
Spectral Projection

Robustness and Orthogonality
Considerations

Martin Galgon

Dissertation

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
Vorgelegt an und genehmigt von der

Fakultät für Mathematik und Naturwissenschaften
der Bergischen Universität Wuppertal

Gutachter:
Prof. Dr. Bruno Lang
Prof. Dr. Andreas Frommer

Prüfungskommission:
Prof. Dr. Bruno Lang
Prof. Dr. Andreas Frommer
Prof. Dr. Matthias Bolten
Prof. Dr. Norbert Eicker

Wuppertal, 24. Juni 2020
— Datum der mündlichen Prüfung —

The PhD thesis can be quoted as follows:

urn:nbn:de:hbz:468-20200720-110158-2
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20200720-110158-2]

DOI: 10.25926/xffw-rb50
[https://doi.org/10.25926/xffw-rb50]

Danksagung

Ich möchte einer Reihe von Personen danken, welche auf die eine oder andere Weise
zum Gelingen dieser Dissertation beigetragen haben.

Vielen Dank!

Wuppertal, 11. Mai 2020 Martin Galgon

Abstract

This work deals with a special incarnation of subspace iteration—spectral projection—
in order to solve Eigenproblems of standard or generalized form, given by Hermitian
matrices or definite matrix pairs. After establishing the general theory, a selection
of possible approximations of the ideal filtering function to obtain an approximate
projector for a specified spectral target interval is highlighted, and many aspects of
the convergence behavior of the resulting methods and its pathological peculiarities
are analyzed experimentally. The work touches on implementation aspects and
briefly introduces an accompanying software framework for parallel solution of said
eigenproblems on large hybrid parallel supercomputers with many cores. In the
remainder of the work, the major crucial implication of a parallel implementation that
aims to subdivide the target interval for independent computation, the maintenance
or reestablishment of orthogonality among the computed eigenvectors of all sub-
intervals, are examined. Many aspects of possible approaches are presented and
their feasibility is evaluated.

Zusammenfassung

Diese Arbeit beschäftigt sich mit einer speziellen Inkarnation der Unterraumiterati-
onsmethode—spektraler Projektion—zur Lösung von Eigenproblemen in Standard-
oder verallgemeinerter Form, bestehend aus hermiteschen Matrizen oder definiten
Matrixpaaren. Die grundlegende Theorie wird etabliert, eine Auswahl möglicher
Näherungen der idealen Filterfunktion zur Konstruktion eines approximativen Pro-
jektors für ein vorgegebenes spektrales Zielintervall präsentiert, und viele Aspekte
des Konvergenzverhaltens der resultierenden Methode sowie seine pathologischen
Absonderlichkeiten durch geeignete Experimente analysiert. Die Arbeit beleuch-
tet Implementierungsaspekte und eine begleitende Software zur Lösung besagter
Eigenprobleme auf großen, hybrid-parallelen Supercomputern mit einer großen An-
zahl Kerne wird kurz vorgestellt. Nachfolgend wird die wichtigste Implikation einer
parallelen Implementierung, welche versucht, das Zielintervall zur unabhängigen
Berechnung in Teilintervalle zu unterteilen, nämlich das Aufrechterhalten oder die
Wiederherstellung der Orthogonalität zwischen den Eigenvektoren aller berechneter
Teilintervalle, untersucht. Viele Aspekte möglicher Vorgehensweisen werden präsen-
tiert und ihre Verwendbarkeit bewertet.

§

Die Arbeit des Autors wurde unterstützt vom Bundesministerium für Bildung und Forschung
innerhalb des Projektes ELPA - Eigenwert-Löser für Petaflop-Anwendungen, Förderkennzeichen
01IH08007B, und ELPA-AEO - Algorithmische Erweiterungen und Optimierungen, Förderkenn-
zeichen 01IH15001B, sowie von der Deutschen Forschungsgemeinschaft im Rahmen des Schwer-
punktprogrammes Software for Exascale Computing (SPPEXA), in den Unterprojekten ESSEX
und ESSEX-II (SPP 1648).

Contents

Nomenclature 0

1 Introduction 1
1.1 Eigenvalue problems . 3

1.1.1 Scalar product and orthogonality 4
1.1.2 Norms . 5
1.1.3 Hermitian and positive definite matrices 6

1.2 Vector iteration methods . 7
1.2.1 The family of power iteration methods 7

1.2.1.1 Definite pairs . 8
1.2.2 Eigendecomposition . 8

1.2.2.1 Definite pairs . 10
1.2.2.2 Power iteration . 12

1.3 Subspace iteration . 14
1.3.1 Vector projection and orthogonalization 15
1.3.2 Gram-Schmidt orthonormalization 16

1.3.2.1 Definite pairs . 18
1.3.3 Invariant subspaces . 18

1.3.3.1 Power iteration . 19
1.3.3.2 Definite pairs . 19

1.3.4 Rayleigh-Ritz . 19
1.3.4.1 Power iteration . 21
1.3.4.2 Definite pairs . 22

1.3.5 Compatible pencils and harmonic Rayleigh-Ritz 22
1.4 Spectral filters . 23

1.4.1 Projection and projectors . 23
1.4.1.1 Definite pairs . 23

1.4.2 Spectral projectors . 24
1.4.2.1 Definite pairs . 25

1.5 Matrix functions . 25
1.5.1 Filtering functions and approximate projectors 26

1.6 Iteration and convergence . 27
1.6.1 Convergence . 27
1.6.2 Metrics and residual . 28
1.6.3 Residual bounds . 29

1.7 Digression: Related algorithms . 30
1.7.1 Orthogonal iteration . 30

Contents

1.7.2 The Arnoldi and Lanczos methods 32
1.7.2.1 Definite pairs . 33
1.7.2.2 Restarts . 33

1.7.3 Other methods . 33

2 Spectral projection algorithms 37
2.1 Polynomial filters . 40

2.1.1 Polynomial approximation 40
2.1.2 Chebyshev polynomials . 42

2.1.2.1 Window function 43
2.1.2.2 Application . 43

2.1.3 Matrix polynomials . 44
2.1.4 Gibbs phenomenon and smoothing kernels 45
2.1.5 Restrictions . 45
2.1.6 Discrete approximation . 48

2.2 Contour integration . 49
2.2.1 Representation of the window function 50
2.2.2 Numerical integration . 51

2.2.2.1 Trapezoidal rule 51
2.2.2.2 Midpoint rule . 52
2.2.2.3 Gauss-Legendre quadrature 52

2.2.3 Computation . 54
2.2.4 Selection function . 56

2.3 Zolotarev approximation . 57
2.3.1 Approximation of the sign function 58
2.3.2 Window function . 60
2.3.3 Partial fraction form . 63
2.3.4 Computation of Jacobi’s elliptic functions 68

2.4 Electronic filter design . 69
2.4.1 Butterworth Filter . 73

2.4.1.1 Design . 74
2.4.2 Chebyshev Type-I Filter . 74

2.4.2.1 Design . 75
2.4.3 Chebyshev Type-II Filter . 76

2.4.3.1 Design . 78
2.4.4 Elliptic Filter . 78

2.4.4.1 Computation of inverse elliptic functions 82
2.4.4.2 Design . 82

2.5 Sakurai-Sugiura-type methods . 83
2.5.1 A root finding method for analytic functions 83
2.5.2 An improved root finding method 85
2.5.3 Application to generalized eigenvalue problems 87

2.5.3.1 Blocking and Eigenvectors 87
2.5.3.2 Rayleigh-Ritz . 90

Contents

2.5.3.3 Filtering functions 91
2.5.3.4 Transformations of the weight function 91
2.5.3.5 Computation . 92
2.5.3.6 Relation to spectral projection 92

2.6 Other filtering methods . 93
2.6.1 Rational filter types . 93
2.6.2 Delta filters . 94
2.6.3 Least squares . 94
2.6.4 Beyond conventional subspace iteration 94

3 BEAST 95
3.1 The BEAST framework . 95

3.1.1 Basics . 96
3.1.2 Parallelism . 96

3.1.2.1 Process group hierarchy 100
3.1.2.2 Interval communication protocol 101

3.1.3 Orthogonalization layer . 103
3.2 Meet the BEAST – short feature overview 104

3.2.1 Related features . 104
3.2.2 Linear solvers . 104

3.2.2.1 Callback interface 105
3.2.2.2 A (hybrid) parallel direct solver for banded linear

systems . 105
3.2.3 Unrelated features . 107
3.2.4 Layer structure . 110

3.3 Feeding the BEAST – Applications 110

4 Taming the BEAST – Quality of results 113
4.1 Experiments . 116

4.1.1 Synthesis of non-trivial sparse definite matrix pencils with
predefined spectrum . 116

4.1.2 Matrix test set . 118
4.1.3 Ritz value pairing . 120

4.2 Convergence revisited . 121
4.2.1 Undersized searchspaces . 123

4.2.1.1 On-the-fly increase of searchspace size 124
4.2.1.2 Detection of undersized searchspaces 124

4.2.2 Enlarged searchspaces . 125
4.2.2.1 On-the-fly restriction of searchspace size 127
4.2.2.2 Locking . 128
4.2.2.3 Rank deficiency . 128
4.2.2.4 Further reduction 132
4.2.2.5 Optimization of searchspace size 133
4.2.2.6 Addendum . 134

Contents

4.2.3 SSM effective filter . 135
4.2.4 Ritz phantoms . 139

4.2.4.1 Disturbance of convergence 141
4.2.5 Clustered eigenvalues . 144

4.2.5.1 Quasi-multiplicity and Quasi-eigenspaces 144
4.2.5.2 Expulsion of clustered values 145
4.2.5.3 Clustered super convergence 148
4.2.5.4 Disturbances through Ritz phantoms 150

4.2.6 Comparison of filter functions 150
4.2.6.1 Definition of transition band and stopband gain . . 150
4.2.6.2 Fair conditions . 151
4.2.6.3 Strict searchspace size 153
4.2.6.4 Relaxed searchspace size 154
4.2.6.5 Choice of interval 157

4.2.7 Difficulty of linear systems 157
4.3 Achievable residual . 160

4.3.1 Absolute rock bottom . 160
4.3.1.1 Mixed precision . 164
4.3.1.2 Linear solving effort 165

4.3.2 Kick-off residual . 166
4.3.3 Saturation residual . 167

4.4 Termination criteria . 169
4.5 Achievable orthogonality . 173

4.5.1 Theoretical limit . 174
4.5.2 Estimated upper bound . 176
4.5.3 Directional overlap . 177

4.5.3.1 Verification of orthogonality bounds 182
4.6 Evolution of orthogonality . 185
4.7 Remarks . 188

5 Taming the BEAST – Orthogonalization 189
5.1 The many orthogonalities of BEAST 189
5.2 Establishing intra-orthogonality . 190

5.2.1 QR decomposition . 191
5.2.2 QR via Givens rotations . 191
5.2.3 QR via Householder reflections 192
5.2.4 Gram-Schmidt QR . 194
5.2.5 B-orthogonality . 194
5.2.6 Cholesky QR . 195
5.2.7 Rank revelation . 195
5.2.8 Methods based on singular value decomposition 196
5.2.9 SVQB . 196
5.2.10 B-orthogonal QR via SVQB 197
5.2.11 Parallel block-orthogonalization 197

Contents

5.2.12 TSQR . 197
5.2.13 Condition and multi-orthogonalization 199
5.2.14 Weak Gram-Schmidt . 200

5.2.14.1 Computational effort 207
5.2.15 Residual . 208
5.2.16 Fitness for purpose . 210

5.3 Establishing inter-orthogonality . 213
5.3.1 Intermediate orthogonalization 214
5.3.2 Post-iteration and retention of orthogonality 219
5.3.3 Overlapping intervals . 221
5.3.4 Orthogonalization sequences 221
5.3.5 Block Gram-Schmidt . 222

5.3.5.1 Parallel application 222
5.3.6 Residual . 224
5.3.7 Orthogonalization order . 225
5.3.8 A posteriori orthogonalization 229
5.3.9 Detection and removal of duplicates 234
5.3.10 Butterfly orthogonalization 240
5.3.11 Block weak Gram-Schmidt 242
5.3.12 Butterfly results . 243
5.3.13 Regular residual updates . 246
5.3.14 Skipping intra-orthogonalization 247
5.3.15 Reduction of interaction distance 250
5.3.16 Large examples . 252
5.3.17 Shifting scheme . 254
5.3.18 Application-specific requirements 254
5.3.19 Performance . 259

5.4 Upshot . 261

Conclusion and outlook 263
Conclusion . 263
Outlook . 265

A Algorithms for elliptic functions 267
A.1 Computation of Jacobi’s elliptic functions 267

A.1.1 The Algebraic-Geometric Mean 268
A.2 Computation of inverse elliptic functions 271

Index 273
List of Algorithms 277
List of Experiments 279
List of Figures 281
List of Tables 285
Bibliography 287

Nomenclature

This list describes certain symbols with special meaning or properties used throughout
this thesis.
A, B Matrices of the eigenproblem

x, X Eigenvector, block of eigenvectors (typically of (A,B))

λ, Λ Eigenvalue, diagonal matrix of eigenvalues (typically of (A,B))

λ, x, Λ, X Computed quantities (typically Ritz values and -vectors)

P , P Projector, approximate projector

δ, ∆ Eigenvalues of an (approximate) projector (scalar, diagonal matrix)

σ, Σ Singular values, diagonal matrix of singular values

[λmin, λ
max] Target interval

Ω Target region

C = ∂Ω Target contour
χΩ, χω Window function (ideal filter)

f(λ) Filtering function, eigenvalues of an approximate projector

U Searchspace set or searchspace basis

n System size, dimension of the matrices A and B

m Number of columns of a matrix or a vector block

m0 Searchspace size

κ Modulus of an elliptic function

i, <, = Imaginary unit, real part, imaginary part

ε Machine precision

I Unit matrix

〈·, ·〉, ‖·‖ Scalar product, norm of a vector or matrix

·H , · Hermitian conjugated vector or vector block, conjugated scalar

b · c, d · e Rounding downwards or upwards, respectively

A

Chapter 1
Introduction

The solution of eigensystems is among the most everlasting problems of numerical
mathematics, owed to its quasi-omnipresence in applications throughout natural

sciences, engineering and other fields. We will exemplarily touch on just a few.
The most prominent field for eigenproblems to play a significant role is likely oscil-

lation and vibration analysis, be it statics in architecture, string vibration in music,
signal processing, acoustics in general, or machine engineering. Oscillations are often
modeled as constructs of springs, masses and dampers (see any vibration analysis
book, e.g., [Tim37]). Assuming an exponential solution for the resulting system of
differential equations ultimately leads to a matrix formulation that resembles an
eigenequation comprised of symmetric mass and stiffness matrices. Eigenproblems
occur frequently in the computation of differential equations [Eri+96].

In the Dirac [Dir58] and von Neumann [Neu71] formulations of quantum mechanics,
the state of a system of physical variables, such as position, energy, or momentum,
is represented by a vector in a complex Hilbert space, typically a function space,
allowing for superposition in terms of linear combination. The dynamic variables
are described as self-adjoint linear operators and the measured physical values of
observables, real-valued dynamic variables represented by Hermitian operators, are
the (then also real) spectral values of the operator. Measuring an observable brings
the system (with a certain probability) into one of the eigenstates of this observable,
also called wavefunction collapse, such that consecutive measurements of the same
variable yield identical results. An example is the Hamiltonian operator correspond-
ing to the total energy of the system as appearing in the Schrödinger equation. With
discretization, the operators become Hermitian matrices and the possible outcomes
of measurements become its eigenvalues.
In this or similar manner, Eigenproblems also appear in quantum mechanical

material science, such as the analysis of the electronic properties of graphene [Net+09]
and topological insulators [HK10] where they relate to electric conductivity or edge
magnetism, molecular simulations [Blu+09] where they have to be solved in order
to compute observables such as total energy, stress, or electrostatic moments, or the
Anderson model of localization [Els+99] where they represent quantum mechanical
energy levels.

B

2 1 Introduction

The Google PageRank [Pag+98] is another example that is cited frequently as
application for the power method. To quantify the importance of a web page and thus
its relevance as result when a search is conducted, a measure based on the connectivity
between web pages via hyperlinks is derived that also models the propagation of
importance through these connections. The final rankings are then computed as
the dominant eigenvector of the adjacency matrix of the directed weighted graph
representing the web connectivity.
Due to ever growing problem sizes required in computations and simulations to

model or observe the desired effects, the demand for suitable hard- and software
creates a continuous inflow of new challenges for researchers in the field. With the
foreseeable advent of exascale computers, not only are challenges posed to hardware
manufacturers. Also, algorithms have to be restructured or even reinvented to exploit
the vast computing potential of modern hybrid parallel high performance computer
architectures. With the potential for parallelism not being infinitely extensible,
already the choice of algorithm plays an important role, not all being exascale
capable or even properly parallelizable at all.

For many, if not most, applications not all eigenvalues and eigenvectors are required.
While the computation of the complete eigenproblem is expensive, both in terms of
computation time and—maybe more significantly—memory consumption, obtaining
just the required portion of the eigenvalues and eigenvectors exhibits potential for
optimization of both, tailored to the respective application. Depending on the appli-
cation, this may translate to one extremal eigenpair, few largest or least magnitude
eigenpairs, or sometimes larger portions of the interior of the spectrum. Methods
like shift-and-invert power iteration and the Jacobi-Davidson method [SV00], for
example, allow to compute a set of eigenpairs close to a specified target somewhere
in the spectrum of (A,B).
With many applications and new challenges for eigensolvers, we aim at solving

large-scale and sparse standard and generalized eigenproblems. While we ultimately
restrict ourselves to Hermitian eigenproblems due to a more complete theory and the
widespread applicability, many of the methods introduced here are not inherently
restricted to Hermitian problems. Since it can be expected that—with increasing
problem size—direct solvers will grow increasingly infeasible in terms of memory con-
sumption and processing time, given that in general the whole spectrum is computed,
we will focus on a family of iterative eigensolver algorithms—spectral projection—
that is able to compute only certain parts of a spectrum and exploit the sparsity of
the involved matrices.
This chapter will introduce the problem of finding eigenvalues and eigenvectors

of (A,B) alongside fundamental algorithms and mathematical foundations required
to solve such eigenproblems using subspace iteration and spectral projection. Many
of the standard terms, definitions, concepts and methods, which are pragmatically
introduced in this and the following chapters, such as scalar products, norms, metrics,
matrix pencils, eigenvalue problems, eigendecomposition, Schur form, matrix func-
tions, matrix square roots, matrix similarity, the power method, inverse iteration,
subspace iteration, and spectral projection can be found and are discussed more in-

C

1.1 Eigenvalue problems 3

depth in the relevant literature, including [Wil65; Par80; SS90; TB97; Ste01; Wat07;
Hig08; Saa11; GV13; Krä14], just to name a few. The elements are introduced in
the order the discussion of spectral projection requires it.

1.1 Eigenvalue problems
Let A1, . . . , Ak ∈ Cn×n and ξ1, . . . , ξk ∈ C. The linear combination

k∑
i=1

ξiAi

is called matrix pencil of degree k. Let in particular the matrix pencil A − λB be
denoted by (A,B). We will refer to this particular pencil simply as the matrix pencil.
Non-zero vectors x ∈ Cn 6= 0 and scalars λ ∈ C that fulfill

(A− λB)x = 0

are called eigenvectors and eigenvalues of (A,B), respectively. A pair (x, λ) is re-
ferred to as eigenpair . If x is an eigenvector, so is αx for α ∈ C \ {0}. Should
x1, . . . , xk be eigenvectors associated with the same eigenvalue λ, any linear combi-
nation ∑k

i=1 αixi 6= 0 is an eigenvector as well. For a specific eigenvalue λ, the space
containing these vectors, i.e., the null space of A − λB, is called the eigenspace of
the matrix pencil associated with the eigenvalue λ. Eigenvalues are the roots of the
characteristic polynomial

p(A,B)(λ) = det(A− λB).

Definition 1.1 Let matrices A,B ∈ Cn×n, Λ = diag(λ1, . . . , λn), λi ∈ C, and
linearly independent vectors X = [x1, . . . , xn] ∈ Cn×n, xi 6= 0; then the equation

AX = BXΛ (1.1)

is called generalized eigenproblem for the matrix pencil (A,B). If B = I, Equa-
tion (1.1) becomes the standard eigenproblem AX = XΛ. The conglomeration of
some or all of the solutions is the pair (X,Λ).

The set of all eigenvalues of a matrix pencil (A,B) is called its spectrum, denoted
by spec(A,B). The eigenvalues are not necessarily distinct, and unless otherwise
noted we assume them ordered |λ1| ≥ . . . ≥ |λn|. Eigenvalues may appear more than
once, with a given multiplicity. We differentiate algebraic multiplicity—the number of
appearances of an eigenvalue and the order of the respective root of the characteristic
polynomial—and geometric multiplicity—the dimension of the associated eigenspace.
Eigenvalues that appear more than once but whose eigenspace is of lower dimension
are called degenerate. Square matrices have exactly n eigenvalues, due to B = I in
the characteristic polynomial. If B is singular, however, the characteristic polynomial

D

4 1 Introduction

can be of degree < n and the matrix pencil has less than n eigenvalues. If even
p(A,B)(λ) ≡ 0, any value in C satisfies the conditions for being an eigenvalue.

For this reason B will henceforth be assumed to be invertible. Then the transfor-
mation of the generalized eigenproblem AX = BXΛ to a standard eigenproblem

B−1AX = XΛ

exists and shares its solution (X,Λ). Certain properties of the original problem
may be lost, e.g., in that B−1A in general is neither sparse nor Hermitian (see
Section 1.1.3), even if A and B are.
While we will try to introduce all concepts in a context-sensitive manner, the

following two are too fundamental, even in a pragmatic introduction such as this.

1.1.1 Scalar product and orthogonality
Let v = [v1, . . . , vn]T ∈ Cn and w = [w1, . . . , wn]T ∈ Cn. A scalar product is a
mapping 〈·, ·〉 : Cn × Cn → C with properties

• 〈v, v〉 ≥ 0 (with equality if and only if v = 0)

• 〈v, w〉 = 〈w, v〉
• 〈αv + βw, z〉 = α〈v, z〉+ β〈w, z〉

The standard scalar product of the Cartesian coordinates of the vectors v and w,

〈v, w〉 =
n∑
i=1

viwi = wHv,

is also known as Euclidean scalar product. Two non-zero vectors v and w are called
orthogonal, if 〈v, w〉 = 0. A set of vectors Q = [q1, . . . , qk] is called orthogonal, if all
vectors are pairwise orthogonal, i.e., QHQ = diag{d1, . . . , dk}.

It is possible to define different scalar products that fulfill these criteria; but in
this context only the standard scalar product, as defined above, will be used, though
with a small extension. The scalar product with respect to a Hermitian positive
definite (see Section 1.1.3) matrix B, or B-scalar product, with the same properties
is given as

〈v, w〉B = 〈Bv,w〉 = wHBv.

Analogously, two non-zero vectors v and w are called B-orthogonal if 〈v, w〉B = 0.
A set of vectors Q = [q1, . . . , qk] is called B-orthogonal if all vectors are pairwise
B-orthogonal, i.e., QHBQ = diag{d1, . . . , dk}. Henceforth, the term orthogonal will
implicitly refer to B-orthogonal. Should it be necessary to differentiate, we will refer
to orthogonality in the sense of B = I as I-orthogonality.

E

1.1 Eigenvalue problems 5

1.1.2 Norms
As quantification of the length of a vector, a map ‖·‖ : Cn → C with properties

• ‖v‖ ≥ 0
• ‖αv‖ = |α|‖v‖
• ‖v + w‖ ≤ ‖v‖+ ‖w‖
• ‖v‖ = 0 =⇒ v = 0

assigns a non-negative scalar value to the vector. Every scalar product induces a
norm

‖v‖ =
√
〈v, v〉.

In the case of the standard scalar product, this is the 2-norm ‖·‖2, here sometimes
with respect to B, ‖·‖B, induced by the B-scalar product. Combined with the norm,
the geometric interpretation of the scalar product often serves as a measure of the
angle between two vectors,

cos(θ) = 〈v, w〉
‖v‖‖w‖ .

A set of vectors Q = [q1, . . . , qk] is called unitary, if QHBQ = Ik, i.e., Q is orthogonal
and ‖qi‖ = 1 ∀i = 1, . . . , k. The equivalent term for real matrices is orthonormal,
which we will use here for the real and complex case. We will refer to QHB as left
inverse of Q. In the case of square Q this is the regular inverse Q−1 = QHB.

Given a vector norm on a space S and letting v ∈ S, a corresponding matrix norm
is defined as

‖Z‖ = max
v 6=0

‖Zv‖
‖v‖ = max

‖v‖=1
‖Zv‖.

Typically S = Cn, but if Z is real S = Rn [Krä14]. The induced operator norm for
a matrix Z is the maximum scaling that occurs when applied to any unit-length
vector. For general (possibly non-square) matrices, these factors are given by the
singular values of Z (see also Section 5.2.8). With singular values σ1, . . . , σn of Z,
sorted descendingly,

‖Z‖ = σ1

and, if Z is Hermitian (see Section 1.1.3),

‖Z‖ = |λ1|.

Consider the singular value decomposition1 ZW = V Σ. For single vectors wi and
vi from W and V , respectively, both of unit length, we write Zwi = σivi. The
length of the resulting vector then is σi. Any non-singular vector may be written as
linear combination of the singular vectors W and, after normalization, the length
of the resulting vector cannot exceed the maximum singular value. Since ZHZ =

1) The SVD will be discussed in a little more detail in Section 5.2.8.

F

6 1 Introduction

WΣV HV ΣWH = WΣ2WH , and thus ZHZW = WΣ2, singular values of Z are the
square roots of the eigenvalues of ZHZ. For Hermitian matrices with Z = XΛXH

we have ZHZ = XΛXHXΛX−1 = XΛ2XH and we see that the singular values of
Z are the absolute values of the eigenvalues of Z.

1.1.3 Hermitian and positive definite matrices
A matrix is called Hermitian, if M = MH holds. A Hermitian matrix has an all-real
spectrum and orthogonal eigenvectors, as we will see in Section 1.2.2. A Hermitian
matrix is called positive definite, if vHMv > 0 holds for all v ∈ Cn \ {0}, and
positive semi-definite, if vHMv ≥ 0 holds under identical conditions. Note that
positive definiteness is exactly the requirement of positivity of the scalar product. A
Hermitian matrix is positive definite, if and only if all eigenvalues are greater than
zero. This is easy to verify. For eigenvectors xi, i = 1, . . . , n, of a matrix M , due
to the eigenequation, λxHi xi = xHi Mxi. With the positivity of the scalar product
xHi xi follows λ > 0 ⇐⇒ xHi Mxi > 0. Any other vector v can be written as linear
combination of the eigenvectors xi,

v =
n∑
i=1

ξixi.

Then
Mv =

n∑
i=1

ξiMxi =
n∑
i=1

ξiλixi

and
vHMv =

n∑
i=1

n∑
j=1

ξiξjλix
H
j xi

where xHj xi = 0 for i 6= j, assuming the orthogonality of eigenvectors. Therefore

vHMv =
n∑
i=1
|ξi|2λixHi xi.

With the positivity of the scalar product follows vHMv > 0 if all λi > 0. Since the
condition of positivity must also hold for the single summands—vHMv > 0 shall hold
for all vectors v, in particular for eigenvectors v = xi—the other direction follows
immediately.

The equivalent of Hermitian matrices for standard eigenvalue problems are definite
pairs (A,B) with Hermitian A and Hermitian positive definite (hpd) B for the
generalized eigenproblem. Definite pairs have all-real spectra and their eigenvectors
are B-orthogonal (see Section 1.2.2). Then the eigenvector matrix X has the inverse
X−1 = XHB and XHBX = XXHB = I. In the case of a Hermitian matrix
or a definite pair we will also denote the associated eigenproblem as Hermitian
eigenproblem. Hermitian eigenproblems often allow for simplifications, and in some
cases certain operations only work for Hermitian eigenproblems. Whenever definite
pairs influence the introduced concept, a short paragraph will detail the implications.

G

1.2 Vector iteration methods 7

1.2 Vector iteration methods
Due to the fundamental importance of eigenvalue problems, many algorithms to solve
them have been proposed over time. One of the most commonly known algorithms
is most likely the power iteration. It is also one of the simplest methods to compute
a dominant eigenvector both algorithmically and numerically, as it only requires
multiplication with a matrix and normalization of a vector to iterate an approximate
eigenvector. A dominant eigenvector in this case is an eigenvector associated with
an eigenvalue that is larger than all other eigenvalues. In the following, a family
of iterative eigensolver algorithms closely related to the power iteration method is
introduced. It will serve as vehicle to introduce the underlying concepts, required
to understand these kinds of methods as well as possible consequences for solving
eigenproblems. The fundamental idea is then extended to subspace iteration and
finally to spectral projection. The term iteration will refer to the repeated application
of such an algorithm to one or several vectors. We will therefore say that we iterate
these vectors or their associated directions and call distinct instances from this
sequence of vectors iterates.

1.2.1 The family of power iteration methods
Instead of introducing all variants of power iteration separately, a generalized algo-
rithmic frame is presented in Algorithm 1.1, where specific incarnations are produced
by choosing an operator C from Table 1.1.

Input: Random vector x0 = v0

Output: Approximate eigenpair (xk,λk)
1: for i = 1, . . . , k do
2: apply C to xi−1 and obtain x̂i

3: xi ←
x̂i
‖x̂i‖

4: λk ←
xHk Axk
xHk Bxk

Algorithm 1.1: Generic power iteration.

The different methods, resulting from choosing an operator C and its application
from Table 1.1, constitute the family of power iteration methods. They can be used
for computing the distinct eigenpair of C with the eigenvalue of largest magnitude.
Depending on the operator, the method targets different eigenpairs of (A,B). The
shift-inverse iteration computes the eigenpair with eigenvalue closest to a given shift
z ∈ C. If the shift z is 0, the method becomes the inverse iteration, used to compute
the distinct eigenpair with the eigenvalue of smallest magnitude. Without inversion,
if the method is applied to B−1A instead, it becomes the well known power iteration,

H

8 1 Introduction

Name Operator C Application

Power iteration B−1A solve Bx̂i = Axi−1 for x̂i
Shifted iteration B−1A− zI solve Bx̂i = (A− zB)xi−1 for x̂i
Inverse iteration (B−1A)−1 solve Ax̂i = Bxi−1 for x̂i
Shift-inverse iteration (B−1A− zI)−1 solve (A− zB)x̂i = Bxi−1 for x̂i

Table 1.1: Power iteration flavors and methods of application.

here for generalized eigenproblems. It then computes the distinct eigenpair with
the largest magnitude eigenvalue. The shifted iteration has fewer practical uses but
can be employed to compute “the other end of the spectrum”, assuming the largest
magnitude eigenvalue is known to determine the required shift.
All these methods are only suitable to compute one eigenpair unless additional

measures are taken. Note that any norm may be used for normalizing the iterates
as eigenvectors are ambiguous with regard to their length. Also note that, following
from the eigenequation, the choice of xH for computing the quotient is arbitrary.
Let λ1, . . . , λn be the eigenvalues of C. The methods converge to the eigenvector

associated with λ1 only if λ1 > λ2, e.g., one eigenvalue is larger in magnitude than
all others (see Equation (1.2)).

1.2.1.1 Definite pairs

If B is Hermitian and positive definite, the B-norm exists and for a B-normal x then
xHBx = 1. Thus, the computation of the quotient simplifies to λ = xHAx.
Having A and B Hermitian and/or positive definite may have major impact on

the solution of the linear systems, in particular if an iterative solver is to be used.

1.2.2 Eigendecomposition
If the eigenvalue problem AX = BXΛ can be written as a decomposition into X
and Λ,

B−1A = XΛX−1,

this is called an eigendecomposition of (A,B). The effect of the application of a
matrix or a matrix pencil to a vector can intuitively be understood by employing
their eigendecompositions.
The above operator, applied to a vector v,

XΛX−1v =
n∑
i=1

λixix
−1
i v,

where x−1
i denotes the i-th column ofX−1, can be interpreted as scaling the projected

directions with factors λi in the directions xi. Geometrically, by solving for the coef-
ficients of v in the basis X, the application of X−1 transforms v into the coordinates

I

1.2 Vector iteration methods 9

of span(X), where the scaling is applied in the basis directions xi. Application of
X reverses the basis transformation. Representing an operation on a vector with
respect to different bases is referred to as similarity transform (see, e.g., [Saa11])
and the matrices B−1A and Λ are therefore called similar . Similar matrices have
the same eigenvalues since for any invertible matrix M and C = XΛX−1

MCM−1 = MXΛ(MX)−1.

While the eigendecomposition is not unique—both the order of eigenvalues and the
bases for all eigenspaces may be chosen arbitrarily—the set of diagonal elements of
λ is. Repeated application of the Operator,(

XΛX−1
)k

= XΛkX−1,

is equivalent to repeatedly scaling v in the directions of the xi. If λi = 0, the direction
xi is removed from v. If the eigendecomposition exists, the eigenvectors form a basis

e1

e2

e3

v

Figure 1.1: Effect of applying a three-dimensional matrix pencil with eigenvalues
{

11
2 ,

1
2 , 0
}

and eigenvectors e1, e2, and e3 to v = [5, 5, 5]T .

of Cn, the so-called eigenbasis, and the matrix pencil is called diagonalizable due to
X being a similarity transform that yields a diagonal matrix Λ.
If the matrix of eigenvectors X is not invertible, i.e., its columns are not linearly

independent or there are too few of them, the eigendecomposition does not exist.

J

10 1 Introduction

There are cases where the dimension of an eigenspace is smaller than the multiplicity
d of the associated eigenvalue. Then it is impossible to find a linearly independent
basis with dimension d for this eigenspace and there is no basis of linearly independent
eigenvectors that spans Cn. Such a matrix pencil is called defective.

1.2.2.1 Definite pairs

Definite pairs have an all-real spectrum and a full set of B-orthogonal eigenvectors.
To verify that, we first employ the Schur form (see, e.g., [Saa11], incl. proof) for
Hermitian matrices to verify their real spectra and full set of orthogonal eigenvectors.
With an additional result from [SS90] (see also [Krä14]) we can extend the property
to definite pairs.
First, verify that a square matrix C is similar to a triangular matrix T via an

orthonormal transformation Q,

C = QTQ−1 = QTQH =⇒ T = QHCQ.

For a matrix of size one, the above trivially holds. Let x be a normalized eigenvector
associated with an eigenvalue λ of C and X⊥ its orthonormal complement such that
H = [x,X⊥] ∈ Cn×n. Then

HHCH =
(
xHCx xHCX⊥
XH
⊥Cx XH

⊥CX⊥

)
=
(
λxHx ∗
λXH
⊥ x C̃

)
=
(
λ ∗
0 C̃

)
.

Assume C̃ has the Schur form Q̃T̃ Q̃H and T̃ = Q̃HC̃Q̃. Then(
1 0
0 Q̃H

)
HHCH

(
1 0
0 Q̃

)
=
(

1 0
0 Q̃H

)(
λ ∗
0 C̃

)(
1 0
0 Q̃

)
=
(
λ ∗
0 T̃

)

is triangular and

Q = H

(
1 0
0 Q̃

)
is orthonormal if H is chosen orthonormal since

H

(
1 0
0 Q̃

)(
H

(
1 0
0 Q̃

))H
= H

(
1 0
0 Q̃

)(
1 0
0 Q̃

)H
HH = HHH .

By induction follows the existence of the Schur form of a matrix C. If C is Hermitian,

CH =
(
QTQH

)H
= QTHQH = QTQH = C

and therefore T = TH is diagonal and real. Thus, QTQH is an eigendecomposition
of C.

To obtain a similar result for definite pairs (A,B), we first require a decomposition
of the matrix B of the form B = KKH . With this we have a new way to transform
a generalized eigenproblem to standard form at our disposal, albeit with different

K

1.2 Vector iteration methods 11

eigenvectors Y , which can be transformed to eigenvectors X of the original problem
by X = K−HY . It is

AX = BXΛ ⇐⇒ AX = KKHXΛ
⇐⇒ K−1AK−HKHX = KHXΛ
⇐⇒ K−1AK−HY = Y Λ,

where we assume that the inverse of K exists. If A and B are Hermitian, then
K−1AK−H is Hermitian, and let

K−1AK−H = Y ΛY H

be its eigendecomposition with orthonormal eigenvectors Y and real Λ. The eigen-
vectors of the original generalized eigenproblem X = K−HY are B-orthogonal since(

K−HY
)H
BK−HY = Y HK−1BK−HY = Y HK−1KKHK−HY = Y HY = I

and both eigenproblems have the same spectrum.
An important special case is the concept of a matrix square root. For a non-in-

definite diagonal matrix D with real spectrum, the square root can intuitively be
defined by applying the scalar square root to the diagonal entries, yielding a matrix
D

1
2 such that D = D

1
2D

1
2 . Then, for any positive semi-definite diagonalizable matrix

B with real spectrum, the matrix square root can be defined as

B = XΛX−1 = XΛ 1
2 Λ 1

2X−1 = XΛ 1
2X−1︸ ︷︷ ︸
B

1
2

XΛ 1
2X−1︸ ︷︷ ︸
B

1
2

.

If B is additionally Hermitian, i.e., its spectrum is non-negative and its eigenvectors
orthonormal, by the above definition the square root of B is Hermitian as well,(

XΛ 1
2XH

)H
= X

(
Λ 1

2
)H
XH = XΛ 1

2XH .

For the inverse of the matrix square root of B to exist, we have to require B to be
positive definite. Note that, if a matrix B = XΛXH is Hermitian, B−1 = XΛ−1XH

is Hermitian as well. Another instance of this type of decomposition that is more
relevant for practical use due to its relatively easy and therefore cheap computation
is the Cholesky decomposition (see Section 5.2.6).

Knowing that the eigenvectors are B-orthonormal, if (A,B) is a definite pair, the
eigendecomposition becomes

B−1A = XΛX−1 = XΛXHB

and the operator can be written as

XΛXHB =
n∑
i=1

λixix
H
i B.

L

12 1 Introduction

When applied to a vector v, the form is reminiscent of orthogonal vector projection
(see Section 1.3.1),

XΛXHBv =
n∑
j=1

λi〈v, xj〉Bxj,

and the intuitive perception of the eigendecomposition from above becomes even
clearer.

1.2.2.2 Power iteration

With the intuitive interpretation of the eigendecomposition in the context of the
power iteration method, the iterated vectors are gradually bent in the direction of the
eigenvectors associated with the largest magnitude eigenvalues of the applied matrix.
The interpretation of the eigendecomposition furthermore hints at an increased
convergence of the power method, when the target eigenvalue is well separated from
the rest, |λ1| � |λ2|, seeing that scaling in one direction significantly stronger than
others improves the approximation of the associated eigenvector. It can indeed be
shown that the power method for one vector converges with ratio |λ2|/|λ1| (see, e.g.,
[GV13]; with proof).
Write the initial vector v0 as linear combination of eigenvectors with factors γj,

v0 =
n∑
j=1

γjxj,

where we, for now, require γ1 6= 0. Then we can write the i-th iterate (including any
normalization in the factors γj) as

Aiv0 =
n∑
j=1

γjA
ixj =

n∑
j=1

γjλ
i
jxj.

Factoring out the largest magnitude eigenvalue λ1,

Aiv0 = γ1λ
i
1x1 +

n∑
j=2

γjλ
i
jxj = γ1λ

i
1x1 + λi1

 n∑
j=2

γj

(
λj
λ1

)i
xj

︸ ︷︷ ︸
−−−→
i→∞

0

, (1.2)

the sequence of iterates, adjusted for repeated scaling by λ1 as Aiv0/λ
i
1, converges

against a multiple (γ1) of x1, which is the eigenvector associated with the largest
magnitude eigenvalue, with ratio |λ2|/|λ1|, it being the factor vanishing the slowest.
The above formulation also suggests that, if the initial guess v0 does not contain

components in the direction of the eigenvector associated with the dominant eigen-
value γ1 = 0, the method will instead converge to the eigenvector associated with
the second largest magnitude eigenvalue, if v0 contains components in this direction.
In theory, if v0 is written as linear combination of eigenvectors with γj = 0 for j < k,
the method should converge to xk with ratio |λk+1|/|λk|.

M

1.2 Vector iteration methods 13

Relating the convergence behavior to the spectrum of the different operator ma-
trices from Table 1.1 clarifies the target eigenvalues of the methods described earlier.
For example, the matrix

(A− zB)−1B =
(
B−1(A− zB)

)−1
=
(
B−1A− zI

)−1

from the first step of the shift-invert flavor of Algorithm 1.1 has the eigendecompo-
sition (

XΛX−1 − zI
)−1

=
(
XΛX−1 − zXX−1

)−1

=
(
X(Λ− zI)X−1

)−1
= X(Λ− zI)−1X−1

and therefore the same eigenvectors as (A,B) and eigenvalues 1/(λ− z), where λ
is an eigenvalue of (A,B). This is the power method applied to a transformed
eigenproblem, using the identity of eigenvectors to find eigenvalues of the original
problem. Table 1.2 lists the eigenproblems related to the flavors of the power iteration
(as matrix pencils) and the resulting transformed eigenvalues. The shift-and-invert

Name Matrix pencil Eigenvalues
Power iteration (A,B) λ
Shifted iteration (A− zB,B) λ− z
Inverse iteration (B,A) 1/λ
Shift-inverse iteration (B,A− zB) 1/(λ− z)

Table 1.2: Matrix pencils of power iteration flavors and associated eigenvalues.

operation first shifts the spectrum such that the target value z is mapped to zero,
and then reflects it about the unit circle with factor 1/|z|, so that eigenvalues closest
to zero map to values with maximum absolute value, as illustrated in Figure 1.2.
The conjugation that is applied implicitly by the inversion does not have an impact
on the result. If z happens to be an eigenvalue, the matrix is not invertible anymore
and the method breaks. However, moving z arbitrarily close to an eigenvalue of
interest will speed up the convergence of the method since the shift-invert operation
will increase the absolute value of the target eigenvalue significantly and separate
it well from the rest as long as there is no other eigenvalue with similar absolute
value. However, the condition of the matrix A− zB increases accordingly. This is
of particular interest, if an iterative linear system solver is to be used because this
type of solver typically is sensitive to increased condition (see also Section 4.2.7).
The computation of the associated eigenvalue λ then relies on the fact that the

eigenvector associated with the largest magnitude eigenvalue of (A− zB)−1 is iden-
tical to the eigenvector associated with the eigenvalue closest to z of B−1A and
uses the eigenequation of (A,B) to compute an approximation of the associated
eigenvalue. A variation of the power method for Hermitian matrices that replaces

N

14 1 Introduction

−2 −1 0 1 2
−2

−1

0

1

2

Figure 1.2: Complex spectral inversion. The original eigenvalues are marked as × and the
modified eigenvalues as ◦. The inversion-induced conjugation is ignored in this
representation to emphasize the changes in absolute value.

z with the approximate eigenvalue (in this context also called Rayleigh quotient) in
each iteration, is called Rayleigh quotient iteration. It applies the above observation
for improving performance of the shift-invert power iteration at the cost of increased
condition of the linear systems.

1.3 Subspace iteration
Power iteration methods are commonly introduced as single vector iterations, but
the concept can be extended to multiple vectors to find more than one eigenpair.
Of course, naive simultaneous iteration of blocks of vectors X i in Algorithm 1.1
ultimately causes all vectors to approximate the same eigenvector associated with
the largest magnitude eigenvalue, as is apparent from the proof of convergence of
the power method. However, the situation requires a more differentiated analysis.
Considering the factors λj/λ1, it is clear that directions with large difference in
magnitude compared to λ1 vanish more quickly than directions related to eigenvalues
with similar magnitude. In the case of multiple largest magnitude eigenvalues λ1 =
. . . = λk < λk+1 ≤ . . . the corresponding directions will not vanish at all.
Similar to before, write the i-th iterate as

Aiv0 =
k∑
j=1

γjλ
i
jxj +

n∑
j=k+1

γjλ
i
jxj = λik

 k∑
j=1

γj
λj
λk

)i
xj +

n∑
j=k+1

γj
λj
λk

)i
xj

, (1.3)

with separation at some index k. Certainly, the factors λj/λk are larger than λj/λ1
for k > 1, but λk+1/λk may still be (much) smaller than λ2/λ1, indicating that the
iterates may preserve directions of the first k eigenvectors over some iterations, before

O

1.3 Subspace iteration 15

ultimately converging to x1. We deliberately have to avoid the term “convergence”
for these k directions in this case, though.

Should multiple vectors be iterated simultaneously, the i-th iterate may be written
as

AiV0 = AiXΓ = XΛiΓ,

where V0 is expressed as linear combinations of eigenvectors, each column with
different coefficients (contained in Γ), and the above considerations apply to every
vector separately. Let |λk+1|/|λk|, k < n, be the smallest ratio of—in terms of their
absolute magnitude—adjacent eigenvalues. If we also assume that it differs to great
enough extent from any other pairing, we expect Vi = AiV0 to be an approximation
to a basis of the space, spanned by the first k eigenvectors at some point during
iteration.
There are some implications for a possible block power method based on this

observation, though. Let Vi be comprised of m columns. We then want to derive
a method that converges to the first m eigenvectors in order to compute the corre-
sponding eigenvalues; to that end, we need the rank of Vi to not decrease. However,
we merely can expect a spanning set for the associated vector space. The Vi will
become increasingly rank deficient as directions get dampened in each iteration. Or-
thogonalization is a measure to counteract this effect, but then it is unclear, to what
subspace the method will ultimately converge. If we can allow ourselves an early
guess, based on the above observations, we may suspect the first m directions to be
preserved with convergence rate corresponding to the separation of their eigenvalues.
We may also expect, for k < m, to observe convergence to the space spanned by the
first k directions earlier than to the remaining directions. Analogously for m < k,
convergence may be slow based on the separation of the first m directions to the
rest and also based on the separation among the first m directions. This is, however,
pure conjecture at this point.
In the end, even if we can assume span(Vi) to contain the space, spanned by

those eigenvectors we want to compute, how this information can be extracted and
converted to approximations of eigenpairs is still to be seen, the Rayleigh quotient
from the power method being a first hint. This section will introduce subspace
iteration as the method of choice for many of the commonly used algorithms to
compute subsets of the eigenpairs of a matrix pencil.

1.3.1 Vector projection and orthogonalization
We here use the more general formulation with respect to B, which simplifies to the
conventional understanding if B = I. Intuitively, the scalar product 〈v, w〉B describes
the length of the component of v in direction of a vector w. This component, or the
orthogonal projection of v onto a normalized vector w, ‖w‖B = 1, thus is

v‖w = 〈v, w〉B w.

P

16 1 Introduction

Consequently, removing the component of v in direction w results in

v⊥w = v − v‖w

such that 〈v⊥w, w〉B = 0. Projecting v onto a subspace spanned by multiple normal-
ized and orthogonal vectors Q = [q1, . . . , qk],

v‖Q =
k∑
j=1
〈v, qj〉Bqj = QQHBv

removes components in all but the directions of the qj. This also allows writing a
vector in terms of a linear combination of basis vectors, as used in Section 1.1.3.

Removing the directional components of a set of vectors Q from a second set
of vectors V such that 〈vi, qj〉B = 0 ∀i, j is called (B-)orthogonalization. Orthog-
onalizing a set of vectors V in itself via orthogonalizing pairs (vi, vj) with i 6= j
achieves 〈vi, vj〉B = 0 ∀i 6= j. If furthermore the vectors are normalized such that
〈vi, vi〉B = 1 ∀i, the process is called orthonormalization. Again, the terminology
used here omits the explicit relation to B.

1.3.2 Gram-Schmidt orthonormalization

Input: Vectors [v1, . . . , vk]
Output: Orthonormal vectors [q1, . . . , qk]
1: for i = 1, . . . , k do
2: v̂i ← vi

3: for j = 1, . . . , i− 1 do
4: v̂i ← v̂i − 〈vi, qj〉 qj
5: qi ←

v̂i
‖v̂i‖

Input: Vectors [q1, . . . , qk]
Output: Orthonormal vectors [q1, . . . , qk]
1: for i = 1, . . . , k do
2: v̂i ← vi

3: for j = 1, . . . , i− 1 do
4: v̂i ← v̂i − 〈v̂i, qj〉 qj
5: qi ←

v̂i
‖v̂i‖

Algorithm 1.2: Gram-Schmidt orthonormalization. Left: Classical formulation.
Right: Modified formulation.

Based on the considerations from the previous section, a method to orthonormalize
a set of vectors Q = [q1, . . . , qk] can be derived where vector i is orthogonalized
against vectors 1 to i − 1 and then normalized, resulting in orthonormal vectors
Q = [q1, . . . , qk]. This process is called Gram-Schmidt orthonormalization and is
outlined in Algorithm 1.2, on the left. Since every vector has to be orthogonalized
against vectors that already are in the orthogonal subset, the process is inherently
sequential. Assuming a distribution by vectors such that a process holds at least one
vector, all computations for one pass of the i-loop occur on the same process. On
the other hand, the i-loop cannot be parallelized since vector i has to be finished,
before vector i+ 1 can be processed.

Q

1.3 Subspace iteration 17

If the algorithm is performed in non-exact, e.g., floating-point arithmetic, the
resulting vectors are merely close to being orthogonal. These inaccuracies, caused
by accumulated rounding errors of the inexact computations, are not considered
inside the j-loop, where vi is repeatedly projected onto the qj. A simple modification
instead projects the intermediate vector v̂i onto the qj. The resulting modified
algorithm is referred to as modified Gram-Schmidt orthonormalization, outlined in
Algorithm 1.2 on the right.

This modified version of the algorithm also allows for a rearrangement of operations
to improve parallelization potential. Instead of removing the directions of the qj
from v̂i, it is also possible to remove the directions of qi from all remaining vectors vj.
This modification also allows to perform the algorithm in situ, without the need for
additional memory to store a separate set of result vectors. The rearranged modified
Gram-Schmidt orthonormalization is outlined in Algorithm 1.3.

Input: Vectors [v1, . . . , vk]
Output: Orthonormal vectors [q1, . . . , qk]
1: for i = 1, . . . , k do
2: qi

vi
‖vi‖

3: for j = i+ 1, . . . , k do
4: vj vj − 〈vj, qi〉 qi

Algorithm 1.3: Modified Gram-Schmidt orthonormalization, reordered.

Technically it is not necessary to produce normalized vectors, merely the orthogonal
projection requires them. Since the length of an orthogonalized vector can become
very small if the vectors were almost parallel at the beginning, and in order to not
being forced to perform the normalization in every pass of the j-loop, normalization
of the result vectors is conventionally an integral part of the algorithm. In a numerical
context, almost singular sets of input vectors and the resulting small vector norms
can lead to major inaccuracies, such that in extreme cases, where the vector size is
too small to properly represent its mathematically correct direction in the presence
of inexact arithmetic and number representation, the normalized output vector will
not be orthogonal to the other vectors at all.
When the process completes, the resulting vectors Q span the same space as the

input vectors V . We verify this for the classical Gram-Schmidt method, the modified
and rearranged versions are mathematically equivalent. Let R be the triangular
matrix

R =

〈v1, q1〉 · · · 〈vi, q1〉 · · · 〈vk, q1〉
.
〈vi, qi〉 · · · 〈vk, qi〉

.
〈vk, qk〉

R

18 1 Introduction

and note that due to trigonometric relations of the orthogonal projection of vi onto

v̂i = vi −
i−1∑
j=1
〈vi, qj〉 qj,

for the angle θ between vi and v̂i as well as between vi and qi,

cos(θ) = ‖v̂i‖‖vi‖

holds. Thus, with the geometric interpretation of the scalar product and ‖qi‖ = 1,

〈vi, qi〉 = ‖vi‖‖qi‖ cos(θ) = ‖vi‖
‖v̂i‖
‖vi‖

= ‖v̂i‖.

Then V = QR and V is a linear combination of Q, meaning span(V) ⊆ span(Q). V
and Q span the same space, if V has full rank. If V does not have full rank, the
process will break due to a division by zero, should a vector be reduced to zero length.
It is still possible to generate a full set of orthogonal vectors with the same size as
V by introducing new random vectors, whenever a zero vector (or, in a numerical
process, a vector with sufficiently small norm) occurs.

1.3.2.1 Definite pairs

In case the B-scalar product and the B-norm exist, the Gram-Schmidt methods can
be used for B-orthonormalization by letting ‖·‖ = ‖·‖B and 〈·, ·〉 = 〈·, ·〉B.

Gram-Schmidt orthonormalization is not the only way to obtain orthogonal vector
sets. Further methods for orthogonalization are discussed in Section 5.2.

1.3.3 Invariant subspaces
A subspace V , containing only vectors whose images under the application of B−1A
are again contained in V, AV ⊆ BV, is called invariant subspace of (A,B). In
particular any linearly independent subset of k eigenvectors X ∈ Cn×k of (A,B)
spans an invariant subspace X with dim(X) = k. Analogous to [Ste01] and [Krä14],
let U ∈ Cn×k with span(U) = X span such an invariant subspace. Note that this
implies full rank of U . Then U has a left inverse U−` such that U−`U = I (see
Section 1.1.2) and there exists a matrix H ∈ Ck×k such that

AU = BUH with H = U−`B−1AU, (1.4)

meaning that the j-th column of AU is a linear combination of the columns Bui
with factors hij. The matrix H is uniquely determined for the given choice of U and
U−`, since for every other matrix G

BUH = BUG =⇒ U−`B−1BUH = U−`B−1BUG =⇒ H = G.

S

1.3 Subspace iteration 19

Let H have eigenpairs (W,Λ) such that HW = WΛ. Then (UW,Λ) are eigenpairs
of (A,B), since

AUW = BUHW = BUWΛ.

Consequentially, those eigenvalues and eigenvectors of (A,B) associated with X can
be found by means of some basis U spanning X .

1.3.3.1 Power iteration

For a naively blocked power method, all iterated vectors converge to the vector asso-
ciated with the largest magnitude eigenvalue. The observations regarding invariant
subspaces above have shown that, instead, an approximation of an alternative basis
U for the associated invariant subspace X may be iterated. Certainly, any orthogonal
basis for X meets all criteria. As a consequence, orthonormalization with respect to
any scalar product will suffice and also prevent the iterated vectors from converging
to the same eigenvector. With X being a set of linearly independent vectors, it is
possible to find an orthonormal basis Q with span(Q) = X . Then Q−` = QH and
H = QHB−1AQ.

For proper convergence speed, we now will have to assume that for a subspace size
of k, also k eigenvalues should be well separated from the rest, i.e., |λk| � |λk+1|.

1.3.3.2 Definite pairs

Analogously to above, if B is hpd, it is possible to find a B-orthonormal basis Q
such that Q−` = QHB and H = QHAQ.

When dealing with generalized eigenproblems, the basis for the similarity transform
of the application of the operator is B-orthogonal. Should the iterated vectors be
B-orthogonal as well, they themselves will be approximates of the eigenvectors.

1.3.4 Rayleigh-Ritz
The choice of the subspace size is related to the number of eigenvalues we identify as
“well separated”. It is easy to assume that the associated eigenvectors dominate the
constructed approximate subspace, while the influence of other directions remains
small due to difference in magnitude of the associated eigenvalues; we understand a
subspace like that as an approximation to the invariant subspace, spanned by the
dominant eigenvectors.
If we assume X ⊃ span(U), e.g., if k < dim(X), U again spans an invariant

subspace, but with the magnitude of the associated eigenvalues not well separated, it
will not be a suitable approximation to a basis of X . Should the dominant eigenvalues
among themselves be again well separated, with the same train of thought as above
we can expect U to approximate a basis for the invariant subspace spanned by the
respective eigenvectors.

For X ⊂ span(U) the form in Equation (1.4) does not exist. But also in this case
a similarly powerful statement can be made, the Rayleigh-Ritz theorem, based on

T

20 1 Introduction

[Ray99] and published in a mathematical context in [Rit09]. We will again follow
[Krä+13] and [Krä14], based on [Ste01].

Theorem 1.1 (Rayleigh-Ritz) Let X = span(X) be an invariant subspace of the
matrix pencil (A,B) spanned by eigenvectors X = [x1, . . . , xm]. Let X be contained
in a subspace U = span(U) spanned by vectors U = [u1, . . . , uk], k ≥ m. Then, with
any matrix V ∈ Cn×k, for the matrix pencil(

V HAU, V HBU
)

(1.5)

there are m eigenpairs (W,Λ) with W ∈ Ck×m and Λ ∈ Cm×m such that (UW,Λ) are
eigenpairs of (A,B).

Proof. Let (X,Λ) be m eigenpairs of (A,B). Since X ⊆ U , every xj can be expressed
as a linear combination of the ui with factors wij. With W = (wij) ∈ Ck×m,

X = UW.

Therefore,

AX = BXΛ
AUW = BUWΛ

V HAUW = V HBUWΛ.

The matrices V HAU and V HBU are called Rayleigh quotients of A and B, respec-
tively. Eigenvalues of

(
V HAU, V HBU

)
are called Ritz values, Eigenvectors are called

primitive Ritz vectors and the eigenpairs are called Ritz pairs. The eigenvectors of
(A,B) constructed via X = UW are called Ritz vectors. Obviously, U at least has
rank m. Furthermore, since m ≤ k, not necessarily all Ritz values of Equation (1.5)
correspond to eigenvalues of (A,B). These additional Ritz values are called spuri-
ous Ritz values, ghost Ritz values or Ritz phantoms. Algorithms that are based on
the Rayleigh-Ritz concept, are commonly called subspace iteration or simultaneous
iteration algorithms. If the subspace is acquired by orthogonalization, it also may
be called orthogonal iteration.
If the reduced-size generalized eigenproblem from Equation (1.5) is to be solved,

we again may require V HBU to be invertible. Should U be of rank r < k, then there
is a linear combination UH of the columns of U such that

UH =
(
Ũ 0

)
=⇒ BUH =

(
BŨ 0

)
=⇒ V HBUH =

(
V HBŨ 0

)
,

with V HBŨ ∈ Ck×r. Similarly, should V be of rank s < k, there is a linear
combination V G of the columns of V such that

GHV H =
(
Ṽ H

0

)
=⇒ GHV HB =

(
Ṽ HB

0

)
=⇒ GHV HBU =

(
Ṽ HBU

0

)
,

U

1.3 Subspace iteration 21

with Ṽ HBU ∈ Cs×k. The combination of both yields a matrix Ṽ HBŨ ∈ Cs×r,

GHV HBUH =
(
Ṽ HBŨ 0

0 0

)
.

Therefore the linear combinations H of columns or the linear combination GH of
rows of V HBU show the rank deficiency and both U and V have to be of full rank
for V HBU to be invertible. As always, B is assumed to be invertible. Should U be
chosen to be I-orthonormal and V H = UHB−1, the reduced-size eigenproblem is of
standard form. The Rayleigh quotients then are UHB−1AU and UHB−1BU = I.

1.3.4.1 Power iteration

If we assume that nothing about the spectrum is known—in particular the number of
well separated eigenvalues has to be guessed—it is unrealistic to expect being able to
choose the subspace size properly. The Rayleigh-Ritz method demonstrates that it
is sufficient to find a basis which is large enough, as it generalizes the considerations
made in the context of invariant subspaces to spaces that merely contain the invariant
subspaces, and thus is better suited as a general eigensolver.

Input: Random vectors U0 = V

Output: Approximate eigenpairs (Xk,Λk)
1: for i = 1, . . . , k do
2: apply C to Ui−1 and obtain Ui

3: orthonormalize Ui
4: solve UH

k B
−1AUkW = WΛk for (W,Λk)

5: Xk ← UkW

Algorithm 1.4: Power subspace iteration, standard form.

Before formulating an algorithm based on the Rayleigh-Ritz method, it should
be noted that there are now two flavors of the same algorithm, the first of which
relies on orthogonalization to solve a reduced-size standard eigenproblem. The
Rayleigh-Ritz method furthermore allows to acquire an approximation of the actual
eigenvectors as X = UW . These vectors might as well serve as the new approximate
basis for the invariant subspace and, even if we do not extract spurious Ritz pairs,
i.e., W ∈ Ck×k, still X ⊆ span(UW). Since the vectors are approximations of
eigenvectors, we no longer have to care about separating the directions explicitly
by orthogonalization. The resulting algorithm has the benefit of not requiring an
expensive orthogonalization and an additional inversion of B, at the cost of requiring
the solution of a reduced-size general eigenproblem in every iteration. The last
aspect is not a real disadvantage in comparison to the first algorithm, since a residual-
based convergence criterion also requires obtaining approximate eigenvectors in every
iteration.

V

22 1 Introduction

Input: Random vectors X0 = V

Output: Approximate eigenpairs (Xk,Λk)
1: for i = 1, . . . , k do
2: apply C to X i−1 and obtain Ui

3: normalize Ui
4: solve UH

i AUiW = UH
i BUiWΛi for (W,Λi)

5: X i UiW

Algorithm 1.5: Power subspace iteration, generalized form.

In both cases only certain columns of X span the invariant subspace while others
belong to spurious Ritz pairs. If the spurious Ritz values can be identified, it would
be possible to reduce the number of columns iterated by removing those directions.
For the standard form of the algorithm, this again requires to compute the reduced
eigenproblem and X i = UiW in every iteration. Steps from Algorithm 1.4 and
Algorithm 1.5 can be mixed in general, for example solving a generalized eigenproblem
in Algorithm 1.4 to avoid the inversion of B.

1.3.4.2 Definite pairs

If we choose V H = UH , from A and B being Hermitian follows that UHAU and
UHBU are Hermitian as well. If furthermore we choose U to be B-orthonormal,
UHBU = I and the reduced-size eigenproblem again is of standard form.

1.3.5 Compatible pencils and harmonic Rayleigh-Ritz
Disregarding how exactly a spanning set U with X ⊆ span(U) was obtained, the
contained invariant subspace X of (A,B) can be used to compute any eigenvalues of
matrix pencils with identical eigenvectors, e.g., the ones listed in Table 1.2, using the
Rayleigh-Ritz method in the same way eigenvalues for (A,B) were computed directly
with the shift or shift-invert subspace power iteration method. Or—the other way
around—X can be obtained from these matrix pencils to compute eigenvalues for
(A,B).

The particular case, where eigenpairs of the matrix pencil (A− zB,B) are com-
puted, choosing the subspace basis as (A− zB)U such that the Rayleigh quotients
become (

UH(A− zB)H(A− zB)U,UH(A− zB)HBU
)
,

results in a subspace iteration method called harmonic Rayleigh-Ritz . It is motivated
by the observation of eigenpairs with eigenvalues of small magnitude being prone to
spawning spurious eigenpairs [Ste01].
To obtain the eigenvalues of (A,B) the shift z has to be reverted manually.

W

1.4 Spectral filters 23

1.4 Spectral filters
At this point the question arises, whether a better approximation of a basis for an
invariant subspace of (A,B) can be found, in particular one that does not rely as
strongly on the separation of a few extremal eigenvalues of the original eigenproblem.
The behind-the-scenes of the power iteration based methods revealed that ev-

erything hinges on differences in magnitude of eigenvalues, i.e., some eigenvectors
have to be strongly amplified, while others remain basically untouched or even are
dampened when the associated eigenvalue is smaller than one. The amplification
made it necessary to regulate the vector length via normalization.
Intuitively, to obtain a basis for a certain subspace, all other directions can be

removed from a given set of possibly random vectors v, effectively orthogonalizing it
against the unwanted directions.

1.4.1 Projection and projectors
A projector is a linear transformation P ∈ Cn×n that satisfies P 2 = P . Then P is
diagonalizable such that

P 2 = Q∆Q−1Q∆Q−1 = Q∆2Q−1 = Q∆Q−1 = P

with ∆ = diag(δ1, . . . , δn), which implies δi ∈ {0, 1} for i = 1, . . . , n. Let again q−1
i

denote the i-th column of Q−1. Then

P = Q∆Q−1 =
n∑
i=1

δiqiq
−1
i .

An operator P = P 2 is called idempotent. Analogously to the interpretation of the
eigendecomposition, a projector describes the removal of directions in the eigenbasis
Q while other directions are retained without any scaling. A complementary projector
is then easily constructed as

I − P = Q(I −∆)Q−1

with eigenvalues 1− δi. Let Qk = [qi | δi = 1] ∈ Cn×k. Then

Q∆Q−1 =
n∑
i=1

δiqiq
−1
i =

∑
{i | δi=1}

δiqiq
−1
i = QkQ

−1
k

may be called the reduced representation of a projector. Note that Q−1
k here denotes

a matrix comprised of k columns of Q−1.

1.4.1.1 Definite pairs

A projector whose range is orthogonal to its null space is called orthogonal projector .
This is in particular the case if the eigenvectors of the projector are orthogonal.

X

24 1 Introduction

e1

e2

e3

v

Figure 1.3: Effect of applying a three-dimensional projector with eigenvalues {1, 1, 0} and
eigenvectors e1, e2, and e3 to v = [5, 5, 5]T .

The operator then has the form P = Q∆QHB and the application of the reduced
representation to a vector v

Pv = Q∆QHBv = QkQ
H
k Bv =

k∑
j=1
〈v, qj〉Bqj

matches the form introduced in Section 1.3.1.

1.4.2 Spectral projectors
The approach to dampen certain parts of a spectrum, while retaining the rest, is
widely used in electronic filter design (see Section 2.4), e.g., in signal processing.

To obtain a projector onto an invariant subspace X of (A,B) and effectively remove
components in the direction of certain eigenvectors from a set of vectors Y to form
a basis of X , a projector of the form

PX = X∆X−1

acts on the eigenbasis of (A,B) and will be referred to as spectral projector . It is
idempotent since X−1X = I.

Which components are to be removed can be controlled by choosing the diagonal
entries of ∆, the eigenvalues of the projector, accordingly. For a set of directions,

Y

1.5 Matrix functions 25

say XΞ = [xi | i ∈ Ξ], where Ξ ⊂ {1, . . . , n} is the index set of retained directions,

∆ = diag(δ1, . . . , δn) with δi =
{

1 if i ∈ Ξ
0 else

constitutes a projector onto span(XΞ). It is identical to the projector XΞX
−1
Ξ .

If, e.g., eigenpairs associated with eigenvalues λi of a matrix pencil (A,B) located
inside a closed set Ω ⊂ C with the associated index set ΞΩ = {i |λi ∈ Ω} are to be
retained, the corresponding directions are selected by letting δi = 1 ⇐⇒ i ∈ ΞΩ.
With a function

χΩ(λ) =
{

1 if λ ∈ Ω
0 else

then δi = χΩ(λi).

1.4.2.1 Definite pairs

For eigenproblems with real spectrum, the above reduces to closed intervals on the
real axis.
To retain directions associated with eigenvalues λ that are located inside a con-

tinuous subsection ω = [λmin, λ
max] of the spectrum of a matrix pencil (A,B) with

index set Ξλ = {i |λi ∈ [λmin, λ
max]} and δi = 1 ⇐⇒ i ∈ Ξλ analogous to above,

the function relating the δi to ω is the window function

χ
ω(λ) =

{
1 if λ ∈ [λmin, λ

max]
0 else,

as shown in Figure 1.4, left, and δi = χ
ω(λi).

λmin λmax

0

1

λmin
λmax −r

r0

1

Figure 1.4: Left: The window function for an interval [λmin, λmax]. Right: A filter function
for a circular region in the complex plane with radius r = 1

2(λmax − λmin)
around c = 1

2(λmax + λmin).

1.5 Matrix functions
The term matrix function denotes mappings g : Cn×n → Cn×n of matrices onto
matrices. Given a diagonalizable matrix pencil B−1A = XΛX−1, elevating a scalar

BA

26 1 Introduction

function g(x) to a matrix function g(B−1A), is generally interpreted as element-wise
application to the spectrum of (A,B), retaining the properties of g, see, e.g., [Hig08].

g(B−1A) = X−1g(Λ)X = X−1

g(λ1)

. . .
g(λn)

X
The evaluation of a matrix function then boils down to replacing scalar operations in
the definition of the function with the corresponding matrix operations. Practically, a
spectral projector, as described in the previous section, cannot be constructed without
the knowledge of the eigenvectors XΞ. If the selection pattern is simple enough to
find a scalar function that can be elevated to and evaluated as a matrix function only
by the means of operations on A and B, thereby implicitly supplying information
of the eigenvectors, spectral parts can be selected without explicit knowledge of the
eigenvectors or eigenvalues.

1.5.1 Filtering functions and approximate projectors
Scalar functions χΩ on some closed set Ω with jump discontinuities at the boundary
of Ω cannot be represented as matrix functions exclusively operating on A and B
since their definition relies on the knowledge of the eigenvalues inside Ω and providing
a projector requires the eigenvectors X.
There are, however, approximations to these kinds of functions that fulfill the

requirements. In fact, the approximation of a jump discontinuity—or the window
function in particular—by a continuous function is a recurring task in other disciplines
such as frequency filter design in electronics. The term spectrum for the eigenvalues
of a matrix is not without reason identical to the term describing the frequency
distribution of an oscillation. However, approximations to the window function will
generally not be able to remove directions completely, i.e., the function value at the
positions of eigenvalues outside of Ω will not be zero, but very small at best, leading
to a mere dampening of these directions, similar to the effect of very small eigenvalues
on the power iteration. We will refer to these functions as filtering functions, or f .
The approximate bases for invariant subspaces constructed from these filtering

functions are, strictly speaking, not obtained by projection. The matrix representa-
tion of the filter,

P f = Xf(Λ)X−1,

at least approximates a projector onto the desired subspace, and we will therefore refer
to it as approximate projector . Repeated application of the approximate projector
will improve the filtering properties since the dampening factors for the eigenvectors
xi, f(λi) < 1, decay exponentially as

P k
f = Xfk(Λ)X−1.

Similarly, every factor f(λi) > 1 grows exponentially and will amplify the correspond-
ing directions accordingly, as is the case for the power method. In fact, filtering
functions do not necessarily have to obey f(λi) ≈ 1 for λi ∈ Ω.

BB

1.6 Iteration and convergence 27

Overall, the imperfection of filtering functions makes methods to solve eigenprob-
lems based on them inherently iterative again.

1.6 Iteration and convergence
The family of power iteration methods is inherently iterative. This is because the
subspace basis that is constructed can only ever be an approximation to a basis for
the actual invariant subspace associated with the dominant eigenvalues. Similarly,
for the subspace iteration methods introduced in this chapter, X is never exactly
contained in the space spanned by the set of vectors the method operates on. Should
that ever be the case, in exact arithmetic and assuming the reduced eigenproblem
can be solved exactly, the Rayleigh-Ritz method would yield the exact result in one
step. Rather, we have to expect a set of m linearly independent initial guess vectors
to be a linear combination of all eigenvectors and applying an operator will never
completely remove directions from them. We therefore have to assume that, due to
the behavior of the power iteration, ultimately all vectors will converge to a basis for
the m eigenvectors of largest magnitude. The result following below supports this
assumption.
Spectral projection methods, in exact arithmetic, would yield exact results, were

the filtering function the window function. Since it is not, the filtering properties
are successively improved by iteration. Indeed, iteration of the projection process is
approximately equivalent to constructing powers Xfk(λ)X−1 of the filtering function,
improving its filtering properties in every step. Similarly to above, directions are not
removed but increasingly dampened such that in this case we interpret the basis to
only contain the filtered directions, even though this is only approximately correct.
However, continuous iteration likely will reduce the contribution of the dampened
directions until they become numerically insignificant and, ultimately, we expect the
iterated basis to become rank deficient (also in a numerical sense) because of that.

1.6.1 Convergence

The following result from [Saa11] (with proof) gives a bound for the convergence
rate of the subspace iteration method.

Theorem 1.2 (Convergence of subspace iteration) Let P be the exact projector onto
the invariant subspace associated with the eigenpairs ([x1, . . . , xm], diag(λ1, . . . , λm))
of (A,B). Let Xk be the approximate eigenvectors in the k-th iteration and Pk the
orthogonal projector onto span(Xk). Let in particular X0 be the initial guess and
assume that exact projection PX0 does not reduce the rank, i.e., the columns of
PX0 are linearly independent.
Then, for each eigenvector xi, i = 1, . . . ,m, of (A,B), there is a uniquely deter-

BC

28 1 Introduction

mined vector si ∈ span(X0) such that si is projected onto xi, Psi = xi, and

‖xi − Pkxi‖ ≤ ‖xi − si‖
(∣∣∣∣∣λm+1

λi

∣∣∣∣∣+ εk

)k
,

where εk −→ 0 for k −→∞.

The convergence speed of the subspace iteration method is therefore determined
by the distance between an eigenvector xi and its associated direction in the space
of the initial guess, si, and, more importantly, by the separation of λi from λm+1.
Of course, spectral projection algorithms should be understood as performing

subspace iteration on the (approximate) projector matrix, given again that the
eigenvectors of the projector are identical to those of (A,B), and the computed
approximate eigenspace can be used to find eigenvalues of (A,B) (or other compatible
pencils). As such, the above inequality relates to the separation of eigenvalues, this
time of the projector, which are given by the filtering function at the positions of
the eigenvalues of (A,B), and thus convergence is now bound to the dampening
properties of the filter function or its ability to separate unwanted from wanted
eigenvalues. This simple and straight forward adaption can also be found in [Via12]
and [Krä14]. The dominance of an eigenvector of (A,B) then also refers to the
magnitude of the associated eigenvalue of the approximate projector P and its
separation to the other eigenvalues of P . Should the filter approximate the window
function, the separation of eigenvalues at the boundaries of the region of interest
or, more directly, the dampening effect of the filter on those eigenvalues dictates
convergence speed and as a direct consequence, dense spectra will require filtering
functions with steeper flanks to achieve comparable convergence rates.

In [Krä14] the convergence behavior is analyzed to greater extent, providing error
bounds for Ritz vectors, Ritz values and subspaces.

1.6.2 Metrics and residual
Every norm induces a metric, a quantification of the distance of two vectors. A
mapping d(v, w) : Cn × Cn → R is formally called metric if it has the properties

• d(v, w) ≥ 0,
• d(v, w) = d(w, v),
• d(v, w) = 0 ⇐⇒ v = w,
• d(v, w) ≤ d(v, z) + d(z, w).

A standard choice is the Euclidean metric

d(v, w) = ‖v − w‖.

Let (X,Λ) denote a computed approximation of the exact solution (X,Λ). Without
knowing the exact solution (X,Λ) of the eigenvalue problem, the distance between

BD

1.6 Iteration and convergence 29

two supposedly equal quantities might serve as a measure for the accuracy of (X,Λ).
The residual of an approximate solution to the eigenvalue problem of (A,B) is

‖AX −BXΛ‖.

Oftentimes, it makes sense to track the quality of separate approximate eigenpairs
(x,λ). Let the residual matrix be

R = AX −BXΛ.

The column-wise norms of R then give an eigenpair-wise impression of the quality
of the solution.

Since ri = ‖Axi − λiBxi‖, the norm of xi plays an important role for the residual
as it directly influences its magnitude. To obtain a thoroughly consistent image
of the quality of a solution, it is advisable to require the observed eigenvectors to
remain at unit length. Similarly, smaller eigenvalues λi will show smaller residuals.

1.6.3 Residual bounds
If (A,B) is a definite pair and using the concept of a matrix square root (cf. Sec-
tion 1.2.2, definite pairs), the following result for bounding the location of an Eigen-
value in relation to a Ritz value can be found [Krä14] (standard version originally
from [Par80]).

Theorem 1.3 (Ritz value pairing) Let R = AX − BXΛ with X ∈ Cn×m B-
orthonormal. Then there are m pairs (λi, λj), 1 ≤ i ≤ m and 1 ≤ j ≤ n such
that

|λi − λj| ≤
∥∥∥B− 1

2R
∥∥∥ ≤ 1√

λmin(B)
‖R‖.

Here, λmin(B) refers to the smallest magnitude eigenvalue of B. This result states
that for a computed Ritz value there is at least one eigenvalue in the surrounding
disk defined by the residual of the approximate solution. The application of this
result can be difficult in practice if the presence of spurious Ritz values with large
residual ri has to be assumed. In this case, the residual R is large as well. However,
a similar result (also [Krä14], with proof, standard version originally from [Par80])
can be obtained per Ritz pair residual.

From [Par80; Krä14] we know that, for Hermitian matrices M , unit vectors y, and
scalars α ∈ C, there is an eigenvalue λ of M such that

|λ− α| ≤ ‖My − yα‖.

Analogously to [Krä14], we may reformulate this statement for definite pairs by
letting

M = B−
1
2AB−

1
2 and y = B

1
2v,

BE

30 1 Introduction

where v is chosen B-normal such that B 1
2v is a unit vector. Then

|λ− α| ≤
∥∥∥B− 1

2 (Av −Bvα)
∥∥∥.

This is true in particular for approximate Ritz pairs (x,λ).

Theorem 1.4 (Ritz value distance) For any computed Ritz pair (x,λ) with residual
r there is an eigenvalue λ of (A,B) such that

|λ− λ| ≤
∥∥∥B− 1

2 (Ax−Bxλ)
∥∥∥ =

∥∥∥B− 1
2 r
∥∥∥.

The statement is roughly the same as Theorem 1.3 but without any means of
pairing Ritz values and eigenvalues. For multiple computed pairs, this means that
correct association is impossible should any of the disks defined by the above relation
overlap. Explicit pairing is often not necessary in practice.

1.7 Digression: Related algorithms
Several other methods for solving eigenproblems exist that do not precisely fit the
frame of, but rely on, concepts closely related to subspace iteration. This section
will give an overview without delving too deeply into the workings of those methods.

1.7.1 Orthogonal iteration
For any matrix Z ∈ Cn×k there exists a decomposition Z = QR into a unitary
matrix Q ∈ Cn×k and a triangular matrix R ∈ Ck×k. Such a decomposition is called
thin [GV13] or reduced [TB97] QR decomposition. Then, if Z has full rank, Q is an
orthonormal basis for span(Z) and if X ⊆ span(Z) then X ⊆ span(Q). One way to
obtain such a decomposition is the Gram-Schmidt orthonormalization introduced in
Section 1.3.2. Other methods are discussed in Chapter 5.
Not to be confused with the QR factorization itself, which is commonly used for

orthogonalization of a set of vectors, the QR algorithm is predicated on the QR
factorization to solve eigenproblems in a similar way the power subspace iteration
method does (see, e.g., [Saa11]).

For iterates QkRk = CQk−1 of the power method, the Rayleigh quotients become(
QH
k CQk, I

)
=
(
QH
k Qk+1Rk+1, I

)
.

According to [Saa11], Qk converges essentially2 to some orthogonal matrix Q. We
can therefore assume that Qk+1 ≈ QkS as k increases, where S = QH

k Qk+1 is the
(approximately) diagonal sign matrix that holds the (possibly complex) signs on
the diagonal, always assuming that Qk and Qk+1 are normalized. The reduced
eigenproblem then becomes

SRk+1W ≈ WΛz.

2) This term describes a convergence in terms of pure direction, ignoring the sign.

BF

1.7 Digression: Related algorithms 31

Since R is triangular, its eigenvalues appear as the diagonal entries (remember the
definition of the characteristic polynomial and the computation of determinants)
and the explicit solution of the reduced eigenproblem is unnecessary if eigenvectors
can be disregarded and if the sign matrix S of two consecutive iterations is tracked.
To this end, only a pair-wise multiplication of the corresponding vectors in Qk and
Qk+1 is required and no full inner product has to be computed. Then the eigenvalues
of SRk+1 are obtained by element-wise multiplication of diag(S) and diag(Rk+1),
avoiding the solution of a reduced eigenproblem.

To obtain the corresponding eigenvalues of (A,B), as opposed to the more explicitly
Rayleigh-Ritz based methods before, an explicit transformation may be necessary,
e.g., λ = 1/λz + z for the shift-invert operator. The resulting algorithm is commonly
called orthogonal iteration Algorithm 1.6. This algorithm is remarkably similar to

Input: Random vectors Q0

Output: Approximate eigenpairs (Xk,Λk)
1: for i = 1, . . . , k do
2: Ti ← Qi−1

3: apply C to Qi−1 and obtain Yi

4: QiRi = Yi

5: S = THk Qk

6: solve SRkW = WΛk for (W,Λk) . optional
7: Xk ← QkW . optional

Algorithm 1.6: Orthogonal iteration, exploiting the factor R as described in this section.
The step in line 5 can be simplified since only the diagonal of S is required.
The step in line 6 can be significantly simplified by computing the eigenvalues
of SRk directly via diag(S) and diag(Rk).

Algorithm 1.4. The only difference is the use of SR and the form typically found in the
literature indeed computes the reduced eigenvalue problem for the Rayleigh quotient
QH
k CQk. If this is replaced with QH

k B
−1AQk, Algorithm 1.6 and Algorithm 1.4 are

identical. In [Saa11], the term subspace iteration also refers to orthogonal iteration.
The formulation presented here does require additional storage for Ti (only one vector
block needs to be stored, of course) but omits the additional multiplication with C
and the inner product QH

k CQk. To reduce the additionally required memory, the
signs can be updated in each iteration such that only m values have to be stored, if
m is the number of columns of the Qi. This comes at the price of having to compute
the scalar products of the m column pairs of Ti and Qi in every iteration.

Algorithm 1.6 is not to be confused with the QR algorithm (or QR iteration), which
is based on orthogonal iteration but computes a complete Schur decomposition of a
matrix.

As before, a convergence criterion based on the residual of the approximate eigen-
pairs requires the solution of the reduced eigenproblem and the computation of the

BG

32 1 Introduction

Ritz vectors in every iteration. The QR decomposition and its use for orthogonali-
zation will be discussed in larger detail in Section 5.2.1.

1.7.2 The Arnoldi and Lanczos methods
A method to compute eigenpairs of a matrix A that shares many of the theoretical
aspects introduced in this chapter is the Arnoldi method [Arn51]. See also, e.g.,
[Saa11] or [GV13]. Consider a sequence of iterates vi produced by the power method
applied to a single vector v0 as application of powers of the matrix operator C,
K =

[
v0, Cv0, . . . , C

kv0
]
. The space

Kk = span
(
v0, Cv0, . . . , C

k−1v0
)

is called the Krylov subspace [Kry31] of order k generated by C and v0. With
considerations similar to the approximation of an invariant subspace X for the k
dominant eigenpairs of (A,B), it is reasonable to assume that X ⊆ K and the
vectors K can be used in a Rayleigh-Ritz process. In contrast to subspace iteration,
the subspace basis K is built successively by application of the operator to only
one vector in each step. Consequentially, since orthogonalization is required for
the same reasons it was required in the power subspace methods, the process is
intertwined with a vector-wise orthonormalization algorithm, e.g., the Gram-Schmidt
orthonormalization introduced in Section 1.3.2. Analogous to the Gram-Schmidt

Input: Random vector v0, size of Krylov subspace k
Output: (Q,H) such that CQ ≈ QH, approximate

eigenpairs (X,Λ)
1: q1 = v0

‖v0‖
2: for i = 2, . . . , k do
3: vi ← apply C to qi−1

4: qi ← orthonormalize vi against [q1, . . . , qi−1]
5: with hj,i−1 ← 〈vi, qj〉 for j = 1, . . . , i− 1
6: hi,i−1 ← ‖qi‖
7: solve HW = WΛ for (W,Λ) with H = (hi,j) ∈ Ck−1,k−1

8: X ← QW with Q = [q1, . . . , qk−1]

Algorithm 1.7: The Arnoldi algorithm.

procedure vi = Cqi−1 is the i-th vector to be orthonormalized against q1, . . . , qi−1,

v̂i = Cqi−1 −
i−1∑
j=1
〈Cqi−1, qj〉 qj

BH

1.7 Digression: Related algorithms 33

is the i-th non-normalized orthogonal result vector, and qi = v̂i/‖v̂i‖ the final i-th
orthonormal result vector. In particular

Cqi−1 = ‖v̂i‖qi +
i−1∑
j=1
〈Cqi−1, qj〉 qj

is a linear combination of [q1, . . . , qi]. Then, with q1 = v0/‖v0‖, [Saa11]

span
(
v0, Cv0, . . . , C

k−1v0
)

= span
(
q1, Cq1, . . . , C

k−1q1
)

= span(q1, q2, . . . , qk)

and the upper Hessenberg matrix H constructed by Algorithm 1.7 satisfies QHCQ =
H since

h`,i := qH` Cqi = ‖v̂i+1‖qH` qi+1 +
i∑

j=1
〈Cqi, qj〉 qH` qj =

‖v̂i+1‖ if ` = i+ 1
〈Cqi, q`〉 if ` < i+ 1
0 otherwise

for `, i = 1, . . . , k − 1. If the stabilized version of Gram-Schmidt is used, the factors
〈vi, qj〉 change to 〈v̂i, qj〉, where the v̂i denote the intermediate vectors generated
during orthogonalization.
The matrix H then gives the Rayleigh quotient for the Rayleigh-Ritz procedure

of standard form, see Section 1.3.4.

1.7.2.1 Definite pairs

In the case of a Hermitian operator, the Arnoldi method simplifies to the Lanczos
method [Lan50]. The matrix H is then tridiagonal due to qH` Cqi = qH` C

Hqi = qHi Cq`,
i.e., H is Hermitian if the operator C is Hermitian. This is the case for operators of
the form B−1A, B−1(A− zB) and (A− zB)−1B only if z is real and B = I.

1.7.2.2 Restarts

As an intuitive extension to the above algorithm, if the Krylov subspace can be
assumed to be large enough to contain the invariant subspace X of sizem ≤ k, instead
of increasing the subspace size further to generate larger powers of C, restarting
the whole process with qk as starting vector to generate powers up to C2k−2, with
the j-th restart generating powers up to Cjk−j, improves the approximation of the
subspace.

1.7.3 Other methods
What follows is a short overview over other important methods and their relation
to subspace iteration and spectral projection, as illustrated in Figure 1.5.
Acceleration by modification of the spectrum using a suitable function that can

be applied as matrix function to emphasize certain (often extremal) eigenvalues

BI

34 1 Introduction

Iterative
eigensolvers

Vector
iteration

Power
iteration†

Subspace
iteration

Power
iteration‡

Acceleration
e.g. [Saa11]

Spectral
projection

TraceMIN
[SW82; KSS13]

Orthogonal
Iteration [Saa11]

Base
expansion

Jacobi-Davidson
[SV00]

Krylov Lanczos [Lan50]
Arnoldi [Arn51]

Figure 1.5: Non-exhaustive classification hierarchy of iterative eigenvalue algorithms. The
power iteration algorithms include all the variations listed in Table 1.1 and
Table 1.2.

follows, in principle, the same idea as spectral projection. Instead of dampening
of certain directions and approximation of the window function, the focus is the
amplification of directions to increase separation and improve convergence speed, as
seen in Equation (1.2), Equation (1.3), and Theorem 1.2. It can be used to accelerate
the single vector power iteration or multi vector Rayleigh-Ritz subspace iteration.
An example is the acceleration by Chebyshev polynomials [Wil65; Saa11], using their
property to grow large fast outside of [−1, 1]. See also Section 2.1.5 and Section 2.6.
The elliptic rational function from Section 2.4.4 could be used in the same way.

The TraceMIN algorithm [SW82; KSS13] finds successively improved approxi-
mations to the eigenvectors associated with the smallest eigenvalues by solving an
optimization problem to minimize the trace of a reduced eigenproblem, followed by
the Rayleigh-Ritz procedure to extract eigenpairs. Due to this improvement of basis
vectors, we classify TraceMIN as subspace iteration algorithm.
†) This includes all possible spectral modifications in order to accelerate convergence and, with
this, all filters used in subspace iteration.
‡) This includes all operators from Table 1.1 and Table 1.2.

BJ

1.7 Digression: Related algorithms 35

The Davidson method [Dav75] improves the approximation of eigenpairs by expand-
ing the subspace used in the Rayleigh-Ritz procedure by a vector being orthogonal
to the original basis vectors. If the suggested choice of Davidson for this vector
is replaced with Jacobi’s orthogonal correction vector (and the occurrence of the
eigenvalue is replaced by the associated Ritz value) [Jac46; SV00], the result is the
Jacobi-Davidson method [SV00].

The Arnoldi and Lanczos methods rely on the Rayleigh-Ritz procedure for the
extraction of eigenpairs and, similarly to the Davidson and Jacobi-Davidson methods,
extend the subspace basis vector by vector using orthogonalization. They have a
strong relation to the power iteration method since they build a Krylov subspace,
which is not the case for the Davidson and related methods. Note that, theoretically,
filters from subspace iteration or spectral projection can also be used in the Arnoldi
process.

In Figure 1.5, power iteration is used as umbrella term for the complete family of
power iteration algorithms, see Table 1.1 and Table 1.2. Of course, every algorithm
that manipulates the spectrum of the operator to improve convergence and extracts
the eigenpairs of the original matrix pencil via Rayleigh-Ritz, can be executed as
single vector version. These are not included in Figure 1.5.

BK

Chapter 2
Spectral projection algorithms

The previous chapter introduced the use of approximate spectral projectors in a
Rayleigh-Ritz subspace iteration algorithm as a promising method for computing

arbitrary portions of the spectrum of a matrix pencil (A,B). For many applications,
it is to be expected that the spectral region of interest will either be a closed, simply
connected domain containing the eigenvalues of the least magnitude or two separate
domains containing the eigenvalues of the largest magnitude. In the latter case,
assuming a filtering function based on the window function is all that is available,
the two domains would have to be computed separately. Of course, it would be
possible to approximate a filtering function that filters exactly the regions of interest.
Though, the more complex these functions become, the harder it typically is to
acquire good approximations that can be applied without too much computational
effort. A frequently employed approach is to find approximations of a target function
as superposition of members of a simpler family of functions.

A prominent incarnation is the Fourier series which approximates a periodic func-
tion by a summation of weighted sine functions of different frequencies, which ulti-
mately leads to the Fourier transform. Since the computation of sine matrix functions
via their Taylor series to sufficient accuracy involves high orders of matrix powers and
the computation of the approximate filter again requires the evaluation of multiple
matrix sine functions, the required amount of matrix multiplications seems to make
this method infeasible for spectral filtering.
Other well-known methods rely on polynomial or rational approximation. One

example is the approximation by Chebyshev polynomials. Due to the possibility of
recursive definition, evaluating these polynomials can be achieved with three-term
recurrence. This enables its application to a set of vectors with as many matrix
multiplications as the degree of the polynomial, in conjunction with computing
the required Chebyshev polynomials of increasing degree, provided two vector sets
holding previous values can be stored alongside the right-hand sides.
In 2009, a method based on the Cauchy integral theorem for finding a matrix

representation of the window function as projector to be used in a Rayleigh-Ritz
process was introduced in [Pol09]. The method becomes a rational approximation by
use of a numerical approximate integration scheme such as Gauss-Legendre quadra-

BM

38 2 Spectral projection algorithms

ture. While it is difficult to employ polynomial approximations for the computation
of generalized eigenproblems due to many linear system solves involving B, ratio-
nal approximations that have a partial fraction form without or only with trivial
polynomial remainder are well suited for generalized eigenproblems but require a
number of shifted linear system solves equal to the number of poles of the rational
function. Since good approximations with steep filter flanks require the poles to be
located very close to the interval boundary, the linear systems can become arbitrarily
ill-conditioned, depending, beyond the spectral distribution of the matrix, also on
the spectral density which is often related to matrix size and on the distance of the
interval boundaries to eigenvalues of the matrix pencil. While the systems typically
will never become singular—the shifts are non-real for almost all cases—they can
come very close to being considered singular. Additionally, due to the non-real shift,
the systems are never Hermitian, even if A and B both are. These conditions make
the linear systems challenging for any iterative linear system solver.
Another rational approximation of the window function can be derived from

Zolotarev’s approximation of the sign function [Zol77] using appropriate Möbius
transformations. Filters of this type have been used for spectral projection in
[Güt+15] and [LY17].

In electronic filter design, filters that go by the name of Chebyshev and Zolotarev
are common tools of the trade. Theory and design processes are versatile and well
explored. By specifying certain constraints on the desired properties of a filter,
the frequency response of the filter is shaped and the minimum required degree
necessary to satisfy the initially given requirements can be inferred. It seems natural
to employ an existing extensive framework for designing filters for our spectral
filtering approaches, given that the described filters again are rational functions, can
be expressed in partial fraction form, and eventually are evaluated in the same way
as contour integration and Zolotarev approximation. We will therefore dedicate a
section to these filters, noting that they relate to the filters described earlier almost
exclusively in name.
We will also adopt some jargon used in the design of electronic filters for use in

discussions of the several other filtering methods described in this chapter.

Gain The magnitude of the frequency response of the filter (often in dB). This is
what the filtering curve describes and thus directly relates to the dampening
properties of the filter as a function of frequency, or, in our case, the real axis.

Passband Spectral intervals of little or no dampening. In electronic filter design,
this describes frequencies that pass the filter (almost) without being affected.
In the context of spectral filtering, eigendirections related to eigenvalues inside
this interval are retained when applying the filter.

Stopband Spectral intervals of high dampening. In electronic filter design, this
describes frequencies that are dampened significantly when passing the filter.
In the context of spectral filtering, eigendirections related to eigenvalues inside
this interval are strongly suppressed when applying the filter. In the case of
approximated window functions, the stopband can be considered split in half.

BN

39

Transition band The region between passband and stopband where the transition
from high gain to low gain results in a flank with a certain steepness. The width
of this region is an important criterion as it is directly related to the convergence
speed of the method (in combination with spectral density inside the transition
band) and its ability to separate wanted from unwanted eigenpairs.

0

maximum stopband gain

minimum passband gain
maximum passband gain

Real axis

A
bs

ol
ut

e
fil

te
r

va
lu

e

passbandstopband stopband

tr
an

sit
io

n
ba

nd

transition
band

Figure 2.1: Filter properties: passband, stopbands, transition bands, and important gain
characteristics. Absolute filter values are shown.

Figure 2.1 illustrates these terms. While the term band is used for ranges of fre-
quencies, it is worth to remind ourselves that spectral filtering of matrix pencils only
applies to a finite set of discrete “frequencies”, the eigenvalues of the matrix pencil.

For our purpose it will be sufficient to consider low-pass filters, since the transfer
function is reflected for negative frequencies and the spectrum can be transformed
such that the target interval fits the filtered region. Linear transformation in terms
of translating and scaling a filtering function can always easily be incorporated in
terms of matrix operations since they correspond to matrix shifts and scalar scaling,
respectively. It is therefore easy to transform the spectrum of a matrix pencil to the
desired interval, whenever it is required, possibly at the cost of additional but cheap
operations when applying the filter.
This chapter will treat polynomial approximations using Chebyshev polynomials

first, given that this is the only filter on the list that is a matrix polynomial and thus
can be applied by matrix multiplication alone. All other filters presented here are
rational filters, requiring the solution of linear systems. The first two rational filters
that will be covered are the Cauchy filter and its variations as well as the Zolotarev
filter. Both have been used in spectral filtering for eigenpair computation before,
the Cauchy filter preceding the Zolotarev filter. They are introduced in this order as
well. The last four conventional filters introduced here will be the filter types from

BO

40 2 Spectral projection algorithms

electronic filter design, roughly in the order of their complexity. The Butterworth
filter, for example, is perfectly smooth; type I and II Chebyshev filters introduce
oscillations in the pass- or stopband, respectively; elliptic filters combine oscillations
in both pass- and stopband. Further, the Butterworth filter is equivalent to a Cauchy
filter using the midpoint integration rule and elliptic filters can be understood as a
generalization of the Zolotarev filter, allowing more parameters to be tweaked. To
the best of our knowledge, these filters have, despite their flexibility, not been used
in the spectral filtering context, or at least not prominently, which is why they are
covered last here.

Finally, an extension to the concept of Cauchy integral based filtering originating
from a root finding method for analytic functions, the family of Sakurai-Sugiura
methods (SSM), is introduced to highlight differences and similarities compared to
spectral filtering.

Prerequisite for a good and correct implementation often is at least a basic under-
standing of the mathematical concepts and foundations a numerical method is built
upon. Beyond providing all information necessary for an implementation we there-
fore also include basic derivations for most of the aspects of the methods introduced
here. Also, while the next chapters will cover details of implementation and effects
of algorithmic choices, some consequences for a possible implementation of certain
approaches will be mentioned in this chapter already.

2.1 Polynomial filters
Polynomials are among the simplest classes of functions as they only require mul-
tiplication and addition for evaluation. This is particularly important if a matrix
function is to be evaluated.
Often, the selected basis polynomials of ascending degree form orthogonal bases

of the inner product space of polynomials. The approximated function is then
evaluated as weighted sum of these basis polynomials. The recursive definition
of the Chebyshev polynomials (see, e.g., [Saa11]) makes it possible to intertwine
computation of the next required Chebyshev polynomial and the computation of the
approximated function with little additional effort in terms of memory consumption.
This approach, however, is limited to real functions.

Depending on the function to be approximated, the computation of the weights
can be difficult and may only be possible approximately. For simple functions like
the window function, it is possible to compute the coefficients analytically.

2.1.1 Polynomial approximation
Analogous to the vector scalar product from Section 1.1.1, the concept of an inner
product can be extended to function spaces (see, e.g., [Akh56]),

〈g, h〉 =
∫
g(z)h(z) dz.

BP

2.1 Polynomial filters 41

A more general formulation includes a weight function w(z) that does not influence
its properties as inner product, but careful choice of w will simplify the computations
of these integrals later on (see, e.g., [AS74]),

〈g, h〉w =
∫
w(z)g(z)h(z) dz.

From there, similarly to expressing a vector as linear combination of a set of basis vec-
tors (Section 1.3.1), it may be possible to represent functions as linear combinations
of different functions. While we casually use the term representation, it is not yet
clear whether such a representation can exist, given arbitrary basis functions pn—in
order to find such a representation of a function g(z), the basis functions pn(z) are
required to span the function space h(z) is defined on. Since the respective function
space is potentially infinite dimensional, the number of basis functions required to
represent the target function may be infinite as well,

g(z) =
∞∑
i=0

〈g, pi〉w
〈pi, pi〉w︸ ︷︷ ︸

=: ci

pi(z), (2.1)

where the weight ci combines the “component” of g in “direction” pi and the “nor-
malization” factor of pi, to use common vector nomenclature. A simple example is
the space of polynomials. With no fixed maximum degree, it is easy to see that an
infinite sequence (1, z, z2, . . .) is required to form a basis for all polynomials in z.

Assuming the ci to be descendingly ordered by magnitude, discarding all summands
of Equation (2.1) above a certain index d yields an approximation of g in terms of
the pi. Restricting the interval of approximation simplifies the approximation and
possibly reduces the number of summands necessary to find a good approximation.
The interval of approximation is dictated by the integration region of 〈g, pn〉w and
〈pn, pn〉w.
Computing the coefficients ci becomes possible by exploiting that the basis func-

tions are orthogonal in the above sense and if the target function is sufficiently
simple. Should the function be more complex, approximations of the coefficients can
be obtained instead.

The use of trigonometric functions (and an obviously necessary constant term) for
example leads to the family of trigonometric series whose most well-known member
is the Fourier series. It is used to approximate periodic functions or the periodic
continuation of function segments. Their use as matrix functions is very limited by
the complexity of the matrix sine and cosine functions.
The family of polynomials on the other hand is computationally simple; they

can be evaluated using just the simplest arithmetic operations and thus are more
feasible for our inherent goal to identify spectral projectors whose application can
be expressed in terms of simple matrix operations.

BQ

42 2 Spectral projection algorithms

2.1.2 Chebyshev polynomials
The polynomials defined by

Tn(z) = cos
(
n cos−1(z)

)
on |z| ≤ 1 are called Chebyshev polynomials of the first kind (see, e.g., [Wil65; AS74;
Par80; Ste98; Saa11; Wei+06]). The terms 〈Ti, Tj〉w are computed by substitution
with θ = cos−1(z) as∫ 1

−1
w(z) cos(i cos−1(z)) cos(j cos−1(z)) dz =

∫ π

0
cos(iθ) cos(jθ) dθ, (2.2)

provided the weight function w(z) is chosen as

w(z) = − d

dz
cos−1(z) = 1√

1− z2
.

Here, the sign resulting from reversing the direction of integration after substituting
is included in the weight function. Repeated partial integration or the use of the
trigonometrical identity [AS74]

cos(θ) cos(φ) = 1
2 cos(θ − φ) + 1

2 cos(θ + φ),

which we will use here, for i 6= j then gives
∫ π

0
cos(iθ) cos(jθ) dθ = 1

2

[
sin((i− j)θ)

i− j + sin((i+ j)θ)
i+ j

]π
0

= 0.

This demonstrates the orthogonality of the Chebyshev polynomials with respect to
the weight function w(z) as above, making them a basis for the space of polynomials
of unbounded degree. As such, they can be used to approximate functions by some
polynomial, the degree determining the quality of the approximation and also the
cost of evaluation. For i = j 6= 0, as required for the coefficients ci,∫ π

0
cos2(iθ) dθ = 1

2

[
θ + sin(2iθ)

2i

]π
0

= 1
2π

and further for i = j = 0 ∫ π

0
1 dθ = [θ]π0 = π.

It should be noted that without reversing the sign, the weight function would violate
the requirement of positive definiteness for the inner product 〈Ti, Ti〉w, as can be seen
from the above. With this, the coefficients ci can be computed as

ci =
{ 1

π
〈Ti, g〉w if i = 0

2
π
〈Ti, g〉w else.

BR

2.1 Polynomial filters 43

2.1.2.1 Window function

With g(z) = χ
ω(z), the window function for the interval ω = [λmin, λ

max] ⊂ [−1, 1]
on the real axis, the coefficients ci can be computed analytically. Using the same
substitution as in Equation (2.2),

∫ 1

−1
w(z)χω(z)Ti(z) dz =

∫ λmax

λmin
w(z)Ti(z) dz =

∫ cos−1(λmin)

cos−1(λmax)
cos(iθ) dθ.

Note that, to compensate for the sign from the weight function, the direction of
integration is reversed again. For i > 0

∫ cos−1(λmin)

cos−1(λmax)
cos(iθ) dθ =

[
sin(iθ)
i

]cos−1(λmin)

cos−1(λmax)
= sin(i cos−1(λmin))− sin(i cos−1(λmax))

i

and ∫ cos−1(λmin)

cos−1(λmax)
1 dθ = cos−1(λmin)− cos−1(λmax)

if i = 0. For the coefficients ci of the polynomial approximating χ[λmin,λmax](z) the
final explicit form is then

ci =

1
π

(
cos−1(λmin)− cos−1(λmax)

)
if i = 0

2
iπ

(
sin
(
i cos−1(λmin)

)
− sin

(
i cos−1(λmax)

))
else.

2.1.2.2 Application

For the Chebyshev polynomials of the first kind there exists a simple three term
recurrence relation that allows for the computation without explicit use of trigono-
metric functions, which is a critical condition if the polynomial is to be elevated to
a matrix function.

T0(z) = 1
T1(z) = z

Tn(z) = 2zTn−1(z)− Tn−2(z)

T0 and T1 are trivially confirmed and the validity of the recursive relation is easily
confirmed by using simple trigonometric identities. Write the relation in angular
form by substituting z = cos(θ),

Tn(cos(θ)) = 2 cos(θ) cos(nθ − θ)− cos(nθ − 2θ).

Since 2 cos(a) cos(b) = cos(a− b) + cos(a+ b) and cos(−a) = cos(a),

Tn(cos(θ)) = cos(2θ − nθ) + cos(nθ)− cos(nθ − 2θ) = cos(nθ).

BS

44 2 Spectral projection algorithms

An approximation of the window function (or any function, given the proper coeffi-
cients ci) is then found as per Equation (2.1),

g(z) ≈ f(z) =
d∑
i=0

ciTi(z),

where d is the degree of the resulting polynomial.

2.1.3 Matrix polynomials
Since Chebyshev polynomials are defined on the real axis only, we have to restrict
ourselves to definite matrix pencils. Let the approximate filtering function χ be
the polynomial f(λ) = ∑d

i=0 ciTi(λ) applied to the spectrum of B−1A. The filtering
matrix then is

∆f = diag(f(λ1), . . . , f(λk))
and the approximate projector is

P f = X∆fX
HB. (2.3)

The polynomial f(λ) is defined on spec(A,B) and the matrix has the eigendecom-
position B−1A = XΛXHB with Λ = diag(λ1, . . . , λk). It is thus possible to elevate
the projector formulation to matrix form,

P f = X diag(f(λ1), . . . , f(λk))XHB

= X
d∑
i=0

ciTi(diag(λ1, . . . , λk))XHB

=
d∑
i=0

ciTi
(
X diag(λ1, . . . , λk)XHB

)

=
d∑
i=0

ciTi
(
B−1A

)
≈ Pχ,

where the Ti are again polynomials which may be elevated to matrix polynomials in
identical manner. The Chebyshev recurrence relation from above becomes

T0(B−1A) = I

T1(B−1A) = B−1A

Tk(B−1A) = 2B−1ATk−1(B−1A)− Tk−2(B−1A)
or, applied to vectors V ,

T0 = V

T1 = B−1AV

Tk = 2B−1ATk−1 − Tk−2

where Ti are intermediate vectors for which two buffers may be used in alternating
fashion. However, the d inversions of B required for its evaluation make this method
infeasible for cases where B 6= I.

BT

2.1 Polynomial filters 45

2.1.4 Gibbs phenomenon and smoothing kernels
Attempting to approximate functions with jump discontinuities using only continuous
and inherently smooth functions like polynomials, compulsorily leads to oscillations
in the vicinity of the discontinuities [Wei+06; LTE01]. This effect is known as
Gibbs phenomenon. To counteract the oscillatory nature of the resulting functions,
modifications of the coefficients can be employed to smooth the approximation of
the window function at the cost of decreasing the steepness of its flanks. A set of
modifiers for the coefficients of the approximation for the sake of reducing oscillations
is called smoothing kernel.
A number of appropriate kernels are detailed and analyzed in [Wei+06]; their

definition is listed in Table 2.1. The modifiers are applied to the coefficients as
c′i = ci%i. Figure 2.2 shows examples for the various forms the filtering function
can assume. Filtering functions using kernels with parameters can vary greatly
depending on the choice of parameters and only few examples are shown.

Name Coefficient multipliers

Dirichlet %k ≡ 1

Fejér %k = 1− k
d+1

Jackson %k = 1
d+2

(
(d− k + 2) cos

(
kπ
d+2

)
+ sin

(
kπ
d+2

)
cot
(

π
d+2

))
Lorentz %k(µ) = 1

sinh(µ) sinh
(
µ− pk

d+1

)
Lanczos %k(µ) =

(
d+1
kπ

sin
(
kπ
d+1

))µ
Wang-Zunger %k(µ, ν) = exp

(
−
(
µk
d+1

)ν)
Table 2.1: A selection of smoothing kernels.

2.1.5 Restrictions
As has been pointed out before, the application of Chebyshev polynomial based filters
to generalized eigenvalue problems is often infeasible if linear solves with B are not
very inexpensive. Figure 2.3 shows an example of a Chebyshev polynomial filter.
Due to the fact that the function is growing rapidly outside the region of interest, the
contours have been capped for emphasis (colored in yellow). Since the polynomial
approximation is only valid on the real axis, application to non-Hermitian problems is
thus impossible as confirmed by the contour plot. It should be noted that Chebyshev
polynomials have been used in the solution of non-Hermitian eigenproblems [Saa11].
The method is, however, fundamentally different from the approach here, even if it is
used in subspace iteration as well. The foundation of the method described in [Wil65;
Saa11] exploits the property of the Chebyshev polynomials to grow large quickly

BU

46 2 Spectral projection algorithms

−0.5 0 0.5

0

1

F
ilt

er
va

lu
e

Dirichlet

−0.5 0 0.5

Fejér

−0.5 0 0.5

Jackson

−0.5 0 0.5

0

1

F
ilt

er
va

lu
e

Lorentz(1)

−0.5 0 0.5

Real axis

Lanczos(1)

−0.5 0 0.5

Wang-Zunger(1,1)

Figure 2.2: Chebyshev filtering functions for d = 10, 25, 50, 100 (blue, red, yellow, purple,
respectively; higher degrees yield better approximations) using various smoothing
kernels.

outside of [−1, 1] in order to amplify directions associated with extremal eigenvalues,
an idea very similar to power iteration in the context of subspace iteration. In
the generalization of the Chebyshev polynomials to complex arguments using their
hyperbolic definition [Saa11], this behavior is expanded to ellipses in the complex
plane. Values outside the corresponding ellipse are amplified and thus dominate the
iterated subspace. This method can also be translated to the approximation of a
filtering function, see Section 2.4.2.
The Chebyshev approximation requires the spectrum of the matrix pencil to be

mapped into [−1, 1]; this has two major implications. First, smaller target intervals
require larger degrees to obtain the same steepness in the filter flanks at the interval
boundaries. Since the total approximation range is fixed, this comes as no surprise.
Second, since the Chebyshev polynomials are symmetric inside [−1, 1], a target
interval that does not have the form [−a, a], i.e., is off-center, will result in an
asymmetric filtering function since a more sudden change in amplitude is required
on the side closest to −1 or 1. In particular, convergence will be limited by the flank
with lesser steepness, possibly requiring larger degrees. An additional complication
is the differing value of the filtering function at the interval boundaries. This will
be important later, when methods for detecting the number of non-spurious Ritz
values inside the interval are required. This last point can be remedied by choosing a
transformation of the spectrum of the matrix pencil such that the transformed target
interval is again centered, which comes at the cost of an even smaller transformed
interval.

BV

2.1 Polynomial filters 47

0

0.5

1

F
ilt

er
va

lu
e

−0.5 0 0.5
10−4

10−3

10−2

10−1

100

Real axis

F
ilt

er
va

lu
e

−0.25

0.25

−0.5 0.5

−0.5

0.5

Complex plane

10−3

10−2

10−1

100

101

F
ilt

er
va

lu
e

Figure 2.3: Example of a Chebyshev polynomial based filter of degree d = 25 for the interval
[−0.5, 0.5]. Left: non-logarithmic and logarithmic plots of the filter function.
Top right: root map. Bottom right: logarithmic contour plot of the filter function
in the complex plane.

After all, the mapping of the (real) spectrum of a definite matrix pencil into
[−1, 1] requires the knowledge of at least its largest magnitude eigenvalue, or better
its left- and rightmost eigenvalues—the spectral range of the matrix pencil. Using
an algorithm such as Arnoldi or Lanczos (see Section 1.7.2) yields an approximation
of the largest magnitude eigenvalue (positive or negative), say, λ∗. Performing the
algorithm again with a shifted matrix pencil (see also Section 1.2.1)

(A− λ∗B,B)

yields λ′, the other end λ∗ of the spectral range, shifted by −λ∗,
λ∗ = λ′ + λ∗.

Assuming the spectral range is contained in [λ− = λ∗ − ε, λ+ = λ∗ + ε] and the in-
terval is valid (otherwise switch λ∗ and λ∗) with some ε > 0 to account for potential
inaccuracies, the matrix pencil mapped into [−1, 1] is

2
λ+ − λ−

(
B−1A− λ+ + λ−

2 I

)
= 2
λ+ − λ−B

−1A− λ+ + λ−

λ+ − λ− I

and the transformed target interval is

[λ∗min, λ
max
∗] =

[
2

λ+ − λ−
(
λmin −

λ+ + λ−

2

)
,

2
λ+ − λ−

(
λmax − λ+ + λ−

2

)]
.

BW

48 2 Spectral projection algorithms

2.1.6 Discrete approximation
A related method of approximation using Chebyshev polynomials often found in the
literature is based on a restricted orthogonality relation that is limited to a certain
set of discrete points and can be derived from the continuous relation above by
employing a numerical integration scheme (see, e.g., [Pre+92]). It can be used to
find approximations of the coefficients should they not be computable analytically.
The Gaussian quadrature rule of order η for a weight function w(z) as above gives
the Chebyshev-Gauss quadrature method [AS74]∫ 1

−1

g(z)√
1− z2

dz =
η∑
k=1

wkg(zk)

with abscissae
zk = cos

(
π(2k − 1)

2η

)
and weights

wk = π

η
.

The quadrature rule is exact for polynomials up to a degree of 2η−1. Therefore, with
the continuous orthogonality relation and Ti(z)Tj(z) being a polynomial of degree
i+ j, following [Pre+92], if i+ j < 2η

∫ 1

−1
w(z)Ti(z)Tj(z) dz = π

η

η∑
k=1

Ti(zk)Tj(zk) =

0 if i 6= j
1
2π if i = j 6= 0
π if i = j = 0

and finally
η∑
k=1

Ti(zk)Tj(zk) =

0 if i 6= j
1
2η if i = j 6= 0
η if i = j = 0.

The integration nodes zk are the η roots of Tη(z),

Tη(zk) = cos
(
η cos−1 cos

(
π(2k − 1)

2η

))
= cos

(
π(2k − 1)

2

)
= 0.

Computing 〈Ti, g〉w in similar fashion yields the approximates∫ 1

−1
w(z)g(z)Ti(z) dz ≈ π

η

η∑
k=1

g(zk)Ti(zk) = π

η

η∑
k=1

g(zk) cos
(
iπ(2k − 1)

2η

)

and, with this,

ci ≈

1
η

η∑
k=1

g(zk) if i = 0

2
η

η∑
k=1

g(zk) cos
(
iπ(2k − 1)

2η

)
else.

BX

2.2 Contour integration 49

This allows for approximations of g of degree d < η so as not to violate the orthog-
onality relation. For the η points g(zk), there is a polynomial of at most degree
η − 1, pη−1, that passes through them, pη−1(zk) = g(zk). For this polynomial, the
Chebyshev-Gauss quadrature of 〈Ti, pη−1〉w is exact, Ti pη−1 being a polynomial of
at most degree 2η − 1. Since there is no difference between the quadratures 〈Ti, g〉w
and 〈Ti, pη−1〉w in this case and a polynomial of degree d can be represented exactly
as linear combination of orthogonal polynomials of degrees 0, . . . , d (such a linear
combination is orthogonal to basis polynomials of higher degree and thus the higher
order coefficients are zero), here the Chebyshev polynomials T0, . . . , Td, the approxi-
mating polynomial of degree η− 1 constructed above is pη−1 and the approximation
of g is therefore exact on the η roots zk of Tη. Computing the coefficients ci for the
window function χ of an interval [λmin, λ

max] ⊂ [−1, 1] is trivial.

d = 10 d = 25 d = 50

0

1

d = 100

−0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5

10−2

100

Real axis

F
ilt

er
va

lu
e

Figure 2.4: Discrete Chebyshev filtering functions for d = η − 1 = 10, 20, 50, 100. The
continuous Chebyshev filter of identical degree is shown as filled area for com-
parison.

Figure 2.4 shows some examples for resulting filtering functions. The position and
form of the filter flanks is determined by the location of the interval boundaries in
between two roots of Tη; the discrepancy vanishes with growing degree and increased
root frequency. Due to this circumstance and the additional layer of approximation
during the computation of 〈Ti, g〉w, this method is inherently inferior to the method
introduced before, and is only included for the sake of clarification and completeness.

2.2 Contour integration
An alternative way to construct a filtering function, that ultimately yields a rational
approximation and is better suited for generalized eigenvalue problems, is based on
contour integration. Instead of approximating the window function directly, we find
an exact integral representation of it by chasing a pole along the real axis and using a
pole-counting integral to determine whether the pole is inside an integration contour

BY

50 2 Spectral projection algorithms

or not. The final filtering function is produced by the numerical integration method
of choice and again an approximation of the window function. We will refer to these
filters as contour integration filters or Cauchy filters.

2.2.1 Representation of the window function
Define a function φ(z) = 1

z−λ , z ∈ C with a pole at z = λ. By varying λ, the pole
is moved around on the complex plane. With a contour C = ∂Ω, if it is possible
to detect whether the pole is inside that contour, an exact filtering function can be
constructed. Note that the behavior on ∂Ω is undefined.

Theorem 2.1 (Cauchy’s theorem [Ahl79]) Let g be a function that is holomorphic
on U ⊆ C and C a simple closed curve in U . Then∮

C
g(z) dz = 0.

With this, letting the integration contour around an isolated singularity collapse to
a single point yields the following (here slightly specialized) statement.

Corollary 2.1 (Cauchy’s integral formula [Ahl79]) Let h be a holomorphic function
and C be a simple closed curve in C. Then, for any point a in the interior of C,

h(a) = 1
2πi

∮
C

h(z)
z − adz.

Therefore, we can define the filtering function

χΩ(λ) = 1
2πi

∮
C

1
z − λ =

{
1 if λ ∈ Ω
0 otherwise

(2.4)

as perfect representation of χΩ. As before, a projector using this filtering function
may be written as

X diag(χΩ(λ1), . . . , χΩ(λN))X−1 = 1
2πi

∮
C
X diag

(1
z − λ1

, . . . ,
1

z − λN

)
X−1 dz

= 1
2πi

∮
C
X(zI − Λ)−1X−1 dz

= 1
2πi

∮
C
(zB − A)−1B dz.

The matrix (zB − A)−1B is conventionally called resolvent of (A,B). Functionally,
there is no difference to choosing (A− zB)−1B which we have come to know as the
compatible matrix pencil of a shift-and-invert transformation of (A,B). It merely
switches the sign of the integral and the direction of computed eigenvectors with it.

CA

2.2 Contour integration 51

2.2.2 Numerical integration
The application of the previously constructed projector matrix to a set of right-hand
side column vectors Y ,

1
2πi

∮
C
(zB − A)−1BY dz,

can now be computed by means of numerical integration, or quadrature. We would
like to be able to compute the result as a matrix function, therefore we require the
formula to only consist of matrix additions, multiplications, and the solution of linear
systems, which limits the scalar form to rational functions.

The most commonly known quadrature schemes that fit these criteria are approx-
imations that take the form

∫ b

a
g(z) dz ≈

k∑
i=0

wig(zi),

basically the partial fraction form of a rational function with fewer roots than (sim-
ple) poles. Examples of numerical integration schemes that take this form are the
closed Newton-Cotes formulas (for example the trapezoidal rule), open Newton-Cotes
formulas (for example the midpoint rule), and Gaussian quadrature with weight func-
tion ω(z) ≡ 1, the Gauss-Legendre quadrature rule. An overview can also be found
in [Krä14] and a more in-depth reading is provided by the sources cited therein
[DR84; Kre98; KU98; Wei02; Mul06]. A condensation of integration rules that is
as comprehensive as it is pragmatic can be found in [AS74] or [Olv+10]. We will
shortly introduce the examples mentioned above.

2.2.2.1 Trapezoidal rule

Newton-Cotes formulas are approximations of the integral of a function obtained
by piecewise approximation of the function using simple polynomials based on the
function’s value at equidistant subdivisions (abscissae) of the integration interval.
In closed Newton-Cotes formulas, the boundaries of the integration interval serve as
first and last abscissae. If the degree of the approximating polynomial is one, i.e., the
function is approximated by piecewise linear segments, the integral is approximated
by a sequence of trapezoids which are defined by the values of the target function
at the abscissae, the outermost points of the trapezoids. The result is known as the
trapezoidal rule.

The integral is approximated as the sum of the areas of k− 1 trapezoids, resulting
in k abscissae with distance ρ = (b− a)/(k − 1),

∫ b

a
g(z) dz ≈

k−1∑
i=1

ρ

2(g(zi) + g(zi+1)) with zi = a+ (i− 1)ρ

=
k∑
i=1

wig(zi) with wi =
{ ρ

2 if i = 1 ∨ i = k

ρ else.

CB

52 2 Spectral projection algorithms

Here, the final form results from the duplicate appearance of all abscissae but the
very first and very last one. For closed contours it is z1 = zk and the rule becomes

∫ b

a
g(z) dz ≈

k−1∑
i=1

ρg(zi).

2.2.2.2 Midpoint rule

In open Newton-Cotes formulas, the boundaries of the integration interval do not
serve as abscissae. The abscissae are spaced such that the distance to the interval
boundaries is half the distance between two abscissae. If the degree of the approxi-
mating polynomial is zero, i.e., the function is approximated by piecewise constant
segments, the integral is approximated by a sequence of rectangles whose heights are
defined by the value of the target function at their midpoint position. The result is
known as the midpoint rule.

The integral is approximated as the sum of the areas of k rectangles, resulting in
k abscissae with distance ρ = (b− a)/k,

∫ b

a
g(z) dz ≈

k∑
i=1

ρg(zi) with zi = a+
(
i− 1

2

)
ρ.

The weights are constant, wi = ρ.

2.2.2.3 Gauss-Legendre quadrature

Gaussian quadrature rules of order k are defined by requiring exactness for polyno-
mials of degree d ≤ 2k − 1. Different quadrature rules are associated with certain
families of polynomials whose zeros determine the abscissae, and their value at these
abscissae relate to the weights of the quadrature rule. In particular, abscissae are
not necessarily positioned equidistantly. For Gauss-Legendre quadrature, these poly-
nomials are the Legendre polynomials on [−1, 1]. The computation of the abscissae
and weights is described in [GW69], see also [Krä14]. We will reiterate the process
here in condensed form for the sake of completeness.

Every sequence of orthogonal polynomials is generated by a three term recurrence
of the form

pj(z) = (ajz + bj)pj−1(z)− cjpj−2(z) for j = 1, . . . , k, (2.5)

which may be rewritten in matrix from as

z

p0(z)
p1(z)
...

pk−1(z)

 =

− b1
a1

1
a1

c2
a2

− b2
a2

1
a2.
ck−1
ak−1

− bk−1
ak−1

1
ak−1

ck
ak

− bk
ak

p0(z)
p1(z)
...

pk−1(z)

+

0
...
0

1
ak
pk(z)

CC

2.2 Contour integration 53

or, in short,
zp(z) = Tp(z) + 1

ak
pk(z)ek,

with T being the tridiagonal matrix. Then pk(µj) = 0 only if µjp(µj) = Tp(µj),
i.e., µj is an eigenvalue of T and p(µj) is the corresponding eigenvector. Therefore,
the eigenvalues µj of T are the abscissae of the Gauss quadrature rule. A diagonal
similarity transform D of T yields a symmetric tridiagonal matrix

J = DTD−1 =

α1 β1
β1 α2 β2

.
βk−2 αk−1 βk−1

βk−1 αk

where

αi = − bi
ai

and βi =
√

ci+1

aiai+1

and it can be shown that, if qj are unit-length eigenvectors of J with

Jqj = µjqj for j = 1, . . . , k,

the weights are given as
ηj = q2

j,1

∫ 1

−1
ω(z) dz

where qj,1 is the first component of eigenvector qj. In the case of Gauss-Legendre
quadrature ω(z) ≡ 1 and hence

ηj = 2q2
j,1.

For Legendre Polynomials1 Pj(z) the recurrence relation Equation (2.5) is given as
[AS74]

jPj(z) = (2j − 1)zPj−1(z)− (j − 1)Pj−2(z)
and, with this, the coefficients are

aj = 2j − 1
j

, bj ≡ 0, cj = j − 1
j

.

Therefore

αj ≡ 0, βj =
√√√√ j

(j + 1)
(

2j−1
j

)(
2j+1
j+1

) =
√√√√ j

j + 1
j

j2
j + 1
4− 1

j2
= 1√

4− 1
j2

.

The computation of the abscissae and weights now requires the solution of a very
small standard eigenproblem and any tridiagonal direct eigensolver will suffice for
this task.
1) Legendre functions of order zero.

CD

54 2 Spectral projection algorithms

Since the quadrature rule is restricted to the interval [−1, 1], a generalization
to arbitrary intervals is required. Let µi and ηi be the Gauss-Legendre nodes and
weights on [−1, 1] from above. The generalized nodes and weights on [a, b], zi and
wi, are then given by the transformation to arbitrary intervals via substitution,∫ b

a
g(z)dz =

∫ 1

−1

b− a
2 g

(
b− a

2 z + b+ a

2

)
dz

≈
k∑
i=1

b− a
2 ηig

(
b− a

2 µi + b+ a

2

)
=

k∑
i=1

wig(zi).

2.2.3 Computation
First and foremost, the application of one of the integration schemes introduced above
along a contour demands the parametrization of said contour. This is easily accom-
plished in the case C is a circle around c with radius r (for definite pairs with target
interval [λmin, λ

max] this amounts to c = (λmax + λmin)/2 and r = (λmax − λmin)/2).
The parametrization ϕc(t) is the transformation to polar coordinates with an addi-
tional shift,

z = ϕc(t) = c+ reit for t ∈ [0, 2π),
and integration by substitution requires the knowledge of the first derivative of the
parametrization,

ϕ′c(t) = ireit.

Another easily parameterized contour is the ellipse around c with semi-major axis
of length r along the real axis and eccentricity e. The length of the semi-minor axis
then is

` =
√

(1− e2)r2

and the parametrization ϕe(t) can be written as

z = ϕe(t) = c+ r cos t+ i` sin t for t ∈ [0, 2π).

Its first derivative is
ϕ′e(t) = −r sin t+ i` cos t.

Other shapes of contours are possible, e.g., a piecewise linear curve. Now, let
R(z) = (zB − A)−1BY be the resolvent. To arrive at the formulation originally
given in [Pol09], that also allows to halve the number of integration nodes and
linear systems under certain circumstances, we lay out the derivation in more detail.
Given a parametrization z = ϕ(t) which transforms the integral to circular or elliptic
contours gives

1
2πi

∫
C
R(z) dz = 1

2πi

∫ 2π

0
ϕ′(t)R(ϕ(t)) dt.

If A and B are Hermitian and the contour hence is symmetrical to the real axis,

ϕ(−t) = ϕ(t) and ϕ′(−t) = −ϕ′(t),

CE

2.2 Contour integration 55

the integral can be split into two half-contours [Pol09] and recombined as

1
2πi

∫ 2π

0
ϕ′(t)R(ϕ(t))dt = 1

2πi

[∫ π

0
ϕ′(t)R(ϕ(t))dt+

∫ 2π

π
ϕ′(t)R(ϕ(t))dt

]
= 1

2πi

[∫ π

0
ϕ′(t)R(ϕ(t))dt+

∫ π

0
ϕ′(−t)R(ϕ(−t))dt

]
= 1

2πi

[∫ π

0
ϕ′(t)R(ϕ(t))dt−

∫ π

0
ϕ′(t)R

(
ϕ(t)

)
dt
]

= 1
2πi

∫ π

0
ϕ′(t)R(ϕ(t))− ϕ′(t)R

(
ϕ(t)

)
dt.

If furthermore A, B, and Y are real, then

(zB − A)−1BY =
(
zB − A

)−1
BY = (zB − A)−1BY

and
1

2πi

∫ π

0
ϕ′(t)R(ϕ(t))− ϕ′(t)R

(
ϕ(t)

)
dt = 1

2πi

∫ π

0
ϕ′(t)R(ϕ(t))− ϕ′(t)R(ϕ(t)) dt

= 1
2πi

∫ π

0
2i={ϕ′(t)R(ϕ(t))} dt

= 1
π

∫ π

0
={ϕ′(t)R(ϕ(t))} dt.

Further,

1
2πi

∫ π

0
ϕ′(t)R(ϕ(t))− ϕ′(t)R(ϕ(t)) dt = − 1

2π

∫ π

0
iϕ′(t)R(ϕ(t)) + iϕ′(t)R(ϕ(t)) dt

= − 1
2π

∫ π

0
2<{iϕ′(t)R(ϕ(t))} dt

= − 1
π

∫ π

0
<{iϕ′(t)R(ϕ(t))} dt,

which might be useful for example if ϕ′(t) ∝ i. These are the final forms as found in
[Pol09]. They allow to cut the number of linear solves in half, should the eigenproblem
be symmetric and real. This optimization can also be applied to all filters that are
still to follow in this chapter. Note that the sign of the integral merely flips the
resulting eigenvectors. It is equivalent to inverting the integration direction of C.
Combining weights, parametrization, and numerical integration,

1
2πi

∫
C
R(z)dz ≈

k∑
i=1

$iR(zi) +$iR(zi)

with

$i = 1
2πi

wiϕ
′(ti) and zi = ϕ(ti).

The degree of this filter is d = 2k.

CF

56 2 Spectral projection algorithms

2.2.4 Selection function
The effective filtering function for a given quadrature scheme is sometimes referred to
as selection function in the literature [Krä14; Lau12]. As every other filter, it specifies
the dampening of an eigendirection based on the location of its associated eigenvalue
when applied via numerical integration. This function can simply be retrieved by
applying the quadrature scheme to the ideal representation of the window function
derived in Equation (2.4),

f(λ) =
k∑
i=1

$i

zi − 1 + $i

zi − 1 ,

and, if the function is reduced to the real axis using half the contour,

f(λ) = 2
k∑
i=1
<
{

$i

zi − λ
}
.

Figure 2.5 shows an example of a Cauchy integral based filter function using Gauss-
Legendre quadrature. Only the six smallest of the overall ten roots are shown. The

0

0.5

1

F
ilt

er
va

lu
e

−3 −1 1 3

10−6

10−4

10−2

100

Real axis

F
ilt

er
va

lu
e

−1

1

−3 −1 1 3

−3

−1

1

3

Complex plane

10−6

10−5

10−4

10−3

10−2

10−1

100

101

F
ilt

er
va

lu
e

Figure 2.5: Example of a Cauchy filter of degree d = 12 using Gauss-Legendre quadrature
on a circular contour. Left: non-logarithmic and logarithmic plots of the filter
function. Top right: pole-root map. Roots are marked as circles, poles as
crosses. Bottom right: logarithmic contour plot of the filter function in the
complex plane.

contour plot reveals that the filtering flank in the complex plane is only sharp at the

CG

2.3 Zolotarev approximation 57

interval boundaries on the real axis. It is thus to be expected that the convergence
speed diminishes proportionally to the least steep section of the filter along the
contour (assuming eigenvalues are present in this region). The midpoint quadrature
rule results in a more even distribution of poles, i.e., in less variation of flank
steepness around the contour and, as such, is better suited for solving non-Hermitian
eigenproblems.

Figure 2.6 shows examples of filtering functions produced by different integration
schemes. Note in particular that the trapezoidal rule produces discontinuities at the

Trapezoidal Midpoint

0

1

Gauss-Legendre

−1 0 1 −1 0 1

Real axis

−1 0 1

0

1

(c
ir

cu
la

r)
(e

lli
pt

ic
)

F
ilt

er
va

lu
e

Figure 2.6: Cauchy filtering functions for k = 2, 4, 8, 16 (blue, red, yellow, purple, re-
spectively; higher orders yield better approximations) and different integration
schemes.
Top: circular contour, bottom: elliptic contour with ` = 1/2.

interval boundaries and is therefore not well suited for spectral filtering. Deviating
from the circular contour and bringing the poles closer to the real axis additionally
introduces oscillations in the passband. While the oscillations vanish again with
growing degree, increasing the eccentricity of the ellipse amplifies the oscillations.
Moving the poles away from the real axis smooths the filter and reduces the steepness
of the flanks. It can be shown [Krä14; TP] that for the midpoint and Gauss-Legendre
rules the filtering function passes 1/2 at the interval boundaries.

2.3 Zolotarev approximation
In function approximation theory, the solution to Zolotarev’s fourth problem [Zol77]
finds the best approximation of the sign function

sgn(z) = z√
z2

=
{−1 if z < 0

1 if z > 0

CH

58 2 Spectral projection algorithms

on the intervals [−1,−κ]∪ [κ, 1], 0 < κ < 1, by a rational function of order m, in the
sense that its maximum deviation from unity on the above intervals is the smallest
among all rational functions of identical order. Filtering functions of the Zolotarev
type were used in spectral projection algorithms in [Güt+15] and [LY17]. Zolotarev’s
solution to the problem above is based on elliptic functions.
The complete derivation of the solution exceeds the scope of this work and the

reader is therefore referred to [Akh90; PP87; Akh56; Ken05] for an in-depth analysis
of Zolotarev’s problems, their solution, and an introduction to rational approximation
and elliptic functions in general. We will, however, detail all formulas and algorithms
required to implement filtering functions based on Zolotarev’s approximation as well
as the transformation from sign function to window function following the references
mentioned above.

2.3.1 Approximation of the sign function
The Jacobi elliptic functions are defined as inverses of the incomplete elliptic integral
of the first kind for the modulus κ,

ν =
∫ z

0

1√
(1− t2)(1− κ2t2)

dt, (2.6)

via

sn(ν, κ) = z

cn(ν, κ) =
√

1− sn2(ν, κ) †

dn(ν, κ) =
√

1− κ2 sn2(ν, κ)

and
K(κ) =

∫ π
2

0

1√
1− κ2 sin2 θ

dθ =
∫ 1

0

1√
(1− t2)(1− κ2t2)

dt

is the complete elliptic integral of the first kind for modulus κ.
Throughout the literature, solutions to Zolotarev’s problem of approximating the

sign function might be presented in varying form. In particular, the approximation
problem of the sign function on the intervals

[−1,−κ] ∪ [κ, 1] (henceforth identified by I©)

is equivalent to approximating the sign function on intervals[
−1
κ
,−1

]
∪
[
1, 1
κ

]
(henceforth identified by II©).

†) The validity of this definition is tied to the fact that we do not have to care about the sign of
cn(ν, κ) since it only ever appears squared and ν ≤ K(κ). In [Ken05] it is pointed out that the sign
is −1 for (4η + 1)K(κ) < ν < (4η + 3)K(κ), η ∈ N0.

CI

2.3 Zolotarev approximation 59

Both are related through division by κ. The associated solutions take the form

I© 2ζ
1 + ζ

z

Mκ

η∏
j=1

κ2 + c2jz
2

κ2 + c2j−1z2 and II© 2ζ
1 + ζ

z

M
η∏
j=1

1 + c2jz
2

1 + c2j−1z2 .

For the definition of the coefficients ci, we mix the forms found in [Akh90] and
[Ken05] to circumvent divisions by zero which otherwise would have to be interpreted
as infinity,

cj =
cn2

(
K ′ j2η , κ

′
)

sn2
(
K ′ j2η , κ

′
) =

1− sn2
(
K ′ j2η , κ

′
)

sn2
(
K ′ j2η , κ

′
) .

Here, κ′ =
√

1− κ2 is the complementary modulus for κ and K ′ = K(κ′). It is
sn(K ′, κ′) = 1 and thus c2η = 0. We may therefore instead write

I© 2ζ
1 + ζ

zκ

M

∏η−1
j=1 κ

2 + c2jz
2∏η

j=1 κ
2 + c2j−1z2 and II© 2ζ

1 + ζ

z

M

∏η−1
j=1 1 + c2jz

2∏η
j=1 1 + c2j−1z2 .

Finally, the scaling factors are given as

M =
η∏
j=1

1 + c2j

1 + c2j−1
=

η∏
j=1

sn2
(
K ′ 2j−1

2η , κ
′
)

sn2
(
K ′ 2j2η , κ

′
)

and
1
ζ

= ξ

M
η∏
j=1

1 + c2jξ
2

1 + c2j−1ξ2

with
ξ = 1

dn
(
K′
2η , κ

′
) .

See in particular [Ken05] for a derivation of 1/ζ and ξ. Let—for convenience of
notation—c ′j = 1/cj. Often the solution is reformulated as

I© 2ζ
1 + ζ

zκ

M

∏η−1
j=1 c2j∏η
j=1 c2j−1

∏η−1
j=1 κ

2c ′2j + z2∏η
j=1 κ

2c ′2j−1 + z2 II© 2ζ
1 + ζ

z

M

∏η−1
j=1 c2j∏η
j=1 c2j−1

∏η−1
j=1 c

′
2j + z2∏η

j=1 c
′
2j−1 + z2

and the several constants are collected in

D = 2ζ
1 + ζ

1
M

∏η−1
j=1 c2j∏η
j=1 c2j−1

.

The maximum deviation of the approximation from −1 or 1 on the corresponding
intervals is

1− ζ
1 + ζ

.

CJ

60 2 Spectral projection algorithms

2.3.2 Window function
So far, the result above approximates the sign function on two approximation in-
tervals with parameter κ. The approximation equioscillates about −1 or 1 on the
corresponding intervals for I© and II©. Constructing an approximation of the win-
dow function based on this approximation of the sign function requires a mapping
of arguments of the window filter function to arguments of the sign function. In
[Güt+15], a Möbius transformation is employed to achieve this transformation.

A Möbius transformation is a function T (z) : C∞ −→ C∞ on the Riemann sphere
of the form

T (z) = α + βz

γ + δz

which is obviously invariant w.r.t. multiplying its four coefficients with a constant and
w.l.o.g. we therefore may choose one of the non-zero coefficients equal to one. This
also shows that three point pairs are necessary to uniquely determine the associated
Möbius transformation that maps the pairs onto each other. If a fourth constraint is
to be enforced, here due to requirements of symmetry, an additional variable has to
be introduced. The transformation described in [Güt+15] is derived from the four
constraints

I© T (−1) = 0 T (−G) = κ T (G) = 1 T (1) =∞

II© T (−1) = 0 T (−G) = 1 T (G) = 1
κ

T (1) =∞

which finally eliminates the initial difference between I© and II©. The additional
variable G represents the transition band of the resulting filter. The transformation
resulting from the above constraints is equivalent to

I© T
(
− 1
G

)
= −κ T (−G) = κ T (G) = 1 T

(1
G

)
= −1

II© T
(
− 1
G

)
= −1 T (−G) = 1 T (G) = 1

κ
T
(1
G

)
= −1

κ

but the first formulation makes solving the system of equations somewhat simpler.
The visualization in Figure 2.7 is meant to clarify the choice of transformation
for the case I© and the second formulation of the Möbius transformation since it
relates to passband, stopband, and transition band. Let sη(x) be the approximated
sign function. The second illustration of sη is warped to improve visibility and to
emphasize its behavior outside [−1, 1]. It is worth noting that [G, 1/G] (third image)
is (reversely) mapped to (−∞,−1] ∪ [1,∞) (second and first image). Equivalently,
(−∞,−1/G]∪[1/G,∞) (third image) is mapped to [−1,−κ] (second and first image),
bounding the filter function outside of [−1/G, 1/G] (third image) accordingly. The
warped representation of the sign function hints at why the resulting window function
can be symmetric at all. In the representations of the approximated sign function of
the second image, the behavior outside [−1, 1] is in principle identical to the behavior
inside [−κ, κ], the limit for z −→ ±∞ of sη(z) being equivalent to sη(0) in this sense.

CK

2.3 Zolotarev approximation 61

−2 −1 0 1 2

−1

0

1

A
pp

ro
xi

m
at

io
n

va
lu

e

-100 -1 −κ 0 κ 1 100

−1

0

1

A
pp

ro
xi

m
at

io
n

va
lu

e

-2 −1/G -1 −G 0 G 1 1/G 2

−1

0

1

Real axis

A
pp

ro
xi

m
at

io
n

va
lu

e

Figure 2.7: Visualization of the Möbius transformation for η = 3 and κ = 10−2.
Top: Approximation of the sign function sη(z) on [−1,−κ] ∪ [κ, 1].
Middle: Distorted view of the sign function for emphasis.
Bottom: Resulting approximation of the window function sη(T (z)).

The corresponding point on the window function approximation is marked by a small
circle in the third image.

Solving the system of equations for the parameters of the Möbius transformation
with α = β and γ = −δ from the first and fourth constraint and choosing γ = 1
yields

κ = (G− 1)2

(G+ 1)2 =⇒ G = 1 +
√
κ

1−√κ
for both I© and II© as well as

I© α =
√
κ II© α = 1√

κ
.

In [LY17], a Möbius transformation is proposed that produces a filtering function

CL

62 2 Spectral projection algorithms

tailored at the eigengaps at the interval boundaries by requiring

T
(
λ−min

)
= −1 T

(
λ+
min

)
= 1 T

(
λmax
−

)
= κ T

(
λmax

+

)
= −κ

for the known eigengaps

[
λ−min, λ

+
min

]
and

[
λmax
− , λmax

+

]

around λmin and λmax, respectively. In particular, the filter will not necessarily be
symmetrical anymore. Here, κ is to be interpreted as a new variable to be solved
for from the system of equations. Hence, the modulus for the elliptic functions is
defined by the Möbius transformation. With λ−min = − 1

G
, λ+

min = −G, λmax
− = G,

and λmax
+ = 1

G
we arrive at the Möbius transformation described before.

Since we generally assume that information such as eigengaps in the vicinity of
interval boundaries is not readily available, we stick to the transformation introduced
first, extended by a shift and a scaling factor to include the mapping of the spectrum
of the matrix into the filtering interval of the Zolotarev filter.

We additionally require the approximation of the window function to equioscillate
about one in the passband and about zero in the stopband, which can be handled
by simply shifting and scaling the sign function accordingly. We obtain the sifted
sign function as

s̃η(z) = sη(z) + 1
2 .

Then the mapping T (−1) = 0 accounts for having the final filter function pass 1/2
at −1 and 1.3 The deviation in pass- and stopband accordingly becomes

1− ζ
2 + 2ζ .

Finally, note that for Hermitian problems targeting extremal eigenpairs, the approx-
imated (and shifted) sign function s̃η(z) itself is a good candidate for a filtering
function that exhibits significantly better separation properties than an appropri-
ately shifted window function. It does, however, require the spectrum of a matrix
pencil to be mapped into the region of approximation given by κ, similarly to the
case of polynomials in Section 2.1.5. The properties do not translate well to complex
arguments, as is the case with the approximated window function, and usage for
non-Hermitian cases is not recommended.

3) sη(z) −→ 0 for z −→ ±∞.

CM

2.3 Zolotarev approximation 63

2.3.3 Partial fraction form
While it is possible to elevate the form given above to a matrix function by inserting
X−1X = I in between any two linear factors in numerator and denominator, e.g.,

sη
(
B−1A

)
= X diag(sη(λ1), . . . , sη(λk))X−1

= DXΛX−1
η−1∏
j=1

X
(
c ′2jI + Λ2

)
X−1

η∏
j=1

X
(
c ′2j−1I + Λ2

)−1
X−1

= DXΛX−1
η−1∏
j=1

X
(
i
√
c ′2jI + Λ

)
X−1X

(
−i
√
c ′2jI + Λ

)
X−1

η∏
j=1

X
(
i
√
c ′2j−1I + Λ

)−1
X−1X

(
−i
√
c ′2j−1I + Λ

)−1
X−1

= DXΛX−1
η−1∏
j=1

(
i
√
c ′2jI +XΛX−1

)(
−i
√
c ′2jI +XΛX−1

)
η∏
j=1

(
i
√
c ′2j−1I +XΛX−1

)−1(
−i
√
c ′2j−1I +XΛX−1

)−1

= DB−1A
η−1∏
j=1

(
i
√
c ′2jI +B−1A

)(
−i
√
c ′2jI +B−1A

)
η∏
j=1

(
i
√
c ′2j−1I +B−1A

)−1(
−i
√
c ′2j−1I +B−1A

)−1

= DB−1A
η−1∏
j=1

B−1
(
i
√
c ′2jB + A

)
B−1

(
−i
√
c ′2jB + A

)
η∏
j=1

(
i
√
c ′2j−1B + A

)−1
B
(
−i
√
c ′2j−1B + A

)−1
B

= D
(
i
√
c ′2η−1B + A

)−1
B
(
−i
√
c ′2η−1B + A

)−1
A

η−1∏
j=1

[(
i
√
c ′2j−1B + A

)−1(
−i
√
c ′2jB + A

)
(
−i
√
c ′2j−1B + A

)−1(
i
√
c ′2jB + A

)]
,

where the last step is possible by reordering the linear factors of the scalar form of sη,
it is not the most convenient form for numerical computation, even if the inversion of
B can be eliminated. Another aspect of this formulation is its infeasibility for parallel
computation (other than parallelization over right-hand sides or parallelization of
basic arithmetic routines) in a possible implementation, since the application to a
set of right-hand side vectors implies sequentiality if no matrix-matrix products can
be computed, which typically is the case. However, being a rational function, it is
possible to find a partial fraction form of the approximated sign function as well as

CN

64 2 Spectral projection algorithms

the approximated window function. Neglecting any scaling, a rational function may
be represented in terms of their poles i and roots i,

p(z)
q(z) =

∏deg(p)
i=1 (z − i)∏deg(q)
i=1 (z − i)

.

If deg(p) < deg(q) = d and all roots of q are simple, a partial fraction representation
is easily obtained as [Olv+10]

p(z)
q(z) =

d∑
i=1

ai
z − i

where the coefficients ai are given by4

ai = (z − i)
p(z)
q(z)

∣∣∣∣∣
z = i

=
deg(p)∏
k=1

(i − k)
deg(q)∏
k=1
k 6=i

(1
i − k

)
. (2.7)

Should deg(p) = deg(q), a step of polynomial long division is required to first bring
the function to the form

p(z)
q(z) = 1 + o(z)

q(z)
and then find a partial fraction representation of o(z)/q(z). In [LY17], an explicit
formulation for a partial fraction decomposition with equal numbers of roots and
poles,

d∏
j=1

z + j

z + j

= 1 +
d∑
j=1

b
(d)
j

z + j

with b
(d)
j = (j − j)

d∏
k=1
k 6=j

k − j

k − j

, (2.8)

is given in a form varied to match the Zolotarev problem. Since a proof is only
sketched very roughly, we will derive it here in detail by induction over d. For d = 1
the above holds trivially via polynomial long division,

b
(1)
1 = 1 − 1

⇐⇒ z + 1 = z + 1 + b
(1)
1

⇐⇒ z + 1

z + 1
= 1 + b

(1)
1

z + 1
.

Now assume Equation (2.8) holds for d− 1. Then

z + d

z + d

d−1∏
j=1

z + j

z + j

i.h.= z + d

z + d

1 +
d−1∑
j=1

b
(d−1)
j

z + j

 = z + d

z + d

+
d−1∑
j=1

z + d

z + d

b
(d−1)
j

z + j

.

(2.9)

4) See also Theorem 2.2 in Section 2.5.1.

CO

2.3 Zolotarev approximation 65

Each term in the summation above is a rational function with fewer roots than poles
after appending the additional root/pole pair. Then their sum is a rational function
with fewer roots than poles and we can find a partial fraction decomposition of
the summation term element-wise for the terms 1 to d − 1 (all other terms of the
summation vanish by multiplication with the linear factor of a root that does not
cancel with the respective pole) with coefficients

(z + j)
z + d

z + d

b
(d−1)
j

z + j

∣∣∣∣∣
z = − j

= d − j

d − j

b
(d−1)
j = b

(d)
j for j = 1, . . . , d− 1

and for the d-th term with the coefficient (here the summation terms do not vanish)

d−1∑
j=1

(z + d)
z + d

z + d

b
(d−1)
j

z + j

∣∣∣∣∣
z = − d

=
d−1∑
j=1

d − d

j − d

b
(d−1)
j .

The additional term in Equation (2.9) is reformulated using polynomial long division
as

z + d

z + d

= 1 + d − d

z + d

and its rational part is added to the d-th term and its coefficient,

(d − d) +
d−1∑
j=1

d − d

pj − d

b
(d−1)
j = (d − d)

1 +
d−1∑
j=1

b
(d−1)
j

j − d

i.h.= (d − d)

d−1∏
j=1

j − d

j − d

 = b
(d)
d ,

where we let z = − d for the application of the induction hypothesis in the last step.
With this, the proof is complete.

Following [LY17] further, application of the above to Zolotarev’s approximation
gives

z

∏η−1
j=1 c

′
2j + z2∏η

j=1 c
′
2j−1 + z2 = z

c ′2η−1 + z2

1 +
η−1∑
j=1

bj
c ′2j−1 + z2

with bj =

(
c ′2j − c ′2j−1

) η−1∏
k=1
k 6=j

c ′2κ − c ′2j−1

c ′2κ−1 − c ′2j−1
.

Factoring in the additional pole yields a term that is again a rational function of
fewer roots than poles, and we find a partial fraction representation

1
c ′2η−1 + z2 + 1

c ′2η−1 + z2

η−1∑
j=1

bj
c ′2j−1 + z2 =

η∑
j=1

aj
c ′2j−1 + z2

CP

66 2 Spectral projection algorithms

with (most terms again vanish by multiplication with the linear factor of a root that
does not cancel with the respective pole)

aj =
(
c ′2j−1 + z2

) 1
c ′2η−1 + z2

bj
c ′2j−1 + z2

∣∣∣∣∣
z2 = −c ′2j−1

= bj
c ′2η−1 − c ′2j−1

for j = 1, . . . , η−1 and (terms do not vanish for the η-th coefficient and the separate
term is included)

aη =
c ′2η−1 + z2

c ′2η−1 + z2 +
c ′2η−1 + z2

c ′2η−1 + z2

η−1∑
j=1

bj
c ′2j−1 + z2

∣∣∣∣∣
z2 = −c ′2η−1

= 1 +
η−1∑
j=1

bj
c ′2j−1 − c ′2η−1

.

Resuming the transformation of Zolotarev’s approximation,

z

∏η−1
j=1 c

′
2j + z2∏η

j=1 c
′
2j−1 + z2 = z

η∑
j=1

aj
c ′2j−1 + z2 = 1

2

η∑
j=1

2zaj
c ′2j−1 + z2

= 1
2

η∑
j=1

aj
(
z − i

√
c ′2j−1

)
+ aj

(
z + i

√
c ′2j−1

)
(
z + i

√
c ′2j−1

)(
z − i

√
c ′2j−1

)
= 1

2

η∑
j=1

 aj

i
√
c ′2j−1 + z

+ aj

−i
√
c ′2j−1 + z

.
Substituting a Möbius transformation T (z) finally gives

1
2

η∑
j=1

 aj

i
√
c ′2j−1 + T (z)

+ aj

−i
√
c ′2j−1 + T (z)

=1

2

η∑
j=1

 aj(γ + δz)
i
√
c ′2j−1(γ + δz) + α + βz

+ aj(γ + δz)
−i
√
c ′2j−1(γ + δz) + α + βz

=1
2

η∑
j=1

(γ + δz)

aj
(
β + iδ

√
c ′2j−1

)−1

α+iγ
√
c ′2j−1

β+iδ
√
c ′2j−1

+ z
+
aj
(
β − iδ

√
c ′2j−1

)−1

α−iγ
√
c ′2j−1

β−iδ
√
c ′2j−1

+ z

.

We call the transformed poles

j =
α + iγ

√
c ′2j−1

β + iδ
√
c ′2j−1

and the poles of the conjugated terms j. Note that, due to α = β and γ = −δ for
the Möbius transformation from above, | j| = 1, i.e., all poles are located on the
unit circle. Finding again a partial fraction form using Equation (2.8) (note that

CQ

2.3 Zolotarev approximation 67

the coefficients are computed the same way as in Equation (2.7) by eliminating a
pole) yields

wj = 1
2(γ + δz) aj

β + iδ
√
c ′2j−1

∣∣∣∣∣
z = − j

= aj(γ − δ j)
2
(
β + iδ

√
c ′2j−1

)
as well as wj as the coefficients of the conjugated terms. The Möbius transformation
has introduced a scaling while Equation (2.8) does not consider any scaling factor.
Multiplying both sides in Equation (2.8) with a constant scaling factor D shows
that using the method above in contrast to the method shown in Equation (2.8) for
computing the coefficients actually computes coefficients that are scaled by D as
well. Since D also applies to the constant term that, in Equation (2.8), is simply
unity, the scaling factor is necessary to formulate the correct partial fraction form.
The factor D is nothing more than the quotient of the highest power of z in the
numerator and denominator of the rational function, and we may make the following
simple deduction. For the simple partial fraction form

d∑
j=1

aiz + bi

i + z
=

d∑
j=1

aiz
∏d
k=1
k 6=j

(i + z) + bi
∏d
k=1
k 6=j

(i + z)∏d
k=1(i + z)

that resembles our case from above, considering only terms of the highest power
yields

D =
d∑
j=1

ai.

Applied to the transformed Zolotarev approximation, this now gives

D =
η∑
j=1

 aiδ

2
(
β + iδ

√
c ′2j−1

) + aiδ

2
(
β − iδ

√
c ′2j−1

)

=
η∑
j=1

aiδ
(
β + iδ

√
c ′2j−1 + β − iδ

√
c ′2j−1

)
2
(
β2 + δ2c ′2j−1

) =
η∑
j=1

aiβδ

β2 + δ2c ′2j−1

and we can write the final composition as

s̃η(T (z)) = sη(T (z)) + 1
2 = 1

2 + D2
η∑
j=1

aiβδ

β2 + δ2c ′2j−1
+ D2

η∑
j=1

(
wj

z + j

+ wj
z + j

)
,

which is a rational function of degree d = 2η. A rational function

ρd(z) = τ +
d∑
j=1

wj
z + j

CR

68 2 Spectral projection algorithms

of this form is easily written as matrix function and applied to the real axis,

ρd
(
B−1A

)
= X diag(ρd(λ1), . . . , ρd(λk))X−1 = X

τI +
d∑
j=1

wj(Λ + jI)−1

X−1

= τI +
d∑
j=1

wjX(Λ + jI)−1X−1 = τI +
d∑
j=1

wj
(
XΛX−1 + jI

)−1

= τI +
d∑
j=1

wj
(
B−1A+ jI

)−1
= τI +

d∑
j=1

wj(A+ jB)−1B.

To place the filtering region arbitrarily in the complex plane, a shift c and a scaling
factor r are required. For definite pairs with target interval [λmin, λ

max], it is again
c = (λmax + λmin)/2 and r = (λmax − λmin)/2, see Section 2.2.3. These parameters
can be integrated into a given Möbius transformation as

T (z) = rα− cβ + βz

rγ − cδ + δz
.

Since poles come in complex conjugated pairs, the optimizations mentioned in Sec-
tion 2.2.3, including the possibility to halve the number of linear system solves in
case of a real matrix pencil, are applicable.
Figure 2.8 shows an example of a Zolotarev filter. Only ten of the overall twelve

roots are shown. Pass- and stopband oscillations are imperceptible in the non-
logarithmic plot already at low degrees. For non-Hermitian problems, the filtering
region would be defined as the unit circle, but the spacing of the poles in the imaginary
directions causes the separation ability of the filter to diminish heavily. The effect
intensifies when the poles move towards −1 or 1 by decreasing κ. Overall, the filter
is not well suited for use in the solution of non-Hermitian problems.

2.3.4 Computation of Jacobi’s elliptic functions
While conventional trigonometric functions are generally available for every program-
ming language directly via the accompanying runtime libraries, the evaluation of
Jacobi’s elliptic functions may require the use of additional third-party libraries.
A non-exhaustive list of libraries that include implementations of Jacobi’s elliptic
functions includes the GNU Scientific Library [Gal+09; GNU], the Math Toolkit of
the Boost C++ libraries [Agr+], the DSP System ToolboxTM for MATLAB R© and
Simulink R© [MLB] (formerly also via the High-Order Digital Parametric Equalizer De-
sign Toolbox [Orf05]), and the SymPy Python library’s Mpmath module [Meu+17],
to name just a few.

Algorithms for the computation of these functions are relatively simple. Therefore,
we are able to include them in Section A.1 of the appendix, in case a suitable library
is not available, is missing certain functions or does not behave as expected.

CS

2.4 Electronic filter design 69

0

0.5

1

F
ilt

er
va

lu
e

−3 −1 1 3

10−6

10−4

10−2

100

Real axis

F
ilt

er
va

lu
e

−1

1

−3 −1 1 3

−3

−1

1

3

Complex plane

10−6

10−5

10−4

10−3

10−2

10−1

100

101

F
ilt

er
va

lu
e

Figure 2.8: Example of a Zolotarev filter of degree 12 with κ = 10−3. Left: non-logarithmic
and logarithmic plots of the filter function. Top right: pole-root map. Roots
are marked as circles, poles as crosses. Bottom right: logarithmic contour plot
of the filter function in the complex plane.

2.4 Electronic filter design
The symbol H(s) is commonly used for a filter’s transfer function in the complex
frequency domain of the Laplace transform. Applied to only the (purely imaginary)
frequency part ω, the graph of |H(iω)|2 constitutes the filter’s frequency response,
the component we are interested in. Similar to our definition of the window function,
an ideal low-pass filter would be given as

|H(iω)|2 =
{

1 if ω ≤ 1
0 otherwise.

This formulation can intuitively be approximated in slightly rewritten form as

|H(iω)|2 = 1
1 + ε2g2(ω) ,

where g(ω) ≤ ζ if ω ≤ 1 and g(ω) −→ ∞ for ω −→ ∞ or at least g(ω) ≥ ξ for
ω ≥ 1 + ρ. The function g is called the characteristic function of the filter and the
factor ε, sometimes called ripple factor , is included for normalization and scaling.
The characteristic function g is squared to keep its value positive and the gain of
the filter smaller or equal to one. Squaring the characteristic function also keeps the
transfer function symmetrical and the overall degree even, ensuring that no pole will

CT

70 2 Spectral projection algorithms

be purely real as to not create an essential discontinuity in the filtering graph in the
case of some filter types.
The quicker g2(ω) tends towards infinity or the larger ξ is for frequencies greater

than 1 + ρ and the smaller the ζ, the better an approximation we obtain. Since the
behavior of g for |ω| < 1 translates to the behavior of the filter in the passband, the
parameter ε can be used to scale potential oscillations within the passband. To keep
the effects of the parameter transparent, it is reasonable to require g(1) = 1.

This approach is fundamentally different from the ones described before as it uses
the property of a function g2 to be bounded from above inside [0, 1] and either quickly
tend towards infinity or be bounded from below for ω ≥ 1 + ρ in contrast to finding
an approximate representation for the ideal low-pass filter by combining certain basis
functions or by contour integration. The algorithmic result is, however, very similar.
The typical design concept is visualized in Figure 2.9. It specifies four quantities

fp fs

Gp

0
Gs

1

Figure 2.9: Filter design parameters: cutoff frequency fp, end of transition band fs, mini-
mum passband gain Gp, and maximum stopband gain Gs.

as constraints for the filter gain in pass- and stopband and the width and position
of the transition band, as outlined in Table 2.2. Given these four parameters, other
parameters—in particular the degree 2d—can be computed easily due to the simple

Symbol Description
Gp Minimum allowed gain in the passband of the filter.
Gs Maximum allowed gain in the stopband of the filter.
fp Cutoff frequency, end of the passband and start of the transition band.
fs End of the transition band and start of the stopband.

Table 2.2: Filter design parameters.

CU

2.4 Electronic filter design 71

form of the filtering function. Note that we use 2d as degree here for reasons of
recognition, somewhat similar to d = 2ν for the Zolotarev filter or d = 2k for Cauchy
filters. Since the half-degree d is required to be an integer, based on the computed
result δ, the next larger integer d = dδe is chosen. Conventionally, the filter is scaled
to not exceed one but given Gp, the scaling might be chosen such that the gain in
the passband section is contained in [1−Gp/2, 1 +Gp/2] instead to minimize the
deviation from one in the passband. Of course, Gs has to be scaled accordingly in
this case. Similarly, the filter may be shifted by −Gs/2 such that the absolute value
of the oscillations in the stopband are reduced to one half of their original amplitude.
In combination with appropriate scaling, oscillations in pass- and stopband can be
minimized. This has, however, only minuscule effects on filter quality.

The filters most frequently covered in the literature are the Butterworth filter, the
Chebyshev filter (type I and II), and the Elliptic filter (also Cauer filter or Zolotarev
filter), see, e.g., [Dan74; Ant79], whom we will follow here. Other filters exist, but
the general procedure does not differ from what will be described below.

The filtering functions derived for use in electronics act on the complex frequency
iω and thus on the imaginary axis. Swapping real and imaginary parts of the poles
(and roots), transforms the filter to act on the real axis. Furthermore, only half of
the poles are used due to stability concerns, a constraint that bears no importance
to us. Using only the poles in the left half of the complex plane (potential roots are
purely imaginary) for the transfer function effectively describes

G(ω) = |H(iω)| = 1√
1 + ε2g2(ω)

and offloads part of the frequency response function into an imaginary part, such
that only its complex absolute value constitutes the desired filtering function (with
diminished filtering properties). A complex-valued filter becomes problematic when
elevated to a matrix function since the complex matrix square root to compute the
absolute value is not easily obtainable. A real-valued filter can trivially be obtained
by using the full set of poles (and possibly duplicated roots) and may be used instead,
resolving this issue.

In order for the filter to be applicable in the context of a spectral filtering framework,
its numerical application has to be reduced to the available matrix and vector
operations. To achieve this—given that all filters described herein are rational
functions—the filtering functions have to be decomposed into partial fraction form.
The reader is referred to Section 2.3.3 for information on how to achieve this. The
representation of the rational function in terms of its poles and roots is correct
except for scaling. Since the characteristic function is scaled to pass one at the cutoff
frequency, the gain of the filter at the cutoff frequency is 1/(1 + ε2). With this, the
scaling factor can be computed as

β = 1
1 + ε2

ηr∏
j=1

(
1

1− j

) ηp∏
j=1

(1− j),

CV

72 2 Spectral projection algorithms

where j are the ηr roots and j are the ηp = 2d poles of the rational function.
Alternatively, for some filters f(0) = 1 either for all or odd half-degrees and f(0) =
1/(1 + ε2) for even half-degrees.

In terms of a matrix function for the matrix pencil (A,B), the rational function
for the filter of degree 2d, applied to vectors Y , takes the form

αβY + β
2d∑
j=1

wj(A− jB)−1BY,

where α is either 1, if the number of poles and roots is identical, or 0, if the number of
roots is smaller than the number of poles. The case of ηr > ηp shall not be considered
here.
Since poles come in complex conjugated pairs, all optimizations mentioned in

Section 2.2.3, in particular the possibility to halve the number of linear system solves
in case of a real matrix pencil, are applicable.

Finally, clearly specifying a filtering region for a filter in the complex plane is not
easily done in the non-Hermitian case. An elliptic contour defined by the poles of
the filter is a possible candidate, if applicable. For the Hermitian case, however,
the question arises where to map the interval boundaries to, given only a transition
interval. Information on eigengaps is typically not available, so possible choices boil
down to the center of the transition band or the point where the filtering function
passes 1/2, the half-point f1/2. The latter can easily be computed by requiring
ε2g2(ω) = 1 or g(ω) = ±1/ε. For arbitrary placement of the filter in the complex
plane, a shift c and a scaling factor r are required, such that the desired filtering
region is mapped onto the respective region of the filter. Similar to before, if in
the Hermitian case the target interval [λmin, λ

max] is to be mapped into an interval
[ωmin, ω

max],

r = λmax − λmin

ωmax − ωmin
and c = λmin − rωmin

and the transformation of the filter argument is

z → t(z) = 1
r

(z − c).

For a partial fraction representation as depicted above, this is equivalent to a modi-
fication of the poles i and coefficients wi,

wj
t(z)− j

= wj
1
r
(z − c)− j

= rwj
z − (c+ r j)

.

The positions fp, fs, and f1/2 can be transformed to relate to the target interval
accordingly by inverting the transformation above or vice versa.

In the following, the common filter types will briefly be described in the form men-
tioned above to yield real-valued filtering functions acting on the real axis. All filters

CW

2.4 Electronic filter design 73

have in common that the desired cutoff frequency fp is introduced by transformation
of the argument,5 ω = z/fp.
Chebyshev type-II filters are a special case among the filters introduced below.

The necessary adaptions to the general statements made above will be outlined in
the corresponding section.

2.4.1 Butterworth Filter
Given the conditions for a suitable function g from above, simple power functions
of the form g = ωd first come to mind. They also satisfy g(1) = 1. Poles of the
resulting transfer function occur whenever the denominator becomes zero,

1 + ε2ω2d = 0 ⇐⇒ ω =
(
− 1
ε2

) 1
2d

⇐⇒ j =
(1
ε2 e

i(2j−1)π
) 1

2d
= ε−

1
d ei (2j−1)

2d π for j = 1, . . . , 2d,

since the poles repeat for j > 2d. We see that variation of ε is nothing more than
a shift of the cutoff frequency. Due to symmetry, it is possible to only compute
poles of one quadrant and derive the remaining poles by reflecting them about the
axes. Pay special attention to the purely imaginary poles in the case of odd half-
degrees that appear for j = (d+ 1)/2 and j = (3d+ 1)/2 in this case. Obviously,
the poles come in complex conjugate pairs on the unit circle (for fp = 1 and ε = 1).
The Butterworth filter is a pole-only filter without roots. The scaling factor can be
computed from the poles as the inverse of the product of the poles, which is the
rational form evaluated at position zero and here has to evaluate to one. Therefore

β =
2d∏
j=1

ωj =
d∏
j=1

ε−
2
d = 1

ε2 .

In the literature it is often ε = 1 such that the filter function passes 1/2 at the cutoff
frequency. Otherwise, the filter passes 1/2 at

z = ±fp ε−
1
d .

Figure 2.10 shows an example of a Butterworth filter. The even distribution of poles
results in flanks of similar steepness around a circular region in the complex plane
which makes it useful also for the non-Hermitian case. A Butterworth filter with
ε = 1 is equivalent to the Cauchy filter using the midpoint rule on a unit-circular
contour. This is apparent from the position of poles alone, but as is pointed out in
[Krä14], the midpoint quadrature rule with 2d nodes gives the selection function

f(λ) = 1
1 + λ2d ,

which is nothing more than the definition of the Butterworth filter with ε = 1.
5) We may as well just choose fp = 1 universally and let the argument transformation handle
scaling altogether.

CX

74 2 Spectral projection algorithms

0

0.5

1

F
ilt

er
va

lu
e

−3 −1 1 3

10−6

10−4

10−2

100

Real axis

F
ilt

er
va

lu
e

−1

1

−3 −1 1 3

−3

−1

1

3

Complex plane

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

F
ilt

er
va

lu
e

Figure 2.10: Example of a Butterworth filter of degree 12 with ε = 0.3. Left: non-
logarithmic and logarithmic plots of the filter function. Top right: pole map.
Bottom right: logarithmic contour plot of the filter function in the complex
plane.

2.4.1.1 Design

Given the gain Gp at the cutoff frequency fp and the gain Gs at the end of the
transition band fs, it is not difficult to compute the parameters ε and d. We already
know that the characteristic function passes one at fp and thus

Gp = 1
1 + ε2 =⇒ ε =

√
1
Gp

− 1.

Plugging the remaining information into the filter formula gives

Gs = 1
1 + ε2

(
fs
fp

)2δ =⇒ δ =
log
(

1
ε

√
1
Gs
− 1

)
log
(
fs
fp

) =
log
(

1
ε2

(
1
Gs
− 1

))
2 log

(
fs
fp

) .

Remember that the cutoff frequency is usually implemented by letting ω = z/fp and
d = dδe. Since the characteristic function is monotonous, separately in the positive
and negative regions, this is enough to conform to the design specifications.

2.4.2 Chebyshev Type-I Filter
Due to the property of Chebyshev polynomials to equioscillate between −1 and 1
inside the interval [−1, 1] and quickly tend towards infinity outside of it, they fulfill

CY

2.4 Electronic filter design 75

the conditions imposed on characteristic functions g, and we thus let g(ω) = Td(ω).
Similarly to the roots of Chebyshev polynomials, see Section 2.1.6, we find

1 + ε2T 2
d (ω) = 0 ⇐⇒ cos2(dθ) = − 1

ε2

⇐⇒ cos(dθ + jπ) = ± i
ε

for j = 0, 1, . . .

⇐⇒ θj = 1
d

(
cos−1

(
± i
ε

)
+ jπ

)
for j = 0, 1, . . . (2.10)

using ω = cos(θ), cos(z + π) = − cos(z), and cos(z − π) = cos(z + π). Note that the
half-period π of cos(z) can be used here only due to the choice of sign given by the
square root operation in the first line. The choice of sign for i/ε is arbitrary since it
merely affects the order of the computed poles. The poles repeat for (jπ)/d ≥ 2π,
thus j < 2d and

j = cos(θj) for j = 0, . . . , 2d− 1.
Due to symmetry, it is sufficient to only compute one quadrant, with special care
taken for purely imaginary poles in the case of odd half-degrees which appear for
j = (d− 1)/2 and j = (3d− 1)/2. The filtering function passes 1/2 at

z = ±fp cos
(1
d

cos−1
(1
ε

))
.

Figure 2.11 shows an example of a type-I Chebyshev filter. The uneven distribution of
poles causes flank steepness to decline in increasingly imaginary directions, similarly
to the Cauchy filter using Gauss-Legendre integration on an elliptic contour. Usage
for non-Hermitian problems is not impossible, but the varying separation properties
will reduce convergence speed.

2.4.2.1 Design

As before, the characteristic function passes one at fp and

Gp = 1
1 + ε2 =⇒ ε =

√
1
Gp

− 1.

The preliminary half-degree δ is again obtained by simply substituting the remaining
parameters,

Gs = 1
1 + ε2T 2

δ

(
fs
fp

) =⇒ cos
(
δ cos−1

(
fs
fp

))
= 1
ε

√
1
Gs

− 1

=⇒ δ =
cos−1

(
1
ε

√
1
Gs
− 1

)
cos−1

(
fs
fp

) .

The characteristic function is equioscillating inside [−fp, fp] and monotonous outside.
The filter thereby conforms to the specification.

DA

76 2 Spectral projection algorithms

0

0.5

1

F
ilt

er
va

lu
e

−3 −1 1 3
10−8

10−6

10−4

10−2

100

Real axis

F
ilt

er
va

lu
e

−1

1

−3 −1 1 3

−3

−1

1

3

Complex plane

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

F
ilt

er
va

lu
e

Figure 2.11: Example of a type-I Chebyshev filter of degree 10 with ε = 0.3. Left: non-
logarithmic and logarithmic plots of the filter function. Top right: pole map.
Bottom right: logarithmic contour plot of the filter function in the complex
plane.

2.4.3 Chebyshev Type-II Filter
In contrast to the other filters discussed here, let ω = fs/z. The inverse Chebyshev
filter translates the oscillations in the passband of the Chebyshev filter to the stop-
band by choosing the characteristic function as f(ω) = 1/T 2

d (ω) with ripple factor
1/ε2. Rewriting the transfer function as

1
1 + 1

ε2T 2
d

(ω)
= ε2T 2

d (ω)
1 + ε2T 2

d (ω)

shows that filters of this type have duplicate roots. The poles are obtained as
1
j

= cos(θj) =⇒ j = 1
cos(θj)

where θj is the same as in Equation (2.10). The roots of the filter are the inverses
of the roots of the Chebyshev polynomial of degree d from Section 2.1.6,

1
k

= cos
(
π(2k − 1)

2d

)
for j = 1, . . . , 2d.

The roots repeat for j ≥ 2d + 1/2. For odd half-degrees, there is a pair of purely
imaginary poles. The associated roots are formally infinite and need to be skipped

DB

2.4 Electronic filter design 77

in computations. It is therefore advisable to only compute one quadrant, j =
1, . . . , bd/2c, and exploit symmetries to obtain the remaining roots. In the case of
odd half-degrees, the rational filter function therefore has fewer roots than poles
while for even half-degrees the number of roots and poles is equal.

The scaling of the partial fraction form has to be adapted to account for the
inversion. Assume

f(fs) = 1
1 + 1

ε2
or f(0) = 1.

Then, with ηp = 2d being the number of poles and ηr the number of roots,

β = 1
1 + 1

ε2

ηr∏
j=1

(
1

1− j

) ηp∏
j=1

(1− j) =
ηp∏
j=1

(
1
j

) ηr∏
j=1

(j).

The filtering function passes 1/2 at

z = ± fs

cos
(

1
d

cos−1
(

1
ε

)) .
Figure 2.12 shows an example of a type-II Chebyshev filter. All roots are duplicate

0

0.5

1

F
ilt

er
va

lu
e

−3 −1 1 3
10−7

10−5

10−3

10−1

Real axis

F
ilt

er
va

lu
e

−1

1

−3 −1 1 3

−3

−1

1

3

Complex plane

10−6

10−5

10−4

10−3

10−2

10−1

100

101

F
ilt

er
va

lu
e

Figure 2.12: Example of a type-II Chebyshev filter of degree 12 with ε = 0.3. Left: non-
logarithmic and logarithmic plots of the filter function. Top right: pole-root
map. Roots are marked as circles, poles as crosses. Bottom right: logarithmic
contour plot of the filter function in the complex plane.

roots. The contour plot reveals that the filter only works well along the real axis
and is unusable for non-Hermitian problems.

DC

78 2 Spectral projection algorithms

2.4.3.1 Design

Due to the inversion, the characteristic function passes one at the end of the transition
band fs, and hence ε relates to Gs as

Gs = ε2

1 + ε2 = 1
1 + 1

ε2
=⇒ ε = 1√

1
Gs
− 1

.

By substituting the remaining parameters, the preliminary half-degree is obtained
as

Gp = 1
1 + 1

ε2T 2
δ

(
fs
fp

) =⇒ cos
(
δ cos−1

(
fs
fp

))
= 1
ε
√

1
Gp
− 1

=⇒ δ = cos−1

 1
ε
√

1
Gp
− 1

 1
cos−1

(
fs
fp

) .
The half-degree computed here is, with the definition of ε above, identical to the
half-degree computed for the type-I Chebyshev filter. The characteristic function
is monotonic, separately for positive and negative values, inside [−fs, fs] and larger
than or equal to one outside. The filter thereby conforms to the specification.

2.4.4 Elliptic Filter
While an in-depth introduction to the theory of elliptic functions is beyond the scope
of this work, fixing just a few elements of the related terminology and notation sim-
plifies the discussion of this filter type. Some of these terms were already introduced
in Section 2.3.1.

A Jacobi elliptic function of modulus κ is periodic with (at most) periods 4K and
4iK ′, therefore called the quarter periods, given by the complete elliptic integrals of
the first kind of moduli κ and κ′, K = K(κ) and K ′ = K(κ′), with κ′ =

√
1− κ2.

The elliptic rational function is given as [Dan74; Ant79]

Rd(ω) =

sn
(
d
K1

K
sn−1(ω, κ), κ1

)
if d odd

sn
(
d
K1

K
sn−1(ω, κ) + (−1) d2K1, κ1

)
if d even

in terms of two moduli κ and κ1. The sign of the additive term in case of even
half-degrees merely changes the sign of the rational function, which is of no further
concern in our case. An equivalent formulation is given [LTE01; LT05] via the elliptic
function cd(ν, κ) = cn(ν, κ)/ dn(ν, κ) as

Rd(ω) = cd
(
d
K1

K
cd−1(ω, κ), κ1

)
.

DD

2.4 Electronic filter design 79

The structural similarity to the definition of the Chebyshev polynomials is conspic-
uous. In the design process of elliptic filters, the periods, represented by the two
moduli κ and κ1 are used to define pass- and stopband gain and the width of the
transition band. The remaining factor, the degree 2d of the filter, is determined to
at least conform to these constraints. They are related by the degree equation

d
K ′

K
= K ′1
K1

. (2.11)

Otherwise, κ1 can be found as κ1 = 1/Rd(1/κ) [LTE01] from the roots and poles of
the elliptic rational function, given that they can be computed without the knowledge
of κ1, as is outlined in the following. The elliptic function cn(ν, κ) is quasi-periodic6
in 2K and, with cn(K,κ) = 0, the roots of Rd(ω) are given by

cn
(
d
K1

K
νj, κ1

)
= 0 ⇐⇒ νj = K(2j − 1)

d
for j = 1, 2, . . .

⇐⇒ j = cd
(
K

2j − 1
d

, k
)

for j = 1, 2, . . .

and j = cd(νj, κ). Since cn(ν, κ) and sn(ν, κ) are 2K-quasi-periodic and

dn(ν, κ) =
√

1− κ2 sn2(ν, κ)

is thus 2K-full-periodic, cd(ν, κ) has again a full period of 4K. Hence, since the
roots appear in pairs which differ in sign,7 they repeat for j > d. To find the poles,
we make use of the relation [Dan74]

Rd(ω) = 1
κ1Rd

(
1
κω

) .
Therefore the poles are located where

Rd

(1
κω

)
= 0 ⇐⇒ 1

κ j

= j.

In case d is odd, Rd(ω) has a root at ω = 0 for index j0 = (d+ 1)/2. The associated
pole is formally at infinity and has to be skipped for computation,

Rd(ω) = 1
%

d∏
j=1

ω − j

ω − j

if d even

d∏
j=1

(ω − j)
d∏
j=1
j 6=j0

1
ω − j

if d odd.

6) cn(ν + 2K,κ) = − cn(ν, κ).
7) cn(K,κ) = 0, dn(ν, κ) ≥ 0.

DE

80 2 Spectral projection algorithms

The elliptic rational function is scaled such that it passes one at the cutoff frequency,
Rd(1) = 1,

% =

d∏
j=1

1− j

1− j

if d even

d−1∏
j=1
j 6=j0

1− j

1− j

if d odd.

The elliptic rational function again has the property of growing quickly outside of
[−1, 1], and we let f(ω) = Rd(ω). Rewriting the filter function in terms of the
numerator pd(ω) and denominator qd(ω) of the elliptic rational function Rd(ω),

1
1 + ε2R2

d(ω) = q2
d(ω)

q2
d(ω) + ε2p2

d(ω) ,

shows that the poles ofRd(ω) are the roots of the filter and have to be duplicated. The
poles are found similarly to the poles of the Chebyshev filter from Equation (2.10),

1 + ε2R2
d(ω) = 0 ⇐⇒ cd

(
d
K1

K
νj + 2jK1, κ1

)
= ± i

ε
for j = 1, 2, . . .

⇐⇒ d
K1

K
νj = cd−1

(
± i
ε
, κ1

)
− 2jK1 for j = 1, 2, . . .

⇐⇒ νj = K

dK1

(
cd−1

(
± i
ε
, κ1

)
− 2jK1

)
for j = 1, 2, . . .

with ω = cd(νj, κ). Let
ϑ = K

dK1
cd−1

(
± i
ε
, κ1

)
,

such that νj can be written

νj = ϑ− 2jK
d

for j = 1, . . . , 2d.

Again, the choice of sign for the square root on the left side allows us to use the
half-period 2K1 instead of the full period. Since − cd(ν, κ) = cd(ν + 2K,κ), the
choice of the sign of i/ε simply shifts the index range and is therefore arbitrary. Due
to cd(ν, κ) being 4K-periodic, the poles repeat after an index range of length 2d.
Purely imaginary poles appear in case of odd half-degrees for j = (d+ 1)/2 and
j = (3d+ 1)/2. The rational filter then has fewer roots than poles. Otherwise, the
number of roots and poles is equal. Exploiting symmetry and computing only one
quadrant of poles is possible if caution is exercised when purely imaginary poles are
involved.

The computation of the poles requires the computation of the inverse of the Jacobi
elliptic function cd(ν, κ). Since [AS74]

cd(ν, κ) = sn(ν +K,κ) = sn(K − ν, κ),

DF

2.4 Electronic filter design 81

inverses are found as cd−1(ω, κ) = K − sn−1(ω, κ) or cd−1(ω, κ) = sn−1(ω, κ) −K,
depending on which value range is to be considered the principal branch of the
inverse. Here, the choice is not of particular importance since it only changes the
order in which the poles are computed. In accordance with the typical principal
branch of cos−1(z), the principal values for cd−1(ω, κ) may be chosen as [0, 2K],
in which case the option mentioned first defines the inverse. It is also possible to
find exact formulas for the roots and poles without the need for computing elliptic
functions [LTE01]. The filtering function passes 1/2 at

z = ±fp cd
(
K

dK1
cd−1

(1
ε
, κ1

)
, κ
)
.

Figure 2.13 shows an example of an elliptic filter. All roots are duplicate roots. The

0

0.5

1

F
ilt

er
va

lu
e

−3 −1 1 3

10−10

10−7

10−4

10−1

Real axis

F
ilt

er
va

lu
e

−1

1

−3 −1 1 3

−3

−1

1

3

Complex plane

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

F
ilt

er
va

lu
e

Figure 2.13: Example of an elliptic filter of degree d = 12 with ε = 0.25 and k = 0.8.
Left: non-logarithmic and logarithmic plots of the filter function. Top right:
pole-root map. Roots are marked as circles, poles as crosses. Bottom right:
logarithmic contour plot of the filter function in the complex plane.

stopband ripple is only visible in the logarithmic plot. Due to the pole positions, the
flank steepness decreases more rapidly compared to type-I Chebyshev filters, making
elliptic filters less suited for non-Hermitian problems. Given their similarities, the
astute observer might suspect the Zolotarev filter introduced earlier to be some
sort of special case of elliptic filter. This seems impossible at first glance since the
Zolotarev filter has only simple roots, while here all roots are duplicate and no choice
of parameters can change this. Adjusting an elliptic filter to match a Zolotarev
filter, however, requires the filter values to be shifted and scaled such that the filter

DG

82 2 Spectral projection algorithms

oscillates about zero in the stopband and about one in the passband. The shift
separates the roots and indeed, choosing the same degree, transition band, and
passband oscillation yields identical filter functions.

2.4.4.1 Computation of inverse elliptic functions

The elliptic function cd(ν, κ) can be computed in the same way as sn(ν, κ) by sub-
stituting ν +K for ν as described before. Suitable libraries for the computation of
elliptic functions have been listed in Section 2.3.4.
Again, an algorithm for the computation of inverse elliptic functions is included

in Section A.2 of the appendix.

2.4.4.2 Design

As was the case before, the characteristic function is scaled to pass one at the cutoff
frequency and

ε =
√

1
Gp

− 1.

The two moduli for the elliptic integrals, κ and κ1, are given by the remaining design
parameters,

κ = fp
fs
, κ1 = ε√

1
Gs
− 1

.

The choice of κ determines the width of the transition band. Using the half-degree
computed from κ and κ1 with Equation (2.11) as

d =
⌈
K

K ′
K ′1
K1

⌉

will result in a stopband gain that is lower than specified, while matching passband
gain and transition bandwidth. Often it may be more desirable to instead match
passband and stopband gains and obtain a transition narrower than specified. In
this case, the degree equation has to be solved for a new κ, using κ1 and d. One
possible method to achieve just that [Ant79] is via the representation of the elliptic
sine function in terms of the theta functions θ0 and θ1,

sn(ν, κ) = 1√
κ

θ1
(
ν

2K , o
)

θ0
(
ν

2K , o
) ,

where o = e−π
K′
K and with sn(K,κ) = 1

κ =
θ2

1

(
1
2 , o

)
θ2

0

(
1
2 , o

) .

DH

2.5 Sakurai-Sugiura-type methods 83

For the sake of simplicity, we will define the theta functions θ0 and θ1 in terms of
their series representation,

θ0

(
ν

2K , o
)

= 1 + 2
∞∑
j=1

(−1)joj2 cos
(

2j πν2K

)
,

θ1

(
ν

2K , o
)

= 2o 1
4

∞∑
j=0

(−1)joj(j+1) sin
(

(2j + 1) πν2K

)
.

With cos(jπ) = sin
(
jπ + π

2

)
= (−1)j,

κ = 4
√
o

(∑∞
j=0 o

j(j+1)

1 + 2∑∞j=1 o
j2

)2

.

Since K and K ′ are not available, we may replace them via the degree equation as

o = e−π
K′
K = e

−πK
′
1

dK1 .

K1 and K ′1 are available as the complete elliptic integrals of the first kind for moduli
κ1 and κ′1. The series representations of the theta functions converge rapidly [Ant79]
and only few steps are required to achieve sufficient accuracy. Alternatively, κ1 can
be computed from κ and d in similar manner.

2.5 Sakurai-Sugiura-type methods
While the methods of the Sakurai-Sugiura type are, strictly speaking, not approx-
imate projections obtained through spectral filtering, they do share algorithmic
similarities, in particular with the Cauchy integral based filtering of the contour
integration method, and the related subspace basis can be used in Rayleigh-Ritz
subspace iteration [ST07] which is why we will outline them here. We will, however,
not go into much detail about the differences in behavior compared to the other
methods introduced.

Instead of approximating a filtering function on the spectrum of the matrix pencil
(A,B), the origin of these methods is a root finding algorithm where a polynomial is
constructed that has the same roots as some target function, making the application
of a simpler root finding method for polynomials possible. Since the roots of the
characteristic polynomial of a matrix pencil are its eigenvalues, the algorithm can
be adapted so that it applies to generalized eigenproblems.

2.5.1 A root finding method for analytic functions
The root finding method for analytic functions described in [DL67] constitutes the
first step in a series of modifications that ultimately leads to the formulation of the
Rayleigh-Ritz type Sakurai-Sugiura Method.

DI

84 2 Spectral projection algorithms

Let g : C −→ C be analytic inside a simple closed curve C in C and also analytic
on C itself. Let further z1, . . . , zk be the k roots of g inside C, counted with their
respective multiplicity and let no roots of g be located on the contour C. Choose

sρ := 1
2πi

∮
C
zρ
g′(z)
g(z) dz (2.12)

such that the integrand has simple poles in zi, i = 1, . . . , k. If η ≤ k roots are
distinct, let ẑ1, . . . , ẑη be these distinct roots and µ1, . . . , µη their multiplicity, such
that ∑η

i=1 µi = k. Then g(z) and g′(z) can be written [Ahl79]

g(z) = (z − ẑi)µih(z), h(ẑi) 6= 0
g′(z) = µi(z − ẑi)µi−1h(z) + (z − ẑi)µih′(z)

for any distinct pole ẑi with multiplicity µi and therefore the poles of

g′(z)
g(z) = µi

z − ẑi
+ h′(z)
h(z) = 1

z − ẑi
µih(z) + (z − ẑi)h′(z)

h(z) (2.13)

are simple. A generalization of Corollary 2.1 makes it possible to compute this
integral.

Theorem 2.2 (Residue theorem [Ahl79], without winding number) Let g be a func-
tion that is analytic almost everywhere. In particular, let there be η isolated singu-
larities ai in the interior of a positively oriented simple closed curve C in C. Then

P :=
∮
C
g(z)dz = 2πi

η∑
i=1

Res(g, ai).

In particular P = 0 if η = 0. The residue of g at ai, Res(g, ai), for simple poles can
be computed as [Ahl79]

Res(g, ai) = (z − ai)g(z)
∣∣∣∣∣
z = ai

.

The deliberate choice of the form of the sp from Equation (2.12) ensures evaluation
to the power sums of the roots using the above theorem and applying the rule for
simple poles. With Equation (2.13) follows

Res
(
zρ
g′(z)
g(z) , ẑi

)
= ẑρi µi

and thus

sρ = 1
2πi

∮
C
zρ
g′(z)
g(z) dz =

η∑
i=1

Res
(
zρ
g′(z)
g(z) , ẑi

)
=

η∑
i=1

µiẑ
ρ
i =

k∑
i=1

zρi .

DJ

2.5 Sakurai-Sugiura-type methods 85

The power sums of the roots zi appear in Newton’s identities to find the coefficients
cj of a polynomial

k∏
i=1

(z − zi) =
k∑
j=0

cjz
j

given only the power sums s0, . . . , sk. The degree k of the polynomial is known by
s0 = k. Letting ck = 1 (the roots of a function are obviously invariant with respect to
scaling), the coefficients of the polynomial are given by the solution of the triangular
linear system [CS82]

1
s1 2
s2 s1 3
...

sk−1 sk−2 · · · s1 k

ck−1
ck−2
ck−3
...
c0

 = −

s1
s2
s3
...
sk

. (2.14)

This leaves the determination of the roots of the resulting polynomial as remaining
(much simpler) task. Due to their characteristic form, the integrals sρ are often
referred to as moments,8 sρ in particular being the ρ-th moment.

2.5.2 An improved root finding method
In [KSB99] the root finding method is refined to circumvent the ill-conditioning
in case of clustered roots within the integration contour. To this end, finding the
distinct roots ẑ1, . . . , ẑη via a polynomial of degree η with simple roots ẑi first and
deducing their multiplicities µ1, . . . , µη separately is proposed. The derivation of
such a polynomial, however, is not as straight forward as it was for the original
method since now the sρ do not meet the requirements for computing the polynomial
of degree η < k using Newton’s identities,

sρ =
η∑
i=1

µiẑ
ρ
i 6=

η∑
i=1

ẑρi . (2.15)

The difficulty lies solely in relating the polynomial coefficients ci to the sρ again. Let
ϕ(z) = ∑η

i=0 ciz
i be a polynomial of degree η. Surely, the condition

η∑
i=1

µiẑ
ρ
i ϕ(ẑi) = 0

is fulfilled if the ẑi are the η roots of ϕ. Of course, this is not necessarily the only
situation in which this condition can be fulfilled. For finding the coefficients of ϕ,

8) Cf. the definition of the term moment in statistics and mechanics.

DK

86 2 Spectral projection algorithms

fix the scaling of ϕ with cη = 1 and require
η∑
i=1

µiẑ
ρ
i ϕ(ẑi) =

η∑
i=1

µiẑ
ρ
i

η∑
j=0

cj ẑ
j
i =

η∑
j=0

cj

η∑
i=1

µiẑ
ρ+j
i =

η∑
j=0

cjsρ+j = 0

⇐⇒
η−1∑
j=0

cjsρ+j = −sρ+η (2.16)

for ρ = 0, . . . , η − 1, which yields the order-η linear system
s0 s1 · · · sη−1
s1 s2 · · · sη
...

sη−1 sη · · · s2η−2

︸ ︷︷ ︸

=: Hη

c0
c1
...

cη−1

 = −

sη
sη+1
...

s2η−1

 (2.17)

using the moments s0, . . . , s2η−1. The matrix Hη has Hankel form. If Hη is regular,
a unique solution for ϕ exists; this solution must be for ϕ to have roots ẑ1, . . . , ẑη
since at least this solution always exists. Indeed, it can be shown [KSB99, Thm. 2.1]
that Ht has rank η for any t ≥ η.
The roots of a polynomial ϕ can be obtained as the eigenvalues of its companion

matrix [HJ13]

Cϕ =

0 · · · 0 −c0
1 · · · 0 −c1
...
0 · · · 1 −cη−1

.
Let (λ, x) be an eigenpair of Cϕ, then

Cϕx = λx ⇐⇒ HηCϕx = λHηx.

The roots of ϕ can therefore be found by solving the generalized eigenproblem
of the matrix pencil (HηCϕ, Hη) [KSB99, Thm. 4.1]. With Equation (2.16) for
ρ = 0, . . . , η − 1 follows

HηCϕ =

s1 s2 · · · sη
s2 s3 · · · sη+1
...
sη sη+1 · · · s2η−1

.
The matrix pencil (HηCϕ, Hη) can therefore be built from just the 2η moments
s0, . . . , s2η−1 and the matrix HηCϕ again has Hankel form. To acquire the multiplic-
ities µ1, . . . , µη via the now known roots ẑ1, . . . , ẑη, from Equation (2.15) arises the
linear system

1 · · · 1
ẑ1 · · · ẑη
...

ẑη−1
1 · · · ẑη−1

η

µ1
µ2
...
µη

 =

s0
s1
...

sη−1

DL

2.5 Sakurai-Sugiura-type methods 87

to be solved for the µi. The matrix is of transposed Vandermonde form.

2.5.3 Application to generalized eigenvalue problems
To apply the method introduced in the previous section to generalized eigenproblems
[SS03a], it is necessary to construct a scalar function w.r.t. (A,B) with k poles
λ1, . . . , λk in C. To this end, let B−1A have the eigendecomposition9 XΛX−1. Then

(zB − A)−1B = X(zI − Λ)−1X−1

with eigenvalues 1/(z − λ). In particular, zB − A is singular for z = λ1, . . . , λk.
Using two random non-zero vectors v and y to obtain a scalar function

g(z) = vH(zB − A)−1By = vHX(zI − Λ)−1X−1y (2.18)

and letting [v′1, . . . , v′n] := vHX and [y′1, . . . , y′n]T := X−1y yields

g(z) =
n∑
i=1

v′i y
′
i

z − λi
.

Let ξ1, . . . , ξη be the distinct eigenvalues of (A,B) in C. The function g(z) has only
simple poles since multiplication with any (z − ξi) removes all occurrences of ξi. For
any ξt = λj = . . . = λj+µ with multiplicity µ, the residue of zρg(z) at ξt is therefore

Res(zρg(z), ξj) = ξρj

µ∑
i=1

v′j+i y
′
j+i︸ ︷︷ ︸

=: νj
and

sρ := 1
2πi

∮
C
zρg(z) dz =

η∑
i=1

νiξ
ρ
i .

Note that the νi do not represent the multiplicity anymore and that we have to
require νi 6= 0 for i = 1, . . . , η. With this, the positions of the distinct eigenvalues of
(A,B) in C can be determined.

2.5.3.1 Blocking and Eigenvectors

The reason for computing a certain amount of moments is for the linear system in
Equation (2.17) to have a sufficient amount of equations in order to be able to solve
for all coefficients of the polynomial ϕ. In the case of Equation (2.18), it is easy to
find a large number of functions, all sharing the same roots, by varying the vectors
v and y. The associated polynomial with identical roots is unique. Combining the
moments corresponding to a certain power ρ into a matrix yields the block moments

Sρ = 1
2πi

∮
C
zρV H(zB − A)−1BY dz.

9) A formulation that allows singular B and defective eigenvalues can be found in [SS03a].

DM

88 2 Spectral projection algorithms

Often, the choice V = Y is made. Building a linear system in accordance with
Equation (2.16) using moments of different functions, however, only decreases the
required number of moments moderately. A blocked version of the Sakurai-Sugiura
method that allows for significant reduction of the number of (block) moments to be
computed by employing multiple vectors and considering the method from a spectral
operator point of view has been introduced in [ISN10]. Since

Mρ = 1
2πi

∮
C
zρ(zB − A)−1B dz = 1

2πi

∮
C
zρX(zI − Λ)−1X−1 dz

= X diag
(1

2πi

∮
C
zρ

1
z − λi

dz, i = 1, . . . , n
)
X−1

and
1

2πi

∮
C
zρ

1
z − λi

dz = Res
(

zρ

z − λi
, λi

)
=
{
λρi if λi ∈ Ω
0 otherwise,

(2.19)

the matrix operator for the moment ρ in the sense of subspace iteration is

Mρ = X diag(d1, . . . , dn)X−1, di =
{
λρi if λi ∈ Ω
0 otherwise

= Xk diag(λρ1, . . . , λρk)X−1
k

and Sρ = V HMρY . Remember that C = ∂Ω. Let (Λ,W) be the eigenpairs of the
matrix pencil (M1,M0) with

Mρ = ZHMρU

for vector blocks Z and U with at least k columns. Then

M1W = M0WΛ
⇐⇒ ZHXk diag(λ1, . . . , λk)X−1

k UW = ZHXkX
−1
k UWΛ

⇐⇒ diag(λ1, . . . , λk)X−1
k UW = X−1

k UWΛ
⇐⇒ diag(λ1, . . . , λk)W̃ = W̃Λ,

which shows that Λ = diag(λ1, . . . , λk). In particular, W̃ = I and thus

Xk = XkX
−1
k UW = M0YW.

Here we assume that Z and U have full rank and k columns and the inverse of ZHXk

exists. For larger matrices Z and U , M1 and M0 become singular.10 The problem is
again reduced to solving the reduced sized eigenproblem for (M1,M0).

10) Since the Rayleigh-Ritz theorem does not require the Rayleigh quotients to be smaller than the
original matrices, it implies that λ1, . . . , λk are eigenvalues of (M1,M0) also in the singular case.
The regular part may be extracted using a singular value decomposition of M0 [ISN10].

DN

2.5 Sakurai-Sugiura-type methods 89

With

MiMj = Xk diag
(
λi1, . . . , λ

i
k

)
X−1
k Xk diag

(
λj1, . . . , λ

j
k

)
X−1
k

= Xk diag
(
λi1, . . . , λ

i
k

)
diag

(
λj1, . . . , λ

j
k

)
X−1
k

= Xk diag
(
λi+j1 , . . . , λi+jk

)
X−1
k

= Mi+j,

the specific choice

ZH =

V HM0
V HM1

...
V HM`−1

 and U =
[
M0Y M1Y · · · M`−1Y

]

yields the matrices

Mρ = ZHMρU =

V HMρY · · · V HMρ+`−1Y

... ...
V HMρ+`−1Y · · · V HMρ+2`−2Y

 =

Sρ · · · Sρ+`−1
... ...

Sρ+`−1 · · · Sρ+2`−2

,
which now have a blocked Hankel form. The eigenvectors can accordingly be recon-
structed as

Xk = M0UW = M0[M0Y, . . . ,M`−1Y]W = [M0W, . . . ,M`−1Y]W = UW.

If V = Y , then Z = U . Note that X−1
k is the left inverse of Xk, see also Sections 1.1.2

and 1.3.3. Without loss of generality, let X be partitioned into two arbitrary block
columns and let X−1 be partitioned accordingly into two block rows. Then

I = X−1X =
(
X−1

1
X−1

2

)(
X1 X2

)
=
(
I1 0
0 I2

)
.

The argument can be extended recursively or by reordering until the desired parti-
tioning is reached. In the case of single vectors V = v and Y = y, the above reduces
to the original method with M1 = HηCϕ and M0 = Hη. It conveniently shows how
to acquire the corresponding eigenvectors as well.

As described in [ST07], with a vector written as linear combination of eigenvectors,
yj = ∑n

i=1 γijxi, and (zB − A)−1Bxi = 1/(z − λi)xi,

Mρyj = 1
2πi

∮
C
zρ

n∑
i=1

γij
1

z − λi
xi dz =

n∑
i=1

γi
1

2πi

∮
C
zρ

1
z − λi

xi dz
(2.19)=

k∑
i=1

γiλ
ρ
ixi

DO

90 2 Spectral projection algorithms

and [M0yj, . . . ,M`−1yj] can be written as XkDjV` where Dj = diag(γij, i = 1, . . . , k)
and V` is the k × ` Vandermonde matrix11

V` =

1 λ1 λ2

1 · · · λ`−1
1

...
1 λk λ2

k · · · λ`−1
k

.
Consequently, we may write a reordered U ,

U ′ = [M0y1, . . . ,M`−1y1, . . . ,M0yζ , . . . ,M`−1yζ]

as12

U ′ = [XkD1V`, . . . , XkDζV`] = Xk

(
D1 · · · Dζ

)
︸ ︷︷ ︸

=: D

V`

. . .
V`

︸ ︷︷ ︸

=: V

.

Clearly, V` has at most rank k and looses rank for every occurrence of multiple
eigenvalues, dropping the rank down to η. Increasing the number of moments
amounts to adding columns to V`, while adding a right-hand side vector yζ+1 increases
the rank of V ∈ Ckζ×`ζ by the rank of V`. Similarly, it may increase the rank of the
matrix D ∈ Ck×kζ if γi,ζ+1 6= 0 where all γij = 0 for i = 1, . . . , n and j = 1, . . . , ζ. In
particular, employing more than one right-hand side vector, ζ > 1, makes it possible
to compute eigenvalues with multiplicity larger than one.
Note that, formally, if any λi = 0, then M0 does not exist since 00 is not defined.

For all Mρ, ρ > 0, the component in direction xi is lost. If, however, M0 is specifi-
cally defined identically to the projection operator from the Cauchy filter, thereby
implicitly allowing 00 = 1, the method can compute zero-valued eigenvalues if the
zeroth moment is used. In practice, while computing the moments via numerical
quadrature, integration nodes can be chosen to never be zero and the problem doesn’t
arise. In this case, the above formal requirement is respected implicitly.

2.5.3.2 Rayleigh-Ritz

The method introduced in [ST07] now applies the above U as a subspace basis in a
Rayleigh-Ritz context. While this formulation only employs a single vector with a
corresponding number of moments ρ ∈ {0, . . . , `− 1} to build a subspace basis, with
the above it is also possible to find a basis by increasing the number of right-hand
sides Y = [v1, . . . , vζ] or a combination of both [IS10]. For the columns of U to be a
spanning set for the space spanned by the eigenvectors associated with eigenvalues
inside C, we generally have to require
11) Incidentally, the inverse of this Vandermonde matrix gives the eigenvectors of the companion
matrix Cϕ and, as such, eigenvectors of (HηCϕ, Hη). We may infer that for the single vector case
XkDj = UV−1

` which differs only in scaling of the eigenvectors Xk or W .
12) Similarly, V may be decomposed with respect to the left eigenvectors of the matrix pencil; the
same reasoning applies.

DP

2.5 Sakurai-Sugiura-type methods 91

1. `ζ ≥ k, i.e., the number of columns of V exceeds k,
2. ζ ≥ k/η, i.e., the row rank of V exceeds k,
3. Rank(D) = k, i.e., γij 6= 0 for at least one yj for all i ∈ {1, . . . , k}, and
4. the condition regarding M0 from above is met in case B−1A is singular.

As both the Rayleigh-Ritz and the Hankel matrix-based variant of the Sakurai-
Sugiura method require the subspace basis to be of full rank for the reduced eigen-
problem to be solvable and since U can at most have rank k, some scheme of reduction
is required, orthogonalization being one option.

2.5.3.3 Filtering functions

While it is not possible to write down the effective filtering function for Sakurai-
Sugiura methods using multiple moments, the moment matrix operators Mρ have,
by construction, the same eigenvectors as (A,B) and constitute a filtering function
on the spectrum of (A,B), similarly to the power method but with explicit removal
of certain directions. The filter of a single moment can be visualized [ISN10] by
depicting how much the absolute value of an eigenvector is scaled depending on the
location of its associated eigenvalue, see Figure 2.14.

−2 −1 0 1 2

0

1

M0

−2 −1 0 1 2

M1

−2 −1 0 1 2

M2

−2 −1 0 1 2

M3

−1 1 −1
10

1

−1 1 −1
1

−1 1 −1
1

−1 1 −1
1

Figure 2.14: Spectral filtering functions for the moments 0 to 3, absolute value. Top: for
the interval [−1, 1] ⊂ R. Bottom: for the unit circle on C.

2.5.3.4 Transformations of the weight function

The weight function zρ directly dictates the eigenvalues of the matrix pencil (M1,M0)
since the eigenvalues are the residues of the poles of the first moment, as was seen in
Equation (2.19). Therefore, any substitution of z translates directly to the computed
eigenvalues of the Hankel matrix based Sakurai-Sugiura methods. In the case of
simple shifting and scaling, as it is applied for numerical reasons in, e.g., [ISN10],
the computed eigenvalues appear shifted and scaled accordingly. A corresponding
back transformation is required to acquire the eigenvalues of (A,B).

DQ

92 2 Spectral projection algorithms

On the contrary, applying transformations to the weight function does not require
additional measures to be taken in case of Rayleigh-Ritz based variants of the method.
Since it is based on the compatibility of eigenvectors alone and the eigenvectors Xk

of the non-singular part of Mρ are, by construction, eigenvectors of (B, zB − A),
which again are eigenvectors of (A,B), the computed eigenvalues of the Rayleigh
quotients (

ZHAU,ZHBU
)

are not influenced by the weight function, as long as the conditions for providing a
suitable subspace basis are not violated. The shape of the filter functions of the ρ
moments, however, obviously changes with the contour C. To keep the magnitude
of the root powers small and to keep the filtering functions independent of the
integration region, shifting and scaling the weight function accordingly is again
advisable.

2.5.3.5 Computation

Due to the algorithmic similarity to the Cauchy filtering method, see Section 2.2,
all the possible simplifications discussed there also apply to the computation of
the subspace basis for the Rayleigh-Ritz type Sakurai-Sugiura methods. Since the
solution of the linear systems can be considered to be the most expensive part of
the computations and their solution can be reused for the different moments, it is
advisable to not parallelize over moments at all as to not solve a particular linear
system on more than one process or process group.
For numerical quadrature, the different schemes mentioned earlier in the context

of the Cauchy filter, Section 2.2.2, can of course be used again. Similarly, effec-
tive filtering functions based on these quadrature schemes can be found (compare
Section 4.2.3, Figure 4.9).

2.5.3.6 Relation to spectral projection

Analogously to [IDS16], assuming a perfect filter χ, the matrix operator of the
moment ρ can be written

Mρ = Xχ(Λ)ΛρX−1 = Xχ(Λ)X−1 XΛρX−1︸ ︷︷ ︸
= (B−1A)ρ

and thus[
M0Y M1Y · · · M`−1Y

]
= Xχ(Λ)X−1

[
Y B−1AY (B−1A)2

Y · · · (B−1A)`−1
Y
]
,

which is the block-Krylov space of the matrix B−1A and the vector block Y . It
is therefore possible to interpret the Sakurai-Sugiura method as spectral filtering
applied to the block-Krylov space above. This understanding translates to an ap-
proximate filter as well [IDS16].

DR

2.6 Other filtering methods 93

2.6 Other filtering methods
As has been stressed above, any approximation of a meaningful filtering function
(we have seen from the power iteration that the pass-band not necessarily has to be
forced to be close to one for the filter to be effective) of rational form such that it
can be expressed in terms of a partial fraction representation may serve to construct
matrix operators for computing inner eigenpairs. There are many candidates of
approximation methods that meet these criteria; this work by no means intends to
mention them all.

2.6.1 Rational filter types
While we did not discuss rational filters

f(λ) = p(λ)
q(λ)

with deg(p) > deg(q), they are equally suitable for use as spectral filters. The re-
mainder of the polynomial long division in this case is a non-trivial polynomial which
can be computed efficiently using Horner’s method (see, e.g., [Knu97]) requiring d
multiplications with the matrix pencil, assuming d is the degree of the polynomial.
If the eigenproblem is generalized, this includes d solves with B.
Let a matrix polynomial in the matrix argument C of degree d be given as

p(C) =
d∑
i=0

ciC
i

which may be rewritten as

p(C) = c0 + (c1 + (c2 + . . .+ (cd−1 + cdC)C)C)C.

Letting γd = cd, γd−1 = cd−1 + γdC, defines a recursive sequence for the computation
of p(C) = γ0 = c0 + γ1C. Applied to a vector block V , the computation as

Γd−1 = cd−1V + cdCV

Γd−2 = cd−2V + CΓd−1

· · ·
Γ0 = c0V + CΓ1

requires the maintenance of three block vectors, one for saving V which is used
in every step, and two additional buffers for alternating the Γi since matrix-vector
multiplication cannot be performed in-place. The coefficients ci can be computed
from the roots of the polynomial using Newton’s identities, see Equation (2.14).

If also poles of multiplicity > 1 are to be allowed, the partial fraction form becomes
more complex, in particular involving polynomials in the denominators. These cases
shall not be discussed here.

DS

94 2 Spectral projection algorithms

2.6.2 Delta filters
The approximation of the window function is not a fundamental necessity of subspace
iteration. We may, arguably, not speak of spectral filtering per se in this case, but
more unorthodoxly shaped functions may improve convergence or reduce costs in
certain cases. From the power iteration method we saw that the most fundamental
filter is the matrix spectrum itself. The term filter is, of course, used somewhat
aberrantly in this case.
Another example is the polynomial approximation of the Dirac δ-function. For

Chebyshev polynomials, the analytical computation of the corresponding inner prod-
ucts (see Section 2.1.2) is straight forward,

〈Ti, δ〉 =
∫ 1

−1
δ(z − c)Ti(z) dz = Ti(c)

with w(z) ≡ 1. The result is a distinct peak, centered at some target c inside [−1, 1],
that narrows with increasing degree. Due to a gentler fall-off of filter values with
increasing distance to the peak, this filter is only feasible for increasingly small
spectral target regions. A summation of identical delta approximations, located
at the centers of equal subdivisions of the target interval, again approaches the
approximate window function of Chebyshev polynomials with increasing number.
The typical Gibbs oscillations can again be smoothed, see Section 2.1.4. Filters of
this kind have been used, e.g., in [Li+16].

2.6.3 Least squares
Methods for the approximation of target functions also include strategies for fitting
a rational filtering function based on preselected pole locations using a least squares
approach [XS16]. The goal is to find coefficients aj for a rational function

L(z) =
d∑
j=1

aj
z − j

with poles j such that ‖χω − L‖2
w is minimized. Here, the target region ω typically

is the interval [−1, 1]. The norm is given by the function inner product with some
weight function w (see Section 2.1.1). For more details, see [XS16]. Filters of this
kind have been used alongside Cauchy-filters in [FS12].

2.6.4 Beyond conventional subspace iteration
Due to the compatibility of eigenvectors, other methods for solving eigenvalue prob-
lems can be modified to benefit from spectral transformations, such as the filtering
function introduced in this chapter, to improve convergence speeds, given that eigen-
values of the original problem can always be obtained from just the eigenvectors via
the proper Rayleigh quotients.
The Lanczos algorithm (cf. Section 1.7.2), for example, has been modified to

employ a filtering operator in [FS12] and [Li+16].

DT

Chapter 3
BEAST

This very short chapter shall, in all brevity, introduce the software that lends its
name to the following two chapters as the primary prototype implementation

of most of the concepts and algorithms introduced therein, as well as many aspects
of the preceding chapters. Originally inspired by the very first FEAST algorithm
introduced in 2009 [Pol09], functionalities and features were continuously extended,
ultimately giving it its name beyond FEAST, or BEAST. Of course, the original
implementation of FEAST [PK15; Pol20] evolved as well and the name is only meant
to refer to the basic algorithm. The implications of interval-level parallelism in
BEAST will serve as motivation for the following chapters.

3.1 The BEAST framework
BEAST is a feature-rich software library that acts as framework for subspace itera-
tion algorithms, in particular—but in the future not necessarily limited to—spectral
projection. Currently, the list of implemented filters contains the polynomial Cheby-
shev (Section 2.1) and Cauchy (Section 2.2) filters (midpoint and Gauss-Legendre
integration flavors), but the other alternatives from Chapter 2 are to follow. Beyond
that, potentially arbitrary rational filters can be implemented. Many other features
were integrated to improve reliability, robustness, and performance that shall be men-

DU

96 3 BEAST

tioned here in a short overview. BEAST is written in pure C to allow comparably
easy implementation of potential interfaces in C++, Fortran, or Python.

BEAST is intended to solve very large scale Hermitian eigenproblems of standard
or generalized form where some or even many inner eigenpairs are to be computed on
modern hybrid-parallel high performance supercomputers. Subspace iteration eigen-
solvers offer great potential for parallelization. In particular interval level parallelism
introduces certain difficulties into the concept of spectral projection eigensolvers.
First, the choice of filtering function (Chapter 2) affects the interaction between in-
tervals. In which way this interference affects the result of an eigensolver is explored
in Chapter 4, in particular with regard to eigenvector orthogonality, which will be
the focus of Chapter 5.
BEAST has been developed and used in the BMBF project “Eigenwert-Löser

für Petaflop-Anwendungen” (ELPA) [Mar+14] and its follow-up project “ELPA -
Algorithmische Erweiterungen und Optimierungen” (ELPA-AEO), as well as the
subprojects “Equipping Sparse Solvers for Exascale” (ESSEX) [Alv+14; Wel+20]
and ESSEX-II of the DFG priority programme “Software for Exascale Computing”
(SPPEXA).

3.1.1 Basics
For basic building blocks, i.e., fundamental operations such as sparse matrix-vector
multiplication (also for blocks of vectors), dense matrix-matrix multiplication, as
well as column-wise dot products and the associated data structures for sparse and
dense matrices, BEAST relies on GHOST, the general, hybrid, and Optimized Sparse
Toolkit [KE+; Kre+16; Kre+17], or PHIST, a pipelined hybrid parallel iterative
solver toolkit [TR+; Thi+19; Thi+16], which guarantee highest performance on
hybrid parallel systems. To not confuse them with the different kernel libraries
provided by PHIST (which also includes GHOST), we will refer to them as back end
libraries.

These operations play a major role in the application of the approximate projector,
which typically is the dominant component in terms of performance of the algorithm.
As such, the per-node performance is provided by the underlying back end libraries.

3.1.2 Parallelism
An inherent property of the spectral projection algorithm is its potential for multi
level parallelism (see also [PK15; Pol20]). In total, we can differentiate four levels.
The higher levels encapsulate the lower levels as groups of processes, resulting in
a process group hierarchy. These levels of parallelism are generally realized by the
back end libraries and BEAST itself via MPI [MPI15].

An additional level of parallelism that is not mentioned in this hierarchy is shared
memory multi threading. Both GHOST and PHIST provide this kind of parallelism
transparently, but BEAST itself uses explicit thread-level parallelism whenever ap-
plicable and sensible, via OpenMP [Ope18].

DV

3.1 The BEAST framework 97

Level 0: Basic operations In case of BEAST, the lowest possible level of parallelism
is provided by the back end libraries (see above) in terms of matrix and block vector
distribution in combination with operations to act on the distributed data. The
data distribution scheme is dictated by the governing sparse matrix, subdividing
matrix and block vectors into block rows of homogeneous or inhomogeneous height as
depicted in Figure 3.1. We will see that this distribution scheme is not only beneficial
for sparse matrix vector multiplication, but also simplifies other processes highlighted
in the following chapters. For further details on how the back end libraries handle
data distribution, parallelization and optimization, the reader is referred to the
associated literature, e.g., [Kre+16; Kre+17; Thi+19; Thi+16] and the references
therein.

Figure 3.1: Subdivision into block rows.

The rather small size of the reduced eigenproblem makes it possible to solve it
redundantly on all processes. For larger numbers of eigenpairs, it might make sense
to parallelize this step as well. In this case, even if the distribution differs, the
parallelism would be classified as level 0, as well. Note that this is a future feature
of BEAST.

Level 1: Right-hand sides The approximate projector is applied to every column
of the right-hand side vector block (the initial guess or the approximate eigenvectors)
in the exact same way. Subsets of vectors can therefore be handled independently,
see Figure 3.2. In case the number of processes exceeds the scaling potential of
the projector application, more processes can be used efficiently by limiting the
number of processes for the projector application this way. We call the process

Figure 3.2: Subdivision into blocks of right-hand sides.

groups responsible for applying the approximate projector to a vector subblock
prides. Choosing the data layout identical for each group, meaning that the number
of processes per group is identical, the distribution of right-hand sides and the
collection of results can be performed as scatterv and gatherv operations (see

DW

98 3 BEAST

[MPI15]). This communication is performed between related processes of every
group, i.e., processes with the same inner-pride rank. We will refer to process groups
of this orthogonal group structure as coalitions.

Level 2: Rational approximation poles For the evaluation of rational matrix func-
tions such as those from Chapter 2, the solution of a linear system is required for
each pole of the function. The system matrices differ depending on pole location
while the right-hand sides are identical. By broadcasting the right-hand side vector
block to other groups of processes, linear systems are solved independently using
a suitable sparse direct or iterative solver. Figure 3.3 shows the half-contour and
independently computable poles for an interval.

zi

Im

Re

λmaxλmin

Figure 3.3: Individually computable poles (Cauchy, degree 16); in the background an exem-
plary spectral density of the interval is shown, see also Figure 3.4.

The different solutions then have to be accumulated. If the data distribution
layout is identical for every group, i.e., the number of processes (or subgroups) is
identical, the summation can be performed as reduction operation (see [MPI15]).
We will call process groups that handle linear systems for a single pole, or a list of
poles, factions. In case a single pole is assigned to each faction, preliminary steps
such as constructing the system matrix or performing a factorization have to be
processed only once. For a list of poles, if all the factorizations cannot be held in
memory, refactorization is required in every iteration. For filters that do not involve
linear system solves, such as the polynomial Chebyshev filter from Section 2.1, this
level of parallelization has to be omitted.

Level 3: Intervals Since we deal exclusively with Hermitian matrices and definite
pairs, eigenvalues are real and the spectral region of interest is an interval. Subdivid-
ing the complex plane in case of non-Hermitian matrices, however, can be achieved
with the help of custom contours for Cauchy filters [PK15; Pol20]. Using other
filters that are not based on an integration contour is possible, but involves overlap
between the intervals. In Section 5.3.9 we explore a method for handling overlap
and duplicates that could be extended to the complex plane, but that will be a task
for the future and not be pursued further in this work.

DX

3.1 The BEAST framework 99

Figure 3.4: Exemplary interval subdivision; not based on actual density. The interval from
Figure 3.3 is highlighted.

The first step for a multi-interval setup is the subdivision of the target interval.
The choice of the intervals themselves is not trivial; all process groups should be
assigned approximately the same basis size. Therefore, for the sake of load balancing,
any information about the spectrum may be used to decide on the subdivisions.
Estimating the density of the spectrum using the kernel polynomial method (KPM)
[Wei+06] is a good method for a low resolution spectral overview in case B =
I (see also [LSY16] and [XLS18]). Figure 3.4 shows a possible inhomogeneous
subdivision based on spectral density. The KPM interprets the spectrum of a matrix
as superposition of Dirac delta impulses. The resulting function is approximated
by a polynomial, not unlike the filter approximation from Section 2.1. Since, with
the spectral function being a sequence of delta impulses on the eigenvalues, the
computation of the inner products for the polynomial coefficients is equivalent to
computing the trace of the matrix polynomial, those terms of the coefficients can be
approximated by stochastic trace estimations of the matrix polynomial. Once the
approximate coefficients are obtained, an inverse discrete cosine transform (IDCT)
is employed to find a representation of the approximated spectral function. Since
the resolution typically is low and the detail is blurred over the real axis, single
eigenvalues are not separated, and we instead obtain the estimated spectral density,
or density of states (DOS). For generalized eigenproblems, the solution of linear
systems is required [FTS10; DPS16] to obtain similar information. Overlap also plays
an important role (see Section 5.3.9). A flexible mode for asynchronous scheduling
of many intervals can alleviate the impact of uneven workload distribution.
The interval parallelization layer subdivides the processes into groups, which we

will call packs. There are no constraints for the number of processes per pack,
contrary to prides and factions. BEAST implements two strategies for handling
multiple intervals. For the static subdivision approach, the number of intervals and
the number of process groups is identical. Each group handles exactly one interval.
The dynamic approach manages many intervals in a manager-worker style mechanism.
One process, the tamer , coordinates a number of packs, distributes intervals and
the required information, keeps track of the overall progress, and decides how to
handle the results, based on the information returned by the packs. This also allows
for dynamic reaction to unforeseeable events, such as subspace overfill due to large
clusters, empty intervals, or other conditions which require additional measures. The
subdivision of an interval, in case the maximum number of vectors was surpassed
without reaching the number required for the subspace, for example, can be met with
subdivision of the original interval, such that the spectrum is split and the respective

DY

100 3 BEAST

searchspaces may now be large enough to compute both intervals. This process can
be repeated for the subintervals in case the number of vectors is still too small. In
the worst case, this method can at least isolate the problematic cluster and report
the respective spectral region as incomputable with the given resources. For this, a
certain maximum number of subdivisions serves as terminator. In case the number
of vectors can be expanded, because the overall available memory is not yet depleted,
it is, of course, more efficient to perform this expansion on-the-fly, see Section 4.2.1.

3.1.2.1 Process group hierarchy

Since it is not required to run the core algorithm on multiple groups redundantly, the
different process groups are organized in a manager-worker relationship where the
first pride of the first faction runs the core algorithm, provides data and information
to the subgroups, and gathers the results. A second level manager-worker scheme
is given by the dynamic interval assignment described above. Every group type can
be of size one, effectively disabling the respective parallelization layer. Figure 3.5
illustrates the process group hierarchy.

Faction Pack

Prides

C
oa

lit
io

ns

Process

Alpha Circus

Tamer

Figure 3.5: Process group hierarchy. Note that the packs do not necessarily need to be of
the same size. If the total number of processes does not meet the constraints
for factions and prides, some processes might be left unused. For filters without
poles, the faction-layer is omitted; packs and factions are identical in this case.
For static interval parallelism, there also is no tamer process.

Distributing and gathering information to and from the different process groups
and subgroups involves fan-out and fan-in style communication patterns, where
information is initially available on the first process or process group (we will call them
alpha processes or alpha groups), which then relay the information to their group
members of alpha processes of the subgroups, possibly subdividing the data in the
process. Gathering information reverses this approach. For parallelization level three
(intervals), there is no additional function to alpha processes or alpha process groups
other than implementing multi-stage broadcasts, scatter and gather operations, or
reduction operations. Here, only alpha processes of the packs directly communicate
with the tamer. The tamer does not have to take care of providing the information

EA

3.1 The BEAST framework 101

to the whole pack, this is handled by the alpha processes in the background in a
separate step. This strict separation of groups and duties eases implementation
and should not have detrimental effects on performance. In case of the levels two
and one, however, the alpha pride of the alpha faction is the process group running
the core algorithm and therefore source for the distribution of right-hand sides
and target for gathering the subspace basis vectors. This communication occurs
inside the coalitions and between related coalitions of different factions. We can
think about prides, coalitions, and factions as three-dimensional process grid, where
different stages of the communication are performed along two of the three dimensions
(coalition and faction; communication along the pride dimension is restricted to basic
operations, i.e., level zero).
The data distribution for factions and prides is performed in unison. Reversing

the order of operations, from first broadcasting data from the alpha pride of the
alpha faction (which is running the core algorithm) to the alpha prides of all other
factions followed by a scatter operation where every alpha pride provides data to
other prides of the faction, to first scattering data withing the alpha faction followed
by a broadcast from every process of the alpha faction to the associated processes
in all other factions. This allows to bypass the storing of intermediate vector block
with full number of columns on the alpha prides. Similarly, when accumulating the
results, performing the reduction across all factions to the alpha faction first makes
an intermediate full-size vector block unnecessary. An additional communication
mode using MPI inter-communicators can drive the workers for exclusive projector
application while the alpha pride running the core algorithm remains separated and
does not participate in projector computations such that no additional memory is
consumed. This can be of use if memory is not sufficient otherwise.
Inter-pack communication uses special implementations of send and receive al-

gorithms for communication between (disjoint or overlapping) process groups of
different size. This pattern is covered via an MPI all-to-all communication, either
using intra- or inter-communicators, but many communication pairs would get as-
signed a communication volume of zero. In most cases, one process in one side is
paired with at most two processes on the other side. The implementations handle
subdivision and reassignment of local data blocks and non-blocking communication
steps to prevent serialization due to message dependency chains.

3.1.2.2 Interval communication protocol

BEAST uses a fire-and-forget messaging system, i.e., the very small messages are
sent in non-blocking fashion and the request handle is stored in a data structure
that is periodically checked for completed messages. This holds for all types of flow
control messages. Figure 3.6 gives a simplified overview over the basic program flow.
The tamer manages a queue of unprocessed intervals and a dynamically linked data
structure for the chain of intervals with proper ordering. If unprocessed intervals
are available, the interval information is sent (pitched) to the pack alphas, which
distribute it to the rest of the pack (the pack following). The tamer can feed the

EB

102 3 BEAST

M
an

ag
em

en
t

lo
op

Pitch loop

In
te

rv
al

lo
op

ACK loop

Tamer Pack alpha Pack following

Send interval Receive interval
Interval pitch

Share interval

Compute interval

Gather statistics

Report
statistics

Receive
statistics

ACK request

Decide fate

Send ACK Receive ACK
ACK

Share ACK

Store or
delete

Figure 3.6: Simplified dynamic interval parallelism protocol. ACK (acknowledge) messages
consult the tamer to decide how to proceed with a given interval’s result. Not
shown is the termination protocol, which also handles potentially remaining
ACKs. All messages are sent in non-blocking fashion, while the main loops
continue, such that there are no additional waiting times and the relation
between result and ACK on tamer and pack has to be encoded in the messages.

packs in this way to maintain a given interval fill level; typically one interval at a
time is enough. Information on the completed intervals are sent back to the tamer
since comprehensive knowledge of the specifics of all intervals and their relation is
held solely by the tamer. Once the statistics of a completed interval are received by
the tamer, it decides how to handle the results. Possible options are store, forget
(delete), split, retry, and expand to react to several conditions, some of which have
been mentioned above. The verdict is transmitted to the pack which implements
the order. The tamer’s management loop runs at high frequency.

Since the pack alphas only receive one interval, the MPI message buffer has to hold
the (potentially) pending incoming interval messages. Once the interval computation

EC

3.1 The BEAST framework 103

finished and after possible additional information is gathered from the pack following,
the results are temporarily stored and the tamer is consulted for a decision on how
to proceed. However, only the request is issued in a non-blocking way and the
system continues with the next interval. Messages received from the tamer that
hold information on what to do with a set of results (ACK) are checked periodically.
During such a check, as many ACKs as possible are processed and the required
action is transmitted to the rest of the pack.

In all cases, a pointer to the respective element of a data structure is passed along
to prevent having to search data structures for every message received. Transmitting
pointers in a shared-memory context usually raises eyebrows and several alarms in
the programmer’s mind. Understandably so, given that pointers only have meaning
on the specific process that allocated the memory they are pointing to and are
completely meaningless on every other process. That is, until the communication
protocol ensures that they are sent unmodified, e.g., as a sequence of bytes, back
to the process they originated from to identify an object without having to traverse
an additional data structure or use a look-up table and are never dereferenced
anywhere else. This, of course, requires that the maximum length of addresses on
all participating processes must be known, which can easily be determined in an
initial communication step, before the associated datatype is created. Relying on
transferred pointers in particular means that a result stored on the pack is temporarily
forgotten until the respective ACK message reminds the pack of where to find the
result. In the context of fault tolerance, this behavior is only semi-safe, given that a
pointer can potentially be lost at any time, even though the error might be recoverable.
A local list of intervals acts as safety net, which, under normal operation conditions,
never has to be traversed to find an interval, other than at the very end and, of
course, in case of an error condition. A result is removed from the list of pending
results and added to the list of finished intervals when an ACK is received from the
tamer and the order is to store the result. The results are currently permanently
stored on the alpha pride of each pack.

3.1.3 Orthogonalization layer
The concurrent computation of intervals can be performed completely asynchronous,
but it is a well-known fact for independently computed eigenvectors to suffer from
bad orthogonality, depending on the gap between eigenvalues of different intervals
and other factors (see [GKL11; Krä+13; Krä14] and Section 4.5).

An orthogonalization phase (currently only for static interval parallelism) can be
activated on the faction and pride layer to ensure orthogonality of eigenvectors. The
topic is outlined in much more detail in Chapter 5.

ED

104 3 BEAST

3.2 Meet the BEAST – short feature overview
Some features included in BEAST will be mentioned in later sections or at least have
some relation to the topic. Others will play no major role for the remainder of this
work. We will shortly outline both.

3.2.1 Related features
Control over and optimization of the number of iterated basis vectors is ensured
by multiple components. On the one hand, the number of iterated vectors can be
reduced by locking single, already converged vectors in later iterations, accompanied
by continuous orthogonalization [Krä14], see also Section 4.2.2.2. On the other
hand, an SVD-based analysis of the Rayleigh quotients provides an association
of the iterated eigenpairs with filter values and, with this, an estimation of the
number of eigenpairs actually contained in the target interval. This allows for
a careful assessment of the number of vectors required against faster convergence
speeds [GKL12; Gal+14; Krä14], see also Section 4.2.2.4 and Section 4.2.2.5. In
particular the latter component is indispensable from a numerical point of view to
prevent rank deficient vectors sets for use in the Rayleigh-Ritz procedure [GKL11;
Krä+13; Krä14], see also Section 4.2.2.1 and Section 4.2.2.3. Increasing the number
of vectors does not require tamer interaction (or a restart in single interval contexts).
In case the number of iterated vectors is identified as being to small, their number is
allowed to grow towards a user-specified maximum by appending additional vectors.

For rational filters on integration basis, an iterative implementation of the Sakurai-
Sugiura method adds the possibility of reducing the number of right-hand sides during
projection in favor of using additional moments [Hub+; Fut+17; Fut+18; Fut+19;
GHL18a]. The number of linear systems remains unchanged. See also Section 2.5
and Section 4.2.3.
Typically, operations performed in single precision are significantly faster than

operations performed in double precision; for an algorithm which can be partially
executed with lesser accuracy without impact on the result, a corresponding per-
formance increase can be expected. In the case of subspace iteration, as used in
BEAST, this applies to the early iterations. Therefore, the option to start the algo-
rithm in single precision and automatically switch to double precision as soon as it
is necessary is included in BEAST. Single precision execution may be possible only
for few iterations but an improvement of the time-to-solution without impact on the
final result is generally possible [GHL18d; Alv+19; Wel+20], see also Section 4.3.1.1
and additional results in [GHL18f; GHL18c; GHL18e; GHL18a].

3.2.2 Linear solvers
The choice of a suitable linear solver has always been a difficult one (see also Sec-
tion 4.2.7). The linear systems arising in the context of rational filters for subspace
iteration have proven to be of utmost difficulty, depending to some degree on the

EE

3.2 Meet the BEAST – short feature overview 105

distance to the eigenvalues of the eigenproblem. This difficulty is restricted to it-
erative solvers, which are sensitive to these conditions [GKL12; Krä14], see also
Section 4.2.7. Direct solvers have fewer issues in regard to ill-conditioning, but
require more memory and become increasingly infeasible with growing system size.

An iterative algorithm, that is robust also for singular systems, is the CARP-CG
algorithm [GG10], the conjugate gradient method [HS52] with blocked Kaczmarz row
projections and averaging (CARP) [GG05] as preconditioner. An implementation is
provided by PHIST and used as a solver option in BEAST. Results achieved with
this solver can be found in [Gal+15].

3.2.2.1 Callback interface

To allow simple integration of different linear system solvers, BEAST contains a
callback interface consisting of functions that are invoked when entering or leaving
key stages of the program flow, e.g., setup and termination phase, when switching
to a new shift/pole, when changing floating-point precision, or when the actual
linear system solve is required. The interface will be extended further in the future.
Solvers for which an implementation of the interface is included currently are the
STRUctured Matrices PACKage (STRUMPACK) [Ghy+18] and MUMPS [Agu+20].
STRUMPACK matches the data distribution scheme of BEAST very well, while
MUMPS requires gathering the right-hand side vectors on one process.

3.2.2.2 A (hybrid) parallel direct solver for banded linear systems

Assuming that, for achieving reasonable convergence rates, an incomplete LU de-
composition preconditioner requires a non-negligible amount of fill-in, for a matrix
with narrow banded structure filling its envelope almost completely, a direct banded
solver becomes a viable alternative. Such a solver would require not much more
memory in the scenario described above and a blocked parallelization for enabling
level-3 BLAS operations allows for reasonable node-level performance. Employing
a multi-threaded BLAS implementation makes this approach hybrid parallel. A
suitable block-parallel algorithm, whose data distribution pattern matches the one
used in BEAST well, is described in [PS06] and based on [SK78; LS84]. BEAST
includes a rudimentary implementation of the basic algorithm as a fall-back solver,
should other solvers fail.
Assuming a set of p processes, decomposing a banded system matrix M into p

block rows of not necessarily equal size to solve a linear system MX = R yields the
form shown in Figure 3.7, left. Let the bandwidth of the system matrix and the
width of the block columns Ai and Cj, i = 2, . . . , p, j = 1, . . . , p − 1, be nb. Let
further the matrix D be the block-diagonal matrix, consisting of the square blocks
Bk, k = 1, . . . , p. The inverse of D, D−1, is the block diagonal matrix consisting
of the square blocks B−1

k , k = 1, . . . , p. In the modified system D−1MX = D−1R
(Figure 3.7, right), it is Ui = B−1

i Ai, Vj = B−1
j Cj, and Gk = B−1

k Rk. Each block row
couples only with variables of itself or the nb closest rows of adjacent block rows, i.e.,

EF

106 3 BEAST

B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

A5 B5

X1

X2

X3

X4

X5

=

R1

R2

R3

R4

R5

I V1

U2 I V2

U3 I V3

U4 I V4

U5 I

X1

X2

X3

X4

X5

=

G1

G2

G3

G4

G5

Figure 3.7: Block-wise transformation of banded matrix.

the last nb rows of the block row above and the first nb rows of the block rows below
(if they exist). Adopting the notation from [PS06], let us denote the first and last
nb rows of Xk as

X
(t)
k and X

(b)
k ,

respectively. Analogously, define

G
(t)
k , G

(b)
k , V

(t)
k , V

(b)
k , U

(t)
k , and U (b)

k

as the top or bottom nb rows of the respective block. Additionally,

U
(t)
1 = U

(b)
1 = V (t)

p = V (b)
p = 0.

Among the rows of block row k, the first and last nb rows couple only with

X
(b)
k−1, X

(t)
k , X

(b)
k , and X

(t)
k+1.

This allows for computing the respective components of X from just these equations.
More precisely, a linear system of reduced size may be formulated (by renumbering
the unknowns) as pointed out in Figure 3.8, where the block rows now have the form

I V1

U2 I V2

U3 I V3

U4 I V4

U5 I

X1

X2

X3

X4

X5

=

G1

G2

G3

G4

G5

=

Figure 3.8: Reduction to smaller system.

[
U

(t)
k I V

(t)
k

U
(b)
k I V

(b)
k

]
,

[
X

(t)
k

X
(b)
k

]
, and

[
G

(t)
k

G
(b)
k

]

EG

3.2 Meet the BEAST – short feature overview 107

for matrix, result and right-hand side, respectively. The resulting system of linear
equations is block tridiagonal and again has p block rows. Contrary to [PS06], we
dot not remove the rows corresponding to X(t)

1 and X(b)
p from the reduced system as

to not having to redistribute data for a subsequent parallel solution of the reduced
linear system, although they can be computed from X

(t)
2 respectively X(b)

p−1 since

X1 = G1 − V1X
(t)
2 and Xp = Gp − UpX(b)

p−1.

The reduced system may be solved in any way, direct or iterative (if applicable). If
nb is reasonably small, a blocked version of recursive doubling, see e.g. [HJ88], may
be used, which is currently the case for the implementation found in BEAST.
Once the solutions

X
(t)
k and X

(b)
k ,

are found, the remaining parts of X can be computed via

X
(c)
k = G

(c)
k − U (c)

k X
(b)
k−1 − V (c)

k X
(t)
k−1

since
U

(c)
k X

(b)
k−1 +X

(c)
k + V

(c)
k X

(t)
k−1 = G

(c)
k ,

where
U

(c)
k , V

(c)
k , X

(c)
k and G(c)

k

are the remaining center blocks of Uk, Vk, Xk, and Gk.
The basic algorithm is rather old and many improvements have been made over

time, see for example [PS06; SPS18]. Implementing more efficient versions or includ-
ing existing implementations via the callback interface from Section 3.2.2.1 will be
a task for the future. We end the discussion of the band solver with a small scaling
test, Figure 3.9. The strong scaling limit is reached at 64 processes already; it is
likely that we also see the limits of the recursive doubling solver for the reduced
system here. Performance does not change linearly with the number of right-hand
sides and parallelization over blocks of vectors is not as efficient as parallelization
over rational poles or intervals. The latter two are the proper method to improve
scaling when the limit of the solver in use is reached.

3.2.3 Unrelated features
Optimization potential of the filters themselves is exploited by filter dependent
heuristics and extensions. For filters based on polynomials or integration, adaptive
control of the polynomial degree or integration order enables optimization of the
time-to-solution by choosing suitable parameters [GKL18]; (B. Lang, personal com-
munication). Additionally, the dampening properties of polynomial filters can be
significantly improved by a retroactive heuristic optimization of the coefficients, such
that the same speed of convergence can be achieved with lower polynomial degree
[Gal+17]; (B. Lang, personal communication).

EH

108 3 BEAST

4 8 16 32 64
0

20

40

60

80

Processes

Se
co

nd
s

topi-1M, strong

4 8 16 32 64
0

5

10

15

20

Processes

Se
co

nd
s

graph-1M, strong

4 8 16 32 64
50

55

60

65

70

Processes

Se
co

nd
s

Graphene series, weak

Figure 3.9: Scaling behavior of the banded solver. Strong scaling for the matrices topi-1M
(bandwidth 524, 300 right-hand sides, complex values) and graph-1M (bandwidth
247, 105 right-hand sides, real values). For the weak scaling, the matrix size
was doubled each step, starting at 1 048 576, up to 16 777 216, such that rows
per process remain equal. Number of right-hand sides (256) and bandwidth
(512) were kept constant. The timings are averaged over 8 different systems for
graphene-type matrices and 16 systems for the topological insulator topi-1M.
The tests were performed on the Emmy HPC cluster at Friedrich-Alexander-
Universität Erlangen-Nürnberg.

On machines with many components, an execution halting hardware fault or
faulty computations due to hardware defects have to be expected. To counteract
the severity of these cases, options for detecting incorrect results and to save the
progress of the computations are integrated. An extension of the right-hand sides
during application of the approximate projector by linear combinations of regular
basis vectors allows to check results after or during computation of the projection
(Suggested, B. Lang, personal communication).

The most time-consuming part of the algorithm is the application of an approxi-
mate projector P to a set of right-hand sides Y ,

U = P (A,B)Y.

Let L(Y) be any linear combination of the columns of Y and choose Ỹ = [Y L(Y)].
Then

Ũ = P (A,B)Ỹ = P (A,B)[Y L(Y)] = [P (A,B)Y︸ ︷︷ ︸
=U

L(P (A,B)Y)︸ ︷︷ ︸
=L(U)

].

L(U) can act as checksum for detecting errors in the computation of the projection
if L(Y) is appended as additional column to Y . BEAST supports appending and
checking checksum columns at various stages throughout the layers of the system.

With every checksum column being a linear combination of columns of Y , in vary
rare cases errors may cancel each other out in the representation of the checksum,
leading to undetected corruption of the results. To further reduce the probability of
such cancellations, more than one column may be appended. If each column is pro-
duced by a different linear combination, for errors to cancel out in all representations
is far less likely.

EI

3.2 Meet the BEAST – short feature overview 109

The process subdivision scheme from Section 3.1.2 results in a total of four levels
of checksum creation and verification; an additional level is given by the non-parallel
blocking of right-hand sides [Pie+16]. With level 0 representing no checksum verifi-
cation at all, the five levels are:

Level 0 No checksums.

Level 1 Checksum columns are appended once per interval, i.e., checksums are gen-
erated and verified before and after the complete application of the approximate
projector in each iteration of the eigensolver.

Level 2 Checksum columns are appended by every pride to their portion of right-
hand sides.

Level 3 Checksum columns are appended by the factions to their copy of the right-
hand sides, i.e., for every pole of a rational filter. This is a verify-only step,
since the right-hand sides for all groups are identical and now new vectors can
be added during accumulation.

Level 4 Applying the approximate projector to the columns of Y can be performed
(sequentially) in a series of subblock columns to reduce the memory consump-
tion for certain linear solvers or to optimize data access patterns. Checksum
columns can be added for each such block.

Level 5 For polynomial filters, fine-grained checksum verification can be performed
every k-th degree of the approximation, i.e., every k-th multiplication with the
system matrix, to reduce recomputation overhead in case or errors. Appending
additional checksum columns is not possible. High-frequency verification, of
course, increases the overhead as well.

The ordering of levels two and three, pole and right-hand side parallelism, is encour-
aged by the necessity to transform and transfer results of potential factorizations
produced by linear system solvers to smaller process subsets, were they reversed.
The distribution of these kinds of data may be complicated, solver-specific, or even
completely opaque. The layers are implemented in this way, even if the logical
hierarchy from Section 3.1.2 reverses these two layers.

While the checksums are generally verified on the same layer they were generated,
a given checksum column may be verified at any layer. That in particular means that
level five can be combined with any higher level without adding additional columns,
while a combination of higher levels, apart from being redundant, produce multiple
checksum columns. Also note that even lower levels of checksum monitoring are not
possible since all intervals apply different projectors.
This checksum method detects all kinds of computation errors, however, small

errors in early iterations do not seem to impact convergence. In general, one-time
errors are often handled best by simply proceeding with the computations, ignoring
the error.

EJ

110 3 BEAST

Additionally, the plausibility of the results can be inexpensively ensured by analyz-
ing the aforementioned SVD-based filter estimation (B. Lang, personal communica-
tion), see also Section 4.2.2.4. The appearance of values that are larger than expected
based on the known filtering function indicate an error either during projection or
computation of the SVD.
With the inclusion of CRAFT, a library for application-level checkpoint/restart

and automatic fault tolerance, [Sha+19], a system to save and restore computation
progress in and from persistent memory is provided. With this, the program can be
resumed after an unforeseeable halt of the execution. This mechanism is currently
only implemented on the single interval level, but will be extended to multi-interval
scenarios.

3.2.4 Layer structure
With its several features, stages, and hierarchies, BEAST is structured in nested
layers, where each layer handles a certain mechanism and hands control down to
deeper layers. The outermost layer is the type-aware user interface, where matrices
are explicitly passed as single or double precision, real or complex datatypes. The next
layer is the type-oblivious pack subdivision and interval parallelization layer, where
data is passed along with no need for explicit knowledge about the datatypes, followed
by the faction and pride subdivision layer that separates worker process groups. The
interval subdivision layer is also responsible for the final orthogonalization phase.
A datatype layer reintroduces datatypes and manages changes in floating-point
precision, e.g., from single to double precision, mid-iteration. Due to similarities
in requirements, loading checkpoints and resuming a previously aborted run of the
eigensolver is also part of this layer. The core algorithm is not quite the innermost
layer, despite its name. It includes the management of projection parameters and
the number of vectors (including communicating this information to other processes),
the Rayleigh-Ritz process, and writing of checkpoints, among other elements. After
the algorithmic layer follow layers for the most important and most expensive part
of the algorithm, the application of the approximate projector. These layers provide
orthogonalization over prides, then over factions (see the rationale above), finally
over blocks of right-hand sides (non-parallel for reducing memory consumption and
improvement of data access patterns, as has been mentioned above). In case certain
layers are disabled or not available, they are skipped, passing control to lower layers
immediately.

3.3 Feeding the BEAST – Applications
While BEAST is intended to be a general purpose solver, not tailored to a certain
application specific problem class, most results so far have been gathered from the
eigenproblems produced by graphene modeling and the simulation of topological
insulators. Results for problems from modeling of graphene nanoribbons were pre-

EK

3.3 Feeding the BEAST – Applications 111

sented in [Gal+14; Wel+20]. For problems stemming from topological insulators
as well as the scaling behavior of the polynomial filter, for which highly specialized
kernel routines were implemented in GHOST and PHIST, see [Wel+20] as well as
[GHL18e; GHL18b].

EL

Chapter 4
Taming the BEAST – Quality of results

For the computational solution of eigenvalue problems, two important metrics for
the success of such an endeavor exist. Determining the error of the computed

eigenpairs requires the knowledge of the exact solutions and is, in general, unobtain-
able. Estimations and upper bounds for the error have been given in Section 1.6.3,
based on the residual of the computed eigenpairs, a replacement for the error met-
ric that can be computed from the approximate results found by the eigensolver
and constitutes a metric describing how well this approximate solution solves the
eigenequation. The second metric may be less important for some applications, but
can be crucial for others. As has been established before, Hermitian matrices have
orthogonal eigenvectors and eigenproblems of generalized form for definite matrix
pairs produce B-orthogonal eigenvectors. Mathematically, two vectors are either
orthogonal or not. Computationally, two vectors may be more or less close to be-
ing orthogonal, measured by the angle between them. This orthogonality of the
computed set of eigenvectors can be determined from the computed approximate
solution. Applications may rely on eigenvectors being orthogonal or being close
enough to orthogonality, which is why finding the orthogonality of a computed set of
eigenvectors is important and ultimately ensuring a certain degree of orthogonality
is worthwhile.

This chapter will shed light on the convergence behavior of subspace iteration using
the introduced approximate spectral projectors, in particular the achievable residual
and orthogonality that can be expected from a subspace iteration based iterative
eigensolver and explore ways to guarantee a predefined degree of orthogonality. This
will be accomplished by several numerical experiments under controlled conditions.
To this end, suitable matrix pencils will be generated from a predefined spectrum
and with known eigenvectors. The filtering operator can be built explicitly to bypass
possible computational errors during conventional application and is then fed to a
bare-bones spectral filtering implementation. A collection of real-world matrices
from different fields serves as example to confirm results for eigenproblems from
actual applications.

EN

114 4 Taming the BEAST – Quality of results

Eigenprose We casually talk about eigenpairs, eigenvalues, eigenvectors, and eigen-
directions as connected entities, often relating properties of one to the others. So
far, for the reader to make this connection has been tacitly assumed.
To an eigenvalue is connected, in our case, a unique eigendirection, represented

by an infinite number of possible positive-length eigenvectors which differ only in
scaling and/or sign in case the eigenvalue is distinct. In case of an eigenvalue with
multiplicity larger than one, an appropriate basis for the eigenspace can be found,
and we may relate one basis direction to each of those identical eigenvalues. An
eigenvalue and one of its associated eigenvectors form an eigenpair. An eigenvalue
resides at a spatial location in the complex plane, or along the real axis in the
case of Hermitian matrix pencils. By relation, we may speak about the position
of eigendirections or eigenvectors, adjacent eigenpairs or eigendirections, and being
located inside the target interval or outside of it, implicitly always referring to the
property of the associated eigenvalue. Similarly, we may refer to dampening of
eigenvalues, eigenpairs, or eigenvectors, while any dampening applies chiefly to the
concept of eigendirections and secondarily to associated eigenvectors at most.

Additionally, new terminology shall be introduced here to ease the discussion that
follows.

Searchspace The space whose basis is computed during the Rayleigh-Ritz proce-
dure, which may also be chosen smaller or larger than the targeted amount of
eigenpairs, will be called the searchspace. Synonymously, we might refer to the
basis representing the searchspace itself as a searchspace. The set of vectors
that represents the searchspace during subspace iteration and is used for com-
puting the Rayleigh quotients will be called searchspace vectors or searchspace
set. The size of the searchspace is the number of vectors in the searchspace set
and the maximum dimension of the searchspace.

Slot For the discussion of the convergence behavior in this chapter, we require a
more abstract notion of how the searchspace basis relates to the eigenvectors
that are to be approximated. In particular, this terminology is intended to
separate the eigendirections that the iterative method will approximate from
those it will not. The concept thus is somewhat projective and relies on the
assumed invariability of the convergence process in terms of which directions
will be approximated by the algorithm. A searchspace set (and the corre-
sponding searchspace) of dimension d will be able to approximate at most d
eigendirections. Following the rationale from Chapter 1, this approximation of
eigenvectors is achieved by rotation of the searchspace to align with the space
spanned by some eigenvectors of the matrix pencil. We will refer to this concept
of possible alignment with an eigendirection as slot of the searchspace, often—
but not necessarily—corresponding to a vector of the searchspace set. However,
the mere possibility for the searchspace to accommodate d eigendirections in
this manner does not yet guarantee that it will align with d eigendirections over
the course of the algorithm. Since for each dimension, the searchspace allows
for one eigendirection to be (approximately) contained in it or there being no

EO

115

clear relation to an eigendirection at all, we refer to a slot of the searchspace
as being occupied or unoccupied.

Occupation The driving concept behind the rotations of the searchspace is the
amplification of the components of the searchspace basis in the directions of
some eigenvectors or, from a different point of view, a dampening of all other
directions. This modifies the searchspace such that it gradually aligns with
the space spanned by the least dampened directions. If the searchspace clearly
rotates towards a certain eigendirection such that it will be approximately
contained in the searchspace after a number of iterations, we say that the
eigendirection (or the associated eigenvalue or eigenvectors) occupies a slot of
the searchspace. We may thus also think about occupation as how close an
eigendirection is to being contained in the searchspace. What it means for a
slot to be unoccupied is not inherently clear yet, but we will see that sometimes
certain Ritz values will show no sign of convergence. Furthermore, this binary
notion of slot occupation is blurred when dealing with multiple eigenvalues,
and we will have to refine this definition at a later point.

Decay A filtering function that approaches zero in the stopband towards the ends
of the spectral range of the filtered spectrum (and possibly beyond) will be
dubbed decaying, as opposed to filters that equioscillate over the stopband.
Note that the filter’s value may again grow outside the spectral range, as is
the case with filters based on Chebyshev polynomials. Therefore, Cauchy-,
Polynomial-, Butterworth-, and Chebyshev-Type-I filters are to be considered
decaying, while Zolotarev-, Elliptic-, and Chebyshev-Type-II filters are not
decaying. The dampening properties of decaying filters improve with increased
distance to the target interval.

Cluster Groups of eigenvalues are typically considered clustered if there is little or
no difference in value. This often reflects the multiplicity of an eigenvalue,
but numerically the Ritz values may be segregated, either by floating-point
inaccuracies for real multiplicities, or actual (albeit very small) distance. As to
what distance should be allowed for eigenvalues in order to still be considered
clustered is up to the specific situation and information that is to be gained
from it. In our case, we do not need a sharp distinction and a cluster is just
a group of eigenvalues more densely packed than the remaining eigenvalues
inside a spectral interval of interest.

Saturation While this term may be used for a plethora of different conditions, we
will use it here to describe a Ritz pair that has reached its minimum possible
residual. In this case, the residual stagnates, possibly varying slightly within a
certain small range without further improving or deteriorating. The maximum
residual in the range of these variations is called saturation residual.

Residual drop rate Sometimes also residual drop or just drop. The change in resid-
ual before and after the application of the projection operator and application
of the Rayleigh Ritz procedure, i.e., the change in residual from one iteration
of a subspace iteration eigensolver to the next, assuming that both Ritz values
can be associated with the same eigenvalue.

EP

116 4 Taming the BEAST – Quality of results

Dominance This term has been used before and its semantics are intuitively clear.
Globally, dominance can be understood simply as the value of the filter function
at the position of the associated eigenvalue. Dominance of one direction over
other directions describes the ratio of the values of the filter at the respective
positions. It therefore describes by how much a direction is dampened during
the application of the filter, possibly in relation to other directions. The most
dominant directions in a global sense will occupy the searchspace and converge
the quickest.

Eigencount The number of eigenvalues contained in a given spectral region, e.g.,
the target interval of a subspace iteration eigensolver for Hermitian matrix
pencils.

4.1 Experiments
The analysis in this chapter is largely experiment-driven. Many factors may play
a role in the speed of convergence and the final quality of the results that can
be obtained from a subspace iteration algorithm. A non-exhaustive list includes
spectral distribution of the matrix pencil, initial guess for the eigenvectors, filtering
function, or numerical errors emerging in the different steps of the algorithm and
in particular during application of the projection operator, which typically involves
either many matrix-vector multiplications or several linear system solves or even both.
A framework to explore the properties of subspace iteration would require bypassing
the most important aspects on this list to highlight the influence of others. An ideal
filtering function, e.g., requires the knowledge of the eigenvalues of the matrix pencil
and its application requires the eigenvectors. Similarly, circumventing linear solves
or many matrix multiplications in the application of an approximate filter requires
the explicit construction of the projection operator matrix. The filtering functions
available from Chapter 2 have different properties that we may easily exploit using
this method. To enforce certain spectral properties, the spectrum of the matrix
pencil would have to be predefined. To this end, many matrix pencils used in the
experiments have to be generated in a way that mimics real-world problems.

4.1.1 Synthesis of non-trivial sparse definite matrix pencils with
predefined spectrum

For the following experiments, we require matrices with well defined spectral proper-
ties to dissect the correlations between them and the results’ quality criteria. For this
purpose, we aim to generate sparse matrices, real or complex, from a given spectrum
Λ where A and B are required to be symmetric or Hermitian and B additionally
is required to be positive definite, all while keeping the spectral deviation from the
target spectrum as small as possible. For the real case, this is easily accomplished
via diagonal matrices, such that

Ad = BdΛ

EQ

4.1 Experiments 117

holds. Choosing Bd randomly (and real) and shifting its entries appropriately yields
a diagonal matrix Ad, such that the matrix pencil (Ad, Bd) has the desired properties.
Diagonal matrices are computationally beneficial to a degree that they do not reflect
the behavior of real-world examples in all cases. This in particular refers to the
numerical errors introduced during computations and their impact on the residual.
As we will see in Experiment 4.17, the sparsity of a matrix has an effect on the
residual that can be achieved, even if the impact remains rather small. The number
of floating-point operations also seems to affect the variations in residual among the
converged Ritz values. This can make the evaluation of residual bounds difficult, and
we may be tempted to believe that a smaller residual can be achieved. While we aim
to bypass certain sources of errors, in particular those introduced by the application
of different types of filter, the inherent consequences of numerical computation must
not be ignored if we are interested in practical results. Rarely will a real-world
matrix be diagonal. Furthermore, experiments considering the sparsity of a matrix
are not possible at all, if all matrices are diagonal only. We therefore choose a
sparsity of 2 ∼ 3%, values already quite large for a matrix that is considered sparse.
Additionally, generating complex valued problems is inherently impossible using this
approach. We therefore also require our matrices to have a non-trivial structure. A
similarity transformation (see Section 1.2.2), in particular an orthonormal matrix Q,
retains the spectrum of the matrix pencil when applied to both matrices,

QAdQ
H︸ ︷︷ ︸

=: A
= QBdΛQH = QBdQ

H︸ ︷︷ ︸
=: B

QΛQH .

Remember that QHQ = I and A as well as B are Hermitian since Ad and Bd are
diagonal. Subspace plane rotation matrices as used for Jacobi (or Givens) rotations,
given by a matrix

Qij =

1 · · · 0 · · · 0 · · · 0
...
0 · · · c · · · s · · · 0
...
0 · · · −s · · · c · · · 0
...
0 · · · 0 · · · 0 · · · 1

with off-diagonal entries only in rows and columns i and j 6= i are orthogonal since(

c
−s

)H (
s
c

)
= 0

if c is real and orthonormal if ∥∥∥∥∥
(
c
s

)∥∥∥∥∥
2

= 1.

While they typically are used with carefully chosen values for c and s to eliminate
off-diagonal non-zeros, we will use them here to introduce off-diagonal non-zeros,

ER

118 4 Taming the BEAST – Quality of results

allowing for a mostly random choice of c and s. For Hermitian matrices we choose
s non-real. Successive application of these transformations with random values for
i and j generates a random symmetric sparse matrix structure. The values of j in
relation to i may be chosen such that off-diagonal entries are, on average, kept closer
to the main diagonal. Since reordering matrices are orthonormal, a band reduction
algorithm may be applied. MATLAB [MLB], e.g., supplies the reverse Cuthill-McKee
reordering or variations of the approximate minimum degree reordering. Using just
the approach as described here, the structure of A and B remains identical, but
this is of no concern for the following experiments. In case a structural difference is
desired, additional rotations, deliberately chosen to introduce zeros in either A or
B (see Section 5.2.2), will typically not also introduce zeros in the respective other
matrix. For example, a few rotations to introduce zeros in B will not add zeros in
A but instead introduce additional non-zeros.

The eigenvectors X of the generated matrix pencil are given in sparse form by the
product of the sequence of applied similarity transformations and by construction
are both I-orthonormal and B-orthogonal,1 but not B-normal. B-orthonormality
can be established by scaling with respect to B. The eigenvectors can be used to
explicitly compute the matrix operator of an approximate or ideal filtering function.
In particular, the filtering properties can be chosen infinitely sharp with constant
dampening of unwanted directions.

4.1.2 Matrix test set
Beyond generated matrices with known spectra, a set of test matrices with different
sizes will be used to confirm the validity of certain deductions with problems from
real applications. Table 4.1 lists name, size, target interval, and eigencount inside
the target interval for the respective matrix. Decimal numbers in tables will be

Name Size Interval Eigenpairs

laser 3 002 [−5.033651644876957e−01,−2.688920370800423e−01] 1 000
SiH4 5 041 [−1.831832550688610e−01,−3.438302367677931e−02] 731
linverse 11 999 [−3.049133393553184e−01,−2.350212902114284e−01] 1 739
Pres_Poisson 14 822 [−9.511245554968437e−01,−8.811715627407559e−01] 1 746
Si5H12 19 896 [−2.042532397249384e−01,−8.673585236243539e−02] 2 250
brainpc2 27 607 [+1.848435756778146e−01,+2.343686520490190e−01] 2 792
rgg_n_2_15_s0 32 768 [−7.492505037717052e−01,−6.914155231208449e−01] 3 723
SiO 33 401 [−2.725881280626155e−01,−1.516415844705570e−01] 4 196
Andrews 60 000 [−4.255272272030095e−01,−3.432940637079993e−01] 7 290
Si34H36 97 569 [−1.918520641752265e−01,−8.074090437135376e−02] 10 455
fe_rotor 99 617 [−3.999986667124474e−01,−3.461078701061172e−01] 10 521
GraI-119k 119 908 [+3.571287929836170e−01,+4.956607232057880e−01] 16 118

Table 4.1: Standard eigenproblem test set “The Dirty Dozen”.

1) Since XHBX = XHXBdX
HX = Bd.

ES

4.1 Experiments 119

written in e-notation where de±b is used as a shorthand for d · 10±b, e.g., 5.43e−21.
To cover a wider variety of eigenproblems, matrices from different backgrounds were
included in the test set. The set consists of eleven test matrices from the GHS_indef
(laser, linverse, brainpc2), PARSEC (SiH4, Si5H12, SiO, Si34H36), ACUSIM
(Pres_Poisson), DIMACS10 (rgg_n_2_15_s0, fe_rotor), and Andrews (Andrews)
matrix groups of the SuiteSparse Matrix Collection (formerly the University of
Florida Sparse Matrix Collection [DH11]) and one test matrix from graphene model-
ing, GraI-119k [Net+09], almost all of which were also used in [GKL18]. All matrices
have been scaled and shifted for use with polynomial filters, i.e., the spectrum is
mapped into [−1, 1], and spectral positions are given with respect to the transformed
matrix. These matrices will predominantly be used in the analysis of orthogonalities,
the heuristic estimation of achievable orthogonality and the empirical derivation of a
suitable orthogonalization order. The default data sets are obtained by subdividing
the target interval into 64 sub-intervals which are then processed independently.
Two different strategies for subdivision are used; the even distribution of eigenpairs
produces intervals of different size with equal amounts of eigenpairs per interval,
based on the known spectra of the matrices; the uneven distribution of eigenpairs
produces intervals of equal sizes with varying number of eigenpairs per interval. Both
distribution strategies are performed with and without locking (see Section 4.2.2.2),
resulting in a total of four data sets.

Experiment 4.1 — Test set calibration
We perform calibration runs with BEAST from Chapter 3 for all combinations

of matrix and subdivision strategy, with and without locking. For comparison with
orthogonalized or otherwise modified results under different conditions, the range of
residuals and orthogonalities achieved in these runs are the main point of interest.
Polynomial filters, for which the degree has been adaptively determined on-the-fly
[GKL18] for each case separately, was used, and proper searchspace sizes have been
deduced explicitly from the known spectra. In all instances, the subspace iteration
process is not continued to small residuals to produce more difficult conditions that
may better reflect actual applications. The obtained residual ranges for all matrices
and data sets are listed in Table 4.2. Orthogonalities are not listed here, but in
Tables 5.4 and 5.5 in Section 5.3.8, where they will be of relevance for the first time.

Additionally, two larger matrices that are not listed in Table 4.2, a real matrix of
size 1 199 948 from Graphene modeling [Net+09] (graph-1M) and a complex matrix
of size 1 048 576 from the simulation of topological insulators [HK10] (topi-1M)
provide very dense spectral regions, as can be seen in the spectral density plots of
Figure 4.1, as ultimate test. However, these sizes are by far not the largest problems
that have been tackled using subspace iteration, but typically less dense regions are
the spectral target for such sizes and only few eigenpairs are computed. The target
intervals are marked in the background, but are too small to be visualized as more
than a line. A zoomed representation does not reveal additional information, as the
resolution is not high enough. For graph-1M the interval is [0.83075, 0.83275] with

ET

120 4 Taming the BEAST – Quality of results

locking no locking

even uneven even unevenName

min res max res min res max res min res max res min res max res

laser 8.999e−14 1.475e−09 1.196e−13 1.418e−09 7.741e−16 1.202e−09 1.097e−15 1.359e−09
SiH4 3.727e−12 8.980e−08 2.706e−13 8.876e−10 7.355e−16 6.483e−08 8.863e−16 8.155e−09
linverse 1.798e−13 3.499e−07 4.139e−13 3.441e−09 6.461e−17 2.504e−07 1.753e−16 2.932e−09
Pres_Poisson 1.150e−12 1.393e−08 2.357e−13 1.391e−08 8.777e−16 1.332e−08 7.373e−16 1.188e−08
Si5H12 2.138e−14 4.010e−09 4.573e−14 3.925e−09 1.136e−15 2.714e−09 1.365e−15 2.997e−09
brainpc2 7.377e−14 6.391e−09 1.177e−13 6.462e−09 3.003e−15 5.776e−09 3.483e−15 5.444e−09
rgg_n_2_15_s0 4.588e−13 2.439e−08 2.336e−12 2.419e−08 1.732e−15 1.898e−08 2.384e−15 2.261e−08
SiO 9.972e−14 8.995e−09 1.999e−14 8.948e−09 1.118e−15 5.445e−09 1.215e−15 7.518e−09
Andrews 3.750e−13 2.536e−08 2.687e−13 2.523e−08 8.296e−16 2.362e−08 8.035e−16 2.476e−08
Si34H36 7.879e−14 1.822e−08 4.115e−14 1.802e−08 1.331e−15 1.292e−08 1.358e−15 1.600e−08
fe_rotor 5.259e−14 3.929e−08 1.026e−13 3.948e−08 1.500e−15 3.387e−08 1.492e−15 2.726e−08
GraI-119k 9.284e−15 5.549e−08 7.212e−15 5.232e−08 1.708e−15 5.549e−08 1.261e−15 2.183e−08

Table 4.2: Final residuals for the four data sets of the matrix test set.

−2 0 2
0

0.5

Real axis

D
en

si
ty

−4 −2 0 2 4
0

0.2

Real axis

D
en

si
ty

Figure 4.1: Low resolution density of states for the matrices graph-1M (left) and topi-1M
(right), produced using the KPM-DOS method [Wei+06]. The density is nor-
malized such that it integrates to one.

1 995 eigenpairs and for topi-1M the interval is [1.59, 1.594] with 1 780 eigenpairs.
Results for these matrices will be presented in Section 5.3.16.

4.1.3 Ritz value pairing
During the analysis of the speed of convergence of distinct directions during subspace
iteration, the residual drop rate is the only quantifiable indicator of progress. How-
ever, the process of decreasing residuals of Ritz pairs is difficult to track, since there
is no direct relation between an eigenpair and a Ritz pair other than their proximity
in relation to the residual of the Ritz pair (see Section 1.6.3). While the eigensolver
used for the reduced eigenproblem often retains ordering, eigenvalues may switch
positions or move along the spectral axis as iterations progress. If the residual is
small enough, a Ritz pair may be unmistakably assignable to an eigenpair and, by
extension, to a Ritz pair from an earlier iteration whose residual was low enough as

EU

4.2 Convergence revisited 121

well. In early passes of the subspace iteration process, this is often not possible, in
particular if the dampening of the filter is weak. If eigenvalues are densely clustered,
assignment will only be possible in later iterations, if a residual that would allow
separation is reached at all. In experiments dealing with residual drop rates, often
the first iterations therefore cannot be considered to serve as valid sources of data.
Similarly, as soon as Ritz values reach saturation, the computed drop rates only
reflect the small variations of the saturation residual of the respective Ritz value and
are therefore omitted.

4.2 Convergence revisited
Let us revisit convergence and dampening of eigendirections by a filter function.
Here, the term convergence is not used as a binary property, say, for reaching a
specified target residual, but a continuous decrease in residual, no matter how small
or large. Therefore, convergence can be slow or fast and start or stop at certain levels.
As outlined in Section 1.6.1, the speed of convergence during subspace iteration is
chiefly related to the separation of eigenvalues,∣∣∣∣∣λm+1

λi

∣∣∣∣∣
for i = 1, . . . ,m, if the projection operator is the orthogonal projector onto the
invariant subspace associated with the m largest magnitude eigenvalues, when trying
to compute exactly these m eigenpairs. If, in order to compute a sequence of m
eigenpairs at an arbitrary position inside the spectrum, a suitable filtering method
is used, convergence is now related to the separation of eigenvalues of the projecting
operator, ∣∣∣∣∣f(λm+1)

f(λi)

∣∣∣∣∣
for i = 1, . . . ,m, where f shall be the filtering function and we assume the eigenvalues
of the matrix pencil to be ordered such that the eigenvalues of the projection operator
are sorted by absolute value in descending order,

|f(λ1)| ≥ . . . ≥ |f(λm)| ≥ . . . ,

since the projection operator replaces the matrix pencil in the subspace iteration
process. We have seen that the corresponding eigenvalues of the original matrix
pencil are obtained by the compatibility of their eigenvectors in the Rayleigh-Ritz
process. If, furthermore, the filtering function is not ideal and m0 > m vectors are
iterated, we have to relate the convergence speed to∣∣∣∣∣f(λm0+1)

f(λi)

∣∣∣∣∣

EV

122 4 Taming the BEAST – Quality of results

for i = 1, . . . ,m0, where the filter is chosen such that the convergence of the first m
eigenpairs is, ideally, much faster than the convergence of the remaining unwanted
eigenpairs. This is nothing more than the simple application of Theorem 1.2 to
spectral filtering with some number of vectors m0, where the subspace iteration
actually tries to compute eigenpairs of the projection operator—hence the effect
of the filter function—and only obtains eigenpairs of the original matrix pencil by
choice of the Rayleigh quotients. A very similar statement has been derived in [TP]
more formally.
This view on the progress of convergence has some implications for the under-

standing of the behavior of subspace iteration. Slowly converging directions will
appear if eigenvalues f(λi) of the projection operator with index i ≤ m0 are close in
absolute value to the convergence reference value f(λm0+1). The separation of eigen-
values of the original matrix pencil around the interval boundaries has no impact on
convergence if m0 > m other than that the values of the filtering function at that
position may result in slower convergence of these particular Ritz pairs. Instead, the
convergence of every iterated eigenpair depends on the value of the filtering function
at the positions of the eigenvalues of the original matrix pencil and, with this, on its
spectral distribution.

Experiment 4.2 — Residual drop rates
We generate a matrix pencil of size 1000 with evenly distributed random spectrum

in [−1, 1]. The central m = 20 eigenpairs with a searchspace size of m0 = 26 are to
be computed over 50 iterations using a Cauchy filter of degree 4 with Gauß-Legendre
integration rule. We compute the achieved residual drop rate between iterations if
the Ritz values can be associated with each other. From the filtering function and the
known eigenvalues of the matrix pencil, we estimate the drop rates for all Ritz pairs
of the searchspace. The results are shown in Figure 4.2. Additionally, the ranges in
which we expect the drop rates of Ritz pairs considered inside and outside the target
interval are explicitly marked.

It may take a few iterations for a Ritz pair to assume the predicted drop rate.
Faster converging Ritz pairs reach this state sooner than slower converging Ritz pairs.
Particularly in earlier iterations, other factors play a role, often leading to rates of
convergence that are higher than anticipated, while convergence comes to a hold
once saturation is reached. For particularly good dampening, saturation might be
reached before the drop rate can settle at the estimated value.

In the extreme case, an ideal filter, all drop rates assume the prescribed dampening
of the filter; this is not shown here. Repeating the experiment with different filters
additionally shows that the predicted drop rate is reached faster with filters that
produce better dampening in general. Smaller deviations from the estimated values
may also be caused by the quality of the initial guess vectors. In terms of slots
and occupation we now have to assume that the m0 most dominant directions will
occupy the m0 slots of the searchspace and the searchspace will not align with the
n−m0 remaining directions. We can also assume that among the m0 most dominant

EW

4.2 Convergence revisited 123

10 20 30 40

Iteration

5 10 15 20 25

10−0.46

10−0.69

10−0.08

10−0.29

Ritz value number (sorted by expected drop rate)

R
es

id
ua

l
dr

op
ra

te

Figure 4.2: Measured (left) and estimated (right) residual drop rates for every Ritz value
inside a searchspace of size 26. Left: Ritz values inside (blue) and outside (red)
the target interval. Right: The drop rates for Ritz values inside (blue) and
outside (red) the target interval are separated by vertical lines. The convergence
reference value at index m0 + 1 is marked with a black circle.

directions there may be those whose convergence speed, i.e., the speed at which
the searchspace aligns with an eigendirection, is very low, such that virtually no
alignment towards these directions will occur. These dimensions of the searchspace
remain ambivalent as to what eigendirection they will align to. We will analyze this
situation further in Section 4.2.4.

4.2.1 Undersized searchspaces
As has been discussed in [Krä+13] and [Krä14], the searchspace reaches critical mass
with its size chosen as the exact number of eigenvalues contained in the target interval.
Beyond this size, convergence is generally possible and below this size, convergence
has to be considered practically impossible. In [Krä14] it has been shown that
choosing too small a searchspace results in the computed subspace being embedded
in the desired subspace but rotating with the remaining degrees of freedom. This is
purely a side effect of the filtering function. Under ideal filtering conditions, or with
a high-order approximation of the window function such that f(λi) is approximately
equal for all eigenvalues λi represented in the searchspace, the failure to converge is
supported by the above considerations regarding convergence rates, which indicate
little to no convergence in this case. No direction will establish dominance over
another.
In the case of approximate filters, assuming that the number of directions with

equally minimal dampening (or, depending on the type of filter in use, maximum
amplification) fit the searchspace, dominance of these few directions may eventually
be established, albeit with insufferably slow progress, governed by the differences in
magnitude of the filtering function inside the passband, as indicated in Section 4.2.
This effect is more pronounced for low degree filters with larger variations inside the
passband. From this point of view, too small a searchspace is a problem of little
or no dampening among the participating directions. Since convergence depends

EX

124 4 Taming the BEAST – Quality of results

on the eigenvalues of the filtering operator and not the eigenvalues of the original
eigenproblem, eigenvalues that are exposed to the same or similar levels of dampening
can be considered clustered in this regard (ignoring the sign of the filter values, which
has no effect on dominance). It is then inherently clear that the filter flanks, fitted to
the target eigenpairs and being the most rapid change in filter value, seem to define
the critical searchspace size.

4.2.1.1 On-the-fly increase of searchspace size

As has been established before, convergence speed in undersized searchspaces can
be very slow or even come to a halt, depending on the filter in use. Assuming
this situation can be detected and based on the understanding of the convergence
behavior so far, it should be possible to extend the searchspace set with additional
columns, opening up slots for occupation by additional directions. Conceptually,
this is nothing other than starting with an initial guess that just so happens to
contain a remarkably good representation of some of the eigendirections, assuming
at least some convergence could occur before. We expect the convergence speed of
directions iterated so far to increase, while newly added directions would start from
scratch. We also expect the well represented directions to start off with a better
residual, depending on their quality, i.e., the distances to the associated eigenvectors
as apparent from the theorem on convergence Theorem 1.2, such that not all progress
from earlier iterations is lost. Let us confirm these assumptions with an experiment.

Experiment 4.3 — On-the-fly increase of searchspace size
We generate a definite pair (A,B) of size 1000 with an evenly spaced spectrum

in [−1/2, 1/2]. A Butterworth filter of degree 4 is applied over 100 iterations to
compute the m = 20 central eigenvalues. The size of the searchspace is initially
chosen as m0 = 10 and is increased to m0 = 25 at iteration 30 by appending random
vectors to the computed approximate eigenvectors. The filtering function and spectral
distribution are chosen such that slight convergence is possible in the first 30 iterations.
The results can be found in Figure 4.3.

It can be determined from the results depicted by Figure 4.3 that not all information
from earlier iterations is lost with the change of searchspace size. Previously iterated
directions maintain—at least in part—their residual, and the loss in accuracy is
nowhere near a complete restart with an initial searchspace size of m0 = 25. For
both phases, before and after the extension, residual drop rates assume the respective
estimated values after some iterations.

4.2.1.2 Detection of undersized searchspaces

An early on or even a priori detection of undersized searchspaces is typically impos-
sible, unless some information on the spectral distribution, e.g., the density of states
derived from the KPM [Wei+06], is available (see also Section 3.1.2).

EY

4.2 Convergence revisited 125

0 20 40 60 80 100

10−1

10−9

10−17

Iteration

R
es

id
ua

l

0 20 40 60 80 100

10−0.4

10−0.2

100

Iteration

R
es

id
ua

l
dr

op
ra

te

Figure 4.3: Residual history (left) and drop rates (right) for a one-time on-thy-fly increase
of searchspace size. Ritz values inside the target interval are shown in blue,
Ritz values outside the target interval in red.

A readily available indicator is the number of Ritz values inside the target interval.
While not a particularly accurate source for the exact number of directions inside
the target interval—especially in early iterations, since the most dominant directions
are the directions inside the target interval—having no Ritz values outside the target
interval occupy a slot is a good indicator for undersized searchspaces. But even
if outside Ritz values do occupy slots, the searchspace might still be too small for
achieving suitable residual drop rates depending on filter and spectral distribution.
A more accurate estimation can be obtained from the eigenvalues of the second

Rayleigh quotient of the reduced-size eigenproblem. This method will be explored
in the following section.

4.2.2 Enlarged searchspaces
The effect of oversized searchspaces has been discussed in [Krä+13], [Krä14], [Pie+16],
and [TP]. Following Section 4.2, the observed improvement of convergence speed in
larger searchspaces is again a consequence of the combination of spectral distribution
and filtering function.

Let again the eigenvalues of the matrix pencil be ordered such that the eigenvalues
of the projection operator descend in absolute value,

|f(λ1)| ≥ . . . ≥ |f(λm)| ≥ · · · ≥ |f(λm0)| ≥ . . . ,

where, as before, m is the number of eigenvalues inside the target interval and
m0 ≥ m is the searchspace size. If we assume the largest magnitude eigenvalues of
the projection operator to occupy the slots of the searchspace2 in accordance with
Theorem 1.2, convergence of all iterated directions is mandated by the convergence
reference value f(λm0+1). If the filtering function of the projection operator is also
decaying, f(λm0+1) typically becomes smaller as m0 grows, improving convergence

2) For the typical filter shape, eigenpairs inside the target interval are more dominant than eigenpairs
outside the target interval, but the considerations here do not necessarily require this.

FA

126 4 Taming the BEAST – Quality of results

speed of all directions previously occupying the (smaller) searchspace. For non-
decaying filters, this effect does not occur, or only in a small range of searchspace
enlargement; improvement can be expected until f(λm0+1) reaches the maximum
stopband gain. Oscillations of the filter in pass- and stopband play a role in that they
skew the intuition of which directions will occupy the searchspace or which directions
will converge the fastest. Not always will the most dominant outside directions also
be the closest to the target interval. Extreme cases are equioscillating filters since
the oscillation frequency decreases with increased distance to the target interval,
possibly injecting far-away directions into the searchspace.

Experiment 4.4 — Residual drop rates and searchspace size
We generate a definite pair (A,B) of size 1000 with an evenly spaced spectrum in

[−1/2, 1/2]. A Chebyshev filter of degree 200 is applied over 50 iterations in form
of the explicit projection operator matrix. The m = 20 innermost eigenvalues are
computed with searchspace sizes

m0 ∈
{
m,

5m
4 ,

3m
2 , 2m

}
and the drop rates are compared to the estimated drop rates for the best Ritz value
inside the interval (blue), the worst Ritz value inside the interval (red), the best Ritz
value outside the interval (yellow), and the worst Ritz value outside the interval
(purple); the latter two do not exist for m0 = m. Figure 4.4 summarizes the results.
For the second set of plots, a Zolotarev filter of degree 4 with κ = 0.01 was used to
compare the previous results to a non-decaying filter. We can expect the drop rates
to improve with increased searchspace size, as long as the (m0 + 1)-th eigenvalue of
the projection operator still decreases. Beyond that point, convergence speed does not
improve any further.

Repeating the experiment with evenly distributed random spectra reveals that the
estimation is most accurate if no Ritz phantoms are produced by the combination
of spectral distribution and filter. Ritz phantoms are more likely to occur if the
filtering properties are weak and disturb the convergence of Ritz values close by. A
follow-up experiment will detail this effect in a later section, see Experiment 4.9 in
Section 4.2.4.1.
While enlarged searchspaces benefit convergence of eigenpairs inside the target

interval, computation time and memory consumption, in particular during the ap-
plication of the projection, increase accordingly. As to what extent this holds true
in practice depends on the filter in use and the method of its application, as well
as the general implementation. For certain filter types, searchspaces exceeding a
certain size have no additional benefit. Additionally, larger searchspaces increase
the probability of Ritz phantoms (see Section 4.2.4). If more directions outside the
target interval are iterated, the drop rates of these directions are low since the filter
is not steep between λm0+1 and the eigenvalues of the additional directions. Since
for decaying filters the steepness of the filtering curve fades with increased distance,

FB

4.2 Convergence revisited 127

10 20 30 40

m0 = m

10 20 30 40

m0 = 5m/4

10 20 30 40

m0 = 3m/2

10 20 30 40

10−1

100

R
es

id
ua

l
dr

op
ra

te
(p

ol
yn

om
ia

l)

m0 = 2m

10 20 30 10 20 30
Iteration

10 20 30 10 20 30

10−1

100

R
es

id
ua

l
dr

op
ra

te
(Z

ol
ot

ar
ev

)

Figure 4.4: Residual drop rates for different m0. Top: Chebyshev polynomial filter (decay-
ing). Bottom: Zolotarev filter (not decaying). Shown are the drop rates for
the best (blue) and worst (red) Ritz value inside the interval as well as the best
(yellow) and worst (purple) Ritz value outside the interval (the latter two of
which do not exist for m0 = m); the gray areas indicate the estimated drop
rates inside and outside the interval.

the gain from additional slots in the searchspace decreases and the improvement of
drop rates becomes increasingly lower.

4.2.2.1 On-the-fly restriction of searchspace size

The specification of an optimal searchspace size requires the knowledge of the posi-
tions of eigenvalues. However, reducing the size of the searchspace during a run of
an iterative eigensolver can be reasonable for at least four reasons.

• Retaining full numerical rank of the searchspace set.
• Removing Ritz phantoms and/or slowly converging directions.
• Reducing the number of vectors to be processed by the algorithm.
• Locking directions that have reached the desired residual.

The removal of directions from the set of iterated approximate eigenvectors is triv-
ial: the removal of single columns is approximately equivalent to orthogonalization
against the associated directions. This is because the approximate eigenvectors are
essentially B-orthogonal after the first iteration. With the primitive Ritz vectors W
of the reduced Rayleigh-Ritz eigenvalue problem

AUW = BUWΛU

FC

128 4 Taming the BEAST – Quality of results

for the matrix pencil (
AU = UHAU,BU = UHBU

)
being BU -orthogonal,

WHBUW = I,

since AU is Hermitian and BU Hermitian positive definite,3 with X = UW it is

XHBX = WHUHBUW = WHBUW = I.

In practice, orthogonality may still be lacking after one iteration, but is typically
established properly after the second iteration.

4.2.2.2 Locking

One instance of the method outlined above is the locking mechanism [Saa11; Krä14]
that aims at improving performance by removing directions with sufficiently small
residual from the searchspace to iterate on fewer vectors in following iterations.
However, these removed directions will, in all likelihood, not be the least dominant
directions; it is quite the opposite—dominant directions will reach the target resid-
ual first. Since orthogonality is never perfect and small components of the allegedly
removed directions remain, due to the convergence behavior of subspace iteration dis-
cussed earlier, previously removed directions are bound to reappear and replace the
least dominant directions in the then reduced-size searchspace eventually. To prevent
this from happening, frequent orthogonalization of the searchspace set against all
locked directions is required to maintain the dampening enforced this way. Indeed,
since the removal of vectors from an orthogonal set of vectors, i.e., the orthogonali-
zation against certain directions, essentially hides these directions from the subspace
iteration process; it can be seen as equivalent to directions being almost eliminated
by the filter itself, which has the same effect. The difference is that locking also
reduces the searchspace size, while not interfering with the directions that occupy
the searchspace.

4.2.2.3 Rank deficiency

In most cases, the searchspace set is a basis for the searchspace. If this searchspace
set—the set of vectors that spans the searchspace—becomes rank deficient, the
searchspace looses dimensions and the Rayleigh quotients form an eigenproblem that
is singular, which might be unsolvable by available standard algorithms without
extracting its regular part. In order to produce a non-singular reduced eigenproblem,
rank deficiency has to be detected and the number of searchspace vectors has to
be reduced before the small-scale eigenproblem is generated by removing selected
vectors accordingly.

The reason for rank deficiency of the searchspace set is the loss of directions among
the vectors due to strong dampening of components by the filter function or removal
3) yHBy > 0 =⇒ xHUHBUx > 0 for y = Ux if x 6= 0.

FD

4.2 Convergence revisited 129

of directions by orthogonalization without adjusting the number of searchspace
vectors. If a direction is, either over several iterations or due to strong filtering
properties, reduced to numerically irrelevant noise, it can be considered vanished.
The searchspace then is essentially orthogonal to this direction. If the removal of the
direction is not maintained, e.g., if it was caused by a one-time orthogonalization,
the slot that now has to be considered unoccupied will eventually be occupied by
the removed directions again, since small components of these directions remain.
As long as the removed directions are sufficiently dampened, other directions might
temporarily occupy the free slots.

Experiment 4.5 — Slot swapping
We generate a definite pair of size 1000 with evenly spaced spectrum in [−1, 1].

With a searchspace size of 30, we compute the innermost 20 eigenpairs using a
Butterworth filter of degree 12. To simulate a case where directions are evicted from
the searchspace for other, far less dominant directions to temporarily occupy the slots,
we orthogonalize the searchspace set against the known eigenvectors of the six least
dominant directions inside the target interval, leaving 14 eigenpairs inside and ten
eigenpairs outside the interval to converge (rather) normally. The last point in time
to perform the orthogonalization without causing rank deficiency in the searchspace
set is the beginning of iteration four. Figure 4.5 shows how the procedure wreaks
havoc in the searchspace.

−3 · 10−2 0 3 · 10−2

Spectrum

R
es

id
ua

l

Figure 4.5: Slot swapping. The final residual of all slots is marked by . The Ritz values
temporarily occupying the slots are marked with arrows, and the target interval
is indicated by vertical lines. The different Ritz values are identified by color.

It can clearly be seen that the six Ritz values inside the interval at the boundaries
are disturbed severely. All other Ritz values react with a jump in residual after
iteration three. Six additional Ritz values emerge and start converging against the
next most dominant directions. At about iteration 13, the original eigenvectors have

FE

130 4 Taming the BEAST – Quality of results

gained enough dominance and the Ritz values snap back to their original positions,
where they converge with the respective delay. A very close look reveals that the
movement back to their original position takes a few iterations in which the Ritz
values seem to hop from slot to slot. This is because the gradual gain of dominance
by the original directions evacuates the temporal directions one by one.

If the removal was caused by the filter, it affects the least dominant directions of
the basis and is permanent. The slot then cannot be occupied by a different direction;
since the most dominant directions occupy the searchspace, all other directions are
less dominant and are equally or more heavily dampened than the least dominant
direction in the basis. This is not to be confused with the emergence of Ritz phantoms
(see Section 4.2.4).

Experiment 4.6 — Filter induced rank deficiency
We generate a definite pair of size 1000 with evenly spaced spectrum in [−1, 1].

With a searchspace size of 80, we compute the innermost 20 eigenpairs using

• a Butterworth filter of degree 4,
• a Zolotarev filter of degree 4, and
• an ideal filter with fixed dampening of 10−1

over 100 iterations. Since the Rayleigh-Ritz procedure or orthogonalization of the
searchspace set interferes with the representation of the directions, we iterate on the
searchspace set exclusively, in the vein of Algorithm 1.4, but without orthogonalization.
Figure 4.6 shows the development of the searchspace size, which is reduced whenever
rank deficiency is detected.

10

80

R
an

k
(B

ut
te

rw
or

th
)

10

80

R
an

k
(Z

ol
ot

ar
ev

)

0 10 20 30 40 50 60 70 80 90 100
10

80

Iteration

R
an

k
(i

de
al

)

Figure 4.6: Development of the rank of the searchspace set. Shown are searchspace sizes
(here equivalent to numerical rank) over 100 iterations. Top: Butterworth,
degree 4. Middle: Zolotarev, degree 4. Bottom: Ideal, dampening 10−1.

If the filter is decaying, rank deficiency—also depending on the size of searchspace—
occurs gradually depending on the differences in filter value. Stronger dampening

FF

4.2 Convergence revisited 131

properties cause earlier rank deficiency. In the case of non-decaying filters, where
dominance is almost equal for many directions, rank deficiency causes larger reduc-
tions in size in a single iteration due to approximately equal associated filter values.
The fewer gradual changes in filter value are reflected by few smaller reductions in
size afterwards. Ideal filters, accordingly, experience rank reduction to the exact size
once.

We also see that the rank drops below the number of contained eigenpairs. This is
due to the bypass of the Rayleigh-Ritz procedure (or basis orthogonalization), which
otherwise retains an orthogonal basis and thus rescales the weak directions in the
process. In this case, rank deficiency due to strong filtering properties are likely to
occur once in the very first iteration because the directions are essentially removed in
one fell swoop. We expect rank deficiency of this kind to be more likely for decaying
filters since farther directions are often suppressed much more strongly.

If the removal was caused by orthogonalization that is maintained for all following it-
erations, it is permanent and eventually the next most dominant directions previously
not part of the searchspace will occupy the now free slots, affecting the convergence
behavior of all iterated directions (we have seen this in Experiment 4.5, although
orthogonality was not maintained). If the orthogonalization is performed from the
very beginning, directions can be blocked from appearing altogether [GKL12] (see
also Section 5.3.1).
No matter the cause, reoccupation may take more than one iteration and may

not prevent rank deficiency from occurring in the iteration following the removal
(see Experiment 4.5 where later orthogonalization causes rank deficiencies due to
the basis being more well-established; the original directions require some iterations
to reclaim their slot). To deal with this rank deficiency of the searchspace set,
an alternative reduced-size basis may be constructed that includes the remaining
directions of the former basis. A commonly used method to achieve just that is,
again, orthogonalization, which will reveal the rank deficiency and can reduce the
basis. Conventional orthogonalization, however, can be expensive if the problem size
is large and the searchspace set is, accordingly, a tall and (often) skinny block of
vectors. While specialized algorithms for this case exist [Dem+12], we are able to
extract the required information from the Rayleigh quotients [Krä14]. The Rayleigh
quotient of the matrix B, BU = UHBU , can reveal the rank of U . Assuming a
reduced (thin) SVD of U (see also Section 5.2.8),

U = V ΣWH ,

where V ∈ Cn×m orthonormal, Σ ∈ Rm×m diagonal, and W ∈ Cm×m orthonormal, a
reduced matrix may be written

UHU = WΣV HV ΣWH = WΣ2WH

that evidently has the same rank as U , but is normally not computed during the
Rayleigh-Ritz process unless B = I. Certainly, U and BU have the same rank as
well, with B being positive definite. With an SVD of BU

BU = WΛWW
H

FG

132 4 Taming the BEAST – Quality of results

where left and right singular vectors are identical due to BU being Hermitian, the
equivalent eigenproblem

BUW = WΛW

can be used to obtain the rank of BU and thus the rank of U . Let the rank of U by
examination of ΛW be k. A subspace basis of reduced size k can now be obtained
by letting

Uk := UW (1 :k)

assuming that the eigenvalues and with them their associated eigenvectors are ordered
descendingly, such that W (1 :k) represents the k eigenvectors associated with the
k largest eigenvalues of BU . Then U and Uk span the same space if the rank
determination was correct.4 Indeed, every matrix of size m× k and full rank may be
used instead of W (1 :k).
This begs the question of what happens if more columns are removed.

4.2.2.4 Further reduction

The question raised above implicitly asks for the connection between the singular
values or eigenvalues of BU and the directions contained in the searchspace. Similarly,
further reduction of the searchspace size beyond distinct directions that are saved and
available for orthogonalization or maintaining a searchspace set of full rank—be it
for speeding up convergence or reducing the number of iterated vectors—necessitates
the association of directions and their dominance, i.e., their convergence speed and,
equivalently, the associated value of the filter function at their positions. This is a
connection that typically cannot be made by looking at just the eigenvectors.

By writing the application of the approximate projection operator Pf to the right-
hand sides in terms of its eigendecomposition,

U = PfY = Xf(Λ)XHBY, (4.1)

the second Rayleigh quotient may be written

BU = Y HBXf(Λ)XHBXf(Λ)XHBY

= Y HBXf 2(Λ)XHBY. (4.2)

If now Y is B-orthonormal and thus Y HBY = I, invoking the Rayleigh-Ritz theorem
for the matrix pencil (

Y HBP 2
f Y, Y

HBY
)

and XP = YWP being those eigenvectors of (A,B) (and Pf) that the vectors Y are

4) ∃H s.t. UH =
(
Ũ 0

)
with Ũ ∈ Cn×k. Then UHW (1 :k) just recombines the columns of Ũ .

FH

4.2 Convergence revisited 133

approximations for,

P 2
fXP = XPΛP

P 2
f YWP = YWPΛP

Y HBP 2
f YWP = Y HBYWPΛP

Y HBP 2
f YWP = WPΛP

Y HBXf 2(Λ)XHBYWP = WPΛP

BUWP = WPΛP .

Thus, BU is a Rayleigh quotient for the squared projection operator P 2
f and there are

eigenpairs (WP ,ΛP) of BU such that (YWP ,ΛP) are the eigenpairs of P 2
f contained in

span(Y); refer to Theorem 1.1. Since, from the second iteration onward, the columns
of Y are the approximate eigenvectors, we know that span(Xp) ⊆ span(Y)—at least
approximately—and we obtain the associated eigenvalues of the projection operator,
i.e., the values of the filter function at the positions of the eigenvalues of the original
matrix pencil associated with the approximate eigenvectors Y. As we have seen at
the beginning of this section, Y is essentially B-orthogonal as of the second iteration.
The filter values obtained here are also expected to improve as the approximations
Y are improved, with the same convergence rates. While Pf is not Hermitian unless
B = I, the Rayleigh quotients here are Hermitian by choice of the vectors for left
and right multiplication.
We thus have obtained the values of the filter function acting on the iterated

eigenpairs and a direct connection between these directions and the searchspace set
U . The choice of W (1 :k) from before has been left unexplained. In the light of the
relation between U and W we see that

UH
k BUk = WH(1 :k)UHBUW (1 :k) = WH(1 :k)BUW (1 :k) = ΛW (1 :k, 1:k),

which also allows to omit the explicit recomputation of BU using Uk. We can
therefore choose Uk to contain selected directions by choosing from the columns of
W . Assuming the eigenvalues Λk are ordered descendingly, W (1 :k) selects the k
most dominant and fastest converging directions.

4.2.2.5 Optimization of searchspace size

The knowledge of the (approximate) filter values of the iterated directions allows for
the acquisition of additional information that can be used for better control of the
subspace iteration’s progression.

First, knowing the filtering function that is applied in each iteration approximately,
and in particular its values at the boundaries of the interval of interest, gives a reliable
estimate of the number of eigenpairs inside this interval by counting the eigenvalues
of BU that exceed the boundary values [GKL12; TP; Krä14]. The situation becomes
problematic if the values on both boundaries differ; this can be the case for the
polynomial Chebyshev filter if the target interval is off-center with respect to the

FI

134 4 Taming the BEAST – Quality of results

interval of approximation, or the filter is intended to capture complex eigenpairs
of non-Hermitian problems and the steepness of the filter flanks on the boundary
of the target region differs largely (remember Chapter 2). As has been mentioned
before, exactly what parts of the filter are to be considered inside or outside the
target interval may differ on a case-to-case basis.

Second, while the common factor determining the speed of convergence, f(λm0+1),
is still unknown, at least a statement about the minimum possible approximate
convergence speed can be made since∣∣∣∣∣f(λm0+1)

f(λi)

∣∣∣∣∣ ≤
∣∣∣∣∣f(λm0)
f(λi)

∣∣∣∣∣ for i = 1, . . . ,m0

where f(λm0) is known. It may be possible to start the subspace iteration with an
additional vector for the searchspace set, such that after reduction of the searchspace
size by this one vector, a more accurate estimation can be given since the later
(m0 + 1)-st value will be approximately known from an earlier iteration.

Continuing this train of thought, the choice for a possible size reduction to di-
mension k as soon as the eigenvalues of BU are reliable enough can be made by
estimating the new slowest convergence speed as f(λk)/f(λk+1) where k < m0 and
all occurring quantities are known at least approximately. With this, it is possible to
choose a reduced size k that maximizes the speed of the eigenpair that will converge
the slowest. Of course, any reduction will reduce the overall speed of convergence,
as has been established previously. However, estimated filter values from BU for
directions that are slow to converge will likewise be converging at a slower rate,
making the estimation unreliable in early iterations.
A direct connection between vectors in Y and the eigenvalues of BU cannot be

made since it has to be assumed that the eigenvalues of BU can be reordered during
computation.

4.2.2.6 Addendum

Other methods to extract the regular part of a singular eigenproblem exist. In
[ISN10] the following transformation of the reduced size eigenproblem based on the
SVD is used. Let the SVD of BU be

BU = V ΣWH .

Then

AUH = BUHΛ
AUH = V ΣWHHΛ

V HAUH = ΣWHHΛ
Σ− 1

2V HAUH = Σ 1
2WHHΛ

FJ

4.2 Convergence revisited 135

Replacing H with H = WΣ− 1
2 Γ gives

Σ− 1
2V HAUWΣ− 1

2 Γ = Σ 1
2WHWΣ− 1

2 ΓΛ = ΓΛ.

This is essentially the transformation to standard form from Section 1.2.2. Since
BU is Hermitian, V = W , and we can again replace the SVD with an eigenproblem.
Since this is computed anyway to obtain the filter values for the searchspace, the
above is applicable as replacement for the modified Uk and BU from before. The
reduction can be incorporated via the values of Σ, which again are the filter values.
Selecting k values from Σ and the respective vectors from V and W reduces the
size of the eigenproblem, and if all small values are discarded, the eigenproblem will
be regular. The Ritz vectors are then computed as X = UWΣ− 1

2 Γ. The method
introduced before does require fewer computations while this method also works for
non-Hermitian problems.

4.2.3 SSM effective filter
In [GKL12], the method of computing the filter values from Section 4.2.2 was used
to find a representation of the Cauchy filter with Gauss-Legendre rule and, in partic-
ular, its values at the interval boundaries to ultimately use this information to find
estimations of the number of eigenvalues inside the target interval. To achieve this,
an isolated eigenvalue with known location was used as the target for a progression
of intervals, which may be visualized as an interval, gradually shifted along the real
axis. At some point, the isolated eigenvalue enters the interval and, similarly, leaves
it again at a different point. The associated singular value of BU is assumed to be
the largest of the singular values since, with a decaying filter, the well separated
remaining spectral regions are sure to be much more strongly dampened. With the
filter value obtained at different spectral positions relative to the target interval, the
filter can be reconstructed. Essentially, instead of sampling the spectrum via a filter,
the filter is sampled using the spectrum. The results from [GKL12] were formally
confirmed in [TP]. For alternatives on estimating eigenvalue counts, the reader may
consult [FTS10] and [DPS16].
It is surely a long stretch to assume that the effective filtering properties of the

SSM can somehow be written as a single operator, whose eigendirections are, above
all, identical to the target eigenproblem. The latter, at least, is the prerequisite
for the application of the Rayleigh-Ritz process to extract eigenpairs of the original
matrix pencil from the constructed basis and, as such, can be assumed to be the
case. The former, however, is the prerequisite for identifying an effective filtering
function for the SSM in the same manner as the filter was constructed in [GKL12].

Experiment 4.7 — Effective multi-moment filter
We construct a Hermitian matrix A of size 1000 with a distinct isolated eigenvalue

at λ = 0 and a generous separation of 0.5 to the remainder of the spectrum. The
whole spectrum is contained in [−2, 2]. The width of the target interval is chosen as
w = 0.1 and its center shifted over 1000 positions in [−2w, 2w]. We choose a Cauchy

FK

136 4 Taming the BEAST – Quality of results

filter with midpoint rule of degree 8 so that we can write the filter function of the
ρ-th moment conveniently as

fρ(λ) =
∣∣∣∣∣ ωρ−1

1 + ω2d

∣∣∣∣∣
with a transformation of the argument as

ω = 2λ
w

to set the cutoff frequency to the interval boundaries. The experiment is performed
for ` ∈ {2, 4, 8} moments; equivalent results for the Gauss-Legendre rule are included,
as well.

To obtain a new set of right-hand sides for following iterations, usually a random
linear combination of the approximate Ritz vectors is used [Sak+19] (T. Sakurai,
Y. Futamura, personal communication). This ensures the presence of all directions
in the new set of vectors. Due to the construction of the searchspace set, the first
block of m vectors from the basis is regularly Cauchy-filtered and also contains the
desired directions. Although it bypasses the Rayleigh-Ritz procedure, this approach
turns out to deliver an undisturbed result. From Chapter 1 we know that this kind
of iteration requires orthogonalization to prevent all iterated vectors to approximate
the most dominant eigenvector. We also require the right-hand sides to form an
orthogonal basis.

The experiments were performed with 4 right-hand sides over 4 iterations. Fig-
ure 4.7 summarizes the findings for the midpoint rule, Figure 4.8 for the Gauss-
Legendre rule. The disturbances caused by the random recombination of the vectors
are displayed in the background. The moments of both rules are shown separately in
Figure 4.9. Note that the functions were scaled w.r.t. their largest value, such that
their range is [0, 1].

The filter functions we obtain experimentally with the above approach are plausible
and the general validity of the method can be confirmed by producing conventional
Cauchy filters with just the first moment. The disturbances can then equivalently
be produced by a random recombination of the approximate eigenvectors in each
iteration, which adds similar amounts of noise to the determined filter. Since the
eigenvector to contribute to a new set of right-hand sides can be selected, for example
excluding outside directions, the filtering properties of the disturbed filter can be
improved. However, since the fluctuations are caused by a modification of the basis,
stagnation at a certain residual may be possible (see Section 4.3.1).

The disturbances produced by the recombination into a new set of right-hand sides
can, however, be completely eliminated by maintaining the length of each vector
during recombination and injecting each direction only once. Since the searchspace
size is a multiple of the number of right-hand sides, the recombination matrix has

FL

4.2 Convergence revisited 137

` = 2 ` = 4

0

1

` = 8

−0.1 0 0.1 −0.1 0 0.1

Real axis

−0.1 0 0.1

100

10−1

10−2

A
bs

ol
ut

e
fil

te
r

va
lu

e

Figure 4.7: SSM effective filters for the midpoint rule. Blue: undisturbed filter found by
prefiltering the right-hand sides with a conventional Cauchy-filter. Red: dis-
turbances, caused by repeated recombination of eigenvectors into right-hand
sides.

` = 2 ` = 4

0

1

` = 8

−0.1 0 0.1 −0.1 0 0.1

Real Axis

−0.1 0 0.1

100

10−1

10−2

A
bs

ol
ut

e
fil

te
r

va
lu

e

Figure 4.8: SSM effective filters for the Gauss-Legendre rule. Blue: undisturbed filter found
by prefiltering the right-hand sides with a conventional Cauchy-filter. Red:
disturbances, caused by repeated recombination of eigenvectors into right-hand
sides.

FM

138 4 Taming the BEAST – Quality of results

0

0.5

1

Midpoint
ρ = 1, . . . , 4

Midpoint
ρ = 5, . . . , 8

Gauss-Legendre
ρ = 1, . . . , 4

Gauss-Legendre
ρ = 5, . . . , 8

−0.1 0 0.1

100

10−1

10−2

−0.1 0 0.1 −0.1 0 0.1 −0.1 0 0.1

Real axis

A
bs

ol
ut

e
fil

te
r

va
lu

e

Figure 4.9: SSM moments (absolute values). Top row: linear filter plots; bottom row: the
respective logarithmic plots. Color order is: blue, red, yellow, purple.

the simple form

Y = X

1
...
1

1
...
1

. . .
1
...
1

or Y = X

I
...
I

to combine the approximate eigenvectors X into the set of right-hand sides Y . For `
moments and m right-hand sides, in each column j = 1, . . . ,m of the recombination
matrix only the rows (j − 1)` + 1 to (j − 1)` + ` are unity, all other entries being
zero (of course the rows may be permuted). In case directions ofX shall be removed,
setting the corresponding entries to zero is all that is required. If columns ofX were
removed previously, the corresponding rows must be removed from the recombination
matrix as well. The resulting filter function now matches the one found without
recombination exactly (in this particular case, with either none or just a single
eigenvalue inside the target interval, rank deficiency issues arise).

The plots also reveal that the filtering properties are weakened by the application of
additional moments. Since the filtering function seems to be some combination of the

FN

4.2 Convergence revisited 139

moment filters and these moment filters tend to emphasize the interval boundaries,
additional moments flatten the flanks of the filter and reduce the dampening of
the outside regions. Moments beyond ` = 5 even emphasize the outside of the
target interval and dampen the inside, such that utilization of these moments is not
recommended.

Being able to produce a representation of a filter in this way also hints at a relation
to spectral projection beyond what was concluded in Section 2.5.3.6. The resulting
filter is neither the sum, product, or plain convolution of the moments involved. Its
potential analytical form remains unknown.

4.2.4 Ritz phantoms
With searchspace sizes that are larger than the theoretically required minimum,
additional directions are included in the iteration. Depending on the filter in use,
these typically are directions associated with eigenvalues outside of the target interval.
Sometimes these additional Ritz values seem to show no sign of convergence and just
shift their position along the real axis. A distinct assignment to an eigendirection is
impossible, sometimes even after many iterations.

Following the convergence theorem for subspace iteration Theorem 1.2, stagnation
of this kind can occur when some f(λi), i ∈ {1, . . . ,m0}, are very close to f(λm0+1).
The appearance of slowly converging Ritz values is therefore more likely for non-
decaying filters since eigenvalues occupying the searchspace then have filter values
that are very close to the convergence reference value. This is caused by a large num-
ber of filter values having basically identical dominance, which are first to occupy the
searchspace beyond the eigenvalues inside the target interval. (see also Section 4.2.6,
Figure 4.17). Decaying filters, on the other hand, are more likely to dampen farther
away directions strongly, such that after some iterations the searchspace set may
become rank deficient.

It is difficult to distinguish actually unoccupied slots with seemingly no relation to
the eigenproblem at hand—we have dubbed these unrelated directions Ritz phantoms
in the discussion of the Rayleigh-Ritz procedure of the introductory chapter—from
slowly converging directions, possibly with larger distance to the target interval, that
could be considered to occupy a slot. Indeed, iterating the searchspace set many
times, depending on the spectrum and filter at hand, Ritz phantoms eventually may
show ever so slight signs of convergence, albeit with very low residual drop rates. It
can take many iterations for a direction to clearly represent an eigendirection.

This leads us to believe that Ritz phantoms are just the extreme case of a direction
with very low convergence rate whose dominance over other directions is slim to none,
resulting in similarly low rates of convergence. There is no circumstantial evidence
that there is a more fundamental difference between slowly converging slots and
unoccupied phantom slots, other than their theoretical existence as a consequence
of the Rayleigh Ritz theorem Theorem 1.1.

De facto, such unrelated directions cannot exist, much less emerge in a searchspace
of a subspace iteration algorithm. For eigenproblems with a complete set of eigen-

FO

140 4 Taming the BEAST – Quality of results

vectors, as is the case for Hermitian matrices and definite pairs, the eigenvectors
span the n-dimensional vector space such that every direction is a combination of
eigendirections. Due to filter functions typically not being optimal in that they never
remove directions completely, the searchspace set contains directional components of
all eigenvectors of the matrix pencil, many of which, however, may be quickly damp-
ened to indistinguishable noise. A possible exception is the aforementioned gradual
dampening of directions such that they are effectively removed, which ultimately
may lead to rank deficiency of the searchspace set if these directions are occupying a
slot in the searchspace such that its size has to be reduced anyway. This is, however,
not the case for Ritz phantoms.

Since any slot in the searchspace is, after all, just a linear combination of eigendi-
rections, comprised of components with length relative to their dominance, instead
of considering Ritz phantoms not to represent an eigendirection at all, it may be
more reasonable to consider them to represent more than one eigendirection, at
least as long as the convergence process does not allow their separation. Since their
associated filter value is nearly identical, they may be considered clustered with
regard to the projection operator. Effects of clustering will be explored further in
Section 4.2.5. Depending on the filter, few directions (decaying) or many directions
(non-decaying) may overlap in this manner. Possible remaining directions then may
again be separated more clearly by the filter, such that the Ritz phantom is governed
by those overlapping directions in unison. During the (slow) progress of convergence,
directions may ultimately be separated out, such that the slot now is more clearly
associated with the remaining directions. We would expect that, after a sufficient
number of iterations, even originally indistinguishable directions will separate.

This may be a possible explanation for the often peculiar movement of these Ritz
values that typically follows a not necessarily direct path towards the location of an
actual eigenvalue.

Experiment 4.8 — Movement of Ritz phantoms
We generate a definite pair (A,B) of size 1000 with an evenly distributed random

spectrum in [−5 · 10−4, 5 · 10−4]. Using a Zolotarev filter of degree 12 with κ = 0.01
on a searchspace of size 40 to compute 20 central eigenpairs ensures the emergence
of Ritz phantoms. The size of the spectral interval plays no further role here. To
track the path of the Ritz phantoms, 1000 iterations are performed.

Figure 4.10 shows the paths of the slowly converging directions as their residual
plotted against the Ritz value positions. The colors indicate the ordering of the Ritz
values. The plot also includes the values of the filter at the spectral positions of the
matrix pencil (which is why it appears to be a bit irregular) to emphasize the pursued
target positions for the Ritz phantoms. These are the locations of the associated
dominant directions of the searchspace, the peaks of the oscillations of the filter.

For all that matters, we will refer to slowly converging directions as Ritz phantoms
and not distinguish them from absolute stagnation, both in residual and position,
which has been observed only for ideal filters on enlarged searchspaces so far.

FP

4.2 Convergence revisited 141

−5 · 10−5 0 5 · 10−5
10−8

10−7

10−6

10−5

10−4

10−3

Spectrum

R
es

id
ua

l

10−5

10−4

10−3

10−2

10−1

100

A
bs

ol
ut

e
fil

te
r

va
lu

e

Figure 4.10: Paths of Ritz phantoms. The logarithmic plot of the filter function at the
positions of the eigenvalues is shown as overlay.

4.2.4.1 Disturbance of convergence

Convergence is obstructed in the presence of Ritz phantoms. This is the conclusion
drawn from observations made during experiments involving Ritz phantoms that
did deviate from the expected convergence behavior. One of these experiments is
presented as an example below.

Experiment 4.9 — Ritz phantom disturbances
We generate a definite pair (A,B) of size 1000 with an evenly distributed ran-

dom spectrum in [−1/2, 1/2] such that two slowly converging directions appear for a
searchspace size of 30 in combination with a weak filter, i.e., a filter with a gentle
slope instead of steep flanks, to compute 20 inner eigenpairs. A Butterworth filter of
degree 4 is applied for slow convergence and increased probability of Ritz phantoms.
Figure 4.11 shows the residuals over 100 iterations presented in two styles: the left
plot shows the residuals of Ritz values inside (blue) and outside (red) the target
interval over the iterations; the right plot shows the residuals at the position of the
respective Ritz value where the color indicates the ordering of the Ritz values.

In the left plot, distinct disturbances can be seen at different iterations for different
Ritz values. In the right plot, these disturbances occur as clustering of markers,
followed by a switch in color. This indicates that the ordering of the Ritz values
changed. At the top of the right plot, the movement of the Ritz phantoms can be
seen; they ultimately move towards the eigenvalue associated with the most dominant
among the overlapping eigendirections. As they pass by the regular Ritz values, they
cause a change in the ordering produced by the eigensolver of the projected Rayleigh-
Ritz eigenproblem. Thus, both plots together reveal that the observed disturbance of
convergence occurs exactly as one of the Ritz phantoms passes the corresponding Ritz

FQ

142 4 Taming the BEAST – Quality of results

20 40 60 80
10−19

10−15

10−11

10−7

10−3

R
es

id
ua

l

−5 · 10−3 0 5 · 10−3

Real axisIteration

Figure 4.11: Disturbance of Ritz values by nearby Ritz phantoms. Left: Residuals plotted
against iteration number. Right: Residuals plotted against Ritz value position.

value and that the disturbance is not only related to the presence of Ritz phantoms
in the searchspace, but also to its proximity to the remaining Ritz values. The effect
observed here is the same one as described in Section 4.3.1, where the proximity of
a Ritz phantom raises already stagnating residuals.

Ideal filters The production of Ritz phantoms which are closest to real unoccupied
slots, in the sense that no progress can be made, requires an ideal filter where
identical filter values for certain directions can be assured. If at least λm0 and λm0+1
are chosen to be part of this group, a Ritz phantom occurs due to indistinguishability
between the associated directions, caused by identical scaling during the application
of the projection operator. This ensures, in theory, absolutely no convergence. And
indeed, these Ritz phantoms not only do not improve in terms of residual, their
position on the spectral axis is also fixed.

Estimated filter values As before, if Y contains directions with no or weak rep-
resentation of an eigendirection, Ritz phantoms in the main Rayleigh Ritz process
of the original matrix pencil occur, but the related eigenvalues of BU in the second
implicit Rayleigh Ritz process appear to be converging to the correct filter values
instead of behaving like a Ritz phantom themselves. This is true, even for artificially
created, most stagnant Ritz phantoms (see above). This is related to the difference in
eigenvalue distribution of (A,B) and P 2

f . Remember that X = YWP , Section 4.2.2.
Generally, we expect the residual∥∥∥P 2

f YWP − YWPΛP

∥∥∥
to behave similarly to ‖AX −BXΛ‖, seeing that the progression and quality of Y
is linked to the main Rayleigh-Ritz process. Ritz phantoms represent eigenvalues of

FR

4.2 Convergence revisited 143

the projection operator that are densely clustered or identical which does, of course,
not necessarily translate to eigenvalues of (A,B). Eigendirections associated with
identical eigenvalues form an eigenspace such that any direction from this eigenspace
is a valid eigendirection for any of these eigenvalues (see Section 1.1), which brings
us back to the notion of Ritz phantoms representing more than one eigendirection.
Assume a distribution of eigenvalues of the projection operator

f(λ1) > . . . > f(λm0) = f(λm0+1) = . . . = f(λm0+k) >

In this example, the searchspace of size m0 is populated by m0 − 1 distinguishable
directions with one remaining slot. It is impossible for one of the eigendirections of
the k + 1 identical eigenvalues, that shall here be represented by f(λm0), to clearly
occupy this slot. Since all remaining eigenvalues are smaller, the projection process
flattens the single remaining vector of the searchspace set into the eigenspace of
f(λm0), making it a valid eigenvector for any of the k+ 1 identical eigenvalues of P 2

f .
At the same time, this vector is almost certainly not a valid eigenvector of (A,B).
As such, convergence is possible with regard to P 2

f where it is not possible with
regard to (A,B). A welcome consequence is the convergence of eigenvalues of BU

to the correct filter values, even in the presence of Ritz phantoms. This makes it
possible to accurately determine the number of non-phantom eigenpairs inside the
target interval in the first place. Were those filter values to converge at the same
speed as the Ritz phantoms, with similarly large deviations from the actual filter
values, an accurate determination of filter values and therefore the determination of
precise eigencounts would be impossible.

At which speed such an underrepresented eigenspace converges is not immediately
clear. A reasonable assumption is a rate of

f(λm0+k+1)
f(λm0+k)

,

assuming that no full-rank representation of the eigenspace of f(λm0) in the search-
space is necessary.

Experiment 4.10 — Convergence of filter values
We generate a definite pair of size 1000 with evenly distributed random spectrum

in [−1, 1] and a degree-4 Butterworth filter for slow convergence such that the drop
rates can be observed over more iterations. The filter has been modified to enforce
f(λm0) = f(λm0+1). We compute the m = 20 innermost eigenpairs with a searchspace
of size 30 over the course of 50 iterations. The results are depicted in Figure 4.12.

Figure 4.12 shows that all distinct Ritz values converge at rates within the expected
range (gray; only best and worst are shown in blue—indeed, all those Ritz values
converge at the predicted rate). While the premise is not exactly the same, the
application of the convergence theorem for subspace iteration Theorem 1.2 is possible
here as well. Additionally, the convergence rate of the irregular Ritz value f(λm0) of
multiplicity 2 (red) approaches the predicted rate from above (black).

FS

144 4 Taming the BEAST – Quality of results

10 20 30 40
10−0.6

10−0.4

10−0.2

100

Iteration
R

es
id

ua
l

dr
op

ra
te

Figure 4.12: Convergence of approximate filter values of BU . Shown are the best and worst
regularly converging values as well as the special value f(λm0) of multiplicity
2.

Clustering and multiplicity have similar implications for the main progression of
the eigenpairs of (A,B); they are described in the following section.

4.2.5 Clustered eigenvalues
In the latter part of the previous section, we have concluded that eigenpairs that
are clustered can be partially represented by a searchspace that does not fit all
directions as a consequence of eigenvalue multiplicity. We refer to such a cluster as
underrepresented. Eigendirections with identical eigenvalue form an eigenspace in
which every direction is a valid eigendirection corresponding to the eigenvalue. The
subspace iteration process flattens the space spanned by participating directions onto
the eigenspace of the eigenvalue since the corresponding filter values are identical
as well. We can consider this eigenspace—instead of a single direction—to occupy a
slot of the searchspace. When eigenvalues are not identical, but in close proximity
to one another, and with Ritz value locations being of finite accuracy, the concepts
of multiplicity and eigenspace gain an approximative character.

4.2.5.1 Quasi-multiplicity and Quasi-eigenspaces

By Theorem 1.4 for the distances between Ritz values and their associated eigenvalues,
a disk centered on the Ritz value is defined that contains at least one eigenvalue. It
is therefore possible for two or more separate Ritz values to be valid representatives
of the same eigenvalue or for one Ritz value to represent two or more eigenvalues,
depending on distances and residuals. Whether that is truly the case cannot be
discerned from the Ritz values alone. Thus, within this region of uncertainty, Ritz
values and/or Ritz vectors may be disturbed without invalidating any of the above
statements.

Consider two eigenvalues λi and λj as well as a Ritz value λ with residual r such
that

|λi − λ| < |λj − λ| ≤
∥∥∥B− 1

2 r
∥∥∥.

FT

4.2 Convergence revisited 145

For both eigenvalues the Ritz value is a reasonable assignee. If the residual becomes
smaller, the right inequality breaks no later than∥∥∥B− 1

2 r
∥∥∥ ≤ 1

2 |λi − λj|.

The same holds for
|λj − λ| ≤ |λi − λ| ≤

∥∥∥B− 1
2 r
∥∥∥.

If we assume that λ→ λi with decreasing r, the estimated point of separation will
likely be closer to |λi − λj|.
In other words, reversing the interpretation, a given residual allows for some

perturbation of the Ritz value’s position. Within that leeway granted by the residual,
both eigenvalues may be represented by the same Ritz pair. For two potential Ritz
vectors xi and xj

‖Axi −Bxiλ‖+ ‖Axj −Bxjλ‖ ≥ ‖A(xi + xj)−B(xi + xj)λ‖ =:
∥∥∥B− 1

2 r
∥∥∥.

As such, the residual of a Ritz pair representing two eigendirections can be small if
the Ritz vector is a linear combination of those Ritz vectors that, would they both be
included in the searchspace set, would produce a reasonably small residual themselves.
If the inseparability condition is violated, only one of those residuals would continue
to drop while the other is restricted by the distance between the Ritz value and the
unpaired eigenvalue. This can be extended to arbitrary numbers of simultaneously
represented directions. If the effective Ritz vector could be decomposed into directions
of which only one would produce a large residual, the combined Ritz vector would
likely produce a similarly large residual.

With this principle of uncertainty, we can think of the approximate Ritz vectors as
spanning a quasi-eigenspace that represents multiple eigendirections via a Ritz value
of quasi-multiplicity, all within the range imposed by the current residual. Conjoint
convergence as quasi-eigenspace is possible until the residual is small enough to
separate the directions. This quasi-eigenspace should therefore be considered to
occupy a slot of the searchspace until separation occurs, after which one distinct
direction of the (former) quasi-eigenspace takes over the slot.

4.2.5.2 Expulsion of clustered values

The general rule of dominance, the survival of the fittest, applies here as before. Thus,
a cluster cannot be decimated through replacement by less dominant directions. It
occupies as many slots as possible, up to a maximum number equal to the number
of clustered eigenvalues. Three distinct situations are possible.

Case 1 All clustered values fit the searchspace.
Case 2 The cluster is the least dominant element and not all clustered values fit the

searchspace.
Case 3 The cluster is the most dominant element, but not all clustered values fit

the searchspace.

FU

146 4 Taming the BEAST – Quality of results

In the first case, all clustered eigenvalues are represented in the searchspace by a
distinct direction in form of a Ritz vector. Peculiarities involving the convergence
under these conditions will be discussed at a later point, see Section 4.2.5.3. Cases
two and three are fundamentally identical. A fourth case, where the cluster is
excluded from the searchspace completely is of no relevance here.
The situation of the cases two and three translates the convergence behavior of

the approximate filter values of BU examined in the previous section to the original
eigenvalue problem and permits the following prognosis. While clustered filter values
do not imply clustered eigenvalues, the reverse is true for most non-ideal filters. The
filter values of clustered eigenvalues are themselves clustered and, albeit differences
in density exist, convergence is influenced in similar manner.

Experiment 4.11 — Convergence of clustered values with under-representation
We generate a definite pair of size 1000 with an evenly spaced spectrum in an

interval of size two, centered around one, to make sure that no clustering apart from
the intentionally injected cluster is perturbing the results. A Butterworth filter guar-
antees smooth filter value distribution and direct translation of eigenvalue positions
to magnitude of the corresponding filter values. A cluster of size k = 10 and inner
separation 10−10 is added as the least dominant element in the searchspace. The
searchspace and interval are chosen such that only one slot represents the cluster.
The overall searchspace size is 20.

Figure 4.13 shows the residual convergence history (left) and a selection of achieved
residual drop rates (right). For Figure 4.14, the experiment was repeated with less
densely clustered values at a density of 10−5.

50 100 150 200
10−18

10−9

100

Iteration

R
es

id
ua

l

0 50 100 150 200

10−0.2

100

Iteration

R
es

id
ua

l
dr

op
ra

te

Figure 4.13: Convergence of clustered values with under-representation. The cluster of size
10 and density 10−10 is represented by only one Ritz pair (red).

For the experiment depicted in Figure 4.13, convergence proceeds at the expected
rates (gray area) for non-clustered slots (blue). The slot representing the cluster
(red) converges at what appears to be

f(λm0+k)
f(λm0) ≈ · · · ≈

f(λm0+k)
f(λm0+k−1) ,

FV

4.2 Convergence revisited 147

50 100 150 200
10−18

10−9

100

Iteration

R
es

id
ua

l

0 50 100 150 200

10−0.2

100

Iteration

R
es

id
ua

l
dr

op
ra

te

Figure 4.14: Convergence of clustered values with under-representation. The cluster of size
10 and density 10−5 is represented by only one Ritz pair (red).

indicated by the lower one of the two gray lines, until the residual approaches the
cluster separation after which the convergence rate changes to the expected value
(upper gray line). The change in drop rate happens gradually, without any direct
jump.

For the experiment depicted in Figure 4.14, convergence of all Ritz pairs appears
to be influenced by all clustered values. Due to the clustered values being indistin-
guishable, this makes sense. The regular Ritz values converge at a rate between

f(λm0+1)
f(λi)

and f(λm0+k−1)
f(λi)

,

indicated by the gray regions, with a tendency towards worse drop rates, while the
Ritz value representing the cluster (red) converges at a rate between

f(λm0+k)
f(λm0) and f(λm0+k)

f(λm0+k−1) ,

again indicated by the corresponding gray regions before and after the split. The
arithmetic or geometric mean of the drop rates appears to be a reasonably good
overall estimate for the real drop rates, but both are not absolutely accurate.
It is unlikely that the filter values would not be clustered with the eigenvalues

being clustered. This situation might occur if the clustered values are located directly
on a very sharp flank of a high-degree filter. To answer two questions arising in
such scenarios, the modifications of the filter and its application to the spectrum are
required.

Will drop rates for regular Ritz values change after the separation of the cluster?
In order to test this, we need the representative Ritz value of the cluster to converge
faster, such that the remaining Ritz values have not yet reached saturation when the
cluster separates but without having the other directions of the cluster occupying the
searchspace. By manually modifying the eigenvalues of the approximate projection
operator and, with this, the dominance of the different directions, the Ritz value

FW

148 4 Taming the BEAST – Quality of results

representing the cluster (and only this single value) can be allowed to converge much
faster than the remaining Ritz values (and the rest of the cluster), at least until
the cluster separates. There seems to be no change in the convergence rates of the
regular Ritz values at this point or later.

What happens if the filter values are not clustered? Again, this requires the
manual modification of the eigenvalues of the approximate projection operator, specif-
ically assigning different convergence speeds to directions of the cluster. As a side
effect, the ranges for possible convergence speeds from Experiment 4.11 become
larger, given that the convergence speeds of the cluster values are now spread over a
wider range. The separation of the cluster can be observed as before. Convergence
rates are higher in accordance with the chosen filter values and within the predicted
ranges mentioned above. The Ritz value of the cluster converges with a tendency
towards the best possible drop rate before separation and with a tendency towards
the worst possible drop rate after separation.

Consequences for estimated filter values The observations made here apply to
both the primary Rayleigh-Ritz process on (A,B) and the implicit secondary process
on P 2

f . With the emergence of a Ritz phantom as described in Section 4.2.4 the
associated estimated filter values obtained from BU would accordingly be assumed
to converge slowly. However, if the filter values are identical, faster convergence
of this underrepresented cluster has been confirmed possible. We now have to
revise this statement in that this accelerated convergence is only possible until
a certain residual is reached. This residual limit is related to the density of the
cluster, i.e., the separation of the values. If the values are identical, convergence is
generally accelerated. With non-zero separation, accelerated convergence can only be
maintained up to a certain residual. This is in general a favorable result; the smaller
the separation is and the slower convergence should be, the longer these values can
converge at accelerated speeds. We therefore can expect improved accuracy for
estimated filter values of Ritz phantoms.

4.2.5.3 Clustered super convergence

If another Ritz value λ′ is introduced that fulfills the same conditions as λ from
before, exchanging both in the relations from the start of this section does not
change the bounds on the residual. For all that matters, λ and λ′ may be considered
interchangeable. During subspace iteration, the emergence of two Ritz values that
are associated with the same eigenvalue is prevented by either orthogonalization or
the Rayleigh-Ritz procedure. The largest possible distance between λ and λ′ such
that both of them still may represent both eigenvalues is

|λ− λ′| ≤
∥∥∥B− 1

2 r
∥∥∥+

∥∥∥B− 1
2 r′
∥∥∥− |λi − λj|.

We may think of both Ritz values simultaneously representing both eigenvalues via
linear combination of their Ritz vectors. While both vectors are kept orthogonal

FX

4.2 Convergence revisited 149

among themselves and to all other vectors by the eigensolver for the reduced-size
Ritz eigenproblem, they could, potentially, freely rotate within the span of their Ritz
vectors.

Thus, Ritz values in close proximity may be considered as being of a quasi-
multiplicity larger than one with their Ritz vectors forming a quasi-eigenspace. De-
pending on the spectral distribution, these quasi-eigenspaces get subdivided as the
corresponding residuals are surpassed. Some peculiarities in convergence behavior
can be attributed to this behavior.

Experiment 4.12 — Clustered super convergence
We generate a definite pair of size 1000 with evenly spaced spectrum in an interval

of size two, centered around one. A Butterworth filter is used for slower convergence
over many iterations. A cluster of size k with density d is added as least dominant
element in the searchspace; searchspace size and interval are chosen such that values
inside the target interval and the clustered values are occupying all slots. Figure 4.15
shows the convergence history of two scenarios, k = 2 with d = 10−10 on the left and
k = 10 with d = 10−15 on the right.

0 50 100 150
10−18

10−9

100

Iteration

R
es

id
ua

l

0 50 100 150 200 250
10−18

10−9

100

Iteration

R
es

id
ua

l

Figure 4.15: Convergence of clustered values with full representation. The cluster (red) of
size k = 2 (left) / k = 10 (right) and density d = 10−10 (left) / d = 10−15

(right) shows atypical convergence behavior.

Only one Ritz pair among the clustered values converges at the estimated rate while
the remaining values of the cluster converge at much higher speeds, but only until
a certain residual is reached. Beyond this point they seem to reunite with the next
slowest value from the cluster, a process during which the residual increases again.
The residual at which the turn over occurs is influenced by the cluster separation.

Since the spectrum of any matrix can be considered more or less clustered, the
mechanism described here applies to all Ritz pairs of all iterations. Starting from few
quasi-eigenspaces comprised by large residuals, continued iteration repeatedly sepa-
rates them, based on the spectral distribution, into more and more quasi-eigenspaces
until they—ideally—represent only a single direction.
If convergence speed is increased, this also applies to the slowest converging clus-

tered values, allowing them to catch up faster. This, in turn, reduces the rebound time

FY

150 4 Taming the BEAST – Quality of results

of clustered values with accelerated convergence. Since accelerated values rebound
around a certain residual, the effect gradually vanishes with increased convergence
speeds.

4.2.5.4 Disturbances through Ritz phantoms

The analysis of the behavior of clustered Ritz values may also shed a light on why the
convergence of Ritz values is disturbed when a Ritz phantom is in close proximity. In
the reduced eigenproblem (AU , BU), the Ritz phantom and the nearby regular Ritz
value form a cluster with possibly very small distance. The situation differs from
before in that one residual is considerably larger than the other. If we assume the
two associated primitive Ritz vectors to span a quasi-eigenspace with regard to the
(almost equal) Ritz values, both influencing each other does not seem impossible. The
primitive Ritz vectors may change direction within the quasi-eigenspace, explaining
a temporary increase in residual. This may well be a byproduct of the eigensolver
enforcing orthogonality among both vectors.

4.2.6 Comparison of filter functions
The speed of convergence that any filtering function will provide can be estimated
from the filtering function in combination with a spectral distribution and, if the
filter is decaying, a searchspace size. For non-decaying filters it can be assumed that
residual drop is limited by the maximum stopband gain.
A comparison of filtering functions may be conducted by fixing the workload; in

this case, the number of linear solves, i.e., the degree of the filter. Filters based
on polynomial approximation have to be excluded from this comparison, since they
rely on matrix vector multiplication alone. This also neglects the important aspect
of the difficulty of the linear systems arising in the application of the filter, which
is related to the number of iterations an iterative linear solver requires to reach a
suitable residual.5 As an indicator, we will include the minimum distance of the filter
poles to the real axis. To conduct the comparison, we fix the transition bandwidth
to obtain the associated stopband gain. The Cauchy filter has to act as reference
since there these values are dictated by the filter degree.

4.2.6.1 Definition of transition band and stopband gain

By construction, the transition band for filters from electronic filter design (Sec-
tion 2.4) is known; for Zolotarev filters, the transition band is explicitly given through
the parameter κ. For Cauchy and Chebyshev polynomial filters, the transition band
has to be derived from the maximum oscillation amplitude next to the filter’s flanks
and is defined solely through the filter’s degree. For the following comparison, we
find these values via a root finding algorithm applied to the derivative of the filtering

5) With iterative linear solvers, where matrix vector multiplications are the major workload, com-
parison with polynomial based filters is possible again.

GA

4.2 Convergence revisited 151

function for Cauchy filters on a circular contour over [−1, 1] with Gauss-Legendre
rule of degrees 2–32, see Table 4.3. The deviations from zero respectively one are
identical. Since the oscillations decay in stop- and passband, we will list first (δ1)
and second order deviations (δ2), the sum of which gives the total oscillation range.
See Figure 4.16 for clarification.

Interval

δ1

δ2

Figure 4.16: Exaggerated depiction of the filter deviations δ1 and δ2 from zero in the stop-
band. The deviations from one in the passband are identical in magnitude, δ1
being the positive deviation, δ2 the negative deviation.

Degree δ1 δ2 fp fs

2 0 0 — —
4 1.513478030173369e−02 0 4.905288111002327e−01 1.857192322077595e+00
6 1.957776350723739e−02 2.453811436999645e−04 7.051153779587295e−01 1.351019874275442e+00
8 2.150652768468497e−02 4.858103437515304e−04 8.119039455581168e−01 1.195912530809244e+00

10 2.252169669840243e−02 6.567219584557721e−04 8.706581789242298e−01 1.126116594149748e+00
12 2.311814598731410e−02 7.719818204051654e−04 9.059541901132968e−01 1.088328611863879e+00
14 2.349707556942965e−02 8.509878644063773e−04 9.286743279905780e−01 1.065444703868107e+00
16 2.375234504673240e−02 9.067621283803950e−04 9.441095469580231e−01 1.050492409508766e+00
18 2.393230151981124e−02 9.473203792700891e−04 9.550535057171183e−01 1.040167375609645e+00
20 2.406383706919518e−02 9.776154002443527e−04 9.630855245051573e−01 1.032730454306030e+00
22 2.416285334169493e−02 1.000783187234927e−03 9.691500447281927e−01 1.027192254396067e+00
24 2.423923276491330e−02 1.018867359921322e−03 9.738388114970027e−01 1.022954959994240e+00
26 2.429937532521365e−02 1.033237762895239e−03 9.775373901448535e−01 1.019639521398144e+00
28 2.434757193162140e−02 1.044836896434254e−03 9.805054996212751e−01 1.016995915102813e+00
30 2.438678575722864e−02 1.054328765719342e−03 9.829231558326313e−01 1.014853687800546e+00
32 2.441911592986706e−02 1.062191242318128e−03 9.849182595835504e−01 1.013093328470374e+00

Table 4.3: Cauchy filter deviations and resulting transition bands.

4.2.6.2 Fair conditions

Cauchy and Zolotarev filters oscillate about zero in their stopbands. Scaling and
shifting the Cauchy filter to fit the value range between zero and one with the help

GB

152 4 Taming the BEAST – Quality of results

of Table 4.3 for a given degree,
f(λ) + δ1

1 + 2δ1
,

as is the case with all filters from electronic filter design, eliminates its decaying
property. With this, the comparison would be flawed. Note that the scaling itself
has no influence on the resulting estimated convergence speed; it cancels out in the
division. A proper shift for the electronic filters, however, reduces the maximum
stopband gain by one half, since we don’t have to prevent negative filter values in the
context of subspace iteration. We therefore shift all filters such that they oscillate
about zero in the stopband and rescale them to oscillate about one in the passband.
Additionally, for the Cauchy and Zolotarev filters to match the electronic filters,
the transition band is defined to start at fp = 1. The modified values for fs of the
Cauchy filters are easily computed from Table 4.3,

f ′(λ) = f(fpλ) −→ f ′p = 1, f ′s = fs
fp

such that f ′(1) = 1− δ2 and f ′(f ′s) = δ1. For the Zolotarev filter, this transformation
is equivalent to a scaling with G, if [1/G,G] is the untransformed transition interval.
Let f ′s be the transformed end of the desired transition band. Then G is given by
solving

G2 − 1 = f ′s − 1 ⇒ G =
√
f ′s.

From G, the elliptic modulus κ can be computed and the filter poles and weights
have to be transformed per scaling with G. The new transition interval is then
[1, G2]. Of course, fixing fp in this way has no influence on the values of the filter
and only plays a role for convergence speed if we assume λm0+1 to be located within
some distance of f ′s.
For type-I Chebyshev and elliptic filters, larger oscillations in the passband can

be allowed to improve transition band and maximum stopband gain at the price
of reducing the wost-case residual drop rate inside the target interval by a small
amount. Controlling the passband ripple is a unique feature to some electronic filters
that may benefit them in this comparison.
We therefore fix the allowed oscillation in the passband to 10%. This choice is

rather arbitrary. Even large oscillations in the passband only have a comparatively
small effect on convergence, as long as the filter values do not drop to values too
close to zero. For the sake of defining a compact interval where eigenpairs inside this
interval converge faster than all other eigenpairs, the value of the filter function inside
the interval should not drop below the function’s value at the interval boundaries.
Beyond this point, the approximated spectral region is no longer an interval and a
collection of chunks from the original interval would be missing. If the eigenvalues
in the transition band are more dominant than the eigenvalues dampened by the
oscillations, the latter might not even appear in the searchspace, depending on the
searchspace size. This would also affect the evaluation of approximate filter values
to obtain an eigencount, following Section 4.2.2.4 and Section 4.2.4.1, which relies on

GC

4.2 Convergence revisited 153

comparing estimated filter values with the boundary values of the filter. For Cauchy
filters, something similar is possible by changing the integration contour to an ellipse.
This case shall be considered separately.

4.2.6.3 Strict searchspace size

In this first comparison, we assume λm0+1 = fs such that the value of the filter
function at that position is the maximum stopband gain of the filter. Whether the
transition band does contain eigenpairs is not of importance, the searchspace size
is assumed to be chosen accordingly. We summarize the best and worst possible
residual drop rates of eigenpairs inside the passband,

min
|λ|<fp

∣∣∣∣∣fsλ
∣∣∣∣∣ and max

|λ|<fp

∣∣∣∣∣fsλ
∣∣∣∣∣,

in Tables 4.4 and 4.5, respectively. The differences arise solely due to the oscillations
in the passband. Table 4.6 lists the minimum distance of the filter poles to the real
axis.

This setup does not reflect the decaying property of some of the filters, which is why
the improvements with increasing degree are small in some cases. Furthermore, it is
clear that oscillations in the passband have only small influence on the difference in
convergence, unless the filter gain differs in orders of magnitude inside the passband.
It should be noted that, without a shift of the filter function to halve the stopband
gain, Chebyshev filters of type I and II produce the same drop rates under these
conditions.

Degree Cauchy Zolotarev Butterworth Chebyshev (I) Chebyshev (II) Elliptic

4 1.4909133e−02 8.9573292e−03 4.1961965e−02 1.1619177e−02 5.8435374e−03 1.4682727e−03
6 1.9201834e−02 5.5680001e−03 1.5390488e−01 1.7639255e−02 8.8981059e−03 5.6399569e−04
8 2.1053734e−02 2.9618265e−03 2.8883734e−01 1.9448193e−02 9.8195835e−03 1.5881780e−04

10 2.2025641e−02 1.5270911e−03 4.0719232e−01 1.9799866e−02 9.9989219e−03 4.2102859e−05
12 2.2595773e−02 7.8596795e−04 4.9907712e−01 1.9655660e−02 9.9253752e−03 1.1136796e−05
14 2.2957638e−02 4.0746514e−04 5.6801879e−01 1.9351791e−02 9.7704332e−03 2.9909292e−06
16 2.3201260e−02 2.1336735e−04 6.1984046e−01 1.9011015e−02 9.5967296e−03 8.1981043e−07
18 2.3372933e−02 1.1291903e−04 6.5938901e−01 1.8678834e−02 9.4274641e−03 2.2956452e−07
20 2.3498375e−02 6.0380746e−05 6.9015390e−01 1.8371113e−02 9.2707135e−03 6.5632942e−08
22 2.3592784e−02 3.2604768e−05 7.1455196e−01 1.8091950e−02 9.1285517e−03 1.9136524e−08
24 2.3665596e−02 1.7767883e−05 7.3425243e−01 1.7840773e−02 9.0006763e−03 5.6827601e−09
26 2.3722923e−02 9.7652415e−06 7.5042109e−01 1.7615292e−02 8.8859101e−03 1.7165124e−09
28 2.3768857e−02 5.4095315e−06 7.6388550e−01 1.7412734e−02 8.7828336e−03 5.2674027e−10
30 2.3806228e−02 3.0187261e−06 7.7524374e−01 1.7230361e−02 8.6900471e−03 1.6402972e−10
32 2.3837036e−02 1.6961156e−06 7.8493578e−01 1.7065671e−02 8.6062717e−03 5.1782722e−11

Table 4.4: Best residual drop rates.

GD

154 4 Taming the BEAST – Quality of results

Degree Cauchy Zolotarev Butterworth Chebyshev (I) Chebyshev (II) Elliptic

4 1.5134780e−02 9.1207239e−03 4.6624406e−02 1.2910197e−02 6.4970378e−03 1.6316803e−03
6 1.9582568e−02 5.6307036e−03 1.7100542e−01 1.9599173e−02 9.8965688e−03 6.2670115e−04
8 2.1516980e−02 2.9794759e−03 3.2093037e−01 2.1609104e−02 1.0922565e−02 1.7646734e−04

10 2.2536496e−02 1.5317694e−03 4.5243591e−01 2.1999851e−02 1.1122269e−02 4.6781173e−05
12 2.3136006e−02 7.8720538e−04 5.5453014e−01 2.1839622e−02 1.1040370e−02 1.2374233e−05
14 2.3517088e−02 4.0779747e−04 6.3113199e−01 2.1501990e−02 1.0867835e−02 3.3232557e−06
16 2.3773902e−02 2.1345844e−04 6.8871162e−01 2.1123350e−02 1.0674415e−02 9.1090056e−07
18 2.3954994e−02 1.1294453e−04 7.3265446e−01 2.0754260e−02 1.0485944e−02 2.5507169e−07
20 2.4087385e−02 6.0388038e−05 7.6683767e−01 2.0412348e−02 1.0311414e−02 7.2925492e−08
22 2.4187059e−02 3.2606894e−05 7.9394662e−01 2.0102166e−02 1.0153133e−02 2.1262804e−08
24 2.4263954e−02 1.7768514e−05 8.1583604e−01 1.9823081e−02 1.0010763e−02 6.3141779e−09
26 2.4324508e−02 9.7654322e−06 8.3380121e−01 1.9572547e−02 9.8829912e−03 1.9072360e−09
28 2.4373037e−02 5.4095900e−06 8.4876167e−01 1.9347482e−02 9.7682365e−03 5.8526696e−10
30 2.4412524e−02 3.0187443e−06 8.6138193e−01 1.9144846e−02 9.6649400e−03 1.8225524e−10
32 2.4445081e−02 1.6961213e−06 8.7215087e−01 1.8961857e−02 9.5716771e−03 5.7536358e−11

Table 4.5: Worst residual drop rates.

Degree Cauchy Zolotarev Butterworth Chebyshev (I) Chebyshev (II) Elliptic

4 1.2561759e+00 1.1802759e+00 1.2247448e+00 7.3523425e−01 3.1011790e−01 7.1317626e−01
6 4.9170871e−01 4.1075537e−01 7.2112478e−01 3.2197743e−01 2.8438360e−01 2.7081071e−01
8 2.6653518e−01 1.9377919e−01 5.0363972e−01 1.8002708e−01 2.0045553e−01 1.2808220e−01

10 1.6865341e−01 1.0833140e−01 3.8495203e−01 1.1488016e−01 1.4144062e−01 6.9510912e−02
12 1.1686884e−01 6.7407208e−02 3.1082535e−01 7.9647817e−02 1.0354183e−01 4.1423401e−02
14 8.5989225e−02 4.5130458e−02 2.6033409e−01 5.8458425e−02 7.8610566e−02 2.6420239e−02
16 6.6026348e−02 3.1867683e−02 2.2380814e−01 4.4728021e−02 6.1549697e−02 1.7745991e−02
18 5.2345685e−02 2.3431800e−02 1.9619308e−01 3.5324756e−02 4.9429613e−02 1.2416475e−02
20 4.2546640e−02 1.7786386e−02 1.7460013e−01 2.8603806e−02 4.0535907e−02 8.9798936e−03
22 3.5280066e−02 1.3852990e−02 1.5726237e−01 2.3633841e−02 3.3827584e−02 6.6748708e−03
24 2.9738430e−02 1.1021085e−02 1.4304008e−01 1.9855362e−02 2.8647941e−02 5.0772985e−03
26 2.5413497e−02 8.9259746e−03 1.3116587e−01 1.6915768e−02 2.4567888e−02 3.9389176e−03
28 2.1972009e−02 7.3399604e−03 1.2110451e−01 1.4583884e−02 2.1298155e−02 3.1082279e−03
30 1.9187858e−02 6.1155171e−03 1.1247154e−01 1.2703022e−02 1.8638292e−02 2.4894380e−03
32 1.6903131e−02 5.1540023e−03 1.0498375e−01 1.1163930e−02 1.6445990e−02 2.0200974e−03

Table 4.6: Minimum pole distances to the real axis.

4.2.6.4 Relaxed searchspace size

Convergence rates depend heavily on the spectral distribution. Whether one filter
will perform better than others hinges on the position of λm0+1 and, with this, also
on the size of the searchspace. To emphasize at what point one filter becomes better
than another, we compare filtering functions in a suitable representation. Since
the most dominant directions occupy the searchspace, the sorted filtering functions
give more of an idea of possible convergence speeds, given that they are directly
proportional to f(λm0+1). Figure 4.17 shows the filters at degree 16. The first plot
depicts the filters in a conventional logarithmic way. The transition band is indicated

GE

4.2 Convergence revisited 155

as well. It is not easy to infer which directions would populate the searchspace and
what drop rates can be expected given a certain searchspace size, even though the
dampening allows for some assumptions. The second plot assumes that the target
interval covers the central 2% of the spectrum and depicts the first 1 000 values of
the filter function, evaluated at 5 000 equidistant points along the spectral line and
sorted descendingly. The coverage assumption assures the consideration of far-away
filter values in the sorted representation; otherwise, low filter values gather at the
right side of the plot, indicating better drop rates, although this is only realistic if
the spectral range matches the plot range.6 The x-axis remains unlabeled as it does
not represent any meaningful quantity anymore. The corresponding transition band,
however, can still be indicated since values to the left or right are guaranteed to
be larger or smaller, respectively. Eigenvalues are considered to be populating the
available searchspace starting from the left in this representation. The third plot
shows an identical representation of the filter functions, but here each line indicates
an eigenvalue of a randomly chosen exemplary spectral distribution.7 Choosing any
such line (e.g., the line highlighted in red) as λm0+1 implies that all eigenvalues (lines)
to the left are contained in a searchspace of suitable size and the residual drop rates
to be expected are chiefly influenced by the filter’s value at that position, the filter
with the lowest value resulting in the best drop rates. It is then obvious that choosing
larger searchspace sizes (lines farther to the right) influences which filter has to be
considered best.8 Filters having the benefit of decay eventually outperform other
filters if the searchspace is chosen large enough and the spectral distribution allows
it. Choosing different parameters mixes up these relations further. This includes
elliptic contours for Cauchy filters and passband oscillations for the electronic filters,
but in particular the transition band, which we have fixed for all these comparisons.
In combination with enlarged searchspaces however, tight transition bands are of
lesser importance and relaxing the constraints improves overall dampening. Filters
which are influenced by this parameter are the non-decaying filter types (Zolotarev,
Chebyshev-II, and elliptic). Other filters are either smooth or there is no direct way
to define a transition bandwidth (Cauchy). Figure 4.18 compares these parameter
modifications for filters of degree 16. Throughout, increasing passband oscillations,

6) For equioscillating filters for example, the potential eigendirections associated with the smaller
filter values caused by the oscillations in the stopband will never appear in the searchspace since
almost all other eigenvalues are more dominant. This can only be the case if the searchspace is
large, close to the size of the eigenproblem.
7) These semantics need further clarification. Since the ordering by filter value is individual for each
filter, each line represents a different eigenvalue for each filter function, i.e., the original positions
of the eigenvalues are different for each filter. This defines the occupancy of the searchspace and
reflects the filter properties when the searchspace size is increased in a more general way, removing
the dependency on spectral distribution to a degree. A similar comparison for one specific spectral
distribution will differ from case to case. Such a comparison would be possible by sorting only the
eigenvalues of the projection operator matrix.
8) The strict comparison of Section 4.2.6.3 corresponds to placing the red line at the position
corresponding to fs, placing a line at position 0 for best drop rates, and placing a line at the
position corresponding to fp = 1 for worst drop rates.

GF

156 4 Taming the BEAST – Quality of results

1 2 3 4
10−15

10−10

10−5

100

Real axis

A
bs

ol
ut

e
fil

te
r

va
lu

e

Individually sorted

Figure 4.17: Comparison of filters of degree 16. Depicted are Cauchy (blue), Zolotarev
(red), Butterworth (yellow), Chebyshev-I (purple), Chebyshev-II (green), and
elliptic (light blue) with the setup and parameters chosen as described.

be it via elliptic contours for Cauchy filters or explicitly for electronic filters, improves
the dampening properties of the filter. The same holds for wider transition bands.
The Zolotarev filter has to maintain its low passband oscillation strength due to
which the dampening properties in the transition band towards the passband become
considerably weaker, a constraint that does not apply to filters where passband
oscillations can be specified. We may summarize the findings as follows. Allowing

10−13

10−9

10−5

10−1

A
bs

ol
ut

e
fil

te
r

va
lu

e

Individually sorted

Figure 4.18: Filter parameter modification; all filters are of degree 16. Left: Semi-minor
axis length ` = 1.0, 0.75, 0.5, 0.25, 0.1, 0.01 for a Cauchy filter. Center:
Passband oscillations of 0.1, 1, 10, 25, 50 percent for a Chebyshev-I (purple),
Chebyshev-II (green), and elliptic (light blue) filter. Right: Transition band-
width of 0.1, 0.25, 0.5, 2.0 for a Zolotarev (red), Chebyshev-II (green), and
elliptic (light blue) filter.

passband oscillations is a good way to improve filtering properties. Even passband
oscillations at 50% of the total (unscaled) filter gain do not change the filtering
magnitude for eigenvalues inside the target interval by much. For Cauchy filters, the
strength of oscillation for a certain semi-minor axis length depends on the degree,
higher degrees allowing narrower ellipses without impeding the filtering magnitude
in the passband. The transition bandwidth can be chosen very lax for compatible
filter types, if the searchspace is large enough. It requires some knowledge about

GG

4.2 Convergence revisited 157

the spectral distribution to make sure that λm0+1 is located beyond fs in the sorted
representation of the filter for optimal performance. Filters that allow the separate
modification of these parameters have to be considered superior.

4.2.6.5 Choice of interval

Given a transition band, the actual position of the target interval’s boundaries may
be chosen at some position inside of it. If all eigenpairs inside the target interval
should converge with approximately equal speeds, interval boundaries should be
mapped close to fp. This is because eigenvalues in the transition band converge at
slower speeds and choosing the interval to contain (parts of) the transition band
will include these eigenvalues in the interval. This choice, however, can diminish
overall convergence speed since the filter function is expanded slightly, resulting at
larger filter values at λm0+1. In the literature, typical choices are the half-points of
the filter function, if they can be uniquely determined, see, e.g., [Krä+13; Krä14;
Pol09; Güt+15]. This will cause eigenvalues located close to the interval boundaries
to converge slower while still being considered inside the interval.

4.2.7 Difficulty of linear systems
A factor that, so far, did not play a role in the analysis conducted and has yet to be
explored is the inherent difficulty of linear systems depending on the pole location
when employing iterative linear solvers. Linear systems arising in the context of
spectral filtering have the form

(zB − A)X = BY ⇐⇒
(
zI −B−1A

)
X = Y (4.3)

where shifts z are the poles of the partial fraction form of the filtering function. The
spectrum of the resulting matrix operator for the linear systems then is a mapping
of the spectrum of the matrix pencil where z is mapped to zero and, consequentially,
the eigenvalue of the matrix pencil closest to z becomes the smallest magnitude
eigenvalue of the effective operator, its magnitude being the distance of its preimage
to z. The system matrix thus is not Hermitian anymore, unless z is real.
For normal matrices and thus for Hermitian matrices, the condition number is

typically defined as [Saa03; GV13]

κ(A) =
∣∣∣∣∣λmax(A)
λmin(A)

∣∣∣∣∣
and a general indicator of how well an iterative linear solver would perform, i.e.,
how quickly it would converge. The condition number is a quantification of the
condition of a problem that is to be solved by a numerical algorithm. It describes
the sensitivity of the solution of the problem with respect to perturbations of the
input data. The condition number often appears during the analysis of the stability
of numerical algorithms and, for linear systems, relates the relative residual to the

GH

158 4 Taming the BEAST – Quality of results

relative error. The system matrix from Equation (4.3), however, is not normal and
the condition number can be written

κ(A) =
∥∥∥A∥∥∥∥∥∥A−1

∥∥∥
or in terms of singular values. It is therefore difficult to relate the possible perfor-
mance of an iterative solver to the distance of z to an eigenvalue alone.

Figure 4.19 conveys a notion of the difficulty of shifted linear systems in terms of
GMRES iterations (without restarts) for an example matrix pencil of size 1000. The

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Real axis

Im
ag

in
ar

y
ax

is

0

200

400

600

800

1,000

G
M

R
E

S
it

er
at

io
ns

Figure 4.19: Difficulty of an exemplary linear system in term of pole position z in the
complex plane.

spectrum was chosen evenly distributed in [−1, 1], indicated as a black line. Plotting
the number of required iterations in a contour plot reveals that not only the smallest
distance to any of the eigenvalues plays a role, but the proximity to the spectrum
as a whole, increasing the number of iterations for shifts closer to the center of the
spectrum. The absolute position of the spectrum has no influence on this condition.
Figure 4.20 is intended to provide a more detailed analysis of the impact of

multiplicity and density on the difficulty of the linear systems. To this end, the
spectrum has been modified to free the innermost third of the spectral range and
place a cluster of 2, 10, and 100 eigenvalues (plot rows) at the center. Furthermore,
the density of the clustered eigenvalues is varied as 0, 10−10, 10−5, and 10−3 (plot
columns). Since changes in Figure 4.20 are subtle, we have zoomed in on the area
around the clustered eigenvalues at the center with increasing resolution towards
the center in Figure 4.21. For visibility, it was necessary to apply different color
range mappings to each plot. The number of iterations for the shifts appearing
within each row of Figure 4.21 is roughly equal, while the range of required iterations
between rows, from top to bottom, is mostly disjoint, each row starting around
where the previous row stopped. It is obvious that the multiplicity of the cluster
clearly has an impact on the required number of iterations, even if clustered values

GI

4.2 Convergence revisited 159

−0.5

0

0.5

−0.5

0

0.5

Im
ag

in
ar

y
ax

is

−1 0 1 −1 0 1 −1 0 1

−0.5

0

0.5

−1 0 1

Real axis

0 100 200 300 400 500 600 700 800 900 1,000

GMRES iterations

Figure 4.20: Difficulty of linear systems per pole position z in the complex plane in terms
of GMRES iterations required for reaching a relative residual of 10−10. Rows:
clusters of 2, 10, and 100 eigenvalues. Columns: inner cluster separation 0,
10−10, 10−5, and 10−3.

350

375

400

350

375

400

350

375

400

−2 · 10−3

2 · 10−3

340

355

370

500

600

700

500

600

700

500

560

620

−2 · 10−3

2 · 10−3

Im
ag

in
ar

y
ax

is
490

510

530

−3 · 10−3 3 · 10−3

700

800

900

−3 · 10−3 3 · 10−3

700

800

900

−3 · 10−3 3 · 10−3

700

825

950

−2 · 10−3

2 · 10−3

−3 · 10−3 3 · 10−3

iteration limit
reached for

all shifts

Real axis

Figure 4.21: Difficulty of linear systems (zoomed) per pole position z in the complex plane
in terms of GMRES iterations (refer to the color bars) required for reaching
a relative residual of 10−10. Rows: clusters of 2, 10, and 100 eigenvalues.
Columns: inner cluster separation 0, 10−10, 10−5, and 10−3.

GJ

160 4 Taming the BEAST – Quality of results

are not separated in any way. The inner separation among the clustered eigenvalues
influences in what proximity the effect is recognizable, but also the overall difficulty,
increasing the number of iterations required in an area around the clustered values.
Densely clustered values contract the area of increased difficulty around the eigenvalue
cluster. The resolution for the plots is limited, even in the zoomed-in version, such
that local differences in iteration number cannot always be resolved.
Approaches for resolving the difficulties have been hinted at in [Pol13], where

linear solves with comparably high relative residuals could achieve reasonably low
eigenpair residuals, see also Section 4.3.1.2. In [GMP18], a generalization of residual
inverse iteration [Neu85] is used as a nonlinear eigenvalue solver based on contour
integration. This technique allows low accuracy solves of the emerging linear systems
[Pol20].

4.3 Achievable residual
In [Krä+13] and [Krä14], limits for the residual that can be expected from a sub-
space iteration algorithm under certain conditions have been proposed, which act as
somewhat pessimistic upper bound, aiming to specify a residual that can be reached
under any circumstances. The proposed limit has the form

1 εn
∥∥∥B−1A

∥∥∥
2
.

A less pessimistic limit in case the interval boundaries are not too small is given as

2 εnmin{|λmin|, |λmax|}.

In both cases, ε should not be chosen smaller than machine precision (see below).

4.3.1 Absolute rock bottom
From the general theory for the rate of convergence discussed in Section 1.6.1 and in
the first part of this chapter, we can infer that merely disturbing the filtering function
that serves as a basis for a projection algorithm is not enough to impose a hard limit
on the achievable accuracy of a spectral projection eigensolver. The result is nothing
more than a filtering function with diminished dampening properties in regions
where the disturbance is large compared to the value of the filtering function. Due to
this, convergence is slowed down, but not stopped. We do, however, have to expect
to ultimately encounter a limit based on the numerical accuracy the computations
are executed with. Due to the design of floating-point representations, relative
accuracy is retained if the operands do not differ severely in magnitude, meaning
that computations dealing exclusively with small numbers exhibit higher accuracy
on an absolute scale. This is related to a term often referred to as machine precision
ε(1), the distance between unity and the next representable floating-point number
of the same precision, or, more intuitively, the accuracy which can be expected

GK

4.3 Achievable residual 161

when performing computations involving numbers roughly of unit magnitude.9 For
computations in different magnitudes, ε(m) is defined as the difference between
m and the next representable floating-point number (twice the maximum absolute
error). If less information is used for encoding numbers, ε(m) will accordingly be
larger, e.g., considering IEEE 754 double precision vs. single precision. During
complex computations, these round-off errors can accumulate and diminish accuracy
further. Factors that add to the overall error are thus, among others, matrix sparsity
or searchspace size. For the sake of simplicity, we henceforth let ε = ε(1). A
comprehensive coverage of floating-point arithmetic, rounding errors, and accuracy
of numerical computations can be found, e.g., in [Hig02] or [Gol91].
The limited precision of floating-point arithmetic has to be interpreted as sys-

tematic error during filter application (among other aspects of the algorithm) and
consequently as disturbance of the projected searchspace set. It is the cause for the
inevitable stagnation of the iterative process. The available precision, however, is
not the only cause for a systematic error that can be introduced into the searchspace
set. In [Krä+13] and [Krä14], it has been pointed out that the accuracy of the
linear solves involved in the application of rational filters imposes a limit on the
achievable residual of spectral projection eigensolvers (see also [TP] where this is
derived more formally). This in particular relates to iterative linear solvers with
prescribed residual limit. The error introduced during the linear system solves is in
type identical to the error introduced by limited precision, but potentially larger in
magnitude.
In order to identify the residual that at least is achievable by an iterative eigen-

solver, we shall assume that the projector can be applied without introducing any
unnecessary additional error—beyond the inevitable numerical errors caused by the
basic algorithm and the application of the approximate projector as single matrix
multiplication—into the searchspace set. In order to achieve this, we reduce the com-
putational effort to a single sparse matrix multiplication by explicitly constructing
the filtering operator matrix. This also allows us to use theoretically ideal filtering
functions to rule out the appearance of Ritz phantoms and not having to distinguish
between eigenpairs inside or outside the target interval. In fact, an ideal filter with
dampening > 0 can be understood as disturbed filter itself. As such, the filter has
no influence on the achievable residual beyond the emergence of Ritz phantoms.

Experiment 4.13 — Projector disturbances
We generate a definite pair of size 1000 with evenly distributed random spectrum

in [−1, 1] and an ideal filter with dampening 10−2 to a searchspace of size m0 = m.
We compute the m = 20 innermost eigenpairs over the course of 20 iterations to
assure that all pairs have converged to the best possible residual. The constructed
projection operator P is disturbed as

P + eE

9) Often, the term machine precision describes the maximum relative error, or unit roundoff, and
thus half this distance.

GL

162 4 Taming the BEAST – Quality of results

where E is a matrix with evenly distributed random entries in [−1, 1] and e = 10−7,
10−9, 10−11, 10−13, and 10−15 is a scalar, such that eE is a matrix with random
entries of at most magnitude e. For comparison, the experiment is repeated completely
undisturbed.

The left plot of Figure 4.22 shows the progression of residuals as an area represent-
ing the range between minimum and maximum residual for each of the configurations
mentioned above. Each line indicates the norm of the error matrix applied to the
respective projection operator; the lowest overall residual range belongs to the undis-
turbed projector. The right plot compares the residuals of a filter with dampening 10−5

where the projector has been randomly disturbed with magnitude 10−2 (blue) and an
undisturbed projector of power 10−2 (red). The results are basically identical; we can
expect slightly faster convergence from the disturbed projector since its dampening
might be below 10−2 for some directions. Repeating the experiment with different
filters or even with an ideal filter of infinite dampening gives identical results.

Figure 4.23 gives a visual representation of the assumed filtering effect after one
(left) and two (right) applications of the projection operator, where the accumulative
filtering effect is interpreted as powers of the filtering function, as would be the case
with conventional power iteration using the projection operator. A disturbance of
the filtering function itself does not inhibit convergence as its powers also affect the
accumulative (disturbed) dampening (blue) in the same manner. Instead, we have
to understand the error as being reapplied with full strength in every step (purple).

1 2 3 4 5
10−18

10−10

10−2

Iteration

R
es

id
ua

l

5 10 15 20
10−19

10−9

101

Iteration

R
es

id
ua

l

Figure 4.22: Left: residual barrier with disturbed projection operators with error norms
3.6 · 10−6, 3.6 · 10−8, 3.6 · 10−10, 3.6 · 10−12, and 3.6 · 10−14 (top-down).
Right: residual barrier for an ideal filter with dampening factor 10−2 (blue)
and the corresponding barrier for an ideal filter with dampening factor 10−5

which has been disturbed with magnitude 10−2 (red).

In the absence of Ritz phantoms, the norm of an error matrix E applied to the
projection operator P is a reasonable upper bound for the minimum residual that
can be achieved under these conditions. This norm is, of course, typically not known.
For errors imposed by the finite precision of the computations, we expect a relation
to ε(‖B−1A‖), where the matrix norm, for definite pairs the largest magnitude
eigenvalue, describes the general magnitude of the computations. In [Krä+13; Krä14]

GM

4.3 Achievable residual 163

10−11

10−5

101

Real axis

A
bs

ol
ut

e
fil

te
r

va
lu

e

10−11

10−5

101

Real axis

A
bs

ol
ut

e
fil

te
r

va
lu

e

Figure 4.23: Left: ideal filter with dampening 10−2 (yellow) and 10−5 (red), as well as an
ideal filter with dampening 10−5 disturbed with magnitude 10−2.
Right: assumed effective dampening of two consecutive projector applications;
in addition to the left plot, the filtering effect of a disturbed projection operator
(purple) is shown.

it has been pointed out that the application of an iterative linear solver to the linear
systems arising from the Cauchy filter formulation mimics this behavior.

From the discussion of the effect of spectral filtering, it is clear that the best residual
that can be achieved does not depend on the choice of filter. There is however one
inhibiting factor that can be understood as a consequence of the combination of
chosen filter and spectral distribution of the matrix pencil in question: the influence
of possible Ritz phantoms on the residual of Ritz pairs, even if those have reached
the smallest possible residual already. The effect described here has in principle
been described in Experiment 4.9 before, but the following experiment will show
that the presence of Ritz phantoms does not only influence convergence, but also the
overall achievable residual, even if the smallest possible residual was reached many
iterations ago.

Experiment 4.14 — Influence of Ritz phantoms
We generate a definite pair of size 1000 with evenly distributed random spectrum

in [−1, 1] and apply a Zolotarev filter of degree 4 with κ = 0.01 to compute the
innermost 20 eigenpairs with a searchspace size of 26 over 500 iterations. This setup
ensures the emergence of Ritz phantoms.

In a second instance, we place the spectrum in [−5 · 10−4, 5 · 10−4] and compute
the innermost 20 eigenpairs with a searchspace size of 40 over 1000 iterations using
a Zolotarev filter of degree 12. This particular setup creates a Ritz phantom that
crosses the target interval after many iterations. We have seen a very similar setup
before in Experiment 4.8.

The left plot of Figure 4.24 shows the first instance, the right plot shows iterations
300–800 of the second instance.

The significant aspect of Figure 4.24 is the presence of Ritz phantoms inside the
target interval coinciding with significant disturbances in the residual. This even
is the case if the smallest attainable residual has been reached by all directions,

GN

164 4 Taming the BEAST – Quality of results

0 100 200 300 400 500
10−18

10−9

100

Iteration

R
es

id
ua

l

300 400 500 600 700 800
10−20

10−12

10−4

Iteration

R
es

id
ua

l

Figure 4.24: Left: Ritz phantoms disturbing the terminal residuals. Right: Ritz phantoms
disturbing the terminal residuals in a very late iteration.

indicating that a stationary Ritz phantom would impair the best possible residual
negatively. With this in mind, we may consider an ideal filter with constant damp-
ening to perform the worst among all the filters introduced here with respect to the
smallest achievable residual, since it produces Ritz phantoms independently of the
matrix spectrum as soon as the searchspace is oversized. It also further justifies
considering the explicit removal of such directions, as has been described before,
to improve overall results. In case large numbers of Ritz phantoms populate the
searchspace, either provoked by choosing oversized searchspaces or a non-decaying
filter or both, the achievable residual can become arbitrarily large. Under practical
conditions, this can be prevented by detecting and removing those directions, see
Section 4.2.2. For a decaying filter, the appearance of Ritz phantoms is less likely
to happen, unless enforced.

We can deduce from the above that a systematic error of the described nature does
not inhibit convergence until the respective residual limit is reached. Two important
consequences arise that bear potential for computational optimization.

4.3.1.1 Mixed precision

Seeing that nothing can be gained from performing computations in double precision
as long as the single precision residual barrier has not yet been broken, early iterations
may be carried out in pure single precision without any penalty. For optimal results,
the first iteration to be performed in double precision should be the one to surpass
the single precision barrier. This may be achieved by estimating the residual drop
rates from earlier iterations (remembering that the rates are constant in principle
for a given filter), or by inspection of the estimated filter values from eigenvalues
of BU . Nonetheless, a late change of precision does not necessarily impair overall
convergence, as the following experiment will demonstrate.

Experiment 4.15 — Mixed precision
With a size 1 048 576 topological insulator matrix similar to the topi-1M test matrix

from Section 4.1.2, multiple runs are performed with identical setup, differing only
in the precision of computations (single or double) or the iteration number where

GO

4.3 Achievable residual 165

a switch from single to double precision occurs. The 65 innermost eigenpairs are
computed using a polynomial filter of degree 135 and a generous searchspace size
of 256. The larger searchspace size moves the general performance emphasis from
the projector application to the overhead produced due to the reduced eigenproblem,
inner products, and other factors. To establish baseline results, computations are
performed in pure double precision and pure single precision. In additional runs,
precision then is switched from single to double in iterations 7, 9, or 11. We monitor
the minimum residual of the Ritz vectors as well as the geometric mean residual of
all directions inside the target interval. The results are presented in Figure 4.25.
The data for this experiment has also been shown in [Wel+20].

1 3 5 7 9 11 13 15

100

10−2

10−4

10−6

10−8

10−10

10−12

Iteration

minimum residual

1 3 5 7 9 11 13 15

Iteration

log. average residual

full double
full single
mixed(11)
mixed(9)
mixed(7)

eps(single)

Figure 4.25: Mixed precision results over 15 iterations. Left: minimum residual; right:
geometric mean residual.

The experiments shows that a slightly late switch has practically no impact on the
overall progress since the change in precision is accompanied by a jump in residual,
catching up to the full double precision run. For the average residual, even a very late
switch is not very detrimental. This allows to detect the deceleration of convergence
as the single precision limit is approached in order to trigger the change in precision.
Consequently, nothing can be gained by performing computations in higher pre-

cision, e.g., quadruple precision, until we aim to exceed the respective residual
limitation imposed by the double precision floating-point system (see also [GHL18d;
Alv+19]).

4.3.1.2 Linear solving effort

The linear systems arising in the application of rational filters are among the most
difficult problems for iterative linear solvers. The results from above imply that
linear systems in early iterations do not have to be solved to high accuracy. The
requirements of accuracy posed to the linear solver grow as the eigensolver iterations
proceed. As a consequence, the linear systems have to be solved to lower and lower
absolute residual in each new eigensolver iteration. Indeed, we can assume that, if
the results of the iterative linear solver from an earlier iteration can serve as suitable

GP

166 4 Taming the BEAST – Quality of results

initial guess for solves in subsequent iterations, an iterative linear solver will only
have to reduce the relative residual by a fixed order of magnitude in each iteration
for convergence to proceed uninhibited. This, at least, requires the solution vectors
to be assignable over iterations, e.g., when the ordering of directions changes due to
the proximity of a Ritz phantom or in early iterations, or when the searchspace size
is reduced or extended.
Progress in this regard has been hinted on in [Pol13], where results could be

achieved with moderate relative residual. Not much information is given, though.

4.3.2 Kick-off residual
An a priori estimation of the residual that can be expected after the first iteration
of the subspace iteration, which we will name kick-off residual, is not of particular
importance, since the residuals are computed at the end of the iteration anyway. Its
knowledge does serve a purpose, though, if we are to judge whether a problem is
solvable at all under the assumption of a certain bound for the best possible residual.
Judging from Theorem 1.2, we can expect the kick-off residuals to be related to

the residual drop rates associated with the respective eigenvalues as dictated by the
filter and the representation of the eigendirections in the initial guess vectors. The
latter part has been confirmed in Experiment 4.3 and is in particular true as every
iteration may be interpreted as an initial iteration with increasingly well represented
eigendirections in its initial guess vectors, which are nothing but the approximate
eigenvectors themselves. This representation appears as a constant multiplier in
Theorem 1.2, describing the difference between an eigenvector xi and the direction
contained in the initial guess vectors that, assuming precise projection, would be
projected onto the eigenvector, Psi = xi.

With higher eigenvalue densities, Theorem 1.4 allows the residual of a more or less
randomly placed Ritz value to be relatively small since an eigenvalue can be found
in its vicinity. The following experiment gives an example of this effect.

Experiment 4.16 — Effect of spectral density on kick-off residual
We generate a matrix pencil of size 1000 with evenly spaced spectrum in an interval

of varying size,

100, 10, 1, 10−1, 10−3, 10−5, 10−7, 10−9, and 10−11,

around a central point c = 200. This ensures that the matrix norm and the magnitude
of computations have no significant effect on the results. We aim to compute the
innermost 20 eigenpairs using an ideal filter with a fixed dampening of strength 10−4

applied to a searchspace of exact size 20 to eliminate differences of convergence speed,
potentially caused by variations of the filter.10 The eigenvectors used to generate

10) This is not necessarily needed for all filter types. Many filters scale with their target interval
and will not disturb convergence speeds if the relative distribution of eigenvalues is constant, the
only exception being the Chebyshev polynomial filter.

GQ

4.3 Achievable residual 167

the matrix pencil are generated only once and are therefore identical for all runs of
the eigensolver. Vectors for the initial guess are chosen at random, but identical
for all runs of the eigensolver to fix the representation of eigendirections in the
basis. The best and worst residual inside the target interval are recorded after the
first iteration. Figure 4.26 shows the corresponding drop of the kick-off residual for
increasing spectral density (and decreasing spectral range).

100 10 1 10−1 10−3 10−5 10−7 10−9 10−11
10−14

10−9

10−4

101

Spectral separation

K
ic

k-
off

re
si

du
al

Figure 4.26: Kick-off residual ranges for different spectral ranges and densities.

The effect can only be observed if the spectral distribution is dense in general.
For small matrices this translates to generally small spectral ranges. Additional
experiments show that clustering the eigenvalues inside or around the target interval
alone is not sufficient.

4.3.3 Saturation residual
We have seen above that, under optimal conditions, the achievable residual is at
least related to ε(‖B−1A‖) (which will be referred to as 3). This does not account
for the possible influence of the spectral composition, presence of Ritz phantoms, or
other inhibiting factors. In order to produce reasonable results for the achievable
worst-case residual, i.e., the largest residual among Ritz values that have reached
saturation, henceforth saturation residual, the emergence and movement of Ritz
phantoms inside the target interval in later iterations should be prevented, as the
amplitude of the disturbances seems unpredictable. In order to achieve undisturbed
convergence, we may employ ideal filters with strictly sized searchspaces or decaying
filters with more generously sized searchspaces. The occurrence of slowly converging
directions is of no concern, if the associated Ritz values appear outside the target
interval (with some distance to the interval boundaries) or have reached saturation
in the last few iterations. While the first condition is unpredictable, the second one
may require iteration ad infinitum. However, the spectrum might be prepared to
ensure larger distances to λm0+1. In the following, experiments will be conducted
that vary parameters related to the quantity that imposes a limit on the saturation

GR

168 4 Taming the BEAST – Quality of results

residual: the magnitude of floating-point computations in terms of the positions of
iterated directions and the norm of the matrix pencil. It is roughly ε(m) ≈ mε(1).
The limit 1 mentioned in Section 4.3 therefore reflects machine precision in terms
of the largest magnitude eigenvalue of the matrix pencil with an additional factor of
n, the size of the matrix pencil, to account for error accumulation. If the position
of the spectrum is moved along the real line, the norm of the matrix pencil changes
accordingly. The change in the magnitude of computed eigenvalues, however, may
differ if the spectral range is large compared to the magnitude of its center.

Experiment 4.17 — Variation in spectral position
We generate a matrix pencil of size 1000 with evenly distributed random spectrum

in an interval of size one around a central point c. This central point is chosen from
the sequence

c = 104, 103, 102, 101, 100, 10−1, 10−2, 10−3, 10−4, 10−5, 0

to produce a progression of eigenvalue problems with differing relations between norm
and magnitude of the computed eigenvalues. An ideal filter with explicit dampening
of 10−5 is applied and the searchspace size is chosen exactly to reliably prevent Ritz
phantoms that otherwise may obstruct convergence. Fixing the spectral range, i.e.,
the extent of the spectrum, the variation of the center of the spectrum influences the
norm of the matrix pencil in a different way than it influences the magnitude of the
target interval at the center of the spectrum. Shifting the spectrum towards zero, the
norm of the matrix pencil becomes dominant as the magnitude of the target interval’s
boundaries becomes small compared to the magnitude of the total spectral range. The
searchspace is iterated 15 times to assure that saturation is reached for all Ritz values.
The final maximum saturation residual is chosen as the maximum residual among
the last 10 iterations.

Figure 4.27 shows four instances of this experiment which differ in matrix spar-
sity, s, and the number of eigenpairs computed, m.

104 102 100 10−2 10−4 0

10−9

10−11

10−13

10−15

10−17

Sa
tu

ra
ti

on
re

si
du

al

m = 20, s ≈ 2.5%

104 102 100 10−2 10−4 0

m = 200, s ≈ 2.5%

104 102 100 10−2 10−4 0

m = 20, s ≈ 95%

104 102 100 10−2 10−4 0

m = 200, s ≈ 95%

Interval center

Figure 4.27: Saturation residual (blue) for variations of the spectral center. Also shown are
the limits 1 (red), 2 (purple), and 3 (yellow) with ε = ε.

The plots show how both factors influence the saturation residual. The effect is
more pronounced if the eigenvalues are small compared to the norm of the matrix

GS

4.4 Termination criteria 169

pencil. As the magnitude of the target interval continues to decrease, the saturation
residuals stagnate as soon as the norm of the matrix pencil ceases to change in
magnitude. The saturation residual then approaches the unscaled machine precision
(yellow) more closely.

For comparison, the following experiment shows that the variation of the extent of
the spectrum changes the norm of the matrix pencil and the computed eigenvalues
in relation to the magnitude of the spectral center.

Experiment 4.18 — Variation in spectral range
With a fixed spectral position, varying the spectral range influences the norm and

target interval of a matrix pencil in a similar way. We repeat Experiment 4.17 with
fixed spectral centers and vary the spectral interval’s size,

l = 102, 101, 100, 10−1, 10−3, 10−5, 10−7, 10−9.

Figure 4.28 shows the results for c = 0 and c = 100. In the first case, 200 eigenpairs
were computed to separate the saturation residual (blue) from the unscaled machine
precision (yellow). Since the norm of the matrix pencil is dominant, the saturation
residual approaches the unscaled machine precision too closely otherwise. In the
second case, the magnitudes of the norm and target interval are identical.

102 101 100 10−1 10−3 10−5 10−7 10−9

10−10

10−15

10−20

10−25

Spectral range

Sa
tu

ra
ti

on
re

si
du

al

c = 0, m = 200

102 101 100 10−1 10−3 10−5 10−7 10−9

10−11

10−12

10−13

Spectral range

Sa
tu

ra
ti

on
re

si
du

al

c = 100, m = 20

Figure 4.28: Saturation residual (blue) for variations of the spectral range. Also shown are
the limits 1 (red), 2 (purple), and 3 (yellow) with ε = ε.

Decreasing the sparsity of the matrix pencil or increasing the number of targeted
eigenvalues does indeed raise the saturation residual. However, the factor n is
overly pessimistic in most situations, in particular if the iterated eigenpairs are small
compared to the norm of the matrix pencil. However, it may allow few Ritz phantoms
to be present in the target interval without breaking the predicted bound.

4.4 Termination criteria
Closely linked to the residual that may be achieved by an eigensolver is the criterion
for its termination. An algorithm for computing eigenpairs inside a target interval

GT

170 4 Taming the BEAST – Quality of results

should terminate only if all eigenpairs inside the target interval are found or if
the prescribed residual accuracy cannot be reached for all eigenpairs in the target
interval and the method stagnates. In the latter case, whether to include the not fully
converged eigenpairs in the result has to be decided. Additionally, non-algorithmic
criteria may exist, such as a limited number of total iterations or certain error
conditions, which shall not be discussed here.

Previous discussions involving suitable stopping criteria can be found in [Krä+13;
GKL12; Krä14], which typically are residual-based and combined with a prediction
of the eigencount of the target interval. Generally, while a major indicator of a
Ritz phantom is a much larger residual, judging where to draw the line that reliably
separates Ritz phantoms is difficult if not impossible, in particular under conditions
which we have seen by now and where Ritz phantoms may converge rather far due to
cluster super-convergence or the achievable residual not being very low to begin with.
The usage of an eigencount estimation alleviates this problem in part, as it defines the
number of Ritz values that should converge and, with this, whether iteration still has
to be continued. While the analysis of Ritz values—be it by counting values inside
the target interval or computing filter values based on their position—is unreliable
due to possible Ritz phantoms located inside the target interval, the estimated filter
values obtained from the second Ralyeigh quotient BU (see Section 4.2.2) can expose
these values which are the least dominant in the searchspace and thus have small
associated filter values. The result is a rather reliable count for the number of
eigenpairs in the target interval.
Still, a mismatch between the number of converged eigenpairs and the number

derived from the filter values by even just one eigenvalue can cause problems. In
case of an overestimation, the algorithm expects a Ritz value to converge that may
(virtually) never arrive at the expected residual. Something similar happens when
the target residual cannot be reached due to the limiting factors outlined before. In
this case, the method stagnates, but the estimated count will never be reached. On
the other hand, too small an estimation may lead to premature termination.
The quality of the estimated filter values or the estimated count of eigenpairs

derived from it can be inaccurate for mainly two reasons, besides the general formal
condition of having completed at least one iteration to fulfill the criteria from Sec-
tion 4.2.2. Either the filter values are not precise enough to properly count eigenpairs
very close to the interval boundaries or the filter may be asymmetrical, which may be
the case for filters based on polynomial approximation. The latter can easily be cor-
rected by computing a spectral transformation that not only maps the spectrum into
the unit interval, but also centers the target interval around zero (see Section 2.1.5).
Let the spectrum be contained in [λ−, λ+] and let [λmin, λ

max] denote the target
interval. The spectral transformation for symmetrical target intervals in [−1, 1] can
then be written as

2λ− λmax − λmin

λ+ − λ− + |λmax + λmin − λ+ − λ−|

for any λ.

GU

4.4 Termination criteria 171

The first point made above, however, can only be mitigated by extending the defi-
nition of inside the target interval to possibly inside the target interval, an approach
that is based on Theorem 1.4 and has been used, e.g., in [Pie+16]. As such, at least
one eigenvalue λ is located inside a disk[

λ−
∥∥∥B− 1

2 r
∥∥∥,λ+

∥∥∥B− 1
2 r
∥∥∥]

around a computed Ritz value λ. If a Ritz value has a distance not farther than
the radius of this disk to the interval boundaries, it has to be considered part of the
target interval in lieu of a more precise classification. In theory, the same holds for
the estimated filter values, but their residual is unknown and not easily computed,
as it requires the application of the projector.

While the inclusion of possibly contained Ritz values mitigates the risk of missing
eigenpairs by terminating too early, it cannot account for Ritz phantoms, bringing us
back to the accuracy of the eigencount. In [GKL18], methods to judge the validity of
the predicted eigencount are added to enhance the termination logic. These include,
in addition to a requirement for the searchspace and, therefore, for the estimated
filter values to be reasonably far converged, comparisons of consecutive eigencount
estimations as well as monitoring the searchspace population and their residual. To
this end, the smallest not converged residual (SNC) inside the target interval is used
as an indicator (B. Lang, personal communication). The SNC is used to monitor
the speed at which the searchspace is still converging. Of course, the SNC does not
always refer to the same Ritz value. If

• a Ritz value inside the target interval converges,
• a Ritz value leaves the target interval,
• a Ritz value enters the target interval, or
• the current SNC reaches saturation before reaching the target residual,

the SNC may switch the Ritz value it refers to. The criterion to abort iteration is
then a jump to a considerably larger residual, which would allegedly identify the
SNC as a Ritz phantom. Choosing the size of this jump poses the same problem as
choosing a hard residual barrier for identifying Ritz phantoms: any fixed choice will
likely fail sooner or later. Assuming Ritz phantoms never leave the initially recorded
residual range of the searchspace also is not quite true, such that a jump of the SNC
into that range cannot be used as an indicator either.
We have, however, described before the fundamental condition that produces a

Ritz phantom. It is a Ritz value that converges very slowly. If we define a minimum
speed at which we want to see Ritz values in the target interval to converge and
the SNC being the fastest among those, any form of stagnation could be detected.
This happens under the assumption that none of the Ritz values that have to be
computed converges at such a low rate, which is undesirable to begin with. This is
very similar to the adaptive approach described in [GKL18], where the residual drop
rate computed from the SNC is used to find a close to optimal degree (or number
of integration nodes) for the method to deliver the result with the least effort. As

GV

172 4 Taming the BEAST – Quality of results

such, a stagnation-based termination criterion ties in well with this adaptivity, but
has to be disabled as long as the convergence rate is still low.

In order to reliably compute the drop rate from the SNC, we have to exclude cases,
where the SNC changes assignment to prevent false positives. The conditions are:

• At least one iteration must have passed to obtain drop rates to begin with.
• There should be converged Ritz values (otherwise the target residual may not

be reachable, see below).
• No new values have converged, i.e., the SNC did not change its assignee.
• The number of not converged Ritz values in the interval must not have changed

to rule out Ritz values entering or leaving the interval. On the off chance of
one Ritz value entering and one Ritz value leaving simultaneously, the criterion
may trigger too early.
• The quotient of the old and new SNC residual should be smaller than some ρ

close to unity, e.g., ρ = 1.2. If ρ is chosen too close to 1, Ritz phantoms may
not be detected; if ρ is chosen too far from 1, iteration may be terminated too
early.

In almost all instances, a stagnation-based termination criterion is robust in theory,
even without the support of an eigencount estimation. There are corner cases,
however, such that the eigencount should be used in conjunction.

The SNC might also slip “outside” the target interval (analogous to “inside” from
above), which means that all Ritz values inside the target interval have converged,
thereby indicating completeness under the assumption of the extended understanding
of “inside” the target interval from above.
If the residual reaches saturation before reaching the prescribed limit, the ter-

mination criterion will trigger, typically as soon as the first Ritz value stagnates.
Deciding which Ritz pairs should be returned as result in this case is difficult as,
again, the problem of differentiating between Ritz phantoms and potentially usable
values arises. Since the required residual could not be reached, it may be reasonable
to declare the run as failed altogether, but since no better residual can be reached,
it might make sense to continue iteration until all values have reached saturation.

Two methods to modify the termination conditions come to mind. First, the SNC
can be locked on stagnation, causing iteration to continue until all values inside
the target interval have stagnated. This method should be used if stagnation sets
in without Ritz values having converged before. The estimated eigencount has to
be consulted to make sure the interval is not just empty. A second method is the
dynamic adjustment of the target residual. Once saturation sets in and the interval
is not considered empty, the reachable residual is known, allowing to specify a new
limit.
Another case where the residual grows, thereby signaling stagnation, is cluster

super-convergence. Since the rebound residual may be larger than the target residual,
termination would trigger if the SNC refers to one of the faster converging clustered
values. This is, however, unlikely in practice. Eigenvalues inside the interval may

GW

4.5 Achievable orthogonality 173

converge faster, also accelerating the rebound phases, such that these obstructions of
convergence do not cause outside eigenvalues to catch up. It still might be reasonable
to not only monitor decrease in residual for stagnation detection, but also to monitor
increase in residual, such that fast increasing residuals do not trigger the stagnation
condition. We also might require stagnation to occur for at least two consecutive
iterations in order to reliably detect real stagnation.
Finally, a situation is imaginable, where an outside eigenvalue, close to the tar-

get interval such that it may be interpreted as inside, may converge quicker than
eigenvalues actually inside the interval. Normally, the form of the filter does not
allow this, but we assume it may happen nonetheless. If this value is mistaken as
in-interval target eigenvalue, believing the eigencount estimation, a real in-interval
eigenvalue may be missed because of this. In this case, however, the stagnation
detector would not trigger, indicating that another Ritz value is still converging.

4.5 Achievable orthogonality
The ability of spectral projection eigensolvers to independently compute portions of
the spectrum of a matrix pencil is one of its great strengths. Technically, the targeted
spectral regions need not be adjacent or, given a filter function with a more exotic
form, contiguous intervals. Here, however, we will assume the target portion of the
spectrum to be a contiguous interval, such that it can be subdivided into adjacent
subintervals I1, . . . , Ik. Each interval contains eigenpairs (Xi,Λi), i = 1, . . . , k, whose
approximations are computed as the Ritz pairs (X i,Λi). Independently computed
eigenvectors are known to suffer from poor orthogonality, influenced by the distance
between the associated eigenvalues, commonly referred to as gap (see, e.g., [Par80;
Krä14; Krä+13]). This of course is only a problem if the eigenvectors are supposed
to be (B-)orthogonal, i.e., for definite pairs.
Cases in which separation into subintervals is impossible are given for multiple

eigenvalues; the value of the filter function at that position is equal for all associated
directions. A subspace iteration algorithm inherently computes a basis containing all
eigendirections with identical eigenvalues and the searchspace size has to be chosen
accordingly. This was explored in more detail in the first sections of this chapter.
The term orthogonality so far has mostly been used as a binary property, but

possible deviations from orthogonality have been mentioned. We now formally
define the orthogonality of two vectors z and y as the real number

orth(z, y) = |〈z, y〉B|
‖z‖B‖y‖B

,

fulfilling orth(z, y) = 0 in case z and y are B-orthogonal. We may also explicitly
refer to this property as B-orthogonality, in case differentiation is necessary. In case
B = I, the orthogonality of z and y also satisfies

orth(z, y) = cos(z, y)

GX

174 4 Taming the BEAST – Quality of results

that is, their I-orthogonality is the cosine of the angle between z and y for angles
≤ π/2. In case B 6= I, a direct relation to the angle between z and y does not exist.

Analogously, we may define the orthogonality of a block of vectors Z = [z1, . . . , zk]
as the worst-case orthogonality between any two vectors with different index,

orth(Z) = max{orth(zi, zj) | i, j = 1, . . . , k ∧ i 6= j},

and the orthogonality between two blocks of vectors Z and Y = [y1, . . . , y`] as the
worst-case orthogonality between any two vectors from different blocks,

orth(Z, Y) = max{orth(zi, yj) | i = 1, . . . , k ; j = 1, . . . , `}.

To differentiate both, we will refer to the orthogonality of a single vector block as
intra-orthogonality and to the orthogonality between two vector blocks as inter-
orthogonality. If the orthogonality of two blocks, e.g., computed eigenvectors from
two separate intervals, is analyzed, whether one is orthogonalized against the other
or not, we will talk about the results as interaction between these two blocks or
intervals. If the computed orthogonality, also between single vectors is large, we will
say that these blocks or vectors interact strongly; otherwise they interact weakly.

4.5.1 Theoretical limit
To accommodate for orthogonality with respect to B, we may extend the definition
of the conventional cosine to

cosB(Z, Y) := cos∠B(Z, Y) := orth(Z, Y)

for all B Hermitian and positive definite, and blocks of vectors Z and Y (see, e.g.,
[Krä14]). Then the B-angle between Z and Y is

∠B(Z, Y) = cos−1 orth(Z, Y)

and allows for an analogous definition of

sinB(Z, Y) := sin∠B(Z, Y).

A theoretical upper bound for the worst-case orthogonality of two blocks of Ritz
vectors can be derived from the bound of the angle to their respective eigenvectors
Z, the sin θ theorem [Krä14; DK70; Nak12]. Formulated for a block of computed
Ritz pairs (X,Λ) with residual R(X,Λ), it can be written as

sinB(X,X) ≤ 1
g

∥∥∥B− 1
2R(X,Λ)

∥∥∥ ≤ 1
g

∥∥∥B− 1
2
∥∥∥‖R(X,Λ)‖, (4.4)

where g is the gap between any Ritz value of Λ = diag(λi | i ∈ Ξ), Ξ ⊂ {1, . . . , n},
and any other eigenvalue λj, j /∈ Ξ, of the matrix pencil that is not associated with
a Ritz value of Λ,

g = min{|λi − λj| : i ∈ Ξ, j /∈ Ξ}.

GY

4.5 Achievable orthogonality 175

Assuming this worst-case deviation for two separately computed blocks of Ritz pairs
(X1,Λ1) and (X2,Λ2) and the associated eigenvectors X1 and X2 being orthogonal
(with respect to B), ∠B(X1, X2) = π/2, a corresponding worst-case B-angle, or its
associated orthogonality, between X1 and X2 can be computed as

orth(X1,X2) ≤ cos
(
π

2 − sin−1
(∥∥∥B− 1

2
∥∥∥‖R1‖
g1

)
− sin−1

(∥∥∥B− 1
2
∥∥∥‖R2‖
g2

))
, (4.5)

where g1 and g2 are the respective gaps as defined above, R1 = R(X1,Λ1), and
R2 = R(X2,Λ2). Given the monotonicity of sin−1 θ inside [0, 1] and the monotonicity
of cos θ inside [0, π/2], the derived bound is sensible.

This interpretation of Equation (4.4) is already somewhat flawed as it is formulated
in terms of canonical angles between subspaces [Krä14]. Without delving too deep
into the definition and theory, the notion conveyed is the maximum angle between
any two vectors from the different subspaces, such that this angle becomes zero
only if one subspace is completely embedded in the other. Our understanding of
the orthogonality between two blocks of vectors, however, is that the angle between
these two blocks is the smallest angle between any two vectors from the associated
subspaces, such that this angle becomes zero as soon as one direction is shared
among the two subspaces. Beyond this, further modifications are necessary in order
to replace unknown quantities with known ones.
While the exact values for g1 and g2 are unknown, a reasonable estimation is

the minimum distance γ of Ritz values from one interval to Ritz values of adjacent
intervals, assuming the Ritz values are reasonable approximations of the eigenvalues.
If, for an interval, not both neighbors are available, the distance to only one of
them will have to suffice. If we intend to estimate the orthogonality between a
certain pair of such blocks, taking into account their distance such that we expect
better orthogonality between intervals of larger distance, the definition of g from
above seems unfit. For an evenly distributed spectrum, e.g., the value of g would be
identical for every interval, assuming that all intervals were solved to equal residuals,
resulting in equal orthogonality estimations for any pair of intervals.

We therefore replace the numbers g1 and g2 by the mutual distance γ of any two
intervals whose inter-orthogonality we want to estimate. This is a modification that
is not backed up by the sin θ theorem, though. First of all, this modification does
not take into account the distance to the other neighboring interval or, in case of
an interval at the boundary of the covered spectral region, the rest of the spectrum.
Assuming that the Ritz values are correct representations of the eigenvalue positions,
a potentially smaller gap to the unknown parts of the spectrum may result in an
orthogonality that is worse than predicted and thus break the bound. A larger gap,
on the other hand, has no effect on the (assumed) validity.

The modification also ignores inaccuracies of the Ritz values. The expected effect
is smaller, though; it only plays a role if the distance between the two sets of Ritz
values is very small and, in this case, the variations make a proper estimation of the
gap futile. However, in all those cases the estimated orthogonality would be large.

HA

176 4 Taming the BEAST – Quality of results

The block-residuals may be estimated by the largest per-column residual for the
respective interval, in case only those residuals are easily available. Note, however,
that the per-column residuals typically are a bit smaller than the block-residual.
Whether the bound may be useful in practice can only be confirmed or refuted
experimentally.

4.5.2 Estimated upper bound
In addition to the assumed upper bound based on the sin θ theorem from above,
we will test another empirical bound for the achievable orthogonality. Similar to
the saturation residual, we assume the orthogonality to be limited by numerical
factors, the magnitude and number of floating-point operations, in addition to the
gap between the two sets of Ritz values. This boils down to modifying the limits
for the saturation residual from Section 4.3 by the inverse gap γ. Since the less
pessimistic of the two presented limits might differ for different intervals [λmin, λ

max]
and [µmin, µ

max], we assume the worst case. Then, corresponding limits for the
orthogonality are

nε

γ

∥∥∥B−1A
∥∥∥

2
1

and
nε

γ
max{min{λmin, λ

max},min{µmin, µ
max}} 2

with ε ≥ ε. Instead of a pessimistic estimation of the achievable residual, we may
base our estimated orthogonality on a readily available and more precise foundation,
the residual that actually was achieved by the subspace iteration algorithm. The
estimated orthogonality then takes the form

1
γ

max{‖R1‖2, ‖R2‖2}. 3

From Equation (4.5), we infer the limit

cos
(
π

2 − sin−1
(∥∥∥B− 1

2
∥∥∥‖R1‖

γ

)
− sin−1

(∥∥∥B− 1
2
∥∥∥‖R2‖

γ

))
. 4

We again assume the worst-case residual of both intervals, and for all following
experiments, ‖R‖ with R = [r1, . . . , rk] is replaced by maxki=1‖ri‖.

Experiment 4.19 — Interval gap and searchspace occupation (ideal filter)
In order to verify the influence of the gap between intervals and the limits described

above, we set up two adjacent intervals with controllable gap on an otherwise evenly
distributed spectrum. The gap size (relative to the spectral range) is then reduced
stepwise by one order of magnitude,

γ ∈
{

10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8, 10−9, 10−10
}
.

HB

4.5 Achievable orthogonality 177

In all cases, the generated matrix pencil is of size 1000 and the innermost 20 eigen-
pairs are computed, separated into two sets of 10 eigenpairs with a searchspace size
per interval of 10 using ideal filters with a prescribed dampening of 10−5. Figure 4.29
shows results for differently assembled searchspaces.

10−2 10−4 10−6 10−8 10−10

m = 10

10−2 10−4 10−6 10−8 10−10

Gap size

m = 11

10−2 10−4 10−6 10−8 10−10

10−5

10−10

10−15

O
rt

ho
go

na
lit

y

m = 12

Figure 4.29: Gap influence for different searchspace combinations.
Also shown: the orthogonality limits 1 (red), 3 (yellow), 4 (purple).

The orthogonality between the two intervals after 50 iterations does not show
any influence of the gap size (Figure 4.29, left), and orthogonality is unimpaired,
if the searchspaces are disjoint, i.e., do not contain shared directions. For further
verification, the experiment is modified to include one (the nearest) direction of
the respective other interval (Figure 4.29, center). The influence of the gap is now
clearly visible, but the results are not very consistent. Other factors such as the
(randomly chosen) initial guess for the searchspace set play a role. We have chosen a
sequence for display here, where the orthogonality clearly shows an influence due to
the gap size as a worst-case scenario. Including more directions increases consistency
(Figure 4.29, right, for two additional directions).

It is difficult to reenact the setup from Experiment 4.19 with non-ideal filters; the
limiting factor λm0+1 will almost always be the closest eigenvalue of the neighboring
interval with distance γ, causing convergence to slow down significantly. We therefore
modify the setup of Experiment 4.19 to verify influence of shared directions on inter-
orthogonality.

4.5.3 Directional overlap
In the following, we will have to distinguish between the directions of the search-
space that belong to the target interval and the remaining outside directions that are
included with larger searchspace sizes. We will employ the term target searchspace
when referring to the former. The target searchspace is embedded in the searchspace.
For the measured orthogonality, only directions of the target searchspace are consid-
ered. We will also use the term overlap in conjunction with target searchspaces and
searchspaces. An overlap refers to shared directions between two spaces. This means
that one or more of the iterated directions of two searchspaces or target searchspaces

HC

178 4 Taming the BEAST – Quality of results

are associated with the same eigendirection and two Ritz pairs will be generated
independently as approximations of the associated eigenpair. On the contrary, we
speak of disjoint spaces if no directions are shared.

Experiment 4.20 — Interval gap and searchspace occupation (non-ideal)
We repeat Experiment 4.19 with a spectrum in the range of 10−5 around one to

generate detrimental conditions for orthogonality between the two intervals. The filter
in use here is a Cauchy filter with Gauss-Legendre rule of degree 8. We then monitor
which directions exactly are occupying the searchspaces (m = 15). See Figure 4.30
for the results.

10−2 10−4 10−6 10−8 10−10

100

10−5

10−10

10−15

Gap size

O
rt

ho
go

na
lit

y

2 4 6 8 10

10−5

10−10

10−15
O

rt
ho

go
na

lit
y

Interval separation steps

Figure 4.30: Gap influence for different searchspace combinations.
Also shown: the orthogonality limits 1 (red), 3 (yellow), 4 (purple).

The first two runs for the gap sizes 10−1 and 10−2 exhibit a significantly improved
orthogonality (Figure 4.30, left). Indeed, the first occurrence of shared directions
among the target searchspace of an interval and the respective searchspace of the
neighboring interval (and vice versa) is the third run with gap size 10−3 (the first
non-ideal orthogonality in the plot).

Additionally, for an evenly distributed spectrum without gap, we successively move
apart the target intervals, leaving an increasing number of eigenvalues in-between the
two intervals while monitoring the directions occupying the searchspace (m = 20).
The first occurrence of the target searchspaces being disjoint from the respective
neighboring searchspace is the sixth interval separation (Figure 4.30, right; the first
ideal orthogonality in the plot).

In conclusion, we see that diminishing orthogonality is chiefly caused by overlap in
the target directions occupying the searchspaces of independently computed intervals.
In practice, this will likely always be the case for adjacent intervals, but not necessarily
for intervals that are not directly adjacent. Orthogonality is unimpaired if the overlap
involves only the non-target portion of the searchspaces. We will refer to overlap
that impairs orthogonality as critical overlap. Whether this condition is fulfilled can
be determined by inspecting the (non-phantom) Ritz values of both intervals. Only
if neighboring Ritz values happen to be located in the target interval (or vice versa)—
with an error margin in the order of their residual—has the gap to be considered for
further orthogonality estimations. The presence of Ritz phantoms with very slow

HD

4.5 Achievable orthogonality 179

convergence that are related to some eigendirection may be involved in the critical
overlap, even though their Ritz values are not indicative of that. On the other hand,
Ritz phantoms may indicate critical overlap, even though they do not belong to a
critically overlapping direction. This is yet another reason to remove Ritz phantoms
from the searchspace as early as possible during iteration.

The influence of overlap has implications on the choice of the filter function. Some
filter functions, when acting on an oversized searchspace, tend to include eigenvalues
that are located close to the target interval first. This is the case, first and foremost,
for the Butterworth filter, but, to a certain degree, also for the other decaying
filters. Non-decaying filters tend to include eigenpairs that are farther away from
the target interval. We will call this property of a filter locality. This is, again,
strongly connected to searchspace size. Larger searchspaces are likely to include
directions that are located farther away from the target interval, causing diminished
orthogonality over larger distances between intervals.

The concept of subspace overlap may make non-decaying filters seem unfavorable
if orthogonality is to be accounted for, but, of course, there is no reason to combine
a non-decaying filter with a largely oversized searchspace. In fact, tight searchspace
sizes that work well with non-decaying filters are also beneficial for orthogonality
since the chance of creating an overlap is reduced.

While Experiment 4.19 and Experiment 4.20 already include a first analysis of the
usability of the limits introduced above, we verify the influence of two parameters
separately: the dependency on ‖B−1A‖2 and possible effects of convergence failure,
which here shall describe the failure to reach the saturation residual for at least some
of the slots. To explore whether distance and/or number of overlapping directions is
a condition for the quality of orthogonality, we employ ideal filters again, explicitly
selecting certain directions to be included in the searchspace.

Experiment 4.21 — Overlap and ideal orthogonality
We repeat Experiment 4.17 with modified setup to analyze the effect of overlap on

inter-orthogonality in relation to the norm of the matrix pencil. To emphasize the
effect on orthogonality, we create conditions under which we have to expect heavily
diminished orthogonality by scaling the size of the target interval down to 10−5. In
order to control the directions that occupy a slot in the searchspace directly, we create
suitable ideal filters with a dampening of 10−5. The distance of both intervals is in
the order of 10−8. At first, both filters are set up to include only directions inside
the target intervals. The searchspace is then extended by explicitly chosen additional
directions.

a) We extend each searchspace by the direction located between the two intervals
that is closest to, but not included in, the respective neighboring interval. While
the spectral regions of the two searchspaces now overlap, directions are not
shared. With our definition from above, the searchspaces do not overlap. The
measured orthogonality is ideal.

b) We extend each searchspace by a single shared direction located exactly between

HE

180 4 Taming the BEAST – Quality of results

the two intervals. The searchspaces are now considered overlapping. Orthogo-
nality is impaired for larger norms.

c) We extend each searchspace by all directions located between the two inter-
vals, increasing the number of shared directions. The effect on orthogonality
increases.

d) We create critical overlap by having each searchspace include the nearest eigendi-
rection of the respective neighboring interval. The measured orthogonality
reaches a worst-case state. Increasing the overlap further, with or without
critical directions, has no significant additional influence on orthogonality.

Figure 4.31 outlines the different configurations.

104 102 100 10−2 10−4 0

100

10−5

10−10

10−15

O
rt

ho
go

na
lit

y

a)

104 102 100 10−2 10−4 0

b)

104 102 100 10−2 10−4 0

c)

104 102 100 10−2 10−4 0

d)

Interval center

Figure 4.31: Influence of different types of overlap on inter-orthogonality.
Also shown: the orthogonality limits 1 (red), 3 (yellow), 4 (purple). Refer
to Experiment 4.21 for a description of the scenarios.

The effect of the dampening strength on overlapping directions can be summarized
as follows. If critical overlap occurs in the target searchspaces, orthogonality will
be impaired with no beneficial bias due to different strengths of dampening. If
the overlap is non-critical, orthogonality is generally better, but is still affected
by the norm of the matrix pencil. Dampening of the overlapping direction has a
beneficial effect on the overall orthogonality and additional iterations of subspace
projection may reduce the orthogonality further. If no overlap occurs, orthogonality
can generally be expected in the range of the machine precision ε(1). Repeating the
experiment with different distances does not change the overall outcome, which is
why the plots are not included here.

In summary, orthogonality always seems good, if no neighboring directions are
occupying a slot in the searchspace. If the searchspace size is not exact, i.e., the
searchspace is oversized, orthogonality is still limited by the norm of the matrix pencil,
but not by the gap between intervals. If the searchspace size is exact, orthogonality
is in the range of machine precision. The orthogonality under non-critical overlap is
related to the distance of the overlapping directions to the target directions of the
neighboring interval and the norm of the matrix pencil. If the (single) overlapping

HF

4.5 Achievable orthogonality 181

direction is brought very close to the interval boundaries, orthogonality already
suffers. The same is the case for moderate gaps but large norms.
The analysis for subspace overlap, while promising, requires the reliable removal

of Ritz phantoms for an effective classification. In general, it is safer to rely on
complete disjunction of Ritz value ranges to determine whether orthogonalization
has to be conducted or not. It then may be possible to limit the orthogonalization
procedure to intervals only a few steps away.

Experiment 4.22 — Overlap-based exclusion
For the four data sets of the matrix test set, we record whether the searchspaces of

two intervals overlap by tracking the subspace range of all Ritz values for an interval.
For simplicity, we use the strictest possible overlap detection method, only checking
the disjunction of a pair of subspace ranges. We then determine the largest worst-case
orthogonality among any two intervals that was accepted by this criterion, as well as
the smallest worst-case orthogonality that was rejected. Rejected interval pairs would
require explicit orthogonalization as per the subspace overlap condition. Table 4.7
summarizes all the values found.

locking no locking

even uneven even unevenName

min reject max allow min reject max allow min reject max allow min reject max allow

laser 7.198e−08 5.987e−08 8.317e−08 8.744e−08 1.492e−09 4.719e−09 4.096e−09 4.833e−09
SiH4 8.572e−08 4.647e−06 1.242e−09 2.148e−07 2.984e−09 2.478e−07 5.588e−10 4.677e−07
linverse 4.614e−05 3.398e−05 2.790e−09 2.328e−06 3.298e−13 7.724e−10 6.854e−17 3.893e−08
Pres_Poisson 3.658e−06 4.879e−06 3.722e−06 9.415e−09 1.031e−07 1.915e−09 7.755e−08 1.298e−09
Si5H12 6.584e−07 9.303e−07 2.494e−07 5.653e−11 1.340e−08 2.771e−10 1.217e−08 5.815e−12
brainpc2 2.546e−06 1.473e−05 2.930e−06 1.172e−05 8.854e−08 1.647e−09 9.355e−08 5.468e−09
rgg_n_2_15_s0 1.424e−05 1.401e−09 1.368e−05 1.235e−09 4.092e−07 2.453e−11 1.764e−07 5.407e−11
SiO 1.647e−06 8.637e−10 1.279e−06 1.992e−06 3.491e−08 1.879e−11 6.507e−09 5.301e−11
Andrews 9.021e−06 1.130e−09 8.778e−06 9.001e−10 5.735e−08 6.507e−11 8.372e−08 5.307e−11
Si34H36 3.301e−06 2.659e−10 2.926e−06 5.012e−10 6.641e−09 3.845e−12 3.481e−08 1.379e−11
fe_rotor 2.160e−05 1.583e−08 1.930e−05 1.035e−08 3.475e−07 1.023e−10 6.719e−08 6.443e−10
GraI-119k 2.537e−06 1.060e−08 2.484e−06 1.479e−09 2.929e−09 3.986e−09 1.023e−09 8.245e−14

Table 4.7: Subspace overlap evaluation. Smallest rejected and largest accepted worst-case
orthogonality among all intervals for the four data sets of the matrices from the
test set.

While the smallest rejected orthogonality being small is not a problem per se, large
values for the largest accepted orthogonality indicate a failure of the classification.
From Table 4.7 it is easy to see that the overlap condition is not feasible in practice.
This is due to the subspace iteration process not being allowed to progress to sat-
uration, contrary to the experiments above. In practice, iteration will be stopped
before saturation is reached in virtually all cases. We therefore instead have to rely
on the estimated bounds formulated earlier.

HG

182 4 Taming the BEAST – Quality of results

4.5.3.1 Verification of orthogonality bounds

The purpose of a reasonably tight estimation of the inter-orthogonality of two in-
tervals through cheap computations is the exclusion of certain orthogonalization
steps, i.e., interval pairs. To propagate the required information, only the exchange
of smaller sets of data such as residuals, eigenspace and interval ranges, and the
number of vectors is required for any pair of intervals. While inter-orthogonality can
easily be measured for all pairs of intervals, the required effort is larger; vectors have
to be communicated and inner products have to be computed.

The proposed a priori orthogonality bounds 1 – 4 are pessimistic by nature. They
are based on roughly the same criteria as the residual bounds and do not contain
considerations of factors that may benefit orthogonality, such as disjoint searchspaces.
Each bound has its pros and cons.

• The limit 1 does have a benefit compared to the other limits introduced
here: it is monotonous with respect to the gap. Relying on this limit then
allows to completely skip orthogonalization steps against intervals of larger
distance. Being very pessimistic does reduce its usability, though. In addition,
it represents an assumed maximum stagnation residual that can be reached
under all circumstances. It does not take into account stopping iteration at
a possibly much larger residual. As such, it has been broken repeatedly in
experiments with the matrix test set.
• Limit 2 is not included in any of the experiments since its missing dependency

on the norm of the matrix pencil has proven fatal.
• A strong point of limit 3 is that, even if the iteration does not work out

as intended, be it because of Ritz phantoms included in the final result or
eigenpairs that did not converge well due to some reason, the limit never seems
to break. Since it largely relies on the residual and a large residual is typically
accompanied by a comparatively bad orthogonality, it still works in many kinds
of failure states.
• The bound obtained from limit 4 is very similar to 3 if the norm of B is

ignored; the availability of this norm is a general problem wherever the B-
residual is required. The definition of the gap becomes somewhat difficult
in case an oversized searchspace is iterated, assuming that directions may
not have converged very far or Ritz phantoms are present. In any case, the
smallest distance between any two non-phantom Ritz values may be used. This,
however, can only ever result in smaller gaps, making the estimation even more
pessimistic. From this point of view, basing the computation of the gap on
Ritz values inside the target interval is not unreasonable.

All upper bounds examined so far have in common that they can be very pessimistic.
This is particularly true if there is no overlap, or at least no critical overlap, of the
searchspaces.

One of the most interesting matrices from the test set (Section 4.1.2) is linverse.
The orthogonalities from the four data sets are shown in Figure 4.32. In particular

HH

4.5 Achievable orthogonality 183

20 40 60

even, locking

20 40 60

even, no locking

20 40 60

uneven, locking

20 40 60

20

40

60

uneven, no locking

10−15 10−14 10−13 10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Figure 4.32: Orthogonalities produced by the linverse matrix. Shown are the worst or-
thogonalities of all possible interval combinations.

with locking, many intervals have a far reach in regard to influences on orthogonality.
This is particularly noticeable if the distribution of eigenpairs is even, possibly cutting
into dense clusters while specifying intervals. Subdividing the interval into equal-
length sections is less likely to hit a cluster. The spectrum of linverse is composed
of a sequence of small clusters and while some intervals are clearly conspicuous,
especially with uneven distribution, the spectral distribution is not a clear indicator.
The intervals 31 and 38, as well as 64 interact with almost all other intervals. While
the boundaries of intervals 31 and 64 cut clusters, the boundaries of interval 38 do not.
Further, there are additional intervals whose boundaries cut clusters, but who do not
interact over large distances. Figure 4.33 gives an overview over all interval distances
for all data sets from the test set. There is no indication the distance correlates with
the patterns observed in Figure 4.32, other than for direct neighbors and duplicate

20 40 60

even, locking

20 40 60

even, no locking

20 40 60

uneven, locking

20 40 60

20

40

60

uneven, no locking

10−15 10−14 10−13 10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Figure 4.33: Interval distances of the linverse matrix. Shown are the minimum distances
between Ritz values of all possible interval combinations. Note that the color
map has been reversed for improved visibility.

HI

184 4 Taming the BEAST – Quality of results

eigenpairs (fourth picture). It is more likely that orthogonality of far away intervals
is related to the number of vectors and general density in the respective intervals,
but an obvious direct correlation could not yet be found. Nonetheless, the rather
large orthogonalities may serve as a good test for the orthogonality bounds.

Experiment 4.23 — Quality of orthogonality bounds
With the results for the four data sets obtained from the matrix test set (see

Section 4.1.2), we can apply the estimated orthogonality bounds 3 and 4 and compare
them to the computed real inter-orthogonality between all interval pairs. The bounds
1 and 2 are excluded for the reasons mentioned earlier. The visual representation
easily skews the intuition of whether a bound is tight or pessimistic, and under which
conditions; the ordering of the single interval interactions is crucial. Figure 4.34
shows orthogonalities and bounds for all 2016 interval pairs of the linverse data
set with even eigenpair distribution and locking. The plots are sorted by distance of
computed eigenpairs, inter-orthogonality, maximum residual, and bound 3 .

10−17

10−12

10−7

10−2

O
rt

ho
go

na
lit

y

sorted by distance sorted by orthogonality

10−17

10−12

10−7

10−2

O
rt

ho
go

na
lit

y

sorted by max. residual sorted by bound 3

Figure 4.34: Orthogonality bounds for linverse(even).

While the fluctuations in the data appearing in the plots of Figure 4.34 tend to
hide how pessimistic the bounds are, the second plot, sorted by orthogonality, reveals
how large the discrepancy between estimated and achieved orthogonality can become.
The third plot shows that at least interval pairs with low orthogonality are caught

HJ

4.6 Evolution of orthogonality 185

well by both bounds. The fourth plot indicates how similar bounds 3 and 4 are. If
B 6= I for 4 , 3 would have to use

∥∥∥B− 1
2

∥∥∥‖R‖ for the residual. In both cases, the
result is a shift of the bounds.

4.6 Evolution of orthogonality
So far we only have considered cases where the iteration has been allowed to progress
far beyond residual saturation. However, orthogonality may improve further even
after the residual has reached saturation if the iteration is continued. This is the
orthogonality that has been analyzed here. In practice, the iteration will be stopped
if some target residual has been reached.
Many other factors may influence the orthogonality that can be expected after

a certain number of iterations or at certain levels of residuals. Before delving into
orthogonalization schemes and their consequences, we shed light on some remaining
questions regarding the development of orthogonality over the course of several
iterations of the eigensolver.

Experiment 4.24 — Evolution of orthogonality under different conditions
We start this experiment by generating a matrix pencil of size 1000 with evenly

spaced spectrum in [−1, 1]. The central m = 20 eigenpairs are computed in two
separate intervals, separated by a gap of g = 10−9. An ideal filter with dampening
10−3 is generated to cover these exact eigenpairs for both intervals and the searchspace
is chosen exactly sized to not generate Ritz phantoms yet. However, we choose a
set of initial guess vectors that, in a setup with slightly oversized searchspace, will
only emit Ritz phantoms that are not located inside the target intervals.11 Since there
is no critical overlap and the norm of the matrix pencil is in the order of unity,
orthogonality can ultimately reach machine precision. This constitutes the calibration
run for the behavior of the inter-orthogonality between both intervals, which converge
simultaneously and under the same conditions.

The conditions are now modified to highlight the influence of certain factors. First,
the searchspace is inflated to 1.5 times its initial size, producing five Ritz phantoms
per interval. As mentioned before, those Ritz phantoms are located outside the
respective target interval. Then, the convergence speed of inner eigenpairs is modified
by changing their filter values. We linearly interpolate filter values between one and
10−2. With this, values close to the interval boundaries will converge slower than
those located towards the center of the interval. Finally, a disturbance in the order
of 10−13 is applied to the projector, resulting in a disturbance norm of 3.633 · 10−12.
Figure 4.35 summarizes the results.

The first run depicted in Figure 4.35 produces very steady convergence of all
eigenpairs. The orthogonality improves at comparable speeds, reaching saturation

11) The location of Ritz phantoms is not easily predicted; the vectors were found by repeated testing
of random vector sets.

HK

186 4 Taming the BEAST – Quality of results

5 10
10−18

10−9

100

R
es

id
ua

l

Calibration

5 10

Enlarged

5 10

Slow convergence

5 10

Disturbed

5 10
10−18

10−9

100

O
rt

ho
go

na
lit

y

5 10 5 10 5 10

Iteration

Figure 4.35: Evolution of the inter-orthogonality of two independently iterated intervals in
comparison to the evolution of the residual. The horizontal black line indicates
machine precision (double).

together with the residual. The introduction of Ritz phantoms, as shown in the
second plot of Figure 4.35, does not influence the overall result, despite composing
an orthogonal set of iterated vectors with the target eigenpairs and showing no signs
of convergence themselves. However, the modification of the convergence speed of
directions that participate in the computation of orthogonality has an effect on the
result. As can be seen from the third plot of Figure 4.35, the worst-case orthogonality
is, similarly to the residual, dictated by those directions of the target eigenpairs that
converge the slowest. The fourth and final plot of Figure 4.35 shows that the impact
of a systematic error, the disturbance of the projector, translates to the orthogonality
as well. If the searchspace size is larger than the number of eigenpairs inside the
target interval, directions will populate the searchspace that will not take part in
the computation of orthogonality, which is reasonable since we are only interested in
the orthogonality between vectors from the target intervals. The presence of outside
directions and the fact that they typically will be less far converged, i.e., have a larger
residual, raises the expectation for them to have an influence on the orthogonality
of the whole system.

Once the analysis is extended to actually occupied additional directions, we enter
the realm of gap influence. The inhibiting effects of subspace overlap and critical
overlap have been discussed before. The above experiment can be extended to
analyze the progression of orthogonality under these conditions in order to compare
the behavior of the orthogonality.

Experiment 4.25 — Evolution of orthogonality with increasing distance
We generate a matrix pencil of size 1000 with evenly spaced spectrum in [−1, 1].

The central m = 20 eigenpairs are computed in two separate intervals, separated
by a gap of g = 10−3, which is just the spectral distance of all adjacent eigenpairs
of the spectrum. Since ideal filters seem to skew the results, we instead employ a

HL

4.6 Evolution of orthogonality 187

Butterworth filter of degree 12. We perform four separate runs with distances between
the interval boundaries of the two intervals of 0, 6 · 10−3, 1.8 · 10−2, and 3 · 10−2.
The first distance, of course, produces critical overlap, while the second distance is
exactly large enough for the two intervals to have disjoint searchspaces. The results
are presented in Figure 4.36. For comparison, we also decrease the gap from 10−3 to
10−5, 10−7, 10−9, and 10−11; the results are shown in Figure 4.37.

5 10

Distance 0

5 10

Distance 6 · 10−3

5 10

Distance 1.8 · 10−2

5 10
10−18

10−9

100

R
es

id
ua

l

Distance 3 · 10−2

5 10 5 10 5 10 5 10
10−18

10−9

100

O
rt

ho
go

na
lit

y

Iteration

Figure 4.36: Evolution of the inter-orthogonality of two independently iterated intervals
with increasing distance (between interval boundaries) in comparison to the
evolution of the residual. The horizontal black line indicates machine precision
(double).

5 10

Gap 10−5

5 10

Gap 10−7

5 10

Gap 10−9

5 10
10−18

10−9

100

R
es

id
ua

l

Gap 10−11

5 10 5 10 5 10 5 10
10−18

10−9

100

O
rt

ho
go

na
lit

y

Iteration

Figure 4.37: Evolution of the inter-orthogonality of two independently iterated intervals with
decreasing gap in comparison to the evolution of the residual. The horizontal
black line indicates machine precision (double).

HM

188 4 Taming the BEAST – Quality of results

For the first plot of Figure 4.36, distance zero, orthogonality improves at a similar
rate as the residual. Without overlap, increasing the distance, as shown in the
remaining plots of Figure 4.36, improves the initial orthogonality and increases
convergence speed of the orthogonality while there is essentially no difference for
the development of the residual among the four cases shown. This is likely the
reason why estimations based on residual are that pessimistic. The orthogonality
convergence speed being roughly comparable to residual convergence speed in case
of subspace overlap can be seen in Figure 4.37. The convergence speed does not
become much worse beyond a gap of 10−5, the curve does not flatten out. Instead,
the gap between intervals only defines a hard limit and quickly becomes dominant.
The convergence of orthogonality is delayed due to Ritz phantoms in the interval.

4.7 Remarks
We have seen in Experiment 4.24 and Experiment 4.25 that a lower residual drop
rate is accompanied by a lower orthogonality drop rate, but without overlapping
searchspaces, the convergence speed of inter-orthogonality increases with distance.
The results only apply to intervals that converge under identical conditions; intervals
at different stages may have other implications on the development of orthogonality.
It seems that worst-case orthogonality is dictated by the slowest converging direction
that participates in the orthogonalization, as is evident from Experiment 4.24. Other
peculiarities of residual convergence, such as cluster super-convergence, carry over to
orthogonalities, but typically are much less pronounced compared to the experiments
in this chapter, since only fast converging inner directions are considered for orthog-
onalization. It further is unclear, if the relation between distance and convergence
speed is identical for all possible problems, or if other factors play a role. These
factors make it difficult to find a more precise estimation of the orthogonality.
A possible estimation would have to be split into two parts, one for subspace

overlap, where the gap defines a limit and improvement of orthogonality is tied to
the residual, but initial orthogonalities are larger with smaller gaps, and one for
disjoint searchspaces. Another factor is the consideration of gap sizes that are of the
same order of magnitude as the achieved residual or smaller. A gap measured only
from the Ritz values is likely to be no reasonable representation of the real gap in
this case. Attempting to infer a usable estimation in this situation is a moot effort.

As has been outlined in larger detail in the previous sections, several cases emerge
during subspace iteration that require the explicit orthogonalization of independently
computed eigenpairs. Since the orthogonality that can be expected between any
two intervals is difficult to estimate, it has become clear that orthogonalization of
independently computed approximate eigenvectors is a necessity in general, if orthog-
onality is of concern for the respective application. In case it can be determined that
single orthogonalization steps can be skipped or a certain order of orthogonalization
is beneficial, a flexible approach to orthogonalizing a large number of intervals is
required.

HN

Chapter 5
Taming the BEAST – Orthogonalization

The need for orthogonal vectors arises on multiple occasions throughout the so-
lution of an eigenproblem using subspace iteration. The specific requirements

differ from case to case. This chapter will outline a selection of orthogonalization algo-
rithms with the ultimate goal to orthogonalize a sequence of approximate eigenvector
blocks after subspace iteration has been stopped (at any residual) without imminent
need for reiteration. Orthogonalization of one block against another will necessarily
diminish the intra-orthogonality of the modified block if the inter-orthogonality of the
involved remote blocks was poor. Similar effects on the residuals have to be expected.
The fact that, after subspace iteration, vector blocks are intra-orthogonal and that or-
thogonality may be retained to some extent during inter-orthogonalization, however,
opens up possibilities of more flexible orthogonalization schemes.

5.1 The many orthogonalities of BEAST
So far, the terms orthogonality and orthogonalization have been used in many places
and different contexts. The searchspace set used in the Rayleigh-Ritz procedure
may be orthogonalized in general or must be orthogonalized (Figure 5.1, a) to
produce a reduced eigenproblem of standard form (while other methods to achieve
the same exist); the computed approximate eigenvectors are inherently orthogonal;
locking converged eigenpairs necessitates the maintenance of orthogonality of iterated
vectors and locked vectors (Figure 5.1, b). Finally, orthogonality of independently
computed approximate eigenvectors is influenced by several factors and may require
orthogonalization (Figure 5.1, c), which again is expected to have implications on
the orthogonality of the eigenvector blocks themselves.
In the case of the generalized Rayleigh-Ritz procedure, orthogonalization of the

searchspace set is typically not necessary. The orthogonalization of an iterated
approximately orthogonal block of vectors against a locked orthogonal block of vectors
is generally unproblematic and trivial. This chapter will therefore be devoted to
shouldering the task of cross-interval inter-orthogonalization.

This poses several requirements for the orthogonalization algorithms that may be

HO

190 5 Taming the BEAST – Orthogonalization

used, apart from the overall minimum deviation from orthogonality of the result they
can provide. Dealing with generalized eigenproblems, the inability to orthogonalize
with respect to a Hermitian positive definite matrix B is an exclusion criterion for
many algorithms. Additionally, different algorithms may have differing effects on
the previously established residual, and we desire to identify a method to reduce
potential loss of residual accuracy. Finally, in the context of large problem sizes and
high-performance hybrid-parallel computing on many nodes, parallelization potential
and communication overhead play an important role towards an efficient parallel
eigensolver.

a) b) c)

Figure 5.1: Orthogonalization schemes.
a) Intra-orthogonalization of a block of vectors.
b) Inter-orthogonalization between different vectors of a single block.
c) Inter-orthogonalization between different blocks of vectors.
Of course, b) and c) are conceptually equivalent.

5.2 Establishing intra-orthogonality

Many methods for orthogonalizing a set of vectors are known, one of which, Gram-
Schmidt orthogonalization, has been introduced in Section 1.3.2. While reestablish-
ing intra-orthogonality does not affect previously established inter-orthogonality (in
exact arithmetic; with numerical influences, orthogonality might be affected depend-
ing on the condition of the matrix [SW06]), there is an additional factor that has
to be accounted for in our case. Modification of the approximate eigenvectors is
likely to introduce additional errors, reflected by increased residuals. In order to
not destroy the accuracy achieved during subspace iteration, we aim at identifying
orthogonalization methods that influence residuals as little as possible.
Additionally, if B is not the identity, we require orthogonalization methods that

can be modified to produce B-orthogonal bases. A modification of this kind is
not always a trivial task. The Gram-Schmidt method of creating orthogonal vector
blocks as portrayed in Section 1.3.2 has the intrinsic ability to produce B-orthonormal
vectors. For QR decompositions of Givens and Householder type, approaches in these
directions have been made, but focus on a different understanding of orthogonality
[SS03b; Sin06; SS08].

HP

5.2 Establishing intra-orthogonality 191

5.2.1 QR decomposition
As crudely outlined in Section 1.7.1, the QR decomposition of an n × m matrix
Z, Z = QR, yields an orthogonal basis Q for the space spanned by Z and an
upper triangular matrix R. If Q is square and R has size n × m, we refer to the
decomposition as full QR decomposition; such a decomposition exists for any matrix
[GV13]. A QR decomposition may be constructed by subsequent applications of
transformations Ti to the vector block Z in order to bring it to upper triangular
form,

R =
[
R̃
0

]
= Tk . . . T1Z =⇒ Q = T−1

1 . . . T−1
k .

The matrix Q is I-orthonormal if all Ti are I-orthonormal and thus T−1
i = THi . The

structure of R, where only the first m rows are non-zero, shows that only the first
m columns of Q are required to reconstruct Z,

Z = T−1
1 . . . T−1

k

[
R̃
0

]
= T−1

1 . . . T−1
k

[
I
0

]
︸ ︷︷ ︸

=: Q̃

R̃.

This is the aforementioned thin QR decomposition Z = Q̃R̃. Multiple types of
transformations to bring Z to upper triangular form exist. If a QR decomposition
is to be used to B-orthonormalize vectors Z, e.g., eigenvectors of a generalized
eigenproblem, the transformations must fulfill

Q̃HBQ̃ = I,

which is generally the case if
T−H1 BT−1

1 = I

or, equivalently, T1 is B-orthonormal and all remaining Ti are I-orthonormal.1 This
is often not easily done unless B− 1

2 is known such that

T−H1 B−
1
2BB−

1
2T−1

1 = I

and all Ti are I-orthonormal. Nevertheless, we shall introduce the most commonly
used algorithms to compute (I-orthogonal) QR factorizations in addition to algo-
rithms that naturally produce B-orthonormality.

5.2.2 QR via Givens rotations
There is no difference between Givens rotations and Jacobi rotations as introduced in
Section 4.1.1 apart from the area of their respective application. We follow (roughly)

1) [I 0
]
QHBQ

[
I
0

]
is obviously B-orthonormal if Q is B-orthonormal.

HQ

192 5 Taming the BEAST – Orthogonalization

[Bin+02] and [GV13] to introduce the complex version of Givens QR in pragmatic
manner. Let a rotation matrix Qij be applied to a vector z,

Qijz = y.

The factors c and s can be chosen to eliminate the j-th entry of the resulting vector
y, i.e., c and s are chosen such that(

c s
−s c

)(
zi
zj

)
=
(
yi
0

)
.

By requiring yj = −szi + czj = 0 and |c|2 + |s|2 = 1 for normalization, we first may
choose c = zi and s = zj and, via normalization, obtain

c = zi√
|zi|2 + |zj|2

and s = zj√
|zi|2 + |zj|2

since |a|2 = |a|2 for complex numbers a. We also have to require c to be real such
that Qij can be orthogonal. This can be enforced by choosing [Bin+02]

c = |zi|√
|zi|2 + |zj|2

and s = zi
|zi|

zj√
|zi|2 + |zj|2

since aa = |a|2 for complex numbers a and assuming zi 6= 0. Then,

yi = czi + szj = zi
|zi|
|zi|2 + zjzj√
|zi|2 + |zj|2

= zi
|zi|

√
|zi|2 + |zj|2.

If zi = 0 then c = 0 and obviously s may be anything of unit absolute value. If
zj = 0, nothing has to be done and the rotation can be the identity. For numerical
stability (the square root might overflow), different methods of computation are
advisable. For details and possible implementations, see [Bin+02; GV13]. Many of
these transformations are applied to Z for every column, bottom-up, to finally reach
upper triangular form.

5.2.3 QR via Householder reflections
Instead of applying many elementary rotations, transformations can be found that
can bring one column of Z to the desired form in just one step. We again follow
[GV13]. A Householder reflection has the form

H = I − βvvH with β = 2
vHv

,

where β is just a normalization factor, chosen such that H is orthonormal, as we
will see in the following. The matrix vvH is obviously Hermitian by inspection of its
entries and βvvH is Hermitian since β is real. Thus,(

I − βvvH
)H

= I −
(
βvvH

)H
= I − βvvH

HR

5.2 Establishing intra-orthogonality 193

and (
I − βvvH

)2
= I − 2βvvH + β2vvHvvH = I − 4

vHv
vvH + vHv

4
(vHv)2vv

H

= I − 4
vHv

vvH + 4
vHv

vvH = I.

We see that H is orthonormal. The transformation represents a reflection about the
hyperplane trough 0 that is orthogonal to v. By some elementary transformations
we may write the application of H to a vector z as

Hz = z − 2
‖v‖2

(
vHz

)
v = z − 2

〈
z,

v

‖v‖

〉
v

‖v‖ .

The scalar product signifies the (possibly negative) length of the component of z in
the direction v, measured in units of size ‖v‖. Since v is the normal vector of the
hyperplane, this is exactly the distance of the orthogonal projection of z onto the
plane. Accordingly, the reflection of z then is

z + 2
〈
z,

v

‖v‖

〉
−v
‖v‖ .

We now desire
Hx =

[
y1
0

]
.

From the above we have seen that v as well as z and its reflection lie in the same
hyperplane, such that the elimination of all entries but the very first one may be
enforced by letting

v = z +
[
c
0

]
=⇒ Hz = z − 2v

Hz

vHv

(
z +

[
c
0

])
=
(

1− 2v
Hz

vHv

)
z − 2v

Hz

vHv

[
c
0

]

=
(

1− 2 zHz + cz1

zHz + z1c+ cz1 + cc

)
z − 2v

Hz

vHv

[
c
0

]

=
(
−zHz + z1c− cz1 + cc

zHz + z1c+ cz1 + cc

)
z − 2v

Hz

vHv

[
c
0

]

and with

c = z1

|z1|
√
zHz =⇒ −zHz + z1z1

|z1|
√
zHz − z1z1

|z1|
√
zHz + z1z1

|z1|2
√
zHz
√
zHz = 0

since zHz is real. Then,

y1 = −2cv
Hz

vHv
= −2c zHz + cz1

zHz + z1c+ cz1 + cc
= −2c

√
zHz + |z1|√

zHz + |z1|+ |z1|+
√
zHz

= −c.

HS

194 5 Taming the BEAST – Orthogonalization

There are many pitfalls regarding numerical stability when computing Householder
transformations with finite accuracy. For details, see [GV13].
A sequence of Householder transformations can eliminate the entries below the

main diagonal for each column of Z from left to right by operating on the trailing
sub matrix. In step k, the full-size transformation matrix has the form

[
Ik

Hk

]
for k = 0, 1, . . . ,m− 2,

where Hk ∈ Cn−k×n−k is the appropriate Householder transformation as derived
above for the vector [zk+1,k+1, . . . , zn,k+1]T and I0 is to be considered empty.

5.2.4 Gram-Schmidt QR
By writing down the vector modifications of the Gram-Schmidt or modified Gram-
Schmidt algorithms from Section 1.3.2,

qi = 1
‖v̂i‖

vi − i−1∑
j=1
〈vi, qj〉qj

 =⇒ vi = qi

‖v̂i‖
︸ ︷︷ ︸
rii

+
i−1∑
j=1
〈vi, qj〉
︸ ︷︷ ︸
rji

(where vi in the scalar product may be replaced with v̂i to match modified Gram-
Schmidt) we automatically obtain the entries rij of R such that Z = QR.

5.2.5 B-orthogonality
Any method that computes the orthogonalization of Z as an explicit right-multipli-
cation with some matrixW−1 is theoretically easily modified for B-orthogonalization
by the substitution Z = B

1
2Y . If

V = ZW−1 and V HV = W−HZHZW−1 = I

then
W−HY HBYW−1 = I,

which means that YW−1 is B-orthogonal. Similarly, if Y is B-normalized, Z is
normalized and vice versa. This would be true also for the above methods, if R−1

would ever be computed explicitly. Of course, the computation of B 1
2 is out of

the question as well. Gram-Schmidt QR includes the substitution implicitly via the
scalar product. Another (but very similar) way to implicitly include this substitution,
is to base the orthogonalization on the inner product Y HBY .

HT

5.2 Establishing intra-orthogonality 195

5.2.6 Cholesky QR
The Cholesky decomposition (see, e.g., [GV13]) of a Hermitian matrix M has the
form

M = LLH ,

where L is a lower triangular matrix. The diagonal elements of L are real and positive.
For a vector block Z as before, ZHBZ is Hermitian and

ZHBZ = LLH

with Z = QR implies
RHQHBQR = RHR,

and thus R = LH if Q shall be B-orthogonal. With given R we set Q = ZR−1. The
computation does not involve sequences of transformations other than implicitly via
the computation of L. While further details on the computation of the Cholesky
decomposition shall not be given here, once L is obtained, the implementation is
straightforward and easily parallelizable.2 Assuming a block row distribution in a
parallel context, the only operation to provoke inter-process cooperation is the inner
product, if the result is made available on all processes. The computation of the
Cholesky factor and the inversion that follows are purely local operations. The
Cholesky decomposition can fail in case of very ill-conditioned input matrices, see
Section 5.2.13.

5.2.7 Rank revelation
The QR decomposition Z = QR does not generally reveal the rank of Z as the
rank of R [GV13] (while it may in many cases). Given that R is triangular, the
eigenvalues are found on the diagonal. To aid numerical stability and to move the
small eigenvalues of R to the lower right corner, pivoting is employed to effectively
compute decompositions [Cha87]

ZΠ = QR,

where Π is a permutation matrix reordering the columns of Z. In the case of
Householder QR, the division by ‖v‖ may jeopardize accuracy, since divisions by
small numbers constitute an amplification of the numerical error in the numerator
[GV13]. This is also the reason why the Cholesky decomposition may become
unstable without pivoting. Choosing the column with the largest norm for the next
elimination minimizes the problem. For the orthogonalization of eigenvectors, where,
under normal circumstances, we can expect full rank and ideal conditioning, stability
is of minor concern. A mostly fail-proof method for the determination of the rank
of a matrix is the singular value decomposition [GV13], which can also serve as
orthogonalization method.
2) This is highly compatible with the data distribution scheme used in GHOST, PHIST, and
BEAST, where block vectors are distributed block row wise and the results of inner products are
replicated over all participating processes; see Chapter 3.

HU

196 5 Taming the BEAST – Orthogonalization

5.2.8 Methods based on singular value decomposition
The singular value decomposition (SVD, see, e.g., [GV13]) of a matrix Z ∈ Cn×m

has the form
Z = V ΣWH ,

where V ∈ Cn×n is orthonormal, W ∈ Cm×m is orthonormal as well, and Σ ∈ Rn×m

is a matrix where only the diagonal of the upper m × m submatrix is occupied
by non-negative entries, the so called singular values of Z. Similarly to the QR
decomposition, a “thin” variant is implied by the structure of Σ,

Z = Ṽ Σ̃W̃H ,

where Ṽ ∈ Cn×m, W̃ ∈ Cm×m, and Σ̃ ∈ Rm×m is a diagonal matrix. As before,
Ṽ and W̃ are orthonormal and Ṽ spans the same space as Z. Algorithms for the
computation of singular value decompositions can be found, e.g., in [GV13].

While direct B-orthogonality is not easily obtained, the singular values of a matrix
Z ∈ Cn×m are defined as the square roots of the eigenvalues of ZHZ (see, e.g.,
[Saa11]) and we may analogously define B-singular values as the square roots of the
eigenvalues of ZHBZ. For S = ZHZ, if λI is an eigenvalue of S, then σI =

√
λI is

a singular value of Z, thus, if SB = ZHBZ, σB =
√
λB is indisputably a singular

value of B 1
2Z. Further, since∥∥∥B 1

2Z
∥∥∥ = σmax

B and
∥∥∥B 1

2Z
∥∥∥ ≤ ∥∥∥B 1

2
∥∥∥‖Z‖ =⇒ σmax

B ≤
√
λmax(B)σmax

I .

We may add that the eigenvalues of ZHBZ are larger or equal to zero and ZHBZ
is thus positive semi-definite since yHZHBZy ≥ 0 by the definition of the B-scalar
product. An orthogonalization method based on the computation of singular values
in this manner is described in the following.

5.2.9 SVQB
As with Cholesky QR, the decomposition Z = V ΣWH gives

ZB = ZHBZ = WΣV HBV ΣWH = WΣ2WH

if V is supposed to be B-orthogonal, similarly to Section 4.2.2. The Hermitian
eigenproblem ZBW = WΣ2 can be solved for (W,Σ2) and V = ZWΣ−1; the inversion
of Σ is trivial. In [SW06], a scaled version is proposed, modifying the method to

diag(ZB)− 1
2ZB diag(ZB)− 1

2W = WΣ2 or ZBW
′ = diag(ZB)W ′Σ2

such that V = Z diag(ZB)− 1
2WΣ−1 or V = ZW ′Σ−1. Note that diag(ZB) is, of

course, real and constitutes a normalization of Z. It also is the standardization
method from Section 1.2.2 again with W ′ = diag(ZB)− 1

2W . The difference is that
W ′ is diag(ZB)-orthonormal while W is I-orthonormal. Instead of an SVD, only
singular values are computed here, as mentioned in the introduction. In case B 6= I,
an SVD does not even exist in the required form.

HV

5.2 Establishing intra-orthogonality 197

5.2.10 B-orthogonal QR via SVQB
The combination of different methods allows to obtain a QR decomposition from the
SVQB by combining it with a smaller QR decomposition. For the SVQB method,
the factorization Z = V H implies H = ΣWH respectively H = ΣWH diag(ZB) 1

2

(or H = ΣW ′H diag(ZB)). Now any QR decomposition of H = QR may be used to
produce a full size B-orthonormal3 QR decomposition of Z = V QR.

While it is possible to chain basically arbitrary orthogonalization algorithms this
way, overall orthogonality is unlikely to be improved. Consider Z = V H and a
chained decomposition H = V1H1. Then, for V H

1 V HBV V1 to be closer to the identity
than V HBV , V1 would have to be laid out to be approximately V HBV -orthogonal,
which is generally not the case.

5.2.11 Parallel block-orthogonalization
A reasonably simple method to orthogonalize a tall and skinny block of vectors that
is distributed block row wise over p processes such that the local number of rows nl
is larger than or equal to the number of columns m, is the embarrassingly parallel
computation of local orthogonalizations, but only if the resulting block vectorQ is not
required to span the same space as Z. Certainly, the (properly scaled) concatenation
of orthonormal subblocks Qi is itself orthonormal,

1
p

[
QH

1 . . . QH
p

]
Q1
...
Qp

 = 1
p

p∑
k=1

I = I,

but the inclusion of a matrix B 6= I is not easily possible. If, however, B = I and the
only goal is to create an orthogonal set of vectors in parallel, for example to obtain
an orthogonal set of vectors as initial searchspace set, then this approach is feasible.

5.2.12 TSQR
Not quite a novel QR algorithm of its own, the tall skinny QR algorithm [Dem+12;
Hoe11] has been developed with the goal to optimize the computation of a QR fac-
torization for execution in massively parallel environments in case Z has significantly
more rows than columns. It is a blocked method that employs existing sequential
and parallel QR algorithms to construct the QR decomposition of a larger matrix.
In this regard, the algorithm is a combination of the chaining of algorithms from
Section 5.2.10 and the subdivision parallelization method from Section 5.2.11. It
cannot easily be adapted for B-orthogonality for the same reason.

The TSQR algorithm assumes a one-dimensional block row distribution,4 but, in
its most basic form, requires the number of block rows (typically equal to the number

3) Since QHV HBV Q = QHQ = I.
4) This is compatible with GHOST, PHIST, and BEAST; see Chapter 3.

HW

198 5 Taming the BEAST – Orthogonalization

of participating processes), p, to be a power of two. The mode of operation can be
understood as working level-wise bottom-up on a binary tree of height h = log2(p)
for p block rows. The first step (on the leaves) computes the local QR decomposition
(assuming the number of local rows to be larger than the columns)

Z
(0)
i = Q

(0)
i R

(0)
i for i = 0, . . . , p− 1.

The following steps successively combine neighboring factors

Z
(`)
2`k =

 R
(`−1)
2`k

R
(`−1)
2`(k+ 1

2)

 for k = 0, . . . , 2h−` − 1 and ` = 1, . . . , h

and compute their QR decompositions in parallel. During this process, every new R
factor has the same constant size m, such that the number of rows in the parallel
QR factorizations is 2m and constant as well. The procedure stops at the root of the
tree with a single QR decomposition that yields the final R factor. The orthogonal
vectors Q are multiplications of the intermediate orthogonal vectors, arranged the
right way, as is outlined for p = 4 in Figure 5.2 (similarly to the picture found in
[Dem+12]). The recomposition of Q is then intuitively clear. The completed i-th

Z
(0)
0 = Q

(0)
0

R
(0)
0

Z
(0)
1 = Q

(0)
1

R
(0)
1

Z
(0)
2 = Q

(0)
2

R
(0)
2

Z
(0)
3 = Q

(0)
3

R
(0)
3

R
(0)
0

R
(0)
1

=
Q

(1)
0

Q
(1)
1

R
(1)
0

R
(0)
2

R
(0)
3

=
Q

(1)
2

Q
(1)
3

R
(1)
2

R
(1)
0

R
(1)
2

=
Q

(2)
0

Q
(2)
2

R
(2)
0

Figure 5.2: TSQR binary tree scheme with four processes.

block Qi of Q is built as

Qi = Q
(0)
i

h−1∏
`=0

Q`+1
k with k =

⌊
i

2`
⌋
.

A sequential version works similarly by combining factors of different stages, as indi-
cated in Figure 5.3. Note that not all intermediate blocks are stacked R-type factors
in this case. Modifications of this kind may be introduced into the decomposition

HX

5.2 Establishing intra-orthogonality 199

Z
(0)
0 = Q

(0)
0

R
(0)
0

Z
(0)
1

R
(0)
0

Z
(0)
1

=
Q

(1)
0

Q
(1)
1

R
(1)
0

Figure 5.3: Single step of the TSQR sequential scheme.

scheme at any stage (not necessarily stage zero as in the example above) and for any
block. In general, this is only necessary if the initial number of vector blocks is not
a power of two.
For the involved parallel QR decompositions, any algorithm may be used, (in-

cluding TSQR itself, if at least one block is not yet triangular). In the original
proposal, a version of Householder QR is used that can exploit the structure of
the intermediate vector blocks, two triangular matrices stacked on top each other
[Dem+12]. Technically, the decompositions computed in the several stages of the
algorithm need not be QR decompositions at all. Indeed, only the last stage has to
yield a QR decomposition in order to produce a valid QR decomposition in total.
Different stages may employ any orthogonal decomposition, like an SVQB variant,
SVD, or similar. Whether or not this is a good idea is debatable.

5.2.13 Condition and multi-orthogonalization
An analysis of the stability of an orthogonalization algorithm typically amounts to
bounding the deviation of the inner product of the resulting vectors with themselves
from identity in the presence of inexact floating point arithmetic with machine
precision ε. Not uncommonly, the condition number of the input matrix Z, which
we define here as the relation between its smallest and largest singular value (see
also Section 1.3.2),

κ(Z) = σmax(Z)
σmin(Z) ,

becomes a dominant factor in the resulting expression, essentially defining the mag-
nitude of the worst possible error that could potentially be made. This may be
intuitively understood, seeing that the eigenvalues of ZHZ are the squared singular
values of Z and approach unity as Z approaches ideal orthogonality. As such, the
condition number of a matrix is related to its intra-orthogonality and an orthogonal
matrix has ideal unit condition. The condition number serves as an indicator of the
accuracy of a numeric algorithm that is applied to some input. Its more general
definition describes the fluctuations in the result in relation to the fluctuations in-
troduced in the input (see, e.g., [Hig02; Saa03; GV13]). A summary of the stability
bounds of the methods discussed here will follow in a later section.

HY

200 5 Taming the BEAST – Orthogonalization

The above reveals the general drawback of inner product based orthogonaliza-
tion methods such as Cholesky QR or SVQB, the squared condition of the matrix
ZHZ that then often is to be decomposed by algorithms that themselves can react
sensitively to ill conditioned matrices.5 This is the case for clearly inner product
based methods, but also for methods where this relation is less obvious, such as
the Gram-Schmidt family [Hof89]. However, the numerical stability, i.e., the devi-
ation from orthogonality, of an orthogonalization routine can be improved simply
by performing the orthogonalization (or single orthogonalizations that appear in the
algorithm itself) twice (or more). Since the condition of the resulting vectors can
be assumed to be better than the condition of the initial vectors, an additional pass
of the same algorithm will now produce errors that, in magnitude, are bound by an
expression related to the improved condition of the new input vectors. In the case
of Cholesky QR, for example, the stability of the algorithm hinges on the stability
of the underlying Cholesky factorization, a process that may break if the matrix
is close to being singular, i.e., it has an eigenvalue near zero. Since for Cholesky
QR the eigenvalues of the matrix in question are the squared singular values of the
input vector block Z, the problem even intensifies, as has been mentioned above.
This can be mitigated by performing the algorithms twice [Fuk+14], but the success
of the factorization can still not be guaranteed and consequentially, an algorithm
including an additional pass with shift modification has been proposed [Fuk+20]. For
Gram-Schmidt, a modification that includes two or more orthogonalization passes for
each column [Dan+76; Hof89; Dem+12] can increase stability to machine precision.
These methods are typically referred to as iterative Gram-Schmidt.

Any of the introduced algorithms may simply be repeated to improve orthogonal-
ity. Of course, the computational cost of more complex orthogonalization methods
increases rapidly. If many orthogonalizations have to be performed, a cost-efficient
method has to be preferred. In the case of possible other iterative orthogonalization
methods that inherently are not designed to reach orthogonality in one step but to
improve orthogonality by some margin, multiple applications are inherently required.

5.2.14 Weak Gram-Schmidt
Since the Gram-Schmidt orthogonalization procedure is based on the computation
of the inner products of the involved vectors, it is not possible to use a potentially
optimized block inner product similarly to Cholesky QR6 since modifications of later
vectors are always based on results from earlier vectors. If we were to compute the
Gram-matrix ZB = ZHBZ en bloc, orthogonality would not be preserved by the
algorithm. Consider the Algorithm 1.2 operating on a priori scalar products 〈vi, vj〉B
resulting in corrections vi ← vi − 〈vi, vj〉Bvj that are not based on the intermediate

5) If such an algorithm is used to orthogonalize eigenvectors, where we can assume that the vector
block has full rank and B is positive definite, stability is not in immediate jeopardy.
6) In the sense of computing the complete inner product of all vectors, as is the case with Cholesky
QR. Of course internally blocked Gram-Schmidt implementations exist and make use of block inner
products, see, e.g., [Oli+00; Ste08]. Also compare Section 5.3.5.

IA

5.2 Establishing intra-orthogonality 201

orthogonal subset of vectors. This can be understood as step-wise orthogonalization
such that orthogonality of the first pair of vectors is established and all subsequent
modifications have (presumably) no beneficial effect towards orthogonality. Succes-
sive application of the algorithm produces one additional orthogonal vector in each
pass, until, after m steps, all vectors are orthogonal.
If there is, however, already some level of orthogonality, this method has the

property to improve orthogonality proportionally to the initial orthogonality. We
will call this method weak Gram-Schmidt. The improvement of orthogonality is
quickly explained by manually following the first few steps. Assume the vectors zi
to be normalized and let the vi be the processed vectors. Further, denote the Gram
factors as ai,j = 〈zj, zi〉B. We obtain the vectors

v1 = z1

v2 = z2 − a1,2 z1

v3 = z3 − a1,3 z1 − a2,3 z2
...

vm = zm −
m−1∑
k=1

ak,m zk

and, assuming j < i, compute their Gram factors7

vHj Bvi =
zHj − j−1∑

k=1
ak,j z

H
k

B (zi − i−1∑
k=1

ak,i zk

)

= zHj Bzi −
i−1∑
k=1

ak,i z
H
j Bzk −

j−1∑
k=1

ak,j z
H
k Bzi +

j−1∑
k=1

i−1∑
`=1

ak,j a`,i z
H
k Bz`

= aj,i − aj,i aj,j −
i−1∑
k=1
k 6=j

ak,i aj,k −
j−1∑
k=1

ak,j ak,i +
j−1∑
k=1

ak,j ak,i ak,k

+
j−1∑
k=1

i−1∑
`=1
`6=k

ak,j a`,i ak,`

= −
i−1∑
k=1
k 6=j

ak,i aj,k +
j−1∑
k=1

i−1∑
`=1
6̀=k

aj,k a`,i ak,`

from which we see that the Gram factors improve if all ai,j are small enough. This
means that the sum of the absolute values of the occurring Gram factors must be
smaller than the original orthogonality to guarantee progression; otherwise, improve-
ment of the Gram factors is pure luck. Expressions for the Gram factors between
vectors of higher indices are more complex, but only consist of products of orthogonal-
ities, which we consider orders of magnitude smaller, with the original orthogonality
7) Remember ai,i = 1 and ai,j = aj,i

IB

202 5 Taming the BEAST – Orthogonalization

canceling out. We may also deduce—in the worst case—that there occur at most
(i− 2) terms with a product of two Gram factors and at most (i− 2)(j − 1) terms
with a product of three Gram factors.

Let us have a look at the Gram factor for i = m and j = m− 1, which contains
the most terms overall. If we assume 0 < |ai,j| ≤ a for all vector pairs, m vectors in
total, and, at the same time that no further terms cancel out, we might require

a > (m− 2)2a3 + (m− 2)a2 =⇒ a <
−1 +

√
5

2(m− 2) (5.1)

for guaranteed improvement of the absolute values of the Gram factors (not orthog-
onalities yet) towards machine precision. These numbers become smaller as the
number of vectors increases, but Figure 5.4 shows that even with 1000 or 10 000
vectors, the requirement is bearable, at least in not too extreme cases. The rate of

101 102 103 104

10−4

10−3

10−2

10−1

100

Number of vectors m

O
rt

ho
go

na
lit

y
re

qu
ir

em
en

t
a

Figure 5.4: Minimum required initial orthogonality a for weak Gram-Schmidt as a function
of the number of vectors m ≥ 3.

improvement for one step of weak Gram-Schmidt with initial worst-case orthogonality
among all vectors a is then at least

(m− 2)a+ (m− 2)2a2

with new worst-case Gram factor (m− 2)a2 + (m− 2)2a3; in practice, Gram factors
typically will be better than this bound. Figure 5.5 displays the estimated and
achieved Gram factors for one step of weak Gram-Schmidt for different initial orthog-
onalities a. Results are shown for m = 10, 100, and 1000 for vectors of size 10 000.
With increasing numbers of vectors the deviation of the estimation from the actually
computed value grows and the achieved Gram factors are better than predicted. This
is caused by cancellation, in particular if more terms are involved, and due to not all
vector pairs having the exact same worst-case orthogonality. For the same reasons,
the initial orthogonality requirement is less strict and improvement is possible, even
if the postulated requirement is not met. In particular, vectors with lower indices
are subject to less strict constraints and improvement is therefore larger.

IC

5.2 Establishing intra-orthogonality 203

−→ Decreasing initial orthogonality −→

10 vectors

−→ Decreasing initial orthogonality −→

100 vectors

106

100

10−6

10−12

10−18

−→ Decreasing initial orthogonality −→

G
ra

m
fa

ct
or

s

1000 vectors

Figure 5.5: Gram factor improvement of weak Gram-Schmidt. Shown are the initial orthog-
onality (blue), the predicted result (yellow), and the achieved result (red). Also
shown are the orthogonality requirement a (upper gray line), machine epsilon
(lower gray line), and one for reference (horizontal black line).

To find the largest Gram factor that guarantees reaching machine precision (for
the worst-case Gram factor) in one step, we can require

(m− 2)a2 + (m− 2)2a3 = ε

and solve for a, for example with an iterative root finding method. As before, this
limit ensures reaching ε, but larger initial Gram factors may work as well. Figure 5.6
shows the values for up to 10 000 vectors. The general shape of the curve is identical
to Figure 5.4, but the scaling on the y-axis is different.

Although improvement of Gram factors does not necessarily imply improvement of
orthogonality, the above tacitly ignores the normalization that is required to obtain
usable values for the orthogonality from the absolute values of the Gram factors.
The squared norm of vector vi, similar to before, is given by

vHi Bvi =
(
zHi −

i−1∑
k=1

ak,i z
H
k

)
B

(
zi −

i−1∑
k=1

ak,i zk

)

= 1−
i−1∑
k=1

ak,i ak,i −
i−1∑
k=1

ak,i ak,i +
i−1∑
k=1

ak,i ak,i +
i−1∑
k=1

i−1∑
j=1
j 6=k

ak,i aj,i ak,j

= 1−
i−1∑
k=1
|ak,i|2 +

i−1∑
k=1

i−1∑
j=1
j 6=k

ai,k aj,i ak,j. (5.2)

It is clear that the norm approaches unity as the ai,j become smaller. By the definition
of the scalar product from Section 1.1.1 and with B positive definite, Equation (5.2)
must be larger than zero (assuming vi 6= 0). The maximum deviation from unity

ID

204 5 Taming the BEAST – Orthogonalization

101 102 103 104
10−10

10−9

10−8

Number of vectors m

O
rt

ho
go

na
lit

y
re

qu
ir

em
en

t
fo

r
re

ac
hi

ng
ε

Figure 5.6: Minimum required initial orthogonality a for weak Gram-Schmidt to reach ma-
chine precision as a function of the number of vectors m ≥ 3.

can be estimated by assuming no cancellation, again with a ≥ |ai,j| > 0, which leads
to ∣∣∣1− ‖vi‖2

∣∣∣ < (i− 1)a2 +
(
i2 − 3i+ 2

)
a3. (5.3)

The expression on the right is unbounded. In lieu of a more sophisticated bound,
we employ Equation (5.1) for i vectors as a hard limit for a. Then, the maximum
deviation under these restrictions for i vectors is

Υ(i) := (i− 1)

(
−1 +

√
5
)2

4(i− 2)2 +
(
i2 − 3i+ 2

)(−1 +
√

5
)3

8(i− 2)3 . (5.4)

and 1−Υ(i) quickly approaches unity for an increasing number of vectors.
Figure 5.7 shows that accounting for the norm as in Equation (5.3) to obtain

actual orthogonalities only influences the cases where the new maximum Gram
factor would have been larger than one, besides making the estimation slightly more
pessimistic. Accounting for the norm in terms of Equation (5.4) for the respective
number of vectors (not shown) makes the estimation slightly more pessimistic in a
similar way, but otherwise has no additional influence. Due to the norm approaching
unity, if orthogonality is established via weak Gram-Schmidt and the normality of the
input vectors is guaranteed, the method also produces normalized vectors through
subsequent applications.

Convergence is faster the smaller the ai,j are. In particular, if the ai,j are reasonable
small already, very few steps of weak Gram-Schmidt suffice to reach machine precision.
Considering that methods like Cholesky QR often require multiple applications for
stability reasons, weak Gram-Schmidt can be less expensive. The lion’s share is
again the initial inner product. Let

gi,j = zHi Bzj

‖zi‖2‖zj‖
.

Normalization of the input vectors Z and application of the Gram factors aij may

IE

5.2 Establishing intra-orthogonality 205

−→ Decreasing initial orthogonality −→

10 vectors

−→ Decreasing initial orthogonality −→

100 vectors
100

10−6

10−12

10−18

−→ Decreasing initial orthogonality −→

G
ra

m
fa

ct
or

s

1000 vectors

Figure 5.7: Orthogonality improvement of weak Gram-Schmidt. Shown are the initial or-
thogonality (blue), the predicted result (yellow), and the achieved result (red).
Also shown are the orthogonality requirement a (upper gray line) and machine
epsilon (lower gray line).

be combined in a single m×m matrix

G =

1
‖z1‖ −g1,2 −g1,3 · · · −g1,m

1
‖z2‖ −g2,3 · · · −g2,m

.
1

‖zm−1‖ −gm−1,m
1
‖zm‖

,

whose right-multiplication onto Z does not require any additional communication
if Z is distributed block-row-wise and ZB is replicated on every process. Note that
the norms ‖zi‖ are found on the diagonal of ZB. Its application ZG may also be
written as

S = (si,j) := D−
1
2ZBD

− 1
2 = D−

1
2ZHBZD−

1
2

ZG = ZD−
1
2

1 −s1,2 −s1,3 · · · −s1,m
1 −s2,3 · · · −s2,m

.
1 −sm−1,m

1

 ,

withD = diag(ZB). The occurrences ofD− 1
2 are the normalizations of all occurrences

of the original vectors Z.
With the same approach as outlined in [SW06], we may formulate an upper

bound on the orthogonality achieved by weak Gram-Schmidt when computations are
performed with finite accuracy. Assume Z to be normalized and thus let S = ZHBZ.

IF

206 5 Taming the BEAST – Orthogonalization

The floating point representation of S with error e(S) is written as

S = S + e(S),

with
‖e(S)‖ ≤ c1ε‖S‖ = c1ελ

max(S) ≤ c1ε‖B‖‖Z‖2.

The ultimate goal is to formulate a bound for the orthogonality of the floating point
representation V of the resulting vectors. We write V = V + e(V) analogous to S
and thus∥∥∥I − VHBV

∥∥∥ =
∥∥∥I − V HBV + e(V)HBV + V HB e(V) + e(V)HB e(V)

∥∥∥.
This is, so far, mostly identical to [SW06]. With V = ZG, we end up in a situation
similar to before—estimations of the norm of G involve orthogonalities and require us
to again assume that all vectors exhibit some maximum orthogonality a = a+e(a) ≥ 0
to produce a worst-case scenario. We can then find a rough upper bound for the
largest eigenvalue of G by invoking Gershgorin’s circle theorem on GHG,

‖G‖ ≤
√

1 + (m− 1)a + 1
2m(m− 1)a2

since ‖G‖ =
√
λmax

(
GHG

)
. In this case, it is also

‖S‖ ≤ 1 + (m− 1)a and∥∥∥B 1
2Z
∥∥∥ ≤ √1 + (m− 1)a.

We may also write ∥∥∥B 1
2V
∥∥∥ ≤ ∥∥∥B 1

2Z
∥∥∥‖G‖∥∥∥B 1

2 e(V)
∥∥∥ ≤ c2ε

∥∥∥B 1
2Z
∥∥∥‖G‖.

We thus obtain∥∥∥I − VHBV
∥∥∥ ≤ ∥∥∥I − GHZHBZG

∥∥∥+ 2c2ε
∥∥∥B 1

2Z
∥∥∥2‖G‖2 + c2

2ε
2
∥∥∥B 1

2Z
∥∥∥2‖G‖2

=
∥∥∥I − GHSG + G e(S)G

∥∥∥+ 2c2ε
∥∥∥B 1

2Z
∥∥∥2‖G‖2 + c2

2ε
2
∥∥∥B 1

2Z
∥∥∥2‖G‖2

≤
∥∥∥I − GHSG

∥∥∥+ c1ε‖S‖‖G‖2 +
(
2c2ε+ c2

2ε
2(1)

)∥∥∥B 1
2Z
∥∥∥2‖G‖2.

The norm of I − GHSG can be obtained similarly to the norm of G (somewhat
simplified due to GHSG being Hermitian),

∥∥∥I − GHSG
∥∥∥ ≤ (m− 1)2a2 + 1

2m(m− 2)(m− 1)a3.

IG

5.2 Establishing intra-orthogonality 207

In contrast to the analysis of a single worst-case Gram factor of V HBV before, it
is not surprising that, when looking at the full norm, we catch an additional factor
m in the bound, making this estimation more pessimistic. The worst off-diagonal
entry of GHSG, however, can indeed again be bounded by (m− 2)a2 + (m− 2)2a3.

Without writing down the somewhat unsightly fully resolved bound, it can already
be seen that, assuming a → 0 and a → c3ε (by repeated iterations of weak Gram-
Schmidt; we have seen that there are conditions under which this cannot be achieved),
the floating-point induced deviation from orthogonality approaches the order of
machine precision (up to a constant, a dependency on m, and higher order terms).
Dropping all terms with higher powers of ε, we may summarize the bound as∥∥∥I − VHBV

∥∥∥ . O(m2a2
)

+O
(
m3a3

)
+ ε

(
O(ma) +O

(
m2a2

)
+O

(
m3a3

))
.

Here, we assume that e(a) ≤ c3εa with a > 0. Powers of a are always paired with the
respective powers of m; a linear term only appears factored with machine precision.

5.2.14.1 Computational effort

Quite a few of the methods introduced above require the computation of an inner
product ZHBZ which requires 2m·nnz(B) operations (additions and multiplications)
for the sparse matrix-vector multiplication and 2nm2 operations (additions and
multiplications)8 for the multiplication of ZH and BZ. Since the result is Hermitian,
it suffices to only compute the upper triangular part, reducing the cost for the dense
multiplication to roughly nm2 operations (nm operations more if normalization
cannot be assumed, nm operations less otherwise).
For the construction of the weak Gram matrix G, at least (m2 +m)/2 divisions,

m square roots, and (m2 −m)/2 multiplications9 are required if the vectors of Z
are not normalized. If the normality of Z can be assumed, these operations can
be omitted and the matrix is built from the Gram factors alone with the diagonal
entries being unity. In this case, no arithmetic operations are required to construct
G, but its (m2 +m)/2 entries still have to be written to memory. The process of
building G is trivially parallelizable and may be carried out by multiple threads.

What is left is the multiplication of Z with an upper triangular matrix, at a cost of
nm2+nm multiplications and additions (nm2−nm if normalization can be assumed).
Assuming nnz(B) ∈ O(n), the overall asymptotic complexity is O(nm2).

Weak Gram-Schmidt may require more than one iteration to reach the desired
orthogonality. While other methods may require multiple iterations due to stability
concerns, the cheap computation of weak Gram-Schmidt is eventually overshadowed
by the number of iterations it may require. In this case it may still serve to improve
a result obtained from, say, Cholesky QR in a cheap manner instead of repetitive
execution of Cholesky QR itself.

8) We ignore the different counts of multiplications and additions in the scalar products and assume
their number to be equal for the sake of simplicity.
9) If the square roots are stored separately. Otherwise the number of multiplications duplicates.

IH

208 5 Taming the BEAST – Orthogonalization

5.2.15 Residual
Intra-orthogonalization can affect the residual of the modified vectors. For weak
Gram-Schmidt, for example, the residual for an orthogonalized vector qi becomes

‖Aqi − λiBqi‖ ≤ ‖Axi − λiBxi‖+
i−1∑
k=1

ak,i ‖Axk − λiBxk‖.

The effect of normalization on the residual has been omitted, following the previous
section. For other QR-type algorithms, the residual can be formulated in similar
manner, given that R is a triangular matrix and can be applied via its inverse,
which is again triangular. The results may differ for other algorithms. In order
to determine which algorithms produces the least disturbance to the residual, we
compare a selection of algorithms.

Experiment 5.1 — Influence of local reorthogonalization on the residual
We generate a matrix of size 5000 with a distinct cluster around unity. In order

to include methods that do not support B-orthogonalization, a standard eigenproblem
is used. The internal cluster density is set to 10−10. The complete spectrum is
enclosed in [0, 2] and the non-clustered parts are evenly distributed in the two outer
regions. The 160 clustered eigenpairs are computed independently over 8 intervals,
I1, . . . , I8. To produce a more difficult situation, the intervals were not allowed to
converge to machine precision, but stopped after few iterations. Overall progress is
slowed down by using a Cauchy filter of the Gauss-Legendre type with only four poles.
The already tight clustering of the eigenpairs lowers the kick-off residual considerably
and increasing the density further while targeting a comparatively large residual is
neither possible nor necessary. The residual produced is of the order of 5 · 10−12 for
the boundary intervals and around 5 · 10−10 to 5 · 10−9 for inner intervals. While this
seems to indicate that the computed eigenvalues cannot be properly separated, the
values are well separated in practice.

We choose two out of the eight intervals such that a single inter-orthogonaliza-
tion operation evokes the maximum impact on intra-orthogonality and residual of
the modified vectors in order to maximize the deviation applied by reestablishing in-
tra-orthogonality. Here, this is the orthogonalization of I1 against I2; consecutive
orthogonalization against additional intervals adds little to the situation. Due to
high spectral density and comparatively moderate target residual the effect is severe.
The residual of I1 is raised to almost 2 · 10−9 and intra-orthogonality is raised to
about 10−2, see Figure 5.8. Also shown in this figure are the results of reorthogo-
nalization using several of the previously introduced methods (see Table 5.1 for an
overview). Monitored are the worst-case, i.e., the maximum per-eigenpair residual
and the worst-case, i.e., maximum orthogonality among any two eigenvectors of the
modified interval I1.

It is striking that none of the tested methods (with the exception of all methods
based on the SVD) seem to impair the residual beyond what was caused by inter-
orthogonalization. Repeating the experiment under different conditions substantiates

II

5.2 Establishing intra-orthogonality 209

gs
m

gs
w

gs
(1

)
w

gs
x(

1)
w

gs
(2

)
w

gs
x(

2)
w

gs
(3

)
w

gs
x(

3)
gr

qr
hh

qr
ch

ol
qr

ts
qr qr sv
d

sv
qb

1
sv

qb
2

sv
qb

3
sv

qb
1q

r
sv

qb
2q

r
sv

qb
3q

r

10−11

10−9

10−7

Residual

gs
m

gs
w

gs
(1

)
w

gs
x(

1)
w

gs
(2

)
w

gs
x(

2)
w

gs
(3

)
w

gs
x(

3)
gr

qr
hh

qr
ch

ol
qr

ts
qr qr sv
d

sv
qb

1
sv

qb
2

sv
qb

3
sv

qb
1q

r
sv

qb
2q

r
sv

qb
3q

r

10−17

10−12

10−7

10−2

Intra-orthogonality

Figure 5.8: The effect of local (intra-)reorthogonalization. Left: residual of the modified
interval. Shown are the initial worst-case residual (green), the worst-case
residual after inter-orthogonalization (red), and the worst-case residual after
intra-orthogonalization (blue circles). Right: orthogonality of the modified in-
terval. Shown are the initial orthogonality (green), the orthogonality after inter-
orthogonalization (red), and the orthogonality after intra-orthogonalization
(blue circles).

Shortcut Method

gs Classical Gram-Schmidt
mgs Modified Gram-Schmidt
wgs(1) Weak Gram-Schmidt
wgsx(1) Explicit implementation of weak Gram-Schmidt
wgs(2) Weak Gram-Schmidt (two times)
wgsx(2) Explicit implementation of weak Gram-Schmidt (two times)
wgs(3) Weak Gram-Schmidt (three times)
wgsx(3) Explicit implementation of weak Gram-Schmidt (three times)
grqr Givens QR (unoptimized)
hhqr Householder QR
cholqr Cholesky QR
tsqr Basic TSQR implementation without specialized triangular QR
qr MATLAB QR [MLB]
svd MATLAB SVD [MLB]
svqb1 First version of SVQB
svqb2 Second version of SVQB
svqb3 Third version of SVQB
svqb1qr First version of SVQB with chained QR
svqb2qr Second version of SVQB with chained QR
svqb3qr Third version of SVQB with chained QR

Table 5.1: Method name abbreviations. The wgsx versions are implementations of weak
Gram-Schmidt analogous to classical Gram-Schmidt as opposed to the direct
matrix construction method from Section 5.2.14. The svqb* versions are the
three versions introduced in Section 5.2.9 in order of appearance.

IJ

210 5 Taming the BEAST – Orthogonalization

this result. In terms of orthogonality, the results thoroughly are what was to be
expected. The somewhat weaker orthogonality achieved by Givens QR may have to
be attributed to a slightly suboptimal testing implementation. Weak Gram-Schmidt
delivers results within the predicted per-step improvement, resulting in a total of
three steps being necessary in order to achieve sufficient orthogonality in this extreme
situation.

The residual being seemingly invariant under local reorthogonalization is not quite
what would be expected. Due to the high spectral density throughout the interval,
we expect the residual of eigenvalues in combination with unassociated vectors to
be comparably small and with the orthogonalities still well below unity, the product
of both appears to be insignificant compared to the already diminished eigenpair
residuals. Enforcing larger changes in residual involves less densely clustered intervals
while narrowing the distance at the boundary. However, for a large change to occur
during reorthogonalization, a large change during inter-orthogonalization is required
and in all cases it seems that this initial disturbance is dominant over any additional
local disturbance caused by reorthogonalization.
A reasonable explanation for the somewhat faster convergence of the boundary

intervals in this specific situation can be given by analyzing the filter type and
spectrum in and around the intervals. The spectral distribution clusters exactly
the eigenpairs computed by the eight intervals. For a decaying filter, the additional
values occupying the searchspace are likely to be closer to the interval in question
if clustered values are located on both sides or the respective target sub interval. If
clustered values are located only on one side, as is the case with the two boundary
intervals, only values from the cluster side will occupy the searchspace, allowing
more values from this side to be included compared to inner intervals, ultimately
leading to larger convergence speeds since occupying values are farther away from
the interval where the filter has decayed further. Non-clustered values are unlikely
to be included in the searchspaces because they are located farther away and thus
are, in general, subject to stronger dampening than clustered values.
An explanation for the unsuitability of SVD-based methods can be found in the

structure of the matrix (implicitly) applied to Z in order to obtain Q. For QR-type
methods, this is the inverse of R that, itself being a triangular matrix, merely scales
the first vector of Z, leaving its direction untouched. Subsequent vectors are built
as linear combinations of the current vector and previous vectors. In particular, all
vectors are orthogonal to z1. If the transformation is not triangular, this relation to
the eigenvectors is lost.

5.2.16 Fitness for purpose
After examining the several methods for local reorthogonalization and their properties,
not all methods are suited for this purpose and among those that are, we may
choose the ones that are most efficiently computed. Criteria will be the ability to
establish B-orthogonality, disturbance of the residual, potential for parallelization,
stability (in regard to the expected deviation from orthogonality of the result) and

IK

5.2 Establishing intra-orthogonality 211

computational cost. Table 5.2 summarizes the first four of these criteria for the
orthogonalization methods introduced so far. Where possible, the bounds were

Method B-
or
th
og
on

al
ity

R
es
id
ua

li
nv

ar
ia
nt

C
om

m
.
av
oi
di
ng

stability

Gram-Schmidt 3 3 7 ξ
1−ξ with ξ = O

(
εκ
(
B

1
2Z
)2
)
[Gir+05]

Modified Gram-Schmidt 3 3 7 O
(
εκ
(
B

1
2Z
))

[Hig02]

Weak Gram-Schmidt 3 3 3 See Section 5.2.14

Givens QR 7 3 7 O(ε) [GV13]

Householder QR 7 3 7 O(ε) [GV13]

Cholesky QR 3 3 3 O
(
εκ
(
B

1
2Z
)2
)
[Yam+15]

TSQR 7 3 3 O(ε) [Dem+12]

SVD 7 7 7 O(ε)†

SVQB 3 7 3 O
(
εκ
(
B

1
2Z
)2
)
[SW06]

SVQB-QR 3 3 3 O
(
εκ
(
B

1
2Z
)2
)
‡

Table 5.2: Exclusion criteria and stability bounds for the orthogonalization methods intro-
duced before.

modified for B-orthogonality by substitution of Z. For Givens and Householder
QR, the bound follows from all transformation matrices being orthogonal to machine
precision [GV13] and the product of such matrices being precise to machine precision
as well.
The overall cost of an algorithm is a combination of the cost of the pure arith-

metical operations on one process and the communication-induced overhead. For
the communication cost, two factors play a role. The first is surely the amount of
data that has to be transferred. The second factor is the number of communication
steps, i.e., the number of times the latency for establishing communication has to
†) The computation of an SVD is inherently iterative. We can therefore assume that precision in
the order of ε can be reached after a sufficient number of iterations.
‡) Right-multiplication of (even a perfectly) orthogonal matrix will not improve the overall deviation
from orthogonality. Trying to incorporate a QR-decomposition of H in the analysis of the SVQB
[SW06] confirms this early on.

IL

212 5 Taming the BEAST – Orthogonalization

be included in the overall cost. As communication avoiding we here understand
algorithms that, assuming a block-row-wise distribution, require few (or even a mini-
mal number of) communications stages (which is often equivalent to synchronization
points). Due to their log(p)-level fan-in-style communication patterns, TSQR and
all inner-product based methods require the same amount of messages to be sent
(p log(p) in total over log(p) stages for an all-reduction with butterfly communication
pattern to replicate the result on each process). A fan-out is not necessary in this
case. In contrast, Gram-Schmidt, modified Gram-Schmidt, and Householder QR
require 2n log(p) messages [Dem+12].
Before further narrowing down the list of methods based on these criteria, we

exclude some of the methods from the get-go. The SVD is computationally intensive
and at the same time is the only method that does not satisfy any of the additional
criteria from Table 5.2. Givens QR, while easier to parallelize, is computationally
more expensive due to the larger number of transformations that have to be applied
while having otherwise similar properties to Householder QR. Givens QR may be
preferred if only very few elements need to be eliminated, but otherwise is generally
inferior to Householder QR. Table 5.3 summarizes the sequential and parallel cost
of the remaining methods. For the computational cost (in terms of the number of

Method Sequential cost Parallel cost (p processes)

Classical GS 2nm2 [Hig02] 2nm2

p
[Dem+12]

Modified GS 2nm2 [Hig02] 2nm2

p
[Dem+12]

Weak GS 2nm2 +m2 2nm2

p
+m2

Householder QR 4nm2 − 4
3m

3 [Hig02] 4nm2

p
− 4m3

3p [Dem+12]

Cholesky QR 2nm2 + 1
3m

3 [Dem+12] 2nm2

p
+ 1

3m
3 [Dem+12]

TSQR — 6nm2

p
+ 8

3m
3 log(p)− 7

3m
3 [Dem+12]

SVQB 3nm2 +O
(

4
3m

3
)

3nm2

p
+O

(
4
3m

3
)

SVQB-QR 3nm2 +O(4m3) 3nm2

p
+O(4m3)

Table 5.3: Serial and parallel cost of orthogonalization algorithms (GS = Gram-Schmidt).

floating point operations), B = I was assumed to keep the comparison fair. The
cost for the combined inner and outer product appearing in weak Gram-Schmidt,
Cholesky QR, and SVQB is listed as 2nm2 to ensure compatibility with the numbers
from the listed sources; the O(nm/p) and other lower order terms are omitted. The
explicit construction of the Q factor, which is required for our use-case, is included
where the algorithm does not inherently include it (TSQR, Householder QR).

The direct matrix formulation of weak Gram-Schmidt is slightly more expensive
than an explicit Gram-Schmidt-style formulation, which of course requires the same

IM

5.3 Establishing inter-orthogonality 213

amount of operations. For TSQR, a non-parallel application is simply a conventional
QR decomposition; listing its sequential cost therefore makes no sense. The parallel
Householder QR is Scalapack’s PDGEQRF; for the application of the Q factor,
we assume a similar application of the transformations which would require about
the same amount of operations as the construction of the R factor. For SVQB, the
eigendecomposition is accounted for withO(4m3/3) operations, indicating a QR-type
algorithm with few iterations. For SVQB-QR, additionally the QR decomposition
and the application of the corresponding Q factor have to be accounted for. All
numbers assume block-row-wise distribution.
For the most general problems, all the above reduces the list of suitable orthog-

onalization methods to weak Gram-Schmidt, Cholesky QR, and SVQB-QR. The
pure SVQB has to be excluded since it disturbes the residual further. Of course, if
B-orthogonality is not required, the list has to be extended to include TSQR. SVQB-
QR is rather expensive and not more stable than Cholesky QR and is therefore not
a favorable method.
Over the disadvantage of squared condition, inner-product-based methods have

an additional benefit. The computation of the inner product directly reveals all
intra-orthogonalities of the vectors in the block. This information can be used to
bypass unnecessary orthogonalizations and is otherwise not directly available. It also
allows to easily decide between, e.g., weak Gram-Schmidt and Cholesky QR since
the inner product has to be performed for both methods.

5.3 Establishing inter-orthogonality
Given two sets of vectors Z and Y , establishing inter-orthogonality by removing
directions of Y from all vectors in Z such that Y HV = 0 can be achieved by

V = Z − Y
(
Y HBZ

)
,

under the condition that Y is orthogonal, Y HBY = D, where D is the diagonal
matrix of the norms of the vectors in Y . To see why Y is required to be orthogonal,
we may think of the procedure as orthogonalizing every vector of Z separately against
all vectors of Y . Directions removed by one step may be reintroduced by a following
step if the vectors of Y are not orthogonal. We will use the term orthogonality
provider (or just provider for brevity) for the vectors Y which remain unchanged
during the process. Analogously, we will use the term orthogonality recipient (or
just recipient) for the vectors Z which are modified.
An orthogonalization operation also has implications for the intra-orthogonality

of V . If Z was orthogonal before, V will, in general, not be orthogonal anymore
after applying the above. More precisely,

V HBV =
(
Z − Y

(
Y HBZ

))H
B
(
Z − Y

(
Y HBZ

))
= ZHBZ − 2

(
ZHBY

)(
Y HBZ

)
+
(
ZHBY

)
Y HBY

(
Y HBZ

)
, (5.5)

IN

214 5 Taming the BEAST – Orthogonalization

where we assume Z and Y to be normalized and ZHBY and Y HBZ describe the
same orthogonality. Missing above is again the normalization of V , which may be
written as V NV , where NV is the diagonal matrix holding the inverse norms of
the columns of V . This amounts to left and right multiplication of the terms in
Equation (5.5) with NV . Since normalization is required for the computation of
orthogonalities, we have to account for it when estimating the final orthogonality of
V .
Let Z and Y have an equal number of columns m. In the worst case, i.e., the

largest possible entry of the matrix in Equation (5.5), scaled by the square of the
smallest possible norm for columns vi of V , the orthogonality of the updated V is

orth(V) ≤ orth(Z) + 3m orth(Z, Y)2 + (m− 1)m orth(Z, Y)2 orth(Y)
mini‖vi‖2

under the assumption that the largest absolute values in the Gram matrices align
and do not cancel. The value in the denominator is the smallest possible entry on
the diagonal of the matrix in Equation (5.5), which is not easily estimated. We also
know that the diagonal entries of the involved matrices are real and positive.
If we further assume that Z and Y are orthonormal, the above simplifies to

orth(V) ≤ m orth(Z, Y)2

1−m orth(Z, Y)2 ,

but we have to assume that m orth(Z, Y)2 < 1.
Reestablishing intra-orthogonality in exact arithmetic does not influence the inter-

orthogonality between V and Y as their respective subspaces are orthogonal and
reorthogonalization of V happens only inside the subspace of V . For our purpose,
two subspaces are orthogonal if any direction from one subspace is orthogonal to
every direction from the other and vice versa. Inter-orthogonality may be affected in
a numerical context if the condition of the orthogonality recipient is large [SW06].

Possible effects on the residuals of the modified vectors are akin to Section 5.2.15;
here, every vector of Z is orthogonalized against every vector of Y with mY vectors
in total. The formulation for a single vector vi becomes

‖Avi − λiBvi‖ ≤ ‖Azi − λiBzi‖+
mY∑
k=1
〈yk, zi〉B ‖Ayk − λiByk‖.

5.3.1 Intermediate orthogonalization
Subspace iteration lends itself to intermediate orthogonalization phases, e.g., after
each iteration, in order to maintain orthogonality among several intervals. The ques-
tion arises, whether this approach is worthwhile, whether convergence is influenced,
and whether orthogonality is maintained if neither of the participating vector blocks
is well converged yet.

IO

5.3 Establishing inter-orthogonality 215

Experiment 5.2 — Intermediate orthogonalization
We generate a matrix pair of size 1000 with evenly distributed spectrum apart from

the innermost two eigenvalues that are placed at distances

g ∈
{

10−3, 10−5, 10−7, 10−9
}
.

Two intervals spanning the left resp. right half of the spectral center of 20 eigenpairs,
i.e., bisecting the gap of size g, are co-iterated over 40 iterations with a searchspace
size of 15 each. These runs of the algorithm are then repeated to include an orthogo-
nalization of the right interval against the current state of the left interval at the start
of every iteration. The orthogonalization process orthogonalizes the complete set of
approximate vectors of the right interval, including directions that are not part of the
target interval, against those vectors of the left interval that are (presumably) part of
the target interval. This is the only sensible choice for the participating vectors since

• the left interval inevitably contains directions of the right interval that shall
not be removed,
• only the orthogonalities among vectors of the target intervals are of interest,
and
• directions have to be removed from the entire searchspace set of the right interval
in order to be reliably eliminated.

Whether or not directions from the left outside part of the left interval are removed
from the right interval’s searchspace does not play any role. Consequently, only
the orthogonality among vectors that are part of the target intervals is measured for
evaluation. Figure 5.9 compares the orthogonality development with and without
intermediate orthogonalization.

It should be noted that in this experiment, both intervals progress at the approx-
imately same speed, meaning that vector sets that are orthogonalized against each
other have comparable residual ranges. In practice, progress between intervals may
differ largely, even if the iterations are synchronized.

The plots of Figure 5.9 show that orthogonality, with or without intermediate
orthogonalization, evolves gradually alongside the convergence progress and cannot
be established and/or preserved immediately. Nonetheless, intermediate orthogo-
nalization manages to improve the ultimately achieved worst-case orthogonality to
comparable levels for all gap sizes. Improvement, however, stops as soon as the
saturation residual is reached by all directions inside the target interval. The plots
therefore reveal that orthogonalization using intermediate vectors can only ever im-
prove orthogonality in relation to the currently available residual, i.e., convergence
progress. Additionally, the final orthogonality is not as good as expected; it stagnates
around values of order 10−13. This is due to the order of operations since orthogonal-
ization occurs at the start of each iteration, but not at the end. We therefore see the
influence of the very last iteration on the overall orthogonality as a discrepancy to
the expected orthogonality which should be closer to machine precision. It should be

IP

216 5 Taming the BEAST – Orthogonalization

10 20 30
10−17

10−9

10−1

O
rt

ho
go

na
lit

y

g = 1e−3

10 20 30

g = 1e−5

10 20 30

g = 1e−7

10 20 30

g = 1e−9

Iteration

Figure 5.9: Evolution of orthogonality without (blue) and with (red) intermediate orthogo-
nalization for several gap sizes g over 40 iterations. The colored areas enclose
the range of orthogonalities between vectors from the two intervals, indicating
best and, more importantly, worst orthogonality between the two sets of ten
eigenpairs. The black line indicates machine precision.

emphasized that all eigenpairs have reached saturation at this point; further improve-
ment by additional iterations is not possible. In order to lower the final orthogonality
to the expected level, another orthogonalization step is necessary which must not be
followed by an additional iteration. This begs the question of whether intermediate
orthogonalization is necessary at all, if only the very last orthogonalization processes
before stagnation is reached will establish reasonable levels of orthogonality and an
additional orthogonalization step is required after termination of the iteration in all
instances to reach machine precision.

If Experiment 5.2 is modified such that the left interval is completed first and its
converged approximate eigenvectors can be used for orthogonalization, orthogonality
can be established and preserved from the beginning (under continuous orthogonaliza-
tion). Unsurprisingly, even then the accuracy of the final orthogonality is not better
than the one achieved via intermediate vectors, given that each additional iteration
introduces this particular divergence from orthogonality. A final orthogonalization
step without additional iterations of the algorithm would again be required to reach
higher levels of orthogonality.
It should be noted that orthogonalization does improve convergence speed (not

shown here), in particular if the iterated eigenvectors are orthogonalized against
the fully converged vectors of a neighboring interval. The reason for this behavior
is directions being “banned” from occupying a slot in the searchspace in favor of
different and in general farther away directions with smaller associated filter values.
This is akin to reducing the whole eigenproblem by removing certain eigenpairs; they
essentially appear not to exist for all that matters. An orthogonalization, i.e., the
(approximate) removal of directions can be understood as additional dampening of
these exact directions, as if the associated filter value would be very small. Both
for ideal filtering and ideal orthogonalization, the affected directions would vanish
from the searchspace. The convergence reference value f(λm0+1) changes accordingly.
This, of course, can only work well if the directions are removed properly from the
orthogonality recipient. The benefit therefore diminishes for less well converged
orthogonality providers. This means that with co-iterated intervals, accelerations

IQ

5.3 Establishing inter-orthogonality 217

will be negligible in early iterations and increase in later iterations.
The overall influence on convergence speed gives rise to the idea of artificially

accelerating convergence by expunging directions close to the target interval by
means of orthogonalizing against the available approximations of these directions
in the current searchspace. To not immediately reduce the searchspace size, new
random vectors would be appended to directions belonging to the inside of the
target interval and the resulting new block would be orthogonalized against the
approximate outside vectors. In practice, this approach does not work well for two
reasons. First, the slots occupied by outside directions are not well converged for most
iterations and are typically less advanced than slots occupied by inside directions.
As a consequence, these directions are not removed to sufficient accuracy during
orthogonalization. Waiting for these directions to converge further is pointless, if we
have to expect the target directions to be (almost) converged at that point. Second,
if the slots that serve as orthogonality provider are not saved, even assuming that
they are accurate enough to remove the represented directions sufficiently, they will
reappear since in the following iteration the less dominant directions now occupying
the searchspace would serve as new orthogonality provider, allowing the previously
expunged directions to reappear, which they will, considering that they are the more
dominant directions. A strategy of this kind can only succeed if the directions that
serve as orthogonality provider are known with utmost precision to remove directions
permanently and even then is is not guaranteed for them to not reappear due to
numerical fluctuations. All in all, while this approach works in principle, it is not
practicable beyond the continuous orthogonalization against an already converged
set of approximate eigenvectors.
If the two intervals converge at different speeds, such that orthogonalizations

against less advanced vector occur, the acceleration effect may be lost.

Experiment 5.3 — Intermediate orthogonalization with uneven convergence
We generate a matrix pair of size 1000 with evenly distributed random spectrum,

but fix the separation of eigenpairs in the target intervals to g = 10−7. We chose
a problem where the left interval contains eigenpairs that converge slower than all
eigenpairs in the right interval. Other parameters are adopted from Experiment 5.2.
To exclude Ritz phantoms in initial iterations from affecting the orthogonalization,
we begin continuous orthogonalization at the start of iteration 10. We now compare
residuals of eigenpairs inside the right interval (the orthogonality recipient) with and
without orthogonalization. To analyze the opposite conditions, we switch the role of
the intervals by flipping the spectrum. The resulting plots of the residual ranges can
be seen in Figure 5.10.

The apparent stagnation in the first iterations of the right plot is due to a Ritz
phantom that moves outside the interval after iteration seven. It indeed appears
that skipping the orthogonalizations in the first few iterations has no impact on the
result in later iterations; the iteration after the first orthogonalization produces a
significant drop in the residuals, beyond what the searchspace modification would

IR

218 5 Taming the BEAST – Orthogonalization

10 20 30
10−17

10−12

10−7

10−2

R
es

id
ua

l

original

10 20 30

reversed

Iteration

Figure 5.10: Effects of orthogonalization between intervals with different progress. Shown
is the evolution of the residual without (blue) and with (red) orthogonaliza-
tion, beginning with the tenth iteration. Left: larger residual of orthogonality
provider. Right: smaller residual of orthogonality provider.

allow. We also see that reversing the direction of orthogonalization, i.e., reversing the
roles of orthogonality provider and orthogonality recipient, has detrimental effects
on the convergence of the modified searchspace.

A final question regarding continuous intermediate orthogonalization that shall be
answered by an experiment is whether or not a single orthogonalization at the end
of the iterative process will induce a more severe disturbance in the residual than
continuous orthogonalizations.

Experiment 5.4 — Residual disturbances of continuous orthogonalizations
Under the same conditions as in Experiment 5.3, the algorithm is stopped after

13 iterations and an additional orthogonalization of the final approximate eigenpairs
is performed. When orthogonalizing the more advanced interval against the less ad-
vanced interval, in the case of continuous orthogonalization the worst-case residual
grew from 2.783 · 10−7 to 1.055526655 · 10−6. With only a single orthogonalization at
the very end, the worst-case residual grew from 2.743 · 10−11 to 1.055526659 · 10−6.
The similarity of the final residual in both cases is remarkable. Interestingly enough,
repeating the experiment with other spectra and gap sizes confirms this result. Revers-
ing the roles of the interval, however, does not replicate this result if convergence is
improved. In the example from above, in the case of continuous orthogonalization the
worst-case residual remained at 7.905 ·10−9 with only very little difference. With only
a single orthogonalization at the very end, the worst-case residual improved slightly
from 9.266 · 10−7 to 9.182 · 10−7, missing the residual achieved under continuous
orthogonalization by a non negligible margin.

The difference in behavior under orthogonalization between inhibitory and bene-
ficially influence may be explained by the general nature of the process. If vectors
serve as orthogonality provider that are more advanced than those of the orthogo-

IS

5.3 Establishing inter-orthogonality 219

nality recipient, orthogonalization has the effect of dampening directions in favor
of new directions with lower dominance. If the orthogonality providers are less ad-
vanced, an orthogonalization has merely a disturbing effect without the potential of
dampening directions much. Whether this disturbance is added gradually or en bloc
does not matter. On the other hand, it is not possible to catch up to the continuous
accelerated convergence in the opposite case.
In summary, should the orthogonalization process increase the residual, whether

or not orthogonalization was applied continuously does not change the final residual
obtained after an a posteriori orthogonalization. However, an acceleration of conver-
gence is only possible with continuous intermediate orthogonalization, performed in
the right order.

5.3.2 Post-iteration and retention of orthogonality
In the previous section we have seen that subspace iteration can only retain or-
thogonality of its searchspace vectors relative to how well neighboring vectors could
be removed from it in the first place, with the residual being the indicator of this
accuracy. Considering the cost of interrupting the iteration to orthogonalize and the
orthogonalization process of many intervals in general, it quickly becomes clear that
orthogonalization before every iteration would be too expensive. In particular, if we
can foresee that orthogonalization in early iterations only establishes subpar orthog-
onalities. We therefore consider orthogonalization only after selected iterations, in
particular—since rank reduction and the inevitable reduction of the searchspace set
will have an impact on convergence due to the many directions shared among the
intervals—the last two iterations, in the presence of some convergence criterion.

When orthogonalizing two intervals in between two iterations, an important ques-
tion is which vectors to orthogonalize. It may be the full basis or only the vectors
inside the target interval. We have to remember that both intervals contain com-
ponents of the neighboring intervals due to the nature of the filter, in particular
in the case of decaying filters. Thus, an orthogonalization of only some vectors is
ineffective (see also Section 5.3.3) while orthogonalization of all vectors will immedi-
ately lead to rank deficiency in the next iteration. From Section 4.2.2 we also know
that this kind of elimination of directions will require consecutive orthogonalization
for all following iterations, if the orthogonality is to be retained. In more extreme
cases, a complex orthogonalization process may significantly diminish the previously
established residual, which may require additional iterations of the eigensolver to
reestablish the residual. Two questions arise.

• Will the orthogonalized vectors still be good approximations of the eigenvectors,
such that convergence is accelerated and very few iterations are needed?
• Will the established orthogonality be retained during post-iteration?

IT

220 5 Taming the BEAST – Orthogonalization

Experiment 5.5 — Single orthogonalization
We repeat Experiment 5.2, but only perform one single orthogonalization at the

beginning of iteration 24, which is the first iteration where all target eigenpairs have
reached saturation. Figure 5.11 outlines the results.

10 20 30
10−17

10−9

10−1

O
rt

ho
go

na
lit

y

g = 1e−3

10 20 30

g = 1e−5

10 20 30

g = 1e−7

10 20 30

g = 1e−9

Iteration

Figure 5.11: Evolution of orthogonality with orthogonalization before iteration 24 for several
gap sizes g over 40 iterations. The black line indicates machine precision.

The orthogonality after iteration 24 is again of the same order as was the case
with continuous orthogonalization in that iteration, which was to be expected. Most
notably, the orthogonality cannot be preserved for the following iterations without
continuous orthogonalization efforts. Due to the choice of iteration number, the
inevitable rank reduction of the searchspace set due to removed directions does
not cause much disturbance. If the orthogonalization is performed earlier with less
advanced orthogonality providers, the effects on convergence can be chaotic since
the directions have to reorganize. Some more dominant directions may have been
reduced by the orthogonalization process, such that the associated columns in the
basis realign to other directions. Due to deviations in direction, rank reduction may
not trigger. While the acceleration of unaffected directions can be observed, new
Ritz phantoms may be introduced and convergence of affected directions may be
severely hindered. This is not the case or significantly alleviated if orthogonalization
is continued in the following iterations or well converged orthogonality providers were
used in the first place. If rank reduction is triggered, the number of iterated directions
is reduced, affecting the convergence speed of all remaining directions negatively due
to the change of the convergence reference value f(λm0+1). In summary, we can
confirm the following.

• Identical orders of orthogonality can be reached by a single orthogonalization
in absence of previous intermediate orthogonalizations.
• Orthogonality can, in general, not be retained over multiple iterations (there

are exceptions if the orthogonality providers and their surrounding searchspace
are very well converged).
• In order to reach levels of orthogonality in the order of machine precision, a

final orthogonalization step without any additional iteration of the algorithm
thereafter is inevitable.

IU

5.3 Establishing inter-orthogonality 221

In many practical cases, the need for post-iteration is essentially eliminated. This
makes the exploration of a possible purely a posteriori orthogonalization method
worthwhile.

5.3.3 Overlapping intervals
Given that the spectral filtering methods described here allow for the computation of
eigenpairs over multiple different intervals, the idea of improving inter-orthogonality
without explicit communication among the intervals by letting adjacent intervals
overlap is not too far fetched at first glance. This, however, is not different in
principle from computing two non-overlapping intervals whose searchspaces include
directions from the respective neighboring interval. Of course, convergence speed
of these directions differ. In the previous chapter, we have seen that under these
conditions orthogonality suffers.

From a different standpoint, seeing that the resulting eigenvectors after subspace
iteration are themselves intra-orthogonal and inter-orthogonality is still based on the
smallest gap between any two computed eigenpairs from different instances of the
algorithm (and directional overlap of the searchspaces), we instead have to expect
inter-orthogonality to deteriorate in this case.
Overlapping intervals, however, play an important role during orthogonalization

after all. Seeing that the uncertainty of the position of an eigenvalue in relation to
its associated Ritz value, which is bound by the residual, allows a Ritz value to be
located outside the target interval, while its associated eigenvalue is located inside
the target interval if the eigenvalue is very close to the interval boundaries, interval
overlap becomes an adequate countermeasure, see Section 4.4. This overlap may be
chosen individually for each Ritz value, based on the respective residual, essentially
requiring the Ritz-disk around the Ritz value to intersect the target interval in any
way to include the Ritz value in the accepted set. Interval overlap also invites Ritz
pairs of the same eigenpair being computed redundantly in two neighboring intervals.
These duplicates may be discerned from unique Ritz pairs by the angle between
their eigenvectors, which can be assumed to be comparatively close to zero. On the
other hand, assuming that the orthogonality of independently computed intervals
can become arbitrarily bad, a clear distinction between duplicates and Ritz values
with very little separation may be difficult. The secondary job of the cross-interval
orthogonalization thus will be the identification and removal of such duplicates. In
Section 5.3.9 we will deal with this particular problem.

5.3.4 Orthogonalization sequences
Performing multiple orthogonalization steps in sequence following Section 1.3.1 has
several implications on overall orthogonality. First of all, if a vector z is to be
orthogonalized against a vector y in this manner, y must be of unit length. If z is to
be orthogonalized against two vectors y1 and y2, such that z will be orthogonal to
both vectors afterward, y1 and y2 have to be orthogonal to begin with. Otherwise, the

IV

222 5 Taming the BEAST – Orthogonalization

orthogonalization of z against y2 will reintroduce directions it shares with y1 in their
common vector space. This leads to the Gram-Schmidt methods of orthogonalization
which have been introduced in Section 1.3.2.

In case of Gram-Schmidt style propagation of orthogonality, sequences of blocks
Z1, . . . , Zp may be orthogonalized, if the blocks themselves are intra-orthogonalized
before some other block is inter-orthogonalized against them. This is required for the
same reason as Y needed to be orthogonal in the introductory section. Successive
inter-orthogonalizations against blocks which are themselves not inter-orthogonal
will (in general) not establish overall orthogonality.

5.3.5 Block Gram-Schmidt
The idea behind Gram-Schmidt or modified Gram-Schmidt is easily applied to blocks
of vectors. Additionally, reorthogonalization of a block is required whenever it is
to be used for orthogonalization against another block. Algorithm 5.1 outlines the
algorithm based on the reordered version of single vector modified Gram-Schmidt,
Algorithm 1.3, without assuming the vector blocks to be intra-orthogonal and nor-
malized on entry.

Input: Vector blocks Z1, . . . , Zp

Output: B-orthonormal vector blocks Z1, . . . , Zp

1: for i = 1, . . . , p do
2: Zi ← B-orthonormalize Zi
3: for j = i+ 1, . . . , p do
4: Zj ← Zj − Zi

(
ZH
i BZj

)
Algorithm 5.1: Block modified Gram-Schmidt orthonormalization, reordered.

5.3.5.1 Parallel application

Conventional application of the modified Gram-Schmidt scheme in a parallel compu-
tation context involves broadcasting of vector blocks, similar to the implementation
of the single-vector version; the freshly finalized source vector block is broadcast to
the processes holding the remaining vector blocks, whereafter the orthogonalization
of these blocks against the source block can be performed in parallel. This finalizes
the next vector block, which has to be reorthogonalized before it can be broadcast,
repeating the cycle. Assuming the vector blocks are held in disjoint groups of pro-
cesses, groups that hold finalized vectors do not participate in the remainder of the
algorithm. This typical starvation of lower-index process groups cannot be avoided.
An alternative implementation makes use of a shifting strategy. The first (intra-

orthogonal) vector block is transferred (shifted) to the neighboring process group
holding the second vector block. This block can now be orthogonalized while the

IW

5.3 Establishing inter-orthogonality 223

previously received first vector block is passed to the next process group, which holds
the third vector block. If the hardware allows it, orthogonalization of the second block
can be performed concurrently with the transfer of the first block. After receiving the
first block on the third group, orthogonalization of the third block against the first,
sending the first block, and receiving the second block can be performed concurrently.
The next step for group three then involves orthogonalization of the third block
against the second block and sending the second block before, in a last step, the
now finalized third block is passed to the neighboring process group. Proceeding
in this manner completes the overall orthogonalization process in 2p − 2 steps for
p vector blocks. For the first vector block to reach the last group, p − 1 shifts are
required; then p−2 additional blocks arrive one after the other. The final step on the
last group then includes the orthogonalization of the last block against the previous
block and the final reorthogonalization of the last block. While this strategy avoids
broadcast operations, significant idle times are caused on the process groups. The
first group in particular only needs to send its block once. Similarly the last group
has to wait p− 1 steps for the first block to arrive.
Figure 5.12 gives an overview over the several steps involved for four concurrent

processes, each holding a vector block. The reorthogonalization of the locally main-

T
im

e

Z0

Z0 → Z1 Z0

Z1 Z0 → Z2

Z1 → Z2

Z0

Z1

Z2

Z0 → Z3

Z1 → Z3

Z2 → Z3

P0 P1 P2 P3

Figure 5.12: Block Gram-Schmidt shift scheme. Although not explicitly indicated, sending of
a vector block implies that it has been reorthogonalized before. If we assume that
the vector blocks are orthogonal at the beginning, Z0 needs no orthogonalization.
Every additional process adds two phases to the scheme.

tained vectors has to occur before the local block is sent as orthogonality provider.
It is implicitly included in the last orthogonalization phase on each process to keep
the diagram less convoluted. This has no effect on the possible overlap of communi-
cation and computation phases as shown in the picture, other than the length of the
affected phases, which cannot be expected to be as homogeneous as depicted anyway.

IX

224 5 Taming the BEAST – Orthogonalization

Compared to broadcast-based communication (see Figure 5.13), the same number
of phases is required in the shift scheme—under the slightly optimistic assumption
that the broadcast can be accomplished as a single phase—since the broadcast has
to finish before any computation can take place. Of course, any benefit vanishes if
communication and computation cannot take place at the same time.

T
im

e

Z0Z0Z0

Z0 → Z1 Z0 → Z2 Z0 → Z3

Z1Z1

Z1 → Z2 Z1 → Z3

Z2

Z2 → Z3

P0 P1 P2 P3

Figure 5.13: Block Gram-Schmidt broadcast scheme. Although not explicitly indicated,
broadcasting a vector block implies that it has been reorthogonalized before.
If we assume that the vector blocks are orthogonal at the beginning, Z0 needs
no orthogonalization. Every additional process adds two phases to the scheme.

5.3.6 Residual
If an orthogonalization operation is applied to a block of approximate eigenvectors
X such that V = X − Y

(
Y HBX

)
, the residual of V can be written

‖AV −BVΛ‖ =
∥∥∥(AX −BXΛ)−

(
AY

(
Y HBX

)
−BY

(
Y HBX

)
Λ
)∥∥∥

≤ ‖(AX −BXΛ)‖+
∥∥∥(AY (Y HBX

)
−BY

(
Y HBX

)
Λ
)∥∥∥,

such that the disturbances in residual of the orthogonalized vectors are related to
the residuals of the vectors they have been orthogonalized against and the original
orthogonality between X and Y . Certainly, the disturbance becomes smaller the
more orthogonal X and Y are. For separate vectors xi and yj, assuming vector-wise
orthogonalization, we may write

‖Avi − λiBvi‖ ≤ ‖Axi − λiBxi‖+ orth(xi, yj)‖Ayj − λiByj‖
where ‖Ayj − λiByj‖ has to be considered large since λi is in general not near the
eigenvalue associated with yj. If it is, however, this term may become smaller, but

IY

5.3 Establishing inter-orthogonality 225

orthogonality is likely to deteriorate. By successively applying the above for all
vectors yi, we arrive, as before, at

‖Avi − λiBvi‖ ≤ ‖Axi − λiBxi‖+
m∑
j=1

orth(xi, yj)‖Ayj − λiByj‖

if Y has m columns. We got a first taste of the possible disturbances of the residual
caused by inter-orthogonalization in Experiment 5.1.
If now more than two blocks of vectors are involved, say X1, . . . ,Xp, each con-

sisting of vectors xi,` for ` = 1, . . . , p, the deviations accumulate accordingly. Let
the processed blocks be V1, . . . , Vp with vectors vi,` and λi,k the respective computed
approximate eigenvalue associated with block k, vector i. Assuming a number of mk

vectors for block k,

‖Avi,k − λi,kBvi,k‖ ≤ ‖Axi,k − λi,kBxi,k‖

+
k−1∑
`=1

mk∑
j=1

orth(xi,k,xj,`)‖Axj,` − λi,kBxj,`‖.

The effect of the orthogonalization operations is distributed unevenly over the p
blocks. The last block in the sequence will be exposed to more orthogonalizations
which disturb its intra-orthogonality and residual.

5.3.7 Orthogonalization order
Oftentimes the order in which vectors or vector blocks are processed—and accordingly
the role of orthogonality provider and orthogonality recipient of single orthogonal-
ization operations—is not specifically fixed and may be chosen more or less freely.
Additionally, the question of which vector or block should be orthogonalized against
which other vectors or blocks may influence the results.

Consider two computed approximations x1 and x2 to eigenvectors x1 and x2.
From Section 4.5.1 we know that smaller residuals ensure smaller angles between
eigenvectors and their computed approximations. We now assume that, in general,
the reverse is true and larger residuals indicate larger angles. In this case, the decision
of which vector to orthogonalize against the other becomes important. Figure 5.14
visualizes the two possible outcomes. In this example the angle between x1 and x1 is
smaller than the angle between x2 and x2. We assume that the respective residuals
are indicative of this situation. When orthogonalizing x1 against x2, yielding x′1,
the angle between x′1 and x1 is now larger, potentially allowing the new residual to
be larger than before. Orthogonalizing x2 against x1 on the other hand, reduces the
angle between x′2 and x2, potentially allowing the new residual to be smaller than
before. We have to conclude—although the unidirectional character of the relation
between residual and angle does not allow for a more substantial statement—that
the most reasonable course of action is to prefer orthogonalization of vectors with
larger residual against vectors with smaller residual in order to minimize the chance
of increasing the residuals involved.

JA

226 5 Taming the BEAST – Orthogonalization

x1 x1

x2

x2

Initial situation
x1

x′
1

x2

x2

Orth. x1 against x2
x1 x1

x2

x′
2

Orth. x2 against x1

Figure 5.14: The effect of orthogonalization on eigenvector angles.

A more formal reasoning can be applied (Suggested, B. Lang, personal communica-
tion, 20.4.2020) by considering the decompositions of two approximate eigenvectors
xi and xj into a linear combination of exact eigenvectors x1, . . . , xn,

xi = xi +
n∑
k=1

αkxk and xj = xj +
n∑
k=1

βkxk,

where |αk| � 1 and |βk| � 1. For ease of notation, let ri(j) = Axj − λiBxj be the
residual vector of a Ritz value λi and an exact eigenvector xj. Let further (λi,xi)
be the Ritz pair associated with xi. Considering the eigenvectors normalized, the
scalar product of xi and xj is

〈xi,xj〉B =
(
xHj +

n∑
k=1

βkx
H
k

)
B

(
xi +

n∑
k=1

αkxk

)

= xHj Bxi +
n∑
k=1

αkx
H
j Bxk +

n∑
k=1

βkx
H
k Bxi +

n∑
k=1

n∑
`=1

α`βkx
H
k Bx`

= αj + βi +
n∑
k=1

αkβk︸ ︷︷ ︸
=:c

.

The residual of xi w.r.t. λi is

‖Axi − λiBxi‖ =
∥∥∥∥∥ri(i) +

n∑
k=1

αkri(k)
∥∥∥∥∥ ≤

∥∥∥∥∥∥∥∥ri(i) +
n∑
k=1
k 6=j

αkri(k)

∥∥∥∥∥∥∥∥+ ‖αjri(j)‖.

The residual of

x′i = xi − 〈xi,xj〉Bxj

= xi +
n∑
k=1

αkxk − αjxj −
n∑
k=1

αjβkxk − βixj −
n∑
k=1

βiβkxk − cxj −
n∑
k=1

cβkxk

JB

5.3 Establishing inter-orthogonality 227

w.r.t. λi is

‖Ax′i − λiBx′i‖ =
∥∥∥Axi − λiBxi − (αj + βi + c

)
(Axk − λiBxk)

∥∥∥
=
∥∥∥∥∥ri(i) +

n∑
k=1

αkri(k)− αjri(j)− βiri(j)− C
∥∥∥∥∥

=

∥∥∥∥∥∥∥∥ri(i) +
n∑
k=1
k 6=j

αkri(k)− βiri(j)− C

∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥∥ri(i) +
n∑
k=1
k 6=j

αkri(k)

∥∥∥∥∥∥∥∥+
∥∥∥βiri(j)∥∥∥+ ‖C‖,

where
C =

n∑
k=1

αjβkri(k) +
n∑
k=1

βiβkri(k) + cri(j) +
n∑
k=1

cβkri(k).

If we now assume that C is negligible and generally |βk| < |αk| if the residual of xj
is better than the residual of xi and |βk| > |αk| if the residual of xj is worse than
the residual of xi, the bound for the residual of x′i becomes smaller or larger than
the bound on the residual of xi, respectively. The assumption for the coefficients αk
and βk is not unreasonable since, e.g.,

‖Axi − λiBxi‖ ≤ ‖ri(i)‖+
n∑
k=1
‖αkri(k)‖ ≤ ‖ri(i)‖+

n∑
k=1
|αk|‖ri(k)‖.

If we further assume that λi ≈ λi, αk ≈ α ∀k, and βk ≈ β ∀k, the dependency
becomes clearer. Let ri(j) = Axj − λiBxj. Then

‖Axi − λiBxi‖ =
∥∥∥∥∥ri(i) +

n∑
k=1

αri(k)
∥∥∥∥∥ =

∥∥∥∥∥∥∥∥α
n∑
k=1
k 6=i

ri(k)

∥∥∥∥∥∥∥∥ ≤ |α|
n∑
k=1
k 6=i

‖ri(k)‖

and

‖Ax′i − λiBx′i‖ =

∥∥∥∥∥∥∥∥ri(i) +
n∑
k=1
k 6=j

αri(k)− βri(j)− C

∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥α
n∑
k=1
k 6=i,j

ri(k)− βri(j)− C

∥∥∥∥∥∥∥∥
≤ |α|

n∑
k=1
k 6=i,j

‖ri(k)‖+ |β|ri(j) + ‖C‖.

In practice, eigenpairs might not have converged far enough for these assumptions
to hold when orthogonalization is applied, though.

In Section 5.2.15, the form of the R factor matrix or, more precisely, its inverse has
proven to be crucial for residual invariance. It leaves the direction of the first vector

JC

228 5 Taming the BEAST – Orthogonalization

untouched while all other vectors are constructed being orthogonal to this first vector.
With the above, it would seem beneficial to modify the order of orthogonalization,
i.e., sort the vectors by residual, best residual first. Since the residual already appears
to be invariant, this supposed optimization is of no further importance, though.
When orthogonalizing full blocks of vectors, every vector of the modified block

is orthogonalized against every vector from the second block. Within these blocks,
vectors have different residuals and for every block there is one vector that shows
the worst residual for its block. Following the above, if two blocks Z and Y are to be
orthogonalized, there now is a readily available indication of which block should be
orthogonalized against which. That is, the block with the larger worst-case residual
should be orthogonalized against the block with the lower worst-case residual.

Experiment 5.6 — Influence of inter-orthogonalization on the residual
In Experiment 5.1, the orthogonalization of a vector block with low worst-case

residual against a block with considerably larger worst-case residual caused, not least
due to close eigenvalue proximity, a significant increase in the residuals of the modified
vectors. The original residual of 4.696·10−12 was diminished to 1.887·10−9. While the
previous experiment did focus on the effects of intra-orthogonality and these numbers
were of secondary interest, we revisit the experiment to confirm the importance of
the order in which orthogonalization takes place. Repeating the experiment under
the exact same conditions, only reversing the order of orthogonalization, reveals
even a slight improvement of the worst-case residual of the modified vectors. With
the vector block showing the larger maximum residual being the one modified, the
residual improves from initially 2.412 · 10−9 to 1.474 · 10−9 purely due to inter-
orthogonalization. We may retrospectively note that a following local reestablishment
of intra-orthogonality using non SVD based methods has no effect on the residual
in this case as well. Figure 5.15 details all residuals of the modified interval and
their orthogonalization-induced changes. The left plot compares residual of the left
interval before and after being orthogonalized against the right interval, the right plot
accordingly compares residuals of the right interval.

Deciding on the orthogonalization order solely on basis of worst-case residuals
does not take into account the other residuals of the two blocks. Indeed, not always
does the above strategy reveal the correct order. Worse still, there are cases where
neither order is correct and both possibilities impact the residual negatively. In these
situations, the best course of action is to minimize the degradation in residual as
much as possible. Since the comparison of the worst-case residual alone does not
always lead to the right choice of orthogonality provider and orthogonality recipient,
the following heuristic has been found to improve the results slightly in many cases. If
the difference in worst-case residual is smaller than one tenth an order of magnitude,∣∣∣∣∣log10

max(Ri)
max(Rj)

∣∣∣∣∣ < 1
10 , (5.6)

where Ri and Rj are the sets containing all residuals of the intervals i and j, then

JD

5.3 Establishing inter-orthogonality 229

0 5 10 15 20

10−14

10−12

10−10

Eigenvalue (sorted by position)

R
es

id
ua

l

Low against high

0 5 10 15 20

10−11

10−10

10−9

Eigenvalue (sorted by position)

R
es

id
ua

l

High against low

Figure 5.15: Inter-orthogonalization. Blue: original residual. Red: residual after orthogo-
nalization.

the smallest algebraic (not geometric) mean residual

1
mi

mi∑
k=1

rik

defines the ordering. Here, rik is the k-th residual of the i-th interval and mi is
the number of eigenpairs computed in interval i. Otherwise, the largest worst-case
residual is used to define the ordering, as was the case before. Experiments to
identify an optimal value for the switch between worst-case and average residual
were performed but their results were inconclusive and a distinct optimal value for
all cases could not be found.

5.3.8 A posteriori orthogonalization
While intermediate orthogonalizations, performed with the right ordering, do accel-
erate convergence, there are reasons for pursuing an approach that does not rely on
many continuous orthogonalizations.

• A full orthogonalization sweep for many intervals is expensive, both in compu-
tational effort, mostly due to the inner products, and communication overhead.
• Intermediate orthogonalizations require some pattern of synchronization be-

tween intervals. In case several intervals are to be processed by the same
process group in sequence, this is not possible at all (but would allow orthogo-
nalization against finished sets, which is a possible strategy if the order of sets
was chosen carefully).
• To reach machine precision orthogonality, an a posteriori orthogonalization is

required anyway.
• Just to reach orthogonality, intermediate orthogonalizations are not necessary.

JE

230 5 Taming the BEAST – Orthogonalization

• An a posteriori approach could be used in other contexts where an orthogonal-
ization is required and which is not necessarily iterative.

To analyze the success of different orderings, we employ the matrix test set from
Table 4.1. The general results of computing the specified intervals in 64 subsets
is listed in Table 5.4 for an even distribution of eigenpairs among intervals and in
Table 5.5 for an uneven distribution, produced by naive equally spaced subdivision
of the target interval. Listed are results with and without locking as we expect
this parameter to affect residual quality. Locked vectors are not iterated further
while they otherwise would improve in residual well beyond the prescribed tolerance.
Therefore, with locking, most eigenpairs end up at residuals close to the prescribed
tolerance limit where, without locking, at least some vectors will reach much lower
residuals.

locking no lockingName
min res max res intra orth inter orth min res max res intra orth inter orth

laser 8.999e−14 1.475e−09 1.416e−15 2.741e−06 7.741e−16 1.202e−09 1.665e−15 2.303e−06
SiH4 3.727e−12 7.992e−08 1.051e−10 2.029e−04 7.355e−16 6.483e−08 1.550e−15 3.454e−04
linverse 1.798e−13 3.499e−07 1.424e−07 1.655e−02 6.461e−17 2.504e−07 1.873e−15 3.398e−03
Pres_Poisson 1.150e−12 1.393e−08 2.411e−12 7.231e−05 8.777e−16 1.332e−08 2.545e−15 3.709e−05
Si5H12 2.138e−14 4.010e−09 2.385e−15 3.250e−06 1.136e−15 2.714e−09 2.815e−15 1.408e−06
brainpc2 7.377e−14 6.391e−09 3.506e−11 7.819e−05 3.003e−15 5.776e−09 2.510e−15 3.599e−05
rgg_n_2_15_s0 4.588e−13 2.439e−08 2.942e−13 5.532e−05 1.732e−15 1.898e−08 3.301e−15 2.379e−05
SiO 9.972e−14 8.995e−09 4.006e−15 9.705e−06 1.118e−15 5.445e−09 4.255e−15 4.022e−06
Andrews 3.750e−13 2.536e−08 2.401e−14 2.293e−05 8.296e−16 2.362e−08 3.640e−15 2.054e−05
Si34H36 7.879e−14 1.822e−08 5.291e−15 1.144e−05 1.331e−15 1.292e−08 5.046e−15 6.671e−06
fe_rotor 5.259e−14 3.929e−08 5.771e−11 6.671e−05 1.500e−15 3.387e−08 3.948e−15 3.864e−05
GraI-119k 9.284e−15 5.549e−08 6.438e−15 2.890e−05 1.708e−15 5.549e−08 5.780e−15 2.888e−05

Table 5.4: Maximum residual and orthogonalities for the matrix test set with even distri-
bution of eigenpairs among 64 intervals of different size.

For both interval setups it can be seen that the locking of eigenvectors, albeit
intermediate orthogonalization (against the locked vectors), causes diminished intra-
orthogonality in cases where the spectrum is dense. As seen before, any additional
iteration is enough to disturb this orthogonality significantly. The locking mecha-
nism orthogonalizes the iterated vectors against the locked ones. As such, the last
orthogonalization of a vector occurred in the iteration before it converged and thus
any disturbance was produced by the last active iteration of the respective vector.
Locking of iterated vectors can be understood as independent iteration of subsets
of vectors, even if the initial searchspace set was iterated in unison and only one
interval was involved. Local post-orthogonalization is required, also in this case.
An a posteriori orthogonalization of the computed eigenvectors did not change the
residual, which confirms the previous experiment, where local reorthogonalization
did not impact the residual in any significant way (Experiment 5.1). If locking is
disabled, all computed sets are reasonably orthogonal.

JF

5.3 Establishing inter-orthogonality 231

locking no locking
Name

min res max res intra orth inter orth min res max res intra orth inter orth

laser 1.196e−13 1.418e−09 2.026e−15 6.831e−07 1.097e−15 1.359e−09 2.165e−15 7.285e−07
SiH4 2.706e−13 8.876e−10 1.613e−15 1.474e−06 8.863e−16 8.155e−09 1.782e−15 1.903e−05
linverse 4.139e−13 3.441e−09 4.213e−10 6.914e−05 1.753e−16 2.932e−09 3.838e−15 6.595e−05
Pres_Poisson 2.357e−13 1.391e−08 3.719e−13 3.612e−05 7.373e−16 1.188e−08 2.222e−15 3.328e−05
Si5H12 4.573e−14 3.925e−09 2.042e−15 2.961e−06 1.365e−15 2.997e−09 2.756e−15 2.048e−06
brainpc2 1.177e−13 6.462e−09 1.766e−13 2.885e−05 3.483e−15 5.444e−09 7.355e−15 1.349e−05
rgg_n_2_15_s0 2.336e−12 2.419e−08 1.287e−12 5.182e−05 2.384e−15 2.261e−08 3.303e−15 4.695e−05
SiO 1.999e−14 8.948e−09 2.816e−14 9.381e−06 1.215e−15 7.518e−09 3.774e−15 3.185e−06
Andrews 2.687e−13 2.523e−08 4.808e−14 2.407e−05 8.035e−16 2.476e−08 3.807e−15 2.161e−05
Si34H36 4.115e−14 1.802e−08 4.661e−15 1.349e−05 1.358e−15 1.600e−08 5.256e−15 8.814e−06
fe_rotor 1.026e−13 3.948e−08 1.481e−11 4.835e−05 1.492e−15 2.726e−08 3.730e−15 2.477e−05
GraI-119k 7.212e−15 5.232e−08 5.516e−15 2.361e−05 1.261e−15 2.183e−08 5.849e−15 5.460e−06

Table 5.5: Maximum residual and orthogonalities for the matrix test set with uneven dis-
tribution of eigenpairs among 64 intervals of equal size.

Block Gram-Schmidt orthogonalizes vector blocks in a strict order. Blocks with
higher index are always orthogonalized against blocks with lower index. If a vector
block is used as orthogonality provider, it has already been brought to an orthogonal
state w.r.t. all vector blocks of lower index before. It is, however, possible to reorder
the blocks. The following results compare the orthogonalization strategies listed
blow, carried out via block Gram-Schmidt.

Native The ordering as given by the spectrum.
Worst-case residual The ordering defined by the worst residual among all residuals

of a vector block.
Worst average residual The ordering defined by the worst arithmetic mean residual

of a vector block with fall-back to the worst-case residual, following the heuristic
from Equation (5.6).

The feasibility of those purely a posteriori orthogonalization schemes hinges on the
possible overall increase of the worst-case residual. This residual loss is given as the
number

log10

(
max(rorthogonalized)

max(roriginal)

)
,

that is, the increase of the worst-case residual after orthogonalization in orders of
magnitude. A positive number indicates a deterioration in residual, a negative
number an improvement. The larger the absolute value of this number is, the larger
is the deterioration or improvement.

The following set of tables contains the most important metrics for the success of
the orthogonalization after it has been applied: maximum residual, maximum inter-
orthogonality, maximum intra-orthogonality, and residual loss. Tables 5.6 and 5.7
contain these numbers for the native ordering. Tables 5.8 and 5.9 cover the worst-
case residual ordering. Tables 5.10 and 5.11 show results for the average residual

JG

232 5 Taming the BEAST – Orthogonalization

ordering. The residual loss of all tables is again compared directly in Tables 5.12
and 5.13.

locking no locking
Name

intra orth inter orth max res loss intra orth inter orth max res loss

laser 3.539e−16 1.992e−16 2.756e−09 +0.271 2.220e−16 2.223e−16 1.481e−09 +0.091
SiH4 8.847e−17 9.021e−17 1.249e−07 +0.194 6.765e−17 8.327e−17 4.151e−08 −0.194
linverse 7.991e−17 5.489e−17 5.811e−07 +0.220 2.779e−19 5.809e−17 2.495e−07 −0.002
Pres_Poisson 3.014e−16 5.940e−16 2.149e−08 +0.188 3.331e−16 4.996e−16 1.219e−08 −0.039
Si5H12 5.638e−17 3.556e−17 6.463e−09 +0.207 4.976e−17 3.361e−17 2.264e−09 −0.079
brainpc2 5.461e−16 4.823e−16 1.125e−08 +0.246 3.608e−16 5.551e−16 7.749e−09 +0.128
rgg_n_2_15_s0 3.192e−16 1.689e−16 4.267e−08 +0.243 3.140e−16 1.596e−16 1.541e−08 −0.090
SiO 5.226e−17 4.163e−17 2.174e−08 +0.383 5.378e−17 4.337e−17 4.089e−09 −0.124
Andrews 2.201e−17 2.338e−17 3.766e−08 +0.172 2.716e−17 2.016e−17 2.054e−08 −0.061
Si34H36 3.816e−17 2.060e−17 1.901e−08 +0.018 3.643e−17 2.082e−17 1.166e−08 −0.045
fe_rotor 6.418e−17 3.426e−17 5.286e−08 +0.129 7.286e−17 2.776e−17 3.383e−08 −0.000
GraI-119k 1.457e−16 5.378e−17 4.619e−08 −0.080 1.398e−16 5.763e−17 3.915e−08 −0.151

Table 5.6: Block Gram-Schmidt orthogonalization. Sort method: native. Maximum resid-
ual, maximum orthogonalities, and residual loss for the matrix test set with
even distribution of eigenpairs among 64 intervals of equal size.

locking no locking
Name

intra orth inter orth max res loss intra orth inter orth max res loss

laser 3.261e−16 2.014e−16 2.096e−09 +0.170 2.776e−16 2.741e−16 1.585e−09 +0.067
SiH4 5.985e−17 1.041e−16 1.300e−09 +0.166 8.327e−17 1.249e−16 6.670e−09 −0.087
linverse 7.619e−17 2.526e−17 5.037e−09 +0.166 2.096e−17 2.776e−17 3.305e−09 +0.052
Pres_Poisson 3.464e−16 5.741e−16 2.669e−08 +0.283 3.266e−16 4.441e−16 1.376e−08 +0.064
Si5H12 4.532e−17 3.426e−17 5.392e−09 +0.138 4.814e−17 3.383e−17 2.958e−09 −0.006
brainpc2 5.162e−16 4.163e−16 1.014e−08 +0.196 4.214e−16 4.718e−16 5.049e−09 −0.033
rgg_n_2_15_s0 3.192e−16 2.407e−16 5.676e−08 +0.370 3.205e−16 1.479e−16 2.111e−08 −0.030
SiO 8.500e−17 4.169e−17 1.611e−08 +0.255 5.638e−17 4.857e−17 7.426e−09 −0.005
Andrews 1.995e−17 2.114e−17 4.851e−08 +0.284 2.559e−17 2.017e−17 2.476e−08 +0.000
Si34H36 4.337e−17 2.255e−17 2.295e−08 +0.105 3.144e−17 2.255e−17 1.156e−08 −0.141
fe_rotor 6.418e−17 2.559e−17 5.188e−08 +0.119 6.939e−17 2.689e−17 2.235e−08 −0.086
GraI-119k 6.416e−16 2.832e−16 4.353e−08 −0.080 4.372e−16 4.096e−16 1.696e−08 −0.110

Table 5.7: Block Gram-Schmidt orthogonalization. Sort method: native. Maximum resid-
ual, maximum orthogonalities, and residual loss for the matrix test set with
uneven distribution of eigenpairs among 64 intervals of equal size.

Both inter-orthogonality and intra-orthogonality are in the order of machine preci-
sion. There should be no significant differences between the different sorting methods.
This makes the residual loss the deciding factor for the quality of the ordering meth-
ods. Most obvious, however, is the difference between data sets with locking enabled
compared to data sets without locking. The improvement in residual for quickly con-
verging vectors, that otherwise would be prevented by excluding these vectors from

JH

5.3 Establishing inter-orthogonality 233

locking no locking
Name

intra orth inter orth max res loss intra orth inter orth max res loss

laser 3.261e−16 2.519e−16 1.853e−09 +0.099 2.359e−16 2.349e−16 9.852e−10 −0.086
SiH4 8.445e−17 6.939e−17 7.528e−08 −0.026 6.332e−17 8.327e−17 4.151e−08 −0.194
linverse 1.009e−16 1.136e−16 4.725e−07 +0.130 1.554e−19 6.592e−17 1.487e−08 −1.226
Pres_Poisson 3.212e−16 4.996e−16 2.149e−08 +0.188 2.334e−16 6.419e−16 1.034e−08 −0.110
Si5H12 4.337e−17 4.077e−17 5.572e−09 +0.143 3.990e−17 3.513e−17 1.418e−09 −0.282
brainpc2 3.914e−16 3.794e−16 1.440e−08 +0.353 4.855e−16 4.718e−16 5.058e−09 −0.058
rgg_n_2_15_s0 3.400e−16 2.088e−16 4.252e−08 +0.241 2.923e−16 1.470e−16 1.284e−08 −0.170
SiO 5.117e−17 4.337e−17 2.054e−08 +0.359 6.473e−17 3.816e−17 2.775e−09 −0.293
Andrews 2.429e−17 1.999e−17 3.686e−08 +0.162 2.586e−17 2.244e−17 9.060e−09 −0.416
Si34H36 3.361e−17 2.263e−17 1.901e−08 +0.018 3.602e−17 2.082e−17 6.377e−09 −0.307
fe_rotor 7.633e−17 2.602e−17 5.138e−08 +0.117 7.026e−17 2.602e−17 1.595e−08 −0.327
GraI-119k 1.379e−16 5.725e−17 3.808e−08 −0.164 1.674e−16 6.592e−17 2.480e−08 −0.350

Table 5.8: Block Gram-Schmidt orthogonalization. Sort method: worst-case residual.
Maximum residual, maximum orthogonalities, and residual loss for the matrix
test set with even distribution of eigenpairs among 64 intervals of equal size.

locking no locking
Name

intra orth inter orth max res loss intra orth inter orth max res loss

laser 3.469e−16 2.392e−16 2.138e−09 +0.178 2.914e−16 2.776e−16 4.723e−10 −0.459
SiH4 6.690e−17 1.041e−16 1.300e−09 +0.166 6.191e−17 1.249e−16 3.819e−09 −0.329
linverse 7.488e−17 4.163e−17 3.829e−09 +0.046 2.115e−17 2.776e−17 1.585e−09 −0.267
Pres_Poisson 3.349e−16 4.679e−16 2.508e−08 +0.256 2.082e−16 4.040e−16 7.556e−09 −0.197
Si5H12 5.334e−17 3.518e−17 5.714e−09 +0.163 4.163e−17 3.383e−17 1.150e−09 −0.416
brainpc2 3.951e−16 4.441e−16 1.014e−08 +0.196 2.908e−16 4.996e−16 3.965e−09 −0.138
rgg_n_2_15_s0 3.227e−16 1.713e−16 4.481e−08 +0.268 3.227e−16 2.030e−16 1.748e−08 −0.112
SiO 5.117e−17 4.510e−17 1.957e−08 +0.340 6.418e−17 4.163e−17 3.041e−09 −0.393
Andrews 2.437e−17 2.179e−17 4.851e−08 +0.284 2.456e−17 2.190e−17 1.438e−08 −0.236
Si34H36 4.012e−17 2.201e−17 2.302e−08 +0.106 3.030e−17 2.288e−17 7.333e−09 −0.339
fe_rotor 5.811e−17 2.667e−17 5.185e−08 +0.118 6.505e−17 2.385e−17 1.814e−08 −0.177
GraI-119k 4.817e−16 3.004e−16 2.969e−08 −0.246 4.111e−16 3.926e−16 1.300e−10 −2.225

Table 5.9: Block Gram-Schmidt orthogonalization. Sort method: worst-case residual.
Maximum residual, maximum orthogonalities, and residual loss for the matrix
test set with uneven distribution of eigenpairs among 64 intervals of equal size.

further iterations, also improves the effect of orthogonalization on the residual and
is much more noticeable than the nuanced differences between orderings. The step
from no ordering to worst-case residual based ordering shows improvements in some
cases, but even deterioration in others. The best results are achieved in combination
with disabling the locking mechanism. The change to the average residual ordering
can again slightly improve results, but not in all cases.

JI

234 5 Taming the BEAST – Orthogonalization

locking no locking
Name

intra orth inter orth max res loss intra orth inter orth max res loss

laser 3.192e−16 2.500e−16 1.681e−09 +0.057 2.359e−16 1.891e−16 9.852e−10 −0.086
SiH4 8.847e−17 8.327e−17 7.528e−08 −0.026 7.373e−17 9.021e−17 4.151e−08 −0.194
linverse 2.964e−16 1.138e−16 4.659e−07 +0.124 1.554e−19 5.910e−17 1.839e−08 −1.134
Pres_Poisson 2.769e−16 5.034e−16 1.834e−08 +0.120 3.427e−16 5.863e−16 1.034e−08 −0.110
Si5H12 3.946e−17 3.643e−17 4.070e−09 +0.007 5.052e−17 3.144e−17 1.683e−09 −0.208
brainpc2 3.878e−16 3.121e−16 9.518e−09 +0.173 4.056e−16 5.829e−16 5.058e−09 −0.058
rgg_n_2_15_s0 3.821e−16 1.869e−16 4.267e−08 +0.243 3.469e−16 1.804e−16 1.284e−08 −0.170
SiO 5.811e−17 4.163e−17 1.336e−08 +0.172 5.204e−17 4.640e−17 2.775e−09 −0.293
Andrews 2.374e−17 2.082e−17 3.766e−08 +0.172 2.602e−17 2.065e−17 9.060e−09 −0.416
Si34H36 3.990e−17 2.255e−17 1.888e−08 +0.015 3.990e−17 2.168e−17 6.377e−09 −0.307
fe_rotor 6.722e−17 4.380e−17 5.072e−08 +0.111 7.242e−17 3.123e−17 1.595e−08 −0.327
GraI-119k 1.457e−16 5.204e−17 4.180e−08 −0.123 1.492e−16 5.551e−17 2.480e−08 −0.350

Table 5.10: Block Gram-Schmidt orthogonalization. Sort method: worst avg. residual.
Maximum residual, maximum orthogonalities, and residual loss for the matrix
test set with even distribution of eigenpairs among 64 intervals of equal size.

locking no locking
Name

intra orth inter orth max res loss intra orth inter orth max res loss

laser 3.192e−16 4.059e−16 1.665e−09 +0.070 2.359e−16 2.498e−16 4.723e−10 −0.459
SiH4 6.896e−17 1.110e−16 8.819e−10 −0.003 6.418e−17 9.714e−17 3.819e−09 −0.329
linverse 6.290e−17 2.653e−17 3.648e−09 +0.025 2.115e−17 2.776e−17 1.585e−09 −0.267
Pres_Poisson 3.412e−16 6.514e−16 2.049e−08 +0.168 2.394e−16 4.002e−16 8.680e−09 −0.136
Si5H12 4.554e−17 3.339e−17 4.463e−09 +0.056 4.337e−17 3.469e−17 1.150e−09 −0.416
brainpc2 4.287e−16 9.992e−16 8.983e−09 +0.143 3.070e−16 4.718e−16 2.271e−09 −0.380
rgg_n_2_15_s0 3.018e−16 1.527e−16 4.066e−08 +0.226 3.478e−16 1.527e−16 1.748e−08 −0.112
SiO 6.072e−17 4.857e−17 1.604e−08 +0.253 5.464e−17 3.990e−17 3.041e−09 −0.393
Andrews 2.429e−17 2.196e−17 3.629e−08 +0.158 2.526e−17 2.006e−17 1.438e−08 −0.236
Si34H36 4.315e−17 2.120e−17 2.671e−08 +0.171 3.144e−17 2.602e−17 7.333e−09 −0.339
fe_rotor 7.850e−17 2.776e−17 4.596e−08 +0.066 7.579e−17 2.602e−17 1.814e−08 −0.177
GraI-119k 4.244e−16 3.893e−16 3.252e−08 −0.206 4.111e−16 3.402e−16 1.300e−10 −2.225

Table 5.11: Block Gram-Schmidt orthogonalization. Sort method: worst avg. residual.
Maximum residual, maximum orthogonalities, and residual loss for the matrix
test set with uneven distribution of eigenpairs among 64 intervals of equal
size.

5.3.9 Detection and removal of duplicates

Special cases among the several combinations from the test set are the SiH4 matrix
with the even eigenpair distribution, the linverse matrix with the uneven eigenpair
distribution, and the SiO matrix with the even eigenpair distribution. In all these
cases identical eigenpairs have been computed in neighboring intervals due to the
spectral density in these regions. We will call these spuriously computed eigenpairs
duplicates.

JJ

5.3 Establishing inter-orthogonality 235

locking no locking
Name

native min.res avg.res native min.res avg.res

laser +0.271 +0.099 +0.057 +0.091 −0.086 −0.086
SiH4 +0.194 −0.026 −0.026 −0.194 −0.194 −0.194
linverse +0.220 +0.130 +0.124 −0.002 −1.226 −1.134
Pres_Poisson +0.188 +0.188 +0.120 −0.039 −0.110 −0.110
Si5H12 +0.207 +0.143 +0.007 −0.079 −0.282 −0.208
brainpc2 +0.246 +0.353 +0.173 +0.128 −0.058 −0.058
rgg_n_2_15_s0 +0.243 +0.241 +0.243 −0.090 −0.170 −0.170
SiO +0.383 +0.359 +0.172 −0.124 −0.293 −0.293
Andrews +0.172 +0.162 +0.172 −0.061 −0.416 −0.416
Si34H36 +0.018 +0.018 +0.015 −0.045 −0.307 −0.307
fe_rotor +0.129 +0.117 +0.111 −0.000 −0.327 −0.327
GraI-119k −0.080 −0.164 −0.123 −0.151 −0.350 −0.350

Table 5.12: Direct comparison of sorting methods for even distribution of eigenpairs.

locking no locking
Name

native min.res avg.res native min.res avg.res

laser +0.170 +0.178 +0.070 +0.067 −0.459 −0.459
SiH4 +0.166 +0.166 −0.003 −0.087 −0.329 −0.329
linverse +0.166 +0.046 +0.025 +0.052 −0.267 −0.267
Pres_Poisson +0.283 +0.256 +0.168 +0.064 −0.197 −0.136
Si5H12 +0.138 +0.163 +0.056 −0.006 −0.416 −0.416
brainpc2 +0.196 +0.196 +0.143 −0.033 −0.138 −0.380
rgg_n_2_15_s0 +0.370 +0.268 +0.226 −0.030 −0.112 −0.112
SiO +0.255 +0.340 +0.253 −0.005 −0.393 −0.393
Andrews +0.284 +0.284 +0.158 +0.000 −0.236 −0.236
Si34H36 +0.105 +0.106 +0.171 −0.141 −0.339 −0.339
fe_rotor +0.119 +0.118 +0.066 −0.086 −0.177 −0.177
GraI-119k −0.080 −0.246 −0.206 −0.110 −2.225 −2.225

Table 5.13: Direct comparison of sorting methods for uneven distribution of eigenpairs.

We will examine the case of SiH4 as an example. The spectrum is comprised
of clusters with zero separation, i.e., real multiplicity. The attempt to separate a
target interval into sub intervals which all contain the same amount of eigenpairs
based on the known spectrum inevitably will position interval boundaries at the
exact locations of eigenpairs. Without overlapping intervals, it is as easy to miss
eigenpairs as it is to compute duplicated eigenpairs. Indeed, in the experiment a total
of 750 eigenpairs were computed, while only 731 eigenpairs are located inside the
target interval. The orthogonalization of all intervals indicated that only 720 unique
eigenpairs were computed. The primary observed effect that allows this deduction is
a significant jump in post-orthogonalization worst-case residual. While the removal
of more vectors did not diminish the (otherwise optimal) final residual—the overall
residual could be improved even—removing fewer vectors caused an increase in
residual by several orders of magnitude. A close examination of the results and

JK

236 5 Taming the BEAST – Orthogonalization

comparison with the known spectrum showed that among the 750 eigenpairs, 27
could be confirmed duplicate and 8 could be confirmed missing, giving a total of
750 − 27 + 8 = 731. This difference of 27 − 8 = 19 to the 720 unique eigenpairs
identified by the orthogonalization step confirms the overall correctness. The interval
of orthogonality that allowed the separation of duplicate eigenpairs was approximately
[5.8 · 10−1, 6.5 · 10−1].

When multiple intervals are computed independently, we have to expect duplicate
eigenpairs in neighboring intervals not only if the intervals overlap, but also due to
dense spectra at the interval boundaries or the overlapping region, such that Ritz
values for eigenvalues that are located barely outside the interval appear inside the
interval or Ritz values that appear barely outside the interval have to be assumed to
belong inside the interval if the residual does not allow a more accurate localization
(see also Section 4.4). For the same reasons, without overlap, we have to expect
missing eigenpairs in the above cases. Consider two intervals I1 and I2 that are
directly adjacent, I1 left of I2. If the interval boundaries cut densely clustered
eigenpairs, deciding which pairs from different intervals should be labeled duplicates
can become difficult, since the orthogonality among most or all clustered pairs from
different intervals is likely to be large. Surely, a criterion for the classification should
be based on the respective residual, instead of being a hard limit on orthogonality.
Based on Theorem 1.4, similar to Section 4.2.5.3 and bound 3 from Section 4.5.2,
we can only be sure that two Ritz values λj ∈ I1 and λk ∈ I2 with distance g and
residuals rj and rk, respectively, are not duplicates if their Ritz disk is disjoint,

g >
∥∥∥B− 1

2 rj
∥∥∥+

∥∥∥B− 1
2 rk
∥∥∥; (5.7)

otherwise, we have no way to separate both eigenpairs. Therefore, this will also be
the definition of a cluster for the remainder of this chapter. As a consequence, even
if both eigenpairs are not duplicates but in very close proximity, there is no way to
differentiate them from actual duplicates and their orthogonality can be arbitrarily
large. It is then generally unclear, whether clustered values are duplicates and should
be removed or not. The limit for the applicability of this method of classification is
therefore given by the density of the spectrum in relation to the achievable residual
and any attempt at classification beyond this limit is bound to fail with eigenpairs
missing due to erroneous removal. Let Oi,j := XH

i BXj with X i and Xj being the
computed eigenvectors from interval Ii and Ij, respectively, be the orthogonality
matrix of the intervals Ii and Ij. We will refer to entries of Oi,j for which the
associated Ritz pairs fail the criterion from Equation (5.7) as problematic, offending,
or critical.
With overlap, if the spectral distribution allows the clustered eigenpairs to be

completely included in either of the intervals, such that its separation to the remaining
eigenpairs is more clear, even if the other interval only holds part of the cluster, the
situation can be resolved. It is then possible to detect which interval holds more of
the problematic values and we can assume that this cluster is complete. This is, of
course, not known beforehand. We assume the possible overlap of intervals limited

JL

5.3 Establishing inter-orthogonality 237

such that overlap only occurs between nearest-neighbor intervals. Any significant
overlap is likely to include otherwise cut clusters.

The question remains which intervals should be reduced or even if some eigenpairs
should be removed from one interval and some from the other. The underlying
question here is whether we should put more weight on a good residual or on a
good orthogonality. We can assume that the intra-orthogonality of both intervals is
sufficiently close to machine precision and all residuals are smaller than a specified
limit. Any removal of vectors from the clustered eigenpairs in both intervals will
leave vectors of the cluster in both intervals. The inter-orthogonality among those
vectors has a chance to be as large as the inter-orthogonality between two duplicate
vectors if the spectrum is dense. Consider the examples shown in Figure 5.16. The

1

I19/I20, no overlap

1

I23/I28, no overlap

1

I12/I13, overlap

1

1

I15/I16, overlap

10−15 10−14 10−13 10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Figure 5.16: Inter-orthogonalities between different neighboring intervals of the SiH4 matrix
with and without overlap. Note that every block is scaled individually to be
quadratic.

two images on the left show cases from the SiH4 matrix without overlap. In the
case of the first image, the orthogonalities between the last two vectors from the left
interval and the first three vectors from the right interval are noticeably larger. We
assume the vectors to be sorted by eigenvalue position. Therefore we will find blocks
of large orthogonality as block off-diagonal in the lower left corner of the images. It
is clear that removing three vectors from the right interval would be wrong since the
resulting eigenpair count would be lower compared to removing two vectors from
the left interval. In both cases all offending orthogonalities would be eliminated. In
the case of the second image, three vectors can be removed from either the left or
the right interval. Removing one vector from the right interval and two from the
left leaves the possibility of remaining offending orthogonalities. The two remaining
images show cases from the SiH4 matrix with overlap. Here, any cluster is contained
either in the left or the right interval. Whenever a cluster is cut by one interval, it
has to be contained in the other for the method to work.
Removing rows from the orthogonality matrix O1,2 is equivalent to removing

vectors from X1 and removing columns from O1,2 is equivalent to removing vectors

JM

238 5 Taming the BEAST – Orthogonalization

from X2. Without overlap, in order to remove all large orthogonalities, all offending
vectors have to be removed either from I1 or I2, never mixed. The figure shows
that some of the larger orthogonalities would remain in O1,2 (compare the right
two images of Figure 5.16). In case the classification shows one interval to contain
less problematic vectors (indicated by either fewer problematic rows or columns in
O1,2), this should be the interval to be decimated; otherwise we are sure to miss
eigenpairs.10

If the boundary eigenvalues of both intervals are far enough apart such that they
can be separated by the residual following Equation (5.7), this is indicated by the
separation into multiple blocks of large orthogonality in O1,2 (compare the left two
images of Figure 5.16) when interval overlap is applied. In this case the lower left
entry (in the representation used here) of O1,2 becomes uncritial. We therefore will
refer to this entry as indicator entry.

Figure 5.17 shows several possible situations. All pictures symbolize orthogonality
matrices where the rows relate to the vectors of the left interval and the columns to
the vectors of the right interval. The indicator entry is highlighted.

a)

7

b)

7

c)

3

d)

3

e)

3

Figure 5.17: Duplicate detection: orthogonality patterns. Problematic entries are colored in
red, unproblematic ones in blue. The indicator entry is marked as problematic
(7) or unproblematic (3).

a) The problematic region is rectangular. The left interval contains four vectors
that interact strongly with two vectors from the right interval. The cluster is
at least of size four, but eigenpairs could be missing. The best course of action
is to remove the offending vectors from the right interval and flag possibly
missing eigenpairs.

b) The problematic region is a square, meaning that three vectors from both
intervals belong to a cluster. It is unclear if the cluster is complete and eigen-
pairs could be missing. The best course of action is to remove the offending
vectors from either interval, maybe decide based on residual or remaining
orthogonalities in the rows/columns.

c) The indicator entry is uncritical, indicating that the outermost vectors of both
intervals are well separated and no eigenpair was lost. The rectangular shape
of the lower block shows that the associated cluster is incomplete in the left

10) This does, of course, not ensure that no eigenpairs are missing.

JN

5.3 Establishing inter-orthogonality 239

interval. The separate blocks can be removed independently from each other
but for the rectangular block the two rows must be removed to not loose
eigenpairs; the rules and suggestions from a) and b) apply block-wise.

d) No eigenpair was lost since the indicator entry is unproblematic. While the
total number of offending rows and columns is equal, the blocks must be
removed separately, columns for the left block and rows for the lower block,
following the same rules as before. The number of removed vectors then is four
(as opposed to five if only rows or columns are removed).

e) No eigenpair was lost; both blocks are square and do not extend to the ends
of the matrix. In this case we can remove both blocks in any way, based on
residual or remaining orthogonalities in the respective rows or columns.

More difficult cases are possible. If the internal cluster separation is less tight, blocks
can be missing the outermost off-diagonal entries. In this case any block detection
algorithm should interpret a connected construct as cluster and find the bounding
rectangle. This is easily done in practice by employing a flood-fill algorithm that
starts with any offending entry and extends a bounding rectangle to all adjacent
offenders. It marks all visited entries and terminates once no more offenders are
connected. The process is repeated for any not yet visited critical entry until all
have been visited. It is likely that the missing entries of a block may not fall under
the criterion for problematic values, but still have rather large orthogonalities, such
that the above interpretation is the best option.

In the extreme case where a critical block extends to the ends of the orthogonality
matrix O1,2, the cluster might be cut on the opposite side of the interval, i.e., the
boundary opposite of the overlap region between the two intervals under consider-
ation. Even in these cases, the above strategy is correct, as it removes the partial
cluster from the interval that holds the least values from the cluster and leaves the
resolution of the situation to the interval pair that cut the cluster. This, of course,
only holds if the indicator entry of O1,2 is unproblematic. If it is not, the cluster fills
one of the intervals completely and the associated interval will be wiped completely.
The process of duplicate removal can be integrated naturally in the orthogonal-

ization scheme. Here we generally assume that overlap and duplicates only affect
direct neighbors. Otherwise the interval as a whole is degenerate as the residual is
not low enough to separate the eigenpairs. Since the order of orthogonalizations—be
it native, worst-case residual, or others—is unrelated to the neighborhood relations
of intervals and since nearest neighbor interactions may occur late in the scheme,
intervals still holding vectors that would be removed as duplicates serve as orthogo-
nality providers for intervals that are not nearest neighbors prior to removal. This
is not a problem; whether these directions take part in an orthogonalization against
other distinct directions, one or multiple times, does not affect the outcome. Merely
the residual of these directions may play a role in the overall results. Tests have
indicated that the late removal of these directions may even have a beneficial effect.
It therefore is enough to augment the orthogonalization scheme, such that for every
nearest neighbor interaction, duplicates are eliminated before the orthogonalization is

JO

240 5 Taming the BEAST – Orthogonalization

applied. Since duplicates are detected on a local process or process group, the vectors
that have to be removed from the remote partner interval have to be communicated
in an additional step.

The alternative approach would be to inspect the residual and decide which interval
the corresponding vector is removed from, based on which eigenpair has the larger
residual. The large orthogonalities that remain using this approach, however, will
have a detrimental effect on the residual during orthogonalization. In order to
avoid this source of residual increase, we choose to prefer orthogonality in these
considerations. We are still able to use the residual for some of the decisions, whenever
the number of offending rows and columns in O1,2 is equal and only one block of
large orthogonalities is found.
For the three matrices mentioned at the beginning of this section, duplicates

were removed prior to orthogonalization since the unprotected orthogonalization of
duplicates severely disturbs the results or causes methods for intra-orthogonalization
to fail. Repeating these difficult cases with a simple 10% overlap and applying the
above method for removing duplicates did yield all eigenpairs, none were missing
and none duplicate.

Without overlap, the residual disk criterion, however, is often too pessimistic and
the removal of allegedly duplicate eigenpairs also removes actually distinct eigenpairs
that just could not be separated in this way. A method for manually finding the
correct set of eigenpairs to remove involves searching for a cut-off orthogonality that
does not disturb the residual by many orders of magnitude. The jump in residual
loss is quite noticeable and the critical orthogonality range for the matrix SiH4 from
the beginning of this section was identified this way.

5.3.10 Butterfly orthogonalization
Similar to the approach of weak Gram-Schmidt from before, less strict orthogonal-
ization schemes have an iterative character since they include orthogonalizations
with not yet finalized vector blocks, but allow for more flexibility with regard to
orthogonalization patterns and order.
The pattern we will use here works stage-wise from nearest intervals to farthest

intervals. For ease of discussion, let a sequence of p intervals I1, . . . , Ip be given such
that

[λmin, λ
max] =

p⋃
j=1
Ij,

and, with Ij = [aj, bj], bj−1 ≥ aj for j = 2, . . . , p such that Ij−1 ∩ Ij = [aj, bj−1].
The k-th neighbors of interval Ij are Ij−k and Ij+k, if they exist. The stages

k = 1, . . . , p− 1 involve group communication with the k-th neighbors, such that all
possible interval pairs have been considered after p− 1 stages. In every stage, the
decision which interval serves as orthogonality provider and which interval serves as
orthogonality recipient is made by evaluating certain conditions, such as the worst-
case residual of the intervals. The decision is made separately for both neighbors.

JP

5.3 Establishing inter-orthogonality 241

The result is a butterfly pattern, as illustrated in Figure 5.18 (left). Since for each

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Figure 5.18: Butterfly orthogonalization pattern. Left: general communication channels for
all stages. Right: example realization based on maximum residual ordering.

stage up to two neighbors have to be contacted, communication must be performed
in two phases. Compute the color c of each interval k = 1, . . . , p (or process group)
and distance d = 1, . . . , p− 1 as

c(d, k) =
⌊
k − 1
d

⌋
÷ 2

where ÷ denotes the modulo operator for the rest of a an integer division. In the
d-th step, if an interval is assigned the color zero, it considers the right d-th neighbor
first and the left d-th neighbor second. If it is assigned the color one, the order is
reversed.

It is worth noting that for stages k > (p− 1)/2 communication is collision-free as no
interval has two neighbors of this distance. The actual direction of orthogonalization
is determined for each interval pair by exchanging the relevant information. This can
happen once at the very beginning (updating the information later is not possible)
or before each orthogonalization (with up-to-date information). Conditions that do
not require additional information to be exchanged, such as “always left” or “always
right”, can skip this step. Figure 5.18 (right) shows an example using the maximum
residual ordering.

JQ

242 5 Taming the BEAST – Orthogonalization

5.3.11 Block weak Gram-Schmidt
Analogous to single vectors, the approach of weak Gram-Schmidt is easily transferred
to blocks of vectors. Let

Vi = Zi −
i−1∑
k=1

ZkZ
H
k BZi.

The implications on orthogonality are (almost) exactly the same. Again assume all
Zi to be orthonormal and let j < i. It is

V H
j BVi = ZH

j BZi − ZH
j BZjZ

H
j BZi −

i−1∑
k=1
k 6=j

ZH
j BZkZ

H
k BZi −

j−1∑
k=1

ZH
j BZkZ

H
k BZi

+
j−1∑
k=1

i−1∑
`=1
6̀=k

ZH
j BZkZ

H
k BZ`Z

H
` BZi +

j−1∑
k=1

ZH
j BZkZ

H
k BZkZ

H
k BZi

= −
i−1∑
k=1
k 6=j

ZH
j BZkZ

H
k BZi +

j−1∑
k=1

i−1∑
`=1
`6=k

ZH
j BZkZ

H
k BZ`Z

H
` BZi (5.8)

with (i− 2) terms containing two Gram matrices and (j − 1)(i− 2) terms containing
three Gram matrices, as before. The matrix multiplications, however, introduce
constant factors m, which is not surprising, thinking about block orthogonalizations
vector-wise. To reformulate the requirement from Equation (5.1) for p vector blocks
yields

a > (p− 2)2m2a3 + (p− 2)ma2 =⇒ a <
−1 +

√
5

2m(p− 2) (5.9)

where a is now the maximum orthogonality between any two vectors of different
blocks Zi and all blocks are assumed to have a constant number of columns m. The
requirement on the initial orthogonality increases as the achievable orthogonality
decreases with more blocks and columns. This means that if at some point more
iterations of weak Gram-Schmidt are required, other methods can be more feasible.
Similarly,

V H
i BVi = ZH

i BZi −
i−1∑
k=1

ZH
i BZkZ

H
k BZi −

i−1∑
k=1

ZH
i BZkZ

H
k BZi

+
i−1∑
k=1

i−1∑
`=1
6̀=k

ZH
i BZkZ

H
k BZ`Z

H
` BZi +

i−1∑
k=1

ZH
i BZkZ

H
k BZkZ

H
k BZi

= I −
i−1∑
k=1

ZH
i BZkZ

H
k BZi +

i−1∑
k=1

i−1∑
`=1
` 6=k

ZH
i BZkZ

H
k BZ`Z

H
` BZi,

which reflects the behavior of single-vector weak Gram-Schmidt with (i− 1) terms
with two Gram matrices and (i− 1)(i− 2) terms with three Gram matrices. Adjust-
ing the expression for the estimated norm with respect to m for each column vi of

JR

5.3 Establishing inter-orthogonality 243

Vi yields ∣∣∣1− ‖vi‖2
∣∣∣ < (i− 1)ma2 +

(
i2 − 3i+ 2

)
m2a3

where plugging in the Gram factor limit from Equation (5.9) for i vector blocks leads
to a quick approach of unity when increasing i or m. The vectors Vi are again not
normalized, but similar to the behavior of single-vector weak Gram-Schmidt, it can
be seen from the above that normalization plays a minor role in virtually all cases if
the input vectors Zi can be assumed to be normalized.
The above matches the expression from the introductory part of this section for

i = 2, but, of course, assumes constant orthogonality a of all involved blocks. We will
estimate the intra-orthogonality of Vi in a similar manner, looking at the off-diagonal
entries. Without any additional cancellation we also obtain

(i− 1)ma2 +
(
i2 − 3i+ 2

)
m2a3,

which, for i = 2, again matches the statement from before and otherwise is identical
to the norm deviation.
In orthogonalization schemes where unfinished blocks of vectors are used, such

as butterfly schemes, the above considerations apply as a worst-case scenario for
i = m and j = m− 1; due to partially orthogonalized blocks, i.e., blocks that have
been orthogonalized against some but not all other blocks, we may expect slightly
improved results.

5.3.12 Butterfly results
We repeat the orthogonalization of the data sets from the test set using the butterfly
approach with worst-case residual ordering. The results are shown in Tables 5.14
and 5.15. From Table 5.14, it is immediately apparent that a single sweep cannot
reduce the orthogonality to machine precision. Particularly difficult are the matrices
SiH4 and linverse. Without locking, the result is better, but for the latter matrix
still far from optimal. This difficult scenario is created by the choice of interval
boundaries by the number of eigenpairs based on the precomputed spectrum that
can easily cut dense clusters. Basing the choice of intervals simply on equal ranges
on the spectrum disregarding the number of eigenvalues, on the other hand, does
not produce this problem here, as apparent from Table 5.15. Of course, cutting no
clusters cannot be guaranteed in this case either, but it is less probable. In terms of
residual loss, the results are on par with the results from block Gram-Schmidt, see
Tables 5.8 and 5.9. The residual loss is even identical in both cases, which comes
as no surprise. While the order of the different orthogonalizations is not the same,
the direction, i.e., which interval is orthogonalized against which, is identical. We
further can assume that the nearest-neighbor interaction plays the dominant role
for residual disturbances as inter-orthogonalities are the highest. The suboptimal
inter-orthogonality makes an additional iteration necessary; on the other hand, in
many cases a single iteration did suffice.

JS

244 5 Taming the BEAST – Orthogonalization

locking no locking
Name

intra orth inter orth max res loss intra orth inter orth max res loss

laser 3.886e−16 7.241e−15 1.853e−09 +0.099 3.123e−16 1.874e−16 9.852e−10 −0.086
SiH4 7.787e−17 1.106e−11 7.528e−08 −0.026 6.592e−17 4.682e−14 4.151e−08 −0.194
linverse 1.264e−16 6.841e−07 4.725e−07 +0.130 1.718e−20 1.620e−10 1.487e−08 −1.226
Pres_Poisson 2.348e−16 2.762e−13 2.149e−08 +0.188 2.235e−16 2.016e−14 1.034e−08 −0.110
Si5H12 4.077e−17 1.159e−15 5.572e−09 +0.143 5.117e−17 3.383e−17 1.418e−09 −0.282
brainpc2 4.760e−16 5.897e−14 1.440e−08 +0.353 3.570e−16 8.612e−16 5.058e−09 −0.058
rgg_n_2_15_s0 3.980e−16 8.519e−14 4.252e−08 +0.241 3.027e−16 3.873e−16 1.284e−08 −0.170
SiO 5.486e−17 1.839e−15 2.054e−08 +0.359 5.562e−17 4.337e−17 2.775e−09 −0.293
Andrews 2.342e−17 4.955e−14 3.686e−08 +0.162 2.564e−17 4.744e−16 9.060e−09 −0.416
Si34H36 3.036e−17 5.891e−15 1.901e−08 +0.018 3.296e−17 1.603e−16 6.377e−09 −0.307
fe_rotor 7.633e−17 5.798e−13 5.138e−08 +0.117 7.720e−17 2.981e−15 1.595e−08 −0.327
GraI-119k 1.336e−16 2.326e−14 3.808e−08 −0.164 1.622e−16 1.649e−15 2.480e−08 −0.350

Table 5.14: Butterfly orthogonalization, single sweep. Sort method: worst-case residual.
Maximum residual, maximum orthogonalities, and residual loss for the matrix
test set with even distribution of eigenpairs among 64 intervals of equal size.

locking no locking
Name

intra orth inter orth max res loss intra orth inter orth max res loss

laser 3.816e−16 8.705e−15 2.138e−09 +0.178 2.290e−16 2.359e−16 4.723e−10 −0.459
SiH4 5.985e−17 3.934e−14 1.300e−09 +0.166 6.939e−17 4.929e−14 3.819e−09 −0.329
linverse 5.772e−17 7.070e−12 3.829e−09 +0.046 4.103e−17 1.732e−14 1.585e−09 −0.267
Pres_Poisson 3.193e−16 6.238e−14 2.508e−08 +0.256 2.845e−16 6.979e−15 7.556e−09 −0.197
Si5H12 5.551e−17 5.443e−17 5.714e−09 +0.163 7.947e−17 3.231e−17 1.150e−09 −0.416
brainpc2 4.074e−16 2.909e−13 1.014e−08 +0.196 5.282e−16 2.589e−14 3.965e−09 −0.138
rgg_n_2_15_s0 2.776e−16 1.382e−13 4.481e−08 +0.268 3.868e−16 9.245e−15 1.748e−08 −0.112
SiO 5.833e−17 1.836e−15 1.957e−08 +0.340 5.117e−17 4.163e−17 3.041e−09 −0.393
Andrews 2.429e−17 4.184e−14 4.851e−08 +0.284 2.613e−17 2.570e−15 1.438e−08 −0.236
Si34H36 3.860e−17 5.207e−15 2.302e−08 +0.106 3.209e−17 2.044e−16 7.333e−09 −0.339
fe_rotor 6.592e−17 3.891e−13 5.185e−08 +0.118 7.893e−17 1.679e−14 1.814e−08 −0.177
GraI-119k 4.559e−16 4.701e−15 2.969e−08 −0.246 4.396e−16 3.806e−16 1.300e−10 −2.225

Table 5.15: Butterfly orthogonalization, single sweep. Sort method: worst-case residual.
Maximum residual, maximum orthogonalities, and residual loss for the matrix
test set with uneven distribution of eigenpairs among 64 intervals of equal
size.

Judging from Figure 5.15, it might be reasonable to just consider some of the out-
ermost vectors (boundary vectors) when deciding the direction of orthogonalization.
We will test this strategy with just the outermost boundary vector and with five of
the boundary vectors. This is a case where a simple ordering of intervals is not pos-
sible anymore. Already with only three intervals, there may be no ordering ensuring
that the interval with large lower boundary residual is orthogonalized against the
interval with small upper boundary residual for every interaction, i.e., whenever the
graph of interactions contains a directed cycle. This makes it impossible to employ

JT

5.3 Establishing inter-orthogonality 245

the block Gram-Schmidt algorithm, at least if the ordering should be respected for
all interactions. If we only take into account interaction between direct neighbors,
however, ordering is possible again and block Gram-Schmidt can be used. Since we
expect the largest impact on the residual from nearest neighbor interactions, the
results should be comparable.
The boundary residual approach requires the eigenpairs of all intervals to be

ordered by eigenvalue position, which is the case if the eigenpairs of an interval are
computed en bloc due to the reduced eigensolver typically ordering its result in this
manner. Locking, however, may disturb the ordering if locked vectors are moved to
the beginning or end of the vector block (there is, of course, the possibility not to
move locked vectors and track them through different means, but this is typically
not done due to performance considerations). In this case, eigenpairs have to be
sorted again before starting the orthogonalization phase.
Tables 5.16 and 5.17 list the results for a single boundary vector and one sweep

of the butterfly scheme, Tables 5.18 and 5.19 show the respective results for five
boundary vectors. Of course, the results for inter-orthogonality cannot deviate

locking no locking
Name

intra orth inter orth max res loss intra orth inter orth max res loss

laser 2.914e−16 7.230e−15 1.364e−09 −0.034 2.845e−16 2.235e−16 9.852e−10 −0.086
SiH4 5.670e−17 1.096e−11 8.409e−08 +0.022 6.505e−17 4.680e−14 6.464e−08 −0.001
linverse 1.357e−16 1.074e−07 4.671e−07 +0.125 3.861e−19 5.365e−09 1.266e−07 −0.296
Pres_Poisson 3.754e−16 2.216e−13 2.159e−08 +0.190 2.194e−16 1.116e−14 1.219e−08 −0.039
Si5H12 4.640e−17 1.158e−15 4.070e−09 +0.007 4.163e−17 3.556e−17 2.106e−09 −0.110
brainpc2 4.519e−16 2.672e−13 1.088e−08 +0.231 4.591e−16 1.622e−14 5.057e−09 −0.058
rgg_n_2_15_s0 3.565e−16 1.262e−13 3.888e−08 +0.203 3.131e−16 3.888e−15 1.867e−08 −0.007
SiO 5.898e−17 2.023e−15 2.151e−08 +0.379 5.768e−17 3.816e−17 2.775e−09 −0.293
Andrews 2.982e−17 5.094e−14 4.136e−08 +0.212 2.602e−17 6.055e−15 2.054e−08 −0.061
Si34H36 3.166e−17 4.171e−15 1.900e−08 +0.018 2.906e−17 3.195e−16 6.768e−09 −0.281
fe_rotor 7.286e−17 6.180e−13 5.101e−08 +0.113 6.679e−17 6.186e−14 2.945e−08 −0.061
GraI-119k 1.804e−16 3.344e−14 4.180e−08 −0.123 1.579e−16 1.661e−15 3.000e−08 −0.267

Table 5.16: Butterfly orthogonalization, single sweep. Sort method: boundary residuals,
single vector. Maximum residual, maximum orthogonalities, and residual loss
for the matrix test set with even distribution of eigenpairs among 64 intervals
of equal size.

significantly from other orderings using a butterfly scheme. The value of the boundary
residual ordering therefore hinges on the residual loss. However, some cases show
a detrimental effect of these strategies and only few are significantly better. With
these mixed results we cannot claim that this method of sorting is generally better
than the worst-case residual or worst average residual methods.

JU

246 5 Taming the BEAST – Orthogonalization

locking no locking
Name

intra orth inter orth max res loss intra orth inter orth max res loss

laser 3.331e−16 8.374e−15 2.096e−09 +0.170 2.220e−16 7.615e−15 1.585e−09 +0.067
SiH4 8.327e−17 3.934e−14 1.300e−09 +0.166 7.980e−17 4.927e−14 8.121e−09 −0.002
linverse 5.152e−17 7.070e−12 4.392e−09 +0.106 4.103e−17 1.732e−14 2.866e−09 −0.010
Pres_Poisson 3.140e−16 1.054e−13 2.243e−08 +0.207 2.914e−16 6.979e−15 9.649e−09 −0.090
Si5H12 4.380e−17 3.567e−17 4.266e−09 +0.036 5.725e−17 3.556e−17 2.958e−09 −0.006
brainpc2 4.324e−16 2.909e−13 9.792e−09 +0.180 4.818e−16 2.588e−14 4.514e−09 −0.081
rgg_n_2_15_s0 3.517e−16 3.415e−13 5.676e−08 +0.370 3.105e−16 5.146e−14 2.649e−08 +0.069
SiO 5.725e−17 4.626e−14 1.569e−08 +0.244 7.459e−17 4.467e−17 4.572e−09 −0.216
Andrews 2.412e−17 4.856e−14 4.851e−08 +0.284 2.580e−17 9.639e−15 2.021e−08 −0.088
Si34H36 4.077e−17 5.459e−15 2.671e−08 +0.171 3.123e−17 5.606e−16 1.156e−08 −0.141
fe_rotor 6.939e−17 4.918e−13 5.188e−08 +0.119 6.765e−17 3.450e−14 2.264e−08 −0.081
GraI-119k 4.080e−16 8.729e−15 5.232e−08 +0.000 4.097e−16 4.389e−16 1.374e−08 −0.201

Table 5.17: Butterfly orthogonalization, single sweep. Sort method: boundary residuals,
single vector. Maximum residual, maximum orthogonalities, and residual
loss for the matrix test set with uneven distribution of eigenpairs among 64
intervals of equal size.

locking no locking
Name

intra orth inter orth max res loss intra orth inter orth max res loss

laser 2.984e−16 9.298e−14 1.853e−09 +0.099 2.845e−16 1.886e−16 9.852e−10 −0.086
SiH4 9.486e−17 1.071e−11 9.359e−08 +0.069 8.327e−17 4.680e−14 6.464e−08 −0.001
linverse 1.560e−16 2.303e−07 4.670e−07 +0.125 1.718e−20 1.620e−10 1.487e−08 −1.226
Pres_Poisson 3.059e−16 2.762e−13 2.159e−08 +0.190 2.437e−16 1.116e−14 1.219e−08 −0.039
Si5H12 4.705e−17 2.860e−16 4.181e−09 +0.018 3.881e−17 3.296e−17 2.106e−09 −0.110
brainpc2 4.562e−16 1.178e−13 9.045e−09 +0.151 4.398e−16 1.620e−14 5.057e−09 −0.058
rgg_n_2_15_s0 4.241e−16 8.385e−14 3.888e−08 +0.203 3.400e−16 4.770e−15 1.867e−08 −0.007
SiO 5.117e−17 1.708e−15 2.054e−08 +0.359 6.072e−17 3.816e−17 2.775e−09 −0.293
Andrews 2.580e−17 5.094e−14 4.136e−08 +0.212 2.841e−17 6.058e−15 2.054e−08 −0.061
Si34H36 3.188e−17 2.709e−15 1.900e−08 +0.018 3.730e−17 1.622e−16 6.377e−09 −0.307
fe_rotor 6.375e−17 6.788e−13 5.138e−08 +0.117 7.112e−17 6.186e−14 2.945e−08 −0.061
GraI-119k 1.613e−16 3.344e−14 4.180e−08 −0.123 1.492e−16 1.463e−14 3.915e−08 −0.151

Table 5.18: Butterfly orthogonalization, single sweep. Sort method: boundary residuals,
five vectors. Maximum residual, maximum orthogonalities, and residual loss
for the matrix test set with even distribution of eigenpairs among 64 intervals
of equal size.

5.3.13 Regular residual updates

The orthogonalization ordering schemes introduced above all rely on the residual
(typically the worst-case residual) of the involved intervals. We have seen before that
the residual is affected by orthogonalization interactions. If the residual is to be the
deciding factor, it seems natural that the residual has to be updated whenever the
respective interval is to be used as orthogonality provider, but only if the interval

JV

5.3 Establishing inter-orthogonality 247

locking no locking
Name

intra orth inter orth max res loss intra orth inter orth max res loss

laser 3.747e−16 8.230e−15 1.765e−09 +0.095 3.123e−16 2.533e−16 7.635e−10 −0.250
SiH4 6.288e−17 3.933e−14 1.300e−09 +0.166 7.980e−17 3.292e−14 8.121e−09 −0.002
linverse 5.152e−17 7.070e−12 4.821e−09 +0.147 4.103e−17 1.732e−14 2.866e−09 −0.010
Pres_Poisson 3.959e−16 6.238e−14 2.508e−08 +0.256 2.914e−16 3.682e−15 9.649e−09 −0.090
Si5H12 4.337e−17 9.498e−17 5.274e−09 +0.128 4.554e−17 3.383e−17 2.958e−09 −0.006
brainpc2 5.044e−16 2.908e−13 9.794e−09 +0.181 6.574e−16 2.588e−14 4.514e−09 −0.081
rgg_n_2_15_s0 3.350e−16 3.415e−13 5.213e−08 +0.333 4.293e−16 5.146e−14 2.649e−08 +0.069
SiO 4.857e−17 4.627e−14 1.407e−08 +0.197 7.286e−17 4.163e−17 4.572e−09 −0.216
Andrews 2.277e−17 4.585e−14 4.851e−08 +0.284 2.602e−17 9.639e−15 2.021e−08 −0.088
Si34H36 3.079e−17 5.456e−15 2.671e−08 +0.171 3.469e−17 5.612e−16 1.296e−08 −0.092
fe_rotor 6.852e−17 5.564e−13 5.188e−08 +0.119 6.679e−17 3.450e−14 2.615e−08 −0.018
GraI-119k 4.900e−16 9.436e−15 5.232e−08 +0.000 4.727e−16 4.958e−16 1.374e−08 −0.201

Table 5.19: Butterfly orthogonalization, single sweep. Sort method: boundary residuals,
five vectors. Maximum residual, maximum orthogonalities, and residual
loss for the matrix test set with uneven distribution of eigenpairs among 64
intervals of equal size.

order is not decided a priori. Therefore, block Gram-Schmidt will, of course, not
yield different results when including residual updates. For an unordered butterfly
scheme, however, additional recomputations of the residual may be necessary as each
interval may serve as orthogonality provider at any stage.

The final residual achieved after orthogonalization is a crucial output of the overall
eigensolver and thus has to be recomputed for any orthogonalization scheme under all
circumstances when the orthogonalization phase has finished. For ordered schemes
using the block Gram-Schmidt algorithm, this would result in a total of p− 1 recom-
putations. The very first interval (in the respective ordering) is not modified and
the residual does not change.
We repeat the butterfly scheme with worst-case residual as orthogonalization

condition for all data sets, including residual recomputation after every modification
of a vector block. The results are listed in Tables 5.20 and 5.21.
Comparing Table 5.20 and Table 5.21 with the original results from Tables 5.14

and 5.15, the changed ordering of intervals in the stages of the butterfly orthog-
onalization procedure have only little effect on residual loss. In cases where the
residual is not improved, the loss of residual is slightly lower in some of the cases.
There is no case where an originally positive residual loss becomes a negative loss,
though. Considering the cost of many recomputations of the residual, omitting these
intermediate steps appears reasonable.

5.3.14 Skipping intra-orthogonalization
In order to serve as orthogonality provider in an inter-orthogonalization interaction,
a block of vectors needs to be approximately intra-orthogonal. The effect of orthog-

JW

248 5 Taming the BEAST – Orthogonalization

locking no locking
Name

intra orth inter orth max res loss intra orth inter orth max res loss

laser 3.400e−16 7.279e−15 1.681e−09 +0.057 2.776e−16 1.978e−16 9.852e−10 −0.086
SiH4 6.787e−17 1.106e−11 7.528e−08 −0.026 7.893e−17 4.682e−14 4.151e−08 −0.194
linverse 1.560e−16 2.303e−07 4.725e−07 +0.130 1.718e−20 1.620e−10 1.839e−08 −1.134
Pres_Poisson 2.922e−16 2.761e−13 2.149e−08 +0.188 2.514e−16 2.016e−14 1.034e−08 −0.110
Si5H12 5.421e−17 1.158e−15 4.070e−09 +0.007 4.391e−17 3.263e−17 1.683e−09 −0.208
brainpc2 5.369e−16 5.898e−14 1.061e−08 +0.220 5.128e−16 8.175e−16 5.058e−09 −0.058
rgg_n_2_15_s0 3.344e−16 1.200e−13 4.252e−08 +0.241 3.747e−16 7.637e−15 1.346e−08 −0.149
SiO 6.852e−17 2.020e−15 2.054e−08 +0.359 5.551e−17 4.163e−17 2.775e−09 −0.293
Andrews 2.364e−17 5.720e−14 3.722e−08 +0.167 2.580e−17 4.773e−16 9.060e−09 −0.416
Si34H36 3.816e−17 4.280e−15 2.123e−08 +0.066 3.361e−17 1.640e−16 6.377e−09 −0.307
fe_rotor 6.505e−17 6.789e−13 5.138e−08 +0.117 7.459e−17 2.976e−15 1.595e−08 −0.327
GraI-119k 1.756e−16 3.344e−14 4.180e−08 −0.123 1.716e−16 1.657e−15 2.480e−08 −0.350

Table 5.20: Butterfly orthogonalization, single sweep, residual update after each modifi-
cation. Sort method: worst-case residual. Maximum residual, maximum
orthogonalities, and residual loss for the matrix test set with even distribution
of eigenpairs among 64 intervals of equal size.

locking no locking
Name

intra orth inter orth max res loss intra orth inter orth max res loss

laser 3.400e−16 8.404e−15 2.138e−09 +0.178 2.741e−16 2.177e−16 4.723e−10 −0.459
SiH4 5.768e−17 3.934e−14 1.300e−09 +0.166 6.852e−17 4.926e−14 3.819e−09 −0.329
linverse 5.772e−17 7.070e−12 3.829e−09 +0.046 4.103e−17 1.732e−14 1.585e−09 −0.267
Pres_Poisson 3.509e−16 1.054e−13 2.386e−08 +0.234 2.684e−16 6.979e−15 7.556e−09 −0.197
Si5H12 4.770e−17 5.031e−17 4.463e−09 +0.056 4.380e−17 3.426e−17 1.150e−09 −0.416
brainpc2 6.068e−16 2.908e−13 1.014e−08 +0.196 5.148e−16 1.127e−14 2.271e−09 −0.380
rgg_n_2_15_s0 3.331e−16 1.082e−13 4.239e−08 +0.244 3.469e−16 1.048e−14 1.748e−08 −0.112
SiO 7.980e−17 1.836e−15 1.957e−08 +0.340 5.117e−17 3.990e−17 3.041e−09 −0.393
Andrews 2.537e−17 4.183e−14 4.851e−08 +0.284 2.640e−17 5.743e−15 1.843e−08 −0.128
Si34H36 5.291e−17 5.211e−15 1.910e−08 +0.025 4.250e−17 8.327e−17 4.972e−09 −0.507
fe_rotor 6.592e−17 5.564e−13 5.185e−08 +0.118 8.587e−17 1.679e−14 1.814e−08 −0.177
GraI-119k 5.821e−16 1.853e−14 2.602e−08 −0.303 4.396e−16 3.224e−16 1.300e−10 −2.225

Table 5.21: Butterfly orthogonalization, single sweep, residual update after each modifi-
cation. Sort method: worst-case residual. Maximum residual, maximum
orthogonalities, and residual loss for the matrix test set with uneven distribu-
tion of eigenpairs among 64 intervals of equal size.

onalizing a vector block Z against a vector block Y where Y is not orthogonal in
terms of orthogonality between V = Z − Y

(
Y HBZ

)
and Y may be described as

V HBY =
(
Z − Y

(
Y HBZ

))H
BY

= ZHBY −
(
ZHBY

)(
Y HBY

)
= ZHBY

(
I − Y HBY

)
.

JX

5.3 Establishing inter-orthogonality 249

If we assume Y is normalized,

orth(V, Y) ≤ orth(Z, Y) orth(Y)
mini‖zi‖‖yi‖

.

where zi are the columns of Z and yi the columns of Y .
Nonetheless, in all preceding experiments using a butterfly scheme, intra-orthogo-

nalization of modified vector blocks is only performed at the end of the sweep. We
therefore compare the preceding results with results that include an intra-orthogonal-
ization after every modification of a vector block. Only a single sweep is applied and
the worst-case residual ordering serves as orthogonalization condition. Tables 5.22
and 5.23 summarize the results for all data sets.

locking no locking
Name

intra orth inter orth max res loss intra orth inter orth max res loss

laser 1.943e−16 7.307e−15 1.853e−09 +0.099 2.359e−16 2.637e−16 9.852e−10 −0.086
SiH4 4.163e−17 1.106e−11 7.528e−08 −0.026 4.727e−17 4.681e−14 4.151e−08 −0.194
linverse 4.011e−17 6.841e−07 4.725e−07 +0.130 5.630e−20 1.620e−10 1.487e−08 −1.226
Pres_Poisson 2.630e−16 2.762e−13 2.149e−08 +0.188 2.220e−16 2.016e−14 1.034e−08 −0.110
Si5H12 3.784e−17 1.168e−15 5.572e−09 +0.143 4.033e−17 4.424e−17 1.418e−09 −0.282
brainpc2 4.257e−16 5.896e−14 1.440e−08 +0.353 5.471e−16 8.890e−16 5.058e−09 −0.058
rgg_n_2_15_s0 3.296e−16 8.518e−14 4.252e−08 +0.241 2.776e−16 3.881e−16 1.284e−08 −0.170
SiO 6.592e−17 1.841e−15 2.054e−08 +0.359 5.605e−17 6.272e−17 2.775e−09 −0.293
Andrews 2.179e−17 4.955e−14 3.686e−08 +0.162 2.185e−17 4.729e−16 9.060e−09 −0.416
Si34H36 2.819e−17 5.895e−15 1.901e−08 +0.018 3.231e−17 1.617e−16 6.377e−09 −0.307
fe_rotor 6.549e−17 5.798e−13 5.138e−08 +0.117 6.679e−17 2.975e−15 1.595e−08 −0.327
GraI-119k 1.509e−16 2.326e−14 3.808e−08 −0.164 1.416e−16 1.653e−15 2.480e−08 −0.350

Table 5.22: Butterfly orthogonalization, single sweep, intra-orthogonalization after each
modification. Sort method: worst-case residual. Maximum residual, maxi-
mum orthogonalities, and residual loss for the matrix test set with even dis-
tribution of eigenpairs among 64 intervals of equal size.

Comparing the numbers from Tables 5.22 and 5.23 with the respective numbers
from Tables 5.14 and 5.15, we see that the values for the residual loss are exactly the
same. Similarly, the values for residual and orthogonality are, wherever they are not
just numerically irrelevant noise, identical. This result is somewhat counter-intuitive,
as we expect vector blocks with large intra-orthogonalities not to be good orthog-
onality providers. On the other hand, the severity of all cases from the test set is
attenuated since suspected duplicates are removed beforehand following Section 5.3.9.
This leads to less disturbances during the several inter-orthogonalizations and, in
turn, to less disturbances of intra-orthogonality.
Since repeated intra-orthogonalizations constitute a significant portion of the

computations, being able to skip them in many cases increases the feasibility of
the butterfly scheme. The intra-orthogonalization effort then may be reduced to
once at the end of each sweep. In severe cases, it might be enough to add an

JY

250 5 Taming the BEAST – Orthogonalization

locking no locking
Name

intra orth inter orth max res loss intra orth inter orth max res loss

laser 1.943e−16 8.673e−15 2.138e−09 +0.178 2.082e−16 2.984e−16 4.723e−10 −0.459
SiH4 5.768e−17 3.933e−14 1.300e−09 +0.166 3.990e−17 4.926e−14 3.819e−09 −0.329
linverse 4.688e−17 7.070e−12 3.829e−09 +0.046 3.123e−17 1.732e−14 1.585e−09 −0.267
Pres_Poisson 3.293e−16 6.238e−14 2.508e−08 +0.256 1.457e−16 6.979e−15 7.556e−09 −0.197
Si5H12 3.036e−17 5.660e−17 5.714e−09 +0.163 4.597e−17 5.139e−17 1.150e−09 −0.416
brainpc2 4.047e−16 2.909e−13 1.014e−08 +0.196 3.934e−16 2.588e−14 3.965e−09 −0.138
rgg_n_2_15_s0 2.884e−16 1.382e−13 4.481e−08 +0.268 3.626e−16 9.239e−15 1.748e−08 −0.112
SiO 4.445e−17 1.837e−15 1.957e−08 +0.340 5.551e−17 7.069e−17 3.041e−09 −0.393
Andrews 2.055e−17 4.183e−14 4.851e−08 +0.284 2.233e−17 2.571e−15 1.438e−08 −0.236
Si34H36 3.123e−17 5.205e−15 2.302e−08 +0.106 2.949e−17 2.050e−16 7.333e−09 −0.339
fe_rotor 5.855e−17 3.891e−13 5.185e−08 +0.118 7.112e−17 1.679e−14 1.814e−08 −0.177
GraI-119k 4.037e−16 4.695e−15 2.969e−08 −0.246 4.152e−16 3.793e−16 1.300e−10 −2.225

Table 5.23: Butterfly orthogonalization, single sweep, intra-orthogonalization after each
modification. Sort method: worst-case residual. Maximum residual, max-
imum orthogonalities, and residual loss for the matrix test set with uneven
distribution of eigenpairs among 64 intervals of equal size.

intra-orthogonalization phase after the first stage, since we expect nearest-neighbor
interactions to apply the most severe disturbance.

5.3.15 Reduction of interaction distance
Examining the cases where the butterfly scheme performed the worst, the linverse
and SiH4 matrices, the main cause for the poor performance are large orthogonalities
among nearest neighbors, as is to be expected. It is the also clear that large remaining
orthogonalities after a butterfly sweep is caused by the same pairing; we could
say that a butterfly sweep contracts large orthogonality towards closer neighbors.
Consequentially, not all pairings need to be considered in following sweeps. For the
sake of discussion, we will refer to intervals that are k-th neighbors as being k hops
apart.
As we have seen already in Figure 4.32 from Section 4.5.3.1, the initial situation

for the linverse matrix is dire: the maximum number of hops is required, if inter-
orthogonality has to be brought close to machine precision. Figure 5.19 shows the
orthogonalities computed from the linverse matrix after one sweep of the butterfly
scheme with worst-case residual ordering. In all cases but the (even, no locking)
data set, a second sweep would only have to consider nearest neighbors.
In order to optimize distances for following sweeps, if a full sweep is performed

as first step, the computed orthogonalities during the orthogonalizations can be
used to estimate new orthogonalities that would be achieved with this sweep, for
example using the (pessimistic) method from Section 5.3.11. The basic assumption
of equally bad orthogonalities among all vectors of all blocks is, however, way too
pessimistic and the estimation cannot be used. Since we assume to know at least all

KA

5.3 Establishing inter-orthogonality 251

20 40 60

even, locking

20 40 60

even, no locking

20 40 60

uneven, locking

20 40 60

20

40

60

uneven, no locking

10−15 10−14 10−13 10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Figure 5.19: Orthogonalities of the linverse matrix after one sweep. Shown are the worst
orthogonalities of all possible interval combinations.

maximum inter-orthogonalities among all intervals, a more precise estimation may
be performed, based on the real orthogonalities between a given interval and all other
intervals. We modify Equation (5.8) such that each vector block is orthogonalized
against every other vector block. We obtain

V H
j BVi = ZH

j BZi −
p∑

k=1
k 6=j

ZH
j BZkZ

H
k BZi −

p∑
k=1
k 6=i

ZH
j BZkZ

H
k BZi

+
p∑

k=1
k 6=j

p∑
`=1
6̀=i

ZH
j BZkZ

H
k BZ`Z

H
` BZi

= −
p∑

k=1
k 6=i,j

ZH
j BZkZ

H
k BZi +

p∑
k=1
k 6=j

p∑
`=1
`6=i,k

ZH
j BZkZ

H
k BZ`Z

H
` BZi,

which we estimate, assuming that no values cancel, all Zk are orthonormal, and every
Gram matrix ZH

j BZi consists of a fixed Gram factor orth(Zi, Zj), as

p∑
k=1
k 6=i,j

mk orth(Zj, Zk) orth(Zk, Zi)

+
p∑

k=1
k 6=j

p∑
`=1
6̀=i,k

mkml orth(Zj, Zk) orth(Zk, Z`) orth(Z`, Zi), (5.10)

where mk is the number of vectors of the k-th vector block. Of course, in the
several stages of a full butterfly sweep, we obtain orthogonalities of already modified
vector blocks and we assume here that the inter-orthogonality among two intervals
is not changed, in particular not improved, by orthogonalization of one of those two
intervals with a third interval. Figure 5.20 shows the estimation for the four data

KB

252 5 Taming the BEAST – Orthogonalization

20 40 60

20

40

60

even, locking

20 40 60

even, no locking

20 40 60

uneven, locking

20 40 60

uneven, no locking

10−15 10−14 10−13 10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Figure 5.20: Estimated orthogonalities of the linverse matrix for one sweep. Shown are
the worst orthogonalities of all possible interval combinations.

sets of the linverse matrix. This way, distance reduction could be automated and
it would even be possible to not only skip interactions beyond a certain limit, but
all interaction, near or far, if the prediction advises to exclude them. The results
are not particularly close to the actually achieved result. In particular duplicate
values in the (uneven, no locking) case skew the results and would have to be
eliminated beforehand. This, however should normally be the case anyway. While
some orthogonalities even increase, applying the estimator from Equation (5.10)
multiple times eventually reduces all predicted residuals to machine precision. The
required (estimated) number of sweeps also does not reflect actual results. A better
estimator, maybe using additional information gathered during the first sweep, will
have to be found in order to improve the reduction of hops for additional sweeps.

Ultimately, nearest-neighbor orthogonalization might be cheap enough to consider
intermediate orthogonalization between iterations of the eigensolver again, enabling
the characteristic gain in convergence speed (with properly chosen direction of or-
thogonalization) and simultaneous mitigation of the most significant source of large
inter-orthogonalities could be worth the additional cost in terms of operations, com-
munication, and synchronization points.

5.3.16 Large examples
For the two large cases from Section 4.1.2, only a single data set exists; calibration
runs were performed with locking and even subdivision of the target interval into
32 sub-intervals of equal size. Since no spectral information beyond the density
estimation is available, searchspace sizes were determined by adaptive increase, as
described in Section 4.2.1.1. Due to its inefficiency in extremely dense spectral
situations such as these, instead of a polynomial filter, a Cauchy filter of degree 16
was used. For comparison with the following orthogonalization test, the results are
given in Table 5.24.

KC

5.3 Establishing inter-orthogonality 253

In order to also obtain results for the orthogonalization strategies applied to
larger matrices with dense spectrum, we have tested block Gram Schmidt and a
single sweep of the butterfly scheme, both with worst-case residual ordering, on the
matrices graph-1M and topi-1M from Section 4.1.2. Cholesky QR has been used
for reorthogonalization after the full sweep is completed; residual updates were not
performed. The results are listed in Table 5.25. Since the initial inter-orthogonalities

Name min res max res intra orth inter orth

graph-1M 2.62e−12 6.77e−07 9.48e−11 5.68e−03
topi-1M 4.98e−11 1.67e−06 1.43e−04 1.61e−01

Table 5.24: Final residuals and orthogonalities for the large examples. The minimum
residual for the graphene case are outliers; most best residuals for the different
intervals were in the order of 10−9. For the topological insulator case, best
residuals were, for the most part, spread out in the range from 10−10 to 5 ·10−9.

block-GS butterfly(1)
Name

intra orth inter orth max res loss intra orth inter orth max res loss

graph-1M 3.331e−16 3.018e−16 3.623e−07 −0.272 2.637e−16 1.803e−07 3.623e−07 −0.272
topi-1M 2.152e−16 4.780e−15 1.978e−06 +0.074 1.657e−16 1.004e−06 1.978e−06 +0.074

Table 5.25: Large a posteriori orthogonalization examples.

were large, 5.68 · 10−3 and 1.61 · 10−1 for graph-1M and topi-1M, respectively, the
butterfly approach does not achieve sufficiently well developed orthogonality in a
single sweep. The initial inter-orthogonalities and the inter-orthogonalities after one
sweep of the butterfly scheme are shown in Figure 5.21. The matrix topi-1M also is
an extreme example of large intra-orthogonalities, caused by the locking mechanism;
the separation criterion from Section 5.3.9 did not report any duplicates. This is

10 20 30

graph-1M

10 20 30

graph-1M (one sweep)

10 20 30

topi-1M

10 20 30

10

20

30

topi-1M (one sweep)

10−15 10−14 10−13 10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Figure 5.21: Large matrix orthogonalities and estimations.

KD

254 5 Taming the BEAST – Orthogonalization

confirmed by the successful orthogonalization using block Gram-Schmidt without
much increase in residual.

5.3.17 Shifting scheme
The effect of using butterfly orthogonalization patterns and therefore unfinished
vector blocks as orthogonality providers has similar implications as (block) weak
Gram-Schmidt and we have to expect that applying the orthogonalization scheme
more than once is required. Since the different vector blocks evolve over several stages
and thus updated versions of the vectors are used, the result is an orthogonalization
scheme that would best be described as modified (block) weak Gram-Schmidt, but
without the implied mathematical equivalence (as was the case for classical Gram-
Schmidt and modified Gram-Schmidt, Section 1.3.2).
An alternative implementation with effects comparable to block weak Gram-

Schmidt is a shift pattern similar to Section 5.3.5 but with simultaneous shifts
of all intervals as depicted in Figure 5.22. If computation and communication over-

T
im

e

Z0

Z0 → Z1

Z1

Z1 → Z2

Z2

Z2 → Z3Z0

Z0 → Z2

Z1

Z0 → Z2Z0

Z0 → Z3

P0 P1 P2 P3

Figure 5.22: Weak shift orthogonalization scheme.

lap as shown here, updated vectors are never sent and the scheme is equivalent to
weak Gram-Schmidt where all orthogonalizations are based on the original vectors
and multiple iterations of this scheme are likely to be necessary. Similar to block
Gram-Schmidt, different ordering for the intervals are possible. Waiting for updated
vectors to pass them along immediately results in the block Gram-Schmidt shift
scheme.

5.3.18 Application-specific requirements
Depending on the problem at hand, different requirements and possibilities for the
way orthogonalization has to be or can be carried out may arise. This is mainly caused
by differences in spectral composition and the number and position of eigenpairs that
are to be computed. The two large matrices from Section 4.1.2 named graph-1M and

KE

5.3 Establishing inter-orthogonality 255

topi-1M, for example, have distinct spectra which are representative of the respective
problem type. In both cases, typically only few inner eigenpairs are sought and in
both cases the spectral density in the center of the spectrum is comparably low. If
the number of eigenpairs is low, interval-level parallelism is either not required or only
few intervals are needed. The latter is predominantly the case for very large matrices
with increased spectral density. In such cases, the inter-orthogonality between all
intervals is likely to be affected (see for example the target intervals for the test set,
Section 4.1.2 and Section 5.3.16, Figure 5.21; these intervals are not standard target
intervals for this problem type). Since the overall orthogonalization effort for few
intervals is lower, a full orthogonalization considering all possible interval pairs may
be required. This scenario is covered by the orthogonalization schemes from before
with little potential for optimization in terms of skipping certain steps based on
interval distance or similar. All strategies introduced are more efficient with lower
numbers of intervals.

The problem specification may differ from the one described above, though. Con-
sider a case where the matrix size is limited, but large portions of the spectrum
should be computed. In order to exploit large computation capacities and since
handling large numbers of columns becomes increasingly inefficient, the subdivision
into a large number of intervals seems more promising. In this case, the orthog-
onalization effort requires many steps to consider all interval pairs. With lower
spectral density in combination with the possibly large distance among intervals that
are not direct neighbors, however, it is more likely that orthogonalizations beyond
a certain distance can be skipped altogether. To evaluate this condition was the
goal of Section 4.5 and Section 4.6, but a reliable estimation of the orthogonality
(without explicitly computing it) which is based solely on the residual and distance
of Ritz values and which is not too pessimistic to deliver practical results is not
available so far. If, however, an estimation of a minimum distance below of which
orthogonalization is required can be made from the problem class alone, assuming
similar behavior for all problems of a certain class, new possibilities to perform a
more effective orthogonalization open up.

Consider a sequence of k intervals I1, . . . , Ik. If we can consider a certain distance
between two intervals Ii and Ij, i.e., the smallest distance between pairs of Ritz values
from different intervals, safe such that no orthogonalization is required beyond this
distance, many interactions between distant intervals can now be skipped. Similarly,
if the requirements of orthogonality are not that strict and a certain number of orders
of magnitude above machine precision is acceptable, interactions can be skipped in
the same way. In more strictly ordered schemes such as block Gram-Schmidt, the cor-
responding orthogonalizations can be omitted, but the overall scheme (Section 5.3.5)
has to be completed for all intervals. In particular a shift-based implementation
requires passing along received blocks of vectors. For a more flexible scheme, such
as the butterfly pattern (Section 5.3.10) which works in order of increasing distance,
the complete process can be stopped after a few steps, as soon as the safe distance is
surpassed for all interactions of a step. Since butterfly schemes are to be considered
more expensive due to multiple sweeps needed, they have the potential to be more

KF

256 5 Taming the BEAST – Orthogonalization

effective when only orthogonalizations among close neighbors have to be performed.

Experiment 5.7 — Distance-based restrictions of orthogonalization
We apply the butterfly orthogonalization pattern to all data sets from the test

set, using worst-case residual ordering and three sweeps to assure that the minimum
possible orthogonality can be reached. The maximum distance up to which an orthog-
onalization can take place is restricted to different orders of magnitude. Table 5.26
lists the results for distances 10−6 to 10−1 and the (even, locking) data set. The
remaining data sets are covered by Tables 5.27 to 5.29.

10−6 10−5 10−4 10−3 10−2 10−1
Name

orthog. h orthog. h orthog. h orthog. h orthog. h orthog. h

laser 2.74e−06 0 2.74e−06 0 1.86e−06 1 5.68e−10 2 3.08e−14 8 1.63e−15 29
SiH4 7.20e−05 1 7.20e−05 1 7.20e−05 1 1.47e−05 1 6.85e−15 6 1.24e−15 44
linverse 2.93e−03 1 2.43e−03 1 6.43e−04 1 1.11e−04 5 3.67e−10 17 1.45e−17 63
Pres_Poisson 7.23e−05 1 2.98e−05 1 1.17e−05 1 7.75e−09 3 3.05e−15 18 3.05e−16 63
Si5H12 3.25e−06 0 3.25e−06 1 3.25e−06 1 5.69e−10 1 3.97e−16 6 2.99e−16 55
brainpc2 7.82e−05 1 2.92e−05 1 1.11e−05 1 3.13e−10 4 2.39e−15 22 1.94e−16 63
rgg_n_2_15_s0 5.53e−05 1 5.53e−05 1 3.76e−09 1 9.88e−10 2 1.45e−15 13 7.04e−17 63
SiO 9.71e−06 1 9.71e−06 1 1.92e−07 1 1.92e−07 1 3.93e−14 6 2.73e−16 54
Andrews 2.29e−05 1 2.29e−05 1 1.13e−09 1 1.13e−09 1 1.84e−16 8 1.45e−17 63
Si34H36 1.14e−05 1 1.14e−05 1 3.62e−06 1 2.66e−10 1 2.01e−16 7 1.76e−16 58
fe_rotor 6.67e−05 1 3.63e−05 1 1.58e−08 1 3.90e−12 2 3.15e−16 14 1.99e−17 63
GraI-119k 2.89e−05 0 1.43e−05 1 1.06e−08 1 1.06e−08 2 6.58e−15 8 9.02e−16 51

Table 5.26: Inter-orthogonalities for different maximum orthogonalization distances for the
(even, locking) data set and restricted orthogonalization distances. Also shown
is the number of hops (h) required to reach the distance limit.

With a fixed distance, the maximum number of hops is unknown until after a
sweep has finished. It might happen that a number of hops would cover larger
distances, but orthogonalization would be rejected due to the distance limit, see,
e.g., Table 5.26, line five. Here, one hop covers distances 10−5 to 10−3 (columns
two to four), but in columns two and three, orthogonalizations have been rejected
such that the potentially possible orthogonality (column four) for a single hop is not
reached. Since the gain can be quite high (about four orders of magnitude in line
five), it is advisable to compute interval distances in a preparation step to determine
the required number of hops in order to obey the distance limit and consequentially
removing the distance limit from the base orthogonalization phase in favor of a
hop limit. The number of hops does not differ between data sets with and without
locking, but achieved orthogonalities are better, confirming previous results. For
uneven distribution of eigenpairs per interval, the number of hops to reach certain
levels of orthogonality is reduced due to larger gaps between intervals.

Not shown in the table, but worth noting is the invariance of residual loss, which
remains roughly the same for different distances and number of hops, as long as at

KG

5.3 Establishing inter-orthogonality 257

10−6 10−5 10−4 10−3 10−2 10−1
Name

orthog. h orthog. h orthog. h orthog. h orthog. h orthog. h

laser 2.30e−06 0 2.30e−06 0 8.63e−07 1 2.28e−11 2 1.51e−15 8 1.52e−15 29
SiH4 3.07e−05 1 3.07e−05 1 3.07e−05 1 1.13e−05 1 3.18e−15 6 1.24e−15 44
linverse 9.22e−04 1 2.03e−04 1 2.16e−06 1 2.17e−09 5 3.29e−14 17 2.08e−17 63
Pres_Poisson 3.71e−05 1 3.45e−05 1 3.44e−06 1 1.56e−10 3 2.05e−15 18 3.58e−16 63
Si5H12 1.41e−06 0 1.41e−06 1 9.94e−07 1 2.77e−10 1 4.12e−16 6 2.76e−16 55
brainpc2 3.60e−05 1 7.16e−06 1 3.64e−06 1 2.74e−11 4 3.18e−15 22 1.98e−16 63
rgg_n_2_15_s0 2.38e−05 1 2.38e−05 1 7.84e−11 1 1.81e−11 2 7.29e−16 13 6.94e−17 63
SiO 4.02e−06 1 4.02e−06 1 8.05e−10 1 8.05e−10 1 3.53e−16 6 3.17e−16 54
Andrews 2.05e−05 1 2.05e−05 1 6.51e−11 1 6.51e−11 1 1.95e−16 8 1.39e−17 63
Si34H36 6.60e−06 1 5.67e−06 1 2.75e−07 1 1.42e−11 1 2.13e−16 7 1.54e−16 58
fe_rotor 3.86e−05 1 3.09e−05 1 1.16e−10 1 3.29e−14 2 3.30e−16 14 2.43e−17 63
GraI-119k 2.89e−05 0 1.43e−05 1 3.99e−09 1 2.09e−10 2 7.57e−15 8 9.13e−16 51

Table 5.27: Inter-orthogonalities for different maximum orthogonalization distances for the
(even, no locking) data set and restricted orthogonalization distances. Also
shown is the number of hops (h) required to reach the distance limit.

10−6 10−5 10−4 10−3 10−2 10−1
Name

orthog. h orthog. h orthog. h orthog. h orthog. h orthog. h

laser 6.83e−07 0 6.83e−07 0 6.83e−07 1 8.74e−08 1 6.01e−10 3 7.08e−16 28
SiH4 1.47e−06 0 1.47e−06 0 1.47e−06 1 3.86e−07 1 1.34e−14 5 1.04e−15 43
linverse 6.91e−05 0 1.10e−05 1 2.56e−06 1 2.36e−06 1 8.35e−11 10 1.26e−17 63
Pres_Poisson 3.61e−05 0 3.61e−05 1 1.40e−05 1 9.42e−09 1 3.67e−15 10 2.94e−16 63
Si5H12 2.96e−06 0 2.96e−06 0 2.33e−06 1 5.65e−11 1 3.53e−16 6 2.95e−16 55
brainpc2 2.89e−05 0 2.89e−05 1 1.38e−05 1 3.78e−10 2 3.35e−15 13 1.95e−16 63
rgg_n_2_15_s0 5.18e−05 0 5.18e−05 1 4.86e−09 1 5.65e−12 2 6.21e−16 12 9.71e−17 63
SiO 9.38e−06 0 9.38e−06 1 5.78e−06 1 1.66e−08 1 3.19e−13 6 2.63e−16 53
Andrews 2.41e−05 0 2.41e−05 1 1.19e−09 1 1.19e−09 1 1.98e−16 8 1.34e−17 63
Si34H36 1.35e−05 0 1.35e−05 1 6.25e−06 1 5.01e−10 1 1.91e−16 6 1.43e−16 58
fe_rotor 4.83e−05 1 4.83e−05 1 1.03e−08 1 3.02e−12 2 2.90e−16 12 1.69e−17 63
GraI-119k 2.36e−05 0 2.36e−05 1 1.48e−09 1 1.48e−09 1 6.18e−15 5 7.43e−16 47

Table 5.28: Inter-orthogonalities for different maximum orthogonalization distances for
the (uneven, locking) data set and restricted orthogonalization distances. Also
shown is the number of hops (h) required to reach the distance limit.

least nearest neighbors were orthogonalized. This is a confirmation for what has been
stated before: most residual disturbances occur due to nearest neighbor interactions.

Experiment 5.8 — Distance and orthogonality
To gain a more fine grained understanding on how certain distances relate to the

computed orthogonalities, we plot orthogonalities over distances in Figure 5.24 for
selected matrices from the test set. For comparison, the orthogonality matrices are
displayed in Figure 5.23.

KH

258 5 Taming the BEAST – Orthogonalization

10−6 10−5 10−4 10−3 10−2 10−1
Name

orthog. h orthog. h orthog. h orthog. h orthog. h orthog. h

laser 7.28e−07 0 7.28e−07 0 7.28e−07 1 8.71e−08 1 1.56e−10 3 7.55e−16 28
SiH4 1.90e−05 0 1.90e−05 0 1.90e−05 1 2.96e−06 1 4.70e−14 5 1.10e−15 43
linverse 6.59e−05 1 1.83e−06 1 1.69e−06 1 1.46e−06 1 6.55e−14 10 6.10e−18 63
Pres_Poisson 3.33e−05 0 3.33e−05 1 1.39e−05 1 1.30e−09 1 2.12e−15 10 2.92e−16 63
Si5H12 2.05e−06 0 2.05e−06 0 1.12e−06 1 5.82e−12 1 4.57e−16 6 3.15e−16 55
brainpc2 1.35e−05 0 1.35e−05 1 3.62e−06 1 4.80e−11 2 2.68e−15 13 3.06e−16 63
rgg_n_2_15_s0 4.70e−05 0 4.70e−05 1 4.45e−10 1 4.77e−14 2 6.46e−16 12 8.67e−17 63
SiO 3.18e−06 0 3.18e−06 1 2.02e−06 1 5.30e−11 1 3.31e−16 6 3.06e−16 53
Andrews 2.16e−05 0 2.16e−05 1 1.47e−10 1 1.47e−10 1 1.91e−16 8 1.37e−17 63
Si34H36 8.81e−06 0 8.81e−06 1 6.74e−06 1 2.14e−11 1 1.90e−16 6 1.44e−16 58
fe_rotor 2.48e−05 1 2.25e−05 1 6.44e−10 1 1.04e−14 2 2.92e−16 12 2.30e−17 63
GraI-119k 5.46e−06 0 3.85e−07 1 8.25e−14 1 8.25e−14 1 6.16e−15 5 7.22e−16 47

Table 5.29: Inter-orthogonalities for different maximum orthogonalization distances for the
(uneven, no locking) data set and restricted orthogonalization distances. Also
shown is the number of hops (h) required to reach the distance limit.

20 40 60

20

40

60

Si5H12 (e,l)

20 40 60

Andrews (e,l)

20 40 60

Si34H36 (e,l)

20 40 60

fe_rotor (u,l)

20 40 60

20

40

60

SiH4 (u,l)

20 40 60

brainpc2 (u,l)

20 40 60

SiO (u,l)

20 40 60

GraI-119k (e,l)

10−15 10−14 10−13 10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Figure 5.23: Orthogonalities for some matrices from the test set. Matrices from the (even,
locking) set are marked as (e,l); matrices from the (uneven, locking) set are
marked (u,l).

KI

5.3 Establishing inter-orthogonality 259

The top row of Figure 5.23 shows cases where distance based restrictions can
lead to reasonable levels of overall inter-orthogonality. If the orthogonality between
intervals that are a larger number of hops apart fades towards machine precision,
and if generally no artifacts in terms of increased orthogonality appear for such
interval pairs, assuming that the information of this distance limit is somehow known,
reasonable orthogonality could be achieved, c.f. Tables 5.26 to 5.29. The visualization
in Figure 5.24 gives an idea of how different distance limits would affect overall
orthogonality. Drawing a vertical line at any distance in any of the plots, whatever

10−4 10−3 10−2 10−1

Si5H12 (e,l)

10−4 10−3 10−2 10−1

Andrews (e,l)

10−4 10−3 10−2 10−1

Si34H36 (e,l)

10−4 10−3 10−2 10−1
10−16

10−13

10−10

10−7

10−4

fe_rotor (u,l)

10−4 10−3 10−2 10−1

SiH4 (u,l)

10−4 10−3 10−2 10−1

brainpc2 (u,l)

10−4 10−3 10−2 10−1

SiO (u,l)

10−4 10−3 10−2 10−1
10−16

10−13

10−10

10−7

10−4

GraI-119k (e,l)

Distance

O
rt

ho
go

na
lit

y

Figure 5.24: Orthogonalities plotted over distances for the matrices from Figure 5.23.

remains as maximum orthogonality to the right of this line gives the final maximum
inter-orthogonality for this particular case.

For many cases (there are exceptions), orthogonality seems to not improve signif-
icantly beyond a distance of 10−2. While the orthogonality is not in the order of
machine precision, it might be sufficient in practice. Orthogonalization schemes that
rely on distance to sort intervals into classes, such that intervals from the same class
are far enough apart to compute them without orthogonalization and subsequently
orthogonalize against those known final vectors when computing the next class not
only becomes increasingly expensive for larger number of classes but also requires a
reliable criterion for a safe distance, which, as we have seen, may only ensure mod-
erate levels of orthogonality. We therefore do not consider it here. In general, the
difficulty of acquiring the essential information of which distance is at least required
for orthogonalization to become unnecessary remains.

5.3.19 Performance
The analysis of the performance and scaling behavior of the orthogonalization pat-
terns and interval-parallelization in general depends on many factors and shall only

KJ

260 5 Taming the BEAST – Orthogonalization

be touched upon here briefly. If, with the increase of the number of intervals, also
the number of computed eigenpairs increases while matrix size remains the same,
interval parallelism should scale perfectly. Despite the system size remaining the
same, we would classify this scenario as weak scaling, in comparison to increasing
the number of intervals while the number of computed eigenpairs remains the same,
which we could consider strong scaling. In the latter case, performance largely de-
pends on whether the applied projector scales well for reduced numbers of right-hand
sides, ignoring the overhead introduced by the Rayleigh-Ritz procedure. Since this
is no quantity we care to explore here, the analysis is restricted to the a posteriori
orthogonalization phase, which we always should consider as requiring a significant
portion of the total computation time.

Experiment 5.9 — Orthogonalization performance
Using the graph-1M matrix, we test the following two scenarios on an increasing

number of processes p = 4, 8, 16, 32, 64.

• A constant total number of vectors mt = 2 048 is computed in k = p/2 intervals,
changing the number of vectors per process with the number of used processes
m = 1 024, 512, 256, 128, 64 for each test.
• An increasing total number of vectors mt = 32p is computed in k = p/2
intervals, keeping the number of vectors per interval m = 64 constant.

Both scenarios were tested with block Gram-Schmidt and one full sweep of the butterfly
scheme. For reestablishment of intra-orthogonality, two passes of weak Gram-Schmidt
were used. For both block Gram-Schmidt and the butterfly pattern, this happens only
once per interval at the end of the orthogonalization phase. Figure 5.25 shows the
results.

4 8 16 32 64
0

200

400

Processes

Se
co

nd
s

Block GS
constant mt

4 8 16 32 64
0

10

20

Processes

Block GS
increasing mt

4 8 16 32 64
0

200

400

600

Processes

Butterfly
constant mt

4 8 16 32 64
0

10

20

Processes

Butterfly
increasing mt

Figure 5.25: Scaling of orthogonalization schemes. The tests were performed on the Emmy
HPC cluster at Friedrich-Alexander-Universität Erlangen-Nürnberg.

In all scenarios, the number of processes holding one interval or one vector block
is constant. This way, the results do not contain the scaling behavior of the inner
products in terms of process number, but they do contain the scaling behavior
in terms of block size, i.e., the number of columns for each block, which changes

KK

5.4 Upshot 261

with the number of intervals in the first scenario. The plots one and three of
Figure 5.25 reflect the decreasing number of vectors per inner product and the
decreasing communication volume. In contrast, plots two and four show the behavior
with constant communication volume and increasing number of communication steps.
The number of inner products increases likewise, but the number of vectors for each
inner product remains the same. It is difficult to say if communication or inner
products are the dominant factor in these tests, and in practice both factors are
always intertwined.

For comparison, the scaling behavior of the inner products with respect to process
number is shown in Figure 5.26, where a series of tests with two intervals and constant
number of 512 vectors, resulting in five inner products, was conducted.

4 8 16 32 64

100

200

Processes

Se
co

nd
s

Inner products

Figure 5.26: Scaling of inner products. The tests were performed on the Emmy HPC cluster
at Friedrich-Alexander-Universität Erlangen-Nürnberg.

Overall, the scaling of block Gram-Schmidt and the butterfly pattern is comparable,
in particular for lower numbers of vectors or larger number of processes; the total
number of inner products and messages sent is identical for both orthogonalization
patterns.

5.4 Upshot
With all the different variations of a posteriori orthogonalization examined in this
chapter, the final verdict remains simple and somewhat sobering. A purely a pos-
teriori orthogonalization approach works reasonably well and if better residuals are
produced by the eigensolver, even if only for some vectors of each interval, the or-
thogonalization procedure is likely to even improve the overall result in terms of
residual while still producing a fully orthogonal set of eigenvectors. Intermediate
residual updates and reestablishment of intra-orthogonality can be omitted without
significant impact on the result but with considerable improvement of performance.
Indeed, a low residual seems to be significantly more important to this end. More
sophisticated strategies of orthogonalization order have little to no benefit compared
to a simple worst-case residual based ordering. Unordered orthogonalization (the but-
terfly scheme) has similar implications on the orthogonality as weak Gram-Schmidt
and is likely to require more than one sweep, making it more expensive than block

KL

262 Taming the BEAST – Orthogonalization

Gram-Schmidt if communication does not outweigh computation. If orthogonaliza-
tion distance can be limited, however, the butterfly scheme might be more efficient
if few stages (or hops) are required. The exclusion of certain interactions between
intervals is not easily decided without actually computing the orthogonalities, at
which point the orthogonalization can be performed anyway since the expensive inner
product has already been computed. Considering the cost effectiveness of a one-shot
orthogonalization, a prophylactic safety net of prescribing a residual of about half
an order of magnitude lower than otherwise specified for the eigensolver to reach,
such that it can be sacrificed for orthogonality, is not a bad deal.

KM

Conclusion and outlook

Conclusion
In this thesis, we have introduced a collection of the most typically used filters
for spectral projection. Filters from electronic filter design have, to the best of
the author’s knowledge, not been used in this field, at least not prominently. We
apologize for any missing references. The more complex types of these filters are
more versatile and allow for more fine-tuning of parameters. More importantly, some
of the common filters are special cases of filters from electronic filter design, namely
the Cauchy-midpoint filter which is the Butterworth filter while the Zolotarev filter
is a special case of elliptic filter (despite the different derivation).

We have confirmed the convergence theorem for subspace iteration algorithms, in
particular using the filters introduced previously, and related it to many effects emerg-
ing in practical runs of such algorithms. We further have applied the convergence
theorem to the estimated filter values obtained from the second Rayleigh quotient;
this is not new per se, but the choice of subspace basis in this case allows for a more
direct understanding of why the filter values evolve as observed. In particular the
at first glance surprising correctness of filter values for the so-called Ritz phantoms
could be explained.
Based on these considerations, we further have described many density-related

effects on convergence: the emergence of Ritz phantoms and effects of densely clus-
tered eigenpairs and filter values. We also shed some (faint) light on the difficulty
of linear system arising from rational approximations of the filtering functions for
iterative linear system solvers.
Based on the evolution of the residual and its corner cases, we have postulated

the necessity of a stagnation-based termination criterion with details on how to
handle the several possible conditions under which other termination criteria might
fail. We have also highlighted the importance of a correct eigencount estimation to
complement the stagnation-based criterion.
In order to obtain estimations for the achievable inter-orthogonality in a multi-

interval context, we first analyzed residual progression and achievable residual under
different conditions since the residual of the result is sure to have an impact on
inter-orthogonality. We have tested the precision of previously used bounds and
derived possible bounds for the inter-orthogonality from them. The tested bounds
for inter-orthogonality are pessimistic but at least some of them, based on residual
and spectral gap, seem not to break even in difficult situations where the residual
that has been reached is still very large.

The ultimate goal of the identification of residual-based bounds for inter-orthogo-

KN

264 Conclusion and outlook

nality is the exclusion of single orthogonalization operations in a full orthogonaliza-
tion scheme where otherwise all possible interval combinations have to be considered.
To this end, analyzing subspace overlap, i.e., shared directions among the sub-spaces
of adjacent intervals, seemed promising but ultimately only works if eigenpairs are
allowed to reach saturation (or possibly a sufficiently low residual). The condition
cannot be used reliably in practice. An analysis of the evolution of inter-orthogonality
under different conditions revealed a clear connection to the behavior of the residual,
but formulating a more precise estimation of the orthogonality that can be expected
at the end of the eigensolver phase is not easily possible.
Expecting an expensive full-fledged orthogonalization phase, we argue for the

futility of intermediate orthogonalizations using unfinished vectors and in favor of
a purely a posteriori orthogonalization phase where we now aim at minimizing a
possibly negative effect on the previously achieved residual. To this end, we have
tested many of the better known conventional orthogonalization methods, with
respect to their numerical stability and their influence on residual of the affected
eigenpairs. We further explored inherently iterative orthogonalization approaches
via what we have called weak Gram-Schmidt, and which also may serve as cheap
post-processing step for other algorithms to improve results in case of ill-conditioned
input matrices.
We then have extended these considerations to blocks of vectors, exploring the

effectiveness of different orthogonalization schemes using static and dynamic order-
ings, block Gram-Schmidt and the butterfly pattern as well as possible optimizations,
such as waiving reestablishment of intra-orthogonality in-between orthogonalization
stages and residual updates using intermediate vectors, always keeping track of the
loss in residual. As a result, the inevitability of overlap between adjacent intervals
in order to eliminate the possibility to miss eigenpairs has become apparent and a
reliable method to remove duplicates under these circumstances has been presented.
The success of the method is limited by the achieved residual and the ability to
separate eigenpairs based on it.

A short portion of this work was devoted to give an overview over the accompanying
software framework named BEAST. Over time, BEAST has evolved into a feature-
rich extensive iterative spectral projection eigensolver software framework, capable
of solving very large scale sparse Hermitian generalized eigenproblems on state-
of-the-art hybrid parallel high performance supercomputers making use of many
improvements in terms of performance, reliability and robustness. Although it has
not found much coverage here, many of the aspects described herein, and more, were
integral to its implementation.

Finally, we want to mention the identification of the assumed filter representation
for the Sakurai-Sugiura method (SSM). Even if the filter form could just be derived
experimentally, we expect it to shed more light on the convergence behavior of the
SSM in an iterative context.

KO

Outlook 265

Outlook
All the filters presented here can be considered somewhat conservative; they ap-
proximate the window function. More unconventional filters or employing rational
function fitting may allow to move the poles away from the spectrum in order to make
the use of iterative linear system solver more feasible. The identification of a suitable
iterative linear solver remains an important task, though advancements in these
directions have been made elsewhere. The field of electronic filter design has only
been scratched here and may offer further filters, methodology, and improvements.

For the estimated filter values obtained from the second Rayleigh quotient a way
to estimate the residual of the secondary implicit Rayleigh-Ritz process is desirable
to judge the accuracy of filter values and eigencount. So far, an additional full
application of the approximate projector is required. It might be worthwhile trying
to append at least some vectors of the respective subspace basis to the conventional
right-hand sides to this end. Better understanding of the convergence of the Sakurai-
Sugiura method, based on the new assumed filter representation, may allow for
the identification of thresholds for eigencount estimations akin to what has been
established for the filters discussed here.

Many aspects introduced here leave potential for further optimization. The order-
ing of intervals, for example, plays a role in the impact of orthogonalization on the
residual. Certainly, an ordering that improves the residual in all cases is impossible;
further improvements, however, cannot be ruled out. The termination criterion
introduced here also is certainly not the final word on termination criteria.

An important aspect of multi-interval computations is the assessment of workload
distribution. The KPM serves as possible source for this information, but is limited
to standard eigenproblems or requires many linear solves involving the matrix B.
Other approaches require linear system solves of the same kind as emerges from the
core algorithm. A system that can globally self-adjust after one iteration, based on
the obtained preliminary information, may be feasible.
Finally, the BEAST software will be improved further, using some of the insight

gained here. Technical improvements will be made, allowing multiple prides to run
the algorithms in order to increase potential for parallelism and use the available
memory more efficiently. The framework already offers functionality that may benefit
other algorithms that compute eigenpairs and not necessarily do so in similar fashion.
The subdivision into and distribution of sub-intervals, for example, is essentially
separated from the algorithmic core and may be used by algorithms which support
multi-subset computation in principle. Methods that compute eigenpairs close to
a specific shift, like Jacobi-Davidson or other shift-invert strategies, are primary
candidates and may thus also profit from methods for duplicate removal. This brings
us to another core functionality of BEAST that may be employed elsewhere: the
establishment of overall orthogonality for independently computed sets of eigenpairs
in a post processing stage. Since this is a pure a posteriori method, further interaction
between eigensolver and orthogonalization stage is not necessary. Relaying certain
information from solver to orthogonalization stage can, of course, improve results.

KP

Appendix A
Algorithms for elliptic functions

A.1 Computation of Jacobi’s elliptic functions
Algorithms for computing Jacobi’s elliptic functions are based on transformations
of the defining incomplete elliptic integrals to smaller or larger moduli, which is to
allow the application of approximations that are only valid under certain conditions.
The following approximations exist and are easily computed [AS74]. Let κ ≈ 0, then

sn(ν, κ) ≈ sin(ν), cn(ν, κ) ≈ cos(ν), and dn(ν, κ) ≈ 1.

Similarly, let κ ≈ 1. Then

sn(ν, κ) ≈ tanh(ν), cn(ν, κ) ≈ sech(ν), and dn(ν, κ) ≈ sech(ν).

Transforming the problem such that these approximations become applicable allows
for the computation of Jacobi’s elliptic functions. A transformation for increasing
or decreasing the modulus κ is introduced as Landen transformations in [AS74].
A distinct alternative transformation is given in [Olv+10] and we will adopt the
distinction here. Recall the elliptic integral of the first kind from Equation (2.6),
this time in angular form,

F (κ \ φ) =
∫ φ

0

1√
1− κ2 sin2(θ)

dθ.

It is
F (κ \ φ) = 2

1 + κ
F

(
2
√
κ

1 + κ
\ ψ

)
if sin(2ψ − φ) = κ sinφ.

This is the ascending Landen transformation. Similarly, the descending Landen
transformation is given as

F (κ \ φ) = 1
1 + κ′

F

(
1− κ′
1 + κ′

\ ψ
)

if tan(ψ − φ) = κ′ tanφ.

KR

268 A Algorithms for elliptic functions

The following very similar transformations are attributed to Gauss and hence are
called ascending and descending Gauss transformation, respectively. It is

F (κ \ φ) = 1
1 + κ

F

(
2
√
κ

1 + κ
\ ψ

)
if sinψ = (1 + κ) sinφ

1 + κ sin2 φ

and
F (κ \ φ) = 2

1 + κ′
F

(
1− κ′
1 + κ′

\ ψ
)

if sinψ = (1 + κ′) sinφ
1 +

√
1− κ2 sin2 φ

.

It is easy to confirm that the new moduli are indeed inverses of each other,

2
1 + κ′

= 1 + 1− κ′
1 + κ′

and thus
2
√

1−κ′
1+κ′

1 + 1−κ′
1+κ′

= (1 + κ′)
√

1− κ′√
1 + κ′

=
√

(1 + κ′)(1− κ′) = κ.

All of the above offers in total four ways for the computation of sn(ν, κ) = sinφ. We
decide for methods reducing the modulus since the approximations involves simpler
trigonometric functions and because they are more common in the literature, see,
e.g., [Ken05; Wac00]. Algorithms based on Landen transformations also require the
manual differentiation between the principal branch of inverse trigonometric functions
and their actual value [Wac00]. We will therefore employ the Gauss transformations
instead, similar to [Orf05].
Let the modulus κ be decreased in a sequence of moduli κ = κ0, . . . , κη ≈ 0 such

that after η steps F (κη \ φ) ≈ F (0 \ φ) = φ. This involves repeated descending
Gauss transformation of ν, say ν = ν0, . . . , νη ≈ φ as

νj+1 = 1
1 + κj+1

νj or νη = ν0

η∏
j=1

1
1 + κj

where κj+1 =
1− κ′j
1 + κ′j

. (A.1)

It is then φη ≈ νη for modulus κη. A sequence of ascending Gauss transformations
for φ = φ0, . . . , φη ≈ νη gives the desired result sn(ν, κ) = sinφ via

sinφj−1 = (1 + κj) sinφj
1 + κj sin2 φj

.

It should be noted that transformation steps involving κη can of course be skipped
since νη ≈ νη−1 and sinφη ≈ sinφη−1. The functions cn(ν, κ) and dn(ν, κ) are readily
available from the computed sn(ν, κ) such that no separate algorithm is required.

A.1.1 The Algebraic-Geometric Mean
While the algorithm above is complete, the strong relation between the transforma-
tions of elliptic integrals outlined before and the sequence of algebraic and geometric

KS

A.1 Computation of Jacobi’s elliptic functions 269

means of two numbers is worth mentioning, seeing that most implementations rely
on this relation [Ken05; Wac00]. Given two numbers a0 and b0, the sequences

aj = 1
2(aj−1 + bj−1) and bj =

√
aj−1bj−1

converge rapidly [AS74]. The limit, denoted AGM(a0, b0), is known as the algebraic-
geometric mean of a0 and b0. Its relation to elliptic transformations was discovered
by Gauss. It is easy to see that1

AGM(a, b) = AGM
(
a+ b

2 ,
√
ab

)
= a+ b

2 AGM
(

1, 2
√
ab

a+ b

)
.

We see that bj/aj always yields the next larger modulus in accordance with the
ascending transformations if the scheme was started with a0 = 1 and b0 = κ,

AGM(1, κ) = 1 + κ

2 AGM
(

1, 2
√
κ

1 + κ

)
.

If κ increases, its complementary modulus κ′ decreases accordingly,

κ′ =

√√√√1−
(

2
√
κ

1 + κ

)2

=

√√√√(1 + κ)2 − 4κ
(1 + κ)2 =

√√√√1− 2k + κ2

(1 + κ)2 = 1− κ
1 + κ

.

In order to obtain decreasing moduli, we therefore start the scheme with a0 = 1
and b0 = κ′ such that κ decreases in the process. Let κ′0, . . . , κ′η be the sequence
of increasing complementary moduli and κ0, . . . , κη the corresponding sequence of
decreasing moduli. Then, with κ′n ≈ 1,

aη = AGM(1, κ′0) = 1 + κ′0
2 AGM(1, κ′1) =

η−1∏
j=0

1 + κ′j
2 AGM

(
1, κ′η

)
≈

η−1∏
j=0

1 + κ′j
2 .

We recognize this as the transformation factor in Equation (A.1) since

1 + κ′j
2 = 1

1 + 1−κ′j
1+κ′j

= 1
1 + κj+1

.

We may obtain the next modulus κ in every step as (aj−1 − bj−1)/2aj since

aj−1 − bj−1

2aj
= aj−1 − bj−1

aj−1 + bj−1
=

1− κ′j−1

1 + κ′j−1
= κj.

The procedure can be extended to apply to complete elliptic integrals. We know
that

F
(
κη \

π

2

)
= K(κη) ≈

π

2
1) Generally AGM(ca, cb) = cAGM(a, b) since 1

2 (caj−1 + cbj−1) = caj and
√
c2aj−1bj−1 = cbj .

KT

270 A Algorithms for elliptic functions

and the application of ascending Gauss transformations yields

K(κ0) ≈ π

2

η∏
i=1

(1 + κj) = π

2aη
.

Therefore the complete elliptic integral of modulus κ can conveniently be computed
as a byproduct of the evaluation of sn(ν, κ). Due to this circumstance and having the
arguments to elliptic functions often formulated in terms of multiples of the period
K, e.g., [MLB; Orf05], an alternative definition of sn(ν, κ) that implies multiplication
of the argument with K, ω = sn(νK, κ) = snK(ν, κ), is convenient and often allows
to perform computations without the explicit knowledge of K. The modification can
be introduced into the computation as multiplication of νη with π/2. The procedure
is terminated in step η if κη ≈ 0 respectively κ′η ≈ 1 or aη ≈ bη. In a numerical sense
this refers to introducing a limit for the deviation, conventionally chosen as machine
epsilon. We summarize the procedure derived so far in Algorithm A.1. The result is
similar to the one found in [MLB], which is based on [Orf05] but does not use the
algebraic-geometric mean. Proper implementation of this algorithm requires only

Input: Argument ν, modulus κ, tolerance t
Output: ω ≈ snK(ν, κ) = sn(νK, κ), K ≈ K(κ)
1: a0 ← 1
2: b0 ←

√
1− κ2 . κ′

3: κ0 ← κ

4: for j = 1, . . . do
5: aj ← 1

2(aj−1 + bj−1)
6: bj ←

√
aj−1bj−1

7: κj ←
aj−1 − bj−1

2aj
8: if |aj − bj| ≤ t then break

9: K ← π

2aj
10: ωj ← sin

(
π
2ajν

)
. implicit K

11: for ` = j, . . . , 1 do

12: ω`−1 ←
(1 + κ`)ω`
1 + κ`ω2

`

Algorithm A.1: Jacobi elliptic function snK.

the storage of the sequence κ0, . . . , κj. The expression of κj in terms of aj−1 and bj−1
allows for a recursive implementation that does not require to store the sequence of
moduli [Ken05]. With

1 + κη−j = 1 + aj−1 − bj−1

aj−1 + bj−1
= 2aj−1

aj−1 + bj−1

KU

A.2 Computation of inverse elliptic functions 271

the ascending Gauss transformation for the angle becomes

sinφj = 2aj−1 sinφj−1

aj−1 + bj−1 + (aj−1 − bj−1) sin2 φj−1
.

A.2 Computation of inverse elliptic functions
An algorithm for the computation of sn−1(ω, κ) is outlined in [AS74] and refined
as well as described in more detail in [Wac00]. By definition, elliptic functions are
inverses of incomplete elliptic integrals. The computation of inverse elliptic functions
therefore merely amounts to the computation of incomplete elliptic integrals, which
again relies on the transformations described in Section A.1.
Given is now ω = sn(ν, κ) = sinφ and ν is sought. Let again the sequence of de-

scending moduli be κ = κ0, . . . , κη ≈ 0 and corresponding ascending complementary
moduli κ′ = κ′0, . . . , κ

′
η ≈ 1. We obtain a sequence ω = ω0, . . . , ωη via descend-

ing Gauss transformations, which we may also express in terms of only moduli or
complementary moduli,

ωj+1 =

(
1 + κ′j

)
ωj

1 +
√

1− κ2
jω

2
j

= 2
1 + κj+1

ωj

1 +
√

1− κ2
jω

2
j

=

(
1 + κ′j

)
ωj

1 +
√

1−
(
1− κ′ 2j

)
ω2
j

.

Then ωη = sinφη = sin νη or νη = sin−1 ωη. Using ascending Gauss transformations
gives the sequence νη, . . . , ν0 = ν,

νj−1 = (1 + κj)νj = νη

η∏
j=1

(1 + κj) = 1
aη
νη.

The implicit multiplication of the argument ν withK such that ν = 1/K sn−1(ω, κ) =
snK

−1(ω, κ) may again be included by letting νη = 2/π sin−1 ωη with the same
reasoning as before. As was the case for Algorithm A.1, the algorithm for snK

−1 can
be based on the algebraic-geometric mean. It is summarized in Algorithm A.2. The
inverse cdK

−1(ω, κ) is then found as 1− snK
−1(ω, κ). Note that the implicit division

by K cancels the multiplication of sin−1 ωη with aη. Otherwise, the last line of the
algorithm reads ν ← aη sin−1 ωη. The implementation of Algorithm A.2 does not
require storing any of the sequences involved.

This procedure also clarifies the connection between the elliptic rational function
and Chebyshev polynomials. For κ → 0 it is sn(ν, κ) ≈ sin ν and consequentially
cd(ν, κ) = sn(ν +K,κ) ≈ sin(ν +K). At the same time K ≈ π/2, such that
cd(ν, κ) ≈ sin(ν + π/2) = cos ν. Similarly, cd−1(ω, κ) = K − sn−1(ω, κ) ≈ π/2 −
sin−1 ω = cos−1 ω. Therefore, if κ → 0 and κ1 → 0, the elliptic rational function
becomes a Chebyshev polynomial. The resulting algorithm is again similar to the
one found in [MLB; Orf05], but uses the algebraic-geometric mean and is based on
the computation of sn instead of cd.

KV

272 A Algorithms for elliptic functions

Input: Argument ω, modulus κ, tolerance t
Output: ν ≈ 1

K
sn−1(ω, κ) = snK

−1(ω, κ), K ≈ K(κ)
1: a0 ← 1
2: b0 ←

√
1− κ2 . κ′

3: κ′0 ← b0

4: ω0 ← ω

5: for j = 1, . . . do
6: aj ← 1

2(aj−1 + bj−1)
7: bj ←

√
aj−1bj−1

8: ωj ←
(
1 + κ′j−1

)
ωj−1

1 +
√

1−
(
1− κ′ 2j−1

)
ω2
j−1

9: κ′j ←
bj
aj

10: if
∣∣∣1− κ′j∣∣∣ ≤ t then break

11: K ← π

2aj
12: ν ← 2

π
sin−1 ωj . implicit K

Algorithm A.2: Inverse elliptic function snK
−1.

KW

Index

orthogonality provider, 213
orthogonality recipient, 213

alpha, 100
Arnoldi method, 32

B-orthogonal, 4
B-singular value, 196
back end library, 96
band, 39
BEAST, 95
Butterworth filter, 71

canonical angle, 175
Cauchy filter, 50
Cauer filter, 71
characteristic function, 69
characteristic polynomial, 3
Chebyshev filter, type I, 71
Chebyshev filter, type II, 71
Chebyshev polynomial, 42
Cholesky decomposition, 195
cluster, 115
coalition, 98
companion matrix, 86
contour integration, 50
convergence, 121
convergence reference value, 122
CRAFT, 110
critical entry, 236
critical overlap, 178
cutoff frequency, 70

dampening, 26
decay, 115
defective, 10
definite pair, 6
degeneracy, 3
diagonalizable, 9

disjoint, 178
dominance, 7, 19, 116
drop rate, 115
duplicate, 234

e-notation, 119
eigenbasis, 9
eigencount, 116
eigendecomposition, 8
eigenpair, 3
eigenproblem, 3
eigenproblem, generalized, 3
eigenproblem, standard, 3
eigenspace, 3
eigenvalue, 3
eigenvector, 3
Elliptic filter, 71
elliptic integral, complete, 58
elliptic integral, incomplete, 58
elliptic rational function, 78
ELPA, 96
ELPA-AEO, 96
ESSEX, 96

faction, 98
FEAST, 95
filtering function, 26
floating point, 160
following, 101

gain, 38
gap, 173, 182
Gauss-Legendre quadrature, 51
Gaussian quadrature, 51
GHOST, 96
Gibbs phenomenon, 45
Gram factor, 201
Gram-Schmidt, 16

273

274 Index

Gram-Schmidt, modified, 17
Gram-Schmidt, rearranged, 17

half-point, 72
Hankel matrix, 86
harmonic Rayleigh-Ritz, 22
Hermitian, 6
hop, 250
Horner’s method, 93
Householder reflection, 192
hpd, 6

idempotent, 23
indicator entry, 238
inter-orthogonality, 174
interaction, 174
intra-orthogonality, 174
invariant subspace, 18
inverse iteration, 7
iterate, 7
iteration, 7
iterative Gram-Schmidt, 200

Jacobi elliptic function, 58

kick-off residual, 166
Krylov subspace, 32

Lanczos method, 33
left inverse, 5
locality, 179

machine precision, 160
matrix function, 25
matrix pencil, 3
metric, 28
midpoint rule, 52
modulus, 58, 78
moment, 85
multiplicity, 3
multiplicity, algebraic, 3
multiplicity, geometric, 3

Newton-Cotes formula, closed, 51
Newton-Cotes formula, open, 51
norm, matrix, 5

norm, vector, 5

occupation, 115
offending entry, 236
orthogonal, 4
orthogonal iteration, 20, 31
orthogonal projection, 15
orthogonal projector, 23
orthogonality, 4, 113, 173
orthogonality matrix, 236
orthogonalization, 16
orthonormal, 5
orthonormalization, 16
overlap, 177

pack, 99
passband, 38
PHIST, 96
positive definite, 6
positive semi-definite, 6
power iteration, 7
pride, 97
problematic entry, 236
projector, 23
projector, approximate, 26
projector, reduced representation, 23

QR algorithm, 30
QR decomposition, 30, 191
QR decomposition, thin, 191
quadrature, 51
quarter period, 78
quasi-eigenspace, 145
quasi-multiplicity, 145

rank deficiency, 128
Rayleigh quotient, 20
rayleigh quotient, 14
rayleigh quotient iteration, 14
rebound, 150
residual, 29
residual loss, 231
residue, 84
resolvent, 50
ripple factor, 69

Index 275

Ritz pair, 20
Ritz phantom, 20, 126, 130, 139, 140
Ritz values, 20
Ritz vector, 20
Ritz vector, primitive, 20

saturation, 115, 167
saturation residual, 115
scalar product, 4
Schur form, 10
searchspace, 114
searchspace basis, 114
searchspace set, 114
searchspace size, 114
searchspace vectors, 114
selection function, 56
shift-inverse iteration, 7
shifted iteration, 8
similar matrices, 9
similarity transform, 9
simultaneous iteration, 20
singular value, 196
singular value decomposition, 196
slot, 114, 122, 139, 144, 145
smoothing kernel, 45

SNC, 171
spectral projection, 2
spectral projector, 24
spectral range, 47
spectrum, 3, 26
SPPEXA, 96
stopband, 38
subspace iteration, 20

tamer, 99
target searchspace, 177
theta function, 82
transition band, 39
trapezoidal rule, 51
TSQR, 197

underrepresented, 144
unitary, 5

Vandermonde matrix, 87

weak Gram-Schmidt, 201
window function, 25
worst-case orthogonality, 174, 186, 208
worst-case residual, 167, 176, 208

List of Algorithms

1.1 Generic power iteration. 7
1.2 Gram-Schmidt orthonormalization (classical and modified) 16
1.3 Modified Gram-Schmidt orthonormalization, reordered. 17
1.4 Power subspace iteration, standard form. 21
1.5 Power subspace iteration, generalized form. 22
1.6 Orthogonal iteration . 31
1.7 The Arnoldi algorithm. 32

5.1 Block modified Gram-Schmidt orthonormalization, reordered. 222

A.1 Jacobi elliptic functions. 270
A.2 Inverse elliptic functions. 272

277

List of Experiments

4.1 Test set calibration . 119
4.2 Residual drop rates . 122
4.3 On-the-fly increase of searchspace size 124
4.4 Residual drop rates and searchspace size 126
4.5 Slot swapping . 129
4.6 Filter induced rank deficiency . 130
4.7 Effective multi-moment filter . 135
4.8 Movement of Ritz phantoms . 140
4.9 Ritz phantom disturbances . 141
4.10 Convergence of filter values . 143
4.11 Convergence of clustered values with under-representation 146
4.12 Clustered super convergence . 149
4.13 Projector disturbances . 161
4.14 Influence of Ritz phantoms . 163
4.15 Mixed precision . 164
4.16 Effect of spectral density on kick-off residual 166
4.17 Variation in spectral position . 168
4.18 Variation in spectral range . 169
4.19 Interval gap and searchspace occupation (ideal filter) 176
4.20 Interval gap and searchspace occupation (non-ideal) 178
4.21 Overlap and ideal orthogonality . 179
4.22 Overlap-based exclusion . 181
4.23 Quality of orthogonality bounds . 184
4.24 Evolution of orthogonality under different conditions 185
4.25 Evolution of orthogonality with increasing distance 186

5.1 Influence of local reorthogonalization on the residual 208
5.2 Intermediate orthogonalization . 214
5.3 Intermediate orthogonalization with uneven convergence 217
5.4 Residual disturbances of continuous orthogonalizations 218
5.5 Single orthogonalization . 219
5.6 Influence of inter-orthogonalization on the residual 228
5.7 Distance-based restrictions of orthogonalization 256
5.8 Distance and orthogonality . 257
5.9 Orthogonalization performance . 260

279

List of Figures

1.1 Effect of applying a three-dimensional matrix pencil. 9
1.2 Complex spectral inversion. 14
1.3 Effect of applying a three-dimensional projector. 24
1.4 Window function and complex filter function. 25
1.5 Eigenvalue algorithms overview. 34

2.1 Filter properties. 39
2.2 Chebyshev filtering functions with smoothing kernels. 46
2.3 Example of a Chebyshev polynomial based filter. 47
2.4 Discrete Chebyshev filtering functions. 49
2.5 Example of a Cauchy filter. 56
2.6 Cauchy filter with different integration schemes. 57
2.7 Visualization of the Möbius transformation. 61
2.8 Example of a Zolotarev filter. 69
2.9 Filter design parameters. 70
2.10 Example of a Butterworth filter. 74
2.11 Example of a type-I Chebyshev filter. 76
2.12 Example of a type-II Chebyshev filter. 77
2.13 Example of an elliptic filter. 81
2.14 Spectral filtering functions for the moments 0 to 3, absolute value. . 91

3.1 Subdivision into block rows. 97
3.2 Subdivision into blocks of right-hand sides. 97
3.3 Individually computable poles. 98
3.4 Exemplary interval subdivision. 99
3.5 Process group hierarchy. 100
3.6 Simplified dynamic interval parallelism protocol. 102
3.7 Block-wise transformation of banded matrix. 106
3.8 Reduction to smaller system. 106
3.9 Scaling behavior of the banded solver. 108

4.1 Low resolution density of states for graph-1M and topi-1M. 120
4.2 Residual drop rates. 123
4.3 Residual history and drop rates for searchspace size increase. 125
4.4 Residual drop rate by searchspace size. 127
4.5 Slot swapping. 129
4.6 Development of the rank of the searchspace set. 130
4.7 SSM effective filters for the midpoint rule. 137

281

282 List of Figures

4.8 SSM effective filters for the Gauss-Legendre rule. 137
4.9 SSM moments (absolute values). 138
4.10 Paths of Ritz phantoms. 141
4.11 Disturbance of Ritz values by nearby Ritz phantoms. 142
4.12 Convergence of approximate filter values. 144
4.13 Convergence of clustered values with under-representation. 146
4.14 Convergence of clustered values with under-representation. 147
4.15 Convergence of clustered values with full representation. 149
4.16 Filter stopband deviations. 151
4.17 Comparison of filters of degree 16. 156
4.18 Filter parameter modification. 156
4.19 Difficulty of an exemplary linear system. 158
4.20 Difficulty of linear systems. 159
4.21 Difficulty of linear systems (zoom). 159
4.22 Residual barriers. 162
4.23 Filter disturbances. 163
4.24 Phantom disturbances of terminal residuals. 164
4.25 Mixed precision results. 165
4.26 Kick-off residual for different spectral ranges and densities. 167
4.27 Saturation residual for variations of the spectral center. 168
4.28 Saturation residual for variations of the spectral range. 169
4.29 Gap influence for different searchspace combinations. 177
4.30 Gap influence for different searchspace combinations. 178
4.31 Influence of different types of overlap on inter-orthogonality. 180
4.32 Orthogonalities produced by the linverse matrix. 183
4.33 Interval distances of the linverse matrix. 183
4.34 Orthogonality bounds for linverse(even). 184
4.35 Inter-orthogonality of two independently iterated intervals. 186
4.36 Inter-orthogonality of two intervals with increasing distance. 187
4.37 Inter-orthogonality of two intervals with decreasing gap. 187

5.1 Orthogonalization schemes. 190
5.2 TSQR binary tree scheme with four processes. 198
5.3 Single step of the TSQR sequential scheme. 199
5.4 Minimum required initial orthogonality for weak Gram-Schmidt. . . 202
5.5 Gram factor improvement of weak Gram-Schmidt. 203
5.6 Minimum required orthogonality to reach machine precision. 204
5.7 Orthogonality improvement of weak Gram-Schmidt. 205
5.8 The effect of local (intra-)reorthogonalization. 209
5.9 Orthogonality with and without intermediate orthogonalization. . . 216
5.10 Effects of orthogonalization between intervals with different progress. 218
5.11 Evolution of orthogonality with single orthogonalization. 220
5.12 Block Gram-Schmidt shift scheme. 223
5.13 Block Gram-Schmidt broadcast scheme. 224

List of Figures 283

5.14 The effect of orthogonalization on eigenvector angles. 226
5.15 Inter-orthogonalization. 229
5.16 Selected inter-orthogonalities of the SiH4 matrix. 237
5.17 Duplicate detection: orthogonality patterns. 238
5.18 Butterfly orthogonalization pattern. 241
5.19 Orthogonalities of the linverse matrix after one sweep. 251
5.20 Estimated orthogonalities of the linverse matrix for one sweep. . . . 252
5.21 Large matrix orthogonalities and estimations. 253
5.22 Weak shift orthogonalization scheme. 254
5.23 Orthogonalities for some matrices from the test set. 258
5.24 Orthogonalities plotted over distances. 259
5.25 Scaling of orthogonalization schemes. 260
5.26 Scaling of inner products. 261

List of Tables

1.1 Power iteration flavors and methods of application. 8
1.2 Matrix pencils of power iteration flavors. 13

2.1 Smoothing kernels. 45
2.2 Filter design parameters. 70

4.1 Standard eigenproblem test set “The Dirty Dozen”. 118
4.2 Final residuals for the four data sets of the matrix test set. 120
4.3 Cauchy filter deviations and resulting transition bands. 151
4.4 Best residual drop rates. 153
4.5 Worst residual drop rates. 154
4.6 Minimum pole distances to the real axis. 154
4.7 Subspace overlap evaluation. 181

5.1 Method name abbreviations. 209
5.2 Exclusion criteria and stability bounds. 211
5.3 Serial and parallel cost of orthogonalization algorithms. 212
5.4 Maximum residual and orthogonalities for the test set (part I). . . 230
5.5 Maximum residual and orthogonalities for the test set (part II). . . 231
5.6 Block Gram-Schmidt orthogonalization (native, even). 232
5.7 Block Gram-Schmidt orthogonalization (native, uneven). 232
5.8 Block Gram-Schmidt orthogonalization (worst-case res., even). . . 233
5.9 Block Gram-Schmidt orthogonalization (worst-case res., uneven). . 233
5.10 Block Gram-Schmidt orthogonalization (average res., even). 234
5.11 Block Gram-Schmidt orthogonalization (average res., uneven). . . 234
5.12 Direct comparison of sorting methods (even). 235
5.13 Direct comparison of sorting methods (uneven). 235
5.14 Butterfly orthogonalization (worst-case residual, even). 244
5.15 Butterfly orthogonalization (worst-case residual, uneven). 244
5.16 Butterfly orthogonalization (boundary res., single vector, even). . . 245
5.17 Butterfly orthogonalization (boundary res., single vector, uneven). 246
5.18 Butterfly orthogonalization (boundary res., five vectors, even). . . 246
5.19 Butterfly orthogonalization (boundary res., five vectors, uneven). . 247
5.20 Butterfly orthogonalization (residual update, even). 248
5.21 Butterfly orthogonalization (residual update, uneven). 248
5.22 Butterfly orthogonalization (intra-orthogonalization, even). 249
5.23 Butterfly orthogonalization (intra-orthogonalization, uneven). . . . 250
5.24 Final residuals and orthogonalities for the large examples. 253

285

286 List of Tables

5.25 Large a posteriori orthogonalization examples. 253
5.26 Maximum orthogonalization distances (even, locking). 256
5.27 Maximum orthogonalization distances (even, no locking). 257
5.28 Maximum orthogonalization distances (uneven, locking). 257
5.29 Maximum orthogonalization distances (uneven, no locking). 258

Bibliography

[Agr+] N. Agrawal et al. Boost Math Toolkit. Version 2.6.0. url: https:
//www.boost.org.

[Agu+20] E. Agullo et al. MUMPS: a parallel sparse direct solver. Version 5.3.1.
04/2020. url: http://mumps.enseeiht.fr.

[Ahl79] L. V. Ahlfors. Complex Analysis. 3rd. McGraw-Hill, Inc., 1979.
[Akh56] N. I. Akhiezer. Theory of Approximation. 2nd. New York, USA: Fred-

erick Ungar Publishing Co., 1956.
[Akh90] N. I. Akhiezer. Elements of the Theory of Elliptic Functions. Vol. 79.

Translations of Mathematical Monographs. Providence, Rhode Island,
United States: American Mathematical Society, 1990.

[Alv+14] A. Alvermann et al. „ESSEX: Equipping Sparse Solvers for Exascale“.
In: Euro-Par 2014: Parallel Processing Workshops. Ed. by L. Lopes
et al. Cham: Springer International Publishing, 2014, pp. 577–588.

[Alv+19] A. Alvermann et al. „Benefits from using mixed precision computations
in the ELPA-AEO and ESSEX-II eigensolver projects“. In: Jpn. J. Ind.
Appl. Math. 36 (2 04/2019), pp. 699–717.

[Ant79] A. Antoniou. Digital Filters: Analysis and Design. New York, USA:
McGraw-Hill, 1979.

[Arn51] W. E. Arnoldi. „The principle of minimized iteration in the solution
of the matrix eigenvalue problem“. In: Qart. Appl. Math. 9 (1951),
pp. 17–29.

[AS74] M. Abramowitz and I. A. Stegun, eds. Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables. 9th. New York,
NY: Dover Publications, Inc., 1974.

[Bin+02] D. Bindel et al. „On computing givens rotations reliably and efficiently“.
In: ACM Trans. Math. Software 28.2 (2002), pp. 206–238.

[Blu+09] V. Blum et al. „Ab initio molecular simulations with numeric atom-
centered orbitals“. In: Comput. Phys. Commun. 180.11 (2009),
pp. 2175–2196.

[Cha87] T. F. Chan. „Rank revealing QR factorizations“. In: Linear Algebra
Appl. 88–89 (1987), pp. 67–82.

[CS82] M. P. Carpentier and A. F. D. Santos. „Solution of equations involving
analytic functions“. In: J. Comput. Phys. 45 (1982), pp. 210–220.

287

https://www.boost.org
https://www.boost.org
http://mumps.enseeiht.fr

288 Bibliography

[Dan+76] J. W. Daniel et al. „Reorthogonalization and Stable Algorithms for
Updating the Gram-Schmidt QR Factorization“. In: Math. Comput. 30
(10/1976), pp. 772–795.

[Dan74] R. W. Daniels. Approximation Methods for Electronic Filter Design.
New York, USA: McGraw-Hill, 1974.

[Dav75] E. R. Davidson. „The iterative calculation of a few of the lowest eigen-
values and corresponding eigenvectors of large real-symmetric matrices“.
In: J. Comput. Phys. 17.1 (1975), pp. 87–94.

[Dem+12] J. Demmel et al. „Communication-optimal Parallel and Sequential QR
and LU Factorizations“. In: SIAM J. Sci. Comput. 34.1 (02/2012),
A206–A239.

[DH11] T. A. Davis and Y. Hu. „The University of Florida Sparse Matrix
Collection“. In: ACM Trans. Math. Software 38.1 (2011), 1:1–1:25.

[Dir58] P. A. M. Dirac. Principles Of Quantum Mechanics. 4th. Oxford,
England: Oxford University Press, 1958.

[DK70] C. Davis and W. M. Kahan. „The Rotation of Eigenvectors by a Per-
turbation. III“. In: SIAM J. Numer. Anal. 7.1 (1970), pp. 1–46.

[DL67] L. M. Delves and J. N. Lyness. „A numerical method for locating the
zeros of an analytic function“. In: Math. Comput. 21 (1967), pp. 543–
560.

[DPS16] E. Di Napoli, E. Polizzi, and Y. Saad. „Efficient estimation of eigenvalue
counts in an interval“. In: Numer. Linear Algebra Appl. 23.4 (2016),
pp. 674–692.

[DR84] P. J. Davis and P. Rabinowitz. Methods of numerical integration. 2nd.
Orlando, FL: Academic Press, 1984.

[Els+99] U. Elsner et al. „The Anderson Model of Localization: A Challenge for
Modern Eigenvalue Methods“. In: SIAM J. Sci. Comput. 20.6 (1999),
pp. 2089–2102.

[Eri+96] K. Eriksson et al. Computational Differential Equations. 2nd. Cam-
bridge, UK: Cambridge University Press, 1996.

[FS12] H.-r. Fang and Y. Saad. „A Filtered Lanczos Procedure for Extreme
and Interior Eigenvalue Problems“. In: SIAM J. Sci. Comput. 34.4
(08/2012), A2220–A2246.

[FTS10] Y. Futamura, H. Tadano, and T. Sakurai. „Parallel stochastic estimation
method of eigenvalue distribution“. In: JSIAM Letters 2 (2010), pp. 127–
130.

[Fuk+14] T. Fukaya et al. „CholeskyQR2: A Simple and Communication-Avoiding
Algorithm for Computing a Tall-Skinny QR Factorization on a Large-
Scale Parallel System“. In: 2014 5th Workshop on Latest Advances in
Scalable Algorithms for Large-Scale Systems. 11/2014, pp. 31–38.

Bibliography 289

[Fuk+20] T. Fukaya et al. „Shifted CholeskyQR for computing the QR factor-
ization of ill-conditioned matrices“. In: SIAM J. Sci. Comput. 42.1
(2020), A477–A503.

[Fut+17] Y. Futamura et al. Reducing linear system size with moment based
methods in the BEAST framework. Talk at RIKEN LSPANC Meeting,
2017. 2017.

[Fut+18] Y. Futamura et al. Using the Moment to Reduce Linear System Size.
Poster at SIAM Conference on Parallel Processing for Scientific Com-
puting. 2018.

[Fut+19] Y. Futamura et al. Contour Integration and Moments for the Solu-
tion of Large Eigenproblems. Poster at SIAM Computer Science and
Engineering 2019. 2019.

[Gal+09] M. Galassi et al. GNU Scientific Library Reference Manual. 3rd. Go-
dalming, Surrey, UK: Network Theory Ltd., 2009.

[Gal+14] M. Galgon et al. „Improving robustness of the FEAST algorithm and
solving eigenvalue problems from graphene nanoribbons“. In: Proc.
Appl. Math. Mech. 14.1 (2014), pp. 821–822.

[Gal+15] M. Galgon et al. „On the parallel iterative solution of linear systems
arising in the FEAST algorithm for computing inner eigenvalues“. In:
Parallel Comput. 49 (2015), pp. 153–163.

[Gal+17] M. Galgon et al. „Improved Coefficients for Polynomial Filtering in ES-
SEX“. In: Eigenvalue Problems: Algorithms, Software and Applications
in Petascale Computing. Vol. 117. Lecture Notes in Computational
Science and Engineering. Springer, 01/2017, pp. 63–79.

[GG05] D. Gordon and R. Gordon. „Component-Averaged Row Projections: A
Robust, Block-Parallel Scheme for Sparse Linear Systems“. In: SIAM
J. Sci. Comput. 27.3 (2005), pp. 1092–1117.

[GG10] D. Gordon and R. Gordon. „CARP-CG: A robust and efficient paral-
lel solver for linear systems, applied to strongly convection dominated
PDEs“. In: Parallel Comput. 36 (09/2010), pp. 495–515.

[GHL18a] M. Galgon, S. Huber, and B. Lang. BEAST: a framework for interior
eigenvalue problems. Poster at International High Performance Comput-
ing Summer School 2018. 2018.

[GHL18b] M. Galgon, S. Huber, and B. Lang. Large-scale testing of the BEAST-P
eigensolver. CoSaS 2018 International Symposium on Computational
Science at Scale. 2018.

[GHL18c] M. Galgon, S. Huber, and B. Lang. Mixed precision in a large iterative
parallel eigensolver framework: BEAST. Poster at EPASA 2018 Inter-
national Workshop on Eigenvalue Problems: Algorithms; Software and
Applications, in Petascale Computing. 2018.

290 Bibliography

[GHL18d] M. Galgon, S. Huber, and B. Lang. „Mixed precision in subspace
iteration-based eigensolvers“. In: Proc. Appl. Math. Mech. 18.1
(12/2018), e201800334.

[GHL18e] M. Galgon, S. Huber, and B. Lang. Recent developments and results for
the BEAST eigensolver. Talk at 149th R-CCS Cafe. 2018.

[GHL18f] M. Galgon, S. Huber, and B. Lang. Using mixed precision in iterative
eigensolvers. Talk at GAMM Annual Meeting 2018. 2018.

[Ghy+15] P. Ghysels et al. „An Efficient Multicore Implementation of a Novel
HSS-Structured Multifrontal Solver Using Randomized Sampling“. In:
SIAM J. Sci. Comput. 38 (02/2015), pp. 358–384.

[Ghy+18] P. Ghysels et al. STRUMPACK – STRUctured Matrices PACKage.
Version 3.1.0. 10/2018. url: https://portal.nersc.gov/project/
sparse/strumpack.

[Gir+05] L. Giraud et al. „Rounding error analysis of the classical Gram-Schmidt
orthogonalization process“. In: Numer. Math. 101.1 (07/2005), pp. 87–
100.

[GKL11] M. Galgon, L. Krämer, and B. Lang. „The FEAST algorithm for large
eigenvalue problems“. In: Proc. Appl. Math. Mech. 11.1 (2011),
pp. 747–748.

[GKL12] M. Galgon, L. Krämer, and B. Lang. „Counting eigenvalues and improv-
ing the integration in the FEAST algorithm“. Preprint BUW-IMACM
12/22, http://www.imacm.uni- wuppertal.de/imacm/research/
preprints.html. 2012.

[GKL18] M. Galgon, L. Krämer, and B. Lang. „Improving projection-based
eigensolvers via adaptive techniques“. In: Numer. Linear Algebra Appl.
25.1 (2018), e2124.

[GMP18] B. Gavin, A. Międlar, and E. Polizzi. „FEAST eigensolver for nonlinear
eigenvalue problems“. In: J. Comput. Sci. 27 (2018), pp. 107–117.

[GNU] GNU Project. GNU Scientific Library. Version 2.5. url: https :
//www.gnu.org/software/gsl.

[Gol91] D. Goldberg. „What Every Computer Scientist Should Know About
Floating-point Arithmetic“. In: ACM Comput. Surv. 23.1 (03/1991),
pp. 5–48.

[Güt+15] S. Güttel et al. „Zolotarev quadrature rules and load balancing for the
FEAST eigensolver“. In: SIAM J. Sci. Comput. 37.4 (2015), A2100–
A2122.

[GV13] G. H. Golub and C. F. Van Loan. Matrix Computations. 4th. Baltimore,
MD: Johns Hopkins University Press, 2013.

https://portal.nersc.gov/project/sparse/strumpack
https://portal.nersc.gov/project/sparse/strumpack
http://www.imacm.uni-wuppertal.de/imacm/research/preprints.html
http://www.imacm.uni-wuppertal.de/imacm/research/preprints.html
https://www.gnu.org/software/gsl
https://www.gnu.org/software/gsl

Bibliography 291

[GW69] G. H. Golub and J. H. Welsch. „Calculation of Gauss Quadrature Rules“.
In: Math. Comput. 23.106 (1969), pp. 221–230.

[Hig02] N. J. Higham. Accuracy and Stability of Numerical Algorithms. 2nd.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2002.

[Hig08] N. J. Higham. Functions of Matrices: Theory and Computation.
Philadelphia, PA, USA: Society for Industrial and Applied Mathe-
matics, 2008.

[HJ13] R. A. Horn and C. R. Johnson. Matrix Analysis: Second Edition. 2nd.
Cambridge, UK: Cambridge University Press, 2013.

[HJ88] R. W. Hockney and C. R. Jesshope. Parallel Computers 2: Architecture,
Programming and Algorithms. 2nd. Bristol, UK: IOP Publishing Ltd.,
1988.

[HK10] M. Z. Hasan and C. L. Kane. „Colloquium: Topological insulators“. In:
Rev. Mod. Phys. 82 (4 11/2010), pp. 3045–3067.

[Hoe11] M. Hoemmen. „A communication-avoiding, hybrid-parallel, rank-
revealing orthogonalization method“. In: Proceedings - 25th IEEE
International Parallel and Distributed Processing Symposium, IPDPS
2011. Anchorage, AK, USA: IEEE Computer Society, 06/2011, pp. 966–
977.

[Hof89] W. Hoffmann. „Iterative algorithms for Gram-Schmidt orthogonaliza-
tion“. In: Computing 41.4 (12/1989), pp. 335–348.

[HS52] M. R. Hestenes and E. Stiefel. „Methods of Conjugate Gradients for
Solving Linear Systems“. In: J. Res. Nat. Bur. Stand. 49 (1952),
pp. 409–435.

[Hub+] S. Huber et al. „Flexible subspace iteration with moments for an effective
contour-integration based eigensolver“. In preparation.

[IDS16] A. Imakura, L. Du, and T. Sakurai. „Error bounds of Rayleigh–Ritz
type contour integral-based eigensolver for solving generalized eigenvalue
problems“. In: Numer. Algorithms 71.1 (2016), pp. 103–120.

[IS10] T. Ikegami and T. Sakurai. „Contour Integral Eigensolver for Non-
Hermitian Systems: A Rayleigh-Ritz-Type Approach“. In: Taiwan. J.
Math. 14.3A (2010), pp. 825–837.

[ISN10] T. Ikegami, T. Sakurai, and U. Nagashima. „A filter diagonalization for
generalized eigenvalue problems based on the Sakurai–Sugiura projection
method“. In: J. Comput. Appl. Math. 233 (2010), pp. 1927–1936.

[Jac46] C. G. J. Jacobi. „Über ein leichtes Verfahren die in der Theorie der
Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen.“
In: J. Reine Angew. Math. (Crelle’s Journal) (1846), pp. 51–94.

292 Bibliography

[Kac37] S. Kaczmarz. „Angenäherte Auflösung von Systemen linearer Gleichun-
gen“. In: Bull. Acad. Polon. Sci. Lett. A35 (1937), pp. 355–357.

[KE+] M. Kreutzer, D. Ernst, et al. GHOST - General, Hybrid and Optimized
Sparse Toolkit. url: https://bitbucket.org/essex/ghost.

[Ken05] A. D. Kennedy. „Fast Evaluation of Zolotarev Coefficients“. In: QCD
and Numerical Analysis III. Vol. 47. Lecture Notes in Computational
Science and Engineering. Springer, 2005, pp. 169–189.

[Knu97] D. Knuth. Seminumerical Algorithms. Vol. 2. The Art of Computer
Programming. Boston, USA: Addison-Wesley, 1997.

[Krä+13] L. Krämer et al. „Dissecting the FEAST algorithm for generalized
eigenproblems“. In: J. Comput. Appl. Math. 244 (2013), pp. 1–9.

[Krä14] L. Krämer. „Integration based solvers for standard and generalized
Hermitian eigenvalue problems“. http://nbn-resolving.de/urn/
resolver.pl?urn=urn:nbn:de:hbz:468-20140701-112141-6. PhD
thesis. Bergische Universität Wuppertal, 2014.

[Kre+16] M. Kreutzer et al. „Performance engineering and energy efficiency of
building blocks for large, sparse eigenvalue computations on heteroge-
neous supercomputers“. In: Software for Exascale Computing-SPPEXA
2013-2015. Springer, 2016, pp. 317–338.

[Kre+17] M. Kreutzer et al. „GHOST: building blocks for high performance
sparse linear algebra on heterogeneous systems“. In: Int. J. Parallel
Program. (2017), pp. 1–27.

[Kre98] R. Kress. Numerical Analysis. Vol. 181. Graduate Texts in Mathematics.
Springer Netherlands, 1998.

[Kry31] A. N. Krylov. „On the numerical solution of the equation by which
the frequency of small oscillations is determined in technical problems
(in Russian)“. In: Izv. Akad. Nauk SSSR Ser. Fiz.-Mat. 4 (1931),
pp. 491–539.

[KSB99] P. Kravanja, T. Sakurai, and M. V. Barel. „On locating clusters of zeros
of analytic functions“. In: BIT Numer. Math. 39 (1999), pp. 646–682.

[KSS13] A. M. Klinvex, F. Saied, and A. H. Sameh. „Parallel implementations
of the trace minimization scheme TraceMIN for the sparse symmetric
eigenvalue problem“. In: Comput. Math. Appl. 65.3 (2013), pp. 460–
468.

[KU98] A. R. Krommer and C. W. Ueberhuber. Computational Integration.
Philadelphia, PA: SIAM, 1998.

[Lan50] C. Lanczos. „An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators“. In: J. Res. Nat.
Bur. Stand. 45.4 (1950), pp. 255–282.

https://bitbucket.org/essex/ghost
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:468-20140701-112141-6
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:468-20140701-112141-6

Bibliography 293

[Lau12] S. E. Laux. „Solving complex band structure problems with the FEAST
eigenvalue algorithm“. In: Phys. Rev. B 86 (2012), pp. 075–103.

[Li+16] R. Li et al. „A Thick-Restart Lanczos Algorithm with Polynomial Fil-
tering for Hermitian Eigenvalue Problems“. In: SIAM J. Sci. Comput.
38.4 (08/2016), A2512–A2534.

[LS84] D. H. Lawrie and A. H. Sameh. „The Computation and Communication
Complexity of a Parallel Banded System Solver“. In: ACM Trans. Math.
Software 10.2 (05/1984), pp. 185–195.

[LSY16] L. Lin, Y. Saad, and C. Yang. „Approximating Spectral Densities of
Large Matrices“. In: SIAM Rev. 58.1 (02/2016), pp. 34–65.

[LT05] M. D. Lutovac and D. V. Tošić. „Elliptic Rational Functions“. In: The
Mathematica Journal 9.3 (2005).

[LTE01] M. D. Lutovac, D. V. Tošić, and B. L. Evans. Filter Design for Signal
Processing using MATLAB R© and Mathematica R©. New Jersey, USA:
Prentice Hall, 2001.

[LY17] Y. Li and H. Yang. „Interior Eigensolver for Sparse Hermitian Definite
Matrices Based on Zolotarev’s Functions“. http://arxiv.org/abs/
1701.08935 [math.NA], version 3. 01/2017.

[Mar+14] A. Marek et al. „The ELPA Library: Scalable Parallel Eigenvalue
Solutions for Electronic Structure Theory and Computational Science“.
In: J. Phys.: Condens. Matter 26.21 (05/2014), p. 213201.

[Meu+17] A. Meurer et al. „SymPy: symbolic computing in Python“. In: PeerJ
Comput. Sci. 3 (2017), e103. url: https://www.sympy.org.

[MLB] The MathWorks, Inc. MATLAB R© and DSP System ToolboxTM. Ver-
sion R2018a. Natick, Massachusetts, US. url: https : / / www .
mathworks.com.

[MPI15] MPI Forum. MPI: A Message-Passing Interface Standard. Version
3.1. available at: https://www.mpi-forum.org/docs (Mar. 2020).
06/2015.

[Mul06] J.-M. Muller. Elementary Functions—Algorithms and Implementation.
2nd. Boston–Basel–Berlin: Birkhäuser, 2006.

[Nak12] Y. Nakatsukasa. „The tan θ theorem with relaxed conditions“. In:
Linear Algebra Appl. 436.5 (2012), pp. 1528–1534.

[Net+09] A. H. C. Neto et al. „The electronic properties of graphene“. In: Rev.
Mod. Phys. 81 (1 01/2009), pp. 109–162.

[Neu71] J. von Neumann. Mathematical foundations of quantum mechanics. 6th.
New Jersey, USA: Princeton University Press, 1971.

[Neu85] A. Neumaier. „Residual Inverse Iteration for the Nonlinear Eigenvalue
Problem“. In: SIAM J. Numer. Anal. 22.5 (1985), pp. 914–923.

http://arxiv.org/abs/1701.08935
http://arxiv.org/abs/1701.08935
https://www.sympy.org
https://www.mathworks.com
https://www.mathworks.com
https://www.mpi-forum.org/docs

294 Bibliography

[Oli+00] S. Oliveira et al. „Analysis of different partitioning schemes for parallel
Gram-Schmidt algorithms“. In: Parallel Algorithms Appl. 14.4 (2000),
pp. 293–320.

[Olv+10] F. W. J. Olver et al., eds. NIST Handbook of Mathematical Functions.
1st. Cambridge, UK: Cambridge University Press, 2010.

[Ope18] OpenMP Architecture Review Board. OpenMP Application Program
Interface Version 5.0. available at: https : / / www . openmp . org /
specifications (Mar. 2020). 11/2018.

[Orf05] S. J. Orfanidis. „High-Order Digital Parametric Equalizer Design“. In:
J. Audio Eng. Soc. 53 (2005), pp. 1026–1046.

[Pag+98] L. Page et al. The PageRank Citation Ranking: Bringing Order to the
Web. Tech. rep. Stanford InfoLab, 1998.

[Par80] B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall Series
in Computational Mathematics. Englewood-Cliffs, NJ: Prentice-Hall,
1980.

[Pie+16] A. Pieper et al. „High-performance implementation of Chebyshev filter
diagonalization for interior eigenvalue computations“. In: J. Comput.
Phys. 325 (2016), pp. 226–243.

[PK15] E. Polizzi and J. Kestyn. FEAST Eigenvalue Solver v3.0 User Guide.
2015. arXiv: 1203.4031v3 [cs.MS].

[Pol09] E. Polizzi. „Density-matrix-based algorithm for solving eigenvalue prob-
lems“. In: Phys. Rev. B 79 (2009), pp. 115–112.

[Pol13] E. Polizzi. A High-Performance Numerical Library for Solving Eigen-
value Problems: FEAST Solver v2.0 User’s Guide. 2013. arXiv: 1203.
4031v2 [cs.MS].

[Pol20] E. Polizzi. FEAST Eigenvalue Solver v4.0 User Guide. 2020. arXiv:
2002.04807 [cs.MS].

[PP87] P. P. Petrushev and V. A. Popov. Rational Approximation of Real
Functions. Vol. 28. Encyclopedia of Mathematics and its Applications.
Cambridge, UK: Cambridge University Press, 1987.

[Pre+92] W. H. Press et al. Numerical Recipes in FORTRAN 77: The Art of
Scientific Computing. 2nd. Cambridge, UK: Cambridge University
Press, 1992.

[PS06] E. Polizzi and A. H. Sameh. „A parallel hybrid banded system solver:
the SPIKE algorithm“. In: Parallel Comput. 32.2 (2006), pp. 177–194.

[Ray99] J. W. Strutt (3rd Baron Rayleigh). „On the calculation of the frequency
of vibration of a system in its gravest mode, with an example from
hydrodynamics“. In: Philos. Mag. Series 5 47.289 (1899), pp. 566–572.

https://www.openmp.org/specifications
https://www.openmp.org/specifications
https://arxiv.org/abs/1203.4031v3
https://arxiv.org/abs/1203.4031v2
https://arxiv.org/abs/1203.4031v2
https://arxiv.org/abs/2002.04807

Bibliography 295

[Rit09] W. Ritz. „Über eine neue Methode zur Lösung gewisser Variationsprob-
leme der mathematischen Physik“. In: J. Reine Angew. Math. 135
(1909), pp. 1–61.

[Rou+16] F.-H. Rouet et al. „A Distributed-Memory Package for Dense Hierar-
chically Semi-Separable Matrix Computations Using Randomization“.
In: ACM Trans. Math. Software 42.4 (06/2016).

[Saa03] Y. Saad. Iterative Methods for Sparse Linear Systems. 2nd. Philadel-
phia, PA: SIAM, 2003.

[Saa11] Y. Saad. Numerical Methods for Large Eigenvalue Problems. 2nd.
Philadelphia, PA: SIAM, 2011.

[Sak+19] T. Sakurai et al. „Scalable Eigen-Analysis Engine for Large-Scale Eigen-
value Problems“. In: Advanced Software Technologies for Post-Peta
Scale Computing: The Japanese Post-Peta CREST Research Project.
Ed. by M. Sato. Singapore: Springer Singapore, 2019, pp. 37–57.

[Sha+19] F. Shahzad et al. „CRAFT: A library for easier application-level Check-
point/Restart and Automatic Fault Tolerance“. In: IEEE Trans. Par-
allel Distrib. Syst. 30 (3 03/2019), pp. 501–514.

[Sin06] S. Singer. „Indefinite QR Factorization“. In: BIT Numer. Math. 46.1
(03/2006), pp. 141–161.

[SK78] A. H. Sameh and D. J. Kuck. „On Stable Parallel Linear System Solvers“.
In: J. ACM 25.1 (01/1978), pp. 81–91.

[SPS18] B. S. Spring, E. Polizzi, and A. H. Sameh. „A Feature Complete SPIKE
Banded Algorithm and Solver“. In: CoRR abs/1811.03559 (2018).
arXiv: 1811.03559.

[SS03a] T. Sakurai and H. Sugiura. „A projection method for generalized eigen-
value problems“. In: J. Comput. Appl. Math. 159 (2003), pp. 119–
128.

[SS03b] S. Singer and S. Singer. „Rounding error and perturbation bounds for
the symplectic QR factorization“. In: Linear Algebra Appl. 358.1 (2003),
pp. 255–279.

[SS08] S. Singer and S. Singer. „Orthosymmetric block reflectors“. In: Linear
Algebra Appl. 429.5 (2008), pp. 1354–1385.

[SS90] G. W. Stewart and J. Sun. Matrix Perturbation Theory. San Diego, CA:
Academic Press, 1990.

[ST07] T. Sakurai and H. Tadano. „CIRR: a Rayleigh-Ritz type method with
contour integral for generalized eigenvalue problems“. In: Hokkaido
Math. J. 36 (2007), pp. 745–757.

[Ste01] G. W. Stewart. Matrix Algorithms. Vol. II, Eigensystems. Philadelphia,
PA: SIAM, 2001.

https://arxiv.org/abs/1811.03559

296 Bibliography

[Ste08] G. W. Stewart. „Block Gram-Schmidt Orthogonalization“. In: SIAM
J. Sci. Comput. 31 (01/2008), pp. 761–775.

[Ste98] G. W. Stewart. Matrix Algorithms. Vol. I, Basic decompositions.
Philadelphia, PA: SIAM, 1998.

[SV00] G. L. G. Sleijpen and H. A. van der Vorst. „A Jacobi–Davidson iteration
method for linear eigenvalue problems“. In: SIAM Rev. 42.2 (2000),
pp. 267–293.

[SW06] A. Stathopoulos and K. Wu. „A Block Orthogonalization Procedure
with Constant Synchronization Requirements“. In: SIAM J. Sci. Com-
put. 23.6 (06/2006), pp. 2165–2182.

[SW82] A. H. Sameh and J. A. Wisniewski. „A Trace Minimization Algorithm
for the Generalized Eigenvalue Problem“. In: SIAM J. Numer. Anal.
19.6 (1982), pp. 1243–1259.

[TB97] L. N. Trefethen and D. Bau, III. Numerical Linear Algebra. Philadelphia,
PA: SIAM, 1997.

[Thi+16] J. Thies et al. „Towards an exascale enabled sparse solver repository“.
In: Software for Exascale Computing-SPPEXA 2013-2015. Springer,
2016, pp. 295–316.

[Thi+19] J. Thies et al. „PHIST: a Pipelined, Hybrid-parallel Iterative Solver
Toolkit“. In: ACM Trans. Math. Software (01/2019).

[Tim37] S. Timoshenko. Vibration Problems in Engineering. 2nd. New York,
USA: D. Van Nostrand Company, Inc., 1937.

[TP] P. T. P. Tang and E. Polizzi. „Subspace Iteration with Approximate
Spectral Projection“. http://arxiv.org/abs/1302.0432 [math.NA],
version 3.

[TR+] J. Thies, M. Röhrig-Zöllner, et al. PHIST - a Pipelined Hybrid Parallel
Iterative Solver Toolkit. url: https://bitbucket.org/essex/phist.

[Via12] G. Viaud. „The FEAST algorithm for generalised eigenvalue problems“.
MA thesis. University of Oxford, 2012.

[Wac00] E. L. Wachspress. „Evaluating Elliptic Functions and Their Inverses“.
In: Comput. Math. Appl. 39 (2000), pp. 131–136.

[Wat07] D. S. Watkins. The Matrix Eigenvalue Problem. Philadelphia, PA:
SIAM, 2007.

[Wei+06] A. Weiße et al. „The Kernel Polynomial Method“. In: Rev. Mod. Phys.
78 (1 2006), pp. 275–306.

[Wei02] J. A. C. Weideman. „Numerical Integration of Periodic Functions: A
Few Examples“. In: Am. Math. Mon. 109.1 (2002), pp. 21–36.

http://arxiv.org/abs/1302.0432
https://bitbucket.org/essex/phist

Bibliography 297

[Wel+20] G. Wellein et al. „Equipping Sparse Solvers for Exascale“. In: Soft-
ware for Exascale Computing - SPPEXA 2016-2019. Lecture Notes on
Computational Science and Engineering. Springer, 01/2020.

[Wil65] J. H. Wilkinson. The algebraic eigenvalue problem. Oxford, UK: Claren-
don Press, 1965.

[XLS18] Y. Xi, R. Li, and Y. Saad. „Fast Computation of Spectral Densities
for Generalized Eigenvalue Problems“. In: SIAM J. Sci. Comput. 40.4
(08/2018), A2749–A2773.

[XS16] Y. Xi and Y. Saad. „Computing Partial Spectra with Least-Squares
Rational Filters“. In: SIAM J. Sci. Comput. 38.5 (09/2016), A3020–
A3045.

[Yam+15] Y. Yamamoto et al. „Roundoff error analysis of the Cholesky QR2
algorithm“. In: Electron. Trans. Numer. Anal. 44 (01/2015), pp. 306–
326.

[Zol77] Y. I. Zolotarev. „Application of elliptic functions to questions of func-
tions deviating least and most from zero (in Russian)“. In: Zap. Imp.
Akad. Nauk St. Petersburg 30 (1877), pp. 1–59.

	Title
	Danksagung
	Abstract
	Contents
	Nomenclature
	1 Introduction
	1.1 Eigenvalue problems
	1.1.1 Scalar product and orthogonality
	1.1.2 Norms
	1.1.3 Hermitian and positive definite matrices

	1.2 Vector iteration methods
	1.2.1 The family of power iteration methods
	1.2.1.1 Definite pairs

	1.2.2 Eigendecomposition
	1.2.2.1 Definite pairs
	1.2.2.2 Power iteration

	1.3 Subspace iteration
	1.3.1 Vector projection and orthogonalization
	1.3.2 Gram-Schmidt orthonormalization
	1.3.2.1 Definite pairs

	1.3.3 Invariant subspaces
	1.3.3.1 Power iteration
	1.3.3.2 Definite pairs

	1.3.4 Rayleigh-Ritz
	1.3.4.1 Power iteration
	1.3.4.2 Definite pairs

	1.3.5 Compatible pencils and harmonic Rayleigh-Ritz

	1.4 Spectral filters
	1.4.1 Projection and projectors
	1.4.1.1 Definite pairs

	1.4.2 Spectral projectors
	1.4.2.1 Definite pairs

	1.5 Matrix functions
	1.5.1 Filtering functions and approximate projectors

	1.6 Iteration and convergence
	1.6.1 Convergence
	1.6.2 Metrics and residual
	1.6.3 Residual bounds

	1.7 Digression: Related algorithms
	1.7.1 Orthogonal iteration
	1.7.2 The Arnoldi and Lanczos methods
	1.7.2.1 Definite pairs
	1.7.2.2 Restarts

	1.7.3 Other methods

	2 Spectral projection algorithms
	2.1 Polynomial filters
	2.1.1 Polynomial approximation
	2.1.2 Chebyshev polynomials
	2.1.2.1 Window function
	2.1.2.2 Application

	2.1.3 Matrix polynomials
	2.1.4 Gibbs phenomenon and smoothing kernels
	2.1.5 Restrictions
	2.1.6 Discrete approximation

	2.2 Contour integration
	2.2.1 Representation of the window function
	2.2.2 Numerical integration
	2.2.2.1 Trapezoidal rule
	2.2.2.2 Midpoint rule
	2.2.2.3 Gauss-Legendre quadrature

	2.2.3 Computation
	2.2.4 Selection function

	2.3 Zolotarev approximation
	2.3.1 Approximation of the sign function
	2.3.2 Window function
	2.3.3 Partial fraction form
	2.3.4 Computation of Jacobi's elliptic functions

	2.4 Electronic filter design
	2.4.1 Butterworth Filter
	2.4.1.1 Design

	2.4.2 Chebyshev Type-I Filter
	2.4.2.1 Design

	2.4.3 Chebyshev Type-II Filter
	2.4.3.1 Design

	2.4.4 Elliptic Filter
	2.4.4.1 Computation of inverse elliptic functions
	2.4.4.2 Design

	2.5 Sakurai-Sugiura-type methods
	2.5.1 A root finding method for analytic functions
	2.5.2 An improved root finding method
	2.5.3 Application to generalized eigenvalue problems
	2.5.3.1 Blocking and Eigenvectors
	2.5.3.2 Rayleigh-Ritz
	2.5.3.3 Filtering functions
	2.5.3.4 Transformations of the weight function
	2.5.3.5 Computation
	2.5.3.6 Relation to spectral projection

	2.6 Other filtering methods
	2.6.1 Rational filter types
	2.6.2 Delta filters
	2.6.3 Least squares
	2.6.4 Beyond conventional subspace iteration

	3 BEAST
	3.1 The BEAST framework
	3.1.1 Basics
	3.1.2 Parallelism
	3.1.2.1 Process group hierarchy
	3.1.2.2 Interval communication protocol

	3.1.3 Orthogonalization layer

	3.2 Meet the BEAST – short feature overview
	3.2.1 Related features
	3.2.2 Linear solvers
	3.2.2.1 Callback interface
	3.2.2.2 A (hybrid) parallel direct solver for banded linear systems

	3.2.3 Unrelated features
	3.2.4 Layer structure

	3.3 Feeding the BEAST – Applications

	4 Taming the BEAST – Quality of results
	4.1 Experiments
	4.1.1 Synthesis of non-trivial sparse definite matrix pencils with predefined spectrum
	4.1.2 Matrix test set
	4.1.3 Ritz value pairing

	4.2 Convergence revisited
	4.2.1 Undersized searchspaces
	4.2.1.1 On-the-fly increase of searchspace size
	4.2.1.2 Detection of undersized searchspaces

	4.2.2 Enlarged searchspaces
	4.2.2.1 On-the-fly restriction of searchspace size
	4.2.2.2 Locking
	4.2.2.3 Rank deficiency
	4.2.2.4 Further reduction
	4.2.2.5 Optimization of searchspace size
	4.2.2.6 Addendum

	4.2.3 SSM effective filter
	4.2.4 Ritz phantoms
	4.2.4.1 Disturbance of convergence

	4.2.5 Clustered eigenvalues
	4.2.5.1 Quasi-multiplicity and Quasi-eigenspaces
	4.2.5.2 Expulsion of clustered values
	4.2.5.3 Clustered super convergence
	4.2.5.4 Disturbances through Ritz phantoms

	4.2.6 Comparison of filter functions
	4.2.6.1 Definition of transition band and stopband gain
	4.2.6.2 Fair conditions
	4.2.6.3 Strict searchspace size
	4.2.6.4 Relaxed searchspace size
	4.2.6.5 Choice of interval

	4.2.7 Difficulty of linear systems

	4.3 Achievable residual
	4.3.1 Absolute rock bottom
	4.3.1.1 Mixed precision
	4.3.1.2 Linear solving effort

	4.3.2 Kick-off residual
	4.3.3 Saturation residual

	4.4 Termination criteria
	4.5 Achievable orthogonality
	4.5.1 Theoretical limit
	4.5.2 Estimated upper bound
	4.5.3 Directional overlap
	4.5.3.1 Verification of orthogonality bounds

	4.6 Evolution of orthogonality
	4.7 Remarks

	5 Taming the BEAST – Orthogonalization
	5.1 The many orthogonalities of BEAST
	5.2 Establishing intra-orthogonality
	5.2.1 QR decomposition
	5.2.2 QR via Givens rotations
	5.2.3 QR via Householder reflections
	5.2.4 Gram-Schmidt QR
	5.2.5 B-orthogonality
	5.2.6 Cholesky QR
	5.2.7 Rank revelation
	5.2.8 Methods based on singular value decomposition
	5.2.9 SVQB
	5.2.10 B-orthogonal QR via SVQB
	5.2.11 Parallel block-orthogonalization
	5.2.12 TSQR
	5.2.13 Condition and multi-orthogonalization
	5.2.14 Weak Gram-Schmidt
	5.2.14.1 Computational effort

	5.2.15 Residual
	5.2.16 Fitness for purpose

	5.3 Establishing inter-orthogonality
	5.3.1 Intermediate orthogonalization
	5.3.2 Post-iteration and retention of orthogonality
	5.3.3 Overlapping intervals
	5.3.4 Orthogonalization sequences
	5.3.5 Block Gram-Schmidt
	5.3.5.1 Parallel application

	5.3.6 Residual
	5.3.7 Orthogonalization order
	5.3.8 A posteriori orthogonalization
	5.3.9 Detection and removal of duplicates
	5.3.10 Butterfly orthogonalization
	5.3.11 Block weak Gram-Schmidt
	5.3.12 Butterfly results
	5.3.13 Regular residual updates
	5.3.14 Skipping intra-orthogonalization
	5.3.15 Reduction of interaction distance
	5.3.16 Large examples
	5.3.17 Shifting scheme
	5.3.18 Application-specific requirements
	5.3.19 Performance

	5.4 Upshot

	Conclusion and outlook
	Conclusion
	Outlook

	A Algorithms for elliptic functions
	A.1 Computation of Jacobi's elliptic functions
	A.1.1 The Algebraic-Geometric Mean

	A.2 Computation of inverse elliptic functions

	Index
	List of Algorithms
	List of Experiments
	List of Figures
	List of Tables
	Bibliography

