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Abstract
If two parties want to communicate over an insecure channel, they typically ex-
ecute an interactive cryptographic handshake to establish a shared secret, before
any application data is sent. In contrast, zero round-trip time (0-RTT) protocols
allow a sender to immediately send encrypted application data (0-RTT data) to a
receiver without executing an interactive handshake. One of the major challenges
when designing 0-RTT protocols is to guarantee forward security for the 0-RTT
data. Forward security ensures that compromise of a communicating party does
not impact security of past communications. However, the lack of interactivity in
0-RTT protocols renders it difficult to achieve forward security for the 0-RTT data.
Only recently, novel techniques to overcome this challenge have been discovered.
This thesis investigates design approaches to 0-RTT protocols and proposes new
constructions of 0-RTT protocols with forward security for all sent data.
This thesis starts with a discussion on the concept of forward security in non-

interactive settings. Traditionally, forward security can be achieved if communi-
cation partners interactively agree on fresh secrets. However, this view limits the
understanding of what forward security should mean in a non-interactive setting.
Hence, we propose new terminology for a unified treatment of forward security,
capturing both interactive and non-interactive communication settings.
The remainder of this thesis can be split into two parts. The first part focuses on

the design of 0-RTT key exchange protocols. We investigate how to build 0-RTT key
exchange protocols from Bloom filter key encapsulation mechanisms, and describe
the first mechanism with constant-size ciphertexts. We then use this scheme to
construct the first multi-hop 0-RTT protocol for efficient connection establishment
in the context of anonymous communications.
The second part of this thesis focuses in 0-RTT session resumption protocols.

Session resumption protocols require an already established secret shared between
sender and recipient. This secret can then be used to re-establish a secure connec-
tion. Despite prior belief, we present the first 0-RTT session resumption protocol
that indeed achieves forward security for all messages. In contrast to existing
0-RTT key exchange protocols, our 0-RTT session resumption protocol is highly
efficient as it only relies on symmetric primitives. We show that our protocol can be
incorporated into the recently standardized TLS 1.3 handshake without modifica-
tions to client-side implementations. This means that our protocol is immediately
deployable by content providers without requiring changes to the standard.
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1 Introduction
Over the past decades, cryptography has become an important factor in modern
communication. Especially, the Snowden revelations in 2013, that is, the revela-
tion that global surveillance programs exist, have increased the general public’s
awareness and demand for stronger security tremendously. It is the cryptography’s
responsibility to provide the means for secure communication, especially in the
presence of strong adversaries with powerful infiltration capabilities.

Transport Layer Security. Authenticated key exchange is the most important
cryptographic protocol when it comes to establishing a secure connection over an
insecure channel, such as the Internet. It allows a sender (client henceforth) and
a receiver (server henceforth) to establish an authenticated secret only known to
them. This secret, also often called session key, can then be used as basis for secur-
ing subsequent communications (e.g., providing confidentiality and/or integrity).
The most widely used protocol to establish a secure connection over an inse-

cure channel is the Transport Layer Security (TLS) protocol, a successor of the
deprecated Secure Socket Layer (SSL) protocol from 1995. TLS 1.3 [Res18] is the
most recent version of the TLS protocol and was standardized as Request for Com-
ments (RFC) 8446 in August 2018 after a design process that lasted over four years.
TLS 1.3 and its predecessors [DA99, DR06, DR08] are implemented in all modern
web browsers and are executed by millions of clients on a daily basis.

Latency in Key Exchange. Traditional authenticated key exchange protocols
(e.g., [DA99, DR06, DR08]) induce a large latency overhead. This is due to the
exchange of several messages before a session key is established and can be used to
protect the actual communication. The latency is usually measured in round-trip
time (RTT), where one RTT amounts to the total time needed to deliver a message
to its receiver and back.
We can divide the number of messages required for traditional key exchange

protocols executed over the Internet into two consecutive phases:

1. Establishment of a reliable channel: Traditional key exchange protocols as-
sume an insecure but reliable channel, where reliable means that messages are
guaranteed to be delivered at their intended destination (if no adversary in-
terferes the communication). In practice, a reliable channel is established via
the Transmission Control Protocol (TCP) [Pos81]. TCP requires to execute
a handshake, that is, it requires the exchange of several message before a re-
liable channel between two parties is established. The currently standardized

1



version of TCP requires the execution of a three-way handshake, which takes
at least one RTT.

2. Execution of the key exchange protocol: Only after the TCP channel is es-
tablished, the actual key exchange protocol is executed. Even highly efficient
traditional key exchange protocols (e.g., HMQV by Krawczyk [Kra05]) need
at least two messages before both parties can compute the session key. This
leads to at least one additional RTT added by the actual key exchange.

We conclude that traditional cryptographic key exchange protocols require at
least one RTT to establish a reliable channel and at least one additional RTT
to execute the key exchange protocol, yielding at least two RTTs before actual
application data can be transmitted.

Demand for Low Latency. A reduction of latency is very desirable and comes
with many advantages. First and foremost, the reduction of latency saves time and
resources. The lower the number of transmitted messages, the lower the amount
of computations both clients and servers need to perform. This is especially im-
portant in environments where the delivery of messages takes multiple hundreds of
milliseconds. Prominent examples are rural networks with limited wireless network
coverage, large overlay networks (e.g., the anonymity-providing Tor network), or
satellite-aided communications.
Many studies have shown that the reduction of latency is also of economic inter-

est. In 2006, Amazon has shared that delaying deliverance of their webpages by
100 milliseconds costs them roughly 1% of revenue.1 Similar observations have been
made by Akamai2 and Google3, all finding that even a slight increase in latency
significantly increases the probability of users abandoning their connection.
Last but not least, the reduction of latency is also interesting from an academic

point of view. This includes to investigate how far we can bring the number of
transmitted messages down without sacrificing standard security notions, is a valu-
able insight, contributes to the overall understanding of what actually is possible
in low-latency key exchange, and ultimately supports the secure design of 0-RTT
protocols in the future.

Approaches to Reduce Latency. There are two possible starting points to re-
duce latency. One approach is to reduce the number of messages required to estab-
lish a connection, for example by relying on the stateless User Datagram Protocol

1Greg Linden: Marissa Mayer at Web 2.0, November 2006, http://glinden.blogspot.com/
2006/11/marissa-mayer-at-web-20.html.

2Jeff Young; Tom Barth: Akamai Online Retail Performance Report: Milliseconds Are Criti-
cal, April 2017, https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-
releases-spring-2017-state-of-online-retail-performance-report.jsp.

3Daniel An: Find out how you stack up to new industry benchmarks for mobile page
speed, February 2017, https://www.thinkwithgoogle.com/marketing-resources/data-
measurement/mobile-page-speed-new-industry-benchmarks/.
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(UDP) [Pos80] protocol instead of TCP. This immediately saves one RTT, but
comes with several network-related challenges (e.g., emulating TCP-specific prop-
erties such as a notion of reliability).
A different approach is to reduce the number of messages required to establish

a session key. The main idea is to allow the client to immediately send encrypted
application data during the first message of the key exchange protocol. This way,
the client can efficiently send data in zero round-trip time (0-RTT), reducing the
RTT of the key exchange to zero. This type of key exchange protocol is often
referred to as 0-RTT protocol.
Ultimately, a combination of both approaches is most desirable as it reduces the

latency as far as possible. In the context of this thesis we will focus on the reduction
of required messages during the cryptographic protocol. That is, we focus on the
construction and security analysis of 0-RTT protocols.

Forward Security in 0-RTT Protocols. Allowing a client to send encrypted appli-
cation data before the server was able to contribute fresh input to the key material,
comes with new security-related challenges that traditional key exchange protocols
do not address. One of the major challenges when designing 0-RTT protocols is
to achieve forward security for the 0-RTT data. Forward security is a standard se-
curity goal of modern protocols and guarantees that past communications remain
secure after a communicating party has been compromised. We illustrate why it
is difficult to achieve forward security in 0-RTT protocols by a simple example.
Consider the protocol in Figure 1.1.

Client Server
choose session key k

c := Enc(pk, k) c k := Dec(sk, c)

Enc(k,m)
0-RTT data

Enc(k,m′)
data

Figure 1.1: A naïve construction of a 0-RTT protocol executed between a client and
a server. Enc and Dec are public-key encryption procedures to encrypt
and decrypt respectively, and (pk, sk) is the server’s key pair.

This protocol does not achieve forward security. Any adversary that is able
to compromise the server and get access to its secret key sk, can decrypt k :=
Dec(sk, c). That is, the adversary is able to retroactively decrypt all communica-
tions protected under session key k. It is not obvious how forward security can
indeed be achieved in 0-RTT protocols.
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A possible approach to overcome this problem falls back to a traditional two-
message key exchange protocol, which establishes a forward-secure session key after
client and server have exchanged a message each. The idea is to solely rely on the
forward-secure key and only use a weaker key k to encrypt the 0-RTT data. This
approach achieves forward security for all data but the 0-RTT data.
It is a natural question whether protection of the 0-RTT data is important in

practice or if the above solution suffices. In practice, contents of the 0-RTT data
depend on the application. Unfortunately, the data transmitted in the beginning
of a communication often include sensitive data, such as credit card numbers, pass-
words, or cookies. All data which should not fall into the hands of any adversary.

Challenges Beyond Forward Security. Forward security is not the only challeng-
ing problem with respect to the security of the 0-RTT data. Another often discussed
problem is the lack of replay protection. Intuitively, replay protection ensures that
an adversary cannot resend data to a server and trick it into processing such data.
As both above examples illustrate, the server has per-se no way of distinguishing
whether it has already processed 0-RTT data in the past. To be precise, an adver-
sary could trick the server into processing past data again by repeatedly sending
(Enc(pk, k),Enc(k,m)) from a past communication.
Most naïve approaches to mitigate this problem are often not feasible in practice.

For example, a well-known technique is the use of strike registers, where the server
keeps track of which data it has already processed in the past. Unfortunately, the
storage of such information becomes infeasible in high-traffic environments and as
such this technique is often not used in practice.
In 2015, Gillmor described an attack that may even trick server implementing

with the aforementioned countermeasures into processing 0-RTT data again. The
idea is to mount a denial-of-service attack against the target server, disabling the
server’s means to record past requests. After the forced reboot of the server, it will
now either process replayed 0-RTT data again, as it has now means to verify the
request’s validity, or it has to fall back to a 1-RTT key exchange; both of which are
undesirable.

Goals of this Thesis. The goals of this thesis are

• to devise new techniques for the construction of 0-RTT protocols that achieve
forward security (and replay protection) for all transmitted messages;

• to develop new security models that accurately capture the security a 0-RTT
protocol should have;

• to provide concrete constructions of 0-RTT protocols that are efficient enough
to be deployed in practice;

• to prove security of the new constructions in their respective models, relating
the security of such models to either generic hardness assumptions (e.g., the

4



existence of pseudorandom functions), or specific hardness assumptions (e.g.,
the hardness of factoring large integers).

1.1 State of the Art
In this section, we describe the state of the art prior to the results of this thesis. We
proceed chronologically from the advent of 0-RTT protocols in cryptography and
explain how they have evolved over time. Specifically, we discuss the risen issues
with the new kind of protocol flow that 0-RTT protocols have enabled.

Google’s QUIC Protocol. Google were the first to deploy a 0-RTT key exchange
with their Quick UDP Internet Connections (QUIC) protocol in 2013 [Ros13],
which is currently deployed in the browsers Chrome and Opera. As of March 2020,
QUIC is supported by 3% of websites, mainly including their own and Cloudflare’s
servers.4
QUIC tackles both previously discussed approaches to reduce latency. As the

protocol name already suggests, QUIC relies on the UDP protocol instead of the
TCP protocol. However, since UDP is a connectionless protocol, QUIC defines
additional features on top of UDP to retain reliability guarantees for higher pro-
tocol layers. The additional features include an improved congestion control, mul-
tiplexing without head-of-line blocking, forward error correction, and connection
migration [Ros13].
In addition to using the UDP protocol, QUIC also implements a 0-RTT key

exchange protocol, called QUIC Crypto [CL14], reducing the latency during the
key exchange. On a high-level, their cryptographic handshake works as shown in
Figure 1.2.
Each server is in possession of a so-called server configuration, which essentially is

a Diffie–Hellmann share gs with a lifetime of two days.5 This server configuration
is shared amongst all clients that connect to the server. If a client has not yet
received a server configuration, or if its server configuration is not valid anymore,
it can request the most recent server configuration of the server. If the client has
cached a valid server configuration, it can execute a 0-RTT key exchange protocol
when establishing a new connection. To this end, the client computes its own
Diffie–Hellmann share ga, where a is the client’s secret exponent. The 0-RTT data
are encrypted under an early traffic key gas.6 Both the encrypted 0-RTT data and
the client’s Diffie–Hellmann share ga are sent to the server. Since the server knows

4See https://w3techs.com/technologies/details/ce-quic.
5In practice, the lifetimes of the server configurations overlap within a time window of one day.
This ensures that a client is always provided a server configuration that is valid at least for
another day.

6In practice, the actual session key is computed as the output of a key derivation function that
takes the Diffie–Hellman key and additional publicly known values as input. We discuss the
formal implications of such an approach later in this thesis.

5
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Client Server
. . . . . . . . . . . . . . . . . . first connection . . . . . . . . . . . . . . . . . .

Request gc

verify signature gc, σ(gc)

. . . . . . . . . . . . . . . . . 0-RTT connection . . . . . . . . . . . . . . . . .

tk0 := (gc)x gx tk0 := (gx)c

Enc(tk0,m)
0-RTT data

tk := (gy)x Enc(tk0, g
y) tk := (gx)y

Enc(tk,m′)
data

Figure 1.2: Simplified QUIC handshake protocol. σ(·) denotes a signature, com-
puted with the server’s secret signing key. If the server’s Diffie–Hellman
share gs is known, only the part below the horizontal divider is executed.

its own secret exponent s, it can recompute gas, and decrypt and process the 0-RTT
data.

Note that the QUIC Crypto protocol does not immediately achieve forward se-
curity for the 0-RTT data. Any adversary that gains access of the server config-
uration’s secret exponent c and has stored the server’s incoming connections of
the past, can compute tk0 for each connection. Hence, the adversary is also able
to retroactively decrypt the sent 0-RTT data, breaking forward security. QUIC
Crypto stores the server configuration for a duration of two days, during which
execution of this attack is possible. After the two days have expired and the server
configuration is replaced, and forward security of previously transmitted data after
replacement is secured.

We remark that Google has always described the QUIC Crypto protocol as “des-
tined to die” and to-be-replaced by the standardized TLS 1.3 handshake proto-
cols [CL14]. As TLS 1.3 has been standardized in 2018, the cryptographic hand-
shake of QUIC is now based on TLS 1.3, while the transport protocol of QUIC is in
the process of becoming an RFC [IT20]. We remark that QUIC, although initially
proposed as acronym, is not treated as an acronym in the RFC draft but rather as
the name of the protocol.
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Facebook’s Zero Protocol. Zero7 is a protocol developed by Facebook, which is
based on Google’s QUIC protocol. The Zero protocol makes minor adjustments to
QUIC’s key schedule, to the distribution of server configurations, and reduces the
lifetime during which the 0-RTT data are considered valid. However, the conceptual
approach how 0-RTT is achieved, remains identical to QUIC. Hence, we will refrain
from repeating the conceptual protocol flow.

TLS 1.3 0-RTT. Inspired by the 0-RTT key exchange in QUIC, TLS 1.3 intro-
duced a 0-RTT handshake for its session resumption. Contrary to a 0-RTT key
exchange, client and server already share a secret value before the session resump-
tion takes place. The TLS 1.3 session resumption relies on a concept called session
tickets. Depending on how the server implements this concept, different levels of
security can be achieved for the 0-RTT data. In practice, two approaches are used
for the session ticket concept:

• Session caches. In this case, the server stores all shared secrets established
with different clients in a local database. Each entry in the database is associ-
ated with the value of the shared secret and a unique look-up key as identifier.
The look-up key is given to the client during the initial connection. When a
client resumes its session, it sends the look-up key alongside the 0-RTT data
to the server. This allows the server to retrieve the shared secret from the
database by using the look-up key. This approach is illustrated in Figure 1.3.
This approach achieves forward security for the 0-RTT data if the server im-
mediately deletes the shared secret from its local database after a session has
been resumed. Hence, any adversary gaining access to the server’s database,
cannot retrieve the shared secret and thus cannot retroactively decrypt the
0-RTT data. Unfortunately, session caches are rarely used in practice, as
they require the server to store a shared secret for each connecting client.
Especially for high-traffic servers, this approach quickly exceeds the server’s
capabilities.

• Session tickets. In this case, the server makes use of a session ticket encryption
key, a long-term symmetric key, which is only known to the server. This
key allows the server to not store and manage the shared secret in its own
database. Rather the server encrypts the shared secret with the session ticket
encryption key to create a session ticket, which is sent to and stored by the
client. When a client resumes its session, it sends the session ticket alongside
the 0-RTT data to the server. Using the session ticket encryption key, the
server can open the session ticket and retrieve the shared secret. The approach
is illustrated in Figure 1.4.

7Subodh Iyengar; Kyle Nekritz: Building Zero protocol for fast, secure mobile connections, Jan-
uary 2017, https://engineering.fb.com/android/building-zero-protocol-for-fast-
secure-mobile-connections/.
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Client Server
. . . . . . . . . . . . . . . . . . . . . . prior connection . . . . . . . . . . . . . . . . . . . . . .

store s, ID establish secret s
and identifier ID

store s

. . . . . . . . . . . . . . . . . 0-RTT session resumption . . . . . . . . . . . . . . . . .

ID retrieve s using ID

Enc(s,m)
0-RTT data

Enc(s,m′)
data

Figure 1.3: Simplified execution of a TLS 1.3 0-RTT session resumption handshake
between a client and a server implementing session caches.

This approach does not achieve forward security. If an adversary gains access
to the session ticket encryption key, it can retroactively decrypt all transmit-
ted tickets, and thus also decrypt all transmitted 0-RTT data. Note that this
attack only works as long as the server keeps the session ticket encryption
key in its memory. If a server replaces the session ticket encryption key after
a certain time, it actually achieves forward security for all previously trans-
mitted data after replacement. Unfortunately, most TLS implementations do
not provide any mechanism to replace the session ticket encryption key over
time. Hence, many servers never change their session ticket encryption key.
However, we remark that some content providers on the Internet modified
their own TLS 1.3 implementation to frequently change their session ticket
encryption keys. We will discuss these mechanisms in more detail in Chap-
ter 6.

0-RTT Key Exchange from Puncturable Key Encapsulation Mechanisms.
Günther et al. [GHJL17] were the first to show that – against prior belief – it is
actually possible to construct a 0-RTT key exchange protocol that provides forward
security for the 0-RTT data. In their work, they presented a generic forward-secure
0-RTT key exchange protocol with a puncturable key encapsulation mechanism
(PKEM) as core building block. A PKEM has a key pair (pk, sk) with a public
encapsulation key pk and a secret decapsulation key sk. The public key is static
and publicly known. The secret key, however, alters with every decapsulation. If
sk was used to decapsulate ciphertext c, it is subjected to a transformation Punct
which transforms it into a new secret key sk ′ ← Punct(sk, c). This modified secret
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Client Server
. . . . . . . . . . . . . . . . . . . . .prior connection. . . . . . . . . . . . . . . . . . . . .

store s, t establish secret s
and ticket t

delete s, t

. . . . . . . . . . . . . . . . 0-RTT session resumption . . . . . . . . . . . . . . . .
t retrieve s using t

Enc(s,m)
0-RTT data

Enc(s,m′)
data

Figure 1.4: Simplified execution of a TLS 1.3 0-RTT session resumption handshake
between a client and a server implementing session tickets.

key can be used to decrypt all ciphertexts c created with the help of pk, except
for ciphertext c. Repeatedly “puncturing” the secret key allows to stepwise revoke
decryption capabilities of the secret key.
Unfortunately, the construction by Günther et al. requires computational heavy

building blocks, such as hierarchical identity-based key encapsulation mechanisms,
for crucial parts of the scheme. For reasonable deployment parameters, their scheme
takes between 30 seconds and several minutes to compute the puncturing procedure.
Hence, their scheme is impractical and does not yield a 0-RTT protocol suitable
for real-world deployment in its current state.

Bloom Filter Key Encapsulation Mechanisms. In 2018, Derler et al. [DJSS18]
presented a novel approach to PKEMs, substantially improving the result by Gün-
ther et al. [GHJL17]. The core idea of their work is to precompute a large list of
secret values such that puncturing only consists of deleting precomputed entries of
the list. In contrast to [GHJL17], this puncturing procedure is highly efficient. The
efficiency comes at the cost of a non-negligible correctness error when decapsulating
a ciphertext. Depending on how many times the secret has been punctured, it may
occur that decapsulation of a ciphertext becomes impossible. This error is due to
a probabilistic data structure called Bloom filter [Blo70], which is (conceptually)
necessary for instantiation of the construction.
Important properties of a Bloom filter key encapsulation mechanism are the size

of the secret key and ciphertexts. Typically, secret keys are very large in such con-
structions as a large list of secret values has to be precomputed at initialization of
the scheme. Hence, the contributing factors of the secret key size (e.g., probability
of a correctness error, lifetime of the key material) have to be chosen carefully.
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Similarly, the size of the ciphertext in most constructions is tied to the probability
of a correctness error, requiring careful treatment in applications where short ci-
phertexts are essential (e.g., in low-battery devices, or applications requiring short
ciphertexts).

1.2 Advancements to the State of the Art
We advance the state of art described in the previous sections as follows.

A Modern View on Forward Security. During the rise of 0-RTT protocols, there
has been much confusion if forward security for the 0-RTT data can be achieved
before the receiving party has contributed fresh input to the communication. This
confusion goes back to the traditional way of achieving forward security in interac-
tive protocols, where both communicating parties contribute fresh randomness to
the session key before data are encrypted. However, in 0-RTT protocols encrypted
data are sent, before the receiving party has a chance to contribute randomness.
Hence, traditional techniques to achieve forward security are not applicable to 0-
RTT data.
In the context of this thesis, we investigate what forward security should mean

in contexts beyond the traditional interactive key exchange. We discuss exist-
ing approaches to achieve forward security in non-interactive communications and
propose a new unifying terminology aiming to capture both the interactive and
non-interactive worlds of communications.

Bloom Filter Key Encapsulation Mechanism with Constant-Size Ciphertexts.
Bloom filter key encapsulating mechanisms are currently the state-of-the-art build-
ing block for the construction of forward-secure 0-RTT key exchange. We propose
a new generic construction of a Bloom filter KEM from identity-based broadcast
encryption. Instantiating our construction with the constant-ciphertext identity-
based broadcast encryption scheme by Delerablée [Del07] achieves the first Bloom
filter key encapsulation mechanism with constant-size ciphertexts. Our construc-
tion is especially suitable for applications where the maximum ciphertext size is
severely limited, or for use in resource-constrained devices.

Efficient Circuit Construction in Anonymous Communication. Circuit con-
struction protocols are an important building block when it comes to establish-
ing anonymous communications in global overlay networks, such as the well-known
Tor [DMS04] network. They allow a client to establish session keys with a number
of dedicated severs, over which subsequent traffic is routed. As sending messages
through a global overlay network typically incurs a high latency, it is desirable
to keep the number of necessary messages for executing a circuit construction
protocol as low as possible. The currently deployed circuit construction proto-
col nTor [GSU12] requires a number of messages quadratic in the number of chosen
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servers. Attempts of constructing a more efficient circuit construction protocol have
lead to a weaker form of forward security, where the session keys are not protected
after the circuit has been closed, but only after a certain amount of time (typically
in the range of hours to days) has passed.
In this thesis we show that a circuit construction protocol can be generalized

to a multi-hop 0-RTT protocol, where several 0-RTT key exchanges a executed in
“one-shot.” That is, we can apply the techniques by [GHJL17] to construct the
first efficient circuit construction protocol that achieves forward security for all
transmitted data and only requires a number of messages linear in the number of
chosen servers.

Efficient Forward Security for 0-RTT Session Resumption Protocols. We con-
struct the first practical session resumption protocol based on session tickets to
achieve forward security for all data, including the 0-RTT data. Our protocol is
generic and can be instantiated with puncturable pseudorandom functions, an effi-
cient symmetric-key pendant related to (public key) puncturable encryption. We
prove the security of our protocol in a newly developed security model, which cap-
tures all desired security properties of a 0-RTT session resumption protocol.

Efficient Forward Security for TLS 1.3 0-RTT. Finally, we show how our generic
construction of a forward-secure 0-RTT session resumption protocol can be com-
posed with the standardized TLS 1.3 protocol. Our composition does not require
any changes to the client’s implementation of TLS but only modifies the server’s
implementation. This approach allows Internet content providers to immediately
deploy our protocol with stronger security by adapting their respective implemen-
tations of TLS 1.3. Furthermore, our composition does not require any change to
the TLS 1.3 standard as we only rely on mechanisms that it already provides.

1.3 Related Work
In this section we discuss related work relevant to this thesis.

Analyses of TLS and QUIC. Over the past years there have been several papers
formally analyzing the security of TLS 1.2 [JKSS12, KPW13, BFK+14] and TLS
1.3 [DFGS15, FG17]. Especially noteworthy are the analyses of the 0-RTT mode
of TLS 1.3 [FG17] and QUIC [FG14] by Fischlin and Günther, who analyze both
protocols in a multi-stage key exchange model [FG14]. Arfaoui et al. analyze privacy
aspects of the TLS 1.3 handshakes [ABF+19]. Lychev et al. [LJBN15] further
formally analyzed QUIC in a security model that additionally captures the secure
composition of authenticated encryption and key exchange.
A security definition and construction for QUIC-like 0-RTT protocols were given

in [HJLS17]. However, all these publications do not consider forward security for
the 0-RTT data in their security models.
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Puncturable Encryption. Puncturable encryption was formally introduced by
Green and Miers in 2015 [GM15] and has since been inspiration to many follow-up
constructions [GHJL17, DJSS18, DGJ+20, SSS+20, SDLP20]. All constructions
were tailored to a specific use-case and hence yield different advantages and disad-
vantages.
Günther et al. [GHJL17] proposed the first puncturable key encapsulation mech-

anism, aiming to achieve forward security in 0-RTT key exchange. Derler et al.
[DJSS18, DGJ+20] describe Bloom filter encryption and Bloom filter key encap-
sulation mechanisms, a variant of puncturable encryption and puncturable key
encapsulation mechanisms that achieves highly efficient puncturing at the cost of
a non-negligible correctness error.
Puncturable encryption has since then found use in multiple applications, for ex-

ample, in public key watermarking schemes [CHN+16], forward-secure symmetric
searchable encryption [BMO17], fully-homomorphic encryption [CRRV17], proxy
re-encryption [DKL+18], forward-secure emails [WCW+19], and offline witness en-
cryption [CJK20].

Puncturable Pseudorandom Functions. Pseudorandom functions are keyed eval-
uation functions F : K × X → Y that produce pseudorandom output, which is
indistinguishable from randomness to any bounded adversary who may observe
polynomially-bounded evaluations of the function. Puncturable pseudorandom
functions are a special variant of pseudorandom functions, where evaluation ca-
pabilities for certain inputs can be revoked from the evaluation key. To be precise,
it is possible to construct evaluation keys k ∈ K such that F cannot be evaluated
for a subset of inputs S ⊆ X .
Puncturable pseudorandom functions were formally introduced by Sahai and

Waters [SW14]. The most prominent puncturable pseudorandom function is based
on the Goldreich–Goldwasser–Micali (GGM) pseudorandom function [GGM86] and
has been described in several works [BW13, BGI14, KPTZ13].
Puncturable pseudorandom functions are also strongly related to symmetric

puncturable encryption [SYL+18]. In fact, [SYL+18] have shown that any punc-
turable pseudorandom function can be transformed into a puncturable encryption
scheme when combined with a symmetric encryption scheme and a cryptographic
hash function.

1.4 Publication Overview
This thesis is based on the following publications. We provide further details on
our contributions at the beginning of each main chapter.

Peer-Reviewed Publications. The following results were published at conference
proceedings or journals with peer-review.
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[DGJ+20] David Derler, Kai Gellert, Tibor Jager, Daniel Slamanig, and Christoph
Striecks. Bloom filter encryption and applications to efficient forward-secret
0-RTT key exchange. Journal of Cryptology, 2020. To appear.

[BG20] Colin Boyd and Kai Gellert. A modern view on forward security. The Com-
puter Journal, 2020. To appear.

[LGM+20] Sebastian Lauer, Kai Gellert, Robert Merget, Tobias Handirk, and Jörg Schwenk.
T0RTT: Non-interactive immediate forward-secret single-pass circuit con-
struction. Proceedings on Privacy Enhancing Technologies, 2020(2):336–357,
2020.

[AGJ19] Nimrod Aviram, Kai Gellert, and Tibor Jager. Session resumption protocols
and efficient forward security for TLS 1.3 0-RTT. In Yuval Ishai and Vin-
cent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS,
pages 117–150, Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg,
Germany. doi:10.1007/978-3-030-17656-3_5.

In Submission. The following result is under review as this thesis was submitted.
So far, it received the grade minor revisions after the first round of reviews.

[AGJ20] Nimrod Aviram, Kai Gellert, and Tibor Jager. Session resumption proto-
cols and efficient forward security for TLS 1.3 0-RTT, 2020. Unpublished
manuscript.

1.5 Outline
The remainder of this thesis is organized as follows.

Chapter 2: Preliminaries.
This chapter introduces the basic notions and conventions used in this thesis.
Additionally, it defines basic cryptographic primitives (e.g., cryptographic
hash functions, pseudorandom functions, symmetric encryption, etc.) and
complexity assumptions used throughout this thesis.

Chapter 3: A Modern View on Forward Security.
This chapter examines the concept of forward security in extensive detail. We
especially focus on forward security in the context of non-interactive protocols,
such as 0-RTT protocols, and provide a new unifying terminology for forward
security.

The second part of this thesis focuses on 0-RTT key exchange. That is, we
investigate how we can construct forward-secure 0-RTT key exchange protocols
without sharing a state with a server.
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Chapter 4: Bloom Filter Key Encapsulation Mechanisms.
This chapter introduces the concept of Bloom filter key encapsulation mech-
anisms and how they can be applied to construct forward-secure 0-RTT key
exchange protocols. We furthermore present a new Bloom filter key encapsu-
lation mechanism with short ciphertexts and secret keys.

Chapter 5: Non-Interactive Forward-Secure Single-Pass Circuit Construction.
This chapter is about forward-secure one-pass circuit construction protocols,
a special variant of a multi-hop 0-RTT protocol. We explain how Bloom filter
key encapsulation mechanisms can be used to construct such protocols.

The third and last main part of this thesis focuses on 0-RTT session resumption
protocols. That is, we investigate how we can construct forward-secure 0-RTT
session resumption protocols if client and server already share a secret from a
previous communication.

Chapter 6: 0-RTT Session Resumption with Forward Security.
This chapter establishes the foundations of 0-RTT session resumption proto-
cols. We show how forward-secure 0-RTT session resumption protocols can
be constructed from puncturable pseudorandom functions and discuss their
efficiency.

Chapter 7: TLS 1.3 0-RTT with Absolute Forward Security.
This chapter is a seamless continuation of the previous chapter. We show
how to generically integrate a secure 0-RTT session resumption protocol into
the TLS 1.3 resumption handshake.

Finally, we conclude this thesis with the following chapter.

Chapter 8: Conclusion.
This chapter discusses the impact of this thesis and the potential future of
0-RTT protocols.
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2 Preliminaries
In this chapter, we introduce the notation and conventions used throughout this
thesis. Additionally, we recap some fundamental concepts, cryptographic primi-
tives, and complexity assumptions. Definitions of some more advanced primitives
are first provided when they are needed. This allows to keep this chapter as simple
and basic as possible and does not require the reader to remember all advanced
definitions.

2.1 Notation
We denote the security parameter as λ. For any n ∈ N let 1n be the unary rep-
resentation of n and let [n] = {1, . . . , n} be the set of numbers between 1 and n.
Moreover, |x| denotes the length of a bitstring x, while |S| denotes the size of a
set S. If x is a bitstring, we write x[i] to refer to the i-th bit of x. For strings
a and b, we denote a ‖ b as the concatenation of a and b. For a set {x1, . . . , xn}
(resp. a tuple (x1, . . . , xn)) we write {xi}i∈[n] (resp. (xi)i∈[n]) as shorthand. We
write x $←− S to indicate that we choose element x uniformly at random from set
S. For a probabilistic polynomial-time algorithm A we define y $←− A(a1, . . . , an)
as the execution of A (with fresh random coins) on input a1, . . . , an and assigning
the output to y.
If a scheme is represented as a tuple of algorithms, for example Scheme =

(Alg1,Alg2), we write Scheme.Alg1 to reference the algorithm Alg1 of scheme Scheme.
If context allows to deduce to which scheme algorithm Alg1 refers (e.g., by unique-
ness of name), we drop the prefix Scheme and write Alg1 as shorthand.
We define efficiency of algorithms and negligibility of functions as follows.

Definition 1. Let A be an algorithm. We call A efficient or say that A runs in
polynomial time if there exists a polynomial p such that for all inputs x ∈ {0, 1}∗,
the computation of A(x) terminates within at most p(|x|) steps.

Definition 2. Let f : N → R be a function. We call f negligible in n if for all
polynomials p > 0 there is a threshold N such that for all n > N

f(n) < 1
p(n) .

Non-Interactive. We remark that there are multiple possible meanings to the
term non-interactive used in literature. Protocols for non-interactive key exchange
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(NIKE) require that no messages flow between the executing parties. In contrast,
we use the term non-interactive to emphasize that messages flow only in one di-
rection. This allows, for example, that one of the two executing parties is offline
during protocol execution (e.g., email and messenger services), which is sometimes
called asynchronous instead. In the case of 0-RTT data, the term non-interactive
emphasizes that these data are sent without fresh input from the receiving party.

2.2 Provable Security
The Art of Cryptography. Historically, cryptosystems have been designed under
the “build it, break it” paradigm. That is, a cryptosystem was considered secure
until a feasible attack against it was discovered. This approach suffers under several
substantial limitations. For example, it is not clear whether a proposed cryptosys-
tem is actually secure or whether a possible attack has not yet been discovered.
Similarly, it is hard to argue and verify why certain decisions have been made dur-
ing the design process. Overall, the historical approach to designing cryptosystems
cannot be used to derive precise statements on the cryptosystem’s security.

The Science of Cryptography. In 1984, Goldwasser and Micali laid the founda-
tions of modern cryptography in a seminal work [GM84], for which they received the
Turing Award in 2013. They were the first to formally draw a security proof based
on well-established techniques from theoretical computer science. This approach
elevated cryptography from an art form to a science and still heavily influences
today’s design of cryptosystems.
Nowadays, the design of a cryptosystems usually happens alongside a formal

proof of security. A proof of security typically consists of three parts:

1. Formal security definition: First of all, the security of a cryptosystems needs
to be defined. The security definitions draws the boundaries when an ad-
versary successfully breaks the cryptosystem. This could for example be the
recovery of an encrypted message, or the forgery of a signature. We describe
several security definitions for different cryptographic primitives in the next
section.

2. Hard computational problem: The above security of the cryptosystem will
be related to a computational problem. We call a computational problem
hard if we do not know how to efficiently solve it (and if it is reasonable
to assume that no efficient solution will be discovered during the lifetime
of the cryptosystem). Well-studied and assumed-to-be-hard problems are
for example the factoring large integers, or solving the discrete logarithm in
certain groups.

3. Efficient reduction: The reduction sets both the formal security definition and
the hard computation problem in relation. Formally, the reduction transforms
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any adversary breaking the cryptosystem into an efficient algorithm solving
the hard computational problem.

If an efficient reduction to a hard computational problem exists for a given cryp-
tosystem, then breaking the cryptosystem is at least as heard as solving the hard
computational problem. Hence, we can state that the cryptosystem is indeed se-
cure, as long as no efficient solution to the hard computational problem exists. This
approach is often termed provable security.
In contrast to the historical approach of designing cryptosystems, provable secu-

rity allows the derivation of precise security statements, the falsifiability of claims,
and the verifiability of protocol designs. Thus, provable security is the foundation
of modern cryptography.

2.3 Cryptographic Building Blocks
In this section, we recap some fundamental cryptographic building blocks and define
their syntax and security. For a more comprehensive description beyond syntax and
security definitions, we refer the reader to the textbook by Katz and Lindell [KL07].

2.3.1 Cryptographic Hash Functions
Cryptographic hash functions are, on a high level, functions that map “long” in-
put strings to a short output string called hash value or digest. The basic security
requirement is that it is hard to produce collisions, that is, it is hard to find two
distinct input strings x1, x2 such that their hashes are equal. Unkeyed hash func-
tions H : {0, 1}∗ → {0, 1}λ, as deployed in practice, always imply the existence of
collisions, as the range of H is smaller than its domain. Instead of defining that
no efficient adversary able to find collisions exists, we follow the approach by Rog-
away [Rog06] and define that it is hard to efficiently construct an efficient adversary
that is able to find collisions.

Definition 3. A hash function H : {0, 1}∗ → {0, 1}λ that maps arbitrary finite-
length bit strings to strings of fixed length λ is called collision resistant if we cannot
efficiently construct an efficient adversary A whose advantage

Advcollision
A,H (λ) := Pr

(m,m′) $←−A(1λ)
[H(m) = H(m′) ∧m 6= m′]

is non-negligible.

2.3.2 Pseudorandom Generators
A pseudorandom generator (PRG) [BM82, Yao82] is a function that transforms a
short and uniformly random seed into a longer and pseudorandom sequence of bits.
PRGs are a basic building block often used in private-key encryption. We define
their security as follows [KL07].
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Definition 4. Let PRG : {0, 1}λ → {0, 1}o(λ) be an efficient function with in-
put length λ and output length o(λ) > λ. We call PRG pseudorandom if for all
probabilistic polynomial-time adversaries A the advantage

Advrand
A,PRG(λ) :=

∣∣∣∣∣ Pr
s

$←−{0,1}λ
[A(PRG(s)) = 1]− Pr

r
$←−{0,1}o(λ)

[A(r) = 1]
∣∣∣∣∣

is negligible in λ.

2.3.3 Pseudorandom Functions
A pseudorandom function (PRF) [GGM84, GGM86] is a keyed function that maps
an input value to a pseudorandom output value that is indistinguishable from a
truly random output. They are often used to derive key material in key exchange
protocols. We define their security as follows [KL07].

Definition 5. Let PRF : {0, 1}∗ × {0, 1}i(λ) → {0, 1}o(λ) be an efficient keyed
function with input length i(λ) and output length o(λ). We call PRF pseudorandom
if for all probabilistic polynomial-time adversaries A the advantage

Advrand
A,PRF(λ) :=

∣∣∣∣∣ Pr
k

$←−{0,1}∗
[
APRF(k,·)(1λ) = 1

]
− Pr

f
$←−F

[
Af(·)(1λ) = 1

]∣∣∣∣∣
is negligible in λ, where F is the finite set of all functions mapping {0, 1}i(λ) →
{0, 1}o(λ).

2.3.4 Symmetric Encryption
A symmetric encryption (SE) scheme [BDJR97] allows to encrypt messages and
decrypt ciphertexts under knowledge of a secret symmetric key. Their main security
goal is to provide confidentiality of encrypted messages. We define their security
according to [KL07].

Definition 6. A symmetric encryption scheme consists of three probabilistic poly-
nomial-time algorithms SE = (KGen,Enc,Dec) with key space K, message space
M, ciphertext space C, and the following properties:

• KGen(1λ) takes as input a security parameter λ and outputs a key k ∈ K.

• Enc(k,m) takes as input a key k ∈ K and a message m ∈ M. Output is a
ciphertext c ∈ C.

• Dec(k, c) takes as input a key k ∈ K and a ciphertext c ∈ C. Output is a
message m ∈M, or an error symbol ⊥.
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GIND-CPA
A,SE (λ)

k $←− KGen(1λ), b $←− {0, 1}
(m0,m1) $←− A(1λ) with |m0| = |m1|
c∗ $←− Enc(k,mb)
b∗ $←− AOEnc(k,·)(c∗)

where OEnc(k,m) behaves like Enc(k,m).
return 1 if b = b∗

return 0

GIND-CCA
A,SE (λ)

k $←− KGen(1λ), b $←− {0, 1}
(m0,m1) $←− A(1λ) with |m0| = |m1|
c∗ $←− Enc(k,mb)
b∗ $←− AOEnc(k,·),ODec(k,·)(c∗)

where OEnc(k,m) behaves like Enc(k,m),
and ODec(k, c) behaves like Dec(k, c)
but returns ⊥ if c = c∗.

return 1 if b = b∗

return 0

Figure 2.1: Security experiments for symmetric encryption. The IND-CPA security
experiment for SE is left and the IND-CCA security experiment is right.

We call a symmetric encryption scheme correct if for all m ∈M

Pr
k

$←−KGen(1λ)
[Dec(k,Enc(k,m)) = m] = 1.

We write {data}k as shorthand for Enc(k, data) if Enc is clear from context.
We will sometimes refer to the entity running the encryption (resp. decryption)
procedure as encryptor (resp. decryptor).

Definition 7. We define the advantage of an adversary A in the IND-CPA (resp.
IND-CCA) security experiment GIND-CPA

A,SE (λ) (resp. GIND-CCA
A,SE (λ) defined in Figure 2.1

as

AdvIND-CPA
A,SE (λ) :=

∣∣∣∣Pr
[
GIND-CPA
A,SE (λ) = 1

]
− 1

2

∣∣∣∣ ,
AdvIND-CCA

A,SE (λ) :=
∣∣∣∣Pr

[
GIND-CCA
A,SE (λ) = 1

]
− 1

2

∣∣∣∣ .
We say a symmetric encryption scheme is IND-CPA-secure (resp. IND-CCA-

secure) if the advantage AdvIND-CPA
A,SE (λ) (resp. AdvIND-CCA

A,SE (λ)) is a negligible function
in λ for all probabilistic polynomial-time adversaries A.

2.3.5 Key Encapsulation Mechanisms
A key encapsulation mechanism (KEM) is a public-key encryption technique to se-
curely transport a symmetric key between two parties. We define security according
to [KL07].

Definition 8. A key encapsulation mechanism is a tuple of three probabilistic
polynomial-time algorithms KEM = (KGen,Encap,Decap) with key space K, ci-
phertext space C, and the following properties:
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GIND-CPA
A,KEM (λ)

(pk, sk) $←− KGen(1λ)
b $←− {0, 1}, k1

$←− K
(k0, c

∗) $←− Encap(pk)
b∗ $←− A(pk, c∗, kb)
return 1 if b = b∗

return 0

GIND-CCA
A,KEM (λ)

(pk, sk) $←− KGen(1λ)
b $←− {0, 1}, k1

$←− K
(k0, c

∗) $←− Encap(pk)
b∗ $←− AODecap(sk,·)(pk, c∗, kb)
where ODecap(sk, c) behaves like Decap(sk, c)
but returns ⊥ if c = c∗.

return 1 if b = b∗

return 0

Figure 2.2: Security experiments for key encapsulation mechanisms. The IND-CPA
security experiment for SE is left and the IND-CCA security experiment
is right.

• KGen(1λ) takes as input a security parameter λ and outputs a key pair (pk, sk)
consisting of a secret decapsulation key sk and a public encapsulation key pk.

• Encap(pk) takes as input a public key pk. Output is a symmetric key k ∈ K
and a ciphertext c ∈ C.

• Decap(sk, c) takes as input a secret key sk and a ciphertext c ∈ C. Output is
a symmetric key k ∈ K, or an error symbol ⊥.

We call a key encapsulation mechanism correct if

Pr
(pk,sk) $←−KGen(1λ)

[Decap(sk, c) = k | (k, c) $←− Encap(pk)] = 1.

We will sometimes refer to the entity running the encapsulation (resp. decapsu-
lation) procedure as encapsulator (resp. decapsulator).

Definition 9. We define the advantage of an adversary A in the IND-CPA (resp.
IND-CCA) security experiment GIND-CPA

A,KEM (λ) (resp. GIND-CCA
A,KEM (λ) defined in Figure 2.2

as

AdvIND-CPA
A,KEM (λ) :=

∣∣∣∣Pr
[
GIND-CPA
A,KEM (λ) = 1

]
− 1

2

∣∣∣∣ ,
AdvIND-CCA

A,KEM (λ) :=
∣∣∣∣Pr

[
GIND-CCA
A,KEM (λ) = 1

]
− 1

2

∣∣∣∣ .
We say a key encapsulation mechanism is IND-CPA-secure (resp. IND-CCA-

secure) if the advantage AdvIND-CPA
A,KEM (λ) (resp. AdvIND-CCA

A,KEM (λ)) is a negligible function
in λ for all probabilistic polynomial-time adversaries A.
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GsEUF-1-CMA
A,SIG (λ)

(pk, sk) $←− KGen(1λ)
m $←− A(1λ, pk)
σ $←− Sign(sk,m)
(m∗, σ∗) $←− A(σ)
return 1 if Vrfy(pk,m∗, σ∗) = 1 and (m,σ) 6= (m∗, σ∗)
return 0

Figure 2.3: The sEUF-1-CMA security experiment for digital signature schemes.

2.3.6 Digital Signatures
Digital signatures allow a signer to authenticate a message towards a verifier. Their
main security goal is essentially that no adversary is able to forge a valid signature
for some message. For this thesis, we only require a special variant of signatures
whose security we define according to [Moh11].

Definition 10. A digital signature scheme is defined as tuple of three probabilis-
tic polynomial-time algorithms SIG = (KGen, Sign,Vrfy) with message space M,
signature space S, and the following properties:

• KGen(1λ) takes as input a security parameter λ. Output is a key pair (pk, sk)
consisting of a secret signing key sk and a public verification key pk.

• Sign(sk,m) takes as input a secret key sk and a message m ∈ M. Output is
a signature σ ∈ S.

• Vrfy(pk,m, σ) takes as input a public key pk, a message m, and a signature
σ ∈ S. Output is a bit b ∈ {0, 1}.

We call a signature scheme correct if for all m ∈M

Pr
(pk,sk) $←−KGen(1λ)

[Vrfy(pk,m, Sign(sk,m)) = 1] = 1.

We will sometimes refer to the entity running the singing (resp. verification)
procedure as signer (resp. verifier).

Definition 11. We define the advantage of an adversary A in the sEUF-1-CMA
security experiment GsEUF-1-CMA

A,SIG (λ) defined in Figure 2.1 as

AdvsEUF-1-CMA
A,SIG (λ) :=

∣∣∣Pr
[
GsEUF-1-CMA
A,SIG (λ) = 1

]∣∣∣ .
We say that a digital signature scheme is sEUF-1-CMA-secure if the advantage

AdvsEUF-1-CMA
A,SIG (λ) is a negligible function in λ for all probabilistic polynomial-time

adversaries A.
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2.4 Complexity Assumptions

For this thesis we require the strong RSA assumption, a generalization of the RSA
assumption [RSA78], which is due to Bari and Pfitzmann [BP97]. In order to
properly define the strong RSA assumption, we first need to define safe primes, a
well-known definition from number theory.

Definition 12. Let p > 2 be prime. We call p safe if p′ = (p− 1)/2 is also prime.

With that, we can now define the strong RSA assumption.

Definition 13. Let p, q be two random safe primes of bitlength λ/2 and let N = pq.
Let y $←− ZN . We define the advantage of algorithm A against the strong RSA
assumption [BP97] as

AdvsRSA
A (λ) := Pr

(x,e) $←−A(N,y)
[xe = y mod N ] ,

with x ∈ ZN and e ∈ N \ {1}.

The following well-known lemma, which is due to Shamir [Sha83], is useful for
many security proofs under the strong RSA assumption.

Lemma 1. There exists an efficient algorithm that, on input Y, Z ∈ ZN and in-
tegers e, f ∈ Z such that gcd(e, f) = 1 and Ze = Y f mod N , computes X ∈ ZN
satisfying Xe = Y mod N .

2.5 The Random Oracle Model

The random oracle model [BR93] is a model that can help to prove security of
cryptographic constructions that rely on hash functions but cannot be proven secure
under standard hardness assumptions such as collision resistance. The core idea is
to idealize the used hash function in the context of the security proof. That is, the
hash function behaves like an ideal random function with consistent input/output
behavior. The conceptual approach of a random oracle is illustrated in Figure 2.4.
We need to be aware that a construction secure in the random oracle model might
not be secure in practice if a concrete hash function does not “approximate” the
random oracle model well enough.
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Random Oracle Adversary A
If there exists a y such that (m, y) ∈ L, m

then H(m) := y.
Else
y $←− R
L := L ∪ {(m, y)}
H(m) := y H(m)

Figure 2.4: Interaction between an adversary A and a random oracle. The adver-
sary may repeatedly query the random oracle. List L is empty before
the adversary queries the oracle.

We note that (highly artificial) schemes exist that are only secure in the random
oracle model but are insecure for any concrete instantiation [CGH98]. However,
the random oracle model is often seen as useful tool for proving the security of
cryptosystems that cannot be proven secure otherwise; a proof in the random oracle
model is better than no proof at all.
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3 A Modern View on Forward
Security

Forward security is a common design goal in key exchange protocols, ensuring that
past communications remain secure after the secret long-term key material has
been compromised. However, new approaches to key exchange design such as 0-
RTT protocols have led to confusion regarding what forward security is supposed
to mean. This chapter gives a detailed discussion on forward security for different
cryptographic primitives and proposes a new unifying terminology of the notion of
forward security.

Author’s Contribution. The contents of this chapter are based on joint work with
Colin Boyd [BG20]. Significant parts of this chapter evolved through extensive
mutual discussions. Hence, Colin Boyd and the author of this thesis contributed
equally to the results. In particular, it was the author’s idea to analyze the concept
of forward security in a much broader scope, that is, capturing advanced primitives
such as session resumption protocols and circuit construction protocols.

3.1 Motivation
Providing confidentiality to sensitive data is a standard property of encryption
schemes. Without knowledge of the decryption key, an adversary should not be able
to decrypt any encrypted data. Nowadays, in the presence of powerful nation-state
adversaries that establish Internet surveillance programs, achieving the necessary
security for sensitive data has become more challenging. Even if Internet traffic is
encrypted, a resourceful adversary could collect encrypted traffic on a massive scale
and store it in dedicated data centers. Should a decryption key be compromised
at a later point in time, for example by database breaches or by application of
legislative means in various jurisdictions, the respective encrypted traffic could be
decrypted again. It is therefore evident that encryption protocols should take into
account the threat from adversaries who may practice mass storage of encrypted
data.
The aforementioned attacks can be prevented if the key material used to decrypt

traffic is no longer available at the time of compromise. One possible approach is
to protect the communication by using a dedicated session key, which is immedi-
ately deleted after use. This approach is commonly known as forward secrecy in
key exchange protocols. A different approach is to directly delete or modify the
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decryption key such that earlier versions of the key remain unrecoverable. This
essentially describes the idea of forward-secure encryption and achieves what is
often referred to as forward security. Later in this chapter we will compare the
fundamental concepts of these two notions and discuss alternative meanings of the
terms forward secrecy and forward security.

Forward Secrecy in Key Exchange. A helpful example to illustrate the impor-
tance of forward secrecy in key exchange is the TLS protocol. Earlier versions
of the TLS protocol essentially provide two modes of key exchange. One mode is
based on Rivest–Shamir–Adleman (RSA) encryption [RSA78] and does not provide
forward secrecy. The other mode is based on Diffie–Hellman [DH76] key exchange
and provides forward secrecy. Qualsys SSL Labs have monitored whether the most
popular websites on the Internet support forward secrecy from October 2014 to
today. The support of forward secrecy over time is illustrated in Figure 3.1. While
in late 2014 half of the websites did not support forward secrecy at all, this number
has dramatically decreased over the recent years. As of today, the vast majority of
websites, 98%, provide a notion of forward secrecy.

Forward Secrecy without Interaction. Typical key exchange protocols require in-
teraction between the participants. This interaction plays a critical role in achiev-
ing forward secrecy. Non-interactive protocols, in which secured data leaves the
sender before any response from the recipient, cannot apply the same techniques.
Prominent examples of non-interactive protocols include electronic mail and in-
stant messaging, where the recipient may be offline during communication. For
the case of email, standardized end-to-end security solutions such as GPG1 or S-
MIME [Ram04a, Ram04b], do not provide forward secrecy. In contrast, there has
been much effort in providing high security for instant messaging; protocols such
as Signal [Sig19] do emphasize the need for forward secrecy even for the initial
messages, when no interaction has yet occurred.
In recent years, interest in non-interactive protocols has increased even in Internet

services where interaction could be used, due to the desire to achieve higher effi-
ciency and reduce delay. This interest is exemplified by several Internet companies
developing and experimenting with protocols that allow clients to send encrypted
payload data before obtaining any fresh input from the server. Prominent examples
are Google’s QUIC protocol [CL14], Facebook’s Zero protocol [IN17], and the TLS
1.3 0-RTT mode [Res18].

A Confusing Landscape. Due to the lack of interactivity, traditional techniques
to achieve forward secrecy (elaborated in detail in the next section) cannot be
used in the protocols mentioned above. Therefore alternative techniques have been
designed, and in some cases deployed, which do not fit the traditional view. This
has led to considerable confusion about what forward secrecy should mean, whether

1The GNU Privacy Guard: https://gnupg.org/.
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Figure 3.1: The percentage of websites not supporting forward secrecy over time
measured across 150,000 TLS-enabled websites, based on Alexa’s list of
the most popular websites in the world.2 Figures are taken from Qualys
SSL Labs.3

there are different kinds of forward secrecy, and whether forward secrecy in key
exchange is different from the meaning of forward security for key exchange or
other primitives.
Due to the different possible meanings of forward secrecy, it is possible to reach

contradictory conclusions on what is possible to achieve with non-interactive pro-
tocols. Some authors [CFG09, KZG10, CDRF+13, Wil14, WTSB16] state that it
is impossible to achieve forward secrecy without interaction while others [GHJL17,
AGJ19, WCW+19, LGM+20] state that fully equivalent forward secrecy has been
achieved in their non-interactive constructions.
Throughout literature, many different adjectives have been used to qualify dif-

ferent flavors of forward secrecy and forward security, such as perfect [Gün90], par-
tial [PBM00], weak [BPR00], strong [BCP02], eventual [ØS07], immediate [ØS07],
asynchronous [UDB+15], and full [GHJL17]. In Appendix A we provide a list of
these terms, explaining their origins and comparing their meanings.

Contributions. The goal of this chapter is to shed light on competing definitions
for forward secrecy and forward security, and to propose a unified view on how to
compare both non-interactive and interactive protocols with forward security.

2See https://www.alexa.com/topsites.
3See https://www.ssllabs.com/ssl-pulse/.

27

https://www.alexa.com/topsites
https://www.ssllabs.com/ssl-pulse/


• We discuss and compare the different terminology and possible alternative
meanings of forward security/secrecy leading us to the conclusion to view
forward security as a generalization of forward secrecy in key exchange (Sec-
tions 3.2, 3.3).

• We explain different techniques to achieve forward secrecy in non-interactive
key exchange and identify message suppression as an attack vector to bypass
forward secrecy under certain circumstances (Section 3.4).

• We identify different properties of forward security based on a timing param-
eter, differentiate the different types of keys that can be used to achieve these
properties, and show how known types of forward-secure primitives map to
the different key types. This allows a meaningful comparison of the degree of
forward security which is achieved by different cryptographic schemes, even
when they use quite different techniques (Section 3.5).

3.2 The Traditional View
We start by describing the traditional view on forward secrecy. In 1978, Needham
and Schroeder [NS78] established the academic view on authenticated key exchange
(AKE). They categorized an AKE protocol to either be private-key based (where
both communicating parties share the same key) or public-key based (where sender
and recipient use different keys). Traditionally, both approaches use so-called long-
term keys, which are chosen once and do not alter during the system’s lifetime.4 In
the case of the private-key setting, this often involves a trusted server with whom
the long-term key is shared (e.g., a new employee joining a company may be issued
a long-term key by a key generation server). In the public-key setting, the public
key is typically generated by the user and is published alongside a certificate to
guarantee the key’s authenticity. Problems involving key distribution and certifica-
tion are beyond the scope of this chapter and we refer the reader to [KL07, §12.7]
for further reading on this topic.
The goal of an AKE protocol is to establish a session key over an insecure channel

that can be used to protect subsequent communications. To be more precise, the
established session key should be indistinguishable from randomness and authentic.
Even an adversary with powerful capabilities such as eavesdropping, modifying,
deleting, or fabricating messages should not be able to distinguish an established
key from randomness or break its authentication (e.g., by slipping the key to an
uninvolved third party). Furthermore, session keys should be independent from
another, that is, compromise of one session key should not endanger the security of
another session key. Formally, this is modeled by granting the adversary the ability
to compromise the session keys of every protocol execution but the target session.

4In practice, even long-term keys have a lifetime. For example, the typical lifetime for certificates
on the Internet is nowadays bound to two years after which new certificates have to be issued.
However, for the sake of simplicity, we will ignore this in the context of this work.
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In order to guarantee the aforementioned security goals, at least one of the par-
ticipating parties need to contribute a randomized input to the protocol. The
randomness may either be directly involved to generate the session key (e.g., by
choosing a session key uniformly at random from the key space) or be used as input
for deriving fresh values in the protocol execution (e.g., by choosing random Diffie–
Hellman exponents). The fresh randomness is termed as ephemeral; it is only used
within the protocol and deleted as soon as the protocol terminates. If an adversary
has access to both the long-term keys and the ephemeral values, it can trivially
recompute any session key. Forward secrecy aims to provide security for sessions
even if a protocol participant gets compromised after the session is terminated.

3.2.1 A Protocol without Forward Secrecy
Before we discuss how forward secrecy can be achieved in AKE protocols, let us
consider a simple protocol that does not provide forward secrecy. In Figure 3.2
the execution of the ISO/IEC 11770-2 Key Establishment Mechanism 4 [ISO18]
between two parties A and B is shown.

Party A Party B

nB choose nB

choose k {nB, B, k}LTKAB

Figure 3.2: The ISO/IEC 11770-2 Key Establishment Mechanism 4 [ISO18] exe-
cuted between two parties A and B, where nB is a nonce, k is a session
key, and LTKAB is the long-term key shared between parties A and B.

Initially, parties A and B share a long-term key LTKAB with each other, which
they use to establish a fresh session key k by executing the depicted protocol. To
this end, party B randomly chooses a nonce nB and sends it to A. Party A will
then choose a fresh random session key k and sends the tuple (nB, B, k) encrypted
under the shared long-term key LTKAB back to B. Party B can then verify that
the session key is indeed fresh by comparing if A included the nonce nB in its reply
(this prevents replays of old messages). This type of key establishment is usually
known as key transport.
Let us now examine why this protocol provides no forward security. Consider an

adversary that recorded a past protocol execution between parties A and B. If the
adversary compromises either party, it learns their shared long-term key LTKAB.
Using the long-term key LTKAB it can then decrypt the second message of the
earlier protocol executing and hence trivially obtain the past session key k. This
breaks forward secrecy.
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3.2.2 Diffie–Hellman Key Exchange
The Diffie-Hellman key exchange protocol [DH76] was famously published by Diffie
and Hellman in 1976 and is one of the oldest public-key protocols. The protocol is
illustrated in Figure 3.3.

Party A Party B

a $←− Zq ga

gb b $←− Zq
ZAB := (gb)a ZAB := (ga)b

Figure 3.3: The Diffie–Hellman key agreement protocol [DH76] executed between
two parties A and B, where generator g generates a group of prime
order q.

Initially, parties A and B publicly agree on a generator g of a multiplicative
group G with prime order q. The protocol is then executed as follows. Both parties
choose a random exponent a and b in Zq respectively and send their respective
shares ga and gb to the other party. Following standard exponentiation laws, A and
B can now compute a shared secret ZAB by raising the received share of the other
party to the power of their own secret exponent.5
The described protocol lacks authentication and is thus insecure against active

adversaries performing, for example, man-in-the-middle attacks. There are different
approaches to overcome this problem. One possible approach is to use digital
signature schemes to provide authentication for the sent messages. We avoid giving
an explicit recommendation here as we solely want to focus on the forward secrecy
properties of the protocol. The exponents a and b are ephemeral and will hence
be deleted after the protocol has been executed. An adversary who compromises
either party, will not gain any additional knowledge besides to the transmitted
shares ga and gb. Computing the secret ZAB given only (g, ga, gb) is believed to be
computationally infeasible for a well-chosen group G. This assumption is known as
the Diffie–Hellman assumption.6
We have now seen two protocols, one of which does not provide security for past

sessions after compromise, while the other still provides security after a compromise.
5In practice, the session key is computed using a key derivation function KDF with the shared
secret ZAB as input (e.g., k := KDF(ZAB , "sessionkey")). This mainly ensures a correct
distribution of the session key and the option to derive multiple distinct keys from the same
secret by applying different labels. Note that the session key k can be computed by anyone
who knows the secret value ZAB . Hence, we will omit this technical step for now until we
discuss more advanced protocols such as the one in Section 7.

6This statement does not hold anymore if quantum computers become practical. In 1997, Shor
presented a polynomial-time algorithm that breaks the computational Diffie–Hellman assump-
tion using quantum algorithms [Sho97].
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The protocols which still provide security for past sessions after a compromise has
happened, are said to provide forward secrecy. The concept of forward secrecy was
introduced by Günther in 1989 [Gün90].

Definition 14. An AKE protocol provides forward secrecy if compromise of long-
term secrets does not lead to compromise of session keys of previously completed
sessions.

Many widely deployed real-world protocols such as TLS and IPSec use the Diffie–
Hellman protocol as a basis to achieve forward secrecy. The Diffie–Hellman protocol
is therefore often considered as the foundation for achieving forward secrecy. We
note that different approaches to achieve forward secrecy exist. For example, any
public-key encryption scheme can be transformed into a scheme providing forward
secrecy [PBM00]. The transformation works as follows. Consider two parties A
and B. Party A generates an ephemeral key pair consisting of an ephemeral public
key and an ephemeral secret key. The ephemeral public key is sent to B. Party B
can now use the ephemeral public key to encrypt and send messages to A. After
reception of the messages, A can decrypt them with the ephemeral secret key.
Eventually, the session terminates and A deletes its ephemeral secret key, ensuring
that it will not become available to any adversary compromising A.
We conclude this section by observing that interaction seems to play a funda-

mental role in achieving forward secrecy. Even though interaction does not seem
sufficient as illustrated by the protocol in Figure 3.2, it may seem difficult to de-
sign a protocol with forward secrecy without interaction. If a party A is unable
to contribute fresh randomness, then the adversary is later able to compromise A
and learn all of its secret values. Thus, the adversary would be able to recompute
the session key the same way as A would have. Despite this apparent impossibility
result, we will later see and discuss how it is possible to achieve forward secrecy in
non-interactive protocols.

3.3 Forward Security as Generalization
As we have seen in the previous section, forward secrecy for key exchange ensures
that session keys are not revealed to an adversary if participants get compromised
after the session has been terminated. The term forward secrecy carries the implica-
tion that something remains “secret,” hinting at the confidentiality of transmitted
data. Indeed this is often the main motivation on why forward secrecy is important
in practice. A session key can, however, ensure more than providing data confiden-
tiality. In fact, a session key can also achieve other security services such as data
integrity and authentication. Similarly, the concept of forward secrecy can also be
applied to ensure those security services as well.
Many authors do not distinguish the terms forward secrecy and forward security

and often use them interchangeably as if their meanings were identical. In actuality
there is a historical difference, if only a slight one, to both terms. The term forward
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secrecy stems from the context of key exchange, whereas the term forward security
was used with respect to primitives such as encryption [And02, CHK03, CHK07]
or digital signatures [BM99, And02]. For this work we take the view that forward
secrecy is equivalent to forward security in key exchange. That is, if we use the
term forward secrecy we only refer to key exchange protocols and if we use the
term forward security (without qualification), we refer to the concept in a broader
sense without necessarily committing to a specific security service.
We first make an important observation. When a session key is established using

a key exchange protocol with forward secrecy, then the protocol automatically
achieves forward security for each property the session key achieves. This is due to
a simple fact: As soon as the session is terminated and the session key is deleted,
all the security guarantees the session key has been providing, cannot be provided
anymore. Let us illustrate this with a simple example. Imagine a session key k that
is used to authenticate messages, for example by computing a keyed hash H(k, τ)
over some transcript τ . If the key k is established in a forward-secure manner, then
it automatically achieves forward authenticity. That is, after the session key gets
deleted, an adversary is unable to forge valid hash values of form H(k, τ) without
breaking the security of the hash function H.
It is even possible to generalize forward security to capture properties beyond

confidentiality and authenticity. An interesting example is the Tor protocol, which
uses session keys to provide a notion of anonymity to its users. A forward security
goal is that anonymity for past communications should be ensured even if commu-
nication nodes have been compromised. We will investigate the ramifications of
such a property in Chapter 5.
The concept of forward security is not even limited to public key primitives but

has also found use in private-key cryptography [BY03]. In this section we will focus
on public key primitives, but for our categorization in Section 3.5, we will include
private-key cryptography such as symmetric encryption and session resumption
protocols as well.

3.3.1 Forward-Secure Encryption
Anderson [And02] mentioned the idea of forward-secure encryption in a seminal
work and attributed it to Adam Back, who described the concept on an online
mailing list in 1996 [Bac96]. The goal of forward-secure encryption is to protect
the confidentiality of past encrypted messages when a party gets compromised.
Back’s initial construction of forward-secure encryption is simple to illustrate.

The idea is to divide time into several intervals or epochs, where a different secret
decryption key is used in each epoch. If the secret decryption key of an epoch gets
compromised, all messages sent in earlier epochs should remain secure. This can,
for example, be achieved by applying a one-way function OWF. To be more precise,
the key ki used for decryption in epoch i could be computed as ki := OWF(ki−1),
where ki−1 is the decryption key of the previous epoch. The one-way property of the
one-way function ensures that an adversary is not able to revert this transformation
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without breaking the security of the one-way function. The corresponding public
keys for each epoch can be precomputed and published in advance. While Back’s
construction achieves constant-size ciphertexts and secret decryption keys, it suffers
from a public key that grows linearly in the number of epochs.
Over the years, many more practical constructions of forward-secure encryption

have been proposed. The main challenge of designing forward-secure encryption is
to find a good balance between the sizes of public key, secret key, and ciphertexts.
Notable constructions were proposed by Canetti et al. [CHK03, CHK07]. They use
a binary tree structure for the secret key, which allows to achieve both constant
size public keys and ciphertexts, and secret keys that grow logarithmically in the
number of epochs.

3.3.2 Forward-Secure Signatures
Anderson [And02] also seems to be the first who has proposed the idea that authen-
tication (e.g., with digital signatures) could benefit from forward security as well.
Authentication can be seen as an analogue of confidentiality. While confidential-
ity ensures that an adversary cannot read a message, authentication ensures that
an adversary cannot fabricate a message. According to Anderson, forward-secure
signatures could mean that an adversary should not be able to compute signatures
for past messages when a party gets compromised.
Similar to forward-secure encryption, we can divide time into multiple epochs and

use a one-way transformation to evolve the secret signing key. The one-way property
of the transformation ensures that a signing key compromised in epoch i cannot be
used to sign messages for an epoch < i unless the one-wayness of the transformation
is broken. This of course requires that messages are associated with an epoch in
the signature verification procedure. Forward-secure signatures were formalized by
Bellare and Miner [BM99] and have since then led to many follow-up variants in
primitives such as group signatures [Cv91, Son01], ring signatures [RST01, LW08],
and blind signatures [Cha82, DCK03].

3.3.3 Comparison
We have now seen that forward-secure encryption and forward-secure signatures
are aiming to achieve a similar goal as forward-secure key exchange; past usage of
the primitive should be protected if an entity is compromised in the present. The
significant difference of forward-secure encryption/signatures and forward-secure
key exchange is how forward security is achieved. The examples for forward-secure
key exchange described in Section 3.2 have used ephemeral values and static long-
term keys, while the examples of forward-secure encryption/signatures have divided
time into epochs and evolved their secret key material over time. We deduce two
consequences from this:

• forward-secure key exchange requires interactivity in the traditional setting,
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while forward-secure encryption does not;

• with forward-secure key exchange past sessions are protected as soon as they
are completed, while for forward-secure encryption, past ciphertexts are only
protected if they are in an earlier epoch.

An interesting question is why the previous conclusion that interaction is neces-
sary for forward secrecy (see Section 3.2) breaks down for forward-secure encryption.
The important observation is that traditionally, long-term secrets are considered
static, that is they do not change over time. In contrast, we allowed the key mate-
rial to evolve over time for forward-secure encryption. There seems to be no reason
to generally disallow modifying secret values over time. However, we remark that
it might be reasonable to only use static keys in some scenarios, for example when
using special hardware devices such as hardware security models. We will now look
at some modern examples of how long-term keys can be updated in alternative
ways than described above.

3.4 Forward Security in a Non-Interactive Setting
So far we have seen that forward secrecy traditionally is achieved with interaction
between protocol participants. However, interaction in modern protocols might
not always be desirable. Interaction inherently requires transportation of messages
which suffers from undesirable network latency. In other scenarios we cannot expect
that both participants of the protocol are always online to mutually execute an
interactive protocol. Prominent examples are electronic mail or instant messaging
where typically only the sending party is online while the receiving party might be
offline.
We can see that there is a demand to achieve forward secrecy without inter-

action in modern protocols. This demand has been recognized by industry and
academia, and two conceptually different solutions to this problem have been pro-
posed since. In this section we take a look at two different approaches to non-
interactively achieve forward secrecy and discuss which properties they achieve and
how those differ from interactive protocols.

3.4.1 Puncturable Encryption
Puncturable encryption is a novel cryptographic primitive that was formally intro-
duced by Green and Miers in 2015 [GM15]. Interestingly, Anderson has already
given an informal description of puncturable encryption many years before [And02].
Throughout the last years, several different constructions of protocols based on (im-
proved) puncturable encryption have been proposed [GHJL17, DJSS18, DGJ+20,
SSS+20, SDLP20].
The core idea of puncturable encryption is to modify the secret key of a scheme

after each decryption. To be more precise, when a ciphertext c is decrypted by
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computing Dec(sk, c), we additionally replace the secret key with the output of a
puncture procedure sk ′ ← Punct(sk, c). This modified secret key sk ′ will not be
able to decrypt ciphertext c anymore, ensuring that c cannot be decrypted after
the punctured key has been compromised. By repeatedly invoking the puncture
procedure it is possible to stepwise revoke decryption capabilities from a secret key.
Thus puncturable encryption provides a kind of forward security for public key

encryption – compromise of the recipient’s key does not compromise messages pre-
viously decrypted. Note, however, that we only achieve this form of protection if c
is received and processed by the recipient.
We can easily transform a puncturable encryption scheme to form a puncturable

key exchange scheme as illustrated in Figure 3.4. The session key k is simply chosen
by party A, encrypted using the puncturable encryption scheme, and sent to B.
Now A does not have to wait to send a message protected by k, but can start
sending user data immediately, even alongside the key exchange message c. Note
that this basic construction does not provide any authentication to B, so in many
applications we will require additional mechanisms, for example a signature from
A, in order to obtain a secure key exchange protocol.

Party A Party B

k $←− KSE
c $←− PE.Enc(pkB, k) c

SE.Enc(k, data) k := PE.Dec(skB, c)
sk ′B := PE.Punct(skB, c)

Figure 3.4: Key exchange from puncturable encryption executed between two par-
ties A and B, where PE.Enc, PE.Dec, and PE.Punct are procedures form
a puncturable encryption scheme and where SE.Enc is the encryption
procedure of a symmetric encryption scheme with key space KSE.

In contrast to the fine-grained puncturing mechanism, sometimes a puncturable
encryption scheme is also equipped with a coarse-grained mechanism to revoke
decryption capabilities. This mechanism is inspired by the kind of forward-secure
encryption explained in Section 3.3.1, and similarly divides time into epochs. After
a certain time has passed, the secret key will be “punctured” for an epoch that
renders decryption of all messages sent in this epoch impossible. Note that this
coarse approach ensures that even lost or intercepted messages are protected.
Observe that for all puncturable encryption schemes the secret key changes over

time (while the public key remains static) and does not fit into the traditional
model discussed in Section 3.2 where long-term keys remain unchanged during the
system’s lifetime.
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3.4.2 Precomputed Keys
The execution of the traditional Diffie–Hellman protocol requires both interacting
parties to be online at the same time. This can be circumvented if the receiving
party precomputes Diffie–Hellman shares and stores them at an online server. The
sending party can then request a precomputed Diffie–Hellman share of the receiving
party from the server. This technique is often referenced as precomputed keys and
is deployed in several real-world protocols, such as Signal [Sig19]. The protocol is
illustrated in Figure 3.5.

Party A Party B Server S
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . precomputation phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ri
$←− Zq {gri}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . online phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
i, gri

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a $←− Zq ga, i

k := KDF((gri)a) Enc(k, data) k := KDF((ga)ri)
delete ri

Figure 3.5: Key exchange from precomputed keys with two parties A and B ex-
changing keys via an online server S. Generator g generates a group of
prime order q, KDF is a key derivation function, and Enc is the encryp-
tion procedure of a symmetric encryption scheme.

In the precomputation phase, the receiving party B precomputes several Diffie–
Hellman shares of form gri and stores them at at an online server S. Note that
B does not store the secret exponents ri at the server but keeps them to itself.
The online phase of the protocol starts as soon as the sending party A initiates
the protocol. Party A requests one of B’s Diffie–Hellman shares and computes a
session key by performing a standard Diffie–Hellman key exchange with B’s share.
This allows A to immediately send encrypted data protected under the session key
to party B, even though B might not be online. Party B is able to compute the
session key using its secret exponent ri and A’s Diffie–Hellman share ga. Deletion
of the secret exponent ri achieves forward secrecy after the session closes.
The precomputed Diffie–Hellman shares gri are no longer ephemeral values as

they exist before a protocol run. It is also possible to re-use the precomputed
shares across several protocol runs. This idea has already been proposed in 2004
for the Just Fast Keying (JFK) protocol [ABB+04]. In order to minimize the impact
of a key compromise, it might be reasonable to limit the time a share is in use. This
is approach is deployed in the real-world protocol QUIC, where the lifetime of a
Diffie–Hellman share is limited to typically two days [CL14].
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The real-world messaging protocol Signal [Sig19] follows a slightly different ap-
proach. Signal uses the precomputed keys to protect the first message sent in any
conversation and intends to use each precomputed key only once. To this end, the
recipient B precomputes many shares gri which are deleted after one use (both the
gri share on server side and, more importantly, the ri value on receiver side). How-
ever, since the number of initiated conversation is not predictable, Signal refrains
from deleting its last precomputed key until receiver B restocks the precomputed
keys. Signal suggests keys be replenished once a week, or once a month [MP16].
Regardless of how often precomputed keys are used, the receiver B has to store

its secret exponents ri before the online protocol execution takes place. Hence,
the secret exponents ri cannot be termed ephemeral. Similarly, the predicate long-
term does not properly capture the properties of precomputed keys. Some authors
have given these values the term medium-lived or medium-term keys. It is evident
that such keys, regardless of their naming, do not fit into the traditional model for
forward secrecy in key exchange. If the secret exponents become available to the
adversary, forward secrecy cannot be guaranteed.

3.4.3 Message Suppression Attacks
Both aforementioned approaches to achieve forward secrecy without interaction
are prone to a certain type of attack, which is not relevant in traditional key ex-
change models. We call these attacks message suppression attacks. In a message
suppression attack, the adversary intercepts and drops messages dedicated to the
receiving party. If the adversary now compromises the receiving party at a later
point in time, the adversary is able to decrypt the intercepted messages, seemingly
breaking forward secrecy.
In puncturable encryption a compromise of the secret key skB allows to decrypt

intercepted messages of the form (c,Enc(k, data)) if the message was never received
by B and hence the secret key skB is not punctured for c. A similar attack works
when using precomputed keys. Compromise of the secret ri values allows to de-
crypt intercepted messages of the form (ga, i,Enc(k, data)) if the message was never
received by B and hence the value ri not deleted.
This attack can be mitigated if we apply a time-based mechanism to the protocol

that ensures the secret values are modified or deleted after a certain time has passed.
If this mechanism is invoked after a message is suppressed but before compromise of
receiver B takes place, the attack cannot be mounted. In the case of puncturable
encryption this might be a coarse-grained transformation of the receiver’s secret
key that only allows decryption of messages sent in a certain time period. For
precomputed keys this could be a lifetime associated with the secret values ri.
It remains to argue whether message suppression attacks are realistic. We first

note that in formal security models for key exchange it is typically assumed that
the adversary has complete control of the network, and message transmissions only
occur when explicitly demanded by the adversary. Such an adversary can then eas-
ily engineer message suppression attacks. However, we also note that most security
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models cannot actually capture message suppression attacks. The adversary’s for-
mal security goal is to choose a protocol run (called a session) at a party which has
accepted a session key k and then distinguish whether it is given k or a completely
random string. But in a message suppression attack no (relevant) session actually
exists at the receiver B, so the adversary is unable to choose it.
Green and Miers [GM15] explicitly mention the message suppression attack

and use it as one motivation (the other being efficiency) to combine their fine-
grained puncturable encryption scheme with coarse-grained forward-secure encryp-
tion. However, their security notion for puncturable encryption explicitly requires
the tag(s) used for the challenge ciphertext to be already punctured when compro-
mise takes place. This is essentially the same for their combined scheme security
notion. Thus, message suppression attacks are not covered by their notions. For
completeness, we briefly show in Appendix B how message suppression attacks are
not captured in their models.

3.4.4 Malicious Key Exhaustion

We remark that it is possible to maliciously exhaust key material in both afore-
mentioned approaches by flooding the receiver with initiating messages (cf. Fig-
ures 3.4 and 3.5). If the key material is limited, this might lead to a situation
where the recipient is unable to process incoming messages. This especially affects
puncturable encryption schemes where correct decryption of messages can only be
guaranteed for a polynomial number of punctures, such as the schemes by Derler
et al. [DJSS18, DGJ+20], or all schemes storing only a polynomial number of pre-
computed keys. Due to the non-interactive nature of the key exchange it is also
difficult to avoid this attack; the recipient has no means of contributing fresh input.
In the case of precomputed keys, Signal [Sig19] acknowledges this attack vector

and stores the last remaining precomputed key if all others have been exhausted,
sacrificing the single-use aspect of precomputed keys. The last precomputed key
is then used for all following key exchanges until the recipient restocks its supply
of precomputed keys. Note that this approach does affect forward security. All
sessions established with the last precomputed keys can be compromised by an
adversary until the recipient replenishes its stock of precomputed keys.

3.5 Classifying Forward Security

We have now seen several examples of forward security in different contexts as
well as different approaches to how forward security might be achieved. Hence,
we can now start examining what fundamental similarities and differences between
different schemes exist, and identify how we may categorize them.
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3.5.1 Dynamics Keys
We start by the fundamental observation that in any kind of forward security the
keying material is dynamic. A notion of time is inherent in defining forward security
since we need to distinguish events that have occurred already when compromise
happens in the present. An adversary who compromises a party A is assumed to
obtain A’s secrets. Only if the keying material has changed over time (even if the
material is only deleted), the adversary can be prevented from re-computing all
actions A did.
Note that it is possible to differentiate between different key types and define dif-

ferent forms of compromise. Indeed, many formal security models in the literature
do this [Cre11]. Key exchange models often allow adversaries (conditional) access
to different oracles, which reveal either long-term keys or randomness. There are
good reasons why such differentiation may be realistic; for example, a long-term
key may be stored in a secure physical device less accessible to the adversary. In
relation to the traditional view from Section 3.2, long-term can be generalized to
simply mean “a key that can be compromised.”
The strength of an adversary is determined by which type of keys it can com-

promise. For example, an adversary could have the ability to compromise secret
values that are only stored in volatile memory for a short time (e.g., by mounting
cold boot attacks [HSH+08]). A different adversary could only be able to access
keys, which are stored in physical memory for several weeks. Of course, adversaries
able to perform both attacks could exist.
In any case, keys that never become available to the adversary do not influence the

definition of forward security since all security guarantees provided by the protocol
are still given. Note that an adversary that is able to predict the randomness
used in the key derivation (e.g., back-doored random number generators, or bad
randomness), may be able to break forward security by re-deriving the key without
compromising any party; in general, forward security does not protect against bad
randomness.
In the following we will first consider an adversary that is not able to compro-

mise all key material, that is, we take a traditional path and distinguish between
compromisable and non-compromisable key material. At the end of this section we
will discuss the implications of adversaries that can compromise all key material.

Classes of Forward Security. From the examples we have seen, we can deduce
different categories of forward security. The categories are parametrized via a pa-
rameter τ that defines the period in which the adversary can obtain, via compro-
mise, the same keying material as originally used by the parties. This period of
vulnerability starts from time 0 when the key is first defined and extends up to
time τ . We identify three categories as follows:

Absolute Forward Security: τ = 0. In this case the adversary has no opportunity
to recover the keying material necessary to break security.
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Delayed Forward Security: 0 < τ <∞. In this case the adversary is able to break
forward security if it is able to get access to the keying material before time
τ (e.g., forward-secure encryption).

Null Forward Security: τ →∞. In this case the adversary is able to break forward
security by compromising at any time (e.g., the protocol shown in Figure 3.2).

Types of Keys. The three categories lead us to three different kinds of dynamic
secret keys. We identify and name them as follows:

volatile keys: which are never available to the adversary (e.g., Diffie–Hellman ex-
ponents);

windowed keys: which are available to the adversary for a finite period (e.g., keys
with a lifetime);

triggered keys: which are available to the adversary until a defined protocol event
occurs (e.g., precomputed keys being used).

Note that traditional long-term keys are not included in these types since they are
not dynamic. A protocol using only long-term keys will always have null forward
security.
We stress that the types of keys are not listed in any particular order as their

respective properties are hard to order. For example, volatile keys such as used in
the Diffie–Hellman key exchange, only exist during protocol execution, windowed
keys may exist some time after the protocol run, whereas triggered keys exist before
the protocol run but are deleted immediately after the protocol is executed.
The lifetime of windowed and triggered keys (and as such the time the keys are

vulnerable) depend on the implementation. Specifically, the lifetime of windowed
keys are tied to the length of an epoch. This epoch length typically varies across
applications; for example, QUIC’s public Diffie–Hellman share has a lifetime of
roughly two days [CL14] while public keys in the anonymity-providing Tor network
have a lifetime of roughly a month [DMS04]. In contrast, the lifetime of triggered
keys is tied to the protocol execution. That is, if a message suppression attack is
launched, keys may be stored longer than originally intended.
We provide an overview of which class of forward security can be achieved, de-

pending on the used key type and whether message suppression attacks are feasible,
in Table 3.1. The last row in the table considers keys whose deletion can be trig-
gered by an event, but will anyway be deleted at the end of some window. We
have seen such keys in the description of the Green and Miers fine-grained and
coarse-grained security described in Section 3.4.1. In practice we can expect that
“pure” triggered keys are never used, but always have some lifetime window.
Existing security models do not consider these types of keys in their model.

However, forward security definitions in all models can easily be adapted by stat-
ing that an adversary is not allowed to access those keys in any target session.
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Table 3.1: The achievable category of forward security depending on the key types
and whether message suppression attacks are possible if volatile keys
cannot be compromised.

Key Type Message Suppression Attacks

infeasible feasible

volatile absolute absolute
windowed delayed delayed
triggered absolute null
windowed + triggered absolute delayed

While this aligns with the current view on forward security, it hides the practical
differences between the key types. This has been frequently mentioned in litera-
ture [CHK03, CHK07, GM15].

3.5.2 Categorizing Schemes
In Table 3.2 we give examples of cryptographic primitives that use the different
key types presented in the previous section. In fact, each of the key types can be
instantiated with existing schemes across several cryptographic primitives, provid-
ing confidence that our approach to key types is meaningful. Furthermore, we are
not aware of any cryptographic primitive claiming forward security that does not
fit into our categories, giving us hope that our classification may be complete. We
suggest that every cryptographic primitive can have a forward-secure version by
simply stating that the primitive’s security properties still hold after the keys have
been compromised, where the key type dictates when compromise of keys does not
affect security. In order to provide a comprehensive overview across different cryp-
tographic primitives, we not only included standard public-key primitives, but also
more general examples such as symmetric encryption, session resumption protocols,
and circuit construction protocols.

Asymmetric Encryption. So far we have already seen cases where asymmetric
encryption uses windowed keys (see forward-secure encryption in Section 3.3.1)
and triggered keys (see puncturable encryption in Section 3.4.1). On first sight,
volatile keys seem unnecessary for asymmetric encryption, however, they allow
construction of asymmetric encryption where the sender is not required to have
the receiver’s (certified) public-key. Instead, both sender and receiver can perform
a Diffie–Hellman key exchange, where only the receiving party authenticates the
Diffie–Hellman share, and the resulting Diffie–Hellman key is used for encryption.
This construction is named interactive encryption and has been proposed by Dodis
and Fiore [DF14].
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Table 3.2: Example schemes in different categories.

Primitive Key Type

volatile windowed triggered

Asymmetric
encryption

Interactive
encryption [DF14]

Epoch-based en-
cryption [CHK03, CHK07]

Puncturable
encryption [GM15]

Symmetric
encryption

Interactive
encryption [DF14]

Bellare–Yee
encryption [BY03]

Symmetric punctu-
rable encryption [SYL+18]

Authenticated
key exchange

Signed
Diffie–Hellman [PS14]

Epoch-based
Diffie–Hellman [PS14]

Pre-keyed
Diffie–Hellman [Sig19]

Digital
signatures

Forward-secure
signatures [And02, BM99]

Puncturable
signatures [BSW16]

Session resumption
protocols

TLS 1.3 PSK-
(EC)DHE mode [Res18] STEK rotation [Lin15] 0-RTT session resump-

tion protocols [AGJ19]

Circuit construction
protocols nTor [GSU12] NI-OR [CDRF+13] T0RTT [LGM+20]

Symmetric Encryption. Analogous to asymmetric encryption, we can achieve
forward-secure symmetric encryption with volatile keys via interactive encryp-
tion [DF14]. To this end, both parties perform a Diffie–Hellman key exchange
and use their shared symmetric secret to authenticate the exchange. The session
key is eventually derived from the established Diffie–Hellman key. Note that it is
possible for both participants to authenticate the exchange, but for encryption only
the recipient needs to authenticate the exchange.
Forward security with windowed keys is achieved by the key-evolving symmetric

encryption scheme by Bellare and Yee [BY03]. In each epoch, the key is updated
with a so-called forward-secure pseudorandom bit generator. A construction with
triggered keys has been proposed by Sun et al. [SYL+18]. They use symmetric
puncturable encryption, the private-key dual to (asymmetric) puncturable encryp-
tion.

Authenticated Key Exchange. The most common way to achieve forward secu-
rity in key exchange is via the Diffie–Hellman protocol, which uses volatile keys.
In previous sections we have also seen different approaches such as puncturable
encryption (see Section 3.4.1) and precomputed keys (see Section 3.4.2), which
use triggered keys instead. Pointcheval and Sanders [PS14] proposed windowed
key exchange for non-interactive key exchange, which can be adapted to windowed
authenticated key exchange.

Digital Signatures. Forward security for digital signatures is easier to achieve
than for encryption and key exchange since the signer does not have to wait for
any interaction with the verifier. Hence, signature schemes with windowed keys
can update to the next epoch immediately after computing a signature, such that
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keys become triggered. For this very reason, message suppression attacks are not
relevant for signatures and the rightmost column of Table 3.1 hence does not apply
to signatures. It follows that triggered keys for signatures directly achieve absolute
forward security.
Following the idea of puncturable encryption, puncturable signatures using trig-

gered keys have been proposed by Bellare et al. [BSW16] and have since found many
applications in cryptography such as in the construction of witness pseudorandom
functions [Zha16]. There does not seem any straightforward way to construct sig-
natures with volatile keys and, to the best of our knowledge, no constructions have
been proposed in literature.

Session Resumption Protocols. Another interesting case related to key exchange
is that of session resumption protocols. In such protocols a client wants to resume
a previous session with a server using a shared (authenticated) secret, which has
been established in a previous session. A widely used session resumption protocol
is, for example, the pre-shared key (PSK) mode in TLS 1.3 [Res18]. Since session
resumption is always tied to a previously established secret, we need to carefully
evaluate whether forward security is actually achieved.
Similar to key exchange we are able to achieve forward security with volatile keys

when executing an additional Diffie–Hellman key exchange, and switching to the
Diffie–Hellman key, after resumption has taken place. This idea is deployed in the
PSK-EC(DHE) mode in TLS 1.3. This approach requires interactivity and does
not ensure forward security for any messages solely protected under the pre-shared
secret if the pre-shared secret gets compromised.
Alternatively, a concept known as STEK rotation can be deployed. In this case

the server maintains a dedicated symmetric key, sometimes called session ticket
encryption key (STEK), which is used to encrypt the shared secret. The ciphertext
c = Enc(stek, secret) is stored at the client while the server is able to delete both
c and secret. In order to resume the session, the client simply sends c back to the
server. Forward security with windowed keys is achieved if the STEK is replaced
regularly; for example, Cloudflare deploys this approach and rotates their keys
roughly once a day [Lin15].
Recent work by Aviram et al. [AGJ19] shows that it is also possible to achieve

forward security for session resumption with triggered keys. They utilize so-called
puncturable pseudorandom functions. The main idea is to compute session keys by
evaluating a pseudorandom function. Once the session key is computed, the pseu-
dorandom function’s instantiation will be altered in such a way that recomputation
of the session key is impossible. We discuss this construction in much more detail
in Section 6.

Circuit Construction Protocols. Circuit construction protocols are anonymity-
providing multi-party protocols executed between an initiator and several servers.
The initiator picks a subset (typically three) of available servers and establishes
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a session key with each server such that it is oblivious to an observing adversary
which servers have been picked by the initiator. The established keys can then be
used in a so-called routing protocol to communicate in a secure and anonymous way.
Defining security for circuit construction protocols is not trivial, and hence we will
only give a brief intuition of forward security and refer the reader to Section 5 for
a comprehensive discussion.
The notion of forward security for circuit construction protocols is much more

complex compared to the notion of key exchange. Besides providing key indistin-
guishability (as known from standard key exchange), forward security also captures
a notion of anonymity preservation. To be more precise, the compromise of multiple
servers should not endanger the initiator’s anonymity in any way. This property
is sometimes termed cryptographic unlinkability – as long as circuit construction
includes one honest server, an adversary should not be able to link connections,
even if all servers get compromised after the session is closed.
Currently, the nTor [GSU12] protocol is the most widely adopted protocol for

circuit construction. It performs several executions of the Diffie–Hellman protocol
between multiple parties and achieves forward security with volatile keys. In or-
der to reduce latency, Catalano et al. [CDRF+13] have proposed a non-interactive
circuit construction protocol based on forward-secure encryption that achieves for-
ward security with windowed keys. Recently, Lauer et al. [LGM+20] proposed
a non-interactive circuit construction protocol utilizing puncturable encryption,
achieving forward security with triggered keys. We present the latter construction
in much more detail in Section 5.

3.5.3 Stronger Adversaries

In the previous paragraphs we have assumed that it is possible to implement pro-
tocols using volatile keys which are never available to the adversary. This may be
realistic, for example when the only way for an adversary to compromise a party is
by enforcing a legal order and even a cooperating party is unable to extract keys
from volatile memory. In this paragraph we discuss the implications of an adver-
sary who can obtain any key that exists. To be more precise, we now assume that
an adversary is even able to compromise volatile keys as well as retrieve keys that
only exist in volatile memory. This induces the following changes in comparison
with Table 3.1.
Any protocol that uses volatile keys provides forward security only after the ses-

sion has expired, hence only achieving delayed forward security. Similarly, triggered
keys cannot achieve absolute forward security as they need to be kept in volatile
storage until the session terminates, making them vulnerable to compromise as
well. Instead triggered keys are only able to provide delayed forward security after
the session has expired. Table 3.3 shows the achievable level of forward security for
each key type.
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Table 3.3: The achievable category of forward security depending on the key
types and whether message suppression attacks are possible if any se-
cret value can be compromised. * with τ = session length; ** with
τ = max{window, session length}.

Key Type Message Suppression Attacks

infeasible feasible

volatile delayed* delayed*
windowed delayed** delayed**
triggered delayed* null
windowed + triggered delayed* delayed**

3.6 Conclusion and Open Problems
We have now established a modern view on the notions forward secrecy and forward
security. We proposed to the consider forward security as equivalent to forward
secrecy in key exchange and established that it is possible to generalize the concept
of forward security to many other primitives beyond key exchange. In order to
understand if different levels of forward security exist, we identified and analyzed
different categories of forward security, and surveyed techniques for how those levels
can be achieved in practice.

Future Research. For future research, we can consider multiple different avenues.
So far we have observed that different categories of forward security exist, however,
none of these levels are captured in existing security models. Hence, we can only
achieve a vague understanding when using those models in the context of forward
security. It would be interesting to adapt our categories of forward security and key
types to existing security models, and formally show which cryptographic primitives
can achieve which kind of forward security. It might even be possible to show that
certain primitives have the same level of forward security, or that the forward secu-
rity of one primitive is strictly stronger than another. This is especially interesting
in the context of more complex primitives such as circuit construction protocols
where the session key is not only used to provide confidentiality and authentic-
ity, but also provides an anonymity-preserving flavor. This leads to the following
question.

Research Question 1. Can we formally relate the different levels of forward se-
curity for different cryptographic primitives?

Another possible research direction is to extend our approach to forward security
to similar concepts. A promising example would be the notion of post-compromise
security [CCG16]. Intuitively, post-compromise security deals with the problem
how security guarantees can be re-obtained in the future after a compromise has
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happened. Similar to forward security, post-compromise security is inevitably tied
to a notion of time, that is, when the compromise happens and what happens after
it. It would be interesting to investigate, whether we can find analogies between
forward security and post-compromise security and, if possible, even develop a
model that captures both security notions in one unifying model, leading us to the
following question.

Research Question 2. Is it possible to categorize post-compromise security fol-
lowing a similar approach and maybe even unify both forward security and post-
compromise security in one model?

46



Part I

0-RTT Key Exchange Protocols
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4 Bloom Filter Key Encapsulation
Mechanisms

Author’s Contribution. The contents of this chapter are based on joint work
with David Derler, Tibor Jager, Daniel Slamanig, and Christoph Striecks [DJSS18,
DGJ+20]. The concept of Bloom filter encryption and several constructions were
developed by David Derler, Tibor Jager, Daniel Slamanig, and Christoph Striecks
in [DJSS18]. The author’s contribution is the new construction of a Bloom fil-
ter KEM based on identity-based broadcast encryption presented in this chap-
ter. This construction was added to the full version of their previously published
work [DGJ+20]. An additional contribution is the discussion on how the security
definitions for Bloom filter encryption schemes can be simplified. The paragraph on
the intuition behind a Bloom filter KEM was written by the author and is published
in [LGM+20].

Remark on the Notion of Forward Security. The result covered in this chapter
was published before the new notion for forward security described in Chapter 3
was developed. In order to make the results within this thesis coherent, we will
adapt this notion in the following chapter. Note that this will slightly change the
wording of this chapter compared to the published version, however, it does not
affect the results in any remarkable way.

4.1 Motivation
Key exchange protocols are one of the most important building blocks of today’s
Internet. They allow two parties, for example a client and a server, to establish a
shared session key over an insecure channel. Typical key exchange protocols such
as TLS 1.3 [Res18] often require the exchange of several messages before a session
key is established. So far we have discussed multiple existing approaches to build
0-RTT key exchange protocols. In Chapter 1 we have seen how these protocols
achieve (a degree of) forward security and what their main drawbacks are. In order
to set the scene, we will briefly recap the important observations.

Google’s QUIC Protocol. In 2014, Google proposed QUIC Crypto [CL14], the
first 0-RTT key exchange protocol. Each server generates a so-called server con-
figuration, which essentially consists of a Diffie–Hellman share gs. This share has
a lifetime of two days and is shared amongst all clients connecting to the server.
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Should a client not be in possession of a valid share, it can request it from the
server, and, subsequently, use it for a 0-RTT key exchange. A client can initiate
a 0-RTT key exchange by generating its own fresh Diffie–Hellman share gc and
computing an initial key derived from gsc. This initial key is used to protect the
early application data. An important observation is that the initial key does not
provide absolute forward security but only delayed forward security. That is, only
after the public server configuration gs has expired and the server has deleted the
secret exponent s, forward security is guaranteed. This is the main drawback of
the QUIC protocol. To overcome this problem, client and server protect the com-
munication after the early data with a fresh second key that is derived after the
server contributed freshness to the protocol.

0-RTT Key Exchange from PKEMs. In 2017, Günther et al. (GHJL hence-
forth) described how 0-RTT key exchange with absolute forward security can be
constructed from PKEMs [GHJL17]. The high-level idea of such a 0-RTT protocol
is sketched in Figure 4.1. Before client and server can communicate “in 0-RTT,”
the client needs to request the server’s public key and verify its validity. On all
subsequent connections (during the lifetime of the server’s public key), the client
is able to perform a 0-RTT key exchange. Using the server’s public key, the client
runs the encapsulation procedure of the PKEM and obtains a session key k and a
ciphertext c, which contains an encapsulated version of the key. The client then
sends the ciphertext c alongside with 0-RTT data encrypted under key k to the
server. The server can use its secret key for the PKEM to retrieve the session
key k, which in turn is used to decrypt the encrypted 0-RTT data. Puncturing
the server’s secret key after decapsulation of the ciphertext c is the leverage for
forward security. In fact, this kind of key exchange is based on triggered keys and
achieves absolute forward security if message suppression attacks are infeasible (cf.
Section 3.4.3).

Construction of PKEMs. The 0-RTT key exchange construction by GHJL is
generic, that is, it can be instantiated with any PKEM. Any efficiency properties of
the used PKEM hence transfer directly to the 0-RTT key exchange protocol. GHJL
have presented a first possible instantiation with a PKEM based on hierarchical
identity-based KEMs. In order to understand the essential requirements for a
0-RTT key exchange protocol that can be used in a real-world scenario, we will
discuss their proposed PKEM in more detail.
The PKEM by GHJL is based on an identity-based hierarchical KEM [BKP14].

In order to properly explain the intuition of their scheme, we define the syntax of
a identity-based hierarchical KEMs first. For more technical definitions such as
security, we refer the reader to [BKP14, GHJL17].

Definition 15. An identity-based key encapsulation mechanism consists of four
probabilistic polynomial-time algorithms HIBKEM = (KGen,DelegateEncap,Decap)
with symmetric key space K, identity space I, and the following properties.
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Client Server
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . initial connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(pk, sk) $←− PKEM.KGen(1λ)

Request pk

verify signature pk, σ(pk)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0-RTT key exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c, k) $←− PKEM.Encap(pk) c k := PKEM.Decap(sk, c)

sk := PKEM.Punct(sk, c)

Enc(k,m)
0-RTT Data

Enc(k,m′)
Data

Figure 4.1: High-level idea of a 0-RTT protocol from PKEMs. σ(·) denotes a signa-
ture, computed with the server’s long-lived signing key. If the server’s
public key pk is known, only the part below the horizontal divider is
executed.

• KGen(1λ) takes as input a security parameter λ and outputs a master key
pair (mpk,msk) consisting of a master public key mpk and a master secret
key msk.

• Delegate(sk ID′|s , ID|t) takes as input a secret key sk ID′|s of an ancestor identity
ID′|s ∈ I at depth s < t (or a master secret key msk) and an identity ID|t ∈ I.
Output is a secret key sk ID|t .

• Encap(mpk, ID) takes as input a master public key mpk and an identity ID ∈ I.
Output is a symmetric key k ∈ K and a ciphertext c.

• Decap(sk ID, c) takes as input a secret key sk ID and a ciphertext c. Output is
a symmetric key k ∈ K, or an error symbol ⊥.

Keeping this definition in mind, we will now proceed to describe the intuition
of the PKEM by GHJL. We can illustrate the structure of a secret key in their
scheme as a hierarchy tree as shown in Figure 4.2. The hierarchy used in [GHJL17]
is based on a complete binary tree, where each node (but the leaves) has at most
two children and each node (but the root node) has one predecessor (formally this
corresponds to an identity space I = {0, 1}`, where ` is the depth of the tree). Each
node of the tree is associated with a secret key, where we refer to the root key as
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master secret key. An interesting property of hierarchical KEMs is the way secret
keys are derived. Given a secret key associated to some node, it is only possible
to derive keys associated to child nodes, but not vice versa. That is, given any
secret key associated to a node, we cannot derive the key of a parent node without
breaking the scheme’s security. We continue by illustrating how this property can
be used to realize a way to puncture the secret key.
Figure 4.2 shows an example hierarchy tree for a PKEM. Initially, at the time of

key generation, the secret key only consists of the master secret key msk. Hence,
using the master secret key, we can derive all possible secret keys within the tree.
Encapsulation of a key works as follows. At first, the encapsulator chooses a random
identity associated with a leaf of the tree and encapsulates with respect to the
chosen identity, yielding a ciphertext. The decapsulator can use the identity to
first derive the secret key associated to this identity and then decapsulate the
ciphertext.

msk

sk0

sk00

sk000 sk001

sk01

sk010 sk011

sk1

sk10

sk100 sk101

sk11

sk110 sk111

Figure 4.2: Hierarchy tree of the PKEM described in [GHJL17], where each node
represents a secret value. The initial, unpunctured secret key is sk =
msk. Puncturing the secret key at positions sk010 and sk011, transforms
it to a new key sk = (sk1, sk00). Note that this punctured secret key
can only be used to compute the secret keys for the white nodes, while
the values of the gray nodes cannot be computed anymore.

The crux of the scheme is how puncturing a ciphertext works. Let ID = 010 be the
identity used in encapsulation and let sk := msk be the initial secret key. In order
to implement a secure puncture procedure, we need to ensure that sk010 cannot be
recomputed. This implies that we need to not only delete the secret key sk010 itself,
but also delete all secret keys associated to parent nodes of sk010. In the case of
ID = 010, this would be secret keys msk, sk0, sk01, and sk010. However, we cannot
simply delete all those keys but also need to maintain the overall functionality of
the scheme. We can achieve this by computing all secret keys associated to a sibling
node of a to-be-deleted key. In our example this would involve precomputation of
secret keys sk1, sk00, and sk011. It is easy to verify that such precomputation allows
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to compute all remaining secret keys associated to a leaf but the “punctured leaf.”
Repeated punctures are possible by following the same sequence of computations
as described in this paragraph.1
We can now observe that the sequence of punctures determines the amount of

secret keys that need to be stored. If we were to puncture strictly from-right-to-left,
we would store at most one secret key per layer of the tree. However, this is highly
unlikely as the identity used during encapsulation is chosen at random, yielding a
much more “chaotic” distribution of precomputed nodes, up to a maximum of `/2
precomputed nodes, where ` is the number of layers.
While the size of the secret key is difficult to predict, the construction has a

different drawback highly impacting the construction’s efficiency. Each key deriva-
tion requires the computation of a key delegation procedure. In the case of a
hierarchical KEM, this computations typically are not cheap but involve multiple
exponentiations (e.g., [BBG05, BKP14]). Deriving multiple keys at once hence re-
quires even more exponentiations. To make it worse, the receiver side of the 0-RTT
key exchange (i.e., the server) has to perform these exponentiations, yielding a
very unattractive scheme for high-traffic scenarios. Hence, the construction given
by GHJL only presents a first step towards efficient 0-RTT key exchange, but does
not withstand the requirements for deployment in high-traffic environments.

Bloom Filter Key Encapsulation Mechanisms. A possible approach to overcome
the drawbacks of the PKEM in [GHJL17] was proposed by Derler et al. [DJSS18].
Their idea was to utilize a probabilistic data structure called Bloom filter [Blo70], to
achieve highly-efficient puncturing at the cost of a non-negligible correctness error.
This chapter extends the result by Derler et al. and proposes another Bloom filter
key encapsulation mechanism (BFKEM) construction. Hence, we refrain from giv-
ing an intuition of BFKEMs for now, but provide a much more detailed introduction
to them throughout this chapter.

Contributions. This chapter extends the results of Derler et al. [DJSS18]. We
describe how to generically build a BFKEM from identity-based broadcast encryp-
tion. Additionally, we prove that the construction is secure against chosen-plaintext
adversaries and discuss how the construction can be transformed such that it is also
secure against chosen-ciphertext adversaries. A reasonable choice to instantiate our
construction would be the identity-based broadcast encryption scheme by Delera-
blée [Del07]. That way, the construction achieves shorter secret keys than all other
known BFKEM schemes while maintaining a constant-size ciphertext. This makes
the scheme especially useful in applications where short ciphertexts are necessary,

1We note that the actual construction by GHJL also involves the use of an one-time signature to
ensure security against chosen-ciphertext attackers. For the purpose of simplicity, we decided
to exclude this part of the scheme and rather focus on the core mechanisms determining
functionality and influencing efficiency instead.
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for example, due to limited space for cryptographic values in standardized proto-
cols.

4.2 Bloom Filters and Their Properties
The core building block of the construction presented in this chapter are Bloom
filters [Blo70]. Bloom filters are a probabilistic data structure for the set mem-
bership problem, that is, it is able to “recognize” whether an element e is part of
a set S. One of the main advantages of a Bloom filter is its constant size, which
comes at the cost of a false-positive error2 when deciding set membership of an
element. In order to properly define Bloom filters, we need to define universal hash
functions [CW79] first.

Definition 16. Let
H = {h : U → [m]}

be a set of hash functions mapping from a universe U to the set [m]. We call H a
universal hash function family if for all x, y ∈ U with x 6= y, we have

Pr
h

$←−H
[h(x) = h(y)] ≤ 1/m.

For ease of notation, we will also refer to a function h ∈ H as universal hash
function. Note that a universal hash function is not to be confused with a crypto-
graphic hash function as described in Section 2.3.1. Most notably, a universal hash
function does not per-se provide collision resistance and is therefore not suitable
for cryptographic applications, such as integrity protection. The main purpose of
a universal hash function in the context of this work is to map input elements that
are uniformly random to a pre-defined output range.
Having defined universal hash functions, we can now proceed to define Bloom

filters.

Definition 17. A Bloom filter BF for a universe U is a tuple of three probabilis-
tic polynomial-time algorithms BF = (BFGen,BFUpdate,BFCheck) that work as
follows:

• BFGen(m,κ) takes as input two integers m,κ ∈ N. At first it samples κ
universal hash functions h1, . . . , hκ, where hj : U → [m]. Then it defines
H := (hj)j∈[κ], sets T := 0m, and outputs the tuple (H,T ).

• BFUpdate(H,T, u) takes as input a tuple of universal hash functions H =
(hj)j∈[κ], a bit string T ∈ {0, 1}m, and an element u ∈ U . Next it assigns
T ′ := T and updates the i-th bit T ′[i] := 1 for all i = hj(u) with j ∈ [κ].
Output is T ′.

2A false-positive error indicates that a certain condition is met, while in fact it is not.
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• BFCheck(H,T, u) takes as input a tuple of universal hash functions H =
(hj)j∈[κ], a bit string T ∈ {0, 1}m, and an element u ∈ U . It computes and
outputs a bit

b :=
∧
j∈[κ]

T [hj(u)].

In the following sections of this chapter, we need to use some properties of a
Bloom filter.

• Perfect Completeness.
The false-negative probability is zero, that is, we will always recognize all
elements that have been added to the Bloom filter. This property is due to
the fact that a Bloom filter will only set bits in the representation T to 1, but
never back to 0. Formally, let (H,T0) $←− BFGen(m,κ) be a Bloom filter and
S = (s1, . . . sn) ∈ Un an arbitrary vector of n elements of U . Then set

Ti = BFUpdate(H,Ti−1, si) for all i ∈ [n].

Then for all s∗ ∈ S and all (H,T0) $←− BFGen(m,κ) with m,κ ∈ N it holds
that

Pr[BFCheck(H,Tn, s∗) = 1] = 1.

• Compact representation of S ⊂ U .
The representation T provides a compact representation of a subset S ⊂ U ,
independent of the size or elements of S. The length of T will always remain
at m bits. A larger subset S only increases the false-positive probability of
the Bloom filter.

• Bounded false-positive probability.
For an element which has not been added to the Bloom filter, we can use the
parameters m and κ to bound the probability of it being recognized by the
filter. More precisely, let S = (s1, . . . , sn) ∈ Un be any vector of n elements
of U . Then for any s∗ ∈ U \ S, the false positive probability µ is bounded by

µ := Pr [BFCheck(H,Tn, s∗) = 1] ≤
(

1− e−
(n+1/2)·κ
m−1

)κ
.

where (H,T0) $←− BFGen(m,κ), Ti = BFUpdate(H,Ti−1, si) for i ∈ [n], and
the probability is taken over the random coins of BFGen. See Goel and
Gupta [GG10] for a proof of this bound.

Discussion on the choice of parameters. In order to provide a first intuition on
the concrete selection of Bloom filter parameters and their impact on the size of
ciphertexts, public- and secret keys for BFE, we subsequently give some examples.
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Suppose we are given an upper bound n on the number of elements inserted into
the Bloom filter, and an upper bound ε on the false positive probability for this
number of elements that we can tolerate. Our goal is to determine the size m of
the Bloom filter and the number κ of hash functions to achieve a false positive
probability of µ ≤ ε with respect to n. As already mentioned above, Goel and
Gupta [GG10] proved that the false positive probability µ of a Bloom filter is
strictly bounded by

µ ≤
(

1− e−
(n+1/2)·κ
m−1

)κ
.

Hence, if we set

m :=
⌈
−(n+ 1/2) log2 ε

ln 2

⌉
+ 1 and κ :=

⌈
(m− 1) ln 2
n+ 1/2

⌉
, (4.1)

then due to our choice of κ we obtain

(n+ 1/2) · κ
m− 1 ≤

(n+ 1/2) (m−1) ln 2
n+1/2

m− 1 = ln 2

and therefore
µ ≤

(
1− e−

(n+1/2)·κ
m−1

)κ
≤ 1

2κ .

Furthermore, due to the choice of m in (4.1), we obtain a bound on κ as

κ ≥ (m− 1) ln 2
n+ 1/2 ≥

(
−(n+1/2) log2 ε

ln 2

)
ln 2

n+ 1/2 = − log2 ε

which yields the desired bound µ ≤ 2−κ ≤ ε on the false positive probability of the
Bloom filter.

False-positive probability p before n insertions. So far we have argued that we
can bound the probability of an non-inserted element being recognized by a BF after
n elements have been added to the BF. However, we stress that this probability is
far lower if only a fraction of the n elements have been added. We can illustrate
this by computing the false-positive probability of an element after only α < n
insertions.

Lemma 2. Let (H,Tα) be a Bloom filter where α random elements have been added.
The false-positive probability of a random element u ∈ U being recognized by the
Bloom filter is

Pr[BFCheck(H,Tα, u)] =
(

1−
(

1− 1
m

)ακ)κ
.

Proof. We begin by computing the expected number of bits set to one in the BF
after α random elements have been added. Let T0 = b0b1 . . . bm be the sequence
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of bits of a Bloom filter with size m. After initialization, we have bi := 0 for all
i ∈ [m]. With each added element we set up to κ bits to one, that is we sample κ
elements a1, . . . , aκ ∈ [m] with replacement and set bai := 1. At the end of α time
steps we have at most ακ bits equal to one and at least 1 bit equal to one. Let X t

i

be the event that bi is set at time t, that is, X t
i = 1 =⇒ bi = 1 has already been

set to one at time t. Thus the number bits set to one after α time steps is
m∑
i=1

Xακ
i .

To compute the expected number of bits set to one at time t, we need to compute
the expected value of each Xi. Then the expected number of bits set to one is

Xα =
m∑
i=1

Xα
i =

m∑
i=1

Pr[Xα
i ] =

m∑
i=1

(
1− Pr[Xα

i ]
)

=
m∑
i=1

1−
(

1− 1
m

)ακ
= m ·

(
1−

(
1− 1

m

)ακ)
.

We can now bound the probability by applying a simple combinatorial argument.
When choosing a random bit bi, we have a probability of Xα/m to choose an index i
with bi = 1. Independently repeating this process κ times, leads us to the expected
false-positive probability of a random element u ∈ U being recognized by the Bloom
filter:

Pr[BFCheck(H,mα, u)] =
m ·

(
1−

(
1− 1

m

)ακ)
m

κ =
(

1−
(

1− 1
m

)ακ)κ
.

To give some intuition how the false-positive probability evolves over time, we
plot the above function for n = 220 and κ ∈ {8, 11, 17, 21} in Figure 4.3. It is clearly
visible that the false-positive probability is overwhelmingly low if only a fraction of
the n elements have been added to the Bloom filter.

4.3 Bloom Filter Key Encapsulation Mechanisms
In order to better understand the properties of a BFKEM, we will give a brief
intuition of its concept before formally defining it. The core idea of a BFKEM is
to precompute an array of secret keys, where puncturing consists of deleting a few
entries in this secret key array.

A Naïve Approach. In order to understand the necessity of Bloom filters, we
discuss a naïve approach based on a standard KEM. The idea is that we pre-
compute a large number of key pairs (pk1, sk1), . . . , (pkm, skm). The public key
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Figure 4.3: The false-positive probability of a random element after α elements have
been added to a Bloom filter with n = 220 for κ ∈ {8, 11, 17, 21}.

pk = (pk1, . . . , pkm) consists of all computed public keys, while the secret key
sk = (sk1, . . . , skm) consists of all secret keys. The encapsulator chooses a ran-
dom public key pki and uses it for encapsulation, while the decapsulator uses the
secret counterpart ski to decapsulate. After decpasulation, the decapsulator can
“puncture” the secret key by simply deleting ski. We can already observe that
managing the secret key in a “precomputed array” fashion achieves highly-efficient
puncturing. However, this naïve approach suffers from a significant drawback: A
non-negligible correctness error requires exponentially large public and secret keys.
While we can use an identity-based KEM [Sha84] to reduce the size of the public
key, it is not obvious how we can effectively reduce the secret key to a manageable
size.

A Refined Approach. Using Bloom filters as a probabilistic data structure helps
to overcome the obstacle of an exponentially large secret key. Intuitively, a Bloom
filter allows keeping track of which parts of the secret keys have already been punc-
tured, while maintaining a shorter secret key array compared to naïve approaches.
Simplified, a typical BFKEM works as follows: Upon initialization, compute a
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master public key mpk and a master secret key msk. The master secret key msk
is used to issue additional secret keys ski for arbitrary identities i. Encapsulation
takes as input the master public key mpk and a (subset of) identities. Anyone
who possesses a secret key ski, where i was used in the encapsulation, is able to
decapsulate.3
For a BFKEM we use a primitive with the aforementioned properties. We gener-

ate a BFKEM key pair by computing a master public key mpk and a master secret
key msk of the underlying identity-based primitive. Then we use msk to compute
secret keys for all possible4 identities. We store the computed identity secret keys
in an array and discard msk.
To encapsulate, a client draws some randomness r $←− R from a randomness

space R. This randomness r implicitly defines5 a subset of random identities under
which the client encapsulates a fresh session key (e.g., by encrypting the session key
with respect to each of the identities in the subset). The encapsulated key is then
sent to the server along with the chosen randomness r. The server decapsulates
by recomputing the subset of chosen identities with r, and choosing one existing
identity secret key from its secret key array to retrieve the session key.
The puncturing procedure uses the randomness r to delete all identity secret keys

associated with the subset of identities implicitly defined by r. This ensures that
encapsulated keys cannot be decapsulated when the same r is used twice. Since
each invocation of the puncturing procedure leads to the deletion of multiple parts
of the secret key, it may happen that for an “unpunctured” randomness r′ that no
identity secret keys are remaining, rendering decapsulation impossible.
A Bloom filter is a way to parametrize such constructions. That is, given a

maximum number of punctures throughout the key pair’s lifetime n and a tolerated
false-positive probability ε (after n puncturings), we can compute the optimal size
of the secret key arraym, giving us the needed size of the identity space. A BFKEM
is highly parameterizable and suitable parameters have to be chosen according to
application and requirements.
With this intuition in mind, we can now start to formally define our construction.

Definition 18. A Bloom filter key encapsulation mechanism is a tuple BFKEM =
(KGen,Encap,Decap,Punct) consisting of four probabilistic polynomial-time algo-
rithms with symmetric key space K and ciphertext space C, with the following
properties:

• KGen(1λ,m, κ) takes as input a security parameter λ, the number of universal
hash functions κ, and the size of the Bloom filter m. Output is a key pair
(pk, sk) consisting of a public key pk and a secret key sk.

3On a technical level, this primitive is called an identity-based KEM [Sha84].
4The word “possible” refers to the identity space of the scheme, which is defined when the scheme
is initialized. We will later see how an appropriate identity space can be chosen.

5For example, we could use the randomness r to derive a subset of identities.
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GIND-CPA
A,BFKEM(λ,m, κ)

(pk, sk) $←− KGen(1λ,m, κ)
(c∗, k0) $←− Encap(pk)
k1

$←− K, b $←− {0, 1}, Q = ∅
b∗ $←− AOPunct(sk,·),OCorrupt(pk, c∗, kb)
where OPunct(sk, c) runs Punct(sk, c)
and adds Q := Q∪ {c}, and where
OCorrupt returns sk if c∗ ∈ Q and ⊥ else.

return 1 if b = b∗

return 0

GIND-CCA
A,BFKEM(λ,m, κ)

(pk, sk) $←− KGen(1λ,m, κ)
(c∗, k0) $←− Encap(pk)
k1

$←− K, b $←− {0, 1}, Q = ∅
b∗ $←− AOPunct(sk,·),ODecap(sk,·),OCorrupt(pk, c∗, kb)
where OPunct(sk, c) runs Punct(sk, c)
and adds Q := Q∪ {c}, and where
ODecap(sk, c) returns Decap(sk, c)
if c∗ ∈ Q and ⊥ else, and where
OCorrupt returns sk if c∗ ∈ Q and ⊥ else.

return 1 if b = b∗

return 0

Figure 4.4: Security experiments for a BFKEM. The IND-CPA security experiment
for a BFKEM is left and the IND-CCA security experiment is right.

• Encap(pk) takes as input a public key pk. Output is a ciphertext c ∈ C and a
key k ∈ K.

• Decap(sk, c) takes as input a secret key sk. Output is either a key k ∈ K or
an error symbol ⊥.

• Punct(sk, c) takes as input a secret key sk and a ciphertext c ∈ C. Output is
a potentially modified secret key sk ′.

Definition 19. For correctness, require that the following holds for all λ,m, κ ∈ N
and any (sk, pk) $←− KGen(1λ,m, κ). For any (arbitrary interleaved) sequence of
invocations of

skj+1
$←− Punct(skj, cj),

where j ∈ {1, . . . , n}, sk1 := sk, and (cj, kj) $←− Encap(pk), it holds that

Pr [Decap(skn+1, c
∗) 6= k∗] ≤

(
1− e−

(n+1/2)·κ
m−1

)κ
+ ε(λ),

where (c∗, k∗) $←− Encap(pk) and ε(·) is a negligible function in λ. The probability
is over the random coins of KGen, Encap, and Punct.

Definition 20. We define the advantage of an adversary A in the IND-CPA (resp.
IND-CCA) security experiment GIND-CPA

A,BFKEM(λ,m, κ) (resp. GIND-CCA
A,BFKEM(λ,m, κ)) defined

in Figure 4.4 as

AdvIND-CPA
A,BFKEM(λ,m, κ) :=

∣∣∣∣Pr
[
GIND-CPA
A,BFKEM(λ,m, κ) = 1

]
− 1

2

∣∣∣∣ ,
AdvIND-CCA

A,BFKEM(λ,m, κ) :=
∣∣∣∣Pr

[
GIND-CCA
A,BFKEM(λ,m, κ) = 1

]
− 1

2

∣∣∣∣ .
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We say a BFKEM is IND-CPA-secure (resp. IND-CCA-secure) if the advantage
AdvIND-CPA

A,BFKEM(λ,m, κ) (resp. AdvIND-CCA
A,BFKEM(λ,m, κ)) is a negligible function in λ for all

m,κ > 0 and all probabilistic polynomial-time adversaries A.

4.3.1 Simplifying Security of BFKEMs
The security definition for BFKEMs can be drastically simplified if we remove the
OPunct and OCorrupt oracles and immediately supply the adversary with a secret
key punctured at the challenge ciphertext. Such simplifications are tremendously
important as they simplify security proofs as well, making them less prone to errors.
In fact, we can show that the simplified security definition is equivalent to the
definition by [DJSS18] if the BFKEM meets a certain condition. The new property
of BFKEMs that we need is that puncturing is “commutative,” that is, the order of
puncturing operations does not affect the resulting secret key. To be more precise,
for any c0, c1 ∈ C with c0 6= c1, if we first puncture on input c0 and then on c1, the
resulting key is identical to the key obtained from first puncturing on c1 and then
on c0.

Definition 21. Let BFKEM = (KGen,Encap,Decap,Punct) be a BFKEM. BFKEM
is invariant to puncturing if for all possible secret keys sk and all ciphertexts c0, c1 ∈
C with c0 6= c1 it holds that

Punct(Punct(sk, c0), c1) = Punct(Punct(sk, c1), c0).

Invariance to Puncturing of Existing Schemes. We now need to discuss whether
BFKEMs actually are invariant to puncturing. A common denominator of all
BFKEMs is how they manage and store keys. Conceptually, the secret key consists
of a bit array T where each bit of the array is associated with a secret key value.
Recall that initially all bits of the array are set to 0 and each bit is associated with
a pre-generated secret key. Upon puncturing the secret key, a number of bits are
set to 1 and all secret keys associated with those bits are deleted. In other words,
if a bit in the array is equal to 0, then the associated secret key still exists, and if
a bit is equal to 1, the associated secret key is deleted.
The key observation is that, no matter in which sequence the bits (and thus

the associated secret keys) are manipulated, they are always subject to the same
transformation. Even if two to-be-punctured ciphertexts would set the same bit b
from 0 to 1, it does not matter which ciphertext is “responsible” for the transforma-
tion.6 Interestingly, the PKEM from hierarchical identity-based KEMs described
in [GHJL17] is also invariant to puncturing. The argument is similar to the one
above, only that we use a binary tree instead of a bit array.

6We remark that this is only a sufficient condition. It is possible to transform any scheme that is
invariant to puncturing into one that is variant to puncturing by simply storing the sequence
of ciphertexts, which have been punctured. However, none of the existing BFKEMs has such
an explicit (or even implicit) sequence stored.
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GIND-CPA∗
A,BFKEM(λ,m, κ)

(pk, sk) $←− KGen(1λ,m, κ)
(c∗, k0) $←− Encap(pk)
sk ′ := Punct(sk, c∗)
k1

$←− K, b $←− {0, 1}
b∗ $←− A(pk, c∗, kb, sk ′)
return 1 if b = b∗

return 0

GIND-CCA∗
A,BFKEM(λ,m, κ)

(pk, sk) $←− KGen(1λ,m, κ)
(c∗, k0) $←− Encap(pk)
sk ′ := Punct(sk, c∗)
k1

$←− K, b $←− {0, 1}
b∗ $←− AODecap(sk,·)(pk, c∗, kb, sk ′)
where ODecap(sk, c) returns Decap(sk, c) if c 6= c∗

return 1 if b = b∗

return 0

Figure 4.5: Simplified security experiments for BFKEMs. The IND-CPA∗ security
experiment for BFKEMs is left and the IND-CCA∗ security experiment
is right.

Definition 22. We define the advantage of an adversary A in the IND-CPA∗ (resp.
IND-CCA∗) security experiment GIND-CPA∗

A,BFKEM(λ,m, κ) (resp. GIND-CCA∗
A,BFKEM(λ,m, κ)) defined

in Figure 4.5 as

AdvIND-CPA∗
A,BFKEM(λ,m, κ) :=

∣∣∣∣Pr
[
GIND-CPA∗
A,BFKEM(λ,m, κ) = 1

]
− 1

2

∣∣∣∣ ,
AdvIND-CCA∗

A,BFKEM(λ,m, κ) :=
∣∣∣∣Pr

[
GIND-CCA∗
A,BFKEM(λ,m, κ) = 1

]
− 1

2

∣∣∣∣ .
We say a BFKEM is IND-CPA∗-secure (resp. IND-CCA∗-secure) if the advantage

AdvIND-CPA∗
A,BFKEM(λ,m, κ) (resp. AdvIND-CCA∗

A,BFKEM(λ,m, κ)) is a negligible function in λ for all
m,κ > 0 and all probabilistic polynomial-time adversaries A.

We will now show that the simplified security definition is indeed equivalent to
the one by Derler et al. if the BFKEM is invariant to puncturing. As it is trivial
to show that IND-CCA∗ security implies IND-CCA security for BFKEM (even if the
BFKEM is not invariant to puncturing), we will only show the reverse.

Theorem 1. Let BFKEM = (KGen,Encap,Decap,Punct) be a BFKEM. If BFKEM
is IND-CCA-secure and invariant to puncturing, then BFKEM is also IND-CCA∗-
secure. To be precise, from each probabilistic polynomial-time adversary A with
advantage AdvIND-CCA

A,BFKEM(λ,m, κ) against the IND-CCA security of BFKEM, we can
construct an efficient adversary B with advantage AdvIND-CCA∗

B,BFKEM (λ,m, κ) against the
IND-CCA∗ security of BFKEM, such that

AdvIND-CCA∗
B,BFKEM (λ,m, κ) = AdvIND-CCA

A,BFKEM(λ,m, κ).

Proof. Let C be the challenger of the IND-CCA∗-secure BFKEM. Upon initialization,
it supplies us with a public key pk, a challenge ciphertext c∗, a symmetric key k
(either the actual key or a uniformly random one), and a secret key sk ′ that has
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been punctured at position c∗. We construct B as follows. First, we start adversary
A by conveying (pk, c∗, k) to it. Note that this looks like a correctly distributed
challenge to A. The adversary A may now issue Punct and Corrupt queries. Since
we are in possession of the secret key sk ′, we can puncture the secret key each time
A issues a Punct(c) query as long as c 6= c∗. Should the adversary issue Punct(c∗),
we take no action as the secret key has already been punctured at position c∗ by the
challenger C. As soon as A issues Corrupt and requests the secret key, we forward
it if the query Punct(c∗) was issued and return ⊥ otherwise. Since the BFKEM
is invariant to puncturing, the adversary A is not able to recognize that c∗ was
potentially punctured before any other ciphertext. Hence, the punctured secret
key looks correctly distributed to the adversary A. Eventually, A outputs a bit b∗,
which we forward to the challenger C. Thus we have

AdvIND-CCA∗
B,BFKEM (λ,m, κ) = AdvIND-CCA

A,BFKEM(λ,m, κ).

The following corollary follows immediately, when replacing the ODecap(sk, ·) or-
acle with a function that always returns an error symbol ⊥.

Corollary 1. Let BFKEM = (KGen,Encap,Decap,Punct) be a BFKEM. If BFKEM
is IND-CPA-secure and invariant to puncturing, then BFKEM is also IND-CPA∗-
secure.

4.4 Bloom Filter Encryption from Identity-based
Broadcast Encryption

This section is the core section of this chapter. We show how to generically con-
struct a BFKEM from any identity-based broadcast encryption (IBBE). We start
by defining the syntax and security of IBBE. Next, we present our construction
and prove its IND-CPA∗ security. In the last part of this section, we discuss how
IND-CCA∗ security for our construction can be achieved and which IBBE scheme is
suitable for instantiation.

4.4.1 Building Blocks
We recall the basic definition of IBBE and its security [Del07].

Definition 23. An identity-based broadcast encryption scheme with identity space
I is a tuple IBBE = (Setup,Extract,Enc,Dec) consisting of probabilistic polynomial-
time algorithms with the following properties:

• Setup(1λ, κ) takes as input a security parameter λ and a maximal number
of receivers κ and outputs a master public key mpk and a master secret key
msk. We assume that mpk implicitly defines the identity space I.

63



• Extract(msk, ID) takes as input a master secret key msk and a user identity
ID, and outputs a user secret key sk ID.

• Enc(mpk,S) takes as input a master public key mpk and a set of user identities
S, and outputs a ciphertext c and a session key k.

• Dec(sk ID,S, c) takes as input a user secret key sk ID, a set of user identities S
and a ciphertext c, and outputs the key k.

Correctness for IBBE requires that for all λ, for all polynomially bounded κ in
λ, for all (mpk,msk) $←− Setup(1λ, κ), for all S = {ID1, . . . , IDi} ∈ I i with i ≤ κ,
and for all (c, k) $←− Enc(mpk,S), it holds for all IDS ∈ S that

Pr [Dec(Extract(msk, IDS),S, c) = k] = 1.

Definition 24. We define the advantage of an adversary A in the IND-sID-CPA
(resp. IND-sID-CCA) security experiment GIND-sID-CPA

A,IBBE (λ, κ) (resp. GIND-sID-CCA
A,IBBE (λ, κ))

defined in Figure 4.6 as

AdvIND-sID-CPA
A,IBBE (λ, κ) :=

∣∣∣∣Pr
[
GIND-sID-CPA
A,IBBE (λ, κ) = 1

]
− 1

2

∣∣∣∣ ,
AdvIND-sID-CCA

A,IBBE (λ, κ) :=
∣∣∣∣Pr

[
GIND-sID-CCA
A,IBBE (λ, κ) = 1

]
− 1

2

∣∣∣∣ .
We say an IBBE scheme is IND-sID-CPA-secure (resp. IND-sID-CCA-secure) if the

advantage AdvIND-sID-CPA
A,IBBE (λ, κ) (resp. AdvIND-sID-CCA

A,IBBE (λ, κ)) is a negligible function in
λ for all κ > 0 and all probabilistic polynomial-time adversaries A.

4.4.2 Construction
We have now introduced all necessary building blocks to describe our generic con-
struction of BFKEM from IBBE.

Construction 1. Let BF = (BFGen,BFUpdate,BFCheck) be a Bloom filter and let
IBBE = (Setup,Extract,Enc,Dec) be an IBBE scheme. We construct a BFKEM
BFKEM = (KGen,Encap,Decap,Punct) as follows.

• KGen(1λ, κ,m) generates a Bloom filter instance by running the Bloom filter
generation algorithm (H,T ) $←− BFGen(κ,m) and generates an IBBE instance
by invoking (mpk,msk) $←− IBBE.Setup(λ, κ). For each i ∈ [m] it calls

ski $←− IBBE.Extract(msk, i).

Finally, it sets

pk := (H,mpk) and sk :=
(
T, (ski)i∈[m]

)
.
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GIND-sID-CPA
A,IBBE (λ, κ)

S∗ = {ID∗1, . . . , ID∗s} $←− A(1λ)
(mpk,msk) $←− Setup(1λ, κ)
> $←− AOExtract(msk,·)(mpk)
where OExtract(msk, ·) behaves like
Extract(msk, j) but returns ⊥ if j ∈ S∗.

(c∗, k0) $←− Enc(mpk,S∗)
k1

$←− K, b $←− {0, 1}
b∗ $←− AOExtract(msk,·)(c∗, kb)
where OExtract(msk, ·) behaves like
Extract(msk, j) but returns ⊥ if j ∈ S∗.

return 1 if b = b∗

return 0

GIND-sID-CCA
A,IBBE (λ, κ)

S∗ = {ID∗1, . . . , ID∗s} $←− A(1λ)
(mpk,msk) $←− Setup(1λ, κ)
> $←− AOExtract(msk,·),ODec(·,·,·)(mpk)
where OExtract(msk, j) behaves like
Extract(msk, j) but returns ⊥ if j ∈ S∗,
and where ODec(ID,S, c) with S ⊆ S∗

and ID ∈ S behaves like Dec(sk ID,S, c).
(c∗, k0) $←− Enc(mpk,S∗)
k1

$←− K, b $←− {0, 1}
b∗ $←− AOExtract(msk,·),ODec(·,·,·)(c∗, kb)
where OExtract(msk, j) behaves like
Extract(msk, j) but returns ⊥ if j ∈ S∗,
and where ODec(ID,S, c) with S ⊆ S∗

and ID ∈ S behaves like Dec(sk ID,S, c)
but returns ⊥ if c = c∗.

return 1 if b = b∗

return 0

Figure 4.6: Security experiments for IBBEs [Del07]. The IND-sID-CPA security ex-
periment for IBBE is left and the IND-sID-CCA security experiment is
right.

Remark. Observe that the maximum number of recipients is set to the
Bloom filter’s optimal number of universal hash functions κ and the user
identity space is bound to the Bloom filter’s entries m.

• Encap(pk) takes a public key pk = (H,mpk) as input, samples a random
value r $←− {0, 1}λ and generates indices ij := hj(r) for (hj)j∈[κ] := H. Then it
invokes (k, c′) $←− IBBE.Enc(mpk,S), where S := {ij}j∈[κ]. Finally, it outputs
(c, k), where ciphertext c := (c′, r).

• Decap(sk, c) takes a secret key sk = (T, (ski)i∈[m]) and ciphertext c = (c′, r) as
input. Again, let S := {ij}j∈[κ]. If BFCheck(H,T, r) = 0, then the algorithm
returns ⊥. Else, there exists at least one index ι ∈ S such that skι 6= ⊥. The
algorithm picks the smallest index ι that meets the previous requirements,
and computes

k := IBBE.Dec(skι,S, c′)

and returns k.
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Remark. This algorithm essentially checks if for any of the user identities in
set S, a user secret key still exists. If so, the ciphertext can be decapsulated.

• Punct(sk, c) takes a secret key sk = (T, (ski)i∈[m]) and a ciphertext c = (c′, r)
as input. It invokes T ′ = BFUpdate(H,T, r) and defines

sk ′i :=

ski, if T ′[i] = 0
⊥, if T ′[i] = 1.

Finally, the algorithm returns

sk ′ =
(
T ′, (sk ′i)i∈[m]

)
.

Remark. From an IBBE’s point of view, the puncturing procedure removes
participants from the broadcast network by deleting their respective user
private keys.

Correctness Error. We will now show that the correctness error of the construc-
tion is essentially equal to the false-positive probability of the Bloom filter, up to a
negligible distance incurred by the probability that two ciphertexts share the same
randomness r.
Theorem 2. Construction 1 is correct with an overall correctness error of approx-
imately 2−κ + n · 2−λ, where κ is the number of universal hash functions, n is the
number of puncturings, and λ is the security parameter.
Proof. Let (pk, sk0) $←− KGen(1λ,m, κ) be a BFKEM key pair with parameters
m,κ ∈ N. We define J := {c : (c, k) $←− Encap(pk)} as the set of all possible
ciphertexts with respect to the public key pk. Let S = (c1, . . . , cn) be a sequence
of n arbitrary ciphertexts c ∈ J . We start by computing

ski := Punct(ski−1, ci) for all i ∈ [n],

where skn will be the secret key that has been punctured at all ciphertexts in S.
Consider the probability

Pr
(c∗,k∗) $←−Encap(pk)

[Decap(skn, c∗) = ⊥ : c∗ /∈ S]

that an unpunctured ciphertext c∗ cannot be decapsulated under the punctured
secret key skn. Let us write c∗ = (c′, r∗) and c′i = (c′i, ri) ∈ S. With skn =
(Tn, (ski)i∈[m]) and pk = (H,mpk) we can argue that

Decap(skn, c) = ⊥ ⇐⇒ BFCheck(H,Tn, r∗) = 1,

since BFCheck(H,Tn, r∗) = 0 would mean that at least one index j ∈ [κ] exists such
that

skhj(r∗) 6= ⊥,
where H = (hj)j∈[κ]. We can now distinguish two cases:
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1. There exists an index i ∈ [n] such that r∗ = ri. In this case, two random
values collide and we trivially have BFCheck(H,T, r∗) = 1. However, since
r∗ is by design chosen uniformly at random, the probability that this event
occurs is bounded by

Pr
r∗,r1,...,rn

$←−{0,1}λ
[r∗ ∈ {r1, . . . , rn}] ≤

n

2λ .

2. There exists no index i ∈ [n] such that r∗ = ri. In this case the bounded
false-positive probability of the Bloom filter guarantees that

Pr[BFCheck(H,Tn, r∗) = 1] ≤
(

1− e−
(n+1/2)·κ
m−1

)κ
≤ 2−κ.

In conclusion we have an overall correctness error of approximately 2−κ+n·2−λ.

Note that the term n · 2−λ in the correctness error is negligibly small. Hence,
the dominating factor of the correctness error is determined by the false-positive
probability of the Bloom filter, which is determined by the choice of parameters
m,κ ∈ N.

4.4.3 Security against Chosen-Plaintext Adversaries
We prove the IND-CPA∗ security of our construction if the underlying IBBE scheme
is IND-sID-CPA-secure.

Theorem 3. From each efficient adversary A with advantage AdvIND-CPA∗
A,BFKEM(λ,m, κ)

against IND-CPA∗-security of our BFKEM, we can construct an efficient algorithm
B with advantage AdvIND-sID-CPA

B,IBBE (λ, κ) against the IND-sID-CPA-security of the un-
derlying IBBE scheme with

AdvIND-CPA∗
A,BFKEM(λ,m, κ) ≤ AdvIND-sID-CPA

B,IBBE (λ, κ).

Proof. We proceed by presenting a reduction that uses an adversary A against the
IND-CPA∗-security of the BFKEM to break the IND-sID-CPA-security of the IBBE.
The reduction together with A then forms B. In order to engage with the IND-CPA∗
challenger C, we need to commit to a set of recipients S∗ we will attack.
We generate a new Bloom filter instance by invoking (H,T ) $←− BFGen(m,κ)

and sample an additional random value r∗ $←− {0, 1}λ. Next, we compute indices
ij := hj(r∗) where (hj)j∈[κ] := H are the κ universal hash functions of the Bloom
filter. We define S∗ := {ij}j∈[κ] and forward the set to C. Note that |S| = κ.
The challenger C generates a master public key mpk and a master secret key msk

by invoking IBBE.Setup(λ, κ) and sends us the master public key mpk. Additionally,
C prepares a challenge by running (c′, k0) $←− IBBE.Enc(mpk,S∗) and sampling k1

$←−
K, where K is the symmetric key space. The challenger sends us the challenge
(c′, kb), where b is a bit drawn uniformly at random.
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We now compute T := BFUpdate(H,T, r∗) and define

sk ′ := (skj)j∈[m]∧T [j]=0,

removing all troublesome secret keys. We initialize the adversary A with input
(mpk, c∗, kb, sk′), where c∗ = (c′, r∗).
Eventually, A will output a bit b∗, which we will forward to the challenger C.

Since all queries are perfectly simulated, we get

AdvIND-CPA∗
A,BFKEM(λ,m, κ) ≤ AdvIND-sID-CPA

B,IBBE (λ, κ).

This concludes the proof.

4.4.4 Security against Chosen-Ciphertext Adversaries
So far we have shown that our construction achieves IND-CPA∗ security. This
is, however, not enough to build a secure 0-RTT key exchange protocol, which
explicitly requires IND-CCA security. Hence, we need to transform our construction
in order to meet this security notion. In this section we will discuss two possible
transformations.

Modified Fujisaki–Okamoto. The first approach to achieve IND-CCA security is
given by Derler et al. [DJSS18] and is a variant of the Fujisaki–Okamoto trans-
formation [FO99, FO13]. The original Fujisaki–Okamoto transformation is a way
to transform a IND-CPA-secure KEM into a IND-CCA-secure one by ensuring the
“well-formedness” of a ciphertext. However, the original transformation requires
perfect correctness, which is not given for BFKEMs. Hence, Derler et al. adjusted
the transformation to be applicable to PKEMs. The transformation requires ad-
ditional properties of PKEMs beyond the properties introduced so far. Before
presenting the transformation, we therefor define all required additional properties
and investigate whether our construction achieves them.

Definition 25. Let BFKEM = (KGen,Encap,Decap,Punct) be a BFKEM. We say
that BFKEM has separable randomness if we can write the encapsulation algorithm
Encap equivalently as

(c, k) $←− Encap(pk) = Encap′(pk; (r, k))

for uniformly random (r, k) $←− {0, 1}ρ+λ, where Encap′ is a deterministic algorithm
whose output is uniquely determined by the public key pk and the randomness
(r, k) ∈ {0, 1}ρ+λ.

Construction 1 does not achieve separable randomness as the symmetric key k
algebraically depends on the IBBE (i.e., the symmetric key k is chosen by the IBBE
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and not by the generic construction).7 It is, however, possible to transform any non-
separable BFKEM into a separable BFKEM [DJSS18]. The transformation works
as follows:
Let BFKEM = (KGen,Encap,Decap,Punct) be a BFKEM with non-separable

randomness. We replace the algorithm Encap with the following algorithm:

• Encap′(pk, (r, k′)) runs (c, k) $←− Encap(pk; (r, k)) and sets c′ = (c, k ⊕ k′).
Output is (c′, k′).

Note that this transformation adds an additional component of size λ to the
ciphertext.

Definition 26. Let BFKEM = (KGen,Encap,Decap,Punct) be a BFKEM and Q =
(c1, . . . , cw) be any sequence of ciphertexts. We say that BFKEM allows publicly-
checkable puncturing, if there exists an efficient algorithm CheckPunct with the
following correctness property:

1. Run (pk, sk) $←− KGen(1λ,m, κ).

2. Compute ci $←− Encap(pk) and sk := Punct(sk, ci) for all i ∈ [w].

3. Let c be any ciphertext. We require that

Decap(sk, c) = ⊥ ⇐⇒ CheckPunct(pk,Q, c) = ⊥.

Construction 1 allows publicly-checkable puncturing. Anyone who knows the
public key pk, the universal hash functions H and the sequence of ciphertexts
c1, . . . , cw on which the secret key has been punctured, can recompute the state of
the Bloom filter T and hence compute δ := BFCheck(H,T, r) for a given c = (c′, r).
If δ = 1, then Decap(sk, c) = ⊥ holds as well.

Definition 27. Let BFKEM = (KGen,Encap,Decap,Punct) be a BFKEM with
separable randomness. We call BFKEM γ-spread if for any honestly generated
public key pk, any key k, and any ciphertext c, we have

Pr
r

$←−{0,1}ρ
[c = Encap(pk; (r, k))] ≤ 2−γ.

Construction 1 is γ-spread since the randomness r is chosen uniformly at random
form {0, 1}λ. Now we have seen that our construction indeed fulfills all require-
ments for the modified Fujisaki–Okamoto transformation. The transformation was
described by Derler et al. [DJSS18] and, for completeness, we restate their trans-
formation.

7Depending on the instantiation, it might still be possible to directly achieve separable random-
ness. For this to work, the IBBE would need separable keys, that is, if we can equivalently
write (k, c) $←− Enc(mpk,S) = Enc′(mpk,S; k) for uniformly random k $←− {0, 1}λ, where Enc′
is a deterministic algorithm. This property is not necessarily given for IBBEs.
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Let BFKEM = (KGen,Encap,Decap,Punct) be a BFKEM with separable ran-
domness and γ-spreadness, which supports publicly-checkable puncturing. Let
R : {0, 1}∗ → {0, 1}ρ+λ be a hash function. We construct a new BFKEM BFKEM′ =
(KGen′,Encap′,Decap′,Punct′) as follows:

• KGen′(1λ,m, κ) behaves like KGen(1λ,m, κ).

• Encap′(pk) samples a symmetric key k $←− {0, 1}λ and computes (r, k′) :=
R(k) ∈ {0, 1}ρ+λ. It then runs (c, k) $←− Encap(pk; (r, k)) and returns (c, k′).

• Decap′(sk, c) runs k := Decap(sk, c) and returns ⊥ if k = ⊥. Otherwise, it
computes (r, k′) = R(k) and checks consistency of the ciphertext by verifying
that (c, k) = Encap(pk; (r, k)). If this does not hold, it outputs ⊥. Otherwise
it outputs k’.

• Punct′(sk, c) behaves like Punct(sk, c).

Theorem 4. Let BFKEM = (KGen,Encap,Decap,Punct) be a BFKEM with sepa-
rable randomness and γ-spreadness, which supports publicly-checkable puncturing.
Let BFKEM′ = (KGen′,Encap′,Decap′,Punct′) be the scheme transformed as above.
From each efficient adversary A with advantage AdvIND-CCA

A,BFKEM(λ,m, κ) that issues at
most qO queries to the decryption oracle, we can construct an efficient adversary B
with advantage AdvIND-CPA

A,BFKEM(λ,m, κ) such that

AdvIND-CPA
A,BFKEM(λ,m, κ) ≥ AdvIND-CCA

A,BFKEM(λ,m, κ)− qO
2γ .

One notable drawback is that the transformation requires that the encapsulation
procedure be run once during each decapsulation. Should the encapsulation proce-
dure be computationally expensive and should the application strive for high effi-
ciency, it might be worth considering a different approach for achieving IND-CCA
security.

Cannetti–Halevi–Katz Transformation. Another approach to achieve IND-CCA
security is to directly use an IND-sID-CCA-secure IBBE. The proof of Theorem 3
can easily be adapted to show that instantiation with an IND-sID-CCA-secure IBBE
yields an IND-CCA-secure BFKEM. The only remarkable difference is the additional
presence of an decryption/decapsulation oracle for both the IBBE challenger and
the BFKEM adversary. Forwarding the queries from the adversary to the IBBE
challenger and vice versa suffices to acquire IND-CCA security.
Hence, we now need to focus on the security of the IBBE scheme. Should the

IBBE construction already be IND-sID-CCA-secure, it can directly be deployed in
our construction to achieve IND-CCA security. However, this might not be the case
for all IBBE schemes. It is not unusual that cryptographic constructions are proven
under a weaker assumption such as IND-sID-CPA security and use transformations
for stronger security. Similar to the Fujisaki–Okamoto transformation discussed
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earlier, a suitable transformation for IBBE exists. It is called the Cannetti–Halevi–
Katz transformation [CHK04]. However, it is not entirely tailored to IBBE schemes
but is meant to transform identity-based encryption schemes instead. Delerablée
was the first to point out that their transformation can be adapted to work for IBBE
schemes as well [Del07]. The approach is to derive one of the broadcasted identities
from a verification key of a strongly unforgeable one-time signature scheme, which
then in turn is used to sign the ciphertext. A reasonable choice for the signature
scheme might be the Boneh–Lynn–Shacham signature scheme [BLS01], which is
strongly unforgeable due to its unique ciphertexts. To the best of our knowledge,
the exact transformation has never been written down and formally proven. Hence,
we will formally define the transformation and prove its security.

Construction 2. Let IBBE = (Setup,Extract,Enc,Dec) be an IBBE scheme and let
SIG = (KGen, Sign,Vrfy) be a signature scheme. We construct a new IBBE scheme
IBBE′ = (Setup′,Extract′,Enc′,Dec′) as follows:

• Setup′(1λ, κ) behaves like Setup(1λ, κ+ 1).

• Extract′(msk, ID) computes and returns sk ID := Extract(msk, 0 ‖ ID).

• Enc′(mpk,S) computes a signature key pair (pkSIG, skSIG) $←− SIG.KGen(1λ).
It then computes (k, cIBBE) $←− Enc(S ′,mpk), where S ′ := {0 ‖ ID : ID ∈
S} ∪ {1 ‖ pkSIG}. Using the signing key skSIG, it generates a signature σ $←−
SIG.Sign(skSIG, cIBBE) and sets the final ciphertext as c := (cIBBE, pkSIG, σ).
Finally, it returns (c, k).

• Dec′(sk IDi ,S, c) with c = (cIBBE, pkSIG, σ) verifies the signature by computing
SIG.Vrfy(pkSIG, cIBBE, σ). If the signature is invalid, return ⊥. Otherwise,
compute and return k := Dec(sk IDi ,S ′, cIBBE), where S ′ := {0 ‖ ID : ID ∈
S} ∪ {1 ‖ pkSIG}.

Theorem 5. If IBBE is IND-sID-CPA-secure and SIG is sEUF-1-CMA-secure, then
from any probabilistic polynomial-time adversary A against the IND-sID-CCA secu-
rity of IBBE′ with advantage AdvIND-sID-CCA

A,IBBE′ (λ, κ), we can construct two adversaries
B1 and B2 such that

AdvIND-sID-CCA
A,IBBE′ (λ, κ) ≤ AdvsEUF-1-CMA

B1,SIG (λ) + AdvIND-sID-CPA
B2,IBBE (λ, κ).

Proof. We will conduct this proof in a sequence of games between a challenger C
and an adversary A. We start with an adversary playing the IND-sID-CCA security
game. By Advi we denote A’s advantage in the i-th game.

Game 0. We define Game 0 to be the original IND-sID-CCA security game. By
definition

Adv0 = AdvIND-sID-CCA
A,IBBE′ (λ, κ).
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Game 1. This game is identical to Game 0, except that we abort the game and
output a random bit when an event abort occurs. Let (c∗IBBE, σ

∗, pk∗SIG) be the
challenger ciphertext of the IND-sID-CCA security game. The event abort occurs if
the adversary A issues a decryption query ODec(ID,S, c) with c = (cIBBE, σ, pkSIG),
where pkSIG = pk∗SIG and σ is valid under pkSIG. Since both games proceed identically
until an abort occurs, we have

|Adv1 − Adv0| ≤ Pr[abort]

and we claim that we can construct an adversary B1 against the sEUF-1-CMA
security of the signature scheme SIG with advantage at least Pr[abort].

Construction of B1. B1 behaves like the challenger in Game 1, except that the
challenge ciphertext is generated differently. When the adversary A requests the
challenge ciphertext, B1 prepares the challenge with the signature scheme provided
by its sEUF-1-CMA challenger. To be precise, B1 computes the challenge cipher-
text c∗IBBE according to the IND-sID-CCA security game, but uses the sEUF-1-CMA
challenger to sign c∗IBBE.
When A queries the decryption oracle with pkSIG = pk∗SIG, we must have

(cIBBE, σ, pkSIG) 6= (c∗IBBE, σ
∗, pk∗SIG),

that is, the tuples are either in the first or the second element different. This implies
that σ is either a new signature for the challenge ciphertext c∗, or that c is a new
ciphertext that is valid for the challenge signature σ∗, or that both σ and c are in
no relation with their challenge counterparts. In any case, forwarding (cIBBE, σ) will
break the sEUF-1-CMA security of SIG. Thus, we have

|Adv1 − Adv0| ≤ Pr[abort] = AdvsEUF-1-CMA
B1,SIG (λ).

We finally prove that any successful adversary A breaking the IND-sID-CCA se-
curity of IBBE′ in Game 1 can be transformed into an adversary B2 breaking the
IND-sID-CPA security of IBBE. Concretely, we have

Adv1 = AdvIND-sID-CPA
B2,IBBE (λ, κ).

Construction of B2. B2 initializes A and receives a set of target identities S∗ by
A. It then generates a fresh signature key pair (pkSIG, skSIG) $←− SIG.KGen(1λ) and
forwards S ′ := {0 ‖ ID : ID ∈ S∗} ∪ {1 ‖ pkSIG} as the set of target identities to its
IND-sID-CPA challenger.
The IND-sID-CPA challenger will reply with a master public key mpk, a challenge

ciphertext c∗, and a random key kb, all of which are forwarded to A. Note that
indeed mpk is correctly distributed with respect to S∗ as the initialization of the
IND-sID-CPA challenger with S ′ leads to a computation of c∗ according to the
encapsulation procedure of the IBBE′ scheme.
The adversary A is now allowed to issue queries to the extraction and decryption

oracles, which B2 simulates as follows:
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• OExtract(msk, j): A is only allowed to query for identities j /∈ S. For each such
identity, B2 queries OExtract(msk, 0 ‖ j) to its challenger. Since j /∈ S =⇒
0 ‖ j /∈ S ′, all queries are simulated correctly.

• ODec(ID,S, c) with c = (cIBBE, σ, pkSIG): The IND-sID-CCA security experiment
requires that both S ⊆ S∗ and ID ∈ S. If SIG.Vrfy(pkSIG, cIBBE, σ) 6= 1, return
⊥. Otherwise, it queries OExtract(msk, 1 ‖ pkSIG) to its IND-sID-CPA challenger
in order to receive sk1‖pkSIG . This allows B2 to decrypt the ciphertext via
Dec(sk1‖pkSIG ,S, c). Note that due to the changes introduced in Game 1, the
extraction query is admissible as pkSIG 6= pk∗SIG. Adversary B2 can hence
answer all decryption queries correctly.

Eventually, A outputs a guess b∗, which is forwarded to the IND-sID-CPA challenger
of B2. Since all queries are perfectly simulated, this proves the claim.
By summing up probabilities from Game 0 to Game 1, we obtain

AdvIND-sID-CCA
A,IBBE′ (λ, κ) ≤ AdvsEUF-1-CMA

B1,SIG (λ) + AdvIND-sID-CPA
B2,IBBE (λ, κ).

Depending on the choice of the signature scheme, the above transformation is
very efficient on a computational level. Drawbacks of the transformation include an
expansion of the ciphertext as both the signature verification key and the signature
must be included. This might especially be unsuitable for scenarios with very
limited bandwidth due to, for example, very short standardized header fields. We
conclude this section with the observation that the necessary transformation for
IND-CCA security must be carefully chosen with the application in mind.

4.4.5 Instantiation and Comparison
Suitable Bloom Filter Parameters. A suitable choice of parameters depends
heavily on the application scenario. In the context of this thesis, we are mainly
interested in 0-RTT key exchange. To be more precise, we are considering a high-
traffic scenario where multiple clients establish connections to a single server. Each
time a connection establishment fails, a client would either need to retry the estab-
lishment, or fall back to a 1-RTT key exchange. As such failures inevitably increase
latency, we want to minimize the probability of failure as much as possible.
Recall that the optimal size of the Bloom filter is given, if the false-positive

probability and the number of elements to-be-added are fixed. A reasonable choice
of the false-positive probability might be the range 2−10 ≤ ε ≤ 2−7. However,
we stress that we are not aware of any studies investigating what a tolerable false-
positive probability range for 0-RTT key exchange might be. Conducting large-scale
measurements in cooperation with content providers might offer more insight as to
which false-positive probability is tolerable in practice.
The number of elements which can be added to the Bloom filter are another

interesting parameter. This number is, in fact, equal to the number of requests
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Table 4.1: Asymptotic performance comparison of existing BFKEMs, where pk is
the public key, sk is the secret key, c is the ciphertext, κ is the number
of universal hash functions, and m is the size of the Bloom filter.

Construction |pk| |sk| |c| Decap Punct

Basic BFKEM [DJSS18, §2.5] O(1) O(m) O(κ) O(κ) O(κ)
ABE-based BFKEM [DJSS18, §2.7] O(m) O(m2) O(1) O(κ) O(κ)
IBBE-based BFKEM O(κ) O(m) O(1) O(κ) O(κ)

a server receives over a given time period. One possible choice would be a time
period equal to the lifetime of the server’s public key. Depending on how many
requests the server receives over this time span, this approach could lead to a very
large secret key. A different choice could be smaller time periods ranging from a
few days to several months. This way the server’s secret key size would be smaller,
at the cost of an additional transmission of fresh key material if the client is not in
possession of a valid public key.

Instantiation. We discuss a possible instantiation of our proposed scheme and
compare it with existing ones. A suitable instantiation for our IBBE-based con-
struction, would be the IBBE by Delerablée [Del07]. This IBBE scheme has
constant-size ciphertexts (consisting of only two group elements) and secret keys
(consisting of one group element). For convenience, we recall the scheme in Ap-
pendix C. Instantiating our construction with this scheme thus leads to ciphertexts
c′ ∈ G1 ×G2 and secret keys sk ID ∈ G1, where G1 and G2 are the “source groups”
of a bilinear map.

Comparison. In the remainder of this section, we will compare our scheme to
other existing PKEMs. We decided to exclude all schemes unsuitable for use in
high-traffic scenarios such as 0-RTT key exchange. This excludes for example the
scheme in [GHJL17] due to their inefficient puncturing procedure. Similarly, the
schemes presented in [GM15, SSS+20, SDLP20] are excluded because of either inef-
ficient puncturing or decryption procedures, leaving us with the PKEMs proposed
in [DJSS18]. We stress that our comparison only evaluates whether a scheme is
a reasonable choice for 0-RTT key exchange, but neglects possible other scenarios
where different schemes would prevail instead. Table 4.1 compares our IBBE-based
construction to the constructions by Derler et al. [DJSS18].
We can observe that the cost for decapsulation and puncturing are similar be-

tween all schemes. Both decapsulation and puncturing need to compute κ evalua-
tions of universal hash functions, yielding a runtime ofO(κ). Recall that puncturing
is highly efficient for all these schemes as it only consists of the deletion of at most
κ parts of the secret key.
The basic BFKEM by Derler et al. [DJSS18] has ciphertexts of size O(κ). This
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is due to the fact that the session key needs to be encrypted κ times, yielding κ
ciphertexts. Our scheme uses the advantages of an IBBE to “aggregate” the number
of ciphertexts to a single one per session key. Both, the ABE-based scheme and our
scheme achieve constant-size ciphertexts. However, this property comes at a large
cost for the ABE-based scheme. All ABE schemes with constant-size ciphertexts
that we are aware of (i.e., [CCL+13, AHY15]) need a large public and secret key.
Specifically, the size of the secret key is quadratic in the Bloom filter’s size, which
is infeasible to manage for large m.
Moreover, when instantiated, the secret key entries of our construction are only

half the size of the ones in the basic construction of [DJSS18] (one group element
in our construction versus two group elements in the basic construction). This
seemingly small difference has a high impact since multiple secret key entries are
generated during setup. However, it is important to note that those efficiency gains
come at the cost of a stronger assumption, whose validity was analyzed in the
generic bilinear group model in [Del07].

4.5 Conclusion and Open Problems
We have now seen how PKEMs can be used to construct 0-RTT key exchange
protocols with absolute forward security. We presented a new construction of a
PKEM based on IBBE and proved its security. When instantiated with the IBBE
by Delerablée [Del07], our construction achieves both constant size ciphertexts and
smaller secret keys compared to other known Bloom filter KEMs. Our construction
is hence especially viable for applications that require short ciphertexts or only offer
limited storage capabilities. An example application benefiting from our scheme’s
advantages are circuit construction protocols, which we discuss in the next chapter.

Future Research. We conclude this chapter by discussing remaining open prob-
lems for future research. The first open problem of this chapter evolves around the
IBBE-based PKEM. So far we have constructed a PKEM that supports fine-grained
puncturing, that is, we can puncture ciphertexts individually. However, in order
to throttle message suppression attacks as discussed in Section 3.4.3, we need to
add a coarse-grained puncture mechanism. A naïve approach could be to generate
multiple key pairs, each associated with a lifetime after which the secret key of a
pair will be deleted. While this approach trivially achieves the desired puncture
property and adds hardly any overhead to the secret key size, the number of public
keys grow linearly in the number of key pairs. Depending on the application, this
could quickly lead to unmanageably large public keys.
A more refined approach would be to introduce some level of hierarchy to the

IBBE. This could be achieved by trying to combine the IBBE with a hierarchical
identity-based encryption (HIBE) scheme. It appears, however, that a generic
combination of both primitives is not straightforward. While we could use a low-
level identity of the HIBE to serve as a seed for a master secret key to the IBBE, it
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is unclear how we can efficiently manage the “public key part” of the construction.
That is, it is not obvious how encapsulation – only given the master public key
of the HIBE and some identities – would work. A possible approach would be to
carefully craft a suitable HIBE and IBBE together, instead of composing a generic
construction.

Research Question 3. How can we construct an IBBE-based PKEM with a
coarse-grained puncturing mechanism while keeping important parameter sizes rea-
sonable?

Another interesting problem concerns the efficiency of existing PKEMs. So far,
all constructions suffer from their respective drawbacks, indicating a natural trade-
off between properties such as parameter size, computational efficiency, and even
correctness. Since the challenge when designing identity-based primitives is often
to achieve a satisfying trade-off of all aforementioned properties, it seems natural
that these challenges translate to designing PKEMs as well. An interesting problem
poses the efficiency of the PKEM in [GHJL17]. As discussed at the beginning of
this chapter, the main drawback of their construction is a computationally expen-
sive puncturing procedure, which consists of several invocations of a hierarchical
identity-based encryption key delegation procedure. If a hierarchical identity-based
encryption construction with a highly efficient key delegation procedure exists, then
this would yield a more efficient PKEM. As most hierarchical identity-based en-
cryption schemes are designed with efficient encryption and decryption in mind,
the efficiency of key delegation is often neglected: it is unnecessary in the standard
use-case of a HIBE, where keys are delegated when a user joins the system. This
leads us to the following open problem.

Research Question 4. How can we construct further puncturable encryption
schemes or puncturable key encapsulation mechanisms? Is it possible to instan-
tiate existing generic constructions more efficiently?
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5 Non-Interactive Forward-Secure
Single-Pass Circuit Construction

Author’s Contribution. The contents of this chapter are based on joint work with
Tobias Handirk, Sebastian Lauer, Robert Merget, and Jörg Schwenk. [LGM+20].
The author’s main contributions are the discussion on a suitable instantiation of
the construction and formalizing security in the presence of a non-negligible cor-
rectness error. This especially involves the challenges of preserving anonymity in
the presence of such errors. The unlinkability model and the security proof were
mutually developed by Sebastian Lauer and the author of this thesis.

Remark on the Notion of Forward Security. The result covered in this chapter
was published before the new notion for forward security described in Chapter 3
was developed. In order to make the results within this thesis coherent, we will
adapt this notion in the following chapter. Note that this will slightly change the
wording of this chapter compared to the published version, however, it does not
affect the results in any remarkable way.

5.1 Motivation
Means to provide anonymity in the Internet are important to ensure freedom-of-
speech and freedom-of-information in authoritarian states as well as to protect civil
rights activists all over the world. With the rise of nation-state adversaries that
enforce surveillance programs, maintaining this ability has become more and more
challenging. One approach to protect against such adversaries is the use of onion
routing [GRS99]. The most prominent onion routing protocol is The Onion Router
(Tor) [DMS04] and is used by over 1,500,000 people1 on a daily basis.

Onion Routing. The idea of onion routing is based on a seminal paper on anony-
mous communications by Chaum [Cha81] and was first conceptualized by Gold-
schlag, Reed, and Syverson in 1999 [GRS99]. The security of onion routing has
been studied in many publications [GRS96, GRS99, STRL01, RSG06] and, over the
years, several onion routing schemes, such as Tarzan [FM02], MorphMix [RP02],
and Tor [DMS04], have been proposed.

1See https://metrics.torproject.org/userstats-relay-country.html.
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At its core, onion routing is a distributed overlay network designed to provide
anonymity in TCP-based applications. In an onion routing network, a client (called
onion proxy), chooses a path through the overlay network (called circuit) consisting
of several nodes (called onion routers). Each onion router in the circuit only knows
its predecessor and its successor, but not any other node involved in the path. This
is is achieved by wrapping communications into multiple layers of encryption, where
only decryption of a layer reveals the next onion router in the circuit.
When communicating, the onion proxy sends a message with multiple layers of

encryption through the circuit. Each time the messages reaches an onion router,
one layer of encryption gets removed before the message is forwarded to the next
onion router in the circuit. Eventually, the last onion router in the circuit removes
the last layer of encryption2 and can send the message to its intended destination.
Messages meant for the onion proxy traverse the circuit in reverse order, where
each onion router adds a layer of encryption instead.
To encrypt and decrypt messages in such way, the onion proxy needs to negotiate

keys with each onion router in the circuit. The negotiation of keys is part of the
circuit construction and performed via a circuit construction protocol, a η+1 party
protocol executed between an onion proxy and η onion routers. Early versions of
circuit construction protocols use RSA encryption [RSA78]. For example, if the
onion proxy chooses a path length η = 3, it samples symmetric keys k1, k2, k3, and
prepares the message m for the first onion router as

m = RSA(pk1, k1) ‖ Enc
(
k1,RSA(pk2, k2) ‖ Enc(k2,RSA(pk3, k3)

)
,

where RSA is the RSA encryption procedure and pki is the public key for the
i-th onion router in the circuit. The onion routers’ public keys are stored on a
publicly available directory server, such that the onion proxy can download the
onion routers’ current keys in advance. When an onion router receives a message,
it uses its RSA decryption key to retrieve the symmetric key, removes the symmetric
encryption layer with the session key, and eventually sends the retrieved layer to
its successor in the circuit.
The main advantage of the RSA-based circuit construction protocol is that it is

a single-pass circuit construction. That is, the onion proxy only needs to prepare
and send one message over the circuit and does not need to rely on additional
interaction with each onion router in the circuit. This yields a very efficient circuit
construction protocol with a message complexity of O(η). Unfortunately, the RSA-
based approach suffers from a major drawback as it does not support any forward
security. If an RSA decryption key of an onion router gets compromised, all traffic
relayed over the onion router can be retroactively decrypted.

Forward Security for Circuit Construction Protocols. Forward security ensures
that encrypted traffic of closed circuits cannot be decrypted, even if an adversary

2We remark that the last layer of encryption refers to the encryption induced by the onion rout-
ing. An onion routing protocol can (and should), of course, be combined with a confidentiality-
providing protocol, such as TLS [Res18], to maintain security guarantees beyond anonymity.
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compromises an onion router and gains access to its secret key. Øverlier and Syver-
son [ØS07] introduced the concept of forward security in onion routing protocols
and distinguish between two cases:

• Eventual Forward Secrecy: A circuit construction protocol is eventual forward-
secret if it achieves forward secrecy a certain time period after the circuit has
been closed (e.g., by replaying or evolving the secret keys of an onion router
after a certain time has passed).

• Immediate Forward Secrecy: A circuit construction protocol is immediate
forward-secret if it achieves forward secrecy immediately after the circuit is
closed.

We stress that their established notion interferes with our established view for
forward security in non-interactive protocols as discussed in Chapter 3. In fact,
the term “secrecy” might be confusing as circuit construction protocols typically
demand more security guarantees such as maintaining the privacy of a circuit.
Hence, we believe that “immediate forward security” captures the same notion if
forward security is seen as a generalization of forward secrecy (cf. Section 3.3).
Furthermore, the definition aligns with our category of “absolute forward security”
(cf. Section 3.5). Analogously, the term “eventual forward secrecy” aligns with our
category of “delayed forward security.”

The Cost of Forward Security. Currently, the nTor protocol [GSU12] is used for
forward-secure circuit construction. A simplified execution of nTor is illustrated
in Figure 5.1 Forward security is achieved via the execution of multiple Diffie–
Hellman key exchanges, one key exchange per onion router in the circuit. As
the Diffie–Hellman key exchange fundamentally requires interactivity, nTor has a
message complexity of O(η2).
In fact, all currently deployed circuit construction protocols with absolute forward

security have a message complexity of O(η2). Complex overlay networks typically
suffer from significant delay of message transmission exceeding latency of several
hundred milliseconds per message. Thus, it is highly desirable to reduce the message
complexity of circuit construction protocols.

Improving Efficiency. Over the last years, several researchers proposed differ-
ent approaches to improve efficiency of circuit construction protocols. Øverlier
and Syverson proposed more efficient protocols based on a combination of the
Tor Authentication Protocol (TAP) handshake [Gol06] and a half-certified Diffie–
Hellman [ØS07]. Unfortunately, Goldberg et al. later showed that that their pro-
posed protocols are vulnerable against a man-in-the-middle attack [GSU12]. Build-
ing on the initial ideas of [ØS07], Goldberg et al. presented a new protocol, which is
now known as nTor, a secure one-way authenticated key exchange protocol. Later,
Backes et al. proposed anonoymous circuit establishment (Ace), an efficient key
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5 Non-Interactive Forward-Secure Single-Pass Circuit Construction

OP OR1 OR2 OR3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1st Diffie–Hellman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
gx1

gy1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2nd Diffie–Hellman. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

{gx2}k1

gx2

gy2

{gy2}k1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3rd Diffie–Hellman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

{{gx3}k2}k1

{gx3}k2

gx3

gy3

{gy3}k2

{{gy3}k2}k1

Figure 5.1: Simplified execution of the nTor [GSU12] protocol between an onion
proxy OP and three onion routers OR1,OR2,OR3. In order to achieve
forward security, nTor has to perform three ephemeral Diffie–Hellman
key exchanges, where the second and third exchange are relayed over one
and two onion routers respectively. The circuit key ki shared between
OP and ORi is derived from gxiyi .
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OP OR1 OR2 OR3

c1,Enc(k1, c2 ‖ Enc(k2, c3))

c2,Enc(k2, c3)
c3

Enc(k3,>)

Enc(k2,Enc(k3,>)

Enc(k1,Enc(k2,Enc(k3,>)

Figure 5.2: Simplified execution of the T0RTT protocol between an onion proxy OP
and three onion routers OR1,OR2,OR3. Each ciphertext ci contains all
necessary information to establish a forward-secure symmetric key. Enc
is a symmetric encryption procedure and > is a confirmation symbol.

exchange protocol for onion routing, which reduces the computational cost of the
nTor protocol at the expense of additional communication cost [BKM12].
Kate et al. [KG10] use the efficient mix format Sphinx [DG09] to compress

the messages needed in existing single-pass circuit construction protocols [KZG07,
ØS07, CFG09]. However, their approach requires the onion routers to perform
additional computations due to the Sphinx message format.
For a more comprehensive discussion on performance and security improvements

in the context of the Tor network, we refer the reader to a survey by Dingledine
and Murdoch [DM09], or by Alsabah and Goldberg [AG16].

Overcoming Conjectured Impossibility. Prior works on circuit construction pro-
tocols have prominently conjectured that it is impossible to achieve absolute forward
security in a single-pass circuit construction protocol [CFG09, KZG10, CDRF+13].
This is indeed true if the onion routers’ secret keys are static.
In this chapter we apply the results of Günther et al. [GHJL17] and the results of

Chapter 4 to construct a non-interactive single-pass circuit construction protocol
with absolute forward security, disproving the assumption that such construction
is not possible when considering non-static secret keys. A simplified message flow
of our proposed protocol is illustrated in Figure 5.2. In comparison to the nTor
protocol in Figure 5.1, our protocol only needs 2η = O(η) messages instead of∑η
i=1 2i = η · (η + 1) = O(η2).

Contributions. The contributions of this chapter can be summarized as follows:

• We present a generic construction for a single-pass circuit construction proto-
col, called Tor 0-RTT (T0RTT), which can be instantiated with any IND-CCA-
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secure PKEM. Our protocol is the first proposal of a multi-hop 0-RTT pro-
tocol.

• Our generic construction is the first construction that is non-interactive, pro-
vides absolute forward security immediately after circuit construction, and
requires only O(η) message exchanges, disproving the common belief that
such construction is not possible.

• We provide a refined version of the security model of Kate et al. [KZG07].
In order to simulate large-scale adversaries, we consider a network in which
all but one onion router are compromised by an attacker. Additionally, we
capture the peculiarities of absolute forward security in our security model.

• We prove the security of T0RTT even if a non-negligible amount of errors
occur during the circuit construction that lead to a termination of the circuit
by introducing the novel concept of dummy onions.

5.2 Approaches to Single-Pass Circuit Construction
So far we have discussed two approaches to circuit construction. The initial RSA-
based approach is a single-pass construction but lacks forward security. In contrast,
the currently most deployed circuit construction protocol nTor [GSU12] is based on
a half-certified Diffie–Hellman key exchange and indeed achieves forward security,
but requires a number of messages quadratic in the length of the circuit. In order to
reduce the messages required for circuit establishment, several circuit construction
protocols have been proposed in the past years.
In 2007, Kate et al. [KZG07, KZG10] proposed a forward-secure single-pass cir-

cuit construction protocol in an identity-based infrastructure setting. Their proto-
col relies on identity-based encryption, where an onion router’s identity serves as
its public key. The main drawback of their scheme is the requirement of a trusted
third party, which regularly provides new secret keys to the onion routers. Compro-
mising the trusted third party immediately compromises the entire onion routing
network. The authors present different solutions to overcome this problem, but all
involve interaction between the onion router and the trusted third party to replace
secret keys. Hence, their protocol only achieves delayed forward security.
In 2009, Catalano et al. [CFG09] proposed a single-pass circuit construction

protocol based on certificateless encryption [AP03]. In the certificateless setting,
the onion routers additionally hold a public key and secret key, which does not
need to be certified. Forward security is achieved after an onion router replaces its
key pair, inherently requiring interactivity with the onion proxy after the keys have
been replaced. Hence, their approach also only achieves delayed forward security.
In 2011, Catalano et al. [CDF+11, CDRF+13] proposed a fully non-interactive

single-pass circuit construction protocol based on forward-secure identity-based en-
cryption [YKC+11]. Their protocol provides efficient performance combined with
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static public keys. However, as in the previous works, they only achieve eventual
forward security once the onion router’s secret key evolves.

5.3 Forward-Secure Single-Pass Circuit Construction
In this section, we provide the formal definitions of forward-secure single-pass circuit
construction (FSSPCC) protocols. For this, we consider a network consisting of
several onion routers, where each onion router is associated with a unique identifier
ID and has a public/secret key pair. An onion proxy that wants to build a circuit,
has access to the onion routers’ valid public keys.3

Optimal Circuit Length. Many academic results on circuit construction [KZG07,
CFG09, KZG10, CDF+11, CDRF+13] have considered circuits of length η, while
in practice only a length of η = 3 is deployed. This is mainly due to efficiency
reasons and the fact that it is not known whether a circuit length of η > 3 does
indeed increase security.4 Even if greater path lengths would be allowed, it might
pose a threat against anonymity. The path length could act as identifier if not all
users commit to same length [BJB+10], and mounting Denial-of-Security attacks
gets easier [BDMT07].
In the following we consider a path length of η = 3 to improve readability. Should

any of our results also hold for path lengths η > 3, we explicitly state it.

Remark on Protocol Syntax. We remark that the way we define circuit construc-
tion protocols slightly deviates from the usual approach to define cryptographic
primitives as we already require that an onion consists of multiple symmetric en-
cryption layers. Prior works described a circuit construction protocol by informally
describing the behavior of each procedure (e.g., [KZG07, CFG09, KZG10, CDF+11,
CDRF+13]). Instead, We decided instead to balance out rigorously defining circuit
construction protocols and keeping the syntactical intuition as done in prior works.
This allows us to keep intuitions and descriptions simple while still being able to
precisely reference procedures and variables of a circuit construction protocol.

Definition 28. A forward-secure single-pass circuit construction protocol with η =
3 hops is a tuple FSSPCC = (KGen,RunOP,DecOR) consisting of the following three
probabilistic polynomial-time algorithms:

• KGen(1λ) takes as input a security parameter λ. Output is a key pair (pk, sk)
consisting of a public key pk and a secret key sk.

3In practice, the onion proxy can usually download all public keys from a public directory server
where all public keys of the onion routers are collected.

4See https://www.torproject.org/docs/faq.html.en.
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• RunOP(pk1, pk2, pk3) takes as input η = 3 public keys. Output are η = 3
session keys k1, k2, k3, and an onion

O0 = `1 = (IDOR1 , c1, O1), where
O1 = Enc(k1, `2 = (IDOR2 , c2, O2)), where
O2 = Enc(k2, `3 = (IDOR3 , c3, O3)), where
O3 = Enc(k3,∇),

where IDORi are identities of onion routers, ci are ciphertexts, and ∇ denotes
the end of the path. We call the 3-tuple (ID, c, O) a layer.

• DecOR(sk, c, O) takes as input a secret key sk, a ciphertext c, and an onion
O. Output is a session key k, a (potentially modified) secret key sk ′, and a
layer ` that is either a tuple consisting of an identifier ID, a ciphertext c′ and
an onion O′, or equal to ∇, indicating the end of the routed path.

We call an FSSPCC correct if all onions are routed correctly (i.e., all identifiers
are decrypted correctly and all onions reach their intended destination; cf. [CL05,
Def. 3]) and all ciphertexts decrypt their original encrypted messages. Additionally,
we allow for an non-negligible correctness error.

Using a Circuit Construction Protocol. Let us now describe an example exe-
cution of an FSSPCC protocol, to get a better intuition how such protocols are
used. We assume that each onion router has already generated its own key pair by
running the KGen procedure. The example is illustrated in Figure 5.3.
An FSSPCC protocol between an onion proxy and three onion routers OR1,OR2,

OR3 is executed as follows. At first, the onion proxy picks three onion router in
the onion routing network to form a circuit. To this end, it uses the onion routers’
public keys pk1, pk2, pk3 to run RunOP. As a result, the onion proxy gets three
symmetric keys k1, k2, k3, one for each onion router, and the initial onion

O0 = `1 = (IDOR1 , c1, O1), where
O1 = Enc(k1, `2 = (IDOR2 , c2, O2)), where
O2 = Enc(k2, `3 = (IDOR3 , c3, O3)), where
O3 = Enc(k3,∇).

The onion proxy then sends the initial onion O0 to the first onion router OR1.
The onion router OR1 then uses its secret key, the received ciphertext c1, and the
received onion O1 to run the DecOR procedure. As result of this computation, OR1
potentially modifies its secret key and obtains the symmetric key k1, which is used
to “peel” the first layer of encryption. The “peeled” onion

`2 = (IDOR2 , c2, O2), where
O2 = Enc(k2, `3 = (IDOR3 , c3, O3)), where
O3 = Enc(k3,∇).
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OP OR1 OR2 OR3

c1,Enc(k1, IDOR2 ‖ c2 ‖ Enc(k2, IDOR3 ‖ c3 ‖ Enc(k3,∇)))

c2,Enc(k2, IDOR3 ‖ c3 ‖ Enc(k3,∇))

c3,Enc(k3,∇)

Enc(k3,>)

Enc(k2,Enc(k3,>)

Enc(k1,Enc(k2,Enc(k3,>)

Figure 5.3: Simplified execution of an FSSPCC protocol, where Enc is a symmet-
ric encryption procedure, ∇ denotes the end of the path, and > is a
confirmation symbol.

is then sent to the next onion router, identified by IDOR2 . Receiving the “peeled”
onion, OR2 repeats the same steps as OR1. That is, it computes k2, modifies its
secret key, “peels” a layer from the onion and forwards

`3 = (IDOR3 , c3, O3), where
O3 = Enc(k3,∇).

to the next onion router. Eventually, the last onion router in the circuit will decrypt
the symbol ∇, indicating that it is the last onion router in the circuit. OR3 then
computes a special confirmation message Enc(k3,>), where > is a special confir-
mation symbol, indicating the the circuit has been successfully built. This message
is sent back through the circuit to the onion proxy, where each onion router adds
another layer of encryption to the confirmation message.
We will now proceed by defining security for an FSSPCC protocol.

5.3.1 Two-Party Security Goals
A circuit should remain indistinguishable from other circuits, even if an adversary
controls two out of three onion routers. From this main security requirement (de-
tailed in Section 5.3.2) two necessary cryptographic security requirements on the
key establishment protocol performed between the onion proxy OP and the honest
onion router OR can be derived:

• Key secrecy: The key negotiated between an onion proxy OP and an onion
router OR cannot be computed by any other party, including the adversary,
since otherwise, the circuit would become traceable.

• Immediate forward secrecy: If an honest onion router OR is seized by the
adversary and its secret key gets compromised, OR can be removed from the
Tor directories to protect future circuits. However, the seizure should not
endanger the anonymity of previously established and closed Tor circuits.5

5Note that this goal depends on the number of parties. If we consider absolute forward security
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Key Secrecy. We follow the definition by Kate et al. [KZG07] and define key
secrecy as follows:

Definition 29. Let A be an active adversary who controls the network over which
OP and OR communicate. To be precise, A can read, delete, modify, or rearrange
the sequence of all messages sent over this network. Let Π be a server-only authen-
ticated key exchange protocol executed between client C and server S, and let pkS
be the public key of S used to authenticate S.
We say that Π guarantees key secrecy, if the success probability of A computing

the session key k established between C and S is negligible.

Absolute Forward Security. We define absolute forward security as follows.

Definition 30. Let A be an active adversary who controls the network over which
OP and OR communicate. To be precise, the A can read, delete, modify, or rear-
range the sequence of all messages sent over this network. Let Π be a server-only
authenticated key exchange protocol executed between client C and server S, and
let pkS be the public key of S used to authenticate S.
We say that Π provides absolute forward security, if, when A learns the secret

key skS corresponding to the public key pkS at time τ , then his success probability
in computing any of the session keys k established between C and S before time τ
does not increase.

For a more formal definition of forward security, we refer the reader to [JKSS12,
JKSS17]. Please note that this definition does cover the level of forward security
nTor [GSU12] achieves, but does not cover the notion of delayed forward security
introduced in [ØS07, BG20]. In our definition, the public key pkS of S remains
unchanged when A learns the secret key (as for nTor), whereas in delayed forward
security the public key must be changed at exactly the same time τ when the secret
key is revealed.

5.3.2 N-Party Security Goals
Since we focus on onion routing in this work, any FSSPCC protocol should provide
the properties described in this section in presence of an adversary who “can observe
some fraction of network traffic; who can generate, modify, delete, or delay traffic;
who can operate onion routers of his own; and who can compromise some fraction
of the onion routers” [DMS04].
In this work we adapt the model used in [KZG07, KZG10, CDF+11, CDRF+13]

and refine it so that the model represents onion routing networks as realistically as

as a two-party security goal, we only need that compromise of an onion router does not affect
key secrecy. If, however, we consider multiple parties, we also need to ensure that protected
information, such as anonymity, still remains protected after compromise. This is implicitly
reflected in the formalization of cryptographic unlinkability in Section 5.3.2.
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possible. In our security game on the property of unlinkability we therefore consider
an honest onion router that maintains many incoming and outgoing connections.
We will later instantiate our generic protocol with a PKEM that contains a non-

negligible correctness error. Hence, we also have to consider this failure probability
in our model. Our aim is to show that even if this error occurs, all circuits that
have been established still provide unlinkability.
Informally, we can describe the N -party security goals as follows:

• Integrity: Integrity requires that even for an onion created by an adversary,
the path length of this onion cannot exceed the maximum path length or the
circuit construction fails (cf. [CL05, Def. 4]).

• Cryptographic unlinkability: This property is given if no adversary can link
messages between a sender and receiver, if there exists at least one honest
node on the circuit path. A formal definition of this property will be given
below. As stated in [KZG07], network-level linking attacks are excluded.

Unlinkability of Unclosed Circuits. Unlinkability ensures that an attacker is not
able to link the onion proxy and the final onion router, if there exists at least
one honest node in the circuit. This property obviously needs to be ensured for
all closed circuits. It is, however, not clear if a failed circuit construction might
affect unlinkability. We are indeed able to relax this property for unclosed circuits.
Namely, should the construction of a circuit fail, it does not immediately affect
unlinkability. We argue that unlinkability for a closed connection has to be given
among other (potentially failed) circuits. To be precise, unlinkability would only
be at risk if an attacker is able to ensure the failing of all but one connection in the
network. In this case, the attacker would trivially be able to break unlinkability of
this one connection.

Intuition of Cryptographic Unlinkability. To provide anonymity, onion networks
should ensure that there is no link between a sender of a circuit construction message
and the last onion router on the path. Since timing attacks or traffic analysis have
a high probability to find a link between sender and receiver, we only consider
cryptographic unlinkability as explained in [KZG07, KZG10, CDF+11, CDRF+13].
For this, consider a network in which multiple users send onion messages over a
path with three onion routers and an adversary who controls all but one honest
onion router. Before we provide a formal definition for the property of unlinkability,
we would like to give a brief intuition for our security experiment.
In the security game played between an adversary and a challenger, the adversary

gains full control over the onion routers in the onion network except for one router
which is controlled by the challenger. This represents an honest node in an onion
network. In an initial “learning phase,” the adversary can actively build arbitrary
circuits even over the honest node by interacting with the challenger. In the second
phase of our experiment, the adversary is given two circuits in which the honest
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node acts as the middle node in the path and the decryption of one of those onions
(to be specific, it is given the onion decrypted by the honest node).
In contrast to the security experiment used in previous works (e.g., [KZG07,

KZG10, CDF+11, CDRF+13]), we give the adversary access to the honest node’s
modified secret key immediately after the challenger decrypts the challenge onion
for the honest node. Note that the adversary now controls the entire network. This
simulates a compromise of the honest onion router after creating a circuit and thus
models absolute forward security according to Definition 30.
We define cryptographic unlinkability of circuits by a security game Gunlink

A,FSSPCC(λ)
played between a challenger C and an adversary A. The experiment is divided into
several sequential phases, which work as follows:

Setup: The challenger C generates the key pair (pkH , skH) $←− KGen(1λ) of the
honest onion router ORH and sends the public key pkH to the adversary. The
adversary then sends a list of public keys pk1, . . . , pkn to the challenger.

Phase 1: In this phase the attacker may build circuits using the secret and pub-
lic keys it received in the setup phase. For decapsulations and decryption
of onions destined for the honest node, the attacker may interact with the
challenger by sending tuples of form (ORH , c, O), receiving the layer ` from
the output of DecOR(skH , c, O) as response.

Challenge: The attacker then may start Phase 2 by sending an indicator symbol
> to the challenger. Upon receipt of this symbol, the challenger computes
two onions sent over the honest onion router of form

Oj
0 = `j1 = (IDORv , c

j
1, O

j
1), where

Oj
1 = Enc(kj1, `j2 = (IDORH , c

j
2, O

j
2)), where

Oj
2 = Enc(kj2, `j3 = (IDORw , c

j
3, O

j
3)), where

Oj
3 = Enc(kj3,∇),

with j ∈ {0, 1} and (v, w) $←− [n]× [n] with v 6= w by invoking the algorithm
RunOP(pkv, pkH , pkw). Note that the challenger computes all values (cji , O

j
i )

by itself and thus knows them even without knowing the secret keys skv, skw.
Both `0

1 and `1
1 are given to the adversary.

The challenger now flips a coin b $←− {0, 1}, decrypts both onions (kj2, sk ′, `j3) =
DecOR(sk, Oj

2), replacing its secret key after each decryption (i.e., modifying
and replacing its secret key twice). The attacker receives `b3 along with the
secret key sk ′ of the honest onion router ORH . Note that the attacker is now
in possession of the honest onion router’s secret key and thus controls the
entire network.

Guess: A may output a guess b∗. Challenger C outputs 1 if b = b∗ and 0 otherwise.
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Definition 31. We define the advantage of an adversaryA to win the cryptographic
unlinkablity game Gunlink

A,FSSPCC(λ) as

Advunlink
A,FSSPCC(λ) :=

∣∣∣∣Pr[Gunlink
A,FSSPCC(λ) = 1]− 1

2

∣∣∣∣ .
We say an FSSPCC FSSPCC provides cryptographic unlinkability, if the advan-

tage Advunlink
A,FSSPCC(λ) is a negligible function in λ for all probabilistic polynomial-time

adversaries A.

Limitation of the Model. In our model, the client always chooses a new path
through the network when establishing a new circuit, that is, an adversary should
not be able to recognize that a client attempts to build another circuit. Mount-
ing attacks that utilize tricking onion routers to fail connection establishment with
honest clients hence requires some sort of traffic analysis by the adversary. Simi-
lar to previous research (e.g., [KZG07, KZG10, CDF+11, CDRF+13]), we assume
that our adversary is not able to perform traffic analysis. Hence, we only achieve
cryptographic unlinkability rather than “real-world unlinkability.”
This is a general modeling problem and not limited to our work. Our current

modeling techniques are limited to ideal-world constraints that do not properly
model and capture attack vectors as mentioned above.

5.4 T0RTT
In this section we construct a secure FSSPCC protocol, which provides absolute
forward security. To this end, we present a generic construction based on BFKEMs
and standard symmetric encryption.

5.4.1 Construction
In this section we describe our generic protocol. We stress that our protocol may be
instantiated with any PKEM. However, in order to capture the technical challenges
of instantiating our protocol with a PKEM that features a non-negligible correctness
error, we briefly discuss these challenges before presenting our protocol.

Unlinkability in the Presence of a Correctness Error. Consider our unlinkability
experiment presented in Section 5.3.2, where the challenger constructs two challenge
circuits and the adversary wins, if it can link the circuits. The adversary is able to
observe both incoming and outgoing messages of the honest onion router. Assume
now that one of the two challenge circuits can be processed correctly, while the
other fails during decryption at the honest node.
If the attacker is able to recognize that processing of an onion has failed (e.g., by

outputting an error symbol or aborting the protocol) and be able to retroactively
check whether one of the incoming messages for the honest onion router is destined
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to fail during decryption, it could trivially link the failed connection (and thus the
succeeded connection as well). The technical challenge of achieving unlinkability
in the presence of a non-negligible correctness error is hence to strip the attacker
of the capability to recognize such behavior.
Unfortunately, all currently known constructions of BFKEMs allow to check in

advance whether an incoming message is destined to fail during decryption as the
randomness of a ciphertext is sent in the clear.6 This recognizing property could
by avoided by, for example, encrypting the randomness with a standard public
key encryption scheme (e.g., RSA encryption [RSA78]). This approach would,
however, cost us forward secrecy. As soon as an attacker comes into possession of
the honest onion router’s secret key, it can again retroactively check if an incoming
ciphertext will fail. This could (in theory) be overcome by using another instance
of a puncturable encryption scheme dedicated to the ciphertext randomness, but
would render the scheme even more inefficient, both in storage and running time.
This approach is in our opinion infeasible.
We propose to hide that a failure has occurred. Instead of, for example, out-

putting a failure symbol or aborting the protocol, the honest onion router could
output a “dummy onion,” an onion that looks correct to the adversary but was
fabricated by the onion router. This technique is related to the so-called “cover
traffic” that originates from a slightly different context. It is used in anonymous
communication to blend the sender’s traffic into the noise of random cover traf-
fic (e.g., [GTDM17]), thus hiding when it is really sending. We will utilize the
“dummy onion” to hide that a decapsulation has failed.

Dummy Onions. On a technical level, dummy onions will look as follows. Let O
be a received onion that will fail during processing. In this case, the onion router
generates a dummy onion by first selecting a random onion router. The dummy
onion contains a newly encapsulated key for the randomly chosen onion router and
the encrypted message ∇, indicating the end of the circuit path. This concept
ensures 1) that the onion router’s output has the correct format and is therefore
indistinguishable from an onion which was correctly decapsulated 2) that even if
the dummy onion will fail at a later position in the path, the circuit construction
protocol will terminate eventually.
We can easily bound the probability of termination. Let ε be the worst-case

failure probability. We can bound the termination probability by 1− εM , where M
is the number of consecutive failures. It is easy to see, that the termination prob-
ability is overwhelmingly high for reasonable parameters such as ε = 1/1000. The
additional network load induced by dummy onions is thus negligible in comparison
to the regular network load.
Computing a dummy onion is not more expensive than properly decapsulating

6More technical: An attacker can keep track of the randomness r of every ciphertext sent to the
honest onion router this enables the attacker to compute a copy of the honest onion router’s
Bloom filter, which in turn allows it to predict if a ciphertext can be decapsulated.
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a ciphertext when instantiated with a BFKEM as recommended in Section 5.5.
All known BFKEMs only use symmetric computations (i.e., evaluation of universal
hash functions and table look-ups) to recognize a decapsulation failure. As encap-
sulation and decapsulation are similarly expensive, the onion router does not suffer
additional computational load when computing the “dummy onion” in comparison
to a proper decapsulation.

Circuit Position Hiding and Dummy Onions. The property of circuit position
hiding means that in an onion routing network it should not be possible for an onion
router to estimate the approximate position in a circuit [KZG07, KZG10, CDF+11,
BKM12, CDRF+13]. We would like to point out that the use of a dummy onion is
not possible if at the same time the property of circuit position hiding is required,
since each onion router has to output an onion with the correct format according
to its position in the circuit.
However, preventing onion routers from learning their position is impossible in a

single-pass circuit construction protocol with η = 3 and can be explained as follows.
In a 3-hop circuit, onion routers may check whether the sender of a message is a
non-router. With this knowledge, an onion router can determine if it acts as the
first node. The last onion router on the path decrypts the symbol ∇, which trivially
leads to the conclusion that its the last onion router on the path. If an onion router
acts neither as an entry nor as an exit node, then its position in a 3-hop circuit can
logically only be that of the middle node. For this reason we are convinced that
the instantiation with dummy onions is justified for 3-hop circuits, but we point
out that this solution is unsuitable for longer circuits.

Our Construction. In the following we describe the protocol for our BFKEM-
based circuit construction for η = 3 onion routers. The protocol can be instanti-
ated with any IND-CCA-secure BFKEM. Advantages and disadvantages of different
BFKEM constructions will be discussed in Section 5.5.

Construction 3. Let BFKEM = (KGen,Encap,Decap,Punct) be a BFKEM and
SE = (KGen,Enc,Dec) a symmetric encryption scheme. We construct a FSSPCC
protocol FSSPCC as follows:

• KGen(1λ) computes a key pair by running (pk, sk) $←− BFKEM.KGen(1λ,m, κ),
where the global parameters m and κ denote the size of the Bloom filter and
the number of universal hash functions respectively.

• RunOP(pk1, pk2, pk3) computes the following:

1. For each i ∈ [3], it computes (ki, ci) $←− BFKEM.Encap(pki).

2. After computing the symmetric keys, it builds the onions (O0, . . . , O3)
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as

O0 = `1 = (IDOR1 , c1, O1), where
O1 = SE.Enc(k1, `2 = (IDOR2 , c2, O2)), where
O2 = SE.Enc(k2, `3 = (IDOR3 , c3, O3)), where
O3 = SE.Enc(k3,∇),

Eventually, it returns (k1, k2, k3, O0)

• DecOR(sk, c, O) computes the output of δ := BFKEM.Decap(sk, c).
In case of a decapsulation error (i.e., δ = ⊥), the onion router outputs a
dummy onion according to its position as follows:

– If OR is the first onion router on the path: OR randomly chooses two
distinct identities IDOR′2 and IDOR′3 with pk ′2 and pk ′3, computes (k′2, c′2) $←−
BFKEM.Encap(pk ′2) and (k′3, c′3) $←− BFKEM.Encap(pk ′3). We define the
layer as

` = (IDOR′2 , c
′
2, SE.Enc(k′2, (IDOR′3 , c

′
3, SE.Enck′3(∇))),

and output (⊥, sk, `).
– Else: OR randomly chooses one identity IDOR′3 which has to be differ-

ent from the identity of its predecessor. Then OR computes (k′3, c′3) $←−
BFKEM.Encap(pk ′3) and defines

` = (IDOR′3 , c
′
3, SE.Enc(k′3,∇)).

Output is (⊥, sk, `).

Otherwise (i.e., δ = k), the onion router punctures its secret key sk ′ :=
BFKEM.Punct(sk, c) to achieve absolute forward security. Using the derived
symmetric key, the onion router decrypts the current layer of the onion mes-
sage by computing ` := SE.Dec(k,O) and outputs (k, sk ′, `)

Remark on Instantiation. We want to stress that our construction is generic and
can be instantiated with any PKEM. Only PKEMs with non-negligible correctness
error [DJSS18, DGJ+20] need to utilize the dummy onion technique to prevent
failure detection. All other known PKEMs [GM15, GHJL17, SSS+20] provide only
a negligible correctness error and thus even allow for an extension of the path length
to η > 3.

5.4.2 Security Analysis
In this section we discuss the security of our construction. Since our construction
trivially achieves key secrecy and absolute forward security, the main focus is to
prove cryptographic unlinkability.
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Key Secrecy. The key secrecy property follows from the properties of the used
PKEM.

Theorem 6. If one of the IND-CCA-secure PKEMs from [GM15, GHJL17, DJSS18,
DGJ+20, SSS+20] is used for key establishment, then key secrecy is guaranteed.

Proof. (Sketch) The PKEM mentioned in the theorem provide IND-CCA security,
that is, the key that is established is indistinguishable from a random value and can
thus not be computed from the intercepted messages. This even holds for IND-CCA
adversaries, which may invoke the decapsulation operation several times. Thus,
the result holds in our weaker adversarial model. See [GM15, GHJL17, DJSS18,
DGJ+20, SSS+20] for detailed proofs.

Absolute Forward Security. Absolute forward security follows from the fact that
Encap is a probabilistic algorithm, and that the puncturing operation prohibits
decapsulating a ciphertext twice.

Theorem 7. If a PKEM with key secrecy is used for key establishment, and if
the combination of Decap and Punct is implemented as one atomic operation, then
immediate FS is guaranteed.

Proof. (Sketch) Our first assumption, which is satisfied by all KEMs and PKEMs
proposed in the literature, is that the probabilistic Encap algorithms have entropy,
say δ bit, to produce real pseudorandom output. Thus the probability 2−δ that the
same pair (k, c) is computed twice during the lifetime of the key pair (pk, sk) can be
made negligible, by choosing δ appropriately. This large entropy is also necessary
to avoid decapsulation failures by the punctured secret key.
For each encapsulated key c that the adversary may record while observing the

circuit construction protocol, the secret key sk is immediately punctured after de-
capsulation of c. We may now distinguish two cases:

1. The adversary learned sk prior to an atomic call (Decap(sk, c),Punct(sk, c)).
That case does not violate our definition of absolute forward security (cf.
Def. 30) because the adversary learned sk at time τ , but the key k was estab-
lished after time τ .

2. The adversary learned sk ′ after the atomic call (Decap(sk, c),Punct(sk, c)). In
this case, the new secret key sk ′ cannot be used to decapsulate k anymore;
a call to Decap(sk ′, c) will return ⊥. Since the PKEM provides key secrecy,
there is no other way for the adversary to compute k.

This completes the proof.
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Circuit Position Hiding. We distinguish two cases depending on the instantiation.
Should the instantiation have a correctness error (and thus use dummy onions), we
need to sacrifice the property of circuit position hiding. Otherwise, onion routers
would not be able to fabricate onions. Note that the current Tor circuit construction
protocol nTor [GSU12] also does not satisfy this goal. Camenisch and Lysyanskaya
show in [CL05] that an adversary is always able to derive information about the
onion router’s position by looking at the ciphertext’s size.
Should the instantiation, however, only have a negligible correctness error, we

can achieve circuit position hiding by applying the techniques described in [CL05].

Cryptographic Unlinkability. The core security result of this chapter is a proof
that our construction satisfies cryptographic unlinkability as the central crypto-
graphic security goal of the circuit construction protocol for all circuits established
prior to some point in time τ , even if

• the adversary controls two out of three onion routers, and

• the adversary learns the secret key of the third onion router at time τ .

In the following we will prove that our generic construction provides crypto-
graphic unlinkability if the underlying BFKEM scheme and the underlying symmet-
ric encryption scheme are IND-CCA-secure. In our proof, we need IND-CCA security
for both of our building blocks (i.e., the BFKEM and the symmetric encryption
scheme) to correctly simulate decryption queries of an adversary for onions. Decryp-
tion queries simulate a realistic adversary who can send encrypted onions to onion
routers in the network and wait for the decrypted messages [CDF+11, CDRF+13].

Theorem 8. Let BFKEM be a BFKEM with non-negligible correctness error and
publicly-checkable puncturing, and let SE be a symmetric encryption scheme. For
any probabilistic polynomial-time adversary A in the experiment Gunlink

A,FSSPCC(λ), there
exist probabilistic polynomial-time adversaries B1,B2 such that

Advunlink
A,FSSPCC(λ) ≤ 2 ·

(
AdvIND-CCA∗

B1,BFKEM(λ) + AdvIND-CCA
B2,SE (λ)

)
.

Proof. We will conduct this proof in a sequence of games between a challenger C
and an adversary A. We start with the adversary playing the original unlinkability
security game. Over a sequence of hybrid arguments, we will stepwise transform
the security game to a game where the challenger is independent of bit b. The claim
then follows from bounding the probability of distinguishing any two consecutive
games. Let Advi be the advantage of A in Game i.

Game 0. This is the original unlink security game and therefore it holds that

Adv0 = Advunlink
A,FSSPCC(λ).
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Game 1. In this game, the challenger replaces the key used to encrypt the onion

O0
2 = Enc(k, (IDORw , O

0
3, c

0
3))

by a random value k∗. We claim that

|Adv1 − Adv0| ≤ AdvIND-CCA∗
B1,BFKEM(λ).

Construction of B1 against BFKEM. Suppose an adversary A that can distin-
guish between Game 1 and Game 0. We use A to build an attacker B1 to break
the IND-CCA∗ security of BFKEM.
B1 plays the IND-CCA∗ security game and receives (pk, c∗, kb, sk∗). The received

secret key sk∗ will be used as the secret key of the honest onion router ORH . All
other secret and public keys are generated byA. Adversary B1 then interacts withA
as described in the security experiment. Whenever the adversary B1 receives a tuple
(IDORH , c, O), adversary B1 runs DecOR(skH = sk∗, c, O) and returns the decryption
of the onion O, or a dummy onion according to Construction 3. Additionally, the
adversary B1 stores the received ciphertext c.
After receiving the indicator symbol >, adversary B1 computes the challenge

circuits but uses the key kb to encrypt the onion O0
2 = Enc(kb, (IDORw , O

0
3, c

0
3)) with

c0
2 = c∗. Since (IDORw , O

0
3, c

0
3) is known to B1, the adversary can behave correctly

in the challenge phase according to the security experiment.
We remark that storing the ciphertexts from Phase 1, allows the adversary B1

to use the publicly-checkable puncturing property of BFKEM. Given the challenge
ciphertext c∗, adversary B1 can check whether O0

2 can be decapsulated, or if it must
output a dummy onion where ∇ is encrypted under a random key.
B1 checks whether c∗ can be decapsulated given the queries made by A so

far. If it can, then it returns BFKEM.Decap(O0
2) as above. Otherwise it sam-

ples a random identity IDOR′3
$←− {ID1, . . . IDn} \ {IDORv} and computes (k′3, c′3) $←−

BFKEM.Encap(pk ′3). Finally, the dummy layer ` = (IDOR′3 , c
′
3,Enc(k′3,∇)) is given

to A.
If kb is the real key, then we are in Game 0 and if kb is a random, we perfectly

simulate Game 1. Thus, every adversary that can distinguish both games, can be
used to break the IND-CCA security of BFKEM. This proves the claim.

Game 2. The next step in our proof is to replace the encryption key for onion

O1
2 = Enc(k, (IDORw′ , O

1
3, c

1
3))

by a random value k∗. We claim that

|Adv2 − Adv1| ≤ AdvIND-CCA∗
B1,BFKEM(λ).

The proof of this claim works identical to the proof given before and we therefore
omit it.
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Game 3. In Game 3 we replace the encrypted string in the onion

O0
2 = Enc(k∗, (IDORw , O

0
3, c

0
3))

by a random string of the same length. Any adversary that can distinguish between
Game 3 and Game 2 leads to an adversary that breaks the IND-CCA security of the
symmetric encryption scheme. Therefore we have

|Adv3 − Adv2| ≤ AdvIND-CCA
B2,SE (λ).

Construction of B2 against SE. Again, suppose an attacker A that can distin-
guish between Game 3 and Game 2. We will use this attacker to build an adversary
B2 against the security of the symmetric encryption scheme.
B2 plays against the IND-CCA challenger. B2 interacts with A as described in

the experiment. After receiving the indicator symbol >, adversary B2 builds the
challenge circuits but replaces the onion O0

2 as follows. B2 picks a random string Γ
with |Γ| = |(IDORw , O

0
3, c

0
3)| and sets m0 = (IDORw , O

0
3, c

0
3) and m1 = Γ. Then, B2

uses m0 and m1 to receive a challenge ciphertext c and sets O0
2 = c. The rest of

the experiment can be correctly simulated by B2. If the received ciphertext is the
encryption of (IDORw , O

0
3, c

0
3), we are in Game 2, else we simulate Game 3. Thus,

every attacker that can distinguish both games can be used to break the IND-CCA
security of the symmetric encryption scheme.

Game 4. As before, we replace the encrypted string in the onion O1
1 by a random

string of the same length. Thus,

|Adv4 − Adv3| ≤ AdvIND-CCA
B2,SE (λ).

The proof of this claim works identical to the proof given before and we therefore
omit it.
We have now entirely replaced the plaintext and the keys of the encrypted onions

by random values. The view ofA in this game is independent from the chosen values
and from b. Therefore, we have

Adv4 = 0.

Summing up all advantages above, we can conclude

Advunlink
A,FSSPCC(λ) ≤ 2 ·

(
AdvIND-CCA∗

B1,BFKEM(λ) + AdvIND-CCA
B2,SE (λ)

)
.

5.5 Instantiation
Construction 3 can be instantiated with any IND-CCA-secure PKEM. Furthermore,
we require three properties for practical instantiations.
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• Fast decryption and puncturing procedures. Known PKEMs typically invoke
a heavy computational load when decapsulating a ciphertext. Since onion
routers have to perform multiple decryptions within a short time, a PKEM
with as little computational load as possible is desirable.

• Short ciphertexts. The current specification only allows 509 bytes of payload
per cell7, limiting the maximum size of a ciphertext. Even though it is being
discussed whether this payload size should be increased in the future [ML18],
short ciphertexts are desired.

• Reasonably short secret keys. Efficient PKEMs often incur large secret keys
up to several gigabytes in size due to heavy precomputations upon key gen-
eration. While this is often unavoidable, it is desirable to choose a scheme
that generates secret keys of manageable size.

In the past, several PKEMs have been proposed in literature [GM15, GHJL17,
DJSS18, DGJ+20, SSS+20]. Some of those constructions are not suitable for our
protocol due to their drawbacks. The schemes proposed in [GM15, SSS+20] suffer
from a decapsulation time that grows linear in the number of punctures, rendering
them unsuitable to use in high-traffic scenarios. Similarly, the scheme proposed by
Günther et al. and Derler et al. are impractical since puncturing takes up to several
seconds for reasonable deployment parameters [GHJL17].
A promising attempt for practical puncturable encryption schemes in high-traffic

scenarios are BFKEMs [DJSS18, DGJ+20] as they achieve highly efficient punc-
turing procedures (deleting few parts of the secret key) while keeping the secret
key reasonably small. This, however, comes at the cost of a non-negligible correct-
ness error that might occur when puncturing too often. See Chapter 4 for more
information regarding BFKEMs.

5.6 Issues and Solutions
Constrained Devices. One drawback of our circuit construction protocol is the
increased resource consumption (i.e., CPU load and RAM usage) compared to de-
ployed circuit construction protocols, such as nTor [GSU12]. The increased resource
consumption is especially challenging for onion routers with constrained resources.
Tor Metrics8 reports that a major part of the Tor network consists of nodes with
limited network bandwidth. Hence, assuming that a limited network bandwidth
implies weaker computational power, large parts of the Tor network only have re-
stricted computational power.
Our proposed circuit construction protocol has very large secret keys up to sev-

eral hundred megabytes when instantiated with a BFKEM as recommended in
7Roger Dingledine; Nick Mathewson: https://gitweb.torproject.org/torspec.git/tree/

tor-spec.txt, §0.2.
8See https://metrics.torproject.org/.
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Section 5.5. The initial key size depends on the estimated number of connection
a node needs to serve during its lifetime. That is, the secret key of a high-traffic
node is much larger than the secret key of a low-traffic node.9
Additionally, our proposed construction has an increasing chance of failure with

each puncturing operation, which would result in even higher circuit construction
times. Recall that this chance of failure depends on how the key has been generated.
That is, we can generate a key in such way that after n puncturings the chance of
decapsulation failure is ε = 1/1000. A smaller value of ε and larger values of n will
both increase the secret key size, respectively.
For RAM-constrained devices, it might be infeasible to keep the initial secret

key in its memory and it has to be outsourced to its hard drive, which in return
decreases the performance of the proposed algorithm. Additionally, the large secret
key is harder to manage than traditional Tor secret keys, since it is constantly
changing, and a backup of a non-punctured key would break the absolute forward
security (while still achieving delayed forward security after modifying or deleting
the backup key as well). Should the server crash and thus lose its secret key, a new
one must be generated. Note that the expensive computation of a new secret key
can be avoided by precomputing and storing it on hard drive until needed.
We argue that the above issues of our construction are manageable and do not

pose a significant problem for the Tor network. Frequent key rotations are already
well-established and, by default configuration, the key pairs of each onion router
are rotated every 28 days. This number can be tweaked by relays to better fit their
requirements. That is, a smaller relay could rotate its key pair more frequently in
order to reduce its memory usage.

Key Propagation. Another issue concerns key propagation. Typically, key life-
times overlap, so that clients have time to learn about new keys before the old one
is discarded. If, however, a secret key is exhausted too quickly or lost due to a
server crash, a new public key needs to be issued immediately for the node to still
function. This requires both the server to adjust its public directory and the client
to potentially download the new key material, sacrificing any performance gains at
initial communication with the node.

Denial-of-Service Attacks. Our proposed circuit construction protocol typically
invokes expensive computations (e.g., the computation of pairings) immediately
when an onion router receives its first message by an onion proxy. An adversary
flooding an onion router with fabricated messages could lead to a massive demand of
resources, exceeding the onion router’s capabilities. Hence, an onion router should
only process messages of our construction if it has a sufficient amount of resources

9For example, a high-traffic node that serves 106 requests per day over a lifetime of 14 days and
a correctness error of ε = 1/1000, needs a secret key of size |sk| ≈ 9.7 GB for a security level
of λ = 128 bit. We refer the reader to [LGM+20, Table 3] for a detailed efficiency analysis
and comparison to other circuit construction schemes.

98



left. Otherwise, if an onion router is working to capacity, it should fall back to a
less-expensive circuit construction protocol such as the nTor [GSU12] handshake.

Post-Compromise Security. Another aspect worth mentioning concerns post-
compromise security. Currently, when using the nTor [GSU12] protocol for circuit
construction, an adversary cannot simply compromise an onion router and decrypt
future traffic relayed over it. Instead, an adversary would still need to interact
actively as man-in-the-middle attacker to read or alter messages (the adversary
essentially needs to perform the Diffie–Hellman key exchange with the onion proxy
while posing as an honest onion router). In our protocol, the compromise of an
onion router equips the adversary with everything it needs to passively decrypt
future traffic relay over the onion router. A possible leverage to relax this issue is
to rotate keys more frequently. This does not only improve the performance of our
construction, but also hardens our protocol against such attacks a little further.

5.7 Conclusion and Open Problems
We have now seen how PKEMs can be used to construct a single-pass circuit con-
struction protocol with absolute forward security. In contrast to common belief,
we have showed that it is indeed possible to build a circuit construction protocol
that is 1) non-interactive, 2) achieves absolute forward security, and 3) only needs
2η = O(η) messages, where η is the length of the circuit. Considering the high
impact of latency in large overlay networks, this makes our protocol a strong candi-
date for circuit construction protocols, opening a new possible direction for research
to continue.

Future Research. We conclude this chapter by discussing remaining open prob-
lems left for future research. As we have seen in this chapter, single-pass circuit
construction protocols are highly desirable for overlay networks that suffer under
high latencies. However, as we have also discussed in Section 5.6, it might be chal-
lenging for onion routers with restricted resources to simply migrate to our protocol.
If only a few, powerful onion routers deploy our protocol, the pool of onion routers
from which an onion proxy can choose, is rather limited. This limitation in choice
might be harmful to preserve anonymity as there are much fewer circuits possible
when compared to currently deployed protocols.
An interesting direction to overcome this challenge, is the construction of a hybrid

protocol that combines advantages of both deployed schemes and our construction.
For example, powerful nodes could implement our construction while restricted
nodes could request to still serve nTor handshakes instead. An onion proxy could
then choose its circuit as usual and supply the nodes with all information to per-
form either our protocol or the nTor handshake. If an onion router is unable to
execute our circuit construction protocol, it could fall back to the nTor handshake.
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OP OR1 OR2 OR3

Figure 5.4: Message flow of a possible hybrid protocol combining our protocol with
the nTor protocol. Both OR1 and OR3 support our protocol while OR2
only supports nTor.

Figure 5.4 illustrates the message flow of a hybrid approach, where the second onion
router does not support our protocol.
Note that not all constellations of onion routers would yield a more efficient

protocol. For example, if only OR3 supports our protocol, but OR1 and OR2 only
support nTor, the onion proxy would need to perform two full Diffie–Hellman key
exchanges before it can benefit from the single-pass property. The resulting number
of messages in this example is equal to the number of messages if only nTor would
have been used. Note, however, that the hybrid approach will never exceed the
number of messages when compared to nTor. Instead, the number of messages sent
via the hybrid protocol will always be at most as-high-as the nTor protocol. This
leads us to the following open problem:

Research Question 5. Is it possible to build a secure hybrid protocol combining
benefits from both our proposed protocol and currently deployed protocols?

This chapter closes our discussion of 0-RTT key exchange protocol in the context of
this thesis. We will now proceed with the second part of this thesis and shed some
light on the theoretical foundations of secure 0-RTT session resumption protocols,
where two parties resume their connection based on a previously established shared
secret.
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Part II

0-RTT Session Resumption
Protocols
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6 0-RTT Session Resumption with
Forward Security

Author’s Contribution. The contents of this chapter are based on joint work with
Nimord Aviram and Tibor Jager [AGJ19]. A majority of the results in [AGJ19]
were contributed by the author. To be more precise, the author made the following
technical contributions:

• Formally defining 0-RTT session resumption protocols and their security for
both the single-user and multi-user variants;

• discovering and defining invariance to puncturing for puncturable pseudoran-
dom functions;

• constructing a generic 0-RTT session resumption protocol and proving its
security;

• developing the proof idea for the strong RSA-based puncturable pseudoran-
dom function;

• all discussions related to the tree-based puncturable pseudorandom function.

Remark on the Notion of Forward Security. The result covered in this chapter
was published before the new notion for forward security described in Chapter 3
was developed. In order to make the results within this thesis coherent, we will
adapt this notion in the following chapter. Note that this will slightly change the
wording of this chapter compared to the published version, however, it does not
affect the results in any remarkable way.

6.1 Motivation
In the previous part of this thesis we have investigated 0-RTT key exchange proto-
cols, where two communicating parties establish a common secret over an insecure
channel. We will now amend the prerequisites under which parties communicate
with each other. To be more precise, we will now allow that two parties are already
in possession of a previously shared secret. This secret can, for example, be derived
from a prior communication or established out-of-band. Using this secret, two par-
ties can resume previous communications at a later point in time. This approach
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is commonly referred to as a session resumption protocol. According to Cloudflare,
session resumption protocols are heavily used in practice, as up to 40% of observed
HTTPS connections execute such a protocol.1
A major advantage of session resumption protocols is that both communicating

parties can rely on the previously shared secret for authentication purposes. That
is, if the shared secret is confidential and authenticated, merely the possession of
the secret suffices to guarantee that both parties communicate with the intended
communication partner. This allows both parties to omit expensive authentication
mechanisms based on, for example, digital signatures. However, we remark that the
security of such a resumed connection is strongly tied to the security of the shared
secret. Should the shared secret become compromised, the resumed communication
will be compromised as well.
Analogous to 0-RTT key exchange, a client can perform a 0-RTT session resump-

tion protocol by immediately sending encrypted application data alongside its first
flight of messages before the server can contribute to the session resumption pro-
tocol. This approach leads to the same challenges as with 0-RTT key exchange;
achieving forward security for the 0-RTT data cannot rely on input contributed
by the server. In order to better understand the currently deployed approach to
this challenge, we will discuss the session resumption mechanism of the TLS 1.3
protocol, and highlight its advantages and disadvantages.

The TLS 1.3 0-RTT Handshake. The first time a client and a server communi-
cate with each other, a full (non-0-RTT) TLS 1.3 handshake is executed. In this
first handshake, client and server derive (amongst other keys used during the first
connection) a shared secret to be used for a subsequent session resumption. The
shared secret is sometimes termed as resumption secret in literature and simply
stored by the client.
Eventually, the initial connection will be closed and the client can attempt the

0-RTT session resumption handshake with the server. Naturally, the server has to
somehow retrieve the shared secret both parties have previously agreed on. To this
end, the server stores additional information with the client, allowing the server
to correctly identify the client (and as such the associated shared secret) during
resumption. In practice, there are two conceptual approaches to this, called session
caches and session tickets. Both approaches have their respective advantages and
disadvantages. They work as follows:

• Session Caches. In this case, the server stores all shared secrets established
with different clients in a local database. Each entry in the database is associ-
ated with the value of the shared secret and a unique look-up key as identifier.
The look-up key is given to the client during the initial connection. When a
client resumes its session, it sends the look-up key alongside the 0-RTT data

1Nick Sullivan: Introducing Zero Round Trip Time Resumption (0-RTT), March 2017, https:
//blog.cloudflare.com/introducing-0-rtt/.
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to the server. This allows the server to retrieve the shared secret from the
database by using the look-up key.

• Session Tickets. In this case, the server makes use of a so-called session ticket
encryption key (STEK), a long-term symmetric key, which is only known to
the server. This key allows the server to not store and manage the shared
secret in its own database. Rather the server encrypts the shared secret with
the STEK to create a session ticket, which is sent to and stored by the client.
When a client resumes its session, it sends the session ticket alongside the
0-RTT data to the server. Using the STEK, the server can open the session
ticket and retrieve the shared secret.

Should the client decide to send 0-RTT data to the server, it can use the shared
secret to encrypt2 the 0-RTT data. The encrypted 0-RTT data are then sent to
the server within the client’s first flight of messages. We remark that it is oblivious
to the client which approach is used by the server. From the client’s perspective
the server always sends it a “new session ticket message,” which either contains a
look-up key or an actual session ticket. The contents of the message is, however,
an opaque sequence of bytes to the client. While the TLS 1.2 standard [DR08]
explicitly distinguished both approaches, the TLS 1.3 standard confusingly unifies
both approaches under the term “session ticket.”
During resumption, the client may also send a fresh Diffie–Hellman share along-

side its first flight of messages to the server. The server will then include its own
fresh Diffie–Hellman share in its first reply to the client. This allows both parties to
switch to a fresh Diffie–Hellman key for all messages after the client’s first message
(including the 0-RTT data). In this case, only the 0-RTT data are protected by the
shared secret, and all subsequent messages are protected by a fresh Diffie–Hellman
key.
A simplified3 version of the resumption handshake including the 0-RTT data and

the Diffie–Hellman messages as explained above is illustrated in Figure 6.1.

Forward Security and Replay Protection of TLS 1.3 0-RTT. We now discuss
the advantages and disadvantages of the TLS 1.3 0-RTT resumption handshake.
To this end, we distinguish between the aforementioned approaches to storing the
shared secret.
In the case of session caches, the server uses the look-up key to retrieve the

shared secret form its local database. Typically, the server can also immediately
2Actually, the 0-RTT data are not encrypted under the shared secret but under a key derived from
the shared secret. This ensures that, should the shared secret be an input to a different key
derivation at a later point in time, both keys remain independent from each other. Dependent
keys often lead to “distinguishing attacks” where an adversary is able to distinguish an actual
key from randomness, and are hence undesired.

3We have simplified the protocol’s key schedule as we want to focus on the conceptual approach
of TLS 1.3 session resumption for now. In the next chapter, we will take a detailed look at
the actual TLS 1.3 protocol and omit all simplifications.
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Client Server
. . . . . . . . . . . . . . . . . . . . . . . . . . . . prior connection . . . . . . . . . . . . . . . . . . . . . . . . . . . .

store s, t establish secret s
and ticket t

delete s, t

. . . . . . . . . . . . . . . . . . . . . . . 0-RTT session resumption . . . . . . . . . . . . . . . . . . . . . . .
t, gx retrieve s using t

tk0 := PRF.Eval(s, label)
Enc(tk0,m)
0-RTT data

tk0 := PRF.Eval(s, label)

tk := H(s, gxy) gy tk := H(s, gxy)

Enc(tk,m′)
data

Figure 6.1: Simplified execution of a TLS 1.3 0-RTT session resumption handshake
between a client and a server. PRF is a pseudorandom function, H is a
hash function, and g is generator of a group with prime order.

delete the database entry with the shared secret from the database after retrieval.
This achieves absolute forward security, as an adversary with access to the server’s
database cannot retrieve the shared secret to decrypt past communications.
In the case of session tickets, the server uses its STEK to open the ticket. Should

the STEK get compromised, any adversary can also open all tickets and thus re-
trieve shared secrets. Hence, the use of session tickets on its own provides null
forward security. In order to mitigate the impact of a compromised STEK, large
server operators typically rotate their STEK once per day. This way we achieve
delayed forward security, as the compromise of the STEK only leads to the com-
promise of approximately one day’s worth of traffic. Unfortunately, most TLS
implementations do not support STEK rotation by default. As such, only large
server operators who can afford to adjust TLS implementations, can benefit from
this measure, leaving a lot of websites suffering from long-lived STEKs.
We note that the optional Diffie–Hellman key exchange during the session re-

sumption handshake allows to achieve absolute forward security for all messages
but the first flight of messages sent by the client. Since the 0-RTT data are in-
cluded in the first flight of messages, absolute forward security cannot be achieved
for them.
Another security goal worth discussing is called replay protection. Replay pro-

tection ensures that an adversary is not able to trick a server into processing old
messages from past communications. Session caches achieve replay protection if
the shared secrets gets deleted from the database after a session is resumed, as
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the server is not able to decrypt a replayed message. With session tickets, it is
not obvious how to efficiently achieve replay protection. The mere use of session
tickets does not achieve replay protection during the STEK’s lifetime, as the server
cannot deduce from the ticket whether a ticket has already been used in a resump-
tion. Instead, the server could keep track which tickets have been used in the
past. However, such servers-side logging quickly becomes infeasible in high-traffic
environments.
A countermeasure sometimes mentioned in this context are so-called idempotent

requests, that is, requests that have the same effect on the server state no matter
how often the server processes them. The argument is that idempotent 0-RTT
data are safe to use with TLS 1.3 0-RTT. However, it has also been remarked by
MacCárthaigh4 and acknowledged in the TLS 1.3 standard [Res18, §E.5] that even
the replay of idempotent requests could serve as attack vectors to reveal the target
address of HTTP requests.
Taking all of the above into account, it seems that session caches are the superior

approach to handle session resumption in TLS 1.3. However, session caches require
the server to store a session state for each recent client connection. Especially in
medium to high-traffic environments, maintaining such state is infeasible. Instead,
server operators often reluctantly sacrifice forward security and use session tickets
instead.

Contributions. This chapter lays the foundation of secure 0-RTT session resump-
tion protocols as an abstraction of the session resumption handshake currently
deployed in TLS 1.3. To that end, we present new techniques to achieve abso-
lute forward security and replay protection, which can be immediately deployed in
TLS 1.3 without any changes to the standard, or the protocol. Our technique is
based on the concept of session tickets but refined with the use of efficient punc-
turable pseudorandom functions. Session tickets allow us to keep the server-side
storage minimal, while puncturable pseudorandom functions are the leverage for
absolute forward security and replay protection.
Our session resumption protocol can be instantiated with the well-known GGM

puncturable pseudorandom function, which employs only symmetric cryptography.
In practice, an evaluation of the GGM puncturable pseudorandom function consists
of several evaluations of a standard hash function, such as SHA-3. This instantia-
tion is suitable for high-traffic scenarios where thousands of ticket have to be served
per second at the cost of hundreds of megabyte in server-side storage.
Additionally, we provide a new construction of a puncturable pseudorandom

function based on the strong RSA assumption. It reduces the server-side storage
by a factor of 11 compared to standard session caches, but requires the server to
perform two exponentiations (one per issuance and one per resumption).

4Colm MacCárthaigh: Security Review of TLS1.3 0-RTT, May 2017, https://github.com/
tlswg/tls13-spec/issues/1001.
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Large-Scale Server Clusters and Load Balancing. Large content providers typ-
ically deploy TLS in a large-scale server cluster where all servers share the same
public key but distribute the computational load of processing requests. As such,
server clusters usually do not share a consistent global state at all times, which in
turn makes it hard to implement any functionality based on storing some state. In
the context of this work, we will hence only consider single-server scenarios where
a consistent state can be kept at all times.
We remark that achieving forward security based on session caches in a large-

scale server cluster may be difficult as well. Should, for example, many servers share
a session cache, even the implementation of an atomic retrieve-and-delete process
is complex. Such implementation would need to rely on synchronized deletion of
resumption secrets at all servers, and hence rely on a synchronized state.
A similar argument can be drawn for session tickets, if mechanisms that store

used tickets are implemented. Such mechanisms often distribute the stored tickets
across many servers as well. We refer the reader to the TLS 1.3 standard [Res18,
§2.3, §8, §E.5], the security review of TLS 1.3 0-RTT by MacCárthaigh5, and a
discussion on the TLS mailing list6 for a more in-depth discussion.
However, in large-scale settings it is also highly desirable to minimize the amount

of data that has to be synchronized across servers. As our techniques aim to
minimize the server-side storage, they are useful in this context as well.

Further Applications to Devices with Restricted Resources. The techniques
presented in this chapter are not only interesting for high-traffic scenarios but can
also be used in the context of devices with restricted resources, such as battery-
powdered Internet-of-Things devices with a wireless connection. Typically, sending
data is very expensive for such devices since each transmitted bit costs energy, limit-
ing the battery lifetime. Hence, the battery lifetime can be maximized by avoiding
interactive handshakes (e.g., the full TLS 1.3 handshake) and rather relying on
0-RTT handshakes, where data only has to be transmitted once.
Additionally, devices with restricted resources often cannot use large amounts

of storage but only have limited storage at their disposal. Hence, it is highly
desirable to decrease the amount of needed storage for handshakes. A promising
candidate for such scenario is our strong RSA-based instantiation of our 0-RTT
session resumption protocol, where we can reduce the required storage by a factor
of 11 compared to standard session caches. Even though this construction needs to
compute full RSA exponentiations, we argue that adding unnecessary transmission
to even a fraction of connections is more expensive than moderately more expensive
computations. Thus, we believe that with our 0-RTT session resumption protocol
it is even possible to achieve absolute forward security for devices with restricted

5Colm MacCárthaigh: Security Review of TLS1.3 0-RTT, May 2017, https://github.com/
tlswg/tls13-spec/issues/1001.

6Eric Rescorla: [TLS] 0-RTT and Anti-Replay, March 2015, https://mailarchive.ietf.org/
arch/msg/tls/gDzOxgKQADVfItfC4NyW3ylr7yc.
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resources.

6.2 0-RTT Session Resumption Protocols and Their
Security

In this section we provide formal definitions for secure 0-RTT session resumption
protocols. These definitions capture both our new techniques and the existing
solutions already standardized in TLS 1.3. We later show that the techniques
used to formally analyze and verify TLS 1.3 0-RTT [CHSvdM16, DFGS16, FG17]
can be extended to use our abstraction of a session resumption protocol within
TLS 1.3.
This leads us to believe that our definitions capture a reasonable abstraction

of the cryptographic core of the TLS 1.3 0-RTT mode (and likely also of similar
protocols that may be devised in the future).
For simplicity, in this chapter we will refer to pre-shared values as session keys, as

they are either previously established session keys, or a resumption secret derived
from a session key, as for example in TLS 1.3. The details of how to establish a
shared secret and potentially derive a session key from it are left to the individual
protocol and are outside the scope of our abstraction.

Definition 32. A 0-RTT session resumption protocol with session key space K
consists of three probabilistic polynomial-time algorithms Resumption = (Setup,
TicketGen, ServerRes) with the following properties.

• Setup(1λ) takes as input a security parameter λ and outputs a long-term key
K.

• TicketGen(K, s) takes as input a long-term key K and a session key s ∈ K,
and outputs a ticket t and a potentially modified long-term key K ′.

• ServerRes(K, t) takes as input a long-term key K and the ticket t, and outputs
a session key s ∈ K and a potentially modified key K ′, or a failure symbol ⊥.

Using a Session Resumption Protocol. A 0-RTT session resumption scheme is
used by a set of clients C and a set of servers S. If a client and a server share a
session key s, the session resumption is executed as follows (cf. Figure 6.2).

1. The server uses its long-term key K and the session key s to generate a
ticket t by running (t,K ′) $←− TicketGen(K, s). The ticket is sent to the client.
Additionally, the server replaces its long-term key K by K ′ and deletes the
session key s and ticket t, that is, it is not required to keep any session state.

2. For session resumption at a later point in time, the client sends the ticket t
to the server.
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Client Server
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . server setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

// Generate long-term key
K $←− Setup(1λ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ticket issuance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
// Issue ticket(s)

t (t,K) $←− TicketGen(K, s)

store s, t delete s, t
. . . . . . . . . . . . . . . . . . . . . . . . . . . .0-RTT session resumption. . . . . . . . . . . . . . . . . . . . . . . . . . . .
// Encrypt data with s // Resume sessions
c $←− Enc(s,m) t, c (s,K) $←− ServerRes(K, t)

m := Dec(s, c)

Figure 6.2: Execution of a generic 0-RTT session resumption protocol with early
data m, where client and server initially are in possession of a shared
secret s. The procedures Enc and Dec are symmetric encryption and
decryption procedures respectively. Note that procedures TicketGen and
ServerRes both potentially modify the server’s key K.

3. Upon receiving the ticket t, the server runs (s,K ′) := ServerRes(K, t) to
retrieve the session key s. Additionally, K is deleted and replaced by the
updated key K ′.

Compatibility with TLS 1.3. Using either session tickets or session caches in
TLS 1.3 is transparent to clients, that is, clients are generally unaware of which
is used. In either case, the client stores a sequence of bytes which is opaque from
the client’s point of view. Since all algorithms of a session resumption protocol are
executed on the server, while a client just has to store the ticket t (encoded as a
sequence of bytes), this generic approach of TLS 1.3 is immediately compatible with
our notion of session resumption protocols. Thus, a session resumption protocol
can be used immediately in TLS 1.3, without requiring changes to clients or to the
protocol. Furthermore, session tickets and session caches are specific examples of
such protocols.

6.2.1 Security in the Single-Server Setting
We define the security of a 0-RTT session resumption protocol Resumption by a
security game G0-RTT-SR

A,Resumption(λ) between a challenger C and an adversary A. For
simplicity, we will start with a single-server setting and argue below that security
in the single-server setting implies security in a multi-server setting.
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1. C runsK $←− Setup(1λ), samples a random bit b $←− {0, 1} and generates session
keys si $←− S for all sessions i ∈ [µ]. Furthermore, it generates tickets ti and
updates key K by running (ti, K) $←− TicketGen(K, si) for all sessions i ∈ [µ].
The sequence of tickets (ti)i∈[µ] is sent to A.

2. The adversary gets access to oracles it may query.

a) Dec(t) takes as input a ticket t. It computes (si, K ′) := ServerRes(K, ti),
returns the session key si and replaces K := K ′. Note that ticket t can
either be a ticket of the initial sequence of tickets (ti)i∈[µ] or an arbitrary
ticket chosen by the adversary.

b) Test(t) takes as input a ticket t. It computes (si, K ′) := ServerRes(K, t)
and outputs ⊥ if the output of ServerRes was ⊥. Otherwise, it updates
K := K ′. If b = 1, then it returns the session key si. Otherwise, a
random ri

$←− S is returned. Note that ticket t can either be a ticket
of the initial sequence of tickets (ti)i∈[µ] or an arbitrary ticket chosen by
the adversary.

The adversary is allowed to query Test only once.

c) Corr returns the current long-term key K of the server. The adversary
must not query Test after Corr, as this would lead to a trivial attack.

3. Eventually, adversary A outputs a guess b∗. Challenger C outputs 1 if b = b∗

and 0 otherwise.

Note that this security model reflects both forward secrecy and replay protection.
Forward secrecy is ensured, as an adversary may corrupt the challenger after issu-
ing the Test-query. If the protocol would not ensure forward secrecy, an attacker
could corrupt its long-term key and trivially decrypt the challenge ticket. Replay
protection is ensured, as an adversary is allowed to issue Dec(ti) after already test-
ing Test(ti) and vice versa (as both queries invoke the ServerRes algorithm). If the
protocol would not ensure replay protection, an attacker could use the decryption
oracle to distinguish a real or random session key of the Test-query.

Definition 33. We define the advantage of an adversary A in the above security
game G0-RTT-SR

A,Resumption(λ) as

Adv0-RTT-SR
A,Resumption(λ) =

∣∣∣∣Pr
[
G0-RTT-SR
A,Resumption(λ) = 1

]
− 1

2

∣∣∣∣ .
We say a 0-RTT session resumption protocol is secure in a single-server environ-
ment if the advantage Adv0-RTT-SR

A,Resumption(λ) is a negligible function in λ for all proba-
bilistic polynomial-time adversaries A.
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6.2.2 Security in the Multi-Server Setting
A 0-RTT session resumption protocol that is secure in our model, only guarantees
security in a single-server setting. However, session resumption protocols are meant
to be executed in a multi-server environment. In this section we will give a generic
proof, that any 0-RTT session resumption protocol that is secure in a single-client
environment is also secure in a multi-server environment with the standard poly-
nomial loss in the number of servers, provided each server has a different long-term
key.
We define the security of a 0-RTT session resumption protocol Resumption with

multiple servers in the following security game between a challenger C and an
adversary A.

1. To simulate the server, C runs Kj
$←− Setup(1λ) for j ∈ [d], samples a random

bit b $←− {0, 1} and generates session keys si,j $←− S for all (i, j) ∈ [µ] × [d].
Furthermore it generates tickets (ti,j, Kj) $←− TicketGen(Kj, si,j) for all (i, j) ∈
[µ]× [d]. The sequence of tickets (ti,j)(i,j)∈[µ]×[d] is sent to A.

2. The adversary gets access to oracles it may query.

a) Dec(t, j) takes as input a ticket t and a server identifier j. It computes
(si,j, K ′j) := ServerRes(Kj, t), returns the session key si,j and replaces
Kj := K ′j. Note that ticket t can either be a ticket of the initial sequence
of tickets (ti)i∈[µ] or an arbitrary ticket chosen by the adversary.

b) Test(t, j) takes as input a ticket t and a server identifier j. It computes
(si,j, K ′j) := ServerRes(Kj, t) and outputs ⊥ if the output of ServerRes
was ⊥. Otherwise it replaces Kj := K ′j and returns either the session
key si,j if b = 1 or a random ri,j

$←− S if b = 0. Note that ticket t can
either be a ticket of the initial sequence of tickets (ti)i∈[µ] or an arbitrary
ticket chosen by the adversary.
The adversary is only allowed to query Test once and only for tickets t
which have not been queried using Dec(t) before.

c) Corr(j) takes as input a server identity j ∈ [d]. It returns the server’s
long-term key Kj. The adversary is not allowed to query Test(t, j) after
Corr(j), as this would lead to trivial attacks.

3. Eventually, A outputs a guess b∗. Challenger C outputs 1 if b = b∗ and 0
otherwise.

Definition 34. We define the advantage of an adversary A in the above security
game GM0-RTT-SR

A,Resumption(λ) as

AdvM0-RTT-SR
A,Resumption(λ) =

∣∣∣∣Pr
[
GM0-RTT-SR
A,Resumption(λ) = 1

]
− 1

2

∣∣∣∣ .
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We say a 0-RTT session resumption protocol is secure in a multi-server environment
if the advantage AdvM0-RTT-SR

A,Resumption(λ) is a negligible function in λ for all probabilistic
polynomial-time adversaries A.
Theorem 9. From each probabilistic polynomial-time adversary A against the secu-
rity of a 0-RTT session resumption protocol Resumption in a multi-server environ-
ment with advantage AdvM0-RTT-SR

A,Resumption(λ), we can construct an efficient adversary B
against the security of Resumption in the single-server environment with advantage
Adv0-RTT-SR

A,Resumption(λ), such that

AdvM0-RTT-SR
A,Resumption(λ) ≤ d · Adv0-RTT-SR

A,Resumption(λ).
Proof. Let A be an adversary against the M0-RTT-SR security of Resumption. We
will use this adversary to construct an adversary B against the 0-RTT-SR security
of Resumption. The 0-RTT-SR challenger C starts its security game by sending a
tuple of tickets (ti)i∈[µ].
In order to initialize A we need to prepare a tuple of tickets (ti,j)(i,j)∈[µ]×[d].

We generate µ · (d − 1) tickets by ourselves and use tickets (ti)i∈[µ] the 0-RTT-SR
challenger sent us for the leftover µ tickets. At first we guess an index ν $←− [d] and
hope that A queries Test(ti,ν , ν) for some i ∈ [µ]. Let δ = [d] \ {ν}. We generate
µ · |δ| tickets honestly by running Kj

$←− Setup(1λ) for j ∈ δ, generating si,j $←− S
and invoking (ti,j, kj) $←− TicketGen(Kj, si,j) for all (i, j) ∈ [µ] × δ. We embed our
challenge as ti,ν = ti for i ∈ [µ]. We send (ti,j)(i,j)∈[µ]×[d] to A.
We need to distinguish two possible cases. We can simulate all queries A can

ask for server identities j ∈ δ by ourselves, as we know all secret values for those
servers. In the case of j = ν we forward all queries to the challenger C and send
the answers back to A.
If A queries Test(ti,j, j) we behave in the following way. If j = ν we continue the

security game and forward the final bit output of A as our solution of the challenge
to C. If j 6= ν we abort the security game and output a random bit to C.
In the case of j = ν we win the security game with the advantage Adv0-RTT-SR

A,Resumption(λ).
This happens with a probability of 1/d as ν $←− [d] is drawn at random. If j 6= ν,
we have no advantage compared to guessing. In conclusion, we have

AdvM0-RTT-SR
A,Resumption(λ) ≤ d · Adv0-RTT-SR

A,Resumption(λ).

On Theoretically-Sound Instantiation. Tight security in a multi-server setting
is a major issue for classical AKE-like protocols. First tightly-secure protocols
have been described only rather recently (e.g., Bader et al. [BHJ+15], or Gjøs-
teen–Jager [GJ18]). Similar to classical AKE protocols, our extension to the multi-
server setting is non-tight as we have a security loss in the number of protocol
participants (which is the “standard security loss” for many AKE-like protocols).
So, if parameters are chosen in a theoretically sound way (which is currently rather
uncommon in practice, but would be a desirable goal in our point of view), then
this factor needs to be compensated with larger parameters.
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6.3 Constructing Secure Session Resumption
Protocols

In this section we will show how session resumption protocols providing full forward
security and replay resilience can be constructed. We will start with a generic con-
struction, based on authenticated encryption with associated data and any punc-
turable pseudorandom function that is invariant to puncturing. Later we describe
new constructions of puncturable pseudorandom functions, which are particularly
suitable for use in session resumption protocols.

6.3.1 Building Blocks
We briefly recall the basic definition of puncturable pseudorandom functions and
authenticated encryption with associated data.

Puncturable PRFs. A puncturable pseudorandom function (PPRF) is a special
case of a PRF, where it is possible to compute punctured keys which do not allow
evaluation on inputs that have been punctured. We recall the definition of a PPRF
and its security from [SW14].

Definition 35. A puncturable pseudorandom function with key space K, domain
X , and range Y consists of three probabilistic polynomial-time algorithms PPRF =
(Setup,Eval,Punct), which are described as follows:

• Setup(1λ): This algorithm takes as input the security parameter λ and outputs
a description of a key K ∈ K.

• Eval(K, x): This algorithm takes as input a key K ∈ K and a value x ∈ X ,
and outputs a value y ∈ Y , or a failure symbol ⊥.

• Punct(K, x): This algorithm takes as input a key K ∈ K and a value x ∈ X ,
and returns a punctured key K ′ ∈ K.

Definition 36. A PPRF is correct if for every subset {x1, . . . , xn} = S ⊆ X and
all x ∈ X \ S, we have that

Pr
[
Eval(K0, x) = Eval(Kn, x) : K0

$←− Setup(1λ);
Ki = Punct(Ki−1, xi) for i ∈ [n];

]
= 1.

A new property of PPRFs that we will need is that puncturing is “commutative,”
that is, the order of puncturing operations does not affect the resulting secret key.
To be precise, for any x0, x1 ∈ X with x0 6= x1, if we first puncture on input x0 and
then on x1, the resulting key is identical to the key obtained from first puncturing
on x1 and then on x0. This implies that puncturing by any set of inputs always
gives the same result, regardless of the order of puncturing. Formally:
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Gna-rand
A,PPRF(λ)

K0
$←− Setup(1λ), b $←− {0, 1}

(x1, . . . , x`) $←− A(1λ)
yi,0

$←− Y, yi,1 := Eval(K0, xi) for all i ∈ [`]
Ki := Punct(Ki−1, xi) for all i ∈ [`]
b∗ $←− A(K`, (yi,b)i∈[`])
return 1 if b = b∗

return 0

Grand
A,PPRF(λ)

K $←− Setup(1λ), b $←− {0, 1}, Q := ∅
x∗ $←− AEval(K,·)(1λ)
where Eval(K,x) behaves like Eval, but sets
Q := Q∪ {x}, and runs K := Punct(K,x)

y0
$←− Y, y1 := Eval(K,x∗),K := Punct(K,x∗)

b∗ $←− A(K, yb)
return 1 if b = b∗ ∧ x∗ /∈ Q
return 0

Figure 6.3: Security experiments for PPRFs. The na-rand security experiment for
PPRF is left and the rand security experiment is right.

Definition 37. A PPRF is invariant to puncturing if for all keys K ∈ K and all
elements x0, x1 ∈ X with x0 6= x1 it holds that

Punct(Punct(K, x0), x1) = Punct(Punct(K, x1), x0).

We define two notions of PPRF security. The first notion represents the typi-
cal pseudorandomness security experiment with adaptive evaluation queries by an
adversary. The second notion is a weaker, non-adaptive security experiment. We
show that it suffices to prove security in the non-adaptive experiment if the PPRF
is invariant to puncturing and has a polynomial-size domain.

Definition 38. We define the advantage of an adversary A in the rand (resp.
na-rand) security experiment Grand

A,PPRF(λ) (resp. Gna-rand
A,PPRF(λ)) defined in Figure 6.3 as

Advrand
A,PPRF(λ) :=

∣∣∣∣Pr
[
Grand
A,PPRF(λ) = 1

]
− 1

2

∣∣∣∣ ,
Advna-rand

A,PPRF(λ) :=
∣∣∣∣Pr

[
Gna-rand
A,PPRF(λ) = 1

]
− 1

2

∣∣∣∣ .
We say a PPRF PPRF is rand-secure (resp. na-rand-secure), if the advantage

Advrand
A,PPRF(λ) (resp. Advna-rand

A,PPRF(λ)) is a negligible function in λ for all probabilistic
polynomial-time adversaries A.

It is relatively easy to prove that na-rand-security and rand-security are equivalent,
up to a linear security loss in the size of the domain of the PPRF if the PPRF is
invariant to puncturing. In particular, if the PPRF has a polynomially-bounded
domain size and is invariant to puncturing, then both are polynomially equivalent.

Theorem 10. Let PPRF be a na-rand-secure PPRF with domain X . If PPRF is
invariant to puncturing, then it is also rand-secure with advantage

Advrand
A,PPRF(λ) ≤ |X | · Advna-rand

A,PPRF(λ).
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Proof. The proof is based on a straightforward reduction. We give a sketch. Let A
be an adversary against the rand security of PPRF. We guess A’s challenge value
in advance by sampling ν $←− X uniformly at random. We initialize the na-rand
challenger by sending it ν. In return we receive a challenge y (either computed via
Eval or random) and a punctured key K that cannot be evaluated on input ν.
The punctured key K allows us to correctly answer all of A’s Eval queries, except

for ν. When the adversary outputs its challenge x∗ we will abort if x∗ 6= ν. Other-
wise, we forward y and a punctured key K ′ that has been punctured on all values
of the Eval queries. Note that the key has a correct distribution, as we require that
the PPRF is invariant to puncturing.
Eventually, A outputs a bit b∗ which we forward to the na-rand challenger. The

simulation is perfect unless we abort it, which happens with polynomially-bounded
probability 1/|X |, due to the fact that |X | is polynomially bounded.

Authenticated Encryption with Associated Data. We will furthermore need
authenticated encryption with associated data (AEAD) [Rog02], along with the
standard notions of confidentiality and integrity.

Definition 39. An authenticated encryption scheme with associated data is a tuple
AEAD = (KGen,Enc,Dec) of three probabilistic polynomial-time algorithms:

• KGen(1λ) takes as input a security parameter λ and outputs a secret key k.

• Enc(k,m, ad) takes as input a key k, a message m, associated data ad and
outputs a ciphertext c.

• Dec(k, c, ad) takes as input a key k, a ciphertext c, associated data ad and
outputs a message m or a failure symbol ⊥.

An AEAD scheme is called correct if for any key k $←− KGen(1λ), any messagem ∈
{0, 1}∗, any associated data ad ∈ {0, 1}∗ it holds that Dec(k,Enc(k,m, ad), ad) =
m.

Definition 40. We define the advantage of an adversary A in the IND-CPA exper-
iment GIND-CPA

A,AEAD (λ) defined in Figure 6.4 as

AdvIND-CPA
A,AEAD (λ) :=

∣∣∣∣Pr
[
GIND-CPA
A,AEAD (λ) = 1

]
− 1

2

∣∣∣∣ .
We say an AEAD scheme AEAD is indistinguishable under chosen-plaintext attacks
(IND-CPA-secure), if the advantage AdvIND-CPA

A,AEAD (λ) is a negligible function in λ for
all probabilistic polynomial-time adversaries A.

Definition 41. We define the advantage of an adversary A in the INT-CTXT
experiment GINT-CTXT

A,AEAD (λ) defined in Figure 6.4 as

AdvINT-CTXT
A,AEAD (λ) :=

∣∣∣Pr
[
GINT-CTXT
A,AEAD (λ) = 1

]∣∣∣ .
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GIND-CPA
A,AEAD (λ)

k $←− KGen(1λ), b $←− {0, 1}
b∗ $←− ALoR(·,·,·)(1λ)

where LoR(m0,m1, ad)
returns Enc(k,mb, ad).

return 1 if b = b∗

return 0

GINT-CTXT
A,AEAD (λ)

k $←− KGen(1λ), Q := ∅, win := 0
AEnc(·,·),Dec(·,·)(1λ)
where Enc(m, ad) returns Enc(k,m, ad)
and sets Q := Q∪ {(c, ad)},
and where Dec(c, ad) sets win := 1
if Dec(k, c, ad) 6= ⊥ and (c, ad) /∈ Q .

return win

Figure 6.4: The IND-CPA and INT-CTXT security experiments for AEAD [Rog02].

We say an AEAD scheme AEAD provides integrity of ciphertexts (INT-CTXT-
secure), if the advantage AdvINT-CTXT

A,AEAD (λ) is a negligible function in λ for all proba-
bilistic polynomial-time adversaries A.

Additionally, we will need the notion of ε-spreadness for AEAD. ε-spreadness
captures the intuition that a ciphertext encrypted under a key k should not be
valid under a random key k′ 6= k.

Definition 42. An AEAD scheme is ε-spread if for all messages m and all associ-
ated data ad it holds that

Pr
k,k′

$←−AEAD.KGen(1λ)
k 6=k′

[AEAD.Dec(k′,AEAD.Enc(k,m, ad), ad) 6= ⊥] ≤ ε.

We note that INT-CTXT-security implies ε-spreadness with negligible ε. How-
ever, the “statistical” formulation of Definition 42 will simplify parts of our proof
significantly, and therefore we believe it reasonable to make it explicit.

Lemma 3. If AEAD is INT-CTXT-secure, then it is ε-spread with negligible ε.

Proof. (Sketch) We prove the claim by contradiction. Let AEAD be an AEAD that
is ε-spread with non-negligible ε. That is, there exists a tuple (m, ad) such that

Pr
k,k′

$←−AEAD.KGen(1λ)
k 6=k′

[AEAD.Dec(k′,AEAD.Enc(k,m, ad), ad) 6= ⊥] ≥ δ

for some non-negligible δ. It follows that there exists an adversary A that outputs
such a tuple (m, ad) (e.g., (m, ad) is hard-coded into the adversary).
Let adversary B be an adversary that plays the INT-CTXT security game of

AEAD against some challenger C and get access to an encryption and a decryption
oracle. We ignore the encryption oracle and the following and solely focus on
the decryption oracle. The adversary B prepares a decryption oracle query by
computing c $←− AEAD.Enc(k,m, ad) for a randomly drawn k $←− AEAD.KGen(1λ)
and (m, ad) $←− A(1λ). The tuple (c, ad) is sent to the challenger.
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We now claim that we have a non-negligible chance that (c, ad) looks like a valid
ciphertext to the challenger C. Recall that the challenger C draws its own secret
key k′ $←− AEAD.KGen(1λ) at the beginning of the experiment. Since both k and
k′ are independently sampled via AEAD.KGen, we have k 6= k′ with overwhelming
probability. Since AEAD is ε-spread with non-negligible ε, we have

AEAD.Dec(k′,AEAD.Enc(k,m, ad), ad) 6= ⊥

with non-negligible probability. Hence, A immediately wins the security game as
(c, ad) is valid and AEAD.Enc was never queried. This proves the claim.

6.3.2 Generic Construction
Now we are ready to describe our generic construction of a 0-RTT session resump-
tion protocol, based on a PPRF and an AEAD scheme, and to prove its security.

Construction 4. Let AEAD = (KGen,Enc,Dec) be an AEAD and let PPRF =
(Setup,Eval,Punct) be a PPRF with range Y . Then we can construct a 0-RTT
session resumption protocol Resumption = (Setup,TicketGen, ServerRes) in the fol-
lowing way.

• Setup(1λ) runs KPPRF
$←− PPRF.Setup(1λ), and outputs K := (KPPRF, 0),

where “0” is a counter initialized to zero.

• TicketGen(K, s) takes a key K = (KPPRF, n). It computes a ticket key κ :=
PPRF.Eval(KPPRF, n). Then it encrypts the ticket as t′ $←− AEAD.Enc(κ, s, n).
Finally, it defines t = (t′, n) and K := (KPPRF, n+ 1), and outputs (t,K).

• ServerRes(K, t) takes K = (KPPRF, n) and t = (t′, n′). It computes a key κ :=
PPRF.Eval(KPPRF, n

′). If κ = ⊥, then it returns ⊥. Otherwise it computes a
session key s := AEAD.Dec(κ, t′, n′). If s = ⊥, it returns ⊥. Else it punctures
KPPRF := PPRF.Punct(KPPRF, n

′), and returns (s, (KPPRF, n)).

Note that the associated data n is sent in plaintext, posing a potential privacy
leak. Assume an attacker that observes all communication to and from the server.
When the attacker observes a client resuming using a ticket with associated data
n, the attacker learns that it is the same client that first connected when the server
issued the n-th ticket. Newly-generated tickets are first sent encrypted from the
server to the client, but it is feasible for the attacker to identify sessions where the
server issued tickets by performing traffic analysis (and then identifying the n-th
such session). In essence, using the above construction as-is, sessions are linkable.
This can be circumvented by additionally encrypting n under a dedicated symmetric
key. Compromise of this key would only allow an attacker to link sessions by the
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same returning client, not to decrypt past traffic, therefore this symmetric key needs
not be punctured to achieve forward security.7

Theorem 11. If AEAD is ε-spread and PPRF is invariant to puncturing, then from
each probabilistic polynomial-time adversary A against the security of Resumption
in a single-server environment with advantage Adv0-RTT-SR

A,Resumption(λ), we can construct
four adversaries BPPRF1, BPPRF2, BAEAD1, and BAEAD2 such that

Adv0-RTT-SR
A,Resumption(λ) ≤ Advrand

BPPRF1,PPRF(λ) + ε+ µ ·
(
Advna-rand

BPPRF2,PPRF(λ)

+ AdvINT-CTXT
BAEAD1,AEAD(λ) + AdvIND-CPA

BAEAD2,AEAD(λ)
)
,

where µ is the number of sessions.

Proof. We will conduct this proof in a sequence of games [Sho04] between a chal-
lenger C and an adversary A. We start with an adversary playing the 0-RTT-SR
security game. Over a sequence of hybrid arguments, we will stepwise transform
the security game to a game where the Test-query is independent of the challenge
bit b. The claim then follows from bounding the probability of distinguishing any
two consecutive games. By Advi we denote A’s advantage in the i-th game.

Game 0. We define Game 0 to be the original 0-RTT-SR security game. By
definition we have

Adv0 = Adv0-RTT-SR
A,Resumption(λ).

Game 1. This game is identical to Game 0, except that we raise an event abortPPRF,
abort the game, and output a random bit b∗ $←− {0, 1}, if the adversary A ever
queries Test(t) for a ticket t = (t′, n′) such that n′ /∈ [µ] and AEAD.Dec(κ, t′, n′) 6= ⊥,
where κ := PPRF.Eval(KPPRF, n

′). Since both games proceed identically until abort,
we have

|Adv1 − Adv0| ≤ Pr[abortPPRF]
and we claim that we can construct an adversary BPPRF1 on the rand-security of the
PPRF with advantage at least Pr[abortPPRF].

Construction of BPPRF1. BPPRF1 behaves like the challenger in Game 1, except
that it uses the Eval-oracle to generate the keys to encrypt the initial sequence of µ
tickets and to answer all Dec-queries by A. Eventually, A will query Test(t) for a
ticket t = (t′, n′). BPPRF1 outputs n′ to its PPRF challenger, which will respond with
a punctured key K := PPRF.Punct(K,n′) and a value γ, where either γ := ρ $←− Y
or γ := PPRF.Eval(K,n′).

7The natural solution would be to encrypt n using public-key puncturable encryption, but this
would be costly, and obviate most of the efficiency benefits described in this work. We are
unfortunately unaware of a good solution that achieves session unlinkability in the event
of server compromise. We further note that TLS 1.3 0-RTT includes a mechanism named
“obfuscated ticket age” that solves a similar session linkability concern; that mechanism as
well is not applicable here.
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BPPRF1 now tries to decrypt the challenge ticket by invoking AEAD.Dec(γ, t′, n′).
If γ = PPRF.Eval(K,n′), the decryption will succeed by definition. If γ = ρ, the
decryption will fail with probability 1− ε, since the ε-spreadness of AEAD ensures
that AEAD.Dec(ρ, t′, n′) 6= ⊥ for random ρ happens only with probability ε. Hence,
BPPRF1 returns 1 if decryption succeeds and 0 otherwise. Thus, we have

Pr[abortPPRF] ≤ Advrand
BPPRF1,PPRF(λ) + ε.

Game 2. This game is identical to Game 1, except for the following changes. At
the beginning of the experiment the challenger picks an index ν $←− [µ]. It aborts
the security experiment and outputs a random bit b∗ $←− {0, 1}, if the adversary
queries Test(t) with t = (t′, i) such that i 6= ν. Since the choice of ν $←− [µ] is
oblivious to A until an abort occurs, we have

Adv2 ≥
1
µ
· Adv1.

Game 3. This game is identical to Game 2, except that at the beginning of
the game we compute κν = PPRF.Eval(K, ν) and then K := PPRF.Punct(K, ν).
Furthermore, we replace algorithm PPRF.Eval with the following algorithm F3:

F3(K, i) :=

PPRF.Eval(K, i) if i 6= ν

κν if i = ν.

Everything else works exactly as before. Note that we have implemented algorithm
PPRF.Eval in a slightly different way. Since PPRF is invariant to puncturing, the
fact that κν was computed early, immediately followed by K := PPRF.Punct(K, ν),
is invisible to A. Hence, Game 3 is perfectly indistinguishable from Game 2, and
we have

Adv3 = Adv2.

Game 4. This game is identical to Game 3, except that the challenger now addi-
tionally picks a random key ρ $←− Y from the range of the PPRF. Furthermore, we
replace algorithm F3 with the following algorithm F4:

F4(K, i) :=

PPRF.Eval(K, i) if i 6= ν

ρ if i = ν.

Everything else works exactly as before. We will now show that any adversary
that is able to distinguish Game 3 from Game 4 can be used to construct an
adversary BPPRF2 against the na-rand-security of the PPRF. Concretely, we have

|Adv4 − Adv3| ≤ Advna-rand
BPPRF2,PPRF(λ).
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Construction of BPPRF2. BPPRF2 initially picks ν $←− [µ] and outputs ν to its PPRF
challenger, which will respond with a punctured key K := PPRF.Punct(K, ν) and
a value γ, where either γ = PPRF.Eval(K, ν) or γ $←− Y . Now BPPRF2 simulates
Game 4, except that it uses the following function F in place of F4.

F (K, i) :=

PPRF.Eval(K, i) if i 6= ν

γ if i = ν.

Eventually, A will output a guess b∗. BPPRF2 forwards this bit to the PPRF chal-
lenger. Note that if γ = Eval(K, ν), then function F is identical to F3, while if
γ = ρ then it is identical to F4. This proves the claim.

Game 5. This game is identical to Game 4, except that we raise an event abortAEAD,
abort the game, and output a random bit b∗ $←− {0, 1}, if the adversary A ever
queries Test(t) for a ticket t = (t′, ν) 6= tν (i.e., t differs from the ν-th ticket in the
first position), but AEAD.Dec(ρ, t′, ν) 6= ⊥, where ρ = F4(K, ν). We have

|Adv5 − Adv4| ≤ Pr[abortAEAD]

and we claim that we can construct an adversary BAEAD1 on the INT-CTXT-security
of the AEAD with advantage at least Pr[abortAEAD].

Construction of BAEAD1. BAEAD1 proceeds exactly like the challenger in Game 5,
except that it uses its challenger from the AEAD security experiment to create ticket
tν . To this end, it outputs the tuple (sν , ν) for some sν $←− S to the AEAD challenger.
The AEAD challenger responds with t′ν := AEAD.Enc(ρ, sν , ν), computed with an
independent AEAD key ρ. Finally, BAEAD1 defines the ticket as tν = (t′ν , ν). Apart
from this, BAEAD1 proceeds exactly like the challenger in Game 5.
Whenever the adversary A makes a query Test(t) with a ticket t = (t′, i) with

i 6= ν, then we abort, due to the changes introduced in Game 2. If it queries Test(t)
with t = (t′, ν) such that t 6= tν , then BAEAD1 responds with ⊥ and outputs the
tuple (t′, ν) to its AEAD challenger. With probability Pr[abortAEAD] this ticket is
valid, which yields

AdvINT-CTXT
BAEAD1,AEAD(λ) ≥ Pr[abortAEAD].

Game 6. This game is identical to Game 5, except that when the adversary queries
Test(tν), then we will always answer with a random value, independent of the bit
b. More precisely, recall that we abort if the adversary queries Test(t), t = (t′, ν)
such that t 6= tν , due to the changes introduced in Game 5. If the adversary queries
Test(tν), then the challenger in Game 5 uses the bit b $←− {0, 1} sampled at the
beginning of the experiment as follows. If b = 1, then it returns the session key sν .
Otherwise, a random rν

$←− S is returned.
In Game 6, the challenger samples another random value s′ν $←− S at the beginning

of the game. When the adversary queries Test(tν), then if b = 1 the challenger
returns s′ν . Otherwise, it returns a random rν

$←− S. Note that in either case the
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response of the Test(tν)-query is a random value, independent of b. Therefore the
view of A in Game 6 is independent of b. Obviously, we have

Adv6 = 0.

We will now show that any adversary who is able to distinguish Game 5 from
Game 6 can be used to construct an adversary BAEAD2 against the IND-CPA-security
of AEAD.

Construction of BAEAD2. Recall that the key used to generate ticket tν is ρ =
F4(K, ν). By definition of F4, ρ is an independent random string chosen at the
beginning of the security experiment. This enables a straightforward reduction to
the IND-CPA-security of the AEAD.
BAEAD2 proceeds exactly like the challenger in Game 6, except for the way the

ticket tν is created. BAEAD2 computes ρν = F4(K, ν). Then it outputs (sν , s′ν , ν) to
its challenger, which returns

tν :=

AEAD.Enc(ρ, sν , ν) if b′ = 0
AEAD.Enc(ρ, s′ν , ν) if b′ = 1

where ρ is distributed identically to ρν and b′ is the hidden bit used by the chal-
lenger of the AEAD. Apart from this, BAEAD2 proceeds exactly like the challenger
in Game 6. Eventually, A will output a guess b∗. BAEAD2 forwards this bit to its
challenger.
Note that if b′ = 0, then the view of A is perfectly indistinguishable from Game 5,

while if b′ = 1 then it is identical to Game 6. Thus, we have

|Adv6 − Adv5| ≤ AdvIND-CPA
BAEAD2,AEAD(λ).

By summing up probabilities from Game 5 to Game 6, we obtain

Adv0-RTT-SR
A,Resumption(λ) ≤ Advrand

BPPRF1,PPRF(λ) + ε+ µ ·
(
Advna-rand

BPPRF2,PPRF(λ)

+ AdvINT-CTXT
BAEAD1,AEAD(λ) + AdvIND-CPA

BAEAD2,AEAD(λ)
)
.

6.4 A PPRF with Short Secret Keys from Strong
RSA

In order to instantiate our generic construction of forward-secure and replay-resilient
session resumption protocol with minimal storage requirements, which is the main
objective of this chapter, it remains to construct suitable PPRFs with minimal stor-
age requirements and good computational efficiency. Note that a computationally
expensive PPRF may void all efficiency gains obtained from the 0-RTT protocol.
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In this section we describe a PPRF based on the strong RSA (sRSA) assumption
with secret keys that only consist of three elements, even after an arbitrary number
of puncturings. More precisely, a secret key consists of an RSA modulus N , an ele-
ment g ∈ ZN and a bitfield r, indicating positions where the PPRF was punctured.
The secret key size is linear in the size of the PPRF’s domain, since the bitfield
needs to be of the same size as the domain (which is determined at initialization,
and does not change over time). Hence, the PPRF’s secret key size is independent
of the number of puncturings.
Moreover, for any reasonable choice of parameters, the bitfield is only several

hundred bits long, yielding a short key in practice. Servers can use many instances
in parallel with the instances sharing a single modulus, so it is only necessary to
generate (and store) the modulus once, at initialization.
Since our primary objective is to provide an efficient practical solution for proto-

cols such as TLS 1.3 0-RTT, the PPRF construction described below is analyzed in
the random oracle model [BR93]. However, we note that we use the random oracle
only to turn a “search problem” (sRSA) into a “decisional problem” (as required for
a PRF). Therefore we believe that our construction can be lifted to the standard
model via standard techniques, such as hardcore predicates [BST14, BBS86, GL89].
All of these approaches would yield less efficient constructions, and therefore are
outside the scope of our work. Alternatively, one could formulate an appropriate
“hashed sRSA” assumption, which would essentially boil down to assuming that
our scheme is secure. Therefore we consider a random oracle analysis based on the
standard sRSA problem as the cleanest and most insightful approach to describe
our ideas.

Idea Behind the Construction. The construction is inspired by the RSA accu-
mulator of Camenisch and Lysyanskaya [CL02]. The main idea is the following.
Given a modulus N = pq, a value g ∈ ZN , and a prime number P , it is easy to
compute g 7→ gP mod N , but hard to compute gP 7→ g mod N without knowing
the factorization of N .
In the following let pi be the i-th odd prime. That is, we have (p1, p2, p3, p4, . . .) =

(3, 5, 7, 11, . . .). Let n be the size of the domain of the PPRF. Our PPRF on input
` produces an output of the form H(gp1·...·pn/p`), where H is a hash function that
will be modeled as a random oracle in the security proof. Note that g is raised
to a sequence of prime numbers except for the `-th prime number. As long as we
have access to g, this is easy to compute. However, if we only have access to gp`
instead of g, we are unable to compute the PPRF output without knowledge of the
factorization of N . This implies that by raising the generator to certain powers, we
prevent the computation of specific outputs. We will use this property to puncture
values of the PPRF’s domain.
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6.4.1 Formal Description of the Construction
Construction 5. Let H : ZN → {0, 1}λ be a hash function and let pi be the i-th
odd prime number. Then we construct a PPRF PPRF = (Setup,Eval,Punct) with
polynomial-size X = [n] in the following way.

• Setup(1λ) computes an RSA modulus N = pq, where p, q are safe primes.
Next, it samples a value g $←− ZN \{0, 1} and defines r := 0n andK = (N, g, r).
The primes p, q are discarded. Output is K.

• Eval(K, x) parses K = (N, g, (r1, . . . , rn)). If rx = 1, then it outputs ⊥.
Otherwise it computes and returns

y := H
(
gPx mod N

)
.

where pi is the i-th odd prime and

Px :=
∏
i∈[n]
i6=x
ri 6=1

pi

is the product of the first n odd primes, except for px.

• Punct(K, x) parses K = (N, g, (r1, . . . , rn)). If rx = 1, then it returns K.
If rx = 0, it computes g′ := gpx and r′ = (r1, . . . , rx−1, 1, rx+1, . . . , rn) and
returns K ′ = (N, g′, r′).

It is straightforward to verify the correctness of Construction 5 and that it is
invariant to puncturing.

6.4.2 Security Analysis
In the following we will prove that Construction 5 is pseudorandom at punctured
points, if H is modeled as a random oracle [BR93] and the sRSA assumption holds.

Theorem 12. Let PPRF = (Setup,Eval,Punct) be as above with polynomial-size
input space X = [n]. From each probabilistic polynomial-time adversary A with
advantage Advna-rand

A,PPRF(λ) against the na-rand-security we can construct an efficient
adversary B with advantage AdvsRSA

B (λ) against the sRSA problem, such that

AdvsRSA
B (λ) ≥ Advna-rand

A,PPRF(λ).

Proof. B receives as input a sRSA challenge (N, y). It starts A, which outputs a
set X ′ = {x1, . . . , x`} ⊆ [n] of values. B responds as follows to A.
We write Pj := ∏

i∈[n],i 6=j pi for the product of the first n odd primes except for
pj, and

P ′ :=
∏

i∈[n]\X ′
pi
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to be the product of the first n odd primes, except for those contained in X ′.
B defines r = (r1, . . . , rn) as

ri :=

1, if i ∈ X ′

0, else

for i ∈ [n], and then sets K := (N, y, r).
Let P ∗ := ∏

i∈X ′ pi be the product of the first n odd primes contained in X ′. To
show that this is a properly distributed punctured key, we have to show that there
exists g ∈ ZN such that gP ∗ = y mod N , and that y is distributed as if g was uniform
over ZN . To this end, note that N = pq is a product of two safe primes p = 2p′+ 1
and q = 2q′ + 1 with p′, q′ prime. Furthermore, we have p′, q′ � pn, because pn is
the n-th odd prime for polynomially-bounded n, which implies gcd(ϕ(N), P ∗) = 1,
where ϕ is Euler’s phi function. Hence, the map y 7→ y1/P ∗ is a permutation over
ZN , and therefore there exists an element g ∈ ZN such that

g = y1/P ′ mod N.

Since y is uniformly random, g is uniformly distributed, too. Hence, K := (N, y, r)
is a properly distributed punctured key.
B picks ` random strings h1, . . . , h`

$←− {0, 1}λ and outputs (K, (h1, . . . , h`)) to A.
A now has to distinguish whether

hi = H(gPxi mod N)

for all xi ∈ X ′, or whether the hi are uniformly random. Since H is a random
oracle, this is perfectly indistinguishable for A, unless at some point it queries the
random oracle on input a ∈ ZN such that there exists i ∈ [`] with a = gPxi mod N .
Since A has advantage Advna-rand

A,PPRF(λ), this must happen with probability at least
Advna-rand

A,PPRF(λ) at some point throughout the security experiment.
Whenever A outputs a value a ∈ ZN in order to query forH(a), B checks whether

a = gPxi mod N

holds for any i ∈ `. Since B does not know g explicitly, it cannot check this directly.
However, it can equivalently check whether

apxi = yP
′ mod N

holds for any i ∈ [`]. If the above equation indeed holds for some i ∈ [`], then B
applies Lemma 1 to solve the sRSA instance. Concretely, since gcd(pxi , P ′) = 1, it
can run the algorithm on input

(e, f, Z, Y ) := (pxi , P ′, a, y).

The algorithm returns X such that Xe = Y mod N . Thus, (X, e) = (X, pxi) is a
valid solution to the sRSA instance (N, y). Note that if A is efficient, then so is B,
and that the reduction is tight.
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Efficiency Analysis. The efficiency analysis of the sRSA-based PPRF was not
conducted by the author of this thesis. Hence, we will only recap the key observa-
tions of the analysis for completeness and refer the reader to [AGJ19, Sec. 4.3] for
detailed information.
Note that serving a ticket requires two exponentiations performed by the server.

One exponentiation is performed for the computation of the session key and one
is performed for puncturing the secret key. The computation of the session key
requires raising the generator g to the power of the product ∏p∈S p for some subset
of primes S, while puncturing requires raising by just one prime number. In any
case, both exponentiations have exponents smaller than the product over the first
n primes ∏i∈[n] pi.
In accordance with the NIST guidelines for key management [Bar20, §5.6.1.1],

we compare the cost of exponentiation to the cost of a standard 2048-bit RSA
exponentiation and a symmetric key length of 112 bits. For comparison to 2048-bit
RSA, we compute n as

n = max
{
n ∈ N

∣∣∣∣∣ log
(

n∏
i=1

pi

)
≤ 2048

}
= 232.

A server running one instance of our construction that can serve n = 232 tickets,
needs to store a 2048-bit group element and a 232-bit array, requiring a total storage
of 2280 bits. In contrast, a standard session cache requires 112 · 232 = 25984 bits
of storage. Thus, we achieve a decrease in storage size compared to session caches
by a factor of

25984
2280 ≈ 11.4.

6.5 Tree-based PPRFs
This section will consider a different approach to instantiating Construction 4 based
on a PPRF using trees. We will recap the idea behind tree-based PPRFs and ex-
plain how we utilize tree-based PPRFs as an instantiation of our session resumption
protocol and highlight implications.

6.5.1 Tree-based PPRFs
We will briefly recap the main idea behind tree-based PPRFs. It is well-known that
the GGM tree-based construction of PRFs from one-way functions [GGM86] can
be modified to construct a PPRF, as noted in [BW13, KPTZ13, BGI14]. It works
as follows.
Let G : {0, 1}λ → {0, 1}2λ be a PRG and let G0(ξ), G1(ξ) be the first and second

half of string G(ξ), where ξ is a random seed. The GGM construction defines a
binary tree on the PRF’s domain, where each leaf represents an evaluation of the
PRF. We label each edge with 0 if it connects to a left child, and 1 if it connects
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to a right child. We label each node with the binary string determined by the
path from the root to the node. The PRF value of x = x1 . . . xn ∈ {0, 1}n is
(Gxn ◦ . . . ◦ Gx1)(ξ) ∈ {0, 1}λ, that is, we compose G according to the path from
root to leaf x.
We will briefly describe how this construction can be transformed into a PPRF.

In order to puncture the PPRF at input x = x1 . . . xn we compute a tuple of n
intermediate node evaluations for prefixes x1, x1x2, . . . , x1x2 . . . xn and discard the
initial seed ξ. The intermediate evaluations enable us to still compute evaluations
on all inputs but x. Successive puncturing is possible if we apply the above com-
putations to an intermediate evaluation. Note that we have to compute at most
n · m intermediate values if we puncture at random, where m is the number of
puncturing operations performed.
The PPRF is secure if an adversary is not able to distinguish between a punc-

tured point and a truly random value, even when given the values of all computed
“neighbor nodes.” This holds as long as the underlying PRG is indistinguishable
from random [BW13, BGI14, KPTZ13]. Furthermore, note that the PPRF is also
invariant to puncturing as puncturing always deletes all nodes from a leaf up to the
root without leaving any trace which leaf is “responsible” for the deletion. Hence,
if an adversary is given a punctured key, it cannot deduce in which order it has
been punctured.

6.5.2 Combining Tree-based PPRFs with Tickets

In our session resumption scenario the tree-based PPRF will act as a puncturable
STEK. That is, evaluating the PPRF returns a ticket encryption key. Upon re-
sumption with a ticket we will retrieve the ticket encryption key from the PPRF
by evaluating it and puncture the PPRF at that very value to ensure the ticket
encryption key cannot be computed twice. Note that each ticket encryption key
essentially corresponds to a leaf of the tree. Thus we will subsequently use the
terms leaf and ticket (encryption key) interchangeably depending on the context.
For simplicity, we consider tickets which consist of a ticket number i and a ticket

lifetime t. Following Construction 4 we will issue the tickets one after another while
incrementing the ticket number for each. Note that the ticket number i corresponds
to the i-th leftmost leaf of the tree. The ticket lifetime τ determines how long an
issued ticket is valid for resumption. That is, if τ ′ > τ time has passed, the server
will reject the ticket.
We assume that the rate at which tickets are issued is roughly the same as the rate

tickets are used for session resumption. This holds as for each session resumption
we will issue a new ticket to again resume the session at a later point in time.
Similarly, we argue that tickets are roughly used in the same order for resumption
as we issued them. Again, if we consider multiple users, repeatedly requesting
tickets and resuming sessions, we are able to average the time a user takes until a
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session is resumed.8 This yields an implicit window of tickets in usage. The window
is bounded left by the ticket lifetime and bounded right by the last ticket the server
issued. Within the lifetime of the tree-based PPRF this implicit window will shift
from left to right over the tree’s leaves. It immediately follows that tickets are also
roughly used in that order.

6.5.3 Efficiency Analysis
We will now discuss how the performance of tree-based PPRFs depends on the ticket
lifetime. We consider a scenario where the ticket lifetime t equals the number of
leaves `. It is also possible to consider a scenario where the ticket lifetime is smaller
than the number of leaves. If both number of leaves ` and ticket lifetime t are
powers of 2, we can divide the leaves in `/τ windows, which span a subtree each.9
The subtrees are all linked with the “upper part” of the tree. A different approach
would be to instantiate a new tree when a tree runs out of tickets. We stress that
this does not affect our analysis. As soon as one subtree runs out of tickets, the
next subtree is used. If the rate at which we issue tickets stays the same, we are
able to delete parts of the former tree when issuing tickets of the next one. Hence,
for analysis, it is sufficient to consider a single tree.
If we were to puncture leaves strictly from left to right, we would need to store

at most log(`) leaves (one leaf per layer). Note that if we puncture leaves at
random, we would need to store at most p · log(`) nodes, where p is the number
of punctures performed. We can also bound the number of nodes we need to store
by p · log(`) ≤ `/2. This is due to the tree being binary. Essentially each node
(except for the lowest layer) represents at least two leaves. To be more precise, in
a tree with L layers, storing a node on layer i allows evaluating its 2L−i children.
Thus it is preferable to store those nodes instead of storing leaves in order to save
memory. In the worst-case only every second leaf is punctured. This results in
precomputation of all other leaves without being able to save memory by only
storing an intermediary node. Note that this would actually resemble a session
cache, where all issued tickets are stored. However, note that a session cache
needs to store each ticket when it has been issued, whereas our construction only
needs to increase its storage if a ticket is used for resumption. Thus, our tree-
based construction performs (memory-wise) at least as well as a session cache. In
practice, where user behavior is much more random, our approach is always better
than session caches.
The tree-based PPRF performs more computations compared to a session cache.

8Cloudflare have suggested that these assumptions seem reasonable. Unfortunately, they cannot
provide data on returning clients’ behavior yet.

9When implementing tree-based PPRFs in session resumption scenarios, such windows should
not be implemented as they only add management overhead to the algorithm instead of pro-
viding notable advantages. It is sufficient to use a tree-based PPRF as is and puncture leaves
for which the ticket’s lifetime has expired. This way we achieve an implicit implementation of
a sliding window scenario that ensures all established bounds still hold.
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Table 6.1: Worst-case size of secret key depending on the rate of tickets per second
and the ticket lifetime assuming 128 bit ticket size. The worst-case secret
key size is computed as |k| = 128rτ/2.

tickets per second r ticket lifetime τ worst-case secret key size |k|

16 1 hour 461 kB
16 1 day 11.06 MB
128 1 hour 3.69 MB
128 1 day 88.47 MB
1024 1 hour 29.49 MB
1024 1 day 707.79 MB

When issuing tickets we need to compute all nodes from the closest computed
node to a leaf. For puncturing we need to compute the same, plus computation
of some additional sibling nodes. However, when instantiating the construction
with a cryptographic hash function, such as SHA-3, evaluation and puncturing
of the PPRF consists only of several hash function evaluations. This makes our
construction especially suitable for high-traffic scenarios.
Table 6.1 gives worst-case secret key sizes based on the above analysis. However,

we expect the secret key size to be much smaller in practice. Unfortunately, we
are not able to estimate the average key size as this would depend on the exact
distribution of returning clients’ arrival times.

6.6 Conclusion and Open Problems
In this chapter we have shown that, contrary to prior belief, it is indeed possible to
construct 0-RTT session resumption protocols based on session tickets with absolute
forward security. That is, we are able to achieve forward security for all messages
sent by the client and do not rely on fresh input by the server for leveraging forward
security. Furthermore, our construction is generic and can be instantiated with any
secure PPRF. We have discussed two example instantiations. The first instantiation
is based on the GGM tree-based PPRF and can serve thousands of tickets per
second while only relying on symmetric cryptography. The second instantiation
is based on the sRSA assumption and is especially suitable for devices that are
restricted in their storage capacity.

Future Research. We close this chapter by discussing interesting problems for
future work. First and foremost it would be interesting to investigate under which
conditions our protocol is feasible for real-world deployment. A possible approach
would be to observe the clients’ returning behavior, that is, inspecting how long
the average clients takes to resume its session and how many clients do not resume
their session before the session ticket times out. Such data would allow us to more
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precisely compute the average storage required by our construction, giving evidence
how feasible our construction is in environments with low, medium, or high traffic.
As alternative to the above approach, we can implement a proof-of-concept of

our proposed session resumption protocol and inspect how efficient it performs
under real-world standards. This way, we can directly investigate how well our
construction performs when deployed. In conclusion, this leads us to the following
open problem.

Research Question 6. How efficient is our construction when deployed in the
real-world. Can we measure or compute bounds on the computational efficiency
and the average required storage depending on clients’ behavior?

Another interesting research direction from a theoretical point of view is the con-
struction of new PPRFs. A new construction would immediately yield a new way
to instantiate our protocol, possibly along with new advantages. As we have shown
that we can construct a PPRF from the RSA-based accumulator [CL02], it might
be a promising direction to investigate whether we can construct additional PPRFs
from other accumulators.

Research Question 7. Is it possible to construct new PPRFs, for example from
accumulators.

In this chapter we have shown how we can build secure 0-RTT session resumption
protocols. However, it still remains to prove that such a protocol can be securely
composed with the existing TLS 1.3 handshake.

Research Question 8. How can a 0-RTT session resumption protocol be securely
composed with the standardized TLS 1.3 protocol?

We will address this question in the next chapter and show that such a composition
is indeed possible, even without modification to the client side implementation of
TLS 1.3.
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7 TLS 1.3 0-RTT with Absolute
Forward Security

Author’s Contribution. This chapter is an extension of the results in [AGJ19],
which were covered in the previous chapter. The extension was solely developed by
the author of this thesis and is published in [AGJ20].

Remark on the Notion of Forward Security. The result covered in this chapter
was published before the new notion for forward security described in Chapter 3
was developed. In order to make the results within this thesis coherent, we will
adapt this notion in the following chapter. Note that this will slightly change the
wording of this chapter compared to the published version, however, it does not
affect the results in any remarkable way.

7.1 Motivation
This chapter is a seamless continuation of the results on 0-RTT session resump-
tion protocols described in the previous chapter. In this chapter we show how to
generically integrate any 0-RTT session resumption protocol in the TLS 1.3 re-
sumption handshake. In particular, we can show that the security of the 0-RTT
session resumption protocol allows achieving forward security for all messages (in-
cluding the 0-RTT data) of the resumption handshake without modifications to
any client implementations. This yields the first variant of the TLS 1.3 resumption
handshake based on session tickets with absolute forward security, whereas current
implementations are unable to provide this for the client’s first flight of messages.1
The security of the new TLS 1.3 resumption handshake variant is proven in the

multi-stage key exchange model by Fischlin and Günther [FG14, FG17]. Their
model was used in several recent proofs of key exchange protocols with similar
levels of complexity, such as Google’s QUIC protocol [FG14], and several drafts and
handshake modes of the TLS 1.3 protocol [DFGS15, DFGS16, FG17]. We adopt and
extend the proof of the TLS 1.3 draft-14 resumption handshake in [FG17]. Namely,
we model the TLS 1.3 resumption handshake in its finalized version, which follows

1We note that our protocol is incompatible with ticket re-use. That is, a client reusing tickets
may undesirably fail to resume its session, which is unavoidable if the server wants to provide
replay protection for 0-RTT data. As replayability of 0-RTT data is undesirable, we hope that
future client implementations might choose to not reuse tickets when sending 0-RTT data,
minimizing failed session resumption attempts.
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a different key schedule as considered in previous works, and generically integrate
a 0-RTT session resumption protocol to immediately achieve forward security.

7.2 Hash-based Key Derivation
TLS 1.3 relies on the hash-based key derivation function (HKDF) [KE10, Kra10],
which utilizes the hash-based message authentication code (HMAC) construction
[BCK96, KBC97] as a core building block. In this section, we briefly describe both
constructions.

Definition 43. Let H be a cryptographic hash function. We define the hash-based
message authentication code as

HMAC(k,m) := H
(
(k′ ⊕ opad) ‖H

(
(k′ ⊕ ipad) ‖m

))
,

where opad and ipad are block-sized constants, and where k′ := H(k) if k is larger
than the block size and k′ := k else.

The HKDF follows the extract-then-expand paradigm, that is, it employs special
functions to extract and expand keys. The extract function Ext(salt, src) takes a
(potentially fixed) salt salt and a source key material src as input and computes a
pseudorandom key as output. The expand function Exp(key, ctxt) takes a pseudo-
random key key and a context ctxt as input2 and computes a new pseudorandom
key.
For our security proof in Section 7.5, we rely on the assumption that both func-

tions Ext and Exp are pseudorandom functions [Kra10]. Additionally, we rely on
the HMAC(0, $)-$ assumption introduced in [FG17]. This assumption states that
HMAC(0, x) is computationally indistinguishable from y $←− {0, 1}λ if x $←− {0, 1}λ
and was used to prove the security of draft-14 of TLS 1.3 in [FG17].

Definition 44. Let HMAC be the function defined above. We say the HMAC(0, $)-$
assumption holds for HMAC if for all probabilistic polynomial-time adversaries A
the advantage

AdvHMAC(0,$)-$
A,HMAC (λ) :=

∣∣∣∣∣ Pr
x

$←−{0,1}λ
[
A(1λ,HMAC(0, x)) = 1

]
− Pr

y
$←−{0,1}λ

[
A(1λ, y) = 1

]∣∣∣∣∣
is negligible in λ.

2Formally, the expand function also takes an additional length parameter, determining the length
of the computed key, as input. We omit this parameter for simplicity and assume that the
length is equal to the security parameter λ unless stated otherwise.
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7.3 Multi-Stage Key Exchange
The TLS 1.3 protocol establishes multiple keys during execution. Some of these keys
are used to encrypt parts of the communication during protocol execution, while
others are used for external purposes only (e.g., for the record layer). To formally
analyze such a multi-key protocol, we use the multi-stage key exchange model
introduced by Fischlin and Günther [FG14] in its most recent form [FG17], which
has been used to prove security of various drafts of the TLS 1.3 handshake [DFGS15,
DFGS16, FG17]. Their model allows dividing the key exchange protocols into
stages, where each stage yields a key that supports a certain level of security. Since
we only consider session resumption protocols in this work, we will only briefly
describe the relevant parts of the model. See [FG17] for a more comprehensive
description of the model.

Changes to the Model. The model is taken verbatim from [FG17], except for
the following minor changes.

• We removed all model features that are unnecessary for proving TLS 1.3 in its
pre-shared key mode, composed with our generic 0-RTT session resumption
protocol. Namely, we removed key dependent aspects (TLS 1.3 supports key
independence), authentication levels other than mutual authentication (our
protocol provides mutual authentication), and replayable stages (our protocol
is non-replayable across all stages).

• We modified the corruption query. Instead of revealing the pre-shared keys
of a server, we equip each server with a long-term key K, which is used to
issue and open tickets. Corruption of a server will leak the current state of
the server’s secret key K. Due to the nature of our 0-RTT session resumption
protocol introduced earlier, the server’s secret key K will change with each
protocol execution.

Protocol-Specific and Session-Specific Properties. The multi-stage key ex-
change model separates protocol-specific and session-specific properties. Protocol-
specific properties capture, for example, the number of stages and whether estab-
lished keys are used externally only, while session-specific properties capture, for
example, the state of a running session. We begin by listing the protocol-specific
properties, which are represented by a vector (M,USE) holding the following infor-
mation:

• M ∈ N: The number of stages, that is, the number of keys derived.

• USE = {internal, external}M: The set of key usage indicators for each stage,
indicating how a stage-i key is used. We call a key internal if it used within
(and possibly outside of) the key exchange protocol, and external if it is only
used outside of the key exchange protocol.
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We denote the set of users by U , where each user is associated with a unique
identity U ∈ U . Sessions are identified by a unique label label ∈ U × U ×N, where
label = (U, V, d) denotes the d-th local session of user (and owner of the session) U
with the intended communication partner V .
Each session is associated with a key index d for the pre-shared secret pss and

its unique identifier psid. The challenger maintains vectors pssU,V and psidU,V of
created pre-shared secrets, where the d-th entry is the d-th pre-shared secret (resp.
d-th identifier) shared between users U and V . We write pssU,V,d (resp. psidU,V,d)
as shorthand for the d-th entry of pssU,V (resp. psidU,V ).
A session is represented by a tuple σ and comprises of the following information:

• label ∈ U × U × N: The unique session label.

• id ∈ U : The identity of the session owner.

• pid ∈ U : The identity of the intended communication partner.

• role ∈ {initiator, responder}: The role of the session owner.

• execstate ∈ {RUNNING ∪ ACCEPTED ∪ REJECTED}: The state of execution
where

RUNNING = {runningi | i ∈ N ∪ {0}},
ACCEPTED = {acceptedi | i ∈ N}, and
REJECTED = {rejectedi | i ∈ N}.

The state is set to acceptedi if the session accepts the i-th key. It is set to
runningi if the session proceeds with the protocol after accepting the i-th key.
It is set to rejectedi if the session rejects the i-th key (we assume that a session
does not continue in this case). The default value is running0.

• stage ∈ [M]: The session’s current stage, where the value stage is incremented
to i after the state execstate accepts or rejects the i-th key. The default value
is stage = 0.

• sid ∈ ({0, 1}∗ ∪ {⊥})M: sidi is the session identifier in stage i. It is set once
after the i-th key has been accepted. The default value is sid = (⊥, . . . ,⊥).

• cid ∈ ({0, 1}∗ ∪{⊥})M: cidi is the contributive identifier in stage i. It may be
set multiple times until the i-th key has been accepted. The default value is
cid = (⊥, . . . ,⊥).

• k ∈ ({0, 1}∗ ∪ {⊥})M: ki is the established session key in stage i. It set once
after the i-th key has been accepted. The default value is k = (⊥, . . . ,⊥).
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• keystate ∈ {fresh, revealed}M: keystatei is the state of the key in stage i. The
state fresh indicates that the key is fresh and the state revealed indicates that
the key has been revealed to the adversary. The default value is keystate =
(fresh, . . . , fresh).

• tested ∈ {true, false}M: testedi indicates whether the session key of stage i has
been tested. The default value is tested = (false, . . . , false).

• d ∈ N: The index of the pre-shared secret used in a protocol execution.

• pss ∈ {0, 1}∗ ∪ {⊥}: The pre-shared secret to be used in the session.

• psid ∈ {0, 1}∗ ∪ {⊥}: The identifier of the pre-shared secret to be used in the
session.

Each session is stored and maintained in a session list SList. If an incomplete session
tuple σ is added to the session list SList, we set all empty values to their defined
default values. For a more convenient notation, we write label.sid to denote the
entry sid in the tuple σ with the unique label label in SList.
Following Günther et al. [FG17], we define two distinct sessions label, label′ to be

partnered if the session’s session identifiers are equal (i.e., label.sid = label′.sid′ 6= ⊥).
Additionally, we require for correctness that two sessions are partnered if the session
have a non-tampered joint execution and both parties have reached an acceptance
state. This means that a protocol is correct if, in the absence of an adversary, any
two sessions executing the protocol are partnered upon acceptance.

Adversary Model. We consider a probabilistic polynomial-time adversary A that
controls the communication between all parties, and is capable of intercepting,
injecting, and dropping messages. We capture adversarial behavior where the ad-
versary trivially loses via a flag lost initialized to lost := false. The adversary has
access to the following queries:

• NewSecret(U, V, d, psid): This query generates a new pre-shared secret pss
with identifier psid. The secret pss is the d-th secret shared between users
U and V . If psid is a used identifier for an already registered secret or if
the d-th secret between U and V has already been set, return ⊥. Otherwise,
sample the secret pss uniformly at random from the pre-shared secret space
and store pss in pssU,V and pssV,U (as well as psid in psidU,V and psidV,U) as
the d-th entry.

• NewSession(U, V, role, d): Creates a new session with a unique new label label
for session owner identity id = U with role role, having pid = V as intended
partner. The value d indicates the key index of the pre-shared secret pss
between U and V .
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If the d-th pre-shared secret pss = pssU,V,d does not exist, return ⊥. Oth-
erwise, set label.pss := pss and label.psid := psidU,V,d. Add the session σ =
(label, U, V, role, d, pss, psid) to SList and return label.

• Send(label,m): Sends a message m to the session with label label. If there is
no tuple σ with label label in SList, return ⊥. Otherwise run the protocol as
the session owner of label when receiving message m and return the output
and the updated state of execution label.execstate. If label.role = initiator and
m = init, the protocol is initiated without any input message.
If the state of execution changes to an accepted state for stage i, the protocol
execution is suspended and acceptedi is sent to the adversary. The adversary
can later resume execution by issuing a special Send(label, continue) query,
receiving the next protocol message and the next state of execution.
If the state of execution changes to acceptedi for some i ∈ [M] and there is a
partnered session label′ 6= label in SList with label′.keystatei = revealed, then
label.keystatei is set to revealed as well.
If the state of execution changes to acceptedi for some i ∈ [M] and there is
a partnered session label′ 6= label in SList with label′.testedi = true, then set
label.testedi := true and also set label.ki := label′.ki if USEi = internal. If the
state of execution changes to acceptedi for some i ∈ [M] and the intended
partner pid is corrupted, then set label.keystatei := revealed.

• Reveal(label, i): Reveals the i-th key of session label. If there is no session
with label label in SList or if label.stage < i (i.e., the session key has not yet
been established), then return ⊥. Otherwise, set label.keystatei := revealed
and if there exists a partnered session label′ in SList with label.stage ≥ i,
then additionally set label.keystatei := revealed. Finally, send the session key
label.ki to the adversary.

• Corrupt(U): This query provides the adversary with the long-term secret K of
participant U ∈ U . For stage-j forward security we additionally set keystatei
to revealed if i < j (i.e., revelation of non-forward-secure keys) or if i > stage
(i.e., revelation of future keys).

• Test(label, i): Tests the i-th key in the session label. If there is no session with
the label label in SList, or label.execstate 6= acceptedi, or label.testedi = true,
return ⊥. If there is a partnered session label′ in SList with label.execstate 6=
acceptedi, set lost := true (i.e., only allow testing if the key has not been used
yet). Otherwise, set label.testedi := true.
The Test oracle maintains a global bit bTest

$←− {0, 1}. If bTest = 0, sample a
random session key k∗ $←− D. Else set k∗ := label.ki to the real session key.
If USEi = internal, set label.ki := k∗ (i.e., we replace the internally used
session key with the random and independent test key k∗). Additionally, if a
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partnered session label′ exists, we set label′.tested := true if the i-th key was
accepted. Furthermore, we also set label′.ki := label.ki if USEi = internal.
Finally, return k∗.

Match Security. The notion of Match security ensures that session identifiers
properly identify partnered sessions in the following sense:

1. Sessions with the same session identifier for some stage hold the same key at
that stage.

2. Sessions with the same session identifier for some stage share the same con-
tributive identifier at that stage.

3. Sessions are partnered with the intended participant, and share the same key
index.

4. Session identifiers do not match across different stages.

5. At most two session have the same session identifier at any stage.

Formally, we define the Match security game GMatch
A,KE (λ) as follows:

Definition 45. Let KE be a multi-stage key exchange protocol with properties (M,
USE) and A a probabilistic polynomial-time adversary interacting with KE in the
following game GMatch

A,KE (λ):

1. The challenger generates a long-term key K for each participant U ∈ U .

2. The adversary gets access to the queries NewSecret,NewSession, Send,Reveal,
Corrupt,Test.

3. Eventually, A stops with no output.

We say that A wins the game, denoted by GMatch
A,KE (λ) = 1, if at least one of the

following events occur:

1. Different session keys in some stage of partnered sessions. More formally, if
there exist two distinct labels label, label′ such that label = label′ 6= ⊥ for some
stage i ∈ [M] and label.execstate 6= rejectedi and label′.execstate 6= rejectedi,
but label.ki 6= label′.ki.

2. Different or unset contributive identifiers in some stage of partnered sessions.
More formally, if there exist two distinct labels label, label′ such that label =
label′ 6= ⊥ for some stage i ∈ [M], but label.cidi 6= label′.cidi or label.cidi =
label′.cidi = ⊥.
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3. Different stages share the same session identifier. More formally, if there
exist two (not necessarily distinct) labels label, label′ such that label.sidi =
label′.sidj 6= ⊥ for some stages i, j ∈ [M] with i 6= j.

4. More than two sessions share the same session identifier in any stage. More
formally, if there exist three distinct labels label, label′, and label′′ such that
label.sidi = label′.sidi = label′′.sidi for some stage i ∈ [M].

We say KE is Match-secure if for all probabilistic polynomial-time adversaries A
the advantage

AdvMatch
A,KE (λ) := Pr

[
GMatch
A,KE (λ) = 1

]
is negligible in λ.

Multi-Stage Security. The notion of MultiStage security ensures that, for each
stage, keys are indistinguishable from randomly sampled keys in the multi-stage
setting.

Definition 46. Let KE be a multi-stage key exchange protocol with key distribu-
tion D and properties (M,USE) and A a probabilistic polynomial-time adversary
interacting with KE in the following game GMultiStage,D

A,KE (λ):

1. The challenger generates a long-term key K for each participant U ∈ U .
Additionally, the challenger samples a random test bit bTest

$←− {0, 1} and sets
lost := false.

2. The adversary gets access to the queries NewSecret,NewSession, Send,Reveal,
Corrupt,Test. Note that such queries may set the flag lost to true.

3. Eventually, A stops and outputs a guess b.

4. The challenger C sets the flag lost := true if there exists two (not necessarily
distinct) session labels label, label′ and some stage i ∈ [M] such that label.sidi =
label′.sidi and label.keystatei = revealed and label′.testedi = true (i.e., if the
adversary has tested and revealed the key of some stage in a single session or
in two partnered sessions).

We say that A wins the game GMultiStage,D
A,KE (λ) if b = bTest and lost = false. We say

KE is MultiStage-secure, providing stage-j forward security, with key usage USE
if KE is Match-secure and for all probabilistic polynomial-time adversaries A the
advantage

AdvMultiStage,D
A,KE (λ) :=

∣∣∣∣Pr
[
GMultiStage,D
A,KE (λ) = 1

]
− 1

2

∣∣∣∣
is negligible in λ.
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7.4 Protocol Composition
In this section we show how to generically compose a 0-RTT session resumption
protocol with the TLS 1.3 resumption handshake and prove the composition’s se-
curity in the multi-stage key exchange model, achieving a stage-1 forward-secure
resumption handshake. In contrast, without such a session resumption protocol
it is only possible to show that the TLS 1.3 resumption handshake only achieves
stage-3 forward security via an additional execution of a Diffie–Hellman key ex-
change [FG17].

Integrating a 0-RTT Session Resumption Protocol into TLS 1.3. The TLS
1.3 standard allows the server to unilaterally choose a mechanism for issuing tick-
ets and serving resumption handshakes. The only interoperability requirement is
correctness. That is, when resuming a session, the server should correctly compute
the relevant resumption secret and use it as prescribed by the key schedule. The
client is generally not aware of the resumption mechanism in use by the server; the
client merely receives an opaque ticket, and sends it to the server when resuming.
In our construction, tickets are computed using a 0-RTT session resumption pro-

tocol Resumption = (Setup,TicketGen, ServerRes). The server uses K $←− Setup(1λ)
to compute its long-term key K for ticket encryption. A ticket t is computed as
t = TicketGen(K,RMS ‖ nT ) and can be opened using the ServerRes algorithm.
Note that by computing (RMS ‖ nT , K ′) := ServerRes(K, t) a modified secret key

of the server K ′ is produced. Replacing K := K ′ guarantees forward security if
Resumption is a 0-RTT-SR-secure protocol. That is, forward security is invoked
immediately after the ticket has been processed on the server side. Should K leak
at a later point in time, the resumption master secret RMS (and all keys derived
from it) will not be compromised.

On Sending Multiple Pre-Shared Keys. TLS 1.3 allows the client to send mul-
tiple pre-shared key identifiers in its first message if no 0-RTT data is sent. If,
however, 0-RTT data is sent, the standard explicitly states that the handshake will
be aborted unless the server picks the first pre-shared key identifier from the client’s
list [Res18, §4.2.10, §4.2.11]. This restriction exists to ensure that the early data
only has to be encrypted under one pre-shared key chosen by the client. In this work
we only allow the client to send one pre-shared key identifier, as we are specifically
interested in the 0-RTT mode. Should a client choose not to send 0-RTT data,
then previous analyses of the TLS 1.3 handshake protocol apply [FG17]. Hence,
our change leads to a cleaner protocol and is purely cosmetic.

Protocol Description. In the following, we describe our modified version of the
TLS 1.3 resumption handshake. We assume that client and server have performed a
prior full handshake, allowing them to agree on a pre-shared secret. The pre-shared
secret is denoted as resumption master secret RMS. The client stores RMS (and an
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associated nonce nT ) alongside a server-issued ticket t. The ticket t was computed
by the server using its secret key K and holds RMS and nT as contents.
We provide an illustration of the protocol in Figure 7.1. For readability, the

figure slightly deviates from the message format in the TLS 1.3 specification. In
the figure we separated the binder value Fin0 and the ticket message from the
ClientHello message, while in the standard the ticket is included in the ClientHello
message. Outside of the figure, we follow the TLS 1.3 standard and consider Fin0
and ticket as a part of the ClientHello.
The following messages are exchanged during protocol execution:

ClientHello: The ClientHello message is the first message sent by the client. It
contains the protocol version, a random nonce nC chosen by the client, and
a list of supported cryptographic primitives, and extensions. Additionally, it
contains the ticket ticket = t, which is an encryption of the resumption master
secret RMS and the ticket nonce nT .

Fin0: The binder value Fin0 comprises of an HMAC over a (partial) ClientHello
message to ensure integrity.

ServerHello: The ServerHello message contains a server nonce nS, a selected protocol
version, extensions, and supported cryptographic primitives.

FinS: The FinS message comprises of an HMAC over the protocol transcript up to
this point, and is encrypted under the server handshake traffic key.

FinC: The FinC message comprises of an HMAC over the protocol transcript up to
the FinS message, and is encrypted under the client handshake traffic key.

More information on the computation of the hashed finished messages is given
in Appendix D.

7.5 Security Analysis
In the following, we analyze the security of our modified TLS 1.3 protocol in the
multi-stage key exchange model in its pre-shared key mode. That is, we show
that our protocol satisfies both Match and MultiStage security. We start by dis-
cussing some preliminaries for both proofs. The vector of protocol-specific proper-
ties (M,USE) looks as follows:

• M = 5: The number of stages is equal to five (cf. Figure 7.1), deriving traffic
keys tkets, (tkchts, tkshts), (tkcats, tksats), the exporter master secret EMS, and
the resumption master secret RMS.

• USE = (external, internal, internal, external, external): The handshake traffic
keys (tkchts, tkshts) are used protect internal protocol messages, while all other
keys are only used outside of the protocol.
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Client: RMS, nT , t Server: K

PSK := Exp(RMS, `1 ‖ nT ) ClientHello

ticket = t (RMS ‖ nT ,K ′) := ServerRes(K, t)
replace K := K ′

PSK := Exp(RMS, `1 ‖ nT )
ES := Ext(0,PSK) ES := Ext(0,PSK)
bk := Exp(ES, `2) bk := Exp(ES, `2)
fk0 := Exp(bk, `3) fk0 := Exp(bk, `3)
Fin0 := HMAC(fk0, H2) Fin0 Fin′0 := HMAC(fk0, H2)

verify Fin0

ets := Exp(ES, `4 ‖H1) ets := Exp(ES, `4 ‖H1)
tkets := Exp(ets, `5) tkets := Exp(ets, `5)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . End of Stage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dES := Exp(ES, `6) ServerHello dES := Exp(ES, `6)
HS := Ext(dES, 0) HS := Ext(dES, 0)
chts/shts := Exp(HS, `7/`8 ‖H3) chts/shts := Exp(HS, `7/`8 ‖H3)
tkchts/tkshts := Exp(chts/shts, `3) tkchts/tkshts := Exp(chts/shts, `3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . End of Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fkC/fkS := Exp(chts/shts, `5) fkC/fkS := Exp(chts/shts, `5)
verify FinS {FinS}tkshts FinS := HMAC(fkS , H4)

FinC := HMAC(fkC , H4) {FinC}tkchts verify FinC
dHS := Exp(HS, `6) dHS := Exp(HS, `6)
MS := Ext(dHS, 0) MS := Ext(dHS, 0)
cats/sats := Exp(MS, `9/`10 ‖H5) cats/sats := Exp(MS, `9/`10 ‖H5)
tkcats/tksats := Exp(cats/sats, `3) tkcats/tksats := Exp(cats/sats, `3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . End of Stage 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EMS := Exp(MS, `11 ‖H5) EMS := Exp(MS, `11 ‖H5)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . End of Stage 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RMS′ := Exp(MS, `12 ‖H6) RMS′ := Exp(MS, `12 ‖H6)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . End of Stage 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 7.1: The TLS13wRES protocol executed between a client and a server. The
client possesses a pre-shared secret RMS and a ticket t (encrypted un-
der the server’s secret key K) issued by the server. All values `i are
publicly known labels and all hash values Hi are computable from the
communication’s transcript. We provide a technical overview of label
values and hash values in Appendix D.



We define session matching with the following session identifiers (implicitly) con-
sisting of all messages sent in each stage:

sid1 = (ClientHello),
sid2 = (sid1, ServerHello),
sid3 = (sid2,FinS),
sid4 = (sid3, “ems”),
sid5 = (sid4, “rms”).

Note that neither FinS, nor “ems,” nor “rms” contribute to the established key and
are instead included to ensure distinct session identifiers across stages. We set the
contributive identifier of Stage 2 to cid2 = (ClientHello) after the client has sent
(resp. after the server has received) the ClientHello message and set, on sending
(resp. receiving) the ServerHello message the contributive identifier to cidi = sidi
(for stages i ∈ {1, 3, 4, 5}) after the respective stage’s session identifier was set.

7.5.1 Match Security
We start by proving Match security of our construction. Our proof follows the proof
by Fischlin and Günther [FG17, Theorem 5.1] as the constructions are very similar.

Theorem 13. The protocol TLS13wRES is Match-secure with the above properties
(M,USE). For any probabilistic polynomial-time adversary we have

AdvMatch
A,TLS13wRES(λ) ≤ ns · 2−λ,

where ns is the maximum number of sessions.

Proof. In order to prove the Match security of TLS13wRES we need to show that
the five properties of Match security hold for TLS13wRES.

1. Sessions with the same session identifier for some stage hold the same key at
that stage. This property holds, as all session identifiers contain the ClientHello
message which fixes the ticket and thus the resumption master secret RMS.
The RMS in turn determines all following keys, guaranteeing that sessions
with the same identifier hold the same key at each stage.

2. Sessions with the same session identifier for some stage share the same con-
tributive identifier at that stage. This property holds trivially for Stage 1 as
sid1 = cid1. For all other stages i ∈ {2, 3, 4, 5}, the contributive identifier is
set to its final value cidi := sid2 as soon as the sender and receiver set the
session identifier.

3. Sessions are partnered with the intended participant, and share the same key
index. This property holds as honest senders only use a legitimate ticket t
(included in the ClientHello message), which ensures that both parties agree
on the same partner and key index.
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4. Session identifiers do not match across different stages. This property holds
trivially, as sid1, sid2, sid3 include distinct non-optional messages and sid4, sid5
include separating identifier strings.

5. At most two sessions have the same session identifier at any stage. Note that
each session identifier includes the ClientHello message and hence the client
nonce nC of bit length λ. The first session identifier is only set after the sever
has processed the ClientHello (and thus the ticket t), implying that the server’s
secret key has been replaced before accepting the Stage 1 session key. Hence,
replaying the ClientHello message to the server cannot lead to an accepting
stage in a different session, but will incur a protocol abortion. A collision can
hence only occur if a third party picks the same random nonce nC . We can
upper-bound the collision probability by ns · 2−λ, where ns is the maximum
number of sessions.

7.5.2 MultiStage Security
We proceed with proving MultiStage security of our construction. Our proof follows
the proof of TLS 1.3 draft-14 by Fischlin and Günther [FG17, Theorem 5.2] as the
constructions are very similar, but is different in two main aspects.

1. The proof by Fischlin and Günther only considers TLS 1.3 resumption hand-
shake in draft-14. We adopted and extended their proof to the finalized
TLS 1.3 key schedule.

2. The resumption master secret is derived from a 0-RTT session resumption
protocol Resumption, requiring an additional reduction to the security of
Resumption. This way we can achieve forward security for all messages in
the very first stage of the resumption handshake, by only modifying the key
management on the server side and without any changes to clients or the
standardized TLS 1.3 protocol flow.

Theorem 14. The protocol TLS13wRES is MultiStage-secure in a key-independent
and stage-1 forward-secure manner with the above properties (M,USE) and key dis-
tribution D if Resumption is invariant to puncturing. That is, for any probabilistic
polynomial-time adversary A against the MultiStage security, we can construct ad-
versaries B1, . . . ,B15 such that

AdvMultiStage,D
A,TLS13wRES(λ) ≤ 5ns ·

(
Advcollision

B1,H (λ) + np ·
(
Adv0-RTT-SR

B2,Resumption(λ)

+ Advrand
B3,Exp(λ) + AdvHMAC(0,$)-$

B4,Ext (λ) + Advrand
B5,Exp(λ)

+ Advrand
B6,Exp(λ) + Advrand

B7,Exp(λ) + Advrand
B8,Ext(λ) + Advrand

B9,Exp(λ)
+ Advrand

B10,Exp(λ) + Advrand
B11,Exp(λ) + Advrand

B12,Ext(λ) + Advrand
B13,Exp(λ)

+ Advrand
B14,Exp(λ) + Advrand

B15,Exp(λ)
))
,
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where ns is the maximum number of sessions, np is the number of pre-shared secrets,
and Resumption is invariant to puncturing.

Proof. We will conduct this proof in a sequence of games [Sho04] between a chal-
lenger C and an adversary A. We start with an adversary playing the MultiStage
security game. Over a sequence of hybrid arguments, we will stepwise transform
the security game to a game where the Test-query is independent of the challenge
bit bTest. The claim then follows from bounding the probability of distinguishing
any two consecutive games. By Advi we denote A’s advantage in the i-th game.

Game 0. We define Game 0 to be the original MultiStage security game. By
definition we have

Adv0 = AdvMultiStage,D
A,TLS13wRES(λ).

Game 1. This game is identical to Game 0, except that we restrict the adversary to
a single Test query. We can apply the hybrid argument by Dowling et al. [DFGS15,
Appendix A], which reduces the adversary’s advantage in a five stage protocol by
a factor of at most 5ns, where ns is the number of sessions.3 The hybrid argument
also implicitly guesses which session label (either a client or a server session) will
be tested by the adversary, allowing us to identify it in advance. In conclusion, we
now have

Adv1 ≥
1

5ns
· Adv0.

Game 2. This game is identical to Game 1, except that we abort if during protocol
execution the same hash value is computed for two distinct inputs. Should this
happen, we can construct an adversary B1 that breaks the collision resistance of
the hash function H by outputting the two distinct input values to the challenger
of the collision resistance game. We can thus bound the probability of abortion as

|Adv2 − Adv1| ≤ Advcollision
B1,H (λ).

Game 3. This game is identical to Game 2, except that we now guess the index of
the pre-shared secret used within the tested session amongst the maximum number
of pre-shared secrets. If the tested session uses a different pre-shared secret, we
abort the game. As the guess is oblivious to the adversary until an abort occurs,
we have

Adv3 ≥
1
np
· Adv2,

where np is the maximum number of pre-shared secrets. Note that a correct guess
allows us to identify the pre-shared secret pssU,V,d in the tested session and hence
the intended partner of the tested session. Without loss of generality let us assume
that U is the client session and V is the server session.

3The hybrid argument essentially consists of 5ns hybrids (ns possible Test queries in each of the
five stages) where the first j ∈ [5ns] tested keys are replaced with random keys. This allows
implicitly guessing the session to be tested by the adversary.
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Game 4. In this game, we modify the output of the ServerRes function. To be
precise, we proceed as in Game 3, but replace the output of ServerRes for both the
owner of the tested session and its intended partner with a random value RMS ‖ nT .
We will now show that any adversary that is able to distinguish Game 3 from
Game 4, can be used to construct an adversary against the 0-RTT-SR security of
Resumption. Concretely, we have

|Adv4 − Adv3| ≤ Adv0-RTT-SR
B2,Resumption(λ).

Construction of B2 against Resumption. The adversary behaves like the chal-
lenger in Game 3, except for all interactions involving the server V associated to
the tested session, which we simulate as follows. At first, the adversary initializes
the 0-RTT-SR challenger and receives a sequence of tickets t1, . . . , tµ. It tests the
first ticket by invoking Test(t1)→ γ ∈ {s1, r1} and immediately corrupts the chal-
lenger to receive the challenger’s secret key K. Note that this secret key K has
been modified by the challenger and thus cannot be used to open ticket t1.
As we are now in possession of the secret key K, we are able to simulate all

sessions but the one using ticket t1. We utilize ticket t1 as the ticket sent within the
ClientHello message of the tested session between client U to server V . Note that
we can perfectly simulate all queries of A, since it is not allowed to query Reveal
for the tested session or its partner. Likewise, it can query Corrupt only after the
keys have been accepted by U and V , implying replacement of the server’s secret
key K. If the adversary issues a corrupt query on the tested server, we are able
to puncture the server’s secret key in accordance with all queries issued in other
sessions of the server. The invariance to puncturing of Resumption guarantees us
that this sequence of key replacements (which may be in the wrong order) cannot
be efficiently detected by the adversary.
Eventually, the adversary will output a guess b′, which we forward to the chal-

lenger. If the challenger bit is b = 0, we perfectly simulate Game 3 (i.e., s1 is the
actual expected output) and if b = 1, we perfectly simulate Game 4 (i.e., r1 is a
uniformly random output). This proves the claim.
Note that the security of Resumption ensures that the adversary cannot learn the

value RMS for the tested session or its partner, even when corrupting immediately
after the ClientHello message and the ticket have been processed. This ensures the
achievement of forward security in Stage 1.
The next sequence of games aims to replace all traffic keys with random values.

That is, we will sequentially replace the outputs of the functions Ext and Exp with
random values.

Game 5. This game is identical to Game 4, other than replacing Exp(RMS, ·)
with a lazily-sampled random function, such that the pre-shared key PSK is re-
placed by a random value PSK in the tested session. Any adversary that is able to
distinguish this replacement can be used to construct an adversary that breaks the
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pseudorandomness of the HKDF. We claim

|Adv5 − Adv4| ≤ Advrand
B3,Exp(λ).

Construction of B3 against Exp. The adversary B3 behaves exactly like in Game 4,
but evaluates Exp(RMS, ·) via the PRF evaluation oracle provided by the PRF chal-
lenger. Since the adversary A is not able to learn the real resumption master secret
RMS by corrupting the tested session (cf. Game 4), it is only known to be a
uniformly random value. Hence, B3 perfectly simulates Game 4 if the PRF ora-
cle computes Exp and perfectly simulates Game 5 if the PRF oracle is a random
function, which proves the claim.

Game 6. This game is identical to Game 5, except for replacing Ext(0,PSK) with
a random value ES in the tested and partnered session. Recall that Ext(x, y) =
HMAC(x, y). Any adversary that is able to distinguish this replacement can be
used to break the HMAC(0, $)-$ assumption of Ext. We claim

|Adv6 − Adv5| ≤ AdvHMAC(0,$)-$
B4,Ext (λ).

Construction of B4 against Ext. The HMAC assumption states that no probabilis-
tic polynomial-time adversary is able to distinguish HMAC(0, x) from y $←− {0, 1}λ,
for uniformly chosen inputs x $←− {0, 1}λ. B4 behaves exactly like the challenger in
Game 5, but uses the value Ext(0,PSK) as challenge. If Ext(0,PSK) = HMAC(0, x)
for x ∈ {0, 1}λ it perfectly simulates Game 5 and if Ext(0,PSK) = y for y ∈ {0, 1}λ,
it perfectly simulates Game 6. This proves the claim.

Game 7. This game is identical to Game 6, except that we replace all evaluations
of Exp(ES, ·) by a lazily-sampled random function. In particular, this yields a
random early traffic secret ets, a random binder key bk, and a random expanded
early secret dES.
Note that the hash value for deriving the early traffic secret is dependent on the

session identifier. The changes introduced in Game 2 guarantee that the hash value
does not collide across non-partnered users. Furthermore, all three values for the
second input of the Exp function are distinct labels, ensuring distinct outputs.
Any adversary that is able to recognize this change can be used to construct an

adversary against the pseudorandomness of the HKDF in the same fashion as done
in Game 5, leading to the following bound

|Adv7 − Adv6| ≤ Advrand
B5,Exp(λ).

Game 8. This game is identical to Game 7, except for replacing Exp(ets, ·) with
a lazily-sampled random function, yielding a random value tkets for the early traf-
fic key in the tested and partnered session. Following the same arguments as in
Game 5, we have

|Adv8 − Adv7| ≤ Advrand
B6,Exp(λ).
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Game 9. This game is identical to Game 8, except for replacing Exp(bk, ·) with
a lazily-sampled random function, yielding a random value fk0 for the early fin-
ished key in the tested and partnered session. Following the same arguments as in
Game 5, we have

|Adv9 − Adv8| ≤ Advrand
B7,Exp(λ).

Game 10. This game is identical to Game 9, except for replacing Ext(ES, 0) with a
lazily-sampled random function, yielding a random HS in the tested and partnered
session. Following the same arguments as in Game 5, we have

|Adv10 − Adv9| ≤ Advrand
B8,Ext(λ).

Game 11. This game is identical to Game 10, except that we replace all evalua-
tions Exp(HS, ·) by a lazily-sampled random function. In particular, this yields a
random client handshake traffic secret chts (resp. server handshake traffic secret
shts), and a random expanded handshake secret dHS.
Note that the hash value for deriving the handshake traffic secrets is dependent

on the session identifier. The changes introduced in Game 2 guarantee that the hash
value does not collide across non-partnered users. Furthermore, all three values for
the second input of the Exp function are distinct labels, ensuring distinct outputs.
Following the same arguments as in Game 5, we have

|Adv11 − Adv10| ≤ Advrand
B9,Exp(λ).

Game 12. This game is identical to Game 11, except for replacing Exp(chts, ·)
with a lazily-sampled random function, yielding a random client handshake traffic
key tkchts and a random client finished key fkC in the tested and partnered session.
Following the same arguments as in Game 5, we have

|Adv12 − Adv11| ≤ Advrand
B10,Exp(λ).

Game 13. This game is identical to Game 12, except for replacing Exp(shts, ·)
with a lazily-sampled random function, yielding a random server handshake traffic
key tkshts and a random server finished key fkS in the tested and partnered session.
Following the same arguments as in Game 5, we have

|Adv13 − Adv12| ≤ Advrand
B11,Exp(λ).

Game 14. This game is identical to Game 13, except for replacing Ext(MS, 0)
with a lazily-sampled random function, yielding a random MS in the tested and
partnered session. Following the same arguments as in Game 5, we have

|Adv14 − Adv13| ≤ Advrand
B12,Ext(λ).
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Game 15. This game is identical to Game 14, except that we replace all evalua-
tions Exp(MS, ·) by a lazily-sampled random function. In particular, this yields a
random client application traffic secret cats (resp. server application traffic secret
sats), a random exporter master secret EMS, and a random new resumption master
secret RMS′.
Note that the hash value for deriving the application traffic secrets is dependent

on the session identifier. The changes introduced in Game 2 guarantee that the hash
value does not collide across non-partnered users. Furthermore, all four values for
the second input of the Exp function are distinct labels, ensuring distinct outputs.
Following the same arguments as in Game 5, we have

|Adv15 − Adv14| ≤ Advrand
B13,Exp(λ).

Game 16. This game is identical to Game 15, except for replacing Exp(cats, ·)
with a lazily-sampled random function, yielding a random client application traffic
key tkcats in the tested and partnered session. Following the same arguments as in
Game 5, we have

|Adv16 − Adv15| ≤ Advrand
B14,Exp(λ).

Game 17. This game is identical to Game 16, except for replacing Exp(sats, ·)
with a lazily-sampled random function, yielding a random server application traffic
key tksats in the tested and partnered session. Following the same arguments as in
Game 5, we have

|Adv17 − Adv16| ≤ Advrand
B15,Exp(λ).

In Game 17, all keys tkets, tkchts, tkshts, tkcats, tksats, EMS, and RMS′ derived in the
tested session are chosen uniformly at random. Observe that (contrary to standard
TLS session resumption) the security of the Resumption protocol ensures that re-
playing the ClientHello message to multiple server sessions does not cause multiple
sessions to be partnered to the original client session. We hence achieve replay pro-
tection across all stages of the protocol. All sessions that are not partnered with
the tested session derive different traffic keys as explained in Games 7, 11, and 15.
Therefore the view of A in Game 17 is independent of bTest. Obviously, we have

Adv17 = 0.

By summing up the advantages from Game 0 to Game 17, we conclude the proof.

Remark on the Optional Diffie–Hellman Key Exchange. TLS 1.3 allows in-
clusion of an optional Diffie–Hellman key exchange in its resumption handshake.
This additional key exchange has an important function in the TLS 1.3 resumption
handshake. Namely, including the Diffie–Hellman key into the derivation of the
handshake key, will achieve stage-3 forward security as shown by [FG17, Theorem
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5.4]. We deliberately excluded this optional key exchange from our analysis, as
the multi-stage key exchange model does not capture any property of the Diffie–
Hellman key exchange beyond the forward security aspect, which we already obtain
through other means. Hence, including the Diffie–Hellman key exchange does not
offer any security benefits (within this model). We stress that the optional Diffie–
Hellman key exchange can be added to the resumption handshake (as done in
TLS 1.3) if wanted, without any loss of security.

7.6 Conclusion and Open Problems
In this chapter we have resolved the open problem of how to securely compose
the 0-RTT session resumption protocol from Chapter 6 with the standardized
TLS 1.3 [Res18] protocol. We showed that any secure 0-RTT session resumption
protocol can be generically composed with the TLS 1.3 resumption handshake. In
particular, this yields the first variant of the TLS 1.3 resumption handshake based
on session tickets that achieves forward security for all messages (including the
0-RTT data) without modifying client implementations of TLS 1.3.

Future Research. We close this chapter with a discussion about possible direc-
tions for future research. One interesting direction would be to investigate the
security of TLS session resumption across hostnames, that is, if clients are allowed
to resume sessions to different servers that are not the ticket-issuing server but
share the same secret key as the ticket issuing server. TLS provides an extension
to enable this feature called Server Name Indication (SNI) [Eas11].
It is not obvious whether enabling this feature indeed yields a secure session

resumption protocol. This fact is even acknowledged in the TLS 1.3 standard:
“Clients [...] SHOULD only resume if the SNI value matches the one used in the
original session” [Res18, §4.6.1], suggesting potential issues with a session resump-
tion for SNI values that do not match the one used in their original session.
Understanding protocols in such complex environments is highly valuable as it

might yield simpler and more efficient protocols, which are also easier to implement
and less prone to (implementation) flaws. This leads us to the following open
problems:

Research Question 9. How secure is TLS if session resumption is performed
across hostnames? How can we formally define security for such protocols and is
it possible to prove security of the standardized TLS 1.3 protocol? If not, how can
we design a secure session resumption protocol across hostnames?

Another interesting problem concerns the tightness of the TLS 1.3 session re-
sumption handshake. Intuitively, tight security ensures that the security of a scheme
does not decrease significantly with an increasing number of protocol participants.
As key exchange and session resumption protocols typically have millions of par-
ticipants, it is highly desirable to draw as-tight-as-possible security proofs.
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If we take a look at our security proof in Section 7.5, there is a security loss of
≈ 5ns · np, where ns is the maximum number of sessions and np is the maximum
number of pre-shared secrets per client. A tight security proof aims to avoid or at
least decrease the “loss factors.” In some cases it is even possible to show that a
security reduction cannot be tight under certain conditions [Cor02, BJLS16].
Recently, Diemert and Jager have investigated the tightness of the TLS 1.3 full

handshake [DJ20]. One possible approach to proving tightness for the TLS 1.3
session resumption handshake would be to compose their result with a tight security
proof for the session resumption protocol.

Research Question 10. Is it possible to draw a tight security proof for the TLS
1.3 session resumption handshake?
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8 Conclusion
We close this thesis by examining the impacts of our result and discussing the
potential future of 0-RTT protocols.

Impact of this Thesis. The most notable impact of this thesis is due to the pub-
lications proving that a prior belief was false. That is, showing that it is actually
possible to construct a forward-secure non-interactive single-pass circuit construc-
tion protocol [LGM+20] and showing that it is indeed possible to construct 0-RTT
session resumption protocols based on session tickets with forward security and
replay protection for the 0-RTT data [AGJ19]. Especially the latter result has
already been referenced in the context of session resumption protocols in the In-
ternet of Things [ACF19], exemplifying that our developed techniques might find
applications beyond the context of this thesis.
Furthermore, some works of the author of this thesis have been subject of interna-

tional media coverage. Most notable, is an article written by The Register’s Shaun
Nichols on how to build a better Tor1 based on the results published in [LGM+20].
Overall, the results covered in this thesis have increased the general awareness of

what kind of forward security can be achieved in 0-RTT-like protocols.

The Future of 0-RTT. The overall opinion on 0-RTT is essentially divided into
two factions: those in favor of the approach and those who are not. The main issue
with 0-RTT protocols concerns the security of the sent 0-RTT data. During the
standardization process of TLS 1.3, there have been lots of discussion on this topic,
even claiming that forward security “can’t be done in 0-RTT,”2 and Amazon’s Colm
MacCárthaigh stating that enabling “0-RTT without built-in safety mechanisms [...]
would be insane.”3
Eric Rescorla, the leading contributor of the TLS 1.3 standard, has acknowledged

that 0-RTT poses a “difficult application integration issue” but also stated that
it is “too big a win not to do.”4 The benefit of 0-RTT protocols is exemplified

1Shaun Nichols: It’s time you were T0RTT a lesson: Here’s how you could build a better Tor, say
boffins, December 2019, https://www.theregister.co.uk/2019/12/12/tortt_research_
paper/.

2Nico Williams: [TLS] 0-RTT security considerations (was OPTLS), November 2014, https:
//mailarchive.ietf.org/arch/msg/tls/OZwGgVhySbVhU36BMX1elQ9x0GE/

3Colm MacCárthaigh: Twitter Thread, March 2018, https://twitter.com/colmmacc/status/
978438568866541568.

4Eric Rescorla, TLS 1.3, November 2018, http://web.stanford.edu/class/ee380/
Abstracts/151118-slides.pdf.
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by Google’s approach to knowingly forgo forward security of the 0-RTT data in
their QUIC protocol. Even the Cloudflare, one of the largest content providers on
the Internet, has enabled 0-RTT as experimental feature on all their free service
websites in 2017.5
Over the last years, we have seen a number of new approaches to, despite prior

belief, achieve forward security and replay protection for the 0-RTT data [GHJL17,
DJSS18, DGJ+20, AGJ19]. While the first approaches rely on computational heavy
building blocks, [AGJ19] managed to develop a 0-RTT session resumption protocol
that achieves both forward security and replay protection, thus mitigating the main
security concerns of 0-RTT protocols.
However, it is a long path from designing a protocol on paper until it is actually

deployed in practice. To this date, we have no experience how well the developed
0-RTT protocols will perform in practice. Since 0-RTT protocols have already
been deployed in practice, we hope to see adaption of our techniques and ideas in
the near future. As we have been approached by several large Internet companies
interested in our ideas, we are positive that further effort will be spent to further
secure 0-RTT protocols in practice.

5Nick Sullivan: Introducing Zero Round Trip Time Resumption (0-RTT), March 2017, https:
//blog.cloudflare.com/introducing-0-rtt/.
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A Glossary of Terms Qualifying
Forward Secrecy and Forward
Security

This section is taken verbatim from [BG20]. It provides a description of terms that
have been used in literature to describe aspects of forward security.

Asynchronous Forward Security/Secrecy: Rather than describing a special prop-
erty, these terms have been used to refer to forward security and forward se-
crecy in asynchronous communications [UDB+15]. This is the same concept
as what we have called non-interactive protocols throughout this thesis.

Eventual Forward Secrecy: This term is used in the context of circuit construction
protocols and was coined by Øverlier and Syverson [ØS07]. They define that
eventual forward secrecy is achieved if forward secrecy is achieved a certain
time period after the circuit has been closed. We remark that the term
“secrecy” might be confusing in this context as circuit construction protocols
typically demand more security guarantees such as maintaining the privacy
of a circuit. Hence, we believe that “eventual forward security” captures the
same notion if forward security is seen as a generalization of forward secrecy
(cf. Section 3.3). Furthermore, the definition aligns with our category of
“delayed forward security” (cf. Section 3.5).

Full Forward Secrecy: This term was used by Günther et al. [GHJL17] informally
as a means to emphasize their claim that their proposed scheme, using punc-
turable encryption, does not suffer any deficiency in comparison with other
forms of forward secrecy. Thus it is simply a synonym for forward secrecy.

Immediate Forward Secrecy: This term is used in the context of circuit construc-
tion protocols and was coined by Øverlier and Syverson [ØS07]. They define
that immediate forward secrecy is achieved if forward secrecy is achieved
immediately after the circuit has been closed. We remark that the term “se-
crecy” might be confusing in this context as circuit construction protocols
typically demand more security guarantees such as maintaining the privacy
of a circuit. Hence, we believe that “immediate forward security” captures
the same notion if forward security is seen as a generalization of forward se-
crecy (cf. Section 3.3). Furthermore, the definition aligns with our category
of “absolute forward security” (cf. Section 3.5).

171



Non-Interactive Forward Security/Secrecy: This term was first used by Adam
Back [Bac96] in an online posting (see discussion in Section 3.3.1). Like
the term “asynchronous forward secrecy,” this is a general concept, rather
than a formal definition, in the same way that we have referred to non-
interactive protocols throughout this paper. Although Back used the term
“non-interactive forward secrecy,” several later authors use “non-interactive
forward security” as a synonym.

Partial Forward Security/Secrecy: When defining adversary capabilities we have
implicitly assumed that any relevant party can be compromised after the tar-
get protocol session has completed. Some protocols can remain secure if the
adversary is restricted to only compromising a subset of protocol parties, and
such protocols are said to provide partial forward secrecy [PBM00]. As a
simple example, suppose we change the basic Diffie–Hellman protocol (Fig-
ure 3.3) so that one party, say A, uses a long-term public/secret key pair
instead of an ephemeral key pair. Then compromise of A will reveal the
shared secret, while compromise of B, who continues to use an ephemeral
key, will not. In this thesis we have not considered partial forward secrecy,
but the concept can be applied to many of the examples and definitions we
have considered. Several authors used the term “partial forward security” as
a synonym.

Perfect Forward Secrecy: This was the original term used by Günther in the first
definition of forward secrecy [Gün90] and many authors continue to use this
term. However, in common with other authors we prefer to drop the qualifier
“perfect” on the grounds that it is redundant and potentially misleading due
to the connotation with “perfect secrecy.” The latter implies unconditional
security which is usually not achieved with protocols providing forward se-
crecy.

Weak Forward Secrecy: This notion, first discussed by Bellare et al. [BPR00], is
achieved by a protocol if the adversary is disallowed from taking an active role
in the target session. As pointed out by Krawczyk [Kra05], this property is of-
ten achieved by two-message key exchange protocols even if a stronger notion
is missing. This has been misinterpreted by many researchers to mean that no
two-message protocol can achieve forward secrecy, but this is false [JKL04].

Strong Forward Secrecy: The first usage of this term [BCP02] seems to have been
a form of forward secrecy where the adversary, upon compromise of a party,
obtains not only long-term keys but also internal memory of the party. This
meaning has been prominent in analysis of group key exchange and is similar
to our stronger adversaries discussed at the end of Section 3.5. This term
has also been used by some authors as a synonym for forward secrecy, to
differentiate it from weak forward secrecy.
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B Feasibility of Message Suppression
Attacks in [GM15]

For completeness, we give a sketch how message suppression attacks (see Sec-
tion 3.4.3) are not captured in the security model for puncturable encryption by
Green and Miers. To this end, consider the IND-CCA security experiment for punc-
turable encryption in Figure B.1.

GIND-CPA
A,PE (λ)

1 : (pk, sk0) $←− KGen(1λ, d)
2 : P := ∅, C := ∅, n := 0, b $←− {0, 1}
3 : (m0,m1, t

∗
1, . . . , t

∗
d) $←− AOPunct(t),ODec(c,t1,...,td),OCorrupt(pk)

4 : where OPunct(t) increments n, computes skn := Punct(skn−1, t), and adds P := P ∪ {t},
5 : where ODec(c, t1, . . . , td) returns Dec(skn, c, t1, . . . , td),
6 : and where OCorrupt sets C := P and returns skn.
7 : If OCorrupt was queried and {t∗1, . . . , t∗d} ∩ C = ∅, abort and return 0.
8 : c∗ $←− Enc(pk,mb)
9 : b∗ $←− AOPunct(t),ODec(c,t1,...,td),OCorrupt(c∗)

10 : where OPunct(t) increments n, computes skn := Punct(skn−1, t), and adds P := P ∪ {t},
11 : where ODec(c, t1, . . . , td) returns Dec(skn, c, t1, . . . , td) if (c, t1, . . . , td) 6= (c∗, t∗1, . . . , t∗d),
12 : and where OCorrupt sets C := P and returns skn if {t∗1, . . . , t∗d} ∩ P = ∅.
13 : return 1 if b = b∗

14 : return 0

Figure B.1: Security experiments for puncturable encryption by Green and
Miers [GM15]. The bold parts highlight how puncturing tags restricts
the adversary to win the experiment.

Note that set P keeps track which tags the adversary has punctured so far (line 4).
As soon as the adversary compromises the challenger, the set of already punctured
tags is “copied” to set C (lines 6, 12), that is, set C keeps track which tags have
been punctured before compromise took place. The experiments aborts early if the
tags for the challenge ciphertexts have not been punctured before committing to
the challenge messages (line 7), or restricts access to the OCorrupt oracle if the tags
for the challenge ciphertexts have not been punctured after to committing to the
challenge messages (line 12).
In the case of a message suppression attack, the adversary would withhold an
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already sent message and compromise the receiving entity such that decryption of
the message is still possible with the receiving entity’s secret key. The restrictions
described above, however, hinder the execution of such attack. Hence, message
suppression attacks are not captured in this security model.
In Section 3.4.3 we have shown that message suppression attacks cannot be

avoided if only a fine-grained puncturing mechanism is deployed. In fact, this is the
explicit motivation for a second construction by Green and Miers that additionally
features a coarse-grained puncturing mechanisms. However, the security model for
the second construction is restricted in the same way as the above. Hence, following
the same line of arguments, one can show that messages suppression attacks are
not captured in this model either.
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C IBBE with Constant Size
Ciphertexts and Secret Keys

Bilinear Maps. Let BilGen be an algorithm that, on input a security parameter
1λ, outputs (p, e,G1,G2,GT , g1, g2) $←− BilGen(1λ), where G1, G2, GT are groups of
prime order p with bilinear map e : G1 × G2 → GT and generators gi ∈ Gi for
i ∈ {1, 2}.

Construction. The subsequent construction is the identity-based broadcast en-
cryption scheme by Delerablée [Del07]. The main advantages of her scheme are the
constant size ciphertexts and secret keys.
Let (p, e,G1,G2,GT ) $←− BilGen(1λ) be public parameters of a bilinear map e :

G1×G2 → GT with prime orders p and |p| = λ. LetH : Z∗p → Z∗p be a cryptographic
hash function. We construct an identity-based broadcast encryption scheme IBBE
= (Setup, Extract, Enc, Dec) as follows:

• Setup(1λ, κ). The key generation algorithm chooses two generators g1 ∈ G1
and g2 ∈ G2 and a secret value γ $←− Z∗p. It sets and outputs the master public
key mpk and master secret key msk as

mpk :=
(
w = gγ1 , v = e(g1, g2), gγ2 , . . . , gγ

κ

2

)
and msk := γ.

• Extract(msk, ID). The key extraction algorithm takes as input the master
secret key msk = γ and an identity ID. Output is an extracted secret key

sk ID := g
1

γ+H(ID)
1 .

• Enc(mpk,S). Given a master public key mpk = (w, v, gγ2 , . . . , gγ
κ

2 ) and a set
of identities S = {IDj}j∈[s] with s ≤ κ, it samples a symmetric key k by
choosing a secret value ρ $←− Zp and computing k := vρ = e(g1, g2)ρ. Finally,
the algorithm computes a ciphertext c = (c1, c2) with

c1 := w−ρ and c2 := g
ρ·
∏s

j=1(γ+H(IDj))
2 .

It outputs (k, c).
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• Dec(sk IDj ,S, c). Given a ciphertext c = (c1, c2), it computes

k =
(
e
(
c1, g

pi,S(γ)
2

)
· e(sk IDj , c2)

) 1∏s

j=1,j 6=iH(IDj)
, where

pi,S(γ) = 1
γ

 s∏
j=1
j 6=i

(γ +H (IDj))−
s∏
j=1
j 6=i

H(IDj)

 ,
and returns k.

Note that indeed the ciphertext is c ∈ G1 × G2 and an extracted secret key is
sk IDj ∈ G1.

Remark on Computing the Ciphertext. The decapsulation algorithm uses a
function p whose description is dependent of γ. However, neither γ nor any other
secret values are needed to compute it. Instead we can compute gpi,S2 by only using
public values.
Let cv(a1, . . . , an) be a function that on input of n values returns the sum of

all possible pairwise distinct v-combinations of the input values (e.g., c2(a, b, c) =
ab+ ac+ bc) and let Si = {H(IDj) : j ∈ S \ {i}}. Then we can rewrite

pi,S(γ) = 1
γ

 s∏
j=1
j 6=i

(γ +H(IDj))−
s∏
j=1
j 6=i

H(IDj)



= 1
γ

γs−1 + γs−2c1(Si) + . . .+ γcs−2(Si) + cs−1(Si)−
s∏
j=1
j 6=i

H(IDj)


= γs−2 + γs−3c1(Si) + . . .+ cs−2(Si).

In our case it suffices to compute

g
pi,S(γ)
2 = g

γs−2+γs−3c1(Si)+...+cs−2(Si)
2

= gγ
s−2

2 ·
(
gγ

s−3

2

)c1(Si) · . . . · gcs−2(Si)
2 .

As s ≤ κ, all gγ2 -like values are publicly known and thus, gpi,S2 is computable with-
out any secret knowledge. The given argument also holds for the computation of
ciphertext c2 in the key encapsulation.

Security of the IBBE. In [Del07] Delerablée analyzes the security of the above
scheme under the so-called (f, g, F )-GDDHE assumption. This is a variant of a
generalization of the Diffie–Hellman Exponent Assumption introduced in [BBG05]
and analyzed in the generic bilinear group model in [Del07]. For the sake of com-
pleteness, we restate the theorem from [Del07].
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Theorem 15. From each efficient adversary B against IND-sID-CPA-security of
the IBBE scheme, we can construct an efficient algorithm A against the (f, g, F )-
GDDHE assumption with advantage

AdvGDDHE
A (f, g, F ) ≥ 1

2 · AdvIND-sID-CPA
B,IBBE (λ, κ).
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D Detailed Description of TLS 1.3
Protocol Values

In this section we provide additional technical details of our modified protocol,
introduced in Chapter 7. The details include a table of labels and their values (cf.
Table D.1) and a short description of how the transcript hashes are computed.

Table D.1: An overview of labels and their usage (including references) used in the
TLS 1.3 protocol.

Label String used for Reference

`1 resumption deriving the pre-shared key [Res18, §4.6.1]
`2 ext/rs binder binder key derivation [Res18, §7.1]
`3 finished finish key derivation [Res18, §4.4.4]
`4 c e traffic deriving the early traffic secret [Res18, §7.1]
`5 key traffic key calculation [Res18, §7.2]
`6 derived preparation of secret extraction [Res18, §7.1]
`7 c hs traffic deriving the client handshake traffic secret [Res18, §7.1]
`8 s hs traffic deriving the server handshake traffic secret [Res18, §7.1]
`9 c ap traffic deriving the client application traffic secret [Res18, §7.1]
`10 s ap traffic deriving the server application traffic secret [Res18, §7.1]
`11 exp master deriving the export master secret [Res18, §7.1]
`12 res master deriving the resumption master secret [Res18, §7.1]

Computation of Transcript Hashes. TLS 1.3 includes hash values in the deriva-
tion of traffic secrets and the computation of finished messages. In most cases the
hashes are computed over the concatenation of all previously-sent and -received
messages. The only exception is the computation of the binder value Fin0, which
only includes a partial transcript of the client’s first flight of messages, ignoring
the “binders list” (which is technically part of the client’s first messages) [Res18,
§4.2.11.2]. All other hash values are computed as described in [Res18, §4.4.1].
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