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1 Introduction

1.1 Overview, Aim and Motivation

Dealing with the underlying risk factors of asset classes is compulsory for understanding what

the "real" performance drivers of those assets are. Setting up a framework based on this analy-

sis is a subsequent step that should achieve better risk management/diversi�cation in portfolio

construction.

This study wants to shed some light on the topics of underlying risk factors on the one hand

and portfolio construction based on risk factors on the other. The former is done in form of a

time-sensitive Kalman smoother approach for precious metals. The aim is to understand how

di�erent external factors are related to precious metals, how those sensitivities change over time

and how the precious metals di�er regarding those factor sensitivities. The portfolio construction

analysis on the other hand is done by two studies that analyze a modi�ed version of a factor

risk parity portfolio construction process. The aim is to understand the solution set and how

the solution changes when speci�c constraints are set. Furthermore, the analysis also covers

an exchange of the standard deviation as the risk measure in the third paper. Volatility short

positions as a skewed and fat tailed time series are included in this context as well.

1.1.1 Risk factors

Multifactor models can be classi�ed into three di�erent types: macroeconomic, fundamental and

statistical factor models. The �rst uses observable factors such as in�ation or industrial produc-

tion, the second focuses on security speci�c factors such as book-to-market and the �nal type

derives the factor values directly from the statistics of the asset returns. Connor (1995) compare

the three approaches by applying the model to the US equity market.

For a macroeconomic multifactor model, the loadings to each factor such as in�ation can

be estimated via a simple regression. Chen et al. (1986) describe the popular Chen, Roll and

Ross model which explains equity returns mostly via changes in industrial production, the risk

premium, twists in the yield curve and to a lesser extent through unexpected in�ation.

In a fundamental factor model, observable security speci�c factors are considered. A classical

example is the Fama-French three factor model. Fama and French (1993) identify three factors

for equities, the overall market factor as well as the factors related to �rm size as well as book-
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to-market ratio. In their work they also �nd the two factors of maturity and default risk relating

to bond price changes.

Finally, statistical models usually have non-observable factors as well as loadings. A typical

approach is to take a statistical method such as the Principal Component Analysis (PCA) to

determine both. As mentioned above, this approach is chosen in a modi�ed version of a factor

risk parity approach to set up the model in the second and third paper.

The models mentioned above, although popular, assume that the factor loadings are constant

over time. Although this simpli�es the calculations, the assumption can be challenged as dynam-

ics in �nancial markets constantly change. That is the reason why models such as the Capital

Asset Pricing Model (CAPM) have been amended to account for time-variation of the factor

loading. The conditional CAPM as for example described in Jagannathan and Wang (1996) is

an example that allows the factor loading for the market factor to change over time. In gen-

eral, the question arises on how to properly determine the changing loadings in the model. The

�rst paper will discuss the Kalman smoother approach and apply that concept to the changing

sensitivities of speci�c, macroeconomic factors regarding precious metals returns.

1.1.2 Factor based portfolio construction and Risk Parity

From the classical naive 1/N-diversi�cation approaches to Markowitz and the Fama-French

model, portfolio construction has become increasingly sophisticated. Factor based portfolio con-

struction, even though not a new investment style, has seen a signi�cant increase in interest

in research literature while a large number of factors o�er a lot of opportunities for research

analyses. Cazalet and Roncalli (2014) speak of a "zoo of factors" where investors can get easily

lost.

A di�erent topic is the surge of risk parity as an investment concept that has become very

popular especially after the �nancial crisis in 2008/09. As described in Chaves et al. (2011), the

idea is to not set up an equity/bond portfolio with standard 60%/40% weights as the equity

risk would in this scenario dominate the portfolio returns due to higher volatility, but to set up

a portfolio where each asset has the same risk contribution to total risk. Especially during the

�nancial crisis, the positive return of the "safe haven bonds" did not su�ciently o�set the huge

losses on the equity side in many investor portfolios.

Combining factor based portfolio construction on the one hand and risk parity on the other
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leads to the concept of factor risk parity as for example described in Roncalli and Weisang (2012)

or Kind (2013). An intuitive motivation for this approach is given in Bhansali et al. (2012) as

they argue: "Having diversi�cation in risk contribution from assets is generally not the same as

having diversi�cation in the primitive sources of risk underlying asset returns. An easy way to

understand this argument is to think of assets as foods and risk factors as nutrients. While the

body consumes foods, it actually needs the underlying nutrients to build bones and muscles. A

healthy diet is not necessarily one that contains a diversi�ed basket of foods but a diversi�ed

basket of nutrients". Continuing this illustration, the general idea in a classical factor risk parity

approach is to diversify over all identi�ed nutrients. The second and third paper will adjust this

standard factor risk parity model by focusing on the important nutrients only, thereby adding

the freedom on the selection of the food.

1.1.3 Outline and Contribution

This thesis consists of three papers that can each be taken as a separate study: "Analyzing

Precious Metals Returns using a Kalman Smoother Approach" (P1), "Factor Risk Parity with

Portfolio Weight Constraints" (P2) and "Tail Driven Factor Risk Parity with Volatility Invest-

ments" (P3). They are covering the topic of risk factors as well as factor risk parity investment

strategies. The order is chosen to describe precious metals returns and their relationship to

speci�c, pre-determined factors in the �rst paper, showing that sensitivities of asset returns to

speci�c factors can signi�cantly change over time. Additionally, it illustrates similarities but also

di�erences between the returns of gold, silver, platinum and palladium.

A modi�ed version of a risk-parity concept in a multi-asset framework is set up in the second

and third paper, which are a joint work with Ste�en Möllenho�. A rolling-window approach

for the PCA acknowledges the time sensitivity of asset returns to the main factors. In the case

of precious metals, the changing time sensitivity has already been illustrated in the �rst study.

The principal components are taken and portfolios are determined that have an "equal risk con-

tribution" regarding those factors. The classical factor risk parity model, however, is altered

in a way that it lets the less important components of the PCA �oat for the bene�t of adding

additional portfolio constraints. The analysis is performed by using the standard deviation in

the second paper as well as the expected shortfall as a risk measure in the third paper. The

following subsections will give a more detailed overview on each study including its contribution

to existing literature while adding additional and related research.
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1.1.3.1 Analyzing Precious Metal Returns using a Kalman Smoother Approach

The �rst study analyzes the returns of precious metals in a time-varying context. As a typical

asset class in a well-diversi�ed multi-asset portfolio it is analyzed how precious metals returns

are a�ected by speci�c pre-determined factors such as the Consumer Price Index (CPI) or the

industrial production. As the analysis of the returns is performed in a time-varying setting, the

study relates to some extend to the second and third paper in which a PCA with a rolling-window

approach is used to determine the main risk drivers for a multi-asset portfolio.

After some econometric tests, which will already hint at the importance of using a time-

varying approach, a Kalman smoother is used to identify sensitivities between the factors of

CPI, Producer Price Index (PPI), industrial production, volatility, dollar, real and nominal in-

terest rates as well as the S&P500 to the precious metals of gold, silver, platinum and palladium.

The Kalman smoother approach is chosen as it allows to continuously analyze and describe the

sensitivities while at the same time using all the available data points to determine a sensitivity

at time t. A majority of the research has focused on the relationship between gold and in�ation

and the question whether gold is a suitable investment to hedge in�ation. Supporting the view of

Lucey et al. (2017) or Ghosh et al. (2004) who in general �nd a positive answer to that question,

this analysis also �nds a positive relationship between gold and the CPI which is taken as an

approximation for in�ation.

The study, however, deals with further questions such as sensitivities of di�erent factors to

also silver, platinum and palladium and not only gold alone. Thereby it for example �nds that

gold also exhibits a positive sensitivity to equity volatility in the �rst part of the data set which,

however, decreases over time until it is practically non-existent around 2015. Similar to Akram

(2009), a negative relationship between the value of the dollar and the price of precious metals

are found. Possible economic interpretations are given.

Finally a Dynamic Time Warping (DTW) approach is used to compare the normalized sen-

sitivities among each other. A factor is taken and the sensitivities versus two metals compared.

The DTW distances are determined whereby lower values mean a higher degree of similarity

between the sensitivity of two di�erent precious metals regarding a speci�c factor. The results

indicate that, on average, platinum and palladium react similarly towards most factors. A simi-

lar pattern can additionally be observed between gold and silver whereas gold o�ers a di�erent

"sensitivity structure" than for example palladium.
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The study adds to existing research on precious metal price movements as for example con-

ducted by Batten et al. (2014), Batten et al. (2010), Golosnoy and Rossen (2014) or Sari et al.

(2010). The main bene�t is the Kalman smoother combined with a DTW approach applied to

the four main precious metals which leads to a direct sensitivity analysis for each metal regarding

a speci�c factor. Furthermore, a direct comparison between two precious metals can be made

for speci�c factors.

Due to the large amount of (macroeconomic) factors and assets, an analysis of sensitivities

of other asset classes from a multi-asset setup is not covered in this study. To close the gap to

the PCA that is used in a moving time window approach in the second and third paper, a quick

overview of other asset classes is given for the rest of this section.

Additionally to the work mentioned directly in the study, Byrne et al. (2013) use a Factor

Augmented Vector Auto Regression (FAVAR) approach to also stress the importance of interest

rates on commodity prices.

For equities, researchers have mainly identi�ed in�ation and money supply as having a sig-

ni�cant e�ect on equity prices. In�uence of other macroeconomic factors are more di�cult

to identify. Flannery and Protopapadakis (2002) �nd the CPI and PPI to a�ect the market

portfolios return, whereas balance of trades, employment and housing starts a�ect the returns'

conditional volatility. Monetary aggregate is supposed to a�ect the return as well as the condi-

tional volatility. Using a co-integration approach, Nasseh and Strauss (2000) �nd a co-integrating

relationship between stock price levels in some European countries and industrial production,

business surveys of manufacturing orders, short- and long-term interest rates as well as foreign

stock prices.

Figure 1 illustrates the sensitivity analysis of the percentage changes of the S&P500 to the

CPI as well as the real interest rates when the Kalman smoother approach is used. The �gure

contains the development of the sensitivity as well as the 95% upper- and lower-bound con�dence

interval which are plotted as dotted lines. This procedure is identical to the one in the �rst

paper, with the only di�erence in using a stock market index in exchange of precious metals.

Even though this is just a very brief analysis of the sensitivities of the S&P500, it already

indicates how those sensitivities can change over time and how the CPI or the real interest

rates are moving relative to the changes in the S&P500. The relationship between stock price

movements and in�ation, interpreted as changes in the CPI, is negative in the �rst part of the time
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period which overlaps with results found in Flannery and Protopapadakis (2002) or Geske and

Roll (1983). As mentioned there: "... stock returns are negatively related to contemporaneous

changes in expected in�ation because they signal a chain of events which results in a higher

rate of monetary expansion." The results from Figure 1, however, are mixed when recent equity

returns are considered. This might be interpreted to some extend by recent events such as the

�nancial crisis or the "dot.com" crash as those events could overshadow other factors.
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Figure 1: Sensitivity of S&P500 to the CPI and IR using the Kalman smoother.

Focusing on bond price movements, Diebold et al. (2006) take macroeconomic variables such

as real activity, in�ation and stance of monetary policy on the one hand and yield curve factors

such as level, slope, and curvature on the other. They �nd "strong evidence of macroeconomic

e�ects on the future yield curve and somewhat weaker evidence of yield curve e�ects on future

macroeconomic developments". Chen and Maringer (2011) use a multi-factor smooth transition

regression model to analyze returns of corporate bond indices during two di�erent regimes of

strong and weak economic periods. They �nd that "the sensitivities of default spread, dividend

yield and excess stock index return are signi�cant and more negative (or statistically equal) in

strong economic regimes than in weak regimes". The dependence of the results on the di�erent

regimes again stress the importance of using a time-sensitive analysis.

1.1.3.2 Factor Risk Parity and Portfolio Weight Constraints Risk Parity is a popular

investment topic that weights assets in a portfolio in a way that their contribution to the total

portfolio risk is equal for all positions. Factor risk parity enhances this concept by requiring risk

contributions for the underlying risk factors to be equal instead of considering the risk of assets

itself. This study modi�es this concept by focusing on the �rst two principal components and

letting the residual component weights �oat, thereby having the freedom to further restrict the

portfolio weights in the asset space as the solution set increases. The second and third paper

take advantage of this bene�t to allow only long positions as many investors are prohibited from

taking short positions or leverage. The factors are determined by using a PCA while using a
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rolling window approach on the data set to acknowledge changing sensitivities described for ex-

ample for the case of precious metals in the �rst study.

The solution to the above mentioned problem with the added restrictions is not a single

portfolio but a set of portfolios which can be described by a polytope. To ensure su�ciently

high explanation levels of the �rst two principal components relative to the total risk, minimum

explanation levels are added as a restriction. Given the resulting solution set, the study focuses

on two portfolios within that set that minimize the in-the-sample variance and the portfolio that

maximizes in-the-sample diversi�cation. A portfolio is constructed thereby that either minimizes

the variance or maximizes diversi�cation with the additional bene�t that the risk contributions

regarding the �rst two main risk drivers, determined through a PCA, are equal. A data set

reaching back to 1998 and 15 di�erent assets are taken to determine those portfolios and back-

test them against some naive and heuristic allocations.

The study contributes to existing research as for example conducted by Bhansali et al. (2012),

Lohre et al. (2012), Kind (2013), Bernardi et al. (2018), Costa and Kwon (2019) or Deguest et al.

(2013). Even though the setup is similar to Meucci (2009), the main advantage of the model

proposed here is the �exible consideration of di�erent constraints for a di�erent number of asset

classes while considering the risk contributions of the core underlying risks. Meucci (2009), on the

contrary, allows constraints which lead to only approximately equal risk contributions without

describing the solution as implemented in our model.

1.1.3.3 Tail driven Factor Risk Parity with Volatility Investments The third paper

deals with the above-mentioned model while exchanging the risk measure of the standard devi-

ation by the expected shortfall. The standard deviation is often considered a bad choice in the

light of fat tails and skewed distributions. When exchanging the risk measure, the solution does

not change compared to the results in the second paper P2 if some assumptions on the return

distributions of the underlying assets are made. In the general case, however, this might not

be true and numerical calculations are needed to determine the optimal portfolios. By using a

downside risk measure, the study follows research of Boudt et al. (2008), Mausser and Romanko

(2018) or Tasche (2002) who stress the importance of non-symmetrical risk measures that focus

on downside risks.

Other enhancements of the model in the third paper P3 include the introduction of unfunded

positions as for example future or forward positions. That allows the introduction of volatility
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short positions, which in recent years have delivered attractive returns but which also exhibit

tailed, non-symmetric return pro�les. That, however, again motivates the use of the expected

shortfall as the risk measure.



2 Analyzing Precious Metals Returns using a Kalman

Smoother Approach

2.1 Introduction

2.1.1 Overview

Precious metals such as gold or silver are, next to the use as jewellery or in industrial processes,

a popular commodity and investment vehicle. It is therefore important to understand the sensi-

tivities of di�erent (external) factors to the price of those metals. The most commonly analyzed

relationship is gold to in�ation as investigated among others in Beckmann and Czudaj (2013).

Batten et al. (2014) focus on a time varying approach via Kalman �lter with an additional

analysis of the determinants of that relationship. Another common research topic is the role of

precious metals serving as a "safe haven" as for example discussed in Li and Lucey (2017) or the

analysis of precious metals price volatilities as done by Batten et al. (2010).

For risk management purposes or setting up an investment strategy that contains precious

metals it is important though to understand what drives the price of not only gold but also silver,

platinum or palladium. It is also key to understand whether the sensitivities of speci�c factors

such as in�ation, industrial production or US-Dollar movements to precious metals are perma-

nent or changing over time and how a speci�c factor impacts the price of one precious metal

compared to another one. A time-varying approach in form of a Kalman smoother is therefore

chosen to analyze the sensitivities based on quarterly data since 1969. Finally, DTW is used to

better understand how di�erent or similar the impact of a factor to two di�erent precious metals

is. A precious metal investor who would like to build up a speci�c factor exposure thereby gets

an indication whether one precious metal can easily be exchanged by another. Examples will be

given that illustrate di�erent behavior of two portfolios of two precious metals, one with low and

one with high DTW distances, when a factor is "under stress".

The range of factors considered in this chapter is larger than in some other work. Investors

are provided with factors that illustrate stable sensitivities for precious metals such as gold to

CPI as for example also done in Batten et al. (2014). The results presented below �nd similar

sensitivities when a more robust Kalman smoother approach and a longer data set is used. Addi-

tionally, the chapter contributes to other research such as Batten et al. (2010) who conclude that

precious metals are too distinct to be considered a single asset class: by focusing on individual
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factors and their in�uence over time on precious metal prices, similarities and di�erences between

precious metals can be analyzed in detail. The results for the relationship of precious metals to

equity markets also partly overlap with Klein (2017) who use a dynamic correlation approach

and thereby compare di�erent precious metals when stock indices such as the S&P500 or DAX

crash.

The use of a Kalman smoother, however, contains the problem of describing the model pa-

rameters properly, which will brie�y be discussed in Section 2.2.1.1. DTW is �nally applied to

identify and summarize the di�erences/similarities between the precious metals. The explanatory

power is superior to a classical Euclidian distance metric as delays of response or di�erent reac-

tion times of the sensitivities are taken into account. Results indicate that exchanging platinum

for palladium, for example, should still leave investors with a similar exposure to di�erent factors.

Chapter 2 is organized as follows: Section 2.1.2 gives a brief overview of the current litera-

ture, before Section 2.2 describes the Kalman �lter and smoother approach as well as brie�y the

concept of Dynamic Time Warping. Section 2.3 explains the data for the precious metals as well

as the factors including some econometric characteristics. The following Section 2.4 covers the

empirical part that illustrates the results for the co-integration, the Kalman smoother and DTW

approach as well as consequences that arise for investors.

2.1.2 Literature

The mathematical tools applied in this work mainly consist of basic time series analysis and the

Kalman �lter/smoother as well as the DTW approach. The former consists of co-integration

as for example vividly explained in Murray (1994) and later extended by Smith and Harrison

(1995). The basic idea of the Kalman �lter has been developed in 1960 and presented in Kalman

(1960), whereas the idea of the Rauch�Tung�Striebel (RTS) smoother which is later applied in

this work has only been pubished 5 years later in Rauch et al. (1965). As the methods turned

out to be extremely useful, their use has been extended from the original idea in physics to all

di�erent topics such as the explanation of time series movements as done for example in the

work of Batten et al. (2014). The application of the DTW approach can for example be found

in Ratanamahatana and Keogh (2004) or Müller (2007).

Metal prices have been analyzed among others in Golosnoy and Rossen (2014). Next to

the precious metals they also take non-ferrous metals into consideration and try to identify two
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factors that explain a majority of the return variation. For the 100 year monthly dataset they

also try to determine the correlation of the factors to common macroeconomic fundamentals.

Equivalently to previous results for the one-factor model, they �nd that "the full sample correla-

tions of the single common factor with the U.S. IP (industrial production), oil, S&P500 and CPI

are signi�cantly positive, whereas they are signi�cantly negative with the interest rates." For the

second subsample of their dataset, which approximately overlaps with the data in this work, they

�nd that "the second factor... seems to be a good proxy for the monetary indicators such as CPI."

Batten et al. (2010) try to identify common factors which explain the return volatility in

precious metals. They �nd limited evidence of the same macroeconomic factors jointly in�uenc-

ing the volatility processes of the commodity price time series examined and conclude that gold,

silver, platinum and palladium are too distinct to be considered a single asset class. This result

will later be supported by the RTS smoother analysis in this study.

Akram (2009) focus on commodities in general and use a Vector Auto-Regressive (VAR)

model to conclude that shocks to the real interest rate and the dollar real exchange rate con-

tribute signi�cantly to movements in commodity prices.

Focusing on the popular gold to in�ation topic, Lucey et al. (2017) analyze the time-varying

relationship between gold prices and in�ation in di�erent countries and �nd a time varying

co-integration between gold and in�ation in nearly all time series. They also identify a break

between gold and o�cial in�ation in the US in the mid 1990's which seems to be less clear when

the in�ation of UK or Japan is used. Especially for Japan they �nd deviating results, concluding

that gold prices are not co-integrated with the in�ation in Japan.

Ghosh et al. (2004) also focus on the gold to in�ation relationship and in this context dis-

tinguish between short-term and long-term movements of the price of gold. Using co-integration

regression techniques, they �nd that gold can be regarded as a long run in�ation hedge, however

they also �nd that the nominal price of gold is dominated by short-term in�uences.

Other research supporting that gold can be seen as a hedge against in�ation is found in Mu-

rach (2019) or Worthington and Pahlavani (2007). Latter �nd a stable long-term relationship

between the price of gold and the rate of in�ation after accounting for structural breaks in the

time series. The main structural breaks relate to the gold market moving to purely open market

operations as well as the acceleration of in�ation in the 1970s. Murach (2019) stress the positive
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long-run relationship between excess global liquidity and the real gold price, concluding that

in�ation fears driven by excess liquidity might be the cause for a higher demand of gold.

Sari et al. (2010) take gold, silver, platinum and palladium together with oil and the Euro to

USD exchange rate and examine the co-movements and information transmission between those

time series. They �nd some weak long-run equilibrium relationship while, for the short term,

they argue that precious metals react strongly to the prices of the other precious metals and

exchange rate.

By using di�erent factors and precious metals combined with the Kalman smoother and

DTW approach, this work expands the research mentioned above. Using a smoother is similar

to the �lter approach of Batten et al. (2014) while bene�ting from the usage of all data points

at every point of time. This approach also covers unique characteristics of price changes of the

metals as for example done in Bräuninger et al. (2013), but delivers additional insight by using

a time-varying smoother combined with the DTW approach. Finally, it extends the sensitivity

analysis of factors to di�erent precious metals and by that mostly supports the results found

in Lucey et al. (2017), Ghosh et al. (2004) or Cohen and Qadan (2010). The use of di�erent

factors and precious metals, however, expands their results for the bene�t of better identifying

di�erences and similarities between price changes in precious metals. DTW distances between

the sensitivities further illustrate the �ndings.

2.2 Mathematical Methods

This section brie�y describes the mathematical methods used to analyze the time series. The

standard approaches of the Johansen method for co-integration as well as Augmented Dickey-

Fuller (ADF) or Kwiatkowski�Phillips�Schmidt�Shin (KPSS) tests are omitted and the reader

is referred to standard econometrics literature instead. The Kalman �lter and smoother as well

as the concept of Dynamic Time Warping will be explained in more detail in the sequel.

2.2.1 The Kalman Filter

The basic concept of the Kalman Filter has been developed some time ago by Kalman (1960).

One of the �rst applications at that time was the trajectory estimation and control problem for

the Apollo project at NASA. This is nowadays just one typical application of many while the

approach since then has found much appeal among di�erent practical problems (see Grewal and

Andrews (2001), Gelb (1974) or Maybeck (1982)). The basic idea of the Kalman Filter is to
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e�ciently estimate the unobservable state of a process by recursively taking new observations

into account. Applied to this work, the state of the process is the relationship between the

explanatory variables (e.g. in�ation) and the variable being explained (asset price movement),

whereas the observations are the historical price changes.

After using the Kalman �lter, a RTS-smoother as presented in Rauch et al. (1965) is used to

take all the data points at time t into account (instead of just using information available up to

time t). The next subsection will therefore give a brief overview of the mathematical description

of the Kalman �lter and smoother before they are implemented in Section 2.4.

2.2.1.1 An introduction to the Kalman Filter As mentioned in Section 2.2.1, the aim

is to estimate the state xk of a discrete-time (controlled) process which is given by a linear

stochastic di�erence equation (SDE)

xt = Axt−1 +But−1 + wt−1 (1)

with xt ∈ Rn, matrix A ∈ Rn×n and optionally ut ∈ Rl with matrix B ∈ Rn×l. For

this analysis, the term including B and ut are dropped and the matrix A will later be chosen

to be the identity matrix. wt is the process noise and assumed to be a random variable that is

normally distributed with mean zero and �xed covariance matrix Σ. The measurement relates

via

zt = Htxt + vt (2)

with zt ∈ Rm and matrix Ht ∈ Rm×n. The relationship between the state xt and the mea-

surement zt is therefore assumed to be of linear nature. Similar to equation (1), vt denotes the

measurement noise and is assumed to be a normally distributed random variable with zero mean

and covariance Γ. The noise terms vt and wt are supposed to be independent.

In our analysis, the state xt will be the sensitivity in the change of the price of a precious

metal, given observations in the change of factors of zt. The equations (1) and (2) above will

therefore be of the form:

Sensitivitiest = Sensitivitiest−1 + noiset−1 (3)

for the sensitivities and

ReturnMetalt =
∑

Sensitivity(i)t ·ReturnFactor(i)t + c+ noiset (4)
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with a constant c. The constant appears by setting the last entry of matrix Ht to 1. The price

change of the metal is therefore the sum of the sensitivity of the metal to a factor multiplied by

the change in the factor plus a constant and noise.

A typical �rst question to ask is whether the price level of the commodity or its relative

change, the �rst di�erence, is used in this context. Batten et al. (2014) focus on the price level

of the metals, stating that an advantage of the Kalman �lter is the robustness to non-stationary

data. However, as stationary data, like for example given in the form of the volatility time series,

will also be analyzed next to integrated time series of order one (I(1)), di�erenced data instead

of price levels will later be used for the Kalman smoother if the order of integration is greater

than zero.

As the sensitivities are not directly observable, they have to be estimated. Let therefore

x̂t|t−1 be the estimation of the sensitivity at time t given the information until t − 1, meaning

x̂t|t−1 = E(xt|z1, ..., zt−1). As these are estimates, Pt|t−1 and Pt|t describe equivalently the co-

variances, meaning Pt|t−1 = E((xt − x̂t|t−1)(xt − x̂t|t−1)T ). The algorithm for the Kalman �lter

tries to determine the state estimates while minimizing the estimation error covariance Pt|t. It

can be described by two simple steps: 1. prediction and 2. measurement update. Algorithm 1

describes all the necessary computations (see for example Simon and Shmaliy (2013)).

Algorithm 1 Classical Kalman Filter algorithm

input : Process noise covariance matrix Σ

input : Measurement covariance matrix Γ

input : Inital sensitivity estimate x̂0|0

input : Inital covariance estimate P0|0

foreach t ∈ {1, 2, .., r} . For all r observations

do
1. x̂t|t−1 = Ax̂t−1|t−1 . prediction of sensitivity

2. Pt|t−1 = APt−1|t−1A
T + Σ . prediction estimation error covariance

3. Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t + Γ)−1 . Calculation of Kalman gain

4. x̂t|t = x̂t|t−1 +Kt(zt −Htx̂t|t−1) . update of sensitivity

5. Pt|t = Pt|t−1KtHtPt|t−1 . update estimation error covariance

end
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Lines 1 and 2 within the 'do'-part of the algorithm represent the prediction step, lines 3 to

5 are the update steps. This is recursively computed for all the r available observations. The

�rst equation in the prediction step is directly determined through equation 1. The second one

follows from the de�nition of Pt|t−1 = E((xt − x̂t|t−1)(xt − x̂t|t−1)T ) and combining the �rst

prediction step with equation (1). Note that for those calculations, the precondition of uncorre-

lated noise terms has to hold (see for example Faragher et al. (2012) for the detailed calculations).

Line 4 represents the �rst update step. The new estimated sensitivity x̂t|t is a mix of the

newly predicted sensitivity x̂t|t−1, adjusted by the term Kt(zt−Htx̂t|t−1). (zt−Htx̂t|t−1) is the

so called measurement innovation or residual term (see Welch and Bishop (1995)), calculating

how much the actual observation zt is di�erent from the prediction Htx̂t|t−1. Kt is called the

"Kalman gain" that determines how much the residual term is to be weighted for the update

step. The lower the value, the more the prediction of the sensitivity in line 1 is trusted and

vice versa. The Kalman gain is determined by minimizing the a posteriori error covariance

Pt|t = E((xt − x̂t|t)(xt − x̂t|t)T ). This is done by using the update of the sensitivity equation

(line 4 in Algorithm 1), calculating the expectation and setting the derivative to zero (see e.g.

Welch and Bishop (1995) or Brown et al. (1992)).

The �nal question, which from a practical point of view is probably the most important

one, is the choice of the input parameters, namely the initial sensitivity and covariance estimate

as well as the noise covariances Σ and Γ. Naik et al. (2015) discuss those aspects, including

some readily available algorithms such as the Expectation Maximisation algorithm (EM). That

and other algorithms, however, are not further discussed in this analysis. It is probably more

important that setting those input parameters to "reasonable" values when running the Kalman

�lter. These include:

1. Inital sensitivity estimate x̂0|0 is set to zero in the absence of further information about

any sensitivities.

2. The importance of the choice of the initial covariance estimate should not be underestimated

(Naik et al. (2015)). Setting it to near zero would mean that the initial sensitivity estimate

of zero is "certain". The value should therefore be not too small. This is even more

important as the RTS smoother will later be applied.

3. In general, the measurement noise is determined by the physical properties of the mea-

surement device, which in this analysis is not given. Also, the process noise covariance Σ

should not be chosen "too big" (in comparison to P ), as this would suggest that the model
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does not predict the sensitivity well.

What does this mean in this case? In our equation 1 with an identity matrix A, a new sensitivity

is calculated as the value from the previous quarter plus noise, as quarterly relative price changes

will be taken. The question would therefore be how much we expect the sensitivity to change

from one quarter to the next. According to Naik et al. (2015), the basic procedure is to start

with values close to zero for both covariances and gradually increase the values. For the case of

the analysis of multiple factors, the covariance matrix will be chosen with values on the diagonal

only, meaning that the sensitivity parameters are independent from each other. The use of the

Kalman Filter to estimate a beta is similar to a rolling window regression approach. The Kalman

�lter, however, has some advantages though: the choice of the parameters is seen as superior to

an arbitrary choice of the window length for the rolling regression method. The �lter should also

better track a rolling beta as for example illustrated for some numerical examples in Roncalli

and Teiletche (2007).

2.2.1.2 Rauch-Tung-Striebel Smoother The basic idea of the Kalman smoother is to

take not only information until time t into consideration, but to use the whole spectrum of

observations for every point in time. As the purpose is to explain the relationship of precious

metals to speci�c factors, the use of all data points at any time via a smoother is a reasonable

approach. If the Kalman �lter is used for predicting values, it is crucial to not take future values

into consideration as that would distort the prediction. In this context, the smoother is used in a

similar way as done for example in Chen and Tindall (2013) or Swinkels and Van Der Sluis (2002).

The RTS smoother discussed here has already been presented in 1965 in Rauch et al. (1965).

It is a so-called �xed-interval smoother that starts by using a classical Kalman �lter as discussed

above and then running through the time series from the end back to the �rst observation and

adjusting the estimates accordingly. The procedure is in detail described in Algorithm 2 (see

Simon and Shmaliy (2013)).

Keep in mind that Pi+1|i = APi|iA
T + Σ and x̂i+1|i = Ax̂i|i are from the prediction step of the

Kalman �lter. A proof with simple examples can be found in Särkkä (2013).

The following example is an extension to the simulation of Welch and Bishop (1995) to show

the e�ects and bene�ts of using the RTS smoother. Like in their example, let x = −0.37727 be

the constant to be estimated. 50 measurements around that constant are drawn with a mean of

zero and standard deviation of 0.1. Further, let Γ = 0.01, Σ = 1e− 5, r = 50, the initial values
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Algorithm 2 RTS Kalman smoother algorithm

input : Results (x̂t|t, Pt|t) from the execution of Kalman Filter

foreach t ∈ {1, 2, .., r} . Go through all r observations

do
1. i = r − t . Successively go back, starting at second last observation

2. Ks
i = Pi|iA

T (Pi+1|i)
−1 . Kalman smoother gain

3. P si = Pi|i −Ks
i (Pi+1|i − P si+1)(Ks

i )T . covariance of smoothed sensitivity

4. x̂i|r = x̂i|i +Ks
i (x̂i+1|r − x̂i+1|i) . Smoothed sensitivity

end

of x̂0|0 = 0 and P0|0 = 1 and transition matrix of A = 1 be given. Figure 2 shows the results:

the left �gure shows the estimation of the error (co)variance which decreases over time for the

Kalman �lter as more and more estimates are considered. As the initial value is set to zero with

P0|0 = 1, the line decreases rapidly. The estimation error (co)variance however is quite stable

for the RTS smoother with small increases at time step 0 and 50 as all estimates are considered

at every point in time. The same is true for the actual estimation of the value with estimation

of the RTS smoother being more accurate and stable. The example is of course overly simpli�ed

for demonstration purposes as the core advantage of the Kalman �lter (or smoother) plays out

in the case when the signal is changing, however it still illustrates the e�ects of using a smoother

instead of a Kalman �lter approach.

As the name already indicates, the Kalman smoother also smoothes the sensitivities. Figure 2

illustrates how the smoothed sensitivity looks much more stable and less volatile than the results

from the Kalman �lter. When selecting this approach one assumes therefore that sensitivities

don't change abruptly over time which is an assumption that should be kept in mind when

analyzing the results. Also, it should be noted that only a sensitivity may be identi�ed which

excludes statements about causality as in a Granger causality framework (Granger (1969)). This

avoids, e.g., discussions such as whether the USD-Dollar in�uences the price of gold or whether

gold in�uences the USD-Dollar. Finally, the following analyses talk of relationships between

factors and the price of a precious metal. By that it is meant that over longer time horizons, the

sensitivity as well as the 95% con�dence interval in total is either positive or negative.
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Figure 2: Left: Estimation error (co)variance over the 50 time steps of the Kalman �lter as well

as for the RTS smoother, Right: The �lter estimate is inprecise at the beginning, the smoother

estimate is closer to the true value of x.

2.2.2 Dynamic Time Warping

In this study, Dynamic Time Warping (DTW) as for example explained in Ratanamahatana and

Keogh (2004) is used instead of a simple Euclidian distance metric to compare the time-sensitive

dynamics of precious metals to speci�c factors. After normalizing the sensitivities, the di�erences

in curves is analyzed to identify similar but also di�erent movements of a factor to two di�erent

precious metals. Figure 3 illustrates the di�erences between DTW and Euclidian distances in a

simple example: both sensitivities look similar with a major di�erence that sensitivity 2 reacts

with a time lag compared to sensitivity 1. The Euclidian distance metric determines the di�erence

for a each time t between the two curves, whereas the DTW algorithm better �nds "suitable"

points to connect for the determination of the di�erence. As well as time lags, the DTW also

better copes with stretched and compressed sections in the sensitivities which is the reason for

the approach being used for example in speech recognition as it is able to recognize voices spoken

at di�erent speeds.

For a more formal description, let S = {s1, s2, ..., sr} and T = {t1, t2, ..., tr} be the two

sensitivities of length r. In a general DTW framework, the length for the two time series are

allowed to di�er, in this study, however, the sensitivities that are determined via the Kalman

smoother are of same length. Let di,j = ‖si − tj‖ with ‖x‖ be the Euclidian norm so that

D = (di,j) ∈ Rr×r. As described in Müller (2007), a (r,r)-warping path can then be de�ned as

a sequence p = (p1, ..., pL) with pl = (nl,ml) ∈ [1 : r] × [1 : r] and l ∈ 1, 2, .., L meeting the

conditions
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Figure 3: Example that illustrates the di�erences between two sensitivities for the normal Eu-

clidian (left) vs the DTW (right) distance. The DTW distance much better copes with the time

lag of sensitivity 2, leading to a lower distance than in the Euclidian case.

• Boundary condition: p1 = (1, 1) and pL = (r, r)

• Step size condition: pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)} for all l ∈ 1, 2, .., L− 1

The �rst condition guarantees that the �rst and the last sensitivity point for both sensitivity

curves match. The second condition describes a restriction on how the path through the matrix

elements are to be found and assures that no sensitivity point is omitted. For r = 5 for example,

((1, 1), (2, 2), (3, 2), (4, 3), (4, 4), (5, 5)) would be a proper warping path that determines that s1

is connected with t1, s2 with t2, s3 with t2, s4 with t3 and so forth.

The problem is to �nd a path popt that minimizes the total cost

cpopt(S, T ) =
∑
l

dnl,ml
. (5)

To �nd that optimal path, a dynamic programming approach can be used to determine an

accumulated cost matrix C, which for i, j > 1 is given by

C(i, j) = di,j + min
{
C(i− 1, j − 1), C(i− 1, j), C(i, j − 1)

}
(6)

Thus C(i, j) determines the total cost for an optimal path from point (1, 1) to (i, j). More

detailed information can be found in Müller (2007). Boundary conditions that limit the optimal

path as presented for example in Ratanamahatana and Keogh (2004) will not be used in later

computations.
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2.3 Data Description

2.3.1 Precious Metals

The following section gives an overview of the data that is used as well as some of its character-

istics determined through econometric tests. For all the metal prices as well as factors, quarterly

data since March 1969 until the end of 2015 for a total of 188 data points is taken either from

Bloomberg or directly from the International Monetary Fund (IMF).
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Figure 4: Historical price development of the four precious metals since March 1969 on a

normalized basis with log scaling.

Table 1 illustrates brie�y some statistics of that dataset. The length of the interval is chosen

so that a su�ciently long time period is available while at the same time avoiding (half-)yearly

data. Furthermore, macroeconomic time series are used in the analysis which usually change

only slowly, making daily or weekly intervals, as for example done in Bhatia et al. (2018), less

reasonable. For other factors where daily data is readily available, such as equity volatility or
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the S&P500, results for the sensitivities may of course di�er when the time length is changed.

The motivation for the analyses here, especially for the ADF as well as KPSS tests and the

co-integration test later, is to illustrate the similarities, but also di�erences, between the time

series for the di�erent precious metals for longer time horizons.

Min Max Mean std skew kurt

Gold -0.258 0.456 0.017 0.097 1.057 6.41

Silver -0.87 0.684 0.011 0.16 -0.138 9.897

Platinum -0.715 0.408 0.007 0.125 -0.837 8.816

Palladium -0.854 0.549 0.014 0.172 -0.674 6.569

Table 1: Basic statistics of log changes in prices of precious metals, quarterly basis

2.3.1.1 Gold Gold is probably the most common precious metal in the investment sector.

The question on what drives the gold price has therefore been intensively discussed in literature:

Baur et al. (2017) discuss the relative valuation of gold to other asset classes and conclude that

gold can be interpreted as a "safe haven". The characteristic of protecting during equity market

turmoil is also discussed in Hood and Malik (2013), Li and Lucey (2017) or Pan (2018). Both

questions will brie�y be covered below as well. Other in�uencing factors that are often discussed

are in�ation (see Batten et al. (2014), Kumar (2017) or Ghosh et al. (2004)) or the US-Dollar

(see (Oxford Economics, 2011)). To �rst get a better understanding of the price development

of gold, Figures 4 and 12 in the Appendix give an overview of the price history in comparison

to the other precious metals as well as on a log scale for the price as well as the di�erences in

the log price for gold itself. After the end of the Bretton-Woods system, the gold price started

a strong upward move until 1980, before moving down-/sideward for a long period of around 20

years. The second strong upward move started in 2001 and lasted until 2011 when gold reached

(in nominal terms) its highest price of around 1920 US-Dollar before falling back again in the

following years.

Looking at Table 6, the results of the ADF test support the view that the series is of type

I(1), meaning it is integrated of order one. The KPSS test indicates some evidence to suggest

that the log of the gold price is unit root nonstationary. The results are, however, not completely

clear with a long period of �at prices in gold.
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2.3.1.2 Silver Like gold, silver reached a high in 1980 of nearly $50 per troy ounce, mostly

driven by the Hunt Brothers who amassed a large amount of silver and silver futures in the 1970s.

The following correction in the prices was huge, before another large upward move between 2001

and 2011 led to an increase of nearly 800%. Since then, prices have declined again. The similarity

between gold and silver is both visible in the commonly quoted gold/silver ratio, which is tracked

by many traders, as well as the correlation in the data of 0.64 (see Table 8), the highest among

the correlation pairs of the four precious metals.

The results of the ADF test as well as for the KPSS test hint at similar results as already seen

in the case of gold, indicating that the price is of type I(1).

2.3.1.3 Platinum and Palladium Hageluken (2006) provide a detailed overview on plat-

inum as well as palladium. They argue that consumer applications and jewellery have recently

become the main drivers for the demand of those metals, making technical applications an impor-

tant factor when identifying price trends. Even though platinum and palladium are sometimes

seen as substitutes for each other, di�erences between the metals exist. The development of

palladium-based catalyst systems, for example, led to a higher demand of palladium and as a

consequence its price, relative to that of platinum, increased at that time.

Table 6 illustrates the values from the ADF test with similar results to gold or silver (time

series being of form I(1)). In contrast to gold and silver, the KPSS test directly fails to reject

the null hypothesis that the log prices of platinum as well as palladium are trend stationary.

Although similarities between all four metals are obviously present in the price development

in �gure 4, di�erences in the price returns cannot be neglected. As the KPSS test indicates,

di�erences in the kind of upward trend exist. This is for example driven by the huge increase in

prices for gold and silver around 1980 with the down-/sideward trend for a longer period after

1980 to around 2000. The trend appears to be more consistent for platinum and palladium.

2.3.2 Factors

Di�erent factors are selected which had been studied in other research before. They include

volatility (as done in Cohen and Qadan (2010)), CPI/PPI (Beckmann and Czudaj (2013) among

others), industrial production (Christie-David et al. (2000)), the US-dollar (Oxford Economics

(2011), Lin et al. (2016)) and other market data such as real interest rates, 10y treasury yield or
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the S&P500 (Baur (2013), Nguyen et al. (2016) or Bukowski et al. (2016)). The factors, which

were taken either from Bloomberg or directly from the IMF, are brie�y described in the following

section.

2.3.2.1 Consumer Price Index/Producer Price Index As mentioned above, the CPI is

the factor that is most often found in analyses related to gold as it is considered a representation

for in�ation. Research focuses on a relationship between the gold price and the CPI number to

�nd an answer to whether gold can be used as an in�ation hedge. The argument behind is that

gold is a physical metal that is durable, transportable, universally acceptable and easily authen-

ticated and should therefore re�ect in�ation expectations. In this context, both the CPI as well

as the PPI in the US are taken for this analysis. The use of the PPI is taken for comparative

purposes, following the analysis of Beckmann and Czudaj (2013). Both values are taken from

the IMF.

Table 6 shows that at common probability levels, the log of the CPI seems to be of order

I(2) and PPI of order I(1). The results so far in the literature are mixed with many analyses

such as Beckmann and Czudaj (2013) and Batten et al. (2014) �nding the CPI to be I(1), some

others such as Claus et al. (1997) argue in favor of I(2). As the results are mixed, the CPI in

�rst di�erence is taken for the co-integration analysis as well as for the general analysis with the

Kalman smoother later. Thereby the acceleration or deceleration of the in�ation instead of the

general price change from year to year is measured which makes interpretation easier than in the

case of a CPI in second di�erence.

2.3.2.2 Industrial Production The data for the industrial production (IP) is taken from

the IMF and in this context used as an approximation for general economic activity. Christie-

David et al. (2000) analyze the short-term e�ect of news releases of the industrial production on

the prices of gold and silver but do not �nd any signi�cant e�ect. IP is nevertheless taken into

consideration, especially as platinum or palladium, as mentioned above, are intensively used in

selected industrial production processes such as the automobile or mobile industry. A higher IP

should therefore lead to a higher demand for platinum or palladium which should result in higher

prices of those metals. Tests indicated that the log time series of the industrial production is

integrated of order one.
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2.3.2.3 Realized equity volatility 90-days realized volatility of the S&P500 is taken as

an approximation of investor fears to have a su�ciently large time series. This contrasts to for

example using the VIX index as done in Cohen and Qadan (2010). The VIX index, which reaches

back until 1990, is an index of implied volatility. It plays an important role in risk prediction and,

through its construction, re�ects the nature of asymmetric volatility found in capital markets (see

Aboura and Wagner (2016) for further details). The insecurity of market participants is often

supposed to drive the price of gold as it is seen as a store of value and a currency which cannot

be manipulated during times when stocks and other assets are sold. Cohen and Qadan (2010)

study the relationship between gold price and fear sentiments of the market participants and �nd

that the Chicago Board Options Exchange (CBOE) Volatility Index VIX is positively related to

previous day gold return. Tests show that the time series of the volatility are integrated of order

zero, which can be explained by the mean reversion characteristic of volatility. This is the only

I(0) time series where the level and not the �rst di�erence is used for the Kalman smoother.

2.3.2.4 Dollar The time series is taken from an index which represents the general inter-

national value of the USD by averaging the exchange rates between the USD and major world

currencies. The value is calculated by the ICE US by using the rates supplied by some 500 banks.

Futures on that index can be traded via the exchange as well. The correlation to the nominal

e�ective exchange rate that is issued by the BIS is with around 96% for quarterly data since 1969

very high. The IMF in 2008 in their IMF World Economic Outlook (April 2008) estimated that

40%-50% of the moves in the gold price between 2002 and 2008 were dollar-related. According to

a study commissioned by the World Gold Council and conducted by Oxford Economics (Oxford

Economics, 2011), the reasoning is that (a) a falling dollar increases the purchasing power of

non-dollar area countries which drives up prices of commodities and (b) during periods of dollar

weakness, investors look for an alternative store of value, driving up the gold price. The time

series itself appears to be of type I(1).

2.3.2.5 Real interest rates/10Y treasury yield (IP)/S&P500 Other market data, such

as the 10y real US interest rates, nominal rates in form of the 10 year US treasury yield and the

price of the S&P500 are also taken into consideration. Interest rates are taken as many people

argue that an increase in rates would make commodities such as gold less attractive as precious

metals do not pay any dividend. The S&P500 is taken as a broad US equity index to answer

the question as to how far the precious metals move di�erently from a normal equity index.
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The positive correlation between the S&P500 and platinum and palladium for example could be

explained similarly to the IP case above as economic activity relates positively to stock prices

as well as the demand for those metals. The opposite could be argued in the case of gold: as

investors shift their assets into equity, gold as a substitute could become less appealing, leading

to price decrease. Table 8 illustrates a low positive correlation between the S&P500 to platinum

or palladium and a low negative correlation to gold. The log price of this equity index is I(1).

2.4 Empirical Analysis

2.4.1 Co-integration

Co-integration in this study is analyzed by using a Johansen framework. The results from a like-

lihood ratio test as illustrated in Sims (1980) indicate that a lag of thirteen should be included

for the further analysis of the four precious metals. The results of the test are mixed and depend

on the time horizon that is taken. Similar to the results of Bräuninger et al. (2013) for example,

the tests indicate that palladium is not co-integrated to the other metals. This, however, seems

to be only true when taking the whole time period of 1969 to 2015 into account. As mentioned

above, the price of palladium especially around the year 2000 was largely in�uenced by market

speculations. If only the time period of 1969 to 1998 is considered, the analysis does �nd some

strong evidence of co-integration between palladium and gold. Lucey and Tully (2006) focus

alone on the co-integration between gold and silver. They �nd a strong relationship between

those two metals but also argue that "there are signi�cant periods when it is weakened or bro-

ken". Excluding for example the time period of the silver bubble around 1980 and only focusing

on the time period of 1982 to 1998, the Johansen test for the quarterly dataset also strongly

supports the view of co-integration of gold and silver.

Focusing on the co-integrating relationship of precious metal prices to selected factors, Bat-

ten et al. (2014), among others, focus on the gold-in�ation relationship. They do not �nd co-

integration for their time period but argue that the relationship is very time-sensitive. Analyzing

the quarterly price levels since 1969, the �nding is con�rmed in this study as co-integration is

not observable for the whole period. Sub-periods such as the time from 1990 to 2015, however,

do show a co-integrating relationship at a 99% signi�cance level.

Table 2 illustrates the results of the Johansen test when all precious metals and the whole

time period are taken into account. The trace and the eigenvalue test reject the hypothesis that

there are no co-integrating relationships among the time series. Both tests also fail to reject the
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hypothesis that there is at most one co-integrating relationship. We can therefore conclude there

is a single co-integrating relationship among the precious metals.

# of co-integrating trace critical eigen critical

relationships statistic 90% 95% 99% statistic 90% 95% 99%

<=0 49.4 44.5 47.9 54.7 25.9 25.1 27.6 32.7

<=1 23.5 27.1 29.8 35.5 14.2 18.9 21.1 25.9

<=2 9.2 13.4 15.5 19.9 8.2 12.3 14.3 18.5

<=3 1.0 2.7 3.8 6.6 1.0 2.7 3.8 6.6

Table 2: Tests statistics of Johansen test using 13 lags.

All results point to separating the analysis for each asset to determine the in�uence of the

factors mentioned in the previous section. Also, the variation in the relationship supports the use

of a time-sensitive analysis. Both points motivate the next section, where a Kalman smoother

approach is used for the individual analysis of the relationship of a precious metal to speci�c,

pre-determined factors, before comparing those sensitivities via a DTW analysis.

2.4.2 Time-Varying Sensitivity Analysis

The following section describes the results for the Kalman Smoother when only a single factor

is used as an input. The smoother is used in a similar way as for example in Chen and Tindall

(2013) which determine market sensitivities for hedge funds or Swinkels and Van Der Sluis (2002)

who analyze the returns of speci�c investment funds in a time-varying context. In this study,

the Kalman smoother is taken to determine sensitivities for precious metals and (economic) ex-

planations are tried to be given wherever suitable. The �gures contain the development of the

sensitivity as well as the 95% upper- and lower-bound con�dence interval which are plotted as

dotted lines. Factors are not further discussed if sensitivities are less clear or of less interest.

The section intentionally uses words such as "relationship" or "sensitivity" and does not fo-

cus on causality as for example in a Granger causality framework. Even though some plausible

economic interpretations are given which hint at a causality such as "factor A implies a price

move of precious metal B", it should be noted that a third parameter in�uencing simultaneously

the factor as well as the precious metal price may exist.
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Figure 5: Sensitivity of gold to selected factors using the Kalman smoother.

2.4.2.1 Results for Gold Figure 5 illustrates that the sensitivity of gold towards the CPI

is positive for the whole time period, although decreasing over time and moving up slightly only

in recent years again. The results are similar to those given in Batten et al. (2014) who use a

Kalman �lter instead of a smoother and whose results are based on the level of the gold price.

Although Batten et al. (2014) also show an increase in the sensitivity in recent years, using the

smoother and a longer data set in this study indicates that the positive relationship had been

even stronger in the high in�ation environment of the 1970s. Sensitivities for the PPI are similar,

although not signi�cantly di�erent from zero for some periods around 2000.

The sensitivity of the relative price change of gold to the changes in industrial production

is not signi�cantly di�erent from zero for the last 25 years. Around 1980, however, we see a

negative relationship that arises due to weak industrial production at that time combined with
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the above mentioned spike in precious metal prices. A general economic explanation is proba-

bly di�cult to �nd and is due to the price bubble in precious metals around that time. It has

been mentioned already that gold is not used in the same amount as platinum or palladium in

industrial production process, which could be a possible explanation for the lack of relationship

between those time series.

The sensitivity of gold to realized equity volatility is positive in the �rst half of the data

set and around zero for the second half. At �rst glance this seems to be surprising, as gold is

nowadays often seen as a hedge during market turmoil. Looking at the data more closely, though,

explains the absence of a positive relationship: the correlation for gold and equity volatility is

positive in the �rst half of the data set but slightly negative in the second one. Furthermore,

looking at speci�c events such as the stock market crash in 1987 or 2002, no major (upward)

moves of gold can be identi�ed in the quarterly data. A possible explanation of the decreasing

sensitivity could be the increased usage of other instruments such as options or volatility futures

to hedge equity positions in times of market turmoil, decreasing the demand for gold.

The relationship between gold and the dollar index is also plotted in Figure 5. The negative

sensitivity illustrated there supports the �nding of Akram (2009), although the strength of that

link found in this study has been decreasing since the 1970s. The same negative relationship

between the price of gold and the real interest rates is also illustrated in the �gure above. The

results con�rm the assumptions from above as well as the results from Akram (2009), who found

that negative relationship of interest rates to a broader commodities index.

2.4.2.2 Results for Silver Figure 6 illustrates the results for silver. As mentioned above,

it should be kept in mind that the market distortions of the price around 1980 were very high,

thereby signi�cantly in�uencing the results of the analysis. The sensitivities for example of the

CPI or PPI around that time were negative and only back in positive territory in later years

again, thereby matching the results of the case of gold. The in�uence of the price moves in

1980 is even more dominant when analyzing the sensitivity to the industrial production or the

Dollar. For the former one, for example, a strong negative sensitivity can be observed at that

time. This �nding is not observable during other time periods. An economic rationale for the

negative sensitivity is di�cult to �nd. The negative relationship to the real interest rates as well

as nominal bond yields, however, is constantly negative and thereby identical to the case of gold.
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Figure 6: Sensitivity of silver to selected factors using the Kalman smoother

2.4.2.3 Results for Platinum Sensitivities for platinum as well as palladium are less dis-

tinct compared to the results above. The positive relationship between platinum and the CPI

is increasing supporting the results of Bilgin et al. (2018) who �nd platinum to be the most

e�ective hedge against in�ation among white precious metals. The sensitivity to the industrial

production has turned positive after being negative around 1980, which might be explained by

an increased usage of platinum in di�erent industries such as the mobile or through catalysts

in the automobile sector. This led to a higher demand and therefore higher prices followed by

the increasing sensitivity of platinum to the industrial production factor. This statement is sup-

ported by the results for the other precious metals, as especially palladium, in contrast to gold

or silver, o�ers a very similar sensitivity pattern to the IP. Similar to palladium, platinum has

also been used in the automobile industry and is less so used as an investment vehicle. The

relationship to the dollar is also negative, although changing signi�cantly over time. Sensitivity
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Figure 7: Sensitivity of platinum to selected factors using the Kalman smoother

to the interest rates is, equivalently to the other precious metals, negative as well. As mentioned

above, the lack of dividends of precious metals might be taken as an explanation.

03
-1
96
9

12
-1
98
2

08
-1
99
6

04
-2
01
0

−2

−1

0

S
e
n
s
it
iv
it
y

Palladium/CPI

03
-1
96
9

12
-1
98
2

08
-1
99
6

04
-2
01
0

−1

0

1

2

S
e
n
s
it
iv
it
y

Palladium/IP

03
-1
96
9

12
-1
98
2

08
-1
99
6

04
-2
01
0

2

3

S
e
n
s
it
iv
it
y

Palladium/10Y Gov

03
-1
96
9

12
-1
98
2

08
-1
99
6

04
-2
01
0

−1

0

1

S
e
n
s
it
iv
it
y

Palladium/S&P500

Figure 8: Sensitivity of palladium to selected factors using the Kalman smoother.
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2.4.2.4 Results for Palladium Bräuninger et al. (2013) argue that palladium follows a

di�erent trend than other precious metals as the production of palladium is more �exible. The

results found in their work could be taken as an explanation why the sensitivities, calculated via

the Kalman smoother approach, also often show di�erent patterns in this study. First, Figure 8

shows that the price of palladium has a negative relationship to the CPI, although this sensitivity

has more or less been neutralized in the last years. A possible explanation for the equality in

the characteristics of the sensitivities of platinum and palladium to the industrial production has

already been given above. The relationship to the nominal 10 year bond yield is even positive

and by that di�erent than for other assets. The sensitivity of palladium to the S&P500 is less

clear. This, however, is true for the other precious metals as well, as no clear and consistent

results can be found.

2.4.2.5 Simultaneous analysis of sensitivities The analysis has so far focused on just

including one factor at a time to better identify the in�uence of each time series. The following

brief section wants to apply the Kalman smoother in the multi-factor case. Figure 9 shows the

results for gold, the �gures for silver, platinum and palladium are also illustrated here. The

same factors for gold are taken as those analyzed above (CPI, IP, Vola, Dollar and IR) with the

exception of PPI which is excluded due to the high correlation to the CPI. The results exhibit

similar patterns as above with the CPI showing a constantly high positive relationship and the

dollar a negative, but in absolute value decreasing, sensitivity to gold.
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Figure 10: Simultaneous sensitivity analysis of silver (top), platinum (middle) and palladium

(bottom).
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2.4.3 Dynamic Time Warping results

For a deeper analysis of the time-varying sensitivities, Batten et al. (2014) use a linear regression

to explain the changes in the sensitivities by other di�erences in macroeconomic state variables

to identify factors that have an in�uence on the gold to in�ation relation. This study also uses

the sensitivity results but focuses on the similarities and di�erences that occur for a factor in

relation to each precious metal.

The sensitivity series are �rst normalized by xt/supi|xi| where xt is the sensitivity at time t.

By that normalization, which is for example also implemented by Tang and Müller (2009), the

sensitivities are compressed to values between −1 and 1. Results are normalized as we are more

interested in the changes of the sensitivities. The magnitude is in�uenced signi�cantly by the

input parameters (measurement noise, covariance estimates, etc) for the Kalman smoother and

is of lesser importance. The downside, however, is that sensitivities which are low or even non-

existent are practically not distinguishable from clearly obvious relationships, making a proper

selection of the factors necessary.

Figure 11 illustrates two examples: the left hand side exhibits the normalized sensitivity of

gold to the CPI as well as palladium to the CPI. The gap between the two is large, showing

especially at the beginning of the time series a completely di�erent behavior of the two metals

regarding the CPI. The right hand side shows platinum and palladium in relationship to the in-

dustrial production. As mentioned above, both metals show a similar sensitivity pattern, leading

to a lower distance between the two sensitivity curves.
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Figure 11: Normalized sensitivities with huge gap of gold/CPI vs palladium/CPI (left) and

similar pattern style of platinum/IP vs palladium/IP (right).
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The results in Table 3 focus mostly on the factors already mentioned above and excludes those

where results were not as clear. The values in the table illustrate the DTW distances between the

sensitivity of a factor to one precious metal and the same factor to another precious metal. The

distance between the normalized sensitivity curve of gold to CPI and that of platinum and the

CPI is for example 177. The lower the number in the table, the more the normalized sensitivity

for the corresponding precious metals of the pair are therefore alike. The number in brackets

illustrate the percentage of the distance relative to the maximum of distance over all pairs for a

speci�c factor. The 79% for the CPI to gold/silver e.g. is calculated by dividing the values of 177

by 225, which corresponds to the maximum distance in the row in form of the gold/palladium

to CPI distance. The number is given to easier identify which sensitivity patterns are more alike

and which, given a speci�c factor, are more distinct.

gold/silver gold/plat gold/pall silver/plat silver/pall plat/pall

CPI 177 (79%) 69 (30.9%) 225 (100%) 106 (47.2%) 31 (14%) 182 (81%)

IP 17 (26.4%) 61 (92.5%) 66 (100%) 45 (67.5%) 47 (70.5%) 10 (14.5%)

Vola 53 (77.1%) 56 (81.9%) 69 (100%) 18 (25.7%) 27 (39.4%) 24 (35.5%)

Dollar 27 (37.9%) 46 (63.4%) 72 (100%) 17 (24.1%) 33 (46.3%) 20 (27.9%)

IR 14 (9.6%) 41 (26.8%) 106 (70.2%) 87 (57.3%) 151 (100%) 45 (29.6%)

Table 3: Resulting distances for each possible pair of precious metals when a dynamic time

warping approach is applied to the normalized sensitivities from Section 2.4.2 for a total of 187

data points. The percentages in brackets represent the percent in comparison to the maximum

over all pairs for a speci�c factor.

The table indicates that the di�erences between the sensitivities for gold and silver versus

the CPI seem to be high, which at �rst thought might be confusing. Even though one might

think that the in�uence of the CPI on the price of gold and silver might follow the same pattern,

the possible explanation of volatile price moves around 1980 has been mentioned above already.

Looking at platinum and palladium versus the industrial production, a high similarity can be

identi�ed: being substitutes in some industrial production processes has already been given as a

possible explanation for that link.

Looking at the other factors, the table illustrates a higher degree of similarity of movement

between platinum and palladium. Also, gold and palladium seem to be quite di�erent with

having the highest DTW-distances as a pair regarding most factors. Although the values are of
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limited explanatory power due to the choice of the factors as well as the model parameters of

the Kalman smoother, they point, however, in the direction that have been assumed upfront: in

tendency a higher similarity between gold and silver on the one hand and platinum and palladium

on the other. Di�erent possible explanations for that have already been mentioned above.

2.5 Implications

A �rst implication for investors that have a speci�c view for example on the CPI or on the IP

could use the analysis to pick a speci�c precious metal that matches their expectation: investors

who expect an increase in the CPI should prefer gold whereas those who expect an increase in

the IP should favor platinum.

The DTW results should give an indication to investors on how interchangeable the results

are for a given factor. In the case of the industrial production, for example, the investor might

choose palladium instead of platinum as both show a positive sensitivity with very low DTW

distances. In case the sensitivity for two metals point in the same direction with higher DTW

distances, however, the similarities between the two metals might only be temporary.

To illustrate this, the following calculations show the impact on a portfolio consisting of two

di�erent precious metals when a speci�c factor shows a strong upward-/downward move. The

aim is therefore to calculate the conditional volatility of a simple precious metal portfolio that

consists of two positions with equal weight, given that a factor is "under stress". As a �rst

example, the CPI is taken as a factor and 20 scenarios are identi�ed that exhibit the highest

upward moves in the Consumer Price Index. This corresponds to an approximately 10% quantile

over all CPI quarterly moves. 19 out of 20 occurrences from the tail are found in the time period

of the 1970s or 1980s, a time in which the sensitivities of gold/CPI and palladium/CPI according

to �gure 11 are quite distinct. The idea is therefore to compare the quarterly volatilities of a

portfolio that consists of 50% gold and 50% palladium to a portfolio of 50% silver and 50%

palladium, the pair that has the lowest DTW distances to CPI according to Table 3. Table 4

shows the conditional volatilities of both portfolios and compares those to the volatilities for the

whole time period. The table illustrates two points: �rst, the conditional volatility is higher for

both portfolios than the volatility that is calculated for the whole period of time. This can be

explained by the quarters chosen for the calculations: the time periods that illustrate a signi�-

cant increase in the CPI seem to be related to general market stress or at least related to higher

volatilities in the returns of precious metals in general.
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Volatility all conditional Volatility

Portfolio1: 50% gold + 50% palladium 11.2% 17.5%

Portfolio2: 50% silver + 50% palladium 14.3% 26.1%

Table 4: Quartly volatility of the two portfolios when measured over the whole time period as

well as only the tail when CPI increases

The second point related to the table above is the magnitude of the increase: the volatility of

portfolio 1 increases less than portfolio 2. This means that when the CPI increases signi�cantly,

the portfolio with di�erent sensitivities to the CPI and higher DTW distances regarding the

CPI shows a lower increase in the volatility. In this scenario, portfolio 1 seems to o�er a better

diversi�cation bene�t.

Another example is illustrated in the next Table 5: here, the tails for IP decreases are taken.

The quarters with high decreases in the IP can be found throughout the time series and of course

include for example the time periods around 2008/09 or 2001/02. For this example, gold and

palladium is compared to a portfolio of platinum and palladium. Those combinations have again

been chosen based on �gure 11 and table 3. Table 5 shows again that the volatility of both

portfolios in the tail increases and that the increase is again less for portfolio 1 compared to

portfolio 2.

Volatility all conditional Volatility

Portfolio1: 50% gold + 50% palladium 11.2% 16.0%

Portfolio2: 50% platinum + 50% palladium 13.5% 22.9%

Table 5: Quartly volatility of the two portfolios when measured over the whole time period as

well as only the tail when IP decreases.

To sum up, it is important for investors to understand how precious metals react and what

drives their returns. The two examples illustrate how di�erent portfolios behave when speci�c

factors are "under stress". Nevertheless it should be taken into account that the sensitivities as

well as the DTW distances that have been calculated only give a rough estimate and can hardly

be taken to determine precise portfolio weights. But if an investor has �nally decided to invest

into precious metals, it can be easily implemented via Exchange Traded Funds (ETFs). Leung

and Ward (2015), for example, analyze the tracking error of leveraged exchange-traded funds on
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gold, but other standard ETFs for silver, platinum or palladium exist as well.

2.6 Conclusion

Understanding the relationship between external factors and the prices of precious metals is an

important as well as challenging task. Important, as the metals are not only used in produc-

tion or the jewellery industry, but also in �nance as an investment vehicle. Challenging, as the

nature of the relationship is unclear and possibly changing over time. This paper discusses a

linear Kalman smoother approach for gold, silver, platinum and palladium and analyzes their

sensitivities to the Consumer and Producer Price Indices, the industrial production, US dollar,

equity volatility, real interest rates as well as nominal bond yield and the S&P500 index.

The paper extends the existing research by focusing on factors other than the commonly used

in�ation. By additionally analyzing factors such as equity volatility, the dollar or the S&P500, it

compares the four metals in a time-varying, integrated, approach by using a Kalman smoother.

A DTW approach delivers further insight into the di�erent sensitivities. Before that, the time se-

ries are analyzed using standard econometric tests including the Johansen test for co-integration

between the precious metals.

The �rst result of the computations are not surprising and motivate the use of a time-varying

approach: the sensitivities are not constant as the time for the data set between 1969 and 2015

shows changing characteristics for di�erent time periods. A co-integration between gold and

silver, for example, can only be found for a speci�c time frame and not for the whole period.

Sensitivities using the Kalman smoother also exhibit stronger changes in the sensitivity during

speci�c time periods.

Identifying strong relationships between speci�c precious metals and factors, the results are in

accordance to other research as presented for example by Batten et al. (2014) or Akram (2009):

there is on average a positive relationship between the CPI (or PPI) and precious metals. Also, a

negative relationship between the metals as well as the US-dollar can be identi�ed, meaning that

a depreciation of the US-dollar positively relates to a tendency for precious metals to increase in

price. The relationship between real interest rates and precious metals tends to be negative, as

increasing real rates seem to decrease the price of precious metals. Other connections can also

be found: the relationship between equity volatility as an indicator for market fear, for example,
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has been positively related to the gold price. This relationship, however, has vanished in the

last years. Positive relationships can also be identi�ed between platinum and palladium and the

industrial production in the last years. Sensitivities to the S&P500 are practically non-existent

and those to the nominal bond yields similar to the real bond rates.

The sensitivities of a factor to di�erent precious metals are compared via Dynamic Time

Warping. It allows to describe the di�erences and similarities of a factor to two metals by a

single number. Results show a higher degree of similarity between platinum to palladium and

gold to silver to selected factors.

Further research could be undertaken in di�erent areas: important for a Kalman �lter or

smoother approach are the input parameters. Helping to choose the "right" ones are for example

described in Naik et al. (2015). Further analyses are also possible by including non-ferrous metals

or a general comparison of the results to other, time-varying approaches.
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Appendix 2.A Tables and �gures

Level First Di�erence

lag model statistic p lag model statistic p

Gold (log) 6 T -2.76 0.221 5 C -4.66 <0.001

Silver (log) 14 T -2.45 0.369 11 C -3.90 <0.001

Platinum (log) 4 T -3.10 0.110 7 C -5.40 <0.001

Palladium (log) 10 T -3.35 0.062 9 C -5.77 <0.001

CPI (log) 12 T -2.33 0.431 11 C -1.11 0.246

PPI (log) 11 T -2.92 0.159 10 C -1.98 0.046

IP (log) 13 T -1.43 0.850 12 C -3.34 <0.001

Vola 6 C -4.42 0.003

US-Dollar 3 T -2.98 0.140 8 C -4.48 <0.001

IR 13 C -2.35 0.425 12 C -3.81 <0.001

10Y Yield 14 C -2.77 0.213 6 C -6.65 <0.001

S&P500 (log) 0 T -2.44 0.376 0 C -9.30 <0.001

Table 6: Augmented Dickey Fuller test results, lags determined according to Schwert (2002)

with maximum number of lags of 14.

Level First Di�erence

trend statistic p trend statistic p

Gold(log) Y 0.17/0.16 0.034/0.040 N 0.16/0.16 >0.1/>0.1

Silver(log) Y 0.16/0.15 0.040/0.047 N 0.09/0.09 >0.1/>0.1

Platinum(log) Y 0.11/0.11 >0.1/>0.1 N 0.06/0.06 >0.1/>0.1

Palladium(log) Y 0.06/0.06 >0.1/>0.1 N 0.03/0.04 >0.1/>0.1

CPI(log) Y 0.34/0.32 <0.01/<0.01 N 0.93/0.89 <0.01/<0.01

PPI(log) Y 0.25/0.23 <0.01/<0.01 N 0.51/0.50 0.039/0.042

IP(log) Y 0.15/0.15 0.043/0.049 N 0.096/0.103 >0.1/>0.1

Vola N 0.29/0.29 >0.1/>0.1 N 0.034/0.036 >0.1/>0.1

US-Dollar Y 0.05/0.05 >0.1/>0.1 N 0.07/0.07 >0.1/>0.1

IR N 0.26/0.25 >0.1/>0.1 N 0.06/0.06 >0.1/>0.1

10Y Yield N 0.95/0.89 <0.01/<0.01 N 0.19/0.19 >0.1/>0.1

S&P500(log) Y 0.16/0.15 0.036/0.043 N 0.11/0.11 >0.1/>0.1

Table 7: KPSS test results, lags determined according to Kwiatkowski et al. (1992).
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Figure 12: Log Prices of gold, silver, platinum and palladium (left) and the �rst di�erence of

the log prices (right) since 1969.
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Gold 0.64 0.52 0.33 0.18 0.25 -0.06 0.12 -0.44 -0.28 -0.09 -0.05

Silver 0.64 0.61 0.47 0.08 0.17 0 -0.11 -0.27 -0.19 0.02 0.15

Platinum 0.52 0.61 0.64 0.12 0.24 0.13 -0.14 -0.32 -0.14 0.11 0.19

Palladium 0.33 0.47 0.64 0.02 0.14 0.14 -0.1 -0.09 -0.06 0.12 0.16

CPI 0.18 0.08 0.12 0.02 0.75 0.14 -0.11 0.02 -0.13 0.34 -0.1

PPI 0.25 0.17 0.24 0.14 0.75 0.23 -0.13 -0.15 -0.17 0.38 -0.04

IP -0.06 0 0.13 0.14 0.14 0.23 -0.06 0.1 0.17 0.18 -0.03

Vola 0.12 -0.11 -0.14 -0.1 -0.11 -0.13 -0.06 -0.14 0.04 -0.33 -0.53

US-Dollar -0.44 -0.27 -0.32 -0.09 0.02 -0.15 0.1 -0.14 0.27 0.09 -0.06

IR -0.28 -0.19 -0.14 -0.06 -0.13 -0.17 0.17 0.04 0.27 0.1 -0.08

10Y Yield -0.09 0.02 0.11 0.12 0.34 0.38 0.18 -0.33 0.09 0.1 0.16

S&P500 -0.05 0.15 0.19 0.16 -0.1 -0.04 -0.03 -0.53 -0.06 -0.08 0.16

Table 8: Correlation



3 Factor Risk Parity with Portfolio Weight Constraints

3.1 Introduction

Recent literature (Poddig and Unger (2012), Roncalli and Weisang (2012), Kind (2013) and

Deguest et al. (2013)) focuses on applying the equal risk to contribution approach on risk factors

derived through a PCA. Yet, there has been much criticism on the robustness, de�niteness and

the manageability of such portfolio allocations.

To address the major critical points, we introduce a modi�ed version of a factor risk parity

model. The model focuses only on the risk contribution of the main risk factors and, in contrast

to the "classical" Factor Risk Parity model, allows the risk contribution of the less important

principal components to �oat to some extent. The key bene�ts are the opportunity to add asset

weight constraints for the portfolio selection while, at the same time, building robust allocations

along the main risk factors. By meeting the constraints regarding the asset weights and risk

factors, the model describes all possible portfolios as a convex solution set and is thereby able to

describe those portfolios e�ciently while handling various investors' needs or possible regulatory

requirements.

Meucci (2009) is a main contributor to the �eld of portfolio constructions along principal com-

ponents. His idea of well diversi�ed portfolio allocations in terms of uncorrelated risk sources

is a driving force for this paper. Poddig and Unger (2012) use the approach of Meucci (2009)

to compute maximum diversi�ed portfolio allocations by maximizing the entropy based on the

risk contributions of all principal components. By that, they determine portfolios with equal

risk contributions for all principal components. Using a Monte Carlo simulation and historical

data, they show that those portfolios are far from being stable and robust. As the authors �nd

that the strategies perform poorly as well, they argue that practitioners would probably ignore

an allocation that aims at equalizing the risk contribution from uncorrelated sources of risk. In

particular, the criticism on the robustness of those principal portfolios described in the literature

is justi�ed. We will show in this chapter why portfolio allocations are unstable when solving the

factor risk parity problem using only a numerical optimization and taking all principal compo-

nents into account.

Moreover, we address the detailed and technical criticism on portfolios built along principal

components formulated by Meucci et al. (2014). First, they argue that principal components

with the lowest eigenvalues tend to be unstable. That is something we will not contradict. Our
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model, however, will focus only on the �rst m principal components which explain most of the

portfolio variance. By not taking the components with lower eigenvalues into account, we bypass

the instability in those principal components. This is also an advantage as, in the authors' view,

the meaning of those components change more quickly in a dynamic allocation setting. Second,

when using principal components, a criticism is that the eigenvectors are not unique. Meucci

et al. (2014) conclude that 2n possible solutions exist. We will show that in the factor risk parity

framework in this paper with n assets and m equalized risk factors, only 2m−1 solutions exist.

Out of that set, only one solution that meets another desired criterion is chosen. Due to all those

de�ciencies they suggest an approach based on minimum torsion bets whereas our model still

sticks to a PCA with modi�cations in the risk parity approach. The model works with equal

risk contributions for an arbitrary number of risk factors, but a focus is put on the �rst two

principal components, thereby following the discussion of Bhansali et al. (2012) which argue that

the �rst two principal components explain a signi�cant amount of variation in a multi-asset setup.

This work contributes to all the other works in the �eld of factor risk parity or principal portfo-

lio allocation (see Meucci (2009), Bhansali et al. (2012), Lohre et al. (2012), Kind (2013),Bernardi

et al. (2018) and Deguest et al. (2013)). To the best of our knowledge, the model described in

this paper is not covered in literature so far.

The main advantage of using the model described in this paper is the �exible and simultane-

ous consideration of di�erent constraints for a di�erent number of asset classes while considering

the risk contributions of the core underlying risks. It opens the possibility to test di�erent con-

straints regarding the asset weights or the level of explanation of the risk contributions of the

main risk factors. It thereby forms a development of the well-known equal risk to contribution

(ERC) approach. The advantages of the factor risk parity versus a classical risk parity approach,

such as the focus on the main risk drivers or avoidance of the duplication invariance problem

(see Choueifaty et al. (2013)), stay also valid.

We know that the PCA as a tool of risk source separation is not free of criticism. One

major problem that remains and that cannot be eliminated is the interpretation of the princi-

pal components. Interpreting risk factors derived by blind source separations is rather a task

of macroeconomic research than of quantitative portfolio construction. Another problem is the

requirement of a PCA that data is (nearly) normally distributed, which some critics may doubt

when handling �nancial time series. The same issue comes up when using the standard deviation

as the risk measure. This may not be the best choice, particularly in the light of possible skewed
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distributions. Finally, depending on the structure of the historical data as well as the number

of equal risk components, solutions might not exist. We think that the model and the way we

construct and solve the allocation problem o�ers the possibility for further research in the �eld

of factor risk parity.

The chapter is organized as follows: Section 3.3 discusses the basic naive and heuristic allo-

cation methods which serves, in the risk parity case, as the theoretical basis. We believe that

these allocations directly compete with the factor risk parity allocation and we will take these

allocations into account within the empirical section. In Section 3.4, we introduce the factor risk

parity framework and provide some examples. After the data description in Section 3.5, some

robustness checks are done in the following section before performing empirical analysis on our

factor risk parity model. We backtest this model in Section 3.6 as well as the other naive and

heuristic models using the same dynamic backtest approach. Some proofs, tables and �gures are

provided in the Appendix.

3.2 Related literature

The mean-variance framework described �rst by Markowitz (1952) forms the basis for the Mod-

ern Portfolio Theory. Today strategic asset management is sometimes still based on his concept.

Yet, as commonly known, implementing the mean-variance optimization is a tough challenge due

to estimating the expected returns and covariances of the assets. Additionally, the Markowitz

model is highly sensitive to changes in the input data and works only under very special con-

ditions. In his work Michaud (1989) calls this e�ect "error maximization". Regardless of the

problems related to the application of the mean-variance optimization, one of the most important

ideas in asset management is strongly associated with this model: Diversi�cation.

Since Markowitz published its fundamental work, much e�ort has been put into �xing the

estimation problems or developing alternative asset allocation models against the backdrop of

diversi�cation. The simplest and often discussed alternative is the naive 1/N allocation. Under

the assumption of independent and identically distributed returns, the 1/N allocation is optimal

in the mean-variance framework.

Recent works compare the 1/N allocation with di�erent mean-variance optimizations. DeMiguel

et al. (2009) evaluate the out-of-sample performance of 14 di�erent mean-variance models and

the 1/N allocation. For seven real world data sets and one simulated data set, they �nd that no
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single model beats the 1/N allocation consistently over time. For diversi�ed equity portfolios and

single stocks Brown et al. (2013) give an explanation why mean-variance allocations are not able

to outperform a naive 1/N allocation. They argue that the outperformance of 1/N allocation

against optimal allocations is paid by increasing tail risks and a reduced upside potential. The

recent work by Platen and Rendek (2012) supports the results by DeMuguel et al. and formulates

the Naive Diversi�cation Theorem which states that the 1/N allocation is a good proxy for the

numéraire portfolio under speci�c conditions. Of course, a number of other works support the

naive 1/N diversi�cation strategy.

Yet, there is a signi�cant number of recent papers neglecting the 1/N strategy in terms of

the out-of-sample performance comparing to other strategies. For example, the recent work by

Abankwa et al. (2013) claims the 1/N approach is outperformed by sophisticated mean-variance

optimization using dynamic conditional correlations (DCC) in out-of-sample test in terms of

Sharpe Ratio. Using a simple VAR(1) model for the mean and variance forecast, Caporin and

Pelizzon (2012) achieve similar results.

Another well known benchmark allocation strategy is the very special case of Markowitz's

mean-variance optimization, the minimum-variance portfolio. Given identical expected returns

for each asset class, the minimum-variance portfolio is the only optimal portfolio under the

Markowitz framework. Certainly, this strategy will lead to very concentrated portfolio allocations

on low risk assets. Even though returns are not the same in the real world, the minimum-variance

idea attracted a lot of interest by researchers since Markowitz proposed its mean-variance frame-

work due to the fact that the expected value of future asset returns is irrelevant for the portfolio

construction. Particularly in equity portfolio construction, this approach was successful in both

research and practice, due to almost identical expected returns on stocks. Nonetheless, allocat-

ing multi-asset portfolios along the minimum-variance strategy will lead to heavy �xed-income

portfolios.

Much research nowadays is still being done on those portfolio construction approaches, even

though they are simple and have been developed a while ago. Jiang et al. (2019) for example try

to combine the minimum-variance with the 1/N portfolio and �nd that it is possible to enhance

the Sharpe ratio as well as reduce the risk with this portfolio if short-selling is allowed.

The risk parity allocation is a newer approach designed to �ll the gap between equal weighted

and minimum-variance allocations. For none of them there is a need to estimate the future ex-



46 3.2 RELATED LITERATURE

pected returns of the asset classes within the risk parity heuristic. Just as the minimum-variance

optimization, risk parity only needs a semi-de�nite covariance matrix. Comparing the risk parity

heuristic with Markowitz's optimization, risk parity is optimal under the mean-variance frame-

work if all asset classes have the same correlations and Sharpe Ratios (Chaves et al., 2011).

We use the approach in which the risk contribution from each portfolio component, that can

be de�ned as a stock, another asset or an asset class, is equalized within the portfolio (ERC),

with risk de�ned as the standard deviation of returns. For this approach, we will refer mostly

to the works of Qian (2005), Neukirch (2008) and Maillard et al. (2008). The total portfolio risk

with variance as the risk measure is partitioned into the risk contribution (RC) of each portfolio

component, which means that the sum of all risk contributions is equal to the portfolio variance.

In terms of the risk-pro�le of this heuristic allocation, the risk parity to contribution approach can

be positioned between the 1/N naive allocation and the minimum-variance portfolio. In recent

time, a lot of research focused on the �eld of ERC portfolios. Maillard et al. (2008) compare the

ERC strategy with the minimum-variance portfolio as well as the 1/N strategy. They examine

the ERC strategy at the theoretic level given di�erent special cases, such as equal correlation

or equal variances, compared them and showed the mathematical link between these three asset

allocation strategies. Moreover, they compare the three strategies for three di�erent data sets as

well as for a numerical example. Chaves et al. (2012) introduce two di�erent computing methods

for the ERC problem and took again a closer look at the special cases of the ERC strategy where

assets are uncorrelated. Moreover, they show the e�ciency of the ERC strategy in terms of risk

diversi�cation.

Bai et al. (2016), in their recent work, provide a comprehensive theoretical overview of the

general long-short ERC. They show that the ERC problem can be formulated as a convex opti-

mization problem with a unique solution for the long-only case. For the generalized long-short

case, they demonstrate that multiple solutions exist and gave advice how investors should deal

with those solutions. Additionally, Bai et al. (2016) discuss di�erent numerical optimization

methods for solving the ERC optimization problem e�ciently. Complementary work was pub-

lished by Griveau-Billion et al. (2013). They develop a fast algorithm for high-dimensional

covariance matrices with n > 500.

Cesarone and Colucci (2018) also compare the ERC strategy to other portfolio construction

processes, namely the minimum variance as well as the maximum diversi�cation approach. They

highlight the strengths and weaknesses when the strategy is applied to seven di�erent investment
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universes.

Ardia et al. (2018) include the performance contribution in a risk-based portfolio construction

process. They design a "Performance/Risk Contribution Concentration" (PRCC) measure to set

up portfolios that do not deviate much regarding the performance and risk contribution while at

the same time staying close to a risk-based portfolio benchmark.

3.3 Naive and heuristic allocation strategies

As part of the theoretical foundation of this paper, we start by de�ning the benchmark al-

locations. The 1/N , minimum-variance and the equally-weighted risk contribution allocation

strategies are the subject of numerous recent research papers. Moreover, the risk parity to con-

tribution strategy is also a pillar of the factor risk parity model described in a later section.

Hence, the naive 1/N and the minimum-variance allocation are solely used as benchmark strate-

gies for the empirical Section 3.6. The risk parity strategy serves, in addition, as an introduction

to the factor risk parity model described in Section 3.4.1.

For all allocations in this chapter let x ∈ Rk×n with k > n be a real matrix where xi,j

describes the percentage price change of an asset i ∈ {1, . . . , n} at time period j ∈ {1, . . . , k} 1.

The real covariance matrix Σ ∈ Rn×n of all asset price changes is symmetric and assumed to be

positive semi-de�nite. The entire paper focuses on the fully invested long-only case

n∑
i=1

wi = 1, (7)

wi ≥ 0, (8)

where w = [w1, w2, . . . , wn]T ∈ Rn de�nes the vector of asset weights of a portfolio P. Given

matrix x and vector w, the percentage price changes of the corresponding portfolio P can be

written as

P := x w ∈ Rk. (9)

For all following investment strategies described in this section and backtested in Section

3.6.3, a two-step approach for computing the out-of-sample weights for each asset is used. First

we take all the time series for one asset class and apply the strategy to those assets only. The

1The model will use data in R for asset price changes as we will also use historical data for the backtest later.

Random variables are only used sometimes when we refer to other work or papers.
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result is a new time series which belongs to that speci�c asset class. We repeat the process for

all asset classes to �nally get a new time series for each asset class. Finally, we use the same

strategy again and apply it to all the new time series we calculated for each asset class. The

reason for using this approach is in the following simple example: if we use the 1/N approach

directly with four equity indices and only one bond index, we would get an 4
5 = 80% equity

weight versus a 1
5 = 20% bond weight. With the two-step approach, we �rst build a new time

series for the equities to receive a �nal 50%/50% weighting for equities and bonds.

3.3.1 Equal-weighted allocations

The 1/N allocation is the simplest naive diversi�cation an investor can choose. Under the

assumptions of equal expected value E for the returns with E(xi) the expected return of asset

i, equal volatility in the returns σ and no correlation

E(X1) = E(Xi) ∀i ∈ {2, . . . , n}

σ1 = σi ∀i ∈ {2, . . . , n}

ρk,i = 0 ∀i, j ∈ {1, . . . , n} and i 6= j

(10)

the 1/N allocation is optimal and equal to the market portfolio.

Accordingly, the two-step approach is applied to the equal-weighted strategy. The aim is to

achieve a naive 1/N allocation in the space of the asset class as well as within the entire portfolio

for a di�erent asset classes. Given km assets within an asset class m and a asset classes, the

asset weights can be calculated by

wi =
1

km · a
∀i ∈ {1, . . . , n} . (11)

3.3.2 Minimum-variance allocations

The assumption for the minimum-variance portfolio is less restrictive than for the equal weighted

portfolio:

E(X1) = E(Xi) ∀i ∈ {2, . . . , n} . (12)

Given that all expected asset returns are equal, the minimum-variance portfolio coincides

with the market portfolio. Computing the minimum-variance portfolio for the following risk

parity approach as well, the "marginal risk contribution" (MRC) is de�ned as the change in

portfolio risk σ when the weight of an asset is marginally changed:
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MRCi :=
∂σ(w)

∂wi
(13)

For all calculations in this paper the standard deviation σ(x) =
√
xTΣx is used as the risk

measure. In this case, the deviation can be calculated directly and expresses the marginal risk

contribution as

MRCi =
(Σw)i√
wTΣw

. (14)

Solving the problem

∂σ(w)

∂wi
=
∂σ(w)

∂wj
∀i, j ∈ {1, 2, . . . , n} (15)

one obtains the minimum variance (MV) portfolio for the given set of time series within an asset

class and for all asset classes in the second computing step.

Following Maillard et al. (2008) the solution for the minimum-variance problem can be written

in the following way:

w∗ =

{
w ∈ [0, 1]

n
:
∂σ(w)

∂wi
=
∂σ(w)

∂wj
∀i, j ∈ {1, 2, . . . , n}

}
s.t.

∑
wi = 1

(16)

Using an interior-point optimization of the Matlab function "fmincon", the above-stated

problem can be solved numerically under long-only constraints:

f∗ = argmin

 n∑
i=1

∑
j<i

(
∂σ(w)

∂wi
− ∂σ(w)

∂wj

)2


n∑
i=1

wi = 1 and wi ≥ 0.

(17)

Since we demand the portfolio weights to be positive, the problem of �nding the portfolio

must be solved numerically. Otherwise a Lagrange multiplier method can be used to calculate

the minimum variance portfolio directly.

3.3.3 Risk parity allocations

A combination of both the naive 1/N strategy and the minimum-variance optimization leads to

the concept of a simple risk parity. The absence of return expectations and zero correlations are

basic assumptions for this naive allocation:
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E(X1) = E(Xi) ∀i ∈ {2, . . . , n}

ρi,j = 0 ∀i, j ∈ {1, . . . , n} and j 6= i.
(18)

Given these assumptions, the allocation is optimal and no diversi�cation e�ect is implied due

to zero correlations. Equalizing the risk of all assets in the portfolio or, in our case, the risk

within an asset class and later the risk of all asset classes in the portfolio, implies that less risky

assets receive a higher weight and vice versa. We apply the most widely used concept of risk

parity. This means that the risk contribution of an asset to the entire portfolio, and not only the

simple risk of an asset, determines the portfolio allocation and thus the asset weights. Therefore

non-zero correlations are taken into account:

ρi,j 6= 0 ∀i, j ∈ {1, . . . , n} and i 6= j. (19)

The risk parity portfolio is based on the concept of risk contribution of a single asset to the

portfolio, which is the marginal risk contribution weighted by the corresponding weight

RCi := wi MRCi. (20)

With the standard deviation as the risk measure and Σ as the covariance matrix of x, the

risk contribution can be calculated directly as:

RCi = wi
(Σw)i√
wTΣw

(21)

With these de�nitions the actual risk parity problem can be formulated as:

wi
∂σ(w)

∂wi
= wj

∂σ(w)

∂wj
∀i, j ∈ {1, 2, .., n}

s.t.

n∑
i=1

wi = 1, wi ≥ 0.

(22)

The following theorem shows that summing up all the risk contributions leads to the portfolio

volatility (see Roncalli and Weisang (2012) for details):

Euler decomposition

For positive homogeneous functions of the degree one, Euler's theorem states that these functions

satisfy the following equation:

f(x) =

n∑
i=1

xi

(
∂f(x)

∂xi

)
(23)

As a consequence, it follows for the risk parity problem under a convex risk measure
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σ(w) =

n∑
i=1

(
wi
∂σ(w)

∂wi

)
. (24)

Given Eulers' theorem, the portfolio risk can be written as the sum of the assets' risk contri-

bution to the portfolio:

σP =

n∑
i=1

RCi. (25)

The solution for the risk parity to contribution problem can be written as follows:

w∗ =

{
w ∈ [0, 1]

n
:
∑

wi = 1, wi
∂σ(w)

∂wi
= wj

∂σ(w)

∂wj
∀i, j ∈ {1, 2, .., n}

}
. (26)

The problem of �nding the weights w that satisfy the conditions in (22) can be solved nu-

merically using the same Matlab optimization as described for the minimum-variance problem

(see Maillard et al. (2008)):

f∗ = argmin

 n∑
i=1

∑
j<i

(
wi
∂σ(w)

∂wi
− wj

∂σ(w)

∂wj

)2
 ,

n∑
i=1

wi = 1 and wi ≥ 0.

(27)

As to the other two allocations, the two-step approach is adopted for the risk parity allocation

in the same way as for the minimum variance optimization.

The risk parity concept described up to this point deals with correlated assets. In the case

of uncorrelated time series x, the problem of �nding the optimal risk parity portfolio weights is

simpli�ed. Covariances do not play a role in calculating the asset weights given zero correlations.

For σ2
i as the variance of time series i and given uncorrelated time series, we can write the

correlation and covariance matrix as

ρx = diag [1, 1, 1, . . . , 1] , (28)

Σ = diag
[
σ2
1 , σ

2
2 , σ

2
3 , . . . , σ

2
n

]
, (29)

and the risk contribution from equation (21) simpli�es to

RCi =
w2
i σ

2
i

σP
. (30)
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Under these assumptions, the portfolio variance can with the use of equation (25) be written

as the simple sum of squared asset weights multiplied by the assets' variances:

σ2
P =

n∑
i=1

(
w2
i σ

2
i

)
. (31)

The risk parity problem under long-only constraint is then described by a system of (n− 1)

linear equations.

w1 σ1 = σ2 w2,

w1 σ1 = σ3 w3,

· · ·

w1 σ1 = σn wn.

(32)

The constraint
∑n
i=1 wi = 1 leads to the closed form solution:

wi =
σ−1i∑n
j=1 σ

−1
j

. (33)

Again, the simpli�ed risk parity problem can be written mathematically as follows:

w∗ =
{
w ∈ [0, 1]

n
:
∑

wi = 1, wi σi = wj σj ∀i, j ∈ {1, 2, . . . , n}
}

(34)

A comprehensive theoretical overview of the general long-short ERC can be found in Bai

et al. (2016). Additionally, they discuss di�erent numerical optimization methods for solving the

ERC optimization problem e�ciently.

3.4 Factor risk parity allocations

3.4.1 Principal component analysis

The motivation for using a PCA for constructing risk parity portfolios is straightforward: in-

stead of focusing on equal risk contributions concerning each asset, we analyze the underlying

factors that drive the performance of the portfolio. The idea is to balance the risk regarding

the most important factors which explain the majority of the portfolio variation. Furthermore,

well-balanced portfolios usually consist of a larger amount of asset (classes) which are highly

correlated. PCA focuses on the underlying risk drivers, thereby determining the relevant depen-

dencies beneath the asset movements, and is independent of the number of asset (classes) selected.

As above, let x = (xi,j) ∈ Rk×n with k > n be a matrix with all asset returns and let

C ∈ Rn×n be a matrix that is still to be determined. n is again the number of assets and k the
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number of time periods. The goal is to linearly transform the data x by multiplying with that

matrix C to receive a new set of variables, the principal components:

x̃ = x C. (35)

This multiplication can be interpreted in di�erent ways (see Shlens (2005)):

1. A transformation of x into x̃, consisting of rotation and stretching of x into x̃

2. The rows of C are a set of new basis vectors for expressing the columns of x.

The question now is how to determine matrix C in a proper way, such that we gain some

insight into the structure of the data when transforming it?

As mentioned above, the goal is to �nd the most relevant factors that drive the returns of

the assets. Those factors should be orthogonal to each other. Thus, the covariance matrix of x̃,

Σ̃, should be diagonalized:

Σ̃ = diag(λ1, . . . , λk) (36)

with λ1 ≥ λ2 ≥ . . . λk. Thus, the eigenvectors from the covariance matrix from x, Σ, can be

placed into the columns of C in a descending order (for a more detailed explanation see Shlens

(2005)). This is what happens when using a PCA. The steps in the PCA therefore consist of:

1. Calculating the matrix Σ(X)

2. Finding all eigenvectors pi: Σ(X)pi = λipi

3. Sorting the eigenvalues λi so that λ1 ≥ λ2 ≥ · · · ≥ λk

4. Taking the eigenvectors pi and placing them in the columns of C

Figure 13 describes the working principle of the PCA in a two-dimensional setting.
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Transformed dataOriginal data with PC-direction
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Figure 13: The PCA tries to �nd the direction with the highest variance �rst (left). The next

component, in turn, contains the highest variance left, under the constraint that it is orthogonal

to the preceding components. The axes are �nally rotated (right).

In the following, we assume that the matrix C ∈ Rn×n has full rank and therefore its inverse

C−1 exists. We will use the matrix C to move from the original data space to the PCA space

by simply multiplying the matrix with the original data: x̃i = C xi. The change from the PCA

space back to the original space is achieved by xi = C−1 x̃i. However, as C is a matrix consisting

of orthogonal eigenvectors in its columns, CT C is the identity matrix and therefore C−1 = CT .

3.4.2 Risk parity applied to principal components

We now want to apply the concept of PCA to the Risk Parity problem. The PCA is used here

as a blind source separation method as uncorrelated risk factors are later needed to determine

the solution set. The idea of factor risk parity that is used is thereby similar to the concept

described in Roncalli and Weisang (2012) whereby the speci�c risk factors in this work are not,

as mentioned above, further economically motivated. A core advantage of using a risk parity

approach is that return expectations are not needed for the model, especially as setting those

expectations are often a point of criticism. Also, historical returns are not put in any relationship

to risk or used as an approximation for future returns.

We therefore take the price changes x of the assets described in Section 3.5 and calculate the

matrix C ∈ Rn×n as described in the subsection above. We assume the matrix to be fully ranked.

As mentioned above, we can transform asset price changes into changes along the directions of

the principal components and vice versa by multiplying with C or CT respectively. We therefore

have
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x̃ = x C, (37)

with x̃ ∈ Rk×n being the changes in the principal components. In the same way we can transform

the weights w into w̃ by

w̃ = CT w, (38)

with w̃ ∈ Rn interpreted as weights in a principal component space. The portfolio return of

principal components P̃ is then calculated as

P̃ := x̃ w̃, (39)

with P̃ ∈ Rk. Given the asset space portfolio returns P as described in Section 3.3, the daily

portfolio returns in P are equal to the daily portfolio returns in P̃ .

With a covariance matrix Σ̃ ∈ Rn×n of the principal components x̃, the marginal risk contribution

for each component can be calculated by

M̃RCi :=
∂σ(w̃)

∂w̃i
=

(Σ̃w̃)i√
w̃T Σ̃w̃

. (40)

Through the orthogonal transformation used by the PCA, each component is orthogonal to

the preceding components. Therefore, by using σ̃2
i as the variance of the i-th principal component,

the covariance matrix is given by:

Σ̃ = diag(σ̃2
1 , . . . , σ̃

2
n) (41)

Hence, the correlation matrix is:

ρx̃ = diag [1, 1, 1, . . . , 1] . (42)

The orthogonality in the principal components and equation (40) imply that changing the

weight w̃i only changes the i-th marginal risk contribution M̃RCi and leaves M̃RCj with j 6= i

unchanged.

As mentioned above, orthogonality considerably simpli�es the calculation of the risk contribution:

R̃Ci =
w̃2
i σ̃

2
i

σ̃P
∀i ∈ {1, . . . , n} . (43)
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We now try to �nd weights w̃ ∈ Rn which lead to an equal risk contribution of the �rst m

principal components in the factor space of solutions. Those �rst m principal components should

explain most of the variation. In practice, m will be 2.2

w̃2
i σ̃

2
i = w̃2

j σ̃
2
j ∀i, j ∈ {1, 2, ..,m} (44)

Considering an equality in squared variables, βi ∈ {−1, 1} serves as a long-short indicator

related to these factors:

β1 w̃1 σ̃1 = β2 w̃2 σ̃2,

β1 w̃1 σ̃1 = β3 w̃3 σ̃3,

· · ·

β1 w̃1 σ̃1 = βm w̃m σ̃m.

. (45)

βi equates to the principal components direction so that we receive 2m−1 possible solutions. For

each permutation of β, the vector w̃ is a solution in the factor space. The directions of the other

n−m principal components are irrelevant. Due to the transformation w = C w̃ we do not need

to consider the direction of the other principal components.

The concept presented here is similar to the approach of Meucci (2009) who does not use

the term of risk contributions but volatility concentration curves. As the variance σ̃2
i of the i-th

principal component equals the i-th eigenvalue of the PCA, those terms though largely overlap.

Additionally, Meucci (2009) focuses on setting up portfolios by analyzing diversi�cation distri-

butions represented by the (exponential of the) entropy (see equation (73)). There are major

di�erences to this model, however: �rst, risk parity is independent of any historical returns or

return distributions which in general is seen as a key advantage of this approach. Meucci (2009)

on the other hand relates the e�ective number of bets to the expected return. For the case that

solely the entropy is maximized, all principal components, excluding those determined through

the constraints, are taken into consideration. That is a core di�erence to the approach discussed

in this paper, which lets the residual risk components �oat, thereby generalizing the classical fac-

tor risk parity solution set. As the residual components in a PCA are more unstable and often

considered to be noisy, letting the weights �oat to some extend is in our view a more intuitive

approach.

As PCA is not free of criticism, it is sometimes replaced by other methods as for example

done by Meucci et al. (2014), who present a model that is based on minimum torsion bets to

2For all further considerations, m < n as the model seeks to reduce the number of risk factors.
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determine uncorrelated factors to track the original ones. They argue, among others, that prin-

cipal components are statistically unstable, especially those regarding to the lower eigenvalues.

They further mention the problem of uniqueness as well as interpretation issues of the principal

components. The model described here, by focussing only on the �rst principal components,

bypasses some of those issues: the focus is placed on the more stable, important principal com-

ponents and the residual ones are allowed to �oat to some extend. As the number of equal risk

contributions is set to only a few components, the amount of solutions due to di�erent principal

component directions does not increase signi�cantly.

3.4.3 Introduction to polyhedra

After describing the allocation problem, we now focus on the solution set if we consider portfolios

without leverage or short positions. So far we have been able to arbitrarily choose w̃m+1 to w̃n

but we will later restrict those weights. As a subset of Rn we do not know though whether a

solution in general will exist.

It turns out that by introducing the long-only constraint we get a convex polytope which de-

scribes the portfolios with the desired attributes as a set of solutions. We will therefore continue

with a short introduction to polyhedra and polytopes before describing our modi�ed factor risk

parity model.

A polyhedron Q is a subset of Rn that can be written as a �nite number of linear inequalities,

meaning A ∈ Rm×n and b ∈ Rm exist with:

Q = {x ∈ Rn | Ax ≤ b}. (46)

This de�nition describes the subset of Rn as a cut out by a �nite number of hyperplanes

(see Gallier (2008)). The description of a polyhedron via equation (46) is also called the H-

representation of a polyhedron. Very simple two-dimensional examples of polyhedra in R2 include

structures such as a square or triangle. However, the inequalities do not necessarily mean that

the set is bounded nor that a solution exists. By bounded we mean that Q �ts into a cube, so

k ∈ R exists with

Q ⊂ {x ∈ Rn | |xi| ≤ k ∀i ∈ {1, ..., n}}. (47)

Let us next de�ne a corner point (extreme point) of a polyhedron. There are many di�erent
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ways which are used equivalently in the literature. We de�ne a corner point of a polyhedron Q

as a point x ∈ Rn so that there are no two y, z ∈ Rn such that x is a convex combination of y

and z. If the polyhedron is bounded we also speak of a polytope.

According to the Weyl-Minkowski Theorem, polytopes can either be written in the form of

equation (46) or equivalently as a convex hull of a �nite set of points. Thus, let qi ∈ Rn with

i ∈ {1, . . . , r} be a �nite number of points, then the polytope can be written as:

Q = conv{q1, . . . , qr} = {x ∈ Rn | x =
∑

λiqi with λi ≥ 0,
∑

λi = 1}. (48)

Equation (48) is called the V-representation of a polytope. For a proof of the Weyl-Minkowski

Theorem see Gallier (2008).

We will later consider polyhedra which also include equalities. However, the de�nition above

already includes equalities as Ax = b ⇔ Ax ≤ b and −Ax ≤ −b. In implementing the model,

the portfolio weights wi ∈ Rn will be subject to some restrictions which can be formulated by

a number of equalities and inequalities. The solution set can therefore be formulated through a

H-representation as described in equation (46).

Considering the matrix A and vector b as another example: 3

A =



1 1 1

−1 1 1

1 −1 1

1 1 −1

−1 −1 1

−1 1 −1

1 −1 −1

−1 −1 −1



and b =



1

1

1

1

1

1

1

1



(49)

The resulting three-dimensional object that represents all points of Ax ≤ b is called an

octahedron and is shown in Figure 14.

3Matlab-Code and example can be found at

http://www.mathworks.com/matlabcentral/�leexchange/9261-plot-2d-3d-region/content/example4.m.
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Figure 14: The �gure shows a special form of a polytope, an octahedron according to the example

(49) with six corner points and eight hyperplanes in R3.

There are many computational issues related to polyhedra or polytopes. One problem is

the conversion between the H-representation and the V-representation of a polytope, which is

called the "vertex enumeration problem". If we are de�ning a set of inequalities describing the

restrictions for the portfolio weights, how to obtain the corner points of the polytope? Later

each corner point will represent a portfolio that is of special interest and will be used for further

calcuations. In this case we will compute the extreme points by using the cdd-mex library of

Komai Fukuda which is based on the "Double Description Method" of Motzkin et al. (1953).

The documentation says: "The C-library cddlib is a C implementation of the Double Descrip-

tion Method of Motzkin et al. for generating all vertices (i.e. extreme points) and extreme rays

of a general convex polyhedron in Rd given by a system of linear inequalities..." The program

can be used for the reverse operation (i.e. convex hull computation). This means that one can

move back and forth between an inequality representation and a generator (i.e. vertex and ray)

representation of a polyhedron with cdd"4. See appendix (3.A) for further details.

At a later stage, we will use the fact that a polyhedron stays a polyhedron under a�ne trans-

formations in Euclidian Spaces. The corresponding proof can be found in Gallier (2008).

Note also that polyhedra are convex sets which means that for y1, y2 ∈ Q and 0 ≤ λ ≤ 1 s.t. we

have λy1 +(1−λ)y2 ∈ Q. We will later call a portfolio "optimal" if and only if the weights of the

portfolio are within a speci�c polyhedron. As the corner points will later, due to our restrictions,

represent portfolios with sum of weights equal to 1, an investor can conveniently choose which

a�ne combination of those portfolios to take. As the set is convex, this a�ne combination will

4ftp://ftp.ifor.math.ethz.ch/pub/fukuda/cdd/README.libcdd
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automatically be an optimal portfolio as well. And as each corner point will have weights equal

to 1, so will the a�ne combination.

We will also brie�y touch on the topic of whether the inequalities actually do have a solution,

meaning that the polyhedron consists of at least one point and whether the polyhedron is bounded

or not.

3.4.4 Factor risk parity polytopes

In this section we describe the set of portfolios which meets the following criteria and solves the

problem described in Section 3.4.1:

1. Risk parity condition

This condition has already been explained above: the weights in the PCA space need to

meet conditions from equation (45).

2. Positive weights in the asset space

We do not want any short selling, meaning w = C w̃ ≥ 0.

3. Asset weights sum up to 1

Equivalent to
∑
wi = 1 as no leverage as well as no cash position is allowed.

If forcing weights w̃m+1, . . . , w̃n in the principal component space to be zero, it is often not

possible to �nd a solution that meets all the above mentioned criteria. It might be of interest,

however, to allow those weights to di�er from zero for the bene�t of avoiding short sales and

leverage.

There are now di�erent ways to proceed from here to �nd the solution set. We will �rst

take a step by step approach to �nd weights that ful�ll conditions 1 and 2. By normalizing the

results those criteria are still met and the weights will also sum up to 1. This is not a direct way

but will, however, provide some insights on the path. We subsequently focus on an integrated

approach which meets all conditions simultaneously and which we will use in further calculations.

First, we focus on weights w̃1, . . . , w̃m according to equation (45). The condition only refers

to the ratio of the weights w̃1 to w̃m. Without loss of generality, we just describe the case where

βi = 1 ∀i ∈ {1, . . . ,m} to simplify the calculations. From equation (45) we can directly conclude

w̃i = w̃1
σ̃1
σ̃i
∀ i ∈ {2, . . . ,m} . (50)
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Thereafter, we turn to condition 2 to �nd w̃m+1, . . . , w̃n and meet condition


c1,1 · · · c1,n
...

...
...

cn,1 · · · cn,n





w̃1

· · ·

w̃m

w̃m+1

· · ·

w̃n


≥



0

· · ·

0

0

· · ·

0


. (51)

Next let the matrix C1 be the matrix containing the �rst m columns of the PCA transfor-

mation matrix and the matrix C2 be the matrix with the residual columns:

C1 :=


c1,1 · · · c1,m
...

. . .
...

cn,1 · · · cn,m

 ∈ Rn×m, C2 :=


c1,m+1 · · · c1,n

...
. . .

...

cn,m+1 · · · cn,n

 ∈ Rn×(n−m). (52)

Under the constraint w = C w̃ ≥ 0 and as (w̃1, . . . , w̃m)
T

is de�ned by equation (45),

(w̃m+1, . . . , w̃n)
T
must meet condition

− C2


w̃m+1

...

w̃n

 ≤ C1


w̃1

...

w̃m

 = C1


w̃1

...

w̃1
σ̃1

σ̃m



⇒− C1


w̃1

...

w̃1
σ̃1

σ̃m

− C2


w̃m+1

...

w̃n

 ≤


0
...

0


(53)

which is a linear inequality in w̃1, w̃m+1, . . . , w̃n. The solution set describes a convex polyhedron.

As noted above, convex means, in this case, that for z1, z2 ∈ Q and 0 ≤ λ ≤ 1, λz1+(1−λ)z2 ∈ Q

holds. Thus, all a�ne combinations of extreme points are feasible solutions. Once we �nd solu-

tions for w̃1, w̃m+1, . . . , w̃n, we can also calculate w̃2, . . . , w̃m.

On the one hand, we have now de�ned the conditions for w̃1, . . . , w̃m which relate to the risk

parity condition in the �rst m components and, on the other hand, we de�ne w̃m+1, . . . , w̃n for

non-negative weights constraints while the risk parity condition is still met. We can transform

the weights using C w̃ in the asset space. Taking into consideration, however, that the polyhe-

dron in this case might not be bounded.
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So far we have ignored condition 3 from above, meaning that the weights in the asset space

sum up to 1. We could proceed the following way: for every solution w̃ we can just normalize

the weight in the asset space. Knowing that the solution set in the asset space is a polyhedron

and, with c×W , still stays a polyhedron with c > 0, the solution can be normalized and is still

a valid portfolio in the asset space with asset weights sum equal to 1. The complete polyhedron

which was calculated above is thereby normalized.

We now focus on the method that is more straightforward, particularly as we compute the

extreme points of the polyhedron by using the cdd-mex library. To �nd the vertices of the

polytope, the conditions need to be written in the form of equalities and inequalities. The idea

therefore is to describe each of the conditions 1 to 3 above as equations.

Describing the solution set as a combination of equalities and inequalities

As it has been shown, the solutions for the constraints of the weights, being within certain bound-

aries, can be written in accordance with equation (45). Standard algorithms for determining the

polyhedron, however, can usually deal with inequalities and equalities.

The condition w̃1σ̃1 = w̃iσ̃i for i ∈ {1, . . . ,m} regarding the risk equality can be written in

matrix form as


σ̃1 −σ̃2 0 · · · 0 0

σ̃1 0 −σ̃3 0 · · · 0
...

...
...

...
...

...

σ̃1 · · · · · · −σ̃m · · · 0




w̃1

...

...

w̃n

 =


0
...
...

0

 . (54)

The condition that the portfolio weights sum up to 1 is equivalent to

1 =
∑
i

wi =
∑
i

∑
j

(ci,jw̃j) =
∑
j

w̃j
∑
i

ci,j =
∑
i

Ciw̃i, (55)

with ci,j being the elements of the transformation matrix from the PCA and Cj =
∑
i(ci,j) being

the sum of the j-th column in the matrix C.

We can therefore write

(
C1 C2 · · · Cn

)
w̃1

...

w̃n

 = 1. (56)

Finally, the requirement that the weights in the asset space are non-negative is already given

above by the pre-condition w = C w̃ ≥ 0.



63

Some remarks on the existence of the solutions and the boundary aspects

One of the questions that arises when dealing with inequalities and polyhedra is whether a solu-

tion exists. The inequalities and equalities may be set up in a way that no point in Rn ful�lls all

conditions. Given our application, the question is whether a portfolio exists which has equal risk

contributions in the �rst two components in the PCA space with positive weights in the asset

space that sum up to 1. This problem of �nding a solution to A x ≤ b is often referred to as the

"linear feasibility problem" which is very closely related to the topic of linear programming. Due

to its importance it has been widely discussed in the literature such as Cartis and Gould (2007),

which focuses heavily on �nding e�cient algorithms for solving this problem. As discussed above,

we use the cdd-mex library for �nding the vertices of the polyhedron. The method returns an

empty set when the inequalities do not have any solutions, therefore we will not go into further

detail regarding this problem.

Another issue is whether the solution to the equalities and inequalities above is bounded

or not, i.e. whether the solution is a polytope or not. The standard cdd-mex code does not

deal with unbounded polyhedra and returns an error when calculating the V-representation.

In our case, however, boundedness is not a problem: the solution in the form of a polyhedron

in the asset space is bounded: the weights are supposed to be positive and the condition that

the weights sum up to 1 implies that each weight is lower than or equal to 1. We also know

that we can transform the polyhedron back and forth using the matrix multiplication with C or

CT accordingly. As the image of a compact set under a matrix multiplication is compact, we

know that the polyhedron in the PCA space must also be a polytope if the asset space poly-

tope exists. Thus, we will subsequently use the expression "polytope" to describe the solution set.

Su�cient explanation of the �rst few risk contributions and bene�ts of calulating

the polytope

As discussed, the conditions with the corresponding solution above lead to a polytope. This,

however, might still not be satisfying, as the risk contributions in the �rst m components may

be much smaller than those in the last components. This would contradict the initial idea of

factor risk parity as the majority of the portfolio variance is determined not by the �rst risk

contributions which are equal in size but by other factors which are not taken into consideration

at all. Solutions from the polytope should therefore be excluded when the �rst risk contributions

are too small compared to the total risk. With a minimum explanation of emin and the �rst m

risk contributions equal, we require:
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∑m
j=1 R̃Cj∑n
i=1 R̃Ci

≥ emin,

⇔ (1− emin)

m∑
j=1

R̃Cj − emin
n∑

j=m+1

R̃Cj ≥ 0,

⇔ (1− emin)

m∑
j=1

w̃2
jσ

2
j − emin

n∑
j=m+1

w̃2
jσ

2
j ≥ 0.

(57)

Equation (57) is of the form

c1w̃
2
1 + · · ·+ cmw̃

2
m − cm+1w̃

2
m+1 − · · · − cnw̃2

n ≥ 0, (58)

with ci > 0 ∀i. In contrast to the inequalities we had before, this equation is an inequality with

sums of squared variables. To �nd solutions for the factor risk parity problem with equal risk

contributions in the �rst components and a su�ciently high explanation of those components, we

have to �nd the intersection of the polytope with the solution set of equation (45). Usually this

intersection, however, is not a polytope anymore and solving this problem is often complex. This

is why we de�ne the minimum explanation level as a constraint for each optimization problem

within the polytope to determine a solution.

Finding an optimal portfolio later can also be done completely numerically. However, know-

ing that the solution set can be described by a convex polytope o�ers some bene�ts versus just

trying to �nd an optimal portfolio numerically: �rst, by calculating the polytope, the investor

is aware of the structure of the solution set, whether a solution in general exists and if so, how

large the set is. Next, the optimization for �nding a solution within the polytope is much more

e�cient compared to a full numerical optimization which would have to incorporate more param-

eters and constraints simultaneously. The explicit structure of the solution set in the principal

component space opens up further opportunities. For example, by using the corner points of the

polytope, an investor can individually combine all the corner point portfolios to construct his

desired allocation.

Example in a lower dimension case

The following paragraph describes a simple example where we assume there are 4 di�erent assets,

where the risk contributions in the �rst two components are supposed to be equal. The coe�cient

matrix from the PCA in this example is given by
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C =


0.506 0.848 0.145 −0.059

−0.110 −0.107 0.987 −0.056

0.057 0.024 0.066 0.996

0.854 −0.518 0.036 −0.039

 . (59)

We require asset weights between 0 and 1. Let 0.0169, 0.0113, 0.0047 and 0.0030 be the

standard deviations of the principal components. Using the algorithm to determine the polyhedra

based on the conditions above, we get two possible solution sets re�ecting the two orthogonal

solutions, meaning

β =

1

1

 or β =

 1

−1

 . (60)

The reasons why only two di�erent polytopes can exist if the risk of the �rst two principal

components is equalized is the following: �rst, from the �rst polytope constraint (see page 60),

which can be written as:

(
σ̃1 −σ̃2 0 · · · 0

)
w̃1

...

w̃n

 =


0
...

0

 , (61)

one can see the the solution changes when the direction of one principal component is changed

(i.e. using β =

 1

−1

. The relation of the sign of the �rst two principal is �xed facing one

another. Thus, two di�erent solutions are possible.

Second, the reason why not more than two polytopes exists has to do with the second poly-

tope constraint from page 60. From w = C w̃ ≥ 0 follows w = C w̃ = −C(−w̃) ≥ 0. If one

changes, the direction of one or more principal components Ci for i > 2, only the sign of the

weights −̃wi for i > 2 changes. Due to the transformation with C, the solution in the asset space

stays the same.

For the example, we are focusing again on the scenario with β =

1

1

. If we use the algorithm
that re�ects all three criteria for the factor risk parity polytopes, we get a polytope with 4 corner

points in a four-dimensional PCA space:
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w̃1 =


0.5228

0.7819

0.1397

−0.0580

 , w̃2 =


0.2375

0.3549

0.0974

0.5724

 , w̃3 =


−0.0300

−0.0448

0.5477

0.4446

 , w̃4 =


−0.0801

−0.1198

0.9574

−0.0560

 . (62)

or, transformed back into asset space:

w1 =


0.9513

0

0

0.0487

 , w2 =


0.4014

0

0.5986

0

 , w3 =


0

0.5238

0.4762

0

 , w4 =


0

0.9697

0

0.0303

 . (63)

We can already see from the results that the weights in the asset space sum up to 1. We also

see from the weights in the PCA space that the ratio of second to �rst coordinate is constant:

0.782

0.523
≈ 0.355

0.238
≈ −0.045

−0.030
≈ −0.120

−0.080
≈ 1.496. (64)

Let us now take another look and compare the results to the methods with lengthy compu-

tations. We already know that the ratio of the second to �rst coordinate is 1.49.

Next we turn to the condition from equation (53) which is

−


0.506 0.848

−0.110 −0.107

0.057 0.024

0.854 −0.518


 w̃1

0.0169
0.0113 w̃1

−


0.145 −0.059

0.987 −0.056

0.066 0.996

0.036 −0.039


w̃3

w̃4

 ≤


0

0

0

0

 . (65)

This is a linear inequality in w̃1, w̃3 and w̃4. Using the cdd-mex library again we can determine

the polyhedron relating to equation (65). The polyhedron, however, is unbounded, as we can see

from the equation. Yet, in this case, this is not a major obstacle5. So far, we have not considered

the restriction that the weights in the asset space sum up to 1. This criterion will lead to the

boundedness of the solution set of the problem. In this case the hyperplane is de�ned by:

∑
Ciw̃i = 1.307 · w̃1 + 0.247 · w̃2 + 1.234 · w̃3 + 0.842 w̃4

= 1.676 · w̃1 + 1.234 · w̃3 + 0.842 · w̃4

= 1

(66)

5 For �xed w̃1 and w̃4 we can let w̃3 → ∞ for example. For this example, we will simply place a box as

boundaries around the polyhedron. Figure 15 will show there is no restriction when the space chosen is big

enough.
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Figure 15: The solution is given by the cut of the hyperplane (in red) which is responsible for

asset weights equal to 1, with the polyhedron in blue which represents the portfolios with positive

asset weights and risk contributions equal in �rst two components. Note that w̃2 as a multiple of

w̃1 is not plotted.

Figure 15 shows the results: we �rst of all got the solution for w̃1, w̃3 and w̃4 in the form

of the unbounded polyhedron (blue box). That polyhedron represents the weights in the PCA

space where the �rst two risk contributions are equal and the weights are non-negative. Keep

in mind that the weights for w̃2 are not plotted in that �gure. The hyperplane in the form of

equation (66) is also plotted in that �gure. That hyperplane (red plane) represents the portfolios

with weights in the PCA space which, when transferred back into the asset space, sum up to 1.

The solution set is therefore restricted to all portfolios on that hyperplane. As we are interested

in portfolios that are both within the polyhedron as well as on the hyperplane, we have to take

the intersection of those two sets. Please note that the corner points of the intersection match

exactly with the corner points that we received above (see equation (62)).

Finally, we address the level of explanation from equation (57). We now want to see whether

the �rst two components explain at least 70% of the total risk contributions. Equation (57) in

this example then turns into:

0.3 · 0.01692 · w̃1
2

+ 0.3 · 0.01132 · w̃2
2 − 0.7 · 0.00472 · w̃2

3 − 0.7 · 0.0032 · w̃2
4 ≥ 0

⇔1.714 · w̃1
2 ≥ 0.155 · w̃3

2
+ 0.063 · w̃4

2
(67)

Figure 16 displays the results of equation (67) together with the polytope that we have

calculated above. The axes represent the weights w̃1, w̃3 and w̃4. In addition to a minimum

explanation level of 70%, we have added the 50% and the 90% levels. It can be observed that the
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solution in the form of the polytope consists of a wide variety of portfolios, even with a level of

explanation of the �rst two principal components (risk contribution) of over 90% but also with

less than 50%.
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Figure 16: The rectangle in this �gure is the solution from above while the curved surfaces

represent the curves of equal explanation ratio. As an example, the blue surface represents all

portfolios where the explanation of the �rst two components is equal to 90%.

We can also see that the weight w̃1 is most relevant for a high explanation: a high absolute

weight w̃1 implies a high absolute weight w̃2. Additionally to the characteristic of sorted variances

of the principal components received through the PCA, this increases the risk contributions R̃C1

and R̃C2 relative to R̃C3 or R̃C4.

3.5 Data description

The following section describes the historical datasets used for the empirical analysis. We used

two US multi-asset datasets with di�erent periods of time and di�erent numbers of time series

but with a comparable multi-asset class setup. For both datasets daily end-of-day (EoD) data

is used. Dataset 1 focuses on a broad selection within the asset classes and avoids aggregated

indices to allow a more granular view. Given this requirement, the time series reaches from 2014

back to 1994. For dataset 2, aggregated indices are used for the backtest to bene�t from a longer

time period that starts in 1986.

There are di�erent reasons for the focus on US data instead of worldwide assets, one being

the problem of di�erent time zones, which is crucial when dealing with daily data. This is even

more important in cases of risk-based strategies. Important key statistics, such as correlations,
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get distorted by lags in trading hours of di�erent exchanges around the globe or di�erent holiday

calendars. We excluded other markets, like private equity, hedge funds or real estate, in order

to obtain reliable and long period EoD series. Stock indices such as the S&P 500 have a long

history and are well understood with reliable data. Finally, the data is not a�ected by any foreign

exchange issues when we completely focus on the US dollar as the currency.

3.5.1 Dataset 1

In dataset 1, we focused on a broadly diversi�ed set of US assets. To be balanced and cover

di�erent risk factors, the �ve most liquid asset classes as well as indices within those classes are

used. All the data is taken from Bloomberg. These include:

• Three equity indices

• Treasury bond indices with three di�erent maturity bands

• Corporate bond indices with three di�erent maturity bands

• High-yield bond indices with three di�erent maturity bands

• Three commodity indices

The equity indices include the S&P 500 (SPX), as a broad index of 500 US stocks, the NAS-

DAQ 100 (NDX) as the 100 largest and most active non-�nancial domestic and international

issues listed on the NASDAQ and the Russell 2000 index (RTY), which is an index consisting of

2000 equities with lower market capitalization.

On the �xed income side, we add 3 di�erent treasury bond indices which include the Bank

of America (BoA) Merrill Lynch indices with di�erent maturity bands. These enclose indices

with maturities of 1-3 years (G1O2), 5-7 years (G3O2) and 10-15 years (G7O2) to cover the

entire yield curve. Those indices represent the pure interest rates' development over di�erent

maturities excluding credit risk.

To account for credit risk, corporate debt and high-yield indices are added. Corporate debt is

represented via BofA Merrill Lynch indices with di�erent maturity bands, too. These comprise

the BofA Merrill Lynch 1-3 Year AA US corporate index (C1A2), the ones for maturities 5-7

years (C3A2) and 10-15 years (C7A2). The same maturity buckets are used for high-yield bonds,

the BofA Merrill Lynch 1-3 Year B Cash Pay High-Yield Index (J1A2), 5-7 years (J3A2) and
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10-15 years (J7A2).

For the commodities, three S&P GSCI sub-indices are included: S&P GSCI Energy Total

Return Index (SPGSENTR), S&P GSCI Industrial Metals Total Return Index (SPGSINTR),

and S&P GSCI Precious Metals Total Return Index (SPGSPMTR). There are several reasons for

choosing exactly these indices. First, these indices are directly investable. Especially with com-

modities it is necessary to select indices which re�ect the real performance that investors achieve

when they want to invest into that asset class. Special characteristics such as backwardation or

contango can signi�cantly in�uence the risk and return and, as such, the investors' earnings.

Regarding commodities, we choose three sub-indices that re�ect a wide range of the commod-

ity universe. Agricultural investments are excluded due to general concerns related to ethical

aspects. We also choose to take the sub-indices instead of a single commodity index as each sub-

index reacts di�erently and contains its own characteristics. This can be even more important in

the case of factor risk parity as we try to extract the underlying risk factors varying from index

to index. As an example, the precious metals index is driven by di�erent factors than the energy

index. Gold, as for example discussed in the �rst study, is sometimes interpreted as a type of

safe haven when markets crash whereas the price of oil may be in�uenced by completely di�erent

factors. We can see from the correlation matrix (see Figure 32 in the appendix) as well as from

the optimization results that the sub-indices behave quite di�erently and therefore justify their

inclusion.

For the analysis, bond positions are split into treasuries versus corporates and high-yield, in

order to split the credit risk from pure interest rate movements. As the credit spread moves

di�erently for investment grade bonds and high-yield bonds, we include both types. The time

buckets cover most maturities, from short-term in the form of the 1-3 years bucket to very long-

term in the form of bonds with maturities longer than 10 years. Di�erent maturity buckets are

included to account for any shifts or twists that may occur in the yield or spread curves. The

chosen buckets are standard and guarantee a long time series in the form of the BoA Merrill

Lynch indices.

We deliberately ignore any alternative investment indices such as private equity, hedge funds

or real estate. Although one might consider these assets to be key in a well-diversi�ed multi-

asset portfolio, we decided to exclude them due to di�erent reasons. The most important one

is the lack of liquidity, particularly as we focus on daily data. As the range of indices selected
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already covers a huge universe of assets and includes the relevant risk factors, other indices such

as mid-cap equity are excluded. Particularly focusing on the extraction of the driving risk factors

by using the PCA, adding another equity index for example, should not in�uence the analysis

or diversi�cation.

Considering the historical data and their characteristics, it is not surprising that the volatil-

ity of commodity and equitiy indices on average exceeds that of the bond indices. Figure 17

illustrates the annualized standard deviation and the annualized return for the data from 1994

to 2014. Tables 21 and 22 provide a more detailed view on the data.
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Figure 17: Annualized asset returns and annualized volatilities for the �ve asset classes (three

di�erent time series each) are plotted in this �gure for the entire period from 1994 to 2014.

On average, the equity time series o�er a more or less similar volatility level as the commodi-

ties while at the same time o�ering the highest returns. The Sharpe Ratio for di�erent time

periods in Figure 18 re�ects the average high volatility and low return in the form of average

negative Sharpe Ratios for commodities for di�erent time periods.

Treasury and corporate bonds perform similarly, with corporate bonds o�ering higher returns

at a slightly higher level of volatility. For most time periods in Figure 18, those proportions are

re�ected by the Sharpe Ratios. US high-yield bonds have performed well in the last 20 years

with annual returns between 6% and 12% and manageable volatility levels. It is worth noting

that high-yield bonds had the highest Sharpe Ratio in each period we observed.
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Figure 18: The asset classes' Sharpe Ratios are plotted for four periods. For calculating the

Sharpe Ratios we used the 3M-USD-Libor as the risk-free rate aggregated all time series within

an asset class to one time series with equal weights. Negative Sharpe Ratios are shown even

though interpretation is di�cult in those cases.

When working with historical data, however, it is crucial to consider the time period. For

example, the yield of bonds in the last 20 years has dropped signi�cantly. The 10-year US

government bond yield has dropped from around 8% p.a. in 1994 to under 1.5% p.a. in 2012.

Despite di�cult periods, such as the "dot-com crash" or the �nancial crisis in 2008/09, equities

had an impressive 20-year history with an average annual performance between 9% and 12.5%.

The high-yield bonds had a strong performance in the last 20 years, too. Equities showed

positive Sharpe Ratios between 1994-1999 and 2009-2014, whereas they were negatively a�ected

by the two crises mentioned above. The expansion of the Federal Reserve Balance sheet after

the �nancial crisis has led to a strong performance with higher Sharpe Ratios in all asset classes

except for commodities. To calculate the Sharpe Ratio, we used the 3M-USD-Libor as the risk

free-rate.

3.5.2 Dataset 2

The idea behind the composition of dataset 2 is to maximize the time period under analysis

while at the same time focusing on a similar asset structure as in the dataset above. We do not

include high-yield time series due to their shorter data history. Although it was necessary to use

more aggregated indices to cover the whole period from 1986 to 2014, we believe that the dataset

is still well diversi�ed in terms of risk factors. We again cover the same four asset risk factors

as in dataset 1: equity risk, interest rate risk, credit spread risk and commodity risk. Data are

again taken from Bloomberg as EoD time series. These include:
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• Two equity indices

• Two treasury bond indices

• Two corporate bond indices

• One commodity Index

Due to their long history, we included the S&P500 (SPX) and the Russell 2000 Index (RTY).

Given the shorter data history, the NASDAQ 100 (NDX) could not be used. To cover treasury

bonds, we used the 1-3 years (G2O2) and the 15+ (G8O2) years BofA Merrill Lynch treasury

bond indices. To account for credit risk in this dataset, we used the 1-3 years (C2A0) und the

15+ years (C8A0) Bank of America Merrill Lynch US Corporate Bond indices. The bond indices

are responsible for determining the length of this dataset. Finally, we replace the commodity

sub-indices used in dataset 1 by the S&P GSCI commodity index due to the longer data history.

The historical data characteristics are similar to the �rst dataset. Figure 19 shows annualized

return and risk relations for the whole period in the same way as for dataset 1. Equity time

series again o�er similar volatility as the commodity time series, but at a higher level of return.

The volatility of both asset classes are on average between 18% and 22% and thus the highest

in dataset 2.

Corporate and government bonds have similar risk/return characteristics. As in dataset 1,

corporate bonds again perform better with a slightly lower level of volatility. The reason for this

di�erence lies in the time period from 1986 to 1994. Tables 25 and 26 provide a more detailed

view on the data. The heatmap in Figure 33 shows the asset correlations. Sharpe Ratios are

very similar to that in dataset 1 for the four periods from 1994 to 2014. For the period from

1989 to 1994 we measured low but positive Sharpe Ratios for all asset classes (see Figure 20).

In sum, both datasets are quite similar in terms of their statistical characteristics. We will

use each dataset to cross-validate the results using them independently. Notwithstanding the

di�erent length and the di�erent time series, we would expect similar allocations for the com-

parable time periods. Otherwise the model would be very sensitive to marginal changes in the

input time series.
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Figure 19: Annualized asset returns and annualized volatilities for the four asset classes (three

di�erent time series each) are plotted in this �gure for the entire period from 1986 to 2014.
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Figure 20: The asset classes Sharpe Ratios are plotted for �ve periods. For calculating the

Sharpe Ratios we used the 3M-USD-Libor as the risk-free rate and aggregated all time series

within an asset class to one time series with equal weights. Negative Sharpe Ratios are shown

even though interpretation is di�cult in those cases.

3.6 Empirical analysis

In this section we apply the model described in detail in Section 3.4.1. Before performing

the empirical analysis using the model and the strategies described in Section 3.3, the out-

of-sample backtest setup will be explained. Some robustness checks regarding the stability of

the composition are made and the stability of the risk contribution of the �rst two principal

components will be analyzed.
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3.6.1 Backtest setup

For all following empirical analyses and tests, we de�ne t = 1 as the �rst entry in dataset 1

and dataset 2. Despite the di�erent length of the two datasets, the same backtest approach in

the form of a rolling window approach for both datasets will be used. The out-of-sample asset

weights w are calculated at time t based on the historical data from t − x to t − 1. After that,

these weights are used to calculate the performance and other statistics for the time from t to

t + (y − 1). The asset weights will be rebalanced at t + y accordingly. Using this approach,

the length of the in-the-sample window x and the length of the out-of-sample window y until

reallocation have to be chosen.

The in-the-sample window length is often a subject of discussion in literature. We will there-

fore backtest three di�erent in-the-sample window lengths: 500, 1,000 and 1,500 trading days.

The length of the out-of-sample window is set to 60 trading days which corresponds to roughly

3 months. The rebalancing period should not be too short to avoid higher trading costs but also

not too long so as to be able to adjust to any changes in the market environment.

For computing the solution set corner points, the direct way as explained in Section 3.4.4 will

be used only. For each rebalancing period a new polytope is calculated. When two polytopes due

to the two beta factors from formula 60 exist, the one with the higher level of explanation is taken.

For the empirical analysis the two datasets as speci�ed in Section 3.5 are used. A special

focus will be put on the level of explanation by the �rst two principal components, which as

discussed have to be su�ciently high. For a more detailed insight into the behavior of the

risk contribution and the composition of the �rst two principal components in the context of

the models' robustness, the same approach with daily calculated risk contributions is used. In

Section 3.6.2 the risk contribution and the composition of the �rst two principal components for

each trading day will be computed. For this, a window of 500, 1,000 and 1,500 days will be used,

which is then rolled over on a daily basis.

3.6.2 Robustness

Bhansali et al. (2012) take a closer look at a sample universe of 9 international assets and argue

that only 2 factors already explain a majority of the variance of the data. For that, they calculate

the PCA and analyze the factor loadings for the assets on the �rst two factors. They argue that

the �rst factor can be interpreted as a kind of global growth risk factor whereas the second factor
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would represent the in�ation risk.

For dataset 1, the factor loadings of the �rst two principal components for dataset 1 are

illustrated in �gure 21. Particularly, the equity and the commodity time series load heavy on

the �rst two principal components. Equities, however, load positively on the �rst principal

component and negatively on the second principal component, whereas all commodities load

positively on the �rst and second principal component.
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Figure 21: Factor loadings of all assets for the �rst two principal components are plotted for

the period of dataset 1 from 1994 to 2014.

Tables 9 and 10 provide a statistical overview of all principal components computed for the

entire period of dataset 1 whereas table 23 in the appendix shows the factor loadings of all prin-

cipal components for the entire period. As shown in the tables the �rst two principal components

explain most of the variance. Moreover, we believe that it makes little sense to use more than

two principal components due to the minor contribution of the third and fourth components to

the variance. Regardless of the interpretation of the �rst two principal components, we therefore

share the view that the �rst two components explain the majority of the variance in a multi-asset

setting.

Against the backdrop of a robust backtest and a robust portfolio construction, we are inter-

ested in the behavior of the level of explanation of the �rst two principal components. Figure 22

shows the total risk contribution of the �rst two principal components for each trading day from

t = 501, 1, 001 and 1, 501 to t = 4, 992 using the rolling window setup.

On the one hand, that graph illustrates that the level of explanation becomes smoother the

longer the window is chosen. On the other hand, the level of explanation decreases marginally
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Mean Median MeanAnn. Std StdAnn. Skew Kurt

Principal Component 1 0.07% 0.20% 18.55% 2.59% 40.95% (0.37) 7.94

Principal Component 2 0.00% 0.01% 1.01% 1.97% 31.18% (0.16) 5.88

Principal Component 3 0.01% 0.02% 2.71% 1.33% 20.97% (0.15) 4.87

Principal Component 4 0.03% 0.03% 6.55% 0.98% 15.48% 0.11 7.48

Principal Component 5 (0.01%) 0.01% (2.10%) 0.79% 12.53% (0.21) 7.11

Principal Component 6 0.07% 0.08% 16.95% 0.73% 11.48% (0.34) 7.09

Principal Component 7 0.05% 0.06% 11.56% 0.50% 7.98% (1.67) 70.77

Principal Component 8 (0.01%) (0.02%) (3.22%) 0.44% 7.03% 0.38 10.18

Principal Component 9 0.00% (0.00%) 0.62% 0.30% 4.77% 2.72 91.37

Principal Component 10 0.01% 0.01% 1.35% 0.17% 2.67% (1.47) 21.95

Principal Component 11 (0.01%) (0.01%) (1.69%) 0.14% 2.27% 0.61 61.84

Principal Component 12 (0.01%) (0.00%) (1.34%) 0.13% 2.03% 0.14 21.29

Principal Component 13 0.01% 0.01% 2.24% 0.07% 1.09% (0.46) 49.89

Principal Component 14 0.01% 0.01% 2.38% 0.05% 0.77% (1.81) 46.43

Principal Component 15 0.00% 0.00% 0.56% 0.02% 0.37% 2.37 60.08

Table 9: Principal components of dataset 1 - 1994-2014 (1)

Min Max Q(5%) Q(1%) Ø Q(5%) Ø Q(1%)

Principal Component 1 (18.88%) 15.78% (4.13%) (7.37%) (6.17%) (10.15%)

Principal Component 2 (15.43%) 10.09% (3.16%) (5.40%) (4.54%) (6.80%)

Principal Component 3 (8.06%) 6.32% (2.09%) (3.50%) (2.95%) (4.53%)

Principal Component 4 (7.94%) 7.53% (1.50%) (2.48%) (2.15%) (3.34%)

Principal Component 5 (5.93%) 4.08% (1.22%) (2.16%) (1.81%) (2.96%)

Principal Component 6 (6.29%) 6.48% (1.10%) (1.98%) (1.64%) (2.59%)

Principal Component 7 (11.04%) 6.23% (0.57%) (1.42%) (1.16%) (2.35%)

Principal Component 8 (4.02%) 3.67% (0.67%) (1.16%) (0.99%) (1.54%)

Principal Component 9 (3.92%) 6.30% (0.31%) (0.80%) (0.64%) (1.38%)

Principal Component 10 (2.01%) 1.41% (0.22%) (0.56%) (0.45%) (0.90%)

Principal Component 11 (1.81%) 2.82% (0.17%) (0.39%) (0.33%) (0.69%)

Principal Component 12 (1.50%) 1.86% (0.20%) (0.33%) (0.30%) (0.52%)

Principal Component 13 (1.33%) 0.96% (0.08%) (0.16%) (0.14%) (0.26%)

Principal Component 14 (0.95%) 0.53% (0.06%) (0.12%) (0.10%) (0.20%)

Principal Component 15 (0.24%) 0.50% (0.03%) (0.06%) (0.05%) (0.09%)

Table 10: Principal components of dataset 1 - 1994-2014 (2)
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the longer the rolling window becomes. Given this tradeo� between the level of explanation

and smoothness of explanation, we decided to test di�erent window lengths at the beginning of

the empirical analysis. For reasons of simplicity, subsequent detailed analysis will focus on one

in-the-sample window length only.
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Figure 22: Explanation of risk contribution of the �rst two principal components for 500, 1,000

and 1,500 days in-the-sample windows using dataset 1.

As a last point, Figures 23 to 25 show the principal components' composition for single eq-

uity, bond and commodity time series. It can be seen that the 1,000 days window as well as

the 1,500 days window are much more stable in terms of the principal component composition.

Particularly, the global �nancial crisis is re�ected by the very volatile composition using the 500

days window.
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Figure 23: Principal components' loadings - 500 days in-the-sample window - dataset 1



79

 

 

 

 

Commodities
High-yield
Corp. bonds
Gov. bonds
Equities

Commodities
High-yield
Corp. bonds
Gov. bonds
Equities

20
14

20
13

20
12

20
11

20
10

20
09

20
08

20
07

20
06

20
05

20
04

20
03

20
02

20
01

20
00

19
99

19
98

19
97

19
96

19
95

20
14

20
13

20
12

20
11

20
10

20
09

20
08

20
07

20
06

20
05

20
04

20
03

20
02

20
01

20
00

19
99

19
98

19
97

19
96

19
95

PC 2

L
o
a
d
in

g
s

PC 1

L
o
a
d
in

g
s

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

Figure 24: Principal components' loadings - 1,000 days in-the-sample window - dataset 1
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Figure 25: Principal components' loadings - 1,500 Days in-the-sample window - dataset 1
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Figure 26: Factor loadings on all assets for the �rst two principal components are plotted for

the whole period of dataset 2 from 1986 to 2014.
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After gaining insight into the the principal components' structure of dataset 1, we will now

see that dataset 2 has the same characteristics. Figure 26 shows the factor loadings of the �rst

two principal components for dataset 2. The loadings for the equity and bond indices are very

similar compared to the loadings from dataset 1. The equity time series loads highly positively on

the �rst principal components and less high negatively on the second principal component. All

bond time series load negatively on both principal components. The loading of the commodity

index (SPGSCITR) is comparable to that of the energy sub-index with a slightly lower weight

on the �rst principal component.
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Figure 27: Explanation of risk contribution of the �rst two principal components for 500, 1,000

and 1,500 days in-the-sample windows using dataset 2.

Tables 27 and 28 in the appendix provide a statistical overview of the backtest of all principal

components for the entire period of dataset 2 as well.

As for dataset 1, the risk contribution of the �rst two principal components computed for

dataset 2 becomes smoother the longer the in-the-sample window is chosen, but for the disad-

vantage of a lower explanation level (see �gure 27).

Figures 34 to 36 in the appendix show the composition for the �rst two principal components

using dataset 2. Again, the composition for the 1,000 and 1,500 days window is more stable than

for the 500 trading days window. The �nancial crisis in 2008 is again re�ected by a very volatile

composition.

Despite the higher volatility of the risk contribution and the more volatile composition of the

�rst two principal components using a 500 days window, we will compute the backtest statistics
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using all three rolling window lengths for dataset 1 and dataset 2 in order to show the impact

of this factor on the portfolio allocation. As for the factor risk parity allocations, the rolling

window backtest setup for computing the benchmark allocations, namely the ERC, EW and MV

strategies, will be used.

3.6.3 Backtest

For calculating the out-of-sample allocation weights, we de�ne qi ∈ Rn for i = 1, ..., r to be the

corner points of the polyhedron and λi to be the weight that we place on those corner points. We

make use of the nature of the convex polytope and formulate all allocations as a function of the

corner points of the polytope which we determine numerically. As it is impossible to invest in

the entire set of solutions, we decided to backtest two special points within the set of solutions.

First, the point where the in-the-sample variance has a minimum and second, the point where

the in-the-sample diversi�cation has a maximum. We will �nd both points using the fmincon

function in Matlab.

The most important constraint for both optimizations is on the minimum level of explanation

of the �rst two principal components within the set of all solutions,

∑2
j=1 R̃Cj∑n
i=1 R̃Ci

≥ emin. (68)

with emin being the minimum explanation level. Due to the nature of the a�ne combinations,

the constraints regarding the asset weights are always met.

r∑
i=1

λi = 1

λi ≥ 0 ∀i ∈ {1...r}

(69)

This means we are trying to determine a portfolio inside the polyhedron by �nding an a�ne

combination of the corner points with a su�ciently high explanation of the �rst two risk contri-

butions that minimizes the portfolio variance (maximizes portfolio diversi�cation). The weights

of the corresponding portfolio are given by
∑
λjqj . The variance and return of the resulting

portfolios are given by σ2
Q(λ) and µQ(λ). Given the global constraints, we are now able to for-

mulate the two optimization problems. The Minimum Variance Optimization can be written

as

f∗(λ) = arg min
(
σ2
Q(λ)

)
, (70)
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where the Maximum Diversi�cation optimization is a problem in the form of:

f∗(λ) = arg max

(∑n
i=1(

∑r
j=1 λjqj)iσi

σQ(λ)

)
(71)

with (
∑r
j=1 λjpj)i is the i-th element of the vector in Rn.

In the next section, we will apply the two optimization problems to the polytopes we cal-

culated in accordance with the backtest setup. In a �rst step, we will compute some standard

statistics such as the annualized return, standard deviation, Sharpe Ratio and Maximum Draw-

down as well as two diversi�cation measures. We calculate the "Diversi�cation" as

D =

∑
(wi · σi)
σP

(72)

and the entropy in the asset space of weights as

E = exp

(
−

N∑
i=1

wi ln wi

)
(73)

for all backtests and allocation strategies. In a second step, we take a closer look at the risk

contribution of the �rst two principal components and the asset weights of factor risk parity

allocation and try to interpret the results.

Backtest dataset 1

Using dataset 1 and a 500 days in-the-sample window, we observe for both factor risk parity

(FRP) allocations with a 66% minimum level of explanation a lower volatility, a lower maximum

drawdown and a higher diversi�cation than for the two factor risk parity allocations at an 80%

minimum level of explanation. In terms of return and Sharpe Ratio, we found that the ERC and

the FRP Maximum Diversi�cation strategy as well as the MV and the FRP Minimum Variance

strategy are comparable. Those results are in line with our expectations as the FRP Minimum

Variance allocation, like the MV allocation, also tries to minimize the variance, with the only

di�erence on operating on a more restricted set of possible solutions. For all allocation strategies

in table 11, the ERC strategy has the highest Sharpe Ratio at a relative high level of diversi�-

cation. Additionally, it can be seen from all allocation strategies that a high diversi�cation does

not necessarily go along with a low volatility.

Table 11 also illustrates the average yearly turnover statistics for those strategies. The ERC

and EW allocation exhibit the lowest turnover while the MV allocation has the highest turnover

values due to the instability of the minimum variance approach. In contrast to that, using the
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FRP Minimum Variance strategy reduces the turnover signi�cantly. This is interesting to note,

as a PCA for �nancial time series is often considered to be unstable over time, leading to less

robust strategies with higher turnover �gures (see for example Deguest et al. (2013)). However,

the FRP Minimum Variance strategy focuses only on the �rst two principal components, which

are more stable than the residual components in a classical PCA, and can therefore explain the

lower turnover of that approach. Even when the FRP Maximum Diversi�cation strategy with

higher turnover values is used, those numbers stay lower than in the MV approach.

Return MeanAnn. StdAnn. SR MaxDD D E Turnover

ERC 152.40% 5.28% 2.55% 0.95 14.74% 2.44 13.88 28.10%

EW 207.36% 6.44% 6.26% 0.57 28.91% 2.05 7.86 19.05%

MV 91.14% 3.67% 1.36% 0.60 7.66% 2.03 8.30 152.27%

Max. Div.66% 153.09% 5.30% 3.29% 0.74 12.84% 2.54 10.37 126.03%

Max. Div.80% 153.00% 5.30% 4.10% 0.60 15.57% 2.30 8.92 135.95%

Min. V ar.66% 97.65% 3.86% 2.02% 0.50 12.27% 2.22 10.79 65.26%

Min. V ar.66% 104.87% 4.07% 2.80% 0.43 14.92% 1.94 9.44 85.67%

Table 11: Allocation strategies - 500 days in-the-sample window - dataset 1

Using a 1,000 days in-the-sample window, the results are very similar to those using a 500

days window (see table 12). Due to the shorter backtest period, the total return is a little

bit lower. During the �rst years from 1997 to 1999, all allocation strategies delivered positive

returns. The turnover for the strategies usually decrease with the longer in-the-sample window

as the principal components become more stable.

Return MeanAnn. StdAnn. SR MaxDD D E Turnover

ERC 132.06% 5.41% 2.72% 1.07 16.24% 2.35 14.20 17.77%

EW 179.08% 6.63% 6.43% 0.64 28.10% 2.04 7.86 19.33%

MV 74.52% 3.55% 1.40% 0.75 8.30% 1.84 7.94 119.21%

Max. Div.66% 130.34% 5.36% 3.20% 0.89 14.44% 2.47 10.29 70.48%

Max. Div.80% 126.99% 5.26% 3.86% 0.72 16.58% 2.30 8.60 69.96%

Min. V ar.66% 81.65% 3.81% 2.10% 0.62 12.56% 2.16 10.20 22.39%

Min. V ar.80% 80.71% 3.77% 2.63% 0.48 14.91% 2.00 8.55 24.32%

Table 12: Allocation strategies - 1,000 days in-the-sample window - dataset 1

Annualized standard deviation and diversi�cation do not di�er much compared to the allo-

cation previously described. Maximum drawdown increases for all allocation strategies, except

for EW where weights are continuously reset to constant levels over time. The Sharpe Ratios for
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all FRP allocations are higher than for the same allocations where we use a 500 days window,

while the ERC strategy has again the highest Sharpe Ratio in this set of allocations.

Using a 1,500 days in-the-sample period, annualized returns of all allocations drop signi�-

cantly (see table 13). The factor risk parity allocation performances deteriorate sharply com-

pared to the ERC and EW strategies. Diversi�cation and maximum drawdown remain nearly

unchanged compared to the 500 and 1,000 day window allocations.

Return MeanAnn. StdAnn. SR MaxDD D E Turnover

ERC 108.15% 5.38% 2.84% 1.19 15.88% 2.31 14.27 13.83%

EW 120.22% 5.81% 6.47% 0.59 28.79% 2.04 7.97 18.38%

MV 63.00% 3.56% 1.35% 1.15 6.71% 1.91 7.99 132.27%

Max. Div.66% 87.09% 4.58% 3.13% 0.82 14.32% 2.40 9.94 44.85%

Max. Div.80% 79.12% 4.26% 3.78% 0.60 16.49% 2.25 8.10 45.35%

Min. V ar.66% 55.53% 3.21% 2.04% 0.59 11.58% 2.20 9.34 15.65%

Min. V ar.80% 51.32% 3.01% 2.54% 0.40 13.88% 2.06 7.62 17.68%

Table 13: Allocation strategies - 1,500 days in-the-sample window - dataset 1

The in-the-sample window length is a softer factor when dealing with backtests. The results

above indicate that the in-the-sample window length does not have a major impact on the port-

folio statistics. To reduce the number of backtests we therefore decided to select the 1000 day

window for further analysis. This selection has been made as we consider a 500 days time period

to be too short, as the volatility of the risk contributions of the �rst two principal components

already indicate. The statistics such as Sharpe Ratio or maximum drawdown for the 1,500 days

window are quite similar or only slightly inferior when compared to the 1,000 days window.

We will now take a closer look at the allocations that are of high interest, namely the FRP

Maximimum Diversi�cation and Minimum Variance allocation at a minimum explanation level

of 66% and 80% using a 1,000 days rolling in-the-sample window.

As the allocation statistics lead one to assume, it can be seen from �gure 28 that the ERC and

FRP Max. Diversi�cation allocations and the MV and FRP Min. Variance allocations behave

similarly. For a detailed view on the allocations shown in Figures 28 and 29, we calculated yearly

risk and return data on pages 104 to 105 and plotted the results accordingly.

The behavior of the factor risk parity allocations at di�erent minimum levels of explanation

are very similar. Figure 29 shows only slightly changed results for the factor risk parity alloca-

tions at a minimum level of explanation of 80% compared to the allocations shown in chart 28
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Figure 28: Allocation strategies - 66% level of explanation - 1,000 days in-the-sample window

- dataset 1
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Figure 29: Allocation strategies - 80% level of explanation - 1,000 Days in-the-sample window

- dataset 1

before.

Nonetheless, �gure 38 reveals some interesting aspects. Data points for the factor risk parity

strategy at an 80% minimum level of explanation are almost continuously moved to the right

compared to the same strategy at a 66% minimum level of explanation, meaning that we see

higher volatility at the same return levels. In the case of minimum variance, it is not possible to

�nd lower volatility portfolios at the 80% level as the set we are working on is only a subset of

the portfolios in the 66% case.

The following section takes a closer look at the asset weights in the backtest to get a better

feeling for the behavior of each strategy. For that, the average weights for each year and strategy



86 3.6 EMPIRICAL ANALYSIS

are calculated, which can be found in Tables 14 and 15 for the factor risk parity strategies and in

the appendix for the MV, EW and ERC strategies. First, let us take a look at the MV strategy

with the weights in Table 34: as government bonds o�er the lowest volatility, the MV strategy

loads heavily on this asset class. Particularly after the �nancial crises in 2008/09, high-yield po-

sitions were mostly replaced by government bonds. Equities and commodities usually only play a

minor role in this allocation strategy. The ERC approach seems to be more stable in terms of the

asset weights. Government bond positions tended to increase and commodities and high-yield

positions tended to decrease in the time period from 1998 to 2014. Equity positions with around

4% to 7% and corporate bond positions with around 23% to 29% tend to be more stable than

in other allocations. We omit the EW allocation here as the weights are reset regularly.

Let us next focus on the factor risk parity allocations. For that, the results for the FRP

Maximum Diversi�cation allocation are displayed in Table 14. Although government bonds are

not as dominant here as in the MV strategy, they still play an important role in the allocation.

Especially after the �nancial crisis, the weights increase from around 40% to 50% to around 70%.

Only in 2013/14 does that weight decrease, as on average falling volatility levels favored more

"risky" assets such as equities, commodities or high-yield bonds. Surprisingly, corporate bonds

have low or even zero weights after the "dot.com" crash around 2003.

FRP Max. Diversification 66% FRP Max. Diversification 80%

EQ GOV CORP HY COM EQ GOV CORP HY COM

1998 6.4% 43.5% 3.7% 29.4% 17.0% 9.4% 41.0% 3.7% 27.8% 18.2%
1999 5.4% 28.1% 20.7% 30.4% 15.4% 8.0% 26.6% 19.7% 29.0% 16.7%
2000 4.7% 28.8% 21.0% 32.5% 13.0% 6.8% 27.5% 20.0% 31.1% 14.5%
2001 4.6% 39.3% 13.0% 30.4% 12.6% 6.4% 37.8% 12.4% 29.3% 14.2%
2002 5.5% 34.5% 15.5% 30.6% 13.9% 7.3% 32.9% 14.7% 29.4% 15.7%
2003 6.8% 52.0% 2.8% 24.3% 14.1% 8.6% 49.6% 2.6% 23.3% 15.9%
2004 8.1% 51.8% 2.5% 24.1% 13.4% 10.3% 49.1% 2.3% 23.0% 15.3%
2005 10.1% 51.4% 1.1% 25.6% 11.8% 12.9% 48.3% 0.9% 24.2% 13.7%
2006 10.9% 47.4% 0.0% 30.5% 11.1% 14.0% 43.8% 0.0% 28.5% 13.6%
2007 8.1% 38.2% 4.8% 40.2% 8.7% 10.3% 35.6% 4.2% 37.8% 12.1%
2008 9.5% 59.6% 0.0% 24.9% 6.0% 11.7% 56.2% 0.0% 23.7% 8.3%
2009 3.1% 73.6% 0.2% 11.4% 11.7% 3.1% 69.9% 0.2% 11.2% 15.6%
2010 2.7% 72.7% 0.0% 12.1% 12.5% 2.4% 69.1% 0.0% 11.8% 16.6%
2011 3.0% 72.5% 0.0% 11.7% 12.8% 2.8% 68.7% 0.0% 11.5% 17.0%
2012 2.3% 72.6% 0.0% 11.7% 13.4% 1.8% 68.9% 0.0% 11.6% 17.8%
2013 2.9% 52.0% 0.0% 28.0% 17.0% 1.5% 49.1% 0.0% 26.3% 23.1%
2014 7.3% 42.3% 0.0% 31.4% 19.1% 6.4% 39.1% 0.0% 29.0% 25.5%

Table 14: Max. Diversi�cation asset weights - 1,000 days in-the-sample window - dataset 1

The weights for the FRP Minimum Variance allocations are displayed in Table 15. Not sur-

prisingly they are similar to the results we calculated for the general Minimum Variance approach.

Still signi�cant di�erences exist however: although government bonds play the most important

role in the allocation, high-yield bonds have the second-highest weights. These positions were
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reduced after the �nancial crisis in 2008/09 but recovered to around 10% in 2014. Equities are

only represented by a very low amount, particularly in the last few years. Instead, commodities,

on average, are the third most important asset class in this allocation. Like in the case above,

the di�erence in the minimum level of explanation leads to di�erences in the allocation weights.

The general picture though stays the same again.

FRP Min. V ariance 66% FRP Min. V ariance 80%

EQ GOV CORP HY COM EQ GOV CORP HY COM

1998 5.0% 64.7% 0.0% 22.1% 8.2% 7.4% 62.4% 0.0% 21.0% 9.2%
1999 4.7% 66.3% 0.0% 21.0% 8.0% 6.8% 64.1% 0.0% 20.0% 9.1%
2000 4.0% 68.7% 0.0% 20.7% 6.6% 5.6% 66.6% 0.0% 20.0% 7.7%
2001 4.0% 72.8% 0.0% 17.2% 6.0% 5.2% 70.8% 0.0% 16.7% 7.3%
2002 4.5% 73.7% 0.0% 16.0% 5.9% 5.8% 71.5% 0.0% 15.5% 7.2%
2003 5.1% 75.1% 0.0% 14.2% 5.6% 6.5% 72.9% 0.0% 13.8% 6.9%
2004 6.0% 74.6% 0.0% 14.3% 5.2% 7.5% 72.1% 0.0% 13.8% 6.6%
2005 7.2% 72.5% 0.0% 15.8% 4.5% 9.3% 69.5% 0.0% 15.2% 6.0%
2006 6.9% 72.9% 0.0% 15.9% 4.4% 8.9% 69.8% 0.0% 15.2% 6.0%
2007 5.1% 63.2% 0.0% 26.5% 5.2% 6.7% 60.3% 0.0% 25.5% 7.5%
2008 7.6% 64.7% 0.0% 23.0% 4.6% 9.6% 61.6% 0.0% 22.2% 6.7%
2009 2.1% 80.9% 0.5% 8.9% 7.6% 2.2% 78.4% 0.3% 8.6% 10.5%
2010 1.8% 82.0% 0.1% 8.3% 7.8% 1.6% 79.6% 0.0% 8.0% 10.8%
2011 1.8% 82.4% 0.1% 8.0% 7.6% 1.7% 80.0% 0.0% 7.7% 10.6%
2012 0.9% 84.4% 2.3% 5.6% 6.8% 0.7% 82.7% 1.9% 5.0% 9.7%
2013 0.1% 84.5% 0.0% 9.5% 5.9% 0.0% 85.2% 0.0% 5.8% 9.0%
2014 0.6% 84.8% 0.0% 10.0% 4.5% 0.5% 83.3% 0.0% 9.6% 6.5%

Table 15: Min. Variance asset weights - 1,000 days in-the-sample window - dataset 1

Finally, let us take a look at the risk contributions, which are plotted for factor risk parity

allocations and provided in the appendix (see �gure 41 to 44). The results are not surprising:

the �oor of the risk contribution of the �rst and second component and the equality in the �rst

two components can be observed for these allocations. In dataset 1, the risk contribution of the

�rst and second component sum up to the minimum requirement of 66% or 80% accordingly and

only seldom does the explanation of the components exceed the minimum level. It seems that

there is no dominating other risk contribution with all the other risk contributions �oating over

time.

To conclude this section, what are the �ndings and distinctive features from the backtest and

how could they be explained or best described?

• Volatility levels

First, the general MV strategy has the lowest volatility whereas the equally weighted strat-

egy has the highest volatility. Usually the ERC or the factor risk parity strategies heavily

weigh on low risk assets. As we have seen in the weighting tables, government bonds tend

to be overweighted relative to the more volatile asset classes such as equities. This indi-
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cates that the ERC and the FRP allocations can, from a volatility point of view, be placed

between the general MV and equally weighted allocations. The volatility of the FRP Min-

imum Variance allocation increases when we increase the minimum level of explanation.

As mentioned above, a lower explanation level "leaves more room" to �nd portfolios with

a lower volatility.

• Diversi�cation

Similar to the point above, the diversi�cation increases for the FRP Maximum Diversi-

�cation approach when we lower the minimum explanation requirement: decreasing the

minimum explanation level increases the amount of portfolios we can use for the search of

the portfolio with the highest diversi�cation.

• Commodity weights

Higher minimum explanation levels seem on average to increase the commodity weights, as

the backtest using dataset 1 indicates. This might be explained by the dominating factor

loadings especially on the second component. Additionally, this explains part of the lower

performance as commodity as an asset class has, on average, not performed well in the last

20 years, as data from Section 3.5 shows.

• In�uence of historical data

As seen above, the historical data used for the in-the-sample time window does have a

signi�cant in�uence on the portfolio allocation. The weights, for example, change signi�-

cantly once the huge price changes during the �nancial crisis enter the calculation of the

backtest but also when they leave the in-the-sample window again. Among other things,

one can see that in the allocation from Table 14 the high yield position drops in 2009 and

recovers to around 30% in 2014.

Backtest dataset 2

Using dataset 2, we perform the same backtest as with dataset 1. Although we change the

dataset, we expect the behavior and characteristics of all allocation strategies to be somewhat

similar. We anticipate the FRP Maximum Diversi�cation strategy and the ERC strategy as well

as the FRP Minimum Variance strategy and the general MV strategy to be comparable.

For the 500 days in-the-sample window length in particular, we �nd that the FRP Maximum

Diversi�cation strategies perform slightly better than the ERC strategy on a total return basis.

As for dataset 1, ERCs' Sharpe Ratio is still the highest for all strategies using this backtest setup.
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As expected, the FRP Minimum Variance strategy outperforms the general MV strategy on

a total return basis at a higher level of diversi�cation but also a higher level of volatility.

Return MeanAnn. StdAnn. SR MaxDD D E Turnover

ERC 601.48% 7.47% 4.42% 0.84 16.27% 2.01 6.41 24.05%

EW 703.33% 8.01% 7.38% 0.57 32.33% 1.84 3.81 16.50%

MV 396.51% 6.10% 2.93% 0.80 11.80% 1.49 4.00 103.17%

Max. Div.66% 623.99% 7.59% 5.47% 0.70 17.50% 1.94 4.86 117.05%

Max. Div.80% 615.50% 7.55% 6.13% 0.62 22.81% 1.86 4.36 122.33%

Min. V ar.66% 436.62% 6.41% 4.18% 0.63 20.72% 1.67 5.20 79.60%

Min. V ar.80% 451.50% 6.52% 5.04% 0.54 25.09% 1.63 4.63 96.54%

Table 16: Allocation strategies - 500 days in-the-sample window - dataset 2

For the 1,000 days rolling window, an almost identical behavior of all allocations compared

to the 500 days rolling window can be observed. The FRP Maximum Diversi�cation strategy

with a minimum level of explanation of 66% is an exception, as its total return performance is

a bit lower than that of the ERC strategy. Compared with the results obtained using dataset 1,

in general, however, we cannot observe structural di�erences.

Return MeanAnn. StdAnn. SR MaxDD D E Turnover

ERC 444.82% 7.00% 4.48% 0.77 16.17% 1.99 6.45 19.56%

EW 476.76% 7.25% 7.55% 0.49 33.24% 1.82 3.76 16.49%

MV 315.76% 5.85% 2.94% 0.79 13.51% 1.48 4.04 82.76%

Max. Div.66% 429.58% 6.88% 5.25% 0.64 17.46% 1.93 4.76 66.47%

Max. Div.80% 415.08% 6.76% 5.99% 0.54 22.60% 1.84 4.09 78.01%

Min. V ar.66% 323.25% 5.93% 4.11% 0.58 22.65% 1.73 4.67 43.48%

Min. V ar.80% 325.64% 5.95% 4.97% 0.49 26.70% 1.67 4.03 65.30%

Table 17: Allocation strategies - 1,000 days in-the-sample window - dataset 2

An FRP Maximum Diversi�cation allocation at a minimum level of explanation of 66% and a

1,500 days in-the-sample window again performs slightly better than the ERC strategy in terms

of total return. Yet, as for the results using a 500 days and a 1,000 days in-the-sample window,

we cannot make out any big di�erence regarding the results obtained using dataset 1.

For all three backtests described above, some characteristics show up again as they have done

already in dataset 1. For example, the volatility for the FRP Minimum Variance strategy in-

creases when the minimum level of explanation is increased. Also, the diversi�cation for the FRP

Maximum Diversi�cation strategy increases when the minimum level of explanation is decreased.
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Return MeanAnn. StdAnn. SR MaxDD D E Turnover

ERC 316.01% 6.38% 4.56% 0.69 17.10% 1.96 6.49 18.04%

EW 364.41% 6.89% 7.59% 0.48 32.94% 1.82 3.77 16.52%

MV 245.03% 5.52% 2.95% 0.77 9.40% 1.49 3.99 98.10%

Max. Div.66% 320.54% 6.43% 5.43% 0.59 15.54% 1.89 3.67 53.93%

Max. Div.80% 306.98% 6.28% 6.18% 0.49 20.62% 1.80 3.05 53.83%

Min. V ar.66% 249.47% 5.58% 4.33% 0.54 22.17% 1.78 3.76 34.80%

Min. V ar.80% 250.14% 5.59% 5.14% 0.46 25.89% 1.70 3.18 36.97%

Table 18: Allocation strategies - 1,500 days in-the-sample window - dataset 2

The reason has already been explained and is determined by the nature of the restrictions for

the portfolio weights. The time window also plays an important role in the calculation of the op-

timal portfolio as the changes in portfolio weights during and after the �nancial crisis in 2008/09

indicates. Moreover, we identify again that FRP Maximum Diversi�cation and ERC allocation

as well as FRP Minimum Variance and general MV allocation are widely comparable.

As for the backtest using dataset 1, we will continue our analysis using the 1,000 days in-the-

sample window only. Figure 30 and �gure 31 illustrate the performances using dataset 2.
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Figure 30: Allocation strategies - 66% level of explanation - 1,000 days in-the-sample window

- dataset 2

The results are quite similar compared to the case above using dataset 1, mainly: equally

weighted allocations deliver the highest returns, the FRP Minimum Variance allocations are

similar to the gerneral MV strategy and the FRP Maximum Diversi�cation allocations are some-

where in between. Di�erences in factor risk parity allocations at di�erent level of explanation

are hardly distinguishable.
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It is worth noting that the equally weighted strategy for the longer period in this backtest is

not able to outperform the ERC and the FRP Maximum Diversi�cation strategies in terms of

total return as much as in the �rst backtest using dataset 1.
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Figure 31: Allocation strategies - 80% level of explanation - 1,000 days in-the-sample window

- dataset 2

For all allocations using a 1,000 days in-the-sample window, we calculate the detailed yearly

risk and return data (see Table 32 and 33) and plot the results in �gures 39 and 40. For the ERC,

the EW and the general MV strategy, clearly distinct groups of data points in the risk/return

plots can be observed again. As for the backtest using dataset 1, risk and return data points

of the factor risk parity allocations with a minimum level of explanation of 80% are positioned

further to the right compared to those with a minimum level of 66%.

Finally, let us take a look at the weights of the strategies since 1990. The choice of di�erent

indices and the exclusion of high-yield bonds already lead to di�erences in weighting.

On the one hand, the FRP Maximum Diversi�cation strategies (see Table 19) load heavily

on corporate bonds and quite signi�cantly on equities for the last 20 years. On the other hand,

the ERC strategy weighted equities and corporate bonds considerably too, whereas it reduced

government bonds in recent years in return.

If we compare the FRP Minimum Variance allocation with the general MV strategy from

Table 35, we recognize again the similarities of these two allocations: the general MV strategy

has also increased corporate bond positions for lower government positions when compared to

dataset 1. The equity position in both allocations, in the general MV and in the FRP Minimum

Variance strategy, are signi�cantly higher than in the same allocations computed with dataset 1.
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FRP Max. Diversification 66% FRP Max. Diversification 80%

EQ GOV CORP COM EQ GOV CORP COM

1990 14.2% 40.3% 27.2% 18.3% 18.7% 35.7% 23.7% 21.9%
1991 15.2% 43.9% 28.0% 13.0% 19.9% 39.8% 25.2% 15.1%
1992 0.0% 62.4% 15.1% 22.5% 0.0% 62.2% 15.0% 22.7%
1993 0.0% 58.5% 21.3% 20.2% 1.2% 55.5% 18.5% 24.8%
1994 15.9% 43.6% 23.3% 17.2% 21.8% 39.9% 21.3% 17.0%
1995 7.8% 34.3% 43.5% 14.4% 11.0% 38.5% 41.5% 9.0%
1996 15.2% 16.0% 43.4% 25.3% 15.5% 16.7% 43.2% 24.6%
1997 20.6% 16.2% 39.9% 23.2% 20.6% 16.2% 39.9% 23.2%
1998 18.4% 9.7% 51.6% 20.2% 18.8% 9.7% 50.9% 20.6%
1999 13.5% 20.0% 49.0% 17.6% 16.5% 18.1% 44.6% 20.8%
2000 12.4% 25.7% 43.8% 18.0% 15.8% 22.5% 39.3% 22.3%
2001 12.0% 24.2% 47.2% 16.7% 14.6% 21.3% 43.0% 21.1%
2002 12.6% 15.2% 56.0% 16.2% 15.2% 13.5% 50.6% 20.6%
2003 14.2% 10.7% 60.1% 14.9% 16.7% 9.2% 54.9% 19.2%
2004 17.2% 7.5% 61.3% 14.0% 20.0% 6.5% 55.4% 18.2%
2005 20.7% 2.4% 64.1% 12.8% 24.2% 2.0% 57.2% 16.7%
2006 24.0% 0.0% 65.4% 10.6% 28.4% 0.0% 57.7% 13.9%
2007 20.2% 0.2% 65.8% 13.7% 24.9% 0.2% 57.4% 17.5%
2008 19.2% 2.0% 66.6% 12.2% 22.7% 1.4% 59.9% 16.0%
2009 9.8% 12.3% 59.2% 18.7% 10.7% 10.9% 54.3% 24.1%
2010 8.2% 11.4% 59.4% 21.1% 8.5% 9.8% 54.8% 27.0%
2011 7.8% 8.8% 60.2% 23.2% 7.7% 7.2% 55.5% 29.7%
2012 5.3% 8.6% 57.7% 28.4% 12.8% 5.3% 55.6% 26.3%
2013 25.5% 0.4% 57.3% 16.9% 23.2% 0.3% 52.9% 23.6%
2014 38.3% 0.0% 50.6% 11.1% 36.3% 0.0% 48.2% 15.5%

Table 19: Max. Diversi�cation asset weights - 1,000 days in-the-sample window - dataset 2

The risk contribution of the �rst two principal components of the FRP Minimum Variance

allocation at both minimum levels of explanation sums up to the minimum level of 66% or 80%

for most of the time with only one notable exception. Risk contribution for the FRP Maximum

Diversi�cation strategy is dominated by the minimum level too, but with longer exceptions in the

early years of the backtest period (see �gure 45 to 48). One point that we cannot observe in the

previous backtest using dataset 1 is that the risk contribution of the third principal component

seems to play a major role while the other risk contributions �oat over time.

The most obvious di�erence in the asset class weighting between dataset 1 and 2 is, however,

the lower weight of government bonds and a higher weight of corporate bonds in dataset 2.

Although the returns are quite similar, it can be seen that the choice of the asset classes does

have a signi�cant in�uence on the �nal portfolio allocation. We have already brie�y analyzed the

factor loadings in Section 3.6.2 and have seen the di�erences in the factor loadings which might

explain some of the di�erent weightings between dataset 1 and 2. Another plausible explanation

might be the following: as the more volatile high-yield bonds leave the asset universe, some of

those positions together with government bonds are exchanged for corporate bonds.
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FRP Min. V ariance 66% FRP Min. V ariance 80%

EQ GOV CORP COM EQ GOV CORP COM

1990 11.4% 57.7% 16.7% 14.2% 15.2% 53.4% 13.8% 17.5%
1991 11.6% 61.2% 17.9% 9.3% 15.6% 55.8% 17.2% 11.4%
1992 0.6% 77.0% 7.9% 14.5% 2.4% 68.4% 10.7% 18.5%
1993 1.6% 82.7% 1.0% 14.7% 3.3% 76.2% 1.2% 19.2%
1994 10.7% 79.7% 0.0% 9.6% 15.2% 73.5% 1.6% 9.7%
1995 4.3% 91.5% 0.0% 4.3% 8.1% 81.7% 8.1% 2.1%
1996 5.5% 79.8% 0.0% 14.7% 10.5% 72.8% 0.0% 16.7%
1997 3.9% 84.5% 0.0% 11.6% 8.8% 77.3% 0.0% 13.9%
1998 8.9% 79.1% 0.0% 12.0% 13.3% 71.6% 0.0% 15.1%
1999 10.8% 66.9% 8.4% 13.9% 14.3% 61.4% 6.5% 17.8%
2000 10.2% 50.7% 24.3% 14.9% 13.3% 47.1% 20.5% 19.1%
2001 10.1% 37.6% 38.2% 14.0% 12.5% 34.8% 34.5% 18.2%
2002 11.2% 54.1% 21.1% 13.5% 13.6% 50.0% 18.7% 17.7%
2003 12.7% 62.2% 12.2% 13.0% 15.0% 58.1% 9.9% 17.0%
2004 15.2% 72.1% 0.7% 12.0% 17.8% 66.0% 0.3% 15.9%
2005 18.0% 71.0% 0.0% 11.0% 21.5% 63.9% 0.0% 14.7%
2006 19.8% 71.7% 0.0% 8.5% 24.2% 64.3% 0.0% 11.5%
2007 17.2% 72.7% 0.0% 10.1% 21.2% 65.4% 0.0% 13.4%
2008 17.8% 63.1% 8.3% 10.8% 21.3% 56.7% 7.6% 14.5%
2009 8.1% 37.4% 40.5% 14.0% 9.0% 35.0% 37.1% 18.9%
2010 6.7% 37.4% 40.2% 15.7% 7.1% 35.1% 36.6% 21.1%
2011 6.1% 36.9% 40.3% 16.6% 6.3% 34.7% 36.6% 22.5%
2012 3.0% 37.0% 41.8% 18.2% 11.4% 25.2% 45.0% 18.4%
2013 8.3% 35.2% 46.7% 9.8% 7.4% 32.2% 46.4% 14.0%
2014 12.0% 25.7% 56.5% 5.8% 11.0% 22.6% 56.7% 9.7%

Table 20: Min. Variance asset weights - 1,000 days in-the-sample window - dataset 2

To sum up this brief analysis, an interpretation of why each strategy weighs some assets

speci�cally in the way it does is di�cult to give. The optimal allocation relies heavily on the

results from the PCA, from factors such as the choice of time series and the choice of the �nal,

optimal portfolio inside of the polytope. We believe that the backtest with its results, tables, and

charts illustrated here, however, gives a good impression of what to expect when implementing

the strategy discussed in this chapter.

3.7 Conclusion

Allocation of multi-asset portfolios presents a major challenge in capital market research and

practice. A vast amount of di�erent models have been intensively discussed in literature. The

subject of this paper is a type of factor risk parity which has been discussed controversially in

very recent literature. We extended the classical risk parity model and used PCA to de�ne a

factor risk parity model.

The problem, however, that comes up when using the model are the asset weights of the "op-

timal" portfolio which, in many cases, consist of leveraged or short positions. Due to regulatory

constraints or other possible concerns or restrictions, investors are often very restrained when it
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comes to shorting or leveraging assets. It is, however, often not possible to �nd a portfolio with

equal risk contributions while, at the same time, keeping the constraints that prohibit short or

leveraged positions.

We therefore modi�ed the factor risk parity model and presented one that keeps the �rst two

risk contributions equal while, at the same time, allowing the other risk contributions of the prin-

cipal components to �oat within special limits. The limits have to be set to keep the explanation

of the �rst two components high relative to the total amount of variation. We therefore added

the restriction that the risk contributions of the �rst two components explained a signi�cant

minimum amount of variance. Keeping the strict restrictions for the portfolio weights and �rst

ignoring the minimum explanation levels it turns out that the solution set for all portfolios with

those constraints are described by a convex polytope.

A convex solution set of this type is convenient as one can easily take any a�ne combination

points inside the convex body and still stay inside the polytope, meaning the solution stays op-

timal regarding the goals and restrictions that have been set. Particularly, this is true for the

corner points which are calculated and which describe the polytope. We make use of this special

attribute to �nd portfolios with speci�c characteristics inside the polytope for the backtests.

Computing the asset weights in this way has some distinct advantages versus a fully numerical

optimization. By determining the polytope, one knows whether a factor risk parity solution

exists and, if so, what the solution set looks like.

We selected two types, the portfolio inside the polytope which minimizes the in-the-sample

variance and the portfolio that maximizes in-the-sample diversi�cation. We then use two di�er-

ent datasets, one reaching back to 1994 and using 15 di�erent assets and one reaching back to

1986 with 7 assets, to determine those portfolios and backtest them to some naive and heuristic

allocations. Those backtests for the strategies and two datasets can be found in detail in Section

3.6.3.

The model presented in this paper is a more systematic approach on how to invest in a

risk-approach way based on factors and should therefore integrate in the area of risk-controlled

investment allocations. The solution set can conveniently be described by a polytope which is a

common algebraic structure. Computer software exists in di�erent programming languages, so

it is easy to deal with questions and problems that arise when analyzing the solution set, such

as the "Double Description Method" brie�y described in this paper. This leaves room for plenty
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of changes or further development which have not been covered in this paper. Some extensions

could include:

• Flexible weight constraints

As mentioned above, it is possible to exchange the weight restrictions of 0 and 1 with any

other number. If investors are interested to keep some assets within some individual limits,

it is easy to adjust the values in the model and set any arbitrary minimum and maximum

asset weight.

• Unfunded positions

Taking into account strategical or tactical future positions or simple portfolio hedging

means including unfunded positions in portfolio allocation. Minor model adjustments for

this type of transaction are necessary to compute the polytope.

• Arbitrary optimization for portfolios within the polytope

For backtesting purposes, we analyzed mainly two portfolios which, to us, appeared most

appealing: the minimum variance as well as the maximum diversi�cation allocation. It

is, however, possible to select any numerical optimization approach to �nd an "optimal"

portfolio most suitable for an investor. One option, for example, could be to �nd a portfolio

which minimizes turnover over time, meaning one could leave the portfolio constant at time

of turnover as long as the actual portfolio is still inside or nearly inside the polytope.

• Other portfolio selections inside the polytope

As discussed in this paper, the polytope is described by a number of corner points. We

also showed that any a�ne combination is still a valid portfolio in terms of asset weight

constraints and risk contribution. If a solution therefore is found, it is also possible to

present investors with a list of corner point portfolios and ask the investor directly to set

up a portfolio consisting of those corner points. The resulting portfolio would automatically

be "optimal" regarding the set goals if aspects of minimum explanation level are excluded.

• Further research

Another application would be to take a �xed portfolio and �nd a portfolio inside the poly-

tope with minimal distance to the original portfolio. By doing so, the original portfolio

would be adjusted to result in a hopefully similar portfolio that ful�lls the desired require-

ments.

As seen above, these are just some examples of how the model might be used or extended to

�t the individual needs of investors. The model can of course also be modi�ed in other directions
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as well which do not focus on the speci�c shape of the polytope as the solution set. One major

improvement could be the change of the standard deviation as the risk measure which has been

heavily criticized, especially as it assumes symmetric risk exposure without considering fat tails

inherent in �nancial time series.
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Appendix 3.A Double Description method

For the Double Describtion Method, we refer to Fukuda and Prodon (1996).

A pair (A,R) of real matrices A and R is said to be a double description pair (DD pair) if the

relationship

Ax ≥ 0 if and only if x = Rλ for some λ ≥ 0

holds. For such pair, the set of solutions Q(A) represented by A as Q(A) =
{
x ∈ Rd : A x ≥ 0

}
is simultaneously represented by R as

{
x ∈ Rd : x = Rλ for some λ ≥ 0

}
.

A subset Q of Rd is called polyhedral cone if Q = Q(A) for some matrix A. A is called the

representation matrix of Q(A) and R ist called the generating matrix for Q. The following two

key theorems can also be found in Fukuda and Prodon (1996):

Theorem A.1 - Minikowski's Theorem for Polyhedral Cones

For any m× d real matrix A, there exists some d× n real matrix R such that (A,R) is a double

description pair, or in other words, the cone Q(A) is generated by R.

Theorem A.2 - Weyl`s Theorem for Polyhedral Cones

For any d× n real matrix R, there exists some m× d real matrix A such that (A,R) is a double

description pair, or in other words, the set generated by R is the cone Q(A).

The DD method used in this paper is an incremental algorithms to construct a d×m matrix

R such that (A,R) is a DD pair. The algorithm for the standard form of DD method which

produces a minimal generating set of Q.

Algorithm 3 Standard DD Method

output: R

begin

Obtain any initial DD pair (Ak, R) such that R is minimal

while K 6= {1, 2, ...,m} do
Select any index i from {1, 2, ...,m} \K

Construct a DD pair (Ak+i, R
T ) from (Ak, R) /* by using following Lemma */

R := RT ; K := K + i

end

end
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Lemma

Let (Ak, R) be a DD pair such that rank(Ak) = d and let i be a row index of A not in k. Then

the pair (Ak+i, R
′) is a DD pair, where R′ is the d×|J ′| matrix with the column vector rj (j ∈ J ′)

de�ned by

J ′ = J+ ∪ J0 ∪Adj

Adj = {(j, j′) ∈ J+ × J− : rj and rj′ are adjecent in P (Ak}

r = (Ai rj) rj′ − (Ai rj)rj for each (j, j′) ∈ Adj

Furthermore, if R is a minimal generating matrix for P (Ak) then R′ is a minimal generating

matrix for P (Ak+i).

Appendix 3.B Random vector for numerical calculations

For numerical tests, we build a uniform distributed random vector ν ∈ 1, 2, ..., n with the dimen-

sion Rn. The sum of all vector elements is always 1, which is especially important for the a�ne

combinations of the polytopes' extreme points.

Algorithm 4 Algorithm to create a random vector

input : De�ne element ε > 0 in vector ν and set λ = 1
ε

input : De�ne length κ ∈ N of vector ν

input : Create dummy vector z = [1, 2, 3, ..., κ]

output: Random vector ν

begin

while sum of all elements in ν 6= 1 ∧ κ ≥ 1 do

Choose X ∈ (1, ..., κ) randomly and set V = z(X)

Choose a whole numbered element Y ∈ (1, ..., λ) for position V in vector ν

Set λ = λ− Y

Delete element of position Y in z s.t. κ(ν) = κ− 1

Set κ = κ− 1

end

ν = νT ◦ ε
end
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Appendix 3.C Tables and charts
Mean Median MeanAnn. Std StdAnn. Skew Kurt

S&P 500 Index 0.04% 0.08% 9.22% 1.22% 19.36% (0.29) 11.02
Nasdaq Index 0.05% 0.12% 12.53% 1.88% 29.71% 0.06 8.03
Russel 2000 Index 0.04% 0.11% 9.05% 1.46% 23.04% (0.40) 8.44

1-3 Years Treasury Index 0.02% 0.01% 3.98% 0.09% 1.47% (0.14) 9.70
5-7 Years Treasury Index 0.02% 0.03% 5.95% 0.31% 4.84% (0.17) 6.33
10-15 Years Treasury Index 0.03% 0.04% 7.05% 0.46% 7.26% (0.14) 5.48

1-3 Years AA US Corp. Index 0.02% 0.02% 4.75% 0.11% 1.68% (1.40) 24.55
5-7 Years AA US Corp. Index 0.03% 0.03% 6.46% 0.31% 4.85% (0.55) 7.97
10-15 Years AA US Corp. Index 0.03% 0.04% 8.06% 0.47% 7.45% (0.23) 5.95

1-3 Years B US HY Index 0.04% 0.04% 9.73% 0.41% 6.41% 0.60 209.86
5-7 Years B US HY Index 0.03% 0.05% 7.07% 0.27% 4.22% (2.02) 34.31
10-15 Years B US HY Index 0.04% 0.05% 9.07% 0.40% 6.31% (0.45) 30.08

DJ UBS Energy Subindex 0.02% 0.06% 4.81% 1.93% 30.46% (0.23) 5.67
DJ UBS Ind. Metal Subindex 0.02% 0.02% 3.79% 1.38% 21.85% (0.23) 6.33
DJ UBS Prec. Metals Subindex 0.02% 0.03% 5.49% 1.13% 17.87% (0.34) 9.93

Table 21: Dataset 1 - 1994-2014 (1)

Min Max Q(5%) Q(1%) Ø Q(5%) Ø Q(1%)

S&P 500 Index (9.46%) 10.43% (1.87%) (3.38%) (2.94%) (5.03%)
Nasdaq Index (11.12%) 17.20% (3.03%) (5.18%) (4.42%) (6.82%)
Russel 2000 Index (12.61%) 8.17% (2.31%) (4.02%) (3.46%) (5.79%)

1-3 Years Treasury Index (0.90%) 0.75% (0.12%) (0.24%) (0.20%) (0.34%)
5-7 Years Treasury Index (2.25%) 2.58% (0.47%) (0.82%) (0.69%) (1.06%)
10-15 Years Treasury Index (2.71%) 3.57% (0.73%) (1.27%) (1.05%) (1.56%)

1-3 Years AA US Corp. Index (1.60%) 0.88% (0.13%) (0.27%) (0.23%) (0.44%)
5-7 Years AA US Corp. Index (2.79%) 2.35% (0.47%) (0.83%) (0.71%) (1.15%)
10-15 Years AA US Corp. Index (2.73%) 3.47% (0.73%) (1.24%) (1.07%) (1.68%)

1-3 Years B US HY Index (9.87%) 9.25% (0.29%) (0.94%) (0.79%) (1.99%)
5-7 Years B US HY Index (4.18%) 2.72% (0.34%) (0.93%) (0.71%) (1.43%)
10-15 Years B US HY Index (4.79%) 4.27% (0.51%) (1.20%) (1.01%) (1.99%)

DJ UBS Energy Subindex (14.38%) 9.81% (3.14%) (5.05%) (4.46%) (6.84%)
DJ UBS Ind. Metal Subindex (9.02%) 7.59% (2.17%) (3.94%) (3.28%) (5.29%)
DJ UBS Prec. Metals Subindex (10.10%) 8.76% (1.80%) (3.40%) (2.77%) (4.51%)

Table 22: Dataset 1 - 1994-2014 (2)
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Figure 32: Correlation heatmap dataset 1 - 1994-2014
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PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8

SPX 0.43 (0.12) (0.02) (0.03) 0.27 0.14 0.21 0.81
NDX 0.66 (0.29) (0.09) 0.16 (0.64) (0.12) (0.01) (0.15)
RTY 0.51 (0.12) (0.01) (0.02) 0.65 0.15 (0.24) (0.47)
G1O2 (0.01) 0.00 (0.00) 0.02 (0.02) 0.09 (0.02) 0.00
G3O2 (0.04) (0.00) (0.01) 0.09 (0.08) 0.36 (0.09) 0.01
G7O2 (0.06) (0.01) (0.01) 0.13 (0.13) 0.53 (0.13) (0.00)
C1A2 (0.01) 0.00 0.00 0.02 (0.02) 0.11 0.02 (0.01)
C4A2 (0.03) 0.01 0.00 0.07 (0.06) 0.37 0.02 (0.01)
C7A2 (0.05) (0.00) (0.00) 0.12 (0.12) 0.57 (0.07) 0.00
J1A2 0.02 0.02 0.03 (0.03) 0.02 0.10 0.61 (0.23)
J3A2 0.03 0.01 0.02 (0.03) 0.04 0.07 0.37 (0.10)
J7A2 0.03 0.01 0.03 (0.03) 0.03 0.12 0.59 (0.18)
SPGSENTR 0.27 0.87 (0.42) (0.02) (0.06) 0.02 (0.02) (0.00)
SPGSINTR 0.20 0.29 0.79 (0.47) (0.16) 0.08 (0.09) (0.00)
SPGSPMTR 0.05 0.24 0.45 0.84 0.12 (0.15) 0.05 0.03

Table 23: Principal components loadings dataset 1 - 1994-2014 (1)

PC 9 PC 10 PC 11 PC 12 PC 13 PC 14 PC 15

SPX 0.04 (0.03) (0.01) 0.01 0.00 0.00 0.00
NDX (0.01) 0.01 (0.00) (0.01) 0.00 (0.00) 0.00
RTY (0.00) (0.01) 0.00 (0.00) (0.00) 0.00 (0.00)
G1O2 0.01 0.01 (0.17) (0.19) 0.44 0.29 0.81
G3O2 0.01 (0.04) (0.37) (0.12) 0.63 (0.44) (0.33)
G7O2 0.01 (0.17) (0.29) 0.66 (0.21) 0.25 0.05
C1A2 0.01 0.10 (0.14) (0.35) 0.10 0.78 (0.46)
C4A2 (0.01) 0.22 (0.34) (0.53) (0.58) (0.22) 0.15
C7A2 0.02 0.04 0.78 (0.14) 0.08 (0.01) 0.02
J1A2 0.72 (0.21) (0.01) (0.00) 0.00 (0.01) 0.00
J3A2 (0.11) 0.86 (0.01) 0.30 0.12 (0.01) 0.00
J7A2 (0.68) (0.36) 0.00 (0.05) 0.00 0.00 0.00
SPGSENTR (0.00) (0.01) 0.00 0.01 0.00 0.00 (0.00)
SPGSINTR (0.00) (0.01) (0.01) 0.01 0.00 0.00 (0.00)
SPGSPMTR 0.00 (0.00) 0.01 (0.00) (0.00) (0.00) 0.00

Table 24: Principal components loadings dataset 1 - 1994-2014 (2)
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Mean Median MeanAnn. Std StdAnn. Skew Kurt

S&P 500 Index 0.04% 0.04% 9.02% 1.15% 18.26% (0.85) 25.06

Russel 2000 Index 0.05% 0.08% 11.44% 1.43% 22.60% (0.02) 11.06

1-3 Years Treasury Index 0.02% 0.02% 5.80% 0.22% 3.47% 0.15 9.81

15+ Years Treasury Index 0.03% 0.04% 8.38% 0.67% 10.60% (0.01) 6.31

1-3 Years US Corp. Index 0.03% 0.03% 6.40% 0.19% 3.07% (0.38) 7.72

15+ Years US Corp. Index 0.03% 0.04% 8.43% 0.61% 9.60% 1.02 116.17

GS Commodity Index 0.03% 0.01% 7.17% 1.28% 20.24% (0.43) 10.90

Table 25: Dataset 2 - 1986-2014 (1)

Min Max Q(5%) Q(1%) Ø Q(5%) Ø Q(1%)

S&P 500 Index (20.47%) 11.58% (1.71%) (3.08%) (2.73%) (4.81%)

Russel 2000 Index (11.35%) 14.17% (2.28%) (4.08%) (3.46%) (5.63%)

1-3 Years Treasury Index (1.83%) 2.64% (0.32%) (0.59%) (0.49%) (0.75%)

15+ Years Treasury Index (3.60%) 6.12% (1.06%) (1.81%) (1.53%) (2.25%)

1-3 Years US Corp. Index (1.73%) 1.50% (0.29%) (0.54%) (0.45%) (0.72%)

15+ Years US Corp. Index (12.44%) 14.99% (0.82%) (1.44%) (1.27%) (2.14%)

GS Commodity Index (16.83%) 7.89% (1.99%) (3.46%) (3.02%) (4.92%)

Table 26: Dataset 2 - 1986-2014 (2)
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Figure 33: Correlation heatmap dataset 2 - 1986-2014



102 3.C TABLES AND CHARTS

Mean Median MeanAnn. Std StdAnn. Skew Kurt

Principal Component 1 0.06% 0.11% 14.15% 1.79% 28.31% (0.33) 13.43

Principal Component 2 0.01% (0.00%) 2.31% 1.27% 20.06% (0.39) 11.72

Principal Component 3 0.06% 0.07% 15.64% 0.86% 13.53% 0.03 9.44

Principal Component 4 (0.00%) (0.01%) (1.02%) 0.49% 7.79% 0.23 41.80

Principal Component 5 (0.00%) 0.00% (0.57%) 0.32% 5.01% 2.81 570.01

Principal Component 6 0.02% 0.02% 5.26% 0.16% 2.51% (0.39) 10.64

Principal Component 7 (0.00%) (0.00%) (0.34%) 0.06% 1.00% 2.23 69.92

Table 27: Principal components of dataset 2 - 1986-2014 (1)

Min Max Q(5%) Q(1%) Ø Q(5%) Ø Q(1%)

Principal Component 1 (21.38%) 16.76% (2.81%) (5.11%) (4.34%) (7.27%)

Principal Component 2 (17.56%) 9.04% (2.00%) (3.49%) (2.96%) (4.75%)

Principal Component 3 (7.01%) 9.59% (1.33%) (2.24%) (1.93%) (2.90%)

Principal Component 4 (9.00%) 9.25% (0.70%) (1.33%) (1.10%) (1.93%)

Principal Component 5 (10.23%) 11.37% (0.29%) (0.60%) (0.56%) (1.21%)

Principal Component 6 (1.57%) 1.54% (0.23%) (0.43%) (0.36%) (0.62%)

Principal Component 7 (0.87%) 1.16% (0.07%) (0.16%) (0.13%) (0.26%)

Table 28: Principal components of dataset 2 - 1986-2014 (2)

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7

SPX 0.60 (0.10) 0.10 0.79 0.02 (0.01) (0.00)

RTY 0.77 (0.17) 0.01 (0.61) (0.03) 0.01 0.00

G2O2 (0.02) (0.01) 0.17 (0.00) (0.05) 0.72 (0.67)

G8O2 (0.05) (0.08) 0.63 (0.08) 0.76 (0.03) 0.07

C2A0 (0.03) (0.02) 0.20 0.01 (0.22) 0.62 0.73

C8A0 (0.08) (0.12) 0.71 (0.03) (0.60) (0.32) (0.11)

SPGSCITR 0.18 0.97 0.15 (0.03) (0.02) (0.01) 0.00

Table 29: Principal components loadings of dataset 2 - 1986-2014



103

 

 

 

 

Commodities

Corp. bonds

Gov. bonds

Equities

Commodities

Corp. bonds

Gov. bonds

Equities

20
14

20
13

20
12

20
11

20
10

20
09

20
08

20
07

20
06

20
05

20
04

20
03

20
02

20
01

20
00

19
99

19
98

19
97

19
96

19
95

19
94

19
93

19
92

19
91

19
90

19
89

19
88

19
87

20
14

20
13

20
12

20
11

20
10

20
09

20
08

20
07

20
06

20
05

20
04

20
03

20
02

20
01

20
00

19
99

19
98

19
97

19
96

19
95

19
94

19
93

19
92

19
91

19
90

19
89

19
88

19
87

PC 2

L
o
a
d
in

g
s

PC 1

L
o
a
d
in

g
s

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

Figure 34: Principal components' loadings - 500 Days in-the-sample window - dataset 2
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Figure 35: Principal components' loadings - 1,000 Days in-the-sample window - dataset 2
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Figure 36: Principal components' loadings - 1,500 Days in-the-sample window - dataset 2
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Returns StdAnn.

ERC EW MV ERC EW MV

1998 2.01% 2.98% 0.64% 1.87% 4.48% 1.49%

1999 6.62% 15.71% 4.02% 2.28% 5.39% 1.11%

2000 6.73% 4.18% 7.54% 2.26% 7.20% 1.11%

2001 4.29% (2.42%) 6.43% 2.65% 6.79% 1.69%

2002 7.05% 3.21% 5.88% 2.64% 5.98% 1.50%

2003 11.81% 18.10% 6.03% 2.36% 4.33% 1.33%

2004 5.73% 8.36% 2.67% 3.06% 5.48% 1.45%

2005 5.73% 9.99% 2.67% 2.11% 4.36% 0.95%

2006 7.00% 7.57% 4.97% 2.38% 5.72% 0.98%

2007 6.00% 8.31% 6.23% 2.11% 5.15% 1.30%

2008 (9.80%) (18.40%) (4.11%) 5.65% 10.90% 3.28%

2009 12.38% 22.40% 4.54% 3.58% 9.44% 1.53%

2010 7.74% 11.51% 3.47% 2.57% 6.82% 1.00%

2011 3.95% 2.38% 1.63% 2.48% 7.35% 0.95%

2012 4.62% 6.78% 1.42% 1.43% 4.96% 0.42%

2013 1.57% 3.15% 1.13% 1.65% 4.79% 0.54%

2014 2.38% 3.43% 0.87% 1.07% 3.26% 0.61%

Table 30: Risk/Return data - naive and heuristic strategies - 1,000 days in-the-sample window

- dataset 1

 

 

MV

EW

ERCA
n
n
u
a
li
z
e
d

R
e
t
u
r
n

Annualized Volatility

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure 37: Risk/Return plot - naive and heuristic strategies - 1,000 days in-the-sample window

- dataset 1
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Returns StdAnn.

Max. Div. Min. V ariance Max. Div. Min. V ariance

66% 88% 66% 88% 66% 88% 66% 88%

1998 1.48% 1.65% 1.40% 1.54% 2.76% 3.53% 1.86% 2.45%

1999 12.19% 14.55% 9.73% 11.74% 2.68% 3.36% 2.06% 2.66%

2000 7.08% 7.28% 7.68% 7.88% 2.98% 3.86% 2.34% 3.10%

2001 2.23% 0.98% 4.10% 3.09% 2.92% 3.56% 2.14% 2.61%

2002 7.37% 7.20% 5.58% 5.52% 3.09% 3.69% 1.83% 2.33%

2003 12.15% 12.84% 7.51% 8.06% 2.67% 3.16% 1.75% 2.14%

2004 5.99% 6.39% 3.69% 4.03% 3.40% 3.90% 2.10% 2.50%

2005 6.80% 7.47% 4.20% 4.72% 2.61% 3.18% 1.74% 2.17%

2006 6.84% 6.46% 4.75% 4.56% 3.26% 3.86% 1.68% 2.09%

2007 7.00% 7.17% 6.09% 6.14% 2.65% 3.31% 1.65% 2.08%

2008 (8.66%) (10.88%) (8.41%) (10.36%) 5.63% 6.56% 4.18% 5.06%

2009 10.02% 11.03% 6.82% 7.45% 3.49% 4.46% 2.69% 3.45%

2010 6.33% 6.43% 3.96% 4.04% 2.82% 3.48% 1.92% 2.45%

2011 2.97% 2.49% 1.03% 0.78% 2.99% 3.76% 2.03% 2.59%

2012 2.88% 2.62% 1.31% 1.04% 2.19% 2.79% 1.24% 1.65%

2013 (2.01%) (3.22%) 0.08% (0.94%) 3.51% 4.07% 1.04% 1.47%

2014 4.14% 3.18% 0.70% 0.54% 2.65% 2.95% 0.67% 0.79%

Table 31: Risk/Return data - FRP strategies - 1,000 days in-the-sample window - dataset 1
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Figure 38: Risk/Return plot - FRP strategies - 1,000 days in-the-sample window - dataset 1
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Returns StdAnn.

ERC EW MV ERC EW MV

1990 2.27% 1.39% 2.43% 5.06% 8.08% 2.49%

1991 16.82% 18.50% 14.88% 3.79% 6.52% 1.95%

1992 8.42% 7.96% 8.44% 3.45% 4.82% 2.59%

1993 7.63% 5.49% 8.61% 3.08% 4.22% 2.22%

1994 (1.84%) (1.86%) (0.58%) 4.32% 5.40% 3.04%

1995 23.22% 26.96% 17.37% 3.92% 4.78% 2.98%

1996 10.87% 13.64% 6.20% 5.98% 7.18% 3.67%

1997 8.51% 8.24% 6.88% 4.74% 6.18% 2.57%

1998 3.53% 2.27% 5.55% 4.82% 7.34% 3.09%

1999 9.03% 19.07% 2.61% 5.18% 7.95% 2.92%

2000 13.06% 10.45% 11.43% 4.88% 10.03% 2.57%

2001 0.97% (8.32%) 6.65% 5.32% 9.55% 3.96%

2002 9.58% 6.11% 10.27% 4.06% 8.43% 3.08%

2003 9.57% 15.25% 7.87% 5.05% 7.14% 3.45%

2004 6.23% 7.80% 4.23% 5.05% 7.79% 3.27%

2005 6.17% 10.65% 2.52% 4.30% 7.30% 2.46%

2006 2.81% (0.10%) 4.56% 3.87% 6.50% 2.33%

2007 10.37% 15.29% 6.57% 3.88% 6.50% 2.59%

2008 (7.98%) (18.57%) (8.20%) 7.32% 14.13% 5.45%

2009 10.33% 14.30% 9.20% 6.17% 12.20% 3.92%

2010 8.04% 9.68% 6.55% 4.40% 8.08% 2.83%

2011 8.15% 8.44% 4.84% 4.01% 8.18% 2.54%

2012 6.50% 7.48% 5.09% 2.57% 5.61% 1.40%

2013 2.01% 4.17% 1.58% 3.21% 5.28% 2.22%

2014 4.08% 4.66% 2.50% 2.41% 4.26% 1.80%

Table 32: Risk/Return data - naive and heuristic strategies - 1,000 days in-the-sample window

- dataset 2

 

 

MV

EW

ERC

A
n
n
u
a
li
z
e
d

R
e
t
u
r
n

Annualized Volatility

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Figure 39: Risk/Return plot - naive and heuristic strategies - 1,000 days in-the-sample window

- dataset 2
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Returns StdAnn.

Max. Div. Min. V ariance Max. Div. Min. V ariance

66% 88% 66% 88% 66% 88% 66% 88%

1990 1.81% 1.30% 1.58% 1.16% 6.03% 7.11% 4.88% 5.84%

1991 16.69% 17.08% 15.68% 15.99% 4.32% 5.00% 3.27% 3.87%

1992 7.86% 7.85% 8.08% 7.74% 3.99% 4.00% 2.63% 2.81%

1993 5.26% 4.73% 6.15% 5.31% 2.93% 3.26% 2.37% 2.59%

1994 (4.34%) (4.33%) (1.86%) (1.93%) 6.13% 6.41% 3.95% 4.30%

1995 24.40% 25.99% 19.36% 21.45% 4.20% 4.71% 3.28% 4.01%

1996 12.10% 11.92% 9.16% 10.59% 6.40% 6.35% 4.32% 4.74%

1997 6.67% 6.67% 6.07% 6.27% 5.50% 5.50% 2.94% 3.33%

1998 2.23% 2.38% 4.20% 3.79% 5.86% 5.95% 3.62% 4.41%

1999 13.25% 16.24% 11.99% 15.40% 5.56% 6.23% 4.41% 5.27%

2000 13.41% 12.88% 11.23% 11.06% 6.06% 7.61% 5.19% 6.70%

2001 (1.83%) (4.31%) 0.23% (2.20%) 5.93% 6.94% 5.12% 6.09%

2002 9.17% 8.91% 8.85% 8.72% 4.63% 5.76% 4.05% 5.10%

2003 9.53% 10.82% 10.61% 11.78% 4.95% 5.58% 4.21% 4.87%

2004 5.42% 5.78% 5.22% 5.59% 5.16% 5.93% 4.39% 5.16%

2005 6.71% 7.87% 5.38% 6.57% 4.50% 5.31% 3.92% 4.74%

2006 3.66% 3.56% 4.57% 4.40% 4.60% 5.36% 3.69% 4.46%

2007 13.33% 14.24% 9.23% 10.33% 4.41% 5.25% 3.39% 4.19%

2008 (7.89%) (11.90%) (16.19%) (19.10%) 7.89% 9.76% 8.31% 10.13%

2009 6.35% 7.30% 10.90% 11.40% 7.46% 8.95% 5.73% 7.17%

2010 7.67% 7.76% 7.07% 7.23% 5.27% 6.25% 4.18% 5.16%

2011 8.93% 8.32% 4.85% 4.84% 5.49% 6.74% 4.43% 5.64%

2012 3.25% 2.76% 4.60% 3.40% 4.71% 5.46% 3.24% 4.46%

2013 3.22% 2.63% 2.22% 1.84% 5.04% 5.22% 2.52% 2.72%

2014 8.88% 7.39% 2.44% 1.75% 4.47% 4.51% 1.92% 2.05%

Table 33: Risk/Return data - FRP strategies - 1,000 days in-the-sample window - dataset 2
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Figure 40: Risk/Return plot - FRP strategies - 1,000 days in-the-sample window - dataset 2
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Figure 41: Risk contribution and asset weights - Max. Diversi�cation strategy 66% - dataset 1
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Figure 42: Risk contribution and asset weights - Max. Diversi�cation strategy 80% - dataset 1
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Figure 43: Risk contribution and asset weights - Min. Variance strategy 66% - dataset 1
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Figure 44: Risk contribution and asset weights - Min. Variance strategy 80% - dataset 1
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Figure 45: Risk contribution and asset weights - Max. Diversi�cation strategy 66% - dataset 2
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Figure 46: Risk contribution and asset weights - Max. Diversi�cation strategy 80% - dataset 2
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Figure 47: Risk contribution and asset weights - Min. Variance strategy 66% - dataset 2
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Figure 48: Risk contribution and asset weights - Min. Variance strategy 80% - dataset 2
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ERC MV

EQ GOV CORP HY COM EQ GOV CORP HY COM

1998 5.6% 25.3% 23.7% 33.6% 11.8% 0.0% 82.2% 0.0% 13.1% 4.7%

1999 5.3% 25.8% 24.1% 33.5% 11.3% 0.0% 77.3% 0.0% 18.6% 4.1%

2000 4.4% 27.6% 24.7% 33.8% 9.5% 0.2% 67.8% 7.6% 21.8% 2.7%

2001 4.1% 30.2% 26.1% 30.8% 8.8% 0.8% 77.8% 0.1% 19.1% 2.1%

2002 4.6% 30.6% 26.8% 28.7% 9.4% 1.2% 69.4% 9.5% 18.0% 1.8%

2003 5.0% 32.3% 27.8% 25.2% 9.7% 1.9% 55.2% 25.4% 16.1% 1.5%

2004 5.8% 32.1% 27.7% 25.1% 9.2% 2.3% 60.7% 20.3% 16.0% 0.6%

2005 6.7% 31.7% 27.6% 25.9% 8.1% 2.5% 59.7% 20.9% 16.9% 0.0%

2006 6.9% 31.8% 27.8% 27.0% 6.5% 2.4% 70.5% 11.6% 15.5% 0.0%

2007 6.7% 27.4% 25.1% 35.9% 4.9% 1.6% 69.6% 9.2% 19.7% 0.0%

2008 7.0% 30.3% 27.1% 30.7% 4.8% 3.0% 62.4% 18.8% 15.8% 0.0%

2009 6.2% 44.2% 28.3% 15.7% 5.6% 2.4% 89.4% 0.3% 7.8% 0.1%

2010 5.9% 45.1% 28.0% 15.4% 5.7% 2.4% 89.8% 0.0% 7.6% 0.2%

2011 5.8% 45.6% 27.8% 15.1% 5.7% 2.4% 90.3% 0.0% 7.2% 0.1%

2012 4.9% 49.4% 27.3% 13.4% 5.0% 1.8% 92.4% 0.9% 4.9% 0.1%

2013 4.2% 44.1% 28.5% 19.6% 3.7% 1.2% 91.8% 0.0% 7.0% 0.0%

2014 3.9% 44.5% 29.4% 18.9% 3.3% 1.1% 98.6% 0.0% 0.3% 0.0%

Table 34: ERC and MV asset weights - 1,000 days in-the-sample window - dataset 1

ERC MV

EQ GOV CORP COM EQ GOV CORP COM

1990 10.8% 44.3% 30.1% 14.8% 1.8% 85.1% 8.9% 4.2%

1991 11.2% 44.8% 31.8% 12.2% 1.6% 85.7% 9.7% 3.0%

1992 13.6% 42.9% 32.2% 11.3% 0.6% 83.5% 13.3% 2.6%

1993 13.6% 43.3% 31.7% 11.4% 1.4% 94.2% 1.7% 2.8%

1994 14.5% 42.3% 30.7% 12.5% 0.8% 96.0% 0.0% 3.2%

1995 15.5% 38.0% 28.2% 18.3% 0.6% 92.0% 0.0% 7.4%

1996 16.8% 36.2% 28.2% 18.8% 0.1% 92.6% 0.0% 7.3%

1997 16.7% 35.9% 30.0% 17.5% 0.0% 94.1% 0.0% 5.9%

1998 14.7% 36.7% 32.5% 16.1% 0.1% 69.7% 25.8% 4.3%

1999 12.5% 37.7% 35.3% 14.4% 1.4% 67.7% 27.5% 3.4%

2000 10.5% 38.7% 37.3% 13.4% 1.8% 61.4% 33.3% 3.5%

2001 9.5% 39.8% 38.6% 12.2% 3.5% 48.6% 44.7% 3.1%

2002 10.0% 40.5% 37.8% 11.7% 4.6% 56.0% 36.6% 2.8%

2003 10.6% 40.7% 37.6% 11.1% 6.1% 79.1% 12.0% 2.7%

2004 12.6% 39.9% 36.6% 11.0% 7.7% 90.1% 0.0% 2.2%

2005 14.9% 38.6% 36.1% 10.5% 8.7% 81.8% 7.6% 1.9%

2006 16.9% 37.8% 35.7% 9.5% 9.1% 64.5% 25.2% 1.3%

2007 18.4% 37.5% 34.9% 9.2% 8.0% 74.1% 17.0% 0.9%

2008 16.8% 37.4% 36.8% 8.9% 9.3% 67.0% 22.5% 1.2%

2009 11.7% 38.0% 41.6% 8.6% 6.5% 42.8% 49.3% 1.5%

2010 11.4% 38.0% 41.7% 8.9% 6.4% 42.6% 49.2% 1.9%

2011 11.4% 37.8% 41.7% 9.1% 6.5% 41.8% 49.8% 1.9%

2012 10.3% 38.2% 42.8% 8.8% 5.0% 39.9% 52.7% 2.3%

2013 11.4% 38.1% 41.9% 8.7% 5.7% 40.1% 52.5% 1.7%

2014 11.4% 37.3% 42.1% 9.2% 5.3% 31.6% 61.5% 1.6%

Table 35: ERC and MV asset weights - 1,000 days in-the-sample window - dataset 2
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Appendix 3.D Matrices and variables

Name Space Explanation

n N Number of assets

k N Number of time periods with k < n

x Rk×n Daily asset returns

ρ R Correlation of two assets with −1 ≤ ρ ≤ 1

σ, σi R Volatility of P or of asset i

Σ Rn×n Covariance matrix of x

w Rn Asset weights

P Rk Daily portfolio returns (x · w)

MRCi R Marginal risk contribution of asset i

RCi R Risk contribution of asset i

m N Number of equalized risk factors

C Rn×n Principal component mixing matrix

x̃ Rk×n Principal components (x · C)

σ̃,σ̃i R Volatility of P̃ or x̃i

Σ̃ Rn×n Covariance matrix of x̃

w̃ Rn Principal component weights (CT · w)

P̃ Rk Daily principal component portfolio returns (x̃ · w̃)

M̃RCi R Marginal risk contribution of a principal component i

R̃Ci R Risk contribution of a principal component i

emin R Minimum level of explanation with 0 ≤ emin ≤ 1

A Rz×n Matrix used for polytope de�nition

b Rz Inequalities solutions for polytope de�nition

Q Rn Polytope as subset of Rn

q Rn×r Finite number of polytope corner points, Q = conv{q1, ..., qr}

β {−1, 1}2 Principal component directions



4 Tail Driven Factor Risk Parity with Volatility Investments

4.1 Introduction

Risk factors have in recent years become a key factor in the development of asset allocation

strategies (see, inter alia, Fama and French (1993) and Clarke et al. (2005)). One group of con-

cepts dealing with risk factors are Factor Risk Parity (FRP) allocations (Bhansali et al. (2012),

Roncalli and Weisang (2012), Bruder and Roncalli (2012), Lohre et al. (2012), Kind (2013)).

Such strategies try to combine the characteristics of risk parity allocations on the one hand and

investments made along prede�ned risk factors on the other. Due to fat tails in the asset return

distributions, the use of the standard deviation as the risk measure in the context of these strate-

gies has been heavily criticised. If the standard deviation is replaced and further asset weight

constraints added, the computations get complex.

We will contribute to the existing literature in two points: �rst, the standard deviation as

the risk measure is replaced by the expected shortfall in the FRP model. Due to heavily skewed

asset return distributions, the expected shortfall seems to be a good choice to capture special

properties in the tails of the asset distributions. This risk measure is preferred to the value at

risk as we strive for a robust risk estimation. We focus on equal risk contributions in the �rst

few risk contributions only to avoid leverage or short sales. Second, volatility as an asset class

is examined against the backdrop of an strategic FRP allocation. A volatility short strategy

will be set up due to their attractive return pro�le during longer market periods of contango

in the volatility term structure. It is analyzed to what extend this strategy replaces equity or

commodity investments in a multi-asset portfolio while at the same time serving as an assset

with a skewed and fat-tailed return distribution.

Using a portfolio allocation along a downside risk measure is not a new concept. Boudt

et al. (2013) introduced the minimum Conditional Value at Risk (CVaR) portfolio in their pa-

per. They �nd that the ex ante application of a downside risk measure is able to determine

portfolios with a low portfolio risk, a low risk concentration and a high portfolio diversi�cation.

In an unconstrained setup, they �nd that the minimum CVaR portfolio is similar to the equal

risk to contribution portfolio. In a Gaussian world, where asset returns are normally distributed,

the risk parity, and therefore the factor risk parity solutions derived with the value at risk or

the expected shortfall, do not di�er from that using the standard deviation as the risk measure

(Bruder and Roncalli, 2012). The VIX futures and their relationship to VIX price changes are

described and explained in Zhang et al. (2010). Eraker and Wu (2013) and Asensio (2013) explore
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the negative yield premium in long VIX futures investments and thereby serve as a motivation

for our volatility short strategy.

In contrast to the commonly used application of volatility futures as a hedging against equity

losses, this paper focuses on using short volatility positions to pro�t from possible positive rolling

e�ects when futures are rolled over. Within the factor risk parity framework, the incorporation

of such volatility strategies has a positive impact on the return, Sharpe Ratio and Maximum

Drawdown properties. Compared to a simple equal risk to contribution strategy, the positive

impact of the volatility strategies is greater when using the factor risk parity model. Due to

heavily skewed return distributions of the VIX-future strategies, the use of the expected shortfall

is particularly appropriate. Although data history of volatility futures is limited to ten years,

some conclusions can be drawn from the results we receive.

The structure of this part is as follows: Section 4.2 presents some related literature. Section

4.3 presents the theory for the marginal expected shortfall and component expected shortfall

before describing in detail the factor risk parity model with the expected shortfall as the risk

measure. In Section 4.4, we introduce the volatility short strategy and its detailed setup. Data

used for the backtests are described in Section 4.5. The optimal weight ratio of the �rst two

principal components is analyzed in Section 4.6.1 using the standard deviation versus the ex-

pected shortfall as the risk measure before performing the out-of-sample backtest of the factor

risk parity model (Section 4.6.2). Section 4.7 concludes. Appendix 4.A provides the theory

of the closed-form model for the modi�ed expected shortfall. In appendix 4.B we validate the

results computed in Section 4.6.2 using the modi�ed expected shortfall. Appendix 4.C provides

additional �gures and tables.

4.2 Related literature

Contributing to the existing risk parity and factor risk parity literature, this paper replaces the

standard deviation by the expected shortfall within a factor risk parity framework as de�ned in

the second study above. In a Gaussian world, where asset returns are normally distributed, the

risk parity, and therefore the factor risk parity solutions derived with the value at risk or the

expected shortfall, does not di�er from that using the standard deviation as the risk measure

Bruder and Roncalli (2012). Baitinger et al. (2017) also focus on higher moments, stressing how

incorporating higher risk moment terms can also lead to better performance when the underlying

data exhibit tailed distributions.
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As the number of observations in the tail of a real world distribution is always limited to

a smaller number, the robustness of the derived factor risk parity solutions is a crucial issue.

Against the backdrop of an asset allocation along the tails of the relevant distributions, we

follow the works of Härdle et al. (2014) and Mercuri and Rroji (2014) and make use of the

closed-form model for the (marginal) modi�ed expected shortfall to validate the results using the

non-parametric calculation for the expected shortfall.

As the second contribution of the existing risk parity and factor risk parity literature, an

equity volatility strategy is set up in a multi-asset allocation context. In contrast to the general

terminology of volatility, which has been thoroughly researched in numerous mathematical and

�nancial literature, volatility as an own investment in form of volatility futures or volatility/vari-

ance swaps is a relatively young innovation and therefore less covered by research so far. When

talking about volatility futures speci�cally, the research can be grouped into two di�erent topics:

one deals with pricing issues, volatility curves, etc. and the other one focuses on embedding the

volatility futures in an investment setup. The work of Zhu and Lian (2012) for example belongs

to the �rst group of papers. The authors present a closed-form solution for the pricing of VIX

futures under a stochastic volatility model with jumps in asset prices and in the volatility. The

implications of using VIX futures in the context of a risk parity approach discussed in this paper,

however, belongs to the second group of papers which deal with volatility futures in an invest-

ment setup. Signori et al. (2010), for example, present two volatility strategies and a calibrated

combination of those two. The �rst strategy they discuss is taking a long volatility position

by a long VIX future position with an adjusted exposure depending on the absolute volatility

level. They use this strategy to bene�t from the strong negative correlations to equity markets

to establish a hedge, particularly, in weak market periods. The other strategy discussed is to

capture the volatility risk premium by using variance swaps. A calibrated approach combining

these two strategies is then analyzed through a mean/modi�ed Value-at-Risk optimization with

the result that the absolute and risk-adjusted return of the portfolio for a nearly 20-year histor-

ical dataset is signi�cantly enhanced when the calibrated strategy is added to an equity portfolio.

Avellaneda and Papanicolaou (2018) analyze VIX and VIX futures together with correspond-

ing ETNs/ETFs. As in our analysis they �nd large volatility and skewness in the �nancial data

of those products. By using a 2-factor lognormal model with mean-reverting factors, they show

the pro�tability of constantly shorting VIX futures based on data between 2011 and 2016. They

also argue, however, that due to surges in the VIX during market turmoil the Sharpe ratio is
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with around 0.5 somewhat modest.

Simon and Campasano (2012) deal with two questions: the �rst one covers the aspect of

predictability of future VIX spot movements based on the VIX basis and the other deals with a

long/short VIX future strategy. This strategy consists of short VIX future positions if the basis

is in contango and long VIX future positions if the VIX term structure is in backwardation. The

underlying market risk inherent in those VIX futures is then hedged by S&P futures. Exit rules

for the VIX futures are added in a �nal chapter of the paper to illustrate how to improve the

risk/reward relation of the strategy.

Other papers also deal with backtest and the risk/return characteristics of volatility futures:

Stanescu and Tunaru (2012) test the use of those instruments for improving Sharpe Ratios by

adding them to an equity portfolio and to a balanced equity/bond portfolio. The results show

improved risk and return �gures for European and US portfolios, particularly, due to hedging

e�ects of the volatility futures during stress periods at the equity markets. They also present a

long/short model for the VIX and VSTOXX futures using GARCH forecasting.

4.3 Factor risk parity model

4.3.1 Expected shortfall as the risk measure

To recap the conditions in the factor risk parity model, using the notation from the second study

above, and to introduce unfunded positions, the following restrictions which are formulated here

as a set of linear equalities and inequalities have to hold:

1. Risk parity condition

The risk contributions of the �rst two principal components have to be equal. This condi-

tion can be written as

(σ̃1 −σ̃2 0 · · · 0)

w̃1

...
w̃n

 =

0
...
0

 . (74)

2. Positive weights in the asset space

Prohibiting short selling means that the condition w = C w̃ ≥ 0 must be ful�lled.

3. Funded asset weights sum up to 1

Expression
∑
wi
n
i=1 = 1 only applies to funded assets. Unfunded assets, such as volatility

futures, have to be excluded. To include unfunded portfolio positions to the model, the
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constraint de�ned in the part above has to be modi�ed. We rede�ne ci,j being the elements

of the transformation matrix C from the PCA for funded positions and

ĉi,j =

ci,j , if asset i is funded

0, if asset i is unfunded

, (75)

The sum for funded positions are constituted by Ci =
∑n
j=1(ĉi,j) and exclude unfunded

positions from the sum of all elements in the i-th column in the matrix C. One can then

write the constraints as:

(C1 C2 · · · Cn)

w̃1

...
w̃n

 = 1. (76)

In the second study above, the marginal risk contribution has been calculated with the stan-

dard deviation as the risk measure. The standard deviation, however, may not be perfectly suit-

able as historical return distributions often exhibit fat tails or are not symmetrically distributed.

This is even more distinct if asset classes such as volatility are included in the multi-asset port-

folio. The expected shortfall as a non-parametric tail-risk measure therefore appears suitable to

capture special distributional properties.

Using the quantile function V aRα(z) = F−1z (α) for the value at risk to the quantile α, the

expected shortfall for a continuously distributed random variable z to the same probability level

α is de�ned as

ESα(z) :=
1

1− α

∫ 1

α

V aRu(z)du. (77)

Given the portfolio P := x w ∈ Rk consisting of empirical time series, the empirical expected

shortfall of portfolio P can be written in the form of

ESα(P ) = µ [P |P ≤ V aRα(P )] , (78)

with µ [P |x] as the conditional expectation of P under x. Rewriting the portfolio using P =∑
i xi wi, the empirical portfolio expected shortfall can be decomposed into

ESα(P ) =
∑
i

wi µ [xi|P ≤ V aRα(P )] . (79)

As it can be seen below, this decomposition is important for calculating the marginal expected

shortfall (MESi). Following Tasche (2002), the marginal expected shortfall is equal to the �rst
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order partial derivative of expression (79). The component expected shortfall (CESi), which can

be interpreted as the risk contribution of the empirical time series xi to the empirical portfolio

expected shortfall ESα(P ), is then the marginal expected shortfall multiplied by the weights of

the time series xi in the portfolio:

MESi =
∂ESα
∂wi

= µ[xi|P ≤ V aRα(P )], (80)

CESi = wi
∂ESα
∂wi

= wi µ[xi|P ≤ V aRα(P )]. (81)

The marginal expected shortfall is equal to the the average value of asset i if the portfolio loss

is bigger than the historical value at risk to the quantile α.

For historical scenarios, this value can be calculated by �rst taking the change in the portfolio

value for each scenario, sorting them to take the cuto� point for determining the value at risk

and �nally taking the average value of price change for asset i for all those scenarios where the

portfolio loss is larger than V aRα(P ).

Given the portfolio P̃ := x̃ w̃ and the quantile function V aRα(P̃ ) = F−1
P̃

(α) for the principal

component time series, one can formulate an equation similar to the expression in the standard

deviation case for the expected shortfall as the risk measure:

w̃1 M̃ES1(w̃) = w̃2 M̃ES2(w̃). (82)

So far, the solutions for w̃1 and w̃2 to this equation is not trivial as M̃ES1 and M̃ES2 depend

on w̃. In the case of the standard deviation, the i-th marginal risk contribution only depends on

weight w̃i which simpli�es the equations signi�cantly. The orthogonal attribute of the principal

components is not su�cient to guarantee that M̃ESi does not also depend on a di�erent weight

j. Rewriting the equation (82) may clarify those dependencies:

w̃1 µ[x̃1|(x̃ w̃) ≤ V aRα(x̃ w̃)] = w̃2 µ[x̃2|(x̃ w̃) ≤ V aRα(x̃ w̃)]. (83)

The solution to the equation depends heavily on the form of the assets' distributions and

thereby on the principal components' distributions. Before proceeding with the FRP model,

some general statements are �rst made. Later, closed form solutions for the marginal expected

shortfall under di�erent distribution assumptions will be presented.
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Nonetheless, a numerical process for computing the FRP model weights w̃ is needed and will

be described in the last part of this section.

General statements

As mentioned above in the case of the standard deviation as the risk measure, the ratio of the

weights w̃1

w̃2
is equal for all risk parity solutions in the principal component space. This is a

direct consequence of the attribute that only the i-th weight w̃i changes the i-th marginal risk

contribution M̃RCi.

When using the expected shortfall we allow returns to also be non-normally distributed. As

�nancial data are analyzed, we expect distributions e.g. to be fat tailed and skewed. Regardless

of the asset or principal component return distributions, the component expected shortfall is

homogeneous, i.e.

CESi(c · w) = c · CESi(w), (84)

with c > 0. Particularly, it follows that if a portfolio has equal component expected shortfalls,

so does a portfolio with weights c · w for c > 0. The proof is straightforward as for given w and

c > 0, due to positive homogeneity of the value at risk,

CESi(c · w) = c · wi E[xi|c · x ≤ V aRα(c · x)]

= c · wi E[xi|c · x ≤ c · V aRα(x)]

= c · CESi(w).

(85)

So far, we know that scaling the weights of a factor risk parity portfolio with a factor c > 0

means that the new scaled portfolio stays a factor risk parity portfolio when the expected short-

fall as the risk measure is used. This, in general, is only true if the scaling factor is positive. It

will be shown later that, in the case of the normal or elliptical distribution assumptions when

the distributions are symmetrical with mean zero, the solution is still a solution to the problem

even if all the optimal portfolio weights are multiplied by minus one, meaning that scaling by

a factor of c < 0 is a valid operation. Therefore, the characteristic of scaling the weights of a

factor risk parity portfolio with the expected shortfall for the normal and elliptical distributions

is the same as in the general case with the standard deviation as the risk measure.

With skewed distributions the remarks above are incorrect. The reason for this is that by

using skewed distributions and the expected shortfall as a risk measure, a left skewed distribution
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becomes a right skewed distribution and vice versa when the sign of the weight changes.

Closed form solution - normal case

Let X denote asset return, where X is a normally distributed random variable with mean µ and

variance σ2, X ∼ N (µ, σ2). Following Boudt et al. (2008), the component expected shortfall in

this case can be written as

CESi = wi
(Σw)i√
wTΣw

1

α
φ[Φ−1[α]], (86)

with α being the corresponding quantile, φ(), Φ() and Φ−1() being the standard Gaussian den-

sity, distribution and quantile functions. As the time series are normally distributed, it is not

surprising that the �rst part of equation (86) is identical to the equation in the standard de-

viation case. As the term 1
αφ[Φ−1[α]] is independent of i, the term crosses out when we set

CESi = CESj . This leads to the same solution set when we compare the standard deviation

versus the expected shortfall results with normal distributed returns.

Closed form solution - elliptical case

Landsman and Valdez (2003) extend the calculation of the component expected shortfall to the

larger class of elliptical distributions which includes the case of the normal distribution above.

Multivariate elliptical distributions are those where the characteristic function can be expressed

as

ϕX(t) = exp
(
itTµ

)
ψ

(
1

2
tTΣt

)
, (87)

for some column vector µ ∈ Rn, complex number i, a positive-de�nite matrix Σ ∈ Rn×n and some

function ψ(t) : [0,∞)→ R such that ψ(
∑n
i=1(t2i )) is an n-dimensional characteristic function. In

this case the solution can be given as

CESi = wiµi + λPwiσiσP ρXi,P (88)

for some λP as given in Landsman and Valdez (2003) (be aware that CESi = wi ·MESi). Note

that the paper discusses the case P = X1 + · · ·+Xn. However, without loss of generality, Xi can

be replaced by wiXi as linear combinations of elliptical distributions are elliptical distributions

again. If we assume µi to be zero and Xi to be independent,
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CESi = wiµi + λPwiσiσP
Cov(wiXi, P )

wiσiσP

= λPCov

(
wiXi,

n∑
k=1

wkXk

)

= λPw
2
i σ

2
i .

(89)

For CESi to be equal to CESj ,

λPw
2
i σ

2
i = λPw

2
jσ

2
j . (90)

Therefore, the solution is the same as in the case using the standard deviation as the risk

measure.

For the sake of completeness, the (marginal) modi�ed expected shortfall (see appendix 4.A) is

additionally described. The idea is to approximate the tail by using a Cornish-Fisher expansion.

This approach will be used for validating the numerical results determined in Section 4.6.1.

Numerical solutions

As discussed above, a numerical process for computing FRP portfolios in the principal component

space of solutions under the expected shortfall as the risk measure is required for non-normally

distributed returns. The computations now consist of 2 steps: the calculation of the component

expected shortfall followed by �nding the optimal weights so that the component expected short-

fall of the �rst two components are equal.

Given the weights w, the calculation of the component expected shortfall is straightforward

as given directly by equations (81) and (82). We �rst determine the portfolio in the factor

space, determine the tail scenarios for the portfolio, take a component i and average the scenario

changes for exactly those tail scenarios.

Being able to determine the CES and MES this way, the optimal portfolio can be found

numerically by minimizing the squared di�erence between the CES of the �rst 2 principal compo-

nents. The general optimization problem to achieve equality in the �rst m principal components

can be written as:6

f∗ = argmin

 m∑
i=1

∑
j<i

(
wi
∂ESα
∂wi

− wj
∂ESα
∂wj

)2
 , (91)

6For all further considerations, m<n as the model seeks to reduce the number of risk factors



122 4.4 VOLATILITY INVESTMENTS

or equivalently

f∗ = argmin

 m∑
i=1

∑
j<i

(wi MESi − wj MESj)
2

 . (92)

The constraints we de�ne for the optimization problem above are directly taken from the

standard deviation case. These include:

• Asset weights sum up to 1

• Non-negative asset weights - short sale prohibited

• Minimum explanation level of the �rst two risk contributions of at least 66%

As mentioned above, an additional objective function, similar to the case where the standard

deviation is used, is needed to narrow the choices down to one portfolio. The allocations we want

to analyze are the

• Minimum Variance allocation and

• Maximum Diversi�cation allocation.

Both allocations and the constraints have already been explained in the second study above.

4.4 Volatility investments

4.4.1 Volatility futures - introduction

Volatility futures, such as the VIX futures, have become increasingly important �nancial instru-

ments in the investment industry since they have been established in 2004. Figure 49 illustrates

the increase in open interest in recent years.

One �eld of application is using VIX futures as an equity hedge instrument through a long

position in the volatility futures. However, long positions usually su�er from a contango in the

volatility term structure, which is often observable during longer stable market periods. Eraker

and Wu (2013) studied the returns of VIX futures and quanti�ed the negative return premium

implied in long VIX futures investments. The paper indicates that another application - con-

stantly shorting the VIX future - might be an attractive investment strategy for an investor. The

strategy would imply to receive the premium by shorting longer dated VIX futures and rolling

over the position closer to maturity. The technique is similar to the concept of "riding the yield

curve", where investors pro�t by a contango in the yield curve through investing in longer dated

bonds and, all else being equal, gaining from the passage of time. As mentioned in Bhansali and

Harris (2018), this investment strategy has in the meantime become so popular that people start
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Figure 49: VIX Future open interest at CBOE from 2004 to 2016. Source: CBOE

warning that the strategy may trigger the next serious market crash.

Directly related to the question of contango versus backwardation is the question of overpriced

VIX futures relative to the VIX itself. Asensio (2013) analyzed this characteristic. Some of his

conclusions are:

1. VIX futures are consistently overpriced relative to subsequent moves of the VIX index.

2. This overpricing is more marked for longer term futures.

3. The overpricing is less during periods of extreme volatility.

As con�rmed by Avellaneda and Papanicolaou (2018), the next subsection will show that

selling VIX futures and continuously rolling over close to expiry should be an attractive invest-

ment strategy. The authors, however, also mention the problem of tail events in the VIX futures'

distributions which occur in the case of stock market downturns when volatility, and with it

volatility futures, spike. Therefore, it can be of interest for an investor to see how this strategy

embeds in a risk-based portfolio construction process, especially when the expected shortfall as

a risk measure is used.

In the following sections we do not try to approach the investment strategy from an analytical

point of view by, for example, explaining the structure of the volatility curve, etc., but from an

exclusively empirical point of view to answer the following questions:
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1. As long volatility and long equity positions are strongly negatively correlated, how does the

strategy of constantly selling volatility futures a�ect the long equity positions and other

asset classes in our factor risk parity allocation?

2. If shorter dated volatility futures are continuously replaced by longer dated ones, what

in�uence does the rolling strategy have?

4.4.2 The volatility short strategy in detail

The question we are facing now is how to construct a time series that represents an investable

volatility short strategy. In constrast to VIX futures, the VIX index is not an investable asset.

One point an investor therefore has to decide is which VIX future to sell. He has the choice

of longer versus shorter dated futures. For that, we will take a closer look at three-months and

one-month futures. The di�erence is quite big and should not be neglected. Longer dated VIX

futures usually are less volatile with a lower sensitivity toward movements of the underlying:

Table 37 for example shows that the standard deviation of the volatility short strategy using 1

month futures is much higher than using 3 month futures.

Once the decision on the maturity of the future has been made, the question is when to roll

over into the next future. It should be noted that the closer to maturity the future is rolled

over, the more volatile the entire volatility strategy becomes. Due to the much higher expected

return in the last years though we choose the strategy where we roll the future one day prior to

expiration.

The �nal point to decide is the quantity of the future to be sold when rolling over a position.

The �rst idea that may come to mind is to leave the number of contracts constant. Usually

the investor earns a premium by selling the futures which would be ignored and not re-invested

using this method. The concept is similar to simply holding a bond which has just matured: the

interest earned should be re-invested when the bond matures. The same is true when analyzing

equity investments as dividend payments should not be ignored.

To better illustrate the selection of the right future, Table 36 serves as an example on the

choice of the instrument: to answer the question when, for example, the February 2015 VIX

future is used in the 3-month to expiry scenario, one has to go back to the months of November

and December 2014 to determine the expiry dates. In the example, this would be the 17th of
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December and 19th of November 2014. As the future is rolled over one day prior to expiration,

the period when the future is selected would be from the 18th of November to the 16th of

December.

Future used Future expires Used between Future expiry in relevant month

Feb 15 18.02.15 18.11.14 - 16.12.14 17.12.14

Jan 15 21.01.15 20.10.14 - 18.11.14 19.11.14

Dec 14 17.12.14 15.09.14 - 20.10.14 21.10.14

Table 36: VIX futures example - rollover dates

The time series is therefore set up in the following way: starting from the end of the time

series we will take the price changes of the latest volatility future. Going back in time, the time

T on which the future is rolled over will be identi�ed. The price around the rollover day of the

current future is denoted by Pcurr and by Pprev for the previous future. At time t, one gets a

value in the time series TS(t) in the case where the "notional was kept constant" (re-investment

of premium earned) as

TS(t) =

TS(t+ 1) Pcurr(t)
Pcurr(t+1) , if t > T,

TS(t+ 1)
Pprev(t)
Pprev(t+1) , if t ≤ T.

(93)

The interpretation of the constructed time series is straight forward: the geometric changes

are taken and, at the rollover date, the price changes of the new future are taken instead of the

old contract.

To sum up, the following graph illustrates the performance for the rolling volatility strategy

for the one-month future with rollover one day prior to expiration and starting value of 100. The

strategy appears quite attractive due to its high return especially during low volatility regimes

such as the time from 2004 to 2008. On the downside, however, the strategy itself is quite volatile

with sharpe downturns during times of market turmoil.
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Figure 50: VIX future short strategies until end of 2016. Source: Bloomberg

4.5 Data description

For the empirical part of this paper, a dataset of 17 time series is used. The dataset is composed

entirely of US end-of-day (EoD) return data for �ve asset classes and two di�erent equity volatility

strategies. Time series reach from May 2004 to the end of 2016 and are taken from Bloomberg.

When choosing the data, we took care of a broad diversi�ed multi-asset set of time series. The

entire dataset consists of:

• Two equity volatility strategies

• Three equity indices

• Three treasury bond indices

• Three corporate bond indices

• Three high-yield bond indices

• Three commodity indices

The volatility strategies have already been described in detail in section 4.4.2. The basic idea

is to use two strategies on the VIX index future that have two di�erent expiration dates. The

three equity indices are a selection to cover a broad universe of US equities. For that, the S&P

500 (SPX) is taken as a broad index of 500 US stocks. The small cap equities are represented

by the Russell 2000 index (RTY). These indices are complemented by the NASDAQ 100 (NDX)

as the 100 largest and most active non-�nancial domestic and international issues listed on the

NASDAQ. We focus on di�erent maturity bands for all bond indices, 1-3 years, 5-7 years and

10-15 years, to account for all changes that occur for the di�erent maturities in the treasury yield

and in the corporate spread curves.
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The pure interest rate movements are represented by the US treasuries in form of the Bank

of America (BoA) Merrill Lynch indices (G1O2, G3O2 and G7O2). The BoA Merrill Lynch

indices for the corporate bonds and the abovementioned maturities are C1A2, C3A2 and C7A2.

Those indices, together with the high-yield indices of BoA Merrill Lynch (J1A2, J3A2 and J7A2),

represent the credit risk in the portfolio.

For the commodities, the directly investable S&P GSCI Energy Total Return Index (SPGSENTR),

the S&P GSCI Industrial Metals Total Return Index (SPGSINTR) and the S&P GSCI Precious

Metals Total Return Index (SPGSPMTR) are included. The indices are mostly taken from above

section. Further reasons on why to avoid other indices, such as ethical concerns in the case of

agricultural investments, and why to include speci�cally these indices are given. Further statis-

tical evaluations and a correlation heatmap are provided in the appendix (see table 43 and 44

and �gure 64).

However, as the focus of this paper is particularly on the expected shortfall as the risk measure

and the implementation of the volatility strategies in the multi-asset factor risk parity model,

the tails of the distributions are of special interest.
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−40% −30% −20% −10% 0% 10% 20% 30%−10% −5% 0% 5% 10% 15%

−10% −8% −6% −4% −2% 0% 2% 4% 6% 8%−3% −2% −1% 0% 1% 2% 3% 4%

0

50

100

150

200

250

300

350

400

450

0

100

200

300

400

500

600

0

50

100

150

200

250

300

350

0

50

100

150

200

250

300

350

Figure 51: Data distributions - the red line represents a normal distribution with the same

mean and variance as the underlying data.

The historical distributions in Figure 51 give a �rst indication of how important the consid-

eration of the left hand tail can be for an allocation using a factor risk parity model. In �gure
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51, a left hand fat tail is particularly noticeable for the Industrial Metals in the range of -6%

to -2%, for the S&P 500 between -5% and -1% and for the 1-month volatility short time series

between -20% and -5%. The numbers in table 37 o�er further evidence of the existence of the fat

tails and the skewness in the historical data. The volatility short, equity, commodity and mid

and long maturity high-yield bond time series are all, in part strongly, left skewed. Moreover,

the quantile �gures show particularly high negative returns for the volatility short, equity and

commodity time series (see Tables 43 and 44 for more detailed �gures). To sum up, most asset

time series exhibit fat tails and are far from being normally distributed.

Std Skew Kurt Q(5%) Ø Q(5%)

Volatility Short 1 Month 4.35% (0.63) 7.53 (7.44%) (11.08%)

Volatility Short 3 Months 2.46% (0.45) 6.85 (4.27%) (6.21%)

S&P 500 Index 1.27% (0.43) 14.28 (1.88%) (3.22%)

Nasdaq Index 1.36% (0.38) 9.83 (2.19%) (3.29%)

Russel 2000 Index 1.64% (0.42) 8.50 (2.54%) (3.96%)

1-3 Years B US HY Index 0.50% 0.43 164.59 (0.29%) (0.96%)

5-7 Years B US HY Index 0.31% (1.84) 31.17 (0.39%) (0.84%)

10-15 Years B US HY Index 0.40% (0.51) 30.38 (0.52%) (0.98%)

DJ UBS Energy Subindex 1.92% (0.26) 6.07 (3.08%) (4.63%)

DJ UBS Ind. Metal Subindex 1.66% (0.23) 5.22 (2.65%) (3.89%)

DJ UBS Prec. Metals Subindex 1.34% (0.50) 7.85 (2.21%) (3.28%)

Table 37: Higher moments and quantile �gures for the skewed and fat tailed asset distributions.

As the FRP model deals with principal components, the tail behavior of the principal compo-

nent time series are of particular interest. Figure 52 indicates left hand fat tails for both principal

components with and without volatility short positions. However, the e�ect is signi�cantly re-

inforced when adding the volatility short time series to the set of return series. This does not

come as a surprise, as the principal components are a linear combination of the fat tailed assets

described above. Tables 38 and 39 provide the numbers for the skewness and kurtosis for the

principal components for the cases with and without volatility short positions. Furthermore,

the risk �gures increase and skewness and kurtosis decrease, in part, considerably when adding

volatility short to the portfolio.



129

PC 2 ex Volatility ShortPC 1 ex Volatility Short

PC 2 cum Volatility ShortPC 1 cum Volatility Short

−20% −15% −10% −5% 0% 5% 10% 15% 20%−30% −20% −10% 0% 10% 20% 30%

−20% −15% −10% −5% 0% 5% 10% 15% 20%−30% −20% −10% 0% 10% 20%

0

50

100

150

200

250

300

350

0

50

100

150

200

250

300

350

400

450

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

450

Figure 52: Principal component distributions with and without volatility short positions - the

red line represents a normal distribution with the same mean and variance as the underlying

data.

Std Skew Kurt Q(5%) Ø Q(5%)

Principal Component 1 2.71% (0.69) 9.21 (4.13%) (6.83%)

Principal Component 2 1.94% (0.10) 7.16 (2.98%) (4.53%)

Table 38: Higher moments and quantile �gures for the �rst two principal components without

volatility short positions.

As quantile data in both tables show, the �rst two principal components exhibit strong

negative returns on the distributions' left hand side. Again, this is even more severe when

adding volatility to the set of time series. More detailed data for all principal components are

provided in the appendix (see Tables 45, 46, 49 and 50). The principal component loadings for

the two datasets with and without volatility short positions are provided in the appendix as well

(see Tables 47 and 51).

Std Skew Kurt Q(5%) Ø Q(5%)

Principal Component 1 5.33% (0.63) 6.86 (9.06%) (13.63%)

Principal Component 2 2.15% (0.06) 5.48 (3.41%) (5.03%)

Table 39: Higher moments and quantile �gures for the �rst two principal components with

volatility short positions.
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Having described the tail behavior of the single assets and principal components, we will

continue to analyze the conditional tail behavior under the constraints in the next section. The

conditional tail behavior is of great importance when building a factor risk parity solution under

the expected shortfall as the risk measure as it will in�uence the weight ratio of the �rst two

weights which was key when determining the polytope in the standard deviation case.

4.6 Empirical analysis

The �rst part of the empirical analysis deals with the issue of the optimal weight ratio of w̃1

versus w̃2 as discussed in the second study for the standard deviation case. Due to the non-

normality distributions of the �nancial time series and the volatility short time series described

in Section 4.5 in particular, we expect a di�erent weight ratio depending on whether the stan-

dard deviation or the expected shortfall as the risk measure is used. When using the expected

shortfall, the quantile that is chosen should also in�uence the results. The following subsection

illustrates the results for the standard deviation and the expected shortfall. For validation, the

appendix 4.A will discuss the results when using the (marginal) modi�ed expected shortfall (a

Cornish-Fisher approximation) mentioned in Section 4.3.1.

After the illustration of the di�erences in Section 4.6.1, Section 4.6.2 will describe the back-

testing results in detail with descriptions of performances, risks and other statistics.

4.6.1 Optimal weight ratio of �rst two principal components

To get a better understanding on the changes that occur when moving from the standard devia-

tion to the expected shortfall, Figure 53 �rst illustrates the case where the volatility time series

are excluded from the multi-asset portfolio. The ratios of w̃1 to w̃2 for the optimal portfolios are

calculated for the standard deviation as the risk measure (red line) and for numerical approxi-

mations with the expected shortfall as the risk measure for a larger amount of portfolios (blue

dots) with di�erent quantiles (84.1% - equal to the 1. standard deviation - and 95%).

For the calculations with the standard deviation as the risk measure, the ratio of w̃1 to w̃2 is

�rst determined via equation (74). The minimum and maximum weight for w̃1 (and w̃2 respec-

tively) are then determined numerically so that the explanation level is between 66.6% and 100%,

the weights sum up to 1 and are between 0 and 1. When volatility short positions are excluded,

the permissible values for w̃1 are between 0.0259 and 0.3502. Figure 53 therefore illustrates the
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solution in the standard deviation case as a solid line when inside those boundaries and as a

dotted line when outside those boundaries.
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Figure 53: Expected shortfall quantile simulations for a multi-asset portfolio excluding volatility

short time series.

Keep in mind that the general solution for the problem under the standard deviation as the

risk measure is a polyhedron. For a better understanding of the structure and calculations see

Section 3.4. For calculating the numerical solutions (blue dots), values for w̃1 are taken and the

weights w̃2 to w̃n are determined so that all constraints are met and where R̃C1 is equal to R̃C2.

The results are plotted in Figure 53 and 54. The left graph in both �gures shows the ratio

of the weights in the PCA space for the quantile corresponding to the �rst standard deviation

(84.1%). The �gure indicates that the numerical results calculated with the expected shortfall to

the quantile 84.1% match closely the results calculated with the standard deviation as the risk

measure.

As the quantile for the �rst standard deviation is not far out in the tail, one could expect

that there are no major di�erences whether the standard deviation or the expected shortfall to

the quantile 84.1% is used. The left plot of Figure 53 con�rms this assumption initially.

However, the picture changes when adding the volatility short strategy to the multi-asset

portfolio. Figure 54 shows the results for the identical quantile simulations but with extended

dataset. The permissible values calculated with the standard deviation as the risk measure for

the weight w̃1 in the case with volatility short time series are now between 0.0132 and 0.2837.

The results for the 84.1% quantile (blue dots) again are almost identical with the values cal-
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Figure 54: Expected shortfall quantile simulations for a multi-asset portfolio including volatility

short time series.

culated with the standard deviation (red line). The results change, however, when a smaller

quantile (95%) for the numerical calculations is chosen: the weight ratio w̃1

w̃2
increases as the plot

in Figure 54 on the right hand side indicates.

Keep in mind that the ratio was key when determining the solution in the standard deviation

case, particularly when weight restrictions lead to polyhedron solutions. It seems that the dif-

ferences in the weight ratio for expected shortfall versus standard deviation is higher for heavily

skewed time series in a multi-asset portfolio.

As already mentioned, we validated the results described above using a closed form solution

for calculating the (marginal) modi�ed expected shortfall with a the Cornish-Fisher approxi-

mation. This results can be found in appendix 4.B. The results from the (marginal) modi�ed

expected shortfall support the �ndings described in this section.

In the next section, the impact of changing the risk measure and therefore the change in the

weight ratio and the impact of including volatility short positions as described in Section 4.4 on

the allocations will be reviewed in a general backtest.

4.6.2 Backtest

For computing the out-of-sample asset weights, a distinction between an allocation along the

standard deviation and the expected shortfall as the risk measure in the factor risk parity model

(FRP) has to be made. Under the standard deviation, the corner points of the polyhedron are
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used within a numerical optimization to �nd the minimum variance and the maximum diversi-

�cation portfolio. Using the expected shortfall, numerical calculations as described in Section

4.3.1 are chosen to determine the out-of-sample weights. Independently from choosing the way

the asset weights are computed, we set a minimum level of explanation of 66% of the �rst two

principal components for all FRP allocations.

As a benchmark allocation, the heuristic equal risk to contribution (ERC) allocation is com-

puted for the time series including and excluding the volatility short strategies. For further

details on the computation of the ERC strategy, see Section 3.3.

All backtests and analyses are constructed in the following way: t = 1 marks the �rst entry

of the dataset. The out-of-sample weights w are computed at time t based on the historical

data from days t − 1, 000 to t − 1. The weights are calculated based on the last 1,000 trading

days which are then used for the next 60 trading days from t to t + 59. The asset weights are

rebalanced at t + 59 accordingly. As the in-the-sample window length is often the subject of

discussion in literature, the window length for the analysis in this paper is �xed to 1,000 trading

days. The reasoning behind using this setup can also be found in the above section.

Under this allocation setup, all strategies are �rst computed excluding the volatility short

positions and, in a second step, volatility short positions are added to the portfolio. In the next

part, the main statistics for all strategies will be compared before explaining special properties

of single allocations.

Using the dataset described in Section 4.5 and excluding the volatility short strategies from

the allocations, the ERC strategy performs best and delivers the highest Sharpe Ratios in the

period from 2008 to 2014. Table 40 provides the detailed �gures. Despite that, the maximum

drawdown for the ERC allocation is the second highest of all allocations backtested.

When including the volatility short strategies, the ERC allocation still achieves the highest

Sharpe Ratio (see Table 41). However, the FRP maximum diversi�cation allocation computed

with the expected shortfall as the risk measure performs best when including the volatility short

strategies. As the volatility short strategy is itself a major source of volatility in all allocations in

this setup, the diversi�cation �gures decreases compared to the allocations computed excluding

the volatility short strategies. At the same time, the entropy increases when adding the volatility

short strategy to the portfolio.
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VIX Return MeanAnn.StdAnn. SR MaxDD D E

ERC exV IX 21.58% 2.99% 3.00% 0.79 15.19% 2.05 14.42

Max. Div.66% Std exV IX 12.04% 1.73% 3.45% 0.32 12.47% 2.40 9.98

Min. V ar.66% Std exV IX 2.84% 0.42% 2.18% -0.09 11.91% 1.81 8.76

Max. Div.66% ES exV IX 15.36% 2.18% 5.05% 0.31 21.66% 1.75 9.84

Min. V ar.66% ES exV IX 0.27% 0.04% 2.15% -0.27 11.72% 1.75 8.19

Table 40: Allocation strategies without the volatility short strategies. SR is the Sharpe Ratio,

MaxDD the maximum drawdown, D the diversi�cation and E the entropy.

VIX Return MeanAnn.StdAnn. SR MaxDD D E

ERC cumV IX 110.25% 11.87% 5.13% 2.19 12.83% 1.32 16.27

Max. Div.66% Std cumV IX 79.62% 9.24% 5.05% 1.71 10.19% 1.45 12.77

Min. V ar.66% Std cumV IX 21.25% 2.95% 2.76% 0.84 9.04% 1.28 11.69

Max. Div.66% ES cumV IX 129.50% 13.36% 8.54% 1.49 19.20% 1.18 12.40

Min. V ar.66% ES cumV IX 14.50% 2.06% 2.58% 0.56 9.76% 1.25 11.02

Table 41: Allocation strategies with the volatility short strategies.

Figure 55 shows the total return chart for the ERC and the FRP allocations using the expected

shortfall as the risk measure. Particularly, the return of the FRP maximum diversi�cation

allocation is notable for the period from 2008 to 2012. However, the performance of the ERC

strategy is not as high as for the FRP maximum diversi�cation strategy in the period from 2008

to 2012, but more steady in the period after 2012.
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Figure 55: ERC and FRP allocations including and excluding volatility short strategies using

the expected shortfall as the risk measure.
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For the sake of completeness, the total return plot of the FRP allocations using the standard

deviation as the risk measure can be found in Figure 56. A very steady return development again

can be observed for the ERC strategy. After this general overview, the next section continues to

describe the e�ect of adding volatility to the multi-asset portfolio.
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Figure 56: Ex vs cum volatility short positions for FRP allocations

Adding volatility short positions

One question already asked in Section 4.4 is the impact of adding volatility short strategies to the

portfolio. For that, Figure 57 illustrates the annualized risk-return pro�le for all the strategies

backtested in this chapter, while focusing on the changes that occur when the volatility short

positions are added to the portfolio.

The �gure shows for all strategies an increase in return and risk when volatility positions are

added. Due to the much higher increase in the return though, the Sharpe Ratios increase as

Table 40 and Table 41 also illustrate. The change in returns are higher for the ERC and the

maximum diversi�cation strategy as for the the minimum variance strategy (red and green dots),

which do not exhibit bigger changes in the risk-return pro�le. As those portfolios try to minimize

the variance, adding the volatility short strategy should not really have a major in�uence on the

allocation.

The increase in portfolio volatility has to be considered from another viewpoint: on the one

hand, adding volatility short positions to a multi-asset portfolio may increase portfolio volatility,

on the other hand, volatility short positions decrease the maximum drawdown in the backtest.
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Figure 57: Risk/return plot for the ERC strategy and the FRP strategies including and excluding

volatility short positions to the multi-asset portfolio.
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Figure 58: Portfolio maximum drawdown for all allocation strategies in a descending order.

Figure 58 shows the maximum drawdown of all strategies for the entire backtesting period.

The red bars represent the strategies including the volatility short positions, the blue bars display

the maximum drawdown of the allocations excluding volatility strategies. The results are robust

and clear: adding volatility short positions to the multi-asset portfolio decreases the maximum

drawdown signi�cantly for each allocation strategy in our backtest. Additionally, the two FRP

strategies including volatility short positions and computed with the standard deviation as the

risk measure are among the three allocations with the lowest maximum drawdown.

There are two possible explanations for this phenomenom: �rstly, the contango in the "nor-
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mal" volatility term structure provides an independent alpha source. This alpha source absorbs

slight negative portfolio returns or delivers positive portfolio returns in periods when markets are

trending sideways. This was particularly the case in the time before the outbreak of the global

�nancial crisis. During this 4-month period in the backtests, the portfolios including volatility

short positions performed better than the portfolios excluding volatility short positions.

Secondly, including volatility short positions changes the portfolios' asset weights. Figure 59

clari�es the impact of the inclusion of volatility short positions on the average asset weights. The

asset weights are computed as the average over the entire backtest period.
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Figure 59: Aggregated volatility short, equity, bond and commodity weights for all allocations

including and excluding volatility short positions.

The changes in the asset weights might explain some of the e�ects already described. Due to

the higher volatility of the volatility short strategy itself, the weights of the volatility positions

are relatively low for all allocation (green bars). It can be observed, that the equity weights

are only reduced in the ERC allocation. For all FRP allocations, equity weights increase when

adding volatility short positions to the portfolio. Table 42 gives an overview on the asset weights.

The numbers indicate that, when adding a volatility short strategy to the portfolio, asset weights

are shifted from commodity to equity positions, the asset weights for bond positions stay almost

constant.

In particular, the average daily return of the UBS Energy subindex (−0.73%) and the UBS

Ind. Metals subindex (−0.57%) are the lowest of all assets in the time period up to the end

of 2008 covered in the backtest. A reduction of the commodity time series in this period will
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therefore have a positive e�ect on the portfolio return.

On the one hand, the e�ect that the weights of commodities are reduced can explain one part

of the higher returns when volatility short strategies are included as the returns of commodities

during the backtesting period has been on average lower than that for other assets. On the

other hand, the returns of the volatility short strategy itself explain the other part of the higher

return of those strategies. Despite the negative drawdowns during market turmoil described in

Avellaneda and Papanicolaou (2018), including the VIX short strategy therefore does have a

signi�cant positive impact on the asset allocation.

V IX Strategy V olatility short Equities Bonds Commodities

ERC ex V IX 0.00% 5.36% 89.77% 4.87%

Max. Div.66% Std ex V IX 0.00% 4.04% 82.19% 13.77%

Min. V ar.66% Std ex V IX 0.00% 1.75% 91.67% 6.58%

Max. Div.66% ES ex V IX 0.00% 3.32% 83.32% 13.36%

Min. V ar.66% ES ex V IX 0.00% 1.65% 91.81% 6.54%

ERC cum V IX 1.87% 4.02% 91.45% 4.53%

Max. Div.66% Std cum V IX 1.59% 5.89% 82.58% 11.53%

Min. V ar.66% Std cum V IX 0.53% 3.39% 91.42% 5.19%

Max. Div.66% ES cum V IX 2.33% 3.84% 84.56% 11.60%

Min. V ar.66% ES cum V IX 0.39% 2.85% 91.85% 5.29%

Table 42: Asset class weights for all allocations including and excluding volatility short positions.

Standard deviation versus expected shortfall as the risk measure

Another core issue of this work is the exchange of the standard deviation for the expected short-

fall as the risk measure for computing the optimal weight ratio of the �rst two weights in the

principal component space as well as for the backtest. Section 4.3.1 gives a theoretic overview

on this matter and discusses in detail the reasons for the exchange of the risk measure.

Subsection 4.6.1 explains and presents the changes in the weight ratios of the �rst two prin-

cipal components that occur when the 95.0% quantile is exchanged for the 84.1% quantile or the

standard deviation. These results are validated using the (marginal) modi�ed expected shortfall

and are presented in appendix 4.B.

As the di�erences in the ratios are not very high but signi�cant when adding volatility short

positions to the portfolio, Figure 57 shows the di�erences in the risk and return relation that
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occur when changing the risk measure. The e�ect of the change of the risk measure for the

FRP minimum variance allocations is slightly negative in terms the total return. For the FRP

maximum diversi�cation allocation, the change in the risk measure increases both, the volatility

and the return of the allocation, signi�cantly.

Additionally, Table 42 displays the changes in the asset weights that occur when the risk

measure is changed. Keep in mind that the weights are averaged over the entire period, which

might blur the di�erences. However, when comparing the changes in the asset weights for the

allocations excluding volatility, almost no di�erences can be determined. These results re�ect

the e�ect that the optimal weight ratios do not di�er signi�cantly from those computed with the

standard deviation when the 95.0% quantile is used for the numerical calculations (see Figure

53). Moreover, the weight ratios computed without volatility short positions using the expected

shortfall as the risk measure are also validated in Section 4.6.1. Those weight ratios are almost

identical to those computed with the standard deviation and the polytope approach.

In comparing the changes for the allocations including volatility short positions, signi�cant

changes for the volatility short and the equity weights can be observed, when the 95.0% quantile

instead of the 84.1% quantile or the standard deviation is used. These �ndings again are in line

with the numerical results in Section 4.6.1. Figure 54 shows the e�ect of a higher weight w̃2

when the smaller quantile is used for the calculations.

The di�erences in the allocation weights become more apparent when the statistics of the

allocations are considered (see Tables 40 and 41). The return, for example, increases for the

FRP maximum diversi�cation strategy including volatility short positions from around 80% to

around 130% when changing the risk measure from the standard deviation to the expected

shortfall. However, the maximum drawdown almost doubles, the volatility increases and diver-

si�cation decreases for this allocation. As bond and commodity weights stay almost constant

and equity weights decrease, the signi�cant volatility short weight increase seems to be the suit-

able explanation for the changes in the properties of the FRP maximum diversi�cation allocation.

To sum up, the exchange of the risk measure leads to reasonable changes in the allocations

weights. Particularly, the return of the FRP maximum diversi�cation allocation increases sig-

ni�cantly. The increase in risk �gures is the other side of the coin when implementing this

allocation.
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4.7 Conclusion

Constructing robust and well-balanced multi-asset portfolios is a challenge for theorists and prac-

titioners. This paper contributes to the subject of portfolio construction by extending a version

of the factor risk parity model discussed in the previous section. The model is able to construct

a portfolio with equal risk contributions in the �rst m components when using the Expected

Shortfall as the risk measure while, at the same time, avoiding leverage and short positions.

This chapter extends the research mainly by two points. First, volatility short strategies are

constructed and included in the multi-asset portfolio as unfunded positions. Due to their attrac-

tive return characteristics, a rolling short volatility future strategy appears to be an interesting

addition in a multi-asset context. Second, the standard deviation is exchanged by the expected

shortfall as the risk measure. Despite the advantage of simpli�ed calculations, some drawbacks,

such as the non-consideration of skewness or fat tails, exist when the standard deviation as the

risk measure is used. The expected shortfall focuses on the tails of the resulting distributions,

which is, in the case of volatility short positions, an advantageous attribute. At the same time,

using the expected shortfall as the risk measure makes calculations more complex as closed-form

solutions for arbitrary distributions of the asset returns cannot be determined. Under speci�c

distribution assumptions some closed form solutions are provided which were identical to the

standard deviation case.

The results when the standard deviation is exchanged by the expected shortfall are in line

with our expectations: when volatility short positions are included in the portfolio, the optimal

weight ratio changes when using a smaller quantile for the expected shortfall. The di�erences

in the weight ratios of the �rst two principal components are not huge but signi�cant. For the

optimal weight ratio w̃2 to w̃1, as described in Section 4.6.1, the simulations show a signi�cant

higher weight for the second principal component for our dataset when using the expected short-

fall to the 95% quantile as when using the standard deviation or the 84.1% quantile respectively.

Data shows that the more this quantile is moved outside to the tail, the more the optimal weight

ratio di�ers from the standard deviation case. The results have been validated by using the

(marginal) modi�ed expected shortfall, an extension of the Cornish-Fisher approximation for

the value at risk measure. The idea behind this concept is to approximate the expected shortfall

in the tail by using a polynomial and then calculate the marginal expected shortfall based on

that approximation. The method is described in appendix 4.A. The results con�rm our initial

results from Section 4.6.1.
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Backtesting the models for the period of 2004 to the end of 2014 shows that including volatil-

ity short positions and exchanging the risk measure does have an in�uence on the portfolio

weights and thereby on the portfolios' risk and return characteristic. When excluding volatility

short positions from the portfolio, the average portfolio weights hardly change and the portfolios'

characteristics remain almost unchanged using the expected shortfall. Adding volatility short

strategies to the portfolio does not radically change the portfolio weights as the strategy itself is

very volatile, but shows an impact, particularly, on equity and commodity positions. Commodity

positions are, on average, reduced for an increase in equity positions as the volatility positions are

required to be unfunded. Due to the lower long term performance of equities and commodities

relative to the volatility short strategy, this shift in weights has a signi�cant positive impact on

the portfolio return and Sharpe Ratio. The exchange of the risk measure in this case reinforced

these asset weight shifts and thereby the positive e�ect on the portfolio return and Sharpe Ratio.

Further research could be undertaken in various subjects. One obvious point of criticism is

the use of the principal component analysis for the data analysis and data conversion. The PCA

is a linear method that assumes more or less a normal distribution. The expected shortfall that

is used as a risk measure on the other hand focuses speci�cally on the distribution on the tails

in that transformed factor space. In this context, a linear transformation of the input data, such

as a principal component analysis, might not necessarily be the perfect choice. PCA, however,

has been described in detail in the above section where solely the standard deviation as the risk

measure is used. PCAs' simplicity combined with the intuitive use proves bene�cial. It may be

useful, however, to take other blind source separation and data analysis tools into consideration.
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Appendix 4.A Closed form solution - modi�ed expected shortfall

As seen above, the analytic calculation of the component expected shortfall (CES) or modi-

�ed expected shortfall (MES) can be troublesome, particularly if the loss distribution is not

described by a simple normal distribution. It therefore can be useful to take a closer look at

approximations to (a) speed up the calculation and (b) gain some deeper understanding of the

analysis of the distributions' tails and the expected shortfall as the risk measure. We therefore

want to take a look at the (marginal) modi�ed expected shortfall like it is described by Boudt

et al. (2008) which serves as an estimator for the expected shortfall.

First, we can write the exact expected shortfall of the portfolio return as

ES(α) = −w′µ− σPEG[x|x ≤ G−1(α)] (94)

with G(·) being the true distribution function of the portfolio returns.

Boudt, Peterson and Croux de�ne the modi�ed expected shortfall then as

ESmod(α) := −w′µ− σPEG2
[x|x ≤ G−12 (α)] (95)

with G−12 being the 2nd order Cornish-Fisher expansion of the quantile function G−1(·) around

the Gaussian quantile function Φ−1()̇ as

G−12 (α) = zα +

2∑
i=1

P ∗i (zα) (96)

with zα = Φ−1(α) and

P ∗1 (zα) =
1

6
(z2α − 1)sp

P ∗2 (zα) =
1

24
(z3α − 3zα)kp −

1

36
(2z3α − 5zα)s2p

(97)

with portfolio skewness sp and the excess kurtosis kp given below.

Even though second degree in the polynom should be su�cient for the approximation, higher

degrees could of course be added. Those polynomes can be found, for example, in Draper and

Tierney (1973). Given those formulas the approximated expected shortfall can be calculated as

EG2
= EG2

[x|x ≤ G−12 (α)] =− 1

α

{
φ(gα) +

1

24
[I4 − 6I2 + 3φ(gα)]kp +

1

6
[I3 − 3I1]sp

+
1

72
[I6 − 15I4 + 45I2 − 15φ(gα)]s2p

} (98)
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with gα = G−12 (α) and I1, I2, I3, I4, I6 given as

Iq =


∑q/2
i=1

(∏q/2
j=1 2j∏i
j=1 2j

)
g2iα φ(gα) +

(∏q/2
j=1 2j

)
φ(gα) for q even∑q∗

i=0

(∏q∗
j=0(2j+1)∏i
j=0(2j+1)

)
g2i+1
α φ(gα)−

(∏q∗
j=0(2j + 1)

)
Φ(gα) for q odd

(99)

and q∗ = (q − 1)/2. Given the formula for EG2
, we can di�erentiate formula 95 and as m2 = σ2

get by applying the product rule:

∂ESmodα

∂wi
=− µi −

1

2
√
m2

∂m2

∂wi
EG2

[x|x ≤ G−12 (α)]

+

√
m2

α

{ 1

24
[I4 − 6I2 + 3φ(gα)]

∂kp
∂wi

+
1

6
[I3 − 3I1]

∂sp
∂wi

+
1

36
[I6 − 15I4 + 45I2 − 15φ(gα)]sp

∂sp
∂wi

+
∂gα
∂wi

[
−gαφ(gα) +

1

24
[
∂I4

∂wi
− 6

∂I2

∂wi
− 3gαφ(gα)]kp

+
1

6
[
∂I3

∂wi
− 3

∂I1

∂wi
]sp +

1

72
[
∂i
∂wi

I6 − 15
∂I4

∂wi
+ 45

∂I2

∂wi

+ 15gαφ(gα)]s2p

]}

(100)

with

∂gα
∂wi

=
1

6
(z2α − 1)

∂sp
∂wi

+
1

24
(z3α − 3zα)

∂kp
∂wi
− 1

18
(2z3α − 5z)sp

∂sp
∂wi

(101)

∂Iq

∂wi
=


∑q/2
i=1

(∏q/2
j=1 2j∏i
j=1 2j

)
g2i−1α (2i− g2α)φ(gα)−

(∏q/2
j=1 2j

)
gαφ(gα) for q even∑q∗

i=0

(∏q∗
j=0(2j+1)∏i
j=0(2j+1)

)
g2iα (2i+ 1− g2α)φ(gα)−

(∏q∗
j=0(2j + 1)

)
φ(gα) for q odd

(102)

and q∗ = (q − 1)/2.

For the sake of completeness, the N ×N2 co-skewness matrixM3 and the N ×N3 co-kurtosis

matrixM4 as well as the portfolio moments m2, m3 and m4 and their partial derivative are given

by:

M3 =E [(r − µ)(r − µ)′ ⊗ (r − µ)′]

M4 =E [(r − µ)(r − µ)′ ⊗ (r − µ)′ ⊗ (r − µ)′]

m2 =w′Σw
∂m2

∂wi
= 2(Σw)i

m3 =w′M3(w ⊗ w)
∂m3

∂wi
= 3(M3(w ⊗ w))i

m4 =w′M4(w ⊗ w ⊗ w)
∂m4

∂wi
= 4(M4(w ⊗ w ⊗ w))i

(103)



144 4.B OPTIMAL WEIGHT RATIO VALIDATION

The portfolio skewness sp and the excess kurtosis kp and their partial derivative are given by:

sp = m3/m
3/2
2

∂sp
∂wi

= (2m
3/2
2

∂m3

∂wi
− 3m3m

1/2
2

∂m2

∂wi
)/2m3

2

kp = m4/m
2
2 − 3

∂kp
∂wi

= (m2
∂m4

∂wi
− 2m4

∂m2

∂wi
)/m3

2

(104)

Appendix 4.B Optimal weight ratio validation

The (marginal) modi�ed expected shortfall (see appendix 4.A for further details) is used to val-

idate the results from Section 4.6. Using this approximation for the expected shortfall and the

component expected shortfall to calculate the optimal ratio of w̃1 to w̃2, we expect the results

to be similar to that in Section 4.6.1.

At �rst, the results using the (marginal) modi�ed expected shortfall while excluding volatility

short positions from the portfolio will be discussed and compared to those results from Section

4.6.1. Figure 60 therefore illustrates the results when the optimal weight ratio for the �rst two

principal components is calculated via the standard deviation as the risk measure (red line), the

expected shortfall as described in Section 4.3.1 (blue dots) and the (marginal) modi�ed expected

shortfall (green dots). The results for the (marginal) modi�ed expected shortfall are calculated

in the same numerical way as for the expected shortfall in Section 4.6.1 with changes only in the

way the risk contribution is calculated. For all numerical calculations, an interior point algorithm

in form of the Matlab-Function "fmincon" is used to solve the optimization problem so that the

risk contributions of the �rst two principal components under the (marginal) modi�ed expected

shortfall are practically equal.

The results for the (marginal) modi�ed expected shortfall (green dots) plotted in �gure 60

di�er only slightly from that in Section 4.6.1 (blue dots). Using the 84.1% quantile for both

models, the optimal weight w̃2 increases slightly more the greater the weight w̃1 becomes. How-

ever, the results from both models are very similar to that computed with the standard deviation

(solid red line).

The optimal weight ratio from the (marginal) modi�ed expected shortfall does not signif-

icantly change when using the 95.0% quantile. As the results from the (marginal) modi�ed

expected shortfall for both quantiles do not seem to di�er much from the results computed with

the standard deviation, �gure 61 shows that the behavior of the optimal weight ratio is not linear
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Figure 60: Expected shortfall quantile simulation using the modi�ed expected shortfall excluding

volatility short positions to the multi-asset portfolio.

as it is in the case with the standard deviation. The values of the weight ratio on the y-axis are

plotted against the weight w̃1 on the x-axis.
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Figure 61: Weight ratios w̃1 to w̃2 computed with the (marginal) modi�ed expected shortfall to

the quantiles 84.1% and 95.0%.

Including volatility short positions in the portfolio changes the results from the (marginal)

modi�ed expected shortfall. Those results calculated to the quantile of 84.1% again are quite

similar compared to the results computed with the standard deviation and mostly in line with

the results from Section 4.6.1. The results computed with the (marginal) modi�ed expected

shortfall changes when moving the quantile further to the tail. In this case, the weight ratio

change w̃2

w̃1
increases slightly compared to the results from Section 4.6.1. The results gained from

the (marginal) modi�ed expected shortfall con�rm the increase in the optimal weight ratio al-

ready described in Section 4.6.1.
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The results from the (marginal) modi�ed expected shortfall again indicate that the optimal

weight ratio of w̃2 to w̃1 to the quantile 84.1% and 95% is a straight line, as it is in the case

when using the standard deviation as the risk measure. This, however, is not true as �gure 63

shows again. Obviously, the optimal weight ratio again is not constant for all w̃1 and therefore

not a straight line in �gure 62.
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Figure 62: Expected shortfall quantile simulation using the (marginal) modi�ed expected short-

fall including volatility short positions to the multi-asset portfolio.
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Figure 63: Weight ratios w̃2 to w̃1 computed with the (modi�ed) marginal expected shortfall to

the quantiles 84.1% and 95.0%.

Instead, the �gure already indicates what has been mentioned above: adding volatility short

positions to the portfolio, increasing the quantile and going further to the tails, does not only

increase the optimal ratio w̃2 to w̃1, but let it looks less and less like the optimal ratio computed

with the standard deviation as the risk measure.
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Appendix 4.C Tables and charts

Mean Median MeanAnn. Std StdAnn. Skew Kurt

Volatility Short 1M Strategy 0.31% 0.66% 76.67% 4.35% 68.75% (0.63) 7.53

Volatility Short 3M Strategy 0.08% 0.00% 20.80% 2.46% 38.84% (0.45) 6.85

S&P 500 Index 0.02% 0.08% 5.97% 1.27% 20.00% (0.43) 14.28

Nasdaq Index 0.04% 0.11% 10.44% 1.36% 21.52% (0.38) 9.83

Russel 2000 Index 0.03% 0.10% 7.51% 1.64% 25.87% (0.42) 8.50

1-3 Years US Treasury Index 0.01% 0.01% 2.46% 0.09% 1.37% (0.09) 15.33

5-7 Years US Treasury Index 0.02% 0.02% 4.85% 0.31% 4.93% 0.01 7.41

10-15 Years US Treasury Index 0.03% 0.04% 6.52% 0.51% 8.03% (0.01) 5.22

1-3 Years AA US Corp. Index 0.01% 0.01% 3.14% 0.10% 1.63% (2.76) 45.36

5-7 Years AA US Corp. Index 0.02% 0.03% 4.99% 0.31% 4.85% (0.70) 10.71

10-15 Years AA US Corp. Index 0.03% 0.05% 7.46% 0.48% 7.62% (0.07) 6.73

1-3 Years B US HY Index 0.03% 0.04% 7.98% 0.50% 7.94% 0.43 164.59

5-7 Years B US HY Index 0.03% 0.05% 6.56% 0.31% 4.95% (1.84) 31.17

10-15 Years B US HY Index 0.04% 0.06% 9.83% 0.40% 6.36% (0.51) 30.38

DJ UBS Energy Subindex (0.03%) 0.04% -7.50% 1.92% 30.39% (0.26) 6.07

DJ UBS Ind. Metal Subindex 0.02% 0.02% 5.68% 1.66% 26.22% (0.23) 5.22

DJ UBS Prec. Metals Subindex 0.04% 0.07% 9.79% 1.34% 21.25% (0.50) 7.85

Table 43: Dataset - 2004-2014 (1)

Min Max Q(5%) Q(1%) Ø Q(5%) Ø Q(1%)

Volatility Short 1M Strategy (26.99%) 29.48% (7.44%) (13.26%) (11.08%) (17.16%)

Volatility Short 3M Strategy (13.54%) 13.99% (4.27%) (7.28%) (6.21%) (9.70%)

S&P 500 Index (9.47%) 10.42% (1.88%) (3.93%) (3.22%) (5.81%)

Nasdaq Index (11.11%) 10.37% (2.19%) (4.00%) (3.29%) (5.50%)

Russel 2000 Index (12.61%) 8.15% (2.54%) (4.94%) (3.96%) (6.74%)

1-3 Years US Treasury Index (0.90%) 0.75% (0.11%) (0.22%) (0.19%) (0.34%)

5-7 Years US Treasury Index (2.25%) 2.58% (0.46%) (0.82%) (0.69%) (1.06%)

10-15 Years US Treasury Index (2.71%) 3.57% (0.79%) (1.31%) (1.12%) (1.63%)

1-3 Years AA US Corp. Index (1.60%) 0.88% (0.12%) (0.26%) (0.24%) (0.52%)

5-7 Years AA US Corp. Index (2.79%) 2.35% (0.46%) (0.82%) (0.72%) (1.20%)

10-15 Years AA US Corp. Index (2.73%) 3.47% (0.75%) (1.22%) (1.08%) (1.70%)

1-3 Years B US HY Index (9.87%) 9.25% (0.29%) (1.10%) (0.96%) (2.72%)

5-7 Years B US HY Index (4.18%) 2.72% (0.39%) (1.04%) (0.84%) (1.69%)

10-15 Years B US HY Index (4.79%) 4.13% (0.52%) (1.14%) (0.98%) (1.88%)

DJ UBS Energy Subindex (10.34%) 9.81% (3.08%) (5.32%) (4.63%) (7.37%)

DJ UBS Ind. Metal Subindex (9.02%) 7.59% (2.65%) (4.95%) (3.89%) (6.02%)

DJ UBS Prec. Metals Subindex (10.10%) 8.76% (2.21%) (3.87%) (3.28%) (5.23%)

Table 44: Dataset - 2004-2014 (2)
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Figure 64: Correlation heatmap of the dataset

Mean Median MeanAnn. Std StdAnn. Skew Kurt

Principal Component 1 0.30% 0.65% 75.53% 5.33% 84.26% (0.63) 6.86

Principal Component 2 (0.05%) (0.06%) (13.52%) 2.15% 33.97% (0.06) 5.48

Principal Component 3 (0.09%) (0.13%) (22.86%) 1.49% 23.48% 0.42 10.20

Principal Component 4 (0.02%) (0.03%) (5.28%) 1.35% 21.29% 0.06 4.70

Principal Component 5 0.02% 0.01% 4.90% 1.10% 17.32% 0.04 6.73

Principal Component 6 (0.07%) (0.07%) (17.72%) 0.94% 14.91% (0.24) 9.79

Principal Component 7 0.05% 0.07% 13.24% 0.73% 11.52% (0.21) 7.50

Principal Component 8 0.04% 0.04% 9.19% 0.58% 9.16% (1.68) 72.02

Principal Component 9 0.00% 0.01% 0.87% 0.50% 7.86% (0.23) 8.78

Principal Component 10 (0.01%) (0.01%) (1.40%) 0.34% 5.31% 2.37 55.88

Principal Component 11 (0.02%) (0.02%) (4.21%) 0.31% 4.94% 0.30 10.89

Principal Component 12 (0.00%) (0.00%) (0.08%) 0.17% 2.72% 0.46 44.92

Principal Component 13 (0.00%) 0.01% (0.23%) 0.16% 2.46% (1.38) 16.94

Principal Component 14 (0.00%) 0.00% (0.65%) 0.14% 2.17% (0.58) 23.09

Principal Component 15 0.01% 0.01% 1.79% 0.08% 1.21% (0.71) 42.35

Principal Component 16 0.01% 0.01% 1.61% 0.05% 0.87% (2.18) 55.35

Principal Component 17 0.00% 0.00% 0.40% 0.03% 0.42% 1.23 28.05

Table 45: Principal components of the dataset - 2004-2014 (1)
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Min Max Q(5%) Q(1%) Ø Q(5%) Ø Q(1%)

Principal Component 1 (29.34%) 31.49% (9.06%) (16.15%) (13.63%) (20.72%)

Principal Component 2 (11.23%) 12.06% (3.41%) (6.15%) (5.03%) (7.44%)

Principal Component 3 (8.90%) 12.46% (2.12%) (4.80%) (3.35%) (5.95%)

Principal Component 4 (6.08%) 7.52% (2.24%) (3.55%) (3.02%) (4.25%)

Principal Component 5 (7.27%) 6.35% (1.74%) (2.82%) (2.45%) (3.79%)

Principal Component 6 (9.37%) 5.60% (1.51%) (2.42%) (2.20%) (3.51%)

Principal Component 7 (5.83%) 6.05% (1.15%) (1.94%) (1.64%) (2.52%)

Principal Component 8 (10.75%) 7.06% (0.61%) (1.54%) (1.28%) (2.82%)

Principal Component 9 (4.26%) 3.44% (0.75%) (1.42%) (1.16%) (1.90%)

Principal Component 10 (2.90%) 5.73% (0.40%) (0.75%) (0.70%) (1.41%)

Principal Component 11 (1.97%) 2.52% (0.45%) (0.83%) (0.70%) (1.21%)

Principal Component 12 (1.74%) 2.67% (0.19%) (0.46%) (0.39%) (0.83%)

Principal Component 13 (1.55%) 0.92% (0.21%) (0.52%) (0.41%) (0.81%)

Principal Component 14 (1.71%) 1.40% (0.20%) (0.37%) (0.33%) (0.59%)

Principal Component 15 (1.25%) 0.84% (0.09%) (0.18%) (0.16%) (0.29%)

Principal Component 16 (0.99%) 0.53% (0.06%) (0.14%) (0.12%) (0.24%)

Principal Component 17 (0.20%) 0.39% (0.04%) (0.07%) (0.06%) (0.10%)

Table 46: Principal components of the dataset - 2004-2014 (2)
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PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9

Vol 1M 0.80 (0.18) (0.34) 0.13 (0.05) (0.43) (0.04) (0.03) (0.00)

Vol 3M 0.43 (0.09) (0.07) 0.05 0.03 0.89 0.09 0.02 0.01

SPX 0.20 0.05 0.40 (0.14) 0.07 (0.03) 0.04 0.09 0.13

NDX 0.20 0.02 0.46 (0.20) 0.10 (0.08) 0.03 0.11 0.71

RTY 0.25 0.05 0.56 (0.22) 0.18 (0.07) 0.06 (0.19) (0.66)

G1O2 (0.00) (0.00) (0.01) 0.00 0.01 (0.01) 0.08 (0.03) (0.00)

G3O2 (0.02) (0.01) (0.05) 0.00 0.06 (0.03) 0.35 (0.11) 0.02

G7O2 (0.03) (0.03) (0.07) (0.00) 0.09 (0.05) 0.57 (0.17) 0.05

C1A2 (0.00) 0.00 (0.01) 0.00 0.01 (0.01) 0.09 0.03 (0.01)

C4A2 (0.01) (0.00) (0.04) (0.00) 0.03 (0.03) 0.36 0.02 0.00

C7A2 (0.03) (0.01) (0.07) (0.00) 0.07 (0.05) 0.57 (0.10) 0.05

J1A2 0.01 0.03 (0.01) (0.02) (0.06) (0.06) 0.16 0.71 (0.18)

J3A2 0.02 0.03 0.00 (0.01) (0.04) (0.01) 0.09 0.38 (0.09)

J7A2 0.02 0.03 0.00 (0.02) (0.05) (0.01) 0.12 0.47 (0.09)

SPGSENTR 0.12 0.74 0.14 0.64 (0.03) (0.01) 0.04 (0.04) 0.03

SPGSINTR 0.11 0.53 (0.21) (0.62) (0.52) 0.03 0.05 (0.11) 0.00

SPGSPMTR 0.03 0.36 (0.34) (0.28) 0.81 (0.00) (0.13) 0.08 0.02

Table 47: Principal components loadings of the dataset (1)

PC 10 PC 11 PC 12 PC 13 PC 14 PC 15 PC 16 PC 17

Vol 1M (0.01) (0.00) 0.00 (0.00) 0.00 0.00 (0.00) 0.00

Vol 3M 0.04 (0.01) (0.00) (0.01) (0.00) (0.00) 0.00 (0.00)

SPX (0.48) 0.71 (0.03) (0.04) (0.00) 0.03 0.01 0.00

NDX 0.26 (0.34) (0.00) 0.02 0.00 (0.00) (0.00) 0.00

RTY 0.14 (0.22) 0.02 0.01 (0.01) (0.01) (0.00) (0.00)

G1O2 0.02 (0.01) (0.14) 0.03 (0.16) 0.42 0.27 0.84

G3O2 0.02 (0.01) (0.34) (0.08) (0.14) 0.70 (0.31) (0.37)

G7O2 0.02 0.00 (0.23) (0.40) 0.54 (0.24) 0.22 0.07

C1A2 (0.00) (0.01) (0.15) 0.19 (0.29) 0.02 0.84 (0.38)

C4A2 (0.07) (0.03) (0.44) 0.35 (0.44) (0.50) (0.28) 0.13

C7A2 (0.00) 0.05 0.76 0.23 (0.14) 0.06 (0.02) 0.02

J1A2 0.56 0.30 0.01 (0.15) (0.05) (0.01) (0.02) 0.00

J3A2 (0.23) (0.17) (0.10) 0.64 0.56 0.16 0.00 (0.00)

J7A2 (0.55) (0.45) 0.10 (0.43) (0.21) (0.00) 0.01 0.00

SPGSENTR 0.02 (0.02) 0.00 (0.01) 0.01 (0.00) (0.00) (0.00)

SPGSINTR 0.02 0.00 (0.01) (0.01) 0.00 0.00 0.00 (0.00)

SPGSPMTR (0.01) 0.01 0.01 0.00 (0.01) (0.00) (0.00) 0.00

Table 48: Principal components loadings of the dataset (2)
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Mean Median MeanAnn. Std StdAnn. Skew Kurt

Principal Component 1 0.04% 0.16% 10.31% 2.71% 42.89% (0.69) 9.21

Principal Component 2 (0.02%) (0.05%) (5.91%) 1.94% 30.62% (0.10) 7.16

Principal Component 3 (0.06%) (0.05%) (13.81%) 1.36% 21.58% 0.11 4.60

Principal Component 4 0.03% 0.04% 7.49% 1.10% 17.36% (0.01) 7.00

Principal Component 5 0.06% 0.08% 14.93% 0.73% 11.56% (0.24) 7.96

Principal Component 6 0.04% 0.05% 10.71% 0.58% 9.21% (1.88) 73.78

Principal Component 7 0.00% 0.02% 1.01% 0.50% 7.86% (0.22) 8.69

Principal Component 8 (0.00%) (0.01%) (1.19%) 0.34% 5.39% 2.43 55.02

Principal Component 9 (0.02%) (0.02%) (4.06%) 0.31% 4.95% 0.29 11.44

Principal Component 10 (0.00%) (0.00%) (0.17%) 0.17% 2.72% 0.47 44.88

Principal Component 11 (0.00%) 0.01% (0.09%) 0.16% 2.47% (1.42) 17.16

Principal Component 12 (0.00%) 0.00% (0.69%) 0.14% 2.17% (0.58) 23.14

Principal Component 13 0.01% 0.01% 1.77% 0.08% 1.21% (0.72) 43.47

Principal Component 14 0.01% 0.01% 1.61% 0.05% 0.87% (2.19) 55.44

Principal Component 15 0.00% 0.00% 0.40% 0.03% 0.42% 1.23 28.22

Table 49: Principal components of the dataset - 2004-2014 (1)

Min Max Q(5%) Q(1%) Ø Q(5%) Ø Q(1%)

Principal Component 1 (19.17%) 14.69% (4.13%) (8.68%) (6.83%) (11.81%)

Principal Component 2 (12.25%) 11.31% (2.98%) (5.74%) (4.53%) (7.24%)

Principal Component 3 (5.87%) 7.06% (2.28%) (3.76%) (3.08%) (4.23%)

Principal Component 4 (8.15%) 6.80% (1.73%) (2.79%) (2.46%) (3.80%)

Principal Component 5 (6.01%) 6.20% (1.14%) (2.02%) (1.64%) (2.57%)

Principal Component 6 (11.00%) 6.96% (0.61%) (1.53%) (1.29%) (2.84%)

Principal Component 7 (4.22%) 3.44% (0.74%) (1.42%) (1.16%) (1.90%)

Principal Component 8 (2.83%) 5.93% (0.43%) (0.83%) (0.72%) (1.38%)

Principal Component 9 (2.11%) 2.43% (0.45%) (0.82%) (0.71%) (1.22%)

Principal Component 10 (1.75%) 2.67% (0.19%) (0.46%) (0.39%) (0.83%)

Principal Component 11 (1.55%) 0.95% (0.21%) (0.52%) (0.42%) (0.81%)

Principal Component 12 (1.71%) 1.40% (0.20%) (0.37%) (0.33%) (0.59%)

Principal Component 13 (1.26%) 0.84% (0.09%) (0.18%) (0.16%) (0.29%)

Principal Component 14 (0.99%) 0.53% (0.06%) (0.14%) (0.12%) (0.24%)

Principal Component 15 (0.21%) 0.39% (0.04%) (0.07%) (0.06%) (0.10%)

Table 50: Principal components of dataset 1 - 2004-2014 (2)
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PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8

SPX 0.40 (0.30) (0.00) 0.05 0.05 0.09 0.13 (0.52)

NDX 0.41 (0.36) (0.03) 0.06 0.04 0.10 0.71 0.29

RTY 0.51 (0.41) (0.01) 0.13 0.07 (0.22) (0.66) 0.17

G1O2 (0.01) 0.01 (0.00) 0.01 0.08 (0.03) (0.00) 0.02

G3O2 (0.04) 0.02 (0.02) 0.06 0.35 (0.11) 0.02 0.02

G7O2 (0.08) 0.03 (0.03) 0.10 0.57 (0.17) 0.05 0.01

C1A2 (0.00) 0.01 (0.00) 0.01 0.09 0.03 (0.01) (0.00)

C4A2 (0.02) 0.02 (0.02) 0.04 0.36 0.02 0.00 (0.07)

C7A2 (0.06) 0.04 (0.03) 0.07 0.57 (0.10) 0.05 (0.01)

J1A2 0.03 0.02 (0.02) (0.06) 0.17 0.70 (0.18) 0.55

J3A2 0.04 0.01 (0.01) (0.04) 0.09 0.38 (0.10) (0.22)

J7A2 0.04 0.00 (0.02) (0.05) 0.12 0.47 (0.09) (0.51)

SPGSENTR 0.48 0.56 0.67 (0.02) 0.04 (0.03) 0.03 0.02

SPGSINTR 0.39 0.39 (0.63) (0.54) 0.04 (0.11) 0.00 0.02

SPGSPMTR 0.16 0.38 (0.39) 0.81 (0.13) 0.08 0.02 (0.01)

Table 51: Principal components loadings of the dataset (1)

PC 9 PC 10 PC 11 PC 12 PC 13 PC 14 PC 15

SPX 0.67 (0.03) (0.05) (0.00) 0.03 0.01 0.00

NDX (0.33) (0.00) 0.02 0.00 (0.00) (0.00) 0.00

RTY (0.21) 0.02 0.01 (0.01) (0.01) (0.00) (0.00)

G1O2 (0.01) (0.14) 0.03 (0.16) 0.42 0.27 0.84

G3O2 (0.01) (0.34) (0.08) (0.14) 0.70 (0.31) (0.37)

G7O2 0.01 (0.23) (0.40) 0.54 (0.24) 0.22 0.07

C1A2 (0.01) (0.15) 0.19 (0.29) 0.02 0.84 (0.38)

C4A2 (0.03) (0.44) 0.35 (0.45) (0.50) (0.28) 0.13

C7A2 0.05 0.76 0.23 (0.14) 0.06 (0.02) 0.02

J1A2 0.34 0.01 (0.15) (0.05) (0.00) (0.02) 0.00

J3A2 (0.19) (0.10) 0.64 0.55 0.16 0.00 (0.00)

J7A2 (0.50) 0.10 (0.43) (0.21) (0.00) 0.01 0.00

SPGSENTR (0.02) 0.00 (0.01) 0.01 (0.00) (0.00) (0.00)

SPGSINTR 0.00 (0.01) (0.01) 0.00 0.00 0.00 (0.00)

SPGSPMTR 0.01 0.01 0.00 (0.01) (0.00) (0.00) 0.00

Table 52: Principal components loadings of the dataset (2)



Appendix 4.D Matrices and variables

Name Space Explanation

n N Number of assets

k N Number of time periods with k < n

x Rk×n Daily asset returns

ρ R Correlation of two assets with −1 ≤ ρ ≤ 1

σ, σi R Volatility of P or of asset i

Σ Rn×n Covariance matrix of x

w Rn Asset weights

P Rk Daily portfolio returns (x · w)

MRCi R Marginal risk contribution of asset i

RCi R Risk contribution of asset i

m N Number of equalized risk factors

C Rn×n Principal component mixing matrix

x̃ Rk×n Principal components (x · C)

σ̃,σ̃i R Volatility of P̃ or x̃i

Σ̃ Rn×n Covariance matrix of x̃

w̃ Rn Principal component weights (CT · w)

P̃ Rk Daily principal component portfolio returns (x̃ · w̃)

M̃RCi R Marginal risk contribution of a principal component i

R̃Ci R Risk contribution of a principal component i

emin R Min. level of explanation with 0 ≤ emin ≤ 1

A Rz×n Matrix used for polytope de�nition

b Rz Inequalities solutions for polytope de�nition

Q Rn Polytope as subset of Rn

q Rn×r Finite number of polytope corner points, Q = conv{q1, ..., qr}

β {−1, 1}2 Principal component directions

V aRα(P ) R Value at risk of portfolio P to probability level α

ESα(P ) R Expected shortfall of portfolio P to probability level α

M̃ESi R Marginal expected shortfall of a principal component i

C̃ESi R Component expected shortfall of a principal component i
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5 Conclusion and �nal remarks

This thesis consists of three di�erent works, one individual paper and two studies that were

jointly conducted with Ste�en Moellenho�. They cover the topic of return analysis of precious

metals in a time-varying context, using a Kalman smoother and a Dynamic Time Warping ap-

proach, as well as a modi�ed version of the factor risk parity model. This model is designed in

a way that it allows to add further restrictions such as portfolio weight constraints by focusing

on the main principal components only. The model is described when the standard deviation as

the risk measure is taken as well as when the expected shortfall is used as a measure to account

for non-symmetrical, fat tailed return distributions.

"Analyzing Precious Metals returns using a Kalman Smoother Approach" is focusing on the

analysis of returns of precious metals in a time-varying context. The results include the simi-

larities but also di�erences between gold, silver, platinum and palladium regarding an external

factor. The study illustrates how the sensitivities in the case of precious metals, especially for

longer time series, often vary over time. Platinum or palladium, for example, illustrate that

�nding as the demand in industrial processes in 2015 has completely changed from that 30 or

40 years ago. Other research that tries to identify a �xed and constant relationship between

factors and asset returns without taking the factor of time into consideration, should therefore

be handled with care.

Additional insight is given on how di�erent/similar the four precious metals are related to

movements in speci�c factors. This also delivers a much more detailed analysis of the relation-

ship as for example a simple correlation coe�cient can do. The sensitivity is related to only a

speci�c factor and delivers insight into how stable that sensitivity has been over time. The same

approach can easily be applied to other asset classes as well, which has been brie�y illustrated

in the case of the S&P500 in the introduction of this thesis. This also enables a comparison

between the factor analysis done in other research and the approach taken here.

On the downside, the Kalman smoother that is used in the analysis needs input parameters

which are not directly observable. Those parameters have to be estimated or calculated using a

di�erent approach. Similar to the length in a rolling window approach, the question on how to

choose those parameters is not easy to answer and is often up to interpretation. As mentioned

in the study, a stringent approach that has to be followed at all cost does not exist.
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The second and third study build on existing factor risk parity models but add �exibility by

letting "residual" components �oat. The idea consists of ignoring the less important principal

components which leads to higher �exibility as the size of the solution set for the problem in-

creases. This enables the investor to choose from a wider variety of portfolios, thereby allowing to

add additional restrictions on the portfolio weights or identifying portfolios that have additional

characteristics. In the study, we choose "long only" portfolios with a minimum variance and

maximum diversi�cation on the newly determined solution set.

One of the core problems with factor risk parity portfolios consists of the optimal portfolio

having short or leveraged positions, which investors often want to avoid or which investors are

prohibited from investing in. Using a PCA, there are di�erent ways to identify "nearly" optimal

portfolios. One way is to let the risk contributions in the PCA space be "approximately" equal

while at the same time adding further restrictions, as for example done by Meucci (2009).

Our approach is similar. By setting the �rst risk contributions exactly equal and letting

residuals �oat, however, we gain further advantages: �rst, the residual components are often

considered noise and risk contributions do not need to be equal. Second, focusing on �rst con-

tributions only and de�ning special portfolio weight constraints let the solution set be described

in an e�cient way through polyhedrons. Knowing that a solution exists, further operations on

this set are easy to implement.

Finally, this version is extended by exchanging the risk measure that is used within the

model. For a general distribution assumption of the underlying assets, the solution can only

be determined numerically when the expected shortfall is used. Nevertheless, this downside is

outweighed by the bene�t of the non-symmetric risk measure as �nancial time series often exhibit

a higher skew and fat tails. Results show that a higher skewed/fat tailed time series with a higher

con�dence level lead to bigger changes to the allocation than in the standard deviation case.
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