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Summary

In this thesis work we present the algorithmic derivation of a new class
of Lattice Boltzmann Methods appropriate for the study of dissipative
relativistic fluids. While previous models were restricted to the use of
massless particles, implying ultra-relativistic equations of state, this work
provides a significant step towards the formulation of a unified relativistic
lattice kinetic scheme, covering ideal gases of both massive and near-
massless particles, seamlessly bridging the gap between relativistic and
low-speed non-relativistic fluid regimes.

In a first important application of this novel numerical tool, we present
results bringing new insight in the long standing problem of understanding
the pathway from relativistic kinetic theory to relativistic hydrodynamics.
We conduct an accurate analysis of the relativistic transport coefficients in
the relaxation time approximation, providing numerical evidence that the
Chapman Enskog expansion correctly relates kinetic transport coefficients
and macroscopic hydrodynamics parameters in dissipative relativistic fluid
dynamics, confirming recent theoretical results.

This analysis, in turn, can be seen as an accurate calibration of this class
of numerical solvers, making them suitable to deliver improved physical
accuracy in the simulation of realistic systems. To give an example, we
present results of simulations solving the Riemann problem for a quark-
gluon plasma, showing good agreement with previous results obtained using
other solvers present in the literature.

As a further application we study the transport properties of electrons
in ultra-clean graphene samples, for which a hydrodynamic description is
appropriate due to the predominance of electron-electron scattering over
electron-phonon interactions. Using appropriate 2D formulations, enriched



to describe the effects of the external electrostatic drive, and to capture
the interactions with phonons and impurities, we present simulations of
laminar flows taking into consideration geometrical setups used in actual
experiments. Furthermore, we also consider electronic systems where
nonlinear effects start becoming relevant. Basing on extensive numerical
simulations, we identify transport parameters which could be used to
trigger and observe preturbulent signals in a hydrodynamic region as close
as possible to those within reach of current experimental conditions.

As a closing note, we remark that the numerical methods described in
this thesis work retains the main computational advantages of standard
Lattice Boltzmann Methods, offering high amenability to parallelization,
that can be exploited to write efficient codes. These aspects are covered in
the last chapter of the thesis, in which we summarize the best practices
in the development of a performance portable code targeting modern high
performance computing accelerators.
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Riepilogo

In questo lavoro di tesi viene presentata la derivazione algoritmica di
una nuova classe di metodi reticolari di Boltzmann per lo studio di fluidi
relativistici.

Se da un lato i modelli sin’ora presenti in letteratura consideravano solo
particelle a massa nulla ed equazioni di stato ultra-relativistiche, questo
lavoro rappresenta un significativo passo in avanti verso la formulazione di
un metodo cinetico unificato, in grado di trattare gas relativistici ideali, sia
massivi sia a massa trascurabile, spaziando tra regimi relavitistici e regimi
classici.

Come primo esempio di applicazione viene presentato uno studio atto
a chiarire la problematica connessione tra teoria cinetica e teoria idrod-
inamica relativistica: a seguito di un’accurata analisi dei coefficienti di
trasporto relativistici, vengono presentati dati numerici che evidenziano
come l’espansione di Chapman Enskog leghi correttamente i coefficienti di
trasporto cinetici con i parametri macroscopici idrodinamici relativistici,
andando a confermare recenti studi teorici.

D’altro canto, l’analisi in questione può essere interpretata come un’
accurata calibrazione di questa nuova classe di algoritmi, il che li candida
ad affidabili strumenti per l’implementazione di simulazioni numeriche di
sistemi fisici reali. Come esempio viene preso in considerazione lo studio
del problema di Riemann per un quark-gluon plasma. I risultati ottenuti
sono validati tramite confronto con simulazioni ottenute utilizzando altri
risolutori numerici presenti in letteratura.

Come ulteriore applicazione, viene condotto uno studio sulle proprietà
di trasporto degli elettroni nel grafene, in cui una descrizione idrodinamica è
giustificata dal fatto che il moto collettivo degli elettroni risulta dominante



rispetto a interazioni tra elettroni e fononi. Utilizzando una formulazione
numerica bidimensionale, arricchita per inglobare effetti elettrostatici e
interazioni con fononi e impurità, vengono presentati risultati di simulazioni
di flussi laminari in cui vengono riprodotte condizioni sperimentali simili a
quelle reali. Successivamente sono stati presi in considerazione sistemi in cui
termini non-lineari sono rilevanti. I risultati di un estensivo lavoro numerico
hanno permesso di identificare parametri di trasporto che consentano
l’osservazione di segnali preturbolenti in una regione idrodinamica quanto
più simile a quella accessibile nelle attuali condizioni sperimentali.

Per finire, va sottolineato che i metodi numerici descritti in questo lavoro
di tesi preservano dal punto di vista computazionale gli stessi vantaggi
rispetto ai classici metodi reticolari di Boltzmann. Questi metodi numerici
si prestano infatti a efficienti implementazioni altamente parallele. Questi
aspetti sono dettagliati nell’ultimo capitolo di questa tesi, dove vengono
riassunti gli elementi più rilevanti nello sviluppo di codici in grado di
offrire non solo portabilità, ma anche portabilità delle prestazioni, su varie
moderne architetture altamente parallele.
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Zusammenfassung

In der vorliegenden Arbeit wird die algorithmische Entwicklung einer neuen
Klasse von Lattice Boltzmann Methoden dargestellt, die zur Anwendung
und Untersuchung von dissipativen, relativistischen Fluiden geeignet ist.
Vorangehende Arbeiten sind eingeschränkt auf masselose Teilchen und
damit auf ultrarelativistische Zustandsgleichungen. Im Gegensatz dazu
werden in dieser Arbeit signifikante Fortschritte zur Formulierung einer
einheitlichen, kinetischen Lattice Methode gemacht, die ideale Gase aus
sowohl massiven wie auch fast masselosen Teilchen abdeckt und nahtlos auf
den gesamten Bereich von nicht-relativistischen zu relativistischen Fluidreg-
imen anwendbar ist. Der Übergang von der relativistischen, kinetischen
Theorie zur relativistischen Hydrodynamik ist ein altes Problem. Eine erste,
wichtige Anwendung der neuartigen, numerischen Methode dieser Arbeit
führt hier zu neuen Erkenntnissen. Eine präzise Analyse der relativistischen
Transportkoeffizienten unter Verwendung der Zeitrelaxationsnäherung ist
durchgeführt worden. Damit konnte numerisch nachgewiesen werden, dass
die Chapman-Enskog-Entwicklung die kinetischen Transportkoeffizienten
und die makroskopischen, hydrodynamischen Parameter in der dissipativen,
relativistischen Fluiddynamik korrekt in Beziehung setzt. Dies bestätigt
neuere, theoretische Resultate.

Umgekehrt kann diese Analyse als präzise Kalibrierung dieser Klasse
von numerischen Lösern verstanden werden, um so die Genauigkeit für
Berechnungen im relativistischen Regime zu erhöhen. Anhand des Riemann
Problems für ein Quark-Gluon-Plasma vergleichen wir Simulationsergeb-
nisse unserer Methode mit bekannten Ergebnissen von anderen Lösern aus
der Literatur.

In einer weiteren Anwendung untersuchen wir die Transporteigen-



schaften von Elektronen in extrem reinen Graphen-Proben. Hierbei ist
eine hydrodynamische Beschreibung geeignet, da die Elektron-Elektron-
Streuung die Elektron-Phonon-Interaktion dominiert. Basierend auf 2D-
Formulierungen, einem externen elektrostatischen Antrieb und der Erfas-
sung von Wechselwirkungen von Phononen mit Verunreinigungen präsen-
tieren wir Simulationen einer laminaren Strömung. Dabei berücksichti-
gen wir die Geometrie des zugrundeliegenden physikalischen Experiments.
Ferner betrachten wir elektrische Systeme, in denen nichtlineare Effekte an
Bedeutung gewinnen. Auf der Grundlage einer umfassenden Menge von
numerischen Simulationen identifizieren wir Transportparameter, welche
man verwenden könnte, um präturbulente Signale auszulösen bzw. zu
beobachten. Dabei sind entsprechende hydrodynamische Regime so nah
wie möglich an den aktuellen Bedingungen der Experimente.

Abschließend sei angemerkt, dass die numerischen Methoden dieser
Arbeit die rechentechnischen Vorzüge der standard Lattice Boltzmann
Methode erhalten. Dies schließt insbesondere ein hohes Maß an Parallelisier-
barkeit ein, welche genutzt werden kann, um effiziente Löser zu program-
mieren. Diesen Aspekten ist das letzte Kapitel der Arbeit gewidmet. Hierbei
fassen wir beste Verfahren zur Entwicklung von performanten, portablen
Programmen im Kontext von modernen Hochleistungsrechenbeschleunigern
zusammen.
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Introduction

Relativistic fluid dynamics plays an increasingly important role in several
fields of modern physics, with applications stretching over widely differ-
ent scales. For a long time its phenomenological applications have mostly
pertained to the study of ideal non-viscous fluids in the broad realm of astro-
physics. The past decade has seen important experimental progress in the
physics of high-energy heavy-ion collisions, with the first clear observational
evidence of the quark gluon plasma (QGP). Experimental data coming
from the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron
Collider (LHC), have significantly boosted the interest in the study of vis-
cous relativistic fluid dynamics, both at the level of theoretical formulations
as well as in the development of reliable numerical simulation methods,
which enable to accurately describe the collective behavior observed in
QGP. Perhaps unexpectedly, relativistic hydrodynamics has recently found
application also in the field of condensed matter physics, for the study of
strongly correlated electronic fluids in exotic material such as graphene
and Weyl semi-metals.

The definition of a consistent theory for the study of a relativistic viscous
fluid is, however, problematic. Indeed, it has long been recognized that a
naive relativistic extension of the Navier-Stokes equations is inconsistent
with relativistic invariance, as it implies superluminal propagation, hence
non-causal and unstable behavior. This can be corrected by resorting to
fully-hyperbolic formulations of relativistic hydrodynamics; while various
framework have been proposed, the definition of second-order relativistic
viscous hydrodynamic equations is still an open problem with a lot of
ongoing research.

Historically, the first second-order theory approach for viscous hydro-
dynamics was proposed by Israel and Stewart. Although the Israel and



Stewart formulation has been widely considered as the reference frame for
several decades, recent developments have highlighted theoretical shortcom-
ings and, at least for some special problems, poor agreement with numerical
solutions of the Boltzmann equation. Incidentally, but relevant for what fol-
lows, the work of Israel and Stewards stems from a relativistic extension of
Grad’s method of moments, a mathematical formalism commonly employed
to establish a link between the classic Navier-Stokes equations and the
Boltzmann equation. Another pathway often used to derive macroscopic
equations from the kinetic layer is the Chapman-Enskog expansion. It
is well known that in non-relativistic regimes both the Grad’s moments
method and the Chapman-Enskog approach connect kinetic theory and
hydrodynamics in a consistent way, providing the same expressions for
the transport coefficients. However, when applied to relativistic regimes
the two methods lead to slightly different results. While many theoretical
works, as well as numerical investigations, seem to converge towards the
results provided by the CE approach, the question is still object of debate.

In recent years, numerical schemes based on the Lattice Boltzmann
Method (LBM) have emerged as a promising tool for the study of dissipative
hydrodynamics in relativistic regimes. The strength of this approach is that,
by working at a mesoscopic level, viscous effects are naturally included, with
relativistic invariance and causality preserved by construction. However,
this field needs further developments: for instance, relativistic extensions of
the LBM have so far been derived only for an ideal gas of massless particles.

The work described in this thesis starts from this background and
further works in the development of relativistic LBMs and their potential
applications. In fact, we significantly widen the application range, intro-
ducing a new relativistic lattice Boltzmann method (RLBM) based on
finite-mass (pseudo-)particles, which allows to accurately and efficiently de-
scribe relativistic fluid dynamics in a broad range of kinematic regimes and
temperatures, conceptually bridging the gap between the ultra-relativistic
regime all the way down to the non-relativistic one. These numerical
schemes are derived in flat space-time coordinates in (3 + 1), (2 + 1) as well
as (1 + 1) dimensions. The relativistic Boltzmann equation is discretized
using Gauss-type quadratures on space-filling Cartesian lattices, preserving
the computational advantages of the classic LBM.

One first important result, obtained as an application of this novel
RLBM, is an accurate analysis of the relativistic transport coefficients in
the relaxation time approximation (RTA). This work reflects the impor-
tance of numerical simulations in physical contexts in which a controlled
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experimental setup is not a viable option. We present results bringing new
insight in the long standing problem of understanding the pathway from
relativistic kinetic theory to relativistic hydrodynamics. We provide for
the first time, to the best of our knowledge, clear-cut numerical evidence
that the Chapman Enskog expansion accurately relates kinetic transport
coefficients and macroscopic hydrodynamic parameters in dissipative rela-
tivistic fluid dynamics, confirming recent theoretical results. At the same
time, our methodology provides for the first time an accurate calibration
procedure to simulate realistic physics systems using RLBM. Furthermore,
we present results of simulations solving the Riemann problem for a quark-
gluon plasma, showing good agreement with previous results obtained using
other solvers present in the literature.

Another important result presented in this thesis introduces Lattice
Boltzmann methods to a new application area in the broad context of exotic
materials in condensed matter physics. We apply suitable RLBM formula-
tions to the study of the electronic properties of graphene, where recent
experimental studies have shown that certain features of the flow of electrons
may be explained through a pseudo-relativistic hydrodynamic approach.
We present simulations of laminar flows in ultra-clean graphene samples;
we reproduce the geometrical setups used in actual experiments, and give
numerical evidence of the formation of electron back-flows (whirlpools) in
the proximity of current injectors.

Taking a further step, we then move towards regimes where nonlinear
effects start becoming relevant. We present realistic simulations, accounting
for electrostatic interactions and dissipative electron-phonon scattering,
and propose experimentally realizable geometries capable of sustaining
electronic preturbulence in graphene samples. We identify transport pa-
rameters for which preturbulent signals occur at experimentally achievable
values of the Reynolds number and manifest through temporal fluctuations
of the electrochemical potential. These results determine for the first time
in a controlled way a range of transport coefficients and experimental ge-
ometries that experimentalist may target in order to observe preturbulence
in electronic fluids: this parameter space is not experimentally viable today
but it is reasonable to expect that it can be explored in the near future
using improved experimental techniques and device fabrication processes.

We now outline the structure of the following chapters of this thesis work.
In Chapter 1 we introduce the basic principles of relativistic kinetic theory.
The relativistic Boltzmann equation is presented in the relaxation time
approximation and we discuss the problem associated to the macroscopic
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description of a relativistic fluid, as well as in the definition of the correct
link between the kinetic and the macroscopic layers.

Chapter 2 is the first containing original results of our work; we describe
the algorithmic derivation of a unified model which allows to cover a wide
range of relativistic regimes, in principle all the way from fluids of ultra-
relativistic massless particles down to non-relativistic fluids. Crucial in the
derivation of the method is the polynomial expansion of the equilibrium
distribution. The relativistic Boltzmann equation is then discretized in flat
space-time coordinates in (3 + 1), (2 + 1) and (1 + 1) dimensions by means
of Gauss-type quadratures on space-filling Cartesian lattices. We finally
detail the calibration procedure used to define the transport coefficients
of the model, linking their physical values to those used on the Lattice.
The numerical method is then validated using a well known instance of the
Riemann problem, namely the Sod’s shock tube.

Chapter 3 describes our original results in the application of LBM
to describe the properties of exotic materials. We consider the study
of electron flows in graphene samples. We perform simulations in both
laminar and unsteady regimes; our most important result is the elucidation
of the geometrical and transport properties of graphene samples that make
it possible to experimentally detect preturbulent behavior in ultra-clean
graphene sheets.

This work has relied on extensive numerical simulations on GPU clusters.
In Chapter 4 we describe the large implementation and optimization effort
that has gone to develop computer codes for our algorithm that run
efficiently on recent high performance computing architectures.

Finally, in the last chapter we summarize all our results and take-away
lessons, and give an outlook on future perspectives.

The notation used throughout this thesis work is defined in Appendix A.
Appendices B-E contains the relevant mathematical details for the deriva-
tion of the RLBM.
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1
Relativistic Boltzmann

Equation

Abstract
The beginning of the relativistic kinetic theory dates back to 1911 when Jüttner [1]
derived the equilibrium distribution function for a non-degenerate relativistic
gas, later extended by Jüttner himself to account for systems of bosons and
fermions [2]. The covariant formulation of the Boltzmann equation came in
1940 thanks to the work of Lichnerowicz and Marrot [3], followed two decades
later by the determination of the transport coefficients using the Chapman-
Enskog expansion by Israel [4] and Kelly [5]. This chapter introduces the basic
principles of relativistic kinetic theory which will serve as the starting point for
the derivation of the numerical schemes presented in the following chapters. A
few fundamental references on formulation of relativistic kinetic theory are the
books by Stewart [6], De Groot [7], Cercignani and Kremer [8], alongside the
recent monograph of Rezzolla and Zanotti [9] and the review by Paul and Ulrike
Romatschke [10].

In kinetic theory the system of microscopic particles forming a gas is based
on a statistical description in terms of the one-particle distribution function.
For an ideal non-degenerate relativistic fluid, consisting at the kinetic level
of a system of interacting particles of rest mass m, the particle distribution
function f((xα), (pα)), depending on space-time coordinates (xα) = (ct,x)

and momenta (pα) =
(
p0,p

)
=
(√

p2 +m2c2,p
)
, with α = 0, 1, 2, 3, is



defined such that the quantity

f((xα), (pα)) d3x d3p = f((xα), (pα)) dx1 dx2 dx3 dp1 dp2 dp3 , (1.1)

gives the number of particles in a volume element in phase-space d3xd3p.
It is clear that the number of particles is a scalar invariant, since all the
observer will count the same number of particles. Furthermore, while d3x

and d3p alone are not Lorentz invariant, it can be shown that both d3p/p0

and the volume element d3xd3p are Lorentz invariants. It follows that
f((xα), (pα)) is itself a scalar invariant. The time evolution of the particle
distribution is ruled by the relativistic Boltzmann equation

pα
∂f

∂xα
+m

∂fKα

∂pα
= Ω , (1.2)

where Kα represents the external forces acting on the system, and Ω is the
collisional operator, which can be expressed as a integral of the product of
one-particle distribution functions in the momentum-space. Much like in the
classical case, the analytical derivation of Ω is built on a set of assumptions,
refereed to by Boltzmann as Stoßzahlansatz (molecular chaos):

• Only scattering processes between pairs of particles are taken into
account. We use the abbreviation f = f((xα), (pα)) and f ′ =

f((xα), (p′α)) to distinguish between the distribution function of
two pairing particles.

• There is no correlation between particles entering a collision. We
use the abbreviation f = f((xα), (pα)) and f∗ = f((xα), (pα∗ )) to
distinguish between the distribution function of a particle before and
after collision.

Using these assumptions Lichnerowicz and Marrot [3] were the first in 1940
to introduce the covariant formulation of the Boltzmann equation, with
the analytical expression for Ω

Ω =

∫
R3

(
f ′∗f
′ − f∗f

)
σ dΨ

d3p∗
p0∗

, (1.3)

where σ and dΨ denote respectively the differential cross-section and the
element of solid angle that characterizes a binary collision. Two important
properties of the collisional term are the following:
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RELATIVISTIC BOLTZMANN EQUATION

• For any collisional invariant quantity ψ (examples are ψ ∈ {c, cpα}):∫
R3

Ωψ
d3p

p0
= 0 . (1.4)

• The H-theorem holds: ∫
R3

ΩH(f)
d3p

p0
= 0 , (1.5)

where H(f) is a convex function in f , e.g. f ln(f).

As in the non-relativistic case, the equilibrium is characterized by the
condition f ′∗f ′ = f∗f implying a vanishing collisional term. It is well known
that the equilibrium distribution function for the non-relativistic case is
given by the Maxwell-Boltzmann distribution. Its relativistic counterpart
was derived at the beginning of the past century by Jüttner [1] and takes
the name of Maxwell-Jüttner distribution:

f eq = A(n, T )e
−Uαpα

kBT , (1.6)

with the normalization factor

A(n, T ) =
n

4πm2ckBTK2(ζ)
, (1.7)

where n is the particle density, T the temperature, (Uα) is the four-velocity
vector, kB is the Boltzmann constant, ζ = mc2/kBT , andK2 is the modified
Bessel function of second kind. The definition of the normalization factor
for f eq will be discussed in the coming sections.

It has to be mentioned that in recent years several authors [11–13] have
argued that Eq. 1.6 might not represent the correct relativistic equilibrium
distribution, and a few possible alternatives have been suggested [13,14].
However, several works [15–17] have later confirmed that the Maxwell-
Jüttner distribution is the correct generalization of Maxwell’s velocity
distribution in special relativity.

1.1 Macroscopic Description

The macroscopic description of a relativistic fluid can be characterized by
the moments of the distribution function [8]. Of particular interest are the
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Macroscopic Description

first two moments of the distribution, which alone fully describe a fluid at
equilibrium. They are respectively the particle four flow:

Nα = c

∫
R3

fpα
d3p

p0
, (1.8)

and the energy-momentum tensor:

Tαβ = c

∫
R3

fpαpβ
d3p

p0
. (1.9)

Higher order moments do not have names; we introduce the third order
moment which will be relevant, as we will see in the later chapters, for the
study of dissipative effects:

Tαβγ = c

∫
R3

fpαpβpγ
d3p

p0
. (1.10)

The balance equations of the particle four-flow and of the energy-momentum
tensor give origin to the conservation equations:

∂αN
α = 0 ,

∂αT
αβ = 0 .

(1.11)

Eqs. 1.11 are purely formal until a specific decomposition for Nα and Tαβ

in terms of quantities that appear in non-relativistic fluid dynamics is
introduced. It can be shown (see e.g. [9]) that the decomposition for an
ideal fluid at the equilibrium is given by:

Nα
E = nUα , (1.12)

TαβE =
1

c2
(P + ε)UαUβ − Pηαβ , (1.13)

where n is the particle density, P the hydrostatic pressure and ε the energy
density. The subscript E indicates that the tensors are evaluated at the
equilibrium.

In order to capture dissipative properties in the dynamics of the fluid,
extra higher order terms need to be taken into account in Eq. 1.13. These
terms can be defined with the help of the hydrodynamic four-velocity Uα.
The two most common decompositions used in the literature are respectively
known as the Eckart [18] and the Landau-Lifshitz [19] decomposition.
The difference between the two approaches lies in the choice made in the
definition of the macroscopic four-velocity: in Eckart’s formulation, the four-

− 8 −



RELATIVISTIC BOLTZMANN EQUATION

velocity is directly related to the particle flux, while in Landau-Lifshitz’s
approach it is directly related to the energy flux.

1.1.1 Eckart decomposition

In the Eckart decomposition the hydrodynamic velocity is directly linked
to the particle four-flow Nα through:

Uα =
cNα√
NβNβ

, (1.14)

where the normalization is in agreement with Eq. A.21. As a consequence
of this definition, the continuity equation retains the same expression as for
a perfect fluid, with extra terms appearing only in the energy-momentum
tensor:

Nα = Nα
E , (1.15)

Tαβ = TαβE + π<αβ> −$∆αβ +
1

c2

(
Uαqβ + Uβqα

)
, (1.16)

with the following definition for the particle number density n, the pressure
deviator π<αβ>, the static (dynamic) pressure P ($), the energy density ε
and the heat flux qα:

n =
1

c2
NαUα , (1.17)

π<αβ> =

(
∆α
γ∆β

δ −
1

3
∆αβ∆γδ

)
T γδ , (1.18)

P +$ = −1

3
∆αβT

αβ , (1.19)

ε =
1

c2
UαT

αβUβ , (1.20)

qα = ∆α
γUβT

βγ , (1.21)

where
∆αβ = ηαβ − 1

c2
UαUβ ,

∆α
β = ∆αγ∆γβ .

(1.22)

1.1.2 Landau-Lifshitz decomposition

In the Landau-Lifshitz decomposition the hydrodynamic velocity is, instead,
taken to be proportional to the energy flux, according to the following

− 9 −



The laws of Navier-Stokes and Fourier

implicit definition:

Uα =
cTαβUβ√
UγT γδTγδU δ

, (1.23)

again with the normalization in agreement with Eq. A.21. This choice for
the hydrodynamic velocity leads to the following decomposition for Nα

and Tαβ :

Nα = Nα
E + χα , (1.24)

Tαβ = TαβE + π<αβ> −$∆αβ , (1.25)

with χα the non-equilibrium part of the particle four flow. It can be shown
that for processes close to the equilibrium all the definitions in Eq. 1.17
hold in this case as well, with the exception of the heat flux which can
instead be related to χα through

χα = − n

P + ε
qα . (1.26)

To conclude it can be interesting to put in relation the two definition
of the four velocity given respectively by Eckart, here UαEK, and Landau-
Lifshitz, UαLL. Assuming a process close to equilibrium it can be shown [8]
that

UαEK = UαLL −
1

P + ε
qα . (1.27)

1.2 The laws of Navier-Stokes and Fourier

Starting from the conservation equations (Eq. 1.11) and combining them, for
example, with the Eckart decomposition (Eq. 1.15) one can derive (see [8]
or [9] for full details) the most straightforward relativistic formulation of
the laws of Navier-Stokes and Fourier:

$ = −µ ∇αUα ,

π<αβ> = η
(

∆α
γ∆β

δ + ∆α
δ ∆β

γ − 2
3∆αβ∆γδ

)
∇γU δ ,

qα = λ
(
∇αT − T

c2
Uα∂βU

β
)

,

(1.28)

where $ is the dynamic pressure and the coefficients η, µ, λ are respectively
the shear viscosity, bulk viscosity and thermal conductivity, with

∇α = ∆αβ∂β . (1.29)
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This formulation represents the simplest covariant generalizations of the
Navier–Stokes and Fourier equations and it can indeed be shown that in
the non-relativistic limit (v � c) one recovers

$ = −µ ∇u ,

π<0α> = π<α0> = 0 ,

π<ij> = η
(
∇iuj + ∇jui − 2

3∇
kukδij

)
,

q0 = 0 ,

qi = λ ∇iT ,

(1.30)

A few comments are in place: to start, one can see from Eq. 1.28 that a first
significant difference between the relativistic case and the non-relativistic
one is that even for iso-thermal fluids there could be a non-zero heat-flux
due to a pressure gradient. The most important comment however is that
although building on solid physical justification, both from thermodynamics
[20] and kinetic theory [8], Eq. 1.28 are not causal: thermodynamic fluxes
($,π<αβ>, qα) react instantaneously to the corresponding thermodynamic
forces (RHS in Eq. 1.28), implying the propagation of signals at infinite
speeds. Over the years several approaches have been proposed to restore
causality in the description of dissipative relativistic hydrodynamics with
the Israel and Stewart (IS) framework [21–23] having emerged as one of the
best dynamic tools to reproduce experimental observables. However, recent
developments have highlighted theoretical shortcomings in the derivation
of the IS equations [24], as well as poor agreement with numerical solutions
of the Boltzmann equation [25, 26]. In this context, as will be discussed
thoroughly in the next chapter, approaches based on the mesoscopic layer
have emerged as valuable and promising alternatives, circumventing the
problematics related to the direct study of the macroscopic relativistic
hydrodynamics laws. Before going into further details, we introduce in
the next section a few simplified models for the collisional operator of the
Boltzmann equation.

1.3 Relaxation Time Approximation

Because of the complex nature of the collisional operator, which depends
on the product of distribution functions, it is customary to replace Ω in
Eq. 1.2 with collisional models, typically linearized version of Ω, capable
of preserving some of the basic properties or the full collisional. In non-
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relativistic theory the arguably best known collisional model is the BGK
model [27], which describes the evolution of the system as a time relaxation
to the equilibrium.

In this section we describe two widely used relaxation time collision
models for the relativistic Boltzmann equation, the model of Marle and
the model of Anderson-Witting. Both models fulfill the properties of the
true collisional term described by Eq. 1.4 and Eq. 1.5.

1.3.1 Model of Marle

The model of Marle [28,29] is a relativistic extension of the BGK model.
It is compatible with the Eckart decomposition, and it is given by

Ω =
m

τM
(f eq − f) , (1.31)

where τM is the characteristic (proper)-time between subsequent collisions.
The model of Marle is appropriate only for the study of mildly relativistic
fluids, since it implies an infinite relaxation time in the limit where the
mass of the particles becomes zero. Attempts to cure these limitation have
been described by Takamoto and Inutsuka [30] who proposed a modified
Marle model.

1.3.2 Model of Anderson-Witting

With the idea of establishing a relaxation time approximation model capable
of dealing with both mildly and ultra-relativistic gas of particles, Anderson
and Witting [31,32] proposed the following model:

Ω =
Uαpα
c2τAW

(f eq − f) . (1.32)

The model is compatible with the Landau-Lifshitz decomposition.

1.4 Transport Coefficients

The transport coefficients encountered in the previous sections, namely
the heat-flux, bulk and shear viscosity, provide the connection between
the kinetic and the macroscopic description of a dissipative fluid. In non-
relativistic regimes, the derivation of appropriate transport coefficients
is typically obtained with either Grad’s method of moments [33] or the
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Chapman-Enskog (CE) expansion [34], with both techniques allowing a
consistent connection between kinetic theory and hydrodynamics, i.e. they
provide the same expressions for the transport coefficients. When taking
into consideration relativistic regimes the picture becomes rather controver-
sial: not only the definition of the hydrodynamic layer is problematic (as
discussed in Section 1.2), also the correct ladder to be taken when climbing
from the kinetic to the hydrodynamic layer is object of debate, with Grad
and CE giving slightly different results in the expressions of the transport
coefficients.

In recent times, the problem has been object of several studies. While
many theoretical works, as well as numerical investigations, seem to converge
towards the results provided by the CE approach, the question is still object
of debate. Conceptual shortcomings of the moments method, which have
recently been highlighted also in the non-relativistic framework [35–38],
revolve around the use of second-order spatial derivatives in constitutive
hydrodynamical equations [39]. On the other hand, objections to the
relativistic Chapman-Enskog expansion point to its link to relativistic
Navier-Stokes equations, which suffer of basic problems, such as broken
causality and resulting instabilities [24,40].

The derivation of the IS equations is itself highly based on Grad’s
method, it is therefore not obtained as a controlled expansion in some small
parameter. Denicol et al. [24, 40, 41] have proposed an extension of the
moments methods in which the resulting equations of motion are derived
directly from the Boltzmann equation and truncated by a systematic power-
counting scheme in Knudsen number. Remarkably, is has been shown that
the expression for the transport coefficients provided by the CE expansion is
approached when a larger number of moments (with respect to the 14 used in
the IS formulation) is taken into account. Similar conclusions can be found
in the work of Jaiswal et. al [42], where by including entropic arguments
within Grad’s method, they derived relativistic dissipative hydrodynamics
equations in the same form as those given by IS, although with different
expressions for the transport coefficients, which are again in good agreement
with those calculated via the Chapman-Enskog expansion. A rather different
approach was introduced in a series of works by Tsumura et al [39, 43–45],
where renormalization group techniques are applied to the Boltzmann
equation. Once again, the expressions for bulk (shear) viscosity and heat
conductivity derived using this methodology, coincide with those provided
by the Chapman-Enskog method.

These analytic works are mostly restricted to the ultra-relativistic
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limit. Nevertheless, the appropriateness and accuracy of the CE method is
confirmed by a series of numerical investigations [46–48].

1.5 Equation of State

The closure for the conservation equations is given by the Equation of State
(EOS). The general EOS for a perfect gas in (3 + 1) dimensions, valid for
any value of the relativistic parameter ζ = mc2

kBT
, was first derived by Karsch

et al. [49]:
ε = P

(
3 + ζK1(ζ)

K2(ζ)

)
.

P = nkBT .
(1.33)

In the next chapter we will derive a numerical method which will be
specialized also in (2 + 1) and (1 + 1) dimensions; since these two cases
are rarely fully discussed in the literature, the derivation of their general
equation of state is presented in this section. To this aim, it is instructive
to briefly summarize a possible approach for the derivation of Eq. 1.33.

In what follows one needs to handle integrals in the form of∫
RD

f eqpα . . . pω
dp

p0
=

∫
RD

A exp

(
−p

νUν
kBT

)
pα . . . pω

dp

p0
= AZα...ω .

(1.34)
details on their calculation are given in Appendix B. The normalization
factor A needs to be chosen such to satisfy Eq. 1.12. This constraint,
together with the analytical expression for Zα, translates in the following
condition:∫

R3

f eqpα
dp3

p0
= A Zα = A 4πm2kBTK2(ζ)Uα = nUα , (1.35)

from which we can determine the correct normalization factor for the
equilibrium distribution function

A =
n

4πm2kBTK2(ζ)
, (1.36)

previously introduced in Eq. 1.6. Next, we plug the normalization factor A
in Zαβ giving

Zαβ =
nkBT

K2(ζ)

(
m

kBT
K3(ζ) UαUβ −K2(ζ) ηαβ

)
. (1.37)
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In order to identify the equation of state it is sufficient to compare the
above expression with TαβE in Eq. 1.12 and observe that, by matching
the terms with the same tensorial structure in these two expressions, it is
possible to derive the following system of equations:

ε+ P = n mc2K3(ζ)
K2(ζ) ,

P = nkBT .
(1.38)

Recalling that Kα+1(x) = Kα−1(x) + (2α/x)Kα(x) it is straightforward to
show that the above coincides with Eq. 1.33.

By following the same procedure one can extend the EOS to the general
(D+ 1) dimensional case. In the following we provide a couple of examples
reporting only the relation linking the energy density to the pressure, since
the expression linking pressure temperature and particle density does not
depend on D. Using the results provided in Appendix B it is simple to
derive the EOS for D < 3. In particular in (2 + 1) dimensions one gets:

ε = P

(
1 + ζ +

1

1 + ζ

)
. (1.39)

Likewise in (1 + 1) dimensions we obtain:

ε = P

(
1 + ζ

K0(ζ)

K1(ζ)

)
. (1.40)

Clearly one can extend to higher dimensions as well, for example in (4 + 1)

dimensions one would get:

ε = P

(
4 +

ζ2(1 + ζ)

3 + 3ζ + ζ2

)
. (1.41)

1.5.1 Ultra-relativistic limit

The ultra-relativistic EOS can be obtained taking the limit for ζ → 0 of
respectively Eq. 1.33, 1.39, 1.40, 1.41. Noting that xKn(x)/Kn+1(x)→ 0

as x→ 0 it is simple to obtain the well known result

εur = DP . (1.42)

It is interesting to compare Eq. 1.42 with the correspondent general
EOS to appreciate the difference in the various intermediate regimes. To
this aim in Fig. 1.1 we plot the ratio between the general EOS and the
ultra-relativistic one in several dimensions as a function of the temperature
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T normalized in terms of a unit mass. We can appreciate the fact that
in higher dimensions less energy is required to enter the ultra-relativistic
limit.

10−2 10−1 100 101

1/ζ

100

101

102

ε
εur

D = 1

D = 2

D = 3

D = 4

Figure 1.1: Ratio between the energy density and its correspondent
ultra-relativistic limit in several dimensions, as a function
of temperature T , with T rescaled in units of m.

1.5.2 Non-relativistic limit

For the non-relativistic limit we introduce the non-relativistic kinetic energy
density εc = ε−n m and take the limit for ζ →∞ of Eq. 1.33,1.39,1.40,1.41.
Using the fact that (x Kα(x)/Kα+1(x) − x) → −α − 1/2 as x → ∞ one
can recover the well known non-relativistic expression for the EOS of an
ideal gas:

εc =
D

2
P . (1.43)
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2
Relativistic Lattice
Boltzmann Method

Abstract
Relativistic kinetic theory and relativistic fluid dynamics play an increasingly
important role in several areas of modern physics. In the past, many relativistic
fluid dynamic studies have been performed in astrophysical contexts, however
mostly confined to ideal non-viscous fluids. Dissipative effects, with aggregated
problematics described in the previous chapter, play a major role in the realm of
high-energy physics, especially in connection with quark-gluon plasma experiments
in heavy-ion colliders, as well as in condensed matter physics for the study of
electronic transport in exotic semi-metals such as graphene. Recently, numerical
schemes based on the Lattice Boltzmann Method (LBM) have emerged as a
promising tool for the study of dissipative relativistic hydrodynamics. The
strength of this approach is that by working at a mesoscopic level viscous effects
are naturally included, with relativistic invariance and causality preserved by
construction. In this chapter we describe the extension of the LBM for the study
of relativistic fluids, focusing in particular in the algorithmic derivation of a model
which allows to cover a wide range of relativistic regimes, in principle all the way
from fluids of ultra-relativistic massless particles down to non-relativistic fluids.

With Lattice Boltzmann Method [50] we refer to a class of numerical
fluid-dynamics solvers which in the past decades have found application in
several relevant physics problems including, for example, transport in porous
media, high Reynolds turbulent flows, multi-phase flows and many more.



Relativistic Lattice Boltzmann Method: a survey of early
developments

At variance with methods that discretize the Navies-Stokes equations, LBM
stems from the mesoscopic layer, making use of a minimal version of the
Boltzmann equation to provide a correct macroscopic description of a fluid
system. The advection-collision scheme upon which it is based makes the
method particularly suitable for implementation on highly parallel computer
architectures, and indeed computational efficiency is one of the main reasons
behind the success of LBM. In 2010 Mendoza et al. [51,52] provided a first
attempt to extend the method to the case of relativistic fluids. From the
previous chapter one could appreciate how a lattice formulation is possibly
even more appropriate, if not desirable, in the relativistic framework: the
parabolic nature of the relativistic Navier-Stokes equations leads to the
loss of causality altogether with intrinsic numerical instabilities. In this
context a Relativistic Lattice Boltzmann Method (RLBM) emerges as a
promising tool for the study of dissipative relativistic hydrodynamics, with
its inherent finite-speed propagation restoring causality by construction.
In this chapter, which is the first describing original results of this work,
we start by providing a brief review of RLBM schemes already present in
the literature to then describe in all details the algorithmic structure and
the implementation of our improved models, based on massive (pseudo-
)particles. This chapter also describes some important validation steps
and calibration methods for our algorithm, presenting (for the first time
to the best of our knowledge) convincing numerical evidence that the
Chapman-Enskog procedure is the correct one to connect the meso-scale
to the macro-scale layer in relativistic fluid dynamics.

2.1 Relativistic Lattice BoltzmannMethod: a sur-
vey of early developments

The last decade has witnessed several attempts to develop LBM capable
of handling the relativistic regime. The first model was developed by
Mendoza et al. [51, 52], based on Grad’s moment matching technique.
Romatschke et al. [53] developed a scheme for an ultra-relativistic gas
of particles based on the expansion with Laguerre polynomials of the
Maxwell-Jüttner distribution, following a procedure similar to the one
used for non-relativistic LBM. However, this model is not compatible
with a Cartesian lattice, thus requiring interpolation to implement the
streaming phase. Li et al. [54] have extended the work of Mendoza et al.
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using a multi relaxation-time collisional operator, which, by independently
tuning shear and bulk viscosity, has allowed the use of a Cartesian lattice.
However, this model is not able to recover the third order moment of
the distribution. Mohseni et al. [55] have shown that it is possible to
avoid multi-time relaxation schemes, still using a Cartesian lattice and
properly tuning the bulk viscosity for ultra-relativistic flows, so as to
recover only the conservation of the momentum-energy tensor. This is a
reasonable approximation in the ultra-relativistic regime, where the first
order moment plays a minor role, but leaves open the problem of recovering
higher order moments. A further step was taken in [56], with a RLBM
formulation capable of recovering up to the third order of the Maxwell-
Jüttner distribution on a Cartesian lattice. The model considers massless
particles all traveling at the speed of light: as a consequence the quadrature
is established on a grid identified by the intersection of a sphere of radius
R and a Cartesian grid. This model could be in principle extended to
recover arbitrarily high order moments, although this would require very
large and impracticable values of R, hampering the efficiency and the
resolution of the model. Blaga and Ambrus [57,58] have developed a class
of off-lattice quadrature-based models capable of including arbitrarily high
order moments, thus supporting simulations well beyond the hydrodynamic
regime, spanning in principle between the inviscid regime all the way to
the ballistic regime. Several authors have attempted to adapt the various
models above described to the study of (2 + 1)-dimensional relativistic
hydrodynamics with the aim of applying the RLBM to the study of the
electrons flow in graphene [59–63].

All these developments use pseudo-particles of zero proper mass m
(or, more accurately, pseudo-particles for which the ratio particle of mass
and temperature, ζ = mc2/TkB, goes to zero). In the coming sections we
will describe the algorithmic development of a model allowing to extend
the range of physical applications by supporting mildly relativistic flows,
conceptually bridging the gap between the ultra-relativistic regime all the
way down to the non-relativistic one [64,65].

Before going into details, it is first instructive to briefly revise the
derivation of the classical LBM.
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2.2 Detour: Derivation of classical Lattice Boltz-
mann models

The development of the LBM takes root in 1988 with the work of McNamara
and Zanetti [66], with the intent of overcoming the limitations of the Lattice
Gas Cellular Automaton approach [67, 68]. Soon after it evolved into a
self-standing research topic [69–72] emerging as an efficient tool to simulate
the dynamic behavior of fluid flows using a minimal form of the Boltzmann
equation. Perhaps surprisingly, it was not until a decade later when it
was realized that LBM can be formally derived using a Gauss-Hermite
quadrature [73–75]. This elegant derivation, giving the method a solid
mathematical foundation, will be summarized in this section; for a more
exhaustive introduction the refer is invited to refer to e.g. [76].

Let us start from the classic Boltzmann equation based on the BGK
collisional model [27] and in the absence of external forces:

∂f

∂t
+ ξ∇f =

1

τ
(f eq − f) , (2.1)

with the local equilibrium distribution f eq corresponding to the Maxwell-
Boltzmann distribution:

f eq = ρ

(
1

2πT

)D/2
exp

(
− 1

2T
(ξ − u)2

)
. (2.2)

In both Eq. 2.1 and Eq. 2.2 all quantities are made non-dimensional, in
particular the microscopic ξ and the macroscopic velocities u (ξ,u ∈ RD),
are implicitly scaled by the speed of sound cs =

√
kBT0/m0, where T0

and m0 are the characteristic temperature and molecular mass of a single
component fluid. All the other quantities are made non-dimensional by
means of a characteristic lenght scale ∆x and a time scale ∆t, chosen such
that ∆x = cs∆t holds.

The starting point for the discretization of Eq. 2.1 is a projection of
the equilibrium distribution function onto a Hilbert sub-space spanned by
orthogonal Hermite polynomials in the velocity space:

f eq(x, ξ, t) = ω(ξ)

∞∑
k=0

1

k!
a(k)(x, t)H(k)(ξ) , (2.3)

where ω(ξ) is a weighting function and a(k),H(k) are tensors of rank k,
respectively the expansion projection coefficients and the Hermite polyno-
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mials [77]. The weighting function is given by

ω(ξ) =
1

(2π)D/2
exp

(
−1

2
ξ2

)
, (2.4)

while the projection coefficients are by definition

a(k)(x, t) =

∫
RD

f eq(x, ξ, t)H(k)(ξ) dξ . (2.5)

The reason for using the Hermite polynomials as an expansion basis for the
Maxwell-Boltzmann distribution is that, as first observed by Grad in 1949
[33, 77], the expansion coefficients correspond exactly to the hydrodynamic
moments of the distribution:

a(0) =

∫
RD

f eq dξ = ρ ,

a(1) =

∫
RD

f eq · ξ dξ = ρu ,

a(2) =

∫
RD

f eq · (ξξ − I) dξ = ρuu+ ρ(T − 1)I ,

(2.6)

where I is the identity matrix. We have here adopted the shorthand notation
of Grad [77], for which the product of two tensors, e.g. uv(k), stands for
uiv

(k)
jk +ujv

(k)
ik +ukv

(k)
ji . Since only the low orders of the distribution are of

interest for a hydrodynamic description, it is possible to consider a finite
truncation of Eq. 2.3 to a certain order N ,

f eq
N (x, ξ, t) = ω(ξ)

N∑
k=0

1

k!
a(k)(x, t)H(k)(ξ) , (2.7)

which by construction preserves exactly the moments of the original distribu-
tion function up to order N . With this knowledge the velocity discretization
of Eq. 2.1 can be turned into a quadrature problem.

We are interested in approximating integrals in the form of Eq. 2.5,
where the equilibrium distribution is replaced with itsN -th order truncation.
In order to employ a Gauss-Hermite quadrature the integrand needs to be
expressed in the form

ω(ξ)p(x, ξ, t) = f eq
N (x, ξ, t) H(k)(ξ) . (2.8)

Since both f eq
N (x, ξ, t)/ω(ξ) and H(k)(ξ) are polynomials in ξ of degree N

at most, the polynomial p(x, ξ, t) has degree 2N at most. Assume now
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that a given set of weights wi and abscissas ei, {(wi, ei), i = 0, . . . , l},
provide a quadrature of algebraic degree of precision > 2N . It follows that
the coefficients a(k) can be expressed as a weighted sum of the values of
p(x, ξ, t) at the respective abscissas of the employed quadrature:

a(k)(x, t) =

∫
RD

ω(ξ)p(x, ξ, t) dξ ,

=
l∑

i=0

wip(x, ei, t) ,

=
l∑

i=0

wi
ω(ei)

f eq
N (x, ei, t)H

(k)(ei) .

(2.9)

Moreover, the discrete distribution f eq
iN (x, ei, t) completely determine

f eq
N (x, ξ, t) and its first N moments.

To give an example, we start working in one dimension, D = 1, and
derive a quadrature which ensures the conservation of the first two moments
of the equilibrium distribution. For an l-point Gauss-Hermite quadrature
with algebraic precision Q = 2l − 1, the abscissas xi are given by the roots
of H(l), with corresponding weights

wi =
l!(

l H(l−1)(xi)
)2 . (2.10)

In our example we have Q = 5 and l = 3, it follows that the abscissas of the
quadrature correspond to the zeros of H(3): e1 = 0, e2 = −

√
3, e3 =

√
3.

The corresponding weights obtained through Eq. 2.10 read: w1 = 2
3 , w2 =

w3 = 1
6 . To ensure perfect streaming it is convenient to scale the abscissas

to ensure they fall on grid points of a Cartesian grid. This can be done
with a particular choice of the lattice constant cs. By taking cs = 1/

√
3 we

can redefine the quadrature poles as: e1 = 0, e2 = −1, e3 = 1. To conclude,
this quadrature allows getting a numerical expression for the zero-th and
first moment of the distribution:

ρ =

l∑
i=1

fi ,

ρu =
l∑

i=1

fiei .

(2.11)

Clearly, to ensure the preservation of energy one would need to recover

− 22 −



RELATIVISTIC LATTICE BOLTZMANN METHOD

also the second moment of the distribution which would simply require to
derive the quadrature for Q = 7.

Having defined the quadrature it is then possible to derive the discrete
expression for the LB equation:

fi(x+ ei∆t, ei, t+ ∆t)− fi(x, ei, t) =
∆t

τ

(
f eq
iN (x, ei, t)− fi(x, ei, t)

)
,

(2.12)
where f eq

iN represents the discrete truncated Maxwell-Boltzmann distribu-
tion function:

f eq
iN = wiρ

{
1 + eiu︸ ︷︷ ︸
1st order

+
1

2

[
(eiu)2 − uu+ (T − 1)(e2

i − 2)
]

︸ ︷︷ ︸
2st order

+ · · ·+O(N+1)
}

(2.13)
As a final remark it has to be noticed that while the derivation of the

quadrature is straightforward in one dimension, it becomes slightly more
complicate in two and three dimensions, since there is not a generalized
fundamental theorem of Gaussian quadrature for higher dimensions (ex-
cept for a few rare exceptions). In order to derive quadratures in higher
dimensions one possible approach is to rely on the preservation of norm
and orthogonality of Hermite polynomial tensors:∫

RD
ω(ξ) ·H(j)(ξ) ·H(k)(ξ) dξ =

∑
i

wi ·H(j)(ei) ·H(k)(ei) = δjk ∀j, k .

(2.14)
Given such a system of equations what one operatively does is to follow
the so called quadrature with prescribed abscissas [78], where following a
combinatorial approach different stencils V = {ei ∈ ZD : i = 0, . . . , imax}
are tested and plugged into Eq. 2.14 in an attempt to determine positive-
valued weights. The minimal stencil implementing quadratures with a
degree of precision up to Q = 9 in 1,2 and 3 dimensions have been derived
and collected in a series of works by Shan [79,80].

2.3 Towards a unified lattice kinetic scheme

In this section we detail the derivation of the Relativistic Lattice Boltzmann
Method. While the procedure is conceptually the same as the one used
in the classical case it will become immediately apparent that achieving
Lorentz invariance introduces several complications.
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2.3.1 Derivation in D+1 dimensions

In a general D + 1 formulation the particle distribution function f(xα, pβ)

depends on space-time coordinates (xα) = (ct,x) and momenta (pα) =(
p0,p

)
=
(√

p2 +m2,p
)
with x and p ∈ RD. The metric tensor naturally

extends to ηαβ = diag(1,−1), with 1 = (1, . . . , 1) ∈ ND. Here and in what
follows we will work in natural units, for which kB = c = 1.

We start by writing an explicit form of Eq. 1.2, taken in the Anderson-
Witting [31,32] relaxation time approximation (Eq. 1.32):

p0∂tf + pi∇if +mKα ∂f

∂pα
=
Uαpα
τ

(f eq − f) , (2.15)

where the external forces acting on the system, Kα, are for simplicity
assumed not to depend on the momentum (D+1)-vector. The local equilib-
rium f eq is given by the Maxwell-Jüttner distribution, already introduced
in Chapter 1:

f eq = A(n, T ) exp

(
−U

αpα
T

)
, (2.16)

where the for derivation of the normalization factor A(n, T ), which depends
on the dimension D, we follow the procedure described in Section 1.5.

By dividing the left and right hand sides of Eq. 2.15 by p0, it is possible
to cast the relativistic Boltzmann equation in terms of quantities that can
be discretized on a regular lattice:

∂tf + vi∇if =
Uαpα
τp0

(f eq − f)− mKα

p0

∂f

∂pα
, (2.17)

with vi = pi/p0 the components of the microscopic velocity. In Eq. 2.17
the time-derivative and the propagation term are the same as in the non-
relativistic regime; the price to pay is an additional dependence on p0 of
the relaxation (and forcing) term.

The discretization on a lattice of Eq. 2.17 starts from the definition of
an expansion of the equilibrium distribution function f eq in basis of poly-
nomials orthogonal with respect to a weighting function ω, corresponding
to f eq in the fluid rest frame (where U i = 0). It is simple to verify that in
the rest frame Eq. 2.16 reduces to

ω(p0) =
1

NR
exp

(
−p0/T

)
, (2.18)

where NR is a normalization factor, which deserves a further remark: while
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the normalization factor A(n, T ) in Eq. 2.16 carries an important physical
meaning (as was discussed in Section 1.5), NR is purely numerical and can
be arbitrarily chosen. In most cases we will find it convenient to take the
normalization factor NR such to satisfy the condition

∫
ω(p0) dp/p0 = 1.

Following a Gram-Schmidt procedure one can then derive a set of
polynomials {J (i), i = 1, 2 . . . }, which are used to build the expansion:

f eq((pµ), (Uµ), T ) = ω(p0)
∞∑
k=0

a(k)((Uµ), T )J (k)((pµ)) , (2.19)

where a(k) are the projection coefficients defined as

a(k)((Uµ), T ) =

∫
RD

f eq((pµ), (Uµ), T )J (k)((pµ))
dp

p0
. (2.20)

At this stage one can appreciate that the polynomials have been derived
such that the coefficients a(k) coincide by construction with the moments
of the distribution function, exactly like in the classical case; it follows
that we retain the property that f eq

N ((pµ), (Uµ), T ), obtained truncating
the summation in Eq. 2.19 to N , correctly preserves the moments of the
distribution up to the N -th order.

Observe that until now the discussion holds its validity on the continuum.
Before going further in details, we introduce non-dimensional quantities
defined with respect to a reference temperature T0: T̄ = T/T0, m̄ = m/T0,
p̄α = pα/T0. The role of T0 should become more clear in Section 2.7, where
we discuss the conversion between physics and lattice units.

The discrete formulation is based on a Gauss-type quadrature on a
Cartesian grid. In order to ensure that all quadrature points lie on lattice
sites and to preserve the moments of a distribution up to a desired order N
we need to determine the weights and the abscissas of a quadrature such
to satisfy the orthonormal conditions [78]:∫

RD
ω(p̄0)Jl((p̄

µ))Jk((p̄
µ))

dp̄

p̄0
=
∑
i

wiJl((p̄
µ
i ))Jk((p̄

µ
i )) = δlk , (2.21)

with (p̄µi ) the discrete (D+1) momentum vectors. A convenient parametriza-
tion of (p̄µi ) writes as follows:

(p̄µi ) = p0
i (1, v0ni) , (2.22)

where ni ∈ ZD are the vectors forming the stencil G = {ni | i =
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1, 2, . . . , imax} defined by the (on-lattice) quadrature points, v0 is a free
parameter that can be freely chosen such that vi = v0||ni|| < 1,∀i, and p̄0

i

is defined as
p̄0
i = m̄γi = m̄

1√
1− v2

i

. (2.23)

In order to determine a quadrature we proceed as follows: i) select a
numerical value for m̄, ii) choose a set of velocity vectors G, formed by a
sufficient number of elements such that the left hand side of Eq. 2.21 is a full
ranked matrix, iii) look for a solution of Eq. 2.21 formed by non-negative
weights (wi ≥ 0,∀i).

Observe that while the parametrization in Eq. 2.22 is general and can
be used to determine quadratures for wide ranges of values of m̄, the limit
case of massless particles requires a slightly different approach. Indeed, for
m̄ = 0 Eq. 2.21 is not well defined; in this case we let p̄0

i be free parameters
(as already suggested in [56]) to be determined such as to satisfy Eq. 2.21.
We can have several energy shells associated to each vector and therefore
we add a second index to Eq. 2.22:

(p̄µi,j) = p̄0
j (1,

ni
||ni||

) , (2.24)

where the index j labels different energy shells, and it is clear that ||ni||
has to be the same for all the stencil vectors since all the particles travel at
the same speed vi = c = 1,∀i.

Once a quadrature is defined it is possible to write the discretized
version of the equilibrium distribution as follows:

f eq
iN ((p̄µ), (Uµ), T̄ ) = wi

N∑
k=0

a(k)((Uµ), T̄ )J (k)((p̄µi )) . (2.25)

To conclude, we can finally write down the discrete relativistic Boltzmann
equation:

fi(x+ vi∆t, t+ ∆t)− fi(x, t) = ∆t
p̄αi Uα
p̄0τ

(f eq
i − fi) + F ext

i , (2.26)

where F ext
i is the discretization of the total external forces acting on the

system, more details will be given in Section 2.5.

Observe that in Eq. 2.26 we ensure that x+ vi∆t always lies on lattice
sites by asking:

v0ni∆t = Ni∆x , (2.27)
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where ∆x is the lattice spacing and Ni ∈ ZD. This in turn gives the
following relation between time and space units on the lattice:

v0 =
∆x

∆t
, (2.28)

which will be useful in Section 2.7 where we detail the conversion from
physics to lattice units.

In the next sections we give details on the two most relevant steps in
the derivation of the method, the polynomial expansion of the equilibrium
distribution and the Gaussian quadrature.

2.3.2 Polynomial expansion of the distribution function at
equilibrium

In this section we detail the polynomial expansion of the Maxwell-Jüttner
distribution (Eq. 2.19) in (D + 1)-dimensions, with D = 3, 2, 1. We start
by taking into consideration the (2 + 1) dimensional case, since it is simpler
to handle analytically with respect to the other two cases.
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Figure 2.1: Comparison of the analytic Maxwell Jüttner distribution
in (2 + 1) dimensions against approximations at various
orders N , computed using an orthogonal polynomial basis.
The distributions are shown as functions of p = (px, 0),
having fixed all the other parameters to m = 0, T = 1,
n = 1 and β = |U i|/U0 = 0.5.
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Starting from the weighting function

ω(p̄0) =
1

1 + m̄
exp

(
−p̄0

)
, (2.29)

we use a Gram-Schmidt procedure to derive the polynomials, and conse-
quently the corresponding projections, required to define the expansion of
the equilibrium distribution up to a desired order. In Appendix B and D
we list all polynomials and projections required to derive the second order
approximation of the equilibrium distribution:

f eq = nω(p̄0)(
1

4(m̄(m̄+ 3) + 3)(m̄+ T̄ )

(
(Ux)2(m̄2 + 3m̄T̄ + 3T̄ 2)

×((m̄+ 1)(m̄+ 2)(p̄0)2 − 2m̄(m̄(m̄+ 5) + 9)p̄0 + m̄(m̄+ 3)(m̄(m̄+ 4)

+6) + 2(−6p̄0 + (p̄x)2 + 3))
)

+ U0(−1

2
(m̄+ 2)(m̄2 − 2(m̄+ 2)p̄0

+ 4m̄+ (p̄0)2 + 2)− 1

(2m̄(m̄+ 3) + 3)(m̄+ T̄ )

× (p̄xUx + p̄yUy)(m̄2 − (m̄+ 1)p̄0 + 3m̄+ 3)(m̄2 + 3m̄T̄ + 3T̄ 2)

− m̄+ p̄0 − 1) +
1

m̄+ T̄

(
1

2
(m̄2 − 2(m̄+ 2)p̄0 + 4m̄+ (p̄0)2 + 2)

×(m̄T̄ + (m̄+ 1)2 + T̄ 2) + (m̄+ 1)(m̄− p̄0 + 1) + 1
)

+ Ux(
p̄xp̄yUy(m̄2 + 3m̄T̄ + 3T̄ 2)

(m̄(m̄+ 3) + 3)(m̄+ T̄ )
+

p̄x

2m̄(m̄+ 3) + 3

(
(m̄3 + 5m̄2

−(m̄(m̄+ 3) + 3)p̄0 + 12m̄+ 12)
)
) +

p̄yUy

2m̄(m̄+ 3) + 3

(
(m̄3 + 5m̄2

−(m̄(m̄+ 3) + 3)p̄0 + 12m̄+ 12)
)

+
(Uy)2(m̄2 + 3m̄T̄ + 3T̄ 2)

4(m̄(m̄+ 3) + 3)(m̄+ T̄ )

× (m̄4 + m̄3(7− 2p̄0) + m̄2(p̄0 − 8)(p̄0 − 2) + 3m̄((p̄0 − 6)p̄0 + 6)

+ 4(p̄0 − 3)p̄0 − 2(p̄x)2 + 6)) .

The expression in the ultra-relativistic limit is slightly simpler:

f eq = nω(p̄0)(
1

2
T̄ (Ux)2((p̄0 − 6)p̄0 + (p̄x)2 + 3) +

1

2
T̄ (Uy)2(2(p̄0 − 3)p̄0

− (p̄x)2 + 3) + U0((p̄0 − 3)p̄xT̄Ux + (p̄0 − 3)p̄yT̄Uy − (p̄0 − 5)p̄0 − 3)

+ Ux(p̄xp̄yT̄Uy − (p̄0 − 4)p̄x)− (p̄0 − 4)p̄yUy

+
1

2T̄
(p̄0((p̄0 − 4)T̄ 2 + p̄0 − 6) + T̄ 2 + 3)) .
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Figure 2.2: Relative error between the analytic Maxwell Jüttner distri-
bution in (2+1) dimensions and approximations at various
orders N , computed using an orthogonal polynomial basis.
The error is computed using the L2-norm evaluating the
distributions at p = (px, 0), −10 < px < 10, with m = 0,
T = 1, n = 1 and for several values of β = |U i|/U0.

Expressions at higher orders are rather bulky and are therefore given
as supplementary material [81]. In Fig. 2.1 we compare the expressions for
the ultra-relativistic limit up to the fifth-order against the analytical form
of the distribution function. The distributions are shown as functions of
p = (px, 0), having fixed the (numerical) values for the particle number
n and temperature T to unity, and with β = |U i|/U0 = 0.5. In order to
give a more quantitative comparison between the different order of the
expansions of the equilibrium distribution, in Fig. 2.2 we show the relative
error as a function of β. It is clear that one expects better accuracy in the
proximity of the expansion origin (β = 0), and on the other hand larger
deviations as β is increased. This trend is shown in Fig. 2.2, where it can
be seen that in the massless limit, and with a fifth-order expansion, the
relative percentage error stays within 1% up until β ∼ 0.4. Differences in
the accuracy of the various expansion orders are more pronounced at small
values of β.

An interesting feature of the expansions of the equilibrium distribution
is that the quality of the approximation does not depend just on the
proximity to the expansion origin (with respect to β), but also on the
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numerical value of m̄. To highlight this aspect in Fig. 2.3 we show a
heat-map of the relative error using a third order expansion as a function
of both ζ and β. Here one can appreciate that for a fixed value of β, the
error tends to increase as we increase ζ. In a sense, the expansion naturally
embeds the fact that at low temperatures (ζ � 1) the observation of fluids
at very large values of β would be rather unphysical.
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Figure 2.3: Relative error between the analytic Maxwell Jüttner distri-
bution in (2+1) dimensions and approximations at various
orders N , computed using an orthogonal polynomial basis.
The error is computed using the L2-norm evaluating the
distributions at p = (px, 0), −10 < px < 10, with n = 1,
β = |U i|/U0 = 0.4 and for several values of ζ.

The analysis presented in Fig. 2.1, 2.2 and 2.3, can be repeated in (3+1)

and (1+1) dimensions, giving results qualitatively similar to those reported
above. The expressions of the second order polynomial expansion of the
equilibrium distribution in (3 + 1) and (1 + 1) dimensions are reported in
the supplementary material [81]. Note that the massless limit in (1 + 1)

dimensions need special care. While in (3 + 1) and (2 + 1) dimensions one
can derive the massless limit by calculating separately the limit for m̄→ 0

of the polynomials and of the projections, to then use Eq. 2.19 to derive the
result, this is not possible in the (1 + 1) dimensional case. Indeed one can
verify that the massless limit of polynomials and projections is divergent.
On the other hand the limit of the product of each polynomial with its
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correspondent projection is convergent. By using:

f eq
N ((p̄µ), (Uµ), T̄ ) = ω(p̄0)

N∑
k=0

lim
m̄→0

(
a(k)((Uµ), T̄ )J (k)((p̄µi ))

)
, (2.30)

one can derive the expression, here reported up to second order:

f eq =
ω(p̄0)

2T̄
[1 + p̄0(U0 − 1) + p̄xUx

+(p̄0 − 2)p̄xT̄Ux(T̄U0 − 1)− 1

2

(
2p̄0 − p̄2

x

) (
T̄ 2
(
2U2

x + 1
)
− 2T̄U0 + 1

)
+

(
1

6
p̄xT̄Ux

(
−6p̄0 + p̄2

x + 6
) (
T̄ 2
(
4U2

x + 3
)
− 6T̄U0 + 3

))
+

1

6

(
p̄0

(
p̄2
x + 6

)
− 6p̄2

x

) (
T̄ 3
(
4U0U

2
x + U0

)
− 3T̄ 2

(
2U2

x + 1
)

+ 3T̄U0 − 1
)]

As we will see in the next section, the fact that polynomials and projections
do not have a finite limit in the massless case have implications on the
definition of Gaussian quadratures.

2.3.3 Gauss-type quadratures with prescribed abscissa

In this section we provide details on the definition of Gauss-type quadratures
used for the discretization of the relativistic Boltzmann equation. We start
once again from the (2 + 1) dimensional case. In order to implement a
RLBM on a Cartesian space-filling lattice we need to find the weights
and the abscissas of a quadrature satisfying the following orthonormal
condition:∫

R2

ω(p̄0)J (l)((p̄µ))J (k)((p̄µ))
d2p̄

p̄0
=

K∑
i=1

wi J
(l)((p̄µi ))J (k)((p̄µi )) = δlk ,

(2.31)

with {J (i), i = 1, 2 . . .K} the orthogonal polynomials (see Appendix B),
(p̄µi ) the three-momentum vectors following the parametrization in Eq. 2.22
and wi suitable weights.

We follow the procedure described in [79], building a stencil by adding
as many symmetric groups as necessary to match the number of linearly
independent components of Eq. 2.31. For example, considering quadratures
giving a second-order approximation, the system of Eqs. 2.31 has 6 linearly
independent components, so one needs to build a stencil with (at least) 6

different symmetric groups. Likewise, at third order there are 10 indepen-
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dent components, so we need 10 groups. Yet higher order approximations
would require stencils with even larger numbers of groups.

Recall that the discrete momentum vectors (p̄µi ) depend on the stencil
vector ni and a common arbitrary value for v0. Therefore, having selected
a numerical value for the rest mass m̄, and a stencil G = {ni | i =

1, 2, . . . , imax}, Eq. 2.31 leads to a linear system of equations, parametric
on v0:

A(v0)w = b . (2.32)

Here A is a l × k matrix (l being the number of possible combinations of
the orthogonal polynomials, k the number of groups forming the stencil),
b is a known binary vector, and w is the vector of unknowns. Since the
Gaussian quadrature requires strictly positive weights in order to guarantee
numerical stability, we need to select values of v0 (if they exist) such that
wi > 0 ∀i. For low-order approximations it is possible to compute an
analytic solution, writing each weight wi as an explicit function of the
free parameter v0, but this become quickly very hard and, already at the
second-order, numerical solutions are necessary. A possible formulation of
the problem writes as follows:

min

[
−c1

c2

]T [
w−

w+

]
,

s.t. A(v0)w = b ,

0 < v0 ≤ vmax .

(2.33)

where the vector of unknowns w has been split into two sub vectors, respec-
tively w+ formed by its nonnegative components, and w− accounting the
negative components. Vectors c1 and c2 are all-ones vectors matching the
dimensions of w− and w+. We also assume that A(v0) is a fully-ranked ma-
trix. This can be achieved applying a pre-processing phase where redundant
rows are removed, for example by applying a QR or LU factorization. Note
that an implicit constrain on w is given by normalization factor chosen for
the weighting function ω(p̄0). For example, having normalized ω(p̄0) under
the condition

∫
ω(p̄0) d2p̄/p̄0 = 1, it follows directly from Eq. 2.31 that:∑

i

wi = 1 . (2.34)

Observe that in Eq. 2.33 we have not constrained w to be nonnegative.
By allowing nonnegative values for w, it is simpler to find solutions for
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Eq. 2.33 using, for example, a line search method to scan the feasible region
spanned by the admissible values for v0. Each solution of the minimization
procedure is then accepted only in the case wi ≥ 0 ∀i, as this requirement
improves numerical stability and is consistent with a (pseudo-)particle
interpretation of the RLBM.

In general, many different solutions to the quadrature problem exist.
We have performed a detailed exploration of the available phase-space,
implementing a solver for Eq. 2.33 based on the LAPACK library with
several instances running in parallel on a cluster of CPUs. The solver takes
as input a stencil G and tries to find a solution for Eq. 2.33 by scanning
several values of v0 with a simple line search strategy. This fast method
allows to scan several stencils at different values of m̄; on the other hand,
more robust techniques are desirable in order to perform a more systematic
exploration of the phase-space.

To give an example, we look for a second order quadrature at m̄ = 5 us-
ing the stencil G = {(0, 0)

⋃
(±1, 0)FS

⋃
(±1,±1)FS

⋃
(±2, 0)FS

⋃
(±2,±1)FS⋃

(±2,±2)FS}, where FS stands for full-symmetric. With this stencil, the
longest displacement is given by the set of vectors with lenght 2

√
2, and

therefore the range of validity of the parameter v0 is 0 < v0 < 1/(2
√

2) (this
is due to the requirement v0||ni|| ≤ 1, ∀i, used in the definition of discrete
momentum vectors in Eq. 2.22). A visual representation of the solution
for Eq. 2.33 is given in Fig. 2.4a, with the minimum found at v0 ∼ 0.3005;
in this case we cannot determine a solution for which all the weights of
the quadrature are positive. We then consider a different stencil G =

{(0, 0)
⋃

(±1, 0)FS
⋃

(±1,±1)FS
⋃

(±2,±1)FS
⋃

(±2,±2)FS
⋃

(±3,±1)FS}.
This time, the range of validity of the parameter v0 is 0 < v0 < 1/

√
10).

From Fig. 2.4b we can observe that there is a small range of values of
v0 where all the weights take nonnegative values. Taking for example
v0 = 0.2726 the corresponding weights for the quadrature are:

w1 = 0.2938928682119484 , w2 = 0.00136644441345044 ,

w3 = 0.0212650236700010 , w4 = 0.07032872215612153 ,

w5 = 0.0036974948602444 , w6 = 0.00477018784553696 .

Particularly convenient values of v0 are those located at the boundaries of
the orange colored interval in Fig. 2.4b, since some weights become zero
thus allowing the pruning of certain lattice velocities. In our example one
can reduce the full set of 29 velocities to 25 by setting either w2 to zero
(with v0 = 0.27259285465 . . . ), or w3 to zero (v0 = 0.27278322823 . . . ).
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Figure 2.4: Parametric solution of the system of equa-
tions given by Eq. 2.31, having chosen m̄ = 5.
The left panel makes use of the stencil G =
{(0, 0)

⋃
(±1, 0)FS

⋃
(±1,±1)FS

⋃
(±2, 0)FS

⋃
(±2,±1)FS⋃

(±2,±2)FS}. The panel on the right
was obtained using the stencil G =
{(0, 0)

⋃
(±1, 0)FS

⋃
(±1,±1)FS

⋃
(±2,±1)FS

⋃
(±2,±2)FS⋃

(±3,±1)FS}. In this second case we can identify a
region for which wi(v0) ≥ 0 ∀i (orange colored interval),
giving a set of solutions that can be used to build a
numerically stable quadrature.

Typically, for a given value of m̄ several different stencils are possible;
however, each stencil works correctly only in a certain range of m̄. Still, a
reasonably small set of stencils allows to treat m̄ ≥ 0.5 at the second order
and m̄ ≥ 1.2 at the third order, offering the possibility to cover a very
large kinematic regime, from almost ultra-relativistic to non-relativistic.
A graphical view of (a subset) of all stencils that we have identified is
reported in Appendix E, for both 2-nd and 3-rd order.

In general, the process of finding quadratures becomes harder and harder
as the order is increased and as m̄ takes smaller and smaller values. The
reason for this, from a strictly mathematical point of view, is that for small
values of m̄ the condition number of the system matrix in Eq. 2.33 takes
large values, therefore requiring more advanced linear algebra techniques.
From a physical point of view the reason why this is a difficult problem, is
that for m̄→ 0 the pseudo-particles tends to move all with similar velocity
close to the speed of lights, making it difficult to satisfy the constraint that
all particles travel in one time step at different distances, hopping from a
point of the grid to another point of the grid.

For the limiting case where m̄ → 0 this translates in restricting to
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Figure 2.5: Two examples of stencil compatible with a third order
quadrature, respectively for m̄ = 5 (left) and m̄ = 0
(right). The points forming the stencil for m̄ = 0 lie on
the intersection between the Cartesian grid and a circle
of radius 5.

stencils whose elements sit at the intersection between a Cartesian grid
and a circle of given radius. Incidentally this turns out to be the simplest
case, since we can introduce the parametrization presented in Eq. 2.24,
where following [56] we associate several energy shells to each momentum
vector. We remark that this is possible in the ultra-relativistic regime as
velocity does not depend on energy, and cannot be used if m̄ 6= 0. To give
an example, we consider a second order quadrature rule for m̄ = 0 and
solve Eq. 2.31 by taking the stencil G = {(±3,±4)FS, (±5, 0)FS} (Fig. 2.5b)
and the parametrization in Eq. 2.24 where three different energy shells get
associated to each momentum vector. The solution reads as follows:

p̄0
1 = 0.41577455678 . . . w11 = 0 w21 = 0.08888662624 . . .

p̄0
2 = 2.29428036027 . . . w12 = 0 w22 = 0.03481471669 . . .

p̄0
3 = 6.28994508293 . . . w13 = 0.00175356541 . . . w23 = 0.00042187435 . . .

The procedure can be iterated at higher orders, although already at order
4 one needs to employ stencils with vectors of length 5

√
13, which is

impractical from a computational point of view since implies using very
large grids to achieve an adequate spacial resolution; things become even
more problematic in (3 + 1) dimensions. It is apparent that higher orders
necessarily require off-lattice schemes, which drastically improve the spacial
resolution of the grid, but have as drawbacks the need for interpolation and
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the introduction of artificial dissipation effects [57,62]. In Appendix E we
provide quadratures up to order 5 in (3 + 1), (2 + 1) and (1 + 1) dimensions
space.

Although it can be most likely regarded just as a mere academic exercise,
the (1 + 1) dimensional case is nevertheless worth mentioning. Indeed, as
already remarked in the previous section, in this case the massless limit of
both polynomials and projections diverges. It follows that we cannot derive
the quadrature through Eq. 2.31. However, we can exploit the fact that it
is still possible to obtain an expression for the expansion of the equilibrium
distribution using Eq. 2.30. We can then express the quadrature problem
via the following system of equations:∫

R
f eq((p̄α), (Uα), T̄ )p̄α . . . p̄ω

dp̄

p̄0
=
∑
i

∑
j

wijf
eq
N ((p̄αij), (U

α), T̄ )p̄αij . . . p̄
ω
ij ,

(2.35)
where we explicitly require the preservation of all the moments of the
distribution up to a desired order N . Quadratures up to fifth order are
reported in Appendix E.

2.4 Transport coefficients

The transport coefficients of the model, i.e. shear and bulk viscosities and
thermal conductivity, are defined from the non-equilibrium contributions
of the energy-momentum tensor [8]. The shear viscosity can be obtained
by using the following expression,

2η ∂<αUβ> =

(
∆α
γ∆β

δ −
1

3
∆αβ∆γδ

)
T γδ , (2.36)

where ∆αβ ≡ ηαβ − UαUβ , and the expression ∂<αUβ> stands for

∂<αUβ> =

[
1

2

(
∆α
γ∆β

δ + ∆α
δ ∆β

γ

)
− 1

3
∆αβ∆γδ

]
∂γU δ . (2.37)

The bulk viscosity µ, on the other hand, can be calculated by using

− µ ∂αUα = −P − 1

3
∆αβT

αβ , (2.38)
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and finally, the thermal conductivity λ, with the expression

λ
(
∂αT − TUβ∂βUα

)
= ∆α

γUβT
βγ . (2.39)

However, as already introduced in Section 1.4, and unlike the non-
relativistic case, there is no straightforward way to compute the transport
coefficients directly from the model parameters. In non-relativistic regimes,
both Grad’s moments method [33] and the Chapman-Enskog (CE) [34]
approach, manage to connect kinetic theory and hydrodynamics in a
consistent way, i.e. they provide the same transport coefficients. The
two procedure however deliver (slightly) different results when working in
relativistic regime [8].

Recent works [24, 39–45, 82, 83], based on different, if not conflicting
assumptions, seem to converge towards the results provided by the CE
approach. Conceptual shortcomings of the moments method, which have
recently been highlighted also in the non-relativistic framework [35–38],
revolve around the use of second-order spatial derivatives in constitutive
hydrodynamical equations [39]. On the other hand, objections to the
relativistic Chapman-Enskog expansion point to its link to relativistic
Navier-Stokes equations, which suffer of basic problems, such as broken
causality and resulting instabilities [24,40].

In this section we describe the procedure that we have devised to
measure the transport coefficient from simulations. We consider Taylor-
Green vortex [84], a well known example of a non-relativistic decaying flow
featuring an exact solution of the Navier-Stokes equations, and derive an
approximate solution in the mildly relativistic regime. In the non-relativistic
case, from the following initial conditions in a 2D periodic domain:

ux(x, y, 0) = u0 cos (x) sin (y),

uy(x, y, 0) = −u0 cos (y) sin (x), x, y ∈ [0, 2π]
(2.40)

the solution is given by

ux(x, y, t) = u0 cos (x) sin (y)F (t),

uy(x, y, t) = −u0 cos (y) sin (x)F (t), x, y ∈ [0, 2π]
(2.41)

with
F (t) = exp (−2ν t) , (2.42)

where ν is the kinematic viscosity of the fluid.
In the relativistic case, we need to solve the conservation equations
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(Eq. 1.11). We consider a system with a constant initial particle density, and
assume that density remains constant. We will verify later this assumption
with our numerical results showing that, even though particle density
fluctuates in time, the variation is very small. In this case the first equation
in Eq. 1.11 is directly satisfied and the expression of the second order tensor
slightly simplifies, since ∇αUα = 0, and therefore $ = 0. Consequently,
we drop the term depending on the bulk viscosity and rewrite the second
order tensor as:

Tαβ = −Pgαβ + (ε+ P )UαUβ + π<αβ> . (2.43)

We consider the same initial conditions as in Eq. 2.40, and look for
a solution in the form of Eq. 2.41, with an appropriate function FR(t)

replacing F (t). We plug Eq. 2.41 in Eq. 2.43 and derive bulky analytic
expressions for the derivatives of the second order tensor.
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Figure 2.6: Simulated time evolution of ū for selected τ values on a
L = 400 square lattice (ζ = 0, u0 = 0.2, n = 1, T = 1).
Dashed lines are fits to the exponential decay predicted by
Eq. 2.45. The inset shows non-linear effects in the early
phases of the flow.

A linear expansion of these expressions in terms of u0 yields a much
simpler expression for ∂βTαβ , leading to the differential equation

2ηFR(t) + (P + ε)F
′
R(t) = 0 . (2.44)
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k f(ζ)

τ ζ = 0 ζ = 1.6 ζ = 2 ζ = 3 ζ = 4 ζ = 5 ζ = 10
0.600 0.8003 0.8319 0.8448 0.8587 0.8892 0.8994 0.9311
0.700 0.8002 0.8318 0.8447 0.8584 0.8888 0.8990 0.9302
0.800 0.8002 0.8318 0.8447 0.8583 0.8887 0.8989 0.9300
0.900 0.8002 0.8318 0.8447 0.8583 0.8887 0.8988 0.9299
1.000 0.8002 0.8317 0.8446 0.8582 0.8887 0.8988 0.9299

Table 2.1: Selected sample values for the estimate of the parameter
k f(ζ) for several values of τ and ζ. Statistical errors for
all entries are smaller than 1 in the last displayed digit.

Assuming P + ε constant, for a fixed value of ζ, we derive an explicit
solution:

FR(t) = exp

(
− 2η

P + ε
t

)
FR(0) , (2.45)

depending on just one transport coefficient, the shear viscosity η. Observe
that while the quantity P + ε exhibits some time variation (as found in the
simulations) due to the evolution of the local temperature, such fluctuations
were found to be negligible.

Next, we compare this analytical solution with data obtained via RLBM
numerical simulations, aiming at linking η to the relaxation time τ . We
perform several simulations of the Taylor-Green vortex, with different values
of the initial speed u0 and the mesoscopic parameters, τ and ζ.

We consider small (yet, not negligible) values of u0 and a very broad
range of ζ values, smoothly bridging between ultra-relativistic to near non-
relativistic regimes. To this end, it is expedient to introduce the observable
ū, defined as:

ū2 =

∫ 2π

0

∫ 2π

0

(
u2
x + u2

y

)
dx dy , (2.46)

which is directly proportional to FR(t). Fig. 2.6 is an example of our
numerical results, for several values of the mesoscopic parameters, showing
the time evolution of ū, and clearly exhibiting an exponential decay.

For each set of mesoscopic values, we perform a linear fit of log(ū)

extracting a corresponding value for η via Eq. 2.45. We next assume a
dependence of η on the mesoscopic parameters, which, on dimensional
grounds, reads as

η = k f (ζ) P (τ − 1

2
) , (2.47)

where f(ζ) is normalized such that f(0) = 1, and the 1/2 shift in the
relaxation time is a lattice correction. The numerical value of k and the
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specific functional form of f(ζ) contain the physical information on the
relation between kinetic and hydrodynamics coefficients. For instance,
CE predicts k = 4/5 and an expression for f(ζ) to which we shall return
shortly; for comparison, Grad’s method predicts k = 2/3 and a different
functional dependence on ζ. We are now able to test that Eq. 2.47 holds
correctly, checking that all measurements of η(τ) at a fixed value of ζ yield
a constant value for k f(ζ). One immediately sees from the second column
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Figure 2.7: Measured value k f(ζ) as a function of ζ. The black (ma-
genta) lines are analytic results of the Chapman Enskog
(Grad’s) methods for the relativistic Boltzmann equa-
tion. To improve resolution at small ζ values, we map
ζ → log (ζ +

√
1 + ζ2) on the x-axis. The inset shows

clearly that second order quadratures are not sufficient to
provide accurate measurements of the shear viscosity.

of Tab. 2.1 that k = 4/5 to very high accuracy, consistently with previous
results [24,39,47,85]. More interesting is the assessment of the functional
behavior of f(ζ). The CE expansion predicts [8]

f(ζ) =
ζ3

12

(
3

ζ2

K3(ζ)

K2(ζ)
− 1

ζ
+
K1(ζ)

K2(ζ)
− Ki1(ζ)

K2(ζ)

)
, (2.48)

with Ki1(ζ) =
∫∞

0 e−ζ cosh(t)/ cosh(t) dt.
Our numerical findings for k f(ζ) are shown in Fig. 2.7. For some

ζ values we have used RLBM with several different quadratures, the
corresponding results differing from each other by approximately 1%; we
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consider this an estimate of our systematic errors. Fig. 2.7 also shows the
CE prediction (Eq. 2.48) that almost perfectly matches our results (we
remark that no free parameters are involved in this comparison) and nicely
goes over to the well-known non-relativistic limit for large values of ζ. In
order to provide a more quantitative appreciation of the significance of
our result, we also plot the predictions of Grad’s method, which obey the
following equation:

f(ζ) =
3

2

K2
3 (ζ)

K2(ζ) K4(ζ)
. (2.49)

Comparison of the two curves allows to conclude that our level of resolution
is fully adequate to discriminate between the two options. We can conclude
that the correct transport coefficients for our model are provided by the
Chapman Enskog expansion.

2.5 Forcing Scheme

The definition of force in relativity is subject to a certain degree of arbi-
trariness due to the lack of certain general properties such as, for example,
Newton’s third law [86]. In the following we will use the definition of the
Minkowski force:

Kα = m
dUα

dτ
, (2.50)

subject to the condition

Kαpα = K0p0 −K · p = 0 , (2.51)

and
K = γ F . (2.52)

To introduce a forcing term in our numerical scheme we make the
following two assumptions: i) the force does not depend on the momen-
tum vector ( ∂Kα

∂pα = 0 ) ii) the distribution function in not far from the
equilibrium, such that we can approximate the term Kα ∂f

∂pα in Eq. 2.15
with an expansion that uses the same polynomials used for the equilibrium
distribution function:

∂f

∂pα
≈ ∂f eq

∂pα
= ω(p0)

∞∑
k=0

b(k)((Uµ), T )J (k)((pµ)) , (2.53)
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with the projection coefficients defined as

b(k)((Uµ), T ) =

∫
RD

∂

∂pα
f eq((pµ), (Uµ), T )J (k)((pµ))

dp

p0
. (2.54)

2.6 Relativistic Lattice Boltzmann Algorithm

The initial conditions for the RLBM algorithm consist in providing the
values of fi(x, t0) at a initial time t0. A typical choice is to prescribe the
equilibrium distribution function with a given initial profile for temperature,
density and velocity, thus setting fi(x, t0) = feqi .

For each time step the following operations needs to be performed to
evolve each single grid point:

1. We start by computing the first and second moment of the distribu-
tion:

Nα =
∑
i

fip̄
α
i ,

Tαβ =
∑
i

fip̄
α
i p̄

β
i .

2. The energy density ε and the four velocity Uα are obtained solving
the eigenvalue problem:

εUα = TαβUβ ,

with ε corresponding to the largest eigenvalue of Tαβ , and Uα being
the correspondent eigenvector.

3. Next, we can get the particle density

n = UαN
α .

4. We then compute the temperature from the equation of state (see
Section 1.5).

5. We now have all the fields required to compute the equilibrium
distribution function:

f eq
iN ((p̄µ), (Uµ), T̄ ) = wi

N∑
k=0

a(k)((Uµ), T̄ )J (k)((p̄µi )) .

− 42 −



RELATIVISTIC LATTICE BOLTZMANN METHOD

6. If present, we compute the Minkowski forcing term (see Section 2.5).

7. We now determine the local value for τ (typically by requiring a
constant value for the ratio η/s, with s the entropy density).

8. Finally, we can evolve the system via the discrete Boltzmann equation:

fi(x+ vi∆t, t+ ∆t)− fi(x, t) = ∆t
pµi Uµ
p0τ

(f eq
i − fi) + F ext

i

We have here implicitly made use of the Anderson-Witting collisional
operator (Section 1.3.2), which is compatible with the Landau-Lifshitz
decomposition. Because of this, computing the energy density ε requires
solving an eigenvalue problem. If we were to make use instead of the Marle
collisional operator (Section 1.3.1), which is compatible with the Eckart
decomposition, the computation of n, Uα, ε would significantly simplify:

1. n =
√
NαNα ,

2. Uα = Nα/n ,

3. ε = TαβUαUβ .

2.7 Conversion between physics and lattice units

In this section we discuss the conversion between physics and lattice units.
To relate physical space and time units with the corresponding lattice units,
one starts by assigning the physical length δx, corresponding to one lattice
spacing. Suppose we use N grid points to represent the lenght scale l,
having physical units, this corresponds choosing the lattice spacing δx as:

δx =
l

N
. (2.55)

Time and space units are linked via Eq. 2.28, and we therefore write:

δt =
δx

v0 c
. (2.56)

The translation of lengths and time units between physics and lattice units
is then straightforward, and likewise for derivate quantities. In the following
we give a few examples, where we distinguish between physics and lattice
units indicating quantities with a f or L subscript respectively. Assuming
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D = 3, the conversion of the particle number density reads then

nf = nL
1

(δx)3
. (2.57)

Similarly, a generic velocity can be converted using

vf = vL
δx

δt
. (2.58)

The conversion of all energy related quantities is performed by choosing a
value for the reference temperature T0, introduced in the previous sections
for defining non-dimensional quantities on the lattice. While the choice of
T0 is in principle arbitrary, a sensible choice can have a major impact on
the accuracy of the results. In fact one can expect better results when T0

is chosen such that the numerical values of TL are ∼ 1, since such value
was used as expansion origin for the equilibrium distribution function. As
a final example we translate in lattice units the shear viscosity, for which
we take the expression given by the Chapman Enskog expansion in the
massless limit:

ηf =
4

5
Pτ =

4

5
nTτ . (2.59)

It follows:
ηf = ηLT0

δt

(δx)3
. (2.60)

2.8 Numerical validation: The Riemann problem

In this section we present a validation of the RLBM algorithm solving a
well known instance of the 1D Riemann problem, the Sod’s shock tube,
for a quark-gluon plasma. The 1D Riemann problem is a widely adopted
benchmark for the validation of numerical hydrodynamics methods which
has an exact solution in both the classic case [87] and in the relativistic
regime [9,87]. From a physical point of view the problem consists of a tube
filled with a gas, with two chambers separated by thin a membrane placed
at x = 0 at time t = 0. The two parts of the fluid are set at different initial
state, such that the macroscopic quantities describing the fluid present
a discontinuity at the membrane. Once the membrane is removed the
discontinuities decay producing shock/rarefaction waves, depending on
the initial configuration chosen for the two different chambers. For the
relativistic case, an exact solution exists only in the inviscid limit. Starting
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Figure 2.8: Example of analytic solution of the Sod’s shock tube
problem in the inviscid limit, using a ultra-relativistic
equation of state in (3 + 1) dimensions. The blue dotted
lines represent the initial conditions while the green lines
represent the solution at a certain time t > 0. Refer to [57]
for a detailed definition of the macroscopic quantities in
the five different regions shown in the plot.

from the following initial conditions:

n = nL, T = TL, β = 0, if x < 0

n = nR, T = TR, β = 0, if x > 0
(2.61)

the evolution of the system can be characterized, at a generic time t > 0 ,
by defining the different macroscopic quantities in the five regions shown in
the example in Fig. 2.8. For the ultra-relativistic case in (3 + 1) dimensions
the full form of the solution is described, e.g., in [57]. When a non-zero
viscosity is introduced, dissipation smooths the interfaces between the
different regions. Since in the viscous regime it is not possible to formulate
an exact solution to the problem, we will compare with the solution provided
by other numerical solvers such as the Boltzmann approach multi-parton
scattering program (BAMPS) [88,89].

2.8.1 Numerical setup

The initial conditions, that follow a benchmark performed by BAMPS, are
defined by a pressure step having, in physical units, PL = 5.43 GeV/fm3
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and PR = 0.339 GeV/fm3, with corresponding initial temperatures TL =

400 MeV and TR = 200 MeV. In these kind of simulations one usually
keeps fixed the ratio between the shear viscosity and the entropy density
(η/s) to a constant.

To make contact with real-life physics, it is necessary to convert from
physical units to lattice units. Following the discussion in the previous
section, we start by setting our reference temperature T0 equal to TL,
thus T0 = TL = 400 MeV, which translates the initial temperatures on
the lattice to TL = 1 and TR = 0.5. We also choose the initial values
for the particle number density to be nL = 1 and nR = 0.124, which
correctly reproduce the ratio PL/PR. We perform our tests on a grid of
size Lx × 1× 1, half of which represents the physical domain defined in the
interval (−3.2 fm, 3.2 fm), while the other half forms a mirror image that
allows using periodic boundary conditions. Taking for example Lx = 6400,
it follows that on our grid 6.4 fm corresponds to 3200 grid points, that is
δx = 0.002 fm. The corresponding value of ∆t is quadrature dependent;
considering for example the third order quadrature for ζ = 0 described in
Appendix E having v0 = 1/

√
41, we obtain ∆t ≈ 0.013 fm/c.

Another important quantity that needs to be properly taken into account
is the relaxation time τ , which is used to control the transport coefficients in
the simulations. In the numerical setup τ is expressed in lattice time units,
so it naturally follows that τ = τf∆t, where the physical value τf is related
to the transport coefficients of the system that one wants to study. As
mentioned above, to perform realistic simulations of a quark-gluon plasma
one needs to keep fixed the ratio η/s, where the link between τf and η

was given in Eq. 2.48. The entropy density can be calculated following
the relation s = 4n− n ln (n/neq), where neq comes from the equilibrium
function, neq = dGT

3/π2, with dG = 16 the degeneracy of the gluons [90].
Since s is implicitly given in terms of ~ one needs some extra care when
converting the ratio η/s on the lattice:

~sf =

(
~c
v0

c

1

∆xT0

)
s , (2.62)

where in parenthesis we have given the dimensionally correct conversion
factor from lattice to physics units for the entropy density (in terms of ~).
Therefore, wanting to keep the ratio η/s fixed to a constant value k, we
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Figure 2.9: Sod’s shock tube for a gas of massless particles at t =
3.2 fm/c, for several values of η/s. The results of sim-
ulations of the RLBM (green lines) at η/s = 0.1 and
η/s = 0.5 are compared against the results provided by
BAMPS (blue lines). It is evident that decreasing the
value for η/s the results of RLBM tends to those given by
the analytic solution (black line) in the inviscid limit. Top:
left) density profile right) pressure profile. Bottom: left)
temperature profile right) β = |U i|/U0. All macroscopic
quantities are plotted in non-dimensional units by dividing
for their correspondent initial values at x = −3.2 fm.

obtain the following expression for the relaxation time:

τ =
1

2
+ k

4n− nlog(n π2

16T 3 )
4
5nT

~
T0

v0

∆x
. (2.63)

2.8.2 Ultra-relativistic regime

In Fig. 2.9 we present the results of simulations using a RLBM model
with ζ = 0, for a few selected values of η/s, corresponding to different
viscous regimes: η/s = 0.002 which describes a nearly inviscid hydrody-
namic regime, η/s = 0.1 characterized by a large viscosity and where an
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Figure 2.10: Comparison of BAMPS and our RLBM for the Riemann
problem at t = 3.2 fm/c (ζ = 0, η/s = 0.1). Left) viscous
pressure tensor; Right) heat flux profile.

hydrodynamic approach is still justified, and η/s = 0.5 where we enter a
transition towards a ballistic regime (thus going beyond hydrodynamics).
One can appreciate that for η/s = 0.002 the macroscopic profiles well
compares with the analytic solution in the inviscid limit, and indeed we
can clearly recognize the five different regions previously defined in the
example in Fig. 2.8. The case η/s = 0.1, instead, is in excellent agreement
with the results provided by BAMPS. Here we can observe that as the
viscosity is increased, the interfaces between the different regions becomes
more smooth, and eventually cannot be distinguished anymore when we
move to η/s = 0.5: in this case we are transitioning towards a ballistic
regime, where our hydrodynamic approach shows its limitations.

In Fig. 2.10 we also present the profile of the πzz component of the
pressure viscous tensor and of the qz component of the heat flux, showing
good agreement with the results produced by BAMPS for the first, while
non-negligible differences arise for the latter. Since the Anderson Witting
model provides only one free parameter τ , a fine description of several
transport coefficients would require extensions to a multi relaxation time
collisional operator.

2.8.3 Mildly-relativistic regime

Using the same numerical setup introduced in the previous section, we now
perform simulations by varying ζ, and the equation of state accordingly.
In Fig. 2.11 we show the profiles for the pressure and for β, with two
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Figure 2.11: Sod’s shock tube using the same parameters used in the
previous test case (Fig. 2.9) at t = 3.2 fm/c, varying
ζ. The profiles for the pressure and for β = |U i|/U0

are shown in two different hydrodynamic regimes: Top:
η/s = 0.1. Bottom = η/s = 0.002. All macroscopic
quantities are plotted in non-dimensional units by divid-
ing for their correspondent initial values at x = −3.2 fm.

different values of η/s, respectively η/s = 0.1 for a highly viscous flow, and
η/s = 0.002 for a closely inviscid one. While we do not have here reference
data to compare against, one can appreciate the fact that as we reduce
ζ the results becomes closer and closer to the ultra-relativistic ones; this
shows that the present algorithm is a good candidate to bridge the gap
between ultra-relativistic and non-relativistic regimes.

To conclude, we provide a comparison between the Anderson-Witting
and the Marle collisional model. Since the model of Marle is appropriate
only for mildly relativistic regimes, we consider ζ = 5 for a fair comparison,
and fix the numerical value of the relaxation time to τ = 5. In Fig. 2.12 we
compare the profiles for the pressure and for β given by the two collisional
operators. As we can see, both yield very similar results, with a very good
agreement when comparing the results for the pressure profile, and only
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small discrepancies in the velocity profile.
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Figure 2.12: Comparison between the Anderson-Witting and the
Marle collisional operators, simulating a Sod’s shock
tube problem with ζ = 5 and having fixed in both cases
the relaxation time to τ = 5. The snapshots are taken
at t = 3.2 fm/c. Left: Pressure profile. Right: Profile of
β = |U i|/U0. All macroscopic quantities are plotted in
non-dimensional units by dividing for their correspon-
dent initial values at x = −3.2 fm.
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3
Hydrodynamics of electrons

in graphene

Abstract

Recent experimental studies have shown that certain features of the flow of
electrons in graphene can be explained through a pseudo-relativistic hydrodynamic
approach [91], confirming earlier theoretical predictions [92, 93]. The main aspect
limiting the observation of hydrodynamic regimes in graphene, and in metals
in general, is the scattering of electrons with impurities and phonons which has
a destructive effect on the collective motion of electrons. Consequently, the
observation of electronic hydrodynamics in graphene has required significant
advances in the production of ultra-clean samples. Still, the contribution of
phonons and impurities cannot be neglected in realistic simulations as they
strongly contribute in increasing the effective viscosity of the system, which
according to recent measurements [94,95] is found to be an order of magnitude
larger than that of honey. This chapter describe original result of this work, based
on extensive numerical simulations of the electron flow in graphene for different
hydrodynamical regimes. We start in Section 3.1 with linear steady-state flows
in geometrical setups used in actual experiments, for which we give numerical
evidence of the formation of electron back-flows (whirlpools) in the proximity of
current injectors. In Section 3.2 we consider, instead, regimes where nonlinear
effects start becoming relevant. By considering suitable geometries, we identify
transport parameters for which preturbulence occurs at experimentally achievable
values of the Reynolds number, and could be detected by analyzing the temporal
fluctuations of the electric potential, which are found to span a spectrum of
frequencies between 10 and 100 GHz.



The dynamic of electrons in condensed matter physics is normally studied
in the ballistic-regime, due to the fact that electron-electron collisions
can typically be neglected. Conversely, a hydrodynamic description is
appropriate when the collective behavior of electrons becomes relevant.
While the possibility of investigating electrons flow using the laws of
hydrodynamics was realized already in the 1960s [96], this approach has not
been taken into consideration until very recent times, as it was not feasible
from an experimental point of view. Indeed, the observation of a electronic
fluid in metals is particularly challenging due to the presence of impurities
and phonons, which destroys the collective hydrodynamic flow of electrons.
Recently, with the discovery of new materials exhibiting weak electron-
phonon interactions, alongside technological advances which have allowed
the production of ultra-clean samples, several experiments have provided
evidence for electronic hydrodynamics in GaAs [97], graphene [94,95,98,99]
PdCoO2 [100] and WP2 [101].

Of particular interest for this thesis work is the case of graphene, a 2D
material consisting of a single layer of carbon atoms where due to the special
symmetries of its honeycomb lattice electrons follow an “ultra-relativistic”
dispersion relation [102]. As a consequence, electrons in graphene can be
considered as a fluid of massless (quasi-)particles whose energy depends on
the momentum as E = vFp, with vF ∼ 106 m/s the Fermi speed, mimicking
the role of the speed of light in true relativistic systems.

From a theoretical point of view one of the most interesting features
of graphene is its capability of reaching very small viscosity to entropy
ratios [93], close to the conjectured lower bound η/s = 1/4π [103, 104].
Given this context, it is natural to investigate if nonlinear terms of the
Navier-Stokes equations, which have proven unnecessary so far to explain
experimental results [91, 94, 95, 97–100], may become relevant. A first
study investigating preturbulent regimes in graphene was presented at
the beginning of the decade, basing on numerical simulations making use
of a RLBM solver [105]. Although it was suggested that preturbulent
phenomena could be observed with experimental setup that could be
assembled at the time, still, almost ten years later, electronic turbulence
has not been disclosed experimentally. The reason is that the numerical
setup used in [105] was overly-idealized and in particular did not take into
account electron-phonon interactions. On the other hand both phonons
an impurities significantly limit the mobility properties of the electrons,
drastically reducing the possibility of observing chaotic behaviors [106].
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The electronic properties of graphene, and likewise for any other material,
are strongly affected by phonons and impurities which are always present
in any experimentally realized system. Being graphene de-facto a 2D
material, the dominant source of impurities are to be found out of the
carbon atoms plane, in the substrates on the top of which the graphene
layer is inevitably located. While the electronic properties are limited by
impurities at low temperatures, phonons constrain the electronic mobility
at higher temperatures [107,108].

The interest towards the numerical study of electrons flow in graphene
has motivated the development of two-dimensional RLBM solvers [59–
61, 105]. Most of these numerical methods are based on a second order
expansion of the equilibrium distribution function following the Fermi-Dirac
statistics, and they have been applied to study, for example, low-viscosity
preturbulent regimes [105]. In Section 1.4, working in three dimensions,
we have shown that models based on the third order expansion of the
equilibrium distribution are the minimum requirement to correctly handle
dissipative effects in simulations of the relativistic regime. For this reason,
in this chapter we use a (2 + 1) RLBM formulation based on the third
order expansion of the Maxwell-Jüttner distribution. As a consequence
quantum effects will be neglected, a choice which simplifies the algorithmic
derivation allowing us to retain one of the main LBM features, namely
perfect streaming. In Section 3.1 we provide a first validation of our
approach simulating a laminar flow in the so-called ”vicinity-geometry”,
which was considered in a series of papers [94,109,110] to outline phenomena
such as negative nonlocal resistance and current whirlpools. The numerical
method is tested in a steady-state regime, for which semi-analytical solutions
are available, showing satisfactory agreement with previous works [63]. In
Section 3.2 we take into consideration time-dependent nonlinear flows,
where we investigate the impact of phonon-electron scattering on the
possible experimental detection of preturbulent signals in electronic flows
in graphene [111].

3.1 Current whirlpools in the vicinity-geometry

In this section we provide a benchmark for the simulation of a single layer
graphene sheet in the so-called ”vicinity-geometry”, using the RLBM in
(2 + 1) dimensions presented in the previous chapter. As already remarked,
in this case the Fermi velocity vF of the simulated system plays the role of
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the speed of light. We consider an experimental setup consisting of an ultra-
clean single layer graphene encapsulated between boron nitride crystals
(hBN), a dielectric material which helps enhancing the hydrodynamic
behavior of electrons in the graphene layer [94,109,110].

W

L

Figure 3.1: Sketch of the geometry used for the validation of the code.
Two contacts are used to inject (red area) and drain (green
area) a current from a graphene sheet of width W . The
current is zero at the boundaries of the sample (black
areas). In real experiments, measurements of voltage
drops in the proximity of the injectors are found to be
dependent on the viscosity of the electronic fluid [109].

The geometry is sketched in Fig. 3.1; two contacts are used to inject
(red points) and drain (green points) a constant current from a graphene
sheet of width W . Experimental measurements have shown voltage drops
in the proximity of the injectors, which are found to be dependent on the
viscosity of the electronic fluid [109]. In order to explain the experimental
results, the authors in [109] have derived an analytic approximation for
the electrochemical potential in the proximity of the injectors, which we
rewrite as follows:

Φ(r, θ) ≈ 2Iη

πn̄2e2

cos(2θ)

r2
, (3.1)

where I is the driving current at the contact, η is the shear viscosity, n̄
is the equilibrium density, e is the electron charge, r and θ are used to
parametrize in polar coordinates the space in the proximity of the injector.

The expression in Eq. 3.1 has been obtained assuming an infinitely
long channel. In our simulations we will use a lattice with an aspect ratio
L/W = 4. Regarding boundary conditions, current is set to be zero at the
boundaries of the sample (black areas of Fig. 3.1), while the equilibrium
value of the distribution is imposed at the grid points used to represent
the contacts [50].

The total force acting on the system is given by the vector sum of the
force due to the electric field FE and the force due to the pressure gradient
FP . While FP is naturally described by the RLBM solver, FE is included
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Figure 3.2: Snapshot of a simulation on a 2000×500 lattice, taken after
100000 time steps, with an initial uniform density n = 1.5,
initial T = 1.0, a fixed velocity at inlet vin = 10−5, τ =
1.0, Cg = 10. All quantities are given in numerical units.
The color map describes the electrochemical potential (red
colors positive potential, blue colors negative potential).
Thick lines represent the electrons velocity streamlines.

in the form of an external force and corresponds to a self-consistent electric
field:

FE = −ne∇ϕ . (3.2)

For simplicity, we do not solve explicitly the Poisson equation in the
calculation of the electric potential, we follow instead [112] and use the
local capacitance approximation:

ϕ(x) = −eδn(x)

Cg
, (3.3)

where δn(x) = n(x, t) − n̄, with n̄ the uniform value of the background
electron density, and Cg the geometrical capacitance per unit area, depend-
ing on both the geometrical and permittivity properties of the dielectric
layer. In this first test case we also neglect for simplicity the contribution
due to electron-phonon scattering.

In Fig. 3.2 we show a snapshot of a simulation in a highly viscous
regime, where it can be observed that results are qualitatively comparable
with those presented in [94,109]. In particular one appreciates the (sym-
metric) formation of electron back-flows in the proximity of the gates, so
called current whirlpools. For a more quantitative comparison, we take
into consideration the electrochemical potential and the expression given
in Eq. 3.1. Since this quantity is not a direct observable of the lattice
formulation, we need to perform a matching procedure of the parameters.

By assuming a quasi-incompressible regime simple mathematical calcu-
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Figure 3.3: Electric potential measured at several fixed distances r
from the current injector. Plots present the quantity
r2 Φ(r, θ) normalized to Φ(60, 0), showing that simulated
data points collapse onto a single line, as predicted by
Eq. 3.1. Results taken from a simulation on a 2000× 500
lattice, with an initial uniform density n = 1.5, T = 1.25,
Cg = 10 and a fixed velocity at inlet vin = 10−5 (all
quantities in non-dimensional units). Left: τ = 0.8. Right:
τ = 1.2.

lation lead to the following approximation for the electrochemical potential:

Φ(x) = ϕ(x)− δP (x)

en̄
, (3.4)

where we have used the local approximation [113]:

δP (x) = P (x)− P̄ ≈ EF
2
δn(x) =

EF
2

(n(x, t)− n̄) , (3.5)

with EF = ~vF
√
πn̄ the Fermi energy in single-layer graphene. By coupling

Eq. 3.4 together with the local capacitance approximation in Eq. 3.3 we
can get another useful expression for Φ:

Φ(x) = −eδn(x)

(
1

Cg
+

1

CQ

)
, (3.6)

where 1/CQ = EF /(2n̄e
2). In Fig. 3.3 we plot the electrochemical potential

as a function of the polar angle θ for several lattice points at several
distances r from the center of the injector. We show that for different
setups, the quantity r2 φ(r, θ) does not depend on r, as predicted by Eq. 3.1:
to a good approximation, all curves collapse on the top of each other, as
expected. As a further benchmark we evaluate how the steady state solution
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Figure 3.4: Qualitative (top) and quantitative (bottom) comparison
of the electrochemical potential Φ obtained by varying
the intensity of the electric field FE . Results taken from a
simulation on a 2000× 500 lattice, with an initial uniform
density n = 1.5, T = 1.25, τ = 1.0 and a fixed velocity at
inlet vin = 10−5 (all quantities in non-dimensional units).

reported in Fig. 3.2 varies when tuning the magnitude of the driving forces
FE and FP . To this purpose, we perform simulations with different values
of the parameter Cg to evaluate the role of the electric potential. In such
linear flows Coulomb interactions are not expected to play a role [114].
In Fig. 3.4 we show that this is indeed the case; varying Cg over several
different orders of magnitude does not yield any appreciable effect on the
solution. Moreover the results are the same even in the case when FE
is neglected (CG = ∞), proving that the model gives a self-consistent
description of hydrodynamic theory on long length scales. On the other
hand, the electric potential is expected to play a major role on the dynamic
of non-linear, time-dependent flows. These type of flows are threated in
full details in the next section.
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3.2 Nonlinearities and detection of preturbulent
signals

In this section we investigate preturbulent regimes in ultra-clean graphene
samples. We considerably expand the scope of the early results presented
in [105] by taking into consideration electron-phonon interactions as well
as the effect of a self consistent electric field. We consider geometries

(a)

(b)

W w

L

D

d

Figure 3.5: Geometrical details of the setup analyzed in this work.
Two graphene leads of width W = 1 µm are attached via
“funnels” to a central area. Current is injected through an
orifice of width w = 0.32 µm with an obstacle of length
D = 0.3 µm placed at a lateral distance d = 0.1 µm from
the orifice.

close to the one used in recent experimental work [95], which made use
of a constriction to emphasize a clear crossover from the ballistic to the
hydrodynamic regime as a function of temperature. In Fig. 3.5 we show
two geometries that will be used in simulations. The two cases differ by
the presence of a thin linear obstacle, placed in front of the constriction,
with the intent of triggering preturbulent flows at low Reynolds numbers.
Both setups can be realized experimentally with current technology.

We also take into consideration a large set of values of the relevant
physical parameters which we report in Tab. 3.1. All cases considered
in this work fall in a regime of very small Mach number Ma, in which
compressibility effects can safely be neglected. In this framework the Mach
number is defined as the ratio between the plasma-wave velocity vPW and
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the fluid velocity of the electron fluid

vPW =

√
e2n̄v2

F

CEF
, (3.7)

where the quantity C−1 = C−1
g + C−1

Q has been introduced in Eq. 3.6. We
have verified both a priori and a posteriori that indeed Ma� 1. Moreover,
for values of the injected current sustained in state-of-the-art experiments,
flows are characterized by velocities v � vF, and therefore it is generally
safe to approximate the flow as non-relativistic [106]. For this reason
the results reported in this section will be based on extensive numerical
simulations making use of a classical LB solver. Since a careful development
of accurate boundary conditions for the RLBM is still lacking, we use a
isothermal version of the D2Q37 model [115, 116]. The development of
accurate boundary conditions for the RLBM will allow in future works to
evaluate the signature of the relativistic dispersion relation in the results
here presented.

Table 3.1: Typical values of physical parameters of state of the art
experiments compared with those used in our simulations.

Typical experiments This work
L 5 ∼ 30 [µm] 10 [µm]
W 1 ∼ 5 [µm] 1 [µm]
n̄ 0.5 ∼ 4 · 1012 [cm−2] 2 · 1012 [cm−2]
I 10−3 ∼ 1 [mA] 10−3 ∼ 1 [mA]
ν 0.01 ∼ 0.1 [m2/s] 10−4 ∼ 10−3 [m2/s]
τD 1 ∼ 5 [ps] 1 ∼ 400 [ps]
Cg/e

2 3.03 · 1034 [J−1m−2] 3.03 · 1035 [J−1m−2]

Within the LBM formulation we make use of a Maxwell-Boltzmann
distribution, it follows that the hydrostatic contribution to the electrochem-
ical potential in Eq. 3.6 gives an effective quantum capacitance that can
be written as

1

CQ,MB
=

T

n̄e2
. (3.8)

Observe that having assumed a iso-thermal dynamic, the temperature
appears only in this term; this allows using the temperature as an effective
parameter that we use to get the correct expression for the electrochemical
potential:

T =
EF

2
= m

v2
D

2
, (3.9)
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with m = EF/v
2
D for single-layer graphene.

In order to account for interactions with phonons and impurities we
add a term to the external forces acting on the system (Eq. 3.2):

F = e∇ϕ(r, t)− n(r, t)v(r, t)

τD
. (3.10)

Once again, the first term on the right-hand side describes electric forces
acting on a fluid element, with ϕ(r, t) the electric potential in the 2D plane
where electrons move. The second term describes forces that dissipate
electrons momentum, due to impurities and acoustic phonons. These are
parametrized as a friction term, with a single scattering time τD. Albeit very
simple, this parametrization has proven successful in describing experiments
in the linear-response regime [94,95,97–99].

In Fig. 3.6 we provide a few examples which qualitatively summarize
the results of the simulations. We present three different cases differing by
the magnitude of the injected current, and for each case we show color maps
of the fluid velocity and of the electrochemical potential. For appropriate
values of the transport parameters, that is to say low enough kinematic
viscosity ν and large enough τD, a laminar behavior is found for low values
of the current (10−3 mA, Fig. 3.6a) injected in the sample. As the current
is increased (0.5− 1.0 mA, Fig. 3.6b/c), the symmetry starts breaking and
the flow exhibits a preturbulent behavior.

In current experiments it is not possible to map the fluid velocity ev-
erywhere in the sample, and measurements of the electrochemical potential
can only be conducted at selected sites on the boundaries. In Fig. 3.7a we
present a realistic quantitative analysis, which can be realized with current
technologies, displaying the time evolution of electrochemical potential
difference between locations corresponding to the black square and triangle
in Fig. 3.6; once again we can appreciate a clear change from a constant
to a periodic, to a more irregular evolution, which is best analyzed in the
frequency domain, as shown in Fig. 3.7b.

It is clear that one can vary several parameters and yet obtain results
qualitatively similar to those shown in Fig. 3.6. For example in Fig. 3.8 we
show examples of simulations where the injected current and the kinematic
viscosity are kept fixed while varying τD, the typical interaction time with
phonons. As the electron-electron interactions start becoming dominant
over phonon-electron scattering we observe the crossover from a laminar
to a preturbulent flow. We should remark that here and throughout this
chapter, we refer to ”crossover” as a generic term, since the investigating
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Figure 3.6: Preturbulence in high-quality graphene. The different
panels show snapshots of simulations for several values
of the injected current. All the simulations make use of
the following parameters: ν = 4× 10−4 m2/s, τD = 50 ps,
and Cg/e

2 = 1.52 · 1035 J−1m−2. a) Velocity field v(r, t)
(top) and electrochemical potential Φ(r, t) (bottom) for
an injected current I = 10−6 A. b) Same as in panel b)
but for an injected current I = 5 · 10−4 A. c) Same as in
panels b) and c) but for I = 10−3 A.

of a possible critical behavior goes beyond the scope of the analysis here
presented. With the aim of qualitatively characterizing the crossover, we
then establish a criteria to determine the onset of a preturbulent regime,
where in this context preturbulent refers to a regime prior to the onset
of chaos, where periodic oscillations of the velocity field can be observed.
For a given simulation, we measure at each time step the average value of
< uy(x = L/2, y) >. We consider the simulated flow to be in a preturbulent
regime whenever the root mean square (RMS) of this quantity is larger
than 1% of the velocity at the inlet. In Fig. 3.8 we show an example: the
left panel shows, in a qualitative way, the onset of preturbulent features in
the flow as τD is increased; the right panel, on the other hand, shows the
behavior of the root mean square of < uy(x = L/2, y) > as a function of
τD. For this particular example, we see that the crossover occurs in the τD
interval (90 ps, 95 ps).

Although effective in characterizing the symmetry breaking, the criteria
above defined is admittedly rather arbitrary. We therefore provide a second

− 61 −



Nonlinearities and detection of preturbulent signals

4.5 4.6 4.7 4.8 4.9 5.0

t [ns]

−3

−2

−1

0

1

2

3
∆
φ

(t
)

[m
eV

]

(a)

100 101 102 103

f [GHz]

10−6
10−5
10−4
10−3
10−2
10−1

100
101
102
103

∆
φ̃

(f
)

(b)

Figure 3.7: (a) Time evolution of the electrochemical potential dif-
ference ∆Φ = Φ(r̄, t)− Φ(r̄′, t), with r̄ = (3 µm, 0.1 µm)
and r̄′ = (3 µm, 0.9 µm). These two points have been
marked in Fig 3.6a by a triangle (r̄) and a square (r̄′).
Numerical results shown is this figure have been taken
from simulations using ν = 4 × 10−4 m2/s, τD = 50 ps,
Cg/e

2 = 1.52 · 1035 J−1m−2, and the following values of
the injected current: I = 10−6 A (red), I = 5 · 10−4 A
(green), and I = 10−3 A (blue). (b) Fourier transform of
the signals shown in panel (a). The gray vertical lines rep-
resent the first ten harmonics of the dominant frequency
of the periodic signal obtained from the simulation at
injected current I = 5 · 10−4 A.

example of criteria that could be employed to identify the crossover from a
laminar to a preturbulent regime which, instead, takes into account the
vorticity, generally defined as the curl of the velocity (a scalar in the 2D
case). In particular, we take into consideration the RMS of the average
value of the vorticity. From Fig. 3.9 we can see that for τD < 90 the
average value of the vorticity is very close to zero, due to the symmetric
behavior of the laminar flow; an abrupt change occurs in the interval
τD ∈ (90 ps, 95 ps), where the RMS of the average value of the vorticity
grows of 6-7 orders of magnitudes. Observe that the interval where the
crossover occurs in similar to the one established with the previous criteria.

Having defined a criteria to quantify the crossover between laminar and
preturbulent flows we proceed by carrying out a large number of simulations,
where, for a fixed geometry setup and magnitude of the injected current, we
inspect a wide region in the ν-τD plane. Results are collected in Fig. 3.10,
showing the smallest value of τD (identified by the symbol τ∗D) as a function
of ν, for which a transition to an observable preturbulent regime occurs.

To get a better understanding of the data presented in Fig. 3.10, it is
instructive to refer once again to the parameters and settings of state-of-the-
art experiments, reported in Tab. 3.1. Recent works [94,95] have reported
direct experimental measurements of the kinematic viscosity ν of the 2D
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Figure 3.8: The plot in the right panel shows the ratio between the
root mean square transversal velocity along the middle
section (r′) of the device and the velocity at the inlet, as a
function of τD. The black dotted line represents the (em-
pirical) threshold used to establish the crossover between
a laminar and a preturbulent regime. In this example the
crossover occurs in the τD interval (90 ps, 95 ps). All simu-
lations use an inlet velocity consistent with I = 5 · 10−4 A
and ν = 0.45 · 10−3m2/s. Squares refer to simulations for
which a snapshot of the velocity profile is shown in the
left panel; we show the velocity streamlines while colors
map the module of the velocity.

electron system in graphene, found to be of the order of ν . 0.1 m2/s.
For what concerns electron-phonon interactions, in graphene encapsulated
between hexagonal Boron Nitride crystals (hBN) τD falls in the range
between 1 and 2 ps in experiments conducted at temperatures of 70-
300 K, where hydrodynamic behavior is strongest. Keeping this in mind, a
first inspection of Fig. 3.10 may therefore convey disappointing news: for
values of the parameters currently achieved in experiments, no preturbulent
behavior can be detected. On the other hand, it can be appreciated the
significant impact of the choice in the geometrical setup, which can help
triggering preturbulent signals at low Reynolds numbers. Indeed comparing
the results obtained using the two different geometries shown in Fig. 3.5
it is evident that placing a thin obstacles in from of the occlusion helps
triggering preturbulence at viscosities about one order of magnitude larger
that those allowed by the most basic geometrical setup. We stress here that
the geometry in Fig. 3.5 is by no means optimal, and one can expect further
optimizations to result from a concerted effort between future numerical
and experimental investigations.

This, together with substantial, but not unconceivable, improvements of
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Figure 3.9: The plot in the right panel shows the root mean square
value of the average of vorticity as a function of τD; we
once again observe an abrupt change in the τD interval
(90 ps, 95 ps) similarly to Fig. 3.8. All simulations use
the same physical parameters as in the previous figure.
Squares refer to simulations for which a snapshot of the
vorticity profile is shown in the left panel; these profiles
show again the velocity streamlines but this time colors
map the vorticity profile.

the transport parameters driven by technological advance in material science
may eventually lead to the observation of preturbulent electronic flows.
Another positive aspect is that according to our results, the frequency
distribution of the electrochemical potential falls within a measurable
regime, between 10 and 100 GHz.

From a purely fluid-dynamics point of view, it is interesting to char-
acterize the crossover lines shown in Fig. 3.10 in terms of an appropriate
figure of merit. To this purpose, we develop a simplified model, whose
starting point is the role played by the Reynolds number as an indicator
of turbulence. In the present case, the turbulence-suppressing effect of
the dissipative term in the Navier-Stokes equation is further enhanced by
electron-phonon scattering. We therefore introduce a modified Reynolds
number Re′, incorporating the effect of electron-phonon dissipation:

Re′ =
|v| `

ν +
`2

τD

, (3.11)

with |v| a typical fluid-element velocity and ` a typical macroscopic length
scale. This very simple model proves adequate to characterize the actual
behavior of the system. Lines in Fig. 3.10 are level lines for Re′, which
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Figure 3.10: Critical value τ∗D of the electron-phonon scattering time
as a function of the kinematic viscosity ν, for which
a transition from a laminar to a preturbulent regime
is observed. Thick vertical bars represent results of
numerical simulations, for a given geometrical setup (see
Fig. 3.5) and given value of the injected current. Lines
represent iso-Reynolds curves, where Re′ is modified
Reynolds number (defined in Eq. (3.11) that includes
extrinsic dissipation due to τD and ` is a fitting parameter.
All simulations use Cg/e

2 = 3.03 · 1035 J−1m−2.

capture the trend of the different datasets. In Eq. (3.11), we use the inlet
velocity and obtain `A = 0.085 µm and `B = 0.135 µm through a linear fit,
respectively for the two setups in Fig. 3.5. Note that these values are quite
close to the typical geometrical features of the simulated layouts.

We obtain the following estimates for the critical modified Reynolds
numbers: i) For setup A, Re′ ∼ 25 with I = 10−4 A, Re′ ∼ 58 with
I = 5 · 10−4 A and Re′ ∼ 99 with I = 10−3 A. ii) For setup B, Re′ ∼ 19

with I = 10−4 A, Re′ ∼ 33 with I = 5 · 10−4 A and Re′ ∼ 47 with
I = 10−3 A.

One further aspect to be evaluated is the effect of the self-consistent
electric field (see Eq. 3.2). The geometrical capacitance, introduce in
Eq. 3.3, can be defined as
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Figure 3.11: Critical value τ∗D of the electron-phonon scattering time
as a function of the kinematic viscosity ν, for which
a transition from a laminar to a preturbulent regime
is observed. Thick vertical bars represent results of
numerical simulations, using the geometry in Fig. 3.5b,
a injected current of I = 5 · 10−4[A], and for various
values of Cg/e

2 with respect to the reference value k =
3.03 · 1035 J−1m−2. Lines represent iso-Reynolds curves,
where Re′ as in Eq. (3.11) is used in the definition of a
Reynolds number that includes extrinsic dissipation due
to τD and ` is a fitting parameter. We have respectively
Re′ = 33 for Cg/e

2 = k, Re′ = 38 for Cg/e
2 = 2k,

Re′ = 42 for Cg/e
2 = 5k, Re′ = 46 for Cg/e

2 = 10k,
and Re′ = 52 for Cg/e

2 =∞.

Cg =
εr
4π

d+ d
′

dd′
, (3.12)

with εr the dielectric constant and d and d
′ the distances between the

graphene layer and the top/bottom gates respectively. In Fig. 3.11 we
evaluate the role of varying Cg in simulations. Recall that in the previous
section we had verified that for laminar steady-state regimes the electric field
did not have effect on the system, nor from a qualitative nor quantitative
point of view. In this case the picture is rather different. Indeed we observe
the fact that the electric field contributes in triggering instabilities, reducing
the impact of the electron-phonon scattering. Observe that, as shown in
Tab. 3.1, in simulations we use a value for Cg/e2 one order of magnitude
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bigger than that of typical experiments. The reason is due to numerical
instabilities that arise when the magnitude of the external force exceeds a
certain threshold. While further numerical analysis are desirable to allow
to handle more realistic electric fields, we interpret this as a positive in the
sense that the results presented in Fig. 3.10 can be thought as a conservative
upper bound of where the actual crossover lines could be identified by real
experiments.

− 67 −



4
Implementation of LBM

codes on modern HPC
architectures

Abstract
One key aspect in the success of LBM lies in its simple and regular algorithmic
structure, offering a huge amount of exploitable parallelism, and making this class
of CFD solvers an ideal target for efficient parallel implementations on modern
computer architectures. In this chapter we describe the development of efficient
LBM codes on large clusters of both GPUs and multi/many core processors using
OpenMP and OpenACC, two programming environment that should allow a
reasonable level of code portability on different architectures. We analyze several
data layouts which allow to execute one single code on several different computing
architectures, still extracting a significantly large fraction of the performance peak
of the target architecture.

The numerical results presented in the previous chapters rely on a careful
optimization of codes running on large clusters of GPUs. Since the first
porting a LBM code on a GPU [117], extensive efforts have been put in
place to optimize LBM codes for several diverse architectures. Not only,
the amenability of LBM for parallel implementations has come to an extent
where LBM codes are often used as benchmark for the performance of
novel architectures [118–122], novel programming techniques [123,124], as
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well as energy efficiency of modern high-performance computing (HPC)
architectures [125–127].

In the coming sections we will summarize a few of the best practice in
the implementation of LBM codes for heterogeneous HPC clusters. We
shall stress here that RLBM algorithms present the same computational
features of standard LBM codes. Therefore, while what follows directly
apply to RLBM codes as well, we will base our discussion on a classic LBM
solver. We use as a test case a thermal LBM [115, 116], which has been
used to conduct systematic analyses of several properties of convective
turbulence [128–131].

2D LBM 2D RLBM (ζ = 5) 3D RLBM (ζ = 5)

Stencil vectors 37 45 143
FLOPS/site 6420 ∼ 66000 ∼ 210000
Arithmetic intensity 11 92 92
Collide MLUPS 108 55 14
Collide TFLOPS (Ec %) 0.7 (15 %) 3.7 (70 %) 3.1 (60 %)
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Table 4.1: Overview of the performances achieved on a NVIDIA Pascal
P100 GPU with LBM and RLBM code in 2 and 3 dimen-
sions. The stencils used by each solver are shown in the
figure. We report the number of floating point operations
(FLOP) required to update a grid point, the arithmetic in-
tensity and the performance of the collide kernel, expressed
both in MLUPS (Million Lattice Updates per Second) and
TFLOP per second. The metric Ec gives an estimate of the
GPU sustained performance peak.

In Tab 4.1 we collect a few figures of merit regarding the performances
of LBM and RLBM codes in 2 and 3 dimensions on a recent NVIDIA
Pascal GPU. We can appreciate that while the RLBM code is much more
demanding from a computational point of view, with respect to the thermal
LBM, requiring over one order of magnitude more floating point operations
to update a grid point, it also has a much higher arithmetic intensity (defined
as the ratio of total floating-point operations to total data movement), a
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feature that helps sustaining a higher fraction of the performance peak of
the target architecture.

The main aspects that will be discussed in this chapter are: i) portability
across several architectures using directive based programming frameworks
such as OpenMP and OpenACC; ii) memory layouts and data-structures
and the role that they play in order to maximize performance portability
by enhancing support for vectorization and an effective use of caches; iii)
performance scaling of codes on large HPC clusters using standard MPI
communication techniques.

4.1 Trends in HPC: heterogeneous architectures

HPC systems are more and more often based on accelerators. While the
use of processors specialized in computing different type of workloads has
been a long time active research topic [132–134], it is not since the last
decade, with the breakthrough of general-purpose GPU computing, that
the use of accelerators in HPC has enjoyed a widespread adoption.

More than one out of four of the systems in the most recent (November,
2018) Top500 list [135] uses accelerator/co-processor technologies. These
systems deliver a compounded performance of 585 PFLOPS, which is more
than 40% of the overall aggregate performance (1.41 EFLOPS) provided
by all listed systems. Almost all of these systems consist of large clusters
of either GPUs from NVIDIA and AMD, or many-core co-processors from
Intel.

State-of-the-art GPUs consist of O(1000) simple cores organized in
warps of threads which execute the same instruction at the same time.
On the other hand, Intel accelerators, known as Xeon Phi, offer a fewer
number of cores (see Tab. 4.2) compared to GPUs, still with a major
increase when comparing with regular Xeon processors. The cores of
the Xeon Phi are significantly simpler low-power version of their Xeon
counterpart Nevertheless, they are capable of providing a much larger
degree of concurrency thanks to enhanced hardware multi-threading, which
allows the execution of up to four threads per core, and wider vector units,
supporting up to 512-bit SIMD (Single Instruction Multi Data) instructions.
With respect to GPUs, these processors rely much more on large cache
memories: for example the latest Knights Landing architecture has a 32
MB Last-level-cache, to be compared with the 4 MB of a NVIDIA Pascal
GPU.
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One key factor in the success of accelerators is power efficiency. This
aspect has played a major role in the recent evolution of processor tech-
nologies: the trend is apparent when looking, for example, at the latest
(November, 2018) Green500 [136] list where the top 25 entries are domi-
nated by accelerator-based systems. In Fig. 4.1 we summarize performance
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Figure 4.1: Performance and efficiency trends for accelerators from
AMD, NVIDIA, Intel. Dots give the performance peak
for single and double precision operations, expressed in
GFLOPs (Giga Floating point operations per second).
Colors map the power efficiency of each single device, in
terms of GFLOPs per Watt.

and energy efficiency trends of accelerators in the last decade. The pictures
show the performance peak for single and double precision operations,
expressed in GFLOPs (Giga Floating point operations per second). Colors
map the power efficiency of each single device, in terms of GFLOPs per
Watt.

Another advantage offered by accelerator-based architectures is a sig-
nificantly higher memory bandwidth when comparing against CPU-based
processors, about one order of magnitude larger. On the other hand, the
amount of memory available on the accelerator tends to be rather limited.
Applications requiring large amount of memory can still execute on the
accelerator via buffered memory transfers from/to the host. However,
memory transfers between accelerator and host are a major bottleneck for
several applications, due to the low bandwidth offered by the PCI express
interface connecting the two. To overcome this problem in recent years
there has been a general trend in developing architectures with a more tight
integration between host and accelerator; an example is the OpenPOWER
architecture which integrates IBM processors with NVIDIA Pascal GPUs.
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Intel Haswell Intel KNC Intel KNL AMD Hawaii NVIDIA K80 NVIDIA P100

#physical-cores 8 61 64 44 2 × 13 SMX 56
#logical-cores 16 244 256 2816 2 × 2496 3584
Clock (GHz) 2.4 1.238 1.3 0.930 0.560 1.328
Peak perf. (DP/SP GFLOPS) 307/614 1208/2416 2662/5324 2620/5240 2910/8740 4700/9300
SIMD unit width 256-bit 512-bit 512-bit – – –
LL cache (MB) 20 30.5 32 1.00 1.68 4
#Mem. Channels 4 16 16 (6) – – –
Max Memory (GB) 768 16 16 (384) 16 2 × 12 16
Mem BW (GB/s) 59 352 450 (115) 320 2 × 240 732

Table 4.2: Selected hardware features of the systems tested in this
work. We use a Xeon E5-2630 processor to test the In-
tel Haswell micro-architecture, a Xeon-Phi 7120P for the
Knights Corner (KNC), a Xeon-Phi 7230 for the Knights
Landing (KNL). The AMD Hawaii taken into consideration
is a FirePro W9100 GPU, while the NVIDIA K80 is a
NVIDIA GPU with two Tesla GK210 accelerators. Finally,
the NVIDIA P100 is a Pascal GP100 GPU.

A more radical approach was taken by Intel with their latest accelerator,
the Knights Landing architecture, consisting of a standalone many-core
processor. Although the development of future generations of Xeon Phi
has been discontinued, the technological knowhow of these devices will be
transferred to future multi-core architectures. In Tab. 4.2 we summarize the
most relevant features of a few selected architectures that will be evaluated
in the coming sections.

4.1.1 Programming accelerators: directive based models

Two important issues of accelerator-based heterogeneous computing are
programmability and portability across diverse architectures. The complex-
ities introduced by heterogeneous architectures motivate new programming
models to facilitate the expression of the degree of concurrency of an ap-
plication. Programming frameworks for accelerator-based systems range
from low-level models such as proprietary CUDA from NVIDIA and the
open standard OpenCL, to higher-level directive-based models such as
OpenMP and OpenACC. Directive-based models represent an appealing
solution, promising to reduce the cost of development and ensuring porta-
bility of the code. Among these, OpenACC is considered today one of the
most promising approaches [137]; its structure is in many ways similar to
OpenMP [138]: both frameworks are directive based but, while OpenMP
is more prescriptive, OpenACC is more descriptive. OpenACC defines an
abstract model for accelerated computing, designed to support offloading
of both computation and data from a host to an accelerator device. In
Fig 4.2 we show a diagram of the model where host and accelerator are
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assumed to have two different memory spaces. The model is host-centric
in the sense that the host controls the offloading of code regions and data
to the accelerator. The accelerator consists of a set of processing elements
(PEs) organized in a SIMD unit allowing (asynchronous) processing of
tasks from one or more execution queue. The compiler will implicitly map
each component of the OpenACC abstract model into the structure of
the target architecture. The task of the programmer is to specify which
portions of code (loops / functions) should be executed in parallel on the
accelerator, while the appropriate mapping to the target architecture is left
to the compiler. This approach gives more freedom to the compiler and
the associated runtime support, offering, at least in principle, larger scope
for performance portability.

HOST MEMORY

HOST 
CPU

EXECUTION QUEUES

PE 1 PE 2 PE N

SI
M

D
/S
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T

DEVICE MEMORY

CACHE CACHE CACHE

... ... ...

Figure 4.2: OpenACC abstract model for heterogeneous computing.
The host and the accelerator are assumed to have two
different memory spaces. The accelerator consists of a set
of processing elements (PEs) organized in a SIMD unit
allowing (asynchronous) processing of tasks from one or
more execution queue.

Similarly to OpenACC, recent versions of OpenMP also provide support
for accelerators, but this feature is still immature. For this reason in the
coming sections we will use OpenMP in a rather standard approach, limiting
its use for the parallelization and vectorization of codes on multi/many core
architectures. OpenACC will be instead the preferred choice for GPUs.
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4.2 Optimization of LBM codes

Starting from Eq. 2.12 we can conceptually decompose the evolution of the
discrete lattice Boltzmann equation in two steps: the collision step,

f̂i(x, ei, t) = fi(x, ei, t) +
∆t

τ

(
feqiN (x, ei, t)− fi(x, ei, t)

)
, (4.1)

and the propagate step,

fi(x+ ei∆t, ei, t+ ∆t) = f̂i(x, ei, t) . (4.2)

The collide kernel performs all the mathematical operations required
to implement the collisional operator. For the specific LBM model taken
into consideration, updating a single grid cell requires about 6400 floating
point operations. On the other hand, the propagate kernel consists only
of memory operations, which in accordance with the stencil rules move
the pseudo-particles associated to each grid cell to neighboring sites. The
propagate step introduces data dependencies between pairing grid sites.
A standard approach to deal with this problem is to keep in memory
two copies of the grid, which are used as source and destination in an
alternate way at each time step. We make use of this technique, known as
double-buffering or ”A-B” pattern, to remove data dependencies, allowing
the processing of all sites in parallel. There are also other schemes available
in the literatures implementing in-place operations [139–141], which can
be used to reduce memory requirements.

Another major difference between collide and propagate kernel is that
while the collision step is completely local, the propagate involves sparse
memory accesses: these conflicting computational requirements need to be
taken into account in order to define an efficient data layout used to store
the data in memory.

4.2.1 Data Layout

Data layouts for LBM, and likewise for many other stencil applications, have
been traditionally based on either array of structures (AoS) or structure
of arrays (SoA) schemes. Recently, slightly more complex data layouts for
LBM codes have been introduced [142,143], with a detailed performance
analysis reported in [144].

We start taking into consideration the AoS and SoA schemes, of which
a visual representation is given in Fig. 4.3. In the AoS layout, all the
pseudo-particles (or populations) belonging to the same lattice site are
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stored at consecutive memory locations. Conversely, in the SoA scheme

f0[0]

f37[N]
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f1[0]
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f0[1]f37[0] f0[2] f0[N]f1[1] f37[1] f1[2] f37[2] f1[N]

f1[0] f1[1] f1[N] f2[0] f2[1] f2[N] f37[1]f37[0]

Figure 4.3: Graphic representation of the AoS and SoA layout.

all the populations having the same index i are stored contiguously, while
populations belonging to the same lattice site are stored far from each
other at non unit-stride addresses. The benefit of the AoS scheme is data
locality, making it more suitable for exploiting the various cache hierarchies
present in standard multi/many core processors. On the other hand, the
SoA layout is more suitable for exploiting vector units as well as SIMT
(Single Instruction Multi Thread) executions on GPUs architectures.

The first two rows of Tab. 4.3 compare the performance of the two
layouts on a few selected architectures. Performance is measured in MiLlion
Updates per Second (MLUPS), a common metric for this class of applications.
As we can see, the SoA layout provides better performances not only
on GPUs, but also on cache-based processor. The reason is that the
AoS layout implies several misaligned load and store operations which
prevent the compiler from vectorizing the code. However, by carefully
profiling the code we observe that the AoS scheme exploits the cache of
Intel processors significantly better than the SoA layout, suggesting that
further improvements could be put in place. Therefore, following [143], we
introduce a hybrid data structure with the aim to preserve the benefits
of both the AoS and the SoA layouts. With respect to [143] we introduce
a slightly modification in order to make the code more suitable for auto-
vectorization. For each array of pseudo-particles, we divide each grid-column
in partitions of size LY / VL; all elements sitting at the i-th position of
each partition are then packed together into ”clusters” of V L elements. The
parameter VL is an integer multiple of the vector width of the underling
architecture. Fig. 4.4 gives a visual representation of this layout that we call
layout Clustered Array of Structure of Array (CAoSoA). This data layout
allows vectorization of inner structures of size VL, and, at the same time,
improves data locality w.r.t to the SoA layout. In Tab. 4.3 we compare
the performances of propagate and collide employing all the data-layouts
discussed so far, for a variety of different architectures. As we can see, the
CAoSoA improves performances for the collide kernel on Intel processors,
better suiting their larger and deeper cache hierarchies, while on GPUs
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Figure 4.4: Graphic representation of the CAoSoA layout; for illustra-
tion purposes, we take VL=2 and compare with the SoA
layout.

we observe only marginal differences in performance. This data layout has
been employed to write a common code capable of executing efficiently on a
broad range of parallel architectures. The code was written using OpenMP
and OpenACC. A much more detailed description on the implementation
of this portable code can be found in [124] and [144]; here we hide most of
the technicalities and only provide a small example of code: in Fig. 4.5 we
show a section of the collide kernel where for each grid point the density
is computed. In the left and right panel we compare the implementation
based on OpenMP and OpenACC respectively.

4.2.2 Multi-node implementation

In most heterogeneous computing systems, accelerators cannot handle data
transfers, so inter node communications need to be controlled by the host-
CPU. Transfers between host and accelerator introduce extra overheads
that need to be taken into account when developing efficient multi-node
programs, with the ultimate goal of hiding as much as possible these costs

Data Structure Haswell KNC KNL Tesla K80 AMD Hawaii P100

propagate

AoS 43 91 174 54 27 141
SoA 71 226 732 552 393 753
CAoSoA 61 198 710 536 353 894

collide

AoS 14 28 113 23 7 54
SoA 18 39 134 107 39 108
CAoSoA 21 54 165 106 44 105

Table 4.3: Performance in MLUPS for the propagate and collide
kernels on several architectures using different data-layouts.
The size of the lattice is 2160× 8192 points. For the K80
we report the results obtained running on just one of the
two GK210 GPUs.
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#pragma omp parallel for
for ( ix = STARTX ; ix < ENDX ; ix++ ){

#pragma omp simd
for ( iy = STARTY ; iy < ENDY ; iy++ ){

size_t idx = IDX ( ix , iy ) ;

data_t rho = 0.0;

for ( ip = 0 ; ip < NPOP ; ip++)
rho = rho + f [ idx ] . p [ ip ] ;

}
}

#pragma acc kernels present ( f )
#pragma acc loop gang independent
for ( ix = STARTX ; ix < ENDX ; ix++ ){

#pragma acc loop vector independent
for ( iy = STARTY ; iy < ENDY ; iy++ ){

size_t idx = IDX ( ix , iy ) ;

data_t rho = 0.0;
#pragma acc loop seq reduction (+: rho )
for ( ip = 0 ; ip < NPOP ; ip++)

rho = rho + f [ idx ] . p [ ip ] ;
}

}

Figure 4.5: Sample code for the collide kernel showing the computa-
tion of the local density. The example is shown for the
OpenMP (left) and OpenACC (right) implementation.

by overlapping computation and communications.
In this section we will compare two different approaches, implemented

using MPI. To start, we associate one MPI-process to each accelerator and
consider a 1D decomposition. The MPI-processes are therefore arranged in
a ring topology, in which each node i exchanges data with its neighbors
i− 1 and i+ 1.

Asymmetric workload distribution

In this first case we assume that all the computation is performed on the
accelerator, with the role of the host processor restricted, for the moment,
to the handling of communications. We conveniently divide the lattice in
three regions: a bulk central region and two boundary regions containing
the data that needs to be exchanged with the neighboring sites. The
algorithm implementing this strategy is rather simple. At each time step
the boundary regions are copied from the device memory to a buffer in the
host memory. At this stage data can be sent to the neighboring nodes by
means of MPI communications and written on a destination buffer. Finally,
the data is transferred back to the device and written in the lattice halo
layer. While this procedure takes place, the bulk region can be processed
asynchronously on the accelerator. On the other hand, processing of the
boundary regions can take place only after left and right halos have been
received. A possible scheduling of these operations in sketched in the
timeline in Fig. 4.6.

The drawback of this approach is that it only marginally exploits
the computational resources available on the host CPUs, limiting overall
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Figure 4.6: Scheduling of operations for an asymmetric workload dis-
tribution, where all the computation is performed on the
accelerator, while the host is only responsible for MPI
communications.

performances. The obvious step forward is to run compute-intensive kernels
in a concurrent and balanced way on both hosts and accelerators.

Symmetric workload distribution

We again consider a 1D partitioning, where each slice of the lattice is as-
signed to a different MPI-process. Within each MPI-process, each partition
is further divided between host and accelerator. We define again three
regions, but this time the M leftmost and the M rightmost columns are
assigned to the host CPUs, with the remaining SIZEX - 2M assigned
to the accelerator. Computation is performed asynchronously on both
host and accelerator, with a possible scheduling of the operations executed
by each MPI-process shown in Fig. 4.7. With respect to the previous
implementation, data involved in MPI communications is always resident
on the host, thus avoiding dependencies between MPI and device-to-host
and host-to-device data transfers.

Since host and accelerator generally have different peak (and sustained)
performance, a careful workload balancing between the two is required. To
this aim we introduce a simple model for the total execution time Texe:

Texe = max{Tacc, Thost + Tmpi}+ Tswap (4.3)

Tacc = (LX − 2M)LY · τd (4.4)

Thost = (2M)LY · τh (4.5)

Tmpi = τc (4.6)
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Figure 4.7: Scheduling of operations for a symmetric workload distri-
bution, where computation is performed in a concurrent
(and balanced) way on both hosts and accelerators.

where Tacc and Thost are the execution time of the accelerator and host
respectively, Tswap is the time required to exchange data between host and
accelerator at the end of each iteration, and Tmpi is the time necessary to
move data between two MPI-processes. As Tswap does not depend on M ,
Texe is minimal for a value M∗ for which the following holds:

Tacc(M
∗) = Thost(M

∗) + Tmpi(M
∗) , (4.7)

We add in the code an initial auto-tuning phase, in which we run a set
of mini-benchmarks to estimate approximate values of τd, τh, τc. These are
then used in Eq.4.7 to estimate M∗.

In Fig. 4.8 we show the performance of our code for three different
lattice sizes as a function of 2M/LX, i.e. the fraction of lattice sites that
we map on the host CPU. For this benchmark we have considered three
different systems, all using the same 8-core Intel Haswell as host device,
combined with three different accelerators, respectively a Intel KNC, a
NVIDIA K80 GPU, and a AMD Hawaii GPU. In Fig. 4.8 dots report
measured values, while dotted lines represent the modeling provided by
Eq. 4.3. Our auto-tuning strategy predicts performance with good accuracy,
and estimates the optimal workload distribution between host and device
for which the overall execution time is minimized. As expected, for values
of M < M∗ and M > M∗ performances decrease because the workload is
unbalanced either on the accelerator or on the host side. In particular it is
interesting to observe that, as M becomes much larger than M∗, all lines
in the plot fall on top of each other, as in this limit the host CPU handles

− 79 −



Optimization of LBM codes

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
2M / LX

20

30

40

50

60

70

80

90

M
LU

PS
Haswell + Intel KNC
Haswell + NVIDIA K80
Haswell + AMD Hawaii

Figure 4.8: Performance of the heterogeneous code (measured in
MLUPS, see the text for definition) for all three plat-
forms, as a function of the fraction of lattice sites mapped
on the Haswell (HSW) host CPU (2M/Lx) . KNC is
the Intel Knights Corner accelerator, K80 is the NVIDIA
Tesla GPU and Hawaii is the FirePro W9100 AMD GPU
(refer to Tab 4.2 for more details). Dots are measured
values, dashed lines are the prediction of our model.

the largest part of the overall computation.
In Fig. 4.9 we show a comparison of the performance and the scaling

performance between two different implementations running on a cluster of
Intel KNC and one based on NVIDIA K80 GPUs. The results clearly show
that the heterogeneous implementation offer significant improvements both
in terms of absolute performance, both in terms of scalability.

We conclude this chapter giving a summary of the performance obtained
with a portable implementation of a thermal LBM code on a wide range of
diverse parallel architectures, presented in Tab 4.4. We once again remark
that the lessons learned in the optimization of LBM codes directly apply
to the RLBM, and have allowed to perform the extensive numerical work
described in previous chapters.
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Figure 4.9: Multi-node scalability results measured on a cluster of
Intel KNC (top) and NVIDIA K80 (bottom). We compare
performances – MLUPS and relative speedup – on three
different lattice sizes of the heterogeneous code described
in the text: we denote with (v1) the asymmetric imple-
mentation where all the computational is performed on
accelerators only, while (v2) refers to the implementation
of a symmetric workload distribution between host and
accelerator.

Table 4.4: Comparison of the performance achieved on several dif-
ferent architectures (details in Tab 4.2). We report the
performance of the propagate and collide kernels as well
as those of the full code (Global), using the CAoSoA data
layout.

Intel Haswell Intel KNC Intel KNL AMD Hawaii NVIDIA K80 NVIDIA P100

Propagate [GB/s] 32 100 398 216 310 485
Ep 54% 28% 88% 70% 65% 66%

Collide [GF/s] 78 307 1100 351 1371 703
Collide [MLUPS] 12 46 166 54 211 108
Ec 22% 25% 41% 14% 46% 15%

Global [MLUPS] 9.8 35 119 47 168 90
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In this thesis work we have described the development of a class of rela-
tivistic lattice Boltzmann methods, suitable for the description of mildly
relativistic fluids. We have significantly extended the range of possible
physical applications over previous works, which were bounded to the
description of fluids of pseudo-particles of zero proper mass, implying ultra-
relativistic equations of state. Our model offers the possibility of seamlessly
bridging the gap between relativistic and low-speed non-relativistic fluid
regimes, also including appropriate equations of state.

We shall here summarize the main results presented in this thesis. For
the sake of clarity we have grouped them in four thematic areas:

(1) Algorithmic derivation.

• We have explicitly built a new class of RLBM based on massive
pseudo-particles, able to recover the moments of the relativistic
equilibrium distribution up to the fifth order, in (3 + 1), (2 + 1)

as well as (1 + 1) dimensions.

• The use of massive pseudo-particles translates into the possibility
of working in a specific relativistic range of velocities of the
simulated system, ranging from strongly relativistic to almost
classical.

• The derivation is based on Gauss-type quadratures on space-
filling Cartesian lattices, allowing the use of different sets of
pseudo-particles, and implementing exact streaming without
losing spatial resolution.

• The algorithmic structure is very similar to that of other well es-
tablished LBM, and retains the same computational advantages,



IMPLEMENTATION OF LBM CODES ON MODERN HPC
ARCHITECTURES

offering high amenability to parallelization.

(2) Study of the relativistic transport coefficients in the relaxation time
approximation.

• We have presented numerical evidence that the Chapman Enskog
expansion accurately relates kinetic transport coefficients and
macroscopic hydrodynamic parameters in dissipative relativistic
fluid dynamics, confirming recent theoretical results.

• Since the transport coefficients in the RTA do not necessarily
coincide with those of the full Boltzmann equation, these results
cannot be considered conclusive. Nevertheless they provide a
solid calibration procedure which is used to control the transport
coefficients in our simulations; based on this we have provided
simulations of the Riemann problem for a quark-gluon plasma,
showing good agreement with results obtained using other solvers
present in the literature. These results suggest that RLBM can
be used to accurately simulate realistic physics systems.

(3) Study of the transport properties of a electronic fluid in graphene
samples, in both laminar and unsteady regimes.

• As an example of application, we have presented simulations
of laminar flows in ultra-clean graphene samples, taking into
consideration geometrical setups used in actual experiments.
We have given numerical evidence of the formation of electron
back-flows (whirlpools) in the proximity of current injectors.

• We have considered electronic systems where nonlinear effects
start becoming relevant. We have presented realistic simula-
tions, accounting for electrostatic interactions and dissipative
electron-phonon scattering, and proposed experimentally realiz-
able geometries capable of sustaining electronic preturbulence
in graphene samples.

• We have identified transport parameters for which preturbu-
lent signals occur at experimentally achievable values of the
Reynolds number and manifest through temporal fluctuations
of the electrochemical potential.

• We have characterized the crossover from a laminar to a pre-
turbulent regime by introducing a modified definition for the
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Reynolds number, by accounting for the interaction of electrons
with phonons and impurities.

(4) Computational aspects.

• We have developed and optimized LBM solvers on large clusters
of both GPUs and multi/many core processors.

• We have investigated aspects related to code portability and
performance portability on modern heterogeneous architectures
using directive based programming languages such as OpenMP
and OpenACC.

• We have developed data layouts which guarantee at the same
time efficient memory accesses and vector processing, allowing
performance-portability on different accelerator architectures.

• We have shown how to run compute-intensive kernels in a con-
current and balanced way on both hosts and accelerators; this in
turn has allowed better exploitation of computational resources
available on modern heterogeneous architectures, also helping
improving the inter node scalability performances.

All these results can be used as a solid starting point for future works.
Several algorithmic aspects can be improved. For example, much needed
developments concern the definition of accurate boundary conditions for
RLBM. Moreover, it is desirable to get better control on instabilities occur-
ring for simulations of supersonic flows, which can be obtained introducing
formulations based on entropic stabilizers.

These improvements are expected to help the development of reliable
simulations for the physical analysis of hydrodynamic properties of quark-
gluon plasma produced in heavy-ion collision experiments. Another ideal
target of future works will be the extension of the hydrodynamic approach
for the study of electronic fluids, as was here discussed for the case of
graphene, to other exotic materials such as Weyl semi-metals.
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A
Special Relativity

Abstract
In this appendix chapter we provide a brief introduction to the theory of special
relativity, the Lorentz transformations and the basics of relativistic mechanics.
We introduce the notation used throughout this thesis work for tensor analysis
in Minkowski space, and give a list of definitions of relativistic counterpart of
Newtonian physical quantities such as velocity, momentum, force and energy, used
in the description of relativistic fluids. Contents and structure closely follow the
introductory chapter in [8]. For a more thorough introduction to special relativity
the reader is refereed to e.g. [145].

The theory of special relativity was formulated by Albert Einstein in
1905 [146] in order to resolve the conflict between Newtonian mechanics
and Maxwell’s equations. It is based on two postulates:

• The laws of physics are invariant in all inertial (i.e. non-accelerating)
frames of reference.

• The value of the speed of light in free space is the same for all
observers that are in inertial frames.

The first postulate states that the physical laws are the same for all
inertial frames, and therefore they are invariant with respect to space-
time transformations between inertial systems. From the second postulate
it follows that the velocity of a light signal propagating in vacuum is a



Minkowski space

universal constant: c = 299792458 m/s. As a consequence time intervals
are not absolute, for example the time interval between two events as
measured by a moving observer is not the same as the one measured by an
observer at rest.

A.1 Minkowski space

The Minkowski space-time is a parametrization of time and the three-
dimensional Euclidean space, defined such that the interval between two
events is independent of the reference frame used for the observation. The
coordinates in the four-dimensional Minkowski space are described by the
vector (xα) with its coordinates defined by:

x0 = ct ,

x1 = x ,

x2 = y ,

x3 = z .

(A.1)

A four-vector (Aα) can be represented either through its contravariant Aα

or covariant components Aα. The metric tensor, here defined as

(ηαβ) =


+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 , (A.2)

puts in relation these two representations through

Aα = ηαβA
β and Aα = ηαβAβ . (A.3)

It is straightforward to verify that the following relations hold:

ηαβ = ηαβ ,

ηαβ η
βγ = δγα ,

(A.4)

where δγα is the Kronecker symbol defined by

δγα =

{
0 if α = γ

1 if α 6= γ
(A.5)
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Figure A.1: Representation of two inertial systems.

The contravariant and covariant vectors can be also represented as

(Aα) =
(
A0, A

)
,

(Aα) = (A0,−A) ,
(A.6)

where it is clear that component-wise A0 = A0 and Ai = −Ai. Here and
throughout this thesis work we use bold letters to denote Euclidean vectors.
The scalar product of two four-vectors (Aα) and (Bα) is defined in the
Minkowski space as

AαBα = A0B0 +AiBi = A0B0 −A ·B, (A.7)

whereA·B is the scalar product between two vectors in a three-dimensional
space. The gradient ∂/∂xα with respect to the covariant coordinates, and
the gradient ∂/∂xα with respect to the contravariant coordinates, are
defined as

(∂α) =

(
∂

∂xα

)
=

(
∂

∂x0
,−∇

)
,

(∂α) =

(
∂

∂xα

)
=

(
∂

∂x0
, ∇

)
,

(A.8)

with ∇ the usual gradient in three dimensions.
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A.2 Lorentz transformation

Consider two reference frames S and S′, as shown in Fig. A.1, with S′

moving with respect to S with uniform velocity v along the x axis. The
infinitesimal interval between two events in the reference frame S is given
by

ds2 = ηαβ dxα dxβ = c2 dt2 − dx2 − dy2 − dz2 . (A.9)

It is simple to show, under the assumption of homogeneity of space-time
and isotropy of space, that ds2 is an invariant: the interval between two
events is the same in all inertial frame of reference, i.e.

ds2 = ds′2 . (A.10)

A Lorentz transformation determines the transformation law between
two inertial systems by keeping the interval between two events invariant.
Denoting (Lαβ) the transformation matrix between two reference frames we
can write

x′α = Lαβxβ . (A.11)

The derivation of the transformation matrix is a simple exercise. For the
example in Fig. A.1 one gets:

(
Lαβ
)

=


1√

1−β2

−β√
1−β2

0 0

−β√
1−β2

1√
1−β2

0 0

0 0 1 0

0 0 0 1

 . (A.12)

where β = v/c. By combining Eq. A.11 and Eq. A.12 one can then obtain
the Lorentz transformation from the reference frame S to S′:

ct′ =
ct− βx√

1− β2
,

x′ =
x− βct√

1− β2
,

y′ = y,

z′ = z.

(A.13)

Several important physical implications such as time dilatation, lenght
contraction and relativity of simultaneity are steadily derived from Eq. A.13.
Moreover, the Galilean transformations can be obtained as a particular
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case of the Lorentz transformation when velocities are small relative to the
speed of light (v � c):

t′ = t,

x′ = x− vt,
y′ = y,

z′ = z.

(A.14)

The general transformation law, for two inertial systems in which one
is moving with respect to the other with a velocity v = (v1, v2, v3), is given
by

(
Lαβ
)

=


γ −γ v1c −γ v2c −γ v3c
−γ v1c 1 + (γ − 1)

v21
|v|2 (γ − 1) v1v2|v|2 (γ − 1) v1v3|v|2

−γ v2c (γ − 1) v1v2|v|2 1 + (γ − 1)
v22
|v|2 (γ − 1) v2v3|v|2

−γ v3c (γ − 1) v1v3|v|2 (γ − 1) v2v3|v|2 1 + (γ − 1)
v23
|v|2

 ,

(A.15)
where γ is the Lorentz factor

γ =
1√

1− β2
, (A.16)

and β = |v|/c.

A.3 Relativistic mechanics

Consider a particle moving through space-time. The path of the particle
is called world line and is represented by means of world points. In the
previous section we have already discussed the advantage of using four-
vectors to represent world points and the infinitesimal displacement ds

between two of them. In the following we define the correspondent in special
relativity of Newtonian physical quantities that automatically transform
correctly under Lorentz transformations.

A.3.3 Proper time

One first convenient definition is the introduction of the concept of proper
time τ (not to be confused with the relaxation time τ used in the models
approximating the collisional operator of the Boltzmann equation). The
proper time is the time indicated by a clock moving with the same speed
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of the particle. From Eq. A.9 the proper time can be expressed as:

dτ =
1

c
ds

=
1

c

(
c2 dt2 − dx2 − dy2 − dz2

)1/2
= dt2

(
1− |u|

2

c2

)1/2

,

(A.17)

where u is the velocity of the particle in the reference frame of the observer.
From Eq. A.17 we see that the proper time is a scalar invariant and that
the following useful relation holds:

dt

dτ
= γ . (A.18)

A.3.3 Four-velocity

The four-velocity is naturally defined as the rate of change of the four-
displacement with respect to the proper time:

Uα =
dxα

dτ
. (A.19)

Geometrically (Uα) is a four-vector tangent to the world line. From the
definition, together with Eq. A.18, one can express the components of the
four-velocity vector as

(Uα) =

(
dxα

dτ

)
=

(
dt

dτ

dxα

dt

)
= γu (c,u) , (A.20)

with u = dx/ dt the particle velocity in the reference frame. It follows that
the norm of the four-velocity vector in not just Lorentz invariant but also
constant, since

UαUα = c2 . (A.21)

A.3.3 Momentum four-vector and energy

The proper-mass (or rest mass) m is, likewise the proper-time, a scalar
invariant, allowing for a straightforward definition of the momentum four-
vector of a particle:

pα = mUα . (A.22)
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The contravariant components of the momentum four-vector are then

(pα) = γu (mc,mu) =

(
E

c
,p

)
=
(
p0,p

)
, (A.23)

where the energy of the particle is defined as

E = cp0 = γumc
2 . (A.24)

The norm of (pα) is then given by:

pαpα =
E

c2
− p2 . (A.25)

On the other hand, combining the definition in Eq. A.22 together with
Eq. A.21 we get:

pαpα = m2UαUα = m2c2 . (A.26)

Comparing Eq. A.25 and A.26 we obtain the relativistic energy equation :

E2 = p2c2 +m2c4 , (A.27)

It is simple to observe that for a particle with zero velocity Eq. A.27 gives
the famous Einstein formula E = mc2. Furthermore, for small velocities
(v � c) a second order expansion delivers the classical expression for the
kinetic energy of a particle:

Ek = E −mc2 ≈ 1

2
mv2 . (A.28)

As a final observation, note that Eq. A.27 can be used to express p0 as
a function of p:

p0 =
√
|p|+m2c2 . (A.29)

A.3.3 Minkowski force

The definition of force in relativity is subject to a certain degree of arbi-
trariness due to the lack of certain general properties such as, for example,
Newton’s third law. One common choice is to adopt the Minkowski force,
defined as

Kα =
dpα

dτ
= m

dUα

dτ
. (A.30)
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It can be shown that the contravariant components of the Minkowski force
are then

(Kα) = γ

(
F · u
c

,F

)
, (A.31)

where F = dp/ dt is the non-relativistic force. A consequence of using this
definition of force is that the following holds true:

KαUα = 0 . (A.32)
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B
Useful integrals

The derivation of the relativistic lattice Boltzmann method presented in
this thesis work often requires the calculation of integrals in the form

Zα...ω =

∫
e
pαUα
T pα . . . pω

dpD

p0
, (B.1)

having assumed natural units, c = kB = ~ = 1. An elegant way to compute
these integrals was provided in [8] (see section 5.6) and consists in first
calculating Z as a function of Uα to then obtain all the other integrals by
successive differentiation of Z with respect to Uα. Indeed, one easily finds
that

Zα1···αn = (−1)n Tn
∂nZ

∂Uα1 · · · ∂Uαn
. (B.2)

For the calculation of these integrals it is useful to recall the definition and
a few properties of the modified Bessel function of the second kind:

Kα(ξ) =

∫ ∞
0

e−ξ cosh t coshαtdt (B.3)

Kα+1(ξ) = Kα−1(ξ) +
2α

ξ
Kα (B.4)

∂Kα(ξ)

∂ξ
=
α

ξ
Kα(ξ)−Kα+1(ξ) . (B.5)

To give an example we consider the (1 + 1) dimensional case and start
by observing that since Z is a Lorentz-invariant quantity, it can only
depend on UαUα, which is equal to 1; however, since we need to compute
derivatives with respect to Uα, we will first derive the result for a generic
UαU

α and only after having performed the derivatives, evaluate the result



for UαUα = 1. In order to simplify the calculation of the integrals we
choose a reference frame where U0 is the only non-zero component of (Uα).
In order to do so, we take a generic Lorentz boost

U
′0 = γ(U0 − λUx) ,

U
′x = γ(Ux − λU0) ,

(B.6)

and require that U ′x is zero, implying λ = Ux/U0 and

γ =
1√

1− (Ux/U0)2
=

U0√
(U0)2 − (Ux)2

=
U0

√
UαUα

. (B.7)

As a consequence we get the following Lorentz transformation

U
′0 =

√
UαUα ,

U
′x = 0 ,

(B.8)

which we can apply to the integral Z (recall that dp/p0 is also a Lorentz
invariant) getting

Z =

∫
e−
√
UαUα

p0

T
dp

p0
. (B.9)

From the above, using the substitution p0 = m cosh y one easily gets:

Z = 2

∫ ∞
0

e−
√
UαUα

m
T

cosh y dy = 2K0(
√
UαUα

m

T
) . (B.10)

To calculate Zα we take the derivative of Z with respect of Uα:

∂Z

∂Uα
= −2

m

T
K1

(√
UαUα

m

T

) Uα√
UαUα

. (B.11)

Combining the above result with Eq. B.2 and using UαUα = 1 we get

Zα = −T ∂Z

∂Uα
= 2mK1

(m
T

)
Uα . (B.12)

All the other integrals can be obtained by iterating the here described
procedure. The full list of results can be expressed in a compact general
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form in (D + 1)-dimensions:

Z = BA0

Zα = BTA1U
α

Zαβ = BT 2(A2U
αUβ −A1η

αβ)

Zαβγ = BT 3(A3U
αUβUγ −A2(ηαβUγ + ηαγUβ + ηβγUα))

Zαβγδ = BT 4(A4U
αUβUγU δ −A3(ηαβUγU δ + ηαγUβU δ + ηβγUαU δ

+ ηαδUγUβ + ηδγUβUα + ηβδUαUγ)

+A2(ηαβηγδ + ηαγηβδ + ηαδηβγ))

Zαβγδε = BT 5(A5U
αUβUγU δU ε

−A4(ηαβUγU δU ε + ηαγUβU δU ε + ηαδUγUβU ε + ηαεUγU δUβ

+ ηγβUαU δU ε + ηδβUαUγU ε + ηεβUαUγU δ + ηγδUαUβU ε

+ ηγεUαUβU δ + ηδεUαUβUγ)

+A3(U δ(ηαβηγε + ηαγηβε + ηεβηγα) + Uγ(ηαβηδε + ηαδηβε + ηεβηδα)

+ Uβ(ηαγηδε + ηαδηγε + ηεγηδα) + Uα(ηβγηδε + ηβδηγε + ηεγηδβ)))

Zαβγδεν = BT 6(A6U
αUβUγU δU εUν

−A5(ηαβUγU δU εUν + ηαγUβU δU εUν + ηαδUβUγU εUν

+ ηαεUβUγU δUν + ηανUβUγU δU ε + ηβγUαU δU εUν

+ ηβδUαUγU εUν + ηβεUαUγU δUν + ηβνUαUγU δU ε

+ ηγδUαUβU εUν + ηγεUαUβU δUν + ηγνUαUβU δU ε

+ ηδεUαUβUγUν + ηδνUαUβUγU ε + ηενUαUβUγU δ)

+A4(UαUβ(ηγνηδε + ηγδηνε + ηγεηδν) + UαUγ(ηβνηδε + ηβδηνε + ηβεηδν)

+ UαUν(ηγβηδε + ηγδηβε + ηγεηβδ) + UαU δ(ηγνηβε + ηγβηνε + ηγεηνβ)

+ UαU ε(ηγνηδβ + ηγδηνβ + ηγβηδν) + UγUβ(ηανηδε + ηαδηνε + ηαεηδν)

+ UνUβ(ηγαηδε + ηγδηαε + ηγεηαδ) + U δUβ(ηγνηαε + ηγαηνε + ηγεηνα)

+ U εUβ(ηγνηδα + ηγδηνα + ηγαηδν) + U δUγ(ηβνηαε + ηαβηνε + ηβεηνα)

+ U δU ε(ηβνηαγ + ηαβηνγ + ηβγηνα) + U δUν(ηβγηαε + ηαβηγε + ηβεηγα)

+ UγU ε(ηβνηαδ + ηαβηδν + ηβδηνα) + UγU ε(ηβεηαδ + ηαβηδε + ηβδηνα)

+ U εUν(ηβγηαδ + ηαβηγδ + ηβδηγα))

−A3(ηεν(ηαβηγδ + ηαγηβδ + ηδβηγα) + ηδν(ηαβηγε + ηαγηβε + ηεβηγα)

+ ηγν(ηαβηδε + ηαδηβε + ηεβηδα) + ηβν(ηαγηδε + ηαδηγε + ηεγηδα)

+ ηαν(ηβγηδε + ηβδηγε + ηεγηδβ)))
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Integrals in (3 + 1) dimensions

where the common prefactor B and the coefficients A0, A1, . . . An are
specified in the coming sections for the different dimensional cases.

B.1 Integrals in (3 + 1) dimensions

B = 4πmT

A0 = K1

(m
T

)
A1 =

m

T
K2

(m
T

)
A2 =

(m
T

)2
K3

(m
T

)
A3 =

(m
T

)3
K4

(m
T

)
A4 =

(m
T

)4
K5

(m
T

)
...

An =
(m
T

)n
Kn+1

(m
T

)

B.2 Integrals in (2 + 1) dimensions

B = 2πTe−
m
T

A0 = 1

A1 = 1 +
m

T

A2 = 3 + 3
m

T
+
(m
T

)2

A3 = 15 + 15
m

T
+ 6

(m
T

)2
+
(m
T

)3

A4 = 105 + 105
m

T
+ 45

(m
T

)2
+ 10

(m
T

)3
+
(m
T

)4

...

An = θn(
m

T
)
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USEFUL INTEGRALS

where θn are the reverse Bessel polynomial [147] defined as:

θn(x) = xn yn(
1

x
) =

n∑
k=0

(n+ k)!

(n− k)!k!

xn−k

2k

B.3 Integrals in (1 + 1) dimensions

B = 2

A0 = K0

(m
T

)
A1 =

m

T
K1

(m
T

)
A2 =

(m
T

)2
K2

(m
T

)
A3 =

(m
T

)3
K3

(m
T

)
A4 =

(m
T

)4
K4

(m
T

)
...

An =
(m
T

)n
Kn

(m
T

)
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C
Relativistic Orthogonal

Polynomials

In this appendix we provide the analytic expressions of the relativistic
orthogonal polynomials, up to the second order, for both the massive and
massless case in (3 + 1), (2 + 1) and (1 + 1) dimensions. The polynomials
have been derived following a Gram-Schmidt procedure starting from the set
V = {1, pα, pαpβ . . . } (α, β ∈ {0, x, y, z}), and using as weighting function
ω the equilibrium distribution in the co-moving frame:

ω(p0) =
1

NR
exp

(
−p0/T0

)
, (C.1)

with NR a normalization factor under the measure dDp/p0.
The notation J (n)

m1...mn , mi ∈ 0, x, y, z is used to label the polynomial of
order n with the subscript m referring to the corresponding element of the
generating basis V .

C.1 (3 + 1) dimensions

C.1.1 m̄ 6= 0

In order to write the polynomials in a more compact form, we define the
shorthand

G3 = m̄
K2(m̄)

K1(m̄)
. (C.2)



RELATIVISTIC ORTHOGONAL POLYNOMIALS

J (0) = 1

J
(1)
0 =

p̄0 −G3√
m̄2 − (G3 − 3)G3

J (1)
x =

p̄x√
G3

J (1)
y =

p̄y√
G3

J (1)
z =

p̄z√
G3

J
(2)
00 =

1

((G3 − 3)G3 − m̄2)

√
3G3

(
3G3

(G3−3)G3−m̄2 + 5
)

+ 6m̄2

(
(p̄0)2

(
G2

3

−3G3 − m̄2
)

+ 3p̄0
(
−G2

3 + 4G3 + m̄2
)
−G2

3

(
m̄2 + 3

)
+ 3G3m̄

2 + m̄4
)

J (2)
xx =

2(p̄x)2 − (p̄y)2 − (p̄z)2

2
√

3
√

4G3 + m̄2

J (2)
yy =

(p̄y)2 − (p̄z)2

2
√

4G3 + m̄2

J
(2)
0x =

G3p̄
0p̄x − p̄x

(
4G3 + m̄2

)
G3

√
− m̄4

G3
+ (G3 − 3)m̄2 + 4G3

J
(2)
0y =

G3p̄
0p̄y − p̄y

(
4G3 + m̄2

)
G3

√
− m̄4

G3
+ (G3 − 3)m̄2 + 4G3

J
(2)
0z =

G3p̄
0p̄z − p̄z

(
4G3 + m̄2

)
G3

√
− m̄4

G3
+ (G3 − 3)m̄2 + 4G3

J (2)
xy =

p̄xp̄y√
4G3 + m̄2

J (2)
xz =

p̄xp̄z√
4G3 + m̄2

J (2)
yz =

p̄yp̄z√
4G3 + m̄2

C.1.1 m̄ = 0

It is simple to verify that in the limit m̄→ 0, G3 → 2. With this knowledge
it is straightforward to calculate the polynomials in the mass-less limit.

J (0) = 1

J
(1)
0 =

p̄0 − 2√
2
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(2 + 1) dimensions

J (1)
x =

p̄x√
2

J (1)
y =

p̄y√
2

J (1)
z =

p̄z√
2

J
(2)
00 =

(p̄0 − 6)p̄0 + 6

2
√

3

J (2)
xx = −(p̄0)2 − 3(p̄x)2

4
√

6

J (2)
yy =

(p̄y)2 − (p̄z)2

4
√

2

J
(2)
0x =

(p̄0 − 4)p̄x

2
√

2

J
(2)
0y =

(p̄0 − 4)p̄y

2
√

2

J
(2)
0z =

(p̄0 − 4)p̄z

2
√

2

J (2)
xy =

p̄xp̄y

2
√

2

J (2)
xz =

p̄xp̄z

2
√

2

J (2)
yz =

p̄yp̄z

2
√

2

C.2 (2 + 1) dimensions

C.2.2 m̄ 6= 0

J (0) = 1

J
(1)
0 = p̄0 − 1− m̄

J (1)
x =

1√
1 + m̄

p̄x

J (1)
y =

1√
1 + m̄

p̄y

J
(2)
00 =

1

2
(p̄0)2 + (−2− m̄)p̄0 +

1

2
(2 + m̄(4 + m̄))
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RELATIVISTIC ORTHOGONAL POLYNOMIALS

J
(2)
0x =

−3− m̄(3 + m̄)

(1 + m̄)
√

4 + 2m̄− 1/(1 + m̄)
p̄x +

1√
4 + 2m̄− 1/(1 + m̄)

p̄0p̄x

J
(2)
0y =

−3− m̄(3 + m̄)

(1 + m̄)
√

4 + 2m̄− 1/(1 + m̄)
p̄y +

1√
4 + 2m̄− 1/(1 + m̄)

p̄0p̄y

J (2)
xx =

m̄2

2
√

3 + m̄(3 + m̄)
− (p̄0)2

2
√

3 + m̄(3 + m̄)
+

(p̄x)2√
3 + m̄(3 + m̄)

J (2)
xy =

1√
3 + m̄(3 + m̄)

p̄xp̄y

C.2.2 m̄ = 0

J (0) = 1

J
(1)
0 = p̄0 − 1

J (1)
x = p̄x

J (1)
y = p̄y

J
(2)
00 =

1

2
(p̄0)2 − 2p̄0 + 1

J
(2)
0x =

1√
3
p̄0p̄x −

√
3p̄x

J
(2)
0y =

1√
3
p̄0p̄y −

√
3p̄y

J (2)
xx =

1√
3

(p̄x)2 − 1

2
√

3
(p̄0)2

J (2)
xy =

1√
3
p̄xp̄y

C.3 (1 + 1) dimensions

C.3.3 m̄ 6= 0

Like in the (3 + 1) dimensional case we find convenient to express all the
Bessel coefficients by means of the following shorthand:

G1 = m̄
K1(m̄)

K0(m̄)
. (C.3)

J (0) = 1
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(1 + 1) dimensions

J (1)
x =

p̄x√
G1

J
(1)
0 =

p̄0 −G1√
−G2

1 +G1 + m̄2

J
(2)
00 =

1(
G2

1 −G1 − m̄2
)√−3G3

1−2G2
1(m̄2−1)+5G1m̄2+2m̄4

−G2
1+G1+m̄2

(
(p̄0)2

(
G2

1 −G1 − m̄2
)

+p̄0
(
−G2

1 + 2G1 + m̄2
)
−G2

1

(
m̄2 + 1

)
+G1m̄

2 + m̄4
)

J
(2)
0x =

G1p̄
0p̄x − p̄x

(
2G1 + m̄2

)
G1

√
− m̄4

G1
+G1 (m̄2 + 2)− m̄2

C.3.3 m̄ = 0

It is simple to see that since G1 → 0 for m̄ → 0, we cannot define the
mass-less limit for the polynomials in (1 + 1) dimensions.
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D
Relativistic Orthogonal

Projections

In this appendix we provide the analytic expressions of the orthogonal
projections, up to the second order, for both the massive and massless case
in (3 + 1), (2 + 1) and (1 + 1) dimensions. The projection coefficients are
defined as

a(k)((Uµ), T ) =

∫
RD

f eq((pµ), (Uµ), T )J (k)((pµ))
dp

p0
, (D.1)

with J (k) the orthogonal polynomials introduced in Appendix C. The
notation used for the projection coefficients a(k) is the same previously
introduced for the the orthogonal polynomials.

D.1 (3 + 1) dimensions

D.1.1 m̄ 6= 0

a(0) =
1

G3

a
(1)
0 =

U0 − 1√
m̄2 − (G3 − 3)G3

a(1)
x =

Ux√
G3



(3 + 1) dimensions

a(1)
y =

Uy√
G3

a(1)
z =

U z√
G3

a
(2)
00 =

√
3G3

(
3G3

(G3−3)G3−m̄2 + 5
)

+ 6m̄2

3G3

(
5G3

3 + 2G2
3 (m̄2 − 6)− 11G3m̄2 − 2m̄4

)(G3
3

(
T̄
(
4(U0)2 − 1

)
−3U0

)
+G2

3

(
m̄2
(
(U0)2 − 1

)
+ 3

(
−4T̄ (U0)2 + T̄ + 4U0 − 1

))
+G3m̄

2
(
−(4T̄ + 3)(U0)2 + T̄ + 3U0 + 3

)
− m̄4

(
(U0)2 − 1

)
a(2)
xx = −

(
(U0)2 − 3(Ux)2 − 1

) (
4G3T̄ + m̄2

)
2
√

3G3

√
4G3 + m̄2

a(2)
yy = −

(
4G3T̄ + m̄2

) (
(U0)2 − (Ux)2 − 2(Uy)2 − 1

)
2G3

√
4G3 + m̄2

a
(2)
0x =

Ux
(
4G3(T̄U0 − 1) + m̄2(U0 − 1)

)
G3

√
− m̄4

G3
+ (G3 − 3)m̄2 + 4G3

a
(2)
0y =

Uy
(
4G3(T̄U0 − 1) + m̄2(U0 − 1)

)
G3

√
− m̄4

G3
+ (G3 − 3)m̄2 + 4G3

a
(2)
0z =

U z
(
4G3(T̄U0 − 1) + m̄2(U0 − 1)

)
G3

√
− m̄4

G3
+ (G3 − 3)m̄2 + 4G3

a(2)
xy =

UxUy
(
4G3T̄ + m̄2

)
G3

√
4G3 + m̄2

a(2)
xz =

UxU z
(
4G3T̄ + m̄2

)
G3

√
4G3 + m̄2

a(2)
yz =

UyU z
(
4G3T̄ + m̄2

)
G3

√
4G3 + m̄2

where G3 was previously defined in Eq. C.2.

D.1.1 m̄ = 0

a(0) =
1

2

a
(1)
0 =

U0 − 1√
2

a(1)
x =

Ux√
2
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RELATIVISTIC ORTHOGONAL PROJECTIONS

a(1)
y =

Uy√
2

a(1)
z =

U z√
2

a
(2)
00 =

(2U0 − 1)(2T̄U0 + T̄ − 3)

2
√

3

a(2)
xx =

T̄
(
−(U0)2 + 3(Ux)2 + 1

)
√

6

a(2)
yy =

T̄
(
−(U0)2 + (Ux)2 + 2(Uy)2 + 1

)
√

2

a
(2)
0x =

√
2Ux(T̄U0 − 1)

a
(2)
0y =

√
2Uy(T̄U0 − 1)

a
(2)
0z =

√
2U z(T̄U0 − 1)

a(2)
xy =

√
2T̄UxUy

a(2)
xz =

√
2T̄UxU z

a(2)
yz =

√
2T̄UyU z

D.2 (2 + 1) dimensions

D.2.2 m̄ 6= 0

a(0) =
1

m̄+ T̄

a
(1)
0 = U0 − m̄+ 1

m̄+ T̄

a(1)
x =

Ux√
m̄+ 1

a(1)
y =

Uy√
m̄+ 1

a
(2)
00 =

1

2(m̄+ T̄ )

(
m̄2(U0 − 1)2 + m̄(U0 − 1)(3T̄U0 + T̄ − 4)

+T̄ 2
(
3(U0)2 − 1

)
− 4T̄U0 + 2

)
a

(2)
0x =

Ux
(
(m̄+ 1)U0

(
m̄2 + 3m̄T̄ + 3T̄ 2

)
− (m̄(m̄+ 3) + 3)(m̄+ T̄ )

)
(m̄+ 1)

√
2m̄− 1

m̄+1 + 4(m̄+ T̄ )
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(1 + 1) dimensions

a
(2)
0y =

Uy
(
(m̄+ 1)U0

(
m̄2 + 3m̄T̄ + 3T̄ 2

)
− (m̄(m̄+ 3) + 3)(m̄+ T̄ )

)
(m̄+ 1)

√
2m̄− 1

m̄+1 + 4(m̄+ T̄ )

a(2)
xx = −

(
m̄2 + 3m̄T̄ + 3T̄ 2

) (
(U0)2 − 2(Ux)2 − 1

)
2
√
m̄(m̄+ 3) + 3(m̄+ T̄ )

a(2)
xy =

UxUy
(
m̄2 + 3m̄T̄ + 3T̄ 2

)√
m̄(m̄+ 3) + 3(m̄+ T̄ )

D.2.2 m̄ = 0

a(0) =
1

T̄

a
(1)
0 = U0 − 1

T̄

a(1)
x = Ux

a(1)
y = Uy

a
(2)
00 =

1

2
T̄
(
3(U0)2 − 1

)
+

1

T̄
− 2U0

a
(2)
0x =

√
3Ux(T̄U0 − 1)

a
(2)
0y =

√
3Uy(T̄U0 − 1)

a(2)
xx = −1

2

√
3T̄
(
(U0)2 − 2(Ux)2 − 1

)
a(2)
xy =

√
3T̄UxUy

D.3 (1 + 1) dimensions

D.3.3 m̄ 6= 0

a(0) =
1

G1

a
(1)
0 =

Ux√
G1

a(1)
x =

U0 − 1√
−G2

1 +G1 + m̄2
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RELATIVISTIC ORTHOGONAL PROJECTIONS

a
(2)
00 =

√
G1

(
3− G1

−G2
1+G1+m̄2

)
+ 2m̄2

G1

(
G2

1(3G1 − 2) +G1(2G1 − 5)m̄2 − 2m̄4
)(G3

1

(
T̄
(
2(U0)2 − 1

)
−U0

)
+G2

1

(
m̄2
(
(U0)2 − 1

)
− 2T̄ (U0)2 + T̄ + 2U0 − 1

)
+G1m̄

2

×
(
−(2T̄ + 1)(U0)2 + T̄ + U0 + 1

)
− m̄4

(
(U0)2 − 1

)
)

a
(2)
0x =

Ux
(
2G1(T̄U0 − 1) + m̄2(U0 − 1)

)
G1

√
− m̄4

G1
+ (G1 − 1)m̄2 + 2G1

where G1 was previously defined in Eq. C.2.

D.3.3 m̄ = 0

Since G1 → 0 for m̄ → 0, we cannot define the mass-less limit for the
orthogonal projections in (1 + 1) dimensions.
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E
Quadratures

In this appendix we present a collection of Gauss-type quadratures that
can be used to implement a RLBM on a Cartesian grid, for both the
massive and massless case in (3 + 1), (2 + 1) and (1 + 1) dimensions.
Examples are given at several order N , where in this context the order of
a quadrature coincides with the maximum order of the polynomials for
which the orthonormal conditions are satisfied:∫

RD
ω(p̄0)Jl((p̄

µ))Jk((p̄
µ))

dp̄

p̄0
=
∑
i

wiJl((p̄
µ
i ))Jk((p̄

µ
i )) = δlk , (E.1)

where J (k) are the orthogonal polynomials introduced in Appendix C, (p̄µi )

the discrete (D + 1) momentum vectors, and wi the quadrature weights.

E.1 Mildly relativistic regime

We use the following parametrization of the momentum vectors:

(p̄µi ) = m̄γi(1, v0ni) , (E.2)

where ni ∈ ZD are the vectors forming the stencil G = {ni | i =

1, 2, . . . , imax} defined by the (on-lattice) quadrature points, v0 is a free
parameter that can be freely chosen such that vi = v0||ni|| < 1,∀i, m̄ is
the non-dimensional rest mass in terms of a reference temperature T0, and
γi is the Lorentz factor associated to vi.

In the following we present a few selected stencils, alongside a graphical
view of their correspondent working range in terms of the parameter m̄,
that can be used to build a numerically stable quadrature at both 2nd and
3rd order.



QUADRATURES

E.1.1 (3 + 1) dimensions

10−1 100 101 102

m̄

G
(o2)
E

G
(o2)
D

G
(o2)
C

G
(o2)
B

G
(o2)
A

10−1 100 101 102

m̄

G
(o3)
C

G
(o3)
D

G
(o3)
E

G
(o3)
B

G
(o3)
A

Order 2

G
(o2)
A = {⋃ni} G

(o2)
B = {⋃ni} G

(o2)
C = {⋃ni} G

(o2)
D = {⋃ni} G

(o2)
E = {⋃ni}

( 0, 0, 0) ( 0, 0, 0) ( 0, 0, 0) ( 0, 0, 0) ( 0, 0, 0)
(±1, 0, 0)FS (±2,±1,±1)FS (±1, 1, 0)FS (±1, 1, 0)FS (±2,±2, 0)FS
(±1, 1, 0)FS (±2,±2,±1)FS (±2,±2,±2)FS (±4,±4,±2)FS (±4,±4,±2)FS
(±1, 1, 1)FS (±3,±1, 0)FS (±3,±2,±1)FS (±5,±4, 0)FS (±5,±4, 0)FS
(±2, 0, 0)FS (±3,±2, 0)FS (±3,±3,±1)FS (±6,±2, 0)FS (±6,±2, 0)FS
(±2,±1, 0)FS (±3,±1,±1)FS (±4, 0, 0)FS (±4,±4,±3)FS (±6,±2,±1)FS

Order 3

G
(o3)
A = {⋃ni} G

(o3)
B = {⋃ni} G

(o3)
C = {⋃ni} G

(o3)
D = {⋃ni} G

(o3)
E = {⋃ni}

( 0, 0, 0) ( 0, 0, 0) ( 0, 0, 0) ( 0, 0, 0) ( 0, 0, 0)
(±1, 0, 0)FS (±1, 0, 0)FS (±1, 0, 0)FS (±2,±1,±1)FS (±2,±1,±1)FS
(±1, 1, 0)FS (±1, 1, 1)FS (±4, 0, 0)FS (±3,±3,±1)FS (±3,±3,±1)FS
(±1, 1, 1)FS (±2, 0, 0)FS (±4,±1, 0)FS (±4,±4, 0)FS (±4,±1,±1)FS
(±2, 0, 0)FS (±2,±2, 0)FS (±4,±4, 0)FS (±4,±1,±1)FS (±4,±3,±1)FS
(±2,±1, 0)FS (±2,±1,±1)FS (±4,±3,±2)FS (±4,±3,±1)FS (±4,±3,±2)FS
(±2,±2, 0)FS (±2,±2,±1)FS (±4,±3,±3)FS (±4,±3,±2)FS (±4,±4,±2)FS
(±2,±1,±1)FS (±2,±2,±2)FS (±5,±1, 0)FS (±4,±3,±3)FS (±5,±2,±1)FS
(±2,±2,±1)FS (±3, 0, 0)FS (±5,±3, 0)FS (±5,±3, 0)FS (±5,±3,±1)FS
(±2,±2,±2)FS (±3,±2, 0)FS (±5,±2,±1)FS (±5,±2,±1)FS (±5,±2,±2)FS
(±3, 0, 0)FS (±3,±1,±1)FS (±5,±2,±2)FS (±5,±2,±2)FS (±6, 0, 0)FS

Table E.1: Example of stencils that can be used to construct a nu-
merically stable quadrature, both at the second and third
order, for a RLBM in (3 + 1) dimensions. In the figure
horizontal bars represent the working range of values m̄ of
each quadrature.
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Mildly relativistic regime

E.1.1 (2 + 1) dimensions

10−1 100 101 102

m̄

G
(o2)
E

G
(o2)
C

G
(o2)
D

G
(o2)
B

G
(o2)
A

10−1 100 101 102

m̄

G
(o3)
A

G
(o3)
B

G
(o3)
C

G
(o3)
D

G
(o3)
E

Order 2

G
(o2)
A = {⋃ni} G

(o2)
B = {⋃ni} G

(o2)
C = {⋃ni} G

(o2)
D = {⋃ni} G

(o2)
E = {⋃ni}

( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0)
(±1, 0)FS (±1, 0)FS (±3,±3)FS (±3,±1)FS (±5,±2)FS
(±1,±1)FS (±1,±1)FS (±4,±2)FS (±4,±2)FS (±5,±3)FS
(±2, 0)FS (±2,±2)FS (±4,±3)FS (±4,±3)FS (±5,±4)FS
(±2,±1)FS (±3,±2)FS (±5, 0)FS (±5, 0)FS (±6, 0)FS
(±2,±2)FS (±4, 0)FS (±5,±1)FS (±5,±1)FS (±6,±2)FS

Order 3

G
(o3)
A = {⋃ni} G

(o3)
B = {⋃ni} G

(o3)
C = {⋃ni} G

(o3)
D = {⋃ni} G

(o3)
E = {⋃ni}

( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0)
(±1,±1)FS (±1,±1)FS (±1, 0)FS (±1, 0)FS (±1, 0)FS
(±4,±2)FS (±2,±2)FS (±2, 0)FS (±1,±1)FS (±1,±1)FS
(±5,±4)FS (±4,±3)FS (±2,±2)FS (±2, 0)FS (±2, 0)FS
(±5,±5)FS (±5, 0)FS (±3, 0)FS (±2,±1)FS (±2,±1)FS
(±6,±2)FS (±5,±5)FS (±3,±2)FS (±3,±1)FS (±2,±2)FS
(±6,±3)FS (±6,±2)FS (±3,±3)FS (±3,±2)FS (±3, 0)FS
(±6,±4)FS (±6,±3)FS (±4, 0)FS (±3,±3)FS (±3,±1)FS
(±7,±1)FS (±6,±4)FS (±4,±1)FS (±4, 0)FS (±3,±2)FS
(±7,±2)FS (±7,±1)FS (±4,±2)FS (±4,±2)FS (±3,±3)FS

Table E.2: Example of stencils that can be used to construct a nu-
merically stable quadrature, both at the second and third
order, for a RLBM in (2 + 1) dimensions. In the figure
horizontal bars represent the working range of values m̄ of
each quadrature.
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E.1.1 (1 + 1) dimensions

10−1 100 101 102

m̄

G
(o2)
D

G
(o2)
E

G
(o2)
C

G
(o2)
B

G
(o2)
A

10−1 100 101 102

m̄

G
(o3)
E

G
(o3)
D

G
(o3)
C

G
(o3)
B

G
(o3)
A

Order 2

G
(o2)
A = {⋃ni} G

(o2)
B = {⋃ni} G

(o2)
C = {⋃ni} G

(o2)
D = {⋃ni} G

(o2)
E = {⋃ni}

( 0) ( 0) ( 0) ( 0) ( 0)
(±1) (±1) (±1) (±13) (±14)
(±2) (±2) (±2) (±16) (±15)
(±3) (±3) (±3) (±17) (±17)
(±7) (±4) (±5) (±18) (±18)

Order 3

G
(o3)
A = {⋃ni} G

(o3)
B = {⋃ni} G

(o3)
C = {⋃ni} G

(o3)
D = {⋃ni} G

(o3)
E = {⋃ni}

( 0) ( 0) ( 0) ( 0) ( 0)
(±1) (±1) (±1) (±11) (±12)
(±2) (±2) (±5) (±13) (±13)
(±3) (±4) (±6) (±15) (±15)
(±4) (±5) (±8) (±16) (±16)
(±5) (±6) (±9) (±17) (±17)
(±6) (±7) (±10) (±18) (±18)

Table E.3: Example of stencils that can be used to construct a nu-
merically stable quadrature, both at the second and third
order, for a RLBM in (1 + 1) dimensions. In the figure
horizontal bars represent the working range of values m̄ of
each quadrature.
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Ultra relativistic regime

E.2 Ultra relativistic regime

For the special case of massless particles we have an extra degree of freedom
given by the fact that in this case velocity does not depend on energy. We
then associate several energy shells to each vector, thus adding a second
index in the definition of the discrete momentum vectors:

(p̄µi,j) = p̄0
j (1,

ni
||ni||

) , (E.3)

where the index j labels different energy shells, and it is clear that ||ni||
has to be the same for all the stencil vectors since all the particles travel at
the same speed vi = c = 1,∀i.

In the following we provide the stencil vectors, the energy shells and
the quadrature weights defining Gauss-type quadratures up to order 5, in
both (3 + 1), (2 + 1) and (1 + 1) dimensions.

E.2.2 (3 + 1) dimensions

Order 2

G = {⋃ni} p̄0
j wij

(±2,±1,±1)FS 3.3054072893322786 0.0245283950433191
(±3, 0, 0)FS 0.9358222275240878 0

7.7587704831436335 0.0163006691342629
0

0.0003891858228425
0.0017936666649682

Order 3

G = {⋃ni} p̄0
j wij

(±4,±4,±3)FS 0.7432919279814314 0
(±5,±4, 0)FS 2.5716350076462784 0
(±6,±2,±1)FS 5.7311787516890996 0.0093098040253911

10.953894312683190 0.0085195569675087
0

0.0056909667738262
0.0013041770173120

0
0.0008932820065742
0.0000029126213348

− 114 −



QUADRATURES

0.0000338363537565
0.0000090390475856

Order 4

G = {⋃ni} p̄0
j wij

(±6,±6,±3)FS 0.6170308532782703 0.0035940787317887
(±7,±4,±4)FS 2.1129659585785241 0
(±8,±4,±1)FS 4.6108331510175324 0.0054532635512587
(±9,±0,±0)FS 8.3990669712048421 0

14.260103065920830 0.0051872438667849
0

0.0078705587777011
0

0.0023465096932558
0

0.0014234434124415
0.0027124005098564
0.0001406124343838

0
0.0000921239034238
0.0001538745394240
0.0000004165349753
0.0000006474891627
0.0000008063189502
0.0000007889057767

Order 5

G = {⋃ni} p̄0
j wij

(±9,±7,±4)FS 0.5276681217111288 0.0021976619314893
(±9,±8,±1)FS 1.7962998096434089 0
(±11,±4,±3)FS 3.8766415204769122 0.0035867160274663
(±11,±5, 0)FS 6.9188165667047218 0
(±12,±1,±1)FS 11.234610429083115 0

17.645963552380712 0.0030360121467997
0.0011645316435194
0.0060892600232298

0
0

0.0018738906904627
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0.0011933134012061
0
0

0.0023241041809842
0.0001734349866413
0.0000829805751350
0.0002171069160008

0
0.0000808225598283
0.0000073565421488
0.0000007284387015

0
0.0000125232075787
0.0000031002793646
0.0000000245062369
0.0000000077527228
0.0000000187275854
0.0000000173590551
0.0000000104611619

Table E.4: Definition of quadratures up to the fifth order for a ultra-
relativistic RLBM in (3+1) dimensions, following the
parametrization for the discrete momentum vectors in-
troduced in Eq. 2.24.

E.2.2 (2 + 1) dimensions

Order 2

G = {⋃ni} p̄0
j wij

(±3,±4)FS 0.4157745567834790 0
(±5, 0)FS 2.2942803602790417 0.0888866262411466

6.2899450829374791 0
0.0348147166961551
0.0017535654166088
0.0004218743543938

Order 3

G = {⋃ni} p̄0
j wij

(±3,±4)FS 0.3225476896193923 0
(±5, 0)FS 1.7457611011583465 0.0753942630427042

− 116 −



QUADRATURES

4.5366202969211279 0.0410206173754781
9.3950709123011331 0.0241670278669858

0.0044457884155769
0.0026380943565871
0.0000616926157132
0.0000365655303385

Order 4

G = {⋃ni} p̄0
j wij

(±15,±10)FS 0.2635603197181409 0.0378774109856788
(±17,±6)FS 1.4134030591065167 0
(±18,±1)FS 3.5964257710407220 0.0273420403371722

7.0858100058588375 0.0289416469003179
12.640800844275782 0

0.0208917044850790
0.0055131239981112

0
0.0039796822121021
0.0002621995147262

0
0.0001892703202640
0.0000007577431574
0.0000020654153959
0.0000000980879948

Order 5

G = {⋃ni} p̄0
j wij

(±15,±10)FS 0.2228466041792606 0.0333190352542491
(±17,±6)FS 1.1889321016726230 0
(±18,±1)FS 2.9927363260593140 0.0240515489894963

5.7751435691045105 0.0302726248231082
9.8374674183825899 0
15.982873980601701 0.0218524790234068

0.0032794546554440
0.0108922181038115

0
0.0006330401002278
0.0002681818675293
0.0003986777138864
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0.0000146443834593
0.0000094697718432
0.0000085129950491
0.0000000530695690
0.0000000267552665
0.0000000324936526

Table E.5: Definition of quadratures up to the fifth order for a ultra-
relativistic RLBM in (2+1) dimensions, following the
parametrization for the discrete momentum vectors in-
troduced in Eq. 2.24.

E.2.2 (1 + 1) dimensions

Order 2

G = {⋃ni} p̄0
j wij

(±1) 3.414213562373095048 0.042893218813452475
0.585786437626904951 1.457106781186547524

Order 3

G = {⋃ni} p̄0
j wij

(±1) 6.289945082937479196 0.001651724516604877
0.415774556783479083 1.710285053107483686
2.294280360279041719 0.121396555709244769

Order 4

G = {⋃ni} p̄0
j wij

(±1) 1.869968763544262523 0.322547689619392311
0.008571999852268322 4.536620296921127983
0.000057401877068880 9.395070912301133129
0.204735168059733606 1.745761101158346575

Order 5

G = {⋃ni} p̄0
j wij

(±1) 0.26356031971814091020 1.97964401902679930651
3.59642577104072208122 0.02111608983931054815
1.41340305910651679221 0.28206165857260368669
7.08581000585883755692 0.00050971712153383997
12.6408008442757826594 0.00000184877308595198

− 118 −



QUADRATURES

Table E.6: Definition of quadratures up to the fifth order for a
ultra-relativistic RLBM in (1+1) dimensions, following
the parametrization for the discrete momentum vectors
introduced in Eq. 2.24.
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