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Introduction

The Global-Local Conjectures

The representation theory of finite groups is a field of mathematics which was
introduced to study finite groups by means of linear algebra. This theory is
concerned with the study of group homomorphisms

X : G→ GLn(K)

from a finite group G to a general linear group GLn(K) over a field K. From
the very beginning of this topic, it became apparent that many properties of
the group itself are encapsulated in its representations and there are theorems
in group theory which can only be proved by using representation-theoretic
methods.

Motivated by the work of Brauer, the so-called local-global conjectures
became an important area of research. These conjectures predict that for a
prime number ` the information about a finite group G (global information)
should relate to properties of `-local subgroups of G, that is, normalizers or
centralizers of non-trivial `-subgroups of G (local information).

One of the most simple yet extremely difficult conjectures is the so-called
McKay conjecture, see [Mal17, Section 2]. Let ` be a prime and K a finite
field extension of Q` large enough for all finite groups considered. Denote by
Irr(G) the set of isomorphism classes of irreducible K-representations and
by Irr`′(G) the subset corresponding to irreducible representations X : G→
GLn(K) with ` - n.

Conjecture (McKay). Let G be a finite group and P a Sylow `-subgroup of
G. Then | Irr`′(G)| = | Irr`′(NG(P ))|.

Later, Alperin [Alp76] refined this conjecture by taking into account the
representation theory over a field of positive characteristic `.

Denote by O the ring of integers of K over Z` and by k its residue field.
For an `-block B of kG let Irr0(G,B) be the set of isomorphism classes of
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height zero representations of kB, i.e., the set of irreducible representations
X : G → GLn(K) associated to the block B such that n` = |G : D|`, where
D denotes a defect group of B.

Conjecture (Alperin–McKay). Let G be a finite group and b an `-block of
G and B its Brauer correspondent in NG(D). Then

| Irr0(G, b)| = | Irr0(NG(D), B)|.

Both of these conjectures have been reduced (by Isaacs–Malle–Navarro,
respectively Späth, see [IMN07, Theorem B] and [Spä13, Theorem C]) to
the verification of certain stronger versions of the same conjecture for finite
quasi-simple groups. These stronger versions are usually referred to as the
inductive conditions.

This approach has turned out to be very fruitful in recent years. In their
landmark paper [MS16], using this approach Malle–Späth were able to prove
the McKay conjecture for the prime ` = 2 (proving the original conjecture
of McKay).

According to the classification of finite simple groups, many finite simple
groups are groups of Lie type. These are finite groups which arise as fixed
points GF of a simple algebraic group G under a Frobenius endomorphism
F : G → G. In this thesis, we focus on their representation theory and
establish a new approach to the inductive Alperin–McKay condition for those
groups.

Representation theory of groups of Lie type

In characteristic zero Deligne and Lusztig have constructed representations
by means of `-adic cohomology groups of the so-called Deligne–Lusztig va-
rieties. Let G be a connected reductive algebraic group with Frobenius
F : G → G and let L be an F -stable Levi subgroup of G contained in a
parabolic subgroup P with Levi decomposition P = LnU. Then the variety

YG
U = {gU ∈ G/U | g−1F (g) ∈ UF (U)}

has a left GF - and a right LF -action. Recall that O denotes the ring of
integers over Z` of a finite field extension K of Q`. The `-adic cohomology
groups H i

c(Y
G
U ,O) of the Deligne–Lusztig variety YG

U provide us with a map

RG
L⊆P : G0(OLF )→ G0(OGF ), [M ] 7→

∑
i

(−1)i[H i
c(Y

G
U ,O)⊗OLF M ]
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on the respective Grothendieck groups, see Section 2.2. Let G∗ be the dual
group of G with dual Frobenius F ∗ : G∗ → G∗, see Section 2.6. Deligne–
Lusztig constructed a decomposition of the irreducible representations into
rational Lusztig series

Irr(GF ) =
∐
(s)

E(GF , s),

where (s) runs over the set of (G∗)F
∗
-conjugacy classes of semisimple el-

ements of (G∗)F
∗
. For a given s ∈ (G∗)F

∗
, let L∗ be an F ∗-stable Levi

subgroup of G∗ containing CG∗(s). Let L ⊆ G be in duality with L∗. Then
Lusztig showed that the map

E(LF , s)→ E(GF , s), ψ 7→ ±RG
L (ψ),

provides a bijection. This is the first important step in establishing the so
called Jordan decomposition of characters. This bijection has become an
indispensable tool to study the representation theory of groups of Lie type
since it reduces the question of understanding the representation theory of
Lusztig series of general semisimple elements to the question of understanding
Lusztig series of quasi-isolated semisimple elements, i.e., semisimple elements
whose centralizers are not contained in a proper Levi subgroup.

Modular representation theory of groups of Lie

type

The Deligne–Lusztig theory has been generalized to positive characteristic.
Let s ∈ (G∗)F

∗
be a semisimple element of `′-order. Then we define

E`(GF , s) =
∐
t

E(GF , t),

where (t) runs over the set of (G∗)F
∗
-conjugacy classes of semisimple elements

of (G∗)F
∗

whose `′ part is (s). By the work of Broué–Michel [BM89] this turns
out to be a union of `-blocks of GF . We denote by eG

F

s ∈ Z(OGF ) the central
idempotent associated to this sum of blocks. Similar to the characteristic zero
case we have a decomposition

OGF -mod ∼=
⊕
(s)

OGF eG
F

s -mod

where (s) runs over the set of (G∗)F
∗
-conjugacy classes of semisimple ele-

ments of (G∗)F
∗

of `′-order.
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Establishing a conjecture by Broué, Bonnafé–Rouquier [BR03] and later
Bonnafé–Dat–Rouquier [BDR17a] proved a Jordan decomposition for blocks
of groups of Lie type. Fix a semisimple element s ∈ (G∗)F

∗
of `′-order and

suppose that L∗ is the minimal F ∗-stable Levi subgroup of G∗ containing
C◦G∗(s). Denote by NF the stabilizer of L and eL

F

s in GF . Then the following
was proved in [BDR17a] (see also Theorem 2.35 below):

Theorem A (Bonnafé–Dat–Rouquier). Suppose that NF/LF is cyclic. Then

the bimodule H
dim(YG

U)
c (YG

U ,O)eL
F

s extends to a OGF -ONF -bimodule such
that OGF eG

F

s and ONF eL
F

s are Morita equivalent. Moreover, OGF eG
F

s and
ONF eL

F

s are splendid Rickard equivalent.

Note however that [BDR17a, Theorem 7.7] was announced without the
assumption that NF/LF is cyclic. This assumption is necessary to apply
their proof, see Section 3.1 for more details. As a first main result of this
thesis we partly remove this technical assumption and therefore extend the
results of Theorem A. Assume that G is a simple algebraic group. In this
case, the quotient group NF/LF embeds into Z(G)F . Therefore, a non-cyclic
quotient can only appear if G is simply connected and GF is of type Dn with
even n ≥ 4. Hence we focus on this situation and prove the following:

Theorem B (see Theorem 3.22). Suppose that G is a simple algebraic group.

If ` - (q2−1) or if NF/LF is cyclic then the bimodule H
dim(YG

U)
c (YG

U ,O)eL
F

s ex-
tends to a OGF -ONF -bimodule such that OGF eG

F

s and ONF eL
F

s are Morita
equivalent. Moreover, OGF eG

F

s and ONF eL
F

s are splendid Rickard equiva-
lent.

Note that Theorem B has also appeared in the author’s article [Ruh18].

Clifford theory and group automorphisms

The Jordan decomposition by Bonnafé–Rouquier has proved to be extremely
useful in the representation theory of finite groups of Lie type. For instance,
the Bonnafé–Rouquier Morita equivalence was a crucial ingredient in the
verification of one direction of Brauer’s height zero conjecture by Malle–
Kessar [KM13]. Our main objective in this thesis is therefore to provide a
reduction of the verification of the inductive Alperin–McKay condition from
Späth [Spä13] to blocks associated to quasi-isolated semisimple elements.

Let us therefore from now on assume that G is a simple algebraic group
of simply connected type and for simplicity let us assume in this and the
next section that G is not of type D4. Let F : G → G be a Frobenius
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endomorphism such that GF/Z(GF ) is a finite simple group. We let ι :
G ↪→ G̃ be a regular embedding, i.e. an embedding of G into a group G̃
with connected center and same derived subgroup as G. As before, consider
a semisimple element s ∈ (G∗)F

∗
of `′-order and suppose now that L∗ is the

minimal F ∗-stable Levi subgroup of G∗ with CG∗(s) ⊆ L∗.

Using the classification of automorphisms of finite simple groups of Lie
type (see Section 4.2) we prove the existence of bijective morphisms F0 : G̃→
G̃ and σ : G̃ → G̃ stabilizing a Levi subgroup L of G in duality with L∗

and such that the image of G̃F oA, where A := 〈σ|G̃F , F0|G̃F 〉, generates the

stabilizer of eG
F

s in Out(GF ). Moreover, these bijective morphisms commute
with each other and the Frobenius endomorphism F : G→ G is an integral
power of F0. Using this explicit description of automorphisms we can prove
the following:

Theorem C (see Theorem 5.16). Assume that CG∗(s) ⊆ L∗ and the or-

der of σ : GF → GF is coprime to `. Then H
dim(YG

U)
c (YG

U ,O)eL
F

s extends
to an O[(GF × (LF )opp)∆(A)]-module M . Moreover, the bimodule M̃ :=

Ind
G̃FA×(L̃FA)opp

(GF×(LF )opp)∆(A)
(M) induces a Morita equivalence between OL̃FAeLFs and

OG̃FAeGF

s .

One of the main ingredients in the proof of Theorem A is to show that
the Morita bimodule in Theorem A does not depend on the choice of the

parabolic subgroup. This yields that the bimodule H
dim(YG

U)
c (YG

U ,O)eL
F

s is
∆(A)-invariant. However, this does not imply that the Morita bimodule
extends. To remedy this problem we use a certain idea introduced by Digne
[Dig99] in the context of restriction of scalars for Deligne–Lusztig varieties.

This allows us to show that the module H
dim(YG

U)
c (YG

U ,Λ)eL
F

s can be endowed
with a natural diagonal action of the automorphism F0|G̃F . From this we
can show using the aforementioned independence result that the so-obtained
bimodule is still invariant under the automorphism σ. Once we have proved
this, Theorem C is then a consequence of general results on Clifford theory
of Morita equivalences. This result gives us the desired compatibility of the
Jordan decomposition with group automorphisms:

Corollary D. In the situation of Theorem C we have the following commu-
tative square of Grothendieck groups:
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G0(OL̃FAeLFs ) G0(OG̃FAeGF

s )

G0(OLF eL
F

s ) G0(OGF eG
F

s )

ResG̃
FA

GF

[M̃ ⊗−]

(−1)dim(YG
U)RG

L

ResL̃
FA

LF

Local equivalences

The Alperin–McKay conjecture relates the global height zero characters to
the local height zero characters. Thus, in order to reduce the verification of
the inductive Alperin–McKay condition to a question about quasi-isolated
elements we also need a Jordan decomposition as in Theorem C relating the
corresponding blocks of normalizer subgroups.

Let b be a block corresponding to the block c under the Morita equivalence

induced by H
dim(YG

U)
c (YG

U ,O)eL
F

s . Then the blocks b and c have a common
defect group D contained in LF . We denote by BD the Brauer correspondent
of b and by CD the Brauer correspondent of c. In addition, we let B′D =

Tr
N

G̃FA(D)

N
G̃FA(D,BD)(BD) and C ′D = Tr

N
L̃FA(D)

N
L̃FA(D,CD)(CD) be the corresponding central

idempotents of NG̃FA(D) and NL̃FA(D).

Theorem E (see Theorem 5.24). Suppose that the assumptions of Theorem

C are satisfied. Then the cohomology module Hdim
c (Y

NG(D)
CU(D) ,O)CD extends to

an O[(NGF (D) × NLF (D)opp)∆(NL̃FA(D,CD))]-module MD. In particular,
the bimodule

Ind
N

G̃FA(D)×N
L̃FA(D)opp

(N
GF

(D)×N
LF

(D)opp)∆N
L̃FA(D,CD)(MD)

induces a Morita equivalence between ONG̃FA(D)B′D and ONL̃FA(D)C ′D.

Jordan decomposition for the Alperin–McKay

conjecture

In the final chapter of this thesis we then use the strong equivariance proper-
ties obtained in Theorem C and Theorem E to show that in order to obtain
the inductive McKay condition for arbitrary blocks of groups of lie type it
is enough to verify it for quasi-isolated blocks. Quasi-isolated semisimple
elements for reductive groups have been classified by Bonnafé [Bon05]. In
each case there are a small number of possibilities which have been well-
described. Moreover, the quasi-isolated blocks of groups of Lie type are
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better understood by fundamental work of Cabanes–Enguehard and recent
work of Enguehard and Kessar–Malle, see [KM13] for a more precise histor-
ical account. This gives us reason to hope that our reduction will provide a
simplification of the verification of the inductive Alperin–McKay conditions.

Our main theorem is then as follows:

Theorem F (see Theorem 6.40 and Remark 6.41). Assume that every quasi-
isolated `-block of a finite quasi-simple group of Lie type defined over a field
of characteristic p 6= ` satisfies the inductive Alperin–McKay condition (in
the sense of Hypothesis 6.30 below). Let S be a simple group of Lie type with
non-exceptional Schur multiplier defined over a field of characteristic p 6= `
and G its universal covering group. If G is not of type D or Assumption
6.26 holds for G then the inductive Alperin–McKay condition holds for every
`-block of G.

Note that Assumption 6.26 was one of the main ingredients for the pre-
vious verifications of the inductive McKay condition. It is essential for con-
structing projective representations for certain classes of groups associated
to characters of groups of Lie type and enables us to explicitly compute the
factor set of the projective representation. The proof of Assumption 6.26 for
groups of type D is addressed in current work of Späth. Hence, Theorem F
is expected to yield a complete reduction of the verification of the inductive
Alperin–McKay condition to quasi-isolated blocks.
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Chapter 1

Representation theory

In this chapter we introduce the necessary background material from the
representation theory of finite groups. We will give a brief overview on vari-
ous categorical equivalences of module categories associated to finite groups.
We will then discuss in depth the Clifford theory of these equivalences by
considering a theorem of Marcus.

1.1 Modular representation theory

Let ` be a prime and K be a finite field extension of Q`. We say that K
is large enough for a finite group G if K contains all roots of unity whose
order divides the exponent of the group G. In the following, K denotes a field
which we assume to be large enough for the finite groups under consideration.
We denote by O the ring of integers of K over Z` and by k = O/J(O) its
residue field. We will use Λ to interchangeably denote O or k.

Let A be a Λ-algebra, finitely generated and projective as a Λ-module.
We denote by Aopp its opposite algebra. Moreover, we mean by A-mod the
category of left A-modules, that are finitely generated as Λ-modules.

We denote by G0(A) the Grothendieck group of the category A-mod, see
also [Ben98, Section 5.1]. This means that G0(A) is the abelian group on
the set {[X] | X ∈ A-mod} of isomorphism classes satisfying the following
relation: Whenever 0 → M → N → P → 0 is a short exact sequence of
A-modules then [N ] = [M ] + [P ] in G0(A). Since every object in A-mod has
a finite composition series, it follows that G0(A) is generated by the subset
Irr(A) of isomorphism classes of irreducible A-modules.

13



1.2 Module categories

Let A be an abelian category. We denote by Compb(A) the category of
bounded complexes of A and by Hob(A) its homotopy category. In addition,
Db(A) denotes the bounded derived category of A.

When A = A-mod we abbreviate Compb(A), Hob(A) and Db(A) by
Compb(A), Hob(A) and Db(A) respectively.

For C ∈ Compb(A) there exists (see for instance [BDR17a, 2.A.]) a com-
plex Cred with C ∼= Cred in Hob(A) such that Cred has no non-zero direct
summand which is homotopy equivalent to 0. Moreover, C ∼= Cred⊕C0 with
H•(C0) ∼= 0.

Let A-proj denote the subcategory of projective A-modules. We then
denote by A-perf the full subcategory of Db(A) consisting of complexes quasi-
isomorphic to complexes of Compb(A-proj).

Let B and D be two Λ-algebras. The tensor product

−⊗A − : Compb(B ⊗Λ A
opp)× Compb(A⊗Λ D

opp)→ Compb(B ⊗Λ D
opp)

of complexes gives rise to the tensor product

−⊗LA − : Db(B ⊗Λ A
opp)×Db(A⊗Λ D

opp)→ Db(B ⊗Λ D
opp)

on derived categories.
For two complexes C ∈ Compb(A ⊗Λ Bopp) and C ′ ∈ Compb(A ⊗Λ

Dopp) we denote by Hom•A(C,C ′) the total Hom-complex with nth term
⊕i+j=nHomA(Ci, C ′j). The complex Hom•A(C,C ′) is a complex of B⊗ΛD

opp-
modules and we get a functor

Hom•A(−,−) : Compb(A⊗ΛB
opp)×Compb(A⊗ΛD

opp)→ Compb(B⊗ΛD
opp),

the Hom-functor with right derived functor

RHom•A(−,−) : Db(A⊗Λ B
opp)×Db(A⊗Λ D

opp)→ Db(B ⊗Λ D
opp).

If i is an integer and C = (Cn, dnC) is a complex of A-modules then we
define C[i] to be the complex of A-modules with terms C[i]n = Cn+i and
differential dnC[i] = (−1)idn+i

C . If M is an A-module we denote by M [i] the
complex with all terms equal to 0 except the −ith taken to be M . Moreover,
via the functor A-mod→ Compb(A), M 7→M [0] we identify A-modules with
complexes of A-modules concentrated in degree 0. This identification also
yields fully faithful functors from A-mod to Hob(A) and Db(A).

By [CE04, A1.5] and [CE04, A1.11] we have canonical isomorphisms

H i(Hom•A(C,C ′)) ∼= HomHob(A)(C,C
′[i])
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and

H i(RHom•A(C,C ′)) ∼= HomDb(A)(C,C
′[i]).

We end this section by stating some facts specific to the representations of
finite groups.

Let H and G be finite groups and C be a complex of ΛG-ΛH-bimodules.
Then we write C∨ for the complex HomΛG(C,ΛG) viewed as complex of
ΛH-ΛG-bimodules. If Λ denotes the trivial ΛG-ΛH-bimodule then we have
by [Bro94, 3.A.] an isomorphism C∨ ∼= HomΛ(C,Λ).Moreover, ifX is another
complex of ΛG-ΛH modules and C is projective as ΛH-module then by
[Bro94, 3.A.] there is a canonical isomorphism

C∨ ⊗ΛG X ∼= HomΛG(C,X).

Let σ : G→ G be an automorphism of a finite group G and H a subgroup
of G. If M is a left (resp. right) ΛH-module then we denote by σM (resp.
Mσ) the left (resp. right) Λσ(H)-module which coincides with M as a Λ-
module but with action of σ(H) given by σ(h)m := σ−1(h)m (resp. by
mσ(h) := mσ−1(h)).

A basic tool in the representation theory of finite groups is the theory
of sources and vertices, see e.g. [Thé95, Chapter 17] for the following. If H
is a subgroup of G and L an ΛH-module then IndGH(L) denotes ΛG⊗ΛH L.
This defines a functor right adjoint to the restriction functor ResGH . Given a
ΛG-module M we say that M is relatively H-projective if the natural map

M → IndGHResGH(M)

splits. Assume now that M is an indecomposable ΛG-module which is free
as Λ-module. If H is a minimal subgroup such that M is relatively H-
projective then H is necessarily an `-subgroup of G. Moreover, there exists
an indecomposable direct summand L of ResGH(M) such that M is a direct
summand of IndGH(L). In this case H is called a vertex of M and L is called
the source of M . The pair (H,L) is then unique up to G-conjugation.

1.3 The Brauer functor

Let G be a finite group and Q an `-subgroup of G. For a ΛG-module M we
let MQ denote the subset of Q-fixed points of M . We consider the Brauer
functor

BrGQ : ΛG−mod→ kNG(Q)/Q−mod
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which for a ΛG-module M is given by

BrGQ(M) = k ⊗Λ (MQ/
∑
P<Q

TrQP (MP )),

where TrQP : MP →MQ, m 7→
∑

g∈Q/P gm is the relative trace map on M .
Let f : M1 → M2 be a morphism of ΛG-modules. Then f restricts to

a morphism f : MQ
1 → MQ

2 of ΛNG(Q)-modules. One readibly checks that
f maps

∑
P<Q TrQP (MP

1 ) to
∑

P<Q TrQP (MP
2 ) and we hence obtain by taking

quotients a morphism BrQ(f) : BrQ(M1)→ BrQ(M2).
If H is a subgroup of G containing Q then by definition we have

BrHQ ◦ResGH = Res
NG(Q)
NH(Q) ◦BrGQ .

Therefore, we will sometimes omit the upper index and write BrGQ = BrQ
if the group under consideration is clear from the context. Since BrQ is an
additive functor it respects homotopy equivalences and therefore extends to
a functor

BrGQ : Hob(ΛG)→ Hob(kNG(Q)/Q).

However, the functor BrQ is neither left or right exact, so it does not extend
to a functor on the respective derived categories.

Recall that a ΛG-module M is called an `-permutation module if for every
`-subgroup Q of G the module M possesses a Q-stable Λ-basis. Equivalently,
an `-permutation module is a direct summand of a permutation module, i.e.,
a module of the form Λ[Ω], where Ω is a G-set, see [Rou01, 4.1.3]. From the
latter description it is not hard to see that the `-permutation modules are
precisely the ΛG-modules with trivial source module. We let ΛG− perm be
the full subcategory of ΛG−mod consisting of all `-permutation modules of
ΛG.

If Λ[Ω] is a permutation module then the composition

Λ[ΩQ] ↪→ (Λ[Ω])Q � BrQ(Λ[Ω])

induces an isomorphism BrQ(Λ[Ω]) ∼= k[ΩQ], see [Rou01, 4.1.2]. From this it
follows that the Brauer functor restricts to a functor

BrGQ : ΛG- perm→ kNG(Q)/Q- perm .

Note that we will usually identify kNG(Q)/Q − perm via inflation with a
subcategory of kNG(Q)− perm.

An important property of the Brauer functor is that an `-permutation
module M ∈ ΛG− perm has vertex Q if and only if Q is maximal with the
property that BrQ(M) 6= 0, see [Thé95, Corollary 27.7].
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Thus, in particular if we consider ΛG as G-module via G-conjugation,
then BrQ(ΛG) ∼= kCG(Q). The canonical surjection

brGQ : (ΛG)Q → kCG(Q),
∑
g∈G

λgg 7→
∑

g∈CG(Q)

λgg,

induces an algebra homomorphism, the so called Brauer morphism, see [Rou01,
Section 4.2].

For two `-permutation modulesM1,M2 ∈ ΛG-perm we considerM1⊗ΛM2

as ΛG-module via the diagonal action of G. It follows that the natural map

BrQ(M1)⊗k BrQ(M2)→ BrQ(M1 ⊗k M2)

is an isomorphism, see [Ric96, Section 4]. In particular, for M ∈ ΛG- perm
and e ∈ Z(ΛG) we have Me ∼= M⊗Λ Λe which (see also [Rou01, Section 4.2])
implies

BrQ(Me) = BrQ(M) brQ(e).

1.4 Brauer pairs and the Brauer category

A primitive central idempotent b ∈ Z(ΛG) is called a block idempotent of G.
Its associated indecomposable subalgebra ΛGb of ΛG is called a block of G.

Since the blocks of OG and kG correspond to each other via lifting of
idempotents, see [Thé95, Theorem 3.1], we will identify blocks of OG and
kG if they correspond to each other via reduction modulo J(O).

A Brauer pair (R, e) of G consists of an `-subgroup R of G and a block
e of the group algebra kCG(R).

Definition 1.1. Let (S, f) and (R, e) be two Brauer pairs. Then we write
(S, f)E (R, e) if the following conditions are satisfied:

a) S is a normal subgroup of R,

b) f is R-stable,

c) e brR(f) = e.

We denote by ” ≤ ” the transitive closure of the relation ”E ” on the set
of Brauer pairs, see [Thé95, Chapter 40]. We recall the following definition.

Definition 1.2. Let b be a block of kG. A b-Brauer pair is a Brauer pair
(R, e) such that (1, b) ≤ (R, e) or equivalently brR(b)e = e.
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An `-subgroup D of G is called a defect group of the block b if there exists
a maximal Brauer pair (D, e) such that (1, b) ≤ (D, e). Such a Brauer pair is
called maximal b-Brauer pair. Moreover, the order relation ” ≤ ” coincides
with the ordinary subgroup inclusion inside a fixed maximal b-Brauer pair,
see [Thé95, Corollary 40.9(b)]. We recall the definition of the Brauer category
of a block, see [Thé95, § 47].

Definition 1.3. Let b be a block of G. Denote by F(G, b) the category whose
objects are the b-Brauer pairs and with set of morphisms from (S, f) to (R, e)
consisting of all homomorphisms S → R which are given by conjugation with
some g ∈ G such that g(S, f) ≤ (R, e). We say that F(G, b) is the Brauer
category of the G-block b.

If H is a subgroup of G and f ∈ Z(ΛH) then we write

NG(H, f) := {x ∈ NG(H) | xf = f}

for the set of elements normalizing H and f . Moreover, we write TrGH(f) =∑
x∈G/H

xf ∈ Z(ΛG) for the trace of the element f .

Remark 1.4. Denote F = F(G, b). It is immediate from the definition of the
Brauer category that HomF((R, e), (R, e)) = AutF(R, e) = NG(R, e)/CG(R).

Let (D, bD) be a maximal b-Brauer pair. We denote by F(G,D)≤(D,bD)

the full subcategory of F(G, b) with objects consisting of all b-Brauer pairs
contained in (D, bD). A well known theorem asserts that the natural inclusion
functor F(G, b)≤(D,bD) ↪→ F(G, b) induces an equivalence of categories, see
e.g. [Thé95, Lemma 47.1] and afterwards.

For a block e of kCG(Q) we call [NG(Q, e) : CG(Q)Q] the inertial index of
the block e. We recall Brauer’s first main theorem, see for instance [Thé95,
Theorem 40.14]:

Theorem 1.5 (Brauer’s first main theorem). Let D be an `-subgroup of G.
There is a bijection between the set of blocks of OG with defect group D and
the set of all NG(D)-conjugacy classes of blocks e of kCG(D) with defect
group Z(D) and inertial index of `′-order. The bijection maps a block b to
the unique NG(D)-conjugacy class of blocks e such that (D, e) is a maximal
b-Brauer pair.

We will be interested in the blocks of normalizers of `-subgroups. For
these the following remark is useful:
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Remark 1.6. Let b be a block of G and (Q, bQ) a b-Brauer pair. Then the
idempotent bQ is a block of NG(Q, bQ) by [Thé95, Exercise 40.2(b)]. Con-

sequently, BQ := Tr
NG(Q)
NG(Q,bQ)(bQ) is a block of NG(Q). By Theorem 1.5 all

maximal b-Brauer pairs are G-conjugate. In particular, if (D, bD) is a maxi-
mal b-Brauer pair then it follows that

brD(b) = Tr
NG(D)
NG(D,bD)(bD).

For a finite group G and D an `-subgroup of G we denote by Bl(G | D) the
set of blocks of G with defect group D. Then Brauer’s first main theorem
implies that the map

brD : Bl(G | D)→ Bl(NG(D) | D)

is a bijection. This bijection is sometimes referred to as the Brauer corre-
spondence.

1.5 Morita equivalences and splendid Rickard

equivalences

In this section we introduce some equivalences between module categories
which play an important role in the representation theory of finite groups.

For this, let G and H be finite groups and let e ∈ Z(ΛG) and f ∈ Z(ΛH)
be central idempotents. In addition, denote A = ΛGe and B = ΛHf .

Definition 1.7. Let C be a bounded complex of A-B-bimodules, finitely
generated and projective as A-modules resp. B-modules. We say that C
induces a Rickard equivalence between A and B if the following holds:

a) The canonical map A→ End•Bopp(C)opp is an isomorphism in Hob(A⊗Λ

Aopp) and

b) the canonical map B → End•A(C) is an isomorphism in Hob(B⊗ΛB
opp).

An important special case of the previous definition is the following:

Definition 1.8. Let M be an A-B-bimodule. If the complex M [0] induces a
Rickard equivalence between A and B, then we say that M induces a Morita
equivalence between A and B.

We will often use the following well-known lemma, which is essentially
contained in [Zim14, Lemma 6.7.12] and its proof. To give a more direct
proof, we follow a strategy outlined in the proof of [Har99, Theorem 1.6].
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Lemma 1.9. Suppose that the complex C of A-B-bimodules induces a Rickard
equivalence between A and B. Let f = c1 + · · ·+ cr be a decomposition of f
into blocks of B. Then for each i there exists a unique block bi of A such that
biCci is not homotopy equivalent to 0 and biCci induces a Rickard equivalence
between ΛGbi and ΛHci.

Proof. We fix a block c of ΛHf . By definition the natural map B → End•A(C)
is an isomorphism in Hob(B ⊗Λ B

opp). Therefore, the natural map Bc →
End•A(Cc) is an isomorphism in Hob(B ⊗Λ B

opp). Furthermore, we have a
direct sum decomposition Cc =

⊕s
i=1 biCc. Therefore, we have an isomor-

phism

EndB⊗Bopp(Bc) ∼= EndHob(B⊗Bopp)(End•A(Cc)) ∼=
s∏
i=1

EndHob(B⊗Bopp)(End•A(biCc))

of Λ-algebras. Note that Z(Bc) ∼= EndB⊗Bopp(Bc) is a local Λ-algebra since
Bc is an indecomposable B-B-bimodule. It follows that there exists a unique
integer i such that the block b := bi of A satisfies that End•A(bCc) is not
isomorphic to 0 in Hob(B ⊗Λ B

opp).
For j 6= i we denote X := bjCc and we claim that X ∼= 0 in Hob(A ⊗Λ

Bopp). We have X∨⊗AX ∼= End•A(X) ∼= 0 in Hob(B⊗Λ B
opp). On the other

hand, since X is a bi-projective complex of A-B-bimodules, it follows by the
proof of [Ric96, Theorem 2.1] that X is a direct summand of X⊗B (X∨⊗AX)
in Compb(A⊗Λ B

opp). From this we deduce that X ∼= 0 in Hob(A⊗Λ B
opp).

Therefore, bCc ∼= Cc in Hob(A ⊗Λ B
opp) and it follows that the natural

map Bc → End•A(bCc) is an isomorphism in Hob(B ⊗Λ B
opp). Similarly,

one shows that the natural map Ab → End•Bopp(bC)opp is an isomorphism
in Hob(A ⊗Λ Aopp). In other words, the complex bCc induces a Rickard
equivalence between Ab = ΛGb and Bc = ΛHc.

If C is a complex inducing a Rickard equivalence between A and B, then
the functor

C ⊗B − : Hob(B-proj)→ Hob(A-proj)

yields an equivalence of categories. We now define the seemingly weaker
notion of derived equivalence:

Definition 1.10. We say that a complex C ∈ Compb(A ⊗ Bopp) induces a
derived equivalence between A and B if the functor

C ⊗LB − : Db(B)→ Db(A)

induces an equivalence of triangulated categories.
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Remark 1.11. A theorem of Rickard, see [Ric96, Section 2.1], asserts that
A and B are Rickard equivalent if and only if they are derived equivalent.
More precisely, the proof of said theorem shows, that not every complex
C ∈ Compb(A ⊗ Bopp) inducing a derived equivalence between A and B
gives necessarily rise to a Rickard equivalence between A and B. There only
exists a complex isomorphic to C in Db(A ⊗ Bopp) which induces a Rickard
equivalence between A and B.

Assume now that H is a subgroup of G. For any subgroup X of H we let
∆X := {(x, x−1) | x ∈ X}, a subgroup of G×Hopp.

Definition 1.12. A bounded complex C of A-B-bimodules is called splendid
if Cred is a complex of `-permutation modules such that every indecomposable
direct summands of a component of C has a vertex contained in ∆H. If C
is splendid and induces a Rickard equivalence between A and B we say that
C induces a splendid Rickard equivalence between A and B.

Note that our definition of a splendid Rickard equivalence is not symmet-
ric since we assume that L is a subgroup of G.

1.6 First properties of splendid complexes

We state some important first properties of splendid complexes. The follow-
ing is a variant of [Ric96, Lemma 4.3].

Lemma 1.13. Let L be a subgroup of a finite group G. Let M be a relatively
∆L-projective Λ[G×Lopp]-module. If Q is a subgroup of L then all indecom-
posable direct summands of ResG×L

opp

G×Qopp(M) are relatively ∆Q-projective.

Proof. Since M is a relatively ∆L-projective module we may assume M =
IndG×L

opp

∆L (N) for some Λ[∆L]-module N . There exists a set of represen-
tatives of the double cosets of ∆L\(G × Lopp)/(G × Qopp) contained in
1×Lopp. By Mackey’s formula for every indecomposable direct summand of
ResG×L

opp

G×Qopp(M) there exists some l ∈ L such that this summand is relatively
projective with respect to the subgroup

∆L(1,l) ∩ (G×Qopp).

We have

(l,1)(∆L(1,l) ∩ (G×Qopp)) = (l,l)∆L ∩ (l,1)(G×Qopp) = ∆Q

which shows that every indecomposable summand is projective relative to a
subgroup which is G×Qopp-conjugate to ∆Q. It follows that every indecom-
posable summand is relatively ∆Q-projective.
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Let L be a subgroup of a finite group G and Q an `-subgroup of L. Then
we can consider the Brauer functor

Br∆Q : Λ[G× Lopp]− perm→ kNG×Lopp(∆Q)/∆Q− perm .

Notice that

NG×Lopp(∆Q) = (CG(Q)× CL(Q)opp)∆(NL(Q)).

Let c ∈ Z(ΛL) and b ∈ Z(ΛG) be two central idempotents and C a bounded
complex of ΛGb-ΛLc-modules. Since

CG×Lopp(∆Q) = CG(Q)× CL(Q)opp ⊆ NG×Lopp(∆Q)

we can consider the image Br∆Q(C) as a complex of kCG(Q) brQ(b)-kCL(Q) brQ(c)
bimodules.

In the following lemma we closely follow the proof of [Ric96, Theorem
4.1].

Lemma 1.14. Assume the notation as above and suppose that C1 and C2

are splendid complexes of ΛGb-ΛLc bimodules. Then for any `-subgroup Q
of L we have

Br∆Q(C∨1 ⊗ΛG C2) ∼= Br∆Q(C∨1 )⊗kCG(Q) Br∆Q(C2)

in Hob(k[CL(Q)× CL(Q)opp]).

Proof. The complex Hom•k(C1, C2) viewed as a complex of k[G×Lopp]-modules
via the diagonal action is again a complex consisting of relatively ∆L-projective
`-permutation modules, see [Ben98, Corollary 3.3.5].

It follows that ResG×L
opp

G×Qopp(Hom•k(C1, C2)) is a complex of relatively ∆Q-
projective modules, see Lemma 1.13. Therefore, by the proof of [Ric96,
Theorem 4.1] we deduce that

Br∆Q(Hom•kG(C1, C2)) ∼= Hom•kCG(Q)(Br∆Q(C1),Br∆Q(C2)).

By Lemma 1.13 we also see that C2 and Br∆Q(C2) are complexes of projective
left kG-modules and kCG(Q)-modules respectively. We obtain Hom•kG(C1, C2)
∼= C∨1 ⊗kG C2 and

Hom•kCG(Q)(Br∆Q(C1),Br∆Q(C2)) ∼= Br∆Q(C1)∨ ⊗kCG(Q) Br∆Q(C2).

By the proof of [Bro85, Lemma 2.4(2)] we have Br∆Q(C1)∨ ∼= Br∆Q(C∨1 ),
which proves the claim.
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1.7 Brauer categories and splendid Rickard

equivalences

In this section we recall an important theorem of Puig showing that the
Brauer categories of splendid Rickard equivalent blocks are isomorphic. This
will be crucial for many of our applications.

Theorem 1.15. Let L be a subgroup of a finite group G. Let b ∈ Z(ΛG)
and c ∈ Z(ΛL) be primitive idempotents. Suppose that there exists a bounded
complex C of ΛGb-ΛLc-modules inducing a splendid Rickard equivalence be-
tween ΛGb and ΛLc. If D is a defect group of the block c then D is a defect
group of b.

Proof. Denote A = ΛGb and B = ΛLc. Since C induces a splendid Rickard
equivalence between A and B it follows by definition that B ∼= End•A(C) in
Hob(B ⊗Λ B

opp). By Lemma 1.14 it follows that

Br∆D(End•A(C)) ∼= End•kCG(D)(Br∆D(C)).

Since Br∆D(B) ∼= kCL(D)brD(c) we obtain

End•kCG(D)(Br∆D(C)) ∼= kCL(D)brD(c).

Taking cohomology yields EndHob(kCG(D))(Br∆D(C)) ∼= kCL(D)brD(c). Since
D is a defect group of c it follows that brD(c) 6= 0. Therefore, the complex
Br∆D(C) is not homotopy equivalent to 0 in Hob(kCG(D)). As Br∆D(C)
is a complex of kCG(D) brD(b)-kCL(D) brD(c) bimodules it follows that
brD(b) 6= 0. This shows that D is contained in a defect group of b. Since C in-
duces a splendid Rickard equivalence it follows that C induces a basic Rickard
equivalence between the blocks ΛGb and ΛLc, see beginning of [Pui99, Sec-
tion 19.2]. Consequently, [Pui99, Theorem 19.7] shows that the defect groups
of b and c are isomorphic. Thus, D is also a defect group of b.

Proposition 1.16. Take the notation as in Theorem 1.15 and fix a maximal
c-Brauer pair (D, cD). Then there exists a b-Brauer pair (D, bD) such that
the following holds: If (Q, cQ) ≤ (D, cD) is a c-Brauer subpair then the b-
Brauer subpair (Q, bQ) ≤ (D, bD) is the unique b-Brauer pair such that the
complex bQ Br∆Q(C)cQ induces a Rickard equivalence between kCG(Q)bQ and
kCL(Q)cQ. For any other b-Brauer pair (Q, b′Q) we have b′Q Br∆Q(C)cQ ∼= 0

in Hob(k[CG(Q)× CL(Q)opp]).

Proof. The subgroup D ⊆ L ⊆ G is a common defect group of the blocks
b and c by Theorem 1.15. Moreover, the complex C is splendid, so the
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vertices of all indecomposable direct summands of components of C are by
definition contained in ∆L. On the other hand, if P is an `-subgroup of
L then Br∆P (C) ∼= brP (b) Br∆P (C) ∼= 0, unless P is contained in a defect
group of the block b. It follows that all indecomposable direct summands
of components of C are relatively ∆D-projective. Hence, the complex C
induces a splendid Rickard equivalence between kGb and kLc in the sense
of [Har99]. The statement is therefore precisely [Har99, Theorem 1.6].

Let b be a block of a finite group G and (D, bD) a maximal b-Brauer pair.
Recall from Definition 1.3 that we denote by F(G, b) the Brauer category
of the G-block b and by F(G,D)≤(D,bD) its full subcategory consisting of all
b-Brauer pairs contained in (D, bD).

Theorem 1.17. Suppose that we are in the situation of Proposition 1.16.
Then the map F(L, c)≤(D,cD) → F(G, b)≤(D,bD) given by (Q, cQ) 7→ (Q, bQ)
induces an isomorphism of categories. In particular, for any c-Brauer sub-
pairs (Q, cQ), (R, cR) contained in (D, cD) and b-Brauer subpairs (Q, bQ),
(R, bR) contained in (D, bD) we have

HomF(L,c)((Q, cQ), (R, cR)) = HomF(G,b)((Q, bQ), (R, bR)).

Proof. The paragraph below [Har99, Theorem 1.7] shows that we have an
inclusion

HomF(L,c)((Q, cQ), (R, cR)) ⊆ HomF(G,b)((Q, bQ), (R, bR)).

By [Pui99, Theorem 19.7] the Brauer categories F(L, c) and F(G, b) are
equivalent. Consequently, the inclusion above is an equality.

The following easy corollary will be useful to us.

Corollary 1.18. Suppose that we are in the situation of Proposition 1.16.
Then for any subgroup Q of D the inclusion map NL(Q)/CL(Q) ↪→ NG(Q)/CG(Q)
induces an isomorphism between NL(Q, cQ)/CL(Q) and NG(Q, bQ)/CG(Q).

Proof. Theorem 1.17 shows that we have an equality

AutF(L,c)(Q, cQ) = AutF(G,b)(Q, bQ).

The corollary follows from this by using Remark 1.4.

Remark 1.19. From Proposition 1.16 it is quite easy to see that we have an
injective map NL(Q, cQ)/CL(Q) ↪→ NG(Q, bQ)/CG(Q). Indeed, bQ Br∆Q(C)cQ
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is a complex of k[(CG(Q) × CL(Q)opp)∆(NL(Q))]-modules. Thus, for x ∈
NL(Q) the complex

x(bQ Br∆Q(C)cQ)x ∼= xbQ Br∆Q(bCc) xcQ

of kCG(Q)-kCL(Q)-bimodules induces a Rickard equivalence between kCG(Q) xbQ
and kCL(Q) xcQ. Hence, if x ∈ NL(Q, cQ) then necessarily xbQ = bQ, since
otherwise xbQ Br∆Q(C)cQ ∼= 0 by Proposition 1.16.

1.8 Properties of splendid Rickard equivalences

In this section we establish some properties of splendid Rickard equivalences.
We keep the notation of the previous section. In particular we assume that
L is a subgroup of G. Furthermore, b and c are block idempotents of G and
L respectively.

Theorem 1.20. Suppose that C1 and C2 are two bounded complexes of `-
permutation ΛGb-ΛLc bimodules inducing a splendid Rickard equivalence be-
tween ΛGb and ΛLc. Then the tensor product C∨1 ⊗ΛG C2 induces a splendid
Rickard self-equivalence of ΛLc.

Proof. It is clear that the tensor product C∨1 ⊗ΛGC2 induces a Rickard equiva-
lence between ΛLc and itself. Therefore, it suffices to prove that the complex
C∨1 ⊗ΛGC2 is splendid. This however follows as in the proof of [Rou98, Lemma
10.2.6] by replacing both H ′ and D by L.

The following lifting theorem from k to O is crucial and illustrates the
strength of the notion of splendidness.

Theorem 1.21. Let e ∈ Z(ΛG) and f ∈ Z(ΛL) be central idempotents.
Suppose that C ∈ Comp(kGe⊗k kLf -perm) is a complex inducing a splendid
Rickard equivalence between kGe and kLf . Then there exists a complex C̃,
unique up to isomorphism, inducing a splendid Rickard equivalence between
ΛGe and ΛLf and satisfying C̃ ⊗O k ∼= C.

Proof. This follows from the proof of [Ric96, Theorem 5.2].

Theorem 1.22. Let G and H be finite groups and assume that kGe and
kHf are blocks.

a) Let C be a bounded complex of finitely generated biprojective kGe-kHf -
bimodules. Suppose that End•kHf (C) ∼= kGe in Hob(kG ⊗k (kG)opp).
Then kGe and kHf are Rickard equivalent via C.
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b) Let M be a finitely generated biprojective kGb-kHc-bimodule. Suppose
that EndkHf (M) ∼= kGe as kG-kG-bimodules. Then kGe and kHf are
Morita equivalent via M .

Proof. The first item is proved in [Ric96, Theorem 2.1]. The second part
follows from the first by taking C := M [0].

We recall the following useful observation, see [Rou98, Section 10.2.3],
where it was also explained that the converse statement does not necessarily
hold.

Lemma 1.23. Let G and H be finite groups and assume that e ∈ Z(ΛG) and
f ∈ Z(ΛH) are central idempotents. Suppose that C is a complex of ΛGe-
ΛHf -bimodules inducing a Rickard equivalence between ΛGe and ΛHf . If
the cohomology of C is concentrated in degree d then Hd(C) induces a Morita
equivalence between ΛGe and ΛHf .

Proof. As C induces a Rickard equivalence we have End•ΛG(C) ∼= ΛHf in
Hob(ΛHf ⊗Λ (ΛHf)opp) by definition. The cohomology of C is concentrated
in degree d and C is a complex of projective ΛGb-modules. By [Ben98,
Theorem 2.7.1] we therefore obtain

H0(End•ΛG(C)) ∼= EndΛG(Hd(C)) ∼= ΛHf

as ΛHf ⊗Λ (ΛHf)opp-modules. Similarly, one shows that EndΛH(Hd(C)) ∼=
ΛGe. Hence, the bimodule Hd(C) induces a Morita equivalence between
ΛGe and ΛHf .

1.9 Lifting Rickard equivalences

The aim of this section is to introduce a lifting result for Morita equivalences
due to Marcus. We first need to introduce some notation. Let L̃ be a
subgroup of a finite group G̃. Moreover, let G be a normal subgroup of G̃
and set L := G ∩ L̃. In this case, we have an injective map L̃/L ↪→ G̃/G,
which is an isomorphism if and only if L̃G = G̃.

Let e ∈ Z(OG) and f ∈ Z(OL) be G̃-invariant resp. L̃-invariant central
idempotents, such that e ∈ Z(OG̃) and f ∈ Z(OL̃). Consider the subgroup

D := {(g̃, l̃) ∈ G̃× L̃opp | g̃G = l̃−1G} = (G× Lopp)∆(L̃)

of G̃× L̃opp.
The following was first proved in [Mar96, Theorem 3.4]. An alternative

proof can be found in [Rou98, Lemma 2.8].
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Theorem 1.24 (Marcus). Suppose that G̃ = L̃G. Let C be a bounded com-
plex of ΛGe-ΛLf -bimodules inducing a Rickard equivalence between ΛGe and
ΛLf . Suppose that either C is concentrated in one degree or that ` - [L̃ : L].

If C extends to a complex of D-modules C ′ then C̃ := IndG̃×L̃
opp

D (C ′) induces
a Rickard equivalence between ΛL̃f and ΛG̃e.

Proof. The statement has been proved in the case where e and f are primitive
central idempotents in [Rou98, Lemma 2.8]. However, the assumption in the
proof of [Rou98, Lemma 2.8] that e and f are primitive is not necessary.

Remark 1.25. As said in [Rou02, Remark 5.4] if we drop the assumption

that [L̃ : L] is coprime to ` in Theorem 1.24 it is still true that IndG̃×L̃
opp

D (C ′)
induces a derived equivalence between ΛL̃f and ΛG̃e.

In the following remark we observe some Clifford-theoretic consequences
of Theorem 1.24.

Remark 1.26.

a) Suppose that we are in the situation of Theorem 1.24. Let ϕ : Hob(ΛLf)→
Hob(ΛGe) and ϕ̃ : Hob(ΛL̃f) → Hob(ΛG̃e) be the functors induced by
tensoring with C resp. C̃.

Let N be a complex of ΛL̃f -modules. Then by Mackey’s formula

ResG̃×L̃
opp

G×L̃opp(C̃) ∼= IndG×L̃
opp

G×Lopp(C). In particular, we have

ResG̃G(C̃⊗
ΛL̃
N) ∼= IndG×L̃

opp

G×Lopp(C)⊗
ΛL̃
N ∼= (C⊗ΛLΛL̃)⊗

ΛL̃
N ∼= C⊗ΛLResL̃L(N).

In other words, ResG̃G ◦ ϕ̃ ∼= ϕ ◦ ResL̃L. A similar calculation (or using

the fact that Ind and Res are adjoint functors) shows that IndG̃G ◦ ϕ ∼=
ϕ̃ ◦ IndL̃L.

b) Let M be an OGe-OLf bimodule inducing a Morita equivalence be-
tween OGe and OLf . Suppose that M extends to an OD-module M ′

and denote M̃ := IndG̃×L̃
opp

∆ (M ′).

For R ∈ {K, k} the bimodule M ⊗O R (respectively M̃ ⊗O R) induces
a bijection ϕ : Irr(RLf) → Irr(RGe) (respectively ϕ̃ : Irr(RL̃f) →
Irr(RG̃e)) between irreducible modules. Now suppose that N is a sim-
ple RL̃f -module. By Clifford’s theorem, see [NT89, Theorem 3.3.1],
there exists a simple RL-module S and an integer m such that

ResL̃L(N) ∼= (
⊕
l̃

l̃S)m,
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where l̃ ∈ L̃ runs over a set of representatives of the non-isomorphic
L̃-conjugates l̃S. Since M ⊗RL l̃S ∼= l̃M l̃ ⊗RL l̃S ∼= l̃(M ⊗ΛL S) we
deduce by part (a) that

ResG̃G(ϕ̃(N)) = ϕ(ResL̃L(N)) ∼= (
⊕
l̃

ϕ(l̃S))m ∼= (
⊕
g̃

g̃ϕ(S))m,

where g̃ ∈ G̃ runs over a set of representatives of the non-isomorphic
G̃-conjugates g̃ϕ(S). In particular, we see that the simple RL-module S
extends to an RL̃-module if and only if ϕ(S) extends to an RG̃-module.

1.10 Descent of Rickard equivalences

We keep the assumptions of the previous section. Theorem 1.24 shows that
under certain conditions Rickard equivalences can be lifted from normal sub-
groups. It is therefore natural to ask whether one can also go the other way.
For Rickard equivalences we obtain the following converse to Theorem 1.24
which is tailored to our later applications.

Lemma 1.27. Suppose that G̃ = L̃G. Let C be a bounded complex of bipro-
jective ΛGe-ΛLf -bimodules with cohomology concentrated in degree d such
that Hd(C) induces a Morita equivalence between ΛGe and ΛLf . Assume

that C extends to a complex of ΛD-modules C ′ such that C̃ := IndG̃×L̃
opp

D (C ′)
induces a Rickard equivalence between ΛL̃f and ΛG̃e. Then also the complex
C induces a Rickard equivalence between ΛGe and ΛLf .

Proof. By the Mackey formula we have

ResG̃×L̃
opp

G×L̃opp(C̃) ∼= C ⊗ΛL ΛL̃ and ResG̃×L̃
opp

G̃×Lopp(C̃) ∼= ΛG̃⊗ΛG C.

Since C̃ induces a Rickard equivalence between ΛL̃f and ΛG̃e we therefore
conclude that

ResG̃×G̃
opp

G×G̃opp(ΛG̃e) ∼= C ⊗ΛL ΛL̃⊗ΛL̃ C̃
∨ ∼= C ⊗ΛL C

∨ ⊗ΛG ΛG̃.

Since Hd(C) induces a Morita equivalence between ΛGe and ΛLf it follows
by the remarks before [Rou98, Lemma 10.2.4] we have an isomorphism

C ⊗ΛL C
∨ ∼= ΛGe⊕R

in Compb(Λ[G × Gopp]), where R is a complex of ΛGe-ΛGe-bimodules such
that H•(R) ∼= 0 (but not necessarily homotopy equivalent to 0). From this
we deduce that

ResG̃×G̃
opp

G×G̃opp(ΛG̃e) ∼= C ⊗ΛL C
∨ ⊗ΛG ΛG̃ ∼= ResG̃×G̃

opp

G×G̃opp(ΛG̃e)⊕ (R⊗ΛG ΛG̃)
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in Hob(Λ[G× G̃opp]). We conclude that

IndG×G̃
opp

G×Gopp(R) ∼= R⊗ΛG ΛG̃ ∼= 0

in Hob(Λ[G×G̃opp]). SinceR is a direct summand of ResG×G̃
opp

G×Gopp(IndG×G̃
opp

G×Gopp(R))

as a complex we thus have R ∼= 0 in Hob(Λ[G × Gopp]). This shows that
C ⊗ΛL C

∨ ∼= ΛGe in Hob(Λ[G×Gopp]) and similarly one proves C∨⊗ΛG C ∼=
ΛLf in Hob(Λ[L × Lopp]). Consequently, the complex C induces a Rickard
equivalence between ΛGe and ΛLf .

It would be interesting to know whether the hypothesis that C has coho-
mology concentrated in degree d such that Hd(C) induces a Morita equiva-
lence between ΛGe and ΛLf could be weakened or even completely removed.
For Morita equivalences the following lemma shows that the situation is much
easier:

Lemma 1.28. Suppose that L̃G = G̃. Let M be a biprojective ΛGe-ΛLf -
bimodule and suppose that M extends to a ΛD-module M ′ such that M̃ :=

IndG̃×L̃
opp

D (M ′) induces a Morita equivalence between ΛL̃f and ΛG̃e. Then
M induces a Morita equivalence between ΛGe and ΛLf .

Proof. Since M̃ induces a Morita equivalence between ΛL̃f and ΛG̃e it fol-
lows that the natural map ΛG̃e→ End(ΛL̃)opp(M̃)opp is an isomorphism. This
shows that the natural map

ΛG̃e→ End(ΛL)opp(ResG̃×L̃
opp

G̃×Lopp(M̃))opp ∼= End(ΛL)opp(ΛG̃⊗ΛGM)opp

is injective. From this it follows that the natural map ΛGe→ End(ΛL)opp(M)opp

is injective as well. Since ΛGe is projective as right ΛG-module it follows that
the map ΛGe → End(ΛL)opp(M)opp is a split injection of right ΛG-modules.
Consequently, there exists a right ΛG-module R such that

End(ΛL)opp(M)opp ∼= M ⊗ΛLM
∨ ∼= ΛGe⊕R

as right ΛG-modules. We now want to show that R ∼= 0. According to the
proof of Lemma 1.27 we have

ResG̃×G̃
opp

G×G̃opp(ΛG̃e) ∼= M ⊗ΛLM
∨ ⊗ΛG ΛG̃.

It follows that
ΛG̃e ∼= ΛG̃e⊕ (R⊗ΛG ΛG̃e)

as right ΛG̃-modules. We conclude that R ⊗ΛG ΛG̃ ∼= 0 which implies that
R ∼= 0. Hence, the natural map ΛGe→ End(ΛL)opp(M)opp is an isomorphism.
Similarly, one shows that ΛLf → EndΛG(M) is an isomorphism.
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1.11 Morita equivalences and Clifford theory

of characters

Let G be a finite group and e ∈ Z(OG) be a central idempotent. Denote
by Irr(G) the set of isomorphism classes of irreducible KG-modules and by
Irr(G, e) the subset of isomorphism classes of irreducible KGe-modules.

We recall the following theorem due to Broué.

Theorem 1.29 (Broué). Let G and H be finite groups and e ∈ Z(OG) and
f ∈ Z(OH) be central idempotents. Let M be an OG-OH-bimodule which is
projective as both OG- and as OH-module. Assume that the functor

M ⊗KH − : KH-mod→ KG-mod

induces a bijection between Irr(H, f) and Irr(G, e) then the OGe-OHf -bimodule
Mf induces a Morita equivalence between OHf and OGe.

Proof. See [CE04, Theorem 9.18].

Theorem 1.29 is in particular useful if one has already constructed a
bimodule as candidate for a Morita equivalence. However, the hard part is
usually to find such a bimodule.

We now give an application of this theorem. Let N be a normal subgroup
of a finite group G. Let f be a central idempotent of ON . Let H be the
stabilizer of f in G. Then f is a central idempotent of OH. We suppose that

f(xf) = 0 for any x ∈ G \H. This ensures that F := TrGH(f) =
∑

g∈G/H

gf is

an idempotent of G. By definition it is clearly central in OG.
Consider the induction functor

IndGH : OHf -mod→ OGF -mod, X 7→ OGf ⊗OH X

and the restriction functor

fResGH : OGF -mod→ OHf -mod, Y 7→ fOG⊗OG Y.

Lemma 1.30. The OGF -OHf -bimodule OGf induces a Morita equivalence
between OGF -mod and OHf -mod.

Proof. The classical Clifford correspondence shows that IndGH : Irr(H) →
Irr(G) restricts to a bijection between Irr(H, f) and Irr(G,F ). Its inverse
is given by fResGH : Irr(G,F ) → Irr(H, f). The statement follows therefore
from Theorem 1.29.
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The following lemma turns out to be quite useful.

Lemma 1.31. Let M be a ΛG-module and M ′ be a ΛN-module. We have

a) IndGH(fResGH(M)) ∼= TrGH(f)M and

b) IndHN(fM ′) ∼= f IndHN(M ′).

Proof. We have

ResGH(TrGH(f)M) ∼=
⊕
x∈G/H

x(fResGH(M)),

as fxf = 0 for every x ∈ G \ H. This implies that IndGH(fResGH(M)) ∼=
TrGH(f)M . Part (b) follows from the definition of induction.

We will frequently use the following classical extension result.

Lemma 1.32. Let M be a G-invariant ΛN-lattice and G/N be cyclic of
`′-order. Then M extends to a ΛG-module.

Proof. See [Rou98, Lemma 10.2.13].

1.12 Rickard equivalences for the normalizer

We continue our discussion on Marcus’ theorem. Let L̃ be a subgroup of a
finite group G̃. Moreover, let G be a normal subgroup of G̃ and set L :=
L̃∩G. Let e ∈ Z(ΛG) and f ∈ Z(ΛL) be central idempotents and denote by
L′ := NL̃(f) and G′ := NG̃(e) their respective stabilizers. In this section we
suppose that G′ = GL′. We denote

D′ := (G× Lopp)∆(L′) and D := (G× Lopp)∆(L̃).

In what follows, we assume that f(lf) = 0 for any l ∈ L̃ \ L′ and e(ge) = 0

for any g ∈ G̃\G′. This ensures that F := TrL̃NL̃(f)(f) is a central idempotent

of ΛL̃ and E := TrG̃NG̃(e)(e) is a central idempotent of ΛG̃.
We remark a useful consequence of Lemma 1.30.

Lemma 1.33. Let C be a bounded complex of ΛGe-ΛLf -bimodules inducing
a Rickard equivalence between ΛGe and ΛLf . Suppose that C is either con-
centrated in one degree or that ` - [L̃ : L]. If C extends to a complex C ′ of

ΛD′-modules then the complex IndG̃×L̃
opp

D′ (C ′) induces a Rickard equivalence
between ΛL̃F and ΛG̃E.
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Proof. By Theorem 1.24 the Λ-algebras ΛL′f and ΛG′e are Rickard equiva-

lent via the complex Ind
G′×(L′)opp

D′ (C ′). By Lemma 1.30 ΛL′f is Morita equiv-
alent to ΛL̃F . The same argument shows that ΛG′e and ΛG̃E are Morita
equivalent. Thus, the algebras ΛL̃F and ΛG̃E are Rickard equivalent and
the Rickard equivalence is given by the complex

ΛG̃e⊗ΛG′ Ind
G′×(L′)opp

D′ (C ′)⊗ΛL′ fΛL̃ ∼= Ind
G̃×(L̃)opp

D′ (C ′).

Remark 1.34. Suppose that we are in the situation of Lemma 1.33 and
let ϕ : Hob(ΛLf) → Hob(ΛGe) and ϕ̃ : Hob(ΛL̃F ) → Hob(ΛG̃E) be the

functors obtained by tensoring with C and IndG̃×L̃
opp

D′ (C ′) respectively. By
Remark 1.26 and the construction in the proof of Lemma 1.33 it follows that

eResG̃G ◦ ϕ̃ ∼= ϕ ◦ f ResL̃L. Moreover, we have IndG̃G ◦ ϕ ∼= ϕ̃ ◦ IndL̃L.

In most applications we can give a more explicit description of the bi-
module inducing the Rickard equivalence in Lemma 1.33.

Lemma 1.35. Let C be a bounded complex of ΛG-ΛL-bimodules and assume
that eCf induces a Rickard equivalence between ΛGe and ΛLf . In addition,
suppose that leCf ∼= 0 in Hob(Λ[G × Lopp]) for all l ∈ L̃ \ L′. Suppose that
C is either concentrated in one degree or that ` - [L′ : L]. If C extends to a
complex of ΛD-modules C ′ then ΛL̃F and ΛG̃E are Rickard equivalent via
the complex

E IndG̃×L̃
opp

D (C ′)F.

Proof. The complex eResDD′(C
′)f is clearly a ΛD′-complex extending eCf .

By Lemma 1.33, it follows that the complex IndG̃×L̃
opp

D′ (eResDD′(C
′)f) induces

a Rickard equivalence between ΛL̃F and ΛG̃E.
Recall that D′ is by definition the stabilizer in G̃× L̃opp of the idempotent

e⊗ f . Since L̃/L′ ∼= D/D′, we have

TrDD′(e⊗ f) =
∑
l∈L̃/L′

(l,l−1)(e⊗ f).

By assumption we have leCf ∼= 0 for all l ∈ L̃ \L′. From this it follows that

TrDD′(e⊗ f)C ∼= TrG̃NG̃(e)(e)CTrL̃NL̃(f)(f) = ECF.

By Lemma 1.31(a) we have IndDD′(eResDD′C
′f) ∼= EC ′F . As E⊗F is a central

idempotent of Λ[G̃×L̃opp] it follows that IndG̃×L̃
opp

D (EC ′F ) ∼= EIndG̃×L̃
opp

D (C ′)F
by Lemma 1.31(b).
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Suppose that we are in the situation of the previous lemma. Note that in
most applications we have Cf ∼= eCf . In this case the assumption leCf ∼= 0
for all l ∈ L̃\L′ can be dropped since it follows from the fact that the complex
C is D-stable.

We can use this lifting result to prove the following proposition.

Proposition 1.36. Let C be a bounded complex of `-permutation modules
inducing a splendid Rickard equivalence between the blocks ΛGb and ΛLc. Let
(Q, cQ) be a c-Brauer pair corresponding to the b-Brauer pair (Q, bQ) under
the splendid Rickard equivalence given by the complex C as in Proposition
1.16. Then the complex

Ind
NG(Q)×NL(Q)opp

NG×Lopp (∆Q) (Br∆Q(C)) Tr
NL(Q)
NL(Q,cQ)(cQ)

induces a derived equivalence between the blocks kNG(Q) Tr
NG(Q)
NG(Q,bQ)(bQ) and

kNL(Q) Tr
NL(Q)
NL(Q,cQ)(cQ).

Proof. Recall that Br∆Q(C) is a complex of kNG×Lopp(Q)-modules such that
bQ Br∆Q(C)cQ ∼= Br∆Q(C)cQ induces a Rickard equivalence between kCG(Q)bQ
and kCL(Q)cQ, see Proposition 1.16. Moreover, the groups NG(Q, bQ)/CG(Q)
and NL(L, cQ)/CL(Q) are isomorphic by Corollary 1.18.

Thus, using the proof of Lemma 1.35 together with Remark 1.25, we
conclude that the complex

Ind
NG(Q)×NL(Q)opp

NG×Lopp (∆Q) (Br∆Q(C)) Tr
NL(Q)
NL(Q,cQ)(cQ)

induces a derived equivalence between the blocks kNG(Q) Tr
NG(Q)
NG(Q,bQ)(bQ) and

kNL(Q) Tr
NL(Q)
NL(Q,cQ)(cQ).

Remark 1.37. If the defect group D of b is abelian, then by Theorem 1.5 the
group NG(D, bD)/CG(D) is of `′-order. In this case, the proof of Proposition

1.36 shows that the complex Ind
NG(D)×NL(D)opp

NG×Lopp (∆D) Br∆D(C) induces in fact a

Rickard equivalence between kNG(D) brD(b) and kNL(D) brD(c) and not only
a derived equivalence.

1.13 The Brauer functor and Clifford theory

In this section we recall some results of [Mar96, Section 3] and generalize
them slightly. These results will be needed in Section 1.15.

Whenever G is a finite group and Q, R are subgroups of G, then we let

TG(Q,R) := {g ∈ G | Qg ⊆ R}.
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In addition, we denote by 1G the trivial kG-module. We recall the following
lemma:

Lemma 1.38. Let R be a subgroup of G and Q an `-subgroup of G. Then

BrGQ(IndGR(1R)) ∼=
⊕
g∈T

Ind
NG(Q)
NgR(Q)(1NgR(Q)),

where T is a complete set of representatives of the double cosets of NG(Q)\TG(Q,R)/R.

Proof. See [Bro85, (1.4)].

The following lemma is a variant of [Mar96, Lemma 3.7]. We will also
use this opportunity to provide some further details which help to clarify the
proof.

Lemma 1.39. Let H be a subgroup of G and Q ⊆ P two `-subgroups of
H. Suppose that CG(Q)TH(Q,P ) = TG(Q,P ). Then for every relatively
P -projective module M ∈ kH-perm there is a natural isomorphism

Ind
NG(Q)
NH(Q)(BrHQ (M)) ∼= BrGQ(IndGH(M)).

of kNG(Q)-modules.

Proof. Recall from Section 1.3 that for a kH-module M we have

BrHQ (M) = MQ/
∑
P<Q

TrQP (MP ).

Observe that we have a natural homomorphism

Ind
NG(Q)
NH(Q)(M

Q)→ (IndGH(M))Q, n⊗m 7→ n⊗m

of kNG(Q)-modules.

We show that Ind
NG(Q)
NH(Q)(

∑
R<Q TrQR(MR)) maps to

∑
R<Q TrQR((IndGH(M))R)

under this natural map. As a kNG(Q)-module Ind
NG(Q)
NH(Q)(

∑
R<Q TrQR(MR)) is

generated by the set 1⊗
∑

R<Q TrQR(MR). This set clearly maps to
∑

R<Q TrQR(1⊗
MR), which is contained in

∑
R<Q TrQR((IndGH(M))R). Thus, it follows that

Ind
NG(Q)
NH(Q)(

∑
R<Q TrQR(MR)) maps to

∑
R<Q TrQR((IndGH(M))R). Hence, we ob-

tain a natural map

Ind
NG(Q)
NH(Q)(BrHQ (M))→ BrGQ(IndGH(M)).

Since M is a relatively P -projective `-permutation module it is a direct sum-
mand of modules of the form IndHR (1R), where R is an `-subgroup of P . Thus,
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in order to show the statement in general we may assume thatM = IndHR (1R),
a permutation module with vertex R. In particular, BrQ(M) ∼= 0 and
BrQ(IndGH(M)) ∼= 0 if Q is not conjugate to a subgroup of R. Hence, we
may additionally assume that R contains Q.

By Lemma 1.38 there is an isomorphism

BrGQ(IndGR(1R)) ∼=
⊕
g∈T

Ind
NG(Q)
NgR(Q)(1NgR(Q)),

where T is a complete set of representatives of NG(Q)\TG(Q,R)/R. On the
other hand, Lemma 1.38 also yields an isomorphism

Ind
NG(Q)
NH(Q)(BrHQ (IndHR (1R))) ∼=

⊕
g∈T ′

Ind
NG(Q)
NgR(Q)(1NgR(Q),

where T ′ is a complete set of representatives of NH(Q)\TH(Q,R)/R. To
prove the lemma, it is hence sufficient to prove that T ′ is also a complete
set of representatives of the double cosets of NG(Q)\TG(Q,R)/R. Firstly, if
x1, x2 ∈ TH(Q,R) with NG(Q)x1R = NG(Q)x2R then x1 = nx2q for some
n ∈ NG(Q) and q ∈ R. Since R is contained in H it follows that n ∈ NH(Q)
and so NH(Q)x1R = NH(Q)x2R. Since Q ⊆ R ⊆ P we obtain

CG(Q)TH(Q,R) = TG(Q,R)

by using our assumption. Hence, for x ∈ TG(Q,R) there exists some h ∈
TH(Q,R) and n ∈ CG(Q) such that x = nh which implies that NG(Q)xR =
NG(Q)hR.

The following remark is a variant of [Mar96, Corollary 3.9].

Remark 1.40. As in Section 1.9 we let L̃ be a subgroup of a finite group
G̃ and G be a normal subgroup of G̃. We set L := G ∩ L̃ and we assume
additionally that G̃ = L̃G. Let Q be an `-subgroup of L̃. In the following
diagram, Ind and Res mean induction and restriction with respect to the
subgroups of G̃× L̃opp involved.

k[G̃× L̃opp]-perm k[NG̃×L̃opp(∆Q)]-perm k[NG̃(Q)× NL̃(Q)opp]-perm

k[G× Lopp∆(L̃)]-perm k[NG×Lopp∆(L̃)(∆Q)]-perm k[NG(Q)× NL(Q)opp∆(NL̃(Q))]-perm

k[G× Lopp]-perm k[NG×Lopp(∆Q)]-perm k[NG(Q)× NL(Q)opp]-perm

Br∆(Q) Ind

Br∆(Q) Ind

Ind Ind Ind

Br∆(Q) Ind

Res Res Res
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We claim that the upper left square commutes for all relatively ∆L̃-
projective `-permutation k[G× Lopp∆(L̃)]-modules. In view of Lemma 1.39
it is sufficient to show that

CG̃×L̃opp(∆Q)TG×Lopp∆L̃(∆Q,∆R) = TG̃×L̃opp(∆Q,∆R)

for all `-subgroups R of L̃ containing Q. This is proved as in [Mar96,
Corollary 3.9]: Let (x, l) ∈ TG̃×L̃opp(∆Q,∆R). Then (x,l)∆Q ⊆ ∆R which
implies that xl ∈ CG̃(Q). On the other hand, lQ = Q which implies
that (l−1, l) ∈ TG×Lopp∆L̃(∆Q,∆R). Therefore, (x, l) = (xl, 1)(l−1, l) ∈
TG×Lopp∆L̃(∆Q,∆R). This shows the equality.

The upper right and the bottom left square are clearly commutative.
Moreover, the commutativity of the bottom right square is a consequence of
Mackey’s formula.

1.14 The Harris–Knörr correspondence

In this section we recall the notion of block induction. This will allow us to
give a nice formulation of the important Harris–Knörr correspondence.

Let G be a normal subgroup of a finite group G̃ and b ∈ Z(ΛG) a block
of G. Then we say that the block idempotent c ∈ Z(ΛG̃) covers the block b
if cb 6= 0. We write Bl(G̃ | b) for the set of blocks of G̃ covering b.

We recall the definition of block induction, see [Nav98, Theorem 4.14].

Definition 1.41. Suppose that H is a subgroup of G and b is a block idem-
potent of G. Furthermore, assume that there exists an `-subgroup P of G
such that PCG(P ) ⊆ H ⊆ NG(P ). Then we say that the block idempotent
c ∈ Z(OH) induces to b if brP (b)c 6= 0. In this case we write b = cG.

Note that the definition of block induction in [Nav98, page 87] is more
general. However, we will not need this general definition and have therefore
decided to use the characterisation of block induction in [Nav98, Theorem
4.14] as a definition.

Recall that for a subgroup Q of the defect group D of b we denote BQ :=

Tr
NG(Q)
NG(Q,bQ)(bQ), which is by Remark 1.6 a block idempotent of NG(Q).

Theorem 1.42 (Harris-Knörr). Let G be a normal subgroup of a finite group
G̃. Let b be a block of G with defect group D and denote by BD its Brauer
correspondent in kNG(D). Then the map

Bl(NG̃(D) | BD)→ Bl(G̃ | b), c 7→ cG̃
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is a bijection.

Proof. See [Nav98, Theorem 9.28].

If Q is a characteristic subgroup of the defect group D of b we have
NG(D) ⊆ NG(Q). Brauer’s first main theorem (see Remark 1.6) therefore
yields a bijection

brD : Bl(NG(Q) | D)→ Bl(NG(D) | D).

After having established this notation we can now state the following lemma:

Lemma 1.43. Let Q be a characteristic subgroup of D. Then BQ ∈ Bl(NG(Q))
is the Brauer correspondent of BD ∈ Bl(NG(D)).

Proof. By [Thé95, Theorem 40.4(b)] we have brD(bQ) = bD. Since D ⊆
NG(Q) we can write BQ ∈ Z(kCG(Q)) as a sum BQ =

∑s
i=1 ci of block

idempotents of kCG(Q). Note that each ci is a sum of idempotents which
constitute a D-orbit on {tbQ | t ∈ NG(Q)}.

Assume first that ci comes from a D-orbit of length greater than 1. Let
t ∈ NG(Q) with tbQci 6= 0. Then the block ci covers tbQ and it follows that
any defect group of ci is contained in NG(Q, tbQ). Since tbQ is not D-stable
it follows that D is not contained in NG(Q, tbQ). Thus D is not contained in
a defect group of ci. This implies that brD(ci) = 0.

On the other hand, if ci = tbQ for some t ∈ NG(Q) it follows that tbQ
is D-stable. Assume that brD(tbQ) 6= 0. Then we have t(Q, bQ) E (D, b′D)
for some maximal b-subpair (D, b′D). Since also t(Q, bQ)E t(D, bD) it follows
by [Thé95, Proposition 40.15(b)] that there exists some x ∈ NG(Q, bQ) such
that tx ∈ NG(D). From this we conclude that

brD(tbQ) = brD(txbQ) = tx brD(bQ) = txbD.

These calculations show that brD(BQ)BD = BD. On the other hand BQ is
an idempotent occurring in brQ(b) and we have brD(brQ(b)) = BD. Writing
brQ(b) = BQ + C we obtain BD = brD(BQ) + brD(C) a sum of orthogonal
idempotents. Now observe that BD is a primitive central idempotent of
NG(D) and brD(BQ)BD = BD. Therefore, BD = brD(BQ).

We obtain a version of the Harris–Knörr theorem for characteristic sub-
groups of defect groups.

Corollary 1.44. With the notation of Theorem 1.42 assume that Q is a
characteristic subgroup of D. Let (Q, bQ) be a b-Brauer pair with (Q, bQ) ≤
(D, bD). Then block induction yields a bijection

Bl(NG̃(Q) | BQ)→ Bl(G̃ | b), c 7→ cG̃.
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Proof. Brauer correspondence gives a bijection brD : Bl(G | D)→ Bl(NG(D) |
D) with brD(b) = BD. Moreover, by Lemma 1.43 the map brD : Bl(NG(Q) |
D)→ Bl(NG(D) | D) is a bijection with brD(BQ) = BD.

By Theorem 1.42 we hence obtain bijections Bl(NG̃(D) | BD)→ Bl(G̃ | b)
and Bl(NG̃(D) | BD)→ Bl(NG̃(Q) | BQ) both given by block induction. This
yields a bijection

Bl(NG̃(Q) | BQ)→ Bl(G̃ | b).

Moreover, if c ∈ Bl(NG̃(D) | BD) then cNG̃(Q) and cG̃ are both defined.

By [Nav98, Problem 4.2] it follows that cG̃ = (cNG̃(Q))G̃. Hence, the bijection
Bl(NG̃(Q) | BQ)→ Bl(G̃ | b) is given by block induction.

1.15 Splendid Rickard equivalences and Clif-

ford theory

In Proposition 1.36 we have shown that a splendid Rickard equivalence in-
duces a derived equivalence on the level of normalizers. Therefore, a natural
question to ask is whether the so-obtained equivalences behave nicely with
respect to the Clifford theory of Rickard equivalences and with the Brauer
category of the involved blocks. These questions will be addressed in this
section.

We first make the following useful observation.

Lemma 1.45. Let G be a normal subgroup of a finite group G̃. Let b be a
G̃-stable block of G with defect group D and Q a characteristic subgroup of D.
Then BQ is an NG̃(Q)-stable block of NG(Q) and we have NG̃(Q)/NG(Q) ∼=
G̃/G.

Proof. Recall that all defect groups of b are G-conjugate. Since b is a G̃-stable
block of G we thus obtain G̃ = GNG̃(D). Moreover, Q is a characteristic
subgroup of D and so NG̃(D) ⊆ NG̃(Q). From this we conclude that G̃/G ∼=
NG̃(Q)/NG(Q). It remains to show that BQ is NG̃(Q)-stable. If g ∈ NG̃(Q)
then g(D, bD) is a second maximal b-Brauer pair, so there exists some x ∈ G
with gx(D, bD) = (D, bD). In particular, gx ∈ NG̃(D) ⊆ NG̃(Q) and thus x ∈
NG(Q). Moreover, (Q, bQ) ≤ (D, bD) and (Q, gxbQ) = gx(Q, bQ) ≤ (D, bD)
are two b-Brauer pairs with first entry Q. Therefore, gx ∈ NG̃(Q, bQ) and so
gBQ = gxBQ = BQ.

In the following, L̃ denotes a subgroup of a finite group G̃ and G a normal
subgroup of G̃. We set L := G ∩ L̃ and assume that G̃ = L̃G. As before we
set D := (G×Lopp)∆(L̃). Furthermore, let c ∈ Z(kL) be a L̃-stable block of
L and b ∈ Z(kG).
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Lemma 1.46. Let C be a bounded complex of kGb-kLc-bimodules inducing
a splendid Rickard equivalence between the blocks kGb and kLc. Assume that

C extends to a complex C ′ of kD-modules and denote C̃ := IndG̃×L̃
opp

D (C ′).
Let D be a defect group of kLc and Q a characteristic subgroup of D. Let
(Q, cQ) be a c-Brauer pair corresponding to the b-Brauer pair (Q, bQ) as in
Proposition 1.16. Set

C̃ := Ind
NG̃(Q)×NL̃(Q)opp

NG̃×L̃opp (∆Q) (Br∆Q(C̃))CQ and C := Ind
NG(Q)×NL(Q)opp

NG×Lopp (∆Q) (Br∆Q(C))CQ.

Then the following diagram is commutative:

Db(kNL̃(Q)CQ) Db(kNG̃(Q)BQ)

Db(kNL(Q)CQ) Db(kNG(Q)BQ)

Res
NG̃(Q)

NG(Q)

C̃ ⊗LkNL̃(Q) −

C ⊗LkNL(Q) −

Res
NL̃(Q)

NL(Q)

where the horizontal maps induce equivalences of the derived categories.

Proof. By the commutativity of the first two rows of the commutative dia-
gram in Remark 1.40 we have a natural isomorphism

C̃ ∼= Ind
NG̃(Q)×NL̃(Q)opp

NG(Q)×NL(Q)opp∆NL̃(Q)(C
′),

where C ′ := Ind
NG(Q)×NL(Q)opp∆NL̃(Q)

NG×Lopp∆L̃(∆Q) (Br∆Q(C ′))CQ. Now by the commutativ-

ity of the second and the third row of the commutative diagram in Remark
1.40 we deduce that

Res
NG(Q)×NL(Q)opp∆NL̃(Q)

NG(Q)×NL(Q)opp (C ′) ∼= C.

By Proposition 1.36 the complex C induces a derived equivalence between
the blocks kNG(Q)BQ and kNL(Q)CQ. By Lemma 1.45, the block BQ is
NG̃(Q)-stable and CQ is NL̃(Q)-stable. Moreover, we have

NG̃(Q)/NG(Q) ∼= NL̃(Q)/NL(Q).

It follows from Remark 1.25 that the complex C̃ ∼= Ind
NG̃(Q)×NL̃(Q)opp

NG(Q)×NL(Q)opp∆NL̃(Q)(C ′)
induces a derived equivalence between kNL̃(Q)CQ and kNG̃(Q)BQ. The com-
mutativity of the diagram is now a consequence of Remark 1.26(a).
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In Corollary 1.44 we have established a Harris–Knörr correspondence for
characteristic subgroups of the defect group of a block. It is therefore natu-
ral to ask whether the construction in Lemma 1.46 is compatible with this
correspondence.

Remark 1.47. Assume that we are in the situation of Lemma 1.46. Let
c = c1 + · · · + cr be a decomposition of c into block idempotents of kL̃. We
let b = b1 + · · · + br be the decomposition of b into block idempotents of
kG̃ such that biC̃ci 6= 0 in Hob(k[G̃ × L̃opp]), see Lemma 1.9. We have a

decomposition brG̃Q(b) = brG̃Q(b1) + · · ·+ brG̃Q(br) into orthogonal idempotents.
Denote by BQ,i := brQ(bi)BQ the Harris–Knörr correspondent of bi, see

Corollary 1.44. We deduce that

BQ = BQ,1 + · · ·+BQ,r

is a decomposition into block idempotents of kNG̃(Q). Similarly, we have a
decomposition

CQ = CQ,1 + · · ·+ CQ,r

into block idempotents of kNL̃(Q), where CQ,i := brQ(ci)CQ. We have
Br∆Q(C̃) ∼=

⊕r
i=1 brQ(bi) Br∆Q(C̃) brQ(ci) and therefore we obtain

C̃ = Ind
NG̃(Q)×NL̃(Q)opp

NG̃×L̃opp (∆Q) (Br∆Q(C̃)CQ) ∼=
r⊕
i=1

C̃CQ,i.

From this we conclude that the complex C̃CQ,i induces a derived equivalence
between the blocks kNG̃(Q)BQ,i and kNL̃(Q)CQ,i. Thus, the local equiva-
lences for the normalizer are compatible with the Harris–Knörr correspon-
dence.
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Chapter 2

Deligne–Lusztig theory and
disconnected reductive groups

In this chapter we recall the necessary background in the representation
theory of finite groups of Lie type. We will in particular discuss extensions
of this theory to disconnected reductive groups. Then we will recall the
Morita equivalence constructed by Bonnafé, Dat and Rouquier which can be
seen as a starting point of this work.

2.1 Disconnected reductive algebraic groups

We assume that the reader is familiar with the notion of Levi subgroups
and parabolic subgroups of connected reductive algebraic groups, see for
instance [MT11, Chapter 12]. In this section, we will discuss a generalization
of these notions to not necessarily connected reductive groups.

Fix a prime number p and an algebraic closure Fp of Fp. Let G denote
a (not necessarily connected) reductive algebraic group defined over Fp. We
denote by G◦ the connected component of G containing the identity.

In the following, we recall some standard facts, which can for instance
be found in [BDR17a, Section 2.D.] and [BDR17a, Section 3.A.]. A closed
subgroup P of G is called parabolic subgroup if the variety G/P is complete.
One can show that a closed subgroup P of G is a parabolic subgroup of G if
and only if P◦ is a parabolic subgroup of G◦. Moreover, we have P∩G◦ = P◦

and the unipotent radicals of P and P◦ coincide.

Suppose that P is a parabolic subgroup of G. Let L◦ be a Levi subgroup
of G◦ so that P◦ = L◦nU is a Levi decomposition of the parabolic subgroup
P◦ in G◦. Then we call L = NP(L◦) a Levi subgroup of P in G. In addition,
we have a decomposition P = LnU and L◦ is the connected component of
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L, i.e. L◦ = L◦.

Example 2.1. Let G be a reductive algebraic group. Let P◦ = L◦ nU be
a parabolic subgroup with Levi decomposition in G◦. Then P = NG(P◦) is
a parabolic subgroup of G with Levi subgroup L = NG(L◦,P◦) = NP(L◦)
such that P◦ = P◦.

As we show in the next example, disconnected reductive groups arise
naturally in the study of automorphisms of reductive groups.

Example 2.2. Let G◦ be a connected reductive group and τ : G◦ → G◦ an
algebraic automorphism of G◦ of finite order. Then the semidirect product
G := G◦o 〈τ〉 is again a reductive algebraic group but no longer connected.
This situation was for instance considered in [Mal93]. Let P◦ = L◦ nU be
a Levi decomposition of a parabolic subgroup P◦ of G◦. If both L◦ and P◦
are τ -stable, then P := P◦ o 〈τ〉 is a parabolic subgroup of G with Levi
subgroup L := L◦ o 〈τ〉, see Example 2.1.

Disconnected reductive groups also appear naturally as local subgroups
of (connected) reductive groups.

Example 2.3. Let G be a possibly disconnected reductive group, P a
parabolic subgroup of G with Levi decomposition P = L n U. In addi-
tion, we assume that Q is a finite solvable p′-subgroup of L. By [BDR17a,
Remark 3.5] it follows that the normalizer NG(Q) is a reductive group.
Moreover, NP(Q) is a parabolic subgroup of NG(Q) with Levi decomposi-
tion NP(Q) = NL(Q) n CU(Q). Similarly, CG(Q) is a reductive group with
parabolic subgroup CP(Q) and Levi decomposition CP(Q) = CL(Q)nCU(Q),
see [BDR17a, Proposition 3.4]. Note that NG(Q)/CG(Q) is finite since it
embeds under the natural map NG(Q)/CG(Q) ↪→ Aut(Q) into the automor-
phism group of the finite group Q. Therefore, N◦G(Q) = C◦G(Q) and we have
a Levi decomposition C◦P(Q) = C◦L(Q) n CU(Q) in the connected reductive
group C◦G(Q).

2.2 `-adic cohomology of Deligne–Lusztig va-

rieties

From now on ` denotes a prime number with p 6= ` and q is an integral power
of p. Furthermore, by variety we always mean a quasi-projective variety
defined over Fp.

Let X be a variety acted on by a finite groupG. We denote byRΓc(X,O) ∈
Db(OG) the `-adic cohomology with compact support of the variety X with
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coefficients in O, see [CE04, A.3.7] and [CE04, A.3.14]. For A ∈ {K,O, k}
we define

RΓc(X, A) := RΓc(X,O)⊗LO A ∈ Db(AG).

Moreover, we denote by Hd
c (X, A) ∈ AG-mod the dth cohomology module of

the complex RΓc(X, A). For basic facts about `-adic cohomology which will
be more than enough for this thesis we refer the reader to the expositions
in [CE04, Appendix 3]. More supplementary material can be found in the
appendix of [Car93] or [DM91, Chapter 10].

Let G be a reductive group with Frobenius endomorphism F : G → G
defining an Fq-structure on G. Let P be a parabolic subgroup of G, P = LU
be a Levi decomposition and assume that L is F -stable. Consider the GF -
LF -variety

YG
U := {gU ∈ G/U | g−1F (g) ∈ UF (U)} ⊆ G/U.

If the ambient group G is clear from the context we will just write YU instead
of YG

U . The cohomology of this variety provides us with a triangulated
functor

RG
L⊆P : Db(ΛLF )→ Db(ΛGF ), M 7→ RΓc(Y

G
U ,Λ)⊗LΛLF M.

This functor induces a map

RG
L⊆P := [RG

L ] : G0(ΛLF )→ G0(ΛGF ), [M ] 7→
∑
i

(−1)i[H i
c(Y

G
U ,Λ)⊗ΛLFM ],

on Grothendieck groups (see Section 1.1) the so-called Deligne–Lusztig in-
duction.

2.3 Properties of Deligne–Lusztig varieties

In this section we will study the following set-up: Let Ĝ be a reductive
group with Frobenius F : Ĝ → Ĝ. Moreover, assume that G is a closed
F -stable normal subgroup of Ĝ. Suppose that P = LU and P̂ = L̂U are
two Levi decomposition of parabolic subgroups P of G and P̂ of Ĝ such that
P̂ ∩G = P and L̂ ∩G = L. Assume that the Levi subgroup L̂ is F -stable.
Let us denote

D = {(x, y) ∈ ĜF × (L̂F )opp | xGF = y−1GF} = (GF × (LF )opp)∆(L̂F ).

Lemma 2.4. With the notation as above, the variety YG
U is a D-stable sub-

variety of Ĝ/U.
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Proof. Let (x, y) ∈ D and gU ∈ G/U. Since (x−1, y−1) ∈ D we have xy ∈
GF and xgx−1 ∈ G. Since L̂ normalizes U we conclude that

xgUy = xgyU = xgx−1xyU ∈ G/U.

Hence, the group action of D stabilizes the subvariety G/U of Ĝ/U.
Now suppose that gU ∈ YG

U . Let us define c = xgy. It follows that

c−1F (c) = y−1g−1F (g)y ∈ (UF (U))y = UF (U)

since y ∈ L̂ normalizes U. Consequently, the Deligne–Lusztig variety YG
U is

a D-stable subvariety of Ĝ/U.

We also consider the generalized Deligne–Lusztig varieties as introduced
in [BDR17a, Section 6A]. Let P1 and P2 be two parabolic subgroups of G
with common F -stable Levi complement L and unipotent radicals U1 and
U2 respectively. We define

YG
U1,U2

= {(g1U1, g2U2) ∈ G/U1×G/U2 | g−1
1 g2 ∈ U1U2; g−1

2 F (g1) ∈ U2F (U1)}

which is a variety acted on diagonally by ĜF ×(L̂F )opp. Similarily to Lemma
2.4 one proves the following.

Lemma 2.5. Let ĜF × (L̂F )opp act diagonally on Ĝ/U1 × Ĝ/U2. Then
YG

U1,U2
is a D-stable subvariety of Ĝ/U1 × Ĝ/U2.

Proof. Let (x, y) ∈ D and (g1U1, g2U2) ∈ YG
U1,U2

. As in the proof of Lemma
2.4 we see that

x(g1U1, g2U2)y = (xg1U1y, xg2U2y) = (xg1yU1, xg2yU2) ∈ G/U1 ×G/U2.

Moreover, we have

(xg1y)−1xg2y = y−1g−1
1 g2y ∈ (U1U2)y = U1U2,

since y ∈ L̂ normalizes U1 and U2. Similarly,

(xg2y)−1F (xg2y) = y−1g−1
2 F (g1)y ∈ (U2F (U1))y = U2F (U2).

This shows that the subvariety YG
U1,U2

is D-stable.

Notation 2.6. Let H be a finite group. If X is a right H-variety and Y a
left H-variety we denote by X×H Y the quotient of X×Y by the diagonal
right action of the group ∆(H) = {(h, h−1) | h ∈ H} given by

X×Y → X×Y, (x, y) 7→ (xh, h−1y).
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Now assume that X is aG-H-variety and Y anH-L-variety. Then X×HY
becomes a G-L-variety. To compute the cohomology of this new variety one
uses the following theorem:

Theorem 2.7 (Künneth formula). If the stabilizers of points of X×Y under
the diagonal action of H are of invertible order in Λ, then we have

RΓc(X,Λ)⊗LΛH RΓc(Y,Λ) ∼= RΓc(X×H Y,Λ)

in Db(Λ[G× Lopp]).

Proof. See [BR03, Section 3.3].

The following geometric lemma describes two closely related decomposi-
tions of the Deligne–Lusztig variety YĜ

U . The result is certainly well known,
but it does not appear in this exact form in the literature, see also [CE04, The-
orem 7.3].

Lemma 2.8. We have two decompositions.

a) YĜ
U =

∐
g∈ĜF /GF gYG

U = ĜF ×GF YG
U as (ĜF × (L̂F )opp)-varieties.

b) YĜ
U
∼= (ĜF × (L̂F )opp)×D YG

U as (ĜF × (L̂F )opp)-varieties.

Proof. Firstly, observe that
∐

g∈ĜF /GF gYG
U is indeed a disjoint union of

closed subvarieties of YĜ
U .

Now, let yU ∈ YĜ
U . Then y−1F (y) ∈ UF (U) ⊆ G◦. As G◦ is connected

the Lang map L : G◦ → G◦, g 7→ g−1F (g), is surjective. Consequently, there
exists some x ∈ G◦ such that x−1F (x) = y−1F (y) and therefore xy−1 ∈ ĜF .
In particular, we have yU ∈ xy−1YG

U . This proves part (a).
Let us now prove part (b). The map

ϕ : ĜF ×YG
U → (ĜF × (L̂F )opp)×YĜ

U , (x, gU) 7→ ((x, 1), gU),

is a morphism of varieties. For y ∈ GF the cosets of ϕ(xy, y−1gU) =
((xy, 1), y−1gU) and ϕ(x, gU) = ((x, 1), gU) are equal in the quotient va-

riety (ĜF × (L̂F )opp) ×D YĜ
U since (y−1, 1) ∈ D. Therefore, the map ϕ

factors through the diagonal action of GF and we obtain a (ĜF × (L̂
F

)opp)-
equivariant morphism

ϕ : ĜF ×GF YG
U → (ĜF × (L̂F )opp)×D YG

U .

We define a morphism of varieties

ψ : (ĜF × (L̂F )opp)×YĜ
U → ĜF ×YĜ

U ((x, y), gU) 7→ (xy, y−1gUy).
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For (h, l) ∈ D we have

ψ((xh, ly), h−1gl−1U) = (xhly, (ly)−1h−1gl−1lyU) = (x(hly), (hly)−1gyU).

Since hl ∈ GF we may write hly = yx0 for some x0 ∈ ĜF . Thus

ψ((xh, ly), h−1gl−1U) = (xyx0, x
−1
0 ygyU),

which shows that ψ factors through the diagonal action and we obtain a
morphism

ψ : (ĜF × (L̂F )opp)×D YG
U → ĜF ×GF YG

U .

We check that ψ and ϕ are inverse to each other. First note that clearly
ψ ◦ ϕ = id. On the other hand (ϕ ◦ ψ)(((x, y), gU)) = ((xy, 1), y−1gUy) =
(x, y), gU), where the last equality follows from (y−1, y) ∈ D.

Remark 2.9. Let D0 := ((G◦)F × ((L◦)F )opp)∆(LF ). Then the proof of
Lemma 2.8 shows that the map

(GF × (LF )opp)×D0 YG◦

U → YG
U , ((x, y), gU) 7→ xgUy,

is an isomorphism. Using this description of the isomorphism, it is clear that
this is an isomorphism of D-varieties.

Corollary 2.10. Under the assumption of Lemma 2.8 we have

RΓc(Y
Ĝ
U ,Λ) ∼= Λ[ĜF × (L̂F )opp]⊗LΛD RΓc(Y

G
U ,Λ)

in Db(Λ[ĜF × (L̂F )opp]).

Proof. By Lemma 2.8 we have

YĜ
U
∼= (ĜF × (L̂F )opp)×D YG

U

as (ĜF × (L̂F )opp)-varieties. The group D acts freely by right multiplication
on (ĜF × (L̂F )opp). Hence, it follows that D acts freely on (ĜF × (L̂F )opp)×
YG

U . Thus, Theorem 2.7 is applicable and we obtain

RΓc(Y
Ĝ
U ,Λ) ∼= Λ[ĜF × (L̂F )opp]⊗LΛD RΓc(Y

G
U ,Λ)

in Db(Λ[ĜF × (L̂F )opp]).
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2.4 Godement resolutions

Let X be a variety defined over an algebraic closure of Fp endowed with an
action of a finite group G. By work of Rickard and Rouquier there exists an
object GΓc(X,Λ) in Hob(ΛG-perm) which is a representative of RΓc(X,Λ) ∈
Db(ΛG), see [Ric94] and [Rou02, Section 2]. The object GΓc(X,Λ) is es-
sentially obtained as the τ≤2dim(X) truncation of the Godement resolution of
the variety X. However, the exact construction is much more technically
involved.

The advantage of the Rickard–Rouquier complex GΓc(X,Λ) is that it is
a complex of `-permutation modules which is compatible with the Brauer
functor. More precisely, if Q is an `-subgroup of G then we have a canonical
isomorphism

BrQ(GΓc(X,Λ)) ∼= GΓc(X
Q, k)

in Hob(kNG(Q)), see [Rou02, Theorem 2.29]. Building on this fundamental
result, Bonnafé–Dat–Rouquier show the following:

Lemma 2.11. Let G be a (non-necessarily connected) reductive group with
parabolic subgroup P and Levi decomposition P = LnU such that F (L) = L.
For an `-subgroup Q of LF we have

Br∆Q(GΓc(Y
G
U ,Λ)) ∼= GΓc(Y

CG(Q)
CU(Q) , k)

in Hob(k[NGF×Lopp(∆Q)]),

Proof. See [BDR17a, Proposition 3.4(e)] and [BDR17a, Remark 3.5].

Lemma 2.12. The components of the complex GΓc(Y
G
U ,Λ)red of Λ[GF ×

(LF )opp]-modules are relatively ∆LF -projective, i.e., the complex GΓc(Y
G
U ,Λ)red

is splendid.

Proof. The complexGΓc(Y
G
U ,Λ)red can be endowed with a Λ[GF×NGF (P,L)opp]-

structure, see [BDR17a, Remark 2.2]. The indecomposable summands of the
components of the complex GΓc(Y

G
U ,Λ)red of Λ[GF×NGF (P,L)opp]-modules

have a vertex contained in ∆NGF (P,L)opp, see [BDR17a, Corollary 3.8]. Con-
sequently, the components of GΓc(Y

G
U ,Λ)red considered as Λ[GF × (LF )opp]-

modules are relatively ∆LF -projective by Lemma 1.13.

2.5 Isogenies

Let G be a connected reductive group. Recall that an isogeny of algebraic
groups ϕ : G → G is a surjective homomorphism of algebraic groups with
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finite kernel. Let ϕ : G → G be an isogeny stabilizing a maximal torus
T0 of G. We write X(T0) for the character group of T0 and Y (T0) for
the cocharacter group of T0, see [MT11, Definition 3.4]. The morphism ϕ
induces a group homomorphism ϕ : X(T0)→ X(T0) and its dual morphism
ϕ∨ : Y (T0)→ Y (T0), y 7→ ϕ ◦ y, which preserve the set of roots Φ(T0) resp.
coroots Φ∨(T0). Moreover, these group homomorphisms satisfy

1. ϕ and ϕ∨ are injective.

2. There exists a bijection Φ(T0) → Φ(T0), α 7→ α′ and positive integers
q(α), which are integral powers of p, such that ϕ(α′) = q(α)α and
ϕ∨(α∨) = q(α)(α′)∨.

We call any group homomorphism f : X(T0) → X(T0) with these two
properties an isogeny of the root datum (X(T0),Φ(T0), Y (T0),Φ∨(T0)).

We recall the isogeny theorem:

Theorem 2.13. Let G be a connected reductive group and T0 a maximal
torus. Then for every isogeny f : X(T0)→ X(T0) of the root datum
(X(T0),Φ(T0), Y (T0),Φ∨(T0)) there exists an isogeny ϕ : G→ G inducing
f on X(T0) which is unique up to inner automorphisms induced by T0.

Proof. See [Spr09, Theorem 9.6.2].

2.6 Duality for connected reductive groups

The following material can be found in [DM91, Chapter 13]. Let G be a
connected reductive group with maximal torus T0. Let G∗ be a connected
reductive group with maximal torus T∗0. We say that (G∗,T∗0) is dual to
(G,T0) if there exists an isomorphism δ : X(T∗0) → Y (T0) which induces
an isomorphism between the root data (X(T0),Φ(T0), Y (T0),Φ∨(T0)) and
(X(T∗0),Φ(T∗0), Y (T∗0),Φ∨(T∗0)), see [DM91, Definition 13.10].

Let F : G → G be a Frobenius endomorphism and assume that T0 is
F -stable. By Theorem 2.13 there exists a Frobenius endomorphism F ∗ :
G∗ → G∗ satisfying δ ◦ F = (F ∗)∨ ◦ δ on Y (T∗0). We then say that the
triple (G,T0, F ) is in duality with (G∗,T∗0, F

∗), see [DM91, Definition 13.10].
Note that we will sometimes drop the ∗ and write F for both Frobenius
endomorphisms.

In the following we write W := NG(T0)/T0 for the Weyl group of G with
respect to T0 and W ∗ := NG∗(T

∗
0)/T∗0 for the Weyl group of G∗ with respect

to T∗0. Since W stabilizes the torus T0 we have a natural action of W on
X(T0) and a natural action on Y (T0). For w ∈ W we let nw ∈ NG(T0)
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be a representative of w ∈ W and analogously nw∗ ∈ NG∗(T
∗
0) denotes a

representative of w∗ ∈ W ∗.
Using the natural action of W on X(T0) and the action of W ∗ on Y (T∗0)

one can show that the duality isomorphism δ : X(T0) → Y (T∗0) induces an
anti-isomorphism ∗ : W → W ∗. Moreover, this anti-isomorphism satisfies
w∗ = F ∗(F (w)∗) for all w ∈ W , see [Car93, Proposition 4.3.2].

Recall the following definition:

Definition 2.14. Let G be a group and ϕ : G→ G an automorphism of G.
The action G×G→ G, (x, y) 7→ xyϕ(x)−1, is called ϕ-conjugation in G. We
say that two elements x, y ∈ G are ϕ-conjugate if xϕ and yϕ are conjugate
(by an element of G) in Go 〈ϕ〉.

One can show that ∗ : W → W ∗ induces a bijection between the F -
conjugacy classes of W and the F ∗-conjugacy classes of W ∗, see [Car93,
Proposition 4.3.4(ii)].

In the following, we write (Q/Z)p′ for the subgroup of elements of p′-order
of the additive group Q/Z. We fix a group isomorphism

ι : (Q/Z)p′ → Fq
×
,

an injective morphism

j : (Q/Z)p′ ↪→ Q`
×

and set
κ := j ◦ ι−1 : Fq

×
↪→ Q`

×
.

We define a restriction map res : X(T0) → Irr(TF
0 ), χ 7→ ResT0

TF0
(κ ◦ χ).

Let n be an integer such that T∗0 is split over Fqn , i.e., this means that
(F ∗)n(t) = tq

n
for all t ∈ T∗0. We denote by

NF ∗n/F ∗ : T∗0 → T∗0, t 7→ tF ∗(t) · · · (F ∗)n−1(t)

the norm map of the torus T∗0 with respect to F ∗. Denote ζ = ι( 1
qn−1

) ∈ Fq
×

and define an evaluation map

ev : Y (T∗0)→ (T∗)F
∗
, y 7→ NFn/F (y)(ζ).

We then define δ1 : Irr(TF
0 ) → (T∗0)F

∗
to be the unique isomorphism

which makes the following diagram commutative:

0 X(T0) X(T0) Irr(TF
0 ) 1

0 Y (T∗0) Y (T∗0) (T∗0)F 1

δ δ δ1

F − 1 res

F ∗ − 1 ev
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We will now briefly explain how this construction can be generalized to
arbitrary maximal F -stable tori of G. Let T be an F -stable maximal torus
of G. Then there exists an element g ∈ G such that gT0 = T. We have
g−1F (g) ∈ NG(T0) and we let w ∈ W such that w is the image of g−1F (g)
under the map NG(T0) → W . We say that w is the type of the F -stable
maximal torus T. It follows that the map TF → TwF

0 , t 7→ t 7→ gt, is an
isomorphism of abelian groups. For the dual group, we let h ∈ G∗ such that
h−1F (h) = F ∗(nw∗). It follows that the triple (G,T0, nwF ) is in duality
with (G∗,T∗0, F

∗nw∗) which yields a duality isomorphism δw : Irr(TwF
0 ) →

(T∗0)F
∗w∗ . Furthermore, T∗ := hT∗0 is a maximal F ∗-stable torus of G∗

of type F ∗(w∗) and we obtain that the triple (G,T, F ) is in duality with
(G∗,T∗, F ∗). Hence the notion of duality does not depend on the choice of
the maximal torus T0 which we made at the beginning of this section.

2.7 Levi subgroups, isogenies and duality

We recall the classification of F -stable Levi subgroups of a connected re-
ductive group G. Fix an F -stable maximal torus T0 of G contained in an
F -stable Borel subgroup B0 of G. Let Φ be the root system of G relative to
the torus T0 and ∆ ⊆ Φ the base of Φ associated to T0 ⊆ B0.

By [DM91, Proposition 4.3] the GF -conjugacy classes of F -stable Levi
subgroups of G are classified by F -conjugacy classes of cosets WIw, where
I ⊆ ∆ and w ∈ W satisfies wFWI = WI . More precisely, if L is an F -stable
Levi subgroup of G of type WIw then there exists g ∈ GF such that gL = LI

for some I ⊆ ∆ and g−1
T0 is a maximal torus of L of type w = g−1F (g)T0.

Here, LI denotes the standard Levi subgroup of G associated to a subset I
of the base ∆, see [MT11, Section 12.2].

An important property of duality is that it extends to Levi subgroups.

Lemma 2.15. Suppose that (G∗,T∗0, F
∗) is in duality with (G,T0, F ). Then

the map which sends a Levi subgroup L of G of type WIw to a Levi subgroup
L∗ of G∗ of type W ∗

I F
∗(w∗) induces a bijection between the GF -conjugacy

classes of F -stable Levi subgroups of G and the (G∗)F
∗
-conjugacy classes of

F ∗-stable Levi subgroups of G∗.

Proof. See [CE04, Section 8.2].

The following remark which is taken from [CS13, Section 2.3] describes
how Levi subgroups in duality with each other can be described without
explicit reference to a maximally F -split torus.
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Remark 2.16. Assume that L is an F -stable Levi subgroup of G and L∗

is an F ∗-stable Levi subgroup of G∗. Then the Levi subgroups L and L∗

are in duality with each other if and only if there exists a maximal F -stable
maximal torus T ⊆ L and a maximal F ∗-stable maximal torus T∗ ⊆ L∗ such
that (G∗,T∗, F ∗) is in duality with (G,T, F ) and Φ(L,T) corresponds to
Φ∨(L∗,T∗) under the duality isomorphism X(T) ∼= Y (T∗).

The bijection of Lemma 2.15 has important properties, see [CE04, Section
8.2] for the following. Suppose that L∗ is a Levi subgroup of G∗ corresponding
to a Levi subgroup L of G under the bijection in Lemma 2.15. Then it follows
that (L, F ) is in duality with (L∗, F ∗). Moreover, the map ∗ : W → W ∗

induces a group anti-isomorphism between the corresponding Weyl groups of
the Levi subgroups. This in turn induces an anti-isomorphism

NG(L)/L ∼= NG∗(L
∗)/L∗,

which satisfies w∗ = F ∗(F (w)∗) for all w ∈ NG(L)/L.
We will now define what it means for isogenies to be in duality with each

other.

Definition 2.17. Suppose that (G,T0, F ) is in duality with (G∗,T∗0, F
∗).

We say that isogenies σ : G→ G and σ∗ : G∗ → G∗ are in duality with each
other if there exist g ∈ G and h ∈ G∗ such that σ0 := gσ stabilizes T0 (resp.
σ∗0 := hσ∗ stabilizes T∗0) and δ ◦ σ0 = (σ∗0)∨ ◦ δ on Y (T∗0).

Note that this means that dual isogenies are only defined up to inner
automorphisms of G respectively G∗.

The following remark is crucial for working with automorphisms of finite
groups of Lie type, see also [NTT08, Section 2] and the proof of [CS13,
Proposition 2.2].

Remark 2.18. Let σ : G → G be a bijective morphism commuting with
the action of F . We want to show that there exists a bijective morphism
σ∗ : G∗ → G∗ in duality with σ which commutes with F ∗.

Recall that we have fixed a pair (T0,B0) consisting of an F -stable maxi-
mal torus T0 of G contained in an F -stable Borel subgroup B0 of G. Since
(σ(T0), σ(B0)) is again such a pair it follows that g(T0,B0) = (σ(T0), σ(B0))
for some g ∈ GF . Hence, we may assume that σ stabilizes the pair (T0,B0).
Thus, Theorem 2.13 together with [Tay18, Lemma 5.5] shows that there
exists a bijective morphism σ∗ : G∗ → G∗ in duality with σ. Moreover,
by the uniqueness statement of Theorem 2.13 we can choose σ∗ such that
σ∗F ∗ = F ∗σ∗. (We first have tσ∗F ∗ = F ∗σ∗ for some t ∈ T∗0. Then by
Lang’s theorem there exists t0 ∈ T∗0 such that t0σ

∗ commutes with F ∗.) The
isogeny σ∗ with these properties is then unique up to (G∗)F

∗
-conjugation.
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Corollary 2.19. Let σ : G→ G be a bijective morphism σ ◦ F = F ◦ σ and
σ∗ : G∗ → G∗ be a dual isogeny with σ∗ ◦ F ∗ = F ∗ ◦ σ∗. Under the bijection
in Lemma 2.15, the set of σ-stable GF -conjugacy classes of F -stable Levi
subgroups of G corresponds to the set of σ∗-stable (G∗)F

∗
-conjugacy classes

of F ∗-stable Levi subgroups of G∗.

Proof. As in Remark 2.18 we may assume without loss of generality that σ
stabilizes the pair (T0,B0). We may also assume that σ∗ : G∗ → G∗ satisfies
δ ◦ σ = (σ∗)∨ ◦ δ on Y (T∗0), see Definition 2.17. In particular, this yields
w∗ = σ∗(σ(w)∗) for all w ∈ W (same proof as in [Car93, Proposition 4.3.2]).

Observe that the GF -conjugacy class of an F -stable Levi subgroup of
type WIw is σ-stable if and only if σ(WIw) is F -conjugate to WIw. This is
equivalent to σ∗(W ∗

I F
∗(w∗)) being F ∗-conjugate to W ∗

I F
∗(w∗). The latter is

now equivalent to the (G∗)F
∗
-conjugacy class of F ∗-stable Levi subgroups of

G∗ associated to W ∗
I F
∗(w∗) being σ∗-stable. This gives the claim.

2.8 Rational Lusztig series for connected re-

ductive groups

We continue our discussion on duality from Section 2.6 and keep the same
notation. The following results can be found in [DM91, Chapter 13] and
[Bon06, Chapter 9, Chapter 11]. Our presentation follows [Tay18, Section 6].

We denote by ∇(G, F ) the set of pairs (T, θ) where T is an F -stable
maximal torus of G and θ ∈ Irr(TF ) is an irreducible character of TF .
The group GF acts by conjugation on the set ∇(G, F ). We denote by
∇(T0,W, F ) the set of pairs (w, θ) where w ∈ W and θ ∈ Irr(TwF

0 ). Then
the Weyl group W acts on ∇(T0,W, F ) via z · (w, θ) = (zwF (z)−1, zθ). Let
(w, θ) ∈ ∇(T0,W, F ). By Lang’s theorem there exists gw ∈ G such that
g−1
w F (gw) = nw and we have (gwT0,

gwθ) ∈ ∇(G, F ). One can now show that
the map

∇(T0,W, F )/W → ∇(G, F )/GF , (w, θ) 7→ (gwT0,
gwθ),

is a bijection, see [Tay18, Lemma 6.2].
We denote by S(G∗, F ∗) the set of pairs (T∗, s) where T∗ is an F ∗-stable

maximal torus of G∗ and s ∈ (T∗)F
∗
. Clearly, (G∗)F

∗
acts by conjuga-

tion on the set S(G∗, F ). We let S(T∗0,W
∗, F ) be the set of pairs (w, s)

where w ∈ W ∗ and s ∈ (T∗0)F
∗w∗ . As before we have an action of W ∗ on

S(T∗0,W
∗, F ∗) by setting z · (w, s) = (zwF ∗(z)−1, F

∗(z)s). Given w ∈ W ∗ we
obtain (hwT∗0,

hws) ∈ S(G∗, F ∗) where h−1
w F ∗(hw) = F ∗(nw). Then the map

S(T∗0,W
∗, F ∗)/W ∗ → S(G∗, F ∗)/(G∗)F

∗
, (w, s) 7→ (hwT∗0,

hws),
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is a bijection, see [Tay18, Lemma 6.4].
By Section 2.6 we obtain for w ∈ W a bijection δw : Irr(TwF

0 )→ (T∗0)w
∗F ∗ .

From this one concludes that the map

∇(T0,W, F )/W → S(T∗0,W
∗, F ∗)/W ∗, (w, θ) 7→ (w∗, δw(θ))

is a bijection, see [Tay18, Lemma 6.6]. In particular, we obtain a bijection

∇(G, F )/GF → S(G∗, F ∗)/(G∗)F
∗
.

We can now define the notion of rational series.

Definition 2.20. Fix a semisimple element s ∈ (G∗)F
∗
. The subset X ⊆

∇(G, F ) consisting of all pairs (T, θ) ∈ ∇(G, F ) which correspond to some
(T∗, t) ∈ S(G∗, F ∗)/(G∗)F

∗
, where t is (G∗)F

∗
-conjugate to s, under the

bijection above is called the rational series associated to the (G∗)F
∗
-conjugacy

class of s ∈ (G∗)F
∗
.

Let T be an F -stable maximal torus of G and let B be a Borel subgroup
containing T such that B = T n U. Then we write YB = YU for the
corresponding Deligne–Lusztig variety. Moreover we write

RG
T := [RG

T⊆B] : G0(KTF )→ G0(KGF ), [M ] 7→
∑
i

(−1)i[H i
c(Y

G
B ,Λ)⊗ΛTFM ],

for the corresponding Deligne–Lusztig induction. Note that the map RG
T does

not depend on the choice of the Borel subgroup B containing T by [DM91,
Theorem 11.13] and the remarks following said theorem.

We can now define the notion of rational Lusztig series.

Definition 2.21.

(a) Let s ∈ (G∗)F be semisimple. Then we define E(GF , s) to be the set of
all irreducible characters occurring in a RG

T (θ), where (T, θ) ∈ ∇(G, F )
is in the rational series associated to the (G∗)F

∗
-conjugacy class of

s ∈ (G∗)F
∗
.

(b) Let s ∈ (G∗)F be a semisimple element of `′-order. We set

E`(GF , s) :=
∐
t

E(GF , t),

where t runs over a set of representatives of conjugacy classes of semisim-
ple elements of (G∗)F

∗
such that s = t`′ .
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(c) Let s ∈ (G∗)F be a semisimple element of `′-order and define

eG
F

s :=
∑

χ∈E`(GF ,s)

eχ,

where eχ ∈ Z(KGF ) is the central idempotent corresponding to χ.

Theorem 2.22 (Broué–Michel). Let s ∈ (G∗)F
∗

be a semisimple element
of `′-order. Then we have eG

F

s ∈ Z(OGF ) and hence OGF eG
F

s is a sum of
blocks.

Proof. See [CE04, Theorem 9.12].

In [BR03] the previous result is formulated in the language of derived
categories and in [BDR17a] using this language generalized to disconnected
reductive groups. We will recall this result in the next section.

2.9 Lusztig series for disconnected reductive

groups

We give an elementary description of Lusztig series for disconnected reductive
groups introduced in [BDR17a].

Let G be a non-necessarily connected reductive group. Note that the
maximal tori of G are the maximal tori of G◦. As in the case of connected
reductive groups, we denote by ∇(G, F ) the set of pairs (T, θ) where T is
an F -stable maximal torus of G and θ ∈ Irr(TF ) is an irreducible character
of TF .

We denote by ∇`′(G, F ) the subset of ∇(G, F ) consisting of the pairs
(T, θ) such that the order of θ is coprime to `. Note that Irr(TF )`′ can be
identified with the set of characters TF → Λ×. We denote by eθ ∈ Z(ΛTF )
the unique central primitive idempotent of ΛTF with θ(eθ) 6= 0.

Definition 2.23. We say that two pairs (T1, θ1) ∈ ∇(G, F ) and (T2, θ2) ∈
∇(G, F ) are rationally conjugate if there exists some t ∈ NGF (T1) such that
(T1,

tθ1) and (T2, θ2) are rationally conjugate in G◦. We write ∇(G, F )/ ≡
for the set of equivalence classes under rational conjugation.

For the following, we need to recall some of the standard definitions re-
lated to triangulated categories. Let T be a triangulated category and S be
a full triangulated subcategory of T . We say that S is a thick subcategory
of T if it is closed under taking direct summands, see [Ric89, Proposition
1.3]. If S is a set of objects in T we say that S is the subcategory generated
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by S if it is the smallest full thick triangulated subcategory containing S,
see [BR03, Section 2.3]. For instance, if A is a Λ-algebra which is free and
of finite type over Λ, then one can show that A-perf, see Section 1.2, is the
thick subcategory of Db(A) generated by the regular A-module A (either by
direct calculations or by using [BR03, Lemma 9.1]).

With this in mind, we can now state the following definition from [BDR17a,
4.D.].

Definition 2.24. Let X ⊆ ∇`′(G, F ) be a rational series of G. We de-
note by CX the thick subcategory of ΛGF -perf generated by the complexes
RΓc(YB)eθ, with (T, θ) ∈ X and B a Borel subgroup of G◦ with maxi-
mal torus T. We denote by eX ∈ ΛGF the central idempotent such that
CX = ΛGF eX -perf.

Note that the existence of the idempotents eX ∈ Z(ΛGF ) is ensured
by [BDR17a, Theorem 4.12].

Remark 2.25. Suppose that G is a connected reductive group. We let s ∈
(G∗)F be a semisimple element of `′-order such that its (G∗)F -conjugacy class
is associated to the rational series X ∈ ∇`′(G, F ). Then we have eG

F

s = eX ,
see [BR03, Remark 9.3]. In other words, Definition 2.24 is consistent with
Definition 2.21.

Lemma 2.26. Let X ⊆ ∇`′(G, F ) be a rational series of G and choose a ra-

tional series X ◦ of G◦ such that X ◦ ⊆ X . Then we have eX = TrG
F

N
GF

(eX◦ )(eX ◦).

Proof. Write e′X :=
∑

g∈GF /N
GF

(eX◦ )
geX ◦ . Let (T, θ) ∈ X and B be a Borel

subgroup of G◦ with maximal torus T. By [BDR17a, (3.1)] we have

IndGF

(G◦)F (RΓc(Y
G◦

B )eθ) ∼= RΓc(Y
G
B )eθ ∼= IndGF

(G◦)F (RΓc(Y
G◦
tB )etθ)

for any t ∈ NGF (T). Therefore, the generators of CX lie inside ΛGF e′X -perf.
Thus, CX is a subcategory of ΛGF e′X -perf and we have eX e

′
X 6= 0. By

[BDR17a, Theorem 4.12] it follows that we have two decompositions

1 =
∑

Z∈∇`′ (G,F )/≡

eZ =
∑

Z∈∇`′ (G,F )/≡

e′Z .

into orthogonal central idempotents. From this we deduce that eX = e′X .

We recall the definition of (super)-regular rational series, see [BR03, Sec-
tion 11.4] and in particular [BR03, Lemma 11.6].
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Definition 2.27. Let G be a connected reductive group and L be a F -stable
Levi subgroup of G. We say that the rational series of (L, F ) associated to
the conjugacy class of the semisimple element s ∈ (L∗)F

∗
is (G,L)-regular

(respectively superregular) if C◦G∗(s) ⊆ L∗ (respectively CG∗(s) ⊆ L∗).

This notation can now be naturally extended to rational series of discon-
nected reductive groups. Let G be a reductive group. If X is a rational
series of (L, F ) we say that X is (G◦,L◦)-regular (respectively superregular)
if any (and hence every) rational series of (L◦, F ) contained in X is (G◦,L◦)-
regular (respectively superregular). We then say that the central idempotent
eX associated to X is (G◦,L◦)-(super)-regular.

2.10 Lusztig series and Brauer morphism

Let G be a reductive group and Q a finite `-subgroup of GF . Then we
consider the map

iGQ : ∇`′(CG(Q), F )/ ≡→ ∇`′(G, F )/ ≡

as defined in [BDR17a, Theorem 4.14]. By [BDR17a, Theorem 4.14] for any
rational series Y ⊆ ∇`′(G, F ) we have

brG
F

Q (eY) =
∑

Z∈(iGQ )−1(Y)

eZ .

Lemma 2.28. Let L be an F -stable Levi subgroup of G and let X ⊆ ∇`′(L, F )
be a (G◦,L◦)-(super)-regular rational series. Then for any `-subgroup Q of
LF we have that

brL
F

Q (eX ) =
∑

Z∈(iLQ)−1(X )

eZ

is a decomposition into orthogonal (C◦G(Q),C◦L(Q))-(super-)regular idempo-
tents.

Proof. See [BDR17a, Proposition 4.11].

We gather some useful facts.

Lemma 2.29. Let L be an F -stable Levi subgroup of G and P a parabolic
subgroup of G with Levi decomposition P = L n U. In addition, let X ⊆
∇`′(L, F ) be a (super)-regular rational series of (G◦,L◦).

(a) There exists a unique rational series Y ⊆ ∇`′(G, F ) containing X .
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(b) Deligne–Lusztig induction restricts to a functor RG
L⊆P : Db(ΛLF eX )→

Db(ΛGF eY).

(c) Given X ′ ∈ (iLQ)−1(X ) let Y ′ be the unique rational series of ∇`′(CG(Q), F )
containing X ′. Then we have iGQ (Y) = Y ′.

Proof. Let X ◦ be a rational series of (L◦, F ) contained in X . Then X ◦ is
associated to the conjugacy class of a semisimple element s ∈ ((L◦)∗)F

∗
of `′-

order, see Definition 2.20. Then the rational series Y◦ of (G◦, F ) associated
to s ∈ ((G◦)∗)F

∗
is the unique rational series containing Y◦. Thus, Y is the

unique rational series of (G, F ) containing Y◦. This shows part (a).

Deligne–Lusztig induction restricts to a functorRG◦
L◦⊆P◦ : Db(Λ(L◦)F eL

F

s )→
Db(Λ(G◦)F eG

F

s ) by [BR03, Theorem 11.4]. For part (b) it suffices to show
that RG

L⊆P(M) ∈ Db(ΛGF eY) for M = ΛLF eX . By [BDR17a, (3.1)] we have

IndGF

(G◦)F ◦ RG◦

L◦⊆P◦ = RG
L⊆P ◦ IndLF

(L◦)F .

By Lemma 2.26 we have M = IndLF

(L◦)F (ΛLF eL
F

s ) and we can conclude that

RG
L⊆P(M) ∈ Db(ΛGF eY). This implies that RG

L⊆P restricts to a functor
RG

L⊆P : Db(ΛLF eX )→ Db(ΛGF eY).

We now prove part (c). By Lemma 2.11 we have

Br∆Q(GΓc(Y
G
U)eX ) ∼= GΓc(Y

CG(Q)
CU(Q)),Λ)brQ(eX ) = brQ(eY)GΓc(Y

CG(Q)
CU(Q)),Λ)brQ(eX ).

On the other hand, by part (b) RCG(Q)
CL(Q)⊆CP(Q) restricts to a functor

RCG(Q)
CL(Q)⊆CP(Q) : Db(Λ CLF (Q)eX ′)→ Db(Λ CGF (Q)eY ′).

This implies that brQ(eY)eY ′ 6= 0 which shows that eY ′ appears in the decom-
position into central idempotents of brQ(eY) from Lemma 2.28. Therefore,
we necessarily have iGQ (Y) = Y ′.

2.11 Regular embedding and Lusztig series

We recall the following definition, see [CE04, Section 15.1]

Definition 2.30. Let G be a connected reductive group. A regular em-
bedding of G is a morphism ι : G ↪→ G̃ of algebraic groups, where G̃ is a
connected reductive group such that Z(G̃) is connected and [G̃, G̃] ⊆ ι(G).
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In the presence of a Frobenius endomorphism F : G → G we always
assume that the regular embedding ι : G ↪→ G̃ is chosen in a way such that
there exists a Frobenius endomorphism F : G̃→ G̃ satisfying F ◦ ι = ι ◦ F .
Moreover, we will identify G with its image ι(G) in G̃.

Remark 2.31. A standard way to define a regular embedding is the following
(see [CE04, Section 15.1]): Let G be a connected reductive group and S
be a torus of G containing Z(G). Then G̃ := S ×Z(G) G is a connected

reductive group with connected center S and the natural map ι : G ↪→ G̃ is
a regular embedding. Moreover, if F : G→ G is a Frobenius endomorphism
of G one can choose S to be an F -stable torus of G. Then the Frobenius
endomorphism F : G → G extends in a natural way to G̃ by defining
F (s, g) := F (s)F (g) for (s, g) ∈ G̃ = S×Z(G) G.

Now let G be a connected reductive group with Frobenius F : G → G
and F -stable maximal torus T0. Let ι : G ↪→ G̃ be a regular embedding
of (G, F ). We denote by T̃0 := Z(G̃)ι(T0) the unique maximal torus of G̃
containing T0. Let (G∗,T∗0, F

∗) be in duality with (G,T0, F ). By [CE04,
Section 15.1] there exists a surjective morphism ι∗ : G̃∗ → G∗ of dual groups
with kernel a connected central torus of G̃∗.

Suppose that L is an F -stable Levi subgroup of G and P is a parabolic
subgroup of G with Levi decomposition P = L nU. Then L̃ := Z(G̃)L is
an F -stable Levi subgroup of G̃ and P̃ := Z(G̃)P is a parabolic subgroup of
G̃ with Levi decomposition P̃ = L̃ nU. By Lemma 2.8 we have a natural
isomorphism

ResG̃
F

GF ◦ RG̃
L̃
∼= RG

L ◦ ResL̃
F

LF .

Lemma 2.32. Let G be a connected reductive group and let ι : G ↪→ G̃ be
a regular embedding of G. Let J be a set of representatives of the (G̃∗)F -
conjugacy classes of `′-elements t̃ ∈ (G̃∗)F with ι∗(t̃) = s. Then

eG
F

s =
∑
t̃∈J

eG̃
F

t̃ .

Proof. This is part of [BDR17a, Lemma 7.4].

2.12 The Bonnafé–Dat–Rouquier Morita equiv-

alence

Let G be a connected reductive group defined over an algebraic closure of Fp,
where p is a prime number. Let F : G → G be a Frobenius endomorphism
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of G defining an Fq-structure on G. Let (G∗, F ∗) be in duality with (G, F )
as in Section 2.6. Fix a semisimple element s ∈ (G∗)F

∗
of `′-order. Let L∗

be an F ∗-stable Levi subgroup of G∗ which satisfies C◦G∗(s) ⊆ L∗ and

L∗CG∗(s)
F ∗ = CG∗(s)

F ∗L∗.

This assumption is for instance satisfied if L∗ = CG∗(Z
◦(C◦G∗(s))) is the

minimal Levi subgroup of G∗ containing C◦G∗(s) or if L∗ is any Levi subgroup
of G∗ containing CG∗(s)

F ∗ . Then we define

N∗ := CG∗(s)
F ∗L∗

which is a subgroup of G∗ by the property above. Note that N∗ is an F ∗-
stable subgroup of NG∗(L

∗). Let L be an F -stable Levi subgroup of G in
duality with the Levi subgroup L∗ of G∗. We let N be the subgroup of NG(L)
corresponding to N∗ under the isomorphism of the relative Weyl groups

NG(L)/L ∼= NG∗(L
∗)/L∗

induced by duality. The closed subgroup N of G is F -stable and it holds that
NF = NGF (L, eL

F

s ) by [BDR17a, (7.1)]. We let P with Levi decomposition
P = LnU. In addition, we let d := dim(YU). By [BR03, Theorem 11.7] we
have

H i
c(Y

G
U ,Λ)eL

F

s = 0 for i 6= d.

Hence, we are interested only in the dth cohomology group of the variety
YG

U . For convenience, we will therefore use the following definition.

Notation 2.33. Let X be a variety of dimension n. Then we writeRΓdim
c (X,Λ) :=

RΓc(X,Λ)[n] and Hdim
c (X,Λ) := Hn

c (X,Λ).

Let ι : G ↪→ G̃ be a regular embedding. Set L̃ = LZ(G̃) and Ñ = NL̃.

Assumption 2.34. Suppose that the k[(GF × (LF )opp)∆L̃F ]-module

Hdim
c (YU, k)eL

F

s

extends to a k[(GF × (LF )opp)∆ÑF ]-module.

This assumption is for instance satisfied if NF/LF is cyclic, see Lemma
1.32.

We have the following theorem, see [BDR17a, Theorem 7.7]:
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Theorem 2.35 (Bonnafé–Dat–Rouquier). Suppose that Assumption 2.34
holds. Then there exists an OGF -ONF -bimodule extending Hd

c (YG
U ,O)eL

F

s

and for any such bimodule M there exists a complex C of OGF -ONF -
bimodules extending GΓc(Y

G
U ,Λ)redeL

F

s such that Hd(C) ∼= M . The complex
C induces a splendid Rickard equivalence between OGF eG

F

s and ONF eL
F

s

and the bimodule M induces a Morita equivalence between OGF eG
F

s and
ONF eL

F

s .

Proof. In the proof of [BDR17a, Theorem 7.5] apply Assumption 2.34 instead
of [BDR17a, Proposition 7.3]. The rest of the proof of the theorem is as
in [BDR17a, Section 7].

Note that the assumption previously made that L∗ normalizes CG∗(s)
F ∗

is not necessary for the following theorem. This means we only assume that
L∗ is an F ∗-stable Levi subgroup containing C◦G∗(s).

Theorem 2.36. Let P1 and P2 be two parabolic subgroups of G with common
Levi complement L and unipotent radical U1 respectively U2. Then we have

Hdim
c (YU1 ,Λ)eL

F

s
∼= Hdim

c (YU2 ,Λ)eL
F

s

as ΛGF -ΛLF -bimodules.

Proof. This is proved in [BDR17a, Theorem 7.2]. We sketch how the isomor-
phism of the theorem is obtained. All mentioned statements are proved in
loc. cit. We define

Ycl
U1,U2

:= {(g1U1, g2U2) ∈ YU1,U2 | g1U1 ∈ YU1},

which is a GF × (LF )opp-stable closed subvariety of YU1,U2 . We have a
closed immersion iU1,U2 : Ycl

U1,U2
→ YU1,U2 and a natural projection map

πU1,U2 : Ycl
U1,U2

→ YU1 .

We have an isomorphism π∗U1,U2
: RΓc(YU1 ,Λ)[−2d] → RΓc(Y

cl
U1,U2

,Λ)
where d = dim(U1 ∩F (U1))− dim(U1 ∩U2 ∩F (U1)). Moreover, we have a
morphism i∗U1,U2

: RΓc(YU1,U2 ,Λ)→ RΓc(Y
cl
U1,U2

,Λ). The resulting map

ψU1,U2 = (π∗U1,U2
)−1 ◦ i∗U1,U2

: RΓdim
c (YU1,U2 ,Λ)→ RΓdim

c (YU1 ,Λ)

induces a quasi-isomorphism

ψU1,U2,s : RΓdim
c (YU1,U2 ,Λ)eL

F

s → RΓdim
c (YU1 ,Λ)eL

F

s

of ΛGF -ΛLF -complexes. Similarily, the map ψU2,F (U1) induces a quasi-
isomorphism

ψU2,F (U1),s : RΓdim
c (YU2,F (U1),Λ)eL

F

s → RΓdim
c (YU2 ,Λ)eL

F

s
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of ΛGF -ΛLF -complexes. However, the shift map

sh : YU1,U2 → YU2,F (U1)

given by (g1U1, g2U2) 7→ (g2U2, F (g1U1)) is GF -LF -equivariant and in-
duces an equivalence of étale sites. In particular this map induces a quasi-
isomorphism

sh∗ : RΓdim
c (YU1,U2 ,Λ)→ RΓdim

c (YU2,F (U1),Λ)

of ΛGF -ΛLF -complexes. Consequently, we have a quasi-isomorphism

ΘU2,U1 := ψU2,F (U1),s ◦ sh∗ ◦ψ−1
U1,U2,s

: RΓc(YU1 ,Λ)eL
F

s → RΓc(YU2 ,Λ)eL
F

s

of ΛGF -ΛLF -complexes.

We single out a special case of Theorem 2.35.

Theorem 2.37 (Bonnafé–Dat–Rouquier). Let L∗ be an F ∗-stable Levi sub-
group of G∗ containing C◦G∗(s) CG∗(s)

F ∗. Then the complex C = GΓc(YU,O)redeL
F

s

of OGF eG
F

s -OLF eL
F

s bimodules induces a splendid Rickard equivalence be-
tween OGF eL

F

s and OLF eG
F

s . The bimodule Hdim(YU)(C) induces a Morita
equivalence between OGF eG

F

s and OLF eL
F

s .
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Chapter 3

On the Bonnafé, Dat and
Rouquier Morita equivalence

In this chapter we extend Theorem 2.35 to a case which is not covered by the
arguments in [BDR17a]. Specifically we consider the situation for semisimple
elements in type D whose centralizer has non-cyclic component group. Some
arguments in this chapter use considerations already present in an unpub-
lished note by Bonnafé, Dat and Rouquier [BDR17b]. The material and the
results of this chapter can also be found in the author’s article [Ruh18].

3.1 A remark on Clifford theory

In this section we construct a counterexample to the statement of [BDR17a,
Proposition 7.3]. Let us recall the assumptions of this proposition:

Assumption 3.1. Let Ỹ be a finite group and X̃ and Y be normal subgroups
of Ỹ . Assume that Ỹ = X̃Y and denote X = X̃∩Y . Assume that k is a field
with [Y : X] ∈ k×. Let M be a Y -invariant, finitely generated kX-module.
Suppose that

EndkX̃(IndX̃X(M))/J(EndkX̃(IndX̃X(M))) ∼= kn

for some n. Assume that the kX̃-module IndX̃X(M) extends to Ỹ .

Under Assumption 3.1 the authors claim in [BDR17a, Proposition 7.3]
that the kX-module M extends to Y .

In their proof they show that the natural injection

End×kX(M)/1+J(EndkX(M)) ↪→ End×
kX̃

(IndX̃X(M))/1+J(EndkX̃(IndX̃X(M))
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splits. However, it is not clear under these assumptions that this injection
splits in a way compatible with the action of the quotient group Y/X. This
is however needed in an essential way in the proof of [BDR17a, Proposition
7.3].

We will now construct an explicit counterexample to their statement. We
are very much indebted to Gabriel Navarro for pointing this out to us.

Example 3.2. Assume that k = C is the field of complex numbers. We
consider the group Ỹ generated by the elements t1, t2, n1, n2 subject to the
following defining relations:

• t41 = t42 = 1 = [t1, t2] and t21 = t22.

• tn1
1 = t−1

1 , tn1
2 = t2, tn2

1 = t1 and tn2
2 = t−1

2 .

• [n1, n2] = n2
1 = n2

2 = t21.

Using the computer program GAP [GAP19] one can check that Ỹ is a finite
group of order 32. It is actually isomorphic to the extraspecial group of
order 32 of type “-”. However, we won’t use this description in what follows.
Moreover, one checks X̃ := 〈t1, t2〉 is an abelian normal subgroup of Ỹ . In
addition, Y := 〈n1, n2〉 is a normal subgroup of Ỹ isomorphic to the dihedral
group D8. The group X := X̃ ∩ Y = 〈t21〉 is the center of Ỹ and has order 2.

Now let M be a module affording the unique non-trivial irreducible com-
plex character of X. Since X̃ is abelian it follows that M extends to a
kX̃-module. By Clifford theory, it follows that

EndkX̃(IndX̃X(M)) ∼= k[X̃:X] = k4.

The module M is Ỹ -stable since it is the unique non-trivial irreducible kX-
module. Furthermore, we have

IndX̃X(M) ∼= M1 ⊕M2 ⊕M3 ⊕M4,

where the Mi are pairwise non-isomorphic simple kX̃-modules which restrict
to M . From the explicit description of these modules, we conclude that the
conjugation action of the quotient group Ỹ /X̃ acts regularily on the set of

isomorphism classes of M1, . . . ,M4. We deduce that IndỸ
X̃

(M1) is (isomor-

phic to) an extension of IndX̃X(M). Therefore, Assumption 3.1 is satisfied.
However, the non-trivial character of the center of D8 does not extend to
D8. Therefore, the module M does not extend to Y . This contradicts the
statement of [BDR17a, Proposition 7.3].
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3.2 Steinberg relation

In this section we describe the Steinberg presentation of a simple algebraic
group of simply connected type as introduced in [Ste16]. This will allow us
to perform explicit computations in these groups.

Let Φ be an abstract indecomposable root system in a finite dimensional
Euclidean vector space. Let ∆ = {α1, ..., αn} be a base of the root system Φ.
We denote by Φ+ the set of positive roots, i.e. the subset of the root system
Φ which consists of the roots which can be written as a linear combination
of the simple roots with natural numbers as coefficients. We write Φ∨ for
the set of coroots of Φ with base given by ∆∨ = {α∨1 , ..., α∨n}. We assume
that Φ has at least rank 2 ,i.e., Φ is not of type A1. We consider the group
G generated by the set of symbols {xα(t) | α ∈ Φ, t ∈ Fp} subject to the
following relations:

1. xα(t1)xα(t2) = xα(t1 + t2) for all t1, t2 ∈ Fp and α ∈ Φ.

2. Let α, β ∈ Φ with α± β 6= 0. Then

[xα(t1),xβ(t2)] =
∏

i,j>0, iα+jβ∈Φ

xiα+jβ(ci,j,α,βt
i
1t
j
2),

where the product is taken over a fixed order of the roots Φ and
ci,j,α,β ∈ {±1,±2,±3} are as in [Ste16, Lemma 15] (where the ci,j,α,β
are structure constants possibly depending on the chosen order).

3. hα(t1)hα(t2) = hα(t1t2) for all t1, t2 ∈ Fp
×

, where hα(t) := nα(t)nα(−1)

and nα(t) := xα(t)x−α(−t−1)xα(t) for t ∈ Fp
×

.

Steinberg shows that the abstract group G is the universal Chevalley
group constructed from Φ and Fp, see [Ste16, Theorem 8]. Furthermore, he
shows that G can be given the structure of an algebraic group in a unique way
such that the maps xα : (Fp,+)→ G, t 7→ xα(t) for α ∈ Φ are isomorphisms
onto their image. The algebraic group G is then a simple algebraic group of
simply connected type with root system isomorphic to Φ, see [Ste16, Theorem
6] and the Existence Theorem in [Ste16, Chapter 5]. Moreover, T0 = {hα(t) |
α ∈ Φ+, t ∈ Fp

×} is a maximal torus of G and we will (by abuse of notation)
identify the root system of G with respect to the torus T0 with the abstract
root system Φ.

Note that xα(t), hα(t) and nα(t) are not uniquely defined and their re-
lations depend on the choice of certain structure constants. However, the
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relations simplify in the case where the involved roots are orthogonal. For
the following remark for α, β ∈ Φ we define

pα,β := max{i ∈ Z | −iα + β ∈ Φ}

and
qα,β := max{i ∈ Z | iα + β ∈ Φ}.

Remark 3.3. Let α, β ∈ Φ with α ⊥ β, u ∈ Fp and t ∈ Fp
×

. Then we have:

a) xβ(u)hα(t) = xβ(u) and nβ(u)hα(t) = nβ(u),

b) xβ(u)nα(t) = xβ(u) and nβ(u)nα(t) = nβ(u) if pα,β = qα,β = 0.

c) xβ(u)nα(t) = xβ(−u) and nβ(u)nα(t) = nβ(−u) if pα,β = qα,β = 1.

Proof. See [Spä06, Remark 2.1.7].

3.3 Notation

We introduce the notation which will be in force until the last section of this
chapter. Let G∗ be a simple, adjoint algebraic group of type Dn with n even
and F ∗ : G∗ → G∗ be a Frobenius endomorphism defining an Fq-structure
on G∗ such that (G∗)F

∗
is of untwisted type Dn. Fix a semisimple element

s ∈ (G∗)F
∗

of `′-order. Then C◦G∗(s) is an F ∗-stable connected reductive
group. Thus, there exists an F ∗-stable maximal torus T∗0 of C◦G∗(s) contained
in an F ∗-stable Borel subgroup B(s) of C◦G∗(s).

The dual group G of G∗ is a simple simply connected group of type Dn.
Therefore, there exists a surjective morphism π : G→ G∗ with kernel Z(G).
Note that the existence of such a morphism π is specific to the situation in
type D and does not exist in general for groups in duality with each other. We
let T0 be the maximal torus of G such that T∗0 = π(T0). Let F : G→ G be
a Frobenius endomorphism stabilizing T0 such that (G,T0, F ) is in duality
with (G∗,T∗0, F

∗).
We denote by W the Weyl group of G with respect to T0 and by W ∗ the

Weyl group of G∗ with respect to T∗0. The map π induces an isomorphism π :
W → W ∗ which allows W to be identified with W ∗. Under this identification,
the anti-isomorphism ∗ : W → W ∗, induced by duality, is then given by
inversion, i.e., w∗ = w−1 for all w ∈ W .

The root system of G can be described more explicitly as follows. Let Φ
be a root system of type Bn, n even, with base {e1, ei − ei−1 | 2 ≤ i ≤ n}
where {ei | 1 ≤ i ≤ n} is the canonical orthonormal basis with respect to the
standard scalar product on Rn.
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Consider the root system Φ ⊆ Φ consisting of all long roots of Φ. Recall
that Φ is a root system of type Dn. Let G be the simple, simply connected
algebraic group defined over Fp with root system Φ. By [MS16, Section 2.C]
there exists an embedding G ↪→ G such that the image of T0 is a maximal
torus of G. In particular, we can identify Φ with the root system of G with
respect to the torus T0 and Φ with the root system of G with respect to T0.

For ᾱ ∈ Φ let xᾱ(r), r ∈ Fp, and nᾱ(r), hᾱ(r), r ∈ Fp
×

, be the Chevalley
generators associated to the maximal torus T0 of G as in Section 3.2.

Using the embedding of G into G we obtain a surjective group homo-
morphism

(Fp
×

)n → T0, (λ1, . . . , λn) 7→
n∏
i=1

hei(λi),

with kernel {(λ1, . . . , λn) ∈ {±1}n |
∏n

i=1 λi = 1}. Hence we can write
an element λ ∈ T0 (in a non-unique way) as λ =

∏n
i=1 hei(λi) for suitable

λi ∈ Fp
×

. For a subset A ⊆ Fp
×

with A = −A we define

IA(λ) := {j ∈ {1, . . . , n} | λj ∈ A}.

Note that this does not depend on the choice of the sequence (λ1, . . . , λn)

but only on the element λ ∈ T0. Let ω4 ∈ Fp
×

be a primitive 4th root of
unity. By [MS16, Section 2.C] we have Z(G) = 〈z1, z2〉, where z1 = he1(−1)
and z2 =

∏n
i=1 hei(ω4).

We also fix a tuple (t1, . . . , tn) ∈ (Fp
×

)n such that t =
∏n

i=1 hei(ti) ∈ T0

satisfies π(t) = s.
Let F0 : G → G be the Frobenius endomorphism defined by xα(t) 7→

xα(tq), for t ∈ Fp and α ∈ Φ. We let F ∗0 : G∗ → G∗ be defined as
the unique morphism satisfying π ◦ F0 = F ∗0 ◦ π. Then the map δ : X :
(T0) → Y (T∗0), χ 7→ π ◦ χ∨ induces a duality isomorphism between the
triples (G∗,T∗0, F

∗
0 ) and (G,T0, F0). There exists an element v ∈ W with

preimage mv ∈ NG(T0) of v such that F = mvF0. Since (G,T0, F ) is in
duality with (G∗,T∗0, F

∗) there exists some mv∗ ∈ NG∗(T
∗
0), a preimage of

v∗ in NG∗(T
∗
0), such that F ∗ = F ∗0 mv∗ (Note that F ∗0 acts trivially on W ∗,

so F ∗0 (v∗) = v∗).

3.4 Classifying semisimple conjugacy classes

As in Section 2.12 we let L∗ = CG∗(Z
◦(C◦G∗(s))) be the minimal Levi sub-

group of G∗ containing C◦G∗(s) and N∗ = CG∗(s)L
∗. Let L be an F -stable

Levi subgroup of G containing the maximal torus T0 which is in duality with
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the Levi subgroup L∗ of G∗. We set N to be the subgroup of NG(L) such
that N/L ∼= N∗/L∗ under the canonical isomorphism between NG(L)/L and
NG∗(L

∗)/L∗ induced by duality.
Our aim is to prove the following proposition:

Proposition 3.4. Let G be a simple, simply connected algebraic group such
that GF is of type Dn with even n ≥ 4. If ` - (q2 − 1) then the OGF -OLF -
bimodule Hdim

c (YG
U ,O)eL

F

s extends to an OGF -ONF -bimodule.

We first observe the following:

Lemma 3.5. In order to prove Proposition 3.4 we can assume that NF/LF

is non-cyclic.

Proof. If NF/LF is cyclic then Lemma 1.32 shows that Hdim
c (YG

U ,O)eL
F

s

extends to an OGF -ONF -bimodule.

The overall aim of the next two sections is to construct two commuting
elements n1,n2 ∈ NF such that LF 〈n1,n2〉 = NF satisfying certain proper-
ties which will allow us to understand the Clifford theory between LF and
NF .

Firstly, let us give a more explicit description of the quotient group
NF/LF . By definition we have an injective morphism

N∗/L∗ ↪→ CG∗(s)/C
◦
G∗(s).

As in [Bon05, Lemma 2.6] we consider the morphism

ωs : CG∗(s)→ Z(G)

with ωs(x) := [y, t] where y ∈ G satisfies π(y) = x. By [Bon05, Corollary
2.8] this induces an injection

CG∗(s)/C
◦
G∗(s) ↪→ Z(G).

Thus, we have an embedding N/L ↪→ Z(G), which induces a map NF/LF ↪→
Z(G)F on fixed points. As Z(G)F ∼= C2

gcd(2,q−1) we can assume by Lemma

3.5 that q is odd and that NF/LF ∼= Z(G)F . Let W (s) (resp. W ◦(s)) be the
Weyl group of CG∗(s) (resp. C◦G∗(s)) with respect to T∗0. By [DM91, Remark
2.4] we have a canonical isomorphism

W (s)/W ◦(s)→ CG∗(s)/C
◦
G∗(s).

Recall that T∗0 is contained in a maximal F ∗-stable Borel subgroup B(s) of
C◦G∗(s). Let Φ(s) be the root system of C◦G∗(s) with set of positive roots

67



Φ+(s) associated to this choice. According to [Bon05, Proposition 1.3] we
have W (s) = W ◦(s)oA(s), where A(s) := {w ∈ W (s) | w(Φ+(s)) = Φ+(s)}.
Since A(s) is F ∗-stable this shows that the map

W (s)F
∗
/W ◦(s)F

∗ → (CG∗(s))
F ∗/(C◦G∗(s))

F ∗

is again an isomorphism. As the morphism ωs induces an isomorphism

(CG∗(s)/C
◦
G∗(s))

F ∗ ∼= Z(G)F ∼= C2 × C2

we conclude that there exist w∗1, w
∗
2 ∈ (W ∗)F

∗
with w1t = tz1 and w2t = tz2.

Since (W ∗)F
∗

= CW ∗(v
∗) we have w1, w2 ∈ CW (v).

Remark 3.6. The set I{±1,±ω4}(t) is non-empty.

Proof. Suppose that I{±1,±ω4}(t) = ∅. Write w1t =
∏n

i=1 hei(si) for suitable

si ∈ Fp
×

. Then w1tt−1he1(−1) = 1 implies that sit
−1
i ∈ {±1} for all i. Now

note that

∅ = I{±1,±ω4}(t) = I{±1,±ω4}(tz1) = I{±1,±ω4}(
w1t).

Thus, si, ti /∈ {±1,±ω4} and so si = ti for all i. This leads to the contradic-
tion w1t = t.

Recall that the Weyl group W = NG(T0)/T0 can be identified with the
subgroup

{σ ∈ S{±1,...,±n} | σ(−i) = −σ(i) for all i = 1, . . . , n}

of S{±1,...,±n}. By [GP00, Proposition 1.4.10] it follows that the natural map
W ↪→ W identifies the Weyl group W as the kernel of the group homomor-
phism

ε : W → {±1}, σ 7→ (−1)|{i∈{1,...,n}|σ(i)<0}|.

Lemma 3.7. In order to prove Proposition 3.4 we may assume that t is of
the form t =

∏n
i=1 hei(ti) such that ti = tj whenever tj ∈ {±ti,±t−1

i }.

Proof. Let n := {1, . . . , n}. We define the equivalence relation ∼ on n by
saying that i ∼ j if tj ∈ {±ti,±t−1

i }. Let K be a set of representatives for the
equivalence classes of n under∼. We letK ′ := {i ∈ n | t−1

i ∈ {±tk | k ∈ K}}.
Let x ∈ I{±1,±ω4}(t). Under the identification of the Weyl group with a

subgroup of S{±1,...,±n} we set

w := (x,−x)|K
′|
∏
k∈K′

(k,−k) ∈ W.
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Since hei(−1) = he1(−1) = z1 for all i ∈ {1, . . . , n} we see that either wt or
wtz1 is of the desired form. We let t′ ∈ {wt, wtz1} be said element. In order
to prove Proposition 3.4 it is therefore harmless to replace s by its conjugate
s′ := ws ∈ T∗0. Since π(t′) = s′ this element has a preimage t′ ∈ T0 which is
of the form as announced in the lemma.

From now on we assume that the element t has the form given in Lemma
3.7. Recall that

CG(t) = 〈T0,xα(r) | α ∈ Φ with α(t) = 1, r ∈ Fp
×〉.

Let α = ei ± ej ∈ Φ with α(t) = 1. Then α(t) = (tit
±1
j )2 = 1 and therefore

ti = εt∓1
j for some ε ∈ {±1}. By the form of t given in Lemma 3.7, this

implies ti = tj. In addition, we have α = ei − ej if ti is not a 4th root of
unity. Therefore, the root system Φ(t) of CG(t) is given by

Φ(t) = ({±ei±ej | i, j ∈ I{±1}(t)}∪{±ei±ej | i, j ∈ I{±ω4}(t)}∪{ei−ej | ti = tj})∩Φ.

We write W (t) for the Weyl group of CG(t) relative to the torus T0.

Lemma 3.8. We have |I{±1}(t)| = |I{±ω4}(t)| = 1.

Proof. Recall that w2 ∈ W satisfies w2t = tz2 where z2 =
∏n

i=1 hei(ω4).
Therefore, we have

I{±1}(
w2t) = I{±1}(tz2) = I{±ω4}(t).

Thus, w2 swaps the sets I{±1}(t) and I{±ω4}(t). Hence, |I{±1}(t)| = |I{±ω4}(t)|.
Note that I{±1}(t) = I{±1}(

w1t) and I{±ω4}(t) = I{±ω4}(
w1t).

Suppose that |I{±1}(t)| > 1 and let a, b ∈ I{±1}(t) with a 6= b. Fix
c, d ∈ I{±ω4}(t) with c 6= d and let w′1 := (a,−a)(d,−d) ∈ W . It follows that
w′1t = tz1.

Recall that
Z(CG(t)) =

⋂
α∈Φ(t)

Ker(α).

Let λ =
∏n

i=1 hei(λi) ∈ Z(CG(t)) be arbitrary. Since ea + eb, ea − eb ∈ Φ(t)
we have (λaλ

±1
b )2 = 1. This implies that λa and λb are 4th roots of unity.

An analogue argument shows that λc and λd are also 4th roots of unity. We
conclude that w′1λ = λz1 or w′1λ = λ in this case.

Note that π(CG(t)) = C◦G∗(s) by [Bon05, (2.2)]. From this we can con-
clude that

π(Z◦(CG(t))) = Z◦(C◦G∗(s)).
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As w′1π(λ) = π(λ) for all λ ∈ Z(CG(t)) we conclude that w′1 ∈ L∗ =

CG∗(Z
◦(C◦G∗(s))). Since w−1

1 w′1t = t it follows that w−1
1 w′1 ∈ W (t). From

this we deduce that w1 ∈ L∗ = CG∗(Z
◦(C◦G∗(s))). This contradicts the as-

sumption N∗/L∗ ∼= Z(G).
We conclude that |I{±1}(t)| ≤ 1. By Remark 3.6 we must have |I{±1}(t)| =

1.

By the previous lemma, up to a change of coordinates, we may assume
that I{±1}(t) = {1} and I{±ω4}(t) = {n}.

In the following remark (which will not be needed anymore) we relate our
calculations to the classification of quasi-isolated elements in [Bon05].

Remark 3.9. According to the classification in [Bon05, Table II] there exist
three G∗-conjugacy classes of semisimple elements s such that

A(s) = CG∗(s)/C
◦
G∗(s)

∼= C2 × C2.

In two of these cases the minimal Levi subgroup L∗ containing C◦G∗(s) satisfies
CG∗(s)∩L∗ 6= C◦G∗(s), i.e. CL∗(s)/C

◦
L∗(s) is cyclic. In the other case we have

that L∗ = C◦G∗(s) is of type An−3.
Let us now explain how we obtain this semisimple conjugacy class with

our methods. If we set

t := hen(ω4)
n−1∏
i=2

hei(ω)

for some ω ∈ Fp
× \ {±1,±ω4} then the element s := π(t) is a representative

of this third conjugacy class.

3.5 Computations in the Weyl group

Let us collect the information we have obtained so far. The root system Φ(t)
of CG(t) is given by

Φ(t) = {ei − ej | ti = tj} \ {0}.

Observe that CG(t) is an F -stable Levi subgroup of G which by Remark 2.16
is in duality with L∗ so that L = CG(t). In particular, since π(t) = s we
obtain L∗ = C◦G∗(s).

Let us introduce some further notation.
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Definition 3.10. Let I = {2, . . . , n− 1} and define Φ
′
:= {±ei ± ej | i, j ∈

I } \ {0}. Let

T1 := 〈hα(r) | r ∈ Fp
×
, α ∈ {e1 ± en}〉

and

G2 := 〈hᾱ(r̄),xα(r) | ᾱ ∈ Φ
′
, α ∈ Φ(t), r̄ ∈ Fp

×
, r ∈ Fp〉.

The roots {e1 ± en} are orthogonal to those in Φ
′

and no non-trivial
linear combination of {e1 ± en} and Φ(t) is a root in Φ. Therefore, we have
T1 ⊆ Z(L). For T2 := G2∩T0 we have T0 = T1T2. This implies L = T1G2

and T1 ∩T2 = 〈z1〉.

Lemma 3.11. Consider the restriction map

Res : {σ ∈ S{±1,...,±n} | σ(1), σ(n) ∈ {±1,±n}} → S{±1,±n}.

We have Res(v) ∈ 〈(1,−1)(n,−n), (1,−n)(−1, n)〉.

Proof. Firstly, note that vF0(s) = s which implies that I{±1,±ω4}(
vt) = I{±1,±ω4}(t).

Therefore, Res(v) is well-defined.
Since w2 permutes the sets I{±1}(t) = {1} and I{±ω4}(t) = {n} we have

Res(w2) = (1,−n)(−1, n). Let w′1 = (1,−1)(n,−n) ∈ W . Then we have
w′1t = tz1. This implies that w′1w

−1
1 ∈ W (t). Since W (t) ⊆ Ker(Res) we must

have Res(w1) = (1,−1)(n,−n).
As w1, w2 ∈ CW (v) we have [Res(wi),Res(v)] = 1 for i = 1, 2. Thus,

Res(v) ∈ CS{±1,±n}(〈(1,−1)(n,−n), (1,−n)(−1, n)〉).

A short calculation shows that the subgroup 〈(1,−1)(n,−n), (1,−n)(−1, n)〉
is self-centralizing in S{±1,±n}.

Lemma 3.12. Let A,B ⊆ Φ such that A ⊥ B. Let x =
∏

α∈A nα(rα) and

y =
∏

β∈B nβ(rβ) for rα, rβ ∈ Fp
×

. If x, y ∈ G then x and y commute.

Proof. Recall that the inclusion map NG(T0) ↪→ NG(T0) induces the em-
bedding W ↪→ W such that W = Ker(ε). We note that ε(nα(1)T0) = −1
for α ∈ Φ if and only if α is a short root. As x, y ∈ NG(T0) we deduce that
the number of short roots in A resp. B is even.

Let α ∈ A and β ∈ B. By Remark 3.3(b) we have nα(rα)nβ(rβ) = nα(rα),
if either α or β is a long root. On the other hand by Remark 3.3(c), we have
nα(rα)nβ(rβ) = hα(−1)nα(rα) if both α and β are short roots. Note that if α
is a short root then hα(−1) = he1(−1). The result follows from this.
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In the following, we will consider the element

n1 := ne1(1)ne1(1)ne1−en (1) ∈ NG(T0),

which is a preimage of w′1 = (1,−1)(n,−n) ∈ W . By the proof of Lemma 3.11

it is possible to find n′2 ∈ 〈nei(r)nej(s),nei−ej(r) | i 6= j, i, j ∈ I, r, s ∈ Fp
×〉

such that the element

n2 := ne1−en(1)n′2 ∈ NG(T0)

is a preimage of w2 ∈ W .

Lemma 3.13. The elements n1 and n2 commute. In addition, we have
n1 ∈ CG(G2).

Proof. Let us first prove that n1 and n2 commute. By Remark 3.3(c) we
have nej(u)nei (1) = nej(−u) = hej(−1)nej(u) for u ∈ Fp, whenever i 6=
j. By the relation in [Spä06, Theorem 2.1.6(b)] we have ne1(1)ne1−en (1) ∈
{nen(1),nen(−1)}. By Lemma 3.12,

nn2
1 = n

ne1−en (1)
1 = ne1(1)ne1−en (1)ne1(1)ne1−en (1)2

= ne1(1)ne1−en (1)ne1(1)he1−en (−1).

According to [Spä06, Remark 2.1.8] we have he1−en(−1) = he1(ω4)hen(ω−1
4 ),

where ω4 ∈ Fp
×

is a fourth root of unity. Using Remark 3.3(a), we obtain

ne1(1)ne1−en (1)ne1(1)he1−en (−1) = ne1(1)ne1−en (1)ne1(1)he1 (ω4) = ne1(1)ne1−en (1)ne1(1)z1.

Since ne1(1)ne1−en (1) ∈ {nen(1),nen(−1)} we deduce that

ne1(1)ne1−en (1)ne1(1)z1 = ne1(1)ne1(1)ne1−en (1) = n1.

Therefore, nn2
1 = n1 and we conclude that n1 and n2 commute.

Finally, note that n1 ∈ CG(G2) by Remark 3.3(b) and [Spä06, Theorem
2.1.6(c)].

Lemma 3.14. We can assume that the elements n1,n2 are F -stable.

Proof. Firstly, recall that if y ∈ T0 there exists t ∈ T0 with y = tF (t)−1

and we have an isomorphism GF → GyF , g 7→ tg, which yields isomorphic
fixed-point structures for all relevant subgroups. We may thus fix a nice
representative of v ∈ W in NG(T0) which we will construct now.

By Lemma 3.11 there exist m1 ∈ 〈n1,ne1−en(1)〉 and m2 ∈ 〈nei(r)nej(s),
nei−ej(r) | i 6= j, i, j ∈ I, r, s ∈ Fp

×〉 such that

m := m1m2
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satisfies mT0 = v in W .

By Lemma 3.13 it follows that m1 ∈ 〈n1,ne1−en(1)〉 commutes with n1.
Moreover, by the proof of Lemma 3.12 we conclude that m2 and n1 commute.
As n1 is F0-stable it therefore follows that (mF0)(n1) = n1.

Since w2 ∈ CW (v) we necessarily have (mF0)(n2)n−1
2 ∈ T0. By Lemma

3.12 it follows that m2 commutes with ne1−en(1) and m1 commutes with n′2.
From this we deduce that

(mF0)(n2)n−1
2 = mn2n

−1
2 = m2n′2n

′−1
2 .

Since m2n′2n
′−1
2 is purely an expression in the roots ei, ei− ej with i, j ∈ I we

can deduce that

(mF0)(n2)n−1
2 ∈ T2 = 〈hei(r) | i ∈ I, ri ∈ Fp

×〉.

By Lang’s theorem applied to the Frobenius endomorphism mF0 : T2 → T2

there exists t2 ∈ T2 such that (mF0)(t2n2) = t2n2. Replacing n2 by t2n2 ∈
〈nei(r)nej(s),nei−ej(r) | i 6= j, i, j ∈ I, r, s ∈ Fp

×〉 we can henceforth assume
that (mF0)(n2) = n2. Note that the statement of Lemma 3.13 remains
valid since n1 centralizes the subtorus T2. This completes the proof of the
lemma.

We are now ready to prove the main result of this section.

Proposition 3.15. We have LF 〈n1,n2〉 = NF .

Proof. The elements n1,n2 ∈ NG(T0) satisfy n1t = tz1 and n2t = tz2.
From this we deduce that π(n1), π(n2) ∈ CG∗(s). By duality we have an
isomorphism NF/LF ∼= (N∗)F

∗
/(L∗)F

∗
from which we can conclude that

LF 〈n1,n2〉 = NF .

In the next section we will consider the subgroup L0 of LF defined by
L0 = TF

1 GF
2 . As T1 ⊆ CL(G2) it follows that L0 is a central product of TF

1

and GF
2 . The following lemma shows that LF/L0

∼= C2.

Lemma 3.16. Let L : G → G, g 7→ g−1F (g), denote the Lang map of G.
There exists x1 ∈ T1 and x2 ∈ T2 such that L(x1) = L(x2) = he1(−1) and
x := x1x2 satisfies LF = TF

1 GF
2 〈x〉.

Proof. The existence of x1 and x2 follows by applying Lang’s theorem. Since
T1 ∩G2 = T1 ∩T2 = 〈he1(−1)〉 the second claim follows.
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3.6 Representation theory

At the beginning of Section 3.5 we have established that L∗ = C◦G(s), so in
particular s ∈ Z(L∗)F

∗
. Let ŝ : LF → O× be the character of LF correspond-

ing to the central element s ∈ Z(L∗)F
∗
, see [CE04, Equation 8.19].

Lemma 3.17. The linear character ŝ : LF → O× extends to NF .

Proof. By [Spä10, Theorem 1.1] the character λ := ResL
F

TF0
(ŝ) extends to

its inertia group in NGF (TF
0 ). However, n1,n2 ∈ NGF (TF

0 ) and λ is NF -
invariant which implies that λ extends to a character λ′ of TF

0 〈n1,n2〉. We
define a character ŝ′ : NF → O× by ŝ′(x) := ŝ(l)λ′(n) where x ∈ NF with
x = ln for l ∈ LF and n ∈ TF

0 〈n1,n2〉. Note that this character is well-
defined as ŝ and λ agree on the intersection LF ∩TF

0 〈n1,n2〉 = TF
0 .

The following lemma is a module theoretic generalization of [Spä10, Lemma
4.1].

Lemma 3.18. Let Ỹ be a finite group with normal subgroup X̃ and subgroup
Y such that Ỹ = Y X̃. Denote X := Y ∩ X̃ and suppose that ` - [Y : X].
Suppose that M is an absolutely indecomposable OX-module which extends
to an OY -module and suppose that M̃ is an OX̃-module such that M =

ResX̃X(M̃). If M̃ is Ỹ -invariant then M̃ extends to Ỹ .

Proof. Let us recall some basic facts about Clifford theory, see [BDR17a, Sec-
tion 7.B] (over k) and [Dad84] (over O). We follow the notation in [BDR17a,
Section 7.B].

Firstly, for y ∈ Y , define

Ny := {φ ∈ End×O(M) | φ(xm) = yxy−1φ(m) for all x ∈ X,m ∈M}

and let N := ∪y∈YNy. Note that N is a group with normal subgroup N1.
Since M is Y -invariant we have a surjective morphism Y → N/N1 given by
y 7→ yN1. We form the group

Ŷ := Y ×N/N1 N = {(y, ϕ) ∈ Y ×N | ϕ ∈ Ny}.

We let A := EndOX(M). Consider the following exact sequence:

1→ A× → Ŷ → Y → 1.

The OX-module M extends to an OY -module if and only if this sequence
splits, see [Dad84, 1.7]
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The action of X on M defines an element φx ∈ Nx for every x ∈ X. We
identifyX with its image under the diagonal embeddingX ↪→ Ŷ , x 7→ (x, φx).
As ` - [Y : X] it follows (see [Dad84, Theorem 4.5]) that M extends to an
OY -module if and only if the following exact sequence splits:

1→ A×/(1 + J(A))→ Ŷ /X(1 + J(A))→ Y/X → 1.

Similarly, we can look at M̃ instead of M . We denote the corresponding
objects with a tilde. Analogously, the module M̃ extends to an OỸ module
if and only if the following exact sequence splits:

1→ Ã×/(1 + J(Ã))→ ̂̃
Y /X̃(1 + J(Ã))→ Ỹ /X̃ → 1.

Let π : Ỹ /X̃ → Y/X be the inverse map of the natural isomorphism Y/X →
Ỹ /X̃. Restriction defines a homomorphism Ã× → A×.

Now we define a map
̂̃
Y → Ŷ as follows. For (ỹ, φ) ∈ ̂̃Y we let x̃ ∈ X̃

such that y := ỹx̃ ∈ Y . Let φx̃ be the natural action of x̃ on M̃ . Then it
follows that φφx̃ ∈ Ñy ⊆ Ny. We define

π̂ :
̂̃
Y /X̃ → Ŷ /X, (ỹ, φ) 7→ (y, φφx̃).

Note that if x̃′ ∈ X̃ with y′ := ỹx̃′ ∈ Y then x := x̃−1x̃′ ∈ X and we
have y′ = yx. From this we deduce that (y′, φφx̃′) = (y, φφx) in Ỹ /X which
shows that the map π̂ is well-defined. We can therefore consider the following
commutative diagram:

1 Ã×/(1 + J(Ã))
̂̃
Y /X̃(1 + J(Ã)) Ỹ /X̃ 1

1 A×/(1 + J(A)) Ŷ /X(1 + J(A)) Y/X 1

π̂ π

Now note that π is an isomorphism. Moreover, as M and M̃ are absolutely
indecomposable we have A×/(1 + J(A)) ∼= k× and Ã×/(1 + J(Ã)) ∼= k×.
Thus, the first and the third vertical map are isomorphisms. By the five

lemma, it follows that π̂ :
̂̃
Y /X̃(1 + J(Ã)) → Ŷ /X(1 + J(A)) is also an

isomorphism. Therefore, the first and the second row of the diagram above
are isomorphic group extensions. However, by assumption we already know
that M extends to an OY -module which implies that the sequence in the
second row splits. Thus, also the sequence of the first row splits and M̃
extends to an OỸ -module.
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We are now ready to prove the main statement of this section.

Proposition 3.19. Let M be an NF -invariant indecomposable OGF -OLF eL
F

s -
bimodule. If ` does not divide q2 − 1 then M extends to an OGF -ONF -
bimodule.

Proof. By Lemma 3.17, it follows that M extends to GF × (NF )opp if and
only if M ⊗O ŝ−1 extends to GF × (NF )opp. We may therefore assume from
now on that M is an indecomposable OGF -OLF eL

F

1 -bimodule.
Since ` - [LF : L0] there exists an indecomposable OGF -OL0-bimodule

M0 such that M is a direct summand of Ind
GF×(LF )opp

GF×Lopp
0

(M0). As 1× (TF
1 )opp

is central in GF × Lopp
0 we deduce that

Res
GF×Lopp

0

1×(TF1 )opp

`′
(M0) = Sdim(M0)

for some simple O(T1)F`′ -module S. Let λ : (T1)F`′ → O× be the character

corresponding to S. Since Res
GF×(LF )opp

1×(LF )opp (M) is an OLF eL
F

1 -module it follows
that λ is a character in a unipotent block, which implies that λ is the trivial
character.

Note that |TF
1 | ∈ {(q− 1)2, q2− 1} and therefore ` - |TF

1 | by assumption.
We conclude that

Res
GF×Lopp

0

1×(TF1 )
opp(M0) = Odim(M0),

where O is the trivial O(TF
1 )

opp
-module. Since L0/T

F
1
∼= GF

2 /〈z1〉 we may
consider M0 as an indecomposable O[GF × (GF

2 /〈z1〉)opp]-module.
The element n1 centralizes GF

2 and hence we can extend M0 to anO[GF×
(L0〈n1〉)opp]-module by letting n1 act trivially on M0. We denote this exten-
sion by M1.

Since M is a direct summand of Ind
GF×(LF )opp

GF×Lopp
0

(M0) it follows that its

restriction Res
GF×(LF )opp

GF×Lopp
0

(M) is a direct summand of

Res
GF×(LF )opp

GF×Lopp
0

Ind
GF×(LF )opp

GF×Lopp
0

(M0) ∼= M0 ⊕Mx
0 ,

where x = x1x2 ∈ LF as in Lemma 3.16. As the quotient group LF/L0 is
cyclic of `′-order it follows by [Rou98, Lemma 10.2.13] that either

Res
GF×(LF )opp

GF×(L0)opp (M) ∼= M0 or Res
GF×(LF )opp

GF×(L0)opp (M) ∼= M0 ⊕Mx
0 .

We treat these two cases separately.
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Case 1: Assume that Res
GF×(LF )opp

GF×Lopp
0

(M) ∼= M0.

Since M is NF -invariant it follows that M0 is NF -invariant.
We have [n1,n2] = 1. Thus, the action of n1 on Mn2

1 is equal to the
action of n2n1n

−1
2 = n1 on M1. However, n1 acts trivially on M0. Since M0

is n2-invariant there exists an isomorphism φ : M0 → Mn2
0 of GF × (L0)opp-

modules. Recall that n1 ∈ CG(G2), so n1 acts trivially on M1. It follows
that φ : M1 → Mn2

1 is an isomorphism of OGF × (L0〈n1〉)opp-modules or in
other words M1 is n2-invariant. From this we conclude that M1 extends to
GF × (L0〈n1,n2〉)opp.

Applying Lemma 3.18 to X̃ = GF×(LF )opp and Y = GF×(L0〈n1,n2〉)opp)
implies that M extends to a GF × (NF )opp-module.

Case 2: Assume that Res
GF×(LF )opp

GF×Lopp
0

(M) ∼= M0 ⊕ xM0.

We note that Mn1
0
∼= M0. On the other hand, we either have Mn2

0
∼= M0 or

Mn2x
0
∼= M0.

Suppose that Mn2
0
∼= M0. Then M0 is NF -invariant. Using the same proof

as in case 1 we deduce that M0 extends to a GF × (L0〈n1,n2〉)opp-module.
Suppose that Mn2x

0
∼= M0. We have he1(−1)x = he1(−1) as L(x1) =

L(x2) = he1(−1). Since x2 ∈ G2 we conclude that nx2
1 = n1. Therefore,

nn2x
1 = nx1 = nx1

1 .

Clearly, x1x
n−1

1
1 ∈ TF

1 which implies that nx1
1 n−1

1 ∈ TF
1 . From this we

deduce that nn2x
1 n−1

1 ∈ TF
1 . Now n1 acts on Mn2x

1 as nn2x
1 acts on M1. Since

TF
1 and n1 act trivially on M1 it follows that n1 acts trivially on Mn2x

1 . Since
M0 is n2x-invariant it follows that M1 is n2x-invariant. Thus, M0 extends to
a GF × (L0〈n1,n2x〉)opp-module.

It follows that M0 extends to a GF × (L0〈n1, n̂2〉)opp-module M ′, where
n̂2 ∈ {n2,n2x}. By Mackey’s formula we deduce that

Res
GF×(NF )opp

GF×(LF )opp Ind
GF×(NF )opp

GF×(L0〈n1,n̂2〉)opp(M ′) ∼= Ind
GF×(LF )opp

GF×Lopp
0

Res
GF×(L0〈n1,n̂2〉)opp

GF×Lopp
0

(M ′) ∼= M.

Thus, Ind
GF×(NF )opp

GF×(L0〈n1,n̂2〉)opp(M ′) is an extension of M to GF × (NF )opp. This
finishes the proof.

Using a standard argument in Clifford theory we can now deduce Propo-
sition 3.4 from the previous proposition.

Proof of Proposition 3.4. According to [BDR17a, Theorem 7.2] the bimodule
Hd
c (YG

U ,O)eL
F

s is ONF -invariant. Let Hd
c (YG

U ,O)eL
F

s =
⊕k

i=1Mi be a de-

composition into NF -orbits of indecomposable direct summands ofHd(YG
U ,O)eL

F

s .
Let Ni be an indecomposable direct summand of Mi and Ti be its inertia
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group in NF . If Ti is a proper subgroup of NF then Ti/L
F is cyclic of `′-

order so that Ni extends to GF × (Ti)
opp. If Ti = NF then Ni extends

to GF × (NF )opp by Proposition 3.19. Let N ′i be an extension of Ni to

GF × (Ti)
opp. By Clifford theory, it follows that Ind

GF×(NF )opp

GF×(Ti)opp (N ′i) is an ex-

tension of Mi. This shows that Hd
c (YG

U ,O)eL
F

s extends to GF ×(NF )opp.

3.7 Proof of Morita equivalence

In Proposition 3.4 we have proved that theOGF -OLF -bimoduleHdim
c (YG

U ,O)eL
F

s

extends to anOGF -ONF -bimodule. We prove now that the extended bimod-
ule induces a Morita equivalence. In the original proof of [BDR17a, Theorem
7.5] the authors use that Hdim

c (YG
U , k)eL

F

s extends to a kGF×(NF )opp∆(ÑF )-
module. Since we were not able to show this in our situation we need to use
a different approach. In order to remedy this problem, we borrow arguments
from [BDR17b].

From now on let G be a connected reductive group. We keep the notation
of [BDR17a, Section 7.C]. In particular we fix a regular embedding G ↪→ G̃.
We denote L̃ = LZ(G̃) and Ñ = NL̃.

Proposition 3.20. Suppose that the OGF -OLF -bimodule Hdim
c (YG

U ,O)eL
F

s

extends to an OGF -ONF -bimodule M ′. Then the bimodule M ′ induces a
Morita equivalence between ONF eL

F

s and OGF eG
F

s .

Proof. LetM ′ be anOGF×(NF )opp-bimodule extendingM := Hd
c (YG

U ,O)eL
F

s .
Recall that M is projective as OGF -module and projective as OLF -module.
As ` - [NF : LF ] it follows that M ′ is projective as ONF -module. Note that

IndG̃F

GF M is a faithful OG̃F eG
F

s -module, see proof of [BDR17a, Theorem 7.5].
Thus, M is a faithful OGF eG

F

s -module.
By Theorem 1.29 it suffices to prove that M ′ ⊗O K induces a bijection

between irreducible characters of KNF eL
F

s and KGF eG
F

s . As M is a faith-
ful OGF eG

F

s -module it suffices to prove that the natural map KNF eL
F

s →
EndKGF (M ′⊗OK) is an isomorphism. As in the proof of [BDR17a, Theorem

7.5] we consider theO[G̃F×(L̃F )opp]-module M̃ = Ind
G̃F×(L̃F )opp

GF×(LF )opp∆L̃F
(M). We

have IndG̃F

GF (M ′) ∼= M̃ as G̃F -modules. Since M is G̃F -invariant this implies

dim(EndKGF (M)) = [G̃F : GF ] dim(EndKG̃F (M̃)).

In addition, the bimodule M̃ extends to an O[G̃F × (ÑF )opp]-bimodule M̃ ′,
see proof of [BDR17a, Theorem 7.5], which induces a Morita equivalence
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between OG̃F eG
F

s and OÑF eL
F

s . This shows that dim(EndKG̃F (M̃)) =

dim(KÑF eL
F

s ). Moreover, we have

dim(KÑF eL
F

s ) = [ÑF : NF ] dim(KNF eL
F

s ).

From these calculations using G̃F/GF ∼= ÑF/NF we deduce that

dim(EndKGF (M)) = dim(KNF eL
F

s ).

To complete the proof we show the following lemma:

Lemma 3.21. The natural map KNF eL
F

s → EndKGF (M ′) is injective.

Proof. Let ṅ be a representative of n ∈ NF/LF in NF . Let αn ∈ OLF eL
F

s ,

n ∈ NF/LF , such that
∑

n∈NF /LF αnṅ = 0 onM ′. Denote M̂ := Ind
GF×(L̃F )opp

GF×(LF )oppM .

Let θṅ be the automorphism on M̂ induced by the action of ṅ on M ′. More
concretely, we have

θṅ(m⊗ l) = mṅ⊗ nl

for l ∈ (L̃F )opp and m ∈M ′.
For l ∈ L̃F we have θṅ ◦ l ◦θ−1

ṅ = nl on M̂ . Let e ∈ Z(OL̃F ) be the central
idempotent as in [BDR17a, Theorem 7.5] such that eL

F

s =
∑

n∈NF /LF
ne. We

have
M̂ =

⊕
n∈NF /LF

M̂ ne.

For m ∈ M̂e we therefore have∑
n∈NF /LF

αnθṅ(m) = 0.

As θṅ(m) ∈ M̂ ne we have αnθṅ(m) = 0 for all n ∈ NF/LF andm ∈ M̂e. This
means that αnθṅ vanishes on M̂e. Composing with θ−1

ẏ for y ∈ NF/LF shows

that αnθṅ vanishes on M̂ ye as well. We conclude that αnθn = 0 on M̂ . As θṅ
is an isomorphism we must have αn = 0 on M̂ . Since M̂ = Res

G̃F×(L̃F )opp

GF×(L̃F )opp(M̃)

and M̃ is a faithful OL̃F eL
F

s -module we deduce that αn = 0. It follows that
KNF eL

F

s → EndKGF (M ′) is injective.

Now let us finish the proof of Proposition 3.20. Since dim(EndKGF (M)) =
dim(KNF eL

F

s ) it follows that the natural map

KNF eL
F

s → EndKGF (M ′)

is an isomorphism. Thus, the bimoduleM ′⊗OK induces a Morita equivalence
between KNF eL

F

s and KGF eL
F

s . As we have argued above this implies that
M ′ induces a Morita equivalence between ONF eL

F

s and OGF eG
F

s .
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We can now prove the main theorem of this chapter.

Theorem 3.22. Suppose that G is a simple algebraic group. If ` - (q2 − 1)
or if NF/LF is cyclic then the complex GΓc(Y

G
U ,O)redeL

F

s of OGF -OLF -
bimodules extends to a complex C of OGF -ONF -bimodules. The complex C
induces a splendid Rickard equivalence between OGF eG

F

s and ONF eL
F

s and
the bimodule Hdim(YU)(C) induces a Morita equivalence between OGF eG

F

s

and ONF eL
F

s .

Proof. The quotient NF/LF is of `′-order and embeds into Z(G)F , see for
instance [CE04, Lemma 13.16(i)]. Thus, the quotient NF/LF is cyclic of
`′-order unless possibly if G is simply connected and GF is of untwisted type
Dn, n ≥ 4 even. If NF/LF is cyclic (of `′-order) then it follows by [Rou98,
Lemma 10.2.13] that the OGF -OLF -bimodule Hdim

c (YU,O)eL
F

s extends to
an OGF -ONF -bimodule M ′. In the remaining cases Proposition 3.4 asserts
that the bimodule Hdim

c (YG
U ,O)eL

F

s extends to an OGF -ONF -bimodule M ′.
By Proposition 3.20 the extended bimodule M ′ induces a Morita equiva-

lence between ONF eL
F

s and OGF eG
F

s .
Let eG

F

s =
∑r

i=1 bi be a decomposition into blocks. Since M ′ induces

a Morita equivalence between ONF eL
F

s and OGF eG
F

s it follows that M ′ =
⊕ri=1biM

′ is a decomposition into indecomposableOGF eG
F

s -ONF eL
F

s -bimodules.

By Proposition 3.19 it follows that Res
GF×(NF )opp

GF×(LF )opp (biM
′) decomposes into

pairwise non-isomorphic indecomposable summands. Since biRes
GF×(NF )opp

GF×(LF )opp (M ′)

and bjRes
GF×(NF )opp

GF×(LF )opp (M ′) have no non-zero direct summand in common for

i 6= j, it follows that Res
GF×(NF )opp

GF×(LF )opp (M ′) decomposes into pairwise non-
isomorphic indecomposable summands.

In particular, one observes that the conclusion of [BDR17a, Theorem 7.6]
and therefore of [BDR17a, Theorem 7.7] holds true in this case. This proves
Theorem 3.22.

It might be worth mentioning that even though we have not managed to
prove Theorem 3.22 without a restriction on the prime ` our proof yields a
bijection between ordinary characters.

Corollary 3.23. Suppose that G is a simple algebraic group. Then the
bimodule Hdim

c (YG
U , K)eL

F

s extends to a KGF -KNF -bimodule M ′. This bi-
module induces a character bijection Irr(NF , eL

F

s )→ Irr(GF , eG
F

s ).

80



Chapter 4

Equivariant Morita equivalence
and local equivalences

In the first part of this chapter we recall the classification of automorphisms
of finite simple groups of Lie type. A careful analysis of these automor-
phisms will be necessary to study the ”Clifford theory” with respect to these
automorphisms of the Bonnafé–Dat–Rouquier Morita equivalence.

In the second part, we will discuss some extensions of the Bonnafé–Dat–
Rouquier Morita equivalence to local subgroups. This will require working
with disconnected reductive groups.

4.1 Automorphisms of simple groups of Lie

type

We briefly recall the classification of automorphisms of finite simple groups
of Lie type. Let G be a simple algebraic group of simply connected type. Fix
a maximal torus T0 and a Borel subgroup B0 of G containing T0. We let Φ
be the root system relative to T0 and ∆ be the base of Φ relative to T0 ⊆ B0.
For every α ∈ Φ we fix a one-parameter subgroup xα : (Fp,+) → G as in
Section 3.2.

We consider the following bijective morphisms of G:

• The field endomorphism φ0 : G→ G, xα(t) 7→ xα(tp) for every t ∈ Fp
and α ∈ Φ.

• For any length-preserving symmetry γ of the Dynkin diagram associ-
ated to the root system Φ we consider the graph automorphism γ :
G→ G given by γ(xα(t)) = xγ(α)(t) for every t ∈ Fp and α ∈ ±∆.
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For any fixed prime power q = pf of p and a graph automorphism γ
we consider the Frobenius endomorphism F = φf0γ : G → G. Note that
any Frobenius endomorphism of G is (up to inner automorphisms of G) of
this form by [MT11, Theorem 22.5]. We say that (G, F ) is untwisted if γ is
the identity and twisted otherwise. Moreover, let ι : G ↪→ G̃ be a regular
embedding. Then the automorphisms of GF obtained by conjugation with
G̃F are called diagonal automorphisms of GF .

Lemma 4.1. There exists a regular embedding ι : G ↪→ G̃ such that the bi-
jective morphisms γ : G→ G and φ0 : G→ G extend to bijective morphisms
γ̃ and φ̃0 of G̃ such that:

(a) The morphisms γ̃ and φ̃0 commmute.

(b) Let F̃ := φ̃0
f
γ̃ be an extension of the Frobenius F = φf0γ of G. Then

the order of φ̃0|G̃F̃ (resp. γ̃|G̃F̃ ) and of φ0|GF (resp. γ|GF ) coincide.

Proof. Such a regular embedding is for instance constructed in [MS16, Sec-
tion 2.B]. Alternatively, as in Remark 2.31, one can define G̃ := T0×Z(G) G

and for (t0, g) ∈ G̃ define γ̃(t0, g) := γ(t0)γ(g) and φ̃0(t0, g) := φ̃(t0)φ̃(g)
respectively.

Let φ : G → G be a bijective morphism as in Lemma 4.1. Then this
lemma shows that we can construct suitable extensions of φ to G̃ such that all
relevant relations are preserved. Therefore, we will also denote by φ : G̃→ G̃
such an extension to G̃.

Proposition 4.2. Let G be a simple algebraic group of simply connected
type such that GF/Z(G)F is simple and non-abelian. If (G, F ) is untwisted
then any automorphism of GF is a product of a graph automorphism, a field
automorphism and a diagonal automorphism. Otherwise, any automorphism
of GF is a product of a field and a diagonal automorphism.

Proof. See [MT11, Theorem 24.24].

To avoid cumbersome notation we will use the same letter for bijective
morphisms of G commuting with F and their restriction to GF :

Notation 4.3. Let σ : G→ G be a bijective morphism of algebraic groups
with σ◦F = F ◦σ. Then we also denote by σ : GF → GF the automorphism
of GF obtained by restricting σ to GF . In particular, the expression GFo〈σ〉
always denotes the semidirect product of finite groups obtained by letting
σ : GF → GF act on GF .
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This allows us to give a description of the stabilizer of eG
F

s in terms of
the automorphisms of Lemma 4.1.

Corollary 4.4. Let G be a simple algebraic group of simply connected type
not of type D4 with Frobenius F . Let s ∈ (G∗)F

∗
be a semisimple element of

`′-order. There exists a Frobenius endomorphism F0 : G̃ → G̃ with F r
0 = F

for some positive integer r and a bijective morphism σ : G̃ → G̃ such that
the image of G̃F o 〈F0, σ〉 in Out(GF ) is the stabilizer of eG

F

s in Out(GF ).

Proof. Let DiagGF be the image of the set of diagonal automorphisms in
Out(GF ). The stabilizer of eG

F

s in Out(GF ) contains DiagGF by Lemma
2.32.

Suppose that (G, F ) is twisted. In this case, the group Out(GF )/DiagGF

is cyclic and the statement of the corollary can be deduced from this.
Now suppose that (G, F ) is untwisted. If the Dynkin diagram of G

admits a non-trivial symmetry we let γ : G→ G be a graph automorphism
associated to such a symmetry. Then the classification of simple groups of
Lie type shows that Out(GF )/DiagGF

∼= 〈γ, φ0〉 ∼= Ct × Cm, where t ≤ 3.
Thus, every subgroup of Out(GF )/DiagGF is either cyclic or isomorphic to
〈γ〉 × 〈F0〉, where F0 = φi0 : G → G for some i with i | f . Lemma 4.1 now
yields the claim.

4.2 Equivariance of Deligne–Lusztig induction

In this section we establish some elementary results on the action of group au-
tomorphisms on Deligne–Lusztig varieties. Most of the results in this section
are known, see [NTT08, Section 2].

Let G be a reductive group and σ : G → G be a bijective morphism of
algebraic groups which commutes with the action of the Frobenius endomor-
phism F , i.e. we have σ ◦ F = F ◦ σ. Let P be a parabolic subgroup of G
with Levi decomposition P = L nU such that F (L) = L. Note that σ(P)
is a parabolic subgroup of G with F -stable Levi σ(L) and unipotent radical
σ(U).

Lemma 4.5. Let G be a not necessarily connected reductive group. Let
σ : G → G be a bijective automorphism of G commuting with the action of
F and stabilizing L. Then σ induces an isomorphism

σ∗ : RΓc(Y
G
σ(U),Λ)→ σRΓc(Y

G
U ,Λ)σ

in Db(Λ[GF × (LF )opp]).
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Proof. The variety YG◦
U is smooth, see for instance [CE04, Theorem 7.2]. By

Lemma 2.8, we have YG
U =

∐
g∈GF /(G◦)F gY

G◦
U which implies that the variety

YG
U is smooth as well. Thus, as in the proof of [NTT08, Proposition 2.1] it

follows that the morphism σ : σYσ−1

U → Yσ(U) given by gU 7→ σ(g)σ(U) is
GF × (LF )opp-equivariant and induces an isomorphism of étale sites.

The statement of the previous lemma can be refined.

Lemma 4.6. In the situation of Lemma 4.5 we have an isomorphism

σ∗ : GΓc(Y
G
σ(U),Λ)→ σGΓc(Y

G
U ,Λ)σ

in Hob(Λ[GF × (LF )opp]).

Proof. As we have seen in the proof of Lemma 4.5, the morphism σ : σ(YU)σ →
Yσ(U) induces an isomorphism of étale sites. Now [Rou02, Theorem 2.12]
shows that the map GΓc(Y

G
σ(U),Λ)→ σGΓc(Y

G
U ,Λ)σ is an isomorphism.

From now on let G be a connected reductive group and s ∈ (G∗)F
∗

a semisimple element of `′-order. Using Lemma 4.5 one can show that
σE(GF , t) = E(GF , (σ∗)−1(t)) for every semisimple element t ∈ (G∗)F

∗
,

see [NTT08, Corollary 2.4] and also [Tay18, Proposition 7.2].

Lemma 4.7. Let G be a connected reductive group and s ∈ (G∗)F
∗

a
semisimple element of `′-order. Then σ(eG

F

s ) = eG
F

(σ∗)−1(s).

Proof. Recall that eG
F

s =
∑

χ∈E`(GF ,s)

eχ. Moreover, we have

σE`(GF , s) =
∐

t∈G∗F
∗

:t`′=s

σE(GF , t) =
∐

t∈G∗F
∗

:t`′=s

E(GF , (σ∗)−1(t)) = E`(GF , (σ∗)−1(s))

due to [NTT08, Corollary 2.4]. Since σ(eχ) = eσχ for any character χ ∈
Irr(GF ), we conclude that

σ(eL
F

s ) =
∑

χ∈E`(GF ,s)

eσχ =
∑

χ∈σE`(GF ,s)

eχ = eG
F

(σ∗)−1(s).

Suppose now that L∗ is an F ∗-stable Levi subgroup of G∗ with C◦G∗(s) ⊆
L∗. Assume that L is in duality with L∗. Moreover, let σ∗ : G∗ → G∗ be
an isogeny dual to σ : G → G such that σ∗ stabilizes L∗ and such that
σ|L and σ∗|L∗ are in duality. Theorem 2.36 then implies the following useful
consequence:
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Corollary 4.8. With the notation as above we have an isomorphism

σ(Hd
c (YU,Λ)eL

F

s )σ ∼= Hd
c (YU,Λ)eL

F

(σ∗)−1(s)

of ΛGF -ΛLF -bimodules, where d = dim(YU) = dim(Yσ(U)).

Proof. By Lemma 4.5 we obtain an isomorphism

σ(Hd
c (YU,Λ)eL

F

s )σ ∼= Hd
c (Yσ(U),Λ)σ(eL

F

s )

of ΛGF -ΛLF -bimodules. Consider the parabolic subgroups P1 = P and
P2 = σ(P) with unipotent radical U1 = U respectively U2 = σ(U). Since L
is σ-invariant by assumption P1 and P2 have L as common Levi complement.
By Lemma 4.7 we have σ(eL

F

s ) = eL
F

(σ∗)−1(s). We want to apply Theorem 2.36

to the semisimple element (σ∗)−1(s).
Recall that C◦G∗(s) ⊆ L∗. Since the Levi subgroup L∗ is σ∗-stable it

follows that

(σ∗)−1(C◦G∗(s)) = C◦G∗((σ
∗)−1(s)) ⊆ (σ∗)−1(L∗) = L∗.

Hence, Theorem 2.36 applies and we obtain an isomorphism

Hdim
c (Yσ(U),Λ)eL

F

(σ∗)−1(s)
∼= Hdim

c (YU,Λ)eL
F

(σ∗)−1(s).

This proves our corollary.

4.3 Automorphisms and stabilizers of idem-

potents

Let G be a simple algebraic group of simply connected type not of type D4

with Frobenius F . Let s ∈ (G∗)F
∗

be a semisimple element of `′-order. Recall
that by Corollary 4.4 there exists a Frobenius endomorphism F0 : G̃ → G̃
with F r

0 = F for some positive integer r and a bijective morphism σ : G̃→ G̃
commuting with F0 such that G̃Fo〈F0, σ〉 is the stabilizer of eG

F

s in Out(GF ).
Let L∗ be a minimal Levi subgroup of G∗ containing CG∗(s). Our first

aim in this section is to show that we can assume that F ∗0 (s) = s and therefore
F ∗0 (L∗) = L∗.

To achieve this, we need to recall some general observations on conju-
gacy classes of semisimple elements. For this suppose that H is an F ∗-stable
connected reductive subgroup of G∗ and let t ∈ HF ∗ . Then we denote
AH(t) = CH(t)/C◦H(t) and write TH,t for the set of HF ∗-conjugacy classes
of elements of HF ∗ which are H-conjugate to t. Furthermore, we write
H1(F ∗, AH(t)) for the set of F ∗-conjugacy classes of AH(t).

85



Lemma 4.9. Under the notation as above the set TH,t is in natural bijection
with H1(F ∗, AH(t)).

Proof. This is proved in [DM91, Proposition 3.21]. We recall the construction
of this bijection. If y ∈ HF ∗ is H-conjugate to t then there exists some
x ∈ H such that xy = t. Since both y and t are F ∗-stable it follows that
x−1F ∗(x) ∈ CH(t). Then one defines the map TH,t → H1(F ∗, AH(t)) by
sending the conjugacy class of y to the F ∗-conjugacy class of x−1F ∗(x).

Corollary 4.10. Assume additionally that H and t are F ∗0 -stable. Then the
natural bijection TH,t → H1(F ∗, AH(t)) is F0-equivariant.

Proof. We show that the bijection constructed in the proof of Lemma 4.9
is F ∗0 -equivariant. Let y ∈ HF ∗ be H-conjugate to t and x ∈ H such that
xy = t. Since t is F ∗0 -stable it follows that F ∗0 (x)F ∗0 (y) = t. In particular,
F ∗0 (y) is H-conjugate to t. It follows that F ∗0 (x−1F ∗(x)) is the image of the
conjugacy class of F ∗0 (y) under the map TH,t → H1(F ∗, AH(t)). The claim
follows.

Recall that we assume that the (G∗)F
∗
-conjugacy class of s is F ∗0 -stable.

Using the equivariant bijection from Corollary 4.10 we can show the following:

Lemma 4.11. Let L∗ be the minimal Levi subgroup of G∗ containing CG∗(s).
Then we may assume that L∗ is F0-stable and that the (L∗)F

∗
-conjugacy class

of s is F ∗0 -stable.

Proof. Since the G∗-conjugacy class of s is F ∗0 -stable it follows that there
exists some t ∈ G∗ which is F ∗0 -fixed and G∗-conjugate to s. Let K∗ be the
unique minimal Levi subgroup containing CG∗(t). Since F ∗0 (t) = t it follows
that K∗ is F ∗0 -stable. Moreover, we have CG∗(t) = CK∗(t) and therefore
AK∗(t) = AG∗(t). Let TK∗,s ↪→ TG∗,s be the natural map. Then we have a
commutative square:

TK∗,t H1(F ∗, AK∗(t))

TG∗,t H1(F ∗, AG∗(t))

=

∼=

∼=

From this we deduce that we have a bijection between the set of (K∗)F
∗
-

conjugacy classes of elements which are K∗-conjugate to t and the set of
(G∗)F

∗
-conjugacy classes of elements which are respectively G∗-conjugate to

t.
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In fact, since this bijection is F ∗0 -equivariant by Lemma 4.10 we deduce
that it maps F ∗0 -stable classes to F ∗0 -stable classes. As the (G∗)F

∗
-conjugacy

class of s is F ∗0 -stable there exists some x ∈ (K∗)F
∗

which is (G∗)F
∗
-conjugate

to s. Moreover, the (K∗)F
∗
-conjugacy class of x is F ∗0 -stable. Thus, the

assumptions of the lemma are satisfied if we replace s by x and L∗ by K∗.

Remark 4.12. Let T0 be an F0-stable maximal torus of G. Suppose that
the triple (G∗,T∗0, F

∗
0 ) is in duality with (G,T0, F0). We obtain a bijection

between the GF0-conjugacy classes of F0-stable Levi subgroups of G and
the (G∗)F

∗
0 -conjugacy classes of F ∗0 -stable Levi subgroups of G∗, see Lemma

2.15. Moreover, it follows that (G∗,T∗0, F
∗) is in duality with (G,T0, F ),

where F ∗ := (F ∗0 )r. This in turn gives a bijection between the GF -conjugacy
classes of F -stable Levi subgroups of G and the (G∗)F

∗
-conjugacy classes of

F ∗-stable Levi subgroups of G∗. This bijection is compatible with the afore-
mentioned bijection, i.e. if L is an F0-stable Levi subgroup of G in duality
with the F ∗0 -stable Levi subgroup L∗ of G∗ then L and L∗ are F - respec-
tively F ∗-stable and correspond to each other under the bijection induced
by the duality between (G,T0, F ) and (G∗,T∗0, F

∗). However, note that two
F0-stable Levi subgroups can be GF -conjugate but not GF0-conjugate.

For the remainder of this section we may assume by Lemma 4.11 that
L∗ is F0-stable and that the L∗-conjugacy class of s is F0-stable. Hence,
by Remark 4.12 there exists an F0-stable Levi subgroup L of G which is in
duality with L∗ under the duality between (G, F0) and (G∗, F ∗0 ).

Recall that we assume that σ : G → G is a bijective morphism with
F0 ◦σ = σ ◦F0 which stabilizes the idempotent eG

F

s . By duality, we therefore
obtain a bijective morphism σ∗ : G∗ → G∗ of algebraic groups with σ∗◦F ∗0 =
F ∗0 ◦σ∗. Recall that σ∗ : G∗ → G∗ is only unique up to inner automorphisms
of (G∗)F

∗
0 , see Remark 2.18.

The following proposition compares the stabilizers of eL
F

s and eG
F

s .

Proposition 4.13. There exists some x ∈ GF0 such that xσ normalizes L
and xσeL

F

s = eL
F

s .

Proof. Since the (G∗)F
∗
-conjugacy class of s is σ∗-stable it follows that the

(G∗)F
∗
-conjugacy class of L∗ is σ∗-stable. By Corollary 2.19 it follows that

the GF -conjugacy class of L is σ-stable. We can therefore find g ∈ GF and
h ∈ (G∗)F

∗
such that σ0 := gσ stabilizes L and σ∗0 := hσ∗ stabilizes L∗.

Moreover, we can choose g and h with the additional property that σ0|L and
σ∗0|L∗ are in duality with each other. Since the (G∗)F

∗
-conjugacy class of s

is σ0-stable there exists some n∗ ∈ (G∗)F
∗

such that σ∗0(s) = n∗s. Since L∗

is σ∗0-stable it follows that n∗ ∈ N(G∗)F∗ (L
∗). Let n ∈ NGF (L) be an element
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corresponding to n∗ under the canonical isomorphism

NGF (L)/LF ∼= N(G∗)F∗ (L
∗)/(L∗)F

∗

induced by duality. By applying Lemma 4.7 twice we obtain

σ0(eL
F

s ) = eL
F

σ∗0(s) = eL
F

n∗s = neL
F

s .

Therefore y := g−1n satisfies yσL = L and yσeL
F

s = eL
F

s . Since L and eL
F

s

are F0-stable we conclude that F0(y)y−1 ∈ NGF (L, eL
F

s ) = LF . Therefore by
applying Lang’s theorem to F0 : L → L there exists some l ∈ L such that
F0(y)y−1 = F0(l)l−1. This implies that x := l−1g ∈ GF0 and xσ normalizes
L and eL

F

s .

The next proposition describes the set of automorphisms stabilizing the
idempotent eG

F

s in a nice way:

Proposition 4.14. Let G be a simple algebraic group of simply connected
type not of type D4 with Frobenius F . Let s ∈ (G∗)F

∗
be a semisimple

element of `′-order. There exists a Frobenius endomorphism F0 : G̃ → G̃
with F r

0 = F for some positive integer r and a bijective morphism σ : G̃→ G̃
such that A = 〈F0, σ〉 ⊆ Aut(G̃F ) satisfies:

(a) F0 ◦ σ = σ ◦ F0 as morphisms of G̃.

(b) The image of G̃F oA in Out(GF ) is the stabilizer of eG
F

s in Out(GF ).

(c) There exists a Levi subgroup L of G in duality with L∗ such that A
stabilizes L and eL

F

s .

Proof. The existence of the bijective morphisms F0 : G̃→ G̃ and σ : G̃→ G̃
satisfying properties (a) and (b) follows from Corollary 4.4. By construction,
the Levi subgroup L is F0-stable, see the remarks following Lemma 4.11. By
Proposition 4.13 there exists x ∈ GF0 such that xσ stabilizes L and eL

F

s . The
result now follows by replacing σ with xσ.

For later reference in Remark 6.19 we observe the following.

Remark 4.15. Note that the natural map Aut(GF ) � Out(GF ) does not
necessarily induce an isomorphism of A with its image in Out(GF ). This is
essentially the case since we need to replace the automorphism σ by σx in
the proof of Proposition 4.14.
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4.4 Generalizations to disconnected reductive

groups

In this section we suppose that Ĝ is a reductive group with Frobenius F
and we let G be a closed normal connected F -stable subgroup of Ĝ. We let
s ∈ (G∗)F

∗
be a semisimple element of `′-order and L∗ be a Levi subgroup of

G∗ such that C◦G∗(s) ⊆ L∗. Let L be a Levi subgroup of G in duality with
L∗.

As in Section 2.2 we suppose that P = LU and P̂ = L̂U are two Levi
decomposition of parabolic subgroups P of G and P̂ of Ĝ such that P̂∩G =
P and L̂ ∩G = L.

Let c ∈ Z(ΛLF eL
F

s ) be the central idempotent corresponding to the cen-
tral idempotent b ∈ Z(ΛGF eG

F

s ) under the Morita equivalence induced by
Hdim
c (YG

U ,Λ)eL
F

s .

Lemma 4.16. We have NL̂F (c) ⊆ NĜF (b). In addition, we have NL̂F (c)GF =

NĜF (b) whenever NL̂F (eL
F

s )GF = NĜF (eG
F

s ).

Proof. Let σ : Ĝ → Ĝ be a bijective endomorphism commuting with F
and stabilizing LF . By Theorem 2.36 and Lemma 4.5 it follows that σ(c) ∈
Z(ΛLF eL

F

s ) corresponds to the central idempotent σ(b) ∈ Z(ΛGF eG
F

s ) under
the Morita equivalence induced by Hdim

c (YG
U ,Λ)eL

F

s .
Applying this to an automorphism given by conjugation with an element

of NL̂F (c) easily implies that NL̂F (c) ⊆ NĜF (b).

Suppose now that NL̂F (eL
F

s )GF = NĜF (eG
F

s ). Then for x ∈ NĜF (b) we

find some y ∈ NL̂F (eL
F

s ) such that xy−1 ∈ GF . In particular, both yc and c
map to the same central idempotent yb = xb = b under the Morita equivalence
given by Hdim

c (YG
U ,Λ)eL

F

s . We conclude that y ∈ NL̂F (c). This shows that
NL̂F (c)GF = NĜF (b).

Let D := (GF×(LF )opp)∆(L̂F ) and D′ be the stabilizer of the idempotent
eG

F

s ⊗eL
F

s in ĜF×(L̂F )opp. Note that we haveD′ = GF×(LF )opp ∆(NL̂F (eL
F

s ))
by Lemma 4.16.

We generalize Theorem 2.36 to disconnected reductive groups.

Lemma 4.17. Let Q = LV and Q̂ = L̂V respectively be two Levi decompo-
sition of parabolic subgroups Q of G and Q̂ of Ĝ respectively which satisfy
Q̂ ∩G = Q. Then we have

H
dim(YG

U)
c (YG

U ,Λ) TrL̂
F

N
L̂F

(eLFs )
(eL

F

s ) ∼= H
dim(YG

V )
c (YG

V ,Λ) TrL̂
F

N
L̂F

(eLFs )
(eL

F

s )

as ΛD-bimodules.
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Proof. By Theorem 2.36 we have a quasi-isomorphism

ΘU,V := ψV,F (U),s ◦ sh∗ ◦ψ−1
U,V,s : R Γc(YU,Λ)eL

F

s → R Γc(YV,Λ)eL
F

s .

The varieties involved in the construction of this map have a D-structure
(extending the usual GF × (LF )opp-structure), see Lemma 2.4 and Lemma
2.5. The maps between them in the proof of Theorem 2.36 are easily seen
to be D-equivariant. Therefore, the map ΘV,U is a quasi-isomorphism of
ΛD′-complexes. By applying the functor IndDD′ we obtain an isomorphism

H
dim(YĜ

U)
c (YĜ

U ,Λ) TrL̂
F

N
L̂F

(eLFs )
(eL

F

s ) ∼= H
dim(YĜ

V )
c (YĜ

V ,Λ) TrL̂
F

N
L̂F

(eLFs )
(eL

F

s )

of ΛD-modules, see Lemma 1.31.

Corollary 4.18. Let σ : Ĝ → Ĝ be a bijective endomorphism of Ĝ com-
muting with the action of F and stabilizing L̂ and G. Then we have an
isomorphism

σ(Hd
c (YĜ

U ,Λ) TrL̂
F

N
L̂F

(eL
F

s )
(eL

F

s ))σ ∼= Hd
c (YĜ

U ,Λ) TrL̂
F

N
L̂F

(eLFs )
(σ(eL

F

s ))

of ΛĜF -ΛL̂F -bimodules, where d = dim(YU) = dim(Yσ(U)).

Proof. This is a consequence of Lemma 4.17 and Lemma 4.5.

Lemma 4.19. Suppose that CG∗(s) ⊆ L∗ and NL̂F (eL
F

s )GF = NĜF (eG
F

s ).

Then the bimodule Hdim
c (YĜ

U ,Λ)eX induces a Morita equivalence between

ΛĜF TrĜ
F

N
ĜF

(eGFs )
(eG

F

s ) and ΛL̂F TrL̂
F

N
L̂F

(eLFs )
(eL

F

s ).

Proof. By Lemma 1.35 it follows that the bimodule

Ind
ĜF×(L̂F )opp

D (Hdim
c (YG

U ,Λ)) TrL̂
F

N
L̂F

(eLFs )
(eL

F

s )

induces a Morita equivalence between ΛĜF TrĜ
F

N
ĜF

(eGFs )
(eG

F

s ) and ΛL̂F TrL̂
F

N
L̂F

(eLFs )
(eL

F

s ).

On the other hand, Lemma 2.8 implies that

Ind
ĜF×(L̂F )opp

D Hdim
c (YG

U ,Λ) TrL̂
F

N
L̂F

(eLFs )
(eL

F

s ) ∼= Hdim
c (YĜ

U ,Λ) TrL̂
F

N
L̂F

(eLFs )
(eL

F

s ).
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4.5 Independence of Godement resolution

Let G be a finite group and L be a subgroup of G. Let e be a central
idempotent of kG and f be a central idempotent kL. In this section we
consider two complexes C1 and C2 which both induce a splendid equivalence
between kGe and kLf and we want to give a criterion when C1

∼= C2 in
Hob(k[G× Lopp]).

Let us recall the following statement, see [BDR17a, Lemma A.3].

Lemma 4.20. Let G be a finite group and C be a bounded complex of `-
permutation kG-modules. Suppose that H i(BrQ(C)) = 0 for all `-subgroups
Q and all i 6= 0. Then H0(C) ∼= C in Hob(kG).

The following lemma should be compared to [BDR17a, Lemma A.5]. Note
that we denote by Q = 1 the trivial subgroup of G.

Lemma 4.21. Let C1 and C2 be two bounded complexes of `-permutation
kGe-kLf -modules inducing a splendid Rickard equivalence between kGe and
kLf . Suppose that for all `-subgroups Q of L there exists an integer dQ such
that the cohomology of Br∆Q(C1) and Br∆Q(C2) is concentrated in the same
degree dQ. In addition, assume that Hd1(C1) ∼= Hd1(C2). Then we have
C1
∼= C2 in Hob(k[G× Lopp]).

Proof. By Theorem 1.20 the complex C∨1 ⊗ΛG C2 induces a splendid Rickard
self-equivalence of kLf . Therefore, we have BrR(C∨1 ⊗kGC2) ∼= 0 in Hob(k[L×
Lopp]) if R is not conjugate to a subgroup of ∆L. Moreover, by Lemma 1.14
we have

Br∆Q(C∨1 ⊗kG C2) ∼= Br∆Q(C∨1 )⊗kCG(Q) Br∆Q(C2)

for all `-subgroups Q of L. Note that Br∆Q(C1), Br∆Q(C2) are complexes
of finitely generated projective kCG(Q)-modules (see Lemma 1.13) and their
cohomology is by assumption concentrated in the same degree dQ. By [Ben98,
Theorem 2.7.1] we thus have H i(Br∆Q(C∨1 ⊗kGC2)) = 0 for i 6= 0. Therefore,
we can apply Lemma 4.20 and obtain that

C∨1 ⊗kG C2
∼= H0(C∨1 ⊗kG C2) ∼= Hd1(C1)∨ ⊗kG Hd1(C2).

in Hob(k[G×Lopp]). By assumption we have Hd1(C1) ∼= Hd1(C2). Moreover,
the bimodule Hd1(C1) induces a Morita equivalence between kLf and kGe by
1.23. From this we can conclude that kLf ∼= C∨1 ⊗kG C2 in Hob(k[L×Lopp]).
Therefore, we have

C1
∼= C1 ⊗kL kLf ∼= C1 ⊗kL C∨1 ⊗kG C2

∼= C2

in Hob(k[G× Lopp]).
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Corollary 4.22. Let G be a connected reductive group, s ∈ (G∗)F
∗

semisim-
ple of `′-order and L∗ the minimal Levi subgroup of G∗ with CG∗(s) ⊆ L∗.
Let P = LU and Q = LV be two parabolic subgroups of G with Levi subgroup
L. Then we have

GΓc(YU, k)eL
F

s
∼= GΓc(YV, k)eL

F

s [dim(YG
V)− dim(YG

U)]

in Hob(kGF ⊗k (kLF )opp) if

dim(YG
U)− dim(YG

V) = dim(Y
CG(Q)
CU(Q))− dim(Y

CG(Q)
CV(Q))

for all `-subgroups Q of LF .

Proof. By Theorem 2.37 the complex GΓc(YU, k)eL
F

s induces a splendid
Rickard equivalence between kLF eL

F

s and kGF eG
F

s . Its cohomology is con-
centrated in degree dim(YU). Moreover, the cohomology of

Br∆Q(GΓc(Y
G
U , k)eL

F

s ) ∼= GΓc(Y
CG(Q)
CU(Q) , k) brQ(eL

F

s )

is concentrated in degree dim(Y
CG(Q)
CU(Q)). The same holds for the variety YG

V .

By Theorem 2.36, Hdim
c (YU,Λ)eL

F

s
∼= Hdim

c (YV,Λ)eL
F

s . Hence the statement
of the corollary is an immediate consequence of Lemma 4.21.

We don’t know when the condition of Corollary 4.22 holds in general.
The following example is an application of Corollary 4.22.

Example 4.23. Suppose that σ : G→ G is a bijective endomorphism with
σ ◦ F = F ◦ σ and stabilizing L and eL

F

s . Suppose that a Sylow `-subgroup
D of LF is cyclic. Up to changing σ by inner automorphisms of LF we
may assume that D is σ-stable. Hence, for any subgroup Q of D we have
σ(Q) = Q. It follows that

dim(Y
CG(Q)
Cσ(U)(Q)) = dim(σ(Y

CG(Q)
CU(Q))) = dim(Y

CG(Q)
CU(Q)).

From this and Corollary 4.22 we conclude that

GΓc(Yσ(U), k)eL
F

s
∼= GΓc(YU, k)eL

F

s

in Hob(kGF ⊗k (kLF )opp) Therefore, by Lemma 4.6 we have

σ(GΓc(YU, k)eL
F

s )σ ∼= GΓc(YU, k)eL
F

s

in Hob(kGF ⊗k (kLF )opp).
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4.6 Comparing Rickard and Morita equiva-

lences

Let G be a not necessarily connected reductive group and L be an F -stable
Levi subgroup of G with Levi decomposition P = L n U. Let X be a
(G◦,L◦)-regular series of (L, F ). Denote by Y the unique series of (G, F )
containing X . We denote d := dim(YG

U).
We recall the following important result:

Proposition 4.24. We have

End•kGF ((GΓc(Y
G
U , k)eX )red) ∼= EndDb(kGF )((GΓc(Y

G
U , k)eX )red)

in Hob(k[LF × (LF )opp]).

Proof. This is proved in Step 1 of the proof of [BDR17a, Theorem 7.6]. Note
that the assumption G is connected is not needed in this step of the proof.

Proposition 4.25. Let b be a block of ΛGF eY and c be a block of ΛLF eX .
Denote C := bGΓc(Y

G
U ,Λ)redc and d := dim(YG

U). Then the complex C
induces a splendid Rickard equivalence between ΛGF b and ΛLF c if and only
if Hd(C) induces a Morita equivalence between ΛGF b and ΛLF c.

Proof. Let us first assume that Λ = k. By Lemma 2.12 the complex C is
splendid. Moreover, by Proposition 4.24 we have

End•kGF (C) ∼= EndDb(kGF )(C).

Since C is a complex of projective kGF -modules we have EndDb(kGF )(C) ∼=
H0(End•kGF (C)) and as the cohomology of C is concentrated in degree d, we
deduce that H0(End•kGF (C)) ∼= EndkGF (Hd(C)). Therefore, End•kGF (C) ∼=
EndkGF (Hd(C)) in Hob(k[LF × (LF )opp]). By Theorem 1.22 it follows that C
induces a Rickard equivalence if and only if Hd(C) induces a Morita equiva-
lence.

Let us now assume that Λ = O. If Hd(C) induces a Morita equivalence
between OGF b and OLF c then Hd(C⊗O k) ∼= Hd(C)⊗O k induces a Morita
equivalence between kGF b and kLF c. Using the result for the case Λ =
k shows that the complex C ⊗O k induces a splendid Rickard equivalence
between kGF b and kLF c. Thus, by Theorem 1.21 the complex C induces a
splendid Rickard equivalence between OGF b and OLF c. On the other hand,
if the complex C induces a Rickard equivalence then it follows by Lemma
1.23 that Hd(C) induces a Morita equivalence.
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4.7 Morita equivalences for local subgroups

In this section we give some applications of Proposition 4.25. We keep the
notation of the previous section and assume additionally that the rational
series X of (L, F ) is (G◦,L◦)-superregular.

Corollary 4.26. Suppose that NLF (e
(L◦)F
s )(G◦)F = NGF (e

(G◦)F
s ). Then

the complex GΓc(Y
G
U ,Λ)eX induces a splendid Rickard equivalence between

ΛGF eY and ΛLF eX .

Proof. By Lemma 4.19 the bimodule H
dim(YG

U)
c (YG

U ,Λ)eX induces a Morita
equivalence between ΛGF eY and ΛLF eX . Write eX = c1 + · · ·+ cr as a sum
of block idempotents. Then there exists a decomposition eY = b1 + · · · + br

into block idempotents such that H
dim(YG

U)
c (YG

U ,Λ)ci induces a Morita equiva-
lence between ΛGF bi and ΛLF ci. Set C := GΓc(Y

G
U ,Λ)redeX . It follows from

Proposition 4.25 that the complex biCci induces a splendid Rickard equiv-
alence between ΛGF bi and ΛLF ci. Consequently, the complex

⊕r
i=1 ciCbi

induces a splendid Rickard equivalence between ΛGF eY and ΛLF eX .
For j 6= i consider the complex X := biCcj. By the proof of Lemma

Proposition 4.25 we have

X∨ ⊗kGF X ∼= End•kGF (X) ∼= EndkGF (Hdim(YG
U)(X)) ∼= 0

in Hob(k[LF×(LF )opp]). By the proof of [Ric96, Theorem 2.1], the complex X
is a direct summand of X⊗kLFX∨⊗kGFX. This shows that X = biCcj ∼= 0 in
Hob(k[GF × (LF )opp]) for j 6= i. Hence, the complex GΓc(Y

G
U ,Λ)eX induces

a splendid Rickard equivalence between ΛGF eY and ΛLF eX .

Suppose that we are in the situation of Corollary 4.26. Let b be a block of
ΛGF eY corresponding to the block c of ΛLF eX under the splendid Rickard
equivalence between ΛGF eY and ΛLF eX given by C := GΓc(Y

G
U ,Λ)redeX .

Let (Q, cQ) be a c-Brauer pair and (Q, bQ) be the unique b-Brauer pair
of kCGF (Q) such that the complex bQ Br∆Q(C)cQ ∼= Br∆Q(C)cQ induces
a Rickard equivalence between kCGF (Q)bQ and kCLF (Q)cQ, see Proposition
1.16.

The following proposition is yet another application of Proposition 4.25.

Proposition 4.27. Suppose that NLF (e
(L◦)F
s )(G◦)F = NGF (e

(G◦)F
s ). Then

the bimodule Hdim
c (Y

CG(Q)
CU(Q) ,Λ)cQ induces a Morita equivalence between the

blocks Λ CLF (Q)cQ and Λ CGF (Q)bQ.

Proof. Recall that c is a block of ΛLF eX . Since (Q, cQ) is a c-subpair we have

brL
F

Q (c)cQ = cQ. Thus, there exists some rational series X ′ ∈ (iLQ)−1(X ) such
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that cQ is a block of kCLF (Q)eX ′ , see Lemma 2.28. Let Y ′ be the unique
rational series of (CG(Q), F ) containing X ′, see Lemma 2.29(a).

Since the complex Br∆Q(C)cQ ∼= GΓc(Y
CG(Q)
CU(Q) , k)cQ induces a Rickard

equivalence between kCLF (Q)cQ and kCGF (Q)bQ it follows by Lemma 2.29(c)

that bQ is a block of kCGF (Q)eY ′ . By Lemma 2.12 the complexGΓc(Y
CG(Q)
CU(Q) ,O)cQ

is a splendid complex of OCGF (Q)-OCLF (Q)-bimodules, which is a lift to O
of GΓc(Y

CG(Q)
CU(Q) , k)cQ. It follows by Theorem 1.21 that GΓc(Y

CG(Q)
CU(Q) ,O)cQ in-

duces a Rickard equivalence betweenOCLF (Q)cQ andOCGF (Q)bQ. It there-

fore follows by Proposition 4.25 that Hdim
c (Y

CG(Q)
CU(Q) ,Λ)cQ induces a Morita

equivalence between Λ CLF (Q)cQ and Λ CGF (Q)bQ.

In the following we consider the subgroup

D := {(x, y) ∈ NGF (Q)× NLF (Q)opp | xCGF (Q) = y−1 CGF (Q)}

of NGF (Q)× NLF (Q)opp.

In addition, we let BQ := Tr
N

GF
(Q)

N
GF

(Q,bQ)(bQ) and CQ := Tr
N

LF
(Q)

N
LF

(Q,cQ)(cQ).

The following can be seen as a geometric version of Proposition 1.36.

Theorem 4.28. Suppose that NLF (e
(L◦)F
s )(G◦)F = NGF (e

(G◦)F
s ). Then the

bimodule Hdim
c (Y

NG(Q)
CU(Q) ,Λ)CQ induces a Morita equivalence between ΛNLF (Q)CQ

and ΛNGF (Q)BQ.

Proof. Corollary 1.18 shows that the factor groups NLF (Q, cQ)/CLF (Q) and
NGF (Q, bQ)/CGF (Q) are isomorphic via the inclusion NLF (Q) ⊆ NGF (Q).

Moreover, by Proposition 1.16 we deduce xbQH
dim
c (Y

CG(Q)
CU(Q) ,Λ)cQ = 0 for all

x ∈ NGF (Q) \ NGF (Q, bQ). The bimodule Hdim
c (Y

CG(Q)
CU(Q) ,Λ)cQ induces by

Proposition 4.27 a Morita equivalence between the blocks ΛCLF (Q)cQ and
ΛCGF (Q)bQ.

Recall from Example 2.3 that NG(Q) is a reductive group. Moreover,
NP(Q) is a parabolic subgroup of NG(Q) with Levi decomposition NP(Q) =
NL(Q) n CU(Q). Note that CG(Q) is a normal subgroup of NG(Q) and we
have a Levi decomposition CP(Q) = CL(Q)nCU(Q) in CG(Q), see Example

2.3. By Corollary 2.10 it follows that the bimodule Hdim
c (Y

CG(Q)
CU(Q) ,Λ) has a

natural D-action and we have an isomorphism

Ind
N

GF
(Q)×N

LF
(Q)opp

D Hdim
c (Y

CG(Q)
CU(Q) ,Λ) ∼= Hdim

c (Y
NG(Q)
CU(Q) ,Λ).

By Lemma 1.35 it follows that the bimodule Hdim
c (Y

NG(Q)
CU(Q) ,Λ)CQ induces a

Morita equivalence between ΛNLF (Q)CQ and ΛNGF (Q)BQ.
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Chapter 5

Extending the Morita
equivalence

Let s ∈ (G∗)F
∗

be a semisimple element of `′-order, L∗ be the minimal F ∗-
stable Levi subgroup of G∗ containing CG∗(s) and L a Levi subgroup of G
in duality with L∗. Then by Theorem 2.37 the bimodule Hdim

c (YG
U ,O)eL

F

s

induces a Morita equivalence between OLF eL
F

s and OGF eG
F

s . In Proposition
4.14 we have constructed a group A such that G̃FoA generates the stabilizer
of eG

F

s in Out(GF ). The aim of this chapter is to show that the Morita
equivalence induced by Hdim

c (YG
U ,O)eL

F

s lifts (under mild assumptions on `)
to a Morita equivalence between OL̃FAeLFs and OG̃FAeGF

s .

5.1 Disconnected reductive groups and Morita

equivalences

Let G be a connected reductive group with Frobenius F : G → G and
ι : G ↪→ G̃ be a regular embedding. Consider an algebraic automorphism
τ : G̃ → G̃ satisfying τ ◦ F = F ◦ τ and τ(G) = G. By the discussion at
the beginning of [CS13, Paragraph 2.4] it follows that the automorphism τ
is uniquely determined by its restriction to G̃F . Consequently, the automor-
phisms τ and its restriction to G̃F have the same order. As in Example 2.2
we consider the not necessarily connected reductive group G̃o 〈τ〉.

Let G∗ be in duality with G. Fix a semisimple element s ∈ (G∗)F
∗

of `′-order and let L∗ be a Levi subgroup with C◦G∗(s) ⊆ L∗. Let P be a
parabolic subgroup of G with Levi decomposition P = L nU. We have a
Levi decomposition P̃ = L̃nU in G̃, where P̃ := P Z(G̃) and L̃ := L Z(G̃).

Suppose that the parabolic subgroup P is τ -stable. Then the group P̂ :=
P̃〈τ〉 is a parabolic subgroup of Ĝ := G̃ o 〈τ〉 with Levi decomposition
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P̂ = L̂nU, where L̂ := L̃〈τ〉, see Example 2.2. The Frobenius endomorphism
F extends to a Frobenius endomorphism of G̃o 〈τ〉 by defining

F : G̃o 〈τ〉 → G̃o 〈τ〉, gτ 7→ F (g)τ.

Since τ and its restriction to G̃F have the same order we have an isomorphism

(G̃o 〈τ〉)F ∼= G̃F o 〈τ |G̃F 〉.

In the following, we will as in Notation 4.3 use the same letter τ for the
automorphism τ : G̃→ G̃ and its restriction to G̃F .

We let Y and X be the rational series of (G〈τ〉, F ) and (L〈τ〉, F ) which
contain the rational series associated to the semisimple element s of G and
L respectively.

Let σ : G̃ → G̃ be a bijective morphism of algebraic groups commuting
with the action of τ and F . Then σ extends to a bijective morphism

σ : G̃o 〈τ〉 → G̃o 〈τ〉, gτ 7→ σ(g)τ.

With this notation we have the following:

Lemma 5.1. The bimodule Hdim
c (YG

U ,Λ)eX is endowed with a natural (GF×
(LF )opp)∆(L̃F 〈τ〉)-action. If L is σ-stable then we have

Hdim
c (YG

U ,Λ)eX ∼= σHdim
c (YG

U ,Λ)σσ(eX )

as Λ[(GF × (LF )opp)∆(L̃F 〈τ〉)]-bimodules.

Proof. This is a direct consequence of Lemma 4.18 applied to our situation.

5.2 Local equivalences

We keep the assumptions of the previous section and consider the local sit-
uation. Suppose that b is a block of ΛGF eG

F

s corresponding to a block c of
ΛLF eL

F

s under the Morita equivalence induced by Hdim
c (YG

U ,Λ)eL
F

s .
Let (Q, cQ) be a c-Brauer pair and (Q, bQ) the corresponding b-Brauer pair

such that bQH
dim
c (Y

CG(Q)
CU(Q) , k) = Hdim

c (Y
CG(Q)
CU(Q) , k)cQ. As usually, we define

BQ := Tr
N

GF
(Q)

N
GF

(Q,bQ)(bQ) and CQ := Tr
N

LF
(Q)

N
LF

(Q,cQ)(cQ). We will now provide a

local version of Lemma 5.1. The technical difficulty is to keep track of the
diagonal actions.
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Theorem 5.2. Assume that Q̂ = L̂ nV is a parabolic subgroup of Ĝ with
Levi subgroup L̂. Then we have

Hdim
c (Y

NG(Q)
CU(Q) ,Λ)CQ ∼= Hdim

c (Y
NG(Q)
CV(Q) ,Λ)CQ

as Λ[(NGF (Q)× NLF (Q)opp)∆(NL̂F (Q,CQ))]-modules.

Proof. Firstly, recall that NĜ(Q) is a reductive group with closed connected
normal subgroup C◦

Ĝ
(Q), see Example 2.3. We have a Levi decomposition

NP̂(Q) = NL̂(Q)nCU(Q) in NĜ(Q). Furthermore, C◦G(Q) is a closed normal
subgroup of NĜ(Q) and we have a Levi decomposition C◦P(Q) = C◦L(Q) n
CU(Q) in the connected reductive group C◦G(Q), see also Example 2.3. In
addition, we have

NL̂(Q) ∩ C◦G(Q) = CL̂∩G(Q) ∩ C◦G(Q) = CL(Q) ∩ C◦G(Q) = C◦L(Q)

and similarly NP̂(Q) ∩ C◦G(Q) = C◦P(Q). This shows that we are in the
situation of Section 2.3.

Recall that since (Q, cQ) is a c-subpair we have brL
F

Q (c)cQ = cQ. Thus,
there exists some rational series X ′ ∈ (iLQ)−1(X ) such that cQ is a block of
kCLF (Q)eX ′ .

Let Z be a rational series of C◦L(Q) contained in X ′. By Lemma 2.28
we obtain that the rational series Z is (C◦G(Q),C◦L(Q))-superregular. By the
proof of Lemma 4.17 we thus obtain an isomorphism

Hdim
c (Y

C◦G(Q)

CU(Q) ,Λ)eZ ∼= Hdim
c (Y

C◦G(Q)

CV(Q) ,Λ)eZ

of Λ[(C◦G(Q)F × (C◦L(Q)F )opp)∆NL̂F (Q, eZ)]-modules. Moreover we have

eX ′ = Tr
C

LF
(Q)

(C◦L(Q))F
(eZ) by Lemma 2.26, which implies that NL̂F (Q, eX ′) =

CLF (Q)NL̂F (Q, eZ). By Remark 2.9 we obtain an isomorphism

Hdim
c (Y

CG(Q)
CU(Q) ,Λ)eX ′ ∼= Hdim

c (Y
CG(Q)
CV(Q) ,Λ)eX ′

of Λ[(CGF (Q)× (CLF (Q))opp)∆NL̂F (Q, eX ′)]-modules. Since cQ is a block of

kCLF (Q)eX ′ we obtain, by truncating to cQ, an isomorphismHdim
c (Y

CG(Q)
CU(Q) ,Λ)cQ ∼=

Hdim
c (Y

CG(Q)
CV(Q) ,Λ)cQ of Λ[CGF (Q)× (CLF (Q))opp∆NL̂F (Q, cQ)]-modules. Ap-

plying Lemma 2.8 yields an isomorphism

Hdim
c (Y

NG(Q)
CU(Q) ,Λ)CQ ∼= Hdim

c (Y
NG(Q)
CV(Q) ,Λ)CQ

of Λ[(NGF (Q)× NLF (Q)opp)∆NL̂F (Q,CQ)]-modules.

The methods of this section rely on the parabolic subgroup P being τ -
stable. In the upcoming sections, we will use an idea from [Dig99] to reduce
to this situation.
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5.3 Restriction of scalars for Deligne–Lusztig

varieties

Let G be a reductive group with Frobenius endomorphism F0 : G→ G. For
an integer r we let F := F r

0 : G → G. We consider the reductive group
G = Gr with Frobenius endomorphism F0×· · ·×F0 : G→ G which we also
denote by F0. We consider the permutation

τ : G→ G

given by τ(g1, . . . , gr) = (g2, . . . , gr, g1). Consider the projection onto the
first component

pr : G→ G, (g1, . . . , gr) 7→ g1.

The restriction of pr to GF0τ induces an isomorphism

pr : GF0τ → GF

of finite groups with inverse map given by pr−1(g) = (g, F r−1
0 (g), . . . , F0(g))

for g ∈ GF .
For any subset H of G we set

H := H× F r−1
0 (H)× · · · × F0(H).

Note that if H is F -stable then H is τF0-stable and the projection map
pr : H→ H induces an isomorphism HτF0 ∼= HF . Conversely, one easily sees
that any τF0-stable subset of G is of the form H for some F -stable subset
H of G.

Let L be an F -stable Levi subgroup of G and P a parabolic subgroup of
G with Levi decomposition P = LnU. Then P is a parabolic subgroup of G
with Levi decomposition P = LnU such that τF0(L) = L. We can therefore
consider the Deligne–Lusztig variety YG,F0τ

U which is a GF0τ × (LF0τ )opp-

variety. Under the isomorphism GF ∼= GF0τ we will in the following regard
it as a GF × (LF )opp-variety.

The following proposition is proved in [Dig99, Proposition 3.1] under the
additional assumptions that G is connected and that the Levi subgroup L
is F0-stable. Here, we give a complete proof of this proposition and thereby
show that these assumptions are superfluous.

Proposition 5.3. Let L be an F -stable Levi subgroup of G and P a parabolic
subgroup of G with Levi decomposition P = L n U. Then the projection
pr : G→ G onto the first coordinate defines an isomorphism

YG,τF0

U
∼= YG,F

U

of varieties which is GF × (LF )opp-equivariant.
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Proof. Let g = (g1, . . . , gr) ∈ G. Then gU ∈ YG,τF0

U if and only if

g−1(τF0)(g) ∈ U(τF0)(U) = UF (U)× F r−1
0 (U)× · · · × F0(U).

This is equivalent to g−1
1 F0(g2) ∈ UF (U) and g−1

i F0(gi+1) ∈ F r+1−i
0 (U) for

all i = 2, . . . , r (where gr+1 := g1). Therefore, gU ∈ YG,τF0

U if and only if

gU = (g1, F
r−1
0 (g1), . . . , F0(g1))U and g−1

1 F (g1) ∈ UF (U).

Hence, an element gU ∈ YG,τF0

U is uniquely determined by its first component

g1U ∈ YG
U and each element of YG

U arises from an element g1U ∈ YG
U . This

shows that pr : G→ G induces an isomorphism

YG,F
U
∼= YG,τF0

U ,

which is clearly GF × (LF )opp-equivariant.

For any F -stable closed subgroup H of G, the projection map pr : HτF0 →
HF induces an isomorphism

pr∨ : ΛHF -mod→ ΛHτF0-mod.

The isomorphism of the previous lemma therefore shows that the following
diagram is commutative.

G0(ΛLF ) G0(ΛGF )

G0(ΛLτF0) G0(ΛGτF0)

pr∨

RG,F
L

RG,τF0

L

pr∨

We will now provide a local version of Proposition 5.3. Let Q be a finite
solvable p′-subgroup of L. Recall from Example 2.3 that the normalizer
NG(Q) is a reductive group and NP(Q) is a parabolic subgroup of NG(Q)
with Levi decomposition NP(Q) = NL(Q)n CU(Q). We denote

Q := Q× F r−1
0 (Q)× · · · × F0(Q)

and observe that Q is a finite solvable p′-subgroup of L. By the same ar-
gument as before, we see that NG(Q) is a reductive group with parabolic
subgroup NP(Q) and Levi decomposition NP(Q) = NL(Q)n CU(Q).
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We can therefore consider the Deligne–Lusztig variety Y
NG(Q),τF0

CU(Q) which is

a NGF0τ (Q)× NLF0τ (Q)opp-variety. Under the isomorphism pr : GF0τ → GF

we may consider it as a NGF (Q)× NLF (Q)opp-variety.
Thus, we can apply Proposition 5.3 in this situation and obtain the fol-

lowing corollary:

Corollary 5.4. Suppose that we are in the situation of Proposition 5.3 and
assume that Q is a finite solvable p′-group of L. Then the projection map
pr : NG(Q)→ NG(Q) induces an isomorphism

Y
NG(Q),τF0

CU(Q)
∼= Y

NG(Q),F
CU(Q)

of varieties which is NGF (Q)× NLF (Q)opp-equivariant.

5.4 Duality in the context of restriction of

scalars

Recall from the previous section we denote G = Gr and we consider the
automorphism

τ : G→ G, (g1, . . . , gr) 7→ (g2, . . . , gr, g1).

Our aim in this and the subsequent sections is to study the representation
theory of the finite group GτF0 . In order to understand the Lusztig series
of the group GτF0 we will need to explicitly construct the dual group of
GτF0 . Note that in the following we will therefore heavily use the notation
introduced in Section 2.6.

Suppose that the triple (G∗,T∗0, F
∗
0 ) is in duality with (G,T0, F0) under

a duality isomorphism δ : X(T0) → Y (T∗0). We consider the r-fold product
G∗ := (G∗)r of the dual group G∗ endowed with the Frobenius endomor-
phism F ∗0 := F ∗0 × · · · × F ∗0 : G∗ → G∗. Moreover, let

τ ∗ : G∗ → G∗, (g1, . . . , gr) 7→ (gr, g1 . . . , gr−1).

We denote by pr : G∗ → G∗ the projection onto the first coordinate. For
any F ∗-stable closed subgroup H of G∗ we set

H := H× F ∗0 (H)× · · · × (F ∗0 )r−1(H).

Let πi : T0 → F r−i+1
0 (T0) the projection onto the ith coordinate. For

any character χ ∈ X(T0) we let χi ∈ X(F r−i+1
0 (T0)) be the unique character

such that χi ◦ πi = χ and we write χ = (χ1, . . . , χr).
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Similarly, for γ ∈ Y (T∗0) we consider the projection πi : T∗0 → (F ∗0 )i(T∗0)

onto the ith coordinate. Let γi ∈ Y ((F ∗0 )i(T∗0)) be the cocharacter defined
by γi = πi ◦ γ and write γ = (γ1, . . . , γr). We then define

δ : X(T0)→ Y (T∗0), (χ1, . . . , χr) 7→ (δ(χ1), . . . , δ(χr)).

Recall that the torus T0 is τF0-stable and the torus T∗0 is τ ∗F ∗0 -stable.

Lemma 5.5. The triple (G,T0, F0τ) is in duality with (G∗,T∗0, τ
∗F ∗0 ).

Proof. For χ = (χ1, . . . , χr) ∈ X(T0) we have

(F0τ)(χ) = (F0(χr), F0(χ1), . . . , F0(χr−1)).

On the other hand, for γ = (γ1, . . . , γr) ∈ Y (T∗0) we have (τ ∗F ∗0 )∨(γ) =
((F ∗0 )∨(γr), (F

∗
0 )∨(γ1), . . . , (F ∗0 )∨(γr−1)). Therefore, we have

δ((τF0)(χ1, . . . , χr)) = (τ ∗F ∗0 )∨(δ(χ1, . . . , χr)).

We conclude that (G,T0, F0τ) is in duality with (G∗,T∗0, τ
∗F ∗0 ).

Lemma 5.6. The following diagram is commutative:

Irr(T0
τF0) Irr(TF

0 )

(T∗0)τ
∗F ∗0 ((T∗0)F

∗
)

δ1

pr∨

pr

δ1

More concretely, if (T0, θ) ∈ ∇(G, F ) is in duality with (T∗0, pr(s)) ∈ S(G∗, F ∗)
then (T0, θ ◦ pr) ∈ ∇(G, F0τ) is in duality with (T∗0, s) ∈ S(G∗, τ ∗F ∗0 ).

Proof. Let θ ∈ Irr(TF
0 ) be a character and suppose that χ ∈ X(T0) satisfies

θ = ResT0

TF0
(κ ◦ χ), where κ : Fp

×
↪→ Q`

×
is the ring homomorphism from

Section 2.6. Then we have Res
T0

T0
τF0

(κ ◦ (χ, 1, . . . , 1)) = θ ◦ pr.

Recall that in Section 2.6 we fixed an injective morphism ι : (Q/Z)p′ →
Fq
×

and defined ζ ∈ Fq
×

to be ι( 1
qn−1

) ∈ Fq
×

.

Let γ := δ(χ) and s := NFn/F (γ(ζ)) where n is chosen such that T∗0 is split
over Fqn . Then by definition we have δ1(θ) = s, where δ1 : Irr(TF

0 )→ (T∗0)F
∗

is the isomorphism induced by duality. We have (γ, 1, . . . , 1) = δ(χ, 1, . . . , 1).
For any t ∈ T∗0 we have

N(F ∗0 τ
∗)r/F ∗0

(t, 1, . . . , 1) = (t, F ∗0 (t), . . . , (F ∗0 )r−1(t)).
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We conclude that

N(F ∗0 τ
∗)rn/F ∗0 τ

∗((γ, 1, . . . , 1)(ζ)) = (NFn/F (γ(ζ)), NFn/F (F0(γ(ζ)), . . . , NFn/F (F r−1
0 (γ(ζ)))

and therefore

N(F ∗0 τ
∗)rn/F ∗0 τ

∗((γ, 1, . . . , 1)(ζ)) = (s, F0(s), . . . , F r−1
0 (s)) = s.

Note that T0 is split over Fqrn since T0
(τF0)rn ∼= TFn

0 . Let δ1 : Irr(T0
τF0)→

(T∗0)F0τ∗ be the isomorphism induced by duality between (G,T0, F0τ) and
(G∗,T∗0, τ

∗F ∗0 ). Then by construction we have δ1(θ ◦ pr) = s, as claimed in
the lemma.

5.5 Comparing Weyl groups

For the following lemma note that

W (T0) = W (T0)×W (F r−1
0 (T0))× · · · ×W (F0(T0)).

The map F0 : W (T0) → W (F0(T0)) is an isomorphism of finite groups and
we denote by F−1

0 : W (F0(T0))→ W (T0) its inverse.

Lemma 5.7. The product map

prodF : W (T0)→ W (T0), (w1, . . . , wr)→ w1 · F0(w2) · · · · · F r−1
0 (wr)

induces a bijection between the F0τ -conjugacy classes of W (T0) and the F -
conjugacy classes of W (T0). In particular, any element w ∈ W (T0) is F0τ -
conjugate to (prodF (w), 1, . . . , 1).

Proof. Let x = (x1, . . . , xr), g = (g1, . . . , gr) ∈ W (T0) be arbitrary. Then

gx(F0τ(g))−1 = (g1x1F0(g−1
2 ), g2x2F0(g−1

3 ), . . . , grxrF0(g−1
1 )),

which implies

prodF (gx(F0τ(g))−1) = g1prodF (x1, . . . , xr)F (g1)−1 = g1prodF (x)F (g1)−1.

This shows that prodF induces a map from the F0τ -conjugacy classes of
W (T0) to F -conjugacy classes ofW (T0). The map prodF : W (T0)→ W (T0)
is clearly surjective since for w ∈ W (T0) we have prodF (w, 1, . . . , 1) = w.
Therefore, the induced map on conjugacy classes is surjective as well. It
remains to show that this map is injective.
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Let x = (x1, . . . , xr) ∈ W (T0) and y = (y1, . . . , yr) ∈ W (T0) such that

g1prodF (x)F (g1)−1 = prodF (y)

for some g1 ∈ W (T0). This is equivalent to

prodF (y)−1g1prodF (x) = F (g1).

We want to show that there exist gi ∈ W (F r−i+1
0 (T0)), i = 2, . . . , r, such that

g := (g1, . . . , gr) ∈ W (T0) satisfies gx(F0τ(g))−1 = y which is equivalent to

(g1x1F0(g−1
2 ), g2x2F0(g−1

3 ), . . . , grxrF0(g−1
1 )) = (y1, . . . , yr).

This is tantamount to

F0(gi) = y−1
i−1gi−1xi−1 for all i = 2, . . . , r and F0(g1) = y−1

r grxr.

Hence we can inductively define gi := F−1
0 (y−1

i−1gi−1xi−1) for i = 2, . . . , r. It
remains to show that the equality F0(g1) = y−1

r grxr holds. By definition of
gr we have

y−1
r grxr = y−1

r F−1
0 (y−1

r−1)F−1
0 (gr−1)F−1

0 (xr−1)xr

Iterating gives

y−1
r grxr =

r∏
i=1

F 1−i
0 (y−1

r−(1−i))F
−r+1
0 (g1)

r∏
i=1

F−r+i0 (xi).

Therefore, we have

yr−1
r grxr = F r−1

0 (prodF (y)−1g1prodF (x)) = F r−1
0 (F (g1)) = F0(g1).

This shows that (x1, . . . , xr) and (y1, . . . , yr) are F0τ -conjugate. Thus, we
have shown that the map prodF : W (T0) → W (T0) induces a bijection
between the F0τ -conjugacy classes of W (T0) and the F -conjugacy classes of
W (T0).

For the dual group we define

prod∗F : W (T∗0)→ W (T∗0), (w1, . . . , wr) 7→ (F ∗0 )−r+1(wr) . . . (F
∗
0 )−1(w2) · w1.

Lemma 5.8. For w ∈ W (T0) we have prodF (w)∗ = prod∗F (w∗).
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Proof. We have

prodF (w)∗ = (F r−1
0 (wr))

∗ · · · · · (F0(w2))∗ · w∗1.

As ((F i
0(w))∗) = (F ∗0 )−i(w∗) for all i and w ∈ W (T0) we conclude that

prodF (w)∗ = (F ∗0 )−r+1(w∗r) . . . (F
∗
0 )−1(w∗2) · w∗1 = prod∗F (w∗).

This proves the result.

Corollary 5.9. The dual product map prod∗F : W (T∗0) → W (T∗0) induces a
bijection between the F ∗0 τ

∗-conjugacy classes of W (T∗0) and the F ∗-conjugacy
classes of W (T∗0).

Proof. The map ∗ : W (T0) → W (T∗0) induces a bijection between F - and
F ∗-conjugacy classes, see Section 2.6. On the other hand, the map ∗ :
W (T0) → W (T∗0) induces a bijection between τF0-conjugacy classes and
F ∗0 τ

∗-conjugacy classes, see loc. cit.. By Lemma 5.7 the map prodF :
W (T0)→ W (T0) induces a bijection between F - and τF0-conjugacy classes.
The statement follows from Lemma 5.8.

Let w ∈ W (T0) and w := prodF (w) ∈ W (T0). We consider the pro-

jection map pr : T0
wτF0 → TwF

0 onto the first coordinate. Let us show
that this is well-defined, i.e., it maps wτF0-stable elements to wF -stable
elements. Let t = (t1, . . . , tr) ∈ T0 be wτF0-stable. Then (t1, . . . , tr) =
(w1F0t2, . . . ,

wr−1F0tr,
wrF0t1) from which we deduce that

t1 = w1F0t2 = w1F0(w2)F 2
0 = · · · = prodF (w)F t1.

This shows that pr(t) = t1 is wF -stable.
Now a similar calculation shows that pr : (T∗0)τ

∗F ∗0 w
∗ → (T∗0)F

∗w∗ is well-
defined. We are ready to state the next lemma, which is a generalization of
Lemma 5.6.

Lemma 5.10. Let w ∈ W (T0) and set w := prodF (w) ∈ W (T0). Then the
following diagram is commutative:

Irr(T0
wτF0) Irr(TwF

0 )

(T∗0)τ
∗F ∗0 w

∗
(T∗0)F

∗w∗

δw

pr∨

pr

δw
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Proof. To simplify the calculations we observe the following: By Lemma 5.7
any element w ∈ W (T0) is F0τ -conjugate to (prodF (w), 1, . . . , 1). On the
other hand, the statement of the lemma only depends on the τF0-conjugacy
class respectively F -conjugacy class of the element w, respectively prodF (w).
We may thus assume that w = (w, 1, . . . , 1).

The rest of the calculation is as in Lemma 5.6. Let θ ∈ Irr(TwF
0 ) be a char-

acter and suppose that χ ∈ X(T0) satisfies θ = ResT0

TwF0
(κ◦χ). Then we have

Res
T0

T
wτF0
0

(κ◦(χ, 1, . . . , 1)) = θ◦pr. Let γ := δ(χ) and s := N(F ∗w∗)n/F ∗w∗(γ(ζ))

where n is chosen such that T∗0 is split over Fqn . Then by definition we have
δw(θ) = s, where δw : Irr(TwF

0 ) → (T∗0)F
∗w∗ is the isomorphism induced by

duality. We have (γ, 1, . . . , 1) = δ(χ, 1, . . . , 1). For any t ∈ T∗0 we have

N(F ∗0 τ
∗w∗)r/F ∗0 τ

∗w∗(t, 1, . . . , 1) = (t, F
∗
0 w
∗
t, . . . , (F ∗0 )r−1w∗t).

Observe that the inverse of the projection map pr : (T∗0)τ
∗F ∗0 w

∗ → (T∗0)F
∗w∗ is

given by (T∗0)F
∗w∗ → (T∗0)τ

∗F ∗0 w
∗
, t 7→ (t, F

∗
0 w
∗
t, . . . , (F ∗0 )r−1w∗t). We conclude

that

N(F0τ∗w∗)rn/F0τw∗(γ, 1, . . . , 1)(ζ) = (s, F
∗
0 w
∗
s, . . . , (F ∗0 )r−1w∗s) = s.

Note that T0 is split over Fqrn since T0
(τF0)rn ∼= TFn

0 . Let δw : Irr(T0
τF0)→

(T∗0)F0τ∗ be the isomorphism induced by duality between the triples (G,T0, wF0τ)
and (G∗,T∗0, τ

∗F ∗0w
∗). Then by construction we have δw(θ ◦ pr) = s, as

claimed in the statement.

5.6 Restriction of scalars and Lusztig series

From now on we identify the groups GτF0 and GF under the fixed isomor-
phism pr : GτF0 → GF .

The following proposition is probably known. A very similiar result in a
different language can be found in [Tay19, Corollary 8.8].

Proposition 5.11. For any semisimple x ∈ (G∗)F
∗
0 τ
∗

the sets E(GF , pr(x))
and E(GF0τ , x) coincide via the isomorphism GF ∼= GτF0 given by pr.

Proof. Note that the isomorphism pr : (G∗)F
∗
0 τ
∗ → (G∗)F

∗
induces a bi-

jection between semisimple conjugacy classes of (G∗)F
∗
0 τ
∗

and semisimple
conjugacy classes of (G∗)F

∗
. Moreover, note that we have two partitions of

irreducible characters into rational Lusztig series:

Irr(GF0τ ) =
∐
x

E(GF0τ , x)
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and

Irr(GF ) =
∐
x

E(GF , pr(x)),

where in both cases x runs over a set of representatives for the (G∗)F
∗
0 τ
∗
-

conjugacy classes of semisimple elements.
Thus, if we can show that E(GF , pr(x)) ⊆ E(GF0τ , x) (via the projection

map pr : GτF0 → GF ) for all semisimple x ∈ G∗
F0τ

then we therefore
automatically have E(GF , pr(x)) = E(GF0τ , x).

We fix an F -stable maximal torus T0 of G and suppose that the triple
(G∗,T∗0, F

∗) is in duality with (G,T0, F ).
Let T∗ be an F ∗-stable maximal torus of G∗ with x ∈ (T∗)F

∗
. There

exists h ∈ G∗ such that T∗ = hT∗0. Define w∗ ∈ W (T∗0) by the property that
F (w∗) := h−1F ∗(h)T∗0 ∈ W (T∗0). Then (w∗, h

−1
x) maps to (T∗, x) under the

bijection S(T∗0,W (T∗0), F ∗)/W (T∗0)→ S(G∗, F ∗)/(G∗)F
∗
. Let θ ∈ Irr(TwF

0 )
with δw(θ) = h−1

x. Let T be a maximal torus of G in duality with T∗ and
let g ∈ G such that T = gT0. Note that g−1F (g) ∈ NG(T0) with image
w ∈ W (T0). Observe that T = T × F r−1

0 (T) × · · · × F0(T) = gT0, where
g := (g, F r−1

0 (g), . . . , F0(g)) ∈ G. Moreover,

g−1(τF0)(g) = (g−1F (g), 1 . . . , 1) ∈ NG(T0).

We denote by w := (w, 1, . . . , 1) ∈ W (T0) its image in the Weyl group. Using
the isomorphism in Proposition 5.3 we obtain

RG,F
T (gθ) = RG,τF0

T ((gθ) ◦ pr) = RG,τF0

T (g(θ ◦ pr)).

Set y := δw(θ ◦ pr) ∈ (T∗0)τ
∗F ∗0 w

∗
. Since δw(θ) = h−1

x it follows that pr(y) =
h−1

x by Lemma 5.10.
We denote h := (h, F ∗0 (h), . . . , (F ∗0 )r−1(h)) and observe that T∗ = T∗ ×

F ∗0 (T∗)× · · · × (F ∗0 )r−1(T∗) = hT∗0. Moreover, we have

h−1(τ ∗F ∗0 )(h) = (h−1F ∗(h), 1, . . . , 1) ∈ NG∗(T
∗
0).

From this we deduce that (w∗, y) maps to (T∗, hy) ∈ S(G∗, F ∗0 τ
∗) under the

bijection S(T∗0,W (T∗0), F ∗0 τ
∗)/W (T∗0)→ S(G∗, F ∗0 τ

∗)/G∗
F∗0 τ
∗

.

Since pr(hy) = pr(h)pr(y) = h(h
−1
x) = x = pr(x) and pr : (G∗)F

∗
0 τ
∗ →

(G∗)F
∗

is bijective we deduce that hy = x. In particular, the constituents of

RG,τF0

T (θ ◦ pr) lie in the Lusztig series E(GτF0 , x). This shows the inclusion

E(GF , x) ⊆ E(GτF0 , x).
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Corollary 5.12. For any semisimple `′-element s ∈ (G∗)τ
∗F ∗0 we have eG

F

pr(s) =

eG
F0τ

s considered as idempotents of ΛGF under the isomorphism ΛGτF0 ∼=
ΛGF given by pr.

Proof. Note that eG
F

pr(s) is the idempotent associated to E`(GF , pr(s)) and

eG
F0τ

s is the idempotent associated to E`(GτF0 , s). Thus it is clearly sufficient

to show that E(GF , pr(x)) = E(GF0τ , x) for any semisimple x ∈ (G∗)τ
∗F ∗0 .

This was however proved in Proposition 5.11.

5.7 Restriction of scalars and Jordan decom-

position of characters

In the following section we use ideas from [Dig99, Corollary 3.5] and apply
them to our set-up.

The following notation will be in force until the end of this chapter. We
let s ∈ (G∗)F

∗
be a semisimple element of `′-order and L∗ be an F ∗0 -stable

Levi subgroup of G∗ with C◦G∗(s) ⊆ L∗. Suppose that L is an F0-stable Levi
subgroup of G in duality with L∗. Let

s := (s, F0(s), . . . , F r−1
0 (s)) ∈ (G∗)F

∗
0 τ
∗
.

In addition, we let σ : G→ G be a bijective morphism with F0 ◦ σ = σ ◦ F0

and σ(L) = L. We denote by

σ = σ × · · · × σ : G→ G

the induced map on G which commutes with the action of τF0 and its re-
striction

σ : GF0τ → GF0τ .

Observe that if the isogeny σ∗ is dual to σ then the isogeny σ∗τ ∗ is dual to
τσ. We note that σ ∈ Aut(GF ) corresponds to σ ∈ Aut(GτF0) under the
isomorphism pr : GτF0 → GF .

Lemma 5.13. The automorphism F0 : GF → GF corresponds under the
identification of GF with GF0τ via the projection map pr to the automorphism
τ−1 : GF0τ → GF0τ .

Proof. This follows from the fact that any element of g ∈ GτF0 satisfies
τF0(g) = g or in other words τ−1(g) = F0(g).
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Let ι : G ↪→ G̃ be a regular embedding. Moreover, assume that σ : G̃→
G̃ and F0 : G̃ → G̃ are extensions of σ and F0, which still commute with
each other. As always, we let L̃ := Z(G̃)L and P̃ := Z(G̃)P such that we
have a Levi decomposition P̃ = L̃nU in G̃.

We consider the unipotent radical U′ := Ur of the parabolic subgroup
P′ = Pr of G. Note that we have a Levi decomposition P′ = L nU′ in G
and the parabolic subgroup P′ is τ -stable. The following is an application of
Lemma 5.1:

Lemma 5.14. Suppose that the idempotent eL
F

s is 〈F0, σ〉-stable. Then

Hdim
c (YG,τF0

U′ )eL
τF0

s is endowed with a natural Λ[(GτF0×(LτF0)opp)∆(L̃
τF0〈τ〉)]-

structure. Moreover, Hdim
c (YG,τF0

U′ )eL
τF0

s is (σ, σ−1)-invariant as Λ[(GτF0 ×
(LτF0)opp)∆(L̃

τF0〈τ〉)]-module.

Proof. The pair (L,P′) is τ -stable and L is σ-stable. We have pr(s) = s.
Since eL

F

s is 〈F0, σ〉-stable it therefore follows from Lemma 5.13 that eL
τF0

s is
〈τ, σ〉-stable. Moreover, L∗ is F ∗0 -stable by assumption, so we obtain

C◦G∗(s) = C◦G∗(s)× · · · × C◦G∗(F
r−1
0 (s)) ⊆ L∗.

We conclude that Lemma 5.1 applies which gives the claim of the lemma.

Combining Lemma 5.14 and Lemma 5.13 yields the following important
observation.

Proposition 5.15. Suppose that L and eL
F

s are 〈F0, σ〉-stable. Then the bi-
module Hdim

c (YU,Λ)eL
F

s can be equipped with a Λ[(GF×(LF )opp)∆(L̃F 〈F0〉)]-
module structure with which it is (σ, σ−1)-stable.

Proof. By Theorem 2.36, we have an isomorphism

Hdim
c (YG,τF0

U )eL
τF0

s
∼= Hdim

c (YG,τF0

U′ )eL
τF0

s

of Λ[(GτF0 × (LτF0)opp)∆(L̃
F

)]-modules.
It follows by Lemma 5.14 that the bimodule Hdim

c (YG,τF0

U′ )eL
τF0

s has a

Λ[(GτF0 × (LτF0)opp)∆(L̃
τF0〈τ〉)]-structure with which it is (σ, σ−1)-stable.

By Proposition 5.3 and Corollary 5.12 the bimodule Hdim
c (YG,τF0

U )eL
τF0

s is iso-

morphic to Hdim
c (YG

U ,Λ)eL
F

s as Λ[(GF × (LF )opp)∆(L̃F )]-modules. As noted
above, the group isomorphism σ ∈ Aut(GF ) corresponds to σ ∈ Aut(GτF0)
under the isomorphism pr : GτF0 → GF . Moreover, by Lemma 5.13 the
automorphism τ ∈ Aut(GτF0) corresponds to F−1

0 ∈ Aut(GF ). From this we
can, by transport of structure, endow the bimodule Hdim

c (YU,Λ)eL
F

s with
a Λ[(GF × LF opp

)∆(L̃F 〈F0〉)]-module structure with which it is (σ, σ−1)-
stable.
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In the following, we denote A = 〈σ, F0〉 ⊆ Aut(G̃F ) and D = (GF ×
(LF )opp)∆(L̃FA). Furthermore, let A ∈ {K,O, k}.

Theorem 5.16. Suppose that L and eL
F

s are A-stable. Assume that CG∗(s) ⊆
L∗ and the order of σ : G̃F → G̃F is invertible in A. Then Hdim

c (YU, A)eL
F

s

extends to an AD-module M . Moreover, the bimodule Ind
G̃FA×(L̃FA)opp

D (M)

induces a Morita equivalence between AL̃FAeLFs and AG̃FAeGF

s .

Proof. The existence of the extension M follows from Proposition 5.15 and
Lemma 1.32. The bimodule Hdim

c (YG
U , A)eL

F

s induces a Morita equivalence
between AGF eG

F

s and ALF eL
F

s . Since eL
F

s is A-invariant we conclude that
the assumptions of Theorem 1.24 are satisfied. From this it follows that

Ind
G̃FA×(L̃FA)opp

D (M) gives a Morita equivalence between AL̃FAeLFs and

AG̃FAeGF

s .

We remark the following consequence of Theorem 5.16 which will become
important in Section 6.

Corollary 5.17. In the situation of Theorem 5.16 we have the following
commutative square:

G0(AL̃F 〈F0, σ〉eL
F

s ) G0(AG̃F 〈F0, σ〉eG
F

s )

G0(ALF eL
F

s ) G0(AGF eG
F

s )

Res

[M ⊗−]

(−1)dim(YG
U)RG

L

Res

Proof. This has been discussed in Remark 1.26(a).

5.8 Reduction to isolated series

We keep the assumptions of the previous section. Furthermore, as in Sec-
tion 2.12 we assume that L∗CG∗(s)

F ∗ = CG∗(s)
F ∗L∗ and define N∗ :=

CG∗(s)
F ∗L∗. Recall that we denote by N the subgroup of NG(L) which cor-

responds to the subgroup N∗ of NG∗(L
∗) under the isomorphism NG(L)/L ∼=

NG∗(L
∗)/L∗ given by duality.

Suppose now that F0(eL
F

s ) = eL
F

s . Then the (L∗)F
∗
-conjugacy class of s

is F0-stable. It follows that N∗ is F0-stable. Since L is in duality with L∗

under the duality between (G, F0) and (G∗, F ∗0 ) we can conclude that N is
F0-stable, see the remarks following Remark 2.16.
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In this section we give a partial answer to the question whether the equiv-
alence constructed by Bonnafé–Dat–Rouquier is automorphism-equivariant.
The results of this section will not be used in the remainder of this thesis.
We work with the following assumption:

Assumption 5.18. Assume that the idempotent eL
F

s is F0-stable. Moreover,
suppose that the quotient group NF/LF is cyclic and that NF0/LF0 ∼= NF/LF .

Theorem 5.19. Suppose that Assumption 5.18 is satisfied. Then there ex-
ists a Λ[GF × (NF )opp∆(〈F0〉)]-module M extending Hdim

c (YU,Λ)eL
F

s which
induces a Morita equivalence between ΛNF eL

F

s and ΛGF eG
F

s . Consequently,

the bimodule M̃ := Ind
GF 〈F0〉×(NF 〈F0〉)opp

GF×(NF )opp∆NF 〈F0〉(M) induces a Morita equivalence

between ΛNF 〈F0〉eL
F

s and ΛGF 〈F0〉eG
F

s .

Proof. It follows from Assumption 5.18 that there exists some n ∈ NF gen-
erating the quotient group NF/LF and such that F0(n)n−1 ∈ L. By Lang’s
theorem there exists some l ∈ LF such that ln is F0-invariant. We may thus
assume that n is F0-fixed.

By applying Proposition 5.15 to the automorphism σ : G → G, x 7→
nx it follows that the bimodule Hdim

c (YU,Λ)eL
F

s can be equipped with a
Λ[GF × (LF )opp∆(〈F0〉)]-module structure with which it is NF -invariant.
By Assumption 5.18 the quotient group NF/LF is cyclic and NF normalizes
LF 〈F0〉. Thus, we can apply Lemma 1.32 and it follows that Hdim

c (YU,Λ)eL
F

s

extends to a Λ[GF × (NF )opp∆(〈F0〉)]-module M .
Using Theorem 2.35 we conclude that M induces a Morita equivalence be-

tween ΛNF eL
F

s and ΛGF eG
F

s . Consequently, by Theorem 1.24 the bimodule

Ind
GF 〈F0〉×(NF 〈F0〉)opp

GF×(NF )opp∆(〈F0〉) (M) induces a Morita equivalence between ΛNF 〈F0〉eL
F

s

and ΛGF 〈F0〉eG
F

s .

Using the full strength of the proof of [BDR17a, Theorem 7.6] we can
prove an even stronger statement:

Theorem 5.20. Suppose that we are in the situation of Theorem 5.19. Then
there exists a bounded complex C̃ of Λ[GF 〈F0〉 × (NF 〈F0〉)opp]-modules with
cohomology concentrated in one degree and isomorphic to M̃ such that C̃ in-
duces a splendid Rickard equivalence between ΛNF 〈F0〉eL

F

s and ΛGF 〈F0〉eG
F

s .

Proof. We have a Levi decomposition P = LnU′ in G. Denote P̂ := P〈τ〉,
L̂ := L〈τ〉 and Û := U′. Then as in Section 5.1 we have a Levi decomposition
P̂ = L̂n Û in the reductive group Ĝ := G〈τ〉. We define N̂ := N〈τ〉, which
is a closed subgroup of Ĝ since N is F0-stable. We first prove the following
fundamental observation:

111



Lemma 5.21. We have N̂τF0 = NĜτF0 (L̂, eL
τF0

s ).

Proof. By Assumption 5.18 we have nF0(n−1) ∈ L for every n ∈ NF . From
this and Lemma 5.13 it follows that N̂τF0 stabilizes the Levi subgroup L̂ =
L〈τ〉. Lemma 5.13 implies that the map

ψ : ĜτF0 → GF 〈F0〉, xτ 7→ pr(x)F−1
0 ,

is an isomorphism of groups. Moreover, the image of N̂τF0 under ψ is
NF 〈F0〉. We have ψ(eL

τF0

s ) = eL
F

s and eL
F

s is NF 〈F0〉-fixed. It follows that

N̂τF0 ⊆ NĜτF0 (L̂, eL
τF0

s ). On the other hand, let z ∈ NĜτF0 (L̂, eL
τF0

s ). Then

we have ψ(z)eL
F

s = eL
F

s . Furthermore, z normalizes L and it follows that
ψ(z) normalizes L. From this we deduce that ψ(z) ∈ NF 〈F0〉 and therefore
z ∈ N̂τF0 . It follows that N̂τF0 = NĜτF0 (L̂, eL

τF0

s ).

We can now continue the proof of our theorem. Due to Theorem 1.21
we may assume that Λ = k. By the construction in the proof of Theo-

rem 5.19 the k[ĜτF0 × (L̂τF0)opp]-module Hdim
c (YĜ,τF0

Û
, k)eL

τF0

s extends to a

k[ĜτF0 × (N̂τF0)opp]-module M̃ which induces a Morita equivalence between
kN̂τF0eL

τF0

s and kĜτF0eG
τF0

s .

Consider the complex C := GΓc(Y
Ĝ,τF0

Û
, k)redeL

τF0

s of ĜτF0 × (L̂τF0)opp-

modules. Note that eL
τF0

s is a (G,L)-regular rational series of (L, τF0), see

proof of Lemma 5.14. Furthermore, eL
τF0

s is τ -stable and is therefore by

Lemma 2.26 a (Ĝ, L̂)-regular rational series of (L̂, τF0).
Using Steps 1-3 in the proof of [BDR17a, Theorem 7.6], which directly

apply to our set-up, we can conclude that there exists a direct summand C̃ of

the complex Ind
ĜτF0×(N̂τF0 )opp

ĜτF0×(L̂τF0 )opp
(C) which is quasi-isomorphic to the bimodule

M̃ .
Since M̃ is a Morita bimodule it is in particular a direct sum of inde-

composable pairwise non-isomorphic bimodules. By Assumption 5.18, the
quotient group (N̂/L̂)τF0 ∼= NF/LF is cyclic of `′ order. It follows therefore

by Lemma 1.32 that the k[ĜτF0 × (L̂τF0)opp]-module Hdim
c (YĜ,τF0

Û
, k)eL

τF0

s is
a direct sum of indecomposable pairwise non-isomorphic modules. From this
we conclude that Step 4 of the proof of [BDR17a, Theorem 7.6] applies and
we obtain

Res
ĜτF0×(N̂τF0 )opp

ĜτF0×(L̂τF0 )opp
(C̃) ∼= C.

By Step 5 of the proof of [BDR17a, Theorem 7.6] we conclude that C̃ in-
duces a splendid Rickard equivalence between kN̂τF0eL

τF0

s and kĜτF0eG
τF0

s .

Hence, we obtain a splendid Rickard equivalence between kNF 〈F0〉eL
F

s and
kGF 〈F0〉eG

F

s .
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5.9 Jordan decomposition for local subgroups

We keep the assumptions of Section 5.7. The aim of this section is to obtain
a local version of Theorem 5.16. We will essentially use the same strategy of
Section 5.7 to prove this local version. However, we need to adapt some of
the arguments.

Recall that the projection map pr : GτF0 → GF onto the first coordinate
induces an isomorphism of groups, which extends to an isomorphism pr :
ΛGτF0 → ΛGF of Λ-algebras. Hence, under the isomorphism pr : GτF0 →
GF the notions of blocks, Brauer subpairs and defect groups translate.

From now on we will use the following notation: If H is a subgroup of
GF we let H := pr−1(H) and if x ∈ ΛH then we let x := pr−1(x) ∈ ΛH.

Let b ∈ Z(ΛGF eG
F

s ) and c ∈ Z(ΛLF eL
F

s ) be blocks which correspond to
each other under the splendid Rickard equivalence given by GΓc(Y

G
U ,Λ)eL

F

s .
By Proposition 5.3 and Corollary 5.12 the projection map pr yields an iso-
morphism between GΓc(Y

G
U ,Λ)eL

F

s and GΓc(Y
G,τF0

U ,Λ)eL
τF0

s .

Hence, the blocks b ∈ Z(ΛGτF0eG
τF0

s ) and c ∈ Z(ΛLτF0eL
τF0

s ) corre-
spond to each other under the splendid Rickard equivalence induced by
GΓc(Y

G,τF0

U ,Λ)eL
τF0

s . We fix a maximal c-Brauer pair (D, cD) and let (D, bD)
be the b-Brauer pair corresponding to it under the splendid Rickard equiva-
lence induced byGΓc(Y

G
U ,Λ)c in the sense of Proposition 1.16. Consequently,

the c-subpair (D, cD) corresponds to the b-subpair (D, bD) under the Rickard
equivalence induced by GΓc(Y

G,τF0

U ,Λ)eL
τF0

s .
Furthermore, we let Q be a subgroup of D and let (Q, cQ) ≤ (D, cD) and

(Q, bQ) ≤ (D, bD). We denoteBQ = Tr
N

GF
(Q)

N
GF

(Q,bQ)(bQ) and CQ = Tr
N

LF
(Q)

N
LF

(Q,cQ)(cQ).

Proposition 5.22. The bimodule Hdim
c (Y

NG(Q)
CU(Q) ,Λ)CQ can be equipped with

a Λ[NGF (Q)× NLF (Q)opp∆NL̃F 〈F0〉(Q,CQ)]-module structure.

Proof. By Theorem 5.2 (set Ĝ := G), we have

Hdim
c (Y

NG(Q),τF0

CU′ (Q) )CQ
∼= Hdim

c (Y
NG(Q),τF0

CU(Q) )CQ

as Λ[(NGτF0 (Q)×NLτF0 (Q)opp)∆(N
L̃
τF0 (Q,CQ))]-modules. Moreover, Corol-

lary 5.4 shows that Hdim
c (Y

NG(Q),τF0

CU(Q) )CQ is isomorphic to Hdim
c (Y

NG(Q)
CU(Q) ,Λ)CQ

as Λ[(NGF (Q)× NLF (Q)opp)∆(NL̃F (Q, cQ))]-modules.
Since τ(U′) = U′ we obtain a Levi decomposition P̃〈τ〉 = L̃〈τ〉 n U′

in the reductive group G̃ o 〈τ〉. Hence we obtain a Levi decomposition
NP̃〈τ〉(Q) = NL̃〈τ〉(Q) n CU′(Q) in the reductive group NG̃〈τ〉(Q), see Ex-
ample 2.3. From this we conclude (see Lemma 2.4) that the bimodule
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Hdim
c (Y

NG(Q),τF0

CU′ (Q) )CQ has a natural ∆(N
L̃
τF0 〈τ〉(Q,CQ))-action. By Lemma

5.13 it follows that the Morita bimodule Hdim
c (Y

NG(Q)
CU(Q) ,Λ)CQ can be equipped

with a ∆(NL̃F 〈F0〉(Q,CQ))-action.

From now on we will assume that Q is a characteristic subgroup of the
defect group D. Recall that A = 〈F0, σ〉.

Lemma 5.23. Let Q be a characteristic subgroup of D. Then we have
NL̃FA(Q,CQ)NGF (Q) = NG̃FA(Q,BQ).

Proof. Let L̂ denote the stabilizer of c in L̃FA and Ĝ the stabilizer of b in
G̃FA. We abbreviate L := LF and G := GF . By Lemma 1.45, we have

NL̃FoA(Q,CQ) = NL̂(Q,CQ) = NL̂(Q)

and NL̂(Q)/NL(Q) = L̂/L. Similarly, we have NG̃FoA(Q,BQ) = NĜ(Q) and

NĜ(Q)/NG(Q) = Ĝ/G. On the other hand, we have L̂/L ∼= Ĝ/G by Lemma
4.16. This yields NL̂(Q)/NL(Q) ∼= NĜ(Q)/NG(Q) and the claim of the lemma
follows easily from this.

Let us denote B′Q = Tr
N

G̃FA(Q)

N
G̃FA(Q,BQ)(BQ) and C ′Q = Tr

N
L̃FA(Q)

N
L̃FA(Q,CQ)(CQ). Re-

call that A ∈ {K,O, k}.

Theorem 5.24. Suppose that the assumptions of Theorem 5.16 are satisfied.
Let Q be a characteristic subgroup of D. Then Hdim

c (Y
NG(Q)
CU(Q) , A)CQ extends

to an A[(NGF (Q)×NLF (Q)opp)∆(NL̃FA(Q,CQ))]-module MQ. In particular,
the bimodule

Ind
N

G̃FA(Q)×N
L̃FA(Q)opp

(N
GF

(Q)×N
LF

(Q)opp)∆(N
L̃FA(Q,CQ))(MQ)

induces a Morita equivalence between ANG̃FA(Q)B′Q and ANL̃FA(Q)C ′Q.

Proof. In Proposition 5.22 we have proved that Hdim
c (Y

NG(Q),τF0

CU′ (Q) )CQ is iso-

morphic to Hdim
c (Y

NG(Q)
CU(Q) , A)CQ. This allowed us to endow the bimodule

Hdim
c (Y

NG(Q)
CU(Q) , A)CQ with an A[(NGF (Q) × NLF (Q)opp)∆(NL̃F 〈F0〉(Q,CQ))]-

module structure.
Since Q is a characteristic subgroup of the defect group D of c, it follows

that the quotient group NL̃FA(Q,CQ)/NL̃F 〈F0〉(Q,CQ) is cyclic and of order

divisible by the order of σ ∈ Aut(G̃F ). Hence, there exist x ∈ L̃F and a bi-
jective morphism φ0 : G̃→ G̃ such that xφ0|G̃F generates the quotient group
NL̃FA(Q,CQ)/NL̃F 〈F0〉(Q,CQ). Let x := (x, F r−1

0 (x), . . . , F0(x)) ∈ GτF0 such
that pr(x) = x. Denote

φ0 : G̃〈τ〉 → G̃〈τ〉, (g1, . . . , gr)τ 7→ (φ0(g1), . . . , φ0(gr))τ
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and consider the bijective morphism

φ := xφ0 : G̃〈τ〉 → G̃〈τ〉, z 7→ xφ0(z),

of the reductive group G̃〈τ〉. Note that φ stabilizes G̃ and commutes with

the Frobenius endomorphism τF0 of G̃ o 〈τ〉. Moreover, x(L̃〈τ〉) = L̃〈τ〉
and φ0(L̃) = L̃. Therefore, the bijective morphism φ also stabilizes the Levi

subgroup L̃〈τ〉 of G̃ o 〈τ〉. Since φ|
G̃
τF0 ∈ Aut(G̃

τF0
) corresponds to the

automorphism xφ0 ∈ Aut(G̃F ) under the isomorphism pr : G̃
τF0 → G̃F we

deduce that φ(Q,CQ) = (Q,CQ). Hence, Lemma 4.5 applies and we obtain
an isomorphism

φ(Hdim
c (Y

NG(Q),τF0

CU′ (Q) ,Λ)CQ)φ ∼= Hdim
c (Y

NG(Q),τF0

Cφ(U′)(Q) ,Λ)CQ

of Λ[(NGτF0 (Q) × NLτF0 (Q)opp)∆(N
L̃
τF0 〈τ〉(Q,CQ))]-modules. We have two

Levi decompositions

P̃〈τ〉 = L̃〈τ〉nU and φ(P̃〈τ〉) = L̃〈τ〉n φ(U)

with the same Levi subgroup L̃〈τ〉 of G̃〈τ〉. Therefore, Theorem 5.2 yields

Hdim
c (Y

NG(Q),τF0

Cφ(U′)(Q) ,Λ)CQ
∼= Hdim

c (Y
NG(Q),τF0

CU′ (Q) ,Λ)CQ.

It follows from this that Hdim
c (Y

NG(Q),τF0

CU′ (Q) ,Λ)CQ is (φ, φ−1)-invariant. Hence,

the bimodule Hdim
c (Y

NG(Q)
CU(Q) , A)CQ is by transport of structure (xφ0, xφ

−1
0 )-

invariant as A[(NGF (Q) × NLF (Q)opp)∆(NL̃F 〈F0〉(Q,CQ))]-module. Lemma
1.32 therefore shows that there exists anA[(NGF (Q)×NLF (Q)opp)∆(NL̃FA(Q,CQ))]-

module MQ extending Hdim
c (Y

NG(Q)
CU(Q) , A)CQ. By Theorem 4.28 the bimod-

ule Hdim
c (Y

NG(Q)
CU(Q) , A)CQ induces a Morita equivalence between the blocks

ANGF (Q)BQ and ANLF (Q)CQ. Moreover, Lemma 5.23 shows that

NL̃FA(Q,CQ)NGF (Q) = NG̃FA(Q,BQ).

Hence, Lemma 1.33 implies that the bimodule

Ind
N

G̃FA(Q)×N
L̃FA(Q)opp

(N
GF

(Q)×N
LF

(Q)opp)∆(N
L̃FA(Q,CQ))(MQ)

induces a Morita equivalence between ANG̃FA(Q)B′Q and ANL̃FA(Q)C ′Q.
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Remark 5.25. If one could prove a version of Theorem 5.16 with Morita
equivalence replaced by splendid Rickard equivalence then Theorem 5.24
would be obtained as a consequence of that theorem, see Theorem 1.36.
However this seems to be difficult since we would have to show that the
Rickard–Rouquier complex GΓc(YU,Λ)eL

F

s is independent of the choice of
the unipotent radical U used in its definition. In the case where the Sylow
`-subgroups of GF are cyclic we obtained such an independence result in
Example 4.23.
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Chapter 6

Application to the inductive
Alperin–McKay condition

In this chapter we show how the results from the previous chapters can be
used in the verification of the Alperin–McKay conjecture. More precisely,
we show that in order to prove the inductive Alperin-McKay condition for
all blocks of groups of Lie type it is sufficient to consider their quasi-isolated
blocks.

6.1 The inductive Alperin–McKay condition

The aim of this section is to recall the inductive Alperin–McKay condition
as introduced in [Spä13, Definition 7.2].

Recall that a character triple (G,N, θ) consists of a finite group G with
normal subgroup N and a G-invariant character θ ∈ Irr(N). A projective
representation is a set-theoretic map P : G → GLn(K) such that for all
g, g′ ∈ G there exists a scalar α(g, g′) ∈ K with P(gg′) = α(g, g′)P(g)P(g′).
The projective representation P : G → GLn(K) is said to be associated to
(G,N, θ) if the restriction P|N affords the character θ and for all n ∈ N and
g ∈ G we have P(gn) = P(g)P(n) and P(ng) = P(n)P(g).

We recall the following order relation on character triples, see [Spä18,
Definition 2.1]:

Definition 6.1. Let (G,N, θ) and (H,M, θ′) be two character triples. We
write

(G,N, θ) ≥ (H,M, θ′)

if the following conditions are satisfied:

(i) G = NH, M = N ∩H and CG(N) ≤ H.
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(ii) There exist projective representations P and P ′ associated with (G,N, θ)
and (H,M, θ′) such that their factor sets α and α′ satisfy α|H×H = α′.

Let P : G → GLn(K) be a projective representation associated to the
character triple (G,N, θ). Then for c ∈ CG(N) we have P(c)P(n) = P(n)P(c)
for every n ∈ N . Since P|N affords the irreducible character θ it follows by
Schur’s lemma that P(c) is a scalar matrix.

For the inductive Alperin–McKay we need a refinement of the order rela-
tion “≥” on character triples. More precisely, we also require that the scalars
of the projective representations on elements of CG(N) coincide:

Definition 6.2. Let (G,N, θ) and (H,M, θ′) be two character triples such
that (G,N, θ) ≥ (H,M, θ′) via the projective representations P and P ′. Then
we write

(G,N, θ) ≥c (H,M, θ′)

if for every c ∈ CG(N) the scalars associated to P(c) and P ′(c) coincide.

Let N be a normal subgroup of a finite group G and χ ∈ Irr(G). Then we
write Irr(N | χ) for the set of irreducible constituents of ResGN(χ). Moreover
for θ ∈ Irr(N) we write Irr(G | θ) for the set of all irreducible constituents χ
of the induced character IndGN(θ). We then say that the character χ covers
the character θ.

Theorem 6.3. Let (G,N, θ) and (H,M, θ′) be two character triples such
that (G,N, θ) ≥ (H,M, θ′) with respect to the projective representations P
and P ′. Then for every intermediate subgroup N ≤ J ≤ G there exists a
bijection

σJ : N Irr(J | θ)→ N Irr(J ∩H | θ′)

such that σJ(Irr(J | θ)) = Irr(J ∩H | θ′).

Proof. This is [Spä18, Theorem 2.2].

The following properties which are collected in the next lemma are a
consequence of the fact that “≥” induces a strong isomorphism of character
triples in the sense of [Isa06, Problem 11.13].

Lemma 6.4. Let (G,N, θ) and (H,M, θ′) be two character triples satisfying
(G,N, θ) ≥ (H,M, θ′). Then for any N ≤ J1 ≤ J2 ≤ G and χ ∈ N Irr(J2 | θ)
the following holds:

(a) ResJ2∩H
J1∩H(σJ2(χ)) = σJ1(ResJ2

J1
(χ)).

(b) (σJ2(χβ)) = σJ2(χ)ResJ2
J2∩H(β) for every β ∈ N Irr(J2/N).
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(c) (σJ2(χ))h = σJ2(χh) for every h ∈ H.

Proof. This is [Spä18, Corollary 2.4].

Lemma 6.5. Let (G,N, θ) and (H,M, θ′) be two character triples with (G,N, θ) ≥c
(H,M, θ′). Then for every N ≤ J ≤ G and κ ∈ Irr(CJ(G)) we have

σJ(Irr(J | θ) ∩ Irr(J | κ)) ⊆ Irr(J ∩H | κ).

Proof. See [Spä18, Lemma 2.10].

Let G be a finite group and χ ∈ Irr(G). Then we write bl(χ) for the
`-block of G containing χ.

The following definition is in [Spä18, Definition 4.2].

Definition 6.6. Let (G,N, θ) and (H,M, θ′) be two character triples with
(G,N, θ) ≥c (H,M, θ′). Then we write

(G,N, θ) ≥b (H,M, θ′)

if the following hold:

(i) A defect group D of bl(θ′) satisfies CG(D) ≤ H.

(ii) The maps σJ induced by (P ,P ′) satisfy

bl(ψ) = bl(σJ(ψ))J

for every N ≤ J ≤ G and ψ ∈ Irr(J | θ).

Remark 6.7. Let G be a finite group and b a block of G with defect group
D. Let M be a subgroup of G containing NG(D). By Brauer correspondence
there exists a unique block BD of NG(D) such that (BD)G = b. On the
other hand, since NM(D) = NG(D) Brauer correspondence yields a bijection
Bl(NG(D) | D) → Bl(M | D). It follows that B := (BD)M is the unique
block of M with defect group D satisfying BG = b, see [Nav98, Problem 4.2].

If G is a finite group with normal subgroup N and χ ∈ Irr(N) an irre-
ducible character, then we write Gχ for the inertia group of the character χ
in G. For b a block of G with defect group D we denote by

Irr0(G, b) := {χ ∈ Irr(G, b) | χ(1)` = [G : D]`}

the set of `-height zero characters of the block b.
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Definition 6.8. Let G be a finite group and b a block of G with non-central
defect group D. Assume that for Γ := NAut(G)(D, b) there exist

(i) a Γ-stable subgroup M with NG(D) ≤M � G;

(ii) a Γ-equivariant bijection Ψ : Irr0(G, b)→ Irr0(M,B) where B ∈ Bl(M |
D) is the unique block with BG = b;

(iii) Ψ(Irr0(b | ν)) ⊆ Irr0(B | ν) for every ν ∈ Irr(Z(G)) and

(Go Γχ, G, χ) ≥b (M o Γχ,M,Ψ(χ)),

for every χ ∈ Irr0(G, b).

Then we say that Ψ : Irr0(G, b) → Irr0(M,B) is an iAM-bijection for the
block b with respect to the subgroup M .

We will usually work with iAM-bijections in the following. However, to
formulate the inductive iAM-condition we need a slightly stronger version of
Definition 6.8:

Definition 6.9. We say that Ψ : Irr0(G, b) → Irr0(M,B) is a strong iAM-
bijection for the block b if it is an iAM-bijection which additionally satisfies

(G/Z o Γχ, G/Z, χ) ≥b (M/Z o Γχ,M/Z,Ψ(χ)),

for every χ ∈ Irr0(G, b) and Z = Ker(χ) ∩ Z(G), where χ and Ψ(χ) lift to χ
and Ψ(χ), respectively.

Remark 6.10. Note that if (G/Z oΓχ, G/Z, χ) ≥b (M/Z oΓχ,M/Z,Ψ(χ))
then we automatically have (Go Γχ, G, χ) ≥b (M o Γχ,M,Ψ(χ)) by [NS14,
Lemma 3.12]. However, the converse is not known to hold.

Condition (iii) in Defintion 6.8 is made accessible through the following
theorem:

Theorem 6.11 (Butterfly theorem). Let G2 be a finite group with normal
subgroup N . Let (G1, N, θ) and (H1,M, θ′) be two character triples with
(G1, N, θ) ≥b (H1,M, θ′). Assume that via the canonical morphism εi : Gi →
Aut(N), i = 1, 2, we have ε1(G1) = ε2(G2). Then for H2 := ε−1

2 ε1(H1) we
have

(G2, N, θ) ≥b (H2,M, ϕ).

Proof. See [Spä18, Theorem 2.16] and [Spä18, Theorem 4.6].
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The inductive Alperin–McKay condition was introduced by Späth in
[Spä13, Definition 7.12]. We will in the following use its reformulation in
the language of character triples, see [Spä18, Definition 4.12].

Definition 6.12. Let S be a non-abelian simple group with universal cov-
ering group G and b a block of G with non-central defect group D. If there
exists a strong iAM-bijection Ψ : Irr0(G, b)→ Irr0(M,B) for the block b with
respect to a subgroup M then we say that the block b is AM-good for `.

6.2 A criterion for block isomorphic charac-

ter triples

In this section we establish a slightly more general version of [CS15, Lemma
3.2]. This will be required to obtain Lemma 6.15 below in the case where
GF is of type D4. Thus, the reader who is not interested in the specifics of
this case may skip this section entirely.

Let A be a group acting on a finite group H. Then we denote by LinA(H)
the subset of A-invariant linear characters of Irr(H). Moreover, if N is a
normal subgroup of A and b is a block of N , then we denote by A[b] the
ramification of the block b in A, which was introduced by Dade, see [CS15,
Definition 3.1].

Lemma 6.13. Let A be a finite group. Suppose that N EA and N ≤ J EA
such that J/N is abelian and A/N is solvable. Assume that LinA(H) = {1H}
for every subgroup H of the quotient group ([A,A]J)/J . Let b be a block
of N and χ, φ ∈ Irr(N, b). Let χ̃ ∈ Irr(A) and φ̃ ∈ Irr(A[b]) be extensions

of χ and φ respectively with bl(ResAJ1
(χ̃)
)

= bl(Res
A[b]
J1

(φ̃)) for every J1 with

N ≤ J1 ≤ J [b]. Then there exists an extension χ̃1 ∈ Irr(A) of ResAJ (χ̃) with

bl(ResAJ2
(χ̃1)

)
= bl

(
Res

A[b]
J2

(φ̃))

for every J2 with N ≤ J2 ≤ A[b].

Proof. We copy the first part of the proof of [CS15, Lemma 3.2]. Since A/N
is solvable, there exists some group I with N ≤ I ≤ A[b] such that I/N is
a Hall `′-subgroup of A[b]/N and (I ∩ J)/N is a Hall `′-subgroup of J [b]/N ,
see [Asc00, Theorem 18.5]. According to [KS15, Theorem C(b)(1)] there

exists an extension χ̃2 ∈ Irr(I) of χ to I with bl(χ̃2) = bl(Res
A[b]
I (φ̃)). This

extension also satisfies bl(ResII∩J(χ̃2)) = bl(Res
A[b]
I∩J(φ̃)) according to [KS15,

Lemma 2.4] and [KS15, Lemma 2.5]. By [KS15, Lemma 3.7] there is a unique

character in Irr(I ∩ J | χ) with this property, hence ResAI∩J(χ̃) = Res
A[b]
I∩J(χ̃2)
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by the assumptions on χ̃. By [CS17, Lemma 5.8(a)] there exists an extension
η ∈ Irr(IJ) of ResAJ (χ̃) such that ResIJI (η) = χ̃2.

Since η and ResAIJ(χ̃) are both extensions of the character ResAJ (χ̃) there
exists by Gallagher’s theorem a unique linear character µ ∈ Irr(IJ/J) such
that η = ResAIJ(χ̃)µ. Moreover, by the uniqueness of µ it follows that µ is
A-invariant. Now, ([A,A]J ∩ IJ)/J ≤ ([A,A]J)/J . By assumption every
A-invariant linear character of a subgroup of ([A,A]J)/J is trivial. Hence we
obtain ResIJ[A,A]J∩IJ(µ) = 1[A,A]J∩IJ . In other words, [A,A]J ∩ IJ is contained
in the kernel of the linear character µ. Hence we can consider µ as a character
of IJ/([A,A]J∩IJ). Since IJ/([A,A]J∩IJ) ↪→ A/[A,A] there exists a linear
character µ̃ ∈ Irr(A) extending µ. We define χ̃1 := µ̃χ̃ and by definition we
have

ResAIJ(χ̃1) = ResAIJ(χ̃)µ.

After having constructed the extension χ̃1 the same arguments from [CS15,
Lemma 3.2] show the result. For the convenience of the reader we will recall
the arguments here.

According to [KS15, Lemma 2.4] (which also holds for ordinary characters
instead of Brauer characters) the character χ̃1 satisfies

bl(ResA〈N,x〉(χ̃1)) = bl
(
Res

A[b]
〈N,x〉(φ̃)) for every x ∈ I of `′-order.

Since I/N is a Hall `′-subgroup of A[b]/N it follows that every element x ∈
A[b] of `′-order is conjugate to some element in I. Consequently, the above
equality holds for every element x ∈ A[b] of `′-order. By [KS15, Lemma 2.5]
this implies

bl
(
ResAJ2

(χ̃1)) = bl(Res
A[b]
J2

(φ̃)) for every group J2 with N ≤ J2 ≤ A[b].

Remark 6.14. Note that if A is abelian the assumption that IrrA(H) = {1H}
for every subgroup H of the quotient group ([A,A]J)/J is trivially satisfied.
Hence, we obtain as a special case the original statement of [CS15, Lemma
3.2].

6.3 A condition on the stabilizer and the in-

ductive conditions

In this section we introduce one of the most important results which is used in
practice to verify the inductive Alperin–McKay condition for simple groups
of Lie type.
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Henceforth, G denotes a simple algebraic group of simply connected type
with Frobenius F : G→ G and such that the finite group GF/Z(GF ) is non-
abelian and simple with universal covering group GF . We let ι : G ↪→ G̃ be
a regular embedding as in Lemma 4.1. For every closed F -stable subgroup
H of G̃ we write H := HF .

In the following we denote by B := 〈G, φ0〉 ⊆ Aut(G̃F ) the subgroup
generated by the group G ⊆ Aut(G̃F ) of graph automorphisms and the field
automorphism φ0 : G̃ → G̃ from Lemma 4.1. By the description of auto-
morphisms of simple simply connected algebraic groups in [GLS18, Theorem
2.5.1] it follows that CG̃B(G) = Z(G̃).

Let s ∈ (G∗)F
∗

be a semisimple element of `′-order and b be a block of
OGF eG

F

s with defect group D. We let Q be a characteristic subgroup of D.
In the following we abbreviate M := NG(Q) and M̃ := NG̃(Q). Moreover,
BQ ∈ Bl(M | Q) denotes the unique block with (BQ)M = b.

The following theorem is essentially due to Cabanes–Späth [CS15]. In
previous work this theorem has turned out to be useful in the verification of
the inductive Alperin–McKay condition for simple groups of Lie type.

Theorem 6.15. Let χ ∈ Irr(G, b) and χ′ ∈ Irr(M,BQ) such that the follow-
ing holds:

(i) We have (G̃B)χ = G̃χBχ and χ extends to (GB)χ.

(ii) We have (M̃NGB(Q))χ′ = M̃χ′NGB(Q)χ′ and χ′ extends to NGB(Q)χ′.

(iii) (G̃B)χ = G(M̃NGB(Q))χ′.

(iv) There exists χ̃ ∈ Irr(G̃χ | χ) and χ̃′ ∈ Irr(M̃χ′ | χ′) such that the
following holds:

• For all m ∈ NGB(Q)χ′ there exists ν ∈ Irr(G̃χ/G) with χ̃m = νχ̃

and χ̃′m = Res
G̃χ

M̃χ′
(ν)χ̃′.

• The characters χ̃ and χ̃′ cover the same underlying central char-
acter of Z(G̃).

(v) For all G ≤ J ≤ G̃χ we have bl(Res
G̃χ
J (χ̃)) = bl(Res

NG̃χ′
(Q)

NJ (Q) (χ̃′))J .

Let Z := Ker(χ) ∩ Z(G). Then

((G̃B)χ/Z,G/Z, χ) ≥b ((M̃NGB(Q))χ′/Z,M/Z, χ′),

where χ and χ′ are the characters which inflate to χ, respectively χ′.
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Proof. If assumptions (i)-(iv) hold then we have

((G̃B)χ/Z,G/Z, χ) ≥c ((M̃NGB(Q))χ′/Z,M/Z, χ′),

by [Spä12, Lemma 2.7]. It therefore remains to show that the additional
property in Definition 6.6(ii) holds in order to show that the relation ≥b holds
as well. For this, we go through the proof of [CS15, Proposition 4.2] which is
still applicable under our assumptions since we can replace [CS15, Equation
(4.2)] in the proof of [CS15, Proposition 4.2] by our assumption (v).

Now we want to apply the proof of [CS15, Theorem 4.1]. In the notation
of [CS15, Proposition 4.2], Cabanes–Späth construct a group A together with
a central extension ε : A → Aut(G)χ of Aut(G)χ. Denote by AutG̃χ(G) the
subgroup of automorphisms of Aut(G) induced by the conjugation action
of G̃χ and set J := ε−1(AutG̃χ(G)). By construction, A/J ∼= Bχ, which is
abelian unless possibly if G is of type D4.

If A/J is abelian then the group-theoretic assumptions of [CS15, Lemma
3.2] are satisfied. Then we can apply the proof of [CS15, Theorem 4.1]
without any change and we deduce that the characters χ and χ′ satisfy the
conditions in [CS15, Definition 2.1(c)].

If A/J is non-abelian then as argued above G is of type D and it fol-
lows that A/J ∼= S3 × Cm for some integer m. We have ([A,A]J)/J =
[A/J,A/J ] ∼= C3. No non-trivial character of C3 is fixed by S3. Hence,
LinA(H) = {1H} for every subgroup H of [A,A]J/J . Thus, we can apply the
proof of [CS15, Theorem 4.1] and instead of applying [CS15, Lemma 3.2] we
use our Lemma 6.13. This shows that also in this case the characters χ and
χ′ satisfy the conditions in [CS15, Definition 2.1(c)].

However, since the characters χ and χ′ satisfy the conditions in [CS15,
Definition 2.1(c)] it follows by Theorem 6.11 that the additional property in
Definition 6.6(ii) holds. This finishes the proof.

We will check condition (v) in Theorem 6.15 using the following:

Lemma 6.16. Let χ ∈ Irr(G, b) and χ′ ∈ Irr(NG(Q), BQ). Let χ̃ ∈ Irr(G̃χ |
χ) be an extension of χ and χ̃′ ∈ Irr(M̃χ′ | χ′) be an extension of χ′. Assume

that bl(χ̃) = bl(χ̃′)G̃χ. Then we have

bl(Res
G̃χ
J (χ̃)) = bl(Res

NG̃χ (Q)

NJ (Q) (χ̃′))J

for all G ≤ J ≤ G̃χ.

Proof. Since G̃/G is abelian, it follows that J is a normal subgroup of

G̃χ. Hence, bl(Res
G̃χ
J (χ̃)) is the unique block which is covered by bl(χ̃).
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On the other hand, bl(Res
NG̃χ (Q)

NJ (Q) (χ̃′)) is the unique block of NJ(Q) which

is covered by bl(χ̃′). Moreover, we have bl(χ′)G = bl(χ) and bl(χ̃′)G̃χ =

bl(χ̃). By Corollary 1.44 we can therefore deduce that bl(Res
G̃χ
J (χ̃)) =

bl(Res
NG̃χ (Q)

NJ (Q) (χ̃′))J .

6.4 Extension of characters

Suppose that GF is not of untwisted type D4. Fix a conjugacy class (s) of
a semisimple element s ∈ (G∗)F

∗
of `′-order. Let σ : G̃→ G̃ and F0 : G̃→

G̃ be the automorphisms constructed in the proof of Proposition 4.14 and
denote by A ⊆ Aut(G̃F ) the subgroup generated by these automorphisms.
Recall that there exists a Levi subgroup L of G in duality with the Levi
subgroup L∗ of G∗, the minimal Levi subgroup of G∗ containing CG∗(s),
such that A stabilizes L and eL

F

s .

The next lemma shows that extendibility to GA can be compared with
extendibility to GB. In the following, we denote by ad(x) : G̃→ G̃ the inner
automorphism of G̃ given by conjugation with x ∈ G̃.

Lemma 6.17. Let χ ∈ Irr(GF , eG
F

s ). Then the character χ extends to GAχ
if and only if it extends to GBχ.

Proof. By Proposition 4.14 the image of G̃ o A in Out(G) is the stabilizer
of eG

F

s in Out(G). From this it follows that Aχ and Bχ generate the same
group in Out(G). Thus, if Aχ is cyclic then so is Bχ and χ extends in both
cases. Now assume that Aχ is non-cyclic. Then by the proof of Proposition
4.14 there exists some x ∈ GF0 such that A = 〈ad(x)γ, F0〉, where F0 ∈
〈φ0〉. Since Aχ is non-cyclic it follows that Aχ = 〈ad(x)γ, F i

0〉. Therefore,
Bχ = 〈γ, F i

0〉. By Clifford theory it follows that the character χ extends to
Aχ if and only if χ extends to an ad(x)γ-invariant character of G〈F i

0〉. On
the other hand, the character χ extends to Bχ if and only if χ extends to a
γ-invariant character of G〈F i

0〉. We conclude that χ extends to GAχ if and
only if it extends to GBχ.

We have a local version of the previous lemma. Recall that Q is assumed
to be a characteristic subgroup of the defect group D of b.

Lemma 6.18. Let χ ∈ Irr(NG(Q), BQ). Then the character χ extends to its
inertia group in NGA(Q,BQ) if and only if it extends to its inertia group in
NGB(Q,BQ).
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Proof. A short calculation shows that NGA(Q,BQ)/NG(Q) ∼= NA(b) and simi-
larly NGB(Q,BQ)/NG(Q) ∼= NGB(b). By the same argument as in Lemma 6.17
we may assume that the stabilizer NGA(Q)χ/NG(Q) is non-cyclic. Therefore,
A = 〈ad(x)γ, F0〉, where F0 ∈ 〈φ0〉. We conclude that there exist y, z ∈ G
such that NGA(Q)χ = 〈y ad(x)γ, zF i

0〉. It follows that NGB(Q)χ = 〈yxγ, zF i
0〉.

By Clifford theory it follows that the character χ extends to NGA(Q)χ if and
only if χ extends to a y ad(x)γ-invariant character of G〈zF i

0〉. On the other
hand, the character χ extends to NGB(Q)χ if and only if χ extends to a yxγ-
invariant character of G〈F i

0〉. Therefore, both statements are equivalent.

Remark 6.19. In Theorem 6.15 one could try to replace B by the group
A. However, CG̃A(G) could be larger than Z(G̃), see Remark 4.15. We
do not know however how to compute the values of the involved projective
representations on this larger group.

6.5 The case D4

In the last section we assumed that GF is not of type D4. The reason for
this is that GF admits in this case an additional graph automorphism. Thus,
many of our considerations have to be altered in order to work in this case.
The aim of this section is provide a certain criterion for the extendibility of
characters which is tailored to the situation of Theorem 6.27.

Suppose in this section only that G is a simple, simply connected algebraic
group of type D4. We let φ0 : G→ G be the field automorphism defined in
Section 4.1 and we consider for any fixed prime power q = pf the Frobenius
endomorphism F = φf0 : G→ G defining an Fq-structure such that GF is a
finite quasi-simple group of untwisted type D4.

Corollary 6.20. There exists a subgroup C of B such that the image of G̃oC
in Out(G) is the stabilizer of eG

F

s in Out(G).

Proof. Let DiagGF be the image of the group of diagonal automorphisms in
Out(GF ). The stabilizer of eG

F

s in Out(GF ) contains DiagGF by Lemma 2.32.
Since G̃oB generates all automorphisms of GF up to inner automorphisms,
see Section 4.1, there exists a subgroup C ≤ B such that the image of G̃o C
in Out(G) is the stabilizer of eG

F

s in Out(G).

Recall that b is a block ofOGF eG
F

s with defect group D and characteristic
subgroup Q. For every prime r fix a Sylow r-subgroup Cr of C. Note that
Cr is contained in a Sylow r-subgroup of B. Hence, there exists a graph
automorphism γr : G̃ → G̃ of order dividing r and a Frobenius Fr = φir0 :
G̃ → G̃, with ir | f , such that Cr = 〈γr, Fr〉. We define F0 : G̃ → G̃ to be
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the Frobenius endomorphism which is the product of the Fr over all primes
r diving the order of B. In the following, we let J ⊆ {2, 3} be the set such
that Cj is non-cyclic for j ∈ J .

Lemma 6.21. Let χ ∈ Irr(NGB(Q)χ | BQ). The character χ extends to
NGB(Q)χ if and only if for every r ∈ J it extends to NGR(Q)χ for every
Sylow r-subgroup R of C.

Proof. By Corollary 6.20, the image of G̃ o C in Out(GF ) is the stabilizer
of eG

F

s in Out(GF ). Consequently, we have NGB(Q)χ = NGC(Q)χ. Denote
H := NGC(Q)χ/NG(Q). There exists a Sylow r-subgroup R of C such that
NGR(Q)χ/NG(Q) is a Sylow r-subgroup of H. (Note that this property is
not necessarily true for all Sylow r-subgroups of C.) Moreover, for r /∈ J all
Sylow r-subgroups of H are cyclic. By [Isa06, Corollary 11.31] the character
χ extends to NGC(Q)χ if and only if χ extends to the preimage of a Sylow
r-subgroup of H for every prime r. Since all Sylow r-subgroups of H for
r /∈ J are cyclic it follows that χ extends to NGB(Q)χ if and only if χ extends
to NGR(Q)χ for all r ∈ J and every Sylow r-subgroup R of C.

Let L∗ be the minimal Levi subgroup of G∗ containing CG∗(s). By Lemma
4.11 there exists a Levi subgroup L of G in duality with L∗ such that L is F0-
stable. Recall that OGF eG

F

s and OLF eL
F

s are splendid Rickard equivalent,
see Theorem 2.37. Hence by Theorem 1.15 we can and we will assume that
the defect group D of b is contained in LF .

Let j ∈ J . By the proof of Proposition 4.14 there exist xj ∈ GF0 such

that σj := ad(xj)γj stabilizes L and eL
F

s . If j ∈ {2, 3} \ J there exists some
bijective morphism πj : G̃ → G̃ with Cj = 〈πj〉 and again by the proof of
Proposition 4.14 there exist xj ∈ GF0 such that σj := ad(xj)πj stabilizes L

and eL
F

s . We then define A := 〈σ2, σ3, F0〉 ⊆ Aut(G̃F ).
For r ∈ J consider an arbitrary Sylow r-subgroup R of C. Then we have

R = 〈γ, Fr〉 for some graph automorphism γ ∈ G. Hence, there exists some
x ∈ GF0 such that σ := ad(x)γ ∈ A. We then denote RA := 〈σ, Fr〉 ⊆
Aut(G̃F ).

Lemma 6.22. A character χ ∈ Irr(NGB(Q)χ | BQ) extends to NGB(Q)χ if
and only if for every r ∈ J it extends to NGRA(Q)χ for all Sylow r-subgroups
R of C.

Proof. By Lemma 6.21, the character χ extends to NGB(Q)χ if and only if χ
extends to NGR(Q)χ for every Sylow r-subgroup R of C with r ∈ J . Hence it
suffices to show that for every such R the character χ extends to NGR(Q)χ if
and only if χ extends to NGRA(Q)χ. The proof of the latter is now however
exactly the same as in Lemma 6.18.
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Proposition 6.23. A character χ ∈ Irr(NGB(Q)χ | BQ) extends to NGB(Q)χ
if and only if for all r ∈ J the character ψ := ∗R

NG(Q)
NL(Q)(χ) extends to

NLRA(Q)ψ for every Sylow r-subgroup R of C.

Proof. By Lemma 6.22 the character χ extends to NGB(Q)χ if and only if χ
extends for every r ∈ J to NGRA(Q)χ for every Sylow r-subgroup R of C.

By Remark 1.26(b) extendibility of characters in the situation of Theorem
1.24 is preserved. Now for r ∈ J recall that RA = 〈σ, Fr〉 for some bijective
morphism σ of G̃. Thus, we can apply Theorem 5.24 to the commuting
automorphisms σ : G̃→ G̃ and Fr : G̃→ G̃. This implies that the character
χ extends to NGRA(Q)χ if and only if ψ extends to NLRA(Q)ψ.

6.6 A first reduction of the iAM-condition

In this section we describe the first step to reducing the verification of the
iAM-condition. Before stating the main theorem of this section we need two
lemmas:

Lemma 6.24. Let χ ∈ Irr(L̃), λ ∈ Irr(G̃/G) and ψ ∈ Irr(NL̃(Q)). Then we
have

(a) λRG̃
L̃

(χ) = RG̃
L̃

(ResG̃
L̃

(λ)χ),

(b) ResG̃NG̃(Q)(λ)R
NG̃(Q)

NL̃(Q)(ψ) = R
NG̃(Q)

NL̃(Q)(ResG̃NL̃(Q)(λ)ψ).

Proof. Part (a) is classical. It is proved using the character formula for
Deligne–Lusztig characters, see proof of [DM91, Proposition 13.30(ii)].

The character formula for Deligne–Lusztig characters has been general-
ized to disconnected reductive groups, see [DM94, Proposition 2.6(i)]. (Note
that our definition of Levi subgroups and parabolic subgroups is more general
than the one in [DM94], but the same proof applies to our set-up.) Using

the explicit character formula for R
NG̃(Q)

NL̃(Q)(ψ) gives the result in (b).

Lemma 6.25. Let G be a reductive group with Frobenius endomorphism
F : G → G and parabolic subgroup P with Levi decomposition P = L nU,
where F (L) = L. Then for χ ∈ Irr(LF ) the characters χ and RG

L (χ) restrict
to multiples of the same central character on Z := (Z(G) ∩ L)F .

Proof. The diagonal action of Z fixes the variety YG
U pointwise. Hence the

diagonal action of Z on the bimodule H i
c(Y

G
U , K) is trivial. The claim of the

lemma follows from this.
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For the following theorem we need to suppose that the following assump-
tion holds.

Assumption 6.26. In every G̃-orbit of Irr(G, eGs ) there exists a character
χ ∈ Irr(G, eGs ) satisfying assumption (i) of Theorem 6.15.

In the following we abbreviate ML := NL(Q), M̂ := NGA(Q), M̂L :=
NLA(Q) and M̃L := NL̃(Q).

Theorem 6.27. Let b be a block idempotent of Z(OGeGs ) and c ∈ Z(OLeLs )
the block idempotent corresponding to b under the Morita equivalence between
OLeLs and OGeGs given by Hdim

c (YG
U ,O)eLs .

Suppose that Assumption 6.26 is satisfied. Assume additionally that the
following hold.

(i) There exists an Irr(M̃L/ML) o M̂L-equivariant bijection ϕ̃ : Irr(L̃ |
Irr0(c))→ Irr(M̃L | Irr0(CQ)) such that it maps characters covering the
character ν ∈ Irr(Z(G̃)) to a character covering ν.

(ii) There exists an NL̃A(Q,CQ)-equivariant bijection ϕ : Irr0(L, c)→ Irr0(ML, CQ)
which satisfies the following two conditions:

• If χ ∈ Irr0(L, c) extends to a subgroup H of LA then ϕ(χ) extends
to NH(Q).

• ϕ̃(Irr(L̃ | χ)) = Irr(M̃ | ϕ(χ)) for all χ ∈ Irr0(c).

(iii) For every θ ∈ Irr0(c) and θ̃ ∈ Irr(L̃ | θ) the following holds: If θ0 ∈
Irr(L̃θ | θ) is the Clifford correspondent of θ̃ ∈ Irr(L̃) then bl(θ0) =

bl(θ′0)L̃θ , where θ′0 ∈ Irr(M̃ϕ(θ) | ϕ(θ)) is the Clifford correspondent of

ϕ̃(θ̃).

Then the block b is iAM-good.

Proof. By [Bro90, Theorem 1.5(2)] and [Bro90, Theorem 3.1] it follows that
derived equivalences between blocks of group algebras induce character bi-
jections which preserve the height of corresponding characters. Hence, by
Theorem 4.28 we obtain bijections

RG
L : Irr0(L, c)→ Irr0(G, b) and R

NG(Q)
NL(Q) : Irr0(NL(Q), CQ)→ Irr0(NG(Q), BQ).

We define Ψ : Irr0(G, b)→ Irr0(NG(Q), BQ) to be the bijection which makes
the following diagram commutative:
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Irr0(L, c) Irr0(G, b)

Irr0(ML, CQ) Irr0(M,BQ)

Ψ

RG
L

R
NG(Q)
NL(Q)

ϕ

Note that the bijection RG
L : Irr0(L, c)→ Irr0(G, b) is NL̃A(c)-equivariant and

the bijection R
NG(Q)
NL(Q) : Irr0(NL(Q), CQ) → Irr0(NG(Q), BQ) is NL̃A(Q,CQ)-

equivariant by Lemma 4.18. As in Lemma 5.23, we see that NG(Q)NL̃A(Q,CQ) =
NG̃A(Q,BQ). It follows that the bijection Ψ : Irr0(G, b) → Irr0(M,BQ) is
NG̃A(Q,BQ)-equivariant.

Fix a character χ ∈ Irr0(G, b). For l ∈ L̃ we note that the block lb
of OGF eG

F

s also satisfies the assumptions of the theorem with the map ϕ
replaced by ϕ′ : Irr0(L, lc) → Irr0(NL(lQ), lCQ) given by ϕ′(θ) = lϕ(l

−1
θ)

for θ ∈ Irr0(L, lc). Using Assumption 6.26 we can, by possibly taking a
G̃-conjugate of b, assume that the character χ satisfies assumption (i) of
Theorem 6.15. We denote χ′ := Ψ(χ) and show that the characters χ and χ′

satisfy the conditions of Theorem 6.15.
Since the bijection Ψ : Irr0(G, b)→ Irr0(M,BQ) is NG̃A(Q,BQ)-equivariant

we deduce that condition (iii) in Theorem 6.15 is satisfied and we have

(M̃NGB(Q))χ′ = M̃χ′NGB(Q)χ′ .

To show condition (ii) in Theorem 6.15 let us first assume that GF is
not of type D4. Since Assumption 6.26 holds for the character χ it follows
by Lemma 6.17 that the character χ extends to its inertia group in GA.
Note that by Remark 1.26(b) extendibility of characters in the situation
of Theorem 1.24 is preserved. It therefore follows by Theorem 3.19 that
∗RG

L (χ) extends to its inertia group in LA. By assumption (ii), the character
ϕ(∗RG

L (χ)) extends to its inertia group in M̂L. Hence, by Theorem 5.24 the
character χ′ extends to M̂χ′ . Now Lemma 6.18 shows that condition (ii) in
Theorem 6.15 is satisfied.

Now assume that GF is of type D4. We use the notation of Section 6.5.
Since Assumption 6.26 holds for the character χ we know by Proposition
6.23 that ψ := ∗RG

L (χ) extends to (GRA)ψ for every Sylow r-subgroup R of
C with r ∈ J . By assumption (ii), it follows that ϕ(ψ) extends to NLRA(Q)ψ
for every Sylow r-subgroup R of C with r ∈ J . Applying Proposition 6.23
again yields that χ′ extends to its inertia group NGB(Q). Thus, condition (ii)
in Theorem 6.15 is also satisfied in this case.

From Lemma 6.24 and assumption (i) it follows that the first part of
condition (iv) in Theorem 6.15 is satisfied. Moreover, Lemma 6.25 and as-
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sumption (i) imply that the second part of condition (iv) in Theorem 6.15
is satisfied. We have now verified all conditions of Theorem 6.15 except for
condition (v). To prove this we will show the following:

Lemma 6.28. There exist characters χ̃0 ∈ Irr(G̃χ | χ) and χ̃′0 ∈ Irr(M̃χ′ | χ′)
satisfying bl(χ̃′0)G̃χ = bl(χ̃0).

Proof. Let χ̃0 be a character of J := G̃χ extending χ. Let JL be the subgroup
of L̃/L corresponding to J under the natural isomorphism L̃/L ∼= G̃/G.

Recall that C := GΓc(Y
G
U ,O)redeL

F

s is a complex of O[(G× Lopp)∆(L̃)]-
modules. Moreover by [BR06, Proposition 1.1], we have a canonical isomor-
phism

IndG̃×L̃
opp

(G×Lopp)∆(L̃)
GΓc(Y

G
U ,O)eLs

∼= GΓc(Y
G̃
U ,O)eLs

in Hob(O[G̃×L̃opp]). By Lemma 2.32 and Theorem 2.37 the complexGΓc(Y
G̃
U ,O)eLs

induces a splendid Rickard equivalence between OG̃eGs and OL̃eLs . Thus, the

complex C̃ := Ind
J×Jopp

L

(G×Lopp)∆(JL)(GΓc(Y
G
U ,O)red)c induces a splendid Rickard

equivalence between OJb and OJLc, see Lemma 1.27. Denote b̃ := bl(χ̃)
and let c̃ be the block corresponding to b̃ under the Rickard equivalence in-
duced by C̃. The cohomology of C is concentrated in degree d := dim(YG

U)

and Hd(C̃) ∼= Ind
J×Jopp

L

(G×Lopp)∆JL
Hd(C). By Theorem 1.24 the bimodule Hd(C̃)

induces a Morita equivalence between OJLc and OJb. We denote by

R : Irr(JL, c)→ Irr(J, b)

the associated bijection between irreducible characters and its inverse by ∗R.

The complex Ind
NJ (Q)×NJL (Q)opp

(CJ (Q)×CJL (Q)opp)∆(NJL (Q))(Br∆Q(C̃)) induces a derived equiv-

alence between the algebras kNJ(Q)BQ and kNJL(Q)CQ, see Proposition
1.36. Denote

C̃loc := Ind
(NJ (Q)×NJL (Q)opp)∆(NL̃(Q))

(CG(Q)×CL(Q)opp)∆(NL̃(Q)) (GΓc(Y
CG(Q)
CU(Q) ,O))CQ.

By the proof of Lemma 1.46 it follows that

C̃loc ⊗O k ∼= Ind
NJ (Q)×NJL (Q)opp

CJ (Q)×CJL (Q)opp∆(NJL (Q))(Br∆Q(C̃))CQ

in Hob(k[NJ(Q)× NJL(Q)opp]).

The cohomology of GΓc(Y
CG(Q)
CU(Q) ,O)brQ(eL

F

s ) is concentrated in degree

dQ := dim(Y
CG(Q)
CU(Q)) by Lemma 2.28. Moreover, the bimoduleH

dQ
c (Y

CG(Q)
CU(Q) ,O)cQ

induces a Morita equivalence between OCL(Q)cQ and OCG(Q)bQ. Now
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Lemma 1.35 and Corollary 1.18 imply that HdQ(C̃loc) induces a Morita equiv-
alence between ONJL(Q)CQ and ONJ(Q)BQ. We denote the associated char-
acter bijection by Rloc : Irr(NJL(Q), CQ) → Irr(NJ(Q), BQ) and its inverse

by ∗Rloc : Irr(NJ(Q), BQ)→ Irr(NJL(Q), CQ). Let χ̃ = IndG̃J (χ̃0) and define

χ̃′ := R
NG̃(Q)

NL̃(Q) ◦ ϕ̃ ◦
∗RG̃

L̃
(χ̃).

By construction, χ̃′ ∈ Irr(NG̃(Q) | χ′). We let χ̃′0 ∈ Irr(M̃χ′) be the unique

character covering χ′ with IndM̃
M̃χ′

(χ̃′0) = χ̃′0. Let θ := ∗RG
L (χ) and θ̃ :=

∗RG̃
L̃

(χ). As in the proof of Theorem 4.28 we have

Ind
NG̃(Q)×NL̃(Q)opp

NJ (Q)×NJL (Q)opp∆(NL̃(Q))H
dQ(C̃loc) ∼= Hdim

c (Y
NG̃(Q)

NU(Q) ,O)Tr
NL̃(Q)

NJL
(Q)(CQ).

Hence, by Remark 1.34 we obtain

Ind
NL̃(Q)

NJL (Q)(
∗Rloc(χ̃

′
0)) = ∗R

NG̃(Q)

NL̃(Q)(Ind
NG̃(Q)

NJ (Q) (χ̃′0)) = ∗R
NG̃(Q)

NL̃(Q)(χ̃
′) = ϕ̃(∗RG̃

L̃
(χ̃)) = θ̃.

Thus, ∗Rloc(χ̃
′
0) ∈ Irr(NJL(Q) | ϕ(θ)) is the Clifford correspondent of ϕ̃(θ̃).

Consequently, we have

bl(∗Rloc(χ̃′0))JL = bl(∗R(χ̃0))

by assumption (iii). In other words, bl(∗Rloc(χ̃′0)) is the Harris–Knörr corre-
spondent of bl(∗R(χ̃0)) in the sense of Corollary 1.44.

Moreover, the bimodule HdQ(C̃loc)bl(∗Rloc(χ̃
′
0)) induces a Morita equiva-

lence between the blocks ONJ(Q)bl(χ̃′0) and ONJL(Q)bl(∗Rloc(χ̃
′
0)). On the

other hand, as shown above, we have

C̃loc ⊗O k ∼= Ind
NJ (Q)×NJL (Q)opp

CJ (Q)×CJL (Q)opp∆(NJL (Q))(Br∆Q(C̃))

in Hob(k[NJ(Q)×NJL(Q)opp]). Since bl(∗Rloc(χ̃′0)) is the Harris–Knörr corre-
spondent of bl(∗R(χ̃0)), it follows by Remark 1.47 that bl(χ̃′0) is the Harris–
Knörr correspondent of bl(χ̃0). In other words we have bl(χ̃′0)J = bl(χ̃0).

We now complete the proof of Theorem 6.27. Lemma 6.28 together with
Lemma 6.16 implies that condition (v) in Lemma 6.15 is satisfied. We let
Z := Z(G) ∩Ker(χ). Theorem 6.15 applies and we obtain

((G̃B)χ/Z,G/Z, χ) ≥b ((M̃NGB(Q))χ′/Z,NG(Q), χ′).

By the Butterfly Theorem, see Theorem 6.11, it follows that Ψ : Irr0(G, b)→
Irr0(M,BQ) is a strong iAM-bijection. Consequently, the block b is iAM-
good.
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6.7 Quasi-isolated blocks

We recall the notion of quasi-isolated blocks. Let H be a connected reductive
group with Frobenius F : H → H. Let H∗ be its dual group with dual
Frobenius F ∗. Recall that an element t ∈ H∗ is called quasi-isolated if
CH∗(t) is not contained in a proper Levi subgroup of H∗. We say that a
block b of HF is quasi-isolated if it occurs in OHF eH

F

t for a quasi-isolated
semisimple element t ∈ (H∗)F

∗
of `′-order.

The following remark gives the generic structure of defect groups of blocks
of groups Lie type:

Remark 6.29. Recall that for ` ≥ 5 (and ` ≥ 7 if G is of type E8) we know
by [CE99, Lemma 4.16] that every defect group D of a block b of GF has a
unique maximal abelian normal subgroup Q such that the group extension

1→ Q→ D → D/Q→ 1

splits. Evidence suggests that working withQ is more accessible than working
with the defect group and the iAM-condition is usually checked by working
with NG(Q).

Following the terminology in [KM15, Section 3.4] we say that an `-group
D is Cabanes if it has a unique maximal abelian normal subgroup.

This motivates the following hypothesis:

Hypothesis 6.30. Consider the class HG of tuples (H, F ′) consisting of a
simple algebraic groups H of simply connected type over Fp with Frobenius
F ′ : H→ H such that the Dynkin diagram of H is isomorphic to a subgraph
of the Dynkin diagram of G. Assume that for (G, F ) one of the following
holds:

(a) For every (H, F ′) ∈ HG the group HF ′/Z(HF ′) is an abstract simple
group. Let b be a quasi-isolated block of HF ′ and assume that b has
a non-central defect group D. Then D has a unique maximal normal
abelian subgroup Q such that NHF ′ (Q) � HF ′ and there exists an iAM-
bijection Ψ : Irr0(HF ′ , b)→ Irr0(NHF ′ (Q), BQ).

(b) Let (H, F ′) ∈ HG and b a quasi-isolated block of HF ′. If b has a non-
central defect group D and HF ′/Z(HF ′) is an abstract simple group then
there exists an iAM-bijection Ψ : Irr0(HF ′ , b)→ Irr0(NHF ′ (D), BD).

Let G be a simple algebraic group of simply connected type such that
GF/Z(G)F is simple and non-abelian. By the explicit description of auto-
morphisms of GF in Proposition 4.2, every automorphism Aut(GF ) lifts to
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a bijective automorphism of G commuting with the action of F . However,
in very small cases the group GF/Z(G)F is solvable, see [MT11, Theorem
24.17] for a list of these exceptions.

In the proof of Proposition 6.33 we will use the following property of
Cabanes groups in an essential way (see [KM15, Lemma 3.11] for a slightly
more general statement):

Lemma 6.31. Let P := P1×P2, where P1 and P2 are both Cabanes. Then P
is Cabanes with maximal normal abelian subgroup A1×A2 where Ai, i = 1, 2,
is the maximal normal abelian subgroup of Pi.

We keep the notation of Theorem 6.27. We aim to understand blocks of
[L,L]F which are covered by c.

Lemma 6.32. Suppose that we are in the situation of Theorem 6.27. Let c0

be a block of [L,L]F covered by c. Then c0 is a quasi-isolated block of [L,L]F .

Proof. The inclusion ι : [L,L] ↪→ L induces a dual morphism ι∗ : L∗ �
[L,L]∗. We let s := ι∗(s) the image of s under this map. Recall that L∗ is
the minimal Levi subgroup of G∗ containing CG∗(s). Hence the element s
is quasi-isolated in L∗ and so c is a quasi-isolated block of LF . By [Bon05,
Proposition 2.3] it follows that s is quasi-isolated in [L,L]∗. Since c is a

block of OLF eL
F

s it follows that c0 is a block of O[L,L]F e
[L,L]F

s . From this
we conclude that c0 is a quasi-isolated block of [L,L]F .

The proof of the following proposition is similar to the proof of [NS14,
Corollary 6.3].

Proposition 6.33. Let c0 be a quasi-isolated block of L0 := [L,L]F of non-
central defect. If Hypothesis 6.30 holds for (G, F ) then there exists a defect
group D0 of c0 and a characteristic subgroup Q0 of D0 satisfying NL0(Q0) �
L0 and an iAM-bijection ϕ0 : Irr0(L0, c0)→ Irr0(NL0(Q0), (C0)Q0).

Proof. Since L is Levi subgroup of a simple algebraic group G of simply
connected type it follows that [L,L] is semisimple of simply connected type,
see [MT11, Proposition 12.4]. Thus, we have

[L,L] = H1 × · · · ×Hr,

where the Hi are simple algebraic groups of simply connected type. We have
a decomposition

[L,L]∗ = H∗1 ×H∗2 × · · · ×H∗r

into adjoint simple groups.
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The action of the Frobenius endomorphism F induces a permutation π
on the set of simple components of [L,L]. We let π = π1 . . . πt be the de-
composition of this permutation into disjoint cycles. For i = 1, . . . , t choose
xi ∈ Πi in the support Πi of the permutation πi and let ni = |Πi| be the
length of πi. For every 1 ≤ i ≤ t the inclusion map

Hxi ↪→
∏
x∈Πi

Hx

induces isomorphisms between HFni
xi

and (
∏

x∈Πi
Hx)

F . Consequently, we
have

L0 = [L,L]F ∼= HFn1

x1
× · · · ×HFnt

xt

and
[L∗,L∗]F ∼= (H∗x1

)F
n1 × · · · × (H∗xt)

Fnt

in the dual group. There exists a semisimple element s ∈ [L∗,L∗]F of `′-order

such that c0 is a block of O[L,L]F e
[L,L]F

s .
Writing s = s1 . . . st ∈ (H∗x1

)F
n1 × · · · × (H∗xt)

Fnt with si ∈ (H∗xi)
Fni we

obtain a decomposition

e
[L,L]F

s = e
HF
x1

s1 ⊗ · · · ⊗ eH
F
xt

st .

In particular, the block c0 can be written as c0 = cx1⊗· · ·⊗ cxt where the cxi
are blocks of HFni

xi
. Note that the blocks cxi are quasi-isolated in HFni

xi
since

c0 is assumed to be quasi-isolated. In the following we denote Hxi := HFni
xi

.
By possibly reordering the factors of L0 we can assume that there exists some
integer v such that the factor HFni

xi
is quasi-simple if and only if i ≤ v. Hence

we can decompose L0 as

L0 := L0,simp × L0,solv,

such that L0,simp = Hx1 × · · · ×Hxv is a direct product of simple non-abelian
finite groups and L0,solv is a finite solvable group. This induces a decompo-
sition c0 = c0,simp ⊗ c0,solv of blocks.

By Hypothesis 6.30 there exist for each i ≤ v a characteristic subgroup Qi

of a defect group Di of ci such that there exist an NAut(Hi)(Qi, Ci)-equivariant
iAM-bijection ϕi : Irr0(Hxi , cxi) → Irr0(NHxi

(Qi), Cxi), where Cxi is the

unique block of Bl(NHxi
(Qi) | Di) with C

Hxi
xi = cxi . We let

{x1, . . . , xv} = A1 ∪ A2 ∪ · · · ∪ Au,

be the partition such that xj, xk ∈ Ai whenever nj = nk and there exists a
bijective morphism φ : Hxj → Hxk commuting with the action of F ni such
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that φ(cxj) = cxk . For each i we fix a representative xij ∈ Ai. We denote
yi := xij and mi := nij .

For a bijective morphism φ : [L,L] → [L,L] commuting with F it holds
that c0 is quasi-isolated if and only if φ(c0) is quasi-isolated. Moreover, the
conclusion of the proposition holds for c0 if and only if it holds for φ(c0).
Hence, without loss of generality, we may conjugate the block c0 by an ele-
ment of Aut(L0,simp) such that the block c0,simp is of the form

c0,simp =
u⊗
i=1

c⊗|Ai|yi
,

where the cyi are all distinct blocks. Therefore, the block stabilizer of c0

satisfies

NAut(L0)(c0,simp) ∼=
u∏
i=1

NAut(Hyi )
(cyi) o S|Ai|.

It follows that D0,simp :=
∏u

i=1D
|Ai|
yi is a defect group of c0,simp. Moreover,

Q0,simp :=
∏u

i=1Q
|Ai|
yi is a characteristic subgroup of D0,simp by Lemma 6.31.

We let C0,simp be the unique block of NL0,simp
(Q0,simp) with defect groupD0,simp

satisfying (C0,simp)L0,simp = c0,simp. Define HAi := H
|Ai|
yi . For every i we have

NHAi
(Q|Ai|yi

) = NHAyi
(Qyi)

|Ai|.

Thus, for each i = 1, . . . , u we obtain bijections

ϕ|Ai|yi
: Irr0(HAi , c

⊗|Ai|
yi

)→ Irr0(NHAi
(Q|Ai|yi

), C⊗|Ai|yi
).

We claim that these bijections are iAM-bijections. Every character χ ∈
Irr0(HAi , c

⊗|Ai|
yi ) is NAut(HAi )

(Q
|Ai|
yi , c

⊗|Ai|
yi )-conjugate to a character

∏u
i=1 χi

such that for every i and j we either have χi = χj or χi and χj are not
Aut(HAi)-conjugate. Since the relation ≥b is preserved by automorphisms
we may assume that χ is of this form. Hence, χ =

∏t
l=1 ψ

rl
k , where the ψl are

all distinct characters and the rl are some integers. Therefore, we have

Aut(HAi)χ
∼=

t∏
l=1

Aut(Hyi)ψl o Srl .

In other words, the stabilizer of χ is a direct product of wreath products. By
[Spä18, Theorem 2.21] and [Spä18, Theorem 4.6] the relation≥b is compatible
with wreath products and by [Spä18, Theorem 2.18] and [Spä18, Theorem
4.6] it is compatible with direct products. Hence we can conclude that the

bijection ϕ
|Ai|
yi is an iAM-bijection.
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Using this it follows directy by [Spä18, Theorem 2.18] and [Spä18, Theo-
rem 4.6] that the bijection

ϕ0,simp :=
u∏
i=1

ϕ|Ai|xij
: Irr0(L0,simp, c0,simp)→ Irr0(NL0,simp

(Q0,simp), C0,simp)

is an iAM-bijection.
Let D0,solv be a defect group of c0,solv and C0,solv be the Brauer correspon-

dent of c0,solv in NL0,solv
(D0). By [NS14, Theorem 7.1] there exists a strong

iAM-bijection

ϕ0,solv : Irr0(L0,solv, c0,solv)→ Irr0(NL0(D0,solv), C0,solv).

We note D0 = D0,simp × D0,solv is a defect group of the block c0 and Q0 :=
Q0,simp × D0,solv is a characteristic subgroup of D0. Since the image under
an automorphism of a solvable (resp. quasi-simple) finite group is solvable
(resp. quasi-simple), we obtain

Aut(L0) ∼= Aut(L0,simp)× Aut(L0,solv).

Hence, by [Spä18, Theorem 2.18] and [Spä18, Theorem 4.6] we obtain an
iAM-bijection

ϕ0 := ϕ0,simp × ϕ0,solv : Irr0(L0, c0)→ Irr0(NL0(Q0), C0).

It finally remains to show that Q0 is non-central in L0. By assumption the
block c0 of L0 has non-central defect group D0 = D0,simp ×D0,solv. Hence, it
follows that either D0,simp is non-central in L0,simp or D0,solv is non-central in
L0,solv. In the latter case it follows immediately that Q0 is non-central in L0.
In the former case, we observe that there exists some i with 1 ≤ i ≤ v such
that cxi has non-central defect group. In particular, NHxi

(Qi) ( Hxi . From
this we conclude that Q0 is non-central in L0.

6.8 Normal subgroups and character triple

bijections

In this section we will recall two general statements from the theory of charac-
ter triples which we will use in the next sections. The notation will therefore
be unrelated to the notation of the previous sections.

We need a variant of [NS14, Proposition 4.7(b)]:
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Proposition 6.34. Let X be a finite group. Suppose that NCX and H ≤ X
such that X = NH. Let e be a block of N with defect group D0. Assume
that M := N ∩H satisfies H = MNX(D0) and let E ∈ Bl(M | D0) such that
EH = e. Suppose there exists an NX(D0, E)-equivariant bijection

ϕ : Irr0(N, e)→ Irr0(M,E)

such that (Xθ, N, θ) ≥b (Hθ,M, ϕ(θ)). Furthermore let J C X such that
N ≤ J . Let c be a block of J covering f and D a defect group of c satisfying
D ∩ N = D0 and let C ∈ Bl(J ∩H | D) with CJ = c. Then there exists an
NH(D,C)-equivariant bijection

πJ : Irr0(J, c)→ Irr0(J ∩H,C)

such that (Xτ , J, τ) ≥b (Hτ , J ∩H, πJ(τ)) for all τ ∈ Irr0(J, c).

Proof. This is proved as in [NS14, Proposition 4.7(b)]. We note that the
assumptions in in [NS14, Proposition 4.7(b)] are stronger. However, one can
with our weaker assumption and with the same proof show that the statement
of the proposition holds.

We use the following statement, which is a consequence of the Dade–
Nagao–Glauberman correspondence. Recall that if N C G such that G/N
is an `-group then every `-block of N is covered by a unique block of G,
see [Nav98, Corollary 9.6].

Lemma 6.35. Let X be a finite group, M CX and N CM such that M/N
is an `-group. Let D0 CN be an `-subgroup with D0 ≤ Z(M). Suppose that
c0 is an M-invariant block of N . Let e be the unique block of M covering
c0 and let with Brauer correspondent ED in NM(D). Then there exists an
NX(D,ED)-equivariant bijection

ΠD : Irr0(M, e)→ Irr0(NM(D), ED)

with (Xτ ,M, τ) ≥b (NX(D)τ ,NM(D),ΠD(τ)) for every τ ∈ Irr0(M, e).

Proof. This is a direct consequence of [NS14, Corollary 5.14].

6.9 Application of character triples

We keep the notation of Section 6.7. Furthermore, we fix a block c0 of L0 =
[L,L]F covered by the block c of L with defect groupD0. By [Nav98, Theorem
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9.26] we can assume that the defect group D of c satisfies D0 = D∩L0. Our
aim in this section is to obtain an iAM-bijection for the block c.

If the defect group D0 of c0 is non-central in L0 then Proposition 6.33
yields an iAM-bijection for the block c0. Let us now consider the case when
the defect group D0 of c0 is central in L0.

Lemma 6.36. Suppose that D0 ≤ Z(L0). Let e be the unique block of L1 :=
L0D covering c0. Let ED be the Brauer correspondent of e in NL1(D). Then
there exists an iAM-bijection

ϕ0 : Irr0(L1, e)→ Irr0(NL1(D), ED).

Proof. We show that we can apply Lemma 6.35 to the case M := L1, N := L0

and X := L1 o Aut(L1). Note that c0 is indeed L1 = L0D-invariant. Since
L = [L,L]Z◦(L) we have Z([L,L])F ≤ Z(L)F . Consequently,

Z([L,L]F ) = Z([L,L])F ≤ Z(L)F = Z(LF )

by [Bon06, Remark 6.2]. This implies Z(L0) ≤ Z(L1) and therefore D0 ≤
Z(L1). Thus Lemma 6.35 applies and the statement follows from this.

To simplify the following calculations we introduce another notation.

Notation 6.37.

• Assume that D0 is central in L0. Then as before we fix a defect group
D of c satisfying D ∩ L0 = D0. We define L1 := L0D and we let e be
the unique block of L1 covering c0. In addition, we set Q := D.

• If D0 is not central in L0 then we set L1 := L0, e := c0 and Q := D0.

We note that in both cases we have NL(Q) � L. In the first case this
follows from the assumption that c has non-central defect group and in the
second case this follows by the construction in Proposition 6.33. Moreover,
in both cases c is a block of L covering e. This is because c covers the block
c0 and e is the unique block of L1 covering c0.

Lemma 6.38. If Hypothesis 6.30 holds for (G, F ) then there exists an NL̃A(Q,CQ)-
equivariant bijection ϕ : Irr0(L, c)→ Irr0(NL(Q), CQ) such that

((L̃A)χ, L, χ) ≥b (NL̃A(Q))ϕ(χ),NL(Q), ϕ(χ)).

for every character χ ∈ Irr0(L, c).
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Proof. Denote by EQ ∈ Bl(NL1(Q) | D) the unique block which satisfies
(EQ)L1 = e. By Proposition 6.33 and Lemma 6.36 there exists an iAM-
bijection

ϕ0 : Irr0(L1, e)→ Irr0(NL1(Q), EQ).

We claim that (L̃A)χ acts on L1. If the defect group D0 of c0 is non-central
in L then L1 = L0 is a characteristic subgroup of L, so the claim is clear.
Assume therefore that the defect group D0 is central in L0. Then the group
(L̃A)χ acts on L and stabilizes the block c. Thus, (L̃A)χ stabilizes the defect
group D up to L-conjugation. In particular, L1 = L0D is (L̃A)χ-stable.

Hence, we can apply the Butterfly Theorem, see Theorem 6.11, and we
conclude that the bijection ϕ0 : Irr0(L1, e)→ Irr0(NL1(Q), EQ) satisfies

((L̃A)χ, L1, χ) ≥b (NL̃A(Q)ϕ0(χ),NL1(Q), ϕ0(χ)).

for every character χ ∈ Irr0(L1, e).
Now we apply Proposition 6.34 in the case H = NL̃A(Q), N = L1 and

J = L. We obtain an NL̃A(Q,CQ)-equivariant bijection ϕ : Irr0(L, c) →
Irr0(NL(Q), CQ) such that

((L̃A)χ, L, χ) ≥b (NL̃A(Q)ϕ(χ),NL(Q), ϕ(χ))

holds for every character χ ∈ Irr0(L, c). Finally, note that

NL̃A(Q,CQ) = NL̃A(D,CD)NL(Q),

which proves that ϕ is NL̃A(Q,CQ)-equivariant.

Lemma 6.39. Suppose that Hypothesis 6.30 holds for (G, F ). Then there
exists a bijection ϕ̃ : Irr(L̃ | Irr0(c)) → Irr(NL̃(Q) | Irr0(CQ)) such that ϕ̃
together with the bijection ϕ : Irr0(L, c) → Irr0(NL(Q), CQ) constructed in
the proof of Lemma 6.38 satisfy assumptions (i)-(iii) of Theorem 6.27.

Proof. Choose a transversal T of the characters in Irr0(L, c) under NL̃(c)-
conjugation. By Lemma 6.38 we obtain an NL̃A(Q,CQ)-equivariant bijection
ϕ : Irr0(L, c)→ Irr0(NL(Q), CQ) such that

((L̃A)χ, L, χ) ≥b (NL̃A(Q)ϕ(χ),NL(Q), ϕ(χ)),

for every character χ ∈ Irr0(L, c). Hence, for every character χ ∈ T we
obtain by Theorem 6.3 a bijection

σ
(χ)

L̃χ
: Irr(L̃χ | χ)→ Irr(NL̃(Q)χ | ϕ(χ)).
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By Clifford correspondence we then obtain a bijection

ϕ̃χ : Irr(L̃ | χ)→ Irr(M̃L | ϕ(χ)).

The disjoint union of the bijections ϕ̃χ, χ ∈ T , induces a bijective map

ϕ̃ : Irr(L̃ | Irr0(c))→ Irr(M̃L | Irr0(CD)).

By Lemma 6.4, the bijection ϕ̃ is Irr(M̃L/ML) o M̂L-equivariant. Together
with Lemma 6.5, it follows that the bijections ϕ and ϕ̃ satisfy assumption
(i) of Theorem 6.27. Moreover, Lemma 6.4 show that assumption (ii) in
Theorem 6.27 is satisfied.

Let χ ∈ Irr0(L, c) and χ̃ ∈ Irr(L̃ | χ). Let χ0 ∈ Irr(L̃χ | χ) be the Clifford
correspondent of χ̃ ∈ Irr(L̃). By Definition 6.6(ii) we have

bl(χ0) = bl(σL̃χ(χ0))L̃χ .

By construction of the map ϕ̃, the character σL̃χ(χ0) ∈ Irr(ML̃ | ϕ(χ)) is the
Clifford correspondent of ϕ̃(χ̃). This shows that assumption (iii) in Theorem
6.27 is satisfied.

6.10 Jordan decomposition for the Alperin–

McKay conjecture

We can now prove our main theorem.

Theorem 6.40. Let G be a simple algebraic group of simply connected type
with Frobenius F : G→ G. Suppose that S := GF/Z(GF ) is simple and GF

is its universal covering group. Let b be a block of OGF eG
F

s for a semisim-
ple element s ∈ (G∗)F

∗
of `′-order. If Assumption 6.26 holds for eG

F

s and
Hypothesis 6.30 holds for the group (G, F ) then every `-block b of GF is
AM-good for `.

Proof. As in Theorem 6.27 let c ∈ Z(OLeLs ) be the block idempotent corre-
sponding to b under the Morita equivalence between OLeLs and OGeGs given
by Hdim

c (YG
U ,O)eLs . By Lemma 6.39 there exists a bijection ϕ̃ : Irr(L̃ |

Irr0(c)) → Irr(NL̃(Q) | Irr0(CQ)) such that ϕ̃ together with the bijection
ϕ : Irr0(L, c) → Irr0(NL(Q), CQ) constructed in the proof of Lemma 6.38
satisfy assumptions (i)-(iii) of Theorem 6.27. Hence, by Theorem 6.27 the
block b is therefore AM-good for `.

Remark 6.41. Assumption 6.26 has been proved for all simple simply con-
nected groups G not of type D, see [CS19, Theorem B], and conjectured to
hold as well in this type. Therefore, Theorem F from the introduction is a
consequence of Theorem 6.40.
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[CS19] Marc Cabanes and Britta Späth. Descent equalities and the in-
ductive McKay condition for types B and E. arXiv e-prints, page
arXiv:1903.11667, Mar 2019.

[Dad84] Everett C. Dade. Extending group modules in a relatively prime
case. Math. Z., 186(1):81–98, 1984.

143



[Dig99] François Digne. Descente de Shintani et restriction des scalaires. J.
London Math. Soc. (2), 59(3):867–880, 1999.

[DM91] François Digne and Jean Michel. Representations of finite groups of
Lie type, volume 21 of London Mathematical Society Student Texts.
Cambridge University Press, Cambridge, 1991.

[DM94] François Digne and Jean Michel. Groupes réductifs non connexes.
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lence. arXiv e-prints, page arXiv:1812.07354, Dec 2018.
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