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Abstract

The topic of this Thesis is the statistical characterization of chaotic trajectories in Hamiltonian
dynamical systems. Such systems usually show coexistence of regions of chaotic and regular
(periodic or quasi-periodic) motion in the phase space. When chaotic trajectories approach the
regular regions they stick to their border inducing long periods of almost regular motion. This
intermittent behavior determines the main dynamical properties of the system (e.g., transport
and decay of correlations); it is quantified through the power-law statistics of regular periods
P (T ) ∝ T−γ−1. The fundamental problem is how to quantitatively relate the intermittency of
the chaotic dynamics to the distribution and stability properties of the regular regions of the
phase space (e.g., periodic orbits, KAM islands, and cantori). Different classes of Hamiltonian
systems are investigated through numerical simulations and phenomenological models. The
exponent γ = 2 is derived for the stickiness close to one-parameter families of marginally unstable
periodic orbits. This theory applies to: chaotic billiards with parallel walls (e.g., Sinai and
stadium billiards), circular-like billiards (e.g., annular and mushroom billiards), and piecewise-
linear area-preserving maps. Such systems have sharply-divided phase space, i.e., a simple curve
defines the border between the regions of regular and chaotic motion. Generic perturbations lead
to the usual hierarchical phase space, where it is observed that the stickiness is enhanced (γ < 2).
The addition of white noise has two effects on P (T ): it enhances (γ ≈ 0.5) the probability for
intermediate times T by placing trajectories inside the regular regions; and it introduces an
exponential cutoff at larger times T . Similar results are shown to appear for N weakly coupled
area-preserving maps. In this case an additional asymptotic power-law decay of P (T ) is observed
as a consequence of the stickiness to high-dimensional KAM tori. Numerical results indicate
that the exponent γ of this decay increases with N . This suggests a novel explanation for the
onset of strong chaos in high-dimensional Hamiltonian systems. The different regimes of decay
of P (T ) impact on the transport properties leading to a anomalous or normal diffusion. In the
last case a nontrivial dependence of the asymptotic diffusion coefficient on the noise intensity or
coupling strength is observed. Applications to physically relevant problems are discussed, such
as, the transport of passive tracers in two-dimensional incompressible fluids and the decay of
correlation in systems with time scale separation. Altogether, the different results lead to a new
unified interpretation of the chaotic dynamics in Hamiltonian systems and raise the phenomenon
of stickiness to a fundamental status.

Additional keywords: Hamiltonian dynamics, long-term correlation, anomalous diffusion,
Poincaré recurrence time, symplectic maps.
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Zusammenfassung

Diese Dissertation beschäftigt sich mit der statistischen Charakterisierung von chaotischen Tra-
jektorien in Hamiltonschen dynamischen Systemen. Im Phasenraum solcher Systeme koexistieren
typischerweise Gebiete mit regulärer (periodischer oder quasi-periodischer) und chaotischer Dy-
namik. Chaotische Trajektorien, die in die Nähe regulärer Gebiete geraten, verweilen nahe
ihrer Grenzen und beschreiben eine quasi-reguläre Dynamik für eine begrenzte Zeitperiode.
Das Verweilen oder “Kleben” der Trajektorie in der Nähe regulärer Gebiete wird als Stickiness
(engl. Klebrigkeit) bezeichnet. Solches intermittierendes Verhalten bestimmt die wichtigsten
dynamischen Eigenschaften des Systems (z.B. die Transporteigenschaften und den Zerfall der
Korrelation); es wird quantifiziert durch das Potenzgesetz in der Statistik von Verweilenzeiten
P (T ) ∝ T−γ−1. Das zentrale Problem ist es, den Zusammenhang zwischen der Intermittenz der
chaotischen Dynamik und der Verteilung und den Stabilitäteigenschaften von regulären Gebieten
im Phasenraum (periodische Bahnen, KAM Inseln und Cantori) zu bestimmen. Verschiedene
Systeme werden durch ein einziges Verfahren analysiert, das auf numerischen Simulationen
und phänomenologischen Modellen basiert. Für den Fall von Systemen mit Ein-Parameter-
Familien von marginal-instabilen periodischen Bahnen wird der Exponent γ = 2 analytisch
berechnet. Diese Theorie beschreibt chaotische Billards mit parallelen Wänden (z.B. Sinai und
Stadion Billards), Kreis-Billards (z.B. ringförmige und Pilz-Billiards), und stückweise lineare
zweidimensionale Abbildungen. In solchen Systemen besteht die Grenze zwischen Regionen
regulärer und chaotischer Bewegung im Phasenraum aus einer einfachen Kurve (einfach getren-
nter Phasenraum). Generische Störungen dieses Falls führen zu dem typischen hierarchischen
Phasenraum, in dem die Stickiness stärker ist als im einfachen getrennten Phasenraum (γ < 2).
Zusätzliches weißes Rauschen hat zwei Auswirkungen auf P (T ): mittlere Verweilenzeiten T
werden wahrscheinlicher (γ ≈ 0.5), da die Trajektorien in die regulären Gebiete eintreten; für
größere T zerfällt P (T ) exponentiell. Ähnliche Ergebnisse wurden in einem Modell von N gekop-
pelten zweidimensionalen Abbildungen gefunden. Ein zusätzliches asymptotisches Potenzgesetz
existiert in diesem Fall wegen der Stickiness an hochdimensionalen KAM-tori. Numerische
Simulationen zeigen dass der Exponent γ dieses Gesetzes mit N wächst. Dies bietet eine neue
Erklärung für das Auftreten von starkem Chaos in hochdimensionalen Hamiltonschen Systemen.
Das Verhalten von P (T ) in den verschiedenen Bereichen führt entweder zu anomaler oder nor-
maler Diffusion und prägt im letzeren Fall eine nichttriviale Abhängigkeit des asymptotischen
Diffusionskoeffizienten von der Rauschintensität oder von der Kopplungsstärke. Anwendun-
gen auf physikalisch relevante Probleme werden diskutiert; u.a. die Dispersion von passivem
Teilchen in zweidimensionalen nicht-komprimierbaren Flüssigkeiten und der Zerfall von Korre-
lation in Systemen mit verschiedenen Zeitskalen. Zusammengenommen stützen alle Ergebnisse
dieser Arbeit eine neuartige Interpretation der chaotischen Hamiltonschen Dynamik, in der die
Stickiness eine zentrale Rolle spielt.

Titel der Dissertation: Intermittierendes Chaos in Hamiltonschen dynamischen Systemen
Zusätzliche Schlüsselwörter: Hamiltonsche Dynamik, Langzeitkorrelation, Poincaré Wieder-
kehrzeit, symplektische Abbildung.

VI



Resumo

O tema desta Tese é a caracterização estat́ıstica de trajetórias caóticas em sistemas dinâmicos
Hamiltoneanos. Tais sistemas apresentam tipicamente coexistência de regiões de dinâmica
caótica e regular (periódica ou quasi-periódica) no espaço de fases. Ao se aproximarem de regiões
regulares, as trajetórias caóticas grudam (prendem-se) a sua borda apresentando longos peŕıodos
de movimento aproximadamente regular. Este comportamento intermitente determina as princi-
pais propriedades dinâmicas do sistema (e.g., transporte e decaimento de correlações); ele é quan-
tificado através do decaimento algébrico da distribuição de peŕıodos regulares P (T ) ∝ T−γ−1.
O problema fundamental é relacionar quantitativamente a intermitência das trajetórias caóticas
à distribuição e às propriedades de estabilidade das regiões regulares do espaço de fases (órbitas
periódicas, ilhas KAM e cantori). Diversas classes de sistemas Hamiltoneanos são investigados
através de simulações numéricas e modelos fenomenológicos. O expoente γ = 2 é obtido para o
grudamento (termo em inglês: stickiness) próximo a familias de órbitas marginalmente instáveis
parametrizáveis. Esta teoria aplica-se a: bilhares caóticos com paredes paralelas (e.g., bilhar
de Sinai e do estádio), bilhares com componentes circulares (e.g., bilhares anulares e em forma
de cogumelo) e mapas bidimensionais lineares por partes. Estes sistemas apresentam espaço de
fases onde regiões regulares e caóticas são divididas por curvas simples. Perturbações genéricas
aplicadas a estes sistemas levam ao caso t́ıpico de espaço de fases hierárquico, onde o grudamento
das trajetórias é intensificado (γ < 2). A adição de rúıdo branco tem dois efeitos sobre P (T ):
tempos T intermediários tornam-se mais prováveis (γ ≈ 0.5) devido a trajetórias que penetram
nas regiões regulares; para tempos T longos, transição para decaimento exponencial (cutoff). Re-
sultados similares são obtidos em um sistema de N mapas bidimensionais fracamente acoplados.
Neste caso um decaimento algébrico assintótico é adicionalmente observado, como consequência
do grudamento a toros KAM. Experimentos numéricos indicam que o exponente assintótico γ
deste decaimento cresce com N , o que sugere uma nova explicação para o surgimento de caos
forte em sistemas Hamiltoneanos de alta dimensão. Os diferentes regimes de decaimento de
P (T ) afetam as propriedades de transporte podendo levar a difusão anômala ou normal. No
último caso, é observada uma dependência não trivial do coeficiente de difusão assintótico com a
intensidade do rúıdo ou do acoplamento. Aplicações a problemas relevantes de F́ısica são discu-
tidos, tais como o transporte de marcadores passivos em fluidos bidimensionais incompressiveis
e o decaimento de correlações em sistemas com separação de escalas temporais. Considerando
os resultados em conjunto, emerge uma interpretação nova e unificada da dinâmica caótica em
sistemas Hamiltoneanos onde a propriedade de grudamento desempenha um papel fundamental.

T́ıtulo da tese: Caos intermitente em sistemas dinâmicos Hamiltoneanos.

Outras palavras chaves: dinâmica Hamiltoneana, correlação de longo alcance, difusão anômala,
tempo de retorno de Poincaré, mapas simpléticos.
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Abbreviations, acronyms, and most
used variables:

KAM Kolmogorov-Arnold-Moser, usually used to refer to their theory of dealing with problems
of small denominator.

MUPOs marginally unstable periodic orbits, that appear as one-parameter families in contact with
the chaotic component.

RTD recurrence time distribution P (T ).

RTS recurrence time statistics ρ(τ) which is the cumulative version of the RTD P (T ).

RW random walk.

PDF probability density function.

ν anomalous transport exponent for the growth of the mean squaredD displacement.

Dν anomalous transport coefficient (generalized diffusion coefficient).

DA asymptotic value of the usual diffusion coefficient.

Dm molecular diffusion coefficient.

γ exponent of the power-law decay of the RTS ρ(τ).

T recurrence time.

P (T ) recurrence time distribution (RTD).

ρ(τ) recurrence time statistics (RTS).

ξ intensity of the noise perturbation or of the coupling strength.

q, η integer numbers corresponding to the period and winding number of a periodic orbit in a
circular billiard or, correspondingly, the order and density of a star polygon.

Additionally, the following standard abbreviations were used in the text:
Sec. for Section, Chap. for Chapter, Eq. for Equation, and Fig. for Figure.

In the caption of the figures:

• (Color online) indicates that color helps the interpretation of the figure but that black and
white prints are understandable.

• (Color) indicates that color is essential for the understanding of the figure.
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Chapter 1

Introduction

The present PhD Thesis is a theoretical and numerical study of a particular effect
of chaotic trajectories in Hamiltonian systems, namely, the stickiness near regions
of regular motion. This introductory chapter motivates the importance of both
Hamiltonian systems and stickiness phenomenon to physics.

There are good reasons to ask about the relevance of studying classical Hamiltonian systems.
From a dynamical-systems perspective Hamiltonian systems are very particular. In general, a
set of 2N differential equations ẋ = F (x, t) requires the specification of all the components of
the vector function F (x, t) while Hamiltonian systems are uniquely defined by a single scalar
function: the Hamiltonian H(p, q,t) [Ott02]1. From the perspective of physical models (also
biological, economical, etc.) Hamiltonian systems are also exceptional. The reason is that natu-
ral systems are never completely isolated and/or include inherent sources of dissipation/creation
of energy. Considering additionally that the dynamics in Hamiltonian systems is fundamentally
different from the one in dissipative systems, one sees that a justification in general terms for a
theoretical study in this field is necessary. A short answer to the previous objections is that vir-
tually all fundamental physical theories are Hamiltonian once the usual atomistic/mechanistic
viewpoint is assumed, i.e., once the dynamics of particles, fields, and classical or quantum ob-
jects is described. Assuming this point of view, dissipation and noise perturbations arise from
the Hamiltonian interaction to many degrees of freedom which are usually replaced by effective
dissipative and stochastic terms in the models. It is remarkable that such an interpretation of
reality, manifested in well-known experiments, played an important role in two key moments of
science’s history: a major conceptual development that led to the rupture with the Aristotelic
theories and to the birth of classical mechanics was the isolation of the role of friction in me-
chanical systems made by Galileo Galilei (1564-1642); similarly, an important contribution to
the atomistic interpretation of matter and to the birth of modern physics was the statistical
interpretation of Brownian motion given by Albert Einstein (1879-1955).

From the previous considerations it should be no surprise that important questions of physics
rely on properties of Hamiltonian dynamics. The most prominent ones are those related to the
foundations of statistical mechanics. Other important basic issues which are presently under
investigation refer to wave and quantum mechanical systems that are classically chaotic. In
such cases semi-classical methods based on the classical properties of Hamiltonian systems have
shown to be extremely powerful. Despite the restrictions mentioned in the previous paragraph,
there are still several relevant specific examples where classical Hamiltonian dynamics applies,
such as, e.g., astronomical objects (rockets, asteroids, planets, and galaxies), incompressible

1 More generally, Hamiltonian systems are symplectic, what implies important restrictions to the solutions
(see Sec.2.1.1).
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2 Chapter 1. Introduction

fluids, and magnetic field lines (in devices for plasma confinement or in accelerator beams).
Despite the relevance and the long time these problems have already been studied, some basic
properties of classical Hamiltonian systems are still not yet understood.

One of the main distinctions in deterministic dynamics is between regular (periodic and quasi-
periodic) and irregular (chaotic) motion. In Hamiltonian systems this distinction is particularly
important. Well-known examples of periodic trajectories are Kepler’s ellipses (in the two-body
problem) and the oscillation of a simple pendulum. Quasi-periodic motion appears in higher-
dimensional systems as a linear composition of two periodic motions with incommensurable
periods. Quasi-periodic trajectories never perfectly close themselves but build up a torus in
the phase space (p, q). They are more generic than periodic trajectories in the same sense in
which irrational numbers are more generic than rational numbers. The existence of chaotic
motion was first glimpsed by Henry Poincaré (1854-1912) at the end of the XIX century while
working on the (restricted) three-body problem [Poi92]. Among his astonishing findings, two
of them indicated that trajectories beyond the regular ones exist: (i) the non-convergence of
series corresponding to quasi-periodic solutions, due to the problem of small denominators; (ii)
the existence of homoclinic orbits, as a result of Poincaré’s new geometrical approach to the
problem [BG96]. Chaotic trajectories combine (long-term) unpredictability and determinism by
showing sensitivity to initial conditions: close by trajectories diverge exponentially fast in time
from each other (i.e., at least one Lyapunov exponent is positive). An everynight example of
chaos is the orbit of Hyperion – one of the moons of Saturn [WPM84].

The establishment of chaotic motion as a general property of nonlinear dynamical systems
took place only in the 1970’s, partially due to computer simulations. Doubtless, the possibility of
performing reliable numerical simulations had a great impact on nonlinear dynamics. However,
important developments happened also between the pioneering works of Poincaré and the inven-
tion of computers. It is also not completely correct to say that the investigations on dynamics
happened apart from the major physical theories of the early XX century (quantum mechanics
and relativity), as indicated by Einstein’s remarks about the relevance of non-integrability in
quantum systems [Sto05]. fundamental results in nonlinear dynamics were achieved as the two
Poincaré’s insights mentioned above were further developed: The structural stability of inte-
grable systems was proved at the beginning of the second half of the XX century as a result of
the so-called KAM theory, named after the methods used by Kolmogorov, Arnold, and Moser
to deal with the problem of small denominators (see Sec. 2.1.2); The existence of chaos can be
proved by the homoclinic (or heteroclinic) intersection of manifolds of periodic orbits using the
Melnikov method (see Sec. 2.1.3). However, so far the existence of non-negligible chaotic regions
(with positive measure in the phase space) have been proven to exist only in a few (non-generic)
systems, such as fully hyperbolic systems (Anosov systems, cat map, baker map) [Ott02], Sinai
and stadium billiards (see Sec. 4.1), and piecewise-linear maps (see Sec. 5.1). Many properties
of the chaotic motion (e.g., entropies and Lyapunov exponents) can be analytically calculated
or estimated through periodic orbits [Dor99]. The extension of these mathematical methods
to the more realistic class of non-hyperbolic systems is a field of intense research. The diffi-
culty of proving or quantifying analytically the existence of chaos in realistic systems does not
extend to numerical simulations and experiments, where chaos is regularly observed. This is
well illustrated by the problem of existence of chaos in nonlinear area-preserving maps (e.g., in
the standard map2): despite the mathematical difficulties of proving it, numerical simulations
show convincing results that chaotic trajectories fill large portions of the phase space when
non-linearity is increased [LL83, Ott02]. The intricate interplay between results achieved using
formal and numerical methods is one central element in the modern investigation of nonlinear

2 The standard map, also called (Taylor-Greene-)Chirikov map, is a paradigmatic area-preserving map defined
in Eq. (2.14) below that will be used throughout this Thesis. See also Refs. [LL83, Ott02, Zas91].
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dynamics, and contributes to make this such a fascinating field. In this Thesis profit is taken
from the combination of mathematical results, numerical simulations, and qualitative models,
what provides a much richer understanding of Hamiltonian chaotic dynamics.

The distinction between regular and chaotic motion emphasized above does not apply to
systems, since both kinds of motion can coexist for different initial conditions of the same
system. Indeed, it is nowadays widely accepted that typical Hamiltonian systems are neither
completely regular (integrable) [SM70] nor completely chaotic, but rather show the coexistence
of both kinds of motion in independent invariant components of the phase space. How does
the chaotic dynamics in a Hamiltonian system with such a mixed phase space look like? Since
chaotic and regular trajectories are separated in the phase space one could expect that chaotic
trajectories would behave inside its component like those of strongly chaotic (hyperbolic) sys-
tems mentioned above. However, numerical simulations show that one remarkable difference
occurs when chaotic trajectories approach the border of a region of regular motion: they spend
a long time close to the regular island before visiting again other parts of the chaotic sea. In
other words, such trajectories stick to the islands. Such phenomenon is called stickiness and is
the main subject of this Thesis. It is important to note that due to ergodicity of the chaotic
component3 on average a trajectory does not spend more time near islands than in any other
region of equal volume of the same chaotic component of the phase space. However, ergodi-
city does not provide any information about the order in which the trajectory visits the phase
space. The stickiness effect is thus characterized by the long successive time it spends near
a sticky region. During this time trajectories perform almost periodic motion in contrast to
the stronger chaotic motion when away of islands. Hamiltonian chaotic trajectories show thus
intermittency between periods of regular motion and irregular bursts sharing thus similarities
with other important physical systems such as turbulent flows and one-dimensional intermittent
maps. Generally speaking, the stickiness is defined by an asymptotic algebraic distribution of
the regular periods.

The phenomenological description presented above interprets the Hamiltonian chaotic dy-
namics as an intermittent process where the stickiness phenomenon has a fundamental status.
Such interpretation is supported and expanded by the results of this Thesis. The investigation
of this phenomenon is thus justified on purely theoretical grounds. Not surprisingly, stickiness
has a strong influence on all quantifications of chaotic dynamics such as Lyapunov exponents,
decay of correlations, and transport properties. Relevant effects of stickiness are thus expected
to appear as often as Hamiltonian chaos itself, and include virtually all previously mentioned
areas of physics. As a straightforward application one can mention the chaotic scattering prob-
lems in both macroscopic (e.g., fluids and astronomical objects) or microscopic (e.g., atoms and
electrons) systems: the trajectories that survive for a long time in the scattering region are
those stuck to regions of regular motion. Stickiness also impacts on other microscopic measure-
ments and quantum mechanical properties (see Sec. 2.2.2). Additionally, stickiness has drastic
influence on the violation of strong chaotic properties which are assumed in both fundamental
theories and calculation procedures (see Sec. 7.1). For instance, the long-term correlations due
to stickiness may lead to anomalous transport, i.e., nonlinear growth of the mean squared dis-
placement of an ensemble of trajectories (see Sec. 6.2). This effect has been numerically studied
in different Hamiltonian systems and experimentally observed in a fluid experiment [SWS93]
(see Sec. 6.3).

Since the first direct numerical observations of stickiness during the 1970’s [Con71] and early
1980’s [Kar83, CS84], different models and theories addressing specifically the problem of stick-
iness in generic two-dimensional maps have been developed [MO85, CS99, Zas02a] (Sec. 2.2).

3It is assumed here that the Hamiltonian system is closed and that the chaotic component where the referred
trajectory is initiated has positive hyper-volume of the phase space (Liouville measure).
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The stickiness problem can be stated as follows: how the dynamical properties of the chaotic
trajectories are related to the properties of the invariant non-chaotic sets of the phase space? Or
in other words, how the relaxation towards equilibrium in one chaotic component of the phase
space depends on the properties of different regular components in its vicinity? Different con-
flicting claims of universality without convincing numerical verifications emphasize the difficulty
of this problem, which is related to the complex phase-space configuration of the maps. This
Thesis studies the phenomenon of stickiness of chaotic trajectories in Hamiltonian systems in
different classes of systems with an increasing level of complexity. It starts from the simplest
case of zero measure sets in ergodic systems (Chap. 4), passes through systems with sharply-
divided and hierarchical phase spaces (Chap. 5), and finally explores noise perturbed (Chap. 6)
and high-dimensional systems (Chap. 7). Considering the results as a whole, the Hamiltonian
chaotic dynamics is seen from a novel perspective. Intermittency due to the stickiness close to
regular components is not restricted to the case of hierarchical area-preserving maps but appears
as a generic phenomenon of nonlinear Hamiltonian systems.

About this thesis

The present Thesis is a result of the studies performed at the Max Planck Institute for the
Physics of Complex systems in Dresden (Germany) between April 2004 and December 2006 under
the supervision of Prof. Dr. Holger Kantz. It has been supported through a DAAD (Germany)
/ CAPES (Brazil) project with a CAPES fellowship (project number BEX1073/03). Part of the
scientific results contained in this Thesis are published in Refs. [AK05, AMK05, AMK06, AK07],
which are cited in the corresponding sections of the Thesis4. A more detailed introduction to
the topics of this Thesis is provided in Chap. 2 and Sec. 3.1, while starting from Sec. 3.2 mainly
original results are presented.

The description of the contents of the chapters follows. The general motivation and detailed
contents of each chapter can be found in its first paragraph. The basic results of Hamiltonian
systems and a brief survey of the literature are presented in Chap. 2. In Chap. 3 the statistical
method used to quantify the stickiness phenomenon is introduced: the statistics of Poincaré
recurrence times. Its relation to correlation functions and to the power spectrum is discussed
and compared to the recurrence time analysis in long-range correlated time series. The study
of Hamiltonian systems starts in Chap. 4 with the simple case of stickiness to one-parameter
families of marginally unstable periodic orbits, in which case the stickiness exponent γ = 2 is
deduced. It is shown that circular-like billiards (e.g., mushroom and annular billiards) typically
have an infinite number of such families. In Chap. 5 it is shown that the previous results explain
more generally the stickiness in systems with sharply-divided phase space. The transition to
the generic hierarchical phase space is discussed and illustrated. The effect of additive noise
perturbations to the stickiness, and consequently to the transport properties, is discussed in
detail in Chap. 6. The problem of stickiness in higher-dimensional systems is approached in
Chap. 7 by systematically studying the influence of the dimensionality in a paradigmatic model
of coupled two-dimensional maps. A summary of the main conclusions, an outlook, and a list
of open questions appear in Chap. 8. Appendix A reviews the continued-fraction representation
of real numbers and basic results of number theory. Appendix B presents some ideas on how
to couple symplectic maps with time scale separation and provides a relevant application of the
stickiness results of Chaps. 6 and 7.

4Further publications by the author during the PhD period not included in this thesis are [AHK06, ACP06,
HAHK07].



Chapter 2

Dynamics in Hamiltonian systems

Basic and fundamental results on Hamiltonian systems are revised. Section 2.1 de-
scribes the basic structures and invariant sets of the phase space, which are nowadays
well understood. Section 2.2 addresses the more difficult problem of the dynamics in
such a phase space. In particular, the behavior of chaotic trajectories and the basic
models of stickiness are discussed

2.1 Invariant components of the phase space

2.1.1 Basic notions and properties of Hamiltonian systems

A Hamiltonian system with N degrees of freedom is a dynamical system defined by a scalar
function H(p, q,t) – the Hamiltonian – of 2N pairs of conjugate variables (qi, pi), which define
the phase space Γ. The dynamics is defined through

ṗ = −∂H/∂q,
q̇ = ∂H/∂p,

(2.1)

where the dot indicates derivative with respect to time d/dt. Time discrete systems (maps)
(p, q) 7→ (p′, q′) can be defined in a similar way through the generating function F (q′,p) and
the (implicit) relations

q =
∂F

∂p
and p′ =

∂F

∂q′ (2.2)

From a broader perspective, Hamiltonian systems are symplectic dynamical systems meaning
that not only the macroscopic volume of the phase space is preserved (the Liouville theorem)
but also microscopic areas. For a map (p′, q′) = MN(p, q), the symplectic condition is written
explicitely as [Ott02]

SN =
(
∂MN

∂x

)†
SN

(
∂MN

∂x

)
. (2.3)

where
(

∂MN
∂x

)
i,j

=
(

∂Mj

∂xi

)
is the Jacobian matrix, x = (q1, ..., qN , p1, ..., pN ), † indicates trans-

position, and

SN =
(

0N −IN

IN 0N

)
, (2.4)

is the symplectic matrix, which is composed by identity matrices IN and null matrices 0N of
order N . Particular properties of Hamiltonian systems follow from its symplectic character, e.g.,
non-existence of attractors (due to volume conservation), for each Lyapunov exponent there is

5



6 Chapter 2. Dynamics in Hamiltonian systems

one with opposite sign, and if λ is an eigenvalues of the Jacobian matrix λ, 1/λ, λ∗, 1/λ∗ also
are. This last condition is specially restrictive in the case of two-dimensional (area-preserving)
maps (N = 1): eigenvalues calculated at periodic orbits lie either in the imaginary circle |λ1,2| =
1 being thus stable (elliptic) or on the real axis λ1 < 1 < λ2 being thus unstable (hyperbolic or
hyperbolic with reflection). The border case λ1 = λ2 = 1 is marginally stable (parabolic).

Invariant measure: The quantification of sets in the phase space is done mathematically
rigorously defining a measure µ of the phase space which is a non-negative and countably-
additive function defined in a bounded region R [Ott02, dA92, CFS82]. For a map x 7→M(x) a
measure is called invariant under the map if µ(E) = µ(M−1(E)) for any measurable set E ∈ R.
Similarly, a measure is invariant under a flow ϕt if µ(ϕt(E)) = µ(E) for all times t. The measure
µ(R) is called ergodic if it can not be written as the composition of different invariant measures.
In this case the temporal average of some function of the phase space variables f̄(I, θ) of a single
typical trajectory equals the ensemble averages 〈f(I, θ)〉 along the invariant measure

f̄(I, θ) = lim
t∗→∞

1
t∗

∫ t∗

0
f(I0(t),θ0(t))dt =

∫
R
f(I, θ)dµ = 〈f(I, θ)〉. (2.5)

For closed Hamiltonian systems (where the phase space coordinates remain bounded) the
natural invariant measure is given by the volume of the phase space the Liouville measure which
is denoted by Γ. Hereafter Γ(phase space) = 1 is assumed. A system is called ergodic if the
Liouville measure over the full phase space is ergodic. As will be argued below, this is not the
case of typical Hamiltonian systems where the phase space can be decomposed into different
invariant components with positive measure. Numerical simulations strongly indicate that a
single chaotic trajectories typically fills regions of positive phase-space volume meaning that the
Liouville measure is ergodic in the chaotic component of the phase-space. For the quasi-periodic
trajectories, an ergodic measure can be defined as a delta function of Γ.1 It is straightforward to
apply most of the results of this Thesis to open systems (e.g., scattering problems), i.e., systems
where the phase-space coordinates are unbounded. However, in this case the mathematical
treatment is more cumbersome since one cannot speak about invariant components.

Invariant of motion: A function F (p, q, t) is an invariant (constant) of motion if

dF

dt
= 0 =

∂F

∂p

∂p

∂t
+
∂F

∂q

∂q

∂t
+
∂F

∂t
=
∂F

∂q

∂H

∂q
− ∂F

∂p

∂H

∂p
+
∂F

∂t
=: {F,H}+

∂F

∂t
,

where the last equality defines the Poisson bracket {., .}. In the usual case whenH is independent
of t, F is an invariant of motion if and only if {F,H} = 0.

The existence of invariants of motion reduces the effective dimension of the dynamics, e.g.,
if there are M invariants of motion the dynamics occurs in a 2N −M -dimensional manifold.
The effective dimension of the system can be explicitely reduced if a canonical transformation of
variables (p, q) 7→ (I,θ) is found. (I,θ) are called action-angle variables. Such transformations
preserve the Hamiltonian character of the system and are also defined through the generating
function S(I, q, t), where Eq. (2.2) apply, and the Hamiltonian is written as

H(I,θ, t) = H(p, q, t) +
∂S

∂t
(2.6)

Integrable system: A Hamiltonian system is called (completely) integrable if the two
following properties hold [Ott02]: (i) it has N invariants of motion independent of each other,
i.e., Fi cannot be written as a function of the Fj , for any j 6= i; (ii) the N invariants of motion

1In a 2N -dimensional phase space the invariant tori have usually dimension N (see Sec. 7.2.2). The integral
over all δ-functions has a positive Liouville measure corresponding to the area of the island.
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are in involution: {Fi, Fj} = 0 for each i, j. In this case the Liouville-Arnold theorem (see,
e.g., [dA92]) guarantees that a canonical transformation S(I, q, t) exists such that Eq. (2.6) is
written as H(I,θ, t) = H(I). Using (2.1) ,this leads to the following equations of motion

I = const.
θ = ω(I)t.

(2.7)

The frequencies ω = {ω1, ..., ωN} are usually irrationally conjugated, Eq. (2.7) describes a quasi-
periodic motion on a torus of dimension N (a circle for N = 1, a usual torus for N = 2, etc.).
In appropriate coordinates the motion of completely integrable systems is thus trivial. The
(nontrivial) task in this case is to find the N invariants of motion and the appropriate canonical
transformation. The class of integrable systems include, e.g., one-dimensional systems, 2-particle
systems subjugated to a central force, harmonic oscillators, and rotation of rigid bodies.

2.1.2 The fundamental problem of classical mechanics and the KAM solution

Once the case of integrable systems is clarified, one natural step is to look at near-integrable
systems

H(I,θ) = H0(I) + εH1(I,θ), (2.8)

where ε is a small perturbation parameter. Poincaré called this the fundamental problem of me-
chanics [Poi92, BG96]. A first guess would be that solutions of the near-integrable system (2.8)
resemble those of an integrable one (2.7) meaning that integrable systems are structurally stable.
This turns out to be true for the majority of the solutions, which is the most prominent result
of the KAM theory discussed in this section.

Formally, the assumption of structurally stability of integrable systems means that small
perturbations do not change the integrable character of the Hamiltonian. In this case there
exist a transformation of variables S(J ,θ) where Eqs. (2.2) and (2.6) apply so that in the
new variables (J ,φ) the system has again the trivial dynamics of Eq. (2.7). In accordance to
Eq. (2.8), the problem is approached perturbatively and the desired transformation is written
as

S(J, θ) = J .θ + εS1(J ,θ) +O(ε2). (2.9)

Assuming that H1 is periodic in the angles θ, H1 and S1 are expanded in Fourier series

S1(J ,θ) =
∑

m S1m(J) exp(im.θ),
H1(J ,φ) =

∑
mH1m(J) exp(im.φ).

(2.10)

Introducing the relations above in Eq. (2.6) one arrives after straightforward calculations [dA92,
Ott02] at

H(J ,φ) = H0(J) + ε

[
H1(J ,φ) + w(J).

∂S1(J ,φ)
∂φ

]
+O(ε2). (2.11)

If the system is integrable, Eq. (2.11) depends only on J , i.e, the terms depending on φ must
vanish for all orders ε. Using the Fourier expansions (2.10) the first order in ε in Eq. (2.11)
vanishes if

S1(J, θ) = i
∑
m 6=0

H1m(J, θ)
m.w

exp(im.φ) (2.12)

The convergence of the series (2.12) depends crucially on the denominator m.w: recall that
m is a vector of integer numbers which assumes all possible combinations upon summation
and w = ∂H0(J)

∂J is the vector of frequencies of the unperturbed tori. It is obvious that for
rationally conjugated frequencies (periodic orbits) the denominator vanishes (e.g., for N = 2
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and w1/w2 = p/q, this happens for m1 = q and m2 = −p) while for irrational frequencies it
assumes arbitrarily small values increasing |m|. This illustrates the problem of small denomina-
tors for the convergence of series, what was perhaps the fundamental problem of Henri Poincaré.
In the case of Eq. (2.12) it is possible to proceed. Assuming that H1 is an analytic function,
the terms H1m decay with |m| exponentially H1m ∼ exp(−λ|m|). For all irrational frequencies
for which m.w decays slower than exponentially the series (2.12) converges. In Appendix A
some basic results of number theory and continued fractional representation of irrational num-
bers are reviewed. One finds that almost all (except zero measure sets) frequencies satisfy the
Diophantine condition [Eq. (A.2)] and fulfill thus the convergence conditions of Eq. (2.12).

It remains, however, to be shown that this procedure works for the higher-order correction
terms in Eq. (2.11). Put differently, one has to show that the series (2.9) is not a non-convergent
asymptotic series. For this purpose more refined methods are needed, that are provided by
the so called Kolmogorov-Arnold-Moser (KAM) theory. In general terms, the KAM method
is applied at each iteration to the results of the previous iteration providing a convergence of
order ε2n−1 after n iterations, in contrast to εn obtained by repeating the method sketched
above. A faster convergence in each iteration is desired in order to guarantee that the stripe
of convergence of the series, which is reduced after each iteration of the procedure, does not
vanish in the limit n → ∞ [dA92, AA89]. The KAM procedure can be seen as an extension
of the Newton method of finding roots of functions [AA89]. More than a remarkable theorem,
the KAM methods build a powerful tool to deal with small denominators in the investigation
of structural stability of quasi-periodic motion. It applies not only to Hamiltonian systems
(discussed here) but also to volume-preserving and reversible systems (see [Sev98, Sev03] and
references therein)2. The main novelty of this method is that instead of searching for solutions
for a particular initial condition, or trying to classify the geometry of the possible trajectories, in
the KAM theory one concentrates in the structural stability of the quasi-periodic tori. Without
giving further details, the results achieved through such a procedure are stated next.

Let us define (in general words) the concept of KAM stability [Sev03]: a Hamiltonian H0 is
considered KAM stable if for any sufficiently small perturbation H1, the perturbed system (2.8)
presents quasiperiodic invariant n-tori close to the unperturbed tori, and the measure of these
tori goes to one when the perturbation goes to zero.

Systems that can be proved to be KAM stable have to satisfy mainly two hypothesis: (h-i)
smoothness of the Hamiltonian H and (h-ii) non-degeneracy of the frequencies. This fact was
proved for analytic H and systems satisfying either one of the following two nondegeneracy
conditions:

det
∂w

∂I
6= 0, or det

∣∣∣∣ ∂w
∂I w
w 0

∣∣∣∣ 6= 0. (2.13)

The first condition is the usual twist condition while the second is restricted to a given energy
shell3. Necessary and sufficient nondegeneracy conditions were recently discovered for analytic
perturbations [Sev03]. The condition of analyticity can be relaxed to Cr systems (r-times
continuously differentiable systems) provided r > 2N . In the case of area-preserving maps the
optimal condition is r = 3 [Mei92, SM70]. The KAM theory is constructive, leading in some
cases to system-specific estimations of values ε∗ such that for any ε < ε∗ the system is KAM

2It is interesting to note that a picture of the phase space similar to the Hamiltonian one is found in dissipative
time-reversible systems [RQ92, ACP06] and conservative non-Hamiltonian systems, which are ignored in this
Thesis. One expects that similar stickiness phenomena take place on these systems.

3Non-degeneracy conditions are in some sense natural if one thinks that the frequencies increase (non-linearly)
and independent from each other with the momentum. Nevertheless, generically one can expect that they are
violated locally [ACP06, dCNGM96]. One important completely degenerate system is the harmonic oscillator,
which is thus no-where KAM stable.
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stable. The proof of KAM stability of analytical twist Hamiltonian systems mentioned above is
also known as the KAM theorem.

2.1.3 Broken tori and chaotic components

For a broad class of near-integrable systems the KAM theory establishes that almost all tori
survive small perturbations. However, all tori build as the union of periodic of same period are
destroyed for arbitrarily small perturbation, i.e., one-parameter periodic orbits in Hamiltonian
systems are generically not structurally stable. This poses the question of what happens to the
remaining set of tori and for increasing perturbations. General answers to the previous question
in arbitrary dimensions are rare, and the further description is restricted to the special case
of twist area-preserving maps (continuous-time autonomous system with N = 2) for which the
review [Mei92] provides a comprehensive summary of the known results. The twist condition
(2.13) in this case states simply that the rotation number (f = ω1/ω2) is a monotonous increasing
(or decreasing) function of the action I.

Additionally, for arbitrarily small perturbations there are resonances for all rational rotation
numbers f = p/q, as discussed after Eq. (2.12). In the integrable case different initial conditions
lead to different periodic orbits p/q. The union of all periodic orbits p/q cover the torus. For
these orbits, the eigenvalues of the stability matrix are degenerate λ1,2 = 1 [properties of λ are
mentioned after Eq. (2.3)]. Most of these orbits disappear for arbitrarily small perturbations, and
only an even number of them (usually two) survive: half of the orbits are saddle points λi ∈ R and
half of the orbits are elliptic |λi| = 1, in agreement with the Poincaré-Birkhoff theorem [dA92,
Ott02]. A qualitative discussion of the picture around these points provide insights into the
complex picture of Hamiltonian systems [Poi92]:

(i) Elliptic points (the resonances) are stable and thus nearby initial conditions create trajec-
tories that circulate it in a quasi-periodic motion that build a more complicated torus (libration).
Indeed, close to an elliptic point the picture is the same as in the near-integrable system de-
scribed by Eq. (2.8). It is clear that this picture repeats in finer and finer scales leading to a
hierarchical picture. Elliptic points may lose stability through bifurcation.

(ii) Hyperbolic points have a stable and an unstable direction: the set of all points that
under forward (backward) iterations tend to the saddle point is called stable (unstable) mani-
fold [Ott02] . Poincaré observed that the stable and unstable manifold of the same (different)
orbit may intersect leading to homoclinic (heteroclinic) orbits [Poi92]. Homoclinic points are
mapped again onto homoclinic points, showing that the manifolds intersect in an infinite number
of points. In some cases, the existence of such intersections can be proved through Melnikov’s
method [dA92]. Transversal intersections lead to the existence of horseshoes (stretching and fold-
ing), the basic mechanism of chaos [dA92]. The picture is however much more complicated than
the hyperbolic horseshoes (baker map) since embedded in the area of homoclinic intersections
there are manifold tangencies and further elliptic points.

Invariant KAM-tori with irrational frequencies may be destroyed if they violate the Diophan-
tine condition (A.2) or if the perturbation strength ε is increased. Despite the non-existence of
the KAM-tori with a given rotation number f , it is shown that for twist area-preserving maps,
quasi-periodic orbits of all frequencies exist [Mei92]: these quasi-periodic orbits do not build a
smooth connected torus anymore but are confined to a fractal subset of the phase space, i.e, a
cantor set [Mei92, Ott02]. These orbits can be seen as the survival of the KAM-tori and are
called “cantorus”. In the next section it will be argued that the chaotic dynamics is strongly
influenced by the low flux through cantori.
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2.1.4 A qualitative picture

Finally, the general picture of the phase-space of near-integrable Hamiltonian systems is
presented, and it is argued to be valid in a much broader class of systems. The KAM theory
shows that quasi-periodic trajectories are structurally stable and one expects it to cover regions
of positive measure of the phase space µ(tori) > 0. For the case of chaotic trajectories it
is usually difficult to have rigorous results about its measure. On the other hand, there is
overwhelming numerical evidence that an increase of the non-linear perturbations induces an
increase of the chaotic region increases that has also positive measure. One says that such a
system has mixed phase space. When the most irrational tori is broken [see Eq. (A.4)] chaotic
trajectories assume any value of the action I and the KAM tori are restricted to resonances.
One usually calls these resonances regular islands embedded in a chaotic sea. Typically both
have positive measure. Consider now the border between the chaotic component and the regular
island. For each island this is a well defined torus, which is called boundary circle, but around it
the whole picture of near-integrable system is again observed: an infinite hierarchical sequence
of islands-around-islands surrounded by cantori.

Even though many of the above statements are usually proved only in very special systems,
this scenario is easily illustrated numerically in a large variety of systems. Here the standard
map (also called Chirikov map) is used since it describes very generally the phase space around
one resonance [LL83]. It is defined as

pn+1 = pn +K sin(2πqn) mod 1,
qn+1 = qn + pn+1 mod 1.

(2.14)

The parameter K plays the role of the perturbation strength ε of Sec. 2.1.2. Without loss of
generality the control parameterK = 0.45 was used. Figure 2.1(a) shows the iteration of different
initial condition of the map (2.14) where one dot was plotted at each point of the trajectory. A
caricature of the picture with the notation used is given in Fig. 2.1(b). Many trajectories spread
irregularly through the phase space building a single dotted region, the chaotic sea. Close to the
center the trajectories regularly circle a central elliptic point, composing the main island (order
1). Around this island one secondary island chain of period 4 is seen (order 2). Further secondary
resonances (order 2) are observed closer to the boundary circle, as shown in the inset (period 15
winding number 4). Close to the secondary islands additional island chains are observed (order
3), and so on.

Finally some qualitative arguments for the generality of such picture are collected and the
alternative structures that may be present in the phase space discussed. First of all, one should
mention that it has been proved that completely integrable systems are exceptional systems
among the analytic Hamiltonian systems [SM70]. Even if one can say that hyperbolic systems
(completely chaotic) are structurally stable, building thus “open sets” in the space of Hamilto-
nian systems, it is clear that the conditions for hyperbolicity are very restrictive and usually not
fulfilled by typical Hamiltonian systems. Another way of looking at the near-integrable scenario
is that one can define approximated local invariants of motion around one elliptic periodic orbit
associated to the invariant tori. Far away from the periodic orbit this approximation becomes
worse. This can be associated to a greater strength of the perturbation ε in Eq. (2.8). The size
of the islands is not particularly important for our purposes since the stickiness phenomenon
studied below occurs exactly at its border, where the near integrable results are valid as argued
above. If on the one hand it seems clear that Hamiltonian systems (specially low-dimensional
ones) have generically mixed phase space, on the other hand the properties of the regular is-
lands and invariant tori may vary. Apart from the regular structures described above (also
called KAM-islands or resonant-islands) a whole zoo of other structures may exist in the phase
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Figure 2.1: (Color online) (a) Phase space of a representative example of an Hamiltonian system with mixed
phase space, the standard map (2.14) with K = 0.45. Inset shows an amplification close to the island. (b)
Sketch of part (a) with the labels of the different structures of each structure. In parenthesis (q, n) the period
and winding number of the island and in brackets its possible position in the Markov-tree model discussed in
Sec. (2.2.3).

space. The violation of the twist condition (2.13) may lead to a different topological structure
(locally) around the shearless torus [HH84, dCNGM96, dCNGM97] and to systems like the web-
map [Zas91] that may have all tori broken for any small perturbation. The KAM theory also fails
completely when the system cannot be written in a near-integrable form (as in Sec. 2.1.2) giving
rise to phenomena like the nets and web tori emphasized in chapters 7 and 8 of Ref. [Zas05]. Ad-
ditionally, there exist the so-called tangle islands, islands that appear inside the lobes created by
the stable and unstable manifold of an hyperbolic point between two intersections. These islands
may also appear hierarchically distributed in the phase space, as emphasized in Ref. [RKZ99],
where the classification of different kinds of islands was proposed. These structures may coexist
in the phase space and typically have different “sticky” properties [Zas02b].

In summary, near-integrable Hamiltonian systems have regions of chaotic motion – created
through the heteroclinic intersection of manifolds – and regions of quasi-periodic motion – KAM
tori similar to the integrable one and KAM islands. These regions coexist and build a mixed
phase space, i.e., they exist for the same control parameter for different initial conditions. The
hierarchical picture of near-integrable systems is expected to appear in generic Hamiltonian
systems with mixed phase space near the border of regular regions and is the relevant scenario
for stickiness. Nevertheless, islands with different properties may exist (or even coexist) in the
phase-space.
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2.2 Dynamics in the phase space

2.2.1 Basic properties

So far the phase space of Hamiltonian systems has been described: the invariant structures
and their structural stability. This section focus on the dynamics of individual trajectories
inside such a phase space. Nothing special is observed for the regular trajectories since quasi-
periodic and periodic trajectories are conjugated to a simple rotation and are thus described
by Eq. (2.7) [Ott02]. More interesting behavior is observed in the chaotic component where
stickiness will be emphasized and related to the different properties of regular islands discussed
in Sec. 2.1.4. For simplicity, again only closed Hamiltonian systems will be treated.

Perhaps the most basic and useful property of regular and chaotic Hamiltonian trajectories
is their recurrent status. This is formally stated by the Poincaré recurrence theorem [Ott02,
CFS82] that says that in a bounded Hamiltonian systems, given a set I of positive Liouville
measure Γ(I) > 0, almost all trajectories w ∈ I (except sets with zero Liouville measure) there
exists a time T such that MTw ∈ I, i.e., the trajectory returns to the vicinity of its initial
condition. This property is further explored in the next Chapter and will be extensively used
throughout this Thesis.

Specific properties of chaotic trajectories can be obtained analytically, e.g., for hyperbolic
systems. In such systems all periodic orbits are hyperbolic (no elliptic point or KAM-tori
exist) and the stable and unstable manifolds of such orbits cross transversally and completely
split the phase space. For such systems many mathematical results have proved that there are
Lyapunov exponents (exponential separation of close by trajectories), systems are ergodic,
the strong mixing property is valid (bunch of initial conditions spread uniformly in the phase
space), correlation decays exponentially, and there exists a complete symbolic dynamics (see
Refs. [LL83, Dor99, Ott02] and references therein). Examples of such systems are the cat map,
the baker map, and flows in geodesics with everywhere negative curvature. However, as argued
in Sec. 2.1.4, the typical Hamiltonian systems are not hyperbolic but poses a mixed phase space.
In this case, there is usually no proof of such mathematical results even though many similarities
are expected for the dynamics restricted to the chaotic invariant component. Perhaps the key
property of chaotic trajectories in such systems, absent in the case of hyperbolic systems, is the
stickiness phenomenon discussed in the following section.

2.2.2 Stickiness

The previously discussed stickiness phenomenon is pictorially illustrated in Fig. 2.2 where
one sees that the distance of a chaotic trajectory to the border of a regular island alternates
between irregular fast oscillations at large distances and long periods of regular behavior at small
distances. The distribution of events which became stuck for a time T , P (T ), is the fundamental
measure of stickiness. Chapter 3 discusses carefully the different distributions used to measure
this effect and defines formally stickiness as their slow decay. By now, it is sufficient to consider
that the distribution of the laminar phases behaves for large T roughly as a power-law

P (T ) ∼ T−γ−1 (2.15)

Figure 2.2b shows one numerically obtained example of such distribution plotted in log-log scale
where scalings like in (2.15) appear as straight lines. It is clear that despite the overall power-
law decay strong oscillations occur. For visualization purposes instead of P (T ) the integrated
distribution ρ(T > τ) ∼ τ−γ is plotted, i.e., the probability distribution of having one stickiness
event with time T greater than τ . During the sticking time the trajectory performs an almost
regular motion what motivates the analogy to intermittent systems. One intuitive idea about
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Figure 2.2: Illustration of the stickiness phenomenon that leads to an intermittent behavior of the chaotic
trajectories. (a) The distance of one chaotic trajectory to the border of the regular island is plotted as a
function of time for the area-preserving map discussed in Sec. 5.1. One stickiness event of size T = 335 is
emphasized; and (b) the distribution of the sticking times T greater than τ (see Sec. 3.1.2) for the standard
map (2.14) with K = 0.52 and 1011 iterations of a single trajectory. The main plot is in log-log scale while
the inset is in linear-log scale, emphasizing the short-time exponential followed by a power-law like decay for
long times.

the reasons for the stickiness is that the instability of chaotic trajectories (e.g., the local diffu-
sion coefficient or the finite-time Lyapunov exponent) must approach continuously zero when
approaching the boundary circle y0 from outside: D ∼ (y − y0)δ. This idea will be further
developed in Sec. (4.2) for a particular case.

Sometimes stickiness does not appear as a fundamental property on its own, but is studied
in the context of transport properties in general [Wig91]. Another approach was to define
properties of weak-mixing [Zas05] or pseudo-ergodicity [Zas02b] to deal with systems displaying
stickiness. A description through fractional Fokker-Planck equation was also proposed for what
was called Strange Kinetics [SZK93, Zas02a]. In this Thesis the perspective of stickiness as a
fundamental property of individual chaotic trajectories is assumed. The main reason for this
choice is that it preserves the intuitive aspect of the phenomenon. This is similar as describing
chaos as Lyapunov instability of individual trajectories instead of speaking about properties of
invariant sets. Moreover, pure ergodic theoretical arguments may be misleading since even zero
measure sets (e.g., cantori and MUPOs) in contact with the chaotic component have strongly
influence on the dynamics. Based on the topological properties of the phase space discussed
in the previous section, different theories described below attempt to describe quantitatively
the stickiness. A short chronological review of the main results is given next. The discussion
is restricted to area-preserving maps (Hamiltonian flows with one and a half or two degrees
of freedom) of the cylinder T (x, y) → (x, y) (x periodic) satisfying the twist condition (2.13).
The higher-dimensional case will be investigated explicitely in Chap. 7, where the few references
dealing with it will be mentioned.

The phenomenon denoted stickiness [Kar83, CS84] in this Thesis appears in the literature
under different names such as: clinging [KG87a], dynamical trapping [Zas05, Zas02a], and stag-
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nant motion [Aiz89]. Perhaps the first evidence of stickiness was obtained by Contopoulos in
Ref. [Con71] where an astronomical model with mixed phase space was investigated numerically
and the following situation was described near the boundary of the regular region:

“Orbits near this boundary may have many points on an empirically defined
smooth curve on the surface of section. However, if we continue calculating points of
intersection, we may see deviations from this curve, and these deviations very soon
become important; ...It seems that as we approach the empirical boundary between
the two regions, the number of points that do not deviate from an empirically defined
curve increases abruptly, going presumably to infinity.”

But it was only more than ten years later that this phenomenon was explicitely explored
in the inspiring Refs. [Kar83, CS84]. Stickiness was immediately accepted as a fundamental
property of Hamiltonian systems and different works during the 1980’s addressed this point
and its consequence to fundamental properties of the system (Lyapunov exponents [KG87a],
long-term correlations [CS84], and spectrum [GZR87]). Since then many different applications
and consequences of stickiness were investigated. The onset of anomalous transport is per-
haps the most prominent one [Kar83, ISM00, ZT91, ZK94], what will be discussed carefully in
Sec. 6.2. Direct experimental observations of stickiness and anomalous transport were performed
in fluid dynamics [SWS93, SWS94]. Stickiness manifests itself also in the survival probability
of a quantum system up to the Heisenberg time [CMS99]. Microscopic and quantum manifesta-
tions of stickiness include both closed systems (e.g., the statistics of eigenstates [KHSW00]) and
open systems [LBOG92, CGM00, HKL00]. Stickiness was used to explain the observed magne-
toresistence of 2D anti-dot arrays [FGK92] and to predict fractal conductance fluctuations in
cavities [Ket96], later observed experimentally [Nar96, SKG+98]. In all these cases important
observable quantities are related to the stickiness and the exponent γ appearing in Eq. (2.15)
plays an important role. A deeper understanding of stickiness and a theory for the exponent γ
are thus highly desirable.

2.2.3 Flux through cantori and the Markov-tree model

The first idea to build a theory of stickiness was to use the at that time recently discovered
cantori to define partial barriers to the transport of trajectories. By calculating the flux through
a single cantorus and by using the scaling properties of the cantori close to the islands one arrives
at the Markov-tree model of stickiness [MO85, MO86]. Following Refs. [Mei92, MO86], where
more details can be found, the main ideas of this model are sketched below and illustrate the
main components of the problem of stickiness in the hierarchical phase space.

Flux is the area (volume) per unit of time that crosses from one side of a non-invariant surface
in phase space to another. Initially the calculation of the flux through a surface passing through
a sequence of periodic orbits is calculated. It is known from the Poincaré-Birkhoff theorem
that there are at least two families of periodic orbits for each frequency m/n: the hyperbolic
(minimax) and the one which were born as elliptic (minimizing). The following procedure,
illustrated in Fig. 2.1b, defines a (non-invariant) surface and estimates the flux through it: join
with an arbitrary curve L0 two successive minimizing orbits passing through the middle minimax
orbit; the union of the n− 1 past iterations of this curve define a surface; the first iteration L1

intersects this surface in (at least) the three periodic orbits, defining two regions of equal area in
a kind of figure-of-eight (the so-called turnstile); this areas are, by construction, mapped inside
and outside the surface each iteration, defining thus the flux F. It can be shown that the flux,
irrespective of the curve L chosen above, can be obtained directly from the Hamiltonian [or from
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the definition of the symplectic map as in Eq. (2.2)] as the difference in action W between the
minimax and minimizing orbit:

F = ∆W(m,n) = W(m,n)(minimizing)−W(m,n)(minimax). (2.16)

One can obtain the flux through cantori by similar reasoning. For practical calculation, the
quasi-periodic cantorus is approached by a sequence of periodic orbits mj/nj . This approach is
optimal (closer for each j) through the use of continued fraction expansions (see Appendix A).
The flux through an invariant circle is obviously zero, and it can be proved that it is a continuous
function on the irrationals, i.e., the flux on the cantori close to the invariant torus decrease to
zero when approaching it. It turns out that the flux through the cantori with most irrational
frequencies correspond to local minima of the flux. This occurs when the frequencies belong to
the noble numbers (see Appendix A).

Markov-tree model

The noble cantori are thus used to define “Markov states” close to the invariant tori with
frequency ν0. The bigger resonances close to the last torus are given by the convergents (rational
approximations) of the frequency of the last torus. Due to the twist condition [see Eq. (2.13)],
the frequencies are ordered in the phase space increasing (or decreasing) monotonously with the
distance to the torus. The area between two consecutive noble cantori are chosen to define one
state. This procedure leads to a countable infinite sequence of states. In each state there is
typically one additional secondary island (at the resonance used to define the state), for which
the procedure described above is repeated. Starting from the chaotic sea, an arbitrary exit region
away from islands, the following labeling procedure is adopted: each state reached through a
step approaching the principal resonance receives a number σi = 1 (different level) while each
state approaching a secondary island receives the number σi = 2 (different class). All states can
thus be labeled as

S = [σ1, σ2, ..., σN ],

where σi = 1 or σi = 2. A sketch of this labeling is illustrated in Fig. 2.1(b) where the labels
appear in brackets [...]. Note that the islands (actually their border) are reached only after an
infinite sequence of states which end with [1, 1, 1, 1..]. The “order” of the island chain referred
in Sec. 2.1.4 correspond to the number of “σi = 2” (minus 1) it has. Note also that this division
of the phase space in states is complete, i.e., all chaotic components of the phase space belong
to some state.

An important assumption of this model is that the time the trajectory spends inside one state
is large compared to the mixing time inside it. The dynamics is thus assumed to be Markovian
between states, i.e., transitions between states occur with a given probability pS→S′ independent
of the past. In addition only transitions between neighboring states are allowed. In this case,
the picture of the sticky motion of the trajectory close to the island correspond to a random-
walk in a binary tree: at each state the trajectory may step to the next state approaching the
main island or may step into the state related to the secondary island, or may step back. The
corresponding transition probabilities are given by

pS→S′ = ∆WS,S′/AS ,

where ∆WS,S′ , given by (2.16) is the flux through the cantorus in the border between states S
and S′, and AS is the total area of state S. Denote DS the state just above S. It is important
to know how the probabilities of stepping to a new class (index 1) or level (index 2) depend
on the areas and times associated to each state. The self-similar characteristics of the above
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picture motivates the use of results from renormalization theory to determine these scalings
asymptotically, which can be resumed in the following scaling factors

ε1 =
w1

a1
=

∆WS,S1/∆WDS,S

AS1/AS
and ε2 =

w2

a2
=

∆WS,S1/∆WDS,S

AS2/AS

The factors ε correspond to time scales (e.g., time to encircle some chain of islands) and the
factors a corresponds to the scaling of area (e.g., the area between noble cantori or of chain of
islands). The results for the case of noble frequencies are especially simple due to its simple
continued fraction expansion. It is also reasonable to apply this result in our problem since the
boundary circle are usually not far from noble. The estimation of the scaling factors of the class
scaling follow from similar procedures, but are less precise due to the lack of reasoning for the
universality of the “island-around-island” structure.

The final step is to solve the problem of the survival probability ρ(t) of a random walker in
such a tree, which is given by an integral equation in the continuous time approximation [ρ(t)
is directly related to the measured ρ(T ) in Eq. (2.15)]. Taking its Laplace transformation, the
asymptotic time dependence of the survival probability is given by its singularity with smallest
real part. Since an exponential decay is not expected neither in the case of stickiness nor for a
random walk in an infinite tree, one assumes that this singularity is indeed a branch point which
yields a power-law with exponent ρ(t) ∼ t−γf(ln(t)). The value of γ is finally given by solving

w1ε
−γ
1 + w2ε

−γ
2 = 1, (2.17)

that would have more terms of similar forms in the case of trees with more branches (e.g., dif-
ferent chains of secondary island at each level). Inserting the values of the scaling factors wi, εi
obtained through renormalization theory one obtains the value of γ = 1.96. This exponent
is smaller than the exponent γ = 3.05 one gets by considering only the level scaling (chain
model) [HCM85], but still higher than most of the numerical simulations. However, the com-
parison with numerical data has to be done very carefully in order to determine if for the times
obtained the trajectory already explored the Markov tree sufficiently deep so that the results
of normalization theory apply. Further difficulties are the log-periodicities that have a strong
effect for small times.

The Markov-tree model, an improvement of the chain models, remains perhaps the most
refined and solid model of stickiness. Further refinements can be incorporated, like the existence
of other chains of secondary islands at each state, or the existence of other types of sticky islands
and structures, provided it is known how they scale in the phase space. Some noteworthy
simplifications are related to the Markov assumption within each state and the “believe” in
the existence of universal renormalization results in the phase space of Hamiltonian systems.
Further criticism appear in Chap. 5 of Ref. [Wig91] where, e.g., it is argued that the turnstiles
of one state may penetrate further states. At the end of the next section one generalization of
the Markov-tree that incorporates many of this criticisms and shows promising results will be
discussed [CK].

2.2.4 Universality of the exponent γ and the stickiness problem

The 20 years old Markov-Tree model remains one of the deepest models of stickiness providing
a framework where different effects can be included. Through the 1990’s, the stickiness picture
was changed by the exploration of different scenarios and by different associations to statistical
physics. For instance, the previous results on anomalous transport [Kar83, GZR87] were related
to continuous time random walks and Lévy flights [SZK93, Zas02a, ZK94, KSZ96]. Furthermore,
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the consequences of the slow relaxation on the statistical mechanical approach to thermodynam-
ics was explored in Ref. [Zas99]. A general approach to the problem is substantially motivated
by the studies of G.M. Zaslavsky and collaborators, summarized in Refs. [Zas02a, Zas05]. In
these works one finds, besides a novel fractional kinetic description of transport, the study of
stickiness in a rich variety of systems, not restricted to the Hamiltonian picture described above.
Some of the structures in the phase space are mentioned at the end of Sec. 2.1.4 and lead to
different trapping phenomena proposed in Ref. [Zas02b].

Regarding the stickiness exponent γ, the picture that arises from the different works men-
tioned above contrast with the claims of universality drawn by Chirikov and Shepelyansky [CS99].
In this paper a simple renormalization approach for the level scaling is used to predict an univer-
sal exponent γ ≈ 3. In this context one should mention the very instructive papers [WHK02a,
WHK02b] that show numerically the limitation of the models considered in Ref. [CS99] and in
Ref. [Zas02a] even for the particular parameters considered in these works, i.e., at the breakdown
of the last torus and when self-similar islands-around-islands are observed and, respectively. In-
terestingly, the authors of Refs.[WHK02a] demonstrate that neither level scaling (approaching
the main islands) nor class scaling (approaching other secondary islands) alone are enough to
describe the stickiness process restating thus some of the key ideas of the Markov-tree model.
What is observed numerically for the distribution of laminar phases (2.15)? As illustrated in
Fig. 2.2b, the existence of a “power-law like” behavior is ubiquitous but different oscillations
are usually observed what makes a fit of γ over more than two decades unfeasible. Despite the
claims of universality of γ and the deduction of values of γ in particular cases, no convincing
universal behavior was observed numerically for individual systems (see next paragraph for some
promising recent results). The few estimations of the times for which the universal exponent
should be visible [Mur91, CS99] are usually quite large for any practical purpose. This leads to
a more pragmatic point of view where finite time behaviors are considered on its own. In this
spirit, an effective model was derived in Ref. [MdMGK05] and questions related to the finite-
time behavior addressed in Ref. [Zas05]. This provides another argument in favor of discrete
models (like the chain and tree models). If by one hand they have to have infinite number of
states accumulating at the boundary circle, in order to describe systems which are continuous
in space, on the other hand they may take into account the finite time oscillations observed nu-
merically [MdMGK05, AMK06]. From the perspective of the discrete-state models, power-laws
are seen as sums of an infinite number of exponentials (analogously, a branch point singularity
can be thought to be built by an infinite number of poles).

A very recent (unpublished) work by Cristadoro and Ketzmerick [CK] provides convincing
numerical and theoretical results indicating that an universal asymptotic exponent indeed exists
for the systems with hierarchical phase-space. The idea was to generalize the Markov tree
picture described above to a kind of stochastic tree, in the sense that the transition probabilities
do not follow precise scalings but are randomly taken from fixed (unknown) distributions. The
number of states that contribute for the stickiness at a given time increases with time and
one expects that some self-averaging takes place. This was indeed observed by the authors
of [CK] in the stochastic model. In order to verify their results in real Hamiltonian systems
the following equivalence was proposed: the distribution of sticking times in individual systems
for very long times is equivalent to the average distribution of sticking times over different
generic systems. The reason for this analogy is that in both cases the distribution of sticking
times is obtained as an average over many different states of the phase space. In this way a
statistically significant result can be numerically obtained and the oscillations typically observed
(as in Fig. 2.2b) are reduced. This is illustrated in Fig. 2.3, where simulations of 100 different
standard maps (2.14) with an additional control parameter are shown. Each curve shows wild
oscillations, as expected by the arguments above. However, the average over all maps displays
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Figure 2.3: (Color online) Sticking
time distribution ρ(τ) for 100 differ-
ent standard maps (2.14) with a con-
stantK† added to the y equation:K ∈
[0.5, 0.6],K† ∈ [0, 0.2]. The central
green (gray) curve is the average [for
fixed ρ(τ)] over all curves, and the red
curve (axis on the right) corresponds
to the standard deviation of the curves
(for fixed ρ(τ) projected to the x-axis).
The further parameters are equivalent
to those of Fig. 6.1b below.

a very robust power-law decay. Moreover, the standard deviation around this mean increases
for small times and seems to stabilizes for larger times, indicating that the deviations from the
power-law behavior are bounded oscillations and not due to different power-law exponents. The
scaling exponent obtained for the fitting is γ = 1.60± 0.05 and is thus expected to be universal
also for each individual system for sufficiently long time. These results are in agreement with
similar simulations performed by Cristadoro and Ketzmerick in different area-preserving maps
where the exponent was estimated to be γ = 1.57.

From the very first studies of stickiness the aim was to determine the existence of an uni-
versal exponent for the stickiness in area-preserving maps. Considering the different numerical
experiments mentioned above as well as the different structures that may be present in the
phase space (mentioned at the end of Sec. 2.1.4) one cannot even be sure whether a well defined
power-law arises for long times. Inspired in Ref. [WHK02a], a re-stating of the problem in a
general terms could be:

The stickiness problem is to determine how the properties of the different structures in the
phase space (Sec. 2.1) are connected to the dynamical properties of chaotic trajectories (Sec. 2.2),
considering specifically their effect on the distribution (2.15).

This is a fundamental question of Hamiltonian dynamics, for which this Thesis provides
answers in specific but relevant cases.



Chapter 3

Recurrences

One of the fundamental properties of Hamiltonian systems is the recurrent character
of trajectories in the phase space, as stated by the Poincaré recurrence theorem. In
this chapter it is shown how the statistics of recurrence times can be used to charac-
terize the stickiness phenomenon and how it is related to other important measures,
e.g., decay of correlations and survival probabilities (Sec. 3.1). Additionally, this
statistical tool is applied to time series and analogies to the case of Poincaré recur-
rences are explored (Sec. 3.2). In the case of long-term correlated time series, the
numerical simulations suggest stretched exponential distribution shedding new light
about the meaning of the power-law tails obtained in Hamiltonian systems.

3.1 Poincaré recurrence time

3.1.1 Origins and connection to stickiness

A recurrence in an Hamiltonian systems refers to the return of a trajectory to the vicinity of
its initial condition in the pase space. The Poincaré Recurrence Theorem, stated in Sec. 2.2.1,
ensures that in closed Hamiltonian systems this happens for almost all trajectories1. Poincaré
actually used the recurrence property as a stability criterion, which he claims to be due to
Siméon D. Poisson (1781-1840) [BG96], and interpreted his theorem as a proof of stability.

Poincaré’s result became well known to the physics community due to the work of Ernst
Zermello (1871-1953), who used it to criticize the (at that time newly born) statistical mechan-
ical description of thermodynamics [Kac59, Zas99]. The arguments of the so-called “Zermello
paradox” are fairly simple: if a thermodynamical system is described through the statistical
properties of particles submitted to some potential one is dealing with a Hamiltonian system;
according to the recurrence theorem, an infinite number of recurrences to the initial condition
should be observed; since a recurrence in the phase space implies a recurrence of all possible
observables, one has to expect returns of the value of the entropy to its initial state; this is in
disagreement with the (empirically determined) second law of thermodynamics that states that
the entropy increases monotonically in time. Boltzmann’s solution of this apparent paradox
contains no correction to this chain of arguments. However, he argued that the probability of
a Poincaré recurrence is very small in such a high-dimensional system and that the second law
of thermodynamics should be interpreted probabilistically. More concretely, he showed that the
mean recurrence time of a typical thermodynamical system is many times larger than the age
of the universe [Leb99]. The explicit calculation of the recurrence time represents an important

1Except trajectories that build zero measure sets, like, e.g., the stable and unstable manifolds of periodic
orbits.
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conceptual progress from Poisson’s stability interpretation of recurrence. As it will be clear
below, a further step is enough to quantify stickiness in an elegant way: to consider instead of
the mean recurrence time, the statistics of recurrence times [CS84].

The connection to stickiness becomes evident considering the following procedure to deter-
mine the recurrence time in the 2N -dimensional phase space Ω. Define a recurrence region I ∈ E
inside the chaotic component E ∈ Ω, i.e., away of sticky regions. Consider µ(I) the invariant
measure of the recurrence region [by convention µ(E) = 1]. Start a single initial condition in-
side I and consider the time T between the exit and the first return to I. According to Poincaré
recurrence theorem such a recurrence generally occurs and the procedure can be repeated, lead-
ing to an sequence of recurrence times {T1, T2, ..., TM}, where M increases indefinitely with the
observation time. The intuitive connection to stickiness is that a stuck trajectory will have
longer Ti (consider Fig. 2.2a and a recurrence region far from the island). It is shown below
that if the trajectory does not stick it returns exponentially fast and that in case of sticki-
ness roughly algebraic distribution is observed. This shows that large recurrence times T are
composed essentially by the time the trajectory remained stuck.

3.1.2 Recurrence time statistics

The recurrence time distribution P (T ) (RTD) is the distribution of the sequence {T1, T2, ..., TM},
for M →∞. In continuous time P (T ) is a probability density function (PDF) and thus P (T )dT
is the probability of finding a recurrence time Ti between Ti and Ti + dTi. There are two
conditions that P (T ) satisfies: normalization∫ ∞

0
P (T )dT = 1, (3.1)

and Kac’s lemma [Kac47, Kac59]

〈T 〉 =
∫ ∞

0
TP (T )dT = 1/µ(I). (3.2)

valid under the same hypotheses of the Poincaré recurrence theorem mentioned in Sec. 2.2.1 and
µ(I) corresponds to the measure of the recurrence region. A small correction is needed in the case
of small recurrence interval µ(I) → 0 and continuous time systems [Kac59], what is irrelevant
in this Thesis. Indeed, mainly discrete time systems (maps or time series with finite sampling
time) are used, in which case T ∈ N∗ and integrals should be replaced by a sums in Eqs. (3.1)-
(3.3). Kac’s lemma [Eq. (3.2)] can be interpreted as an immediate consequence of ergodicity (or
stationarity of a time series): the probability of finding a trajectory in the interval I is equal to
the inverse of 〈T 〉. This is similar to what is shown in Eq. (2.5), i.e., the trajectory spends on
average equal times in equal volumes of the chaotic component of the phase space. It implies
also that the mean recurrence time is uniquely defined by the measure of the recurrence region.
Altogether, this shows that the stickiness phenomena is neither characterized by a longer time
spend near the regular regions, nor by the mean recurrence time 〈T 〉. Stickiness consists in a
long consecutive time a trajectory spends near the islands and can be characterized by the
tails of the RTD.

It is numerically convenient to use the distribution of the recurrence times greater than τ∗

ρ(τ) ≡
∫ ∞

τ
P (T )dT, (3.3)

also called cumulative recurrence time distribution or, hereafter, recurrence time statistics
(RTS). It is a monotonous decreasing function of τ , starting at ρ(0) = 1 due to (3.1).
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Examples of RTS

The RTS is calculated now for two simple processes in discrete time: (i) fixed return proba-
bility [Fel50, AdSC04] and (ii) simple random-walk [Fel50].

(i) Consider a random system that has a fixed recurrence probability µ at each time step,
independent of time. After one recurrence, the probability of having T − 1 non-recurrences
before one recurrence at time T is

PR(T ) = µ(1− µ)T−1 =
µ

1− µ
eT ln(1−µ),

which is a binomial distribution. In the limit of small probability µ this reduces to the Poisson
distribution

PR(T ) = µe−µT ⇒ ρR(τ) = e−µτ , (3.4)

and one sees from (3.2) that µ = µ(I). Poisson distribution has been shown to describe the RTS
[in the limit of µ(I) → 0] of strongly chaotic (hyperbolic) systems [HSV99, Hir93]. This shows
that from the point of view of the RTS these systems are indistinguishable from a simple random
process. For finite µ(I) some deviations of the exponential rate of the binomial distribution are
observed due to periodic orbits of low-period [AdSC04, Alt04]. However, for our purposes
the more relevant observation is that the RTS in this case also decays exponentially for large
recurrence times.

(ii) Consider the usual random walk in one dimension with a fixed probability p = 0.5 of
stepping to the left or to the right a step of size 1 after each time interval n. The probability
that it will be again at the initial position (the origin) at time n is zero for n odd and for n even

p(2n) =
2n!
n!n!

2−2n,

where the first term corresponds to the number of combinations p having equal number of steps
to the right and to the left and the second is (one over) the total number of steps. Using Stirlings
formula n! ∼

√
2πnn+0.5e−n, one gets that for large times

p(2n) ∼ 1√
πn

,

where the symbol “∼” means that asymptotically for large times the ratio of both sides of
the equation tends to a constant. In order to calculate the recurrence one has to impose the
condition that n is the first time that the trajectory comes back to the origin. This can be
calculated using the ballot theorem [Fel50] that, in this particular case, says that the number of
path that do not cross the origin scales as p/n. 2 Taking this into account and writing n = T ,
coherently with the previous notation one gets that the RTS for large T can be written as

P (T ) ∼ T−1.5 ⇒ ρ(τ) ∼ τ−0.5. (3.5)

The two examples described above lead to the two paradigmatic RTS observed in Hamilto-
nian systems: the exponential decay as in (3.4) and a power-law decay as in (3.5) which is more
generally written as

P (T ) ∼ T−(γ+1) ⇒ ρ(τ) ∼ τ−γ . (3.6)
2 Another way of taking the effect of first return into account is to consider it the time derivative of the

probability of being at the origin: P (2n) = p(2n) − p(2n − 2). This result is also deduced in chapter 3 of
Ref. [Fel50] and can be interpreted as a particular case of the effect (i) discussed in Sec. 3.1.3. It is easy to see
that it leads also to relation (3.5).
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The exponent γ is the same used in Chap. 2, which was qualitatively defined in Eq. (2.15). A
typical RTS of a sticky system will show an exponential decay for short times, related to the
events that do not stick, followed by a power-law like decay for large times as shown in Fig. 2.2b.

Applying condition (3.2) to (3.6) leads to the restriction γ > 1. The random-walk model
violates this condition (γ = 0.5) what means that it has a divergent mean recurrence time.
Notice that the origin of the power-law in the random walk case is the existence of an infinite
sequence of states where the probability of passing to each state is fixed. Whenever the random-
walker is restricted to a finite domain an asymptotic exponential decay is observed after the
regime (3.5). This mechanism to generate power-law RTS is the same of the Markov-chain
and tree models of stickiness, discussed in Sec. 2.2.3. One important difference is that in those
models the probability of stepping inside decays with the depth (algebraically) what leads to a
greater power-law exponent which satisfies γ > 1. From this perspective the cantori discussed in
Sec. 2.2.3 lead to stickiness because they allow to divide the phase space in an infinite sequence
of states and only indirectly because they build partial barriers.

At this point a definition of stickiness can be provided. Based in the fundamental distinc-
tion between exponential and power-law decay of the RTS one would like to say that a system
shows stickiness if the RTS, obtained through the recipes mentioned above, decays as a power-
law [Eq. (3.6)]. A drawback in this definition is that in most numerical results a well defined
power-law decay (more than two decades) is not observed. One would like to define stickiness
as a “roughly power-law” decay of the RTS. This can be stated precisely through the following
definition [Zas02a]:

A system has the property of stickiness if all m ≥ m0 moments 〈Tm〉 of P (T )
diverge, for a fixed m0 ∈ R.

Condition (3.2) implies m0 > 1. If asymptotically power-law distribution (3.6) is observed
one gets m0 = γ − 1, while no m0 exists for asymptotical exponential decay of the RTS. For
simplicity γ will be used hereafter as the quantifier of stickiness even if in some cases it would be
formally correct to use m0. Stickiness was defined here as a property of the Hamiltonian system,
but one can also speak from different “sticky regions” in the phase space. For this purpose it is
enough to be able to determine precisely the region of interest, i.e., define some encircling curve
so that the escape from it (or recurrence to the outside) can be computed.

3.1.3 Relation to other PDFs

In the previous section the main properties of the RTS were presented and it was argued
that it can be used to characterize stickiness. In this section this quantifier is carefully related
to other measures and PDFs used in the literature. The main advantage of the RTS is that
it is obtained from a single trajectory being thus independent of the choice of the ensemble
of initial conditions. Additionally, no real arbitrariness related to the choice of the recurrence
interval exists since, as discussed above, its main influence is in the definition of the exponent
of the short time exponential decay [AdSC04]. In order to increase the power-law regime one
usually needs a rapidly decaying exponential what suggests that the recurrence interval should
be chosen as large as possible, provided it does not touch the sticky regions. The most important
parameter in order to obtain a statistically significant RTS is the number of times the map was
iterated (number of recurrences). For the results shown in this Thesis usually 1011 iterations of
the different systems were performed3. The main drawback of the RTS is that it is not suited
for open systems, where usually the survival probability of an ensemble of trajectories is used.

3Typically one day of computation time.
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For long times stickiness leads to the same characteristic distribution obtained with different
PDFs because only the phase-space structures close to the sticky region are relevant. In partic-
ular, the power-law tail of the RTS translates into power-law distributions of other PDFs like
survival probabilities, decay rates, and distribution of trapping times. There are essentially two
points one has to pay attention in order to compare the power-law exponent γ∗ of a given PDF
with γ of the RTS: (i) the kind of distribution measured: survival probability or escape rate;
(ii) where the trajectories were initiated: touching or away from the sticky region. As argued
below, in both cases a difference in the exponent of ±1 is observed depending if, respectively,
the first or second case is being used.

(i) The difference in the power-law exponent of P (T ) and ρ(τ) given in Eq. (3.6) is a direct
consequence of the definition (3.3). More generally, this is always the case when some cumulative
distribution is used. Another typical situation where this distinction appears is when an ensemble
of trajectories is initiated inside a given region. In this case one may calculate the number of
trajectories that stay at the region as a function of time – the survival probability f(t) ∼ t−γ∗

– or the rate the trajectories leave the region – the escape rate df(t)/dt ∼ t−(γ∗−1).
(ii) The second aspect is where the trajectories were started. A difference of −1 in the

exponent is observed when the trajectories are started touching the sticky region in comparison
with the case of trajectories started away from it (as in the recurrence case). This very basic
result is studied in Ref. [Pik92] where the first case is referred to be typical in transient chaos and
the second in scattering problems. Different explanations also appear in Refs. [AHO04, CS99,
Mei97]. An alternative deduction of this result is provided below (Appendix of Ref. [AMK06]).

Consider a uniform distribution of initial conditions in the neighborhood of a sticky region
of the phase space (in the chaotic component touching the island) and consider the time it takes
for the corresponding trajectories to escape to a pre-defined region away from the sticky region.
The survival probability S(τ) is proportional to the measure µ(τ) of the region of the phase
space to which the trajectories stick for a time longer than τ . Due to ergodicity,

S(τ) ∝ µ(τ) =
tτ
t
, (3.7)

where tτ is the total time spent inside the sticky region and t is the total observation time used
to calculate the recurrences. In this case the trajectories are initiated outside the sticky region
and the RTS (3.3) is written as

ρ(τ) =
Mτ

M
, (3.8)

whereMτ is the number of recurrences with time T ≥ τ andM is the total number of recurrences
observed in time t. Notice that both S(τ) and ρ(τ) are survival probabilities in order to avoid
the effect (i) discussed above. The relation between the times in Eq. (3.7) and the number of
recurrences in Eq. (3.8) is given by [CS99]

t ∼M 〈T 〉, (3.9)
tτ ∼Mτ τ, (3.10)

where 〈T 〉 is the average recurrence time. Altogether, this leads to

ρ(τ) ∼ S(τ)
τ

, (3.11)

and thus to a reduced exponent in the case of power-law decay of ρ(τ) and S(τ).
Summing up the two effects mentioned above, Table 3.1 presents the relation between the

power-law exponent in the usual PDFs where stickiness plays an important role.
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PDF Distribution Initial Conditions Exponent
Recurrence Time Statistics (RTS) ρ(τ) outside γ

Recurrence time distribution P (T ) = dρ(τ)/dτ outside γ + 1
Survival probability (transient chaos) S(t) inside γ − 1

Escape rate (transient chaos) dS(t)/dt inside γ

Survival probability (scattering) g(t) outside γ

Escape rate (scattering) dg(t)/dt outside γ + 1

Table 3.1: Relation between the power-law exponent of the RTS and of other PDFs directly related to the
problem of stickiness.

Stickiness and power-law decay of the RTS lead also to a power-law decay of correlations
since during the time the trajectory is stuck it performs essentially a quasi-periodic motion. If
one considers a correlation function which is constant within a strip around the sticky region,
the decay of the autocorrelation is simply proportional to the measure of the sticky region µ(τ)
defined in Eq. (3.7) and thus [CS84, CS99, Kar83]

ρ ∼ τ−γ ⇒ C(τ) ∼ τ−(γ−1). (3.12)

This means that long-term correlation is obtained for 1 < γ < 2, i.e., there is a non-normalizable
distribution and no typical decorrelation time. In this case the spectrum shows also a power-law
decay S(w) ∝ w−β with β = 1− γ/2 [GZR88].

In the next section the problem of recurrence in time series is considered. In some sense
it departs from the main topic of the thesis and can be considered as a problem on its own,
as in the original publication of these results [AK05]. However, the comparison of the RTS as
a statistical tool with the Hamiltonian case is very fruitful for both fields. E.g., one sees that
differently from the PDFs considered in Table 3.1, the correlation function may have different
relations to the RTS than the one in Eq. (3.12). This will be clear from the discussion of the
next section where it is shown that long-term correlated time series may have a RTS which is
not power-law.

3.2 Recurrences in long-term correlated time series

3.2.1 Results from time series and comparison with Poincaré recurrences

Recurrence time analysis is a powerful tool to characterize temporal properties of well de-
fined events [BEHK03, BEKH05]. It has been recently extensively performed in a rich variety
of experimental time series: records of the climate, seismic activities, solar flares, spikes in neu-
rons, turbulence in magnetic confined plasma and stock market indices (see Refs. [BEHK03,
BEG+03, AK05], and references therein). Calculated essentially in the same way, these analyses
receive different names: waiting time distribution, interocurrence time statistics, distribution of
interspike intervals, and distribution of laminar phases. They consist essentially to a recurrence
in a one-dimensional system (see definition below).

The similarities of the the Poincaré RTS discussed in Sec. 3.1 (recurrence to the phase space)
and the recurrence in time series used in the previously mentioned references is remarkable.
Surprisingly, no systematic connection between the two recurrence approaches described above
were made until now, as far as known by the author. The most evident way to establish this
relationship is to define an observable x = x(~υ), when ~υ(t) ∈ ζ is the trajectory in phase space
of the Hamiltonian system. The recurrence volume V is mapped to an interval IV on the real
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axis by the observation function x(~υ). However, the sequence of recurrence times of the series
xn := x(~υ(t = n∆t)) with respect to IV is generally not identical to the sequence of Poincaré
recurrences of ~υ(t) with respect of V, since there is usually a large set V̄ which also maps to IV
due to the non-invertibility of x(~υ). Moreover, generally IV will be of the kind of I(Xc, δ) rather
than Iext(q) [see Eqs (3.13) and (3.14) below]. However, as will be shown below, the analogy to
Poincaré recurrences motivates issues related to the recurrence times of extreme events which
will reveal fundamental insights into their properties. Two main results will be the lack of
invariance of the RTS under change of the observable and the fact that long-term correlations
are not fully characterized by the autocorrelation function.

3.2.2 Definition and basic results

Given a time series {xn}, n = 1, . . . ,M , and having defined a recurrence interval I as a subset
of the data range, then the ith recurrence time Ti is the time interval ∆n between the ith and the
i+1st visit of a time series point in I. Here again, the RTD is obtained as the distribution P (T )
of the sequence of recurrence times Ti. Evidently, the sequence of recurrence times generated this
way depends sensitively on the choice of I, which in fact will be one prominent issue investigated
below. While for the recurrence of extreme events the recurrence interval is defined by the points
above a threshold [BEHK03]

Iext(q) = [q,∞[ , (3.13)

in a more general way it may be defined around a position Xc with a semi-width δ [AdSC04]

I(Xc, δ) = [Xc − δ,Xc + δ] . (3.14)

Both kinds of intervals are illustrated in Fig. 3.1.

Figure 3.1: Gaussian distributed
time series with recurrence intervals
with measure µ(I) = 0.01, what
implies 〈T 〉 = 100. One extreme in-
terval Iext(q = 2.3263) = [2.3263,∞[
and two recurrence intervals
I1(−2, 0.0922) = [−1.9078,−2.0922],
I2(0, 0.0125) = [−0.0125, 0.0125]
illustrated in the (a) time series and
(b) probability density function.

The mean recurrence time

〈T 〉 ≡ lim
Me→∞

1
Me

Me∑
1

Ti,

is a direct result of the choice of the recurrence interval as argued after Eq. (3.2). In the case of
stationary time series, as illustrated in Fig. 3.1, an equivalent result to Kac’s lemma is obtained
from the normalized PDF ρ(x),

∆t
〈T 〉

= µ(I) ≡
∫

x∈I
ρ(x)dx, (3.15)
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where ∆t is the sampling rate used to record the time series4. This is the most important
constraint to the statistics of recurrence times. In the time series analysis this measure is
estimated as the fraction of valid events (points inside the recurrence interval) µ(I) = Mevents/M .
Intuitively, relation (3.15) states simply that the total observation time t is given by

t = M∆t = Mevents〈T 〉.

Besides the RTD P (T ) the PDF ρ(x) of the series of points itself is typically used to charac-
terize the time series. The existence of such a PDF in time series is equivalent to the ergodicity
condition in dynamical systems. Contrary to other time series analyses (as the detrended fluctu-
ation analysis discussed below), the RTD is independent of the PDF. In particular, it is irrelevant
whether the second moment of the PDF is finite. A time series with a well behaved (Gaussian)
PDF can have either exponential or power-law RTD 5. Reversely, a time series with fat tails in
the PDF can lead to a RTD that might be Poisson or power-law 6. The reason for this is simple:
the RTD depends on the sequence of the time series points and changes under their temporal
rearrangement, which does not change the PDF of the data. While the RTD is independent of
the PDF of the series, the opposite happens to the mean recurrence time 〈T 〉. Once the recur-
rence interval is defined, whether by relation (3.13), (3.14) or by any other possible definition,
the PDF ρ(x) provides 〈T 〉 through relation (3.15).

These two trivial observations, i.e., independence of the RTD and dependence of 〈T 〉 on
the PDF, which are well known in the context of Poincaré recurrences, shed new light on
previous results of time series analysis. In particular, previous reported results are reinterpreted
and fitting constants specified. In what follows, these points are exemplified in the analysis of
recurrence times between earthquakes and in the study of the stretched exponential distribution,
previously used to describe linear long-term correlated data.

3.2.3 Applications to earthquakes and stretched exponential distribution

Earthquake results

One of the most important examples of the recurrence analysis is the study of the waiting
time between earthquakes or avalanches in models exhibiting self-organized criticality (SOC).
The idea of studying recurrences in SOC started with the first connections between SOC and
earthquakes. More recently, the investigation of seismic catalogs of different regions of the
globe indicate the existence of an universal distribution of recurrence times between big earth-
quakes [BCDS02, DG99], which may be roughly described as a power-law distribution

P (T ) ∝ T−α, (3.16)

followed by a faster decay. Simple SOC models have a Poisson (exponential) distribution of
recurrence times, what was used as argument against the use of SOC to model not only earth-
quakes but also (and originally) solar flares. However, non-Poissonian distributions are obtained
in more sophisticated SOC models, what keeps open the debate over the use of SOC in these
fields, with the RTD as one of its central ingredients (see Ref. [AK05] for references).

4When there is no such parameter, as in the series of earthquakes, the time scale is defined by the total number
of events and the total recording time.

5Take for instance the analysis made in Sec. 3.2.3 which will give the desirable RTD if we choose ζc = 1
or ζc → 0 respectively.

6These are obtained applying the transformation (3.25) below again to uncorrelated (ζ = 1) or correlated (ζ =
0) time series respectively.
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Despite (or because of) the complexity of this field it has an important simplicity: the
Gutenberg-Richter law

ρ(M) ∝ e−b ln(10)M , (3.17)

where A, b are constants and M is the magnitude of the earthquake, which is proportional to
the logarithm of the released energy. The constant b is almost the same for different parts of the
world and the empirical law (3.17) is valid for 2 ≤ M . 7.5. From the perspective mentioned
above this means that the PDF of the time series of seismic activity is given7.

The mean recurrence time between earthquakes of a given magnitude M is obtained inserting
the PDF given by (3.17) in relation (3.15), and using the interval of the type (3.14) withXc = M,

〈T 〉(M) = T0e
b ln(10)M , (3.18)

where T0 ∝ b ln(10)

(1−e−b ln(10)δ)
. This relation is equivalent to the one obtained previously through a

“mean-field approach”. It was also noted the “remarkable” scaling of 〈T 〉(M ≥ Mc) ∝ 10bMc ,
which is nothing else than a consequence of relation (3.15) when intervals of the type (3.13) are
used with q = Mc.

So far, the relation between 〈T 〉 and the PDF was used to show that the mean waiting time
between earthquakes is directly related to the Gutenberg-Richter law, but has nothing to do
with temporal correlations between earthquakes. On the other hand, the RTD obtained from
earthquakes records [BCDS02, DG99] is an independent result that can be used as a test for the
dynamical models of earthquakes. Recently, it was suggested that in SOC models the sequence
of avalanches is uncorrelated and should thus be discarded (see [AMK06] for references). The
solution of this debate is beyond the scope of this Thesis. Nevertheless, as a consequence of the
unrelatedness of ρ(x) and P (T ), shuffling data of whatever distribution randomly (as was done
for the time series of seismic activity) trivially implies P (T ) of being exponential, also for finite
recurrence intervals (see [AK05] for references).

Closed expression of the stretched exponential distribution

If time series data {xn} are exponentially (short range) correlated, the RTD is well known to
be Poissonian (or Binomial) independent of the choice of I, as derived in Eq. (3.4). In the case
of fully chaotic systems mentioned above correlations decay fast and the RTD is also Poisson.
Hence, for systems with an exponential decay of correlations, details of defining recurrence times
and further details of the system are irrelevant; instead there exists a unique RTD.

Many time series data have been found to be long-term correlated [BEG+03, SK05, KZKB+02].
Typically, this situation is characterized in the time series {xn} (assuming 〈xn〉 = 0) by the ex-
ponent 0 < ζc < 1 of the power-law decay of the autocorrelation function as a function of the
time s

Cx(s) = 〈xixi+s〉 =
1

M − s

M−s∑
i=1

xixi+s ∼ s−ζc . (3.19)

In a recent paper [BEHK03], Bunde et al. analyzed the effect of long-term correlations on the
return periods of extreme events, i.e., of recurrence times obtained using recurrence intervals of
type (3.13). The main results of Refs. [BEHK03, BEKH05] for long-term correlated time series,
that will be analyzed in detail below, can be summarized by the following three points. While

7This assumption is not completely precise since in order to use extreme intervals [defined by Eq. (3.13)] it is
necessary to know the PDF in the limit M →∞. In the case of earthquakes it is well known, from general energy
considerations, that a faster decay of the Gutenberg-Richter law is necessary asymptotically. In order to obtain
a sufficient statistics in the analyses of experimental data, the choice of q in Eq. (3.13) is usually considerably
smaller than 7.5 and the influence of the unknown asymptotic of the PDF becomes negligible.
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the first was obtained considering statistical arguments, the two others were based on numerical
simulations.

(i) The mean recurrence time is equal to the inverse of the fraction of extreme points in the
series

〈T 〉 =
Mtotal

Mextreme
.

(ii) The statistics of T follows a stretched exponential

lnP (T ) ∝ −(T/〈T 〉)ζ , (3.20)

where ζ = ζc is identical to the correlation exponent in Eq. (3.19).
(iii) The series of recurrence times is long-term correlated with an exponent ζT close to ζc.

The three points mentioned above are re-interpreted now in the more general context of
recurrence analysis presented in this Chapter. Statement (i) is the time series analogous of Kac’s
Lemma [Eqs. (3.2) and (3.15)] Concerning result (ii) suppose that the stretched exponential
distribution

Pζ(T ) = ae−(bT )ζ
(3.21)

is valid for all recurrence times T ∈ ]0,∞[. This is actually a stronger assumption than
Eq. (3.20). As any RTD, Eq. (3.21) must satisfy the two conditions mentioned in Sec. 3.1.2:
normalization (3.1) and the analogous of Kac’s lemma (3.15) Imposing these two conditions to
the distribution (3.21), it is possible to express the constants a and b as functions of ζ and
µ(I). Further simplification is obtained performing the following transformation of variables
T = T

<T> = µ(I)T , i.e., counting the time in units of the mean recurrence time. The complete
stretched exponential distribution for recurrence times is then written as

pζ(τ∗) = aζe
−(bζ τ∗)ζ

, with


aζ = bζ

ζ
Γ(1/ζ) ,

bζ =
(21/ζ)2Γ( 2+ζ

2ζ
)

2
√

π
,

(3.22)

and depends exclusively on the exponent ζ.
Equation (3.22) is illustrated in Fig. 3.2 for different values of ζ in two different ways. Graph

(a) (log-log) shows that decreasing the value of ζ the distribution starts from the exponential
(Poisson) case (ζ = 1) and approaches a power-law (ζ → 0) with an exponent α = 1.5. Graph
(b) shows the distribution in the form that the stretched exponentials are seen as straight
lines [BEHK03, BEG+03, SK05]. Generally, to obtain graph (b) from (a) one needs to divide
the distribution P (T ) by the correct pre-factor a = P (0), which is typically unknown. Distri-
bution (3.22) shows the dependence of the pre-factor a on the exponent ζ when the stretched
exponential pζ(τ∗) is valid in the whole interval of times. For experimental or numerical data,
where neither a nor ζ are known a priori, the relation between both is useful to correctly visu-
alize and fit the RTD. In practice the numerical fitting of the exponent ζ is very sensitive and
typically depends on the choice of the pre-factor a.

Numerical results for long-term correlated linear time series

The stretched exponential distribution (3.22) is compared now to the numerical results of
the RTD obtained in long-term correlated time series. As in Ref. [BEHK03], the data were
generated using the Fourier transform technique [PHSS92]: imposing a power-law decay on the
Fourier spectrum

fx(k) ∝ k−β , (3.23)
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Figure 3.2: The stretched exponential distribution (3.22) for different values of the exponent ζ.

with 0 < β < 0.5 and choosing phase angles at random, one obtains through an inverse Fourier
transform the long-term correlated time series in x with ζc = 1 − 2β in Eq. (3.19). The data
are Gaussian distributed with 〈x〉 = 0, σ = 1, and Eq. (3.15) was used to calculate the times
T = T/〈T 〉.

Having specified the power spectrum or, correspondingly, the autocorrelation function for
sequences of Gaussian random numbers means to have fixed all parameters of a linear stochastic
process. Hence, in principle, the coefficients of an auto regressive [AR(r)] or moving average
[MA(r)] process can be uniquely determined, where, due to the power-law nature of spectrum
and autocorrelation function, the orders r of either of these models have to be infinite. Hence,
the following results are valid for the class of linear long-term correlated processes [BEKH05].
In other words, higher order correlations for this class of processes follow trivially from the
two-point correlations.

Figure 3.3 shows that the stretched exponential distribution (3.22) with ζ = ζc describes
considerably well the RTD, obtained using extreme intervals [Eq. (3.13)], of long-term corre-
lated linear time series. The agreement is especially good for small values of ζc (long corre-
lations) and q → ∞ [which is equivalent to µ(I) → 0]. This result is a generalization of the
result (ii) [BEHK03] since, using Eq. (3.22) and considering ζ = ζc, the comparison between the
theoretical and numerical distributions has no free parameter and no fitting is made.

Furthermore, the results of Fig. 3.4 show that, for small µ(I), the distribution (3.22) is valid
also for recurrence intervals in the inner part of the data range [centered at Xc and defined by
Eq. (3.14)]. When Xc → ∞, approaching the extreme interval, the value of ζ in Eq. (3.22)
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Figure 3.3: (Color online) RTD of long-term correlated linear time series with M = 225 ≈ 3 107 points
for different values of ζc (symbols). Lines are the stretched exponential distribution (3.22) with ζ = ζc. The
recurrence interval is extreme with µ(Iext) = 10−2.

approaches the value of the correlation exponent ζc. Decreasing the value of Xc towards the
mean value of the PDF (〈x〉 = 0) results in an increase of ζ. This case was analyzed carefully
in Fig. 3.4c, where the dependence of the RTD on the size of the recurrence interval µ(I) is
shown. While for big intervals the stretched exponential seems not to hold, when µ(I) → 0 (the
limit Poincaré was interested in) the distribution for Xc = 0 tends to the upper limit ζ = 1, the
Poisson distribution.

In summary, the RTD of long-term correlated linear time series with exponent ζc, in the limit
of small interval µ(I) → 0, is described by the stretched exponential distribution Eq. (3.22) for all
recurrence times T and for recurrence intervals of both types (3.13) and (3.14). The exponent ζ
is a continuous and monotonically decreasing function of the center Xc of the recurrence interval,
with the limits

ζ =
{
ζc when Xc →∞ (extreme),
1 when Xc = 0.

(3.24)

This result has a simple interpretation in terms of the long-term correlations contained in the
time series. Calculating the RTD to a specific interval measures the correlation between events
inside this interval. In this sense, the results presented here suggest that the long-term correla-
tions of the time series are concentrated in the extreme events (large fluctuations) and vanish
for events near the mean value (small fluctuations). Relation (3.24) can then be interpreted as:
approaching pure extreme events [µ(I) → 0 and Xc →∞] the RTD shows the whole correlation
and thus ζ = ζc. Approaching pure middle events [µ(I) → 0 and Xc = 0] no correlation is
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Figure 3.4: (Color online) RTD of long-term correlated linear time series with ζc = 0.1 and different recur-
rence intervals [centered in Xc with measure µ(I) = 10−3]. The lines are stretched exponentials distributions
and the symbols connected by lines are the numerical simulations. From (a) to (b) the values given by aζ of
the best fitting of Eq. (3.22) in (a) are used. In (c) the case Xc = 0 for different values of µ(I), from bottom
to top: µ(I) = 10−1 (shifted down by 102), µ(I) = 10−2 (shifted by 10) and µ(I) = 10−3 are analyzed. The
gray lines are the Poissonian distribution [ζ = 1 in Eq. (3.22)]. aζ=1 = 1 was used for all three cases.

detected and consequently the Poisson distribution (ζ = 1) is recovered.

Change of observables

The link between recurrence times on time series and Poincaré recurrences motivates the
issue of the change of observables. All of the empirical data exhibiting long-term correlations
mentioned before represent systems which involve a huge number of degrees of freedom. Hence,
there is a similarly huge arbitrariness in choosing a given observation function x(~υ), and the
natural question is what to expect when one changes this observation function.

For instance, the correlations in the weather can be studied through records of the daily max-
imum temperature or of the daily precipitation [BEG+03]. For the first observable, long-term
correlations for times larger than 10 days were found with an exponent ζ ≈ 0.7 for continental
stations, independent of the location and of the climatic zone of the weather station. On the
other hand, the series of precipitation, obtained in the same locations and for the same time
windows, are not long-term correlated. A similar situation is observed in financial market data.
While the fluctuation of prices are typically uncorrelated the volatility is long-term correlated
(see [AK05] for references). This gives already a clue that correlations measured on a given time
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series do in fact characterize the fluctuations of the given observable but do not characterize the
underlying system in a more abstract way.

The aim now is to study the dependence of correlations and RTD on the chosen observable in
more detail by comparing the properties of different observables. Generally, both observables x
and y are functions of the d−dimensional phase space vectors ~ζ, and no simple function con-
necting x and y exists. Since the previous results were obtained from time series data without
underlying multi-dimensional phase space, the analysis is restricted to a subclass of changes of
observables, where in fact y is given by a nonlinear (potentially non-invertible) function of x.
Hence, time series of different observables y as functions of the original long-term correlated
time series of the variable x are constructed. Having in mind a recurrence interval defined
through (Xc, δ) by relation (3.14), consider the following reversible transformation

yn =
1

xn − (Xc − δ)
, (3.25)

which is essentially the inverse of the original series {xn}. If the x-series is Gaussian distributed
as considered previously, the PDF of the new series {yn} is given by

ρ′(y) =
1√
2π

1
y2
e−

1
2
(1/y+(Xc−δ))2 , (3.26)

which is illustrated in Fig. 3.5 for the case Xc = 1, δ = 0.0207. In this figure it is also shown that
the interval I1, defined by the same (Xc, δ) in x, is transformed into an extreme interval in y.
On the other hand, the extreme interval I2 in x is transformed into a recurrence interval in the
middle of the PDF of y. Since the sequence of recurrence times T obtained using the original
intervals in the x-series is also obtained using the transformed intervals in the y-series, the
RTD remains invariant under simultaneous transformation of variables and recurrence intervals.
Therefore, the previous observation that the change of the recurrence interval in the x-series
does not affect the functional form of the stretched exponential distribution (3.22), but does
affect the exponent ζ, carries over to transformations of the form (3.25). For instance, the RTD
of a series obtained from transformation (3.25) applied to a time series x with ζc = 0.1, is
well described by the stretched exponential distribution (3.22) with (see Fig. 3.4): ζ ≈ 0.55 for
extreme interval (I1 in Fig. 3.5b) and ζ = 0.1 for central interval (I2 in Fig. 3.5). This result
holds for all reversible transformations.

Figure 3.5: PDF of the series
(a) of x (Gaussian) and (b) of
y [Eq. (3.26) with Xc = 1, δ =
0.0207]. The points inside the in-
terval I1(Xc = 1, δ = 0.0207)
in x become extreme events in
y. The opposite happens for the
extreme interval I2 = Iext(q =
2.3263).

An important fundamental question in this context is the behavior of the long-term cor-
relations under transformations of variables. Whereas the normalized autocorrelation function
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remains unchanged under shifts and rescalings of x, this is not the case under transformations
like (3.25), where the transformed time series of y is not long-term correlated at all, despite the
long-term correlations of the original x-series (see Fig. 3.6 where h(2) ≈ 0.5). The y-series is
characterized using the multi-fractal detrended fluctuation analysis [KZKB+02], which is a much
more powerful tool than the simple autocorrelation function, since for different values of the pa-
rameter qDFA different scales of fluctuations are amplified. In order to distinguish between the
multifractality due to long-term correlations and due to a broad PDF, the typical procedure is
to shuffle the time series randomly, i.e., a new order of the M points of the original time series is
chosen randomly. Since the shuffled series loses all its temporal correlations but retains the same
PDF, the difference between the results of the two series (original and shuffled) is exclusively
due to temporal correlations. In Fig. 3.6 the multi-fractal analysis (MF-DFA1 [KZKB+02]) for
the long-term correlated, Gaussian distributed, linear time series {xn} and for the transformed
[through Eq. (3.25)] time series {yn} are shown. As expected, in the first case roughly a single
generalized Hurst exponent h(s) is obtained for all scales in the original (h(s) = 1−ζc/2 = 0.95)
and shuffled (h(s) = 0.5) time series. Due to the broad tails present in Eq. (3.26), both the
y-series and its shuffled version have multi-fractal spectrum, shown by the nontrivial depen-
dence of h(qDFA) on qDFA. The difference between the two, which measures the effect of the
temporal correlations, appears for small scales, where the generalized Hurst exponent of the
shuffled series is smaller. This result is consistent with the interpretation made at the end of
Sec. 3.2.3 that the correlations of the x-series is concentrated on the extreme events. Through
transformation (3.25), the extreme events in x are mapped into very small fluctuations in y and
the temporal correlations of {yn} are coherently noticeable for small values of qDFA.

Figure 3.6: (b) Generalized Hurst exponent of the time series of x and y (M = 220 ≈ 106 points) as a
function of the scale qDFA. The horizontal gray lines are the non-correlated value (h = 0.5) and the expected
value for ζc = 0.1 (h = 1 − ζc/2 = 0.95). The difference between the original and the shuffled time series
measures the effect of the correlation at each scale qDFA. (b) The same as in (a) for the series of recurrence
times ({T1, T1, ..., TMe}) obtained for intervals with µ(I) = 0.01, and different values of Xc in long-term
correlated linear time series with ζc = 0.1 (Me = 218 ≈ 2 × 105).

Transformation (3.25) provides an example of equivalence between the RTD of different
observables obtained using extreme intervals, and the RTD calculated in the same series but
using different recurrence intervals. Always when the transformation of observables is invertible,
there exist a one-to-one correspondence between the original extreme values and a new interval.
This provides another justification to the generalization of the recurrence of extreme events to
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general recurrence intervals inspired by the analogy to the Poincaré recurrences.

The series of recurrence times

It is also interesting to apply the distinction between the time properties of the series and
its PDF, discussed in Sec. 3.2.2, to the series of recurrence times {T1, T2, ...TMe} itself [Afr97,
AZ97, HLMV02]. In this case this means that the PDF, which is the RTD of the original time
series, is independent of its correlation and shows that the results (ii) and (iii) of [BEHK03]
(stated in Sec. 3.2.3) are independent. This is an important remark when prediction algorithms
are considered, since in many cases the correlation between the waiting times is more important
than their distribution.

The result (iii) of Ref. [BEHK03] is verified in Fig. 3.6(b) through the multifractal analysis
of the series of recurrence times T . Instead of the same correlation exponent the simulations
show a multifractal spectrum. It is necessarily originated by the long-term correlations since the
PDF of these series are stretched exponential distributions, as verified in Fig. 3.4, which do not
have fat tails.

3.2.4 Discussion of the results

The application of the statistical properties of the RTD, which are well known in the context
of Poincaré recurrences, helped to clarify results of time series analysis. In particular, new
interpretation of previous simple results in the earthquake analysis were performed and a closed
expression for the stretched exponential distribution, uniquely defined by the exponent ζ, was
obtained here. As limits ζ = 1 and ζ = 0, respectively, the exponential and the power-law
decay are recovered (with the restriction that the power is fixed to γ = 3/2), suggesting that
stretched exponentials describe recurrences in systems that have neither exponential nor power-
law RTD but that lie in between these two cases. These results were verified numerically for
the class of linear long-term correlated time series, and show reasonable agreement. In order to
verify if the fluctuations around the stretched exponential distribution, shown in the figures of
Sec. 3.2.3, are a consequence of numerical limitations or real deviations, an analytical deduction
of the stretched exponential distribution (3.22) is necessary, what remains an open task (see
Ref. [Oll06] for a recent development).

Even if one might argue that these results are established only for the class of linear models
(as shown above), the reproduction of these findings for empirical data [BEG+03, SK05, Pen05]
suggests some generality of the stretched exponential distribution. Here, the link to Poincaré
recurrences shows the opposite: Hamiltonian systems with mixed phase space are long-term
correlated and show power-law tails in the Poincaré RTD due to stickiness. In fact, the temporal
properties of typical data are not fully specified by the autocorrelation function, Eq. (3.19), what
explains why there cannot be a unique RTD for long-term correlated data. Connections between
the long-term correlation exponent ζc and the RTD have to be established independently in
every class of long-term correlated dynamical systems, as was done for Hamiltonian systems
with mixed phase space (Sec. 3.1.3) and fractal renewal point processes [TLF+97]. From the
perspective of Poincaré recurrences, this shows that the power-law tails obtained in the Poincaré
RTD are suited to quantify stickiness while the decay of correlation depends on the observable.
As mentioned above, the natural choice of correlation function uniform in the phase space around
sticky region leads also to power-law decay of the correlation. However, different choices of the
observation variables may lead to different decays.

The change of observables were simulated in the linear long-term correlated time series by
performing simple reversible transformations [like Eq. (3.25)] on the original series {xn}. This
shows that the stretched exponential distribution characterizes also the RTD of extreme events
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in time series that are not long-term correlated. The presence and absence of long-term correla-
tions in the series of the original observable x and of the transformed observable y, respectively,
is similar to the one reported above for climatic records (temperature and precipitation) and
stock-market indexes (volatility and fluctuation of price). It is remarkable that this interesting
behavior is obtained already through the simplest possible approach, i.e., two different observ-
ables that depend directly and exclusively on each other. These considerations emphasize that
the temporal characterization of the system through the autocorrelation or RTD depend cru-
cially on the chosen observable. By analyzing both the dependence of the exponent ζ of the
stretched exponential distribution with the center of the recurrence interval [relation (3.24)] and
the multi-fractal spectrum of the y-series (Fig. 3.6) one concludes that, in long-term correlated
linear time series, the correlations are concentrated in the extreme events.

Many interesting questions arise if one supposes that the measurements in a given experi-
ment lead to the time series of the observable y, introduced in Sec. 3.2.3, and that no natural
access to the observable x exists. The y-series has a complex multi-fractal spectrum (Fig. 3.6), a
strange PDF [Eq. (3.26)] and a non-trivial dependence of the RTD with the recurrence interval.
Nevertheless, through a simple transformation [the inverse of relation (3.25)] one arrives at the
x-series, that has a mono-fractal spectrum, is Gaussian distributed and has a simple [Eq. (3.24)]
dependence of the RTD on the recurrence interval. This suggests the existence, in some situa-
tions, of “distinguished observables” where the time series analysis is extremely simplified. It is
an interesting open problem to develop a procedure able to determine the transformation (when
it exists) that lead to the “distinguished observables”.
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Chapter 4

Marginally unstable periodic orbits

The existence of one-parameter families of marginally unstable periodic orbits in the
phase space of Hamiltonian systems is one of the simplest mechanism of stickiness.
Well known systems following this mechanism are chaotic billiards with parallel walls,
like the Sinai and Bunimovich Stadium billiards (Sec. 4.1). A general theory for the
stickiness to these orbits is developed and the exponent γ = 2 deduced (Sec. 4.2). It
is shown that a broad class of circular-like billiards also contains such orbits, which
are investigated in detail in parameter- and phase-space of mushroom and annular
billiards (Sec. 4.3). A proof for the existence of an infinite number of different families
of MUPOs and an efficient algorithm to find them are given (Sec. 4.4). Finally, the
stickiness theory is confirmed numerically (Sec. 4.5).

4.1 Ergodic systems: Sinai and stadium billiards

Which are the simplest Hamiltonian systems where stickiness exists? An answer to this
question is searched among area-preserving maps (or time continuous systems with equivalent
phase-space dimension) with simple phase space configurations, where the RTS (recurrence time
statistics) is calculated. The simplest phase space configurations are those from integrable and
fully chaotic-hyperbolic systems. While in the former case the RTS obtained by the procedure
described in Sec. 3.1 (fixed recurrence region and a single trajectory) is composed at most by
three different non-zero recurrence times T ∗1 , T

∗
2 , and T ∗3 = T ∗1 + T ∗2 [Sla67], in the latter (fully

chaotic) case the RTS decays exponentially [HSV99, Hir93, AdSC04]. Therefore, according to
the definition of stickiness provided at the end of Sec. 3.1.2, stickiness is not present in these
two limiting cases but is a property of chaotic non-hyperbolic systems. It may appear even
when the non-hyperbolic sets have zero measure, i.e., for ergodic chaotic systems that are not
fully hyperbolic. Examples are an area-preserving maps with a single marginal unstable fixed
point [AP98] and billiards with one-parameter families of such orbits [AHO04, GD95]. The
latter case is investigated in detail in this chapter. It describes a large class of systems and
allows an analytical deduction of the asymptotic exponent γ.

A billiard is obtained by considering a closed region A with boundary ∂A, where a pointwise
particle with mass m is confined. In the simplest case the particle moves in straight lines (V = 0)
inside the billiard and experience elastic collisions (Vboundary = ∞) at its boundaries, defining
the Hamiltonian system H = p2/2m+V . Further generalization may change the reflection rules
(e.g., soft-walls), the ballistic free flies (e.g., introducing a magnetic field) or the (Euclidean)
geometry of the table. Usually two dimensional tables are considered, in which case the dynamics
has N = 2 degrees of freedom and can be reduced to a discrete time system in two dimensions

37
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taking into account that energy is conserved and performing a suitable Poincaré section: one
constructs a map describing the sequence of collisions of the trajectory with the boundary of
the billiard taking as coordinates the position x and the angle θ in respect to the normal vector
at the collision point (see Fig.4.1a). The outgoing angle is the same as the incident angle in the
usual reflection. The induced map preserves area in the Birkhoff coordinates [x, sin(θ)]. The
time between collisions, measured in actual time, is usually restricted between finite minimum
and maximum values and has a mean value proportional to the ratio between the area of the
billiard and the perimeter of the boundary.

Billiards defined by simple geometric figures, like a circle or a rectangle, are completely inte-
grable since an additional invariant of motion exists (modulus of the horizontal linear momentum
and the angular momentum, respectively). Figure 4.1 shows the two most famous chaotic-ergodic
billiards: the Sinai billiard [Sin70] and the Bunimovich stadium billiard [Bun79]. The first bil-
liard leads to the Lorentz gas when considered in the plane. The second shows that apart from
dispersive components (like the circular scatterer in the Sinai billiard) focusing boundaries may
also lead to chaos.

Figure 4.1: (a) Sinai billiard com-
posed by a circular scatterer inside a
square and (b) Stadium billiard com-
posed by two semicircles joined by two
straight lines. In both cases the MU-
POs due to parallel walls are empha-
sized.

Despite being ergodic (non-existence of KAM-islands), the billiards illustrated in Fig. 4.1 are
not hyperbolic (in a well defined sense fully chaotic) since, e.g., the orbits bouncing perpendicu-
larly between the two parallel walls (dashed lines with arrows in Fig. 4.1) have marginal stability
(see Sec. 2.1.1). The linear stability will be explicitely calculated in the next section where it
is shown that perturbations do not grow exponentially in time but only linearly. In any case,
unless the perturbation is not in the particular direction along the walls (which parameterizes
a family of similar orbits), the trajectory eventually leaves the region close to the periodic orbit
what motivate us to call such orbits marginally unstable. The acronym MUPOs is used to des-
ignate the one-parameter family of marginally unstable periodic orbits [GD95] in contact with
the chaotic component of the system1. The most famous and trivial examples of MUPOs, are
the orbits bouncing perpendicularly between parallel walls in the Sinai and Stadium billiards,
also known as bouncing ball orbits in the context of quantum chaos [Stö00]. In the next section
the scaling exponent γ = 2 is didactically obtained for the stickiness close to MUPOs.

4.2 Scale exponent γ = 2 for the stickiness to MUPOs

Consider an area-preserving map M(x, θ) that contains a one-parameter family of MUPOs
of period q. For concreteness, assume that the family of MUPOs is {xi ≤ x ≤ xf , θ = θ0}.
The phase space of map M(x, θ) is sketched in Fig. 4.2(a) and a possible configuration space in

1 The sequence of periodic orbits in an integrable system has the same marginal stability. However, they are
not unstable since perturbations generically lead to a close-by quasi-periodic trajectories. The union of such orbits
typically builds a torus. In contrast, the MUPOs draw an incomplete segment in the phase space.
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Fig. 4.2(b). The following analysis does not depend whether the MUPOs are in the chaotic sea
or at the border of a regular island, as it will be discussed in the next Chapter.

Figure 4.2: (a) Illustration of the dynamics of a perturbed MUPO (x0, θ0 + ε) in the phase space (see text).
(b) The corresponding dynamics in the configuration space of a billiard with parallel walls (q = 2).

Consider small perturbations of a MUPO (x0, θ0):

(i) If (x′, θ′) = (x0 + εx, θ0) and xi ≤ x′ ≤ xf , another periodic orbit of the set of MUPOs
is obtained. In this case M q(x′, θ0) = (x′, θ0), what shows that the perturbation neither
grows nor shrinks.

(ii) If (x′, θ′) = (x0, θ0 + ε), the perturbation in the θ direction does not grow. On the other
hand, in the x direction the trajectory is not strictly periodic anymore and there is a
displacement δx every period q: M q(x0, θ

′) = (x0 + δx, θ′).

Both effects (i) and (ii) have to be taken into account when a generic perturbation is con-
sidered:

M q(x′, θ′) ≡M q(x0 + εx, θ0 + ε) = (x′ + δx, θ′). (4.1)

After q iterations, the same arguments used above for (x′, θ′) apply to (x′+δx, θ′). One sees that
the perturbed trajectory follows the dynamics (4.1), remaining at a constant distance ε from the
family of MUPOs, until it travels ∆x = xf−x0 reaching the end x = xf of the family of MUPOs
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(see Fig. 4.2)2. Note that Eq. (4.1) implies a linear growth of the perturbation in time, what is
consistent with the marginal instability, that forbids exponential growth of perturbations.

The displacement δx is related to the difference between the frequency of the perturbed and
unperturbed orbits, and can therefore be approximated linearly as

δx = Dε, (4.2)

in the limit of small ε.3

The time a perturbed trajectory takes to reach xf and escape from the dynamics (4.1) is
given by

T =
∆x
δx

∼ 1
ε
, (4.3)

for small ε. In what follows, it is argued that this time is equivalent to the recurrence time if the
initial conditions are chosen properly. Relation (4.3) shows that the smaller the perturbation the
longer the time the trajectory takes to escape. The asymptotic distribution of escape times P (T )
as a function of the distribution of perturbations p(ε) is given by

P (T ) =
p(ε)

|dT/dε|
∼ p(ε)ε2, with ε ∼ 1/T. (4.4)

The distribution p(ε) depends on the choice of the initial conditions, as discussed in Sec. 3.1.3.
For instance, choosing the initial conditions in the neighborhood of the family of MUPOs leads
to a rapid convergence of p(ε) to the invariant measure of the system. In this case, p(ε) can be
asymptotically regarded as a constant. From Eqs. (4.3) and (4.4), one obtain γ′tr = 2 for the
power-law exponent of the distribution of escape times, or γtr = 1 for the cumulative distribution.
The scaling exponent for the RTS (initial conditions away from the MUPOS) can be obtained
applying relation (3.11) and leads to γ = 2.

Other equivalent deductions of the scaling exponent γ = 2 have been done previously in
systems presenting marginal stability. Apart from the cases of Stadium [AHO04] and Sinai
billiards [GD95], also different systems that do not have MUPOs in the sense described above
present the same behavior: fixed obstacles in fluid flows [EMZT93], triangular billiards with
irrational angles [CP99], escape from an integrable system [HRR+04, BD05]. The rest of this
Chapter and the first part of the next Chapter are devoted to expand the class of systems
where the stickiness due to MUPOs is valid: circular-like billiards and piecewise-linear maps
are considered. From the above derivation it is clear that every family of MUPOs contributes
with the same exponent γ = 2 asymptotically and the exponent does not depend on the possible
presence of other families of MUPOs. Indeed, as will be shown in the following sections, an
infinite number of other families is observed in mushroom and annular billiards (Sec. 4.4), a
small number in the continuous sawtooth map (5.1) and only the border of the regular island
in the case of map (5.1)-(5.3). It will be shown that the scaling exponent γ = 2 is numerically
observed in all these cases.

2 If the MUPOs are at the border of a regular island, xf represents either the vertex of a polygonal island or,
as in the case of circular-like billiards, the point of tangency between the first escaping region and the island (see
Ref. [AMK05]).

3 The values of D for the systems used in this and the next Chapters are: D = 6 for the continuous sawtooth
map with K = 3/2; D = 2l in the case of billiards with parallel walls, where l is the distance between the walls;
D = 2qR for MUPOs in circular like billiards, such as mushroom and annular billiards, where R is the radius of
the circle.
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4.3 MUPOS in circular-like billiards

4.3.1 Analogy with the parallel wall case

Figure 4.3: (a) Annular billiard com-
posed by two eccentric circles and
(b) Mushroom billiard composed by a
semi-circular “head” with a rectangu-
lar “foot”.

Billiards are designed using simple geometrical curves, and it is thus no surprise that, apart
from straight line segments, circular components appear in many previously studied billiards.
Two examples are annular [SHF+82] and mushroom billiards [Bun01] illustrated in Fig. 4.3 and
studied in detail below. The surprising observation shown here is that these kind of billiards also
have MUPOs. An analogy between the MUPOs in billiards with parallel walls and circular-like
billiards is presented in Fig. 4.4. The previous illustrated billiards can be obtained by defining the
dynamics in the gray region of the billiards shown in Fig. 4.4: from a rectangular billiard one can
obtain the Sinai billiard [Fig. 4.1(a)] inserting an inner circular obstacle or the stadium billiard
[Fig. 4.1(b)] introducing a circular concave border. Similarly, one defines the shape in the inner
part of the circular billiard (region of radius a, a< R ≡ 1), e.g., by placing a circular scatterer to
obtain the annular billiard [Fig. 4.3(a)] or “holes” to obtain a mushroom billiard [Fig. 4.3(b),
see Sec. 4.3.2 below for the precise analogy]. The value “a” is defined as the distance from the
center of the circular billiard to the farthest obstacle (scatterer or hole). It separates the phase
space between a possibly chaotic component – composed of the trajectories that repeatedly
enter the gray region – and a regular component called whispering gallery [BBdCM93] – build
by the trajectories that avoid entering the gray region. This division of the phase space is
illustrated in Figs. 4.5 and 4.9 below. The MUPOs are the periodic trajectories inside the
chaotic component that exist in the integrable system (rectangular or circular billiard) and
that survive the redefinition (in the gray region) of the billiard. It is shown below that many
of these orbits exist for different control parameters of the mushroom and annular billiards.
These orbits typically exist also for billiards with elliptic components, in higher dimensions,
and, more generally, when a chaotic billiard is obtained by local modifications of an integrable
one. In opposite, global perturbations are described by the KAM-theory discussed in Sec. 2.1.2
and will be illustrated in Sec. (5.2). The rest of this Chapter studies the paradigmatic case of
billiards obtained by perturbations of a circular billiard as proposed in Fig. 4.4b (called hereafter
circular-like billiards).

A periodic orbit in a circular billiard is defined by two integer numbers: the period q and
the rotation number η (the number of laps around the center of the circle), where q/η is an
irreducible fraction and q > 2η. The invariant reflection angle θp of this orbit is given by

θp(q, η) = ±π(q − 2η)/2q ⇒ sin(θp) = cos(π
η

q
). (4.5)
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Figure 4.4: Billiards with
(a) parallel walls and (b)
circular components. Peri-
odic orbits indicated by �’s
have marginal stability. In
the gray regions the dynam-
ics is defined in such a way
that chaotic motion is pos-
sible.

Small perturbations of the collisional angle (in respect to the normal vector) θ = θ0 + ε lead
to a constant increment in time n of the displacement ∆φ between the position of collision of
the periodic orbit φ0 and of the perturbed one ∆φn = vεn, with vε ∝ ε. A perturbation in
φ, maintaining θ = θ0 constant, generically leads to an equivalent periodic orbit, what shows
that they have precisely the marginal stability discussed in Sec. 4.2 for the parallel wall case.
As discussed above, the MUPOs have to be embedded in the chaotic component of the phase
space. In the case of parallel walls they consist of the trajectories colliding exclusively with the
outer walls (not touching the inner scatter of the Sinai billiard or the curved boundaries of the
Stadium billiard). In the case of circular-like billiards the two necessary conditions (which are
sufficient) for a periodic orbit (q, η) to be a MUPO of a circular-like billiard are:

Conditions for MUPOs in circular-like billiards

C1: The periodic trajectory must cross the circle of radius a in Fig. 4.4, i.e., the trajectory
must be inside the chaotic component of the circular-like billiard.

C2: The trajectory should not hit any of the obstacles introduced in (r <a), preserving thus
its marginal stability.

These conditions can be thought as the definition of the MUPOs in circular-like billiards
studied here. They will be used explicitely in the following sections to obtain geometric relations
for the existence of MUPOs in mushroom and annular billiards.

4.3.2 Example 1: mushroom billiards

Recently, Bunimovich [Bun01, Bun03] introduced a new family of Hamiltonian systems,
the so called mushroom billiards, which have the remarkable non-generic property of having
a phase space with a single island and a single ergodic chaotic region. Figure 4.5 shows an
example of mushroom billiard consisting of a semi-circle (hat) placed on top of a triangle (foot).
The precise geometry of the foot (e.g., rectangular in Fig. 4.3b and triangular in Fig. 4.5a) is
irrelevant [Bun01]. The important control parameter is the size of the foot given by the ratio r/R.
The coordinates used to describe the phase space are the normalized position x ∈ [0, 1] along the
boundary of the billiard and the normalized collision angle θ ∈ [−π/2, π/2]. In these coordinates,
the border between the regular and the chaotic regions for trajectories in the semi-circular hat
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is at θ∗(r/R) = ± sin−1(r/R), as shown in Fig. 4.5b. In the configuration space, the border
between the island and the chaotic sea consists of the orbits in the semi-circular hat of the
billiard that are tangent to the circle of radius r in Fig. 4.5a. The regular region is composed
of the trajectories that do not cross this circle, remaining forever in the semi-circular hat. The
chaotic component consists of the complementary set of trajectories, those that cross the dashed
circle and may visit the foot of the mushroom. The MUPOs are the trajectories in the chaotic
region that do not visit the foot of the mushroom.

Figure 4.5: A mushroom billiard with triangular foot. (a) Configuration space. (b) Phase-space representation
of the semi-circular hat, where x is the normalized position and θ is the normalized reflection angle. The
parameters are r/R = 0.6125 and h/R = 1.5, what implies θ∗ = ±1/6.

A convenient way to visualize the MUPOs is to consider a circular billiard of radius R, as
depicted in Fig. 4.6a, which has the property that trajectories are considered to escape when
they hit the horizontal straight-line segment of length 2r in the center of the billiard (hereafter
referred to as the hole). In the notation of the previous section a= r. The equivalence between
the two billiards is based on the application of the image construction “trick” to the horizontal
segments in the hat of the mushroom billiard and on the independence on the shape of the
foot [Bun01]. The coordinates of the circular billiard are the reflection angle θ ∈ [−π/2, π/2]
with respect to the normal vector and the position of collision in the circumference, given by
the angle φ ∈ [−π, π], as indicated in Fig. 4.6a. The time is again measured as the number
of reflections at the border of the billiard. This introduces a minor difference between the two
billiards since in the mushroom billiard one counts the reflections at the horizontal segments of
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the hat. Nevertheless, the dynamics of the trajectories in the open circular billiard is equivalent
to that of trajectories in the semi-circular hat of the mushroom billiard, where stickiness occurs
and where the MUPOs are located. Geometrically, the MUPOs are the periodic orbits of the
open circular billiard that cross the circle of radius r but that do not hit the hole in the center of
this circle. Examples of MUPOs are shown in Figs. 4.6 and 4.14 for the parameter r/R = 0.6125.

Figure 4.6: (Color online) (a) The open circular billiard for hole length r/R = 0.6125. Diamonds (�)
correspond to an orbit (q = 3, η = 1) that always hits the hole and squares (�) to a periodic orbit (q = 4, η = 1)
in the whispering gallery. (b) Phase-space representation of (a). Circles (•) correspond to a periodic orbit
(q = 7, η = 2), which is a MUPO and is studied in detail in Fig. 4.14, and the other symbols are the same as
in (a). The horizontal lines represent the border θ∗ between the chaotic and regular regions. The first escape
regions are the areas limited by the dotted curves.

MUPOs in the parameter space

For mushroom the two conditions for existence of MUPOs expressed in Sec. 4.3.1 can be
obtained as simple geometrical relations by noting that each MUPO of type (q, η) draws an
inner regular polygon with q sides (see Sec. 4.4 for details). For a given orbit (q, η): (C1-
mushroom) r/R > sin(θp) and (C2-mushroom) r/R < sin(θp)/ cos(π/(jq), where θp is given by
Eq. (4.5) and j = 1 if q is even or j = 2 if q is odd. Altogether, this determines an interval in
the parameter space where a given orbit (q, η) is a MUPO:

cos(πη/q) < r/R <
cos [πη/q]

cos [π/(jq)]
. (4.6)

In Fig. 4.7, the parameters for which the orbits up to period q = 20 are MUPOs are shown.
An efficient procedure to find higher order MUPOs for a given parameter r/R will be discussed
in Sec. 4.4. Briefly, it consists in taking η/q as the convergents of the continued fraction repre-
sentation of 1

π cos−1(r/R) and verify if they fulfill condition (4.6). This procedure revealed the
existence of the following MUPOs for r/R = 0.6125: (q, η) = (7, 2), (698, 199), (1161, 331),
(18341, 5229), (2136146, 609013), and (8526243, 2430823).
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Figure 4.7: (Color) Intervals of the control parameter r/R for which orbits (q, η) are MUPOs. All orbits with
q ≤ 20 are shown.

MUPOs in the phase space

It is also interesting to analyze the implications of the conditions described in Sec. 4.3.1 to
the position of such orbits in the phase space. Condition C1 mean simply that the periodic orbit
must be inside the chaotic region. C2 states that the trajectory does not hit the hole, what can
be satisfied only if it is close to the border. In order to study these conditions in the phase space
of the open circular billiard, the points with reflection angle θ that hit the hole in one time step
are identified. These points define the first escape region, whose width will be denoted by ∆r(θ)
(see Fig. 4.6b). The trajectory does not hit the hole if all the q periodic points of the orbit
are outside the first escape region. With respect to the coordinate φ, the distance between two
neighboring periodic points is constant, namely 2π/q. The condition C2 can thus be written as

2π
q
> j∆r(θp), j =

{
1 if q is even,
2 if q is odd.

(4.7)

The factor j = 2 for the odd-period periodic orbits comes from the 2π periodicity of the points
of these orbits in opposition to the π periodicity of the escape region.

To calculate ∆r(θ), the borders of the first escape region (Fig. 4.6b) have to be determined.
For a given position φ in the circumference of radius R, the angles θ of the trajectories that first
hit the hole are limited by the angles θ± given by

θ+ = 1
2 [φ+ tan−1( R sin(φ)

r+R cos(φ))],

θ− = 1
2 [π

2 − φ+ tan−1(R cos(φ)−r
R sin(φ) )].

(4.8)
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The width of the first escape region is then given by

∆r(θp) = φ±1 − φ±2 , (4.9)

where φ±1 > φ±2 are the two solutions of the equation θ± = θp. Observe that, because of the
symmetry θ → −θ, it follows that φ+

1 − φ+
2 = φ−1 − φ−2 .

The first escape region is now used to study how the families of MUPOs are distributed
inside the chaotic component of the phase space of the mushroom billiard. Figure 4.8 shows
the phase space of the open circular billiard for trajectories |θ| < |θ∗|, associated with the
chaotic region of the mushroom billiard, and the Nth escape region, defined by the (N − 1)th
pre-image of the first escape region shown in Fig. 4.6b. The larger the period of the orbit
the closer it may be to the border θ∗. For example, for the control parameter r/R = 0.6125
considered in Fig. 4.8, the border is at θ∗/π = 0.2149010... and the orbits (q = 7, η = 2),
(q = 235, η = 67) and (q = 698, η = 199) highlighted in the figure are at θp/π = 0.2143857...,
0.2148936..., and 0.2148997..., respectively. The widths of the escape regions go to zero when
the border is approached. In Fig. 4.8, the MUPOs correspond to the points that do not belong
to any of the nth escape regions, for all n < N in the limit of N → ∞. That is, taking the
limit N → ∞ in Fig. 4.8, all the points outside the escape regions belong to MUPOs. Note
that a complex distribution of families of MUPOs may exist near the border of the island. A
deeper understanding of the distribution of such orbits close to the border of the chaotic region
is obtained in Sec. 4.4, where it is proven that for almost all control parameters r/R there exist
an infinite number of different families of MUPOs and that its distribution depends crucially on
the frequency of the critical circle (at the border of the island).

Figure 4.8: (Color online) Escape regions in the the phase space of the open circular billiard for r/R = 0.6125.
In each panel, the N th escape region is shown in black and the nth escape regions for all n < N are
shown in gray. In the first row, the cases N = 2, N = 3, and N = 8 are shown, while in the second the
case N = 20 and successive amplifications for this case are shown. Different symbols correspond to the
different orbits (q = 7, η = 2), (q = 235, η = 67), and (q = 698, η = 199), from top to bottom, respectively.
The figures at the bottom right show that only the first and the last of these orbits are MUPOs.
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4.3.3 Example 2: annular billiards

The annular billiard is composed of two eccentric hard wall circles where a pointwise particle
experiences elastic collisions, as drawn in Figs. 4.3(a) and 4.9. The control parameters are
the radii R and r of, respectively, the outer and inner circle and the distance δ between the
center of the two circles (the inner circle is called the scatterer) . Without loss of generality
it is assumed that the center of the two circles lye in the x−axis and that R = 1. It is
remarkable that the existence of MUPOs has not been discussed until now, in spite of many
theoretical [SHF+82, BBdCM93, HR02, Rob99, FD98] and experimental [DGH+00, HAD+05]
studies of this billiard, including detailed catalogs of periodic orbits [GMGCG01].

As in the case of mushroom billiards, the trajectories were classified in two groups: those
that do not cross the inner circle of radius a= r + δ remaining in an integrable component
(this region is sometimes called whispering gallery) and those that collide with the scatterer by
eventually satisfying the hitting condition [SHF+82]

| sin(θ)− δ sin(θ − φ)| ≤ r. (4.10)

The hitting condition for the annular billiard plays a similar hole to the escape region in the
mushroom billiard given by Eq. (4.9). The MUPOs are the complementary set of trajectories:
they cross the circle of radius a, being outside the whispering gallery mode, but do not collide
with the scatterer. Two examples are shown in Figs. 4.9 and 4.10, where the phase space is
obtained applying the following Poincaré section: position of the collision in the outer circle φ ∈
[0, 2π] and the sine of the angle θ ∈ [−π/2, π/2] to the normal vector right after the collision.

Figure 4.9: (Color online)
Configuration and phase
spaces of the annular bil-
liard with r = 0.35, δ =
0.5. MUPOs shown:
(5, 1), (4, 1), and (2, 1) (in-
ner). The region be-
tween the solid lines in the
phase space corresponds to
the position where rela-
tion (4.10) is satisfied.

The two conditions for existence of MUPOs expressed in Sec. 4.3.1 can also be obtained
explicitely for annular billiards by noting that each MUPO of type (q, η) draws an inner regular
polygon with q sides (see Sec. 4.4 for further details). Simple geometrical arguments show that
a periodic orbit of type (q, η) will be an outer MUPO (q, η) if, and only if,

cos(π
η

q
) < a = r + δ <

cos(πη/q)
cos(π/q)

+ r(1− 1
cos(π/q)

). (4.11)

This equation is the equivalent version for the annular billiard from condition (4.6) obtained for
the mushroom billiard. The simpler case of inner MUPOs also exist [like the MUPO (2, 1) in
Fig. 4.9 or the (3, 1) in Fig. 4.10], in which case

δ >
r

cos(π(1− η)/q)
+ cos(πη/q) + sin(πη/q) tan(π(1− η)/q). (4.12)
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Figure 4.10: (Color
online) Configuration
and phase spaces of
the annular billiard with
r = 0.1, δ = 0.65. Shown
MUPOs: (4, 1), and (3, 1)
(inner). The region be-
tween the solid lines in the
phase space corresponds to
the iterations when (4.10)
is satisfied.

Figure 4.11 shows the regions of the parameter space (r, δ) of the annular billiard where the
above inequalities are satisfied and a given MUPO (q, η) exists. In a similar way one can also
find the parameter for the existence of mixed inner-outer MUPOs, i.e., trajectories that pass
alternately inside and outside the scatterer. The number of different families of inner and mixed
inner-outer MUPOs is limited, since for increasing period q the distance between two points
is 2π/q while the width in φ where condition (4.10) is fulfilled remains bounded (this is better
visualized in the phase space). More interesting is the case of outer MUPOs treated in detail
here (for simplicity the term outer is omitted hereafter). It is show in the next Section that there
are infinitely many different families of MUPOs that accumulate in the border of the whispering
gallery for almost all control parameters (r, δ) below the off-diagonal in Fig. 4.11.

Figure 4.11: (Color) Parameter space of the annular billiard with the regions where a MUPO (q, η) exist. (a)
Outer MUPOs with η = 1 and q = 3...10. (b) All MUPOs with q ≤ 10. The black diamonds represent the
parameters used in Figs. 4.9 and 4.10.
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4.4 Proof of the existence of infinite families of MUPOs

The existence of MUPOs is better formulated as a purely geometric problem, as stated in
Sec. 4.3.1. This approach is adopted in this self-contained Section where a more careful math-
ematical formulation is needed. The correspondence with the previous notation is in most of
the cases evident, e.g., star polygons used below correspond to the periodic orbits mentioned
above. The final results can be easily translated to the cases of mushroom, annular, and other
circular-like billiards where analogous straightforward calculations lead also to the system spe-
cific pre-factors. The main conclusion obtained here is that for a measure one set of control
parameters there are an infinite number of different MUPOs. In order to arrive to this result
the following simple but nontrivial geometrical problem has to be solved:

Statement of the Problem: How many different star polygons can be
inscribed in a circle with the restriction that the polygon does not intercept a line segment of
size r drawn from the center of the circle, but intercepts the inner circle of radius r?

4.4.1 From geometry to number theory

A star polygons of type (q, η) is the figure obtained by connecting by straight lines every η-
th point of q equally spaced points on a circumference. The integers q and η are called the
order and the density of the star polygon, respectively, are coprime, and satisfy 2η < q. A star
polygon of type (q, 1) is commonly known simply as polygon. In Fig. 4.12 a star polygon of
type (q = 5, η = 2) is shown, together with the triangles used to obtain the geometrical relations
given below (for simplicity assume that the outer circle has radius R = 1). This polygon is
a valid solution of our problem for the case r = 0.35, as it is illustrated in the figure. Given
any parameter r, one would like to obtain the star polygons that satisfy the above mentioned
conditions. In particular one wants to know if the number of star polygons of different type is
finite or infinite. Obviously, given some star polygon, one always may obtain a star polygon of
the same type by rotating it by a sufficiently small angle.

Figure 4.12: (Color online) A
star polygon of type (5, 2) which
is a solution of the problem for
the particular case r = 0.35 il-
lustrated here. On the right,
three different auxiliary triangles
are depicted to help on the geo-
metrical considerations.

The angle at the vertices placed on the outer circumference is given by θp(q, η) = π q−2η
2q ,

and its complementary angle is π η
q (gray triangle in Fig. 4.12). Note that every star polygon of

type (q, η) defines a central inner polygon (q, 1). The radii of the inscribed and circumscribed
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circles of this polygon are, respectively, given by

d = cos(πη/q) and D =
d

cos(π/q)
=

cos(πη/q)
cos(π/q)

. (4.13)

In general, a star polygon of type (q, η) is a solution of our problem if, and only if, the circumfer-
ence of radius r is in between the circumferences that inscribe and that circumscribe the central
inner polygon of type (q, 1). Thus, the necessary and sufficient conditions for a star polygon to
be satisfied are given by

d < r < D, (4.14)

or, equivalently, using (4.13), by

cos(π
η

q
) < cos(πθ∗c ) <

cos(πη/q)
cos(π/q)

, (4.15)

where θ∗c = 1
πacos(r) (see the lower triangle in Fig. 4.12). Hence, given a star polygon of

type (q, η), with (4.15) the interval of parameters r for which it solves the problem is obtained.
This relation is analogous to conditions (4.6) and (4.11) for mushroom and annular billiards
respectively. A more interesting problem is the inverse one: given r ∈ [0, 1], determine which
polygons satisfy the inequality (4.14).

Clearly, for polygons of high order q the distance D− d tends to zero. Thus, the solutions of
our problem must be searched for values of d→ r− (from below). Let η(q) denote the integer η
for which η

q − θ
∗
c is minimal and non-negative. The solutions of our problem will be searched in

the limit

q →∞ ⇒ η(q)
q

→ (θ∗c )+. (4.16)

The error in the above approximation for a given q is defined as ε(q) := η(q)
q − θ∗c . Note that

ε(q) → 0+ as q → ∞. The distances D − d and r − d, where D = D(q, η) and d = d(q, η) are
given by (4.13), are calculated now in the limit given by (4.16)

D − d = cos
(
π(θ∗c + ε(q))

)(
1

cos(π
q )
− 1

)
≈ rπ2

2
1
q2
, (4.17)

and,

r − d = cos(πθ∗c )− cos
(
π(θ∗c + ε(q)

)
= cos(πθ∗c )

(
1− cos(πε(q))

)
+ sin(πθ∗c ) sin

(
πε(q)

)
≈
√

1− r2πε(q).
(4.18)

Comparing these expressions and the inequality (4.14) one sees that the star polygon of
type (q, η) is a solution of our problem if

ε(q) :=
η(q)
q

− θ∗c <
rπ

2
√

1− r2
1
q2
, (4.19)

The original problem has been thus reduced to the problem of finding optimal rational
approximants η/q of a real number θ∗c = 1

πa cos(r). This is a classical problem of number theory
and some well-known results in this area will be applied in the next section to solve our specific
problem.
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4.4.2 Approximations using continued fractions

The most efficient approximation of a real number α through rationals is obtained using its
continued fraction representation (see Appendix A)

α = a0 +
1

a1 +
1

a2 + ...

= [a0, a1, a2, ...]. (4.20)

Irrational numbers have an unique infinite representation while for rationals the representation
is finite. Best approximations of α are obtained truncating the sequence of ai since for any finite
approximation (the so-called convergents) η/q there is no other fraction with denominator q′ ≤ q
which is closer to the desired number4. Additionally, all best approximators are convergents (or
an intermediate fraction) (Theorems 15,16 and 17 of [Khi97]). The following inequality is valid
for the convergents of a continued fraction representation (Theorems 9 and 13 of [Khi97])

1
(an+1 + 2)q2n

≤ 1
qn(qn + qn+1)

< |ηn

qn
− α|︸ ︷︷ ︸

ε(q)

<
1

qnqn+1
≤ 1
an+1q2n

. (4.21)

Altogether this means that the lower-bounds in relation (4.21) are valid for all possible frac-
tional approximations and that the upper-bounds are valid for all convergents5. In terms of
the problem described in Sec. 4.4.1, the number α to be expanded is θ∗c ≡ 1

π arccos(r) and any
convergent η/q of the representation of α corresponds to some star polygon of type (q, η). Inter-
estingly, the dependence of the error ε(q) ∝ 1/q2 given in (4.21) is the same as the asymptotic
dependence of D− d given by Eq. (4.17) and obtained through a geometrical analysis. In other
words, the approximation of a circumference using star polygons is optimal. This shows that
the existence of infinitely many star polygons satisfying inequality (4.15) depends on the pre-
factors of the lower and upper bounds of (4.19) and (4.21). These pre-factors depend on the
“degree of irrationality” (see Appendix B) of the critical angle θ∗c . The solutions of the proposed
problem are obtained below for boundary circles belonging to two important classes of irrational
numbers.

The noble numbers

To get some intuition consider initially the class of noble numbers, i.e, those numbers which
have continued fraction representation ending in a sequence of 1’s:

{[a1, a2, ..., an∗ , 1, 1, 1...]}.

This set is dense in R, what means that, given any value of r > 0, there is a value rn arbitrarily
close to r so that

θ∗c ≡
1
π

arccos(rn)belonging to the set of noble numbers.

For large enough q the upper and lower bounds of the error ε(q) of noble numbers is obtained
substituting an+1 = 1 in inequality (4.21). Using the extremes (leftmost hand side and rightmost

4Even-order convergents form an increasing and odd-order convergents a decreasing sequence approaching α
(Theorem 4 of [Khi97]). If one takes ′′−′′ signs instead of ′′+′′ in Eq. (4.20) all convergents form a decreasing
sequence, in agreement with the limit proposed in Eq. (4.16).

5For rational numbers the continued fraction is finite and the “approximation” is finally exact when the
terms qn+1, an+1 are not defined. For irrational numbers, on the other hand, the infinite sequence of terms
provide an infinite number of convergents.



52 Chapter 4. Marginally unstable periodic orbits

hand side) of (4.21) one obtains that 1
3 < q2ε(q) < 1.6 In Fig. 4.13 a sketch of the comparison

between D − d and r − d is presented. The units and the pre-factors are chosen in such a way
that the distance (D − d) corresponds to 1. In this case r − d ∝

√
1−r2

r , which → 0,∞ when
r → 1, 0. This shows that for noble numbers it is always possible to find large enough values
of r for which r − d < D − d (infinite polygons exist) and small enough values of r for which
r − d > D − d (finite number of polygons).

Figure 4.13: (Color online) Nor-
malized distances as a function
of the polygon order q ∈ Z∗.
The two horizontal stripes and
the zig-zag stripe represent the
region where the convergents of
the continued fractions approxi-
mations of θ∗c lie (see legend). If
they lie below the dashed line, it
is a valid polygon, and if they lye
above they are not a valid solu-
tion.

The set of numbers F

The reasoning above motivates us to introduce the set F of the numbers that have a continued
fraction representation which has only a finite number of terms ai that appear infinitely often.
More formally

Definition:

Given N ∈ N let
FN = {[a1, a2, ...] : #{k : ak = N} = ∞,#{k : ak > A} <∞,∀A > N},
F =

⋃
N≥1

FN

n∗ := max{k : [a1, a2, ...] ∈ FN and ak > N}.

(4.22)

N is the maximum value of ai in the representation that appears infinitely often and precisely
the maximum whenever i > n∗. Noble numbers are equivalent to F∞. The following properties
of F hold:

1. F ⊂ R\Q, since any rational has a finite continued fraction representation.

2. All set FN are dense in R.

3. F =
⋃

N≥1FN is the set of numbers of constant type, i.e., the numbers which have
a bounded continued fraction representation. This set has Lebesgue measure zero (see
Appendix A and theorem 29 of [Khi97]).

6A lower upper bound may be obtained for this case considering that ε(q) ≤ 1√
5q2 (Theorem 20 of [Khi97]).



4.5. Numerical results for the stickiness 53

4.4.3 Solution of the problem

From the previous results it is possible to divide the interval r ∈ [0, 1] into sets where there
are an infinite or a finite number of star polygons that solve our problem. Intervals will be
defined in terms of the angle θ∗c (r) ≡ 1

π arccos(r) and of the number ρ(b) :=
√

1
( bπ

2
)2+1

, which is

the solution for r > 0 of the equation 1
bq2 = π

2
r√

1−r2
1
q2 [see inequalities (4.19) and (4.21), b ∈ R].

Typical real numbers are not of constant type (see Appendix B), meaning that the sequence
of ai in (4.20) is unbounded and arbitrarily small bounds in inequality (4.21) are obtained. This
implies that for almost all parameters r (except sets of measure zero) there are infinitely many
solutions and the convergents of the continued fractions give an infinite (possibly not all) number
of them. For r > ρ(

√
5) ≈ 0.27382357... all values of r, with θ∗c (r) irrational, have infinitely many

solutions. However, for r0 small there is an infinite, not countable set R ⊂ [0, r0] which is dense
in [0, r0] and for which only a finite number of solutions exists. Note that since r = cos(πθ∗c ),
the results about the measure of sets in θ∗c can be applied to r. See also Appendix A for further
details on how the continued fraction representation can be used to classify the real numbers.

Parameters r with a finite number of solutions

• θ∗c (r) ∈ Q,∀r, since the rationals have a finite continued fraction representation and there
is no other way to approach a rational by rationals that is as fast as 1/q2.

• θ∗c (r) ∈ FN , with 0 < r < ρ(N + 2).

Parameters r with infinitely many solutions

• θ∗c (r) ∈ R\(F ∪Q),∀r, i.e., all irrational numbers that are not numbers of constant type.
This set has full Lebesgue measure meaning that almost all parameter r lead to a θ∗c (r) in
this set.

• θ∗c (r) ∈ FN , with ρ(N) < r ≤ 1. If N = 1, 2: ρ(
√

5) < r ≤ 1.

The proof sketched above is constructive and provides a method to efficiently obtain the
types (q, η) of outer MUPOs for a given billiard. It consists in verifying if the convergents
of ϕ = arccos (a)/π satisfy the conditions of existence of MUPOs [condition (4.6) for mushroom
and (4.11) for annular billiards]. Apart from the sets of zero measure discussed above, for all
billiards configurations an infinite number of MUPOs can be found among the convergents (not
necessary all outer-MUPOs are convergents). For instance, for the parameters r = 0.35, δ = 0.5
of Fig. 4.9 all odd convergents tested are MUPOs: (5, 1), (11, 2), (436, 77), (1342, 237), ... [the
MUPO (4, 1) is not a convergent]. On the other hand, for r = 0.3, δ = 0.1 the first MUPOs
found through this method are (14921, 5506) and (7379467, 2723098).

4.5 Numerical results for the stickiness

The existence of infinite families of MUPOs is a generic property of circular-like billiards.
These orbits concentrate close to the boundary of the regular island corresponding to the trajec-
tories that avoid collisions with inner obstacles (whispering gallery modes). The existence and
characterization of the distribution of such orbits, performed in the two previous sections may
have different implications, e.g., the structure of the MUPOs close to the border of the main
island may provide a better comprehension for the so-called “beach modes” that were proven to
play an important role in experiments of chaos assisted tunneling [FD98, DGH+00, HAD+05].
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The stickiness phenomena studied numerically below corresponds to another phenomena where
these orbits are relevant. From the stickiness theory developed in Sec. 4.2 an exponent γ = 2 is
expected.

Figure 4.14: Detailed analysis of or-
bits (q = 7, η = 2) for r/R = 0.6125.
(a) Configuration space, where two orbits
(q = 7, η = 2) that cross the circle with
radius r are shown. The orbit represented
by circles (•) does not hit the hole, while
the orbit represented by triangles (H) hits
the hole on the right-hand side (see ampli-
fication). (b) Phase-space representation of
the orbits in (a), where it is shown that they
are respectively outside and inside the first
escape region. A small perturbation in the
reflection angle θ of the first orbit leads to a
continuous rotation of the orbit in (a) [hor-
izontal drift in (b)] until the trajectory hits
the hole [enters the first escape region in
(b)]. (c) Time evolution of the distance
from the regular region to a chaotic tra-
jectory that approaches the family of MU-
POs (q = 7, η = 2) in the original mush-
room billiard. Events with recurrence time
T = 463 and T = 17 are highlighted. The
events with large recurrence times are asso-
ciated with approaches to the MUPOs.

Figure 4.14 shows a detailed analysis of the mushroom billiard (introduced in Sec.4.3.2)
with parameter r/R = 0.6125, where the MUPO (7, 2) play a major role. Such orbits are
illustrated in the configuration and phase spaces. In particular, Fig. 4.14(c) shows that long
trapping times are obtained when the chaotic trajectory of the mushroom billiards approaches
the MUPO (7, 2), not necessarily the border of the islands. In order to compute the RTS the
whole foot of the mushroom was taken as the recurrence region meaning that the recurrence time
T corresponds to the time the trajectory spends inside the semi-circular hat of the mushroom.
Our main observations about the RTS in mushroom billiards are illustrated in Fig. 4.15 and can
be summarized as follows:

(i) The recurrence times T for which recurrences are observed appear in a very organized
way: times without a single recurrence [P (T ) = 0] are periodically interrupted by times
with a high recurrence time probability. The period t0 between successive times with
positive probability [P (T ) > 0] strongly depends on the control parameter r/R and may
change over large intervals of time T . In particular, as shown in the inset of Fig. 4.15 for
recurrence times in the interval 50 < T < 150, this period is t0 = 5 for r/R = 0.5 and
t0 = 11 for r/R = 0.6125. For longer recurrence times, higher periods may coexist with
short periods.

(ii) The overall behavior of the RTS ρ(τ) presents a clear power-law tail with exponent γ = 2,
independently of the parameter r/R.
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Figure 4.15: RTS of the mushroom bil-
liard for various choices of the control pa-
rameter r/R. The results are consistent
with a power-law tail with exponent γ = 2.
The distribution for r/R = 0.75 was shifted
vertically upward by one decade for clarity.
Inset: the distribution P (T ) in the inter-
val 50 < T < 150 for r/R = 0.5 (t0 = 5)
and r/R = 0.6125 (t0 = 11).

While observation (ii) is explained by the stickiness theory of Sec. 4.2, observation (i) can
be explained through the approach to the MUPOs by the following analysis. When a chaotic
trajectory visits the hat of the billiard, the approach to as well as the escape from the neigh-
borhood of a family of MUPOs takes place in a single time step, as illustrated in Fig. 4.14c by
a sharp transition before and after the interval of minimum distance to the island. Due to the
injection of trajectories from the foot of the mushroom billiard, the approach to the MUPOs
(that requires an angle θ close to θp) can only occur close to some of the q periodic points of the
MUPO. Actually, it happens always near the same position in the mushrooms hat, right above
the intersection point between the boundary of the foot and the bottom part of the hat (i.e.,
one of the two horizontal lines). Similarly, the escape occurs always when the trajectory is close
to the point of the MUPO that lies in the bottom part of the mushrooms hat. Due to these
constraints, the intervals of time a chaotic trajectory that approaches a family of MUPOs spends
away from the mushrooms foot form a sequence that can be written as Ti = a − 1 + (q + 2η)i,
where i ∈ IN and a is the time between the first collision in the semi-circular hat and the
collision in the bottom part of the hat (close to the hole). The period t0 between successive
recurrence times with positive probability, as point (i) above, is thus related to the period q and
the rotation number η of the MUPO inside the chaotic region according to

t0 = q + 2η . (4.23)

The factor 2η comes from the fact that, in contrast with the open circular billiard, in the
mushroom billiard one counts the collisions in the bottom of the hat. In Fig. 4.6 it is apparent
that for r/R = 0.5 the orbit (q = 3, η = 1) is exactly at the border between the regular island and
the chaotic region. Through Eq. (4.23) one obtains t0 = 5, explaining the numerical observation.
Analogously for the parameter r/R = 0.6125, shown in Fig. 4.14, the MUPO (q = 7, η = 2)
is present and imply t0 = 11, exactly as observed numerically. Higher-order periodicities are
associated with the existence of additional families of MUPOs in the chaotic sea.

After the publications of these results in Ref. [AMK05] different publications investigated
similar issues in mushroom billiards through different approaches. The Slater theorem [Sla67]
was proposed to explain the patterns described above in Ref. [DFMO+06]. The method is based
on the quasi-periodic dynamics of the trajectories in the hat of the mushroom and is valid for all
recurrence times. For large times only the quasi-periodic trajectories close to the MUPOs survive
and the two approaches are expected to be equivalent. Another very recent publication confirm
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both results described above through a detailed analysis of the escape regions [Miy06]. Addition-
ally, the escapes from mushroom billiards with parabolic hat was investigated in Ref. [TS06]. See
also Refs. [LPB06, LP06] for the classical investigation of many particles in mushroom billiards
and Ref. [BB06] for a study in quantum chaos.

In opposite to mushrooms, annular billiards (introduced in Sec. 4.3.3) may have further
KAM islands apart from the trajectories that do not collide with the inner scatterer, as shown
in Fig. 4.10. The stickiness to these structures obviously violates the theory developed in Sec. 4.2.
Therefore, control parameters of the annular billiard where no further islands are apparent are
chosen here (see Sec. 5.3 for the other case). One example is the case r = 0.1, δ = 0.65 illustrated
in Fig. 4.10. In Ref. [SHF+82] it is argued that this occurs always when r > 3δ. Figure 4.16
shows the RTS for the annular billiard with two such parameters, where the exponent γ = 2 is
apparent. The stickiness in the case of further islands is investigated in Sec. 5.3.

Figure 4.16: RTS for two different config-
urations of the annular billiard are shown:
dashed-line r = 0.1, δ = 0.65 (as in
Fig. 4.10) and solid-line r = 0.25, δ = 0.5.
In both cases, apart from the whispering
gallery, there are no further regular islands
observed in the phase space and a decay con-
sistent with γ = 2 (dotted line) is observed,
as emphasized in the inset.



Chapter 5

From sharply-divided to hierarchical
phase space

The stickiness theory applied in the previous Chapter for billiards is extended to
a larger class of systems having sharply-divided phase space, i.e., non-hierarchical
border between regular and chaotic regions (Sec. 5.1). This is done by showing
that the exponent γ = 2 describes also the stickiness in piecewise-linear maps having
isolated islands of polygonal shape. These systems, however, are not robust to generic
perturbations that lead to a hierarchical phase space. This is illustrated considering
mushroom billiards perturbed through a magnetic field (Sec. 5.2). The numerical
results for the stickiness in this case, as well as in the annular billiard with the
coexistence of sharp and hierarchical borders (Sec. 5.3), indicate a more efficient
trapping in the hierarchical than in the sharply-divided phase space (γ < 2).

5.1 Maps with sharply-divided phase space

5.1.1 Piecewise-linear maps

In the previous Chapter a stickiness theory based on the MUPOs was developed, and con-
firmed for the mushroom and annular billiards. These billiards have a simple well-defined border
between the chaotic component and the island of regular motion (whispering gallery). In this
Section area-preserving maps with the same property are studied.

Consider two-dimensional maps of the form

yn+1 = yn +Kf(xn) mod 1,
xn+1 = xn + yn+1 mod 1,

(5.1)

where f(x) is a non-linear function to be specified and K is a parameter that controls the non-
linearity. Note that map (5.1) satisfies the symplectic condition (2.3) being thus area-preserving
(Hamiltonian).

For f(xn) = sin(2πxn), Eq. (5.1) corresponds to the standard map, introduced in Eq. (2.14)
and which has served as a prototype of Hamiltonian system in numerous studies of sticki-
ness [Kar83, Zas02a, WBKZ98, CS99, WHK02a]. As argued in Chap. 2 the hierarchical phase
space of the standard map, illustrated in Fig. 2.1, is a representative example of a larger class
of near-integrable systems. The interpretation of this phase space was intimately connected to
the KAM theory.

However, for f(xn) defined as a piecewise-linear function of the interval xn ∈ [0, 1], the map
(5.1) show sharply-divided phase space, in the sense that regular and chaotic regions are separated
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by a simple curve [Woj81]. As shown in Refs. [Woj81, Ash97], the shape and distribution of the
regular regions depend on the function f and on the parameter K. Sharply-divided phase space
is possible in these systems due to the violation of the hypothesis of the KAM theorem stated
in Sec. (2.1.2): two-dimensional maps have to be at least of class C3 (i.e., three continuous
derivatives have to exist) [Mei92, Sev98]. The origin of the sharp border in the circular billiards
discussed in Chap. 4 is the singularity created by the difference between trajectories that hit the
region where the obstacles exist [Fig. 4.4(b)] and those that do not hit, what introduces some
discontinuity in the dynamics1. The original motivation to study such maps was that analytical
results about the coexistence of regular and chaotic motion obtained in this case [Woj81]. The
sharply-divided phase space studied below have always a finite number of regions of regular
motion (see Ref. [Ash97] for a different case) in opposite to the generic hierarchical KAM phase
space.

The following two examples of piecewise linear maps are considered below:
(i) The first example is obtained introducing in map (5.1) the function

f(xn) = 1− |2xn − 1|. (5.2)

This map was called continuous sawtooth map in Ref. [MP02]. where it was argued that for
K = 1.5 a single regular island exists [Fig. 5.2(a), triangular region].
(ii) A second example of sharply-divided phase space is obtained introducing in map (5.1) the
function

f(xn) =


−xn if 0 ≤ xn < 1/4,
−1/2 + xn if 1/4 ≤ xn < 3/4,
1− xn if 3/4 ≤ xn ≤ 1,

(5.3)

as considered in Ref. [Lee98]. The functions (5.2) and (5.3) are illustrated in Fig. 5.1, where
one sees that function (5.3) can be thought as a discretization of a sinus, what was the original
motivation on Ref. [Lee98].

Figure 5.1: Illustration of the
piecewise-linear functions (5.2) [map
(i)] and (5.3) [map (ii)]. In the last
case, the function was multiplied by a
factor K = 4.

Map (ii), obtain using Eq. (5.3), is equivalent to the map considered in Ref. [Woj81]2, where
1Rigorously, the KAM theorem does not apply for any kind of billiard since the Hamiltonian is defined by

potentials that assume infinite values at the borders.
2The equivalence can be obtained taking the inverse of map (5.1) (5.3) and performing a transformation of

variable y → −y
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the following interesting picture of the phase space is described: for K > 4 a single chaotic
component exists, while for K < 4 there is an isolated island of regular motion with elliptical
shape if

1
π

arccos(
K

2
− 1) ∈ R/Q (,i.e., it is an irrational number), (5.4)

and a polygonal shape otherwise. In Secs. 5.1.2 and 5.1.3 the stickiness in phase spaces with
such polygonal and elliptical islands, respectively, are studied.

5.1.2 Regular islands of polygonal shape

Control parameters K in Eq. (5.1) that lead to sharply-divided phase space with polygonal-
shape islands are considered here. According to the discussion in Sec. 5.1.1 this occurs for map
(ii) when condition 5.4 is violated. Three different example are illustrated in Fig. 5.2. Apart
from the islands with polygonal shape, in may cases additional families of MUPOs (marginally
unstable periodic orbits), discussed in detail in Chap. 4, are visible, e.g., in Fig. 5.2(a).

Figure 5.2: (Color online) Phase space of the piecewise-linear maps discussed in Sec. 5.1.1. Black dots
correspond to a single chaotic trajectory. Inside the polygonal white regions all trajectories are periodic with
the period corresponding to the number of sides of the polygon. (a) Map (i) with K = 1.5, and two additional
families of MUPOs with period 3 shown by straight lines and symbols; (b) map (ii) with K = 2 where two
trajectories inside the islands are represented by symbols, and map (ii) with K = 1.

Concerning the stickiness close to the regular islands, the relevant component is the border
between the chaotic and regular regions. Since the whole regular region is build by periodic
orbits with the same period [see Fig. 5.2(b)], the border to the chaotic component is composed
by periodic orbit that have marginal stability. The stickiness theory developed in Sec. 4.2 is
expected to be valid. Indeed, this is confirmed in Fig. 5.3 where the exponent γ = 2 is apparent
for all the numerically obtained RTS.

The stickiness is investigated further in Fig. 5.4 where the regions of the phase space that
survive for long times close to the island are depicted for n′ = 1, 2, 4 and 1000 iterations of the
map (5.1)-(5.2). This figure is analogous to Fig. 4.8 for the mushroom billiard. As expected, the
general tendency is that the closer to the island the longer it will take for the trajectory to leave.
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Figure 5.3: (Color online) RTS for the
three maps illustrated in Fig. 5.2 (see
legend). In all cases the agreement
with the exponent γ = 2 is apparent.
The middle curve was multiplied by a
factor of 5 for clarity. Inset: distance
of a chaotic trajectory to the the bor-
der of the island in Fig. 5.2a during an
event with recurrence time T = 335.

Figure 5.4: Phase-space portrait of map (i) with K = 3/2 [as in Fig. 5.2(a)] showing the initial conditions
of the trajectories that remain inside the dashed triangle for at least n′ = 1, 2, 4 and 1000 iterations of the
map, respectively. The inner triangle corresponds to the regular island. For visualization convenience the plot
is shown between 0 ≤ x ≤ 1.5 and −1 ≤ x ≤ 1.

However, while for mushroom the escape regions are tangent to the island and the injection
and escape occur in a single iteration, for the case illustrated in Fig. 5.4 the escape/approach of
trajectories from/to the island take more iterations. This effect is also illustrated in the inset of
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Fig. 5.3, which has to be compared to Fig. 4.14(c) for mushroom billiards.

5.1.3 Regular islands of elliptical shape

Control parameters K in Eq. (5.1) that lead to sharply-divided phase space with elliptical-
shape islands are considered here. According to the discussion in Sec. 5.1.1 this occurs for map
(ii) when condition (5.4) is fulfilled, which is the typical case. Three different example are
illustrated in Fig. 5.5. Apart from the elliptical region no further islands are observed.

Figure 5.5: (Color online) Phase space of the piecewise-linear maps discussed in Sec. 5.1.1. Black dots
correspond to a single chaotic trajectory and white regions to a single regular island with elliptical shape (no
further islands are visible). Inside the elliptical white regions all trajectories are quasi-periodic and draw ellipses
similar to the border of the island. (a) Map (i) with K = 1.123..., (b) map (ii) with K = 3.841..., and map
(ii) with K = 3.5.

Figure 5.6: (Color online) RTS for the
three maps illustrated in Fig. 5.5 (see
legend). In all cases there are strong
oscillations and no agreement with the
exponent γ = 2 is observed for the
values of the recurrence time depicted
here.
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The border between islands with elliptical shape and the chaotic component are no longer
built by MUPOs, as was the case in Sec. 5.1.2, but by a quasi-periodic trajectory. It is thus
not a surprise that the RTS illustrated in Fig. 5.6, for the three maps illustrated in Fig. 5.5, do
not follow the exponent γ = 2. On the other hand, it is quite surprising that strong oscillations
appear already for simple non-hierarchical phase-spaces. In general, the estimation γ = 2 seems
not to be so far from an average behavior and one cannot rule out the possibility that a well
defined power-law exponent would be obtained for longer times. However, an explanation for
the stickiness in sharply-divided phase space with islands with elliptical shape is not provided
in this Thesis, and remains as an open question.

Figure 5.7: (Color online) Phases pace of map (i) with K = 1.123... [as in Fig. 5.5(a)] showing the initial
conditions of the trajectories that remain inside the large black ellipses of the upper-left figure at least n′ =
0, 1, 2, 10, 100 and 1000 iterations of the map, respectively. The inner (green/light gray) ellipse corresponds
to the regular island.

A numerical investigation of the escape of trajectories close to the islands with elliptical
shape is provided in Fig. 5.7, which has to be compared with Figs. 4.8 for the mushroom billiard
and 5.4 for the case of islands of polygonal shape. The general behavior is the same as in the
case of polygonal-shape islands: for long times the trajectories concentrate close to the border
of the island.

5.2 Perturbed mushroom billiards

Hamiltonian systems with sharply-divided phase space are not generic. This means that they
are not robust to small perturbations, as considered in detail below, that lead to the problem
of stickiness in Hamiltonian systems with the usual complex hierarchy of infinitely many KAM
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islands and cantori described in Chap. 2. As a model system the mushroom billiard introduced
in Sec. 4.3.2 is considered and as perturbation a magnetic field is considered. This magnetic
mushroom billiard allows for a direct comparison between the effects of hierarchical and non-
hierarchical borders.

5.2.1 Perturbation of non-hierarchical borders

A common feature of the systems considered in the previous sections is that their dynamics is
piecewise smooth and presents abrupt changes. These abrupt changes, generated by non-smooth
functions f in map (5.1) and sharp corners in the mushroom billiard, are responsible for the
creation of sharply-divided phase spaces. Generic perturbations of these systems are expected to
smooth the dynamics and introduce hierarchies of KAM islands and cantori. Examples of such
perturbations include to smoothen functions (5.2) or (5.3) in the case of piecewise-linear maps
and soften the walls in the case of mushroom billiards. In the case of a billiard with charged
particles, a suitable perturbation is performed by introducing a magnetic field, as studied below.

Consider the mushroom billiard, studied in Sec. 4.3.2 subject to uniform transverse magnetic
field B and consider the dynamics of charged particles within this billiard. Due to the Lorentz
force, the charged particles move on circular orbits. The charge of the particles and orientation
of the magnetic field are chosen such that the trajectories are oriented counter-clockwise and
have radius

L ∝ 1
B
, (5.5)

which is used as a control parameter. This parameter has to be compared with the geometric
scales of the billiard defined in Fig. 4.5(a) (in our simulations we use R = 2 and r = 1). The
unperturbed mushroom billiard corresponds to L = ∞.

Previous works on magnetic billiards [RB85] have shown that the curvature of the trajectories
often leads to the creation of KAM tori [BKT94, dSdA00] in fully chaotic systems and chaotic
regions [MBG93] in integrable systems. Mushroom billiards have both integrable and chaotic
regions in the phase space and both effects are expected to take place. More interestingly,
mushroom billiards also have MUPOs that are expected to undergo a transformation when the
system is perturbed. Indeed, because the eigenvalues associated to these orbits are real and have
modulus 1, arbitrarily small perturbations are expected to generate elliptic or saddle points in
the neighborhood of the regular island of the unperturbed billiard. Since there are usually an
infinite number of families of MUPOs close to the sharp border (as shown in Sec. 4.4), one sees
that an infinite hierarchy of islands around islands is created. These effects of the magnetic
field in the mushroom billiard are shown in Fig. 5.8, where a representative magnification of
the phase space at the border of chaos is shown for different values of L. The hierarchy of
KAM islands and cantori are clearly visible, providing evidence that the complete picture of
Hamiltonian chaos is obtained in magnetic mushroom billiards.

The emergence of complex structures of KAM islands in the phase space influences the
stickiness, as shown in Fig. 5.9 for the RTS of magnetic mushroom billiards with L = 100 and
L = 50. Comparing these distributions with those of the unperturbed system (L = ∞), one
notes the presence of fluctuations around a slower power-law tendency (γ < 2). This result
indicates that, as intuitively expected, a hierarchical border sticks the trajectories in a more
effective way than a non-hierarchical border. This is also in agreement with the results of
Ref. [CK], verified in Fig. 2.3, where an universal exponent γ ≈ 1.6 is suggested. One could
expect that the outermost torus of a regular island, which is marginally unstable, could play the
role of the MUPOs described in Sec. 4.2. However, there is usually an infinite number of cantori
that accumulate near the island invalidating relations (4.1) and (4.2) and thus the derivation of
the exponent γ = 2. In the next section a carefully study of the effect of such partial transport
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Figure 5.8: Magnification of the phase-space portrait of the magnetic mushroom billiard at the border between
the chaotic and regular regions for r/R = 0.5 and various values of the magnetic field.

Figure 5.9: RTS for the magnetic
mushroom billiard with r/R = 0.5 and
different values of the magnetic field.
From bottom to top the lines repre-
sent: a power law with γ = 2, the
numerical results for L = ∞ (shifted
downward by two decades for clarity),
L = 100 (shifted downward by one
decade) and L = 50, and a power law
with γ = 1.

barriers on the stickiness is performed, where the effects of the Markov-tree model mentioned
in Sec. 2.2.3 are illustrated.
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5.2.2 Hierarchical phase-space scenarios

Figure 5.10: Analysis of the magnetic mushroom billiard with L = 50: (a) phase-space magnification at
the border of chaos; (b) fraction g(θ) of recurrences that have θ as their minimal angle; (c) the RTD of all
trajectories (upper solid curve) and the RTDs of the trajectories in regions (1)-(5) of (b) (lower solid curves).
The lower curves in (c) are divided by 10 for clarity.

The investigation concentrates now on the origin of the oscillations and apparently slower
decay of the RTS shown in Fig. 5.9. Consider initially the parameter L = 50. For this parameter,
many KAM tori are destroyed but the chain of islands and cantori are still clearly visible in the
phase space, as shown in Fig. 5.10. The different density of points seen in Fig. 5.10(a) is
related to the presence of chains of islands and cantori acting as partial barriers [MMP84] to
the transport in the θ direction. In order to associate the presence of these barriers to the RTS,
consider the minimum distance between the trajectory and the main island before the trajectory
leaves the neighborhood of the island and visits the recurrence region (foot of the mushroom).
In the simulations the minimum collision angle θ of the trajectory is used as a measure of the
distance because the barriers mimic the original tori and have approximately constant θ. The
fraction of events that have a minimum angle θ is defined as g(θ)dθ = uθ/u, where uθ is the
number of recurrences that have a minimum angle in the interval [θ, θ + dθ] and u is the total
number of recurrences. Numerical results for g(θ) with L = 50 are shown in Fig. 5.10(b). The
function g(θ) goes to zero at the angles that correspond to the position of the barriers because
the trajectories that manage to pass a barrier quickly spread throughout the next chaotic layer.
From the behavior of g(θ) in Fig. 5.10(b), 5 different regions limited by these barriers can be
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identified. To associate these regions with the RTS, all the recurrence events were labeled from
(1) to (5) according to the number of regions the trajectory penetrates before returning to the
recurrence region. The RTD (recurrence time distribution) P (T ) (i.e., the non-cumulative RTS)
of each of these groups of recurrence events are shown in Fig. 5.10(c). The RTD of all the
events corresponds to the sum of these partial RTDs and is shown in the same figure (upper
solid curve). The partial RTD of each region (1)-(5) presents a relatively peaked maximum
followed by an exponential decay. Accordingly, most of the orbits that have the same recurrence
time T penetrate the same number of barriers [note the logarithmic scale in Fig. 5.10(c)]. These
results indicate that, for T < 106, the stickiness is dominated by the primary chain of barriers
around the main regular island, that is, the contribution of barriers associated to secondary
islands is negligible. These results also show that the oscillations observed in the RTD around
the power-law behavior are intrinsically associated to the presence of the barriers in the phase
space.

Figure 5.11: (Color online) Analysis of the magnetic mushroom billiard with L = 10. (a) Phase-space
magnification with two typical sticking trajectories with recurrence time T ≈ 8 104: trajectory 1 sticks near
the upper island and trajectory 2 fills the chaotic region. (b) Fraction g(θ) of recurrences that have θ as
their minimal angle. (c) The RTD of all trajectories (upper solid curve) and the RTDs of the trajectories in
regions (1)-(5) of (b) (see legend). The lower curves in (c) are divided by 10 for clarity.

These stickiness properties agree well with the predictions of the model proposed by Motter
et al. in Ref. [MdMGK05]. In that paper, the hierarchy of cantori is modeled by a chain of
coupled hyperbolic systems, where each hyperbolic system models the area of the phase space
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limited by successive cantori. One of the strengths of this model is that it predicts not only the
asymptotic behavior of the non-hyperbolic dynamics around KAM islands but also the finite-
time dynamics assessable in numerical simulations and experiments. The model predicts that
the survival probability of particles in the neighborhood of KAM islands fluctuates around a
power law and is composed of a sum of exponentials associated to the cantori. Our results
in Fig. 5.10 show that this behavior is indeed present in real Hamiltonian systems. As shown
below, this picture changes when secondary structures of the hierarchy are relevant. This more
general stickiness scenario is observed in the mushroom billiard for larger values of the magnetic
field (e.g., L = 10).

Figure 5.11 shows the same as Fig. 5.10 for the parameter L = 10. The effect of the primary
barriers is still important, as shown in Fig. 5.11(b) where these barriers correspond to zeros
of g(θ). However, as shown in Fig. 5.11(c), the partial RTDs corresponding to regions (1)-(5)
exhibit a power-law rather than an exponential decay. For instance, the RTD of trajectories
belonging to region (2) exhibits an approximate power-law decay that makes these recurrence
events dominant not only for small times (10 < T < 500) but also for very large times (T ≈ 105).
On the other hand, the RTD of events associated to region (4) does not dominate the (total) RTD
at any time. The slower decay of the RTD of region (2) is a consequence of the stickiness to the
chain of secondary islands shown at the top of Fig. 5.11(a). This figure shows two representative
trajectories with recurrence time T ≈ 8 104. The first (trajectory 1) penetrates only two
regions and sticks to a secondary island. The second (trajectory 2) penetrates five regions and
approaches the main island. The presence of secondary islands at each level, which is expected
to be common in typical Hamiltonian systems, shows the limitations of stickiness models based
on a single chain of cantori [WHK02a]. In the context of stochastic models [HCM85, WBKZ98],
asymptotic effects of secondary islands can be accounted for by the Markov-tree models [MO86].

5.3 Annular billiard with coexistence with islands

In the two previous sections the stickiness to sharply-divided and hierarchical islands were
illustrated through representative examples. Islands of both kind may also coexist in the phase
space of a given Hamiltonian system, in which case the smaller stickiness exponent prevails
(i.e., it is certainly 1 < γ ≤ 2). The upper bound γ ≤ 2 is guaranteed by the presence of
a single family of MUPOs. However, as argued in Sec. 5.2.1 in an hierarchical phase space
generically all the families of MUPOs disappear. The slower decay observed in Fig. 5.9 is thus
not guaranteed and shows that the hierarchical scenario sticks in a more efficient way. Recall
that for the hierarchical scenario an average exponent γ ≈ 1.6 should be expected (see Ref. [CK]
and Fig. 2.3). The coexistence of both scenarios occurs in the annular billiard, e.g., for the
parameters used in Fig. 4.9, where apart from the whispering gallery there exist stable periodic
orbits that gives rise to an hierarchical KAM island. The stickiness illustrated in Fig. 5.12 for
this case shows clearly that the RTS decays slower than the γ = 2 case, i.e., the exponent is
strictly smaller than two (γ < 2), corroborating the previous observations.
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Figure 5.12: (Color online) RTS for the an-
nular billiard with parameters r = 0.35, δ =
0.5 depicted in Fig. 4.9 (solid line) compared
to two control parameters (r = 0.1, δ =
0.65 and r = 0.25, δ = 0.5) where the sys-
tem is sharply divided. It is clear that the
RTS in the first case decays slower than γ =
2.



Chapter 6

Noise-perturbed systems and the
effect on the anomalous transport

The effect of additive white noise to the stickiness is considered. An intermediate
regime of enhanced trapping is observed in the RTS (recurrence time statistics), due
to trajectories performing a random-walk inside the region corresponding to regular
islands of the unperturbed system (Sec. 6.1). Asymptotically, the RTS decays ex-
ponentially and stickiness is thus suppressed. The effects of the different trapping
regimes have a strong impact on the (anomalous) transport of trajectories (Sec. 6.2),
what is discussed in the framework of CTRW (continuous time random walks). As
a physical example of these results the dispersion of a passive tracer in an incom-
pressible two-dimensional flow subject to molecular diffusion is considered (Sec. 6.3).

6.1 Noise-perturbed system

6.1.1 Recurrence time statistics

The idea of considering an additive noise perturbation to a given deterministic system is
quite natural since it corresponds to a test of the robustness of the unperturbed results. From
a physical point of view the noise can be thought to incorporate perturbations/interactions
that were neglected in the first description of the system. Additionally, there are cases where
the presence of noise has a well defined physical origin, such as the molecular diffusion in
incompressible two-dimensional flows (see Sec. 6.3.1).

In the case of Hamiltonian systems with mixed phase space, the effect of noise was considered
already more than twenty years ago (see Ref. [KRW82] and references therein). Intuitively there
are two opposite effects of the noise on the classical chaotic dynamics: (i) it introduces a smaller
relevant scale in the hierarchy of islands-around-islands below which structures are not relevant,
what typically leads to a cut-off in the power-law decay of the statistical quantity of interest;
(ii) chaotic trajectories may enter the deterministically forbidden region of the regular island
and hence increase the trapping time. It is shown below how this two effects combine and for
which time-scales each of them is more relevant. While many of the individual results of this
chapter were already known through different approaches, the novel description in the framework
of stickiness, which is presented below, shows an intuitively understandable picture that allow
straightforward application of previous theories and helps to clarify previous conflicting results.

Two area-preserving maps are considered in the numerical simulations: a non-generic sharply-
divided map as studied in Chap. 5 [composed by Eqs. (5.1) and (5.3) with K = 2] and the stan-
dard map defined in Eq. (2.14). While the first map was chosen due to its simple phase space
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structure – a single polygonal island – the second map is a generic example. Due to numerical
reasons that will be mentioned below the following version of the standard map was used

yn+1 = yn −K sin(2πxn + 0.25) mod 1,
xn+1 = xn + yn+1 + 0.5 mod 1.

(6.1)

The control parameter was usually fixed at K = 0.52 where a large (hierarchical) island is
observed in the phase space, what emphasizes the effects of the noise discussed here. With
the shifts introduced in (6.1), when compared to Eq. (2.14), the center of the island is at
(x, y) = (0.75, 0.5), as illustrated in Fig. 6.2b. The recurrence region is defined as the whole
region x < 0.5, where no island is observed. Typically 2 1011 iterations of this map were
performed to obtain the RTS shown in this and in the next Chapter.

The noise is introduced in the above mentioned maps as a kick after each iteration

yj+1 = yj + ξδG, (6.2)

where ξ ∈ [0, 1] is a small control parameter and δG is white noise, i.e., Gaussian distributed un-
correlated random variable with zero mean and variance σ = 1. Different numerical simulations
confirm that the result remain unchanged when adding the noise to x, to both variables x, y,
or by taking uncorrelated noise with different distributions. The results are also expected to be
valid for any generic area-preserving map with mixed phase space1.

The RTS were computed through the same procedure discussed in Sec. 3.1 (single trajectory
started outside the island) and are shown in Fig. 6.1 for both maps mentioned above and different
noise strengths ξ = {1, 10−1, ..., 10−5}. For the sharply-divided map (Fig. 6.1a) it was shown
in Sec. 4.2 that the RTS decays as a power-law with γ = 2 in the unperturbed case (ξ = 0).
This decay is also observed for small noise ξ and times τ . For large times τ →∞, all RTS with
ξ 6= 0 show a faster than power-law decay of the RTS, which was verified to be exponential
in a linear-log graph. Between this two limits an enhanced trapping regime that approaches a
power-law with exponent γ ≈ 0.5 is observed. This regime is specially clear for small ξ. For the
case of the standard map (Fig. 6.1b) the same regimes are observed. In this case one has to take
into account that the unperturbed RTS is not described by a simple power-law anymore but
shows intrinsic oscillations, as discussed in Secs. 2.2.2 and 5.2. The explanations of the trapping
regimes mentioned above in terms of the trajectories in the phase-space is given in Sec. 6.1.2,
while the dependence of the trapping regimes on the noise strength is discussed in Sec. 6.1.3.

6.1.2 Characterization of the trapping regimes

The aim here is to understand the origin of the above mentioned regimes of the RTS by
identifying in which region of the phase space were the trajectories corresponding to each of
the regimes. For this analysis the standard map (6.1) was chosen due to its generic character.
Consider, e.g., the case ξ = 10−3 emphasized in Fig. 6.2a, and the four intervals of time IR0-IR3
shown in this figure and specified in the caption. Trajectories that returned with a recurrence
time T ∈ IR are said to belong to a given interval IR. The phase-space density of trajectories
belonging to all 4 intervals are plotted in Fig. 6.3 and can be interpreted as follows. Trajectories
belonging to IR0, an interval of very short times T where the RTS decays exponentially, stay in
the chaotic sea without approaching the island of regular motion, as in the unperturbed case.
Trajectories belonging to IR1, an interval where the RTS is already non-exponential but similar
to the unperturbed case, stick to the border of the island as in the deterministic trajectories.

1Notice that the special choices of the standard map and its parameter were crucial only for visualization and
numerical purposes.
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Figure 6.1: (Color online) (a) RTS for the sharply-divided map (5.3) with K = 2 (b) RTS for the standard
map with K = 0.52, , whose phase space is shown in Fig. 6.2b. In both cases the thick solid line corresponds
to the unperturbed case (ξ = 0) while the thin solid lines correspond to perturbations due to white noise [as
in Eq. (6.2)] with ξ = 100, ..., 10−5 (from left to right). In each curve τ1,2 (•) and τ2,3 (�) are indicated.

Trajectories belonging to IR2, an interval where the RTS shows an enhanced trapping (γ ≈ 0.5)
when compared to the unperturbed case, concentrate inside the island, i.e., in a region which
is forbidden for the deterministic case. Finally, trajectories belonging to IR3, an interval in the
exponential tail of the RTS, concentrate in the center of the island.

Figure 6.2: (a) RTS as shown in Fig. 6.1 with the indication of the intervals of regions R1-R3: IR0= [2, 7],
IR1=[40, 80], IR2=[6 103, 104], IR3=[2 105, 3 106], IR3’=[6 105, 106]. (b) Phase space of the standard map
with K = 0.52 amplified around the island. This figure serves as reference for Figs. 6.3.

The interpretation of the regime of enhanced trapping (trajectories belonging to IR2) is
thus quite simple: it is built by trajectories that due to the noise perturbation penetrated the
region that corresponds to the island of regular motion in the deterministic case. Once inside
the island it circles its center (the elliptic fixed point) and performs an one dimensional random
walk in the perpendicular direction. A first quantitative indication that this general picture
is correct is that the power-law decay of this regime is close to γ = 0.5, which is the same
obtained for a random-walker in Sec. 3.1.2. Further evidences of this picture are provided in
Sec. 6.1.3. This model is specially accurate for the case of sharply-divided phase space, as seen
by the nicer power-law decays in this regime of Fig. 6.1a when compared to the standard map
case of Fig. 6.1b where further oscillations are observed. Indeed, simulations for other control
parameter have shown even greater oscillations around a γ = 0.5 decay. The reason for this is
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the existence of second order resonances and confined chaotic regions inside the main island of
the standard map, which are not considered in the simple random walk model mentioned above.

Figure 6.3: (color online) Density of points in the phase space of the standard map K = 0.52 with noise
perturbation ξ = 10−3 for trajectories having recurrence time in the regions assigned in Fig. 6.2(b): IR0 (top
left), IR1 (top right), IR2, (bottom left), and IR3 (botom right). Average density corresponds to the color
scale 1.

In summary, three different regimes of the RTS in noise perturbed systems can be identified
for small enough noise perturbations ξ:

(R1) For short times (τ < τ1,2) the RTS follows the unperturbed one (ξ = 0), i.e., it shows
an exponential followed by a power-law decay (with exponent γR1 = γξ=0).

(R2) For intermediate times (τ1,2 < τ < τ2,3) the RTS shows an enhanced trapping due to
trajectories that entered the region corresponding to the islands through the action of the noise.
Once inside the island the trajectories circle the central elliptic periodic orbit and perform a
random walk in the perpendicular direction. The power-law exponent tends to the value of the
one of a random walker γR2 ≈ γRW = 0.5 (see Sec. 3.1.2).

(R3) For long times (τ > τ2,3) the RTS decays exponentially since the regular island has a
finite domain and the fine structures of the phase space are irrelevant due to the noise.

6.1.3 Dependence on the noise intensity ξ

The effect of the noise intensity ξ on the trapping regimes described above is evident in
Fig. 6.1: the smaller ξ the greater the regimes (R1) and (R2). The dependence on ξ of the starting
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and ending time of (R2), defined as τ1,2 and τ2,3, is obtained below. τ1,2 and τ2,3 are obtained
numerically as the crossing point between the power-law regime of R2, γR2 ≈ 0.5 with the
previous power-law or the next exponential regime, respectively2. Theoretically one can estimate
this time comparing the displacement in the phase space due to the noise with the distance of
the trajectory to the border of the island. A similar reasoning was used in Ref. [FMG95] where,
instead, the size of the chaotic layer between two cantori where the trajectory is stuck was
considered. When these two quantities are of the same order of magnitude one can estimate
that the fine hierarchical structure of the phase space is ignored by the trajectory and the
noise dominates. Following these arguments, and using the Markov-tree model for stickiness
introduced in ref. [MO85], the authors of ref. [FMG95] obtained

τ1,2 ∼ ξ−c, (6.3)

with c = 1/(2γR1 − 1). Since usually 1 < γR1 < 2 one obtains 1/3 < β < 1. Similar arguments
can be applied to our case since the distance between cantori in a given level is usually comparable
to the distance to the island border. However there are two drawback in the arguments leading to
the precise relation in Eq. (6.3): trajectories may approach secondary islands and the coefficient γ
is in practice not well defined in the case of stickiness in hierarchical phase space. Therefore, a
more realistic approach, also based in the general remarks of Ref. [FMG95], is to say that the
time τ1,2 is given by

τ1,2 ∼ ξ−β, (6.4)

where β / 1, with no a priori relation between β and γ.

Figure 6.4: Dependence of τ1,2 and τ2,3 on ξ obtained from Fig. 6.1 for (a) the sharply-divided map (5.3);
and (b) for the standard map (6.1) with K = 0.52. The fitted lines show the agreement with Eqs. (6.4)
and (6.5).

It was argued in Ref. [FMG95] that at this time an asymptotic exponential decay should
appear, similarly to the case of one dimensional tangent maps. However, as shown above, our
simulations indicate that the exponential decay of the RTS occurs at a longer time τ2,3 > τ1,2,
since trajectories may enter the island where they performs a random walk. The asymptotic
exponential decay of the RTS is due to the finiteness of the random walk domain, i.e., the
finiteness of the regular island in the unperturbed case. Considering the measure µI of the

2 The power-laws extend over more than two decades only for small ξ but can be extrapolated for higher ξ.
As is seen comparing the •’s (indications of τ1,2) in Fig. 6.1a and 6.1b the practical specification of this times are
quite arbitrary. However, the same scaling exponent is obtained once it is done consistently for all curves with
different ξ.
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(largest) island inside which a random walker (with step size proportional to ξ) performs a
diffusive motion, the dependence of τ2,3 on ξ can be estimated as

τ2,3 ∼ µIξ
−2. (6.5)

As it will be clear in Sec. 6.3, this scaling is equivalent to the intuitive result that normal diffusion
in flows starts for a time t ∼ L2/D, where L is a typical length and D is the (molecular) diffusion
coefficient [WUS96]. Figure 6.4 verify the agreement of Eqs. (6.4) and (6.5) with the values
estimated numerically for both maps studied in Fig. 6.1. Notice that for small enough noise
intensity ξ the regime of enhanced trapping becomes increasingly large due to the difference in
the exponents in Eqs. (6.4) and (6.5).

In summary, the noise has two qualitatively different effects: while (R3) represents the typical
cut-off of the power-law distribution [FMG95], during the novel regime (R2) the noise acts
constructively (increasing the regularity of the dynamics) by allowing trajectories to penetrate
the regular island. The scale of these regions with the noise is given by Eqs. (6.4) and (6.5).

6.2 Stickiness and anomalous transport

6.2.1 General relations

In this section one of the most important outcomes of stickiness is studied: the possibility
of giving rise to anomalous transport of trajectories. Before showing explicitely this connection,
some notational remarks about the words transport and diffusion are necessary. In many cases
the stickiness phenomena is interpreted more generally as a problem of slow transport in the
phase space. In this section the meaning of (anomalous) transport is different. It refers to the
global dispersion of chaotic trajectories over long periods of times and regions of space and not
to the transport close to islands or between cantori, as discussed in the previous chapters of
this Thesis. The transport will be thus characterized by the algebraic growth in time of the
mean square displacement of a given function of phase space variable r(~p, ~x) calculated over an
ensemble of trajectories

〈r2〉 = Dνt
ν , (6.6)

where 〈.〉 means ensemble average (i.e., average over many trajectories belonging to the same
chaotic ergodic component). If ν = 1 the system has normal or diffusive transport and D1 is the
usual diffusion coefficient. Anomalous transport ν 6= 1 (sometimes called anomalous diffusion)
can be subdiffusive 0 < ν < 1 or superdiffusive 1 < ν ≤ 2,. The limiting case ν = 2 is called
ballistic and corresponds to particles traveling with constant speed in different directions. The
pre-factor Dν is the generalized diffusion coefficient.

Diffusive transport ν = 1 describes the case of fully chaotic hyperbolic systems, where
stickiness does not occur. Contrary to what sometimes seems implicit in other vague uses of
the word (anomalous) diffusion/transport, stickiness does not lead to subdiffusion in the sense
mentioned above. It will be clear below that in deterministic systems stickiness may reduce the
value of the diffusion coefficient D1 but not the value of the exponent ν = 1. On the other
hand, stickiness may lead to superdiffusion ν > 1 when the islands or tori to which the chaotic
trajectories stick correspond to constant motion in one direction, i.e., ballistic islands (ν = 2).
The existence of an asymmetry between sub- and super-diffusion is easily seen already by the
calculation of the diffusion coefficient in a simple diffusive process (e.g., normal random walkers)

D =
〈l2〉 − 〈l〉

2〈t〉
, (6.7)
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where l is the flight (jump) size and 〈t〉 the typical time between successive jumps. Anomalous
diffusion, which corresponds to a vanishing (subdiffusion) or diverging (superdiffusion) diffusion
coefficient, arises if one of the terms in Eq. (6.7) diverges. This happens if the waiting-time
distribution or the flight distribution have broad tails, as assumed in the model of Sec. 6.2.2.
As emphasized below, in Hamiltonian systems the origin of such tails is the stickiness to regular
regions. Notice that the numerator of expression (6.7) involves the second moment of the
flight distributions while the denominator involves the first moment, what is the origin of the
asymmetry between sub- and super-diffusion.

The existence of anomalous transport in Hamiltonian systems due to stickiness was studied in
several systems [Kar83, GZR87, GZR88, ZT91, KZ94]. From the considerations above it is clear
that one has to distinguish between two kind of sticky domains: localized island corresponding
to the regions around some stable fixed point or periodic orbit where stuck trajectories remain
localized in space; and ballistic islands or tori corresponding to regions around some stable
periodic or quasi-periodic orbit of the closed system (taking modulus 1 or 2π in one periodic
coordinate, e.g., one angle) that correspond to constant motion in the expanded space where
transport is calculated3. In the most general case both kind of islands coexist in the phase space,
what motivates the introduction of a continuous time random walk model with periods of spatial
localization and of Lévy-walks (constant velocity). This model will be sketched below, based in
the work of Klafter and Zumofen in Ref. [KZ94] which is indicated for further details. See also
Ref. [GZR88] for a different approach leading to similar results and Ref. [WUS96] for a didactical
discussion and for the asymmetric case. The effect of noise perturbations to these models will
be discussed in Sec. 6.2.3 through simulations of the standard map. A more didactical and
physically motivated illustration of the theory of this section and of the effect of noise is the
subject of Sec. 6.3.

6.2.2 Continuous time random walk

Consider particles that move with a constant speed in the direction of negative or positive r.
After a given flight time tf the trajectory remains trapped for a time tt before choosing at random
a new direction with equal probability and a new flight time. An important assumption is that
consecutive flights and trappings are completely uncorrelated and thus drawn from invariant
probability distribution functions ψf and ψt, respectively. Anomalous transport may arise in
such a model if these probability density functions have long tails. Consider that the probability
of flying consecutively to one same direction for a time t or greater is given for long times by

ψf (t) ∼ t−γf , γf > 0, (6.8)

and, analogously, that the probability of being trapped for a time t or greater is given by

ψt(t) ∼ t−γt , γt > 0. (6.9)

Additional motivation for such power-law distributions come from the stable Lévy distributions
that have asymptotically power-law tails.

In the problem of transport in Hamiltonian systems with mixed phase space, the distribu-
tions (6.8) and (6.9) are related to the stickiness to ballistic and localized islands respectively.
In case of more that one island of one type those showing a greater stickiness (smaller γ) should
be considered. The velocity of flight is given by the length in r of the ballistic island divided
by its period. The assumption that consecutive events are uncorrelated is justified by the fact

3 Usually these orbits are periodic in the angular coordinate but sometimes also in the momentum or other
spatial coordinate where some symmetry exists.
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that between two stickiness events the trajectory spends some (exponentially distributed) time
in the chaotic sea, which is enough to destroy the correlations.

From the trapping and flying time distributions one can calculate the propagator P (r, t)
of reaching the point r at a time t. Going to the Fourier-Laplace space (r → k, t → u) the
calculation of the mean squared displacement is then given simply by [KZ94]

〈r2〉 = − ∂

∂k
P (k, u)|k=0. (6.10)

Depending on the values of γf , γt of Eqs. (6.8) and (6.9) different values of the transport ex-
ponent ν are obtained asymptotically in time. The general relation can be written concisely
as

[ν]2 = 2 + [γt]1 − [γf ]2, (6.11)

where the following notation was used

[x]m =
{
x if 0 ≤ x ≤ m
m if x > m

(6.12)

The different explicit relations between ν and γf,t contained in relation (6.11) are illustrated in
Fig. 6.5. When the flight- and trapping-time distribution decay faster than power-law (no stick-
iness) one considers γ →∞ in (6.11). In the case of non-symmetric flights in positive/negative
directions a more rich behavior is obtained [WUS96]. Notice also the asymmetry between flights
and traps [m = 2 and m = 1 in Eq. (6.12), respectively], in agreement with the discussion after
Eq. (6.7).

Figure 6.5: Relation between the
anomalous transport exponent ν and
the exponents of the statistics of
flights γf and traps γt. Regions of sub-
diffusion (diagonal lines), normal diffu-
sion (gray), and superdiffusion (white)
are indicated [WUS96].

Applying the constrain γ > 1 (finite mean recurrence time) discussed in Chap. 4 for the
values of the stickiness exponent γ in deterministic Hamiltonian system to the values of γf , γt

one sees that actually the distribution of trapping times is irrelevant and Eq. (6.11) reduces
to [GZR87]

ν =
{

3− γf if 1 ≤ γf ≤ 2 ,
1 if γf > 2,

(6.13)

showing that only superdiffusion is possible. The results of Eqs. (6.11) and (6.13) are valid
up to log periodicities, which are specially important in the limiting cases between normal
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and anomalous transport. The well-known result of anomalous transport 〈∆r2〉 ∼ tln(t) in
the Lorentz gas with infinite horizons (e.g., the open-periodic Sinai billiard of Fig. 4.1) can be
interpreted from Eq. (6.13) and the exponent γ = 2 obtained for the stickiness to MUPOs (e.g.,
the parallel walls of the Sinai billiard) in Sec. 4.2.

6.2.3 Effect of noise perturbation

Relations (6.11) and (6.13) are obtained asymptotically for long time. As was shown in the
previous section, the effect of noise in the stickiness may lead to intermediate but arbitrarily
long regimes where γ < 1 (more precisely γ ≈ 0.5). In this cases one can expect to observe
also for intermediate times more complicated regimes of transport described by Eq. (6.11) but
absent in Eq. (6.13). This is investigated numerically in this section.

Perhaps the best studied case of anomalous transport in simple Hamiltonian systems cor-
responds to the dispersion of the momentum y of the standard map (6.1). The transport is
anomalous for some special values of the parameter K where, due to particular symmetries of the
map, ballistic islands appear (also called accelerator modes). For example, for 1 < K < 1.1854...
there are two stable periodic orbits of the closed standard map [taking mod (1) in both Eqs.(6.1)]
that correspond to a ballistic motion y → y ± 1 in the open system [taking mod (1) only in the
angular component of Eqs.(6.1)], where the transport is computed [i.e., r(x, y) = y] [LL83].

For the numerical simulations the case K = 1.07 was chosen, since for this parameter there
is one big ballistic island that enhance the regime of trapping inside islands discussed in Sec. 6.1.
No further chain of islands are visible in the phase space. An ensemble of 106 trajectories with
initial condition along the y = 0 axis was considered away from the ballistic islands and the
evolution of the mean squared displacement 〈y2〉 was calculated as a function of time. In Fig. 6.6
〈y2〉/t is plotted in order to emphasize the existence of anomalous transport (horizontal lines
correspond to normal transport). The oscillations observed for the unperturbed case ξ = 0 have
the same origins of the oscillations in the RTS, discussed in Chaps. 2 and 5. This oscillations
are sometimes not seen in other publications because the division of 〈y2〉 by t is not performed.

For nonzero noise intensities Fig. 6.6 shows that different regimes of anomalous transport
exist before an asymptotic normal diffusion regime is achieved. Indeed, three regimes of transport
are visible in this plot, which can be related to the three regimes of the RTS listed in Sec. 6.1.2
by Eq. (6.13). This leads to the following description of the transport properties of the noise
perturbed systems:

(R1) for short times superdiffusion similar to the unperturbed case 1 < ν < 2 is observed.
(R2) for intermediate times enhancement of the superdiffusion that tends to ballistic ν = 2

[see Eq. (6.13)] is observed;
(R3) asymptotically the transport is normal ν = 1 with coefficient DA.
It was verified numerically that the beginning and end of the ballistic regime (R2), denoted

as τ †1,2 and τ †2,3 respectively, occur at times proportional to, but greater than, those of the RTS
(R2). This means that they follow the scaling given by Eqs.(6.4) and (6.5), but have different
constants of proportionality. To observe these regimes it is essential that the initial conditions are
away from the island, as considered to calculate the stickiness phenomenon. If there are initial
trajectories inside the ballistic islands, e.g., starting uniformly in the unit cell of the phase
space 0 ≤ x, y < 1, the regime (R1) mentioned above is not observed and a faster convergence
to the regime (R3) is achieved with the same DA. In this case, instead of superdiffusion ballistic
motion is obtained for ξ = 0.

The asymptotic exponential decay of the RTS in noisy systems leads to an asymptotic normal
transport. The asymptotic diffusion coefficient D1 = DA = limt→∞〈∆y2(t)〉/t is determined by
the intermediate anomalous regimes. In Fig. 6.6 this is pictorially represented, since the value
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Figure 6.6: (Color online) Transport
in the y component of the open stan-
dard map (6.1) with K = 1.07 (accel-
erator mode) perturbed by noise (thin
solid lines) with intensity ξ. The un-
perturbed case ξ = 0 is depicted as
a thick solid line. From top to bot-
tom ξ = 0.0003, 0.001, 0.005, 0.1. 106

trajectories were used with initial con-
ditions away from islands for the solid
lines and uniformly in 0 ≤ x, y < 1
for the dashed lines. When the curves
become constant (for t → ∞) trans-
port is normal. Inset: asymptotic dif-
fusion coefficient for different noise in-
tensities. The solid line corresponds
to Eq. (6.14) with a = 0.776, b =
1.7 10−5 and ν = 1.45.

of DA is given by the height of the horizontal line observed for t → ∞. A simple theory is
introduced below to describe the nontrivial dependence of DA on the noise intensity ξ: for weak
noise, Eqs. (6.4) and (6.5) indicate that the dominant contribution comes from the ballistic
regime associated to (R2) and thus DA ≈ [DR2(τ

†
2,3− τ

†
1,2)] ∼ ξ−2. For stronger noise the major

contribution is given by a regime of superdiffusion corresponding approximately to (R1), that
can be estimated as DA ≈ (DR1τ

†
1,2)

ν−1 ∼ ξ−β(ν−1), where ν is the unperturbed anomalous
transport exponent (for small times) which is related to β and γ through Eqs. (6.3) and (6.11).
Considering the composition of this two effects and joining the multiplicative terms in two fitting
parameters a, b one obtains

DA(ξ) = a ξ−β(ν−1) + b ξ−2, (6.14)

with β / 1. In the inset of Fig. 6.6 the remarkable agreement of the numerically obtained
diffusion coefficient and expression (6.14) is shown. The exponent β(ν − 1) = 0.2142 was
obtained independently by fitting the anomalous transport of the unperturbed standard map
for small times and for the value of β in Eq. (6.4).

While for the theories leading to Eqs. (6.14) it was essential the fact that the ensemble
of trajectories was started outside the ballistic islands, the result remains valid for all cases
since DA is independent of this choice. It is clear from the dashed lines of Fig. 6.1 that
for short times anomalous superdiffusion slower than ballistic is observed even when initial
conditions are chosen inside the ballistic islands. This is the essential element of the most
interesting results present in Eq. (6.14): the transition for small ξ from one power-law depen-
dence to an asymptotic ξ−2 dependence of DA. From the perspective of stickiness, this fact
is a direct consequence of the nontrivial trapping regime (R2). It is absent in the case of 1-d
maps (e.g., Pomeau-Manneville maps) [FMG95, BMW95], and was not previously reported in
Refs. [BdCNL+03, FMG95, ISM00]. The asymptotic ξ−2 scale was predicted through different
arguments in Ref. [Kar83], and it is equivalent to the relation DA ∼ 1/Dm which is well known
in fluid mechanics [where Dm is the molecular diffusion coefficient (see Sec. 6.3)] [BCVV95] and
can be traced back to the works of Taylor [Tay53].

Finally the possibility of observing intermediate subdiffusion in Hamiltonian systems per-
turbed by noise is explored, according to the discussions of Sec. 6.2.1. So far, a special parameter
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of the standard map where a ballistic KAM island exists in the phase space was considered. This
is not the case for K = 0.52, extensively studied throughout Sec. 6.1, where only a localized
island exists. Numerical results for the transport in the y component of the open standard
map (6.1) with this parameter and different noise intensities ξ are shown in Fig. 6.7. It was
verified that the results do not change increasing number of trajectories (started away from
islands 0 < x < 1, y = 0). If initial conditions are chosen uniformly between 0 < x, y ≤ 1 a dif-
ferent convergence to the same asymptotic exponent is observed (see the dashed line in Fig. 6.7).
As expected from (6.11), normal diffusion is observed for ξ = 0 with exponent Dξ=0

A ≈= 0.081.
For noise perturbation and initial conditions outside the island, one expects that the trajectories
will penetrate the island and increase the trapping for intermediate time leading to transient
subdiffusion and a consequent reduction of the asymptotic diffusion coefficient. This is indeed
observed in the different curves in Fig. 6.7. However, the intensity of the effect is much smaller
than predicted by Eq. (6.11) γt = 0.5, γf > 2 ⇒ ν = γt = 0.5. The reason for this is quite
simple: contrary to the case of superdiffusion, the asymptotic diffusion coefficients in this case
are bounded (from below). The minimum diffusion coefficient can be estimated as the value
obtained choosing initial conditions uniformly 0 < x, y ≤ 1 in the case ξ = 0 (trajectories inside
the island remain localized), what is given by Dmin

A = Dξ=0
A (1 − µisland), where µisland is the

measure of the island. Introducing Dξ=0
A ≈ 0.081 obtained in Fig. 6.7 and µisland = 0.1926 (see

Sec. 7.2.2 below) one gets the minimum value of the diffusion coefficient as Dmin
A ≈ 0.0654, what

is very close to the lower values observed in Fig. 6.7.

Figure 6.7: (Color online) Transport
in the y component of the open stan-
dard map (6.1) with K = 0.52 (fixed
KAM island) perturbed by noise with
intensity ξ. From top to bottom ξ =
0, 0.0003, 0.0005, 0.003, 0.01. 106 tra-
jectories were used with initial condi-
tions away from islands. Two addi-
tional simulation for ξ = 0.003 are
shown: one where 107 trajectories are
used confirming the convergence of the
results and one (dashed line) where
trajectories are initiated uniformly be-
tween 0 < x, y ≤ 1. When the curves
become constant (for t → ∞) trans-
port is normal.

6.3 Example of tracers in a fluid channel

6.3.1 Physical motivation

In this section one concrete example of fluid mechanics is considered, where all the effects
discussed above apply and lead to a new interpretation of a known result. The temporal evolu-
tion of a passive scalar field θ(~x, t) (contaminant), advected by a flow with velocity field given
by ~v(~x, t) is given by [Are84, EMZT93]

∂θ

∂t
+∇.(~vθ) = Dm∇2θ, (6.15)
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where Dm is the molecular diffusion coefficient. The motion of fluid elements (Lagrangian
description) is described by

d~x

dt
= ~v(~x, t) + η(t), (6.16)

where η(t) is a Gaussian stochastic process with zero mean and variance

〈ηi(t)ηj(t′)〉 = 2Dmδi,jδ(t− t′).

Assume now that the fluid is two dimensional (negligible vertical velocities) ~x = (x, y) and
incompressible

∇.~v = 0.

These conditions guarantee the preservation of area of the flow, what is equivalent to say that
there exist a stream function ψ(x, y, t) such that

dx

dt
= vx = −∂ψ

∂y
and

dy

dt
= vy =

∂ψ

∂x
. (6.17)

Comparing Eqs. (6.17) and (2.1) it is easy to see the analogy to Hamiltonian dynamics,
where the stream function ψ(x, y, t) plays the role of the Hamiltonian H(x, y, t). The conju-
gate position-momentum variables are in this case both spatial coordinates (x, y). This makes
the experimental realization and visualization of such systems specially easy since the config-
uration space is equal to the phase space. One paradigmatic experiment in this field is the
rotating annulus experiment, where quasi-geostrophic flows are mimic by a rotating cylindrical
container [SWS93]. For certain parameters KAM islands, regions of steady flow, and chaotic
regions where observed. In particular, the anomalous transport of the angular position of tracing
particles was explored [SWS93, SWS94]. Hamiltonian models of this experiment were proposed,
in which case the anomalous transport is generated either by the stickiness into the border of
the KAM islands and tori corresponding to steady flow [Kov00] or due to the composition of
this effect to some irregular (random) temporal behavior [VJO98].

The effect of molecular diffusionDm 6= 0 on the tracers is usually neglected in these problems.
As shown in Eq. (6.16) this corresponds to a noise perturbation of the dynamics in which case
the previously described results apply. The estimations of the molecular diffusion made below
indicates that, despite being irrelevant for the experimental configurations mentioned above,
there are alternative experimentally relevant configurations where it has to be taken into account.

The value of the molecular diffusivity is given by the famous Einstein relation

Dm =
RT

6πNAηka
, (6.18)

where R is the universal gas constant, NA the Avogadro number, T the temperature, ηk the
kinematic viscosity of the fluid, and a the radius of the Brownian particle considered. From
Eq. (6.16) one sees that the effect of molecular diffusion is simulated as a noise perturbation in the
system and Dm is proportional to the square of the variance of the noise: Dm = 4ξ2, where ξ is
the intensity of the noise perturbation considered in the previous sections. Consider the following
estimations of the above parameters: usual temperatures T = 300K, viscosity of water/glycerol
mixtures ηk ≈ 10−4m2/s as used in [SWS94], and radius of the particles a ≈ 1mm. This leads
to ξ =

√
2Dm ≈ 4 10−6

√
cm2/s. This value is fairly small (see previous simulations) and it

is a reasonable approximation to neglect it for the scales of the experiments, as was done in
Refs. [SWS93, SWS94]. However, if one considers instead particles of a contaminant or dye,
i.e., passive tracers where the value of a are in the scale of molecules a ≈ 1A = 10−8cm, the
estimation leads to ξ =

√
2Dm ≈ 10−2

√
cm2/s which is in our range of interest if setups in
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the scale of cm and observation times in the scale of hours are considered. Different molecular
diffusion coefficients can be easily achieved by changing the type of contaminant. Apart from
the molecular diffusion, white noise perturbations may arise from different fluctuations in the
experimental configuration as well as from activity (spontaneous motion) of the tracer. The
combination of such effects can be modeled by an effective increment of the value of Dm ∼
ξ2 what provides additional motivation to the study of the effect of noise in fluid dynamics
performed below in a generic model..

The deterministic part of a paradigmatic model is proposed below. It is inspired in the model
of Ref. [VJO98] which intended to capture the qualitative elements observed in the rotating
annulus experiment. Consider a fluid channel (river) along the x direction with borders at y =
±1. Basically two flow regimes of this channel will be considered: (i) a regime of shear flow
where the fluid is steadily flowing along x with sinusoidal velocity profile

ψ1(x, y) = −v1 sin(πy), (6.19)

illustrated in Fig. (6.8)(a); (ii) a regime of vortex flow where the fluid remains localized in the
channel, given by

ψ2(x, y) = v2cos(2πx)(1− y2)2, (6.20)

illustrated in Fig. (6.8)(b). Note that both regimes are periodic in x with period 1 and satisfy
the boundary conditions, i.e., vx(y = ±1) = 0. The qualitative features of a large class of

Figure 6.8: Representation of the streamlines of the two fluid regimes discussed in the text and used in order
to compose the channel model given by the map (6.22).

time-periodic two-dimensional incompressible flows can be approximated as a superposition of
these two regimes. The arguments for this claim are the same used in Sec. 2.1.2 to argue about
the generality of the phase space of near-integrable Hamiltonian systems. Additionally, a time
discrete system is desired in order to facilitate our numerical simulations. This can be achieved
considering that the streamfunctions given by Eqs. (6.19) and (6.20) are alternated periodically
in time each one for a fixed time t0. A discrete system mapping the points (x′, y′) after one
period tn as a function of the points (x, y) before this period is obtained following Eq. (2.2) by
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defining generating functions Fn(x′, y) as

Fn = x′y + ψ(x′, y, nt0)t0,

The map Tn(x, y) → (x, y) is defined implicitly by

x =
∂Fn

∂y
and y′ =

∂Fn

∂x′
(6.21)

In this way the maps F (1) and F (2) related to ψ1 and ψ2 are obtained, and the combination of
them is taken as the composition of this two maps [VJO98]. Considering additionally the noise
perturbation discussed above, the following implicit map is obtained

xn = xn+1 + λ sin(πyn)− 2ρ
π yn(1− y2

n) cos[2π(xn+1)] + ξδn,
yn+1 = yn − ρ(1− y2

n)2 sin[2πxn+1] + ξδ′n.
(6.22)

This model is called hereafter channel. The control parameters are ρ = πv2t0/2 – intensity of
the vortex regime–, λ = v1t0/2 – intensity of the laminar flow–, and ξ – intensity of the white
noise variable δ (ξ ∼

√
Dm). Fixed ρ = 0.6 and two value of λ = 0.25 and λ = 1 were used,

exploring carefully the dependence on ξ. The phase space for these two parameters are depicted
in Fig. 6.9 4. Notice that the periodicity of the channel in x is preserved, what was used in the
plot of this figure but is not considered in the transport problems in the next section. For both
parameters one can identify regimes of steady flow (invariant tori of ballistic motion in x) near
the walls y ≈ ±1, which are remnants of the regime illustrated in Fig. 6.8a. In the case λ = 0.25
there exists additionally localized KAM islands that are not moving in x, which are remnants
of the vortex regime illustrated in Fig. 6.8b.

Figure 6.9: Iteration of different initial conditions of the map (6.22), restricted to 0 ≤ x < 1, in the absence
of noise ξ = 0. The two control parameters studied are: (a) ρ = 0.6, λ = 1 ;where only laminar flow tori are
visible; and (b) ρ = 0.6, λ = 0.25 where a localized KAM island is visible.

4 Map (6.22) is iterated numerically using the Newton-Raphson method. Since the map is not defined for
|y| > 1 reflecting boundaries conditions for the noise were used.
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6.3.2 Transport properties of passive tracers

In this section the transport of a passive scalar contaminant in the x direction of the channel
model (6.22) is considered (system open in x). The transport results from the combination of
the molecular diffusion and of the chaotic advection of particles. It corresponds to a physically
relevant and intuitive application of the CTRW theory described in Sec. 6.2.2 and of the theory
for the effect of noise perturbations to stickiness developed in Sec. 6.2.3. Precise quantitative
comparisons are difficult to perform due to the oscillations in the “power-law” probability density
functions and due to finite time simulations. Nevertheless, remarkable qualitative agreement of
the different regimes of stickiness described in Sec. 6.1 are obtained.

Figure 6.10: (Color online)
Analysis of the temporal evolu-
tion of the coordinates x, y of
trajectories in the channel (6.22).
A single trajectory for each con-
trol parameters λ = 0.25 and
λ = 1, with no molecular dif-
fusivity ξ = 0 were considered.
Long flights are associated to the
stickiness to the running tori at
|y| ≈ ±1 and long traps are as-
sociated to the stickiness to the
central islands (see Fig. 6.9).

Consider initially the movement of individual trajectories in the channel without molecular
diffusion, as illustrated in Fig. 6.10. Again, our two representative control parameters λ = 0.25
and λ = 1 are chosen. In the latter case one observes in Fig. 6.10 that the dispersion of the
trajectory occurs through a sequence of long flights. In the case λ = 0.25 one additionally
sees the existence of long trappings where the position in x hardly changes. Comparing these
regimes with the position in y, shown in the two other panels of this figure, one sees that these
events coincide with the stickiness to the upper/bottom steady flow regions (left/right flights)
and to the central localized islands (traps). Taking into account this relation, the following
computational efficient definition of flights and traps were used: if the trajectory crossed th
axis y = 0 during the last 4 iterations it was considered a trap, otherwise it was considered a
flight to the positive/negative direction (for y smaller or greater than 0, respectively)5 Due to
the symmetry of our system there is equal probability of flying to the left and to the right and
thus no further distinction will be considered. The numerical results are shown in Fig. 6.11.
It is not a surprise that the distribution of flights and traps in the unperturbed case (ξ = 0)
follow the same kind of power-law like distribution of the stickiness events, justifying thus the
power-law assumptions of the continuous time random walk model expressed in Eqs. (6.8) and
(6.9). Figure 6.11 shows also that the effect of noise in the statistics of traps and flights is the

5 Notice that the value y = 0 separates the regions of flows to the left and right and that the bigger chain of
secondary islands has period 4 meaning that a typical trajectory stuck to it crosses the axis y = 0 twice in this
period.
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same as to the stickiness, i.e., an intermediate regime of enhanced probability (tending to a
γf,t = 0.5 regime) followed by an asymptotic exponential decay.

Figure 6.11: Statistical analysis of the flights and traps illustrated in Fig. 6.10 for the two control parameters

ρ = 0.6, λ = 1 and ρ = 0.5, λ = 0.25, and three different noise intensities
√
Dm ∼ ξ = 0, 0.005, 0.001.

So far the statistics of single trajectories was considered. The transport properties of the
system, measured by the growth of the mean squared displacement as in Eq. (6.6), is a conse-
quence of the statistical behavior of an ensemble of trajectories. The next numerical experiment
performed in the channel model, illustrated in Fig. 6.12, aims to show how this statistical descrip-
tion of the system emerges from the deterministic chaotic dynamics. The temporal evolution of
a line of dye (passive tracer) under the channel dynamics (6.22) is shown. For short times the
dynamics is controlled by the stable and unstable manifolds of the fixed point (x, y) = (0, 0).
The following panels of Fig. (6.12) show the stirring of the dye due to the stretching and folding
of phase-space areas, a typical phenomenon of chaotic dynamics. For large times this leads to
a seemingly uniform mixing of the contaminant in the chaotic component. Molecular diffusion
was not considered in this figure. It would add random fluctuations at each iteration, increasing
thus the uniformity of distribution of the contaminant for longer times.

It is clear from Fig. 6.12 that the distribution of dye for long times (t > 100) is necessarily
described statistically. While anomalous transport is observed for the fully deterministic case
Dm ∼ ξ2 = 0, by the same arguments presented in Sec. (6.2.3), the transport is normal (dif-
fusive) for any ξ,Dm 6= 0 at sufficiently large times (τ †2,3 ∼ 1/Dm). This is shown for both
control parameters in Fig. 6.13, where one sees the same behavior from Fig. 6.6 obtained for
the standard map with accelerator modes. In particular, the intermediate regime of enhanced
anomalous transport is clearly seen for small molecular diffusivity. In the case λ = 0.25 regions
of regular ballistic flow and of trapped flow exist. Nevertheless, in agreement with the CTRW
theory behind Eq. (6.11), and since both regions have similar sizes, superdiffusion dominates
the intermediate regimes. All initial conditions were chosen inside the region corresponding to
the chaotic sea of the deterministic system, what is essential for the intermediate results.

The asymptotic diffusion coefficient measured as a function of the molecular diffusion in-
tensity for both parameters λ = 0.25 and λ = 1 is shown in Fig. 6.14. This is analogous to
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Figure 6.12: Stirring of a line (x = 0,−0.5 < y < 0.5) for the channel model (6.22) with ρ = 0.5, λ = 0.25
and ξ = 0 and opened in the x direction. Each panel shows the position of the marked points at a time n.

Figure 6.13: (Color Online) Transport of contaminant along the x component of the channel model (6.22)

with different noise intensities (molecular diffusivities) xi ∝
√
Dm, reduced from bottom to top (see legends).

105 initial conditions were chosen inside the chaotic sea. The thick black curve corresponds to the unperturbed
case ξ = 0, showing anomalous transport. When the curves become constant (for t→∞) transport is normal.
Control parameters: (a) ρ = 0.6 and λ = 1; (b) ρ = 0.6 and λ = 1.

what is shown in the inset of Fig. 6.6 and consists in a physically and experimentally relevant
diagram [BCVV95]. In the academical case of very large molecular diffusion (left of the figure)
the trivial relation D = Dm is observed. The opposite limit, of very small molecular diffusion
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(right of the figure), is the physically relevant one and shows the asymptotic D ∼ 1/Dm ∼ 1/ξ2

regime predicted in Eq. (6.14) and already discussed by Taylor [Tay53]. For intermediate values
of the molecular diffusion strength another power-law like dependence of D on Dm is observed,
similar to what is predicted in Eq. (6.14). While the transport in the case λ = 1 is completely
analogous to the standard map with ballistic islands, discussed in Sec. 6.2.3 and illustrated in
Fig. 6.6, the case λ = 0.25 is more complicated. This is due to the existence, together with the
steady flow near the borders (ballistic tori), of localized KAM islands where the trajectories may
stick or, through molecular diffusivity, even penetrate. In this case the CTRW models with both
algebraic trapping and flight distributions has to be considered, as presented in Sec. 6.2.2. Since,
as argued in Sec.6.1.1 the molecular diffusion leads to a large intermediate regime of enhanced
stickiness with γ = 0.5 the stickiness to localized islands might be relevant for intermediate
times.

Figure 6.14: (Color online) Asymptotic diffusion coefficient DA as a function of the noise intensity (molecular

diffusivity) ξ ∼
√
Dm for the two parameters of Fig. 6.13. The asymptotic DA = 1/Dm is observed for small

ξ.



Chapter 7

Higher-dimensional Hamiltonian
systems

Stickiness in Hamiltonian systems with more than two degrees of freedom is consid-
ered. One major motivation for this investigation is the assumptions of strong chaos
in high-dimensional Hamiltonian systems (Sec. 7.1). A system composed of N cou-
pled area-preserving maps is considered here (Sec. 7.2). The RTS (recurrence time
statistics) is compared to the case of noise-perturbed systems and an asymptotic
power-law regime is identified as a pure high-dimensional effect (Sec. 7.3). Numer-
ical results suggest that stickiness is reduced by increasing N , indicating that this
paradigmatic class of Hamiltonian systems asymptotically fulfill the requirements of
the hypotheses of strong chaos. The consequences to the anomalous transport of
trajectories are discussed.

7.1 Stickiness and strong chaos hypotheses

At the end of the XIX century thermodynamical phenomena started to be successfully ex-
plained through the statistical properties of a large number of particles (atoms) subject to the
laws of mechanics. As mentioned in the beginning of Chap. 3, this exposes some unavoidable
contradictions between the time-reversible character of classical mechanics and the irreversibility
of thermodynamics, what forced the re-interpretation of thermodynamical laws in a statistical
sense. It was clearly from the very beginning that the statistical analysis was justified not only
from the astonishing number of particles in a typical thermodynamical system, as indicated
by the Avogadro number NA = 6 1023 particles/mol, but also from a hypothesis of “random”
motion of the particles. This hypothesis was introduced explicitely in different contexts, like
the hypothesis of molecular chaos, Boltzmann’s ergodic hypothesis (used in equilibrium), and
Gibb’s mixing hypothesis (out of equilibrium).

Different computational methods rely in similar assumptions of strong chaotic dynamics.
This is the case when kinetic equations of transport are derived for a given system, in linear
response theory leading to Green-Kubo formulae, and for the calculation of escape rates [Dor99].
In particular, such hypotheses are essential for the substitution of chaotic variables by a stochas-
tic process leading to an effective Fokker-Planck equation [Bab05, RBG+05]. In these cases the
number of particles or degrees of freedom can be much smaller than those of thermodynamical
systems mentioned initially.

From a dynamical-systems perspective the different chaotic hypotheses implicitly or ex-
plicitely used in the examples above consist essentially of two main assumptions about the

87
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(high-dimensional Hamiltonian) dynamics:

(i) Ergodicity, i.e., the existence of a single chaotic component and negligible measure of the
regions of quasi-periodic motion.

(ii) Strong mixing, i.e., exponential decay of correlations.

Low-dimensional Hamiltonian systems, as seen throughout this Thesis, typically violate both
hypotheses: the first, due to the existence of islands of regular motion embedded in a chaotic
sea, and the second due to the stickiness of chaotic trajectories to the border of such islands.
What happens in higher-dimensional systems? As expected, different answers are obtained
for different classes of systems. However, for many relevant higher-dimensional systems it is
generally expected that hypothesis (i) is effectively valid since the measure of the quasi-periodic
trajectories decreases (exponentially) with the number N of degrees of freedom (see, e.g., Sec.
6.5 of Ref. [LL83])1. One example where this happens are the N coupled symplectic maps with
mixed phase space discussed in detail below. Another indication that ergodicity is approached
in higher dimensions comes from the estimation of the KAM perturbation threshold ε∗ for the
breakdown of the last torus (see Sec. 2.1.2). It is shown that ε∗ → 0 for N → ∞, typically
as ε∗ ∼ exp[−N ln(N)] (see Refs. [PCCS+05, FMV91] and references therein).

However, the vanishing measure of regular regions [hypothesis (i)] does not guarantee the
fast decay of correlations [hypothesis (ii)]. The breakdown of hypothesis (ii) occurs, e.g, due
to the stickiness of chaotic trajectories around non-hyperbolic structures in the phase-space,
and even zero measure sets can be responsible for the anomalous decay of correlations. A class
of systems where this happens was exhaustive discussed in Chap. 4 where it was shown that
families of MUPOs (marginally unstable periodic orbits) are responsible for stickiness despite
having zero measure. This shows clearly the independence of both hypotheses listed above and
that even ergodic high-dimensional systems may violate hypothesis (ii) by having slow decay of
temporal correlations. A reason for that, as in the low-dimensional case, is the phenomenon of
stickiness.

Despite the huge interest on the stickiness phenomenon in Hamiltonian systems with two
degrees of freedom and in area-preserving maps, as is hopefully clear from the previous pages of
this Thesis, only very few results are known for N = 2–5 [DBO90, KG87a, KPS00]. One of the
reasons for this is the difficult topological interpretation of the phase space [VCG83, LL83]. KAM
tori in high-dimensional systems do not split the phase space and thus do not represent absolute
barriers for the chaotic trajectories. The reason is that they have dimension Dtori = N in a space
of Dspace = 2N dimensions while absolute barriers occur only if Dtori = Dspace − 1 ⇒ N = 2.
This leads to the phenomenon of Arnold diffusion [Arn64, LL83], i.e., trajectories that in a
given Poincaré section are confined between two invariant tori are eventually going to escape
this confined region. This effect is however extremely slow, an upper bound being estimated by
Nekhoroshevs theorem [Nek71] which states how fast trajectories close to a tori will depart from
it. Relations between Nekhoroshev bound and stickiness were proposed in Refs. [Aiz89, PW94].
However, they reflect in some sense the topological structure of the phase space close to typical
tori (in a spirit similar to the KAM theorem), but not necessarily the dynamical behavior of
typical chaotic trajectories. In any case no convincing derivation of the stickiness exponents
were performed so far through this approach.

1 It should be noted that in many cases the ergodicity is not necessary in the full phase-space, but only in
projected low-dimensional spaces which take into account all relevant observables.
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7.2 Coupled symplectic maps

7.2.1 General coupling procedure

In order to systematically investigate stickiness in higher-dimensional Hamiltonian systems, a
computational efficient model with variable dimension is desired. These requisites are fulfilled by
a time-discrete 2N -dimensional Hamiltonian system constructed through the composition T ◦M
of the independent one-step iteration ofN symplectic two-dimensional maps M = (M1, . . . ,MN )
and a symplectic coupling T = (T1, . . . , TN ). A detailed description of this coupling procedure
and a list of references where the dynamics of different coupled maps was studied is found in
Appendix B. As a representative example of 2-d maps the standard map is again chosen [LL83]:

Mi

(
pi

qi

)
=

(
pi +Ki sin(2πqi) mod 1
qi + pi +Ki sin(2πqi) mod 1

)
, (7.1)

and a coupling potential between the maps i, j given by Vi,j = ξi,j cos[2π(qj − qi)]. The action
of the coupling on the i-th map is hence given by

Ti

(
pi

qi

)
=

(
pi +

∑N
j=1 ξi,j sin[2π(qi − qj)]

qi

)
, (7.2)

what corresponds to a perturbation ∆pi. The full coupling T is symplectic, i.e., satisfies
Eq. (2.3), if and only if ξi,j = ξj,i. This guarantees the symplectic character of the full sys-
tem since Eq. (7.1) is also symplectic and thus their composition [Ott02]. For simplicity all-
to-all coupling with ξi,j = ξ√

N−1
was used, in which case a numerically convenient mean-field

representation can be written [LRR99]

∆pi =
ξ√

N − 1

N∑
j=1

sin[2π(qi − qj)] = ξ|m| sin(2πqi − φ), (7.3)

where m = (mx,my) = 1√
N−1

∑
j [cos(qj), sin(qj)] and tan(φ) = my/mx. The main results

presented below were verified using a different area-preserving map and also linear coupling
potential.

When the isolated systems are chaotic and weakly coupled a reasonable assumption is that
the autocorrelation of the positions qj decay fast and that there is no correlation between different
qj ’s. Each term of the sum in Eq. (7.3) is then given by a random variable y ∈]−1, 1[ distributed
according to the density P (y) = 1/(2π

√
1− y2), which has variance σy =

√
2/2. In this case, for

large N Eq. (7.3) tends to a normal distribution with σ = ξσy, i.e., a finite perturbation strength.
This effect is verified in Fig. 7.1. This indicates that the results for the stickiness of coupled maps
have to be compared with the noise perturbed case explored in the previous Chapter, what is
done in Sec 7.3. This clarifies the motivation to denote in this Chapter the coupling strength by
the same letter ξ used to denote noise intensity in the previous Chapter as well as the motivation
to use the normalization factor 1/

√
N . This is a major difference from other coupled-oscillator

models where a rescale term 1/N instead of 1/
√
N − 1 is used [dCNF02, TMM94, LRR99].

7.2.2 Characterization of the phase space

In this section the phase space structures present in the coupled-map model are investigated.
Insights gained in the small coupling limit (ξ → 0) are confirmed numerically (see Refs. [GLS89,
ABS06] for more detailed analysis in similar systems). The natural coordinates to describe
the full high-dimensional system are the qi, pi of the two-dimensional maps. For simplicity, it
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Figure 7.1: (Color online) Distribu-
tion of the perturbation (7.3) for N =
2, 3, 5, and 10 coupled maps with K ∈
[0.51, 0.53] and ξ = 0.1. The curves
are compared to the probability density
functions P (y) = 1/(2π

√
1− y2), ex-

pected for N = 2 and to a Gaussian
distribution with σ = ξσy = ξ

√
2/2.

will be written that a point is inside the island (or chaotic sea) of the map N † to refer that
the projection of the full phase space (not a Poincaré or quasi-surface section) in the variables
qN† , pN† lies inside the region corresponding to an island of regular motion (or chaotic sea) of
the isolated map N †.

Consider the case ξ = 0 (uncoupled maps) and all two-dimensional maps having mixed phase
space. Initial conditions corresponding to quasi-periodic trajectories (i.e., inside islands) in all
two-dimensional maps correspond to a N -dimensional torus of the high-dimensional system.
The question is which of these tori survive for small non-zero coupling (ξ ' 0)? From KAM
theory (see Sec. 2.1.2) one gets that almost all of them do. This leads to the natural estimation
of the measure of the regular components in the N -dimensional phase space 0 ≤ µtotal ≤ 1 as a
function of the measure µi, i = 1...N of the islands in lower-dimensional maps by µtotal =

∏N
i=1 µi

for ξ → 0. In the case all maps have similar measure of islands µi ≈ µisland,∀i, this reduces to
an exponential decay as discussed in Sec. 7.1

µtotal = eln(µisland)N , ξ → 0. (7.4)

Regarding the chaotic trajectories, a great simplification is obtained if the “Froeschlé con-
jecture” is fulfilled (see p. 380 of Ref. [LL83]): Hamiltonian systems have only global invariant
of motions, i.e., all trajectories (apart from zero measure sets) in a system with N degrees of
freedom that has P global invariant of motions have additionally either N − P invariant of
motions being thus quasi-periodic (regular component) or will have no additional invariant of
motion being thus chaotic. This is in agreement with the picture of Arnold diffusion that all
chaotic trajectories belong to the same ergodic component. Many publications report possible
deviations of this pictures (at least for practical or numerical purposes, i.e., very small values of
Arnold diffusion) [GLS89, PV84, LPB06]. However, all our results and numerical simulations
are consistent with the validity of such hypothesis, even though no detailed numerical simulation
was performed to verify it. In any case, all simulations below consider typical trajectories of the
main chaotic component without careful choice of initial conditions.

The numerical results obtained are summarized in Fig. 7.2 and described next. In order
to avoid artificial symmetries in the coupled map model, different control parameters for each
two-dimensional map were chosen Ki ∈ [0.51, 0.53], i ∈ {2...N}, fixing K1 = 0.52. Again, the
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numerically convenient standard map (6.1) was used. For the control parameters mentioned
above, numerical investigations indicate that approximately µisland = 0.1926 of the phase space
of each map (N = 1) is built by regular trajectories (the thin chaotic regions inside the island
of regular motion were neglected in this estimation). The first simulation considered N = 2
and started trajectories close to the center of the island in the first map and in the chaotic
sea of the other map. It was verified that all trajectories eventually have escaped the region
corresponding to islands (x1 < 0.5). The mean escape time as a function of the coupling strength
ξ is shown in Fig. 7.2b and the observed scale 1/ξ2 is in agreement with the random-walk theory
for the movement inside the island, developed in the previous chapter. This motivates the
following condition to determine whether given initial condition belongs to a regular component:
trajectories that have not escaped for a time tmax = 5/ξ2 + 100, i.e., at least five times greater
than the mean escape time2. Reducing the value of the coupling strength ξ one observes in
Fig. 7.2a that the number of tori abruptly increases from zero for both N = 2 and N = 3. In
the limit of ξ → 0 one observes the tendency of approaching the limit µN of Eq. (7.4), indicated
by dashed horizontal lines in this figure. A rough numerically estimation of the measure of
the regular components as a function of N is given in Fig. 7.2c, in qualitative agreement with
Eq. (7.4). The numerical procedure described above was applied also to a system where one of
the maps had no islands µi = 0, e.g., the standard map with high K value or the cat map. No
high-dimensional tori were detected in these cases, in agreement with the previous discussion
(see Appendix B for the RTS in such systems).

Figure 7.2: (Color online) (a) Numerical estimation of the measure of tori in the coupled-maps model as a
function of the coupling strength ξ for N = 2, 3, and 4. The straight dashed lines represent the upper limit
case (7.4) expected for ξ → 0. Inset: log X log representation. (b) Estimation of the mean escape time of
the island in all projections for N = 2 and ξ = 0.002. Initial conditions: inside the island in x1, y1 and in
the chaotic sea for x2, y2 ξ = 0.1. (c) Measure of regular region as a function of N . In all simulations 2000
trajectories were used which were considered to belong to a torus if they remained inside a region containing
the islands for a time greater than tmax = 5/ξ2 + 100.

2No verification of the type of movement (quasi-periodic or chaotic) was performed and this condition (for any
tmax) does not exclude thus chaotic trajectories that belong to a different ergodic component, if such components
exist.
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In summary, the coupled-map model proposed in Sec. 7.2.1 contains regions of regular motion
in the limit of small coupling if, and only if, all two dimensional tori have mixed phase space.
These invariant high-dimensional tori are a direct product of the N one-dimensional tori. The
number of such tori decreases with increasing dimensionality N , given by Eq. (7.4), and with
increasing coupling strength ξ.

7.3 Numerical results for the chaotic dynamics

7.3.1 Stickiness

It is clear from the previous section that a discrete time system with N -dimensional tori was
successfully generated. The RTS is calculated next in order to quantify the stickiness close to
these generic structures. The construction of the coupled-map model in Sec. 7.2.1 suggests that
the results should be compared with the case of noise-perturbed map with noise intensity ξ′ =√

2ξ/2. In order to facilitate such a comparison the RTS is calculated focusing on a single map,
i.e., the recurrence region is defined as in the noisy case for one map (x1 < 0.5, 0 ≤ y1 ≤ 1) and
the full phase-space of the other maps (0 ≤ xi, yi < 1, i = 2...N). It was verified numerically
that this choice does not affect the stickiness to higher-dimensional tori since, as discussed in
Sec. 7.2.2, all such tori are away from this recurrence region. The numerical RTS obtained
for N > 1 is shown in Fig. 7.3 and compared to the results for noise-perturbed map. Both
curves are almost indistinguishable for recurrence times belonging to the regimes (R1) and (R2)
discussed in Sec. 6.1. However, remarkable differences are observed for long times (see also
Fig. 7.6a for ξ = 0.05). Contrary to the exponential decay of the previously-reported regime
(R3) the detailed studies below indicate that the following regime of decay of the RTS exists

(R3’) For large times (τ > τ2,3) the RTS shows an exponential followed by a power-law
decay (with exponent γR3) due to the stickiness to N -dimensional tori.

Figure 7.3: (Color online) (a) RTS for two coupled standard maps (6.1) and different coupling strengths ξ
(solid lines), compared to the case of a single standard map perturbed by noise with intensity 0.707ξ (dashed
lines); (b) RTS for N coupled standard maps for ξ = 10−1 and ξ = 10−3, compared to the noise perturbed
map (dashed line). Parameters K1 = 0.52,Ki ∈ [0.51, 0.53], i = 2...N and recurrence region x1 < 0.5.

In order to show that regimes (R1) and (R2) have the same origin from those of noisy system
and, specially, that regime (R3’) is indeed related to higher-dimensional tori, the question about
the position in the phase space of trajectories in these regimes is asked. The procedure used
in Sec. 6.1.1 for the noise-perturbed system is repeated here: in Fig. 7.4 intervals of reference
for the recurrence times are defined (compare with Fig. 6.2). The density in the phase space
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Figure 7.4: (a) RTS for K = 0.52, unperturbed, with additive noise, and coupled to another standard
map. The intervals R1-R3 are defined as: IR0= [2, 7], IR1=[40, 80], IR2=[6 103, 104], IR3=[2 105, 3 106],
IR3’=[6 105, 106]. (b) Phase space of the standard map with K = 0.52 amplified around the main island.

of trajectories that have a recurrence time T belonging to each of these intervals are plotted in
Fig. 7.5. The case of N = 2 coupled maps is considered and the position in the phase space
is projected to the coordinates of each map (left and right columns). It is clear that for the
intervals IR0, IR1, and IR2 the same picture as in Fig. 6.3 is observed in the reference map
(left) while the trajectories spread almost uniformly in the other map (right). This means that
the three regimes are composed, respectively, by trajectories away from the island, stuck to
the border of the island, and inside the island (the longer the recurrence time the deeper the
trajectories penetrate the island). The term “island” here refers to the area of the phase space
of the reference map that in the uncoupled limit corresponds to a KAM island. Remind that
the symmetry between the reference map and the additional map is due to the definition of the
recurrence region that includes all phase space of the additional map 0 ≤ x2, y2 < 1 but only
a region of the chaotic component of the reference map3. For the interval IR3′ Fig. 7.5 shows
that trajectories in both maps were inside the area corresponding to their islands. As argued
above the composition of such trajectories build high-dimensional tori confirming the previous
interpretation of this regime as stickiness to high-dimensional tori. This was further verified
numerically by noting that the asymptotic power-law behavior is not present whenever one of
the N two-dimensional maps is chosen to be fully chaotic (without KAM islands). In this case
the RTS is indistinguishable from the noise-perturbed case.

The power-law regime in (R3) is thus a pure high-dimensional effect. The dependence on N
of the asymptotic power-law exponent γR3 is investigated next. The term asymptotic here has
to be taken with caution since already for N = 1 the convergence is very slow [CS99] (as shown
in Fig. 2.3). However, for our purposes it is enough to perform a comparative analysis for
different N and similar times and initial conditions. Since the following results are exclusively
numerical, this does not role out the possibility of the existence of a different behavior for larger
times. Initially it is necessary to distinguish between two effects of N on the RTS seen in fig. 7.3a:
the later onset of the power-law regime for increasing N , related to the smaller measure of the
tori – hypothesis (i) of Sec. 7.1; and the different values of γR3 (slope of the tails), related to the
stickiness to higher-dimensional tori – hypothesis (ii) of Sec. 7.1. The latter effect corresponds to
the stickiness phenomenon this Thesis studies and which is responsible for the asymptotic decay
of correlations as discussed in Chap. 3. Figures 7.3b and 7.6a already suggest that γR3 increases

3A recurrence region away of islands in both maps was also used without changing the interpretation of the
results.
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Figure 7.5: (Color online) Density of points in the phase space of two coupled standard maps K = 0.52 with
ξ = 10−3 for trajectories having recurrence time in the regions assigned in Fig. 6.2(b), from top to bottom:
IR0, IR1, IR2, and IR3. Left column corresponds to the map of reference, i.e., where the recurrence region
was defined (away of the island), and right column to the coupled standard map. A fundamental distinction
from the results of Fig. 6.3 is seen only in the case IR3 (last line). Average density corresponds to the color
scale 1.
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with N . In Ref. [DBO90] similar results were reported for a different system and N = 2 and 3.
For improved statistics in the tails the survival probability f(t) inside a region containing the N -
dimensional tori of 1010 trajectories started close to them was studied4. As discussed in Sec. 3.1
the power-law tails of such distribution is the same of the RTS. f(t) is shown in fig. 7.6b where
it is evident that the power-law exponent increases with N . The estimated exponents shown in
fig. 7.6c for different moderate values of the coupling ξ suggest a linear dependence γR3 ∝ N .

Figure 7.6: (a) RTS for ξ = 0.05
and N = 2, 3, 4, 5, and noise (from
top to bottom). (b) Survival prob-
ability f(t) of 1010 trajectories near
the N -dimensional tori for ξ = 0.05
and N = 2, ..., 15 (from top to bot-
tom). (c) Exponent γR3 fitted to
the power-law regime of f(t) for ξ =
0.1, 0.05, 0.03 (from top to bottom).
In all cases K1 = 0.52 and Ki ∈
[0.51, 0.53], i ∈ {2, ..., N} were used
in map (6.1).

The numerical results shown in the previous figures refer to the particular case of sinusoidally
coupled standard maps. Similar results were obtained also for different control parameters and
for a similar area-preserving map with linear coupling. One can expect an even broader generality
of this result since the low-dimensional maps chosen are generic themselves. Additionally, as
stressed above, the incoherent effects of the coupling maps were fully understood from the
comparison with the noisy system and do not affect the result of Fig. 7.6, i.e., that γR3 increases
withN . This result is consistent with the effective validity of hypothesis (ii) for high-dimensional
systems since the sharp tails indicate fast decay of correlations. Usually ergodicity [hypothesis
(i)] is assumed to be effective valid even if the measure of quasi-periodic trajectories does not
vanish provided it decay fast with N . Similarly, the mixing assumption [hypothesis (ii)] can
be considered effective valid even if the correlation does not decay exponentially but power-law
provided the exponent is sufficiently high. How large the exponent should be depends on each
specific problem, e.g., in the case of anomalous transport it is γR3 ≥ 2 (see next section). The
simulations shown in Fig. (7.6)c for N < 25 suggest that γR3 = 2 (or other finite value of γR3) is
achieved for large enough N irrespective of the coupling strength ξ. This interpretation of the
validity of hypothesis (ii) that emerges from our numerical simulation in the coupled symplectic
maps differs from other explanations based on ergodicity and Arnold diffusion [KK89].

A theory for the stickiness in high-dimensional phase space does not exist so far (besides
the general connections to Nekhoroshev theorem [Aiz89, PW94]). Comparing with the case of
two-dimensional maps, even if families of high-dimensional cantori exist and can be also well
characterized, they do not represent partial barriers to the movement since Arnold diffusion
guarantees different paths for the chaotic trajectories to move. Actually due to the dimension-
ality of space and tori there is no “inside” and “outside”, as the construction through turnstiles
sketched in Sec. 2.2.3 provide for N = 1, and no (Markov) states in the phase space can be
defined. A theoretical explanation of the numerical results described above is frustrated due to
these major difficulties. A general interpretation of these results is that the topological difference

4Inside the island qi ∈ [0.7, 0.8], pi ∈ [0.4, 0.6] for i ∈ {2, ..., N} and close to it q1 = 0.9, p1 ∈ [0.835, 0.845] in
the remaining map.
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in dimension is responsible for the different stickiness that were observed. This interpretation
applies much more generally than to the case of coupled two-dimensional maps and it remains
to be verified in other systems.

After these discussions and conjectures about the asymptotic decay of the RTS, one practical
remark about the non-asymptotic behavior should be added. In the case of weak-coupled maps
the finite time dynamics and asymptotic diffusion coefficients will be dominated by intermediate
regimes (R1) and specially (R2) which are exactly equivalent to those originated through noise.
These regimes are extremely long for small ξ and may be the most relevant ones for most practical
purposes. As will be shown next, the existence of an asymptotic power-law distribution in the
RTS may lead additionally to asymptotic anomalous transport.

7.3.2 Effect on the anomalous diffusion

So far the study of stickiness in higher-dimensional systems was motivated through fun-
damental questions and justifications of practical calculation procedures, such as the case of
systems with time scale separation which are studied in detail in Appendix B. The calculation
of transport properties provides an additional interesting application of the previous results.
Transport in higher-dimensional Hamiltonian systems is an important issue in the physics of
charged particles accelerators [Viv84a] and in self-consistent transport [TMM94, dCN00]. Re-
calling the results of CTRW (continuous time random walk) theory of transport summarized in
Eq. (6.13) one sees that the transport will be normal (diffusive) whenever the exponent of the
RTS is γ ≥ 2. The results for high-dimensional maps of Fig. 7.6c indicates that this happens for
all coupling strength ξ for sufficiently large N . In these cases the transport is normal and the
theories developed in Sec. (6.2.3) for the effect of noise in the asymptotic diffusion coefficient
apply also for these fully deterministic systems.

Figure 7.7: (Color online) Transport
in the standard map (6.1) with K =
1.07 (accelerator mode) perturbed
by noise (dashed lines) with inten-
sity

√
2ξ/2 and coupled to another

standard map with K = 0.52 (solid
lines) with intensity ξ. The unper-
turbed case ξ = 0 is depicted as a thick
solid line. From top to bottom ξ =
0.0003, 0.001, 0.005. 106 trajectories
were used with initial conditions away
from islands yi = 0, 0 < xi ≤ 1.
When the curves become constant (for
t → ∞) transport is normal. Notice
the additional regime of superdiffusion
for very long times.

On the other hand, if the asymptotic stickiness exponent is γR3 < 2 an additional regime
of anomalous transport is predicted by Eq. (6.11). This is shown in Fig. 7.7, where a similar
numerical experiment to the one described in Fig. 6.6 was done. This time the noise pertur-
bation to a standard map in the accelerator mode regime was replaced by a coupling to an
additional standard map. The comparison between both results shows that the main difference
is that anomalous transport is observed asymptotically in time, in agreement with the qualitative
predictions of Eq. (6.13).



Chapter 8

Conclusions

The main results obtained in the previous pages are summarized and discussed
in this concluding Chapter. A novel picture of the intermittent-chaotic dynamics in
Hamiltonian systems emerges (Sec. 8.1). Additionally, the main specific results are
listed (Sec. 8.2). Finally, a non-exhaustive list of possible extensions of the results
and of important open problems in the field is presented (Sec. 8.3).

8.1 Summary and outlook

The problem of chaotic dynamics in Hamiltonian systems was studied in this Thesis through
a phenomenological and numerical approach. From this perspective, the chaotic dynamics can
be described essentially as an intermittent process that alternates between chaotic excursions,
that quickly explores different regions of the ergodic component in the phase space, and long
periods of almost regular behavior, due to the stickiness close to regions of regular motion. The
most important properties of the chaotic dynamics (e.g., the decay of correlations and transport
properties) are obtained from the characteristics of this stickiness phenomenom, which was
studied in detail in this Thesis.

An elegant way of quantifying stickiness is through the Poincaré recurrences of chaotic
trajectories. The RTS (recurrence time statistics) shows asymptotically roughly a power-law
decay ρ(τ) ∼ τ−γ where the exponent γ is analogous to the exponent of the distribution of
laminar phases in intermittent systems. In Chap. 3 it was shown that long-range linear time
series show stretched exponential distribution of recurrence times sensitive to the observable
used to quantify the system. This indicates that the connection between power-law RTS and
long-range correlation is subtle, and suggests that the power-law observed in Hamiltonian sys-
tems is better interpreted as an intermittent phenomena. The dynamical mechanism originating
this intermittency is the stickiness phenomenom described above. The manifested aim of many
theoretical and numerical works in low-dimensional Hamiltonian systems during the last twenty
five years was to obtain the exponent γ of the RTS as a function of the phase-space structures
(hierarchies of islands-around-islands and cantori). Different claims of universality failed to find
numerical confirmation partially due to the oscillatory behavior of the tails of the RTS (slow
convergence) and due to different phase-space configurations. Some very recent promising re-
sults indicate that one universal exponent γ ≈ 1.6 indeed exists [CK], what was corroborated
by the numerical simulations shown in Fig. 2.3. The variety of different phase-space structures
in Hamiltonian systems and the slow convergence to an universal behavior motivates both the
study of system-specific stickiness mechanisms and finite time behaviors.

One specific mechanism studied in detail in this Thesis is the stickiness close to MUPOs

97



98 Chapter 8. Conclusions

(one parameter families of marginally unstable periodic orbits). For this case the exponent
γ = 2 was obtained analytically (Sec. 4.2) and verified numerically. Systems described by this
theory include the previously known case of chaotic billiards with parallel walls (e.g., Sinai and
Stadium billiards), circular-like billiards (Sec. 4.3) where it was shown that an infinite number of
different families of MUPOs typically exist (Sec. 4.4) (e.g., annular and mushroom billiards), and
piecewise-linear area-preserving maps (Sec. 5.1). More generally, one expects this exponent to
be valid for systems presenting sharply-divided phase space between chaotic regions and regular
islands with polygonal shape.

Regarding finite-time stickiness behavior, it was shown in Chap. 6 that they are specially
relevant in noise-perturbed Hamiltonian systems. For small noise intensities two important
intermediate trapping regimes are observed before the asymptotic exponential decay of the
RTS: the first regime is identical to the deterministic case and the second regime, with an
exponent γ ≈ 0.5, corresponds to trajectories performing a random walk inside the regular
islands. Quantitative scalings of these regimes are carefully discussed in Sec. 6.1. The effect of
such regimes to the (anomalous) transport is obtained directly from CTRW models (Sec. 6.2).
One intuitive and physically relevant application of the previous results is the transport of
passive scalar tracers in two-dimensional incompressible fluids (Sec. 6.3).

All previous examples and results refer to the case of two-dimensional discrete-time systems
or, equivalently, Hamiltonian flows with two degrees of freedom. Higher-dimensional systems
were usually characterized from other perspectives (e.g., Arnold diffusion and relaxation to
equilibrium) and only very little attention was devoted to stickiness in such systems [DBO90,
KG87a]. Stickiness was studied in this Thesis for an increasing number of degrees of freedom
(Chap. 7). This was possible due to the construction of a suited high-dimensional system
through the controlled coupling of different low-dimensional ones. The intermediate regimes of
decay of the RTS are similar to those of noise-perturbed system. Additionally, an asymptotic
power-law decay was identified as a genuine high-dimensional effect. Numerical simulations
up to N = 25 indicate that the asymptotic decay of the RTS remains power-law (stickiness
exists), but that the power-law exponent γ increases (roughly linearly) with N . This provides a
different explanation for the expected validity of hypotheses of strong chaos that usually assume
asymptotic exponential decay.

Gathering all these results, a novel picture of stickiness emerges. The previous picture of
stickiness, implicitly or explicitely mentioned in different works, associates it to the presence
of partial barriers and/or an hierarchical phase space. The power-law decay of the statistics of
the relevant quantities is related to the (multi-)fractal properties of chains of islands or cantori.
Differently, stickiness is interpreted in this Thesis as a generic phenomenom of Hamiltonian
systems that leads to intermittent behavior of chaotic trajectories. The sticky set can be virtu-
ally any non-hyperbolic invariant structure. This is actually intuitive since the local Lyapunov
exponent or diffusion coefficient is expected to approach continuously zero close to the regions
of regular motion. The power-law decay is related in this case to how this approach occurs,
i.e., to the stability property close to the regular regions (see Sec. 4.2). The stickiness in the
hierarchical phase space, as discussed in Sec. 2.2.3 where the Markov-tree model was introduced,
can also be interpreted similarly. The role of the islands-around-islands and cantori is to provide
a constructive procedure of defining an infinite number of states accumulating near the border.
Stickiness is not a direct consequence of the low flux through cantori, but results from the con-
tinuous phase-space properties close to the fractal border which are taken into account through
the scalings of the states defined by the cantori.

In agreement with this new interpretation of stickiness, this Thesis provides an unified frame-
work for the analysis of further classes of Hamiltonian systems. It describes a set of statistical
and numerical tools which were successfully applied to different classes of systems that serve
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as comparative examples for further studies. Apart from the usual stickiness in hierarchical
phase spaces mentioned above, the following systems were studied: (i) families of MUPOs which
have zero measure; (ii) systems presenting sharply-divided phase space; (iii) high-dimensional
Hamiltonian systems. Notice that partial barriers to the transport and a hierarchical phase
space do not exist or are not necessarily the relevant elements in these systems. Nevertheless,
qualitatively the same intermittent dynamics due to stickiness close to the regular regions was
observed in all cases. They were quantified through the calculation of the same tool – the RTS
– that shows similar power-law decays and that can be related in the same way to the decay
of correlations and to the onset of anomalous transport (e.g., through a CTRW model). The
influence of noise perturbations to Hamiltonian systems assumes also new contours when studied
in this framework since different intermediate trapping regimes are highlighted and naturally
interpreted. The stickiness phenomenon in Hamiltonian systems, interpreted through the more
general perspective assumed in this Thesis, has a wide range of applicability and deserves a
fundamental status among the unconventional effects of nonlinear dynamics.

8.2 List of specific results

The main novel specific results contained in this Thesis can be summarized as:

1. Long-range correlated time series (Sec. 3.2 and Ref. [AK05]):

• Following Ref. [BEHK03], it was verified numerically that the recurrences of linear long-
range correlated time series are well described by the closed expression of the stretched
exponential distribution introduced in Eq. (3.22).

• This distribution has a single control parameter ζ which tends to the value of the correlation
exponent ζc for the case of extreme events. For events in the center of the probability
density function ζ tends to zero and the stretched exponential distribution tends to a
Poisson distribution, indicating that in this sense the long-range correlation concentrates
in the extreme events.

• This example shows that there is no unique relation between correlations and RTS (re-
currence time statistics). Additionally, the same system may contain different correlation
and recurrence properties depending on the observable used to characterize it.

2. MUPOs (marginally unstable periodic orbits) in circular-like billiards (Sec. 4.3 and
Ref. [AMK05]):

• It was shown that one parameter families of MUPOs exist inside the chaotic component
of circular-like billiards. These orbits are equivalent to the bouncing-ball orbits between
parallel walls, which are well known to exist in the stadium and Sinai billiards. The most
prominent examples of circular-like billiards are mushroom and annular billiards.

• Based on the properties of continued fraction representation of real numbers it was shown
that for almost all control parameters there are an infinite number of different families
of MUPOs. This provides additionally an efficient algorithm to obtain the period and
winding number of MUPOs of a given system.

3. Stickiness to MUPOs and systems with sharply-divided phase space (Secs. 4.2 and 4.5,
Chap. 5, and Ref. [AMK06]):
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• A theory for the stickiness close to MUPOs was developed and the power-law exponent γ =
2 of the RTS deduced. It was well-known that this exponent describes the case of Sinai
and stadium billiards and it was shown here that it applies to mushroom and annular
billiards.

• Hamiltonian systems presenting sharply-divided phase space with polygonal islands
also show the scaling γ = 2 in the RTS. The reason is that the well defined and simple bor-
der between the regions of regular and chaotic motion is composed by families of MUPOs.
Numerical simulations confirming this result were performed in different piecewise-linear
two-dimensional maps.

• Generic perturbations of the systems mentioned above lead to hierarchical phase spaces
where it was observed that stickiness was enhanced (γ < 2).

4. Stickiness in noise perturbed systems (Chap. 6 and Ref. [AK07]):

• The effect of small additive noise to the Hamiltonian chaotic dynamics has two qualitative
different effects: (i) it introduces an asymptotic exponential decay of the recurrences (cut-
off of the power-law decay); (ii) trajectories may penetrate the regions corresponding to
islands and enhance the stickiness for intermediate times. While the first effect is typical
for different intermittent systems, the second is specific of Hamiltonian systems with mixed
phase space.

• The RTS of Hamiltonian systems perturbed by noise with intensity ξ has essentially three
regimes: (R1) for times 0 < τ < τ1,2 ∼ 1/ξβ, β / 1 the system shows the same behavior
as the deterministic one, i.e., exponential followed by a power-law decay; (R2) for times
1/ξβ ∼ τ1,2 < τ < τ2,3 ∼ 1/ξ2 an enhanced power-law regime with exponent γR2 ≈ 0.5 is
observed due to the random walk of the trajectory in the regions corresponding to regular
islands; (R3) asymptotically an exponential decay is observed.

• The effect of the previously described regimes to systems showing anomalous transport
was studied based on the CTRW (continuous time random walk) model with power-law
flying- and trapping-time distributions [Eq. (6.11)]. The asymptotical exponential decay
guarantees the onset of normal transport (diffusion) for sufficiently long times. The differ-
ent intermediate regimes of anomalous transport leave their fingerprints on the asymptotic
diffusion coefficient. It shows a crossover between two power-law dependences on ξ: from
DA ∼ ξβ† , β† / 1 for intermediate ξ to the case DA ∼ ξ−2 for small ξ. The stickiness
regimes together with the CTRW model correctly describe this behavior.

• The previous results were applied to the problem of dispersion of contaminants in two-
dimensional incompressible flows. The effect of molecular diffusion acts as a noise pertur-
bation. An estimation of the molecular diffusion coefficient Dm shows that the previous
results are expected to be relevant in different experimental and practical situations. The
results were verified in a channel model containing all typical elements: chaotic trajecto-
ries, regions of ballistic flow (leading to super-diffusion), and islands of stagnant motion. In
this context the dependence of the asymptotic diffusion coefficient as DA ∼ 1/Dm ∼ 1/ξ2

is a well-known result that can be traced back to the work of Taylor [Tay53].

5. High-dimensional systems (Chap. 7 and Ref. [AK07]):

• A high-dimensional system with mixed phase space was constructed by coupling N two-
dimensional maps. The RTS shows the same intermediate regimes observed in the noise



8.3. Open issues 101

perturbed case with an additional asymptotic power-law decay with exponent γR3 due to
the stickiness to N -dimensional tori.

• Careful numerical simulations show that γR3 increases with N meaning that the stickiness
is reduced with increasing dimensionality. This provides a new explanation for the effective
validity of the hypotheses of strong chaos in high-dimensional systems: the system is not
fully ergodic but the measure of tori decays exponentially with N becoming negligible;
similarly, correlations do not decay exponentially but as a sufficiently fast power-law,
since the exponent increases with N .

8.3 Open issues

A list of open questions, possible extensions, and applications of the previous results is
provided below:

• An analytical derivation for the RTS of linear long-range correlated time series for both
extreme and non-extreme recurrence intervals is desired. This should be compared with
the results of Sec. 3.2 that suggest the stretched exponential distribution (3.22) as giving
good account of the results for all kinds of recurrence intervals.

• The stickiness to non-polygonal islands in a sharply-divided phase space has to be better
understood (see Sec. 5.1.3).

• The existence of an infinite number of one-parameter families of MUPOs inside the chaotic
component of circular-like billiards was demonstrated in Chap. 4. Besides their influence
to stickiness, discussed in this Thesis, the consequences of such orbits to the problem of
quantum (wave) chaos in such billiards remains to be investigated. It is interesting to
note that recent numerical and experimental investigations of the phenomenon denoted
chaos assisted tunneling performed in the annular billiard emphasized the relevance of the
region between the whispering gallery and the chaotic component, which was called beach
region [FD98, DGH+00, HAD+05]. The families of MUPOs characterized in this Thesis
are located precisely in this region and remains to be explored how they may provide a
better understanding of the observed phenomena.

• It would be interesting to compare the results obtained here for chaotic Hamiltonian sys-
tems to problems of interest in the context of statistical mechanics like the Hamilto-
nian mean field models [AR95, LRR99]. In these systems, an interesting intermediate
regime called “quasi-stationary state” was observed for initial conditions started in non-
equilibrium states. The quasi-stationary state is defined by a plateau in an order parameter
(magnetization) that diverges with system size and where transient anomalous diffusion
was reported. There are remarkable similarities between the results obtained in the Hamil-
tonian mean field models and the findings for coupled maps reported in Chap. 7. Since
both models have also similar interpretations (all-to-all coupled oscillators), the natural
questions is whether these phenomena are understandable in the same framework.

• Very recent results indicate the existence of an universal exponent for two-dimensional
maps with the generic hierarchical phase space [CK]. The numerical simulations shown in
Fig. 2.3 corroborate this results and confirms that the expected exponent is well estimated
by γ = 1.60 ± 0.05. The obvious question is if one can develop a theory to predict the
exact value of the universal exponent γ. According to the ideas of Ref. [CK], this would
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be achieved from a better knowledge about the fluctuations around the scalings of the
invariant structures of the phase space.

• Stickiness in high-dimensional systems has to be further investigated. Basically no theory
exists and very few numerical results are known.



Appendix A

Continued fractions and
classification of real numbers

The real numbers can be classified into different sets depending on “how close” they are
from the set of rational numbers. The meaning of “close/far” here refers to how the error of an
rational approximation |α− p/q| decreases with increasing q. This decay is usually compared to
the Diophantine condition

|α− p/q| > C

qκ
. (A.1)

Numbers that satisfy this condition for some (C, κ) are called Diophantine numbers and those
that do not satisfy this condition for any (C, κ) are called Liouville numbers, a subset of the
transcendental numbers mentioned below. It is denoted by ∆κ the set composed by all numbers
that satisfy (A.1) for a given κ and sufficiently small C, which defines an irrationality measure.
It is not difficult to show that the complement of the set ∆2+δ, for any δ, [i.e., the set of real
numbers that violates (A.2) for κ = 2 + δ] has zero Lebesgue measure (i.e., the probability of
finding such a number decreases to arbitrarily small values by reducing C) [Mei92, dA92]. The
argument goes roughly as follows: fix one value q and consider all intervals around rational
numbers p/q in the interval [0, 1] where condition (A.1) is violated. The sum of all intervals
for a given q scales as C/q1+δ. Summing over all q’s this leads to a finite value that can be
turned arbitrarily small by reducing C. This shows that the set ∆2+δ has measure one. These
results can be extended also to higher dimensions, as required by the KAM theory discussed in
Sec. 2.1.2. In this case the frequency vector ω and the sequence of integers q have to satisfy

|ω · q| > C

|q|κ−1
, (A.2)

The measure of the set of numbers in Rn that satisfy condition (A.2) for some (C, κ) is also one.
An efficient and elegant representation of a real number is obtained using continued fractions

α = a0 +
1

a1 +
1

a2 + ...

= [a0, a1, a2, ...], (A.3)

where ai’s are positive integers. Irrational numbers have a unique infinite representation while for
rationals the representation is finite. Truncating the sequence of ai, a rational approximation
of the number α is obtained. This approximation is optimal in the sense that there is no
other fraction with denominator q′ ≤ q which is closer to the given number α and that all best
approximators are convergents (or an intermediate fraction) (Theorems 15, 16 and 17 of [Khi97]).
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From the uniqueness of the continued fraction representation one sees that the values of κ,C
in Eq. (A.1) depend exclusively on the values of ai in (A.3). It is not difficult to see that large
values of ai lead to a particularly good fractional approximation of the number α. This motivates
the definition of the “most irrational numbers”: α is called a noble number if it has a continued
fraction representation ending in a sequence of 1’s

α ∈ set of noble numbers ⇔ {[a1, a2, ..., an∗ , 1, 1, 1...]}. (A.4)

The most famous noble number is the golden ratio (
√

5 + 1)/2 = [1, 1, 1...]. Since an arbitrarily
large sequence a1, a2, ...an∗ may be chosen, the set of all noble numbers is dense in the set of the
real numbers.

Noble numbers are particular examples of the set of quadratic irrationals, i.e., the set of
numbers written as

(P ±
√
M)/S, with P,M,m, S ∈ Z,M 6= m2.

Quadratic irrationals have periodic tails in the continued fraction expansions [Khi97]. Quadratic
irrationals are specific examples of the algebraic irrationals, i.e., the roots of polynomial equa-
tions with integer coefficients 1. Irrational numbers that are not algebraic are called transcen-
dental numbers. More interesting in our context are the numbers of constant type, i.e., real
numbers for which the sequence ai is bounded: ai < amax,∀i. For all numbers of constant
type the Diophantine condition (A.1) is satisfied with κ = 1, for sufficiently small C [see the
inequality (4.21)]. The numbers of constant type have Hausdorff dimension 1 [Mar] but zero
measure [Khi97]. Note that these numbers belong to ∆2, while it was proven that algebraic
irrationals belong to ∆2+δ [Mei92].

From the previous considerations the set of real numbers can be divided as depicted in
Fig. A.1. Taking into consideration that the set of Diophantine numbers ∆2+δ has measure
one, the set of numbers of constant type ∆2 has measure zero, and that algebraic numbers are
countable (by the coefficients of the polynomials), one sees that typical real numbers are neither
close to irrationals nor close to noble numbers but lie between both sets.

Figure A.1: The division of the real numbers regarding the property of being well approximated by rationals
(Venn diagram [Mei92]). The shaded region has Lebesgue measure one. The lines at the bottom indicate the
sets where rotation numbers have to belong in order to have: (i) KAM stable tori (as discussed in Sec. 2.1.2);
and (ii) always an infinite numbers of MUPOs close to the boundary circle of the whispering gallery modes in
circular-like billiards (as discussed in Sec. 4.4).

1Algebraic numbers are also known as euclidean numbers. Irrational numbers that are not algebraic are called
transcendental numbers.



Appendix B

Time-scale separation in symplectic
maps

B.1 Hamiltonian flows

The coupling through a small parameter ε (see, e.g., Refs. [vK85, Bab05, RBG+05]). The
full system is then described by the Hamiltonian

H(I, J, θ, φ) =
1
ε
HF (I, θ) +HS(J, φ) + ξHC(θ, φ), (B.1)

where ξ is the strength of the coupling and F, S denote the fast and slow variables respectively.
The equations of motion (2.1) are

İ = −1
ε

∂HF
∂θ − ξ ∂HC

∂θ ,

θ̇ = 1
ε

∂HF
∂I ,

J̇ = −∂HS
∂φ − ξ ∂HC

∂φ ,

φ̇ = ∂HS
∂J ,

and differ from the uncoupled case by the terms AF = ∂HC
∂θ and AS = ∂HC

∂φ .
The following coupling were considered previously in systems with two degrees of freedom,

not necessarily in the context of time-scale separation:

• Harmonic coupling: The Hamiltonian is defined as HC = 1
2ξ(θ − φ)2 and the coupling

terms are AF = ∂HC
∂θ = ξ(θ − φ) and AS = ∂HC

∂φ = −ξ(θ − φ). This case was considered
in Ref.[Bab05]. The Fermi-Past-Ulam model, which is a high-dimensional system, also
considers coupling terms (θ − φ)p, p = 3, 4, ... [PV84, ABS06] .

• Cosine coupling: The Hamiltonian is defined as HC = ξ cos(θ−φ) and the coupling terms
are AF = ∂HC

∂θ = ξ sin(θ − φ) and AS = ∂HC
∂φ = −ξ sin(θ − φ). This coupling was used in

Refs. [HZ99, Viv84b].

• Linear coupling: The Hamiltonian is defined as HC = ξθφ and the coupling terms are
AF = ∂HC

∂θ = ξθ and AS = ∂HC
∂φ = ξφ. This coupling was used in Ref. [RBG+05].
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B.2 Symplectic maps

The coupling between maps is less straight forward than in the continuous time case if
one wants to ensure the symplectic (Hamiltonian) character of the whole system. Following
Sec. (2.1.1), two methods are possible. The first is to use the generating function S(q, p′),
which plays the role of a Hamiltonian in the procedure described above. The drawback is that
in many cases the higher-dimensional map is given explicitely (p′, q′) = MN(p, q) and the
generating function is difficult to obtain. A more straightforward method consists in verifying if
the full coupled-map is symplectic, i.e., satisfies Eq. (2.3) [Ott02]. One important simplification
is that the product of symplectic matrices is also symplectic. This can be used to define the
coupling between N maps of dimension 2m as a symplectic map T Nm of dimension 2Nm.
The coupled map is then given by the composition T ◦ M where M = (M1, . . . ,MN ) is the
independent iteration of N 2m-dimensional maps, which is obviously symplectic.

Usually two-dimensional maps (m = 2) are coupled through their positions q. The most
common coupling T = {T1, ..., TN} is a sinusoidal coupling defined as [KK94, HZ99]

T s
i

(
p
q

)
=

(
pi +

∑m
j=1 ξi,j sin(2π(qj − qi)),

qi

)
, (B.2)

where ξi,j = ξj,i is needed in order to assure the symplectic character of the coupling.
Example: The map R2 = T2 ◦M , with T2 given by Eq. (B.2) and the uncoupled maps M

build by two standard maps as in (7.1), is given by [HZ99]
p′1
q′1
p′2
q′2

 =


p1 +K1 sin(2πq1) + ξ sin(2π(q′2 − q′1))
q1 + p1 +K1 sin(2πq1)
p2 +K2 sin(2πq2) + ξ sin(2π(q′1 − q′2))
q2 + p2 +K2 sin(2πq2)

 . (B.3)

Slightly different maps are obtained when one uses R = M ◦T s (instead of R = T s ◦M). This
system was used in Ref. [KK94] for globally coupled maps. Linear chains of maps (in a lattice)
were consider in Refs. [KG87a, KG87b, FMV91, KK89]. A similar coupling (with + signal in
the perturbation) was proposed originally by Froeschlé and used also in Ref. [KB85].

Another possible coupling is the linear coupling defined as [Bab05]

T l
i

(
p
q

)
=

(
pi +

∑m
j=1 ξi,jqj ,

qi

)
, (B.4)

where again ξi,j = ξj,i. The drawback is that the coupling is not naturally 2π (or 1) periodic.
Example: Standard map (7.1) coupled to a cat map [Ott02]:

p′1
q′1
p′2
q′2

 =


p1 +K sin(2πq1) + ξq2
q1 + p1 +K sin(2πq1)
q2 + 2p2 + ξq1
q2 + p2

 . (B.5)

Time-scale separation

An interesting question is how to introduce time-scale separation to coupled symplectic
maps [Bab05]. The motivation for this problem is that further analytical methods can be
applied to coupled Hamiltonian systems presenting different time scales. For instance, in many
situations one is interested in the study of the slow system which is coupled with fast ones.
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In this case one usually tries to eliminate [vK85] the fast variables or to substitute [RBG+05]
them by noise. A complementary problem is the study of the fast system, considering the slow
one as a perturbation. An additional motivation to study such systems using maps is that
in this case more efficient numerical results are obtained. This is needed to verify the long-
time decay of correlations, which should be fast in order to formally justify the substitution
or elimination procedures mentioned above (see also discussion in Sec. (7.1). The procedure
to couple symplectic maps with different time scales used in Ref. [Bab05] is formalized and
discussed below1 and a slightly modified method is proposed.

Assume that the time scale of the slow map is a multiple (say ∆ ∈ N) of the time scale of
the fast map (which is set to 1). The idea used in Ref. [Bab05] is that the fast map is iterated ∆
times, independently (uncoupled) of the slow map, after what the slow map coupled with the
fast map [e.g., Eq. (B.5)] is iterated once. The procedure is then repeated. The iteration of
every ∆ time steps for two (N = 2) coupled area-preserving maps can be represented as

(
T ◦

∣∣∣∣ MF 02

02 MS

∣∣∣∣)︸ ︷︷ ︸
slow (coupled maps)

◦
∣∣∣∣ MF 02

02 I2

∣∣∣∣︸ ︷︷ ︸
fast dynamics

∆−1


pF

qF
pS

qS

 . (B.6)

Notice that, by convention, the “fast dynamics” takes place in a longer time scale (iterated ∆−1
times) and the “slow dynamics” in a shorter one (iterated once). The symplectic character of
this procedure is apparent since both kind of iterations used in Eq. (B.6) are symplectic (and
thus their composition).

Example: fast standard map and slow cat map coupled through a linear coupling. The
slow dynamics in Eq. (B.6) is given by Eq. (B.5) with the sub-indexes 1, 2 meaning fast and
slow variables respectively. The fast dynamics (the one iterated ∆− 1 times) is given by

∣∣∣∣ M sm 02

02 I2

∣∣∣∣


pF

qF
pS

qS

 =


pF +K sin(2πqF )
qF + pF +K sin(2πqF )
pS

qS

 . (B.7)

This coupling procedure has the evident drawback that during the faster time scale the fast
map remains completely uncoupled from the slow map [see Eq. (B.7)]. Usually one can think
that the slow variables remain almost unchanged during the fast dynamics but usually the value
of the unchanged slow variable does matter to the dynamics of the fast one. In the continuous
time case this point is naturally implemented, e.g., in the linear coupling described in Sec. B.1
the dynamics of the fast action incorporates the term +ξφ for all times (where φ is the slow
angle variable). The procedure for coupling maps discussed above actually describes a system
where the coupling term is turned on and off periodically in the time scale of the slower map.
This problem is specially critic when the effect of the slow dynamics on the fast one is studied.

The first idea to solve the above mentioned problem is to keep during the fast dynamics the
constant additive term present in the slow dynamics. Since this term is constant during the
longer time scale one could naively argue that the fast dynamics remains symplectic. However,
since the value of this constant changes every ∆ time steps, one realizes that the procedure of
adding this constant is equivalent to add to the first equation of (B.7) the term ξqS while keeping
ps, qs fixed. However, Eq. (B.7) with the term ξqS does not satisfy the symplectic condition (2.3).
This emphasizes the need of a coupling procedure where the time-scale separation is introduced
as the composition of different symplectic maps. This is done next.

1No further references to this problem were found.



108 Appendix B. Time-scale separation in symplectic maps

A symplectic map with time-scale separation is obtained through the following permanent
coupling procedure that maintain the coupling term during all time steps

(
T ◦

∣∣∣∣ MF 02

02 MS

∣∣∣∣)︸ ︷︷ ︸
Slow dynamics

◦
(

T ◦
∣∣∣∣ MF 02

02 I2

∣∣∣∣)︸ ︷︷ ︸
Fast dynamics

∆−1


pF

qF
pS

qS

 . (B.8)

Since usually the coupling term depends only on the positions qi and are added to the momen-
tum pi the coupling term at the fast map remains constant during the fast dynamics. Never-
theless the slower map does not remain unchanged during this time since the term pS changes
due to the coupling to the fast map. This is evident in the example below.

Example: fast standard map and slow cat map coupled with a linear coupling. The slow
dynamics in Eq. (B.8) is again given by Eq. (B.5). The fast dynamics is given this time by

(
T l ◦

∣∣∣∣ M sm 02

02 I2

∣∣∣∣)


pF

qF
pS

qS

 =


pF +K sin(2πqF ) + ξqS
qF + pF +K sin(2πqF )
pS + ξqF
qS

 , (B.9)

which has to be compared with Eq. (B.7) obtained through the previous procedure.

B.3 Stickiness

The question about the decay of correlations in coupled symplectic maps with time-scale
separation is investigated now. It was proposed in Ref. [Bab05] and is motivated in Sec. 7.1.
The permanent coupling (B.9) will be used below to investigate the decay of the RTS (recurrence
time statistics) in a fast map with mixed phase space (taken as the reference map) coupled to
two different slow maps: one which is fully chaotic and one which has mixed phase space. The
results of Chaps. 6 and 7 are applied to understand the preliminary numerical results shown
here.

How can the perturbation generated by the slow map on the fast map be estimated? In the
permanent coupling procedure described in Eq. (B.8), and for all couplings mentioned before,
the dynamics of the fast map is perturbed simply by an additive constant during the longer time
scale (∆− 1 iterations). In Eq. (B.9) this corresponds to the term ξqS . Such additive constant
slightly changes the phase space of the map, e.g., in the case of the standard map with K = 0.52
it was observed that the KAM island is slightly deformed and shifted. Every ∆ time steps this
constant is changed and a new configuration obtained. When the slower time scale is sufficiently
chaotic one can approximate this by random changes2. Since qS is usually related to some angle
variable it is taken mod(1) [or mod(2π)] and the random variable is uniformly distributed in
the interval. Its strength is given by the coupling term ξ and by the time-scale separation ∆.
Since the phase space changes only slightly for sufficiently small ξ, one can also think that the
trajectory suffers a random kick every ∆ time steps. This provides the link to the results of
Chap. 6, obtained for the stickiness in noise-perturbed systems.

In order to make a reasonable comparison a rescaling of the coupling strength is necessary
since here a kick of strength ξ occurs every ∆ time steps while in the model o f Chap. 6 it occurred
every time step. This rescaling has to be done carefully since the obvious rescale ξeffective = ξ/∆

2In some cases this is not a bad approximation also for quasi-periodic primary tori since in this case the
position qS also runs through all values [0, 2π] independently of the fast time scale.
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is not always the correct one. For instance, the end of regime (R2) described in Sec. 6.1.2 is
estimated in Eq. (6.5) by the time a random-walker with step size ξ typically takes to explores the
area corresponding to the biggest island. The rescale to be used in this equation is thus the step
size of the new random walker with the time-scale separation ∆, which is given by ξeffective =
ξ/
√

∆.
For our numerical experiments the standard map (6.1) with K = 0.52 was considered as the

fast system. The fast map has mixed phase space and was extensively studied in Sec. 6.1.1.
Linearly coupled to it, a slow cat map is considered initially, which is a fully chaotic hyperbolic
system [Ott02]. The dynamics is thus given by Eq. (B.8) where the slow dynamics is given by
Eq. (B.9) and the fast by Eq. (B.5). Recurrences were calculated through the same procedure
described in Sec. 7.3.1 in order to compare the results to those obtained in noise-perturbed
systems. In the case of no time-scale separation ∆ = 1 it was verified (not shown here) that the
RTS is indistinguishable from the noise perturbed map shown in Fig. 6.1. The results for ∆ = 10
and ∆ = 100 are shown in Fig. B.1. In general, the results discussed in Sec. 6.1.2 apply, i.e.,
the RTS follows the unperturbed one for short times, shows an enhanced trapping regime for
intermediate times, and an exponential decay asymptotically. One can additionally notice for
strong couplings (when the asymptotic exponential decay starts at times comparable to ∆) a
higher probability for recurrences around multiples of ∆, manifested as oscillations of the RTS
(e.g., ξ = 1 in Fig. B.1a,b). This is due to the trajectories thrown inside the KAM island that
necessarily remain inside it for a multiple of ∆ time steps. Additionally, the agreement of the
rescale ξeffective = ξ/

√
∆ for the time τ2,3, given by Eq. (6.5), is shown for ξ = 10−3 and ∆ = 1

in panel (b).

Figure B.1: (Color online) RTS for the standard map (fast system) linearly coupled to a cat map (slow
system) as in Eqs. (B.8), (B.5), and (B.9). Different coupling strengths are shown ξ = 1...10−5 and two
time-scale separations: (a) ∆ = 10 and (b) ∆ = 100. The thick (green) curve corresponds to the unperturbed
case ξ = 0. There are remarkable similarities with Fig. (6.1) once the appropriate rescale of ξ is considered:
the dashed (blue) curve in panel (b) corresponds to ∆ = 1 and ξ = 10−3 showing that the exponential decay
starts at similar times from the case ξ = 10−2 and ∆ = 100 (see text).

The previous results are based on the strong chaotic properties of the slow dynamics that
resemble a noise perturbation. A more interesting situation is obtained if both slow and fast
maps have mixed phase space. In order to explore this case the same procedures described above
was repeated replacing the cat map by another standard map with K = 0.52. The results are
shown in Fig. B.2. It is specially clear from the case ∆ = 100 that for small coupling strengths ξ
the RTS again follows the unperturbed one for short times and shows an enhanced trapping
regime after that. The asymptotic decay is however not exponential and long-time tails are
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clearly seen for all ξ when ∆ = 10 and also for ξ = 1 and ξ = 0.1 for ∆ = 100. These results
are in agreement with those obtained in Sec. 7.3 where the asymptotic tails were identified to
stickiness to higher-dimensional tori. In summary, the theories described in Chaps. 6 and 7
provide the correct framework to understand also results obtained for coupled symplectic maps
with time-scale separation.

Figure B.2: (Color online) RTS for the standard map with K = 0.52 (fast system) linearly coupled to
another standard map with K = 0.52 (slow system), as in Eqs. (B.8), (B.3, and (B.9). Different coupling
strengths are shown ξ = 1...10−4 and two time-scale separations: (a) ∆ = 10 and (b) ∆ = 100. The thick
(green) curve corresponds to the unperturbed case ξ = 0. Note the slow asymptotic decay for all curves in
(a) and for ξ = 1 and ξ = 0.1 in (b) in agreement with the results of Fig. 7.3a.
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