
Advanced Applications For
Algebraic Multigrid Methods In

Lattice QCD

Dissertation

Bergische Universität Wuppertal
Fakultät für Mathematik und Naturwissenschaften

eingereicht von
Artur Strebel, M. Sc.

zur Erlangung des Grades eines Doktors der Naturwissenschaften

Wuppertal, den 10. August, 2020

The PhD thesis can be quoted as follows:

urn:nbn:de:hbz:468-20200918-095033-4
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20200918-095033-4]

DOI: 10.25926/anzj-5192
[https://doi.org/10.25926/anzj-5192]

Acknowledgments

First of all, I would like to thank Karsten Kahl for his interesting lectures during
my Masters studies which introduced me into the field of numerical linear algebra.
I am also grateful to Andreas Frommer, who enabled me to do my research in
his group and for creating a pleasant working athmosphere within this group.
I greatly appreciate the support by Matthias Rottmann, especially during the
beginning of my work.

Of course I also thank my (former) colleagues and friends, which by the time of
this thesis are far away from being disjoint sets. I will always happily look back
to the many great moments we had together and hope for many more to come.

Finally, I wish to thank my family for their continuous support and for always
reminding me that there is a world outside of mathematics (and Wuppertal)!

I

Foreword

The work presented in this thesis is in parts based on the following publications:

• J. Brannick, A. Frommer, K. Kahl, B. Leder, M. Rottmann, and
A. Strebel, Multigrid preconditioning for the overlap operator in lattice
QCD, Numer. Math., 132 (2016), pp. 463–490

• A. Frommer, K. Kahl, F. Knechtli, M. Rottmann, A. Strebel,
and I. Zwaan, A multigrid accelerated eigensolver for the Hermitian Wilson-
Dirac operator in lattice QCD, (2020). arXiv:2004.08146

This work is funded by the Deutsche Forschungsgemeinschaft (DFG) the Tran-
sregional Collaborative Research Centre 55 (SFB-TR 55).

All numerical results shown in this thesis were computed at the Jülich Super-
computing Centre (JSC) using the super computers JUROPA, JURECA and
JUWELS.

III

Contents

Acknowledgments I

Foreword III

Contents V

1 Introduction 1

1.1 Outline . 3

1.2 Notation and abbreviations . 4

2 Basics of numerical linear algebra 5

2.1 Basic definitions . 5

2.1.1 Conditioning . 8

2.2 Iterative methods for sparse linear systems of equations 10

2.2.1 Basic relaxation schemes and their block variants 12

2.2.2 Krylov subspace methods 14

2.2.3 Restarting . 18

2.2.4 Preconditioning . 19

V

CONTENTS

2.3 Multigrid methods . 22

2.3.1 Smoother . 22

2.3.2 Coarse grid correction . 23

2.3.3 Multigrid in lattice QCD 26

2.4 Eigenvalue problems . 28

2.4.1 Eigensolvers based on vector iteration 29

2.4.2 Subspace accelerated eigensolvers 33

2.5 Matrix functions . 36

2.5.1 Applying a matrix function to a vector 38

3 Basics of quantum chromodynamics 41

3.1 Continuum QCD . 41

3.2 The Wilson discretization . 42

3.3 Normality of the Wilson-Dirac operator 45

3.4 Applications . 51

3.4.1 Validation of the staggered Wilson discretization 52

3.4.2 Low-mode averaging . 53

3.4.3 Hybrid Monte Carlo . 54

4 Auxiliary space preconditioning for the overlap operator in lattice
QCD 57

4.1 Chiral operators in lattice QCD 58

4.2 Multigrid preconditioning for the overlap operator 61

4.3 Numerical results . 65

4.3.1 Accuracy of the preconditioner and influence of mprec
0 . . . 66

4.3.2 Quality and cost of the preconditioner 69

4.3.3 Comparison of optimized solvers 71

5 A multigrid accelerated eigensolver framework 75

5.1 The GD-λAMG method . 76

VI

CONTENTS

5.2 Local coherence . 80

5.3 Numerical results . 83

5.3.1 Algorithmic tuning . 86

5.3.2 Scaling results . 89

6 A Davidson-type multigrid setup 93

6.1 Subspace acceleration in algebraic multigrid setup 93

6.2 Numerical results . 95

7 Conclusion & Outlook 101

7.1 Conclusion . 101

7.2 Outlook . 102

List of Figures 105

List of Tables 108

List of Algorithms & Scripts 109

Bibliography 110

VII

Chapter 1
Introduction

Quantum Chromodynamics (QCD) is a part of the standard model of particle
physics and describes one of the four fundamental forces: the strong interactions
between quarks and gluons within hadrons, e.g., within protons or neutrons in
four-dimensional spacetime.

As it is impossible to extract information analytically from this continuous model,
Lattice QCD has been introduced by Kenneth Wilson in 1974 [107]. It transports
the continuous theory onto a four-dimensional lattice, where it can be solved nu-
merically. Lattice QCD represents a non-perturbative approach and has shown
to be in agreement with experimental observations, for example in [34] the au-
thors determine the mass of the proton, neutron and other light hadrons using
Lattice QCD. However lattice simulations are among the world’s most demanding
computational problems [8, 51], thus making the use of high-end supercomputing
resources indispensable.

One of the main challenges lies in the repeated solution of an appropriate dis-
cretization of the Dirac equation, which describes the dynamics of the quarks and
their interaction with gluons. Its most common discretization, i.e., the Wilson-
Dirac operator, leads to large, ill-conditioned linear systems of equations when
used in physically relevant simulations. Classical iterative schemes like Krylov
subspace methods show a poor convergence rate for these problems [46]. When
approaching the physical point, they suffer from“critical slowing down”, where
these methods become practically infeasible, even when using traditional precon-
ditioning methods like odd-even preconditioning [29, 40], deflation [68] or domain
decomposition [47, 67]. The ill-conditioning of the Wilson-Dirac operator in this
case motivates the application of multigrid preconditioners whose convergence
rate is ideally independent of the conditioning of the system, thus being favorable
for this application.

1

1 Introduction

Multigrid methods recently gained popularity within the Lattice QCD commu-
nity leading to several algorithms, like the“AMG” method [82] implemented in
the QOPQDP library [81] or the “Inexact Deflation” method [68] which can be
interpreted as a 2-level multigrid method [46] and is part of the openQCD sim-
ulation package [65]. Recently Brower et al. also described a promising method
to apply multigrid to the so-called staggered discretization [20]. This thesis is
mostly focused on the DD-αAMG method [45, 46, 86] and aims at expanding the
applicability of multigrid methods in Lattice QCD, beyond the solution of linear
systems of equations involving the Wilson-Dirac operator.

We first show how to extend its use to another discretization, namely the Neu-
berger overlap operator. This operator respects an important physical property
called chiral symmetry, which is not the case for the Wilson-Dirac operator. In
practice its application is limited as it comes with a significantly larger com-
putational cost due to the evaluation of an expensive matrix function for each
matrix-vector multiplication. We propose a new preconditioner based on the idea
of fictitious (or auxiliary) space preconditioning [77], which has been used for de-
veloping and analyzing multigrid preconditioners for various nonconforming finite
element approximations of partial differential equations (PDEs); cf. [83, 110]. In
this setting, choosing the Wilson-Dirac operator as an auxiliary space precon-
ditioner is a viable choice, since both operators are defined on the same Hilbert
space and can thus be constructed on the same finite-dimensional lattice. Numer-
ical results show, that this preconditioning approach can substantially reduce the
computational cost for solving linear systems with the overlap operator, reach-
ing speed-ups of at least an order of magnitude over unpreconditioned solvers in
realistic settings [16].

The second contribution of this thesis is motivated by a procedure known as“low-
mode-averaging” [4, 7, 41], where small eigenvectors1 of the Hermitian Wilson-
Dirac operator are required to deflate the computation of the trace of its in-
verse. These eigenvalues are in the interior of the spectrum and as such known
to be particularly expensive to compute. Preliminary results using a multigrid-
accelerated Rayleigh quotient algorithm show that this technique can be beneficial
for computing all-to-all propagators [5]. We propose a more advanced multigrid-
accelerated eigensolver based on the generalized Davidson method and include
several algorithmic adaptations specifically designed for the Hermitian Wilson-
Dirac operator. This method outperforms standard algorithms like the implic-
itly restarted Arnoldi method [90] and shows an improved scaling behavior com-
pared to state-of-the-art implementations of the generalized Davidson method,
e.g., PRIMME [100].

The third contribution is a new approach for the setup procedure of the algebraic
multigrid method. Within the setup the goal is to find so-called “test vectors” for

1Meaning the eigenvectors belonging to small (in magnitude) eigenvalues, cf. Section 1.2.

2

1.1 Outline

the construction of intergrid operators, which define the multigrid hierarchy. It
has been observed that approximations to the singular vectors of the Wilson-Dirac
operator, which correspond to eigenvectors of its Hermitian version, are a good
choice [46] for these test vectors. In our current implementation these vectors are
obtained using a simple inverse iteration algorithm, where the test vectors are
treated separately, with a subsequent orthogonalization step to guarantee conver-
gence to different singular vectors. While this method has a low computational
effort it does not make efficient use of the information generated. We use our gen-
eralized Davidson algorithm to extract the optimal information from the subspace
generated to approximate the smallest eigenvalues of the Hermitian Wilson-Dirac
operator. During this process small generalized eigenvalue problems have to be
solved, making this setup procedure computationally more expensive. However,
this pays off, especially in scenarios where only a few setup steps are necessary,
as for example in the Hybrid Monte Carlo algorithm.

1.1 Outline

The thesis is structured as follows. In order to keep it as self-contained as possi-
ble the basics of numerical linear algebra are reviewed in Chapter 2. We present
a large class of iterative solvers named Krylov subspace methods, including the
GMRES method, which is used recurrently throughout this thesis. Since multi-
grid methods are at the core of our developed applications, its fundamentals are
reviewed here, including the DD-αAMG method. We then discuss eigenvalue
problems in general and present classical algorithms. At the end of this chapter
we introduce matrix functions, which are needed to define the Neuberger overlap
operator.

Chapter 3 introduces the necessary basics of Quantum Chromodynamics. We
define the continuous Dirac operator and derive its most commonly used dis-
cretization, the Wilson-Dirac operator. Relevant properties of this operator are
discussed, as well as arising challenges and applications, which motivate the de-
velopment of our methods in this thesis.

In Chapter 4 we describe the Neuberger overlap operator and elaborate on its
advantage over the Wilson-Dirac operator. The new preconditioning method
for this operator based on the DD-αAMG method is presented together with
numerical experiments, which is also published in [16]

Chapter 5 introduces our specialized eigensolver framework for the Hermitian
Wilson-Dirac operator. We first motivate our approach and then present our
modifications to the generalized Davidson method, specifically designed for the
Hermitian Wilson-Dirac operator and the DD-αAMG method. We conclude this

3

1 Introduction

section by comparing our method with two widely used software packages. This
work is also published in [44].

We then apply in Chapter 6 the basic concepts of our developed eigensolver to
the setup phase of the DD-αAMG method. We present multiple approaches and
compare them numerically.

Chapter 7 summarizes the results achieved in this thesis and discusses possible
topics for future research.

1.2 Notation and abbreviations

Throughout this thesis, we use the term “smallest/largest eigenvector/eigenpair”
as a shorthand for “eigenvector/eigenpair belonging to the smallest/largest eigen-
value in absolute value”. Unless stated otherwise all vector spaces and matrices
are considered to be complex, and norms ‖ · ‖ without a subindex denote the
Euclidean norm. An upper letter �(k) within parenthesis denotes an iteration
index. Apart from the exception of the γ matrices described below, all lower case
letters denote vectors or scalars, while upper case letters are used for matrices.

The following notations and abbreviations are used throughout the thesis:

n problem size (typically at least O(107))
m subspace size (typically m� n)
V = [v1, . . . , vk] column matrix from a set of k vectors
D continuous Dirac operator
D,D(m), DW (m) (lattice) Wilson-Dirac operator (with mass m)
DN Neuberger overlap operator
m0 mass shift
γi generator matrices of an Clifford algebra, i ∈ {1, . . . , 4}
γ5 γ5 ··= γ1γ2γ3γ4

Γ5 lattice version of γ5

Q Hermitian Wilson-Dirac operator
λ eigenvalue
Λ set of eigenvalues
X = [x0, ·, xn] set of eigenvectors
spec(A) spectrum of A
θ Ritz value

Table 1.1: Notations and abbreviations

4

Chapter 2
Basics of numerical linear algebra

This chapter summarizes some of the basic concepts of numerical linear algebra
as required for the understanding of this thesis. The reader is assumed to be
familiar with undergraduate level linear algebra, analysis and general computer
science as well as having a basic understanding of parallel programming.

We start by restating basic mathematical definitions, with the goal of establishing
notation, symbols and basic methods used throughout this thesis. We introduce
iterative methods for the solution of linear systems of equations and derive the
popular GMRES method, as it is required extensively in many of the presented
methods. A special focus is also put on multigrid methods, especially the DD-
αAMG method, which is at the core of the new methods presented in this thesis.
We define eigenvalue problems as basis for Chapters 5 and 6 and give a brief
introduction into eigensolvers, explaining some standard methods for large sparse
matrices. Finally we include a section about matrix functions, which are needed
to define the Neuberger overlap operator in Chapter 4.

This chapter is in large parts based on books by Saad [89, 90], Trefethen and
Bau [102], and Higham [58]. Proofs and further information regarding this chapter
can also be found there.

2.1 Basic definitions

The main topics of this thesis are solving linear systems of equations, which can
be represented by matrices, and computing eigenvalues of matrices. In both cases,
special matrices with a certain structure have properties we can exploit for the
development of efficient algorithms.

5

2 Basics of numerical linear algebra

Definition 2.1 (special matrices).
We call a matrix A ∈ Cn×n

• symmetric, if A = AT ,

• Hermitian, if A = AH ,

• unitary, if AHA = I,

• normal, if AHA = AAH ,

• a projection, if A2 = A,

• sparse, if the number of non-zero entries per row is significantly smaller
than n and independent of n.

Remark 2.2. 1. We can also define non-square “unitary” matrices: A ∈ Cn×m

with n ≥ m is unitary, if every column vector ai has unit length and
〈ai, aj〉 = 0 holds for all i 6= j.

2. If A is a projection then (I − A) also defines a projection, as
(I − A)2 = I − 2A+ A2 = I − 2A+ A = I − A.

Eigenvalues and eigenvectors are central for Chapters 5 and 6, thus we give a
definition including some of their relevant characteristics.

Definition 2.3 (eigenvalues).
Given a square matrix A ∈ Cn×n we call λ ∈ C an eigenvalue of A if and
only if there exists a nonzero vector x ∈ Cn such that

Ax = λx. (2.1)

Additional characteristics and terms related to eigenvalues:

• x is called an eigenvector (belonging to λ).

• A pair (λ, x) of eigenvalue λ and its eigenvector x is called an eigenpair.

• The set of all eigenvalues of A is called spectrum of A and is denoted
by spec(A).

• The spectral radius of A is defined as ρ(A) ··= maxλ∈Λ(A)(|λ|).

• Eigenvalues λi are the roots of the characteristic polynomial of A, i.e.,
pA(λ) ··= det(A− λI) = 0.

• The multiplicity mi of an eigenvalue in pA(λ) is called algebraic multi-
plicity of λ.

6

2.1 Basic definitions

• The geometric multiplicity is denoted by gi and is the dimension of the
eigenspace (A− λiI).

Definition 2.4 (eigenvalue decomposition).
A square matrix A ∈ Cn×n is called diagonalizable if and only if gi = mi for
all λi ∈ Λ. We define in this case the eigenvalue decomposition

A = XDX−1,

where each column xi of X contains an eigenvector of A belonging to the
eigenvalue Di,i = λi of the diagonal matrix D.

We can generalize the idea of an eigenvalue decomposition to (possibly) non-
square matrices, which is known as singular value decomposition.

Definition 2.5 (singular value decomposition).
Given a matrix A ∈ Cm×n we can define the matrix decomposition

A = UΣV H ,

where U ∈ Cm×m and V ∈ Cn×n are unitary matrices and Σ ∈ Cm×n is a
diagonal matrix with non-negative entries σi,i. We call the column vectors ui
and vi left and right singular vectors (of σi,i).

With these definitions in place, we conclude this subsection with some remarks,
which will prove useful later.

Remark 2.6. 1. The (non-zero) singular values are the square roots of the
(non-zero) eigenvalues of AHA or AAH .

2. The left singular vectors u are the eigenvectors of AAH while the right sin-
gular vectors v are the eigenvectors of AHA.

3. The eigenvalues of a Hermitian matrix A are real, since if (λ, x) is an
eigenpair of A then

〈Ax, x〉 = λ⇒ 〈x,Ax〉 = λ

⇒ 〈Ax, x〉 = λ

⇒ 〈Ax, x〉 = λ̄.

4. By definition subspaces V ··= span(x1, x2, . . . xm) spanned by eigenvectors of
A are A-invariant, i.e., AV = V.

5. If λ is an eigenvalue of A, then (λ − σ)−1 is an eigenvalue of (A − σI)−1

for any σ ∈ C.

7

2 Basics of numerical linear algebra

2.1.1 Conditioning

When numerical methods are implemented on a computer, we have to consider
finite precision effects due to floating point representation. Irrational numbers as
well as most rational numbers can only be stored approximately on a computer1.
Furthermore standard operations like addition, subtraction, multiplication or divi-
sion of floating point numbers introduce inaccuracies in their results. For example
within the IEEE-754 standard [60], performing c = a + b might yield the result
c = a, if a� b. This leads to two key observations:

• Even in the best case, a solution obtained by numerical computation is in
general an approximation to the exact solution.

• In the worst case, these finite precision effects accumulate and lead to an
approximation which is far from the exact result.

In both cases, we are interested in a way to quantify the (in-)accuracy of a com-
puted solution. We have to differentiate between two causes: One coming from
a continuity argument of the underlying mathematical problem, which is referred
to as conditioning of a problem. A mathematical problem, i.e., subtraction of
two numbers or finding the smallest eigenvalue of a matrix, can be interpreted as
a continuous function f : X → Y between normed vector spaces. Conditioning
describes how the output y of a function f is affected by perturbations in the
input x. It is independent of the algorithm which might implement this func-
tion on a computer. The other stems from the inability of exactly transporting
this continuous problem to a computer, which is referred to as the stability of
an algorithm. In this thesis we are mostly addressing conditioning, for further
information regarding stability, see e.g., [102].

The definition of conditioning is tightly related to the notion of continuity. We in-
terpret a problem as well-conditioned if small changes in the input only cause small
changes in the output, and vice versa we interpret a problem as ill-conditioned if
small changes in the input lead to big changes in the output.

Definition 2.7 (condition number).
Let f : X → Y be a problem and let x ∈ X. Let δx be some (infinitesimal)
perturbation of x and δf ··= f(x+δx)−f(x). We define the absolute condition
number κ̂ = κ̂(x) of f at x as

κ̂ = lim
δ→0

sup
‖δx‖≤δ

‖δf‖
‖δx‖

. (2.2)

1For example within the IEEE-754 standard for floating point arithmetic [60], 0.1 cannot be
represented exactly.

8

2.1 Basic definitions

The relative condition number κ = κ(x) is defined as

κ = sup
δx

(
‖δf‖
‖f(x)‖

/
‖δx‖
‖x‖

)
. (2.3)

If f is differentiable, then

κ̂ = ‖J(x)‖ and κ =
‖J(x)‖

‖f(x)‖/‖x‖
, (2.4)

where J(x) is the Jacobian of f at x.

Well-conditioned problems have a small condition number, whereas ill-conditioned
problems have a large one. The following examples show an analysis of some
common operations based on this measure.

Example 2.8.

1. Consider the simple problem of f : C → C, x 7→ x/2 with Jacobian J =
f ′ = 1/2. Using Eq. (2.4) we find

κ =
‖J(x)‖

‖f(x)‖/‖x‖
=

1/2

(x/2)/x
= 1

Thus this problem is well-conditioned.

2. Another simple problem is f : C2 → C with f(x) = x1 − x2. The Jacobian
of f is

J =

[
∂f

∂x1

∂f

∂x2

]
= [1 − 1],

with ‖J‖∞ = 1. Using the ∞-norm, we obtain the condition number

κ =
‖J(x)‖∞

‖f(x)‖∞/‖x‖∞
=

1

|x1 − x2|/max{|x1|, |x2|}
.

Here, the condition number can get arbitrarily large for x1 ≈ x2, making
this seemingly harmless problem highly ill-conditioned. This phenomenon is
also known as cancellation.

3. In this thesis we are interested in the conditioning of linear systems of equa-
tions x = A−1y, which in this context is equivalent to the conditioning of a
matrix-vector multiplication y = Ax. With Eq. (2.3), we find

κ = sup
δx

(
‖A(x+ δx)− Ax‖

‖Ax‖

/
‖δx‖
‖x‖

)
= sup

δx

(
‖Aδx‖
‖δx‖

/
‖Ax‖
‖x‖

)
,

9

2 Basics of numerical linear algebra

that is

κ = ‖A‖ ‖x‖
‖Ax‖

. (2.5)

We can bound this to get a condition number independent of x:

κ ≤ ‖A‖ · ‖A−1‖ (2.6)

The product ‖A‖ · ‖A−1‖ is referred to as the condition number of A and is
denoted by κ(A).

In practice, the condition number κ(A) can be approximated without explicitly
computing A−1, cf. [54, 59]. It is an indicator of the achievable accuracy for many
numerical methods involving this matrix.

We close this section with one important class of matrix decompositions, which
is fundamental for developing more robust algorithms.

Definition 2.9 (QR decomposition).
Given a matrix A ∈ Cm×n with m > n, the QR decomposition is given by

A = QR,

where Q ∈ Cm×n is a unitary matrix and R ∈ Cn×n is a (upper) triangular
matrix.

The matrix Q defines an orthonormal basis, i.e., a basis where 〈qi, qj〉 = 0 if
i 6= j and ‖qk‖ = 1 for all k = 1, . . . , n and describes a numerically favorable
representation of a subspace. It can be obtained using the (modified) Gram-
Schmidt algorithm, cf. Algorithm 2.1. This algorithm will generate a full set of
orthonormal vectors Q = [q1, . . . , qn], which define a basis of the space spanned by
a set of vectors A = [a1, . . . , an], if the vectors a1, . . . , an are linearly independent
and is a numerically more stable version of the (regular) Gram-Schmidt algorithm,
cf. [102].

2.2 Iterative methods for sparse linear systems of
equations

For large parts of this thesis it will be required to solve linear systems of equations

Ax = b, (2.7)

where x ∈ Cn, A ∈ Cn×n and b ∈ Cn. One of the most prominent algorithm for
the solution of Eq. (2.7) is Gaussian elimination, which falls under the category

10

2.2 Iterative methods for sparse linear systems of equations

Algorithm 2.1: The modified Gram-Schmidt procedure
input: set of vectors a = [a1, . . . , an]
output: matrices Q = [q1, . . . , qn] and R
r1,1 ← ‖a1‖21

if r1,1 = 0 then2

stop3

else4

q1 ← a1/r1,15

for j = 2, . . . , n6

define q̂ := qj7

for i = 1, . . . , j − 18

ri,j ← 〈q̂, qi〉9

q̂ ← q̂ − ri,jqi10

rj,j ← ‖q̂‖211

if rj,j = 0 then12

stop13

else14

qj ← q̂/rj,j15

of direct solvers. These methods perform manipulations on A in order to find
the solution x. For Gaussian elimination, A is transformed into the identity
matrix I, while simultaneously applying the same transformations to b. This way
we implicitly compute x = A−1Ax = A−1b. However, direct solvers for sparse
linear systems of equations typically have a computational complexity of O(n2)
and become prohibitively expensive for larger matrix dimensions. Thus, for large
sparse matrices iterative solvers have been developed whose computational costs
are typically dominated by matrix-vector products, which have a computational
complexity of order O(n). These methods have the additional advantage that
the matrix does not need to be stored in memory, but rather only requires a
routine for the action Ax of the matrix A on a vector x. Also, iterative methods
can be terminated early to give an approximate solution, whereas direct methods
typically only yield a feasible solution at the last step of the algorithm.

The following definition gives a way to approximate the (unknown) error of an
estimation x(k) to the solution x.

Definition 2.10 (residual equation).
Defining the residual r(k) ··= b − Ax(k) and the error e(k) ··= x − x(k) for a

11

2 Basics of numerical linear algebra

given x(k) ∈ Cn, we formulate the residual equation:

Ae(k) = r(k). (2.8)

Obviously, the problem of finding the error e(k) is equivalent to the problem of
finding x. Also, since the error will typically not be available, the quality of
an approximation x(k) can only be measured via the residual r(k). Looking at
Eq. (2.8), we see that ‖e(k)‖ = ‖A−1r(k)‖ ≤ ‖A−1‖ · ‖r(k)‖. This shows that if
‖A−1‖ is large, the error can still be large, despite the residual being small. Many
iterative methods follow the idea of updating the iteration vector x(k) in every
step starting from an (oftentimes random) initial vector x(0) by approximating
e(k) with ẽ(k) in some way and defining

x(k+1) ··= x(k) + ẽ(k). (2.9)

The following section presents three different kinds of iterative methods for solv-
ing Eq. (2.7). Simple relaxation schemes, such as Gauss-Seidel or SAP, Krylov
subspace methods and multigrid methods.

2.2.1 Basic relaxation schemes and their block variants

Given a matrix A we can define a splitting

A ··= D − L− U (2.10)

into its diagonal D, the strictly lower triangular part L and the strictly upper
triangular part U .

With it, we can reformulate Eq. (2.7) as

x = D−1(L+ U)x+D−1b. (2.11)

Since x is unknown, we replace it with the approximation x(k) in the right hand
side of this equation and find

D−1(L+ U)x(k) +D−1b = x(k) +D−1r(k) =·· x(k+1), (2.12)

which is known as the Jacobi method. Looking at Equation (2.9) we can see
that we use the term ẽ(k) = D−1r(k) as an approximation to the error e(k). Al-
ternatively, looking at Equation (2.8) we can interpret this method as A being
approximated by its diagonal part D. Thus, this method intuitively works well if

12

2.2 Iterative methods for sparse linear systems of equations

A is diagonally dominant2 but more generally it can be shown to converge linearly
if the spectral radius ρ(D−1(L+ U)) < 1.

We can also use this splitting to define the Gauss-Seidel method. Using a simi-
lar derivation as with the Jacobi method, this method is given by the iteration
formula

x(k+1) = (D − L)−1Ux(k) + (D − L)−1b = x(k) + (D − L)−1r(k). (2.13)

This time, A is approximated by (D − L), which is intuitively a better approx-
imation than D, and thus is expected to converge faster, but has the downside
of being more expensive in a parallel environment [89]. Analogous to the Ja-
cobi method, the Gauss-Seidel method converges linearly if ρ((D − L)−1U) < 1.
The proof of these convergence results is largely based on the Banach fixed-point
theorem. For further information on splitting methods, see e.g., [89].

Instead of looking at one variable at a time, we can combine sets of variables into
a block (variable), which is computationally more favorable. We can formulate
block Jacobi and block Gauss-Seidel in a straightforward way by defining a block
decomposition of A and compatible block vectors x and b:

A =


A1,1 A1,2 · · · A1,p

A2,1 A2,2 · · · A2,p
...

...
. . .

...
Ap,1 Ap,2 · · · Ap,p

 , x =


x1

x2
...
xp

 , b =


b1

b2
...
bp

 ,

where Ai,j ∈ C`i×`j , xi ∈ C`i and bi ∈ C`i with
∑p

i=1 `i = n.

We can define the matrix Ii ∈ Cn×`i with the identity on the i-th block row and
zero everywhere else as the canonical injection from the i-th block column A·,i
into A and ITi as the trivial injection from the i-th block row Ai,· into A. This
defines the block inverse A−1

i,i
··= (ITi AIi)

−1. Then we can apply the same formu-
las for both methods, where D, L and U are block diagonal respectively lower/
upper block triangular matrices. These block Jacobi and Gauss-Seidel methods
are also termed the (additive) and (multiplicative) Schwarz Alternating Proce-
dure (SAP) [91, 95], which is a domain decomposition method for discretized
partial differential equations. SAP is a crucial building block for the multigrid
method we define in Section 2.3, so we give a description for this method in Algo-
rithm 2.2 (block Jacobi or additive SAP) and Algorithm 2.3 (block Gauss-Seidel
or multiplicative SAP).

2Meaning that (in absolute terms) all diagonal entries are larger than the sum of all other
entries in their respective row.

13

2 Basics of numerical linear algebra

Algorithm 2.2: Additive SAP (block Jacobi)

input: matrix A with blocks Ai,j, right hand side b, initial guess x(0)

output: approximate solution x
for k = 0, 1, 2, . . .1

r(k) ← b− Ax(k)
2

foreach diagonal block Ai,i do3

x(k) ← x(k) + IiA
−1
i,i I

T
i r

(k)
4

x(k+1) ← x(k)
5

Algorithm 2.3: Multiplicative SAP (block Gauss-Seidel)

input: matrix A with blocks Ai,j, right hand side b, initial guess x(0)

output: approximate solution x
for k = 0, 1, 2, . . .1

foreach diagonal block Ai,i do2

r(k) ← b− Ax(k)
3

x(k) ← x(k) + IiA
−1
i,i I

T
i r

(k)
4

x(k+1) ← x(k)
5

From Algorithm 2.3 it is apparent that multiplicative SAP has to be performed
sequentially, since it requires the updated residual from the previous block solu-
tion for the next one, which is not the case for additive SAP (Algorithm 2.2).
This makes additive SAP a natural choice in a parallel computing environment.
However, we can decouple the sequential block solves of multiplicative SAP by
using an appropriate coloring scheme leading to red-black SAP [46], which will be
the method of choice for our multigrid method in Section 2.3.

2.2.2 Krylov subspace methods

When dealing with large sparse matrices, e.g., matrices coming from the dis-
cretization of PDEs, only the matrix-vector product A · x is generally available.
This is due to the fact, that methods directly manipulating the matrix A, e.g., ma-
trix decompositions, are too expensive in practice. Krylov subspace methods [89]
only require matrix-vector multiplications and have modest storage requirements
and are thus favorable in this scenario.

14

2.2 Iterative methods for sparse linear systems of equations

Definition 2.11 (Krylov subspace).
Let A ∈ Cn×n and r ∈ Cn. Then the m-th Krylov subspace is defined as

Km(A, r) ··= span{r, Ar,A2r, . . . , Am−1r}.

If unambiguous we use the shorthand Km.

The dimension of a Krylov subspace grows by one each time a vector is added,
until it reaches the grade of r with respect to A at which point it forms an invariant
subspace of A. The grade of r (with respect to A) is defined as the degree of the
minimal polynomial of r, i.e., the nonzero monic polynomial p of lowest degree
such that p(A)r = 0. The following proposition states some basic properties of
the m-th Krylov subspace.

Proposition 2.12.

1. Let µ be the grade of r. Then Kµ is invariant under A and Km = Kµ for
all m ≥ µ.

2. The Krylov subspace Km is of dimension m if and only if the grade µ of r
is not less than m, i.e.,

dim(Km) = m⇔ grade(r) ≥ m.

Therefore,

dim(Km) = min{m, grade(r)}.

Proof. See [89]

Since the series of vectors Ak−1r for k = 1, 2, ... (usually) converges to the largest
eigenvector of A (see Thm. 2.18), the set {r, Ar,A2r, . . . , Am−1r} forms a highly
ill-conditioned basis. A more numerically favorable basis can be constructed using
Arnoldi’s method [2], see Algorithm 2.4. It generates an orthonormal basis Vm of
the m-th Krylov subspace in an iterative fashion similar to the modified Gram-
Schmidt procedure (Algorithm 2.1).

It has a wide range of applications, including solving linear systems of equations,
approximating eigenpairs (see Section 2.4) and also evaluating matrix functions
(Section 2.5), which are all necessary for this work.

By closely following Algorithm 2.4 we can derive a matrix formulation of this
procedure, called the Arnoldi relation:

15

2 Basics of numerical linear algebra

Algorithm 2.4: Arnoldi’s method
input: matrix A, initial vector r
output: orthonormal basis Vm of Km
h1,1 ← ‖r‖21

v1 ← r/h1,12

for j = 1, . . . ,m3

wj ← Avj4

for i = 1, . . . , j5

hi,j ← 〈wj, vi〉6

wj ← wj − hi,jvi7

hj+1,j ← ‖wj‖28

if hj+1,j = 0 then9

break10

else11

vj+1 ← wj/hj+1,j12

Theorem 2.13.
Let Vm = [v1, . . . , vm] be the n ×m column vector matrix from Arnoldi’s method
and Hm+1,m the according upper Hessenberg matrix, gathering the orthogonaliza-
tion coefficients hi,j from Algorithm 2.4. Then the following equalities hold.

AVm = VmHm,m + hm+1,mVm+1e
T
m (2.14)

= Vm+1Hm+1,m (2.15)

V H
m AVm = Hm,m (2.16)

With Arnoldi’s relation, we can define the Generalized Minimal Residual (GM-
RES) method, which is used to solve linear systems of equations Ax = b.

Any vector x in x0 +Km can be written as

x = x0 + Vmy,

where y ∈ Rm. Then the residual norm ‖r‖ = ‖b− Ax‖ can be transformed to

‖r‖ = ‖b− A(x0 + Vmy)‖
= ‖r0 − AVmy‖
= ‖βv1 − Vm+1Hm+1,my‖
= ‖Vm+1 (βe1 −Hm+1,my) ‖
= ‖βe1 −Hm+1,my‖,

16

2.2 Iterative methods for sparse linear systems of equations

where β := ‖r0‖, cf. Algorithm 2.4. As the name suggests, GMRES extracts an
approximation xm by minimizing the residual norm ‖r‖ = ‖βe1 −Hm+1,my‖, i.e.

xm = x0 + Vmym, with

ym = arg min
y
‖βe1 −Hm+1,my‖,

which requires the solution of an (m + 1) × m least-squares problem. If imple-
mented correctly ‖r‖ can be cheaply updated in every iteration, see [89]. When
‖r‖ passes a given threshold the iteration stops and computes the approximate
solution xm.

The basic GMRES algorithm is summarized in Algorithm 2.5.

Algorithm 2.5: GMRES
input: matrix A, right hand side b, initial guess x0, maximum number of

iterations m, residual tolerance tol
output: approximate solution xm
r0 = b− Ax0, β = ‖r0‖, v1 = r0/β1

for j = 1, . . . ,m2

wj ← Avj3

for i = 1, . . . , j4

hi,j ← 〈wj, vi〉5

wj ← wj − hi,jvi6

hj+1,j ← ‖wj‖27

Update ‖r‖8

if ‖r‖ < tol then9

m← j, break10

vj+1 ← wj/hj+1,j11

Compute ym12

xm ← x0 + Vmym13

As a consequence of Proposition 2.12, GMRES can break down at line 11 if
hj+1,j = 0, which happens when the dimension of the Krylov subspace exceeds
the grade µ of r0. This is considered a lucky breakdown, since in this case the
exact solution is already contained within the search space and can be extracted
using lines 12 and 13.

17

2 Basics of numerical linear algebra

2.2.3 Restarting

It can be shown that GMRES converges after at most grade(r0) steps, at which
point a lucky breakdown occurs.3 However, the growing memory requirements for
storing the search space and the computational cost of orthogonalization, which
grows quadratically with the size of the search space, only allow for a limited
amount of iterations for larger matrices.

One solution to this problem is given by restarting the iterative method after
k � n steps. After these k steps, the current approximation x

(k)
old and its resid-

ual r
(k)
old are computed and the generated subspace is discarded. Afterwards, the

iterative method starts anew using the residual equation (2.8) to obtain a new

approximation x
(0)
new ← x

(k)
old + ẽ

(k)
old. We call a full cycle of k steps a restart cycle.

For GMRES, we denote restarted GMRES by GMRES(k), where k is the restart
length.

In theory, restarting can lead to stagnation if the same subspace is built in the
new restart cycle, which would yield no improvement over the previous one. Ex-
ample 2.14 illustrates a simple case of this problem.

Example 2.14.
Consider GMRES for the 4× 4 linear system of equations Ax = b with

A =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 , b =


1
0
0
0

 , and x(0) =


0
0
0
0

 .

Using the starting vector x(0) the exact solution x = (0, 0, 0, 1)T is found after n =
4 steps (if the initialization is also counted as one step). Restarting after k < n
steps will yield no improvement since x(k) = x(0) in this case, thus GMRES(k)
does not converge for this matrix.

In practice, restarting significantly reduces orthogonalization cost if the restart
length is chosen properly. This comes at the expense of an increased number
of iterations, which amounts to more matrix-vector multiplications. With the
orthogonalization cost oftentimes being a substantial amount of the overall com-
putational effort restarting also typically reduces computational cost, in addition
to bounding the memory requirements. We provide an example of GMRES for
a matrix of dimension n = 53,248 (Configuration 2 from Table 3.1) with varying
restart lengths in Figure 2.1. Here we observe, that even though GMRES(50)

3Similar statements hold for other Krylov subspace methods, which fulfill some sort of opti-
mality criterion.

18

2.2 Iterative methods for sparse linear systems of equations

Figure 2.1: Convergence plot of GMRES(k) for a matrix of dimension n = 53,248
for different values of k. This plot was generated on a local workstation using
MATLAB [71].

requires more than twice as many iterations, its execution time is nearly half of
the execution time of plain GMRES. The “optimal” restart length depends on
the hardware architecture and cannot be deduced a-priori, such that is has to be
obtained by parameter studies.

Restarting can be implemented in various iterative methods, including eigen-
solvers, which are discussed in Section 2.4.

2.2.4 Preconditioning

The convergence speed of iterative methods oftentimes depends on the condition
number κ(A) of the system matrix A. The idea of preconditioning is to reduce
the condition number by transforming the problem to an equivalent one with a
smaller condition number. In general we are interested in a matrix M which is in
some way close to A−1, such that

1 = κ(I) ≈ κ(MA)� κ(A).

We define left preconditioning via

Ax = b⇔MAx = Mb,

and right preconditioning via

Ax = b⇔ AMy = b,

19

2 Basics of numerical linear algebra

where x = My. As a consequence, in preconditioned methods every matrix vector
multiplication also requires the application of the preconditioner. Thus from a
practical point of view the application of M needs to be significantly cheaper
compared to the solution of linear systems with A, since they are applied in every
iteration, but should still be “close enough” to A−1 to have a notable impact on
the condition number. Typically M is realized by some method, which provides
a low precision solution of the original system.

In the following we discuss two different preconditioners for GMRES and show
their impact on the convergence speed of linear systems of equations involving the
Dirac operator, which will be discussed in Chapter 3. First note that applying
non-stationary iterative schemes as preconditioners for GMRES requires to mod-
ify GMRES in order to maintain its optimality criterion of minimizing the norm
of the residual in every step. This modified method is known as flexible GMRES
(FGMRES) [88] and is described in Algorithm 2.6.

Algorithm 2.6: flexible GMRES
input: Matrix A, preconditioner M , right hand side b, initial guess x0,

maximum number of iterations m, residual tolerance tol
output: Approximate solution xm to Ax = b
r0 = b− Ax0, β = ‖r0‖, v1 = r0/β1

for j = 1, . . . ,m2

zj ←Mvj3

wj ← Azj4

for i = 1, . . . , j5

hi,j ← 〈wj, vi〉6

wj ← wj − hi,jvi7

hj+1,j ← ‖wj‖28

Update ‖r‖9

if ‖r‖ < tol then10

m← j, break11

vj+1 ← wj/hj+1,j12

Compute ym13

xm ← x0 +MVmym14

Simple and cheap relaxation schemes like SAP are well suited as preconditioners as
well as polynomial preconditioning. In the latter, a matrix vector multiplication is
replaced by a polynomial p(A) ≈ A−1. A special case is recursive preconditioning,
where p(A) can be constructed by another application of the iterative method
itself, e.g., applying a small amount of GMRES steps as a preconditioner for
FGMRES, which is known as GMRESR [88].

20

2.2 Iterative methods for sparse linear systems of equations

Figure 2.2: Extending Figure 2.1 with a study of different preconditioning meth-
ods. Left: Convergence plots of (preconditioned) GMRES(k). Right: Execution
time relative to pure GMRES.

In addition to reducing the number of iterations needed, preconditioning also
allows for the bulk of the computation to be performed in IEEE single precision,
since only a low precision solution is required, which leads to faster execution
times for all operations.

Figure 2.2 compares SAP preconditioned FGMRES (“FGMRES+SAP”) and GM-
RESR with GMRES(k). In this plot, FGMRES+SAP employs one step of SAP
with block size 44 and exact block solves, whereas GMRESR applies ten steps of
GMRES as a preconditioner. Compared to plain GMRES both preconditioners
significantly improve convergence while also reducing the overall computational
cost. In the right plot we see that combining preconditioning with restarting does
not pay off in every case. Both FGMRES + SAP and GMRES(50) reduce compute
time by a factor of two, whereas FGMRES(50) + SAP is nearly as expensive as
GMRES itself, which is due to the orthogonalization cost not being dominant for
a small amount of iterations, thus restarting only slows down convergence. This
situation changes when the matrix size or the condition number of the problem
increases, which increases the iteration count and with it the orthogonalization
cost.

Several other preconditioning methods, e.g., multigrid methods or auxiliary space
preconditioning will be discussed in the following section and Section 4.

21

2 Basics of numerical linear algebra

2.3 Multigrid methods

Multigrid methods [53, 87] arose in the last decades and became one of the most
popular schemes for solving large sparse linear systems of equations, which are
typically derived from the discretization of partial differential equations. Since
most PDEs cannot be solved directly, they have to be formulated on a (finite)
subset of the original domain called a (finite) lattice or grid, and then solved
numerically.

In this thesis we only consider cubic lattices, which are also called regular grids:

Definition 2.15 (cubic lattice).
A (cubic) lattice L ⊂ Rn with lattice spacing a ∈ R \ {0} is a discrete subset
of Rn, where for any two points x, y ∈ L there exists a vector µ ∈ Zn with

y = x+ a · µ.

Given two lattices L and L′, we call L′ a coarser lattice of the fine lattice L,
if L′ ⊂ L.

The basic idea of multigrid methods is to obtain useful information for the original
fine grid from a coarser grid, i.e., a grid with less degrees of freedom, which is
cheaper to solve. Multigrid methods typically exhibit a good scaling behavior
with respect to problem size and are insensitive to ill-conditioning.

The main concept of multigrid methods is the utilization of two complementary
preconditioning techniques: the smoother and the coarse grid correction [18, 53,
87, 103]. Starting from the original grid, the initial error is preconditioned by the
smoother, followed by a coarse grid correction step, where the smoothed residual
is projected to a coarser grid. On this coarser grid, the system is either solved
directly, or the multigrid method is applied in a recursive fashion to further reduce
the dimension of the problem.

2.3.1 Smoother

The name of this step comes from the geometrical interpretation of its main goal,
i.e., smoothing the error. Looking at the error e of an iterate, we can decompose
it into a smooth and oscillatory part in general connected to the low and high
end of the spectrum respectively, i.e., e = elow + ehigh. These components can be
represented as a linear combination of the eigenvectors of the matrix A, where elow
corresponds to the contribution of small eigenvectors and ehigh corresponds to the
contribution of large eigenvectors. The purpose of the smoother is to efficiently
reduce ehigh. As long as the smoother achieves this goal, the method used does

22

2.3 Multigrid methods

not need to be convergent. We can quantify the error reduction in practice by
defining the error propagator

Es ··= (I −MA), (2.17)

where M defines the smoother. In the upper part of Figure 2.3 we evaluate ‖Esvi‖
for every normalized eigenvector vi of a matrix of size 3072 (Configuration 1
from Table 3.1) to see the effect of a smoother on spec(D). After applying one
iteration of SAP we observe the desired effect: error components belonging to
larger eigenvectors are efficiently reduced, while error components belonging to
the smallest eigenvectors are still largely preserved and for one eigenvector even
slightly amplified. The lower part of Figure 2.3 gives a graphical representation
of the error after several steps of the Gauss-Seidel method on Laplace’s equation
for a random initial guess. Starting on the left with a highly oscillating error we
achieve a smooth surface after 20 iterations of Gauss-Seidel. This smooth error
property will be crucial for the next section.

The smoother can be realized by a variety of methods, e.g., a few steps of GMRES,
SAP or any other simple relaxation scheme. Looking back at Figure 2.2, we can
interpret the discussed preconditioners as simple smoothing schemes, which will
also be part of our multigrid implementation.

2.3.2 Coarse grid correction

In the previous section we discussed how simple relaxation schemes can be used
as a preconditioner to smooth the error. Since these methods are not able to
efficiently reduce the smooth error elow, the smoother has to be complemented
with a coarse grid correction step, where the problem is projected to a lower
dimensional grid, solved on this smaller grid, and then transported back to the
original grid to yield an error update. In this thesis, we are mostly interested in
a Petrov-Galerkin approach for the coarse grid correction, in which case the error
propagator can be written as

Ec ··= (I − P (RAP)︸ ︷︷ ︸
··=Ac

−1RA), (2.18)

where R is the restriction operator and P the interpolation (or prolongation)
operator. These intergrid operators transport vectors from the fine grid to the
coarse grid and vice versa. The definition of these operators can be classified into
two categories, which also gives the name to the corresponding multigrid method:
geometric and algebraic coarsening.

Geometric coarsening builds the coarse space by choosing a sublattice of the
original lattice for the restriction operator R, e.g., every other grid point for

23

2 Basics of numerical linear algebra

Figure 2.3: Top: Error reduction after one iteration of SAP for Configuration 1
from Table 3.1. Bottom: Error ek of the Gauss-Seidel method to Laplace’s
equation with random initial guess x(0) and k = 1 iterations for the left plot and
k = 20 iterations for the right plot.

chosen directions. The interpolation operator P can then for example be chosen
such that it represents a linear (or quadratic) interpolation from the coarse grid
points back to the fine grid points in between, see [103]. Geometric coarsening
can be used when the underlying problem has a geometric interpretation in some
way, which is oftentimes the case when discretizing PDEs.

On the other hand, algebraic coarsening is not dependent on the origin of the
matrix A and thus does not require assumptions about its structure. Instead
the classical approaches only rely on the entries of the matrix to construct the
intergrid operators. In this thesis, we are more interested in adaptive algebraic
multigrid methods which prescribe the smoother and then adaptively construct
the intergrid operators in a setup phase such that the coarse grid correction step
is complementary to the smoother. In most cases the setup approximates small
eigenvectors, since typical smoothing methods only reduce the error components

24

2.3 Multigrid methods

belonging to large eigenvectors. In [15] the authors describe optimal interpolation,
which explicitly includes the smoother into the construction of the coarse grid, to
get an “optimal” convergence rate of a two-level multigrid method.

Figure 2.4 shows illustrations similar to Figure 2.3. In the upper part we evaluate
‖Ecvi‖, this time applying one step of an algebraically constructed coarse grid cor-
rection to each normalized eigenvector vi of a matrix of size 3072 (Configuration 1
from Table 3.1). For the intergrid operators we used a fairly extensive setup pro-
cedure to approximate the 20 smallest eigenvectors.4 We observe that the error
components belonging to small eigenvectors are efficiently reduced, which shows
the complementary of the coarse grid correction step to the smoother.

Figure 2.4: Top: Error reduction after one coarse grid correction step for all
eigenvectors of Configuration 1 from Table 3.1. Bottom: Error on the fine grid
after 20 steps of the Gauss-Seidel method to Laplace’s equation (left) and its
representation on a coarser grid using full coarsening with coarsening factor 3
(right).

4The generation of the intergrid operators is discussed more thoroughly in Section 2.3.3.

25

2 Basics of numerical linear algebra

The lower part of Figure 2.4 visualizes the coarsening process for a geometric
multigrid approach, but conceptually also holds true for algebraic multigrid. The
initial error has a highly oscillatory behavior (left), which, after sufficient smooth-
ing steps, resembles a smooth surface, where all oscillations are removed (right).
Further smoothing steps reduce the error inefficiently, thus one step of the coarse
grid correction is required. In this example we take every third grid point for
every direction (“full coarsening”) of the fine grid and define them as the coarse
grid points, interpolating linearly between them to approximate the fine error.
The overall behavior of the error is still preserved, but now consists of 32 less
degrees of freedom. On this smaller scale the residual equation can be solved
cheaply and the resulting error update is transferred back to the fine grid. In
the case where the coarse system is still too large, the multigrid approach can be
applied recursively on this system.

2.3.3 Multigrid in lattice QCD

In this section we give an example of a multigrid method in the form of the DD-
αAMG method (Domain Decomposition aggregation-based αdaptive Algebraic
MultiGrid method), which is used to solve linear systems of equations for the
Dirac operator, see Chapter 3. The new algorithms presented in this thesis are
implemented within this framework. A full description of DD–αAMG and its
implementation, including numerical studies and further references can be found
in the PhD thesis by M. Rottmann [85] and in parts in [45, 46], thus we focus on
restating the main aspects relevant for our algorithms.

The first step of this method is the setup procedure, in which we generate the
eigenvector information for the intergrid operators. It consists of two phases
and is mainly based on the inverse iteration algorithm, which is described in
Section 2.4. In the initial phase, it performs several steps of the smoother on a
set of ntv random test vectors W ··= [w1, . . . , wntv]. After this, the set of vectors W
is subdivided into aggregates Ai, which resemble a block splitting on the lattice,
as described in the following.

Analogously to a lattice block, an aggregate Ai is comprised of a set of lattice
points, except that the variables on one lattice site can be part of different aggre-
gates, which induces a block structure of the matrix W , cf. Figure 2.5. We then
perform a QR algorithm to orthogonalize each aggregate Ai locally and define a
“block diagonal” interpolation operator P ··= diag(W), where each diagonal block
contains a (non-square) aggregate Ai.

For the restriction operator, we set R = PH in order to preserve the structure of
the problem on the coarse grid.

26

2.3 Multigrid methods

[w1, . . . , wntv] = =
A2

A1

As

→ P =

A1

A2

As

Figure 2.5: The construction of the interpolation operator P .

The iterative phase utilizes the initial multigrid hierarchy to further improve the
eigenvectors. Instead of applying the smoother to the test vectors, we now per-
form a full AMG cycle (smoother + coarse grid correction) on each eigenvector.
Afterwards, we update the multigrid hierarchy and continue on the next coarser
level. Algorithm 2.7 briefly summarizes the setup procedure, skipping implemen-
tation details and algorithmic fine tuning, see [85] for further information.

Algorithm 2.7: Bootstrap AMG setup
input: smoothing method M , number of iterative phases k
output: Intergrid operators P = RH and coarse grid operator Dc

// Initial phase
Define set of random test vectors W = [w1, . . . , wntv]1

for j = 1, . . . , ntv2

wj ←Mwj3

construct P and Dc from W4

perform initial phase for Dc5

// Iterative phase
for i = 0, . . . , k6

for j = 0, . . . , ntv7

wj ← AMG(wj)8

update P and Dc9

perform iterative phase for Dc10

The setup procedure adaptively defines the coarse system based on a subspace
which could not be efficiently treated by the smoothing method of our choice.
DD-αAMG implements two different options for the smoothing method: SAP and
GMRES. The former is implemented as an additive, multiplicative, two color or 16
color variant, where the block solves are performed by a few steps of the minimal
residual (MR) algorithm [89], which is mathematically equivalent to GMRES(1).
Numerical studies from [85] suggest that the two color SAP approach is in general
the most suitable smoothing method for the Dirac operator.

27

2 Basics of numerical linear algebra

In practice the convergence for the pure multigrid method cannot be guaranteed
for the Dirac operator due to its structural properties, e.g., being non-normal
and not necessarily positive definite. For this reason it is beneficial to use the
multigrid method as a (right) preconditioner for a restarted FGMRES method.
This improves the convergence of the overall method and thus speeds up the
overall method at minimal cost. In summary, the three ingredients of DD-αAMG
are: the FGMRES method as a wrapper, two-color SAP as the smoothing method
and an adaptively determined aggregation based coarse grid correction.

Figure 2.6 illustrates the effectiveness of DD-αAMG over conventional Krylov
subspace methods in a high performance computing environment. We compare
a two, three and four level DD-αAMG method with an optimized Krylov sub-
space method, which is a mixed precision, odd-even preconditioned BiCGStab
algorithm, see [85]. The left plot shows the time for a single solve of a linear
system with the Dirac operator, which is dependent on a mass shift m0 ∈ R. This
shift is an indicator for the ill-conditioning of the system—the smaller m0 the
more ill-conditioned the matrix. The multigrid method outperforms the Krylov
subspace method by more than two orders of magnitude for physically relevant
mass shifts. We also see that depending on the conditioning, it is beneficial to
use additional multigrid levels. However, there is a trade-off: Using too many
levels eventually slows down the application, as the method will be dominated
by communication and idling processes. The right plot shows the same situation,
but includes the time spent for the multigrid setup phase. Due to the bootstrap
approach for the setup, the overall cost of the multigrid method is dominated by
the setup cost, but is still clearly favorable over BiCGStab by one order of mag-
nitude. Consequently, in scenarios where multiple solves are required multigrid
methods are even more advantageous.

2.4 Eigenvalue problems

Eigenvalues and eigenvectors can be found in nearly all disciplines of natural
science and applied mathematics. In a mathematics context eigenvectors are
often used for deflation, a method which can be applied to improve the condition
number of a problem. Engineers determine eigenfrequencies of structures like
skyscrapers, bridges or wings of airplanes to make them resistant to vibrations.
In quantum physics or chemistry, eigenvalues are used to determine energy levels
of particles, e.g., electrons in an atom.

Our interest in the eigenvalue problem in this thesis is twofold:

• Eigenpairs can be used to directly compute physical observables [9, 30,
39, 41, 49, 76] or as a tool for noise reduction in stochastically estimated

28

2.4 Eigenvalue problems

102

103

104

−0.01−0.03−0.05mudmcrit

mdmu

ti
m

e
to

so
lu

ti
on

(i
n

se
co

n
d

s)

m0

mp oe BiCGStab
2-level DD-αAMG
3-level DD-αAMG
4-level DD-αAMG

102

103

104

−0.01−0.03−0.05mudmcrit

mdmu

ti
m

e
to

so
lu

ti
on

+
se

tu
p

ti
m

e
(i

n
se

co
n

d
s)

m0

mp oe BiCGStab
2-level DD-αAMG
3-level DD-αAMG
4-level DD-αAMG

Figure 2.6: Comparing computational cost for solving linear systems with con-
figuration 9 (see Table 3.1) using DD-αAMG and a Krylov subspace method.
The left plot reports on timings for the solve only, whereas the right plot in-
cludes the multigrid setup time. Both plots were generated on the JUROPA
high performance computer from the Jülich Supercomputing Centre.

quantities like disconnected fermion loops [4]. In this case we need accurate
approximations and potentially a large amount of eigenvectors, such that
scalability is a critical factor.

• Approximations to the eigenvectors of the (Hermitian) Dirac operator are
required in order to define the interpolation and restriction operators in the
setup phase of our multigrid method, cf. Chapter 2.3 or [46]. Since a rough
approximation is sufficient in this scenario, a special focus is put on how to
acquire a few of them as efficiently as possible.

In the following we review basic algorithms for the computation of eigenpairs.
We start with simple vector iterations, where one vector is manipulated until it
converges towards an eigenvector. Afterwards we introduce subspace accelerated
eigensolver methods, which combine the information from all previous iterations
to obtain the optimal approximations within the subspace.

2.4.1 Eigensolvers based on vector iteration

In this section we review eigensolvers, which extract one eigenpair (λ, x) by it-
erating on one pair (λ(k), x(k)) until it converges. Note that λ and x are both
unknown and knowledge of either one of them conceptually yields a simple way
to obtain the other. Given λ, it is sufficient to solve the homogeneous equation

29

2 Basics of numerical linear algebra

(A−λI)x = 0 to obtain x.5 Conversely, if x is given, we can compute the Rayleigh
quotient of x to obtain λ, which we define in the following.

Definition 2.16 (Rayleigh quotient).
Given a matrix A ∈ Cn×n, the Rayleigh quotient of a vector x ∈ Cn is defined
by

r(x) =
xHAx

xHx
. (2.19)

If x is an eigenvector of A then r(x) = xHAx
xHx

= xHλx
xHx

= λx
Hx
xHx

= λ. We can
show that for a Hermitian matrix A and a vector x that is not necessarily an
eigenvector, r(x) is a quadratically accurate estimate of an eigenvalue.

Theorem 2.17.
Given a Hermitian matrix A ∈ Cn×n, an eigenvector xJ ∈ Cn of A and a vector
t ∈ Cn we have:

r(t)− r(xJ) = O(‖t− xJ‖2), as t→ xJ (2.20)

Proof. Since t =
∑n

j=1 ajxj is a linear combination of the eigenvectors x1, . . . , xn
of A we have that the quotient

r(t) =
n∑
j=1

a2
jλj/

n∑
j=1

a2
j

is a weighted mean of the eigenvalues of A, with weights equal to the squares of
the coordinates of t in the eigenvector basis. If t is sufficiently close to xJ then
aj < ε for any given ε > 0 and j 6= J and aJ > 1− ε. It follows, that |aj/aJ | < ε
for all j 6= J . Then the numerator can be bounded from above by

n∑
j=1

a2
jλj ≤ a2

J(λJ +
n∑
j 6=J

ε2 · λj) ≤ a2
J(λJ + (n− 1) · λmax · ε2).

Similarly we can bound the denominator from below by a2
J , which cancels with

the a2
J from the numerator. Together we have

r(t)− r(xJ) ≤ (λJ + (n− 1) · λmax · ε2)− λJ = c · ε2 = O(ε2).

5As we will see later in this chapter solving a singular system, which can be a non-trivial task,
can be avoided in practice.

30

2.4 Eigenvalue problems

With this in place, we introduce a large set of eigensolver methods, which are
based on the so-called power method :

Theorem 2.18 (Power method).
Given a matrix A with 0 ≤ |λ1| ≤ · · · |λn−1| < |λn| and an initial vector v(0) such
that 〈v(0), xn〉 6= 0, it holds that

v(k) ··= Akv(0) → xn, as k →∞, (2.21)

if we assume v(k) to be normalized after each step.6 Furthermore v(k) and its
according Rayleigh quotient λ(k) satisfy

‖v(k) − xn‖ = O

(∣∣∣∣λn−1

λn

∣∣∣∣k
)

and |λ(k) − λn| = O

(∣∣∣∣λn−1

λn

∣∣∣∣2k
)
. (2.22)

Proof. Writing A and v(0) in the eigenvector basis of A we obtain

Akv(0) =
n∑
i=1

λki xix
−1
i

T
aixi =

n∑
i=1

λki aixi = λkn

n∑
i=1

(
λi
λn

)k
aixi.

For k → ∞ all fractions within the sum except for the last one vanish, proving
Eq. (2.21). Eq. (2.22) then follows directly from this result and Theorem 2.17.

We include a pseudocode of the power method in Algorithm 2.8. Here, and in
several other basic algorithms, we omit an explicit stopping criterion.

Algorithm 2.8: Power method

input: Matrix A, initial vector v(0) with ‖v(0)‖ = 1
output: Approximation of largest eigenpair (λ(k), v(k))
for k = 1, 2, . . .1

w ← Av(k−1)
2

v(k) ← w/‖w‖3

λ(k) ← v(k)TAv(k)
4

The convergence of the power method is guaranteed as long as |λn| > |λn−1|,
but it can be arbitrarily slow if the largest eigenvalues are close to each other.
Moreover, this approach only determines the largest eigenpair of a given matrix
A, so in order to gain access to arbitrary eigenvectors within the spectrum we
can shift and invert the matrix A to achieve convergence towards a specified

6Otherwise v(k) →∞ if |ρ(A)| > 1 or v(k) → 0 if |ρ(A)| < 1.

31

2 Basics of numerical linear algebra

region of the spectrum, see Remark 2.6. Choosing a shift σ sufficiently close the
target eigenvalue λJ , the power method for (A− σI)−1 will converge towards λJ
as the closest eigenvalue to σ, since |(σ − λJ)−1| � |(σ − λK)−1| > . . ., where
λK is the second-closest eigenvalue to σ. This method, called inverse iteration,
is derived from the power method by replacing the matrix vector multiplication
w = Av(v−1) from Algorithm 2.8 with the solution of a linear system of equations
(A − σI)w = v(v−1). As might be expected, the convergence results of these
methods are closely related.

Theorem 2.19 (Convergence of inverse iteration).
Given a matrix A, a shift σ ∈ C such that |σ−λJ | < |σ−λK | ≤ . . . and an initial
vector v(0) such that v(0) 6⊥ xJ we find that after k steps of inverse iteration v(k)

and λ(k) satisfy

‖v(k) − xJ‖ = O

(∣∣∣∣σ − λJσ − λk

∣∣∣∣k
)

and |λ(k) − λJ | = O

(∣∣∣∣σ − λJσ − λk

∣∣∣∣2k
)
. (2.23)

Each step of inverse iteration is typically significantly more expensive compared
to a single step of the power method, but it shows a superior convergence rate,
if the shift σ is chosen properly. We can further improve inverse iteration by
updating σ throughout the iterations with the Rayleigh quotient r(v(k)). This
method is called Rayleigh quotient iteration and is described in Algorithm 2.9.

Algorithm 2.9: Rayleigh quotient iteration

input: Matrix A, initial vector v(0) with ‖v(0)‖ = 1
output: Approximation of largest eigenpair (λ(k), v(k))

λ(0) = v(0)TAv(0)
1

for k = 1, 2, . . .2

Solve (A− λ(k−1)I)w = v(k−1) for w3

v(k) ← w/‖w‖4

λ(k) ← v(k)TAv(k)
5

Combining the convergence results of inverse iteration and the accuracy of the
Rayleigh quotient, we end up with cubic convergence of the Rayleigh quotient
iteration for symmetric/Hermitian matrices,7 if v(0) is sufficiently close to the
target eigenvector xJ .

Theorem 2.20 (Convergence of the Rayleigh quotient iteration).
Given a symmetric/Hermitian matrix A, an eigenvector xJ and an initial vector

7For general matrices the convergence is at most quadratic, cf. [90].

32

2.4 Eigenvalue problems

v(0) such that v(0) is sufficiently close to xJ . After k steps of the Rayleigh quotient
iteration v(k) satisfies

‖v(k) − xJ‖ = O(‖v(k−1) − xJ‖3) and |λ(k) − λJ | = O(|λ(k−1) − λJ |3).

Remark 2.21.
The impressive cubic convergence of the Rayleigh quotient iteration only holds
locally. In practice it is therefore common to perform a few steps of inverse
iteration before starting to update the shift, in order to first obtain a sufficiently
accurate approximation to the target eigenvector.

2.4.2 Subspace accelerated eigensolvers

In the previous section, all presented methods determine a single eigenpair for a
given matrix. Here, we introduce methods, which can obtain an arbitrary amount
of eigenpairs. One classical approach known as Wielandt’s deflation [90] is based
on appropriately shifted systems, which aim at changing the position of the known
eigenvalue without changing the position of the others. Considering the matrix

A1 = A− σx1v
H ,

where x1 is the known (right) eigenvector, v is arbitrarily chosen such that vHx1 =
1 and σ is an appropriate shift, we can show that the spectrum of A1 is given by

Λ(A1) = {λ1 − σ, λ2, . . . , λn}
and that the according eigenvectors are preserved. This procedure can further be
generalized to include a block of deflated eigenvalues and has several variations
depending on the choice of v. However, we are still restricted to approximating one
eigenvector at a time and are not making full use of the information provided, i.e.,
we only use the information from the current iterate, while discarding all previous
ones. In the following we present subspace accelerated eigensolver methods, which
will be used throughout this thesis.

Arnoldi’s method for finding eigenpairs. The subspace generated by Arnoldi’s
method is based on the Krylov subspace Km = {r, Ar,A2r, . . . , Amr}. As we have
already seen in Theorem 2.18, Amr converges towards the largest eigenvector x0

for m → ∞, such that the Arnoldi basis V should contain an accurate approxi-
mation to x0 after a few iterations. Considering the proof of Theorem 2.18, it is
intuitive to assume that good approximations to several eigenvectors with eigen-
values close to λ0 are contained in Km as well, since those eigenvalues are also
amplified throughout the generation of Vm.

We can extract the approximations to these eigenpairs from Km by computing
so-called Ritz pairs :

33

2 Basics of numerical linear algebra

Figure 2.7: Eigenvector residual of the largest 30 eigenvectors after the largest
one has converged.

Definition 2.22 (Ritz values and Ritz vectors).
Let A be an arbitrary matrix and Hm,m ··= V H

m AVm an orthogonal projection
of A onto the subspace spanned by a set of m orthonormal vectors Vm. Given
the eigenvalue decomposition

Hm,m = S−1ΘS

we call the eigenvalues θi of Hm,m the Ritz values of A with corresponding
Ritz vectors ui ··= Vmsi, where si is the i-th column of S. The pair (θi, ui) is
called a Ritz pair.

Figure 2.7 demonstrates the accuracy of Ritz vectors. After applying enough
Arnoldi steps such that we obtain the first eigenvector x0, we can see that the
eigenvectors with eigenvalues close to λ0, have eigenvector residuals ranging from
10−1 down to 10−7 already.

We can thus in principle easily obtain eigenpairs by performing Arnoldi’s method
and compute the Ritz pairs of the upper Hessenberg matrix Hm,m until we found
the desired amount of eigenpairs. However, there are several restrictions for this
approach.

Computing the eigenvalues of Hm,m at each step of Arnoldi’s method is too ex-
pensive, instead they are only computed periodically during the algorithm, and
then their accuracy has to be checked, to see whether enough eigenpairs have

34

2.4 Eigenvalue problems

converged. This also entails that the search space needs to be significantly larger
than the number of sought eigenpairs, which becomes prohibitively expensive for
larger amounts of sought eigenpairs. Additionally, the basic method approxi-
mates exterior eigenvalues first before finding the interior ones, which limits its
practicability. While we could employ the shift-and-invert technique from inverse
iteration, we would need to obtain high accuracy solutions for the linear system
of equations (A−σ)−1x = b to maintain an exact Krylov structure for the Arnoldi
relation to hold, which is significantly more expensive than applying matrix vector
multiplications.

In the next paragraph we will see how the requirement for exact solves can be
eliminated, while simultaneously gaining more flexibility.

Generalized Davidson method. The generalized Davidson method [25, 90] is
an eigensolver framework which can be seen as a generalization of Arnoldi’s
method [74].8 Its advantage is that it does not rely on a Krylov subspace struc-
ture and thus offers a more flexible way of steering the search space into a desired
region. In particular, the algorithm can be easily formulated such that it finds one
target eigenpair, or a region of eigenpairs first. This is achieved by successively
generating a set of orthogonal vectors v1, . . . , vm, which span the search space
Vm. Similar to Arnoldi’s method, the eigenpair extraction is then performed by
obtaining the Ritz pairs of the matrix Hm,m ··= V H

m AVm. Afterwards the Ritz
pair (θ, u), which is closest to the target eigenpair (region), is chosen. The search
space is then extended by a new vector t which is obtained as a function of the
matrix A and the eigenvector residual r := Au− θu. The new vector vm+1 is then
retrieved after orthogonalizing t against v1, . . . , vm and normalizing it.

For this thesis we focus on obtaining t as an (approximate) solution of the cor-
rection equation

(A− τI)t = r, (2.24)

where τ is an estimate for the target eigenvalue. The choice of τ steers the
expansion of the search space, and with it the Ritz values, towards the desired
eigenvalue regions, e.g., eigenvalues with smallest absolute value or with largest
imaginary part. Similar to the Rayleigh quotient iteration, it is sensible to choose
τ = θ to improve convergence towards the desired eigenpair.

A description of the generalized Davidson method to obtain one eigenpair is given
in Algorithm 2.10.

The case where we want to obtain more than one eigenpair is discussed in Sec-
tion 5.1.

8In [74] the authors relate generalized Davidson with the Lanczos method, but the statement
also holds for non-Hermitian matrices.

35

2 Basics of numerical linear algebra

Algorithm 2.10: Generalized Davidson (basic)
input: initial guess t, desired accuracy ε
output: eigenpair (λ, x)
V = ∅1

for m = 1, 2, . . .2

t = (I − V V H)t3

vm = t/||t||24

V = [V | vm]5

H = V HAV6

get target eigenpair (θ, s) of H7

u = V s8

r = Au− θu9

if ||r||2 ≤ ε then10

λ = θ, x = u11

return12

compute t as a function of A, r and θ13

2.5 Matrix functions

Given a scalar function

f : C→ C, z 7→ f(z)

and a matrix A ∈ Cn×n we are interested in a useful generalization of f to matrix
arguments A, i.e.,

f : Cn×n → Cn×n, A 7→ f(A),

which will be referred to as a matrix function. For example, linear systems of
equations Ax = b can be interpreted as a matrix function with f(z) = 1

z
. Another

useful application for matrix functions can be found in graph theory: Given a
graph G the matrix exponential eA of the adjacency matrix A(G) gives insight into
some properties of the graph, e.g., central nodes. In this work, we are interested
in the matrix sign function sign(A), since it is required for the definition of the
Neuberger Overlap operator in Chapter 4.

Some matrix functions can be easily defined in a straight-forward fashion by
substituting z with A, 1 with the identity matrix I and scalar divisions with
matrix inversion.

Example 2.23.
The following examples illustrate the definition of matrix functions above:

1. f(z) = 1+z2

1−z ⇒ f(A) = (I −A)−1(I +A2) = (I +A2)(I −A)−1, if 1 /∈ Λ(A)

36

2.5 Matrix functions

2. If f has a convergent power series representation, such as

ez =
∞∑
i=0

zi

i!

we can substitute A for z in the power series and define, e.g.,

eA =
∞∑
i=1

Ai

i!

3. The scalar sign function is defined for z ∈ C lying off the imaginary axis by

sign(z) =

{
−1 , if Re(z) < 0

+1 , if Re(z) > 0.

While this definition for the sign function does not lend itself to a general-
ization to matrix arguments, the equivalent definition sign(z) = z/(z2)1/2 is
a more suitable representation, as we will see later:

sign(A) = A(A2)−1/2 (2.25)

There exist several general definitions for matrix functions [58]. We focus on the
special case of diagonalizable matrices.9. In this case matrix functions can be
reduced to the application of the scalar function to the eigenvalues of the matrix.

Lemma 2.24.
Let A ∈ Cn×n = XΛX−1 be the eigenvalue decomposition of A and let f be any
function defined on the spectrum of A. Then

f(A) = f(XΛX−1) = Xf(Λ)X−1 = X diag(f(λi))X
−1 for i = 1, . . . , n.

Lemma 2.24 gives an idea how to approximate any matrix function f(A) for
a given matrix A: Obtain an approximation to the eigenvalue decomposition
A = XΛX−1 and evaluate f(A) = Xf(Λ)X−1. This approach will be followed in
the next section.

9For non-diagonalizable matrices a more general definition using the Jordan canonical form
can be formulated. In practice it is reasonable to assume that all occurring matrices are
diagonalizable.

37

2 Basics of numerical linear algebra

2.5.1 Applying a matrix function to a vector

Many applications require the action of a matrix function on a vector, i.e., f(A)b.
For large sparse matrices this task is fundamentally different from the naive ap-
proach of evaluating f(A) and multiplying it with b. Even if A is a sparse matrix,
f(A) will in general be a dense matrix. When matrix dimensions grow larger,
storing f(A) thus becomes prohibitively expensive. Similar to the case of solv-
ing linear systems of equations, iterative methods have to be applied to obtain
approximate solutions. This section is based on [43] and references therein.

Following the idea at the end of the last section, Theorem 2.25 shows how
Arnoldi’s method can be used to obtain approximations to matrix functions.

Theorem 2.25.
Given the matrices Vm and Hm,m from m steps of the Arnoldi process on A, f(A)b
can be approximated by

f(A)b ≈ fm = Vmf(Hm,m)V H
m b = ‖b‖2Vmf(Hm,m)e1. (2.26)

Equality holds if m ≥ deg(ψA,b).

Since the dimension of Hm,m is significantly smaller compared to the dimension
of A, the matrix function f(Hm,m) can be efficiently evaluated via Lemma 2.24.
The vector fm can thus be obtained directly from the matrices Vm and Hm,m of
Arnoldi’s method and is available with negligible additional costs.

Similar to GMRES, this method requires restarting in order to avoid growing
memory and orthogonalization costs. Due to the lack of a matrix function ana-
logue for the residual equation (2.8), the error of the Arnoldi approximation fm
has to be derived with an alternative approach [38]. There the error is approxi-
mated using an error function based on divided differences.

This approach theoretically enables restarting for Arnoldi’s method, but is not
practical due to numerical instability of divided differences [27]. In [43] an
integral-based error representation was developed which avoids divided differences
and is thus more stable.

Theorem 2.26.
Let Ω ⊂ C be a region and let f : Ω→ C be analytic with the integral representa-
tion

f(z) =

∫
Γ

g(t)

t− z
dt, z ∈ Ω, (2.27)

38

2.5 Matrix functions

with a path Γ ⊂ C\Ω and a function g : Γ→ C. For a matrix A with spec(A) ⊂ Ω
and a vector b, the error of fm from Theorem 2.25 is given as

f(A)b− fm = ‖b‖γm
∫

Γ

g(t)

wm(t)
(tI − A)−1 vm+1dt =·· em(A)vm+1, (2.28)

where wm(t) = (t− θ1) · · · (t− θm) and γm =
∏m

i=1 hi+1,i.

The integral from Equation (2.28) can be evaluated in a stable way using an
appropriate quadrature rule. Algorithm 2.11 shows how this approach can be
implemented using an adaptive error control. For further information, see [43].

Algorithm 2.11: Quadrature-based restarted Arnoldi’s method for f(A)b
input: Matrix A, vector b, function f , restart length m, tolerance ε
output: Approximation fm ≈ f(A)b
Perform m steps of Arnoldi’s method to obtain1

AV
(1)
m = V

(1)
m H

(1)
m,m + h

(1)
m+1,mv

(1)
m+1e

T
m w.r.t. A and b.

f
(1)
m ← ‖b‖V (1)

m f(H
(1)
m,m)e12

˜̀← 8 and `← round(
√

2 · ˜̀)3

for k = 2, 3, . . .4

Perform m steps of Arnoldi’s method to obtain5

AV
(k)
m = V

(k)
m H

(k)
m,m + h

(k)
m+1,mv

(k)
m+1e

T
m w.r.t. A and v

(k−1)
m+1 .

Choose sets (t̃i, ωi)i=1,...,˜̀ and (ti, ωi)i=1,...,` of quadrature6

nodes/weights.
accurate ← false and refined ← false7

while accurate = false do8

Compute h̃
(k)
m = e

(k−1)
m (H

(k)
m,m)e1 by quadrature of order ˜̀.9

Compute h
(k)
m = e

(k−1)
m (H

(k)
m,m)e1 by quadrature of order `.10

if ‖h(k)
m − h̃(k)

m ‖ < ε then11

accurate ← true12

else13

˜̀← ` and `← round(
√

2 · ˜̀)14

refined ← true15

f
(k)
m ← f

(k−1)
m + ‖b‖V (1)

m h
(k)
m16

if refined = false then17

`← ˜̀ and ˜̀← round(`/
√

2)18

39

Chapter 3
Basics of quantum chromodynamics

In this chapter we give an introduction into Quantum Chromodynamics as far as
relevant for this thesis. We start with a brief overview of continuum QCD and
the description of the Dirac operator, which will be central for most parts of the
thesis. We present the most common discretization of the Dirac operator, the
Wilson-Dirac operator and some properties thereof as well as derive a measure of
its normality. We close this chapter with some applications, which motivated the
development of the new methods derived within this thesis. Sections 3.1 and 3.2
are mostly from [46], while Section 3.3 is a result of our work published in [16].

3.1 Continuum QCD

Quantum Chromodynamics is a quantum field theory in four-dimensional space-
time and a fundamental part of the standard model of particle physics today. It
describes the strong interaction between quarks and gluons, the elementary par-
ticles which make up composite particles (hadrons), such as protons or neutrons.
This interaction is described by the skew-adjoint continuum Dirac equation

(D +mI)ψ = η, (3.1)

where ψ = ψ(x) ∈ C12 and η = η(x) ∈ C12 are called spinors or quark fields. The
twelve components ψc,σ label the internal degrees of freedom, the so-called color
c = (1, 2, 3) and spin σ = (0, 1, 2, 3) of a given spinor at a point x = (x0, x1, x2, x3)
in space-time. The ordering of the degrees of freedom of a spinor is given as
follows:

ψ(x) = (ψ1,0(x), ψ2,0(x), ψ3,0(x), ψ1,1(x), . . . , ψ3,3(x))T

41

3 Basics of quantum chromodynamics

The scalar parameter m sets the quark mass of the QCD theory. The Dirac oper-
ator D describes the interaction between the quarks for a given gluon background
field and is defined as

D =
3∑

µ=0

γµ ⊗ (∂µ + Aµ), (3.2)

where ∂µ is a shorthand for ∂/∂xµ. The Hermitian and unitary γ-matrices
γ0, γ1, γ2, γ3 ∈ C4×4 generate a Clifford algebra, satisfying

γµγν + γνγµ =

{
2 · I, µ = ν

0, µ 6= ν
for µ, ν ∈ {0, . . . , 3} (3.3)

and act nontrivially on the spin indices of the spinor and trivially on the color
indices: (γµψ)(x) = (γµ⊗I3)ψ(x). The gauge field Aµ(x) describes the connection
between different (but infinitesimally close) space-time points and is defined by
skew-Hermitian traceless matrices which are elements of su(3), the Lie algebra of
the special unitary group SU(3). It acts trivially on the spin and nontrivially on
the color, i.e., (Aµψ)(x) = (I4 ⊗ Aµ(x))ψ(x).

The covariant derivative ∂µ+Amu is a minimal coupling extension of the derivative
∂µ, ensuring that ((∂µ + Aµ)ψ)(x) is being transformed in the same way as ψ(x)
under local gauge transformations, i.e., local changes of the coordinate system in
color space.

The combination of covariant derivatives and the γ-matrices ensures that Dψ(x)
transforms under the space-time transformations of special relativity in the same
way as ψ(x). Local gauge invariance and special relativity are fundamental prin-
ciples of the standard model of elementary particle physics [46].

3.2 The Wilson discretization

In order to obtain predictions in the QCD theory, e.g., quark masses or interac-
tion between particles, partial differential equations involving the Dirac operator
have to be solved. However, these PDEs cannot be evaluated analytically, thus
the QCD theory has to be formulated on a (finite) lattice and numerically ap-
proximated using high performance computing.

For the numerical simulation of a quantum system, we can only simulate a finite
region, thus it has to be large enough such that the quarks in the interior of
the system can interact without suffering from so-called finite volume effects or
cutoff effects, i.e., interference of artificial boundary constraints. One common
approach to limit these effects is to impose periodic boundary conditions, where
each dimension is transformed into a circle, leading to a four-dimensional torus

42

3.2 The Wilson discretization

as our underlying region for the Dirac operator. In order to obtain a discretized
version of the Dirac operator, it has to be reformulated to operate on a finite
lattice. In particular, suitable discrete alternatives for the derivatives ∂µ and the
gauge fields Aµ have to be formulated.

We start with a periodic Nt × N3
s lattice L ⊂ T on a four-dimensional torus T .

The lattice L has nL = Nt · N3
s lattice points with a lattice spacing a, where

Nt denotes the number of lattice points in time dimension and Ns denotes the
number of lattice points in the three space dimensions.

We define special shift vectors µ̂ ∈ R4 by

µ̂ν =

{
a, µ = ν

0, µ 6= ν,

which allow to formulate dependencies of neighboring lattice points.

The gauge fields Aµ(x), which connect infinitesimally close space-time points are
replaced by gauge links Uµ(x) ∈ SU(3), which connect two neighboring lattice
points x and x+ µ̂. The opposing link from x+ µ̂ to x is given by Uµ(x)−1. The
unitary matrices Uµ(x) are approximations to the path-ordered exponential of the

integral of Aµ along the link, i.e., Uµ(x) := e−aAµ(x+ 1
2
µ̂) ≈ e−

∫ x+µ̂
x Aµ(s)ds. The set

of all gauge links {Uµ(x) : x ∈L, µ = 0, 1, 2, 3} is called a configuration.

To discretize the covariant derivative of the continuum theory, we define forward
covariant finite differences

(∆µψσ)(x) ··=
1

a

(
Uµ(x)ψσ(x+ µ̂)− ψσ(x)

)
and backward covariant finite differences

(∆µψσ)(x) ··=
1

a

(
ψσ(x)− UH

µ (x− µ̂)ψσ(x− µ̂)
)
,

where ψσ(x)f ∈ C3 denotes all color variables of ψ with spin σ. From the def-
inition of the gauge links, we see that (∆µ)H = −∆µ, and that the centralized
covariant finite differences (∆µ + ∆µ)/2 are skew-Hermitian, which leads to the
naive discretization of the Dirac operator

Dn =
3∑

µ=0

γµ ⊗ (∆µ + ∆µ)/2.

This naive Dirac operator is skew-Hermitian, since the γ matrices are Hermitian,
while the covariant finite differences are skew-Hermitian. However, this discretiza-
tion suffers from a common phenomenon when discretizing first order derivatives

43

3 Basics of quantum chromodynamics

using central finite differences, known as the species doubling effect or red-black in-
stability, cf. [96]. Each eigenvalue of Dn has a 16-dimensional eigenspace, whereas
only one eigenvector corresponds to an actual eigenfunction of the continuum op-
erator. To avoid this effect, Wilson introduced a stabilization term a∆µ∆µ, which
leads to the Wilson-Dirac operator [108]

D = D(m0) = DW (m0) =
m0

a
I +

1

2

3∑
µ=0

(γµ ⊗ (∆µ + ∆µ)− aI4 ⊗∆µ∆µ) , (3.4)

where similar to the continuum operator, m0 defines the mass of the simulated
quark. The Wilson-Dirac operator D inherits a nontrivial symmetry from the
continuum operator leading to the Hermitian Wilson-Dirac operator Q, which is
required for certain simulations, cf. [5]. By defining γ5 := γ0γ1γ2γ3, we can see
that γ5γµ = −γµγ5 for µ = 0, 1, 2, 3, thus γ5γµ is skew-Hermitian. Thus each term
(γ5γµ)⊗ (∆µ + ∆µ) for µ = 1, . . . 4 is Hermitian since it is the tensor product of
two skew-Hermitian operators. If we define Γ5 := InL ⊗ γ5 ⊗ I3, we see that the
operator Q := Γ5D is Hermitian, i.e., (Γ5D)H = Γ5D.

−2

−1

0

1

2

0 1 2 3 4 5 6 7 8

im
ag

in
ar

y
ax

is

real axis

−8

−4

0

4

8

0 768 1536 2304 3072

ei
ge

n
va

lu
e
λ
i

index i

Figure 3.1: Full spectra of D and Q for configuration 1. The left plot shows the
spectrum of D in the complex plane; the right plot shows the spectrum of the
Hermitian operator Q and illustrates its spectral density.

Figure 3.1 shows an example of the spectrum of D and Q. For D we can observe
a symmetry with respect to the real axis as well as a symmetry with respect to
the line Re(z) = m0+4

a
. To prove the first symmetry, let (λ, x) be an eigenpair of

D and recall that Γ5D = (Γ5D)H . Then we have

(Γ5x)HD = xH(Γ5D) = (Γ5Dx)H = (Γ5λx)H = λ̄(Γ5x)H . (3.5)

The second symmetry follows from a reordering of the lattice sites in a red-black
fashion, cf. [85].

The species doubling effect is handled by the Wilson term, which pushes the
non-physical eigenvalues and its eigenvectors to the right, leaving the physical

44

3.3 Normality of the Wilson-Dirac operator

eigenpairs at the lower part of the spectrum (the shaded area in Figure 3.1).
The spectrum of the Hermitian Wilson operator Q is shown in the right plot
and is maximally indefinite, i.e., it has the same amount of positive and negative
eigenvalues, with both parts being distributed in a similar way. The shaded
area highlights the eigenvalues with smallest absolute value, which are of special
interest for this thesis.

In Table 3.1 we provide information on the configurations used within this thesis.
For proof of concept and prototypes in MATLAB [71] we used configurations 1
and 2 which were generated using our own heat-bath algorithm. Configurations 3–
6 were used for the eigenvalue computations in Chapter 5 and were provided by
our partners at the University of Regensburg within the Collaborative Research
Centre SFB-TRR55; see [6]. For these configurations, we actually use clover im-
proved (see [92]) Wilson-Dirac operators D and Q, where a block diagonal term
with 6× 6 diagonal blocks depending on a parameter csw is added to improve the
lattice discretization error from O(a) to O(a2). For these configurations csw is set
to 1.9192. Note, that the resulting modified D is still Γ5-Hermitian. Configura-
tions 7 and 8 were used for the overlap simulations in Chapter 4.

ID lattice size kernel mass default smearing provided by
Nt ×N3

s m0 overlap mass µ s

1 4× 43 −0.7867 – – –
2 8× 83 −0.7573 – – –
3 48× 243 −0.3289 – – RQCD, cf. [6]
4 64× 323 −0.3321 – – RQCD, cf. [6]
5 64× 403 −0.3321 – – RQCD, cf. [6]
6 64× 643 −0.3321 – – RQCD, cf. [6]
7 32× 323 −1− 3

4
σmin 0.0150000 {0, . . . , 6}-stout [75] cf. [31, 32]

8 32× 323 −1.3 0.0135778 3 HEX [22] BMW-c [12, 101]
9 64× 643 −0.0529 – 2 HEX [22] BMW-c [21, 35]

Table 3.1: Configurations used within this thesis together with some relevant
parameters. See the references for further details. Configurations 1 and 2 are
locally generated configurations.

3.3 Normality of the Wilson-Dirac operator

In the continuum case the Dirac matrix D is normal, i.e., D∗D = DD∗. Normal
matrices have the numerical advantage of being unitarily diagonalizable, i.e., A =
UΛUH , with U unitary and Λ the diagonal matrix containing the eigenvalues of
A. This property is crucial for achieving a good performance of the preconditioner
presented in Chapter 4. However, normality does not carry over to the discretized

45

3 Basics of quantum chromodynamics

Wilson-Dirac operator D, where the Frobenius norm of the commutator ||DHD−
DDH ||F is non-zero in general.

One approach to reduce the non-normality is to decrease the lattice spacing for
a constant volume, which implies that larger lattices are required. In this case
the discretized operator approaches the continuum operator and thus becomes
more normal. Since this increases computational cost significantly this approach
is infeasible in practice.

Instead, we establish a connection of ||DHD − DDH ||F with the Wilson gauge
action. In physical simulations so-called smearing techniques are used to reduce
the Wilson gauge action and in turn reduce the non-normality of D for a given
lattice. This is a result from our work published in [16].

Definition 3.1 (Wilson gauge action).
The Wilson gauge action SW (U) for a gauge field U = {Uµ(x)} is given by

SW (U) :=
∑
x

∑
µ<ν

Re(tr(I −Qµ,ν
x)), (3.6)

where the first sum is to be taken over all lattice sites x and
∑

µ<ν is a

shorthand for
∑3

µ=0

∑3
ν=µ+1. The terms Qµ,ν

x are called plaquettes and are
the product of all coupling matrices along a cycle of length 4 on the lattice,
i.e.,

Qµ,ν
x := Uν(x)Uµ(x+ ν̂)Uν(x+ µ̂)HUµ(x)H . (3.7)

The plaquettes can be represented as squares in the (µ, ν)-plane, e.g.,

Qµ,ν
x =̂ .

Similarly, the other plaquettes at x are defined as

Qµ,−ν
x =̂ , Q−µ,νx =̂ , Q−µ,−νx =̂ . (3.8)

In the following theorem we prove that the deviation of the plaquettes from the
identity matrix can be used as a measure for the non-normality of D.

Theorem 3.2.
The Frobenius norm of DHD −DDH fulfills

||DHD −DDH ||2F = 16
∑
x

∑
µ<ν

Re(tr(I −Qµ,ν
x)) = 16 · SW (U). (3.9)

46

3.3 Normality of the Wilson-Dirac operator

D DH

(x, x) mI12 mI12

(x, x+ µ̂) −π−µ ⊗ Uµ(x) −π+
µ ⊗ Uµ(x)

(x, x− µ̂) −π+
µ ⊗ UH

µ (x− µ̂) −π−µ ⊗ UH
µ (x− µ̂)

Table 3.2: Coupling terms in D and DH .

Proof. We inspect the entries of DHD −DDH . We use the notation π±µ for the
matrices

π±µ = 1
2
(I4 ± γµ), µ = 0, . . . , 3.

The relations (3.3) between the γ-matrices show that each π±µ is a projection and
that, in addition,

π+
µ π
−
µ = π−µ π

+
µ = 0, µ = 0, . . . , 3. (3.10)

Considering all 12 variables at each lattice site as an entity, the graph associated
with the nearest neighbor coupling represented by the matrix D is the 4d-torus,
and similarly for DH . Table 3.2 gives the non-zero entries of a (block) row in D
and DH in terms of the 12× 12 matrices which couple lattice site x with the sites
x and x± µ̂.

The product DHD represents a coupling between nearest and next-to-nearest
lattice sites; the coupling 12× 12 matrices are obtained as the sum over all paths
of length two on the torus of the product of the respective coupling matrices in
DH and D. A similar observation holds for DDH . Table 3.3 reports all the entries
of DHD, and we now shortly discuss all the paths of length 2 which contribute
to these entries of DHD.

For the diagonal position (x, x) we have 21 paths of length 2, (x, x) → (x, x) →
(x, x) and (x, x)→ (x, x± µ̂)→ (x, x), µ = 0, . . . , 3. The contribution of each of
the latter 20 paths is 0 due to (3.10).

For a nearest neighbor (x, x+µ̂) we have the two paths (x, x)→ (x, x)→ (x, x+µ̂)
and (x, x)→ (x, x+ µ̂)→ (x, x+ µ̂), and similarly in the negative directions. For
a position (x, x±2µ̂) there is only one path (x, x)→ (x, x± µ̂)→ (x, x±2µ̂), with
the product of the couplings being 0 due to (3.10). Finally, for the other next-to-
nearest neighbors we always have two paths, for example (x, x) → (x, x + µ̂) →
(x+ µ̂− ν̂) and (x, x)→ (x, x− ν̂)→ (x+ µ̂− ν̂).

The coupling terms in DWD
H
W are identical to those for DH

WDW except that we
have to interchange all π+

µ and π−µ as well as all π+
ν and π−ν .

This shows that in DHD −DDH the only no-vanishing coupling terms are those
at positions (x, x+ µ̂+ ν̂), (x, x+ µ̂− ν̂) and (x, x− µ̂− ν̂) for µ 6= ν. They are

47

3 Basics of quantum chromodynamics

(x, x) m2I12

(x, x+ µ̂) −m(π+
µ + π−µ)⊗ Uµ(x)

(x, x− µ̂) −m(π+
µ + π−µ)⊗ Uµ(x− µ̂)

(x, x± 2µ̂) 0
ν 6= µ:

(x, x+ µ̂+ ν̂) π−µ π
+
ν ⊗ Uµ(x)Uν(x+ µ̂) + π−ν π

+
µ ⊗ Uν(x)Uµ(x+ ν̂)

(x, x+ µ̂− ν̂) π−µ π
−
ν ⊗ Uµ(x)UH

ν (x+ µ̂− ν̂) + π+
ν π

+
µ ⊗ UH

ν (x− ν̂)Uµ(x− ν̂)
(x, x− µ̂− ν̂) π+

µ π
−
ν ⊗ UH

µ (x− µ̂)UH
ν (x− µ̂− ν̂) + π+

ν π
−
µ ⊗ UH

ν (x− ν̂)UH
µ (x− ν̂ − µ̂)

Table 3.3: Coupling terms in DHD. The coupling terms in DDH are obtained
by interchanging all π+

µ and π−µ as well as all π+
ν and π−ν .

µ 6= ν:
(x, x+ µ̂+ ν̂) 1

2
(−γµ + γν)⊗ (I3 −Qµ,ν

x)Uµ(x)Uν(x+ µ̂)
(x, x+ µ̂− ν̂) 1

2
(−γµ − γν)⊗ (I3 −Qµ,−ν

x)Uµ(x)UH
ν (x+ µ̂− ν̂)

(x, x− µ̂− ν̂) 1
2
(γµ − γν)⊗ (I3 −Q−µ,−νx)UH

µ (x− µ̂)UH
ν (x− µ̂− ν̂)

Table 3.4: Coupling terms in DHD −DDH .

given in Table 3.4, where we used the identities

π−µ π
−
ν − π+

µ π
+
ν = 1

2
(−γµ − γν) ,

π+
µ π
−
ν − π−µ π+

ν = 1
2

(γµ − γν) ,
π−µ π

+
ν − π+

µ π
−
ν = 1

2
(−γµ + γν) ,

π+
µ π

+
ν − π−µ π−ν = 1

2
(γµ + γν) .

By rearranging the terms we obtain the plaquettes from (3.7) and (3.8). We
exemplify this for position (x, x+ µ̂+ ν̂)

π−µ π
+
ν ⊗ Uµ(x)Uν(x+ µ̂) + π−ν π

+
µ ⊗ Uν(x)Uµ(x+ ν̂)

−
(
π+
µ π
−
ν ⊗ Uµ(x)Uν(x+ µ̂) + π+

ν π
−
µ ⊗ Uν(x)Uµ(x+ ν̂)

)
= 1

2
(−γµ + γν)⊗ Uµ(x)Uν(x+ µ̂) + 1

2
(γµ − γν)⊗ Uν(x)Uµ(x+ ν̂)

= 1
2
(−γµ + γν)⊗ (I3 −Qµ,ν

x)Uµ(x)Uν(x+ µ̂).

Using the fact that for the Frobenius norm we have

‖AQ‖F = ‖A‖F whenever Q is unitary (and AQ is defined),

‖A⊗B‖F = ‖A‖F · ‖B‖F for all A,B,

48

3.3 Normality of the Wilson-Dirac operator

we obtain the following for the squares of the Frobenius norms of all the coupling
matrices from Table 3.4:

2‖I −Qµ,ν
x ‖2

F for position (x, x+ µ̂+ ν̂),
2‖I −Qµ,−ν

x ‖2
F for position (x, x+ µ̂− ν̂),

2‖I −Q−µ,−νx ‖2
F for position (x, x− µ̂− ν̂).

Finally for any unitary matrix Q we have

‖I −Q‖2
F = tr((I −QH)(I −Q)) = 2 · Re(tr(I −Q)).

Now we obtain ‖DHD−DDH‖2
F by summing the squares of the Frobenius norms

of all coupling matrices. This is a sum over 24n coupling matrices, n being the
number of lattice sites. As discussed before, groups of four of these coupling
matrices refer to the same plaquette Qµ,ν

x up to conjugation in SU(3), so tr(I−Q)
is the same for these four plaquettes Q. We can thus “normalize” to only consider
all possible “first quadrant” plaquettes Qµ,ν

x and obtain

‖DHD −DDH‖2
F = 4

∑
x

∑
µ<ν

2 · 2 · Re(tr(I −Qµ,ν
x)).

As a consequence of Theorem 3.2 we conclude that D is normal in a trivial case,
called the free theory, where all gauge links are equal to the identity. For any
physically relevant configuration D we thus assume D to be non-normal. While
in theory a normal Dirac operator might be desirable, in practice a “near-normal”
operator is already sufficient, since in this case the field of values already excludes
the origin, as we will demonstrate in Section 4.3.

In current simulations with large lattices a technique called smearing is extensively
used either to improve the signal-to-noise ratio of physics predictions [1], or to
stabilize the stochastic process of generating gauge field configurations [22, 75?].
This process locally averages gauge links along the plaquettes and thus reduces
the Wilson gauge action, with the goal to reduce “cut-off effects” (discretization
errors) related to short-distance fluctuations in the gauge field, e.g., un-physical
localized eigenvectors with near zero eigenvalues. Several smearing techniques
have been proposed, e.g., APE [1], HYP [56], HEX [22], while in this thesis we
mainly consider stout smearing [75]. The following description of stout smearing
follows [16].

Given a gauge field U , stout smearing modifies the gauge links according to

Uµ(x)→ Ũµ(x) = eεZ
U
µ (x)Uµ(x) (3.11)

49

3 Basics of quantum chromodynamics

where the parameter ε is a small positive number and

ZUµ (x) = −1

2
(Mµ(x)−MH

µ (x)) +
1

6
tr(Mµ(x)−MH

µ (x)) , (3.12)

where

Mµ(x) =
3∑

ν=0,ν 6=µ

Qµ,ν
x +Qµ,−ν

x .

Note the dependence of ZUµ (x) on local plaquettes associated with x.

The following result from [69, 70] relates the Wilson flow Vτ = {Vµ(x, τ) : x ∈
L, µ = 0, . . . , 3} defined as the solution of the initial value problem

∂

∂τ
Vµ(x, τ) = −{∂x,µSW(Vτ)}Vµ(x, τ) , Vµ(x, 0) = Uµ(x) , (3.13)

to stout smearing. Here Vµ(x, τ) ∈ SU(3), and ∂x,µ is the canonical differential
operator with respect to the link variable Vµ(x, τ) which takes values in su(3),
the algebra of SU(3).

Theorem 3.3.
Let Vτ be the solution of (3.13). Then

(i) Vτ is unique for all V0 and all τ ∈ (−∞,∞) and differentiable with respect
to τ and V0.

(ii) The Wilson action SW (Vτ) is monotonically decreasing as a function of τ .

(iii) One step of Lie-Euler integration with step size ε for (3.13), starting at
τ = 0, gives the approximation V ′ε = {V ′µ(x, ε)} for Vε with

V ′µ(x, ε) = eεZ
U
µ (x)Uµ(x),

with ZUµ (x) from (3.12)

Proof. We refer to [69, 70] and also [10] for details of the proof for (i) and (ii).
The idea is to show that

∂

∂τ
SW(Vτ) = 2

∑
x,µ

tr((∂x,µSW(Vτ))2) , (3.14)

with −∂x,µSW(U) = ZUµ (x) skew-hermitian and thus tr((∂x,µSW(Vτ))2) ≥ 0. Part
(iii) follows directly by applying the Lie-Euler scheme; cf. [55].

50

3.4 Applications

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6

av
er

ag
e

p
la

q
u
et

te

number of stout smearing iterations

Figure 3.2: Illustration of the effect of stout smearing on the average plaquette
value (3.15).

The theorem implies that one Lie-Euler step is equivalent to a step of stout
smearing, with the exception that in stout smearing links are updated sequen-
tially instead of in parallel. And since the Wilson action decreases along the exact
solution of (3.13), we can expect it to also decrease for its Lie-Euler approxima-
tion, at least when ε is sufficiently small.

In Figure 3.2, we illustrate the relation between iterations of stout smearing and
the average plaquette value Qavg for configuration 7 (cf. Table 3.1). The average
plaquette value is defined by

Qavg = N−1
Q

∑
x

∑
µ<ν

Re(tr(Qµ,ν
x)), (3.15)

where NQ denotes the total number of plaquettes. In terms of Qavg , (3.9) simplifies
to

||DH
WDW −DWD

H
W ||2F = 16NQ(3−Qavg).

Figure 3.2 shows that the Wilson action, and with it the non-normality of D,
decreases rapidly in the first iterations of stout smearing and approaches tr(I) = 3.

3.4 Applications

The following sections illustrate some possible applications for the newly devel-
oped methods from this thesis, which are presented in Chapters 4, 5 and 6. Sec-
tion 3.4.1 presents a “controversial” alternative discretization for the continuum
Dirac operator, where our work from Chapter 4 was fundamental in validating

51

3 Basics of quantum chromodynamics

this approach, see [13]. The development of the eigensolver in Chapter 5 was
motivated by an eigenvector deflation approach for the computation of tr(Q−1)
and is based on previous work from [5]. This is summarized in Section 3.4.2. Our
new setup strategy from Chapter 6 is developed with the hybrid Monte Carlo
algorithm in mind, which we present in Section 3.4.3.

3.4.1 Validation of the staggered Wilson discretization

The Wilson-Dirac discretization is one of the first discretizations of the contin-
uum Dirac operator, but breaks a fundamental symmetry called chiral symmetry,
due to the stabilization term aI4∆µ∆µ. In [64] the authors derive the Kogut-
Susskind (or more commonly referred to as staggered) discretization, which re-
spects chiral symmetry. Simulations with the staggered Wilson operator have
smaller systematic errors and thus allow for a more controlled continuum extrap-
olation, compared to simulations using the Wilson-Dirac operator. In addition
the computational cost of both operators are comparable, making the staggered
formalism a more favorable discretization in many cases. The following derivation
of the staggered operator is based on [20].

Similarly to the Wilson-Dirac discretization it uses the forward and backward
covariant finite differences ∆µ and ∆µ, but instead of adding an stabilization
term to avoid the species doubling effect, it uses a spin diagonalization of the
gauge links by redefining the quark fields via

ψ(x)→ Ω(x)ψ(x),

with Ω(x) = γx11 · γx22 · γx33 · γx44 .

Using local transformations, the γ-matrices can be transformed into local (nega-
tive) identities for each direction µ

ψH(x)γµ ⊗ [U(x)ψ(x+ µ)− U(x− µ)ψ(x− µ)]

→ ψH(x)ηµ(x)⊗ [U(x)ψ(x+ µ)− U(x− µ)ψ(x− µ)] ,

where ηµ(x) ··= Ω(x)HγµΩ(x+ µ) = (−1)(x1+x2+x3+x4).

With this transformation the staggered Dirac operator can be written as

Ds = Ds(m0) =
m0

a
I +

1

2

∑
µ

ηµ(x)⊗ (∆µ + ∆µ). (3.16)

Similar to the naive Dirac operator, the staggered Dirac operator is skew-Hermitian
up to the mass shift m0. The spin diagonalization partially solves the species dou-
bling effect, since it leaves four identical spin systems, and thus reduce the amount

52

3.4 Applications

of doublers from 16 to 4. The remaining doublers can be removed by taking the
forth root of Ds, see e.g., [26]. However, this rooting procedure is highly debated
in the physics community, and arguments against this method were made, e.g.,
in [23].

In order to experimentally validate the staggered discretization, it is compared to
the (Neuberger) overlap discretization in [13]. Simulations with the overlap opera-
tor also exhibit an exact chiral symmetry on the lattice, but are significantly more
expensive compared to other discretizations. For this reason, efficient numerical
methods have to be developed to allow for affordable continuum extrapolations
with the overlap operator, which is done in Chapter 4.

3.4.2 Low-mode averaging

When computing certain physical observables, so-called n-point (Green) functions
are oftentimes employed. For example in the two-flavor nf = 2 theory, the eta-
meson Cη(x, y) correlator is a two-point function of the form

Cη(x, y) = 〈Oη
x, Ō(y)η〉

∝ tr(Q−1
x,yQ

−1
y,x)− nf tr(Q−1

x,x) tr(Q−1
y,y︸︷︷︸

=Q−1

), (3.17)

where Ō(y)η and Oη
x are the creation and destruction operators, which create a

state (in this case an eta meson) at point y and destroy it at point x, cf. [5].
In order to compute Cη(x, y), the traces in Eq. (3.17) have to be evaluated. We
can exploit translation invariance to reduce the evaluation of tr(Q−1

x,yQ
−1
y,x) to the

computation of 12 inversions of the Wilson-Dirac operator, which can be per-
formed relatively cheaply. However, the second term involves tr(Q−1) which is
prohibitively expensive to evaluate exactly in practice, due to the size of Q.

Instead, we can employ a stochastic Monte Carlo approach to approximate tr(Q−1).
For large N ∈ N and random vectors vi ∈ (Z2 + iZ2)n, i = 1, . . . , N the following
approximation holds:

tr(Q−1) ≈ 1

N

N∑
i=1

vHi Q
−1vi. (3.18)

The convergence of this method is of order O(Var(R)/
√
N), where Var(R) is the

variance of the random variable vHi Q
−1vi. This implies that a large amount of

inversions Q−1vi have to be performed, which is particularly expensive. In order
to reduce the computational work of this Monte Carlo approach, a technique
called low-mode averaging [7, 41] can be applied, which splits the operator Q−1 =

53

3 Basics of quantum chromodynamics

Q−1
low + Q−1

high into two parts. Q−1
low is comprised of the Neig lowest eigenmodes of

Q, i.e., the eigenpairs (λi, xi) with eigenvalues closest to zero

Q−1
low =

Neig∑
i=1

1

λi
xHi xi, (3.19)

while Q−1
high
··= ((I − XXH)Q)−1 is the remaining part, where X is the set of

eigenvectors xi, ı = 1, . . . , Neig. With this, the computation of tr(Q−1) can be
reduced to the computation of the traces of Q−1

low and Q−1
high. The trace tr(Q−1

low)
can be directly evaluated from the already computed eigenpairs:

tr(Q−1
low) =

Neig∑
i=1

1

λi

For large enough Neig the computation of tr(Q−1
high) becomes significantly cheaper

compared to tr(Q−1) since the condition number of Q−1
high is smaller, thus the

inversions become cheaper and less iterations for the Monte Carlo algorithm have
to be performed, since this approach also reduces the variance of the random
variable. However, low-mode averaging comes with the additional cost of having
to compute the Neig smallest eigenpairs, which can be particularly expensive. In
Chapter 5 we thus introduce an efficient eigensolver for this purpose.

3.4.3 Hybrid Monte Carlo

Most numerical experiments in lattice QCD are related to stochastic approaches,
thus they have to be repeated multiple times with different configurations in order
to obtain predictions with controlled statistical errors. These configurations are
typically generated using the so-called hybrid Monte Carlo algorithm (HMC) [33].
This algorithm generates a set of configurations using Markov chains, where each
configuration is an “evolution” of the previous one. We give an outline of the
fundamental idea, see [52], and briefly discuss some details afterwards, as a com-
prehensive description of this algorithm is out of the scope for this thesis.

1. Choose initial configuration U0 and set i = 1.

2. Generate random momentum fields P conjugate to Ui−1.

3. Evolve the configuration Ui−1 to obtain new candidate U ′.

4. Accept Ui = U ′ with some probability Pacc, otherwise set Ui = Ui−1, i← i+1
and go to step 2.

5. If Ui is thermalized, save it.

54

3.4 Applications

6. Go to step 2 until enough configurations are generated.

For the initial configuration, two common approaches are a cold start, where all
gauge links are set to the identity, or a hot start, where all gauge links are random
elements of SU(3). The momentum fields P can be interpreted as “directions” in
which the gauge fields are being changed in every step. In step 4 the acceptance
rate Pacc of the new configuration is determined using the Metropolis(-Hastings)
algorithm [57, 72], which enables us to generate a prescribed equilibrium distri-
bution. This is important to ensure that physically more likely configurations are
also more likely to be produced by the HMC algorithm. The term “thermalized”
in step 5 can be interpreted as a “converged” configuration. Given enough steps
of the HMC algorithm, the configuration space reaches an equilibrium state in
which the distribution of the gauge links follows the prescribed equilibrium dis-
tribution, such that new physical configurations can be generated by going back
to step 2 and repeat the procedure.

In this thesis step 3 of the HMC algorithm is of special interest. For the evolution
of the gauge field Ui−1, a matrix inversion, typically involving the (Hermitian)
Dirac operator, has to be performed. This can be performed using a multigrid
algorithm, but this comes with a significant downside. The expensive multigrid
setup needs to be redone in every step, as the configuration changes in every
step. With the setup being the most expensive part of the multigrid algorithm,
it is important to implement efficient setup procedures, which will be explored in
Chapter 6.

55

Chapter 4
Auxiliary space preconditioning for the
overlap operator in lattice QCD

The Wilson-Dirac discretization is a widely used operator in lattice QCD. How-
ever, it lacks a fundamental property of the continuous theory called chiral sym-
metry, which is only recovered in the continuum case, i.e., for lattice spacings
approaching zero. This makes a controlled continuum extrapolation particularly
demanding, since large lattices have to be used to reduce cutoff effects [11, 13].

In the following section, we review the (Neuberger) overlap operator, an alter-
native to the Wilson-Dirac discretization, which respects chiral symmetry. The
cost for solving linear systems with this operator are as much as two orders of
magnitude larger compared to standard discretizations, since every matrix vector
multiplication with the overlap operator requires the evaluation of the matrix sign
function, which in practice leads to two nested iterative methods.

We propose a new preconditioning technique, which accelerates linear solvers for
this operator by at least a factor of ten compared to standard methods. The
fundamental principle of our preconditioner is to use a standard discretization
of the Dirac equation to form a preconditioner for the overlap operator. This
may be regarded as a variant of the fictitious (or auxiliary) space preconditioning
technique [77] that has been used for developing and analyzing multilevel pre-
conditioners for various nonconforming finite element approximations of PDEs;
cf. [83, 110]. In this context, a mapping from the original space to a fictitious space
is formulated, which yields an equivalent problem that is easier to solve. Precon-
ditioning is then done by (approximately) solving this equivalent problem. The
convergence properties of auxiliary space preconditioning depend on the choice
of the fictitious space and its computational efficiency additionally depends on
the efficiency of the solver used in that space; cf. [77]. For our application the

57

4 Auxiliary space preconditioning for the overlap operator in lattice QCD

Wilson-Dirac operator is a natural choice as an auxiliary space preconditioner,
since it is defined on the same Hilbert space and since there are efficient solvers
known for this problem. The validity of this choice is evaluated with a broad
range of numerical experiments at the end of this chapter.

This work has been published in [16], and our description is based on this publi-
cation.

4.1 Chiral operators in lattice QCD

Chiral symmetry is an important property in lattice QCD, since it allows for more
precise simulations in which electromagnetic fields are involved. In mathematical
terms it translates to that γ5 and D are anti-commuting, i.e., γ5D + Dγ5 = 0.
Since γ5 is Hermitian it implies that any skew-Hermitian D fulfills this criterion.
While the naive Dirac operator is skew-Hermitian and thus chiral, the Wilson-
Dirac discretization breaks chiral symmetry due to its stabilization term. Finding
an alternative discretization, which additionally respects chiral symmetry, is a
difficult task, due to the Nielsen-Ninomiya no-go theorem [79]. We recast it into
a mathematical notation:

Theorem 4.1 (Nielsen-Ninomiya no-go theorem).

No lattice discretization D̂ of the continuum Dirac operator D can hold all of the
following properties simultaneously:

1. D̂ is local

2. D̂ is translation invariant

3. D̂ is a doubler free discretization

4. D̂ anti-commutes with γ5

Proof. See [79]

D̂ being local means that interaction between quarks only happen at a local scale,
i.e., the spinor on any given lattice point only depends on its neighboring spinors.
In mathematical terms a local D̂ implies a sparse matrix representation, which is
necessary to efficiently apply iterative methods for the solution of linear systems
of equations with this operator.

Since translation invariance is a fundamental requirement for a sensible discretiza-
tion, this theorem implies that in practice we have to choose between chiral sym-
metry or a freedom of doublers. Fortunately, the limitation of this theorem can

58

4.1 Chiral operators in lattice QCD

be overcome by defining an alternative lattice variant of chiral symmetry on the
lattice:

Theorem 4.2 (Ginsparg-Wilson relation [48]).

If a Dirac operator D̂ satisfies the Ginsparg-Wilson relation

Γ5D̂ + D̂Γ5 = aD̂Γ5D̂, (4.1)

it exhibits an exact chiral symmetry of the fermion action.

Proof. See [66]

In [78] Neuberger successfully constructed a discretization respecting the Ginsparg-
Wilson relation. The essentials of the arguments in [78] are summarized in the
following theorem.

Theorem 4.3 (Neuberger’s overlap operator).
The Neuberger overlap operator

DN =
1

a

(
ρI +DW (mker

0)
(
DW (mker

0)H(DW (mker
0)
)− 1

2

)
fulfills Eq. (4.1) for ρ = 1, has local discretization error O(a), and is a stable
discretization provided −2 < mker

0 < 0.

Proof. We write DL for the restriction of the continuum Dirac operator D from
Eq. (3.1) to the lattice L, i.e., DL is the finite-dimensional operator that takes the
same values as D at the points from L. The fact that the Wilson-Dirac operator
has first order local discretization error can then be expressed as 1

DL = DW (0) +O(a),

implying

DL +
m0

a
I = DW (m0) +O(a) (4.2)

for any mass parameter m0.

To construct DN , we first note that any operator D̂ that is Γ5-symmetric and
fulfills Eq. (4.1) can be parametrized by

aD̂ = I + Γ5S, (4.3)

1For simplicity, we consider here the “naive” limit a→ 0. In the full quantum theory one has
DL = DW (m0(a)) +O(a) with the mass m0(a) of order 1/ log(a); see [73].

59

4 Auxiliary space preconditioning for the overlap operator in lattice QCD

with SH = S and S2 = I. Both conditions are fulfilled for

S = Γ5DW (mker
0)
(
DW (mker

0)H(DW (mker
0)
)− 1

2
, −mker

0 ∈ R \ spec(DW (0)).

Using (4.2), we obtain

S = Γ5

(
DL +

mker
0

a
I +O(a)

)((
DL +

mker
0

a
I +O(a)

)H(DL +
mker

0

a
I +O(a)

))− 1
2
.

Since D is skew-adjoint, we have D∗L = −DL and, thus,((
DL +

mker
0

a
I +O(a)

)∗(DL +
mker

0

a
I +O(a)

))− 1
2

= a
|mker

0 |

((
a

mker
0
DL + I +O(a2)

)∗(a
mker

0
DL + I +O(a2)

))− 1
2

= a
|mker

0 |

(
I −

(
a

mker
0

)2D2
L +O(a2)

)− 1
2

= a
|mker

0 |
I +O(a3),

which in turn yields

S = Γ5

(a

|mker
0 |
DL + sign(mker

0)I +O(a2)
)
. (4.4)

Combining (4.4) with (4.3), we find that

aD̂ = I +
a

|mker
0 |
DL + sign(mker

0)I +O(a2).

Thus, for mker
0 < 0 we have

D̂ =
1

|mker
0 |
DL +O(a).

This shows that D̂ is a first order discretization of D. In addition if −2 < mker
0 <

0, D̂ is also stable, see [78]. Finally, note that DN = D̂ + ρ−1
a
I, so ρ − 1 defines

the quark mass (see Eq. (3.4)) up to a renormalization factor.

The argument within the sign function is called the kernel of the overlap opera-
tor. Using the Wilson-Dirac operator is the most popular choice for the kernel,
although other kernel operators have been investigated as well [28, 36]. With
the definition of the matrix sign function from Section 2.5, we can formulate the
Neuberger overlap operator as

DN = ρI + Γ5 sign
(
Γ5DW (mker

0)
)
. (4.5)

60

4.2 Multigrid preconditioning for the overlap operator

Since Γ5DW (m0) is Hermitian (see Section 3.2), the matrix sign(Γ5DW (mker
0)) is

also Hermitian. Since Γ2
5 = I, we also see that the overlap operator satisfies the

same Γ5-symmetry as its kernel DW :(
Γ5DN

)H
= Γ5DN . (4.6)

The next theorem characterizes spectral properties of the overlap operator:

Theorem 4.4.
The overlap operator DN is normal. Its spectrum is symmetric to the real axis
and part of the circle with midpoint ρ and radius 1, i.e.,

λ ∈ spec
(
DN

)
⇒ λ ∈ spec

(
DN

)
and |λ− ρ| = 1 for λ ∈ Λ(DN).

Proof. Since the sign function is its own inverse and since Γ5DW (m0) is Hermitian,
sign(Γ5DW (m0)) is its own inverse and Hermitian, thus unitary. Its product with
the unitary matrix Γ5 is unitary as well, implying that all its eigenvalues have
modulus one. As a unitary matrix, this product is also normal. The term ρI in
Eq. (4.5) preserves normality and shifts the eigenvalues by ρ.

It remains to show that spec(DN) is symmetric with respect to the real axis,
which follows from the Γ5-symmetry (4.6) of the overlap operator in the same
manner as for the Wilson-Dirac operator, cf. Eq (3.5).

4.2 Multigrid preconditioning for the overlap
operator

The motivation for our preconditioning method stems from the spectral properties
of the Wilson-Dirac and the Neuberger overlap operator, see Figure 4.1. The
spectral gaps to be observed as four discs with relatively few eigenvalues in the
left part of Figure 4.1 are typical for the spectrum of the Wilson-Dirac operator
and become even more pronounced as lattice sizes increase. In practice, the mass
parameter m0 that appears in the definition of the kernel DW (mker

0) of the overlap
operator is chosen such that the origin lies in the middle of the leftmost of these
discs. For this choice of mker

0 , we now motivate why the Wilson-Dirac operator
DW (mprec

0) with adequately chosen mass mprec
0 provides a good preconditioner for

the overlap operator.

To do so, we investigate the connection of the spectrum of the overlap operator
and the Wilson-Dirac operator in the special case that DW (0) is normal. This is

61

4 Auxiliary space preconditioning for the overlap operator in lattice QCD

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7

im
ag

in
ar

y
ax

is

real axis

spec(DW)
spec(DN)

Figure 4.1: Typical spectra of the Wilson-Dirac and the overlap operator for a
44 lattice.

equivalent to DW (0) being unitarily diagonalizable with possibly complex eigen-
values, i.e.,

DW (0) = XΛXH , with Λ diagonal and X unitary. (4.7)

Trivially, then, DW (m0) is normal for all mass parameters m0 and

DW (m0) = X(Λ +m0I)XH . (4.8)

To formulate the resulting non-trivial relation between the eigenvalues of DN and
its kernel DW (mker

0), we use the notation csign(z) for a complex number z to
denote its “complex” sign, i.e.,

csign(z) = z/|z| for z 6= 0.

Theorem 4.5.
Assume that DW (0) is normal, so that DW (m) is normal as well for all m ∈ C,
and let X and Λ be from Eq. (4.7). Then we have

DN = X
(
ρI + csign(Λ +m0I)

)
XH . (4.9)

Proof. With ∆m diagonal and Wm unitary, let

Γ5DW (m) = Wm∆mW
H
m (4.10)

62

4.2 Multigrid preconditioning for the overlap operator

be the eigendecomposition of the Hermitian matrix Γ5DW (m). We have two
different representations for the singular value decomposition of Γ5DW (m):

Γ5DW (m) =
(
Γ5X csign(Λ +mI)

)
· |Λ +mI| ·XH (from (4.8)) ,

Γ5DW (m) =
(
Wm sign(∆m)

)
· |∆m| ·WH

m (from (4.10)) .

Thus, there exists a unitary matrix Q such that

Wm = XQ and Wm sign(∆m) = Γ5X csign(Λ +mI)Q. (4.11)

Using the definition of DN in (4.5), the relations (4.11) give

DN = ρI + Γ5 sign(Γ5DW (m))

= ρI + Γ5Wm sign(∆m)WH
m

= ρI + Γ5Γ5X csign(Λ +mI)Q(XQ)H

= X(ρI + csign(Λ +mI))XH .

We remark in passing that, as an implicit consequence of the proof above, we
have that the eigenvectors of Γ5DW (m) = Γ5DW (0) +mΓ5 are independent of m.
Thus, if DW is normal, Γ5 and Γ5DW admit a basis of common eigenvectors.

The result from this theorem implies that DN = ρI + Γ5 sign(Γ5DW (mker
0)) and

DW (0) share the same eigenvectors and that

spec(DN) = {ρ+ csign(λ+mker
0), λ ∈ spec(DW (0))}.

Taking DW (mprec
0) as a preconditioner for DN , we would like eigenvalues of DN

that are small in modulus to be mapped to eigenvalues close to 1 in the pre-
conditioned matrix DNDW (mprec

0)−1. Since DW (mprec
0) and DN share the same

eigenvectors, the spectrum of the preconditioned matrix is

spec
(
DNDW (mprec

0)−1
)

=
{ρ+ csign(λ+mker

0)

λ+mprec
0

, λ ∈ spec(DW (0)
}
.

For ω > 0 and mprec
0 = ωρ+mker

0 , the mapping

g : C→ C, z 7→ ρ+ csign(z +mker
0)

z +mprec
0

sends C(−mker
0 , ω), the circle with center −mker

0 and radius ω, to one single value
1
ω

. We thus expect DW (mprec
0) to be a good preconditioner if we choose mprec

0 in
such a manner that the small eigenvalues of DW (mprec

0) lie close to C(−mker
0 , ω).

63

4 Auxiliary space preconditioning for the overlap operator in lattice QCD

Let σmin > 0 denote the smallest real part of all eigenvalues of DW (0). Assum-
ing for the moment that σmin is actually an eigenvalue, it must lie exactly on
C(−mker

0 , ω) if we take

ω = ωdef := −mker
0 − σmin and thus mprec

0 = mdef
0 := ωdef ρ+mker

0 . (4.12)

For physically relevant parameters, ωdef is close to 1. We will take mdef
0 from

(4.12) as our default choice for the mass parameter when preconditioning with
the Wilson-Dirac operator, although a slightly larger value for ω might appear
adequate in situations where the eigenvalues with smallest real part come as a
complex conjugate pair with nonzero imaginary part.

Although DW (0) is non-normal in physically relevant situations, we expect the
above reasoning to also lead to an effective Wilson-Dirac preconditioner in these
settings, and particularly so when the deviation of DW (0) from normality be-
comes small. This is so, e.g., when the lattice spacing is decreased while keeping
the physical volume constant, i.e., in the “continuum limit”, since the Wilson-
Dirac operator then approaches the continuous Dirac operator, which is normal.
Moreover, as we have seen in Section 3.3, smearing techniques can be applied
to a given gauge configuration Uµ(x) to decrease the deviation of DW (0) from
normality. Figure 4.2 shows the spectrum for the preconditioned matrix with the
choice (4.12) for mprec

0 for the same 44 configuration as in Figure 4.1. The matri-
ces in these tests are not normal; nonetheless, the spectrum of the preconditioned
matrix tends to concentrate around 0.7.

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7

im
ag

in
ar

y
ax

is

real axis

spec(DW)
spec(DN)

spec(DND
−1
W)

Figure 4.2: Spectra for a configuration of size 44

In the normal case, the singular values are the absolute values of the eigenvalues,
and the singular vectors are intimately related to the eigenvectors. This relation

64

4.3 Numerical results

was crucial to the proof of Theorem 4.5. In the non-normal case, relation (4.9),
which uses the eigenvectors of DW (0), does not hold. For the sake of completeness,
we give, for the general, non-normal case, the following result, which links the
overlap operator to the singular value decomposition of its kernel DW (m).

Lemma 4.6.
Let Γ5DW (m) = Wm∆mW

H
m denote an eigendecomposition of the Hermitian ma-

trix Γ5DW (m), where ∆m is real and diagonal and Wm is unitary. Then

(i) A singular value decomposition of DW (m) is given as

DW (m) = UmΣmV
H
m with Vm = Wm,Σm = |∆m|, Um = γ5Wm sign(∆m).

(ii) The overlap operator with kernel DW (m) is given as

DN = ρI + Γ5 sign
(
Γ5DW (m)

)
= ρI + UmV

H
m .

Proof. Since Γ−1
5 = Γ5, we have the factorization DW (m) = Γ5Wm∆mW

H
m =

Γ5Wm sign(∆m)|∆m|WH
m , in which Γ5Wm sign(∆m) and Wm are unitary and |∆m|

is diagonal and non-negative. This proves (i). To show (ii), just observe that, for
the Hermitian matrix Γ5DW (m), we have sign(Γ5DW (m)) = Wm sign(∆m)WH

m

and use (i).

4.3 Numerical results

In this section, we report numerical results obtained on relatively large config-
urations used in current simulations involving the overlap operator, detailed in
Table 3.1. Configuration 7 is available with different numbers s = 0, . . . , 6 of
stout smearing steps applied. Note that s influences σmin, the smallest real part
of all eigenvalues of DW (0). The given choice for mker

0 as a function of σmin, used
in DN = ρI + Γ5 sign(Γ5DW (mker

0)), places the middle of the first ‘hole’ in the
spectrum of DW (mker

0) to be at the origin. Configuration 8 was obtained using
3 steps of HEX smearing in a simulation similar in spirit to [12, 101] with its
physics results published in [13]. The value mker

0 = −1.3 is the one used in the
simulation. The middle of the first ‘hole’ in DW (mker

0) is thus close to but not
exactly at the origin. To be in line with the conventions from [12], we express the
parameter ρ ≥ 1 used in the overlap operator DN as

ρ =
−µ/2 +mker

0

µ/2 +mker
0

,

where µ > 0 is yet another “overlap” mass parameter.

65

4 Auxiliary space preconditioning for the overlap operator in lattice QCD

In our experiments, we frequently consider a whole range for µ rather than just
the default value from Table 3.1. The default value for µ is chosen such that it
fits other physically interpretable properties of the respective configurations, like
e.g., the pion mass mπ. For both sets of configurations used, mπ is approximately
twice as large than the value observed in nature, and the ultimate goal is to drive
mπ to its physical value, which very substantially increases the cost for generating
the respective configurations. We would then use smaller values for µ, and the
results of our experiments for such smaller µ hint at how the preconditioning
would perform in future simulations at physical parameter values. Note that
smaller values for µ make ρ closer to 1, so DN becomes more ill-conditioned.

All results were obtained on the JUROPA machine at Jülich Supercomputing
Centre, a cluster with 2,208 compute nodes, each with two Intel Xeon X5570
(Nehalem-EP) quad-core processors [62]. This machine provides a maximum of
8,192 cores for a single job, from which we always use 1,024 in our experiments.
For compilation, we used the icc-compiler with the optimization flags -O3, -ipo,
-axSSE4.2, and -m64. In all tests, our code ran with roughly 2 Gflop/s per core,
which amounts to 8 − 9% of peak performance. The multigrid solver used to
precondition with DW (mprec

0) (see below) performs at roughly 10% peak.

4.3.1 Accuracy of the preconditioner and influence of mprec
0

In the first series of experiments, we solve the system

DNψ = η (4.13)

on the one hand without any preconditioning, using GMRES(100). On the other
hand, we solve the same system using D−1

W as a (right) preconditioner, solving
the linear systems with DW using our DD-αAMG method.2 In our approach,
preconditioning is done by iterating with DD-αAMG until the relative residual is
below a prescribed bound εprec. The setup has to be done only once for a given
Wilson-Dirac operator DW , so its cost becomes negligible when using DD-αAMG
as a preconditioner in a significant number of GMRES iterations.3 We use GM-
RES with odd-even preconditioning [82] as a solver for the coarsest system. The
whole DD-αAMG preconditioning iteration is non-stationary, which is accounted
for by using flexible restarted GMRES (FGMRES) [89] to solve (4.13) instead of
GMRES. The restart length for FGMRES is again 100.

Figure 4.3 presents results for configuration 7 with s = 3 stout smearing steps and
the default overlap mass µ from Table 3.1. We scanned the values formprec

0 in steps

2Any other efficient solver for the Wilson-Dirac operator as, e.g., the “AMG” solver or the
“Inexact Deflation” method, could be used as well.

3In all our experiments, setup never exceeded 2% of the total execution time, so we do not
report timings for it.

66

4.3 Numerical results

50

55

60

65

70

75

80

mdef
0 −0.2−0.18−0.16−0.12−0.1−0.08

so
lv

er
it

er
at

io
n
s

wilson mass mprec
0

FGMRES+DD-αAMG with εprec = 10−1

FGMRES+DD-αAMG with εprec = 10−8

20

50

500

100

1000

mdef
0 −0.2−0.18−0.16−0.12−0.1−0.08

so
lv

e
ti

m
e

(i
n

se
co

n
d
s)

wilson mass mprec
0

GMRES
FGMRES+DD-αAMG with εprec = 10−1

FGMRES+DD-αAMG with εprec = 10−8

Figure 4.3: Preconditioner efficiency as a function of mprec
0 for two accuracies

for the DD-αAMG solver (configuration 7, s = 3). Top: number of iterations,
bottom: execution times.

of 0.01 and report the number of preconditioned FGMRES iterations necessary
to reduce the initial residual by a factor of 10−8 for each of these values. We chose
two different values of εprec for the residual reduction required in the DD-αAMG
iteration in the preconditioning. The choice εprec = 10−8 asks for a relatively
accurate solution of the systems with DW (mprec

0), whereas the choice εprec = 10−1

requires an only quite low accuracy and, thus, only a few iterations of DD-αAMG.
The upper part of Figure 4.3 shows that there is a dependence of the number of
FGMRES iterations on mprec

0 , while at the same time there is a fairly large interval
around the optimal value for mprec

0 in which the number of iterations required is
not more than 20% larger than the minimum. These observations hold for both
accuracy requirements for the DD-αAMG solver, εprec = 10−8 and εprec = 10−1.
The number of iterations needed without preconditioning was 973, such that our
new preconditioned method requires roughly a factor of 20 less iterations.

67

4 Auxiliary space preconditioning for the overlap operator in lattice QCD

The lower part of Figure 4.3 shows that similar observations hold for the execution
times. However, the smaller iteration numbers obtained with εprec = 10−8 do not
translate into smaller execution times, since the time for each DD-αAMG solve
for the preconditioner is substantially higher than for εprec = 10−1. This turned
out to hold in all our experiments, so, from now on, we invariably report results
for εprec = 10−1. We also observe that the value of mdef

0 from (4.12) lies within an
interval in which iteration numbers and execution times (for both values for εprec)
are quite close to the optimum. The execution time without preconditioning was
294s, resulting into a speedup of one order of magnitude.

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

2−82−72−62−52−42−32−2

re
la

ti
ve

d
iff

er
en

ce

overlap mass µ

δiter
δm0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2−82−72−62−52−42−32−2

re
la

ti
ve

d
iff

er
en

ce

overlap mass µ

δiter
δm0

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6

re
la

ti
ve

d
iff

er
en

ce

number of stout smearing steps

δiter
δm0

Figure 4.4: Quality of mdef
0 without smearing (top left), with s = 3 steps of

stout smearing (top right), and for s = 0, . . . , 6 steps of stout smearing at fixed
µ (bottom) for configuration 7.

Figure 4.4 reports results that show that the default value mdef
0 is a fairly good

choice in general. For two different configurations (no smearing and 3 steps of
stout smearing) and a whole range of overlap masses µ, the plots at the top give
the relative difference δm0 = (mopt

0 − mdef
0)/mdef

0 of the optimal value mopt
0 for

68

4.3 Numerical results

mprec
0 and its default value from (4.12) as well as the similarly defined relative

difference δiter of the corresponding iteration numbers. These results show that
the iteration count for the default value mdef

0 is never more than 15% off the
best possible iteration count. The plot at the bottom backs these findings. We
further scanned a whole range of smearing steps s at the default value for µ from
Table 3.1, and the number of iterations with mdef

0 is never more than 5% off the
optimal value. The large values for δm0 in the top right plot for µ = 2−3 are to
be attributed to the fact that the denominator in the definition of δm0, i.e., mdef

0 ,
is almost zero in this case.

These results suggest that (4.12) is indeed a good choice for mprec
0 . However,

σmin needed to compute mdef
0 from (4.12) is not necessarily known a priori, and

it may be more efficient to approximate the optimal value for m0 “on the fly” by
changing its value from one preconditioned FGMRES iteration to the next.

To minimize the influence of the choice of mprec
0 on the aspects discussed in the

following sections, we always use the optimal mprec
0 , computed to a precision of

10−2 by scanning the range [−σ̃min, 0], where σ̃min is a rough guess at σmin that
fulfills σ̃min > σmin. This guess can be easily obtained by a fixed number of power
iterations to get an approximation for the largest real part σ̃max of an eigenvalue
of D and then using the symmetry of the spectrum to obtain σ̃min by rounding
8− σ̃max to the first digit.

4.3.2 Quality and cost of the preconditioner

We proceed to compare in more detail preconditioned FGMRES(100) with unpre-
conditioned GMRES(100) in terms of the iteration count. As before, the iterations
were stopped when the initial residual was reduced by a factor of at least 10−8.

Figure 4.5 gives this comparison, once as a function of the non-normality of the
configuration, i.e., the number s of stout smearing steps applied, and once as
a function of the overlap mass µ. We see that, for the default value of µ from
Table 3.1, the quality of the preconditioner increases with the number s of stout
smearing steps, ranging from a factor of approximately 5 for s = 0 over 12 for
s = 3 up to 25 for s = 6. We also see that the quality of the preconditioner
increases as µ decreases, i.e., as DN becomes more ill-conditioned.

From the practical side, a comparison of the execution times is more important
than of iteration numbers. Before giving timings of the final implementation, we
must discuss relevant aspects of this implementation in some detail.

Each iteration in GMRES or preconditioned FGMRES for (4.13) requires one
matrix vector multiplication by DN = ρI + Γ5 sign(Γ5DW). The matrix DN

is not given explicitly because it would be full and very large despite Γ5DW

69

4 Auxiliary space preconditioning for the overlap operator in lattice QCD

20

5000

100

1000

0 1 2 3 4 5 6

so
lv

er
it

er
at

io
n
s

number of stout smearing iterations

GMRES
FGMRES+DD-αAMG

20

5000

100

1000

2−82−72−62−52−42−32−2

so
lv

er
it

er
at

io
n
s

overlap mass µ

GMRES
FGMRES+DD-αAMG

Figure 4.5: Comparison of preconditioned FGMRES(100) with unpreconditioned
GMRES(100) (configuration 7). Left: dependence on the number of stout smear-
ing steps s for default value for µ, cf. Table 3.1. Right: dependence on the overlap
mass µ for s = 3.

being sparse. Therefore, a matrix vector multiplication DNχ is obtained via an
additional “sign function iteration” that approximates sign(Γ5DW)χ as part of
the computation of DNχ. For this we use the alternative definition of the matrix
sign function sign(A) = A(A2)−1/2 from Example 2.23 and apply the quadrature-
based restarted Arnoldi method, described in Section 2.5.1 and in [42, 43] to
obtain the inverse square root of (Γ5DW)2. This method also allows for thick
restarts of the Arnoldi process and has proven to be among the most efficient
methods to approximate sign(Γ5DW)χ. Nevertheless, the sign function iteration
still represents by far the most expensive part of the overall computation.

A first approach to reduce this cost (see [24]) is to use relaxation in the sense
that one lowers the (relative) accuracy εsign of the approximation as the outer
(F)GMRES iteration proceeds. The theoretical analysis of inexact Krylov sub-
space methods in [93, 105] shows that the relative accuracy of the approximation
to the matrix-vector product at iteration k should be on the order of ε/‖rk‖
(with rk the (F)GMRES residual at iteration k) to achieve a decrease of the ini-
tial residual by a factor of ε at the end of the (F)GMRES iteration. We used this
relaxation strategy in our experiments.

A second commonly used approach (see, e.g., [37, 50, 104]) to reduce the cost of the
sign function iteration is deflation, which is tightly related to the idea of low-mode
averaging. In this approach, the k smallest in modulus eigenvalues λ1, . . . , λk
and their normalized eigenvectors ξ1, . . . , ξk are precomputed once. With Ξ =
[ξ1| . . . |ξk] and Π = I−ΞΞH the orthogonal projector on the complement of these

70

4.3 Numerical results

eigenvectors, sign(Γ5DW)χ is given as

sign(Γ5DW)χ =
k∑
i=1

sign(λi)(ξ
Hχ)ξi + sign(Γ5DW)Πχ.

The first term on the right side can be computed explicitly and the second is now
easier to approximate with the sign function iteration, since the k eigenvalues
closest to the singularity of sign(·) are effectively eliminated via Π. We used this
strategy as well in our experiments.

parameter notation default

(F)GMRESdp required reduction of initial residual εouter 10−8

relaxation strategy εsign
εouter
‖rk‖
· 10−2

restart length for FGMRES mrestart 100

DD-αAMGsp required reduction of initial residual εprec 10−1

number of levels 2

Table 4.1: Parameters for the overlap solver. Here, dp denotes double precision
and sp single precision.

Table 4.1 summarizes the default settings used for the results reported in Fig-
ure 4.6. The superscripts dp and sp indicate that we perform the preconditioning
in IEEE single precision arithmetic, while the multiplication with DN within the
(F)GMRES iteration is done in double precision arithmetic. Such mixed precision
approaches are a common further strategy to reduce computing times in lattice
simulations.

For the results reported in Figure 4.6, we tried to keep the cost for a matrix vector
multiplication with DN independent of the number of smoothing steps that were
applied to the configuration. To do so, we used the 100th smallest eigenvalue of
Γ5DW for s = 0 as a threshold, and deflated all eigenpairs with eigenvalues below
this threshold for the configurations with s > 0. The left plot in Figure 4.6 shows
that, at fixed default overlap mass µ, we gain a factor of 4 to 10 in execution time
using the preconditioner. The quality of the preconditioning improves with the
numbers of smearing steps. The right part of Figure 4.6 shows that, for smaller
values of µ, we can expect an even larger reduction of the execution time. For the
smallest value considered, µ = 2−8, which is realistic for future lattice simulations,
the improvement due to preconditioning is a factor of about 25.

4.3.3 Comparison of optimized solvers

Physics production codes for simulations with the overlap operator use recursive
preconditioning as an additional technique to further reduce the cost for the

71

4 Auxiliary space preconditioning for the overlap operator in lattice QCD

20

100

1000

0 1 2 3 4

so
lv

e
ti

m
e

(i
n

se
co

n
d

s)

number of stout smearing iterations

GMRES
FGMRES+DD-αAMG

20

100

1000

2−82−72−62−52−42−32−2

so
lv

e
ti

m
e

(i
n

se
co

n
d

s)

overlap mass µ

GMRES
FGMRES+DD-αAMG

Figure 4.6: Comparison of execution times for preconditioned FGMRES and
GMRES. Left: for 0 to 4 steps of stout smearing (configuration 7, default value
for µ from Table 3.1), right: different overlap masses µ for configuration 7 and
3-step stout smearing.

matrix vector multiplication (MVM) with DN ; cf. [24]. This means that the
FGMRES iteration is preconditioned by using an additional “inner” iteration to
approximately invert DN , this inner iteration being itself again FGMRES. The
point is that we may require only low accuracy for this inner iteration, implying
that all MVMs with sign(Γ5DW) in the inner iteration may be approximated to
low accuracy and computed in IEEE single precision only.

In this framework, we can apply the DD-αAMG preconditioner, as well, but this
time as a preconditioner for the inner FGMRES iteration. In this manner, we
keep the advantage of needing only a low accuracy approximation to the MVM
with sign(Γ5DW), while at the same time reducing the number of inner iterations
and, thus, the (low accuracy) evaluations of MVMs with sign(Γ5DW).

Let εinner denote the residual reduction we ask for in the unpreconditioned inner it-
eration and εprecinner the corresponding accuracy required when using the DD-αAMG
iteration as a preconditioner. The inner iteration converges much faster when we
use preconditioning. More accurate solutions in the inner iteration reduce the
number of outer iterations and, thus, the number of costly high precision MVMs
with sign(Γ5DW). When preconditioning is used for the inner iteration, requiring
a higher accuracy in the inner iteration comes at relatively low additional cost. It
is, therefore, advantageous to choose εprecinner smaller than εinner . As an addition to
Table 4.1, Table 4.2 lists the default values that we used for the inner iteration.
They were found to be fairly optimal via numerical testing.

Figure 4.7 shows results for the solvers optimized in this way. We consider differ-
ent sizes for the deflation subspace, i.e., the number of smallest eigenvalues that
we deflate explicitly. The computation of these eigenvalues (via PARPACK [97])

72

4.3 Numerical results

parameter notation default

inner FGMRESsp required reduction of initial residual εprecinner 10−2

(with preconditioning)
required reduction of initial residual εinner 10−1

(without preconditioning)

relaxation strategy
εinner ,ε

prec
inner

‖rk‖
· 10−2

restart length minner
restart 100

Table 4.2: Parameters for the inner iteration.

10

100

1000

conf 80 1 2 3 4 5 6

so
lv

e
ti

m
e

(i
n

se
co

n
d
s)

number of stout smearing iterations

GMRESR100
GMRESR20
GMRESR0

FGMRESR100
FGMRESR20
FGMRESR0

500

10

100

2−82−72−62−52−42−32−2

so
lv

e
ti

m
e

(i
n

se
co

n
d
s)

overlap mass µ

GMRESR
FGMRESR+DD-αAMG

Figure 4.7: Comparison of GMRESR and FGMRESR with different deflation
spaces (configuration 7 and 8 with 1,024 processes). The lower index denotes
the amount of deflated eigenvectors.

is costly, so that deflating a larger number of eigenvalues is efficient only if several
system solves with the same overlap operator are to be performed. The figure
shows that, irrespectively from the number of deflated eigenvalues, the precondi-
tioned recursive method outperforms the unpreconditioned method in a similar
way that it did in the non-recursive case considered before. When more smearing
steps are applied, the improvement grows; improvement factors reach 10 or more.
The figure also shows that, in the case that we have to solve only one or two linear
systems with the same matrix, it is not advisable to use deflation at all, as the
cost for the computation of the eigenvalues is simply too large. We attribute this
finding at least partly to the fact that the thick restart method used to approxi-
mate the sign function from [43] is particularly efficient here. While all other data
in Figure 4.7 were obtained for configuration 7, the rightmost data on the left plot
refer to configuration 8. We see a similar efficiency for our preconditioner as we
did for configuration 7 with 3 smearing steps, an observation consistent with the
fact that configuration 8 was also obtained using 3 steps of (HEX) smearing; see
Table 3.1.

73

Chapter 5
A multigrid accelerated eigensolver
framework

As described in Section 2.4, obtaining eigenpairs of the Wilson-Dirac operator
is an important computational task in lattice QCD, e.g., for the computation of
energy levels of particles, or to improve statistical processes, cf. Section 3.4.2. In
most circumstances we are interested in a small to moderate amount of eigenvec-
tors corresponding to the eigenvalues closest to zero, especially for the Hermitian
Wilson-Dirac operator. As the Hermitian Wilson-Dirac operator is indefinite,
these eigenvalues are located in the interior of the spectrum.

Typically, computing interior eigenvalues is particularly expensive, which is why
in this chapter we derive an efficient computational method for the special case of
the Hermitian Wilson-Dirac operator. Section 2.4 introduced the shift-and-invert
algorithms which extend the basic inverse iteration approach; cf. [90] as the most
prominent methods for obtaining interior eigenvalues. This included the classi-
cal Rayleigh quotient iteration (RQI) [90] and the generalized Davidson (GD)
method [90]. For the GD method numerous variations like GD + k [98], Jacobi-
Davidson (JD) [94] or JDCG/JDQMR [80, 98] exist. This chapter introduces an
eigensolver framework which is based on the generalized Davidson method, termed
GD-λAMG (Generalized Davidson with Algebraic MultiGrid.1 We choose the
DD-αAMG method to solve the correction equation Eq. (2.24) (A − τI)t = r,
since it is one of the most efficient methods for solving linear systems of equations
involving the Wilson-Dirac operator, cf. Section 2.3.3. Even though multigrid
methods are clearly favored over plain Krylov subspace methods, their use in this
framework requires some modifications to both the eigensolver method and the

1The λ is the most common symbol for denoting an eigenvalue and is reminiscent to the α of
the DD-αAMG method.

75

5 A multigrid accelerated eigensolver framework

multigrid method in order to achieve an overall efficient algorithm. This work
has been submitted for publication and is also available as a preprint [44]. The
following presentation is based on this publication.

5.1 The GD-λAMG method

The method we propose for the Hermitian Wilson-Dirac operator is based on
Algorithm 2.10 but incorporates several adaptations for the Hermitian Wilson-
Dirac operator and the underlying DD-αAMG multigrid solver, which is originally
designed for the non-Hermitian Wilson-Dirac operator D.

The first challenge is the adaptation of DD-αAMG to the Hermitian Wilson-Dirac
operator Q. We need to define appropriate methods for the smoother and the
coarse grid correction, which will work for Q as well. As is discussed in [3, 17],
the algebraic multigrid approach for D can be transferred to one for Q if the
interpolation P preserves spin structure in the sense that on the coarse grid we
can partition the degrees of freedom per grid point into two groups corresponding
to different spins and that we have Γ5P = PΓc5, where Γc5 is diagonal with values
±1, depending on the spin on the coarse grid. Putting Qc = Γc5Dc we then have

I − PQ−1
c PHQ = I − PD−1

c Γc5P
HΓ5D = I − PD−1

c PHD , (5.1)

showing that the coarse grid error propagator for D is identical to the coarse
grid error propagator for Q if we take the same P . The SAP smoothing, cf.
Section 2.2, used in DD-αAMG is identical for D and Q, as well, as can be shown
by the following argument. Mathematically, one step of SAP is a product of block
projections, i.e., the error propagator is given by

ESAP :=
b∏
i=1

(I − ILiQ−1
i IHLi︸ ︷︷ ︸

:=MQi

Q), (5.2)

following the notation from Section 2.2.

Algorithmically, the calculations corresponding to ILiQ
−1
i IHLiQ can be performed

in parallel for all blocks i of the same color if we introduce a red-back ordering
on the blocks.

With this we get the following proposition, in which we define MDi and Di analo-
gously to MQi and Qi.

Proposition 5.1.
The error propagator ESAP(Q) :=

∏b
i=1(I −MQiQ) is identical to ESAP(D) :=∏b

i=1(I −MDiD).

76

5.1 The GD-λAMG method

Proof. We first note that Γ5 is just a local positive or negative identity, so its
block restriction Γi5 := IHLiΓ5ILi on Li not only satisfies IHLiΓ5 = Γi5I

H
Li but also

(Γi5)−1 = Γi5. To prove the proposition we only need to show that the error
propagators are identical for any given subdomain i:

I −MQiQ = I − (ILiQ
−1
i IHLi)Q

= I − (ILi(I
H
LiΓ5DILi)

−1IHLi)Γ5D

= I − (ILi(Γ
i
5Di)

−1IHLi)Γ5D

= I − (ILiD
−1
i Γi5I

H
Li)Γ5D

= I − (ILiD
−1
i IHLiΓ5)Γ5D = I −MDiD.

(5.3)

Proposition 5.1 states that SAP for Q is equivalent to SAP for D if the block in-
versions for the block systems Qi are performed exactly, which together with (5.1)
implies that the DD-αAMG method has the same error propagator, irrespective
of whether it is applied to Q or to D. As observed in [46] SAP smoothing works
well for the standard Wilson-Dirac operator D thus it also works well for the Her-
mitian Wilson-Dirac operator Q. However, it is computationally more efficient to
only approximate block inversions in SAP, and in this situation it becomes less
clear which method is to be preferred over the other; see Section 5.3.

Alternatively, instead of SAP one can use (restarted) GMRES as a smoother for
Q. For the non-Hermitian Wilson-Dirac operator D this is used in the multigrid
methods from [3, 14, 82], and since GMRES is also one of the most numerically
stable Krylov subspace methods for indefinite systems, it is to be expected to work
well as a smoother in a multigrid method for Q as well. For GMRES smoothing
a connection between Q and D similar to what has just been exposed for SAP
smoothing does not hold. We compare the above options for the smoothing
method experimentally in Section 5.3.

The next challenge is that we are confronted with a “maximally indefinite” inte-
rior eigenvalue problem, seeking the eigenvalues closest to zero, while the operator
has a nearly equal amount of positive and negative eigenvalues. The basic gener-
alized Davidson method uses the Rayleigh Ritz procedure to determine the Ritz
approximation by solving the standard eigenvalue problem for H = V H

m AVm, cf.
Definition 2.22. Ritz values approximate outer eigenvalues better and faster than
the interior ones [90], which is why we use harmonic Ritz values [84] instead.

Definition 5.2 (harmonic Ritz values).
A value θ ∈ C is called a harmonic Ritz value of A with respect to a linear
subspace V if θ−1 is a Ritz value of A−1 with respect to V.

77

5 A multigrid accelerated eigensolver framework

As the exterior eigenvalues of A−1 are the inverses of the eigenvalues of A of
small modulus, harmonic Ritz values tend to approximate small eigenvalues well.
Inverting A to obtain harmonic Ritz values can be avoided with an appropriate
choice for V as stated in the following theorem; cf. [94].

Theorem 5.3.
Let V be some m-dimensional subspace with basis v1, . . . , vm. A value θ ∈ C is a
harmonic Ritz value of A with respect to the subspace W := AV if and only if

Aum − θum ⊥ AV for some um ∈ V , um 6= 0. (5.4)

With

Vm := [v1| . . . |vm], Wm := AVm and Hm := (WH
m Vm)−1WH

mAVm,

(5.4) is equivalent to

Hms = θs for some s ∈ Cm, s 6= 0 and um = Vms.

Due to Theorem 5.3, we can obtain harmonic Ritz values by solving the general-
ized eigenvalue problem

WH
m Vmu =

1

θ
WH
mWmu. (5.5)

The computational overhead compared to the standard Ritz procedure is domi-
nated by m2 additional inner products to build WH

mAVm. In our numerical tests,
we have observed that this is compensated by a faster convergence of the gener-
alized Davidson method, cf. Section 5.3.

Although the multigrid approach is viable for the Hermitian Wilson-Dirac oper-
ator Q, it is, in practice, slower than for D. For exact solves of the subdomain
systems in the SAP smoother, Equation (5.1) and Proposition 5.1 implies that
the convergence speeds for Q and for D are comparable as the error propagation
operators are identical. Though, in computational practice, it is more efficient
to do only approximate solves for the subdomain systems, using a small number
of GMRES steps, for example. In this scenario the multigrid method becomes
significantly slower when used for Q rather than D, see Figure 5.4 in Chapter 5.3.
This slowdown can be counteracted by left-preconditioning the correction equa-
tion with Γ5. This means that instead of solving (2.24) with Q, we can transform
it equivalently according to

(Q− τI)t = r (5.6)

⇐⇒ Γ5(Q− τI)t = Γ5r

⇐⇒ (D − τΓ5)t = Γ5r. (5.7)

78

5.1 The GD-λAMG method

The spectrum of the resulting operator Γ5Q(τ) := D−τΓ5 has similarities to that
of D with some eigenvalues collapsing on the real axis. As we will see in Chap-
ter 5.3, this simple transformation speeds up the multigrid method significantly.
For reference, Figure 5.1 shows full spectra of D and Γ5Q(τ) for a configuration
on a 44 lattice.

−2

−1

0

1

2

0 1 2 3 4 5 6 7 8

im
ag

in
ar

y
ax

is

real axis

−2

−1

0

1

2

0 1 2 3 4 5 6 7 8

im
ag

in
ar

y
ax

is

real axis

Figure 5.1: Full Spectra of D and Γ5Q(τ) for configuration 1 (see Table 3.1).

As the search space grows in every outer iteration, the storage and orthogonal-
ization costs of the outer iteration in a generalized Davidson method eventually
become prohibitively large. The following techniques reduce these costs in order
to achieve a near-linear scaling in the number of computed eigenpairs. The first
technique is thick restarting [94]. When the search space reaches a size of mmax ,
we perform a restart, similar to the one described in Section 2.2.3. However,
instead of keeping only one vector, we keep the first mmin smallest non-converged
harmonic Ritz vectors and use them to span the search space at the beginning of
the next restart cycle. Using more than one vector for the next restart cycle is fa-
vorable due to the fact that, as already seen at the beginning of Section 2.4.2, the
search space typically contains good approximations to more than one eigenpair,
thus by carrying over more than one vector we retain more useful information
and improve convergence at minimal cost.

The parameters mmin and mmax have to be chosen such that it is reasonable to
assume that both positive and negative harmonic Ritz values are retained within
the new search space. This way the eigensolver obtains a (nearly) equal amount
of positive and negative eigenpairs in a uniform way.

With restarting, another major challenge arises. By dropping the already con-
verged eigenvectors form the search space, it becomes mandatory to find an effi-
cient way to avoid re-targeting those eigenpairs already found. As stated in Sec-
tion 2.4.2, the approach of keeping all converged eigenvectors in the search space,
even after a restart, becomes infeasible for a larger amount of sought eigenpairs k,
since the maximum size of the search space depends on k, which significantly im-
pacts the scaling behavior in this case. To remedy this, we employ the concept of

79

5 A multigrid accelerated eigensolver framework

locking converged eigenpairs [99] as a second technique. Locking keeps the search
space V orthogonal to the space of already converged eigenvectors X . In this man-
ner, it is not required to keep converged eigenvectors in the search space which
has the effect that the search space dimension becomes bounded independently
of the number of eigenpairs sought. This in turn bounds the cost for computing
the harmonic Ritz pairs. The new search direction still has to be orthogonalized
against all previous eigenvectors, which leads to costs of order O(nk2), since it
consists of k − 1 inner products for each of the k eigenpairs. This is responsible
for the fact that, in principle, the cost of our method scales superlinearly with k,
and this becomes visible when k becomes sufficiently large.

5.2 Local coherence

The strength of algebraic multigrid methods relies on an effective coarse grid
correction step and thus on the construction of the interpolation operator P . As
discussed in Section 2.3.3, the methods in use for the Wilson-Dirac operator are
all adaptive: They require a setup phase which computes “test vectors” wi, i =
1, . . . , ntv which are collected as columns in the matrix W = [w1 | . . . | wntv].
Using these test vector the setup phase constructs the interpolation operator
P . By construction, the range of P contains at least the range spanned by the
test vectors it is being built from. In [68] it has been observed that eigenvectors
belonging to small eigenvalues of the Wilson-Dirac operator D are locally coherent
in the sense that these eigenvectors are locally similar, i.e., they are similar on the
individual aggregates. This is the reason why the span of an aggregation based
interpolation P contains good approximations to small eigenpairs far beyond those
which are explicitly used for its construction. This in turn explains the efficiency
of such P in the multigrid method.

We can study local coherence using the local coherence measure lc of a vector v
defined as

lc(v) = ‖Πv‖/‖v‖,

where Π denotes the orthogonal projection on the range of P . If lc(v) is close
to 1, there is a good approximation to v in the range of P , implying that the
multigrid coarse grid correction reduces error components in the direction of v
almost to zero.

Figure 5.2 gives values for lc(v) for the Wilson-Dirac operator D and the corre-
sponding Hermitian Wilson-Dirac operator Q on a 44 lattice. Since this lattice is
so small, we can compute the full spectrum (12 · 44 = 3072 eigenpairs) of both D
and Q. For each matrix we then consider a partitioning of the eigenvectors into
128 sets, each set consisting of 24 consecutive eigenpairs. Here, “consecutive”

80

5.2 Local coherence

-1000 0 1000

0

20

40

60

80

100

120

0

0.2

0.4

0.6

0.8

1

-1000 0 1000

0

20

40

60

80

100

120

0

0.2

0.4

0.6

0.8

1

Figure 5.2: Local coherence for D (left) and Q (right) for a configuration 1, cf.
Table 3.1.

refers to an ordering based on the modulus or the sign of the real part, respec-
tively; see the next paragraph for details. For each of these “interpolation sets”,
the corresponding row displays the color coded value of lc(v) when projecting
an eigenvector v with the projection Π corresponding to the aggregation-based
interpolation P built with the eigenvectors from that interpolation set as test
vectors. The aggregates used were based on a decomposition of the 44 lattice into
16 sublattices of size 24. Due to the spin structure preserving approach, we have
two aggregates per sublattice, each built from the corresponding spin components
of the 24 test vectors2. Of course lc(v) = 1 (dark red) if v is from the respective
interpolation set.

The numbering of the eigenvalues used in these plots is as follows: The plot
for D has its eigenvalues with negative imaginary part in its left half, ordered
by descending modulus and enumerated by increasing, negative indices including
zero, −1 535, . . . , 0. The eigenvalues with positive imaginary part are located in
the right half, ordered by ascending modulus and enumerated with increasing
positive indices 1, . . . , 1536. For Q we just order the real eigenvalues by the
natural ordering on the reals, using again negative and positive indices. Thus, for
D as for Q, eigenvalues small in modulus are in the center and their indices are
small in modulus, while eigenvalues with large modulus appear at the left and
right ends, and their indices are large in modulus.

Although one must be careful when drawing conclusions from extremely small
configurations, Figure 5.2 illustrates two important phenomena. Firstly, local
coherence appears for both D and Q, but it is more pronounced for the non-
Hermitian Wilson-Dirac matrix. This especially holds directly next to the inter-
polation sets (the diagonal in the plots). Secondly, local coherence is particularly

2The projection Π therefore projects onto a subspace of dimension 24 · 2 · 16 = 768. If there
were no local coherence at all, the expected value of lc is thus 768/(12 · 44) = 0.25.

81

5 A multigrid accelerated eigensolver framework

strong and far-reaching when projecting on the interpolation sets corresponding
to the smallest and largest eigenpairs in absolute values. In the center of both
plots, we observe a star-shaped area with particularly high local coherence. This
area corresponds to around 10% of the smallest eigenvalues. To a lesser extent,
local coherence is also noticeable for the other parts of the spectrum, as we con-
sistently observe higher values for lc(v) for eigenvectors close to the respective
interpolation set.

The right part of Figure 5.3 reports similar information for the Hermitian Wilson-
Dirac operator Q coming from a larger, realistic configuration on a 64×323 lattice.
For lattices of this size we cannot compute the full spectrum, thus we show the
values for the 984 smallest eigenpairs, subdivided in 41 interpolation sets, each
consisting of 24 consecutive eigenpairs. The aggregates were this time obtained
from 44 sublattices. For comparison, the left part of the figure shows a zoomed-in
part of the local coherence plot for Q for the 44-lattice from Figure 5.2.

-200 -100 0 100 200

5

10

15

0

0.2

0.4

0.6

0.8

1

-400 -200 0 200 400

10

20

30

40

0.9

0.92

0.94

0.96

0.98

1

Figure 5.3: Local coherence for Q for different lattices, focusing on the eigenpairs
closest to zero. Left: 432 eigenpairs of configuration 1. Right: 984 eigenpairs of
configuration 4.

First note that the colors encode different values in the left and right part of
Figure 5.3. Local coherence does not drop below 0.9 for the large configuration,
while for the small configuration it goes down to 0.6. On the other hand, 984
eigenvalues only correspond to a minuscule fraction of roughly 4 · 10−3% of the
total of 12 · 323 · 64 = 25 165 824 eigenvalues, which is much less than the roughly
10% depicted for the small configuration. For the interpolation operator of the
large configuration we used aggregates corresponding to 44 sublattices, which give
a total of 2× 213 = 16 384 aggregates. In relative terms, this is several orders of
magnitude finer as for the 44 lattice. This finer aggregation leads to interpolation
operators with increased faculties to recombine information, which explains the
resulting higher local coherence.

Both parts of Figure 5.3 show that local coherence drops off for eigenvectors far-
ther away from the interpolation set. For the large configuration, we see, for

82

5.3 Numerical results

example, that local coherence of the vectors from the last interpolation set with
the second-to-last interpolation set is very high as indicated by the deep red color
in the top right corner of the plot. The local coherence of these vectors with
respect to the central interpolation set (which contains the eigenpairs with eigen-
values closest to 0) is significantly smaller, indicated by the yellow color at the
middle of the right-hand boundary of the plot. In the scenario where we choose the
shift τ in the correction equation (5.7) farther away from zero—as we are target-
ing eigenpairs close to τ—a coarse grid operator constructed using the eigenpairs
closest to zero thus becomes increasingly less effective, reducing the overall con-
vergence speed of the multigrid method significantly. To remedy this, we propose
a dynamical interpolation updating approach, resulting in a coarse grid operator
that remains effective on the span of the eigenvectors with eigenvalues close to the
value of τ set in the outer iteration of the generalized Davidson method. In the
course of the outer iteration, once enough eigenpairs are available, we therefore
rebuild the interpolation, and with it the coarse grid operator, using the already
converged eigenvectors which are closest to the currently targeted harmonic Ritz
value. Once a harmonic Ritz value converged to an eigenvalue and we choose a
new target value τ that has the same sign as the previous target, we replace one
eigenvector from the interpolation set—the one farthest away from τ—with the
newly converged eigenvector, and update the multigrid hierarchy. If the new τ
has its sign opposite to the previous one we replace the full interpolation set with
converged eigenvectors closest to the new τ , and again update the multigrid hi-
erarchy. The updates of the interpolation and coarse grid operators involve some
data movement and local operations, but their cost is minor compared to the cost
of the other parts of the computation.

With this approach, the coarse grid is always able to treat the eigenspace closest
to our current harmonic Ritz approximation efficiently and makes optimal use of
the existing local coherence. This results in a significantly faster multigrid solver
when larger shifts are used, i.e., when a large number of small eigenpairs has to
be computed. Since the solution of these shifted systems accounts for most of the
work in the eigensolver this approach improves the eigenvalue scaling to a nearly
linear complexity, as seen in Section 5.3.

A summary of our eigensolver, termed GD-λAMG, a generalized Davidson method
with algebraic multigrid acceleration, is given as Algorithm 5.1.

5.3 Numerical results

In this section we present a variety of numerical tests to analyze the efficiency of
the GD-λAMG eigensolver.

83

5 A multigrid accelerated eigensolver framework

Algorithm 5.1: GD-λAMG
input: Hermitian Dirac operator Q, no. of eigenvalues n, no. of test

vectors ntv, min. and max. subspace size mmin and mmax, initial
guess [v1, . . . , vntv , t] =: [V |t], desired accuracy εouter

output: set of n eigenpairs (Λ, X)
Λ = ∅, X = ∅1

for m = ntv + 1, ntv + 2, . . .2

t = (I − V V H)t, t = (I −XXH)t3

vm = t/||t||24

V = [V |vm]5

get all (θi, si) with (QV)H(QV)si = θi(QV)HV si6

find smallest (in modulus) θi /∈ Λ7

u = V si, r = Qu− θiu8

if ||r||2 ≤ εouter then9

//current eigenpair has converged
Λ = [Λ, θi], X = [X, u]10

update smallest (in modulus) θi /∈ Λ11

u = V si, r = Qu− θiu12

rebuild interpolation using the ntv eigenvectors xj with eigenvalue13

λj closest to θi and update multigrid hierarchy

//solve correction equation
t = DD-αAMG((D − θiΓ5),Γ5r)14

//restart
if m ≥ mmax then15

get (Θ, S) as all eigenpairs (θi, si) of (QV)H(QV)si = θ(QV)HV si16

sort (Θ, S) by ascending modulus of Θ17

for i = 1, . . . ,mmin18

Vi = V si19

(QV)i = (QV)si20

retain first mmin vectors of V and QV21

84

5.3 Numerical results

Table 5.1 shows the default algorithmic parameter settings we used within GD-
λAMG.

parameter symbol default

DD-αAMG setup number of test vectors ntv 24
setup iterations 6
(post-)smoothing steps 4

DD-αAMG solve relative residual εinner 10−1

maximum iterations 5
coarse grid tolerance 5 · 10−1

eigensolver method relative eigenvector residual εouter 10−8

number of eigenpairs 100
minimum subspace size mmin 30
maximum subspace size mmax 50

Table 5.1: List of algorithmic default parameters.

The numerical results involving configurations 3–6 were obtained on the JURECA
and JUWELS clusters at the Jülich Supercomputing Centre [61, 63], while results
involving the other lattices were obtained on a smaller workstation. We will com-
pare our results with the state-of-the-art library PRIMME and with PARPACK,
and we start by outlining their underlying basic algorithms.

PRIMME (PReconditioned Iterative MultiMethod Eigensolver) [100, 109] im-
plements a broad framework for different Davidson-type eigensolvers. Its perfor-
mance is best if it is given an efficient routine to solve linear systems with the
matrix A, and we do so by providing the Γ5-preconditioned DD-αAMG solver.
There are two key differences compared to GD-λAMG:

• The interpolation cannot be updated efficiently within the PRIMME frame-
work (at least not without expert knowledge on the underlying data struc-
tures), hence we do not update it for this method.

• PRIMME uses a Rayleigh Ritz instead of a harmonic Ritz approach to
extract eigenvalue approximations.

PRIMME has a fairly fine-tuned default parameter set, e.g., for subspace size or
restart values, and is able to dynamically change the eigensolver method. We
keep the default settings and provide the same multigrid solver to PRIMME as
we do for GD-λAMG.

85

5 A multigrid accelerated eigensolver framework

PARPACK (Parallel ARnoldi PACKage) [97] is a somewhat older but widely
used software for the computation of eigenvalues of large sparse matrices. It is
based on an implicitly restarted Arnoldi method, which is originally designed to
find extremal eigenvalues. It is possible to transform an interior problem into
an exterior one using a filter polynomial, i.e., a polynomial which is large on the
k interior eigenvalues we are looking for and small on the remaining ones. To
construct such a polynomial, for example as a Chebyshev polynomial, we need
information on the eigenvalue λmax which is largest in modulus and the (k+ 1)st
smallest in modulus, λk+1. While λmax = 8 is a sufficiently good estimate for
the Hermitian Wilson-Dirac matrix Q, no a-priori guess for λk+1 is available in
realistic scenarios. For our tests, we run one of the other methods to compute the
first k eigenvalues and then use a slightly larger value as a guess for λk+1. While
this approach obviously costs a lot of additional work and actually makes the
subsequent Arnoldi method obsolete, it is a good reference for a near-optimally
polynomially filtered Arnoldi method. Since this approach does not require in-
versions of the matrix Q, the parameter set for this method is rather small. We
use a degree ten Chebyshev polynomial as the filter polynomial and set the max-
imum subspace size to be twice the number of sought eigenpairs. The required
eigenvector residual is set to 10−8, as with the other methods.

5.3.1 Algorithmic tuning

Solving the correction equation. Each step of Algorithm 5.1 uses DD-αAMG
in line 14 to solve the Γ5-preconditioned correction equation (D − τΓ5)t = Γ5r.
More precisely, as indicated by the parameters given in the middle of Table 5.1,
we stop the outer (FGMRES) iteration of DD-αAMG once the initial residual
norm is reduced by a factor of 0.1 or a maximum of 5 iterations is achieved.
Within each DD-αAMG iteration we require a reduction of the residual by a
factor of 0.5 when solving the system on the coarsest level. Table 5.2 shows that
the Γ5-preconditioning yields indeed significant gains in compute time.

correction equation iterations Time
outer inner in core-h.

Eq. (5.6): (Q− τI)t = r 565 10,349 83.0
Eq. (5.7): (D − τΓ5)t = Γ5r 511 3,045 41.3

Table 5.2: Impact of Γ5-preconditioning for the computation of 100 eigenpairs of
configuration 3 (see Table 3.1).

A variant of generalized Davidson methods solves, instead of the correction equa-
tion (2.24), the Jacobi-Davidson projected [94] system (I−uuH)(A−θI)(I−uuH),

86

5.3 Numerical results

where u is the last (harmonic) Ritz vector approximation, which was used to com-
pute the residual r = Au − θu. This will avoid stagnation in the case that the
correction equation is solved too exactly. There are theoretically justified ap-
proaches which adaptively determine how accurately the projected system should
be solved in each iteration. Since we solve the correction equation to quite low
relative precision (10−1 only), we could not see a benefit from using the Jacobi-
Davidson projected system. Indeed, even with the adaptive stopping criterion,
this approach increased the compute time by approximately 15% for our imple-
mentation.

Impact of the smoother The original DD-αAMG method uses SAP as a smoother
and we have shown in Section 5.1 that SAP is also applicable for the Hermitian
Wilson-Dirac operator Q, yielding the same error propagation operator as long as
the individual block systems are solved exactly. We now compare a cost-efficient,
approximate SAP and GMRES as smoothers within the multigrid methods con-
structed for the matrices D− τI, Q− τI and D− τΓ5, where τ ranges from 0 to
0.5 for configuration 2. Note that D − τI is not relevant for this work, since it
would arise when computing eigenpairs for D. We still include the results here to
be able to compare the performance of DD-αAMG for Q− τI and D− τΓ5 with
the performance of DD-αAMG for D − τI.

Figure 5.4: Comparison of iteration counts of the DD-αAMG method using either
SAP or GMRES smoothing for configuration 2 and increasing target shifts τ .
The black diamonds at the bottom depict the eigenvalue distribution of Q.

Figure 5.4 shows a scaling plot with respect to the target shift τ for configuration 2.
For this plot, we used a two-level DD-αAMG method with six steps of the adaptive

87

5 A multigrid accelerated eigensolver framework

setup procedure to generate the coarse grid system. The GMRES smoother stops
iterating if a reduction of the residual by a factor of 10−1 is achieved or after a
maximum of ten iterations have been performed. Similarly, the SAP smoother
performs three sweeps of SAP, where each block solve is performed using GMRES
until a reduction of the residual by a factor of 10−1 is achieved for the individual
block or after a maximum of ten iterations have been performed. This way the
computational work for both smoothers is roughly comparable.

Figure 5.4 verifies what was stated in Section 5.1, namely that DD-αAMG con-
verges more slowly for Q compared to D. It also shows that Γ5-preconditioning is
beneficial in the case of GMRES smoothing whereas in the case of SAP smoothing,
it loses efficiency compared to Q, although only by a small margin. Comparing
the two smoothing methods for D−τΓ5, we see that both methods perform nearly
identical up to larger shifts, where SAP starts to be slightly more favorable. We
do not expect this to be relevant for larger configurations, though, since there the
spectrum is much more dense. Even when aiming for a large number of small
eigenvalues, we certainly do not expect to end up with τ -values as large as 0.2 al-
ready. Since the focus for this work is on finding an efficient coarse grid operator,
and not on optimizing the smoother, we stick to GMRES smoothing here. Imple-
menting SAP instead of GMRES for D − τΓ5 within the DD-αAMG framework
would require a more substantial remodeling of the DD-αAMG code.

Impact of the coarse grid correction For an assessment of the impact of
the coarse grid correction step we compute 100 eigenvalues for configuration 3,
once using DD-αAMG with GMRES smoothing to solve the correction equa-
tion, and once with a modification where we turned-off the coarse grid correc-
tion. This yields a generalized Davidson method where the Γ5-preconditioned
correction equation (5.7) is solved using FGMRES with the GMRES-steps of
the smoother as a non-stationary preconditioner, i.e., GMRESR, the recursive
GMRES method [106]. Note that we do not yet include updating the multigrid
hierarchy as the outer iterations proceeds.

The left part of Figure 5.5 shows the FGMRES iterations spent on the correction
equation for computing 100 eigenvalues for the two variants. We see that right
from the beginning, including the coarse grid correction, i.e., using the multigrid
method, reduces the iteration count by one order of magnitude compared to the
“pure” GMRESR-Krylov subspace method. The required number of FGMRES
iterations per eigenvalue stays constant at ≈ 30 for the multigrid method, whereas
GMRESR starts at ≈ 300 and increases to ≈ 1, 200 for the last eigenvalues. This
is also reflected in CPU time, where on JUWELS multigrid preconditioning results
in 30 core-h for the entire computation, whereas 217 core-h were necessary when
using GMRESR. Thus multigrid gains one order of magnitude in compute time

88

5.3 Numerical results

101

102

103

104

105

0 20 40 60 80 100

in
n

er
it

er
at

io
n

s
p

er
ei

ge
n
va

lu
e

(s
ol

id
li

n
e)

cu
m

u
la

te
d

in
n

er
it

er
at

io
n

s
(d

as
h

ed
li

n
e)

eigenvalue index

FGMRESR
FGMRES + AMG

0

10

20

30

40

50

60

70

25 50 75 100
0

2000

4000

6000

8000

10000

12000

co
re

-h
(s

ol
id

li
n

e)

in
n

er
it

er
at

io
n

s
(d

as
h
ed

li
n

e)

number of eigenvectors

w/o updates (core-h)
w/ updates (core-h)

Figure 5.5: Left: Computation of 100 eigenvalues for configuration 3 with GM-
RESR and FGMRES + AMG. Right: Comparing eigenvalue scaling for con-
figuration 4 depending on whether eigenvector information is provided for the
interpolation operator.

and, in addition, shows an improved scaling behavior, despite the loss of local
coherence for the larger eigenvalues.

The right part of Figure 5.5 now illustrates the additional benefits that we get
from turning on the updating of the multigrid hierarchy, i.e., when performing
full GD-λAMG as described in Algorithm 5.1. Both approaches perform similarly
as long as a small amount of eigenvalues is sought. This changes substantially for
already a moderate amount of eigenvalues to a point where interpolation updates
save roughly a factor of two in both, number of iterations (dashed lines) and
consumed core-h (solid lines). In terms of iterations it is also noteworthy that
interpolation updates lead to a nearly linear scaling with respect to the eigenvalue
count, whereas in the other case the scaling is closer to quadratic.

5.3.2 Scaling results

Scaling with the lattice size. We now compare GD-λAMG, PRIMME and
PARPACK in terms of scaling with respect to the lattice size. For this, we report
the total core-h consumed for computing 100 eigenpairs on configurations 3 to 6.

Figure 5.6 shows that PRIMME and GD-λAMG scale similarly with increas-
ing lattice size. GD-λAMG shows some improvement in core-h compared to
PRIMME, and this improvement tends to get larger when increasing the lattice
size. The right part of Figure 5.6 shows, that this improvement might be par-
tially attributed to the fact that we use a harmonic Ritz extraction. Here, we
compare GD-λAMG with its default harmonic Ritz extraction to a variant where

89

5 A multigrid accelerated eigensolver framework

102

103

104

48×243 64×32364×403 64×643

co
re

-h

lattice size Nt ×N3
s

PARPACK
PRIMME + AMG

GD-λAMG

101

102

103

48×243 64×32364×403 64×643

100

200

300

400

500

co
re

-h
(s

ol
id

li
n

e)

it
er

at
io

n
s

(d
as

h
ed

li
n

e)

lattice size Nt ×N3
s

Rayleigh-Ritz
Harmonic Ritz

Figure 5.6: Left: Computation of 100 eigenvalues for 48×243 to 64×643 lattices
for different methods. Right: Comparison of Ritz and harmonic Ritz eigenpair
extraction for different lattice sizes.

we use the standard Rayleigh-Ritz extraction as is done in PRIMME. This figure
shows that harmonic Ritz extractions result in substantially less inner iterations.
It also yields savings in compute time, which are smaller, due to the additional
cost for the inner products. Note that for larger lattices eigenvalues become more
clustered. The harmonic Ritz extraction is then more favorable compared to the
Rayleigh-Ritz approach, since it is able to better separate the target eigenvalue
from the neighboring ones. PARPACK scales worse than the other methods,
even when we use an unrealistic “near optimal” filter polynomial as we did here.
In practice, i.e., when no guess for |λk+1| is available, PARPACK’s performance
would fall even further behind. Applying PARPACK to Q−1 to make use of the
efficient multigrid solver is way too costly, due to the necessity of accurate solves
to maintain the Krylov structure.

Scaling with the number of eigenvalues. Figure 5.7 reports results of a scaling
study obtained for configuration 4. We just compare GD-λAMG and PRIMME,
since PARPACK is not competitive.

The figure shows that GD-λAMG has an advantage over PRIMME when larger
numbers of eigenvalues are sought. GD-λAMG needs up to one order of magnitude
less iterations, which translates to a speed-up of 1.5 for 50 eigenvalues to up to
more than three for 1 000 eigenvalues. This shows that the additional effort due
to the adaptive construction of the multigrid hierarchy and the harmonic Ritz
extraction is beneficial with respect to the overall performance. GD-λAMG and
PRIMME both scale nearly linearly with respect to the number of eigenvalues
sought, up to at least 300 eigenvalues. Then PRIMME’s performance starts to
decrease more significantly compared to GD-λAMG. We see that the increase in

90

5.3 Numerical results

102

103

104

105

50 100 500 1000

102

103

104

105

co
re

-h
(s

ol
id

li
n

es
)

it
er

at
io

n
s

(d
as

h
ed

li
n

es
)

number of eigenvectors N

PRIMME + Γ5-prec
GD-λAMG

Figure 5.7: Eigenvalue scaling in the range of 50 to 1000 eigenpairs on configu-
ration 4 with a lattice size of 64× 323.

the overall computing time in PRIMME scales more than linearly with the number
of iterations to be performed. This indicates that the non-adaptive multigrid
solver used in PRIMME is getting increasingly less efficient, a situation that is
remedied with the update strategy realized in GD-λAMG.

91

Chapter 6
A Davidson-type multigrid setup

In Chapter 5 we have established that generalized Davidson-type eigensolvers are
among the most efficient algorithms for computing eigenpairs of the Hermitian
Wilson-Dirac operator. Since the setup phase of an algebraic multigrid method
oftentimes aims at computing approximate eigenvectors, it is thus natural to
assume that a multigrid setup based on this type of eigensolvers will be efficient
as well. In this chapter we introduce a Davidson-type multigrid setup based on
the eigensolver from Chapter 5. Afterwards we discuss first results of this new
setup procedure and compare it to the current setup, which is based on inverse
iteration, cf. Section 2.3.3. In the following we will refer to the inverse iteration
based setup procedure as simple setup.

6.1 Subspace acceleration in algebraic multigrid
setup

Most current algebraic multigrid methods, like the Inexact Deflation method, the
AMG method and the DD-αAMG method are based on finding approximations
to the small eigenvectors of D using simple and cheap vector iteration meth-
ods, see e.g., Algorithm 2.7. There, each vector is iterated separately with some
orthogonalization in order to ensure convergence towards different eigenvectors.

This approach however does not make optimal use of the available generated
information. In particular each test vector starts with a random initial guess,
while good initial guesses for each eigenvector (except for the first one) can be
extracted using the approximation of the previous eigenvector, as has already
been shown in Figure 2.7.

93

6 A Davidson-type multigrid setup

In this section we motivate how the GD-λAMG eigensolver can be applied as
an efficient setup routine for an algebraic multigrid method. First note that
GD-λAMG computes eigenvalues of Q rather than D, but simple algebra shows
that the eigenvalue decomposition of Q can be transformed to a singular value
decomposition of D. Its proof is similar to the proof of the first part of Lemma 4.6.

Q = V ΛV ∗

⇔ Γ5Q = Γ5V sign(Λ)|Λ|V ∗

⇔ D = UΣV ∗
(6.1)

Since Γ5, V and sign(Λ) are unitary, U ··= Γ5V sign(Λ) is unitary as well. The
diagonal matrix Σ ··= |Λ| has non-negative entries, thus UΣV ∗ defines a singular
value decomposition of D, and we can use the eigenvectors of Q to obtain singular
vectors of D.

Constructing the intergrid operators within the multigrid setup from singular vec-
tors is a viable alternative to eigenvectors as they also inherit useful information
about the matrix. A comparison between these two approaches will be given in
Section 6.2.

The application of GD-λAMG within the context of a setup procedure is rather
straightforward, but several algorithmic aspects which are responsible for the
improved eigenvalue scaling, become obsolete. Locking and shifted inversions are
not required since we are only interested in O(20) eigenvector approximations,
whereas (thick) restarting and (non-shifted) inversions remain core parts of the
modified algorithm. Analogous to the simple setup, our new Davidson setup is
comprised of an initial phase and an iterative bootstrap phase.

In the initial phase we apply ` sweeps of ntv Davidson steps, where ntv is the
number of test vectors and ` is a tunable parameter. Starting with an empty
set of test vectors, the ntv vectors from the first sweep are added to the sub-
space and form the first candidate set for the test vectors. After the next sweep
the subspace is comprised of 2 · ntv, where the new vectors come from ntv addi-
tional Davidson steps. At this point a thick restart is applied, extracting the ntv
best eigenvector approximations within this subspace. Overall, this procedure is
repeated ` times and the final ntv eigenvector approximations are used as test
vectors for the definition of the intergrid operators. With the next coarser grid
defined, the initial phase can be recursively applied to the next level, until the full
multigrid hierarchy is defined. The (non-shifted) inversions required within this
phase are performed very approximately using the smoothing method prescribed
by the multigrid method, e.g., SAP or GMRES.

After the initial setup, the first multigrid hierarchy is defined, and it is then
employed in the iterative phase to further improve the test vectors. The iterative

94

6.2 Numerical results

phase closely follows the procedure from the initial setup by repeatedly expanding
the subspace to 2 · ntv vectors before applying a thick restart to extract the ntv
best eigenvector approximations. After each restart, the iterative phase is applied
recursively to the next coarser grid. In the iterative phase, we thus benefit from a
more effective solver by using the full multigrid method, resulting in an improved
convergence behavior.

Algorithm 6.1 briefly sketches the new setup strategy. In this algorithm, one
Davidson step refers to one for-loop of the generalized Davidson method, cf.
Algorithm 2.10, while the thick restarting procedure follows the one described in
Algorithm 5.1.

Algorithm 6.1: Davidson setup
input: number of initial Davidson sweeps `, number of iterative phases k
output: Intergrid operators P = RH and coarse grid operator Dc

initialize random initial guess W = [w0]1

// Initial phase: inversions performed by smoother
for j = 1, . . . , `2

Extend W by ntv Davidson steps3

Thick restart to extract ntv test vectors, gathered as columns of W4

construct P and Dc from W5

perform initial phase for Dc6

// Iterative phase: inversions performed by full AMG method
for i = 0, . . . , k7

Extend W by ntv Davidson steps8

Thick restart to extract ntv test vectors, gathered as columns of W9

update P and Dc10

perform iterative phase for Dc11

In addition to the Davidson setup we also formulate a hybrid approach where
the initial phase is performed by the Davidson setup, whereas for the iterative
phase we switch to the simple setup. Even though these two methods aim at
approximating different types of vectors, i.e., singular vectors and eigenvectors
respectively, we will see in the following section that this approach is a competitive
alternative to both methods in certain scenarios.

6.2 Numerical results

In this section we present numerical results where we compare the three differ-
ent setup approaches. First, we investigate whether in the setup phase approx-
imations of the eigenvectors of D or approximations of the singular vectors of

95

6 A Davidson-type multigrid setup

Eigenvector setup

Singular vector setup

Figure 6.1: Iteration count and compute time for the solution of (D − τI)x = b
with the DD-αAMG method using eigenvector and singular vector approxima-
tions during the setup phase. These results were generated using Configuration 1
from Table 3.1.

D—which correspond to eigenvectors of Q—are more beneficial for the overall
convergence of the DD-αAMG method.

Figure 6.1 shows convergence results for increasingly ill-conditioned systems D−
τI with configuration 1 using a two-level DD-αAMG method. For the setup
parameters, we use 20 test vectors, one step of the initial simple setup, three
steps of the iterative simple setup and four steps of multiplicative SAP as a post-
smoother. We use the simple setup for both approaches to have a fair comparison
between the effectiveness of eigenvectors and singular vectors for the construction
of the intergrid operators.

This graph shows that eigenvectors are slightly favored over singular vectors as
candidates for test vectors by about 10%, independent of the conditioning of the
problem. This difference vanishes for larger shifts, but this is mostly not relevant
in practice, since those shifts are not required for physical simulations.

Table 6.2 shows the iteration count of DD-αAMG as well as the execution time for
the solve itself, the setup (where we separate between the time spent in the initial
setup and the iterative part) and the overall run time for the whole method. The
+k in the setup type column indicates the number of iterative setup steps per-
formed for the respective method. We use a physically relevant 644 configuration,
i.e., configuration 9 from Table 3.1.

96

6.2 Numerical results

setup type solver setup time overall time
iter. time initial iterative solve + setup

simple + 0 251 204s 9s - 213s
Davidson + 0 33 58s 17s - 75s

simple + 1 28 77s 9s 28s 114s
hybrid + 1 12 40s 17s 38s 95s

Davidson + 1 9 23s 16s 60s 99s
simple + 2 8 13s 9s 102s 124s
hybrid + 2 7 13s 17s 152s 182s

Davidson + 2 9 18s 17s 229s 264s
simple + 3 7 12s 9s 223s 244s
hybrid + 3 7 11s 17s 268s 296s

Davidson + 3 9 17s 16s 361s 394s
simple + 4 7 12s 9s 304s 325s
hybrid + 4 6 10s 17s 350s 377s

Davidson + 4 9 17s 16s 527s 560s
simple + 5 7 12s 9s 420s 441s
hybrid + 5 6 10s 17s 453s 480s

Davidson + 5 9 17s 16s 704s 737s

Figure 6.2: Comparison of the three different setup procedure for varying iterative
setup steps denoted by the +k in the first column.

We observe that the fastest overall time for the setup and one solve is achieved
using the initial Davidson setup without any iterative phase (Davidson +0). It
is about 50% faster compared to the fastest simple inverse iteration based setup,
which uses one step of the iterative phase (simple +1). Davidson +0 leads to
a faster solver as well as being cheaper compared to simple +1 even though the
solver requires a few iterations more in this case.

In a scenario where multiple solves per configuration are required a faster solve
time becomes more important compared to the overall time, which includes the
setup time. In this case more investment into the setup is beneficial. As we see in
Table 6.2, the solve times quickly decrease for all three methods once we employ
one or more steps of the iterative phase. Especially the simple setup benefits
from the iterative phase. For larger amounts of iterative steps the hybrid and
the simple setup have comparable solver iterations, whereas the Davidson setup
slightly falls back. This is attributed to the fact that the Davidson setup aims
at eigenvectors of Q, which correspond to singular vectors of D, while the other
methods approximate eigenvectors of D, showing again that an eigenvector based
setup is preferred over a singular vector based setup. In any case, applying more
than three steps of any setup procedure yields only minor improvements and is
only recommended if an extremely large amount of solves per configuration is

97

6 A Davidson-type multigrid setup

Simple setup

Davidson setup on D

Davidson setup on Q

Figure 6.3: Iteration count and compute time for the solution of Dx = b with the
DD-αAMG method including the setup time for the simple setup and the David-
son setup for Q and for D. These results were generated using Configuration 1
from Table 3.1.

required.

In terms of overall time, it can also be observed that even though the Davidson
setup is based on a Hermitian operator, the computational cost of its iterative
part is significantly larger compared to the simple iterative setup, which is due
to the Davidson setup involving more inner products and the solution of small
dense eigenvalue problems.

Thus, overall, the choice of the most beneficial setup procedure depends on
whether only one solve per operator is required or multiple ones. In the first
case, e.g., within the HMC algorithm (cf. Section 3.4.3), a cheap setup procedure
like Davidson +0 performs best, while for multiple solves, e.g., for eigensolvers
like GD-λAMG, more investment into a simple or hybrid setup is recommended,
depending on how many solves are required.

Finally, we provide a small MATLAB experiment in Figure 6.3, where we not
only compare the simple setup with the Davidson setup for Q but also a proof-
of-concept implementation of the Davidson setup directly for D, i.e., a Davidson
method which approximates eigenvectors of D rather than singular vectors.

Similar to the results from Table 6.2 the Davidson setup on Q leads to a larger
iteration count compared to the other setup methods based on D. In this case
the Davidson +0 setup also requires more compute time compared to the simple

98

6.2 Numerical results

+0 setup. However, the Davidson +0 setup for D leads to a notably better solver
compared to the simple +0 setup, bringing down the iteration count from 16 to
10 for this example. This shows again that the initial phase of the Davidson
setup is more efficient compared to the simple setup. If we include several steps
of the iterative setup, this advantage is equalized due to the increased cost of the
iterative phase of the Davidson setup. This finding suggests that further research
in this direction is appropriate, by developing a new eigensolver for the non-
Hermitian Wilson-Dirac operator and applying it as a setup routine. Additionally,
the Davidson setup would greatly benefit from more efficient strategies for the
iterative phase.

99

Chapter 7
Conclusion & Outlook

In this chapter we summarize the results obtained within this thesis, and outline
future possible research.

7.1 Conclusion

Due to the big success of algebraic multigrid methods in lattice QCD, especially
the DD-αAMG method, we intended to broaden the scope of possible applications
of these methods. First, we looked at the Neuberger overlap operator, which is a
more faithful discretization of the Dirac equation compared to the commonly used
Wilson discretization. Due to nested iterative methods, numerical simulations
with this operator are about two orders of magnitude more expensive compared
to simulations using the Wilson-Dirac operator. In this work, we showed how a
new preconditioner can be used to reduce the run time by at least one order of
magnitude. Since the overlap operator involves the matrix sign function, a direct
application of multigrid methods is not feasible, instead we employed the (cheap)
Wilson-Dirac operator as a preconditioner, which allowed us to indirectly benefit
from multigrid methods. In numerical tests we have shown that this approach
significantly improved the convergence speed for this operator. This discretization
has been instrumental in experimentally validating the highly debated staggered
discretization.

As a second contribution, we implemented an eigensolver for the Hermitian Wilson-
Dirac operator based on the generalized Davidson method, termed GD-λAMG.
The shifted linear systems of equations, which appear in every step of this method,
are solved using the DD-αAMG method. In order to obtain a more favorable
convergence speed, several adaptations were made. The main feature consisted

101

7 Conclusion & Outlook

of a synergy between the multigrid method and the Davidson method, where
the eigenvectors computed within the Davidson method were used to improve
the multigrid hierarchy, thus accelerating its convergence. In turn the multigrid
method became able to efficiently generate new search directions for the David-
son method. Together with other state-of-the-art techniques, like thick restarting,
harmonic Ritz extraction and locking, the GD-λAMG method not only outper-
forms other eigensolvers by up to a factor of three for our numerical tests, but
also showed an improved scaling behavior when computing many eigenpairs for
larger lattices.

With the success of the GD-λAMG method, we realized that this method could be
suitable for improving the setup phase of algebraic multigrid methods, which is in
general significantly more expensive than the solve phase itself. The setup phase
has previously been implemented by cheap and simple vector iteration schemes,
like inverse iteration. In our first (preliminary) numerical tests we have shown
that the use of subspace acceleration is beneficial in scenarios where only a few
solves are required for a given operator, which is the case for, e.g., the hybrid
Monte Carlo algorithm. In this case, we were able to improve the run time of the
whole method by nearly a factor of two.

7.2 Outlook

For now, we do not plan to further improve on the solver for the overlap operator,
since the current focus of research in lattice QCD is on more computationally
favorable discretizations, like the staggered operator or the so-called (5d) domain-
wall operator, which is a rational approximation of the overlap operator. In recent
publications, a direct application of multigrid methods to those operators has been
introduced [19, 20], which could provide possibilities for further investigation in
this area.

While the GD-λAMG eigensolver is fairly well-tuned at this point, improvements
in robustness and scalability could be topics of future research. One interesting
remaining question is whether it is possible to set an upper bound for the number
of locked eigenvectors, i.e., only keeping at most k converged eigenvectors instead
of all of them. This would lead to a fully linear complexity with respect to the
number of sought eigenvectors nev, as in this case the inner products required for
the locking procedure would be bounded by k · nev instead of n2

ev. Apart from
this approach, significant improvement of the performance of GD-λAMG can be
achieved by improving the multigrid solver, in this case the DD-αAMG method,
as the solution of the shifted linear systems is in most cases the bottleneck of
the eigensolver. For this, we want to explore the possibility of GPU acceleration,
where we are currently working on a GPU implementation of the SAP smoother,

102

7.2 Outlook

but plan to extend this approach to the whole multigrid method. This work
is currently done by our working group as part of the PhD project by Gustavo
Ramı́rez.

For the Davidson-type setup procedure we plan to further investigate the most
beneficial choice for the test vectors. Our preliminary results suggest that eigen-
vectors of D are slightly more effective than singular vectors. At the same time,
singular vectors can be computed as eigenvectors of the Hermitian operator Q,
and are as such typically cheaper to compute. Thus, a thorough investigation
including an efficient implementation of the Davidson algorithm for the compu-
tation of eigenvalues of D should be the next step for this research topic.

103

List of Figures

2.1 Convergence plot of GMRES(k) for a matrix of dimension n =
53,248 for different values of k. This plot was generated on a local
workstation using MATLAB [71]. 19

2.2 Extending Figure 2.1 with a study of different preconditioning
methods. Left: Convergence plots of (preconditioned) GMRES(k).
Right: Execution time relative to pure GMRES. 21

2.3 Top: Error reduction after one iteration of SAP for Configuration 1
from Table 3.1. Bottom: Error ek of the Gauss-Seidel method
to Laplace’s equation with random initial guess x(0) and k = 1
iterations for the left plot and k = 20 iterations for the right plot. 24

2.4 Top: Error reduction after one coarse grid correction step for all
eigenvectors of Configuration 1 from Table 3.1. Bottom: Error on
the fine grid after 20 steps of the Gauss-Seidel method to Laplace’s
equation (left) and its representation on a coarser grid using full
coarsening with coarsening factor 3 (right). 25

2.5 The construction of the interpolation operator P 27

2.6 Comparing computational cost for solving linear systems with con-
figuration 9 (see Table 3.1) using DD-αAMG and a Krylov subspace
method. The left plot reports on timings for the solve only, whereas
the right plot includes the multigrid setup time. Both plots were
generated on the JUROPA high performance computer from the
Jülich Supercomputing Centre. 29

2.7 Eigenvector residual of the largest 30 eigenvectors after the largest
one has converged. 34

105

LIST OF FIGURES

3.1 Full spectra of D and Q for configuration 1. The left plot shows
the spectrum of D in the complex plane; the right plot shows the
spectrum of the Hermitian operator Q and illustrates its spectral
density. 44

3.2 Illustration of the effect of stout smearing on the average plaquette
value (3.15). 51

4.1 Typical spectra of the Wilson-Dirac and the overlap operator for a
44 lattice. 62

4.2 Spectra for a configuration of size 44 64

4.3 Preconditioner efficiency as a function of mprec
0 for two accuracies

for the DD-αAMG solver (configuration 7, s = 3). Top: number
of iterations, bottom: execution times. 67

4.4 Quality of mdef
0 without smearing (top left), with s = 3 steps of

stout smearing (top right), and for s = 0, . . . , 6 steps of stout
smearing at fixed µ (bottom) for configuration 7. 68

4.5 Comparison of preconditioned FGMRES(100) with unprecondi-
tioned GMRES(100) (configuration 7). Left: dependence on the
number of stout smearing steps s for default value for µ, cf. Ta-
ble 3.1. Right: dependence on the overlap mass µ for s = 3. . . . 70

4.6 Comparison of execution times for preconditioned FGMRES and
GMRES. Left: for 0 to 4 steps of stout smearing (configuration 7,
default value for µ from Table 3.1), right: different overlap masses
µ for configuration 7 and 3-step stout smearing. 72

4.7 Comparison of GMRESR and FGMRESR with different deflation
spaces (configuration 7 and 8 with 1,024 processes). The lower
index denotes the amount of deflated eigenvectors. 73

5.1 Full Spectra of D and Γ5Q(τ) for configuration 1 (see Table 3.1). . 79

5.2 Local coherence for D (left) and Q (right) for a configuration 1, cf.
Table 3.1. 81

5.3 Local coherence for Q for different lattices, focusing on the eigen-
pairs closest to zero. Left: 432 eigenpairs of configuration 1. Right:
984 eigenpairs of configuration 4. 82

106

LIST OF FIGURES

5.4 Comparison of iteration counts of the DD-αAMG method using
either SAP or GMRES smoothing for configuration 2 and increas-
ing target shifts τ . The black diamonds at the bottom depict the
eigenvalue distribution of Q. 87

5.5 Left: Computation of 100 eigenvalues for configuration 3 with GM-
RESR and FGMRES + AMG. Right: Comparing eigenvalue scal-
ing for configuration 4 depending on whether eigenvector informa-
tion is provided for the interpolation operator. 89

5.6 Left: Computation of 100 eigenvalues for 48×243 to 64×643 lattices
for different methods. Right: Comparison of Ritz and harmonic
Ritz eigenpair extraction for different lattice sizes. 90

5.7 Eigenvalue scaling in the range of 50 to 1000 eigenpairs on config-
uration 4 with a lattice size of 64× 323. 91

6.1 Iteration count and compute time for the solution of (D−τI)x = b
with the DD-αAMG method using eigenvector and singular vector
approximations during the setup phase. These results were gener-
ated using Configuration 1 from Table 3.1. 96

6.2 Comparison of the three different setup procedure for varying iter-
ative setup steps denoted by the +k in the first column. 97

6.3 Iteration count and compute time for the solution of Dx = b with
the DD-αAMG method including the setup time for the simple
setup and the Davidson setup for Q and for D. These results were
generated using Configuration 1 from Table 3.1. 98

107

List of Tables

1.1 Notations and abbreviations . 4

3.1 Configurations used within this thesis together with some relevant
parameters. See the references for further details. Configurations 1
and 2 are locally generated configurations. 45

3.2 Coupling terms in D and DH . 47

3.3 Coupling terms in DHD. The coupling terms in DDH are obtained
by interchanging all π+

µ and π−µ as well as all π+
ν and π−ν 48

3.4 Coupling terms in DHD −DDH 48

4.1 Parameters for the overlap solver 71

4.2 Parameters for the inner iteration. 73

5.1 List of algorithmic default parameters. 85

5.2 Impact of Γ5-preconditioning for the computation of 100 eigenpairs
of configuration 3 (see Table 3.1). 86

108

List of Algorithms & Scripts

2.1 The modified Gram-Schmidt procedure 11

2.2 Additive SAP (block Jacobi) . 14

2.3 Multiplicative SAP (block Gauss-Seidel) 14

2.4 Arnoldi’s method . 16

2.5 GMRES . 17

2.6 flexible GMRES . 20

2.7 Bootstrap AMG setup . 27

2.8 Power method . 31

2.9 Rayleigh quotient iteration . 32

2.10 Generalized Davidson (basic) . 36

2.11 Quadrature-based restarted Arnoldi’s method for f(A)b 39

5.1 GD-λAMG . 84

6.1 Davidson setup . 95

109

Bibliography

[1] M. Albanese, F. Costantini, G. Fiorentini, F. Flore, M. P. Lom-
bardo, P. B. R. Tripiccione, L. Fonti, E. Remiddi, M. Bernaschi,
N. Cabibbo, L. A. Fernandez, E. Marinari, G. Parisi, G. Salina,
S. Cabasino, F. Marzano, P. Paolucci, S. Petrarca, F. Ra-
puano, P. Marchesini, P. Giacomelli, and R. Rusack, Glueball
masses and string tension in lattice QCD, Phys. Lett., B192 (1987), pp. 163–
169.

[2] W. E. Arnoldi, The principle of minimized iterations in the solution of
the matrix eigenvalue problem, Quart. Appl. Math, 9 (1951), pp. 17–29.

[3] R. Babich, J. Brannick, R. C. Brower, M. A. Clark, T. A. Man-
teuffel, S. F. McCormick, J. C. Osborn, and C. Rebbi, Adaptive
multigrid algorithm for the lattice Wilson-Dirac operator, Phys. Rev. Lett.,
105 (2010), p. 201602.

[4] G. Bali, L. Castagnini, and S. Collins, Meson and baryon masses
with low mode averaging, PoS, LATTICE2010 (2010), p. 096.

[5] G. Bali, S. Collins, A. Frommer, K. Kahl, I. Kanamori,
B. Müller, M. Rottmann, and J. Simeth, (approximate) low-mode
averaging with a new multigrid eigensolver, PoS, LATTICE2015 (2015),
p. 350.

[6] G. S. Bali, S. Collins, B. Gläßle, M. Göckeler, J. Najjar, R. H.
Rödl, A. Schäfer, R. W. Schiel, A. Sternbeck, and W. Söldner,
The moment 〈x〉u−d of the nucleon from nf = 2 lattice QCD down to nearly
physical quark masses, Phys. Rev., D90 (2014), p. 074510.

[7] G. S. Bali, H. Neff, T. Duessel, T. Lippert, and K. Schilling,
Observation of string breaking in QCD, Phys. Rev. D, 71 (2005), p. 114513.

110

BIBLIOGRAPHY

[8] T. Bergrath, M. Ramalho, R. Kenway, et al.,
PRACE scientific annual report 2012, tech. rep., PRACE, 2012.
http://www.prace-ri.eu/IMG/pdf/PRACE Scientific Annual Report

2012.pdf, p. 32.

[9] B. Blossier, M. Della Morte, N. Garron, G. von Hippel,
T. Mendes, H. Simma, and R. Sommer, HQET at order 1/m: II.
spectroscopy in the quenched approximation, JHEP, 05 (2010), p. 074.

[10] C. Bonati and M. D’Elia, A comparison of the gradient flow with cooling
in SU(3) pure gauge theory, Phys. Rev., D89:105005 (2014).

[11] V. G. Bornyakov, R. Horsley, S. M. Morozov, Y. Nakamura,
M. I. Polikarpov, P. E. L. Rakow, G. Schierholz, and T. Suzuki,
Probing the finite temperature phase transition with Nf = 2 nonperturba-
tively improved Wilson fermions, Phys. Rev. D, 82 (2010), p. 014504.

[12] S. Borsanyi, Y. Delgado, S. Dürr, Z. Fodor, S. D. Katz,
S. Krieg, T. Lippert, D. Nogradi, and K. K. Szabo, QCD ther-
modynamics with dynamical overlap fermions, Phys. Lett., B713 (2012),
pp. 342–346.

[13] S. Borsanyi, Z. Fodor, S. D. Katz, S. F. Krieg, T. Lippert,
D. Nogradi, F. Pittler, K. K. Szabo, and B. C. Toth, Qcd thermo-
dynamics with continuum extrapolated dynamical overlap fermions, (2015).
arXiv:1510.03376.

[14] J. Brannick, R. C. Brower, M. A. Clark, J. C. Osborn, and
C. Rebbi, Adaptive multigrid algorithm for lattice QCD, Phys. Rev. Lett.,
100:041601 (2007).

[15] J. Brannick, F. Cao, K. Kahl, F. R.D., and X. Hu, Optimal inter-
polation and compatible relaxation in classical algebraic multigrid, SIAM J.
Sci. Comp., 40 (2018), pp. A1473–A1493.

[16] J. Brannick, A. Frommer, K. Kahl, B. Leder, M. Rottmann, and
A. Strebel, Multigrid preconditioning for the overlap operator in lattice
QCD, Numer. Math., 132 (2016), pp. 463–490.

[17] J. Brannick and K. Kahl, Bootstrap algebraic multigrid for the 2d Wil-
son Dirac system, SIAM J. Sci. Comp., 36 (2014), pp. B321–B347.

[18] M. Brezina, T. Manteuffel, S. McCormick, J. Ruge, and
G. Sanders, Towards adaptive smoothed aggregation (αSA) for nonsym-
metric systems, SIAM J. Sci. Comput., 32 (2010), pp. 14–39.

111

BIBLIOGRAPHY

[19] R. C. Brower, M. Clark, D. Howarth, and E. S. Weinberg, Multi-
grid for chiral lattice fermions: Domain wall, (2020). arXiv:2004.07732.

[20] R. C. Brower, E. Weinberg, M. A. Clark, and A. Strelchenko,
Multigrid algorithm for staggered lattice fermions, Phys. Rev. D, 97 (2018),
p. 114513.

[21] Budapest-Marseille-Wuppertal collaboration, S. Dürr,
Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, T. Kurth,
L. Lellouch, T. Lippert, K. K. Szabó, and G. Vulvert, Lattice
QCD at the physical point: Simulation and analysis details, JHEP, 2011
(2011), p. 148.

[22] S. Capitani, S. Dürr, and C. Hoelbling, Rationale for UV-filtered
clover fermions, JHEP, 0611(2006)028 (2006).

[23] M. Creutz, Why rooting fails, PoS, LATTICE2007 (2007), p. 007.

[24] N. Cundy, J. van den Eshof, A. Frommer, S. Krieg, and
K. Schäfer, Numerical methods for the QCD overlap operator. III: Nested
iterations, Comput. Phys. Commun., 165 (2005), pp. 221–242.

[25] E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues
and corresponding eigenvectors of large real-symmetric matrices, J. Comput.
Physik, 17 (1975), pp. 87–94.

[26] C. Davies et al., High precision lattice QCD confronts experiment, Phys.
Rev. Lett., 92 (2004), p. 022001.

[27] C. De Boor, Divided differences, Surv. Approx. Theory, 1 (2005), pp. 46–
69.

[28] P. de Forcrand, A. Kurkela, and M. Panero, Numerical properties
of staggered overlap fermions, PoS, LATTICE2010:080 (2010).

[29] T. A. DeGrand and P. Rossi, Conditioning techniques for dynamical
fermions, Comput. Phys. Commun., 60 (1990), pp. 211–214.

[30] T. A. DeGrand and S. Schaefer, Improving meson two point functions
in lattice QCD, Comput. Phys. Commun., 159 (2004), pp. 185–191.

[31] L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio, and N. Tan-
talo, QCD with light Wilson quarks on fine lattices (i): First experiences
and physics results, JHEP, 02(2007)056 (2007).

[32] , QCD with light Wilson quarks on fine lattices (ii): DD-HMC simula-
tions and data analysis, JHEP, 0702(2007)082 (2007).

112

BIBLIOGRAPHY

[33] S. Duane, A. Kennedy, B. Pendleton, and D. Roweth, Hybrid
monte carlo, Phys. Lett. B, 195 (1987), pp. 216–222.

[34] S. Dürr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann, S. D.
Katz, S. Krieg, T. Kurth, L. Lellouch, T. Lippert, K. K. Szabo,
and G. Vulvert, Ab initio determination of light hadron masses, Science,
322 (2008), pp. 1224–1227.

[35] S. Durr, Z. Fodor, C. Hoelbling, S. Katz, S. Krieg, T. Kurth,
L. Lellouch, T. Lippert, K. Szabo, and G. Vulvert, Lattice QCD at
the physical point: Light quark masses, Physics Letters, Section B: Nuclear,
Elementary Particle and High-Energy Physics, 701 (2011), pp. 265–268.

[36] S. Durr and G. Koutsou, On the suitability of the Brillouin action as
a kernel to the overlap procedure, (2017). arXiv:1701.00726.

[37] R. G. Edwards, U. M. Heller, and R. Narayanan, A study of practi-
cal implementations of the overlap Dirac operator in four-dimensions, Nucl.
Phys., B540 (1999), pp. 457–471.

[38] M. Eiermann and O. G. Ernst, A restarted Krylov subspace method
for the evaluation of matrix functions, SIAM J. Numer. Anal., 44 (2006),
pp. 2481–2504.

[39] E. Endress, C. Pena, and K. Sivalingam, Variance reduction with
practical all-to-all lattice propagators, Comput. Phys. Commun., 195 (2015),
pp. 35–48.

[40] S. Fischer, A. Frommer, U. Glassner, T. Lippert, G. Ritzen-
hofer, and K. Schilling, A parallel SSOR preconditioner for lattice
QCD, Comput. Phys. Commun., 98 (1996), pp. 20–34.

[41] J. Foley, K. Jimmy Juge, A. O’Cais, M. Peardon, S. M. Ryan, and
J. Skullerud, Practical all-to-all propagators for lattice QCD, Comput.
Phys. Commun., 172 (2005), pp. 145–162.

[42] A. Frommer, S. Güttel, and M. Schweitzer, Convergence of
restarted Krylov subspace methods for Stieltjes functions of matrices, SIAM
J. Matrix Anal. Appl., 35 (2014), pp. 1602–1624.

[43] , Efficient and stable Arnoldi restarts for matrix functions based on
quadrature, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 661–683.

[44] A. Frommer, K. Kahl, F. Knechtli, M. Rottmann, A. Strebel,
and I. Zwaan, A multigrid accelerated eigensolver for the Hermitian
Wilson-Dirac operator in lattice QCD, (2020). arXiv:2004.08146.

113

BIBLIOGRAPHY

[45] A. Frommer, K. Kahl, S. Krieg, B. Leder, and M. Rottmann,
An adaptive aggregation based domain decomposition multilevel method for
the lattice Wilson Dirac operator: Multilevel results, 2013. arXiv:1307.6101.

[46] , Adaptive aggregation based domain decomposition multigrid for the
lattice Wilson-Dirac operator, SIAM J. Sci. Comp., 36 (2014), pp. A1581–
A1608.

[47] A. Frommer, A. Nobile, and P. Zingler, Deflation and flexi-
ble SAP-preconditioning of GMRES in lattice QCD simulations, (2012).
arXiv:1204.5463.

[48] P. H. Ginsparg and K. G. Wilson, A remnant of chiral symmetry on
the lattice, Phys. Rev. D, 25 (1982), pp. 2649–2657.

[49] L. Giusti, P. Hernandez, M. Laine, P. Weisz, and H. Wittig,
Low-energy couplings of QCD from current correlators near the chiral limit,
JHEP, 04 (2004), p. 013.

[50] L. Giusti, C. Hoelbling, M. Lüscher, and H. Wittig, Numerical
techniques for lattice QCD in the epsilon regime, Comput. Phys. Commun.,
153 (2003), pp. 31–51.

[51] M. Guest, G. Aloisio, R. Kenway, et al., The scientific case
for HPC in Europe 2012 - 2020, tech. rep., PRACE, October 2012.
http://www.prace-ri.eu/PRACE-The-Scientific-Case-for-HPC, p. 75.

[52] T. R. Haar, Optimisations to Hybrid Monte Carlo for Lattice QCD, PhD
thesis, Adelaide U., 2019.

[53] W. Hackbusch, Multi-Grid Methods and Applications, vol. 4 of Springer
Series in Computational Mathematics, Springer, 1985.

[54] W. W. Hager, Condition estimates, SIAM J. Sci. Stat. Comput., 5 (1984),
pp. 311–316.

[55] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integra-
tion, vol. 31 of Springer Series in Computational Mathematics, Springer,
Heidelberg, 2010.

[56] A. Hasenfratz and F. Knechtli, Flavor Symmetry and the Static Po-
tential With Hypercubic Blocking, Phys. Rev. D, 64 (2001), p. 034504.

[57] W. Hastings, Monte carlo sampling methods using Markov chains and
their applications, Biometrika, 57 (1970), pp. 97–109.

114

BIBLIOGRAPHY

[58] N. J. Higham, Functions of Matrices: Theory and Computation, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.

[59] N. J. Higham and F. Tisseur, A block algorithm for matrix 1-norm
estimation with an application to 1-norm pseudospectra, SIAM J. Matrix
Anal. Appl., 21 (2000), pp. 1186–1201.

[60] IEEE, IEEE standard for floating-point arithmetic, IEEE Std 754-2008,
(2008), pp. 1–70.

[61] Jülich Supercomputing Centre, JURECA -
Jülich research on exascale cluster architectures.
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/

JURECA/JURECA node.html.

[62] , JUROPA - Jülich research on petaflop architectures.
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/

JUROPA/JUROPA node.html.

[63] , JUWELS - Jülich wizard for european leadership science.
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/

JUWELS/JUWELS news.html.

[64] J. B. Kogut and L. Susskind, Hamiltonian formulation of Wilson’s
lattice gauge theories, Phys. Rev. D, 11 (1975), pp. 395–408.

[65] M. Lüscher, OpenQCD simulation package.
http://luscher.web.cern.ch/luscher/openQCD/.

[66] M. Lüscher, Exact chiral symmetry on the lattice and the Ginsparg-Wilson
relation, Phys. Lett., B428 (1998), pp. 342–345.

[67] , Solution of the Dirac equation in lattice QCD using a domain decom-
position method, Comput. Phys. Commun., 156 (2004), pp. 209–220.

[68] M. Lüscher, Local coherence and deflation of the low quark modes in
lattice QCD, JHEP, 2007 (2007), p. 081.

[69] M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP,
1008(2010)071 (2010).

[70] , Trivializing maps, the Wilson flow and the HMC algorithm, Commun.
Math. Phys., 293 (2010), pp. 899–919.

[71] MATLAB, version 7.10.0 (R2010a), The MathWorks Inc., Natick, Mas-
sachusetts, 2010.

115

BIBLIOGRAPHY

[72] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and
E. Teller, Equation of state calculations by fast computing machines, J.
Chem. Phys., 21 (1953), pp. 1087–1092.

[73] I. Montvay and G. Münster, Quantum Fields on a Lattice, Cambridge
Monographs on Mathematical Physics, Cambridge University Press, 1994.

[74] R. B. Morgan and D. S. Scott, Generalizations of Davidson’s method
for computing eigenvalues of sparse symmetric matrices, SIAM J. Sci. Stat.
Comput., 7 (1986), pp. 817–825.

[75] C. Morningstar and M. J. Peardon, Analytic smearing of SU(3) link
variables in lattice QCD, Phys. Rev., D69:054501 (2004).

[76] H. Neff, N. Eicker, T. Lippert, J. W. Negele, and K. Schilling,
On the low fermionic eigenmode dominance in QCD on the lattice, Phys.
Rev., D64 (2001), p. 114509.

[77] S. Nepomnyaschikh, Mesh theorems on traces, normalizations of func-
tion traces and their inversion, Soviet J. Numer. Anal. Math. Modelling, 6
(1991), pp. 223–242.

[78] H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B, 417
(1998), pp. 141–144.

[79] H. B. Nielsen and M. Ninomiya, No go theorem for regularizing chiral
fermions, Phys. Lett., 105B (1981), pp. 219–223.

[80] Y. Notay, Combination of Jacobi-Davidson and conjugate gradients for
the partial symmetric eigenproblem, Numer. Linear Algebra Appl., 9 (2002),
pp. 21–44.

[81] J. Osborn, QOPQDP software. https://github.com/usqcd-software/

qopqdp.

[82] J. C. Osborn, R. Babich, J. Brannick, R. C. Brower, M. A.
Clark, S. D. Cohen, and C. Rebbi, Multigrid solver for clover
fermions, PoS, LATTICE2010 (2010), p. 037.

[83] P. Oswald, Preconditioners for nonconforming discretizations, Math.
Comp., 65 (1996), pp. 923–941.

[84] C. C. Paige, B. N. Parlett, and H. A. van der Vorst, Approxi-
mate solutions and eigenvalue bounds from Krylov subspaces, Numer. Linear
Algebra Appl., 2 (1998), pp. 115–133.

116

BIBLIOGRAPHY

[85] M. Rottmann, Adaptive Domain Decomposition Multigrid for Lattice
QCD, PhD thesis, University of Wuppertal, 2016.

[86] M. Rottmann, A. Strebel, S. Heybrock, S. Bac-
chio, B. Leder, and I. Kanamori, DD-αAMG software.
https://github.com/DDalphaAMG/DDalphaAMG.

[87] J. Ruge and K. Stüben, Algebraic multigrid, in Multigrid Methods,
S. F. McCormick, ed., vol. 3 of Frontiers in Applied Mathematics, SIAM,
Philadelphia, PA, USA, 1987, pp. 73–130.

[88] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM
J. Sci. Comput, 14 (1992), pp. 461–469.

[89] , Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, PA,
USA, 2nd ed., 2003.

[90] , Numerical Methods for Large Eigenvalue Problems, SIAM, Philadel-
phia, PA, USA, 2nd ed., 2011.

[91] H. Schwarz, Gesammelte mathematische Abhandlungen, Viertel-
jahrschrift Naturforsch. Ges. Zürich, (1870), pp. 272–286.

[92] B. Sheikholeslami and R. Wohlert, Improved continuum limit lattice
action for QCD with Wilson fermions, Nucl. Phys., B259 (1985), p. 572.

[93] V. Simoncini and D. B. Szyld, Theory of inexact Krylov subspace meth-
ods and applications to scientific computing, SIAM J. Sci. Comput., 25
(2003), pp. 454–477.

[94] G. L. G. Sleijpen and H. A. van der Vorst, A Jacobi-Davidson iter-
ation method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl.,
17 (1996), pp. 401–425.

[95] B. F. Smith, P. E. Bjørstad, and W. D. Gropp, Domain Decomposi-
tion: Parallel Multilevel Methods for Elliptic Partial Differential Equations,
Cambridge University Press, New York, 1996.

[96] G. D. Smith, Numerical Solution of Partial Differential Equations: Finite
Difference Methods, Oxford Applied Mathematics and Computing Science
Series, Clarendon Press, 1985.

[97] D. Sorensen, R. Lehoucq, C. Yang, and K. Maschhoff,
PARPACK. http://http://www.caam.rice.edu/software/ARPACK, used
version: 2.1, September 1996.

117

BIBLIOGRAPHY

[98] A. Stathopoulos, Nearly optimal preconditioned methods for Hermitian
eigenproblems under limited memory. part I: Seeking one eigenvalue, SIAM
J. Sci. Comput., 29 (2007), pp. 481–514.

[99] A. Stathopoulos and J. R. McCombs, Nearly optimal preconditioned
methods for Hermitian eigenproblems under limited memory. part II: Seek-
ing many eigenvalues, SIAM J. Sci. Comput., 29 (2007), pp. 2162–2188.

[100] A. Stathopoulos and J. R. McCombs, PRIMME: PReconditioned It-
erative MultiMethod Eigensolver: Methods and software description, ACM
Transactions on Mathematical Software, 37 (2010), pp. 21:1–21:30.

[101] B. C. Toth, QCD thermodynamics with dynamical overlap fermions, PoS,
LATTICE2013:163 (2013).

[102] L. Trefethen and D. Bau, Numerical Linear Algebra, Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA, 1st ed., 1997.

[103] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid.
with Guest Contributions by A. Brandt, P. Oswald, K. Stüben, Academic
Press, Orlando, FL, 2001.

[104] J. van den Eshof, A. Frommer, T. Lippert, K. Schilling, and
H. A. van der Vorst, Numerical methods for the QCD overlap operator.
I: Sign-function and error bounds, Comput. Phys. Commun., 146 (2002),
pp. 203–224.

[105] J. van den Eshof and G. L. Sleijpen, Inexact Krylov subspace methods
for linear systems, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 125–153.

[106] C. Vuik and H. van der Vorst, GMRESR: A family of nested GMRES
methods, Numer. Linear Algebra Appl., 1 (1994), pp. 369–386.

[107] K. G. Wilson, Confinement of quarks, Phys. Rev. D, 10 (1974), pp. 2445–
2459.

[108] , Quarks and strings on a lattice, in New Phenomena in Subnuclear
Physics: Proceedings, International School of Subnuclear Physics, Erice,
Sicily, Jul 11-Aug 1 1975. Part A, 1975, p. 99. [,0069(1975)].

[109] L. Wu, E. Romero, and A. Stathopoulos, PRIMME SVDS: A high-
performance preconditioned SVD solver for accurate large-scale computa-
tions, SIAM J. Sci. Comput., 39 (2016), pp. S248–S271.

[110] J. Xu, The auxiliary space method and optimal multigrid preconditioning
techniques for unstructured grids, Comput., 56 (1996), pp. 215–235.

118

	Acknowledgments
	Foreword
	Contents
	Introduction
	Outline
	Notation and abbreviations

	Basics of numerical linear algebra
	Basic definitions
	Conditioning

	Iterative methods for sparse linear systems of equations
	Basic relaxation schemes and their block variants
	Krylov subspace methods
	Restarting
	Preconditioning

	Multigrid methods
	Smoother
	Coarse grid correction
	Multigrid in lattice QCD

	Eigenvalue problems
	Eigensolvers based on vector iteration
	Subspace accelerated eigensolvers

	Matrix functions
	Applying a matrix function to a vector

	Basics of quantum chromodynamics
	Continuum QCD
	The Wilson discretization
	Normality of the Wilson-Dirac operator
	Applications
	Validation of the staggered Wilson discretization
	Low-mode averaging
	Hybrid Monte Carlo

	Auxiliary space preconditioning for the overlap operator in lattice QCD
	Chiral operators in lattice QCD
	Multigrid preconditioning for the overlap operator
	Numerical results
	Accuracy of the preconditioner and influence of m0prec
	Quality and cost of the preconditioner
	Comparison of optimized solvers

	A multigrid accelerated eigensolver framework
	The GD-AMG method
	Local coherence
	Numerical results
	Algorithmic tuning
	Scaling results

	A Davidson-type multigrid setup
	Subspace acceleration in algebraic multigrid setup
	Numerical results

	Conclusion & Outlook
	Conclusion
	Outlook

	List of Figures
	List of Tables
	List of Algorithms & Scripts
	Bibliography

