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Abstract

Three-Dimensional Polarized Light Imaging enables to reconstruct nerve fiber orienta-
tions from polarimetric measurements of histological brain sections based on the birefrin-
gence of myelinated nerve fibers. Measurements of the brain sample from oblique views
facilitate the retrieval of the three-dimensional orientation of the nerve fibers as well
as the birefringence strength. The enhancement of this noise sensitive reconstruction
represents the major motivation for this thesis. First, a novel and fast reconstruction
algorithm based on a least squares approach is introduced. At the mesoscale an unprece-
dented comprehensive view of the human brain’s nerve fiber tracts is obtained based on
the new reconstruction algorithm. Next, the reconstruction is further improved for very
low signals utilizing a Bayesian estimator. Furthermore, as the parameter estimation
is sensitive to noise, the uncertainty of the obtained parameter maps is studied. This
results in the first nerve fiber orientation confidence estimates for Three-Dimensional
Polarized Light Imaging. Finally, the developed analysis is applied at the microscale. A
validation against higher-resolved volumetric measurements shows that individual fiber
bundles can be reconstructed with high accuracy using the developed algorithms.
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Zusammenfassung

Das bildgebende Verfahren Three-Dimensional Polarized Light Imaging (3D-PLI) er-
möglicht die Rekonstruktion von Nervenfaserorientierungen mithilfe polarimetrischer
Messungen histologischer Gehirnschnitte basierend auf der Doppelbrechung myelinisierter
Nervenfasern. Aufnahmen des Hirnschnitts von schrägen Perspektiven erlauben die Ab-
schätzung der dreidimensionalen Faserorientierung sowie der Doppelbrechungsstärke.
Die Verbesserung dieser rauschsensitiven Abschätzung ist das Ziel der vorliegenden Ar-
beit. Zuerst wird ein neuartiger Rekonstruktionsalgorithmus basierend auf dem Ver-
fahren der kleinsten Quadrate entwickelt. Dieser möglicht auf der Mesoskala einen um-
fassende Darstellung der menschlichen Nervenfaserarchitektur. Zur Verbesserung der
Rekonstruktion für sehr kleine Signale wird ein bayesscher Schätzer entwickelt. Weit-
erhin wird die Unsicherheit der rekonstruierten Gewebeeigenschaften untersucht. Dies
ermöglicht zum ersten Mal die Abschätzung der Verlässlichkeit der in 3D-PLI ermittel-
ten Nervenfaserorientierung. Schließlich werden die entwickelten Analysemethoden auf
mikroskopische 3D-PLI Messungen mit schrägem Lichteinfall angewandt. Ein Vergleich
mit höher aufgelösten volumetrischen Messungen zeigt, dass die Orientierung einzelner
Nervenfaserbündel mit den entwickelten Algorithmen mit hoher Genauigkeit rekonstru-
iert werden können.
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1
The challenge of investigating the
human brain’s nerve fiber tracts

“Moore’s Law-based technology is so much easier than neuroscience. The brain
works in such a different way from the way a computer does.”

– Paul Allen

Advancing our understanding of the human brain is of high significance for progress not
only in fundamental and clinical neuroscience but also in technical fields. As pointed out
by the World Health Organization neurological disorders pose a public health risk [1].
Despite substantial efforts of the scientific community only symptomatic treatments are
available so far for many neurological disorders such as Parkinson’s disease. Outside of
classical neuroscience, adapting principles of neural learning mechanisms lead to great
advances in the field of machine learning [2, 3] and fuels the development of neuromorphic
computing technology [4, 5]. Therefore the importance of fundamental research into the
working principles of the brain cannot be overestimated.

In recent years, large research consortia have been formed around the globe to ad-
dress this challenge. Besides the European Union funded Human Brain Project [6]
six countries have initiated similar programs: Australia (Australian Brain Alliance)
[7], Canada (Canadian Brain Research Strategy) [8], China (China Brain Project) [9],
Japan (Brain/MINDS ) [10], South Korea (Korean Brain Initiative) [11] and the US
(Brain Initiative) [12]. An overview of the different programs and strategies to advance
neuroscience worldwide is given in [13].

This study is a part of the efforts for large scale human brain mapping. Brain mapping
describes the attempt to divide the brain into regions of distinct functional and struc-
tural features. At the microscale, the brain consists of cells (neurons) which exchange
information via small electrical signals. The network of nerve fibers connecting these
cells is called connectome [14]. It is well known that specific areas of the brain are more
active during certain tasks than others. Studying the connections between these areas,
the connectome, can therefore give further insights into the brain’s function. A bundle
of nerve fibers which connects a larger number of neurons is called fiber tract. In a
clinical context, the investigation of the connectome is also highly relevant as knowledge
about major fiber tract courses is critical for surgery planning [15]. The study of the
connectome though represents a multiscale challenge from the scale of single nerve fibers
with a diameter below 1 µm to the whole human brain at the scale of several cm. As
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1. The challenge of investigating the human brain’s nerve fiber tracts

a consequence, not one single imaging technique is sufficient for a coherent mapping
of the connectome alone. Instead, multiple imaging techniques which each have their
own strengths and pitfalls have been developed to map the connectome at different
resolutions.

So far, the only way to study nerve fibers in vivo is via diffusion magnetic resonance
imaging (DMRI) based on probing the diffusion of water with strong magnetic gradient
fields [16, 17, 18]. The most common model for the diffusion process, Diffusion Tensor
Imaging, yields a tensor description of the water diffusion in every voxel (the volumet-
ric analogue of the image pixel) [16]. Presuming that water primarily diffuses along the
dominant nerve fiber direction, this results in a three-dimensional map of the fiber path-
ways of the brain. As the derived fiber orientation gives the tangential orientation of
a fiber tract, spatial integration over the fiber orientations results in reconstructions of
whole fiber tracts [16]. The reconstruction of fiber tracts has been coined tractography.
More sophisticated descriptions of the diffusion process enable to extract a statistical
distribution of fiber orientations [19] and to infer microstructural tissue properties such
as an apparent fiber density [20]. In clinical applications DMRI has been successfully
used for the diagnosis of stroke, monitoring of treatment response and treatment plan-
ning [21]. Some of the concepts adopted in this thesis, such as using Bayesian inference
to analyze nerve fiber orientations, have already been applied to DMRI [22]. Still the
resolution of DMRI is limited to millimeters in clinical practice and 200-300 µm3 in post
mortem brains due to scan time restrictions [23, 24, 25] and therefore only able to cap-
ture the ”brain’s highways”. An influential recent study by Hein et al. [26] proved that
it is a priori impossible to derive correct fiber tracts from DMRI studies purely based on
local fiber orientation information. The major drawback of current DMRI tractography
is the high number of reconstructed fiber tracts which in fact do not exist [26]. Thus,
for deeper insights into the microstructure of the brain such as individual nerve fibers
bundles a higher resolution is necessary.

Revealing the composition of individual nerve cells and neural circuits requires a res-
olution below 1 µm which can only be provided by microscopic techniques. Especially
electron microscopy [27], traditional fluorescence microscopy [28] and in recent years X-
ray diffraction [29] have been utilized to investigate the brain at this scale. An obvious
drawback of these methods is that the brain has to be fixated, sectioned and then recon-
structed to a three-dimensional volume as they do not provide depth resolved scanning
of the tissue. Another difficulty are excessive scanning times as the microscopic field
of view is very small compared to an entire human brain section covering an area up
to 150 cm2. With respect to the reconstruction of fiber pathways, histological imaging
techniques suffer from a lack of information in the direction perpendicular to the sec-
tioning plane as only the two dimensional projection of the three dimensional structures
are captured by the camera. While the projection of the fiber courses into the sectioning
plane is directly visible at high resolution, the out-of-plane component of the fiber ori-
entation is typically not accessible. Hence, mapping the connectome at high resolution
necessitates even more sophisticated measurements and data analytics.

An established technique to investigate fiber tracts in three dimensions at highest resolu-
tion is neural tracing based on the injection of a tracer molecule and the later imaging of
the location of the tracer molecule [30]. This comes with the disadvantage that the tracer
injection procedure and the propagation of the tracer inside the tissue vary strongly over
subjects [30]. Another method which emerged in recent years relies on image processing
to derive three-dimensional fiber pathways: if nerve fibers are easily identifiable in an
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image stack (for example after staining), calculating the three-dimensional gradient of
the volume using the structure tensor yields an approximate orientation of the nerve
fibers [31, 32]. In contrast to DMRI, this approach does not utilize biophysical mod-
els anymore but image processing heuristics which stresses its limitations. A coherent
gradient calculation requires a well-registered image stack from the original histological
sections which is in general still an unsolved problem in image registration [33] (im-
age registration refers to the matching of one image onto another) is and also strongly
depends on the chosen kernel size and pre-processing steps [32].

Sectioning a human brain into histological sections results in 5,000 - 10,000 sections
depending on the sectioning plane and the section thickness. As automated section-
ing of human brains could not be achieved so far due to the fragility of the sections
the sectioning itself already represents a very labour intensive undertaking even before
imaging of the individual sections. To overcome this limitation or to at least reduce
the amount of manual work, depth resolved microscopic techniques such as Light Sheet
Microscopy [34, 35], Optical Coherence Tomography [36, 37] and Two-Photon Fluores-
cence Microscopy (TPFM ) [38, 39] were developed. Still these techniques are not able
to scan into the depth of a whole brain due to physical limitations of microscopic lenses,
but increase the theoretically possible section thickness to the order of a centimeter [40].
The actual possible section thickness though depends on attenuation and scattering ef-
fects of the investigated tissue and the employed setup [41]. For small brains such as
the drosophila fly the full connectome could for example be reconstructed from TPFM
measurements [42] resulting in high-resolved three-dimensional optical properties of the
brain tissue. Another approach to avoid histological sectioning is to chemically make
brain tissue transparent with the CLARITY protocol [43], thereby making the struc-
tures of interest more accessible. Still, reconstruction of the connectome at large scale
which is required for human brains has not been accomplished so far using these depth
resolving techniques.

In this thesis the imaging technique Three-Dimensional Polarized Light Imaging (3D-
PLI ) introduced in [44, 45] is studied. 3D-PLI utilizes polarimetric measurements
through unstained brain sections to derive the spatial orientation of nerve fibers based
on their birefringence. The theoretical background and experimental realization of 3D-
PLI are presented in chap. 2. As a microscopic technique, the lateral resolution of
3D-PLI is theoretically limited by the illumination wavelength while the z-resolution is
determined by the section thickness. Compared to the microscopic techniques discussed
before, 3D-PLI does not primarily employ image processing to derive its connectome but
a biophysical model. In that sense, 3D-PLI data analytics are more similar to DMRI data
analytics than for example staining methods and structure tensor analysis. The biophys-
ical model behind 3D-PLI presumes a nerve fiber orientation vector in every pixel which
is subsequently derived. While the in-plane fiber orientation can easily be calculated
based on this model, inferring the ouf-of-plane orientation is more challenging. Using
additional information gained from measurements from oblique views, the out-of-plane
orientation can in principle be derived as shown for the first time in [46]. In the context
of [46] also a new microscopic setup was developed which facilitates measurements from
oblique views at micrometer resolution which was only possible at mesoscopic resolution
before. As mentioned before, the ability to derive three-dimensional fiber tract informa-
tion is the pitfall of histological imaging techniques concerning the connectome. Thus,
3D-PLI has great potential for large scale connectome mapping at high resolution. So
far, 3D-PLI has been employed for qualitative neuroanatomical studies of avian, rodent,
monkey and human brains [47, 48, 49]. However, further quantitative analysis of the
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1. The challenge of investigating the human brain’s nerve fiber tracts

connectome based on 3D-PLI data is still challenging due to the difficulties of inferring
the three-dimensional fiber orientation and the required volumetric reconstruction of the
individual sections. This study seeks to advance 3D-PLI by enhancing the derivation of
the fiber orientation.

Improving the nerve fiber reconstruction in 3D-PLI requires a careful statistical analysis
of the oblique measurements. Without the additional oblique measurements, 3D-PLI
measurements can be analyzed based on analytical calculus to derive the model param-
eters. On the other hand, the derivation of the out-of-plane orientation exploits small
variations in the signal captured from different oblique angles and is therefore prone to
noise effects. In [46] an algorithm was devised which numerically fits the model to the
measurement data in every image pixel. As the model is highly nonlinear this comes
with the mathematical difficulties arising from fitting nonlinear models and the cost of
excessive computation time as the fitting procedure has to be carried out in millions of
pixels. Hence, 3D-PLI faces big data problems due to the sheer amount of necessary
computations and limitations in the analysis such as a lack of reliability measures for the
model parameters. These challenges arise in other fields of physics such as high energy
particle physics and astronomy as well [50, 51] and led, for instance, to the establish-
ment of astroinformatics as a new discipline in astronomy [52, 53]. In recent years, a
clear trend for tackling these problems in physics as well as in neuroscience is to apply
Bayesian approaches [54, 55, 56] which was also adopted in this study. An introduction
to the Bayesian methods relevant for this thesis is given in chap. 3.

The estimation of nerve fiber orientations in 3D-PLI represents a nonlinear regression
problem. Although a huge number of parameter estimation techniques for nonlinear
regression have been developed, the most common technique used is still least squares
fitting due to its simplicity [57]. In chap. 4 a least squares estimator for 3D-PLI is
developed and evaluated on synthetic data and experimental data of a human brain at
the macroscale. In a next step, the novel algorithm is accelerated using high performance
computing (HPC ) resources to scale to big data.

One advantage of Bayesian approaches is that they allow to incorporate prior informa-
tion. Especially, in cases in which the observed data does not allow a precise determi-
nation of the model parameters, prior information has a strong effect. This is applied in
chap. 5 to 3D-PLI to improve the reconstruction for regions of low birefringent signals
and evaluated on the same datasets as the least squares approach. So far, only the most
likely fiber orientation was derived in 3D-PLI. As especially the determination of the
out-of-plane orientation is sensitive to noise, it is necessary to assess the reliability of
the orientation estimation. Thus, in chap. 6 orientation confidence measures are derived
for 3D-PLI based on a Bayesian approach and evaluated based on synthetic data and
selected experimental datasets.

In [46], it was shown in a proof of concept experiment that three-dimensional fiber
orientations can be derived from measurements with oblique views using the novel pro-
totypical microscopic setup. Still, no phantom has been developed for 3D-PLI so far
which limits the possibilities for validation. Another possible validation is the compar-
ison to higher resolved measurements which enable to directly visualize nerve fibers in
3D. In chap. 7 the fiber orientations calculated from 3D-PLI with the developed al-
gorithms at microscopic resolution are validated against a ground truth obtained from
TPFM measurements.

A conclusion and outlook for future directions are given in chap. 8.
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2
Foundations of Three-Dimensional

Polarized Light Imaging

“Physics is really nothing more than a search for ultimate simplicity, but so far
all we have is a kind of elegant messiness.”

– Bill Bryson

In this chapter the fundamental principles and measurement techniques of the imaging
technique 3D-Polarized Light Imaging are presented. After a review of the theoret-
ical background of polarization and birefringence their connection to nerve fibers is
presented. Based on these foundations, the preparation of brain sections and their mea-
surement in 3D-PLI is illustrated. Next, the current state of the art for the analysis of
3D-PLI measurements is explained. The difficulties of the current analysis are finally
reviewed which leads to the new methods developed in this work.

2.1 Polarization and birefringence

Polarization characterizes the oscillation plane of transversal waves. Natural light, for
example, oscillates randomly in all directions, it is therefore unpolarized. Consider the
electric field vector of an electromagnetic wave propagating in z-direction [58]:

E(t) = E0e
i(kz−ωt) =

ExeiΨxEye
iΨy

0

 ei(kz−ωt) . (2.1)

where k denotes the wave number and ω the frequency of the wave. The magnitudes
of the field components Ex and Ey and the phases Ψx and Ψy now determine the
polarization state of the wave. The vector E0 is called Jones vector. A wave for which the
Jones vector does not change its direction is called linearly polarized. Linear polarization
occurs if both components of the electrical field oscillate in phase (Ψx = Ψy). The case
that E0 describes a circle is called circular polarization and arises for Ex = Ey, Ψx −
Ψy = π

2 . The most general case is called elliptical polarization: the electric field vector
describes an ellipse (Ex 6= Ey, Ψx −Ψy = π

2 ).

Polarization microscopy techniques are based on the interaction of polarized light with
the specimen, in the case of 3D-PLI brain tissue. Different materials interact differently
with incoming light due to their structure at the molecular level which results in different
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2. Foundations of Three-Dimensional Polarized Light Imaging

forces interacting with the incoming photons. In general, incoming light can be absorbed,
scattered and refracted. One immediate consequence is that in a material light does
not propagate with the same speed as in vacuum. The phase velocity in a material v
depends on the material specific refractive index n by v = c/n with the speed of light
in vacuum c. At the boundary of two ideal isotropic materials with refractive indices
n1 and n2, a light ray with an incident angle θ1 is refracted according to Snell’s law:
n1 sin(θ1) = n2 sin(θ2).

Optically anistropic media display a more complex refraction behaviour. If the molecular
structure of a material results in anisotropic forces interacting with incoming light,
the refractive index becomes anisotropic as well. A prominent example are crystals
which regular lattice structure results in strongly orientation dependent atomic forces.
Depending on the oscillation plane of incoming light, its polarization, it then experiences
different interactions. Thus, polarized light can be utilized to investigate the inner
structure that cause the optical anisotropy of the material.

Geometrically, the anisotropy of the refractive index can be represented by an ellip-
soid which describes the refractive index for any propagation direction (nx, ny, nz) as a
function of the principal refractive indices of the material:

n2
x

n2
1

+
n2
y

n2
2

+
n2
z

n2
3

= 1 . (2.2)

Two types of optical anisotropy are distinguished: uniaxial birefringence for the case
that n1 = n2 6= n3 and biaxial birefringence in case that n1 6= n2 6= n3. As biaxial
birefringence is not relevant for 3D-PLI, we will focus on uniaxial birefringence. The
two equal indices are called ordinary refractive index no = n1 = n2, while the third index
is called the extraordinary refractive index nE = n3. Their difference ∆n = nE − no is
often termed birefringence and is a measure of the amount of optical anisotropy.

For a uniaxial birefringent material the refractive index ellipsoid becomes a rotational
ellipsoid with a principal axis called optic axis. The rotational ellipsoid is also called
indicatrix. The polarization state and the propagation direction of the incoming light
relative to the optic axis now determine the refractive index experienced by the wave
(cf. Fig. 2.1). A wave which is polarized perpendicularly to the plane spanned by optic
axis and wave vector (denoted by the blue ellipse) behaves as if it was interacting with
an optically isotropic material: it obeys Snell’s law with n0 as the material’s refractive
index independent of the wave’s direction of propagation. It is therefore denoted as the
ordinary wave. In case that the incoming light is not polarized perpendicular to the optic
axis, it experiences a refractive index which depends on the amount of birefringence and
on the propagation direction of the incoming light. From Fig. 2.1 it can be seen that the
cross section of the plane perpendicular to the wave vector and the ellipsoid define an
ellipse whose half axes are given by no and the extraordinary refractive index ne(α)1. ne
becomes maximal/minimal if the optic axis is oriented perpendicularly to the incoming
light (α = 0°) for which then ne = nE . In case that the incident light and optic axis are
parallel (|α| = 90°), the birefringence vanishes as ∆n = ne(α)−no = no−no = 0. From
the ellipsoidal geometry, the extraordinary refractive index ne can be derived as [58]

ne(α) =
1√

sin2(α)
n2
o

+ cos2(α)
n2
E

. (2.3)

1The extraordinary refractive index of the material is denoted as nE , while the orientation dependent
index is denoted as ne.
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2.2. Optical properties of brain tissue

optic axis

Figure 2.1: Indicatrix of a uniaxial positive birefringent material. The intersection plane of
the incoming wave light vector k and the optic axis of the material is shaded in red. A wave
polarized perpendicular to the optic axis experiences the refractive index no. For any other
polarization state, the refractive index ne(α) depends on the angle between k and the optic
axis.

As ordinary and extraordinary rays propagate with different refractive indices, their
optical paths vary from each other. Their phases after passing a birefringent medium of
thickness t are given by Ψo = 2πn0t

λ and Ψe = 2πnet
λ . Hence, after passing the birefringent

medium, a relative phase retardance δ between extraordinary and ordinary wave of

δ = Ψe −Ψo =
2π∆nt

λ
. (2.4)

occurs. This is exploited by wave retarders to induce a defined phase shift between
both waves. For example a retarder which induces a 90° phase shift (quarter wave re-
tarder) transforms linearly polarized light into circular polarized light if the polarization
axis of the retarder makes an angle of ±45° with the linear polarizer. For very small
birefringence values ∆n, eq. (2.4) can be approximated by

δ ≈ 2πt∆n

λ
cos2(α) . (2.5)

This approximation has been verified based on simulation studies [59] and used in all
3D-PLI studies so far (e. g. [44, 45, 60]). The derivation is based on a Taylor Expansion
of eq. (2.3) [61, 46].

Now that the concepts of polarization and birefringence are introduced, in the next
section their relationship to brain tissue is explored after a short overview of relevant
neuroanatomy.

2.2 Optical properties of brain tissue

On a large scale, the human brain can be divided into the cerebellum and the cerebrum
which consists of two hemispheres. It consists of up to 100 billion nerve cells (neurons)
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2. Foundations of Three-Dimensional Polarized Light Imaging

Layers of
myelin

Axon

Myelin Sheath
Nodes of Ranvier

Oligodendrocyte

Figure 2.2: Myelinated axon. The birefringent myelin sheath produced by oligodendryte
cells serves as an insulating layer. Modified from [62].

which are connected to 1000-10000 other cells [63, 64]. Some of the connections are
up to 1 m long and exceed from the brain until the spinal cord. As the cells send time
critical information to each other via electrical signals, communication speed along these
connections (axons) is key for a healthy brain. To increase the conduction speed, an
insulating layer of lipids called myelin sheath wraps around a large number of axons.
The myelin sheath is made out of concentric layers of lipids and originates from oligo-
dendrocyte cells (cf. Fig. 2.2). Gaps in the myelin sheath, the nodes of Ranvier, allow
to manipulate the transported electric signals in between cells.

The birefringence of nerve fibers was first described by Göthlin in [65]. Various studies
have investigated the source of this effect. One source of birefringence are neurofilaments
and microtubuli in the myelin sheath [66]. Yet, the strongest contributor to the nerve
fiber’s birefringence is the highly ordered structure of lipds in the myelin sheath [67].
On a microscale, the myelin sheath itself can be modelled as birefringent material with
radially oriented optic axes. Simulation studies showed that this radial birefringence
results in a negative birefringence at the macroscopic level whose axis is oriented into
the direction of the nerve fiber bundle [59]. Experimental studies confirm this simu-
lative result [68, 69]. The magnitude of the birefringence of the myelin sheath is still
unknown. General studies about the birefringence of biologic matter resulted in bire-
fringence strengths of |∆n| = 10−3 − 10−2 [61, 70]. Compared to the refractive index of
brain tissue which lies between nb = 1.3− 1.5 the amount of birefringence is so low that
the dominant birefringent effect of nerve fibers is the phase retardation between ordi-
nary and extraordinary ray. Based on these findings, the assumption that myelinated
nerve fibers can be modeled as negative uniaxial birefringent material whose optic axis
is oriented along the dominant nerve fiber orientation builds the core of the biophysical
model employed by 3D-PLI to analyze the polarimetric measurements.
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2.3. Preparation of histological brain sections

2.3 Preparation of histological brain sections

The treatment and the sectioning of the postmortem brains are subject of ongoing
experiments of the INM-1 laboratory team and not identical for all investigated brains.
The pipeline described here was used for the brains studied in this thesis.

To avoid degeneration of the brain, it must be removed from the skull as soon as pos-
sible after death. After extraction the brains are fixed with a 4 % solution of buffered
formaldehyde. As cryoprotection, the brain is then immersed in a 20 % solution of glyc-
erin and Dimethyl sulfoide (DMSO). After dipping the brain into isopentane for one
hour, the tissue is frozen in a plastic bag at −80 °C. The frozen brain is kept in the
freezer until it is designated for sectioning. Before each sectioning procedure, a photo of
the brain block, called blockface image, is taken to serve as a reference for the 3D recon-
struction of the invidual sections2. ARTag markers serve as references for the individual
blockface images [71]. The brain is sectioned by a cryostat microtome (Polycut CM
3500, Leica, Germany) at a temperature of about −50 °C. So far, a steady quality of
the obtained sections could be achieved for a sectioning thickness of 70 µm. Each section
is then mounted on cooled glass slides and embedded in a 20 % glycerin solution. Next,
the tissue is covered by a cover glass and sealed with lacquer. To avoid the development
of air bubbles, the sections are additionally weighted for several hours.

2.4 Polarimetric setups

After a short introduction about the general capabilities and limitations of the available
measurement setups all of them are presented in more detail. Two custom made po-
larimeters are available for 3D-PLI routine measurements: the Large-Area-Polarimeter
(LAP) which enables single-shot acquisition of whole brain sections at a minimal pixel
size of 21 × 21 µm2 and the Large Metripol (LMP)3 with a pixel size of 1.33 × 1.33
µm2 and field-of-view of 2.7× 2.7 mm2 requiring time expensive tile-wise measurement
of a whole brain section. Besides the big resolution difference, the polarimeters depicted
in Fig. 2.3 differ in other aspects as well: the LAP is equipped with a tiltable spec-
imen stage facilitating measurements of the sample from oblique views. Furthermore,
in the LAP both polarization filters and the retarder are individually rotatable and
removable from the light path which enables complementary measurements such as di-
attenuation measurements4 [61]. As the LMP is primarily designed for high throughput
measurements, the required robustness and compactness to achieve a long lifetime of
the hardware does not allow this feature: the filters are neither individually rotatable
nor removable.

Combining the high resolution of the LMP with the tilting capability of the LAP was
realized in a polarizing microscope with the ability of oblique illumination [46]. Oblique
illumination is achieved by a movable aperture diaphragm which is placed off axis before
the specimen. So far, a prototypic setup of this new microscope (LMP3D, Large Metripol
3D) is available at an optical bench. As only the rotating polarization filter is motorized
and a scanning stage not feasible on an optical bench, measurements are still limited to
individual field of views.

2Details about the blockface setup can be found in B which describes the 3D reconstruction of the
histological sections based on the blockface images.

3The name is a tribute to the metripol technique which utilized polarization microscopy with a
rotating polarizer to investigate crystals [72].

4Diattenuation describes the polarization dependent attenuation of light.
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Figure 2.3: Employed polarimetric setups. For reasons of simplicity, all optical elements
except the objective lenses and the aperture diaphragm for the LMP3D are neglected. At
mesoscopic resolution, the LAP enables single-shot imaging of full brain sections. The tilting
stage facilitates measurements from oblique views. The polarimetric components are reversed
for the microscopic setups compared to the LAP. At microscopic scale, the movable aperture
diaphragm enables measurements from oblique views which achieves the same effect as tilting
the sample at mesoscopic scale. Image courtesy: N. Gales.

The measurement principle is the same for all setups: the rotatable filters (for LMP
and LMP3D only the first polarizer) are rotated in equidistant steps (typically 10°) to
sample the polarization angle ρ ∈ [0°, 180°]. For each rotation angle, the camera records
an image which yields an image series.

Large Area Polarimeter The light source of the LAP is a LED panel (NSPG 510S
manufactured by Nichia corporation) consisting of an array of 36 × 36 single LEDs
illuminating an area of 300× 300 mm2 at a wavelength of λ = 529 nm. The LED panel
is powered by a constant current source while its operating temperature is maintained
by water cooling system to establish a constant brightness. Diffuser plates above the
LED array are employed to homogenize the illumination field. The polarization filters
produced by Jos. Schneider Optische Werke GmbH are made of polymer foils and cover
the whole field of view with a diameter of 240 mm. After passing the linear polarizer
and the quarter-wave retarder which makes an angle of 45° with the polarizer the light
becomes circularly polarized and passes the brain tissue. The tissue sample is placed on
a specimen stage which is tiltable by up to 8° around two orthogonal axis. Regarding
the polarization of the incoming light, the brain tissue acts as an inhomogeneous wave
retarder and changes the polarization state to elliptical. The second polarizer which
is oriented orthogonally to the first polarizer then serves as an analyzer. Finally, the
transmitted light is captured by a a CCD color camera with 14 bit depth (AxioCam
HRc, Zeiss, Germany). A variety of different objectives is available to be placed in front
of the camera to optimize the setup for brain sections of different species (rodent brain
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2.5. The biophysical model of 3D-PLI

sections require a far smaller field of view than human brain sections) [61]. For the
brain analyzed in this thesis the Lametar 2.8/25 objective (JENOP-TIK–Laser, Optik,
Systeme GmbH) with a focal length of f = 25 mm which enables measurements with a
field of view of 18× 18 cm2 and a pixel size of 64× 64 µm2 was employed.

Large metripol In the LMP (manufactured by Taorad GmbH), the sample is illumi-
nated by light emitted from a white LED (IntraLED 2020+, Volti AG) whose wavelength
spectrum is shifted by a band pass filter to λ = 550± 9 nm to match the optimal work-
ing wavelength of the retarder. The light field is further homogenized by a Koehler
illumination to ensure a uniform illummination [73]. The employed polarization filters
are typical high quality polarization filters5. Only the polarizer is rotatable. Above the
specimen, a microscopic objective (TU Plan Fluor EPI P, Nikon) is employed. After
passing the specimen the light is analyzed by a quarter-wave retarder and a perpendic-
ular polarization filter, which together act as a circular analyzer. The outgoing light
is captured by a monochrome camera (Monochrome Retiga 4000R, QImaging) with a
bit depth of 12. The field of view is 2.7 × 2.7 mm2. For a tilewise scan of the sample
neighbouring tiles are measured with an overlap to enable the stitching of the individual
tiles as a postprocessing step.

Large metripol 3D The LMP3D was designed to enable measurements from oblique
views at microscopic resolution. Compared to the LMP, the polarimetric components
are set up in the same order but additional optical components are employed to enable
oblique illumination. For an extensive description of the optical design the reader is
referred to [46] chap. 5, here an overview is provided.

The light source (Prizmatix UHP-Mic-LED-520) emits light at a wavelength of 520 ±
36 nm. A windowed uniform diffuser (Thorlabs ED1-C20) is employed to create a di-
vergent light source. To match the retarder, the wavelength spectrum is then shifted
by a bandpass filter (Thorlabs FL532-10) to 532 ± 36 nm. The employed linear po-
larization filters (Thorlabs LPVISE100-A) were chosen for their high performance at
the illumination wavelength. Before the specimen, a movable aperture diaphragm con-
nected to a x-y-stage enables to choose the oblique illumination angle. Test on the
optical bench revealed a maximum possible offset of the diaphragm of 3 mm while still
achieving sufficient illumination of the field of view which corresponds to a maximal
oblique illumination angle of 5.7°. Behind the specimen, the light is captured by an ob-
jective lens (Nikon Plan Apo 4× 0.2NA) and an appropriate tube lens (Nikon CFI60).
As in the LMP, the light is analyzed by a circular analyzer consisting of a linear polar-
izer and a quarter wave retarder (Newport 10RP34-532). Finally, light is recorded by a
monochrome camera (SVS-vistek evo 4070 MFLGEC) with a sensor size of 15.2× 15.2
mm2 and 2048×2048 pixels. From the sensor size and the magnification of the objective
lens the imaging parameters result in a field of view of 3.8× 3.8 mm2 and a pixel size
of 1.8× 1.8 µm2 [46].

2.5 The biophysical model of 3D-PLI

As myelinated nerve fibers are uniaxially negative birefringent at the resolution relevant
for 3D-PLI, they can be described as wave retarders in a first approximation. Thus,
in 3D-PLI every image pixel is modelled as a wave retarder whose optic axis gives the

5Details about the employed filters are property of Taorad GmbH.
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2. Foundations of Three-Dimensional Polarized Light Imaging

dominant fiber orientation. Inferring the optic axis from the 3D-PLI measurement is
the main objective of this thesis.

Mathematically, changes in polarization can be described by the Jones calculus in matrix
form [74]. The Jones calculus is limited to the description of fully polarized light.
While this assumption holds for the LMP and the LMP3D due to the employed high
quality polarization filters, it is not completely fulfilled by the LAP which consists of
custom made filters of far greater size than typically manufactured sizes and a quarter-
wave retarder whose wavelength does not exactly match the illumination wavelength.
These limitations have been investigated in [46, 61, 75] based on the more sophisticated
Müller-Stokes calculus [76, 77], yet a pixelwise characterization of all imperfections of
the employed hardware is still standing out. Therefore, in this thesis, the Jones calculus
was employed. In the following, the Jones calculus is introduced and applied to 3D-PLI
to describe the light intensity recorded in the measurement. The derivation follows [59]6.

An electromagnetic wave propagating in z-direction can be written as

E(t) =

Ex(t)
Ey(t)

0

 =

ExeiψxEye
iψy

0

 ei(kz−ωt) (2.6)

The Jones vector J as introduced in sec. 2.1 is then defined as the vector which describes
the polarization state:

J =
1

|E|

(
Exe

iψx

Eye
iψy

)
(2.7)

Polarization filters can now be written as 2 × 2 matrices. Linear polarizers in x and y
direction only transmit the x or y component of the electrical field. Thus, their Jones
matrices Px and Py are given by

Px =

(
1 0
0 0

)
and Py =

(
0 0
0 1

)
. (2.8)

The Jones matrix of a wave retarder rotated by an angle γ in counterclockwise direction
which induces a phase shift δ along the fast axis Mδ is given by

Mδ(γ) = R(γ) ·Mδ ·R(−γ)

=

(
cos(γ) − sin(γ)
sin(γ) cos(γ)

)
·
(
eiδ/2 0

0 e−iδ/2

)
·
(

cos(γ) sin(γ)
− sin(γ) cos(γ)

) (2.9)

where R denotes a rotation matrix to change the coordinate system from the laboratory
frame to the retarder frame. The quarter-wave retarder of the LAP as a special case of
the general wave retarder is rotated by −45° with respect to the axis of the first linear
polarizer. Its Jones matrix Mλ/4 is then given by

Mλ/4 = Mπ
2

(
−π

4

)
=

1√
2

(
1 −i
−i 1

)
. (2.10)

In the 3D-PLI measurement, the polarizers and the quarter wave retarder are rotated
by ρ. Here, for simplicity, the equivalent case that the brain tissue rotates by −ρ is
considered. In this convention, the brain tissue can also be described as a wave retarder

6The presented derivation is valid for the LAP. The resulting light intensity profile is equal for the
LMP. For a detailed derivation it is referred to [78].
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which is rotated by ϕ − ρ with respect to the polarizer. ρ as the in-plane component
of the optic axis equates to the in-plane nerve fiber orientation. The combined Jones
matrix of brain tissue Mb is given by

Mb(ρ, ϕ, δ) = Mδ(ϕ− ρ)

=

(
cos(ϕ− ρ) − sin(ϕ− ρ)
sin(ϕ− ρ) cos(ϕ− ρ)

)(
eiδ/2 0

0 e−iδ/2

)(
cos(ϕ− ρ) sin(ϕ− ρ)
− sin(ϕ− ρ) cos(ϕ− ρ)

)
(2.11)

The electrical field vector at the camera after passing the polarization filters and the
brain tissue Et is then obtained by multiplying all Jones matrices with the incoming
electrical field which yields

Et(ρ, ϕ, δ) = Py ·Mb(ρ, ϕ, δ) ·Mλ/4 ·Px ·E . (2.12)

Digital cameras capture the magnitude of the electrical field vector. The resulting
sinusoidal light intensity profile is given by

I(IT , ρ, ϕ, δ) ∝ |E|2 =
IT
2

(
1 + sin

(
2(ϕ− ρ)) sin(δ)

)
. (2.13)

The new parameter IT (transmittance) is a measure of light absorption. The other
parameters hold the information about the nerve fiber modelled as a wave retarder:
the direction angle ϕ ∈ [0, π] represents the in-plane nerve fiber orientation while the
phase retardation δ is a measure of birefringence and the out-of-plane orientation (cf.
eq. (2.5)). The utilized coordinate system is depicted in Fig. 4.1. The light intensity
profile from eq. (2.13) is called the planar model throughout the rest of this thesis to
avoid confusion with the oblique model introduced in chap. 4.

2.6 Established signal analysis techniques

The 3D-PLI measurement records a light intensity profile for every pixel of each mea-
sured brain section. For the LAP, there are additional light intensity profiles for the
tilted measurements. After the measurement, these light intensity profiles are analyzed
pixelwise to generate maps of the model parameters. These parameter maps then have
to be further processed to retain a three-dimensional brain volume.

y

x

z r

ϕ

α

Figure 2.4: 3D-PLI
coordinate system with
fiber orientation vector
r, direction angle ϕ and
inclination angle α.

Calibration As a first step, all data are calibrated. This is
necessary to correct for multiplicative errors in the measurement
and inhomogenities of the illumination over the field of view.
For that purpose, a series of typically 60 images without tissue
sample are recorded per rotation angle. From these 60 images,
an average image is computed. The measurement data with a
sample are later divided by this average image and multiplied
by the mode value of all calibration images [79].

Fourier analysis In a next step, the parameters direction, re-
tardation and transmittance need to be estimated from the mea-
surement data. While it would be possible to perform model fit-
ting via least squares in every image pixel, this approach would
be computationally very intensive. As the model is sinusoidal, a
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2. Foundations of Three-Dimensional Polarized Light Imaging

Fourier analysis enables to fit the parameters analytically. Con-
sider a set of N light intensities Ii with index i denoting the rotation angle. Then the
Fourier coefficients up to first order are given by

a0 =
1

N

N−1∑
i=0

Ii =
IT
2
,

a1 =
2

N

N−1∑
i=0

Ii cos(ρi) = −IT
2

sin(δ) sin(2ϕ),

b1 =
2

N

N−1∑
i=0

Ii sin(ρi) =
IT
2

sin(δ) cos(2ϕ) .

(2.14)

Rearranging these leads to the following formulas for the model parameters:

IT = 2a0,

ϕ =
1

2
arctan

(
−a1

b1

)
,

sin(δ) =

√
a2

1 + b21
a0

.

(2.15)

The light intensities of one exemplary pixel and the model fit are depicted in Fig.
2.5. In the sinusoidal model, the transmittance parameter captures the average light
intensity while the retardation is given by the relative amplitude of the sinusoidal signal.
The physical interpretation of the direction angle parameter becomes clear from the
connection between the light intensity curve and the indicatrix: for incident light which
is polarized by an angle ϕ in the xy−plane the the light oscillates perpendicular to the
optic axis and experiences no phase shift. In the sinusoidal light intensity the phase
shift manifests as the offset of the sine curve.

Derivation of the inclination angle While the computation of the direction angle
is straight forward based on this calculus, the derivation of the inclination angle is more
difficult as it is concealed in the retardation formula (cf. eq. 2.5). As only the combined
effect of section thickness, birefringence strength and wavelength are relevant for 3D-
PLI, Axer et al. [45] introduced the relative section thickness trel = 4t∆n/λ which
simplifies the retardation formula to

δ =
π

2
trel cos(α)2 . (2.16)

Without a priori information the birefringence parameter trel and inclination are mapped
onto one value and cannot be separated from each other. The first approaches to this
problem assumed a constant trel value over the whole brain section [44]. Then the
inclination can be calculated by inverting eq. (2.16). While the assumption of a constant
trel value can be justified for homogeneous regions of the brain, it is certainly not valid
for whole brain sections. Therefore, additional measurement information is necessary
for the estimation of the inclination angle. Experimentally, additional information is
available from additional measurements with the tilting stage. The interpretation of
these additional data are discussed in sec. 2.7.
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Figure 2.5: Analytical fit of the 3D-PLI model to the light intensities measured in one pixel.
The transmittance parameter is two times the average light intensity, the direction angle ϕ
the phase and the retardation the relative amplitude of the sinusoidal light intensity curve.
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Figure 2.6: 3D-PLI parameter maps of a coronal human brain section measured in the
LAP. Top left: Transmittance map which encodes light absorption by the tissue. Top right:
retardation as a measure of phase retardance caused by birefringence. Bottom left: direc-
tion angle map indicating the orientation in the sectioning plane. Bottom right: absolute
inclination map indicating the out-of-plane orientation.
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2. Foundations of Three-Dimensional Polarized Light Imaging

Parameter maps The resulting model parameter maps of transmittance, retardation,
direction angle and inclination angle are depicted in Fig. 2.6. The transmittance map
(cf.Fig. 2.6 top left) closely resembles images obtained from transmission microscopy as
it indicates light absorption: white matter with myelinated tissue absorbs and scatters
more light, hence the transmittance map appears darker in white matter. The retarda-
tion map indicates the phase retardation induced by the brain section. At the resolution
of the LAP of 64 × 64µm, individual nerve fibers are not observable which results in
vanishing retardation values for the cortex. The direction and inclination angle maps
hold the information about the three-dimensional fiber orientation. The inclination map
shows a dominant out-of-plane component in cortical regions while white matter regions
also contain lower inclination angles. This result is not a reflection of the real nerve fiber
orientations in the brain section. Instead it is caused by the inclination angle derivation
which assumes a constant value of trel over the whole section and the low resolution of
the LAP which cannot distinguish individual nerve fibers in the cortex.

Once direction angle and inclination angle maps are available, the three-dimensional
fiber orientation can be computed using spherical coordinates as

x = cos(α) cos(ϕ)

y = cos(α) sin(ϕ)

z = sin(α) .

(2.17)

Visualization of three dimensional vector fields is typically done via color coding of the
vector components. For 3D-PLI, two color encodings are employed. The RGB color
encoding assigns a color to every vector as (red, green, blue) = (|x|, |y|, |z|) similar to
the color encoding used in DMRI. As only the absolute values of the vector components
are considered, there is an inherent ambiguity in this color coding. This ambiguity is
avoided using the other color encoding which additionally utilizes the brightness of the
color space to indicate the z−component of the vector. In the HSV color space, the color
encoding is given by (H,S,V) = (2ϕ, 1, 1−2|α|/π). The maps showing these color encoded
fiber orientations are called Fiber Orientation Maps (FOMs). In the example shown in
Fig. 2.7 the difference between the color encodings are clearly visible in the corpus
callosum, a brain region connecting both hemispheres, whose sides are both colored in
red in the RGB FOM while in the HSV FOM the different in-plane orientations can
easily be distinguished. The dominant out-of-plane nerve fiber orientation resulting
from the analysis manifests as a strong blue respective black component in the FOMs.

Volumetric reconstruction After the sectionwise analysis, the individual brain sec-
tions need to be reconstructed to a coherent volume for a meaning analysis of brain
regions. Here, the blockface images serve as a reference for the histological sections. As
a first step, the blockface images are reconstructed using the ARTag reference markers
[80, 71]. Then each histological section is linearly registered (linear registration allows
translation, rotation and shearing) onto its corresponding blockface image using the
ITK and elastix registration frameworks [81, 82]. Finally, the nonlinear distortions
caused by the sectioning procedure need to be reversed using nonlinear image regis-
tration techniques. So far, nonlinear registration is achieved using an approach which
utilizes three-dimensional information about the full image stack for small local defor-
mations [83]. An example of a partly reconstructed human brain volume is depicted in
Fig. 2.8.
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cc cc

Figure 2.7: 3D-PLI fiber orientation maps. Left: RGB color encoding. Right: HSV color
encoding. cc: corpus callosum.

2.7 A review of existing approaches for the analysis of bire-
fringence experiments from oblique views

Relative thickness and inclination are related to the retardation by (cf. eq. (2.16))

sin(δ) = sin
(π

2
trel cos(α)2

)
. (2.18)

This equation has severe implications for the derivation of the inclination angle. First of
all, birefringence and inclination cannot be estimated simultaneously as both parameters
are mapped onto one value. Secondly, even if trel was available, only the absolute
inclination angle could be recovered by inverting the equation while the inclination
sign would remain unknown. Furthermore, the inclination can only be unambiguously

A

B

C

Figure 2.8: Volumetric reconstruction in 3D-PLI. A: blockface volume. B: registered trans-
mittance volume. The green arrows highlight reconstructed blood vessels while the blue arrows
point out smooth transitions between white and grey matter regions. C: boundaries of the
reconstructed volume in the full blockface volume. Taken from [84].
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derived for trel ≤ 1 as otherwise several inclination values are possible for one retardation
value due to the periodicity of the outer sin-function.

Additional measurement information can be obtained by either varying the wavelength
of the incident light to induce a predefined change of trel = 4t∆n

λ or by measuring
the sample from oblique views to induce a predefined rotation to the modelled fiber
orientation vector. As the polarization efficiency of polarization filters, especially wave
retarders, is wavelength dependent, varying the wavelength is not feasible for 3D-PLI
without further modification of the experimental setup. This makes oblique views the
only feasible option. Experimentally, measurements from oblique views are realized by
rotating the sample in the LAP at mesoscopic resolution and by oblique illumination
in the LMP3D at microscopic resolution. For further analysis, the different tilted LAP
measurements are coregistered onto the planar measurement based on a perspective
transform computed using the Scale Invariant Feature Transform [85].

While the exact mathematical calculus of the oblique views is introduced in chap. 4, the
geometric implications of an oblique measurement are already sufficient for a qualitative
understanding of how the additional measurements enable the separation of inclination
angle and trel. The biophysical model predicts a sinusoidal light intensity variation I
during rotation of the polarization filter for a modelled fiber orientation vector r of I(r).
For an oblique measurement the modelled fiber orientation rob vector is slightly rotated
compared to r which results in a different predicted light intensity course for the oblique
measurement I(rob). Both light intensity curves predict different retardation values for
the planar measurement | sin δ| and the oblique measurement | sin δ|ob. Without the
additional measurements, two different combinations of trel and α can predict the same
retardation value. Now that the additional oblique measurement is available trel and α
need to fit two different retardation values. Writing the rotated fiber inclination αob as
a function of the unrotated inclination αob = f(α) the two retardations yield a nonlinear
system of equations:

| sin(δ)| = sin
(π

2
trel cos(α)2

)
| sin(δ)|ob = sin

(π
2
trel cos(f(α))2

)
.

(2.19)

For each oblique measurement, a different oblique retardation is obtained which adds
another equation to this equation system. The solution of this system of equations then
returns values of trel and inclination.

The first attempts to analyze the oblique measurements in 3D-PLI focused on the de-
termination of the inclination sign. This can also be understood qualitatively from the
retardation model: the inclination of a nerve fiber with positive inclination increases for
oblique views from a certain direction and decreases for oblique views from a different
direction. Due to the direct relation between retardation and inclination, analyzing the
changes of the retardation signal enables the determination of the inclination sign. As
the retardation changes are small resulting in potentially noisy inclination sign maps,
different regularization techniques such as a Markov Random Field approach [86] and
total variation [87] were utilized to further improve the results. Still, these approaches
were limited to the reconstruction of the inclination sign.

The first approach to determine the inclination and relative thickness from the oblique
measurements was presented in [88, 46] where it was shown that the retardation variation
with respect to different oblique measurements (cf. (2.19)) is sinusoidal. Based on
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a Fourier analysis inclination angle and trel can then be derived analytically. In the
following, this approach will be abbreviated as DFT as it is based on a discrete Fourier
transform. Due to its analytical nature, the DFT based algorithm is computationally
very efficient but suffers from noise instabilities especially for highly inclined nerve fibers
and in-plane oriented nerve fibers [46]. In [46], a second approach based on maximum
likelihood estimation7 termed Likelihood Orientation Estimation (LOriE) was developed
to overcome the noise instability. This approach takes into account not only changes in
the retardation but also changes in the direction angle of different oblique measurements
(rotation of the fiber orientation vector also changes the in-plane orientation). As the
parameter estimation is based on pixelwise numerical optimization to find the most
plausible parameters given the measurement data, the computational demands increase
to 60-80 core hours per brain section.

While the LOriE algorithm was shown to be more accurate for weak signals than the
DFT algorithm [46], it still induces artifacts for in-plane oriented nerve fibers. In Fig. 2.9
a region of interest (ROI ) in a coronal human brain section of mostly in-plane oriented
nerve fibers processed with the DFT and LOriE algorithms is shown. The histograms
(2.9 bottom) display very different results: the DFT algorithm results in almost no in-
plane oriented nerve fibers with α ≈ 0° while the LOriE algorithm yields a very high
number of these orientations. In the inclination map computed by the LOriE algorithm
these orientations are indicated in red. Physically, this singular high number of in-plane
nerve fiber orientations is not plausible which means that this behaviour of the LOriE
algorithm has to be classified as an artifact8. Hence, new approaches are necessary to
improve the analysis of the oblique measurements.

In chap. 4 and 5 two novel algorithms are developed for a more precise reconstruction
of tissue parameters from the oblique measurements. The general statistical principles
behind them are presented in the next chapter.

7The Maximum Likelihood Estimation method aims to find the most probable parameters of a model
given a set of observations. A more extensive introduction is given in chap. 3.

8The discontinuity of the inclination histogram obtained from LOriE was already observed in [46]
p. 87, yet the classification of this finding as an artifact originating from the algorithm was stated here.
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Figure 2.9: Analysis of inclination angles calculated by the DFT and LOriE algorithms for
in-plane oriented nerve fibers. Top left: position of the analyzed ROI in the brain section
(top) and delineation of the white matter region from which the histogram was calculated
(bottom). Top right: inclination map computed by the LOriE algorithm clipped to the
range [−30°, 30°]. Red squares indicate pixels with very low absolute inclinations of |α| < 0.1°.
Bottom: inclination histograms obtained from DFT and LOriE for the white matter ROI
delinated in the top left. While the DFT algorithm results in almost no in-plane inclinations,
the LOriE algorithm estimates an extraordinary high ratio of in-plane oriented fibers with
α ≈ 0° which appears as a large peak in the otherwise smooth histogram.
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3
Foundations of Bayesian data analysis

“The only statistics you can trust are those you falsified yourself.”

– Winston Churchill

While a detailed discussion of Bayesian statistics and computation is beyond the scope
of this thesis, a brief introduction to motivate the later application of these methods is
presented in this chapter. The introduction focuses on Bayesian methods for regression
problems as the problem of interest in this thesis is a regression problem: inferring
birefringence parameters from the 3D-PLI measurement.

Although Bayes’ theorem dates back to 1763 [89], Bayesian methods have found widespread
use only in recent years in many fields due to their natural way to quantify uncertainty.
The main reason for the growing adoption of Bayesian approaches are advances in hard-
ware and software technology as well as novel algorithms that make the high computa-
tional demands of these approaches which were prohibitive several decades ago feasible
[55]. The increasing interest in Bayesian methods manifested in the development of
so called probabilistic programming languages which aim to simplify the usage of these
methods not just by publicly funded researchers but also by leading software companies.
Prominent examples for publicly funded software are Stan [90] and PyMC3 [91] while
Facebook’s HackPPL [92], Google’s Edward [93], Microsoft’s InferNet [94] and Uber’s
Pyro [95] represent the most popular frameworks developed by the private sector.

The chapter starts with an introduction into the terminology of Bayesian statistics
and parameter estimation using priors. Then the Bayesian computation of uncertainty
estimates is reviewed. Note that this chapter does not offer a rigorous mathematical
introduction to Bayesian statistics but instead tries to convey an intuitive understanding
of the principles of Bayesian data analysis.

3.1 Parameter estimation based on Bayes’ theorem

In a Bayesian setting, model parameters are treated as random variables whose proba-
bility distribution we seek to determine. Bayes’ theorem states that the probability for
a parameter set θ of model M given the data D is given by

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
. (3.1)
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Figure 3.1: Example data for linear regression problem

p(θ|M) is referred to as prior and describes the a-priori knowledge about the parameters.
p(D|θ,M) is called the likelihood and represents the probability to observe the measure-
ment data given a specific parameter set of the model. This probability requires a noise
model for the specific measurement. p(θ|D,M) is referred to as posterior and represents
our a-posteriori knowledge about the parameters incorporating our prior knowledge and
the measurement data. The denominator p(D|M), the probability to observe the data
given the model, is commonly termed the model evidence and can be computed as

p(D|M) =

∫
Σ
p(D|θ,M)p(θ|M)dθ . (3.2)

where Σ is the parameter space. Combining eq. (3.1) and eq. (3.2) it becomes clear
that the denominator serves as a normalization factor so that the posterior becomes a
proper probability density whose probability over the whole parameter space integrates
to 1.

The posterior is the essential quantity used by a Bayesian analysis. The best fit pa-
rameters are the ones which maximize the posterior yielding the maximum-a-posteriori
estimator (MAP). In case of uniform prior and evidence this reduces to Maximum Like-
lihood Estimation (MLE) as only the likelihood depends on the model parameters.

The application of Bayes’ theorem is best understood from a simple example such as
one-dimensional linear regression. Suppose we observe n data pairs and call them
{(xi, yi), i = 1, . . . , n}. Linear regression aims to estimate the parameters of the model
f(x) = α + βx. Let us assume that our observations are independent and normally
distributed with known variances: yi ∼ N (µi, σ

2
i ). While in many cases the variances of

the individual observables are unknown, they were obtained from noise measurements
for 3D-PLI and utilized in the analysis for the first time in [46]. For the synthetic data
depicted in Fig. 3.1 the variances were sampled from a uniform distribution σ ∼ U(0, 8).
The true model parameters are αtrue = 0.5 and βtrue = 11.

Now, the likelihood to observe a specific yi for a specific model parameter set p(yi|α, β)
is given by inserting the response predicted by the model f(x) into the probability
distribution of the observations as its expected value: p(yi|α, β) ∼ N (α + βxi, σ

2
i ).

Combining all n observations, the joint likelihood p(y1, . . . , yn|α, β) is then the product

1All plots in this chapter were created with the matplotlib and seaborn packages [96, 97].
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Figure 3.2: Synthetic data and weighted least squares estimate

of all individual likelihoods:

p(y1, . . . , yn|α, β) ∼
n∏
i=1

N (α+ βxi, σ
2
i ) . (3.3)

This is already the likelihood required for Bayes’ theorem. As we have no prior knowl-
edge, we choose uniform priors over α and β. The evidence can also be chosen as uniform
as no measurement seems any more likely than another purely based on the model. In
consequence, the posterior is equal to the likelihood and given by:

p(α, β|y1, . . . , yn) = p(y1, . . . , yn|α, β) (3.4)

=
n∏
i=1

N (α+ βxi, σ
2
i ) (3.5)

=
n∏
i=1

1√
2πσi

exp

(
−(yi − (α+ βxi))

2

2σ2
i

)
. (3.6)

Instead of maximizing the expression given in eq. (3.6) it is common to minimize
the negative logarithmic likelihood function l = ln(p) which yields (neglecting constant
terms)

− l(α, β|y1, . . . , yn) =
1

2

n∑
i

ln(σ2
i ) +

(yi − (α+ βxi))
2

σ2
i

. (3.7)

This result, the log-likelihood for a normal distribution, becomes important in the chap-
ters 5 and 6 as the noise of the 3D-PLI measurement can be modeled by a Normal
distribution. For a different problem, only the expected value in eq. (3.7) (here:
f(x) = µ = α + βx) has to be replaced which results in the general log-likelihood
for normally distributed observables:

l = −1

2

n∑
i

ln(σ2
i ) +

(yi − µi)2

σ2
i

. (3.8)

The optimization problem for the straight fit line problem can then be stated as

argmin
α,β

1

2

n∑
i

ln(σ2
i ) +

(yi − (α+ βxi))
2

σ2
i

. (3.9)
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Figure 3.3: Synthetic data with outliers. True model: black, weighted least squares etimate
(WLS): blue.

As in our case the variances do not depend on the model parameters and have in con-
sequence no effect on the estimation, this expression can further be simplified to

argmin
α,β

1

2

n∑
i

(yi − (α+ βxi))
2

σ2
i

(3.10)

which is one case of the Weighted Least Squares Estimator (WLS). The name stems
from the fact that the weighted squared error between the model predictions and the
observations has to be minimized. A closed form solution for the WLS estimator for
linear regression is available [98] and yields a satisfactory fit for our problem: αWLS =
0.519 and βWLS = 0.986 (cf. Fig. 3.2). While this result would be possible to obtain
without the Bayesian approach, the usefulness of priors becomes more evident in the
presence of outliers.

For the dataset with two outliers, the WLS estimate deviates strongly from the true
model (cf. Fig. 3.3): αWLS = 3.51 and βWLS = 0.48 compared to αtrue = 0.5 and
βtrue = 1. The first choice here would be to perform outlier detection and perform the
fit only on the inlier data points [98]. Here, for demonstration purposes, the problem
is approached using priors. An observer who does not know the true model parameters
will likely judge that the slope of the regression line of the WLS estimate is too small
and the intercept too high as consequence of the outliers. This impression, our prior
knowledge about the model parameters, can be incorporated into the estimation process
by a prior. One choice for the priors are normal priors with expected value of µβ = 1
for the slope and µα = 0 for the intercept: p(β) ∼ N (µβ, σ

2
µ) and p(α) ∼ N (µα, σ

2
α).

Taking the logarithm of Bayes’ theorem yields

ln p(θ|D,M)︸ ︷︷ ︸
Log-Posterior

∝ ln p(D|θ,M)︸ ︷︷ ︸
Log-likelihood

+ ln p(θ|M)︸ ︷︷ ︸
Log-Prior

. (3.11)

Combining the log-likelihood from eq. (3.10) and the logarithmic priors then gives the
logarithmic posterior lpost:

− lpost =
1

2

(
(α− µα)2

σ2
µ

+
(β − µβ)2

σ2
β

+ ln(σ2
µσ

2
β) +

n∑
i

(yi − (α+ βxi))
2

σ2
i

)
. (3.12)
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Figure 3.4: Synthetic data with outliers. True model: black, weighted least squares etimate
(WLS): blue, maximium-a-posteriori estimators with decreasing variances over the normal
priors (MAP): red, green, yellow

Again, the variance term ln(σ2
µσ

2
β) represents a constant offset and can be neglected for

the optimization. The prior variances σ2
β and σ2

µ measure how strong our belief in our
prior knowledge is: the smaller they are, the narrower become the prior probabilities and
the stronger they effect the posterior. The result of the minimization which was carried
out numerically for convenience, is depicted in Fig. 3.4 for three different variances of
the priors (for simplicity, the variances were the same for both paramters). We can
conclude that the smaller the prior variance, the stronger the fit line tends towards the
prior and the better it fits the true model as the prior assumptions are close to the
ground truth.

While the best fit parameters can now be estimated based on the prior and the likeli-
hood, no quantitative statement about the goodness of the fit can be obtained solely
on the MAP estimate in general. As all derivations in a Bayesian setting are based on
probabilities, Bayesian statistics offer an intuitive way to measure the confidence in the
obtained results. This is explored in the next section.

3.2 Uncertainty quantification

Like the best fit parameters, the uncertainty of the parameters is also derived from the
posterior. Graphically, we just have to determine how much of the probability mass
lies within a certain volume. E.g, for a one dimensional distribution, a 2σ confidence
interval is given by the interval that contains 95% of the probability mass. In Bayesian
statistics, credible intervals are the analogue of confidence intervals from frequentist
statistics. Typically, credible intervals are obtained from high posterior density (HPD)
intervals, the shortest intervals that contain a certain amount of probability. In a multi-
variate case, a credible interval for a specific parameter θi is obtained from the marginal
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distribution P (θi|D,M). This marginal distribution is obtained by integrating over all
other parameters:

P (θi|D,M) =

∫
Σ−i

P (θ|D,M)dθ−i (3.13)

The marginal distribution is a one-dimensional distribution from which HPD intervals
can be derived. Visually, integrating over all parameters just means that we only restrict
the parameter space of the variable of interest, we marginalize over all other parameters.

While conceptually elegant, computing credible intervals is hard as it requires integration
over potentially high-dimensional parameter spaces which are not tractable analytically.
Also, most of the parameter space will contribute almost nothing to the integral making
standard numerical integration very inefficient. To make these computations feasible,
Markov Chain Monte Carlo (MCMC) methods were developed. MCMC offers an effi-
cient way to generate samples from a distribution and thereby perform the integration
implicitly. The difference to standard Monte Carlo integration is that the samples are
correlated.

Informally speaking, MCMC methods perform a (more or less depending on the al-
gorithm) random walk through the parameter space biased towards high probability
regions. This is achieved my constructing a Markov Chain whose equilibrium distribu-
tion is the target posterior. Essentially, from a position xi with posterior probability
p(xi), a next position xi+1 with posterior p(xi+1) is chosen using a transition kernel.
The trick in MCMC is now that the probability to accept xi+1 as a new position for the
chain is given by a Metropolis-Hastings criterion proportional to the division of both
probabilities p(xi+1)/p(xi). This way the computation of the evidence in eq. (3.2) is
no longer required. As an example, the simplest MCMC algorithm, the random walk
Metropolis-Hastings (RWMH) algorithm with Normal proposal distribution, will be dis-
cussed in more detail [99, 100]. The pseudocode of the algorithm is depicted for the
one-dimensional case in Alg. 1.

Given: target probability density p, proposal distribution g;
Initialization: pick a starting point x0;
while i < number of iterations do

Proposal generation: xp ∼ g(xi) = N (xi, σ
2);

Acceptance ratio: α = min
(

1,
p(xp)
p(xi)

g(xi|xp)
g(xp|xi)

)
= min

(
1,

p(xp)
p(xi)

)
;

Random number generation: u = U [0, 1];
Accept or reject:
if u ≤ α;
then

Accept proposal: xi+1 = xp;
else

Reject proposal: xi+1 = xi;
end

end
Algorithm 1: Pseudocode of the Random Walk Metropolis-Hastings algorithm

The RWMH algorithm works in two steps2: proposals are drawn from a normal dis-
tribution with the the current position of the chain as its mean. Next, the acceptance

2A very helpful animation of MCMC algorithms can be found at http://chi-feng.github.io/
mcmc-demo/, last accessed: 23.12.2019
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3.2. Uncertainty quantification

ratio α is calculated as the ratio of the target probability of the proposed and the cur-
rent state multiplied by the inverse ratio of the proposal probabilities. In the case of
the normal proposal distribution where g(y|x) = N (x, σ2) the proposal is symmetric as
g(xi|xp) = g(xp|xi), so the acceptance ratio reduces to α = min(1, p(xp)/p(xi)). The
acceptance ratio is compared to a random number u drawn from a uniform distribution
in [0, 1]. If the probability of the proposed state is higher than the current one, it will
always be accepted as α = 1 and u ≤ 1. If the proposed state has a lower probability
than the current state (α < 1), it will sometimes be rejected and sometimes accepted
(the lower the ”decrease” in probability, the higher the acceptance probability). This
ensures that the chain moves into regions of lower probability, instead of only ascending
to higher probability regions. After running the Markov chain for a ”sufficient” number
of iterations, the chain will explore the whole parameter space and the empirical distri-
bution of the samples converge to the posterior distribution. In practice, this procedure
offers a way to determine the posterior in a reasonable amount of time. As the calcu-
lation of the evidence is not required, the nominator of the logarithmic posterior from
eq. (3.11) can be utilized for uncertainty estimation via MCMC just as for finding the
MAP estimate.

Figure 3.5: Scatterplot matrix of posterior samples generated by MCMC for the straight
line fit problem with outliers and prior variances σα = σβ = 1. Top: histogram of α values
of the samples, right: histogram of β values of the samples. Straight lines: median values.
dashed lines: boundaries of the high posterior density intervals containing 95% of all samples
marginalized over the other variable. Middle: scatter plot in which the number of samples
within a bin is highlighted by the blackness.

Although theoretical convergence of the RWMH algorithm is guaranteed, its conver-
gence time is impedingly high for many cases. For example, for a multivariate case
a correlated distribution will be sampled very ineffectively if the proposal distribution
stays symmetric. This can only be coped with by manually adjusting the covariance
matrix of the proposal distribution. In general the covariance matrix always needs to
be tuned for a specific problem or adjusted during the sampling: if the proposed steps
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are too small, the chain will take very long to explore the parameter space, if they are
too big, many proposals will be rejected which also results in a extensive convergence
time. Furhermore, the RWMH algorithm also suffers strongly from the famous curse of
dimensionality : with increasing number of dimensions it becomes increasingly difficult
to generate ”good” proposals from the normally distributed proposal as the available
space increases exponentially with the number of dimensions. For the application in an
imaging technique such as 3D-PLI, another important aspect besides convergence speed
is that an MCMC algorithm should not require extensive manual tuning as the data
from different pixels of the brain are very different from each other. For example, a grey
matter pixel without birefringent signal will have a much worse goodness of fit than a
white matter pixel.

One of the more advanced approaches to MCMC is ensemble sampling [101]. The
ensemble sampler runs several Markov chains in parallel and generates proposals by
inter- and extrapolating between them resulting in ”informed” proposals. The idea
behind this can be understood in the following way: as all chains will in the long run
converge to the same stationary distribution, moving into the direction of another chain
is a better proposal than picking a random point like RWMH does. Furthermore, due
to its affine invariance the ensemble sampler can sample linearly correlated densities
as efficiently as uncorrelated densities and nonlinearly correlated densities much more
efficiently than RWMH. The only parameters which have to be set manually for the
ensemble sampler are the number of parallel chains and their starting positions.

The application of MCMC sampling is demonstrated using the same straight line fit as
for the parameter estimation. The posterior is again given by eq. (3.12) and fed into the
emcee package’s Python implementation of the ensemble sampler [102]. The number of
chains was set to 50 and the chains were initialized randomly close to the MAP estimate
as recommended by the authors of the ensemble sampler. A scatterplot matrix of the
resulting samples is depicted in Fig. 3.5. Intercept and slope are clearly correlated.
This can be interpreted in a way that if we believe in a higher intercept, we also have to
believe in a lower slope. The credible intervals can now be obtained from the samples by
calculating HPD intervals for both variables individually resulting in α = 1.94+0.91

−0.92 and
β = 0.74+0.16

−0.16. This result means that we have a higher degree of belief in our estimate
of the slope than the intercept.

The question whether a MCMC algorithm has converged after a certain number of
iterations is subject of ongoing research. A simple method to evaluate convergence is to
run the same chain several times and compare the results. Recently, Vats et al. [103]
published a minimal number of effective samples, the number of uncorrelated samples of
the chain, required to achieve a specific Monte Carlo Error depending on the dimension
of the problem. Unfortunately, estimating the effective sample size from a correlated
Markov Chain is very challenging for short chains [104, 103]. For the purposes of 3D-
PLI, keeping the number of samples low is key to achieve acceptable computation times.
Therefore in the latter parts of this thesis (cf. chap. 6) the convergence of the applied
MCMC algorithms is evaluated based on synthetic data for which ground truth HPD
intervals are available.

For an interpretation, it is also appealing to visualize the prediction of the posterior sam-
ples. Calculating the values predicted by the model for all samples yields the posterior
predictive distribution (PPD). As for every predictor value of x now exists a distribution
of possible model outcomes, summary statistics such as percentiles and mean value of
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Figure 3.6: Posterior predictive distribution for the straight line fit problem. Blue: mean
value. Grey shaded: 95% credible region.

the PPD can be computed and plotted. In Fig. 3.6 the mean value of the posterior pre-
dictive distribution of the straight line fit problem is plotted in blue. The 95% prediction
interval obtained as the HPD of the prediced values is shaded in grey.

Here, we merely scratched the surface of Bayesian statistics. A more rigorous and in
depth discussion is given in [104, 105]. For the purposes of this thesis though, the
concepts presented here are sufficient. The different estimators introduced here are
applied to 3D-PLI in the following chapters. Chap. 4 introduces a WLS estimator to
3D-PLI, chap. 5 a MAP estimator. Finally, in chap. 6 MCMC sampling is utilized to
quantify uncertainty in 3D-PLI.
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4
A Least Squares Approach for the

derivation of Nerve Fiber Orientations

“It is a capital mistake to theorize before one has data.”

– Sherlock Holmes

In sec. 2.7 the two algorithmic approaches developed in [46] to determine three-dimensional
fiber orientations from oblique 3D-PLI measurements were reviewed. Both represent a
great step forward to an unambiguous estimation of the out-of-plane nerve fiber ori-
entation compared to previous studies but suffer from instabilities for in-plane fibers.
Compared to each other, the MLE based LOriE algorithm was shown to be more reli-
able for in-plane and out-of-plane fibers than the analytical DFT algorithm but leads to
artifacts for flat fibers for a significant number of pixels. Another drawback is its high
demand in computation time of 60-80 core hours per brain section.

In this chapter a new approach is developed to overcome the pitfalls of the LOriE
algorithm. As analytical approaches such as the analytical DFT algorithm are prone to
suffer from noise instabilities, the new algorithm must also be based on a model fitting
paradigm. Instead of a MLE based approach we will utilize a simpler weighted least
squares estimator. As the objective function of WLS estimators is a weighted sum of
quadratic differences between the model function and the observed data, it is not as
complex as the objective function resulting from an MLE based approach which for a
gaussian noise model also contains logarithmic terms (cf. chapter 3). This simplifies the
optimization problem and thereby the numerical stability of the estimator.

This chapter is structured as follows: first a new algorithmic framework is developed
and a first implementation described. It is then evaluated and compared to the DFT
algorithm on synthetic data. The plausibility of the obtained fiber orientations are then
evaluated for human brain data. Finally, strategies to reduce the computation time of
the developed algorithm by utilizing the computational power of GPUs and classical
CPU clusters are explored. Large parts of this chapter were published in [106, 84, 107].
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Figure 4.1: Tilting coordinate system. Light grey: specimen stage in the planar position
without tilt, dark grey: tilted specimen stage. ψ: tilting direction angle, τ : tilting angle.
Adapted from [84].

4.1 The Robust Orientation Fitting via Least Squares al-
gorithm

In the following derivation, the coordinate system developed in [46] is utilized (cf. Fig.
4.1. It describes the tilting position by a tilting direction ψ and the angle by which
the stage is tilted with respect to the planar plane τ . With NT ilt as the number of
tilting positions the tilting directions equidistantly spanning the space are in general
given by ψk = 2π

NTilt
(j − 1), j ∈ [1, 2, . . . , NT ilt] with the index k indicating the tilting

position. The standard measurements with four tilting positions is then described by the
tilting directions ψ = 0◦, 90◦, 180◦, 270◦ and a tilting angle of τ = 8◦. In this notation,
the planar measurement is simply a tilt with tilting angle of τ = 0◦. The essential
information lies in the change of the light intensity with respect to the tilting position.
For a given fiber orientation r the polarimetric model predicts a specific light intensity I.
For a tilting position k the predicted light intensity Ik is then obtained by rotating the
fiber orientation accordingly and calculating the light intensity for the rotated vector
rk = Rkr with rotation matrix Rk. These rotation matrices were derived in [46]: the
full rotation is obtained by first rotating around the z-axis by −ψ, then rotating around
the y-axis by τ and then rotating back around the z-axis by ψ which can be written as

R(ψ, τ) = Rz(ψ)Ry(τ)Rz(−ψ) . (4.1)

The resulting matrices are given in App. A.1. Denoting the transformation from the
planar coordinate system into the tilted coordinate system with γ, the rotated vector’s
direction angle can be expressed as ϕk = γk(ϕ) and its inclination angle as αk = γk(α).

As already noted in [46], the relative thickness trel also needs to be adjusted for a
tilted measurement due to the elongated optical path of the light through the tissue as
trelk = γk(trel) = trel/ cos(τ). The tilting angle τ itself is affected by refraction which
leads to a tilting angle lower than the incident ”tilt”. According to Snell’s law the internal
tilting angle τint can be calculated from the experimentally employed tilting angle of the
tilting stage τexp and the tissue’s refractive index nsample as

τint = arcsin (sin(τexp)/nsample) (4.2)

We introduce the index j for the measurements, including 0 for the planar measurement
and 1, . . . , NT ilt for the tilted measurements. Furthermore, i will index the rotation angle
of the polarization filters. Additionaly, we denote the total number of measurements
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(tilted measurements and the planar measurement) as NT = NT ilt+1 and the number of
polarization states acquired as NP . In this notation the intensity curve of a measurement
can than be expressed as

Iji(ρi, ϕ, α, trel) =
Ij,T
2

(1 + sin (2(ρi − ϕj)) sin
(π

2
trelj cos2(αj)

)
(4.3)

where Ij,T denotes the transmittance of measurement j. As the transmittances are
easily available via the Fourier analysis of the individual measurements and are affected
by additional absorption and refraction effects in a tilted measurements, they are not
included in the further parameter estimation. Therefore we introduce the normalized
intensity

INji =
2Iji
Ij,T
− 1 (4.4)

which is limited to the range [−1, 1]. From the variance of the individual light intensity
σ2
Iji

= gIji the variance of the normalized light intensity can be derived using error
propagation as (see Appendix A.2)

σ2
Nji =

4gIji
I2
j,T

(
1 +

2Iji
NP Ij,T

)
(4.5)

The normalized light intensities predicted by the 3D-PLI model fji are given by inserting
eq. (4.3) into eq. (4.4) which yields

fji(ρi, ϕ, α, trel) = sin(2(ρi − ϕj) · sin
(π

2
trelj cos(αj)

2
)
. (4.6)

Now f can be fitted to the normalized intensities INji . With the weights wij = σ−2
Nji

the
optimization problem is stated as

argmin
ϕ,α,trel

χ2 = argmin
ϕ, α, trel

NT∑
j=0

NP∑
i=0

((
fji(ρi, ϕj , αj , trelj ))− INji

)
· wji

)2
. (4.7)

Minimizing this function means that the modelled normalized light intensity curves are
fitted to the measured normalized light intensities of all oblique measurements simulta-
neously. The weights of the objective function yield an interesting observation: as the
camera gain factor is a constant multiplicative factor for all weights, it has no effect on
the optimization process. Physically, this means that the exact knowledge about the
camera gain factor is not considered as only the amounts of the weights relative to each
other are taken into account. This fact distinguishes the WLS estimator from the MLE
which can utilize the information about the gain factor. In the objective function of the
LOriE algorithm (see. [46] p. 48), the logarithmic terms also contain the gain factor.

The minimization strategy uses the approach developed for the LORIE algorithm: a
grid search followed by a local minimization. A good guess for the direction angle is
given by the result of the Fourier analysis of the planar measurement ϕ0. For incli-
nation and relative thickness, a 6 × 6 grid equidistantly spanning the parameter space
is evaluated. From the best minimum found via this brute-force minimization, the
Levenberg-Marquardt algorithm [108, 109] is employed to converge to a local minimum.

The Levenberg-Marquardt algorithm is an adaptive gradient based optimizer1 but not
inherently capable of dealing with bounds on the parameters. Here, the boundaries

1The gradient is given in App. A.3

33



4. A Least Squares Approach for the derivation of Nerve Fiber Orientations

for inclination and direction do not pose a problem to the optimization process due to
the symmetry of the parameter space [46]. In case that the optimizer converges to a
minimum outside of the parameter space with an unbounded orientation (ϕu, αu), the
result can be ”mirrored” back into the desired space by the relation

α =
((
αu +

π

2

)
mod π − π

2

)
sgn

(
1

2
−
⌊ϕu
π

mod 2
⌋)

(4.8)

ϕ = ϕu mod π (4.9)

where then ϕ ∈ [0, π) and α ∈ [−π/2, π/2). The cost function is symmetric with respect
to the sign of the relative thickness so it is sufficient to take the absolute value after
the optimization trel = |trel|. The fitting routine will be denoted as Robust Orientation
Fitting via Least Squares (ROFL) algorithm from now on.

Data: Maps of ϕ0, Ij,T , Iji, j ∈ {0, . . . , NT }, i ∈ {0, . . . , NP }
Result: Maps of ϕ, α, trel, χ2

for all image pixels do in parallel
// calculate normalized intensities and their standard deviations
for j = 0 : NT do

for i = 0 : NP do

INji =
Iji

2Ij,T
− 1

σNji = error prop. of σIj,i σIj,T to INj,i via eq. (4.5)
end

end
// brute force minimization
for αl, trelk ∈ bruteforce grid do

χ2
l,k = χ2 (ϕ0, αl, trelk , (IN00 , σN00 , . . .))

end
α0, trel0 = argmin

α,trel

χ2
l,k

// local optimization
Levenberg-Marquardt optimization of χ2 with initial point
(ϕ0, α0, trel0) → ϕ, α, trel, χ

2

transform ϕ, α, trel into 3D-PLI parameter space via eq. (4.9)
end

Algorithm 2: Pseudocode of the ROFL algorithm. Adapted from [84]

The ROFL algorithm was implemented in Python, utilizing numpy [110] for the calcula-
tion of the objective function and its gradient and scipy ’s leastsq function [111, 112, 113]
for the Levenberg-Marquardt optimization. As all pixels can be processed independently
of each other, the computations are easily parallelized using mpi4py [114]. A pseudocode
of the algorithm is given in Alg. 2.

For illustration purposes, the working principle of the ROFL algorithm is demonstrated
for a single pixel in Fig. 4.2. The pixel is located in the stratum sagittale (cf. Fig. 4.2 A),
therefore the fiber orientation is expected to be perpendicular to the coronal sectioning
plane. The light intensity curves of the planar measurement and two tilting positions
after the registration onto the planar measurement are clearly distinguishable in Fig.
4.2 B. These light intensities are then normalized and fitted by the model. Finally, the
normalized light intensities predicted by the estimated model parameters are compared
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B C

A

Figure 4.2: Working principle of the ROFL algorithm demonstrated for a single pixel. A:
Transmittance map. The red circle points out the position of the analyzed pixel. B: Measured
light intensities of the planar measurement and tilted measurements to west and east after
calibration and registration onto the planar measurement. C: Normalized light intensities of
the planar measurement and tilted measurements to west and east. The dashed lines depict
their best fit curves according to the ROFL algorithm. Fit result: ϕ = 101◦, α = −60◦,
trel = 0.5, R2 = 0.97. Taken from [84].

to the normalized measured light intensities in Fig. 4.2 C: as the differences are small, the
model is able to describe the observed data accurately in this pixel. The estimated fiber
orientation is inclined to the sectioning plane by 60◦ which conforms to our anatomical
expectation.

4.2 Evaluation for synthetic data

Methods

The robustness of the developed approach against measurement noise has to be tested via
simulations. First, a suitable procedure to generate synthetic data has to be developed.

Generation of synthetic data

Here, we follow the approach presented in [46]. First, a ground truth fiber with the
parameters (ϕ, α, trel) is defined. This vector is then rotated according to the rotations
for four tilted measurements with a tilting angle of τ = 5.51◦, the presumed internal
tilting angle for human brain sections. This results in four ”tilted” vectors. For these
vectors and the original ”untilted” vector artifical 3D-PLI measurements are constructed
by calculating a light intensity profile Isim according to the 3D-PLI model from eq. (4.3).
The transmittance was set to 5000, a typical value for human brain sections.

In [46] these light intensities were then distorted according to a Poisson distribution. The
Poisson noise model presumes equal variance and expected value for the light intensity.
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4. A Least Squares Approach for the derivation of Nerve Fiber Orientations

As shown in [46], this assumption is not valid for the LAP where variance σ2 and
expected value µ are related by a gain factor of 3: σ2 = 3µ. Instead, a Negative
binomial distribution is chosen as it is defined for natural numbers (light intensities
are positive counts) and allows arbitrary expected value and variance. In a negative
binomial model parametrized by the expected value and variance, the occurrence of k
is given by

P (k|µ, σ) =

(
k − 1 + µ2

σ2−µ
k

)(
σ2 − µ
σ2

)k ( µ
σ2

) µ2

σ2−µ . (4.10)

Inserting σ2 = gµ, the likelihood to observe the light intensity I for expected value µ
and gain factor g can then be expressed as

P (I|µ, g) =

(
I − 1 + µ

g−1

I

)(
g − 1

g

)I
g
− µ
g−1 . (4.11)

Noisy synthetic light intensities Inoisy can now be obtained by drawing from a negative
binomial distribution whose expected value is given by the undistorted synthetic light
intensity: Inoisy ∼ NB(Isim, gIsim).

Reconstruction accuracy evaluation

Now, that synthetic data can be generated, the question arises which concrete questions
the simulations can evaluate. The major concern is the accuracy of the results obtained
from ROFL. For that purpose, a high number of artificial noisy datasets with the same
ground truth has to be statistically analyzed. Here, the reconstruction accuracy of the
fiber orientation and the relative section thickness, is of interest. Therefore, for all com-
binations of trel = 0.01, 0.02, . . . , 0.9, α = 0°, 1°, . . . , 89° and direction ϕ = 45° 100.000
samples of noisy light intensities each were generated. These parameter configurations
represent a vast possibility of birefringence strengths given by trel and inclinations given
by α. Negative inclinations are not necessary as the inclination sign does not have an
effect of the reconstruction precision. Only one direction angle is simulated as the di-
rection angle has only a small effect on the reconstruction accuracy [46]. The chosen
direction angle of ϕ = 45° represents the worst case scenario for a measurement with four
tilting positions as the angle between the orientation vector and the rotated orientation
vector becomes maximal for ϕ = ψ and decreases with |ϕ− ψ|.
The synthetic datasets are then analyzed with the ROFL and the DFT algorithms
resulting in a reconstructed fiber with fiber orientation rrec and relative thickness trec
for each algorithm. A comparison with the LOriE algorithm is not possible due to the
excessive computational demands of the LOriE implementation presented in [46]. The
reconstructed fibers can then be evaluated against the ground truth. For the orientation,
a suitable measure is the angular deviation between the reconstructed rrec and the
ground truth orientation rgt. The angular deviation is calculated as the acute angle γ
between both vectors:

γ = arccos(rrec · rgt) (4.12)

The overall error for a parameter set is then given by the mean angular deviation 〈γ〉 of
all 100.000 samples.

As the trel parameter was shown to carry structural information about the brain tissue
not available via the transmittance and retardation, its reconstruction accuracy also
needs to be examined. As a measure of reconstruction accuracy the absolute error σtrel
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was chosen: σtrel = |trec − tgt|. The average error for a parameter set is given by the
mean absolute error of all samples 〈σtrel〉.
The performance of the DFT algorithm strongly depends on the gradient of the retar-
dation with respect to the inclination as shown in [46]. Therefore this relationship is
studied further for an evaluation of the simulation results. The retardation gradient is
investigated by simply plotting it for the whole parameter range of α from 0° to 90° and
trel from 0 to 1. The gradient is calculated as

∂ sin δ

∂α
=

∂

∂α
sin
(π

2
trel cos(α)2

)
= −πtrel sin(α) cos(α) cos

(π
2
trel cos(α)2

)
.

(4.13)

Inclination bias evaluation

Besides a potentially low reconstruction accuracy, another pitfall of reconstruction tech-
niques can be a biased reconstruction. In our case, it is crucial that the full range of
possible inclinations can be estimated. The developed algorithm should not prefer some
inclinations over others. To test the ROFL and DFT algorithms against biases in their
inclination determination, 500,000 vectors uniformly distributed on the unit sphere were
computed. From the orientation vectors, inclination and direction angles were derived.
For these samples synthetic 3D-PLI datasets were generated as before with a relative
thickness of trel = 0.5. The resulting datasets are again analyzed with the ROFL and
DFT algorithms. A biased reconstruction would become apparent in the distribution
of the reconstructed inclinations. This is evaluated based on the histograms of ground
truth inclinations and reconstructed inclinations.

Results

Reconstruction accuracy

The results of the reconstruction accuracy evaluation are depicted in Fig. 4.3: it shows
the mean orientation deviation and mean relative error of trel as a function of ground
truth inclination and trel. The mean orientation error achieved by the ROFL algorithm
follows a clear trend: for trel > 0.06, it increases with increasing inclination. Its de-
pendency on the relative thickness is also simple: it decreases with increasing trel for
trel > 0.06. For very low values of trel and very high inclinations, the accuracy strongly
deteriorates. For very low relative thicknesses, the mean orientation error is even higher
than 30°. Highly inclined fiber orientations of α > 80° express a mean orientation error
of 12° on average. On the other side, for flat fibers with respect to the sectioning plane
of α ≈ 0°, the reconstructed orientation lies very close to the ground truth: the mini-
mal resulting error is 1° for α = 0° and trel = 0.9. For the DFT algorithm, the mean
orientation error is valley-shaped with respect to the inclination. The minimal error is
achieved for inclinations of ca. 40° − 60° and from there increases strongly for highly
inclined fibers and less strongly for in-plane fibers. With respect to the relative thick-
ness, a similar behaviour as for the ROFL algorithm is observed: in general the accuracy
increases with increasing trel. An as exception the combination of very high values of
trel and in-plane inclinations for which the accuracy decreases again stands out. For
all simulated parameter sets, the ROFL algorithm achieves a lower mean orientation
error than the DFT algorithm. For white matter structures with trel ∈ [0.2, 0.9] and
α ∈ [0°, 80°], the orientation reconstruction accuracy achieved by the algorithms are on
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Figure 4.3: Reconstruction accuracy of ROFL and DFT algorithms evaluated on synthetic
data. Left: ROFL algorithm. Right: DFT algorithm. Top: orientation reconstruction
error 〈γ〉 as a function of relative thickness trel and inclination angle α. Bottom: absolute
reconstruction error of the relative thickness 〈σtrel〉 as a function of relative thickness trel and
inclination angle α.

average 2° for ROFL and 4.5° for DFT with maximal values of 9.5° for ROFL and 18.8°
for DFT.

The behaviour of the reconstruction error of the relative section thickness trel is similar to
the reconstruction error of the fiber orientation: it increases with increasing inclination
and decreasing relative thickness. In contrary to the orientation error, the absolute error
for trel does not take the form of a valley for the DFT algorithm. Again, the ROFL
algorithm achieves a reduced error with respect to the DFT algorithm: on average,
the relative thickness of white matter fibers with trel ∈ [0.2, 0.9] and α ∈ [20°, 90°] is
determined with an average absolute error of 0.03 compared to 0.05% for the DFT
algorithm. For very steep fibers, both algorithms are not able to determine a plausible
value as the absolute error exceeds 0.2. For very low relative thicknesses, the error also
increases. While the absolute error does amounts to between 0.02 and 0.1, for a ground
truth value of trel = 0.01 this represents a relative error greater than 1.

For a better understanding of the reconstruction accuracy of the DFT algorithm, the
retardation gradient is investigated. The resulting plot of the absolute gradient as a
function of relative thickness and inclination is depicted in Fig. 4.4. It can be observed
that the gradient strongly depends on the inclination angle: from a value of zero for
α = 0° it increases to a maximum between ca. 45° and 60° from which it decreases again
to zero for α = 90°.

38



4.2. Evaluation for synthetic data

Inclination angle α [◦]

15
30

45
60

75
Rel.

thi
ckn

ess
trel

[ar
b.

u.]

0.0
0.2

0.4
0.6

0.8
1.0

A
b
s.

re
ta

rd
at

io
n

gr
ad

.
|∂

si
n

δ
∂
α

| [
ar

b
.

u
.]

0.4

0.8

1.2

Figure 4.4: Absolute retardation gradient with respect to inclination
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∂α

∣∣ as a function
of inclination and relative thickness trel.

Reconstruction bias

The histograms obtained from the simulation of 500,000 uniformly distributed orienta-
tions on a sphere are depicted in Fig. 4.5. The ground truth inclinations follow a cos(α)
distribution which is validated by a a · cos(α) fit for a to the histogram. The histogram
of the inclinations obtained from the ROFL algorithm displays a good agreement with
the ground truth histogram. For the DFT algorithm two inconsistencies between its in-
clination histogram and the ground truth are observed. For in-plane fibers which are the
most probably orientations, the frequency of reconstructed inclinations drops to almost
zero for α ≈ 0°. Instead of decreasing for |α| > 0°, the histogram displays two symmet-
ric peaks close to α = 0° which are indicated by black arrows. The other discrepancy
between ground truth and DFT inclinations lies in the regime of highly inclined fibers:
for these, the frequency of DFT inclinations drops moderately below the ground truth
frequency as highlighted by the blue arrows.

Discussion

The simulations prove the working principle of the algorithm. Also, an improved re-
construction accuracy compared to the analytical DFT approach especially for in-plane
and out-of-plane orientations, could be shown. The varying reconstruction accuracy of
the DFT algorithm can be explained with the gradient strength plotted in Fig. 4.4. For
a constant trel value the retardation gradient becomes maximal for inclinations between
45° and 60°. In this inclination range the orientation reconstruction error of the DFT
algorithm becomes minimal (cf. Fig. 4.3). For in-plane fibers and out-of-plane fibers
the gradient becomes zero. In consequence the reconstruction accuracy drops sharply.

The inclination bias simulation revealed that the DFT algorithm is in fact not capable
of determining in-plane orientations. Here lies the the major advantage of the ROFL
algorithm as it is capable of reconstructing these orientations. For uniformly distributed
orientations, in-plane fibers are far more likely than highly inclined fibers which empha-
sizes the importance of the capability to reconstruct in-plane orientations.

The cos(α) dependency of the frequency of inclinations for uniformly distributed orien-
tations follows from the spherical geometry (cf. Fig. 4.6). For a given inclination, the
frequency of orientations is proportional to the circumference of the circle of a sphere
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4. A Least Squares Approach for the derivation of Nerve Fiber Orientations

Figure 4.5: Inclination bias evaluation. Plotted are inclination histograms for ground truth
(black), the results of the ROFL algorithm (green) and the results of the DFT algorithm (blue).
Bin width: 0.25°. Cyan: a · cos(α) fit to ground truth histogram, fit result: a = 0.0087. The
arrows point out discrepancies between the histograms of the ground truth and the results of
the DFT algorithm for in-plane fibers (black) and out-of-plane fibers (blue). Taken from [84]

at the respective inclination. The radius of this circle is exactly cos(α). With the prior
belief that all orientations should be equally likely, the cos(α) proportionality can serve
as a prior for the inclination in a Bayesian analysis. In [22] this fact was utilized for a
Bayesian analysis of DMRI measurements. In chap. 5 the prior p(α) ∝ cos(α) will be
incorporated into the analysis of 3D-PLI data.

One pitfall of the inclination determination remains: very steeply inclined fibers with
|α| > 80° also pose a problem for the ROFL algorithm. As the measured sinusoidal
signals have an almost vanishing amplitude for these orientations, the light intensity
curves resemble a constant function plus random noise. Hence, very steep orientations
are inherently challenging to interprete by the polarimetric model which tries to fit a
sinusoidal model to the data. Nevertheless, assuming uniformly distributed orientations,
the fraction of highly inclined fibers with |α| > 80° adds up to a fraction of 1.5%
of all orientations2. Therefore we can conclude that for the vast majority of possible
orientations in white matter regions with trel > 0.2, the ROFL algorithm achieves a high
accuracy of 2° on synthetic data. Still, some brain regions will consist of large bundles
of highly inclined fibers which remain hard to explain by 3D-PLI.

4.3 Evaluation for experimental data

The simulations performed in the last section proved the working principle of the ROFL
algorithm on synthetic data. Nevertheless, for a true validation of the developed analysis
it must be applied on experimental data.

2The fraction is calculated via

η =
2
∫ π

2
80π
180

cos(α)dα∫ π
2

−π
2
cos(α)dα

≈ 1.5% .
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cos(α)

α

Figure 4.6: Geometrical explanation for the cos(α) dependency of the inclination distri-
bution of uniformly distributed orientations. The infinitesimal probability for an orientation
vector to be inclined by α is proportional to the circumference of the circle of a sphere at the
respective inclination. The radius of this circle is given by cosα.

Methods

An ideal experimental validation would be a phantom measurement with a known ground
truth which is not available for 3D-PLI. At LAP resolution the derived properties of the
nerve fiber tissue can therefore only be assessed qualitatively. At the micrometer scale,
the results can be compared to higher resolved volumetric measurement techniques such
as TPFM which is discussed in chap. 7. These measurements have the disadvantage of
small field of views which do not allow to analyze major fiber tracts through the brain
volume in contrast to LAP datasets which are analyzed in this section.

As tissue sample the occipital lobe of a human right hemisphere consisting of 843 coronal
sections was utilized. Data was acquired at a pixel size of 64×64µm in the LAP with the
routine measurement protocol of 18 polarization angles and four tilting positions. All
sections were processed with the DFT and ROFL algorithms. To enable an assessment of
the three-dimensional fiber orientations, all but the first 75 sections were reconstructed
to a 3D volume. For the reconstruction, no new image registration techniques were
developed for 3D-PLI in the scope of this thesis, instead existing methods and tools
were utilized. Details on the registration procedure are given in App. B.

Theoretically, the reconstructed vector field of the brain volume would allow a tractog-
raphy study for a qualitative validation of the derived fiber orientations. While trac-
tography is a standard procedure in DMRI, it is substantially more difficult to apply
to 3D-PLI. The main pitfall are registration errors which would induce strong artifacts.
From a computational viewpoint, handling tractograms becomes challenging already for
DMRI datasets due to the data size and visualization difficulties [115]. This issue be-
comes even more severe for 3D-PLI datasets which exceed DMRI dataset sizes by at
least two orders of magnitude. For these reasons, the derived fiber orientations were
evaluated based on visual inspection of the fiber orientation vector field as in [46]. A
major fiber tract which runs almost perpendicularly to the coronal sectioning plane is
the stratum sagittale (StS ). To assess the continuity of the fiber orientation, the re-
constructed volume was virtually resliced to visualize the horizontal plane. For one
horizontal slice, the projection of the vector fields into the horizontal plane were then
plotted for selected ROIs located in the StS. Based on the synthetic datasets, the ROFL
algorithm outperforms the DFT algorithm for highly inclined fiber orientations. This
can be evaluated for the human brain data based on the plotted vector fields.

The simulations revealed a distinct difference between the reconstructed orientations
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for in-plane oriented fibers computed by the ROFL and the DFT algorithm. This
difference was examined for experimental data by analyzing the inclination distribution
for a region with dominant in-plane fiber orientations. As the inclination histograms are
almost unaffected by the 3D registration process, the same ROI which was analyzed to
showcase the difficulties of DFT and LOriE algorithms (cf. Fig. 2.9) was designated for
the analysis. This way all three algorithms can be compared which was not possible for
the simulation study. Another region for which differences between ROFL and DFT are
likely to be observed is the cortex due to the low myelination. Therefore, for one ROI
at the boundary of white and grey matter the relative thickness and fiber orientation
maps resulting from both algorithms were compared.

A quantitative measure for the accuracy of the model parameters is given by the mean
squared error (MSE) between the model prediction and the measurement data. In
[46], the MSE between the predicted and measured retardation values was utilized to
compare DFT and LOriE for individual pixels. Here, the MSE between the measured
light intensities after registration onto the planar measurement and the light intensities
predicted by the oblique 3D-PLI model (cf. eq. (4.3)) is utilized as the retardation
values neglect the changes in the direction angles of the different tilting positions. For
one exemplary brain section, the MSE was computed for the results of both ROFL and
DFT and were compared based on their histogram.

Results

A horizontal view through the reconstructed brain volume is provided in Fig. 4.7. In
the retardation map, the boundary of the stratum sagitalle is easily identifiable. The
vectorfield shown in Fig. 4.7 C shows that in the StS a large number of orientation
vectors is oriented along the course of the bundle3. Four regions of interests were then
further analyzed in detail (cf. Fig. 4.8).

In the first ROI, one very dominant fiber orientation inclined by app. 45° with respect
to the coronal sectioning plane was estimated. This orientation fits the direction of the
tract from the boundaries visible in the retardation map (cf. Fig. 4.7). ROFL and DFT
results are barely distinguishable.

The second ROI displays two differently oriented structures: one runs in the horizontal
plane while to the left another fiber orientation running in the coronal sectioning plane
can be observed. In a direct comparison of the perpendicular bundle (green colored
vectors), the DFT algorithm estimates a low number of fiber orientations which do not
follow the outer structure of the bundle (indicated by white arrows). The orientation
of the right bundle also agrees with the overall orientation of the bundle based on the
retardation map (cf. Fig. 4.7). For the in-plane bundle (blue vectors), ROFL generally
estimates a stronger in-plane component than DFT (indicated by red arrows).

For the third ROI, no dominant fiber orientation is recognizable. Both algorithms
reconstruct an inhomogeneous vector field. Again the ROFL vector field expresses a
stronger in-plane component.

The fourth ROI shows a region of a strongly inclined nerve fiber bundle. Strongly
inclined fiber orientations agree with the impression that the bundle runs almost per-
pendicularly to the sectioning plane (cf. Fig. 4.7). For individual pixels, differences

3For better visibility, the coloring of the vectors was changed compared to typical 3D-PLI by switch-
ing green and blue.
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Figure 4.7: Overview of the analyzed human brain volume. A: Blockface volume. The
white plane indicates the analyzed plane. B: Retardation map of the plane whose vector
field is investigated. C: Estimated fiber orientation vector field in the region of the stratum
sagittale. Every 6th vector is mapped. The ROIs indicated by the four rectangles are shown
in detail in Fig. 4.8.
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between the algorithms can be observed. While for some of these pixels ROFL seems to
derive stronger inclined fibers (white arrows), for other pixels it results in less inclined
nerve fibers (red arrows).

The inclination histograms obtained from a region of interest are depicted in Fig. 4.9.
For the DFT algorithm, the relative frequency of inclinations strongly decreases for
|α| → 0°. High absolute inclinations are much more likely than for the ROFL and LOriE
algorithms. The histogram of the inclinations reconstructed by the LOriE algorithm
displays a strong peak for α ≈ 0° which disrupts the otherwise smooth distribution. For
the ROFL algorithm, no distinct features are observable for α ≈ 0°: the histogram is
continuous.

The agreement between model and data is evaluated based on the distributions of the
mean squared error metric (MSE ) for an exemplary brain section depicted in Fig. 4.10.
The MSE values obtained with the parameters estimated by ROFL are significantly
lower than the MSE values obtained with the DFT estimates. The results of the tilting
analysis for a cortical region are shown in Fig. 4.11. While the majority of grey matter
pixels express very low relative thicknesses, both DFT and ROFL result in a significant
number of unconnected pixels with high values of trel in the cortex. The FOMs display
a strong variation in the cortex as well. Of special interest is also the measurement
artifact pointed out by the white arrow: it originates from a dust particle. For the DFT
algorithm it has severe consequences as the estimated values of trel strongly disagree with
surrounding pixels. In the maps computed by ROFL the artifacts are not recognizable.
The bottom row of Fig. 4.11 depicts the vector field on top of the relative thickness
map. Both vector fields agree strongly in white matter and disagree in grey matter.

Discussion

The analysis of tilted LAP measurements was evaluated utilizing a large human brain
volume. The reconstructed brain volume represents the first large scale fiber model
obtained from 3D-PLI. Based on the three-dimensional fiber orientation vector fields, it
could be shown that even fiber tracts which run almost perpendicular to the sectioning
plane such as the stratum sagittale, can be restored from the individual sections. Still,
the derived fiber orientations do not match the apparent orientation of the fiber bundle
visible in the retardation map everywhere.

Examples for a strong agreement between expected geometric orientation of the bundle
and the fiber orientation obtained from 3D-PLI are the vector fields displayed in Fig.
4.8 A and D. In contrast the vector field from Fig. 4.8 B expresses two differently
oriented bundles, one running in the sagittal and one in the coronal plane, which was
already observed for another ROI of the stratum sagittale in [46]. One explanation
for this could be that the sagittally oriented bundle is part of the internal stratum
sagittale and the coronally oriented bundle part of the external stratum sagittale. In
fact, the stratum sagittale does not consist of only one fiber bundle but at least three
bundles [116]. Another possible explanation is that this region contains fiber crossings
which first become visible at a resolution provided by 3D-PLI. Fiber crossings are not
correctly described by the current model which presumes one fiber orientation vector.
Further analysis of the obtained fiber orientations with help of neuroanatomical experts
might enable to find the correct explanation. The vector fields shown in Fig. 4.8 C
express random fiber orientations while the bundle seems to be inclined by an angle of
app. 60°. As the reconstruction for synthetic fibers inclined by 60° was quite robust and
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Figure 4.8: Comparison of vectorfields derived from the ROFL and DFT algorithms. A:
ROI consisting of one dominant fiber orientation approximately inclined by 50° with respect
to the sectioning plane. B: ROI consisting of two differently oriented fiber bundles. C: a ROI
which mainly consists of nerve fiber crossings. D: ROI of highly inclined nerve fibers with
respect to the sectioning plane. White arrows indicate fiber orientations for which ROFL
estimates a larger inclination angle than DFT, red arrows indicate fiber orientations for which
ROFL estimates a smaller inclination angle than DFT.
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Figure 4.9: Inclination histograms for one ROI of in-plane oriented nerve fibers obtained
from the ROFL, DFT and LOriE algorithms.
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Figure 4.10: Histograms and kernel density estimates (full lines) of the mean squared errors
between the measured light intensities and the light intensities predicted by the oblique 3D-
PLI model for one exemplary brain section. Blue: 3D-PLI parameters estimated by the DFT
algorithm. Orange: 3D-PLI parameters estimated by the DFT algorithm. The mean squared
errors are clearly lower for the ROFL algorithm.

the higher inclined vector field from Fig. 4.8 D was reconstructed very well, the random
fiber orientations most likely originate from fiber crossings.

For synthetic data, the ROFL algorithm clearly outperformed the analytical DFT algo-
rithm. In the vector fields, differences are not that obvious to spot. Still, especially for
the steep fiber bundles shown in Fig. 4.8 B and D the vector fields obtained from ROFL
appear more coherent and fit the general orientation of the bundle slightly better. Dif-
ferences were also observed for flat fibers with respect to the sectioning plane. For these,
the investigation of the inclination histograms showed that ROFL indeed enables a re-
liable derivation of the inclination angle in contrast to the DFT and LOriE algorithms.
In the vector fields, discrepancies for flat fibers occur for the flat fiber bundle from Fig.
4.8 B. However, as discussed in the last paragraph it is not clear if this particular ROI
actually contains two distinct bundles or fiber crossings. Thus, it cannot be evaluated
which interpretation is more realistic. From a statistical point of view, the parameters
derived by ROFL provide the better prediction due to the lower mean squared errors.
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Figure 4.11: Analysis of tilted 3D-PLI measurements for the cortex. The investigated ROI
is indicated by the red rectangle in the full section view on the left. Middle: DFT results.
Right: ROFL results. From top to bottom: relative thickness maps, fiber orientation
maps, relative thickness maps overlaid with the vector field of every third vector. The white
arrows indicate a dust particle which becomes apparent as an measurement artifact. While
the ROFL result is almost unaffected by it, the DFT algorithm propagates the measurement
artifact into the model parameters. In the cortex, both relative thickness and fiber orientation
maps contain noise.

As ROFL is designed to find the optimal parameters through optimization and the DFT
algorithm based on analytical calculus, this result is not surprising.

The performance of the ROFL and DFT algorithms for very low signals and in presence
of measurement artifacts was investigated for one ROI at the boundary of the cortex.
For the dust particle, it was found that ROFL is still able to provide a comparable
interpretation compared to surrounding pixels while the DFT result does not fit the
surrounding pixels at all. Due to the analytical nature of the DFT algorithm, any
measurement artifact is directly propagated into the results while ROFL still tries to find
the parameters that describe all measurement data the best. In future, the influence of
outliers could be further reduced utilizing automatic outlier detection techniques similar
to algorithms available for DMRI [117].

Regarding the cortex it was shown that both algorithms result in noisy maps for relative
thickness and fiber orientation. Again, the maps obtained from ROFL appear slightly
more coherent. Still this observation might be subjective. Just like for the synthetic
data, the random parameters obtained from the analysis can be explained by the van-
ishing sinusoidal signal for unmyelinated tissue such as the cortex. As the cortex does
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not contain large fiber bundles but mostly thin or even individual nerve fibers, it is
probably impossible to derive reliable fiber orientations at a pixel size of 64 × 64 µm.
The same does not apply for the relative thickness parameter: as it is proportional to
the birefringence strength, it is expected to vanish for the cortex at LAP resolution.
Based on this assumption, the trel map obtained from ROFL is more likely to repre-
sent a realistic interpretation while it still contains a large amount of noise. However,
the only possibility to overcome the random parameters estimated for the cortex is the
utilization of prior information which is pursued in chap. 5.

4.4 Development of a high performance implementation of
the fitting algorithm

The computation time for the ROFL algorithm for one of the brain sections analyzed in
the last section with app. 1 Mio. pixels amounts to 4 Core hours using the pure Python
implementation described in section 4.1. Based on these numbers, the computation
time would add up to more than 10.000 Core hours for a whole brain measured with the
LAP. While in principle this could still be accepted, the computational demands become
infeasible for microscopical data. An image of a coronal brain section measured with
the LMP consists of up to 500 Mio. pixels which would result in a computation time
of 2.000 core hours for a single section measured with the LMP3D. Analyzing whole
brains with the current implementation of ROFL then becomes clearly computationally
prohibitive.

In this section, two strategies to reduce the computation time are explored. The first one
utilizes the partial compilation of the Python code while still using CPUs. The second
approach exploits the massively parallel computational power of GPUs. The results
of the different implementations and their computation times are then evaluated for
experimental data. The developed GPU implementation was presented by Jan-Oliver
Kropp at NVIDIA GPU Technology Conference 2019 Washington [107].

Methods

CPU based optimization

Python’s interpreted nature makes is very popular for rapid prototyping. Compared
to compiled languages interpreted languages are unfortunately typically slow as the
program is not compiled to efficient machine code. For example, in a loop the Python
interpreter has to check the data types in every iteration. The scientific ecosystem of
python is centered around NumPy which provides fast array computations and relies on
compiled C code for speed. Many other packages such as scipy [111] provide wrappers
of C++ or Fortran routines or are written in Cython, a language to write C code in
Python [118]. The same applies to the ROFL algorithm: the cost function and its
gradient are written in NumPy while the Levenberg-Marquardt optimization from scipy
calls a Fortran routine of the MINPACK library [113].

In recent years, a new approach to speed up Python programs which is pursued by
packages such as theano [119], tensorflow [120] and pytorch [121] is to compile the Python
code to efficient machine code on the CPU or even graphic cards via computational
graphs. While in principle promising for general purpose high performance computing
in Python, these libraries were primarily designed for deep learning applications on
graphics cards and are not typically used for CPU intensive tasks on non-shared memory
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parallel systems such as supercomputers. Furthermore, using one of these frameworks
would require a complete rewrite of ROFL and none of them includes the Levenberg-
Marquaradt algorithm, therefore a different strategy was chosen4.

The first step for speeding up numerical computer programs is to identify the computa-
tional bottlenecks. Optimization processes typically spend most of their time calculating
the cost function and its gradient [122]. Speeding up this part of the code can then pos-
sibly result in a significant speedup of the whole optimization process. One possibility
would be to write the cost function and its gradient in a compiled language and call it
from the main Python program. A simpler alternative is to compile the python code to
machine code using the numba library [123]. Numba enables just-in-time compilation of
Python and NumPy code based on the LLVM compiler infrastructure [124]5. Just-in-
time compilation works in the following way: when a function is executed for the first
time, the compiler inspects the types of all inputs and outputs and compiles it to machine
code for the inferred types. In subsequent calls of the function, the function is replaced
by its compiled version. Compared to the frameworks discussed in the last paragraph,
numba also generates efficient machine code but allows a very convenient integration
into existing numpy and scipy based code without the need to rewrite substantial parts
of the existing program.

Together with Felix Matuschke who uses ROFL to analyze simulated 3D-PLI measure-
ments, the cost function of the ROFL algorithm and its gradient were adapted so that
they could be compiled by Numba which only required minimal code changes. All other
parts of the code including the parallelization were left untouched. As only parts of
the code were replaced by compiled versions, all functions return the same results up to
floating point arithmetic errors.

For a performance analysis, I/O operations and preprocessing were not included in the
runtime measurements as they differ from the GPU implementation described in the
next section and are not fully standardized yet. Preprocessing includes the exclusion of
background pixels from the analysis if the user provides a mask of the brain section and
the reshaping of the data into the shapes required by scipy’s leastsq optimization routine.
The runtime measurement starts at distributing the data to the different processes
and ends after gathering the results from the individual processes before writing the
parameter maps. As the key point is the difference between interpreted and partially
compiled code and not the scaling behavior for a large number of CPUs, the runtime
was measured for 1 CPU and 16 CPUs. The final runtimes were obtained by averaging
over 10 individual runtime measurements6.

GPU based optimization

Originally, graphic cards or graphics processing units (GPUs) were developed for com-
puter graphics applications, especially rendering. Due to the massive parallelism of
rendering problems, they were designed differently than CPUs. Instead of one proces-
sor with a very high clock rate in the GHz range like CPUs GPUs typically consist

4While other optimization algorithms can be employed, the Levenberg-Marquardt algorithm is the
de-facto standard algorithm for least squares problems due to its efficiency.

5LLVM is the abbreviation for Low Level Virtual Machine, the original name of the project. As
the scope of the project was extended beyond the typical understanding of virtual machines in software
engineering, this name was officially dropped as stated by Chris Clattner, one of the original initiators:
http://lists.llvm.org/pipermail/llvm-dev/2011-December/046445.html, accessed: 31.03.2020.

6Details about the employed hardware are given in App. C.
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of thousands of processors with a clock rate of several MHz. The total possible arith-
metic throughput of one GPU is therefore higher than the combined throughput of
several CPUs for massively parallel problems. Hence, graphic cards offer an appealing
alternative to CPU clusters for high performance computing. In recent years, GPU
programming has been adopted in many disciplines of science and achieved enormous
speedups over traditional cluster computing [125, 126, 127]. For our purposes, a NVIDIA
GTX 1080 is available. The most common framework for programming NVIDIA GPUs
is CUDA [128] which enables to write C and C++ code with additional GPU specific
instructions.

The parameter estimation problem for the ROFl algorithm is massively parallel due to
the pixelwise parallelism which makes it suitable for GPUs. The same computational
problem, solving a large number of small independent optimization problems, exists in
other fields such as MRI, computer vision and microscopic applications and has success-
fully been addressed using GPUs. For example, the microstructural diffusion parameter
estimation could be accelerated by two orders of magnitude in [129, 130], Smith et al.
[131] achieved real-time MRI image reconstruction and Bruce et al. [132] accomplished
real-time 3D deconvolution using GPU hardware. One illustrative example for the usage
of least squares fitting on GPUs is real-time relighting and reshading of videos based on
a target scene [133].

For a GPU version of the ROFL algorithm the main difficulty lies in a robust im-
plementation of the Levenberg-Marquardt algorithm as the CUDA standard libraries
do not contain nonlinear optimization algorithms. Przybylski et al. [134] developed
a well-documented general purpose curve-fitting library (gpufit) in CUDA based on
the Levenberg-Marquardt algorithm for the parallel fitting of millions of independent
datasets. A developer only needs to implement a new model and gpufit automatically
handles the parallelization over all datasets. Furthermore, gpufit provides APIs7 to var-
ious programming languages such as Python, Matlab [135] and Java and manages the
data transfer to the GPU and back to RAM after fitting. All these features make it a
convenient candidate for the purpose of a GPU accelerated ROFL algorithm.

The GPU Optimized ROFL algorithm (GOROFL) was implemented prototypically by a
student, Oliver Kropp, under my supervision. Input and output operations (I/O) were
kept in Python but all computations transferred to the GPU. The centering of the light
intensity profiles and the brute force minimization utilize the pyCUDA framework [136].
PyCUDA enables to write CUDA kernels and execute them from Python via a simple
API.

Step by step the GOROFL algorithm works in the following way (cf. Fig. 4.12): the
calibrated light intensities are read into system RAM. Next, the data are preprocessed.
This includes the exclusion of background pixels from the analysis if the user provides
a mask of the brain section using simple numpy array routines and the rearranging of
the data into the shapes required by gpufit. Then, all data are transferred to the GPU
via PyCUDA. After calculating the centered light intensities and the weights the initial
parameters are found via the grid search. The centered light intensities, weights and
initial parameters are then copied to system memory. Finally, the Levenberg-Marquardt
optimization is executed using gpufit’s Python binding and the best fit parameters are
written to disk.

7In software engineering, API stands for Application programming interface and typically describes
an interface between different software packages
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PyCUDA
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Figure 4.12: Diagram of the GPU implementation of ROFL. Dashed lines depict data
transfer between GPU and RAM. The measured light intensities are read into system memory
via Python. Next, they are transferred to the GPU where PyCUDA calculates centered light
intensities and executes the grid search. The centered light intensities, weights and brute force
results are copied back to RAM and then passed to gpufit which carries out the Levenberg-
Marquardt optimization on the GPU. The best fit parameter maps are then written to disk
from Python. L-M optim.: Levenberg-Marquardt optimization. Image courtesy: O. Kropp

As gpufit’s implementation of the Levenberg-Marquardt algorithm is not the same as
MINPACK’s which is employed in the CPU version, the algorithms might yield differ-
ent results. Most importantly, gpufit executes the calculations in single precision while
MINPACK utilizes double precision. CPU and GPU versions are compared based on
the resulting parameter maps of fiber orientation and relative thickness of both imple-
mentations using their default default optimization stopping criteria. Another criterion
to evaluate the algorithms is the χ2 measure which both algorithms seek to optimize.
Especially in the cortex the algorithms need to be compared as finding the optimum
of the cost function is substantially more challenging for grey matter than for white
matter. Additionally to a runtime measurement of the whole program the computation
times of the different steps of the algorithm are measured for a later analysis.

Results

Comparison of CPU and GPU results

The FOMs of the whole analyzed brain sections computed by ROFL and GOROFL are
shown in Fig. 4.13 A. By eye, both maps are barely distinguishable in this view. The
histograms of the χ2 measure after the optimization process depicted in Fig. 4.13 B are
also very similar. In Fig. 4.14 a ROI in the cortex is analyzed further. Here, differences
are observable especially for the trel map. GOROFL estimates higher trel values than
ROFL in grey matter pixels. The FOMs also express different fiber orientations for
a significant number of grey matter pixels. In the χ2 map however, no systematic
difference can be found. For both algorithms, the map appears noisy in grey matter.
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Figure 4.13: Comparison of ROFL and GOROFL results: global view. A: in a direct
comparison of the FOMs both algorithms yield very similar results. The white rectangle
points out the position of the ROI which is shown again in Fig. 4.14. B: the histograms of
the χ2 values of both algorithms are almost identical.

Performance analysis

The total runtimes of the original Python implementation, the Numba compiled Python
implementation and the GPU implementation are liste in tab. 4.1. The compilation of
cost function and its gradient via Numba results in a speedup of one order of magnitude.
For the analyzed brain section the computation time reduced from 4 Core hours to 20 min
which is only slightly higher than the noncompiled Python version running on 16 CPUs.
On 16 CPUs, the total runtime reduces to ca. 1.5 minutes using the Numba accelerated
implementation. The GPU implementation achieves another speedup of two orders of
magnitude compared to the single threaded partially compiled Python version. The
processing time for one brain section reduces to several seconds compared to 4 hours of
the original serial Python implementation.

Implementation Runtime
Python: 1 CPU 4 h
Python: 16 CPUs 20 min

Python/Numba: 1 CPU 18 min
Python/Numba: 16 CPUs 1.5 min

GPU: NVIDIA GTX 1080 5 sec

Table 4.1: Runtimes of different implementations of the ROFL algorithm for a brain section
of app. 1 Mio. pixels.

In Fig. 4.15 the runtime shares of the different steps of the GOROFL algorithm are
depicted. The full runtime amounts to 16 seconds out of which I/O operations make
up more than 50 %. The actual computations on the GPU (centering, brute force mini-
mization and nonlinear optimization) amount to roughly one third of the total runtime.

Discussion

The objective of this section to reduce the computation time of the ROFL algorithm
was achieved. The simple partial compilation of the Python code via Numba resulted
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Figure 4.14: Comparison of ROFL and GOROFL results: local analysis in the cortex. The
position of the ROI is indicated by the white rectangle in Fig. 4.13 A. While the results are
barely distinguishable for white matter, in the cortex GOROFl estimates higher trel values.

in a 10 times faster execution with identical results. Using 16 CPUs, the total runtime
for a section of the analyzed human brain dataset reduces to lower than two minutes.
This enables the processing of all 843 sections on the institute’s server within several
hours. The high speedup achieved by Numba’s just-in-time compilation coupled with
its convenient usage were found so convincing that it was utilized in all other implemen-
tations presented in this thesis. Despite the ten fold faster execution accomplished by
compiling the main bottleneck, an implementation in a compiled language would reduce
the runtime even further. For the purposes of this thesis though Python coupled with
Numba compilation was sufficient.

An even higher speedup was accomplished using GPU resources which reduce the total
computation time to several seconds. This potentially eliminates the requirement of
supercomputer resources for LAP datasets. Compared to the CPU implementation, the
results of the GPU accelerated algorithm are almost equal for white matter but different
for grey matter. As mentioned before fitting the 3D-PLI model is challenging for the
cortex due to the very low retardation values. In consequence the lower floating point
precision utilized by gpufit affects the results stronger than in white matter which is
the most likely reason for the observed differences. Another reason might be differing
stopping criteria for the optimization. However, based on the values of the optimized cost
functions neither of both implementations has a distinct advantage. For vanishing signals
which occur in the cortex the χ2 measure might not be the best evaluation criterion
though. Simulative studies could provide a better alternative. From a neuroanatomical
point of view, the trel map computed by ROFL is more likely to represent the reality
about the birefringence strength as at the resolution of the LAP individual nerve fibers
in the cortex cannot be distinguished which is therefore expected to yield vanishing
values of trel. Concerning the reconstruction accuracy of GOROFL, the precision issue
can potentially be solved if future releases of the gpufit library support double precision.
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Figure 4.15: Total runtime shares of the different steps of the GPU implementation of the
ROFL algorithm for one brain section. LM: Levenberg-Marquardt.

Another approach could be to change the optimization strategy of the algorithm itself
by employing global optimization algorithms or to try out several initial positions for
the local optimization at the cost of computation time.

Using a NVIDIA GTX 1080, the actual computations on the GPU take a few seconds
and less than I/O operations. On more powerful GPUs, the computation time would
potentially reduce to less than one second which means that the main bottleneck for the
whole program is reading the data and not the actual algorithm. Future optimizations
would therefore be related to the data structures and the streaming to the GPU. Cur-
rently, the data handling is not fully optimized: GOROFL copies the data first once to
the GPU for the grid search, back to system memory and then again to the GPU for
the optimization. As copying data to the GPU is slow, eliminating the Python layer
represents a clear starting point for future optimizations. Data structures and I/O oper-
ations are subject to standardization to ensure a stable workflow for the whole 3D-PLI
processing pipeline in future. Using a suitable data format such as HDF5 [137] would
for example enable parallel I/O operations. Another simple optimization would be to
distribute the computations sectionwise across several GPUs.

It has to be noted that the runtime measurements carried out here do not represent a
comparison of CPU and GPU on equal terms. This would require running the same code
base on the different hardware architectures. Also, the implementations are not fully
optimized due to the Python overhead. In particular, the execution of PyCUDA kernels
requires just in time compilation which increases the processing time for centering and
grid search. Nevertheless, it could be shown that GPUs offer great potential for pixelwise
parallel model fitting problems in 3D-PLI.
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5
Maximum A Posteriori Estimation of

Nerve Fiber Orientations

“Humans are unbelievably data efficient. You don’t have to drive 1 million
miles to drive a car, but the way we teach a self-driving car is have it drive a
million miles.”

– Jeff Bezos

In chapter 4 a least squares approach for the analysis of 3D-PLI measurements from
oblique views termed Robust Orientation Fitting via Least Squares (ROFL) was intro-
duced and validated for experimental and synthetic data. ROFL outperformed the DFT
and LOriE algorithms especially for in-plane nerve fibers. Despite a high reconstruction
accuracy for weak to very high signals, very low signals still pose a challenge for the
ROFL algorithm. Very low signals arise for either very low birefringence strengths which
mainly occur in unmyelinated tissue and very highly inclined nerve fibers with respect
to the sectioning plane. On experimental data, this becomes primarily apparent for the
cortex where the trel and fiber orientation maps contain a significant amount of noise.

In this chapter, this problem is addressed by a Bayesian approach which incorporates
prior information. In chapter 4 it was shown that a uniform orientation distribution
prior leads to the nonuniform inclination prior p(α) ∝ cos(α). This prior is utilized to
extend the MLE based LOriE approach to a MAP estimator. As the LOriE framework
results in artifacts for in-plane nerve fibers, first its numerical instabilities need to be
solved.

The outline of this chapter is as follows: after a review of the LOriE algorithm, a new
optimization approach to overcome its numerical difficulties is presented. As a next
step, the new MAP based algorithm is developed. The new framework is then evaluated
for synthetic and experimental data.

5.1 The Posterior Orientation Solver

A review of the LOriE algorithm

Theory

For the complete derivation of the Likelihood Orientation Estimation algorithm it is
referred to [46]. Here, a short review will be given to gain a better understanding of the
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MAP estimator which is subsequently introduced. The LOriE algorithm is based on a
MLE approach. In contrast to the ROFL algorithm, it does not utilize normalized light
intensities but instead the normalized Fourier coefficients of the respective tilted mea-
surements as dependent variables of the model. In principle, Fourier coefficients carry
all necessary information about a sinusoidal signal. The normalized Fourier coefficients
A and B and their standard deviations σA and σB approximated by Gaussian error
propagation of tilted measurement j are given by
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=
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According to the 3D-PLI model, the expectation values of these Fourier coefficients
relate to the model parameters by
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where the notation introduced in chap. 4 was used. Assuming a Gaussian noise model,
the likelihood to observe the coefficients Aj and Bj for a parameter set θ = (ϕ, α, trel)
is now given by

p(Aj , Bj |θ) = p(Aj |ϕ, α, trel)· (Bj |ϕ, α, trel) (5.7)
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The combined likelihood to observe all Fourier coefficients for all tilted measurements
is then the joint density

p(A0, B0, . . . , ANT , BNT |ϕ, α, trel) =

NT∏
j=0

p(Aj |ϕ, α, trel) · p(Bj |ϕ, α, trel) . (5.9)

The respective negative log-likelihood for all measurements which has to be minimized
is given by
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In [46] the log-likelihood was minimized by a grid search followed by local Nelder-Mead
optimization [138, 139] .
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Now that the algorithm is reviewed, the origin of the observed artifacts for in-plane nerve
fibers must be found. The derivation of the log-likelihood itself contains no obvious
mistakes. While the derivation of the standard deviation of the Fourier coefficients is
based on Gaussian error propagation this approximation cannot explain the problems
of the approach for in-plane nerve fibers. A simple explanation might be a software bug
which could not be found, however. Therefore, the problem must be a numerical issue.
As pointed out in [46], the cost function is not convex. Non-convex optimization is
challenging as the found local minimum is not necessarily the global minimum. In case
of the LOriE algorithm, an optimization algorithm must also be flexible to cope with the
different shapes the cost function assumes for different parameter values. As the artifacts
only occur for very slightly inclined nerve fibers, the Nelder-Mead algorithm (N-M) just
does not converge to the global minimum for this part of the parameter space. Hence,
a new optimization approach is necessary to overcome the numerical instability.

A new approach to the optimization problem

Challenging optimization problems are often solved via global optimization techniques
which rely on an exhaustive search of the parameter space. As this search requires
a far higher number of calculations than a local optimization, their computation time
is prohibitive for the purposes of 3D-PLI making local optimization the only viable
option. Harms et al. [129] compared three different local optimization algorithms for
DMRI models and found significant differences between the results.

Following that idea, the LOriE algorithm could also be tested with various local opti-
mization algorithms. Fortunately, the first tested optimization algorithm, the L-BFGS-
B algorithm [140, 141, 142] which is scipy’s default optimization algorithm for con-
straint optimization problems, already proved to solve the problem. In contrast to the
derivative-free N-M algorithm, the L-BFGS-B algorithm utilizes gradient information
and an approximation of the Hessian1. Furthermore it is able to deal with bounded
parameter spaces which is required by the constraint that trel ∈ [0, 1). The gradient the
of the log-likelihood was calculated via a finite difference approximation.

The effect of the choice of optimization algorithm is demonstrated by means of the
same ROI which was already analyzed for the comparison of ROFL, DFT and LOriE
algorithms in chapter 4. The inclination maps obtained from N-M and L-BFGS-B
optimization are depicted in Fig. 5.1 top. Pixels with in-plane fibers where |α| < 0.1°
are highlighted in red: the L-BFGS-B algorithm estimates almost no such in-plane fibers
in contrast to the N-M algorithm. The high number of in-plane fibers also becomes
apparent in the inclination histogram in Fig. 5.1 bottom which is not smooth for the
N-M algorithm. The histogram obtained from L-BFGS-B optimization yields a smooth
distribution and strongly agrees with the ROFL algorithm.

1The utilization of the second derivatives might be the reason that the L-BFGS-B algorithm is
successful in our case. The retardation gradient with respect to the inclination is zero for in-plane
oriented nerve fibers (cf. eq. (4.13)). On the other hand, the second derivative given by
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Figure 5.1: Investigation of the choice of optimization algorithm for the LOriE framework.
Top: inclination maps from one ROI resulting from Nelder-Mead optimization (left) and L-
BFGS-B optimization (right). For clarity the inclination is clipped to the range [−30°, 30°].
Pixels in red: |α| < 0.1°. Bottom: inclination histograms obtained from the ROFL algorithm
and the LORIE algorithm with the two optimization algorithms for the WM ROI.

In contrast to before and to the ROFL algorithm, the birefringence strength trel is
now constraint to the range [0, 1] which avoids ambiguities in the model. Adding this
constraint proved necessary as otherwise again artifacts occurred for in-plane fibers. A
comparison of the results with and without the constraint is given in D.

In principle, a thorough comparison of ROFL and LOriE could be carried out to examine
the performance of the fitting algorithms. A similar comparison of MLE and WLS
estimator was carried out by Przybylski et al. [134] for Poisson distributed data. As the
Poison distribution is a special case of the negative binomial distribution where variance
and expectation value are equal, their results are applicable for the case of 3D-PLI. The
obtained result was practically equal performance of the estimators for high signal to
noise ratio (SNR). For 3D-PLI, the SNR can be calculated as

SNR =
Signal

Standard deviation
=

I√
gI

=

√
I

g
. (5.12)

Hence, for typical light intensities of I = 2000 − 5000 and the gain factor g = 3,
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the SNR lies between 25 and 40 meaning that LOriE and ROFL are expected to yield
almost identical results. Therefore, in the next section the MLE based LOriE framework
is upgraded to a MAP estimator.

Incorporation of prior information

So far, the LOriE algorithm makes no use of prior information. Prior information can be
crucial for the parameter estimation where the likelihood itself does not provide enough
information. For 3D-PLI, this is mainly the case for unmyelinated tissue such as the
cortex where the assumptions of the model do not hold which results in noisy maps of
birefringence and fiber orientation.

At the resolution of the LAP a legitimate prior assumption about the cortex is that
the birefringence strength is very low and that all orientations are equally likely. One
possible choice for a prior which follows from this assumption is a normal prior with an
expectation value of zero for the relative thickness trel similar to the linear regression
example presented in chap. 3. This would serve as a regularization term for trel. While
this prior can be justified for unmyelinated tissue it is invalid for pixels which contain
very highly inclined fibers and consequently also express very low birefringence signals.

Therefore, the uniform orientation prior is chosen which leads to a prior for the inclina-
tion: p(α) ∝ cos(α). With the log-likelihood llike given by eq. (5.10) the application of
Bayes’ theorem (see eq. (3.11)) gives the log-posterior lpost

−lpost ∝ − ln
(
p(α)

)
−llike (5.13)

= − ln
(
cos(α)

)
+

1

2

NT∑
j=0

ln
(
σ2
Aj (θ)σ

2
Bj (θ)

)
+

(Aj − 〈Aj(θ)〉)2

2σ2
Aj

(θ)
+

(Bj − 〈Bj(θ)〉)2

2σ2
Bj

(θ)
.

(5.14)

As the logarithmic prior is a simple smooth and monotonic function, it does not com-
plicate the optimization. Hence the posterior can be minimized in the same way as
the likelihood: a grid search followed by L-BFGS-B optimization. This newly devel-
oped MAP estimator is termed Posterior Orientation Solver (POriSo) from here on.
Following the experience with Numba and Python from sec. 4.4, the algorithm was
implemented in Python using NumPy and Numba compilation for the cost function and
its approximated gradient and mpi4py for pixelwise parallelization.

5.2 Evaluation on synthetic data

Methods

The effect of the inclination prior on the estimation of the parameters needs to be
evaluated against a known ground truth. As for the evaluation of the ROFL algorithm,
synthetic data can serve as ground truth. In sec. 4.2 the reconstruction accuracy of
the ROFL and DFT algorithms was evaluated based on 100.000 samples of synthetic
3D-PLI signals for each parameter configuration. As the effect of priors become the
strongest for extremely low signals, here also the cases of perpendicular inclination
α = 90° and zero relative thickness trel = 0 are studied. For each parameter combinations
of trel = 0, 0.01, . . . , 0.8, α = 0°, 1°, . . . , 90° and again ϕ = 45° 1.000 samples of artificial
3D-PLI signals were generated using the method described in sec. 4.2. Analyzing a
larger number of samples was not possible due to a lack of computation time. All
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5. Maximum A Posteriori Estimation of Nerve Fiber Orientations

Figure 5.2: Reconstruction accuracy of ROFL and PORISO algorithms evaluated on syn-
thetic data. Left: ROFL algorithm. Right: POriSo algorithm. Top: orientation recon-
struction error 〈γ〉 as a function of relative thickness trel and inclination angle α. Bottom:
absolute reconstruction error of the relative thickness 〈σtrel〉 as a function of relative thickness
trel and inclination angle α. The red arrows point out discrepancies between the results

synthetic datasets were then analyzed with the ROFL and POriSo algorithms. The
outcomes were again evaluated based on the mean orientation error and mean absolute
error compared to the ground truth.

Results

The mean orientation error and the mean absolute error of trel achieved by POriSo and
ROFL are depicted in Fig. 5.2. For the mean orientation error no significant difference
is observed except for very flat fibers and zero relative thickness: in this case, the mean
orientation error computed by POriSo amounts to 60° compared to 90° computed by
ROFL. Stronger differences occur for the relative thickness. For very low values of trel,
the POriSo algorithm results in a mean absolute error of almost zero compared to 0.1
as a result of the ROFL algorithm which is pointed out by the red arrows. For highly
inclined fibers, the POriSo algorithm is slightly less accurate than ROFL: the maximal
deviations are 0.65 for POriSo and 0.5 for ROFL.

Discussion

On synthetic data, POriSo achieves a comparable accuracy as the ROFL algorithm for
the reconstructed orientations. The observed difference for very low relative thicknesses
is insignificant as in practice an average deviation of 60° is as bad as an average de-
viation of 90°. For the reconstruction of very low relative thicknesses, POriSo clearly
outperforms ROFL. For perpendicular fibers with respect to the sectioning plane, both
approaches result in high absolute errors for the estimated value of trel. While the re-
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sults of ROFL are slightly better, both algorithms are not capable of finding a plausible
estimate.

The simulations revealed that the chosen inclination prior has a strong effect on the
estimated relative thickness. This fact can only be explained by a correlation between
inclination and trel. As both parameters together dictate the amplitude of the sine
curve, such a correlation is an inherent part of the employed model. According to the
retardation formula, higher trel values require the cos2(α) term to be smaller to achieve
a similar retardation. As higher inclinations result in lower values of cos2(α) this can
explain the correlation. In general, this consideration causes a (possibly nonlinear)
positive correlation between trel and the absolute inclination angle |α|. For very low
signals only the cosα prior can be optimized which results in an inclination angle close
to 0. Due to the correlation, the trel estimate is then also close to 0. For a ground
truth signal with a very low relative thickness, this result is much closer to the ground
truth than the WLS estimate. For a ground truth signal of a steep fiber, the cosα
prior does not provide helpful information as the ground truth has the lowest prior
probability. In consequence the estimated flat fibers and low relative section thicknesses
are farther from the ground truth than the estimate without the prior information. This
explains the higher mean error of trel of POriSo compared to ROFL for perpendicular
orientations. Regarding the reconstructed orientation, both POriSo and ROFL result
in an average angular deviation of 90° for perpendicular fiber orientations which means
that both algorithms are unable to reconstruct orientations with α = 90°.

The major motivation behind the MAP estimator was to improve the reconstruction
accuracy for very weak signals which are hard to interpret solely based on the likelihood.
For the case of very low relative thickness, this goal was achieved for synthetic data.
For fiber orientations perpendicular to the sectioning plane, the reconstruction accuracy
remained the same for the orientation but slightly decreased for the relative thickness.
Nevertheless, the superior reconstruction for low relative thicknesses is of far greater
importance than the slightly inferior reconstruction for perpendicular orientations as
even the marginally better ROFL result for perpendicular orientations does not provide
plausible values for trel.

5.3 Evaluation on experimental data

Methods

To evaluate the performance of the POriSo algorithm for experimental data, the same
human brain datasets as for the ROFL algorithm were reinvestigated (cf. sec. 4.3). The
vector fields in the stratum sagittale and at the boundary of white and grey matter were
compared to the vector fields obtained from ROFL. Also, the distribution of the mean
squared error was compared to ROFl and DFT for the same exemplary brain section
already investigated in sec. 4.3.

Results

The vector fields in the stratum sagittale are shown in Fig. 5.3. Differences are observ-
able for individual pixels pointed out by arrows. Overall, for pixels in which differences
occur POriSo estimates smaller inclinations than ROFL. For the first ROI, the only dif-
ference occurs for pixels with vanishing retardation signal. A similar behaviour can be
observed in the second ROI. For the third ROI POriSo derives almost no highly inclined
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fiber orientations compared to ROFL. Instead, all fiber orientations run in the coronal
sectioning plane. In the fourth ROI of very steep fiber orientations, no differences can
be found.

The agreement of model prediction and measurement data was again evaluated based
on the mean squared error metric of an exemplary brain section. The distributions of
the MSE values achieved by DFT, POriSo and ROFL are depicted in Fig. 5.4. The
histograms reveal that POriSo results in slightly smaller errors on average compared
to ROFL. As this impression might be subjective, additionally the cumulative density
functions (CDF ) were plotted in Fig. E.1: for 4, 000 < MSE < 12, 000 a significant
difference between the CDFs can be observed. Here, the distribution obtained from
POriSo expresses a higher density of lower MSE values. However, the differences between
the CDFs are small.

For synthetic data, differences in the reconstruction accuracy between POriSo and ROFL
were particularly found for low relative thicknesses. This was evaluated for synthetic
data based on the cortical ROI shown in Fig. 5.5. In white matter both algorithms
agree strongly but the interpretation differs strongly in grey matter. From the relative
thickness maps, it can be seen that POriSo estimates very low values of trel throughout
the whole cortex in contrast to ROFL. Regarding the fiber orientation, POriSo results in
in-plane fiber orientations for the cortex while ROFL estimates strongly inclined orien-
tations for a large number of pixels. The investigated ROI also contains a measurement
artifact. It can be observed that the measurement artifact induces artifacts for the
POriSo algorithm which are however not as pronounced as for the DFT algorithm (cf.
Fig. 4.11).

Discussion

The POriSo algorithm was developed to improve the reconstruction accuracy for very
low signals which arise for very steep fibers and unmyelinated tissue. For the case of very
steep fibers, the reconstructed fiber orientations strongly agree with the results of the
ROFL algorithm. For the ROI depicted in Fig. 5.3 B however, the vector field obtained
from ROFL seems to be more homogeneous and appears to fit the overall orientation
of the bundle better than the POriSo vector field. On the other hand, for the vector
field in Fig. 5.3 B which is even more inclined the results are barely distinguishable. In
general, POriSo results in less inclined fiber orientation estimates as a consequence of
the prior. This becomes most apparent in the ROI consisting of fiber crossings depicted
in Fig. 5.3 C.

As for the synthetic data, a strong effect of the inclination prior on the estimated
relative thickness was observed. For the cortex, POriSo results in a smooth map of
vanishing values of trel for cortical areas. As argued in chap. 4, at LAP resolution
cortical areas are expected to yield vanishing values for trel while the fiber orientation
cannot reliably be estimated. For the relative thickness POriSo enables to achieve this
expectation utilizing the inclination prior. At the same time, POriSo yields no longer
random orientation estimates but very flat fibers with respect to the sectioning plane for
the cortex. Anatomically, this is still as unlikely as the random orientations computed
by ROFL.

The investigated ROI showed that the measurement artifact has a stronger effect on
the parameter estimation for POriSo than for ROFL. This can most likely be explained
by the fact that ROFL utilizes the measured light intensities directly whereas POriSo
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ROFL POriSo
A

B

C

D

Figure 5.3: Comparison of vectorfields derived from the ROFL and POriSo algorithms. A:
ROI consisting of one dominant fiber orientation approximately inclined by 50° with respect
to the sectioning plane. B: ROI consisting of two apparently differently oriented fiber bundles.
C: a ROI which mainly consists of nerve fiber crossings. D: ROI of highly inclined nerve fibers
with respect to the sectioning plane. Arrows indicate differences between the results.
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Figure 5.4: Histograms and kernel density estimates (full lines) of the mean squared errors
between the measured light intensities and the light intensities predicted by the oblique 3D-PLI
model for one exemplary brain section. 3D-PLI parameters were derived using the DFT (blue),
ROFL (orange) and POriSo (green) algorithms. The mean squared error values obtained from
POriSo are marginally lower than for ROFL.

Figure 5.5: Reassessment of tilted 3D-PLI measurements for the cortex. Left: ROFL
results. Right: POriSo results. From top to bottom: relative thickness maps, fiber
orientation maps, relative thickness maps overlaid with the vector field of every third vector.
The white arrows indicate a dust particle (cf. Fig. 4.11). The measurement artifact has a
stronger effect on the POriSo estimator than on the ROFL estimator. Whereas ROFL contains
a significant amount of nosie in the cortex, POriSo yields smooth maps for both relative
thickness and fiber orientation. In a direct comparison, POriSo estimates predominantly
in-plane oriented nerve fiber orientations in cortical areas.
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relies on the analytically calculated Fourier coefficients. A dust particle corrupts one
of the 18 measured light intensities per tilting direction. The calculation of the Fourier
coefficients is severely affected by such a corrupted light intensities. For ROFL, the
relative number of outliers is 5 out of 90 while for POriSo all Fourier coefficients are also
corrupted. In consequence, ROFL is more robust against such outliers.

One point which was not investigated as thoroughly as for the ROFL algorithm is the
computation time. Using Python and Numba, the current implementation of POriSo
takes roughly 0.7 core hours for a section with 1 Mio. pixels compared to 0.3 core hours
for ROFL. In principle though, POriSo could also be implemented on a GPU which
might reduce the computation time to comparable times as the GPU implementation of
ROFL.

Finally, we can conclude that the prior assumption that all fiber orientations are equally
likely biases the parameter estimation towards flat fibers with respect to the sectioning
plane and low relative section thicknesses. For the relative thickness, this interpretation
is more realistic for cortical areas while the fiber orientation is estimated with a similar
accuracy as without prior information. From a purely statistical perspective, POriSo
yields marginally better results due to the lower mean squared errors. Still, as no
ground truth measure for the accuracy of the obtained fiber orientations is available, at
this point it is not possible to determine if POriSo achieves a better reconstruction of
the brain’s nerve fiber orientations than ROFL.
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6
Uncertainty estimation in 3D-PLI

“Nothing in the world causes so much misery as uncertainty.”

– Martin Luther

In chapters 4 and 5 different strategies to infer birefringence parameters from the polari-
metric measurements were explored. The estimators were limited to best fit parameters
so far. In this chapter measures of the uncertainty of the obtained parameters are ex-
amined. Also the correlations between the parameters which were already observed in
the results of the POriSo algorithm are studied further. Following the basic principles
of MCMC sampling described in chapter 3, this technique is applied to 3D-PLI.

In DMRI, which also aims at inferring local and global nerve fiber tract information,
the importance of the propagation of uncertainty has been recognized and addressed in
several studies, such as the bootstrapping approaches by [143, 144, 145]. Furthermore,
the local fiber orientation uncertainty was propagated into probabilistic tractography
frameworks [146]. Behrens et al. [22] were the first to perform full Bayesian inference on
diffusion MRI data via MCMC. They exploited the probabilistic Bayesian framework
for local uncertainties as well as tractography. This chapter is primarily inspired by
their work. Since then, Bayesian statistics have been adopted not only in the DMRI
community, but also in functional MRI1 [148]. In recent years, MCMC methods were
utilized to characterize microstructural models for DMRI [130, 129].

This chapter is structured as follows: after a review of the noise model for 3D-PLI, sam-
pling algorithms for the planar and oblique 3D-PLI measurements are developed. Both
are first evaluated based on synthetic data and then applied to selected experimental
datasets. Parts of this chapter have been accepted for publication and will be published
in [?].

Full noise model of the 3D-PLI measurement

An accurate noise model of the data acquisition process is essential for the derivation
of the likelihood function. In chap. 4 it was shown that the recorded light intensities Ir
follow a negative binomial distribution Ir ∼ NB(µ, gµ) with expected value µ and the
setup specific gain factor g. The gain factors g strongly depend on the employed camera.
For the LAP experimentally a value of g = 3 was experimentally determined [46]. For

1Functional MRI studies the activation of brain regions during specific tasks by measuring the blood
flow in the brain [147].
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the LMP noise measurements carried out in [149] resulted in a gain factor of g = 0.125
which agrees with the information provided by the manufacturer of the CCD sensor.
To reduce the computational complexity, we will approximate the negative binomial
distribution by a Normal distribution: NB(µ, gµ) ≈ N (µ, gµ). This approximation is
justified as the observed light intensities are large (Ir � 10).

The first step of the 3D-PLI processing pipeline is an intensity based calibration as
described in chap. 2 which multiplies every measured light intensity Ir by a calibration
factor c. As the calibration factors are obtained by averaging over 100 images of the field
of view without a probe, their uncertainty is negligible. The calibration process can then
be treated as a multiplication of a normal distribution with a constant: c · N (µ, gµ) =
N (cµ, c2gµ). Typically, the uncalibrated raw data is archived and not available for
later processing, therefore it is more convenient to use the calibrated light intensities
I = c · Ir for computations and derivations. Thus, the calibrated light intensities follow
the distribution I ∼ N (cµ, c2gµ).

6.1 Planar 3D-PLI measurement

6.1.1 Theory and implementation

In a 3D-PLI measurement without additional measurements from oblique views, we seek
to determine the parameter set θ = (It, ϕ, r) with transmittance IT , diretion angle ϕ
and retardation r, from a set of N light intensities Ii, where the index i denotes the
rotation angle. The polarimetric model predicts the following light intensity M for a
given polarization angle ρ:

Mi(IT , ϕ, r) = IT · (1 + r · sin(2(ρi − ϕ))) . (6.1)

Thus, the log-likelihood is given by inserting the calibrated model prediction ciµi =
ciMi(θ) and and the variance σ2

i = gc2
iMi(θ) into the log-likelihood of the normal dis-

tribution (see. eq. (3.8)) which yields

l = −1

2

N∑
i=0

ln(gc2
iMi(θ)) +

(Ii − ciMi(θ))
2

gc2
iMi(θ)

. (6.2)

Non-informative priors were chosen except for the transmittance which has to be posi-
tive:

IT ∼ U(0,∞)

ϕ ∼ U
[
−π

2
,
3π

2

)
r ∼ U(0, 1)

(6.3)

The direction angle prior was chosen to comply to the cyclic parameter space as the
ensemble sampler is by default not capable of dealing with cyclic parameter spaces. After
sampling the direction samples ϕ are then projected back into the 3D-PLI parameter
space by ϕ = ϕ%π.

The empirical probability density of the samples needs to be analyzed to obtain credible
intervals. For the scalar parameters, HPD intervals, the smallest interval which contains
95% of all samples, were computed to serve as credible intervals. For the direction
samples which we are primarily interested in, this approach would not respect the cyclical
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Figure 6.1: Results of the BAMBI framework for the planar case on synthetic data. Left:
empirical direction angle credible interval as a function of relative thickness and inclination.
Middle: MCMC direction angle credible interval obtained from BAMBI as a function of
relative thickness and inclination. Right: Difference between ground truth and MCMC
estimate.

symmetry of orientations. In cyclical and more general spherical statistics, an analogon
of the median of a scalar valued distribution is given by the principal axis [150]. For
N orientation vectors vi = (xi, yi)

T , the orientation tensor is given by T =
∑N

i viv
T
i .

The principal axis is then the Eigenvector correponding to the largest Eigenvalue of
the orientation tensor. After computing the principal axis, all direction samples were
projected into the half circle centered around the direction angle correponding to the
principal axis. Now HPD intervals can be obtained as for the scalar parameters.

Executing the sampling and postprocessing for all pixels of one brain section was im-
plemented in Python, utilizing the emcee package for ensemble sampling. The initial
positions of the Markov chains for the ensemble sampler were set randomly close to the
parameter vector obtained from the Fourier analysis. It was heuristically found that
running 20 chains for 500 iterations yields satisfactory results which is confirmed by the
simulation studies in the next section. To speed up the computations, the log-posterior
calculation was compiled via numba. The computation time for one pixel then amounts
to ca. 0.1 seconds. Due to the pixelwise parallelism of the computational problem, the
computations are again easily parallelized using mpi4py. The sampling and postpro-
cessing procedure will be referred to as BAyesian Multivariate Birefringence Inference
(BAMBI) framework from here on. Besides the implementation for processing of whole
sections, an alternative application for BAMBI was implemented for interactive usage.
This implementation aims at processing single pixels and generating useful plots to
demonstrate the results.

6.1.2 Validation on synthetic data

Methods

Synthetic data can serve as a ground truth for the true posterior which is estimated
by MCMC sampling. Informally speaking, MCMC sampling seeks to reconstruct the
posterior from one measurement. On the other hand, synthetic data generates many
possible measurements. Calculating the MAP for each of the synthetic measurements
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then recovers the posterior of the model parameters. This ground truth posterior can
then be compared to the posterior estimated from MCMC. While this procedure cannot
prove that the obtained credible intervals for brain tissue represent the true uncertainty,
it can show that the MCMC sampling yields correct results from a purely mathematical
standpoint.

For the validation of the BAMBI framework the synthetic datasets which were used to
compare ROFL and POriSo in sec. 5.2 were utilized. The dataset consists of 1.000
synthetic signals for a vast variety of model parameters. In case of the planar 3D-
PLI measurement, the credible interval of the direction angle is the most important
parameter as it is further utilized for orientation analysis. For all artificial 3D-PLI signals
the direction angle was estimated by the Fourier analysis. Next, from this distribution
the 95% HPD interval was computed which serves as a ground truth credible interval.
For a comparison with BAMBI, the sampling procedure was executed for one signal for
each parameter configuration yielding a 95% HPD interval.

Results

The empirical ground truth credible interval and the credible interval estimated by
BAMBI are plotted as a function of relative thickness and inclination in Fig. 6.1. For
white matter structures of trel > 0.1 and not too highly inclined fibers with α < 80°,
the empirical credible interval is smaller than 10°. For high relative thicknesses and
in-plane fibers, the uncertainty drops to almost 1°. The credible interval computed by
BAMBI strongly agrees with the ground truth for weak to strong signals: for trel > 0.2
and α < 70° they differ by −0.3° on average. For very low signals, especially for very
steep fibers, the MCMC estimate differs strongly from the ground truth (cf. Fig. 6.1
right).

Discussion

The simulations proved a strong agreement between the ground truth credible interval
and the credible interval computed by BAMBI for the vast majority of parameter config-
urations. Only for model parameters that generate almost vanishing signals, the MCMC
sampling is not able to reconstruct the correct posterior. Due to the nature of MCMC
sampling, this finding is unavoidable. As all parameter sets are equally unlikely, it is
hard to find good proposals for any MCMC algorithm.2 In consequence, most proposals
are rejected.

The in-plane orientation confidence decreases with increasing inclination and decreasing
relative thickness. This behavior originates from the retardation signal: the lower the
relative thickness and the steeper the nerve fiber, the weaker becomes the retardation
signal. Naturally, a smaller amplitude of the sinusoidal signal complicates the estimation
of the phase resulting in a lower confidence. Apart from very low signals though the
in-plane orientation credible interval is small or even very small for strong signals. This
means that theoretically the in-plane orientation estimation in 3D-PLI is quite robust
in most white matter regions. Furthermore, for white matter these credible intervals
can reliably be estimated by the BAMBI framework based on the simulation results.

2Experiments with higher number of samples did not show significantly better results. In a blog
post, professor of statistics Prof. Gelman called this the folk theorem of statistical computing: When you
have computational problems, often there’s a problem with your model (https://statmodeling.stat.
columbia.edu/2008/05/13/the_folk_theore/, accessed: 23.12.2019).
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6.1. Planar 3D-PLI measurement

6.1.3 Validation on experimental data

Despite a successful application on synthetic data, the BAMBI framework is designed
for the analysis of experimental 3D-PLI datasets. Especially, the simulations found a
distinct difference in performance of BAMBI between white matter and grey matter
structures. This is now evaluated based on experimental data. Due to the excessive
computation time, the analysis is limited to single brain sections for LAP datasets and
regions of interest for LMP datasets.

Methods

Both LAP and LMP are able carry out the planar 3D-PLI measurement. By analyz-
ing the same tissue sample the effect of the resolution on the obtained direction angle
confidence can be investigated. As tissue sample a coronal human brain section was
chosen. At LAP resolution, the whole section was processed resulting in a direction an-
gle credible interval map. The marginal distributions of the parameters were plotted for
individual pixels to demonstrate the difference between white and grey matter. At LMP
resolution, a ROI of 3×3 tiles at the boundary of white and grey matter was examined3.
The resulting direction angle confidence map was correlated to the retardation map.

Results

The direction angle credible interval is depicted along side with retardation and direction
angle in Fig. 6.24. The majority of white matter pixels express a credible interval
smaller than 5°. Especially in areas of very high retardation values such as the corpus
callosum the credible interval drops to ca. 1°. Lower confidence occurs in regions of low
retardation signals which are highlighted by arrows. At the boundary of white and grey
matter, the credible interval continuously increases and even exceeds 32° in the cortex.

For the white matter pixel pointed out by the blue circle in Fig. 6.2 the full posterior
is reported in Fig. 6.3. It can be seen that the posterior predictive distribution is able
to accurately describe the measured light intensities. The marginal distributions follow
a normal distribution. The obtained direction credible interval amounts to σϕ = 1.4°
for a retardation value of sin δ = 0.75 ± 0.015. The posterior for the grey matter pixel
pointed out by the red circle is given in Fig. 6.4. 100 samples of the posterior predictive
distribution are plotted on top of the measurement data. As the predictions differ
strongly in the phase of their sinusoidal curve, a large direction angle credible interval
can be assumed which is confirmed by the marginal distribution of the direction angle.
The credible interval amounts to σϕ = 100°. The histograms of retardation and direction
angle also do not follow a normal distribution compared to the white matter pixel.

The retardation, direction angle and direction angle credible maps obtained from the
microscopic measurement are depicted in Fig. 6.5. In the overview of the whole pro-
cessed data it can be seen that for the white matter fibers in the upper part of the ROI
which express a strong retardation signal the direction angle credible interval does not
exceed 10°. The direction angle map also appears very homogeneous in this region. In
regions of very low retardation values the confidence decreases strongly resulting in high
credible intervals greater than 32°. In the cortex (cf. Fig. 6.5 middle), single nerve

3Computations were carried out using 50 compute nodes of the JURECA supercomputer [151].
4Instead of the typical 3D-PLI colormaps for the orientation, here the perceptually uniform cyclical

colormap phase from the cmocean package [152] was chosen for the direction angle map.
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Figure 6.2: Investigation of the in-plane orientation confidence for the planar 3D-PLI mea-
surement based on LAP data. Top: retardation map. The red and blue points indicate pixels
for which the results are presented in detail in Fig. 6.3 and Fig. 6.4. The rectangle indicates
the ROI which was also analyzed with the LMP (cf. Fig. 6.5). Middle: direction angle
map. Bottom: direction angle credible interval map. The credible interval increases with
decreasing retardation. Arrows highlight regions of low retardation and high direction angle
credible interval.
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Figure 6.3: Results of the BAMBI framework for a white matter pixel. The position of the
pixel is pointed out by the blue circle in Fig. 6.2. Top: measured light intensities and the
2σ confidence interval given by the 95% HPD interval of the posterior predictive distribution.
Bottom: marginal distributions of transmittance, direction angle and retardation and normal
distribution fit. Dashed lines indicate the boundaries of the 95% HPD interval.
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Figure 6.4: Results of the BAMBI framework for a grey matter pixel. The position of
the pixel is pointed out by the red circle in Fig. 6.2. Top: measured light intensities and
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transmittance, direction angle and retardation. Dashed lines indicate the boundaries of the
95% HPD intervals.
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6. Uncertainty estimation in 3D-PLI

fibers which can clearly be distinguished from each other in the retardation map still
display direction angle credible intervals smaller than 5°.

Retardation and direction angle credible interval are correlated in Fig. 6.5 C. A clear
trend is observable: the higher the retardation, the lower the credible interval. For
very low retardation values the credible interval rises to almost 180°. In this regime,
a retardation value can also correspond to a vast variety of possible credible intervals,
meaning that the correlation is ambiguous.

Discussion

The in-plane orientation confidence was evaluated based on a coronal human brain
section which was analyzed fully at a pixel size of 64 × 64 µm with the LAP and for
one ROI at the boundary of white and grey matter with the LMP at a pixel size of
1.3 × 1.3µm2. It could be shown that at both resolutions white matter fibers can be
reconstructed with strong confidence. At microscopic resolution even single nerve fibers
in the cortex can still be described with high robustness by 3D-PLI. As suggested by
the simulation results, the direction confidence is strongly correlated to the retardation.
For high retardation values, the credible interval even decreases to 1°. For unmyelinated
regions in the cortex, the credible interval exceeds 32° which means that the estimated
orientation is basically random and cannot be trusted. As these regions do not contain
myelinated nerve fibers, the assumptions behind the physical model are not valid. This
raises the question if the model should be applied to pixels which do not contain nerve
fibers at all.

The planar 3D-PLI measurement is limited to the reconstruction of the in-plane fiber
orientation. In the next section, the confidence in the reconstruction of the three-
dimensional fiber orientation from oblique 3D-PLI measurements is investigated.

6.2 Oblique 3D-PLI measurement

6.2.1 Theory and implementation

As shown in chap. 4 and 5, additional measurements from oblique views add crucial
information for the determination of inclination angle and birefringence. In general,
there are NT + 4 parameters in the model for NT measured tilting positions: NT av-
erage transmittances from the tilted measurements, one transmittance of the planar
measurement, the birefringence strength trel and the fiber orientation given by direc-
tion angle ϕ and inclination angle α. The parameter vector θ can then be written as
θ = (I0T , . . . , INT , ϕ, α, trel). Denoting the tilting position with index j, the rotated
fiber parameters (ϕj , αj , tj) are given by applying the appropriate rotation Rj to the
modelled fiber orientation. For the light intensity curve this yields

Mji(IjT , ϕ, t, α) = IjT · (1 + sin(2(ρi − ϕj)) ·
π

2
tj cos(αj)

2) . (6.4)

As for the planar measurement, the log-likelihood is derived by inserting the cali-
brated model prediction ciµji = ciMji(θ) and the variance σ2

ji = gc2
iMji(θ) into the

log-likelihood for a normal distribution which results in

l = −1

2

NT∑
j

NP∑
i

ln(gc2
iMji(θ)) +

(Iji − ciMji(θ))
2

gc2
iMji(θ)

. (6.5)
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Figure 6.5: Results of the BAMBI framework for microscopic 3D-PLI data. Processed data:
3× 3 tiles of a coronal human brain section at the boundary of white and grey matter. Top:
overview of the complete analyzed ROI. Left: retardation, right: direction angle credible
interval clipped at 30°. Middle: ROI in the cortex where individual nerve fibers are visible.
Bottom: 2D histogram of retardation values and direction confidence of the full ROI.
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6. Uncertainty estimation in 3D-PLI

The priors were chosen as

Ij ∼ U(0,∞)

t ∼ U(0, 1]

ϕ ∼ U
[
−π

2
,
3π

2

)
α ∼

{
cos(α) for α ∈ [−π, π)

0 else .

(6.6)

The inclination prior again originates from the uniform orientation prior as discussed in
chap. 5. As in the planar case, the boundaries of the parameter spaces for the angles
were expanded compared to the parameter space of 3D-PLI to enable efficient sampling.

After sampling, the samplese are analyzed as in the planar case: for the scalar param-
eters, HPD intervals containing 95% of the samples are computed. From the direction
and inclination samples, orientation vectors are calculated. The principal axis of the ori-
entation vector samples is obtained again as the principal Eigenvector of the orientation
tensor. Then all orientation samples are projected into the half sphere centered around
the principal orientation. From these orientation samples, direction and inclination
angles are then recomputed and HPD intervals derived.

In analogy to the planar case, the sampling and HPD interval computation was im-
plemented in Python based on the emcee’s package for ensemble sampling, numpy and
numba for the log-posterior calculation and mpi4py for pixelwise parallelization. The
chains are initialized close to the MAP estimate given by the result of the Fourier anal-
ysis for the transmittances and the POriSo algorithm for trel and orientation. Due to
the higher dimensionality and the correlation between inclination and trel more parallel
chains are required for convergence than for the planar measurement. Heuristically, 100
chains running for 500 iterations were found to yield stable results (more samples did
not change the results significantly). Processing a single pixel takes 0.5 seconds.

6.2.2 Validation on synthetic data

Like in the planar case, synthetic data can prove that the MCMC sampling is able to
recover the true posterior for the oblique 3D-PLI measurement.

Methods

The same dataset as for the planar case was re-investigated. The results of the POriSo
algorithm which were already obtained in sec. 5.2 were utilized to generate a ground
truth distribution of the posterior. This ground truth distribution was then compared to
the MCMC analysis of one of the synthetic datasets by means of the 95% HPD interval
for each parameter set.

Results

The results of the simulation are depicted in Fig. 6.6. In the top row the results for the
direction angle are given. They are very similar to the result for the planar case with
the difference that the obtained credible intervals are slightly smaller than in the planar
case both for ground truth and MCMC result. The lowest credible interval of 0.75° is
achieved for in-plane fibers and the highest simulated trel value. Empirical and MCMC

76



6.2. Oblique 3D-PLI measurement

generated HPD intervals show a good agreement except for very steeply inclined fibers
and very low trel values.

With respect to the inclination angle confidence, a subtly different behavior can be
observed. The lowest ground truth credible interval of σα = 5.8° is obtained not for
α = 0° but for α = 65°. In general, the credible intervals are higher than for the direction
angle. For very low relative thicknesses and very high inclinations, the credible interval
again exceeds 64°. The credible interval calculated by BAMBI agrees with the ground
truth for moderate to high trel values and inclinations α < 80°: the difference amounts
to 0.5± 1.1°. Also, the credible interval map obtained from MCMC is not as smooth as
for the direction angle.

The relative thickness expresses a different characteristic regarding its reconstruction
confidence. The credible interval depends mostly on the inclination: for in-plane fiber
orientations the ground truth credible interval amounts to σtrel ≈ 0.02 for trel ∈ [0.1, 0.7].
For very low values of trel, the credible interval increases to σtrel ≈ 0.1. With increasing
inclination, the credible interval increases exponentially and exceeds 0.5 for inclinations
of α > 80°. The credible intervals obtained from MCMC sampling agree with the ground
truth for most of the parameter space. For α < 80° and trel > 0.2 the average difference
amounts to 〈σtrel〉 = 0 ± 0.02. Greater differences are again observed for very high
inclinations and very low relative thicknesses. In these cases BAMBI estimates very
small credible intervals compared to the ground truth.

Discussion

The simulations carried out here were the first ones to assess the uncertainty of the ob-
tained inclination and direction angles for 3D-PLI. One result is that there is inherently
a lower confidence in the obtained inclination angle than in the direction angle. Since the
direction angle can directly be measured from one polarimetric measurement and the
inclination requires information from only slightly differing additional measurements,
this result is not surprising. Intuitively is also clear that it from an optical measurement
of the transmitted light of a thin tissue sample it is easier to derive in-plane than out-of-
plane information. While the oblique measurements add complementary information,
3D-PLI does not capture three-dimensional information as DMRI does where gradient
fields can be applied in arbitrary orientations.

Regarding the maximally possible confidence, it was observed that the highest confidence
for the in-plane orientation occurs for the highest simulated trel value and in-plane fibers.
This parameter combination yields the highest possible retardation value. As in the
planar case, the confidence strongly depends on the retardation value. The obtained
credible intervals are lower than in the planar case as more measurement information is
available and the employed model is more complex.

The minimal credible interval for the inclination angle was observed for the highest trel
value and α = 65°. As the inclination is derived from the differences between the oblique
measurements, its confidence does not solely depend on the raw signal strength but also
on the signal characteristic. One hint could be the retardation gradient (cf. Fig. 4.4)
which becomes maximal for inclination angles between 50° and 60°. This implicates that
for not too small values of trel highly inclined fibers can be determined with the same
or even higher confidence as in-plane fibers.

Besides the orientation confidence, the confidence of the trel parameter which is propor-
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Figure 6.6: Simulation results of the BAMBI framework for the oblique 3D-PLI measure-
ment. Top row: examination of the direction angle uncertainty. Middle row: examination
of the inclination angle uncertainty. Bottom row: examination of the relative thickness un-
certainty. Left column: empirical ground truth HPD intervals. Middle column: MCMC
HPD intervals computed by BAMBI. Right column: Difference between empirical ground
truth and MCMC result. All results are plotted as functions of relative thickness trel and
inclination angle α.
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6.2. Oblique 3D-PLI measurement

tional to the birefringence was investigated. It was found that the maximally possible
accuracy of its estimation strongly depends on the inclination: while for in-plane fibers
trel can be reconstructed with a negligible credible interval, for highly inclined fibers
the credible interval is greater than 0.5 meaning that the computed relative thickness
cannot be trusted. This implies that for steep nerve fiber bundles with respect to the
sectioning plane the relative thickness map should be interpreted very carefully.

The major objective of the simulation study was to validate the sampling procedure.
For weak to strong signals, the MCMC result could be validated based on the empir-
ical ground truth. For perpendicular fibers and very low relative thicknesses, greater
differences were observed as in the planar case. In particular the credible interval for
the relative thickness is strongly underestimated by BAMBI. These discrepancies can
again be explained by the inherent difficulty to fit a sinusoidal model to a dataset with
an almost vanishing amplitude.

The agreement between MCMC result and ground truth is slightly worse than for the
planar case. One reason might be the generation of the ground truth distribution. Not
all parameters are simultaneously estimated while BAMBI samples all parameter simul-
taneously. The ground truth parameters were obtained in the following way: first, the
transmittance, direction and retardation values were estimated using the Fourier anal-
ysis. Then, direction, inclination and trel were computed by the optimization procedure
of the POriSo algorithm. A simultaneous optimization of all parameters including the
transmittances and not only direction, inclination and trel would lead to marginally dif-
ferent results. The thorough analysis carried out here is likely sensitive to these subtle
differences. An estimation procedure which simultaneously optimizes all eight param-
eters would suffer from the big disadvantage of excessive computation time. Also, it
might yield slightly different transmittance estimates which are however not needed as
the already available transmittance estimates provide enough information.

6.2.3 Validation on experimental data

Methods

For the planar 3D-PLI measurement, a full coronal section measured with the LAP was
analyzed with the BAMBI framework. As this particular section does not contain a
large fiber bundle oriented out of the sectioning plane, here instead one section of the
brain already analyzed in chap. 4 and 5 was chosen. The new analysis provides three
new maps to 3D-PLI: credible intervals of direction angle, inclination angle and relative
thickness. These maps are reported alongside the fiber orientation and trel map for the
whole section as well as in a larger view of a region of interest of the stratum sagittale.
For individual pixels scatterplot matrices are given to showcase the full posteriors and
the correlations between the parameters.

As for the planar case, the direction credible interval map is correlated with the re-
tardation map. Additionally, inclination credible interval and relative thickness are
correlated.

Results

The maps obtained for the whole processed section are depicted in Fig. 6.7. In white
matter, direction angle credible intervals lower than 1° can be observed. Overall, the
direction confidence map is very similar to the planar case with the difference that the
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6. Uncertainty estimation in 3D-PLI

Figure 6.7: Results of the BAMBI framework for a tilted measurement. Top from left to
right: fiber orientation map, direction angle credible interval map, inclination angle credible
interval map. Note that the angular credible interval maps use different color bars. The
rectangle indicates the region of interested shown in Fig. 6.8. White and blue circles indicate
the positions of pixels whose posteriors are provided in Fig. 6.9 and Fig. 6.10. Blue arrows
indicate regions at the boundary of white and grey matter with moderate direction angle
credible interval and high inclination angle credible interval. Bottom from left to right:
retardation map, relative thickness map, relative thickness credible interval map. The red
arrow points out a region of very low relative thickness credible interval and in-plane oriented
nerve fibers.

80



6.2. Oblique 3D-PLI measurement

credible intervals are smaller. The inclination credible intervals are greater than the
direction credible intervals for the whole brain section. The lowest observed credible
intervals amount to app. 8° for the inclination angle. Lower values can be attributed to
crossing regions which can be seen from the region of interest in the stratum sagittale
in Fig. 6.8 where crossing are indicated by white arrows. For the cortex and regions of
vanishing retardation signal, again the orientation confidence measures decrease strongly.
Still, the direction credible interval stays lower than 20° in some regions of the boundary
between white and grey matter while the inclination credible interval exceeds 32° (cf.
blue arrows in Fig. 6.7).

The map of the relative thickness credible interval shows a more complex pattern: the
credible interval ranges between σtrel = 0.01 and σtrel > 0.32 in white matter. The region
of very low credible interval pointed out by the red arrow corresponds to a region of very
flat fibers with respect to the sectioning plane. The indicated gyrus was used to compare
the inclination histograms of in-plane fibers obtained from the different algorithms in
chapters 4 and 5 (cf. Fig. 4.9). Especially for high trel estimates the credible interval
increases strongly. For the cortex, the trel credible interval map displays a great variety
of possible values.

In Fig. 6.8 the same maps are shown again for a region of interest in the stratum
sagittale. It can be seen that for the nerve fibers inclined between 65° and 75° in the
stratum sagittale (values were extracted from the corresponding inclination map) both
direction and inclination angle credible interval do not exceed 10°. In fact, the inclination
confidence in this region is one of the highest of the whole section (cf. Fig. 6.7).
While the inclination confidence is high, the relative thickness confidence deteriorates
to σtrel > 0.2 in many pixels of the stratum sagittale.

Regions of fiber crossings were identified by their vanishing retardation signal and a
diverging fiber orientation map (cf. white arrows in Fig. 6.8). In these regions, even the
direction angle credible interval exceeds 32°. On the other hand, the inclination angle
credible intervals are afflicted with a less homogeneous appearance. For the crossing
pointed out by the right arrow, the right side of the crossing expresses a very low
credible interval of σα < 10° while after an abrupt change in the middle the left side
displays a credible interval of σα > 64°. The inverse behavior can be observed for
the relative thickness: here the left side of the crossing displays a much lower credible
interval than the right side. This discontinuity is actually also observable for the best fit
parameters: on the left side of the crossing the estimated trel values are almost zero and
the fiber orientation very flat with respect to the sectioning plane. On the right side of
the crossing the trel estimates reach up to almost 1 while the estimated fiber orientation
is perpendicular to the sectioning plane.

The posterior of a pixel located in the stratum sagittale is depicted in Fig. 6.9 and
serves as an example for a white matter pixel5. The estimated fiber orientation is highly
inclined with respect to the sectioning plane. A clear nonlinear correlation between trel
and inclination can be observed: higher trel values correlate to a steeper inclination.
The HPD intervals amount to 11° for the direction angle, 10° for the inclination angle
and 0.43 for trel which conforms to the general observations about the stratum sagittale
(cf. Fig. 6.8). In the projections of the angular samples onto the sphere, the orientation
samples yield an ellipsoidal distribution (cf. . 6.9 right).

An example for a grey matter pixel is shown in Fig. 6.10. The orientation confidence

5Scatterplot matrices were created with the corner package [153].
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Figure 6.8: Results of the BAMBI framework for a tilted measurement zoomed into the
stratum sagittale. Top from left to right: fiber orientation map, direction angle credible
interval map, inclination angle credible interval map. Bottom from left to right: retar-
dation map, relative thickness map, relative thickness credible interval map. StS: stratum
sagittale. White arrows point out fiber crossings. In the stratum sagittale the inclination
confidence is high while the trel confidence is low. In crossing regions direction, inclination
and trel confidence deteriorate strongly.
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Figure 6.9: Results of the BAMBI framework for an oblique 3D-PLI measurement of a
white matter pixel. Left: scatterplot matrix. Right: orientation histogram. The position of
the pixel is indicated by a white circle in Fig. 6.7. Full lines: best fit parameters estimated
by the POriSo algorithm. Dashed lines: boundaries of the 95% HPD intervals. Fit results:
ϕ = 120.5+5.5

−5.5°, α = −77+6
−4°, trel = 0.54+0.26

−0.17. The marginal distributions of inclination and
relative thickness are not symmetric and nonlinearly correlated.

is basically zero as almost the entire hemisphere has a non negligible probability due to
a very high inclination HPD interval. Even the direction credible interval amounts to
almost 40°.

To evaluate the distributions of the angular confidences, the cumulative density functions
of all white matter pixels is depicted in Fig. 6.11. It can be observed that more than 90 %
of white matter express a direction angle credible interval of σϕ < 10°. For the inclination
angle only a negligible amount of pixels expresses such a small credible interval. Instead,
for almost 80 % of all white matter pixels the inclination credible interval lies between
10° and 25°. The cumulative density for the whole brain section is shown in Fig. E.3:
now app. 55 % of all pixels express a direction confidence smaller than 10° and in 40 %
of all pixels the inclination confidence is smaller than 25°.

For the planar measurement a clear correlation between retardation and direction credi-
ble interval was observed. The same behavior can be observed for the tilted measurement
in the two-dimensional histogram of the obtained maps given in Fig. E.2. While for
very low retardation values of sin δ < 0.1 almost arbitrary credible intervals occur, a
clear negative correlation exists for stronger signals: the credible interval decreases with
increasing retardation. The correlation of relative thickness and inclination credible in-
terval is depicted in Fig. 6.12. Here, the inclination credible interval decreases with
increasing trel. For trel < 0.2 the vast majority of inclination credible intervals is greater
than 20°. For very low relative thickness values, the resulting inclination credible in-
terval appear basically arbitrary (cf. arrow in Fig. 6.12) as was observed for very low
retardation values for the planar case.
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Figure 6.10: Results of the BAMBI framework for an oblique 3D-PLI measurement of a
grey matter pixel. Left: scatterplot matrix. Right: orientation histogram. Full lines: best
fit parameters estimated by the POriSo algorithm. The position of the pixel is indicated by
a black circle in Fig. 6.7. Dashed lines: boundaries of the 95% HPD intervals. The derived
orientation is basically random.

Discussion

The derivation of the three-dimensional nerve fiber orientation from 3D-PLI data re-
lies on the small differences between the light intensity curves recorded from different
oblique views during rotation of the filters. The effect of measurement noise on the un-
certainty of the estimated fiber orientation was quantified using the developed Bayesian
framework based on human brain data. For white matter regions, a strong confidence
in the derived in-plane orientation and a strong to moderate confidence in the esti-
mated out-of-plane orientation was found. At the same time, the uncertainty of the
microstructural parameter trel differs from a very low uncertainty for regions with dom-
inant in-plane fiber orientation and a very high uncertainty for regions with dominant
out-of-plane fiber orientation. Inclination and trel are strongly non linearly correlated
as already observed in chap. 5. Here, for the first time the nonlinear correlation was
explicitly computed as the full posterior became available. For a white matter pixel, it
was found that high inclinations correlate to a higher trel value. As discussed in chap. 5,
this can be explained by the relationship of both parameters to the retardation. From
the indicatrix model of nerve fibers, it is clear that inclination and birefringence strength
will always be correlated solely based on the polarimetric measurements.
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Figure 6.11: Cumulative densities of angular credible intervals of white matter pixels. Blue:
direction angle. Yellow: inclination angle.

Figure 6.12: Correlation of relative thickness trel and inclination angle credible interval σα.
The plot displays a two-dimensional histogram of the relative thickness and inclination angle
credible interval maps shown in Fig. 6.7. Besides an ambiguity for trel ≈ 0 (cf. black arrow)
a clear negative correlation can be observed.
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7
Measurements from Oblique Views in

Microscopic 3D-PLI

“We see past time in a telescope and present time in a microscope. Hence the
apparent enormities of the present.”

– Victor Hugo

This chapter investigates the application of the developed algorithms at microscopic
resolution. In [46] a polarization microscope capable of performing measurements with
oblique illumination, the LMP3D, was developed (cf. 2.4). Oblique illumination achieves
a similar same effect as tilting the sample in the LAP. Due to the limited depth of field
simply tilting the sample is not possible in a microscopic setting. In a proof of principle
experiment, it was shown that the same analysis as for the LAP can be applied for
microscopic data. Still, the evaluation was limited to a qualitative assessment of the fiber
orientation map at high resolution and a comparison to LAP data after downsampling.

As the new microscope is only built on a breadboard system so far, several properties
such as noise characterization and possible filter misalignment have to be determined
experimentally before the developed algorithms can be applied. This is described in
sec. 7.1. Using this information, the new methods are used in sec. 7.2 to process the
same datasets already investigated in [46]. While a phantom for 3D-PLI has not been
developed yet, a volumetric measurement of the same brain section at high resolution
which contrasts nerve fibers from the surrounding tissue can serve as the best available
ground truth validation for 3D-PLI. An imaging technique which fulfills these require-
ments is two-Photon microscopy [154] (TPFM). In sec. 7.3, the results of the developed
analysis tools for oblique 3D-PLI measurements are validated based on the ground truth
provided by TPFM. All LMP3D measurements shown in this chapter were performed
by Philipp Schlömer.

7.1 Experimental characterization of the LMP3D

Quantification of camera noise Within the BAMBI framework camera noise es-
sentially determines the uncertainty of the nerve fiber orientation derived from 3D-PLI.
The photon detection noise of the camera employed in the LMP3D has therefore to be
determined.
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Figure 7.1: Noise measurement of the LMP3D. The plot depicts a two-dimensional his-
togram of the pixelwise mean light intensities 〈I〉 and light intensity variances σ2

I . The fit line
shows that the variance can be approximated by σ2

I = 1.6 · 〈I〉.

In [46], the noise measurement of the LAP was carried out by measuring the same brain
section 100 times to sample the recorded light intensity distribution pixelwise. In a
microscopic environment, recording the same tissue sample repeatedly might lead to
very different results due to edge effects. Another point which has to be considered for
a noise measurement is that a broad light intensity distribution over the field of view
has to be captured. Recording the ouf-of-focus image of an edge enables to avoid the
edge effects and results in the desired broad intensity range.

For the noise measurement of the LMP3D, a small part of the USAF chart which includes
an edge was imaged far out of focus 100 times and analyzed pixelwise for its mean value
〈I〉 and samples variance σ2

I as estimators of the light intensity expectation value and
variance. The resulting noise relationship between variance σ2

I and light intensity I is
given by σ2

I = g · 〈I〉 = 1.6 · 〈I〉 (cf. Fig. 7.1). Hence, for the PORISO algorithm and
the BAMBI framework a gain factor of g = 1.6 is used1.

Determination of the polarization filter offset The Jones calculus as introduced
in chap. 2 presumes that the axis of the rotating polarization filter is aligned with the
camera axis. Due to the prototypical nature of the setup of the LMP3D at the optical
bench this assumption has to be verified experimentally.

Using a reference polarization filter, a possible offset of the polarizer can easily be
measured. The reference filter (Edmund Optics polarization tester 37-699 ) was inserted
into the sample holder aligned with the camera axis. Rotation of the polarizer now
yields a sinusoidal light intensity profile. The rotation angle of minimal transmittance
is then the offset between camera axis and polarizer axis. The polarizer rotations were
sampled in steps of 1°. All images were averaged over the full field of view and analyzed
according to the Fourier analysis from sec. 2.6. The resulting offset ρo is ρo = −67°.

1According to the manufacturer of the camera sensor, the gain factor should be g = 0.125. For the
LMP which employs the same sensor this value was validated by noise measurements. For the LMP3D,
the discrepancy likely originates from the software used to operate the camera. While the sensor has a
depth of 12 bit, the images which are written to disk have a dynamic range of 16 bit which is not the
case for the PM. This additional conversion is a potential source of error for the additional noise.
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Estimator Computation time
ROFL ≈ 1.9 Core hours

GOROFL 30 seconds
POriSo ≈ 3 Core hours

Table 7.1: Computation times of the developed estimators for one field of view of the LMP3D

While this offset can simply be added to the direction angle for a planar 3D-PLI mea-
surement, it complicates the analysis of measurements from oblique views as it relies on
the differences between the modelled three-dimensional optical axis. The offset can be
incorporated into the model for the light intensity curve of an oblique measurement by
replacing the polarization angle ρ by ρ+ ρo (see eq. (4.3)) which yields 2

Iji(ρi, ρo, ϕ, α, trel) =
Ij,T
2

(
1 + sin (2(ρi + ρo − ϕj)) sin

(π
2
trelj cos2(αj)

))
. (7.1)

This way, the offset can also be incorporated into the ROFL and BAMBI algorithms by
the simple replacement ρ = ρ + ρo. As the POriSo algorithm relies on the phases and
amplitudes, it is sufficient to correct the direction angles ϕ as ϕ = ϕ+ ρo before.

7.2 Application of the Bayesian framework at the microscale

Methods

In [46], one field of view of a coronal rat brain section which contains in-plane oriented
nerve fibers as well as out-of-plane fiber bundles was measured to analyze the oblique
measurements. The same sample was reassessed with the algorithms developed in this
thesis. From the offset of the aperture diaphragm the oblique illumination direction can
be calculated geometrically as shown in [46]. The internal oblique illumination angle
was assumed as 3.9° following the arguments in [46]. Using the oblique illumination
directions and the oblique illumination angle the same coordinate system as for the tilted
measurements can be utilized which means that the developed algorithms can directly
be applied. To investigate differences between the parameter estimation algorithms, the
section was processed with the ROFL, GOROFL and POriSo algorithms resulting in
maps of fiber orientation and trel. Additionally, the computation times were measured
for an extrapolation of the computation times to fully measured brain sections. Finally,
the BAMBI framework was utilized to investigate the uncertainty of fiber orientation
and trel.

Results

The parameter maps obtained from ROFL of the full field of view and one ROI of
highly inclined nerve fiber bundles are shown in Fig. 7.2. In the fiber orientation map,
in-plane structures such as the corpus callosum display a strong in-plane fiber orientation
while individual fiber bundles in the caudate putamen display strong ouf-of-sectioning
plane orientations. Between the fiber bundles the FOM expresses strongly varying fiber
orientations. Compared to LAP measurements, the relative thickness map has a high
ratio of ”extreme” relative thickness values. For out-of-plane fiber bundles almost all
pixels display values of trel > 1. For regions of in-plane nerve fibers this behaviour

2This simple yet crucial adjustment was found by Felix Matuschke.
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7. Measurements from Oblique Views in Microscopic 3D-PLI

is not observed. The inclination credible interval does not exceed 16° for most pixels
containing nerve fibers: even for highly inclined fiber bundles, the inclination confidence
is high. Here, the relative thickness credible interval rises strongly which can be seen in
the zoomed in region of the caudate putamen. For the corpus callosum, the obtained
relative thickness credible interval almost vanishes.

Discussion

Additionally to the analysis of the same dataset carried out in [46] here the relative
thickness measure and the confidence of the parameters was investigated. The local
fiber orientations seem not unlikely as for example the corpus callosum runs mostly
in the sectioning plane while individual fiber bundles in the caudate putamen express
strong out-of-plane orientations. The level of detail with which individual bundles can be
separated from each other represents a distinct advantage over mesoscopic measurements
at LAP resolution.

In [46] a good agreement between the fiber orientations obtained from the LAP measure-
ment and the LMP3D results after downscaling was found. The same does not apply for
the relative thickness: in the investigated ROI, a large number of individual steep fiber
bundles result in very high values of trel > 1. As discussed in chap. 2, in this regime the
model is not unambiguous anymore as two different inclinations can result in the same
retardation. For the LAP, only very few pixels show such ”extreme” values of trel.

For the individual fiber bundles, the model is very confident about the found orientation
as the inclination credible interval rarely exceeds 16°. At the same time, the confidence
in the obtained relative thickness is basically zero. The small confidence in the estimated
trel values for highly inclined fibers was already observed on synthetic data (cf. Fig. 6.6)
and stems from the model itself. One possible conclusion which can be drawn from the
confidence metrics is that researchers can be relatively confident about the obtained fiber
orientation from a statistical viewpoint but should avoid further quantitative analysis
of the trel values at microscopic resolution.

The presented analysis was only qualitative in its nature due to the lack of a known
ground truth. Such an investigation is pursued in the next section by validating the
obtained fiber orientations with help of a ground truth from TPFM measurements.

7.3 Validation of 3D-PLI fiber orientations based on TPFM
measurements

In [155], the first attempt to validate fiber orientations derived from 3D-PLI based
on TPFM was conducted. For the direction angle, a strong agreement was found.
Regarding the inclination angle, the 3D-PLI data was afflicted with the ambiguities
which arise for the planar measurement without the additional information from oblique
views (cf. chap. 2). Compared to the TPFM measurements, the resulting inclination
angles were overestimated for almost all investigated fiber bundles.

Here, the TPFM measurements are compared to microscopic 3D-PLI measurements
from oblique views which allow a bias-free reconstruction of the three-dimensional fiber
orientation. While theoretically a comparison between TPFM and LAP measurements
would be possible, the resolution gap is too big to carry out a meaningful validation as
one LAP pixel contains several nerve fiber bundles.
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Figure 7.2: Results from measurements from oblique views at the microscale. Left: full
field of view. Right: ROI consisting of steep fiber bundles. From top to bottom: fiber
orientation map, relative thickness map, inclination credible interval map, relative thickness
credible interval map. cc: corpus callosum. CPu: caudate putamen.
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7. Measurements from Oblique Views in Microscopic 3D-PLI

Methods

Two-Photon Fluorescence Microscopy

Fluorescence microscopy is a widely used microscopic technique for the investigation
of biological tissue. Its contrast principle is based on fluorescence: first, a fluorescent
molecule in its ground state absorbs an incoming photon which excites the molecule into
a state of higher energy. The absorbed energy is then partially emitted via a photon of
lower energy than the incoming photon. As specific molecules are sensitive to specific
wavelengths, imaging a sample with several incoming wavelengths can contrast different
structures. In Two-Photon Fluorescence Microscopy, the molecule is excited by two
photons of lower energy than in typical fluorescence microscopy [154]. This has the
advantage of lower photo damage of the imaged tissue which enables deeper penetration
of the sample. The high penetration depth makes volumetric imaging of thin tissue
samples possible.

For the TPFM measurement, the cover slip of the brain section has to be removed.
Experimentally, it was found myelinated axons show strong autofluorescence [61]. While
an explanation for this behaviour has not been found so far, the strong autofluorescence
enables a simple identification of fiber bundles by eye.

Measurements

As tissue sample a coronal rat section was chosen. The brain was treated according
to the standard 3D-PLI preparation (cf. chap. 2) and measured with the LMP3D in
the region of the caudate putamen as this particular region contains a large number
of individual fiber bundles. The LMP3D measurement used four oblique views like a
standard LAP measurement. Subsequently, the brain section was delivered to Florence
where it was measured ten days after the 3D-PLI measurement with TPFM at a voxel
size of 0.439× 0.439× 1 µm by Irene Constantini using the setup described in [39].

Comparison of 3D-PLI and TPFM

A comparison of the fiber orientations requires the identification of the same fiber bun-
dles in the TPFM volume and the 3D-PLI dataset. Therefore, David Gräßel performed
an affine registration of the 3D-PLI data to the TPFM volume using hand written Mat-
lab software [135]. The coregistration now enables an easy identification of the same
fiber bundles in TPFM and 3D-PLI.

The orientation of individual fiber bundles was extracted geometrically from the TPFM
volume (cf. Fig. 7.3): the upper and lower boundaries in the bundles were identified
in the image stack by eye. These boundaries of the fiber bundle were then delineated
manually on both ends. The vector between the center of of the delineations then serves
as the ground truth fiber bundle orientation provided by TPFM rTPFM . The same
nerve fiber bundle was consequently identified in the coregistered 3D-PLI image and
also delineated manually. The delineation was projected onto the original 3D-PLI data
by applying the inverse affine transformation. In the original data set, a fiber bundle
orientation was then computed as the principal orientation of all orientations of the
bundle 〈rPLI〉. In total a number of N = 213 fiber bundles were evaluated.

3D-PLI and TPFM fiber bundle orientations can now be compared based on their an-
gular deviation ε. To evaluate the different fiber orientation estimation algorithms for
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7.3. Validation of 3D-PLI fiber orientations based on TPFM measurements

3D-PLI FOMTPFM Volume

Figure 7.3: Derivation of fiber bundle orientations for a comparison of 3D-PLI and TPFM.
In the TPFM volume (left), the top and bottom boundaries of the fiber bundle are manually
delineated. The vector between the centers of both boundaries yields the ground truth nerve
fiber orientation rTPFM . The same fiber bundle is identified in the 3D-PLI image (right). The
principal orientation of all orientations in the bundle 〈rPLI〉 serves as the 3D-PLI orientation
for the comparison. Modified from [155].

3D-PLI quantitatively, a suitable measure is given by the mean angular deviation be-
tween 3D-PLI and TPFM orientation of all fiber bundles 〈ε〉. Besides the mean deviation
the distribution of deviations are investigated to validate the consistency of the different
3D-PLI estimators. To investigate the agreement of 3D-PLI and TPFM direction and
inclination angles, they were directly correlated with each other. Besides the principal
inclination and direction, the shortest interval containing 67 % of the angular samples
were computed to indicate the amount of orientation variance in one fiber bundle in
3D-PLI. In contrast to the analysis of the pixelwise uncertainty (cf. chap. 6) a 67 %
interval was chosen here as the manual delineations of the fiber bundles are afflicted
with errors which increase the overall variance.

Results

The mean angular deviations between 3D-PLI orientation and TPFM ground truth are
given in Tab. 7.2. All three different algorithms yield very similar results of 〈ε〉 ≈ 10°:
the CPU and GPU implementations of ROFL achieve almost equal outcome while the
mean deviation is slightly higher for the POriSo algorithm3. More information about the
individual results is available in the distributions depicted in Fig. 7.44. The distributions
for ROFL and POriSo are almost indistinguishable while the GOROFL distribution
expresses a slightly larger fraction of high angular deviations.

The agreement of the individual in and out-of-plane angles can serve as an indicator
of the source of error for the angular deviation. Direction and inclination angles are
correlated in Fig. 7.5. As the results of ROFL, GOROFL and POriSo are very similar,
only the ROFL results are plotted. The vast majority of the direction angle pairs are
close to the ideal bisecting line. The agreement is weaker for the inclination angle: the

3Standard errors for the sample means are not reported as the angular deviations are not normally
distributed.

4The histograms utilize Knuth’s rule [156] for the bin size from the astropy package [157]. Knuth’s
rule estimates the optimal bin size from a likelihood based approach to provide the best approximation
of the data distribution.
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7. Measurements from Oblique Views in Microscopic 3D-PLI

Estimator Mean angular deviation 〈ε〉 [°]
ROFL 9.45

GOROFL 9.35
POriSo 10.03

Table 7.2: Mean angular deviations between TPFM fiber bundle orientations and 3D-PLI
orientations computed by ROFL, POriSo and GOROFL
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Figure 7.4: Histograms of angular deviations between TPFM fiber bundle orientations and
3D-PLI fiber bundle orientations computed by ROFL, POriSo and GOROFL.

data pairs are far more spread out. Especially for αTPFM > 60°, the difference becomes
higher.

The variance of the individual angles can be assessed in Fig. E.4 and E.5. The 67 %
direction angle density interval is smaller than 30° for almost all bundles. On the other
hand, the density intervals for the inclination angle are 61° on average. In the scatterplot
(cf. E.5), the bigger variance is clearly observable.

Discussion

The comparison of 3D-PLI and TPFM measurements showed a strong agreement of the
in-plane fiber bundle orientations. For the out-of-plane orientation, an improved agree-
ment compared to 3D-PLI measurements without oblique views was found. On average,
the angular error of the 3D-PLI fiber bundle orientation amounts to 10°. For individual
fiber bundles though, deviations of 30° - 40° occured. The high deviations originate from
wrongly estimated inclination angles in 3D-PLI. In the investigated bundles, no fiber
bundle expressed a principal orientation with an inclination greater than 60°. Overall,
the estimated inclination angles vary much more strongly than the estimated direction
angles in individual nerve fiber bundles which again indicates that the employed model
is not sufficient for a coherent data interpretation.

The validation revealed no distinct differences between the three algorithms for the
fiber orientation estimation. All result in very similar deviations from the ground truth
orientation. While the GOROFL algorithm achieves the smallest average deviation,
it also results in a distribution of deviations with a longer tail than the CPU based
algorithms (cf. Fig. 7.4). As the angular deviations are not normally distributed,
evaluating the algorithms solely based on their mean angular deviations is misleading.
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Figure 7.5: Comparison of 3D-PLI and TPFM ground truth orientation angles. Left:
direction angle correlation. Right: inclination angle correlation. 3D-PLI orientations were
obtained from the GOROFL algorithm. 3D-PLI inclination angles differ more strongly from
the ground truth than the direction angles.

Based on the angular deviations, the ROFL and POriSo algorithms are therefore slightly
superior to GOROFL. From a computational viewpoint though, the GOROFL algorithm
has a clear advantage as processing a tile with app. 4 million pixels takes 30 seconds
compared to 2-3 core hours for ROFL and POriSo.

In [46], perspective shifts were identified as a source of error. The theoretical model
presumes that the rotation of the illumination can be represented by a rotation of the
optic axis. In reality though, the light rays from different oblique view reach different
pixels on the camera which is not accounted for by the polarimetric model. At LAP
resolution, neighbouring pixels, especially in white matter, can be expected to be very
similar in terms of birefringence strength and fiber orientation. At microscopic resolu-
tion, this expectation no longer holds, e. g. consider that one pixel is outside of a nerve
fiber bundle while its neighbour still contains the bundle.
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8
Conclusion and Outlook

“Discussion and argument are essential parts of science; the greatest talent is
the ability to strip a theory until the simple basic idea emerges with clarity.”

– Albert Einstein

In this study several limitations of 3D-PLI data analytics were pushed. For the first time,
an artifact-free derivation of the nerve fiber inclination was accomplished based on a least
squares fitting routine (ROFL). At the same time, runtime constraints could be removed
using GPU hardware. Although it represented more an organizational than a technical
challenge, the first large-scale brain volume at mesoscopic resolution was reconstructed
in the scope of this thesis. Combined with the developed sectionwise reconstruction of
the three-dimensional fiber orientation continuous fiber tracts could be restored from
the individual histological sections. The reconstructed dataset of the occipital lobe
might enable the first volumetric tractography studies on 3D-PLI data. Besides reliable
fiber orientations an equally important prerequisite for tractography is high registration
quality. The brain registration in 3D-PLI might benefit from polyaffine and polyrigid
registration methods as they would allow to register deformed gyri separately from
the rest of the brain section [158, 159], which represents a problem for the employed
simultaneous registration approach.

While ROFL obtains robust fiber orientation estimates even for weak birefringent sig-
nals, it results in unreliable parameter maps for very low signals which arise predom-
inantly in the cortex. To improve the reconstruction for these cases a maximum-a-
posteriori estimator which appoints every fiber orientation the same probability was
introduced to 3D-PLI (POriSo). On LAP data, it could be shown that this approach
yields more accurate estimates for the relative thickness in cortical areas which appear
noisy for ROFL. In the cortex, the algorithms also compute different fiber orientations
as they are biased into the sectioning plane for POriSo by construction. Still, the fiber
orientation determination is unreliable for very small signals even on synthetic data,
rendering these differences negligible. Currently, one obvious disadvantage of POriSo
compared to ROFL is its computation time which could however be compensated by a
similar GPU based implementation.

So far, 3D-PLI data interpretation was limited to estimations of the best fit parame-
ters. This constraint was removed in this thesis. Based on MCMC sampling confidence
measures for the obtained orientation and the relative thickness were obtained. As ex-
pected, the out-of-plane fiber orientation is afflicted with higher uncertainty than the
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in-plane fiber orientation. It could be shown that for most white matter regions outside
of crossing areas the fiber orientation can be reconstructed with high confidence using
the LAP. Increasing the confidence further would require a less noise sensitive camera.
Yet as the measurement setup requires a camera with a high depth of field compared to
other typical applications in order to capture the tilted measurements, there are limited
options for suitable cameras for the LAP.

Application of the BAMBI framework to full brains is computationally prohibitive with
the current implementation. In DMRI, GPU implementations have been utilized to
reduce the computation time [130, 129] but even a reduction of the computation time
by a factor of 100 would still yield a computation time of several hours for one section
measured with the LMP3D. Another option would be to exploit the relationships be-
tween the credible intervals and the best fit parameters. It was shown that the direction
angle credible interval decreases with the retardation and the inclination angle credible
interval decreases with the relative thickness. These relationships can be fitted by a
model for a small number of pixels which then predicts the credible interval for all other
pixels. That way, the computationally expensive sampling procedure only has to be
executed for a small fraction of the data.

While the oblique measurements could only by assessed qualitatively at LAP resolution,
the comparison with higher resolved TPFM measurements represented the first valida-
tion experiments for 3D-PLI. For a high number of fiber bundles, a good agreement
with the ground truth fiber orientation was found. Especially the derived inclination
angles are a much better match of the ground truth than the inclinations calculated with
the planar model. Still, particularly for highly inclined fiber bundles larger deviations
occurred. The most likely reason for this observation is that the employed model does
not account for perspective shifts present in the measurement. A famous quote about
scientific modeling states that ”All models are wrong but some are useful” [160]. This
seems applicable here as the model does certainly not fully describe all necessary effects
but is still capable of reconstructing plausible fiber orientations for a considerably large
number of fiber bundles. On the other hand it is important to note that the comparison
with TPFM does not validate the fiber orientations pixelwise. The insufficiency of the
model for example manifests in the strong variation of the inclination angles in indi-
vidual fiber bundles. More coherent fiber orientations in neighbouring pixels could be
enforced by a prior, yet his would lead to strong smoothing effects at the edges of fiber
bundles at microscopic scale.

In future studies, the Bayesian framework introduced here could be extended further.
Simulative and experimental results showed that highly inclined nerve fibers result in a
lower transmittance value [61]. This behaviour could be incorporated into a prior for
the inclination angle. Formulating a probabilistic description for this case likely requires
a more sophisticated approach including hyperpriors for the inclination dependency of
the transmittance. Another approach could be to allow imperfect polarization filters in
a model based on Müller-Stokes calculus as presented in [46, 61, 75]. As full Bayesian
inference provides more information than the fitting methods utilized in these studies this
might enable a pixelwise characterization of the hardware limitations. In this context it
might be useful to also characterize the camera detection noise for each pixel individually
as the manufacturing process and aging effects result in individual noise characteristics of
pixels in CCD cameras. An even more elaborate model could include the noise gain factor
as a model parameter like the polarization filter effects. Another parameter which was
treated as constant here is in fact not precisely known: the oblique illumination angle in

98



the brain section. As the refractive index of brain tissue varies between 1.3 and 1.5 [61],
refraction results in possible internal oblique illumination angles of τ = 5.32− 6.15 ° for
the LAP and τ = 3.80− 4.38 ° for the LMP3D. Taking the refractive index into account
might make a determination of the refraction properties of the brain section possible.

In this work, the theoretical limitations of 3D-PLI measurements for low signals were
evaluated based on synthetic data. With the Cramer-Rao bound, Bayesian statistics
provide a mathematically rigorous method to derive a theoretical lower bound for the
possible accuracy of the model parameters [161, 162]. Future studies could employ
the Cramer-Rao bound to validate if the estimators developed in this study reach the
theoretical limits. For the planning of future 3D-PLI setups, the Cramer-Rao bound
could be utilized to theoretically assess the system’s restrictions, e. g. if a certain
orientation confidence even for highly inclined nerve fibers is required.

From a mathematical perspective, it would be more elegant to reformulate the 3D-PLI
parameter estimation problem using modern manifold methods to exploit the spherical
symmetry of the parameter space. So far, the parameter space for direction, inclination
and trel was implicitly given by [0, π]×[−π/2, π/2]×(0, 1]. Instead of separating direction
and inclination angles, the parameter space could be formulated based on an orientation
on a sphere. This would circumvent the need for the inclination prior utilized in this
thesis to assign every point on the sphere the same prior probability. On manifolds,
gradient based optimization and MCMC sampling algorithms can be applied in the same
way as in Euclidean space once the differential geometry of the manifold is taken into
account [163, 164, 165]. For example, exploiting the geometry of the parameter space
by using the ”natural gradient”, the gradient on the manifold, has been successfully
applied to train neural networks [166] and for blind source separation via Independent
Componenent Analysis in 3D-PLI [79]. Employing gradient based sampling algorithms
such as the self tuning No-U-Turn Sampler [167, 168] on the sphere could potentially
drastically reduce the number of samples required to quickly and reliably explore the
parameter space compared to the ensemble sampler utilized here.

In a similar way, the field of directional statistics offers tools for a more extensive de-
scription of the fiber orientation per pixel. Here, only the principal orientation and
HPD intervals for inclination and direction angles were derived. Projected on a sphere,
the samples of inclination and direction yield an ellipse. The empirical distribution
of the orientation samples could be fitted by directional distributions such as the Kent
distribution [169] or the angular central gaussian distribution [170], which represent ana-
logues of the Normal distribution on the sphere. Sampling from these distributions could
then represent a variety of possible local fiber orientations in probabilistic tractography
frameworks similar to approaches employed in the field of DMRI [171, 22].

The suggestions introduced in the previous paragraphs still utilize the same physical
model for the interaction of light with the brain tissue and will suffer from the same
pitfalls for regions of crossing fibers. Future studies should investigate if it is possible
to extend the polarimetric model to account for several fiber orientations per pixel.
One possibility could be to model two crossing fibers as two individual wave retarders.
Mathematically these would be represented by two Jones matrices which are multiplied
one after the other with the electric field vector. Physically this implies that in this model
both fiber populations would be stacked on top of each other. Although this model is
again a simplification of crossing nerve fibers it could still be more accurate than the
current model. However, it is not clear if this model can be solved unambiguously.
Here, a Bayesian approach might be helpful: as investigated in [46], the current model
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reconstructs the dominant nerve fiber in the scenario of two crossing fibers. This result
could then serve as a prior for the first fiber in the model of two fibers.

While computational aspects were not the major driving force behind this thesis, the
GOROFL algorithm once more proved the supremacy of GPUs for massively parallel
problems such as they arise in the context of 3D-PLI. Recent efforts of GPU vendors
might in future enable to circumvent the RAM and CPU completely based on technology
such as GPUDirectStorage and stream data directly to GPU memory [172]. For the
processing of whole brains at microscopic resolution, adopting such strategies likely
represents the most promising way to keep the computational demands as small as
possible. At the same time, it would be useful to develop a common framework which
can execute both parameter fitting and sampling for 3D-PLI on the GPU similar to
frameworks employed by the DMRI community [129, 130].

The most pressing question for 3D-PLI in future is the interpretation of the oblique
microscopic measurements. With the GPU accelerated fitting algorithm developed here,
a first step towards an automated and in terms of required computation power acceptable
analysis has been taken. As argued before, the current model provides plausible results
after averaging over individual fiber bundles but is not sufficient at the pixel level due
to perspective shifts between the individual measurements. At microscopic resolution,
coregistration of the individual oblique measurements is not advisable as this would
produce severe interpolation effects. Instead, a physical model for the interaction of
light with the brain tissue which includes polarization and optical effects needs to be
developed. Future studies should also repeat and extend the validation of 3D-PLI based
on other imaging techniques such as TPFM. One significant drawback of the analysis
carried out in this study is the lack of a higher number of steep fibers in the chosen
tissue sample: only eight of the evaluated fiber bundles are inclined by more than 60°.
Another interesting candidate for validation is OCT as it also exploits the birefringence of
myelinated nerve fibers and enables volumetric measurements. Also, the ideas developed
for the analysis of oblqiue views in 3D-PLI could be applied to OCT as well.

As pointed out in the the first chapter of this work, the analysis of the connectome at
high resolution is challenging due to the problem of reconstructing three-dimensional
nerve fibers from histological brain sections. This thesis showed that 3D-PLI indeed
enables the reconstruction of the connectome at different scales from individual fibers
bundles to large scale brain models. The novel algorithms pave the way for further
quantitative studies of nerve fiber models based on 3D-PLI, especially tractography.
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8. Conclusion and Outlook

Partition part of the supercomputer JURECA at Forschungszentrum Jülich.
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A
Mathematical derivations for the ROFL

algorithm

A.1 Rotation matrices of the tilted measurements

For the analysis of the tilted measurements, a coordinate system which describes the
tiled views by a tilting direction ψ and a tilting angle τ is useful (cf. Fig. 4.1). In
[46] the rotation matrices for the transformation between this coordinate system and
the planar coordinate system without tilt were derived. For the sake of completeness,
the rotation matrices are provided here. The full rotation is obtained by first rotating
around the z-axis by −ψ, then rotating around the y-axis by τ and then rotating back
around the z-axis by ψ. In matrix form, this can be written as (see. [46], p. 105)

R(ψ, τ) = Rz(ψ)Ry(τ)Rz(−ψ)

=

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 ·
 cos(τ) 0 sin(τ)

0 1 0
− sin(τ) 0 cos(τ)

 ·
 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1


=

 cos(τ) cos(ψ)2 + sin(ψ)2 (cos(τ)− 1) sin(ψ) cos(ψ) cos(ψ) sin(τ)
(cos(τ)− 1) sin(ψ) cos(ψ) cos(τ) sin(ψ)2 + cos(ψ)2 sin(ψ) sin(τ)

− cos(ψ) sin(τ) − sin(ψ) sin(τ) cos(τ)

 .

(A.1)

A.2 Error propagation from camera noise to the normal-
ized light intensity

In this section the error propagation from the measured light intensity to the normalized
intensities is calculated. For n light intensities Ii with i = 1, . . . , n whose variance is
given by σ2

i = gIi with gain factor g the transmittance IT and the normalized light
intensity IN are defined as

IT =
2

n

n∑
i=1

Ii (A.2)

INi =
2Ii
IT
− 1 (A.3)
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Appendix A. Mathematical derivations for the ROFL algorithm

First, the variance of the transmittance σ2
IT

is derived as

σ2
IT

=
n∑
i=1

(
∂IT
∂Ii

)2

σ2
i (A.4)

=
n∑
i=1

4

n2
gIi (A.5)

=
2gIT
n

(A.6)

Now, the variance of the normalized intensity σ2
Ni

can be calculated as

σ2
Ni =

(
∂INi
∂Ii

)2

σ2
i +

(
∂INi
∂IT

)2

σ2
IT

(A.7)

=
4

I2
T

gIi +
4I2
i

I4
T

2gIT
n

(A.8)

=
4gIi
I2
T

(
1 +

2Ii
nIT

)
(A.9)

A.3 Gradient of the objective function

In this section, the gradient of the χ2 function which has to be minimized for the ROFL
algorithm, is derived. While in recent years automatic differentiation has been crucial
for e.g. deep learning applications, gpufit which is utilized by the GPU implementation
in sec. 4.4 currently still requires analytical gradients. Also, as the automatic computa-
tion of gradients follows simple logical rules, its performance is not necessarily optimal.
Therefore, for the ROFL algorithm the gradient was derived and implemented manually
for the CPU and the GPU implementation.

The objective function is (see. eq. (A.10))

argmin
ϕ,α,trel

χ2 = argmin
ϕ, α, trel

NT∑
j=0

NP∑
i=0

((
fji(ρi, ϕj , αj , trelj ))− INji

)
· wji

)2
. (A.10)

with the model

fji(ρi, ϕ, α, trel) = sin(2(ρi − ϕj) · sin
(π

2
trelj cos(αj)

2
)

︸ ︷︷ ︸
=:r

. (A.11)

where index j stands for the application of the rotation matrix of tilting position j from
eq. A.1 to the orientation vector. As scipy’s leastsq function and gpufit only require
the gradient of the model function, the sum over all observables is neglected here. The
partial derivatives of f are

∂fji
∂ϕ

= −2 cos(2ρi − 2ϕj)
∂ϕj
∂ϕ

r

∂fji
∂α

= − sin(2(ρi − ϕj) cos(r)πtrelj sin(αj) cos(αj)
∂αj
∂α

∂fji
∂trel

= sin(2(ρi − ϕj) cos(r)
π

2
cos(αj)

2∂trelj
∂trel

(A.12)
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A.3. Gradient of the objective function

For the tilted relative thickness the gradient is given by

∂trelj
∂trel

=


∂

∂trel
trel

cos(τ) = 1
cos(τ) ≈ 1 for j 6= 0

∂
∂trel

trel = 1 for j = 0

The partial derivatives of the rotated angles are harder to obtain: calculating the deriva-
tive of the multiplication of the rotation matrices from eq. (A.1) with a vector in
spherical coordinates would result in very tedious calculations. Still, as the differences
between the rotated and planar vector are small, the gradients can be approximated by
1. Therefore, all partial derivatives of the rotated parameters are set to 1:

∂ϕj
∂ϕ

=
∂αj
∂α

=
∂trelj
∂trel

≈ 1 (A.13)

The gradient given by eq. (A.12) with this approximation was validated by a comparison
with finite differences.
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B
Volumetric reconstruction of the brain

sections

In this section, the 3D reconstruction of the analyzed brain volume is presented. Block-
face reconstruction and sectionwise registration until the rigid registration step were
carried out by Martin Schober. The outer boundaries of the histological images were
delineated manually in a joint effort of the 3D-PLI team. Subsequently the delineations
were revised by Heidi Mellenthin to correct for holes still present in interior parts of the
sections.

Dataset description The whole brain volume consists of a right human hemisphere.
The organ was obtained in accordance with legal and ethical requirements. Not the
full volume was sectioned so far: 843 sections of 70 µm thickness were produced by the
INM-1 lab. All but the first 75 sections were designated for 3D reconstruction.

Blockface reconstruction In a first step, the individual blockface sections have to
be stacked together to form a coherent reference volume for the histological sections.
The blockface setup consists of the AVT OscarF810C camera (sensor size s = 8.8× 6.6
mm, number of pixels: ns = 3288 × 2470 pixels) equipped with an objective of a focal
length of f = 35 mm (MeVis-C 35 ). Blockface images were captured at a fixed camera
position while the brain was sectioned which results in an increasing pixel size with each
section. As a first step, this pixel size needs to be determined which was carried out by
Philipp Schlömer. The measures field of view FOV , free working distance FWD (the
distance between the imaged object and the camera), focal length f and sensorsize s are
related by FOV = s·FWD

f . The field of view is also directly related to the pixel size d
by FOV = nsd. Putting both equations together yields a simple formula for the pixel
size in object space:

d =
s · FWD

ns · f
. (B.1)

This equation means that only the distance to the camera determines the pixel size in our
case which makes intuitively sense. From the known physical size of the ARTag markers,
the FWD of the markers at the bottom of the brain block was calculated as 85 cm. To
determine the FWD of section 843 the height of the brain block was measured. The
FWD is then 85cm minus the measured height which amounts to 77.5cm. For the lower
section numbers the FWD then reduces by 70 µm, the section thickness, per section.
The resulting pixel sizes are 54.7× 54.7 µm for section 1 and 59.3× 59.3 µm for section
843.
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Appendix B. Volumetric reconstruction of the brain sections

In image registration, the moving image is typically resampled at the pixel size of the
template image. To avoid an interpolation of the histological sections at a higher res-
olution, the blockface images were therefore artificially resampled at a pixel size of
64 × 64 µm to mimic the pixel size of the LAP. The resampled images were then re-
constructed to a volume using the ARTag markers as described in [80]. The resulting
volume was checked for anatomical correctness by David Gräßel and shifts still present
in the volume removed by section-to-section registration.

Sectionwise registration The registration of the histological sections onto their cor-
responding blockface sections follows a stepwise approach. First, the center of the masses
of the binary masks of both modalities were aligned. The resulting translation was then
applied to the transmittance image of the histological section. Next, the transmittance
image was rotated to achieve a first rough alignment. Therefore the transmittance was
rotated in steps of 1°. The rotation angle which maximizes the normalized mutual in-
formation as similarity metric [173, 174] of transmittance and blockface image provides
the best rotation. After this rough alignment in the next step a rigid registration of the
transmittance images onto the blockface image which allows both translations and rota-
tions was carried out based on the registration software elastix [82] using the normalized
mutual information metric. Additionally, for 47 sections landmarks were manually set
to guide the rigid registration. The sectionwise registration was completed by an affine
registration step which allows shearing and scaling of the images again based on elastix
and the normalized mutual information metric. The rotational component of the affine
transformations was used to rotate the estimated fiber orientations. Nearest neighbour
interpolation was applied for the transformations.

Three-dimensional registration The sectioning procedure induces severe stress on
the brain tissue which results in strong deformations of the individual sections. These
deformations cannot be reversed by a global affine transformation of the whole image
but require small local deformations. One approach to this problem is simultaneous
registration [83]. It utilizes a bspline transformation model [175] informed not only by the
blockface template but also by neighbouring sections, thereby registering the histology
image not only onto its reference but also onto the neighbouring sections which are of the
same modality. Registration of the same modalities allows more direct similarity metrics
instead of the purely statistical mutual information metric which is employed between
histology and blockface. Intuitively, the bspline registration works in the following way:
a fixed amount of grid points is positioned on each histological image. Each of these
grid points is then moved until the best displacement is found. As a registration of
larger volumes requires the optimization of tens of thousands of displacements and the
similarity metric has to be calculated for all sections, this approach is computationally
very challenging. In the INM-1, Marcel Huysegoms developed a GPU implementation
of the simultaneous registration [176] which was utilized here.

The registration parameters were set as 15 × 21 grid points per section guided by mu-
tual information between transmittance and blockface template and normalized cross
correlation [177] between the histological sections as similarity metrics. To comply to
GPU memory restrictions, all images were scaled by 0.7 in both dimensions for the
computations. Again the resulting deformations were applied using nearest neighbour
interpolation.
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Visualization The transmittance and retardation modalities of 3D-PLI strongly de-
pend on the time between embedding of the tissue and the measurement [61] and the
employed embedding solution. This results in severe intensity variations between subse-
quent sections when a registered volume is rendered in 3D. For visualization purposes,
the grey values of the individual sections were therefore matched using the Histogram-
Match function of the Advanced Normalization Tools software [178]. The volumes were
rendered using the softwares Paraview [179] and vaa3d [180].
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C
System configuration for the runtime

benchmarks

In this section the system configuration of the server used for the runtime benchmarks
in sec. 4.4 is given.

CPUs 16 × Intel Xeon E5-2690: 2.9 GHz, 2 threads
RAM 256 GiB
GPU NVIDIA GTX 1080: 8 GiB GPU RAM, 2560 CUDA cores a 1607 MHz

Table C.1: Computational environment for benchmarks
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D
Optimization experiments for the LOriE

algorithm

In 5.1 a new optimization approach for the LOriE algorithm which utilizes the L-BFGS-
B algorithm was developed. Here it is shown that adding the constraint trel ∈ [0, 1)
is necessary for a stable solution. In Fig. D.1 the results of optimization without
constraints (left) and with the constraint are depicted. For the unconstraint optimization
the BFGS algorithm [181], the unbounded variant of the L-BFGS-B algorithm, was
applied. Without the restriction artifacts are observable.
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Figure D.1: Comparison of optimization approaches for the LOriE algorithm. Left: un-
bounded, right: restriction trel ∈ [0, 1)
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E
Complementary data
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Figure E.1: Cumulative distribution functions of mean squared errors between measured
and predicted light intensities. 3D-PLI parameters were estimated by ROFL (orange) and
POriSo (green).
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Appendix E. Complementary data

Figure E.2: Correlation of retardation sin δ and direction angle credible interval σϕ for a
tilted 3D-PLI measurement. The plot displays a two-dimensional histogram of the retardation
and direction angle credible interval maps shown in Fig. 6.7. The credible interval decreases
with increasing retardation values.
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Figure E.3: Cumulative densities of angular credible intervals for the whole analyzed brain
section. Blue: direction angle. Orange: inclination angle.
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Figure E.4: Comparison of 3D-PLI and TPFM ground truth directions including 3D-PLI
variability analysis. 3D-PLI directions were obtained from the GOROFL algorithm. The
errorbars indicate the boundaries of the shortest interval which contains 67% of all samples.
For reasons of clarity, only every third fiber bundle is plotted.
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Figure E.5: Comparison of 3D-PLI and TPFM ground truth inclinations including 3D-PLI
variability analysis. 3D-PLI inclinations were obtained from the GOROFL algorithm. The
errorbars indicate the boundaries of the shortest interval which contains 67% of all samples.
For reasons of clarity, only every third fiber bundle is plotted.
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List of symbols

δ Phase retardation
∆n Birefringence
ϕ Direction angle
α Inclination angle
E Electric field vector
n Refractive index
ne Orientation dependent refractive index
nE Extraordinary refractive index
k Wave number
ω Angular velocity
R Rotation matrix
r Fiber orientation vector
J Jones vector
M Jones matrix of a wave retarder
P Jones matrix of an ideal polarizer
ρ Polarization angle
trel Relative section thickness
p Probability
µ Expected value
σ Standard deviation
σ2 Variance
N Normal Distribution
I Light intensity
NB Negative Binomial Distribution
ψ Tilting direction angle
τ Tilting angle
g Camera noise gain factor
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List of abbreviations

3D-PLI Three-Dimensional Polarized Light Imaging
API Application Programming Interface
BAMBI BAyesian Multivariate Birefringence Inference
CDF Cumulative Density Function
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DFT Discrete Fourier Transform
DMRI Diffusion MRI
GOROFL GPU Optimized Robust Orientation Fitting via Least Squares algorithm
GPU Graphics Processung Unit
HPD High Posterior Density
I/O Input/Output
LAP Large Area Polarimeter
L-BFGS-B Limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm
LLVM Low Level Virtual Machine
LOriE Likelihood Orientation Estimation algorithm
LMP Large Metripol
LMP3D Large Metripol 3D
MAP Maximum-a-posteriori
MCMC Markov Chain Monte Carlo
MLE Maximum Likelihood Estimation
MSE Mean Squared Error
OCT Optical Coherence Tomography
PPD Posterior Predictive Distribution
POriSo Posterior Orientation Solver
RAM Random Access Memory
ROFL Robust Orientation Fitting via Least Squares algorithm
RWMH Random Walk Metropolis Hastings algorithm
SNR Signal-to-Noise Ratio
TPFM Two Photon Fluorescence Microscopy
WLS Weighted Least Squares

121





List of Figures

2.1 Indicatrix of a uniaxial positive birefringent material . . . . . . . . . . . 7
2.2 Myelinated axon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Employed polarimetric setups . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 3D-PLI coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Analytical fit of the 3D-PLI model to the light intensities measured in

one pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 3D-PLI parameter maps of a coronal human brain section measured in

the LAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 3D-PLI fiber orientation maps . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Volumetric reconstruction in 3D-PLI . . . . . . . . . . . . . . . . . . . . 17
2.9 Analysis of inclination angles calculated by the DFT and LOriE algo-

rithms for in-plane oriented nerve fibers . . . . . . . . . . . . . . . . . . 20

3.1 Example data for linear regression problem . . . . . . . . . . . . . . . . 22
3.2 Synthetic data and weighted least squares estimate . . . . . . . . . . . 23
3.3 Synthetic data with outliers. Comparison of WLS estimate and true model 24
3.4 Synthetic data with outliers. Comparison of true model, WLS estimate

and MAP estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Scatterplot matrix of posterior samples generated by MCMC for the

straight line fit problem with outliers and prior variances σα = σβ = 1 . 27
3.6 Posterior predictive distribution for the straight line fit problem . . . . . 29

4.1 Tilting coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Working principle of the ROFL algorithm . . . . . . . . . . . . . . . . . 35
4.3 Reconstruction accuracy of ROFL and DFT algorithms evaluated on syn-

thetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Retardation gradient with respect to inclination . . . . . . . . . . . . . . 39
4.5 Evaluation of inclination bias on synthetic data . . . . . . . . . . . . . . 40
4.6 Geometrical explanation for the cos(α) dependency of the inclination dis-

tribution of uniformly distributed orientations . . . . . . . . . . . . . . . 41
4.7 Overview of the analyzed human brain volume . . . . . . . . . . . . . . 43
4.8 Comparison of vectorfields derived from the ROFL and DFT algorithms 45
4.9 Inclination histograms for one ROI of in-plane oriented nerve fibers ob-

tained from the ROFL, DFT and LOriE algorithms. . . . . . . . . . . . 46
4.10 Mean squared error histograms for ROFL and DFT algorithms . . . . . 46
4.11 Analysis of tilted 3D-PLI measurements for the cortex . . . . . . . . . . 47
4.12 Diagram of GPU implementation of ROFL . . . . . . . . . . . . . . . . 51

123



4.13 Comparison of ROFL and GOROFL results: full section view. . . . . . . 52
4.14 Comparison of ROFL and GOROFL results: local analysis in the cortex 53
4.15 Total runtime shares of the different steps of the GPU implementation of

the ROFL algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Comparison of the Nelder-Mead and L-BFGS-B optimization algorithms
applied to the LOriE algorithm . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Reconstruction accuracy of ROFL and PORISO algorithms evaluated on
synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Comparison of vectorfields derived from the ROFL and POriSo algorithms 63
5.4 Mean squared error histograms for DFT, ROFL and POriSo algorithms 64
5.5 Reassessment of tilted 3D-PLI measurements for the cortex: comparison

of ROFL and POriSo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 Results of the BAMBI framework for the planar case on synthetic data . 69
6.2 Investigation of the in-plane orientation confidence for the planar 3D-PLI

measurement based on LAP data . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Results of the BAMBI framework for a white matter pixel . . . . . . . . 73
6.4 Results of the BAMBI framework for a grey matter pixel . . . . . . . . 73
6.5 Microscopic results for BAMBI . . . . . . . . . . . . . . . . . . . . . . . 75
6.6 Simulation results of the BAMBI framework for the oblique 3D-PLI mea-

surement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.7 Results of the BAMBI framework for a tilted measurement: whole section 80
6.8 Results of the BAMBI framework for a tilted measurement: region of

interest in the stratum sagittale . . . . . . . . . . . . . . . . . . . . . . . 82
6.9 Results of the BAMBI framework for an oblique 3D-PLI measurement of

a white matter pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.10 Results of the BAMBI framework for an oblique 3D-PLI measurement of

a grey matter pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.11 Cumulative densities of angular credible intervals of white matter pixels.

Blue: direction angle. Yellow: inclination angle. . . . . . . . . . . . . . . 85
6.12 Correlation of relative thickness trel and inclination angle credible interval

σα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.1 Noise measurement of the LMP3D . . . . . . . . . . . . . . . . . . . . . 88
7.2 Results from measurements from oblique views at the microscale . . . . 91
7.3 Derivation of fiber bundle orientations for a comparison of 3D-PLI and

TPFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4 Histograms of angular deviations between TPFM fiber bundle orienta-

tions and 3D-PLI fiber bundle orientations computed by ROFL, POriSo
and GOROFL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.5 Comparison of 3D-PLI and TPFM ground truth orientation angles . . . 95

D.1 Comparison of constraint and unconstraint optimization approaches for
the LOriE algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

E.1 Comparison of CDFs of Mean Squared Errors achieved by POriSo and
ROFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

E.2 Correlation of retardation sin δ and direction angle credible interval σϕ
for a tilted 3D-PLI measurement . . . . . . . . . . . . . . . . . . . . . . 116

124



E.3 Cumulative densities of angular credible intervals for the whole analyzed
brain section. Blue: direction angle. Orange: inclination angle. . . . . . 116

E.4 Comparison of 3D-PLI and TPFM ground truth directions including 3D-
PLI variability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

E.5 Comparison of 3D-PLI and TPFM ground truth inclinations including
3D-PLI variability analysis . . . . . . . . . . . . . . . . . . . . . . . . . 117

125





List of Tables

4.1 Runtimes of different implementations of the ROFL algorithm for a brain
section of app. 1 Mio. pixels. . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1 Computation times of the developed estimators for one field of view of
the LMP3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 Mean angular deviations between TPFM fiber bundle orientations and
3D-PLI orientations computed by ROFL, POriSo and GOROFL . . . . 94

C.1 Computational environment for benchmarks . . . . . . . . . . . . . . . . 111

127





References

[1] World Health Organization. Neurological disorders : public health challenges. 2006.

[2] Deep learning for visual understanding: A review. Neurocomputing, 187:27 – 48,
2016. Recent Developments on Deep Big Vision.

[3] Gao Huang, Guang-Bin Huang, Shiji Song, and Keyou You. Trends in extreme
learning machines: A review. Neural Networks, 61:32 – 48, 2015.

[4] Catherine Schuman, Thomas Potok, Robert Patton, J. Birdwell, Mark Dean, Gar-
rett Rose, and James Plank. A survey of neuromorphic computing and neural
networks in hardware. 05 2017.

[5] R. A. Nawrocki, R. M. Voyles, and S. E. Shaheen. A mini review of neuromor-
phic architectures and implementations. IEEE Transactions on Electron Devices,
63(10):3819–3829, Oct 2016.

[6] Katrin Amunts, Christoph Ebell, Jeff Muller, Martin Telefont, Alois Knoll, and
Thomas Lippert. The human brain project: Creating a european research infras-
tructure to decode the human brain. Neuron, 92:574–581, 11 2016.

[7] Australian brain alliance. Neuron, 92(3):597 – 600, 2016.

[8] Judy Illes, Samuel Weiss, Jaideep Bains, Jennifer A. Chandler, Patricia Conrod,
Yves De Koninck, Lesley K. Fellows, Deanna Groetzinger, Eric Racine, Julie M.
Robillard, and Marla B. Sokolowski. A neuroethics backbone for the evolving
canadian brain research strategy. Neuron, 101(3):370 – 374, 2019.

[9] Ling Wang. Mu-ming poo: China brain project and future of chinese neuroscience.
National Science Review, 4, 02 2017.

[10] Hideyuki Okano, Atsushi Miyawaki, and Kiyoto Kasai. Brain/minds: brain-
mapping project in japan. Philosophical transactions of the Royal Society of Lon-
don. Series B, Biological sciences, 370, 05 2015.

[11] Sung-Jin Jeong, In Young Lee, Bang Ook Jun, Young-Joon Ryu, Jeong woo
Sohn, Sung-Phil Kim, Choong-Wan Woo, Ja Wook Koo, Il-Joo Cho, Uhtaek Oh,
Kyungjin Kim, and Pann-Ghill Suh. Korea brain initiative: Emerging issues and
institutionalization of neuroethics. Neuron, 101(3):390 – 393, 2019.

[12] Meghan C. Mott, Joshua A. Gordon, and Walter J. Koroshetz. The nih brain
initiative: Advancing neurotechnologies, integrating disciplines. PLOS Biology,
16:1–5, 11 2018.

129



[13] Sten Grillner, Nancy Ip, Christof Koch, Walter Koroshetz, Hideyuki Okano, Miri
Polachek, Poo M-m, and Terrence Sejnowski. Worldwide initiative to advance
brain research. Nature Neuroscience, 19:1118–1122, 08 2016.

[14] Olaf Sporns, Giulio Tononi, and Rolf Kötter. The human connectome: A structural
description of the human brain, 2005.

[15] Walid Essayed, Fan Zhang, Prashin Unadkat, G. Cosgrove, Alexandra Golby, and
Lauren O’Donnell. White matter tractography for neurosurgical planning: A
topography-based review of the current state of the art. NeuroImage: Clinical,
15, 06 2017.

[16] P.J. Basser, J. Mattiello, and D. LeBihan. Mr diffusion tensor spectroscopy and
imaging. Biophysical Journal, 66(1):259 – 267, 1994.

[17] S. Mori and Jacques-Donald Tournier. Introduction to diffusion tensor imaging:
And higher order models: Second edition. 09 2013.

[18] H. Johansen-Berg and T. Behrens. Diffusion MRI. Elsevier, 2009.

[19] Jacques-Donald Tournier, Susumu Mori, and Alexander Leemans. Diffusion tensor
imaging and beyond. Magnetic resonance in medicine : official journal of the
Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in
Medicine, 65:1532–56, 06 2011.

[20] Daniel C. Alexander, Tim B. Dyrby, Markus Nilsson, and Hui Zhang. Imaging
brain microstructure with diffusion mri: practicality and applications. NMR in
Biomedicine, 32(4):e3841.

[21] Marta Drake-Pérez, Jose Boto, Aikaterini Fitsiori, Karl Lovblad, and Maria Var-
gas. Clinical applications of diffusion weighted imaging in neuroradiology. Insights
into Imaging, 9, 05 2018.

[22] T.E.J. Behrens, M.W. Woolrich, M. Jenkinson, H. Johansen-Berg, R.G. Nunes,
S. Clare, P.M. Matthews, J.M. Brady, and S.M. Smith. Characterization and
propagation of uncertainty in diffusion-weighted mr imaging. Magnetic Resonance
in Medicine, 50(5):1077–1088, 2003.

[23] Alard Roebroeck, Karla Miller, and Manisha Aggarwal. Ex vivo diffusion mri of
the human brain: Technical challenges and recent advances. NMR in Biomedicine,
32:e3941, 06 2018.

[24] F.J. Fritz, S. Sengupta, R.L. Harms, D.H. Tse, B.A. Poser, and A. Roebroeck.
Ultra-high resolution and multi-shell diffusion mri of intact ex vivo human brains
using kt-dsteam at 9.4t. NeuroImage, 202:116087, 2019.

[25] Justine Beaujoin, Nicola Palomero-Gallagher, Fawzi Boumezbeur, Markus Axer,
Jeremy Bernard, Fabrice Poupon, Daniel Schmitz, Jean-François Mangin, and
Cyril Poupon. Post-mortem inference of the human hippocampal connectivity
and microstructure using ultra-high field diffusion mri at 11.7 t. Brain Structure
and Function, 223(5):2157–2179, Jun 2018.

[26] Klaus Maier-Hein, Peter Neher, Jean-Christophe Houde, Marc-Alexandre Côté,
Eleftherios Garyfallidis, Jidan Zhong, Maxime Chamberland, Fang-Cheng Yeh,
Ying-Chia Lin, Qing Ji, Wilburn Reddick, John Glass, David Chen, Feng Yuan-
jing, Chengfeng Gao, Wu Ye, Jieyan Ma, H. Renjie, Qiang Li, and Maxime De-

130



scoteaux. The challenge of mapping the human connectome based on diffusion
tractography. Nature Communications, 8, 12 2017.

[27] Yoshiyuki Kubota, Jaerin Sohn, and Yasuo Kawaguchi. Large volume electron
microscopy and neural microcircuit analysis. Frontiers in Neural Circuits, 12:98,
2018.

[28] Ennio Pannese. Il contributo di camillo golgi alla conoscenza della struttura del
sistema nervoso. Rendiconti Lincei. Scienze fisiche e naturali, 18, 06 2007.

[29] Clément Hémonnot and Sarah Köster. Imaging of biological materials and cells
by x-ray scattering and diffraction. ACS Nano, 11, 08 2017.

[30] A half century of experimental neuroanatomical tracing. Journal of Chemical
Neuroanatomy, 42(3):157 – 183, 2011.

[31] Matthew Budde and Jacopo Annese. Quantification of anisotropy and fiber orien-
tation in human brain histological sections. Frontiers in Integrative Neuroscience,
7:3, 2013.

[32] Ahmad Khan, Anda Cornea, Lindsey Leigland, Steven Kohama, Sune Jespersen,
and Christopher Kroenke. 3d structure tensor analysis of light microscopy data
for validating diffusion mri. NeuroImage, 111, 02 2015.

[33] Jonas Pichat, Juan Eugenio Iglesias, Tarek Yousry, Sébastien Ourselin, and Marc
Modat. A survey of methods for 3d histology reconstruction. Medical Image
Analysis, 46:73 – 105, 2018.

[34] Tomoyuki Mano, Alexandre Albanese, Hans-Ulrich Dodt, Ali Erturk, Viviana
Gradinaru, Jennifer B. Treweek, Atsushi Miyawaki, Kwanghun Chung, and Hi-
roki R. Ueda. Whole-brain analysis of cells and circuits by tissue clearing and
light-sheet microscopy. Journal of Neuroscience, 38(44):9330–9337, 2018.

[35] Stella Corsetti, Frank Gunn-Moore, and Kishan Dholakia. Light sheet fluorescence
microscopy for neuroscience. Journal of Neuroscience Methods, 319:16 – 27, 2019.
Methods and Models in Alzheimer’s Disease Research.

[36] Hui Wang, Adam J. Black, Junfeng Zhu, Tyler W. Stigen, Muhammad K. Al-Qaisi,
Theoden I. Netoff, Aviva Abosch, and Taner Akkin. Reconstructing micrometer-
scale fiber pathways in the brain: Multi-contrast optical coherence tomography
based tractography. NeuroImage, 58(4):984 – 992, 2011.

[37] Serial optical coherence scanner for large-scale brain imaging at microscopic reso-
lution. NeuroImage, 84:1007 – 1017, 2014.

[38] Ke Wang, Nicholas G. Horton, and Chris Xu. Going deep: Brain imaging with
multi-photon microscopy. Opt. Photon. News, 24(11):32–39, Nov 2013.

[39] Ludovico Silvestri, Anna Letizia Allegra Mascaro, Irene Costantini, Leonardo Sac-
coni, and Francesco Saverio Pavone. Correlative two-photon and light sheet mi-
croscopy. Methods, 66(2):268 – 272, 2014. Advanced Light Microscopy.

[40] Patrick Theer, Mazahir T. Hasan, and Winfried Denk. Two-photon imaging to a
depth of 1000 µm in living brains by use of a ti:al2o3 regenerative amplifier. Opt.
Lett., 28(12):1022–1024, Jun 2003.

131



[41] Martin Oheim, Emmanuel Beaurepaire, Emmanuelle Chaigneau, Jerome Mertz,
and Serge Charpak. Two-photon microscopy in brain tissue: parameters influenc-
ing the imaging depth. Journal of Neuroscience Methods, 111(1):29 – 37, 2001.

[42] Kuo-Jen Hsu, Yen-Yin Lin, Ann-Shyn Chiang, and Shi-Wei Chu. Optical proper-
ties of adult drosophila brains in one-, two-, and three-photon microscopy. Biomed.
Opt. Express, 10(4):1627–1637, Apr 2019.

[43] Kwanghun Chung and Karl Deisseroth. Clarity for mapping the nervous system
(vol 10, pg 508, 2013). Nature Methods, 10:1035–1035, 10 2013.

[44] Markus Axer, Katrin Amunts, David Grässel, Christoph Palm, Jürgen Dammers,
Hubertus Axer, Uwe Pietrzyk, and Karl Zilles. A novel approach to the human
connectome: Ultra-high resolution mapping of fiber tracts in the brain. NeuroIm-
age, 54(2):1091 – 1101, 2011.

[45] Markus Axer, David Gräßel, Melanie Kleiner, Jürgen Dammers, Timo Dickscheid,
Julia Reckfort, Tim Hütz, Bjoern Eiben, Uwe Pietrzyk, Karl Zilles, and Katrin
Amunts. High-resolution fiber tract reconstruction in the human brain by means
of three-dimensional polarized light imaging. Frontiers in neuroinformatics, 5:34,
12 2011.

[46] H. Wiese. Enhancing the Signal Interpretation and Microscopical Hardware Con-
cept of 3D Polarized Light Imaging. PhD thesis, Bergische Universität Wuppertal,
2017.

[47] Karl Zilles, Nicola Palomero-Gallagher, David Gräßel, Philipp Schlömer, Markus
Cremer, Roger Woods, Katrin Amunts, and Markus Axer. High-Resolution Fiber
and Fiber Tract Imaging Using Polarized Light Microscopy in the Human, Monkey,
Rat, and Mouse Brain, pages 369–389. 12 2016.

[48] Michael Zeineh, Nicola Palomero-Gallagher, Markus Axer, David Gräßel, Maged
Goubran, Andreas Wree, Roger Woods, Katrin Amunts, and Karl Zilles. Direct
visualization and mapping of the spatial course of fiber tracts at microscopic res-
olution in the human hippocampus. Cerebral Cortex, 27:bhw010, 02 2016.

[49] Christina Herold, Philipp Schlömer, Isabelle Mafoppa-Fomat, Julia Mehlhorn, Ka-
trin Amunts, and Markus Axer. The hippocampus of birds in a view of evolution-
ary connectomics. Cortex, 118:165 – 187, 2019. The Evolution of the Mind and
the Brain.

[50] Johannes Albrecht, Antonio Augusto Alves, Guilherme Amadio, Giuseppe An-
dronico, Nguyen Anh-Ky, Laurent Aphecetche, John Apostolakis, Makoto Asai,
Luca Atzori, and et al. A roadmap for hep software and computing rd for the
2020s. Computing and Software for Big Science, 3(1), Mar 2019.

[51] Yanxia Zhang and Yongheng Zhao. Astronomy in the big data era. Data Science
Journal, 14:1–9, 05 2015.

[52] Massimo Brescia and Giuseppe Longo. Astroinformatics, data mining and the
future of astronomical research. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment, 720, 01 2012.

[53] A. Siemiginowska, G. Eadie, I. Czekala, E. Feigelson, E. B. Ford, V. Kashyap,
M. Kuhn, T. Loredo, M. Ntampaka, A. Stevens, A. Avelino, K. Borne, T. Bu-

132



davari, B. Burkhart, J. Cisewski-Kehe, F. Civano, I. Chilingarian, D. A. van Dyk,
G. Fabbiano, D. P. Finkbeiner, D. Foreman-Mackey, P. Freeman, A. Fruscione,
A. A. Goodman, M. Graham, H. M. Guenther, J. Hakkila, L. Hernquist, D. Hup-
penkothen, D. J. James, C. Law, J. Lazio, T. Lee, M. López-Morales, A. A. Maha-
bal, K. Mandel, X. L. Meng, J. Moustakas, D. Muna, J. E. G. Peek, G. Richards,
S. K. N. Portillo, J. Scargle, R. S. de Souza, J. S. Speagle, K. G. Stassun, D. C.
Stenning, S. R. Taylor, G. R. Tremblay, V. Trimble, P. A. Yanamandra-Fisher, and
C. A. Young. Astro2020 science white paper: The next decade of astroinformatics
and astrostatistics, 2019.

[54] Udo Toussaint. Bayesian inference in physics. Reviews of Modern Physics - REV
MOD PHYS, 83:943–999, 09 2011.

[55] Sanjib Sharma. Markov chain monte carlo methods for bayesian data analysis in
astronomy. Annual Review of Astronomy and Astrophysics, 55(1):213–259, 2017.

[56] Thomas Parr, Geraint Rees, and Karl J. Friston. Computational neuropsychology
and bayesian inference. Frontiers in Human Neuroscience, 12:61, 2018.

[57] H J Motulsky and L A Ransnas. Fitting curves to data using nonlinear regression:
a practical and nonmathematical review. The FASEB Journal, 1(5):365–374, 1987.
PMID: 3315805.

[58] E. Hecht. Optics. Addison-Wesley, 4th edition, 1998.

[59] M. Menzel, K. Michielsen, H. De Raedt, J. Reckfort, K. Amunts, and M. Axer. A
jones matrix formalism for simulating three-dimensional polarized light imaging
of brain tissue. Journal of The Royal Society Interface, 12(111):20150734, 2015.

[60] Luiza Larsen, Lewis D. Griffin, David GRäßel, Otto W. Witte, and Hubertus
Axer. Polarized light imaging of white matter architecture. Microscopy Research
and Technique, 70(10):851–863.

[61] Miriam Menzel. Finite-Difference Time-Domain Simulations Assisting to Recon-
struct the Brain’s Nerve Fiber Architecture by 3D Polarized Light Imaging. PhD
thesis, 11 2018.

[62] Wikimedia Commons. Plaques of lambda phages on e. coli xl1-blue mrf, 2007.

[63] Suzana Herculano-Houzel. The human brain in numbers: a linearly scaled-up
primate brain. Frontiers in Human Neuroscience, 3:31, 2009.

[64] Contributors. In Larry R. Squire, Darwin Berg, Floyd E. Bloom, Sascha du Lac,
Anirvan Ghosh, and Nicholas C. Spitzer, editors, Fundamental Neuroscience
(Fourth Edition), pages xxiii – xxiv. Academic Press, San Diego, fourth edition
edition, 2013.

[65] G. F. Goethlin. Die doppelbrechenden eigenschaften des nervengewebes - ihre
ursachen und ihre biologischen konsequenzen. Kungl. Svenska Vetenskapsakad
Handl, 51, 1913.

[66] Xiang-Run Huang and Robert W. Knighton. Microtubules Contribute to the Bire-
fringence of the Retinal Nerve Fiber Layer. Investigative Ophthalmology Visual
Science, 46(12):4588–4593, 12 2005.

[67] FRANCIS O. SCHMITT and RICHARD S. BEAR. The ultrastructure of the
nerve axon sheath. Biological Reviews, 14(1):27–50.

133



[68] Richard S. Bear and Francis O. Schmitt. The optics of nerve myelin. J. Opt. Soc.
Am., 26(5):206–212, May 1936.

[69] Priscilla Chinn and Francis O. Schmitt. On the birefringence of nerve sheaths
as studied in cross sections. Journal of Cellular and Comparative Physiology,
9(2):289–296, 1937.

[70] Nirmalya Ghosh and Alex I. Vitkin. Tissue polarimetry: concepts, challenges,
applications, and outlook. Journal of Biomedical Optics, 16(11):1 – 30, 2011.

[71] Daniel Wagner and Dieter Schmalstieg. Artoolkitplus for pose tracking on mobile
devices, 2007.

[72] A. Echalier, R. L. Glazer, V. Fülöp, and M. A. Geday. Assessing crystallization
droplets using birefringence. Acta Crystallographica Section D, 60(4):696–702, Apr
2004.

[73] A. Koehler. Ein neues beleuchtungsverfahren fuer mikrophotographische zwecke.
Zeitschrift fuer wissenschaftliche Mikroskopie und fuer mikroskopische Technik,
1893.

[74] R. Clark Jones. A new calculus for the treatment of optical systemsi. description
and discussion of the calculus. J. Opt. Soc. Am., 31(7):488–493, Jul 1941.

[75] Julia Reckfort, Hendrik Wiese, Uwe Pietrzyk, Karl Zilles, Katrin Amunts, and
Markus Axer. A multiscale approach for the reconstruction of the fiber architecture
of the human brain based on 3d-pli. Frontiers in Neuroanatomy, 9:118, 2015.

[76] Hans Müller. Memorandum on the polarization optics of the photo-elastic shutter.
In Report Number 2 of the OSRD Project OEMsr, 1943.

[77] George Gabriel Stokes. On the Composition and Resolution of Streams of Po-
larized Light from different Sources, volume 3 of Cambridge Library Collection -
Mathematics, page 233–258. Cambridge University Press, 2009.

[78] Julia Reckfort. New Approaches to the Interpretation of 3D-Polarized Light Imag-
ing Signals for an Advanced Extraction of Fiber Orientation. PhD thesis, Bergische
Universität Wuppertal, 2016.

[79] Jürgen Dammers, Markus Axer, David Gräßel, Christoph Palm, Karl Zilles, Katrin
Amunts, and Uwe Pietrzyk. Signal enhancement in polarized light imaging by
means of independent component analysis. NeuroImage, 49(2):1241 – 1248, 2010.

[80] Martin Schober, Philipp Schlömer, Markus Cremer, Hartmut Mohlberg, Anh-
Minh Huynh, Nicole Schubert, Mehmet E. Kirlangic, and Katrin Amunts. Refer-
ence volume generation for subsequent 3d reconstruction of histological sections.
In Heinz Handels, Thomas Martin Deserno, Hans-Peter Meinzer, and Thomas
Tolxdorff, editors, Bildverarbeitung für die Medizin 2015, pages 143–148, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[81] Brian B. Avants, Nicholas J. Tustison, Michael Stauffer, Gang Song, Baohua Wu,
and James C. Gee. The insight toolkit image registration framework. Frontiers in
Neuroinformatics, 8:44, 2014.

[82] S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. W. Pluim. elastix:
A toolbox for intensity-based medical image registration. IEEE Transactions on
Medical Imaging, 29(1):196–205, Jan 2010.

134



[83] Marco Feuerstein, Tim Heibel, José Gardiazabal, Nassir Navab, and Martin Gro-
her. Reconstruction of 3-d histology images by simultaneous deformable registra-
tion. volume 14, pages 582–589, 09 2011.

[84] Daniel Schmitz, Sascha E. A. Muenzing, Martin Schober, Nicole Schubert, Martina
Minnerop, Thomas Lippert, Katrin Amunts, and Markus Axer. Derivation of fiber
orientations from oblique views through human brain sections in 3d-polarized light
imaging. Frontiers in Neuroanatomy, 12:75, 2018.

[85] D. G. Lowe. Object recognition from local scale-invariant features. In Proceedings
of the Seventh IEEE International Conference on Computer Vision, volume 2,
pages 1150–1157 vol.2, Sep. 1999.

[86] Melanie Kleiner, Markus Axer, David Gräßel, Julia Reckfort, Uwe Pietrzyk, Ka-
trin Amunts, and Timo Dickscheid. Classification of ambiguous nerve fiber orienta-
tions in 3d polarized light imaging. In Nicholas Ayache, Hervé Delingette, Polina
Golland, and Kensaku Mori, editors, Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2012, pages 206–213, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[87] Abib O. Y. Alimi, Marco Pizzolato, Rutger H.J. Fick, and Rachid Deriche. Solving
the Inclination Sign Ambiguity in Three Dimensional Polarized Light Imaging
with a PDE-Based Method. In ISBI 2017 – IEEE International Symposium on
Biomedical Imaging, Melbourne, Australia, April 2017.

[88] Hendrik Wiese, David Gräßel, Uwe Pietrzyk, Katrin Amunts, and Markus Axer.
Polarized light imaging of the human brain: A new approach to the data analysis
of tilted sections. volume 9099, page 90990U, 05 2014.

[89] T. Bayes. An essay towards solving a problem in the doctrine of chances. Phil.
Trans. of the Royal Soc. of London, 53:370–418, 1763.

[90] Andrew Gelman, Daniel Lee, and Jiqiang Guo. Stan: A probabilistic programming
language for bayesian inference and optimization. Journal of Educational and
Behavioral Statistics, 40(5):530–543, 2015.

[91] John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. Probabilistic
programming in python using PyMC3. PeerJ Computer Science, 2:e55, apr 2016.

[92] Jessica Ai, Nimar S. Arora, &#65279;Ning Dong, &#65279;Beliz Gokkaya,
Thomas Jiang, &#65279;Anitha Kubendran, &#65279;Arun Kumar, Michael
Tingley, and &#65279;Narjes Torabi. Hackppl: A universal probabilistic pro-
gramming language. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, MAPL 2019, pages
20–28, New York, NY, USA, 2019. ACM.

[93] Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, and
David M. Blei. Edward: A library for probabilistic modeling, inference, and criti-
cism. arXiv preprint arXiv:1610.09787, 2016.

[94] T. Minka et al. Infer.net. https://github.com/dotnet/infer, 2019.

[95] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj
Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and
Noah D. Goodman. Pyro: Deep universal probabilistic programming. J. Mach.
Learn. Res., 20(1):973–978, January 2019.

135

https://github.com/dotnet/infer


[96] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &
Engineering, 9(3):90–95, 2007.

[97] Michael Waskom et al. mwaskom/seaborn: v0.8.1 (september 2017), September
2017.

[98] David Hogg, Jo Bovy, and Dustin Lang. Data analysis recipes: Fitting a model
to data. ArXiv e-prints, 08 2010.

[99] Nicholas Metropolis, AriannaW. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of state calculations by fast computing ma-
chines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.

[100] W Keith Hastings. Monte carlo sampling methods using markov chains and their
application. Biometrika, 57, 04 1970.

[101] Jonathan Goodman and Jonathan Weare. Ensemble samplers with affine invari-
ance. Commun. Appl. Math. Comput. Sci., 5(1):65–80, 2010.

[102] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman. emcee: The mcmc
hammer. PASP, 125:306–312, 2013.

[103] Dootika Vats, James M Flegal, and Galin L Jones. Multivariate output analysis
for Markov chain Monte Carlo. Biometrika, 106(2):321–337, 04 2019.

[104] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian
Data Analysis. Chapman and Hall/CRC, 2nd ed. edition, 2004.

[105] John K. Kruschke. Doing Bayesian Data Analysis: A Tutorial with R and BUGS.
Academic Press, Inc., Orlando, FL, USA, 1st edition, 2010.

[106] D. Schmitz, K. Amunts, T. Lippert, and M. Axer. A least squares approach for
the reconstruction of nerve fiber orientations from tiltable specimen experiments
in 3d-pli. In 2018 IEEE 15th International Symposium on Biomedical Imaging
(ISBI 2018), pages 132–135, April 2018.

[107] Daniel Schmitz Markus Axer Jan-Oliver Kropp, Alexan-
der Kobusch and Katrin Amunts. https://www.nvidia.
com/content/dam/en-zz/Solutions/gtc/conference-posters/
nvidia-gtc19-dc-poster-resizing-web-1920x1607-JanOliver-Kropp.jpg,
2019.

[108] K. Levenberg. A method for the solution of certain non-linear problems in least
squares. Quarterly of Applied Mathematics, 2(2):164–168, 1944.

[109] Donald W. Marquardt. An algorithm for least-squares estimation of nonlin-
ear parameters. Journal of the Society for Industrial and Applied Mathematics,
11(2):431–441, 1963.

[110] Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The numpy array: A
structure for efficient numerical computation. Computing in Science & Engineer-
ing, 13(2):22–30, 2011.

[111] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python, 2001–. [Online; accessed <today>].

[112] J. J. Moré. The Levenberg-Marquardt algorithm: Implementation and theory.
Lecture Notes in Mathematics, Berlin Springer Verlag, 630:105–116, 1978.

136

https://www.nvidia.com/content/dam/en-zz/Solutions/gtc/conference-posters/nvidia-gtc19-dc-poster-resizing-web-1920x1607-JanOliver-Kropp.jpg
https://www.nvidia.com/content/dam/en-zz/Solutions/gtc/conference-posters/nvidia-gtc19-dc-poster-resizing-web-1920x1607-JanOliver-Kropp.jpg
https://www.nvidia.com/content/dam/en-zz/Solutions/gtc/conference-posters/nvidia-gtc19-dc-poster-resizing-web-1920x1607-JanOliver-Kropp.jpg


[113] J J Moré, B S Garbow, and K E Hillstrom. User guide for MINPACK-1. Technical
Report ANL-80-74, Argonne Nat. Lab., Argonne, IL, Aug 1980.

[114] Lisandro Dalcín, Rodrigo Paz, and Mario Storti. Mpi for python. Journal of
Parallel and Distributed Computing, 65(9):1108 – 1115, 2005.

[115] Francois Rheault, Jean-Christophe Houde, and Maxime Descoteaux. Visualiza-
tion, interaction and tractometry: Dealing with millions of streamlines from dif-
fusion mri tractography. Frontiers in Neuroinformatics, 11:42, 2017.

[116] Davide Tiziano Di Carlo, Nicola Benedetto, Hugues Duffau, Federico Cagnazzo,
Alessandro Weiss, Maura Castagna, Mirco Cosottini, and Paolo Perrini. Microsur-
gical anatomy of the sagittal stratum. Acta Neurochirurgica, 161(11):2319–2327,
Nov 2019.

[117] Lin-Ching Chang, Lindsay Walker, and Carlo Pierpaoli. Informed restore: A
method for robust estimation of diffusion tensor from low redundancy datasets
in the presence of physiological noise artifacts. Magnetic resonance in medicine
: official journal of the Society of Magnetic Resonance in Medicine / Society of
Magnetic Resonance in Medicine, 68:1654–63, 11 2012.

[118] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Selje-
botn, and Kurt Smith. Cython: The best of both worlds. Computing in Science
and Engg., 13(2):31–39, March 2011.

[119] Theano Development Team. Theano: A Python framework for fast computation
of mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016.

[120] Martín Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[121] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. 2017.

[122] A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini, V. Torczon, and M. W.
Trosset. A rigorous framework for optimization of expensive functions by surro-
gates. Structural optimization, 17(1):1–13, Feb 1999.

[123] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based
python jit compiler. In Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC, LLVM ’15, pages 7:1–7:6, New York, NY, USA, 2015. ACM.

[124] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong pro-
gram analysis & transformation. In Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-directed and Runtime Optimization,
CGO ’04, pages 75–, Washington, DC, USA, 2004. IEEE Computer Society.

[125] John Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger, Aaron
Lefohn, and Timothy Purcell. A survey of general-purpose computation on graph-
ics hardware. Computer Graphics Forum, 26:80 – 113, 03 2007.

[126] James Fung and Steve Mann. Using multiple graphics cards as a general purpose
parallel computer : Applications to computer vision. volume 1, pages 805–808, 01
2004.

137



[127] Alberto Cano. A survey on graphic processing unit computing for large-scale data
mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
8(1):e1232, 2018.

[128] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel
programming with cuda. Queue, 6(2):40–53, March 2008.

[129] R.L. Harms, F.J. Fritz, A. Tobisch, R. Goebel, and A. Roebroeck. Robust and
fast nonlinear optimization of diffusion mri microstructure models. NeuroImage,
155:82 – 96, 2017.

[130] Moises Hernandez-Fernandez, Istvan Reguly, Saad Jbabdi, Mike Giles, Stephen
Smith, and Stamatios N. Sotiropoulos. Using gpus to accelerate computational
diffusion mri: From microstructure estimation to tractography and connectomes.
NeuroImage, 188:598 – 615, 2019.

[131] David Smith, John C Gore, Thomas E Yankeelov, and E Welch. Real-time com-
pressive sensing mri reconstruction using gpu computing and split bregman meth-
ods. International journal of biomedical imaging, 2012:864827, 02 2012.

[132] Marc Bruce and Manish J Butte. Real-time gpu-based 3d deconvolution. Optics
express, 21:4766–4773, 02 2013.

[133] Zachary Devito, Michael Mara, Michael Zollhöfer, Gilbert Bernstein, Jonathan
Ragan-Kelley, Christian Theobalt, Pat Hanrahan, Matthew Fisher, and Matthias
Niessner. Opt: A domain specific language for non-linear least squares optimiza-
tion in graphics and imaging. ACM Trans. Graph., 36(5):171:1–171:27, October
2017.

[134] Adrian Przybylski, Björn Thiel, Jan Keller, Bernd Stock, and Mark Bates. Gpufit:
An open-source toolkit for gpu-accelerated curve fitting. Scientific Reports, 7, 12
2017.

[135] The Mathworks, Inc., Natick, Massachusetts. MATLAB version 9.3.0.713579
(R2017b), 2017.

[136] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul Ivanov, and
Ahmed Fasih. Pycuda and pyopencl: A scripting-based approach to gpu run-time
code generation. Parallel Comput., 38(3):157–174, March 2012.

[137] The HDF Group. Hierarchical data format version 5, 2000-2010.

[138] John A. Nelder and Roger Mead. A simplex method for function minimization.
Computer Journal, 7:308–313, 1965.

[139] Fuchang Gao and Lixing Han. Implementing the nelder-mead simplex algo-
rithm with adaptive parameters. Computational Optimization and Applications,
51(1):259–277, Jan 2012.

[140] R. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound
constrained optimization. SIAM Journal on Scientific Computing, 16(5):1190–
1208, 1995.

[141] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-
bfgs-b: Fortran subroutines for large-scale bound-constrained optimization. ACM
Trans. Math. Softw., 23(4):550–560, December 1997.

138



[142] José Luis Morales and Jorge Nocedal. Remark on &ldquo;algorithm 778: L-bfgs-b:
Fortran subroutines for large-scale bound constrained optimization&rdquo;. ACM
Trans. Math. Softw., 38(1):7:1–7:4, December 2011.

[143] Derek K. Jones. Determining and visualizing uncertainty in estimates of fiber
orientation from diffusion tensor mri. Magnetic Resonance in Medicine, 49(1):7–
12, 2003.

[144] Brandon Whitcher, David S. Tuch, Jonathan J. Wisco, A. Gregory Sorensen, and
Liqun Wang. Using the wild bootstrap to quantify uncertainty in diffusion tensor
imaging. Human Brain Mapping, 29(3):346–362, 2008.

[145] Pew-Thian Yap, Hongyu An, Yasheng Chen, and Dinggang Shen. The non-local
bootstrap – estimation of uncertainty in diffusion mri. In James C. Gee, Sarang
Joshi, Kilian M. Pohl, William M. Wells, and Lilla Zöllei, editors, Information
Processing in Medical Imaging, pages 390–401, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[146] Jennifer S. W. Campbell, Parya MomayyezSiahkal, Peter Savadjiev, Ilana R. Lep-
pert, Kaleem Siddiqi, and G. Bruce Pike. Beyond crossing fibers: Bootstrap
probabilistic tractography using complex subvoxel fiber geometries. Frontiers in
Neurology, 5:216, 2014.

[147] Maggie Chow, Sharon Wu, Sarah Webb, Katie Gluskin, and David Yew. Func-
tional magnetic resonance imaging and the brain: A brief review. World Journal
of Radiology, 9:5, 01 2017.

[148] Bayesian analysis of neuroimaging data in fsl. NeuroImage, 45(1, Supplement
1):S173 – S186, 2009. Mathematics in Brain Imaging.

[149] Patrick Derichs. Optimierung des datenflusses polarisationsmikroskopischer mes-
sungen mit automatisierter qualitätssicherung. Master’s thesis, FH Aachen, 2018.

[150] N. I. Fisher, T. Lewis, and B. J. J. Embleton. Statistical analysis of spherical data.
1987.

[151] Dorian Krause and Philipp Thörnig. Jureca: General-purpose supercomputer at
jülich supercomputing centre. Journal of large-scale research facilities JLSRF, 2,
03 2016.

[152] College Station TX USA Kristen M. Thyng | Department of Oceanography, Texas
AM University, TX USA Chad A. Greene | The University of Texas at Austin Insti-
tute for Geophysics, Austin, College Station TX USA Robert D. Hetland | Depart-
ment of Oceanography, Texas AM University, College Station TX USA Heather
M. Zimmerle | Department of Oceanography, Texas AM University, Steven F. Di-
Marco | Department of Oceanography, Geochemical, and College Station TX USA
Environmental Research Group, Texas AM University. True colors of oceanogra-
phy: Guidelines for effective and accurate colormap selection. Oceanography, 29,
September 2016.

[153] Daniel Foreman-Mackey. corner.py: Scatterplot matrices in python. The Journal
of Open Source Software, 24, 2016.

[154] Peter TC So. Two-photon Fluorescence Light Microscopy. American Cancer So-
ciety, 2001.

139



[155] Irene Costantini, Miriam Menzel, Ludovico Silvestri, Nicole Schubert, Markus
Axer, Katrin Amunts, and Francesco Pavone. Polarized light imaging and two-
photon fluorescence microscopy correlative approach for 3d reconstruction of the
orientation of myelinated fibers. 04 2017.

[156] Kevin H. Knuth. Optimal data-based binning for histograms and histogram-based
probability density models. Digital Signal Processing, 95:102581, 2019.

[157] Astropy Collaboration, A. M. Price-Whelan, B. M. Sipőcz, H. M. Günther, P. L.
Lim, S. M. Crawford, S. Conseil, D. L. Shupe, M. W. Craig, N. Dencheva, A. Gins-
burg, J. T. Vand erPlas, L. D. Bradley, D. Pérez-Suárez, M. de Val-Borro, T. L.
Aldcroft, K. L. Cruz, T. P. Robitaille, E. J. Tollerud, C. Ardelean, T. Babej, Y. P.
Bach, M. Bachetti, A. V. Bakanov, S. P. Bamford, G. Barentsen, P. Barmby,
A. Baumbach, K. L. Berry, F. Biscani, M. Boquien, K. A. Bostroem, L. G. Bouma,
G. B. Brammer, E. M. Bray, H. Breytenbach, H. Buddelmeijer, D. J. Burke,
G. Calderone, J. L. Cano Rodríguez, M. Cara, J. V. M. Cardoso, S. Cheedella,
Y. Copin, L. Corrales, D. Crichton, D. D’Avella, C. Deil, É. Depagne, J. P. Di-
etrich, A. Donath, M. Droettboom, N. Earl, T. Erben, S. Fabbro, L. A. Ferreira,
T. Finethy, R. T. Fox, L. H. Garrison, S. L. J. Gibbons, D. A. Goldstein, R. Gom-
mers, J. P. Greco, P. Greenfield, A. M. Groener, F. Grollier, A. Hagen, P. Hirst,
D. Homeier, A. J. Horton, G. Hosseinzadeh, L. Hu, J. S. Hunkeler, Ž. Ivezić,
A. Jain, T. Jenness, G. Kanarek, S. Kendrew, N. S. Kern, W. E. Kerzendorf,
A. Khvalko, J. King, D. Kirkby, A. M. Kulkarni, A. Kumar, A. Lee, D. Lenz, S. P.
Littlefair, Z. Ma, D. M. Macleod, M. Mastropietro, C. McCully, S. Montagnac,
B. M. Morris, M. Mueller, S. J. Mumford, D. Muna, N. A. Murphy, S. Nelson,
G. H. Nguyen, J. P. Ninan, M. Nöthe, S. Ogaz, S. Oh, J. K. Parejko, N. Par-
ley, S. Pascual, R. Patil, A. A. Patil, A. L. Plunkett, J. X. Prochaska, T. Rastogi,
V. Reddy Janga, J. Sabater, P. Sakurikar, M. Seifert, L. E. Sherbert, H. Sherwood-
Taylor, A. Y. Shih, J. Sick, M. T. Silbiger, S. Singanamalla, L. P. Singer, P. H.
Sladen, K. A. Sooley, S. Sornarajah, O. Streicher, P. Teuben, S. W. Thomas, G. R.
Tremblay, J. E. H. Turner, V. Terrón, M. H. van Kerkwijk, A. de la Vega, L. L.
Watkins, B. A. Weaver, J. B. Whitmore, J. Woillez, V. Zabalza, and Astropy
Contributors. The Astropy Project: Building an Open-science Project and Status
of the v2.0 Core Package. , 156(3):123, Sep 2018.

[158] Vincent Arsigny, Olivier Commowick, Nicholas Ayache, and Xavier Pennec. A fast
and log-euclidean polyaffine framework for locally linear registration. J. Math.
Imaging Vis., 33(2):222–238, February 2009.

[159] Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. Polyrigid and polyaffine
transformations: A new class of diffeomorphisms for locally rigid or affine regis-
tration. In Randy E. Ellis and Terry M. Peters, editors, Medical Image Computing
and Computer-Assisted Intervention - MICCAI 2003, pages 829–837, Berlin, Hei-
delberg, 2003. Springer Berlin Heidelberg.

[160] George E. P. Box. Science and statistics. Journal of the American Statistical
Association, 71(356):791–799, 1976.

[161] Harald Cramér. Mathematical Methods of Statistics. Princeton University Press,
1946.

[162] C. Radhakrishna Rao. Information and the Accuracy Attainable in the Estimation
of Statistical Parameters, pages 235–247. Springer New York, New York, NY, 1992.

140



[163] Nicolas Boumal, Bamdev Mishra, P.-A. Absil, and Rodolphe Sepulchre. Manopt,
a matlab toolbox for optimization on manifolds. Journal of Machine Learning
Research, 15:1455–1459, 2014.

[164] James Townsend, Niklas Koep, and Sebastian Weichwald. Pymanopt: A python
toolbox for optimization on manifolds using automatic differentiation. Journal of
Machine Learning Research, 17(137):1–5, 2016.

[165] Mark Girolami and Ben Calderhead. Riemann manifold langevin and hamiltonian
monte carlo methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 73(2):123–214, 2011.

[166] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural Comput.,
10(2):251–276, February 1998.

[167] Matthew D. Hoffman and Andrew Gelman. The no-u-turn sampler: Adaptively
setting path lengths in hamiltonian monte carlo. Journal of Machine Learning
Research, 15:1593–1623, 2014.

[168] M. J. Betancourt. Generalizing the no-u-turn sampler to riemannian manifolds,
2013.

[169] John T. Kent. The fisher-bingham distribution on the sphere. Journal of the Royal
Statistical Society. Series B (Methodological), 44(1):71–80, 1982.

[170] David E. Tyler. Statistical analysis for the angular central gaussian distribution
on the sphere. Biometrika, 74(3):579–589, 1987.

[171] Pierre Fillard, Cyril Poupon, and Jean-François Mangin. A novel global tractog-
raphy algorithm based on an adaptive spin glass model. In Guang-Zhong Yang,
David Hawkes, Daniel Rueckert, Alison Noble, and Chris Taylor, editors, Medi-
cal Image Computing and Computer-Assisted Intervention – MICCAI 2009, pages
927–934, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[172] Adam Thompson and Chris J. Newburn. Gpudirect storage: A direct path between
storage and gpu memory. https://devblogs.nvidia.com/gpudirect-storage/,
2019.

[173] Anton Bardera, Miquel Feixas, and Imma Boada. Normalized similarity measures
for medical image registration. Proc SPIE, 5370, 05 2004.

[174] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever. Mutual-information-based
registration of medical images: a survey. IEEE Transactions on Medical Imaging,
22(8):986–1004, Aug 2003.

[175] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J.
Hawkes. Nonrigid registration using free-form deformations: application to breast
mr images. IEEE Transactions on Medical Imaging, 18(8):712–721, Aug 1999.

[176] M. Huysegoms. Using multiple gpus to reconstruct the brain from histological
images. NVIDIA GPU Technology Conference, 2015.

[177] J. N. Sarvaiya, S. Patnaik, and S. Bombaywala. Image registration by template
matching using normalized cross-correlation. In 2009 International Conference
on Advances in Computing, Control, and Telecommunication Technologies, pages
819–822, Dec 2009.

141

https://devblogs.nvidia.com/gpudirect-storage/


[178] Brian B. Avants, Nicholas J. Tustison, Gang Song, Philip A. Cook, Arno Klein,
and James C. Gee. A reproducible evaluation of ants similarity metric performance
in brain image registration. NeuroImage, 54(3):2033 – 2044, 2011.

[179] Utkarsh Ayachit. The ParaView Guide: A Parallel Visualization Application.
Kitware, Inc., USA, 2015.

[180] Hanchuan Peng, Zongcai Ruan, Fuhui Long, Julie Simpson, and Eugene Myers.
V3d enables real-time 3d visualization and quantitative analysis of large-scale
biological image data sets. Nature biotechnology, 28:348–53, 03 2010.

[181] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New
York, NY, USA, second edition, 2006.

142


	The challenge of investigating the human brain's nerve fiber tracts
	Foundations of Three-Dimensional Polarized Light Imaging
	Polarization and birefringence
	Optical properties of brain tissue
	Preparation of histological brain sections
	Polarimetric setups
	The biophysical model of 3D-PLI
	Established signal analysis techniques
	A review of existing approaches for the analysis of birefringence experiments from oblique views

	Foundations of Bayesian data analysis
	Parameter estimation based on Bayes' theorem
	Uncertainty quantification

	A Least Squares Approach for the derivation of Nerve Fiber Orientations
	The Robust Orientation Fitting via Least Squares algorithm
	Evaluation for synthetic data
	Evaluation for experimental data
	Development of a high performance implementation of the fitting algorithm

	Maximum A Posteriori Estimation of Nerve Fiber Orientations
	The Posterior Orientation Solver
	Evaluation on synthetic data
	Evaluation on experimental data

	Uncertainty estimation in 3D-PLI
	Planar 3D-PLI measurement
	Theory and implementation
	Validation on synthetic data
	Validation on experimental data

	Oblique 3D-PLI measurement
	Theory and implementation
	Validation on synthetic data
	Validation on experimental data


	Measurements from Oblique Views in Microscopic 3D-PLI
	Experimental characterization of the LMP3D
	Application of the Bayesian framework at the microscale
	Validation of 3D-PLI fiber orientations based on TPFM measurements

	Conclusion and Outlook
	Acknowledgments
	Appendix Mathematical derivations for the ROFL algorithm
	Rotation matrices of the tilted measurements
	Error propagation from camera noise to the normalized light intensity
	Gradient of the objective function

	Appendix Volumetric reconstruction of the brain sections
	Appendix System configuration for the runtime benchmarks
	Appendix Optimization experiments for the LOriE algorithm
	Appendix Complementary data
	List of Symbols
	List of Abbreviations
	List of Figures
	List of Tables
	References

