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Chapter 1

Introduction

The strong interaction — one of the four fundamental forces of nature — is described by a

quantum field theory of non abelian [4] SU(3) gauge fields. It is mediated by gluons, excitations

of these gauge fields. The strong interaction differs from all other fundamental interactions

within the standard model of particle physics, the theory that describes the strong, weak and

electromagnetic interactions of particles, in the its low and high energy behavior; a very promi-

nent feature of the strong interaction is asymptotic freedom [5–8]. Couplings in quantum field

theories often depend on the energy scales of the processes considered. The term asymptotic

freedom describes the fact the strong coupling becomes arbitrarily small if processes with very

high energy scales are considered. Consequently, in processes with very low energy scales the

coupling becomes large and perturbative methods are inapplicable [9]. Even the asymptotic

degrees of freedom are different from the degrees of freedom in the Lagrangian. [9]

In the standard model the only fundamental matter degrees of freedoms which interact with

the gluons are fermions referred to as quarks. Considering only the gluons and quarks alone,

and thereby ignoring all other interactions, would lead to a Yang-Mills theory [4] coupled

to six massless fermions. Such a theory has no free continuous parameter and exhibits an

additional chiral symmetry which is not observed in nature. [9] Therefore, such a theory is not

a good description of nature. At energy scales well above the QCD scale, where the theory of

quarks and gluons becomes non-perturbative, the electroweak symmetry breaking via the Higgs

mechanism [10] takes place. [9] As a consequence, a massive scalar degree of freedom— the Higgs

boson [10] — appears. At the same time, some of the gauge bosons carrying the electroweak

force and the fundamental fermions of the standard model acquire masses [10]. More precisely

phrased, well below the electroweak transition scale the fundamental fermion and gauge degrees

of freedoms are replaced by compound states containing also the Higgs field. These states behave

like fundamental particles with a mass. The strongly interacting sector of the standard model is

therefore well approximated by a SU(3)-Yang-Mills theory with six massive quarks. [9]

The masses of quarks appearing in this theory span, one may say somewhat surprisingly, many

orders of magnitude. They range from a few MeV in the cases of the up and the down quark

to hundreds of GeV in the case of the top quark. The masses of the quarks are illustrated in

figure 1.1. [9] Accepting the differences in magnitudes as they are, an immediate question is:

Would changes in the quark masses by small amounts change physics in any notable way? Would

physics be almost the same, qualitatively similar or even qualitatively different? To answer these

questions the framework of lattice QCD [11] is almost ideally suited. Because the quark masses

can not be varied in nature, it is hard do answer these questions purely phenomenological.
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Chapter 1 Introduction

Figure 1.1 – Spheres with constant density and sizes that approximately reproduce the ratio between quark
masses. The spheres are ordered in ascending order with respect to their masses. Up type quarks are colored in
red and down type quarks are colored in blue. The three families of quarks are indicated. Notably the ordering
of the up and down type quarks are reversed in the first family. (Masses from [9])

Lattice QCD, on the other hand, allows naturally for calculations with unphysical quark masses.

One may ask whether questions about quark mass dependencies are purely academic: For

theorists working on QCD it is of course interesting to understand the behavior of the theory in

its full parameter space. But one might be tempted to think that knowing the predictions of the

theory for the quark masses realized in nature is sufficient. While this is true in principle, there

are areas where interesting insights can be gained by studying the quark mass dependence of

certain observables. One such case is is the dependence of bound state masses in QCD on the

masses of the quarks. A well know theorem, the Feynman-Hellmann theorem [12–15], relates

this dependency to scalar quark density matrix elements of the bound states considered. These

matrix elements are true observables of the theory with physical quark masses and play an

important role in, for example, dark matter detection experiments. [16] Studying the quark mass

dependence of the proton and neuron masses allows to answer the question: How strongly

couples the Higgs boson, or any other particle that interacts with scalar quark condensates,

to the nucleon? The answer to this question is non-trivial since the majority of the masses of

the nucleons are due to the energy stored in the fluctuating quantum fields inside them. [17]

This is markedly different then in weakly interacting field theories. There, the majority of the

masses of the propagating degrees of freedoms are generated either by explicit mass terms in

the Lagrangian or by particle-Higgs interactions. [18]

The dependence of the nucleon mass on the quark masses is conventionally described by the

nucleon sigma terms. They are properly normalized derivatives of the nucleonmass with respect

12



1.1 Declaration of individual contributions

to quark masses. They encode how strongly a particle that couples to scalar quark densities

couples to a nucleon. Besides the Higgs boson, many candidates for dark matter, the elusive,

large part of the energy density of our universe that gravitates like matter but the origin of which

is largly unknown, share this feature [9]. Many experiments [9] aim to exclude regions of the

parameter spaces of theories predicting dark matter candidates, or at finding a direct signal for

dark matter interacting with nucleons. For them, the knowledge of the nucleon sigma terms is

important to interpret their findings [16]. Consequently, a determination of all nucleon sigma

terms with sufficient precision clearly has immediate experimental consequence [16].

These dependencies are also important because quark masses them self can not be directly

measured, i.e. one can not put quarks on a — possibly sophisticated — scale or study their free

propagation outside of bound states, except at very high energies. Quark masses are merely

parameters of QCD and on their own do not carry any physical meaning. As common for

parameters of an interacting quantum field theory, the values of them change as a function of

the energy scale considered. Therefore, the quark masses have to be determined, at a certain

scale, by tuning them and comparing predictions of the theory which depend on them with

measurements. Once the measurements are reproduced, the physical quark masses have been

found. [19]

The small contributions that hadron masses receive because the masses of the up quark and the

down quark are not equal, is of the same order then the contribution from the electromagnetic

charges of the quarks. Therefore, the electromagnetic interaction must be included in any

computation that is supposed to be sensitive to the difference between the masses of the two

lightest quark flavors. [19] Including the electromagnetic interaction in a lattice calculation is

challenging. That is the case mainly because photons are massless and therefore finite volume

correction, that can not be avoided on a finite lattice, are much more pronounced than in the

case of QCD. In addition, conceptual and numerical challenges on top of those found in pure

QCD calculations exist. Nevertheless, calculations in QCD+QED are possible (see e.g. [20] and

references therein).

The aim of this thesis is twofold: The nucleon sigma terms and the the scalar quark contents of

the nucleons are to be determined. Also, the difference between the light quark masses is to be

determined.

The thesis proceeds as follows: First, the standardmodel of particle physics is briefly introduced.

Then, the lattice formulation of QCD andQED are described. In the following part the numerical

methods and techniques required for the calculations in this thesis are briefly discussed. This is

followed by a description of the calculation of the nucleon sigma terms. Then, the extraction of

the difference between the light quark masses is discussed. Finally, the results are summarized

and the thesis concludes.

1.1 Declaration of individual contributions

The work described in this thesis was carried out within the Budapest-Marseille-Wuppertal

(BMW) collaboration. Below, I indicate my individual contributions to the projects:
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Chapter 1 Introduction

2hex analysis of nucleon sigma terms: I performed an independent analysis. Compared to

the main analysis, my analysis used some techniques that where later used for the 3hex analysis.

In my analysis all the pion, kaon, nucleon and omega masses where fitted separately and the

individual effects and qualities of the fits where studied.

3hex analysis of nucleon sigma terms: I developed the strategy to split the analysis into a

part dealing with mesonic sigma terms and a part dealing with a mixing matrix. Furthermore,

I developed the renormalization scheme employed. I implemented several fitting codes that

performed both fully correlated fits as well as separate fits to the Wilson data. The code used

for the final analysis was crosschecked to be exactly equivalent to my code even on the level

of individual fits. I also performed the staggered parts of the analysis with code independently

developed by myself.

Light quark mass difference and violation of Dashen’s theorem: I performed one of several

independent analyses of the data.
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Chapter 2

Aspects of the standard model of particle
physics and dark matter

In this chapter I introduce some aspects of the standard model of particle physics and some

aspects of dark matter. First, I describe the general structure of the standard model. Then, I

introduce dark matter. I explain the gauge part of the strong interaction followed by a discussion

of the coupling to fermions. In the following paragraph, I introduce symmetries of the Lagrangian

of the strong interaction. Afterwards, I explain aspects of the renormalization of the strong

interaction. Finally, I discuss heavy quark effective field theories with an emphasis on the results

required for the subjects of this thesis.

2.1 Structure of the standard model

The standard model of particle physics describes the strong, weak, and electromagnetic interac-

tions observed in nature. It is a gauge theory with a SU(3) × SU(2) ×U(1) gauge group coupled
to fermions and scalar fields. The SU(2)×U(1) part of the gauge group describes the electroweak
part [21–24] of the standard model and the SU(3) part describes the strongly interacting part. [9]
The fermions in the standard model come in three identical copies called families. Each family

consists of a charged lepton, a neutrino, and two quarks. The leptons are called electron, muon

and tau. The neutrinos are the electron-neutrino, the muon-neutrino and the tau-neutrino. In

each family there is one up-type quark and one down-type quark. The up-type quarks are the

up, charm and top quarks and the down-type quarks are the down, strange and bottom quarks.

The down-type quarks are not mass eigenstates but linear combinations of them. These linear

combinations are determined by the Cabibo-Kobayashi-Maskawa (CKM) matrix [9, 25]. [18]

The electroweak interaction is a chiral gauge theory, i.e. it treats left handed and right handed

fermions differently. The left handed particles form doublets under the SU(2) gauge group while
the right handed ones form singlets. Because of the group structure of SU(2), the fermions can

be characterized by the weak isospin T and its third component T3. The left handed particles

have T = 1/2. The third component T3 of the weak isospin is 1/2 for neutrinos and up-type

quarks and −1/2 for leptons and down-type quarks. The right handed electrons and quarks have

T = T3 = 0 and do not take part in the weak interaction. Right handed neutrinos are not part of

the standard model. The coupling to theU(1) part of the electroweak interaction is described
by the hypercharge Y . Table 2.1 lists the electroweak charges of the fermions in the standard

model. [26]
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Chapter 2 Aspects of the standard model of particle physics and dark matter

Table 2.1 – Table of the weak isospin and hypercharges of the fermions in
the standard model. The table is based on a table in [26]. ν refers to the
neutrinos, l−L/R to the left/righthanded, charged leptons, (u/d)L/R to the left
and righthanded up and down type quarks.

Particle T T3 Y

ν 1

2

1

2
−1

l−L
1

2
− 1

2
−1

l−R 0 0 −2

uL 1

2

1

2

1

3

d−L
1

2
− 1

2

1

3

uR 0 0
4

3

d−R 0 0 − 2

3

In addition, the standard model contains scalar Higgs fields [10]. These give the gauge bosons

their masses and generate masses for the fundamental fermions. The Higgs fields are subject to a

potential that is shaped like a sombrero-hat and is often calledMexican hat potential. It leads to a

spontaneous symmetry breaking
1
. This mechanism breaks the fundamental SU(2) ×U(1) gauge

symmetry in a particular way. After symmetry breaking, there are three massive gauge bosons

in the spectrum of the theory: Two charged ones (W±) and one neural one (Z0
). In addition,

there remains one massless gauge boson, the photon, corresponding to aU(1) symmetry. The

photon couples to the electric charge Q = T3 + Y/2. The Higgs mechanism also predicts the

existence of a massive scalar boson, the Higgs boson. It has recently been observed [28, 29]. [9]

The strong interaction takes place purely between quarks and gluons. The SU(3) charge of
quarks is referred to as color charge. [9] A peculiar feature of the strong interaction is asymptotic

freedom [5–8]. Some of the theoretical foundations of the strong interaction are discussed in

later chapters. The structure of the standard model is visualized in figure 2.1.

2.2 Dark matter

The standard model of particle physics describes only a a small fraction of the energy in the

universe. The majority of the universe’s energy is made up by dark matter and dark energy. The

exact nature of these important contributions is not yet understood. See the dark matter section

of [9] for a review. This section is based upon this review.

The evidence for dark matter is large: Here, I mention three experimental arguments for its

existence following the more in depth discussion in [9]:

• The bullet cluster: A galaxy cluster has passed through another cluster. Astronomers have

used gravitational lensing to deduce the distribution of gravitating matter and found it to

be different than the distribution of visible matter. It was also found that the majority of

the gravitating mass, the dark matter, was weakly interacting.

• The cosmic microwave background (CMB): Fits to the power spectrum of the CMB have

1
It can be debated in light of Elizurs theorem whether the term "breaking" is a misnomer for the phase transition

between the "symmetric" phase and the "Higgs phase". To conform with the usual terminology, I will nevertheless

refer to this transition as the electroweak symmetry breaking transition. For more details see [27] and references

therein
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2.2 Dark matter

Figure 2.1 – The structure of the standard model. The picture is unmodified from [30] where it was published
under the CC BY-SA 4.0 license (https://creativecommons.org/licenses/by-sa/4.0/) The top half
of the diagram shows the structure of the standard model before the electroweak symmetry breaking. The lower
half shows the structure after the symmetry breaking. The left side visualizes how the Higgs field acquires a
vacuum expectation value. The middle part shows the fermions and their coupling to gauges bosons and the
Higgs field before and after symmetry breaking. The right part visualizes the gauge bosons and their properties
before and after the symmetry breaking.

17
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Chapter 2 Aspects of the standard model of particle physics and dark matter

been used to calculate the contribution of baryonic matter, dark matter, and dark energy

to the mass density of the universe.

• The rotation of galaxies: The velocity of the rotations of stars around centers of galaxies

have been measured. It was found that stars far away from the centers rotate faster around

them than they should based on the distribution of visible matter in these galaxies. This

can be explained by additional dark matter present in these galaxies.

There are alternative theories proposed that do not feature dark matter, e.g. theories that modify

the laws of gravity, called MOND (modified Newtonian dynamics) [31].

Many particle physics models where proposed to explain dark matter. Heavily studied can-

didates are models including weakly interacting massive particles (WIMPs). WIMPs appear in

many beyond the standard model theories. Notably, many supersymmetric models provide for

a natural WIMP candidate, the lightest supersymmetric particle. [9].

Large experimental efforts are undertaken to constrain the properties of the WIMPs, should

they exits. If WIMPs make up at least part of the dark matter, there must be a cloud of WIMPs

in our galaxy, the milky way, through which the earth moves. WIMPs are supposed to scatter of

nuclei in detectors. An observation of a statistically significant number of such events would

allow for a direct detection of dark matter. The described interactions would happen very

infrequently because of the weakness of the interactions between WIMPs and standard model

particles. A very good suppression of the background is therefore key to these measurements.

This is why many of these experiments are operated in underground laboratories. An important

signature for WIMP dark matter would be a directional asymmetry of the detector signal

provided that the direction changes with the daily rotation of earth. Also, the flux should be

modulated annually because of the earth’s movement changes direction with respect to the sun’s

movement in the galaxy over the course of a year. [9]

In figure 2.2 current experimental limits for the WIMP mass and the cross sections of spin-

independent WIMP-nucleon scatterings are shown. The experimental sources for this plot are

described in [9] and references therein. See also [32] for a review of the experimental efforts.

2.3 SU(3) gauge theory

The strong interaction is locally symmetric under SU(3) rotations of the matter fields. Yang

and Mills laid the theoretical foundations for theories with such a local, non-abelian gauge

symmetry. In their original work [4] they did not consider the SU(3) symmetry of QCD, which

was not know at that time. Instead, they considered the isospin symmetry between protons

and neutrons as gauge symmetry. However, their arguments are equally valid for the SU(3)
symmetry of the strong interaction. To assign any meaning to spatial and temporal changes

in the matter fields in a Yang-Mills theory, a measure to compare fields at different points in

spacetime has to be specified. Comparing two values of matter fields at points x and y requires a
SU(3)matrixUC(x, y) that describes the rotation between the two coordinate choices at these

points. This matrix is given by the parallel transporter [1]

UC(x, y) = Pexp

[
ig

∫
C

dxμAμ
]
. (2.1)

18



2.3 SU(3) gauge theory

Figure 2.2 – Limit on the WIMP mass and nucleon-WIMP-crosssections via spin-independent scattering.
Regions on top of the colored bands are excluded by experiments. The orange region can not be reached by
experiments because they can not distinguish the WIMP scattering signal from the background originating in
neutrino coherent scattering. The yellow region shows a parameter range of typical SUSY models. The figure is
from [9] where more details and references to the experiments can be found.

In this equation, C is a path between the two points x and y. The Aμ are the gauge potentials and
are elements of the Lie algebra su(3). The symbolP is the path ordering operator. It ensures that

the factors in this expression are evaluated in the right order along the path. [1] The expression

simplifies to

U(x + ϵn, x) = 1 − igϵnμAaμt
a + O(ϵ2), (2.2)

a single SU(3)matrix close to unity, if only infinitesimally separated points are considered. [1]

Here, n is a unit fourvector, ϵ is a small real number, and ta are the generators of SU(3). The
covariant derivative, a generalization of the derivative that takes coordinate transformations

mediated by gauge fields into account, is defined as [1]

Dμ = ∂μ − igAaμt
a
. (2.3)

The first term describes the change in the function values on which Dμ is applied. The second

term describes the change of the internal coordinate system.

In order to construct the field strength tensor, it is useful to look at repeated applications of

covariant derivatives. Two covariant derivatives successively applied on a matter field ψ yield [1]

DμDνψ = ∂μ∂νψ − ig(tb∂μAbν − t
aAaμ∂ν)ψ − g

2AaμA
b
νt
atbψ

= ∂μ∂νψ − ig(tb∂μAbν)ψ − g
2AaμA

b
νt
atbψ. (2.4)

The expression can be intuitively interpreted as walking an infinitesimal step in the μ direction
followed by an infinitesimal step in the ν direction. The same procedure can repeated with the μ
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Chapter 2 Aspects of the standard model of particle physics and dark matter

and ν directions interchanged. The difference between these two operations, the commutator of

the covariant derivatives, is [1]

[Dμ,Dν] = DμDν − DνDμ = igta(∂μAaν − ∂νA
a
μ) + g

2AbνA
a
μ[t

a
, tb]. (2.5)

The field strength tensor Fμν is defined as

Fμν = ta(∂μAaν − ∂νA
a
μ) − igAbνA

a
μ[t

a
, tb] = ta(∂μAaν − ∂νA

a
μ) + gA

b
νA

a
μ f

abctc (2.6)

such that

[Dμ,Dν] = igFμν . (2.7)

Here, f abc are the structure constants of SU(3) which fulfill [ta, tb] = i f abctc.
The field strength tensor can also be constructed in a different way that is closely related to

the construction of the Wilson gauge action. This construction is quickly reviewed here. The

gauge transporter U(x, x) around a small square with side length ϵ located in the μν plane is
considered. [1, 26] At leading order in ϵ it is [1]

U(x, x) = 1 + igϵ2Faμν(x)t
a + O(ϵ3). (2.8)

This is not gauge invariant as the ta are matrices in color space. [1] It can be made gauge invariant

by taking the trace in color space. The ta are traceless and therefore the only non-trivial terms

contributing to the trace of U(x, x) must be of higher order in ϵ. Any SU(3) matrix close to

unity can be written as [1]

1 + i(ϵ′βa + ϵ′2γa + . . .)ta −
1

2

(ϵ′2βaβb + . . .)tatb + . . . (2.9)

When taking the trace, the terms proportional to ta vanish. However, tatb-terms remain. Their

coefficient is determined by βa, the first coefficient in the ϵ expansion of the coefficient of the

ta-term. Substituting ϵ′ = ϵ2
one finds [1]

trU(x, x) = 1 −
1

2

ϵ4g2FaμνF
b
μνδ

ab + O(ϵ6). (2.10)

This shows that the first non-vanishing, gauge invariant contribution to the trace is FaμνFaμν . Note
that μ and ν specify the orientation of the small square and no summation over them is implied

at this point. On the lattice one uses this relation to define the Wilson gauge action [33, 34].

The discussion is closed by remarking that there is a deep connection to the formalism used in

general relativity. Because of this analogy, Fμν is also called the curvature of the gauge field. [26]
Requiring Lorentz invariance and renormalizability, the number of possible terms in the

Lagrangian can be further reduced: Only the terms

FaμνF
aμν

and ϵμν ρσFaμνF
a
ρσ (2.11)

are admissible. The latter term, however, is CP odd. It turns out that the coefficient of it is

constrained to be tiny by measurements of the neutron electric dipole moment. Why this

coefficient is so small is not fully understood. This puzzle is called the strong CP problem [1].
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2.4 The Lagrangian including quarks

Figure 2.3 – The self-interaction vertices of Yang-Mills theory (after [1]).

Conventionally, this term is not considered to be part of QCD. Putting everything together, the

pure gauge Lagrangian of QCD is [1]

LYM = −
1

4

tr[FμνFμν] = −
1

4

FaμνF
aμν

. (2.12)

One important feature of Yang-Mills theory is that it predicts a self-interaction between the

bosons carrying the force [1, 4]. This can be seen by writing down FaμνFaμν explicitly:

FaμνF
aμν = ((∂μAaν − ∂νAaμ) + gAcνAbμ f bca)((∂μAaν − ∂νA

a
μ) + gA

e
νA

d
μ f

eda)

= 2(∂μAaν)(∂μAaν) − 2(∂μAaν)(∂νAaμ)

+ 4gAcνAbμ f bca∂μAaν + g
2AcνAbμAeνA

d
μ f

bca f eda (2.13)

The first two terms are quadratic in the fields. They describe the free propagation of the gauge

bosons. The remaining terms contain three or four gauge fields and hence describe interactions.

The vertices corresponding to these self interactions are shown in figure 2.3. All self interaction

terms contain one or more factors of f abc . The structure constants, defined by the commutators

of generators, vanish for abelian gauge groups. This is why self interactions are absent in QED

which has the abelian gauge groupU(1).

2.4 The Lagrangian including quarks

Quarks can be introduced to the action as Grassmann valued fields ψ̄(x) and ψ(x). They trans-
form in the fundamental representation of SU(3) and are minimally coupled to the gluon fields.

Free fermion fields are described by the Dirac Lagrangian [1, 35]

LDirac = ψ̄(x)(iγμ∂μ − m)ψ(x). (2.14)

In a gauge theory each instance of a partial derivative has to be replaced by a covariant derivative.

This results in the Lagrangian [1]

L= ψ̄(x)(iγμDμ − m)ψ(x) −
1

4

tr[FμνFμν] (2.15)
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Chapter 2 Aspects of the standard model of particle physics and dark matter

Figure 2.4 – The interaction vertices beween quarks and gluons.

that describes one quark flavor coupled to gluons. The covariant derivative automatically

introduces interactions between quarks and gluons. This can be seen bywriting out the covariant

derivative:

ψ̄(x)γμDμψ(x) = ψ̄(x)γμ∂μψ(x) − igψ̄(x)γμAμ(x)ψ(x) (2.16)

The first term describes the dynamics of free quarks and the second one describes interactions.

These are of the type depicted in figure 2.4. The diagrams in figures 2.3 and 2.4 are the only

fundamental interactions in QCD. The full Lagrangian of QCD is obtained by adding the five

additional quark flavors to eqn. (2.15). [1]

2.5 Symmetries of QCD

There are a number of interesting global symmetries of the Lagrangian in eqn. (2.15), especially

in the limits of degenerate or massless quarks. Not all of these symmetries survive quantization.

Some of them are spontaneously [36] or anomalously [37, 38] broken. Both cases lead to interesting

phenomena.

In the case of N f degenerate quark flavors, there are the SU(N f )V vector symmetries [34]

ψ → exp(iαTi)ψ and ψ̄ → ψ̄ exp(−iαTi). (2.17)

Here, the Ti are the generators of the SU(N f ) group in flavor space. Independent of the quark

masses, there is an additionalU(1)V vector symmetry [34]

ψ → exp(iα1)ψ and ψ̄ → ψ̄ exp(−iα1). (2.18)

Eqn. (2.17) is the generalization of isospin to an arbitrary number of flavors and eqn. (2.18) is

responsible for the baryon number conservation. [34]

The left and right handed components of the quark fields are [34]:

ψL =
1 − γ5

2

ψ and ψR =
1 + γ5

2

ψ (2.19)
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2.6 Aspects of the renormalization of QCD

Plugging these definitions in the Dirac Lagrangian yields

LDirac = i(ψ̄Lγμ∂μψL + ψ̄Rγμ∂μψR) − m(ψ̄LψR + ψ̄RψL) (2.20)

It can be shown that in the classical, massless case, in which the second term is absent, there are

additional axial SU(N f )A

ψ → exp(iαγ5Ti)ψ and ψ̄ → ψ̄ exp(−iαγ5Ti). (2.21)

andU(1)A
ψ → exp(iαγ51)ψ and ψ̄ → ψ̄ exp(−iαγ51). (2.22)

symmetries because γ5 mixes left handed with right handed fields. [34] These symmetries are

explicitly broken by the quark mass term. [34] Altogether, the massless QCD Lagrangian is

symmetric under a

SU(N f )V × SU(N f )A ×U(1)V ×U(1)A (2.23)

global symmetry. [34] The axial part of this symmetry can not be found in the spectrum of QCD.

One could attribute this to the non-vanishing quark masses. However, at least the masses of the

two lightest quarks are so small compared to the characteristic QCD scale, that, if they would be

the only source of symmetry breaking, an approximate symmetry should be visible. [34] Instead,

the U(1)A symmetry is anomalously broken. [37, 38] The reason is that every possible gauge

invariant regulator breaks this symmetry. A simple way to understand this was found by the

authors of [39, 40]. They noted that, while at the classical level the Lagrangian is invariant under

theU(1)A symmetry, the regulated path integral measure is not. [1, 41]. The remaining SU(3)A
axial symmetries are spontaneously broken. [1, 36, 41]

2.6 Aspects of the renormalization of QCD

Renormalization is required for the calculation of many quantities in most interesting quantum

field theories. [1] The need for it can be motivated using the following analogy [42] with classical

electrodynamics: Consider an infinitely heavy particle with charge q0 in a polarizable medium

composed of electrical dipoles. The dipoles in the medium will orient them self in such a way

that the charge q0 is screened; the charge seen from far away will be smaller then the original

charge q0. In a quantum field theory, the vacuum state itself is polarizable: Due to quantum

fluctuations, charge-anticharge pairs can be created from the vacuum. These pairs act like the

dipoles of a medium and screen part of the charge q0. This screening is such that the effective

charge that can be seen is the smaller the farther away one is from the charge. Since, even in

principle, one can not separate the particles from the vacuum, the question arises whether the

charge q0 is fundamental. Therefore, it is quite natural to consider not the charge q0 but the the

q(d)measured at a certain distance d. Since in scattering experiments small distances correspond

to large momentum transfers and long distances correspond small momentum transfers, one

considers in this setting a charge that depends on a momentum scale of the process. [42]

To correctly implement renormalization in the context of a quantum field theory, a two step

procedure is employed. In a first step a regularization scheme is introduced that removes
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Chapter 2 Aspects of the standard model of particle physics and dark matter

spurious infinities from the calculations. Usually, this regularization introduces a scale at which

the parameters of the theory are given. In a second step the regulator is removed in such a

way that physical observables remain finite and approach values that are independent of the

regulator. [1]

One choice for a regulator is a discrete space-time lattice of points at which the fields of the

theory are defined. Such a lattice comes with a lattice spacing a defining the scale of the regulator.
The action can be expressed in terms of the fields at the lattice points. At at fixed lattice spacing

a, the parameters of the action can be tuned such that certain long distance observables have the

same values that are observed in experiments. To remove the regulator, the lattice spacing a is
successively decreased. While doing so, the values of the parameters of the action have to be

adjusted such that the long distance observables remain the same. Ultimately, by taking the limit

a→ 0, the regulator is removed. Then, all observables approach their continuum values. The

parameters of the action may even diverge in that limit without posing a problem since they are

not observables. [34]

Many of the calculations in this thesis are done in such a scheme. While it is well suited for

numerical calculations, in many analytic, perturbative calculations a different scheme is used.

This is the modified minimal subtraction scheme (MS). In that scheme, regularization is achieved

in a very different way: Whenever a certain process is to be calculated in perturbation theory,

a number of space-time integrals, corresponding to Feynman diagrams, have to be evaluated.

These integrals depend explicitly on the number of dimensions of space time. If they diverge,

they can be made finite by formally changing the number of dimensions to a non-integer value.

When taking the limit in which the number of space time dimensions approaches the correct

integer number, the integrals diverge again. These divergences must be canceled prior to taking

this limit by putting the divergent part — and, out of convention, some certain finite part — into

counterterms added to the Lagrangian. These counterterms effectively change the values of the

parameters of the theory from bare ones to renormalized ones. [1] The integrals appearing in the

calculations of the Feynman diagrams are usually not dimensionless. In order for the dimension

of the result to stay the same, even when the number of dimensions of space-time is changed to

a fractional value, one has to introduce an artificial and arbitrary scale μ. It often appears in a
logarithm of a ratio with the momentum that is transferred in the process in question. If this

logarithm is large, then the perturbative expansion frequently converges slower then if it where

small. Therefore, it is desirable to choose μ to be of the order of the momentum transfered. [1]

At a finite order of the perturbative expansion the values of the counter terms depend on the

choice of the scale μ. Consequently, all parameters of the theory depend on the value of this

scale; couplings or other parameters of the theory are always specified as a function of the

renormalization scale μ when using the MS scheme. [1]

The coupling and masses specified at a given scale μ are called running coupling and running
masses. Their evolutions with the scale μ are described by the renormalization group equa-

tions. In a gauge theory with fermions, like QED or QCD, the relevant parameters are the

coupling constant α (or specifically αs in the case of QCD) and the masses of the fermions. The

renormalization group equation for the couping constant is [9]

μ2
∂α
∂μ2
= β(α) = −b0α2 − b1α3 − b2α4 − . . . . (2.24)
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where the right hand side is called beta-function. The first two coefficients in this expansion are

the same in all renormalization schemes. In the case of QCD they are b0 = (33 − 2N f )/(12π)
and b1 = (153 − 19N f )/(24π2) where N f is the number of quark flavors. [9] The higher order

coefficients depend on the renormalization scheme and can be found for the MS scheme in [43–

47]. The runnings of the mass parameters of the fermions are described by the equation [9]

μ2
∂m(μ)
∂μ2

= −γm(α(μ))m(μ) = m(μ)(γ1α + γ2α2 + γ3α3 + . . .)

where m(μ) is the running mass of one fermion and γm is the anomalous dimension of the

fermion mass. The two leading contributions to the anomalous dimension are γ1 = 1/π and
γ2 = 202/(36π2) − 20N f/(108π2) and higher orders can be found in [9, 48, 49].

A consequence of eqn. (2.24) is that for μ→∞ the coupling becomes arbitrary small and the

theory is almost a free theory. This phenomenon is called asymptotic freedom. [5–8] On the

other hand, if μ becomes small the coupling constant, calculated in perturbation theory, becomes

bigger and eventually diverges. The scale at which the coupling diverges is referred to as ΛQCD

and is of the same order of magnitude as the masses of typical QCD bound states. Of cause,

perturbation theory has already ceased to give meaningful results long before μ reaches ΛQCD.
The classical field theory corresponding to the QCD Lagrangian with all quarks taken to be

massless is scale invariant. The quantum effects that are responsible for the running of the

coupling break this scale invariance and lead to the appearance of a characteristic scale. This

mechanism is referred to as dimensional transmutation and is the origin of ΛQCD. It is an example

of an anomalous breaking of a symmetry, in this case the rescaling symmetry. In this sense, the

anomalous breaking of the scale invariance is responsible for a sizeable fraction of the masses of

most QCD bound states. [1]

It is a widespread convention not to consider the running of the coupling constant in a theory

that contains all flavors of quarks but in a series of effective field theories (EFTs). The reason,

as described in more detail in [50], is the following: The decoupling theorem [51] ensures that

physics at a low scale is, to a good approximation, decoupled from the effects of quarks with

masses much heavier then this scale. The small effects of these heavy quarks are well described

by an expansion in 1/M where M is the mass of the heavy quark. However, eqn. (2.24) clearly

shows that the running of the coupling constant depends on the number of quark flavors in

the theory. At first this seems to be in direct contradiction with the decoupling theorem. The

solution to this apparent contradiction is that αs is not a measurable quantity; every quantity

that can be measured, e.g. a cross section, will show the decoupling. This implies that in the

calculation of these observables the effects of the heavy quarks have to be included, only for

them to be canceled by the effects of the heavy quarks on the running of the coupling constant.

Clearly, this is inconvenient. It is easier to introduce a tower of effective field theories with the

heavy quark effects being integrated out: In addition to the fundamental N f = 6 theory, effective

N f = 5, 4, 3 theories are introduced. The parameters of the effective field theories are calculated

by matching at a given scale. It turns out that logarithmic corrections to the matchings are small

if the matching scales are taken to be close to the masses of the quark flavors to be integrated

out. Conventionally, the matching scales are taken to be the running quark mass of the quark

flavor to be integrated out at the scale where μ is equal to this mass. These scales, at which the
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Figure 2.5 – Running of the strong coupling constant
αs. (Figure from [9]) The value of the strong coupling
constant αs is shown as a function of the energy scale
Q.
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matching is performed, are called quark thresholds. Schematically the matching has the form

N f = 6 theory

matching at μ = mt(mt)
−−−−−−−−−−−−−−−−→ N f = 5 theory

matching at μ = mb(mb)
−−−−−−−−−−−−−−−−−→

N f = 4 theory

matching at μ = mc(mc)
−−−−−−−−−−−−−−−−→ N f = 3 theory (2.25)

Details can be found in [50] on which the above discussion of the matching procedure and the

EFTs is based. The precise matching conditions can be found in [9].

The running of the coupling constant, as determined by the QCD beta function, the matching

conditions, and a multitude of experimental measurements, can be found in figure 2.5.

2.7 Heavy flavor effective theories and quark contents

The renormalization pattern of the nucleon quark contents fqN = mq(〈N | q̄q | N〉−〈0 | q̄q | 0〉)
are important for this thesis. In this expression, | N〉 is a normalized nucleon state, | 0〉 is the

vacuum sate, mq is the mass of the quark flavor q, and q̄q is the scalar combination of quark

field operators. Firstly, the quark contents are renormalization group invariants in a theory

where the number of quark flavors is constant. As explained in the last section, it is customary

to integrate out heavy quark flavors at the quark thresholds. Hence, in the resulting EFTs the

corresponding quark contents of the integrated out quark flavors must vanish. The contribution

to the Higgs coupling of the integrated out flavors, however, does not vanish but is absorbed

into an effective gluon-Higgs coupling. This is related to the well known mixing of these two

operators that also leads to gluon-gluon fusion. [52] The corresponding Feynman diagrams can

be found in figure 2.6.

The quark contents are related to the nucleon mass via a sum rule involving the expectation

value of the trace of the energy momentum tensor: [2, 53, 54]

〈θ μ
μ 〉N = 〈N | (1 + γm)

∑
f

m f q̄ f q f +
β

2g
G2 | N〉 − 〈0 | . . . | 0〉 = MN (2.26)

Here, γm is the mass anomalous dimension of QCD, β is the β-function, g the gauge coupling, G
is the gluon field strength, and the operator between the vacuum state is the same then between
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2.7 Heavy flavor effective theories and quark contents

Figure 2.6 – The mixing between a quark loop and an effective gluon-gluon-Higgs vertex. The right diagram
contributes, if integrated out, to an effective gluon-gluon-Higgs vertex as depicted by the black dot in the left
diagram.

Table 2.2 – The values of the coefficients bni and c
n
i . [2, 3]

i b3

i c3

i b4

i c4

i b5

i c5

i

0 0.0740741 0.0740741 0.08 0.08 0.0869565 0.0869565

1 0.0229236 0.0700806 0.0308124 0.081742 0.0412178 0.0965761

2 0.0412178 0.0534895 0.0157223 0.0664099 0.0246729 0.0846867

3 -0.012595 -0.0245554 -0.0218678 -0.0409409 -0.0334609 -0.0578502

the nucleon states. Using this, the quark content of the (n + 1)-th flavor in an N f = n + 1 theory

can be deduced form the knowledge of the quark content of the n flavors in an N f = n theory.
To leading order the relation is [2, 3, 53]

fhN =
2

3β0

(1 − λ) + O

(
ΛQCD

mh
, αs

)
(2.27)

where h denotes the heavy (n + 1)-th flavor and

λ =
n∑
q=1

fqN . (2.28)

In [2], corrections up to order O(α3

s ) are calculated. They take the form

fhN =
3∑
i=0

(bni − c
n
i λ)α

i
s.

The coefficients [2, 3] bni and c
n
i can be found in table 2.2. This relation is true up to correction of

order O(α4

s ) and O(Λ2

QCD
/m2

h).
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Chapter 3

The lattice formulation of gauge theories

Almost all calculations in this thesis are performed by monte carlo simulations of lattice reg-

ularized gauge theories. The idea to study the interactions of quarks and gluons on a space-

time-lattice was first proposed by Wilson in 1974 [11]. It was realized that this formulation of

gauge theory is well suited for a numerical approach [55, 56]. I will present a short overview of

some aspects the lattice regularization of QCD. The main focus will be on aspects relevant for

this thesis. The discussion is largely based on [33, 34] for the lattice specific details and on [1] for

continuum calculations.

3.1 The regularization

The lattice regularization is constructed by introducing a regular lattice Λ of space time points

and by defining the matter and gauge fields at the lattice points and at the straight lines between

nearest-neighbor points. The lattice Λ itself is defined by

Λ := {®n = a(n1, n2, n3, n4)|n1...3 < Ns ∈ N0, n4 < Nt ∈ N0}. (3.1)

Here, Ns is the spatial extend
1
and Nt is the temporal extent of the lattice, both in units of

the lattice spacing a. In the following, unit vectors with lengths of one lattice spacing will be

denoted by μ̂ := a®eμ. Lattice points are specified by a 4-component index ®n. The four entries
of them are integers ranging from 0 to Nt or Ns respectively. Attached to each lattice point

there are a number of fields: Firstly, Grassmann-valued fields ψa(®n) and ψ̄a(®n) with the index
a, called color index, running through the values 0 to 3 for SU(3) gauge theory. These fields
represent the quarks. Secondly, four matrix valued fields Uab

μ (®n) with μ running from 1 to 4,

the four space time dimensions. These fields represent the gluons. Here, a and b are the matrix

indices, which are in the same space then the color indices of the Grassmann-valued field. The

Uab
μ (®n) are elements of SU(3) for the case of QCD. Because SU(3) has eight generators, the same

number of independent real numbers uniquely characterizes each of theUab
μ (®n). TheUab

μ (®n) act
as discretized version of the parallel transporter between neighboring points; they provide the

transformations between ψa(®n) and ψb(®n + μ̂). Therefore,Uab
μ (®n) is thought to reside at the link

between the lattice sites ®n and ®n + μ̂. A two dimensional sketch can be found in figure 3.1.

1
It is possible to have different lattice sizes for the three spatial extents. To keep the notation compact here and in

the following we discuss only the case with spatial dimensions of equal size. The extension to the general case is

straight forward.
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Chapter 3 The lattice formulation of gauge theories

Figure 3.1 – A two dimensional slice of the space-time lattice. The fermion fields ψa and ψ̄a reside on the
lattice points while the gauge fields Uab

μ can be thought to be located on the lattice links. The smallest closed
path on the lattice is called a plaquette Pμν . There are also larger loops for example P1×2

μν .

3.2 The gauge action of QCD

Before the lattice regulator can be employed in a practical calculation, an action must be formu-

lated in terms of the discretized fields. The simplest gauge action of this type is the Wilson gauge

action. In the continuum theory the euclidean gauge action is the integral over the Lagrangian

density

L=
1

4g2

s
tr[FμνFμν] with Fμν =

1

igs
[Dμ,Dν] = ∂μAν − ∂νAμ + i[Aμ, Aν]. (3.2)

For details see the previous chapter. At first, discretizing the derivatives of the type ∂μAν
appearing in the Lagrangian seem natural. However, it is more convenient do directly discretize

tr[FμνFμν]. This term corresponds, in the continuum, to a sum over infinitely small rectangles.

Infinitesimal small paths, however, can not exist on a lattice. Instead, the smallest possible
2
closed

paths are plaquettes Pμν(®n), products of four gauge links forming squares. The lattice plane in

which such a plaquette is oriented is denoted by the indices μ and ν. A graphical representation

of these plaquettes is shown in figure 3.1. The transformation in color space picked up along a

plaquette is

Pμν(®n) = Uμ(®n)Uν(®n + μ̂)U†μ (®n + ν̂)U
†
ν (®n). (3.3)

2
For NS ≤ 4 or Nt ≤ 4 and with periodic boundary conditions there are paths that wind around the lattice that

are smaller or of the same size. Because we are interested in an action that reproduces the continuum case, such

terms are not considered here.
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3.3 The fermion action

and the Wilson gauge action, formulated in terms of these plaquettes, is

SWilson =
2

g2

s

∑
®n∈Λ

∑
μ<ν

Re(3 − tr Pμν(®n)). (3.4)

The plaquettes can be Taylor expanded in the lattice spacing, as demonstrated e.g. in [33], so that

tr Pμν(®n) = 3 + ia2

tr[Fμν] −
a4

2

tr[FμνFμν] + O(a6). (3.5)

In the last term no sum over μ and ν implied. Inserting this result into eqn. (3.4) leads to

SWilson = a4

(
1

g2

s

∑
®n∈Λ

∑
μ<ν

tr[FμνFμν] + O(a2)

)
= a4

(
1

2g2

s

∑
®n∈Λ

∑
μ,ν

tr[FμνFμν] + O(a2)

)
, (3.6)

showing that classically SWilson is up to O(a2) corrections equal to the continuum gauge action.

It is a wide spread convention to define β = 6/g2

s so that the Wilson gauge action is

SWilson =
β
2

∑
®n∈Λ

∑
μ<ν

Re(3 − tr Pμν(®n)). (3.7)

It is worthwhile to ask whether the O(a2) contributions can be eliminated. This is useful,

since numerical calculations are necessarily done at finite values of a. If the O(a2) contributions

can be eliminated, only much smaller O(a4) corrections remain. [33] There is some freedom in

constructing a lattice gauge action that can be leveraged to achieve this. In addition to plaquettes,

larger loops like for example P1×2

μν , as shown in figure 3.1, can be used. Once the prefactor has

been suitably chosen, the action has the same leading order behavior then the Wilson gauge

action but different O(a2) corrections. These correction can be calculated for both actions and

the two actions can be combined into a linear combination such that the O(a2) terms cancel.

The resulting action, with the prefactors calculated perturbatively at tree level, is [33]

SWilson =
β
2

∑
®n∈Λ

∑
μ<ν

Re

(
3 −

5

3

tr Pμν(®n) +
1

12

tr P1×2

μν

)
(3.8)

This action is called the Lüscher-Weisz action [57]. In the quantized theory the O(a2) coefficients

receive quantum corrections so that in the above action the O(a2) terms cancel only at tree-level

and corrections of order O(αsa2) remain. [33]

3.3 The fermion action

A lattice fermion action can be constructed by discretizing the continuum fermion action.

However, complications fundamentally different from those in the case of the gauge action,

appear. The action for one species of free Dirac fermions in continuous euclidean space-time

is [33]

S =
∫

d
4xψ̄(γμ∂μ + m)ψ. (3.9)
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Chapter 3 The lattice formulation of gauge theories

The so called “naïve” discretization is constructed from it by replacing the partial derivative by a

finite difference operator [33]

∂μ f → Δμ f :=
f (x + μ̂) − f (x − μ̂)

2a
. (3.10)

The resulting fermion action is [11, 34]

S = a4

∑
n∈Λ

ψ̄(n)

(
4∑
μ=1

γμ
ψ(n + μ̂) − ψ(n − μ̂)

2a
+ mψ(n)

)
. (3.11)

It can be cast into the bilinear form

S = a4

∑
m,n∈Λ

∑
α,β

ψ̄α(n)Dαβ(n,m)ψβ(m) (3.12)

where the Dirac indices are now explicitly written out. [34] Here, the fermion matrix Dαβ(n,m)
is [34]

Dαβ(n,m) =
4∑
μ=1

[γμ]αβ
δn+μ̂,m − δn−μ̂,m

2a
+ mδαβδm,n. (3.13)

Shortly after he published this action in [11], Wilson realized that it describes not one but 2
d

degenerate fermions species, where d is the number of spacetime dimensions. [58] This can be

understood by Fourier transforming the naïve fermion action. The Fourier transform of the

fermion matrix is [34]

˜Dαβ(p) = δαβm +
i

a

4∑
μ=1

[γμ]αβ sin(apμ) (3.14)

The first term contributes to the diagonal part of the fermion operator. This term is constant

and proportional to the mass of the fermions. The second term contributes to the offdiagonal

part and has zeros at all corners of the Brillouine zone. A visualization can be found in figure 3.2.

It has be shown, e.g. in [58], that in the low energy spectrum of the theory each of the zeros

corresponds to a copy of the fermion one wants to describe. The additional species are called

doublers.

A possible remedy is to add to the naïve fermion operator a discretization of the Laplace

operator [33, 58]

�μ f =
f (x + μ̂) − 2 f (x) + f (x − μ̂)

2a2
. (3.15)

Then, the action reads [33]

S = a4

∑
n∈Λ

ψ̄(γμΔμ + m + ra
∑
μ
�μ)ψ, (3.16)

where the parameter r is often set to 1. After writing out explicitly the discretized derivatives,

the fermion matrix is [34, 58]

Dαβ(n,m) =
4∑
μ=1

[1 − γμ]αβδn+μ̂,m + [1 + γμ]αβδn−μ̂,m
2a

+

(
m +

4

a

)
δαβδm,n. (3.17)
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3.3 The fermion action

Figure 3.2 – Doubler structure of the Wilson fermions in two dimensions. In the left picture the components
of the massless naive fermion operator in momentum space is shown and compared to the continuum. It can
be seen that the diagonal part is constant. This constant is proportinal to the quark mass. On the right hand
side the naive fermion operator has been replaced by the Wilson fermion operator. The diagonal term has been
modified by the Wilson term so that in three of the four corners it has a non-vansihing value with vanishing
first derivatives. This genearates an effective fermion mass for thoose modes. The off-digaonal component has
not been modified.

The above operator is called Wilson operator. To see that it solves the doubling problem a

Fourier transform is used again to arrive at [34]

˜Dαβ(p) = δαβm +
i

a

4∑
μ=1

[γμ]αβ sin(apμ) +
1

a
δαβ

4∑
μ=1

(1 − cos(apμ)). (3.18)

The second term is 0 for pμ = 0 but contributes 2l/a if l components of p are equal to π/a. [34]
These contributions have the form of mass terms; a mass inversely proportional to the lattice

spacing is added to each of the doublers. This decouples them in the continuum limit. The

situation is visualized in figure 3.2. [34]

It should be noted that while the Wilson fermion operator decouples the doublers it also

breaks chiral symmetry. [33] There is a no-go theorem by Nilesen and Ninomiya [59–61] which

states that it is impossible to formulate a chiral lattice Dirac operator that avoids the fermion

doubling and for which a reasonable set of conditions is fulfilled: It is impossible to have a

fermion formulation that has a local, hermitian, translation invariant Hamiltonian on the lattice

without either introducing an equal number of left handed and right handed species or violating

continuum chiral symmetry on the lattice. [59]

To couple any of the fermion operators to gauge fields all terms in the operators have to be

made gauge invariant. Terms in which all fermion fields are located at the same lattice site are

already gauge invariant. Products of two fermion fields at different lattice sites can be made

gauge invariant by inserting products of gauge links that connect both sites. [33] Since only

couplings between two nearest neighbors appear in the free Wilson ferminon action, it is natural

3
to use for this purpose the single gauge link connecting the two neigbours. This procedure

3
In principle any other path with the same start- and endpoint can be used. More extended paths are however not
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Chapter 3 The lattice formulation of gauge theories

results in [34]

Dab
αβ(n,m) =

4∑
μ=1

[1 − γμ]αβUab
μ δn+μ̂,m + [1 + γμ]αβ[U

†
μ ]
abδn−μ̂,m

2a

+

(
m +

4

a

)
δαβδ abδm,n. (3.19)

The additional indices a and b compared to the free case are the color indices. Since the fermions

transform according to the fundamental representation of SU(3), on each lattice site and for

each value of the Dirac indices there have to be 3 fermion fields labeled by a and b. [34]
Interacting Wilson fermions have cut-off effects of O(a). [33] These are significantly worse then

the O(αsa2) cutoff effects of the gauge action. The O(a) cutoff effects can be canceled by defining

the clover-improved Wilson operator [33, 62]

D� = D − a
rc�
2

σμνFμν (3.20)

where σμν = 1

2
i[γμ, γν], c� is an improvement coefficient and Fμν is a suitably discretized version

of the field strength tensor. [62] In section 3.2 it was motivated that Fμν is related to the plaquette
via eqn. (3.5):

Pμν(®n) = 1 + ia2Fμν −
a4

2

FμνFμν + O(a6) (3.21)

Therefore, Im Pμν(n) is a valid discretization of the field strength tensor. [33] However, this

equation determines Fμν at a point n + 1

2
μ̂ + 1

2
ν̂. [33] It is advantageous to use a combination of

four gauge field loops of minimal size located in the μ-ν plane and containing the point n. This
combination in given by [62]

�μν (n) =
1

4

(
Uμ(n)Uν(n + μ̂)U†μ (n + ν̂)U

†
μ (n − μ̂)

−U†ν (n − ν̂)U
†
μ (n − μ̂ − ν̂)Uν(x − μ̂ − ν̂)Uμ(x − μ̂)

+Uν(n)U†μ (n − μ̂ + ν̂)U
†
ν (n − μ̂)Uμ(n − μ̂)

−Uμ(n)U†ν (n + ν̂ − ν̂)U
†
μ (n − ν̂)Uν(n − ν̂)

)
. (3.22)

A graphical representation of this clover term can be found in figure 3.3. This expression

determines Fμν at a point n. Using this discretization of the field strength tensor one arrives at

the clover improved Wilson fermion action [62]

D� = D − a
rc�
2

σμν �μν . (3.23)

The coefficient c� has to be tuned in such a way that the O(a) lattice artifacts cancel. The tree-
level value of c� is 1 [33] and this value has been used for the Wilson fermion action in this

work. In the quantized theory the coefficient c� receives quantum correction so that at leading

order [63, 64]

c� = 1 + O(αs) (3.24)

used in practice. The smearing techniques discussed in a later sections however have a similar effect.

34



3.3 The fermion action

Figure 3.3 – A graphical visualisation of the clover term �μν(b). It name is due to the similarity to four-leaved
clover.

where αs is the strong coupling constant. Therefore, the tree-level improved action with c� = 1

has lattice artifacts of order O(αsa). The quantum correction to c� can be computed either in a

perturbative expansion [63, 64] or non-pertubatively [65] (vgl. [33]). It turns out, however, that

the tree-level value of c� combined with a smearing procedure makes the O(αsa) contributions
very small and for many observables O(a2) effects are numerically dominant. [66]

Apart from theWilson fermion action, other fermion actions are in use. They get rid of (part of)

the doublers in different ways. A very widespread alternative to Wilson fermions are staggered

fermions, as introduced by Kogut and Susskind in [67] in aHamiltonian setting and later extended

in [68] to a Lagrangian setting. This formulation exploits the fact that the naïve Dirac operator

has an exact d-fold degenerate spectrum. In the staggered formulation, this degeneracy is lifted,

reducing the number of doublers. [33] A pedagogical introduction to staggered fermions can

also be found in [34]. The staggered fermion operator has the form

Dab(n,m) = a4

(
4∑
μ=1

ημ(n)
Uab
μ (n + μ̂)δm,n+μ̂ −U

†ab
μ (n − μ̂)δm,n−μ̂

2a
+ mδnmδ ab

)
. (3.25)

The phases

ημ(n) = (−1)
∑
ν<μ nν

(3.26)

play a similar role then the γ-matrices appearing in the Wilson formulation. In figure 3.4 the

staggered construction is illustrated. In the naïve fermion action the γ matrices result in a

coupling of each spinor component on a given lattice site to exactly one spinor component on

each neighboring site. This happens in such a way, that there are four disjoint set of spinor

components containing one component per lattice site. These sets do not couple to each other

and it turns out that they are described by the same action. Hence they describe four identical

copies of the same fermion. Only one of the four copies is used in the staggered formulation.

Therefore, the number of doublers is reduced by a factor of four as compared to the naïve case

and the staggered operator in four dimensions describes four flavors of quarks. However, in

contrast to the Wilson formulation, the Dirac components of the different quark flavors are
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Chapter 3 The lattice formulation of gauge theories

Figure 3.4 – The construction of staggered fermions.

distributed among the lattice sites; one flavor can be constructed from the fermion fields on one

lattice hypercube.

Gauge fields can be smeared, before beeing used in the construction of the Direc operator, to

decrease the numerical size of the cutoff effects [33]. Such smearing procedures aim at smoothing

out short range fluctuations of the gauge fields which are strongly affected by the cutoff. [33]

The simplest form of smearing, APE smearing, is to replace any gauge linkUμ(n) by a sum of

itself and a staple Sμ(n), which is defined as [33]

Sμ(n) =
∑
ν,μ

Uν(n)Uμ(n + ν̂)U†ν (n + μ̂) +U
†
ν (n − ν)Uμ(n − ν)Uν(n − ν + μ). (3.27)

The smeared link variablesU (APE)

μ (n) are defined as

U (APE)

μ (n) = (α − 1)Uμ(n) +
α

d − 1

Sμ(ν) (3.28)

where d is the space-time dimension and α is a free parameter. [33] This procedure was originally

proposed in [69]. The APE smearing has the drawback that the smeared links are not elements of

SU(3). [33] This can be alleviated by projecting the links back into SU(3): First a unitary matrix

U ′(APE)μ (n) =
U (APE)

μ (n)√
U (APE)†
μ (n)U (APE)

μ (n)
(3.29)

which lies inU(3) is constructed. Then the phase of the determinant is removed, so that

ˆU (APE)

μ (n) = U ′(APE)μ (n) det
−1/3U ′(APE)μ (n) (3.30)

is an element of SU(3). [33] The main drawback of this procedure is that the back projection step

is not not a differentiable operation. [33] Many update algorithms, including the HMC algorithm
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3.4 The gauge action for QED

used in most modern lattice QCD calculations, require differentiability. One possible remedy is

to apply stout-smearing as proposed in [70]. In this procedure the staple Aμ(n) is combined with

the gauge linkUμ(n) to form the combination
4
[70]

Ωμ(n) = ρSμ(n)U†μ (n). (3.31)

This matrix is used to construct a hermitian and traceless matrix Qμ(n) via [70]

Qμ(n) =
i

2

(Ω†μ(n) − Ωμ(n)) −
i

6

tr(Ω†μ(n) − Ωμ(n)). (3.32)

Since by definition Qμ(n) ∈ su(3), it is possible to construct a new SU(3) link variable by

multiplying the old link variable with the exponential of iQμ(n) so that [70]

U (stout)

μ (n) = exp(iQμ(n))Uμ(n). (3.33)

This method produces new gauge links in a differentiable fashion. Expanding each of the new

link variables in terms of ρ reveals that, to leading order, the contributing terms are the same

as the ones appearing in APE smearing. [70] To tune the amount of smearing, one can vary the

value of ρ and/or apply several steps of smearing. [70] A possible problem arising with repeated

application of smearing is that the radius of smearing in lattice units may potentially become

large [71]. After one step of APE or stout smearing only links which are neighboring links of

Uμ(n) appear in the smeared linkU (APE/stout)

μ (n). After two steps already next-to-neighbor links
appear and so forth. In [71], a new method termed HYP smearing was proposed that allows,

in a multi step procedure, a high level of smearing while still using only links residing inside

the hypercubes that share the linkUμ(n). [71] An Illustration of HYP smearing can be found in

figure 3.5. HYP smearing, again, is not a differentiable procedure since it uses projected sums

of links and staples much like APE smearing. [33, 69, 71] A possible remedy is to use analytic

projection as in stout smearing for the individual steps of HYP smearing. [72]. This form of

smearing is called HEX smearing.

Combining clover improvement and smearing dramatically reduces the cut-off effects of

fermions. [33] The effect of both measures on the Wilson operator can be seen in figure 3.6.

In blue the original Wilson operator is shown. The fact that the eigenvalues do not touch the

imaginary axis indicates additive mass renormalization. [33] Also one can see that the would-be

chiral mode on the real axis in the non-doubler sector is not located close to where the low-lying

eigenvalues pinch the real axis. [33] Both these defects are helped with smearing and clover

improvement. [33] However, combining both procedures is much better then using any one of

the two methods alone. [33]

3.4 The gauge action for QED

Some of the calculations in this thesis required a formulation of QED on the lattice, which is

described in this section. The discussion in this section is base on [20]. In the case of QCD it is

useful to formulate the theory in terms of the gauge fieldsUμ(n) instead of the gauge potentials

4
The method also works if ρ takes a different value for each summand in 3.27.
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Chapter 3 The lattice formulation of gauge theories

a) b)

Figure 3.5 – Illustration of the HYP smearing. The final smeared link which is the fat line in a) is constructed
from the original link and staples depicted by double lines in a). These staples are again constructed from the
original link and staples showen with solid lines in b). (Figure from [71])
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Wilson Clover Wilson-HYP Clover-HYP

Figure 3.6 – The effect of smearing and clover-improvement on the spectrum of the Wilson operator on a gauge
configuration with topological charge one. (Quelle: [33], with modifications)

38



3.4 The gauge action for QED

Aμ(n). The reason for this is it allows to maintain exact gauge invariance even at finite lattice

spacing, which was not possible in a formulation based on gauge potentials. In the case of QED,

the gauge symmetry is abelian and no such complications arise that would prevent the usage of

the gauge potentials. [20] Such a formulation based on the gauge potentials is called non-compact

formulation.

Naïvely, one could use a discretization of the the action

Snaiveγ =

∫
d

4x
∑
μ,ν
(∂μAν − ∂νAμ)2 (3.34)

to define QED on a lattice. This is the usual action for the gauge part of QED in a infinite

volume as it can be found in many textbooks (e.g. [1]), rotated to the euclidean case. QED in the

continuum is symmetric under gauge transformations, which have the form

Aμ(x) → Aμ(x) − ∂μϕ(x). (3.35)

This, especially, includes transformations of the form

Aμ(x) → Aμ(x) − ∂μcνxν (3.36)

with a constant four-vector c. They shift the four components of the gauge field by a space-time

independent amount cμ, so that
Aμ(x) → Aμ(x) − cμ. (3.37)

The lattice calculations described in this thesis are necessarily done in a finite volume, which is

implemented by using periodic boundary conditions for the gauge potentials. The transformation

in eqn. (3.37) remains a symmetry of the theory. In a finite volume it can, however, not be written

as a gauge symmetry. From eqn. (3.36) follows that one would need to set ϕ(x) = cνxν . Such
a function is not compatible with the periodic boundary conditions. This peculiar symmetry

needs special attention before one can add QED to a lattice computation. [73]

That this symmetry poses a problem can also be seen by rewriting the action in terms of the

Fourier components
˜Aμ(k) of the gauge potentials. By a standard computation (see e.g. [1]) it can

be shown that the contribution of the momentum k to the action is

S(k) = ˜Aμ(k)(−k2δμν + kμkν) ˜A∗ν(k). (3.38)

This is a quadratic form defined by a 4 × 4 matrix per momentum k. These matrices are not

invertible since

(−k2δμν + kμkν)kν = 0. (3.39)

This completely standard problem can be solved by gauge fixing. For example, in a ξ-gauge the
analog to eqn. (3.38) reads [1]

S(k) = ˜Aμ(k)
(
−k2δμν +

(
1 −

1

ξ

)
kμkν

)
˜A∗ν(k). (3.40)

Thematrices are now invertible with one notable exception: In the k = 0 case thematrix becomes

the 0-matrix. It follows that the contribution of the momentum mode k = 0 is independent
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form the value of
˜Aμ(k). Since a constant shift is absorbed in the k = 0 mode, this is exactly the

problematic contribution. Note that in the infinite volume the action can be written as

S =
∫

d
4k
(2π)4

S(k). (3.41)

with S(k) being the contribution of momentum k. The case k = 0 is a set of measure zero and

therefore poses no problem. In a finite volume the allowed momenta are discrete and the action

is a discrete sum of the form

S =
∑
k

1

(2πa)4
S(k). (3.42)

The case k = 0 is one of the terms contributing to this sum and hence can not be ignored. The

modes of Aμ causing this problem are referred as zero modes.

From an intuitive perspective the problem arises becauseGauss’s law implies that it is impossible

to have a periodic electric field of a point particle with a net charge that is continuous everywhere

except at the location of the charge. [73, 74] The net charge Q in a volume Λ can be calculated via

Q =
∫
Λ

d
3x ®∇ · ®E =

∫
∂Δ

d®n · ®E (3.43)

assuming the field
®E is continuously differentiable. Because of periodicity the rightmost integral

has to vanish. Consequently, the net charge in a box with periodic boundary is 0. [73, 74] The

situation is illustrated in figure 3.7.

One approach to deal with the zero modes is not to integrate over them in the path integral.

Following the notation in [20], this choice, applied in the Coulomb gauge, will be denoted as

QCD
TL
. It is implemented by forcing

˜Aμ(0) = 0. One should note that this is a modification of

the path integral that is non-local both in space and time since it can be enforced by adding the

term [20]

−
1

ξ2

∑
μ

(∑
n
Aμ(n)

)
2

(3.44)

to the action. In the limit ξ → ∞ this results in
˜Aμ(0) = 0. This term couples gauge fields at

arbitrary distances and times and reflection positivity is violated. [20] In this theory the finite

volume corrections to masses can be worked out [20]. An explicit formula for the finite volume

mass correction of charged meson reads

M(L)
M(∞)

− 1 = −q2α
κ

M(∞)L

[
1 +

1

M(∞)L

(
1 −

π
2κ

T
L

)]
+ O(1/L3). (3.45)

Here,M(L) is themesonsmass at spatial lattice extend L, q is themeson’s charge and α is the QED
coupling constant. Formulas for other particles are given in [20]. The above formula does not

only depend on the dimensionless combination ML but also on T/L which is also dimensionless

and divergent in the L→∞ limit. In figure 3.8 the behavior of the finite volume correction for

several values of T/L is shown. It is evident that at small L the corrections are large and strongly
depend on T/L. In fact, for L→∞ with fixed T , a situation commonly arising when taking the
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Figure 3.7 – Electromagentic field of an electric point charge. It is impossible to make the electric field of a
charged particle periodic and continous. A simple periodic continuation would make the field non-differentiable
at the boundary. [73]
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Figure 3.8 – Finite volume correction to a scalar boson of initfinite-volume mass M(∞) in QCDTL to order
O(1/L2) for αq2 = 1. The finite volume correction depends on the two dimensionless numbers ML and T/L.
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Chapter 3 The lattice formulation of gauge theories

continuum limit in finite volume, they diverge. However, in practical lattice calculations T/L is

of order O(1) and one can nevertheless perform a proper infinite volume limit. [20]

Hawakaya and Uno have proposed a different way to deal with the problem posed by zero

modes. They suggested to remove the zero modes on all time slices separately. [74] This is done

by enforcing [20] ∑
®x

Aμ(t, ®x) for all t. (3.46)

Again following the notation of [20], the resulting theory is called QED
L
. Eqn. (3.46) does only

couple gauge fields at the same time slices. The finite volume correction for various particles

have been worked out [20] and for the case of a scalar boson it reads

M(L)
M(∞)

− 1 = −q2α
κ

M(∞)L

[
1 +

2

M(∞)L

]
+ O(1/L3). (3.47)

The problematic term featuring T/L is absent in this expression.
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Chapter 4

Numerical techniques

In this chapter Iwill briefly summarize somenumerical techniques thatwhere used for generating

the gauge configurations used in this thesis. First, I will explain how theGrassman valued fermion

fields are integrated out so that the path integral can be calculated with important sampling.

Then, I will introduce the Metropolis algorithm. Afterwards, I will describe the hybrid monte

carlo algorithm.

4.1 Integration of fermionic fields

The path integral for calculating 〈O〉 for an observable O in QCD, after regularization by a

lattice, can be written as

〈O〉 =
1

Z

∫
DUDψ̄Dψ O exp(−Sgauge(U) − ψ̄D(U)ψ). (4.1)

Here, Sgauge(U) is a gauge action of choice, for example the Luescher-Weissz-action from eqn. (3.8)

and D(U) is a Dirac operator, for example the clover improved Wilson operator from eqn. (3.23).

The partition function Z is defined as

Z =
∫

DUDψ̄Dψ exp(−Sgauge(U) − ψ̄D(U)ψ), (4.2)

the same integral as in eqn. (4.1) except that the observable in the integrand is missing. The

symbol Dϕ means

Dϕ =
∏
n∈Λ

dϕ(n) (4.3)

for any field ϕ. The gauge fields Uμ(n) are elements of SU(3) and dU(n) is the Haar measure.

The fermion fields ψ̄ and ψ are Grassmann numbers. Two Grassmann numbers θ1 and θ2 fulfill

{θ1, θ2} = 0 , θ2

i = 0 (4.4)

and commute with any complex number. The concepts of differentation and integration can

also be generalized to Grassmann numbers. [34]

Efficiently representing many Grassmann numbers on a Computer is difficult except in certain

special cases. However, since the integrand in eqn. (4.1) is quadratic in the Grassmann valued

fields, the integral can be carried out analytically. Doing so results in the expression

〈O〉 =
1

Z

∫
DU O detD(U) exp(−Sgauge(U)). (4.5)
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Chapter 4 Numerical techniques

This path integral, containing only bosonic fields, is amendable to a numerical treatment by

monte carlo methods. [34]

Historically, the evaluation of the determinant was challenging and calculations where done in

the quenched approximationwhere detD(U)was neglected. [34]Within that approximation local

update algorithms are reasonably efficient. In the following sections, in a first step the simplest

such algorithm, the Metropolis algorithm, is explained. Then, the HMC algorithm, which allows

to efficiently include the determinant and which builds on the Metropolis algorithm, will be

introduced. The discussion is largely based on [34, 75].

4.2 The Metropolis algorithm and importance sampling

The path integrals of interest have the form

〈O〉 =
1

Z

∫
DU O exp(−S(U)) (4.6)

where S(U) is real valued for every configuration of gauge fields U . The gauge fields have to
be integrated over at every point of the lattice. A direct evaluation of the integral by a high-

dimensional quadrature rule is not feasible. 1/Z exp(−S(U)), however, can be interpreted as a

multivariate probability density function. If one can construct a process which samples gauge

field configurations with this probability density, then the observableO can be calculated by

〈O〉 =
1

N

N∑
i=1

Oi. (4.7)

Here, N is the number of samples drawn from the distribution and Oi is the value of the

observableO on the i-th sample. This method, which is called importance sampling, can be very

efficient. The effectiveness of this methods curucially depends on the positivity of exp(−S) that
gaurantees that no cancellations can occur. [34]

To sample from the correct distribution, Marcov chain monte carlo (MCMC) methods are

often used. A given configurationUi of gauge fields is evolved into a new configurationUi+1 by

a process that depends only onUi but not on the previous configurationsUi−1,Ui−2, . . .. [34, 75]

A particularly simple MCMC algorithm is the Metropolis algorithm. In its most often used

form it consists of the following steps:

i. Based on a configuration Ui, propose a new configuration U ′i which differs from Ui by

a small modification. This proposal must be reversible, which means that the likelihood

to propose Ui if U ′i would have been the initial configuration must be the same then the

likelihood to proposeU ′i givenUi as initial configuration. Furthermore, every configuration

must be reachable in principle after many proposals.

ii. Calculate S(Ui) and S(U ′i ).
iii. Draw a random number r between 0 and 1. If r < exp(−S(U ′i ) + S(Ui)), set Ui+1 = U ′i

(accept), otherwise setUi+1 = Ui (reject).

The above procedure is repeated to build up a chain of configurations (U1,U2, . . . ,UN ). There is

a large freedom in how to generate the proposals in step i. While in principle every procedure
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4.3 The hybrid monte carlo algorithm

that fullfills the mentioned conditions is admissible, the acceptance rate may depend strongly on

the details of the procedure. If the proposals are badly choosen, the acceptance rate may be very

low and the algorithm is very inefficient, as it gets stuck at one configuration for a long time. [34]

While the Metropolis algorithm is relatively easy to understand and imlpement, it is not very

often used in lattice QCD calculations nowadays. For full QCD, local update algorithms like

the Metroplois are not efficient because of the presence of the fermion determinant. A suitable

algorithm will be explained in the next section. [34]

4.3 The hybrid monte carlo algorithm

Modern lattice QCD calculations make use of the hybrid monte carlo (HMC) algorithm. Here,

for each real parameter in the configuration U a conjugate variable Π called momentum is

defined. One also defines a fictitious Hamiltonian

H =
1

2

Π
2 + S(U) (4.8)

not to be confused with the physical Hamiltonian. The expectation value of an observableO can

be written as

〈O〉 =

∫
DU O exp(−S)∫
DU exp(−S)

=

∫
DUDΠO exp(− 1

2
Π − S)∫

DUDΠ exp(− 1

2
Π − S)

=

∫
DUDΠO exp(−βH)∫
DUDΠ exp(−βH)

(4.9)

with β = 1. The last expression is the expectation value ofO in a canonical ensemble with the

Hamiltonian H. The HMC algorithm consists of the following steps:

i. Generate newmomenta distributed according to the probability density function exp(− 1

2
Π

2).

ii. Evolve the fieldsU and momenta Π according to Hamilton’s equations

ÛU =
∂H

∂Π
and

Û
Π = −

∂H

∂U
(4.10)

for a fixed time interval Δt.
iii. Calculate the change in the energy ΔE along the trajectory. Accept the new configuration

with probability exp(−ΔE)
Step ii. evolves the system in an microcanonical ensamble with a fixed energy E. Carrying out
this step exactly would in principle be enough. [76]. However, in practice, the time evolution

is performed using some numerical integrator that produces a small error. Therefore, the

integration is embedded in a MCMC sampling of a canonical ensemble. For this procedure

to be correct, it is acceptable that the numerical integration is inexact as long as it is exactly

reversible. [34]

One important advantage of the HMC algorithm over local monte carlo algorithms, like the

plain Metropolis agorithm, is that it allows to make large non-local steps in in the proposal step.

In the case of pure gauge theory this is not beneficial because the action is local. However, if

fermions are present, the detD-factor is non-local. Therefore, after a local update one would
need to calculate a large determinant. If this non-loacl calculation is necessay, it is much more

efficient to have the proposal change the field configuration globally. [34]
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Even with global proposals, it is still prohibitvely expensive to calculate the entire fermion

determinant for every update. This motivates the introduction of pseudofermions. These are

based on the similarity between the Gaussian integrals over complex and Grassmann valued

fields. Namely, it has been shown that [34]∫
dN ψ̄dNψ exp(−ψ̄Mψ) = det M, (4.11a)∫
dNϕ†dNϕ exp(−ϕ†Mϕ) = πN | det M |−1

. (4.11b)

Here ψ̄ and ψ are Grassmann variables and ϕ are complex numbers. In the case of QCD with

two generate flavors the Grassmann integration over the fermion fields produces a factor detD
for each flavor. To calculate 〈O〉

〈O〉 =
1

Z

∫
DU O det

2D(U) exp(−Sgauge(U)). (4.12)

has to be evaluated. The square of the determinant can be rewritten as

det
2D(U) = detD(U) detD(U) = detD(U) detD†(U) = det(D(U)D†(U)). (4.13)

Using this identity and the analogy between bosonic and fermionic Gaussian integrals from

eqns. (4.11a) and (4.11a), the path integral can be rewritten as

〈O〉 =
1

Z

∫
DUDϕDϕ†O exp(−Sgauge(U) − ϕ†(D(U)D†(U))−1ϕ). (4.14)

The advantage of this formulation is that there is no need to calculate a determinant. Instead

one only has to compute (DD†)−1ϕ which is much cheaper. [34]

The hybrid monte carlo algorithm must be modified slightly to include the psudofermion

fields [34]:

i. Randomly generate pseudofermion fields ϕ distributed according to the probability density

exp(−ϕ†(D(U)D†(U))−1ϕ) (4.15)

on the initial gauge field configuration.

ii. Randomly generate new momenta distributed according to the probability density function

exp(− 1

2
Π

2).

iii. Evolve the fieldsU and momenta Π according to Hamilton’s equations

ÛU =
∂H

∂Π
and

Û
Π = −

∂H

∂U
(4.16)

for a fixed time interval Δt with the Hamiltonian

H =
1

2

Π
2 + S(U) + ϕ†(D(U)D†(U))−1ϕ. (4.17)

iv. Calculate the change in the Energy ΔE along the trajectory. Accept the new configuration

with probability exp(−ΔE).
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The algorithm described above is applicable only for an even number of degenerate quark

flavors. This restriction can be circumvented by the rational hybrid monte carlo (RHMC)

algorithm. [77] It makes use of the fact that a powerlaw function in a given range can be well

approximated by a sum of rational functions

xγ ≈ α0 +

k∑
i=1

αi
x + βi

(4.18)

where αi and βi depend on γ , the order of the approximation, and the approximation range.

There are algorithms [78] to determine appropriate αi and βi so that the approximation is accurate

up to a certain error. Using this approximation, a single fermion species can be realized by

employing

ϕ†(D(U)D†(U))−1/2ϕ ≈ α0ϕ†ϕ +
k∑
i=1

αiϕ†(D(U)D†(U) + βi)−1ϕ. (4.19)

The inversion of the shiftet operator (D(U)D†(U)+ βi can be efficienty done for multiple values

of βi using a multishift algorithm. [79, 80] The method above is also used to reduce the number

of flavors in the case of staggered fermions from four to one. There is ample evidence that this

is procedure is correct. [81–98]
1
Some authors disagree with this, see e.g. [99–101].

1
Collection of references from [33], see there for a discussion.
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Analysis strategies

In this chapter I will explain common analysis methods that where used in several projects

described in this thesis. Firstly, I will explain the statistical treatment and the estimation of

statistical uncertainties. Then, I will describe how systematic uncertainties have been estimated.

This is followed by a discussion of the spectral decomposition of correlation functions. After

that, the results are applied to derive the Feynman-Hellman theorem which was used to extract

matrix elements from two-point functions. Then, I describe the use of the Kolmogorov-Smirnov

test to determine optimal fitranges. Finally, I will explain the method used for correlated fits

that takes uncertainties on independent variables into account.

5.1 Statistical treatment

This section explains the statistical treatment of monte carlo data. A overview on the topic can

be found in [75, 102] on which this section is based. The mean value of an observableO can be

calculated via the sample average

〈O〉 =
1

N

N∑
i=1

Oi + O(1/N) (5.1)

where Oi is the measured value of the observable on each configuration and N is the number

of configurations. The sample average, the right hand side of eqn. (5.1) without the O(1/N)

terms, will be denoted as
¯O. Due to the nature of the calculations, the expectation value is

determined only up to an statistical uncertainty ΔO. The magnitude of this uncertainty scales

proportional to

√
1/N . However, the error can not simply be estimated by the sample standard

deviation. This would be the correct procedure if all individual samplesOi would be completely

independend. [102] One of the features of MCMC is, however, that a new configuration is always

based on a previous one. Therefore, the measurements are not independent and the naïve

estimate of the uncertainty fails. [33, 75, 102]

Configurations that are separated from each other by a large number of updates are almost

independent. The characteristic timescale after which configurations become independent is

called autocorrelation time. To determine it, the sample autocorrelation function

C(t) =
1

N

N−t∑
k=1

(Ok −O)(Ok+t −O) (5.2)
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and its normalized version

Γ(t) =
C(t)
C(0)

(5.3)

can be used. In [102], a formula for the estimation of the error of the auto correlation function is

presented:

(ΔΓ)2 ≈

kmax∑
k=1

(Γ(k + t) + Γ(k − t) − 2Γ(k)Γ(t)), (5.4)

Here, tmax has to be sufficiently high. The asymptotic late time behavior of the autocorrelation

function is expected to behave as

Γ(t) ∝ exp(−t/τexp). (5.5)

The autocorrelation function at late time is difficult to estimate; it is compatible with zero

after very few autocorrelation times in almost all cases. Frequently, at early times the deviation

from the exponential behavior is significant and a reliable extraction of texp is not possible. It is
therefore useful to define a closely related quantity, the integrated autocorrelation time τint. It
can be estimated by the sum

τW
int
=

1

2

+

W∑
t=1

Γ(t). (5.6)

If the autocorrelation function decays purely exponentialy with a decay constant τexp, it can be

shown that

τint =
∫ +∞

0

dt exp(−t/τexp) (5.7)

where

τint = lim

W→∞
τW
int
. (5.8)

When the integral is cut off at a timeW , eqn. (5.6) can be seen as the Riemann sum approximating
1

this integral. In practice this limit is seldom taken as the contributions from late times to the

sum in eqn. (5.6) would be exponentially small and would introduce large statistical noise. A

optimal value forW is complicated to obtain; a sophisticated autowindowing procedure was

proposed in [102]. Often, however, it suffices to cut of the sum at the first instance where the

estimate of Γ(t) becomes negative. It can be shown that the correct formula for (ΔO)2 is

(ΔO)2 =
2τint + 1

N − 1

(O2 −O
2

) (5.9)

This means that a large autocorrelation time decreases the effective number of independent

configurations. [102]

Eqn. (5.9) is only applicable to quantities that can be directly measured on each configuration,

although related formulae for derived quantities exist. However, there is a general method

with which errors can be calculated in these cases. It is known as the statistical bootstrap [103].

When performing a monte carlo calculation, configurations are sampled from a certain target

1
However this sum converges only if the time increments become small compared to the characteristic timescale τ.
Therefore convergence is only reached if τ →∞. This is neither the case nor is it desirable.
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distribution. Suppose N configurations have been sampled. Furthermore, assume K observables

have been measured on each of these configurations and Ok
i is the k-th observable on the

i-th configuration. f (〈O1〉, 〈O2〉, . . . , 〈Ok〉) is a derived observable. One way to estimate the

uncertainty of f would be to perform b independent monte carlo computations and take the

spread of these as the statistical uncertainty of f . Inmost cases thiswould not be practical. Instead,

it can be assumed that the sample distributions of theOk
are the best known approximations to

their true distributions. According to the bootstrap procedure one resamples from the sample

distributions and takes this as an approximation to sampling from the true distributions. M
bootstrap samples are generated by drawing N times randomly from the N configurations with

replacement and the bootstrap mean is calculated for each observable and for each of the M
bootstrap samples by averaging over the N randomly resampled configurations. On the m-th
bootstrap sample the bootstrap average of the observablesOk

is called Ok(m)
. Out of these one

can construct M bootstrap values for f according to

f (m) = f (O1(m)
,O2(m)

, . . . ,OK(m)). (5.10)

Then, the statistical uncertainty of f is

(Δf )2 =
1

M

∑
m

f (m)2 −
1

M2

(∑
m

f (m)
)

2

. (5.11)

As the number of possible distinct bootstrap samples is very large,M can be chosen very large. In

this work usually a value of 2000 is employed. The bootstrap method is used for the estimation

of statistical uncertainties throughout this work. [75]

In the presence of autocorrelation the bootstrap method underestimates the uncertainties. This

can be avoided by performing a blocking prior to the bootstrap procedure without changing

the rest of the method. This means that prior to resampling, L consecutive configurations are
combined into blocks. Then, theM bootstrap samples are generated by sampling randomly with

replacement N/L blocks instead of sampling individual configurations. The method is expected

to be accurate if L & τint. [102] The correct blocksize can also be estimated by varying L and
calculating the resulting bootstrap uncertainty. A good value for L is reached if the uncertainty
does not increase by further increasing L. [102]

5.2 Systematic uncertainties

Calculations are necessarily done using finite lattices. The algorithms used in this work guarantee

that, up to statistical uncertainties, the results are exact for the given set of parameters and a given

lattice size. However, results in the limits of vanishing lattice spacing and infinite lattice volumes

can not be directly obtained; both limits imply that the number of degrees of freedoms tend to

infinity. Therefore, calculation with different lattice spacings and volumes are extrapolated to

the two limits. The interplay between the two limits is illustrated in figure 5.1. [33]

The continuum limit has to be taken along a trajectory in the parameter space leading to a

second order critical point at which the correlation length in lattice units diverges. Because of

the divergence of the correlation length the details of the action become irrelevant and coninuum
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continuum
limit

infinite volume
limit

physical
results

Figure 5.1 – Overview of the limits necessary in a lattice calculation. Lattice calculations are necessarly done
with a finite number of lattice sites. Therefore, both the continuum and the infinite volume limits must be taken.
The red blob indicates a typical correlation length.

physics emerges. It is convenient to choose a trajectory on which N −1 observables are constant.

Here, N is the number of fundamental parameters of the action. It is common practice to use the

gauge coupling β to determine the lattice spacing. Then, the continuum limit lies at β → 0. [34]

In case of QCD, it is not known beforehand which values for the quark mass parameters are

correct at a given β. Therefore, it is useful to perform several calculations with different values

for these parameters. Preferably, these parameters are chosen close to the desired trajectory

in parameter space. This allows to inter-/extrapolate to this trajectory without performing

new calculations. This can be done by introducing fit functions that interpolate or extrapolate

between simulations at different parameters. The choice of the fit functions introduces systematic

uncertainty that must be estimated. Reasonable choices for a fit functions would be e.g. a Taylor

expansion arround the physical point or a fit function based on leading order chiral perturbation

theory. [17, 20]

The following sources of systematic uncertainties are important for many lattice calculations:

• Uncertainties originating from the continuum extrapolation.

• Uncertainties originating from the infinite volume extrapolation.

• Uncertainties from the interpolation or extrapolation of simulation parameters.

In this work the Historam method, which was introduced in [17, 20], is used to deal with these

uncertainties. To apply this method, one identifies all instances where possible higher orders

terms where neglected. For example, if a quantity X has formally leading order a2
correction,

one can determine X(a2) at different values of a and fit X(a2) with the ansatz c0 + c1a2
. To

estimate the effects of even higher order terms, one has to find several equally well justifiable

procedures that have the same leading order behavior but differ in the higher orders. In the case
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of the continuum limit it is customary e.g. to vary the number of lattice spacings included in

the above fits. One then performs analyses with all thinkable combinations of these procedures.

The results for a specific quantity will be scattered around a mean which will be taken as the

final estimate of the quantity. The spread of the distribution is an estimate of the systematic

uncertainty. The distribution can be nicely visualized with a histogram, which lead to the name

of the method. [17, 20]

It might happen that not all fits entering the histogram method are working equally well. Some

might have an excellent fit quality while others may have a very bad one. Fits with a poor fit

quality do not describe the data very well and hence should not have a big influence on the final

estimate. It is therefore natural to weight the fits with some measure of fit quality. In this work,

two weighting methods have been used. The first method is the fit quality or p-value: In a χ2

fit, the quantity to be minimized is the quadratic sum of residuals, often called χ2
-value. It can

be shown, under reasonable assumptions, that the χ2
-values are distributed according to a χ2

distribution. A χ2
distribution is fully specified by the number ndof of degrees of freedoms of

the fit. The quality of fit Q is given as

Q = 1 − cdf(ndof, χ2) (5.12)

where χ2
is the quadratic sumof residuals of the fit and cdf is the cumulative distribution function

of the χ2
distribution with ndof degrees of freedom. If the fit function perfectly describes the

data, Q is distributed uniformly between 0 and 1. [17, 20] The second is a weighting method

based on the Akaike information criterion (AIC). The AIC weight of a fit is is given as

wAIC = exp

(
−

1

2

(χ2 + 2p)
)

(5.13)

where p is the number of paramters of the fit function. [20]

5.3 Spectral decomposition of correlation functions

The following discussion is based on [34].

An important feature of any quantum field theory is its spectrum. Correlation functions can be

decomposed in terms of the eigenstates of the Hamiltonian. This decomposition is necessary to

extract masses from correlation functions. Also it is required for the derivation of the Feynman-

Hellman theorem presented in the next section. The lattice regulated Euclidean path integral

involves (anti-)periodic boundary conditions. Hence the euclidean correlation function of the

operators A and B with time separation t is

〈B(t)A(0)〉T =
tr

[
e−(T−t)HBe−tHA

]
tr

[
e−TH

] . (5.14)

Expanding this expression in terms of the eigenstates | n〉 of the Hamiltonian yields

tr

[
e−(T−t)HBe−tHA

]
=

∑
n,i,j

e−(T−t)Eie−tE j 〈n | i〉〈i | B | j〉〈j | A | n〉 (5.15a)

tr

[
e−TH

]
=

∑
n
e−TEn 〈n | n〉 (5.15b)
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Using the normalization 〈i | j〉 = δij, the above expressions simplify to

tr

[
e−(T−t)HBe−tHA

]
=

∑
i,j

e−(T−t)Eie−tE j 〈i | B | j〉〈j | A | i〉 (5.16a)

tr

[
e−TH

]
=

∑
n
e−TEn (5.16b)

The last expression is the partition function of a grand canonical ensemble with inverse tem-

perature
2

1/(aNt), spatial volume a3N3

t and chemical potential μ = 0. Correlation functions at

zero temperature can be obtained in the limitT →∞. In that limit it can be safely assumed that

tr

[
e−(T−t)HBe−tHA

]
≈

∑
j

e−(T−t)E0e−tE j 〈0 | B | j〉〈j | A | 0〉, (5.17a)

tr

[
e−TH

]
≈ e−TE0

. (5.17b)

Therefore,

〈B(t)A(0)〉 = lim

T→∞
〈B(t)A(0)〉T =

∑
j

e−t(E j−E0)〈0 | B | j〉〈j | A | 0〉. (5.18)

The quantities ΔE j = E j − E0 are the measurable energies relative to the vacuum energy. In

practice, it is customary to have Nt at least as large or larger then Ns. Therefore, the finite

volume effects introduced by the finite spatial volume usually dominate the finite temperature

effects caused by the temporal lattice extend. [34]

Eqn. (5.18) can be used to extract the mass MX of a particle X from euclidean correlation

functions of interpolating operators A and B. A and Bmust be chosen to create and destroy a

particle of type X . In practice, it is difficult to find interpolating operators that create or destroy

exclusively the particle X . In many cases, it is possible, however, to find operators that create

and destroy a multitude of states of which the particle X at rest is the lightest one. In such cases,

the late time behavior of eqn. (5.18) is

〈B(t)A(0)〉 −−−−→
t→∞

e−MX t〈0 | B | X〉〈X | A | 0〉 (5.19)

where | X〉 is the state containing one particle of type X . For finiteT , the situation is complicated

by the periodicity of the lattice: There is another contribution to the correlator, with the

asymptotic behaviour [33]

〈B(t)A(0)〉 −−−−−−→
T−t→∞

e−M ˜X (T−t)〈0 | A† | ˜X〉〈 ˜X | B† | 0〉 (5.20)

where
˜X is the lowest lying state that is created/destroyed by the adjoint operators of A and

B. [33] For the meson operators used in this thesis the forward and the backward propagating

parts are identical and the correlation function CX (t) can be written as

CX (t) = aX cosh (−MX (t − T/2)) (5.21)

2
Here there is potential for confusion due to the notation. The inverse temperature is often written as β which
is already used as a parameter specifying the gauge coupling. To add to the confusion this β appears in the

exponential of the action much like a temperaure appears in the exponential of the hamiltonian
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5.3 Spectral decomposition of correlation functions

Figure 5.2 – Illustration of the periodic behaviour of correlation function around.

In order for only the lightest state to contribute, the correlation function has to be evaluated

at a time that is sufficiently late for the forward propagating contribution of the excited states

to be suppressed but not so late that the backward propagating excited states become relevant.

In the free case, the propagation can wrap multiple times around the temporal direction of the

lattice resulting in

CX (t) = aX

[
e−MX t +

∞∑
n=1

e−MX (nT+t) + e−MX (T−t) +

∞∑
n=1

e−MX (T+nT−t)

]
. (5.22)

The infinite sums can be factored out leading to the expression

CX (t) = aX

[
∞∑
n=0

e−MX nT

] [
e−MX t + e−MX (T−t)

]
(5.23)

An illustration of the behavior of such a correlation function can be found in figure 5.2. The

situation is similar for baryons. There, however, the backward propagating states acquire a

negative sign. [34] The correlation function shows the same behavior except that the cosh is

replaced by a sinh:

CX (t) = aX
e−MXT/2

1 − e−MXT
sinh (−MX (t − T/2)) (5.24)

The forward and backward propagating states are not necessarly the same. [34]. This can be

mitigated by instead considering

ˆCX (t) =
1

2

(CX (t) − CX (T − t)). (5.25)

When calculating the correlation function numerical, the fermion fields have been integrated

out. Therefore, it is not possible to put fermionic observables in front of the exponential in the

path integral. One can analytically solve the generalized fermionic gaussian integral [34]∫
Dψ̄Dψ exp(ψ̄Dψ + η̄ψ + ψ̄η) ∝ detD exp(−η̄D−1η). (5.26)

55



Chapter 5 Analysis strategies

From this expression, Wicks theorem follows [34], which states that

〈ψ̄i1ψ j1 . . . ψ̄inψ jn〉 = (−1)n〈
∑
σ

sign(σ )(D−1)i1 ,jσ (1) . . . (D
−1)in ,jσ (n)〉. (5.27)

One can use this theorem to express fermionic expectation values as gauge field averages over

inverses of the fermion matrix. [34]

5.4 The Feynman Hellmann theorem

The FeynmanHellmann theorem [12–15] relatesmatrix elements of eigenstates of theHamiltonian

to derivatives of their masses. Here, this theorem is proven for derivatives with respect to quark

masses. The derivation is based on the one presented in [104]. For reasons of simplicity, the case

of the nucleon is considered, although the theorem holds for all bound states. Throughout the

derivation, all quantities are understood to be in lattice units. It is assumed that

SF = ψ̄(mq1 + M)ψ (5.28)

where M does not depend on the quark masses mq, like in the continuum.

The mass of the ground state of the nucleon is defined, as discussed in the last section, by

the late time behavior of correlation functions of nucleon operators. For the purpose of the

derivation, the effective mass

meff(t) =
1

δt
log

C(t)
C(t + δt)

. (5.29)

is used to extract the late time behavior. Here, δt is a small shift in time often taken to be one

lattice unit. C(t) is the nucleon two point function

C(t) = 〈N(t) ¯N(0)〉. (5.30)

and
¯N and N are interpolating operators that create or destroy a state containing a nucleon and

exited states. The derivative of the effective mass with respect to the quark mass mq is

∂mqmeff(t) =
1

δt

[
∂mqC(t)
C(t)

−
∂mqC(t + δt)
C(t + δt)

]
. (5.31)

Consequently, it is sufficient to find the derivative of the correlation function.

In the path integral formalism the two point correlation function can be written as

C(t) = 〈N(t) ¯N(0)〉 =

1

Z

∫
DUDψDψ̄ N(t) ¯N(0) exp

(
−mq

∑
x

ψ̄(x)ψ(x) − ψ̄Mψ − SG

)
. (5.32)

After introducing the shorthand notation

Q(t) =
∑
x
ψ̄(t, ®x)ψ(t, ®x) (5.33)
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5.4 The Feynman Hellmann theorem

its derivative is

∂mqC(t) =
∑̂
t

[
−〈N(t)Q(t̂) ¯N(0)〉 + 〈N(t) ¯N(0)〉〈Q(t̂)〉

]
. (5.34)

It consists of one contribution from the derivative of the exponential in the path integral and

one contribution from the derivative of the partition function Z. The first is called a connected
contribution and the later is call a disconnected contribution.

To relate these expressions to matrix elements their spectral decomposition must be studied.

For the connected part it is convenient distinguish several cases: t > t̂ > 0, t̂ > t, t = t̂ and t̂ = 0.

The most important case is the first where the spectral decomposition is

〈N(t)Q(t̂) ¯N(0)〉 =
∑
i,j,k e−Ei(T−t)Nije−E j(t−t̂)Mjke−Ek t̂ ¯Nkj∑

i e−EiT
. (5.35)

For convenience

Nij = 〈i | N | j〉 (5.36a)

¯Nij = 〈i | ¯N | j〉 (5.36b)

Mij = 〈i | q̄q | j〉 (5.36c)

where introduced. To take the large T limit, it is useful to distinguish the cases j = k and j , k
so that the expression becomes

〈N(t)Q(t̂) ¯N(0)〉 =
∑
j

N0je−(E j−E0)tMj jNj0 +
∑
j,k

N0je−(E j−E0)tMjke−(Ek−E j)t̂Nk0. (5.37)

Upon assuming that in the first term only the ground state in the nucleon channel, with index n
and energy En, contributes and upon summing over all t̂ between 0 and t, the resulting formula

is

t−1∑̂
t=1

〈N(t)Q(t̂) ¯N(0)〉 =

(t − 1)N0nMnnNn0e−(En−E0)t +

t−1∑̂
t=1

∑
j,k

N0jMjkNk0e−(E j−E0)te−(Ek−E j)t̂ . (5.38)

The sum over t̂ in the last term is a partial geometric series and upon summation yields

t−1∑̂
t=1

〈N(t) ¯Q(t̂) ¯N(0)〉 = (t − 1)N0nMnnNn0e−(En−E0)t

+
∑
j,k

N0jMjkNk0e−(E j−E0)t e
−(Ek−E j) − e−(Ek−E j)t

1 − e−(Ek−E j)
. (5.39)
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After explicitly applying the symmetry in the sum the result is

t−1∑̂
t=1

〈N(t)Q(t̂) ¯N(0)〉 = (t − 1)N0nMnnNn0e−(En−E0)t

− 2

∑
j,k,Ek>E j

N0jMjkNk0

(
e−(E j−E0)t

1 − e−(Ek−E j)
+

e−(Ek−E0)t

1 − e−(E j−Ek)

)
. (5.40)

This expression is dominated for large t by the ground state and becomes

t−1∑̂
t=1

〈N(t)Q(t̂) ¯N(0)〉 = (t − 1)N0nMnnNn0e−(En−E0)t − Re−(En−E0)t
(5.41)

where R is a normalization factor which does not depend on t. It is given by

R = 2

∑
k

N0nM0kNk0

1 − e−(Ek−En)
. (5.42)

Now the case t̂ > t is considered. Similarly to the previous case, the spectral decomposition in

the limit of large T can be calculated to be

∞∑
t̂=t−1

〈N(t)Q(t̂) ¯N(0)〉 =
∞∑

t̂=t−1

∑
j,k

e−(E j−E0)t̂e−(Ek−E j)tM0jNjk ¯Nk0. (5.43)

In contrast to the previous case, the state with index j can be the vacuum. The expression is

spitted into the vacuum term with j = 0 and the remainder. For the remainder, the geometric

series can be summed yielding

∞∑
t̂=t−1

〈N(t)Q(t̂) ¯N(0)〉 =
∞∑

t̂=t+1

∑
k

e−(Ek−E0)tM00N0k ¯Nk0

+
∑
j>0,k

e−(E j−E0)

1 − e−(E j−E0)
M0jNjk ¯Nk0e−(Ek−E0)t

. (5.44)

The sum in the first term diverges and has to be regulated by a regulator Twhich replaces the

∞ in the above term. The regulated expression becomes

(T− t − 1)
∑
k

e−(Ek−E0)tM00N0k ¯Nk0 +
∑
j>0,k

e−(E j−E0)

1 − e−(E j−E0)
M0jNjk ¯Nk0e−(Ek−E0)t

. (5.45)

In the large t limit only the nucleon state with k = n contributes.
The remaining two cases t̂ = 0 and t̂ = t are contact terms. The limit of large T and t with
T � t is

〈N(t)Q(0) ¯N(0)〉 = e−(En−E0)t〈0 | N | n〉〈n | q̄q ¯N | 0〉 (5.46a)

〈N(t)Q(t) ¯N(0)〉 = e−(En−E0)t〈0 | Nq̄q | n〉〈n | ¯N | 0〉 (5.46b)
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These are two point functions for the nucleon. They differ from the two point function

〈N(t) ¯N(0)〉 only by that they contain different interpolating operators. Since one of the operator
always destroys or creates a nucleon, these two point function always project to the nucleon or

its excited states or to vanish.

The disconnected part can be written as the product of the spectral decomposition of a two-

point function and a the vacuum matrix element of q̄q. More explicitly

〈N(t) ¯N(0)〉〈Q(t)〉 =

[∑
i e−Ei(T−t)Nije−E jt ¯Nji∑

i e−EiT

] [∑
i e−EiTMii∑
i e−EiT

]
. (5.47)

Taking the large T limit results in

〈N(t) ¯N(0)〉〈q̄(t̂)q(t̂)〉 = e−(En−E0)tN0n ¯Nn0M00. (5.48)

The derivative of the effective mass can be calculated from the above ingredients. It is useful

to note that all exp(−(En − E0)t) terms in the expressions (5.41), (5.45), (5.46a), (5.46b), and (5.48)

cancel when the they are divided by the nucleon two-point function. In most terms the t-
dependence drops out so that these cancel each other in the difference in eqn. (5.31). The only

terms that give a non-vanishing contributions are the terms with a prefactor linear in t. They
occur in eqs. (5.41) and (5.45). Therefore, it follows that

∂mqmeff(t) =
1

δt
[δtMnn − δtM00] = 〈n | q̄q | n〉 − 〈0 | q̄q | 0〉 (5.49)

where the regulator Tdropped out. This is the Feynman-Hellmann theorem.

5.5 Kolmogorov-Smirnov test

The discussion in this section is based on [105]. The Kolmogorov-Smirnov test is used in this

work to determine if the χ2
-values from several fits follow a χ2

distribution. To test this, it is

useful to first apply a transformation. For each χ2
-value from a fit one calculates the quality of

fit Q. [105] It is defined as
Q(χ2

; ndof) = 1 − CDF(χ2

; ndof) (5.50)

where ndof is the number of degrees of freedom in the fit and CDF is the cumulative distribution

function of the χ2
distribution with ndof degrees of freedom. If all the χ2

-values from the fits

where distributed according to the χ2
distribution, then the distribution of the Q values is a

uniform distribution between 0 and 1.

Suppose there are n fits, e.g. to a certain correlation, from n ensembles. Furthermore, let Qi

be the associated fit quality for each fit. The n values Qi can be considered as samples from a

unknown distribution. It can be checked whether the data is compatible with the assumption

that this unknown distribution is the uniform distribution between 0 and 1. One convenient

recipe is the Kolmogorov- Smirnov test. A illustration how the Kolmogorov-Smirnov test was

used can be found in figure 5.3. We calculated the empirical cumulative distribution function of
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Figure 5.3 – Schematic illustration of the application
of the Kolmogorov-Smirnov test to determine the opti-
mal values of the fitting interval (tmin, tmax). For any
reasonable combination of this interval a mass, e.g. the
nucleon mass, is extracted from each ensemble by a fit
to the propagator as described in the main text. For each
ensemble the resulting χ2 value is collected and the fit
quality is successively calculated. Then, the empirical
cumulative distribution function of the fit qualities is
determined and compared with the theoretical predic-
tion. The fit range can be used if the resulting p-value
of the test is larger than a predefined threshold, e.g. 0.3.

the Qi. It is a function of the fit quality Q and starts the point (0, 0) in the (Q, CDF(Q)) plane
and ends at (1, 1). It is defined via

CDF

emp.

(Q) :=
∑
Qi>Q

1

NQ
(5.51)

where NQ is the number ofQ-values the empirical cumulative distribution function is calculated

of. Under the assumption that the underling distribution is the uniform distribution between 0

and 1, this function has the limit of a linear function between the points (0, 0) and (1, 1) if the

number of measurements are taken to infinity. For an finite number of measurements it can be

checked whether these are compatible with a underlying uniform distribution. The “distance” D
between the empirical cumulative distribution function and the cumulative distribution function

CDF(Q) of the assumed underlying distribution is defined as

D := max

����CDF

emp.

(Q) − CDF(Q)
���� . (5.52)

The probability that this value D is larger then the observed D, given that the underlying

distribution is truly the uniform distribution, is

P(D > Dobserved) = QKS

(√
NQ + 0.12 + 0.11N−1/2

Q

)
(5.53)

where

QKS(λ) :=

∞∑
j=0

(−1)j−1e−2j2λ2

. (5.54)

Further information on the Kolmogorov-Smirnov test can be found in [105] and references

therein where this discussion is based on.

5.6 Correlated fits

Frequently, the dependence of several depended variables on several other independent variables

must be described by a model function which must be fitted to the measured data. Often, both
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5.6 Correlated fits

Figure 5.4 – Schematic illustration of the correlated fit.
Here a function fy(x) is is fitted to data that has an
error both in x and y direction. For each datapoint a
free fit parameter δx is introduced. For this datapoint
the fit function is evaluated at x̄ + δx where x̄ is the
mean value of x measured at this datapoint. The vector
®δ = (δx , δy) with δy = f (x̄ + δx) − ȳ quantifies the
deviation from the datapoint. The contribution of this
datapoint to the χ2 value of the fit is given by δTCδ if
C is the correlation matrix. The blue ellipses indicate
the 1σ and 2σ regions. The red lines indicate the size of
the eigenvalues of the correlation matrix.

the independent and the depended variables are measured with finite accuracy, i.e. they have

statistical uncertainties. Furthermore, the variables can be correlated. For a proper statistical

treatment it is important to take all these uncertainties and correlations into account. In this

section the strategy for dealing with such situations is explained. The method described here is

frequently employed by the BMW collaboration, for example in [17, 20, 106] For simplicity, the

procedure is discussed first in the case of a fit with one depended and one independent variable.

Then the generalization to more variables is discussed.

Let x̄i and ȳi be the mean values of X and Y on the i-th ensemble. Also, let Ci be the statistical

correlation matrix between x̄i and ȳi. Suppose f (X) predicts Y as a function of X and has several

parameters that must be fitted to the available data using a χ2
minimization. For the χ2

-value to

be an indicator of the fit quality, it is necessary that all correlations are fully taken into account.

The standard χ2
routines, as found e.g. in [105], do, however, only deal with the uncertainties of

the Y values and can not be used in this setting.

We circumvent this by introducing additional fit parameters δx,i, one for each ensemble. In

the χ2
routine, we go through all ensembles and evaluate f (x̄i + δx,i). Then, we construct

δy,i = ȳi − f (x̄i + δx,i) Together, δx,i and δy,i describe the difference between the datapoints and

the fit function in the X-Y plane. The situation is depicted in figure 5.4. We combine both values

into a vector

®δi =

(
δx,i
δy,i

)
Then, we calculated the χ2

-value of the fit using

χ2 =
∑
i

®δTi C
−1

i
®δi

where the sum goes over all ensembles. The quadratic form in this expression tells us, how many

standard deviations the model function is away from the measured datapoint at the closest point.

The method can be easily generalized to several variables. In that case several fit functions

fj predict the dependent variables Yj in terms of the independent variables X j. We introduce

parameters δx,i,j for each independent variable where i indicates the ensemble and j refers to
which independent variable is considered. Similarly, we introduce several δy,i,j as differences
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between the measurement of the j-th dependent variable and the prediction of the j-th fit

function on the i-th ensamble. We construct

®δi =
(
δx,i,1 δx,i,1 . . . δy,i,1 δy,i,1 . . .

)T
and calculate

χ2 =
∑
i

®δTi C
−1

i
®δi

where this time C−1

i is the full correlation matrix between all dependent and independent

variables. This method is used through the thesis whenever a correlated fit containing several

variables measured on the same ensembles is performed.
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Chapter 6

The Higgs couplings of nucleons

Nucleons are bound states that consist of quarks, antiquarks and gluons, which bind the quarks

together. Their masses are predicted by the standard model of particle physics. [17, 20] According

to it, once the electroweak symmetry is broken, fundamental fermions, initially massless, acquire

masses by interacting with the background Higgs field. [9] A key property of this mechanism

is that masses generated by it are proportional to the strength of the interaction between the

external Higgs field and the particles the mass of which is created. [10] This was experimentally

confirmed [107] recently. For fundamental fermions that do not interact via the strong interaction,

for example electrons, this is the end of the story. Quarks, however, are confined into color

neutral states, for example pions or nucleons. Their masses are not solely determined by a

Higgs coupling. [108] The details of the complicated interactions of the quarks and gluons inside

these bound state are also important for their masses; these interactions carry energy and hence

generate masses. [17] Nucleons are often imagined as bound states of valence quarks, e.g. of two

up-quarks and one down quark in the case of the proton. In truth, however, quarks of all flavors

can be found inside these states, in the form of virtual particles. These quarks couple to the

Higgs field proportional to their respective masses and this leads to a coupling of the nucleon to

the Higgs field. This coupling, however, is not determined by the nucleon’s mass; it is only a

fraction of the interaction a fundamental fermion with the same mass would have.

We can determine how much a bound state x couples to the Higgs field via the Higgs coupling
of the fermion f by calculating the sigma term σx f = g f ∂mx

∂g f
. In this expression g f is the coupling

between the fermion f and the Higgs field. For any fundamental fermion f we find σ f f = m f

because m f ∝ g f . For a nucleon N we can therefore substitute the quark-Higgs couplings with

the quark masses and write

σqN = mq
∂mN

∂mq
. (6.1)

The sum

∑
q σqN is smaller then the nucleon’s mass, because of the reason laid down above. It is

common to define the nucleon quark contents as fqN = σqN/MN .

Each nucleon’s mass is given by the expectation value 〈N | H | N〉 where | N〉 is a nucleon
state at rest, normalized so that 〈N | N〉 = 1 and H is the Hamilton of QCD. For all expectation

values, here and in the following, a subtraction of the vacuum expectation value is implicitly

understood. In [109] a way to decompose this Hamiltonian was suggested. That decomposition

has the form

H =
∑
q
mqq̄q +Orest. (6.2)
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The details of the operator Orest are not important here. It suffices to know that it does not

depend on the quark masses. In [109] it was also noted that the expectation value of the trace of

the energy momentum tensor θ is

〈N | θμμ | N〉 = 〈N |
∑
q
mqq̄q + γm

∑
q
mqq̄q +

β
g2
G2 | N〉 − 〈0 | . . . | 0〉 = MN . (6.3)

Notably, 〈N | mqq̄q | N〉 and MN are independent of the renormalization scale. Consequently,

Ma
N defined as

Ma
N = 〈N | γm

∑
q
mqq̄q +

β
g2
G2 | N〉. (6.4)

is also independent from the renomalization scale. [109] Then, from

MN = 〈N |
∑
q
mqq̄q +Orest | N〉 (6.5)

follows that 〈N | Orest | N〉 = Ma
N . [109] The Feynman-Hellman theorem [12–15] states that

σqN = 〈N | mqq̄q | N〉. Therefore, the nucleon masses can be written as [109]

MN =
∑
q
σqN + Ma

N . (6.6)

The decomposition outlined above is not unique and other proposals exist in the literature. See

e.g [109–111]. Also,Ma
N can be broken down further. See [110] for an example of such a calculation.

The decomposition outlined in the above paragraph is based solely on properties of operators

and not on their matrix elements. This is important since, for example, Orest is independent of

the quark mass but Ma
N is not. This can happen because the state | N〉 itself depends on the

quark masses. As a consequence, such a decomposition does not capture the complete effect of

the of quark masses in one term while keeping the other terms independent of the quark masses.

For the same reason, the nucleon mass is not a linear function of the quark masses. Nevertheless,

the individual contribution in eqn. (6.6) have real physical meanings and are important for

ongoing experiments. The sigma terms σqN not only tell us how large a nucleon’s interaction

with the Higgs field, mediated by the quark flavor q, is but also how much a nucleon would

interact with certain dark matter candidates if they turn out to exits. [16] Many extensions of the

standard model that aim to describe dark matter contain particles that interact with nucleons

through scalar quark condensates. One example are WIMPs. In the mentioned theories, the

strengths of the spin-independent interactions of the dark matter candidates with nucleons

are determined by the quark-dark matter couplings and linear combinations of nucleon sigma

terms. The former are properties of the new theories and are to be measured while the latter are

predictions of the standard model and should be calculated from it. Direct dark matter detection

experiments usually rely on measuring the scattering of the dark matter particles on nuclei and,

therefore, need precise values for the sigma terms to relate their findings to parameters of the

underlying new theories. [16]

Nucleon sigma terms where calculated before by many authors using different methods. One

group of calculations relies on experimental pion nucleon scattering data to calculate the light
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sigma terms [112–117]. Earlier determinations of this type preferred a lower value of around

40MeV while later phenomenological works with improved analysis techniques (s. [115, 117, 118]

for a discussion) predict that it might by as high as ∼ 60 MeV [115]. The light sigma term can

be converted, with the use of chiral perturbation theory and the strange to light quark mass

ratio, to values of the strange sigma term [119–121]. Further phenomenological studies of the

light and strange sigma terms using various methods, sometimes including published lattice

results, have been carried out [122–127]. Several groups have computed the light, strange, and

in some instances the charm sigma term on the lattice [128–143] Most lattice calculations favor

a lower value of the light sigma term compared to the larger phenomenological values, more

in line with the initial phenomenological estimates. The origin of this discrepancy is not fully

understood [116].

Here, I present lattice calculations for the up, down, strange, and charm sigma terms. For the

up, down, and strange sigma terms I present two calculations. The first is based on a set of gauge

configurations which include pion masses down to the physical point. These configuration

enabled us to calculate σudN ≈ σuN + σdN very precisely but allowed only for a comparatively

imprecise determination of σsN . With this calculation in mind we also derived how σudN-
results can be related to individual up and down sigma terms of the proton and neutron. After

discussing that work, I will present a second computation of the same quantities on different

gauge configurations. These configurations have significantly reduced statistical uncertainties,

compared to the previously used ones. Since they don’t include physical pion masses, we could

not improve the light sigma term much. For the strange sigma term, on the other hand, these

new configurations allowed us to reduce the uncertainty significantly. The analysis strategies

differ significant between the two analyses. In the first analysis we performed global fits to

Wilson configurations. In the second analysis we splitted the work into two parts so that we

where able to leverage the advantages of two datasets. One part was well suited to be carried

out on Wilson data. For the other part we used the advantages of a staggered dataset. After

discussing this second analysis, I will present a calculation of the charm sigma term from first

principles. Then, I explain how heavy quark effective theories [2, 53, 54] can be used to estimate

the top and bottom sigma terms. Finally, I present how the results are combined to provide a

consistent picture of the nucleon-Higgs interaction.

6.1 General strategy for light and strange sigma terms

Two methods are frequently employed to determine nucleon sigma terms in lattice calculations.

One of them, often called “direct method,” is based on the direct evaluation of three point

functions having the form

〈N(t) | q̄q | N(0)〉. (6.7)

These are constructed from nucleon two point functions by inserting a quark antiquark operator

pair between the nucleon states. While conceptually simple, it is not simple to use this approach

in practice. To evaluate the above expression, many quark field contractions must be evaluated.

Some of them are disconnected. In figure 6.1 the quark operators and some contractions for the

case q = u are shown. The blue lines represent a connected contribution in which all lines have

at most one endpoint at the quark antiquark pair inserted between the nucleon states. These
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uu uu

dd
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uu
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measurent of scalar
quark content

time

Figure 6.1 – Sketch of the calculation of the nucleon sigma term. On the right hand side a nucleon is created
and on the left hand side a nucleon is annihilated. The nucleon sigma term is measured by including a pair of
quark-antiquark operators in between. The insertion of the quark antiquark pair can be achieved either by the
Feynman-Hellmann method or by a direct insertion. For the latter case a connected (blue) and a disconnected
(red) contribution is indicated. The red shade indicate the contribution of excited states to the two-point function
where the blue shade indicates the contribution of the ground state.

contributions are relatively simple to calculate because all propagators start from a small number

of points. Therefore, all necessary propagators can be calculated by inverting the Dirac operator

for a few right hand sides. Disconnected contributions (e.g. the red lines) are more difficult to

calculate. Since the quark antiquark pair can be inserted at any lattice site, propagators form all

lattice points to all lattice points are needed. Calculating them amounts to calculating the the

full inverse of the Dirac operator. This is prohibitively expensive in most cases. However, there

has been substantial progress using stochastic evaluations of such contributions: This idea is

successfully used for nucleon sigma term calculations in [132, 137–143].

We, nevertheless, used a different approach, often called the Feynman-Hellmann method. The

Feynman-Hellmann theorem relates changes of energies of eigenstates of the Hamiltonian under

variations of the parameters of the theory to matrix elements of these states. According to this

theorem, it suffices to calculate derivatives of nucleon masses with respect to quark masses

to determine the the nucleon sigma terms. Since masses can be calculated from two point

functions, this avoids the calculation of disconnected contributions. The theorem, originally

derived in quantum mechanics [12–15], is introduced in section 5.4. Other calculations based on

this approach can be found in [123, 126, 127, 129, 131–134, 138, 144]

Before discussing any analysis in detail, I explain the general strategy in the important case

of N f = 2 + 1 QCD. Firstly, a parametrization of the nucleon mass on different ensembles is

introduced. To this end, and to set the physical point, it is convenient to use proxy quantities for

the light an strange quark masses that do not require renormalization. Such quantities can be
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readily found by means of chiral perturbation theory [18]:

M2

π = B(mu + md) + O(m2

u,m
2

d), (6.8a)

M2

K0
= B(md + ms) + O(m2

d ,m
2

s ), (6.8b)

M2

K+ = B(mu + ms) + O(m2

u,m
2

s ). (6.8c)

The squared pion mass is a proxy for the light quark mass, and a combination of the pion and

kaon squared masses is a proxy for the strange quark mass. Specifically,

mud ∼ M2

π , (6.9a)

ms ∼ M2

Kχ
:= M2

K+ + M
2

K0
− M2

π . (6.9b)

The physical values of M2

π and M2

Kχ
are known [19]. Since the exact functional dependence of

the nucleon mass is not known, a Taylor expansion of MN around the physical point is used to

approximate it. Such a expansion has the form

MN = c0 + c1(M2

π − M
(ϕ)2
π ) + c2(M2

Kχ
− M(ϕ)2Kχ

) + . . . . (6.10)

Here and in the following, M(ϕ)X refers to the mass of the particle X at the physical point. For

the sake of simplicity, only the first terms in the expansion are shown, although higher terms

might be important. This function can be fitted to the numerical results on different gauge

ensembles, generated to scatter around the physical point. After fitting, including possible

higher order terms, the value of c0 is an estimator for the nucleon mass at the physical point.

Likewise, c1 and c2 are estimators for the derivatives of the nucleon mass with respect to the

squared pion mass M2

π and the squared reduced kaon mass M2

Kχ
. They are closely related to

the quark mass derivatives of the nucleon mass, because of eqs. (6.9a) and (6.9b). By virtue of

the Feymnan-Hellman theorem, c1 and c2 are almost proportional to the nucleon sigma terms.

These proportionalities would be exact if all higher order corrections to the eqns. (6.8) would

vanish, and if a sufficient number of terms in eqn. (6.10) would be included in the fit. The values

of c1 and c2, with higher order terms in eqn. (6.10) included, sometimes referred to as mesonic

sigma terms, are of interest on its own [145].

We used two approaches to calculate the sigma terms:

1. We parametrized the nucleon mass in terms of the quark mass parameters instead of the

squared meson masses.

2. We left the parametrization as it is and determined ∂M2

meson
/∂mquark at the physical point

to correct for the higher order effects.

Both choices are reasonable and have desirable features. I present two lattice calculations of the

light and strange sigma terms, based on two different set of ensembles, each using one of the

strategies outline above. The specifics of the different sets of ensembles dictate which of the two

approaches is better suited.

6.2 The 2hex analysis for light and stange sigma terms

The analysis described in this section has been published in [146]. It is referred to as “2hex

analysis” in this thesis because the action used contains two level of HEX smearing.
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The calculation is based on a collection of Wilson gauge ensembles that have been previously

used by the BMW collaboration, for example in the calculation of quarkmasses [66]. Our strategy

was to used a fit function to describe the nucleonmass’s dependence on the quarkmasses directly.

To that end, we used the renomalization factors already calculated in [66] to define properly

renormalized quark masses, and parametrized the nucleon mass in terms of these quark masses.

We then fitted the parametrization of the nucleon mass to the lattice data. On one hand, data

with a large range of pion masses, including the physical pion mass, was available, so that

we where able to determine the slope of the nucleon mass in the light quark mass direction

very well. On the other hand, the variation in the reduced kaon mass was relatively small. As a

consequence, we could determine the nucleonmass’s slope in that direction only with a relatively

large uncertainty. After fitting, we used the Feynman-Hellman theorem to read of the sigma

terms from the slope of the parametrization.

I will first describe the properties of the gauge ensembles entering this analysis. Then, I will

describe how we extracted the baryon, meson, and quark masses form the correlation functions

of suitable operators. Afterwards, I will explain what parameterization for the nucleon mass

was used. I will then discuss our strategy to estimate the systematic uncertainties. Finally, I will

present the results.

6.2.1 The lattice setup of the 2hex analysis

The 2hex dataset is made of of 47 N f = 2 + 1 ensembles, consisting of configurations generated

with a Symmanzik improved gauge action and a clover improved fermion action. The gauge

fields that enter the fermion action have been smeared by two levels of HEX smearing. On the

roughly 13000 gauge configuration that are in the dataset, each propagator was calculated by

inverting the Dirac operator with about 40 different sources per configuration. The dataset

features 5 different lattice spacing with the coarsest being acoarsest ≈ 0.116 fm and the finest being

afinest ≈ 0.054 fm. The spatial extents of the lattices reach up to 6 fm. The ensembles feature

pion masses down to about 120MeV, going even below the physical point. The configurations

have been used for many other projects of the BMW collaboration, e.g. [17, 66]

6.2.2 Extracting masses

We carried out the analysis in a two step procedure. In the first step, we determined the masses

of the nucleon, the omega baryon, the pion, the kaon, and the masses of the quarks. Firstly,

I describe the extraction of the masses of mesons and baryons. After that, I will discuss the

extraction of the quark masses.

To measure the correlation functions, we used standard operators, as described in [17]. To

reduce excited state contamination, the quark fields at the source and at the sink where subjected

to Gaussian smearing. Details about the operators and the smearing can can be found in [17].

The correlation functions of the operators behave as

C(t) =

{
A sinh(−m(t − Nt/2])) for baryons

A cosh(−m(t − Nt/2])) for mesons

(6.11)
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Figure 6.2 – Regions relevant for the extraction of baryon masses. The blue color represents contribution of
the ground state to the correlation function while the red color represents excited state contributions. At small
time separations the signal is dominated by excited states. At t ∼ Nt/2 one typically has a very bad signal to
noise ratio. The extraction of the mass must be performed at intermediate values between tmin and tmax. To use
the backward propagating information, the propagator is folded around Nt/2.

for large time separations between the source and the sink, as explained in section 5.3. A is a

proportionality constant not of interest here. We folded the measured correlation functions,

around their center, to explicitly enforce (anti-)symmetry before extractingm by fitting the above

functions to the measured correlation functions. Because the correlation functions contain

contributions from excited states at small time separations, we included only datapoints with

large enough time separations t in the fit. However, as t gets large, the signal to noise ratio grows
and prevents us from extracting masses at very large t. Therefore, we had to find a fit range

starting at tmin and ending at tmax for which the bias on the ground state mass introduced by

excited state contributions was small compared to the ground state mass’s statistical uncertainty.

At the same time, we had to make sure that the signal to noise ratio was still acceptable. The

situation is visualized in figure 6.2. We decided if eqn. (6.11) describes the correlation function

well, and therefore excited states effects are not statistically significant, by looking at the χ2
-

values of the respective fits. If the fit function describes the data well, the χ2
-value of each fit

is a sample taken from the χ2
distribution with as many degrees of freedoms as the difference

between the number of datapoints and the number of fit parameter. It is useful to calculate

the quality of fit Q, as defined in section 5.5, from the χ2
-value of each fit. Q is for each fit

supposed to be a sample draw from a uniform distribution between 0 and 1. If we would have

been interested in extracting only one ground state mass from one correlation function, we

would have had only one Q value available. In that case it would have been reasonable to find

a fit range for which Q is not excessively small. However, since we had several ensembles

available, and all these ensembles where statistically uncorrelated, we where able to go beyond

this. We checked if the empirical distributions of the Q values where consistent with a uniform

distribution. We did this separately for each channel, e.g. the nucleon’s or the pion’s mass. In

doing so, we assumed that the contributions of the excited states in physical units are similar for

all ensembles entering the analysis. We varied tmin in physical units while retaining a constant

(tmax − tmin)/a = 10 in lattice units. The latter choice was made to ensure that the covariance

matrix of the correlation functions in the fit region did not have excessively small eigenvalues

that would render the fit unstable. We checked, for each value of tmin, if the observed empirical

distribution of the Q-values followed the expected uniform distribution. To that end we used a
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Kolmogorov-Smirnov test, as explained in section 5.5. As preferred value of tmin we used for

each channel a value for which the Kolmogorov-Smirnov test resulted in a p-value bigger then
0.3.

With Wilson fermions, the bare quark masses undergo additive renormalization [33, 66], which

is inconvenient for the use in the Feynman-Hellmann theorem. Therefore, we used the ratio-

difference quark masses, as defined in [66]. They combine advantages of the PCAC
1
quark masses

with advantages of bare quark masses: The ratio-difference quark masses renormalize multi-

plicatively. Furthermore, the multiplicative renormalization is determined by the non-singlet

scalar current renormalization factor ZS . It can be calculated easier than the renormalization

factor of the PCAC quark masses and was available for the dataset considered here. [66] In the

following paragraph, first, the PCAC quark masses are defined and their extraction is described.

Then, the ratio-difference quark masses are constructed.

The sum of the PCAC quark masses of two flavors q1 and q2 is defined as

mPCAC

q1

+ mPCAC

q2

=

∑
x〈∂μ

(
Aμ(x) + acA∂μP(x)

)
O(0)〉∑

x〈P(x)O(0)〉
. (6.12)

A(x) and P(x) are the axial and pseudoscalar current densities constructed from quark flavors q1

and q2. The operator O is arbitrary as long as it couples to the pseudoscalar meson with quarks

of flavors q1 and q2. We choose to use smeared versions of P(0) [66]. The symmetric derivatives

∂ are defined as

∂μϕ(x) :=
ϕ(x + μ̂) − ϕ(x − μ̂)

2

(6.13)

with all quantities taken in lattice units. [66]. The improvement constant cA eliminates O(a)
corrections. [66]. The details of the improvement scheme are discussed in detail in [147]. We

employed tree-level improvement, i.e. used cA = 0 + O(αs), that leads to corrections of order
O(αsa) [66]. We extracted 2MPCAC

q1 ,q2

(t), defined as

2MPCAC

q1 ,q2

(t) := mPCAC

q1

(t) + mPCAC

q2

(t) =
CA4P(t + 1) − CA4P(t − 1)

2CPP(t)
, (6.14)

from two correlation functions, CPP(t) and CA4P(t). CPP(t) is the correlation function of two
pseudoscalar currents, with a smeared source and a point sink. CA4P(t) is the pseudoscalar to
temporal axial vector correlation function, also from a smeared source to a point sink. For

more details on the correlation functions see [66]. For moderately large t, eqn. (6.14) plateaus at
a constant value. It was this plateau value that we used to define the PCAC quark masses; we

fitted a constant to it. The choice of the fitting interval was less crucial compared to the case of

hadron masses since the plateaus started very early and the signal did not degrade much over

time. Nevertheless, we used the Kolmogorov-Smirnov test to determine a suitable fit interval

for thees channels. Finally, we constructed individual quark masses via

mPCAC

l = MPCAC
l,l , (6.15a)

mPCAC

s = MPCAC
l,s −

1

2

MPCAC
l,l , (6.15b)

1
partially conserved axial current
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where l is one of the two degenerate light quark flavors. Following [66], we combined these

PCAC quark masses with the bare masses mbare

l and mbare

s to calculate the ratio-difference quark

masses mrd

l/s. The basic idea is the following: On one hand, the bare quark masses are very well

suited to calculate the difference

d = mbare

s − mbare

l (6.16a)

in which the additive renormalization cancels. This difference renormalizes only multiplicative,

with the renormalization factor ZS . The PCAC quark masses, on the other hand, are a good

starting point to calculate the ratio

r =
mPCAC

s

mPCAC

l

. (6.16b)

In this ratio the renomalization constant, which is complicated to calculate, drops out. d and r
can be combined into unimproved ratio-difference quark masses

mrd,unimp.

l =
d

r − 1

(6.17a)

mrd,unimp.

s =
rd
r − 1

(6.17b)

These can be O(a)-improved, following [66], by replacing r and d by

dimp. = d
(
1 −

1

2

bSd
r + 1

r − 1

− bSd
r + 2

r − 1

+ O(a2)

)
, (6.18a)

rimp. = r
(
1 + (bA − bP)d + O(a2)

)
. (6.18b)

Then,

mrd

l =
dimp.

rimp. − 1

(6.19)

mrd

s =
rimp.dimp.

rimp. − 1

(6.20)

are the fully O(a) improved ratio-difference quark masses. In this work we used the tree-level

values

bS = 1 + O(αs) (6.21a)

bA = 1 + O(αs) (6.21b)

bP = 1 + O(αs) (6.21c)

bS = 0 + O(α2

s ) (6.21d)

bA = 0 + O(α2

s ) (6.21e)

bP = 0 + O(α2

s ) (6.21f)

for the improvement coefficient so that, formally, O(αaa) correction remained. [66]
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Table 6.1 – Values of the integers nX used in the 2hex anlysis of the sigma terms. The power 2
is used for the pion and reduced kaon mass because the squared mass of those particles are to
leading order proportional to the light and strange quark masses.

X nX

Ω 1

π 2

Kχ 2

N 1

6.2.3 The parametrization of the nucleon mass

We introduced a global fit model to describe the nucleon mass in terms of the quark masses.

This model is of the form

MnX
X = (1 + g

a
X (a))(1 + g

FV

X (Mπ , L))M
(ϕ)nX
X ×

(1 + (cudX + g
ud,a
X (a))m̃ud + (csX + g

s,a
X (a))m̃s + h.o.c) (6.22)

where

m̃q =
mrd

q

aZS(1 + gaq (a))
− m(ϕ)q (6.23)

and X is either π , Kχ , N or Ω. All quantities are to be understood in physical units. Our strategy

was to fit the masses of the nucleon, the omega baryon, the pion, and the reduced kaon mass

as a function of the quark masses. The physical values m(ϕ)q of the quark masses, which are fit

parameters, where not known a priori, but where automatically found by the fit using the data

for the pion and reduced kaon masses. The cqX are describing the leading order quark mass

dependencies of the quantities X . The gY ,aX are corrections introduced by the finite lattice spacing

and took one of the two functional forms

gY ,aX (a) = fit parameter × a2

, (6.24a)

gY ,aX (a) = fit parameter × αsa. (6.24b)

gFVX parametrized the finite volume corrections to the quantity X with the functional form [148]

gFVX = fit parameter ×

√
Mπ

L3
exp(−MπL). (6.25)

The integers nX are tabulated in table 6.1. The renormalization factors ZS depend on the lattice

spacing. They were determined previously in [66] and we did not calculate them again. We fitted

all channels simultaneously and could, therefore, not uniquely disentangle the roles of different

channels as being responsible for e.g. scale setting or the determination of the physical point.

However, we thought off each channel to have a specific role: The omega mass determines the

lattice spacing, the squared masses of the pion and reduced kaon determine the values of m(ϕ)ud
and m(ϕ)s , and the fit to the nucleon mass allowed us to extract the sigma terms. We performed,

as a crosscheck, a fully independent analysis in which we fitted the pion, reduced kaon, omega,

and nucleon mass channels separately in terms of the quark masses. In that way, we neglected a
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small correlation between these channels but where able to distinguish the roles the channels

played in our analysis. In this secondary analysis, we also calculated the renormalization factors

self consistently from the fits. We found the results of this secondary analysis to be in very good

agreement with our main results. We concluded that the picture explained above is essentially

correct.

6.2.4 Estimation of systematic uncertainties

The following sources of systematic uncertainties where present in this analysis.

i. Interpolation: We used eqn. (6.22) to interpolate between different ensembles. It is based

on a truncated expansion around the physical point. One can not expect such a truncation

to describe the lattice data exactly. In order to estimate the error made we added varying

higher order terms to the fit. We included terms proportional to m̃2

ud , m̃
3

ud , m̃udm̃s, m̃2

udm̃s

and in the case of the nucleon a term proportional to

m̃q =

(
mPCAC
q

aZS(1 + gaq (a))

)3/2

− m(ϕ)
3/2

q . (6.26)

These terms appear in a Taylor expansion at higher orders expept for the last term that is

inspired by chiral perturbation theory. [116] We also introduced cuts on the pion masses: All

ensembles with eitherM2

π > 320MeV orM2

π > 480MeV where removed form the analysis.

Furthermore, we estimated effects of even higher orders which could not be resolved directly.

We did this by replacing the Taylor expansions by Padé expansions of the same order. They

differ from the corresponding Taylor expansions only by terms of higher orders then those

which are explicitly present in the fit. To avoid overfitting, we did not add higher order

terms to the analysis if the corresponding fit parameter had a relative error larger then

100%. The only exceptions to this rule where next-to-leading order terms in mud because

we found them to be important to describe the light quark mass dependence of the nucleon.

ii. Finite lattice spacing: The action used in this work has leading cutoff effects of order

O(αsa). Because of smearing, these effects are numerically suppressed and the O(a2) effects

are often dominant [66]. This is taken into account by the two choices in eqn. (6.24). Both

choices provide for a reasonable continuum extrapolation. The difference between both

choices is an estimate of the uncertainty introduced by said extrapolations. The lattice data

is not of enough statistical precision to allow for a separation of both behaviors.

We found that the data can be described well with an ansatz in which the finite lattice

spacing corrections are independent of the quark masses, i.e. where the prefactors in gq,aX ,

q ∈ ud, s vanish. However, the slopes of the nucleon mass are the actual observables of

interest in this work and correction on them are crucial. Therefore, we had to estimate the

effect of the finite lattice spacing on these slopes. It turned out that the statistical accuracy

of the data was not good enough to directly include the corresponding terms in the fit.

To asses the error introduced by assuming these terms to be zero we used the following

procedure: For each variation of the fit function we fixed the nucleon mass in the continuum

limit to its experimental value. Then, we included one of the above mentioned terms —

continuum corrections on the slope in the light or strange quark direction — in the fit. The
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Figure 6.3 – ud-behavior of an example fit in the 2hex analysis for the sigma terms. On the y axis the mass
of the nucleon is shown. On the x axis the average light quark mass is shown. All datapoints are projected to
the physical point except for their light quark mass dependence. The color of the datapoints indicate the gauge
coupling at which they are obtained. The solid lines indicate the fit and its standard deviation. The dashed line
indicates the physical nucleon mass. The black dot indicates the nucleon mass extracted form the fit and its
standard deviation. [146]
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Figure 6.4 – s-behaviour of an example fit in the 2hex analysis for the sigma terms. On the y axis the mass of
the nucleon is shown. On the x axis the average strange quark mass is shown. All datapoints are projected to the
physical point except for their strange quark mass dependence. The color of the datapoints indicate the gauge
coupling at which they are obtained. The solid lines indicate the fit and its standard deviation. The dashed line
indicates the physical nucleon mass. The black dot indicates the nucleon mass extracted form the fit and its
standard deviation. [146]
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fixed nucleon mass stabilized the fits enough for them to yield useful results. We estimated

the error made by omitting the continuum corrections on the slopes from the main fits

by the difference between the values of the sigma term with and without the new terms

added. Only for the slope in the light quark direction a lattice spacing dependence could be

observed — even with the nucleon mass fixed. The associated difference in the light and

strange sigma terms where added to the systematic uncertainties in quadrature.

iii. Finite volume: Not only the lattice spacing but also the spatial extend of the lattice is finite
and consequently must be extrapolated to the infinite volume limit. A common rule of

thumb [17] is that finite volume effects of light hadron masses are negligible if MπL & 4. We

extrapolated away remaining correction using eqn. (6.25).

iv. Mass extraction ranges: For the extraction of hadron masses we had to determine the

fit ranges. Even after that, small contributions of excited states may have remained. These

contributions are exponentially suppressed as the fit range is moved to larger times. If

these effects are small, compared to the statistical accuracy of the data, then the results

of our analysis has to be independent of the chosen fit range. We estimated remaining

contributions of excited state by fitting the correlation functions not only with the initially

preferred fit ranges but also with a fit ranges shifted to larger times by one lattice spacing.

We estimated the combined systematic uncertainty with the histogram method [17, 20]: For each

possible source of systematic uncertainty we used several valid analysis methods. As each source

of systematic uncertainty can be varied independently, the the number of total analyses is the

product of the number of possible variations used for the assessment of each of the different

contributions to the systematic uncertainty.

Not all of the fits describe the data equally well. To account for this, we weighted each of the

contributions to the histograms by a factor that expresses how believable this fit is. For this

work, we used three forms of weighting:

• Flat weights: Each analysis was weighted the same.

• Q-weights: Each analysis was weighted by their respective fit quality Q [105]. This

weighting method is especially favorable if some of the fits do not describe the data well.

These fits have a low fit quality and are heavily suppressed.

• AIC-weight: Each analysis is weighted by its respective AIC weight. [20, 149]. The AIC

weight of a given fit is

wAIC = exp

(
−

1

2

(χ2 + 2p)
)

(6.27)

where p is the number of parameters of the fit. This suppresses fits which require a large

number of parameters for a good description. [20]

We compared the results of the three methods and found that they agree. We choose to use the

AIC weight for our final numbers.
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6.2.5 Individual quark contents

Let f n/pu/d be the up or down quark content of the neutron n or proton p. They are defined as

f pu/d = mu/d〈p | ūu/ ¯dd | p〉, (6.28a)

f nu/d = mu/d〈n | ūu/ ¯dd | n〉. (6.28b)

Note that f p/nu + f p/nu = fudN in the isospin symmetric limit. We derived algebraic relations

between the individual quark contents and the light quark content of the nucleon. They read

f pu/d =
(

1

2

∓
δm

4mud

)
f pud +

(
1

4

∓
mud

2δm

)
δm 〈p | ¯dd − ūu | p〉 (6.29)

for the proton p. The corresponding expression for the neutron can be obtained by simply

replacing p by n. We splitted the Hamiltonian of QCD into an isospin symmetric Hamiltonian

Hiso and an isospin splitting part Hδm defined as

Hδm =
δm
2

∫
d

3x ( ¯dd − ūu). (6.30)

To leading order in δm, the isospin splitting δMN of the nucleon mass can be expressed as

δMN =
δm
2

〈N | ¯dd − ūu | N〉 + O(δm2). (6.31)

We plugged

δm〈p | ¯dd − ūu | p〉 = ΔQCDMN (6.32)

into eqn. (6.29) to arrive at the final formulae

f p/nu =
( r

1 + r

)
fNud ±

1

2

( r
1 − r

)
ΔQCDMN

MN
, (6.33a)

f p/nd =

(
1

1 + r

)
fNud ∓

1

2

(
1

1 − r

)
ΔQCDMN

MN
. (6.33b)

We used the ratio r = mu/md to simplify the equations.

A practical application of these formulae requires two inputs: The light quark mass ratio r and
the QCD splitting of the nucleon mass. We used the result from [19] for the first quantity. At the

time of publication of the calculation described in this section in [146], the result for r described
in a latter chapter was not available. For the isospin spiting of the nucleon masses we used the

number from [20].

6.2.6 Results and conlcusion

Overall, we carried out 192 fits in the main analysis. On average, those fits had χ2

/n
dof
= 1.4.

The standard analysis, with the nucleon mass not fixed to the physical value, allowed for a

determination of the mass of the nucleon. This was a good check for the validity of the analysis.

The result that we obtained is

MN = 929(16)(7)MeV (6.34)
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where the first uncertainty is statistical and the second uncertainty is systematic. The result

is in very good agreement with the exeprimental value 938.9MeV [19] for the isospin average

nucleon mass.

For the light and strange quark contents we got

fudN = 0.0405(40)(35), (6.35a)

fsN = 0.113(45)(40), (6.35b)

with the same conventions for the uncertainties. We translated our results into nucleon sigma

terms using the nucleon mass at the physical point. We found

σudN = 38(3)(3)MeV, (6.36a)

σsN = 105(41)(37)MeV. (6.36b)

We determined, using the eqns. (6.33a) and (6.33b), the individual quark contents to be

f pu = 0.0139(13)(12), (6.37a)

f nu = 0.0116(13)(11), (6.37b)

f pd = 0.0253(28)(24), (6.37c)

f nd = 0.0302(28)(24). (6.37d)

The results are in nice agreement with other lattice computations. For details see the discussion

at the end of the chapter. For the strange quark contents the uncertainties are relatively large.

The reason is the limited lever arm in the strange direction. As can be seen if figure 6.4, the slope

of the nucleon mass in the strange quark mass direction is relatively low and the spread of the

datapoints is not very large. This situation can be improved on either by increasing the statistical

precision of the data or by increasing the lever arm in the strange direction. This is part of our

motivation for the 3hex analysis, described in the following section, which implements both

improvements.

6.3 The 3hex analysis

The purpose of the this analysis is to improve upon the 2hex analysis described in the last section.

The main disadvantages of the 2hex analysis are the limited lever arm in the strange quark mass

direction, and the comparatively high statistical uncertainty. Together, they result in a large

uncertainty of the strange sigma term. A different data set, called “3hex," on the other hand,

provides a larger lever arm and much higher statistical precision. It allows to greatly improve

the uncertainty of the strange sigma term. A disadvantage is that no configurations with physical

pion masses are present in this dataset. Consequently, an extrapolation to the physical pion mass

is limiting the precision on the light quark sigma term to a size comparable to the one obtained

in the 2hex analysis, despite the improved precision of the input data.

While we fitted in the 2hex analysis the nucleon mass directly as a function of the quark masses,

we used a different strategy in the 3hex case. After determining all the masses on the individual

77



Chapter 6 The Higgs couplings of nucleons

configurations, in a similar fashion then in the 2hex analysis, we fitted the nucleon mass as a

function of the pion and reduced kaon masses. To achieve this, it was not required to determine

explicitly the dependence between the pseudoscalar meson masses and the quark masses. Doing

so was more difficult then in the 2hex case since the statistical precision on the meson masses

is much higher. This initially seemed to be an advantage but it required us to either know the

precise form of said dependencies, which we did not, or to use a very high number of terms in a

Taylor expansion based fitting ansatz. Since we also had to extrapolate to the physical pion mass,

using many terms in a Taylor expansion introduced instabilities to the fit. We circumvented

these problems by calculating the relation between the psudoscalar meson masses and the quark

masses on a second dataset. This dataset features high precision measurements of the pion and

kaon masses on ensembles that very closely bracket the phyiscal point. This enabled us to use,

despite of the high precision of the data, a low order Taylor expansion. Since the ensembles in

this second dataset where generated with a staggered action, the quark masses appearing in the

Lagrangian renormalize only multiplicatively. Therefore, we where able to use them directly.

Together, these features of the staggered dataset greatly simplified the calculation compared to a

strategy where only Wilson data would have been used.

6.3.1 The lattice setup

This analysis relied a combination of Wilson and staggered ensembles in order to utilize the

different strength of both actions.

The Wilson gauge configurations have been generated using the same Symmanzik improved

gauge action that was used for the 2hex dataset. The fermion action features three levels of HEX

smearing. For the production of the gauge configurations, four non-degenerate quark flavors

where used. Details on the configuration can be found in [20]. The ensembles feature a wide

range of pion and kaon masses, as can be seen in figure 6.5. The range of covered kaon masses

reduces as the pion mass approaches the physical point. To alleviate this, we generated two

additional ensembles specifically for this project. These also increased the total range in the

reduced kaon masses. One of the new ensembles was generated with u, d and s quarks having
degenerate masses. The other was generated with degenerate u and d masses. An overview

of the QCD ensembles can be found in table 6.2. For the determination of the finite volume

corrections we employed charged ensembles. These are generated with the same QCD action as

the neutral ones but also included dynamical QED effects. These charged ensembles are a subset

of the charged ensambles from [20] and are listed in table 6.3.

For the staggered part, we employed a set of ensembles generated with a tree level Symmanzik

improved gauge action and a fermion action with 4 times stout smeared gauge links. These

ensembles are tuned to closely bracket the physical point. The spatial volumes in lattice units

where chosen such that the physical volumes of all ensembles are roughly equal and thatMπL ≈ 4.

A full list of the ensembles can be found in table 6.4. The action used in these ensambles is

detailed in [150, 151]
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Table 6.2 – Neutral 3hex ensembles used for the determination of mesonic light ans strange sigma terms.
Numbers are from [20] with an modified determination of the pion mass from [3] and two datapoints specifically
generated for this project [3].

6/g2 amu amd ams L3 × T mπ [MeV] mπL Ntraj/1000 new

3.2 -0.0686 -0.0674 -0.068 32
3 × 64 413 6.9 1

3.2 -0.0737 -0.0723 -0.058 32
3 × 64 353 5.9 4

3.2 -0.0733 -0.0727 -0.058 32
3 × 64 356 5.8 1

3.2 -0.0776 -0.0764 -0.05 32
3 × 64 294 4.9 4

3.2 -0.0805 -0.0795 -0.044 32
3 × 64 238 4.0 12

3.2 -0.0806 -0.0794 -0.033 32
3 × 64 266 4.4 12

3.2 -0.0686 -0.0674 -0.02 32
3 × 64 488 8.1 4

3.2 -0.0737 -0.0723 -0.025 32
3 × 64 411 6.8 4

3.2 -0.0776 -0.0764 -0.029 32
3 × 64 336 5.6 4

3.2 -0.077 -0.0643 -0.0297 32
3 × 64 438 7.3 4

3.2 -0.073 -0.0629 -0.0351 32
3 × 64 469 7.8 4

3.2 -0.077 -0.0669 -0.0391 32
3 × 64 405 6.7 4

3.3 -0.0486 -0.0474 -0.048 32
3 × 64 422 6.1 1

3.3 -0.0537 -0.0523 -0.038 32
3 × 64 348 5.1 2

3.3 -0.0535 -0.0525 -0.038 32
3 × 64 349 5.0 2

3.3 -0.0576 -0.0564 -0.03 32
3 × 64 275 4.0 12

3.3 -0.0576 -0.0564 -0.019 32
3 × 64 293 4.2 12

3.3 -0.0606 -0.0594 -0.024 48
3 × 64 200 4.3 20

3.4 -0.034 -0.033 -0.0335 32
3 × 64 403 5.0 4

3.4 -0.0385 -0.0375 -0.0245 32
3 × 64 321 4.0 4

3.4 -0.0423 -0.0417 -0.0165 48
3 × 64 219 4.1 4

3.5 -0.0218 -0.0212 -0.0215 32
3 × 64 426 4.4 4

3.5 -0.0254 -0.0246 -0.0145 48
3 × 64 348 5.4 4

3.5 -0.0268 -0.0262 -0.0115 48
3 × 64 310 4.8 8

3.5 -0.0269 -0.0261 -0.0031 48
3 × 64 317 4.9 8

3.5 -0.0285 -0.0275 -0.0085 48
3 × 64 266 4.1 8

3.5 -0.0302 -0.0294 -0.0049 64
3 × 96 199 4.1 4

3.5 -0.027 -0.027 -0.027 48
3 × 64 280 4.4 3 X

3.5 -0.028 -0.028 +0.009 48
3 × 64 282 4.4 3.5 X
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Figure 6.5 – Landscape of the 3hex dataset in the M2

π and M2

Kχ
plane. Different colors correspond to different

lattice spacings. The circled points have been generated specifically for this analysis as compared to [20]

Table 6.3 – Charged 3hex ensembles that where used to determine the finite volume correction in the determi-
nation of the mesonic sigma terms. Numbers are from [3, 20]

6/g2 amu amd ams L3 × T mπ [MeV] mπL Ntraj/1000

3.2 -0.0859 -0.0792 -0.0522 24
3 × 48 298 3.7 5

3.2 -0.0859 -0.0792 -0.0522 32
3 × 64 295 4.9 4

3.2 -0.0859 -0.0792 -0.0522 48
3 × 96 295 7.3 4

3.2 -0.0859 -0.0792 -0.0522 80
3 × 64 295 12.2 1
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Table 6.4 – List of 4stout smeared staggered ensembles used for the determination of the mixing matrix J.

6/g2 amud ams amc L3 × T mπL Ntraj/1000

3.84 0.00151556 0.0431935 0.511843 64
3 × 96 4.1 5.1

3.84 0.00151556 0.04015 .4757775 64
3 × 96 4.1 3.25

3.84 0.00143 .0431935 .511843 64
3 × 96 4.0 3.2

3.84 0.001455 .04075 .4828875 64
3 × 96 4.1 15

3.84 0.001455 .04075 .4665875 64
3 × 96 4.0 3.1

3.84 0.001455 .03913 .4636905 64
3 × 96 4.0 5

3.92 0.001207 0.032 0.3792 80
3 × 128 4.2 10

3.92 0.0012 0.0332856 0.39443436 80
3 × 128 4.2 14.5

4.0126 0.000958973 0.0264999 0.314023 96
3 × 144 4.1 1

4.0126 0.000977 .0264999 0.314023 96
3 × 144 4.2 10

4.0126 0.001002 0.027318 0.323716 96
3 × 144 4.2 2.7

6.3.2 Advanced determination of the fitranges

For each Wilson ensemble several masses had to be extracted. Pion and kaon masses where

extracted in a very similar fashion as described in section 6.2.3. We employed an improved

procedure to estimate the fit intervals. The statistical uncertainty of the nucleonmasses increases

as the pion masses get closer to the physical value. That means that the optimal fit range, for

which the statistical uncertainty is as small as possible and the systematic excited state effects are

subdominant, is, in tendency, earlier for smaller pion masses. To account for this, we devised a

strategy to adjust the fitranges based on the statistical uncertainty of the correlation function.

We considered the correlation functionC(t) of the nucleon whereM is the mass of the nucleon

and M ′ the mass of the first excited state. Including both states, the correlation function takes

the form

C(t) = c0(sinh(−M(t − Nt/2)) + c1 sinh(−M ′(t − Nt/2))) + . . . (6.38)

Here, “. . .” indicates even higher excited state contributions, the effect of which we neglected.

The presence of the second state in the correlation function introduces a systematic shift to

the ground state mass extracted from the correlation function when fitted with an one state

ansatz. This is acceptable only if the this shift is smaller then the statistical uncertainty of the

extracted mass. Hence, we demanded that the correction by the excited states is smaller then a

given fraction r of the statistical uncertainty ϵ(t) of M. ϵ(t) can be determined either by fitting

the correlation function in the range t to t + Δt, with Δt being the plateau length or by using the
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the effective mass

Meff(t; Δt) = −
1

Δt
log

(
C(t)

C(t + Δt)

)
(6.39)

Both methods produce similar values for ϵ(t), although occasionally the two methods resulted

in fit ranges differing by at most one lattice spacing. Applying the definition of the effective mass

to eqn. (6.38), we arrived at

Meff(t; Δt) =
1

Δt
ln

sinh(−M(t − Nt/2)) + c1 sinh(−M ′(t − Nt/2))

sinh(−M(t + Δt − Nt/2)) + c1 sinh(−M ′(t + Δt − Nt/2))
. (6.40)

If t is small enough for the backward propagating state to be negligible, this expression can be

simplified to

Meff(t; Δt) =
1

Δt
ln

exp(−Mt) + c1 exp(−M ′t)
exp(−M(t + Δt)) + c1 exp(−M ′(t + Δt))

(6.41)

Upon expanding the inverse of the argument of the logarithm in c0 we found

Meff(t; Δt) =

−
1

Δt
ln (exp(−MΔt) + c1 exp(−(M ′ − M)t) exp(−Mt) · (exp(−(M ′ − M)Δt) − 1)) . (6.42)

When Δt is large compared to the decay time of exp(−(M ′ − M)Δt), the above equation can be

written as

Meff(t; Δt) = −
1

Δt
ln (exp(−Mδt) (1 + c1 exp(−(M ′ − M)t))) . (6.43)

And with the properties of the logarithm we found

Meff(t) = M −
1

Δt
ln (1 + c1 exp(−(M ′ − M)t)) . (6.44)

Assuming that t is big enough for the first excited state to be a small correction, we expanded in

this term and arrived at

Meff(t) = M −
c1

Δt
exp(−(M ′ − M)t) + O

(( c1

Δt
exp(−(M ′ − M)t)

)
2

)
. (6.45)

Demanding that the shift to Meff(t) due to the excited state is smaller then rϵ(t) results in

ϵ(t)r >
c1

Δt
exp(−(M ′ − M)t), (6.46)

so that

t > −
1

M ′ − M

(
ln

(
ϵ(t)
μ

)
+ ln

rΔtμ
c1

)
(6.47)

where μ is an arbitrary constant that makes the argument of the logarithm dimensionless. This

condition depends on the uncertainty ϵ(t) of the effective mass in units of μ, the splittingM ′−M
and some numerical constant log(rΔtμ/c1) which does not depend on time. It is convenient to

rephrase the above equation as

t > −
ln

(
ϵ(t)
μ

)
M ′ − M

+ T (6.48)
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Figure 6.6 – The condition from eqn. (6.48) on one
specific ensemble. The condition is fulfilled when the
blue curve is in the white area.

whereT is a constant that has the dimension of time. We evaluated this condition for awide range

of values for T that produce reasonable fit ranges. We have used T = 0.7, 0.8, 0.9, 1.1 and set μ
equal to the lattice spacing a. For one particular ensemble, the condition from eqn. (6.48) has been

visualized in figure 6.6. The effect of this procedure is to shift the starting time fits for ensembles

with a low statistical errors to earlier times. We used the procedure to extract the proton mass

Mp and the neutron mass Mn. We then calculated the nucleon mass as MN =
1

2
(Mp + Mn).

6.3.3 Mesonic sigma terms

In a first step we determined the mesonic sigma terms σ̂πN and σ̂sN . These are defined via

σ̂πN = M2

π
∂MN

∂M2

π
, (6.49)

σ̂KχN = M
2

Kχ

∂MN

∂M2

Kχ

. (6.50)

For this purpose we used the Wilson 3hex configurations described above.

We fitted the lattice data for the nucleon mass to an ansatz of the form

MN (vi) = M
(ϕ)
N

∏
i

(1 + ciΔvi)ti with Δvi =
(
vi − v

(ϕ)
i

)
(6.51)

where vi are variables that the nucleon mass can depend on. v(ϕ)i refers to the values of these

variables at the physical point. M(ϕ)N is themeasured nucleonmass as found in [9]. The coefficients

ci are parameters that we determined by minimizing the χ2
-value. The parameters ti are either

+1 or −1 and correspond in the first case to a term in the Taylor expansion around the physical

point and in the second case to a leading order Padé expansion in the variable vi. If again
Taylor expanded, the Padé expansions have the same expansion coefficients as the direct Taylor
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Table 6.5 – The values vi used in the fitting of the nucleon mass in the 3hex analysis.

i meaning possible ti values condition

1 M2

π +1

2 MKχ +1/-1

3 M
1

2

π L−
3

2 e−Mπ L
+1

4 M3

π +1 excluded when v5 is included

5 M4

π +1 excluded when v4 is included

6 αsa(M2

π − M
(ϕ)2
π ) +1 excluded when v8 and v9 is included

7 αsa(M2

Kχ
− M(ϕ)Kχ

2) +1 excluded when v8 and v9 is included

8 a2(M2

π − M
(ϕ)2
π ) +1 excluded when v6 and v7 is included

9 a2(M2

Kχ
− M(ϕ)Kχ

2) +1 excluded when v6 and v7 is included

expansions but differ in higher order terms. We employed them whenever the effect of higher

order terms are not estimated in a different way. In table 6.5 a overview over all variables vi is
given. The first two variables correspond to the leading order pion and kaon mass dependencies

of the nucleon. In the case of v2 = M2

Kχ
, the data is sufficiently described by the linear term. We

found that including higher order terms leads to coefficients compatiblewith zero, a deterioration

of the fit qualities, and an increases in the uncertainties of the other parameters. We, therefore,

estimated the systematic error associated with this fit direction by switching between the Taylor

and Padé fit forms. The spread of the data in the v1 = M2

π direction is sufficient to support a

significant curvature. Wemodeled this curvature either by the next order in the Taylor expansion

in M2

π , by using v5 = M4

π , or by the next order predicted by baryon chiral perturbation theory,

v3 = M3

π . [17] v3 = M
1

2

π L−
3

2 e−Mπ L
allows for an estimation of the finite volume effects. [148] The

remaining values, v6-v9, allow for an estimation of the discretization effects. We fixed the nucleon

mass at the physical point to its measured value. Therefore, there are no discretization effects

on the nucleon mass at the physical point. Hence, the leading order effects which modify the

slopes of the expansion are described by v6 = αsa(M2

π − M
(ϕ)2
π ) and v7 = αsa(M2

Kχ
− M(ϕ)2Kχ

). As

an alternative, we included v8 = a2(M2

π − M
(ϕ)2
π ) and v9 = a2(M2

Kχ
− M(ϕ)2Kχ

) which are formally

subleading but are found to be often numerical dominant with the action used as discussed

in [66]

The layout of the neutral ensembles (see table 6.2) is such that the extraction of the coefficient

c3 of the finite volume correction Δv3 is difficult. To improve the reliability of our finite volume

corrections, we included the charged ensembles from table 6.3 in the fit. These four ensembles

all have the same parameters of the action and differ only in the size of the spatial volume. Hence,

they allow for a clean extraction of c3. These ensembles where generated with an action that

includes fully dynamic QED effects. We used the neutron mass Mn instead of the nucleon mass

1/2(Mp + Mn) on thees ensembles. Also, instead of the pion and reduced kaon squared masses
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we used the connected meson masses M2

ūu + M2

ūu and 2M2

K0

− M ¯dd . The quark mass parameters

in the QCD+QED action where tuned in such a way that the connected meson masses are equal

to the connected meson masses of one of the pure QCD ensambles. For details on the action

and the tuning see [20] We verified that c3 is compatible with the prediction of [148].

The values vi have uncertainties and these are correlated both with other vi and with the

nucleon masses. We dealt with this in a way closely related to the way described in section 5.6:

Some of the vi are extremely highly correlated, for example v1 = M2

π and v5 = M4

π . To avoid

issues with a singular correlation matrix, we introduced for each ensemble a set of fit parameters

δM2

π and δM2

Kχ
. We shifted the values of M2

π and M2

Kχ
measured on the ensembles with these

shifts and then calculated form the shifted values v1-v9. Then, we calculated the prediction

Mpred

N for the nucleon mass using eqn. (6.51). and calculated

®δ =
©­­­«
Mpred

N − Mmeas

N

δM2

π

δM2

Kχ

ª®®®¬
where Mmeas

N is the measured nucleon mass. The contribution of this ensemble to the χ2
value

of the fit is

®δTC−1 ®δ

whereC is the covariancematrix of the observablesMN ,M2

π andM2

Kχ
. In one case, the covariance

matrix C was not invertable: For one ensemble the u, d, and s quarks all have degenerate masses.

That leads to degenerate values for M2

π and M2

Kχ
and hence the covariance matrix had one zero

eigenvalue. We resolved this issue by adding a regulator ϵ to the diagonal of the covariancematrix

rendering it invertable. We then successively reduced ϵ until no change in the fit parameters

where detectable.

We estimated the systematic uncertainties introduced by using the expansion in eqn. (6.51) by

the following variation of the fit forms:

• By switching on either v3 = M3

π or v4 = M4

π , we estimated the effect of higher order

correction in the Mπ direction.

• By using either the Taylor case t2 = 1 or the Padé case t2 = −1, we estimated the effect of

higher order correction in the reduced kaon mass direction.

• By modeling the discretization effects either by terms proportional to αsa or a2
or by

omitting this terms, we estimated the uncertainty of the continuum extrapolation.

• By using a pion mass cut of either 360 MeV order 420 MeV, we estimated the effect of

having only data points in a limited range of pion masses.

• By using four different fit ranges for the mass extraction, we estimated the effect of excited

state contamination.

In table 6.6 an overview on our variations of terms can be found. All together, we employed

96 different fits for the extraction of the mesonic sigma terms. A representative fit is shown in

figure 6.7.
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Figure 6.7 – Two representative fits for the determination of the mesonic sigma terms. In the upper panel the
dependence of the nucleon mass on the squared pion mass is shown. In the lower panel the dependence of the
nucleon mass on the squared reduced kaon mass is shown. The datapoints have been projected to the physical
point except in the squared pion mass or squared reduced kaon mass direction. The dashed line indicates the
physical point.
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Table 6.6 – The variations used to assess the systematic uncertainties of the "mesonic" sigma terms.

Systematic error Estimation strategy N

Higher order terms in pion

mass direction

Including either M2

π or M2

Kχ
terms in the fit 2

Higher order terms in re-

duced kaon mass direction

Switching between Taylor to to Padé expansions 2

Finite pion mass range Different pion mass cuts 2

Discretization effects Using either αsa or a2
or no discretization terms 3

Excited state contamination Using different fit ranges 4

Total number of variations: 96

6.3.4 Mixing matrix

We related the “mesonic” sigma terms σ̂πN and σ̂KχN to the true sigma terms σudN and σsN via a

2 × 2 matrix defined by

Jij =
m j

M2

i

∂M2

i

∂m j
=
∂ ln M2

i

∂ lnm j
(6.52)

where i ∈ {ud, s} and j ∈ {π , Kχ}. If follows that

(σudN , σsN )T = J(σ̂πN , σ̂KχN )
T

. (6.53)

Leading order chiral perturbation theory predicts J = 1 [18] (see eqns. (6.9a) and (6.9b)). We

determined the correction to this from a set of gauge ensembles generated with a staggered

fermion action.

We extracted the pion and kaon masses as well as the pion decay constant on the staggered

configurations by fitting a standard staggered cosh-type ansatz with two states to the respective

correlation functions. We used two different fitranges, starting from either tmin = 1.9 fm

or tmin = 2.3 fm in physical units and with lengths of 10 lattice spacings. We verified with

a Kolmogorov-Smirnov-test that the distribution of the fit qualities are compatible with the

expected uniform distribution for both ranges.

As to determine the matrix J , we fitted the values of the three physical observables fπ , M2

π , and

M2

Kχ
as a function of the quark masses. The quark masses them self are not physical observables

but parameters of the action. As such they undergo renormalization. We defined the physical

values of the quark masses for each gauge coupling independently as the point in the quark

mass parameter space at which the squared pion and squared reduced kaon masses acquire

their physical values. This defines a mass independent renormalization scheme even though the

renormalization factors of this scheme are determined at the physical point.

Around the physical point, each of the before mentioned observables can be Taylor expanded,
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resulting in an expression of the type

c0 + c1,ud(mud − m
(ϕ)
ud [β]) + c1,s(ms − m

(ϕ)
s [β]) + . . . (6.54)

Here, rectangular parentheses [· · · ] on a symbol indicate its dependence on the gauge coupling.

We expressed the physical light quark mass as m(ϕ)ud [β] = m(ϕ)s [β]/r[β] where r is the ratio
between the strange and the light quark mass. This ratio is a renormalization scheme and scale

independent quantity and the cut-off dependence of it can be written as r = r0 + r1a2 + O(a4),

replacing the generic β dependence. We, therefore, reexpressed the Taylor series from eqn. (6.54)

as

c0 + c′
1,ud

(
mudr

m(ϕ)s [β]
− 1

)
+ c′

1,s

(
ms

m(ϕ)s [β]
− 1

)
+ . . . (6.55)

where c′
1,i = m

(ϕ)
i c1,i. We defined

Δud =
mud(r0 + r1a2)

m(ϕ)s [β]
− 1, (6.56a)

Δs =
ms

m(ϕ)s [β]
− 1 (6.56b)

and used the expansion from eqn. (6.55) up to quadratic order, including a2
corrections on the

leading terms:

c0 + (c′
1,ud + d1,uda2)Δud + (c′1,s + d1,sa2)Δs + c2,ud,sΔudΔs + c2,udΔ

2

ud + c2,sΔ
2

s (6.57)

A feature of our ensembles is that the ratio of the charm to the strange quark mass is constant

for all but one ensemble. We generated this one ensemble specifically for this calculation to allow

us to disentangle the charm quark mass dependence from the strange quark mass dependence.

We added to the above expansion a term depending on the charm to strange quark mass ratio to

account for this ensemble resulting in an expansion of the form

c0 + (c′
1,ud + d1,uda2)Δud + (c′1,s + d1,sa2)Δs + c2,ud,sΔudΔs + c2,udΔ

2

ud + c2,sΔ
2

s + cc/sΔc/s (6.58)

with

Δc/s =
mc

ms
−

(
mc

ms

) (ϕ)
. (6.59)

We used eqn. (6.58) to fit the squared massM2

π of the pion, the squared reduced kaon massM2

Kχ
,

and the value of the pion decay constant fπ as a function of the quark masses. Results of the fits

with this function are displayed in figures 6.8, 6.9, and 6.10.

To estimate the systematic uncertainties of our results, we performed a number of different

analyses. We varied the following features of our fit functions:

• We used two different values for the starting point of the plateau fits used to extract the

pion and kaon masses and the decay constant.

• We found that quadratic terms proportional to Δ
2

ud and Δs squared where not statistically

significant. To estimate their effect on the results, we either included or excluded them

from the fits.
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Figure 6.8 – Dependence of the squared pion mass M2

π on the light and strange quark mass as determined
from one of many fits. The datapoints are projected to the physical point using the fit function in all but the
displayed direction.
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Figure 6.9 – Dependence of the squared reduced kaon mass M2

Kχ
on the light and strange quark mass as

determined from one of many fits. The datapoints are projected to the physical point using the fit function in all
but the displayed direction.
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Figure 6.10 – Dependence of the pion decay constant fπ on the light and strange quark mass as determined
from one of many fits. The datapoints are projected to the physical point using the fit function in all but the
displayed direction.

• To estimate the effect of finite lattice spacings we switched the terms proportional to the

leading lattice spacing corrections a2
Δud and a2

Δs on or off.

In table 6.7 all variations are summarized.

We performed a completely independent analysis with a different strategy: Instead of fitting

the squared masses M2

π and M2

Kχ
as a function of the quark masses, in that analysis we fitted the

quark masses as the function of M2

π and M2

Kχ
. Both analysis strategies give equivalent results

even on the level of individual fits. For our final analysis we have chosen to use the latter method.

6.3.5 Results for the light and strange sigma terms

Using our results for the mesonic sigma terms σ̂udN and σ̂sN and for the mixing martix J, we
calculated the light and strange quark quark contents. We used, again, the histogram method to

calculate the systematic uncertainties. We checked that flat weighting, weighting with the fit

quality, and AIC weighting gave consistent results. We quoted as final results the AIC weighted

ones. We arrived at

fudN = 0.0398(32)(44), (6.60a)

fsN = 0.0577(46)(33). (6.60b)
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6.3 The 3hex analysis

Table 6.7 – The variations used to assess the systematic error on the Jacobi matrix relating the "mesonic"
sigma terms to the true sigma terms.

Systematic error Estimation strategy N

Excited state contribution to

the extracted masses

The fit range used for the mass extraction is varied;

the fit is carried out on one aggressive and on one

conservative range that differ by a time interval of

on lattice unit.

2

Higher order terms The quadratic terms in Δud and Δs are either switched

on or off

2

Finite lattice spacing a2
Δmud and a2

Δms terms are either switched on or

off independently

4

Total number of variations: 16
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M 2
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M 2
π
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= 0.99(3)(4)

mud

M 2
Kχ

M 2
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mud
= − 0.08(4)(6)

ms

M 2
π

M 2
π

ms
= 0.04(4)(2)

ms

M 2
Kχ

M 2
Kχ

ms
= 1.03(3)(2)

LO χPT
statistical error
systematic error

Figure 6.11 – Results for the mixing matrix J determined with AIC weights. The blue points are the result from
the analysis described in the main text. Long errorbars indicate statistical errors and short errorbars indicate
systematic errors. The grey lines indicate the predictions of leading order χPT.
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Table 6.8 – List of 4stout smeared staggered ensembles used for the determination of the charm sigma term.
On each configuration the nucleon mass was measured on 64 configuration separated by 10 HMC trajectories.

6/g2 amud ams amc L3 × T

3.7 0.00205349 0.05729111 0.509175 48
3 × 64

3.7 0.00205349 0.05729111 0.6788996535 48
3 × 64

3.7 0.00205349 0.05729111 0.848625 48
3 × 64

3.84 0.001455 0.04075 0.362166 64
3 × 96

3.84 0.001455 0.04075 0.4828875 64
3 × 96

3.84 0.001455 0.04075 0.603609 64
3 × 96

3.75 0.00184096226140973 0.0495930491285886 0.440758 56
3 × 96

3.75 0.00184096226140973 0.0495930491285886 0.587677632173775 56
3 × 96

3.75 0.00184096226140973 0.0495930491285886 0.734597 56
3 × 96

The digits in the first parenthesis indicate the statistical uncertainties and the ones in the second

parenthesis indicate the systematic uncertainties of our calculations. Using eqns. (6.33a) and

(6.33b), we calculated the individual up (u) and down (d) quark contents of the proton (p) and the
neutron (n):

fu,p = 0.0142(12)(15) (6.61a)

fu,n = 0.0117(11)(15) (6.61b)

fd,p = 0.0242(22)(30) (6.61c)

fd,n = 0.0294(22)(30) (6.61d)

6.4 The charm sigma term from the lattice

To determine the charm sigma term, we followed a different strategy then for the light and

strange sigma terms. We used a set of nine staggered ensembles, three at each of the values

β = 3.75, β = 3.7753, and β = 3.84 of the gauge coupling. An overview over the ensembles can

be found in table 6.8.

At each gauge coupling, a “central” ensemble with quark masses very close to the physical

point was chosen. For each central ensemble we generated two additional ensembles with all

parameters except the charm quark mass chosen the same as for the central ensembles. We

used mc = 3/4mcentral

c for one ensemble and mc = 5/4mcentral

c for the other. Here, mcentral

c is the

chram mass of the central ensemble. Using a finite difference formula, we calculated the charm

derivative directly from these ensembles.
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6.4 The charm sigma term from the lattice

6.4.1 Extraction of masses

We determined the masses of the nucleons the staggered ensembles in two different ways that

are explained below.

Let O(t) be an interpolating operator of a nucleon that is defined such that only products of
quark fields located at one timeslice t contribute. Let us call this type of operator local in time.

Its correlation function is [152]

CO(t) =
Nstates−1∑
i=0

aipt+1

i (exp(−mit) + (−1)t+1

exp(−mi(Nt − t))) (6.62)

where i sums over all contributing states. For each state ai is a prefactor, mi is the mass of this

state and pi is the parity which can be either 1 or −1. Due to the the staggered formulation, all

operators that are local in time couple to a particle and to its parity partner. It is expected that

both couplings are large so that Nstate must be at least 2 and frequently p1 = −1p0. It is, however,

possible to find operators that are defined on more than one timeslice that get rid of excited

state contributions to the correlation function. Such an operatorO′(t) has the form

O′ =
m∑
τ=0

bj exp(Hτ)O exp(−Hτ) (6.63)

where O is an operator defined only on the t-th timeslice and m is two if only the staggered

partity partner is to be eliminated.

The correlation function of such an operator with bj chosen such that the contributions of the

first excited states are heavily suppressed can be calculated from the correlation function CO(t)
of the operatorO. The method for doing so was devised in [153, 154] and first applied to Wilson

fermion in lattice QCD in [155]. We considered the action of the time evolution operatorU(t) on
O. We defineOτ = U(τ)OU(−τ). The correlation functionsCττ′

O (t) of two of these operators are

Cττ′
O (t) = CO(t + τ + τ

′) =

Nstates−1∑
i=0

aipt+τ+τ
′+1

i (exp(−mi(t + τ + τ ′)) + (−1)t+τ+τ
′+1

exp(−mi(Nt − t − τ − τ ′)) (6.64)

These operators are linear independent for different values of τ. We assumed that the temporal

extent Nt is large enough so that we can safely ignore the backward propagating contributions.

We then found

Cττ′
O (t) =

Nstates−1∑
i=0

aipτ+τ
′

i exp(−mi(τ + τ ′))pt+1

i exp(−mit). (6.65)

We constructed the matrix

M(t) =

©­­­­­­«
CO(t) CO(t + 1) . . . CO(t + m)

CO(t + 1) CO(t + 2) . . . CO(t + m + 1)

.

.

.

.

.

.

.
.
.

.

.

.

CO(t + m) CO(t + m + 2) . . . CO(t + 2m)

ª®®®®®®¬
. (6.66)

93



Chapter 6 The Higgs couplings of nucleons

This is an correlation matrix of linear independent operators and the standard staggered varia-

tional method [156] can be used to analyze it. Thereby, the matrix is decomposed to a form

M(t) = S†D(t)S (6.67)

with

D(t) = diag(pt+1

0
exp(−m0t), pt+1

1
exp(−m1t), . . . , pt+1

m exp(−mmt)) (6.68)

and

Sij = cip
j
i exp(−mi j) (6.69)

with ci being coefficients such that c†i ci = ai. We solved the generalized eigenvalue problem

(GEVP)

M(t0)®vi(t0, t1) = M(t1)λi(t0, t1)®vi(t0, t1) (6.70)

where t0 and t1 had to be chosen in a range where approximately only m states contributed.

λi(t0, t1) are the generalized eigenvalues and ®vi(t0, t1) are the generalized eigenvectors. The

GEVP can be though of to diagonalize the matrix

S−1D−1(t0)D(t1)S = S−1

diag(pt1−t0
0

exp(−m0(t1 − t0)), . . . , pt1−t0m exp(−mm(t1 − t0)))S. (6.71)

If Nstate = m and backward propagating contribution can be neglected, the resulting generalized

eigendecomposition can be used to extract m correlation functions C j(t) of operators O′j(t) of
the formwritten in eqn. (6.63) with the coefficients bi chosen such that only one mass contributes

to each correlation function. These correlation function can found using

C′i (t; t0, t1) = ®v
†

i (t0, t1)M(t)®vi(t0, t1)

where the values of t0 and t1 are arbitrary. If these assumptions are not fulfilled, then eqn. (6.4.1)

can still be used to obtain correlation functions of interesting operators. In this case the coeffi-

cients bi in eqn. (6.63) are not chosen by this method in a way that all but one exponential in

correlation functions C′i (t; t0, t1) are eliminated. Instead, all but one exponentials are heavily

suppressed. This allows, nevertheless, to significantly improve the ground state mass extraction.

The method was tested with an artificially generated correlation function of the form as in

eqn. (6.62) with Nstates = 6 and the masses, parities, and prefactors chosen arbitrarily in a

reasonable range by hand. In figure 6.12 the effect of using m = 6 and m = 4 can be seen. We

choose for illustrative purposes t0 = 3 and t1 = 6. Here, the effective masses

meff

i (t; t0, t1) = −
1

2

log

( C′i (t; t0, t1)
C′i (t + 2; t0, t1)

)
(6.72)

are shown. In the first case all the input masses are reproduced except for a deviation of the

effective mass curves at large times. In the second case, the method fails to project out the

individual states exactly. However C′
0
(t; t0, t1) has a significantly reduced overlap with the

excited states. The higher C′i (t; t0, t1) have an slight overlap to the ground state and all other

states and asymptotically show the same decay as the ground state. Depending on the strength of

the overlaps, an reliable mass extractionmight or might not be possible. Note that the asymptotic
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Figure 6.12 – The GEVP based analysis applied to artificial data. A artificial correlation function with
contributions of exactly six states has been generated. This correlation function has been analyzed with the
GEVP based method described in the main text. In both panels the colored dots correspond to effective masses
of the projected correlation functions C′i (t; t0, t1). The black crosses correspond to the effective mass of the
original correlation function CO(t). In the upper panel the matrix size was taken to be 6 × 6. On the lower
panel the matrix size was 4 × 4. If the matrix is big enough to accommodate for all states then all energies are
reproduced. If the matrix is smaller, the projection to single exponentials is not perfect. The ground state has
tiny admixtures of higher states and can be well extracted. The other correlation function have admixtures
of the ground state and eventually approach the ground sate mass. A reliable extraction of the masses might
or might not be possible. In both cases the effective mass of C′

0
(t; t0, t1) converges to the ground state mass

significantly earlier.
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Figure 6.13 – Fit of the nucleon mass with the GEVP method described in the main text. The matrix size was
2 × 2. The points with errorbars correspond to the effective mass calculated from projected correlation function
C′

0
(t; t0, t1) with t0 = 3 and t1 = 6. The shaded region indicates the mass extracted with a fit of an one-state

exponential ansatz to the correlation function.

behavior of theC′
0
(t; t0, t1) calculated with this procedure is the same then the one of the original

correlation function CO(t) but with the excited states contributions heavily suppressed. In

practice for the extraction of the nucleon mass it sufficed to use m = 2 to eliminate the lowest

lying parity partner state. An example of the effective mass of the nucleon on one of our

ensembles generated with this method can be found in figure 6.13

The lowest lying parity partner state can also be eliminated from the correlation function by

considering a optimized linear combination of the correlation function CO(t) and the shifted
correlation function CO(t + 1) of the form

DO(t) = CO(t) + em̃C1(t) (6.73)

where m̃ has to be chosen such that the oscillating signal of the parity partner state cancels. To

that end we defined the effective mass

meff(t) = − log

(
DO(t)

DO(t + 1)

)
(6.74)

and its average between the times ta and tb:

m̄eff(ta, tb) =
tb∑
t=ta

meff(t). (6.75)

We minimized

χ2 = (meff(t) − m̄eff(ta, tb))C−1(t, t′)(meff(t′) − m̄eff(ta, tb))

to determine m̃. The resulting DO(t) can be fitted with a standard one-state exponential ansatz.
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6.4 The charm sigma term from the lattice

Both methods described above allow to determine a correlation function that has a reduced

contribution of excited states and that can be fitted with a simple exponential ansatz. We have

checked that both methods produce results for the charm sigma term that are in very good

agreement if all other systematics are treated in the same way. We have chosen to use the second

method for our final analysis.

For the calculation of the charm sigma term, we needed not only the nucleon masses but also

the differences of nucleon masses on the different ensembles at each gauge coupling. There are

three possible differences

Δ
+MN = MN (mc = 5/4mcentral

c ) − MN (mc = mcentral

c ), (6.76a)

Δ
−MN = MN (mc = mcentral

c ) − MN (mc = 3/4mcentral

c ), (6.76b)

Δ
+−MN = MN (mc = 5/4mcentral

c ) − MN (mc = 3/4mcentral

c ). (6.76c)

These fulfill Δ
+−MN = Δ

+Mn + Δ
−Mn We calculated these differences not from the extracted

nucleon masses but we calculated ratios of the optimized correlation functions DO(t). We fitted

these ratios with an exponential ansatz in the same window that was used for the definition of

m̃. We choose to ta in physical units to be either 0.8 fm or 1.0 fm. We choose tb/a = ta/a + 8 to

keep the size of the covariance matrix reasonable.

6.4.2 Calculation of the derivative

We estimated the derivative mc∂MN/∂mc from linear combinations of Δ
+Mn and Δ

−Mn. Here,

we used two different types of linear combinations. We used the difference between the two

approaches to estimate the systematic uncertainty introduced by using a finite difference ap-

proximation.

First we considered the nucleon mass MN (mc) as a function of the charm quark mass. It was

natural to apply a finite difference approximation to the derivative of this function. We optimized

this finite difference approximation to cancel the leading order correction by using the linear

combination

σcN = mc
∂MN

∂mc
= 2

Δ
+MN + Δ

−MN

M(ϕ)N
. (6.77)

The systematic error made using this truncation is of order O((δmc/mc)
2) = O(1/16).

As an alternative, we considered the results of heavy quark effective theory. It predicts that the

sigma terms of heavy quarks are independent of the quark mass with correction of O(1/mq). [2]

That implies that to leading order

∂

∂mc

σcN (mc)

MN (mc)
= 0 with σcN (mc) = mc

∂MN

∂mc
. (6.78)

We can deduce that the nucleon mass as a function of the quark mass has the form

MN (mc) = M
(ϕ)
N

(
mc

m(ϕ)c

) σ (ϕ)cN
M(ϕ)N

. (6.79)
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Taylor expanding this in σ (ϕ)cN leads to

MN (mc) = M
(ϕ)
N + σ

(ϕ)
cN log

mc

m(ϕ)c
+ σ (ϕ)2cN log

2
mc

m(ϕ)c
+ O(σ (ϕ)3cN ).

Plugging this into eqns. (6.76a) and (6.76b) yields

Δ
+MN = σ

(ϕ)
cN log

5

4

+ σ (ϕ)2cN log
2

5

4

, (6.80a)

Δ
−MN = σ

(ϕ)
cN log

4

3

− σ (ϕ)2cN log
2

4

3

. (6.80b)

Eliminating the contribution quadratic in σ (ϕ)cN we found

σcN =
1

log
5

4
log

4

3
log

5

3

(
log

2
4

3

Δ
+MN + log

2
5

4

Δ
−MN

)
. (6.81)

Here, the systematic error on σcN is of order M(ϕ)N O

((
σcN/M

(ϕ)
N

)
3

)
= M(ϕ)N O(3 × 10

−4).

6.4.3 Error analysis and results

To estimate the systematic uncertainties, we performed 24 different analyses and used the

histogram method to combine them. For the uncertainty due to remaining excited state contri-

butions we used two different fit ranges. We estimated the uncertainty associated with the finite

difference approximations by using the two different approximations described above. For the

scale setting uncertainty, we used either the nucleon mass at the central ensemble or the pion

decay constant fπ as the lattice scale. Finally, we had to deal with the uncertainty associated

with the discretization artifacts. Here, we choose to use one of the following three continuum

extrapolations:

i. A fit constant in a2
with only the two coarsest lattice spacings included.

ii. A fit constant in a2
with all lattice spacings included.

iii. A fit linear in a2
with all lattice spacings included.

An overview of the variations can be found in table 6.9. We arrived at

fcN =
σcN
MN
= 0.0734(45)(55). (6.82)

6.5 Heavy quark sigma terms

The sigma terms of the heavy quarks can be deduced from eqn. (2.7). As a crosscheck, we

have applied this formula to the charm sigma term. Using dimensional analysis, we expected

the leading order error of this estimation to be of order O(Λ2

QCD
/m2

c ) ≈ 6%. Plugging in the

coefficients from table 2.2 and our results for the light and strange quark contents we arrived at

fc = 0.07323(61)(65) (6.83)

98



6.6 Discussion

Table 6.9 – The variations used to assess the systematic uncertainty on the charm sigma term.

Systematic error Estimation strategy N

Excited state contribution to

the extracted masses

The fit range used for the mass extraction is varied 2

Higher order terms in the

finite difference approxima-

tion

Different linear combinations are used 2

Scale setting Either fπ or MN is used 2

Lattice artifacts Using a fit linear or constant in a2
for all lattice spac-

ings or a fit constant in a2
for the two finest lattice

spacings

3

Total number of variations: 24

where the indicated uncertainties come from the statistical and systematic uncertainties of the

lattice determinations of the input quark contents. This is in excellent agreement with our full

lattice determination. With similar arguments, we find that the uncertainty of the bottom sigma

term due to the heavy quark expansion is much smaller, namely of order O(Λ2

QCD
/m2

c ) ≈ 0.6%

The uncertainty of the top quark sigma terms is even smaller. Applying again 2.2 we find

fbN = 0.0702(7)(9), (6.84)

ftN = 0.0680(6)(7). (6.85)

6.6 Discussion

Having a controlled calculation of all the sigma terms at hand, we can calculate the full nucleon-

Higgs-coupling

fhN =
∑
q
fqN = 0.3095(59)(62) (6.86)

where the first uncertainty is statistical and the second is systematic. The uncertainties where

calculated by using consistent bootstrap-samples in all lattice calculations as far as this was

necessary due to correlations. For the systematic uncertainties, we had to combine all histograms

from the uncertainty estimation of the different subresults. We did this by calculating all possible

combinations of the entries of the histograms of all subresults. In our final publication [3] we give

a C code that can carry out this combination to calculate fhN or any other linear combination of

quark contents with a full propagation of all systematic and statistical uncertainties along the

line explained above.

In figure 6.14 the magnitude of the individual contributions to Higgs proton coupling, the quark

contents fqN , are shown. Together, they determine the strength of the Higgs proton coupling
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Chapter 6 The Higgs couplings of nucleons

compared to the coupling that an imaginary fundamental fermion with the mass of the proton

would have. The contributions to the Higgs neutron coupling are of the same relative magnitude

except for the up and down contributions. In figure 6.15 the differences between the proton and

neutron case are illustrated.

In figure 6.16 we compare our results to other determination of the light and strange sigma

terms existing in the literature. For the light sigma term, our results are in good agreement

with most lattice calculations. In general, lattice calculations seem to favor a lower value of the

light sigma term then recent phenomenological determinations. For the strange sigma term,

the lattice calculations in general scatter slightly more. Our results tend to be slightly higher

then other recent lattice determinations, especially those that are based on a direct calculations

of matrix elements. However, our results are well in the range of values covered by the spread

of the existing determinations. For the charm sigma term, we compare our result with other

determinations in figure 6.17. Our value is compatible with most previous lattice determination

but offers a significantly reduced uncertainty. It is in good agreement with determinations based

on heavy quark expansions.
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Figure 6.14 – Contributions of the up, down, strange, charm, bottom, and top quarks to the proton Higgs
coupling. The offset parts of the circle correspond to the contribution of the indicated quark flavor to the nucleon
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Figure 6.15 – Difference between the up and down quark contribution to the proton Higgs coupling (left) and
the neutron Higgs coupling (right).
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Figure 6.16 – Comparison between the light and strange sigma terms as determined in this work with previous
determinations. The letters “FH” indicate that the calculation have been performed using the Feynman-Hellman

theorem. The letters “ME” are shorthand for “matrix elements” and indicate lattice computations that where
performed using the direct method. The number in the left panel are published in [113] (GLS 91), [114] (Pavan
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Figure 6.17 – Comparison between the charm sigma
term as determined in this work with previous determi-
nations. The letters “FH” indicate that the calculation
have been performed using the Feynman-Hellman

theorem. The letters “ME” are shorthand for “matrix
elements” and indicate lattice computations that where
performed using the direct method. The letter “HQ”
denote calculations based on heavy quark expansions.
The shown results are published in the left panel are
published in [135] (MILC 12), [139] ( χQCD 13), [141]
(ETM 16), [142] (RQCD 16), [157] (Hobbs et. al. 17), [16]
(Ellis et. al. 18), [143] (ETM 19), [3] (BMWc prelim).
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Chapter 7

Light quark mass difference and violations of
Dashen’s theorem

The following chapter is based on original work published in [106, 158].

The mass difference δm = mu − md between the two lightest quarks is, together with the

average, an important property of the standard model [9, 19]. It can be determined in lattice

calculations if they include non-degenerate light quark masses and electromagnetic effects.

The non-degenerate light quark masses are expected to have effects of order (δm/ΛQCD) on
hadron masses, which are about one percent. The electromagnetic effects on hadron masses are

predicted to be of order O(α) with α ≈ 1/137 being the electromagnetic coupling constant [19].

Both effects are of the same order of magnitude and must be included in a reliable calculation.

δm has been calculated on the lattice many times. The first calculation [159] of this kind was

carried out in 1996. It was a quenched calculation which means that the effects of the see quarks

where neglected. Later, this quantity was picked up again on the lattice. In [66, 90, 160, 161] the

electromagnetic effects where included by employing phenomenological estimates. In [162] for

the first time a N f = 2 computation was presented in which electromagnetic effects where

calculated in the electroquenched approximation. In that approximation the two light see quarks

are dynamic but assumed to have no electric charge. The first calculation in a N f = 2 + 1

setting, also in the electroquenched approximation, was reported in [163]. Since then many other

calculation in these settings appeared [164–167]. In [19] these calculations are reviewed in detail.

We present a calculation based on fully dynamic N f = 2 + 1 QCD configurations. We included

the electromagnetic corrections, like in the previous studies, in the quenched approximation.

The QCD configurations where already used by the BMW collaboration for the determination

of the average light quark mass [66, 161]. The BMW collaboration has presented, before the

publication of this work, a calculation of hadronmass splittings in full QCD+QED [20]. Although

full QED calculation are in principle superior to electroquenched calculations, we nevertheless

choose to work in the latter setting. It allowed us to use a dataset featuring pion masses down

to the physical point. The dataset used in [20] features only pion masses as low as 195MeV.

Since our calculation is about the light quark masses we find this feature more important. We

therefore opted to use the dataset described in [66, 161].

Our calculation is based on SU(3) gauge configurations that where generated with a QCD

action featuring degenerate light quarks [66]. We generated U(1) configurations on top of

these SU(3) configurations. For that, we assumed that all light sea quarks are degenerate and

electrically neutral. When we measured quark propagators, we put different masses for up
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Chapter 7 Light quark mass difference and violations of Dashen’s theorem

Figure 7.1 – Effects of the partial quenching. The charged and non-degenrate u and d valence quarks of e.g.
a π+ propagate in a see of uncharged degenrate see quarks. In full QCD+QED also the see quarks would be
non-degenerate and charged. Red and blue colors denore positive and negaive charge, the radius is of the quark
symbols is proportional to the third root of the corresponding quark mass.

and down quarks in the fermion matrix. This procedure is called partial quenching. We also

took the coupling to the electromagneticU(1) field into account in these fermion matrices. An

illustration of this approach is shown in figure 7.1. Our calculation therefore relies on a partially

quenched QCD sector with quenched electromagnetic corrections.

Since δm refers to the difference in the quark mass parameters of the theories’ Lagrangian, it

requires renormalization. This was addressed in the following way: We replaced δm with the

mass splitting ΔM2
of mesons defined in the partially quenched theory. This mass difference can

be related to the quark mass difference by partial quenched chiral perturbation theory [168, 169].

Since the low energy constant appearing in this relation is known, from a calculation based on

the same QCD configurations used here, it allows to determine the quark mass difference with

small corrections [170].

ΔM2
must be related to a physical quantity. In this work the mass splitting ΔM2

K := 1

2
(M2

K+ −

M2

K0
) is used for this purpose. It can be decomposed into two parts within the precision of this

work. One part due to the splitting of the light quark masses is proportional to ΔM. The other

part is due to the electromagnetic interactions.

Together with δm, we determined another quantity. A well known theorem, Dashen’s theorem,

states that the isosplin splitting of pions and kaons are the same in the SU(3)-flavor symmetric

limit. [171] This theorem is violated due to the lack of SU(3) flavor symmetry in nature. The

strength of this violation is parametrized by the quantity ε defined as [19]

ε :=
ΔQEDM2

K − ΔQEDM2

π

ΔM2

π
. (7.1)

To the precision of this calculation ΔQEDM2

π is equal to ΔM2

π . [19] Corrections to this identity

start at O(δm2). A direct calculation of the pion mass splitting on the lattice would be much

more challenging then the calculation of the kaon mass splitting. This is because for the kaon

the valence quarks are of different flavors. For the neutral pion, there are contributions with
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7.1 The lattice setup

Figure 7.2 – A visualization of how the gauge configuration used for the determination of the
light quark mass difference and the violations of Dashens theorem where generated. In a first step
SU(3) gauge configurations where generated with the N f = 2 + 1-QCD parameters. Then us-
ing the QED parameters for each QCD gauge configurations QED gauge configurations are pro-
duced. (Compter-Icon from https://www.iconfinder.com/icons/63466/cloud_computing_data_
center_datacenter_hosting_server_servers_icon)

valence quarks of identical flavors. They result in disconnected terms that are difficult to deal

with. Fortunately, the pion mass splitting is very well known experimentally. [9]. Hence a lattice

determination of ΔQEDM2

K is also sufficient to determine ε.

7.1 The lattice setup

The SU(3) gauge configurations where generated with a Symmanzik improved gauge action and

aWilson tree-level improved fermion action. The gauge fields entering the fermion action where

smeared with two levels of HEX smearing. The configurations have been used e.g. in [66, 161]

and in a determination of the nucleon sigma term [146] described in this thesis.

We generated severalU(1) configurations for each SU(3) gauge configuration. The resulting
U(1) gauge fields are partially quenched. The procedure is depicted in figure 7.2. We used the

non-compact QED
TL

action We applied no smearing to the U(1) gauge links and the Clover
improvement did not include theU(1) links. See also [169] for details on theU(1) configurations
and [159, 162, 172] for further explanations of the method. Figure 7.3 depicts the layout of the

different fields on the lattice.

We generated two different set of quark propagators for most SU(3) ×U(1) ensembles. For

one set we tuned the quark masses in the valence sector so that the bare PCAC (for a definition

see e.g. [66]) quark masses, evaluated with the propagators containing the quenchedU(1) fields,
agree with the bare PCAC masses in the absence of theU(1) fields and with the valence quark
masses equal to the see quark masses. For the other set we set the mu and ms masses to the same
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Chapter 7 Light quark mass difference and violations of Dashen’s theorem

Figure 7.3 – Layout of the SU(3) ×U(1) gauge fields on a slice of the lattice. The fermion fields (red) reside on
each point of the lattice. At each lattice link a SU(3) valued link variable (green) represents the SU(3) gauge
fields. The U(1) gauge fields are represented by gauge potentials Aμ (blue) residing at each lattice site.

value then in the first case. Then md was tuned to vary ΔM2
to bracket the physical point. For

one particular ensemble three sets of quark propagators where generated. Two with ΔM2
close

to the physical value and the electromagnetic coupling α twice and four time as large as the

physical value. On the third set of propagators we choose ΔM2 ≈ 0 and α ≈ 0. We extracted

masses and mass splitting using the standard ansätze for staggered quarks. See [169] for details.

7.2 Analysis procedure

The action for the valence quarks has 5 free parameters: The strong coupling constant αs, tuned
by the parameter β in the gauge action, the electromagnetic coupling constant α, and the three
quark masses mu, md and ms. β mainly controls the approach to the continuum limit. The

physical point is defined at each value of β by the values (α(ϕ)(β),m(ϕ)u (β),m
(ϕ)
d (β),m

(ϕ)
s (β)) of

the remaining parameters for which four observables acquire their physical value. We used the

charged pion mass square M2

π+ , the squared reduced kaon mass

M2

Kχ
:=

1

2

(M2

K+ + M
2

K0
− M2

π+), (7.2)

the kaon splitting

ΔM2

K :=
1

2

(M2

K+ − M
2

K0
), (7.3)

and the electromagnetic coupling α to set the physical point. The last parameter was set directly

to its value in the Thompson limit.
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7.2 Analysis procedure

ΔM2

K is the central quantity in this analysis. Its leading order Taylor expansion in α and δm
around the point α = 0, δm = 0 is

ΔM2

K = CK (M2

π+ ,M
2

Kχ
, a, L)α + ˜DK (M2

π+ ,M
2

Kχ
, a)δm + O(α2

, δm2). (7.4)

We parametrized the dependence of CK and
˜DK on the remaining parameters of the action with

the quantities in the brackets. Here, a is the lattice spacing and L is the spatial lattice extend.
The QCD contribution

˜DK and the QED contribution CK to the kaon mass splitting can be

disentangled uniquely only up to the order used here. We used the leading order relation in

partially quenched chiral perturbation theory including QED (PQχPT+QED) [168, 169]

ΔM2 = M2

ūu − M
2

¯dd = 2B2δm + O(mudα,mudδm, α2

, αδm, δm2) (7.5)

to replace δm by ΔM2
. The constant B2 is a low energy constant of PQχPT+QED [168, 169].

The masses Mūu and M ¯dd appearing in this relation are called connected pseudoscalar mesons.

These are not physical because the states they correspond to mix in nature to form the π0
meson.

Nevertheless, we can extract their mass in this partially quenched lattice setup unambiguously.

We faced no complication with disconnected diagrams because PQχPT+QED [168] predicts that

in eqn. (7.5) only the masses calculated from the connected part of the correlation functions of

the mesons must be used. We arrived at the expansion

ΔM2

K = CK (M2

π+ ,M
2

Kχ
, a, L)α + DK (M2

π+ ,M
2

Kχ
, a)ΔM2 + O(α2

, δm2). (7.6)

Here DK plays the role of
˜DK in eqn. (7.4) and parametrizes the QCD contribution to the kaon

mass splitting.

We had to specify how CK and DK depend on the indicated parameters. We used Taylor

expansions around the physical point to that end. We denoted with M(ϕ)2π+ and M(ϕ)2Kχ
the values

of M2

π+ and M
2

Kχ
at the physical point. The leading order expansion of DK is

DK (M2

π+ ,M
2

Kχ
, a) = c0 + c1(M2

π+ − M
(ϕ)2
π+ ) + c2(M2

Kχ
− M(ϕ)2Kχ

) + c3 fa(a, αs) (7.7)

where f (a, αs) is a function that parametrizes the lattice spacing dependence. It is either

f (a, αs) = a2

or f (a, αs) = αsa. (7.8)

The first choice is often numerically dominant while the second choice is the leading behavior

determined by the action used. [66] Finite volume corrections to the QCD contribution to the

kaon mass splitting are exponentially suppressed in MπL due to the confining property of QCD

and therefore negligible compared to the finite volume effects in the QED contribution CK . We

therefore do not include them in eqn. (7.7).

The electromagnetic interaction is a long range interaction and finite volume corrections only

decay polynomial in 1/L for electromagnetic effects. In the QED
TL

formulation, meson masses

receive corrections according to [20, 173]

M(L)
M(∞)

= 1 −
ακ

M(∞)L

[
1 +

1

M(∞)L

(
1 −

π
2κ

T
L

)]
+ O(α/L3). (7.9)
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In that equation, κ = 2.873 . . . is a known constant [20], M(L) is the mass at the spatial lattice

extend L, and M(∞) is the infinite volume mass. This expression does not depend on the inner

structure of the mesons up to the O(1/L2) terms. The terms starting at order O(1/L3) however

do. [20] We corrected all charged meson masses by the leading and next-to-leading order terms

in eqn. (7.9) before we performed further fitting. We included the remaining O(1/L3) corrections,

which are structure dependent, by adding a corresponding term to the functional form of CK

with a coefficient determined by the fit. We used the fit function

CK (M2

π+ ,M
2

Kχ
, a, L) = c0 + c1(M2

π+ − M
(ϕ)2
π+ ) + c2(M2

Kχ
− M(ϕ)2Kχ

) + c3a + c4

1

L3
(7.10)

for CK . The coefficients ci are different from the coefficients in eqn. (7.7) although they have the

same name for reasons of readability. For CK , lattice artifacts scale with a.
The above formulae are fitted to the lattice data in fully correlated fits. Figure 7.4 shows the

pion and kaon mass dependence of CK and DK in the case of one representative fit. The values

of the kaon splitting for all ensembles are displayed in figure 7.5. The shaded points indicate the

original values, without the application of eqn. (7.9); the solid points show the values corrected

by eqn. (7.9). All points are projected to the physical point using eqns. (7.6), (7.7) and (7.10) except

in the 1/L direction. The solid line and the gray band shows a fit with an 1/L3
behavior and its

error. The structure dependent corrections starting at order O(L−3) are very small.

We used the physical value of ΔM2

K , eqn. (7.6), eqn. (7.5), and the value of B2 from [170] in the

¯
MS scheme at μ = 2GeV to extracted from the fit δm, its contribution DK to the Kaon mass

splitting, and the QED contribution CK to the Kaon mass splitting.

7.3 Estimation of systematic and statistical uncertainties

Our calculation is affected by several systematic uncertainties that we estimated using the

histogram method [17]. For that, several equally valid fits have been performed. In table 7.1

all lattice sources of systematic uncertainties and the variation of the fit functions we used to

estimate them are shown. In total we performed 128 fit. We combined the results from all of

them in histograms: For each observable we prepared one histogram of the results of all analyses.

We weighted each entry proportional to its Akaike weight from eqn. (5.13) as described in [20].

We took the central values and the spreads of the histograms as estimators for the central values

and the systematic uncertainties. We used a bootstrap method with 2000 samples to estimate

the statistical uncertainties. An additional source of systematic uncertainty, which we could

not be estimate by using the histogram method, is due to the quenching of QED: The lattice

action we used is not in the same universality class as the physical theory because the effects of

the electromagnetic interaction on the see quarks is not included. Large Nc counting and the

approximate SU(3) flavor symmetry suggest that the quenching error on any electromagnetic

mass splittings considered here is of the order of 10%or below. [169]We propagated this 10% error

to all final quantities. Consequently, each result has three components of uncertainty: The first

component is the statistical uncertainty. The second component is the systematic uncertainty

excluding the effects due to partial quenching, and the last component is the uncertainty due

to partial quenching. For ϵ, which quantifies the violations of Dashen’s theorem, an additional
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7.4 Results and discussion

Table 7.1 – The systematic lattice uncertainties and their respective estimation strategy. The column with
heading N gives the number of variations introduced by this systematic. In the last line the total number of
variations of the analysis is indicated.

Systematic error Estimation strategy N

Excited state contribution to

the extracted masses

The fit range used for the mass extraction is varied;

the fit is carried out on one aggressive and on one

conservative range that differ by a time interval of

on lattice unit.

2

Scale setting uncertainties The scale is either set with the Ω
−
or the isospin av-

erage Ξ baryon.

2

Effects by having data only in

a limited pion mass range

All datapoints above 400MeV or 450MeV for the

scale and above 350MeV or 400MeV for the fit to

the kaon splitting are removed.

4

Uncertainty of the contin-

uum extrapolation

The continuum extrapolations are performed by an

a2
or an αa term.

2

Higher order corrections to

CK and DK

The Taylor expansions of these quantities are either

used directly or are replace by Padé expansions indi-

vidually.

4

Total number of variations: 128

systematic uncertainty must be considered. We assumed that ΔQEDM2

π = ΔM2

π . This is true up

to O(δm2) correction. The authors of [19] estimate the size of these correction. According to

their estimate ϵm = ΔQEDM2

π/ΔM2

π = 0.04(2). We included this estimate in our calculation of ϵ
and give the uncertainty introduced by it as the fourth uncertainty of ϵ.

7.4 Results and discussion

In table 7.2 our results are compiled. The first set of results are directly related to the quark

masses. We calculated the difference δm between the light quark masses in the MS scheme at

μ = 2GeV. We used the result for the average light quark mass from [161] to relate that difference

to the individual quark masses mu and md . Also, we calculated the ratio md/mu. In particular,

this result excludes the mu = 0 solution of the strong CP problem by more then 24 standard

deviations. The breaking of the SU(3) flavor symmetry is frequently quantified in the literature

by the flavor breaking ratios

R =
ms − mud

md − mu
and Q =

√
m2

s − m2

ud

m2

s − m2

ud
. (7.11)
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Figure 7.4 – Pion and Kaon mass dependence of the electromagnetic contribution CK and the QCD contribution
DK to the Kaon mass splitting. Differnt colors denote different gauge couplings. All datapoints are projected to
the physical point usind the respcetive fit function in all directions accept the one shown on the x-axis. The
solid line and the grey band indicate the fit function and its error. The dashed lines shows the physical point.
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Figure 7.4 – Pion and Kaon mass dependence of the electromagnetic contribution CK and the QCD contribution
DK to the Kaon mass splitting. Differnt colors denote different gauge couplings. All datapoints are projected to
the physical point usind the respcetive fit function in all directions accept the one shown on the x-axis. The
solid line and the grey band indicate the fit function and its error. The dashed lines shows the physical point.
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Figure 7.5 – The Kaon splitting with or without the subtraction of the universal part from eqn. (7.9). The solid
points are the datapoints with the correction applied. The faded points show the uncorrected data. The black
line and the gray band indicate the 1/L3 fit and its statistical error. All datapoints are projected to the physical
point except in the finite volume direction. The projection was carried out using a fit of eqns. (7.6), (7.7) and
(7.10). [106, 158] to the data. [106]

Table 7.2 – Results on the light quark mass difference and on the violations of Dahsen’s theorem.

Observable Result

Light quark mass difference δm −2.41(6)(4)(9)MeV

Ratio of light quark masses mu/md 0.485(11)(8)(14)

Mass mu of the up quark 2.27(6)(5)(4)MeV

Mass md of the down quark 4.67(6)(5)(4)MeV

Flavour braking ratio R 38.2(1.1)(0.8)(1.4)

Flavour braking ratio Q 23.4(0.4)(0.3)(0.4)

Violation ϵ of Dahens’s theorema
0.77(2)(5)(17)(2)

a
Fourth error is due to the assumption Δ

QED
M2

π = ΔM2

π
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7.4 Results and discussion

We also determined these ratios. Finally, we calculated the magnitude of the violation of Dashen’s

theorem parametrized by ϵ.
Our results are compatible with previous calculations, specifically with those in the FLAG

report [19], but offer improved accuracy. The uncertainties on the isospin breaking quantities are

dominated by the quenching uncertainty. We therefore conclude that, despite the improvement

in the uncertainties offered by this calculation, a study in full QCD+QEDwould still be desirable.
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Chapter 8

Summary and conclusion

The goals of the thesis where to calculate the quark mass dependencies of several observables.

In a first part we determined the nucleon sigma terms and quark contents. We calculated the

up, down, strange, and charm quark contents from first principles using lattice QCD. We used

a perturbative heavy quark expansion to calculate the bottom and top quark contents. These

expansion are expected to be valid for these two quark flavors. We checked their validity also

in the case of the charm quark where the errors of the truncated perturbative expansion are

expected to be larger then for the top and bottom quarks. We find that our lattice determination

is in very good agreement with the perturbative calculation. A key part to our lattice calculation is

that we employed several fermion actions in our analysis and leveraged the different advantages

they offer for different parts of the calculation.

For the calculation of the sigma terms we employed the Feynman-Hellmann method. Our

results are consistent with other lattice determinations. Despite this, we find that recent phe-

nomenological calculation (s. [115]) based on pion-nucleon scattering predict a slightly larger

light sigma terms then most lattice calculations, including our own ab-inito calculation. It would

be interesting to study the source of this discrepancy.

Our results allow us to calculate the nucleon-Higgs coupling with an error of about 30 %. We

believe that our results are of high relevance to direct dark matter detection experiments. It is

remarkable that, in the N f = 6 theory, a large fraction of the Higgs nucleon coupling originates

from the heavy quark flavors; while they contribute only through quantum fluctuations that are

suppressed by their mass, their Higgs coupling is also large, because they are heavy. Both effects

almost cancel.

In a second part, we calculated the dependence of the kaon mass splitting on the light quark

mass splitting and the electromagnetic charges of the light quarks. We where able to quantify

the amount of violation of Dashen’s theorem. We used our result to infer the ratio of the light

quark masses. The calculation was carried out in a partially quenched setup. While we estimated

the error made by using this approximation, it would be interesting to carry out this calculation

in a fully dynamic QED+QCD setting.
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