starting in i into the root i and the trees with one of the successors of i:

∑
d

χ (Hilbd,i (Q)) =∑
d

∣Φd,i∣ = ∣Φi,i∣
±
=1

+∑
d>i
∣Φd,i∣ ,

and for d > iwe can decompose any forest of dimension dwith root i into the
root and ri,j possibly empty subforests with root j for j ∈ Q0. Comparing
coefficients yields the desired equation. ◻

To derive a formula for the coefficients of the functions satisfying these
functional equations the multivariate Lagrange inversion is used following
[].

Deĕnition .. (Tree Derivation) Let D be a graph with ℓ ∶= ∣D0∣, x =
(x1, . . . , xℓ) a vector of variables and f = (f1, . . . , fℓ) ∈ Q [[X1, . . . ,Xℓ]]ℓ

a vector of formal power series.
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en the derivation of f byD is deĕned as

∂f

∂D
∶= ∏

j∈D0

⎛
⎜⎜
⎝
∏
α∈D1
tα=j

∂

∂xhα

⎞
⎟⎟
⎠
fj (x) .

In the situation of Deĕnition .. let [td] f denote the coefficient of td
in f .

eorem .. ([, eorem ]) Let g, f1, . . . , fℓ be formal power series in
x = (x1, . . . , xℓ) with fi (0) ≠ 0 for i = 1, . . . , ℓ. en the set of functional
equations

wi = tifi (w (t)) (i = 1, . . . , ℓ) (.)

uniquely determineswi as formal power series in t, and one has the following
equation for the coefficients of w = (w1, . . . ,wℓ):

[td] g (w (t)) = 1

∏ℓ
i=1 di

[td−1]∑
T

∂ (g, fd11 , . . . , fdℓℓ ) (t)
∂T

, (.)

where the sum runs over all trees T with T0 = {0,1, . . . , ℓ} and all edges
directed away from 0.

Let ℓ = ∣Q0∣. Comparing formula (.) and formula (.), one observes
thatF i satisĕes formula (.) if and only ifwi ∶= F i−1 satisĕes formula (.)
for

fi (x) ∶= ∏
j∈Q0

(1 + xj)ri,j .

Using formula (.) one has

Fn (t) = (w (t) + 1)n (.)=
n

∑
k=0
(n
k
)wk.
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us, in order to obtain a formula for the Euler characteristics, that is for
the coefficients of Fn, one has to set g (x) ∶= xn. en f (0) = 1 and thus
eorem .. can be applied to the situation and gives:

χ (Hilbd,n (Q)) =
n

∑
k=0
(n
k
) [td]wk (t)

=
n

∑
k=0
(n
k
) 1

∏ℓ
i=1 di

[td−1]∑
T

∂ (tk, fd11 (t) , . . . , f
dℓ
ℓ (t))

∂T
.

For the computation of the right hand side some calculations are necessary.
One has

⎛
⎝∏b∈Q0

∂

∂tb

⎞
⎠
f
dj
j (t) =

⎛
⎝∏b∈Q0

djrj,b

1 + tb
⎞
⎠ ∏c∈Q0

(1 + xc)djrj,c

⎛
⎝∏b∈Q0

∂

∂tb

⎞
⎠
tk =
⎛
⎝∏b∈Q0

kb
tb

⎞
⎠ ∏c∈Q0

tkcc .

To avoid confusion, in the following we will write aÐ→
T
b for arrows in T and

a→ b for those inQ. One has

∑
T

∂ (tk, fd11 (t) , . . . , f
dℓ
ℓ (t))

∂T

=∑
T
∏
a∈T0

⎛
⎜
⎝

⎛
⎜
⎝
∏

aÐ→
T

b

∂

∂tb

⎞
⎟
⎠
(tk, fd11 (t) , . . . , f

dℓ
ℓ (t))

⎞
⎟
⎠

=∑
T

⎛
⎜
⎝
∏
0Ð→
T

b

∂

∂tb

⎞
⎟
⎠
tk ⋅ ∏

a∈Q0

⎛
⎜
⎝
∏

aÐ→
T

b

∂

∂tb

⎞
⎟
⎠
fdaa (t)
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=∑
T

⎛
⎜
⎝
∏
0Ð→
T

b

kb
⎞
⎟
⎠
t
k−∑0Ð→

T
b b ⋅
⎛
⎜
⎝
∏
a∈Q0

∏
aÐ→
T

b

dara,b
⎞
⎟
⎠
(t + 1)

∑a∈Q0
(dara−∑aÐ→

T
b b)

=∑
T

⎛
⎜
⎝
∏
0Ð→
T

b

kb
⎞
⎟
⎠
t
k−∑0Ð→

T
b b ⋅
⎛
⎜
⎝
∏
a∈Q0

∏
aÐ→
T

b

dara,b
⎞
⎟
⎠
⋅

⋅
∑a∈Q0

(dara−∑aÐ→
T

b b)

∑
p=0

(∑a∈Q0
(dara −∑aÐ→

T
b b)

p
)tp

=∑
T

⎛
⎜
⎝
∏
0Ð→
T

b

kb
⎞
⎟
⎠

⎛
⎜
⎝
∏
a∈Q0

∏
aÐ→
T

b

dara,b
⎞
⎟
⎠
⋅

⋅
∑a∈Q0

(dara−∑aÐ→
T

b b)

∑
p=0

(∑a∈Q0
(dara −∑aÐ→

T
b b)

p
)t

p+k−∑0Ð→
T

b b
.

From here it is obvious that all summands will vanish where

• T has an arrow 0→ b with kb = 0 (note: 0 ≤ k ≤ n) or

• T contains an arrow a → b that cannot be found in Q1, since in that
case ra,b and hence the whole product will vanish.

erefore it is sufficient to sum over the spanning subtrees ofQ.
Taking the coefficient of td−1 here means choosing p such that

p + k − ∑
0Ð→
T

b

b = d − 1 ⇐⇒ p = d − k − ∑
0 /Ð→
T

b

b.

Since T can assumed to be a spanning tree of Q, one sees that the condi-
tion 0 /Ð→

T
b is equivalent to a Ð→

T
b for some a ∈ Q0. Hence this can be
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reformulated as
p = d − k − ∑

aÐ→
T

b

a∈Q0

b.

In the above formula the coefficient of td−1 has the form

n

∑
k=0
(n
k
) 1

∏i∈Q0
di
⋅

⋅∑
T

⎛
⎜
⎝
∏
0Ð→
T

b

kb
⎞
⎟
⎠

⎛
⎜⎜⎜⎜
⎝

∏
aÐ→
T

b

a∈Q0

dara,b

⎞
⎟⎟⎟⎟
⎠

∏
i∈Q0

⎛
⎜⎜
⎝

∑a∈Q0
(dara −∑aÐ→

T
b b)

d − k −∑aÐ→
T

b

a∈Q0

b

⎞
⎟⎟
⎠
,

with ra = (ra,b)b. is can be written as follows:

1

d1
∑
T

n

∑
k=0

⎛
⎜⎜
⎝
∏
0→b

nb(
nb − 1
kb − 1

)
⎛
⎜⎜
⎝

∑a∈Q0
(dara,b −∑aÐ→

T
c δb,c)

db − kb −∑aÐ→
T

c

a∈Q0

δb,c

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅

⋅

⎛
⎜⎜⎜⎜⎜
⎝

∏
aÐ→
T

b

a∈Q0

dara,b(
nb
kb
)

⎛
⎜⎜⎜⎜⎜
⎝

∑c∈Q0

⎛
⎜
⎝
dcrc,b −∑cÐ→

T
e

c∈Q0

δb,e
⎞
⎟
⎠

db − kb −∑cÐ→
T

e

c∈Q0

δb,e

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟
⎠

Using
n

∑
k=0
(a
k
)( b

c − k
) = (a + b

c
)

and setting formally r0,b ∶= nb for b ∈ Q0 and d0 ∶= 1 one obtains
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Proposition .. e Euler characteristic χ (Hilbd,n (Q)) can be written
as

∑
T

∏aÐ→
T

b dara,b

∏i∈Q0
di

( n +∑a∈Q0
dara − 1

d − 1 ) . (.)

where T is running over all spanning trees ofQ.

Remark .. In the case of them-loop quiver one has only one vertex and
thus exactly one spanning tree T ∶ 0 → 1. erefore the above formula
simplyĕes to

n

d
(md + n − 1

d − 1
) = n

(m − 1)d + n
(md + n − 1

d
),

which is exactly the formula given in [, Corollary .].
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 Chapter 

Borel-Moore Homology

is chapter contains a brief overview of a special homology theory which
is called Borel-Moore Homology. It is named aer Armand Borel and James
Moore who developed it in [].e facts presented here are based mostly on
[, chapters . and .] and sometimes also on [, Appendix B]. Facts about
homology used in this chapter can be found in [] and [].
If not mentioned otherwise all homology groups are with rational coeffi-
cients. All topological spaces in this chapter are assumed to be locally com-
pact spacesX with the homotopy type of a ĕniteCW -complex. ey should
admit a closed embedding into a countable at inĕnity C∞-manifold and
there should always be an open neighbourhood U ⊃ X such that X is a
homotopy retract of U . ese properties are always satisĕed for real and
complex algebraic varieties which will be our main target of interest.
In section . the general setting of a prominent application of this homology
theory is explained. Starting from the usual convolution product on sets and
the convolution by integration on smooth compact manifolds this approach
is translated and extended to the situation of varieties using Borel-Moore
homology. iswill later be used in chapter  to construct operators in Borel-
Moore homology of non-commutative Hilbert schemes.
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. Basic facts and properties

If not explicitly mentioned otherwise, we are using the usual C-topology
on manifolds in this section; nonetheless, all relevant statements can be ex-
pressed in the context of algebraic varieties using the Zariski topology instead
due to [].

Deĕnition .. (Borel-Moore Homology) For a topological space X , let
CBM
∗ (X) be the chain complex of inĕnite singular chains ∑∞i=0 aiσi where

ai ∈ C and σi is a singular simplex, and the sum is ĕnite in the following
sense: For any compact set D ⊂ X there are only ĕnitely many non-zero
coefficients ai such that D ∩ suppσi ≠ ∅. e usual boundary map ∂ on
singular chains is well-deĕned on this complex, too, because the faces of any
simplex are still subject to the same ĕniteness condition.
Deĕne the Borel-Moore homology as the homology groups of this complex:

H
BM
∗ (X) ∶= H● (CBM

∗ (X) , ∂) .

We see from this deĕnition, that for compact spaces the notions of singular
homology and Borel-Moore homology coincide.

Remark .. e following alternative deĕnitions are equivalent to Deĕn-
ition ..:

. Set HBM
∗ (X) ∶= H∗ (X̂,∞), where X̂ = X ∪ {∞} is the one-point

compactiĕcation ofX .

. For an arbitrary compactiĕcation X̄ of X such that (X̄, X̄ ∖X) is a
CW-pair, there is an isomorphism HBM

∗ (X) ≃ H∗ (X̄, X̄ ∖X).

Also the following lemma can serve as an equivalent deĕnition for Borel-
Moore homology groups:
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Lemma .. (Poincaré Duality) If X can be embededded into a smooth,
orientedmanifoldM of real dimensionm as a closed subsetwhich is a proper
deformation retract of another closed neighbourhood, thenwe have a canon-
ical isomorphism

H
BM
i (X) ≃ Hm−i (M,M ∖X) .

e conditions are satisĕed for example if X is a complex algebraic variety
andM is a smooth complex algebraic variety. In the light of this lemma we
can understand the relation between Borel-Moore homology and singular
cohomology to be the same as the relation between singular homology and
cohomology with compact support.

Lemma .. (Fundamental Class) A complex algebraic varietyX determ-
ines a fundamental class [X] in Borel-Moore homology.

IfX has irreducible componentsX1, . . . ,Xn, [X] is the sumof fundamental
classes∑n

i=1 [Xi].

Corollary .. Let X be a complex algebraic variety and U ⊂ X a closed
subvariety. en there is a fundamental class [U] ∈ HBM

dimR U
(X).

is fundamental class is deĕned to be the image of [U] ∈ HBM
dimR U

(U)under
the pushforward map coming from the inclusion ι∶U ↪X .

Lemma .. If an algebraic varietyX has a ĕltrationX = Xs ⊃ ⋅ ⋅ ⋅ ⊃ X0 =
∅ by closed algebraic subsets, such thatXi ∖Xi+1 is the disjoint union of af-
ĕne piecesUi,j ≃ Cn(i,j) for all i, then the fundamental classes of the closures
[Ui,j] form an additive base of the vector spaces HBM

∗ (X).
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In particular, ifX has an algebraic cell decomposition as in Deĕnition ..,
the fundamental classes of the cell closures form a basis of HBM

∗ (X).
In contrast to singular homology, Borel-Moore homology is not a covari-

ant functor with respect to regular maps. is can be seen by considering the
alternate deĕnition given above: One has to ensure that for a map f ∶X → Y
also the induced map f̂ ∶ X̂ → Ŷ with f̂ (∞) =∞ is continuous. is can be
guaranteed by restricting to proper maps:

Lemma .. (Proper Pushforward) Borel-Moore homology is a covariant
functor with respect to proper maps, that is for any proper map f ∶X → Y
there is a morphism in Borel-Moore homology

f∗∶HBM
∗ (X)→ H

BM
∗ (Y ) .

For a closed subvariety Z ⊂X this satisĕes

f∗∶ [Z]↦ [f (Z)] .

Since any proper algebraicmorphism is also a propermap inC-topology, this
lemma also holds in the context of algebraic varieties.

Lemma .. (Restriction) Let U ⊂ X be an open subset with inclusion
map ι∶U →X . en we have a natural restriction morphism

ι∗∶HBM
∗ (X)→ H

BM
∗ (U) .

Details about this and an alternative construction can be found in [].

Lemma .. (Long exact sequence) Let F ⊂X be a closed subset with the
complement U ∶=X ∖F ; write i∶F →X and j∶U →X for the correspond-
ing embeddings. Being a closed embedding i is in particular proper, so we
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have maps i∗ and j∗ as above. ey give rise to a long exact sequence:

⋅ ⋅ ⋅→ H
BM
p (F )

ipÐ→ H
BM
p (X)

jp

Ð→ H
BM
p (U)→ H

BM
p−1 (F )→ . . . .

Lemma .. (Smooth Pullback) LetX be a locally compact space and

p∶ X̃ →X

a locally trivial ĕbrationwith smooth oriented ĕberF , such that all transition
functions of the ĕbration preserve the orientation of the ĕber. In particular,
these conditions are satisĕed if p is Zariski locally trivial. en we have a
natural pullback morphism

p∗∶HBM
● (X)→ H

BM
●+dimR F

(X̃) .

is has the property that it restricts to the map c ↦ c × [F ] where the
product comes from the Künneth formula in Borel Moore homology on any
open subset U ⊂ X such that p∶p−1 (U) → U is trivial. at means for any
cartesian square

..

U × F

.

X̃

.U. X.

ĩ

.

π1

.

p

. i

the induced square commutes:
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..

H●+dimR F (U × F )

.

H●+dimR F (X̃)

.H● (U). H● (X).

ĩ∗

.

p∗

. i∗.

c↦ c × [F ]

Assume given spaces Z,S, S̃, a morphism f ∶Z → S and a Zariski locally
trivial morphism φ∶ S̃ → S with smooth ĕber. Set Z̃ ∶= Z ×S S̃ and form the
natural cartesian diagram

..

Z̃

.

Z

.̃S. S.

φ̃

.

f̃

.

f

. φ

en one has a well-deĕned pullback homomorphism

φ̃∗∶HBM
∗ (Z)→ H

BM
∗ (Z̃)

in Borel-Moore homology given by the smooth pullback.

Proposition .. (Base change) If furthermore f ∶Z → S is proper, then
also the following diagram commutes:

..

HBM
∗ (Z̃)

.

HBM
∗ (Z)

.HBM
∗ (S̃). HBM

∗ (S).

φ̃∗

.

f̃∗

.

f∗

. φ∗
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e proof of this can be found in [].

. Convolution products

Assume there are given three ĕnite setsM1,M2 andM3 and let C (M) be
the ĕnite dimensional vector space ofC-valued functions onM . Deĕne then
a convolution product:

f1,3 (m1,m3) = (f1,2 ∗ f2,3) (m1,m3)
∶= ∑

m2∈M2

f1,2 (m1,m2) ⋅ f2,3 (m2,m3)

for fi,j ∈ C (Mi ×Mj) andmi ∈ Mi. Switching from ĕnite sets to compact
oriented manifolds with C∞-functions the sum becomes an integral.
e goal of this section is to make a similar approach in Borel-Moore ho-

mology, that is to deĕne a map

H
BM
● (M1 ×M2)→ H

BM
●+k (N1,2)

for some k ∈ N. By setting P1,2 = M1 ×M2 ×N1,2 one can then obtain the
setting above as a special case. For this purpose assume a variety P1,2 such
that p1,2∶P1,2 →M1 ×M2 is a Zariski locally trivial morphism with ĕber F
and p̄1,2∶P1,2 → N1,2 a proper morphism. LetZ1 ⊂M1 andZ2 ⊂M2 be two
closed subvarieties. ey induce fundamental classes [Z1] ∈ HBM

dimR Z1
(M1)

resp. [Z2] ∈ HBM
dimR Z2

(M2) according to Lemma ... en for U open
withM1 ×M2 ⊂ U such that p1,2 ∣U is trivial, Lemma .. gives that p∗1,2
satisĕes:

p∗1,2 ∶ [Z1] × [Z2] = [Z1 ×Z2]↦ [Z1 ×Z2] × [F ] = [Z1 ×Z2 × F ] .
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Since p̄1,2 was assumed to be proper, according to Lemma .. there is a
natural morphism

(p̄1,2)∗ ∶H
BM
● (P1,2)→ H

BM
● (N1,2)

satisfying

(p̄1,2)∗ ∶ [Z1 ×Z2 × F ]↦ [p̄1,2 (Z1 ×Z2 × F )] .

To show that the so deĕned convolution product is associative we have to
prove that

. in diagram in Figure . there exists an isomorphism from the top to
the bottom making this diagram commutative, and that

. also the induced diagram in Borel-Moore homology commutes.

Here the top square and the bottom square are ĕbre products.
e ĕrst claim can be proved in a straightforward way by diagram chase.

All one has to do is to give an isomorphism

p∶P1,2 ×M3 ×N1,2×M3 P1,2;3 →M1 × P2,3 ×M1×N2,3 P1;2,3

such that

p̄1;2,3 ○ π̄2 ○ p = p̄1,2;3 ○ π2 and
id×p2,3 ○ π̄1 ○ ps = p1,2 × id ○π1.

Given that this isomorphism p exists, the second item on the list can be
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Figure .: Associativity of a convolution product in Borel-Moore homology

..M1 ×M2 ×M3

.

P1,2 ×M3

.
N1,2 ×M3

.

P1,2;3

. N1,2,3.

P1,2 ×M3 ×N1,2×M3 P1,2;3

.

M1 × P2,3

.
M1 ×N2,3

.

P1;2,3

.

M1 × P2,3 ×M1×N2,3 P1;2,3

.
p1,2 × id

.

p̄1,2 × id

.

p1,2;3

.

p̄1,2;3

.

π1

.

π2

.

id×p2,3

.

id×p̄2,3

.

p1;2,3

.

p̄1;2,3

.

π̄1

.

π̄2





proved as follows:

(p̄1,2;3)∗ (p1,2;3)
∗ (p̄1,2 × id)∗ (p1,2 × id)

∗

= (p̄1,2;3)∗ (π2)∗ (π1)
∗ (p1,2 × id)∗

= (p̄1,2;3π2)∗ ((p1,2 × id)π1)
∗

= (p̄1;2,3π̄2p)∗ ((id×p2,3) π̄1p)
∗

= (p̄1;2,3)∗ (π̄2)∗ p∗p
∗ (π̄1)∗ (id×p2,3)∗

= (p̄1;2,3)∗ (π̄2)∗ (π̄1)
∗ (id×p2,3)∗

= (p̄1;2,3)∗ (p1;2,3)
∗ (id×p̄2,3)∗ (id×p2,3)

∗

using p∗p∗ = id, since p is an isomorphism, given π1 and p1,2× id are Zariski
locally trivial and π2 and p̄1,2;3 proper. e respective conditions have to be
satisĕed for the lower half of the diagram.
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 Chapter 

Operators on Hilbert
Schemes

Mathematical science is in my
opinion an indivisible whole, an
organism whose vitality is
conditioned upon the connection
of its parts.

(D H)

is chapter gives an application of the techniques presented in chapter  to
the non-commutativeHilbert schemes constructed in chapter  in the special
case of them-loop quiver Lm. e operators deĕned here on the nilpotent
non-commutative Hilbert schemes can be used for an implementation of a
Fock space. is is in analogy of the construction by Hiraku Nakajima in
[] for Hilbn (A2) where the result is a Heisenberg algebra.
We will restrict to the nilpotent Hilbert schemes which will be introduced
ĕrst. e reason for this restriction can be seen in the proof of Lemma ...
Furthermore, we give a description of the cell closures for the nilpotent non-
commutative Hilbert schemes.



. Nilpotent Hilbert Schemes

Recall the deĕnition of the non-commutative Hilbert schemes from Deĕni-
tion ...

Deĕnition .. (Nilpotent Hilbert Scheme) Let (Q,d,n) be some quiver
datum. e nilpotent Hilbert scheme Hilb0d,n (Q) consists of those points
(M,f) ∈ Hilbd,n (Q) such thatMw is nilpotent for all cycles w inQ.

Equivalently, Hilb0d,n (Q) can be deĕned as the zero ĕbre of the Hilbert-
Chow morphism

π∶Hilbd,n (Q)→M sst
d (Q) , (M,f)↦M

which is projective (c. f. []). Here M sst
d (Q) ∶= R

sst
d (Q) /GLd, where we

denote by Rsst
d (Q) the variety of semistable representations of dimension

type d of Q. erefore the nilpotent Hilbert schemes are projective, but not
necessarily smooth.
e nilpotent Hilbert schemes Hilb0d,n (Q) are covered by open subsets

U0
S∗

for a subforest S∗ of Fn (Q) with

U0
S∗ ∶= {(M,f) ∈ Hilb0d,n (Q) ∣ (.)} .

Unlike the situation for the usual non-commutative Hilbert schemes which
is described in Lemma .., in the nilpotent case the sets U0

S∗
are not ne-

cessarily isomorphic to affine spaces as the following example illustrates:

Example .. LetQ ∶= L2 be the 2-loop quiver and S∗ be the tree

....





enM ∈ U0
S∗

has the form

Mα =
⎛
⎜
⎝

0 0 0
1 λa λb
0 λc λd

⎞
⎟
⎠
, Mβ =

⎛
⎜
⎝

0 0 0
0 µa µb
1 µc µd

⎞
⎟
⎠

where ( a b
c d ) is nilpotent and λ,µ ∈ C.

is can be seen as follows: For (M,f) ∈ U0
S∗

we can assumeM to be of
the form

Mα =
⎛
⎜
⎝

0 a d
1 b e
0 c f

⎞
⎟
⎠

Mβ =
⎛
⎜
⎝

0 g j
0 h k
1 i ℓ

⎞
⎟
⎠
.

Since all cycles have to be nilpotent, this implies especially that both of these
matrices have to be nilpotent. But that is equivalent to the condition that the
characteristic polynomial is of the form

det (λE −Mα) = λ3 = det (λE −Mβ) .

From this condition we can deduce immediately

b = −f, −b2 = ce + a, cd + af = 0,
h = −ℓ, −h2 = ik + g, ij + gℓ = 0.

Furthermore, the second or third column vector of any of thesematrices have
to vanish underMα andMβ , since they can be written as a word of length
two applied to f (1). at yields

0 =Mα ⋅
⎛
⎜
⎝

a
b
c

⎞
⎟
⎠
=
⎛
⎜
⎝

ab + cd
a + b2 + ce
bc + cf

⎞
⎟
⎠
, (.)

0 =Mα ⋅
⎛
⎜
⎝

d
e
f

⎞
⎟
⎠
=
⎛
⎜
⎝

ae + df
d + be + ef
ce + f2

⎞
⎟
⎠

(.)
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and analogously forMβ instead ofMα or the column vectors ofMβ instead
of those ofMα.
e second row in formula (.) implies 0 = d + be + ef = d + be − be = d
using b = −f from above. Similarly the ĕrst row of formula (.) implies
0 = ab + cd = ab and thus a = 0 or b = 0, but b = 0 implies c = 0 or e = 0
using the third row of formula (.) and hence also a = 0 using −b2 = ce+ a.
Analogously one obtains g = j = 0. It is now clear that b e

c f has to be a
nilpotent matrix so as h k

i ℓ , since now we know thatMαf andMβf span a
subrepresentation.
Since all cycles have to be nilpotent, the two nilpotent submatrices obvi-

ously have to be proportional.

However, the following is easy to see:

Lemma .. e nilpotent Hilbert schemes have a cell decomposition and
the cells are given as

Z0
S∗ ∶= {(M,f) ∈ U0

S∗ ∣ (.)}

with

Mwfq (vq,i) ∈ ⟨Mw′fq′ (vq′,i′)⟩(q,i,w)>(q′,i′,w′)∈S∗
(q′,i′,w′)⊀(q,i,w)

h(w)=h(w′)

((q, i,w) ∈ C (S∗)) .

(.)

P Assume this condition does not hold. Let (M,f) ∈ Z0
S∗

and choose
(q̄, ī, w̄) ∈ C (S∗)minimal with

M(q̄,̄i,w̄)f = ∑
(q,i,w)∈S∗

µ(q̄,̄i,w̄),(q,i,w)M(q,i,w)f
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such that µ(q̄,̄i,w̄),(q,i,w) ≠ 0 for some predecessorw << w̄ of w̄ with h (w) =
h (w̄) and q̄ = q, ī = i.
For such (q, i,w) let j ((q̄, ī, w̄) , (q, i,w)) denote the point given by

(q, i,wj ((q̄, ī, w̄) , (q, i,w))) = (q̄, ī, w̄) .

Let p (w̄) denote the maximal predecessor of w̄, that is w̄ = p (w̄)α for some
α ∈ Q1. Choose w′ such that

j′ ∶=j ((q̄, ī, w̄) , (q̄, ī, w′))
=min{j ((q̄, ī, w̄) , (q̄, ī, w)) ∣ w << w̄, µ(q̄,̄i,w̄),(q̄,̄i,w) ≠ 0} .

en by the minimality condition of w′ and (q̄, ī, w̄) and the deĕning con-
dition of ZS∗ one has

Mj′M(q̄,̄i,w̄)f = ∑
S∗∋(q,i,w)<(q̄,̄i,w̄)

µ′(q̄,̄i,w̄),(q,i,w)M(q,i,w)f

where µ′(q̄,̄i,w̄),(q̄,̄i,w̃′) ≠ 0 for

w̃′ ∶=min{w << w̄ ∣ µw̄,w ≠ 0} .

By assumption such a w̃′ does always exist.
Choose w′′ such that

j′′ ∶=j ((q̄, ī, w̄) , (q̄, ī, w′′))

=min{j ((q̄, ī, w̄) , (q̄, ī, w)) ∣ w << w̄, µ′(q̄,̄i,w̄),(q̄,̄i,w) ≠ 0} .

and obtain coefficients µ′′ and w̃′′ from replacingMj′ byMj′j′′ such that

µ′′(q̄,̄i,w̄),(q̄,̄i,w̃′′) ≠ 0.
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Continuning inductively gives a cycle j = j′j′′ . . . such that

M ℓ
jM(q̄,̄i,p(w̄))f ≠ 0 (ℓ ∈ N) .

But that contradicts the nilpotency of (M,f) we assumed. Note that this
cycle is ĕnite due to the deĕning condition of ZS∗ and since (q̄, ī, w̄) has
only ĕnitely many predecessors. erefore the assumption was wrong and
Z0
S∗

has the form claimed above. ◻

e setsZ0
S∗

are isomorphic to affine spaces as in the case mentioned before;
this follows because Z0

S∗
arises from ZS∗ by setting a ĕxed set of coordinates

to zero, which can be seen by comparing formula (.) and formula (.).
Also in this case the formula

Z0
S∗ = U

0
S∗ ∖ ⋃

S′∗<S∗
U0
S′∗

holds: ZS∗ = US∗ ∖⋃S′∗<S∗ US′∗
implies

Z0
S∗ =ZS∗ ∩Hilb0d,n (Q)

=
⎛
⎝
US∗ ∖ ⋃

S′∗<S∗
US′∗

⎞
⎠
∩Hilb0d,n (Q) = U

0
S∗ ∖ ⋃

S′∗<S∗
U0
S′∗
.

is means that the combinatorics of the cells is the same as in the general
case described in chapter .
For a subforest S∗ ∈ Φd,n (Q) deĕne a quiverQ (S∗) consisting of

• verticesQ (S∗)0 ∶= (S∗)0 and

• arrows α(q,i,w),(q′,i′,w′)∶ (q, i,w)→ (q′, i′,w′) if

– q = q′, i = i′ and w′ = wα for some α ∈ Q1,
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– wα ∈ C (S∗) for some α ∈ Q1 with h (w) = h (w′) and

(q′, i′,w′) < (q, i,w) , (q′, i′,w′) ⊀ (q, i,w) .

For dimension vectors d,n ∈ NQ deĕne dimension vectors d̃ and ñ for
Q (S∗) by setting

d̃(q,i,w) ∶= 1 ((q, i,w) ∈ S∗) ,
ñ(q,i,w) ∶= δw,() ((q, i,w) ∈ S∗) .

Q (S∗) contains no oriented cycles because arrows to predecessors are expli-
citely excluded, hence the nilpotency condition is empty, therefore all rep-
resentations ofQ (S∗) are nilpotent.
e setRd̃,ñ (Q (S∗)) consists of tuples of scalars

(λα,(q,i,w),(q′,i′,w′), ϕ(q,i,())) ,

where the ĕrst tuple runs over all arrows inQ (S∗) and the second one over
those tuples (q, i) where S(q,i) ≠ ∅. Formally we set ϕ(q,i,()) = 0 if Sq,i = ∅.
OnRd̃,ñ (Q (S∗)) one has an operation of the group

GLd̃ (Q (S∗)) = ∏
(q,i,w)∈S∗

GL1 .

LetMj for j ∈ Q0 be the vector space with basis vectors

(m(q,i,w))(q,i,w)∈S∗
h(w)=j

,

and Vj the vector space given by basis vectors

(vj,i)i=1,...,nj
.
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Deĕne a map

σ∶Rd̃,ñ (Q (S∗))→ Rd,n (Q) , σ (p) ∶= (M,f)

with

Mα (m(q,i,w)) ∶= ∑
Q(S∗)1∋α(q,i,w),(q′,i′,w′)

λ(q,i,w),(q′,i′,w′)m(q′,i′,w′)

and
fq (vq,i) ∶= ϕq,im(q,i,()).

It is easy to see that σ is injective.
GLd̃ (Q (S∗)) can be embedded intoGLd (Q) by setting

g ⋅m(q,i,w) = g(q,i,w)m(q,i,w) (g = (g(q,i,w))(q,i,w)∈S∗) .

Here g is invertible, since g(q,i,w) ∈ GL1.

Lemma .. emap σ deĕned above isGLd̃ (Q (S∗))-invariant.

P Let p ∈ Rd̃,ñ (Q (S∗)) be given by

((λ(q,i,w),(q′,i′,w′)) , (ϕ(q,i))) .

en for g ∈ GLd̃ (Q (S∗)) one has

g ⋅ p = ((g(q′,i′,w′)λ(q,i,w),(q′,i′,w′)g−1(q,i,w)) , (g(q,i,())ϕ(q,i))) .

Hence (M̃, f̃) ∶= σ (gp) is given by

f̃q (vq,i) = gq,i,()ϕq,im(q,i,()) = g ⋅ fq (vq,i)
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and

M̃α (m(q,i,w))
= ∑

Q(S∗)1∋α(q,i,w),(q′,i′,w′)
h(α)=h(w′)

g(q′,i′,w′)λ(q,i,w),(q′,i′,w′)g
−1
(q,i,w)m(q′,i′,w′)

= ∑
Q(S∗)1∋α(q,i,w),(q′,i′,w′)

h(α)=h(w′)

g(q′,i′,w′)λ(q,i,w),(q′,i′,w′)m(q′,i′,w′)g
−1
(q,i,w)

= g ∑
Q(S∗)1∋α(q,i,w),(q′,i′,w′)

h(α)=h(w′)

λ(q,i,w),(q′,i′,w′)m(q′,i′,w′)g
−1
(q,i,w)

= gMαg
−1 (m(q,i,w)) . ◻

Let w̄ = α1 . . . αk be an oriented cycle in Q and (M,f) = σ (p) as above.
en one has

Mw̄ (m(r,j,x)) =∑
w̄′

k

∏
ℓ=1
λαℓ,(qℓ,iℓ,wℓ),(qℓ+1,iℓ+1,wℓ+1)m(qk+1,ik+1,wk+1),

where the sum runs over all words

w̄′ = (α1)(q1,i1,w1),(q2,i2,w2) . . . (αk)(qk,ik,wk),(qk+1,ik+1,wk+1)

inQ (S∗) with (q1, i1,w1) = (r, j, x). By deĕnition ofQ (S∗) one has

(r, j, x) ≺ (qk+1, ik+1,wk+1) or
(qk+1, ik+1,wk+1) < (r, j, x) , and (qk+1, ik+1,wk+1) ⊀ (r, j, x)

for allm(qk+1,ik+1,wk+1) with non-vanishing coefficient. Hence by reordering
the basis vectors according to this condition, one sees that the matrix repres-
entingMw is similar to an upper triangular matrix and thusMw is nilpotent.
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us the composition of σ with the quotient map

Rst
d,n (Q)→ Hilbd,n (Q)

isGLd̃ (Q (S∗))-invariant and therefore induces a map

φ∶Hilb0
d̃,ñ
(Q (S∗))↪ Hilb0d,n (Q) .

is gives a description of the closures of the cells as follows:

Proposition .. Let d,n ∈ NQ and S∗ ⊂ Fn (Q) be a subforest. en we
have

Z0
S∗
≃ Hilb0d(S∗),n(S∗) (Q (S∗)) .

P Both Hilb0d,n (Q) as well as Hilb0d(S∗),n(S∗) (Q (S∗)) contain a cell
Z0
S∗

andσmaps these cells onto each other. e isomorphismof cells extends
to an embedding of projective varieties as mentioned above

Hilb0d(S∗),n(S∗) (Q (S∗))↪ Hilb0d,n (Q) .

By construction, Hilb0
d̃,ñ
(Q (S∗)) contains Z0

S∗
as the generic cell, hence

the closure isHilb0
d̃,ñ
(Q (S∗)). us, the image of this projectivemorphism

is closed and irreducible due to [] and contains Z0
S∗
. erefore this is the

closure of Z0
S∗
. ◻

. Convolution Operators

From now on we shall restrict to the special class of quivers Q = Lm and
n = 1; in this case f amounts to the choice of a vector in the representa-
tion. To implement the convolution operators using the setup presented in
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chapter  one has to deĕne a variety in the products of Hilbert schemes with
morphisms to each component. at is

Pd,e ⊆ Hilb0d (Q) ×Hilb
0
d+e (Q)

such that in

..Hilb0d (Q) .

Pd,e

. Hilb0d+e (Q).

π1

.

π2

the projection onto the second component π2 ∣Pd,e
is proper and the projec-

tion onto the ĕrst component π1 ∣Pd,e
is Zariski locally trivial. At this point

one of the reasons for the restriction to nilpotent non-commutative Hilbert
schemes becomes obvious: is guarantees that π2 is projective and there-
fore proper, which is the statement of Lemma ...
Let

Pd,e ∶= {(
(M,f)
(L,h) ) ∣ (.)} ⊆ Hilb0d (Q) ×Hilb

0
d+e (Q) (.)

subject to the condition
I (L) ⊂ I (M) . (.)

One can immediately see that in this settingL has some subrepresentation
N of dimension e, such that L /N ≃ M . is shows that forM ∈ U0

S∗
the

elements (Lwh)w∈S∗ are linearly independent, so according to Lemma..
there exists a tree extension S̄∗ of S∗ such that L ∈ U0

S̄∗
.

Lemma .. e set Pd,e deĕned above is closed.
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P Consider the set P̄d,e of representations of Q of dimension vector d
resp. d + e satisfying formula (.). is is closed in Rd (Q) ×Rd+e (Q) ac-
cording to [, Lemma .]. Adding an additional vector to each representa-
tion and reducing to the case where these vectors are stable for the respective
representations gives a closed set

P̃d,e ∶= {((M,f) , (L,h)) ∣ I (L,h) ⊆ I (M,f)} ⊆ Rst
d ×R

st
d+e.

is is stable under the action of GLd ×GLd+e, hence the quotient Pd,e is
closed. ◻

Example .. LetQ = L2 and

Mα =Mβ = (0) ,

en P1,2 = Hilb01 (Q) ×Hilb03 (Q). Note however, in general it is not true
that inclusion from (.) is an equation.

eorem .. e projection

π1∶Pd,e → Hilb0d (Q)

is a Zariski locally trivial morphism.

P Let (M,f) , (M ′, f ′) ∈ U0
S∗

and (L,h) ∈ FM . Denote by FM ∶=
π−11 (M,f) the ĕbre of π1 over (M,f). By deĕnition I (L,h) is a subideal
of I (M,f), thus there is a subrepresentation N of L such that L can be
written as

L = (M 0
X N

) .

Deĕne L′ ∈ Hilb0d+e by

L′ ∶= (M
′ 0

X N
) .
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is implies I (L′, h) < I (M ′, f ′) and I (L′, h) has codimension e. Since
L is nilpotent, the same holds forN . By deĕnition alsoM ′ is nilpotent and
therefore any matrix consisting of the columns of L′ as one can easily see by
multiplication of block matrices. us one obtains (L′, h) ∈ Hilb0d+e (Q).
Also the stability ofL′ follows from the stability ofLwith an argument that

is to some extent similar to Lemma ... e difference is that here we do
not a priori have the stability condition, in fact, as we prove the stability here
it turns out to be the same argument. Starting with (M,f) , (M ′, f ′) ∈ U0

S∗
,

one has a linearly independent system (Lwh)h∈S∗ . Assume (L,h) ∈ U0
R∗

for
someR∗ with subtree S∗ and deĕne

Vw ∶= {w′ ∈ R∗ ∣ w′ < w} ∪ S∗ (w ∈ R∗)

and
w̃ ∶=min{w′ ∈ R∗ ∣ L′w′h ∈ ⟨L′w′′h⟩w′′∈Vw′

} .

If no such w̃ exists, then also L′ has a basis of type R∗, so we have (L′, h) ∈
U0
R∗

.
Otherwise (Lw̃h −L′w̃h) ∈ ⟨Lwh⟩w∈S∗ by deĕnition of L′, and thus

⟨L′wh⟩w∈Vw̃∪{w̃}
= ⟨Lwh⟩w∈Vw̃∪{w̃} .

But this gives a contradiction between the deĕnition of w̃ and (L,h) ∈ U0
R∗

,
since the latter requires the le hand side to be linearly independent, whereas
the ĕrst one requires the opposite for the right hand side. But both sides
contain the same number of vectors.
us ((M ′.f ′) , (L′, h)) ∈ Pd,e. is gives a map

φM ′

M ∶FM → FM ′ , ((M,f) , (L,h))↦ ((M ′, f ′) , (L′, h)) .

Obviously this is an isomorphism, too, since the inverse map is given byφM
M̄
.
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Because Hilb0d (Q) is covered by open sets U0
S∗

we have a commutative
diagram

..

π−11 (U0
S∗
)

.

U0
S∗
× F

.U0
S∗
.

π1

.

∼

.
p1,2

is proves that π1 is Zariski locally trivial. ◻

Lemma .. e projection

π2∶Pd,e → Hilb0d+e (Q)

onto the third factor is proper.

P is is evident from the fact, that π2 is a morphism between pro-
jective varieties, and hence projective. But projective morphisms are always
proper (c. f. [, eorem II..]). ◻

Lemma .. e morphism π2∶Pd,e → Hilb0d+e (Q) is generically a bijec-
tion.

P Assume L ∈ Z0
T∗
, then L contains an e-dimensional subrepresent-

ation N spanned by the basis vectors corresponding to the e vertices con-
structed as follows:
Start with the minimal vertex w ∈ T∗ such that wα ∈ C (T∗) for all α ∈ Q1.
If e = 1, the corresponding base vector spans a one-dimensional subrepres-
entation. Otherwise assume w = w̄ᾱ for some ᾱ ∈ Q1. Let β be minimal
with respect to the property w̄β ∈ T∗, β > ᾱ. Add w̄βw′ where w′ is min-
imal with respect to the property that w̄βw′γ ∈ C (T∗) for all γ ∈ T∗, or
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if no such β exists add w̄, and obtain a two-dimensional subrepresentation
spanned by the corresponding base vectors. Continuing analogously for e
steps. By the deĕning condition of Z0

T∗
, this yields a subrepresentationN of

L. Note that this holds only for the nilpotent case, otherwise the existence of
a subrepresentation cannot be guaranteed!
LetM ∶= L /N with f (v) ∶= h (v) +N . at shows (M,L) ∈ Pd,e.
is proves that π2 is generically surjective. On the other hand we can see

that π2 is generically injective, since in the generic case there exists at most
one subrepresentation of dimension e. ◻

Deĕnition .. (Tree Graing) Let S∗, S′∗ ∈ F1 (Lm) be two trees. Deĕne
a tree S∗ ⋋S′∗ ∈ F1 (Lm) by the following: For (S∗)0 = {w1, . . . ,wℓ},
(S′∗)0 = {w′1, . . . ,w′ℓ′} and w̄ ∶=min{w ∈ C (S∗)} set

(S∗ ⋋S′∗)0 ∶= (S∗)0 ∪ {w̄w
′
1, . . . , w̄w

′
ℓ′}

and deĕne arrows

. α∶w → w′ for α ∈ (Lm)1, w,w′ ∈ S∗ and w′ = wα,

. α∶ w̄w → w̄w′ for α ∈ (Lm)1, w,w′ ∈ S′∗ and w′ = wα,

. α∶w → w̄ if w̄ = wα.

Example .. e following table illustrates the graing of trees:
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S∗ S′∗ S∗ ⋋S′∗
... ...

.....

{(), β} {(), β} {(), α,αβ, β}

..
....

.....

{()} {(), α, β} {(), α,α2, αβ}

....
..

.....

{(), α, β} {()} {(), α,α2, β}

Denote by T e
∗ ∶= ((), α1, . . . , α

e−1
1 ) the minimal subtree of F1 (Lm) with

e vertices. If L ∈ Z0
S∗ ⋋T e

∗
, then the vertices in (S∗ ⋋T e

∗) ∖ S∗ span a sub-
representation as mentioned in the proof of Lemma ... Let w̄ be the min-
imal vertex in this set, then w̄ ∈ C (S∗) and because of the deĕning condi-
tion of Z0

S∗
and the deĕnition of S∗ ⋋T e

∗ one hasMw̄ = 0 in the quotient as
above. Furthermore, for w ∈ C (S∗ ⋋T e

∗) ∖C (S∗) with Lw = ∑w′ λw,w′w
′

it follows that w̄ ≺ w′ if λw,w′ ≠ 0 because of the deĕning condition of
Z0
S∗ ⋋T e

∗
. Moreover, it is clear that w̄ ≺ w′ for all w′ ∈ (S∗ ⋋T e

∗) ∖ S∗ and
w ∈ C (S∗ ⋋T e

∗) ∩ C (S∗) with λw,w′ ≠ 0. Hence I (L) is a subideal of
I (M) andM ∈ Z0

S∗
.

Lemma .. Under the composition π2 ○ π−11 the closure of the cell Z0
S∗

is
mapped to the closure of the cell associated to the tree S∗ ⋋T∗ which is ob-
tained by identifying () ∈ T∗ = {(), α1, . . . , α

e−1
1 } withmin{w ∈ C (S∗)}.

P For L ∈ Z0
S∗ ⋋T e

∗
there existsM ∈ Z0

S∗
with (M,L) ∈ Pd,e as shown

above.
Since π2 is proper, it follows that π2 ○π−11 (Z0

S∗
) is closed. erefore using

the above it contains Z0
S∗ ⋋T e

∗
.
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On the other hand for M ∈ Z0
S∗
≃ Hilb01 (Q (S∗)) any L ∈ Hilb0d+e (Q)

with I (L) < I (M) is a representation of Q (S∗ ⋋T e
∗) of dimension type

d̃ + e and thus an element of Hilb0
d̃+e (Q (S∗ ⋋T

e
∗)), since this contains all

equivalence classes (M,f) of dimension d+ewhere (Mwf)w∈S∗ are linearly
independent. Using the embedding σ this corresponds to Z0

S∗ ⋋T e
∗
. Hence

π2 ○ π−11 (Z0
S∗
) ⊆ Z0

S∗ ⋋T e
∗
and therefore

π2 ○ π−11 (Z0
S∗
) = Z0

S∗ ⋋T e
∗
. ◻

From this setting one obtains operatorsGe for e ∈ N on

⊕
d∈N

H
BM
∗ (Hilb0d (Lm)) by means of

Ge∶ [Z0
S∗
]↦ [π2 ○ π−11 (Z0

S∗
)] = [Z0

S∗ ⋋T e
∗
] .

ese will be called operators of degree e.
e dual operatorsG−e can be deĕned as

G−e [Z0
S∗
] =
⎧⎪⎪⎨⎪⎪⎩

[Z0
S′∗
] if S∗ = S′∗ ⋋T e

∗

0 otherwise.

ey satisfy

Ga ○Gb =
⎧⎪⎪⎨⎪⎪⎩

Ga+b for sgna = sgn b or b ≥ 0,
Ga+b ○ Fb for a ≥ 0, b < 0.

whereFb is deĕned as follows: LetQ1 = {α1 < ⋅ ⋅ ⋅ < αℓ} and forS∗ ∈ F1 (Q)
let p (S∗) ∶=max{p ∈ N ∣ αp

1 ∈ S∗}. en

Fb ([ZS∗])

∶=
⎧⎪⎪⎨⎪⎪⎩

[ZS∗] if {αr
1αs ∣ s > 1, p (S∗) − ∣b∣ < r ≤ p (S∗)} ⊆ C (S∗)

0 otherwise
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Hence one also has

(Ga ○Gb) ○Gc = Ga+b ○Gc = Ga+b+c = Ga ○ (Gb ○Gc)

for all a, b, c ∈ Z. us they form a monoid with the neutral elementG0.

. Open Question

e open question in this setting is the following: Is it possible to modify
Pd,e to a Zariski-closed set

Pd,e ⊆ Hilb0d (Q) ×Hilb0e (Q) ×Hilb0d+e (Q)

such that for the projections

..Hilb0d (Q) ×Hilb0e (Q) .

Pd,e

. Hilb0d+e (Q).

π1,2

.

π3

π1,2 is Zariski locally trivial, π3 is proper and

π3 ○ π−11,2 (ZS∗ ×ZT∗) = ZS∗ ⋋T∗? (.)

Under this assumption one would obtain using the results from chapter 

Proposition .. ere is a natural convolution product in Borel-Moore
homology:

H
BM
∗ (Hilb0d (Q)) ×H

BM
∗ (Hilb0e (Q))→ H

BM
∗ (Hilb0d+e (Q)) .
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Applying formula (.) to this product gives

Proposition .. e convolution product from Proposition .. can be
calculated in terms of fundamental classes associated to the cell closures:

[Z0
S∗
] × [Z0

T∗
] = [Z0

S∗ ⋋T∗] .

In this case the result would be a geometric realisation of an algebra with a
convolution product whose combinatorial data arises from the tree structure
of the cells. Some purely combinatorial aspects of this algebra can be found
in chapter .

Conjecture .. LetQ = Lm be them-loop quiver. en

C(m) ∶=⊕
d∈N

H
BM
∗ (Hilb0d (Q))

is an associative graded algebra where the product is given by the convolu-
tion product deĕned in Proposition ... It will be called the convolution
algebra of the nilpotent Hilbert scheme.

Assuming this, the following is easy to obtain:

Corollary .. LetQ1 = {α1 < ⋅ ⋅ ⋅ < αm}. As an algebraC(m) is generated
by the fundamental classes corresponding to trees S∗ such that α1 ∉ S∗.

P is is obvious from the deĕnition of S∗ ⋋T∗. ◻

C(m) also has another grading given by the dimensions of the cells; this
makes C(m) a bigraded algebra as follows:

C(m) =⊕
d∈N

C
(m)
d =⊕

d∈N

d(d−1)
⊕
i=0

C
(m)
d,i
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where
C
(m)
d,i = ⟨[ZS∗] ∣ dimZS∗ = i⟩ .

e convolution is compatible with that grading, that is it can be written as

∗∶C(m)d,i ×C
(m)
e,j → C

(m)
d+e,i+j+k

for some k ∈ N.
In eorem .., even a third grading on C(m) is derived from an iso-

morphism between C(m) and the tensor algebra of a shied (m − 1)-fold
product of C(m).
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 Chapter 

Applications

e greatest mathematicians, as
Archimedes, Newton and Gauß,
always united theory and
applications in equal measure.

(F K)

In this chapter we give an algebraic realisation of the functional equations
for the Euler characteristic presented in chapter . Using the conjecture from
chapter , section . becomes a statement about the internal structure of the
convolution algebra of non-commutative Hilbert schemes.
Furthermore, we present a link between the algebra structure on a vector
space with a basis given by trees and non-commutative Invariant eory. In
particular, this applies to the convolution algebra conjectured in chapter : In
section . it is proved that the convolution algebras are isomorphic to certain
cable algebras. is comes from a combinatorial bijection between m-ary
trees and cable diagrams which can be found in [], where both classes of
objects are stated to parametrise the Catalan numbers.



. The Cable Algebra

.. Cable Diagrams

Deĕnition .. (m-ary arc) Anm-ary arc is a line connectingm vertices,
such that each vertex is passed exactly once.

Deĕnition .. (Cable Diagram) Let d,m ∈ N and deĕne anm-ary cable
diagram of weight d to consist of dm vertices connected by d m-ary arcs
without intersections such that each vertex is hit by exactly one arc.
Denote by∆m

d the sets of allm-ary cable diagrams of weight d.

Example .. Let m = 2 and d = 3. en there are the following cable
diagrams:

....... .......

....... ....... .......

Deĕnition .. Deĕne the so called cable algebraDm as a vector space by

Dm ∶=
∞
⊕
d=0

C∆m
d ,

whereCM denotes the vector space spanned by basis elementsm ∈M . is
becomes an algebra by means of the non-commutative multiplication

∗∶Dm
d ×D

m
e →Dm

d+e

which can be deĕned using the following operation on the basis elements:
For cd ∈ ∆m

d and ce ∈ ∆m
e let cd ∗ ce be the diagram in ∆m

d+e obtained by
concatenating cd and ce to a new diagram cdce.
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Example .. ere are the following convolution products in degree  and
:

... × ... = .....

... × ..... = .......

... × ..... = .......
..... × ... = .......

..... × ... =.......

Remark .. It is easy to see that Dm is generated as an algebra by those
diagrams with anm-ary arc including the ĕrst and the last vertex.

.. Tree Diagrams

Let Tm
d be the set ofm-ary trees with d vertices for d,m ∈ N. As in Deĕn-

ition .. denote by C (T ) the corona of a tree T . In an m-ary tree each
vertex x hasm potential successors, the set C (x) of which will be denoted
as the corona of this vertex.
e following is easy to see:

C (T ) = ⋃
x∈T0

C (x) ∖ T0.

Deĕnition .. Deĕne a product

Tm
d × T

m
e → Tm

d+e (S,T )↦ S ⋋T

where S ⋋T arises from S by attaching T identifying the root of T with the
smallest vertex in C (S).
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Remark .. is deĕnition turns

Tm ∶=
∞
⊕
d=0

CTm
d

into a non-commutative algebra. It is generated by those trees which do not
contain the smallest possible edge starting in the root.

Assuming Conjecture .., the algebra Tm is isomorphic to the convolu-
tion algebra in Borel-Moore homology for the nilpotent Hilbert schemes of
the quiver Lm conjectured in chapter .

eorem .. For eachm ∈ N there is an isomorphism of graded algebras

ψ∶Dm ∼Ð→ Tm.

P Take a cable diagram Γ ∈ ∆m
d for d ∈ N and construct a tree in Tm

d

from Γ as follows: Because the arcs in Γ are free of intersections, for every
m-ary arc γ ∈ Γ there are exactly two possibilities:

. e lemost leg of γ is the lemost leg of Γ,

. the ĕrst leg in Γ lying le of γ is the k-th leg of some arc γ′.

In the ĕrst case ψ (γ) is the root of the tree to construct. In the second case
ψ (γ) is attached to them − k + 1-th vertex in the corona of ψ (γ′).
is map is bijective, since it can be reversed as follows: for any vertex

ν, which is attached as the k-th vertex in the corona of some other vertex
ν′, insert anm-ary arc immediately right of them − k + 1-th leg of the arc
corresponding to ν′. e root of the tree which has no predecessor ismapped
to the arc with the lemost leg.
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Under this bijection, the appending of cable diagrams corresponds to the
attaching of trees at the smallest vertex in the corona. erefore the two con-
volution structures are compatible, hence this gives an isomorphism of al-
gebras.
Furthermore, ψ is obviously compatible with the grading. ◻

Example .. Under this bijection the trees corresponding to the cable
diagrams from Example .. are the following:

.... ....
....

.... ....

. Functional equation

Let V be an N-graded vector space. en the tensor space V ⊗n is a graded
vector space via

(V ⊗n)
ℓ
= ⋃

ℓ1+⋅⋅⋅+ℓn=ℓ
Vℓ1 ⊗ ⋅ ⋅ ⋅ ⊗ Vℓn .

We denote by V [k] the graded vector space obtained from V by shiing the
graduation by k. Let

T (V ) ∶= ⊕
n∈N0

V ⊗n

the tensor algebra of V with the grading inherited from V ⊗n:

(T (V ))ℓ = ⋃
ℓ1+⋅⋅⋅+ℓs=ℓ

s∈N

Vℓ1 ⊗ ⋅ ⋅ ⋅ ⊗ Vℓs .

Denote by
HV (t) ∶= ∑

n≥0
dimVnt

n

the Hilbert series of V .
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Remark .. One has the functional equation

HT (V ) (t) =
1

1 −HV (t)
.

P Using the geometric series one obtains

1

1 −HV (t)
=
∞
∑
ℓ=0
HV (t)ℓ

=
∞
∑
ℓ=0

⎛
⎝

∞
∑
j=0

dimVjt
j⎞
⎠

ℓ

=
∞
∑
ℓ=0

∑
ℓ1+⋅⋅⋅+ℓs=ℓ

s∈N

(
s

∏
i=1

dimVℓi) t
ℓ

=HT (V ) (t)

which is the claimed identity. ◻

Recall the functional equation for the generating function of the Poincaré
polynomials of the non-commutative Hilbert schemes from formula (.).
Here the le hand side is the Hilbert series ofC(m). is motivates the ques-
tion for a morphism of algebras reĘecting this functional equation, that is we
expect an algebraX(m) such that the right hand side of formula (.) is the
Hilbert series ofX(m) and an isomorphism of algebrasΨ∶C(m) →X(m).
is question is answered in

eorem .. ere is an isomorphism of graded algebras

Ψ∶C(m) ∼Ð→ T ((C(m))
⊗m−1

[1]) .
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eHilbert series of the algebras here are precisely those in formula (.).
P Deĕne

Ψ ([Z0
S∗
]) ∶= ([Z0

S1
1

]⊗ ⋅ ⋅ ⋅ ⊗ [Z0
S1
m−1
])⊗ ⋅ ⋅ ⋅ ⊗ ([Z0

Sp
1
]⊗ ⋅ ⋅ ⋅ ⊗ [Z0

Sp
m−1
]) .

Here for S∗ deĕne

Si
∗ ∶= {w ∈ F1 (Lm) ∣ αi−1

1 w ∈ S∗, αi
1 ∉ w} (i ∈ N)

and

Si
j ∶= {w ∈ F1 (Q) ∣ αj+1w ∈ Si} (j = 1, . . . ,m − 1) .

e fact that this deĕnes an isomorphism is evident from the inverse map
which makes the following assignment:

..

([Z0
S1
1

]⊗ ⋅ ⋅ ⋅ ⊗ [Z0
S1
m−1
])⊗ ⋅ ⋅ ⋅ ⊗ ([Z0

Sp
1
]⊗ ⋅ ⋅ ⋅ ⊗ [Z0

Sp
m−1
])

.

[Z0
S1]⋯ [Z0

Sp]

where for trees Si
j in Fn (Q) a tree Si is constructed by an operation called

graing, which is deĕned in [, Deĕnition .]. e product is the convolu-
tion product assumed in chapter .
Since this isomorphism is compatible with the convolution product by

deĕnition, it induces a grading on the tensor algebra that makes it a graded
isomorphism. is can be obtained by the following procedure: Consider
(C(m))⊗m−1 as a graded vector space via

((C(m))
⊗m−1

)
ℓ
∶= ⋃

ℓ1+⋅⋅⋅+ℓm−1=ℓ
(C(m))

ℓ1
⊗ ⋅ ⋅ ⋅ ⊗ (C(m))

m−1
.
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en the induced grading on T ((C(m))⊗m−1 [1]) is the one corresponding
to the primary grading on Cm given by

C
(m)
d = ⟨[Z0

S∗
] ∣ ∣S∗∣ = d⟩

under the isomorphismΨ deĕned above. ◻

. SLm-Invariants

In subsection .. we saw thatm-ary trees used for parametrising the cells
in the non-commutativeHilbert scheme of them-loop quiver are in bijection
tom-ary cable diagrams. is is a generalisation of [, Exercise .] where
this can be found form = 2. e author gives a list of  different classes of
objects which are enumerated by the Catalan numbers; amongst others that
list includes standard Young tableaux with 2 rows. Here we use the following
deĕnition from []:

Deĕnition .. (Young diagram) A Young diagram is a collection of rows
of boxes, with a non-increasing number of boxes in each row. e number
of boxes of a Young diagram Y will be denoted by ∣Y ∣.
A Young diagram is called rectangular if each row has the same number of
boxes.

Deĕnition .. (Standard Young tableau) A standard Young tableau con-
sists of a Young diagram Y and a ĕlling of the boxes in Y with the numbers
from 1 to ∣Y ∣, which is increasing along each row (from the le to the right)
and each column from top to bottom.
For i ∈ {1, . . . , ∣Y ∣} let cY (i) denote the column in which i appears in Y
and analogously rY (i) the row in Y .

Let V ≃ Cm be a vector space. en one has the standard operation of
the group SLm ∶= SLm (C) on V . is operation extends to an operation of





SLm on the tensor algebra T (V ) via

g ⋅ v1 ⊗ ⋅ ⋅ ⋅ ⊗ vr ∶= gv1 ⊗ ⋅ ⋅ ⋅ ⊗ gvr (g ∈ SLm, vi ∈ V ) .

In this situation one is interested in the structure of the invariant ring of this
operation, which will be denoted T (V )SLm . is problem was solved in
[].e author uses a special class of standardYoung tableaux, namely those
which are rectangular, to parametrise the generators of the invariant ring of
the operation of SLm on the tensor algebra T (V ). In fact, Teranishi deals
with a more general setting, which is only interesting here in the special case
mentioned above.
Let e1, . . . , em denote the standard basis of V and let Y be a rectangular
standard Young tableau withm rows and d columns. Because of the special
form of Y the map

{1, . . . ,md}→ {1, . . . ,m} × {1, . . . , d} , i↦ (rY (i) , cY (i))

is a bijection. To each Y we can associate a generator of T (V )SLm which is
given as:

∑
(σj)j∈(Sm)d

sgn (σj)j
md

⊗
i=1
eσcY (i)(rY (i))

,

where sgn (σj)j ∶=∏j sgnσj . emultiplication of these generators corres-
ponds to the following operation on the Young tableaux: Let Y1, Y2 be two
rectangular standard Young diagrams withm rows and deĕne Y1⊕̂Y2 as the
diagram obtained by appending Ŷ2 at the right end of Y1. Here Ŷ2 denotes
the diagram arising from Y2 by replacing each entry i with i + ∣Y1∣.

Deĕnition .. (Indecomposable Young Tableau) A rectangular standard
Young tableau Y is called indecomposable if there are no two rectangular
standard Young tableaux Y1, Y2 such that Y = Y1⊕̂Y2.





Example .. Let d =m = 2. en the Young tableau

Y1 ∶=
 
 

corresponds to the generator

e1 ⊗ e1 ⊗ e2 ⊗ e2 + e1 ⊗ e2 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1 ⊗ e2 + e2 ⊗ e2 ⊗ e1 ⊗ e1.

Setting

Y2 ∶=
 
 

one obtains
Y1 ⊕̂ Y2 =

   
   

It is also clear that Y1 is indecomposable whereas Y2 can be written as

Y2 =
 
  =


 ⊕̂


 .

eorem .. e set of generators associated to indecomposable rectan-
gular Young tableaux forms a free system of generators of T (V )SLm .

P is is [, eorem .]. ◻

Deĕnition .. (Admissible Young Tableaux) Take a rectangular standard
Young tableau Y withm rows. Y is called admissible if one of the following
conditions holds for all i ∈ {1, . . . , ∣Y ∣}:

. rY (i) = 1,

. rY (i) = rY (i − 1) + 1,





. rY (i) = rY (max{k < i ∣ rY (k + 1) = 1 ∧ rY (k) ≠m}) + 1.

Extending the bijection between cable diagrams resp. binary trees and
rectangular standard Young tableaux with two rows from [, Exercise .],
it is possible to give an injective map from the set of m-ary cable diagrams
into the set of rectangular standard Young tableaux withm rows. e num-
ber of arcs corresponds to the number of columns under this injection. is
works as follows: Write the number i into the ĕeld (ℓ (i) , a (i)), where ℓ (i)
denotes the number of the leg of them-ary arc hitting i and

a (i) =
⎧⎪⎪⎨⎪⎪⎩

max{j < i, ℓ (j) = ℓ (i)} + 1, if the maximum exists,
1, otherwise.

e Young tableaux in the image of this injection are precisely those which
are admissible in the notion of Deĕnition ... is can be seen as follows:
For a rectangular standardYoung tableau, we can construct the preimage: Let
k be the number of columns and {1, . . . , km} the set of vertices of the cable
diagram to be constructed. Construct a graph with these vertices connecting
the vertex i to the vertex

max{j < i ∣ ℓ (j) = ℓ (i) − 1} (ℓ (i) > 1) .

e resulting graph consists ofm-ary arcs and the conditions for the Young
tableau to be admissible guarantee that the resulting graph has no intersect-
ing arcs and thus meets our deĕnition of anm-ary cable diagram. It is easy
to see that this diagram is a preimage of the original Young tableau under the
map given above.
Furthermore, one can easily see that appending of cable diagrams corres-
ponds to the special appending operation on Young tableaux deĕned above.
erefore, the product of two admissible Young tableaux is admissible, too.

Example .. Let m = 3 and d = 3. en one has the pairs of cable dia-
grams and admissible Young tableaux depicted in Figure ..





  
  
  

  
  
  

  
  
  

.......... .......... ..........
  
  
  

  
  
  

  
  
  

.......... .......... ..........
  
  
  

  
  
  

  
  
  

.......... .......... ..........
  
  
  

  
  
  

  
  
  

.......... .......... ..........

Figure .: Cable diagrams and corresponding Young tableaux form = d = 3
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Using the results of section . this gives

eorem .. Let V be a complex vector space of dimensionm ∈ N. en
there is a monomorphism of graded algebras

C(m) ↪ T (V )SLm . (.)

In the special casesm = 1 orm = 2 this monomorphism is an isomorphism.

Example .. Consider once more the case d = 2 andm = 3. It is easy to
see that the two Young tableaux

 
 
 

 
 
 

are irreducible, hence in this setting C(3) is isomorphic to a proper subal-
gebra of T (C3)SL3 .

P One obtains a monomorphism by mapping the generators corres-
ponding to the cable diagrams to those corresponding to the associated ad-
missible Young tableaux as constructed earlier. is respects the product
given by concatenation of cable diagrams.
e graded subalgebra ofT (V ) given as the image of thismonomorphism

can be described as follows: It is spanned as a vector space by all admissible
rectangular standard Young tableaux with the product from appending dia-
grams as deĕned above. e fact that these generate a subalgebra is clear from
the deĕnition of the product. As proved earlier in this section, this algebra is
isomorphic to the cable algebra C(m) and hence proves the claim.
It is also clear from Deĕnition .. that for m ≤ 2 all standard Young

tableaux are admissible. Hence the monomorphism from eorem .. is
an isomorphism of algebras. ◻





Bibliography

[] Michael Artin. “On Azumaya Algebras and ĕnite dimensional rep-
resentations of rings”. In: Journal of Algebra . (Apr. ),
pp. –. : ./-()-X.

[] Edward A. Bender and L. Bruce Richmond. “AMultivariate Lagrange
Inversion Formula for Asymptotic Calculations”. In: e Electronic
Journal of Combinatorics  (). : ..... : http:
//www.emis.de/journals/EJC/Volume_/PDF/vir.pdf.

[] Armand Borel and James C. Moore. “Homology theory for locally
compact spaces”. In:Michigan Math. J. . (), pp. –. :
-. : ./mmj/.

[] Neil Chriss and Victor Ginzburg. Representationeory and Complex
Geometry. Boston: Birkhäuser, .

[] Johannes Engel andMarkus Reineke. “Smoothmodels of quivermod-
uli”. In: Mathematische Zeitschri  (), pp. –. : .
/s---y.

[] William Fulton. Young Tableaux: With Applications to Representation
eory andGeometry. LondonMathematical Society Student Texts .
Cambridge: Cambridge University Press, . : ---.

[] Robin Hartshorne. Algebraic geometry. th ed. Graduate texts in
mathematics . New York: Springer, . : ---.



http://dx.doi.org/10.1016/0021-8693(69)90091-X
http://dx.doi.org/10.1.1.46.6593
http://www.emis.de/journals/EJC/Volume_5/PDF/v5i1r33.pdf
http://www.emis.de/journals/EJC/Volume_5/PDF/v5i1r33.pdf
http://dx.doi.org/10.1307/mmj/1028998385
http://dx.doi.org/10.1007/s00209-008-0401-y
http://dx.doi.org/10.1007/s00209-008-0401-y


[] Allen Hatcher. Algebraic Topology. Cambridge: Cambridge Univer-
sity Press, . : http://www.math.cornell.edu/~hatcher/AT/
ATpage.html.

[] David Henderson. Experiencing Geometry: On Plane and Space.
st ed. New York: Prentice Hall College Division, . : -
.

[] James E. Humphreys. Introduction to Lie Algebras and Representation
eory. Graduate Texts in Mathematics . New York: Springer, .
: ---.

[] Birger Iversen. Cohomology of Sheaves. Berlin: Springer, .
[] Victor G. Kac. “Inĕnite root systems, representations of graphs and

invariant theory”. In: Inventiones Mathematicae  (), pp. –.
[] Victor G. Kac. “Root systems, representations of quivers and invari-

ant theory”. In: Invarianteory. Montecatini. Vol. . Lecture Notes
in Mathematics. Berlin, Heidelberg: Springer, , pp. –. :
----. : ./BFb.

[] Alastair D King. “Moduli of representations of ĕnite dimensional al-
gebras”. In: Quarterly J. Math. Oxford . (), pp. –. :
http://qjmath.oxfordjournals.org/cgi/reprint///.

[] Lieven Le Bruyn and George Seelinger. “Fibers of generic Brauer-
Severi schemes”. In: Journal of Algebra . (), pp. –. :
./jabr...

[] Hiraku Nakajima. Lectures on Hilbert schemes of points on surfaces.
Vol. . University Lecture Series. Providence, RI: American Math-
ematical Society, . xii+. : ---.

[] Markus Reineke. “Cohomology of non-commutative Hilbert
schemes”. In: Algebras and Representation eory  (Sept. ),
pp. –. : -X. arXiv: math/.



http://www.math.cornell.edu/~hatcher/AT/ATpage.html
http://www.math.cornell.edu/~hatcher/AT/ATpage.html
http://dx.doi.org/10.1007/BFb0063236
http://qjmath.oxfordjournals.org/cgi/reprint/45/4/515
http://dx.doi.org/10.1006/jabr.1998.7656
http://arxiv.org/abs/math/0306185


[] Markus Reineke. “e monoid of families of quiver representations”.
In: Proc. LondonMath. Soc. . (), pp. –. : ./S
. : http://plms.oxfordjournals.org/cgi/content/
abstract///.

[] Jean-Pierre Serre. “Géometrie Algébrique et Géométrie Analytique”.
In: Annales de l’Insitut Fourier  (), pp. –.

[] Richard P. Stanley. Enumerative Combinatorics. Vol. . Cambridge
Studies in AdvancedMathematics. Cambridge: Cambridge University
Press, .  pp. : .

[] Harold Neville Vazeille Temperley and Elliott H. Lieb. “Relations
between the percolation and colouring problem and other graph-
theoretical problems associated with regular planar lattices. some ex-
act results for the percolation problem”. In: Proceedings of the Royal
Society London Series A . (Apr. ), pp. –. : .
/rspa...

[] Yasuo Teranishi. “Noncommutative classical invariant theory”. In:
Nagoya Mathematical Journal  (), pp. –.



http://dx.doi.org/10.1112/S0024611502013497
http://dx.doi.org/10.1112/S0024611502013497
http://plms.oxfordjournals.org/cgi/content/abstract/84/3/663
http://plms.oxfordjournals.org/cgi/content/abstract/84/3/663
http://dx.doi.org/10.1098/rspa.1971.0067
http://dx.doi.org/10.1098/rspa.1971.0067


List of Symbols

⊕̂ Composition of Young tableaux 
⟨⋅, ⋅⟩ Euler form, also known as Ringel form 
⋋ Composition of trees 
1q Unit vector for q ∈ Q0 
C (S∗) Corona of a forest S∗ 
χ Euler characteristic 
Cm Cable algebra form-ary cable diagrams 
C(m) Convolution algebra for the quiver Lm 
C
(m)
d Grade d part ofC(m) in the scheme dimension

grading


C
(m)
d,i Grade i part of C(m)d in the cell dimension

grading


cY (m) Column ofm in the standard Young tableau Y 
Fn (Q) Covering forest for a quiverQ 
GLd General linear group associated to a dimension

vector d


h Map assigning to an arrow its head 
HBM
∗ () Borel-Moore homology group 

Hilb0d,n (Q) Nilpotent non-commutative Hilbert scheme of
a quiverQ for dimension vectors d,n ∈ Q0



Hilbd,n (Q) Non-commutative Hilbert scheme of dimen-
sion vectors d,n for a quiverQ



H∗ (X) Singular cohomology groups ofX 
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H∗ (X) Singular homology groups ofX 
(λq)q∈Q0

Multipartition for Q consisting of a tuple of
partitions



Λd,n Set of all admissible multipartitions 
Lm Quiver with  vertex andm loops 
CQ Path algebra for a quiverQ 
Pd,e Correspondence set for the convolution

product


Φd,n Set of all subforests in Fn (Q) parametrising
the cells of Hilbd,n (Q)



PX (q) Poincaré polynomial ofX in q 
Q0 Set of vertices of a quiverQ 
Q1 Set of edges of a quiverQ 
(Q,d,n) Quiver datum consisting of a quiverQ and cor-

responding dimension vectors d,n ∈ NQ0



(q, i,w) Vertex in Fn (Q) corresponding to the vertex
w in the i-th copy of Tq



Q̂n Extended quiver for Q containing one extra
vertex with n arrows



Rd,n (Q) Extended representation space of a quiver Q
and dimension vectors d,n



Rd (Q) Representation space of dimension d for a
quiverQ



ri,j Number of arrows inQ from i to j 
rY (m) Row ofm in the standard Young tableau Y 
sgn Signum function for (tuples of) permutations 
SLm Special linear group of Cm 
succ (q, i) Successor of (q, i), i. e. smallest amongst the

indices of the trees in Fn (Q) that is greater
than (q, i)


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t Map assigning to an arrow its tail 
Tm Tree algebra form-ary trees 
Tm
d Set ofm-ary trees with d vertices 
Tq Covering tree for a quiverQ based in q ∈ Q0 
T (V ) Tensor algebra of V 
T (V )SLm Ring of the SLm-invariants in T (V ) 
U0
S∗

Open set for a forest S∗, part of the covering of
a nilpotent non-commutative Hilbert scheme



US∗ Open affine set, part of the covering of the non-
commutative Hilbert scheme



w Path in the quiverQ 
[X] Fundamental class of X in Borel-Moore ho-

mology


Ŷ Shied Young diagram 
Z0
S∗

Affine cell of a nilpotent non-commutativeHil-
bert scheme corresponding to the forest S∗



ZS∗ Cell of a non-commutative Hilbert scheme
corresponding to a forest S∗


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