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Abstract
Solving differential-algebraic equations (DAEs) efficiently by means of appropriate

numerical schemes for time-integration is an ongoing topic in applied mathematics. In
this context, especially when considering large systems that occur with respect to many
fields of practical application effective computation becomes relevant. In particular,
corresponding examples are given when having to simulate network structures that
consider transport of fluid and gas or electrical circuits.

Due to the stiffness properties of DAEs, time-integration of such problems generally
demands for implicit strategies. Among the schemes that prove to be an adequate
choice are linearly implicit Rung-Kutta methods in the form of Rosenbrock-Wanner
(ROW) schemes. Compared to fully implicit methods, they are easy to implement and
avoid the solution of non-linear equations by including Jacobian information within
their formulation. However, Jacobian calculations are a costly operation. Hence,
necessity of having to compute the exact Jacobian with every successful time-step
proves to be a considerable drawback.

To overcome this drawback, a ROW-type method is introduced that allows for non-
exact Jacobian entries when solving semi-explicit DAEs of index one. The resulting
scheme thus enables to exploit several strategies for saving computational effort. Ex-
amples include using partial explicit integration of non-stiff components, utilizing more
advantageous sparse Jacobian structures or making use of time-lagged Jacobian infor-
mation. In fact, due to the property of allowing for non-exact Jacobian expressions,
the given scheme can be interpreted as a generalized ROW-type method for DAEs.
This is because it covers many different ROW-type schemes known from literature.

To derive the order conditions of the ROW-type method introduced, a theory is
developed that allows to identify occurring differentials and coefficients graphically
by means of rooted trees. Rooted trees for describing numerical methods were origi-
nally introduced by J.C. Butcher. They significantly simplify the determination and
definition of relevant characteristics because they allow for applying straightforward
procedures. In fact, the theory presented combines strategies used to represent ROW-
type methods with exact Jacobian for DAEs and ROW-type methods with non-exact
Jacobian for ODEs. For this purpose, new types of vertices are considered in order to
describe occurring non-exact elementary differentials completely. The resulting theory
thus automatically comprises relevant approaches known from literature. As a con-
sequence, it allows to recognize order conditions of familiar methods covered and to
identify new conditions.

With the theory developed, new sets of coefficients are derived that allow to realize
the ROW-type method introduced up to orders two and three. Some of them are con-
structed based on methods known from literature that satisfy additional conditions for
the purpose of avoiding effects of order reduction. It is shown that these methods can
be improved by means of the new order conditions derived without having to increase
the number of internal stages. Convergence of the resulting methods is analyzed with
respect to several academic test problems. Results verify the theory determined and
the order conditions found as only schemes satisfying the order conditions predicted
preserve their order when using non-exact Jacobian expressions.
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Zusammenfassung
Die effiziente Lösung differential-algebraischer Gleichungen (DAEs) mittels geeigne-

ter numerischer Verfahren zur zeitlichen Integration ist ein anhaltendes Thema in der
angewandten Mathematik. In diesem Zusammenhang wird eine effektive Berechnung
insbesondere im Fall zu betrachtender großer Systeme relevant, die in zahlreichen Fel-
dern der praktischen Anwendung vorkommen. Beispiele hierfür ergeben sich vor allem
bezüglich der Simulation von Netzwerk-Strukturen, die den Transport von Fluiden
und Gasen oder elektrische Schaltungen betrachten.

Bedingt durch die Steifheits-Eigenschaften von DAEs erfordert die Zeitintegration
solcher Probleme grundsätzlich implizite Methoden. Zu den Verfahren die sich als eine
geeignete Wahl erweisen zählen linear-implizite Runge-Kutta Methoden in der Form
von Rosenbrock-Wanner (ROW) Verfahren. Im Vergleich zu voll-impliziten Methoden
sind sie einfach zu implementieren und vermeiden eine Lösung nicht-linearer Gleichun-
gen, indem sie die Jacobi-Matrix in ihrer Formulierung berücksichtigen. Allerdings ist
die Berechnung der Jacobi-Matrix eine teure Operation. Daher erweist sich die Notwen-
digkeit der Ermittlung der exakten Jacobi-Matrix mit jedem erfolgreichen Zeitschritt
als ein großer Nachteil.

Um diesem Nachteil entgegen zu wirken wird ein ROW-Typ Verfahren vorgestellt,
das für die Berechnung semi-expliziter DAEs vom Index eins die Verwendung nicht-
exakter Einträge in der Jacobi-Matrix erlaubt. Das resultierende Verfahren ermöglicht
es somit verschiedene Strategien zur Reduzierung des Rechenaufwands auszunutzen.
Hierzu zählt unter anderem die Verwendung partieller expliziter Integration nicht-
steifer Anteile, der Einsatz vorteilhafterer dünn besetzter Strukturen der Jacobi-Matrix
oder die Nutzung zeitverzögerter Informationen. In der Tat kann das beschriebene
Verfahren aufgrund der Eigenschaft einer Betrachtung nicht-exakter Jacobi-Matrizen
als eine verallgemeinerte ROW-Typ Methode für DAEs interpretiert werden. Dies ist
darauf zurück zu führen, dass es zahlreiche verschiedene, aus der Literatur bekannte
ROW-Typ Verfahren beinhaltet.

Um die Ordnungsbedingungen der vorgestellten ROW-Typ Methode herzuleiten
wird eine Theorie entwickelt, die eine grafische Identifizierung auftretender Differen-
tiale und Koeffizienten mittels Wurzelbäume erlaubt. Wurzelbäume zur Beschreibung
numerischer Methoden wurden ursprünglich von J.C. Butcher eingeführt. Sie verein-
fachen die Bestimmung und Definition relevanter Eigenschaften erheblich, weil sie die
Anwendung unkomplizierter Prozeduren ermöglichen. In der Tat vereint die vorge-
stellte Theorie Strategien, die zur Darstellung von ROW-Typ Methoden mit exakter
Jacobi-Matrix für DAEs und ROW-Typ Methoden mit nicht-exakter Jacobi-Matrix
für ODEs geläufig sind. Zu diesem Zweck werden neue Knotentypen berücksichtigt
um auftretende nicht-exakte Differentiale vollständig zu beschreiben. Die resultieren-
de Theorie umfasst somit automatisch relevante, aus der Literatur bekannte Ansätze.
In der Folge ermöglicht sie es Ordnungsbedingungen enthaltener bekannter Methoden
zu erkennen und neue Bedingungen zu ermitteln.

Mit der entwickelten Theorie werden neue Koeffizientensätze hergeleitet, die es er-
lauben die vorgestellte ROW-Typ Methode bis zur Ordnung zwei und drei zu reali-
sieren. Einige von ihnen sind auf Basis von aus der Literatur bekannten Methoden
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konstruiert, die Zusatzbedingungen zum Zweck der Vermeidung von Effekten der Ord-
nungsreduktion erfüllen. Es wird gezeigt, dass diese Methoden mittels der neu her-
geleiteten Ordnungsbedingungen verbessert werden können ohne die Anzahl interner
Stufen erhöhen zu müssen. Die Konvergenz der resultierenden Methoden wird bezüg-
lich verschiedener akademischer Testprobleme analysiert. Die Ergebnisse bestätigen
die ermittelte Theorie und die gefundenen Ordnungsbedingungen, da nur jene Verfah-
ren die Ordnung unter Betrachtung nicht-exakter Jacobi-Matrizen erhalten, welche die
prognostizierten Ordnungsbedingungen erfüllen.
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1 Introduction

DAE Systems

Computing systems of differential-algebraic equations (DAEs) is an ongoing topic
in many fields of applied mathematics. DAEs occur whenever characteristics in sub-
jects such as physics, chemistry or engineering must be expressed via a combination
of differential equations and algebraic constraints. Examples range from describing
the behavior of moving objects, such as the movement of a mass in a pendulum, to
simulating complex applications, such as the transport of fluids in a network structure.
Further examples can be found regarding the description of chemical reactions or the
computation of electrical networks. Hence, DAEs have a significant meaning in many
applications of our everyday life. For a more general overview regarding the topic
of DAEs Simeon’s retrospective given in [70] can be recommended. Also, established
textbooks such as those by Brenan, Campbell and Petzold [5], Hairer and Wanner [24]
as well as Strehmel, Weiner and Podhaisky [81] deal with aspects of DAEs in detail.

Some DAEs are considered to be a limiting case of stiff ordinary differential equa-
tions (ODEs) because given stiffness properties become infinite [50]. For that reason,
many DAE problems can be computed by numerical schemes that are usually ap-
plied for solving stiff ODEs [13, 50]. The original idea of solving DAEs by means of
schemes originally constructed for ODEs is generally ascribed to Gear regarding his
presentation in [12] (see [5, 50]). In this context, due to stability reasons, an effective
time-integration generally requires for implicit or linearly implicit methods. Among
the schemes preferred are especially multistep methods such as backward differentia-
tion formulas (BDF) which count to the very first methods applied [5, 40, 50, 51, 52].

A BDF method of order five which is commonly used in engineering applications
is Petzold’s DASSL [81]. However, a problem of multi-step BDF methods is given by
the fact that they lose advantageous stability properties when having to realize and
apply schemes of higher order. In this context, the maximum order with respect to
A-stability of linear multi-step methods is restricted by two. This is a consequence of
the second Dahlquist barrier [81].

Besides BDF methods it is possible to apply implicit Runge-Kutta schemes in order
to solve stiff systems [24]. However, a significant drawback of implicit Runge-Kutta
methods is the necessity of having to solve a system of non-linear equation with every
time-step.

ROW-Type Methods

An alternative to using BDF and implicit RK schemes with respect to stiff differ-
ential equations is given by the application of ROW-type methods [33, 69, 34]. ROW
methods belong to the class of linearly implicit Runge-Kutta schemes which - contrary
to implicit Rung-Kutta methods - require for the solution of linear systems only, i.e.
they avoid having to solve non-linear equations. This can be generally achieved by
including Jacobian information within the formulation of these schemes directly [81].
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As a consequence, ROW-type methods are generally much easier to implement [24]. In
fact, ROW methods can be interpreted as diagonally implicit Runge-Kutta methods
with a fixed number of Newton iterations (one Newton iteration per stage instead of
considering iteration until convergence [24]). This leads usually to a loss of non-linear
stability properties (B-stability). However, their linear stability properties (A- and L-
stability) can be preserved. Hence, they often prove to be more efficient than implicit
Runge-Kutta methods [81].

The concept of ROW methods was introduced by Rosenbrock back in 1962/63 con-
sidering the solution of ODEs [65]. The idea of replacing the Jacobian by an expression
computed with respect to given initial values for the purpose of having to compute it
only once per successful time-step was suggested by Calahan in 1968 (i.e. using fy(y0)
instead of fy(gi) with gi = y0 +

∑
(αijkj)) [24]. Further, Wanner introduced further

coefficients in 1977 [89, 81].
A derivation of the order conditions required for realizing ROW-type methods can

be realized using Butcher’s theory of rooted trees that (inspired by the works of Merson
[45]) was originally introduced with respect to explicit one-step Runge-Kutta schemes
for ODEs [6, 7]. It allows for a convenient graphical representation of occurring ele-
mentary differentials and coefficients. A more detailed overview regarding the meaning
of rooted trees with respect to deriving Runge-Kutta methods and the important role
of Butcher regarding their derivation can be found in [8] and [44]. An extension of
ROW methods to DAE problems assumed to be of index one was introduced by Roche
in 1988 [64]. In this context, Roche extended the graphical representation via rooted
trees by including a second vertex in order to describe components which are related
to occurring algebraic components.

ROW-Type Methods for DAEs in Application

With respect to the solution of DAE systems, ROW-type methods prove to be a
good choice when having to simulate network structures. In this context, computing
the flow behavior of fluids within structures of open channels and closed pipes is among
familiar fields of application. For example, ROW methods are used for the purpose
of computing river flow in combination with the transport of sediments and soluble
substances in [63] and [73]. In [26] ROW-type methods are used in order to analyze the
effects of different strategies for space discretization when calculating river hydraulics.
In [74] ROW-type methods are considered to examine the influence of different coupling
mechanisms on performance and accuracy with respect to river flow simulations. An
application of ROW-type methods for the purpose of computing pipe flow problems is
described in [75]. Here, a network for water supply including tanks, pumps and valves
is regarded.

Modeling equations for computing pipe and channel flow problems are generally
given by hyperbolic conservation laws of mass and momentum. In network simu-
lations, corresponding partial differential equations (PDEs) are supplemented by al-
gebraic constraints in order to describe the mutual coupling of given single reaches.
Also, depending on the network structure and properties given, additional algebraic
equations are required for the purpose of modeling possibly occurring pump and valve
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components. Thus, the resulting mathematical problem then corresponds to a sys-
tem of partial differential-algebraic equations (PDAEs). In general, such systems are
solved by means of spatial semi-discretization using the method of lines (i.e. occurring
partial derivatives in space are approximated via appropriate strategies such as finite
differences). This strategy leads to a large DAE problem that, finally, can be solved by
appropriate integration schemes. With respect to demands given in order to solve such
problems, ROW-type methods proved to be quite effective, robust and stable [73].

A recent example of integrating ROW-type methods into the solution of DAE prob-
lems that describe network structures for fluid flow is given by the research project
EWave [53]. EWave was funded by the German Federal Ministry of Education and
Research (BMBF). Objective of this project was to realize a decision support manage-
ment system for applications in water supply. In this context, water works should be
provided by operating schemes for controllable components given within the network
such as pumps and valves. These operation plans were computed via optimization
programs that work on the basis of demand forecasts and simulation results given
with respect to the network structure considered. However, the network structure of
pressure zones considered as prototype region for realizing the EWave project counted
up to 15.000 pipe elements [32]. Hence, in order to support the water works with
operation plans in time (especially when taking into account the fact that there must
be additional time considered after the network simulation for running subsequent op-
timization tools in addition) flow conditions within these pipes needed to be computed
as fast as possible. For this purpose, the ROW-type method RODASP [72, 76] was
applied and proved to be very effective.

Aside from computing the behavior of fluids within network structures, the applica-
tion of ROW-type schemes to DAEs proved to be beneficial in other fields of practical
interest. For example, in [20] examples are given where ROW-type methods are ap-
plied in order to compute DAEs with respect to electrical circuit simulations. More
recently, the application of ROW-type methods with respect to DAE systems that
result when solving quasi-static problems in solid mechanics is considered in [25].

Non-Exact Jacobian Expressions

Despite their useful properties, a general drawback of ROW-type methods is given by
the necessity of having to compute the exact Jacobian with every successful time-step.
This is because determining the Jacobian numerically corresponds to an expensive
operation, especially when regarding the solution of large systems [24, 81]. In order to
overcome this problem, attempts can be found in literature that allow for ROW-type
methods with non-exact Jacobian entries. In this context, Steihaug and Wolfbrandt
derived so-called W methods in [71]. W methods correspond to ROW-type schemes
for ODEs that allow to replace the original Jacobian ∂f/∂y by arbitrary expressions.
However, the realization of corresponding methods of higher order requires to satisfy
large numbers of conditions. Therefore finding sets of coefficients becomes challenging
easily. One of the very few publications that deals with high-order W methods is given
by [55] where W methods of order four with six internal stages are presented.

To decrease the number of order conditions required, ROW-type schemes that are
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characterized by special choices of the Jacobian approximations are often considered.
In this context, suitable approximations such as representations of the Jacobian close
to the exact Jacobian are generally preferred in order to ensure stability [24, 67].
For this purpose, reusing the Jacobian of a previous time-step (i.e. applying time-
lagged Jacobian information) is among the strategies preferred. Reusing the Jacobian
is generally attributed to approximations of the form ∂f/∂y + O(h) [34]. It allows
to reduce computational effort as well as the number of order conditions required
[81]. Corresponding schemes were analyzed by Verwer et al. in [86, 87], Kaps and
Ostermann [34] or by Novati [47].

Note that there have been further realizations of ROW-type methods for ODEs
that exploit the possibility of non-exact or non-complete Jacobian representations in
order to reduce computational efforts. For example, Krylov techniques were applied
to ROW-type methods in [67] and [90]. They allow to realize so-called matrix-free
schemes that avoid explicit computation of the full Jacobian and to exploit sparsity
more advantageous in order to the solution of occurring linear systems [47, 90]. More
recently, ROW-Type schemes combined with Krylov techniques have been studied by
Tranquilli in [84] and [85].

Besides the application of Krylov techniques making use of approximate matrix
factorization (AMF) is a common practice, especially when considering the solution
of (time-dependent) PDEs. The general idea of AMF is to split the system matrix
occurring in linear systems to be solved into a sum of matrices. Compared to the
original system matrix the matrices resulting after this splitting might have a more
advantageous structure. The system matrix then is replaced by an approximation
based on this sum [27]. The application of AMF to ROW-type methods has been
recently studied especially by González-Pinto et al. [14, 15, 17, 18]. Note that a
general comparison of AMF and Krylov techniques is presented in [4].

The idea of AMF can also be applied to ROW-type methods in order to realize a
splitting into matrices that refer to stiff and non-stiff components. In this context,
by neglecting the matrices that correspond to non-stiff elements the linearly implicit
ROW-type method is reduced to an underlying explicit Runge-Kutta scheme. In fact,
corresponding realizations can be interpreted as a combination of (linearly) implicit
and explicit strategies, i.e. an IMEX approach [28]. IMEX is generally applied in
the context of Runge-Kutta methods when having to solve systems characterized by
a group of non-stiff and a group of stiff components. A special representation of such
strategies are partitioned ROW-type methods such as those presented by Rentrop in
[61]. Here, a special choice of equations given within an ODE system is interpreted to
be non-stiff and, therefore, solved via an explicit Runge-Kutta formulation while the
rest of equations is interpreted to be stiff and, therefore, solved via an linearly implicit
ROW formulation.

However, with respect to DAEs, ROW-type schemes that exploit strategies for using
non-exact Jacobian expressions are rare. In fact, one of the very few publications in this
context is given by Rentrop et al. in [62]. Here, a partitioned scheme is realized that
solves given differential equations explicitly via the underlying Runge-Kutta scheme
while algebraic constraints are computed linearly implicit. In several works Strehmel
and Weiner consider linearly implicit Runge-Kutta schemes and ROW-type methods
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that can be applied to DAEs and that allow for special choices of given Jacobian entries
[77, 79]. Finally, in [56] Rang derives ROW-type methods for DAEs of index one that
also include the order conditions introduced by Steihaug and Wolfbrandt with respect
to W methods for ODEs [71].

Motivation

Especially when having to compute large DAE systems, given options to save compu-
tational efforts via the use of non-exact Jacobian expressions seem restricted compared
to the possibilities given by ROW-type methods for ODEs that allow for arbitrary
Jacobian approximations. In fact, there seems to be no analysis regarding the require-
ments that must be considered when using arbitrary Jacobian entries in the context
of DAE systems. However, such methods could be promising as they might allow
to adapt solution strategies with respect to occurring stiffness properties within the
given system more appropriately. An example could be given by hyperbolic PDEs
that are characterized by stiff source terms [39]. When such problems are combined
with algebraic constraints, the solution after spatial semi-discretization yields a DAE
system with stiff components theoretically given just by the source terms and the al-
gebraic equations. Hence, a ROW-type scheme that combines properties of IMEX and
partitioning strategies in order to reduce the linearly implicit solution to these com-
ponents could be advantageous. In fact, ROW-type methods for DAEs that allows for
arbitrary Jacobian approximations should be the most adaptive and, therefore, should
offer some promising characteristics for the purpose of saving computational efforts
effectively.

First attempts of applying a corresponding scheme were presented at the beginning
of the given PhD project in [29]. However, back then, the requirements for realizing
and applying such a scheme were not clear. It took some time to recognize that
the excellent paper by Rang [56] just considered a combination of well-known order
conditions while the great paper by Rentrop et al. [62] introduced new (coupling)
conditions. As a consequence, realizing a ROW-type method for DAEs that allows for
arbitrary Jacobian entries must lead to additional conditions that were not described
in literature so far. First results that seem to verify this supposition were published as
part of the given thesis in [30] and [31]. Here, order conditions required when taking
into account arbitrary Jacobian entries with respect to differential parts of index-one
DAE systems were identified. For this purpose, a theory based on rooted trees was
considered.

The objective of the given dissertation is to supplement the results presented in
[30] by considering additional non-exact Jacobian entries with respect to algebraic
parts. In this context, a generalized ROW-type method is introduced that allows for
realizing different ROW-type schemes known from literature by choosing appropriate
Jacobian approximations. In order to describe characteristics of the resulting method,
an extended theory is presented that allows to identify the order conditions required for
implementation. For this purpose, rooted trees are constructed that enable to identify
occurring differentials and coefficients as well as order conditions graphically. This is
not only because rooted trees significantly ease the process of identifying properties
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and order conditions. It is because a corresponding theory with respect to ROW-
type methods for DAEs is missing in literature so far. In fact, the last comprehensive
analysis was given by Roche in [64] when defining ROW-type methods with exact
Jacobian for the solution of DAEs. In this context, a major objective when realizing
a corresponding theory is given by the challenge of preserving all the properties and
approaches known for schemes given in literature already. This means, procedures
described for example by Hairer and Wanner in [24] should still be recognizable and
valid.
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2 Preliminaries
This section presents general aspects and properties of a ROW-type method that is

characterized by non-exact Jacobian entries when applied to index-one DAE systems.
In this context, relevant issues with respect to semi-explicit DAEs assumed to be of
index one are repeated first. Afterwards, the formulation of the ROW-type scheme
considered for computing this class of problems is introduced. Finally, features of this
method and options for saving computational efforts are discussed.

2.1 Problem Formulation
The subsequently developed and analyzed ROW-type scheme is focused on solving

semi-explicit DAE systems of index one. Regarding the Kronecker canonical form, the
general formulation of such DAE systems reads

y′(x) = f(y(x), z(x)), y(x0) = y0 (2.1a)
0 = g(y(x), z(x)), z(x0) = z0 (2.1b)

with initial values y0, z0 assumed to be consistent, i.e. g(y0, z0) = 0. Equations
(2.1a) and (2.1b) represent differential and algebraic parts. They are characterized by
y : R → Rny , f : Rny × Rnz → Rny and z : R → Rnz , g : Rny × Rnz → Rnz where
given domains are allowed to be subsets of R. Functions f and g are considered to be
sufficiently differentiable.

In order to ensure that the system has (differential) index one the inverse of partial
derivatives gz(y(x), z(x)) is assumed to be existent and bounded in neighborhood of the
exact solution of (2.1). As a consequence, (2.1b) yields a locally unique solution of the
form z(x) = G(y(x)) due to the implicit function theorem. Hence, by inserting this ex-
pression into (2.1a) an ordinary differential system of the form y′(x) = f(y(x), G(y(x)))
can finally be generated [24, 64, 81].

Remark 2.1

• In general, differential function f within (2.1a) might allow for applying some
additive splitting into non-stiff components fN and stiff components fS such that

f = fN + fS . (2.2)

This assumption also includes the possibility of partitioning the differential part
given into non-stiff and stiff equations by regarding corresponding vectorized com-
ponents [30, 81].

• Problem formulation (2.1) corresponds to the autonomous case, i.e. the system
is assumed to be independent of explicit expressions x. This restriction is given
without loss of generality as explicit dependencies on x can be taken into account
by including the equation x′ = 1 [64].
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2.2 Scheme Formulation
For solving the semi-explicit index-one DAE system (2.1) efficiently, an altered for-

mulation of the original linearly implicit ROW scheme for DAEs introduced by Roche
[64] is considered below. The modified ROW-type method reads:

y1 = y0 +
s∑

i=1
biki, z1 = z0 +

s∑
i=1

bik
alg
i (2.3a)

(
ki

0

)
= h

(
f(vi, wi)
g(vi, wi)

)
+ h

i∑
j=1

γij

[
Ay Az

By Bz

] (
kj

kalg
j

)
(2.3b)

with

vi = y0 +
i−1∑
j=1

αijkj , wi = z0 +
i−1∑
j=1

αijkalg
j . (2.3c)

As for classical ROW methods, y1 and z1 denote numerical solutions with respect to
given differential and algebraic parts at x1 = x0 + h, i.e. after a single time-step of
size h. Terms ki and kalg

i correspond to increments. The number of internal stages is
defined by parameter s. Weights bi and coefficients αij as well as γij are real numbers
for i = 1, ..., s and j = 1, ..., i. As usual for ROW-type methods, αii = 0 and γii = γ
are used. This way, increments ki and kalg

i are computed via (2.3b) by solving a linear
system for each i = 1, ..., s with equal system matrices. After dividing the second line
of (2.3b) by h these system matrices read:[

I − γiihAy −γiihAz

−γiiBy −γiiBz

]
.

As a consequence, determining increments requires just one single LU-decomposition
within every step [64, 80].

In contrast to the original ROW method for DAEs defined in [64] that is restricted to
exact Jacobian representations, formulation (2.3) is characterized by replacing original
Jacobian entries (fy)0, (fz)0, (gy)0, (gz)0 by approximations Ay, Az, By, Bz, respec-
tively. In this context, sub-matrices Ay, Az and By are assumed to be arbitrary. Bz,
however, is assumed to be an arbitrary but regular sub-matrix. Regularity of Bz is
required to enable resolving for kalg

i when h → 0. Nevertheless, especially for stability
reasons Ay, Az and By, Bz should be approximations that are related to the original
entries (fy)0, (fz)0 and (gy)0, (gz)0 rather than arbitrary values.

Remark 2.2 Note that Strehmel and Weiner studied linearly implicit Runge-Kutta
methods for singularly perturbed problems and DAEs that theoretically cover the for-
mulation of ROW-type scheme (2.3) [77, 78, 79, 80]. In this context, method (2.3)
is introduced explicitly in [80]. However, there are several distinguishing features re-
garding contents of these references compared to the analyses presented in subsequent
sections. For example, in [80] there is no detailed derivation of order conditions or
sets of coefficients required to apply method (2.3). In fact, in their works Strehmel and
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Weiner generally do not consider schemes that are based on arbitrary Jacobian entries.
They usually consider the cases

• Ay = (fy)0 + O(h), Az = (fz)0 + O(h), By = (gy)0 + O(h), Bz = (gz)0 + O(h),

• Ay = 0, Az = 0, By = (gy)0 + O(h), Bz = (gz)0 + O(h),

• Ay = 0, Az = 0, By = arbitrary (especially By = 0), Bz = (gz)0 + O(h)

in order to describe relevant characteristics. For that reason, a detailed description
of order conditions that result when including arbitrary components Ay and Az is
generally missing. Also, strategies to identify order conditions by means of graphical
representation via rooted trees are not considered. Corresponding aspects, however, are
taken into account below.

2.3 Properties
ROW-type method (2.3) is characterized by allowing for non-exact Jacobian entries

when solving semi-explicit index-one DAE systems. Hence, it could be interpreted as a
W method for DAEs. W methods as originally introduced by Steihaug and Wolfbrandt
[71] correspond to ROW-type methods for ODEs that allow for non-exact, arbitrary
Jacobians by satisfying additional order conditions. In fact, Strehmel and Weiner refer
to formulation (2.3) as a W method in [80]. However, contrary to W methods for ODEs,
the ROW-type method presented is not allowed to consider arbitrary Jacobian entries
in general. At least sub-matrix Bz is restricted and needs to be regular. Moreover,
realizable versions of the scheme (2.3) seem to require for special choices of Bz that are
close to the original Jacobian entry (gz)0. For that reason, method (2.3) less correlates
with a W scheme regarding its original meaning. Instead, it should better be referred
to as a generalized ROW-type method for DAEs. This is because given possibilities
for choosing its Jacobian entries make it a class that covers a wide range of ROW-type
schemes for ODEs and DAEs known from literature. A detailed list of most relevant
schemes into which the given method turns automatically by choosing sub-matrices
Ay, Az, By and Bz appropriately is presented in Table 2.1 regarding the ODE case
and Table 2.2 regarding the DAE case.

Among schemes covered by ROW-type method (2.3) is the standard formulation
of explicit Runge-Kutta methods for ODEs and the original ROW method for ODEs
as described by Hairer and Wanner [23, 24], the W method for ODEs introduced by
Steihaug and Wolfbrand [71] as well as the ROW method for DAEs presented by Roche
[64]. Further schemes included are especially characterized by applying partial explicit
and partial implicit strategies in order to solve components assumed to be non-stiff and
stiff effectively. Corresponding schemes combine explicit Runge-Kutta formulations
and linearly implicit ROW formulations after separating components assumed to be
non-stiff and stiff via appropriate partitioning and splitting techniques. Among the
schemes regarding partitioning strategies for DAEs are the methods introduced by
Rentrop, Roche and Steinebach [62] as well as Strehmel and Weiner [77, 79]. They
generally assume given differential parts to be completely non-stiff and, thus, integrate
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Table 2.1: Schemes covered by the generalized ROW-type method (ODE case).
Problem Ay Az By Bz Ref.
y′ = f(y) 0 / / / [23]

y′ = f(y) (fy)0 / / / [24]

y′ = f(y) fy + O(h) / / / [34]

y′ = f(y) Ay / / / [71]

y′ = fN (y) + fS(y) (fS)y / / / [28](
y′

N

y′
S

)
=

(
fN (yN , yS)
fS(yN , yS)

) [
0 0
0 (fS)yS

]
/ / / [61]

Table 2.2: Schemes covered by the generalized ROW-type method (DAE case).
Problem Ay Az By Bz Ref.

y′ = f(y, z)
0 = g(y, z) (fy)0 (fz)0 (gy)0 (gz)0 [64]

y′ = f(y, z)
0 = g(y, z) 0 0 (gy)0 (gz)0 [62]

y′ = f(y, z)
0 = g(y, z) fy + O(h) fz + O(h) gy + O(h) gz + O(h) [78, 79]

y′ = f(y, z)
0 = g(y, z) 0 0 gy + O(h) gz + O(h) [78, 79]

y′ = f(y, z)
0 = g(y, z) 0 0 By gz + O(h) [77]

y′ = f(y, z)
0 = g(y, z) 0 0 0 gz + O(h) [77]

y′ = f(y, z)
0 = g(y, z) Ay Az (gy)0 (gz)0 [30]

y′ = fN (y, z) + fS(y, z)
0 = g(y, z) (fS)y fz (gy)0 (gz)0 [30]

y′ = fN (y, z) + fS(y, z)
0 = g(y, z) (fS)y (fS)z (gy)0 (gz)0 [29]
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them via underlying explicit Runge-Kutta formulations. Corresponding schemes are
realized within the generalized method (2.3) by setting Jacobian entries Ay and Az to
zero. This way, the linearly implicit ROW-type formulation automatically turns into
an explicit Runge-Kutta formulation for given differential parts.

Most of the methods listed in Table 2.1 and Table 2.2 enable to reduce computational
efforts by applying such strategies of partial explicit and partial implicit solution. In
this context, extended explicit integration of non-stiff components by underlying Rung-
Kutta formulations reduces the extent of costly implicit integration. It minimizes the
number of given Jacobian entries and, thus, speeds up computations by exploiting
sparser Jacobian structures. However, corresponding strategies can only be applied
when stiffness properties of occurring components are known in advance or when there
are appropriate applications for automatic stiffness detection implemented. In cases
where stiffness cannot be predicted or determined an implicit solution is inevitable.
Fortunately, computational efforts going along with required implicit solutions can
still be reduced when considering ROW-type methods. By satisfying additional or-
der conditions it is possible to apply time-lagged Jacobians, i.e. the information of
a previously computed Jacobian is reused for several time-steps. This strategy can
be interpreted as a compromise between having to compute the exact Jacobian with
every time-step or regarding arbitrary Jacobian entries (especially for setting most
of them equal to zero). In fact, even the number of order conditions that must be
satisfied ranges in between the number of conditions required for applying an exact
Jacobian and the number of conditions required for applying a non-exact, arbitrary Ja-
cobian. With respect to DAEs, corresponding ROW-type versions have been analyzed
by Strehmel and Weiner in [79, 80] assuming Ay = (fy)0 + O(h), Az = (fz)0 + O(h),
By = (gy)0 + O(h), Bz = (gz)0 + O(h).

Via generalized method (2.3), all these schemes and their strategies for reducing
computational efforts are now combined within one single, unifying ROW-type class.
Moreover, they can be easily realized just by choosing given Jacobian entries appro-
priately. In this context, when solving DAEs, the possibility of regarding arbitrary
Jacobian entries Ay and Az with respect to differential parts enables to exploit ad-
vantages of partial explicit and partial implicit integration more efficient than it is the
case for classical methods listed in Table 2.2. As classical methods generally assume
differential parts to be completely non-stiff or completely stiff, they lack the oppor-
tunity of using partial implicit integration when there are just few stiff components
present. They usually consider the cases Ay = 0, Az = 0 for overall explicit solution
and Ay = (fy)0, Az = (fz)0 or Ay = (fy)0 + O(h), Az = (fz)0 + O(h) for overall im-
plicit solution of the differential parts. However, when assuming arbitrary components
Ay and Az, advantages of much sparser Jacobian structures can be taken into account
in order to speed up computations. In fact, it enables to apply processes of partitioning
and splitting to all components of the differential parts freely and, thus, more flexible.
Corresponding versions of ROW-type methods for DAEs have been studied as part of
the given thesis first. Results were published in [30] assuming exact Jacobian entries
with respect to given algebraic parts, i.e. By = (gy)0 and Bz = (gz)0.

Different methods covered according to Table 2.1 and Table 2.2 had been derived in
literature just with respect to the special choices of Jacobian entries listed. For that
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reason, there is a general lack regarding a generalized and unifying theory that clarifies
their mutual relationships. In fact, considering the common graphical derivation of
order conditions via rooted trees, this disadvantage is shown in several references by
repeatedly used types of vertices (usually meager and fat nodes) that have different
meanings. As a consequence, it becomes difficult to apply these strategies for deriving
order conditions to methods that combine different properties of the schemes defined
in literature. For that reason, subsequent sections introduce a new theory for finding
order conditions with respect to the generalized ROW-type method (2.3) graphically
via rooted trees. The resulting theory includes and unifies correspondingly restricted
methods described within most of the references listed in Table 2.1 and Table 2.2.

Remark 2.3 Note that the theory presented in subsequent sections is restricted to the
case using exact Jacobian entries Bz = (gz)0. An extension to non-exact components of
Bz especially by assuming Bz = (gz)0 +O(h) has been derived during the realization of
the thesis given. However, its representation proves to be quite extensive and, therefore,
will not be detailed below.



13

3 Taylor Series via Rooted Trees
To derive a unifying theory that defines order conditions of the generalized ROW-

type method (2.3) Taylor expansions of the exact and the numerical solution must
be formulated. In general, they can be derived graphically using an algebraic theory
based on rooted trees. Within this section, strategies for constructing these trees are
introduced. Also, details for identifying corresponding elementary differentials and
coefficients are presented. In this context, Section 3.1 repeats the approach for defining
Taylor series with respect to the analytical solution. Section 3.2 then introduces the
approach for defining Taylor series with respect to the numerical solution.

3.1 Exact Solution

In order to describe Taylor series with respect to the exact solution of DAE sys-
tem (2.1) the algebraic theory based on rooted trees presented by Roche in [64] and
reformulated by Hairer and Wanner in [24] is considered below. For this purpose,
derivatives of the exact solution are presented first. Afterwards, rooted trees that
represent occurring elementary differentials are constructed. Finally, the Taylor series
with respect to the analytical solution is defined. As detailed in Section 3.2, corre-
sponding results form a basis for describing Taylor expansions with respect to the
numerical solution by method (2.3).

3.1.1 Derivatives

In order to determine the derivatives with respect to exact solutions of (2.1), alge-
braic parts according to (2.1b) are differentiated first. This yields 0 = gyy′ + gzz′ and
thus by considering y′ = f [24]:

z′ = (−g−1
z )gyf. (3.1)

As described in [64, 24], derivatives of DAE system (2.1) then result from differentiating
(2.1a) and (3.1) successively with respect to x. For this purpose, the condition

(−g−1
z )′u = (−g−1

z )(gzy((−g−1
z )u, f) + gzz((−g−1

z )u, (−g−1
z )gyf)). (3.2)

is used that follows from (A−1(x))′ = −A−1(x)A′(x)A−1(x) and the chain rule [24].

Remark 3.1 Within (3.2) a common notation is applied: To abbreviate partial deriva-
tives of higher order, they are written in the form of multi-linear mappings. For ex-
ample [24]:

fyz(u, v) represents
∑
j,k

∂2fi

∂yj∂zk
· ujvk.
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By applying the procedure described, derivatives regarding the differential parts of
(2.1) finally read [24]

y′ = f

y′′ = fyf + fz(−g−1
z )gyf

y′′′ = fyy(f, f) + fyfyf + fyz(f, (−g−1
z )gyf) + fzy((−g−1

z )gyf, f)
+ fz(−g−1

z )gyy(f, f) + fz(−g−1
z )gyfyf + fyfz(−g−1

z )gyf

+ fz(−g−1
z )gyfz(−g−1

z )gyf + fzz((−g−1
z )gyf, (−g−1

z )gyf)
+ fz(−g−1

z )gyz(f, (−g−1
z )gyf) + fz(−g−1

z )gzy((−g−1
z )gyf, f)

+ fz(−g−1
z )gzz((−g−1

z )gyf, (−g−1
z )gyf)

y′′′′ = ...

while derivatives regarding the algebraic parts of (2.1) become [24]

z′ = (−g−1
z )gyf

z′′ = (−g−1
z )gzy((−g−1

z )gyf, f) + (−g−1
z )gzz((−g−1

z )gyf, (−g−1
z )gyf)

+ (−g−1
z )gyy(f, f) + (−g−1

z )gyz(f, (−g−1
z )gyf) + (−g−1

z )gyfyf

+ (−g−1
z )gyfz(−g−1

z )gyf

z′′′ = ...

3.1.2 Trees and Differentials

Each summand within the previous differentiations of given differential and algebraic
parts represents an exact elementary differential. Obviously, occurring differentials be-
come increasingly complicated for derivatives of higher order. Hence, for convenience,
they are expressed graphically by tree structures. These trees must consist of two
different types of vertices. For this purpose, Roche [64] considered a meager vertex
( .. ) to represent the differential term f and a fat vertex ( .. ) to visualize the alge-
braic term (−g−1

z )g. Derivatives of f and derivatives of g are expressed by a new
vertex that is attached to a corresponding meager or fat vertex via a branch. In this
context, a branch followed by a new meager vertex corresponds to derivatives with
respect to differential component y, a branch followed by a new fat vertex corresponds
to derivatives with respect to algebraic component z.

Example 3.1
As shown in [64] and [24], elementary differentials for y′, y′′ and y′′′ explicitly ex-
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pressed in previous subsection can be described by trees as follows:

y′ = ..

y′′ = ... + ....

y′′′ = .... + .... + ..... + ..... + ..... + ..... + .....

+ ...... + ...... + ...... + ...... + .......

Elementary differentials for z′ and z′′ can be visualized by trees using:

z′ = ...

z′′ = ..... + ...... + .... + ..... + .... + .....

The first element of each tree is called the root. Hence, resulting structures are
referred to as rooted trees. In order to describe all rooted trees required for visualizing
elementary differentials of the exact solution, Roche [64] defined the set of differential-
algebraic rooted trees (DAT ).

Definition 3.1 Let DAT = DATy ∪ DATz (DATy ∩ DATz = ∅) denote the set of
differential-algebraic rooted trees. It is recursively defined by:

(a) τy = .. ∈ DATy, τz = ... ∈ DATz

(b) [t1, ..., tm, u1, ..., un]y ∈ DATy,
if t1, ..., tm ∈ DATy, u1, ..., un ∈ DATz

(c) [t1, ..., tm, u1, ..., , un]z ∈ DATz,
if t1, ..., tm ∈ DATy, u1, ..., un ∈ DATz and m + n ≥ 2

(d) [t1]z ∈ DATz,
if t1 ∈ DATy

[t1, ..., tm, u1, ..., un]y,z represent unordered (m+n)-tuples.

Remark 3.2 In item a) of Definition 3.1 the tree τz is redundant. It is theoretically
covered by [t1]z in item d) when using t1 = τy according to item a). However, denoting
τz explicitly allows to keep consistency with descriptions given in literature such as
Hairer and Wanner [24] or Roche [64].

Within Definition 3.1, τy and τz are the rooted trees that correspond to elementary
differentials of y′ and z′, respectively. They are the basis for constructing further trees
of subsets DATy and DATz. Elements of DATy correspond to elementary differentials
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resulting for derivatives of the differential parts, generally expressed via letter t. Ele-
ments of DATz correspond to elementary differentials resulting for derivatives of the
algebraic parts, generally expressed via letter u. Trees belonging to subset DATy are
characterized by a meager root. So, they are constructed by attaching a new meager
root to given sub-trees ti and ui, indicated by [.]y. Trees belonging to subset DATz

are characterized by a fat root. So, they are constructed by attaching a new fat root
to given sub-trees ti and ui, indicated by [.]z.

Example 3.2

..

t1

...

u1

are sub-trees that enable to construct trees such as

....

t = [t1, t1]y
....

t = [u1]y

.....

u = [u1, t1]z
......

u = [u1, u1]z

Remark 3.3 Within the exact solution, there are no elementary differentials existing
that include expressions of the form (−g−1

z )gz. Hence, there can be no tree structures
where a fat vertex is directly followed by another fat vertex via a single branch, i.e.
trees of the form u = [u1]z are not admissible [24].

Rooted trees required to describe all the elementary differentials that result for a
specific grade of differentiating y or z are characterized by the same number of meager
vertices. This property is used to assign a distinct order to every tree.

Definition 3.2 The order of a tree t ∈ DATy or u ∈ DATz is denoted by ρ(t) or
ρ(u), respectively, and corresponds to the number of its meager vertices [64] .

Remark 3.4 The order of trees describing elementary differentials for a specific grade
of differentiation equals this grade of differentiation.

Based on Definition 3.1 that describes rooted trees of DAT by recursive construc-
tion, corresponding elementary differentials can be identified distinctly via recursive
formulation as well [24, 64].

Definition 3.3 Rooted trees of the set DAT are recursively mapped to elementary
differentials F (t) and F (u) as follows:

(a) F (τy) = f , F (τz) = (−g−1
z )gyf

(b) F (t) = ∂m+nf
∂ym∂zn (F (t1), ..., F (tm), F (u1), ..., F (un)),

if t = [t1, ..., tm, u1, ..., un]y ∈ DATy

(c) F (u) = (−g−1
z ) ∂m+ng

∂ym∂zn (F (t1), ..., F (tm), F (u1), ..., F (un)),
if u = [t1, ..., tm, u1, ..., un]z ∈ DATz and m + n ≥ 2
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(d) F (u) = (−g−1
z )gyF (t1),

if u = [t1]z ∈ DATz

Due to the symmetry of partial derivatives, elementary differentials F (t) and F (u)
are well defined. This is because Definition 3.3 is unaffected by permutations of
t1, ..., tm, u1, ..., un [24]. However, for the same reason some differentials must occur
multiple times when deriving the differentiations to formulate Taylor expansions of the
exact solution. To determine these elementary differentials completely, the following
steps defined by Hairer and Wanner [24] can be applied for constructing corresponding
rooted trees.

Procedure 3.1 Considering all the rooted trees of an order q that belong to the subset
DATy or DATz and thus represent the elementary differentials required to express
derivatives of the same order with respect to differential or algebraic parts completely,
trees to describe all the elementary differentials for derivatives of order q + 1 result
from

i) attaching a new branch with τy to each given vertex,

ii) attaching a new branch with τz to each given vertex,

iii) splitting each fat vertex into two new fat vertices directly connected by a single
branch and attaching another branch with τy to the lower of these fat vertices,

iv) splitting each fat vertex into two new fat vertices directly connected by a single
branch and attaching another branch with τz to the lower of these fat vertices.

Example 3.3
The only tree of DATz that regards order q = 1 is z′ = ... . Based on this element,
all trees of the set DATz required for constructing z′′ (i.e. regarding order q = 2) of
the analytical solution are determined by using the steps i) to iv) of Procedure 3.1.
Resulting trees per step read:

i) .... , ....

ii) ..... , .....

iii) .....

iv) ......

Steps given in Procedure 3.1 follow directly from processes to determine derivatives
of y and z. Step i) represents differentiation of functions f and g with respect to y
and subsequent multiplication of the resulting terms by y′ = f . Step ii) represents
differentiation of functions f and g with respect to z and subsequent multiplication of
the resulting terms by z′ = (−g−1

z )gyf . Steps iii) and iv) represent summands that
occur for differentiations of (−g−1

z ) according to (3.2) [24].
In order to distinguish tree structures that occur multiple times, Roche [64] intro-

duced the concept of labeled trees.
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Definition 3.4 A tree t ∈ DATy or u ∈ DATz is called monotonically labeled if all
of its meager vertices are labeled by an integer i with 1 ≤ i ≤ ρ(t) or 1 ≤ i ≤ ρ(u),
respectively. Starting from the root, these integers must be monotonically increasing
following any branch of the tree considered. The set including all monotonically labeled
trees is denoted by LDAT , where LDAT = LDATy ∪ LDATz.

Remark 3.5 Trees occurring multiple times for completely describing a derivative of
specific order can be easily determined. They result by permuting integer labels over
all meager vertices of trees that are given according to Definition 3.1. However, valid
permutations must ensure that labels are monotonically increasing within every branch.

Example 3.4

..... can only be monotonically labeled using: ...1 ..
2

...

3

and ...1 ..
3

...

2

Hence, this tree occurs twice when deriving y′′′.

3.1.3 Taylor Expansion

As the set LDAT includes all trees required to determine derivatives of a specific or-
der, Taylor expansions of the exact solution can be described according to the following
Theorem.

Theorem 3.1 (Roche 1988, [64])
Derivatives for the exact solution of an index-one semi-explicit DAE system given by
(2.1) correspond to

y(q)(x0) =
∑

t∈LDATy

ρ(t)=q

F (t)(y0, z0) =
∑

t∈DATy

ρ(t)=q

α(t)F (t)(y0, z0)

z(q)(x0) =
∑

u∈LDATz
ρ(u)=q

F (u)(y0, z0) =
∑

u∈DATz
ρ(u)=q

α(u)F (u)(y0, z0)

with α(t) and α(u) the numbers of possible monotonic labellings of a tree in DAT
according to Remark 3.5. Hence, Taylor series of the exact solution read

y(x0+h) =
∑

t∈LDATy

F (t)(y0, z0)· hρ(t)

ρ(t)!
and z(x0+h) =

∑
u∈LDATz

F (u)(y0, z0)· hρ(u)

ρ(u)!
.

Proof See [24] and [64].

3.2 Numerical Solution
Based upon the approach for realizing the Taylor expansion with respect to the

exact solution of DAE system (2.1), this section describes how to derive Taylor series
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with respect to its numerical solution by ROW-type method (2.3). An algebraic theory
based on rooted trees is developed that combines and extends strategies introduced by
Roche [64] regarding ROW methods with exact Jacobian for DAEs as well as Steihaug
and Wolfbrandt [71] regarding W methods with non-exact Jacobian for ODEs. In this
context, the special case given by Bz = (gz)0 is considered below. Resulting derivatives
of differential and algebraic parts are considered first. Afterwards, new structures of
rooted trees are introduced in order to express their elementary differentials and coef-
ficients graphically. Finally, these elements are used to formulate the Taylor expansion
of the numerical solution explicitly.

3.2.1 Derivatives

Derivatives of numerical solutions y1 and z1 are generally determined by including
the information of rooted trees belonging to the set DAT . This approach is based
on strategies introduced by Roche [64] and similar to steps considered by Hairer and
Wanner [24] for finding derivatives for the numerical solution by ROW methods with
exact Jacobian for DAEs and W methods with non-exact Jacobian for ODEs. In fact,
the following derivation adapts the descriptions given in [24] in order to apply them
to the generalized ROW-type formulation (2.3) assuming Bz = (gz)0.

First of all, to determine differentiations of numerical solutions according to (2.3a),
unknowns y1 and z1 are considered to be functions of the step-size h. Regarding Taylor
expansions at h = 0, their derivatives read [24]:

y
(q)
1 (0) =

s∑
i=1

bi(ki)(q)(0) and z
(q)
1 (0) =

s∑
i=1

bi(kalg
i )(q)(0). (3.3)

To express these terms explicitly derivatives of given increments ki and kalg
i must be

determined. For ki derivatives result from Leibniz’ rule applied to the first equation
of (2.3b) while assuming h = 0. Leibniz’ rule is generally defined by [23]:

(hφ(h))(q)
∣∣∣
h=0

= q · (φ(h))(q−1)
∣∣∣
h=0

. (3.4)

Differentiating increments ki thus reads

(ki)(q)
∣∣∣
h=0

=

h

f(vi, wi) + Ay

i∑
j=1

γijkj + Az

i∑
j=1

γijkalg
j

(q)
∣∣∣∣∣∣∣
h=0

= q

f(vi, wi) + Ay

i∑
j=1

γijkj + Az

i∑
j=1

γijkalg
j

(q−1)
∣∣∣∣∣∣∣
h=0

or, equivalently,

(ki)(q) = qf(vi, wi)(q−1) + qAy

i∑
j=1

γij(kj)(q−1) + qAz

i∑
j=1

γij(kalg
j )(q−1). (3.5)
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For kalg
i derivatives are determined by dividing the second equation of (2.3b) by h first.

Assuming computations at h = 0 and exact Jacobian entries Bz = (gz)0, differentiation
leads to

0 = g(vi, wi)(q) + By

i∑
j=1

γij(kj)(q) + (gz)0

i∑
j=1

γij(kalg
j )(q). (3.6)

Derivatives of f in (3.5) and g in (3.6) can be determined using Faà di Bruno’s
formula [23, 24]. Purpose of this formula is to express these derivatives as a sum that
considers the information of rooted trees belonging to the set LDAT . In fact, only
trees of a the special subset SLDAT ⊂ LDAT need to be taken into account. In
this context, SLDAT = SLDATy ∪ SLDATz denotes the set of special monotonically
labeled trees. It is reduced to trees of the set LDAT that have no ramifications except
for the root. Also, fat vertices of these trees are allowed to occur as the root or in a
direct connection to the root exclusively.

With respect to derivatives of f given in (3.5) Faà di Bruno’s formula reads [24]:

(f(vi, wi))(q−1) =
∑

t∈SLDATy

ρ(t)=q

∂m+nf(vi, wi)
∂ym∂zn

(
v

(µ1)
i , ..., v

(µm)
i , w

(ν1)
i , ..., w

(νn)
i

)
. (3.7)

With respect to derivatives of g given in (3.6) Faà di Bruno’s formula reads [24]:

(g(vi, wi))(q) =
∑

u∈SLDATz

ρ(u)=q

∂m+ng(vi, wi)
∂ym∂zn

(
v

(µ1)
i , ..., v

(µm)
i , w

(ν1)
i , ..., w

(νn)
i

)

+ gz(vi, wi)w(q)
i . (3.8)

In both these formulas m corresponds to the number of sub-trees t1, ..., tm ∈ DATy

and n corresponds to the number of sub-trees u1, ..., un ∈ DATz that are used to con-
struct elements t = [t1, ..., tm, u1, ..., un]y ∈ SLDATy or u = [t1, ..., tm, u1, ...., un]z ∈
SLDATz. Based on Definition 3.2, given integer values µ1, ..., µm and ν1, ..., νn are the
orders of sub-trees t1, ..., tm characterized by a meager root and u1, ..., un characterized
by a fat root, respectively. As a consequence, it holds µ1 + ...+µm +ν1 + ...+νn = q−1
with respect to (3.7) and µ1 + ... + µm + ν1 + ... + νn = q with respect to (3.8) [24].
Besides, a significant difference between formulations (3.7) and (3.8) is the term with
gz additionally included in (3.8). It is considered as trees of the form u = [u1]z are not
defined for set DAT according to Definition 3.1. Hence, this expression required is not
covered by the given sum over all elements of SLDATz. It thus must be considered
separately [24].

For both expressions of Faà di Bruno’s formula occurring derivatives of vi and wi

which are defined by (2.3c) correspond to [24]:

v
(µξ)
i =

i−1∑
κξ=1

αiκξ
(kκξ

)(µξ) and w
(νξ)
i =

i−1∑
κm+ξ=1

αiκm+ξ
(kalg

κm+ξ
)(νξ). (3.9)
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Here, parameter ξ regards values 1, ..., m with respect to the derivatives v
(µξ)
i and

values 1, ..., n with respect to the derivatives w
(νξ)
i .

Derivatives of values vi and wi can now be inserted into (3.7) that defines differenti-
ations of function f . Afterwards, substituting resulting expressions of (3.7) into (3.5)
yields derivatives of ki. As all expressions have to be computed at h = 0 (cf. [24]) the
resulting formulation finally reads

(ki)(q) =q ·
∑

t∈SLDATy

ρ(t)=q

∂m+nf(y0, z0)
∂ym∂zn

(
v

(µ1)
i , ..., v

(µm)
i , w

(ν1)
i , ..., w

(νn)
i

)

+ q · Ay

i∑
j=1

γij(kj)(q−1) + q · Az

i∑
j=1

γij(kalg
j )(q−1). (3.10)

with v
(µξ)
i for ξ = 1, ..., m and w

(νξ)
i for ξ = 1, ..., n according to (3.9).

In order to determine a corresponding formulation with respect to kalg
i , derivatives

of values vi and wi must be inserted into (3.8) that defines differentiations of function
g. Afterwards, substituting resulting expressions of (3.8) into (3.6) and assuming all
expressions to be evaluated at h = 0 (cf. [24]) yields

0 =
∑

u∈SLDATz

ρ(u)=q

∂m+ng(y0, z0)
∂ym∂zn

(
v

(µ1)
i , ..., v

(µm)
i , w

(ν1)
i , ..., w

(νn)
i

)

+ (gz)0

i−1∑
j=1

αij(kalg
j )(q) + (gz)0

i∑
j=1

γij(kalg
j )(q) + By

i∑
j=1

γij(kj)(q) (3.11)

when considering gz(vi, wi) = (gz)0 as well as v
(µξ)
i for ξ = 1, ..., m and w

(νξ)
i for

ξ = 1, ..., n according to (3.9).
By introducing coefficients βij = αij + γij , expressions with gz given in the last line

of (3.11) can be summed up. The resulting term includes all expressions of (kalg
i )(q).

Writing this term to the left thus yields

−(gz)0

i∑
j=1

βij(kalg
j )(q) =

∑
u∈SLDATz

ρ(u)=q

∂m+ng(y0, z0)
∂ym∂zn

(
v

(µ1)
i , ..., v

(µm)
i , w

(ν1)
i , ..., w

(νn)
i

)

+ By

i∑
j=1

γij(kj)(q). (3.12)

By introducing (ωij)s
i,j=1 = B−1 with B = (βij)s

i,j=1 this formulation can be resolved
for given derivatives of kalg

i explicitly. For the convenience of subsequent definitions
it is advantageous to regard the given sum over all elements of SLDATz restricted to
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trees satisfying m + n ≥ 2. Therefore, the case m = 1, n = 0 is additionally excluded
from the sum over all elements of SLDATz. This finally leads to:

(kalg
i )(q) =(−g−1

z )0

i∑
j=1

ωij ·
∑

u∈SLDATz

ρ(u)=q

m+n≥2

∂m+ng(y0, z0)
∂ym∂zn

(
v

(µ1)
j , ..., v

(µm)
j , w

(ν1)
j , ..., w

(νn)
j

)

+ (−g−1
z )0

i∑
j=1

ωij · gy

j−1∑
k=1

αjk(kk)(q)

+ (−g−1
z )0

i∑
j=1

ωij · By

j∑
k=1

γjk(kk)(q). (3.13)

By inserting the formulations (3.10) and (3.13) into expressions of (3.3) differenti-
ations of numerical solutions y1 and z1 can be stated explicitly for lower orders. For
instance, assuming the realization of a second order scheme derivatives with respect
to differential parts read

y′
1 =

∑
bi · f (3.14a)

y′′
1 = 2 ·

∑
biαij · fyf

+ 2 ·
∑

biγij · Ayf

+ 2 ·
∑

biαijωjkαkl · fz(−g−1
z )gyf

+ 2 ·
∑

biαijωjkγkl · fz(−g−1
z )Byf

+ 2 ·
∑

biγijωjkαkl · Az(−g−1
z )gyf

+ 2 ·
∑

biγijωjkγkl · Az(−g−1
z )Byf (3.14b)

while derivatives with respect to algebraic parts are

z′
1 =

∑
biωijαjk · (−g−1

z )gyf

+
∑

biωijγjk · (−g−1
z )Byf (3.14c)

3.2.2 Trees and Differentials

As for the analytical solution, derivatives of higher order become increasingly com-
plicated. For this reason, the theory of rooted trees previously considered for describing
exact solutions should also be applied to express components of the numerical solu-
tion. However, the theory of rooted trees given in Section 3.1.2 requires to describe
exact elementary differentials that occur for derivatives of the analytical solution only.
In contrast, applications regarding the numerical solution have to consider additional
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non-exact elementary differentials plus given coefficients. For this purpose, the num-
ber of vertices and the strategies for constructing trees as considered by Roche [64] or
Hairer and Wanner [24] are not sufficient. Hence, the concept of rooted trees must be
extended.

Besides exact elementary differentials already known for the analytical solution,
additional non-exact differentials resulting for derivatives of the numerical solution are
a consequence of arbitrary Jacobian entries given within ROW-type method (2.3). In
this context, exact differentials are characterized by expressions that consider exact
derivatives fy, fz, gy and gz exclusively. By restricting to the case Bz = (gz)0, non-
exact differentials are characterized by including at least one non-exact component Ay,
Az or By.

The theory of rooted trees considered by Roche [64] covers rooted trees that are
able to describe exact differentials only. These trees are characterized by two types
of vertices: Meager vertices ( .. ) that describe exact differential components f and
fat vertices ( .. ) that describe exact differential components (−g−1

z )g. However, when
having to take into account additional non-exact differentials, these vertices are not
sufficient. This is because non-exact components Ay, Az and By cannot be expressed.
In order to completely describe all the elementary differentials occurring within the
numerical solution, it therefore is necessary to introduce further types of vertices.

A first extension regarding the set of vertices for constructing corresponding rooted
trees was already published as part of this thesis in [30]. However, the approach pre-
sented therein was restricted to arbitrary approximated Jacobian entries with respect
to given differential parts. This means, only possible non-exact entries Ay and Az

were taken into account while assuming exact Jacobian entries with respect to alge-
braic parts given, i.e. considering By = (gy)0 and Bz = (gz)0. For this purpose,
a meager vertex framed by a square ( ... ) was introduced to express the non-exact
differential components A.

Below, the approach considered in [30] will be further extended such that arbitrary
Jacobian entries By are included as well. Besides meager vertices with and without
frame and fat vertices this requires to introduce a fourth vertex type. For this pur-
pose, a fat vertex framed by a square ( ... ) is considered to describe resulting differential
components of the form (−g−1

z )B. Together with meager and fat vertices introduced
by Roche [64] to describe exact differential components f and (−g−1

z )g, respectively,
and meager vertices framed by a square introduced in [30] to describe non-exact dif-
ferential components A, this enables to express all elementary differentials that occur
for the numerical solution by ROW-type method (2.3) when assuming Bz = (gz)0.
Furthermore, strategies given in [64] and [30] remain preserved.

As for the theory considered in [30], derivatives of f and g are still characterized by
a branch leaving a meager or fat vertex, respectively, while derivatives of A are still
characterized by a branch leaving a meager vertex framed by a square. Analogously,
occurring derivatives of non-exact differential components B are now characterized by
a branch leaving the introduced fat vertex framed by a square. In this context, any
branch that is followed by a meager vertex with or without a square frame represents
derivatives with respect to y while a branch that is followed by a fat vertex with or
without a square frame represents derivatives with respect to z.
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Example 3.5

Differentials for derivatives y′
1 and y′′

1 given in (3.14a) and (3.14b) are represented by
..

f

...
fyf

....
Ayf

....
fz(−g−1

z )gyf

.....

fz(−g−1
z )Byf

.....

Az(−g−1
z )gyf

......

Az(−g−1
z )Byf

Differentials given for derivatives of z′
1 given in (3.14c) are represented by

...
(−g−1

z )gyf

....

(−g−1
z )Byf

By using four different types of vertices, rooted trees that describe exact differentials
(i.e. trees consisting of meager and fat vertices without frame exclusively) are still
realized by the rules presented in Definition 3.1 and Procedure 3.1. However, regarding
tree structures for non-exact differential components (i.e. trees including at least one
meager or fat vertex framed by a square) new definitions and procedures must be
formulated.

In [30] the set ADAT D was defined, i.e. the set of approximated differential-algebraic
rooted trees with respect to given differential parts. Elements of this set are rooted
trees which express all the non-exact differentials that occur for derivatives of the
numerical solution when assuming By = (gy)0 and Bz = (gz)0. They only cover trees
having meager vertices framed by a square. By considering a ROW-type scheme that
includes additional arbitrary Jacobian entries By, this set must be extended without
violating properties known for ADAT D. This new set will be denoted by ADAT DA.

Definition 3.5 Let ADAT DA = ADAT DA
y ∪ADAT DA

z (ADAT DA
y ∩ADAT DA

z = ∅)
denote the set of approximated differential-algebraic rooted trees with respect to given
differential and algebraic parts. Elements of ADAT DA include at least one meager
or fat vertex framed by a square that is followed by a single branch. Corresponding
structures represent an arbitrary approximation to Jacobian expressions fy, fz and gy

denoted by Ay, Az and By, respectively. Elements of ADAT DA
y are characterized by

a meager root with or without square frame. Elements of ADAT DA
z are characterized

by a fat root with or without square frame.

Remark 3.6

• ADAT DA corresponds to a superset. Let the set ADAT D cover all rooted trees
that exclusively include just meager vertices with a square frame besides standard
meager and fat vertices as defined in [30]. Analogously, let the set ADAT A

cover all rooted trees that exclusively include just fat vertices with a square frame
besides standard meager and fat vertices. Finally, let the set ADAT C cover
all rooted trees that exclusively include a combined number of meager and fat
vertices framed by a square besides standard meager and fat vertices. In this
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context, elements of ADAT D and ADAT A must include at least one framed
vertex while elements of ADAT C must include at least two framed vertices. Then
ADAT DA = ADAT D ∪ ADAT A ∪ ADAT C .

• The name ADAT DA is used instead of ADAT as it is not the most superior
superset possible. This is because it is restricted to the case Bz = (gz)0. So, it
excludes the possibility of regarding non-exact Jacobian entries Bz. The term
ADAT should be reserved for the set that also includes tree elements for the case
Bz ̸= (gz)0.

Analogously to elements of the set ADAT D introduced in [30], constructing rooted
trees of the set ADAT DA follows the rules known for realizing W methods applied to
ODEs as considered in [24]. This means that vertices with square frame can occur
within singly branched trees only. They will never be given in the center of a ramifi-
cation and they will never be given at the end of a branch. This is a consequence of
(3.10) regarding meager vertices with square frame and (3.13) regarding fat vertices
with square frame. Also, as known for ROW methods solving DAEs considered in [64],
fat vertices without square frame will never be given at the end of a single branch,
too. In addition, fat vertices with or without square frame can never be followed by
another fat vertex with or without square frame in a single branch.

Remark 3.7 With respect to W methods applied to ODEs Hairer and Wanner [24]
consider similar properties by defining the set TW . TW is the subset of P-trees with
singly-branched fat vertices and meager end-vertices. In this context, fat vertices con-
sidered by Hairer and Wanner correspond to meager framed vertices in this thesis.

In fact, due to the properties described, rooted trees belonging to the set ADAT DA

can be determined analogously to the way introduced in [30] regarding elements of
ADAT D. This means, all the elements of ADAT DA can be found by permuting
square frames over all singly branched vertices that are given for trees of the set DAT
which describe the exact solution. This permutation must include given roots as long
as these are singly branched, but it excludes the end-vertices of any branch. However,
contrary to the strategy introduced in [30] this procedure is not restricted to meager
vertices when determining elements of the set ADAT DA. As elements of ADAT DA

also consider approximations to original Jacobian entries gy, the process of permuting
a square frame must be applied to singly branched fat vertices also. In this context,
this strategy distinctly determines all elements of the subset ADAT DA

y based on trees
of the subset DATy and all elements of the subset ADAT DA

z based on trees of the
subset DATz.

Example 3.6

.... ∈ DATy yields trees ..... , ..... , ...... ∈ ADAT DA
y

.... ∈ DATz yields trees ..... , ..... , ...... ∈ ADAT DA
z
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As any element of the set DAT yields a number of elements of the set ADAT DA

by permutation, special subsets of trees denoted by Φ(t) and Φ(u) can be defined
in analogy to [30]. These can be used to describe specific properties of the given
ROW-type scheme.

Definition 3.6 Let Φ(t) = t, t(1), t(2), ... and Φ(u) = u, u(1), u(2), ... denote compila-
tions of rooted trees that are characterized by following properties:

a) Φ(t) includes t ∈ DATy and all elements t(1), t(2), ... ∈ ADAT DA
y that result

from permuting a square frame over all meager and fat vertices of t, excluding
those vertices that consist of ramifications or correspond to the end of a branch.

b) Φ(u) includes u ∈ DATz and all elements u(1), u(2), ... ∈ ADAT DA
z that result

from permuting a square frame over all meager and fat vertices of u, excluding
those vertices that consist of ramifications or correspond to the end of a branch.

Remark 3.8

• Regarding trees of the sets ADAT DA
y and ADAT DA

z that result from applying
the permutation strategies mentioned, denotation t(1), t(2), ... and u(1), u(2), ...
is used instead of t1, t2, ... and u1, u2, ..., respectively. This way, conflicts with
previous formulations are avoided where t1, t2, ... and u1, u2, ... denote given sub-
trees.

• An important property of compilations according to Definition 3.6 is that all
elements of a compilation Φ(t) or Φ(u) will be equal to the tree t ∈ DATy or
u ∈ DATz, respectively, when using the special approximations Ay = (fy)0,
Az = (fz)0 and By = (gy)0. So, these approximations correspond to replacing
meager and fat vertices with square frame by meager and fat vertices without
square frame.

Example 3.7

Φ( .. ) = ..

Φ( ... ) = ... , ....

Φ( ... ) = ... , ....

Φ( .... ) = .... , ..... , ..... , ......

Φ( ..... ) = ..... , ......

Φ( ...... ) = ...... , ....... , ....... , ........

The total of elements given in the sets DAT and ADAT DA graphically represents
all components that result for derivatives of numerical solutions by ROW-type scheme
(2.3) when assuming Bz = (gz)0. So, all occurring exact and non-exact differentials
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as well as their coefficients are distinctly expressed. For convenience of subsequent
definitions that explain how to assign each of these trees to corresponding differentials
and coefficients in detail, their general construction is recursively defined by the unify-
ing set CDAT DA. By including all elements of DAT and ADAT DA, the construction
rules defined for the set CDAT DA enable to find all trees required to describe deriva-
tives of the numerical solution directly. Hence, there is no need to determine elements
of the set DAT based on Definition 3.1 in a first step before knowing corresponding
elements of ADAT DA by permutation.

Definition 3.7 Let CDAT DA = CDAT DA
y ∪CDAT DA

z (CDAT DA
y ∩CDAT DA

z = ∅)
denote the set of combined differential algebraic rooted trees with respect to differ-
ential and algebraic parts characterized by CDAT DA = DAT ∪ ADAT DA (DAT ∩
ADAT DA = ∅). The set is recursively defined by:

(a) τy = .. ∈ CDAT DA
y , τz = ... ∈ CDAT DA

z

(b) [t1, ..., tm, u1, ..., un]y ∈ CDAT DA
y ,

if t1, ..., tm ∈ CDAT DA
y , u1, ..., un ∈ CDAT DA

z

(c) [t1]ỹ ∈ CDAT DA
y ,

if t1 ∈ CDAT DA
y

(d) [u1]ỹ ∈ CDAT DA
y ,

if u1 ∈ CDAT DA
z

(e) [t1, ..., tm, u1, ..., un]z ∈ CDAT DA
z ,

if t1, ..., tm ∈ CDAT DA
y , u1, ..., un ∈ CDAT DA

z and m + n ≥ 2

(f) [t1]z ∈ CDAT DA
z ,

if t1 ∈ CDAT DA
y

(g) [t1]z̃ ∈ CDAT DA
z ,

if t1 ∈ CDAT DA
y

[t1, ..., tm, u1, ..., un]y,ỹ,z,z̃ represent unordered (m+n)-tuples.

Remark 3.9

• Items a) to f) include the construction of the set CDAT D described by Definition
7 in [30]. So, the set CDAT DA is a direct extension of the set CDAT D by
including elements of the subsets ADAT A and ADAT C according to the first
item of Remark 3.6 via item g). Hence, it follows CDAT DA = CDAT D ∪
ADAT A ∪ ADAT C .

• Items a) and b) as well as items e) and f) given in Definition 3.7 include items
a) to d) of Definition 3.1. So, these items are responsible for realizing trees that
represent the exact solution when t1, ..., tm ∈ DATy and u1, ..., un ∈ DATz.
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• The name CDAT DA is used instead of CDAT as it is not the most superior
superset possible. This is because it is restricted to the case Bz = (gz)0. So, it
excludes the possibility of regarding non-exact Jacobian entries Bz. The term
CDAT should be reserved for the set that also includes tree elements for the case
Bz ̸= (gz)0.

• By Definition 3.1 dealing with set DAT and Definition 3.7 dealing with set
CDAT DA it holds ADAT DA = CDAT DA\DAT .

• CDAT DA
y = DATy ∪ ADAT DA

y and CDAT DA
z = DATz ∪ ADAT DA

z .

• Compilations Φ(t) and Φ(u) according to Definition 3.6 are subsets of CDAT DA
y

and CDAT DA
z , respectively.

• In item a) of Definition 3.7 the tree τz is redundant. It is theoretically covered
by [t1]z in item f) when using t1 = τy according to item a). However, denoting
τz explicitly allows to keep consistency with descriptions given in literature such
as Hairer and Wanner [24] or Roche [64].

Regarding graphical representation, [.]y denotes attaching a meager root and [.]z
denotes attaching a fat root to all sub-trees given within brackets by a correspond-
ing number of branches. This corresponds to the approach known for constructing
elements of the set DAT according to [24, 64]. Besides, [.]ỹ denotes attaching a mea-
ger root framed by a square as known for constructing elements of the set ADAT D

according to [30]. Analogously, [.]z̃ denotes attaching a fat root framed by a square,
corresponding to the new type of vertices introduced.

Example 3.8

Let t1 = .. , t2 = .... , u1 = ... be given sub-trees.

[t1, t1]y = ....

[u1]ỹ = .....

[t1, u1]z = .....

[t2]z̃ = ......

To be consistent with theories and procedures defined in literature, working with
tree structures of the set CDAT DA that include new vertices requires to redefine the
order term according to Definition 3.2.

Definition 3.8 The order of a tree t ∈ CDAT DA
y or u ∈ CDAT DA

z is denoted by ρ(t)
or ρ(u), respectively, and corresponds to the number of all its meager vertices that are
given with or without square frame.
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Each tree of a specific order q that belongs to the set CDAT DA distinctly represents
an elementary differential that results for derivatives of the numerical solution regard-
ing the same order. In this context, any tree without framed vertices corresponds to
trees of the set DAT according to Definition 3.1. Therefore, these trees describe exact
differentials as given in Definition 3.3. However, any tree including at least one framed
vertex corresponds to a non-exact differential. As the definition of trees belonging to
the unifying set CDAT DA is given by recursive construction according to Definition
3.7 all the corresponding exact and non-exact elementary differentials that result for
derivatives of the numerical solution can be defined by recursive construction as well.

Definition 3.9 Rooted trees of the set CDAT DA are recursively mapped to elementary
differentials F (t) and F (u) as follows:

(a) F (τy) = f , F (τz) = (−g−1
z )gyf

(b) F (t) = ∂m+nf
∂ym∂zn (F (t1), ..., F (tm), F (u1), ..., F (un)),

if t = [t1, ..., tm, u1, ..., un]y ∈ CDAT DA
y

(c) F (t) = AyF (t1),
if t = [t1]ỹ ∈ CDAT DA

y

(d) F (t) = AzF (u1),
if t = [u1]ỹ ∈ CDAT DA

y

(e) F (u) = (−g−1
z ) ∂m+n

∂ym∂zn (F (t1), ..., F (tm), F (u1), ..., F (un)),
if u = [t1, ..., tm, u1, ..., un]z ∈ CDAT DA

z and m + n ≥ 2

(f) F (u) = (−g−1
z )gyF (t1),

if u = [t1]z ∈ CDAT DA
z

(g) F (u) = (−g−1
z )ByF (t1),

if u = [t1]z̃ ∈ CDAT DA
z

Remark 3.10

• Items a) to g) within Definition 3.9 match to items a) to g) within Definition
3.7, i.e., a rooted tree given according to an item in Definition 3.7 yields the
elementary differential according to the same item in Definition 3.9.

• Items a) and b) as well as items e) and f) of Definition 3.9 include items a) and
b) as well as c) and d) of Definition 3.3.

• Items a) to f) of Definition 3.9 include items a) to f) of Definition 9 in [30].

As for Definition 3.3, all resulting elementary differentials F (t) and F (u) are well de-
fined as Definition 3.9 is unaffected by permutations of t1, ..., tm, u1, ..., un. This is due
to the symmetry of partial derivatives. However, for the same reason some differentials
will occur multiple times when deriving differentiations to formulate Taylor expansions
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of the numerical solution. In order to determine all occurring exact and non-exact el-
ementary differentials required for defining Taylor expansions completely, the steps
defined by Hairer and Wanner [24] according to Procedure 3.1 can be supplemented.
In this context, the property that all elements of the set CDAT DA = DAT ∪ADAT DA

are generally based on elements of the set DAT is used. First, the approach for finding
elements of the set DAT is applied to describe exact differentials. Afterwards, elements
to describe non-exact differentials result from applying a suitable permutation along
singly branched vertices.

Procedure 3.2 Considering all the rooted trees of an order q that belong to subset
DATy or DATz and thus represent the elementary differentials to express derivatives
of the same order with respect to the analytical solution, trees of the subset CDAT DA

y

or CDAT DA
z to describe all the exact and non-exact differentials for derivatives of the

numerical solution with respect to the order q + 1 completely result from

i) attaching a new branch with τy to each given vertex,

ii) attaching a new branch with τz to each given vertex,

iii) splitting each fat vertex into two new fat vertices directly connected by a single
branch and attaching another branch with τy to the lower of these fat vertices,

iv) splitting each fat vertex into two new fat vertices directly connected by a single
branch and attaching another branch with τz to the lower of these fat vertices,

v) permuting a square frame over all inner vertices of given single branches for the
trees constructed by steps i) - iv), including their singly branched roots.

Example 3.9
The only tree of DATz that regards order q = 1 is z′ = ... . Based on this element,
all trees of the set CDAT DA

z required for constructing z′′ (i.e. regarding order q = 2)
of the numerical solution are determined by using the steps i) - v) of Procedure 3.2.
Resulting trees per step read:

i) .... , ....

ii) ..... , .....

iii) .....

iv) ......

v)

..... , ..... , ...... (permuted trees of step i))

...... , ...... , ...... , ...... , ....... , ....... , ....... , ........ (permuted trees of step ii))

...... (permuted trees of step iii))

....... , ....... , ........ (permuted trees of step iv))
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Obviously, steps i) - iv) are the same as in Procedure 3.1 regarding trees for exact
differentials represented by elements of the sets DATy and DATz. Just permutations
with respect to singly branched inner vertices and roots must be considered in order
to determine all the missing elements for describing corresponding non-exact differen-
tials which are represented by elements of the sets ADAT DA

y and ADAT DA
z . Hence,

supplementing Procedure 3.1 by step v) is sufficient to define an approach that finds
all rooted trees of the unifying set CDAT DA in order to describe components which
result for derivatives of the numerical solution by generalized ROW-type scheme (2.3)
completely, at least as long as Bz = (gz)0 is satisfied.

Analogously to definitions regarding the derivation of exact solutions, some of the
rooted trees must occur multiple times due to the symmetry of partial derivatives. In
order to differentiate these trees distinctly, the concept of labeled trees considered in
Definition 3.4 with respect to elements of the set DAT is also applied to elements of
the set CDAT DA.

Definition 3.10 LCDAT DA denotes the set of monotonically labeled rooted trees of
CDAT DA with LCDAT DA = LCDAT DA

y ∪ LCDAT DA
z . Elements t ∈ LCDAT DA

y

and u ∈ LCDAT DA
z are characterized by integer labels i with 1 ≤ i ≤ ρ(t) and

1 ≤ i ≤ ρ(u). Labels are given for each meager vertex with and without frame and
increase monotonically for every branch starting from the root.

Example 3.10

........

can be monotonically labeled by

......

3

...
1

..

2

, ......

1

...
2

..

3

, ......

2

...
1

..

3

Remark 3.11

• It holds LCDAT DA = LDAT ∪LADAT DA, with LDAT covering monotonically
labeled trees of the set DAT according to Definition 3.4 and LADAT DA covering
monotonically labeled trees of the set ADAT DA.

• Definition 3.10 regarding elements of CDAT DA is the same as for Definition 10
in [30] regarding elements of CDAT D. However, new trees are included that are
characterized by framed fat vertices, i.e. trees belonging to the subset resulting
for ADAT DA\ADAT D with ADAT DA according to Definition 3.5 and ADAT D

according to Definition 5 in [30].

Note that labeling of trees t ∈ LDATy and u ∈ LDATz according to Definition
3.4 (originally defined in [64]) is adopted by every element of corresponding subsets
Φ(t) and Φ(u). Considering Bz = (gz)0, this ensures that for special approximations
Ay = (fy)0, Az = (fz)0 and By = (gy)0 all elements of Φ(t) and Φ(u) will become
equal to elements t ∈ LDATy and u ∈ LDATz, respectively, and therefore represent
the same exact differential.
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Example 3.11

.....

3

..
1

..

2

u ∈ LDATz

yields .....

3

...
1

..

2

,
u1 ∈ LDAT DA

z

......

3

..
1

..

2

,
u2 ∈ LDAT DA

z

......

3

...
1

..

2

u3 ∈ LDAT DA
z

Φ(u) = {u, u1, u2, u3}

3.2.3 Coefficients

Trees of the set CDAT DA do not just identify occurring elementary differentials
with respect to derivatives of the numerical solution by generalized ROW-type scheme
(2.3) when assuming Bz = (gz)0. They are also used to identify coefficients. In this
context, coefficients consisting of values αij , γij and ωij are considered separately from
integer coefficients. They are formulated similar to the coefficients described by Hairer
and Wanner [24]. As for elementary differentials, each tree then distinctly represents a
special combination of coefficients. Their construction is given by recursive definitions
as well.

Definition 3.11 Let ϕi(t) and ϕi(u) be the coefficients occurring in front of elemen-
tary differentials for increment derivatives of generalized ROW-type method (2.3) as-
suming Bz = (gz)0. Based on trees of the set CDAT DA, constructing ϕi(t) and ϕi(u)
is recursively defined by:

(a) ϕi(τy) = 1, ϕi(τz) =
∑

ωijαjk

(b) ϕi(t) =
∑

αiκ1 · ... · αiκm
· αiκm+1 · ... · αiκm+n

·
ϕκ1(t1) · ... · ϕκm(tm) · ϕκm+1(u1) · ... · ϕκm+n(un)

if t = [t1, ..., tm, u1, ..., un]y ∈ CDAT DA
y

(c) ϕi(t) =
∑

γiκ · ϕκ(t1)
if t = [t1]ỹ ∈ CDAT DA

y

(d) ϕi(t) =
∑

γiκ · ϕκ(u1)
if t = [u1]ỹ ∈ CDAT DA

y

(e) ϕi(u) =
∑

ωij · αjκ1 · ... · αjκm · αjκm+1 · ... · αjκm+n ·
ϕκ1(t1) · ... · ϕκm(tm) · ϕκm+1(u1) · ... · ϕκm+n(un)

if u = [t1, ..., tm, u1, ..., un]z ∈ CDAT DA
z , m + n ≥ 2

(f) ϕi(u) =
∑

ωij · αjκ · ϕκ(t1)
if u = [t1]z ∈ CDAT DA

z

(g) ϕi(u) =
∑

ωij · γjκ · ϕκ(t1)
if u = [t1]z̃ ∈ CDAT DA

z

Given sums run over all j, κ, κ1, ..., κm, κm+1, ..., κm+n.
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Example 3.12

...... yields ϕi(t) =
∑

αijαikωklγlm

Remark 3.12

• Items a) to g) within Definition 3.11 match to items a) to g) within Definition
3.7, i.e., a rooted tree given according to an item in Definition 3.7 yields the
coefficients according to the same item in Definition 3.11.

• Items a) to g) of Definition 3.11 include items a) to f) of Definition 11 in [30].
In this context, ϕi(τy) within item a) and items b) to e) of Definition 3.11 cover
the same items of Definition 11 in [30] directly. However, the element ϕi(τz)
as well as item f) of Definition 11 in [30] require to assume By = (gy)0 and to
take into account βij = αij + γij as well as (ωij)s

i,j=1 = B−1 with B = (βij)s
i,j=1.

Under these conditions Definition 3.11 yields ϕi(τz) and item f) of Definition
11 in [30] when summing up ϕi(τz) with item g) (regarding ϕk(t1) = ϕk(τy)) and
when summing up item f) with item g), respectively.

Definition 3.12 Let γ(t) and γ(u) be the integer coefficients occurring in front of ele-
mentary differentials for increment derivatives of generalized ROW-type method (2.3)
assuming Bz = (gz)0. Based on trees of the set CDAT DA, constructing γ(t) and γ(u)
is recursively defined by:

(a) γ(τy) = 1, γ(τz) = 1

(b) γ(t) = ρ(t) · γ(t1) · ... · γ(tm) · γ(u1) · ... · γ(un)
if t = [t1, ..., tm, u1, ..., un]y ∈ CDAT DA

y

(c) γ(t) = ρ(t) · γ(t1)
if t = [t1]ỹ ∈ CDAT DA

y

(d) γ(t) = ρ(t) · γ(u1)
if t = [u1]ỹ ∈ CDAT DA

y

(e) γ(u) = γ(t1) · ... · γ(tm) · γ(u1) · ... · γ(un)
if u = [t1, ..., tm, u1, ..., un]z ∈ CDAT DA

z , m + n ≥ 2

(f) γ(u) = γ(t1)
if u = [t1]z ∈ CDAT DA

z

(g) γ(u) = γ(t1)
if u = [t1]z̃ ∈ CDAT DA

z

ρ(t) and ρ(u) are the orders of trees t ∈ CDAT DA
y and u ∈ CDAT DA

z .

Example 3.13

...... yields γ(t) = 3



34 3 Taylor Series via Rooted Trees

Remark 3.13

• Items a) to g) within Definition 3.12 match to items a) to g) within Definition
3.7, i.e., a rooted tree given according to an item in Definition 3.7 yields the
integer coefficients according to the same item in Definition 3.12.

• Items a) to f) of Definition 3.12 include items a) to f) of Definition 12 in
[30]. This is because the integer coefficients are not affected when assuming
By ̸= (gy)0. Just item g) must be additionally taken into account.

3.2.4 Taylor Expansions

Based on Definition 3.9 for constructing elementary differentials, Definition 3.11
for determining coefficients and Definition 3.12 for finding integer coefficients of trees
resulting for the combining set CDAT DA according to Definition 3.7, derivatives of
increments ki and kalg

i can be formulated explicitly regarding monotonically labeled
elements of the set LCDAT DA defined in Definition 3.10. In this context, the graph-
ical representation of characteristics via rooted trees as well as resulting definitions
significantly simplify the formulation of Taylor expansions with respect to numerical
solutions by generalized ROW-type method (2.3) when assuming Bz = (gz)0.

Theorem 3.2 Derivatives of increments ki and kalg
i given with respect to generalized

ROW-type method (2.3) when assuming Bz = (gz)0 read

(ki)(q) =
∑

t∈LCDAT DA
y

ρ(t)=q

γ(t)ϕi(t)F (t)(y0, z0)

(kalg
i )(q) =

∑
u∈LCDAT DA

z
ρ(u)=q

γ(u)ϕi(u)F (u)(y0, z0)

with elementary differentials and coefficients according to Definitions 3.9, 3.11 and
3.12.

Proof Analogously to ROW methods for DAEs by induction on q for (3.10) and
(3.13) and regarding resulting summations afterwards as described in [24].

Remark 3.14 Theorem 3.2 is given analogously to Theorem 4.6 in [24] regarding
classical ROW methods for DAEs with exact Jacobian as well as Theorem 2 in [30]
regarding generalized ROW-type methods for DAEs with arbitrary approximations to
Jacobian entries restricted to its differential components, i.e. assuming arbitrary Ay

and Az but By = (gy)0 and Bz = (gz)0. However, it refers to a superior set of rooted
trees.

Based on Theorem 3.2 derivatives of the numerical solution as well as Taylor expan-
sions given with respect to the generalized ROW-type method (2.3) when assuming
Bz = (gz)0 can finally be expressed by following Theorem 3.3.
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Theorem 3.3 Derivatives for the numerical solution of an index-one semi-explicit
DAE system given by (2.1) using generalized ROW-type method (2.3) with Bz = (gz)0
correspond to

y
(q)
1

∣∣∣
h=0

=
∑

t∈LCDAT DA
y

ρ(t)=q

γ(t) ·
s∑

j=1
biϕi(t)F (t)(y0, z0)

z
(q)
1

∣∣∣
h=0

=
∑

u∈LCDAT DA
z

ρ(u)=q

γ(u) ·
s∑

j=1
biϕi(u)F (u)(y0, z0)

with elementary differentials and coefficients according to Definition 3.9, 3.11 and
3.12. Hence, Taylor expansions of the numerical solution with Bz = (gz)0 read

y1(x0 + h) =
∑

t∈LCDAT DA
y

ρ(t)=q

γ(t) ·
s∑

j=1
biϕi(t)F (t)(y0, z0) · hρ(t)

ρ(t)!

z1(x0 + h) =
∑

u∈LCDAT DA
z

ρ(u)=q

γ(u) ·
s∑

j=1
biϕi(u)F (u)(y0, z0) · hρ(u)

ρ(u)!
.

Proof In analogy to the proof of Theorem 3.1.
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4 Consistency, Convergence and Stability
Reliable schemes for time integration require to be consistent, convergent and stable.

In this context, there are relevant general results with respect to one-step methods for
solving semi-explicit DAEs of index one present in literature. Corresponding findings
can also be applied to ROW-type method (2.3). Hence, the given section recalls some
general aspects regarding the expected orders of consistency and convergence first.
Afterwards, order conditions required to achieve a specific order of consistency by
ROW-type method (2.3) when assuming Bz = (gz)0 are detailed. For that purpose,
the theory of rooted trees previously established is utilized. Finally, some general
remarks with respect to stability properties are considered.

4.1 General Aspects
ROW-type method (2.3) corresponds to the general class of one-step schemes for

DAEs defined and analyzed by Deuflhard, Hairer and Zugck [10]:

yn+1 = yn + h · F(yn, zn, h) (4.1a)
zn+1 = G(yn, zn, h). (4.1b)

Hence, certain properties of method (2.3) can be determined by considering results pre-
sented in [10], even though it is characterized by non-exact Jacobian approximations.
This particularly means that the definition with respect to the order of consistency
given by Roche in [64] can be applied.

Definition 4.1 (Roche 1988, [64])
A method of the form (4.1) is consistent of order p if

y(x0 + h) − y1 = O(hp+1) and z(x0 + h) − z1 = O(hp)

with y1, z1 being the numerical solutions and y, z being the exact solutions at x0 + h.

The order of convergence with respect to the limit case h → 0 is fixed due to the
Global Convergence Theorem I introduced by Deuflhard et al. [10, 62].

Theorem 4.1 (Deuflhard et al. 1987, [10])
For solving semi-explicit DAE systems (2.1) with consistent initial values, let the gen-
eralized one-step method (4.1) be applied. If the method is characterized by

a) consistency order p, and

b)
∥∥∥ ∂G(y,z,h=0)

∂z

∥∥∥ ≤ α < 1 in a neighborhood of the solution,

then, the one-step method yields order of convergence p. This means, for fixed x =
x0 + n · h it follows

yn − y(x) = O(hp) and zn − z(x) = O(hp)

with yn and zn being the numerical solutions of given differential and algebraic parts
after having applied (4.1) n times.
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Proof See [10].

Remark 4.1

• A necessary condition for applying Theorem 4.1 is that |R(∞)| < 1 is satisfied,
with R(z̃) being the stability function of the one-step method used. This fol-
lows from aspect b) in Theorem 4.1 which is called contractivity condition with
contractivity number α [10].

• According to Roche [64] it holds α = R(∞) directly for ROW methods that solve
DAEs by means of exact Jacobian entries. In this context, R(z̃) is the stability
function of the ROW method applied to the Dahlquist test equation y′ = λy with
y(0) = 1, λ ∈ C and z̃ = hλ.

4.2 Consistency
Order conditions that are required to achieve a specific order of consistency can be

derived by using the theory of rooted trees. In this context, conditions for realizing
schemes up to order three are shown in detail below. Also, propositions to reduce the
total number of order conditions as well as further relevant properties are presented
within subsequent subsections.

4.2.1 Definition of Order Conditions

Conditions to achieve a specific order of consistency are determined by comparing
the Taylor series of the exact solution (see Theorem 3.1) to the Taylor series of the
numerical solution (see Theorem 3.3). The comparison yields the following results:

Theorem 4.2 A generalized ROW-type method of the form (2.3) with Bz = (gz)0
that is consistent of order p satisfies

y(x0 + h) − y1 = O(hp+1) iff
s∑

i=1
biϕi(t) = 1/γ(t) for t ∈ DATy, ρ(t) ≤ p

s∑
i=1

biϕi(t) = 0 for t ∈ CDAT DA
y \DATy, ρ(t) ≤ p

z(x0 + h) − z1 = O(hp) iff
s∑

i=1
biϕi(u) = 1/γ(u) for u ∈ DATz, ρ(u) ≤ p

s∑
i=1

biϕi(u) = 0 for u ∈ CDAT DA
z \DATz, ρ(u) ≤ p

with coefficients ϕi(t), ϕi(u) and γ(t), γ(u) according to Definition 3.11 and Definition
3.12 considering rooted trees of the set DAT and CDAT DA according to Definition
3.1 and Definition 3.7.
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Proof In analogy to [24].

Theorem 4.2 states that only components belonging to exact elementary differentials
are allowed to contribute to the solution. Hence, coefficient terms given in front of
each exact differential (represented by a tree of the set DAT ) must be equal to one
while coefficient terms given in front of each non-exact differential (represented by a
tree of the set CDAT DA\DAT ) must be equal to zero. This way, the Taylor series of
the numerical solution finally equals the Taylor expansion of the exact solution.

Remark 4.2

• Theorem 4.2 is given in direct analogy to Theorem 4 presented in [30]. However,
it considers extended sets of rooted trees that enable to take into account non-
exact Jacobian entries By besides non-exact Jacobian entries Ay and Az.

• In principle, Theorem 4.2 corresponds to an extended combination of Theorem
7.7 given in chapter IV.7 of [24] that regards ROW methods with non-exact Ja-
cobian applied to ODEs and Theorem 4.8 given in chapter VI.4 of [24] regarding
ROW methods with exact Jacobian applied to DAEs.

4.2.2 Construction of Order Conditions

Both the left-hand side and the right-hand side of each order condition that results
according to Theorem 4.2 can be distinctly identified by using rooted trees of the set
CDAT DA. The general approach is based upon Definition 3.11 and Definition 3.12.
In his context, it corresponds to an altered version of strategies presented by Hairer
and Wanner in [24].

In order to realize the procedure, trees that result according to Definition 3.7 must
be labeled using summation indices (i, j, k, ...) with respect to their vertices first. In
this context, it is necessary to attach one index to each meager vertex given with or
without square frame and two indices to each fat vertex given with or without frame.
Afterwards, the left-hand side of the order conditions can be identified by a sum over
all the summation indices given. This sum is applied to a product whose factors are
coefficients distinctly assigned to vertices of the tree element considered. The order of
these factors represents the structure defined in Definition 3.11. It is determined by
following rules. There is

bi with i being the index of a meager root with or without frame or the
first index of a fat root with or without frame,

αij with i being the index of a meager vertex without frame or the second
index of a fat vertex without frame and j being the index of an
attached meager vertex with or without frame or the first index of
an attached fat vertex with or without frame,
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γij with i being the index of a meager vertex with frame or the second
index of a fat vertex with frame and j being the index of an attached
meager vertex with or without frame or the first index of an attached
fat vertex with or without frame,

ωij with i being the first index and j being the second index of a given
fat vertex with or without frame.

The right-hand side of the order conditions can be identified by given tree structures
as well. It equals zero with respect to rooted trees of the set CDAT DA\DAT , i.e.,
trees that include at least one framed vertex. It equals one divided by a specific value
with respect to rooted trees of the set DAT , i.e., trees that include no framed vertex.
The specific value corresponds to the integer coefficients according to Definition 3.12.
It can be determined by taking into account the orders of tree components included
that are characterized by the number of their meager vertices. The process is as
follows: Starting from the order of a tree given to represent an order condition, the
specific value results after successively multiplying the orders of subtrees that result
when eliminating the present root. However, this approach only applies to sub-trees
with meager root (i.e. elements belonging to subset DATy). The actual step is skipped
for sub-trees with fat root (i.e. elements belonging to subset DATz). This is because
integer coefficients are not affected when attaching a fat vertex.

Example 4.1

... i..
j

..

k, l

..

m

..

n

..

o

∑
i,j,k,l,m,n,o

biαijαjkωklαlmαlnαno = 1
5·4·2·1 = 1

40

... i, j..
k

...
l, m

..

n

∑
i,j,k,l,m,n

biωijαjkαjlωlmγmn = 0

Remark 4.3 The original procedure for determining the order condition that belongs
to a given tree was introduced by Hairer and Wanner in chapter VI.4 of [24]. It con-
sidered the derivation with respect to ROW methods with exact Jacobian applied to
DAEs. The procedure presented thus corresponds to a direct extension by supplement-
ing combinations of coefficients which result for using non-exact Jacobian entries.

4.2.3 Resulting Conditions and Properties

Applying the approach introduced to all the trees of the set CDAT DA that result by
the rules of Definition 3.7 finally yields the order conditions for the ROW-type method



40 4 Consistency, Convergence and Stability

(2.3) when assuming Bz = (gz)0. There are 9 conditions for realizing the method up
to consistency order two, while there are 85 conditions for realizing the method up
to consistency order three. Table 4.1 summarizes the conditions that result for order
two. A detailed list of the conditions that result for order three is shown by Table A.1
given in Appendix A.

Note that rooted trees within given tables are numbered using a specific notation.
For example, within Table 4.1 the first entries given for conditions of the differential
parts and algebraic parts are called (1D1.0) and (1A1.0). This notation was intro-
duced in [30]. The first number specifies the order of the given tree (i.e. the order of
consistency the given condition belongs to). The subsequent letter identifies elements
of the set CDAT DA

y (i.e. conditions of the differential parts) by D and elements of the
set CDAT DA

z (i.e. conditions of the algebraic parts) by A. The next number counts
the subsets Φ(t) and Φ(u) (see Definition 3.6). Hence, trees that have equal numbers
in this position of the notation belong to a common subset. Finally, the last number
is used to distinguish trees within these subsets. Also, it shows if corresponding trees
represent exact or non-exact elementary differentials: The last number of the notation
is always equal to zero when regarding trees of the set DAT and unequal to zero when
regarding trees of the set ADAT DA.

Within Table 4.1 and Table A.1 all trees that belong to a common subset Φ(t) or
Φ(u) are confined by horizontal lines. Due to the definition of vertices, elements of
the set ADAT DA in between these lines will turn into the element of the set DAT
automatically when applying exact Jacobian entries (i.e. choosing Ay = (fy)0, Az =
(fz)0 and By = (gy)0 within the given ROW-type method (2.3) while assuming Bz =
(gz)0). As they represent the same elementary differential then, their order conditions
sum up and result in a condition that was originally introduced in [64].

Example 4.2 Regarding rooted tree (2D2.0) given in Table 4.1

....
fz(−g−1

z )gyf∑
biαijωjkαkl=1/2

that results for constructing elements of consistency order p = 2, remaining trees for
describing the corresponding subset Φ(t) are given by the elements (2D2.1), (2D2.2)
and (2D2.3):

.....

Az(−g−1
z )gyf∑

biγijωjkαkl=0

, .....
fz(−g−1

z )Byf∑
biαijωjkγkl=0

, ......

Az(−g−1
z )Byf∑

biγijωjkγkl=0

Now, assuming Ay = (fy)0, Az = (fz)0 and By = (gy)0 all these trees and their
elementary differentials become equal to element (2D2.0). Hence, the order conditions
given for all four trees of the subset Φ(t) sum up. By considering βij = αij + γij the
resulting element reads:
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....
fz(−g−1

z )gyf∑
biβijωjkβkl=1/2

Because (ωij)s
i,j=1 = B−1 with B = (βij)s

i,j=1 the condition reduces to:

...
fz(−g−1

z )gyf∑
biβij=1/2

This is a combination of (2D1.0) and (2D1.1) within Table 4.1 when using Ay = (fy)0.
Resulting tree, elementary differential and order condition thus equal to condition
(4.11b) that was defined in [64] to realize ROW methods with exact Jacobian for DAEs.

Remark 4.4 Due to the properties of elements that belong to a common subset Φ(t)
or Φ(u), given order conditions implicitly cover the conditions defined by Roche in [64].
Conditions of [64] explicitly covered are the element τy and trees that consist just of
ramifications, i.e. trees without branches where single vertices are directly connected
to each other. This is because such tree structures cannot include non-exact Jacobian
entries by definition. As detailed by Definition 3.7, framed vertices that describe non-
exact components are not allowed to occur in the center of a ramification or at the end
of a given branch.

Example 4.3 Conditions resulting for rooted trees such as

..∑
bi=1

, ....∑
biαijαik= 1

3

, ....∑
biωijαjkαjl=1

or

......∑
biωijαjkαjlωlmαmnαmo=1

directly correspond to the order conditions introduced by Roche in [64].

Besides the order conditions of Roche [64] that are implicitly included, conditions of
standard explicit one-step Runge-Kutta methods for ODEs [23] (RK), of W methods
for ODEs introduced by Steihaug and Wolfbrandt [71] (W), of the ROW-type method
for DAEs (Type II) presented by Rentrop, Roche and Steinebach [62] (Re/Ro/St)
as well as the ROW-type method for DAEs considered in [30] (Ja/St) are explicitly
covered. For that reason, they are additionally commented within given tables. In
this context, the scheme by Rentrop et al. [62] corresponds to ROW-type method
(2.3) when using Ay = 0, Az = 0 together with By = (gy)0 and Bz = (gz)0. So, it
is a scheme that applies explicit integration to given differential parts exclusively by
assuming them to be non-stiff. The scheme published in [30] corresponds to ROW-
type method (2.3) when using arbitrary Jacobian entries Ay and Az together with
By = (gy)0 and Bz = (gz)0.
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Remark 4.5

• Given order conditions are a direct extension of the conditions presented in [30].
This is because Jacobian entries of the scheme considered in [30] are nearly
the same as for the method (2.3). Differences are given by including non-exact
Jacobian entries By within (2.3) while assuming exact entries Bz.

• Correspondingly resulting additional conditions are expressed by trees that include
singly branched fat vertices. Within literature, such tree structures are generally
not considered. This is because because singly branched fat vertices followed by
a meager vertex can be neglected when applying exact Jacobian entries By (see
Example 4.2, see Proposition 4.6 in [64] and Proposition 1 in [30]). As a con-
sequence, these structures supplement conditions in [30] where fat vertices occur
in the center of a ramification at most.

Due to the general characteristics of given tree structures covered, order condi-
tions of familiar ROW-type schemes known from literature are easily identified. For
this purpose, subsequent propositions can be considered that are inspired by Roche’s
Proposition 4.10 presented in [64].

Proposition 4.1 Regarding the ROW-type method (2.3) applied to ODEs, order con-
ditions represented by rooted trees t ∈ DATy ⊂ CDAT DA

y are identical to those of
classical explicit one-step Runge-Kutta methods for ODEs (see Chapter II.2 in [23]).
Corresponding trees are characterized by having only meager vertices without frame.

Proof Assume Jacobian entries Ay to be equal to zero with respect to Definitions 3.7
- 3.12. These definitions are then reduced to item a) (regarding element τy) and b)
regarding trees t ∈ DATy that are characterized by meager vertices without frame. The
proof is completed by comparing resulting components for Theorem 4.2 with Theorem
2.11 presented in Chapter II.2 of [23].

Proposition 4.2 Regarding the ROW-type method (2.3) applied to ODEs, order con-
ditions represented by rooted trees t ∈ DATy ∪ ADAT D

y ⊂ CDAT DA
y are identical to

those of classical W methods for ODEs introduced in [71]. Corresponding trees are
characterized by having only meager vertices with and without frame.

Proof Assume Jacobian entries Ay to be arbitrary approximations with respect to
Definitions 3.7 - 3.12. These definitions are then reduced to items a) (regarding el-
ement τy), b) and c) regarding trees t ∈ DATy ∪ ADAT D

y that are characterized by
meager vertices with and without frame. The proof is completed by comparing resulting
components for Theorem 4.2 with Theorem 7.7 presented in Chapter IV.7 of [24].

Proposition 4.3 Regarding the ROW-type method (2.3) applied to DAEs, order con-
ditions represented by rooted trees t ∈ DATy ⊂ CDAT DA

y and u ∈ DATz ⊂ CDAT DA
z

are identical to those of the ROW-type method (Type II) introduced in [62]. Corre-
sponding trees are characterized by having only meager and fat vertices without frame
and, in addition, include no singly branched fat vertices.
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Proof Assume Jacobian entries Ay, Az to be equal to zero and By, Bz to be exact ap-
proximations with respect to Definitions 3.7 - 3.12. These definitions are then reduced
to items a), b) and e) regarding trees t ∈ DATy and u ∈ DATz that are characterized
by meager and fat vertices without frame and, in addition, include no singly branched
fat vertices. The proof is completed by comparing resulting components for Theorem
4.2 with elements given in Table 3.2 presented in [62].

Proposition 4.4 Regarding the ROW-type method (2.3) applied to DAEs, order con-
ditions represented by rooted trees t ∈ DATy ∪ ADAT D

y ⊂ CDAT DA
y and u ∈ DATz ∪

ADAT D
z ⊂ CDAT DA

z are identical to those of the generalized ROW-type method in-
troduced in [30]. Corresponding trees are characterized by having only meager vertices
with and without frame plus fat vertices without frame that occur in the center of a
ramification at most.

Proof Assume Jacobian entries Ay, Az to be arbitrary approximations and By, Bz

to be exact approximations with respect to Definitions 3.7 - 3.12. These definitions are
then reduced to items a), b), c), d), e) and f) regarding trees t ∈ DATy ∪ ADAT D

y

and u ∈ DATz ∪ ADAT D
z that are characterized by meager vertices with and without

frame plus fat vertices without frame. The proof is completed by comparing resulting
components for Theorem 4.2 with Theorem 4 presented in [30].

Remark 4.6 Besides the covered order conditions of different ROW-type schemes
discussed, the given theory implicitly includes the order conditions of every method
mentioned within Table 2.1 and Table 2.2. This means, when choosing the Jacobian
entries as stated within these tables, the presented approach automatically yields the
order conditions introduced within the corresponding references.

4.2.4 Redundant Conditions

Although they describe properties of ROW-type method (2.3) completely when as-
suming Bz = (gz)0, not all of the order conditions that result for tree structures
derived must be considered explicitly for its realization. In fact, many of the order
conditions turn out to be redundant. Hence, there is a difference regarding conditions
that are needed for describing the given characteristics completely and conditions that
are needed for implementing the given scheme appropriately. In order to identify
redundant conditions, propositions similar to those presented in [30] or [64] can be
defined that reduce the number of required conditions significantly.

Proposition 4.5 Order conditions of rooted trees characterized by u = [t1]z̃ with
t1 ∈ CDAT DA

y are automatically satisfied by a combination of order conditions that
result for the trees t∗ = t1 and u∗ = [t1]z. It holds:

γ(u)
∑

biϕi(u) = γ(t∗)
∑

biϕi(t∗) − γ(u∗)
∑

biϕi(u∗).

Proof By Theorem 4.2 together with items a) and g) (elements of order one) as well
as items b), f) and g) (elements of order greater one) of Definition 3.11 and Definition
3.12 taking into account (ωij)s

i,j=1 = B−1 with B = (βij)s
i,j=1 and βij = αij + γij.
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Example 4.4 Consider the simple tree:

..
t1

which yields

....
u=[t1]z̃

, ..
t∗=t1

, ...
u∗=[t1]z

With respect to resulting order conditions it follows:∑
biωijγjk = 0 =̂ ....∑

biωij(βjk − αjk) = 0∑
biωijβjk︸ ︷︷ ︸∑

bi=1
=̂
..

−
∑

biωijαjk︸ ︷︷ ︸∑
biωijαjk=1

=̂

...

= 0

Remark 4.7

• As a consequence of Proposition 4.5, all the conditions resulting for rooted trees
that include at least one framed fat vertex can be completely neglected when real-
izing ROW-type method (2.3) with Bz = (gz)0 up to a specific order.

• Note that for Bz ̸= (gz)0 related order conditions expressed by tree structures
that include fat framed vertices become relevant. Hence, having introduced the
type of nodes characterized by framed fat vertices is justified.

Proposition 4.6 Order conditions of rooted trees characterized by t = [u]ỹ where
u = [t1, ..., tm, u1, ..., un]z with t1, ..., tm ∈ CDAT DA

y and u1, ..., un ∈ CDAT DA
z are

automatically satisfied by a combination of order conditions that result for the trees
t∗ = [t1, ..., tm, u1, ..., un]y and t∗∗ = [u]y. It holds:

γ(t)
∑

biϕi(t) = γ(t∗)
∑

biϕi(t∗) − γ(t∗∗)
∑

biϕi(t∗∗).

Proof By Theorem 4.2 together with items b), d) and e) of Definition 3.11 and Defini-
tion 3.12 taking into account B = (βij)s

i,j=1 with βij = αij +γij and (ωij)s
i,j=1 = B−1.

Remark 4.8 Contrary to Proposition 4.5 given Proposition 4.6 cannot be applied to
elements of order one. Relevant tree structures require at least order two. Hence, in
contrast to the proof of Proposition 4.5 it is not necessary to differ between elements
of order one and elements of order greater one within the proof of Proposition 4.6.

Example 4.5 Consider the simple tree:
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..
t1

which yields ...
u=[t1]z

and therefore

.....
t=[u]ỹ

, ...
t∗=[t1]y

, ....
t∗∗=[u]y

With respect to resulting order conditions it follows:

∑
biγijωjkαkl = 0 =̂ .....∑

bi(βij − αij)ωjkαkl = 0∑
biβijωjkαkl︸ ︷︷ ︸∑

biαij=1/2
=̂

...

−
∑

biαijωjkαkl︸ ︷︷ ︸∑
biαijωjkαkl=1/2

=̂

....

= 0

Remark 4.9

• As a consequence of Proposition 4.6, all the conditions resulting for rooted trees
that include at least one framed meager vertex directly followed by a fat vertex
regarding a single branch can be completely neglected when realizing ROW-type
method (2.3) with Bz = (gz)0 up to a specific order.

• Note that for Bz ̸= (gz)0 related order conditions expressed by tree structures that
include meager framed vertices directly followed by a fat vertex become relevant.

• Framed meager vertices directly followed by framed fat vertices would lead to
analogous rules for identifying redundant conditions. However, this case is not
considered within Proposition 4.6 explicitly as trees including framed fat vertices
were excluded by Proposition 4.5 already.

Remark 4.10 With respect to propositions that reduce the total number of order con-
ditions for ROW-type methods presented in [30] or [64] the following additional state-
ments can be made:

• Proposition 4.6 corresponds to Proposition 2 presented in [30]. This is because
they refer to tree structures and combinations of coefficients that generally occur
within Taylor series of ROW-type method (2.3) when assuming arbitrary Jaco-
bian entries Ay and Az together with exact Jacobian entries By = (gy)0 and
Bz = (gz)0 (the case of Jacobian approximations originally considered in [30]).

• A significant difference of Proposition 4.6 compared to Proposition 2 given in [30]
is that it is not restricted to sub-trees u = [t1, ..., tm, u1, ..., un]z with m + n ≥ 2.
This means, Proposition 4.6 must also be applied to rooted trees that include



4.2 Consistency 47

singly branched sub-trees u = [t1]z. Corresponding cases were not considered by
Proposition 2 defined in [30] explicitly as such tree structures are excluded by
Proposition 1 given in [30].

• Proposition 1 given in [30] (also Proposition 4.6 given in [64]) is not applicable
regarding generalized ROW-type method (2.3) assuming arbitrary Jacobian en-
tries Ay, Az and By together with exact Jacobian entries Bz = (gz)0. It is only
valid when assuming By = (gy)0 in addition.

Remark 4.11 It is well-known that for all classical one-step schemes derived via
rooted trees elements that consider the same combination of sub-trees attached to a
common root in varying order are equivalent. This is a consequence of the symmetry
of partial derivatives (Schwarz’s Theorem). Hence, corresponding order conditions are
redundant [24, 81]. Arising of such elements cannot be neglected by Procedure 3.2. For
that reason, this property is mentioned here although it is considered to be obvious.

Example 4.6 Order conditions for the following tree structures are equal:

.....∑
biωijαjkωklαlmαjn

and .....∑
biωijαjkαjlωlmαmn

By using Proposition 4.5, Proposition 4.6 and Remark 4.11 the total amount of
order conditions that must be considered for realizing ROW-type method (2.3) as-
suming Bz = (gz)0 can be significantly reduced. In fact, the number of relevant
conditions reduces from 85 to 26 when realizing a scheme of order three while the
number of relevant conditions reduces from 9 to 5 when realizing a scheme of order
two. For that reason, the conditions that are necessarily required for implementation
are additionally marked within tables that include redundant tree structures. In this
context, redundant conditions are considered within Table 4.1 and Table A.1 for the
sake of completeness and for demonstrating given properties. Note that the 26 condi-
tions which result for a scheme of order three after applying the rules that reduce the
number of conditions are summarized within Table 4.2 below.

4.2.5 Further Properties

Besides the characteristics previously mentioned some additional observations can
be made with respect to the resulting order conditions:

1. Given propositions to reduce the number of conditions only affect tree structures
that occur by including approximations of Jacobian entries By. Tree structures
that describe order conditions of methods already defined in literature remain
completely unaffected and, thus, are directly covered.

2. When satisfying the order conditions necessarily required, Taylor expansions of
the numerical solution by ROW-type method (2.3) are not affected in any way
by the choice of Jacobian entries By. This is because corresponding non-exact
elementary differentials cancel automatically due to Proposition 4.5.
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3. When satisfying the order conditions necessarily required, Taylor expansions of
the numerical solution by ROW-type method (2.3) are not affected in any way
by the choice of Jacobian entries Az. This is because corresponding non-exact
elementary differentials cancel automatically due to Proposition 4.6.

4. As a consequence of point 2. and point 3. given above, it is theoretically possible
to consider versions of ROW-type method (2.3) that are characterized by Az = 0
and By = 0 directly in order to exploit sparse Jacobian structures.

5. Due to item 3 of Remark 4.10 order conditions must be taken into account that
are represented by singly branched fat vertices. Corresponding tree structures
generally cancel out for ROW-type schemes presented in literature. An exception
might be given by schemes introduced by Strehmel and Weiner [77, 78, 79] that,
however, did not consider a derivation based on rooted trees and did not express
conditions explicitly. Hence, order conditions belonging to these tree structures
have not been defined explicitly in literature so far. So, they are interpreted to
be new conditions.

6. Note that due to the Jacobian approximations applied in ROW-type method
(2.3) order conditions related to tree structures including singly branched fat
vertices are not the same as for other ROW-type methods defined in literature.
As a consequence, the order conditions with respect to these trees are new but
the tree structures themselves are not. This means, new order conditions are not
necessarily represented by trees including new types of vertices. However, new
order conditions characterized by new tree structures not considered in literature
before can be identified when considering Bz ̸= (gz)0.

7. The number of order conditions required for implementing ROW-type method
(2.3) when assuming Bz = (gz)0 can be further reduced by considering special
choices of given Jacobian entries Ay, Az and By. For example, realizing a scheme
of consistency order three demands to satisfy just 10 conditions when using ar-
bitrary entries Ay and Az together with By = (gy)0 (i.e. the ROW-type method
given in [30], see comment Ja/St in Table 4.2) while there are just 6 conditions
relevant when using Ay = 0 and Az = 0 together with By = (gy)0 (i.e. the
ROW-type method given in [62], see comment Re/Ro/St in Table 4.2). The
reduction of conditions generally results from the fact that for entries equal to
zero given non-exact differentials cancel automatically without having to satisfy
corresponding conditions. Furthermore, using exact entries By = (gy)0 enables
to apply Proposition 1 given in [30] (also Proposition 4.6 given in [64]). However,
special choices of given Jacobian entries generally reduce the adaptivity prop-
erties of the ROW-type method with respect to implicit and explicit strategies
involved.

8. Another well-known approach that allows to reduce the number of given order
conditions is to consider original Jacobian entries perturbed by terms of the form
O(h), i.e. applying time-lagged Jacobian entries. The reduction of conditions
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then generally results from a combination of several conditions within subsets
Φ(t) and Φ(u) while other conditions switch to higher orders.

9. Numerical computation of the Jacobian is generally realized by columns. For
that reason, when applying ROW-type method (2.3) with Bz = (gz)0 Jacobian
entries Az = (fz)0 can be computed along without increasing the computational
effort significantly. Hence, there is no reason for regarding Az = (fz) + O(h) or
Az = 0 as long as Bz = (gz)0. As a consequence, when realizing corresponding
ROW-type methods, schemes of practical interest would probably reduce the
the possibilities of regarding non-exact Jacobian entries to components Ay and
By. In this context, relevant schemes could be characterized by Az = (fz)0,
Bz = (gz)0 together with:

• Ay = 0 By = 0
• Ay = (fy)0 By = (gy)0
• Ay = (fy)0 + O(h) By = (gy)0 + O(h)
• Ay = arbitrary By = arbitrary

4.3 Convergence
After having determined the order conditions for consistency of order p, conver-

gence of order p can be assured. For this purpose, item b) of Theorem 4.1 must be
satisfied. This especially requires to determine the contractivity number α. Following
descriptions given in [62] and [64] it holds:

Theorem 4.3 Regarding ROW-type method (2.3) with Bz = (gz)0, the contractivity
number α is given by

α = lim
z̃→∞

|R(z̃)| (4.2)

with R(z̃) being the stability function of classical ROW methods applied to the Dahlquist
test equation y′ = λy, y(0) = 1 and z̃ = hλ where λ ∈ C.

Proof The proof is given in analogy to [64] assuming the scalar case, i.e. dim(z) = 1.

Defining b = (b1, ..., bs)T and (kalg)z =
(

∂kalg
1

∂z (0), ...,
∂kalg

s

∂z (0)
)T

, the limit case of b)
in Theorem 4.1 yields

α =
∥∥∥∥∂G(y, z, h = 0)

∂z

∥∥∥∥ = 1 + bT (kalg)z. (4.3)

In this context, (4.3) corresponds to case of classical ROW methods with exact Jacobian
applied to DAEs (see equation (4.13.1) in [64]). Now, after division by h, the second
line given in (2.3b) reads

0 = g(vi, wi) +
i∑

j=1
γij

(
Bykj + Bzkalg

j

)
for i = 1, ..., s (4.4)
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with

vi = y0 +
i−1∑
j=1

αijkj and wi = z0 +
i−1∑
j=1

αijkalg
j .

When assuming Bz = (gz)0, differentiation of (4.4) with respect to z0 (i.e. derivation
by z and computing the result at h = 0 [64]) finally yields

0 = (gz)0

1 +
i∑

j=1
βij

∂kalg
j

∂z
(0)

 for i = 1, ..., s (4.5)

where βij = αij + γij. The term including non-exact Jacobian entries By cancels
due to the definition of ki given by the first row of (2.3b). Note that equation (4.5)
corresponds to case of classical ROW methods for DAEs [64]. Next, (4.5) is divided by
(gz)0 and afterwards transferred into the form of matrices and vectors. By considering
B = (βij)j=1,...,i−1

i=1,...,s and e = (1, ..., 1)T ∈ Rs this yields

0⃗ = e + B(kalg)z

and, thus, after solving for (kalg)z:

(kalg)z = −B−1e. (4.6)

Due to the lower triangular structure of B the given inverse can be expressed alterna-
tively by B−1 = 1

γ

∑s−1
j=0(− 1

γ B)j [62]. Hence, (4.6) corresponds to

(kalg)z =
s∑

j=1
(−1)j 1

γj
Bj−1e (4.7)

which equals equation (4.13.2) given in [64]. As the stability function of classical ROW
methods applied to the Dahlquist test equation satisfies [64]

lim
z̃→∞

|R(z̃)| = 1 +
s∑

j=1
(−1)j 1

γj
bT Bj−1e.

Theorem 4.3 can finally be confirmed by inserting (4.7) into (4.3).

Remark 4.12

• Note that in literature it is common to denote the stability function by R(z).
However, R(z̃) is used here in order to avoid a repeated use of parameter z.

• The proof of Theorem 4.3 is reduced to the scalar case only because a proof
regarding the multidimensional case turned out to be quite complex and could not
be finished with reliable results before the due date of the thesis.
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• Theorem 4.3 corresponds to the findings introduced by Roche [64] with respect
to ROW methods for DAEs assuming Ay = (fy)0, Az = (fz)0, By = (gy)0,
Bz = (gz)0 as well as findings introduced by Rentrop, Roche and Steinebach [62]
with respect to ROW methods for DAEs assuming Ay = 0, Az = 0, By = (gy)0,
Bz = (gz)0.

As pointed out by Roche in [64] (see Remark 4.14 therein) the limit case of the
stability function given by R(∞) must be smaller than 1. This is because DAEs of
the form (2.1) correspond to a limit case of the singularly perturbed ODE εz′ = g(z)
by assuming ε → 0 (respectively λ → ∞). As a consequence, item b) of Theorem 4.1
is satisfied by the results of Theorem 4.3. So, the ROW-type method (2.3) which is
characterized by non-exact Jacobian entries yields convergence of order p when it is
consistent of order p and Bz = (gz)0.

Remark 4.13

• Rentrop et al. [62] mentioned that condition (4.2) with α < 1 is weaker than the
A-stability condition

|R(z̃)| < 1 ∀z̃ with Re(z̃) < 0. (4.8)

• Rentrop et al. [62] also mentioned that (4.8) leads to (4.2) when the test equation
y′ = λy degenerates to y = 0 after formulating 1

λ y′ = y and assuming λ → ∞.

Remark 4.14 Alternative approaches for analyzing the convergence of classical ROW
methods with exact Jacobian applied to DAEs are presented by Hairer and Wanner [24].
These are more related to analyses introduced by Deuflhard et al. [10] regarding general
one-step methods. However, corresponding approaches will not be detailed here.

4.4 Stability
Realizing an appropriate stability analysis for linearly implicit ROW-type schemes

with non-exact Jacobian applied to DAEs is complicated. In fact, in literature there
seem to be no detailed stability concepts for DAE problems existent so far. At least,
Ascher and Petzold give some comments regarding the stability with respect to linear
index-1 problems in [1]. These are considered to be stable, if

• the system can be transformed into a semi-explicit problem and afterwards into
a corresponding ODE system,

• the given transformations are all well conditioned,

• the obtained ODE system is stable.

Indeed, the stability analysis for index-1 DAEs solved by linearly implicit one-step
schemes is usually reduced to investigations regarding the standard ODE test equation
by Dahlquist. With respect to ROW-type methods, corresponding examples can be
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found in [24], [41], and [64]. In this context, the stability function of ROW methods for
ODEs based on exact Jacobian entries is generally known when applied to Dahlquist’s
test equation. It reads [24]

R(z̃) = 1 + z̃bT (I − z̃B)−1e (4.9)

Properties of this equation are especially known by diagonally-implicit Runge-Kutta
schemes [37].

However, when including non-exact Jacobian entries determining an appropriate
stability function becomes difficult. According to Hairer and Wanner [24] this is espe-
cially due to the fact that the exact and numerical Jacobian cannot be diagonalized
simultaneously. As a consequence, the application of scalar test equations such as the
one introduced by Dahlquist is not justified [24]. For that reason, stability analyses of
ROW-type methods with non-exact Jacobian are usually realized by considering spe-
cial assumptions. Regarding classical W methods applied to ODEs, these assumptions
include the possibility of diagonalizing the exact and numerical Jacobian simultane-
ously by considering non-exact Jacobian entries that are close to the original ones
[24, 55, 71].

As the ROW-type method (2.3) reduces to a classical W method when regarding
the ODE case, stability analyses known for W methods can be considered. Detailed
descriptions for that purpose can especially be found in [22], [71], [55] and [79]. In
fact, after rewriting the classical W method for ODEs into the form [55]

y1 = y0 + h
s∑

i=1
biki

(I − hγAy)ki = f(yi
1) + hAy

i−1∑
j=1

γijkj , i = 1, ..., s

with

yi
1 = y0 + h

i−1∑
j=1

αijkj

the stability function of a W method can alternatively be expressed by

R(z̃) = 1 +
s−1∑
k=0

bT Bkeω̃k+1

when applying the resulting scheme to Dahlquist’s test equation y′ = λy with λ ∈ C
assuming Ay = λ [55]. Within the resulting stability function there is ω̃ = (I −γz̃)−1z̃
with z̃ = hAy. Details regarding the derivation of this stability function can be found
in [79].

Some references analyze the stability of W methods by regarding (4.9) directly. Due
to the equality of the given stability function (4.9) to the results known for Runge-
Kutta methods that are diagonally implicit and singly diagonally implicit (by regarding
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γii = γ ∀i) corresponding characteristics then can be applied straightforward. In this
context, details given below correspond to information presented by Lang and Verwer
in [37].

In general, W methods with Ay = λ that are characterized by this stability function
are A-stable when the corresponding stability domain S = {z̃ ∈ C : |R(z̃)| ≤ 1} is
a subset of C− = {z̃ ∈ C : Re(z̃) ≤ 0}, i.e. the left complex half-plane. They are
L-stable if R(−∞) = 0 holds in addition [37]. Moreover, when the given W method is
of order p its stability function corresponds to a rational function that satisfies [37]

ez̃ − R(z̃) = Cz̃p+1 + O(z̃p+2) for z̃ → 0 (4.10)

with C ̸= 0 being the so-called error constant. The rational function reads [37]

R(z̃) = P (z̃)
(1 − γz̃)s

with P (z̃) = det(I − z̃B + z̃ebT ) (4.11)

where P (z̃) is at most a polynomial of degree s. When defining P (z̃) =
∑

i=0,...,s aiz̃
i

L-stability of the given method is realized by setting as = 0. This can generally be
achieved by an appropriate choice of entries regarding matrix B and vector b [37]. In
fact, regarding orders p ≥ s − 1, coefficients ai for i ̸= s as well as the error constant
C can be uniquely calculated in dependence of γ. It holds [37]:

ai = (−1)sL(s−i)
s

(
1
γ

)
γi with i = 0, ..., s − 1 (4.12)

and
C = (−1)sLs

(
1
γ

)
γs.

Ls therein denotes the Laguerre polynomial of degree s which is defined by [37]:

Ls(y) =
s∑

j=0
(−1)j

(
s
j

)
yj

j!
.

Besides, terms L
(k)
s given in (4.12) correspond to the kth derivatives. The given results

show that regions of L-stability as well as (small) error constants can be determined by
variations of γ [37]. The general formulation of this rational function is also discussed
by Hairer and Wanner in [24]. In fact, Table 6.4 of Section IV.6 in [24] details values
of γ that are required in order to realize L-stability.

Besides A-stability and L-stability, the terms strongly A-stable, A(α)-stable and
A(0)-stable are common regarding Runge-Kutta methods and, thus, also applied to
the family of ROW-type schemes (see e.g. [56] and [71]). In this context, a Runge-
Kutta method is strongly A-stable, if [81]

lim
Re(z̃)→−∞

|R(z̃)| < 1.
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It is considered to be A(α)-stable when [81]

|R(z̃)| ≤ 1 for all z̃ ∈ C− with |arg(z̃) − π| ≤ α

where α ∈ (0, π/2) and C− = {z̃ ∈ C : Re(z̃) ≤ 0}. It is considered to be A(0)-stable,
if [81]

|R(z̃)| ≤ 1 for z̃ ∈ R−.

Remark 4.15

• Another stability term is L(α)-stable (also: stiffly stable). The definition with
respect to W methods can be found in [71]. However, it will not be further detailed
here as this term is rarely used compared to terms dealing with A-stability.

• Compared to implicit Runge-Kutta methods linearly implicit schemes such as
ROW methods and W methods cannot have strong contractivity properties such
as B-stability or algebraic stability [22].

• Recent analyses of stability aspects with respect to W methods are especially con-
sidered by González-Pinto et al. in [16], [17] and [18]. However, these gen-
erally consider special cases solving parabolic PDE problems in the context of
approximate-matrix-factorization (AMF). In this context, alternative test func-
tions are considered.

• Further detailed stability analyses of ROW-type methods for DAEs that are char-
acterized by special choices of non-exact Jacobian entries can be found in the
works by Strehmel and Weiner such as [77] and [79].
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5 Sets of Coefficients
Based on findings presented before, ROW-type schemes convergent of order two

and three when solving DAEs by means of non-exact Jacobian entries are realized
within this section. In this context, new sets of coefficients with different properties
are introduced. Most of them generally correspond to enhanced versions of familiar
schemes from literature and were derived analytically. Nevertheless, some schemes
that consist of an increased number of internal stages were determined numerically
due to the increased difficulty of solving the resulting non-linear equation systems.

In addition, taking into account special properties such as stiffly accurate behavior
allows to identify further rules for saving some of the order conditions given. Corre-
sponding lemmas are formulated and proven. However, ROW-type schemes are known
to show effects of order reduction when being applied to very stiff ODE and DAE prob-
lems as well as systems that result from semi-discretization of parabolic PDEs. The
schemes derived are intended to be applied to such problems. Hence, besides satisfying
the order conditions to allow for non-exact Jacobian representations, the new sets of
coefficients are constructed such that they consider supplemental conditions known
from literature which reduce these effects. Additional conditions for this purpose es-
pecially have been introduced by Scholz [68], Ostermann and Roche [49], Lubich and
Ostermann [42] and, most recently, Rang [59, 60].

This section is organized as follows: First, some general aspects regarding additional
conditions required to reduce effects of order reduction are summarized. Afterwards,
schemes of order two based on three, four and five internal stages are introduced.
Finally, schemes of order three with seven and eight internal stages are presented.

5.1 Additional Conditions
ROW-type schemes are known to show effects of order reduction when being applied

to stiff ODEs or DAEs [59]. This phenomenon is also familiar to the solution of
semi-discretized parabolic PDEs [60]. In order to overcome this problem additional
conditions can be satisfied. In the following, some of these conditions are briefly
summarized as they are used for constructing new sets of coefficients that realize ROW-
type method (2.3). In this context, there will be often a reduction to the conditions for
realizing a scheme of at most order three, as higher order schemes are not considered
within this thesis.

Regarding the solution of very stiff ODE systems, Scholz [68] was among the first
who expressed additional conditions that effectively reduce the occurring effects of
order reduction. For this purpose, he analyzed the test problem of Prothero and
Robinson [54]:

u̇(x) = λ(u(x) − φ(x)) + φ̇(x), u(0) = φ(0), λ ≪ 0. (5.1)

The exact solution of this problem reads u(x) = φ(x). Note that this ODE becomes
very stiff when λ is very small [60]. Due to the relevance of the test problem by
Prothero and Robinson regarding the theory of B-convergence introduced by Frank,
Schneid and Ueberhuber [11], Scholz adapts this concept slightly by introducing the



5.1 Additional Conditions 59

concept of BP R-convergence. For details on the concept of BP R-convergence and the
additional order conditions see [68].

With respect to the analysis of semi-discretized linear (parabolic) PDEs, Oster-
mann and Roche used the Prothero-Robinson test problem and the concept of BP R-
convergence to introduce their own conditions for reducing effects of order reduction
in [49]. Regarding schemes that are at most BP R-convergent of order p̃ = 3, these
conditions can be expressed by [49, 25]

bT Bi
(
α2 − 2B2e

)
= 0 with 0 ≤ i ≤ s − 1 (5.2)

where α2 = (α2
1, ..., α2

s)T and e = (1, ..., 1)T ∈ Rs. Note that the order conditions by
Ostermann and Roche cover those introduced by Scholz [49]. For more details see [49].

The theory by Ostermann and Roche given in [49] with respect to linear (parabolic)
PDEs was enhanced by the theory of Lubich and Ostermann [42] that included the
non-linear case. As shown in [35] these conditions are equal to (5.2) when realizing
schemes of order three at most.

The Prothero-Robinson test problem has been further analyzed by Rang lately (see
especially [57] - [60]). In this context, he introduces conditions that are more general
than those considered in [68], [49] and [42] because he takes into account additional
terms [59]. For more details see [59] and [60]. Below, only the final results by Rang
are repeated.

Theorem 5.1 (Rang, [60]) A ROW-type method is BP R-consistent of order p̃ if the
following conditions are satisfied:

bT B−1αk = 1 (5.3)

bT B−(l+1) 1
k − l

αk−l = bT B−l
[
αk−l−1 + γδk−l−1,1

]
(5.4)

where δi,j is the Kronecker delta. Equation (5.3) must be considered for k = 2, ..., p̃.
Equation (5.4) must be considered for l = max(1, k − p̃), ..., k − 2 and k = 3, ..., ∞.

Theorem 5.2 (Rang, [60]) A ROW-type method is BP R-convergent of order p̃ if it is
A-stable with R(∞) < 1 and BP R-consistent of order p̃.

In [59] Rang comments that equation (5.3) is equal to an order condition that must
be satisfied by ROW methods for solving index-1 DAEs with order p ≥ 3. Moreover,
this condition is automatically satisfied for all k ≥ 2 when the given ROW method is
stiffly accurate [59]. Also, Rang states the relevance of satisfying condition (5.4) for
all k − l = p̃ in order to avoid the dominance of undesired error terms [59].

In [60] Rang notes that with respect to ROW methods of second order condition
(5.4) for k = l − 2 coincides with the conditions introduced by Scholz [68] as well as
Lubich and Ostermann [42]. This is because only equations of the form

bT B−(l+1)α2 = 2bT B1−le

should be required to realize a scheme that is BP R-convergent of order p̃ = 2 [60].
In [59] Rang also states that condition (5.3) and (5.4) are more general than those
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presented in [68] and [42]. Finally, he comments in [59] that a ROW method is auto-
matically BP R-consistent of order p̃ = 2 when it satisfies the order conditions

2bT Bke = bT Bk−2α2 for k = 2, ..., p − 1

by Ostermann and Roche [49].

Remark 5.1 Note that the given theory refers to ROW methods using the exact Ja-
cobian. For ROW-type methods using the non-exact Jacobian special conditions must
be considered to estimate the error-bounds and the convergence. Regarding the appli-
cation to non-linear parabolic PDEs corresponding results can be found in the paper by
Lubich and Ostermann [42]. Due to their complexity they will not be considered below.
Instead, only the conditions for realizing BP R-convergence of ROW methods using the
exact Jacobian will be taken into account.

5.2 Analytically Determined Sets

In the following, sets of coefficients are derived that are characterized by different
properties for application. In this context, schemes that realize ROW-type method
(2.3) up to order p = 2 with respect to arbitrary Jacobian entries are generally con-
structed. Nevertheless, some of the resulting sets of coefficients are able to reach
order p = 3 with respect to special Jacobian approximations that correspond to the
realization of classical ROW-type schemes known from literature. Regarding BP R-
consistency, order conditions to reach p̃ = 2 and p̃ = 3 are taken into account. The
sets of coefficients can be realized using s = 3 or s = 4 internal stages and, thus, be
computed analytically. For this purpose, existing schemes recently described in [59]
and [60] are considered and extended.

5.2.1 Order Two with Three Stages

Below, sets of coefficients for implementing the ROW-type scheme (2.3) up to order
p = 2 are derived that can be realized by considering the minimum number of internal
stages. In this context, the following theorem holds.

Theorem 5.3 Realizing ROW-type method (2.3) up to convergence order p = 2 re-
quires a minimum of s = 3 stages.

Proof To reach order p = 2 condition (2D2.0) is required to be unequal zero. How-
ever, this can only be achieved by taking into account s = 3 stages at least.

When considering s = 3 internal stages, the order conditions (1D1.0) - (2D2.0) and
(1A1.0) which are required for realizing the ROW-type method (2.3) up to order p = 2
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can be expressed by:

b1 + b2 + b3 = 1 (1D1.0’)

b2α2 + b3α3 = 1
2

(2D1.0’)

b2β2 + b3β3 = 1
2

− γ (2D1.1’)

b3α32α2 = γ

2
(2D2.0’)

b3ω32α2 = 1 − 1
2γ

(1A1.0’)

Here, αi =
∑i−1

j=1 αij and γi =
∑i−1

j=1 γij together with βi = αi + γi are used to abbre-
viate occurring summations. Also, γii = γ and ωii = 1/γ is taken into account. Note
that with these relations the formulation of (2D1.1’) is a consequence of subtracting
(1D1.0) times γ from (2D1.1) and afterwards adding (2D1.0). The formulation of
(1A1.0’) is a consequence of subtracting (2D1.0) times 1/γ from (1A1.0). The result-
ing system considers five equations and ten parameters. Hence, there are five degrees
of freedom that can be used for realizing an appropriate set of coefficients.

GROW2

The given degrees of freedom allow for realizing sets of coefficients that satisfy sev-
eral additional conditions to improve properties of the resulting scheme. However,
to prove that the finally resulting order of convergence is a consequence of satisfying
conditions (1D1.0’) - (1A1.0’) alone, there should be a set of coefficients without spe-
cial characteristics derived first. For this purpose, ROS2 [37, 88] is enhanced to an
appropriate version of ROW-type scheme (2.3) below.

ROS2 corresponds to a W method for ODEs of order p = 2 that is realized by s = 2
stages. It is L-stable but not stiffly accurate. The stability function regarding s = 2
stages reads [88]:

R(z̃) =
1 + (1 − 2γ)z̃ + ( 1

2 − 2γ + γ2)z̃2

(1 − γz̃)2 (5.5)

There is A-stability for γ ≥ 1/4 [88]. To reach L-stability, i.e. R(∞) = 0, γ = 1±1/
√

2
is required so that the highest coefficient of the numerator becomes zero [37, 88]. As a
consequence, there are two different realizations of this method based on the value γ
considered. While Verwer et al. consider ROS2 with γ+ = 1 + 1/

√
2 in [88], Lang and

Verwer realize ROS2 with γ− = 1−1/
√

2 in [37]. In the following, the version with γ−
is considered as it minimizes the error constant [37]. Note that there are no additional
conditions required to solve index-1 DAE systems by means of exact Jacobian entries,
i.e. a W method of order p = 2 for ODEs automatically corresponds to a ROW method
of order p = 2 for index-1 DAEs. However, as ROS2 considers just s = 2 stages it
is not able to satisfy condition (2D2.0’). It violates condition (1A1.0’), too. Hence,
when being applied to solve index-1 DAEs by means of non-exact Jacobian entries,
this method has an order reduction down to p = 1.
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In order to extend ROS2 to generalized ROW-type method (2.3) a third stage is
required. This affects the stability function. By (4.9) it reads for s = 3

R(z̃) = 1 + (b1 + b2 + b3)z̃
(1 − γz̃)

+ (b2β2 + b3β3)z̃2

(1 − γz̃)2 + b3β32β2z̃3

(1 − γz̃)3 (5.6)

and, thus, by including conditions (1D1.0’) and (2D1.1’)

R(z̃) =
1 + (1 − 3γ)z̃ + ( 1

2 − 3γ + 3γ2)z̃2 + (−γ3 + 2γ2 − 1
2 γ + b3β32β2)z̃3

(1 − γz̃)3 . (5.7)

Nevertheless, the objective is to realize a L-stable set with coefficients comparable to
those of ROS2. In order to realize a L-stable scheme, the highest coefficient occurring
for the polynomial of the numerator is required to become zero [37]. To achieve this
while using the same value of γ as for ROS2 the condition

b3β32β2 = γ3 − γ2 − 3
2

γ + 1
2

(AC1)

must be satisfied. This ensures that the term in front of z̃3 regarding the numerator
of (5.7) reduces to 1

2 − 2γ + γ2, i.e. the same term as given for the highest polynomial
within the numerator of (5.5). When satisfying condition (AC1) the given stability
function is A-stable for γ ≥ 0.2575406722426549.

Note that condition (AC1) contradicts (1A1.0’) when using α2 = 1 and γ21 = −2γ
together with b2 = 1/2 as suggested by Lang and Verwer constructing ROS2 in [37].
For that reason, either α2 or γ21 should be altered. In the following, let b2 = 1/2 and
α2 = 1. Assuming b3 ̸= 0 (as b3 = 0 would contradict (2D2.0’), (1A1.0’) and (AC1))
it follows α3 = 0 from (2D1.0’) directly. Because one degree of freedom is left, let
α31 = 1/2. This leads to α32 = −1/2 and, thus, to b3 = −γ by (2D2.0’).

The given parameters can now be used to determine the remaining coefficients. From
(1A1.0’) there is

β32 = γ − 1
2

. (5.8)

So, it follows γ32 = γ by taking into account α32. Also, by using (AC1), there is

β32(1 + γ21) = −γ2 + γ + 3
2

− 1
2γ

. (5.9)

Hence, when dividing (5.9) by (5.8) the missing value γ21 can be determined. The
result is γ21 = −1. The value of γ31 can be determined by computing β31 via (2D1.1’)
and afterwards subtracting α31 = 1/2. The result is γ31 = −1 as well. Finally,
b1 = 1/2 + γ is determined via (1D1.0’).

The embedded method is required to be of order p = 1 only. Hence, just condition
(1D1.0’) must be satisfied. The condition thus reads:

b̂1 + b̂2 + b̂3 = 1.
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Table 5.1: Set of Coefficients for GROW2

γ = 2.9289321881345243E−01
α21 = −1.0000000000000000E+00 γ21 = −1.0000000000000000E+00
α31 = −5.0000000000000000E−01 γ31 = −1.0000000000000000E+00
α32 = −5.0000000000000000E−01 γ32 = −2.9289321881345243E−01
b1 = −7.9289321881345243E−01 b̂1 = −7.0000000000000000E−01
b2 = −5.0000000000000000E−01 b̂2 = −7.0000000000000000E−01
b3 = −2.9289321881345243E−01 b̂3 = −4.0000000000000000E−01
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Figure 5.1: Stability region of GROW2 regarding k=0:0.025:1.

Note that the choice b̂1 = 1/2, b̂2 = 1/2 and b̂3 = 0 in order to be close to the original
method ROS2 does not correspond to a stable method when there are s = 3 stages.
For this reason, let b̂1 = 7/10, b̂2 = 7/10 and b̂3 = −2/5 be assumed. This way the
embedded scheme yields |R̃(∞)| ≈ 0.88.

The resulting method is called GROW2 below. The corresponding set of coefficients
is summarized in Table 5.1. Its stability region is shown in Figure 5.1.

Remark 5.2 GROW2 is BP R-consistent of order p̃ = 1 only. This is because the
given set of coefficients violates the additional order conditions that are required to
achieve BP R-consistency of order p̃ = 2 (see Table 5.12).
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GROW2S

GROW2 does not satisfy additional conditions. Hence, it is expected to show effects
of order reduction when solving very stiff differential equations or systems that result
with respect to semi-discretized parabolic PDEs. For that reason, degrees of freedom
which remain for constructing schemes of order p = 2 with s = 3 stages are used
to realize enhanced characteristics below. In this context, especially stiffly accurate
properties should be considered first. Stiffly accurate schemes ensure that R(∞) = 0.
Hence, corresponding schemes are automatically L-stable when they are A-stable.
Moreover, stiffly accurate ROW-type methods yield asymptotically exact results when
applied to the Prothero-Robinson test problem. Also, the numerical solution of stiffly
accurate ROW-type methods with respect to z1 equals the result of one simplified
Newton iteration for 0 = g(x0 + h, z) when solving DAEs [24].

Definition 5.1 ROW-type methods whose coefficients are characterized by

βsi = bi, for i = 1, ..., s and αs = 1

are called stiffly accurate [24, 56].

ROW-type schemes which satisfy the requirements described in Definition 5.1 allow
to safe one order condition. In fact, the following theorem can be considered.

Theorem 5.4 Any stiffly accurate ROW-type method automatically satisfies order
condition (1A1.0).

Proof Condition (1A1.0) written in matrix-vector notation generally reads

bT Wα = 1

with b = (b1, ..., bs)T , α = (α1, ..., αs)T and W = (ωij)s
i,j=1. There is W = B−1

with B = (βi,j)s
i,j=1. Both matrices W and B are characterized by a lower triangular

structure. For that reason, entries of ωij can be defined recursively. For i = 1, ..., s
there is

ωii = 1
βii

(5.10a)

and

ωij = (−1) ·
i−1∑
k=j

ωkj
βik

βii
. (5.10b)

Now, when considering a stiffly accurate scheme, there is βsi = bi for i = 1, ..., s and
αs = 1. Also, βii = γ holds. Due to these characteristics, there will be always bT W = ẽ
with ẽ = (0, ..., 0, 1) ∈ Rs because given entries cancel appropriately. As a consequence,
there is ẽα = αs. Hence, for αs = 1 condition (1A1.0) is always satisfied for stiffly
accurate schemes. Note, that these findings are independent of the stage number s.
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Example 5.1 Considering a scheme with s = 3 stages, entries of matrix W become

ω11 = 1
β11

ω22 = 1
β22

ω33 = 1
β33

together with

ω21 = −ω11
β21

β22

ω31 = −ω11
β31

β33
− ω21

β32

β33

ω32 = −ω22
β32

β33

due to (5.10). Hence, by including the properties βii = γ and βsi = bi known for stiffly
accurate schemes there is

bT Wα =
(

b1
1
γ − b2β21

1
γ2 − b3b1

1
γ2 + b3b2β21

1
γ3

∣∣∣ b2
1
γ − b3b2

1
γ2

∣∣∣ b3
1
γ

) α1
α2
α3

 .

Taking into account b3 = γ and α3 = 1 it finally follows

bT Wα =
(

0
∣∣∣ 0

∣∣∣ 1
) α1

α2
1

 = 1.

Hence, condition (1A1.0) is automatically fulfilled.

Due to the assumptions given in Definition 5.1 order conditions can be significantly
simplified when realizing a stiffly accurate scheme. In fact, for constructing a cor-
responding version of ROW-type method (2.3) that is characterized by order p = 2
and s = 3 internal stages, required order conditions (1D1.0’) - (2D2.0’) (taking into
account Theorem 5.4) can be expressed by:

b1 + b2 = 1 − γ (1D1.0”)

b2α2 = 1
2

− γ (2D1.0”)

b2β2 = 1
2

− 2γ + γ2 (2D1.1”)

α32α2 = 1
2

(2D2.0”)

In this context, (2D1.1”) results from (2D1.1’) by considering b3 = γ and β3 = β31 +
β32 = b1 + b2. The value of β3 is replaced by the right-hand side of (1D1.0”). The
resulting system has four equations that depend on six parameters. Hence, there are
two degrees of freedom left which can be used to satisfy additional conditions. Note
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that the stiffly accurate condition α3 = 1 is already considered and that it is finally
used to determine α31.

In order to derive a corresponding set of coefficients the method ROS2S is considered.
ROS2S was introduced in [25]. It corresponds to a stiffly accurate W method of order
p = 2 with s = 3 stages. Hence, it satisfies the W method conditions (1D1.0”) -
(2D1.1”) already. Besides, ROS2S fulfills the conditions presented by Ostermann and
Roche in [49] to reduce effects of order reduction (see (5.2)). In this context, compared
to the conditions introduced by Rang in [59] and [60], ROS2S is BP R-consistent of
order p̃ = 2 [60]. Note that ROS2S violates order condition (2D2.0”) and therefore
cannot reach order p = 2 when solving DAEs by means of non-exact Jacobian entries.
Therefore, the objective is to extend ROS2S appropriately below.

To ensure that the enhanced set of coefficients preserves BP R-consistency of order
p̃ = 2 it is sufficient to supplement the order conditions (1D1.0”) - (2D2.0”) by the
conditions of Ostermann and Roche [49] (see [59, 60]). This is prefered against includ-
ing the latest conditions by Rang as the original method is then extended by condition
(2D2.0”) only. After some reformulation, the supplementing conditions resulting from
(5.2) read explicitly for i = 0, 1, 2 [25]:

b2α2
2 − 2γb2β2 = −2γ2 + γ (OR1)

2γb2α2
2 − 6γ2b2β2 = −4γ3 + 2γ2 (OR2)

3γ2b2α2
2 − 12γ3b2β2 = −6γ4 + 3γ3. (OR3)

By multiplying (OR1) with 2γ and subtracting it from (OR2) there is

b2β2 = 0 (5.11)

Due to this result, b2 = 0 or β2 = 0 must be satisfied. Choosing b2 = 0 would require
γ = 1/2 from (2D1.0”). However, this would contradict (2D1.1”) as γ = 1/2 is no root
of γ2 − 2γ + 1

2 = 0 (see [25]). As a consequence, β2 = 0 must be satisfied. Inserting
β2 = 0 into (OR1) yields

b2α2
2 = −2γ2 + γ (5.12)

and is automatically satisfied when inserting (5.12) into (OR3) [25]. The value α2 can
now be determined by dividing (5.12) by (2D1.0”). The result is α2 = 2γ. This can now
be used to determine b2 = 1

4γ − 1
2 by (2D1.0”) and b1 = 3

2 − γ − 1
4γ by (1D1.0”). Also,

α32 = 1
4γ follows from (2D2.0”). As α3 = 1 to achieve a stiffly accurate scheme, there

must be α31 = 1 − 1
4γ . Finally, by (2D1.1”) the choice of β2 = 0 yields γ = 1 ±

√
1/2.

As for ROS2S let γ− = 1 − 1/
√

2 be considered. Recall that it is the same value as
for ROS2 and GROW2 which minimizes the error constant. This choice also ensures
that b1 = b2.

Note that there can be no stiffly accurate embedded scheme: Due to α2 = 1/2 the
relevant condition αs = 1 for an embedded scheme with s = 2 cannot be satisfied. A
value α2 = 1 would be possible when α31 = 1/2 and α32 = 1/2 according to (2D2.0”).
However, then b̂2 = β22 = γ would be required to realize an embedded stiffly accurate
scheme. This would lead to b̂1 = 1 − γ to satisfy condition (1D1.0) which is the
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Table 5.2: Set of Coefficients for GROW2S

γ = 2.9289321881345243E−01
α21 = −5.8578643762690485E−01 γ21 = −5.8578643762690485E−01
α31 = −1.4644660940672605E−01 γ31 = −2.0710678118654791E−01
α32 = −8.5355339059327395E−01 γ32 = −5.0000000000000000E−01
b1 = −3.5355339059327395E−01 b̂1 = −3.3333333333333333E−01
b2 = −3.5355339059327395E−01 b̂2 = −3.3333333333333333E−01
b3 = −2.9289321881345243E−01 b̂3 = −3.3333333333333333E−01
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Figure 5.2: Stability region of GROW2S regarding k=0:0.025:1.

only condition that must be satisfied by the embedded scheme to reach order p = 1.
However, this would contradict the requirement b̂1 = β21 with β21 = 0 to achieve a
stiffly accurate embedded scheme. Hence, there is no chance for the embedded scheme
to be stiffly accurate. Instead, b̂1 = b̂2 = b̂3 = 1/3 as for ROS2S is considered.
Consider that the embedded scheme satisfies |R̃(∞)| ≈ 0.33.

The resulting method is called GROW2S below. The corresponding set of coefficients
is summarized in Table 5.2. Its stability region is shown in Figure 5.2.

Finally, the fact that the enhanced set of coefficients determined reaches the same
order of BP R-consistency as the original scheme ROS2S is shown.
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Lemma 5.1 GROW2S is BP R-consistent of order p̃ = 2.

Proof Following the proof of BP R-consistency given in [60] with respect to ROS2S it
must be shown that for all l ≥ 1

bT B−l(B−1α2 − 2B)e = 0.

In this context, B−k for k ≥ 0 can be determined analytically. Because of β2 = 0 there
is [60]:

B−k = 1
γk+1

 γ 0 0
0 γ 0

−kβ31 −kβ32 γ

 , k ≥ 0.

Hence, it follows in general

bT B−l = 1
γl+1

(
b1γ − lb1b3

∣∣∣ b2γ − lb2b3

∣∣∣ b3γ
)

.

Also, as shown in [60] there is

B−1α2 − 2Be =
(

−2γ
∣∣∣ α2

2
γ − 2γ

∣∣∣ − b2α2
2

γ2 + 1
γ − 2

)T

.

By considering α2 = 2γ for the given set of coefficients, this expression simplifies to:

B−1α2 − 2Be =
(

−2γ
∣∣∣ 2γ

∣∣∣ − 4b2 + 1
γ − 2

)T

.

As a consequence

bT B−l(B−1α2 − 2Be) = 1
γl+1

(
−2b1γ2 + 2lb1γ2 + 2b2γ2 − 2lb2γ2 − 4b2γ2 + γ − 2γ2)

.

After inserting b1 = 1 − b2 − γ (i.e. considering condition (1D1.0”) assuming stiffly
accurate schemes) the given expression can be alternatively expressed by

bT B−l(B−1α2 − 2Be) = 1
γl+1

(
−4γ2 + 2γ3 + γ + l · (2γ2 − 2γ3 − 4b2γ2)

)
or by including b2 = 1

4γ − 1
2

bT B−l(B−1α2 − 2Be) = 1
γl+1

(
−4γ2 + 2γ3 + γ + l · (4γ2 − 2γ3 − γ)

)
.

The term given in brackets finally becomes equal to zero when

2γ3 − 4γ2 + γ = 0.

Roots of this equation are γ1 = 0 and γ2,3 = 1 ±
√

1/2. As the set of coefficients is
realized by using γ− = 1 − 1/

√
2 it follows

bT B−l(B−1α2 − 2Be) = 0

and therefore GROW2S proves to be BP R-consistent of order p̃ = 2.
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GROW3P

The sets of coefficients previously considered are of order p = 2. Next, a scheme
that ensures order p = 2 regarding the solution of DAEs with non-exact Jacobian but
order p = 3 regarding the solution of DAEs with exact Jacobian is considered. For
this purpose, ROS3P introduced by Lang and Verwer in [35] is extended to ROW-
type method (2.3). ROS3P consists of s = 3 internal stages and reaches order p = 3
for nonlinear parabolic problems as well as DAEs when using exact Jacobian entries.
However, to achieve the higher order by means of the given number of stages comes at a
cost. ROS3P is not stiffly accurate and not L-stable. Instead, it proves to be strongly
A-stable with |R(∞)| ≈ 0.73 [35]. Note that ROS3P violates the order conditions
(2D1.0’) and (2D2.0’). Hence, its order is expected to reduce to p = 1 when solving
DAEs by means of non-exact Jacobian entries.

In order to realize an enhanced set of coefficients that preserves p = 2 when solving
DAEs with non-exact Jacobian and p = 3 when solving DAEs with exact Jacobian,
conditions (1D1.0’) - (1A1.0’) must be satisfied as well as the conditions

b2α2
2 + b3α2

3 = 1
3

(3D1.0’)

b3β32β2 = 1
6

− γ + γ2 (3D2.0’)

b2ω22α2
2 + b3(ω32α2

2 + ω33α2
3) = 1 (2A1.0’)

So, conditions (1D1.0’) - (1A1.0’) are supplemented by the conditions of Roche [64].
Note that (3D2.0’) corresponds to the sum of conditions (3D2.0) - (3D2.3) given in
Table 4.2. Besides, the conditions by Lubich and Ostermann [42] to reduce effects of
order reduction are taken into account. In this context, it is sufficient to satisfy (5.2)
for i = 1, 2 only. The case i = 0 can be neglected as it is automatically satisfied when
order conditions (1D1.0’), (2D1.1’), (3D1.0’) and (3D2.0’) are fulfilled. Using these
conditions, the additional equations with respect to i = 1, 2 for realizing a scheme with
s = 3 internal stages can be expressed by [35]:

b3β32α2
2 = 1

6
− 2

3
γ (LO1)

0 = γ2 − γ + 1
6

(LO2)

Note that a method that any ROW-type method which satisfies the conditions (1D1.0’),
(2D1.1’), (3D1.0’) and (3D2.0’) together with (LO1) and (LO2) automatically satisfies
(2A1.0’) (see Lemma 4.1 in [35]). However, according to Rang [59] the conditions
(LO1) and (LO2) are not sufficient to obtain full BP R-consistency of order p̃ = 3.
Hence, a corresponding scheme can be at most BP R-consistent of order p̃ = 2. Addi-
tional conditions to reach BP R-consistency of order p̃ = 3 with s = 3 internal stages
can be found in [59]. They are not considered here. Further below, there is a proof
that ROW-type schemes of the form (2.3) cannot be BP R-consistent of order p̃ = 3 as
long as they consider s = 3 stages (see Lemma 5.3).
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As (2A1.0’) is automatically satisfied, the given system consists of nine equations
and ten unknowns. Hence, there is one degree of freedom left. Due to the quadratic
equation given by (LO2) an appropriate value for γ can be directly determined. Roots
of this equation read γ± = 1

2 ± 1
6
√

3. However, only γ+ = 1
2 + 1

6
√

3 allows for con-
structing an A-stable scheme (see Tab. 6.3 in Section IV.6 of [24]). Consider that by
including condition (3D2.0’) stability function (4.9) (for s = 3 stages equal to (5.7))
becomes

R(z̃) =
1 + (1 − 3γ)z̃ + ( 1

2 − 3γ + 3γ2)z̃2 + (−γ3 + 3γ2 − 3
2 γ + 1

6 )z̃3

(1 − γz̃)3 . (5.13)

Hence, the given value of γ leads to |R(∞)| ≈ 0.73 as for the original method ROS3P
[35]. Equivalently, the term b3β32β2 occurring in (5.7) can be neglected when satisfying
(LO2) because b3β32β2 = 0 by (3D2.0’). Note that due to (LO1) and (1A1.0’) there
is b3β32 ̸= 0. Hence, there is β2 = 0 required to satisfy (3D2.0’) by means of the
given value γ (see [35]). Next, (LO1) divided by (1A1.0’) is used to determine α2.
By taking into account ω32 = −β32/γ2 there is α2 = 2γ. Due to β2 = 0 there must
be γ21 = −α21. So, γ21 is fixed. Next, for the sake of simplicity, the given degree of
freedom is used to assume α3 = 1 as for ROS3P (see [35]). Then, conditions (2D1.0’)
and (3D1.0’) can be used to determine

1
2

− b2α2 = 1
3

− b2α2
2

As a consequence, there is

b2 =
1
3 − 1

2
α2

2 − α2
= − 1

24γ2 − 12γ
.

This result leads to
b3 = 1

2
− b2α2 = 1

2
+ 1

12γ − 6
via (2D1.0’). Now, α32 and β32 can be determined using (2D2.0’) and (1A1.0’), re-
spectively. Afterwards, α31 follows from α31 = α3 − α32. With (2D1.1’) the value of
β31 can now be determined. There is:

β31 = 1
b3

(
1
2

− γ

)
− β32.

Finally, b1 results from (1D1.0’).
An appropriate embedded scheme, must be of order p = 1 when solving DAEs by

means of a non-exact Jacobian and p = 2 when solving DAEs by means of an exact
Jacobian. Corresponding order conditions read:

b̂1 + b̂2 + b̂3 = 1 (e1D1.0’)

b̂2β2 + b̂3β3 = 1
2

− γ (e2D1.1’).
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Table 5.3: Set of Coefficients for GROW3P

γ = 7.8867513459481287E−01
α21 = −1.5773502691896257E+00 γ21 = −1.5773502691896257E+00
α31 = −6.8301270189221941E−01 γ31 = −8.6602540378443871E−01
α32 = −3.1698729810778065E−01 γ32 = −5.0000000000000000E−01
b1 = −3.9433756729740654E−01 b̂1 = −3.3333333333333333E−01
b2 = −1.8301270189221933E−01 b̂2 = −1.2200846792814612E−01
b3 = −7.8867513459481287E−01 b̂3 = −7.8867513459481287E−01
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Figure 5.3: Stability region of GROW3P regarding k=0:0.025:1.

The system provides one degree of freedom. By the given results of β2 and β3 it is
possible to determine b̂3 directly via (e2D1.1’). By choosing b̂1 = 1

3 as for the original
method ROS3P, b̂2 can finally be determined using (e1D1.0’). Note that the resulting
embedded scheme satisfies |R̃(∞)| ≈ 0.73.

The resulting method is called GROW3P below. The corresponding set of coeffi-
cients is summarized in Table 5.3. Its stability region is shown in Figure 5.3.

Lemma 5.2 GROW3P is BP R-consistent of order p̃ = 2.

Proof As for the proof with respect to Lemma 5.1 and the approach presented in [59]
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with respect to ROS2S it must be shown that for all l ≥ 1 there is

bT B−l(B−1α2 − 2B)e = 0.

By taking into account β2 = 0 it is possible to define

B−k = 1
γk+l

 γ 0 0
0 γ 0

−kβ31 −kβ32 γ

 , k ≥ 0.

In addition, it holds

bT B−l = 1
γl+1

(
b1γ − lb3β31

∣∣∣ b2γ − lb3β32

∣∣∣ b3γ
)

and

B−1α2 − 2Be =
(

−2γ
∣∣∣ α2

2
γ − 2γ

∣∣∣ − β32α2
2

γ2 + α2
3

γ − 2β31 − 2β32 − 2γ
)T

.

For that reason, it follows

bT B−l(B−1α2 − 2Be)

= 1
γl+1

(
−2γ2b1 + 2lγb3(β31 + β32) + b2α2

2 − 2γ2b2 − 1
γ

lb3β32α2
2 − 1

γ
b3β32α2

2

dummie

γ
+ b3α2

3 − 2γb3(β31 + β32) − 2γ2b3

)
.

By including (1D1.0’) and (3D1.0’) it follows

bT B−l(B−1α2 − 2Be)

= 1
γl+1

(
1
3

− 2γ2 + 2lγb3(β31 + β32) − 1
γ

lb3β32α2
2 − 1

γ
b3β32α2

2 − 2γb3(β31 + β32)
)

.

Now, including b3β3 = 1
2 − γ from (2D1.1’) taking into account β2 = 0 and b3β32α2

2 =
1
6 − 2

3 γ from (LO1) the given equation becomes:

bT B−l(B−1α2 −2Be) = 1
γl+1

(
1
3

− 2γ2 + lγ − 2lγ2 − 1
6γ

l + 2
3

l − 1
6γ

+ 2
3

− γ + 2γ2
)

.

Hence, there is

bT B−l(B−1α2 − 2Be) = 1
γl+1

(
1 − γ − 1

6γ
+ l

(
γ − 2γ2 − 1

6γ
+ 2

3

))
.

Due to the choice of γ by (LO2) there is

1 − γ − 1
6γ

= 0.
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Also, it can be shown that there is

γ − 2γ2 − 1
6γ

+ 2
3

= 0.

With − 1
6γ = γ − 1 (from (LO2)) this equation yields

γ − γ2 − 1
6

= 0

which, again, is satisfied by the given choice of γ. Hence

bT B−l(B−1α2 − 2Be) = 0

is satisfied and the scheme is BP R-consistent of order p̃ = 2.

The given set of coefficients is only BP R-consistent of order p̃ = 2 although it
corresponds to a ROW-type method of order p = 3 when solving DAEs by means
of exact Jacobian entries. Hence, it would be appropriate to realize a similar set of
coefficients that is BP R-consistent of order p̃ = 3 as well. In fact, regarding the original
method ROS3P, a corresponding scheme was introduced in [59]. It is called ROS3PR.
ROS3PR violates conditions (2D1.0’) and (2D2.0’). So, there is the idea of extending it
to a suitable ROW-type methond of the form (2.3). But, contrary to ROS3P, ROS3PR
cannot be extended to ROW-type method (2.3) while preserving BP R-consistency of
order p̃ = 3. In fact, the following Lemma holds.

Lemma 5.3 ROW-type schemes of the form (2.3) consisting of s = 3 stages can be
at most BP R-consistent of order p̃ = 2.

Proof As shown in [59] a ROW-type scheme with s = 3 stages is BP R-consistent
of order p̃ = 3 when it satisfies order conditions (1D1.0’), (2D1.1’), (3D1.0’) and
(3D2.0’) plus the following additional conditions (BC1) - (BC5):

b3β32α2
2 = 1

3
γ − γ2 (BC1)

γ(b2α3
2 + b3α3

3) − b3β32α3
2 = γ2 (BC2)

2b3β32α2
2 = 1

3
γ − 2γ3 (BC3)

γ(b2α3
2 + b3α3

3) − 2b3β32α3
2 = 3γ3 (BC4)

b3β32β2 = −2γ2 + 2γ − 1
3

(BC5)

By (BC4) minus (BC2) and dividing the result by (BC1) there is (see also [59]):

α2 = γ2 − 3γ3

1
3 γ − γ2 = 3γ.
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However, when realizing a ROW-type scheme of the form (2.3) condition (1A1.0’) must
be additionally considered. Regarding (BC4) minus (BC2) and dividing the result by
(1A1.0’) there is:

α2 = γ2 − 3γ3

1
2 γ − γ2 = 2γ.

Hence, there is a contradiction as long as γ ̸= 0. Note that there is γ ̸= 0 due to (BC1)
and (BC3) which lead to the quadratic equation [59]

1
6

− γ + γ2 = 0.

5.2.2 Order Two with Four Stages

To improve properties of the sets of coefficients, further stages must be taken into
account. In this context, stiffly accurate schemes that realize ROW-type method (2.3)
up to order p = 2 with s = 4 internal stages are considered below. The additional
stage can be used either to increase the order up to p = 3 regarding classical methods
included (notably the ROW method with exact Jacobian for solving DAEs [64], the
W method for ODEs [71] and the ROW-type scheme by Rentrop et al. [62]) or to
increase the BP R-consistency order up to p̃ = 3.

Following Definition 5.1, stiffly accurate schemes with s = 4 internal stages satisfy

α4 = 1 together with bi = β4i for i = 1, ..., s.

Recall that by Theorem 5.4 stiffly accurate methods satisfy condition (1A1.0) au-
tomatically. Hence, the order conditions (1D1.0) - (2D2.0) which are required for
implementing the ROW-type method (2.3) up to order p = 2 can be expressed by:

b1 + b2 + b3 = 1 − γ (1D1.0’”)

b2α2 + b3α3 = 1
2

− γ (2D1.0’”)

b2β2 + b3β3 = 1
2

− 2γ + γ2 (2D1.1’”)

b3α32α2 + γ(α42α2 + α43α3) − α43β32α2 = γ

2
(2D2.0’”)

When realizing a W method for ODEs that is of order p = 3 these conditions must be
supplemented by (3D1.0) - (3D2.3). Regarding the stiffly accurate case, corresponding
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additional conditions read:

b2α2
2 + b3α2

3 = 1
3

− γ (3D1.0’”)

b3α32α2 + γ(α42α2 + α43α3) = 1
6

(3D2.0’”)

b3β32α2 = 1
6

− γ + γ2 (3D2.1’”)

b3α32β2 + γ(α42β2 + α43β3) = 1
6

− γ

2
(3D2.2’”)

b3β32β2 = 1
6

− 3
2

γ + 3γ2 − γ3 (3D2.3’”)

Note that the formulation of (3D2.1’”) results from taking into account (2D1.0’”) and
the formulation of (3D2.3’”) results from taking into account (2D1.1’”). Conditions
(3D1.0’”) and (3D2.0’”) are also required for realizing the scheme by Rentrop et al.
[62] up to order p = 3. For implementing the method by Rentrop et al. [62] up to
order p = 3 completely, these conditions must be supplemented by:

1
γ

b3α32α2
2 + α42α2

2 + α43α2
3 − 1

γ
α43β32α2

2 = 1
3

(3D5.0’”)

− 1
γ2 b3β32α2

2 + γ(ω42α2
2 + ω43α2

3) = 1 − 1
3γ

(2A1.0’”)

Here, the formulation of (2A1.0’”) is a consequence of including (3D1.0’”). The given
conditions automatically satisfy the conditions required for realizing the standard
ROW method introduced in [64] which solves DAEs by means of exact Jacobian ma-
trices up to order p = 3. However, when not realizing a W method for ODEs [71] or
the ROW-type method by Rentrop et al. [62], these order conditions can be reduced
significantly. In fact, to combine ROW-type method (2.3) up to order p = 2 with the
ROW method for DAEs up to order p = 3 which considers the application of exact Ja-
cobian entries only, just the order conditions (3D1.0’”), (3D2.3’”) and (2A1.0’”) must
be additionally taken into account.

Regarding the stiffly accurate case, condition (5.3) should be automatically satisfied
for all k ≥ 2 [57, 59]. Hence, order conditions to ensure that a stiffly accurate ROW-
type scheme with s = 4 is BP R-consistent of order p̃ = 2 read (see Lemma 6.7 in [58]
and Lemma 15 in [60]):

β2 = 0 (BPR2.1)

b3β32α2
2 = 2γ3 − 2γ2 + 1

3
γ (BPR2.2)

While additional conditions to achieve BP R-consistency of order p̃ = 3 read (see
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Lemma 6.4 in [58] and Lemma 12 in [60]):

α2 = 3γ (BPR3.1)

β32α2
2 + γα2

3 = 1
3

α3
3 (BPR3.2)

b2α2
2 + b3α2

3 = 1
3

− γ (BPR3.3)

Note that (BPR3.3) equals condition (3D1.0’”) that is generally required for realizing
a ROW-type method of order p = 3.

Remark 5.3 In [59] Rang considers a third condition for realizing stiffly accurate
ROW-type methods with s = 4 stages that are BP R-consistent of order p̃ = 2. However,
it is not explicitly described in [58] and [60] regarding the same assumptions. This
equation reads [59]:

b3β32α2
2 = 2

3
γ4 − γ2 + 2

9
γ (BPR2.3)

Note that this condition together with (BPR2.2) yields the same cubic equation as
(3D2.3’”) together with (BPR2.1) [59]. Hence, it becomes relevant in cases of ROW-
type methods which violate (3D2.3’”) only and can be used to fix the value of γ (e.g.
regarding the ROW-type scheme introduced by Rentrop et al. [62]).

Lemma 5.4 A stiffly accurate ROW-type method of order p = 3 with s = 4 stages
that satisfies condition (3D1.0’”) together with (BPR2.2) also satisfies (2A1.0’”).

Proof Inserting (BPR2.2) into (2A1.0’”) yields:

ω42α2
2 + ω43α2

3 = 2 − 1
γ

. (5.14)

Considering (ωij)s
i,j=1 = B−1 with B = β1

i,j=1, it is known that

ω42 = β43β32 − β42γ

γ3 and ω43 = −β43

γ2 .

Including this information in (5.14) regarding the stiffly accurate case there is:

− 1
γ2 b2α2

2 − 1
γ2 b3α2

3 + 1
γ3 b3β32α2

2 = 2 − 1
γ

. (5.15)

Using (3D1.0’”) it follows:

b3β32α2
2 = 2γ3 − 2γ2 + 1

3
γ (5.16)

which is equal to (BPR2.2). So, (2A1.0’”) is automatically fulfilled when (3D1.0’”)
and (BPR2.2) are satisfied.
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Remark 5.4 Lemma 5.4 is an analogy to Lemma 4.2 given in [56]. Here, the fact
that ROW-type methods of order p = 3 with s = 4 stages automatically satisfy (2A1.0)
when considering the additional conditions by Lubich and Ostermann [42] was shown.
In this context, note that Lemma 5.4 should also apply to ROW-type methods that are
not stiffly accurate.

Lemma 5.5 A stiffly accurate ROW-type method of order p = 3 with s = 4 stages
that satisfies conditions (2D1.1’”) and (3D2.0’”) - (3D2.3’”) together with (BPR2.1)
also satisfies (2D2.0’”).

Proof Inserting (3D2.0’”) into (2D2.0’”) yields:

α43β32α2 = 1
6

− γ

2
. (5.17)

From (3D2.2’”) and (BPR2.1) there is

γα43β3 = 1
6

− γ

2
. (5.18)

Therefore, (5.17) and (5.18) can be used to define:

α43β32α2 = γα43β3. (5.19)

Now, dividing (5.19) by α43 and multiplying the result by b3 gives:

b3β32α2 = γb3β3. (5.20)

Considering (2D1.1’”) together with (BPR2.1) there is

b3β3 = 1
2

− 2γ + γ2. (5.21)

Hence, by inserting (3D2.1’”) and (5.21) into (5.20) it follows after reformulation:

1
6

− 3
2

γ + 3γ2 − γ3 = 0. (5.22)

It is the same cubic equation that results from (3D2.3’”) together with (BPR2.1). So,
appropriate values of γ that satisfy (5.22) together with the order conditions considered
ensure that (2D2.0’”) is automatically satisfied.

Remark 5.5 Note that (2D2.0’”) is also automatically satisfied for stiffly accurate
ROW-type methods of order p = 3 with s = 4 stages when regarding given order
conditions together with the less stringent conditions by Lubich and Ostermann [42]
instead of those by Rang [59, 60].

Theorem 5.5 Any stiffly accurate W method for ODEs that is of order p = 3 with
s = 4 internal stages corresponds to an appropriate set of coefficients for realizing
ROW-type method (2.3) with Bz = (gz)0 up to order p = 2 as long as it is BP R-
consistent of order p̃ = 2.
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Proof By the order conditions listed in Table 4.2 that are required to realize ROW-
type method (2.3), taking into account Lemma 5.4 and Lemma 5.5.

Remark 5.6

• W methods of order p = 3 with s = 4 internal stages that are BP R-consistent of
order p̃ = 2 are existing in literature already. Such schemes are ROS34PW2 [56]
and ROS34PRW [57], for example. As both these schemes are stiffly accurate
they satisfy the requirements of Theorem 5.5.

• W methods of order p = 3 with s = 4 internal stages cannot be BP R-consistent
of order p̃ = 3. This is shown in [59]: When dividing condition (BPR2.2) by
(3D2.1’”) there is α2 = 2γ. This, however, violates condition (BPR3.1) which
is required to reach BP R-consistency of order p̃ = 3.

Note that for a ROW-type scheme with s = 4 internal stages the stability function
generally becomes:

R(z̃) = 1 + (b1 + b2 + b3 + b4)z̃
(1 − γz̃)

+ (b2β2 + b3β3 + b4β4)z̃2

(1 − γz̃)2

+ (b3β32β2 + b4(β42β2 + β43β3))z̃3

(1 − γz̃)3 + (b4β43β32β2)z̃4

(1 − γz̃)4

Hence, when regarding the stiffly accurate case and including the order conditions
(1D1.0’”) and (2D1.1’”) it follows:

R(z̃) =
1 + (1 − 4γ)z̃ + ( 1

2 − 4γ + 6γ2)z̃2 + (b3β32β2 − 1
2 γ + 3γ2 − 3γ3)z̃3

(1 − γz̃)4 . (5.23)

GROW34PRw

As mentioned in Remark 5.6 schemes that satisfy W method condition (3D2.1’”) can-
not be BP R-consistent of order p̃ = 3. For that reason, Rang introduced ROS34PRw
in [59] which avoids the given conflict by neglecting (3D2.1’”). ROS34PRw is con-
sidered to be an alternative version of ROS34PRW which achieves BP R-consistency
of order p̃ = 3. In more detail, ROS34PRw is a stiffly accurate scheme that satisfies
the conditions (1D1.0’”) - (2D1.1’”) together with (3D1.0’”), (3D2.0’”), (3D2.2’”) as
well as (1A1.0’”) (automatically satisfied by Lemma 5.5) and (2A2.0’”). It also sat-
isfies condition (3D2.3’”) which corresponds to a condition by Roche [64]. However,
the original condition (3D2.3) is violated. The resulting scheme is BP R-consistent of
order p̃ = 3, but no W methods of order p = 3. Only when solving DAEs with exact
Jacobian it preserves order p = 3 and reduces to order p = 2 when being applied as
a W method for ODEs or realizing the scheme by Rentrop et al. [62]. However, it
violates (2D2.0’”), too. Hence, it reduces even to order p = 1 when being applied
as ROW-type method (2.3). For that reason, the objective is to extend this method
appropriately below such that it preserves order p = 2 at least.
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However, realizing a corresponding scheme is not possible when taking into account
the order conditions satisfied by the original method ROS34PRw. By the remark
given above, we only know that there can be no full W method and that (3D2.1’”) is
problematic which is skipped by ROS34PRw. Below, Lemma 5.6 shows that there is
no possibility of realizing a version of ROW-type scheme (2.3) up to order p = 2 with
s = 4 stages that is BP R-consistent of order p̃ = 3 and that additionally takes into
account (3D2.0’”), (3D2.2’”) and (3D2.3’”). Note that (3D2.3’”) is required to realize
a standard ROW method of order p = 3 to solve DAEs by means of exact Jacobian
matrices.

Lemma 5.6 A stiffly accurate ROW-type method (2.3) of order p = 2 that consists
of s = 4 internal stages cannot be BP R-consistent of order p̃ = 3 when taking into
account (3D2.0’”), (3D2.2’”) and (3D2.3’”) additionally.

Proof To reach order p = 2 with s = 4 internal stages, ROW-type method (2.3)
requires to satisfy order conditions (1D1.0’”) - (2D2.0’”). In addition, to reach BP R-
consistency of order p̃ = 3, conditions (BPR2.1) - (BPR3.3) must be considered. Due
to (BPR2.1), valid values of γ are fixed by the solutions of the cubic equation

0 = 1
6

− 2
3

γ + 3γ2 − γ3 (5.24)

that is given when taking into account (3D2.3’”). Now, (BPR2.2) in combination with
(BPR3.1) yields

b3β32 = 2
9

γ − 2
9

+ 1
27γ

. (5.25)

Inserting (BPR2.1) and (5.25) into (2D1.1’”) leads to

b3β31 = 13
18

− 20
9

γ + γ2 − 1
27γ

. (5.26)

Next, (2D2.0’”) is reformulated by considering (3D2.0’”) and (BPR3.1). It follows:

α43β32 = 1
18γ

− 1
6

. (5.27)

Using this result in combination with (BPR2.1) order condition (3D2.2’”) leads to

α43β31 = 1
9γ

− 1
3

. (5.28)

Finally, divide (5.25) by (5.26) and (5.27) by (5.28) to get

3
486

− 27
324

γ + 111
324

γ2 − 27
54

γ3 + 1
6

γ4 = 0. (5.29)

However, the roots of (5.29) do not conform to the roots of (5.24). Hence, it is not
possible to realize a scheme that satisfies all the order conditions considered.
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Due to the restrictions given there can be no set of coefficients based on ROS34PRw
that satisfies the same order conditions while allowing to preserve order p = 2 when
solving DAEs by means of non-exact Jacobian matrices. Instead, a scheme must be
considered that neglects the order conditions that exclusively correspond to W methods
for ODEs regarding order p = 3. As an alternative, satisfying the order conditions
to include a ROW-type method according to Rentrop et al. [62] up to order p = 3
while ensuring BP R-consistency of order p̃ = 3 could be promising. A corresponding
scheme requires to to consider (3D1.0), (3D2.0) and (3D5.0) only. Besides (3D2.3’”)
should be included to allow for ROW methods to solve DAEs with exact Jacobian up
to order p = 3 as well. However, as following Lemma 5.6 shows, including reformulated
conditions (3D2.0’”) and (3D5.0’”) leads to further conflicts.

Lemma 5.7 A stiffly accurate ROW-type method (2.3) of order p = 2 that consists
of s = 4 internal stages cannot be BP R-consistent of order p̃ = 3 when taking into
account (3D2.0’”) and (3D5.0’”) additionally.

Proof First, note that the value of γ is fixed by (BPR2.2) in combination with
(BPR2.3). They lead to the cubic equation:

0 = γ3 − 3γ2 + 3
2

γ − 1
6

. (5.30)

Among the root of this equation, only γ ≈ 0.43 is within the range of appropriate values
according to Table 6.4 in Section IV of [24].

Next, considering (2D2.0’”) times α2 minus (3D5.0’”) times γ there is

α43 = 3α2 − 2
6(α2α3 − α2

3)
. (5.31)

Also, when considering (2D2.0’”) minus (3D2.0’”) there is

α43 = −
γ
2 − 1

6
β32α2

. (5.32)

Now, setting (5.31) equal to (5.32) it follows

(3α2
2 − 2α2)β32 = (1 − 3γ)(α2α3 − α2

3). (5.33)

Taking into account (BPR3.2) to express β32 in dependence of α2 and α3 as well as
(BPR3.1) to express α2 in dependence of γ, this equation can be rewritten as:(

1 − 2
9γ

)
α3

3 −
(

6γ − 5
3

)
α2

3 −
(
3γ − 9γ2)

α3 = 0 (5.34)

By considering the given value of γ ≈ 0.43, the solutions of this equations read (deter-
mined with MUPAD):

α3 =
{

0, 3γ, −9γ − 27γ2

9γ − 2

}
.
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Alternatively, regard (2D1.0’”) times α2 minus (3D1.0’”) to find

b3 =
− 1

3 + 5
2 γ − 3γ2

3γα3 − α2
3

. (5.35)

Also, taking into account β32 as defined by (BPR3.2), it follows from (BPR2.2):

b3 =
2γ3 − 2γ2 + 1

3 γ
1
3 α3

3 − γα2
3

. (5.36)

Now, setting (5.35) equal to (5.36) appropriate values of α3 can be determined by
solving the resulting cubic equation:

0 =
(

1
9

− 5
6

γ + γ2
)

α3
3 +

(
−5γ3 + 9

2
γ2 − 2

3
γ

)
α2

3 +
(
6γ4 − 6γ3 + γ2)

α3. (5.37)

For the given value of γ roots of this equation read (determined with MUPAD):

α3 =
{

0, 3γ,
36γ3 − 36γ2 + 6γ

18γ2 − 15γ + 2

}
.

By comparison with the solutions of equation (5.34) only α3 = 0 and α3 = 3γ can be
adequate solutions. However, these choices set the denominator of (5.35) and (5.36)
to zero when trying to compute an appropriate value of b3. As a consequence, there
is no possibility to realize a ROW-type method that is BP R-consistent of order p̃ = 3
and that combines the scheme formulation (2.3) up to order p = 2 with schemes that
require for conditions (3D2.0’”) and (3D5.0’”).

Because of Lemma 5.7 there can be no scheme that combines a ROW-type scheme
(2.3) up to order p = 2 with the ROW-type method for DAEs introduced by Rentrop
et al. [62] up to order p = 3 while realizing BP R-consistency of order p̃ = 3. Also,
due to Remark 5.6 and Lemma 5.6 there can be no combination with a W method of
order p = 3. For that reason, an extension of ROS34PRw is considered that satisfies
(1D1.0’”) - (2D2.0’”) together with (3D1.0’”) and (3D2.3’”) as well as (BPR2.1) -
(BPR3.2). Note that condition (2A1.0’”) is automatically satisfied due to Lemma 5.4.
As a consequence, the resulting method neglects order conditions that are fulfilled by
the original method ROS34PRw. However, it preserves the same orders (i.e. BP R-
consistency of order p̃ = 3, order p = 3 w.r.t. the ROW methods for DAEs as
introduced by Roche [64], order p = 2 w.r.t. the ROW-type methods for DAEs as
introduced by Rentrop et al. [62] and W methods for ODEs as introduced by Steihaug
and Wolfbrand [71]) and even increases the order regarding an application as ROW-
type method (2.3) from p = 1 to p = 2.

There are 10 equations and 12 unknowns. In order to determine the enhanced set of
coefficients steps described in the proof of Lemma 5.7 can be used. First, conditions
(3D2.3’”) and (BPR2.1) are used to determine a value of γ. Note that the cubic
equation to solve is equal to (5.30) that follows from (BPR2.2) and (BPR2.3). As
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mentioned before γ ≈ 0.43 is the only root which lies within the range of appropriate
values according to Table 6.4 given in Section IV of [24]. It is the same value as for
the original method ROS34PRw [59]. Knowing γ, the value of α2 = 3γ is fixed by
(BPR3.1).

Next, cubic equation (5.37) is determined using (5.35) and (5.36). Corresponding
solutions are described in the proof of Lemma 5.7. As mentioned before, α3 = 0 and
α3 = 3γ are no appropriate choices for realizing the set of coefficients. This is because
they set the denominators of (5.35) and (5.36) to zero. For that reason, there must be

α3 = 36γ3 − 36γ2 + 6γ

18γ2 − 15γ + 2
≈ 1.1115

with respect to the given value of γ. It is the same value as for the original method
ROS34PRw [60].

The given value of α3 allows to determine b3 via (5.35) or (5.36). Afterwards β32
follows from (BPR3.2) and b2 from (2D1.0’”) or (3D1.0’”). As b4 = γ due to the stiffly
accurate property, b1 is determined using (1D1.0’”). Also, because β2 = 0 by (BPR2.1),
β31 can now be computed via (2D1.1’”). Next, one of the values α32, α42 or α43 can
be evaluated by (2D2.0’”). Because these coefficients do not occur within the other
order conditions considered directly, the value to compute by (2D2.0’”) can be chosen
arbitrarily. The remaining coefficients correspond to free parameters. Finally, there is
α31 = α3 − α32 and α41 = 1 − α42 − α43. There is γ41 = b1 − α41, γ42 = b2 − α42 and
γ43 = b3 − α43 due to the stiffly accurate properties given, too. In order to realize an
appropriate scheme α42 = 0.5 and α43 ≈ 0.55 are considered below. They correspond
to the values of the original scheme ROW34PRw [60].

An embedded scheme must be of order p = 1 regarding the application in the form
of ROW-type method (2.3). As well, order p = 1 must be given when applying the
scheme in the form of the ROW-type method introduced by Rentrop et al. [62] or in
the form of a W method for ODEs. Nevertheless, regarding the application as ROW
method with exact Jacobian for solving DAEs, order p = 2 must be ensured. Assuming
s = 4 internal stages corresponding order conditions read

b̂1 + b̂2 + b̂3 + b̂4 = 1 (e1D1.0’”)

b3β3 + b4(1 − γ) = 1
2

− γ (e2D1.1’”)

after including β2 = 0 and β4 = 1 − γ. There are two degrees of freedom. After
choosing b̂1 ≈ 0.59 and b̂3 ≈ 0.55 as for the original scheme ROS34PRw there is
b̂2 ≈ −0.46 and b̂4 ≈ 0.32. Hence, the embedded scheme is the same as for the original
method ROS34PRw. Note that it yields |R̃(∞)| = 0.25.

The resulting method is called GROW34PRw below. The corresponding set of
coefficients is summarized in Table 5.4. Its stability region is shown in Figure 5.4.
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Table 5.4: Set of Coefficients for GROW34PRw

γ = 4.3586652150845900E−01
α21 = −1.3075995645253771E+00 γ21 = −1.3075995645253771E+00
α31 = −1.4417785675351402E+00 γ31 = −1.6070872240995751E+00
α32 = −3.3028050590993452E−01 γ32 = −2.8304946117723884E−01
α41 = −5.3402207849443051E−02 γ41 = −4.4024152788200843E−01
α42 = −5.0000000000000000E−01 γ42 = −1.1778562785454629E+00
α43 = −5.5340220784944305E−01 γ43 = −3.0174822915499544E−01
b1 = −3.8683932003256538E−01 b̂1 = −5.8643117861132599E−01
b2 = −6.7785627854546282E−01 b̂2 = −4.6123460043657361E−01
b3 = −8.5515043700443849E−01 b̂3 = −5.5283538820777700E−01
b4 = −4.3586652150845900E−01 b̂4 = −3.2196803361747062E−01
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Figure 5.4: Stability region of GROW34PRw regarding k=0:0.025:1.
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GROW3PRL2

Another scheme introduced by Rang in [59] that is BP R-consistent of order p̃ = 3 is
ROS3PRL2. ROS3PRL2 is an extension of the method ROS3PL originally introduced
by Lang and Teleaga in [36]. It is a stiffly accurate ROW method of order p = 3
that violates the order conditions (2D1.0’”) - (2D2.0’”). Hence, when solving DAEs by
means of non-exact Jacobian matrices it reduces its order to p = 1. This is the case
when applying this set of coefficients in the form of the ROW-type method introduced
by Rentrop et al. [62] as well as the ROW-type method (2.3). Below, an extension
of ROS3PRL2 is considered such that it preserves its original properties but reaches
order p = 2 when applying a non-exact Jacobian. In this context, the properties of
the resulting scheme will be exactly the same as for GROW34PRw.

For realizing an appropriate set of coefficients, the steps for determining the coeffi-
cients of GROW34PRw can be applied again. As a consequence, the values of γ, α2,
α3, β2, β31, β32 and b1 - b4 are exactly the same as for GROW34PRw. Differences
are given when choosing α42 and α43 in order to compute α32 via (2D2.0’”). Here,
α42 = 0.5 and α43 = 0 as for the original method ROS3PRL2 are considered.

The embedded scheme is computed by using (e1D1.0’”) and (e2D1.1’”) together with

−5γ4 + 4γ3(1 + b̂4) − 4γ2(b̂3β3 + b̂4) + 4γb̂4b3β3 = 0.

The additional condition was suggested by Rang in [59] when realizing the coefficients
of ROS3PRL2. Together with b̂1 = 0.5 assumed to be the only degree of freedom it
is used to ensure that the embedded method is strongly A-stable with |R̃(∞)| = 0.25.
The remaining values become b̂2 ≈ −0.37, b̂3 ≈ 0.55 and b̂4 ≈ 0.32.

The resulting method is called GROW3PRL2 below. The corresponding set of
coefficients is summarized in Table 5.5. Its stability region is shown in Figure 5.5.

5.3 Numerically Determined Sets
In order to realize schemes that are characterized by enhanced properties further

internal stages must be taken into account. However, increasing the number of internal
stages complicates the formulation of order conditions and, thus, makes it more chal-
lenging to find appropriate sets of coefficients. The process of realizing corresponding
methods can be sped up by solving the order conditions given numerically. However,
in contrast to schemes determined analytically, results might be less reliable. In the
following, some sets of coefficients that were computed numerically using MATLAB’s
fsolve-function for solving the given systems of non-linear equations are introduced.
In this context, all methods were evaluated based on the Levenberg-Marquardt algo-
rithm. Detailed information with respect to this algorithm can be found in [38], [43]
and [46].

5.3.1 Order Two with Five Stages

According to Lemma 5.7 there is no possibility to realize a stiffly accurate version
of ROW-type method (2.3) up to order p = 2 with s = 4 internal stages which covers
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Table 5.5: Set of Coefficients for GROW3PRL2

γ = 4.3586652150845900E−01
α21 = −1.30759956452537710E+00 γ21 = −1.30759956452537710E+00
α31 = −1.17144844213035750E+00 γ31 = −1.33675709869479230E+00
α32 = −5.9950380505151696E−02 γ32 = −1.2719335772456014E−02
α41 = −5.0000000000000000E−01 γ41 = −1.1316067996743462E−01
α42 = −5.0000000000000000E−01 γ42 = −1.17785627854546290E+00
α43 = −0.0000000000000000E+00 γ43 = −8.5515043700443849E−01
b1 = −3.8683932003256538E−01 b̂1 = −5.0000000000000000E−01
b2 = −6.7785627854546282E−01 b̂2 = −3.7480342182506449E−01
b3 = −8.5515043700443849E−01 b̂3 = −5.5283538820763400E−01
b4 = −4.3586652150845900E−01 b̂4 = −3.2196803361743076E−01
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Figure 5.5: Stability region of GROW3PRL2 regarding k=0:0.025:1.
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Table 5.6: Set of Coefficients for GROW35n

γ = 4.35866521508452900E−01
α21 = −2.30289600239868860E−01 γ21 = −2.30666492716850410E−01
α31 = −8.56014605401288380E−01 γ31 = −8.55583404600044450E−01
α32 = −4.87782891478346910E−01 γ32 = −4.87782891477525740E−01
α41 = −1.58586816267367500E+00 γ41 = −1.23807403488298860E+00
α42 = −6.84479185781682320E−01 γ42 = −4.84345364691425080E−01
α43 = −0.14541556841273919E−01 γ43 = −1.00707337986753090E+00
α51 = −1.32793992068333780E−01 γ51 = −2.65673469875456590E−01
α52 = −9.92217321266755550E−01 γ52 = −5.59978724875248020E−01
α53 = −1.71798490384802630E−01 γ53 = −1.36566117656897000E−01
α54 = −0.31221819583224428E−01 γ54 = −0.04995148851764650E−01
b1 = −1.32879477807122780E−01 b̂1 = −2.27038807437743790E−01
b2 = −4.32238596391507580E−01 b̂2 = −3.18169879735279380E−01
b3 = −0.35232372727905630E−01 b̂3 = −0.54213020735109731E−01
b4 = −0.36216968434989033E−01 b̂4 = −0.36346199176705209E−01
b5 = −4.35866521508452900E−01 b̂5 = −4.36924491266059090E−01

the ROW-type method introduced by Roche [64] as well as the ROW-type method
introduced by Rentrop et al. [62] up to order p = 3 as long as the order conditions
for realizing BP R-consistency of order p̃ = 3 are taken into account. However, when
considering an increased number of s = 5 internal stages, a set of coefficients which
satisfies all required order conditions (1D1.0’”) - (2D2.0’”) together with (3D1.0’”),
(3D2.0’”), (3D5.0’”) and (BPR2.1) - (BPR3.2) can be found.

Regarding the embedded method, a set of coefficients with s = 5 stages was found
that satisfies the order conditions (1D1.0’”) together with (2D2.0’”), (2D2.1’”) so that
order p = 1 is ensured regarding ROW-type method (2.3) and p = 2 is ensured
regarding the ROW-type methods introduced by Roche [64] and Rentrop et al. [62].
Note that the embedded method considers |R̃(∞)| ≈ 0.0023.

The resulting method is called GROW35n below. The corresponding set of coeffi-
cients is summarized in Table 5.6. Its stability region is shown in Figure 5.6.

5.3.2 Order Three with Seven Stages

So far, sets of coefficients have been considered that realize ROW-type scheme (2.3)
up to order p = 2. In the following, sets of coefficients are introduced which enable
to attain full order p = 3 in combination with BP R-consistency of order p̃ = 3. This
means, methods are considered that satisfy all the order conditions shown in Table
4.2. Below, three corresponding sets of coefficients are introduced. Two of them even
satisfy the order conditions that are required to preserve order p = 3 when including
non-exact Jacobian entries of the form Bz = gz + O(h). Regarding the degrees of
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Figure 5.6: Stability region of GROW35n regarding k=0:0.025:1.

freedom required for a method of order p = 3, the following theorem can generally be
applied.

Theorem 5.6 Realizing ROW-type method (2.3) with Bz = (gz)0 up to convergence
order p = 3 requires a minimum of s = 5 stages.

Proof To reach order p = 3 condition (3D9.0) is required to be unequal zero. How-
ever, this can only be achieved by taking into account s = 5 stages at least.

Remark 5.7 Although the minimum number of s = 5 internal stages required to real-
ize ROW-type method (2.3) up to order p = 3 is defined by Theorem 5.6, a correspond-
ing set of coefficients that satisfies the order conditions listed in Table 4.2 could not be
found numerically. This was the case when neglecting all the supplementing conditions
especially with respect to BP R-consistency, too. Note that for s = 5 internal stages the
given number of coefficients exactly matches the number of order conditions in Table
4.2. Hence, there are no degrees of freedom left for realizing an appropriate set of
coefficients. As a consequence, there is an increased risk of conflicts within the order
conditions given that might require for stage numbers s > 5.

In order to satisfy all the conditions considered, at least s = 7 internal stages were
required to find a corresponding set of coefficients numerically. Searches based on s = 5
as well as s = 6 stages failed. The three sets of coefficients determined are denoted
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Table 5.7: Set of Coefficients for GROW37nr

γ = 4.55341801261479610E−01
α21 = −6.39072649720047630E−01 γ21 = −0.71452542081285195E−01
α31 = −7.38182533108201260E−01 γ31 = −1.18295112907884750E+00
α32 = −6.59742926646062040E−01 γ32 = −6.59742926644450890E−01
α41 = −1.94455521192068530E+00 γ41 = −7.21406648981638980E−01
α42 = −5.87226347444779640E−01 γ42 = −8.26573575289443420E−01
α43 = −8.85190339189261160E−01 γ43 = −1.40807975653987570E+00
α51 = −1.08350349665142100E+00 γ51 = −7.46826117061979100E−01
α52 = −3.55543081017569600E−01 γ52 = −1.12919896352708630E+00
α53 = −1.34231587446636570E−01 γ53 = −1.80121099486878910E−01
α54 = −2.89455170754152280E−01 γ54 = −2.58646464447305990E−01
α61 = −0.44229454295585967E−01 γ61 = −0.07088940896496590E−01
α62 = −1.39607580262840040E+00 γ62 = −1.02686782397905720E+00
α63 = −0.46364255411056772E−01 γ63 = −0.67022085664239714E−01
α64 = −3.54708918451585590E−01 γ64 = −0.23253241298293120E−01
α65 = −0.70815545152659060E−01 γ65 = −1.07001185531280090E+00
α71 = −3.69355722445910030E−01 γ71 = −1.42714051543582740E−01
α72 = −1.05101662167042510E+00 γ72 = −7.11266806088810210E−01
α73 = −1.42817221470326190E−01 γ73 = −2.33408391377320080E−01
α74 = −0.24825037796669329E−01 γ74 = −0.09281027391284630E−01
α75 = −4.66051960281407110E−01 γ75 = −3.95636829096837170E−01
α76 = −1.63671799838729340E−01 γ76 = −2.21125136711960160E−01
b1 = −2.26641670902327290E−01 b̂1 = −2.78348967549010280E−01
b2 = −3.39749815581615160E−01 b̂2 = −9.86113252374122280E−01
b3 = −0.90591169906993785E−01 b̂3 = −0.44375878106397079E−01
b4 = −0.15544010405384820E−01 b̂4 = −0.75424755826637435E−01
b5 = −0.70415131184569629E−01 b̂5 = −4.03922498424570730E−01
b6 = −0.57453336873230933E−01 b̂6 = −1.08411400781197930E−01
b7 = −4.55341801261479610E−01 b̂7 = −0.00000000000000000E+00

by GROW37nr, GROW37n and GROW37n2. All these schemes are stiffly accurate
and satisfy the order conditions listed in Table 4.2. The major difference between
GROW37nr and GROW37n as well as GROW37n2 is that GROW37n and GROW37n2
also satisfy the order conditions required to preserve full order p = 3 when including
non-exact Jacobian expressions of the form Bz = gz + O(h). Note that corresponding
conditions have been derived realizing the given thesis. But they are not presented
in detail due to their extensive theory. GROW37nr does not satisfy corresponding
additional conditions. The letter ’r’ in GROW37nr therefore is standing for ’reduced’.
Note that the embedded methods ensure order p = 2 with respect to all ROW-type
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Table 5.8: Set of Coefficients for GROW37n

γ = 4.55341801261479050E−01
α21 = −9.10683602522037510E−01 γ21 = −9.10683602522319500E−01
α31 = −1.76555028814813290E+00 γ31 = −1.35581710936781200E+00
α32 = −3.33678543348817860E−01 γ32 = −7.43411722130622450E−01
α41 = −9.52006951763304850E−01 γ41 = −1.29201964868383160E+00
α42 = −1.13782286825624170E+00 γ42 = −6.59048457019262070E−01
α43 = −1.33926045914029500E+00 γ43 = −9.36977469416560900E−01
α51 = −1.29095155458942170E+00 γ51 = −6.64638307460343360E−01
α52 = −1.51585500845095590E+00 γ52 = −3.05817273777330990E+00
α53 = −0.84245777675290553E−01 γ53 = −1.45799003697520900E+00
α54 = −3.89744350884809410E−01 γ54 = −0.27333808235919389E−01
α61 = −1.07435890408946140E+00 γ61 = −7.16626872923143090E−01
α62 = −1.86415531666235060E+00 γ62 = −1.03836938896198050E+00
α63 = −1.67949712212497880E+00 γ63 = −1.32047956420658630E+00
α64 = −2.30171657580979240E−01 γ64 = −0.65791887224906476E−01
α65 = −0.28845441045860110E−01 γ65 = −0.43705564362958652E−01
α71 = −2.69157431244354260E−01 γ71 = −1.06590335903827700E−01
α72 = −5.46053615165564280E−01 γ72 = −1.27246898098887760E+00
α73 = −0.83019223550177171E−01 γ73 = −2.76051104051963040E−01
α74 = −2.04081858154657380E−01 γ74 = −7.36742072463449800E−01
α75 = −0.91988910804203419E−01 γ75 = −0.00714432229676680E−01
α76 = −3.79901124490714730E−01 γ76 = −1.15981504570537220E+00
b1 = −1.62567095340526680E−01 b̂1 = −2.57613752241026340E−01
b2 = −1.81852259615444130E+00 b̂2 = −7.02315222688898570E−01
b3 = −1.93031880501786460E−01 b̂3 = −1.72527430916564220E−01
b4 = −9.40823930618112870E−01 b̂4 = −2.08585453014037690E−01
b5 = −0.91274478574529361E−01 b̂5 = −0.58556352893451687E−01
b6 = −7.79913921214651200E−01 b̂6 = −3.62627556107225300E−01
b7 = −4.55341801261479050E−01 b̂7 = −0.00000000000000000E+00

methods involved regarding s = 6 internal stages. Moreover, the embedded schemes
of GROW37n and GROW37n2 also satisfy the conditions by Lubich and Ostermann
[42] as well as those introduced by Rang [59, 60] up to order p = 2.

Another important difference between the schemes considered below is given by the
value of γ used. With respect to GROW37nr and GROW37n the prescribed parameter
γ ≈ 0.45 is considered by including the additional condition

γ = 1 +
√

3
6
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Figure 5.7: Stability region of GROW37nr regarding k=0:0.025:1.
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Figure 5.8: Stability region of GROW37n regarding k=0:0.025:1.
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Table 5.9: Set of Coefficients for GROW37n2

γ = 2.10537184485118880E−01
α21 = −4.21074368968140600E−01 γ21 = −4.21074368968948400E−01
α31 = −2.79917422879864820E−01 γ31 = −1.84958978473185100E−01
α32 = −2.83174778822673390E−01 γ32 = −1.88216334415097250E−01
α41 = −2.94412032869762920E−01 γ41 = −0.76907157582717905E−01
α42 = −2.84868609445784850E−01 γ42 = −1.73691471529902030E−01
α43 = −1.72518580805914280E−01 γ43 = −0.34875934037295372E−01
α51 = −2.65442828751577760E−01 γ51 = −0.03161731203265310E−01
α52 = −4.08963317964040120E−01 γ52 = −1.51570666360029800E−01
α53 = −7.96634514342330570E−01 γ53 = −0.67741307897286968E−01
α54 = −0.23535644633709309E−01 γ54 = −3.92409221925114240E−01
α61 = −2.14920375331621390E−01 γ61 = −1.45388102958351280E−01
α62 = −0.05358020624551900E−01 γ62 = −1.53925393948013470E−01
α63 = −2.52523457152398210E−01 γ63 = −2.34299540127013540E−01
α64 = −1.93398518195710250E−01 γ64 = −2.45965106390625550E−01
α65 = −3.33799628695717110E−01 γ65 = −5.21516247655095520E−01
α71 = −1.79669939392207960E−01 γ71 = −0.48127245090637989E−01
α72 = −1.34416560236480460E−01 γ72 = −1.18123375465308660E−01
α73 = −6.04712167158606980E−01 γ73 = −2.71214165874376860E−01
α74 = −2.02516064603826870E−01 γ74 = −3.01888584184993200E−01
α75 = −4.97293964155389350E−01 γ75 = −1.96925038866290010E−01
α76 = −0.55256554134096809E−01 γ76 = −2.10537184485375890E−01
b1 = −2.27797184482845920E−01 b̂1 = −3.60308478289972700E−01
b2 = −0.16293184771178960E−01 b̂2 = −1.59283414572565150E−01
b3 = −3.33498001284230410E−01 b̂3 = −0.18223917025384881E−01
b4 = −0.99372519581170660E−01 b̂4 = −4.39363624586336490E−01
b5 = −3.00368925289095420E−01 b̂5 = −1.87716618959377720E−01
b6 = −1.55280630351278840E−01 b̂6 = −2.10537184485118880E−01
b7 = −2.10537184485118880E−01 b̂7 = −0.00000000000000000E+00

when defining the equations to solve by the numerical method. The given equation
follows from [79]. Here, a strongly A-stable W method with s = 7 stages is mentioned
that is characterized by classical order p = 3 and the value of γ given. In contrast to
GROW37nr and GROW37n the set of coefficients denoted by GROW37n2 considers
γ ≈ 0.21. It corresponds to a value that is entirely determined by the numerical method
for finding an appropriate set of coefficients. Note that this parameter, contrary to
γ ≈ 0.45 lies within the regions considered by Table 6.4 in Section IV of [24]. However,
the stability region resulting for this scheme seems less reliable.

Remark 5.8 In [79] the set of coefficients for realizing the W method with s = 7
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Figure 5.9: Stability region of GROW37n2 regarding k=0:0.025:1.

stages mentioned is not given explicitly. Hence, there was no opportunity of using its
parameters as an initial guess of possible solutions for the numerical method applied.
For that reason, initial guesses for finding a solution were chosen randomly.

The set of coefficients with respect to GROW37nr is summarized in Table 5.7. Its
stability region is shown in Figure 5.7. Note that the embedded method of GROW37nr
satisfies |R̃(∞)| ≈ 0.62. The set of coefficients with respect to GROW37n is summa-
rized in Table 5.8. Its stability region is shown in Figure 5.8. Note that the embedded
method of GROW37n satisfies |R̃(∞)| ≈ 0.46. The set of coefficients with respect to
GROW37n2 is summarized in Table 5.9. Its stability region is shown in Figure 5.9.
Note that the embedded method of GROW37n2 satisfies |R̃(∞)| = 0.

5.3.3 Order Three with Eight Stages

In [79] Strehmel et al. introduce a W method of classical order p = 3 with s = 8
internal stages that also allows for non-exact Jacobian entries when solving singularly
perturbed systems. In this context, it is constructed for considering Ay = fy + O(h),
Az = fz + O(h), By = gy + O(h), Bz = gz + O(h) as well as Ay = 0, Az = 0,
By = gy + O(h), Bz = gz + O(h). However, the method is not intended to preserve
full order p = 3 when solving differential components explicitly (i.e. regarding Ay = 0
and Az = 0). Instead, it should achieve order p = 2 in this case only [79]. The given
method satisfies the additional conditions by Lubich [42] and is suitable to be applied
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Figure 5.10: Stability region of GROW38n.

to DAEs of index one as well. Note that it satisfies the order conditions for considering
Bz = gz + O(h), too.

Below, the method by Strehmel et al. [79] is denoted by ROS38. Its set of coefficients
violates order conditions (3D5.0), (3D6.0), (3D8.0) - (3D10.0) as well as (2A4.0). In
addition, it does not satisfy all the conditions introduced by Rang in [59, 60] and
considers no appropriate embedded method for step-size control. Because it is possible
to realize corresponding schemes using s = 7 stages there is an attempt to extend the
method so that it preserves order p = 3 with respect to all the Jacobian approximations
allowed by ROW-type scheme (2.3) in the following. For that purpose, the Levenberg-
Marquardt approach is applied to solve all the order conditions given using parameters
of ROS38 as initial values. The resulting method is not intended to be stiffly accurate.
Nevertheless, it satisfies |R(∞)| = 0 while its embedded scheme satisfies |R̃(∞)| ≈ 0.98.

The resulting method is called GROW38n below. The corresponding set of coeffi-
cients is summarized in Table 5.10. Its stability region is shown in Figure 5.10.
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Table 5.10: Set of Coefficients for GROW38n

γ = 4.35866521508458840E−01
α21 = −5.74499645467156820E−01 γ21 = −4.07383313415718480E−01
α31 = −3.70667286022747180E−01 γ31 = −4.48083069303915560E−01
α32 = −0.00000000000028440E−01 γ32 = −5.82397595504767660E−01
α41 = −1.89069678866929490E−01 γ41 = −2.23093486991461450E−01
α42 = −0.50495716743559897E−01 γ42 = −1.89397159790451410E−01
α43 = −1.60674437190776200E−01 γ43 = −1.99487232299956380E−01
α51 = −2.40285389918223320E−01 γ51 = −0.02572528296770120E−01
α52 = −0.09439202477800800E−01 γ52 = −1.21751849922096130E−01
α53 = −2.58850800828379690E−01 γ53 = −2.37152916341893230E−01
α54 = −2.94438905508506270E−01 γ54 = −6.43187535044199790E−01
α61 = −0.95859252942120762E−01 γ61 = −3.27089886132997830E−01
α62 = −1.52510534091371640E−01 γ62 = −1.23932184835040450E−01
α63 = −9.96784664127383540E−01 γ63 = −1.16925851607248550E+00
α64 = −0.67654221694437910E−01 γ64 = −1.13099394061565260E−01
α65 = −2.15412035904427720E+00 γ65 = −2.15412035905130720E+00
α71 = −2.82938589018596920E−01 γ71 = −0.47035619212783382E−01
α72 = −0.73581910626216995E−01 γ72 = −1.71683090676622490E−01
α73 = −8.40167841389465650E−01 γ73 = −9.08261715571086480E−01
α74 = −1.57664016558605460E−01 γ74 = −1.07406741328926280E−01
α75 = −1.98723090598668370E+00 γ75 = −1.97909821855923870E+00
α76 = −0.82477285751160867E−01 γ76 = −0.20066617068320389E−01
α81 = −1.19544410512615480E−01 γ81 = −1.40124102806272380E−01
α82 = −1.98465435608939890E−01 γ82 = −0.99118871185485180E−01
α83 = −1.33929979896610860E−00 γ83 = −1.07670149356397890E+00
α84 = −0.55475800593467912E−01 γ84 = −2.05986246939261750E+00
α85 = −2.01758363165588190E+00 γ85 = −1.74838979023465480E+00
α86 = −0.47794188653445778E−01 γ86 = −1.70463424954769960E+00
α87 = −6.00047104876716640E−01 γ87 = −1.24487282055110170E+00
b1 = −4.37528037047676620E−01 b̂1 = −1.42990598059708930E−01
b2 = −0.02198680471591410E−01 b̂2 = −0.39053303055184091E−01
b3 = −0.22945058688240601E−01 b̂3 = −0.10338827192217509E−01
b4 = −1.70158991218053810E−01 b̂4 = −3.34804002842223610E−01
b5 = −6.86992907932635570E−01 b̂5 = −4.55039511853233820E−01
b6 = −2.92430241839366330E−01 b̂6 = −0.21022453330550368E−01
b7 = −2.55842374016068630E−01 b̂7 = −0.15479990859941960E−01
b8 = −1.07369653220871360E−01 b̂8 = −0.23316219468040449E−01
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Table 5.12: BP R-consistency of given methods.
Method Lubich Condition 5.3 Condition 5.4

k = 2 3 k = 3 4 5 4 5 6
l = 1 2 3 1 2 3

ROS2 - - - - - - - - -
ROS2S x x x x x x - x -
ROS3P x x x x x x - - -
ROS34PW2 x x x x x x - - -
ROS34PRW x x x x x x x - -
ROS34PRw x x x x x x x x x
ROS3PRL2 x x x x x x x x x
ROS38 x x x x x x - - -
GROW2 - x x - - - - - -
GROW2S x x x x x x - x -
GROW3P x x x x x x - - -
GROW34PRw x x x x x x x x x
GROW3PRL2 x x x x x x x x x
GROW35n x x x x x x x x x
GROW37nr x x x x x x x x x
GROW37n x x x x x x x x x
GROW37n2 x x x x x x x x x
GROW38n x x x x x x x x x
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6 Convergence Tests
In this section characteristics of the different sets of coefficients derived are analyzed.

The major objective is to prove that the properties theoretically satisfied by the order
conditions taken into account are present with respect to some practical application.
For this purpose, convergence tests are considered that study the behavior of the
given methods when solving DAE systems by means of non-exact Jacobian entries.
In addition, the convergence behavior regarding the Prothero-Robinson problem with
respect to different degrees of stiffness is shown.

6.1 Dependence on Different Jacobian Expressions
Applications within this section deal with the convergence behavior of the schemes

previously introduced when computing academic test problems with known analytical
solution. For this purpose, three problems are considered that describe semi-explicit
DAE systems of index one. In order to examine the reliability of the new order
conditions derived, i.e. testing if the orders of convergence predicted can be preserved
by the schemes applied, effects of using non-exact Jacobian expressions are analyzed
by solving the given test problems by means of time-lagged or completely neglected
Jacobian entries.

Remark 6.1 Note that the sets of coefficients were implemented using a formula-
tion of the ROW-type method (2.3) that allows to avoid matrix-vector multiplications.
Corresponding transformed versions of ROW-type schemes are generally considered in
practice. For further details see, for example, [35] and [81].

All test problems within this section are solved by means of fixed step-sizes h.
The different Jacobian expressions used are determined analytically. If not mentioned
otherwise, resulting global errors are computed in discrete L2-norm by

err = ||ỹnum(xend) − ỹana(xend)||2 (6.1)

where ỹ = (y, z)T . Given terms ỹnum and ỹana denote the numerical and the analytical
solution, respectively. The resulting order of convergence then is given by [56]:

q = log2

(
err2h

errh

)
. (6.2)

6.1.1 Test 1

The first test problem considered was originally introduced by Rentrop et al. in [62].
It reads:

y′
1 = 1

2
y3

2z

y′
2 = 1

6
y2z (6.3)

0 = z + 6y1

y3
2

.
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The corresponding analytical solution is given by:

y1(x) = exp(−3x), y2(x) = exp(−x), z(x) = −6.

Note that this test problem was constructed for analyzing partitioned schemes that
are characterized by solving the differential parts of a given DAE system by means
of underling explicit Runge-Kutta strategies. Hence, the differential parts of (6.3) are
assumed to be not stiff [62]. As well, there is gz = 1. So, the index-1 condition is
always satisfied [62]. The test problem is solved regarding step-sizes h = 1/(100 · 2k)
with k = 0, 1, ..., 5 in the time interval x = [0, 0.5] below. Consistent initial values are
given by [62]:

y1(0) = 1, y2(0) = 1, z(0) = −6.

Exact Jacobian

In a first analysis given system (6.3) is solved by means of exact Jacobian expressions
that are updated with every time-step. So, there is Ay = (fy)0, Az = (fz)0, By = (gy)0
and Bz = (gz)0. As a consequence, the schemes applied are used in accordance with
the original formulation of ROW methods for DAEs introduced by Roche in [64]. The
sets of coefficients listed in Table 5.11 are considered. In addition, method RODASP
[72] is taken into account. RODASP corresponds to a ROW method for solving DAEs
with exact Jacobian up to order p = 4.

Results are shown in Figure 6.1. Note that the dotted lines depict reference slopes
with respect to orders p = 1, p = 2 and p = 3. All the methods reach the order of
convergence they were originally constructed for. So, there is order p = 2 for ROS2
and ROS2s as well as GROW2 and GROW2s, order p = 4 for RODASP and order
p = 3 for all further schemes considered. Hence, the schemes are in accordance with
the expected orders of convergence according to Table 5.11 (see column denoted by: p
(Roche)).

Explicit Solution of Differential Functions

In a second analysis system (6.3) is solved using a Jacobian expression whose entries
with respect to given differential functions are all set to zero. Jacobian entries with
respect to remaining algebraic functions remain exact and are updated with every time-
step. So, there is Ay = 0, Az = 0, By = (gy)0 and Bz = (gz)0. As a consequence, the
given schemes reduce to the formulation of underlying explicit Runge-Kutta methods
with respect to given differential parts while they preserve the formulation of classical
linearly implicit ROW methods with respect to given algebraic parts. So, the strategy
introduced by Rentrop et al. in [62] is considered. Note that this strategy is only
advisable when given differential functions are known to be not stiff.

Results are shown in Figure 6.2. As expected most of the schemes known from
literature show effects of order reduction. Only ROS2 and ROS2s are able to preserve
their original order p = 2. Also, ROS34PW2 and ROS34PRW are able to preserve
their original order p = 3. However, RODASP decreases order from p = 4 to p = 1.
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Figure 6.1: Step-size versus error for (6.3) using exact Jacobian.

With respect to schemes of third order ROS34PRw and ROS38 decrease from p = 3
to p = 2, ROS3P and ROS3PRL2 decrease from p = 3 to p = 1. There are no effects
of order reduction regarding the new schemes introduced. The methods analytically
derived preserve order p = 2 while the methods numerically derived preserve order
p = 3. In this context, especially GROW3P and GROW3PRL2 are able to prevent
the order reduction that can be observed for ROS3P and ROS3PRL2. Note that all
these results are in accordance with the expected orders of convergence according to
Table 5.11 (see column denoted by: p (Rentrop)).

Time-Lagged Jacobian Information

In a third test effects of using time-lagged Jacobian information are analyzed. In this
context, approximated Jacobian entries satisfying Ay = fy + O(h), Az = fz + O(h)
and By = gy + O(h) are considered. For this purpose, computing these entries is
given just after a predefined number of time-steps. Note that in this analysis Jacobian
components with respect to sub-matrix Bz are updated with every time-step still, i.e.
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Figure 6.2: Step-size versus error for (6.3) after setting Jacobian entries with respect
to Ay and Az to zero.

Bz = (gz)0. Regarding efficiency, this strategy might range in between the two analyses
considered previously. As computing differential parts by linearly implicit strategies
is not omitted completely it is more costly than solving them explicitly with every
time-step. However, it is less costly than using linearly implicit strategies completely
with every time-step. Moreover, contrary to the second analysis considered before, this
strategy might be applicable regarding DAE problems characterized by stiff differential
functions, too.

The analysis is realized by considering an update of the Jacobian entries after 5,
10 and 20 time-steps. Results for updates after 5 time-steps are given in Figure 6.3.
Results for updates after 10 time-steps are given in Figure 6.4. Results for updates
after 20 time-steps are given in Figure 6.5. The pictures show that ROS2 and ROS2s
are able to preserve their order p = 2 for all the three cases of Jacobian updates
considered. Interestingly, ROS2 shows a convergence of orders higher than p = 3
for smaller step-sizes when the update is given just after 20 time-steps. RODASP
decreases its order from p = 4 to p = 2. ROS3P decreases its order from p = 3 to
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Figure 6.3: Step-size versus error for (6.3) using Jacobian updates after 5 steps.

p = 2. ROS34PW2, ROS34PRW, ROS34PRw, ROS3PRL2 and ROS38 are able to
preserve their original order p = 3 for all the three cases considered. However, their
efficiency is decreasing the less frequently Jacobian updates are performed. In fact, it
seem reasonable that most classical schemes do not show significant effects of order
reduction for the test scenario considered. This is because the given approximation
with respect to the Jacobian entries is quite special and requires just a reduced number
of additional conditions to preserve the order of convergence.

Among the new schemes introduced, GROW2 and GROW2S preserve order p = 2
and even show no significant loss of efficiency when realizing the Jacobian updates
less frequently. GROW3P, GROW34PRw and GROW3PRL2 reach order p = 3. But
they show some decrease of efficiency when realizing Jacobian updates after a larger
number of time-steps, too. The same behavior is given for GROW35n. GROW37nr,
GROW37n, GROW37n2 and GROW38n are able to preserve order p = 3 without sig-
nificant loss of efficiency. Note that these are the schemes with the largest numbers of
internals stages. Also, they satisfy the order conditions for additional approximations
with respect to Jacobian entries Bz.
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Figure 6.4: Step-size versus error for (6.3) using Jacobian updates after 10 steps.

The loss of efficiency given for several sets of coefficients when using time-lagged
Jacobian information proves to be quite a drawback. In fact, to meet prescribed er-
ror tolerances when solving a DAE system in practice, it might cause an increased
number of required time-steps and therefore lead to disadvantages regarding computa-
tional efficiency. This drawback might be no longer relevant when the computational
effort for time-steps that reuse old Jacobian information is significantly smaller than
for time-steps computing a complete new Jacobian. However, regarding the given
test problem that is characterized by a small number of differential and algebraic
equations corresponding differences considering computing times cannot be shown in
detail. This means, there is no significant difference regarding computing times when
solving the given problem with regular or time-lagged Jacobian information for the sets
of coefficients applied. Nevertheless, in this context, Figure 6.6 exemplarily depicts
error versus computing time with respect to different strategies of Jacobian updates
for some of the sets of coefficients introduced: GROW2S, GROW3PRL2, GROW37nr
and GROW37n.
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Figure 6.5: Step-size versus error for (6.3) using Jacobian updates after 20 steps.

Additionally Neglecting Algebraic Components

In a fourth test the effects of neglecting all Jacobian entries with respect to differen-
tial equations as well as additional components considering given algebraic equations
are analyzed. For this purpose, test problem (6.3) is solved using Ay = 0, Az = 0
and By = 0. The remaining Jacobian entries are updated regularly, i.e. Bz = (gz)0 is
considered. This analysis can be interpreted as an extension of the case investigated
by Rentrop et al. in [62]. It corresponds to the most critical test scenario for the
sets of coefficients applied because it checks their reliability when taking into account
arbitrary Jacobian entries with respect to given algebraic components. Note that this
strategy allows to avoid the computation with respect to columns that correspond
to derivatives with respect to differential components y completely. Thus, it is quite
promising when having to apply algorithms to compute the Jacobian numerically, es-
pecially when solving DAEs that are characterized by extensive differential parts.

Results are shown in Figure 6.7. They show that RODASP reduces its order of
convergence from p = 4 to p = 1. ROS3P and ROS3PRL2 reduce their order of
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Figure 6.6: Computing times versus error for different strategies of Jacobian updates.

convergence from p = 3 to p = 1. All the other schemes known from literature
generally reduce their order from p = 3 to p = 2. An exception is ROS38 that
preserves its original order p = 3. Also, ROS2 and ROS2S are able to preserve their
original order p = 2. The new schemes introduced preserve their order of convergence,
i.e. order p = 2 for the schemes determined analytically as well as GROW35n and
order p = 3 for all the remaining schemes determined numerically. In this context,
especially GROW3P and GROW3PRL2 are able to prevent the order reduction that
can be observed for ROS3P and ROS3PRL2 as it was the case when using Jacobian
approximations Ay = 0 and Az = 0 together with By = (gy)0 and Bz = (gz)0 already.

Note that the schemes ROS2, ROS2S, ROS34PRw and ROS38 perform much better
than suggested by Table 5.11 (see column denoted by: p (GROW)). In fact, ROS2,
ROS2S and ROS34PRw should be of order p = 1 and ROS38 should be of order p = 2.
The higher orders reached seem to be a consequence of the given test equation. When
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Figure 6.7: Step-size versus error for (6.3) using Ay = 0, Az = 0 and By = 0.

regarding the additional test equations given below the same analysis leads to the
orders of convergence expected for these schemes as well. All the other schemes show
the order of convergence listed in Table 5.11 directly.

6.1.2 Test 2

Because not all the sets of coefficients considered showed the behavior suggested
according to Table 5.11 when being applied to previous test problem (6.3) another
DAE system is solved below. In this context, for further analyzing their orders of
convergence the four scenarios with respect to given Jacobian entries are repeated.
The second test problem also originates from [62]. It reads:

y′
1 = z1

y′
2 = −1

2
z

1/4
2 (6.4)
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0 = y2
1 + z2

1 − y4
2

z2

0 = z2 − y4
2 .

The analytical solution is given by:

y1(x) = sin(x), y2(x) = exp(−0.5x), z1(x) = cos(x), z2(x) = exp(−2x).

Note that the given test problem violates the index-1 assumption for x = π/2, i.e. gz

becomes a singular matrix. Hence, integrators constructed for index-1 problems might
show some irregular behavior in the vicinity of this point in time [62]. For that reason,
the problem is solved regarding step-sizes h = 1/(100 · 2k) with k = 0, 1, ..., 5 in the
time interval x = [0, 1.5] below. Consistent initial values are given by [62]:

y1(0) = 0, y2(0) = 1, z1(0) = 1, z2(0) = 1.

The results for solving this test problem by regarding the exact and time-lagged
Jacobian information as well as Jacobian entries reduced to algebraic equations are
shown in Appendix B. They are not detailed here because the sets of coefficients
applied show generally the same behavior as described with respect to test problem
(6.3). Some differences are given by GROW37nr which shows order p = 2 instead of p =
3 when neglecting the Jacobian entries with respect to given differential components.
However, this is not the case regarding the same scenario with respect to test (6.3)
and test (6.5). Also, GROW37n2 shows some less consistent behavior regarding the
orders of convergence reached. Applying time-lagged Jacobian information, especially
GROW38n decreases its order of convergence from p = 3 regarding an update of the
Jacobian entries after 5 time-steps to p = 2 regarding an update of the Jacobian
entries after 20 time-steps. Note that this behavior is not observed regarding the same
scenario with respect to test (6.3) and test (6.5), too. Also, the loss of efficiency given
for the new sets of coefficients derived seems to be more present when using time-lagged
Jacobian information.

Below, only the results given when using Ay = 0, Az = 0 and By = 0 together with
Bz = (gz)0 are considered in detail. They are shown in Figure 6.8. Again, schemes
known from literature show a significant decrease regarding the order of convergence
given. In fact, except for ROS34PW2, ROS34PRW and ROS38 that reduce to order
p = 2 all the other schemes reduce to p = 1. So, sets of coefficients ROS2, ROS2s,
ROS34PRw and ROS38 that were able to reach higher orders with respect to test (6.3)
now show the behavior suggested in Table 5.11 (see column denoted by: p (GROW)).
The new schemes introduced are able to preserve order. There is order p = 2 for
the schemes determined analytically as well as GROW35n. So, the extension of the
schemes known from literature avoids a decrease with respect to the order of conver-
gence effectively. The remaining schemes determined numerically are able to preserve
order p = 3. An exception is given for GROW34PRw that shows an order of con-
vergence that is nearly p = 1 instead of p = 2. This negative effect, however, is not
present when applying the given scenario with respect to Jacobian entries to test (6.3)
and test (6.4).
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Figure 6.8: Step-size versus error for (6.4) using Ay = 0, Az = 0 and By = 0.

6.1.3 Test 3

Test problems (6.3) and (6.4) yield no non-linear terms with respect to sub-matrix
gz given within the Jacobian. Hence, the third test problem was designed in order to
have an appropriate DAE system for testing schemes that allow for approximations of
the form Bz = gz + O(h) in addition. The third test problem does not originate from
literature. It reads:

y′
1 = 3y2

2y3 − 3z3
1

y′
2 = y3

y′
3 = −y2 (6.5)
0 = y1 − y3

2 − z3
1

0 = z1 − z2
2 .

The analytical solution is given by:

y1(x) = exp(−3x) + sin3(x), y2(x) = sin(x), y3(x) = cos(x)

z1(x) = exp(−x), z2(x) = exp(−0.5x)

Note that the given system ensures a regular matrix gz. Hence, the index-1 assumption
is generally satisfied. The problem is solved regarding step-sizes h = 1/(100 · 2k) with
k = 0, 1, ..., 5 in the time interval x = [0, 1.5] below. Consistent initial values are given
by:

y1(0) = 1, y2(0) = 0, y3(0) = 1, z1(0) = 1, z2(0) = 1.

The results for solving the test problem given by means of exact and time-lagged
Jacobian information as well as Jacobian entries reduced to algebraic equations are
shown in Appendix C. As for the previous test case (6.4) they are not considered in



108 6 Convergence Tests

10
−4

10
−3

10
−2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

STEP−SIZE

E
R

R
O

R

 

 

ROS2
ROS2S
ROS3P
ROS34PRw
ROS3PRL2
ROS38
ROS34PW2
ROS34PRW
RODASP

10
−4

10
−3

10
−2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

STEP−SIZE

E
R

R
O

R

 

 

GROW2
GROW2S
GROW3P
GROW34PRw
GROW3PRL2
GROW35n
GROW37nr
GROW37n
GROW37n2
GROW38n

Figure 6.9: Step-size versus error for (6.5) using Ay = 0, Az = 0 and By = 0.

detail here because the sets of coefficients show generally the same behavior described
with respect to test equation (6.3). There are no mentionable differences.

Results with respect to the test scenario which regards Jacobian entries characterized
by Ay = 0, Az = 0, By = 0 and Bz = (gz)0 are shown in Figure 6.9. Here, the
sets of coefficients generally show the behavior suggested by Table 5.11 (see column
denoted by: p (GROW)) as well. There is a significant decrease regarding the orders of
convergence reached by the methods known from literature. ROS34PW2 and ROS38
reduce their order from p = 3 to p = 2. All other schemes reduce their order to p = 1.
Note that there is an exception with respect to ROS34PRW. Instead of reaching order
p = 2 as it was the case for test (6.3) and test (6.4) it shows a tendency to order p = 1.
The new schemes introduced, however, are able to preserve their order. There is order
p = 2 for the sets of coefficients determined analytically and GROW35n. There is
order p = 3 for the remaining sets of coefficients determined numerically.

6.2 Dependence on Stiffness Parameters
The new sets of coefficients were constructed such that they satisfy additional order

conditions introduced by Rang [60, 60]. Intention of these order conditions is to reduce
effects of order reduction that might occur when having to solve stiff problems. In
order to check how the new methods derived perform with respect to this aspect, the
test problem of Prothero and Robinson [54] is analyzed below. For this purpose, as
considered in works by Scholz [68] and Rang [59, 60] equation (5.1) is solved together
with

φ(x) = 10 − (10 + x) exp(−x) (6.6)

regarding the time interval [0, 2]. Step-sizes considered are h = 0.1 · 2−k with k =
0, ..., 5. Stiffness parameter λ is chosen to be equal to λ = −10i with i = 0, ..., 6. The
order of convergence is determined using the errors that result by comparing the nu-
merical and the analytical solution. The errors are measured in the discrete L2-norm.
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Figure 6.10: Stiffness versus order of convergence for the Prothero-Robinson example.

Note that only the new sets of coefficients introduced are applied. Corresponding
results with respect to most of the schemes known from literature can be found in
[59, 60].

An overview of orders of convergence reached for the different stiffness parameters
considered is shown in Figure 6.10. For realizing the visualization, the mean values
with respect to the different orders of convergence that are given for the different step-
sizes considered are used. In this context, orders given with respect to error values
close to machine precision are omitted as they falsify the given orders significantly (see
[60]).

Results show that only few of the schemes derived preserve the order of conver-
gence constantly. Some of the methods tend to decrease their order while some of the
methods tend to increase their order when the stiffness given within the system rises.
For example, GROW2 decreases order from p̃ = 2 to p̃ = 1. However, it is the only
scheme that was not constructed satisfying the additional order condition. Hence, this
behavior is less astonishing. Nevertheless, its enhanced version given by GROW2S
preserves order p̃ = 2 quite well. All the sets of coefficients determined analytically
were constructed to preserve order p̃ = 2 at least. Hence, a decrease of the order form
p̃ = 3 to p̃ = 2 can be observed for GROW3P and a decrease from p̃ = 3 to p̃ = 2.5 can
be observed for GROW34PRw and GROW34PRL2. In this context, it is interesting
that GROW34PRw and GROW34PRL2 show exactly the same behavior without be-
ing directly related. The sets of coefficients determined numerically were constructed
to preserve order p̃ = 3 at least. However, only GROW35n and GROW37nr are able
to preserve this order more or less constantly. GROW38n increases its order from
p̃ = 3 to p̃ = 4 with increasing stiffness. So, additional conditions to reach order p̃ = 4
seem to be satisfied by chance. GROW37n and GROW37n2 show a significant drop
of their order from p̃ = 3 to less than p̃ = 2 with respect to low and medium stiffness
parameters. Nevertheless, their order increases back to p̃ = 3 when the stiffness gets
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Figure 6.11: Step-size versus error with respect to the Prothero-Robinson example
regarding λ = −103 (left) and λ = −106 (right).

higher.
A more detailed comparison regarding the performance of the different sets of co-

efficients that is given with respect to medium stiffness λ = −103 and high stiffness
λ = −106 is shown in Figure 6.11. Here, the decrease of GROW2 from order p̃ = 2
to p̃ = 1 once more becomes obvious. GROW2S and GROW3P are of order p̃ = 2.
In contrast to the observations given regarding the mean values, GROW34PRw and
GROW3PRL2 show order p̃ = 3. The reducing of the order considering the mean
values is a consequence of the fact that their order drops regarding small step sizes.
A similar behavior can be observed at least for λ = −106 when regarding results of
the related original sets of coefficients ROS34PRw and ROS3PRL2 presented in [59].
Among the set of coefficients determined numerically, GROW38n shows order p̃ = 4.
GROW37nr, GROW37n and GROW37n2 are of order p̃ = 3. However, especially
GROW37n2 drops its order significantly.
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Theory

A theory for deriving an enhanced class of linearly implicit ROW-type methods for
solving semi-explicit systems of DAEs assumed to be of index one was introduced.
Corresponding schemes are characterized by allowing for arbitrary Jacobian approx-
imations with respect to its original entries fy, fz and gy. Hence, the given theory
in principle corresponds to a combination of the ideas introduced by Roche [64], i.e.
ROW-type methods with exact Jacobian applied to DAEs, as well as Steihaug and
Wolfbrandt [71], i.e. ROW-type methods with non-exact Jacobian applied to ODEs
(i.e. W methods).

The theory derived is based on graphical representation via rooted trees as originally
introduced by Butcher [6, 7, 8] with respect to explicit one-step Runge-Kutta schemes
for ODEs. In fact, it combines the extensions of this strategy introduced by Roche [64]
with respect to ROW methods for DAEs as well as described by Hairer and Wanner
[24] with respect to W methods for ODEs. By taking into account new types of vertices
for describing additionally occurring non-exact elementary differential components and
coefficients it was possible to create the theory for deriving the schemes considered in
a way that preserves corresponding theories with respect to classical schemes given
in literature. In this context, especially the strategies known for constructing rooted
trees and thus elementary differentials and coefficients could be directly covered. In
fact, by regarding special Jacobian approximations, resulting order conditions combine
each other appropriately in order to form the order conditions of different ROW-
type schemes that were presented in literature already. While corresponding methods
were considered separately so far, the extended theory introduced now allows for their
unification and to recognize their close relationship to each other.

The theory introduced allows to determine the order conditions for realizing the new
class of ROW-type schemes by means of rooted trees in a quite straight forward way.
In this context, conditions were identified that cannot be found in common literature
and that are necessarily required to preserve the order of convergence when taking into
account non-exact Jacobian expressions. However, as usual for ROW-type schemes
that are based on solution strategies considering non-exact Jacobian expressions, the
number of order conditions drastically increases with respect to schemes of higher
order. Nevertheless, not all the order conditions that are given with respect to resulting
tree structures must be taken into account explicitly. In fact, a series of resulting
conditions turn out to be redundant. Moreover, corresponding redundant conditions
can be identified directly by means of special structures regarding rooted trees used
for their description.

Methods

Methods derived show the relevance of the order conditions derived with respect to
the tests applied for analyzing resulting orders of convergence. Only schemes satisfying
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the order conditions introduced were able to preserve their order with respect to all
the test scenarios considered. In this context, schemes of order p = 2 were determined
analytically with a minimum of s = 3 internal stages. Schemes of order p = 3 were de-
termined numerically with a minimum of s = 7 internal stages. The sets of coefficients
introduced were constructed such that they generally reach corresponding orders of
BP R-consistency according to Rang [59, 60]. Also, additional order conditions were
taken into account to allow for higher orders of convergence when considering special
Jacobian approximations. Note that the schemes determined analytically correspond
to extensions of methods known from literature that usually suffer from order reduc-
tion when solving DAEs by means of non-exact Jacobian information. In fact, many
schemes derived allow to preserve original properties of their predecessors and extend
them for the purpose of using arbitrary Jacobian entries without having to increase the
number of stages. This means, the properties of the schemes considered in literature
can be increased significantly just by changing some of the coefficients given. In this
context, especially the properties of ROS3P [35] could be enhanced: While preserving
order p = 3 when solving DAEs by means of exact Jacobian expressions its extension
to GROW3P allows for order p = 2 instead of p = 1 when solving DAEs by means of
non-exact Jacobian expressions.

By allowing for arbitrary approximations with respect to Jacobian components men-
tioned the resulting ROW-type methods allow for realizing a wide range of different
solution strategies in order to compute semi-explicit DAE systems of index-1. In
this context, different strategies are generally characterized by using different extents
of partial explicit integration via underlying one-step Runge-Kutta schemes or time-
lagged Jacobian information. For that reason, together with the unifying character
of the theory considered for their derivation, different schemes and their characteris-
tic solution behavior presented in literature can be easily realized. In fact, different
schemes do not have to be coded separately in order to combine and apply ROW-type
schemes. They can be implemented just by adapting Jacobian entries appropriately.
In this context, the adaptive character of the resulting generalized ROW-type schemes
for computing given DAE systems holds much potential for reducing computational
efforts. Computing the Jacobian is one of the most expensive operations when apply-
ing ROW-type schemes. When exploiting extended explicit integration by neglecting
Jacobian entries, i.e. making use of much sparser Jacobian structures, as well as time-
lagged Jacobian information corresponding costs can be reduced drastically. However,
this demands for sets of coefficients that are able to realize corresponding strategies
without showing a significant loss of efficiency. A loss of efficiency would cause an
increase of time-steps and thus might counteract advantages that are given by the
strategies mentioned.

Outlook

With respect to further investigations it would be promising to find schemes of order
p = 3 with s = 5 or s = 6 internal stages in order to further reduce the stage number
and, thus, corresponding computational effort. Theoretically it is possible to derive
methods of order p = 3 with a minimum of s = 5 stages. However, it was not possible
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to realize such schemes so far. There is the possibility that conflicts with respect to
resulting order conditions might prevent the realization of such methods. In this case
it would be helpful to identify such conflicts and to document them for the purpose
of more reliable strategies for realizing corresponding schemes. Also, with respect
to the schemes introduced, it would be useful to identify the reasons why some of
the given sets of coefficients show a significant decrease with respect to their overall
efficiency when using time-lagged Jacobian information while others do not. Schemes
that will allow for applying these strategies without decreasing their efficiency are
more promising because they will not require a disadvantageous increase of time-steps
in order to reach predefined tolerances. Maybe there are additional conditions that
can be formulated and that are satisfied by some of the schemes considered already.

Considering given applications, the efficiency of the methods introduced must be
further studied regarding large DAE systems that require for numerical Jacobian com-
putations. In general the computation of the Jacobian is the most costly aspect when
applying ROW-type methods. In fact, by allowing for the use of non-exact Jacobian
entries much of this effort can be saved. When considering systems that consist of
large numbers with respect to differential components using approximations such as
Ay = 0 and By = 0 enables to save the computation of whole Jacobian columns.
Corresponding systems especially occur in method of lines applications. Examples are
network structures for simulating transport of gases and fluids. These are cases where
the computational effort is expected to be reduced by the schemes introduced. Ap-
plications regarded within this thesis are way to small in order to show advantageous
effects with respect to computing times, i.e. there is no significant difference in using
a reduced non-exact Jacobian compared to using a complete exact Jacobian. Hence,
implementing and analyzing corresponding test problems in detail is relevant.

In this context, routines for computing Jacobian expressions with respect to ex-
tended DAE systems require to be optimized. The properties of the schemes introduced
cannot be fully exploited by the numerical methods present (e.g. MATLAB routine
numjac). This is because corresponding methods are based on determining a complete,
usually square Jacobian [9, 66]. As a consequence, it is difficult to realize an effective
computation with respect to a special choice of reduced Jacobian entries, in particular
a special choice of given partial derivatives. Besides, corresponding strategies must be
further developed in order to exploit possibilities for saving computational efforts more
effectively. This might include strategies for some automatic rearranging of given com-
ponents and equations for the purpose of ending up with more advantageous Jacobian
structures after having neglected several entries.

A familiar aspect that needs to be addressed is realizing automatic and dynamic
routines for sparing Jacobian entries effectively in combination with reliable monitor-
ing with respect to stiffness detection. It is one aspect to have an effective numerical
approach for computing the Jacobian numerically after neglecting several entries. How-
ever, it is another aspect to determine corresponding elements not manually and to
ensure that the components neglected will not affect the integration process negatively.
So, it must be determined if neglecting given Jacobian entries is useful and reliable
with respect to stiffness properties of the system to solve. To avoid accidental explicit
integration of stiff elements by corresponding stiffness detection is advantageous espe-
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cially regarding the solution of problems whose stiffness properties are not known in
advance. There must be appropriate adaptive strategies developed for realizing adap-
tive methods. In [48] methods for reducing the number of Jacobian entries have been
introduced. Therein, a strategy is used that eliminates Jacobian entries considered to
be small by means of a sparsing criterion. This criterion is dynamically adapted to
ensure stability and to avoid step-size restriction. In combination with the ROW-type
schemes introduced within this thesis such strategies can be used to realize an auto-
matic switching of methods applied with respect to given stiffness properties of a given
DAE system.

The property of realizing different solution strategies by applying different approxi-
mations to given Jacobian entries holds the potential for implementing type-switching
schemes that are able to adapt their solution behavior with respect to given stiffness
properties. For example, regarding the simulation of large network structures using a
monolithic approach, it is possible to realize different integration strategies for differ-
ent network regions. Moreover, automatic adaption with respect to given dynamical
or latent behavior within single regions is possible. However, the effectiveness of com-
bining explicit and linearly implicit strategies within one single approach for numerical
integration is limited by aspects of stability. A significant problem with the ROW-type
methods introduced is given by the fact that they allow to apply several extends of
explicit and implicit integration simultaneously. However, the approach is realized just
by one single step-size that is used during the integration process. Naturally, explicit
strategies require for smaller step-sizes due to stability aspects. Hence, the efficiency
of possibly included implicit strategies that could work with larger step-sizes cannot
be exploited because they are limited by the small step-size of the explicit strategies
considered.

For that reason, a combination with multirate strategies seems reasonable. Multirate
schemes are based on regarding one single integration strategy. But they allow for using
different step-sizes with respect to given active and latent components, i.e. active
elements are solved using small step-sizes while latent elements are solved using large
step-sizes. Multirate methods have been considered in several works that focus on
the numerical integration of electrical networks especially [19, 2, 21]. An extension
to W methods for ODEs that allow for non-exact Jacobian entries is presented in
[3]. An approach for DAEs of index one with respect to ROW-type schemes using
exact Jacobian entries is introduced by Striebel in [82, 83]. Therein, order conditions
required are derived introducing a graphical representation based on rooted trees as
well. A combination of multirating with ROW-type schemes for solving DAEs by
means of non-exact Jacobian matrices have not been considered in literature so far.
Hence, corresponding combinations of multirate with the schemes introduced are a
promising field of further research.

In order to exploit the possibilities of saving computational efforts by means of non-
exact Jacobian entries more effectively, it would be helpful to consider schemes that
allow for additional approximations with respect to Jacobian entries gz. In this context,
regarding time-lagged Jacobian information by means of Bz = gz + O(h) is the only
promising approximation that can be considered. The order conditions for realizing
corresponding schemes have been derived in the present PhD phase already. They
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can be determined by using an enhanced theory based on graphical representation
via rooted trees as well. Note that the resulting order conditions correspond to a
direct extension of the order conditions presented in this thesis. Their correctness was
confirmed by means of appropriate tests which analyze resulting orders of convergence.
However, the theory for describing the derivation of these order conditions in detail
proved to be too extensive for including it in the thesis given.

Another problem that needs to be addressed are given concepts for analyzing stabil-
ity aspects. So far, there seems to be a shortage regarding corresponding approaches
with respect to DAE problems and linearly implicit strategies that are based on non-
exact Jacobian expressions. In general, stability analysis for corresponding methods
is reduced to familiar ODE test equations assuming exact Jacobian entries [24]. Ex-
amples for alternative ODE test equations when using schemes that are characterized
by non-exact Jacobian matrices can be found in [28, 18]. Also, there are recent ap-
proaches with respect to ROW-type schemes that use non-exact Jacobian information
in the context of approximate-matrix factorization for ODEs [15, 17]. However, the
strategies introduced are quite specific and therefore seem to be less applicable to DAE
systems at the moment.

Finally, it should be mentioned that there is some potential of further research
regarding the derivation of order conditions to ensure BP R-convergence with respect
to ROW-type schemes that are based on using non-exact Jacobian expressions. In
this thesis, approaches introduced by Rang [59, 60] have been considered to improve
characteristics of the schemes developed. However, corresponding order conditions are
generally restricted to schemes based on applying exact Jacobian expressions. In [42]
there are hints given that the theory to ensure BP R-consistency and BP R-convergence
must be adapted when considering schemes that use non-exact Jacobian expressions.
Hence, it should be checked if the approach introduced by Rang in [59, 60] can be
further enhanced with respect to the ROW-type schemes that are characterized by
arbitrary Jacobian approximations.
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A Appedix: Conditions up to Order 3

Table A.1: All Conditions for Order 3 (1 of 5).

Differential Part
ρ(t) Req. No. DATy ADAT DA

y Differential Condition
1 X 1D1.0 .. f

∑
bi = 1

2 X 2D1.0 ... fyf
∑

biαij = 1/2
X 2D1.1 .... Ayf

∑
biγij = 0

X 2D2.0 .... fz(−gz)−1gyf
∑

biαijωjkαkl = 1/2

2D2.1 ..... Az(−gz)−1gyf
∑

biγijωjkαkl = 0

2D2.2 ..... fz(−gz)−1Byf
∑

biαijωjkγkl = 0

2D2.3 ...... Az(−gz)−1Byf
∑

biγijωjkγkl = 0
3 X 3D1.0 .... fyy(f, f)

∑
biαijαik = 1/3

X 3D2.0 .... fyfyf
∑

biαijαjk = 1/6

X 3D2.1 ..... Ayfyf
∑

biγijαjk = 0

X 3D2.2 ..... fyAyf
∑

biαijγjk = 0

X 3D2.3 ...... AyAyf
∑

biγijγjk = 0

X 3D3.0 ..... fyz(f, (−gz)−1gyf)
∑

biαijαikωklαlm = 1/3

3D3.1 ...... fyz(f, (−gz)−1Byf)
∑

biαijαikωklγlm = 0

X 3D4.0 ..... fyfz(−gz)−1gyf
∑

biαijαjkωklαlm = 1/6

X 3D4.1 ...... Ayfz(−gz)−1gyf
∑

biγijαjkωklαlm = 0

3D4.2 ...... fyAz(−gz)−1gyf
∑

biαijγjkωklαlm = 0

3D4.3 ....... AyAz(−gz)−1gyf
∑

biγijγjkωklαlm = 0

3D4.4 ...... fyfz(−gz)−1Byf
∑

biαijαjkωklγlm = 0

3D4.5 ....... Ayfz(−gz)−1Byf
∑

biγijαjkωklγlm = 0

3D4.6 ....... fyAz(−gz)−1Byf
∑

biαijγjkωklγlm = 0

3D4.7 ........ AyAz(−gz)−1Byf
∑

biγijγjkωklγlm = 0



124 A Appedix: Conditions up to Order 3

Table A.1: All Conditions of Order 3 (2 of 5).

Differential Part
ρ(t) Req. No. DATy ADAT DA

y Differential Condition

3 X 3D5.0 ..... fz(−gz)−1gyy(f, f)
∑

biαijωjkαklαkm = 1/3

3D5.1 ...... Az(−gz)−1gyy(f, f)
∑

biγijωjkαklαkm = 0

X 3D6.0 ..... fz(−gz)−1gyfyf
∑

biαijωjkαklαlm = 1/6

X 3D6.1 ...... Az(−gz)−1gyfyf
∑

biγijωjkαklαlm = 0

3D6.2 ...... fz(−gz)−1gyAyf
∑

biαijωjkαklγlm = 0

3D6.3 ....... Az(−gz)−1gyAyf
∑

biγijωjkαklγlm = 0

3D6.4 ...... fz(−gz)−1Byfyf
∑

biαijωjkγklαlm = 0

3D6.5 ....... Az(−gz)−1Byfyf
∑

biγijωjkγklαlm = 0

3D6.6 ....... fz(−gz)−1ByAyf
∑

biαijωjkγklγlm = 0

3D6.7 ........ Az(−gz)−1ByAyf
∑

biγijωjkγklγlm = 0

X 3D7.0 ...... fzz((−gz)−1gyf, (−gz)−1gyf)
∑

biαijωjkαklαimωmnαnp = 1/3

3D7.1 ....... fzz((−gz)−1Byf, (−gz)−1gyf)
∑

biαijωjkγklαimωmnαnp = 0

3D7.2 ....... fzz((−gz)−1gyf, (−gz)−1Byf)
∑

biαijωjkαklαimωmnγnp = 0

3D7.3 ........ fzz((−gz)−1Byf, (−gz)−1Byf)
∑

biαijωjkγklαimωmnγnp = 0

X 3D8.0 ...... fz(−gz)−1gzy((−gz)−1gyf, f)
∑

biαijωjkαklωlmαmnαkp = 1/3

3D8.1 ....... Az(−gz)−1gzy((−gz)−1gyf, f)
∑

biγijωjkαklωlmαmnαkp = 0

3D8.2 ....... fz(−gz)−1gzy((−gz)−1Byf, f)
∑

biαijωjkαklωlmγmnαkp = 0

3D8.3 ........ Az(−gz)−1gzy((−gz)−1Byf, f)
∑

biγijωjkαklωlmγmnαkp = 0
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Table A.1: All Conditions of Order 3 (3 of 5).

Differential Part
ρ(t) Req. No. DATy ADAT DA

y Differential Condition

3 X 3D9.0 ...... fz(−gz)−1gyfz(−gz)−1gyf
∑

biαijωjkαklαlmωmnαnp = 1/6

3D9.1 ....... Az(−gz)−1gyfz(−gz)−1gyf
∑

biγijωjkαklαlmωmnαnp = 0

3D9.2 ....... fz(−gz)−1gyAz(−gz)−1gyf
∑

biαijωjkαklγlmωmnαnp = 0

3D9.3 ........ Az(−gz)−1gyAz(−gz)−1gyf
∑

biγijωjkαklγlmωmnαnp = 0

3D9.4 ....... fz(−gz)−1Byfz(−gz)−1gyf
∑

biαijωjkγklαlmωmnαnp = 0

3D9.5 ....... fz(−gz)−1gyfz(−gz)−1Byf
∑

biαijωjkαklαlmωmnγnp = 0

3D9.6 ........ fz(−gz)−1Byfz(−gz)−1Byf
∑

biαijωjkγklαlmωmnγnp = 0

3D9.7 ........ Az(−gz)−1Byfz(−gz)−1gyf
∑

biγijωjkγklαlmωmnαnp = 0

3D9.8 ........ Az(−gz)−1gyfz(−gz)−1Byf
∑

biγijωjkαklαlmωmnγnp = 0

3D9.9 ......... Az(−gz)−1Byfz(−gz)−1Byf
∑

biγijωjkγklαlmωmnγnp = 0

3D9.10 ........ fz(−gz)−1ByAz(−gz)−1gyf
∑

biαijωjkγklγlmωmnαnp = 0

3D9.11 ........ fz(−gz)−1gyAz(−gz)−1Byf
∑

biαijωjkαklγlmωmnγnp = 0

3D9.12 ......... fz(−gz)−1ByAz(−gz)−1Byf
∑

biαijωjkγklγlmωmnγnp = 0

3D9.13 ......... Az(−gz)−1ByAz(−gz)−1gyf
∑

biγijωjkγklγlmωmnαnp = 0

3D9.14 ......... Az(−gz)−1gyAz(−gz)−1Byf
∑

biγijωjkαklγlmωmnγnp = 0

3D9.15 .......... Az(−gz)−1ByAz(−gz)−1Byf
∑

biγijωjkγklγlmωmnγnp = 0
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B Appedix: Convergence Results of Test 2
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Figure B.1: Step-size versus error for (6.4) using exact Jacobian.
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Figure B.2: Step-size versus error for (6.4) using Jacobian updates after 5 steps.
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Figure B.3: Step-size versus error for (6.4) using Jacobian updates after 10 steps.
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Figure B.4: Step-size versus error for (6.4) using Jacobian updates after 20 steps.
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Figure B.5: Step-size versus error for (6.4) after setting Jacobian entries with respect
to Ay and Az to zero.
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C Appedix: Convergence Results of Test 3
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Figure C.1: Step-size versus error for (6.5) using exact Jacobian.
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Figure C.2: Step-size versus error for (6.5) using Jacobian updates after 5 steps.
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Figure C.3: Step-size versus error for (6.5) using Jacobian updates after 10 steps.
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Figure C.4: Step-size versus error for (6.5) using Jacobian updates after 20 steps.
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Figure C.5: Step-size versus error for (6.5) after setting Jacobian entries with respect
to Ay and Az to zero.
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D Appedix: Some Results Using Non-Exact Entries Bz

Within the thesis it is mentioned that order conditions for non-exact Jacobian entries
Bz have also been derived. In this context, the case Bz = (gz)0 + O(h) has been
considered in particular. In fact, it proves to be the only reasonable approximation with
respect to these Jacobian entries so far. Among the sets of coefficients introduced in
Section 5 GROW37n, GROW37n2 and GROW38n are numerically determined schemes
that satisfy the conditions to achieve order p = 3. Note that there are no additional
conditions required to preserve order p = 2.

Without describing the resulting order conditions or the theory used to find them
in detail, some exemplary results shall be shown below that seem to indicate the
correctness of the additional conditions derived. For this purpose, GROW37n and
GROW37nr are applied to problem (6.5) that was originally constructed to analyze
effects using non-exact Jacobian entries Bz. The test is applied regarding approxima-
tions of the form Ay = 0, Az = 0 and By = 0 in combination with Bz = (gz)0 and
Bz = (gz)0 + O(h). In this context, the approximation Bz = (gz)0 + O(h) is realized
by regarding an update of corresponding Jacobian entries after ten time-steps.

Findings are depicted in Figure D.1 showing results for Bz = (gz)0 to the left
and Bz = (gz)0 + O(h) to the right. They show that GROW37n which satisfies
the additional conditions determined for considering non-exact components Bz is able
to preserve order p = 3. However, GROW37nr that does not satisfy the additional
conditions reduces its order from p = 3 regarding exact components Bz to p = 2
regarding non-exact components Bz. In this context, note that GROW37nr performed
quite well with respect to the tests considered in Section 6. Hence, one can assume that
the order reduction shown is a consequence of not satisfying the additional conditions
determined for the case Bz = (gz)0 + O(h).
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Figure D.1: Comparison of GROW37nr and GROW37n solving problem (6.5) using
Ay = 0, Az = 0 and By = 0 together with exact Bz (left) and non-exact
Bz (right).


