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1 Introduction

In the development process for electromagnetic devices, as e.g. electric machines, actu-
ators, and transformers, computer-based numerical simulations of the time-dependent
electromagnetic fields are a standard tool avoiding the necessity to build prototypes
and perform measurements, which can both easily be time-consuming and expensive.
The numerical simulations of these systems are usually based on the magnetoqua-
sistatic approximation of Maxwell’s equations.

The electroquasistatic approximation of Maxwell’s equations is of relevance in the
design of high voltage devices, e.g. surge arresters, AC/DC cable systems, or insulators.
The robustness of high voltage devices can be improved by utilizing electric field
stress grading microvaristor materials within the insulation. Due to a nonlinear field
dependent conductivity, these materials become conductive if the electric field strength
exceeds a switching field strength which prevents high voltage breakthroughs [34]. In
the design process of such devices, transient nonlinear electroquasistatic field problems
need to be solved numerically.

The required algorithms shall not only be robust and give sufficiently accurate results,
but should also be computationally efficient. The goal is, that many simulations can be
performed in an acceptable overall simulation time. Only if this criterion is matched,
optimization algorithms that may require several thousands of simulations, as in case
e.g. with genetic algorithms, may be employed to find an optimal design of the device
to be developed. Furthermore, many simulations are required if uncertainty shall be
quantified, e.g. if the effect of manufacturing tolerances of the dimension of an air gap in
an electric machine on the torque shall be determined. Thus, the computational speed
of the algorithms used for numerical simulations is directly related to low development
costs and the ease with which an optimized design can be obtained.

1



1 Introduction

The standard approach for the computation of the transient electromagnetic field
problems follows the method of lines, i.e., the problem is firstly discretized in space
and then secondly in time. A popular method for spatial discretization is the finite
element method (FEM) due to its ability to use unstructured meshes and due to
versatile ansatz functions suitable to various problems. Problems of interest frequently
contain small structures, as e.g. the narrow air gap in an electric machine, or the spatial
region around a triple point at the covered energized end of a long rod insulator, that
need to be resolved using fine meshes resulting in large numbers of degrees of freedom
(dofs). This also results in large algebraic systems of equations.

For integrating the spatially discretized field problem in time, various time integration
methods exist. Amongst the most often used for integrating magneto- and or electro-
quasistatic field problems in time, are the implicit Euler method, the singly diagonal
Runge-Kutta method (SDIRK3(2)) and Rosenbrock-Wanner methods. These all have
in common that, being implicit methods, they are unconditionally stable which makes
them applicable to the stiff ordinary differential equations of spatially discretized elec-
troquasistatic field problems and to the infinitely stiff algebraic differential equations
of discrete magnetoquasistatic field problems [45].

Commonly, ferromagnetic material is involved in magnetoquasistatic field problems
of practical relevance, as e.g. in the design of an electric machine. This results in
nonlinear systems of equations that need to be linearized as part of the solution process.
The same problem holds for solving electroquasistatic field problems in the design of
high-voltage insulators which might contain a nonlinear microvaristor field-grading
material to prevent voltage breakthroughs. In order to solve a system of equations
in an implicit time step, the system needs to be linearized. Linearization methods
usually are iterative schemes, such as e.g. the Newton-Raphson method, which stop
if changes in the sequence of approximative solutions are below a certain tolerance.
In each implicit time step, several Newton-Raphson iterations might be necessary. In
each Newton-Raphson iteration, the Jacobian matrix and the stiffness matrix must
be updated. Thus, these iterative, implicit, unconditionally stable time integration
schemes applied to large algebraic systems of equations, may result in a computational
effort, that often requires long simulation times of up to several days to weeks for just
one (usually three-dimensional, full model) configuration.

All of this contributes to long simulation times and might hinder the use in multi-query
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scenarios, as e.g. multiparameter optimization or uncertainty quantification.

A significant acceleration of computations by further enhancement of clock speed of
central processing units (CPUs) cannot be expected anymore, as exceeding power
consumption make high clock speed inefficient and economically unattractive.

The aim of the work presented in this thesis is to establish algorithms with the potential
to speed-up the time required for the simulation of magnetoquasistatic field problems
and electroquasistatic field problems on contemporary and future hardware.

As the speed of a single processor is limited, it naturally follows that employing many
processors respectively performing different tasks in parallel is a viable approach.

At this, the main idea underlying the work presented in this thesis, is to accelerate the
computations by introducing algorithms that exploit the parallel-computing capabili-
ties of general purpose graphics processing units (GPGPUs). The procedure described
above, in which many large algebraic systems of equations may need to be linearized
by an iterative method and are then commonly solved by an iterative solver, is not
well suited for efficient parallelization. A key point to favor GPGPU-parallelization is
the use of an explicit time integration method.

Explicit time integration methods favor parallelization by avoiding linearization, as
nonlinearities commonly only occur in expressions on the right-hand side. Ideally, the
computations required in an explicit time integration scheme are only matrix-vector
multiplications which are well parallelizable on GPGPUs. An additional benefit of us-
ing explicit time integration methods is improved accuracy, due to the use of exact
solvers and the strong oversampling caused by the commonly small time step sizes re-
quired for numerical stability. In semi-explicit time integration schemes linear algebraic
systems of equations are solved, thus avoiding the use of linearization methods.

Another promising approach to reducing simulation time by exploiting the available
many-core hardware, is integration in time using the parallel-in-time algorithm, also
termed Parareal algorithm. This approach is investigated for electroquasistatic field
problems in this thesis. In the Parareal algorithm, the time axis is discretized by a
coarse and by a fine grid. In a first phase, the spatially discretized problem is integrated
in time using the coarse time grid, i.e., using a large time step size, by an uncondi-
tionally stable implicit time integration scheme. In a second phase, the problem is
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integrated in time using an accurate explicit time integration scheme, i.e., using a
small time-step size, between the grid points of the coarse time grid. Since the time in-
tegration in each time interval of the coarse time grid can be performed independently
from the other intervals, the computations can be carried-out in parallel on different
hardware units, e.g. CPU cores, GPGPU cores, or even server nodes. In a third phase,
the solution on the coarse time grid points is improved based on the results from the
solutions on the fine time grid points and a difference between the old and the new
solution on the coarse time grid points is evaluated. The first, second, and third phase
of the Parareal algorithm are repeated iteratively until convergence of the solution is
reached, i.e., the difference evaluated in the third phase reaches values lower than a
chosen tolerance.

1.1 Previous and Related Works

Early work by Yioultsis et al. investigate the use of explicit time integration methods
for the numerical computation of magnetoquasistatic field problems, starting from the
finite difference time domain (FDTD) method in [117, 116]. The FDTD scheme proba-
bly is the most popular method for numerically computing electromagnetic field prob-
lems based on the wave-equation, i.e., for computing radiation and scattering problems
[115]. For these problems, based on the full set of Maxwell’s equations, the interdepen-
dence of electric and magnetic fields is very well represented by the leap-frog scheme.
In case of the electroquasistatic approximation, the magnetic induction is neglected,
whilst the displacement current is neglected in the magnetoquasistatic approxima-
tion. Hence, applying the FDTD method’s leap frog scheme is less straight-forward
for quasistatic field problems. An additional disadvantage is the frequent presence of
nonlinear materials in quasistatic field problems, as e.g., ferromagnetic material. Ap-
proaches such as Scaled Lightspeed FDTD, which keep the displacement current and
scale the problem to a reduced speed of light still have a very small stable time step
size.

Yioultsis et al. derive a numerical computation method in [117] based on the FDTD
method, termed "General FDTD", usable in magnetoquasistatic field problems. Here,
a modified magnetic vector potential formulation is used in the conducting regions
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of the problems, where eddy currents are excited, while a magnetic scalar potential
formulation is considered in the nonconducting regions of the problem. The prob-
lem is discretized in space using finite differences on a structured grid. As the mag-
netoquasistatic field problem in the conducting regions is a diffusion problem, the
explicit DuFort-Frankel algorithm is chosen for time integration in the conducting
regions, which is suitable for diffusion problems. In the nonconducting regions, the
maqnetoquasistatic problem is reduced to a magnetostatic Poisson problem. Here,
two approaches are proposed by Youltsis et al. The first was to compute the field in
the nonconducting regions in the outside domains of the problem using the boundary
element method (BEM) [117]. The BEM, however, requires inverting a large dense ma-
trix. Although the inversion is only performed once, storing the inverse requires a lot
of computer memory. Alternatively, matrix sparsification techniques, such as adaptive
cross approximation (ACA) [5], could be used to make BEM formulations accessible
to iterative solution techniques. As an alternative approach to the BEM, terminat-
ing the computational domain using a perfectly matched layer (PML) is proposed in
[116]. The PML has the additional advantage of efficiently truncating the mesh at
the computational domain’s boundaries. The main advantage of allowing the use of
an explicit time integration scheme, comes at the cost of using two different methods
and formulations for spatially discretizing the conducting and nonconducting regions,
which results in additional algebraic equation systems at the boundaries between con-
ducting and nonconducting regions for matching results separately obtained in both
regions.

Conducting and nonconducting regions of eddy current problems are also treated sep-
arately in the work by Außerhofer et al. presented in [2]. As in [117, 116], a magnetic
vector potential formulation is used. The conducting regions are spatially discretized
using the discontinuous Galerkin finite element method (DF-FEM). The uncoupled
finite elements yield a block diagonal mass matrix and enable explicit time stepping.
The stiffness of the system of ordinary differential equations describing the magnetic
vector potential in the conducting regions requires a small stable time step size. The
nonconducting regions are discretized in space by FEM with continuous ansatz func-
tions. In nonconducting regions, no eddy currents exist and magnetic vector potential
and magnetic field do not have a time derivative. Therefore, no actual time integration
is performed for the field in these regions, but it is updated regularly to match the field
in the conducting regions at the boundary conditions between both regions. At this,
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an equation system containing the ill-conditioned curl-curl matrix needs to be solved.
The proposed method is demonstrated on a two-dimensional numerical example [2].

A similar approach is proposed in [99, 100, 97]. Based on an H − Φ-formulation DG-
FEM, where H is the magnetic field strength and Φ is the magnetic scalar potential,
is used for discretizing conducting regions in space. For spatially discretizing the mag-
netic scalar potential Φ in nonconducting regions, FEM based on continuous nodal
elements is applied. This eliminates the ill-conditioned curl-curl matrix in the non-
conducting regions and an equation system based on well-conditioned matrices needs
to be solved when the field in the nonconducting regions is updated. As in [2, 3], an
explicit method is used for time integration in the conducting regions and the field
in the nonconducting regions is updated only after several explicit time steps. The
method is demonstrated in [99] on a three-dimensional example with constant mag-
netic permeability, where the maximum stable time step size for the explicit time
integration scheme is in the micro-second range. The application of this method to
multiply connected domains is presented in [98], where a multivalued magnetic scalar
potential, as in [110], is used for representing the rotational part of the magnetic field
in nonconducting, multiply-connected regions. A three-dimensional FEM model of a
solid conductor bend with an elliptical hole is used for numerical validation.

So far, all previous works presented are based on the idea to treat conducting and non-
conducting regions separately by discretizing them in space using different methods.
The work presented in [14, 92] is based on a different approach and is the fundament on
which this thesis is based on. A magnetic vector potential formulation of the magneto-
quasistatic field approximation is used. The entire computational domain is discretized
in space using the same method, e.g. FEM or the finite integration technique (FIT)
[112, 113]. By separating the unknowns depending on their allocation in conducting
or nonconducting material and application of a Schur complement, the differential al-
gebraic equation system is transformed into an ordinary differential equation system.
This stiff ordinary differential equation system can be integrated in time using an
explicit time integration scheme. The approach will be explained in detail in chapter
5.

With respect to accelerating the simulation time for solving electroquasistatic field
problems, several methods are presented in [78], covering both computational aspects,
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as e.g. applying GPU-accelerated FEM assembly or GPU-accelerated multigrid pre-
conditioning techniques, as well as mathematical approaches, as e.g. explicit time inte-
gration methods, especially Runge-Kutta-Chebyshev methods [103, 79, 78]. Persistent
developments in computer hardware towards massive many-core systems promise sig-
nificant computational speed-up for well parallelizable algorithms, e.g. the parareal
algorithm for parallel-in-time integration proposed in [62, 41, 40, 39]. Here, time inte-
gration is performed adopting a multigrid approach: In a first step, time integration is
carried out serially on a coarse time grid to obtain initial values for time integration on
a fine grid, where each interval between two time points on the coarse grid is given to
an individual processor. In a second step, all processors perform a time integration on
the fine time grid in parallel. Integration on the coarse and fine time grid is executed
iteratively until convergence.

The work in this thesis follows the approach presented in [94] where the Parareal
algorithm is applied to a transient nonlinear magnetoquasistatic field problem using
the implicit Euler method for time integration on both the coarse and the fine time
grid. In this work, the application of the explicit Euler scheme on the fine time grid is
additionally investigated.

1.2 Overview

This thesis’s main focus is on formulating and accelerating the explicit time integration
of three-dimensional nonlinear transient magnetoquasistatic field problems based on a
magnetic vector potential formulation that are transformed into ordinary systems of
equations, as originally suggested in [14, 92].

Additionally, the applicability of the Parareal algorithm to nonlinear two-dimensional
electroquasistatic field problems is presented.

The structure of this thesis is outlined in the following.

Chapter 2 is an introduction to the partial differential equations considered and ex-
plains the derivation of the magneto- and electroquasistatic approximation starting
from Maxwell’s equations.
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The discretization in space and integration in time of both partial differential equations
derived in chapter 2 is subject to chapter 3. Here, the application of the finite element
method for the spatial discretization and of the explicit and implicit Euler method for
time integration are briefly explained.

Two different solvers for solving large systems of algebraic equations are used within
the work of this thesis: The preconditioned conjugate gradient method and the LU
decomposition. Both are highlighted in chapter 4.

Accelerating techniques for the (semi-) explicit time integration of magnetoquasistatic
field problems are presented in chapter 5. The approach for transforming the dif-
ferential algebraic equation (DAE) system of the magnetoquasistatic field problem
based on a magnetic vector potential formulation into an ordinary differential system
of equations as suggested in [14, 92] is explained in detail in subchapter 5.1. The
transformation requires a pseudo-inversion of the singular curl-curl matrix in noncon-
ducting regions. The singular matrix can be regularized as shown in [14, 92] using a
grad-div gauging technique. Alternatively, a pseudo-inverse can be used by applying
the preconditioned conjugate gradient method. This approach was first presented in
[25]. It is used as basis for further investigations on acceleration performed within the
framework of this thesis and explained in chapter 5.

The computation of improved start vectors for the preconditioned conjugate gradient
method as a first measure to accelerate computations is described in subchapter 5.2.
The algebraic equation system to be solved for evaluating a pseudo-inverse, as well as
the equation system to be solved for inverting the mass matrix, resembles a multiple
right-hand side problem. The solution process can be accelerated by applying multiple
right-hand side techniques, such as the subspace projection extrapolation method [17].
The aim here, is to compute improved start vectors for the preconditioned conjugate
gradient method based on previous solutions. This can be modified to the cascaded
subspace projection extrapolation method as published e.g. in [30, 31, 32]. Alterna-
tively, the proper orthogonal decomposition can be used for this purpose, as presented
in [29].

Additionally, it is possible to bypass updating the reluctivity matrix in some time
steps due to the small stable time step size, which yields an additional speed-up. This
idea was presented e.g. in [26, 24]. It is presented in detail in subchapter 5.3.
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Investigations show that a computationally cheap regularization of the singular curl-
curl matrix in nonconducting media is possible by adding a small offset-value to its
main diagonal elements, i.e., considering a perturbed system formulation. As a result,
the matrix can be inverted using a direct method, as e.g. the LU-decomposition, which
is well parallelizable on GPUs. This approach was presented in [27] and is subject to
subchapter 5.4.

Chapter 6 presents time integration schemes for electroquasistatic field problems using
the Parareal algorithm as published in [94]. The approach is explained and numeri-
cally investigated using a two-dimensional finite element model of an IEC 60099-4
surge arrester [55]. Various combinations of the implicit and explicit Euler method for
time integration on the fine and on the coarse time grid are investigated within this
framework.

Finally, conclusions and an outlook on possible future research topics are presented in
chapter 7.
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2 Mathematical Description of
Electromagnetic Field Problems

This chapter describes how the algebraic systems of equations resulting from the spatial
discretization of the problem considered are obtained. Starting from Maxwell’s equa-
tions, the approximation applicable to magnetoquasistatic field problems is derived
first. Its spatial discretization by the finite element method is described, in succession
of explaining the finite element method. Further relevant information on treating a
spatially discretized computational model with respect to the application of boundary
conditions and the partitioning into different material sections are given. Integration
in time is subject to the next chapter.

2.1 Maxwell’s Equations

Electromagnetic field problems are described by the four partial differential equa-
tions

∇× ~E (~r, t) = − ∂

∂t
~B (~r, t) , (2.1)

∇× ~H (~r, t) = ∂

∂t
~D (~r, t) + ~J (~r, t) , (2.2)

∇· ~D = % (~r, t) , (2.3)

∇· ~B = 0, (2.4)

at each location ~r ∈ Ω ⊆ E3 and time t ∈ (t0, tend], known as Maxwell’s equations
[68], stated here using the notation introduced by Heaviside in [46, 47]. Here, ~E is the
electric field strength, ~B is the magnetic flux density, ~H is the magnetic field strength,
~D is the electric flux density, ~J is the current density, and % is the electric charge
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density. Additionally, initial and boundary conditions are required for solving field
problems described by equations (2.1) - (2.4).

Further relations between Maxwell’s equations are provided by the constitutive mate-
rial relations

~D = ε0εr ~E + ~PE, (2.5)
~B = µ0µr ~H + ~PM, (2.6)
~J = κ~E + ~JS, (2.7)

where ε0 is the electric constant, εr is the relative permittivity, ~PE is the electric
polarization vector, µ0 is the magnetic constant, µr is the relative permeability, ~PM is
the magnetic polarization vector, κ is the electric conductivity and ~JS is the impressed
current density. Alternatively, equation (2.6) can also be expressed as

~H = ν ~B − ν ~PM, (2.8)

by using the magnetic reluctivity ν = (µ0µr)−1.

The material properties εr, µr, κ, and ν can also depend on space, i.e., εr = εr(~r),
µr = µr(~r), κ = κ(~r), and ν = ν(~r). Furthermore, the material properties of some
materials are also field dependent. This field dependence can be linear or nonlinear. The
permeability of steel, e.g., nonlinearly depends on the magnetic field. In high voltage
devices, nonlinear field grading material, as e.g. ZnO microvaristors, can be used to
avoid high voltage breakdowns. Here, the electric conductivity nonlinearly depends
on the electric field strength. A plot of a nonlinear ferromagnetic B-H-curve of steel
is shown in Figure 5.9. A conductivity curve of a nonlinear field grading material is
depicted in Figure 6.10. The permeability, respectively the electric conductivity, needs
to be evaluated locally depending on the corresponding field strength in numerical
simulations, where these nonlinear curves are usually interpolated by cubic splines
[59].

Maxwell’s equations (2.1) - (2.4) can also be expressed using the magnetic vector
potential ~A and the electric scalar potential φ. The magnetic flux density ~B and the
electric field strength ~E can be described using the electrodynamic potentials ( ~A, φ)
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by

~B = ∇× ~A, (2.9)

~E = −∇φ− ∂

∂t
~A. (2.10)

If the magnetic vector potential ~A is used, an additional gauging condition is required,
e.g. the frequently chosen Coulomb’s gauge ∇· ~A = 0, since the magnetic vector po-
tential ~A is defined by the magnetic flux density ~B only up to a gradient field.

2.2 The Magnetoquasistatic and Electroquasistatic
Approximation

Solving the complete set of Maxwell’s equations can often be avoided in technical ap-
plications by using approximations valid in the considered frequency range. Quasistatic
approximations may be used, if the dimensions of the considered object are small com-
pared to the wavelength [23]. Here, the magnetoquasistatic (MQS) approximation is
presented first, which is valid if additionally to the above stated dimension criterion,
WM � WE, ∀(~r, t) ∈ Ω × [t0, tend] [23], where WM is the magnetic energy, WE is the
electric energy, Ω is the spatial computational domain, t0 is the start point in time,
and tend is the end point in time of the time interval considered. If these prerequisites
hold, the displacement current ∂ ~D/∂t can be neglected with respect to equation (2.2).
By using equation (2.9) in equation (2.2) the MQS field formulation

κ
∂

∂t
~A+∇×

[
ν
(
∇× ~A

)
∇× ~A

]
= ~JS, ∀(~r, t) ∈ Ω× (t0, tend], (2.11)

where ~JS is the source current density, is obtained. Equation (2.11) is a parabolic
partial differential equation, if κ > 0 and a semi-elliptic partial differential equation
otherwise. Solving equation (2.11) for the magnetic vector potential ~A requires impos-
ing a temporal initial value and spatial boundary conditions. Within the work of this
thesis, the initial value ~A (~r, t = 0) = ~0 is imposed. Alternatively, e.g. a solution for
the magnetostatic approximation can be used.

The electroquasistatic approximation is applicable in a similar scenario, i.e., the di-
mensions of the considered object are small compared to the wavelength and if WE �
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WM, ∀(~r, t) ∈ Ω × [t0, tend] [23]. In this case, the magnetic induction ∂ ~B/∂t is con-
sidered to be negligible in equation (2.1) and the magnetic vector potential ~A can be
omitted in equation (2.10). Applying the divergence to equation (2.2) results in the
continuity equation

∇ ·
(
∂

∂t
~D (~r, t)

)
+∇ · ~J (~r, t) = 0, ∀(~r, t) ∈ Ω× (t0, tend]. (2.12)

Replacing the electric flux density ~D with ~D = ε (−∇φ) and the electric current density
~J with ~J = κ (−∇φ) in equation (2.12) yields the electroquasistatic approximation

∇ · (κ∇φ) +∇ ·
(
ε∇∂φ

∂t

)
= 0, ∀(~r, t) ∈ Ω× (t0, tend], (2.13)

based on the time-dependent electric scalar potential φ. Both equations (2.13) and
(2.11) are defined on the domain Ω× I, where Ω is the spatial computational domain
and I := [t0, tend] is the time interval considered.

14



3 Discretization of Partial Differential
Equations in Space and Time

The discretization of both partial differential equations (2.13) and (2.11) follows the
method of lines [90]. Here, the partial differential equation to be solved is first dis-
cretized in one variable, i.e., the space variable, while the time variable remains con-
tinuous [87]. In this thesis, the PDEs (2.13) and (2.11) are first spatially discretized
using the Finite Element Method (FEM). Integration in time is then realized either
by the implicit or by the explicit Euler method or Parareal variants thereof.

In this chapter, the application of the FEM to (2.13) and (2.11) is presented first in
subchapter 3.1. In the succeeding subchapter 3.2, the implicit and the explicit Euler
method are generally introduced and the application of the implicit Euler scheme to the
spatially discretized magneto- and electroquasistatic PDEs and of the explicit Euler
method to the electroquasistatic PDE is explained. The application of the explicit
Euler method to magnetoquasistatic field problems is subject to chapter 5.

3.1 The Finite Element Method

The Finite Element Method (FEM) is a numerical method for spatially discretizing
partial differential equations in many engineering applications, as e.g. (quasistatic)
electromagnetics, structural analysis or fluid dynamics. The FEM is an established
technique in literature, see e.g. [4, 96, 120, 52, 69, 61, 56]. Details on the computational
implementation, such as e.g. the use of a reference element for numerical integration,
are e.g. explained in the corresponding chapter on FEM in [85].
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In this chapter, the application of the FEM to the partial differential equations (2.11)
and (2.13) is briefly presented.

3.1.1 FEM applied to the PDE of Magnetoquasistatic Field
Problems

The application of the FEM to magnetoquasistatic field problems presented in the
following, follows the explanations in [114]. A vector test function ~v from the Sobolev
space H0(curl,Ω) is used in the following, where

H(curl,Ω) : = {~v ∈ L2(Ω) : ∇× ~v ∈ L2(Ω)}, (3.1)

H0(curl,Ω) : = {~v ∈ H(curl,Ω) : ~v × ~n = 0 on Γ = ∂Ω}. (3.2)

Here, L2(Ω) is the space of square-integrable functions and Γ denotes the boundary
of the computational domain Ω and ~n is the outward pointing normal vector of the
boundary Γ .

Multiplying the partial differential equation (2.11) with a test function ~v ∈ H0(curl,Ω)
and integrating over the domain Ω yields

ˆ

Ω

κ
∂ ~A

∂t
· ~v dΩ +

ˆ

Ω

(
∇×

[
ν( ~B)∇× ~A

])
· ~v dΩ =

ˆ

Ω

~JS · ~v dΩ. (3.3)

The notation ν( ~B) represents the dependence of the magnetic reluctivity ν on the
magnetic flux density ~B.

Applying Green’s theorem for vectors to equation (3.3) results in
ˆ

Ω

κ
∂ ~A

∂t
· ~v dΩ +

ˆ

Ω

ν( ~B)
(
∇× ~A

)
· (∇× ~v) dΩ =

ˆ

Ω

~JS · ~v dΩ. (3.4)

Now, the solution vector ~A ∈ H0(curl,Ω) is to be computed, such that

a( ~A,~v) + b( ~A,~v) = r(~v) ∀~v ∈ H0(curl,Ω), (3.5)

holds, where

a( ~A,~v) =
ˆ

Ω

ν( ~B)
(
∇× ~A

)
· (∇× ~v) dΩ, (3.6)
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b( ~A,~v) =
ˆ

Ω

κ
∂ ~A

∂t
· ~v dΩ, (3.7)

and

r(~v) =
ˆ

Ω

~JS · ~v dΩ. (3.8)

In order to achieve this, equation (3.4) is discretized e.g. using lowest, i.e., first order
edge elements basis functions

~w
(1)
ij := Ni∇Nj −Nj∇Ni, (3.9)

which are assigned to the edges of the finite element mesh [114]. The nodal basis
functions Ni and Nj are assigned to the nodes i and j connected by an edge Eij. The
line integral of the edge element basis function ~w

(1)
ij is only nonzero along the edge Eij

and zero along all other edges in the mesh connecting different nodes k and l. That
is ˆ

Eij

~tij · ~w(1)
ij ds = 1, (3.10)

ˆ

Ekl

~tkl · ~w(1)
ij ds = 0 for Ekl 6= Eij, (3.11)

where the unit vector ~tij points along the edge Eij from node i to node j and the unit
vector ~tkl points along the edge Ekl from node k to node l.

Using these edge elements, ~A can be expressed by the linear combination

~A ≈ ~An =
ne∑
i=1

ai ~w
(1)
ei , (3.12)

where ne is the total number of edges in the mesh and ~w
(1)
ei is the basis function as-

signed to the i-th edge in the mesh. By using the basis functions ~w
(1)
ej also as test

functions ~v, equation (3.5) is reformulated as a system of nonlinear differential alge-
braic equations

M
d
dtx + K(x)x = r, (3.13)

where the entries in the i-th row and in the j-th column of the matrices M and K are
as follows:
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M(i,j) = b(~w(1)
ei , ~w

(1)
ej ) =

ˆ

Ω

κ~w
(1)
ei · ~w

(1)
ej dΩ, (3.14)

K(i,j) = a(~w(1)
ei , ~w

(1)
ej ) =

ˆ

Ω

(
∇× ~w

(1)
ei

)>
· ν( ~B)

(
∇× ~w

(1)
ej

)
dΩ. (3.15)

The j-th entry of the vector r is computed as

r(j) = r(~w(1)
ej ) =

ˆ

Ω

~JS · ~w(1)
ej dΩ. (3.16)

The vector x contains the degrees of freedom, i.e., the unknowns ai, for which the
system of equations (3.13) is solved, x(t) = {ai(t)}i=1,...,ne .

The integrals in equations (3.14) - (3.16) are usually evaluated numerically using e.g.
Gauss-Legendre quadrature [101].

3.1.2 FEM Applied to the PDE of Electroquasistatic Field
Problems

For the EQS problem (2.13), a scalar test function υ from the Sobolev space H1(Ω) is
used, where

υ ∈ H1(Ω) := {υ ∈ L2(Ω),∇υ ∈ L2(Ω)} (3.17)

holds. Here, L2(Ω) is the space of square-integrable functions.

In a first step, the PDE (2.13) is multiplied with the test function υ and their product
is integrated over the whole computational domain Ω, which results inˆ

Ω

υ · (∇ · (κ(φ)∇φ)) dΩ +
ˆ

Ω

υ ·
(
∇ ·

(
ε∇∂φ

∂t

))
dΩ = 0. (3.18)

Applying Green’s first theorem to equation (3.18) yields
ˆ

Ω

∇υ · (κ(φ)∇φ) dΩ +
ˆ

Ω

∇υ ·
(
ε∇∂φ

∂t

)
dΩ

=
ˆ

∂Ω

(
κ(φ)∂φ

∂~n
· υ + ε

∂

∂~n

(
∂φ

∂t

)
· υ
)

dS.
(3.19)
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Here, ~n is the outward pointing normal vector of the boundary Γ of the computational
domain Ω. Usually, and also in case of the work presented in this thesis, homogeneous
Neuman boundary conditions are applied to the boundary Γ of Ω, i.e., ∂φ

∂~n
|Γ = 0.

Therefore, the right-hand side of equation (3.19) equals zero and equation (3.19) be-
comes ˆ

Ω

∇υ · (κ(φ)∇φ) dΩ +
ˆ

Ω

∇υ ·
(
ε∇∂φ

∂t

)
dΩ = 0. (3.20)

Equation (3.20) constitutes the variational problem of finding φ, so that equation (3.20)
holds for all υ ∈ H1(Ω). Equation (3.20) is discretized by approximating φ = φ(~r, t)
and υ = υ(~r) using nodal basis functions

Nj (~ri) =

1 i = j

0 i 6= j
, i, j = 1, ..., nn, (3.21)

where nn is the total number of nodes in the finite element mesh at the positions ~ri.
The j-th nodal basis function Nj (~ri) is assigned to the i-th node of the mesh at the
spatial position ~ri. Thus, the electric vector potential φ = φ(~r, t) is approximated by

φ (~r, t) ≈ φn =
nn∑
j=1

uj(t)Nj (~r) , (3.22)

where uj(t) are the unknowns, also known as degrees of freedom for which the dis-
cretized variational problem

nn∑
j=1

uj ˆ
Ω

(∇Ni) · κ (uj) · (∇Nj) dΩ + ∂

∂t
uj

ˆ

Ω

(∇Ni) · ε · (∇Nj) dΩ

 = 0 (3.23)

needs to be solved, thus equation (3.23) is the discretized version of equation (3.20).

Equation (3.23) constitutes a nonlinear system of ordinary equations described by

M
d
dtx + K (x) x = 0. (3.24)

Here, the matrix entries of the i-th row and j-th column of the matrices M and K(x)
are computed by

M(i,j) =
ˆ

Ω

(∇Ni) · ε (∇Nj) dΩ (3.25)
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3 Discretization of Partial Differential Equations in Space and Time

and by

K(i,j) =
ˆ

Ω

(∇Ni) · κ (uj) (∇Nj) dΩ. (3.26)

For practical computations, the matrix entries resulting from nodes to which eventually
transient Dirichlet boundary conditions are applied, are extracted from the matrices
M and K and transferred to the right-hand side of equation (3.24), which becomes

M
d
dtx + K(x)x = r(t), (3.27)

where r(t) = −MD
d
dtxD −KD(xD)xD. Here, the matrices MD and KD only have

nonzero entries corresponding to the nodes on which Dirichlet boundary conditions
are applied and the vector xD contains the Dirichlet boundary conditions.

3.2 Time Integration Methods

In this subchapter, the implicit and the explicit Euler method are briefly introduced.
Their application to the spatially discretized magneto- and electroquasistatic PDEs
is explained, except for the application of the explicit Euler method to magnetoqua-
sistatic field problems. This is subject of chapter 5.

3.2.1 The Implicit Euler Method

The implicit Euler method is applied to an ordinary differential equation (ODE)

dy
dt = f(y, t), y(t = 0) = y0, (3.28)

where y0 is the initial value, by evaluating

yi+1 = yi + ∆tf(yi+1, ti+1). (3.29)

Here i denotes the i-th time step at time ti, yi is the discretization of the continu-
ous function y(t = ti), ∆t is the constant time step size between two discrete points
in time, i.e., ∆t = ti+1 − ti, and yi+1 is the discretization of the continuous function
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y(t = ti+1 = ti + ∆t). The implicit Euler method’s stability region comprises the com-
plex plane except for a circular disk with radius 1 centered at 1, which is excluded from
the stability region, as shown in Figure 3.1. The implicit Euler method is L-stable and
stiffly accurate [45, 10]. It is thus well suited for the time integration of stiff and even
infinitely stiff problems, such as the system of differential algebraic equations (3.13)
encountered in the computation of magnetoquasistatic field problems. With respect
to stability, an arbitrarily selected time step size can be used in the implicit Euler
scheme.

1

0

2

-1

-2 -2 -1 0 21

Im

Re

Figure 3.1: Stability region of the implicit Euler method in the z-plane, as e.g. in [45].
The region of stability is colored in blue.

In the following, the application of the implicit Euler method to the system of differen-
tial algebraic equations (3.13) describing spatially discretized magnetoquasistatic field
problems and to the system of ordinary differential equations (3.27) describing elec-
troquasistatic field problems is explained, following [13]. Since both equations (3.13)
and (3.27) are of the same form

M
d
dtx + K(x)x = r, (3.30)

the application of the implicit Euler method is explained for equation (3.30) repre-
senting either equation (3.13) or (3.27).
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3 Discretization of Partial Differential Equations in Space and Time

It is assumed that the solution xi at the i-th time step at time ti is already known.
This is represented by the notation xi ≈ x(ti). For evaluating the solution xi+1, i.e.,
the (i+ 1)-th time step solution, at time ti+1 = ti+ ∆t, the nonlinear algebraic system
of equations ( 1

∆tM + K(xi+1)
)

xi+1 = 1
∆tMxi + ri+1 (3.31)

must be solved for xi+1. Here, the Newton-Raphson method is used for linearization.
In the (l + 1)-th Newton-Raphson iteration, the linear system of equations( 1

∆tM + J(xli+1)
)

xl+1
i+1 = 1

∆tMxli + ri+1 + J(xli+1)xli+1 −K(xli+1)xli+1 (3.32)

is solved for xl+1
i+1, where the Jacobian matrix J is computed by

J(x) = d
dx

(K(x)x) . (3.33)

3.2.2 The Explicit Euler Method

The explicit Euler method is applied to an ordinary differential equation (ODE)

dy
dt = f(y, t), y(t = 0) = y0, (3.34)

where y0 is the initial value, by evaluating

yi+1 = yi + ∆tf(yi, ti), (3.35)

where i denotes the i-th time step at time ti, yi is the discretization of the con-
tinuous function y(t = ti), ∆t is the time step size between to discrete points in
time, i.e., ∆t = ti+1 − ti, and yi+1 is the discretization of the continuous function
y(t = ti+1 = ti + ∆t).

The explicit Euler method’s stability region is a circular disk with radius 1 centered at
-1 in the complex plane, as shown in Figure 3.2 [45, 10]. It is stable only for time step
sizes smaller than a maximum stable time step size, which is stated by the Courant-
Friedrichs-Lewy criterion [19].
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Figure 3.2: Stability region of the explicit Euler method in the z-plane, as e.g. in [45].
The region of stability is colored in blue.

Assuming non-singularity of the matrix M and applying the explicit Euler method to
the system of ordinary differential equations (3.27) describing electroquasistatic field
problems, a solution at the (i+ 1)-th time step is simply obtained by evaluating

xi+1 = xi + ∆t ·M−1 [ri+1 −K (xi) xi] . (3.36)

From an engineering point of view, the ease of implementation is the explicit Euler
method’s main advantage. Yet, the small stability region reduces its applicability for
real-world problems. Methods which overcome this disadvantage are eventually higher-
order, stabilized explicit Runge-Kutta methods, as described e.g. in [45, 103, 111].
However, these are not implemented in this thesis.

The application of the explicit Euler method to magnetoquasistatic field problems
discretized in space is given in chapter 5.
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4 Solving Large Systems of Algebraic
Equations

Two algorithms for solving linear systems are used in this thesis: The preconditioned
conjugate gradient (PCG) method and the (sparse) LU-decomposition. Since both
methods were not in any way modified or specially adapted to the work presented
within this thesis, both methods are merely introduced in general in this chapter.

4.1 The Conjugate Gradient Method

The conjugate gradient method was originally published in [105] and is also well pre-
sented in [95, 108, 86, 43]. The eventually preconditioned conjugate gradient method
is a Krylov subspace method for iteratively solving large sparse systems of linear alge-
braic equations of the form Ax = b, where the system matrix A ∈ Rn×n is symmetric
and positive definite. Without preconditioning, the conjugate gradient method con-
verges after n iterations at maximum. Using a suitable preconditioner improves the
system matrix’s condition and yields a faster convergence in less than n iterations. Fur-
thermore, the conjugate gradient method’s complexity depends on the preconditioner
used.

In the following, the algorithm for the conjugate gradient method is presented first. Af-
terwards, the changes in the algorithm, when using a preconditioner, are explained.

The main idea underlying the conjugate gradient method is to minimize the equivalent
quadratic form

f(x) = 1
2x>Ax− x>b, x ∈ Rn, (4.1)
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4 Solving Large Systems of Algebraic Equations

instead of directly solving the system of algebraic equations Ax = b. The gradient

∇f(x)|xk
= −rk = Axk − b, (4.2)

where rk is k-th residual, is now minimized in direction dk in a subspace Vk.

At this, the directions dk are conjugate with respect to A, which means

d>i Adj = 0, ∀i 6= j. (4.3)

The subspace Vk is spanned by the vectors dk as follows:

Vk := x0 + span{d0,d1, ...,dk−1}. (4.4)

At this, x0 is the initial solution, which is often chosen as x0 = 0.

The resulting algorithm comprises the steps listed in Algorithm 1.

Algorithm 1 Solve Ax = b using the Conjugate Gradient Method
Require: x0 ∈ Rn, set tolerance tol

r0 ← b−Ax0

d0 ← r0

k ← 0
while ‖rk‖ > tol do

zk ← Adk
αk ← (r>k rk)/(d>k z)
xk+1 ← xk + αkdk
rk+1 ← rk − αkzk
βk ← (r>k+1rk+1)/(r>k rk)
dk+1 ← rk+1 + βkdk
k ← k + 1

end while

For reducing the number of iterations until convergence, a preconditioner can be used.
Preconditioners modify the system matrix A and improve its condition number. Var-
ious preconditioners are known, such as e.g. the SSOR-preconditioner or the Jacobi
preconditioner. Using the incomplete Cholesky factorization as preconditioner yields
a method known as ICCG, which is very popular for application with edge element
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4.2 The Sparse LU-Decomposition

based FEM, see e.g. [37]. Within the work of this thesis, algebraic multigrid (AMG)
preconditioners are used as described e.g. in [53, 106, 9, 109]. AMG is here used as
inner (preconditioner) method and requires one call per CG iteration.

The application of preconditioners in the CG method are e.g. explained in [108, 86,
22].

4.2 The Sparse LU-Decomposition

Whilst the PCG method is well suited for solving large sparse systems of linear al-
gebraic equations, this does not hold for the sparse LU-decomposition with O(n2)
complexity, where n is the number of unknowns [89]. Efficient techniques for paral-
lelizing the LU-decomposition, e.g. by using special pivoting techniques minimizing
interprocessor data communication, are a still ongoing research topic, see e.g. [38, 84,
107, 44, 102, 21].

The LU-decomposition, also known as Gauss elimination, converts an equation system
Ax = b to be solved into an equivalent triangular system by linearly combining the
equations. The system matrix A = LU is decomposed into a unit lower triangular
matrix L and an upper triangular matrix U. Thus, the system Ax = b can be restated
as

Ax = b⇔ LUx = Ly = b, (4.5)

where Ux = y. Solving the equation system (4.5) comprises two steps:

1. Solve Ly = b for y,

2. Solve Ux = y for x.

Thus, the LU-decomposition is a method suitable for multiple right-hand side (MRHS)
problems, as the matrices L and U only depend on the system matrix A and can thus
be reused independently from the right-hand side.
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5 (Semi-) Explicit Time Integration of
the Magnetoquasistatic Field
Problem

In this chapter, various numerical methods for accelerating the (semi-) explicit time
integration of magnetoquasistatic field problems are presented. At this, the main idea
is to use the approach originally presented in [14, 92], and to omit regularizing the sin-
gular curl-curl operator in nonconducting media by applying a Moore-Penrose pseudo-
inverse. For ease of readability, it is often written "the" pseudo-inverse in the following.
However, it should always be kept in mind, that more than one pseudo-inverse exists.

5.1 Application of the Moore-Penrose Pseudo-Inverse

The nonlinear magnetoquasistatic field problem (2.11) described using the magnetic
vector potential ~A is spatially discretized either with FIT [16] or with FEM (see
equation (3.13)) and this yields the discrete formulation

M
d
dta + K(a)a = js. (5.1)

Here, a is a vector of degrees of freedom representing the time-dependent magnetic
vector potential, M is the mass-matrix of conductivities and K is the stiffness-matrix
of reluctivities. Thus, K is the discretized (singular) curl-curl operator. The transient
source current density is denoted by js. At this, js = xsis(t) holds, where the time-
dependent source current is(t) is distributed in the spatial domain of the exciting coil
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5 (Semi-) Explicit Time Integration of the Magnetoquasistatic Field Problem

by xs [93]. For solving (5.1), initial values and boundary conditions must be imposed.
Since these are subject to the specific problem considered, they are not specified here.
Furthermore, the explicit reference to the time dependence of the vectors a(t) and
js(t) is omitted for ease of readability.

Equation (5.1) represents a system of differential algebraic equations of index 1 (DAE1),
since the mass-matrix of conductivities M is singular [72]. The (differential) index of
differential algebraic equations represents the number of differentiations with respect
to time required to transform a differential algebraic equation into an ordinary differ-
ential equation [45]. Solving differential algebraic equations is usually more difficult
than solving ordinary differential equations, if differentiation indices higher than 1 are
considered.

As stated in the previous chapter, the common approach for integration of (5.1) is to
use an implicit time integration scheme, directly applicable to systems of differential
algebraic equations of index 1.

Reformulating equation (5.1) by using a Schur complement was originally proposed
in [14] and reused in [92], allowing the application of a semi-explicit time integration
scheme.

To highlight this approach, a generalized and simplified sketch of the computational
domain Ω of magnetoquasistatic field problems is shown in Figure 5.1. Here, the com-
putational domain Ω consists of a subdomain Ωc of conducting material, i.e., the region
where eddy currents can be excited, and of a subdomain Ωn of nonconducting material,
e.g. air (or vacuum), and of a subdomain Ωsc. The subdomain Ωsc comprises excitation
sources, e.g. source coils. Since it is often assumed that no eddy currents are excited
within Ωsc, Ωsc is also considered to belong to the region of nonconducting material in
the following.
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Ω"# Ω#

Ω$

𝜕Ω

Figure 5.1: The computational domain Ω and its boundary ∂Ω comprise three subdo-
mains: The nonconducting region (Ωn), which has a constant permeability,
the conducting region (Ωc), where eddy currents can be excited and the
permeability might be nonlinear and a nonconducting region (Ωsc), where
no eddy currents are excited and the excitation is placed.

By sorting and reallocating the degrees of freedom in a(t) according to whether they
belong either to elements in Ωc or to those in Ωn and Ωsc, equation (5.1) can also be
written as

Mcc 0
0 0

 d
dt

ac

an

+
Kcc(ac) Kcn

K>cn Knn

ac

an

 =
 0
js,n

 , (5.2)

whereupon homogeneous Dirichlet boundary conditions are assumed. Here, ac contains
the degrees of freedom belonging to the conductive subdomain Ωc, in which eddy cur-
rents are excited and an contains the degrees of freedom allocated in the nonconductive
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subdomains Ωn and Ωsc, and js,n is the source current density in nonconductive sub-
domains. The mass matrix M and the stiffness matrix K are decomposed accordingly
into block-matrices. The matrix M is the generally singular, positive semi-definite con-
ductivity matrix. This singularity is caused by the zero conductivity in nonconducting
regions. By assigning a negligibly small artificial conductivity to the nonconducting
regions, the matrix M can be regularized. If a conventional Galerkin scheme employs
edge elements as test and ansatz functions, the subsystem matrix Mcc is positive
definite. This is always the case within the work of this thesis.

The matrix Kcc(ac) is the curl-curl matrix’s part in the conductive subdomain and
Knn is the singular part of the curl-curl matrix in the nonconductive subdomain. The
matrix Kcn and its transpose K>cn are coupling matrices between the nonconductive
and conductive subdomains.

The second block row of equation (5.2) represents the algebraic constraint of the
differential algebraic equation. Without imposing a gauging condition, there is no
unique solution for an.

In [14, 92], the singular matrix Knn is regularized using a grad-div-regularization,
which transforms the singular matrix Knn into a discrete vector Laplacian operator in
free space. Alternatively, a tree/cotree-gauging approach [66] could be used.

Within the work of this thesis, a pseudo-inverse of the matrix Knn is used, as is
proposed in [25] . For this, the weak gauging property of the conjugate gradient method
is used [16]. If either the matrix Knn is regularized and inverted or if a pseudo-inverse
is applied, the second block row in equation (5.2) can be solved for

an = K+
nn

[
js,n −K>cnac

]
, (5.3)

where a pseudo-inverse of Knn is represented by K+
nn.

Equation (5.3) is inserted into the first block row of equation (5.2), which yields

Mcc
d
dtac + Kcc(ac)ac + Kcn

[
K+

nnjs,n −K+
nnK>cnac

]
= 0. (5.4)

Equation (5.4) can be reformulated as

Mcc
d
dtac +

[
Kcc(ac)−KcnK+

nnK>cn

]
ac = −KcnK+

nnjs,n, (5.5)
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5.1 Application of the Moore-Penrose Pseudo-Inverse

where the matrix product KcnK+
nnK>cn is the generalized Schur complement

KS = KcnK+
nnK>cn. (5.6)

Due to the elimination of the algebraic part in (5.2) related to the dofs in the non-
conducting domain, equation (5.5) is a system of ordinary differential equations. The
presented approach thus transforms the system of differential algebraic equations de-
scribed by (5.1), respectively by (5.2), of infinite stiffness, into a system of ordinary
differential equations of finite stiffness. Thus, explicit time integration of (5.5) is fea-
sible.

As stated in [45]:"While the intuitive meaning of stiff is clear to all specialists, much
controversy is going on about it’s correct mathematical definition (see e.g. p.360-363 of
Aiken (1985)). The most pragmatical opinion is also historically the first one (Curtiss
& Hirschfelder 1952): stiff equations are equations where certain implicit methods, in
particular BDF perform better, usually tremendously better, than explicit ones" ([45],
p. 1, ll. 9-14.).

By applying the explicit Euler method for the time integration of (5.5) with a time
step size ∆t, the new time step solution vector

am+1
c := amc + ∆tM−1

cc

[
KcnK+

nnjm+1
s,n −

(
Kcc(amc )−KcnK+

nnK>cn

)
amc
]
, (5.7)

is computed in the (m+1)-th time step. Evaluating (5.7) updates only the solution for
the degrees of freedom allocated in conducting regions ac. The solution for the degrees
of freedom allocated in nonconducting regions an can then easily be updated for the
(m+ 1)-th time step by evaluating (5.3) with

am+1
n := K+

nnjm+1
s,n −K+

nnK>cnam+1
c . (5.8)

The computationally expensive regularization of the singular matrix Knn proposed in
[14], can be avoided by evaluating a pseudo-inverse using a preconditioned conjugate
gradient method. For evaluating a pseudo-inverse in (5.7) and (5.8), systems of the
kind of

Knnap = rp ⇔ ap = K+
nnrp (5.9)

need to be solved. The explicit computation of the matrix K+
nn representing a pseudo-

inverse of Knn is not required. Instead, the matrix vector multiplication K+
nnrp is
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replaced with a vector ap, which is computed according to (5.9) for each right-hand
side vector rp using the PCG method. Here, rp is a general representation for the
vectors with which K+

nn is multiplied with in equations (5.7) and (5.8). Thus, when
solving equation (5.9) for ap, rp is either replaced by K>cnamc or by K>cnam+1

c . The
evaluation of a pseudo inverse for Knnap = jm+1

s,n in equations (5.7) and (5.8), is only
required once, since the vector of the current density jm+1

s,n is updated in each time step
by multiplication with a scalar value. This is explained in more detail in subchapter
5.2.

The maximum stable time step size of explicit time integration methods is estimated
by the Courant-Friedrich-Levy (CFL) criterion [19, 45]. Here,

∆t ≤ 2
λmax (M−1

c (Kcc(amc )−KS)) (5.10)

can be used to estimate the maximum stable time step size. At this, λmax denotes the
maximum eigenvalue and can be evaluated using the power method [92, 43].
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5.1.1 Numerical Validation: Application of a Pseudo-Inverse

The results in this section are originally presented in [25].

All methods for the (semi-) explicit time integration of the magnetoquasistatic field
problem described in this thesis are coded using the code package "MEQSICO" as plat-
form. "MEQSICO" is a C++ code for the numerical simulation of three-dimensional
electroquasistatic and magnetoquasistatic field problems [15, 104]. The implementa-
tion of the finite element method in MEQSICO is based on the Femster library [11,
12]. First order edge-elements are used for spatial discretization [72].

For preconditioning the conjugate gradient method, algebraic multigrid precondition-
ers from the Trilinos ML package of the Trilinos Project are used [42, 51, 63, 106].
All simulations are run on server with an Intel Xeon E5-2660 processor and an
Nvidia K80 GPU.

In the following, two benchmark problems from the "TEAM Benchmark Suite" of the
Compumag Society and their numerical solution using the MEQSICO code and the
application of a pseudo-inverse for semi-explicit time integration are presented.

5.1.1.1 Results for the TEAM 7 benchmark problem

The linear "TEAM 7" problem is a three-dimensional model problem consisting of a
current source coil above an aluminum plate with a rectangular hole in it, as shown in
Fig. 5.2. The problem description and reference solutions are published in [36]. A side
view of the problem’s geometry is shown on the left side of Figure 5.2. The aluminum
plate is colored in blue and the exciting source coil is colored in grey. The aluminum
plate corresponds to the conducting subdomain Ωc. The source coil and the air gap,
as well as the air surrounding the plate and the coil, belong to the nonconducting
subdomain Ωn.

For simulating the problem, plate and coil are surrounded by an air box. Homogeneous
Neumann boundary conditions and homogeneous Dirichlet boundary conditions for the
magnetic vector potential ~A are defined on the surfaces of this air box.

35



5 (Semi-) Explicit Time Integration of the Magnetoquasistatic Field Problem

The magnetic flux density is evaluated along the line P drawn in orange. A top view
of the model geometry is shown on the right side of Figure 5.2. The excitation current
in the source coil is described by a ramped sinus function with a frequency of 50 Hz.
The simulations are executed for a time interval ranging from 0 s to 60 ms, thus the
first three periods are simulated. The source current is shown in Figure 5.3.

Ω"

Ω"

Ω#

Ω#

Ω"

P

Figure 5.2: On the left side: Model geometry of the TEAM 7 benchmark problem side
view. The magnetic flux density is evaluated along the orange line P.
On the right side: Top view of the model geometry of the TEAM 7 bench-
mark problem.

The model problem is meshed with two different tetrahedral meshes, as shown in
Figure 5.4. The coarse mesh results in 46,218 degrees of freedom and is shown on
the left side of Figure 5.4. The fine mesh results in 247,276 degrees of freedom and is
shown on the right side of Figure 5.4. For each mesh, two simulations are executed:
A first simulation using the implicit Euler method for time integration and a second
simulation employing the explicit Euler scheme and the application of a pseudo-inverse
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I/A

t/s

Figure 5.3: Excitation current flowing in the source coil of the TEAM 7 benchmark
problem

of the matrix Knn.

According to the Courant-Friedrichs-Lewy criterion, the maximum stable time step
size for the coarsely meshed problem is ∆tCFL = 2.95 · 10−4 s and for the problem
using a fine mesh ∆tCFL = 8.02 · 10−5 s.

The numerical simulations of the linear TEAM 7 problem were the first simulations us-
ing the explicit Euler method and the application of a pseudo-inverse carried out within
the work for this thesis. Therefore, the smaller time step sizes then the maximum stable
time step sizes were used to avoid any stability issues. Thus, the coarsely meshed prob-
lem is simulated using an explicit time step size ∆texp = 1.0 · 10−4 s and the fine meshed
problem is simulated using an explicit time step size ∆texp = 5.0 · 10−5 s. The time step
size for the reference simulations using the implicit Euler method is ∆timp = 1.0 · 10−4 s
for both meshes. The accuracy of the PCG solver for evaluating a pseudo-inverse of
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Knn is set to tol = 10−16.

Figure 5.4: On the left side: Mesh resulting in 46,218 degrees of freedom.
On the right side: Mesh resulting in 247,276 degrees of freedom.

The results for the magnitude of the Bz-component of the magnetic flux density eval-
uated along the line P are shown in Figure 5.5. Here, the results for the fine mesh
obtained using the implicit Euler method or the explicit Euler method are compared
with the measurement results published in [36].

As shown in Figure 5.5, the simulation results obtained from using the explicit and
the implicit Euler scheme are in good agreement. All results depicted are based on the
fine mesh. This can be considered as proof of concept for the proposed application of a
pseudo-inverse. The simulation results slightly deviate from the measurement results.
This can be due to the fine mesh still not being sufficiently fine in the gap between
plate and coil.

Field plots of the magnetic flux density and the excited eddy current density are shown
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in Figure 5.6. Here, the fields shown on the left side are computed using the implicit
Euler method and the fields on the right side are evaluated using the explicit Euler
method.

8.5e-3

0

-2.5e-3

B z
/T

0 300x/mm

P

Measurement Results
* Explicit Euler
* Implicit Euler

Figure 5.5: Results for the magnitude of theBz-component of the magnetic flux density
along the evaluation line P computed using the explicit or the implicit
Euler method, in comparison with the measurement results published in
[36]. The results are obtained using the fine mesh resulting in 247,276
degrees of freedom.

The resulting simulation times are shown in Table 5.1. It should be noted, that both
explicit and implicit simulation algorithms are not in any way optimized in these
simulations. The simulations based on the coarse mesh use the same time step size
for the explicit and the implicit time integration and both yield the same simulation
time of 12 min. This shows that the computational effort for an explicit and an im-
plicit time step are the same for this code version. This is no surprise, as a linear
material is used in the simulations, thus no linearization is required within an im-
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Figure 5.6: On the top left side: Magnetic flux density computed using the implicit
Euler method.
On the bottom left side: Eddy currents computed using the implicit Euler
method.
On the top right side: Magnetic flux density computed using the explicit
Euler method.
On the bottom right side: Eddy currents computed using the explicit Eu-
ler method.
All results are based on the fine mesh resulting in 247,276 degrees of free-
dom.

plicit time step. The simulations on the fine mesh use half the time step size, i.e.,
∆texp = 0.5 · 10−4 s for the explicit time integration than for the implicit time integra-
tion with ∆timp = 1.0 · 10−4 s. Accordingly, it takes almost twice the simulation time
for the explicit time integration than for the implicit time integration.

However, these simulations were only performed to prove that the application of a
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pseudo-inverse is a valid approach. It must also be noted, that the problem considered
does not comprise a nonlinear ferromagnetic material, thus, no linearization is required
in the implicit time integration.

It can also be seen, that the small stable time step sizes for explicit time integration
schemes, related to small spatial mesh elements, are a general drawback that must be
compensated for using the advantages resulting from explicit time integration schemes.
This will be shown in more detail in later chapters of this thesis.

Time Integration Method # dofs Time Step Size Simulation Time
Implicit Euler 46,218 1.0 · 10−4 s 12 min
Explicit Euler 46,218 1.0 · 10−4 s 12 min
Implicit Euler 247,276 1.0 · 10−4 s 2.5 h
Explicit Euler 247,276 0.5 · 10−4 s 4.75 h

Table 5.1: Time step sizes and resulting simulation times for all simulations of the TEAM 7
benchmark problem carried out. All simulations are run on a server with an Intel
Xeon E5-2660 processor.

5.1.1.2 Results for the TEAM 10 benchmark problem

Another problem evaluated is the TEAM 10 benchmark problem. The TEAM 10
problem is a three-dimensional model problem comprising nonlinear ferromagnetic
steel plates and narrow air gaps. The problem description and reference solutions are
presented in [70]. Its geometry is shown in Figure 5.7. Here, the steel plates are colored
in blue and red. The exciting source coil is colored in green. Both air gaps between the
blue and red steel plates are of the same width dg = 0.5 mm. The steel plates belong
to the conducting subdomain Ωc. The exciting source coil, the air gap, and the air
surrounding the shown geometry belong to the nonconducting subdomain Ωn.

The depicted geometry lies within a box shaped computational domain on which’s sur-
faces homogeneous Neumann boundary conditions and homogeneous Dirichlet bound-
ary conditions for the magnetic vector potential ~A are defined in the simulation. This
box is not shown in Figure 5.7. The lines S1, S2, and S3 in Figure 5.7 mark the
positions where the average magnetic flux density is measured, as described in [70].
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The transient excitation current in the source coil is described by a function iS =
(1−exp(−t/τ)). Here, τ = 0.05 s is a time constant. The current starts to flow at time
t = 0 s and the resulting magnetic flux density is simulated for the following 150 ms.
The excitation current is shown in Figure 5.8 and the calculated magnetization curve
of the steel plates is shown in Figure 5.9.

Figure 5.7: Model geometry of the TEAM 10 benchmark problem.

Two different tetrahedral element meshes of different resolution are applied to the
TEAM 10 problem. The coarse mesh shown on the left side of Figure 5.10 yields
29,532 degrees of freedom. The fine mesh depicted on the right side of Figure 5.10
results in 130,098 degrees of freedom.

As for the TEAM 7 problem, both a simulation using the implicit Euler method and
another simulation using the explicit Euler method for time integration are carried
out for each mesh respectively. For the implicit time integration scheme a time step
size ∆timp = 2 ms is chosen for both mesh resolutions.
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Figure 5.8: Current flowing in the exciting source coil of the TEAM 10 benchmark
problem. The current is described with the function iS = (1− exp(−t/τ)),
where τ = 0.05 s.

The Courant-Friedrichs-Lewy criterion states a maximum stable time step size ∆tCFL =
1.85·10−6 s for the coarsely meshed problem and ∆tCFL = 3.0·10−7 s for the fine meshed
problem. These maximum stable time step sizes are evaluated, prior to executing the
simulations, using the Power Method [43] for computing the maximum eigenvalue in
(5.10), where, the maximum value for the permeability µ of the magnetization curve
of the TEAM 10 problem is used to obtain a "worst-case" time steps size that is stable
for all values of the permeability µ.

Just as in case of the numerical simulations of the TEAM 7 problem, smaller time
step sizes than the maximum stable time step sizes were used to avoid any stability
issues. Thus, the coarsely meshed problem is simulated using an explicit time step size
∆texp = 1.0 · 10−6 s and the fine meshed problem is simulated using an explicit time
step size ∆texp = 1.0 · 10−7 s.

The resulting field plots for the eddy currents evaluated on the coarse and on the fine
mesh are shown in Figure 5.11.
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Figure 5.9: Ferromagnetic nonlinear B-H-curve of the steel plates according to the
material data published in [70].

The resulting field plots for the magnetic flux density evaluated on the coarse mesh
are shown in Figure 5.12. On the left side of Figure 5.12, the resulting field plot
from applying the implicit Euler scheme for time integration is shown. On the right
side of Figure 5.12, the resulting field plot from applying the explicit Euler scheme
for time integration is depicted. Already from these field plots, a slight deviation in
the solution obtained using the implicit and the explicit time integration method is
apparent. The same holds for Figure 5.13 in which the magnitude of the z-component
of the magnetic flux density evaluated along line S1 is shown. Here, the implicit and
the explicit solution also slightly deviate from each other.

This phenomenon is further investigated and explained in chapter 5.3. Here, it is only
briefly mentioned, that in contrast to the TEAM 7 problem with a constant magnetic
permeability, a strongly nonlinear permeability is considered here. This means, in the
implicit time integration algorithm linearizations are performed. Each linearization
is stopped, if a certain tolerance is reached. The explicit time integration scheme,
however, does not require such a linearization. Thus, as will be focused on in chapter
5.3, the simulation using an explicit time integration method yields more accurate
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Figure 5.10: On the left side: Coarsely meshed TEAM 10 problem, yielding 29,532 de-
grees of freedom.
On the right side: Fine meshed TEAM 10 problem, yielding 130,098 de-
grees of freedom.

results. This causes the deviation to the implicit solution.

Both, the implicit and the explicit solution, deviate from the measurement results
published in [70]. This is due to the insufficient resolution of the problem geometry
by a coarse mesh. The simulation times required for simulating the fine mesh are
extremely long, as can be seen in Table 5.1. Therefore, only a time interval ranging
from 0 s to 10 ms is simulated for the fine mesh. The time step size for the implicit
Euler method on the fine mesh is reduced to ∆timp = 1.0 · 10−4 s, as a time step size
of ∆timp = 2.0 · 10−3 s with the employed code, results in more than thirty Newton-
Raphson iterations per implicit time step. In order to reduce the number of Newton-
Raphson iterations, the time step size is reduced. However, it should be noted, that the
coding of the Newton-Raphson method does not involve a relaxation with an optimized
relaxation value. This will certainly reduce the number of required Newton-Raphson
iterations, if a larger implicit time step size is used.

The resulting simulation times are shown in Table 5.2. It should again be noted, that
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Figure 5.11: On the left side: Field plot of the eddy currents evaluated on the coarse
mesh, using the explicit Euler method for time integration.
On the right side: Field plot of the eddy currents evaluated on the fine
mesh, using the explicit Euler method for time integration.

both explicit and implicit simulation algorithms are not in any way optimized with
respect to computational efficiency and speed in these simulations.

The resulting simulation times clearly demonstrate that the application of an explicit
time integration method does not automatically yield a speed-up and that further
improvements are required.

Yet, in case of the coarse mesh, the explicit time step size is 2000 times smaller than
the implicit time step size for the given mesh, but the explicit simulation time is only
54 times longer than the implicit simulation time. This shows, that the computational
effort for an explicit time step is much smaller. This also holds for the simulations on
the fine mesh. Here, the explicit time step is 1000 times smaller than the implicit time
step, but the explicit simulation time is only 180 times longer.
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Figure 5.12: On the left side: Field plot of the magnetic flux density evaluated on the
coarse mesh, using the implicit Euler method for time integration.
On the right side: Field plot of the magnetic flux density evaluated on
the coarse mesh, using the explicit Euler method for time integration.

Time Integration Method # dofs Time Step Size Time Interval Simulation Time
Implicit Euler 29,532 2.0 · 10−3 s 150 ms 57 min
Explicit Euler 29,532 1.0 · 10−6 s 150 ms 51 h
Implicit Euler 130,098 1.0 · 10−4 s 10 ms 2 h 17 min
Explicit Euler 130,098 1.0 · 10−7 s 10 ms 15 d

Table 5.2: Time step sizes and resulting simulation times for all simulations of the TEAM 10
benchmark problem carried out. All simulations are run on a server with an Intel
Xeon E5-2660 processor.
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Figure 5.13: Results on the coarse grid for the magnitude of the z-component of the
magnetic flux density evaluated along line S1.

48



5.2 Improved Start Vector Generation Within Semi-Explicit Time Stepping

5.2 Improved Start Vector Generation Within
Semi-Explicit Time Stepping

Updating the vector of the degrees of freedom in conducting material in the (m+1)-th
time step according to equation (5.7), requires solving systems of equations. The mass
matrix Mcc is inverted by solving an equation system of the type

Mccx = rm+1 ⇔ x = M−1
cc rm+1, (5.11)

where rm+1 =
[
KcnK+

nnjm+1
s,n −

(
Kcc(amc )−KcnK+

nnK>cn

)
amc
]
is newly evaluated in each

explicit Euler method time step.

Here, instead of evaluating a pseudo-inverse by solving

Knnap = jm+1
s,n ⇔ ap = K+

nnjm+1
s,n (5.12)

for ap in each time step, the evaluation of a pseudo-inverse for Knnap = jt0,1 , is
only executed once at the beginning t0 of the time stepping. As the current density
js(t) := f(t) · jt0,1 , (f : R→ R) is the product of a time-dependent scalar value f(t)
and a constant vector jt0,1 pointing in the direction of current flow, the pseudo-inverse
can be updated by multiplication with the scalar value f(t) in each time step, i.e.,
ap = f(t) ·K+

nnjt0,1 .

For computing the product KcnK+
nnK>cnamc in equation (5.7), a pseudo-inverse is eval-

uated by solving a system of the kind of

Knnap = K>cnamc ⇔ ap = K+
nnK>cnamc . (5.13)

Both systems, represented by equations (5.11) and (5.13), are solved by the precon-
ditioned conjugate gradient method, which is well suited for solving large systems of
equations comprising sparse matrices.

The preconditioned conjugate gradient method is an iterative method, as outlined
in chapter 4.1. By supplying it with an optimal start vector, convergence can be
significantly improved resulting in fewer iterations and thus less computation time.

In the following, two methods for computing such optimal start vectors are presented.
Since the entries of the matrices Mcc and Knn do not change over time, the equations

49



5 (Semi-) Explicit Time Integration of the Magnetoquasistatic Field Problem

(5.11) and (5.13) form multiple right-hand side (MRHS) problems in which only the
right-hand side changes.

5.2.1 Subspace Projection Extrapolation and Cascaded Subspace
Projection Extrapolation

A method usable for computing such optimal start vectors for the preconditioned
gradient method is the subspace projection extrapolation (SPE) method proposed in
[17]. The application of the SPE method to the equation systems (5.11) and (5.13) is
proposed in [29, 32].

In a first step, solution vectors for xn and anp from n previous time steps are orthonor-
malized. The modified Gram-Schmidt method can be applied for the orthonormaliza-
tion [43]. The n normalized, linearly independent vectors make up the column vector
of an operator VM = {vM1 | ... | vMn} used for determining an optimal start vector for
inverting the mass matrix Mcc, respectively, an operator VK = {vK1 | ... | vKn} used
for determining an optimal start vector for evaluating a pseudo-inverse of Knn.

In a second step, the projected system

V>MMccVMzM = V>Mrm+1 (5.14)

is solved for zM ∈ Rn and the projected system

V>KKnnVKzK = V>KK>cnamc (5.15)

is solved for zK ∈ Rn. Both equation systems (5.14) and (5.15) can be solved fast using
a direct method, since the matrix products V>MMccVM and V>KKnnVK both yield an
n× n-matrix.

The entries of the vectors zM and zK are the coefficients with which respectively a new
optimal start vector

vM0,SPE := VMzM (5.16)

and

vK0,SPE := VKzK (5.17)
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can be obtained. Thus, an optimal start vector for the preconditioned conjugate gra-
dient method results from a special linear combination of the column vectors of the
operator VM, respectively VK [17].

In the work of this thesis, a modified version of the subspace projection extrapolation
method, termed the Cascaded Subspace Projection Extrapolation (CSPE) method
presented in [29, 32] is employed.

The solution vectors xm and amp from the m-th time step are orthonormalized in the
(m + 1)-th time step using the modified Gram-Schmidt method against the column
vectors of the operator VM and the column vectors of the operator VK, respectively.
The resulting vectors are referred to as vm+1

M and vm+1
K . The column vectors vm+1

M and
vm+1

K could either be appended to the column vectors of VM and VK, thus increasing
the information content of both operators, or could replace the last column vector of
VM and VK, respectively, thus only updating the information content.

A measure for the spectral information content stored in the operators VM and VK

is the number of iterations the preconditioned conjugate gradient method needs for
convergence. Thus, the spectral information content stored is directly related to the
optimality of the start vector computed. If the number of required conjugate gradient
iterations is increasing, i.e., if the number of iterations in the m-th time step is larger
than in the (m − 1)-th time step, the vector vm+1

M , respectively the vector vm+1
K is

appended to the corresponding operator VM, or VK, in order to increase the operator’s
spectral information content.

Continuously appending column vectors to either VM, or VK, would result in increas-
ingly expensive computations in solving (5.14) and (5.15). This is prevented by defining
a maximum limit NCG of an acceptable number of conjugate gradient iterations. Thus,
the column vector vm+1

M , respectively the vector vm+1
K is only appended to VM, or VK

respectively, if both conditions are fulfilled:

1. The number of conjugate gradient iterations in the m-th time step is larger than
the number of conjugate gradient iterations in the (m− 1)-th time step, AND

2. The number of conjugate gradient iterations in the m-th time step is greater
than NCG.
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In the computation of the matrix-matrix products MccVM and KnnVK in equa-
tions (5.14) and (5.15), only the products of matrix-vector Mccvm+1

M and Knnvm+1
K

change in each time step. The remaining matrix-vector products MccviM, i = 1...m
and KnnviK, i = 1...m can be reused, due to their computation in previous time steps.
Since this is possible due to the cascaded use of the subspace projection extrapola-
tion method, this modification is termed cascaded subspace projections extrapolation
method.

5.2.2 Proper Orthogonal Decomposition for MRHS Problems

An alternative approach for computing well suited start vectors for the preconditioned
conjugate gradient method is the method of proper orthogonal decomposition (POD).
A well-known application of proper orthogonal decomposition is within the context
of model order reduction, see e.g. [49, 50, 88]. At this, a larger model is transformed
into a smaller substitute model containing significantly less degrees of freedom, but
comprising most of the spectral information content of the original problem. The
application of proper orthogonal decomposition for start vector generation was first
proposed in [29, 79].

In a first step of the proper orthogonal decomposition method for the computation
of an improved start vector in the (m + 1)-th time step for solving (5.11) and (5.13),
NPOD solution vectors of x and ap from previous time steps are used to form the
column vectors of the snapshot matrices XM and XK respectively. A singular value
decomposition of each snapshot matrix XM and XK is evaluated [49, 50, 88]. The
singular value decomposition (SVD) of XM results in

XM = UMΣMV>PM. (5.18)

Accordingly, the singular value decomposition of XK results in

XK = UKΣKV>PK. (5.19)

The matrices UM and VPM in equation (5.18) and the matrices UK and VPK in
equation (5.19) are orthonormal matrices. The matrices ΣM and ΣK are diagonal
matrices of the corresponding singular values stored on the main diagonal.
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At this, the diagonal entries of ΣM are the lM singular values of XM ordered by
magnitude, i.e., σMi ≥ σMj for i < j. The diagonal entries of ΣK are the lK singular
values of XK ordered by magnitude, i.e., σKi ≥ σKj for i < j.

The classical SVD used in this thesis is based on the L2-norm. Alternatively, a weighted
SVD, based e.g. on the energy norm, can be employed which takes into account infor-
mation on the material parameters or edge lengths [35].

The numbers lM̂ < lM and lK̂ < lK are selected to keep most of the information from
the largest singular values σM1 and σK1, respectively, i.e.,

lM̂∑
i=1

σMi

lM∑
i=1

σMi

!≈ 1 (5.20)

and
lK̂∑
i=1

σKi

lK∑
i=1

σKi

!≈ 1. (5.21)

The relative information criterion in (5.20) and (5.21) usually is fulfilled if
σMlM̂

σM1
≤ εPOD, (5.22)

respectively
σKlK̂
σK1

≤ εPOD (5.23)

holds, where εPOD := 10−4 can be chosen for the threshold value εPOD in practical
applications [91].

The first lM̂ columns of UM are used to define an operator UM̂,POD =
[
UM:,1, ... ,UM:,lM̂

]
.

Accordingly, the first lK̂ columns of UK are employed to define an operator UK̂,POD =[
UK:,1, ... ,UK:,lK̂

]
.

An improved start vector x0,POD for the preconditioned conjugate gradient method
used to solve (5.11) for x is obtained by evaluating

x0,POD := UM̂,POD

[
U>M̂,PODMccUM̂,POD

]−1
U>M̂,PODrm+1. (5.24)
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An improved start vector ap0,POD for the preconditioned conjugate gradient method
used to solve (5.12) for ap is obtained by evaluating

ap0,POD := UK̂,POD

[
U>K̂,PODKnnUK̂,POD

]−1
U>K̂,PODK>cnamc . (5.25)

In (5.24) and (5.24), the resulting matrices of the products
[
U>M̂,PODMccUM̂,POD

]
and[

U>K̂,PODKnnUK̂,POD

]
can be inverted efficiently using a direct method.

5.2.3 Numerical Validation: Improved Start Vectors

The numerical results stated in the following are published in [31, 29, 32].

The effect of computing improved start vectors for the preconditioned conjugate gradi-
ent method on the numerical simulation is investigated in this chapter. The TEAM 10
benchmark problem introduced in subchapter 5.1.1.2 is considered. The description of
code, libraries and hardware used of subchapter 5.1.1 are also valid for the simulations
described in the following.

In order to reduce the overall computation time, a time interval ranging from 0 to 120
ms is evaluated, instead of a time interval ranging from 0 to 150 ms, as selected
in subchapter 5.1.1.2. Furthermore, in comparison to the simulations described in
subchapter 5.1.1, the code for the implicit time integration is improved: The Newton-
Raphson algorithm for linearization uses under-relaxation and lowered tolerances for
faster convergence. Thus, the resulting simulation times for applying the implicit time
integration scheme are smaller in this chapter than stated in subchapter 5.1.1.2. Two
different meshes are considered in the following.

As a proof of the applicability of the code that is used for the numerical experiments,
a very fine mesh resulting in about 700,000 degrees of freedom and the implicit Eu-
ler method for time integration with a time step size ∆timp = 1.0 · 10−4 s is used to
compare the simulation results with the measurement results published in [70]. The
small time step length is used in order to reduce the number of Newton-Raphson iter-
ations. As already explained in subchapter 5.1.1.2, the coding of the Newton-Raphson
method does not involve a relaxation with an optimized relaxation value, which would
allow a larger time step size without resulting in a large number of Newton-Raphson
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iterations. The fine mesh resulting in about 700,000 degrees of freedom, is shown on
the right side of Figure 5.14.

The results for the magnitude of the magnetic flux density evaluated along lines S1,
S2, and S3, as described in subchapter 5.1.1.2, in comparison with the measurement
results are shown in Figure 5.15. Here, it is obvious, that the resolution still is not fine
enough to accurately resolve the skin effect, resulting in a deviation of the simulation
results from the measurement results.

The resulting field plot of the magnetic flux density is shown on the right side of
Figure 5.16. The simulation time for evaluating this problem with a time step size
∆timp = 1.0 · 10−4 s is 5.38 days on the hardware stated in subchapter 5.1.1.

Thus, in order to carry-out multiple simulations for both implicit and explicit time in-
tegrations with different parameters in an acceptable overall simulation time, a coarse
mesh resulting in 29,532 degrees of freedom is considered. This coarse mesh is shown
on the left side of Figure 5.14. In the following, the results obtained using the im-
plicit Euler method for time integration are considered as state-of-the-art reference
solutions against which the solutions obtained with the explicit Euler method for time
integration are compared.

The coarse mesh yields a maximum stable time step size of ∆t = 1.2µs, for the explicit
time integration scheme, which is also used as time step size for simulating.

For investigating the CSPE approach on evaluating a pseudo-inverse of Knn, the fol-
lowing parameters are varied in the simulations: The tolerance εCG for the stopping
criterion of the preconditioned conjugate gradient method when evaluating the pseudo-
inverse of the exterior curl-curl operator and a number NCG of maximally acceptable
conjugate gradient iterations, as explained in subchapter 5.2.1.

Values for the tolerance εCG considered are εCG ∈ {10−8, 10−7, 10−6}. Values for the
numberNCG of maximally acceptable conjugate gradient iterations areNCG ∈ {1, 3, 5}.

For checking the resulting effect on the accuracy of the evaluated magnetic flux density
and on the resulting simulation time, all combinations of εCG and NCG are simulated.
The field plot of the resulting magnetic flux density is shown on the left side of Figure
5.16.
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Figure 5.14: On the left side: Coarse mesh resulting in 29,532 degrees of freedom.
On the right side: Fine mesh resulting in about 700,000 degrees of free-
dom.

The resulting magnetic flux densities evaluated along lines S1, S2, and S3 are com-
pared against the reference solution obtained using the implicit Euler method for time
integration, for each tolerance εCG. This is shown in Figure 5.17. Even using the lowest
tolerance εCG = 10−6 does not result in a significant loss of accuracy.

Decreasing the tolerance εCG reduces the number of averagely required conjugate gra-
dient iterations for convergence. These are also reduced by an increase of column
vectors of the CSPE operator VK, as the information content for the calculation of
the initial guess is increased.

The results are shown in Figures 5.18 and 5.19. The average number of conjugate
gradient iterations resulting from applying the CSPE method is reduced by a factor
of 4 to 12, compared to using the solution from the previous time step as start vector
for the conjugate gradient method. This reduction holds for every chosen tolerance
εCG.

For lower tolerances εCG, the effect of the number of column vectors in the operator
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Figure 5.15: Comparison of simulation results evaluated on a fine mesh of 700,000 dofs
and the measurement results published in [70] along lines S1, S2, and S3.

VK is less pronounced.

A rather small number of column vectors of less than 20 in the operator VK is sufficient
as depicted in Figure 5.19.

Relaxing the tolerance εCG and applying the CSPE method for evaluating a pseudo-
inverse of Knn reduces the simulation time as shown in Figure 5.20. Yet, a smaller
number NCG of maximally acceptable conjugate gradient iterations yields a longer
simulation time. This is due to more computational effort in the CSPE method to
gain so much information that the number of resulting required conjugate gradient
iterations is decreased.

The application of the CSPE method reduces the required simulation time, compared
to using the solution from the previous time step as start vector for the conjugate
gradient method, by a factor of about 2.22. The simulations also show that it was
not efficient to apply the CSPE method for evaluating the inverse of Mcc. Here, the
conjugate gradient method requires already so few iterations by using the previous
time step’s solution as start vector that the CSPE is an inefficient computational
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Figure 5.16: On the left side: Field plot of the magnetic flux density ~B evaluated on
the coarse mesh with 29,532 degrees of freedom.
On the right side: Field plot of the magnetic flux density ~B evaluated on
the fine mesh with about 700,000 degrees of freedom.
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Figure 5.17: Simulation results obtained using the implicit Euler method and the ex-
plicit Euler method with varying CG tolerance evaluated along lines S1,
S2, and S3.

overhead. Thus, in all simulations described in this subchapter, the solution from the
previous time step is used as start vector when inverting Mcc.

The simulation time of the reference method using the implicit Euler scheme for time
integration is 2.35 h. Thus, further speed-up of at least a factor of 1.9 is required for
becoming competitive to the standard method applying the implicit Euler scheme for
the TEAM 10 benchmark problem discretized on the coarse mesh, as shown in Figure
5.14.

The results presented show that applying the CSPE method for computing improved
start vectors for the preconditioned conjugate gradient method for evaluating a pseudo-
inverse of Knn can significantly reduce the number of conjugate gradient iterations
compared to using the previous time step’s solution as start vector.
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Figure 5.18: Averagely required number of PCG iterations when applying the CSPE
method for computing improved start vectors for the PCG method.

Numerical simulations prove that this effect is also achieved by using POD for comput-
ing improved start vectors, as shown in Figure 5.21. In case of the CSPE, the spectral
information content of the operator VK is increased by considering a larger number
of column vectors of VK. It was shown, that less than 20 column operators in VK

are sufficient. Thus, only small algebraic systems of equations have to be solved for
computing an improved start vector, thus the computational effort is low resulting in
reduced computation times.

This is different in case of using POD. According to (5.21), more than 99 % of the
spectral information is kept. Yet, the computational effort of the singular value de-
composition and for computing the start vector according to (5.25) is higher than for
applying the CSPE start vector generation method. Thus, although the number of
conjugate gradient iterations is decreased significantly by applying POD, the simula-
tion time is higher than when using the solution vector from the previous time step
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Figure 5.19: Maximum required number of column vectors in the operator VK of the
CSPE method.

as start vector, as can be seen in Figure 5.22.

Yet, it should be noted that the application of POD can still be investigated and opti-
mized further than presented in this thesis. The SVD is performed on solution vectors
from an arbitrarily chosen number of previous time steps. It should be investigated
whether a more suitable selection scheme for choosing these vectors would result in
reduced computation effort, as e.g. published in [58].

With respect to applying POD for inverting the mass matrix Mcc, the same holds as
for applying CSPE: No significant improvement in performance compared to using the
previous time step solution vector as start vector for the PCG method is observable.
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Figure 5.20: Resulting simulation times when applying the CSPE method for comput-
ing improved start vectors for the PCG method.
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Figure 5.21: Averagely required number of PCG iterations using CSPE, or POD, or
the old solution vector from the previous time step as start vector for the
PCG method.

Figure 5.22: Simulation times using POD, CSPE, or the old solution vector from the
previous time step as start vector for the PCG method.
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5.3 Selective Matrix Update Bypass Strategy

As described in chapter 5, the numerical stability of the explicit Euler method, as of
every explicit time integration scheme, is determined by the Courant-Friedrichs-Lewy
criterion [19, 45]. The maximum stable time step size ∆t for the time integration of
equation (5.7) is given in equation (5.10). Here, the proportionality

λmax
(
M−1

cc (Kcc (ac)−KS)
)
∝ 1
h2κµ

(5.26)

holds for the maximum eigenvalue λmax, if the matrix Mcc is regular, which is the case,
if continuous edge element FEM ansatz functions are used. In equation (5.26), µ is
the permeability, κ is the electrical conductivity, and h is mesh’s smallest edge length.
The maximum eigenvalue is computed using the Power Method [43].

Although the proportionality in (5.26) is useful as a qualitative information, it does
not provide a sharp upper bound to the maximum eigenvalue λmax and cannot be used
as computation method for λmax alternative to the Power Method. This is shown by
numerical investigations.

Equation (5.26) shows, however, that meshes of fine resolution, i.e., meshes corre-
sponding to small values of h, result in small maximum stable time steps. This is of
practical relevance, especially in the simulation of real-world problems, where very
fine-resolved meshes might be required, as e.g. in the air gap of three-dimensional
electric machine models. Thus, values for the maximum stable time step size of the
explicit Euler scheme for equation (5.5) often are in the micro- to nanosecond range.

With respect to the dynamics of excitation currents in magnetoquasistatic field prob-
lems, e.g. 50 Hz sinusoidal currents, applying such small time steps corresponds to a
strong oversampling of the transient evolution of the problem.

For real-world problems, it can be expected, that only slight changes in the excitation
current in directly succeeding time steps of explicit time integration schemes will result
in only marginal changes in the entries of the vector ac in equation (5.7).

Following this assumption, a selective update scheme is proposed in [31, 24], where
the matrix Kcc(ac) is not updated in every time step. Instead, the matrix Kcc(ac) is
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only updated if

‖amc − alc‖
‖alc‖

> tol, l < m, (5.27)

is valid, where changes in alc then only correspond to changes in the current excita-
tion.

Here, tol is a chosen tolerance and ‖ · ‖ represents the L2-norm. In the m-th time step,
the vector amc , i.e., the vector ac in the m-th time step, is computed. If it has changed
from a vector alc, i.e., the vector ac computed in a previous l-th time step, more than
a chosen tolerance tol, the matrix Kcc is updated using amc . Here, the l-th time step
is the time step in which the matrix Kcc was last updated before.

The updating criterion (5.27) based on the L2-norm is used within the work of this
thesis. However, other norms, as e.g. the magnetic energy norm, might be better suited,
if another gauging is used.

5.3.1 Numerical Validation of the Selective Matrix Update
Bypass Strategy

In this chapter, the effect of bypassing the update of the curl-curl matrix in conducting
regions Kcc is investigated by numerical simulations. The numerical results presented
are originally published in [31, 24].

For the numerical test of this approach, the TEAM 10 benchmark problem introduced
in subchapter 5.1.1.2 is considered. Again, the same code, libraries, and hardware
explained in subchapter 5.1.1 are used for the simulations described in the following.

All simulations are based on the coarsely meshed problem resulting in a discrete
MQS formulation with 29,532 degrees of freedom, as introduced in subchapter 5.1.1.2.
Two different current excitations are considered: The current excitation introduced in
subchapter 5.1.1.2 and shown in Figure 5.8, referenced hereafter as "switch-on cur-
rent", and a ramped sinusoidal current with a 50 Hz frequency, hereafter referenced as
"ramped sinusoidal current", as shown in Figure 5.23.

A time interval of 120 ms is simulated for the "switch-on current" and two periods of
the "ramped sinusoidal current" are simulated. In both cases, the simulations start at
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t = 0 s. The reason for introducing the "ramped sinusoidal current" is to check the
applicability of the proposed bypassing strategy on problems which exhibit a more
dynamic behavior than the original problem excited by the "switch-on current."

Figure 5.23: The first two periods of a 50 Hz ramped sinusoidal current, referred to as
"ramped sinusoidal current".

The time step size used for time integration by the explicit Euler method is ∆tCFL =
∆texp = 1.2µs, resulting in 33,333 time steps in case of excitation by the "ramped
sinusoidal current", and in 100,000 time steps in case of excitation by the "switch-on
current".

The time step size ∆timp = 0.1 s is used for reference simulations using the implicit
Euler scheme for time integration. The CSPE method is used for computing improved
start vectors for evaluating a pseudo-inverse of Knn with the PCG method in each
time step. The tolerance for the preconditioned conjugate gradient method is set to
10−6.

For the coarse mesh and first order edge elements, the resulting mass matrix Mcc

is merely of dimension 5.955 x 5,955 and can therefore be inverted directly using a
parallelized GPU-accelerated LU-decomposition. For both excitation currents, several
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simulations are executed with a varying parameter, i.e., the tolerance tol in equation
(5.27). The values considered are tol = 0.1%, 0.5%, 1.0%, 2.5%, 5.0%.

First, the magnetic flux density excited by the "switch-on current", computed by using
the proposed method, is compared for all tolerances with the magnetic flux density
computed by the reference simulation using the implicit Euler method and a time step
size ∆timp = 0.1 s.

The results for the magnetic flux density evaluated along the lines S1, S2, and S3, as
described in subchapter 5.1.1.2, are shown in Figure 5.24.

The results obtained using the implicit Euler method and the results obtained using
the explicit Euler method, with updating the matrix Kcc in each time step, are in
good agreement with the result obtained using the proposed method. This agreement
is independent from the chosen tolerance tol.

Figure 5.24: The first two periods of a 50 Hz ramped sinusoidal current, referred to as
"ramped sinusoidal current".

The corresponding number of updates for the matrix Kcc resulting for all chosen toler-
ances are shown in Figure 5.25. If the matrix Kcc is updated in each time step, 100,000
updates are required during the entire simulation. Thus, even for a fine tolerance of
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tol = 0.1 % the number of updates that is still required is reduced to 7,000, which
corresponds to a reduction of 93 %. The corresponding simulation times, as well es as

Figure 5.25: Number of updates for the matrix Kcc and different tolerances, if the
"switch-on current" is the excitation current.

the simulation times obtained when using the implicit Euler method for time integra-
tion, are shown in Figure 5.26. The proposed bypass strategy reduces the resulting
simulation time below the time required for the reference simulation using the implicit
time integration scheme for this test example.

However, the simulation times for different values for the tolerance tol do not deviate
much from each other. This can be explained when considering the total simulation
time of about 2 h, compared to the simulation time of about 4 h, if an update is
performed in every time step. In case of tol = 0.1 %, only 7,000 updates within 100,000
time steps are required. This results in a 50 % reduction of about 2 h in simulation
time. If even less updates are performed, as in case of larger values for tol, the impact
on the solution time is less pronounced.

In the following, the simulation results obtained using the "ramped sinusoidal current"
as excitation current are investigated.
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Figure 5.26: Simulation times TS for the evaluation of the matrix Kcc and all tolerances
chosen for the "switch-on current" excitation.

The corresponding number of updates for the matrix Kcc resulting for all chosen
tolerances are shown in Figure 5.27. If the matrix Kcc is updated in every time step,
33,333 updates are required during the entire simulation. As in case of the "switch-on
current", even for a fine tolerance of tol = 0.1 % the number of updates is reduced.
Yet, in case of the fine tolerance tol = 0.1 % the number of updates is about 50 %
of the maximum number of updates, compared to a reduction of 93 % in the case of
the "switch-on current" excitation. As expected, a more dynamic problem generally
requires more updates.

The number of updates is further reduced for tolerances larger than tol = 0.5 %, but
the effect is decreasing for increasing tolerances. The corresponding simulation times
are shown in Figure 5.28. The simulation time is reduced for all chosen tolerances, but
it does not change significantly for tolerance values larger than tol = 0.5 %. The sim-
ulation time is not significantly reduced further, as the remaining number of updates
stays almost constant. Again, the remaining computational effort is not caused by the
updating procedure, as is already shown for the results obtained by the "switch-on
current".
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Figure 5.27: Resulting number of updates for the matrix Kcc and all tolerances chosen,
if the "ramped sinusoidal current" is the excitation current.

The loss of accuracy caused by bypassing the matrix update of Kcc(ac) is described
by the error

error = |‖Bsel‖2 − ‖Bevr‖2|
‖Bevr‖2

. (5.28)

Here, the average magnetic flux density Bsel is computed at position S1 using the
selective update strategy and Bevr is evaluated at position S1 updating the matrix
Kcc(ac) in every time step. As expected, the error increases for larger tolerances.
However, it remains sufficiently small even for a tolerance as large as tol = 5.0 %, for
which the largest error is tol = 0.9 %, as plotted in Figure 5.29.

Now, the deviations between the average magnetic flux density evaluated using dif-
ferent time step sizes for the implicit Euler scheme are compared against the results
obtained using the explicit Euler method for time integration with an update of the
matrix Kcc in every time step. The "ramped sinusoidal current" is used as excitation
current. The error is described by

error = |‖Bimpl‖2 − ‖Bevr‖2|
‖Bevr‖2

. (5.29)
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Figure 5.28: Simulation times TS for the update strategy for the matrix Kcc and all
tolerances for the "ramped sinusoidal current" excitation current.

Here, Bimpl is the average magnetic flux density evaluated using the implicit Euler
scheme. The results are shown in Figure 5.30.

From the plot shown in Figure 5.30, it is apparent that the results obtained with
the implicit time integration method converge towards the results computed with the
explicit time integration scheme for smaller time step sizes. In case of the implicit
Euler method, the error is reduced for decreasing time step sizes, as it is first order
convergent [92].

When using the implicit Euler scheme for time integration, a time step size of ∆timp =
0.01 ms is needed for obtaining the same results as with the explicit Euler method.
Thus, the explicit method is more accurate for this numerical test problem with less
computational effort, since the resulting simulation time for the explicit method is
about 5 times shorter than the simulation time of the implicit method with a time
step size of ∆timp = 0.01 ms for equally accurate results, as shown in Figure 5.28.

Yet, the spatial error is dominating. Thus, from an engineering point of view, applying
the implicit Euler scheme with a time step size of ∆timp = 0.1 ms may be considered
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Figure 5.29: Relative error in the average flux density computed according to equation
(5.28), comparing the selective update strategy vs. the full evaluation
strategy.

to yield sufficiently accurate results. For this implicit time step size, the resulting
simulation time is almost identical to the simulation time required by the proposed
method.

Disadvantages of the proposed method with respect to order of convergence or stability
are not observed by the numerical simulations. However, an analytic investigation on
this is not performed.
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Figure 5.30: Deviation of the results computed for the average magnetic flux density
along line S1 using the implicit Euler method and various time step sizes
for time integration from the results obtained using explicit time integra-
tion and updating the matrix Kcc in every time step.
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5.4 GPU-Accelerated Inverse Computations

In previous chapters, a pseudo inverse of the singular curl-curl reluctivity matrix in
nonconducting regions Knn is evaluated using the preconditioned conjugate gradient
method. The inverse of the positive definite conductivity matrix in conducting regions
Mcc is not explicitly computed, but the corresponding algebraic systems of equations
are solved using the preconditioned conjugate gradient method. In both cases, the
preconditioned conjugate gradient method is initialized with improved start vectors
using a multiple right-hand side technique, as e.g. the cascaded subspace projection
extrapolation method or proper orthogonal decomposition. The advantage of this ap-
proach is, that it can be applied to arbitrary matrix dimensions of the matrices Knn

and Mcc.

If the dimension of the regular matrix Mcc is sufficiently small to fit into the RAM
of a GPU accelerator, the left application of the inverse within the time stepping
scheme can be executed by forward-/backward substitutions that are part of a direct
(LU-decomposition) method. At this, the LU-Decomposition of the matrix Mcc is
performed using GPU-acceleration. The LU-Decomposition of the matrix Mcc is stored
within the RAM of the GPU and can be reused in the subsequent forward-/backward
substitution process for solving the multiple right-hand side problem (5.11).

This is a trivial approach to solve the equation system fast. However, due to the asymp-
totical complexity of the LU-Decomposition, it can be expected that this operation
does not scale well with increasing matrix dimensions of Mcc.

In this subsection, a computationally cheap approach for regularizing the singular
matrix Knn is presented, without introducing a significant loss of accuracy. This was
originally proposed in [27].

The presented approach’s underlying idea is to regularize Knn by simply adding a
small offset parameter ε � 1 to each diagonal element of Knn. This approach is also
used for regularization of singular matrices in the AMG method presented in [76, 77].
Thus, the regularized matrix Knn,reg is inexpensively computed by evaluating

Knn,reg := Knn + εI, (5.30)

where I is the identity matrix of the same dimension as Knn.
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The inverse of the regularized matrix Knn,reg is then computed explicitly employing
the LU-Decomposition using GPU-acceleration. As in case of the matrix Mcc, the LU-
decomposition of the regularized matrix Knn,reg is stored and reused for solving the
corresponding multiple right-hand side problem (5.12).

The applicability of this approach is investigated empirically by choosing different
values for ε and subsequent tests to show whether this results in a successful regu-
larization and how much the result is affected by this non-physical modification of
Knn.

5.4.1 Numerical Validation

The effect of adding a small regularizing offset value ε to the main diagonal of the
matrix Knn and re-using GPU accelerated precomputed LU-decomposition of the so
obtained matrix Knn,reg and of the matrix Mcc is investigated by numerical simulations.
The numerical results presented in the following are originally published in [28, 27].

As in subchapters 5.2.3 and 5.3.1, the TEAM 10 benchmark problem introduced in
sub-chapter 5.1.1.2 is used as test problem. The description of code, libraries and
hardware used, stated in subchapter 5.1.1, is valid for the simulations described in
the following. For the GPU-accelerated LU-decomposition, functions of the MAGMA
library are used [107]. The MAGMA library provides functions and data structure for
linear algebra on many-core systems, especially on GPUs and heterogeneous systems.
Updates of the matrix Kcc are bypassed, as described in subchapter 5.3.

Two different spatial discretizations are used for the numerical validations: First, the
coarse mesh, already known from subchapters 5.1.1.2, 5.2.3, and 5.3.1 with a model of
29,532 degrees of freedom and a maximum stable time step size of ∆tCFL = 1.2µs. A
tolerance tol = 2.5 % is used for the bypassing of updates of the matrix Kcc. In addi-
tion, a finer mesh with a discrete model of 50,035 degrees of freedom and a maximum
stable time step size of ∆tCFL = 0.6µs is used with a tolerance tol = 1.0 % for the
bypassing of updates of the matrix Kcc.

This finer mesh is shown in Figure 5.31. This mesh results in a matrix Mcc of di-
mension 15,639 x 15,639 and a matrix Knn,reg of dimension 34,396 x 34,396. The
LU-decomposition of larger matrices would exceed the available GPU-RAM of one
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graphics processor, with 12 GB RAM, of an NVIDIA K80 GPU and would thus re-
quire the use of multiple GPUs.

Figure 5.31: Mesh of the TEAM 10 problem resulting in 50,035 degrees of freedom.

A time interval ranging from 0 s to 120 ms of a current excitation described by a
function iS(t) = (1− exp(−t/τ)) is simulated for both spatial discretizations, where
τ = 0.05 s is a time constant. Values for the regularization offset parameter ε are
ε ∈ [10−9, 10−12, 10−15]. The results are presented in the following.

The magnitude of the average magnetic flux density is evaluated along line S3 for
both meshes and all values of the regularization offset parameter ε. Simulations using
the implicit Euler method for time integration, or the explicit Euler method with the
CSPE-started PCG method for the evaluation of the pseudo-inverse of Knn, are used
as reference simulations. The preconditioner used is an AMG-preconditioner from the
Trilinos library [63, 51].

The results evaluated on the coarse mesh are shown in Figure 5.32; the results obtained
on the fine mesh are shown in Figure 5.33. For both spatial discretizations, the results
of all simulations are in good agreement. Thus, the application of a small offset value ε
for regularizing Knn is a valid approach with respect to the accuracy of the evaluated

77



5 (Semi-) Explicit Time Integration of the Magnetoquasistatic Field Problem

magnetic flux density. This makes the time integration scheme accessible for GPU-
accelerated direct solution MRHS methods.

Figure 5.32: Results for the magnitude of average magnetic flux density on the coarse
mesh evaluated along line S3.

The simulation times for all simulations carried-out on the coarse mesh are shown
in Figure 5.34. As expected, the simulation time for all simulations using a GPU-
accelerated LU-decomposition of the regularized matrix Knn are about equal indepen-
dently from the exact value of the offset parameter ε.

These simulations are faster by 26 % compared to evaluating a pseudo-inverse of Knn

using the AMG-preconditioned conjugate gradient method with improved start vectors
computed by the CSPE method and faster by 52 % compared to using the implicit
Euler scheme for time integration for the small test problems.

The simulation times for all simulations run on the finer mesh are shown in Figure
5.35. Again, the simulation time for all simulations using a GPU-accelerated LU-
decomposition of the regularized matrix Knn are almost identical, independently from
the exact value of the offset parameter ε, as expected. As in case of the simulations on
the coarse mesh, these simulations are faster by 26 % compared to evaluating a pseudo-
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Figure 5.33: Results for the magnitude of average magnetic flux density on the fine
mesh evaluated along line S3.

inverse of Knn using the preconditioned conjugate gradient method with improved start
vectors computed by the CSPE method.

However, they are significantly slower than the reference simulation using the implicit
Euler scheme for time integration. Thus, the proposed method does not lead to a
speed-up that can compensate for the small time step size.
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Figure 5.34: Simulation times on the coarse mesh.

Figure 5.35: Simulation times on the finer mesh.
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6 Parallel-In-Time Integration of
Transient Electroquasistatic Field
Problems Using Parareal

The Parareal algorithm is a parallel-in-time integration method for initial value prob-
lems, originally proposed in [62]. Usually, the spatial dimension is considered for par-
allelization, as the causality principle must be considered in temporal parallelization.
However, parallelization in time is especially interesting, when employing massively
parallel computers, and when the speed-up gained from spatial discretization satu-
rates [73, 39]. The Parareal algorithm can be considered as both, a multiple shooting
algorithm or as a multigrid method, with respect to time [41, 40].

In the following the application of the Parareal algorithm to electroquasistatic field
problems is explained and numerically investigated.

6.1 Mathematical Formulation

As derived in chapter 2.1, the electroquasistatic approximation of Maxwell’s equations
is described by the partial differential equation

∇ · (κ (φ)∇φ) +∇ ·
(
ε∇∂φ

∂t

)
= 0. (6.1)

Discretizing (6.1) in space using e.g. the finite element method yields a system of
ordinary differential equations

M
d
dtx + K (x) x = b, (6.2)
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Figure 6.1: An exemplary plot of the solution on the coarse and the fine time grid
is shown at one iteration of the Parareal algorithm. The coarse time grid
consists of six time intervals with a time step size ∆tc. The solution for x
on the coarse time grid is shown in green. The solution on the fine time
grid with a time step size ∆tf is shown in each coarse time interval in blue.
The exact solution, against which the Parareal algorithm’s solution will
converge, is shown in pink.

where M is the mass matrix, x is the vector of time-dependent electric scalar potentials,
K (x) is the stiffness matrix depending nonlinearly on the electric potentials. The right-
hand side b contains the transient Dirichlet boundary conditions.

In the following, it is explained how the Parareal method is applied to integrate equa-
tion (6.2) in time following the presentation in [94], where the Parareal algorithm is
applied to a magnetoquasistatic field problem.

The time interval to be simulated is split into N sub-intervals, where N is the number
of parallel processes supported by the available computer hardware. These N time
intervals constitute the starting points of the parallel time steps on the fine time grid.
A propagator G : I × I × Rn → Rn propagates the solution along the coarse time
grid with a coarse time step size ∆tc and another propagator F : I × I × Rn → Rn
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propagates the solution along the fine time grid with a time step size ∆tf � ∆tc.
Here, the numerical implementation of G and F is either the implicit or explicit Euler
method.

Thus, the solution x̄j on the coarse time grid at time Tj is obtained by evaluating
x̄j = G (Tj, Tj−1,Xj−1), where Xj−1 is the initial value for solving the coarse grid
problem in the time interval [Tj−1, Tj]. On the fine time grid at time Tj, the solution
x̃j is computed by x̃j = F (Tj, Tj−1,Xj−1).

Algorithm 2 Parareal algorithm, as given in [94, 48]

Initialization: X(k)
0 ← x0, x̄(0)

j , x̃(0)
j ← 0 (for all j, k), set tolerance tol;

set Parareal iteration counter: k ← 1;
while k ≤ 2 or maxj ‖X(k)

j −X(k−1)
j ‖ > tol do

for j ← 1 to N do
coarse solution: x̄(k)

j ← G
(
Tj, Tj−1,X(k)

j−1

)
;

post process: X(k)
j ← x̃(k−1)

j + x̄(k)
j − x̄(k−1)

j ;
end for
parfor j ← 1 to N do

fine solution: x̃(k)
j ← F

(
Tj, Tj−1,X(k)

j−1

)
;

end parfor
increment counter: k ← k + 1;

end while

Time integration on the coarse and on the fine time grid is carried-out in an iterative
process, which is explained in the following. At the time points Tj on the coarse time
grid, continuity needs to be established. Therefore, matching conditions demanding
equality of the solutions at this point in time obtained on the coarse and on the fine
time grid are imposed. The equation system resulting from these matching conditions
can be solved by Newton’s method and yields a correction step described by

X(k)
j = x̃(k−1)

j + x̄(k)
j − x̄(k−1)

j , (6.3)

as derived in [94]. Here, k is the iteration counter for the Parareal iterations, X(k)
j is

the corrected start value for time integration on the fine time grid in the time interval
[Tj−1, Tj] in the k−th iteration, x̃(k−1)

j is the solution at time Tj evaluated on the fine
time grid in the (k − 1)−th iteration, x̄(k)

j is the solution at time Tj evaluated on the
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coarse time grid in the k−th iteration, and x̄(k−1)
j is the solution at time Tj evaluated

on the coarse time grid in the (k − 1)−th iteration. This start-value correction step
practically is a post-processing to the time integration on the coarse time grid.

The steps of the Parareal algorithm are listed in Algorithm 2. In a first step, all
initializations are done, as e.g. setting the counter k = 1 and assigning an initial value
x0 for time point T0. The initializations are only done once at the beginning of the
computations.

In a second step, the time integration on the coarse time grid is carried-out. In a third
step, the start values for time integration on the fine time grid are corrected according
to equation (6.3). In a fourth step, each parallel processor is assigned a time interval
[Tj−1, Tj] and a corrected start value. The time integration on the fine time grid in all
time intervals [Tj−1, Tj] is carried out in parallel on N parallel processors. When all
time integrations on the fine time grid are finished, the counter k is incremented by
1, i.e., k ← k + 1. In the last step of an iteration, the stopping criterion is evaluated.
This is described by

maxj‖X(k)
j −X(k−1)

j ‖ > tol, (6.4)

as stated in [94], where tol is a prescribed tolerance. If the stopping criterion is fulfilled,
the Parareal algorithm has converged towards a solution. If it is not fulfilled, another
iteration follows.

An exemplary plot of obtained solutions in an iteration is shown in Figure 6.1. Here,
the final, continuous solution and solutions obtained on the coarse and on the fine
time grid are shown. These solutions converge towards the exact sequential solution
after at maximum k = N iterations of the Parareal algorithm [94].

6.2 Numerical Validation

A Matlab based inhouse FEM simulation code for two-dimensional electroquasistatic
field problems is used with Matlab 2017b for the simulations [67]. The Matlab Par-
allel Toolbox is used for the parallelized computations on the fine time grid, i.e., the
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parfor-loop in Algorithm 2. Neither the implicit nor the explicit Euler method are ad-
ditionally parallelized. All simulations are run on a server with a 16-cores Intel Xeon
E5-processor.

A two-dimensional model of an IEC 60099-4 surge arrester is used for numerical valida-
tion [55]. Two different triangular meshes are applied and both are spatially discretized
using a nodal finite element ansatz and a Galerkin approach of the test functions. The
meshes yield 23,577 and 51,528 degrees of freedom, respectively. For the tolerance in
equation (6.4), a tolerance value tol = 10−4 is used in all simulations.

Figure 6.2 shows the two-dimensional model geometry of the IEC 60099-4 surge ar-
rester. The mesh resulting in 23,577 degrees of freedom is depicted in Figure 6.3.

Figure 6.2: Geometry of the two-dimensional model of an IEC 60099-4 surge arrester.
The air region is colored in turquoise. The components of the surge ar-
rester are colored in red, green, and orange. Areas, where the surge arrester
pierces through the air plane are colored in white.

A sinusoidal excitation voltage with a frequency of 50 Hz and a peak value of 471 kV
is applied to the surge arrester. A time interval ranging from 0 ms to 40 ms is simu-
lated. The simulations are used as proof-of-concept for the applicability of the Parareal
algorithm to electroquasistatic field problems. Therefore, in a first step, simulations
with a linear field grading material are executed for both meshes. In a second step,
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Figure 6.3: A triangular mesh resulting in 23,577 degrees of freedom is applied to the
model geometry shown in Figure 6.2.

simulations with a nonlinear field grading material are performed for the mesh that
results in a discrete model of 23,577 dofs.

For each mesh, four different simulations are executed:

• First, a simulation using only the implicit Euler method for time integration
representing the general approach as reference simulation,

• the second is a simulation using only the explicit Euler method,

• the third simulation employs the Parareal algorithm with the implicit Euler
method used for time integration on the coarse time grid and the implicit Euler
method used for time integration on the fine time grid,

• the fourth simulation employs the Parareal algorithm with the implicit Euler
method used for time integration on the coarse time grid and the explicit Euler
method used for time integration on the fine time grid.

Simulations employing the Parareal algorithm and a stabilized explicit method for
time integration on the coarse time grid and an explicit time integration scheme on the
fine time grid are not executed. These simulations are of interest for future research. A
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suitable stabilized explicit time integration method is e.g. the Runge-Kutta-Chebyshev
method [103, 79, 78].

6.2.1 Results of Simulations with a Linear Field Grading Material

An overview of the simulations and the chosen time step sizes for both meshes are
shown in Table 6.1 and in Table 6.2.

Name Time Integration Method Time Step Size
Imp. Euler Implicit Euler 0.1 ms
Exp. Euler Explicit Euler 0.1 ms

Table 6.1: Time step lengths for simulations with linear field grading material using the
implicit and the explicit Euler method for the sequential time integration.

Name Time Int. Coarse Grid Time Int. Fine Grid ∆tc ∆tf
ImIm-Parareal Implicit Euler Implicit Euler 2.5 ms 0.1 ms
ImEx-Parareal Implicit Euler Explicit Euler 2.5 ms 0.1 ms

Table 6.2: Time step lengths for simulations with linear field grading material using the
Parareal algorithm.

The evaluated results for the electric potential and for the voltage stress of the problem
with 23,577 degrees of freedom are shown in Figure 6.4 and in Figure 6.6. The evaluated
results for the electric potential and for the voltage stress of the problem with 51,528
degrees of freedom are shown in Figure 6.5 and in Figure 6.7.

The results of the reference simulations and of the simulations employing the Parareal
algorithm for time integration are in good agreement, which validates the applicability
of the Parareal algorithm to the problems considered.

The resulting simulation times for the problem with 23,577 degrees of freedom are
depicted in Figure 6.8. The resulting simulation times for the problem with 51,528
degrees of freedom are depicted in Figure 6.9.
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Figure 6.4: Results for the electric potential of the mesh resulting in 23,577 degrees of
freedom with linear field grading material.

Figure 6.5: Results for the electric potential of the mesh resulting in 51,528 degrees of
freedom with linear field grading material.
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Figure 6.6: Results for the voltage stress of the mesh resulting in 23,577 degrees of
freedom with linear field grading material.

Figure 6.7: Results for the voltage stress of the mesh resulting in 51,528 degrees of
freedom with linear field grading material.
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Figure 6.8: Real simulation times of the problem with 23,577 degrees of freedom and
with linear field grading material.

0

2

4

6

8

10

12

14

S
im

u
la

ti
o
n
 T

im
e
 t

/m
in

 

Imp. Euler

Exp. Euler

ImIm-Parareal

ImEx-Parareal

Figure 6.9: Real simulation times of the problem with 51,528 degrees of freedom and
with linear field grading material.

As expected, the time for the simulations using the Parareal algorithm are significantly
faster than the reference simulations using the implicit Euler method for time integra-
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tion. The simulation time resulting from using the Parareal algorithm with the implicit
Euler method on the coarse time grid and the implicit Euler method on the fine time
grid is only slightly faster than the reference simulation employing the explicit Euler
method.

The simulation time resulting from applying the Parareal algorithm with the implicit
Euler method on the coarse time grid and the explicit Euler method on the fine time
grid requires only about half the simulation time of the reference simulation using
the explicit Euler method. Thus, at least for the problems considered, the Parareal
algorithm, especially when using the explicit Euler method on the fine time grid, is
shown to be a competitive approach with respect to simulation time.

6.2.2 Results of Simulations with a Nonlinear Field Grading
Material

In the following, the simulation results obtained using a nonlinear field grading ma-
terial for the mesh that yields a discrete model with 23,577 dofs, are presented. The
conductivity curve of the nonlinear field grading material used is shown in Fig. 6.10.

Again, four different simulations are executed using the following schemes for time
integration:

• the implicit Euler method,

• the explicit Euler method,

• the Parareal algorithm using the implicit Euler method on the coarse time grid,
and the implicit Euler method on the fine time grid,

• the Parareal algorithm using the implicit Euler method on the coarse time grid,
and the explicit Euler method on the fine time grid,

The time step sizes employed are presented in Table 6.3 and in Table 6.4

It should be noted, that a very small implicit time step size is used for the reference
simulation employing the implicit Euler scheme. The reason for this, is that the coding
of the Newton-Raphson method does not involve a relaxation scheme. For larger time
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Figure 6.10: Conductivity curve of the nonlinear field grading material of the surge
arrester used.

step size of the implicit Euler method, significantly more Newton-Raphson iterations
are required than for small time step lengths. This also causes the long simulation
time of the variant where the Parareal algorithm with the implicit Euler method for
time integration on the coarse and on the fine time grid (ImIm-Parareal) is used,
as shown in Figure 6.11. The time step size on the coarse time grid ∆tc = 2ms
results in many time consuming Newton-Raphson iterations. For easier comparability
of the simulation times of the other three simulations, Figure 6.12 shows all simulation
times except for the simulation time of the ImIm-Parareal simulation. Amongst the
simulations executed, ImEx-Parareal requires the shortest simulation time. However,
these simulations only serve as proof-of-concept for the applicability of the Parareal
algorithm to this test problems. Using a different code, e.g. with an optimal relaxation
for the Newton-Raphson method, or other optimizations with respect to simulation
time, can result in completely different simulation times.
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Name Time Integration Method Time Step Size
Imp. Euler Implicit Euler 1 µs
Exp. Euler Explicit Euler 1 µs

Table 6.3: Time step lengths for simulations with a nonlinear field grading material using
the implicit and the explicit Euler method for the sequential time integration.

Name Time Int. Coarse Grid Time Int. Fine Grid ∆tc ∆tf
ImIm-Parareal Implicit Euler Implicit Euler 2 ms 1 µs
ImEx-Parareal Implicit Euler Explicit Euler 10 µs 1 µs

Table 6.4: Time step lengths for simulations with a nonlinear field grading material using
the Parareal algorithm.

The results for the electric potential and for the voltage stress are shown in Figure
6.13 and in Figure 6.14. Contrary to the simulation results obtained with a linear field
grading material, the results computed with the nonlinear field grading material dif-
fer for the time integration schemes used. However, the agreement is still sufficiently
good for most practical purposes. The reason for the deviations is not investigated
further within this work. A possible assumption is, that the results evaluated by using
the explicit Euler method for time integration are more accurate than those obtained
with the implicit Euler scheme, as linearization is avoided. The reason for the de-
viation of the results computed using the ImIm-Parareal algorithm requires further
investigations.
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Figure 6.11: Real simulation times for the mesh resulting in 23,577 degrees of freedom
with a nonlinear field grading material.
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Figure 6.12: Real simulation times for the mesh resulting in 23,577 degrees of free-
dom with a nonlinear field grading material, without the simulation time
without ImIm-Parareal.
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Figure 6.13: Results for the electric potential of the mesh resulting in 23,577 degrees
of freedom with a nonlinear field grading material.
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Figure 6.14: Results for the voltage stress of the mesh resulting in 23,577 degrees of
freedom with a nonlinear field grading material.
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7 Conclusion and Outlook

The main part of this thesis reports on the (semi-) explicit time integration of magneto-
quasistatic field problems. In order to allow the application of explicit time integration
schemes, the infinitely stiff differential algebraic equation of index 1 resulting from the
spatial discretization of the partial differential equation of the magnetic vector po-
tential formulation was transformed into a system of finitely stiff ordinary differential
equations by application of a generalized Schur complement. For this, the degrees of
freedom were separately allocated depending on their allocation in either conducting
or nonconducting subregions of the computational domain.

The application of the Schur complement and the computations required in each time
step of the explicit Euler method, still require the solution of algebraic linear systems
of equations repeatedly, thus the term semi-explicit time integration. Equation systems
that need to be solved involve the inverse of the regular mass matrix and the evaluation
of a pseudo-inverse of the singular curl-curl operator in nonconducting (air) regions.

The application of the explicit Euler method avoids the need for solving large nonlinear
systems of equations including computationally expensive linearization methods, such
as the Newton-Raphson method including the ill-conditioned numerical evaluation of
a Jacobian matrix. The main disadvantage of explicit time integration schemes in
general is a commonly small maximum stable time step size according to the Courant-
Friedrich-Levy criterion. In many realistic model configurations this results in a strong
oversampling of the transient evolution due to stability constraints. Thus, the focus
of this thesis was to explore various methods to speed-up the computations and com-
pensate for the small time step size.

The first approach presented for acceleration involves the application of multiple-right
hand side methods for the mass matrix inverse and the pseudo-inverse of the sin-
gular curl-curl operator in nonconducting regions. For this, the cascaded subspace
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extrapolation method and the proper orthogonal decomposition method for comput-
ing improved start vectors for the preconditioned conjugate gradient method were
investigated. Both methods successfully reduced the resulting number of conjugate
gradient iterations, but only the cascaded subspace extrapolation method resulted in
a reduction of simulation time, due to its low computational effort. Especially the
proper orthogonal decomposition method was not sufficiently intensively investigated
within the work of this thesis. A more suitable selection algorithm for input vectors for
the singular value decomposition would certainly reduce the computational effort and
would improve the competitiveness of the proper orthogonal decomposition methods.
This is an important aspect of future work.

Another approach for a reduction of the simulation times is a bypassing of the up-
date of the reluctance curl-curl matrix in conducting regions. The problem dynamics
resulting from typical excitation currents are usually slow enough with the result that
the small stable time step size results in an extreme oversampling. Thus, the changes
in reluctivity in succeeding time steps are negligibly small and the update of the re-
luctance curl-curl matrix in the conducting regions is not required in every time step,
if changes in reluctivity since the last update are noticeable. This bypassing strategy
results in a significant computational speed-up, depending on the dynamics of the
excitation.

In future research, this approach should also be evaluated for use with pulse-width-
modulated excitation currents of fast dynamics. The pulse-width-modulated excitation
currents are state of the art in motor control and thus of practical relevance. The small
pulse width might result in the stable time step sizes just fulfilling the Nyquist criterion
which will probably result in few to none bypassable matrix updates. Furthermore,
within the work of this thesis, only the L2-norm has been used for computing changes in
the solution vectors over time. In future research, other norms, such as e.g. the energy
norm, should also be investigated as they might be more suitable from a physical point
of view.

Another approach is the addition of a small offset value to the main diagonal elements
of the singular curl-curl operator in nonconducting regions resulting in a regularization.
The GPU-accelerated LU-decomposition of the mass matrix and of the regularized
curl-curl operator in nonconducting regions was computed once and reused in each
time step. The limit for this approach reached within the work of this thesis was
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caused by matrix dimensions. Since only one GPU was used, the maximum matrix
dimension was limited by the available memory of the GPU. This problem can be
overcome in future works by using multiple GPUs, if the limiting communication
bandwidth between the GPUs can be compensated for by a suitable algorithm.

With respect to all approaches presented, it should be mentioned that they were
validated numerically using the ferromagnetic three-dimensional TEAM 10 benchmark
problem with a rather coarse mesh. Since this strongly nonlinear magnetoquasistatic
problem is suitable as an exemplary proof of concept of the proposed approaches.

Some speed-up can also certainly be gained by diagonalization of the mass matrix
using the approach presented in [60], since a diagonal matrix inverse can be efficiently
inverted and multiplicated without using GPU-RAM.

Furthermore, time integration methods combining implicit and explicit time integra-
tion schemes, so called ImEx-methods should be subject to further investigations. Here,
especially the Parareal algorithm combined with an ImEx-approach is of interest. On
the coarse time grid, an implicit time integration method with an unconditionally
stable time step size can be used. On the coarse time grid, only few time steps are
required, thus only few computationally expensive implicit time steps are required. On
the fine time grid, an explicit time integration scheme can be used. Here, many time
steps are required. This corresponds well with computationally inexpensive, small,
stable time steps lengths of explicit time integration schemes. In this context, the use
of multiple GPUs is of interest, where each GPU can carry-out the computations in
one coarse grid time interval.

Another topic covered in this thesis is the use of the Parareal algorithm for parallel-in-
time integration of transient electroquasistatic field problems. Here, two implementa-
tions of the Parareal algorithm were investigated. In one implementation, the implicit
Euler scheme was used for time integration on both the coarse and the fine time grid.
In the other implementation the implicit Euler method was used on the coarse time
grid and the explicit Euler scheme was used on the fine time grid. A simplified two-
dimensional finite element model of a surge arrester with two differently fine meshes
was used for numerical validation purposes. It was shown that the use of both Parareal
implementations resulted in a computational speed-up, where the fastest simulations
employed the explicit Euler method on the fine time grid. The work presented is only
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to be considered a proof-of-concept for the applicability of the Parareal algorithm to
electroquasistatic field problems. Further investigations should consider nonlinear field
grading materials and three-dimensional problems. First simulations with a nonlinear
field grading material were executed, but clearly show the need for further improve-
ment, see e.g. [48]. The simulations employing the implicit Euler method on both the
coarse and the fine time grid had a significantly larger simulation time than expected.
Improving the linearization method employed might improve this. The simulations
comprising a nonlinear field grading material and employing the Parareal algorithm
with the implicit Euler method on the coarse time grid and the explicit Euler scheme
on the fine time grid became numerically unstable.

Furthermore, simulations employing the Parareal algorithm and the explicit Euler
method for time integration on both the coarse and the fine time grid and a linear
field grading material were performed. These simulations also became numerically
unstable and need to be investigated further. Here, employing a stabilized explicit
time integration method, as e.g. the Runge-Kutta-Chebyshev method [103] with a
larger stability region is of special interest.

Additionally, since the iterative nature of the Parareal algorithm comprises the re-
peated solving of multiple-right-hand side problem, the multiple-right-hand side tech-
niques suggested for improved start vector generation for the conjugate gradient method
in the magnetoquasistatic section of this thesis should also be applied. This will prob-
ably result in further speed-up of computations.

The Parareal algorithm also constitutes a good starting point for investigating a space-
time-parallel approach. Here, the spatial part of the problem comprising only materials
with linear or even constant material parameters are treated only on the coarse time
grid. The spatial parts of the problem comprising nonlinear material properties are
also treated on the fine time grid, since small time steps are more suitable to nonlinear
problems.

Finally, it can be summarized that the work presented in this thesis, both with re-
spect to the approaches suggested for the magnetoquasistatic and electroquasistatic
problems, only represent ground work and proofs of concept. Yet, the approaches pre-
sented also open-up the possibility to employ further ideas, both mathematical and
computing, respectively hardware-oriented.
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