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Chapter 1

Introduction

The main aim of this thesis is the development and analysis of adaptive
algebraic multigrid methods for sparse linear systems of equations. We want
to develop adaptive techniques in the algebraic multigrid framework that
extend the applicability of algebraic multigrid to a broader class of problems.
Our main applications in mind are the linear systems arising in Lattice Gauge
Theory, a field that not only is one of the most important and interesting
fields in modern physics, but also features a lot of interesting challenges for
the application of (algebraic) multigrid methods. Although these problems
guide the development of our adaptive algebraic multigrid techniques and
methods in the following by making high demands on the properties of such
a multigrid method, we emphasize on the general applicability of the adaptive
techniques and methods developed and analyzed in this thesis.

The Quantum Dynamics is a theoretical model that describes the interac-
tion of particles (fermions) and their interacting counterpart (bosons), e.g.,
electrons and photons in Quantum Electrodynamics (QED), quarks and glu-
ons in Quantum Chromodynamics (QCD). These interactions are modeled
by the Dirac operator,

D =
1

2

∑
µ

γµ ⊗ (∂µ + iAµ) ,

in presence of a background gauge-field Aµ. Formally, the Dirac operator
without a background gauge-field is a square-root of the Laplace operator,
∆, and can be seen as its relativistic counterpart. In order to simulate the
interactions of particles and compute observables of interest, this coupled
system of partial differential operators is discretized on a finite lattice and
thus becomes Lattice Gauge Theory. The systems of Lattice Gauge Theory
present numerous challenges for the development of linear solvers, especially

1



2 CHAPTER 1. INTRODUCTION

multigrid solvers. Due to the highly disordered coupling in the system, in-
troduced by the background gauge-field Aµ, the eigenvectors associated with
the small eigenvalues become oscillatory and are locally supported. The sys-
tems are ill-conditioned with a large number of eigenvectors associated with
small eigenvalues depending on the formulation of the discretization. Fur-
ther, the systems arising in Lattice Gauge Theory are complex-valued and
non-hermitian, adding to the challenges already mentioned. The algorithmic
techniques developed in this thesis, although motivated by these applications,
lead to new adaptive algebraic multigrid techniques and methods that are
generally applicable to a broad range of problems.

This thesis is organized as follows. In chapter 2 we give an introduction
into state-of-the-art algebraic multigrid techniques and theory, covering a
broad range of approaches to define algebraic multigrid methods and stating
the main theoretical results found in the algebraic multigrid literature. In
chapter 3 we present the applications we have in mind when developing the
adaptive algebraic multigrid techniques. Besides a more detailed description
of the systems arising in Lattice Gauge Theory, we also introduce the static
Markov chain model as an interesting problem which nicely motivates certain
parts of the adaptive multigrid framework that we discuss in great detail in
chapter 4. We introduce several adaptive algebraic multigrid techniques and
present theoretical analysis for these approaches. Last, we present numeri-
cal experiments for the adaptive algebraic multigrid framework in chapter 5,
before concluding the thesis with remarks on open questions, ideas of im-
provement and future research in chapter 6.

In the opening chapter 2, we give a general introduction into algebraic
multigrid methods and theory. Here, the main focus is on the formulation of
existing approaches in algebraic multigrid in a unifying framework based on
the principles of element-free AMG�e, presented and analyzed in section 2.3.
In this way, we provide insight into the relationship between the reviewed
methods and pave the road for new developments made in chapter 4 that are
formulated in the unified framework as well.

Chapter 3 contains a review of the two main applications we consider in
this thesis. First, in section 3.1, we introduce the systems arising in Lattice
Gauge Theory, including a discussion of important properties of these opera-
tors that motivate certain choices in the development of an adaptive algebraic
multigrid method. Furthermore, we outline milestones on the way to solving
the Wilson-Dirac operator of Lattice Quantum Chromodynamics and stress
out the main challenges posed by the problems of Lattice Gauge Theory.
The other main applications are time-independent Markov chain models, en-
countered in the description of discrete stochastic processes. In section 3.2,
we introduce the notation and the main features of these problems. The
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challenges encountered in these two applications range from complex-valued
systems, over non-hermiticity or indefiniteness to singular or nearly singular
systems.

The main contribution of this thesis is contained in chapter 4, namely the
development of adaptive algebraic multigrid algorithms and theory. Herein,
we considered two main approaches. First, in section 4.1 we introduce a
modified and generalized version of the adaptive reduction-based algebraic
multigrid approach. We develop a generalized theory that allows us to handle
complex-valued systems, and develop a new solver for such systems in the
hermitian positive definite setting. Although the work on adaptive reduction-
based algebraic multigrid leads to several new results the proposed method
has limited success in treating all challenges of the systems arising in Lattice
Gauge Theory. Hence, we consider developing a much more generally appli-
cable method in a bootstrap algebraic multigrid framework. In sections 4.2
and 4.3 we develop a first practical algorithm based on Brandt’s bootstrap
algebraic multigrid framework and significantly build on the work started by
Brandt and Livne in [BL04]. Our contributions include a thorough study
of least squares based interpolation, a multilevel eigensolver that is used in
the bootstrap setup and a handful of additional bootstrap techniques. We
provide an analysis of these formulations as rigorous and complete possible
to date.

Finally, in chapter 5 we apply the bootstrap algebraic multigrid frame-
work developed in chapter 4 to the applications we described in chapter 3.
More specifically, we start by testing the method for discretized scalar partial
differential equations in section 5.1. Herein, we analyze the components of the
algorithm one at a time, increasing the difficulties involved in the test prob-
lems and finally successfully testing the method on Gauge Laplace systems
with physical background gauge configurations. This part is limited to the
discussion of hermitian positive definite systems and demonstrates the power
of the new adaptive formulation in a setting where much knowledge on the
behavior of algebraic multigrid methods is available, though extending the
applicability to the randomly-coupled Gauge Laplace systems. Following this
introductory section, we present in section 5.2 an algorithm for the systems
arising in Markov chain processes. The proposed method which combines
the multilevel eigensolver with least squares interpolation and Krylov sub-
space methods yields very promising results, suggesting that this approach –
or some of the techniques we used – might significantly improve solvers for
this setting. Our method, besides the use of the bootstrap framework, can
be regarded as a merge of the work by Virnik in [Vir07], where she intro-
duced the use of reduction-based algebraic multigrid as a preconditioner of
GMRES for the solution of Markov chain problems and the idea of an alge-
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braic multigrid eigensolver, introduced in the aggregation-based framework
(cf. [Sch91]) and further developed in this framework in [DSMM+09]. In the
concluding section of the last chapter, section 5.3, we present preliminary
results for the application of the bootstrap algebraic multigrid framework for
the Wilson-Schwinger operator of Lattice Gauge Theory. The initial results
for a multigrid solver are promising, though we point out a few obstacles
that yet have to be overcome in order to get a very robust multigrid method.
Though, in contrast to the difficulties we encounter defining a true multi-
grid solver for these non-hermitian systems, the proposed algorithm turns
out to be a very efficient preconditioner for Krylov subspace methods (e.g.,
GMRES) in this context. Motivated by these observations, we outline paths
of future development of the proposed techniques that lead to an efficient
solver for systems arising in Lattice Gauge Theory and that is able to signif-
icantly cut down the costs of existing adaptive algebraic multigrid methods
which are mainly formulated in a (smoothed) aggregation-based framework
(cf. [BBC+08]).



Chapter 2

Algebraic Multigrid (AMG) Review

In this opening chapter we review the principles of algebraic multigrid, be-
ginning with a motivating excursion into geometric multigrid in section 2.1.
Thereafter, we introduce the necessary notations and language of algebraic
multigrid in section 2.2, including theoretical results for algebraic multigrid
methods. In the following sections 2.3 to 2.6 we present several state-of-
the-art variants of interpolation in algebraic multigrid. Our focus here is to
formulate the known approaches in the framework of element-free algebraic
multigrid (AMG�e) that allows us to compare and discuss the approaches in a
unified setting. The chapter is concluded by the introduction of compatible
relaxation in section 2.7, a tool to generate and measure coarse-variable sets
using the multigrid relaxation.

2.1 Geometric Multigrid

The development of multigrid methods was originally motivated by a natu-
ral geometric interpretation of iterative methods for simple boundary value
problems. In this section, we present this motivating interpretation, following
the discussion in the introductory chapters of [BHM00]. Similar descriptions
of geometric multigrid can be found in [Hac91].

For the sake of simplicity, we consider the two-dimensional boundary
value problem

−uxx − uyy = f(x, y), (x, y) ∈ Ω = (0, 1)2

u(x, y) = 0, (x, y) ∈ δΩ.

Discretization by second-order finite differences on an equidistant grid
with grid-spacing h = hx = hy = 1

N
yields a set of m = (N − 1)2 linear

5
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equations

−ui−1,j + 2uij − ui+1,j

h2
+
−ui,j−1 + 2uij − ui,j+1

h2
= fij,

ui0 = uim = u0j = umj = 0,
(2.1)

where fij = f (ihx, jhy) , and i, j = 1, . . . , N − 1. Introducing lexicographi-
cally ordered vectors

u =
(
u11 u21 . . . uN−1,1 u1,2 . . . uN−1,N−1

)T
and

f =
(
f11 f21 . . . fN−1,1 f1,2 . . . fN−1,N−1

)T
this system of linear equations reads

Au = h2f, (2.2)

with A given given by

A =


B −I
−I B −I

. . . . . . . . .

−I B −I
−I B

 ,

where each block B is given by

B =


4 −1
−1 4 −1

. . . . . . . . .

−1 4 −1
−1 4

 .

As illustrated in Figure 2.1 each variable is coupled only to its direct
neighbors. Thus, it is common practice to denote the linear system (2.1) in
stencil notation

A =
1

h2

 −1
−1 4 −1

−1

 .

We use this notation throughout the thesis for discretizations of PDEs on
equidistant grids.
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y

x

Figure 2.1: The coupling of a typical variable in the discrete equations (2.1) on
the two-dimensional equidistant grid.

Solving such sparse linear systems has been a topic of intense research for
many years. One possible approach for solving such sparse systems is to ap-
ply a direct solution technique like Gaussian elimination. The computational
complexity of the best direct methods for two-dimensional elliptic equations
which are based on fast Fourier transforms and cyclic reduction schemes,
is O (N2 log(N)), which is close to optimal complexity O (N2). Such ap-
proaches are however limited to two dimensional problems with constant
coefficients.

Alternative methods for solving sparse linear systems of equations are
given by iterative methods. Interesting enough, the inefficiency of stationary
iterative methods for discretizations of PDEs motivates the multigrid solution
of such systems as we explain below.

2.1.1 Basic iterative methods

Assuming that the sparse linear system of equations (2.2) has a unique solu-
tion u∗ we can define the error e of an approximate solution u by

e = u∗ − u.

We are then interested in iterative schemes that start with an arbitrary ini-
tial approximation and converge to the solution, i.e., eliminate the error.
Unfortunately, the error is in general inaccessible, such that we introduce a
measure for the quality of the current iterate that is available during the iter-
ation and that gives some information about the convergence process. This
is the residual, r, defined by

r = f − Au.
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The residual measures how well the current solution fulfills the system of
equations. It is well known that the residual can be misleading, i.e., a small
residual does not imply that the corresponding error is small as well.

Indeed, e = A−1r and thus ‖e‖2 ≤ ‖A−1‖2‖r‖2. In the case that ‖A−1‖2

is large, ‖r‖2 can be small, while ‖e‖2 can be large.
Recalling that Au∗ = f , we see that the error fulfills the equation

Ae = r. (2.3)

Hence, we can use this equation in order to improve a given approximation
uk of Au = f by solving (2.3) for ek and defining a new approximation by

uk+1 = uk + ek.

The idea of residual correction is the basis of almost all iterative schemes to
solve systems of linear equation. Though, in general the actual application
has to be done more carefully than indicated here.

Given the system matrix A, we consider the splitting,

A = D − L− U, (2.4)

into a diagonal part D and a strictly lower, L, and upper triangular part, U ,
respectively.

A simple iterative scheme that can be defined using this splitting is the
so-called Jacobi iteration. Writing (2.4) as

Du = (L+ U)u+ f

we solve by inverting the diagonal part D and get the new iterate as

uk+1 = D−1 (L+ U)uk +D−1f =
(
I −D−1A

)
uk +D−1f = uk +D−1rk.

By defining an intermediate iterate and the next iterate as a weighted average
we get the ω-Jacobi method as

uk+1 =
(
I − ωD−1A

)
uk + ωD−1f = uk + ωD−1rk.

Another possible way to define an iterative process exploiting the splitting
(2.4) is the so-called Gauss-Seidel iteration defined by

uk+1 =
(
I − (D − L)−1A

)
uk + (D − L)−1 f = uk + (D − L)−1 rk. (2.5)

It is easy to see that Gauss-Seidel implies a certain ordering of the variables,
which might imply sequential processing. Exploiting the sparsity of A it is
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Figure 2.2: Eigenvectors z(k,l) corresponding to λ1,1, λ1,2, λ2,1 and λ2,2 of (2.1) on
a 15× 15 grid.

possible to get back to a partly simultaneous iteration using an appropriate
coloring scheme, e.g., red-black and re-ordering the variables according to
this coloring scheme.

Stationary iterative methods that use the same formulation in each step
such as Jacobi, ω-Jacobi and Gauss-Seidel can always be written as

uk+1 = uk +Brk,

where B can be seen as an approximation to A−1, with B = D−1, B = ωD−1

and B = (D − L)−1 for Jacobi, ω-Jacobi and Gauss-Seidel, respectively. The
choice B = A−1 yields the solution u∗ in just one iteration.

Next, we discuss the performance of stationary iterative methods when
applied to the discretized Poisson problem (2.1) and how this leads to a
natural motivation of multigrid.

The eigenvalues of the discrete Poisson problem (2.1) on a (N−1)×(N−1)
grid are given by

λk,l = 4− 2

(
cos

(
kπ

N

)
+ cos

(
lπ

N

))
, k, l = 1, . . . , N − 1,

with corresponding eigenvectors z(k,l) given by

z
(k,l)
i,j = sin

(
kπi

N

)
sin

(
lπj

N

)
, i, j = 1, . . . , N − 1.

In Figure we present the eigenvectors associated to the eigenvalues with
wave-numbers (1, 1), (1, 2), (2, 1) and (2, 2), i.e., the eigenvectors correspond-
ing to the smallest 4 eigenvalues of (2.1) on a 15 × 15 grid. To analyze the
behavior of stationary iterative methods we consider applying them to (2.1)
with initial error e defined as the eigenvector z(k,l). In Figure 2.3 the number
of iterations needed to reduce the error by a factor of 103 is given. For this
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(a) ω-Jacobi (b) Gauss-Seidel

Figure 2.3: Number of iterations needed to reduce the initial error z(k,l) by a factor
of 103 on a grid of size 15× 15. In 2.3(a) using ω-Jacobi with ω = 2

3 and in 2.3(b)
using Gauss-Seidel.

system, it occurs that the stationary iterations are able to reduce error cor-
responding to oscillatory modes with large “wave-number” k, l much better
than the smooth modes corresponding to small “wave-numbers” k, l.

This “smoothing property” – reduction of oscillations of an arbitrary er-
ror – amounted in the naming convention for such sort of iterative methods
as smoother or relaxation. Throughout this thesis, these names will be used
interchangeably when talking about a stationary iterative method that ful-
fills a “smoothing property”. In section 2.2 we generalize this property to
an algebraic framework, where “smoothness” no longer implies geometric
smoothness.

As shown in Figure 2.4, smooth error can be well approximated on a grid
that consists of every other grid point and interpolating linearly in between.
Furthermore, the coarse version of the smooth mode becomes more oscillatory
with respect to the coarse grid, hence it can be treated more efficiently by
relaxation on this grid.

The idea of geometric multigrid is to combine relaxation with a coarse-grid
correction that exploits the strength of relaxation for oscillatory errors and
the natural representation of smooth error on coarse grids using geometric
(linear, cubic, . . .) interpolation.
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Figure 2.4: Eigenvectors z(k,l) corresponding to λ1,1, λ1,2, λ2,1 and λ2,2 of (2.1) on
a 15× 15 and the corresponding coarse 7× 7 grid.

2.2 Generic AMG Components

Introduced in the early 1980s in [BMR84, Bra86] algebraic multigrid (AMG)
is an approach for solving the sparse linear system of equations

Au = f or
m∑
j=1

aijuj = fi, i = 1, . . . ,m, (2.6)

without the assumption that the problem originates from a discretization of
a known partial differential equation (PDE), as in geometric multigrid.

AMG can formally be described in a similar way as geometric multigrid
by replacing the terms grids, sub-grids and grid points with sets of variables,
subsets of variables and single variables, respectively. Similar to coarse grids
in geometric multigrid, successive systems of equations of reduced dimension
are used in algebraic multigrid to eliminate components of the error in the
coarse-grid subspace. In most situations the coarse-grid subspaces correspond
to the subspace spanned by the lower end of the spectrum, i.e., eigenvectors
to small eigenvalues, as they are not treated well by most stationary iterative
methods used as smoothers. In contrast to geometric multigrid, where the
grid hierarchy is known and appropriate smoothers have to be defined to
achieve multigrid optimality, the goal of classical AMG, as stated in [RS86],
is to maintain simple smoothers and find suitable coarse-grid problems that
yield an efficient interplay between smoother and coarse-grid correction. In
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Figure 2.5: Mindsets of geometric vs. algebraic multigrid (cf. [Stü01, p. 416])

Figure 2.5 we illustrate the differences of the approaches in geometric and
algebraic multigrid.

In this section, we introduce the generic notation for algebraic multigrid
and present some fundamental results on convergence theory for algebraic
multigrid in the hermitian positive definite case. These results guide the
discussion throughout the remainder of this thesis.

2.2.1 Notations

In order to define an algebraic multigrid method for the linear system of
equations (2.6), we must define successively smaller linear systems

Alul = f l or

ml∑
j=1

aliju
l
j = f li , i = 1, . . . ,ml, (2.7)

where l = 0, . . . , L denotes the number of the grid in the hierarchy (i.e., its
level), with A0 = A and m = m0 > m1 > . . . > mL. Herein

Al ∈ Cml×ml , ul ∈ Cml , f l ∈ Cml ,

and we often refer to Al+1 as the coarse-grid system with respect to the
fine-grid system Al, for l = 0, . . . , L− 1.

In order to define an analogue of the geometric interpretation of the rela-
tion between variables on successive levels, we first define an artificial “grid”,
given by the sparsity of the system of linear equations.
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Definition 2.1. Let the graph GA = (VA, EA) with vertices VA and edges EA
corresponding to A = (aij)i,j=1,...,m be defined as

VA = {1, . . . ,m} and EA = {(i, j) ∈ {1, . . . ,m}2 : aij 6= 0}.

Although this artificial geometry does not necessarily resemble any phys-
ical geometry, it does allow us to talk about distances and locality in an alge-
braic framework. As we assume the original system of linear equations (2.6)
to be sparse, it inhibits a locality in terms of Definition 2.1. The aim is to
preserve this kind of locality and with it the sparsity of the operators in the
multigrid hierarchy.

As a first component of algebraic multigrid, in analogy to geometric multi-
grid, we introduce an iterative method that serves us as a smoother.

Definition 2.2. The smoother or relaxation Sl is a linear operator

Sl : Cml × Cml −→ Cml ,

such that Sl
(
ul, f l

)
= ul iff Alul = f l.

Remark 2.3. We denote the error propagator of the smoother Sl, by Sl. In
general, we assume that the smoother is convergent, i.e.,

lim
ν→∞

Sνl e = 0, e ∈ Cml ,

even if this is no necessary condition for multigrid convergence.

Analogously to geometric multigrid, we assume that the given smoother
Sl reduces the complexity of (2.7) on level l by reducing certain error compo-
nents very efficiently. Hence, after application of just a few iterations of the
smoother we can accurately represent the system on the next coarser level,
level l + 1, using fewer variables.

With this notion of an artificial geometry, we can further describe the
relation between variables.

Remark 2.4. According to [Bra00], there exists a linear mapping Q between
fine-grid variables and coarse-grid variables, i.e.,

ul+1 = Qul.

Thus, for each coarse-grid variable ul+1
i , i = 1, . . . ,ml+1 we have

ul+1
i =

ml∑
j=1

qiju
l
j, i = 1, . . . ,ml+1, l = 0, . . . , L− 1.

Hence, coarse-grid variables can be interpreted as re-combinations of fine-grid
variables.
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Remark 2.5. In most cases we assume that coarse-grid variables are given
as local re-combinations of fine-grid variables. Hence, qij 6= 0 only for j close
to i on the grid defined by the graph GA.

The special case of qij = δij corresponds to a partitioning of the variables
Ωl = {1, . . . ,ml} into a set of variables that appear on the next coarser grid
Cl, and its complement set F l, i.e., Ωl = F l ∪ Cl.

Closely connected to the definition of coarse-grid variables is the definition
of inter-grid transfer operators in algebraic multigrid.

Definition 2.6. Given the system of linear equations Alul = f l ∈ Cml define
full-rank interpolation operators P l

l+1 and restriction operators Rl+1
l ,

P l
l+1 : Cml+1 −→ Cml and Rl+1

l : Cml −→ Cml+1 ,

respectively, and define the coarse-grid system of equations as the Galerkin
operator

Al+1 = Rl+1
l AlP l

l+1 ∈ Cml+1×ml+1 .

Remark 2.7. Whenever it is clear from the context, e.g., for discussions of
a two-level setting, we omit the sub- and superscripts for ul, f l, P l

l+1, Rl+1
l ,

Sl, Sl, Al and write u, f , P , R, S, S, A instead. Furthermore, we denote
all corresponding coarse-grid entities ul+1, f l+1, Al+1 as uc, f c, Ac.

With the smoother, grid and inter-grid components defined, Algorithm 1
implements a generic algebraic multigrid V(ν1, ν2)-cycle, which is analyzed
in the next subsection.

Algorithm 1 amg solve { Generic AMG V(ν1, ν2) cycle }
Input: Al, f l

Output: ul
if l = L then {Direct Solve}
ul =

(
Al
)−1

f l

else
ul = Sν1

l

(
0, f l

)
{Pre-smoothing}

f l+1 = Rl+1
l

(
f l − Alul

)
{Restriction}

Al+1 = Rl+1
l AlP l

l+1

vl+1 = amg solve
(
Al+1, f l+1

)
{Solve coarse-grid system}

ul = ul + P l
l+1v

l+1 {Coarse-grid correction}
ul = Sν2

l

(
ul, f l

)
{Post-smoothing}

end if

In order to analyze the error propagation of the AMG V(ν1, ν2)-cycle we
begin with a two-grid scheme.
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Proposition 2.8. For L = 1 the error propagator of coarse-grid correction
C in Algorithm 1 is given by

C =
(
I − P (Ac)−1RA

)
. (2.8)

Proof. Let ǔ be the solution of Au = f and e = ǔ − u the error after
coarse-grid correction. With (Ac)−1 f c = amg solve(Ac, f c) and u = ũ −
P (Ac)−1R (f − Aũ), where ũ denotes the iterate after pre-smoothing, and
the fact that

f − Aũ = Aǔ− Aũ,

we obtain (2.8).

In the case that L > 1 – a true multigrid situation – we introduce the
notation (

Ãl+1
)−1

= amg solve
(
Al+1, f l+1

)
(2.9)

for the recursive application of amg solve on level l. This allows us to write
down the error propagation of coarse-grid correction on any level in the multi-
grid hierarchy similar to (2.8).

Proposition 2.9. The error propagation operator C̃ l of coarse-grid correc-
tion on level l is given by

C̃ l =

(
I − P l

l+1

(
Ãl+1

)−1

Rl+1
l Al

)
.

Proof. Analogously to the proof of Proposition 2.8, but using (2.9) to define
the approximate coarse-grid solution.

Remark 2.10. In the case the coarse-grid system is inverted exactly – as in
the two-grid case – we are going to denote the error propagation operator as

C l =
(
I − P l

l+1

(
Al+1

)−1
Rl+1
l Al

)
,

in analogy to Proposition 2.8.

Corollary 2.11. The error propagation operator Ẽl
ν1,ν2

on level l of the AMG
V(ν1, ν2)-cycle as given in Algorithm 1 is given by

Ẽl
ν1,ν2

= Sν2
l

(
I − P l

l+1

(
Ãl+1

)−1

Rl+1
l Al

)
Sν1
l = Sν2

l C̃
lSν1
l ,

where Ãl+1 is an approximate inverse of Al+1 for l = 0, . . . , L − 1 given by
the multigrid recursion.
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Assuming that the coarse-grid system is inverted exactly we correspond-
ingly obtain

El
ν1,ν2

= Sν2
l

(
I − P l

l+1

(
Al+1

)−1
Rl+1
l Al

)
Sν1
l = Sν2

l C
lSν1
l ,

Proof. Follows from Definition 2.2, Proposition 2.9 and Remark 2.10.

2.2.2 Theory

In this subsection, we present some two- and multigrid theory for AMG in
the hermitian positive definite case. It is a review of results found in [McC85,
MR82, McC87, RS87, BPWX91, Bra86, FVZ05]. An interesting observation
to be made in the review of algebraic multigrid theory is the fact that the
necessary assumptions on convergence can be naturally separated into as-
sumptions on the smoother and assumptions on coarse-grid correction, i.e.,
the interpolation used in the algebraic multigrid method.

In what follows, let A ∈ Cm×m be hermitian positive definite, we then
define restriction Rl+1

l for l = 0, . . . , L−1 as the adjoint of interpolation, i.e.,

Rl+1
l =

(
P l
l+1

)H
and Al+1 =

(
P l
l+1

)H
AlP l

l+1.

With this choice all matrices in the grid hierarchy Al are hermitian and
positive definite, as we assume that all P l

l+1 have full-rank. Further assume
that A has unit diagonal, i.e., diag (A) = I.

Proposition 2.12. With Al ∈ Cml×ml and Al+1 =
(
P l
l+1

)H
AlP l

l+1 we have
for all w ∈ Cml+1

‖P l
l+1w‖Al = ‖w‖Al+1 .

Proof. By definition of the Al-norm we obtain

‖P l
l+1w‖2

Al = 〈P l
l+1w,P

l
l+1w〉Al

= 〈
(
P l
l+1

)H
AlP l

l+1w,w〉2
= 〈w,w〉Al+1 = ‖w‖2

Al+1 .

Proposition 2.13. The coarse-grid correction error propagator C l is an Al-
orthogonal projection onto R

(
I − P l

l+1

)
and R

(
C l
)
⊥Al R

(
P l
l+1

)
.
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Proof. We have for x, y ∈ Cml

〈
(
I − C l

)
x,C ly〉Al

= 〈P l
l+1

(
Al+1

)−1 (
P l+1
l

)H
Alx,

(
I − P l

l+1

(
Al+1

)−1 (
P l+1
l

)H
Al
)
y〉Al

= 〈AlP l
l+1

(
Al+1

)−1 (
P l+1
l

)H
Alx,

(
I − P l

l+1

(
Al+1

)−1 (
P l+1
l

)H
Al
)
y〉2

= 〈x,
(
AlP l

l+1

(
Al+1

)−1 (
P l+1
l

)H
Al

− AlP l
l+1

(
Al+1

)−1 (
P l+1
l

)H
AlP l

l+1

(
Al+1

)−1 (
P l+1
l

)H
Al
)
y〉2

= 0.

That is, we have
(
C l
)2

= C l and R
(
C l
)
⊥Al R

(
P l
l+1

)
.

In order to simplify notation, we denote the Al orthogonal projection onto
R
(
P l
l+1

)
by πAl

(
P l
l+1

)
. Thus, the coarse-grid correction error propagator can

be written as
C l = I − πAl

(
P l
l+1

)
.

With these preliminary observations in place, we state a result that moti-
vates the use of the Galerkin formulation for the coarse-grid system. Namely,
that it fulfills a variational principle, minimizing the A-norm of the error after
coarse-grid correction.

Theorem 2.14. For el ∈ Cml and el+1 ∈ Cml+1 we have

‖C lel‖Al = min
el+1
‖el − P l

l+1e
l+1‖Al .

Proof. AsR
(
C l
)
⊥Al R

(
P l
l+1

)
we know thatR

(
P l
l+1

)
= R

(
I − C l

)
. Hence,

with the Al-orthogonality of C l and the decomposition of el into el = C lel +(
I − C l

)
el we have

min
el+1
‖el − P l

l+1e
l+1‖2

Al = min
gl∈R(I−Cl)

‖C lel +
(
I − C l

)
el − gl‖2

Al

= min
gl∈R(I−Cl)

‖C lel − gl‖2
Al

= min
gl∈R(I−Cl)

(
‖C lel‖2

Al + ‖gl‖2
Al

)
= ‖C lel‖2

Al .

The early multigrid theory found in [McC85, MR82, McC87, RS87] relies
on two fundamental requirements split up into an assumption on interpola-
tion and another pair of assumptions on the smoother.
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Definition 2.15. Let el ∈ Cml. We say that Sl fulfills the smoothing prop-
erty if

‖Slel‖2
Al ≤ 〈Alel, el〉2 − α1〈Alel, Alel〉2, or (2.10)

‖Slel‖2
Al ≤ 〈Alel, el〉2 − α2〈AlSlel, Alel〉2, (2.11)

for α1, α2 ≥ 0.

Definition 2.16. Let el ∈ Cml, we say P l
l+1 fulfills the approximation prop-

erty with constant K > 0 if

‖C lel‖2
Al ≤ K〈Alel, Alel〉2 for all el ∈ Cml (2.12)

Assuming that the smoother fulfills the smoothing properties (2.10) and
(2.11) and that interpolation fulfills the approximation property (2.12) we
can show multigrid convergence of the algebraic multigrid V(1, 1)-cycle.

To do so we show separate results for the pre- and post-smoothing case,
i.e., V(ν1, 0)- and V(0, ν2)-cycle, respectively (cf. [RS87]). First we prove an
auxiliary result.

Proposition 2.17. Let el ∈ Cml, then the following relation holds between
the multigrid coarse-grid correction C̃ l in the multigrid V-cycle and the two-
grid coarse-grid correction C l

C̃ lel = C lel + P l
l+1

(
vl+1 − ṽl+1

)
. (2.13)

Proof. By Proposition 2.9 we have

C̃ lel = el − P l
l+1ṽ

l+1

= el − P l
l+1v

l+1 + P l
l+1

(
vl+1 − ṽl+1

)
= C lel + P l

l+1

(
vl+1 − ṽl+1

)
.

Proposition 2.18. (Multigrid convergence of the V(0, 1)-cycle) Assume that
Sl fulfills (2.10) for l = 0, . . . , L − 1 with some α1 > 0 independent of l.
Further assume that the interpolation operators P l

l+1 fulfill (2.12) for l =
0, . . . , L − 1 with K > 0 independent of l. Then we have for the error
propagator of the V(0, 1)-cycle Ẽ0

0,1 and e ∈ Cm

‖Ẽ0
0,1e‖2

A0 ≤
(

1− α1

K

)
‖e‖2

A0 .

Hence, the algebraic multigrid V(0, 1)-cycle converges and the convergence
factor is bounded by

√
1− α1

K
in the A-norm.
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Proof. First, we show that we have for all el ∈ Cml , l = 0, . . . , L− 1

‖Slel‖2
Al ≤ ‖e

l‖2
Al −

α1

K
‖C lel‖2

Al . (2.14)

This estimate follows directly from (2.10) and (2.12)

‖Slel‖2
Al

(2.10)

≤ 〈Alel, el〉2 − α1〈Alel, Alel〉2,
(2.12)

≤ 〈Alel, el〉2 −
α1

K
‖C lel‖2

Al .

The remainder of the proof is done recursively. Hence we consider a two-grid
situation between levels l and l + 1 for l = 0, . . . , L− 1 and assume that the
V-cycle on the coarse-grid has a convergence factor of 0 ≤ ηl+1 < 1 in the
Al-norm. With this assumption and Proposition 2.12 we have

‖P l
l+1

(
vl+1 − ṽl+1

)
‖Al = ‖vl+1 − ṽl+1‖Al+1

≤ ηl+1‖vl+1‖Al+1 = ηl+1‖P l
l+1v

l+1‖Al .

As R
(
C l
)
⊥Al R

(
P l
l+1

)
, combining the above equality and (2.13) yields for

el ∈ Cml

‖C̃ lel‖2
Al = ‖C lel‖2

Al + ‖P l
l+1

(
vl+1 − ṽl+1

)
‖2
Al

≤ ‖C lel‖2
Al + η2

l+1‖P l
l+1v

l+1‖2
Al (2.15)

= ‖C lel‖2
Al + η2

l+1

(
‖el‖2

Al − ‖C
lel‖2

Al

)
.

Using (2.14) and the facts that C lC̃ l = C l and ‖C l‖Al = 1 the following
estimate shows ηl ≤ max{ηl+1, 1− α1

K
}

‖SlC̃ lel‖2
Al ≤ ‖C̃

lel‖2
Al −

α1

K
‖C lC̃ lel‖2

Al

= ‖C̃ lel‖2
Al −

α1

K
‖C lel‖2

Al

≤
(

1− α1

K
− η2

l+1

)
‖C lel‖2

Al + η2
l+1‖el‖2

Al

≤ max{ηl+1, 1−
α1

K
}‖el‖2

Al .

Applying this result recursively with ηL = 0 yields the desired bound on Ẽ0
0,1

in the A-norm.

Assumption (2.10) on the smoother is a natural condition for multigrid-
convergence for the V(0, 1)-case, whereas assumption (2.11) can be used for
the proof of convergence in the V(1, 0)-case.
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Proposition 2.19. (Multigrid convergence of the V(1, 0)-cycle) Assume that
Sl fulfills (2.11) for l = 0, . . . , L − 1 with some α2 > 0 independent of l.
Further assume that the interpolation operators P l

l+1 fulfill (2.12) for l =
0, . . . , L − 1 with K > 0 independent of l. Then we have for the multigrid
error propagator Ẽ0

1,0 of the V(1, 0)-cycle and e ∈ Cm

‖Ẽ0
1,0e‖2

A0 ≤
1

1 + α2

K

‖e‖2
AL . (2.16)

Hence, the algebraic multigrid V(1, 0)-cycle converges and the convergence

factor is bounded by
√

1
1+

α2
K

in the A-norm.

Proof. The proof is similar to the proof of Proposition 2.18. Again, we first
provide an estimate on each level l. For all el ∈ Cml , l = 0, . . . , L − 1 we
obtain

‖Slel‖2
Al ≤ ‖e

l‖2
Al −

α2

K
‖C lSle

l‖2
Al . (2.17)

Using (2.11) and (2.12), estimate (2.17) follows directly

‖Slel‖2
Al

(2.11)

≤ 〈Alel, el〉2 − α2〈AlSlel, AlSlel〉2
(2.12)

≤ 〈Alel, el〉2 −
α2

K
‖C lSle

l‖2
Al .

Replacing el by Sle
l in (2.15) and using (2.17) we obtain the following esti-

mates with ζ =
‖ClSlel‖Al
‖Slel‖Al

∈ [0, 1],

‖C̃ lSle
l‖2
Al ≤

(
ζ + η2

l+1 (1− ζ)
)
‖Slel‖2

Al and

(
1 +

ζα2

K

)
‖Slel‖2

Al ≤ ‖e
l‖2
Al .

Combining both estimates yields ‖C̃ lSle
l‖Al ≤ ηl‖el‖Al with

η2
l = max

0≤ζ≤1

ζ + η2
l+1 (1− ζ)

1 + ζ α2

K

= max{η2
l+1,

1

1 + α2

K

}.

Again recursive application of this estimate with ηL = 0 yields the desired
bound for Ẽ0

1,0.

It is possible to generalize these results for the V(ν1, 0)- and V(0, ν2)-cycle
case with ν1, ν2 > 1, but we omit this discussion here as it yields only minor
additional insight. In practice both pre- and post-smoothing are used. By
combining Propositions 2.18 and 2.19 we can formulate the following estimate
on Ẽ0

1,1, i.e., for the V(1, 1)-cycle.
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Theorem 2.20. (Multigrid convergence of the V(1, 1)-cycle) Assume that
Sl fulfills (2.10) and (2.11) for l = 0, . . . , L− 1 with α1, α2 > 0 independent
of l. Further assume that the interpolation operators P l

l+1 fulfill (2.12) for
l = 0, . . . , L−1 with K > 0 independent of l. Then we have for the finest-grid
error-propagator Ẽ0

1,1 of the V(1, 1)-cycle

‖Ẽ0
1,1e‖2

A0 ≤
1− α1

K

1 + α2

K

‖e‖2
AL .

Hence, the algebraic multigrid V(1, 1)-cycle converges and the convergence

factor in the A-norm is bounded by

√
1−α1

K

1+
α2
K

.

Proof. Follows from Propositions 2.18 and 2.19, by applying (2.16) in a sim-
ilar way to the proof of Proposition 2.19 before taking the maximum in the
proof of Proposition 2.18.

Quoting the interpretation in [McC87] using the property (2.14) (and
similarly (2.17)) that describes the interplay of coarse-grid correction C l and
smoother Sl, we can extract an understanding of this interplay directly in
a purely algebraic fashion. Error components el that cannot be efficiently
reduced by C̃ l, i.e., ‖C̃ lel‖Al ≈ ‖el‖Al have to be uniformly reducible by Sl.
The smoother Sl is allowed to be inefficient for error components that are
efficiently reduced by C̃ l. As these error components have to be contained in
R
(
P l
l+1

)
we can state a motivating heuristic for all later developments that

concern the construction of interpolation.

Heuristic 2.21. Error components el that are inefficiently reduced by Sl,
i.e., ‖Slel‖Al ≈ ‖el‖Al must have an accurate approximation in R

(
P l
l+1

)
.

There is another way to prove multigrid convergence with slightly changed
assumptions on the coarse-grid correction and smoother. This theory can,
in principle, be found in [BPWX91]. Its adaption to the algebraic multi-
grid framework, especially the aggregation-based approach can be found
in [VBM01]. The main ingredient in this theory is a weakened form of
the approximation property (2.12) that is a crucial condition for two-grid
convergence.

Definition 2.22. Given interpolation operators P l
l+1, we define the composite

interpolation operators

Pl : Cml → Cm, l = 1, . . . , L

Pl = P 0
1P

1
2 . . . P

l−1
l .
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Apparently, we have R (Pl+1) ⊂ R (Pl) , l = 1, . . . , L− 1.

Definition 2.23. We say that the interpolation Pl fulfills a weak approxi-
mation property if there exists a projection π (Pl) onto R (Pl) and K > 0,
independent of l, such that

‖ (I − π (Pl)) e‖2 ≤ K‖e‖A (2.18)

is fulfilled for all e ∈ Cm.

Lemma 2.24. With

Q̃l =
(

(Pl)
H Pl

)−1

(Pl)
H

the operator PlQ̃l is an orthogonal projection onto R (Pl), and we have

‖
(
PlQ̃l − Pl+1Q̃l+1

)
e‖2

2 ≤ ‖ (I − π (Pl)) e‖2
2.

Proof. As R
(
PlQ̃l

)
⊥ R

(
I − PlQ̃l

)
and R (Pl+1) ⊂ R (Pl) we have

‖
(
I − Pl+1Q̃l+1

)
e‖2

2 = ‖
(
I − PlQ̃l + PlQ̃l − Pl+1Q̃l+1

)
e‖2

2

= ‖
(
I − PlQ̃l

)
e‖2

2 + ‖
(
PlQ̃l − Pl+1Q̃l+1

)
e‖2

2

≥ ‖
(
PlQ̃l − Pl+1Q̃l+1

)
e‖2

2.

Now by the minimizing property of the orthogonal projection in ‖ · ‖2 we
have

‖
(
PlQ̃l − Pl+1Q̃l+1

)
e‖2

2 ≤ ‖ (I − π (Pl)) e‖2
2.

Theorem 2.25. Assume that there are linear mappings Ql : Cm → R (Pl)
and constants c1, c2 such that for all e ∈ Cm and every level l = 1, . . . , L

‖Qle‖A ≤ c1‖e‖A

and we have
‖ (Ql −Ql+1) e‖2 ≤

c2√
ρ (Al)

‖e‖A.

Furthermore, assume that for every l the smoother Sl is hermitian positive
definite satisfying

λmin (I − SlAl) ≥ 0 and λmin (Sl) ≥
1

c2
Rρ (Al)

(2.19)
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with a constant cR > 0 independent of the level. Then we have for the
multigrid error propagator

‖Ee‖A ≤
(

1− 1

c0 (L)

)
‖e‖A

for all e ∈ Cm and c0 (L) = (1 + c1 + c2cR)2 (L− 1) .

Proof. For the sake of brevity we do not present the proof of this theorem.
A detailed proof can can be found in [BPWX91, Theorem 1].

Corollary 2.26. Assume that the interpolations Pl are chosen in such a way
that for all l = 1, . . . , L we have

‖Pl
(

(Pl)
H Pl

)−1

(Pl)
H e‖A ≤ c1‖e‖A (2.20)

and further

‖ (I − π (Pl)) e‖2 ≤
c2√
ρ (Al)

‖e‖A (2.21)

for all e ∈ Cm and c1, c2 independent of l. Further assume that for every
level the smoother Sl fulfills (2.19). Then we have for the multigrid error
propagation operator

‖Ee‖A ≤
(

1− 1

c0 (L)

)
‖e‖A

for all e ∈ Cm and c0 (L) = (1 + c1 + c2cR)2 (L− 1) .

Proof. The proof follows directly from Lemma 2.24 and Theorem 2.25. Note,

that since Pl

(
(Pl)

H Pl

)−1

(Pl)
H are orthogonal projections in 〈., .〉2 and the

norms associated with 〈., .〉2 and 〈., .〉Al are equivalent, i.e., there exist α, β ∈
R+ with α‖v‖2 ≤ ‖v‖Al ≤ β‖v‖2, v ∈ Cml . Combining the equivalence of
norms with the observation

‖Pl
(

(Pl)
H Pl

)−1

(Pl)
H ‖2 ≤ 1,

we can always obtain a constant c1 independent of l in (2.20).

A completely different theoretical approach for convergence in an alge-
braic multigrid framework that does not rely on separate assumptions on
smoothing and coarse-grid correction and yields an identity for the two-grid
case was proposed in [FVZ05] and analyzed in [FV04].
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Given a smoother S in a two-grid setting, we define its symmetrized
version S̃ by

S̃ = SH
(
SH + S − A

)−1
S. (2.22)

According to [FV04, Theorem 4.3] we have an identity for the two-grid
V(1, 1)-cycle error propagator with smoother S that we present in the fol-
lowing theorem.

Theorem 2.27. Let Etg be defined by

Etg =
(
I − S−HA

)
(I − πA (P ))

(
I − S−1A

)
,

with ‖S‖A < 1 and interpolation P : Cmc → Cm of full rank. Then we have

‖Etg‖A =

(
1− 1

K

)
, where K = sup

e

‖ (I − πS̃ (P )) e‖S̃
‖e‖A

.

Proof. For the sake of brevity we do not present the proof of this theorem.
A detailed proof can can be found in [FV04, Theorem 4.3].

In the following sections, we introduce the specific definition of the com-
ponents of an AMG algorithm. We start with various ways to define inter-
polation and conclude with compatible relaxation, an idea to algebraically
define coarse variable sets driven by multigrid relaxation.

2.3 The AMG��e Framework

In this section, we introduce a framework for the remaining review of existing
algebraic multigrid approaches. We point out that all approaches reviewed
in the following can be viewed as a special case of the AMG�e framework
introduced in [HV01]. This fact further motivate certain ideas in chapter 4
and guides most theoretical observations made in this thesis.

2.3.1 Element-based AMG (AMGe)

Element-based algebraic multigrid, as introduced in [BCF+00], aims at defin-
ing accurate interpolation operators in an algebraic multigrid framework us-
ing finite element stiffness matrices of an underlying finite element discretiza-
tion. It can be regarded as an algebraic extension of geometric multigrid as
it assumes knowledge about the finite element discretization, but builds the
multigrid hierarchy by algebraic multigrid means.
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In a given finite element framework the linear operator A can be expressed
as

A =
∑
α∈T

Aα

where Aα are finite element stiffness matrices and T is the set of finite ele-
ments used to discretize the problem.

As stated in heuristic 2.21 in section 2.2, interpolation in algebraic multi-
grid should be defined such that it complements the given smoother. For most
commonly used smoothers (e.g., Richardson, ω-Jacobi, Gauss-Seidel) this is
equivalent to the fact that the range of interpolation has to contain accurate
approximations to eigenvectors of small eigenvalues. Indeed, for eigenvec-
tors of small eigenvalues one finds ‖Sx‖A ≈ ‖x‖A for these smoothers. This
observation was proved to be true for Richardson and Jacobi relaxation for
constant diagonal. In case of Gauss-Seidel the situation is more compli-
cated, but known to be true for certain classes of matrices, e.g., symmetric
M-matrices (cf. [Stü99]).

In the following we assume that the coarse-grid variables C are given as a
subset of all variables Ω, i.e., Ω = C ∪F . Further we denote mc = |C|, hence
interpolation is given as a linear operator P : Cmc −→ Cm. By reordering
the variables F first, we can write the linear operator A as

A =

(
Aff Afc
Acf Acc

)
.

With this permutation and the assumption that interpolation is the identity
on the coarse variable set C, we have

P =

(
Pfc
I

)
.

Now we define with these notations approximation measures for the de-
fect of interpolation. These definitions resemble the approximation mea-
sures (2.18) and (2.12) introduced in section 2.2.

Definition 2.28. Given the interpolation P and an arbitrary projection
π (P ) : Cm → Cm onto R (P ), we define a weak approximation measure

M1 (π (P ) , e) =
〈(I − π (P )) e, (I − π (P )) e〉2

〈Ae, e〉2
, (2.23)

and an approximation measure

M2 (π (P ) , e) =
〈A (I − π (P )) e, (I − π (P )) e〉2

〈Ae,Ae〉2
. (2.24)



26 CHAPTER 2. ALGEBRAIC MULTIGRID (AMG) REVIEW

α ∈ Ti

j ∈ Ni

i

Figure 2.6: Local finite element neighborhood.

Remark 2.29. Note that the constants K used in Definitions 2.23 and 2.16
are given as

sup
e
M1 (π (P ) , e) , and sup

e
M2 (π (P ) , e) ,

respectively.

The main idea of element-based AMG is to localize these two measures
using knowledge about the finite-element discretization for the problem at
hand. Using localized measures of (2.23) and (2.24) can then be used to
construct interpolation and recombined again to obtain a global measure on
the defect of interpolation. Recalling that A =

∑
α∈T Aα is the sum of local

stiffness matrices we define certain neighborhood sets in this finite-element
framework. First we define the point set of an element, i.e., all grid points
adjoint to element α ∈ T on the given grid.

Definition 2.30. The point set Jα is given as

Jα = {j | eTj Aαej 6= 0},

where ej is the canonical basis vector associated with the unknown j. More-
over, we define two neighborhoods of a point i, the set of neighboring elements
Ti and the set of neighboring points Ni by

Ti = {α ∈ T | eTi Aαei 6= 0},
Ni = ∪α∈TiJα. (2.25)

In Figure 2.6 we illustrate the relations between i, Ti and Ni. Using this
notation, we can define local versions of the linear operator.
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Definition 2.31. The local operator Ai for a grid point i ∈ Ω is given by

A(i) =
∑
α∈Ti

Aα.

Now, we are able to write down the localized versions of the weak ap-
proximation measure (2.23) and approximation measure (2.24) in a straight-
forward manner. We show later that if the localized measures are bounded,
the global measure is bounded as well.

Definition 2.32. Analogously to the approximation measures (2.23) and
(2.24) we define for each i ∈ Ω with ei denoting the i-th canonical unit vector

M i
1 (π (P ) , e) =

〈eieTi (I − π (P )) e, eie
T
i (I − π (P )) e〉2

〈A(i)e, e〉2
, (2.26)

M i
2 (π (P ) , e) =

〈eieTi A (I − π (P )) e, eie
T
i (I − π (P )) e〉2

〈A(i)e, A(i)e〉2
. (2.27)

Remark 2.33. The definition of the localized approximation measure (2.27)
does not match the definition in [BCF+00]. In their definition of M i

2 the
factor A in the denominator cancels, as they define it with permuted factors
Aeie

T
i instead of eie

T
i A. However, in this way it is unclear why it should

resemble a localized version of the approximation property. We show that
by modifying the definition according to (2.27) we are still able to recover a
global bound from the local bounds on the measures M i

2, but we are unable to
explicitly state the minimizer.

In the case, where the coarse-grid variables are given as a subset of Ω we
can choose

π (P ) = Q =

(
0 Pfc
0 I

)
.

With that choice it is easy to see that M i
1 = M i

2 = 0 for i ∈ C. Further for
any choice of Q the measures M i

1 and M i
2 only depend on the ith row of Q,

i.e., the i-th row of Pfc for any i ∈ F .

Theorem 2.34. Assume that the local weak approximation measure (2.26)
satisfies for any i ∈ F

M i
1 (Q, e) ≤ Ki

1 for all e ∈ Cm. (2.28)

Then the global weak approximation measure (2.23) satisfies M1 (Q, e) ≤ K1,
with

K1 = max
α∈T

∑
i∈Jα∩F

Ki
1.
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Proof. With I =
∑

i∈Ω eie
T
i we have

〈(I −Q) e, (I −Q) e〉2 =
∑
i∈Ω

〈eieTi (I −Q) e, eie
T
i (I −Q) e〉2

=
∑
i∈F

〈eieTi (I −Q) e, eie
T
i (I −Q) e〉2.

Using (2.28) we obtain

〈(I −Q) e, (I −Q) e〉2 ≤
∑
i∈F

Ki
1〈A(i)e, e〉2 =

∑
i∈F

Ki
1

∑
α∈Ti

〈Aαe, e〉2.

A simple counting argument yields∑
i∈F

Ki
1

∑
α∈Ti

〈Aαe, e〉2 =
∑
α∈T

〈Aαe, e〉2
∑

i∈Jα∩F

Ki
1.

With this observation we finally get

〈(I −Q) e, (I −Q) e〉2 ≤
∑
α∈T

〈Aαe, e〉2
∑

i∈Jα∩F

Ki
1

≤ K1

∑
α∈T

〈Aαe, e〉2 = K1〈Ae, e〉2.

In a similar way, we can bound M2 by bounding the localized measures
M i

2.

Theorem 2.35. Assume that the local approximation measure (2.27) fulfills
for any i ∈ F

M i
2 (Q, e) ≤ Ki

2 for all e ∈ Cm. (2.29)

Then the global approximation measure (2.24) satisfies M2 (Q, e) ≤ K2, with

K2 = max
(α,β)∈T 2

∑
i∈Jα∩Jβ∩F

Ki
2.

Proof. We have

〈A (I −Q) e, (I −Q) e〉2 =
∑
i∈Ω

〈eieTi A (I −Q) e, eie
T
i (I −Q) e〉2.
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Using (2.29) we obtain

〈A (I −Q) e, (I −Q) e〉2 ≤
∑
i∈F

Ki
2〈A(i)e, A(i)e〉2

=
∑
i∈F

Ki
2〈(
∑
α∈Ti

Aα)e, (
∑
β∈Ti

Aβ)e〉2

=
∑
i∈F

Ki
2

∑
α∈Ti

∑
β∈Ti

〈Aαe, Aβe〉2.

A reordering of the sums then yields∑
i∈F

Ki
2

∑
α∈Ti

∑
β∈Ti

〈Aαe, Aβe〉2 =
∑
α∈T

∑
β∈T

〈Aαe, Aβe〉2
∑

i∈Jα∩Jβ∩F

Ki
2.

This observation finally leads to

〈A (I −Q) e, (I −Q) e〉2 ≤
∑
α∈T

∑
β∈T

〈Aαe, Aβe〉2
∑

i∈Jα∩Jβ∩F

Ki
2

≤ K2

∑
α∈T

∑
β∈T

〈Aαe, Aβe〉2 = K2〈Ae,Ae〉2.

With Theorems 2.34 and 2.35 at hand the aim, when defining interpola-
tion P , is to achieve a small local bounds on (2.26) and (2.27), respectively.
However, in order to get an efficient multigrid method, we have to keep the
operators in the multigrid hierarchy sparse. This is usually achieved by fixing
a sparsity pattern for the interpolation operator P .

In this context, we define Ci = C∩Ni, with Ni defined according to (2.25).
In order to keep P sparse, we assume that for each i ∈ F we only consider
j ∈ Ci as interpolatory points, i.e., writing the ith row of Q as eTi P = qi we
take

qi ∈ Zi = {v ∈ Cm : vj = 0 for all j /∈ Ci}.

Next, consider the problem of finding the best bound on (2.26) and (2.27),
respectively as a constrained minimization problem for p = 1, 2

Ki
p = min

qi∈Zi
max

e/∈N (A(i))
M i

p (qi, e) . (2.30)

This min-max problem is explicitly solved for p = 1 by

q∗i = −A(i)
cf

(
A

(i)
ff

)−1

ei,
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for i ∈ F , where A
(i)
cf , A

(i)
ff are blocks in the F − C permuted representation

of the local operator A(i) (cf. [BCF+00, Theorem 4.3]). Unfortunately, no
analytic solution of (2.30) in the case of p = 2, in the new formulation
of (2.27) is known.

2.3.2 Element-free AMGe (AMG�e)

The element-free AMGe approach of defining interpolation, introduced in
[HV01], can be seen as the algebraic counterpart to the semi-algebraic ap-
proach of AMGe introduced in section 2.3.1. Moreover the framework of
element-free AMGe can be used to describe many, if not all, algebraic ap-
proaches to construct interpolation. In this section, we explain the basic idea
of element-free AMGe interpolation. We continue to interpret several of the
algebraic interpolation approaches as special cases of element-free AMGe.

As in AMGe, we assume for now that the coarse-grid variables C are
given as a subset of the variables Ω, i.e., we have a splitting of variables
Ω = C ∪ F . Recall that by using the finite-element discretization we could
formulate localized versions A(i) of the linear operator A for each i ∈ F .
Writing this operator permuted according to variables in F and C

A(i) =

(
A

(i)
ff A

(i)
fc

A
(i)
cf A

(i)
cc

)
,

the interpolation in AMGe to point i ∈ F as the minimizer of (2.26), is then

given as eTi

(
−A(i)

ff

)−1

A
(i)
fc .

However, this approach relies on the knowledge of the local stiffness-
matrices. In a more general context, where no further information about
the discretization is known, we obviously cannot use this approach, but we
can attempt to imitate it. For this purpose, we first introduce some nota-
tion for neighborhood-sets with respect to the graph associated to a matrix
introduced in Definition 2.1.

Definition 2.36. For each subset I ∈ Ω we define the neighborhood NI of
I as

NI = {j ∈ Ω : aij 6= 0, i ∈ I, j /∈ I}.
Further, we define the fine- and coarse-variable neighborhoods χI and CI,
respectively, as

χI = NI ∩ F and CI = NI ∩ C.

We usually assume that I is a connected subset of Ω ∩ F in GA. One
possible situation is illustrated in Figure 2.7.
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i ∈ I j ∈ CI j ∈ χI

Figure 2.7: Local neighborhood of I in the AMG�e framework.

With these definitions, we can permute A for each I ⊂ F in the following
way

A =


Aff Afc Afχ 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


}I
}CI
}χI
}everything else .

(2.31)

The aim of element-free AMGe is to construct a neighborhood matrix ÂI
that only connects I with its interpolatory points CI , similar to the localized
versions of the linear operator in AMGe. Interpolation is then defined by

eTi

(
−Â−1

ff Âfc

)
for i ∈ I.

In order to define Â we first define a linear extension map that prolongates
the “interior” of I ∪ CI to the “boundary” χI .

Definition 2.37. Let mf = |I|,mc = |CI | and mχ = |χI |. The extension
map E is then defined by

E : Cnf+nc −→ Cnf+nc+nχ(
vf
vc

)
7−→

vfvc
vχ

 =

 vf
vc

Eχfvf + Eχcvc

 ,

with Eχf ∈ Cmχ×mf , Eχc ∈ Cmχ×mc . That is, we can write E as

E =

 I 0
0 I
Eχf Eχc

 .
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We then construct the neighborhood matrix from the first rows of (2.31)
by (

Âff Âfc
)

=
(
Aff Afc Afχ

) I 0
0 I
Eχf Eχc

 . (2.32)

Hence, Âff = Aff + AfχEχf and Âfc = Afc + AfχEχc.
With this we define interpolation to I as the harmonic extension from

CI ∪ χI to I given by

vf = −A−1
ff (Afcvc + Afχvχ) , (2.33)

which can be reduced using the extension map and definition of vχ to

vf = −A−1
ff (Afcvc + Afχvχ)

= −A−1
ff (Afcvc + Afχ (Eχfvf + Eχcvc))

= − (Aff + AfχEχf )
−1 (Afc + AfχEχc) vc

= −Â−1
ff Âfcvc.

The question arises whether Âff is invertible. Clearly, if Eχf = 0 the

matrix Âff is invertible, since Aff is invertible as a principle sub-matrix of
A. Next, we show that we can reformulate any extension map E such that
Eχf = 0.

Proposition 2.38. Let E be given as in Definition 2.37 with Eχf 6= 0

and define Âff , Âfc according to (2.32). Using Ẽ =
(
0, Ẽχc

)
, with Ẽχc =

Eχf

(
−Â−1

ff Âfc

)
+ Eχc instead of E yields the same interpolation.

Proof. By the definition of interpolation (2.33) using Ẽ we have

−A−1
ff

(
Afc + AfχẼχc

)
= −A−1

ff

(
Afc + Afχ

(
Eχf

(
−Â−1

ff Âfc

)
+ Eχc

))
= −A−1

ff

(
Afc + AfχEχc − AfχEχf Â−1

ff Âfc

)
= −A−1

ff

(
Âff − AfχEχf

)
Â−1
ff Âfc

= −A−1
ffAff Â

−1
ff Âfc

= −Â−1
ff Âfc.

This observation concludes the introduction of the AMG�e framework. In
the following we show that many approaches in algebraic multigrid can be
written and analyzed the AMG�e framework.
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2.4 Classical AMG

As stated before, AMG was first mentioned in the early 1980s in [Bra86,
BMR84] and further analyzed and developed in [McC85, RS87]. Classical
AMG can be seen as a first approach to define multigrid hierarchies without
explicit assumptions on the underlying differential equation and knowledge
of the discretization.

The focus of this subsection is to introduce interpolation in classical AMG
and show that it can be viewed as a special case of the AMG�e framework.
Note that this connection has been first mentioned in the original introduc-
tion of AMG�e in [HV01]. Throughout this section we assume that a splitting
of variables Ω = C ∪ F is given. In classical AMG interpolation is defined
for each i ∈ F independently. Taking I = {i} in Definition 2.36, we have
the neighborhood sets Ci ⊂ C and χi ⊂ F . The definition of interpolation is
then equivalent to finding interpolation weights ωij with

ei =
∑
j∈Ci

ωijej.

This interpolation should be accurate for algebraically smooth error e ∈ Cm,
i.e., error that is slowly reduced by the given smoother.

Under the assumption that we have Ae ≈ 0 for algebraically smooth error
we have

0 ≈ aiiei +
∑
j∈Ci

aijej +
∑
j∈χi

aijej. (2.34)

It is clear that in order to define interpolatory weights ωij, j ∈ Ci we have to
eliminate the last term. The idea in classical AMG for this is to distribute
the “weight” of the connection between j ∈ χi and i to the interpolatory
points k ∈ Ci.

If we distribute for each k ∈ χi its contribution to (2.34) by the formula

ek =
1∑

l∈Ci akl

∑
j∈Ci

akjej, (2.35)

we obtain the interpolation formula for i ∈ F ,

ei =
1

aii

∑
j∈Ci

(
aij +

∑
k∈χi

aikakj∑
l∈Ci akl

)
ej =

∑
j∈Ci

ωijej. (2.36)

That is, the interpolation weights ωij are given by

ωij =
1

aii

(
aij +

∑
k∈χi

aikakj∑
l∈Ci akl

)
.
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This interpolation is known as “standard interpolation” [RS87].
Clearly (2.35) defines an extension map from Ci to χi. The entries of the

extension map E of Definition 2.37 are here given as

Ekj =
ajk∑
l∈Ci akl

, k ∈ χi, j ∈ Ci,

and we have Eχf = 0 for this interpolation.

A little algebra shows that with Âff = aii and Âfc = Aic + AiχEχc we
recover the interpolation weights pi of (2.36) using

pi = eTi

(
−Â−1

ff Âfc

)
from the element-free approach.

To summarize, as interpolation in classical AMG is based on (2.34) and
the removal of the last sum in this expression, it is possible to write this
approach as an extension from {i} ∪ Ci to χi in the AMG�e sense.

2.5 Reduction-based AMG

We again assume that a splitting of variables Ω = C ∪ F is given, and that
we have permuted the linear operator A,

A =

(
Aff Afc
Acf Acc

)
. (2.37)

In the extreme case of I = F we have χI = ∅ and consequently E = I
such that the AMG�e interpolation is given by

P =

(
−A−1

ffAfc
I

)
. (2.38)

In the reduction-based framework this interpolation is derived in a different
way. Based on (2.37) we write

A =

(
I 0

AfcA
−1
ff I

)(
Aff 0

0 Acc − AcfA−1
ffAfc

)(
I A−1

ffAfc
0 I

)
.

It is well known that this decomposition can be interpreted as a partial
Gaussian Elimination.

Definition 2.39. The Schur complement Scc(A) of A with respect to the Aff
block that reduces the system of equations to the C-variables is defined by

Scc(A) = Acc − AcfA−1
ffAfc. (2.39)



2.5. REDUCTION-BASED AMG 35

A little algebra shows that for the inverse of A we have

A−1 =

(
I −A−1

ffAfc
0 I

)(
A−1
ff 0

0 (Scc(A))−1

)(
I 0

−AfcA−1
ff I

)
.

Exploiting this decomposition, the solution of Au = f can be computed in
three successive steps by

1. rc =
(
−AcfA−1

ff I
)(ff

fc

)
2. uc = (Scc(A))−1 rc

3. u =

(
A−1
ff 0

0 0

)
f +

(
−A−1

ffAfc
I

)
uc

This procedure looks very similar to the generic AMG Algorithm 1 in
a 2-level setting defining interpolation as in (2.38). Note that with this we
have

PHAP =
(
−AfcA−1

ff I
)(Aff Afc

Acf Acc

)(
−A−1

ffAfc
I

)
=
(
−AfcA−1

ff I
)( 0

Acc − AcfA−1
ffAfc

)
= Acc − AcfA−1

ffAfc = Scc(A).

Hence, the direct solution method described above can be viewed as a
2-level algebraic multigrid method with Galerkin coarse-grid formulation if
we solve the F -equation exactly in the smoothing process. As it yields the
exact solution to the linear system of equations Au = f the interpolation P
of (2.38) is often referred to as the “ideal interpolation”.

Using the ideal interpolation is prohibited in general due to the lack of
sparsity of A−1

ff that leads to an enormous amount of fill-in in the Schur com-

plement Scc(A). Instead, we replace A−1
ff by an appropriate approximation

that aims for spectral equivalence of the Galerkin coarse-grid operator and
the Schur complement, i.e., we want to define an approximation Ã−1

ff to A−1
ff

such that
γPHAP ≤ Scc(A) ≤ ΓPHAP, γ,Γ ∈ R,

with

P =

(
−Ã−1

ffAfc
I

)
.

In the multigrid literature, the various multilevel iterations whose design are
based on such an approximation, are typically referred to as reduction-based
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AMG methods (AMGr), following [RTW83], because of their close relation
to total-reduction approaches. A study of various approaches can be found
in [Kah06].

The reduction-based approach that defines interpolation via the spectral
equivalence of the coarse-grid system to the Schur complement, i.e., using
global information, is incompatible to the AMG�e mindset, where interpo-
lation is built by exploiting local information only. The reduction-based
approach however, can be related to other multilevel decomposition schemes
that are based on the approximation of the Schur complement that arises
in partial Gaussian Elimination. If we replace the exact solve of the F -
equations by an appropriate pre- and post-smoothing iteration given by its
error propagation

e =
(
I − FM−1

f FHA
)
e, F =

(
I
0

)
,

we can write down the two-grid error propagator of the V(1, 1)-cycle as

E =
(
I − FM−1

f FHA
) (
I − P

(
PHAP

)
PHA

) (
I − FM−1

f FHA
)
.

In [MMM06] a theory is presented for the particular choice of diagonal
Ãff = D, replacing the exact solve of the F -equations by an appropriate
pre- and post-smoothing that also relies on the same D used to define inter-
polation. With this particular choice we can give the following bound on the
convergence rate of the two-grid V(0, 1) cycle, i.e., a bound on ‖E‖A.

Theorem 2.40. Given a diagonal D ∈ Rm×m, define interpolation P by

PD =

(
−D−1Afc

I

)
and a F-smoother M by

M = ω

(
D−1 0

0 0

)
. (2.40)

Under the assumption that

D ≤ Aff ≤ (1 + ε)D, (2.41)

where ε > 0 is of moderate size and

0 ≤ AD =

(
D Afc
Acf Acc

)
(2.42)
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and assuming further that

‖I −MffAff‖Aff < 1,

the two-grid V(0, 1)-cycle is convergent and the following estimate holds for
its error propagator E if ω in (2.40) is chosen as ω = 2

2+ε

‖E‖2
A ≤

ε

1 + ε

(
1 +

( √
ε

2 + ε

)2
)
.

Proof. For the sake of brevity we do not present the proof here and refer
to [MMM06].

This result also holds with an arbitrary number of pre- or post-relaxation
steps. The spectral equivalence relation (2.41) can be viewed as a smooth-
ing property of D with respect to the set of fine variables F . Compatible
relaxation, introduced and discussed in [Bra00, Bra05, Liv04, FVZ05, BF09]
and described in section 2.7, or the method of greedy partitioning, as pre-
sented in [MS07], generate splittings where the set of fine variables, F , yields
a well-conditioned block Aff . Hence, it is possible to find such a diagonal
approximation D to A. Thus, relation (2.41) states that M in (2.40) fulfills
‖I−MffAff‖Aff < 1. Relation (2.42), on the other hand, can be interpreted
as a requirement on the interpolation operator and, hence, the coarse-grid
operator.

In section 4.1, we generalize the adaptive approach of reduction-based
AMG, as introduced in [MMM06], and state a two-grid analysis that gener-
alizes Theorem 2.40.

2.6 Aggregation-based AMG

In our discussion on classical algebraic multigrid approach to define interpo-
lation and its variants reviewed so far, we assumed a splitting of variables
Ω = F ∪ C to be given. Aggregation-based algebraic multigrid is the canon-
ical approach for construction of interpolation not based on this assumption
and is given in order to complete the survey of existing approaches to define
interpolation in algebraic multigrid methods.

Again, we start off by interpreting the sparsity structure of the linear op-
erator A as a graph according to Definition 2.1. However, instead of defining
a set of coarse variables as a subset of this grid, aggregation-based approaches
define coarse variables as overlapping or non-overlapping aggregates of points.
Figure 2.8 illustrates this idea.
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A3

A4

A2

A1

(a) Fine-grid

A3

A4

A1

A2

(b) Coarse-grid

Figure 2.8: Aggregation-based coarsening. Aggregation of fine-grid shown
in 2.8(a), associated coarse-grid shown in 2.8(b).

First approaches for aggregation-based multigrid were introduced in the
numerical simulation of Markov chains (cf. the survey in [Sch91]) and later
generalized by Braess in [Bra95] and Vanek in [Van95]. Further investigations
and the introduction of smoothed aggregation (SA) and adaptive smoothed
aggregation (αSA) followed (cf. [VMB96, VBM01, BFM+05]). In this sec-
tion, we review the basic concepts of SA and interpret the approach in the
generalized framework we outlined in section 2.3.

Consider the graph GA corresponding to A according to Definition 2.1.

Definition 2.41. An aggregation of GA = (VA, EA) is a decomposition of
VA, into sets Al, l = 1, . . . ,mc with VA = ∪lAl.

Given an aggregation of GA we identify each aggregate Al with a coarse-
grid variable ucl . Hence the canonical restriction operator R with uc = Ru
has the block-row structure where row i has entries at Ai. Assuming an
aggregation without overlap we can easily choose each row of R to be of norm
1. In a natural way, interpolation can then be defined such that P = RH and
fulfills PHP = I. This property of P is favorable when recalling (2.21) in
the regularity-free multigrid convergence theory presented in Theorem 2.25.

Lemma 2.42. Assuming that aggregation is built by disjoint sets Ai and
P = RH , the columns of P are an orthogonal basis of R (P ).

Proof. Since Ai ∩ Aj = ∅, i 6= j we have 〈Pi,·, Pj,·〉2 = 0.

This approach is equivalent to the early developments of aggregation-
based algebraic multigrid in [Bra95, VMB96]. Assuming that algebraically
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Ωc

Ω
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e

Figure 2.9: Approximation of linear vectors by piece-wise constant interpolation
in Galerkin based multigrid.

smooth error, i.e., error that cannot be reduced efficiently by relaxation, is
also geometrically smooth, early aggregation-based interpolation operators

were simple scaled partitions of the constant vector
(
1, . . . , 1

)T
over the

aggregates. That is, for a non-overlapping aggregation, interpolation is piece-
wise constant.

However, as illustrated in Figure 2.9 (cf. [TOS01, Stü99]) the coarse-grid

correction P
(
PHAP

)−1
PHA that is the optimal correction with respect to

the energy norm does not yield a good approximation in euclidean norm. For
a linear error the piece-wise constant correction fits the slope rather than the
size of the error. This observation led to two completely different ideas to
improve the aggregation-based approach. First, in [MV92, Bla88] the idea of
over-weighted coarse-grid correction that minimizes

‖M̃ (I − ωπA (P )) e‖A

was introduced, including the post-smoothing action of M̃ , rather than min-
imizing

‖ (I − ωπA (P )) e‖A.

It was observed in Theorem 2.14 that the latter leads to the choice ω = 1.
This analysis takes into account that post-smoothing is able to remove inter-
polation errors introduced by over-weighting the coarse-grid correction. In
section 4.3, we present a similar analysis and show that the idea of optimally
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Figure 2.10: Piece-wise constant basis vectors and their smoothed counterparts.

weighted coarse-grid over-correction might be beneficial for any given alge-
braic multigrid interpolation, not only restricted to the aggregation-based
approach. In general, the idea to build P satisfying PHP = I and having a
sparsity pattern that is limited to the aggregation can be interpreted as a de-
scription ofR (P ) in terms of the columns of P . The columns of P , further on
denoted by ϕ1, . . . , ϕmc are local (i.e., each vector ϕi has limited support on
Ai) thus form an orthonormal basis of R (P ). Hence, the aggregation-based
framework of defining interpolation can be seen as the definition of appro-
priate local basis functions that span the subspace of algebraically smooth
functions. This interpretation motivated the second idea to overcome the
shortcomings of aggregation-based AMG. Introduced in [VMB96], the use of
a smoother S to improve the set of basis vectors ϕ1, . . . , ϕmc by creating a set
of smoothed basis functions and introducing overlap of the aggregates in a
natural way overcame the problems seen in the aggregation-based approach.
Figure 2.10 demonstrates that one step of ω-Jacobi applied to piece-wise
constant basis vectors produces basis vectors capable of representing linear
functions exactly as well. However, due to this process the nice property of
PHP = I is lost.

Definition 2.43. Given a disjoint aggregation of Ω and a canonical inter-
polation P as well as a smoother S : Cm → Cm we define the smoothed
interpolation operator P̃ by

P̃ = SP.

In [VBM01, Theorem 3.5], multigrid theory for smoothed aggregation is
given that is based on the fundamental multigrid convergence proof without
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regularity assumptions presented in Theorem 2.25.
Unfortunately, aggregation-based approaches do not fit in our general

framework in a straight-forward manner, but there are two ways to view the
aggregation-based method in this context. As already remarked, the defini-
tion of interpolation in the (smoothed) aggregation-based approach can be
viewed as the definition of an appropriate set of locally confined basis vectors.
In a finite-element framework, this coincides with the definition of interpola-
tion in element-based algebraic multigrid, introduced in section 2.3.1, where
one can define interpolation by computing local basis vectors based on ag-
gregated element-stiffness matrices. On the other hand, aggregation-based
approaches can be classified in the general framework via the following ob-
servation. For any full-rank interpolation operator P ∈ Cm×mc there exists
a permutation

P =

(
Pfc
Pcc

)
,

with non-singular Pcc. The main focus in the analysis of interpolation opera-
tors in algebraic multigrid is R (P ), so that we can interpret any P as given
in a F -C-splitting setting as

R (P ) = range(

(
Pfc
Pcc

)
) = range(

(
PfcP

−1
cc

I

)
).

Note that the reverse statement is also true, any interpolation operator de-
fined using a F -C-splitting can be interpreted in the aggregation-based frame-
work, i.e., choosing appropriate basis vectors for certain local aggregates.

2.6.1 Adaptive Smoothed Aggregation

Recently, the idea of smoothed aggregation was generalized and an adaptive
setup was integrated [BFM+04], in order to be able to handle more problems
in this framework. The basic principle of adaptive Smoothed Aggregation
multigrid is the principle “let the current method expose its own weakness”.

The adaptive process starts with a canonical methodM0, i.e., the multi-
grid smoother S. By iterating with this method on the homogeneous system
Ax = 0 one finds either that the current method is fast to converge and no
further work is necessary in order to get a fast solver, or an error compo-
nent emerges that the current method is unable to resolve. The approach of
smoothed aggregation then allows to incorporate this particular error com-
ponent in the multigrid solver, guaranteeing its treatment in the coarse-grid
correction by breaking it up over the aggregates and adding local columns to
the aggregation interpolation operator orthogonalized to existing local basis
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functions in order to guarantee PHP = I of the unsmoothed aggregation
operator. Thereafter a multigrid hierarchy is generated that becomes the
new current method and the adaptive process goes into the next cycle, test-
ing the new current method and improving it in the aforementioned way if
necessary. This approach of adaptivity is a very convenient way to guarantee
that particular error components are handled in the coarse-grid correction.
After finishing the adaptive process the method is guaranteed to converge
fast. However, the sequential accumulation of vectors into P may make this
method unfeasibly expensive both in setup and operator complexity in gen-
eral. Heuristics and techniques to get a better control on the complexity
were developed and tested in [BFM+05, BBK+07].

2.7 Compatible Relaxation – Coarsening

The main focus of this section is on the algebraic construction and quality
control of coarse-grids. So far, we have discussed several variants of interpola-
tion for algebraic multigrid assuming that a sensible definition of coarse-grid
variables is available, now we consider the idea of compatible relaxation, a
tool that can be used to measure the quality of and construct coarse-grids.

The idea of compatible relaxation was adapted from compatible Monte-
Carlo schemes (cf. [BR99, BR01]) and introduced by Brandt in the context
of algebraic multigrid methods in [Bra00]. The idea was further analyzed
in [Liv04, BF09].

In algebraic multigrid, compatible relaxation is useful to gauge and con-
trol the quality of the set of coarse-variables C prior to building the coarse-
level equations. As introduced in section 2.2, coarse-grid variables uci can
always be interpreted as linear combinations of the current fine grid vari-
ables ui. That is, we can write

uci =
∑
j

µijuj, i ∈ Ωc, (2.43)

according to Definition 2.4. In doing so, we further assume that the coarse-
grid variables only depend on fine-grid variables in a local neighborhood
based on the graph GA according to Definition 2.1.

Motivated by the fundamental principle of multigrid, the complementar-
ity of coarse-grid correction and smoothing, compatible relaxation uses the
current smoother to gauge the quality of the current set of coarse-grid points.

Definition 2.44. Compatible relaxation is a relaxation scheme that keeps
the coarse-variables invariant, i.e., it keeps the relaxed variables u compatible
with their coarse-variable counterparts uc as defined in (2.43).
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To measure the effectiveness of compatible relaxation, we apply it to the
homogeneous system of equations

Au = 0. (2.44)

The compatibility constraint on the coarse-variables in this particular case
means

0 = uci =
∑
j

µijuj, i ∈ Ωc. (2.45)

Based on this observation the introduction to compatible relaxation given
in [Liv04] considers two ways to define a compatible relaxation, but one
could think of other ways to define a compatible relaxation.

Definition 2.45. If the compatible relaxation sweep on (2.44) simultaneously
fulfills (2.45) we call it a concurrent compatible relaxation.

We talk about a habituated compatible relaxation scheme if the compati-
bility constraint (2.45) has to be enforced after each fine grid relaxation sweep
on (2.44).

In the case where the set of coarse-variables is a subset of all variables,
i.e., we have a splitting of variables Ω = F ∪ C, concurrent compatible re-
laxation has to keep the compatibility constraint fulfilled in each iteration.
This amounts to a compatible relaxation method that only changes values of
variables in F . Accordingly, such a relaxation method is often referred to as
F - relaxation.

More generally using (2.43) we can write (2.45) as

uc = Ru = 0, R ∈ Cmc×m,

where R : Cm → Cmc is the canonical restriction to the coarse-grid variables
and we assume that with interpolation given by P : Cmc → Cm we have
RP = I.

In line with the analysis of compatible relaxation in [FV04] we further
define an operator F : Cmf → Cm satisfying RF = 0 and mf = m − mc.
Thus, R (F ) can be interpreted as a “smoother space” complementary to
R (P ).

In this case we directly obtain the following result.

Lemma 2.46. The operators F and RH define an orthogonal decomposition
of Cm in the sense that Cm = R (F )⊕R

(
RH
)

with R (F )⊥ R
(
RH
)
.

Exploiting the definitions of R and F we can formulate concurrent com-
patible relaxation in closed form.
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Lemma 2.47. Let M be a given smoother for the linear operator A with
error propagator

ek+1 =
(
I −M−1A

)
ek.

Then the relaxation given by the iteration

ek+1 =
(
I − F

(
FHMF

)−1
FHA

)
ek (2.46)

defines a general form of concurrent compatible relaxation.

Proof. Since RF = 0 we have Rek+1 = Rek, thus (2.46) keeps the coarse-
variables invariant.

Hence, we can reformulate (2.46) by restriction to the space complemen-
tary to R as

ek+1 = Esek =
(
I −

(
FHMF

)−1 (
FHAF

))
ek.

Brandt [Bra00] stated that “a general measure for the quality of the set of
coarse variables is the convergence rate of compatible relaxation”. In [FV04,
Theorem 5.1] this statement is made more rigorous and yields a helpful tool
to measure the quality of a given coarse-grid.

Theorem 2.48. Let
(
MH +M − A

)
be hermitian and positive definite and

M̃ = M
(
MH +M − A

)−1
MH . Then there exists c > 0 such that

min
P

max
e 6=0

〈M̃ (I − PR) e, (I − PR) e〉2
〈Ae, e〉2

≤ c

1− ρf
, ρf = ‖Es‖FHAF .

Proof. By a transformation similar to [FV04, Lemma 2.3] we get

min
P

max
e 6=0

〈M̃ (I − PR) e, (I − PR) e〉2
〈Ae, e〉2

≤ min
P

max
e6=0

〈σ(M) (I − PR) e, (I − PR) e〉2
〈Ae, e〉2

, (2.47)

with σ(M) = 1
2

(
M +MH

)
the hermitian part of M . By [FV04, Theorem

3.1] the minimum of (2.47) is given as

1

λmin
(
(FHσ(M)F )−1 (FHAF )

) ,
which in turn can be estimated as

min
v

〈FHσ(M)Fv, v〉2
〈FHAFv, v〉2

≤ (1− ρ)−1 . (2.48)

Inserting (2.48) in (2.47) yields the desired bound.
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Lemma 2.49. Assume that

min
P

max
e6=0

〈M̃ (I − PR) e, (I − PR) e〉2
〈Ae, e〉2

≤ K, for all e ∈ Cm.

That is, we obtain the following estimate for the convergence of the V(0, 1)
two-level method

‖
(
I −M−1A

)
(I − πA (P )) e‖2

A ≤
(

1− 1

K

)
‖e‖A.

Proof. For the sake of brevity we refer to [FV04, Theorem 2.2].

Thus, the convergence rate of compatible relaxation can be used to bound
the convergence rate of a two-level Galerkin multigrid method. This makes
compatible relaxation useful as a tool in algebraic multigrid to measure
the quality of a given set of coarse variables with respect to the multigrid
smoother.

2.7.1 Coarsening by Compatible Relaxation

As suggested in [Bra00] and further investigated in [Liv04, Bra05, BF09],
compatible relaxation can be used as a tool to construct sets of coarse vari-
ables.

This is best understood in the case, where we assume that coarse variables
are a subset of all variables, hence we are interested in defining a splitting of
variables Ω = F ∪ C.

The basic idea of coarsening by compatible relaxation is quite simple.
Starting with an initial set of coarse variables C0, we use compatible relax-
ation on the homogeneous equation

Au = 0

with an appropriate non-zero initial guess for u in order to measure the
convergence rate ρf of compatible relaxation for this set of variables. Note
that C0 can be an appropriate choice of geometric coarsening that is naturally
imposed on the underlying grid of the discretization or it can be empty if no
such canonical coarsening is available for the problem.

If the measured convergence rate of compatible relaxation, ρf , is above
an a priori defined threshold γ, the current set of coarse variables is deemed
insufficient to yield a good coarse-grid description of the operator and has
to be enhanced by adding further variables to it. In other words, given a
splitting Ω = F ∪ C we want to find a subset of F that we add to C in
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order to achieve better convergence of compatible relaxation. Apparently
the choice C = Ω yields ρf = 0, thus this process is well defined.

As we are interested in keeping C as small as possible while getting ρf ≤ γ
we pick the subset of F that we add to C using two rules:

1. Determine the set N of slow-to-converge variables in F , i.e., those
variables that did not converge quickly to zero after a few compatible
relaxation sweeps on the homogeneous problem (2.44).

2. In order to keep C as independent as possible in a graph-sense, we pick
a maximally independent subset of N with respect to GA to be added
to C.

Algorithm 2 cr coarsening {Coarsening by compatible relaxation}
Input: F0, C0, γ ∈ (0, 1)
Output: F , C, ρf
Set F = F0, C = C0

repeat
Initialize u ∈ Cm

Perform compatible relaxation sweeps on Au = 0
Measure convergence speed ρf of compatible relaxation
if ρf > γ then

Find N ⊂ F of slow-to-converge variables
Find maximally independent subset CN ⊂ N
Set F = F \ CN and C = C ∪ CN

end if
until ρf ≤ γ

Algorithm 2 illustrates a rudimentary coarsening algorithm that incorpo-
rates compatible relaxation. A more detailed and sophisticated implementa-
tion of coarsening by compatible relaxation can be found in [Liv04, BF09].
Usual choices for γ vary between .5 and .8. Note that as we are only con-
sidering the case of variable splittings here, the construction of compatible
relaxation is very simple, nevertheless the generalization to arbitrary coarse
variables uc = Ru, R : Cm → Cmc is fairly straight-forward. As we can
always transform an arbitrary full-rank interpolation operator by choosing a
splitting of variables Ω = F ∪ C, such that

P : Cmc → Cm, P =

(
Pfc
Pcc

)
.
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Here we assume Pcc to be non-singular, without changing R (P ) we obtain

P =

(
PfcP

−1
cc

I

)
=

(
W
I

)
.

With this observation it is possible to extend the idea of compatible re-
laxation in its simple formulation based on a splitting of variables Ω =
F ∪ C to a setting where the coarse-grid variables are defined differently,
e.g., aggregation-based approaches, by carefully construction of an associ-
ated variable splitting.

This practical method for algebraically constructing the set of coarse vari-
ables in a general setting concludes our review of state-of-the-art approaches
in algebraic multigrid.





Chapter 3

Applications

3.1 Lattice Gauge Theory

The Dirac operator is used in quantum field theory to model the interac-
tion of particles (fermions) and their interacting counterparts (bosons). The
Dirac equation without background gauge field can be seen as a relativistic
quantum mechanical wave equation that is consistent with the principles of
special relativity and quantum mechanics. We do not go into details of the
derivation of the equation, but rather focus on its mathematical representa-
tion and properties.

In the continuum, the Dirac operator D with a background gauge field A
is given in d-dimensional euclidean space as

D =
d∑

µ=1

γµ ⊗ (∂µ + iAµ) , (3.1)

where γµ ∈ Cd×d are generators of a Clifford or Dirac-Algebra, i.e., they
satisfy

γµγν + γνγµ = 0 and γ2
µ = I (3.2)

and⊗ denotes the tensor product. Aµ(x) ∈ Cn×n is a function that satisfies at
any point x ∈ Cd, A∗µ(x) = Aµ(x) and trace (Aµ(x)) = 0, i.e., Aµ(x) ∈ su(n).

∂µ = ∂
∂xµ

denotes the partial derivative in direction µ.

3.1.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD), a quantum field theory, models the strong
interaction between quarks, the subatomic constituents of matter, and glu-
ons, their interacting counterparts.

49



50 CHAPTER 3. APPLICATIONS

The formal Dirac operator D of QCD is usually understood to act on a
d = 4-dimensional euclidean space with 3 space- and 1 time-dimension, where
the space is transformed from a Minkowski-space to an euclidean space-time
system. In what follows, we choose the generators of the Clifford-Algebra
that fulfill (3.2), by

γ1 =


i

i
−i

−i

 γ2 =


−1

1
1

−1


γ3 =


i
−i

−i
i

 γ4 =


1

1
1

1

 .

(3.3)

The gauge field A of QCD is given as complex 3 × 3 traceless hermitian
matrices, i.e., Aµ ∈ C3×3 with A∗µ = Aµ and trace (Aµ) = 0. Thus the Dirac
operator of QCD is a 12×12 coupled system of first order partial differential
operators.

To analyze this model, Wilson proposed in [Wil74] to simulate these in-
teractions using a discretized formulation of the Dirac operator within the
context of Lattice Gauge Theory (LGT). For this purpose, a lattice with
N ×N lattice points is introduced with periodic boundary conditions. The
lattice spacing is often denoted by a, but for the sake of convenience one
typically parametrizes the formulation such that a = 1.

In order to discretize the Dirac equation (3.1) one then defines covariant
finite differences that preserve the property of gauge invariance of the given
differential operator. This is accomplished by including a discretized gauge
field in the definition.

Definition 3.1. Given the lattice field Aµ(x) at lattice point x we define the
discretized gauge field on a N ×N lattice and lattice-spacing a by

Ux
µ = e−

i
a
Aµ(x+a

2
eµ) ≈ e−i

R x+aeµ
x Aµ(s)ds

A collection U = {Ux
µ} ⊂ SU(n) is called a gauge configuration, living on

the edges of the lattice.

The gauge configuration can be interpreted as an approximation to the
action of the gauge field along a lattice edge by approximating the integral
over the gauge filed along the edge. In Figure 3.1 we illustrate the naming
conventions on the lattice.
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µ
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Figure 3.1: The typically used naming convention in Lattice Gauge Theory with
gauge configuration U = {Uxµ}.

Remark 3.2. Associated with a gauge configuration U is a temperature pa-
rameter β that controls the randomness of the underlying gauge field.

With this discrete description of the gauge field we can now proceed to
define the finite covariant differences.

Definition 3.3. The forward finite covariant difference of the spinor ψ at
lattice site x in direction µ is defined as

∂µψx = Ux
µψx+eµ − ψx,

where x+eµ is the neighboring lattice site in spatial direction µ. Analogously,
one defines a backward finite covariant difference

∂µψx = ψx −
(
Ux−eµ
µ

)H
ψx−eµ .

Using the forward and backward covariant finite difference operators we can
define a central covariant finite difference operator by

∂̂µψx =
1

2
(∂µ + ∂µ)ψx.
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Hence, the straight-forward formulation of the Dirac operator on the lat-
tice using central discretization for the first order derivative is given by

DL =
1

2

∑
µ

γµ ⊗ (∂µ + ∂µ) =
1

2

∑
µ

γµ ⊗ ∂̂µ.

However, this formulation suffers from the effect of species doubling encoun-
tered when using first order centralized finite difference discretizations, i.e.,
unphysical low energy modes of the discretized operator (cf. [DD06] for more
details). In the context of centralized finite difference approximations of first
order partial differential operators this effect is also known as “red-black”
instability.

To avoid doubling, Wilson introduced in [Wil74] a stabilization term∑
µ ∂̂µ∂̂

µ that can be seen as equivalent to the Laplace operator, ∆, using co-
variant finite differences with a background gauge configuration U ⊂ SU(n).
By addition of this stabilization term, the problem of species doubling is
removed.

Definition 3.4. The Wilson-Dirac operator DW is defined by

DW =
1

2

(
4∑

µ=1

γµ ⊗ (∂µ + ∂µ)− ∂̂µ∂̂µ
)
.

Usually one adds an additional mass term m to the operator in order
to reflect specific properties of the underlying physics, e.g., quark masses.
Hence, the problem to solve numerically is given by

(DW +mI)ψ = ϕ.

Spectral properties of the Dirac-Wilson operator

We first take a look at an important symmetry that the Dirac and Dirac-
Wilson operator fulfill. The generators of the Clifford algebra γ1, . . . , γ4 de-
fine an operator γ5 by

γ5 = γ1γ2γ3γ4

that satisfies
γ5γµ + γµγ5 = 0 and γ2

5 = I.

Furthermore, γ5 is hermitian, i.e., γ∗5 = γ5 , and it has only eigenvalues ±1
as γ2

5 = I. Hence, we can define two projections

I − γ5

2
and

I + γ5

2
(3.4)



3.1. LATTICE GAUGE THEORY 53

that project any spinor ψ onto its left- or right-handed components, respec-
tively. In the case of the basis of γ-matrices chosen in (3.3), γ5 is given
by

γ5 =


1

1
−1

−1

 .

and the projections (3.4) have the simple form

I − γ5

2
=

 1
1

 and
I + γ5

2
=


1

1

 .

An important property of the Dirac-Wilson operator is the γ5-hermiticity.
That is, the continuum operator satisfies

γ5D∗ = Dγ5.

This property is preserved in the Wilson formulation of the Lattice Dirac
operator. In order to show this, we introduce a lattice equivalent of the γ5

operator, the Γ5 operator, defined by

Γ5 = γ5 ⊗ IN2 ⊗ I3 =

(
I 0
0 −I

)
∈ C12N2×12N2

.

With this definition we obtain

Γ5D
H
W = DWΓ5.

Due to this symmetry, we can derive many properties of the eigenvalues and
eigenvectors of the Wilson-Dirac operator DW that lead to important insights
for the development and implementation of an adaptive algebraic multigrid
method for this system.

Definition 3.5. Given the non-hermitian operator DW , we denote the right
eigenvector of DW with eigenvalue λ by vrλ with,

DWv
r
λ = λvrλ.

Analogously, we denote the left eigenvector of DW with eigenvalue λ by vlλ
with, (

vlλ
)H

DW = λ
(
vlλ
)H

.
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Lemma 3.6. The eigenvalues λ of DW are either real or appear in complex
conjugate pairs.

Proof. The characteristic polynomial of DW is defined by

det (DW − λI) = det (Γ5) det (DW − λI) det (Γ5)

= det (Γ5DWΓ5 − λI)

= det
(
DH
W − λI

)
= det

(
DW − λ̄I

)
,

where λ̄ denotes the complex conjugate of λ. Hence, λ is an eigenvalue of
DW if and only if λ̄ is also an eigenvalue.

Lemma 3.7. For any right eigenvector v with eigenvalue λ, i.e., fulfilling
DWv = λv, the vector (Γ5v) is the left eigenvector to the eigenvalue λ̄, satis-
fying

(Γ5v)H DW = λ̄ (Γ5v)H .

Proof. Using the Γ5-hermiticity of DW we have

(Γ5v)H DW = vHΓ5DW

= vHDH
WΓ5

= λ̄vHΓ5 = λ̄ (Γ5v)H .

Combining Lemmas 3.6 and 3.7 we have eigentriples for any pair of com-
plex conjugate eigenvalues(

λ, vrλ, v
l
λ

)
and

(
λ̄, vrλ̄, v

l
λ̄

)
that satisfy

vlλ = Γ5v
r
λ̄ and vlλ̄ = Γ5v

r
λ.

Due to this fact the bi-orthogonality of the right and left eigenvectors of
the Wilson-Dirac operator DW are given as follows.

Lemma 3.8. Let (λi, v
r
λi
, vlλi) denote the eigentriples of DW . Then we have

with cij ∈ C \ {0},

(
Γ5v

l
λi

)H
vrλj =

{
cij, if λi = λ̄j
0, else

.
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Proof. We have(
Γ5v

l
λi

)H
vrλj =

1

λ̄i

(
Γ5v

l
λi

)H
DWv

r
λj

and
(
Γ5v

l
λi

)H
vrλj =

1

λj

(
Γ5v

l
λi

)H
DWv

r
λj
.

Hence the difference of these two equations is given by

0 =

(
1

λ̄i
− 1

λj

)(
Γ5v

l
λi

)H
DWv

r
λj
.

Remark 3.9. Any vector w ∈ Cm that fulfills (Γ5w)H w = 0 is said to
have zero chiral weight. Due to Lemma 3.8 all right and left eigenvectors
eigenvalues λ ∈ C \ R of DW have zero chiral weight. Further we observe
that we have for any eigenvector v of DW with zero chiral weight

0 = (Γ5v)H DWv = vH (Γ5DW ) v.

That is, their inner product with the hermitian indefinite operator Γ5DW is
zero.

Furthermore, we find a relation between the singular values of DW and
the eigenvalues of the hermitian operator (Γ5DW ).

Lemma 3.10. If a unitary eigendecomposition of (Γ5DW ) is given by

(Γ5DW )Z = ZΛ, (3.5)

a singular value decompostion of DW is given by

DWV = UΣ, with V = Z and U = Γ5Zsign(Λ).

Proof. Multiplication of (3.5) by Γ5 yields

DWZ = Γ5ZΛ.

As Z and Γ5Z are unitary and sign(Λ)Λ > 0 we have the singular decompo-
sition

DWZ = Γ5Zsign(Λ)Λ.

The Wilson formulation of the Lattice Dirac operator is not the only for-
mulation in Lattice Quantum Chromodynamics, but it plays a crucial role
in other formulations as well (e.g., the chiral domain wall and overlap for-
mulations). Both systems can be reduced to solutions of the aforementioned
Wilson formulation. As such, we focus on this formulation.
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3.1.2 Quantum Electrodynamics

In the development of algorithms in Lattice Gauge Theory, the operators
arising in Quantum Electrodynamics (QED) are oftentimes used as a first
test-bed, because of the similar spectral behavior and symmetries.

Schwinger model

The Dirac operator of QED acts on a d = 2-dimensional euclidean space and
2 spin components, with the generators of the Clifford-Algebra now given by
the so-called Pauli-matrices

γ1 = σ1 =

(
1

1

)
and γ2 = σ2 =

(
i

−i

)
. (3.6)

The gauge field Aµ of QED in the Schwinger formulation is given as a con-
tinuous real-valued function, i.e., the gauge configurations U are a subset of
the complex numbers with modulus one. Thus the Dirac operator of QED
is a 2× 2 matrix of first order partial differential operators.

With the notion of finite covariant differences given in Definition 3.3, we
can write the Wilson-stabilized discretization of the Schwinger model for a
given Gauge configuration U of U(1).

Definition 3.11. The Wilson-Schwinger operator SW is defined by

SW =
1

2

(
2∑

µ=1

σµ ⊗ (∂µ + ∂µ)− ∂µ∂µ
)
.

As before, a mass term that reflects certain physical properties of the
fermions involved is added to the Wilson-Schwinger operator. Thus, when-
ever we talk about the Wilson-Schwinger operator SW we think of the massive
operator SW +mI, for a given mass m.

Spectral properties of the Wilson-Schwinger operator

The discussion of spectral properties of the Wilson-Schwinger operator is
mostly based on the σ3-symmetry of the operator. Analogously, to the for-
mulation in QCD we define σ3 by

σ3 = iσ1σ2 =

(
1
−1

)
.

Hence, we have the projections

I − σ3

2
=

(
1

)
and

I + σ3

2
=

(
1

)
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that project any spinor ψ onto its left- and right-handed components, respec-
tively.

The continuum Schwinger operator S satisfies

σ3S∗ = Sσ3.

Again, this symmetry carries over to the Wilson formulation. That is, with

Σ3 = σ3 ⊗ IN2 =

(
I 0
0 −I

)
∈ C2N2×2N2

we obtain
Σ3S

H
W = SWΣ3.

Using this symmetry, we find important properties of eigenvalues and eigen-
vectors of the Wilson-Schwinger operator SW that help us in the development
of an adaptive algebraic multigrid method for this system.

As before we denote the right eigenvector to the eigenvalue λ by vrλ and
the corresponding left eigenvector by vlλ.

Lemma 3.12. The eigenvalues λ of SW are either real or appear in complex
conjugate pairs.

Proof. Analogously to Lemma 3.6

Lemma 3.13. For any right eigenvector v with eigenvalue λ, i.e., fulfill-
ing SWv = λv, the vector (Σ3v) is the left eigenvector to the eigenvalue λ̄
satisfying

(Σ3v)H SW = λ̄ (Σ3v)H .

Proof. Analogously to Lemma 3.7.

Combining Lemmas 3.12 and 3.13 we have eigentriples for any pair of
complex conjugate eigenvalues(

λ, vrλ, v
l
λ

)
and

(
λ̄, vrλ̄, v

l
λ̄

)
that satisfy

vlλ = Σ3v
r
λ̄ and vlλ̄ = Σ3v

r
λ.

Due to this fact the bi-orthogonality of the right and left eigenvectors of
the Wilson-Schwinger operator SW are given as follows.

Lemma 3.14. Let (λi, v
r
λi
, vlλi) denote the eigentriples of SW . Then we have

with cij ∈ C \ {0}, (
Σ3v

l
λi

)H
vrλj =

{
cij, if λi = λ̄j
0, else

.
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Proof. Analogously to Lemma 3.8.

Remark 3.15. Any vectors w ∈ Cm that fulfill (Σ3w)H w = 0 are said to
have zero chiral weight. Due to Lemma 3.14 all right and left eigenvectors to
complex eigenvalues of SW have zero chiral weight. Further we observe that
we have for any eigenvector v of SW with zero chiral weight

0 = (Σ3v)H SWv = vH (Σ3SW ) v.

That is, their inner product with the hermitian indefinite operator Σ3SW is
zero.

Furthermore, we find a relation between the singular values of SW and
the eigenvalues of the hermitian operator (Σ3SW ).

Lemma 3.16. If a unitary eigendecomposition of (Σ3SW ) is given by

(Σ3SW )Z = ZΛ,

a singular value decompostion of SW is given by

SWV = UΣ, with V = Z and U = Σ3Zsign(Λ).

Proof. Analogously to Lemma 3.10.

In Figure 3.2 the eigenvalue distributions of Σ3SW and SW are shown first
for the free case, i.e., with a constant gauge configuration U = {Ux

µ}, with
Ux
µ = 1 for all µ and x on a 32× 32 and for a physical gauge configuration U

at temperature β = 5. In Figure 3.3 we present the entry-wise modulus of the
spin-components s1, s2 of the eigenvectors vλ, vλ̄ associated to the smallest, in
modulus, complex conjugate pair of eigenvalues λ, λ̄ of the Wilson-Schwinger
operator on a 64×64 lattice with a gauge configuration at temperature β = 5.

3.1.3 The Gauge Laplace operator

The Gauge Laplace operator is the discrete covariant cousin of the well-
known Laplace operator and can be defined accordingly on the lattice using
finite covariant differences.

Definition 3.17. For any gauge configuration U = {Ux
µ} ⊂ SU(n) define

A(U) =
∑
µ

∂̂µ∂̂
µ.
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(a) U = {Uxµ}, with Uxµ = 1
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Figure 3.2: Eigenvalue distributions of Σ3SW and SW for a constant gauge con-
figuration U = {Uxµ}, with Uxµ = 1 in 3.2(a) and a physical gauge configuration U
at temperature β = 5 in 3.2(b) on a 32× 32 lattice.

The resulting operator A(U) is called the Gauge Laplace operator and re-
sembles the 5-point discretization of ∆ with the links replaced by the discrete
gauge configuration U in SU(n). In the special case of U ⊂ U(1) we obtain
that the 5-point finite difference discretization of ∆ equals the Gauge Laplace
operator A(U) in the case Ux

µ = 1 for all x, µ. That is, in case there is no
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Figure 3.3: Entry-wise modulus of the spin components s1, s2 of the eigenvectors
corresponding to the smallest, in modulus, pair of complex conjugate eigenvalues
of a Wilson-Schwinger operator on a 64 × 64 grid with a gauge configuration at
temperature β = 5.

background gauge field Aµ. We further denote this special case by A(U0).

The Gauge Laplace operator is yet another simplification of the Wilson-
Dirac and Wilson-Schwinger operator that is used to test methods for either
one of these operators. In order to understand the role of the Gauge Laplace
operator we observe that the block-diagonal of the Wilson-Dirac operator
is given by 4 copies of the Gauge Laplace operator A(U), with U ⊂ SU(3).
Using the basis for the Clifford-Algebra given in (3.3) and denoting the spatial
directions by x1, . . . , x4, permutation with respect to the spin components
1, . . . , 4 yields

DWψ =


A(U) i∂̂x3 + ∂̂x4 i∂̂x1 − ∂̂x2

A(U) i∂̂x1 + ∂̂x2 −i∂̂x3 + ∂̂x4

i∂̂x3 − ∂̂x4 i∂̂x1 − ∂̂x2 A(U)

i∂̂x1 + ∂̂x2 −i∂̂x3 − ∂̂x4 A(U)



ψ1

ψ2

ψ3

ψ4

 .

A similar reordering can be found for the Wilson-Schwinger operator. With
a gauge configuration U ⊂ U(1), using the Pauli matrices (3.6) in original
numbering as generators for the algebra and denoting the space directions
by x, y, we obtain by permutation with respect to the spin components 1, 2,

SWψ =

 A(U)
(
∂̂x + i∂̂y

)
−
(
∂̂x − i∂̂y

)
A(U)

(ψ1

ψ2

)
.

Motivated by this observation we start the development of algorithms for
Quantum Dynamics with the Gauge Laplace operator.
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Spectral properties of the Gauge Laplace operator

By Definition 3.17 the Gauge Laplace operator A(U) on the lattice, associated
with the background gauge field configuration U is hermitian, i.e.,

(A(U))H = A(U).

Hence, the spectrum of the operator is real. For masses m > mc, where
mc denotes the smallest eigenvalue of A(U) the Gauge Laplace operator is
positive definite.

An important issue to consider when developing solvers for the Gauge
Laplace system is the local character of its algebraically smooth error, i.e.,
its near-kernel. Figure 3.4 contains plots of the modulus, real and imaginary
part, of the eigenvector of the smallest eigenvalue of a Gauge Laplace operator

Figure 3.4: Modulus, real and imaginary part of the eigenvector to the smallest
eigenvalue of A(U) for gauge configuration U at temperature β = 5 on a 64 × 64
lattice.

Figure 3.5: Modulus, real and imaginary part of a random complex vector (N(0, 1)
distributed) after 100 Gauss-Seidel iterations with right-hand-side zero for a Gauge
Laplace operator A(U) on a 64× 64 lattice with a gauge configuration U at tem-
perature β = 5.
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A(U) on a 64×64 lattice and a gauge configuration U at temperature β = 5.
In Figure 3.5 we provide a plot of an initially random (N(0, 1) distributed)
vector that we smoothed using 100 Gauss-Seidel relaxations for a Gauge
Laplace operator A(U) on a 64 × 64 lattice with a gauge configuration at
temperature β = 5. Clearly, we see that due to the random background gauge
field, the eigenvectors associated with small eigenvalues tend to be locally
supported and highly oscillatory, both properties are challenging problems
in the development of algebraic multigrid methods for such systems.

3.2 Markov Chains

Another application under consideration in this thesis is the so-called class
of Markov chain problems. The origin of these problems is the evolution of
stochastic processes in time.

Definition 3.18. A stochastic process is called a finite homogeneous Markov
chain if it has m ∈ N states s1, . . . , sm and associated transition probabilities
p(si → sj) ∈ [0, 1] which are time independent.

For sake of simplicity we say Markov chain instead of finite homogeneous
Markov chain in the course of this thesis. Time independence means that
the transition probabilities p(si → sj) do not change during the evolution of
the stochastic process.

Definition 3.19. A vector x ∈ Rm is called a probability distribution vector
if

xi ∈ [0, 1] and ‖x‖1 = 1.

In the Markov chain context the component i in a probability distribution
x is the probability of the Markov chain to be in state si.

Definition 3.20. Let a Markov chain with states s1, . . . , sm and transition
probabilities p(si → sj) be given. We define the transition matrix A =
(aij)ij ∈ [0, 1]N×N by

aij = p(sj → si).

Due to the fact that
∑m

j=1 p(si → sj) = 1 any transition matrix has column-
sum 1, i.e., it is column stochastic.

With the equivalent description of the Markov chain process by its transi-
tion matrix A one can write down the time evolution of the process. Given a
probability distribution xk at time step k we get the probability distribution
at time step k + 1 by

xk+1 = Axk.
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Definition 3.21. The probability distribution x is called the steady-state
vector of the Markov chain given by its transition matrix A if

Ax = x.

Hence, steady-state vectors correspond to eigenvectors of the transition matrix
with eigenvalue one.

In order to discuss existence and uniqueness of steady-state vectors of
Markov chains we need some further definitions and notations.

Definition 3.22. A vector is x ∈ Rm is called non-negative if

xi ≥ 0, i = 1, . . . ,m.

Analogously a matrix A ∈ Rm×m is called non-negative if

aij ≥ 0, i, j = 1, . . . ,m.

To simplify notation we write x ≥ 0 and A ≥ 0, respectively.

Definition 3.23. The spectral radius ρ(A) of the matrix A ∈ Rm×m is defined
by

ρ(A) = max
1≤i≤m

|λi|,

where λi are the eigenvalues of A.

Definition 3.24. A matrix A ∈ Rm×m is called reducible if there exists a
permutation π ∈ Rm×m of {1, . . . ,m} such that

πAπT =

(
A11 0
A12 A22

)
.

Otherwise it is called irreducible.

The transition matrix A of a Markov chain is irreducible if no probability
sink exists, i.e., there exists a path in the corresponding directed graph of
the matrix from each state si to any other state sj.

Theorem 3.25. Let A ≥ 0 be irreducible. Then ρ(A) is an eigenvalue of
A and there exists a unique (up to scaling) right eigenvector x > 0 with
Ax = ρ(A)x.

Proof. See for example [BP94, page 27].



64 CHAPTER 3. APPLICATIONS

Corollary 3.26. For any Markov chain with an irreducible transition matrix
A, there exists a unique steady-state vector x > 0.

Proof. By Definition 3.20 we have A ≥ 0. Furthermore, as A is column-
stochastic we have ρ(A) = 1. Due to Theorem 3.25 a unique steady-state
vector x with Ax = x exists.

We present an algorithm in chapter 5 based on the bootstrap algebraic
multigrid approach developed in chapter 4 that is able to compute steady-
state solutions of Markov chain problems. The Markov chain problem is of
particular interest as it is not only a first non-symmetric test for the algo-
rithms we develop, but also requires to resolve a certain error component up
to arbitrary accuracy in the multigrid hierarchy. This is an important feature
in the construction of black-box multigrid methods for singular matrices.



Chapter 4

General Framework for AMG

As discussed in chapter 2, algebraic multigrid methods construct a multi-
grid hierarchy using a setup algorithm. The focus of this chapter is on the
derivation of robust multigrid setup algorithms based on the adaptive def-
initions of interpolation and restriction operators. In section 4.1, we first
present a modified version of the adaptive reduction-based algebraic multi-
grid approach, and develop a generalized two-grid convergence theory for
this method that allows us to handle complex-valued systems. Although, the
work on adaptive reduction-based algebraic multigrid leads to several new
results, the results shown in section 4.1.2 suggest that the proposed method
has limited success in treating all challenges of the systems arising in Lattice
Gauge Theory. Hence, we consider developing a much more generally appli-
cable method in a bootstrap algebraic multigrid framework. This includes
the introduction and analysis of a least squares based definition of interpo-
lation in section 4.2 and the description of a collection of adaptive multigrid
techniques in section 4.3 that can be used to further improve the performance
of algebraic multigrid methods. Since the main focus of this chapter is on the
development of interpolation in algebraic multigrid, we postpone the discus-
sion of smoothers and algebraic coarsening to chapter 5, where we propose
algorithms based on the adaptive techniques developed in this chapter for
the problems outlined in chapter 3. Note that, although the emphasis of this
work is on problems outlined in chapter 3, the ideas developed in this chapter
yield general tools for algebraic multigrid setup algorithms. The individual
newly devised or refined adaptive techniques are introduced in a modular
way.

In recent years, significant effort has been invested on improving the
range of applicability of black-box multigrid techniques. There are many
approaches to achieving robust multigrid solvers for wide classes of matrices.
Adaptive multigrid methods [BFM+04, BFM+06, MMM06] offer many ad-

65
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vantages because of the efficiency they inherit from the algebraic multigrid
approaches on which they are based [RS87, VMB96, VBM01]. The key idea
behind adaptive multigrid algorithms is to experimentally use the multigrid
smoother itself to expose those error components that must be accurately ac-
counted for in the coarse-grid correction process, the so-called “algebraically
smooth” errors that the given smoother is slow to reduce. In its simplest
form, this amounts to simply iterating many times with a fixed stationary
iterative (relaxation) method on the homogeneous problem, Au = 0, with a
random initial guess. The dominant error left after many relaxation sweeps
must, by definition, reflect the algebraically smooth error components of the
problem. These error components can then be built into the coarse-grid cor-
rection process by introducing them into the range of interpolation, e.g., by
means of the smoothed aggregation framework introduced in section 2.6. In
practice, exposing these error components by simple relaxation alone is very
inefficient and, so, the process is accelerated by a multilevel relaxation pro-
cess that exposes the local and global characteristics of these slow-to-converge
error components simultaneously.

In what follows, we first introduce a variant of adaptive reduction-based
algebraic multigrid, as devised in [MMM06]. Then a generalized two-grid
convergence proof is given for this new formulation and the capabilities and
limitations of this approach for the application to the Gauge Laplace operator
of Lattice Gauge Theory, as introduced in section 3.1.3, are discussed in
section 4.1.2.

Next, we present a least squares based formulation of interpolation in
section 4.2, first mentioned by Brandt in [Bra02]. For this formulation, we
present its connection to a least squares formulation in element-free AMG�e,
proposed by Falgout in [Fal02], which generalizes least squares interpolation
in an AMG�e framework. We further analyze the convergence theory for least
squares interpolation as rigorous as possible to date.

In addition, we derive bootstrap techniques in section 4.3 that are mu-
tually beneficial to the least squares interpolation, but not limited to this
approach. These techniques allow for a multiscale setup process based on
coarsest grid eigensolves and lead to an observation that allows treatment of
the misfit in interpolation of eigenvectors corresponding to small eigenvalues
on the coarsest grid, where they can be represented.

A thorough study of algorithms composed of the adaptive techniques
described in this chapter is given in chapter 5.
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4.1 Adaptive Reduction-based AMG Inter-

polation

The reduction-based algebraic multigrid (AMGr) approach, introduced in
section 2.5, can be used to define an adaptive reduction-based method, as
discussed in [MMM06].

Recall that the reduction-based framework, assumes that a splitting of
variables Ω = F ∪ C is given, and then tries to approximate the “ideal”
interpolation (2.38) by replacing A−1

ff with a sparse approximation to it.
Adaptivity in this framework can be implemented by enforcing the sparse
approximation to fulfill certain constraints, i.e., given a known or computed
representative e of algebraically smooth error, we define Ã−1

ff , such that

Ã−1
ffAfcec = A−1

ffAfcec. (4.1)

In cases where algebraically smooth error can be represented by e = 1,
the constant vector, it is easily seen that for diagonally dominant matri-
ces with constant diagonal, D = diag(A) fulfills the assumptions of The-
orem 2.40 guaranteeing two-grid convergence of the approach when using
F -relaxation (2.40) with D−1

ff for this particular approximation of A−1
ff .

However, the assumptions made in Theorem 2.40 were focused on only
satisfying (2.41). In a more general setting without any assumptions on the
nature of the representatives of algebraically smooth error, enforcing (2.42)
appears to be of equal importance. Consider for example a hermitian positive
definite (hpd) operator that is diagonally dominant with a constant diagonal,
but its eigenvector corresponding to the smallest eigenvalue is not well rep-
resented by diag(A) (e.g., Gauge Laplace operator A(U)). Then, it is easily
seen that for a complex valued representative e we obtain a complex valued
approximation of Aff if defining the approximation by matching the action
of A−1

ff on this representative as in (4.1). In this case assumption (2.42) is
meaningless.

Hence, there are several reasons why one may want to replace the choice
of one approximation D to Aff for both, interpolation and F -relaxation by
two different approximations Ds and DP . Then F -relaxation is given by

M = ω

(
D−1
s 0
0 0

)
and interpolation by

P =

(
−D−1

P Afc
I

)
.
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In what follows, we present a modified convergence analysis for this gen-
eralization of the adaptive reduction-based algebraic multigrid approach that
uses DP and Ds.

The following analysis uses the observation made in section 2.5 that the
Galerkin operator with ideal interpolation P corresponds to the Schur com-
plement Scc(A). In what follows, we relate the reduction-based definition
of interpolation to the ideal interpolation via the relation of their Galerkin
operators.

Proposition 4.1. Let P be defined as in (2.38) with A given in the same

permuted block-notation. Then for F =

(
I
0

)
we have

R (P )⊥A R (F ) .

Proof. For any x, y ∈ Cm we have

〈Py, Fx〉A = 〈APy, Fx〉2

= 〈
(

0
Scc(A)

)
y, Fx〉2

= 〈
(

0
Scc(A)

)
y,

(
I
0

)
x〉2 = 0.

As we know that any matrix of the 2 × 2 block form

(
I W
0 I

)
has full

rank, we are able to split Cm into the direct sum

V = R (P )⊕R (F ) .

Definition 4.2 (Strengthened Cauchy-Bunyakowski-Schwarz Inequality).
Given a direct decomposition of V = Cm into V1 ⊕ V2 = V and a hermitian
positive definite linear operator A : V → V , we define γ2 ∈ [0, 1) as the
smallest constant such that

〈v1, v2〉2A ≤ γ2‖v1‖2
A‖v2‖2

A, v1 ∈ V1, v2 ∈ V2. (4.2)

The constant γ2 in Definition 4.2 can be interpreted as the cosine of the
abstract angle between the subspaces V1 and V2. Furthermore, we can relate
γ2 to the spectral equivalence of Ac = PHAP for an arbitrary interpolation
operator P and the Schur complement Scc(A) of Definition 2.39 using the fact
that the Galerkin operator Ac of ideal interpolation is the Schur complement
Scc(A).

For this purpose we first recall a variational property that is fulfilled by
the Schur complement Scc(A) (cf. [Axe94, Theorem 3.8]).
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Proposition 4.3. Let x =

(
xf
xc

)
. The Schur complement Scc(A) fulfills the

variational principle

〈Scc(A)xc, xc〉2 = inf
xf
〈Ax, x〉2.

Proof. As 〈Ax, x〉2 ≥ 0 for all x ∈ Cm we have

〈Affxf , xf〉2 = 〈A
(
xf
0

)
,

(
xf
0

)
〉2 ≥ 0.

Thus we get

〈Ax, x〉2 = 〈
(
Affxf + Afcxc
Acfxf + Accxc

)
,

(
xf
xc

)
〉2

= 〈Aff
(
xf + A−1

ffAfcxc
)
, xf + A−1

ffAfcxc〉2 + 〈Scc(A)xc, xc〉2
≥ 〈Scc(A)xc, xc〉2.

Now, the infimum is attained for xf = −A−1
ffAfcxc which can also be seen

as a harmonic extension from C-variables to F -variables coinciding with ideal
interpolation.

Theorem 4.4. Let Scc(A) be defined as in (2.39) and γ2 given by (4.2) for
V1 = R (F ) and V2 = R (P ). Then we have(

1− γ2
)
PHAP ≤ Scc(A) ≤ PHAP.

Proof. Given the subspaces R (F ) and R (P ) we can write the Schur com-
plement as

〈Scc(A)xc, xc〉2 = inf
w
〈Fw + Px, Fw + Px〉A.

Thus, assuming that (4.2) is fulfilled with γ ∈ R and writing PHAP = Ac,
we obtain for any real t

〈Scc(A)x, x〉2 = inf
w

inf
t
〈tFw + Px, tFw + Px〉2

= inf
w

(
〈Acx, x〉2 −

〈Fw, Px〉A
〈Fw, Fw〉A

)
≥ inf

w

(
〈Acx, x〉2 − γ2〈Acx, x〉2

)
=
(
1− γ2

)
〈Acx, x〉2.
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With these observations we can bound ‖Etg‖A by means of Theorem 2.27.

Theorem 4.5. Assume that interpolation P is defined, such that there exists
γ2 ∈ [0, 1) with (

1− γ2
)
PHAP ≤ Scc(A) ≤ Ac.

Furthermore, assume that there exist c1, c2 ∈ R such that the hermitian F-
relaxation Mff fulfills

c1Mff ≤ Aff ≤ c2Mff . (4.3)

Then, we have

‖Etg‖A ≤ 1− 1− γ2

µ
, µ = max

{
1

c1 (2− c1)
,

1

c2 (2− c2)

}
.

Proof. First, we observe that

c1Mff ≤ Aff ≤ c2Mff ⇒ c1I ≤M
−1/2
ff AffM

−1/2
ff ≤ c2I.

This in turn gives (1 − c2)I ≤ I −M−1/2
ff AffM

−1/2
ff ≤ (1 − c1)I. It follows

that

ρ(I−M−1
ff Aff ) = ρ(I−M−1/2

ff AffM
−1/2
ff ) ≤ max{|1−c1|, |c2−1|} < 1, (4.4)

showing that Mff defines a convergent smoother for Aff . This follows, since
I −MffAff is selfadjoint in 〈., .〉Aff , implying

ρ(I −MffAff ) = ‖I −MffAff‖Aff .

In addition by using the identity of Theorem 2.27 (cf. [FVZ05, Theorem 4.2])
we obtain

‖Etg‖A ≤ 1− 1

K
, K ≤ 1

1− γ2
sup
w 6=0

〈M̃ffw,w〉2
〈Affw,w〉2

, (4.5)

with M̃ff = MH
ff

(
MH

ff +Mff − Aff
)−1

Mff denoting the symmetrized ver-

sion of Mff . As supw 6=0
wH fMsw
wHAffw

is the smallest α for which M̃ff ≤ αAff we

obtain,

M̃ff ≤ α̃Aff ⇐⇒Mff (2Mff − Aff )−1Mff ≤ α̃Aff

⇐⇒ A
− 1

2
ff MffA

− 1
2

ff

(
2A
− 1

2
ff MffA

− 1
2

ff − I
)−1

A
− 1

2
ff MffA

− 1
2

ff ≤ α̃I.
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From (4.3) we have 1
c2
I ≤ A

− 1
2

ff MffA
− 1

2
ff ≤ 1

c1
I, thus,

M̃ff ≤ α̃Aff ⇐⇒ α̃ ≥ max
t∈

h
1
c2
, 1
c1

i t2

2t− 1
. (4.6)

Note, that 1
c2
> 1

2
by (4.4). Maximizing (4.6) with respect to t, we see that

M̃ff ≤ α̃Aff ⇐⇒ α̃ ≥ max

(
1

c1 (2− c1)
,

1

c2 (2− c2)

)
.

Thus,

sup
w

wHM̃ffw

wHAffw
= max

(
1

c1 (2− c1)
,

1

c2 (2− c2)

)
= α (4.7)

and we get

K ≤ α

(1− γ2)
.

Combining this with (4.5) we finally obtain

‖Etg‖A ≤ 1− 1− γ2

µ
.

Note, that assumption (4.3) on the F -smoother means that it is a conver-
gent iteration on the F -equations and that there always exists a γ2 ∈ [0, 1)
due to Theorem 4.4. Hence, we can guarantee two-grid convergence in this
framework. In the case that more specific knowledge about the spectral rela-
tionship of Ds and Aff are given, we can minimize µ and get a more precise
bound on two-grid convergence.

Corollary 4.6. Let the hermitian and positive-definite matrix Ds be given
and the assumptions of Theorem 4.5 be satisfied. Further, assume that there
are positive constants, λ and Λ, such that λDs ≤ Aff ≤ ΛDs. Define the
smoothing operator M as

M = ω

(
D−1
s 0
0 0

)
, ω =

2

Λ + λ
.

Then,

‖Etg‖A ≤ 1− 4λΛ

(Λ + λ)2

(
1− γ2

)
.
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Proof. By the definition of M we have c1 = 2λ
Λ+λ

and c2 = 2Λ
Λ+λ

, such that
with (4.7) we obtain

1

α
= c1 (2− c1) = c1c2 =

4λΛ

(Λ + λ)2 .

Utilizing the analysis of [FVZ05], we can also derive an estimate for the
convergence of a two-grid method that uses full smoothing, i.e., smoothing
on both F and C variable sets, rather than smoothing only on F variables.
Hence, this result also applies to Jacobi or Gauss-Seidel smoothing, which
are of interest in a practical implementation of this method for hermitian
positive definite operators A. In general, full smoothing is expected to yield
faster convergence of the resulting method over using mere F -relaxation.

To analyze this case, consider a two-grid method given by its error prop-
agator,

Etg = I −B−1
tg A.

Generalizing the above approach, we can interpret the two-grid method with
full smoothing in the same framework as it was used for the analysis of the
F -smoothing case. Instead of using a smoother Mff that fulfills

‖I −M−1
ff Aff‖Aff ≤ 1,

we consider a smoother M , such that

‖I −M−1A‖A ≤ 1.

The two-grid preconditioner B−1
tg can than be written as

B−1
tg =

[
I P

]
B̂−1
tg

[
I
PH

]
with

B̂−1
tg =

[
I −M−HAP
0 I

] [
M̄−1 0

0 A−1
c

] [
I 0

−PHAM−1 I

]
.

Assuming that M̃ gives a convergent smoother for A with

A ≤ M̃ ≤ κA

and that P is chosen such that

PHAP ≤ νScc(A),
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we obtain by [FVZ05, Theorem 5.1] the bound

‖Etg‖A ≤ 1− 1

νκ
.

With the two-grid analysis complete, we proceed with a description of the
adaptivity used in the modified reduction-based algebraic multigrid context.

4.1.1 Adaptivity in the modified AMGr framework

As proposed in [MMM06], we use an adaptive scheme to define DP and,
with it the interpolation operator, PD. In order to keep the operators in the
multigrid hierarchy sparse, we choose DP to be diagonal. More specifically,
we choose DP such that D−1

P matches the action of A−1
ff on a given vector

u =

(
uf
uc

)
,

which represents algebraically smooth error, i.e., we require

−D−1
P Afcuc = uf = −A−1

ffAfcuc

for a given uc. The key issue to consider when attempting to design an effi-
cient adaptive AMGr solver in this setting, is then reduced to development
of an efficient scheme for computing the prototype, u, used to define DP .
The classical adaptive methods [BFM+04, BFM+05, BFM+06] use repeated
application of the given relaxation scheme (or the resulting solver) to com-
pute (or improve) the prototype. In general, the two main drawbacks of this
approach are that, first, there is no theoretically founded stopping criterion
available for such an approach that guarantees its optimality; and, second,
the number of setup iterations in such a classical adaptive process to com-
pute a sufficiently accurate approximation of the prototype depends on the
condition number of the matrix, i.e., the number of required setup iterations
increases if the condition number increases, e.g., by increasing the number of
variables in the discretization.

For the Gauge Laplace operators, the smallest eigenvector is often not
a good local representative of the algebraically smooth error, which further
compounds the difficulty of developing an adaptive scheme for this system.
Thus, instead of the above αAMGr type of interpolation that is built to fit the
smallest eigenvector, we consider developing a different approach that rather
fits an appropriate linear combination of eigenvectors to small eigenvalues.
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Figure 4.1: GA before and after the “odd-even” reduction.

4.1.2 Numerical Results

In this section, we show the capabilities and limitations of the adaptive
reduction-based algebraic multigrid approach for solving the Gauge Laplace
systems described in chapter 3. Most of the results can also be found
in [BFKM09].

As we limit the discussion in what follows to 5-point discretizations of the
systems at hand, we introduce an “odd-even” reduction preprocessing step
that reduces the number of variables by a factor of 2 yielding a 9-point Schur
complement operator. Numbering the variables on the grid in an odd-even
fashion we can write the permuted A as

A =

(
I Aoe
Aeo I

)
.

The odd-even reduced operator Aoo is then given as the exact Schur comple-
ment of this variable splitting

Aoo = Soo(A) = I − AoeAeo.

The transition of sparsity from A to Aoo is illustrated in Figure 4.1. Here
circles with the same color are related to their odd or even numbering on
the grid, respectively. Note, that given a solution for the odd-even reduced
system Aoo, a solution for the original system A is known. For our numer-
ical tests, we consider Gauge Laplace operators of varying size, mass, and
temperature to test the reduction-based algebraic multigrid method. As a
benchmark for later tests of our method applied to the Gauge Laplace sys-
tem, we first consider the β = ∞ case with Dirichlet boundary conditions,
which gives the standard 5-point discrete shifted-Laplace operator,

L = −∆− (2π2 −m)I,
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obtained using a central-difference discretization. Here, the eigenvector asso-
ciated with the smallest eigenvalue is known and has global support; specif-
ically, this vector is the restriction of sin(πx) sin(πy) to the grid points, and
the smallest eigenvalue can be determined by the choice of shift, m. This
problem was a first test case in the development of the original adaptive
algebraic multigrid setup process [Mac04]. To illustrate the performance of
the original adaptive process for such problems, we consider this problem
with the shift chosen so that the system becomes increasingly ill-conditioned
for fixed problem sizes. As the numerical results provided in Table 4.1 illus-
trate, such an adaptive setup procedure produces an effective solver for this
model problem provided that a sufficient amount of work is done to expose
the eigenvector associated with the smallest eigenvalue of the system matrix
(i.e., a sufficient amount of work is done to ensure that the weak approxi-
mation property [Bra86, MR82] is satisfied by P , built using this computed
vector for the given shift).

PPPPPPPPPnrel

λmin 10−1 10−2 10−3 10−4 10−5 10−6

5 .06 .02 .04 .37 .85 .98
25 .07 .02 .05 .05 .38 .86
50 .07 .02 .05 .05 .17 .66
100 .07 .02 .06 .06 .06 .16
500 .07 .02 .06 .06 .06 .06

exact .07 .02 .06 .06 .06 .06

Table 4.1: Odd-even reduced 5-pt discretization of the Laplace operator with
Dirichlet boundary conditions shifted to a fixed smallest eigenvalue. V(2, 2)-cycle
asymptotic convergence rates with Gauss-Seidel smoother, using Gauss-Seidel re-
laxation applied to a positive random initial guess in the adaptive setup phase.

Next, we report the results of this original adaptive setup applied to a
highly disordered system. The numerical results in Table 4.2 correspond to
this scheme applied to a Gauge Laplace operators with randomly configured
gauge field. Here, we take β = 5 and N = 64 and again vary the minimal
eigenvalue and number of relaxations used to approximate the eigenvector
corresponding to the smallest eigenvalue of the fine-level system. As the nu-
merical results in Table 4.2 demonstrate, in contrast to the β =∞ case, here
increasing the number of relaxations used in the adaptive process eventu-
ally leads to degradation in performance of the resulting solver based on this
single vector. Further, we see that this degradation is more severe in cases
where the minimal eigenvalue is O(10−3) or O(10−4). This is consistent in all
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tests, except for the last column where the minimal eigenvalue is shifted to
be O(10−6). In this case, using the exact eigenvector to the smallest eigen-
values does provide the best overall solver. This is to be expected as the
weak approximation property implies that P must be able to reproduce this
vector very accurately. Due to the local support of the eigenvectors to the
smallest eigenvalues for this problem we see that using the minimal eigen-
vector is, in general, a suboptimal choice for the vector in the adaptive setup
scheme. While each of these vectors is supported locally, their support does
not, in general, overlap exactly. In such cases, a linear combination of these
vectors may give a better approximation to the slow-to-converge vectors of
the system matrix.

To test this approach, we consider an “artificial” adaptive process that
uses a linear combination of the eigenvectors associated with the k smallest
eigenvalues of the system matrix, weighted by the reciprocal of their eigenval-
ues, as the vector to be fit in the adaptive setup phase. We choose k = 10 as
this gives good performance in our numerical tests. Results for this approach
are shown in Table 4.2 in the line labeled “LC”. Here, we see that the perfor-
mance of the stand alone MG solver based on this approach is not, in general,
better than that of the solver based on P defined using a prototype computed
using relaxation. As the eigenvectors to the smallest eigenvalues can be local,
using relaxation (or a linear combination of the eigenvectors to the ten small-
est eigenvalues computed exactly) does not produce an AMGr-style P that
satisfies the weak approximation property [Bra86, MR82], which requires
accuracy in the computed prototype proportional to its Rayleigh quotient.
However, both methods produce a P that leads to an effective variational
MG preconditioner. The results in Table 4.3 are for various problem sizes
and choices of β. Here, P is defined using the prototype computed by using
relaxation and also by taking a linear combination of the eigenvectors to the
ten smallest eigenvalues. As before, we see that both solvers perform well as
a preconditioner for CG. Overall, our proposed AMGr-style method, based
on a single prototype, is not expected to produce an optimal stand-alone
solver for these systems. Our numerical results suggest that the approach
does, however, have potential for dramatically improving CG performance
for cases where the more expensive multiple-vector type adaptive methods
(e.g., αSA) are not applicable. Even though the results for the adaptive
reduction-based algebraic multigrid approach do not look bad for the Gauge
Laplace system, especially as a preconditioner for a Krylov subspace iteration
like CG, we felt that the nature of its adaptivity does not allow us to cope
with the difficulties encountered in these problems with random background
gauge fields. Herein especially the outlook on even more complex systems
like the Wilson-Schwinger of QED and Wilson operator of Lattice-QCD con-
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nrel \ λmin 10−1 10−2 10−3 10−4 10−6

5 .4 (9) .79 (15) .97 (19) .99 (21) .99 (25)
25 .32 (9) .53 (11) .83 (14) .98 (15) .99 (18)
50 .31 (8) .55 (11) .72 (12) .95 (14) .99 (17)
100 .28 (8) .52 (10) .65 (13) .9 (14) .99 (17)
300 .32 (8) .48 (10) .53 (10) .54 (10) .89 (13)
500 .33 (8) .5 (10) .6 (11) .6 (11) .62 (11)

exact .31 (8) .53 (10) .61 (12) .61 (11) .62 (12)
LC .35 (8) .43 (9) .67 (11) .67 (12) .62 (12)
CG * (44) * (75) * (107) * (231) * (435)

Table 4.2: Odd-even reduced Gauge Laplace operator with periodic boundary con-
ditions shifted to a fixed smallest eigenvalue. V(2, 2)-cycle asymptotic convergence
rates with Gauss-Seidel smoother, using Gauss-Seidel applied to a complex-valued
random initial guess in the adaptive setup phase. In parentheses, we report the
iteration count for preconditioned CG to reduce the initial residual by a relative
factor of 108. For the line labeled “LC”, a linear combination of the eigenvectors
associated with the ten smallest eigenvalues of the system matrix, weighted by
the reciprocal of their eigenvalues, as the vector to be fit in the adaptive setup
phase. The line labeled CG contains iteration counts of the Conjugate Gradient
method applied to this system as a stand-alone solver; again the (relative) residual
is reduced to 10−8 in these tests.

HH
HHHHβ

N
32 64 128 256

1 11 / 12 10 / 14 15 / 15 11 / 14
5 12 / 15 11/ 15 15 / 15 14 / 16
10 7 / 11 13 / 15 17 / 16 19 / 17

Table 4.3: Odd-even reduced Gauge Laplace operators of various sizes and tem-
peratures β, shifted to have smallest eigenvalue 1

N2 . AMGr 2-level V(2, 2) precon-
ditioner with Gauss-Seidel smoothing for CG using both a linear combination of
the eigenvectors to the ten smallest eigenvalues, scaled by their associated inverse
Rayleigh quotients to define P (shown first) as well as using relaxation to define
the prototype in the definition of interpolation (shown second).

vinced us to keep on looking for other adaptive processes that are capable
to resolve the problems we encountered with the reduction-based approach.
In the next section, we present an adaptive approach to define interpolation
that tears down the limits of adaptive algebraic multigrid found here and
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and also provides a way to compute representatives of algebraically smooth
error in a multiscale fashion.

.

4.2 Least Squares AMG Interpolation

As discussed in section 4.1, in many important applications several vec-
tors are needed in order to define effective multigrid interpolation operators.
While there is a framework in adaptive smoothed aggregation [BFM+04] that
is able to overcome this problem, the setup it uses computes the necessary
vectors sequentially and thus can be impracticably expensive.

In contrast to the smoothed aggregation framework, Brandt proposed
a least squares formulation of interpolation in [Bra02]. In this section we
explore this idea and develop a precise mathematical formulation. Later,
in chapter 5, we present results that demonstrate its potential to solve the
applications discussed in chapter 3.

Assuming that the set of variables Ω is partitioned into a subset of coarse
variables C and the set of F variables, the task of defining interpolation in
algebraic multigrid is reduced to the task of defining interpolation weights
pij for each i ∈ F .

Definition 4.7. Let Ω = C∪F . For each i ∈ F define the set of interpolatory
points Ci as the set

Ci = {j ∈ C, pij 6= 0}.

The least squares approach of interpolation is a way to (adaptively) define
interpolation weights pij. It can also be further used to define appropriate
sets of interpolatory points Ci within the bootstrap setup process.

The basic idea of using a least squares fit to define interpolation is very
simple.

Definition 4.8. For i ∈ F , given a set of interpolatory points Ci and a set of
linearly independent vectors u(1), . . . , u(k), we define the interpolation weights
pi = (pij)j∈Ci as the minimizer of the least squares functional

L(pi) =
∑
l

ωl(u
(l)
i − piRu(l))2 → min, (4.8)

where R is a restriction operator on the coarse variables, such that RP = I
and ωl are weights used in the fit that are applied to weight each vector, to be
discussed later on. In the following the resulting interpolation is called least
squares interpolation or LS interpolation.
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Remark 4.9. If a splitting of variables Ω = F ∪C is given and interpolation
is given as the identity on the C set of variables, a simple choice of R in
Definition 4.8, is

R =
(
0 I

)
.

In the following, if not mentioned explicitly, we assume that R has this form.
Our discussion of least squares interpolation focuses on the classical choice
of coarse grid variables C ⊂ Ω. In this case, the weighted least squares
problem (4.8) can be written as

L(pi) =
∑
l

ωl(u
(l)
i −

∑
j∈Ci

piju
(l)
j )2 → min . (4.9)

In what follows, we make extensive use of canonical injections and re-
strictions.

Definition 4.10. Given a set of variables Ω = {1, . . . ,m} and a subset
Ωi ⊂ Ω denote the canonical injection of Ωi into Ω by I|Ωi , i.e., as a restriction
of the identity on the set of variables Ωi. Further, denote the canonical
restriction IT|Ωi

v of a vector v ∈ Cm, i.e., with variables according to Ω, onto

its variables belonging to Ωi by vΩi.

With this notation, R as given in Remark 4.9, can be written as

R = IT|C .

Now, we can formulate the least squares problem (4.9) in a classical linear
algebra context as follows. Introducing

W =

ω1

. . .

ωk

 ∈ Rk×k and U =
(
u(1) · · · u(k)

)
∈ Cm×k,

we have ∑
l

ωl(u
(l)
i −

∑
j∈Ci

piju
(l)
j )2 = ‖U{i}W

1
2 − piUCiW

1
2‖2

2.

That is, the weights of the individual terms in the sum of (4.9) are reflected
by scaling, i.e., weighting, the test vectors instead. This in turn yields a least
squares problem as

L(pi) = ‖U{i}W
1
2 − piUCiW

1
2‖2

2 → min . (4.10)

In this formulation it is easy to write down the minimizer and necessary
conditions for its uniqueness.
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Lemma 4.11. Assuming that UCiW
1
2 has full-rank, pi is uniquely determined

by

pi = U{i}WUH
Ci

(
UCiWUH

Ci

)−1
.

Proof. The derivative of the least squares functional L with respect to pij is

∂

∂pij
L(pi) = 2

∑
l

ωl

(
u

(l)
i − pi

(
u

(l)
Ci

))(
u

(l)
Ci

)
j
.

A little algebra shows that ∇L(pi) = 0 yields

piUCiWUH
Ci = U{i}WUH

Ci .

With rank(UCiW
1
2 ) = |Ci|, we obtain that UCiWUH

Ci is non-singular. Thus,
we have

pi = U{i}WUH
Ci

(
UCiWUH

Ci

)−1
.

Note that the derivation of the unique minimizer of (4.10) is also easily
seen by forming the normal equations that are equivalent to the derivation
in Lemma 4.11.

Remark 4.12. Due to Lemma 4.11 the restricted vectors UCi have to form a
generating system of the local linear space in order to get a unique minimizer
for i ∈ F . Furthermore, this also implies a lower bound on the number k of
vectors used in the least squares fit, that is

k ≥ max
i∈F
|Ci|

to obtain a unique least squares interpolation operator P .

The vectors used in the definition of least squares interpolation are further
referred to as test vectors. The test vectors appearing in this variational
definition of interpolation should, according to the fundamental principle
of the complementarity of smoothing and coarse-grid correction, represent
algebraically smooth error. We discuss in section 4.3 how such representatives
can be computed by exploiting the multigrid hierarchy itself.

The least squares fit of the interpolation weights pij are computed as the
best weights used to fit the set of test vectors {u(1), . . . , u(k)} in a weighted
least squares sense. It is a natural requirement that the weights, ωl, are
defined according to the “smoothness” of u(l). In the following we present
some possible choices of weights that fulfill this requirement.
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Assuming that the algebraically smooth vectors associated with the given
smoother S are also the eigenvectors with small eigenvalues of A, the choice

ω
1
2
l =

〈u(l), u(l)〉2
〈u(l), u(l)〉A

, (4.11)

i.e., the inverse Rayleigh-Quotient, then biases the least-square fit towards
the algebraically smoothest vectors. This assumption holds for Richardson
and ω-Jacobi, but the situations for Gauss-Seidel and other smoothers is
intricate and often not provable. However for many problems numerical
evidence suggests that this simplifying assumption is appropriate.

Taking into account a more accurate definition of algebraic smoothness
with respect to the smoother, the two-grid analysis in [FVZ05] suggests to
use

ω
1
2
l =

〈u(l), u(l)〉2
〈u(l), u(l)〉S̃

instead, with S̃ defined as in (2.22). As such formulation takes more explicit
account for the smoother.

There is at least one other choice of weights that is particularly interest-
ing. Denoting the residual of u(l) as r(l) = Au(l) we can define the weights

ω
1
2
l =

〈u(l), u(l)〉
1
2
2

〈Au(l), Au(l)〉
1
2
2

=
‖u(l)‖2

‖r(l)‖2

. (4.12)

As before, denoting the interpolatory window for i ∈ F by wi we can localize
this particular form of weighting as follows

(
ωil
) 1

2 =
‖IT|wiu

(l)‖2

‖IT|wir
(l)‖2

=
‖IT|wiu

(l)‖2

〈AHI|wiI
T
|wi
Au(l), u(l)〉

1
2
2

.

Remark 4.13. There are some noteworthy observations to the choices of
weights in (4.11) and (4.12).

• Weighting according to (4.12) is equivalent to

ω
1
2
l =

〈u(l), u(l)〉
1
2
2

〈AHAu(l), u(l)〉
1
2
2

.

In words, this choice of weighting is the square root of the inverse
Rayleigh-Quotient for the normal equations AHA.
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• For an eigenvector v of A with corresponding eigenvalue λ the weight
in (4.12) is |λ|−1, which is the same weight one gets in (4.11) if A is
hermitian positive definite.

• Choosing weights according to (4.12) is straight-forwardly applicable to
non-hermitian and indefinite operators A, whereas the weighting defined
in (4.11) does not reflect the spectral properties the weighting process is
intended to account for.

Note, that in the case that A is singular with its kernel N (A) spanned
by v(1), . . . , v(k0) multigrid theory, as reviewed in section 2.2, requires that
these vectors are exactly represented in R (P ), i.e.,

There exists a v(i)
c ∈ Cmc , such that v(i) = Pv(i)

c . (4.13)

Lemma 4.14. Let A be a singular hermitian positive semi-definite matrix
with its kernel N (A) spanned by v(1), . . . , v(k0). Assume that v(1), . . . , v(k0)

are contained in the set of test vectors u(1), . . . , u(k), k ≥ k0. Further, assume
that for each i ∈ F the set of interpolatory points Ci fulfills |Ci| ≥ k0. Then
least squares interpolation with weights defined according to (4.11) or (4.12)
fulfills (4.13).

Proof. Both (4.11) and (4.12) yield the weight

ωl =∞ if ul ∈ N (A) .

Hence, these test vectors enter the the least squares fit (4.8) as fixed con-
straints, i.e., they have to be fulfilled exactly in order to get a finite fit
value (4.8). As |Ci| ≥ k0, it is possible to fulfill all kernel vector constraints,
i.e., the resulting interpolation fulfills (4.13).

Here Lemma 4.14 holds if the weighting process chosen in the definition
of least squares interpolation yields infinite weight for vectors in N (A) and
|Ci| ≥ k0 for all i ∈ F .

4.2.1 Generalized Least Squares Interpolation

As observed in chapter 2, many variants of algebraic multigrid can be de-
scribed by the AMG�e framework, introduced in [HV01], by using an appro-
priate definition of an extension map.

In a similar way least squares interpolation can be generalized to the
AMG�e framework. Based on an idea due to Falgout [Fal02], the extension
map E appearing in AMG�e interpolation (cf. section 2.3) can be defined by
a least squares fit.
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Below we summarize some of our ideas and observations regarding this
approach, show that the approach reduces to the Classical AMG formulation
in a special case, and demonstrate how this can be interpreted as a direct
least squares fit similar to (4.8) by using the observation that for any error
e we have the residual equality r = Ae.

We start by recalling the basics of AMG�e interpolation as introduced in
section 2.3.

Assuming that a C-F partitioning of variables is given, the definition
of interpolation weights in the AMG�e context proceeds by construction of
certain local matrices Ai for each grid point i ∈ F (including possibly several
unknowns associated with this grid point) that correspond to a fine-grid
neighborhood of point i and its interpolatory set Ci.

The local matrices are built using extension mappings. With the notation
of CI and χI of Definition 2.36 for any subset I ⊂ F , we have the permuted
matrix

A =


Aff Afc Afχ 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .

Then, the AMG�e extension map is defined by

E : I ∪ CI → I ∪ CI ∪ χI(
vf
vc

)
→

 vf
vc

Eχfvf + Eχcvc

 .

Here, E couples unknowns from I ∪ CI to unknowns in χI and the local
matrices AI are defined by

AI =

(
I 0 EH

χf

0 I EH
χc

)
AI∪CI∪χI

 I 0
0 I
Eχf Eχc


=

(
Aff + AfχEχf Afc + AfχEχc

∗ ∗

)
.

Given the local matrix Ai, interpolation is then given by the local har-
monic extension corresponding to i ∈ I

pi = −
(
Â−1
ff Âfc

)
.,i

with Âff = Aff + AfχEχf and Âfc = Afc + AfχEχc.
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The general idea of using least squares interpolation in this setting is
to define E by a minimization over several test vectors u(1), . . . , u(k) that
represent algebraically smooth error in a least squares sense:

∑
l

ωl‖u(l)
χ −

(
Eχf Eχc

)(u(l)
f

u
(l)
c

)
‖2 → min

E
. (4.14)

The minimizing extension map is then used to define interpolation in the
standard AMG�e sense. Again, the weights ωl should bias the least squares
fit towards locally algebraically smooth error. Ideally one could think about
using a local weighting process that involves the local matrix AI . How-
ever, since AI is unknown a priori, this results in a nonlinear minimization
problem. For now we assume the simpler choice of ωl as defined in (4.11)
or (4.12).

We note that, the interpolation only requires the product AfχE. It is
thus sufficient to formulate a least squares minimization for

AfχE =
(
AfχEχf AfχEχc

)
=
(
wf wc

)
= w,

whose minimizer yields the same interpolation operator as the minimizer
of (4.14). This least squares problem for w is then given by

∑
l

ωl‖Afχu(l)
χ −

(
wf wc

)(u(l)
f

u
(l)
c

)
‖2 → min

w
, (4.15)

as the following Lemma shows.

Lemma 4.15. Assume that k > |I| + |CI | and that U =

(
u

(1)
f . . . u

(k)
f

u
(1)
c . . . u

(k)
c

)
has full rank. Then the linear least squares problems (4.14) and (4.15) have
unique solutions Ê and ŵ and

ŵ = AfχÊ .

Proof. With b =
(
u

(1)
χ . . . u

(k)
χ

)
the solution of (4.14) fulfills the normal

equation given by
bUH = EUUH . (4.16)

Since U has full rank, |I|+ |CI |, the linear operator of the normal equations
has full rank such that (4.16) has a unique solution

Ê = bUH
(
UUH

)−1
.
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Analogously, we find the unique solution of (4.15) as

ŵ = AfχbU
H
(
UUH

)−1
= AfχÊ .

Now, by using the residual equation r = Au for the homogeneous system
Au = 0, we further reformulate the least squares fit.

Lemma 4.16. With the residual equation

rf = (Au)f = Affuf + Afcuc + Afχuχ

for any u ∈ Cm and the definitions Âff = Aff + AfχEχf and Âfc = Afc +

AfχEχc, with ‖Âff‖2 = c < ∞ for all I ⊂ F , we obtain a bound on (4.15)
by minimizing a modified least squares problem∑

l

ωl‖u(l)
f − Â

−1
ff r

(l)
f + Â−1

ff Âfcu
(l)
c ‖2 → min

E
. (4.17)

Proof. Simple algebraic manipulation yields∑
l

ωl‖Afχu(l)
χ − AfχEχcu(l)

c − AfχEχfu
(l)
f ‖

2

=
∑
l

ωl‖r(l)
f − Affu

(l)
f − Afcu

(l)
c − AfχEχfu

(l)
f − AfχEχcu

(l)
c ‖2

=
∑
l

ωl‖Âffu(l)
f − r

(l)
f + Âfcu

(l)
c ‖2

≤ ‖Âff‖2
2

∑
l

ωl‖u(l)
f − Â

−1
ff r

(l)
f + Â−1

ff Âfcu
(l)
c ‖2.

The boundedness of ‖Âff‖2
2 yields the desired result.

Remark 4.17. The inclusion of the residual term Â−1
ff r

(l)
f can be interpreted

as a local relaxation that enforces the equation to be fulfilled exactly in the
local neighborhood. Brandt mentioned the use of local relaxation to enforce
zero residuals in [Bra02].

To simplify (4.17) even further we can use a result in [Fal02, HV01].
Therein, it is shown that we can omit connections from points in I to points
in χI , represented by Eχf , that is, we can take Eχf = 0.



86 CHAPTER 4. GENERAL FRAMEWORK FOR AMG

Lemma 4.18. Given E =
(
Eχf Eχc

)
and Ẽ =

(
0 Ẽχc

)
with

Ẽχc = Eχf

(
−Â−1

ff Âfc

)
+ Eχc

we have

−Â−1
ff Âfc = −A−1

ff

(
Afc + AfχẼχc

)
.

Proof. Direct computation yields the desired result.

In words, extension maps E and Ẽ of Lemma 4.18 give the same inter-
polation weights. Hence, we can further manipulate the least squares fit by
taking Ẽχf = 0, yielding the new map Ẽ∑

l

ωl‖u(l)
f − Â

−1
ff r

(l)
f + Â−1

ff Âfcu
(l)
c ‖2 → min

E

⇐⇒
∑
l

ωl‖u(l)
f − A

−1
ff r

(l)
f + A−1

ff

(
Afc + AfχẼχc

)
u(l)
c ‖2 → min

Ẽ
.

Using these results, we are able to see that the AMG�e least squares in-
terpolation is equivalent to a modified direct least squares interpolation.

Since the block-row Pfc of interpolation P is given by

Pfc = −A−1
ff

(
Afc + AfχẼχc

)
,

we obtain ∑
l

ωl‖u(l)
f − A

−1
ff r

(l)
f + A−1

ff

(
Afc + AfχẼχc

)
u(l)
c ‖2 → min

Ẽ

⇐⇒
∑
l

ωl‖u(l)
f − A

−1
ff r

(l)
f − Pfcu

(l)
c ‖2 → min

Pfc
. (4.18)

Remark 4.19. Some interesting observations can be made utilizing (4.18).

1. Assume r
(l)
f = 0 for l = 1, . . . , k and I = {i} for all i ∈ F , then (4.18)

reduces to (4.8).

2. For I = {i} and aii 6= 0, i ∈ F , we obtain a modified least squares fit
similar to (4.10) that includes the residual correction

L(pi) = ‖U{i}W
1
2 − 1

aii
(AU){i}W

1
2 − piUCiW

1
2‖2

2 → min . (4.19)
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3. Formulation (4.18) allows one to define least squares interpolation in
situations where there exists a natural blocking of variables, e.g., in
systems of partial differential equations, where several variables of the
discretization are assumed to be at the same physical location, i.e., at
the same grid point in the artificial grid given by the graph of the matrix
GA.

4. The AMG�e formulation of least squares interpolation also allows one
to generalize the notion of algebraic distance to systems of PDEs. Al-
gebraic distance is discussed in detail in section 4.2.2.

5. Moreover, the definition of interpolation weights in a least squares
framework allows one to analyze the given system of equations in order
to find appropriate interpolatory points and thus generalizes the notion
of “strength-of-connection” used in classical AMG as defined in sec-
tion 2.4 to an adaptive framework. This can be done by using the least
squares functional L.

4.2.2 Choice of Ci – Algebraic Distances

As mentioned in the introduction of section 4.2, the task of building interpo-
lation in algebraic multigrid, assuming that a splitting of variables Ω = F∪C
is given, is not only to find appropriate interpolation weights, but also to de-
fine a good set of interpolatory points Ci for each grid point i ∈ F . The
least squares framework of computing interpolation can be used to guide the
choice of interpolatory points, as we discuss in the following section.

Definition 4.20. We say that interpolation P has caliber γ if

|{j ∈ C : pij 6= 0}| = |Ci| ≤ γ, for all i ∈ F .

First, recall that in classical AMG for the M-matrix case the set of inter-
polatory points is defined by using the notion of “strength-of-connection”.

Definition 4.21. Variable j ∈ Ω is strongly connected to variable i ∈ Ω if

−aij > θmax
k 6=i

(−aik) ,

for θ ∈ (0, 1) fixed.

This definition is based on the assumption that algebraically smooth error
varies slowly along strong connections and that it is best represented using
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strongly connected variables. Hence, the set Ci is defined as a subset of the
strongly connected neighbors (in the graph neighborhood) of i ∈ F .

More generally, as mentioned in [BL04, BL09], one could use the least
squares functional (4.9) in order to generalize the notion of two variables
as algebraically close if it is possible to represent algebraically smooth er-
ror along their connection, i.e., they allow a mutual representation of alge-
braically smooth error by one-another.

Definition 4.22. Given a set of test vectors u(1), . . . , u(k) and i, j ∈ Ω we
define the algebraic distance dαi←j from j to i as

dαi←j = min
δij

∑
l

ωl

(
u

(l)
i − δiju

(l)
j

)2

, (4.20)

with weights ωl defined as in (4.11) or (4.12).

Remark 4.23. Note that, (4.20) coincides with one-sided least squares in-
terpolation (4.9) with Ci = {j}, i.e., interpolation from j to i. Again, we
could modify Definition 4.22 by adding the residual term if aii 6= 0 for i ∈ Ω.
In that case algebraic distance reads as

dαi←j = min
δij

∑
l

ωl

(
u

(l)
i −

1

aii
r

(l)
i − δiju

(l)
j

)2

,

with r(l) = Au(l).

Computing dαi←j for all (i, j) ∈ Ω2 is prohibitive, but as we are only
interested in local interpolation the computation of algebraic distance can
be to the near graph neighborhood of i. An obvious way to define Ci using
algebraic distance would involve only the algebraically closest points to i. On
the other hand, one could choose Ci as the subset of a graph neighborhood
of i with |Ci| ≤ γ that yields the minimal least squares functional (4.9).
This approach would require to compute least squares interpolation for any
combination of subsets. We choose to introduce a compromise between the
two approaches. First mentioned by Brandt and Livne in [BL04] we define a
greedy strategy to build Ci and simultaneously least squares interpolation to
i ∈ F .

As formulated in Algorithm 3, the greedy strategy builds Ci one point
at a time. Starting with the variable j ∈ Ni ⊂ C with smallest algebraic
distance, we add the variable k ∈ Ni that yields the best least squares fit
in each iteration. The method terminates once a prescribed accuracy or the
caliber of interpolation, i.e., the maximal number of interpolatory points, is
reached.
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Algorithm 3 gr ls interpolation {Computes Least Squares Interpolation}
Input: A,U = {u(1), . . . , u(k)}, γ, c
Output: P
U (l) = Ru(l), u(l) ∈ U
ω

1
2
l = 〈ul,ul〉

〈Aul,ul〉 , u
(l) ∈ U

for i ∈ F do
Let Ni ⊂ C neighboring C-points of i
Set Ci = ∅
while L(Pi) > γ and |Ji| < c and Ni 6= ∅ do

Find g∗ = argmin
g∈Ni

(∑k
l=1 ωl

(
u

(l)
i −

∑
j∈{Ci∪g} pijU

(l)
j

)2
)

Set Ni = Ni \ g∗ and Ci = Ci ∪ g∗
end while

end for

Although it cannot be guaranteed that the best set Ci with |Ci| ≤ γ
is found by the greedy strategy it obviously yields improving least squares
fits. Moreover, using a QR-decomposition of the operator involved in the
least squares fit adding and removing points to Ci can be done in an up-
date/downdate scheme of the QR-decomposition (cf. [GVL89, section 12.6]).

The least squares functional can further be used to control accuracy and
sparsity of interpolation and hence the resulting algebraic multigrid hierarchy,
assuming that we use the Galerkin definition of coarse-grid operators. We
present a thorough experimental study of the potential to control accuracy
and sparsity by the least squares functional in chapter 5.

4.2.3 Least Squares Interpolation – Theory

In order to gain deeper understanding of least squares interpolation, we an-
alyze the method in a two-grid framework. In what follows, we assume that
A is hermitian positive definite. Our purpose is to discuss the assumptions
that lead to a weak approximation property

‖ (I − PR) e‖2
2 ≤ η‖e‖2

A

for least squares interpolation as defined in section 4.2.

Given a set of test vectors u(1), . . . , u(k) ∈ Cm and corresponding weights
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ω1, . . . , ωk ∈ R+ we write

W =

ω1

. . .

ωk

 ∈ Rk×k and U =
(
u(1) · · · u(k)

)
∈ Cm×k.

Again, given the set of variables Ω, denote the canonical injection of a subset
Ωi ⊂ Ω into Ω by I|Ωi and write shortly vΩi for any vector v restricted to Ωi,

i.e., vΩi = IT|Ωi
v.

Further, we assume that a splitting of variables Ω = F ∪ C and for each
i ∈ F a set of interpolatory points Ci ⊂ C are given. Additionally, we define
the interpolatory windows wi = {i} ∪ Ci and assume that when it comes to
numbering the elements of wi, i is the first.

The following auxiliary result concerns the localization of the weak ap-
proximation measure analogous to the derivation in AMGe made in Defini-
tion 2.32. Again, given an interpolation operator P , we choose a restriction
operator R, such that RP = I. In the case, that we have given a splitting
of variables Ω = F ∪ C and P is the identity on the coarse variable set C, we
can choose R = IT|C .

Lemma 4.24. For interpolation P with IT|CP = I, we have

‖ (I − PR) e‖2
2 =

∑
i∈F

‖IT|{i} (I − PR) e‖2
2. (4.21)

Proof. Introducing the trivial partition of unity I =
∑

i∈Ω I|{i}I
T
|{i} in (4.21)

yields

‖ (I − PR) e‖2
2 = 〈(I − PR) e, (I − PR) e〉2

=
∑
i∈Ω

∑
j∈Ω

〈I|{i}I
T
|{i} (I − PR) e, I|{j}I

T
|{j} (I − PR) e〉2

=
∑
i∈Ω

〈I|{i}I
T
|{i} (I − PR) e, I|{i}I

T
|{i} (I − PR) e〉2.

As (PR)|C = I we obtain∑
i∈Ω

〈I|{i}I
T
|{i} (I − PR) e, I|{i}I

T
|{i} (I − PR) e〉2

=
∑
i∈F

〈I|{i}I
T
|{i} (I − PR) e, I|{i}I

T
|{i} (I − PR) e〉2

=
∑
i∈F

‖IT|{i} (I − PR) e‖2
2.
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Now, we consider the connection between the above weak approximation
property and least squares interpolation, in particular we define correspond-
ing notions of local test vectors and a local weak approximation property.

The i-th row of the interpolation operator P that is defined as the solution
of the least squares problem (4.8) is given as

argmin
pi∈C|Ci|

‖U{i}W
1
2 − piUCiW

1
2‖2

2 = argmin
pi∈C|Ci|

‖
(
1 −pi

)
UwiW

1
2‖2

2. (4.22)

With this formulation of the least squares problem we can derive an equiva-
lent problem that involves a local operator similar to the derivation used in
AMGe theory (cf. [BCF+00, HV01]).

Lemma 4.25. Assuming that for each i ∈ F the least squares problem (4.22)

has a unique solution pi with corresponding minimal functional value c
(i)
L =

L(pi) we then have

‖
(
1 −pi

)
e‖2

2 ≤ c
(i)
L 〈A

(U)
wi
e, e〉2, for all e ∈ Cm,

with A
(U)
wi =

(
UwiWUH

wi

)−1
.

Proof. According to (4.22) and the definition of the operator norm we have

c
(i)
L = min

qi∈C|wi|
‖
(
1 −qi

)
UwiW

1
2‖2

2

= ‖
(
1 −pi

)
UwiW

1
2‖2

2 = max
e∈C|k|

‖
(
1 −pi

)
UwiW

1
2 e‖2

2

‖e‖2
2

Thus if the number of test vectors k ≥ |wi| for all i ∈ F and rank(UwiW
1
2 ) ≥

|wi|, then
(
UwiWUH

wi

)
∈ C|wi|×|wi| is non-singular, i.e.,

(
UwiWUH

wi

)−1
exists.

Let UwiW
1
2 = YwiΣwiZ

H
wi

be the singular value decomposition of UwiW
1
2 ∈

C|wi|×|k|, with unitary Ywi ∈ C|wi|×|wi|, Σwi =
(
Σ+
wi

0
)
∈ C|wi|×|k|, Σ+

wi
∈

C|wi|×|wi| and unitary ZH
wi
∈ C|k|×|k|.

Then, changing the dimension of e as appropriate below and using the
fact that Ywi and Zwi are unitary matrices we have

‖
(
1 −pi

)
UwiW

1
2‖2

2 = max
e 6=0

‖
(
1 −pi

)
UwiW

1
2 e‖2

2

‖e‖2
2

= max
e 6=0

‖
(
1 −pi

)
Ywi
(
Σ+
wi

0
)
ZH
wi
e‖2

2

‖ZH
wi
e‖2

2

= max
e 6=0

‖
(
1 −pi

)
Ywi
(
Σ+
wi

0
)
e‖2

2

‖e‖2
2

.
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Writing e =
(
eTwi ẽT

)T
we obtain

‖
(
Σ+
wi

0
)
e‖2

2

‖e‖2
2

≥
‖Σ+

wi
ewi‖2

2

‖ewi‖2
2 + ‖ẽ2‖2

.

Thus, we have

‖
(
1 −pi

)
UwiW

1
2‖2

2 = max
e6=0

‖
(
1 −pi

)
YwiΣ

+
wi
e‖2

2

‖e‖2
2

= max
e6=0

‖
(
1 −pi

)
YwiΣ

+
wi
e‖2

2

‖
(
Σ+
wi

)−1
Y H
wi
YwiΣ

+
wi
e‖2

2

= max
e6=0

‖
(
1 −pi

)
e‖2

2

‖
(
Σ+
wi

)−1
Y H
wi
e‖2

2

= max
e6=0

‖
(
1 −pi

)
e‖2

2

〈Ywi
(
Σ+
wi

)−2
Y H
wi
e, e〉2

.

The result follows by the observation that(
UwiWUH

wi

)−1
= Ywi

(
Σ+
wi

)−2
Y H
wi
.

Given an overlapping decomposition of Ω = ∪iΩi such that for each Ωi

a local hermitian positive definite linear operator AΩi exists with its corre-
sponding local energy form 〈., .〉AΩi

, assume the following summability prop-
erty holds ∑

i

〈vΩi , vΩi〉AΩi
≤ σ〈v, v〉A, (4.23)

where σ does only depend on the overlap of Ωi. Assuming that such local
energy forms exist, we can formulate the last assumption needed to prove a
weak approximation property for least squares interpolation by comparing
the local operators implied by the least squares formulation of interpolation
AUwi with the given local operators Awi that fulfill 4.23. Note that the as-
sumption of the existence of local energy forms that fulfill (4.23) is a natural
one in the context of finite element discretizations and was used in the proof
of the weak approximation property for the AMGe method, as reviewed in
section 2.3.

Theorem 4.26. Let P be the least squares interpolation defined by a set of
test vectors u(1), . . . , u(k) and corresponding weights ω1, . . . , ωk and R = IT|C
the canonical restriction to C. Assume that the following holds:
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1. The interpolatory windows wi form an overlapping decomposition

Ω = ∪i∈Fwi = ∪i∈F ({i} ∪ Ci) .

2. We have given associated local operators Awi with corresponding energy
forms 〈., .〉Awi such that,∑

i∈F

〈vwi , vwi〉Awi ≤ σ〈v, v〉A. (4.24)

3. For each i ∈ F , the least squares problem (4.22) is uniquely solvable
with minimizer IT|{i}P and minimum

c
(i)
L = L(IT|{i}P ).

4. for each i ∈ F there exists a number η
(U)
i > 0 such that,

sup
e 6=0

〈e, e〉
A

(U)
wi

〈e, e〉Awi
≤ η

(U)
i . (4.25)

We then have

‖ (I − PR) e‖2
2 ≤ η〈e, e〉A, η = σmax

i∈F

(
η

(U)
i c

(i)
L

)
.

Proof. By Lemma 4.24 we have

‖ (I − PR) e‖2
2 =

∑
i∈F

‖IT|{i} (I − PR) e‖2
2.

Now, using Lemma 4.25 for each part of the sum we obtain

‖ (I − PR) e‖2
2 =

∑
i∈F

c
(i)
L 〈e, e〉A(U)

wi

.

Further, using assumption (4.25) on A
(U)
wi yields

‖ (I − PR) e‖2
2 ≤

∑
i∈F

η
(U)
i c

(i)
L 〈e, e〉Awi .

Finally, using the summability property (4.24) of the local energy forms we
obtain

‖ (I − PR) e‖2
2 ≤ σmax

i∈F

(
η

(U)
i c

(i)
L

)
〈e, e〉A.



94 CHAPTER 4. GENERAL FRAMEWORK FOR AMG

Next we discuss the assumptions of Theorem 4.26. First, we consider
the existence of local energy forms induced by local operators Awi that ful-
fill (4.24) in a general framework and than estimates on the spectral equiv-

alence (4.25) of the local energy forms and the local operators A
(U)
wi that are

induced by the least squares formulation.
We start analyzing this issue by taking a closer look at particular choices

of test vectors and corresponding weights that yield local operators A
(U)
wi in

the least squares formulation and test if they fulfill the summability prop-
erty (4.24). In this case the second assumption (4.25) is fulfilled with η

(U)
i = 1

for all i ∈ F . Furthermore, we gain insight on a particular choice of local
energy forms that can be used to measure arbitrary choices of test vectors
and corresponding weights and their respective resulting local operators.

A possible approach to define local energy forms that also fits into the
least squares formulation is as follows. Given the eigendecomposition of
A = V ΛV H , we define the set of test vectors written in matrix form by
U = V , i.e., the complete set of eigenvectors of A. Even though this choice is
not feasible in practice, it is an interesting choice in theory. Associated with
these test vectors we choose the weights as suggested in section 4.2, namely
W

1
2 = Λ−1. Thus, for each i ∈ F and associated interpolatory window wi,

we get the corresponding local set of test vectors

Uwi = IT|wiU = IT|wiV.

Lemma 4.27. With the choice of test vectors U = V and weights W
1
2 = Λ−1,

we obtain for A
(U)
wi from Lemma 4.25,

A(U)
wi

= Swiwi(A
HA) = Swiwi(A

2),

where Swiwi(A
HA) denotes the Schur complement of AHA onto the subset of

variables wi.

Proof. By the definition of the test vectors and weights we have

A(U)
wi

=
(
UwiWUH

wi

)−1
=
(
IT|wiV Λ−1Λ−HV HI|wi

)−1

=
(
IT|wi

(
AHA

)−1
I|wi

)−1

.

A little algebra shows that we have for any hermitian positive definite linear
operatorX and non-overlapping splitting of variables Ω = wi∪χ the following
block structure of X−1 (cf. [Axe94, p. 93]),

X−1 =

(
(Swiwi(X))−1 −X−1

wiwi
Xwiχ (Sχχ(X))−1

(Swiwi(X))−1XwiχX
−1
χχ (Sχχ(X))−1

)
.
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Thus, we obtain
A(U)
wi

= Swiwi(A
HA) = Swiwi(A

2).

In what follows, we need some basic results for Schur complements and
harmonic extensions.

Definition 4.28. Given a subset of variables w ⊂ Ω and denoting the com-
plement of w by χ, i.e., χ = Ω \ w, we permute A according to this splitting

A =

(
Aww Awχ
Aχw Aχχ

)
.

Then we define the harmonic extension Pw of w in Ω by

Pw =

(
Iw

−A−1
χχAχw

)
.

Note, that we introduced a specific harmonic extension, PF , earlier in
section 2.5 as the ideal interpolation operator given a splitting of variables
Ω = F ∪ C.

Lemma 4.29. The harmonic extension Pw fulfills the following equation

APw = I|wSww(A).

Proof. We have

APw =

(
Aww Awχ
Aχw Aχχ

)(
Iw

−A−1
χχAχw

)
=

(
Aww − AwχA−1

χχAχw
0

)
.

Theorem 4.30. Given a subset of all variables w ⊂ Ω and its complement
χ we write A ∈ Cm×m in block permuted form as

A =

(
Aww Awχ
Aχw Aχχ

)
.

Then the Schur complement Sww(AHA) is given as

Sww(AHA) = Sww(AH)
(
PH
w Pw

)−1
Sww(A), (4.26)

with Pw the harmonic extension from Definition 4.28.
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Proof. Using the result of Lemma 4.29 we obtain

Pw = A−1I|wSww(A).

Plugging this formulation of Pw into the right hand side of (4.26) and using
the equality (Sww(A))H = Sww(AH) yields

Sww(AH)
(
PH
w Pw

)−1
Sww(A)

= Sww(AH)
(
Sww(AH)IT|wA

−HA−1I|wSww(A)
)−1

Sww(A)

=
(
IT|w
(
AHA

)−1
I|w

)−1

.

Again using the fact that

Sww(A) = PH
w AIw

we can write the Schur complement Sww(AHA) in yet another form using the
orthogonal projection π2 (Pw) onto R (Pw),

Sww(AHA) = I|wA
HPw

(
PH
w Pw

)−1
PH
w AI

T
|w = I|wA

Hπ2 (Pw)AIT|w .

Hence, the summability property (4.24) that we have to prove, can be
written as

〈
∑
i∈F

π2 (Pwi)Aewi , ewi〉A ≤ σ〈e, e〉A. (4.27)

This inequality (4.27) is always fulfilled with σ = |F|‖A‖2, as a sum of
orthogonal projections, but since |F| usually depends on the size of A, we
are not satisfied by this trivial bound.

Lemma 4.31. We can write (4.27) equivalently as

〈Ae, e〉2 ≤ σ〈

(∑
i∈F

π2 (Pwi)

)−1

e, e〉2. (4.28)

Proof. WithB =
(∑

i∈F π2 (Pwi)
)

and some exchanges of variables we obtain,

〈ABAe, e〉2 ≤ σ〈Ae, e〉2
⇐⇒ 〈A 1

2BA
1
2y, y〉2 ≤ σ〈y, y〉2

⇐⇒ 〈B 1
2AB

1
2y, y〉2 ≤ σ〈y, y〉2

⇐⇒ 〈Az, z〉2 ≤ σ〈B−1z, z〉2.
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In what follows, we need a result of subspace correction methods.

Lemma 4.32. Assuming Cm =
∑

i∈F R (Pwi), we obtain

〈

(∑
i∈F

π2 (Pwi)

)−1

e, e〉2 = inf
e=

P
i∈F ewi

‖Pwiewi‖2
2. (4.29)

Proof. For the sake of brevity we refer to [XZ02, Lemma 2.4].

Thus, taking any decomposition of e that fulfills∑
i∈F

ewi = e

and inserting it in the left-hand-side of (4.28) we get

〈Ae, e〉2 = 〈
∑
i∈F

∑
j∈F

PH
wj
APwiewi , ewj〉2.

Define γwiwj to be the smallest constant such that

〈PH
wj
APwiewi , ewj〉2 ≤ γwiwj‖Pwiewi‖2‖Pwjewj‖2. (4.30)

Lemma 4.33. The bounds γwiwj in (4.30) satisfy

γwiwj ≤ ‖A‖2.

Proof. Using the strengthened Cauchy-Bunyakowski-Schwarz-inequality of
Definition 4.2 we know that

〈Pwiewi , Pwjewj〉A ≤ γ̂wiwj‖Pwiewi‖A‖Pwjewj‖A

with γ̂wiwj ≤ 1. Due to the fact that ‖x‖A ≤ ‖A‖
1
2
2 ‖x‖2 we obtain

〈Pwiewi , Pwjewj〉A ≤ γ̂wiwj‖A‖2‖Pwiewi‖2‖Pwjewj‖2.

As γwiwj is the smallest constant fulfilling (4.30), we have

γwiwj ≤ γ̂wiwj‖A‖2 ≤ ‖A‖2.

With this we can bound σ in terms of γwiwj .
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Lemma 4.34. Introducing the symmetric and entry-wise positive matrix Γ =(
γwiwj

)
i,j

, we obtain

σ ≤ ρ(Γ).

Proof. We have

ρ(Γ) ≤ ‖Γ‖∞ = max
i∈F

∑
j∈F

γwiwj .

Thus,

〈Ae, e〉2 =
∑
i∈F

∑
j∈F

〈APwiewi , Pwjewj〉2

≤
∑
i∈F

∑
j∈F

γwiwj‖Pwiewi‖2‖Pwjewj‖2

≤ ρ(Γ)
∑
i∈F

‖Pwiewi‖2
2.

Finally, plugging this result into (4.29) and taking the infimum over all de-
compositions

∑
w Pwew = e yields σ ≤ ρ(Γ).

Corollary 4.35. In the case where γwiwj are exponentially decaying, i.e.,
given a function δ(., .) that measures the distance between two windows wi, wj
on the artificial grid GA that fulfills

δ(wi, wj) ≥ α|i− j|,

we assume that there exists a τ ∈ [0, 1) such that,

γwiwj ≤ ‖A‖2τ
δ(wi,wj).

Then we have

σ ≤ 2‖A‖2

1− τ
.

Proof. Denoting Γ̃i,j = ‖A‖2τ
δ(wi,wj) we have σ(Γ) ≤ σ(Γ̃). The hypothesis

then follows from Lemma 4.34 and application of the geometric sum.

Using the specific properties of Pw we can give a more precise description
of γwiwj as follows.

Lemma 4.36. For γwiwj defined by (4.30) we have

γwiwj = sup
ewi ,ewj

〈[A−2]
− 1

2
wjwj

[A−1]wjwi [A−2]
− 1

2
wiwi

ewi , ewj〉2
‖ewi‖2‖ewj‖2

,

where [X]v,v′ denotes the v, v′ block of the matrix X.
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Proof. By definition of γwiwj we have

γwiwj = sup
ewi ,ewj

〈APwiewi , Pwjewj〉2
‖Pwiewi‖2‖Pwjewj‖2

. (4.31)

Writing the canonical injection of w into Cm as I|w and using the definition
of Pw we have

APw = I|wSww(A) and Pw = A−1I|wSww(A).

Thus, we obtain with the abbreviation Sww = Sww(A),

‖Pwew‖2 = 〈IT|wA
−2I|wSwwew, Swwew〉2 = 〈

[
A−2

]
ww
Swwew, Swwew〉2,

such that we can write (4.31) as

γwiwj = sup
ewi ,ewj

〈A−1I|wiSwiwiewi , I|wjSwjwjewj〉2

〈[A−2]wiwi Swiwiewi , Swiwiewi〉
1
2
2 〈[A−2]wjwj Swjwjewj , Swjwjewj〉

1
2
2

.

Then, the change of variables ywi = Swiwiewi and ywj = Swjwjewj yields

γwiwj = sup
ywi ,ywj

〈[A−1]wjwi ywi , ywj〉2

〈[A−2]wiwi ywi , ywi〉
1
2
2 〈[A−2]wjwj ywj , ywj〉

1
2
2

.

With another change of variables zwi = [A−2]
1
2
wiwi

ywi and zwj = [A−2]
1
2
wjwj

ywj
we obtain

γwiwj = sup
zwi ,zwj

〈[A−2]
− 1

2
wjwj

[A−1]wjwi [A−2]
− 1

2
wiwi

zwi , zwj〉2

〈zwi , zwi〉
1
2
2 〈zwj , zwj〉

1
2
2

.

Unfortunately, proving a bound on σ for this particular choice of test
vectors that is independent of the problem-size (for problems discretized with
varying mesh-size h) turns out to be very intricate. Numerical experiments
suggest that at least for discretizations of the Laplace operator ∆, which we
discuss in section 5.1 in more detail, such a bound can be found and that the
estimate by means of ρ(Γ) is fairly sharp. In Figure 4.2, we present bounds
on σ in

〈

(∑
i∈F

A(U)
wi

)
e, e〉2 ≤ σ〈Ae, e〉2 (4.32)
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(a) Spectral bound σ (full-coarsening)
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(b) Spectral bound σ (red-black)

Figure 4.2: Bounds σ in the spectral equivalence of the sum of local matrices A(U)
w

and A in (4.32) a linear operator A arising in discretization of the Laplace operator
on an equidistant N × N grid. The local operators A(U)

w are defined by either
U = V Λ−1 implying A

(U)
w = Sww(A2) or U = V Λ−

1
2 implying A

(U)
w = Sww(A).

Using two different coarse-variable sets, full-coarsening in 4.2(a) and red-black
in 4.2(b) and associated interpolatory windows w. For an illustration of full-
coarsening see Figure 5.2 and for red-black or odd-even see Figure 4.1.

for different choices of coarse-variable sets and interpolatory windows. These
results justify the choice of test vectors U = V Λ−1 and show further that the
choice of test vectors U = V Λ−

1
2 which gives A

(U)
w = Sww(A), does not yield a

constant bound when increasing the problem size N . Unfortunately, we were
not yet successful in providing a theoretical bound nor have we been able
to classify the matrices for which one can find such a bound for (4.32) inde-
pendent of the size of the problem with the choice U = V Λ−1. Our ongoing
research aims to gain a deeper understanding of this assumption in the proof
to ensure a weak approximation property for least squares interpolation.

Let us now consider the other assumption made in Theorem 4.26. As-
suming that local energy forms are given for each interpolatory window
wi = {i} ∪ Ci, i ∈ F , i.e., we have

∑
i∈F

〈vwi , vwi〉Awi ≤ σ〈v, v〉A.

Given the eigendecomposition of A by A = V ΛV H it is natural to view
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each test vector as a linear combination of the eigenvectors v1, . . . , vm, i.e.,

u(j) =
∑
i

βijvi, j = 1, . . . , k.

In this way, U can be written as

U = V B, B = (βij)i,j ∈ Cm×k.

Hence, adding weights, again denoted by W , we have

AUwi =
(
VwiBWBHV H

wi

)−1
.

Further assume that each Awi , corresponding to the given local energy
forms, can be written as

Awi =
(
VwiWwiV

H
wi

)−1
,

that is, it can be written as an operator A
(U)
wi arising from the least squares

formulation with the test vectors U = V and a choice of weights that (might)
depend on the respective set wi. Then, we can formulate (4.25) as follows,

sup
e6=0

〈e, e〉
A

(U)
wi

〈e, e〉Awi
=
〈VwiBWBHV H

wi
e, e〉2

〈VwiWwiV
H
wi
e, e〉2

.

With a change of variables y = V H
wi
e, we obtain

sup
y 6=0

〈BWBHy, y〉2
〈Wwiy, y〉2

= sup
z 6=0

〈W− 1
2

wi BWBHW
− 1

2
wi z, z〉2

〈z, z〉2
.

Thus, the assumption on spectral equivalence of the local operators can be
expressed in terms of the spectral radius of a matrix that only involves the
local weights W, Wwi and the coefficient matrix B of the test vectors used in
the definition of least squares interpolation.

Having completed the convergence analysis discussion, we proceed to de-
scribe the details of the adaptive setup process, namely the multiscale com-
putation of appropriate test vectors used in least squares interpolation.

4.3 Bootstrap AMG Techniques

There has been a long debate about how to compute test vectors and incor-
porated them into adaptive algebraic multigrid methods. The most preva-
lent approach is to compute one component at a time as proposed in the
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smoothed aggregation framework [BFM+04]. An alternate approach pro-
posed by Brandt in [Bra00] is to use a bootstrap adaptivity. One part of
this bootstrap setup is the use of least squares interpolation defined in sec-
tion 4.2. Tightly coupled to this is the computation of an appropriate set of
test vectors u(1), . . . , u(k).

In this section, we introduce these ideas, namely the computation of test
vectors and their multigrid enhancement and the coarse grid treatment of
almost zero modes.

4.3.1 Test Vectors

The test vectors used in the least squares definition of interpolation and
coarse-grid generation should represent algebraically smooth error. Thus, an
initial set of test vectors can be calculated by applying the given multigrid
smoother.

Given the linear operator A and the corresponding linear system to solve
Au = f , we assume the existence of a smoother S for this operator, as defined
in Definition 2.2. The original idea of adaptive algebraic multigrid methods
is to use the current multigrid method to expose error components that
are not treated well enough by the multigrid hierarchy. That is, if no initial
multigrid hierarchy is given, the smoother S is used to compute such an error
component. In the original idea this process is repeated one component at
a time. In the bootstrap algebraic multigrid approach, we choose instead of
only one initial test vector a set of test vectors u(1), . . . , u(k). Then the first
set of test vectors that is used to define least squares interpolation is given by
Sνu(1), . . . , Sνu(k), where we apply the smoother ν times to the homogeneous
equations

Au(l) = 0, l = 1, . . . , k.

The smoother removes error components at the low end of the spectrum
of its error propagator S = I−MA, hence the vectors Sνu(l), assuming that
the smoother defines a converging iteration, are rich in algebraically smooth
error, i.e., low-energy vectors of MA. In order to get a well-defined least
squares fit for each fine-grid point i ∈ F , the result in Remark 4.12 suggests
we choose the number of test vectors k, such that

k ≥ max
i∈F

(|Ci|), (4.33)

where Ci is the set of interpolatory points for i ∈ F . Our numerical experience
suggests that it is beneficial to use more test vectors as presented by (4.33),
both to guarantee the well-definiteness of the least squares fits and also to
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improve the representation of the algebraically smooth error in the span of
the test vectors. In chapter 5.1 we show numerical evidence of this heuristic.

Motivated by the fundamental principle of multigrid, the interplay of
smoothing and coarse-grid correction, interpolation P must accurately rep-
resent the low end of the spectrum of MA to yield an efficient multigrid
method. Using weights in the least squares process, as explained in sec-
tion 4.2, biases the fit towards these algebraically smooth vectors. When
starting with random initial vectors it can be expected that the weights
defined in section 4.2 after a few relaxations do not differ largely and the
weighting can be omitted, but in the case one has exposed the algebraically
smooth error very accurately, the weighting process takes care of the proper
representation of these vectors in the least squares built interpolation.

Given the multigrid hierarchy of operators A0, A1, . . . , AL and correspond-
ing interpolation operators P l

l+1, l = 0, . . . , L − 1, we have a chain of sub-
spaces of Cm spanned by the columns of the composite interpolation opera-
tors Pl = P 0

1 · . . . · P l−1
l , l = 1, . . . , L

Cm = span (P1) ⊃ . . . ⊃ span (PL) .

Thus, for any given vector xl ∈ Cml we have

〈xl, xl〉Al = 〈Plxl, Plxl〉A.

Furthermore, defining Tl = PH
l Pl we obtain

〈xl, xl〉Al
〈xl, xl〉Tl

=
〈Plxl, Plxl〉A
〈Plxl, Plxl〉2

.

This observation motivates the bootstrap process outlined below.

Lemma 4.37. On any level l, given a vector v(l) ∈ Cml and λ(l) ∈ C, such
that,

Alv
(l) = λ(l)Tlv

(l), (4.34)

we have

rq(Plv
(l)) =

〈Plv(l), Plv
(l)〉A

〈Plv(l), Plv(l)〉2
= λ(l).

Proof. The hypothesis follows by simple algebraic transformations using that
v(l) is an eigenvector of the generalized eigenvalue problem (4.34) and the
equations Al = PH

l APl and Tl = PH
l Pl.
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Lemma 4.37 has practical implications as it allows one to connect the
eigenvectors and eigenvalues of the operators in the multigrid hierarchy with
the eigenvectors and eigenvalues of the finest grid operator A. This allows
us to compute approximations to eigenvectors corresponding to small eigen-
values, using the multigrid hierarchy, i.e., on coarse grids and leads to the
following bootstrap procedure.

Once the initial multigrid hierarchy has been set up, we compute a set of
vectors VL = {v(L)

i } on the coarsest grid, such that,

ALv
(L)
i = λLi TLv

(L)
i , λ

(L)
i ∈ C.

As the size of AL is small, the eigenpairs (v
(L)
i , λLi ) can be computed di-

rectly. Keeping in mind the relation between eigenvectors of the generalized
eigenvalue problem (4.34) and the finest grid Rayleigh-Quotients observed
in Lemma 4.37, a subset of the set of eigenpairs with the lowest eigenvalues
can be used to build approximations to the eigenvectors with small eigen-
values on increasingly finer grids. At any coarse level l, we use the existing
interpolation operator P l−1

l to transfer these vectors to the next finer grid.
Assuming that vl is a solution to (4.34) on level l, i.e.,

Alvl = λlTlvl ⇔
(
P l−1
l

)H
Al−1P

l−1
l vl = λl

(
P l−1
l

)H
Tl−1P

l−1
l vl.

With this we obtain that vl−1 = P l−1
l vl is an approximation to the generalized

eigenvalue problem on grid l − 1. Then on grid l − 1 we apply a smoothing
iteration to the eigenproblem

(Al−1 − λl−1Tl−1) vl−1 = 0. (4.35)

Simultaneously, we also update the approximation to λl−1 by

λl−1 =
〈Al−1vl−1, vl−1〉2
〈Tl−1vl−1, vl−1〉2

.

In fact, this procedure resembles an inverse Rayleigh-Quotient iteration found
in eigenvalue computations (cf. [Wil65]), the only difference is that instead of
computing the inverse of Al−1−λl−1Tl−1 we approximate it by the application
of an appropriate smoothing iteration.

Algorithm 4 below describes the process of enriching the set of test vec-
tors. The process starts on the coarsest grid and proceeds to increasingly finer
ones. On each grid we enhance the accuracy of the coarse-grid representa-
tions of finest-grid eigenvectors by relaxation on the eigenproblem (4.35).

Instead of enhancing the set of test vectors and recompute least squares
interpolation only on the finest grid we can think of more sophisticated setup
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Algorithm 4 Updating the set of test vectors {Multigrid eigensolver}
if The current level is the coarsest level then

Take VL = {v(L)
i }i=1,...,ku , s.t. ALv

(L)
i = λ

(L)
i TLv

(L)
i , |λ(L)

1 | ≤ · · · ≤ |λ
(L)
ku
|

else
Given Vl+1 and P l

l+1 from the initial setup

v
(l)
i = P l

l+1v
(l+1)
i , λ

(l)
i = λ

(l+1)
i , i = 1, . . . , ku

Relax on
(
Al − λ(l)

i Tl

)
v

(l)
i = 0

Calculate λ
(l)
i =

〈Alv
(l)
i ,v

(l)
i 〉2

〈Tlv
(l)
i ,v

(l)
i 〉2

end if

cycles. On each intermediate grid l we might want to consider to recompute
the hierarchy Al+1, . . . , AL using a subset or all of the improved representa-
tives of algebraically smooth error contained in Vl before advancing further.
In order to determine how to proceed we define a tool that allows us to mea-
sure the quality of the given hierarchy in terms of the approximation quality
of algebraically smooth error computed in Algorithm 4.

Definition 4.38. Given eigenvalues of the generalized eigenvalue problem

Ajv
(j) = λ(j)Tjv

(j),

on grids j = l1, l2, l1 < l2 with λ(l1), λ(l2), respectively, we define the eigen-
value approximation measure τ

(l1,l2)
λ by

τ
(l1,l2)
λ =

|λ(l1) − λ(l2)|
|λ(l2)|

.

The eigenvalue approximation measure τ
(l1,l2)
λ is a useful tool to decide

if a particular eigenvalue and correspondingly its eigenvector is accurately
approximated by interpolation from grid l1 to l2 in the multigrid hierarchy.
In chapter 5, we explain how this approach can be used to measure and
control the accuracy of interpolation in the bootstrap setup.

In Figure 4.3 a possible setup cycle is visualized, at each blue dot, one
has to decide whether to recompute P or advance to the next finer grid in
the multigrid hierarchy. The illustrated cycle resembles a W -cycle, but any
other cycling strategy can be applied to the setup.

4.3.2 Almost Zero Modes

Another adaptive multigrid technique first outlined by Brandt and Livne
in [BL04] is the treatment of so-called almost zero modes (AZM). It is com-
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Compute V , s.t., Av = λTv, v ∈ V

Relax on Au = 0, u ∈ U and Av = λTv, v ∈ VRelax on Av = λTv, v ∈ V

Relax on Au = 0, u ∈ U

Figure 4.3: Bootstrap AMG setup W-cycle.

mon knowledge that algebraic multigrid methods can serve as excellent pre-
conditioners for Krylov subspace methods, even if their stand-alone conver-
gence is slow. This occurs when the algebraic multigrid error propagator
has only a few small eigenvalues. These eigenvalues slow down the algebraic
multigrid method as a stationary process, but a Krylov subspace (e.g., con-
jugate gradient) method can remove these outlying eigenvalues in just a few
additional iterations.

The approach of AZMs computes the solution using the multigrid hierar-
chy, i.e., replacing additional work on the finest grid by the Krylov subspace
method with additional work on coarse grids if possible.

In order to analyze this situation we consider a two-grid setting. Let
v1, . . . , vm denote the eigenvectors of A with corresponding eigenvalues λ1 ≤
λ2 ≤ . . . ≤ λm with,

Avi = λivi.

Given an interpolation operator P , we define coarse grid matrices Ac =
PHAP and Tc = PHP . Then we denote the eigenvectors of the generalized
eigenvalue problem

Acx = λTcx

by vc1, . . . , v
c
mc with associated eigenvalues λc1 ≤ λc2 ≤ . . . ≤ λcmc . Further we

assume that

‖Pvci‖2 = 1
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and also assume that the given interpolation fulfills

vi ≈ Pvci

for the algebraically smoothest vectors, i.e., the eigenvectors associated with
small eigenvalues.

In that case analyzing the two-grid coarse-grid correction given by(
I − PA−1

c PHA
)
e (4.36)

yields insight into the relationship of the respective eigenvalues λi and λci .

Lemma 4.39. Let e =
∑

i αivi, P
Hvi =

∑
j µijv

c
j and Pvcj =

∑
k γjkvk.

With this (4.36) yields

(
I − PA−1

c PHA
)
e =

∑
i

(
αi −

∑
j

∑
k

αk
λkµkjγji
λcj

)
vi (4.37)

Proof. We have(
I − PA−1

c PHA
)
e =

∑
i

αivi −
∑
i

αiλi
(
PA−1

c PHvi
)

=
∑
i

αivi −
∑
i

αiλiPA
−1
c

(∑
j

µijv
c
j

)

=
∑
i

αivi −
∑
i

αiλiP

(∑
j

µij
λcj
vcj

)

=
∑
i

αivi −
∑
i

∑
j

αi
λiµij
λcj

Pvcj

=
∑
i

αivi −
∑
i

∑
j

∑
k

αi
λiµijγjk
λcj

vk

=
∑
i

αivi −
∑
i

∑
j

∑
k

αk
λkµkjγji
λcj

vi

=
∑
i

(
αi −

∑
j

∑
k

αk
λkµkjγji
λcj

)
vi.

Assume now that µii dominates the linear combination in PHvi =
∑

j µijv
c
j

and similarly γjj in Pvcj =
∑

k γjkvk. This is reasonable due to the assump-
tion that interpolation approximately reproduces eigenvectors with small
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eigenvalues on successive grids, i.e., Pvci ≈ vi and PHvi ≈ vci for small i.
In that case we can neglect many terms in (4.37). Assuming further that e
is algebraically smooth, i.e., e ≈

∑z
i=1 αivi, z < m we obtain(

I − PA−1
c PHA

)
e ≈

z∑
i=1

(
αi − αi

λiµiiγii
λci

)
vi.

Hence, the “misfit” for each eigenvector component is given by(
I − PA−1

c PHA
)
vi = αi

λci − λiµiiγii
λci

vi. (4.38)

Keeping in mind that µii ≈ ‖PHvi‖2 = 1 and γii ≈ ‖Pvci‖2 = 1 and defining
the eigenvalue approximation of λi by λci as

|λi − λci |,
we observe in (4.38) that the error

λci − λiµiiγii
λci

in the direction of a specific eigenvector is large, if the relative eigenvalue
approximation

|λci − λi|
|λci |

is large. Thus, coarse-grid correction does a poor job in reducing this com-
ponent of the error. It is easily seen that the absolute error margin that
is allowed for each eigenvector component is inversely related to the associ-
ated eigenvalue. Therefore, a large relative error in eigenvalue approximation
tends to occur more often with small eigenvalues, i.e., almost zero modes.

However, knowing vci and approximately vi and hence λci and λi in the
bootstrap setup process offers a natural multigrid solution to the problem,
fixing it on the coarse-grid by adjusting the contribution of the eigenvector
vci in the linear combination of the error ec by the factor

ζi =
λci

λci − λiµiiγii
≈ λci
λci − λi

.

Hence, this treatment of almost zero modes only requires one additional
projection onto the one-dimensional subspace spanned by vci on the coarse
grid.

The treatment of almost zero modes as proposed in this section requires
careful bookkeeping. Note, that the treatment of almost zero modes is also
a technique of general purpose and can be used together with the eigenvalue
approximation property introduced in Definition 4.38 to measure and gauge
the accuracy of any multigrid method with little overhead costs.
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4.3.3 Optimally weighted coarse-grid correction

Another idea not directly related to the bootstrap mindset, but also a general
purpose technique to improve multigrid methods is the analysis of optimal
weighted coarse-grid correction, as it was discussed in [Van95, Bla88]. It
is well known that the inclusion of over- and under-weighting in station-
ary iterative methods can yield huge benefits over the unweighted variants.
Motivated by the two-grid analysis and the resulting convergence identity
in [FVZ05] (cf. section 2.2) we analyze the optimally weighted coarse-grid
correction in the presence of smoothing.

Given an interpolation operator P and Galerkin-based coarse-grid prob-
lem, the two-grid error propagation with post-smoothing by the smoother S
is given by

e 7→ S (I − πA (P )) e. (4.39)

We are interested in investigating the version of this error propagation oper-
ator where coarse-grid correction is weighted by ω ∈ R

e 7→ S (I − ωπA (P )) e.

Hence, the problem of optimal weighted coarse-grid correction measured in
the A-norm of the two-grid error propagation operator can be formulated as

argmin
ω∈R

‖S (I − ωπA (P )) e‖A.

In order to derive the optimally weight ω∗ = ω∗(e) of coarse-grid correc-
tion we first state an auxiliary result.

Lemma 4.40. Let C ∈ Cm×m be hermitian and positive definite and e, w ∈
Cm. Then we have

〈e− ωw, e− ωw〉C → min! for ω∗ =
<(〈w, e〉C)

〈w,w〉C
. (4.40)

Proof. We have

〈e− ωw, e− ωw〉C = 〈e, e〉C − 2ω<(〈w, e〉C) + ω2〈w,w〉C ,

which yields (4.40).

Theorem 4.41. For given e ∈ Cm and two-grid error propagation (4.39) we
have

argmin
ω∈R

‖S (I − ωπA (P ))Se‖A =
< (〈πA(P )e, e〉SHAS)

〈πA(P )e, πA(P )e〉SHAS
. (4.41)
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Proof. We have ‖S(I − ωπA(P ))e‖A = ‖I − ωπA(P )e‖SHAS. Hence, we ob-
tain (4.41) by application of Lemma 4.40.

Interestingly enough the computation of ω∗(e) can be done on-the-fly
during the solution phase with minor additional work needed. In order to
see this we introduce the following notation

u Current iterate

ě = P
(
PHAP

)−1
PH(b− Au) Coarse-grid correction

û = u+ ě Iterate after coarse-grid correction
u+ = û+M(b− Aû) Smoothing iteration

The error e = u − u∗ used to define ω∗(e) is not known in the two-grid
iteration, but the residual r = Ae = A(u − u∗) = Au − b is. Some simple
algebra gives

ω∗(e) =
〈πA(P )e, e〉SHAS

〈πA(P )e, πA(P )e〉SHAS

=
〈SπA(P )e, ASe〉2

〈SπA(P )e, SπA(P )e〉A
.

For SπA(P )e we have

SπA(P )e = SP
(
PHAP

)−1
P TA(u∗ − u) = SP

(
PHAP

)−1
PHr = Sẽ .

Hence, due to the fact that ẽ is available in the two-grid iteration, the
only modification in order to compute SπA (P ) is an additional application
of the smoother to the coarse-grid correction ẽ with right-hand-side zero.

Further we observe that ASe is given by

ASe = A(I −MA)(u∗ − u) = A(u∗ − u−Mr)

= A(u∗ − (u+Mr)) = A(u∗ − ũ) = b− Aũ = r̃.

This corresponds to the residual after application of smoothing to the current
iterate and is available in the two-grid iteration.

With these observations the optimally weighted coarse-grid correction is
given in Algorithm 5. Only one additional application of the smoother and
an additional multiplication by A have to be done in order to compute the
optimally weighted coarse-grid correction.

Another interesting observation relates optimally weighted coarse-grid
correction to the smoothed interpolation approaches, e.g., smoothed aggre-
gation (cf. section 2.6). Instead of taking the A-orthogonal projection as
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Algorithm 5 amg solve { Optimally weighted coarse-grid correction }
Input: A, f
Output: u
u = Sν1 (0, f) {Pre-smoothing}
fc = PH (f − Au) {Restriction}
uc =

(
PHAP

)−1
fc {Solve coarse-grid system}

ẽ = Puc {Coarse-grid correction}
u = Sν2

l (u, f) {Post-smoothing}
r = f − Au {Residual after smoothing}
ẽ = Sν2

l (ẽ, 0) {Post-smoothing}
ω∗(e) = 〈r,ẽ〉2

〈ẽ,ẽ〉2A
{Optimal Coarse-grid correction weight}

u+ = ũ+ ω∗(e)ẽ {Next Iterate}
r+ = r̃ − ω∗(e)Aẽ {Corresponding Residual}

the coarse-grid correction, taking the SHAS-orthogonal projection πSHAS(P )
yields ω∗(e) = 1 for all e ∈ Cm as

‖S(I − πSHAS(P ))e‖A ≤ ‖S(I − ωπSHAS(P ))e‖A for all ω ∈ R.

Furthermore, we have

SπSHAS(P ) = πA(SP )S.

Hence a V (1, 1)-cycle using πSHAS(P ) is equivalent to a V (2, 0)-cycle using
the A-orthogonal projection onto R (SP ), i.e., the smoothed interpolation
operator.





Chapter 5

Numerical Results

In this final chapter, we present adaptive algebraic multigrid algorithms for
the solution of the problems outlined in chapter 3 using the adaptive tech-
niques we introduced in chapter 4. Furthermore, we numerically analyze
various ideas of chapter 4 (e.g., algebraic distance, least squares interpola-
tion, multigrid eigensolves, almost zero modes) in more detail.

We start with the prototypical model problem for algebraic multigrid
methods, the Laplace operator, and demonstrate the capabilities of the pro-
posed bootstrap approach in a situation with known multigrid solution. As
a next step we introduce, using the notion of “gauge-equivalence”, a class
of problems that can be seen as an intermediate step in the transition from
linear operators arising in discretizations of the (gauge-less) Laplace operator
to the Gauge Laplace operator introduced in section 3.1.3. The first section
is then concluded with the successful application of the bootstrap algebraic
multigrid method to Gauge Laplace operators with physical gauge configu-
rations of various temperatures and problem sizes. A roadmap towards the
solution of the Wilson operator of Lattice QCD, introduced in section 3.1.1,
is also presented.

One of the main difficulties encountered in this transition to the Wilson
operator is that it is non-hermitian. Thus, in an intermediate step we develop
an adaptive algebraic multigrid method, composed of the techniques intro-
duced in chapter 4, to solve the non-symmetric eigenproblem encountered in
Markov chain processes, as outlined in section 3.2. In here we demonstrate
the capability of the approach to compute eigenvectors of non-hermitian sys-
tems to arbitrary accuracy in an adaptive algebraic multigrid fashion.

In the last section of this chapter we consider the Wilson-Schwinger op-
erator of QED, that we introduced in section 3.1.2. We discuss the difficul-
ties inherent in the problem formulation and possible limitations they might
imply on the applicability of an adaptive algebraic multigrid method. We

113
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compose an algorithm from the techniques presented in chapter 4 for this
problem and discuss its application to these problems.

Finally, we give an outline on future research, involving further analysis
and enhancement of the adaptive algebraic multigrid techniques of chapter 4
to solve the Wilson-Dirac system of Lattice QCD.

5.1 Scalar Elliptic PDEs

In this section we conduct numerical experiments using the techniques of the
bootstrap framework we introduced in sections 4.2 and 4.3. Herein, we choose
test problems with increasing difficulty to put several individual components
of the algorithm to the test and analyze their performance. Starting with the
prototypical model problem, the Laplace operator. In section 5.1.1, we focus
on least squares interpolation and its variants by applying it to this first sim-
ple test problem. Thereafter, we demonstrate the application of the idea of
algebraic distance using an anisotropic Laplace test problem in section 5.1.2.
Finally, the section is concluded by the transition from Gauge Laplace op-
erators with constant gauge configurations to Gauge Laplace operators with
physical, randomized, gauge configurations in section, which appear in the
Wilson-Schwinger formulation of Lattice Quantum Electrodynamics, in sec-
tion 5.1.3.

5.1.1 Laplace operator ∆

We start the numerical analysis of our adaptive techniques by applying it to
the two-dimensional partial differential equation

−uxx − uyy = f(x, y), (x, y) ∈ Ω = (0, 1)2

u(x, y) = 0, (x, y) ∈ δΩ.

In order to solve this problem numerically we consider a finite-element dis-
cretization, using quadrilateral finite-elements (cf. [SF73]), on a (N − 1) ×
(N − 1) equidistant grid. For each point on the grid the resulting element
stiffness matrix is given as shown in Figure 5.1. Summation of the element
stiffness matrices yields the linear operator A given by the stencil

A =

−1 −1 −1
−1 8 −1
−1 −1 −1

 .

Here, A is symmetric and positive definite (spd).
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2 −1
2

−1
2 −1

Figure 5.1: The entries of the element stiffness matrix associated with the quadri-
lateral finite-element discretization of ∆u on an equidistant grid.

The results in Figure 2.3 suggest that the Gauss-Seidel iteration (2.5)
fulfills a smoothing property, i.e., it reduces components of the error cor-
responding to large eigenvalues fast for this problem. Hence, we use this
smoother throughout the remainder of this section if not stated otherwise.

We choose the splitting of the set of variables Ω = {1, . . . , N −1}2 into F
and C sets, such that C matches “full-coarsening”, as depicted in Figure 5.2.
In Table 5.1, we show that compatible relaxation yields fast asymptotic con-
vergence rates independent of the problem size for this choice of coarse grid
variables. In accordance with this choice of C-variables, we limit the max-

i ∈ C

i ∈ F

Figure 5.2: Coarsening pattern of full-coarsening on an equidistant two-
dimensional grid.
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N 31 63 127 255 511 1023
ρ .2101 .2128 .2139 .2144 .2147 .2148

Table 5.1: Asymptotic compatible Gauss-Seidel convergence rates ρ with C0 match-
ing “full-coarsening” for the Laplace operator with Dirichlet boundary conditions,
discretized on a N ×N grid using quadrilateral finite-elements.

i ∈ C

i ∈ F

Figure 5.3: Interpolation relations. The drawn interpolation relations depict the
maximal number of interpolatory points Ci for each class of i ∈ F ; in case less
interpolatory points Ci are used, they are a subset of the depicted ones.

imal number of interpolatory points for each i ∈ F to 4 and only consider
nearest neighbor interpolation (see Figure 5.3). We note that the coarse-level
matrices

Al+1 =
(
P l
l+1

)H
AlP

l
l+1

thus have at most 9 non-zero entries per row, i.e., the sparsity of the finest
grid operator A is preserved.

The definition of interpolation operators P is done using least squares
interpolation, introduced in section 4.2. We begin our experiments using
least squares interpolation with initially random smoothed test vectors. Fur-
ther, we demonstrate that least squares interpolation benefits from a priori
knowledge on the algebraically smooth error, and move on to the bootstrap
computation of improved test vectors. We end this section with a discussion
of different cycling strategies in the bootstrap setup.

Note, that whenever we present asymptotic convergence rates, ρ, we re-
port

ρ =
‖eν‖2

‖eν−1‖2

,
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in the last iteration where the solver terminates if the method reduced the
initial residual by a factor of 1012 or applied ν = 100 iterations and failed to
converge to this tolerance.

In a purely algebraic setting, we do not assume any a priori knowledge
about the algebraically smooth error components.

Hence, we begin our analysis using a set of initially random test vectors

u(1), . . . , u(k) ∈ Rm,

where, each entry of these vectors is derived from a normal distribution with
expectation zero and variance one (N(0, 1) distribution). Then, we apply to
each of these test vectors exactly η iterations of the given smoother, S, and
compute least squares interpolation using the resulting approximations to the
homogeneous equations. We limit these tests to a two-grid setting, with a fine
grid of size 63×63 and accordingly a coarse grid of size 31×31. In Table 5.2 we
report results for the asymptotic convergence of the V(2, 2)-cycle, varying the
number of test vectors k and the number of iterations η applied to each test
vector before computing least squares interpolation using weighting according
to (4.11). As discussed in section 4.2, the minimal number of test vectors

H
HHH

HHη
k

6 7 8 10 12

1 .972 .959 .971 .952 .967 .949 .966 .945 .962 .942
2 .928 .845 .901 .803 .902 .786 .884 .773 .859 .747
3 .834 .645 .802 .613 .782 .591 .750 .551 .725 .517
4 .744 .485 .694 .435 .659 .413 .609 .368 .586 .336
5 .610 .346 .549 .299 .526 .286 .473 .252 .452 .228
6 .500 .255 .422 .212 .408 .206 .366 .179 .346 .163
7 .440 .211 .345 .163 .326 .152 .289 .133 .272 .121
8 .360 .158 .272 .128 .258 .115 .226 .101 .216 .092

Table 5.2: Asymptotic convergence of the V(2, 2) two-grid cycle with Gauss-Seidel
smoothing for the Laplace operator with Dirichlet boundary conditions, discretized
on a 63×63 grid using quadrilateral finite-elements. Using LS interpolation with k
initially random (N(0, 1) distributed) test vectors and η initial smoothings in the
setup. Black uses the original LS interpolation (4.10); red includes the residual
correction (4.19).

kmin needed to define a well-posed least squares problem for all i ∈ F is given
by

kmin = max
i∈F
|Ci| = 4.
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In practice, to prevent non-unique least squares problems for some i ∈ F ,we
choose k ≥ 3

2
maxi∈F |Ci|. Note that, it is possible to adjust the number of

test vectors on-the-fly if one encounters rank-deficient operators Uwi .
As expected we see that increasing the number of test vectors, as well

as increasing the number of smoothing iterations applied to the test vec-
tors improves the convergence of the resulting two-grid method. We observe
that the use of the residual correction is highly beneficial in this numerical
experiment.

However, as can be seen in Table 5.3, with fixed number of test vectors
k = 8 and smoothing iterations η = 4, the performance of the V(2, 2)-cycle
method deteriorates when increasing the grid-size. This observation can be

N 31 63 127 255 511
ρ .290 .145 .660 .413 .874 .718 .966 .913 .988 .975

Table 5.3: Asymptotic convergence of the V(2, 2) two-grid cycle with Gauss-Seidel
smoothing for the Laplace operator with Dirichlet boundary conditions, discretized
on a N ×N grid using quadrilateral finite-elements. Using LS interpolation with 8
initially random (N(0, 1) distributed) test vectors and 4 initial smoothings in the
setup. Black uses the original LS interpolation (4.10); red includes the residual
correction (4.19).

explained by the fact that the smallest eigenvalue of the system decreases
with increasing problem size. Keeping the number of iterations fixed, we
are not able to expose the error components that correspond to the small
eigenvalues to the same accuracy independently of the problem size, since
the convergence of the smoother deteriorates as the smallest eigenvalue goes
to zero.

It is known that classical AMG yields a very efficient solver for the prob-
lem we discuss here. This can be explained by the fact that interpolation in
classical AMG preserves the constant vector 1, which is indeed algebraically
smooth for discretizations of the Laplace operator. In Table 5.4 we present
results, where we add the constant vector to the set of test vectors, and
again increase the problem size, but fix the number of test vectors k = 7 + 1
and setup iterations η = 4. We see that by including the constant in the
definition of least squares interpolation the method scales much better when
increasing the problem size. This demonstrates that the least squares for-
mulation straight-forwardly handles a priori knowledge about algebraically
smooth error and benefits from such knowledge.

Motivated by the observation that the input of known algebraically smooth
error, i.e., eigenvectors corresponding to small eigenvalues, improves the qual-
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N 31 63 127 255 511
ρ .125 .044 .130 .044 .158 .049 .194 .048 .182 .073

Table 5.4: Asymptotic convergence of the V(2, 2) two-grid cycle with Gauss-Seidel
smoothing for the Laplace operator with Dirichlet boundary conditions, discretized
on a N ×N grid using quadrilateral finite-elements. Using LS interpolation with
7 initially random (N(0, 1) distributed) test vectors plus the constant 1 and 4
initial smoothings in the setup. Black uses the original LS interpolation (4.10);
red includes the residual correction (4.19).

ity of least squares interpolation, we now consider the multigrid computation
of approximations of eigenvectors to small eigenvalues, as was introduced in
section 4.3.1. In order to demonstrate this bootstrap technique we move on
from the two-grid method to a multigrid method. In Table 5.5, we first repeat
the same test that we presented in Table 5.3 for a multigrid method with the
coarsest grid always being 7 × 7. As expected, we clearly see slightly worse

N 31 63 127 255 511
ρ .299 .159 .679 .440 .891 .750 .971 .925 .988 .976

Table 5.5: Asymptotic convergence of the V(2, 2) multigrid cycle with Gauss-Seidel
smoothing for the Laplace operator with Dirichlet boundary conditions, discretized
on a N ×N grid using quadrilateral finite-elements. Using LS interpolation with 8
initially random (N(0, 1) distributed) test vectors and 4 smoothings in the setup.
Black uses the original LS interpolation (4.10); red includes the residual correc-
tion (4.19).

results for the multigrid convergence as compared to the two-grid results
presented in Table 5.3. However, the information condensed on the coarsest
grid still contains very useful information. In Figure 5.4, we show for the
problem of size 127 × 127 the coarsest grid eigenvector, v, corresponding to
the smallest eigenvalue, λ, that fulfills the generalized eigenvalue problem

ALv = λTLv (5.1)

and its representations along the multigrid hierarchy according to Algo-
rithm 4. The eigenvector approximations computed by Algorithm 4 resemble
the targeted eigenvector on the finest grid, i.e., the eigenvector associated
with the smallest eigenvalue of A.

Combining least squares interpolation and the recovery of representatives
of algebraically smooth vectors from the multigrid hierarchy leads to a vast
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(a) Multigrid representation of the coarsest grid eigenvector

(b) Finest grid eigenvector

Figure 5.4: Comparing the multigrid representation of the coarsest grid eigenvec-
tor corresponding to the smallest eigenvalue of the generalized eigenvalue prob-
lem (5.1) in 5.4(a) and the associated exact finest grid eigenvector corresponding
to the smallest eigenvalue in 5.4(b).

variety of cycling-strategies. The most simple one, depicted in Figure 5.5,
resembles a double-V -cycle. This adaptive setup substantially improves the

Compute V , s.t., Av = λTv, v ∈ V

Relax on Au = 0, u ∈ U and Av = λTv, v ∈ VRelax on Av = λTv, v ∈ V

Relax on Au = 0, u ∈ U

Figure 5.5: Bootstrap AMG setup cycle, double-V (V 2).

multigrid results given in Table 5.5, as can be seen in Table 5.6. In the
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N 31 63 127 255 511
ρ .048 .042 .062 .044 .110 .045 .143 .045 .910 .047

Table 5.6: Asymptotic convergence of the V(2, 2) multigrid cycle with Gauss-Seidel
smoothing for the Laplace operator with Dirichlet boundary conditions, discretized
on a N ×N grid using quadrilateral finite-elements. Using LS interpolation with
k = 8 initially random (N(0, 1) distributed) test vectors and η = 4 smoothings
and a double-V -cycle setup (cf. Fig. 5.5) with |V| = k and 4 relaxations on the
eigenvector approximations. Black uses the original LS interpolation (4.10); red
includes the residual correction (4.19).

adaptive setup we use the same number of iterations η to relax the initial
test vectors and to relax on the generalized eigenequation (4.35) on the way
back to the finest grid. We choose to compute |V| = k coarsest grid eigen-
vectors to the smallest eigenvalues of the generalized eigenproblem (4.34).
Note, that although further computations are not needed the last time we
visit the coarsest grid, i.e., we do not improve the multigrid hierarchy by
these computations, we still may wish to compute coarsest grid eigenvectors
and interpolate them to finer grids to measure the quality of the multigrid
hierarchy, e.g., by computation of the eigenvalue approximation property. In
Figure 5.6, we provide the approximations computed in the second V -cycle
of the setup and the associated relative eigenvalue approximation measures
τ

(L,1)
λ of Definition 4.38 are reported in Table 5.7.

i 1 2 3 4 5 6 7 8

τ
(L,1)
λi

.0163 .0316 .0335 .0415 .0776 .0814 .0757 .0762

‖vLi − vi‖2 .0013 .1314 .1311 .0073 .0184 .0214 .6743 .6756

Table 5.7: Relative eigenvalue approximation measures τ (L,1)
λi

of Definition 4.38 and
eigenvector approximation estimates of the 8 smallest eigenvalues λ1 ≤ . . . ≤ λ8

and corresponding eigenvectors v1, . . . , v8, after the second V in a double-V -cycle
setup (cf. Fig. 5.5) with |U| = |V| = 8 and 4 relaxations for U and V. Results for
the Laplace operator with Dirichlet boundary conditions, discretized on a 127×127
grid using quadrilateral finite-elements in a multigrid (L = 5) setting, including
the residual correction (4.19) in the definition of LS interpolation.

We also introduce a W -cycle setup, illustrated in Figure 4.3, in which
we recompute the multigrid hierarchy in a W -cycle fashion. Note that this
setup resembles what is known in classical AMG literature as an F -cycle,
once an initial multigrid hierarchy is computed. That is, the improvement of
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(a) Finest grid representation of the coarsest grid eigenvectors

(b) Finest grid eigenvectors

Figure 5.6: Visualization of the finest grid representations of the coarsest grid
eigenvectors corresponding to the 4 smallest eigenvalue of the generalized eigen-
value problem (5.1) in 5.6(a) and the associated exact finest grid eigenvectors
corresponding to the 4 smallest eigenvalues in 5.6(b).

the multigrid hierarchy propagates from coarse to fine, recomputing the hier-
archy, whenever improved information is available. In Table 5.8, we present
results for the W -cycle setup using the same test setting as before.

N 31 63 127 255 511
ρ .046 .042 .062 .044 .110 .045 .115 .045 .360 .046

Table 5.8: Asymptotic convergence of the V(2, 2) multigrid cycle with Gauss-Seidel
smoothing for the Laplace operator with Dirichlet boundary conditions, discretized
on a N ×N grid using quadrilateral finite-elements. Using LS interpolation with
k = 8 initially random (N(0, 1) distributed) test vectors and η = 4 smoothings
and W -cycle setup (cf. Fig. 5.5) with |V| = k and 4 relaxations on the eigenvector
approximations. Black uses the original LS interpolation (4.10); red includes the
residual correction (4.19).

The last result to be presented in this section is related to the computa-
tional complexity of the adaptive setup. In Figure 5.7, we show the time, t,
spent in the setup phase as a function of the number of variables, N2. One
can see that the computational complexity for both setup cycling strategies
is O(N2), i.e., linear in the number of variables. Therefore, the setup cannot
prevent the overall method to achieve optimal complexity. We omit a discus-
sion of the absolute setup time as our implementation is in MATLAB and
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Figure 5.7: Computational complexity, illustrated by the logarithmic dependence
of problem-size N2 against the time the setup takes to finish, of both W - and
double-V -cycle bootstrap AMG setups.

not optimized. Hence, a fair comparison to other methods is not appropriate.
The discussion of relative cost of the setup in the solution process and the
development of an optimized implementation is part of future research.

5.1.2 Anisotropic Laplace – Algebraic Distance

We introduced the concept of algebraic distance in section 4.2 as a way
to generalize the notion of strength-of-connection using the least squares
interpolation concept. In this section we present first numerical evidence of
the discovery of strength-of-connection in an adaptive manner without using
any a priori knowledge about the problem for a typical model problem. The
typical model problem in classical AMG literature for the use of strength-of-
connection is the anisotropic Laplace operator

L = ε∂xx + ∂yy, ε� 1. (5.2)

We analyze this problem discretized on the unit square Ω = [0, 1]2 with
Dirichlet boundary conditions. The local stiffness matrices using stretched
quadrilateral finite-elements are given in Figure 5.8 for ε = 1

100
. By summa-

tion of the local stiffness matrices we obtain the linear operator A, written
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−.505−.995

1.01 .49

Figure 5.8: The entries of the element stiffness matrix associated with the stretched
quadrilateral finite-element discretization of the anisotropic operator (5.2) for ε =

1
100 on an equidistant grid.

in stencil notation as

A =

−0.505 −1.99 −0.505
0.98 4.04 0.98
−0.505 −1.99 −0.505

 .

Here, we expect the strength of connection of variables on the grid in the
x-direction to be much smaller than the strength of connection in the y-
direction. We mentioned in section 4.2.2 that algebraic distance can be used
to find such relations in a completely algebraic setting. Recall that algebraic
distance from j to i for any pair of variables i, j ∈ Ω, given a set of test
vectors U = {u(1), . . . , u(1)} and associated weights ω1, . . . , ωk, is defined by

dαi←j = min
δij

∑
l

ωl

(
u

(l)
i − δiju

(l)
j

)2

= min
δij
‖U{i}W

1
2 − δijU{j}W

1
2‖2

2. (5.3)

That is, algebraic distance is given as the least squares functional L(pi)
of (4.10) for one-sided least squares interpolation from Ci = j to i. We
limit the computation of algebraic distance to pairs that are close to each
other in the graph GA of A. For the anisotropic problem at hand, we consider
only direct neighbors in the graph GA, i.e., the algebraic distance matrix

DA = (di←j)(i,j)∈EA ,

where EA is the set of edges of GA. Hence, DA has the same sparsity as A.
Even though we only care about the distinction of strong and weak couplings
for each i ∈ Ω individually, i.e., the relative difference in the entries of the i-th
row of DA, we simplify this analysis by normalizing the algebraic distances
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to i ∈ F , such that the largest distance is 1. That is, we define a normalized
algebraic distance d̂αi←j by

d̂αi←j =
1

maxk(dαi←k)
dαi←j.

Then, using this normalized algebraic distance we define strong and weak
couplings using a simple threshold θ similar to the classical formulation of
strength-of-connection in Definition 4.21. Ultimately, the threshold can be
chosen according to the histogram of connection strength, i.e., if globally
strong and weak connections are well separated and can be identified by
clusters in the histogram of di←j.

In Figure 5.9, we present results that do not assume any a priori knowl-
edge about algebraically smooth error, i.e., the set of test vectors contains
16 initially random N(0, 1) distributed, vectors, that are smoothed by 4 it-
erations of Gauss-Seidel before we compute algebraic distances according
to (5.3) with ωl chosen as in (4.11). We illustrate the distribution of the
algebraic distances d̂αi←j in two histograms, on the bottom-left for the con-
nections i ← j below the chosen threshold θ and on the bottom-right for
the connections i ← j above the threshold. The connectivity graphs on top
of the histograms represent all connections in the respective histogram, i.e.,
on the top-left, we show all connections i ← j with d̂αi←j < θ and on the

top-right, connections i ← j with d̂αi←j ≥ θ. We see that algebraic distance
predicts in this setting, with a few exceptions, both the strong couplings and
also suggests the chosen threshold θ ≈ .75 that is used to distinguish strong
and weak couplings by the clustering in the histograms.

We observed before in section 5.1.1 that better information of the alge-
braically smooth error in terms of approximations to the eigenvectors corre-
sponding to small eigenvalues improves least squares interpolation and the
quality of the associated multigrid method. Thus, we conduct a test with al-
gebraic distance assuming exact knowledge of the 16 eigenvectors correspond-
ing to the smallest eigenvalues. In Figure 5.10, we present the results of this
test, using the same illustration as before, i.e., on the left, connectivity graph
and algebraic distance histogram for algebraically close connections i ← j
and on the right, connectivity graph and histogram for the algebraically far
connections i← j for this problem. With the improved knowledge of the al-
gebraically smooth error, algebraic distance yields a very accurate result. We
obtain an appropriate strong connectivity graph and a very pronounced dis-
tinction between strong and weak couplings as illustrated in the histograms.

Although, we only showed a first, and rather simple, test for the appli-
cation of algebraic distances, we think that the results obtained are very
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Figure 5.9: Algebraic distance defined by the 16 initially random (N(0, 1) dis-
tributed) vectors and 4 Gauss-Seidel relaxations for the anisotropic Laplace op-
erator with ε = 1

100 , discretized on a 31 × 31 grid using stretched quadrilateral
finite-elements. The threshold is chosen according to the distribution seen in the
histograms below, the corresponding connections in the graph of these subsets are
depicted above.

encouraging. We note further that the notion of algebraic distance can be
used as a tool in adaptive algebraic multigrid in the definition of interpola-
tion and the discovery of variable relations. The next step in the analysis of
algebraic distance could be the application to unstructured grids and variants
of anisotropy, e.g., rotated anisotropies.

Another interesting problem of future work for algebraic distance is the
discovery of the nature of variables in systems of PDEs, e.g., pressure and
velocity in the Stokes problem or spins in Quantum Dynamics. It is common
practice to build interpolation in algebraic multigrid for these problems based
on the nature of the variable, but if the knowledge about the nature of the
variables is not given a priori, algebraic distance might be useful in such
problems in an adaptive and purely algebraic setting.
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Figure 5.10: Algebraic distance defined by the 16 eigenvectors corresponding to the
smallest eigenvalues of the anisotropic Laplace operator with ε = 1

100 , discretized
on a 31×31 grid using stretched quadrilateral finite-elements. The threshold is cho-
sen according to the distribution seen in the histograms below, the corresponding
connections in the graph of these subsets are depicted above.

Further, motivated by the results presented here, a natural application
for algebraic distances is the computation of coarse variables C in a compat-
ible relaxation algorithm. The notion of algebraic distance could be used
to define better candidate sets N by refining the notion of slow-to-converge
by averaging over several test vectors and also to define an improved strong
connectivity graph that can be used to choose the right subset of the can-
didate set N to be added to C. This modification accelerates Algorithm 2
by simplifying the computation of an independent set of N and improves
its output. In addition this framework allows to incorporate a priori known
information about the system into the adaptive coarsening process, but does
not require any sense of algebraic smoothness to work.

After this short intermission, we now focus again on the development
of an adaptive algebraic multigrid method for problems arising in Quantum



128 CHAPTER 5. NUMERICAL RESULTS

Dynamics.

5.1.3 Gauge Laplace A(U) with U ⊂ U(1)

Consider
(A(U) +mI)ψ = f, ψ, f ∈ Cm, (5.4)

with A(U) denoting the Gauge Laplace operator on a N ×N lattice with a
background gauge configuration U ⊂ U(1) and m a mass term, to be specified
later.

To illustrate the transition from a discretization of the Laplace ∆ to
the Gauge Laplace operator, A(U). We recall the formulation of the Gauge
Laplace operator for a given background gauge configuration

U = {Ux
µ} with Ux

µ ∈ U(1), µ = 1, 2, x ∈ {1, . . . , N}2.

Explicitly using the covariant differences of Definition 3.3, we can obtain the
discrete equation (5.4) at grid point x ∈ {1, . . . , N}2 as

(4 +m)ψx −
(
Ux−e1

1

)H
ψx−e1 − Ux

1ψx+e1 −
(
Ux−e2

2

)H
ψx−e2 − Ux

2ψx+e1 = ϕx,

where ei denotes the i-th canonical basis vector. In what follows, we denote
this linear system of equations by

A(U)ψ = ϕ.

As the elements of U are complex numbers of modulus one, each element
Ux
µ ∈ U can be written as

Ux
µ = eiθ

x
µ , θxµ ∈ [0, 2π).

If the background gauge field is constant 1, i.e., θxµ = 0 for all Ux
µ ∈ U ,

we obtain the finite difference discretization of the Laplace operator with
periodic boundary conditions plus an additional mass term m. We then have
the set of equations,

(4 +m)ψij − ψi−1,j − ψi+1,j − ψi,j−1 − ψi,j+1 = ϕij,

writing x = (i, j) ∈ {1, . . . , N}2 as usual. Hence, in stencil notation we
obtain

A(U0) =

 −1
−1 (4 +m) −1

−1

 .
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Now, the transition from A(U0) with a special constant gauge configuration
that corresponds to the finite difference discretization of the Laplace operator
to the physical Gauge Laplace operator A(U) is done via an observation on
constant gauge configurations Uc 6= U0.

In what follows we fix the mass term m, such that the smallest eigen-
value of A(U) + mI on a N × N equidistant lattice is N−2. We have al-
ready demonstrated that the bootstrap algebraic multigrid method devised
in section 5.1.1 is able to deal with the finite-element discretization of ∆
with Dirichlet boundary conditions. In Table 5.9, we present results of the
method using a triple-V -setup cycle for the finite-difference discretization
of ∆ with periodic boundary conditions and a mass-shift m = N−2. The
coarsest grid is taken to be 8 × 8. Note that, we can again choose interpo-
latory points according to Figure 5.3, even though this means that some of
the F -variables are not interpolated from direct neighbors in this case. As

N 32 64 128 256
ρ .082 .060 .082 .060 .110 .058 .147 .057

Table 5.9: Asymptotic convergence of the V(2, 2) multigrid cycle with Gauss-
Seidel smoothing for A(U0) (Laplace operator). Using LS interpolation with k = 8
initially random (N(0, 1) distributed) test vectors and η = 4 smoothings in a
triple-V –cycle setup with |V| = k. Black uses the original LS interpolation (4.10);
red includes the residual correction (4.19).

expected, we obtain a very efficient multigrid solver for this problem.
As a next test we apply this same approach to other choices of constant

gauge fields. In order to classify such operators we introduce the notion of a
gauge transformation.

Definition 5.1. A gauge transformation

g : Ω → SU(n)

x 7−→ gx

of a gauge configuration U = {Ux
µ} ⊂ SU(n) is defined by

Ux
µ 7−→ g∗xU

x
µgx+eµ .

That is, a gauge transformation can be represented as a block diagonal matrix

G = diag(gx), x ∈ Ω.
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Thus, the action of the gauge transformation on a gauge covariant operator
A(U) is given by

A(U) 7−→ GHA(U)G.

In the case of U ⊂ U(1) we specifically obtain the gauge transformation
of U under the gauge transformation g : x 7−→ eiψx by

Ux
µ = eiθ

x
µ

g7−→ e−iψxeiθ
x
µeiψx+eµ . (5.5)

Remark 5.2. The U(1) gauge transformation G of Definition 5.1 fulfills

GHG = I and ‖G.,i‖ = 1, i = 1, . . . ,m.

That is, the gauge transformation describes a unitary similarity transforma-
tion of the matrix A(U). Hence, if v1, . . . , vm are the eigenvectors of A(U)
corresponding to the eigenvalues λ1, . . . , λm then GHv1, . . . , G

Hvm are the
eigenvectors of GHA(U)G to the same eigenvalues.

Motivated by Remark 5.2 we define an equivalence relation of gauge con-
figurations.

Definition 5.3. Define the binary relation ∼ between two gauge covariant
operators A(U1), A(U2), defined by gauge configurations U1,U2, by

A(U1) ∼ A(U2)⇐⇒
There exists a gauge transformation G s.t. A(U1) = GHA(U2)G.

The binary relation ∼ is an equivalence relation. With the help of the
equivalence classes with respect to ∼, we are able to classify Gauge Laplace
operators A(U) with constant gauge configurations U that are equivalent to
the discretized Laplace operator A(U0).

Theorem 5.4. Consider a constant gauge configuration U on an N × N
equidistant lattice, where each element Ux

µ ∈ U is given by

Ux
µ = eiθ.

If θ fulfills

θ =
2πk

N
, for some k ∈ {0, . . . , N − 1},

we have A(U) ∼ A(U0).
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Proof. We have to find a gauge transformation G, such that

GHA(U)G = A(U0).

By (5.5) we have for any gauge transformation g with gx = eiψx ,

(A(U))x,x+µ = Ux
µ = eiθ

g7−→ e−iψxeiθeiψx+eµ

Now, we obtain the following system of linear equations by trying to fulfill
ei(θ−(ψx−ψx+eµ )) = 1 for all x ∈ {1, . . . , N}2 and µ = 1, 2,

(ψx − ψx+eµ) = 2πηx − θ, ηx ∈ Z. (5.6)

Writing x = (x1, x2) and choosing ψx = −(x1 + x2 − 2)θ we obtain

θ+(ψx+e1−ψx) = 0, for all x with x1 ∈ {1, . . . , N−1} and x2 ∈ {1, . . . , N}

and analogously,

θ+(ψx+e2−ψx) = 0, for all x with x1 ∈ {1, . . . , N} and x2 ∈ {1, . . . , N−1}.

For all links x = (N, x2)→ x+ e1 = (1, x1), we have for x2 ∈ {1, . . . , N}

θ + (ψx+e1 − ψx) = (1− (1 + x2 − 2) + (N + x2 − 2)) θ = Nθ.

Hence, with (5.6) we obtain

θN

2π
∈ Z⇒ A(U) ∼ A(U0).

Now, the first interesting test is to check whether the bootstrap algebraic
multigrid method devised in section 5.1.1 is gauge invariant, i.e., that it yields
comparable results for constant gauge fields that are gauge equivalent to the
Laplace operator. By Theorem 5.4 we obtain that on an N ×N grid with N
even, the operator given by its stencil notation,

A(Uπ) =

 1
1 (4 +m) 1

1

 ,

is gauge equivalent to the Laplace operator. In Table 5.10 we show results
for this operator. Again we use a triple-V -cycle setup, a mass-shift m, such
that λmin(A(Uπ) + mI) = N−2 and coarsest grids of size 8 × 8. The results
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N 32 64 128 256
ρ .089 .059 .095 .059 .104 .059 .115 .057

Table 5.10: Asymptotic convergence of the V(2, 2) multigrid cycle with Gauss-
Seidel smoothing for A(Uπ). Using LS interpolation with k = 8 initially random
(N(0, 1) distributed) test vectors and η = 4 smoothings in a triple-V –cycle setup
with |V| = k. Black uses the original LS interpolation (4.10); red includes the
residual correction (4.19).

show that the adaptive setup is able to treat gauge equivalent problems
equally well. As shown in Remark 5.2, the gauge equivalent problem can be
interpreted as a diagonally scaled version of the original problem that leaves
the relations of eigenvalues unchanged, but scales the eigenvectors such that
the eigenvectors to small eigenvalues become highly oscillatory.

In Theorem 5.4 we discovered equivalence classes of Gauge Laplace oper-
ators that are potentially non-equivalent to the Laplace operator on a N×N
grid. Next, we give results in Table 5.11 for a representative of a problem not
equivalent to A(U0) with the constant gauge configuration Uπ

7
. The resulting

linear operator in stencil notation is given by

A(Uπ
7
) =

 −eiπ7
−eiπ7 (4 +m) −eiπ7

−eiπ7

 .

Again, we use a triple-V -cycle setup and define the mass-shift m such that
λmin(A(Uπ

7
) + mI) = N−2. In the tests, the coarsest grids are of size 8 × 8.

The bootstrap algebraic multigrid setup yields an efficient solver for these

N 32 64 128 256
ρ .066 .060 .058 .057 .061 .058 .058 .056

Table 5.11: Asymptotic convergence of the V(2, 2) multigrid cycle with Gauss-
Seidel smoothing for A(Uπ

7
). Using LS interpolation with k = 8 initially random

(complex, N(0, 1) distributed) test vectors and η = 4 smoothings in a triple-V -
cycle setup with |V| = k. Black uses the original LS interpolation (4.10); red
includes the residual correction (4.19).

systems as well.
Finally, we test Gauge Laplace operators A(U) with physical background

gauge configurations. The gauge configurations U of interest in the physical
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simulations of quantum dynamics can be thought of as random, but matching
a certain probability distribution that is affected by a temperature param-
eter β. In the limit case β → ∞ we obtain A(U0) the gauge-less Laplace
operator. As mentioned in the introduction of the Gauge Laplace operator
in section 3.1.3 and also observed in the discussion of numerical results for
the adaptive reduction based approach in section 4.1.2, one of the main dif-
ficulties that the Gauge Laplace operator poses, is the local nature of its
eigenvectors to small eigenvalues. In Figure 5.11 we present the modulus of
the entries of the eigenvectors corresponding to the smallest 4 eigenvalues of
A(U) for a gauge configuration on a 64 × 64 grid at temperature β = 5. In

Figure 5.11: Entry-wise modulus of the eigenvectors corresponding to the smallest
4 eigenvalues of the discrete gauge Laplace operator A(U) for a gauge configuration
U on a 64× 64 at temperature β = 5.

order to make sure that the usage of full-coarsening is a sensible choice for the
Gauge Laplace operator at hand, we present in Table 5.12 asymptotic con-
vergence rates of compatible relaxation for C0 matching the coarsening given
by full-coarsening as illustrated in Figure 5.2. Compared to the results pre-

HHH
HHHβ
N

32 64 128 256

1 .419 .420 .404 .402
5 .397 .398 .398 .400
10 .398 .401 .398 .399

Table 5.12: Asymptotic compatible Gauss-Seidel convergence rates ρ with C0

matching “full-coarsening” for the discrete Gauge Laplace operators A(U) on an
N ×N grid for physical gauge configurations U at temperatures β = 1, 5, 10.

sented in Table 5.1 the asymptotic convergence rate of compatible relaxation
for the Gauge Laplace operators A(U) for physical gauge configurations U is
worse, but still grid independent implying that full-coarsening is a suitable
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grid for our method. The tests are reported in Table 5.13 using a multigrid
framework, with a coarsest grid of 8 × 8. We use Gauge Laplace operators
A(U) with physical gauge configurations U on an N × N lattice at varying
temperatures β and a mass shift m such that, λmin(A(U) + mI) = N−2.
We report asymptotic convergence behavior of a V (2, 2)-cycle solver and the
number of iteration it takes a V (2, 2)-cycle preconditioned conjugate gradient
method to reduce the initial residual by a factor of 108.

β \N 32 64 128 256

1
.284W .242W .416W .286W .648W .478W .658V 3 .493V 3

8 8 9 8 10 9 10 9

5
.275W .284W .264W .225W .576W .389W .672V 3 .469V 3

8 8 8 8 10 10 9 8

10
.137W .120W .225W .223W .586W .349W .433V 3 .423V 3

8 8 7 7 10 9 9 8

Table 5.13: Asymptotic convergence and number of iterations of preconditioned
CG to reduce the norm of the residual by a factor of 108 for the V(2, 2) multigrid
cycle with Gauss-Seidel smoothing for the discrete Gauge Laplace operator A(U)
for physical gauge configurations U on an N × N grid at varying temperatures
β and a mass shift m, s.t., λmin(A(U) + mI) = N−2. Using LS interpolation
with k = 8 initially random (complex, N(0, 1) distributed) test vectors and η = 4
smoothings in a bootstrap setup that uses the cycling strategy given in green with
|V| = 16. Black uses the original LS interpolation (4.10); red includes the residual
correction (4.19).

There are a couple of observations to be made. The lack of scaling of
the stand-alone method when going to the larger grid-sizes can be explained
by the increase of the number of locally supported eigenvectors to small
eigenvalues. Due to the fact that any locally supported algebraically smooth
vector cannot represent anything outside of its support, a fixed number of
such vectors is not able to represent all of them, i.e., one would have to
combine several non-overlapping locally supported vectors in order to re-
duce the number of representatives, though it is unclear how to weight such
a linear combination of locally supported vectors in the definition of least
squares interpolation. The results for the preconditioned conjugate gradient
method suggest, however, that in the overall representation of the system by
the multigrid hierarchy only few error components are not well represented.
There are three possible ways to treat these error components. First, as we
did in the tests, we could try to capture as many of the components in our
adaptive setup and get the remaining components by wrapping the multigrid
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solver into a Krylov subspace method (e.g., CG). Second, we can treat them
as almost zero modes, a technique introduced in section 4.3.2. The last idea is
to treat these locally supported vectors by a smoother that efficiently reduces
error spanned by these vectors, an idea closer to the mindset of geometric
multigrid. We should also remark that it is questionable if it is physically rel-
evant to increase the grid-size while keeping the temperature fixed, as we did
in our experiments. Overall, especially compared to the results we obtained
with the adaptive AMGr approach, reported in section 4.1.2, we see that
the bootstrap algebraic multigrid approach is able to generate an accurate
multigrid representation of the Gauge Laplace operators, but sometimes fails
to capture the whole subspace of algebraically smooth vectors.

In Figure 5.12 we show again the representation of the coarsest grid eigen-
vector corresponding to the smallest eigenvalue in the hierarchy as computed
in the bootstrap computation of test vectors in Algorithm 4. We clearly see
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(a) Multigrid representation of the coarsest grid eigenvector
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Figure 5.12: Comparing the multigrid representation of the coarsest grid eigen-
vector corresponding to the smallest eigenvalue of the generalized eigenvalue prob-
lem (5.1) in 5.12(a) and the associated exact finest grid eigenvector corresponding
to the smallest eigenvalue in 5.12(b).
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the coarse grid representation of these local low modes.
With this positive result for the Gauge Laplace operators A(U), we pro-

ceed towards more complicated gauged operators that appear in Quantum
Dynamics. A natural next step is to consider the Wilson-Schwinger system
of equations that we introduced in section 3.1.2 as the model of the inter-
actions of electrons and photons in Quantum Electrodynamics. Recall that
the discretization of the Schwinger operator with the Wilson stabilization
has the Gauge Laplace operator A(U) with U ⊂ U(1) gauge configurations
as blocks on its diagonal. We analyze first approaches to solve this system
in section 5.3. Once an adaptive algebraic multigrid method for the Wilson-
Schwinger operator is found, there are actually two ways to proceed. On
one hand, one could take the same route to the Wilson operator of Quan-
tum Chromodynamics DW as before to the Wilson-Schwinger operator via
the Gauge Laplace operator of SU(3) gauge configurations. On the other
hand we also could apply the knowledge gathered in the development of an
adaptive algebraic multigrid method for the Wilson-Schwinger SW operator
directly to the solution of the Wilson operator DW .

5.2 Non-symmetric Eigensolver –

Markov Chains

In this section we discuss the application of the bootstrap algebraic multigrid
methodology to compute the steady-state vector of time independent Markov
chains, as introduced in section 3.2.

The Markov chain model is described as a linear operator A ∈ Rm×m

which is column stochastic, i.e., 1TA = 1T . The steady-state vector x of
this process is then, assuming that A is irreducible, the up to a scalar factor
unique eigenvector to the eigenvalue one satisfying

Ax = x.

In what follows we reformulate this problem as an equivalent homogeneous
system of linear equations

Bx = (I − A)x = 0,

instead.
The algorithm we develop in this section consists of two parts. First, we

introduce what we call a Multilevel Eigensolver that resembles the multigrid
eigensolver we presented in section 4.3.1 (cf. Algorithm 4). This step recom-
putes the multilevel hierarchy in each step, yielding better approximations
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to the steady-state vector in each iteration and improving the multilevel hi-
erarchy. The second part of the method makes use of a given multilevel
hierarchy as a preconditioner for GMRES to compute the steady-state vec-
tor and thereby reduces the computational cost, required to recompute the
multilevel hierarchy in each iteration.

Since the operators A and hence B are non-symmetric, we must modify
the previously discussed approach for hermitian positive definite systems.

In what follows, we assume that a splitting of variables Ωl = Fl ∪ Cl is
given on each level l. As usual, the multilevel hierarchy we use consists of a
set of linear operators Bl and Tl, with B0 = B and T0 = I. In contrast to
the hermitian case discussed in section 5.1, we change the definition of these
operators. We use the same least squares formulation as before to compute
the interpolation operators P l

l+1, but choose to define restriction operators
Ql+1
l as averaging operators that have the same sparsity as the corresponding

interpolation operator, i.e., the defining properties of Ql+1
l are given by

1. sparsity(Ql+1
l ) = sparsity(

(
P l
l+1

)T
),

2.
(
Ql+1
l

)
i,j

= 1
cj
, for (i, j) ∈ sparsity(Ql+1

l ) and cj the number of non-

zeroes in column j.

With this definition of Ql+1
l we have 1TQl+1

l = 1T . Then the coarse-grid
operators Bl and Tl are canonically given by

Al = Ql
l−1Al−1P

l−1
l ,

Tl = Ql
l−1Tl−1P

l−1
l ,

Bl = Tl − Al = Ql
l−1Bl−1P

l−1
l ,

for l = 1, . . . , L. With this choice we have 1TBl = 0 for all levels l, i.e., thus
preserving column stochasticity in the multilevel hierarchy.

5.2.1 Multilevel Eigensolver (MLE)

Our approach for building a multilevel method relies on the bootstrap frame-
work introduced in section 4.3.1. We construct a sequence of increasingly
coarser-level descriptions of the given fine-level Markov chain system using
the least squares interpolation introduced in section 4.2.

The restriction of fine-level test vectors to the corresponding coarse-grid
is done via injection, i.e., given a test vector u, we define its coarse-level
representation uc by uc = IT|Cu. In Algorithm 6, we outline the multilevel
eigensolver, which is very similar to Algorithm 4 that was used in the hermi-
tian case to compute improved test vectors for least squares interpolation.
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Algorithm 6 bootamg mle {Bootstrap AMG MLE scheme}
Input: Bl, (B0 = B), Tl, (T0 = I), Ul (set of test vectors on level l)
Output: Ul, (Λl,Vl), (approximations to the lowest eigenpairs)
if l = L then

Compute k lowest eigenvectors VL and eigenvalues ΛL of BLx = λTLx.
else

Relax Blx
(j) = 0, x(j) ∈ Ul

for m = 1, . . . , µ do
Compute Pl {Least squares interpolation}
Compute Ql {sparsity(Ql) = sparsity(Pl), equiweighted}
Set Bl+1 = QlBlPl
Set Tl+1 = QlTlPl
Ul+1 = {IT|Cx, x ∈ Ul} {Restrict test vectors}
Vl+1 = bootamg mle(Bl+1, Tl+1,Ul+1)
Vl = {Plx, x ∈ Vl+1} {Interpolate EV approximations}
for i = 1, . . . , |Vl| do

Relax on (Bl − λiTl)x(i) = 0, x(i) ∈ Vl

Calculate λi =
〈Blx

(i), x(i)〉2
〈Tlx(i), x(i)〉2

end for
end for

end if

Ultimately, in our multilevel eigensolver approach, the sequence of prolon-
gation operators P l

l+1 needs to be accurate for only the smallest eigenvector
– the kernel of the finest-level operator I − A. The accurate resolution of
many other near-kernel components by our least squares based interpolation
operator allows for the effective reduction of these “unwanted” error com-
ponents in the regular algebraic multigrid coarse-grid correction, while the
steady-state vector, as the kernel of I − A, is preserved in such correction
steps. Using this observation the reduction of “unwanted” modes can fur-
ther be accelerated by the use of a multigrid preconditioned Krylov subspace
method (e.g. GMRES).

5.2.2 Multigrid preconditioned GMRES

The multilevel eigensolver steps described above yield increasingly better
approximations to the steady-state vector and other vectors that cannot be
removed efficiently by the multigrid relaxation method.

Although we are only interested in computing the steady-state vector, the
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multigrid hierarchy based on least squares interpolation is able to resolve a
larger subspace. This leads to the idea of exploiting this richness of the given
hierarchy for use in multigrid correction steps – in addition to the discussed
MLE steps.

To illustrate the effect of multigrid correction steps applied to the homo-
geneous problem Bx = 0, we start by analyzing simple relaxation schemes
for the steady-state problem, Ax = x. As the steady-state solution is the
eigenvector corresponding to the eigenvalue with largest absolute magnitude,
a power iteration

xk+1 = Axk

is guaranteed to converge to the solution if A is irreducible and thus, due
to Theorem 3.25 only one eigenvalue with absolute value one exists and all
other eigenvalues have modulus less than one. However, convergence can be
slow if A has other eigenvalues close to one in absolute value.

Such power iterations applied to the steady-state problem are in turn
equivalent to applying a Richardson iteration to the homogeneous system
(I − A)x = 0. A natural modification, using the fact that the field of values
of A is contained in the unit circle, is then given by a suitable under-relaxed
iteration, yielding the error propagator

ek+1 = (I − τB) ek. (5.7)

Rewriting (5.7) we have

xk+1 = ((1− τ) I + τA)xk,

which can be interpreted as a modified power method.
In Figures 5.13(a) and 5.13(b) the spectra of A and of I − τ (I − A)

are depicted for a characteristic two-dimensional test problem, along with
the field of values. Applying this formalism to the error propagator of the
two-grid V(1, 1)-cycle for B given by

Etg = (I −MB)
(
I − PBc

†QB
)

(I −MB) , (5.8)

yields yet another modified iteration. Herein, B†c is a suitable pseudo-inverse
of the coarse-grid operator Bc. Choosing an appropriate operator Z, we can
rewrite (5.8) as

I −ZB.

That is, application of the Multigrid V-cycle can be interpreted as a power
iteration applied to the preconditioned matrix I − ZB = I − Z + ZA. In
Figure 5.13(c), the spectrum and field of values (see Definition 5.9 for details)
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Figure 5.13: Spectra and field of values of the Richardson, τ -Richardson and
Multigrid error propagators for two-dimensional tandem queuing problem on a
33× 33 grid.

of the multigrid V(2, 2)-cycle preconditioned matrix is depicted. For this case,
it is clear that applying power iterations to this preconditioned operator will
converge rapidly to the steady-state vector.

To further accelerate this approach, instead of the straight-forward power
method, we consider multigrid preconditioned GMRES steps. As we show
below, the convergence of GMRES is guaranteed for our Markov chain sys-
tems.

Lemma 5.5. Let A be a column-stochastic irreducible operator and B =
I − A. Then we have

R (B) ∩N (B) = {0}. (5.9)

Proof. As A is column-stochastic we know that 1TA = 1T . Hence, 1TB = 0.
Furthermore, we know from the Perron-Frobenius theorem that the null-
space of B is one-dimensional, spanned by a strictly positive (component-
wise) vector x∗. For all y ∈ R (B), y = Bz, we have

〈1, y〉 = 〈1, Az〉 = 〈At1, z〉 = 0.

With this and 〈1, x∗〉 6= 0 (as x∗ is strictly positive) we get (5.9).

In [HS09, Theorem 2.8] it is shown that GMRES determines a solution
of Bx = b for all b ∈ R (B) , x0 ∈ Rm iff R (B) ∩ N (B) = {0}. Due to
Lemma 5.5 the assumptions of this theorem are fulfilled for B = I − A,
where A is a column-stochastic and irreducible.
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Remark 5.6. Although, we now have theoretical reason to apply GMRES as
an iterative solver to the steady-state Markov chain problem, the situation
when using a multigrid preconditioner is more complex. In this case, we
have to prove that the assumption of Lemma 5.5 are still fulfilled for the
preconditioned operator EtgB. Unfortunately, we cannot guarantee in general
that the bootstrap algebraic multigrid method does fulfill (5.9), though our
numerical experience suggests that it is viable to pursue this approach.

With the theoretical justification for the use of GMRES for these types
of problems, we present numerical tests. We limit our discussion to three
Markov chain models that can be represented by planar graphs. Each of
the models has certain interesting characteristics that pose problems for the
solver. We begin our experiments with a very simple model.

The uniform two-dimensional network can be seen as the Markov chain
analogue of the Laplace operator. It is defined on an equidistant grid Ω of
size N × N . We denote this grid in graph notation as GΩ = (VΩ, EΩ). The
entries of A are then given as

ai,j =

{ 1
dout(j)

, if (i, j) ∈ EΩ

0, else,

where dout(j) is the number of outgoing edges of j ∈ Ω. In Figure 5.14,
we illustrate the two-dimensional uniform network problem. In the tests we
conduct, we use again full-coarsening, i.e., we choose C to be every other
grid point in both spatial dimensions, as illustrated in Figure 5.2. In order
to keep the overall invested work small, we consider to take only up to two
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Figure 5.14: Uniform network model on a two-dimensional equidistant grid.
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interpolatory points Ci per point i ∈ F determined by the greedy strategy
introduced in section 4.2.2. As usual we define F = Ω \ C. Hence, we
use fewer test vectors as well. As we know that the steady-state vector we
want to compute is strictly positive, we choose to use initially random, but
positive test vectors for this first problem, and also in all following tests.
More precisely, we choose vectors with entries uniformly distributed in [1, 2].

In Table 5.14, we present results that use 6 test vectors and a V (2, 2)-
cycle MLE step with ω-Jacobi smoother, ω = .7. We report the number of
iterations needed to compute the steady-state vector x, such that

‖Bx‖2 ≤ 10−8, ‖x‖2 = 1.

In addition the number of preconditioned GMRES iterations needed to achieve
the same accuracy, where we report the initial MLE setup cycle in the sub-
script. The coarsest grid in the experiments is always 5 × 5. The operator

N 17 33 65 129
MLE 9 8 10 8 11 9 11 9

pGMRES 10V 10V 12V 11V 14V 12V 18V 2 16V

Table 5.14: Multilevel results for the two-dimensional uniform network model on
an N × N grid. We report results to compute the steady-state vector x to an
accuracy of 10−8, using a V (2, 2)-MLE cycle with ω-Jacobi smoothing, ω = .7.
In addition we also report the number of iterations pGMRES needs to achieve
the same accuracy, where we denote the initial bootstrap setup in the subscript.
The sets U and V consist of 6 initially positive random vectors and coarsest grid
eigenvectors, respectively. Black uses the original LS interpolation (4.10); red
includes the residual correction (4.19).

complexity in these tests is bounded by 1.6. The test shows that the MLE
and the preconditioned GMRES approach both yield methods that scale
when increasing the problem-size. Note, that one step of pGMRES is much
cheaper than one step of MLE. We consider restarting pGMRES if the so-
lution is not found in a reasonable number of iterations (e.g., smaller than
32).

The next Markov chain model we consider in our tests is a tandem queuing
network, illustrated in Figure 5.15. The spectrum of this operator is complex,
as we show in Figure 5.13(a). Again, we use full-coarsening and a coarsest
grid of 5 × 5. We present our results in Table 5.15. In the test we use the
following probabilities,

µ =
11

31
, µx =

10

31
, µy =

10

31
.
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Figure 5.15: Tandem-Queuing Network with probability to advance µ and queuing
probabilities µx and µy on a two-dimensional equidistant grid.

N 17 33 65 129
MLE 8 6 8 6 8 6 8 6

pGMRES 8V 2 8V 2 8V 2 8V 2 8V 2 8V 2 8V 2 9V 2

Table 5.15: Multilevel results for the tandem queuing network model on an N ×N
grid. We report results to compute the steady-state vector x to an accuracy of
10−8, using a V (2, 2)-MLE cycle with ω-Jacobi smoothing, ω = .7. In addition we
also report the number of iterations pGMRES needs to achieve the same accuracy,
where we denote the initial bootstrap setup in the subscript. The sets U and
V consist of 6 initially positive random vectors and coarsest grid eigenvectors,
respectively. Black uses the original LS interpolation (4.10); red includes the
residual correction (4.19).

Again, we see that the MLE method converges rapidly to the steady-state
vector and also yields a very efficient preconditioner for the GMRES method.
We observe that the number of iterations does not depend on the size of the
problem. Note that the MLE method also yields accurate approximations
to the eigenvectors corresponding to all k smallest eigenvalues on the finest
grid. In Figure 5.16, we show the computed approximations and report in
Table 5.16 their accuracy upon convergence of the steady-state vector. One
should keep in mind that the results are intended to show the promise of
our approach rather than presenting an optimized method in the bootstrap
framework for this type of problems. We limit our analysis to the statement
that with minimal effort spent in adjusting the parameters of the setup of
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Figure 5.16: Approximations to the eigenvectors corresponding to the smallest 6
eigenvalues of the tandem queuing network problem on a 129 × 129 grid with 6
levels upon convergence of the steady-state solution of the MLE method.

i 1 2 3 4 5 6
‖vLi − vi‖2 1.02E−8 9.04E−3 2.68E−2 2.84E−2 1.42E−1 3.77E−1

Table 5.16: Accuracy of the eigenvectors corresponding to the smallest 6 eigenval-
ues of the tandem queuing network problem on a 129×129 grid with 6 levels upon
convergence of the steady-state solution of the MLE method.

the bootstrap approach we obtain scalable solvers. The optimization of the
method by tuning the parameters involved, e.g., relaxation parameter of
the smoother, coarsening, caliber, number of test vectors, weighting in the
least squares interpolation, number of relaxations in the setup and solution
process, is part of future research.

The last test we consider corresponds to a triangulation of N randomly
chosen points in [0, 1] × [0, 1]. The transition probabilities in the network
are then given by the number of outgoing edges at each point, similar to
the uniform network. In Figure 5.17, we show two examples of such net-
works, one with N = 256 and one with N = 1024 points. Due to the fact
that the corresponding graphs of this model are planar, we call this model
unstructured planar graph model. As there is no natural way to define the
set of coarse variables C for this problem we use compatible relaxation, in-
troduced in section 2.7 to define the splitting of variables Ω = F ∪ C. In
Figure 5.18, a resulting coarsening is presented. The size of each individual
point represents how many grids it appears on. In Table 5.17, we present
results of our methods to deal with the unstructured planar graph model for
a selection of graphs. Even for this unstructured graph network we obtain
a fast converging method with our MLE approach. The variation in the re-
sults when increasing the problem-size might be caused by the fact that by
increasing the problem-size the nature of the problem changes in the sense
that the average number of outgoing edges of grid points increases. That is,
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(a) Random planar graph with N = 256 (b) Random planar graph with N = 1024

Figure 5.17: Delaunay-triangulations of N randomly chosen points in the unit
square [0, 1]× [0, 1].

(a) Random planar graph with N = 256 (b) Random planar graph with N = 1024

Figure 5.18: Coarsening of Delaunay-triangulations of N points randomly scat-
tered in the unit square [0, 1]× [0, 1] shown in Figure 5.17 using compatible relax-
ation (cf. Algorithm 2).

it is not necessarily clear whether two unstructured graphs of different sizes
are comparable.

The proposed approach for the solution of the steady-state Markov chain
problems can be viewed as a combination of several ideas. On one hand,
we applied the bootstrap algebraic multigrid framework with least squares
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N 256 512 1024 2048
MLE 13 12 19 16 20 20 20 20

pGMRES 11V 10V 13V 13V 14V 14V 17V 16V

Table 5.17: Multilevel results for the unstructured planar graph model on an N×N
grid. We report results to compute the steady-state vector x to an accuracy of
10−8, using a V (2, 2)-MLE cycle with ω-Jacobi smoothing, ω = .7. In addition we
also report the number of iterations pGMRES needs to achieve the same accuracy,
where we denote the initial bootstrap setup in the subscript. The sets U and
V consist of 6 initially positive random vectors and coarsest grid eigenvectors,
respectively. Black uses the original LS interpolation (4.10); red includes the
residual correction (4.19).

interpolation and bootstrap multilevel eigensolver. Similar multilevel compu-
tations of steady-state vectors for Markov chain problems were introduced in
an aggregation-based framework of aggregation-disaggregation approaches
(cf. [Sch91]) and further developed in [DSMM+09]. Yet these approaches
focused only on the steady-state vector and did not re-use the multigrid hi-
erarchy. On the other hand, we have the use of algebraic multigrid as a
preconditioner for a suitable Krylov subspace method (e.g., GMRES). This
idea was pursued earlier in [Vir07] using a reduction-based approach to de-
fine an appropriate algebraic multigrid preconditioner. In this sense, our
approach in this context can also be seen as a mix of these ideas, adding an
adaptive and robust way to define the algebraic preconditioner to the com-
position with the bootstrap algebraic multigrid framework and least squares
interpolation.

5.3 Non-Hermitian Systems of PDEs –

The Wilson-Schwinger System

In the last section of numerical experiments we consider applying the boot-
strap algebraic multigrid method to the Wilson-Schwinger model of Quantum
Electrodynamics, introduced in section 3.1.2. There are several changes to
the algorithm that are needed when applying this approach to the Wilson-
Schwinger problem.

First, we recall properties of the Wilson-Schwinger operator that guide
our choices for these modifications. The action of the discrete Schwinger
operator SW with Wilson stabilization term on a spinor ψ with its two spin-
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components ψ1 and ψ2 is given by

SWψ =

 ∂̂x∂̂
x + ∂̂y∂̂

y
(
∂̂x + i∂̂y

)
−
(
∂̂x − i∂̂y

)
∂̂x∂̂

x + ∂̂y∂̂
y

(ψ1

ψ2

)
,

where ∂̂µ denotes the centralized covariant finite difference in spatial direction
µ, as introduced in section 3.1. In what follows, we interpret the Wilson-
Schwinger operator as a coupled system of two discretized partial differential
equations on a N ×N lattice, i.e., SW ∈ C2N2×2N2

and we write m = N2.
The most important property of SW that we exploit in the method is the

Σ3-hermiticity,

(Σ3SW )H = Σ3SW , Σ3 =

(
I
−I

)
∈ C2m×2m.

From Lemma 3.12 we have that the eigenvalues λ of SW are either real
or appear in complex conjugate pairs. Given an eigenvalue λ we denote(
λ, vrλ, v

l
λ

)
the triplet with the right eigenvector vrλ and the left eigenvector

vlλ of λ. Recall that in Lemma 3.13, we showed that the two eigentriples
associated with eigenvalue λ and its complex conjugate λ̄ satisfy

vlλ = Σ3v
r
λ̄ and vlλ̄ = Σ3v

r
λ.

Note further that in the case λ ∈ R, this relationship connects the right
and left eigenvector of λ. This result implies that once we know the right
eigenvectors of SW , we also know the left eigenvectors of SW .

Defining the coarse-grid operator ScW for non-symmetric operators A in
a Petrov-Galerkin fashion by

ScW = RSWP,

with restriction R and interpolation P , we can use the right eigenvectors
of SW to choose R in terms of P . It is common practice (e.g. [Not09]) in
algebraic multigrid methods for non-symmetric problems to base the defini-
tion of interpolation P on the right eigenvectors corresponding to the small
eigenvalues and accordingly, the definition of restriction R on the left eigen-
vectors corresponding to the small eigenvalues. Hence, a natural choice in
our setting would be to take

R = (Σ3P )H and ScW = PHΣ3SWP.

In this way, we can think of this approach as building interpolation P for
the hermitian, but indefinite system Σ3SW and use the Galerkin coarse-grid
operator for the hermitian indefinite system. Another observation that leads
us to further simplifications of the definition of restriction R is as follows.
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Lemma 5.7. Assume that interpolation P is defined such that

Σ3P = PΣc
3, (5.10)

with Σ3,Σ
c
3 defined as

Σ3 =

(
I
−I

)
∈ C2m×2m, Σc

3 =

(
I
−I

)
∈ C2mc×2mc .

Then the coarse-grid correction error propagator (2.8) with R = (Σ3P )H

fulfills,

I − P (RAP )−1RA = I − P
(
PHAP

)−1
PHA.

Proof. Direct computation yields,

I − P (RAP )−1RA = I − P
(
PHΣ3AP

)−1
PHΣ3A

= I − P
(
Σc

3P
HAP

)−1
Σc

3P
HA

= I − P
(
PHAP

)−1
PHA.

Thus, assuming that interpolation commutes with Σ3, we actually can
choose R = PH , as we do in the hermitian case, without changing the result-
ing coarse-grid correction.

Lemma 5.8. Assume that interpolation P is defined such that (5.10) is
satisfied and the coarse-grid operator ScW is defined by

ScW = PHSWP.

Then the coarse-grid operator is Σc
3-hermitian, i.e., it satisfies

(Σc
3S

c
W )H = Σc

3S
c
W .

Proof. We have,

(Σc
3Ac)

H = AHc Σc
3 = PHAHPΣc

3 = PHAHΣ3P

= PH (Σ3A)H Σ3P = PHΣ3AP = Σc
3P

HAP = Σc
3Ac.
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Now, a careful look at Σ3 reveals that the set of interpolation operators
that fulfill (5.10) is given by

P =

(
P1

P2

)
. (5.11)

Thus, such an interpolation operator is spin-decoupling, i.e., it only inter-
polates spin s1-variables to s1-variables and spin s2-variables to spin s2-
variables.

In what follows, we assume that interpolation P is spin-decoupling, i.e.,
of the form (5.11). As already mentioned in section 3.1.2, we are interested
in solving systems

(SW +mI)ψ = ϕ,

with a mass-shiftm that has a physical interpretation. In order to get a better
understanding of the mass-shift and the consequences for the design of an
algebraic multigrid method for these linear systems, we recall an important
definition.

Definition 5.9. Given a matrix A ∈ Cm×m, its field of values, F(A), is
defined by

F(A) = {z ∈ C | z = 〈Ax, x〉2, x ∈ Cm, ‖x‖2 = 1} .

We define also a coarse-grid version of F(A).

Definition 5.10. Let be given a matrix A and a set of interpolation operators
P l
l+1, l = 0, . . . , L− 1 and multigrid operators defined by

Al =
(
P l−1
l

)H
Al−1P

l−1
l , A0 = A and Tl =

(
P l−1
l

)H
Tl−1P

l−1
l , T0 = I.

We define the field of values Fl(Al, Tl) on level l by

Fl(Al, Tl) = {z ∈ C | z = 〈Alx, x〉2, x ∈ Cml , 〈Tlx, x〉2 = 1} .

In order to make use of the properties of F(SW ), we present an observation
on the field of values. An interesting relation between the field of values F(A)
and its hermitian part HA = 1

2

(
A+ AH

)
is as follows.

Lemma 5.11. For any z ∈ F(A) we have

λmin(HA) ≤ <(z) ≤ λmax(HA).
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Figure 5.19: Eigenvalues and approximated boundary of the field of values F(SW )
of a Wilson-Schwinger operator SW on a 32× 32 grid with a gauge configuration
U at temperature β = 5.

Proof. Due to Definition 5.9, there exists x ∈ Cm, ‖x‖2 = 1 for any z ∈ F(A),
such that z = 〈Ax, x〉2. Then we also have z̄ = 〈AHx, x〉2 for the complex
conjugate of z. Hence, combining these two equations we finally get

<(z) =
1

2
(z + z̄) = 〈HAx, x〉2.

With Lemma 5.11 and the observation that

H(SW+mI) =

(
A(U) +mI

A(U) +mI

)
,

we obtain a connection between the mass-shift m for SW and a corresponding
mass-shift of the Gauge Laplace operators A(U) on its diagonal. This allows
us to distinguish two major classes of mass-shifts: In Figure 5.19 we show
an example of the location of eigenvalues and an approximated boundary of
the field of values F(SW ) for a Wilson-Schwinger operator on a 32× 32 grid
with a gauge configuration at temperature β = 5. The first class of shifts
consists of mass-shifts m that keep the field of values F(SW +mI) in the right
half-plane of the complex plane and thus the diagonal blocks of SW + mI
positive definite. That is, we have hermitian positive definite Gauge Laplace
operators A(U)+mI on the diagonal of SW +mI. The second class of shifts,
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and unfortunately the ones that in general are considered physically relevant,
consists of mass-shifts that move the smallest eigenvalues λ of SW close to
the imaginary axis. These shifts still keep the spectrum of SW + mI in the
right half-plane, but the field of values now can have a non-empty intersection
with the left half-plane.

In what follows we discuss these two classes of mass shifts, starting with
the class that keeps the former.

Mass shift m such that F(SW +mI) ⊂ C+

If the mass-shift m leaves the field of values in the right half-plane, the Gauge
Laplace operator on the block-diagonal of SW + mI is positive definite. We
know that the bootstrap algebraic multigrid method yields an efficient multi-
grid hierarchy for the Gauge Laplace operator. Our first idea is therefore to
use this knowledge to build interpolation for the system SW +mI. We choose
interpolation P for SW fulfilling (5.11), in a way that, given interpolation P̂
for the associated Gauge Laplace operator A(U)+mI, we have P1 = P2 = P̂ .
The only differences to the method presented in section 5.1.3 are then the
use of Kaczmarz relaxation instead of Gauss-Seidel in the solution process
and the use of the generalized minimal residual (GMRES) method instead
of conjugate gradients (CG) as a Krylov subspace wrapper for the multigrid
preconditioner. In Table 5.18 we report the results found with this approach
for Wilson-Schwinger operators for the same gauge configurations used in
the tests for the Gauge Laplace operator in Table 5.13, but with Kaczmarz
relaxation instead of Gauss-Seidel. The multigrid method we get by defining
interpolation in terms of the interpolation for the associated Gauge Laplace
operator, shows similar behavior for the Wilson-Schwinger problem as the
results we presented for the Gauge Laplace operator in Table 5.13. These
results indicate that this approach is a viable way to get an efficient multi-
grid preconditioner for GMRES for the Wilson-Schwinger operators as long
as the associated Gauge Laplace operators A(U) are positive definite.

In Figure 5.20, we illustrate the multigrid spectra and field of values
according to Definition 5.10 for a Wilson-Schwinger operator for a gauge
configuration U at temperature β = 5 using the setup of the multigrid hier-
archy based on the Gauge Laplace A(U) as explained above. The multigrid
hierarchy we get with this approach does match the lower part of the field
of values on coarser grids. A feature one would expect in order to get an
efficient multigrid method.

Although the results presented in Table 5.18 suggest that it is viable to
build interpolation using the hermitian part of the Wilson-Schwinger opera-
tor, still an interesting question is if we can also apply the bootstrap algebraic
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HH
HHHHβ

N
32 64 128

1
.326W .325W .504W .513W .614W .599W

13 13 15 14 13 13

5
.330W .340W .486W .486W .680W .695W

9 9 14 13 17 17

10
.167W .171W .549W .549W .690W .674W

8 8 14 14 19 18

Table 5.18: Asymptotic convergence and number of iterations of preconditioned
GMRES to reduce the norm of the residual by a factor of 108 for the V(2, 2)
multigrid cycle with Kaczmarz relaxation for the Wilson-Schwinger operator SW
for “physical” gauge configurations U on an N ×N grid at varying temperatures
β and a mass shift m, s.t., λmin(A(U) + mI) = N−2. Using LS interpolation
with k = 8 initially random (complex, N(0, 1) distributed) test vectors and η = 4
smoothings in a bootstrap setup that uses the cycling strategy given in green with
|V| = 16. Black uses the original LS interpolation (4.10); red includes the residual
correction (4.19).

multigrid framework directly to the Wilson-Schwinger operator SW . This is
especially interesting if we keep in mind that we cannot straight-forwardly
apply the approach based on the hermitian part of SW to the case where we
use “physical” shifts, as for these shifts the hermitian part of SW is in general
no longer positive definite due to Lemma 5.11. Although our analysis for the
bootstrap algebraic multigrid framework and least squares interpolation was
based on a hermitian positive definite operator A, we consider its application
to the non-hermitian Wilson-Schwinger operator. We modify some compo-
nents accordingly for this non-hermitian setting. While we were successful
applying Kaczmarz for the approach that was based on the hermitian part
of SW , we also investigate weighted Richardson iterations, given by the error
propagator

ek+1 = ek − ωSW ek, ω =
1

‖A‖2

.

The choice of ω-Richardson is particularly interesting, as with this choice the
eigenvectors of SW with small eigenvalues coincide with the eigenvectors with
small eigenvalues of the smoother. In this sense, ω-Richardson is perhaps a
more intuitive choice for a setup that aims at computing eigenvectors to small
eigenvalues within the bootstrap process. In what follows, we present results
for both, Kaczmarz and ω-Richardson.

We also use the spin-decoupling interpolation P that fulfills (5.11) and
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Figure 5.20: Spectra and approximated boundaries of the field of values of the
multigrid hierarchy defined by interpolation for the Gauge Laplace operator A(U),
for a Wilson-Schwinger operator on a 32× 32 grid for a gauge configuration U at
temperature β = 5.

coarse-grid matrices defined by Ac = PHAP that preserve the Σ3-hermiticity.
Again, we choose to use full-coarsening for both spin-grids, as illustrated in
Figure 5.2.

In the definition of least squares interpolation, we use weights defined by

ωl =

(
‖u(l)‖2

‖Aul‖2

)2

as SW does not define a sesquilinear inner-product, which renders the use
of (4.11) not viable.

In order to use the bootstrap algebraic multigrid setup scheme, we have to
introduce several modifications to the multilevel eigensolver as given in Algo-
rithm 4. Assume in a two-grid setting that we consider fine-grid eigentriples
(λ, vrλ, v

l
λ) and computed coarse-grid eigentriples (λc, vrλc , v

l
λc) satisfying

ScWv
r
λc = λcT cvrλc and

(
vlλc
)H

SW = λc
(
vlλc
)H

,

we interpolate both right and left eigenvectors from the coarse grid to get
a first approximation on the fine grid eigenvectors vrλ = Pvrλc and vlλ =
Pvlλc , with an associated approximation to the corresponding eigenvalue λ =
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λc. We improve this approximations by application of relaxation to the
homogeneous systems

(SW − λI) vrλ = 0 and (SW − λI)H vlλ = 0. (5.12)

After each iteration we update the approximation to the eigenvalue by

λ =
〈Avrλ, vlλ〉2
〈vrλ, vlλ〉2

. (5.13)

At a first glance, this approach seems to require double the amount of relax-
ations than the procedure applied in the hermitian case, but again, we can use
the Σ3-hermiticity in order to remove this obstacle. Assuming that for each
eigentriplet

(
λc, vrλc , v

l
λc

)
we also computed the eigentriplet corresponding to

λ̄c, we know due to Lemma 3.13 that

vlλc = Σ3vλ̄c and vlλ̄c = Σ3vλc .

Hence, we can omit the storage and processing of left eigenvectors all together
by using the relation between left and right eigenvectors of complex conju-
gate pairs of eigenvalues λ and λ̄. Instead of computing both right and left
eigenvectors as in (5.12), we simply relax the eigenvalue equations for λ, vrλ
and λ̄, vr

λ̄
and compute a new approximation to the eigenvalue λ according

to (5.13) using the Σ3 relation between the right and left eigenvectors to a
pair of complex conjugate eigenvalues.

In Table 5.19, we first report the asymptotic convergence rates of the re-
sulting multigrid V(4, 4) cycle using ω-Richardson smoothing, and the num-
ber of iterations pGMRES needed to reduce the initial residual by a factor of
108 when preconditioned with the multigrid V(4, 4)-cycle. We limit this test
to the lattice-size 64 × 64 and a three level method, varying only the setup
cycling strategy (V , V 2) and the temperature of the gauge configuration β.
In the V 2-setup we compute 16 coarsest grid eigenvectors and apply η = 8
iterations to the test vectors, both to improve the vectors prior to comput-
ing the least squares interpolation and to relax the generalized eigenvalue
problem on the intermediate levels in the multigrid hierarchy on the way
back to the finest grid. Using the same parameter setting – except for the
use of a V(2, 2)- instead of a V(4, 4)-cycle – we report results for Kaczmarz
relaxation in Table 5.20. For both relaxations we observe that using only
one V-cycle setup already yields quite good results, yet still some fluctua-
tion when changing β. By using a V 2-cycle setup, we see that the results
for pGMRES with the multigrid preconditioner become more stable while
the stand-alone asymptotic convergence slightly degrades. The fact that the
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PPPPPPPPPsetup
β

1 5 10

V
.377 .410 .450 .626 .576 .715
13 16 17 28 22 36

V 2 .636 .768 .800 .740 .822 .735
13 13 12 12 12 11

Table 5.19: Asymptotic convergence and number of iterations of preconditioned
GMRES to reduce the norm of the residual by a factor of 108 for the V(4, 4) multi-
grid cycle with ω-Richardson relaxation for the Wilson-Schwinger operator SW for
“physical” gauge configurations U on a 64 × 64 lattice at varying temperatures
β and a mass shift m, s.t., λmin(A(U) + mI) = N−2. Using LS interpolation
with k = 8 initially random (complex, N(0, 1) distributed) test vectors and η = 8
iterations in the setup. In the V 2 setup we compute |V| = 16 eigenvector approxi-
mations. Black uses the original LS interpolation (4.10); red includes the residual
correction (4.19).

PPPPPPPPPsetup
β

1 5 10

V
.356 .494 .364 .478 .390 .551
11 14 11 15 12 17

V 2 .422 .405 .376 .387 .319 .338
12 12 11 12 11 11

Table 5.20: Asymptotic convergence and number of iterations of preconditioned
GMRES to reduce the norm of the residual by a factor of 108 for the V(2, 2)
multigrid cycle with Kaczmarz relaxation for the Wilson-Schwinger operator SW
for “physical” gauge configurations U on a 64× 64 lattice at varying temperatures
β and a mass shift m, s.t., λmin(A(U) + mI) = N−2. Using LS interpolation
with k = 8 initially random (complex, N(0, 1) distributed) test vectors and η =
8 iterations in the setup. In the V 2 setup we compute |V| = 16 eigenvector
approximations. Black uses the original LS interpolation (4.10); red includes the
residual correction (4.19).

preconditioned GMRES method still converges fast suggests that the dete-
rioration of the stand-alone multigrid solver is caused by only a few error
components that are not treated by the multigrid method.

We discuss an observation that might cause this behavior later in the
case of “physical” shifts, as it emerges with more severe consequences there.
Another remark concerning these tests is that the bootstrap V -cycle setup
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together with the sub-sequential solution of the linear system for one right-
hand-side with the preconditioned pGMRES iteration in our MATLAB im-
plementation takes about the same time than as direct application of unpre-
conditioned GMRES.

With a first impression of the performance of bootstrap algebraic multi-
grid directly applied to the Wilson-Schwinger operator SW for a fixed lattice-
size, we present in Tables 5.21 and 5.22 results for varying lattice-sizes at
temperature β = 5 for ω-Richardson and Kaczmarz, respectively. In these
tests we compute a three-grid hierarchy using a V 2-cycle setup with k = 8
initial test vectors and |V| = 16 approximate eigenvectors computed in the
setup using η = 8 relaxations. We observe that with ω-Richardson the

HHH
HHHβ
N

32 64 128

5
.586 .455 .800 .740 ? .951
10 10 12 12 16 15

Table 5.21: Asymptotic convergence (divergence marked by a “?”) and number of
iterations of preconditioned GMRES to reduce the norm of the residual by a factor
of 108 for the V(4, 4) multigrid cycle with ω-Richardson relaxation for the Wilson-
Schwinger operator SW for “physical” gauge configurations U on a N ×N lattice
at fixed temperatures β = 5 and a mass shift m, s.t., λmin(A(U) + mI) = N−2.
Using LS interpolation with k = 8 initially random (complex, N(0, 1) distributed)
test vectors, η = 8 iterations in the V 2-setup and we compute |V| = 16 eigenvector
approximations. Black uses the original LS interpolation (4.10); red includes the
residual correction (4.19).

stand-alone performance of the bootstrap multigrid method degrades with
increasing problem-size, but when used as a preconditioner this tendency is
much less pronounced and again suggests that only a few error components
are not well enough represented in the multigrid hierarchy. A similar observa-
tion is true for the approach that uses Kaczmarz relaxation in the multigrid
setup and solver, though, in this case the performance of the stand-alone
solver is much more robust compared to the use of ω-Richardson when in-
creasing the problem-size, but still not quite scalable. Here we have to keep
in mind that due to the randomness contained in the “physical” gauge config-
urations U , the transition in problem-size does not necessarily imply that the
systems for the same β are directly comparable to each other. The perfor-
mance of the Kaczmarz-based bootstrap approach used as a preconditioner
shows the same behavior as the stand-alone method, for the same reasons as
just explained.
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HH
HHHHβ

N
32 64 128

5
.273 .259 .376 .387 .530 .459

9 9 11 12 13 13

Table 5.22: Asymptotic convergence and number of iterations of preconditioned
GMRES to reduce the norm of the residual by a factor of 108 for the V(2, 2)
multigrid cycle with Kaczmarz relaxation for the Wilson-Schwinger operator SW
for “physical” gauge configurations U on a N×N lattice at fixed temperatures β =
5 and a mass shift m, s.t., λmin(A(U) +mI) = N−2. Using LS interpolation with
k = 8 initially random (complex, N(0, 1) distributed) test vectors, η = 8 iterations
in the V 2-setup and we compute |V| = 16 eigenvector approximations. Black uses
the original LS interpolation (4.10); red includes the residual correction (4.19).

Mass shift m such that min (< (σ (SW +mI))) = m0

We now consider the situation for physical shifts, where m is chosen such
that

min (< (σ (SW +mI))) = m0,

with m0 small enough to yield an indefinite diagonal block A(U) + mI in
general. This limits the approach of using interpolation for A(U) + mI and
results in a non-empty intersection of the field of values F(SW + mI) with
the left half-plane of the complex plane. First, this presents difficulties for
Krylov subspace methods (e.g., GMRES) for these problems. For most of
the gauge configurations available restarted GMRES, with a restart every 64
iterations, fails to converge in less than 1024, iterations even for the smallest
lattice-sizes. On the other hand, as we follow the heuristic that the multigrid
hierarchy should accurately represent error components in the part of the field
of values close to the origin, we not only have to preserve the intersection
with the left half-plane, but also may find eigenvalues on the coarse-grid that
lie in the left half-plane.

In our tests we again use both ω-Richardson and Kaczmarz relaxation
in the setup and solver and report asymptotic convergence (or divergence,
marked by a “?”) of the stand-alone solver and the iteration count of the
preconditioned pGMRES method to reduce the initial residual by a factor of
108. In Table 5.23, we first report the results for a V (4, 4)-cycle multigrid
method, using ω-Richardson, followed by results in Table 5.24 for Kaczmarz
relaxation and a V (2, 2)-cycle. As before, we use k = 8 initially random
test vectors and η = 8 relaxations throughout the V 2-cycle bootstrap setup
computing |V| = 16 eigenvectors for small eigenvalues of the generalized
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eigenvalue problem on the coarsest grid. For all lattice-sizes we limit our
experiments to a three-level method.

HHH
HHHβ
N

32 64 128

1
? ? ? ? ? ?
21 22 27 27 33 64

5
.743 .805 ? ? ? ?
13 13 15 17 26 26

10
.44 .299 .997 .863 ? ?
10 12 13 13 21 24

Table 5.23: Asymptotic convergence (divergence marked by a “?”) of the stand-
alone multigrid V(4, 4)-cycle and number of iterations of preconditioned GMRES
to reduce the norm of the residual by a factor of 108 for the V(4, 4) multigrid cycle
with ω-Richardson relaxation for the Wilson-Schwinger operator SW for “physical”
gauge configurations U on an N ×N grid at varying temperatures β and a mass
shift m, s.t., min(<(σ(SW + mI))) = N−2. Using LS interpolation with k = 8
initially random (complex, N(0, 1) distributed) test vectors, η = 8 iterations in
the V 2-setup and we compute |V| = 16 eigenvector approximations. Black uses
the original LS interpolation (4.10); red includes the residual correction (4.19).

We observe that the multigrid hierarchy computed using ω-Richardson in
the bootstrap setup does rarely yield a converging V (4, 4)-cycle, but again
when used as a preconditioner the number of iterations of GMRES to reduce
the initial residual by a factor of 108 is small, especially compared to the
unpreconditioned restarted GMRES(64) method that did not converge at
all. Although the number of iterations grows when increasing the lattice-
size, the growth is at least only weakly coupled to N2 as it roughly doubles
when quadrupling the number of unknowns. Similar observations are true
for the bootstrap algebraic multigrid method that uses Kaczmarz relaxation,
though, again the tendencies are much less pronounced.

In Figure 5.21, we illustrate the location of the smallest eigenvalues in
the multigrid hierarchy in order to study the divergence of the stand-alone
multigrid method in case of Kaczmarz relaxation for lattice-sizes 32×32 and
β = 1, using the residual corrected least squares interpolation and for the
64× 64 lattice with a gauge configuration at temperature β = 1. We observe
that in Figure 5.21(a), the smallest (in magnitude) eigenvalues of the system
is a pair of complex conjugate eigenvalues. While they are nicely represented
on the second grid, we see that on the third, and coarsest grid, they are
mapped to the real axis. Further tests reveal that the interpolated eigen-
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HH
HHHHβ

N
32 64 128

1
.892 ? ? ? ? ?
14 15 19 20 22 22

5
.324 .259 .435 .434 ? ?
11 11 13 14 18 17

10
.276 .252 .326 .327 ? ?
10 10 12 12 16 16

Table 5.24: Asymptotic convergence (divergence marked by a “?”) of the stand-
alone multigrid V(2, 2)-cycle and number of iterations of preconditioned GMRES
to reduce the norm of the residual by a factor of 108 for the V(2, 2) multigrid cycle
with Kaczmarz relaxation for the Wilson-Schwinger operator SW for “physical”
gauge configurations U on an N ×N grid at varying temperatures β and a mass
shift m, s.t., min(<(σ(SW + mI))) = N−2. Using LS interpolation with k = 8
initially random (complex, N(0, 1) distributed) test vectors, η = 8 iterations in
the V 2-setup and we compute |V| = 16 eigenvector approximations. Black uses
the original LS interpolation (4.10); red includes the residual correction (4.19).
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Figure 5.21: Lower end of the spectra of the operators in the three-level hierarchy
computed using a V 2-bootstrap setup with Kaczmarz relaxation. In 5.21(a) we
present the situation for lattice-size 32×32 at temperature β = 1 with topological
charge zero. In 5.21(b) we illustrate the multigrid eigenvalues for a 64×64 Wilson-
Schwinger operator with a gauge configuration of temperature β = 1, a system with
topological charge one.
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vectors to the eigenvalues on the real axis indeed are dominated by the pair
of complex conjugate eigenvalues. The fact that one of the two eigenvalues
on the real axis is much smaller in magnitude than its complex conjugate
counterparts on the next finer grid results in a coarse-grid correction that
over-corrects the error component in this direction. If the eigenvalue is close
enough to the origin, this situation leads to divergence of the stand-alone
multigrid method. Further evidence of this situation causing divergence is
the analysis of the “divergent” error, i.e., the dominant error component of
the iteration, which again turns out to be dominated by a linear combination
of the pair of eigenvalues that get mapped to the real axis. This “mis-map”
of eigenvalues might be caused by a violation of symmetries of the operator,
but unfortunately, to date we have not been able to verify this conjecture.

Figure 5.21(b) represents another class of gauge configurations. These
gauge configurations lead to a in magnitude smallest eigenvalue on the real
axis and are said to have nonzero topological charge. This results in a max-
imal shift of the operator, based on the smallest real-part of any eigenvalue
of the operator. What we see in the depicted situation is a slight error in
the eigenvalue on the coarse-grids, causing the method to diverge as the
eigenvalue crosses the origin, flipping its sign in the coarse-grid correction.

The observations we made here may be reasons for divergence of the
stand-alone multigrid method and the rapid convergence of the precondi-
tioned Krylov subspace method, as these separated outliers are treated in
just one or two additional steps.

Gaining a theoretical understanding of the observed behavior of the multi-
grid hierarchy is part of future research. In the case where a pair of complex
conjugate eigenvalues is mapped to the real axis, we suspect that our way of
defining interpolation might violate some hidden symmetry of the problem
that we have not found, yet. In the topological charge case, the situation
is more intricate and requires intense focus in the future. The derivation of
analytical tools and methods for non-hermitian problems, which has been
a field of only minor progress in terms of multigrid methods in the last 20
years, is a challenging topic of future work.



Chapter 6

Conclusion and Outlook

The key-point of this thesis is the development of adaptive algebraic multi-
grid methods. We chose several challenging applications that motivated most
of the proposed techniques and posed difficulties that today’s algebraic multi-
grid methods could hardly overcome. Overall we introduced and analyzed
two ways to adaptively define interpolation in algebraic multigrid method.

First, we developed a modified version of the adaptive reduction-based
approach [MMM06] that allows us to apply the method and corresponding
theory to complex-valued systems. From the results we achieved with the
adaptive reduction-based approach for the Gauge Laplace operator, which is
the simplest operator in Lattice Gauge Theory, it became apparent that an ef-
ficient adaptive algebraic multigrid method has to incorporate more than one
representation of algebraically smooth error. That is, due to the randomness
inherent in the gauge configurations used to define the operators in Lattice
Gauge Theory, algebraically smooth error tends to be highly oscillatory and
only locally supported. Due to this fact, approaches that heavily rely on
the fact that all algebraically smooth error can be represented by only one
representation do not yield very efficient algebraic multigrid methods. This
observation lead to the development and analysis of a novel framework for
adaptive algebraic multigrid, based on the bootstrap algebraic multigrid idea
proposed by Brandt and Livne [BL04].

As the key-feature of the bootstrap framework we introduced and ana-
lyzed least squares interpolation. In addition we defined and discussed sev-
eral bootstrap techniques that are mutually beneficial to the least squares
definition of interpolation, but can also be used to analyze and adaptively
improve algebraic multigrid methods in general. Moreover, we applied meth-
ods based on the bootstrap algebraic multigrid framework to the challenging
problems arising in Lattice Gauge Theory and demonstrated their efficiency
for discretizations of scalar partial differential equations ranging from the

161



162 CHAPTER 6. CONCLUSION AND OUTLOOK

Laplace operator with Dirichlet boundary conditions to its gauged analogue,
the Gauge Laplace operator. We further discussed several bootstrap tech-
niques in detail, such as algebraic distance using an anisotropic test problem
and the bootstrap multigrid eigensolver in the framework of the computation
of steady-state solutions of Markov chain problems. In these experiments the
bootstrap multigrid framework not only overcame the difficulties posed by the
non-symmetric operators arising in these applications, but also yielded a very
efficient stand-alone solver and preconditioner for a Krylov-subspace method.
Finally, we presented results for the non-hermitian Wilson-Schwinger opera-
tor of Lattice Gauge Theory for Quantum Electrodynamics as a test problem
for the systems arising in Lattice Quantum Chromodynamics. Although the
proposed method did not always achieve text-book multigrid performance,
we made interesting observations for the development of adaptive multigrid
methods for non-hermitian operators arising in this context and observed
that the proposed methods yield very efficient preconditioners for Krylov-
subspace methods.

Our future research aims at gaining additional insight into the bootstrap
algebraic multigrid framework proposed in this thesis. In this thesis we were
able to formulate some mathematical rigorous results for this approach, but
many details in the bootstrap algebraic multigrid framework are still based
on heuristics. Part of our future research is to find mathematical justification
of these heuristics, including the discussion of appropriate weights in least
squares interpolation both in the hermitian and non-hermitian case and the
appropriate choice of test vectors and smoothers. An additional question
of interest in this context is the debate between the use of eigenvectors or
singular vectors to define interpolation for non-hermitian problems and their
bootstrap computation. Interesting applications for these investigations in-
clude elasticity and bi-harmonics in the hermitian case, whereas we consider
the Stokes equation, the Cauchy-Riemann equation and the systems of Lat-
tice Gauge Theory as model problems for the non-hermitian case.

Another topic of our research is the analysis of the notion of algebraic
distance in the context of adaptive coarsening and to gain insight in the
use of the least squares functional in least squares interpolation to effectively
control accuracy and sparsity of least squares interpolation and the bootstrap
setup.

We further plan to investigate the use of symmetries in the development
of algebraic multigrid methods, e.g., γ5-hermiticity of the Dirac operator. In
this, we also want to consider the problem of eigenvalue “mismatches” in the
multigrid hierarchy found in the application of algebraic multigrid for such
systems, which we suspect is due to the violation of such symmetries. Possi-
ble applications for this investigation include the systems arising in Lattice
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Gauge Theory, but also Stokes equation and saddle-point problems in general.
We are confident that the proposed research leads to a deeper understand-
ing of adaptive algebraic multigrid in both the hermitian and non-hermitian
case and in the end also yields the techniques to define an efficient multigrid
solver for the Wilson-Dirac operator of Quantum Chromodynamics.
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