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Introduction

The Global-Local Conjectures

The representation theory of finite groups is a field of mathematics which was
introduced to study finite groups by means of linear algebra. This theory is
concerned with the study of group homomorphisms

X G — GL,(K)

from a finite group G to a general linear group GL, (K) over a field K. From
the very beginning of this topic, it became apparent that many properties of
the group itself are encapsulated in its representations and there are theorems
in group theory which can only be proved by using representation-theoretic
methods.

Motivated by the work of Brauer, the so-called local-global conjectures
became an important area of research. These conjectures predict that for a
prime number ¢ the information about a finite group G (global information)
should relate to properties of ¢-local subgroups of GG, that is, normalizers or
centralizers of non-trivial ¢-subgroups of G (local information).

One of the most simple yet extremely difficult conjectures is the so-called
McKay conjecture, see [Mall7, Section 2]. Let ¢ be a prime and K a finite
field extension of @, large enough for all finite groups considered. Denote by
Irr(G) the set of isomorphism classes of irreducible K-representations and
by Irry (G) the subset corresponding to irreducible representations X' : G —
GL,(K) with ¢ 1 n.

Conjecture (McKay). Let G be a finite group and P a Sylow (-subgroup of
G. Then |Irty(G)| = | Irtp (N (P))|-

Later, Alperin [Alp76| refined this conjecture by taking into account the
representation theory over a field of positive characteristic /.

Denote by O the ring of integers of K over Z, and by k its residue field.
For an ¢-block B of kG let Irrg(G, B) be the set of isomorphism classes of
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height zero representations of kB, i.e., the set of irreducible representations
X : G — GL,(K) associated to the block B such that n, = |G : D|s, where
D denotes a defect group of B.

Conjecture (Alperin-McKay). Let G be a finite group and b an (-block of
G and B its Brauer correspondent in Ng(D). Then

| Irro(G, b)| = | Irro(Ng(D), B)|.

Both of these conjectures have been reduced (by Isaacs—Malle-Navarro,
respectively Spéth, see [IMNO7, Theorem B] and [Spal3, Theorem C]) to
the verification of certain stronger versions of the same conjecture for finite
quasi-simple groups. These stronger versions are usually referred to as the
inductive conditions.

This approach has turned out to be very fruitful in recent years. In their
landmark paper |[MS16], using this approach Malle-Spath were able to prove
the McKay conjecture for the prime ¢ = 2 (proving the original conjecture
of McKay).

According to the classification of finite simple groups, many finite simple
groups are groups of Lie type. These are finite groups which arise as fixed
points G of a simple algebraic group G under a Frobenius endomorphism
F : G — G. In this thesis, we focus on their representation theory and
establish a new approach to the inductive Alperin-McKay condition for those
groups.

Representation theory of groups of Lie type

In characteristic zero Deligne and Lusztig have constructed representations
by means of f-adic cohomology groups of the so-called Deligne—Lusztig va-
rieties. Let G be a connected reductive algebraic group with Frobenius
F : G — G and let L be an F-stable Levi subgroup of G contained in a
parabolic subgroup P with Levi decomposition P = L x U. Then the variety

YG={gUeG/U|g 'F(g9) e UF(U)}
has a left G- and a right L¥-action. Recall that O denotes the ring of
integers over Z, of a finite field extension K of (Q,. The f-adic cohomology

groups H(YS, O) of the Deligne—Lusztig variety Y& provide us with a map

Ri-p : Go(OL") = Go(OG"), [M] = ) (-1)'[HI(YE, 0) ®@ovr M]

7



on the respective Grothendieck groups, see Section Let G* be the dual
group of G with dual Frobenius F* : G* — G*, see Section Deligne—
Lusztig constructed a decomposition of the irreducible representations into
rational Lusztig series

Irr(GF) = HS(GF, s),
(s)

where (s) runs over the set of (G*)f"-conjugacy classes of semisimple el-
ements of (G*)f". For a given s € (G*)f", let L* be an F*-stable Levi
subgroup of G* containing Cg«(s). Let L C G be in duality with L*. Then
Lusztig showed that the map

E(LF,s) = E(GF,s), ¥ — £RE(¥),

provides a bijection. This is the first important step in establishing the so
called Jordan decomposition of characters. This bijection has become an
indispensable tool to study the representation theory of groups of Lie type
since it reduces the question of understanding the representation theory of
Lusztig series of general semisimple elements to the question of understanding
Lusztig series of quasi-isolated semisimple elements, i.e., semisimple elements
whose centralizers are not contained in a proper Levi subgroup.

Modular representation theory of groups of Lie
type

The Deligne-Lusztig theory has been generalized to positive characteristic.
Let s € (G*)f" be a semisimple element of ¢'-order. Then we define

E(G" s) =[] £(G 1),

where (t) runs over the set of (G*)" -conjugacy classes of semisimple elements
of (G*)F" whose ¢ part is (s). By the work of Broué-Michel [BM89] this turns
out to be a union of £-blocks of G¥. We denote by eS" € Z(OGF) the central
idempotent associated to this sum of blocks. Similar to the characteristic zero
case we have a decomposition

OGF-mod = GB OGFeSF—mod
(s)

F

where (s) runs over the set of (G*)f" -conjugacy classes of semisimple ele-

ments of (G*)f" of ¢-order.



Establishing a conjecture by Broué, Bonnafé-Rouquier [BR03| and later
Bonnafé-Dat—Rouquier [BDR17a] proved a Jordan decomposition for blocks
of groups of Lie type. Fix a semisimple element s € (G*)f" of £-order and
suppose that L* is the minimal F™*-stable Levi subgroup of G* containing

%.(s). Denote by N the stabilizer of L and %" in G¥. Then the following
was proved in [BDR17a] (see also Theorem below):

Theorem A (Bonnafé-Dat—Rouquier). Suppose that N¥' /LY is cyclic. Then
. el

the bimodule HS™ YU (YS, 0)el” extends to a OGF -ONF -bimodule such

that OGFeS" and ONFeL" are Morita equivalent. Moreover, OGFeS" and

ONFGEF are splendid Rickard equivalent.

Note however that |[BDR17a, Theorem 7.7] was announced without the
assumption that N¥ /L% is cyclic. This assumption is necessary to apply
their proof, see Section for more details. As a first main result of this
thesis we partly remove this technical assumption and therefore extend the
results of Theorem [Al Assume that G is a simple algebraic group. In this
case, the quotient group N¥ /L embeds into Z(G)*. Therefore, a non-cyclic
quotient can only appear if G is simply connected and G is of type D,, with
even n > 4. Hence we focus on this situation and prove the following:

Theorem B (see Theorem|3.22)). Suppose that G is a simple algebraic group.
im(Y&

If €4 (2—1) or if NT /LT is cyclic then the bimodule He (YU)(Y}S, O)el" ea-

tends to a OGF-ONF -bimodule such that OGFeS" and ONFeL" are Morita

equivalent. Moreover, OGFeEF and ONFeg‘F are splendid Rickard equiva-

lent.

Note that Theorem [B| has also appeared in the author’s article [Ruh18].

Clifford theory and group automorphisms

The Jordan decomposition by Bonnafé—Rouquier has proved to be extremely
useful in the representation theory of finite groups of Lie type. For instance,
the Bonnafé—Rouquier Morita equivalence was a crucial ingredient in the
verification of one direction of Brauer’s height zero conjecture by Malle—
Kessar [KM13]. Our main objective in this thesis is therefore to provide a
reduction of the verification of the inductive Alperin—-McKay condition from
Spath [Spal3| to blocks associated to quasi-isolated semisimple elements.
Let us therefore from now on assume that G is a simple algebraic group
of simply connected type and for simplicity let us assume in this and the
next section that G is not of type Dy. Let ' : G — G be a Frobenius
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endomorphism such that G¥'/Z(G”) is a finite simple group. We let ¢ :
G < G be a regular embedding, i.e. an embedding of G into a group G
with connected center and same derived subgroup as G. As before, consider
a semisimple element s € (G*)f" of ¢'-order and suppose now that L* is the
minimal F*-stable Levi subgroup of G* with Cg-(s) C L*.

Using the classification of automorphisms of finite simple groups of Lie
type (see Section we prove the existence of bijective morphisms Fp : G —
G and 0 : G — G stabilizing a Levi subgroup L of G in duality with L*
and such that the image of G x A, where A := (0|gr, Folgr), generates the
stabilizer of " in Out(G'). Moreover, these bijective morphisms commute
with each other and the Frobenius endomorphism F': G — G is an integral
power of Fy. Using this explicit description of automorphisms we can prove
the following:

Theorem C (see Theorem [5.16). Assume that Cg*(S) C L* and the or-
der of o+ GI' — GI is coprime to £. Then Hdlm(YU)(YS,O)eLF extends

S

to an O[(GF x (LF)°PP)A(A)]-module M. Moreover, the bimodule M =

In dgﬁ;ﬁ;&iiﬁi( ) (M) induces a Morita equivalence between OL" AeL" and

OGF AeSG" .

One of the main ingredients in the proof of Theorem [A]is to show that
the Morita bimodule in Theorem [A] does not depend on the choice of the

parabolic subgroup. This yields that the bimodule H. dim(¥ (YS’, O)el”

A(A)-invariant. However, this does not imply that the Morita bimodule
extends. To remedy this problem we use a certain idea introduced by Digne
[Dig99] in the context of restriction of scalars for Deligne-Lusztig varieties.

This allows us to show that the module Hy ™" o) (YE, A)el" can be endowed
with a natural diagonal action of the automorphism Fy|gr. From this we
can show using the aforementioned independence result that the so-obtained
bimodule is still invariant under the automorphism o. Once we have proved
this, Theorem [C] is then a consequence of general results on Clifford theory
of Morita equivalences. This result gives us the desired compatibility of the
Jordan decomposition with group automorphisms:

Corollary D. In the situation of Theorem[(] we have the following commu-
tative square of Grothendieck groups:
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® -]

= F [ ~ F
Go(OLY Ael™) Go(OGF AeS)
ResE?A ResgiA
(_1)dim(Y8)R§
Go(OLF L") Go(OGFeS")

Local equivalences

The Alperin—-McKay conjecture relates the global height zero characters to
the local height zero characters. Thus, in order to reduce the verification of
the inductive Alperin—-McKay condition to a question about quasi-isolated
elements we also need a Jordan decomposition as in Theorem [C| relating the
corresponding blocks of normalizer subgroups.

Let b be a block corresponding to the block ¢ under the Morita equivalence

induced by He im(YS)(Yg ,0)eL". Then the blocks b and ¢ have a common
defect group D contained in L¥. We denote by Bp the Brauer correspondent
of b and by Cp the Brauer correspondent of ¢. In addition, we let B}, =
Ngr 4(D Nip (D :
TerijED?BD)(BD) and C, = TTNE;jED?CD)(CD) be the corresponding central
idempotents of Ngr (D) and Nir 4(D).
Theorem E (see Theorem [5.24). Suppose that the assumptions of Theorem
are satisfied. Then the cohomology module Hfim(Ygg((g)), O)Cp extends to
an O[(Ngr(D) x Npr(D)®P)A(Nir 4(D,Cp))|-module Mp. In particular,

the bimodule N (D)sNe g (D)o
&F xNir °
Ind(NGGFA(D)xNLLF (AD)OPP)ANI:FA(D,CD)(MD)

induces a Morita equivalence between ONgr ,(D)Bp, and ONjr 4(D)CY,.

Jordan decomposition for the Alperin—-McKay
conjecture

In the final chapter of this thesis we then use the strong equivariance proper-
ties obtained in Theorem [Cl and Theorem [E] to show that in order to obtain
the inductive McKay condition for arbitrary blocks of groups of lie type it
is enough to verify it for quasi-isolated blocks. Quasi-isolated semisimple
elements for reductive groups have been classified by Bonnafé [Bon05]. In
each case there are a small number of possibilities which have been well-
described. Moreover, the quasi-isolated blocks of groups of Lie type are
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better understood by fundamental work of Cabanes—Enguehard and recent

work of Enguehard and Kessar-Malle, see [KM13] for a more precise histor-

ical account. This gives us reason to hope that our reduction will provide a

simplification of the verification of the inductive Alperin-McKay conditions.
Our main theorem is then as follows:

Theorem F (see Theorem and Remark. Assume that every quasi-
1solated £-block of a finite quasi-simple group of Lie type defined over a field
of characteristic p # { satisfies the inductive Alperin-McKay condition (in
the sense of Hypothesis below). Let S be a simple group of Lie type with
non-exceptional Schur multiplier defined over a field of characteristic p # {

and G its universal covering group. If G is not of type D or Assumption
holds for G then the inductive Alperin-McKay condition holds for every
(-block of G.

Note that Assumption [6.26] was one of the main ingredients for the pre-
vious verifications of the inductive McKay condition. It is essential for con-
structing projective representations for certain classes of groups associated
to characters of groups of Lie type and enables us to explicitly compute the
factor set of the projective representation. The proof of Assumption for
groups of type D is addressed in current work of Spath. Hence, Theorem [F]
is expected to yield a complete reduction of the verification of the inductive
Alperin—-McKay condition to quasi-isolated blocks.

12



Chapter 1

Representation theory

In this chapter we introduce the necessary background material from the
representation theory of finite groups. We will give a brief overview on vari-
ous categorical equivalences of module categories associated to finite groups.
We will then discuss in depth the Clifford theory of these equivalences by
considering a theorem of Marcus.

1.1 Modular representation theory

Let ¢ be a prime and K be a finite field extension of Q,. We say that K
is large enough for a finite group G if K contains all roots of unity whose
order divides the exponent of the group GG. In the following, K denotes a field
which we assume to be large enough for the finite groups under consideration.
We denote by O the ring of integers of K over Z, and by k = O/J(O) its
residue field. We will use A to interchangeably denote O or k.

Let A be a A-algebra, finitely generated and projective as a A-module.
We denote by A°PP its opposite algebra. Moreover, we mean by A-mod the
category of left A-modules, that are finitely generated as A-modules.

We denote by Go(A) the Grothendieck group of the category A-mod, see
also [Ben98, Section 5.1]. This means that G¢(A) is the abelian group on
the set {[X] | X € A-mod} of isomorphism classes satisfying the following
relation: Whenever 0 — M — N — P — 0 is a short exact sequence of
A-modules then [N] = [M]+ [P] in Go(A). Since every object in A-mod has
a finite composition series, it follows that Go(A) is generated by the subset
Irr(A) of isomorphism classes of irreducible A-modules.

13



1.2 Module categories

Let A be an abelian category. We denote by Compb(A) the category of
bounded complexes of A and by Ho’(A) its homotopy category. In addition,
D’(A) denotes the bounded derived category of A.

When A = A-mod we abbreviate Comp’(A), Ho’(A) and D’(A) by
Comp”(A), Ho’(A) and D®(A) respectively.

For C' € Comp®(A) there exists (see for instance [BDR17a, 2.A.]) a com-
plex C™ with C' 2 ¢ in Ho’(A) such that C** has no non-zero direct
summand which is homotopy equivalent to 0. Moreover, C' = C™ @ C, with
H*(Cy) = 0.

Let A-proj denote the subcategory of projective A-modules. We then
denote by A-perf the full subcategory of D(A) consisting of complexes quasi-
isomorphic to complexes of Comp®(A-proj).

Let B and D be two A-algebras. The tensor product

— ®4 — : Comp’(B ®, A°PP) x Comp’(A ®, DP?) — Comp’(B ®, D°PP)
of complexes gives rise to the tensor product
—®Y4 — : D"(B ®) APP) x DY(A @, DPP) — D’(B ®, D°PP)

on derived categories.

For two complexes C' € Comp’(A ®, B°P) and ¢’ € Comp’(A ®,
D°PP) we denote by Hom$(C,C") the total Hom-complex with nth term
iy jmnHomy (C?, C"7). The complex Hom%(C, C") is a complex of B®, DoPP-
modules and we get a functor

Hom®(—, —) : Comp®(A®, B°PP) x Comp’(A®, D°PP) — Comp®(B®, DPP),
the Hom-functor with right derived functor
RHom®, (—, —) : D?(A @, B°P) x D’(A ®, D°PP) — D*(B ®, D).

If 7 is an integer and C' = (C",d}) is a complex of A-modules then we
define C[i] to be the complex of A-modules with terms C[:]* = C™** and
differential dg; = (=1)'dt". If M is an A-module we denote by M][i] the
complex with all terms equal to 0 except the —ith taken to be M. Moreover,
via the functor A-mod — Comp®(A), M ~ M[0] we identify A-modules with
complexes of A-modules concentrated in degree 0. This identification also
yields fully faithful functors from A-mod to Ho’(A) and D?(A).
By |CE04, A1.5] and |[CE04, A1.11] we have canonical isomorphisms

H'(Hom? (C, C")) = Homy ) (C, C'i])

14



and
H'(RHom?,(C, C")) = Homps4(C, C'[i]).

We end this section by stating some facts specific to the representations of
finite groups.

Let H and G be finite groups and C' be a complex of AG-AH-bimodules.
Then we write CV for the complex Hompg(C, AG) viewed as complex of
AH-AG-bimodules. If A denotes the trivial AG-AH-bimodule then we have
by |[Bro94, 3.A.] an isomorphism CV = Hom, (C, A). Moreover, if X is another
complex of AG-AH modules and C' is projective as AH-module then by
[Bro94} 3.A.] there is a canonical isomorphism

CY Qpa X = Homyq(C, X).

Let 0 : G — G be an automorphism of a finite group G and H a subgroup
of G. If M is a left (resp. right) AH-module then we denote by “M (resp.
M?) the left (resp. right) Ac(H)-module which coincides with M as a A-
module but with action of o(H) given by o(h)m := o~ '(h)m (resp. by
mo(h) :=mo~1(h)).

A basic tool in the representation theory of finite groups is the theory
of sources and vertices, see e.g. [Thé95, Chapter 17| for the following. If H
is a subgroup of G and L an AH-module then Ind$ (L) denotes AG ®up L.
This defines a functor right adjoint to the restriction functor Res%. Given a
AG-module M we say that M is relatively H-projective if the natural map

M — Ind§Res$; (M)

splits. Assume now that M is an indecomposable AG-module which is free
as A-module. If H is a minimal subgroup such that M is relatively H-
projective then H is necessarily an f-subgroup of G. Moreover, there exists
an indecomposable direct summand L of Res% (M) such that M is a direct
summand of Ind%(L). In this case H is called a vertex of M and L is called
the source of M. The pair (H, L) is then unique up to G-conjugation.

1.3 The Brauer functor

Let G be a finite group and @) an f-subgroup of G. For a AG-module M we
let M© denote the subset of Q-fixed points of M. We consider the Brauer
functor

Br( : AG — mod — kN¢(Q)/Q — mod

15



which for a AG-module M is given by

Bi§(M) = key (M9) Y Tig(MP)),

P<Q

where Trg c MP — M@, m— deQ/P gm is the relative trace map on M.

Let f : My — M, be a morphism of AG-modules. Then f restricts to
a morphism f : MlQ — MQQ of AN (Q)-modules. One readibly checks that
fmaps > p_, T2 (M) to > p<qQ Tr2(MYF) and we hence obtain by taking
quotients a morphism Brg(f) : Brg(M;) — Brg(Ms).

If H is a subgroup of G containing () then by definition we have

Br{ o Res$ = Resgi((g)) o Brg :

Therefore, we will sometimes omit the upper index and write Blr?2 = Brg
if the group under consideration is clear from the context. Since Brg is an
additive functor it respects homotopy equivalences and therefore extends to
a functor

Brg : Ho’(AG) — Ho’(kNg(Q)/Q).

However, the functor Brg is neither left or right exact, so it does not extend
to a functor on the respective derived categories.

Recall that a AG-module M is called an ¢-permutation module if for every
(-subgroup @ of G the module M possesses a (Q-stable A-basis. Equivalently,
an (-permutation module is a direct summand of a permutation module, i.e.,
a module of the form A[Q], where 2 is a G-set, see |[Rou01}, 4.1.3]. From the
latter description it is not hard to see that the /-permutation modules are
precisely the AG-modules with trivial source module. We let AG — perm be
the full subcategory of AG —mod consisting of all /-permutation modules of
AG.

If A[Q] is a permutation module then the composition

A[Q9] = (A[Q])? — Bro(A[2)

induces an isomorphism Brg(A[Q]) 2 k[Q9], see [Rou01}, 4.1.2]. From this it
follows that the Brauer functor restricts to a functor

Brg2 : AG-perm — kNg(Q)/Q-perm .

Note that we will usually identify kNg(Q)/Q — perm via inflation with a
subcategory of k Ng(Q) — perm.

An important property of the Brauer functor is that an /-permutation
module M € AG — perm has vertex @ if and only if () is maximal with the
property that Brg(M) # 0, see [Thé95, Corollary 27.7].

16



Thus, in particular if we consider AG as G-module via G-conjugation,
then Brg(AG) = k Cq(Q). The canonical surjection

br§ : (AG)? = kCal(Q), Y Ngr > Mg,

geG 9€Ca(Q)

induces an algebra homomorphism, the so called Brauer morphism, see [Rou01
Section 4.2].

For two /-permutation modules My, My € AG-perm we consider M;®p M,
as AG-module via the diagonal action of G. It follows that the natural map

BI"Q(Ml) Rk BYQ(M2> — BrQ(Ml Ok M?)

is an isomorphism, see |Ric96, Section 4|. In particular, for M € AG-perm
and e € Z(AG) we have Me = M ®, Ae which (see also [Rou01} Section 4.2])
implies

Brg(Me) = Brg(M) brg(e).

1.4 Brauer pairs and the Brauer category

A primitive central idempotent b € Z(AG) is called a block idempotent of G.
Its associated indecomposable subalgebra AGb of AG is called a block of G.
Since the blocks of OG and kG correspond to each other via lifting of
idempotents, see [Thé95, Theorem 3.1], we will identify blocks of OG and
kG if they correspond to each other via reduction modulo J(O).
A Brauer pair (R, e) of G consists of an ¢-subgroup R of G and a block
e of the group algebra k Cg(R).

Definition 1.1. Let (S, f) and (R, e) be two Brauer pairs. Then we write
(S, f) < (R, e) if the following conditions are satisfied:

a) S is a normal subgroup of R,
b) f is R-stable,
c) ebrg(f) =e.

We denote by 7 <7 the transitive closure of the relation ” <” on the set
of Brauer pairs, see [Thé95, Chapter 40]. We recall the following definition.

Definition 1.2. Let b be a block of kG. A b-Brauer pair is a Brauer pair
(R, e) such that (1,b) < (R,e) or equivalently brg(b)e = e.
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An (-subgroup D of G is called a defect group of the block b if there exists
a maximal Brauer pair (D, e) such that (1,b) < (D, e). Such a Brauer pair is
called maximal b-Brauer pair. Moreover, the order relation ” < 7 coincides
with the ordinary subgroup inclusion inside a fixed maximal b-Brauer pair,
see [Thé9s|, Corollary 40.9(b)]. We recall the definition of the Brauer category
of a block, see [Thé95, § 47].

Definition 1.3. Let b be a block of G. Denote by F(G,b) the category whose
objects are the b-Brauer pairs and with set of morphisms from (5, f) to (R, e)
consisting of all homomorphisms S — R which are given by conjugation with
some g € G such that 9(S, f) < (R,e). We say that F(G,b) is the Brauer
category of the G-block b.

If H is a subgroup of G and f € Z(AH) then we write

Ne(H, f) :={z € Ng(H) ["f = [}

for the set of elements normalizing H and f. Moreover, we write Tr% (f) =
> wecyn "1 € Z(AG) for the trace of the element f.

Remark 1.4. Denote F = F(G,b). It is immediate from the definition of the
Brauer category that Homz((R,e), (R,e)) = Autz(R,e) = Ng(R,e)/ Ca(R).

Let (D,bp) be a maximal b-Brauer pair. We denote by F(G, D)<(p.p)
the full subcategory of F(G,b) with objects consisting of all b-Brauer pairs
contained in (D, bp). A well known theorem asserts that the natural inclusion
functor F(G,b)<(ppy) — F(G,b) induces an equivalence of categories, see
e.g. [Thé95, Lemma 47.1] and afterwards.

For a block e of k Cg(Q) we call [Ng(Q, e) : Co(Q)Q)] the inertial index of
the block e. We recall Brauer’s first main theorem, see for instance [Thé95,
Theorem 40.14]:

Theorem 1.5 (Brauer’s first main theorem). Let D be an (-subgroup of G.
There is a bijection between the set of blocks of OG with defect group D and
the set of all Ng(D)-conjugacy classes of blocks e of kCq(D) with defect
group Z(D) and inertial index of ¢'-order. The bijection maps a block b to
the unique Ng(D)-conjugacy class of blocks e such that (D, e) is a mazimal
b-Brauer pair.

We will be interested in the blocks of normalizers of /-subgroups. For
these the following remark is useful:
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Remark 1.6. Let b be a block of G and (Q, bg) a b-Brauer pair. Then the
idempotent bg is a block of Ng(Q,bg) by [Thé9s, Exercise 40.2(b)]. Con-

sequently, Bg = Trgggg?b(g)(b@) is a block of Ng(Q@). By Theorem all
maximal b-Brauer pairs are G-conjugate. In particular, if (D, bp) is a maxi-
mal b-Brauer pair then it follows that

brp(b) = Try(p), (bp).

For a finite group G and D an ¢-subgroup of G we denote by BI(G | D) the
set of blocks of G with defect group D. Then Brauer’s first main theorem
implies that the map

brp : BI(G | D) — BI(Ng(D) | D)

is a bijection. This bijection is sometimes referred to as the Brauer corre-
spondence.

1.5 Morita equivalences and splendid Rickard
equivalences

In this section we introduce some equivalences between module categories

which play an important role in the representation theory of finite groups.
For this, let G and H be finite groups and let e € Z(AG) and f € Z(AH)
be central idempotents. In addition, denote A = AGe and B = AHf.

Definition 1.7. Let C' be a bounded complex of A-B-bimodules, finitely
generated and projective as A-modules resp. B-modules. We say that C
induces a Rickard equivalence between A and B if the following holds:

a) The canonical map A — End e, (C)°PP is an isomorphism in Ho®(A®,
A°PP) and

b) the canonical map B — End%(C) is an isomorphism in Ho’( B®, B°PP).
An important special case of the previous definition is the following:

Definition 1.8. Let M be an A-B-bimodule. If the complex M[0] induces a
Rickard equivalence between A and B, then we say that M induces a Morita
equivalence between A and B.

We will often use the following well-known lemma, which is essentially
contained in |Zim14, Lemma 6.7.12] and its proof. To give a more direct
proof, we follow a strategy outlined in the proof of [Har99, Theorem 1.6].
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Lemma 1.9. Suppose that the complex C' of A-B-bimodules induces a Rickard
equivalence between A and B. Let f = c¢; + -+ ¢, be a decomposition of f
into blocks of B. Then for each i there exists a unique block b; of A such that
b;Cc; is not homotopy equivalent to 0 and b;C'c; induces a Rickard equivalence
between AGb; and AHc;.

Proof. We fix a block c of AH f. By definition the natural map B — End%(C)
is an isomorphism in Ho’(B ®, B°P). Therefore, the natural map Bec —
End® (Cc) is an isomorphism in Ho’(B ®, B°P). Furthermore, we have a
direct sum decomposition Cc = @;_, b;Cc. Therefore, we have an isomor-
phism

Endpgpore (Be) = Endyppe porey (End (Cc)) = H Endyyos g pore) (End’ (b:Cc))

=1

of A-algebras. Note that Z(Bc) & Endggpore(Bc) is a local A-algebra since
Bc is an indecomposable B-B-bimodule. It follows that there exists a unique
integer ¢ such that the block b := b; of A satisfies that End% (bC¢) is not
isomorphic to 0 in Ho’(B ®, BPP).

For j # i we denote X := b;Cc and we claim that X = 0 in Ho’(A @,
B°PP). We have XY ®4 X = End%(X) = 0 in Ho?(B ®, B°P). On the other
hand, since X is a bi-projective complex of A-B-bimodules, it follows by the
proof of [Ric96, Theorem 2.1] that X is a direct summand of X @5 (X" ®4X)
in Comp”(A ®, B°PP). From this we deduce that X = 0 in Ho’(A ®, BPP).

Therefore, bCc = Cc in Ho’(A ®, B°PP) and it follows that the natural
map Bc — End%(bCc) is an isomorphism in Ho’(B ®, B°P?). Similarly,
one shows that the natural map Ab — End3ep, (bC)°PP is an isomorphism
in Ho’(A ®, A°P). In other words, the complex bCc induces a Rickard
equivalence between Ab = AGb and Bc = AHec. O]

If C'is a complex inducing a Rickard equivalence between A and B, then

the functor
C ®p — : Ho"(B-proj) — Ho’(A-proj)

yields an equivalence of categories. We now define the seemingly weaker
notion of derived equivalence:

Definition 1.10. We say that a complex C' € Comp’(A ® B°P) induces a
derived equivalence between A and B if the functor

C ®% — :DY(B) — D°(A)
induces an equivalence of triangulated categories.
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Remark 1.11. A theorem of Rickard, see |Ric96, Section 2.1], asserts that
A and B are Rickard equivalent if and only if they are derived equivalent.
More precisely, the proof of said theorem shows, that not every complex
C € Comp’(A ® B°PP) inducing a derived equivalence between A and B
gives necessarily rise to a Rickard equivalence between A and B. There only
exists a complex isomorphic to C' in D?(A @ B°PP) which induces a Rickard
equivalence between A and B.

Assume now that H is a subgroup of G. For any subgroup X of H we let
AX :={(z,z71) | * € X}, a subgroup of G x H°PP.

Definition 1.12. A bounded complex C' of A-B-bimodules is called splendid
if O™ is a complex of /-permutation modules such that every indecomposable
direct summands of a component of C' has a vertex contained in AH. If C'
is splendid and induces a Rickard equivalence between A and B we say that
C induces a splendid Rickard equivalence between A and B.

Note that our definition of a splendid Rickard equivalence is not symmet-
ric since we assume that L is a subgroup of G.

1.6 First properties of splendid complexes

We state some important first properties of splendid complexes. The follow-
ing is a variant of |Ric96, Lemma 4.3].

Lemma 1.13. Let L be a subgroup of a finite group G. Let M be a relatively
AL-projective A|G x L°PP|-module. If Q) is a subgroup of L then all indecom-

posable direct summands of Resgiézi (M) are relatively AQ-projective.

Proof. Since M is a relatively AL-projective module we may assume M =
Ind$ 55" (N) for some A[AL]-module N. There exists a set of represen-
tatives of the double cosets of AL\(G x L°PP)/(G x Q°PP) contained in
1 x L°PP. By Mackey’s formula for every indecomposable direct summand of
Resgig;ii(M ) there exists some [ € L such that this summand is relatively
projective with respect to the subgroup

ALY N (G x Q°PP).
We have
(LD(AL(LZ) N (G x QPP)) = CIOALN (LU(G X QPP) = AQ

which shows that every indecomposable summand is projective relative to a
subgroup which is G x Q°PP-conjugate to AQ). It follows that every indecom-
posable summand is relatively AQ-projective. ]
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Let L be a subgroup of a finite group GG and @) an ¢-subgroup of L. Then
we can consider the Brauer functor

Brag : A[G x L°PP] — perm — k Ngyrorr (AQ)/AQ — perm .
Notice that

Nexrorr (AQ) = (Ca(Q) x CL(Q)*PP)A(NL(Q)).

Let ¢ € Z(AL) and b € Z(AG) be two central idempotents and C' a bounded
complex of AGb-ALc-modules. Since

Caxrorr (AQ) = Cg(Q) X CL(Q)* € Naxrorn (AQ)

we can consider the image Brag(C) as a complex of k C(Q) brg(b)-k Cr(Q) brg(c)
bimodules.

In the following lemma we closely follow the proof of [Ric96, Theorem
4.1].

Lemma 1.14. Assume the notation as above and suppose that Cy and Co
are splendid complexes of AGb-ALc bimodules. Then for any (-subgroup @)
of L we have

Brag(CY ®aa C2) = Brag(CY) ®kca@) Brag(Cs)

in Ho’(k[CL(Q) x CL(Q)°PP)).

Proof. The complex Homj, (C, Cy) viewed as a complex of k[G'x L°PP]-modules
via the diagonal action is again a complex consisting of relatively A L-projective
(-permutation modules, see [Ben98, Corollary 3.3.5].

It follows that ResgiéZii(Hom;(Cl, Cy)) is a complex of relatively AQ-
projective modules, see Lemma m Therefore, by the proof of [Ric96]

Theorem 4.1] we deduce that
Brag(Homj(Cy, Cy)) = Hom;CG(Q)(BrAQ(C’l), Brag(Cs)).

By Lemma we also see that Cy and Brag(Cs) are complexes of projective
left kG-modules and k C(Q)-modules respectively. We obtain Homy,(Cy, Cs)
= Oi/ Rra Cy and

Homje,, ) (Brag(Ch), Brag(Cs)) = Brag(Ch)” ®rca(@) Brag(Ca).

By the proof of [Bro85, Lemma 2.4(2)] we have Brag(C1)Y = Brag(CY),
which proves the claim. O
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1.7 Brauer categories and splendid Rickard
equivalences

In this section we recall an important theorem of Puig showing that the
Brauer categories of splendid Rickard equivalent blocks are isomorphic. This
will be crucial for many of our applications.

Theorem 1.15. Let L be a subgroup of a finite group G. Let b € Z(AG)
and ¢ € Z(AL) be primitive idempotents. Suppose that there exists a bounded
complex C' of AGb-ALc-modules inducing a splendid Rickard equivalence be-
tween AGb and ALc. If D is a defect group of the block ¢ then D is a defect

group of b.

Proof. Denote A = AGb and B = ALc. Since C induces a splendid Rickard
equivalence between A and B it follows by definition that B = End%(C) in
Ho’(B ®, B°P?). By Lemma it follows that

Brap(End} (C)) = End;c,p)(Brap(C)).
Since Brap(B) = kCL(D)brp(c) we obtain
End;CG(D)(BrAD(C)) = kCL(D)brp(c).

Taking cohomology yields Endygs oo, (py) (Brap(C)) = kCr(D)brp(c). Since
D is a defect group of c it follows that brp(c) # 0. Therefore, the complex
Brap(C) is not homotopy equivalent to 0 in Ho’(kCg(D)). As Brap(C)
is a complex of kCg(D)brp(b)-kCr(D)brp(c) bimodules it follows that
brp(b) # 0. This shows that D is contained in a defect group of b. Since C' in-
duces a splendid Rickard equivalence it follows that C' induces a basic Rickard
equivalence between the blocks AGb and ALc, see beginning of [Pui99, Sec-
tion 19.2]. Consequently, [Pui99, Theorem 19.7] shows that the defect groups
of b and ¢ are isomorphic. Thus, D is also a defect group of b. O

Proposition 1.16. Take the notation as in Theorem[1.15 and fix a mazimal
c-Brauer pair (D,cp). Then there exists a b-Brauer pair (D,bp) such that
the following holds: If (Q,cq) < (D,cp) is a c-Brauer subpair then the b-
Brauer subpair (Q,bg) < (D,bp) is the unique b-Brauer pair such that the
complex bg Brag(C)cq induces a Rickard equivalence between k C(Q)bg and
kCr(Q)cq. For any other b-Brauer pair (Q,by) we have by Brag(C)eq =0

in Ho"(k[Ca(Q) x Cr(Q)PP)).

Proof. The subgroup D C L C G is a common defect group of the blocks
b and ¢ by Theorem [1.15. Moreover, the complex C' is splendid, so the

23



vertices of all indecomposable direct summands of components of C' are by
definition contained in AL. On the other hand, if P is an f-subgroup of
L then Brap(C) = brp(b) Brap(C) = 0, unless P is contained in a defect
group of the block b. It follows that all indecomposable direct summands
of components of C' are relatively AD-projective. Hence, the complex C'
induces a splendid Rickard equivalence between £Gb and kLc in the sense
of [Har99]. The statement is therefore precisely [Har99, Theorem 1.6]. [

Let b be a block of a finite group G and (D, bp) a maximal b-Brauer pair.
Recall from Definition that we denote by F(G,b) the Brauer category
of the G-block b and by F (G, D)<(pps,,) its full subcategory consisting of all
b-Brauer pairs contained in (D, bp).

Theorem 1.17. Suppose that we are in the situation of Proposition [1.10
Then the map F(L,c)<p.cp) — F(G,b)<(ppp) given by (Q,cq) — (Q,bg)
induces an isomorphism of categories. In particular, for any c-Brauer sub-
pairs (Q,cq), (R,cr) contained in (D, cp) and b-Brauer subpairs (Q,bg),
(R,br) contained in (D,bp) we have

Homz (1,0 ((Q, cq), (R, cr)) = Homzcp) (@, bg), (R, br)).

Proof. The paragraph below |[Har99, Theorem 1.7] shows that we have an
inclusion

Hom g1, ((Q, cq), (R, cr)) € Homz)((Q,bg), (R, br)).

By [Pui99, Theorem 19.7] the Brauer categories F(L,c) and F(G,b) are
equivalent. Consequently, the inclusion above is an equality. O

The following easy corollary will be useful to us.

Corollary 1.18. Suppose that we are in the situation of Proposition [1.16
Then for any subgroup Q of D the inclusion map N1 (Q)/ Cr(Q) — Ng(Q)/ Ca(Q)
induces an isomorphism between N1(Q,cg)/ CrL(Q) and Ng(Q,bg)/ Ca(Q).

Proof. Theorem [1.17| shows that we have an equality
Autr(r,(Q, cQ) = Autrcp (@, bg).
The corollary follows from this by using Remark [T.4] O

Remark 1.19. From Proposition [1.16]it is quite easy to see that we have an
injective map N7 (Q, cg)/ CL(Q) — Ng(Q,bg)/ Ca(Q). Indeed, bg Brag(C)cg
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is a complex of k[(Cg(Q) x CL(Q)°°?)A(N.(Q))]-modules. Thus, for z €
N7 (Q) the complex

“(bg Brag(C)eq)™ = "bg Brag(bC'c) “cq

of kCq(Q)-kCL(Q)-bimodules induces a Rickard equivalence between k C(Q) “bg
and kCL(Q)“cq. Hence, if x € NL(Q, ¢g) then necessarily “bg = bg, since
otherwise “bg Brag(C)cq = 0 by Proposition [1.16]

1.8 Properties of splendid Rickard equivalences

In this section we establish some properties of splendid Rickard equivalences.
We keep the notation of the previous section. In particular we assume that
L is a subgroup of GG. Furthermore, b and ¢ are block idempotents of G and
L respectively.

Theorem 1.20. Suppose that Cy and Cy are two bounded complexes of (-
permutation AGb-ALc bimodules inducing a splendid Rickard equivalence be-
tween AGb and ALc. Then the tensor product CY Qg Cy induces a splendid
Rickard self-equivalence of ALc.

Proof. Tt is clear that the tensor product CY ®,5Cs induces a Rickard equiva-
lence between A Lc and itself. Therefore, it suffices to prove that the complex
CY ®acCy is splendid. This however follows as in the proof of [Rou98, Lemma
10.2.6] by replacing both H" and D by L. ]

The following lifting theorem from k to O is crucial and illustrates the
strength of the notion of splendidness.

Theorem 1.21. Let e € Z(AG) and f € Z(AL) be central idempotents.
Suppose that C' € Comp(kGe @y kL f-perm) is a complex inducing a splendid
Rickard equivalence between kGe and kLf. Then there exists a complex C,

unique up to isomorphism, inducing a splendid Rickard equivalence between
AGe and ALf and satisfying C Qe k = C.

Proof. This follows from the proof of |Ric96, Theorem 5.2]. O

Theorem 1.22. Let G and H be finite groups and assume that kGe and
kH f are blocks.

a) Let C be a bounded complex of finitely generated biprojective kGe-kH f -
bimodules. Suppose that End;y,(C) = kGe in Ho’ (kG ®y, (kG)°PP).
Then kGe and kH f are Rickard equivalent via C.
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b) Let M be a finitely generated biprojective kGb-kH c-bimodule. Suppose
that Endgp (M) = kGe as kG-kG-bimodules. Then kGe and kH f are

Morita equivalent via M.

Proof. The first item is proved in |[Ric96, Theorem 2.1]. The second part
follows from the first by taking C' := M|0]. O

We recall the following useful observation, see [Rou98, Section 10.2.3],
where it was also explained that the converse statement does not necessarily

hold.

Lemma 1.23. Let G and H be finite groups and assume that e € Z(AG) and
f € Z(AH) are central idempotents. Suppose that C' is a complex of AGe-
AH f-bimodules inducing a Rickard equivalence between AGe and AH f. If
the cohomology of C' is concentrated in degree d then H(C) induces a Morita
equivalence between AGe and AH f.

Proof. As C induces a Rickard equivalence we have End},(C) = AHf in
Ho®(AH f @4 (AH f)°PP) by definition. The cohomology of C' is concentrated
in degree d and C is a complex of projective AGb-modules. By [Ben98|
Theorem 2.7.1] we therefore obtain

H°(End}(C)) = Endaq(HY(C)) = AHf

as AH f ®, (AH f)°PP-modules. Similarly, one shows that Endy g (H4(C)) =
AGe. Hence, the bimodule H4(C') induces a Morita equivalence between
AGe and AHf. m

1.9 Lifting Rickard equivalences

The aim of this section is to introduce a lifting result for Morita equivalences
due to Marcus. We first need to introduce some notation. Let L be a
subgroup of a finite group G. Moreover, let G be a normal subgroup of G
and set L := G N L. In this case, we have an injective map L/L — G/G,
which is an isomorphism if and only if LG = G.

Let e € Z(OG) and f € Z(OL) be G-invariant resp. L-invariant central
idempotents, such that e € Z(OG) and f € Z(OL). Consider the subgroup

= {(3,1) € G x L°" | G = "'G} = (G x L°P*)A(L)

of G x L°PP,
The following was first proved in [Mar96, Theorem 3.4]. An alternative
proof can be found in [Rou98, Lemma 2.8].
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Theorem 1.24 (Marcus). Suppose that G = LG. Let C' be a bounded com-
plex of AGe-ALf-bimodules inducing a Rickard equivalence between AGe and
ALf. Suppose that either C is concentrated in one degree or that ({[L : L].

If C extends to a complex of D-modules C' then C = Inng£opp(C") induces
a Rickard equivalence between ALf and AGe.

Proof. The statement has been proved in the case where e and f are primitive
central idempotents in [Rou98, Lemma 2.8]. However, the assumption in the
proof of [Rou98, Lemma 2.8] that e and f are primitive is not necessary. [

Remark 1.25. As said in [Rou02, Remark 5.4] if we drop the assumption

that [L : L] is coprime to ¢ in Theorem it is still true that InngLOpp(C’ )
induces a derived equivalence between ALf and AGe.

In the following remark we observe some Clifford-theoretic consequences
of Theorem [1.24

Remark 1.26.

a) Suppose that we are in the situation of Theorem 1.24] Let ¢ : HO®(ALf) —
Ho’(AGe) and ¢ : Ho"(ALf) — Ho"(AGe) be the functors induced by
tensoring with C resp. C.

Let N be a complex of ALf-modules. Then by Mackey’s formula

Resgigzz(C) >~ Ind5xEon (C). In particular, we have

Resg(C®,; N) = Indg§%§§5(0)®A£N ~ (CoaAL)®, ;N = C®,, Resk(NV).

In other words, Resg ocp=Epo Res%. A similar calculation (or using
the fact that Ind and Res are adjoint functors) shows that Ind% o ¢ =
¢ oIndk.

b) Let M be an OGe-OLf bimodule inducing a Morita equivalence be-
tween OGe and OLf. Suppose that M extends to an OD-module M’
and denote M := Ind$*¥™ (M").

For R € {K,k} the bimodule M ®¢ R (respectively M ®¢ R) induces
a bijection ¢ : Irr(RLf) — Trir(RGe) (respectively ¢ : Trr(RLf) —
Irr(RGe)) between irreducible modules. Now suppose that N is a sim-

ple RLf-module. By Clifford’s theorem, see [NT89, Theorem 3.3.1],
there exists a simple RL-module S and an integer m such that

Resp (V) = (D)™
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where lel runs over a set of representatives of the non-isomorphic
L-conjugates 'S. Since M @z 'S =2 'M! @pp 1S = l(M ®aL S) we
deduce by part (a) that

Resf(pN) = o(Resf () = (D ()" = (Dol

where g € G runs over a set of representatives of the non-isomorphic
G-conjugates g0~(S ). In particular, we see that the simple RL-module S
extends to an RL-module if and only if ¢(S) extends to an RG-module.

1.10 Descent of Rickard equivalences

We keep the assumptions of the previous section. Theorem [I.24] shows that
under certain conditions Rickard equivalences can be lifted from normal sub-
groups. It is therefore natural to ask whether one can also go the other way.
For Rickard equivalences we obtain the following converse to Theorem [I.24]
which is tailored to our later applications.

Lemma 1.27. Suppose that G = LG. Let C be a bounded complex of bipro-
jective AGe-ALf-bimodules with cohomology concentrated in degree d such
that H(C) induces a Morita equivalence between AGe and ALf. Assume

that C extends to a complex of AD-modules C" such that C = InngiOpp(C”)
induces a Rickard equivalence between ALf and AGe. Then also the complex
C induces a Rickard equivalence between AGe and ALf.

Proof. By the Mackey formula we have
Re GXLOPP(C) C ®az AL and ResGXLopp(C’) ~ AG ®p¢ C.

GX Lopp x [,opp

Since C' induces a Rickard equivalence between ALf and AGe we therefore
conclude that

Res gigzzz(AG e) = C®yp AL ®af CV = C @y CV @pa AG.

Since H%(C) induces a Morita equivalence between AGe and ALf it follows
by the remarks before [Rou98, Lemma 10.2.4] we have an isomorphism

C s, CV 2 AGe®d R

in Comp®(A[G x G°PP]), where R is a complex of AGe-AGe-bimodules such
that H*(R) = 0 (but not necessarily homotopy equivalent to 0). From this
we deduce that

Resgigzz (AGe) C @ar CV @pe AG = ReSGXgZEE (AGe) (R ®ng Aé)
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in Ho?(A[G x G°PP]). We conclude that
mdS*C2 (R) = R @y AG =0

in Ho?(A[G'xG°PP]). Since R is a direct summand of Res&Gorn (Ind& > Gonn (R))
as a complex we thus have R = 0 in Ho’(A[G x G°PP]). This shows that
C ®@ar CV 22 AGe in Ho’(A[G x G°PP]) and similarly one proves CV ®,¢q C =
ALf in Ho’(A[L x L°PP]). Consequently, the complex C induces a Rickard
equivalence between AGe and ALf. ]

It would be interesting to know whether the hypothesis that C' has coho-
mology concentrated in degree d such that H¢(C) induces a Morita equiva-
lence between AGe and ALf could be weakened or even completely removed.
For Morita equivalences the following lemma shows that the situation is much
easier:

Lemma 1.28. Suppose that LG = G. Let M be a biprojective AGe-ALf-
bimodule and suppose that M extends to a AD-module M’ such that M :=

Inngiopp(M’) induces a Morita equivalence between ALf and AGe. Then
M induces a Morita equivalence between AGe and ALf.

Proof. Since M induces a Morita equivalence between ALf and AGe it fol-
lows that the natural map AGe — End ,7)op» (M)°P? is an isomorphism. This
shows that the natural map

Aée — End(AL)opp (Resgiizz (M))Opp =~ End(AL)opp (Aé 2JNe! M)opp

is injective. From this it follows that the natural map AGe — Endayoes (M)°PP
is injective as well. Since AGe is projective as right AG-module it follows that
the map AGe — End(azyoee (M)°PP is a split injection of right AG-modules.
Consequently, there exists a right AG-module R such that

Endazyors (M )PP = M @41 MY =2 ANGe® R

as right AG-modules. We now want to show that R = 0. According to the
proof of Lemma [1.27] we have

ResC G (AGe) = M @ap MY @ AG.

It follows that 3 . 3
AGe = AGe @ (R ®@p¢ AGe)

as right AG-modules. We conclude that R ®,¢ AG = 0 which implies that
R = 0. Hence, the natural map AGe — Endap)err (M )°PP is an isomorphism.
Similarly, one shows that ALf — Endyg(M) is an isomorphism. ]
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1.11 Morita equivalences and Clifford theory
of characters

Let G be a finite group and e € Z(OG) be a central idempotent. Denote
by Irr(G) the set of isomorphism classes of irreducible K G-modules and by
Irr(G, e) the subset of isomorphism classes of irreducible K Ge-modules.

We recall the following theorem due to Broué.

Theorem 1.29 (Broué). Let G and H be finite groups and e € Z(OG) and
f € Z(OH) be central idempotents. Let M be an OG-OH -bimodule which is
projective as both OG- and as OH-module. Assume that the functor

M @k — : KH-mod - KG-mod

induces a bijection between Irr(H, f) and Irr(G, e) then the OGe-OH f-bimodule
M f induces a Morita equivalence between OH f and OGe.

Proof. See |[CE04, Theorem 9.18]. O

Theorem is in particular useful if one has already constructed a
bimodule as candidate for a Morita equivalence. However, the hard part is
usually to find such a bimodule.

We now give an application of this theorem. Let N be a normal subgroup
of a finite group G. Let f be a central idempotent of ON. Let H be the
stabilizer of f in G. Then f is a central idempotent of OH. We suppose that
f(*f) =0 for any x € G\ H. This ensures that F := Tr$(f) = Z If is

geG/H
an idempotent of G. By definition it is clearly central in OG.

Consider the induction functor

Ind% : OH f-mod — OGF-mod, X — OGf Qo X
and the restriction functor
fRes% : OGF-mod — OH f-mod, Y — fOG ®o¢ Y.

Lemma 1.30. The OGF-OH f-bimodule OG f induces a Morita equivalence
between OGF-mod and OH f-mod.

Proof. The classical Clifford correspondence shows that Ind$ : Irr(H) —
Irr(G) restricts to a bijection between Irr(H, f) and Irr(G, F'). Its inverse
is given by fRes$ : Irr(G, F) — Irr(H, f). The statement follows therefore
from Theorem [L.29 O
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The following lemma turns out to be quite useful.

Lemma 1.31. Let M be a AG-module and M’ be a AN-module. We have
a) Ind(fRes%(M)) = TeS (f)M and
b) Indi(fM') = fIndf(M").

Proof. We have

Resf (T (f)M) = @5 “(fResf(M)),

zeG/H

as f*f = 0 for every x € G\ H. This implies that Ind$(fRes%(M))
Tr(f)M. Part (b) follows from the definition of induction.

O IR

We will frequently use the following classical extension result.

Lemma 1.32. Let M be a G-invariant AN-lattice and G/N be cyclic of
0'-order. Then M extends to a AG-module.

Proof. See [Rou98, Lemma 10.2.13]. O

1.12 Rickard equivalences for the normalizer

We continue our discussion on Marcus’ theorem. Let L be a subgroup of a
finite group G. Moreover, let G be a normal subgroup of G and set L :=
LNG. Let e € Z(AG) and f € Z(AL) be central idempotents and denote by
L' := N;(f) and G’ := Ng(e) their respective stabilizers. In this section we
suppose that G’ = GL'. We denote

D' := (G x L°PP)A(L) and D := (G x L°P*)A(L).
In what follows, we assume that f('f) = 0 for any [ € L\ L' and e(%) = 0
for any g € G\ G'. This ensures that F := Trﬁi(f)(f) is a central idempotent

of AL and E := Trﬁé(e)(e) is a central idempotent of AG.
We remark a useful consequence of Lemma [1.30]

Lemma 1.33. Let C' be a bounded complex of AGe-AL f-bimodules inducing
a Rickard equivalence between AGe and ALf. Suppose that C' is either con-
centrated in one degree or that £ { [L : L]. If C extends to a complex C" of

AD'-modules then the complex Ind$*X™(C") induces a Rickard equivalence
between ALF and AGE.
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Proof. By Theorem [1.24] the A-algebras AL’ f and AG’e are Rickard equiva-
lent via the complex IndG (W )OPP(C’ ). By Lemma 0| AL f is Morita equiv-
alent to ALF. The same argument shows that AG’ e and AGE are Morita
equivalent. Thus, the algebras ALF and AGE are Rickard equivalent and
the Rickard equivalence is given by the complex

AGe @ae Ind% 1 (01 @ap FAL 2 ndS D™ (0. O

Remark 1.34. Suppose that we are in the situation of Lemma [1.33] and
let ¢ : Ho’(ALf) — Ho’(AGe) and ¢ : Ho"(ALF) — Ho’(AGE) be the
functors obtained by tensoring with C' and Ind%“™" (C") respectively. By
Remark [1.20} - and the construction in the proof of Lemma|l.33]it follows that
eResG 0P = ¢o fResk. Moreover, we have IndG cp=po Ind I

In most applications we can give a more explicit description of the bi-
module inducing the Rickard equivalence in Lemma [1.33]

Lemma 1.35. Let C be a bounded complex of AG-AL-bimodules and assume
that eC f induces a Rickard equivalence between AGe and ALf. In addition,
suppose that 'eC'f 22 0 in Ho®(A[G x L)) for alll € L\ L'. Suppose that
C is either concentrated in one degree or that £ 1 [L': L. If C' extends to a
complex of AD-modules C' then ALF and AGE are Rickard equivalent via
the complex

EInd$*X™ (¢ F

Proof. The complex eRes, (C)f is clearly a AD'-complex extending eC'f.

By Lemma , it follows that the complex IndGXLopp( ResB, (C") f) induces
a Rickard equwalence between ALF and AGE.

Recall that D’ is by definition the stabilizer in G x L°PP of the idempotent
e® f. Since L/L' = D/, we have

Tip(e@f)= Y, e )

leL/ L/
By assumption we have 'eC'f = 0 for all [ € L \ L'. From this it follows that
TI"D/< ® f)C TI“N 6)( )CTI"N (f)(f) - ECF

By Lemma- ) we have IndD, (eResB,C’ f) = EC'F. As EQ F is a central

idempotent of A[G'x L°PP] it follows that IndGXLOPP(EC’ ) = EInngZOpp (C"F
by Lemma [1.31](b). O
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Suppose that we are in the situation of the previous lemma. Note that in
most applications we have C'f = eC'f. In this case the assumption ‘eC'f = 0
foralll € I~/\L' can be dropped since it follows from the fact that the complex
C' is D-stable.

We can use this lifting result to prove the following proposition.

Proposition 1.36. Let C' be a bounded complex of (-permutation modules
inducing a splendid Rickard equivalence between the blocks AGb and ALc. Let
(@, cq) be a c-Brauer pair corresponding to the b-Brauer pair (Q),bg) under
the splendid Rickard equivalence given by the complex C' as in Proposition
1.16. Then the complex

Ng(Q)xNp(Q)°PP Nz(Q
Indy ¢ @ NS (Brag(C) TryH e, (cq)

induces a derived equivalence between the blocks kNg(Q) Trgggg)b(g)(b@) and

N
ENL(Q) TrNigg?cQ)(cQ).

Proof. Recall that Brag(C) is a complex of kNgy rorr (())-modules such that
bo Brag(C)cg = Brag(C)cg induces a Rickard equivalence between k C(Q)bg
and k C(Q)cg, see Proposition . Moreover, the groups Ng(Q, bg)/ Ca(Q)
and Nz (L, ¢g)/ CL(Q) are isomorphic by Corollary [1.1§

Thus, using the proof of Lemma together with Remark [1.25] we
conclude that the complex

IndNG(Q) XNz, (Q)°PP (BrAQ (0)) TrIIEL (@) : (CQ)

Ngxorr (AQ) L(Q.cq
induces a d;}er(iv;ed equivalence between the blocks kNg(Q) Trﬁggg?b@(b@) and
ENL(Q) TrNi(gch)@Q). O

Remark 1.37. If the defect group D of b is abelian, then by Theorem [I.5]the
group N (D, bp)/ Ca(D) is of ¢-order. In this case, the proof of Proposition

1.36| shows that the complex Indﬁgiﬂ:ﬁg&%}opp Brap(C) induces in fact a

Rickard equivalence between kNg(D) brp(b) and kN (D) brp(c) and not only
a derived equivalence.

1.13 The Brauer functor and Clifford theory

In this section we recall some results of [Mar96, Section 3] and generalize
them slightly. These results will be needed in Section [1.15]
Whenever G is a finite group and (), R are subgroups of G, then we let

To(Q,R):={g€ G| Q' C R}
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In addition, we denote by 14 the trivial kG-module. We recall the following
lemma:

Lemma 1.38. Let R be a subgroup of G and Q) an {-subgroup of G. Then

~ N
Br§(Ind$(15)) = @Indeli%)aNgR(Q)),

geT
where T is a complete set of representatives of the double cosets of No(Q)\Te(Q, R)/R.
Proof. See [Bro85, (1.4)]. O

The following lemma is a variant of [Mar96, Lemma 3.7]. We will also
use this opportunity to provide some further details which help to clarify the
proof.

Lemma 1.39. Let H be a subgroup of G and (Q C P two (-subgroups of
H. Suppose that Co(Q)TH(Q,P) = Ta(Q, P). Then for every relatively
P-projective module M € kH-perm there is a natural isomorphism

Ind\@\@ (Brf (M) 2 Br§(Ind§ (M)).

of kNg(Q)-modules.
Proof. Recall from Section [1.3] that for a kH-module M we have

Brg (M) = M%) > " Trg(M").
P<Q

Observe that we have a natural homomorphism
N
Indy ¢ (M?) = (Ind§(M))?, n@m > n@m

of kNg(Q)-modules.

We show that Indy @) (3o TeR(M ™)) maps to 3 o Tr((Ind§ (M))7)
under this natural map. As a kNg(Q)-module Indgfl((g))(ZR<Q TeQ(MR)) is
generated by the set 1@ p_ Tr(MP). This set clearly maps to > R<Q 9 (1®
MP®), which is contained in > R<Q Tr((Ind$(M))®). Thus, it follows that

Indﬁi((g))(ZR<Q Tr(M*®)) maps to > Re0 Tr((Ind% (M))®). Hence, we ob-

tain a natural map

mdlﬁg((g))(Brg (M)) — Br§(Ind% (M)).

Since M is a relatively P-projective ¢-permutation module it is a direct sum-
mand of modules of the form Indg (1g), where R is an ¢-subgroup of P. Thus,
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in order to show the statement in general we may assume that M = Ind% (15),
a permutation module with vertex R. In particular, Brg(M) = 0 and
Bro(Ind%(M)) = 0 if Q is not conjugate to a subgroup of R. Hence, we
may additionally assume that R contains Q).

By Lemma there is an isomorphism

BrQ (Ind%(1R)) EB IndNG o (INop(@);

geT

where T' is a complete set of representatives of Ng(Q)\7¢(Q, R)/R. On the
other hand, Lemma [1.38| also yields an isomorphism

IndYe(@ Q)( rg (Indj (1)) = @mdﬁj}i%)(mm@),

geT’

where T" is a complete set of representatives of Ng(Q)\Tx(Q, R)/R. To
prove the lemma, it is hence sufficient to prove that 7" is also a complete
set of representatives of the double cosets of Ng(Q)\T¢(Q, R)/R. Firstly, if
x1, Ty € Ty(Q, R) with Ng(Q)x1 R = Ng(Q)z2R then 27 = nxeq for some
n € Ng(Q) and g € R. Since R is contained in H it follows that n € Ny (Q)
and so Ny (Q)x1 R = Ny (Q)zaR. Since Q C R C P we obtain

Co(@Q)Tu(Q,R) = Tc(Q, R)

by using our assumption. Hence, for z € T¢(Q, R) there exists some h €
Ty(Q, R) and n € Cg(Q) such that 2 = nh which implies that Ng(Q)zR =
Ne(Q)hR. ]

The following remark is a variant of [Mar96, Corollary 3.9].

Remark 1.40. As in Section we let L be a subgroup of a finite group
G and G be a normal subgroup of G. We set L := G N L and we assume
additionally that G = LG. Let @ be an (-subgroup of L. In the following
diagram, Ind and Res mean induction and restriction with respect to the
subgroups of G x L°PP involved.

5 = Brag Ind
k[G x L°PP]-perm E[Nay jorn (AQ)]-perm E[Na(Q) x Nj(Q)°PP]-perm
Ind Ind Ind
opp Brac Ind opp
KIG x I A(E)-perm — Ng, ety (AQ)-perm 2% ENG(Q) x N1(Q)PPANN;(Q))]-perm
Res Res Res
Bra Ind
k[G x L°PP]-perm ——— Ek[Ngy fore (AQ)]-perm k[Ng(Q) x NL(Q)°PP]-perm
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We claim that the upper left square commutes for all relatively AL-
projective (-permutation k[G x L°PPA(L)]-modules. In view of Lemma m
it is sufficient to show that

Céxiopp (AQ) TGxLODPAi(AQa AR) = Téxiopp (AQ> AR)

for all ¢-subgroups R of L containing Q. This is proved as in [Mar96,
Corollary 3.9]: Let (z,1) € Ts, jorr(AQ,AR). Then @DAQ C AR which
implies that zl € Cg(Q). On the other hand, 'QQ = @ which implies
that (I71,1) € Tgyromai(AQ,AR). Therefore, (z,1) = (xl,1)(I711) €
T povaf,(AQ, AR). This shows the equality.

The upper right and the bottom left square are clearly commutative.
Moreover, the commutativity of the bottom right square is a consequence of
Mackey’s formula.

1.14 The Harris—Knorr correspondence

In this section we recall the notion of block induction. This will allow us to
give a nice formulation of the important Harris—Knorr correspondence.

Let G be a normal subgroup of a finite group G and b € Z(AG) a block
of G. Then we say that the block idempotent ¢ € Z(AG) covers the block b
if cb # 0. We write BI(G | b) for the set of blocks of G covering b.

We recall the definition of block induction, see [Nav98, Theorem 4.14].

Definition 1.41. Suppose that H is a subgroup of G and b is a block idem-
potent of G. Furthermore, assume that there exists an ¢-subgroup P of G
such that PCg(P) € H C Ng(P). Then we say that the block idempotent
c € Z(OH) induces to b if brp(b)c # 0. In this case we write b = c“.

Note that the definition of block induction in [Nav98, page 87] is more
general. However, we will not need this general definition and have therefore
decided to use the characterisation of block induction in [Nav98, Theorem
4.14] as a definition.

Recall that for a subgroup @ of the defect group D of b we denote Bg :=

Trgggg?bQ)(bQ), which is by Remark [1.6|a block idempotent of Ng(Q).

Theorem 1.42 (Harris-Knérr). Let G be a normal subgroup of a finite group
G. Let b be a block of G with defect group D and denote by Bp its Brauer
correspondent in kNg(D). Then the map

BI(N4(D) | Bp) — BI(G | b), ¢ — @
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1S a bijection.
Proof. See [Nav98, Theorem 9.28]. O

If @ is a characteristic subgroup of the defect group D of b we have
Ng(D) C Ng(Q). Brauer’s first main theorem (see Remark therefore
yields a bijection

brp : BI(NG(Q) | D) — BI(Ng(D) | D).
After having established this notation we can now state the following lemma:

Lemma 1.43. Let Q) be a characteristic subgroup of D. Then Bg € Bl(Ng(Q))
is the Brauer correspondent of Bp € BI(Ng(D)).

Proof. By [Thé95, Theorem 40.4(b)] we have brp(bg) = bp. Since D C
Ne(Q) we can write Bg € Z(kCq(Q)) as a sum Bg = > .7 ¢ of block
idempotents of kCg(Q). Note that each ¢; is a sum of idempotents which
constitute a D-orbit on {*bg |t € Ng(Q)}.

Assume first that ¢; comes from a D-orbit of length greater than 1. Let
t € Ng(Q) with ‘bge; # 0. Then the block ¢; covers 'bg and it follows that
any defect group of ¢; is contained in Ng(Q, bg). Since by is not D-stable
it follows that D is not contained in Ng(Q,'bg). Thus D is not contained in
a defect group of ¢;. This implies that brp(¢;) = 0.

On the other hand, if ¢; = bg for some t € Ng(Q) it follows that ‘bg
is D-stable. Assume that brp(*bg) # 0. Then we have (Q,bg) < (D, b))
for some maximal b-subpair (D, b},). Since also *(Q,bg) <*(D,bp) it follows
by [Thé95, Proposition 40.15(b)] that there exists some = € Ng(Q, bg) such
that tx € Ng(D). From this we conclude that

bI‘D(tbQ) = bI‘D(me) =t bI‘D(bQ) = tbe.

These calculations show that brp(Bg)Bp = Bp. On the other hand By is
an idempotent occurring in brg(b) and we have brp(brg(b)) = Bp. Writing
brg(b) = Bg + C we obtain Bp = brp(Bg) + brp(C) a sum of orthogonal
idempotents. Now observe that Bp is a primitive central idempotent of
N¢(D) and brp(Bg)Bp = Bp. Therefore, Bp = brp(Bg). O

We obtain a version of the Harris—Knorr theorem for characteristic sub-
groups of defect groups.

Corollary 1.44. With the notation of Theorem |(1.42 assume that Q is a
characteristic subgroup of D. Let (Q,bg) be a b-Brauer pair with (Q,bg) <
(D, bp). Then block induction yields a bijection

BI(N4(Q) | By) — BI(G | b), ¢+ C.
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Proof. Brauer correspondence gives a bijection brp : BI(G | D) — Bl(Ng(D) |
D) with brp(b) = Bp. Moreover, by Lemma [1.43] the map brp : Bl(Ng(Q) |
D) — Bl(Ng(D) | D) is a bijection with brp(Bg) = Bp.

By Theorem we hence obtain bijections BI(N&(D) | Bp) — BI(G | b)
and BI(N4&(D) | BD) — BI(N&(Q) | Bg) both given by block induction. This
yields a bijection

BING(Q) | Bg) — BIG | b).

Moreover, if ¢ € BI(Ngs(D) | Bp) then~ Ne(@) and @ are both defined.
By [Nav98, Problem 4.2] it follows that ¢ = (Ne(@)“. Hence, the bijection
BI(N&(Q) | Bg) — BI(G | b) is given by block induction. O

1.15 Splendid Rickard equivalences and Clif-
ford theory

In Proposition we have shown that a splendid Rickard equivalence in-
duces a derived equivalence on the level of normalizers. Therefore, a natural
question to ask is whether the so-obtained equivalences behave nicely with
respect to the Clifford theory of Rickard equivalences and with the Brauer
category of the involved blocks. These questions will be addressed in this
section.

We first make the following useful observation.

Lemma 1.45. Let G be a normal subgroup of a finite group G. Let b be a
G-stable block of G with defect group D and Q a characteristic subgroup of D.
Then Bg is an Ng(Q)-stable block of Ng(Q) and we have N&(Q)/Nea(Q) =
G/G.

Proof. Recall that all defect groups of b are G-conjugate. Since b is a G-stable
block of G' we thus obtain G = GNg (D). Moreover, @) is a characteristic
subgroup of D and so Ns(D) € N5(Q). From this we conclude that G/G =
Na(Q)/Ng(Q). It remains to show that Bg is Ns(Q)-stable. If g € N5(Q)
then 9(D,bp) is a second maximal b-Brauer pair, so there exists some z € G
with 9°(D,bp) = (D, bp). In particular, gz € Ns(D) C N&(Q) and thus = €
Ng(Q). Moreover, (Q,bg) < (D,bp) and (Q, g"’:bQ) = 9%(Q),bg) < (D,bp)
are two b-Brauer pairs with first entry ). Therefore, gz € Nx(Q, bg) and so
9Bg =9"Bg = Bg. O

In the following, L denotes a subgroup of a finite group G and G a normal
subgroup of G. We set L := G N L and assume that G = LG. As before we
set D := (G x L**)A(L). Furthermore, let ¢ € Z(kL) be a L-stable block of
L and b € Z(kG).
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Lemma 1.46. Let C be a bounded complex of kGb-kLc-bimodules inducing
a splendid Rickard equivalence between the blocks kGb and kLc. Assume that
C extends to a complex C' of kD-modules and denote C' := Ind$**™ (C").
Let D be a defect group of kLc and @ a characteristic subgroup of D. Let

(Q,cq) be a c-Brauer pair corresponding to the b-Brauer pair (Q,bg) as in
Proposition [1.16. Set

(Q)XNg(Q)°P A N N opp
€ = nd}e DN (B (€))Cg and € = Ind ¥ DN (Bry o (€)) Co.

Then the following diagram is commutative:

) COlv o~
D°(kN;(Q)Cq) D*(kNg(Q)Bg)
N; (@) Ne(@)
Resy} (@) Resyc(@)
) COnui) ™~
D*(kNL(Q)Cog) D’ (kN¢(Q)Bg)

where the horizontal maps induce equivalences of the derived categories.

Proof. By the commutativity of the first two rows of the commutative dia-
gram in Remark we have a natural isomorphism

5 oo 1 NE(QXNL(@QPP
C = Indyg ) n; @erran; @ (€):

NL(Q)PPAN; :
where C’ := In dNGXLo:pALL((A)Q) 2(@ )(BrAQ(C’))CQ. Now by the commutativ-

ity of the second and the third row of the commutative diagram in Remark

we deduce that

NG (@ XNL(QPPAN;(Q) /i m
Resng@pun,@ere - (C) =C.

By Proposition the complex C induces a derived equivalence between
the blocks kN¢(Q)Bg and kN (Q)Cq. By Lemma |[1.45] the block By is
N (Q)-stable and Cy is Nj (Q)-stable. Moreover, we have

Na(Q)/Ne(Q) = N (Q)/NL(Q).

It follows from Remark|1.25|that the complex C 2 IndN Eg)szgggopp AN, (@ )(C’ )

induces a derived equivalence between kN; (Q)Cg and kN (Q)Bg. T he com-
mutativity of the diagram is now a consequence of Remark |1.26] - . O
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In Corollary we have established a Harris-Knorr correspondence for
characteristic subgroups of the defect group of a block. It is therefore natu-
ral to ask whether the construction in Lemma [1.46| is compatible with this
correspondence.

Remark 1.47. Assume that we are in the situation of Lemma [[.46l Let
c=c1+ -+ ¢ be adecomposition of ¢ into block idempotents of kL. We
let b = by + --- + b, be the decomposition of b into block idempotents of
kG such that b;Cc; # 0 in Ho’(k[G' x L°PP]), see Lemma (1.9, We have a
decomposition brg(b) = brg(bl) +- brg(br) into orthogonal idempotents.

Denote by Bg; := brg(b;)Bg the Harris-Knorr correspondent of b;, see
Corollary We deduce that

Bg = Bgi+ -+ Bg,

is a decomposition into block idempotents of kN5 (Q). Similarly, we have a
decomposition
CQ :CQ71+'.'+CQ,7"

into block idempotents of kNj(Q), where Cq; = brg(c;)Cq. We have
Brag(C) = @;_, brg(bi) Brag(C) brg(c;) and therefore we obtain

5 1 NGQXNL(QPP Ny
C=Indy? """ Ko (Brag(C)Co) = P CCaqs
=1

From this we conclude that the complex CNC’QJ» induces a derived equivalence
between the blocks kN (Q)Bg, and kN;(Q)Cq,. Thus, the local equiva-
lences for the normalizer are compatible with the Harris-Knorr correspon-
dence.
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Chapter 2

Deligne—Lusztig theory and
disconnected reductive groups

In this chapter we recall the necessary background in the representation
theory of finite groups of Lie type. We will in particular discuss extensions
of this theory to disconnected reductive groups. Then we will recall the
Morita equivalence constructed by Bonnafé, Dat and Rouquier which can be
seen as a starting point of this work.

2.1 Disconnected reductive algebraic groups

We assume that the reader is familiar with the notion of Levi subgroups
and parabolic subgroups of connected reductive algebraic groups, see for
instance [MT11, Chapter 12]. In this section, we will discuss a generalization
of these notions to not necessarily connected reductive groups.

Fix a prime number p and an algebraic closure E of F,. Let G denote
a (not necessarily connected) reductive algebraic group defined over ]FT). We
denote by G° the connected component of G containing the identity.

In the following, we recall some standard facts, which can for instance
be found in [BDRI17a, Section 2.D.] and [BDR17al Section 3.A.]. A closed
subgroup P of G is called parabolic subgroup if the variety G/P is complete.
One can show that a closed subgroup P of G is a parabolic subgroup of G if
and only if P° is a parabolic subgroup of G°. Moreover, we have PNG° = P°
and the unipotent radicals of P and P° coincide.

Suppose that P is a parabolic subgroup of G. Let L, be a Levi subgroup
of G° so that P° = L, x U is a Levi decomposition of the parabolic subgroup
P° in G°. Then we call L = Np(L,) a Levi subgroup of P in G. In addition,
we have a decomposition P = L x U and L, is the connected component of
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L, ie L°=L..

Example 2.1. Let G be a reductive algebraic group. Let P, = L, x U be
a parabolic subgroup with Levi decomposition in G°. Then P = Ng(P,) is
a parabolic subgroup of G with Levi subgroup L = Ng (L., P,) = Np(L,)
such that P° = P..

As we show in the next example, disconnected reductive groups arise
naturally in the study of automorphisms of reductive groups.

Example 2.2. Let G, be a connected reductive group and 7 : G, — G, an
algebraic automorphism of G, of finite order. Then the semidirect product
G := G, x (7) is again a reductive algebraic group but no longer connected.
This situation was for instance considered in [Mal93]. Let P, = L, x U be
a Levi decomposition of a parabolic subgroup P, of G,. If both L, and P,
are T-stable, then P := P, x (7) is a parabolic subgroup of G with Levi
subgroup L := L, % (1), see Example [2.1]

Disconnected reductive groups also appear naturally as local subgroups
of (connected) reductive groups.

Example 2.3. Let G be a possibly disconnected reductive group, P a
parabolic subgroup of G with Levi decomposition P = L x U. In addi-
tion, we assume that @) is a finite solvable p’-subgroup of L. By [BDR17a,
Remark 3.5] it follows that the normalizer Ng (@) is a reductive group.
Moreover, Np(Q) is a parabolic subgroup of Ng(Q) with Levi decomposi-
tion Np(Q) = NL(Q) X Cy(Q). Similarly, Cg(Q) is a reductive group with
parabolic subgroup Cp(Q) and Levi decomposition Cp(Q) = Cr(Q)xCy(Q),
see [BDR17al Proposition 3.4]. Note that Ng(Q)/ Ca(Q) is finite since it
embeds under the natural map Ng(Q)/ Ca(Q) < Aut(Q) into the automor-
phism group of the finite group @. Therefore, N (Q) = C&(Q) and we have
a Levi decomposition Cp(Q) = CL(Q) x Cy(Q) in the connected reductive

group Cg(Q).

2.2 /(-adic cohomology of Deligne—Lusztig va-
rieties

From now on ¢ denotes a prime number with p # ¢ and ¢ is an integral power

of p. Furthermore, by variety we always mean a quasi-projective variety

defined over IET,.
Let X be a variety acted on by a finite group G. We denote by RI'.(X, O) €
D’(O@) the (-adic cohomology with compact support of the variety X with
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coefficients in O, see [CE04, A.3.7] and [CE04, A.3.14]. For A € {K,O,k}
we define

RT.(X,A) := RT.(X,0)®% A € DY(AG).

Moreover, we denote by H%(X, A) € AG-mod the dth cohomology module of
the complex RI'.(X, A). For basic facts about ¢-adic cohomology which will
be more than enough for this thesis we refer the reader to the expositions
in |[CE04, Appendix 3]. More supplementary material can be found in the
appendix of [Car93] or [DM91, Chapter 10].

Let G be a reductive group with Frobenius endomorphism F' : G — G
defining an Fg-structure on G. Let P be a parabolic subgroup of G, P = LU
be a Levi decomposition and assume that L is F-stable. Consider the G-
Lf-variety

Yg :={9U e G/U|g'F(9) e UF(U)} C G/U.

If the ambient group G is clear from the context we will just write Yy instead
of YS. The cohomology of this variety provides us with a triangulated
functor

Ricp : D'(AL") = D*(AG"), M — RU.(Y§, A) ®%pr M.
This functor induces a map

Ricp = [RE] : Go(AL") = Go(AG"), [M] = D “(—1)'[HAYS, N)@arrM],

on Grothendieck groups (see Section the so-called Deligne—Lusztig in-
duction.

2.3 Properties of Deligne—Lusztig varieties

In this section we will study the following set-up: Let G be a reductive
group with Frobenius F' : G — G. Moreover, assume that G is a closed
F-stable normal subgroup of G. Suppose that P = LU and P = LU are
two Levi decomposition of parabolic subgroups P of G and P of G such that
PNG =P and LN G = L. Assume that the Levi subgroup L is F-stable.
Let us denote

D = {(x,y) € GI x (LM | 2GF = 4y 'GT} = (GF x (LF)PP)A(LF).

Lemma 2.4. With the notation as above, the variety YS is a D-stable sub-
variety of G/U.
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Proof. Let (z,y) € D and gU € G/U. Since (z~',y~') € D we have zy €
G and zgr~! € G. Since L normalizes U we conclude that

rgUy = 2gyU = xgr '2yU € G/U.

Hence, the group action of D stabilizes the subvariety G /U of G/U.
Now suppose that gU € Y§. Let us define ¢ = zgy. It follows that

c'F(c) =y g F(g)y € (UF(U)) = UF(U)

since y € L normalizes U. Consequently, the Deligne-Lusztig variety YE is
a D-stable subvariety of G/U. O

We also consider the generalized Deligne-Lusztig varieties as introduced
in [BDR17a, Section 6A]. Let P; and Py be two parabolic subgroups of G
with common F-stable Levi complement L and unipotent radicals U; and
U, respectively. We define

Y§, v, = {(01U1,9:Us) € G/U1xG /Uy | g7'g2 € UiUs; g5 ' F(g1) € UoF(Uy)}

which is a variety acted on diagonally by G x (f;F )°PP_ Similarily to Lemma
2.4] one proves the following.

Lemma 2.5. Let GF x (LF)opp act diagonally on G/U; x G/U,. Then
Y§, u, s a D-stable subvariety of G/U; x G/Us,.

Proof. Let (z,y) € D and (¢1Uy, g2Us) € Y§, y,- As in the proof of Lemma
2.4 we see that

(1 U1, 2Us)y = (291 Uy, 92 Usy) = (2919 Uy, 292yUs) € G/U; x G/U,.
Moreover, we have
(xg1y) " 2g2y =y~ ' g1 ' goy € (U1 Up)" = U, U,
since y € L normalizes U; and Us,. Similarly,
(2g29) " F(xg2y) =y~ g5 Fg1)y € (U2F(U1))Y = Uz F(Uy).
This shows that the subvariety Y§ y, is D-stable. O

Notation 2.6. Let H be a finite group. If X is a right H-variety and Y a
left H-variety we denote by X x5 Y the quotient of X X Y by the diagonal
right action of the group A(H) = {(h,h™') | h € H} given by

XxY = XxY,(x,y) (zh,h'y).
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Now assume that X is a G- H-variety and Y an H-L-variety. Then Xx 5Y
becomes a G-L-variety. To compute the cohomology of this new variety one
uses the following theorem:

Theorem 2.7 (Kiinneth formula). If the stabilizers of points of X XY under
the diagonal action of H are of invertible order in A, then we have

RT.(X,A) @%; RT.(Y,A) =2 RT (X x5 Y, A)
in DP(A[G x L°PP]).
Proof. See [BRO3| Section 3.3]. O
The following geometric lemma describes two closely related decomposi-
tions of the Deligne-Lusztig variety Y&. The result is certainly well known,

but it does not appear in this exact form in the literature, see also [CE04, The-
orem 7.3].

Lemma 2.8. We have two decompositions.

a) Y& = Hyear/ar gYS = GF xgr Y& as (GF x (LF)°PP)-varieties.

b) Y{c}; = (GF X (I:F)Opp) xp YE as (GF X (f;F)Opp)—varieties.

Proof. Firstly, observe that ngéF et gY§ is indeed a disjoint union of

closed subvarieties of Y.

Now, let yU € YS. Then y~'F(y) € UF(U) C G°. As G° is connected
the Lang map £ : G° — G°, g — g 1 F(g), is surjective. Consequently, there
exists some 2 € G° such that ' F(z) = y L F(y) and therefore zy~! € GF.
In particular, we have yU € zy~'YS. This proves part (a).

Let us now prove part (b). The map

0: G xYE = (GF x (D7) x YS, (2, gU) = ((z,1), gU),

is a morphism of varieties. For y € G the cosets of p(xy,y 1gU) =
((zy,1),y 'gU) and ¢(z,gU) = ((x,1),gU) are equal in the quotient va-
riety (G x (LT)°PP) xp Y§ since (y~!,1) € D. Therefore, the map ¢
A P
factors through the diagonal action of GI" and we obtain a (G x (L' )°PP)-
equivariant morphism
7: G xgr Y& = (G x (LF)PP) x5 YE.
We define a morphism of varieties

b (GF x (LF)PP) x YE = GF x Y& ((2,y), gU) = (zy,y~'gUy).

45



For (h,l) € D we have
V((xh, ly), h=" gl U) = (ahly, (Iy) " h~ gl 1yU) = (x(hly), (hly) " gyU).
Since hl € G we may write hly = yx, for some z, € GF. Thus
Y((xh,ly), k™ gl™"U) = (zymo, 25 ygyU),

which shows that ¢ factors through the diagonal action and we obtain a
morphism

U (GF x (L") xp Y& = GF xgr YS.

We check that ¢ and @ are inverse to each other. First note that clearly
¥ o =id. On the other hand (% o ¥)(((#,),9U)) = ((zy,1),y 'gUy) =
(z,9),9U), where the last equality follows from (y~!,y) € D. O

Remark 2.9. Let Dy := ((G°)F x ((L°)F)°PP)A(LY). Then the proof of
Lemma [2.8 shows that the map

(G" x (LF)P) xp, Y§ = Y, ((z,y), gU) — 29Uy,

is an isomorphism. Using this description of the isomorphism, it is clear that
this is an isomorphism of D-varieties.

Corollary 2.10. Under the assumption of Lemma we have
RT(YS, A) 2 A[GF x (LF)P] @k, RT.(YS, A)
in DY(A[GF x (LF)°rr]).
Proof. By Lemma [2.8 we have
Y§ 2 (GF x (LF)PP) xp Y§
as (GF X (fJF )°PP)-varieties. The group D acts freely by right multiplication

on (GF x (LF)°PP). Hence, it follows that D acts freely on (GF x (LF)oPP) x
Y&, Thus, Theorem [2.7]is applicable and we obtain

RT(YS, A) = A[GF x (LF)*P] @k, RT(YS, A)
in DY(A[GF x (LF)°rr]). O
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2.4 Godement resolutions

Let X be a variety defined over an algebraic closure of F, endowed with an
action of a finite group G. By work of Rickard and Rouquier there exists an
object GT'.(X, A) in Ho”(AG-perm) which is a representative of RI'.(X,A) €
D?(AG), see [Ric94] and [Rou02, Section 2]. The object GT.(X,A) is es-
sentially obtained as the T<sqim(x) truncation of the Godement resolution of
the variety X. However, the exact construction is much more technically
involved.

The advantage of the Rickard-Rouquier complex GT'.(X, A) is that it is
a complex of /-permutation modules which is compatible with the Brauer
functor. More precisely, if @) is an ¢-subgroup of G then we have a canonical
isomorphism

Bro(GT (X, A)) = GT (X9, k)

in Ho’(kNg(Q)), see [Rou02, Theorem 2.29]. Building on this fundamental
result, Bonnafé—Dat—Rouquier show the following:

Lemma 2.11. Let G be a (non-necessarily connected) reductive group with
parabolic subgroup P and Levi decomposition P = Lix U such that F(L) = L.
For an (-subgroup @ of LY we have

Brag(GT(Y§, A)) = GI(YS(G) k)

in Ho"(k[Ngr «ror (AQ)]),
Proof. See [BDR17a, Proposition 3.4(e)] and [BDR17a, Remark 3.5]. O

Lemma 2.12. The components of the compler GT.(YS, A)*d of A[GF x
(LE)°PP)-modules are relatively ALY -projective, i.e., the complex GT (Y&, A)red
15 splendid.

Proof. The complex GT'.(Y§, A)™d can be endowed with a A[G¥ xNgr (P, L)PP]-
structure, see [BDR17a, Remark 2.2]. The indecomposable summands of the
components of the complex GT'.(Y G, A)™ of A[G x Ngr (P, L)°PPl-modules
have a vertex contained in ANgr (P, L)°PP see [BDR17a, Corollary 3.8]. Con-
sequently, the components of GT.(Y&, A)™d considered as A[GF x (L)°PP]-
modules are relatively AL -projective by Lemma m ]

2.5 Isogenies

Let G be a connected reductive group. Recall that an isogeny of algebraic
groups ¢ : G — G is a surjective homomorphism of algebraic groups with
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finite kernel. Let ¢ : G — G be an isogeny stabilizing a maximal torus
Ty of G. We write X(Ty) for the character group of Ty and Y (Ty) for
the cocharacter group of Ty, see [MT11, Definition 3.4]. The morphism ¢
induces a group homomorphism ¢ : X (T() — X(Ty) and its dual morphism
0¥ Y (Ty) = Y(To), y — poy, which preserve the set of roots ®(Ty) resp.
coroots ®V(Ty). Moreover, these group homomorphisms satisfy

1. ¢ and ¢" are injective.

2. There exists a bijection ®(Ty) — ®(Ty),a — o and positive integers
q(«), which are integral powers of p, such that ¢(a/) = g(a)a and

¢’ (a”) = q(a)()".

We call any group homomorphism f : X(Ty) — X(Ty) with these two
properties an isogeny of the root datum (X (Tg), ®(Ty),Y (Ty), " (Ty)).
We recall the isogeny theorem:

Theorem 2.13. Let G be a connected reductive group and To a mazimal
torus. Then for every isogeny f : X(To) — X(Ty) of the root datum

(X (Ty), ®(Ty),Y(Ty),P"(Ty)) there exists an isogeny ¢ : G — G inducing
f on X(To) which is unique up to inner automorphisms induced by Ty.

Proof. See [Spr09, Theorem 9.6.2]. O

2.6 Duality for connected reductive groups

The following material can be found in [DM91, Chapter 13]. Let G be a
connected reductive group with maximal torus Ty. Let G* be a connected
reductive group with maximal torus T§. We say that (G*, Tf) is dual to
(G, Ty) if there exists an isomorphism ¢ : X(T§) — Y (Ty) which induces
an isomorphism between the root data (X (Ty), ®(Ty),Y (Ty),P"(Ty)) and
(X(T), D(TE), Y(TE), 2Y(T)), see [DMI1], Definition 13.10].

Let F' : G — G be a Frobenius endomorphism and assume that T is
F-stable. By Theorem there exists a Frobenius endomorphism F* :
G* — G* satisfying 6 o F' = (F*)V 0§ on Y(T}). We then say that the
triple (G, Ty, F) is in duality with (G*, T§, F*), see [DM91], Definition 13.10].
Note that we will sometimes drop the * and write F' for both Frobenius
endomorphisms.

In the following we write W := Ng(Ty)/Ty for the Weyl group of G with
respect to Ty and W* := Ng«(T}) /T for the Weyl group of G* with respect
to T§. Since W stabilizes the torus T we have a natural action of W on
X(Ty) and a natural action on Y (Ty). For w € W we let n,, € Ng(Ty)
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be a representative of w € W and analogously n,- € Ng«(T§) denotes a
representative of w* € W*.

Using the natural action of W on X (Ty) and the action of W* on Y (T})
one can show that the duality isomorphism 0 : X (Ty) — Y (T}) induces an
anti-isomorphism * : W — W™*. Moreover, this anti-isomorphism satisfies
w* = F*(F(w)*) for all w € W, see [Car93|, Proposition 4.3.2].

Recall the following definition:

Definition 2.14. Let G be a group and ¢ : G — G an automorphism of G.
The action G x G — G, (z,y) — zyp(x)~!, is called p-conjugation in G. We
say that two elements =,y € G are ¢-conjugate if xp and yp are conjugate
(by an element of G) in G % (p).

One can show that * : W — W* induces a bijection between the F-
conjugacy classes of W and the F*-conjugacy classes of W* see [Car93,
Proposition 4.3.4(ii)].

In the following, we write (Q/Z),, for the subgroup of elements of p’-order
of the additive group Q/Z. We fix a group isomorphism

L (Q/Z)y — F,7,
an injective morphism
J:(Q/Z)y — @X
and set
Ki=jou ! :EX <—>@X.
We define a restriction map res : X (To) — Irr(TY), x — Resi%(n o X)-

Let n be an integer such that T is split over Fy», i.e., this means that
(F*)"(t) = t7" for all t € T. We denote by

Npsn g 2 Ty — Th, t = tF*(t) - (F*)"71(2)

=X

the norm map of the torus T}, with respect to F*. Denote ¢ = L(qn—l_l) e F,
and define an evaluation map
ev : Y(Tg) = (T, y = Npnyr(y)(0).

We then define 6, : Irr(TE) — (T;)! to be the unique isomorphism
which makes the following diagram commutative:
F—-1 res

0 X(Ty) X(To) Irr(Tg) 1
) 0 0
F*—1 ev
0 Y(T%) Y(T5) (Ty)" 1
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We will now briefly explain how this construction can be generalized to
arbitrary maximal F-stable tori of G. Let T be an F-stable maximal torus
of G. Then there exists an element g € G such that 9Ty = T. We have
g 'F(g9) € Ng(Ty) and we let w € W such that w is the image of g~ F(g)
under the map Ng(To) — W. We say that w is the type of the F-stable
maximal torus T. It follows that the map T — T ¢ — t — 9, is an
isomorphism of abelian groups. For the dual group, we let h € G* such that
h™'F(h) = F*(n,). It follows that the triple (G, To,n,F) is in duality
with (G*, T, F*n,-) which yields a duality isomorphism d,, : Irr(T#F) —
(Ty)F"*". Furthermore, T* := "T} is a maximal F*-stable torus of G*
of type F*(w*) and we obtain that the triple (G, T, F) is in duality with
(G*, T*, F*). Hence the notion of duality does not depend on the choice of
the maximal torus Ty which we made at the beginning of this section.

2.7 Levi subgroups, isogenies and duality

We recall the classification of F-stable Levi subgroups of a connected re-
ductive group G. Fix an F-stable maximal torus Ty of G contained in an
F-stable Borel subgroup By of G. Let ® be the root system of G relative to
the torus Ty and A C ® the base of ® associated to Ty C By.

By [DM91, Proposition 4.3] the G¥-conjugacy classes of F-stable Levi
subgroups of G are classified by F'-conjugacy classes of cosets W w, where
I C A and w € W satisfies “Y'W; = W;. More precisely, if L is an F-stable
Levi subgroup of G of type W;w then there exists ¢ € G such that 9L = L;
for some I C A and 9T is a maximal torus of L of type w = g~ 'F(g)T,.
Here, L; denotes the standard Levi subgroup of G associated to a subset [
of the base A, see [MT11], Section 12.2].

An important property of duality is that it extends to Levi subgroups.

Lemma 2.15. Suppose that (G*, T, F*) is in duality with (G, Ty, F). Then
the map which sends a Levi subgroup L of G of type Wrw to a Levi subgroup
L* of G* of type W} F*(w*) induces a bijection between the G -conjugacy
classes of F-stable Levi subgroups of G and the (G*)f" -conjugacy classes of
F*-stable Levi subgroups of G*.

Proof. See [CE04, Section 8.2]. O
The following remark which is taken from [CS13, Section 2.3] describes
how Levi subgroups in duality with each other can be described without

explicit reference to a maximally F-split torus.
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Remark 2.16. Assume that L is an F-stable Levi subgroup of G and L*
is an F*-stable Levi subgroup of G*. Then the Levi subgroups L and L*
are in duality with each other if and only if there exists a maximal F-stable
maximal torus T C L and a maximal F*-stable maximal torus T* C L* such
that (G*,T*, F*) is in duality with (G, T, F) and ®(L,T) corresponds to
®Y(L*, T*) under the duality isomorphism X (T) = Y (T*).

The bijection of Lemmahas important properties, see [CE04], Section
8.2] for the following. Suppose that L* is a Levi subgroup of G* corresponding
to a Levi subgroup L of G under the bijection in Lemma[2.15] Then it follows
that (L, ) is in duality with (L*, F*). Moreover, the map * : W — W*
induces a group anti-isomorphism between the corresponding Weyl groups of
the Levi subgroups. This in turn induces an anti-isomorphism

Na(L)/L 2 Ng- (L) /L,

which satisfies w* = F*(F(w)*) for all w € Ng(L)/L.
We will now define what it means for isogenies to be in duality with each
other.

Definition 2.17. Suppose that (G, Ty, F) is in duality with (G*, T}, F™*).
We say that isogenies 0 : G — G and ¢* : G* — G* are in duality with each
other if there exist ¢ € G and h € G* such that oy := go stabilizes T (resp.
o = ho* stabilizes Tj) and 0 o o9 = (0)Y 0§ on Y (T}).

Note that this means that dual isogenies are only defined up to inner
automorphisms of G respectively G*.

The following remark is crucial for working with automorphisms of finite
groups of Lie type, see also [NTTO08, Section 2] and the proof of |CS13,
Proposition 2.2].

Remark 2.18. Let 0 : G — G be a bijective morphism commuting with
the action of F. We want to show that there exists a bijective morphism
o* : G* — G* in duality with o which commutes with F™*.

Recall that we have fixed a pair (Ty, Bg) consisting of an F-stable maxi-
mal torus T of G contained in an F-stable Borel subgroup By of G. Since
(0(Ty),c(Byg)) is again such a pair it follows that 9(Ty, Bg) = (c(Ty), c(By))
for some g € G¥'. Hence, we may assume that o stabilizes the pair (Ty, By).
Thus, Theorem together with [Tayl8, Lemma 5.5] shows that there
exists a bijective morphism ¢* : G* — G* in duality with . Moreover,
by the uniqueness statement of Theorem we can choose o* such that
o*F* = F*o*. (We first have to*F* = F*o* for some t € T. Then by
Lang’s theorem there exists ¢ty € T such that too* commutes with F*.) The
isogeny o* with these properties is then unique up to (G*)f" -conjugation.
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Corollary 2.19. Let 0 : G — G be a bijective morphism oo F'= F oo and
o* : G* — G* be a dual isogeny with c* o F* = F* o ¢*. Under the bijection
in Lemma the set of o-stable G¥-conjugacy classes of F-stable Levi
subgroups of G corresponds to the set of o*-stable (G*)f" -conjugacy classes
of F*-stable Levi subgroups of G*.

Proof. As in Remark we may assume without loss of generality that o
stabilizes the pair (Ty, Bg). We may also assume that o* : G* — G* satisfies
doo = (c*)V0d on Y(T}), see Definition 2.17] In particular, this yields
w* = o*(o(w)*) for all w € W (same proof as in [Car93, Proposition 4.3.2]).

Observe that the Gf-conjugacy class of an F-stable Levi subgroup of
type Wjw is o-stable if and only if o(W;w) is F-conjugate to Wyw. This is
equivalent to o* (W} F*(w*)) being F*-conjugate to W} F*(w*). The latter is
now equivalent to the (G*)f" -conjugacy class of F*-stable Levi subgroups of
G* associated to W} F*(w*) being o*-stable. This gives the claim. O

2.8 Rational Lusztig series for connected re-
ductive groups

We continue our discussion on duality from Section and keep the same
notation. The following results can be found in [DM91, Chapter 13| and
[Bon06, Chapter 9, Chapter 11]. Our presentation follows [Tay18, Section 6].

We denote by V(G, F') the set of pairs (T,0) where T is an F-stable
maximal torus of G and 6 € Trr(TF) is an irreducible character of TF.
The group G acts by conjugation on the set V(G,F). We denote by
V(To, W, F) the set of pairs (w, ) where w € W and 6 € Irr(T¥"). Then
the Weyl group W acts on V(To, W, F) via z - (w,0) = (zwF(2)7!,%0). Let
(w,0) € V(Ty,W,F). By Lang’s theorem there exists g, € G such that
9o F(gw) = n, and we have (v Ty, 9%0) € V(G, F). One can now show that
the map

V(To, W, F)/W — V(G, F)/GF, (w,0) — (9T, 90),

is a bijection, see [Tay18, Lemma 6.2].

We denote by S(G*, F*) the set of pairs (T*, s) where T* is an F*-stable
maximal torus of G* and s € (T*)f". Clearly, (G*)f" acts by conjuga-
tion on the set S(G*, F). We let S(T§, W*, F) be the set of pairs (w,s)
where w € W* and s € (T;)f"%". As before we have an action of W* on
S(T;, W*, F*) by setting z - (w,s) = (zwF*(2)~", 7 ®)s). Given w € W* we
obtain (T}, " s) € S(G*, F*) where h ' F*(h,) = F*(n,). Then the map

S(T, W F*)/W* = S(G*, F*) /(G (w, 5) — ("T5, ™ s),
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is a bijection, see [Tay18, Lemma 6.4].
By Section [2.6/we obtain for w € W a bijection §,, : Irr(T¥F) — (Tg)v 1.
From this one concludes that the map

V(Ty, W, F)/W — S(T5, W*, F*)/W?*, (w,0) — (w*,,(0))
is a bijection, see [Tay18, Lemma 6.6]. In particular, we obtain a bijection
V(G,F)/GF — S(G*, F*)/(G*)F".
We can now define the notion of rational series.

Definition 2.20. Fix a semisimple element s € (G*)f". The subset X C
V(G, F) consisting of all pairs (T,0) € V(G, F') which correspond to some
(T*,t) € S(G*, F*)/(G*)I", where t is (G*)"-conjugate to s, under the
bijection above is called the rational series associated to the (G*)" -conjugacy
class of s € (G*)I".

Let T be an F-stable maximal torus of G and let B be a Borel subgroup
containing T such that B = T x U. Then we write Yg = Yy for the
corresponding Deligne-Lusztig variety. Moreover we write

RS = [REcp] : Go(KT") = Go(KG"), [M] = Y (—1)'[HAYS, AN)@ar M],

for the corresponding Deligne-Lusztig induction. Note that the map RS does
not depend on the choice of the Borel subgroup B containing T by [DM91,
Theorem 11.13] and the remarks following said theorem.

We can now define the notion of rational Lusztig series.

Definition 2.21.

(a) Let s € (G*)I be semisimple. Then we define £(G, s) to be the set of
all irreducible characters occurring in a RS (), where (T, 0) € V(G, F)
is in the rational series associated to the (G*)f-conjugacy class of

s € (GH)I.
(b) Let s € (G*)! be a semisimple element of /-order. We set

E(G",s) =[] €(G",1),

where t runs over a set of representatives of conjugacy classes of semisim-
ple elements of (G*)f" such that s = t,.
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(c) Let s € (G*)F be a semisimple element of ¢'-order and define

G _
ey, = E €y

Xegf(GFrs)
where e, € Z(KG') is the central idempotent corresponding to x.

Theorem 2.22 (Broué-Michel). Let s € (G*)f" be a semisimple element
of U'-order. Then we have ¢S" € Z(OGF) and hence OGFeS" is a sum of
blocks.

Proof. See |[CE04, Theorem 9.12]. O

In |[BRO3| the previous result is formulated in the language of derived
categories and in [BDR17a] using this language generalized to disconnected
reductive groups. We will recall this result in the next section.

2.9 Lusztig series for disconnected reductive
groups

We give an elementary description of Lusztig series for disconnected reductive
groups introduced in [BDR17a].

Let G be a non-necessarily connected reductive group. Note that the
maximal tori of G are the maximal tori of G°. As in the case of connected
reductive groups, we denote by V(G, F') the set of pairs (T, ) where T is
an F-stable maximal torus of G and 6 € Irr(T") is an irreducible character
of TF.

We denote by Vi (G, F) the subset of V(G, F) consisting of the pairs
(T, 0) such that the order of  is coprime to £. Note that Irr(T¥)s can be
identified with the set of characters T — A*. We denote by ey € Z(ATY)
the unique central primitive idempotent of AT with 6(eg) # 0.

Definition 2.23. We say that two pairs (T1,6;) € V(G, F) and (Ty,6,) €
V(G, F) are rationally conjugate if there exists some t € Ngr(T;) such that
(T1,%01) and (T4, 6,) are rationally conjugate in G°. We write V(G, F)/ =
for the set of equivalence classes under rational conjugation.

For the following, we need to recall some of the standard definitions re-
lated to triangulated categories. Let T be a triangulated category and S be
a full triangulated subcategory of 7. We say that S is a thick subcategory
of T if it is closed under taking direct summands, see |Ric89, Proposition
1.3]. If S is a set of objects in T we say that S is the subcategory generated
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by S if it is the smallest full thick triangulated subcategory containing .5,
see [BRO3| Section 2.3]. For instance, if A is a A-algebra which is free and
of finite type over A, then one can show that A-perf, see Section [I.2] is the
thick subcategory of D’(A) generated by the regular A-module A (either by
direct calculations or by using [BR03, Lemma 9.1}).

With this in mind, we can now state the following definition from [BDR17a,
4.D.].

Definition 2.24. Let X C V, (G, F) be a rational series of G. We de-
note by Cx the thick subcategory of AG!-perf generated by the complexes
RT.(YB)ey, with (T,0) € X and B a Borel subgroup of G° with maxi-
mal torus T. We denote by ey € AGY the central idempotent such that
Cr = AGFey-perf.

Note that the existence of the idempotents ey € Z(AGT) is ensured
by [BDR17a, Theorem 4.12].

Remark 2.25. Suppose that G is a connected reductive group. We let s €

(G*)F be a semisimple element of £-order such that its (G*)¥-conjugacy class

is associated to the rational series X € Vs (G, F). Then we have ¢S = ey,

see [BRO3, Remark 9.3]. In other words, Definition is consistent with
Definition 2.21]

Lemma 2.26. Let X C V, (G, F) be a rational series of G and choose a ra-
tional series X° of G° such that X° C X. Then we have ey = TrgsF(exo)(eXo).

Proof. Write €/, := ZQEGF/NGF(CXO) Jexo. Let (T,0) € X and B be a Borel
subgroup of G° with maximal torus T. By [BDR17a, (3.1)] we have

Indfge,r (RT(Y§ )eg) = RT(Y§)es = Ind oy r (RT(YSy Jerg)

for any ¢ € Ngr(T). Therefore, the generators of Cy lie inside AG* ¢/y-perf.
Thus, Cy is a subcategory of AGe/-perf and we have exe’) # 0. By
[BDR17a), Theorem 4.12] it follows that we have two decompositions

1= Z ez = Z .

ZeVu(G,F)/= ZeVy(G,F)/=
into orthogonal central idempotents. From this we deduce that ey = €’,. O

We recall the definition of (super)-regular rational series, see [BR03, Sec-
tion 11.4] and in particular [BR03, Lemma 11.6].
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Definition 2.27. Let G be a connected reductive group and L be a F-stable
Levi subgroup of G. We say that the rational series of (L, F') associated to
the conjugacy class of the semisimple element s € (L*)*" is (G, L)-reqular
(respectively superregular) if Cg.(s) € L* (respectively Ca«(s) C L*).

This notation can now be naturally extended to rational series of discon-
nected reductive groups. Let G be a reductive group. If X is a rational
series of (L, F') we say that X is (G°, L°)-regular (respectively superreqular)
if any (and hence every) rational series of (L°, F) contained in X is (G°, L°)-
regular (respectively superregular). We then say that the central idempotent
ex associated to X is (G°, L°)-(super)-regular.

2.10 Lusztig series and Brauer morphism

Let G be a reductive group and @ a finite f-subgroup of G¥. Then we
consider the map

Zg : Vzl(CG(Q),F)/ =— Vg/(G,F)/ =

as defined in [BDR17a), Theorem 4.14]. By [BDR17a, Theorem 4.14] for any
rational series ) C V (G, F') we have

F
brg (ey) = Z ez.
2e(S) 1 (Y)

Lemma 2.28. Let L be an F-stable Levi subgroup of G and let X C Vu (L, F)
be a (G°,L°)-(super)-reqular rational series. Then for any {-subgroup Q of

LY we have that .
brg (ex) = Z €z
Ze(ig)~H(X)

is a decomposition into orthogonal (C&(Q), CL(Q))-(super-)reqular idempo-
tents.

Proof. See [BDR17a, Proposition 4.11]. O
We gather some useful facts.

Lemma 2.29. Let L be an F-stable Levi subgroup of G and P a parabolic
subgroup of G with Levi decomposition P = L x U. In addition, let X C
Vo (L, F) be a (super)-reqular rational series of (G°, L°).

(a) There exists a unique rational series Y C Vu (G, F) containing X .
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(b) Deligne-Lusztig induction restricts to a functor Rfcp : D*(ALFey) —
Db(AGFey)

(c) Given X' € (i)' (X) let V' be the unique rational series of Vy (Ca(Q), F)
containing X'. Then we have zg(y) =).

Proof. Let X° be a rational series of (L°, F) contained in X. Then X° is
associated to the conjugacy class of a semisimple element s € ((L°)*)f" of £-
order, see Definition [2.20] Then the rational series Y° of (G°, F) associated
to s € ((G°)*)f" is the unique rational series containing Y°. Thus, ) is the
unique rational series of (G, F') containing )°. This shows part (a).
Deligne-Lusztig induction restricts to a functor RS cpo : DP(A(L°)Fel") —

DY(A(G°)FeS") by [BRO3, Theorem 11.4]. For part (b) it suffices to show
that RE-p(M) € D*(AGFey) for M = ALFey. By [BDR17a, (3.1)] we have

Ind((é}o)F O RLOCPO —_— RLCP o] Ind<Lo)F

By Lemma [2.26/ we have M = Indf; Lo)F (ALFel") and we can conclude that
RE-p(M) € D*(AGFey). This implies that RE-p restricts to a functor
RE b : DY(ALFey) — DY(AGFey). -

We now prove part (c¢). By Lemma we have

Brag(GTu(Y§)ex) = GT(YE(@), Abrg(ex) = brg(ey)GT(YE(D), A)brg(ex).

On the other hand, by part (b) Rgf((g))ccp@) restricts to a functor

ReCieon@ : D'(A Crr(Q)exr) = DP(ACar(Q)ey).

This implies that brg(ey)ey # 0 which shows that ey appears in the decom-
position into central idempotents of brg(ey) from Lemma [2.28, Therefore,
we necessarily have @8’ Y)=). O

2.11 Regular embedding and Lusztig series
We recall the following definition, see |[CE04, Section 15.1]
Definition 2.30. Let G be a connected reductive group. A regular em-

bedding of G is a morphism ¢ : G < G of algebraic groups, where G is a
connected reductive group such that Z(G) is connected and [G, G] C «(G).

57



In the presence of a Frobenius endomorphism F' : G — G we always
assume that the regular embedding ¢ : G < G is chosen in a way such that
there exists a Frobenius endomorphism F : G — G satisfying F ot =10 F.
Moreover, we will identify G with its image «(G) in G.

Remark 2.31. A standard way to define a regular embedding is the following
(see |[CEO04|, Section 15.1]): Let G be a connected reductive group and S
be a torus of G containing Z(G). Then G := S xzq) G is a connected
reductive group with connected center S and the natural map ¢ : G — G is
a regular embedding. Moreover, if F': G — G is a Frobenius endomorphism
of G one can choose S to be an F-stable torus of G. Then the Frobenius
endomorphism F : G — G extends in a natural way to G by defining
F(s,g) = F(s)F(g) for (s,g9) € G =8 xy5q) G.

Now let G be a connected reductive group with Frobenius F' : G — G
and F-stable maximal torus To. Let ¢ : G < G be a regular embedding
of (G, F). We denote by Ty := Z(G)t(T,) the unique maximal torus of G
containing Ty. Let (G*, T, F*) be in duality with (G, Ty, F)). By [CE04,
Section 15.1] there exists a surjective morphism ¢* : G* — G* of dual groups
with kernel a connected central torus of G*.

Suppose that L is an F-stable Levi subgroup of G and P is a parabolic
subgroup of G with Levi decomposition P = L x U. Then L := Z(G)L is
an F-stable Levi subgroup of Gand P := Z(G)P is a parabolic subgroup of
G with Levi decomposition P = L x U. By Lemma we have a natural
isomorphism i ) i

Resgi o Rf ~ R o Res}j?.

Lemma 2.32. Let G be a connected reductive group and let 1 : G <—>~C~} be
a regular embedding of G. Let J be a set of representatives of the (G*)F-
conjugacy classes of {'-elements t € (G*)F with 1*(t) = s. Then

GF _ Z GF
es = 6£ .
ieJ

Proof. This is part of [BDR17a, Lemma 7.4]. O

2.12 The Bonnafé—Dat—Rouquier Morita equiv-
alence

Let G be a connected reductive group defined over an algebraic closure of I,
where p is a prime number. Let F': G — G be a Frobenius endomorphism
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of G defining an F-structure on G. Let (G*, F*) be in duality with (G, F)
as in Section [2.6| Fix a semisimple element s € (G*)¥" of £-order. Let L*
be an F*-stable Levi subgroup of G* which satisfies Cg.(s) C L* and

L* Cg*(S)F* = Cg* (S)F*L*
This assumption is for instance satisfied if L* = Cg+(Z°(Cg+(s))) is the

minimal Levi subgroup of G* containing Cg. (s) or if L* is any Levi subgroup
of G* containing Cg-(s)f". Then we define

N* := Cg-(s)" L*

which is a subgroup of G* by the property above. Note that N* is an F*-
stable subgroup of Ng+(L*). Let L be an F-stable Levi subgroup of G in
duality with the Levi subgroup L* of G*. We let N be the subgroup of Ng (L)
corresponding to N* under the isomorphism of the relative Weyl groups

Na(L)/L = Ne- (L*) /L’

induced by duality. The closed subgroup N of G is F-stable and it holds that
N* = Ngr(L,eL") by [BDR17a, (7.1)]. We let P with Levi decomposition
P = L x U. In addition, we let d := dim(Yy). By [BR03, Theorem 11.7] we
have

Hé(YS,A)e?F =0 for i # d.

Hence, we are interested only in the dth cohomology group of the variety
YE. For convenience, we will therefore use the following definition.

Notation 2.33. Let X be a variety of dimension n. Then we write RT3™ (X, A) :=
RU.(X, A)[n] and HI™(X, A) := H*(X, A).

Let ¢ : G < G be a regular embedding. Set L = LZ(G) and N = NL.
Assumption 2.34. Suppose that the k[(GF x (LF)°PP)ALF]-module
HI™ (Yu, k)et”
extends to a k[(GF x (LF)°PP) ANF]-module.

This assumption is for instance satisfied if N* /L is cyclic, see Lemma
1321
We have the following theorem, see [BDR17aj, Theorem 7.7]:
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Theorem 2.35 (Bonnafé-Dat—Rouquier). Suppose that Assumption M
holds. Then there exists an OGF-ONF -bimodule extending HY(YS, O)el

and for any such bimodule M there exists a complexr C' of OGY-ONF -
bimodules extending GT.(YS, A)*4eL" such that HY(C) = M. The complex
C induces a splendid Rickard equivalence between OGFeS" and ONFel”
and the bimodule M induces a Morita equivalence between OGFeS'F and

ONFeL”

Proof. In the proof of [BDR17al, Theorem 7.5] apply Assumption instead
of [BDR17a; Proposition 7.3]. The rest of the proof of the theorem is as
in [BDR17al Section 7. O

*

Note that the assumption previously made that L* normalizes Cg-(s)"
is not necessary for the following theorem. This means we only assume that
L* is an F*-stable Levi subgroup containing Cg.(s).

Theorem 2.36. Let Py and Py be two parabolic subgroups of G with common
Levi complement L and unipotent radical Uy respectively Us. Then we have

Hcdim<YU17A)eLF = Hgim(YUza A)egF

s

as AGF-ALF -bimodules.

Proof. This is proved in [BDR17a, Theorem 7.2]. We sketch how the isomor-
phism of the theorem is obtained. All mentioned statements are proved in
loc. cit. We define

Y3, u, = {(91U1,9Us) € Yy, u, | 91U € Yu, },

which is a G x (L¥)°PP-stable closed subvariety of Yy, uv,- We have a
closed immersion iy, v, : Y%hUQ — Yu, u, and a natural projection map
TU,,U, - Y%LU2 — YUl-

We have an isomorphism 7{;, v, : RTe(Yu,, A)[—2d] = RL(Y{, y,. A)
where d = dim(U; N F(U;)) — dim(U; N Uy N F(Uy)). Moreover, we have a
morphism i3y, y, : RLe(Yu, v, A) = RL(Y{), y,, A). The resulting map

7va1,U2 - (ﬂ-;}l,U2>_1 © i{Jl,UQ : Rrgim(YUhUm A) - Rrgim(YUu A)
induces a quasi-isomorphism
wUl,Uz,S : Rrgim(YULUw A)eiF - Rr(cﬁm<YU17A)e£F

of AG¥-AL*-complexes. Similarily, the map ¢y, pu,) induces a quasi-
isomorphism

Yy ruy)s | RIS (Y, poy, A)el” — RI (Y, A)el”
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of AGF-AL*-complexes. However, the shift map
sh : YU1,U2 — YUg,F(Ul)

given by (¢1Uy,92Us) — (92Us, F(g1Uy)) is GF-L¥-equivariant and in-
duces an equivalence of étale sites. In particular this map induces a quasi-
isomorphism

sh* : RT'Y™(Yy, u,, A) = RIY™(Yy, pu,), A)
of AGF-AL"-complexes. Consequently, we have a quasi-isomorphism

Ou,u, = YUy, ry,s ©sh* ovg! u, s+ RT(Yu,, A" = RL.(Yy,, A)e™”

S S

of AGF-AL"-complexes. ]
We single out a special case of Theorem [2.35]

Theorem 2.37 (Bonnafé-Dat-Rouquier). Let L* be an F*-stable Levi sub-
group of G* containing C. (s) Cg-(s)F". Then the compler C = GT(Yy, O)redel”
of OGFeS" -OLF e bimodules induces a splendid Rickard equivalence be-
tween OGF e and OLFeS". The bimodule H™Yv)(C) induces a Morita
equivalence between OGFeSF and (’)LFeg“F.
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Chapter 3

On the Bonnafé, Dat and
Rouquier Morita equivalence

In this chapter we extend Theorem to a case which is not covered by the
arguments in [BDR17a]. Specifically we consider the situation for semisimple
elements in type D whose centralizer has non-cyclic component group. Some
arguments in this chapter use considerations already present in an unpub-
lished note by Bonnafé, Dat and Rouquier [BDR17b]. The material and the
results of this chapter can also be found in the author’s article [Ruh1§].

3.1 A remark on Clifford theory

In this section we construct a counterexample to the statement of [BDR17a,
Proposition 7.3|. Let us recall the assumptions of this proposition:

Assumption 3.1. Let Y be a finite group and X andY be normal subgroups
of Y. Assume thatY = XY and denote X = XNY. Assume that k is a field
with [Y : X] € k*. Let M be a Y -invariant, finitely generated kX -module.

Suppose that
Endyeg (Ind3 (M) ] (Endyg (Ind (M) = k"
for some n. Assume that the kX -module Ind§(M) extends to Y.

Under Assumption the authors claim in [BDR17a, Proposition 7.3]
that the kX-module M extends to Y.
In their proof they show that the natural injection

Endy’ (M)/1+ J(Endix (M) < End*, (Ind¥ (M))/1+J (End, ¢ (Ind3 (M)
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splits. However, it is not clear under these assumptions that this injection
splits in a way compatible with the action of the quotient group Y/X. This
is however needed in an essential way in the proof of [BDR17al, Proposition
7.3].

We will now construct an explicit counterexample to their statement. We
are very much indebted to Gabriel Navarro for pointing this out to us.

Example 3.2. Assume that k = C is the field of complex numbers. We
consider the group Y generated by the elements ty,t5,n1, 1o subject to the
following defining relations:

o i1 =1t3=1=[t1,t) and t? = 3.

ot =7l 0 =ty 172 =¢; and {32 = ;.

o [n1,n9] =n} =n3 =12
Using the computer program GAP [GAP19] one can check that Y is a finite
group of order 32. It is actually isomorphic to the extraspecial group of
order 32 of type “-”. However, we won’t use this description in what follows.
Moreover, one checks X := (t;,,) is an abelian normal subgroup of Y. In
addition, Y := (ny, ng) is a normal subgroup of Y isomorphic to the dihedral
group Dg. The group X := X NY = (t?) is the center of Y and has order 2.
Now let M be a module affording the unique non-trivial irreducible com-
plex character of X. Since X is abelian it follows that M extends to a
kX-module. By Clifford theory, it follows that

End, ¢ (Ind¥ (M) & kXX = k4,

The module M is Y-stable since it is the unique non-trivial irreducible kX-
module. Furthermore, we have

Indy (M) = M, & My & My & My,

where the M; are pairwise non-isomorphic simple kX-modules which restrict
to M. From the explicit description of these modules, we conclude that the
conjugation action of the quotient group Y / X acts regularily on the set of
isomorphism classes of M, ..., M,;. We deduce that Ind§(]\/[1) is (isomor-
phic to) an extension of Indy(M). Therefore, Assumption is satisfied.
However, the non-trivial character of the center of Dg does not extend to
Dg. Therefore, the module M does not extend to Y. This contradicts the
statement of [BDR17a), Proposition 7.3].
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3.2 Steinberg relation

In this section we describe the Steinberg presentation of a simple algebraic
group of simply connected type as introduced in [Stel6]. This will allow us
to perform explicit computations in these groups.

Let ® be an abstract indecomposable root system in a finite dimensional
Euclidean vector space. Let A = {ay, ..., @, } be a base of the root system ®.
We denote by @ the set of positive roots, i.e. the subset of the root system
® which consists of the roots which can be written as a linear combination
of the simple roots with natural numbers as coefficients. We write ®V for
the set of coroots of ® with base given by AY = {ay,...,a;/}. We assume
that ® has at least rank 2 ,i.e., ® is not of type A;. We consider the group
G generated by the set of symbols {x,(t) | « € ®,¢ € F,} subject to the
following relations:

1. Xa<t1)Xa(t2> = Xa(tl + tz) for all tl, tg S E and o € .

2. Let o, B € & with a = 3 # 0. Then

Xa(t)xp(t2)] =[] Xiarss(ciastits),
i,j>0,ia+jBe®

where the product is taken over a fixed order of the roots ® and
Cijop € {E1,£2,£3} are as in [Stel6, Lemma 15] (where the ¢; jq.
are structure constants possibly depending on the chosen order).

3. ho(t1)ha(t2) = hy(tita) forall ¢y, ¢y € Fp ,Whereh () :=n,(t)n,(—1)
and no(t) := Xo (H)X_a(—t" x4 (t) for t € F,”

Steinberg shows that the abstract group G is the universal Chevalley
group constructed from ¢ and E, see [Stel6, Theorem 8]. Furthermore, he
shows that G can be given the structure of an algebraic group in a unique way
such that the maps x,, : (F,, +) = G, t = x,(t) for a € ® are isomorphisms
onto their image. The algebraic group G is then a simple algebraic group of
simply connected type with root system isomorphic to @, see [Stel6, Theorem
6] and the Existence Theorem in [Stel6, Chapter 5]. Moreover, Ty = {h,(¢) |
a e & t eF,"} is a maximal torus of G and we will (by abuse of notation)
identify the root system of G with respect to the torus Ty with the abstract
root, system ®.

Note that x,(t), h,(t) and n,(¢) are not uniquely defined and their re-
lations depend on the choice of certain structure constants. However, the
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relations simplify in the case where the involved roots are orthogonal. For
the following remark for o, 8 € ® we define

Pap :=max{i € Z| —ia+ € O}

and
Gop :=max{i € Z|ia+ f € O}

Remark 3.3. Let o, € ® witha L 3, u € F, and t € I[‘Tpx. Then we have:

a) x5(u)"® =xg(u) and ng(u)® = ng(u),

b) xﬁ(u)“a(t) = x3(u) and ng(u)“a(t) =ng(u) if pag = qap =0.

c) XB(u)“a(t) = x3(—u) and nﬁ(u)“&(t) =ng(—u) if papg =qap =1

Proof. See [Spa06, Remark 2.1.7]. O

3.3 Notation

We introduce the notation which will be in force until the last section of this
chapter. Let G* be a simple, adjoint algebraic group of type D,, with n even
and F* : G* — G* be a Frobenius endomorphism defining an F,-structure
on G* such that (G*)f" is of untwisted type D, Fix a semisimple element
s € (G*)I" of f-order. Then Cg.(s) is an F*-stable connected reductive
group. Thus, there exists an F™*-stable maximal torus T of Cg. (s) contained
in an F*-stable Borel subgroup B(s) of Cg.(s).

The dual group G of G* is a simple simply connected group of type D,,.
Therefore, there exists a surjective morphism 7 : G — G* with kernel Z(QG).
Note that the existence of such a morphism 7 is specific to the situation in
type D and does not exist in general for groups in duality with each other. We
let Ty be the maximal torus of G such that T§ = 7(Ty). Let F': G — G be
a Frobenius endomorphism stabilizing T such that (G, Ty, F) is in duality
with (G*, T§, F™").

We denote by W the Weyl group of G with respect to Ty and by W* the
Weyl group of G* with respect to T{j. The map 7 induces an isomorphism 7 :
W — W* which allows W to be identified with W*. Under this identification,
the anti-isomorphism * : W — W™, induced by duality, is then given by
inversion, i.e., w* = w™! for all w € W.

The root system of G can be described more explicitly as follows. Let ®
be a root system of type B,, n even, with base {ej,e; —e; 1 | 2 < i < n}
where {e; | 1 <1i < n} is the canonical orthonormal basis with respect to the
standard scalar product on R".
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Consider the root system ® C ® consisting of all long roots of ®. Recall
that ® is a root system of type D,. Let G be the simple, simply connected
algebraic group defined over IE‘_p with root system ®. By [MS16, Section 2.C]
there exists an embedding G < G such that the image of Ty is a maximal
torus of G. In particular, we can identify ® with the root system of G with
respect to the torus Ty and ® with the root system of G with respect to Ty.

For a € @ let x4(r), r € F,, and ng(r), hs(r), r € F,”, be the Chevalley
generators associated to the maximal torus Ty of G as in Section .

Using the embedding of G into G we obtain a surjective group homo-

morphism
n

(F, )" = To, (A1, An) = [ e, (M),
i=1
with kernel {(A\1,...,\,) € {£1}" | T[[.; \s = 1}. Hence we can write
an element A € Ty (in a non-unique way) as A = [[_, h.,(\;) for suitable
\; € F,”. For a subset A CF,” with A = —A we define

L) ={j e {l,....n} | \; € AL

Note that this does not depend on the choice of the sequence (Aq,...,\,)
but only on the element A € Ty. Let wy € EX be a primitive 4th root of
unity. By [MS16, Section 2.C] we have Z(G) = (z1, 22), where z; = h, (—1)
and 29 = H?:l hei ((.U4)

We also fix a tuple (t1,...,t,) € (F, )" such that t = [, h,(t;) € Tq
satisfies 7(t) = s.

Let Fy : G — G be the Frobenius endomorphism defined by x,(t) —
X, (t9), for t € F, and o € ®. We let Fy : G* — G* be defined as
the unique morphism satisfying 7 o Fy = Fj onw. Then the map ¢ : X :
(To) — Y(T}), x — mo x” induces a duality isomorphism between the
triples (G*, T§, Fi) and (G, Ty, Fy). There exists an element v € W with
preimage m, € Ng(Ty) of v such that FF = m,F,. Since (G, Ty, F) is in
duality with (G*, T§, F*) there exists some m,« € Ng-(T{), a preimage of
v* in Ng-(T}), such that F* = Ffm,- (Note that F acts trivially on W*,
so F§(v*) =v*).

3.4 Classifying semisimple conjugacy classes
As in Section we let L* = Cg+(Z°(Cg-(s))) be the minimal Levi sub-

group of G* containing Cg.(s) and N* = Cg«(s)L*. Let L be an F-stable
Levi subgroup of G containing the maximal torus Ty which is in duality with
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the Levi subgroup L* of G*. We set N to be the subgroup of Ng (L) such
that N/L = N* /L* under the canonical isomorphism between Ng(L)/L and
Ng+(L*)/L* induced by duality.

Our aim is to prove the following proposition:

Proposition 3.4. Let G be a simple, simply connected algebraic group such
that G¥ is of type D,, with even n > 4. If £ (¢*> — 1) then the OGF-OL* -
bimodule HI™(YS, O)el" extends to an OGF-ONF -bimodule.

We first observe the following:

Lemma 3.5. In order to prove Proposition we can assume that N¥' /LY
s non-cyclic.

Proof. If N¥/L¥ is cyclic then Lemma shows that HI™(YE 0)el”
extends to an OGF-ONF-bimodule. O

The overall aim of the next two sections is to construct two commuting
elements n;,ny, € N¥ such that L (n;, ny) = N¥ satisfying certain proper-
ties which will allow us to understand the Clifford theory between L and
N7,

Firstly, let us give a more explicit description of the quotient group
N /L¥. By definition we have an injective morphism

N*/L* — Cg+(5)/Cg-(5).
As in [Bon05, Lemma 2.6] we consider the morphism
ws : Ca+(s) = Z(G)

with wg(z) := [y,t] where y € G satisfies 7(y) = z. By [Bon05, Corollary
2.8] this induces an injection

Ca(5)/Co.(s) = Z(G).

Thus, we have an embedding N/L — Z(G), which induces a map N¥ /L —
Z(G)" on fixed points. As Z(G)" = CZ,, ;) We can assume by Lemma

3.5 that ¢ is odd and that N¥ /L =2 Z(G)¥. Let W(s) (resp. W°(s)) be the
Weyl group of Cg+(s) (resp. Cg.(s)) with respect to T§. By [DM91, Remark
2.4] we have a canonical isomorphism

W(s)/W°(s) = Cg=(s)/Cgx(s).

Recall that T} is contained in a maximal F*-stable Borel subgroup B(s) of
o+ (5). Let ®(s) be the root system of Cg.(s) with set of positive roots
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d*(s) associated to this choice. According to [Bon05, Proposition 1.3] we
have W (s) = W°(s) x A(s), where A(s) :={w € W(s) | w(®T(s)) = DT (s)}.
Since A(s) is F*-stable this shows that the map

W(s)"™ /We(s)" = (Cax(s)" /(Ca-(s)"

is again an isomorphism. As the morphism w, induces an isomorphism
(Cax(s)/Ca- ()" = ZG)" = Cy x Oy

we conclude that there exist w},wj € (W*)!" with “t = tz; and “2t = {z,.

Since (W*)F" = Cyp- (v*) we have wy, wy € Cyy(v).

Remark 3.6. The set [{11 +4,}(t) is non-empty.

Proof. Suppose that Ity t.,3(t) = 0. Write “'t = []'_, h,(s;) for suitable
s; € F, . Then “tt~'h,, (1) = 1 implies that s;t; € {£1} for all i. Now
note that

0 = Ita1 4w (1) = Tpwrmewny (t21) = Tra wuy ('1).

Thus, s;,t; ¢ {£1, £ws} and so s; = ¢; for all 4. This leads to the contradic-
tion “1t = . []

Recall that the Weyl group W = Ng(Ty)/To can be identified with the
subgroup

-----

1,...+n}- By [GP00, Proposition 1.4.10] it follows that the natural map
W — W identifies the Weyl group W as the kernel of the group homomor-
phism

Lemma 3.7. In order to prove Proposition we may assume that t is of
the form t = []_, he,(t;) such that t; = t; whenever t; € {£t;, +t;'}.

Proof. Let n := {1,...,n}. We define the equivalence relation ~ on n by
saying that i ~ j if t; € {&t;, &t;'}. Let K be a set of representatives for the
equivalence classes of n under ~. Welet K’ :={i € n | t;' € {&t; | k € K}}.

Let € I{41 4w, (t). Under the identification of the Weyl group with a
subgroup of S+, +n) We set

.....

w = (z, —x) X T (k, —k) e W,

keK’
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Since h,,(—=1) = h,,(—1) = z for all i € {1,...,n} we see that either “t or
Ytz is of the desired form. We let ¢ € {*¢,“tz} be said element. In order
to prove Proposition |3.4]it is therefore harmless to replace s by its conjugate
s’ :="s € T§. Since 7(t') = s’ this element has a preimage t' € T, which is
of the form as announced in the lemma. O

From now on we assume that the element ¢ has the form given in Lemma

3.7 Recall that
Ca(t) = (To, xu(r) |« € ® with a(t) = 1,7 € F, ).

Let o = e; + ¢; € ® with a(t) = 1. Then a(t) = (t;t;)* = 1 and therefore

1 : : .
i = et7 for some ¢ € {£1}. By the form of ¢ given in Lemma , this
implies t; = t;. In addition, we have o = e; — ¢; if ¢; is not a 4th root of
unity. Therefore, the root system ®(t) of Cg(t) is given by

q)(t) = ({j:ei:izej ’ Z,j € I{il}(t)}u{j:elie] ‘ Z,j S I{iw4}(t)}U{6i—€j ’ tz = t]})ﬂq)
We write W (t) for the Weyl group of Cg(t) relative to the torus Ty.
Lemma 3.8. We have |I{11}(t)] = |[{zw,y (t)] = 1.

Proof. Recall that wey € W satisfies “2t = tzo where zo = [[, he, (w4).
Therefore, we have

I{:I:l}(th) = ]{:tl}(tz2) = ]{:I:w4}(t)'

Thus, w, swaps the sets Iy11y(t) and I{iy,,y (). Hence, [Ty (t)] = [T{zw, (2)]-
Note that I{il}(t) = I{il} (wlt) and [{iw4}(t) = I{im}(wlt).

Suppose that |I;113(t)] > 1 and let a,b € I;1y(t) with a # b. Fix
c,d € I,y (t) with ¢ # d and let wy := (a, —a)(d, —d) € W. It follows that
Uit =tz

Recall that

Z(Ca(t) = [ Ker(a).

Let A = [, he,(\;) € Z(Cg(t)) be arbitrary. Since e, + e, e, — €, € (1)
we have ()\a)\ztl)z = 1. This implies that A\, and )\, are 4th roots of unity.
An analogue argument shows that A\. and )\, are also 4th roots of unity. We
conclude that “i A = \z; or ¥\ = \ in this case.

Note that 7(Cg(t)) = Cg-.(s) by [Bon05, (2.2)]. From this we can con-
clude that

m(2°(Ca (1)) = Z°(Ca-(5))-
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As “ir(\) = 7w(A) for all A € Z(Cg(t)) we conclude that w} € L* =
Ca-(2°(C%-(s))). Since ™ it = ¢ it follows that wi'w| € W(t). From
this we deduce that w; € L* = Cg+(Z°(Cg-(s))). This contradicts the as-
sumption N*/L* = Z(G).

We conclude that |I{113(t)] < 1. By Remark[3.6|we must have |I;11y(t)| =
1. O

By the previous lemma, up to a change of coordinates, we may assume
that I{il}(t) = {1} and I{iw4}(t) = {TL}

In the following remark (which will not be needed anymore) we relate our
calculations to the classification of quasi-isolated elements in [Bon05|.

Remark 3.9. According to the classification in [Bon05, Table II] there exist
three G*-conjugacy classes of semisimple elements s such that

A(s) = Ca+(s)/Cgx(s) = Cy x Cs.

In two of these cases the minimal Levi subgroup L* containing Cg. (s) satisfies
Ca+(s)NL* # Cg.(s), i.e. Cpx(s)/Ci.(s) is cyclic. In the other case we have
that L* = Cg.(s) is of type A,_3.

Let us now explain how we obtain this semisimple conjugacy class with
our methods. If we set

n—1

t.= hen (ou4) H hei (w)

=2

for some w € F,  \ {#1, +w,} then the element s := 7(¢) is a representative
of this third conjugacy class.

3.5 Computations in the Weyl group

Let us collect the information we have obtained so far. The root system ®(t)
of Cg(t) is given by

O(t) ={ei —e; | ti =1t;} \ {0}

Observe that Cg(t) is an F-stable Levi subgroup of G which by Remark
is in duality with L* so that L = Cg(¢). In particular, since 7(t) = s we
obtain L* = Cg.(s).

Let us introduce some further notation.
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Definition 3.10. Let [ = {2,...,n — 1} and define b = {xe;te;|ije
I}\{0}. Let

T, := (ho(r) | r €F, ,a € {e; +e,})
and

X J—

Gy = (hs(F), Xa(r) |G € B, a € D(t),7 €F, ", r € F,).

The roots {e; + e,} are orthogonal to those in ® and no non-trivial
linear combination of {e; + e,} and ®(¢) is a root in ®. Therefore, we have
T, C Z(L). For Ty := GoN'Ty we have Ty = T1T5. This implies L = TG,
and Ty N'Ty = (2).

Lemma 3.11. Consider the restriction map

Res : {U < S{il +n} ‘ 0'(1),0(%) S {:l:l, :I:n}} — S{il,in}-

We have Res(v) € ((1,—1)(n,—n), (1,—n)(—1,n)).

Proof. Firstly, note that "Fy(s) = s which implies that It 10,3 (") = L1403 (t)-
Therefore, Res(v) is well-defined.

Since wy permutes the sets Ir113(t) = {1} and Iy, (t) = {n} we have
Res(wq) = (1,—n)(—1,n). Let w; = (1,—1)(n,—n) € W. Then we have
wit = tz;. This implies that w/w; ' € W(t). Since W (t) C Ker(Res) we must
have Res(w;) = (1, —1)(n, —n).

As wy, we € Cy(v) we have [Res(w;), Res(v)] =1 for i = 1,2. Thus,

Res(v) € Csy.y 4,y (1 =1)(, =n), (1, =n) (=1, n))).

A short calculation shows that the subgroup ((1,—1)(n, —n), (1, —n)(—1,n))
is self-centralizing in S{4q +n}. ]

Lemma 3.12. Let A, B C ® such that A L B. Let x = [ 4
Yy =Ilsepnps(rs) forra,rs € IETpX. If x;y € G then x and y commute.

n,(r,) and

Proof. Recall that the inclusion map Ng(Ty) — Ng(Ty) induces the em-
bedding W « W such that W = Ker(¢). We note that e(n,(1)Ty) = —1
for a € ® if and only if « is a short root. As x,y € Ng(Ty) we deduce that
the number of short roots in A resp. B is even.

Let « € A and 8 € B. By Remark (b) we have n, (7)) = ny(r,),
if either v or 3 is a long root. On the other hand by Remark [3.3)(c), we have
n, (7)) = hy(—1)n,(ry) if both o and 3 are short roots. Note that if o
is a short root then h,(—1) = h,, (—1). The result follows from this. O
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In the following, we will consider the element
n, :=n, (1)n, ()" e Ng(Ty),

which is a preimage of w} = (1, —1)(n, —n) € W. By the proof of Lemmal[3.11]
it is possible to find njy € (n, (r)ne,(s), e, (r) | 7 # j,i,5 € I, 1,5 € F,”)
such that the element

ny = nel_en(l)n; c Ng(TO)
is a preimage of wy € W.

Lemma 3.13. The elements n; and ny, commute. In addition, we have

n; Cg(Gg)

Proof. Let us first prove that n; and n, commute. By Remark (c) we
have n,,(u)* = n. (—u) = h,(~1)n,,(u) for u € F,, whenever i #
j. By the relation in [Spid06, Theorem 2.1.6(b)] we have n,, (1)P-en() €
{n,(1),n.,(-1)}. By Lemma[3.12]

nll12 - n?6176n(1) = nel(1)116176"(1)1161(1)116176"(1)2 = ne1(1)n617€n(1)ne1(1>helien(_1)‘

According to [Sp#06, Remark 2.1.8] we have h,, ., (—1) = h,, (ws)h,, (w; '),
where wy € ]ITpX is a fourth root of unity. Using Remark (a), we obtain

n,, (1)"a e, (1) D = n,, (1) On,, (1)Pa @) = n,, (1) On,, (1)2.
Since n,, (1)"1-en M) € {n,, (1),n,,(—1)} we deduce that
ey (17O, (1) = my (D1 (1120 = my.

Therefore, nj? = n; and we conclude that n; and ny commute.
Finally, note that n; € Cg(G,) by Remark [3.3(b) and [Spa06, Theorem
2.1.6(c)]. m

Lemma 3.14. We can assume that the elements ni,ny are F'-stable.

Proof. Firstly, recall that if y € Ty there exists t € Ty with y = tF ()™}
and we have an isomorphism G — GYF', g s 'g, which yields isomorphic
fixed-point structures for all relevant subgroups. We may thus fix a nice
representative of v € W in Ng(Ty) which we will construct now.

By Lemmathere exist m; € (ny,ne, ., (1)) and my € (g, (r)n, (s),
n . (r)|i#ji,jelrsc F,”) such that

m := mj;m,
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satisfies mTy = v in W.

By Lemma it follows that m; € (n;,n., ., (1)) commutes with n;.
Moreover, by the proof of Lemmal[3.12| we conclude that my and n; commute.
As ny is Fy-stable it therefore follows that (mFy)(n;) = n;.

Since wy € Cy (v) we necessarily have (mFp)(ny)n,' € Ty. By Lemma
it follows that my commutes with n., . (1) and m; commutes with n.
From this we deduce that

(mFy)(ng)n, ' = ™nyn, t = ™2nn}*

Since mznén’{1 is purely an expression in the roots e;,e; —e; with ¢, 5 € I we
can deduce that

(mFy)(ny)ny' € Ty = (h,,(r) | i € I,r; € F,”).

By Lang’s theorem applied to the Frobenius endomorphism m#Fj : Ty — T
there exists to € Ty such that (mFp)(tany) = tony. Replacing ny by tony €
(0, (r)ng,(s),ne,—e,(r) | i # 4,1, € I,r,s € F,”) we can henceforth assume
that (mF,)(ny) = ny. Note that the statement of Lemma remains
valid since n; centralizes the subtorus Ts. This completes the proof of the
lemma. [

We are now ready to prove the main result of this section.
Proposition 3.15. We have L (n;, ny) = N¥'.

Proof. The elements n;,ny € Ng(Ty) satisfy ™t = tz; and ™t = tz,.
From this we deduce that m(n;), 7(ny) € Cg+(s). By duality we have an
isomorphism N /LF =~ (N*)f" /(L*)f" from which we can conclude that
LF<H1, 1’12) = NF U]

In the next section we will consider the subgroup Ly of L defined by
Lo =TIGL. As T, C CL(Gs,) it follows that Ly is a central product of TI
and GI". The following lemma shows that L /Ly = C,.

Lemma 3.16. Let £L: G — G, g — g 'F(g), denote the Lang map of G.
There ezists x1 € Ty and xo € Ty such that L(z1) = L(x2) = h., (—1) and

T = 179 satisfies L = TI G (z).

Proof. The existence of x; and x5 follows by applying Lang’s theorem. Since
T NGy =T, NTy = (h,(—1)) the second claim follows. O
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3.6 Representation theory

At the beginning of Section [3.5| we have established that L* = Cg(s), so in
particular s € Z(L*)f". Let s : L — O* be the character of L correspond-
ing to the central element s € Z(L*)f", see [CE04, Equation 8.19).

Lemma 3.17. The linear character § : LT — O extends to N¥.

Proof. By [Spal0, Theorem 1.1] the character A := Res]i,g@) extends to
its inertia group in Ngr(T§). However, n;,ny € Ngr(TE) and X is N~
invariant which implies that A extends to a character X of T (n;, ny). We
define a character 8 : N — O* by §(z) := ()N (n) where x € N with
x =Infor Il € L' and n € TY(n;,ny). Note that this character is well-
defined as § and A agree on the intersection L N'T{ (ny, ny) = TE. O

The following lemma is a module theoretic generalization of [Spal0, Lemma
4.1).

Lemma 3.18. Let ?Nbe a finite group with normal subgroup X and subgroup
Y such that Y = YX. Denote X :=Y N X and suppose that ¢ 1 [Y : X].
Suppose that M is an absolutely indecomposable O X -module which extends
to an OY -module and suppose that M is an OX-module such that M =

Resg(ﬂ). If M is Y -invariant then M extends to Y .

Proof. Let us recall some basic facts about Clifford theory, see [BDR17a, Sec-
tion 7.B] (over k) and [Dad84] (over O). We follow the notation in [BDR17al,
Section 7.B].

Firstly, for y € Y, define

N, = {¢ € End}(M) | p(xm) = yzy '¢(m) for all z € X,m € M}

and let N := UyeyNV,. Note that N is a group with normal subgroup V.
Since M is Y-invariant we have a surjective morphism Y — N/N; given by
y — yN;. We form the group

Y=Y xym N={(y,0) €Y x N|peN,}.
We let A := Endpx(M). Consider the following exact sequence:

15 A S5Y 5 Y 1.

The OX-module M extends to an OY-module if and only if this sequence
splits, see [Dad84, 1.7]
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The action of X on M defines an element ¢, € N, for every z € X. We
identify X with its image under the diagonal embedding X — Y,z +— (z, ¢,).
As (1Y : X] it follows (see [Dad84, Theorem 4.5]) that M extends to an
OY-module if and only if the following exact sequence splits:

1= A1+ J(A) = Y/X(1+ J(A) - Y/X = 1.

Similarly, we can look at M instead of M. We denote the corresponding
objects with a tilde. Analogously, the module M extends to an OY module
if and only if the following exact sequence splits:

1= A1+ JA) =Y /X1 +JA) = Y/X = 1.
Let 7 : Y /X — Y/X be the inverse map of the natural isomorphism Y/X —

Y/ X. Restriction defines a 1 homomorphism A% = A%

Now we define a map Y — Y as follows. For (7,¢) € Y we let & € X

such that y := g2 € Y. Let ¢z be the natural action of ¥ on M. Then it
follows that ¢¢; € N, € N,. We define

FY/X 5 Y/X (7.9) = (4, 003).
Note that if 7 € X with ¢/ := §3@’ € Y then z = 717/ € X and we
have y' = yx. From this we deduce that (v, ¢¢z) = (y, ¢¢,) in Y /X which

shows that the map 7 is well-defined. We can therefore consider the following
commutative diagram:

Y /X

|

1 —— A1+ JA) —— YV/X(1+ J(A) —— V/X —— 1

1 (1 + J(A) —— V)X (1 + J(A)

1

T

Now note that 7 is an isomorphism. Moreover, as M and M are absolutely
indecomposable we have A*/(1 + J(A)) = k* and A*/(1 4+ J(A)) = k*.
Thus, the first and the third vertical map are isomorphisms. By the five
lemma, it follows that 7 : V/X(1 + J(A)) — Y/X(1 + J(A)) is also an
isomorphism. Therefore, the first and the second row of the diagram above
are isomorphic group extensions. However, by assumption we already know
that M extends to an OY-module which implies that the sequence in the
second row splits. Thus, also the sequence of the first row splits and M
extends to an OY-module. ]

75



We are now ready to prove the main statement of this section.

Proposition 3.19. Let M be an N -invariant indecomposable OGF—OLFeg‘F—
bimodule. If ¢ does not divide ¢*> — 1 then M extends to an OGF-ONF -
bimodule.

Proof. By Lemma [3.17} it follows that M extends to G¥ x (N)°PP if and
only if M ®¢ 57! extends to G x (N¥)°PP. We may therefore assume from
now on that M is an indecomposable OGF-OLF X" -bimodule.

Since ¢ 1 [L¥ : Lo] there exists an indecomposable OG"-OLy-bimodule

My such that M is a direct summand of mdS&, (L) (Mp). As 1 x (TF)erp

GF xLSPP
F opp
is central in G x L™ we deduce that

GF LUPP im
Res (;F)opp (My) = Gdim(Mo)

for some simple O(Ty)f,-module S. Let A : (Ty);, — O* be the character

. . G x (LF)opp . F LF .
corresponding to S. Since Rele(LF)Opp (M) is an OL" ey -module it follows
that A is a character in a unipotent block, which implies that A is the trivial
character.

Note that |TY| € {(¢ —1)2,¢* — 1} and therefore ¢ { | T¥| by assumption.

We conclude that
GFx LGP
1x(TF )°PP(
where O is the trivial O(TY) -module. Since Lo/TV = GL'/(z) we may
consider M as an indecomposable O[G!" x (G /(z;))°PP]-module.

The element n; centralizes GJ" and hence we can extend M, to an O[GF X
(Lo(ny))°PP]-module by letting n; act trivially on My. We denote this exten-
sion by M;.

Res My) = Odim(Mo)

GF x(LF)opp

GF X LIPP (My) it follows that its

Since M is a direct summand of Ind

GF x (LF)orp

GF Lo (M) is a direct summand of

restriction Res

ReosC <(LA)P IndGFX(LF)Opp(MO) = My @ Mg,

Fy 7,OPP F JOPP
G¥ x Ly G¥ x L

where # = 275 € LT as in Lemma As the quotient group L’ /L is
cyclic of ¢'-order it follows by [Rou98, Lemma 10.2.13] that either
Resgr i (M) 2 My or Resge(y o (M) 2 My & Mg,

GF><(L )opp Lo)opp

We treat these two cases separately.
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Case 1: Assume that ResG XLISSP)OPP(M) =~ M.

Since M is N-invariant it follows that M, is N¥-invariant.

We have [nj,ny] = 1. Thus, the action of n; on Mj® is equal to the
action of ngnlngl = n; on M;. However, n; acts trivially on My. Since M,
is ny-invariant there exists an isomorphism ¢ : My — M2 of G x (Lg)°PP-
modules. Recall that n; € Cg(Gz), so n; acts trivially on M;. It follows
that ¢ : M; — M} is an isomorphism of OG x (Lg(n;))°PP-modules or in
other words M, is ny-invariant. From this we conclude that M; extends to
GF X (L0<n1, n2>)0pp‘

Applying Lemmal3.1§ to X = GFx (L) and Y = G x (Lg(ny, ny))°PP)
implies that M extends to a G x (IN¥)°PP-module.

Case 2: Assume that RengiLEQOPP(M) = M, D *M,.
We note that M)" = M,. On the other hand, we either have Mg? = M, or
M= = M,
Suppose that My? = My. Then M is N -invariant. Using the same proof
as in case 1 we deduce that My extends to a G x (Lg(n;, ny))°PP-module.
Suppose that M* = M,. We have h,,(—1)* = h,,(—1) as L(x;) =
L(xz9) = he,(—1). Since x5 € Gy we conclude that ni? = n;. Therefore,
n}?* = nj = nj'.

Clearly, x2]" e TF which implies that n'n;* € TF. From this we
deduce that n**n;* € TY. Now n; acts on M™" as n}>* acts on M. Since
T! and n; act trivially on M, it follows that n; acts trivially on M**. Since
My is nypz-invariant it follows that M is npx-invariant. Thus, M, extends to
a GI' x (Lo(ny, nyz))°PP-module.

It follows that M, extends to a G x (Lg(ny, fip))°PP-module M’, where

n, € {ny, nyz}. By Mackey’s formula we deduce that

RGS Fx (NFyopp I dGFX(NF)Opp (M/) ~ dGFX(LF)OppR SGFX(L()(nlvﬁQ))Opp(M’) o~

GF x(LF)orr NAGF (Lo (ny,h0))oep — Ndgr, poee GF x L3P

opp

G x(NF)
ThuS I dGFx(L0§n17n2>)opp

finishes the proo

(M) is an extension of M to GI" x (N¥)°PP. This
[

Using a standard argument in Clifford theory we can now deduce Propo-
sition from the previous proposition.

Proof of Proposition[5.4. According to [BDR174, Theorem 7. 2] the bimodule
HYYSE, 0)el" is ONF-invariant. Let HA(YS, 0)el" = @F | M; be a de-

composition into NF-orbits of indecomposable direct summands of H*(YS, O)el".
Let N; be an indecomposable direct summand of M; and T; be its inertia

7



group in N If T} is a proper subgroup of N then T;/L* is cyclic of £'-
order so that N; extends to GI' x (T;)°PP. If T; = N¥ then N; extends
to G x (N¥)°PP by Proposition [3.19, Let N/ be an extension of N; to

GT x (T;)°PP. By Clifford theory, it follows that IndgFig;):; "(N!) is an ex-

tension of M;. This shows that H4 (Y&, 0)el” extends to GF x (NF)Pp, [

3.7 Proof of Morita equivalence

In Propositionwe have proved that the OGF-OL*-bimodule H¥™(YS O)el”
extends to an OGF-ON-bimodule. We prove now that the extended bimod-
ule induces a Morita equivalence. In the original proof of [BDR17a, Theorem
7.5 the authors use that H3™(Y S, k)el” extends to a kGF x (NF)oPPA(NF)-
module. Since we were not able to show this in our situation we need to use
a different approach. In order to remedy this problem, we borrow arguments
from [BDR17b].

From now on let G be a connected reductive group. We keep the notation
of [BDR17al, Section 7.C]. In particular we fix a regular embedding G — G.
We denote L = LZ(G) and N = NL.

Proposition 3.20. Suppose that the OGF -OLF -bimodule H™ (Y&, O)el”
extends to an OGY-ONT -bimodule M'. Then the bimodule M’ induces a
Morita equivalence between ONFeL" and OGFeS”.

Proof. Let M’ be an OGF x (NF)°PP_himodule extending M := HY(YE, O)el".
Recall that M is projective as OG*-module and projective as OL* -module
As W( [N : L] it follows that M’ is projective as ON*-module. Note that
IndGF M is a faithful OGFeS"-module, see proof of [BDR17al, Theorem 7.5].
Thus, M is a faithful OG*e SG -module.

By Theorem it suffices to prove that M’ ®» K induces a bijection
between irreducible characters of KNFel" and KGFeS". As M is a faith-
ful OGFeS"-module it suffices to prove that the natural map KNFel" —
Endgar(M'®p K) is an isomorphism. As in the proof of [BDR17a, Theorem

. ~ o G opp
7.5] we consider the O[G x (LF)°PP]-module M = In dGFi(LFgoppALF(M). We

have Indgi(M "y 22 M as GF-modules. Since M is GF-invariant this implies
dim(Endggr(M)) = [GF : GF] dim(End &r (M)).

In addition, the bimodule M extends to an O[GF x (NF)°PP]-bimodule M’,
see proof of [BDR17a, Theorem 7.5], which induces a Morita equivalence
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between OGFeS” and ONFel”. This shows that dim(End,gr(M)) =
dim(KNFel™). Moreover, we have

dim(KNFel") = [NF : NF] dim(KNF ™).
From these calculations using G¥/GF =~ N /N¥ we deduce that
dim(Endggr(M)) = dim(KNFel").
To complete the proof we show the following lemma:

Lemma 3.21. The natural map KNFel" — Endggr(M') is injective.

S

Proof. Let n be a representative of n € N¥/L¥ in NF¥. Let o, € OLFel"

n € N¥ /LY such that ZneNF/LF a,n = 0on M’'. Denote M := IndgiiggzzM

Let 6;, be the automorphism on M induced by the action of n on M’. More
concretely, we have
for I € (L¥)°PP and m € M'.

For | € L we have 6, 0l06; ="l on M. Let e € Z(OLF) be the central
idempotent as in [BDR17a, Theorem 7.5] such that e = > nenr /e e We

have ) )
M= @ M"e.
neNF /L¥

For m € Me we therefore have

Z anbi(m) = 0.

neNF /L¥
As 0, (m) € M "e we have anby(m) = 0 foralln € N¥/L¥ and m € Me. This
means that a,6;, vanishes on Me. Composing with 6, ! for y € N¥/L¥ shows
that «,,0;, vanishes on M Ve as well. We conclude that a0, = 0on M. As 0;,

. . . N - . v GFx(LFyopp , =~
is an isomorphism we must have o, = 0 on M. Since M = ReSGFX(]:F)OPP(M)
and M is a faithful OLF ei‘F—module we deduce that o, = 0. It follows that

KNFel" — Endyggr (M) is injective. O

S

Now let us finish the proof of Proposition[3.20, Since dim(Endggr(M)) =
dim(KNFel") it follows that the natural map

KNFe = Endggr (M)

s

is an isomorphism. Thus, the bimodule M'®o K induces a Morita equivalence
between KNFel™ and KGFel". As we have argued above this implies that
M’ induces a Morita equivalence between ONF el and OGFeS”. O
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We can now prove the main theorem of this chapter.

Theorem 3.22. Suppose that G is a simple algebraic group. If £ 1 (¢* — 1)
or if NFJLF is cyclic then the complez GT(YS, O)del” of OGF-OLF-
bimodules extends to a complex C of OGY-ON¥ -bimodules. The complex C
induces a splendid Rickard equivalence between OGFeS" and ONFel" and
the bimodule H¥™Yv)(C) induces a Morita equivalence between OGFGS'F

and ONFel"

Proof. The quotient N¥' /L is of #~order and embeds into Z(G)*, see for
instance [CE04, Lemma 13.16(i)]. Thus, the quotient N*/L” is cyclic of
¢"-order unless possibly if G is simply connected and G*" is of untwisted type
D,, n > 4 even. If N¥'/L¥ is cyclic (of ¢'-order) then it follows by [Rou98,
Lemma 10.2.13] that the OGF-OLF-bimodule HI™(Yy, O)el" extends to
an OGF-ON¥-bimodule M’. In the remaining cases Proposition asserts
that the bimodule H4™ (Y&, 0)el" extends to an OGF-ONF-bimodule M’

By Proposition the extended bimodule M’ induces a Morita equiva-
lence between ON*el” and OGFeS"

Let ef‘p = i, b; be a decomposition into blocks. Since M’ induces
a Morita equivalence between ONFel" and OGFeSG" it follows that M’ =

"_,b; M’ is a decomposition into indecomposable OG* ef’F—ONF efF—bimodules.

By Proposition [3.19| it follows that Resgiigf))::;

(b;M") decomposes into

GF NF opp
GF:ELF))OPP (M/)

pairwise non-isomorphic indecomposable summands. Since b;Res

F F\o
and bjRengigF))o:: (M) have no non-zero direct summand in common for
F Fyo
1 # j, it follows that RengigF))O:; (M") decomposes into pairwise non-

isomorphic indecomposable summands.

In particular, one observes that the conclusion of [BDR17a, Theorem 7.6]
and therefore of [BDR17a, Theorem 7.7] holds true in this case. This proves
Theorem [3.22 O

It might be worth mentioning that even though we have not managed to
prove Theorem without a restriction on the prime ¢ our proof yields a
bijection between ordinary characters.

Corollary 3.23. Suppose that G is a simple algebraic group. Then the
bimodule H™(YS, K)el" extends to a KGF-KNF -bimodule M'. This bi-
module induces a character bijection Irr(NF, e") — Irr(GF, eS").

? s
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Chapter 4

Equivariant Morita equivalence
and local equivalences

In the first part of this chapter we recall the classification of automorphisms
of finite simple groups of Lie type. A careful analysis of these automor-
phisms will be necessary to study the ” Clifford theory” with respect to these
automorphisms of the Bonnafé-Dat—Rouquier Morita equivalence.

In the second part, we will discuss some extensions of the Bonnafé-Dat—
Rouquier Morita equivalence to local subgroups. This will require working
with disconnected reductive groups.

4.1 Automorphisms of simple groups of Lie
type

We briefly recall the classification of automorphisms of finite simple groups
of Lie type. Let G be a simple algebraic group of simply connected type. Fix
a maximal torus Ty and a Borel subgroup By of G containing Ty. We let ®
be the root system relative to Ty and A be the base of ® relative to Ty C By.
For every o € & we fix a one-parameter subgroup x,, : (IETp, +) - G as in

Section B.2]

We consider the following bijective morphisms of G:

e The field endomorphism ¢o : G — G, Xu(t) = X4(t?) for every t € F,
and o € P.

e For any length-preserving symmetry ~ of the Dynkin diagram associ-
ated to the root system ® we consider the graph automorphism vy :
G — G given by v(x4(t)) = Xy(a)(t) for every t € F, and o € £A.

81



For any fixed prime power ¢ = p/ of p and a graph automorphism ~y
we consider the Frobenius endomorphism F' = ¢£7 : G — G. Note that
any Frobenius endomorphism of G is (up to inner automorphisms of G) of
this form by [MT11, Theorem 22.5]. We say that (G, F') is untwisted if 7 is
the identity and twisted otherwise. Moreover, let ¢ : G < G be a regular
embedding. Then the automorphisms of G* obtained by conjugation with
GF are called diagonal automorphisms of GF .

Lemma 4.1. There exists a reqular embedding v : G < G such that the bi-
jective morphisms v : G — G and ¢ : G — G eatend to bijective morphisms
7 and ¢g of G such that:

(a) The morphisms 5 and do commmute.

(b) Let F := qgofj be an extension of the Frobenius F = qbg'y of G. Then
the order of P0G F (resp. ’y‘ép) and of ¢o|gr (resp. Ygr) coincide.

Proof. Such a regular embedding is for instance constructed in [MS16, Sec-
tion 2.B]. Alternatively, as in Remark m, one can define G := Ty x7q) G

and for (to,g) € G define A(to, g) = ~v(to)y(g) and (Z)()(t(],g> = gzz(tg)gz;(g)
respectively. O]

Let ¢ : G — G be a bijective morphism as in Lemma [{.1 Then this
lemma shows that we can construct suitable extensions of ¢ to G such that all
relevant relations are preserved. Therefore, we will also denote by ¢ : G — G
such an extension to G.

Proposition 4.2. Let G be a simple algebraic group of simply connected
type such that G/ Z(G)¥ is simple and non-abelian. If (G, F) is untwisted
then any automorphism of G is a product of a graph automorphism, a field
automorphism and a diagonal automorphism. Otherwise, any automorphism
of GF' is a product of a field and a diagonal automorphism.

Proof. See [MT11, Theorem 24.24]. O

To avoid cumbersome notation we will use the same letter for bijective
morphisms of G commuting with F' and their restriction to G*":

Notation 4.3. Let 0 : G — G be a bijective morphism of algebraic groups
with 0o F' = Foo. Then we also denote by ¢ : G — G the automorphism
of G obtained by restricting o to G¥'. In particular, the expression G x (o)

always denotes the semidirect product of finite groups obtained by letting
o: G — GI act on GF'.
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This allows us to give a description of the stabilizer of ef‘F in terms of
the automorphisms of Lemma [4.1]

Corollary 4.4. Let G be a simple algebraic group of simply connected type
not of type Dy with Frobenius F. Let s € (G*)I" be a semisimple element of
('-order. There ezists a Frobenius endomorphism Fy : G — G with Fj = F
for some positive integer v and a bijective morphism o : G — G such that
the image of GF x (Fy,0) in Out(GF) is the stabilizer of €S" in Out(GF).

Proof. Let Diaggr be the image of the set of diagonal automorphisms in
Out(GF). The stabilizer of e in Out(G*) contains Diaggs by Lemma
2,521

Suppose that (G, F) is twisted. In this case, the group Out(G*')/Diaggr
is cyclic and the statement of the corollary can be deduced from this.

Now suppose that (G, F') is untwisted. If the Dynkin diagram of G
admits a non-trivial symmetry we let v : G — G be a graph automorphism
associated to such a symmetry. Then the classification of simple groups of
Lie type shows that Out(G”)/Diaggr = (v,¢0) = C; x C,,, where t < 3.
Thus, every subgroup of Out(G*)/Diaggr is either cyclic or isomorphic to
(v) x (Fy), where Fy = ¢} : G — G for some i with i | f. Lemma [4.1] now
yields the claim. [

4.2 Equivariance of Deligne—Lusztig induction

In this section we establish some elementary results on the action of group au-
tomorphisms on Deligne-Lusztig varieties. Most of the results in this section
are known, see [NTTO08, Section 2].

Let G be a reductive group and ¢ : G — G be a bijective morphism of
algebraic groups which commutes with the action of the Frobenius endomor-
phism F'| i.e. we have 0 o F' = F oo. Let P be a parabolic subgroup of G
with Levi decomposition P = L x U such that F(L) = L. Note that o(P)
is a parabolic subgroup of G with F-stable Levi o(L) and unipotent radical
o(U).

Lemma 4.5. Let G be a not necessarily connected reductive group. Let

o: G — G be a bigective automorphism of G commuting with the action of
F and stabilizing L. Then o induces an isomorphism

0" : RT (Y5, A) = RL(Yg, A)7
in DP(A[GF x (LF)opp]).
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Proof. The variety Y$' is smooth, see for instance [CE04, Theorem 7.2]. By
Lemma we have Y& =[] gEGF /(Go)F gY§’ which implies that the variety
YE is smooth as well. Thus, as in the proof of [NTTO08, Proposition 2.1] it
follows that the morphism o : “Y%_l — Y, (u) given by gU — o(g)o(U) is
G! x (LI)°PP_equivariant and induces an isomorphism of étale sites. ]

The statement of the previous lemma can be refined.

Lemma 4.6. In the situation of Lemmal[f.5 we have an isomorphism
0" GT (Y5, A) = GT(Yg, A)?
in Ho"(A[GF x (LF)°pP]),

Proof. As we have seen in the proof of Lemma , the morphism o : 7(Yy)? —
Y, (u) induces an isomorphism of étale sites. Now [Rou02, Theorem 2.12]
shows that the map GFC(YSEU), A) = °GT.(YE,\)? is an isomorphism. [J

From now on let G be a connected reductive group and s € (G*)f"
a semisimple element of ¢-order. Using Lemma [4.5 one can show that
(G t) = E(GF (0*)71(t)) for every semisimple element ¢t € (G*)I7,
see [NTTO8, Corollary 2.4] and also [Tay18, Proposition 7.2].

Lemma 4.7. Let G be a connected reductive group and s € (G*)F" a

semisimple element of '-order. Then o(eS") = egf)_l(s).

Proof. Recall that ¢S" = Z ey- Moreover, we have
XES@(GF,S)
Ugf(GFJ s) = H US(GFﬂ t) = H g(GF7 (U*)_l(t>> - 55<GF7 (U*)_l(s))
teG" ity =s teG+" ity =s

due to [NTTO8, Corollary 2.4]. Since o(e,) = es, for any character xy €
Irr(GT), we conclude that

F F
0'(61; ) = Z eax = Z ex = 68*)71(8). D

XegZ(GFﬂS) XEUgZ(GFvs)

Suppose now that L* is an F*-stable Levi subgroup of G* with Cg.(s) C
L*. Assume that L is in duality with L*. Moreover, let ¢* : G* — G* be
an isogeny dual to 0 : G — G such that ¢* stabilizes L* and such that
oy, and o*|p« are in duality. Theorem then implies the following useful
consequence:
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Corollary 4.8. With the notation as above we have an isomorphism
g F g ~v F
(H!(Yu,A)ey )" = Hg(YU,A)e{‘U*)_I(S)
of AGF-AL* -bimodules, where d = dim(Yy) = dim(Y,(u))-
Proof. By Lemma 4.5 we obtain an isomorphism
T(HA(Yu M) )7 = HY(Yow), Mo(er)

of AGF-ALY-bimodules. Consider the parabolic subgroups P; = P and
P, = o(P) with unipotent radical U; = U respectively Uy = ¢(U). Since L
is o-invariant by assumption P; and P, have L as common Levi complement.

By Lemma H we have a(eLF) = 6{“;),1(8). We want to apply Theorem [2.36

S

to the semisimple element (o*)~!(s).
Recall that Cg.(s) € L*. Since the Levi subgroup L* is o*-stable it
follows that

()71 (C&:(5)) = Cg.((¢")7(s)) € (") (L") = L".
Hence, Theorem applies and we obtain an isomorphism
dim F ~ dim F
HI™ (Yo, A)e%cr*)*l(s) = H™(Yu, A)e%o*)*l(s)‘

This proves our corollary. ]

4.3 Automorphisms and stabilizers of idem-
potents

Let G be a simple algebraic group of simply connected type not of type Dy
with Frobenius F. Let s € (G*)!" be a semisimple element of #-order. Recall
that by Corollary |4.4| there exists a Frobenius endomorphism Fj : G =G
with FJ = F for some positive integer r and a bijective morphism o : G- G
commuting with Fy such that GF x(Fy, o) is the stabilizer of €&" in Out(GF).

Let L* be a minimal Levi subgroup of G* containing Cg+(s). Our first
aim in this section is to show that we can assume that Fif(s) = s and therefore
Fy(L*) = L*.

To achieve this, we need to recall some general observations on conju-
gacy classes of semisimple elements. For this suppose that H is an F*-stable
connected reductive subgroup of G* and let ¢t € H'". Then we denote
Au(t) = Cu(t)/Cy(t) and write Ta, for the set of H -conjugacy classes
of elements of H'" which are H-conjugate to t. Furthermore, we write
H'(F*, Ag(t)) for the set of F*-conjugacy classes of Ag(t).
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Lemma 4.9. Under the notation as above the set Tu, is in natural bijection

with H'(F*, Ag(t)).

Proof. This is proved in [DM91], Proposition 3.21]. We recall the construction
of this bijection. If y € H'" is H-conjugate to t then there exists some
x € H such that *y = ¢t. Since both y and ¢ are F*-stable it follows that
r7'F*(z) € Cg(t). Then one defines the map T, — H'(F*, Au(t)) by
sending the conjugacy class of y to the F*-conjugacy class of z71F*(z). O

Corollary 4.10. Assume additionally that H and t are F-stable. Then the
natural bijection Ty — H'(F*, Au(t)) is Fy-equivariant.

Proof. We show that the bijection constructed in the proof of Lemma [4.9
is Fy-equivariant. Let y € H'" be H-conjugate to ¢ and # € H such that
2y = t. Since t is Fy-stable it follows that 6@ Fy(y) = t. In particular,
Fj(y) is H-conjugate to t. It follows that Fj(z~'F*(x)) is the image of the
conjugacy class of F(y) under the map T, — H'(F*, Au(t)). The claim
follows. [

Recall that we assume that the (G*)!" -conjugacy class of s is Fjj-stable.
Using the equivariant bijection from Corollary we can show the following:

Lemma 4.11. Let L* be the minimal Levi subgroup of G* containing Cg=(s).
Then we may assume that L* is Fy-stable and that the (L*)F" -conjugacy class
of s is Fi-stable.

Proof. Since the G*-conjugacy class of s is F{j-stable it follows that there
exists some ¢t € G* which is F{j-fixed and G*-conjugate to s. Let K* be the
unique minimal Levi subgroup containing Cg-(t). Since Fj(t) =t it follows
that K* is F-stable. Moreover, we have Cg«(t) = Ck-(t) and therefore
Ak« (t) = Ag+(t). Let Tk+s < Tg+s be the natural map. Then we have a
commutative square:

Ty ——— H'(F*, Ak-(1))
TG*,t - HI(F*aAG*(t))

From this we deduce that we have a bijection between the set of (K*)f -
conjugacy classes of elements which are K*-conjugate to t and the set of
(G*)F"-conjugacy classes of elements which are respectively G*-conjugate to
t.
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In fact, since this bijection is Fjj-equivariant by Lemma we deduce
that it maps Fj-stable classes to Fj-stable classes. As the (G*)f" -conjugacy
class of s is Fj-stable there exists some z € (K*)!" which is (G*)!" -conjugate
to s. Moreover, the (K*)!"-conjugacy class of x is Fj-stable. Thus, the
assumptions of the lemma are satisfied if we replace s by x and L* by K*. [

Remark 4.12. Let Ty be an Fj-stable maximal torus of G. Suppose that
the triple (G*, T§, F§) is in duality with (G, Ty, Fy). We obtain a bijection
between the Gfo-conjugacy classes of Fy-stable Levi subgroups of G and
the (G*)fo-conjugacy classes of Fj-stable Levi subgroups of G*, see Lemma
2.15] Moreover, it follows that (G*,Tf, F*) is in duality with (G, Ty, F),
where F* := (F;)". This in turn gives a bijection between the G*'-conjugacy
classes of F-stable Levi subgroups of G and the (G*)f" -conjugacy classes of
F*-stable Levi subgroups of G*. This bijection is compatible with the afore-
mentioned bijection, i.e. if L is an Fy-stable Levi subgroup of G in duality
with the F{-stable Levi subgroup L* of G* then L and L* are F- respec-
tively F*-stable and correspond to each other under the bijection induced
by the duality between (G, Ty, F') and (G*, T, F'*). However, note that two
Fy-stable Levi subgroups can be Gf-conjugate but not Gf°-conjugate.

For the remainder of this section we may assume by Lemma that
L* is Fy-stable and that the L*-conjugacy class of s is Fy-stable. Hence,
by Remark there exists an Fy-stable Levi subgroup L of G which is in
duality with L* under the duality between (G, Fy) and (G*, Ff).

Recall that we assume that ¢ : G — G is a bijective morphism with
Fyoo = oo Iy which stabilizes the idempotent ef’F. By duality, we therefore
obtain a bijective morphism o* : G* — G* of algebraic groups with c*o Fj =
Fjoo*. Recall that 0* : G* — G* is only unique up to inner automorphisms

of (G*)fv see Remark

The following proposition compares the stabilizers of eg“F and esGF.

Proposition 4.13. There exists some x € G such that vo normalizes L
and *7el" = el

Proof. Since the (G*)!"-conjugacy class of s is o*-stable it follows that the
(G*)f"-conjugacy class of L* is o*-stable. By Corollary it follows that
the GI'-conjugacy class of L is o-stable. We can therefore find ¢ € G and
h € (G*)f" such that oy := go stabilizes L and o} := ho* stabilizes L*.
Moreover, we can choose g and h with the additional property that og|y, and
og|n- are in duality with each other. Since the (G*)!" -conjugacy class of s
is og-stable there exists some n* € (G*)f" such that of(s) = ™ s. Since L*
is op-stable it follows that n* € N g« r+(L*). Let n € Ngr(L) be an element
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corresponding to n* under the canonical isomorphism
Ngr(L)/L" 2 Nigoyr (L) /(L)

induced by duality. By applying Lemma [£.7] twice we obtain

LF) Ly _ LF _ n LF

00(63 = eo’é‘(s) = Oy = 65

Therefore y := g~ 'n satisfies "L = L and el = €. Since L and e&”
are Fy-stable we conclude that Fy(y)y~" € Ngr(L,eY") = LF. Therefore by
applying Lang’s theorem to Fy : L — L there exists some [ € L such that
Fo(y)y*IF: Fy(l)I~. This implies that z := ["'g € G'® and xo normalizes

L and el O

The next proposition describes the set of automorphisms stabilizing the
idempotent eSGF in a nice way:

Proposition 4.14. Let G be a simple algebraic group of simply connected
type not of type Dy with Frobenius F. Let s € (G*)f" be a semisimple
element of {'-order. There exists a Frobenius endomorphism Fy : G—> G
with F§ = F for some positive integer r and a bijective morphism o : GG
such that A = (Fy,0) C Aut(GF) satisfies:

(a) Fyoo = oo Fy as morphisms of G.
(b) The image of GF x A in Out(GF) is the stabilizer of €S" in Out(GF).

(c) There exists a Levi subgroup L of G in duality with L* such that A
stabilizes L and e~ .

Proof. The existence of the bijective morphisms Fy : G — G and o : G — G
satisfying properties (a) and (b) follows from Corollary [4.4] By construction,
the Levi subgroup L is F-stable, see the remarks following Lemma . By
Proposition there exists z € G0 such that zo stabilizes L and eX" . The
result now follows by replacing ¢ with zo. O

For later reference in Remark we observe the following.

Remark 4.15. Note that the natural map Aut(G*) — Out(G*) does not
necessarily induce an isomorphism of A with its image in Out(G*). This is
essentially the case since we need to replace the automorphism ¢ by oz in
the proof of Proposition 4.14]
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4.4 Generalizations to disconnected reductive
groups

In this section we suppose that G is a reductive group with Frobenius F
and we let G be a closed normal connected F-stable subgroup of G. We let
s € (G*)I" be a semisimple element of -order and L* be a Levi subgroup of
G* such that Cg.(s) € L*. Let L be a Levi subgroup of G in duality with
L*.

As in Section we suppose that P = LU and P = LU are two Levi
decomposition of parabolic subgroups P of G and P of G such that PNG =
Pand LNG =L.

Let ¢ € Z(ALY esLF) be the central idempotent corresponding to the cen-
tral idempotent b € Z(AGY eS'F) under the Morita equivalence induced by
HIm™(YE A)el”

Lemma 4.16. We have Njr(c) C Ngr(b). In addition, we have Nj ¢ (c)GF =
Ngr (b) whenever Nip(e )GF = Ngp(eS7).

Proof. Let o : G = G be a bijective endomorphism commuting with F
and stabilizing L¥. By Theorem and Lemma it follows that o(c) €
Z(ALF L") corresponds to the central idempotent o(b) € Z(AGFeS") under
the Morita equivalence induced by HI™ (Y& A)el”.

Applying this to an automorphism given by conjugation with an element
of Nj r(c) easily implies that Nt r(c) € Ngr (D).

Suppose now that Ni»(eX")GF = Ngr(eS”). Then for 2 € Ngr(b) we
find some y € Ngr(eX”) such that zy~! € GF. In particular, both ¥c and ¢
map to the same central idempotent ¥b = b = b under the Morita equivalence
given by HI™ (Y&, A)el”. We conclude that y € N;x(c). This shows that
Nf,F (C)GF = NGF (b) D

Let D := (GF x (LF)°PP)A(LF) and D’ be the stabilizer of the idempotent
eS" @el" in GF x (LF)PP. Note that we have D' = GF x (LF)°PP A(N¢» ("))
by Lemma |4.16

We generalize Theorem to disconnected reductive groups.

Lemma 4.17. Let Q = LV and Q =LV respectively be two Levi decompo-
sition of parabolic subgroups Q of G and Q of G respectively which satisfy
QNG =Q. Then we have

YO (vE, A) T

Fy o, ppdim(Y$) [ F
LF(egF)(eL )= HSMV(YS,A) Tk (egp)(eL )

s I\ s

as AD-bimodules.



Proof. By Theorem [2.36] we have a quasi-isomorphism

Ou,v == Uv,rw)s 0shT ovgly  RT(Yu,A)ek” — RT.(Yv, A)el".
The varieties involved in the construction of this map have a D-structure
(extending the usual G x (Lf)°PP-structure), see Lemma, and Lemma
2.5, The maps between them in the proof of Theorem [2.36| are easily seen
to be D-equivariant. Therefore, the map Oy y is a quasi-isomorphism of
AD'-complexes. By applying the functor Indg, we obtain an isomorphism

dim(YE) /¢ 2 Fy o 7rdim(YS) /x,G ha F
He Y (ng A) TrIl\JII;F(eEF)(eE ) = He v (Y\C}"a A) Tr;f,F(eEF)(eg )
of AD-modules, see Lemma, [1.31] O

Corollary 4.18. Let o : G — G bea bijective endomorphism of G com-
muting with the action of F' and stabilizing L and G. Then we have an
1somorphism

THAYS,A)TE o () 2 HIYS, AT L (o(e)

Npp(el™) s AVIC PR
of AGF-ALF -bimodules, where d = dim(Yy) = dim(Y ).
Proof. This is a consequence of Lemma [4.17] and Lemma [4.5] O

Lemma 4.19. Suppose that Cg-(s) € L* and Npr(e¥ )G = Ngr(eS).
Then the bimodule H™ (Y8 A)ey induces a Morita equivalence between
AR m . GF G~ f F L7 L¥
AG TrNéF(eSGF)(e ) and AL TrNI;F(e{;F)(e ).

S S

Proof. By Lemma [1.35]it follows that the bimodule

mdS > ED (o (v & A) T ()
NLF(es )

induces a Morita equivalence between AGF Trg;i( GF)(GSF) and ALY Trgp ( LF)(BE‘F).
G €s i s

On the other hand, Lemma 2.8 implies that

mdf " B (Y E, A) T ) (€87) = HINYE, )T e (eF).

N]:F €g N]:,F €s s
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4.5 Independence of Godement resolution

Let G be a finite group and L be a subgroup of G. Let e be a central
idempotent of kG and f be a central idempotent kL. In this section we
consider two complexes C and Cy which both induce a splendid equivalence
between kGe and kELf and we want to give a criterion when C; = (5 in
Ho(k[G x L°PP)).

Let us recall the following statement, see [BDR17a, Lemma A.3].

Lemma 4.20. Let G be a finite group and C be a bounded complex of (-
permutation kG-modules. Suppose that H'(Brg(C)) = 0 for all (-subgroups
Q and alli # 0. Then H°(C) = C in Ho(kG).

The following lemma should be compared to [BDR17a), Lemma A.5]. Note
that we denote by ) = 1 the trivial subgroup of G.

Lemma 4.21. Let C; and Cs be two bounded complexes of (-permutation
kGe-kL f-modules inducing a splendid Rickard equivalence between kGe and
ELf. Suppose that for all £-subgroups () of L there exists an integer dg such
that the cohomology of Brag(C1) and Brag(Cs) is concentrated in the same
degree dg. In addition, assume that H"(Cy) = H%(Cy). Then we have
Cy = Cy in Ho®(k[G x L°PP]).

Proof. By Theorem the complex CY ®,q C5 induces a splendid Rickard
self-equivalence of kL f. Therefore, we have Brg(CY @raCs) = 0 in Ho"(k[L x
L°PP]) if R is not conjugate to a subgroup of AL. Moreover, by Lemma [1.14]
we have

Brag(Cy) ®ra C2) = Brag(CY) @k cq(@) Brag(Co)

for all ¢-subgroups @) of L. Note that Brag(Ch), Brag(Cs) are complexes
of finitely generated projective kCg(Q)-modules (see Lemmal[l.13)) and their
cohomology is by assumption concentrated in the same degree dg. By [Ben98|
Theorem 2.7.1] we thus have H(Brag(CY ®re C2)) = 0 for i # 0. Therefore,
we can apply Lemma [4.20] and obtain that

CY @pa Co 2 HY(CY @pg Ca) =2 HM(C1)Y @pe H™ (Cy).

in Ho’(k[G x L°PP]). By assumption we have H% (C}) = H%(Cy). Moreover,
the bimodule H% (C}) induces a Morita equivalence between kL f and kGe by
1.23] From this we can conclude that kLf = OY ®e Co in Ho?(k[L x L°PP]).
Therefore, we have

CL2C, QL kLf = C) @i C) pa Co =2 Cy
in Ho"(k[G x L°PP]). O
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Corollary 4.22. Let G be a connected reductive group, s € (G*)I" semisim-
ple of U'-order and L* the minimal Levi subgroup of G* with Cg+(s) C L*.
Let P = LU and Q = LV be two parabolic subgroups of G with Levi subgroup
L. Then we have

GL(Yu, k)" = Gro(Yv, k)eX [dim(YS) — dim(Y )]
in Ho'(kGT @y, (KLF)°PP) if

dim(Y$) — dim(Y$) = dim(YSSES)) ) — dim(Y83<(8>) )

for all £-subgroups Q of L¥.
Proof. By Theorem the complex GT.(Yy,k)el” induces a splendid

Rickard equivalence between kLFel” and kGFeS”. Its cohomology is con-
centrated in degree dim(Yy). Moreover, the cohomology of

Brag(GT(YS, k)ek") 2 GT(YCS(S) k) bro(et”)

is concentrated in degree dlm(Ygg((g))) The same holds for the variety Y$.

By Theorem m, HIm (Y, A)el" = HIim(Yy, A)el”. Hence the statement
of the corollary is an immediate consequence of Lemma [4.21] m

We don’t know when the condition of Corollary holds in general.
The following example is an application of Corollary [4.22]

Example 4.23. Suppose that 0 : G — G is a bijective endomorphism with
oo F' = F oo and stabilizing L and eg“F. Suppose that a Sylow /-subgroup
D of LY is cyclic. Up to changing o by inner automorphisms of L we
may assume that D is o-stable. Hence, for any subgroup @) of D we have
0(Q) = Q. It follows that

. C . C . C
d1m<ch(§§gQ)) = dim(o(YE()) = dim(Y (@),

From this and Corollary we conclude that
GTo(Yo(u), kel = GT.(Yu, k)el”

s

in Ho"(kG" ®; (KL')PP) Therefore, by Lemma [4.6{ we have
(G o(Yu, ket )7 =2 GTo(Yu, kel

in Ho’(kG* @y, (KLF)oPP).
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4.6 Comparing Rickard and Morita equiva-
lences

Let G be a not necessarily connected reductive group and L be an F-stable
Levi subgroup of G with Levi decomposition P = L x U. Let & be a
(G°, L°)-regular series of (L, F'). Denote by ) the unique series of (G, F)
containing X'. We denote d := dim(Y§).

We recall the following important result:

Proposition 4.24. We have
Endigr ((GTe(YG, k)ex)™) = Endpyrar) (GTe(YG, k)ex)™)
in HoP(K[LF x (LF)opp]).

Proof. This is proved in Step 1 of the proof of [BDR17a, Theorem 7.6]. Note
that the assumption G is connected is not needed in this step of the proof. [

Proposition 4.25. Let b be a block of AG¥ey and ¢ be a block of ALY ey.
Denote C := bGT(YS,AN)™c and d := dim(YS). Then the complex C

induces a splendid Rickard equivalence between AGY'b and ALY ¢ if and only
if HY(C) induces a Morita equivalence between AGTb and AL c.

Proof. Let us first assume that A = k. By Lemma the complex C' is
splendid. Moreover, by Proposition we have

EHd;GF (C) = EHdDb(ng) (C)

1%

Since C' is a complex of projective kG¥-modules we have End prcF)(C)
H°(End;or(C)) and as the cohomology of C'is concentrated in degree d, we
deduce that H°(End}qr(C)) = Endgr(H4(C)). Therefore, End}qr(C) =
Endggr (H4(C)) in Ho?(k[LF x (LF)°*?]). By Theorem [1.22]it follows that C
induces a Rickard equivalence if and only if H¢(C') induces a Morita equiva-
lence.

Let us now assume that A = O. If H(C') induces a Morita equivalence
between OGH'b and OL ¢ then HY(C ®p k) & HY(C) ®o k induces a Morita
equivalence between kGY'b and kL¥c. Using the result for the case A =
k shows that the complex C ®¢ k induces a splendid Rickard equivalence
between kG¥b and kL c. Thus, by Theorem the complex C' induces a
splendid Rickard equivalence between OG¥b and OLc. On the other hand,
if the complex C' induces a Rickard equivalence then it follows by Lemma
that H%(C) induces a Morita equivalence. O
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4.7 Morita equivalences for local subgroups

In this section we give some applications of Proposition |4.25 We keep the
notation of the previous section and assume additionally that the rational
series X of (L, F) is (G°, L°)-superregular.

Corollary 4.26. Suppose that NLF(egLO)F)(GO)F = NGF(egGO)F). Then
the complex GT (Y, N)ey induces a splendid Rickard equivalence between
AGFey and ALFey.

Proof. By Lemma {4.19| the bimodule Hgim(y‘cj)(YS‘,A)ex induces a Morita
equivalence between AGFey and AL"ey. Write ey =c¢; + -+ + ¢, as a sum
of block idempotents. Then there exists a decomposition ey = by + --- + b,
into block idempotents such that e m(Yg) (YS, A)c; induces a Morita equiva-
lence between AGT'b; and AL ¢;. Set C := GT.(YS, A)*dey. It follows from
Proposition that the complex b;Cc; induces a splendid Rickard equiv-
alence between AG*b; and ALf¢;. Consequently, the complex @;_, ¢;Cb;
induces a splendid Rickard equivalence between AG¥ey, and AL ey.

For j # i consider the complex X := b;Cc;. By the proof of Lemma
Proposition we have

XY @per X = Endlgr(X) = Endygr (H™VE) (X)) 220

in Ho®(k[L¥ x (L7)°PP]). By the proof of [Ric96, Theorem 2.1], the complex X
is a direct summand of X ®,pr XV ®pgrX. This shows that X = b;Cc; = 0in
Ho(k[GF x (LF)PP]) for j # 4. Hence, the complex GT.(Y§, A)ey induces
a splendid Rickard equivalence between AG¥ey and AL ey. n

Suppose that we are in the situation of Corollary [£.26] Let b be a block of
AGFey corresponding to the block ¢ of AL ey under the splendid Rickard
equivalence between AGfey and ALFey given by C := GT.(YS, A)ey.
Let (Q,cq) be a c-Brauer pair and (Q,bg) be the unique b-Brauer pair
of kCgr(Q) such that the complex bgBrag(C)cg = Brag(C)cq induces
a Rickard equivalence between k Cgr(Q)bg and k Cpr(Q)cq, see Proposition
16

The following proposition is yet another application of Proposition [4.25

Proposition 4.27. Suppose that NLF(egLO)F)(GO)F = N(;F(egGO)F). Then
the bimodule Hgim(YgSEg)),A)cQ induces a Morita equivalence between the
blocks A Cpr(Q)cg and A Cgr(Q)bg.

Proof. Recall that c is a block of AL"ey. Since (Q, c¢g) is a c-subpair we have

brIéF(c)cQ = ¢g. Thus, there exists some rational series X’ € (i)' (X) such
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that cg is a block of kCypr(Q)exs, see Lemma . Let )’ be the unique
rational series of (Cg (@), F) containing X' see Lemma [2.29(a)

Since the complex Brag(C)eqg = GT ( pe ((8)),]€)CQ induces a Rickard
equivalence between k Cpr(Q)cg and k Cgr (Q)bQ it follows by Lemma 2.29(c)
that bg is a block of kCgr(Q)eyr. By Lemmal2.12the complex GI'.(Y 4 (8)), O)co
is a splendid complex of O Cgr(Q)-O Cpr(Q)-bimodules, which is a lift to O
of GT'.(Y Cc(g))’ k)cq. It follows by Theorem [1.21]that GT (Y yoe! 8))> O)cq in-
duces a Rickard equivalence between O Crr(Q)cg and O Cgr (Q)bQ It there-
fore follows by Proposition {4.25| that Hgim(YgS((g)) ,\)co induces a Morita
equivalence between A Cpr(Q)cg and A Cgr(Q)bg. O

In the following we consider the subgroup
D :={(z,y) € Ngr(Q) x Npr(Q) | 2 Cer(Q) =y ™' Car(Q)}

of Ngr(Q) x Npr(Q)°PP.
In addition, we let By := TrN o Qb (bg) and Cg = TrN
The following can be seen as a geometrlc version of Proposition [1.36|

QCQ)

Theorem 4.28. Suppose that NLF(egLO)F)(GO)F — NGF(egGO)F). Then the
bimodule Hcdim(YgS((g)) ,\)Cq induces a Morita equivalence between ANpr(Q)Co
and ANgr(Q)Bg.

Proof. Corollary shows that the factor groups Nyr(Q, cg)/ Cpr(Q) and
Ngr(Q,bg)/ Car(Q) are isomorphic via the inclusion Nyr(Q) C Ngr(Q).

Moreover, by Proposition [1.16{ we deduce *bgH, dim(YCG(g;, A)cg = 0 for all

z € Ngr(Q) \ Ngr(Q,bg). The bimodule Hdlm(YC ((g)) A)cg induces by
Proposition a Morita equivalence between the blocks ACpr(Q)cg and
ACqr(Q)bg-

Recall from Example that Ng(@Q) is a reductive group. Moreover,
Np(Q) is a parabolic subgroup of Ng(Q) with Levi decomposition Np(Q) =
NL(Q) X Cy(Q). Note that Cg(Q) is a normal subgroup of Ng(Q) and we
have a Levi decomposition Cp(Q) = C(Q) X Cy(Q) in Cg(Q), see Example
. By Corollary [2.10] it follows that the bimodule Hcdim(Ygﬁ((g)),A) has a
natural D-action and we have an isomorphism

IndgGF(Q)XNLF(Q)OPP Hgim(YCG(Q),A) ~ Hdim<YNG(Q) A).

Cu(@Q) c Cu(@)’
By Lemma [1.35| it follows that the bimodule Hgim(YgS((S)), A)Cg induces a
Morita equivalence between ANy r(Q)Cq and ANgr(Q)Bg. ]
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Chapter 5

Extending the Morita
equivalence

Let s € (G*)f" be a semisimple element of ¢-order, L* be the minimal F*-
stable Levi subgroup of G* containing Cg-(s) and L a Levi subgroup of G
in duality with L*. Then by Theorem @ the bimodule HY™ (Y& ©)el”
induces a Morita equivalence between OL el " and OGFe G . In Prop081t10n
4.14| we have constructed a group A such that G¥ x A generates the stabilizer
of " in Out(GF). The aim of this chapter is to show that the Morita
equivalence induced by HI™ (Y&, 0)el” lifts (under mild assumptions on /)

to a Morita equivalence between OLF Ael” and OGF AeS”.

5.1 Disconnected reductive groups and Morita
equivalences

Let G be a connected reductive group with Frobenius F' : G — G and
. : G — G be a regular embedding. Consider an algebraic automorphism
7: G — G satisfying 7o F = F o7 and 7(G) = G. By the discussion at
the beginning of |[CS13|, Paragraph 2.4] it follows that the automorphism 7
is uniquely determined by its restriction to GF. Consequently, the automor-
phisms 7 and its restriction to GF have the same order. As in Example
we consider the not necessarily connected reductive group G x (T).

Let G* be in duality with G. Fix a semisimple element s € (G*)f"
of ¢~order and let L* be a Levi subgroup with Cg.(s) C L*. Let P be a
parabolic subgroup of G with Levi decomposition P = L x U. We have a
Levi decomposition P = L x U in G, where P := PZ(G) and L := L Z(G)

Suppose that the parabolic subgroup P is 7-stable. Then the group P .=
P(7) is a parabolic subgroup of G := G x (r) with Levi decomposition
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P =LxU, where L := L(r), see Example The Frobenius endomorphism
F extends to a Frobenius endomorphism of G x (1) by defining

F:Gx (1) = G x (1), g7 — F(g)T.
Since 7 and its restriction to G¥ have the same order we have an isomorphism
(G ()" = GF (7] gr).

In the following, we will as in Notation use the same letter 7 for the
automorphism 7 : G — G and its restrlctlon to GF',

We let ) and X be the rational series of (G(7), F') and (L(7), F') which
contain the rational series associated to the semisimple element s of G and
L respectively.

Let 0: G — G be a bijective morphism of algebraic groups commuting
with the action of 7 and F. Then ¢ extends to a bijective morphism

0:Gx (1) = Gx (1), gt — o(g)T.
With this notation we have the following:

Lemma 5.1. The bimodule H'™ (Y, A)ex is endowed with a natural (G* x
(LE)PP)A(LE(7))-action. If L is o-stable then we have

HAR(YS, Nex 7 HI(YS, A)o(ex)
as A[(GF x (LF)PP)A(LF (1))]-bimodules.

Proof. This is a direct consequence of Lemma |4.18 applied to our situation.
]

5.2 Local equivalences

We keep the assumptions of the previous section and consider the local sit-
uation. Suppose that b is a block of AGY eS'F corresponding to a block ¢ of
ALF e under the Morita equivalence induced by HY™ (Y& A)el”.

Let (@, cg) be a c-Brauer pair and (Q, bg) the corresponding b-Brauer pair
such that b Hd‘m(YCG(Q) k) = Hdlm(YCS((g)),k)cQ. As usually, we define

Cu(@)’
Bg = TrNGF (@bo )(bg) and Cq := Tr LFE?;?CQ)(CQ)- We will now provide a
local version of Lemma [5.1] The technical difficulty is to keep track of the
diagonal actions.
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Theorem 5.2. Assume that Q =LxVisa parabolic subgroup of G with
Levi subgroup L. Then we have

im ~ im c(Q)
Him(ye ool A)C ~ [gd (YCV(Q) N)Cq

as A[(Nar(Q) x NLF@)OPP) (Ngr (Q, Co))J-modules.

Proof. Firstly, recall that Ng (Q) is a reductive group with closed connected
normal subgroup CE(Q), see Example . We have a Levi decomposition
Np(Q) = N;(Q) x Cy(Q) in Ng(Q). Furthermore, Cg(Q) is a closed normal
subgroup of Ng(Q) and we have a Levi decomposition Cp(Q) = Cy,(Q) x
Cy(Q) in the connected reductive group Cg(Q), see also Example 2.3| In
addition, we have

NL(Q) N Ca(Q) = Cpng(@Q) NCa(Q) = Cr(Q) N Cg(Q) = Cr(Q)

and similarly Np(Q) N C&(Q) = Cp(Q). This shows that we are in the
situation of Section 2.3]

Recall that since (@, cg) is a c-subpair we have brIg)F (¢)cq = cg. Thus,
there exists some rational series X’ € (if3)~'(X) such that cq is a block of
k CLF (Q)e X7

Let Z be a rational series of C{(Q) contained in X’. By Lemma
we obtain that the rational series Z is (Cg(Q), Cy.(Q))-superregular. By the
proof of Lemma [4.17] we thus obtain an isomorphism

i Ce:(Q) iy C5(Q)
HE™ (Yogigy Mez = HE™(Yogig), Mez

A[(CH(Q)F x (CL(Q)F)PP)AN; £ (Q, ez)]-modules.  Moreover we have
Tyroer (@) r(ez) by Lemma [2.26, which implies that Njr(Q,ex) =

r = e e)r
Crr(Q)N LF(Q ez). By Remark [2.9[ we obtain an isomorphism

C\)

Ca(Q) A

Hgim<YCG(Q) A)e;(/ ~ Hgim(ch(Q)

Cu(Q)’
of A[(Cgr(Q) x (Cpr(Q))°PP)AN; r(Q, exr)]-modules. Since cq is a block of
kCpr(Q)ex we obtain, by truncating to ¢, an isomorphism H, gim(YgS((g)), A)cg =
HIm(YE), A)eg of A[Car(Q) x (Cor(Q))°PPANgr(Q, cg)l-modules. Ap-

c Cv(Q)’
plying Lemma 2.8] yields an 1somorphlsm

Jex

HE™(YoEd, M) Cq = HI™(YRS(G), A)Cq
of A[(Ngr(Q) x NLF(Q)OPP)ANLF<Q, Co)]-modules. O

The methods of this section rely on the parabolic subgroup P being 7-
stable. In the upcoming sections, we will use an idea from |[Dig99] to reduce
to this situation.
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5.3 Restriction of scalars for Deligne—Lusztig
varieties

Let G be a reductive group with Frobenius endomorphism F : G — G. For
an integer r we let F' := I] : G — G. We consider the reductive group
G = G" with Frobenius endomorphism Fy x - -+ X Fy : G — G which we also
denote by Fy. We consider the permutation

7T:G—G

given by 7(g1,...,9-) = (92,---,9r,91). Consider the projection onto the
first component
pr:G =G, (g1,-.-,9:) = g1.

The restriction of pr to G7 induces an isomorphism
pr: G & GF

of finite groups with inverse map given by pr=t(g) = (g, Fy *(9), ..., Fo(9))
for g € GF.
For any subset H of G we set

H:=Hx F,'(H) x --- x Fy(H).

Note that if H is F-stable then H is 7Fj-stable and the projection map
pr : H — H induces an isomorphism H™® =~ H¥. Conversely, one easily sees
that any 7Fy-stable subset of G is of the form H for some F-stable subset
H of G.

Let L be an F-stable Levi subgroup of G and P a parabolic subgroup of
G with Levi decomposition P = L x U. Then P is a parabolic subgroup of G
with Levi decomposition P = L x U such that 7Fy(L) = L. We can therefore
consider the Deligne-Lusztig variety Y%’FOT which is a G x (L°7)°pp-
variety. Under the isomorphism G¥ =2 G we will in the following regard
it as a G x (L)°PP-variety.

The following proposition is proved in [Dig99, Proposition 3.1] under the
additional assumptions that G is connected and that the Levi subgroup L
is Fy-stable. Here, we give a complete proof of this proposition and thereby
show that these assumptions are superfluous.

Proposition 5.3. Let L be an F'-stable Levi subgroup of G and P a parabolic
subgroup of G with Levi decomposition P = L x U. Then the projection
pr: G — G onto the first coordinate defines an isomorphism

G, 7y ~ G,F
Y& oy @

of varieties which is G x (L)°PP-equivariant.
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Proof. Let g = (g1,...,9-) € G. Then gU € YE’TFO if and only if

g ' (TFRy)(g9) € U(TF)(U) = UF(U) x F;7(U) x - -+ x Fy(U).

This is equivalent to g; ' Fy(g2) € UF(U) and gi_lFo(ngF) € Fy(U) for
alli=2,...,r (where g, := g1). Therefore, gU € Yﬁ’T  if and only if

gU = (91, F; (1), ..., Fo(1))U and gy ' F(g1) € UF(U).

Hence, an element gU € Y%’TFO is uniquely determined by its first component

¢1U € Y& and each clement of Yﬁ arises from an element ¢;U € Y. This
shows that pr: G — G induces an isomorphism

Y& o Y&
which is clearly G x (L")°PP-equivariant. O

For any F-stable closed subgroup H of G, the projection map pr : H™* —
H induces an isomorphism

pr' : AH"-mod — AH™-mod.

The isomorphism of the previous lemma therefore shows that the following
diagram is commutative.

G,F
Go(ALF) ———— Go(AGF)
pr” pr”
RQ,TFO
Go(AL™™) Go(AG™™)

We will now provide a local version of Proposition [5.3] Let @ be a finite
solvable p/-subgroup of L. Recall from Example that the normalizer
Ng(Q) is a reductive group and Np(Q) is a parabolic subgroup of Ng(Q)
with Levi decomposition Np(Q) = N(Q) x Cy(Q). We denote

Q:=Qx Fy7H(Q) x -+ x Fy(Q)

and observe that @ is a finite solvable p’-subgroup of L. By the same ar-
gument as before, we see that Ng(Q) is a reductive group with parabolic
subgroup Np(Q) and Levi decomposition Np(Q)) = N1(Q) x Cy(Q).
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We can therefore consider the Deligne-Lusztig variety Ygf((%) TR which is

a Ngro-(Q) X Ny - (Q)°PP-variety. Under the isomorphism pr : G7 — GF
we may consider it as a Ngr(Q) x Npr(Q)°PP-variety.

Thus, we can apply Proposition in this situation and obtain the fol-
lowing corollary:

Corollary 5.4. Suppose that we are in the situation of Proposition and
assume that Q) is a finite solvable p'-group of L. Then the projection map
pr: Ng(Q) — Ng(Q) induces an isomorphism

of varieties which is Ngr(Q) X Nyr(Q)°PP-equivariant.

5.4 Duality in the context of restriction of
scalars

Recall from the previous section we denote G = G”" and we consider the
automorphism

T:g%ga (glv"'agr) = (.927"'797’791)‘

Our aim in this and the subsequent sections is to study the representation
theory of the finite group G™. In order to understand the Lusztig series
of the group G™° we will need to explicitly construct the dual group of
G Note that in the following we will therefore heavily use the notation
introduced in Section 2.6

Suppose that the triple (G*, T§, F) is in duality with (G, Ty, Fy) under
a duality isomorphism § : X(Ty) — Y(T{). We consider the r-fold product
G* := (G")" of the dual group G* endowed with the Frobenius endomor-
phism Fj := Fj x --- x I : G* = G*. Moreover, let

TG = G (g91,--.9) = (9,01, Gro1)-

We denote by pr : G* — G* the projection onto the first coordinate. For
any F*-stable closed subgroup H of G* we set

H:=Hx Fj(H) x - x (F;)"'(H).

Let m; : To — Fy~"*(Ty) the projection onto the ith coordinate. For
any character y € X(Ty) we let x; € X (FJ~"(Ty)) be the unique character
such that y; o m; = x and we write x = (x1,...,X»)-
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Similarly, for v € Y/(Tf) we consider the projection m; : Tg — (Fy)'(Tp)
onto the ith coordinate. Let v; € Y ((Fg) (T})) be the cocharacter defined
by v; = m; 0y and write v = (71,...,7). We then define

0: X(To) = Y(TP), (X15---5xr) = (0(x1),---56(xr))-

Recall that the torus Ty is 7Fp-stable and the torus T§ is 7% F{-stable.
Lemma 5.5. The triple (G, To, Fo7) is in duality with (G*, Tg, 7" Fy).

Proof. For x = (x1,...,X,) € X(Ty) we have

(FOT)(X) = (FO(XT‘)7 FO(X1)> SR FO(erl))-
On the other hand, for v = (y1,...,7%) € Y(T§) we have (7°F§)Y(y) =

(E)Y (v), (F)Y (), - - -5 (FE)Y(7—1)). Therefore, we have
S((TFo) (X, -5 X)) = (T FG) Y (6(x, -+ xr))-
We conclude that (G, Ty, Fy7) is in duality with (G*, T¢, 7°Fg). O

Lemma 5.6. The following diagram is commutative:

pr”

Irr(T,70)

Irr(TY)

9 o1

(1) — 2 (1))

More concretely, if (To,0) € V(G, F) is in duality with (T§, pr(s)) € S(G*, F*)
then (To,0 o pr) € V(G, Fy7) is in duality with (Tg,s) € S(G*, 7°Fy).

Proof. Let 6 € Irr(TY') be a character and suppose that y € X(T) satisfies
0 = Resi(/f o x), where & : EX < Q," is the ring homomorphism from

Section . Then we have Res%gﬁo(/i o(x,1,...,1)) =60 opr.

Recall that in Section we fixed an injective morphism ¢ : (Q/Z), —
F,” and defined ¢ € F,” to be L(qn+1) eF,”.

Let v := 0(x) and s := Npn,p(7(¢)) where n is chosen such that T is split
over F,n. Then by definition we have §;(0) = s, where d; : Irr(TF) — (T5)F"
is the isomorphism induced by duality. We have (v, 1,...,1) =d(x, 1,...,1).
For any t € T we have

N(FJT*)T/FS (tv L..., 1) = (t’ Fg(t% B <F6k)r71<t))'
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We conclude that

Niggrym pge (7,1, -0, 1)(Q) = (Npnyp(7(€))s Npnyp(Fo (7€), - - s N e (F5 1 (7(€)))

and therefore
N(FJT*)rn/FgT*((’}/, L...,1)(0) = (s, Fo(s),..., Fy 7' (s)) = s.

Note that Ty is split over Fym since To™"™ 2= T8 Let 8, : Trr(Ty™ ™) —
(T§)™™" be the isomorphism induced by duality between (G, Ty, Fy7) and
(G*, Ty, 7 Fy). Then by construction we have §,(f o pr) = s, as claimed in
the lemma. O

5.5 Comparing Weyl groups
For the following lemma note that
W(To) = W(To) x W(F;(To)) x -+ x W(Fy(Tp)).

The map Fy : W(Ty) — W(Fy(Ty)) is an isomorphism of finite groups and
we denote by Fy ' : W (Fy(Ty)) — W (Ty) its inverse.

Lemma 5.7. The product map
prodg : W(Ty) = W(To), (wi,...,w,) = wy - Fo(wa) - --- - Fy = (w,)

induces a bijection between the Fyt-conjugacy classes of W(Ty) and the F-
conjugacy classes of W(Ty). In particular, any element w € W(Ty) is Fyr-
conjugate to (prodp(w),1,...,1).

Proof. Let x = (x1,...,2,),9 = (91,--.,9-) € W(Ty) be arbitrary. Then

9z(For(9)) ™" = (rz1 Fo(9: ), g2 Fo(g3 ), - - -, gr Fo(g ),

which implies

prod(gz(For(g))™") = giprodp(zs, ..., 2. ) F(g1) ™" = giprodg(z)F(g1) ™"

This shows that prod induces a map from the Fyr-conjugacy classes of
W(Ty) to F-conjugacy classes of W (Ty). The map prod; : W(Ty) — W (Ty)
is clearly surjective since for w € W (Ty) we have prodp(w,1,...,1) = w.
Therefore, the induced map on conjugacy classes is surjective as well. It
remains to show that this map is injective.
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Let x = (v1,...,2,) € W(Ty) and y = (y1,...,¥-) € W(Tp) such that

giprodp(z) F(g1) " = prodp(y)
for some g; € W(Ty). This is equivalent to
prodp(y) " giprodp(z) = F(g1).

We want to show that there exist g; € W (Fy " (Ty)),i = 2,...,r, such that
g:=(g1,---,9,) € W(T,) satisfies gz(Fy7(g))~" = y which is equivalent to

(121 Fo(95 1), 922 Fo(g5)s -+ 9t Fo(977) = (91, 0
This is tantamount to
Fo(g:) =y, giawiq foralli = 2,... v and Fy(g1) =y, ' g2,
Hence we can inductively define g; := Fy *(y; Y gi12i1) fori = 2,...,r. It

remains to show that the equality Fy(g1) = vy, 'g,z, holds. By definition of
g, we have

Yy g =y E () (g Fy ()2,
[terating gives
vt = [T B0 s ) Fo o) [T Fo 7 ().
i=1 i=1
Therefore, we have
yy grwr = Fy~H(prodp(y) T giprodp(2)) = F57H(F(91) = Fo(gr)-

This shows that (zq,...,z,) and (yi,...,y,) are Fyr-conjugate. Thus, we

have shown that the map prodp : W(Ty) — W(T,) induces a bijection

between the FjT-conjugacy classes of W (Ty) and the F-conjugacy classes of

W (To). O
For the dual group we define

prody : W(Tg) — W(Tg), (wi,...,w,) (FH) " w,) .. (F)Hws) - wy.

Lemma 5.8. For w € W(Ty) we have prodp(w)* = prodn(w*).
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Proof. We have
prodp(w)” = (Fg =" (w,))" - (Fo(ws))" - wi.
As ((F{(w))*) = (F§) “(w*) for all i and w € W (Ty) we conclude that
prody(w)" = (Fg) ™" (wy) ... (F5) ™" (w3) - wi = prodj(w").
This proves the result. [

Corollary 5.9. The dual product map prody : W(Tg) — W(Tg) induces a

bijection between the FT*-conjugacy classes of W(_S) and the F™*-conjugacy
classes of W('T}).

Proof. The map * : W(Ty) — W(T}) induces a bijection between F- and
F*-conjugacy classes, see Section [2.6] On the other hand, the map * :
W(Ty) — W(T}) induces a bijection between 7Fj-conjugacy classes and
Fy7*-conjugacy classes, see loc. cit.. By Lemma the map prodyp :
W(Ty) — W(Ty) induces a bijection between F- and 7Fy-conjugacy classes.
The statement follows from Lemma 5.8 O

Let w € W(Ty) and w := prodp(w) € W(T,). We consider the pro-
jection map pr : To¥™ ™ — TyF onto the first coordinate. Let us show
that this is Well—daned, i.e., it maps wrtFy-stable elements to wF'-stable
clements. Let ¢t = (t1,...,t,) € Ty be wrFy-stable. Then (ty,...,t,) =
(wikog, .. wr—ikop wefog)) from which we deduce that

2
tl _ w1F0t2 _ w1 Fo(w2) Fj - prodF(Q)FtL

This shows that pr(t) = t; is wF-stable.

Now a similar calculation shows that pr: (T)7 02" — (T is well-
defined. We are ready to state the next lemma, which is a generalization of
Lemma [5.61

Lemma 5.10. Let w € W(Ty) and set w := prodp(w) € W(Ty). Then the
following diagram is commutative:

I.\/
Trr(To20) P Irr (T
A 3
*\ 7% F*w* pr * *ap*
(Tg)™ o (T5)"
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Proof. To simplify the calculations we observe the following: By Lemma
any element w € W(Ty) is Fy7-conjugate to (prodz(w),1,...,1). On the
other hand, the statement of the lemma only depends on the 7Fy-conjugacy
class respectively F-conjugacy class of the element w, respectively prod(w).
We may thus assume that w = (w,1,...,1).

The rest of the calculation is as in Lemmal5.6] Let € Trr(Ty") be a char-
acter and suppose that y € X (T) satisfies 6 = ResTwF (kox). Then we have

Res*SJTF0 (ko(x,1,...,1)) = fopr. Let v := 6(x) and s := N(prw=)n/pew= (7(C))
where n is chosen such that T} is split over Fyn. Then by definition we have
6, (0) = s, where 6, : Irr(TYF) — (T3)F™" is the isomorphism induced by
duality. We have (v,1,...,1) =d(x,1,...,1). For any ¢t € T{ we have

Ngsrewryr jmsra (81, 1) = (8,700 06wty
DT s (TP s
¢$)"""w"t). We conclude

Observe that the inverse of the projection map pr : (
given by (T§)F™" — (E)T*Fgﬁ*, ts (¢, Fownt, L«
that

N(FOT*M*)Tn/FOTM* (’)/7 1, RN 1)({) = (8, Fgw*S, Ceey (Fg)r—lw*s) = S.

Note that Ty is split over Fgr» since TO(TF 0™ o ~ Tl Let §, Irr(T_ 0) —
(T*)F o™ be the isomorphism induced by duality between the trlples G, T _0 w.
and (G*, T;, 7*Ffw*). Then by construction we have §,(6 o pr) = s,

claimed in the statement. B D

5.6 Restriction of scalars and Lusztig series

From now on we identify the groups G and G¥ under the fixed isomor-
phism pr: G — GF.

The following proposition is probably known. A very similiar result in a
different language can be found in [Tay19, Corollary 8.8].

Proposition 5.11. For any semisimple z € (G*)'0™ the sets E(GY, pr(z))
and E(G7 x) coincide via the isomorphism GF =2 G given by pr.

Proof. Note that the isomorphism pr : (G*)f67 — (G*)!" induces a bi-
jection between semisimple conjugacy classes of (G*)f¢™" and semisimple
conjugacy classes of (G*)f". Moreover, note that we have two partitions of
irreducible characters into rational Lusztig series:

Irr GFOT HS GFOT
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and

Irr(GF) = Hg(GF, pr(z)),

z

where in both cases x runs over a set of representatives for the (G*)fo™ -
conjugacy classes of semisimple elements.

Thus, if we can show that £(G”, pr(z)) C £(G™, z) (via the projection
map pr : G™ — GF) for all semisimple z € G*™" then we therefore
automatically have £(G*,pr(z)) = £(G™7, z).

We fix an F-stable maximal torus Ty of G and suppose that the triple
(G*, T, F*) is in duality with (G, Ty, F).

Let T* be an F*-stable maximal torus of G* with z € (T*)f". There
exists h € G* such that T* = "T. Define w* € W(T}) by the property that
F(w*) := h™'F*(h)T; € W(T%). Then (w*," ) maps to (T*, z) under the
bijection S(Tj, W(Tp), F*)/W(Tg) — S(G*, F*)/(G*)I". Let 6 € Irr(TyF)
with 8,(f) = " 'z. Let T be a maximal torus of G in duality with T* and
let ¢ € G such that T = 9Ty. Note that g7'F(g) € Ng(Ty) with image
w € W(Ty). Observe that T = T x Fj~'(T) x --- x Fy(T) = 2Ty, where
g:=(9,F(9),-..,Fo(g)) € G. Moreover,

g ' (TFo)(g) = (97" F(g),1...,1) € Ng(Ty).

We denote by w := (w, 1,...,1) € W(Ty) its image in the Weyl group. Using
the isomorphism in Proposition [5.3| we obtain

RY"(#0) = RE™"((%6) o pr) = Ry ™ (2(0 o pr)).

Set y := 0y (0 o pr) € (Tp)™ o= Since 6,(0) = W'z it follows that pr(y) =
"2 by Lemma m
We denote h := (h, E;(h),...,(F;)""'(h)) and observe that T* = T* x

F§(T*) x -+ x (Fg)"~Y(T*) = T. Moreover, we have
L (7 Fy)(h) = (R F*(h),1,...,1) € Ng-(T}).

From this we deduce that (w*,y) maps to (T*,%y) € S(G*, F;7*) under the
bijection S(T5, W(Ty), Fy7) /W (Ty) — S(G*, Fyr*)/G*" .

Since pr(ty) = PBpr(y) = "("'2) = & = pr(a) and pr : (G
(G*)f" is bijective we deduce that @g = z. In particular, the constituents of
R%’TFO(H o pr) lie in the Lusztig series £(G™?, z). This shows the inclusion

E(GF,2) CE(G™, z). =
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Corollary 5.12. For any semisimple ('-element s € (G*)™"F5 we have eS|, =

J2 pr(s)
eS

Y

considered as idempotents of AGF under the isomorphism AGT™ =
AGT given by pr.

Proof. Note that egg) is the idempotent associated to & (G, pr(s)) and
egFOT is the idempotent associated to &(G™, s). Thus it is clearly sufficient
to show that £(GF,pr(z)) = £(G7, z) for any semisimple z € (G*)7' 7.
This was however proved in Proposition [5.11} m

5.7 Restriction of scalars and Jordan decom-
position of characters

In the following section we use ideas from [Dig99, Corollary 3.5] and apply
them to our set-up.

The following notation will be in force until the end of this chapter. We
let s € (G*)!" be a semisimple element of ¢-order and L* be an Fj-stable
Levi subgroup of G* with Cg.(s) C L*. Suppose that L is an Fy-stable Levi
subgroup of G in duality with L*. Let

5= (s, Fy(s),..., FI-Y(s)) € (G*)FF™".

In addition, we let 0 : G — G be a bijective morphism with Fyoo = oo Fj
and o(L) = L. We denote by

[

c=0cXx--x0:G—

the induced map on G which commutes with the action of 7Fy and its re-
striction
o: G — Gl

Observe that if the isogeny ¢* is dual to ¢ then the isogeny ¢*7* is dual to
7o. We note that o € Aut(G') corresponds to ¢ € Aut(G™®) under the
isomorphism pr : G — GF.

Lemma 5.13. The automorphism Fy : G — GI corresponds under the
identification of G¥ with G wvia the projection map pr to the automorphism
1. G 5 GIT,

Proof. This follows from the fact that any element of g € G™ satisfies
TFy(g) = g or in other words 77'(g) = Fo(g)- O
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Let 1: G < G bea regular embedding. Moreover, assume that o : G —
G and Fy G — G are extensions of ¢ and Fy, which still commute with
each other. As always, we let L := Z(G)L and P := Z(G)P such that we
have a Levi decomposition P=LxUinG.

We consider the unipotent radical U’ := U" of the parabolic subgroup
P’ = P" of G. Note that we have a Levi decomposition P’ = L x U in G
and the parabolic subgroup P’ is 7-stable. The following is an application of
Lemma [5.1}

Lemma 5.14. Suppose that the idempotent e?F is (Fy,o)-stable. Then
Hcdim(Y%TFO)eyFo is endowed with a natural A[(GTF x (LTFO)OPP)A(LTFO (T))]-
structure. Moreover, Hfim(Y%TFo)egFo is (0,0 ") -invariant as A[(GTF x

(LTFO)OPP)A(LTFO (1))]-module.

Proof. The pair (L,P’) is 7-stable and L is g-stable. We have pr(s
Since e is (Fy, 0)-stable it therefore follows from Lemma [5.13] that
(T, 0)-stable. Moreover, L* is F-stable by assumption, so we obtain

C(8) = Cgu(s) x -+ x Cg (F7'(s)) C L*.

e
EIS

We conclude that Lemma applies which gives the claim of the lemma. [

Combining Lemma and Lemma yields the following important
observation.

Proposition 5.15. Suppose that L and e?F are (Fy, o)-stable. Then the bi-
module H™(Yy, A)eL" can be equipped with a A[(GF x (LF)PP)A(LF (Fy))]-

module structure with which it is (o, 0~1)-stable.

Proof. By Theorem [2.36], we have an isomorphism
Hdim(Yg,TFO)eLTFO ~ Hdim(Ygﬂ'FO)eLTFU
c U s - e U’ s
of A[(GTF x (L7Fo)orP)A f;F)]—modules.
It follows by Lemma [5.14] that the bimodule H, gim(YS,TFO)ef‘TFO has a

o (T))]-structure with which it is (g,o!)-stable.

A(G™ x (LTFﬁpp)A(L

By Proposition|5.3|and Corollary|5.12|the bimodule H dlm(YG TFO)eLTFO is iso-

morphic to HI™(YS, A)el” as A[(GF x (LF)°PP) A(LF)]-modules. As noted
above, the group isomorphism o € Aut(G*) corresponds to ¢ € Aut(G™?)
under the isomorphism pr : G™® — G¥. Moreover, by Lemma the
automorphism 7 € Aut(G7) corresponds to Fy; ' € Aut(G). From this we
can, by transport of structure, endow the bimodule Hgim(YU,A)eg“F with
a A[(GF x LF™)A(LF(Fp))]-module structure with which it is (0,0 !)-
stable. ]
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In the following, we denote A = (0, Fy) C Aut(G') and D = (G x
(LF)oPP)A(LF A). Furthermore, let A € {K, O, k}.

Theorem 5.16. Suppose that L and eL" are A-stable. Assume that Cg-(s) C
L* and the order of o : G — GI" is invertible in A. Then Hdim(Y L A)el”
extends to an AD-module M. Moreover, the bimodule IndG Faxerayr (M)
induces a Morita equivalence between ALF Ae™" and AGFAeSF.

Proof. The ex1stence of the extension M follows from Proposition and
Lemma The bimodule H, dlm(YS , A) L™ induces a Morita equivalence
between AGF G" and ALFel". Since e is A-invariant we conclude that
the ~assurr}ptlons of Theorem m are satisfied. From this it follows that
IndgFAX(LFA)Opp(M ) gives a Morita equivalence between AL" Ael” and

AGF AeS". O

We remark the following consequence of Theorem which will become
important in Section [6]

Corollary 5.17. In the situation of Theorem we have the following
commutative square:

(M ® -]

Go(Ai:F<Fg,O'>6£F) Go(AéF<F0,O'>€SF)
Res Res
(—1)dim(Y8)RE’
Go(ALF L") Go(AGTeS")

Proof. This has been discussed in Remark [1.26{a). O

5.8 Reduction to isolated series

We keep the assumptions of the previous section. Furthermore, as in Sec-
tion we assume that L*Cg-(s)f" = Cg-(s)f"L* and define N* :=
Cg-(s)" L*. Recall that we denote by N the subgroup of Ng (L) which cor-
responds to the subgroup N* of Ng+ (L*) under the isomorphism Ng(L)/L =
Ng-(L*)/L* given by duality.

Suppose now that Fy(el") = eI, Then the (L*)" -conjugacy class of s
is Fy-stable. It follows that IN* is Fgy-stable. Since L is in duality with L*
under the duality between (G, Fy) and (G*, Ff) we can conclude that N is
Fy-stable, see the remarks following Remark
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In this section we give a partial answer to the question whether the equiv-
alence constructed by Bonnafé—Dat—Rouquier is automorphism-equivariant.
The results of this section will not be used in the remainder of this thesis.
We work with the following assumption:

Assumption 5.18. Assume that the idempotent e?F 18 Fy-stable. Moreover,
suppose that the quotient group N /L is cyclic and that NT0 /LFo = N /L.

Theorem 5.19. Suppose that Assumption is satisfied. Then there ex-
ists a A[GF x (NF)PPA((Fy))]-module M extending H™(Yy, A)e" which
induces a Morita equivalence between ANFeg‘F and AGFesGF. Consequently,

the bimodule M := In dGF F%XF%ZXI%QTP>(M ) induces a Morita equivalence

between ANF (Fy)el" and AGF (F)eS”.

Proof. 1t follows from Assumption that there exists some n € N gen-
erating the quotient group N /L and such that Fy(n)n~' € L. By Lang’s
theorem there exists some [ € L such that In is Fy-invariant. We may thus
assume that n is Fy-fixed.

By applying Proposition to the automorphism ¢ : G — G, z —
"x it follows that the bimodule Hgim(YwA)e?F can be equipped with a
A[GF x (LF)°PPA((Fp))]-module structure with which it is N*-invariant.
By Assumption the quotient group N¥' /L is cyclic and N¥ normalizes
LY (F,). Thus, we can apply Lemma and it follows that HI™ (Y, A)el”
extends to a A[GF x (N¥)PPA((F,))]-module M.

Using Theorem [2.35|we conclude that M induces a Morita equivalence be-
tween ANFel" and AGFeS". Consequently, by Theorem [1.24] the bimodule

In dgi iﬁ%ﬁig?nc}; (M) 1nduces a Morita equivalence between ANY (F)el Lr

and AGF<F0> €s . O

Using the full strength of the proof of [BDR17a, Theorem 7.6] we can
prove an even stronger statement:

Theorem 5.20. Suppose that we are in the situation of Theorem|5.19. Then
there exists a bounded complex C' of A|[GF (Fy) x (NF(Fy))°PP]-modules with
cohomology concentrated in one degree and isomorphic to M such that C' in-
duces a splendid Rickard equivalence between ANT (Fy)eX" and AGT (Fy)eS" .

Proof. We have a Levi decomposition P = L x U’ in G. Denote P = P(r),
L:= L(7) and U := U’ Then asin Sectlonwe have a Levi decomposition
P = L x U in the reductive group G := G(7). We define N := N(r), which
is a closed subgroup of G since N is Fy-stable. We first prove the following
fundamental observation:
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Lemma 5.21. We have N7 = NGTFO(fJ, eéLTFO).

Proof. By Assumption we have nFy(n~") € L for every n € N*. From
this and Lemma it follows that N7t stabilizes the Levi subgroup L =

L(7). Lemma implies that the map
Y : G GI(R), zr — pr(z)Fy !,

is an isomorphism of groups. Moreover, the image of N7 under Y is
N¥(Fy). We have @Z)(eg%) = e and e is NF(F)-fixed. It follows that
N7 C Ngory (L, eL”™). On the other hand, let 2z € Ngrr, (L, e2™™). Then
we have w(z)egﬁ zieg‘p. Furthermore, z normalizes L and it follows that
¥(z) normalizes L. From this we deduce that 1(z) € N¥(F,) and therefore

z € N™™_ It follows that N7 = Ng.r, (L, e£™™). O

We can now continue the proof of our theorem. Due to Theorem [1.21
we may assume that A = k. By the construction in the proof of Theo-
rem [5.19] the k[GTF x (L7F0)°PPl-module Hgim(Yg’TFO, k)egFO extends to a
k[GTFo % (NTFo)opP-module M which induces a Morita equivalence between
ENTREL™ and KGRl

s s :

Consider the complex C := GFC(YS"TFO, k)redeL™ of GrFo i (L7F0)opp.

S

modules. Note that egFO is a (G, L)-regular rational series of (L, 7Fp), see
LTFO
s

proof of Lemma |5.14, Furthermore, ¢ is 7-stable and is therefore by

Lemma [2.26| a (G, L)-regular rational series of (L, 7Fp).
Using Steps 1-3 in the proof of [BDR17a, Theorem 7.6], which directly
apply to our set-up, we can conclude that there exists a direct summand C' of

the complex ndS X0

G Fo e (L Fo oo (C') which is quasi-isomorphic to the bimodule

M.

Since M is a Morita bimodule it is in particular a direct sum of inde-
composable pairwise non-isomorphic bimodules. By Assumption [5.18] the
quotient group (N/L)™ = N¥ /LF is cyclic of ¢ order. It follows therefore
by Lemma [1.32] that the k[G™F0 x (L7F0)°PP]-module Hfim(Yg’TFo, k)eL™ is
a direct sum of indecomposable pairwise non-isomorphic modules. From this
we conclude that Step 4 of the proof of [BDR17a, Theorem 7.6] applies and
we obtain

GTFO ><(1(]7'170)0131:) SN~
R GTFO X(i,TFO )opp ( ) - C

By Step 5 of the proof of [BDR17a, Theorem 7.6] we conclude that C in-
duces a splendid Rickard equivalence between kNTX OegFO and kG™F OegTFO.

Hence, we obtain a splendid Rickard equivalence between kN <F0>e£F and
EGE(Fy)eS”. O
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5.9 Jordan decomposition for local subgroups

We keep the assumptions of Section The aim of this section is to obtain
a local version of Theorem [5.16] We will essentially use the same strategy of
Section to prove this local version. However, we need to adapt some of
the arguments.

Recall that the projection map pr : G™ — G¥ onto the first coordinate
induces an isomorphism of groups, which extends to an isomorphism pr :
AG™ — AGF of A-algebras. Hence, under the isomorphism pr : G™® —
G! the notions of blocks, Brauer subpairs and defect groups translate.

From now on we will use the following notation: If H is a subgroup of
G! we let H :=pr ' (H) and if z € AH then we let z := pr—!(z) € AH.

Let b € Z(AGFeS") and ¢ € Z(ALFel") be blocks which correspond to
each other under the splendid Rickard equivalence given by GT'.(Y&, A)el LF
By Proposition [5.3] and Corollary_ 5.12] the projection map pr yields an iso-
morphism between GT.(YE, A)el” and GT (Y™™, A)el™.

Hence, the blocks b € Z(AG™eS™™) and ¢ € Z(ALTFOesyFO) corre-
spond to each other under the splendid Rickard equivalence induced by
GI.(Yy YET A)el™ . We fix a maximal ¢-Brauer pair (D, ¢p) and let (D, bp)
be the b Brauer pair corresponding to it under the splendid Rickard equiva-
lence induced by GT.(Y$, A)cin the sense of Proposition . Consequently,
the c-subpair (D, ¢)) corresponds to the b-subpair (D, by,) under the Rickard
equivalence induced by GT (Y™ A)el™.

Furthermore, we let @) be a subgroup of D and let (Q,cq) < (D,cp) and

N
(@,b) < (D,bp). We denote By = TrNGF o) (b) and Cg = T3 (cq).

Proposition 5.22. The bimodule Hfim(YgS((Q A)Cq can be equipped with

a A[Ngr(Q) x Npr(Q)PPANgr (@, Cg)]-module structure.

Proof. By Theorem (set G = G), we have

dim a(Q),7Fo ~ r7dim c(Q),TF
Hy (YCU/(Q )CQ =H, <YCU(Q) )QQ

as A[(Ngrr (Q) X Nprro (Q)°PP)A(N LFo (Q,Cg))]-modules. Moreover, Corol-
lary [5.4/shows that H3™(Y i(( )) TFO)QQ is isomorphic to 3™ (Ygg((g)) ,N)Co
a5 A(NGr (@) x Nys(Q)PP)A(Ng+ (Q, cg))]-modules. N

Since 7(U’) = U’ we obtaln a Levi decomposition P(r) = L(r) x U’

in the reductive group G x (T). Hence we obtain a Levi decomposition

Npy(Q) = Niy(Q) x Cw(Q) in the reductive group Ng(Q), see Ex-
ample. From this we conclude (see Lemma that the bimodule
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Ng(Q),7Fo

HI™(Y )Co has a natural A(N 70 (Q,Cp))-action. By Lemma

v (@)
5.13|it follows that the Morita bimodule H, S‘m(YgG((S)) ,A)Cg can be equipped
with a A(Ngr g, (Q, Cq))-action. O

From now on we will assume that () is a characteristic subgroup of the
defect group D. Recall that A = (Fy, 0).

Lemma 5.23. Let ) be a characteristic subgroup of D. Then we have
Nira(@Q, Cq)Nar(Q) = Ngra(Q, Bg).

Proof. Let L denote the stabilizer of ¢ in L¥A and G the stabilizer of b in
GF A. We abbreviate L := L' and G := G¥. By Lemma we have

Nf,FxA(Qa CQ) = Nﬁ(Q? CQ) = Nﬁ(Q)

and N; (Q)/NL(Q) = L/L. Similarly, we have Ngroa(@Q, Bg) = Na(Q) and
Ng(Q)/Na(Q) = G/G. On the other hand, we have L/L = G//G by Lemma
4.16] This yields N; (Q)/N.(Q) = Na(Q)/Ng(Q) and the claim of the lemma
follows easily from this. O

Let us denote By, = Tr Neral@) 5oy (Be) and Cg = TrNLF““ (Cg)- Re-

GF.A(Q
call that A € {K, O, k}.

Theorem 5.24. Suppose that the assumptions of Theorem @ are satisfied.
Let Q) be a characteristic subgroup of D. Then Hdlm(YC Q) ,A)Cq extends
to an A[(Ngr(Q) X Npr(Q)PP)A(Ngr 4 (Q, Cg))]-module Mq. In particular,
the bimodule

4(Q,Cq)

e (Q)XNpr L (Q)PP
Ind GGFA(@xNLLF(6>OPP>A<N£FA<Q,CQ)>(MQ)

induces a Morita equivalence between ANgr 4(Q)Bg and ANgr 4(Q)Cy.

Proof. In Proposition [5.22| we have proved that Hfim(YNG((QQ) TFO)CQ is iso-

morphic to HI™ (Ygg((g)) VA

HIm(YEE), A)Cq with an A[(Ngr(Q) x Npr(Q)°P)A(Ngrp, (@, Co))l-
module structure.

Since () is a characteristic subgroup of the defect group D of ¢, it follows
that the quotient group Nir 4(Q, Cq)/Nir g, (Q,Cq) is cyclic and of order
divisible by the order of o € Aut(GF ). Hence, there exist € L¥ and a bi-
jective morphism ¢y : G — G such that $¢0|GF generates the quotient group

N Q. C)/Nee s (@ Co). Let z i= (z, By~ (x)...., Folx)) € G'™ such
that pr(z) = z. Denote

@ : Q<T> - Q<T>7 (gla s agr)T = (¢0(91), s 7¢0<gr))7-

)Cq. This allowed us to endow the bimodule

114



and consider the bijective morphism
¢ i=x ¢y : Q(7'> — Q(7'>, z = Eoo(z),

of the reductive group G(7). Note that ¢ stabilizes G and commutes with
the Frobenius endomorphism 7Fp of G x (7). Moreover, £(L(r)) = L(r)
and ¢o(L) = L. Therefore, the bijective morphism ¢ also stabilizes the Levi

subgroup L(7) of G x (7). Since Blgr € Aut(QTFO) corresponds to the

automorphism z¢y € Aut(GF) under the isomorphism pr : QTFO — G we
deduce that ¢(Q,C) = (Q,Cy). Hence, Lemma applies and we obtain

an isomorphism

im Ng(Q),mF ~ im Na(Q).TF

of A[(Ngrro(Q) X Nprro (Q)°PP)A(N £ (Q Cp))]-modules. We have two
Levi decompositions

P(r) = L{r) x U and ¢(P(r)) = L(7) x $(U)
with the same Levi subgroup L(r) of G(r). Therefore, Theorem [5.2] yields

Héiim (YNQ(Q)vTFU A)CQ ~ Hdlm (Y (Q) TFp A)QQ

Cyun (@) 7 Cy(Q)
It f . dim Ng(Q),TFo . —1\ - .
ollows from this that H™ (Y w(@ N)Cy is (¢, ¢ )-invariant. Hence,
the bimodule Hgim(YgG((g),A)CQ is by transport of structure (w¢g, xd,")-

invariant as A[(Ngr(Q) x Npr(Q)P?)A(Nir p,(Q, Cq))l-module. Lemma
[1.32)therefore shows that there exists an A[(ng (Q) XNpr(Q)°PP)A(Nir 4(Q, Cg))l-
module Mg extending H. dlm(YCU A)Cq. By Theorem |4.28| the bimod-

ule H gim(YgG((g),A)CQ induces a Morlta equivalence between the blocks

ANgr(Q)Bg and ANy r(Q)Cq. Moreover, Lemma m shows that

NEFA(Qa CQ)NGF<Q) = NGF,A(Qa BQ)
Hence, Lemma [1.33| implies that the bimodule

opp

A (@XNpr (@)
Ind L QXN (QP) AN, £, (@.Co) (Me)

induces a Morita equivalence between ANgr 4(Q)Bg and ANgr ,(Q)Ch. O
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Remark 5.25. If one could prove a version of Theorem [5.16] with Morita
equivalence replaced by splendid Rickard equivalence then Theorem
would be obtained as a consequence of that theorem, see Theorem [1.36]
However this seems to be difficult since we would have to show that the
Rickard Rouquier complex GT.(Yy, A)el” is independent of the choice of
the unipotent radical U used in its definition. In the case where the Sylow
(-subgroups of G¥ are cyclic we obtained such an independence result in

Example
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Chapter 6

Application to the inductive
Alperin—McKay condition

In this chapter we show how the results from the previous chapters can be
used in the verification of the Alperin-McKay conjecture. More precisely,
we show that in order to prove the inductive Alperin-McKay condition for
all blocks of groups of Lie type it is sufficient to consider their quasi-isolated
blocks.

6.1 The inductive Alperin—McKay condition

The aim of this section is to recall the inductive Alperin—-McKay condition
as introduced in [Spal3, Definition 7.2].

Recall that a character triple (G, N, 0) consists of a finite group G with
normal subgroup N and a G-invariant character § € Irr(N). A projective
representation is a set-theoretic map P : G — GL,(K) such that for all
9,9 € G there exists a scalar a(g, ¢') € K with P(gq’) = a(g,9)P(9)P(¢).
The projective representation P : G — GL,(K) is said to be associated to
(G, N, 0) if the restriction P|y affords the character 6 and for all n € N and
g € G we have P(gn) = P(g)P(n) and P(ng) = P(n)P(g).

We recall the following order relation on character triples, see [Spals,
Definition 2.1]:

Definition 6.1. Let (G, N,0) and (H, M,0') be two character triples. We
write

(G,N,0) > (H,M,¥0"
if the following conditions are satisfied:

(i) G=NH, M =NNH and Co(N) < H.
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(ii) There exist projective representations P and P’ associated with (G, N, 0)
and (H, M, 0") such that their factor sets av and o/ satisfy o|gxpy = .

Let P : G — GL,(K) be a projective representation associated to the
character triple (G, N, ). Then for ¢ € C¢(N) we have P(c)P(n) = P(n)P(c)
for every n € N. Since P|y affords the irreducible character 6 it follows by
Schur’s lemma that P(c) is a scalar matrix.

For the inductive Alperin-McKay we need a refinement of the order rela-
tion “>” on character triples. More precisely, we also require that the scalars
of the projective representations on elements of Cg(N) coincide:

Definition 6.2. Let (G, N,0) and (H, M,0") be two character triples such
that (G, N,0) > (H, M, 0") via the projective representations P and P’. Then
we write

(G,N,0) >.(H, M, 0
if for every ¢ € Cg(N) the scalars associated to P(c) and P’(¢) coincide.

Let N be a normal subgroup of a finite group G and x € Irr(G). Then we
write Trr(N | x) for the set of irreducible constituents of Res§ (). Moreover
for 6 € Trr(N) we write Irr(G | 6) for the set of all irreducible constituents x
of the induced character Ind$;(6). We then say that the character y covers
the character 6.

Theorem 6.3. Let (G,N,0) and (H,M,0") be two character triples such
that (G, N,0) > (H, M,0") with respect to the projective representations P
and P’. Then for every intermediate subgroup N < J < G there exists a
bijection

oy :NIrr(J | 0) - NIre(JN H | §)
such that o;(Irr(J | 0)) =TIrr(J N H | 6).
Proof. This is [Spal8, Theorem 2.2]. O

The following properties which are collected in the next lemma are a
consequence of the fact that “>” induces a strong isomorphism of character
triples in the sense of [Isa06, Problem 11.13].

Lemma 6.4. Let (G,N,0) and (H,M,0") be two character triples satisfying
(G,N,0) > (H,M,0"). Then for any N < J; < Jy < G and x € NIrr(J, | 0)
the following holds:

(a) Resyh(0.5(x)) = 0., (Res2 (x)).

(b) (05,(xB)) = 0.1,(x)Res Py (B) for every B € NIrr(Jo/N).
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(¢) (02,00)" = 0, (x") for every h € H.

Proof. This is [Spal8|, Corollary 2.4]. ]

Lemma 6.5. Let (G, N,0) and (H, M,0") be two character triples with (G, N,0) >,
(H,M.,¢"). Then for every N < J < G and r € Irr(C;(G)) we have

o;(Irr(J | 0) NIrr(J | &) C Irr(J N H | k).
Proof. See [Spal8, Lemma 2.10]. O

Let G be a finite group and x € Irr(G). Then we write bl(x) for the
{-block of G' containing .
The following definition is in [Spal8| Definition 4.2].

Definition 6.6. Let (G, N,0) and (H, M,0") be two character triples with
(G,N,0) >. (H,M,0"). Then we write

(G,N,0) >, (H,M,0)
if the following hold:
(i) A defect group D of bl(¢) satisfies Co(D) < H.
(ii) The maps o induced by (P, P’) satisty
bl(y) = bl (1))
for every N < J < G and ¢ € Irr(J | 9).

Remark 6.7. Let G be a finite group and b a block of G with defect group
D. Let M be a subgroup of G containing Ng(D). By Brauer correspondence
there exists a unique block Bp of Ng(D) such that (Bp)® = b. On the
other hand, since N (D) = Ng(D) Brauer correspondence yields a bijection
BI(Ng(D) | D) — BI(M | D). It follows that B := (Bp)™ is the unique
block of M with defect group D satisfying BY = b, see [Nav98, Problem 4.2].

If G is a finite group with normal subgroup N and x € Irr(N) an irre-
ducible character, then we write G, for the inertia group of the character x
in G. For b a block of G with defect group D we denote by

Irrg(G,b) := {x € Irr(G,b) | x(1), =[G : D]¢}
the set of £-height zero characters of the block b.
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Definition 6.8. Let G be a finite group and b a block of G with non-central
defect group D. Assume that for I' := Ny ) (D, b) there exist

(i) a I-stable subgroup M with Ng(D) < M < G;

(ii) aT'-equivariant bijection ¥ : Irro(G, b) — Irrg(M, B) where B € BI(M |
D) is the unique block with B¢ = b;

(i) W(Irre(b | v)) C Irrg(B | v) for every v € Irr(Z(G)) and
(G 3Ty, G, x) 2 (M 3Ty, M, ¥(x)),
for every x € Irrg(G, b).

Then we say that ¥ : Irrg(G,b) — Irrg(M, B) is an iAM-bijection for the
block b with respect to the subgroup M.

We will usually work with iAM-bijections in the following. However, to

formulate the inductive iAM-condition we need a slightly stronger version of
Definition [6.8}

Definition 6.9. We say that ¥ : Irro(G, b) — Irrg(M, B) is a strong iAM-
bijection for the block b if it is an iAM-bijection which additionally satisfies

(G/ZxT\,G]Z,X) >y (M/Z xT\\,M/Z,¥(x)),
for every x € Irro(G, b) and Z = Ker(x) N Z(G), where Y and ¥(x) lift to x
and ¥(x), respectively.

Remark 6.10. Note that if (G/Z xT'y,G/Z,X) >y (M/Z x T\, M/Z, V(X))
then we automatically have (G < I'y, G, x) >, (M x I'y, M, ¥(x)) by [NS14}
Lemma 3.12]. However, the converse is not known to hold.

Condition (iii) in Defintion is made accessible through the following
theorem:

Theorem 6.11 (Butterfly theorem). Let Gy be a finite group with normal
subgroup N. Let (G1,N,0) and (Hy,M,0") be two character triples with
(G1,N,0) >, (Hy, M, ¢"). Assume that via the canonical morphism e; : G; —
Aut(N), i = 1,2, we have £,(G1) = 2(Gy). Then for Hy := 5 e, (H,) we
have

(Go, N,0) >, (Hy, M, p).

Proof. See [Spal8, Theorem 2.16] and [Spal8, Theorem 4.6]. O
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The inductive Alperin-McKay condition was introduced by Spéth in
[Spal3, Definition 7.12]. We will in the following use its reformulation in
the language of character triples, see [Spal8, Definition 4.12].

Definition 6.12. Let S be a non-abelian simple group with universal cov-
ering group G and b a block of G with non-central defect group D. If there
exists a strong iAM-bijection U : Irro(G, b) — Irrg(M, B) for the block b with
respect to a subgroup M then we say that the block b is AM-good for ¢.

6.2 A criterion for block isomorphic charac-
ter triples

In this section we establish a slightly more general version of |[CS15, Lemma
3.2]. This will be required to obtain Lemma below in the case where
G! is of type D,. Thus, the reader who is not interested in the specifics of
this case may skip this section entirely.

Let A be a group acting on a finite group H. Then we denote by Lin,(H)
the subset of A-invariant linear characters of Irr(H). Moreover, if N is a
normal subgroup of A and b is a block of N, then we denote by A[b] the
ramification of the block b in A, which was introduced by Dade, see [CS15|
Definition 3.1].

Lemma 6.13. Let A be a finite group. Suppose that N <A and N < J <A
such that J/N is abelian and A/N is solvable. Assume that Ling(H) = {1g}
for every subgroup H of the quotient group ([A, A]J)/J. Let b be a block
of N and x,¢ € Irr(N,b). Let X € Irr(A) and ¢ € Irr(A[b)) be extensions
of x and ¢ respectively with bl(Res} (Y)) = bl(Res;‘l[b](gg)) for every Jy with
N < J; < J[b]. Then there exists an extension X1 € Irr(A) of Res7(X) with

bl(Res?, (V1)) = bl(Res’ij](gz;))
for every Jy with N < Jy < A[b].

Proof. We copy the first part of the proof of [CS15, Lemma 3.2]. Since A/N
is solvable, there exists some group I with N < I < A[b] such that I/N is
a Hall ¢’-subgroup of A[b]/N and (I N J)/N is a Hall ¢'-subgroup of J[b]/N,
see |Asc00, Theorem 18.5]. According to |[KS15, Theorem C(b)(1)] there

exists an extension Yo € Irr(I) of x to I with bl(x2) = bl(ReS?[b](gg)). This

extension also satisfies bl(Res?;(%2)) = bl(Res?ﬂ(aﬁ)) according to [KS15,
Lemma 2.4] and [KS15, Lemma 2.5]. By [KS15, Lemma 3.7] there is a unique

character in Irr(I N J | x) with this property, hence Res? (%) = Res‘?ﬂ(ﬁ)
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by the assumptions on . By [CS17, Lemma 5.8(a)] there exists an extension
n € Trr(1.J) of Res?(X) such that Rest (1) = xo.

Since 1 and Res?,(¥) are both extensions of the character Res7 () there
exists by Gallagher’s theorem a unique linear character p € Irr(1.J/.J) such
that 7 = Res7;({)p. Moreover, by the uniqueness of p it follows that g is
A-invariant. Now, ([A, AlJ NI1J)/J < ([A, A]J)/J. By assumption every
A-invariant linear character of a subgroup of ([A4, A]J)/J is trivial. Hence we
obtain Res[IA]’A]mU(u) = 1{a,a1sn1s- In other words, [A, A]JN1J is contained
in the kernel of the linear character u. Hence we can consider p as a character
of I.J/([A, A]lJN1J). Since I.J/([A, A]JNIJ) — A/J[A, A] there exists a linear
character i € Irr(A) extending u. We define x; := iy and by definition we
have

Res7y (Y1) = Resy, (X)u.

After having constructed the extension x; the same arguments from |CS15,
Lemma 3.2] show the result. For the convenience of the reader we will recall
the arguments here.

According to [KS15, Lemma 2.4] (which also holds for ordinary characters
instead of Brauer characters) the character y; satisfies

bl(Resy 4 (X1)) = bl(Resé\[;i]@(ng)) for every x € I of -order.

Since I/N is a Hall ¢-subgroup of A[b]/N it follows that every element z €
A[b] of ¢-order is conjugate to some element in I. Consequently, the above
equality holds for every element x € A[b] of ¢'-order. By [KS15, Lemma 2.5]
this implies

bl(Res?, (V1)) = bl(Res;‘[b}(q;)) for every group Jo with N < Jy < A[b]. O

2

Remark 6.14. Note that if A is abelian the assumption that Irr4(H) = {14}
for every subgroup H of the quotient group ([A4, A]J)/J is trivially satisfied.

Hence, we obtain as a special case the original statement of [CS15, Lemma
3.2].

6.3 A condition on the stabilizer and the in-
ductive conditions
In this section we introduce one of the most important results which is used in

practice to verify the inductive Alperin—-McKay condition for simple groups
of Lie type.
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Henceforth, G denotes a simple algebraic group of simply connected type
with Frobenius F' : G — G and such that the finite group G¥' /Z(G*") is non-
abelian and simple with universal covering group G¥. We let ¢ : G < G be
a regular embedding as in Lemma [4.1} For every closed F'-stable subgroup
H of G we write H := HF.

In the following we denote by B := (G, o) C Aut(GF) the subgroup
generated by the group G C Aut(GF ) of grap h automorphisms and the field
automorphism ¢y : G — G from Lemma By the description of auto-
morphisms of simple simply connected algebralc groups in |[GLS18, Theorem
2.5.1] it follows that Cgss(G) = Z(G).

Let s € (G*)!" be a semisimple element of ¢-order and b be a block of
OG*F eSGF with defect group D. We let () be a characteristic subgroup of D.
In the following we abbreviate M := Ng(Q) and M := Ng(Q). Moreover,
Bg € BI(M | Q) denotes the unique block with (Bg)* = b.

The following theorem is essentially due to Cabanes—Spéath [CS15]. In
previous work this theorem has turned out to be useful in the verification of
the inductive Alperin-McKay condition for simple groups of Lie type.

Theorem 6.15. Let x € Irr(G,b) and ' € Irr(M, Bg) such that the follow-
ing holds:

(i) We have (GB), = G\ B, and x extends to (GB),.
(ii) We have (MNGB(Q))X/ = MX/NGB(Q)X/ and ' extends to Ngg(Q)y
(iii) (GB)y = G(MNgs(Q))y

(iv) There exists X € Trr(Gy | x) and X' € Trr(My | X') such that the
following holds:

e For all m € Ngg(Q), there exists v € Irr(G,/G) with Y™ = vy
_ G 8
and '™ = Res ¥ (v)X'.

e The characters X and X' cover the same underlying central char-
acter of Z(G).

Ng (@)
(v) For all G <J < G, we have bl(ResJ (X)) = bl(ResN o ()7

Let 7, := Ker(x) N Z(G). Then
((GB)X/Zv G/Z7X) b ((MNGB<Q>>><’/Z7 M/Za ?)7
where X and X' are the characters which inflate to x, respectively x'.
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Proof. 1f assumptions (i)-(iv) hold then we have
((éB)X/Zv G/Z7 Y) Ze ((MNGB(Q))X'/Za M/Zv Y%

by [Spal2, Lemma 2.7]. It therefore remains to show that the additional
property in Definition[6.6](ii) holds in order to show that the relation >, holds
as well. For this, we go through the proof of [CS15, Proposition 4.2] which is
still applicable under our assumptions since we can replace [CS15, Equation
(4.2)] in the proof of |CS15, Proposition 4.2] by our assumption (v).

Now we want to apply the proof of [CS15, Theorem 4.1]. In the notation
of [CS15| Proposition 4.2], Cabanes—Spéath construct a group A together with
a central extension £ : A — Aut(G), of Aut(G)y. Denote by Autg (G) the
subgroup of automorphisms of Aut(G) induced by the conjugation action
of G, and set J := e!(Autg (G)). By construction, A/J = B, which is
abelian unless possibly if GG is of type Djy.

If A/J is abelian then the group-theoretic assumptions of [CS15, Lemma
3.2] are satisfied. Then we can apply the proof of |[CS15, Theorem 4.1]
without any change and we deduce that the characters xy and Y’ satisfy the
conditions in [CS15, Definition 2.1(c)].

If A/J is non-abelian then as argued above G is of type D and it fol-
lows that A/J = S3 x C,, for some integer m. We have ([A, A]J)/J =
[A/J,AJJ] = C5. No non-trivial character of C5 is fixed by Ss;. Hence,
Lina(H) = {1y} for every subgroup H of [A, A]J/J. Thus, we can apply the
proof of |[CS15, Theorem 4.1] and instead of applying [CS15, Lemma 3.2] we
use our Lemma [6.13] This shows that also in this case the characters x and
X’ satisfy the conditions in [CS15, Definition 2.1(c)].

However, since the characters x and x’ satisfy the conditions in [CS15,
Definition 2.1(c)] it follows by Theorem that the additional property in
Definition [6.6{ii) holds. This finishes the proof. O

We will check condition (v) in Theorem using the following:

Lemma 6.16. Let x € Irr(G,b) and x' € Iir(Na(Q), Bg). Let x € Irr(G |
X) be an extension of x and X' € Irr(M,y | X') be an extension of x'. Assume
that bl(¥) = bl(x")%x. Then we have

A Ng (@) .
bl(Res (X)) = bl(Resy "%, (¥))’

for all G < J <G,

Proof. Since G/G is abelian, it follows that J is a normal subgroup of
G,. Hence, bl(Res?X()Z)) is the unique block which is covered by bl(Y).
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On the other hand, bl(Resy %y (¥')) is the unique block of N, (Q) which

is covered by bl(¥'). Moreover, we have bl(x)¢ = bl(y) and bl(¢)% =

bl(x). By Corollary |1.44] we can therefore deduce that bl(Res?X(f()) =

Ng (@)
bl(RestZ‘Q) (x))’. O

6.4 Extension of characters

Suppose that G is not of untwisted type D4. Fix a conjugacy class (s) of
a semisimple element s € (G*)*" of ¢-order. Let 0 : G — G and Fy : G —
G be the automorphisms constructed in the proof of Proposition and
denote by A C Aut(GF) the subgroup generated by these automorphisms.
Recall that there exists a Levi subgroup L of G in duality with the Levi
subgroup L* of G*, the minimal Levi subgroup of G* containing Cg-(s),
such that A stabilizes L and e%”.

The next lemma shows that extendibility to G.A can be compared with
extendibility to GB. In the following, we denote by gd(x) : G — G the inner

automorphism of G given by conjugation with z € G.

Lemma 6.17. Let x € Irr(GF,eS"). Then the character x extends to GA,
if and only if it extends to GB,.

Proof. By Proposition the image of G x A in Out(G) is the stabilizer
of €& in Out(G). From this it follows that A, and B, generate the same
group in Out(G). Thus, if A, is cyclic then so is B, and x extends in both
cases. Now assume that A, is non-cyclic. Then by the proof of Proposition
there exists some x € G'® such that A = (ad(x)v, Fy), where Fy €
(¢o). Since A, is non-cyclic it follows that A, = (ad(z)y, Fj). Therefore,
B, = (v, F;). By Clifford theory it follows that the character y extends to
A, if and only if y extends to an ad(z)y-invariant character of G(Fi). On
the other hand, the character x extends to B, if and only if x extends to a
y-invariant character of G(F;). We conclude that x extends to GA, if and
only if it extends to GB,. [

We have a local version of the previous lemma. Recall that @) is assumed
to be a characteristic subgroup of the defect group D of b.

Lemma 6.18. Let x € Irr(Ng(Q), Bg). Then the character x extends to its
inertia group in Nea(Q, Bg) if and only if it extends to its inertia group in
Nes(Q, Bg)-
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Proof. A short calculation shows that Ng4(Q, Bg)/Ng(Q) = N4(b) and simi-
larly Nes(Q, Bo)/Na(Q) = Ngp(b). By the same argument as in Lemma
we may assume that the stabilizer Ng4(Q),/Ng(Q) is non-cyclic. Therefore,
A = (ad(x)y, Fy), where Fy € (¢g). We conclude that there exist y,z € G
such that Nga(Q), = (yad(z)y, zFE). It follows that Ngs(Q), = (yay, 2 Fg).
By Clifford theory it follows that the character x extends to Nga(Q), if and
only if x extends to a yad(z)y-invariant character of G(zF;). On the other
hand, the character x extends to Ngg(Q), if and only if x extends to a yx~y-
invariant character of G(F}). Therefore, both statements are equivalent. [

Remark 6.19. In Theorem [6.15| one could try to replace B by the group
A. However, Cg4(G) could be larger than Z(G), see Remark 4 We
do not know however how to compute the values of the involved prOJectlve
representations on this larger group.

6.5 The case D,

In the last section we assumed that G* is not of type D,. The reason for
this is that G admits in this case an additional graph automorphism. Thus,
many of our considerations have to be altered in order to work in this case.
The aim of this section is provide a certain criterion for the extendibility of
characters which is tailored to the situation of Theorem [6.27

Suppose in this section only that G is a simple, simply connected algebraic
group of type Dy. We let ¢g : G — G be the field automorphism defined in
Section and we consider for any fixed prime power ¢ = p’ the Frobenius
endomorphism F' = (bg : G — G defining an F-structure such that G* is a
finite quasi-simple group of untwisted type Djy.

Corollary 6.20. There exists a subgroup C of B such that the image of GxC
in Out(G) is the stabilizer of ¢S" in Out(Q).

Proof. Let Diaggr be the image of the group of diagonal automorphisms in
Out(GF). The stabilizer of " in Out(GF) contains Diaggr by Lemma
Since G x B g nerates all automorphlsms of G up to inner automorphlsms
see Section |4.1} there exists a subgroup C < B such that the image of G x C
in Out(G) is the stabilizer of €& in Out(G). O

Recall that b is a block of OGFeS" with defect group D and characteristic
subgroup (). For every prime r fix a Sylow r-subgroup C, of C. Note that
C, is contained in a Sylow r-subgroup of 5. Hence, there exists a graph

automorphism 7, : G — G of order dividing r and a Frobenius F, = :
G — G, with 4, | f, such that C, = (v, F,.). We define Fj : G — G to be
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the Frobenius endomorphism which is the product of the F,. over all primes
r diving the order of B. In the following, we let J C {2,3} be the set such
that C; is non-cyclic for j € J.

Lemma 6.21. Let x € Irt(Ngg(Q)y | Bg). The character x extends to
Nes(Q)y if and only if for every r € J it extends to Ngr(Q), for every
Sylow r-subgroup R of C.

Proof. By Corollary the image of G x C in Out(GF) is the stabilizer
of ef’F in Out(G*). Consequently, we have Ngs(Q), = Nge(Q)y. Denote
H := Nge(Q)y/Na(Q). There exists a Sylow r-subgroup R of C such that
Ner(Q)y/Na(Q) is a Sylow r-subgroup of H. (Note that this property is
not necessarily true for all Sylow r-subgroups of C.) Moreover, for r ¢ J all
Sylow r-subgroups of H are cyclic. By [Isa06, Corollary 11.31] the character
X extends to Nge(Q)y if and only if x extends to the preimage of a Sylow
r-subgroup of H for every prime r. Since all Sylow r-subgroups of H for
r ¢ J are cyclic it follows that y extends to Ngs(Q), if and only if x extends
to Ngr(Q)y, for all r € J and every Sylow r-subgroup R of C. [

Let L* be the minimal Levi subgroup of G* containing Cg«(s). By Lemma
[4.11] there exists a Levi subgroup L of G in duality with L* such that L is Fp-
stable. Recall that OGY eSGF and OLF eg‘F are splendid Rickard equivalent,
see Theorem [2.37, Hence by Theorem [1.15 we can and we will assume that
the defect group D of b is contained in L%

Let j € J. By the proof of Proposition there exist z; € G such
that o; := ad(z;)y; stabilizes L and e&". If j € {2,3} \ J there exists some
bijective morphism 7; : G — G with C; = (r;) and again by the proof of
Proposition m there exist x; € G’ such that o; := ad(z;)m; stabilizes L
and e, We then define A := (0, 03, Fy) C Aut(GF).

For r € J consider an arbitrary Sylow r-subgroup R of C. Then we have
R = (v, F,) for some graph automorphism v € G. Hence, there exists some
r € G such that o := ad(z)y € A. We then denote R4 := (0, F,) C
Aut(GF).

Lemma 6.22. A character x € Irr(Ngg(Q)y | Bg) extends to Nep(Q)y if
and only if for every r € J it extends to Nar ,(Q)y for all Sylow r-subgroups
R of C.

Proof. By Lemma , the character x extends to Ngp(Q), if and only if x
extends to Ngg (@), for every Sylow r-subgroup R of C with r € J. Hence it
suffices to show that for every such R the character x extends to Nog(Q), if
and only if x extends to Ngg ,(Q)y. The proof of the latter is now however
exactly the same as in Lemma [6.18] O
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Proposition 6.23. A character x € Irr(Ngg(Q)y, | Bg) extends to Nap(Q)y
if and only if for all v € J the character ¢ = *REG(g)(X) extends to
Nz (Q)y for every Sylow r-subgroup R of C.

Proof. By Lemma the character x extends to Ngs(@Q), if and only if
extends for every r € J to Ngg (@), for every Sylow r-subgroup R of C.
By Remark[1.26{(b) extendibility of characters in the situation of Theorem
1.24] is preserved. Now for r € J recall that R 4 = (o, F};) for some bijective
morphism o of G. Thus, we can apply Theorem to the commuting
automorphisms o : G — G and F, : G — G. This 1mphes that the character
X extends to Nggr (@), if and only if ¢ extends to Nz, (Q)y- O

6.6 A first reduction of the iAM-condition

In this section we describe the first step to reducing the verification of the
iAM-condition. Before stating the main theorem of this section we need two
lemmas:

Lemma 6.24. Let x € Irr(L), X € Irr(G/G) and € Irr(Nz(Q)). Then we
have

(a) ARS(x) = RY(Res¢ (\)x),

¢ Na&(Q Na(Q G
(b) Res§ o) MBS (4) = RSl (Res§, (o) (M).

Proof. Part (a) is classical. It is proved using the character formula for
Deligne-Lusztig characters, see proof of [DM91} Proposition 13.30(ii)].

The character formula for Deligne-Lusztig characters has been general-
ized to disconnected reductive groups, see [DM94] Proposition 2.6(i)]. (Note
that our definition of Levi subgroups and parabolic subgroups is more general

than the one in [DM94], but the same proof applies to our set-up.) Using

the explicit character formula for R ¢ Q)) (1) gives the result in (b). O

Lemma 6.25. Let G be a reductive group with Frobenius endomorphism
F: G — G and parabolic subgroup P with Levi decomposition P = L x U,

where F(L) = L. Then for x € Irr(LY) the characters x and RE(x) restrict
to multiples of the same central character on Z = (Z(G) NL)¥.

Proof. The diagonal action of Z fixes the variety Y& pointwise. Hence the
diagonal action of Z on the bimodule H! (Y, K) is trivial. The claim of the
lemma follows from this. O
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For the following theorem we need to suppose that the following assump-
tion holds.

Assumption 6.26. In every G-orbit of Irr(G, e¥) there exists a character
x € Irr(G, %) satisfying assumption (i) of Theorem .

In the following we abbreviate My := Nz (Q), M = Nga(Q), My =
NL_A(Q) and ML = Ni(@)

Theorem 6.27. Let b be a block idempotent of Z(OGeS) and ¢ € Z(OLel)
the block idempotent corresponding to b under the Morita equivalence between
OLel and OGeS given by HM™(YS, O)el.

Suppose that Assumption is satisfied. Assume additionally that the
following hold.

(i) There exists an Trr(My, /Myp) 3 My -equivariant bijection @ : Irr(L |
Irro(c)) — Irr(My, | Irro(Cq)) such that it maps characters covering the
character v € Irr(Z(G)) to a character covering v.

(ii) There exists an N 4(Q, Cg)-equivariant bijection ¢ : Irro(L, ¢) — Irrg(My, Cg)
which satisfies the following two conditions:

o [fx € Iirg(L,c) extends to a subgroup H of LA then ¢(x) extends

o p(Irr(L | x)) = Irx(M | p(x)) for all x € Trrg(c).
(i) For every 0 € Irrg(c) and 0 € Irr(L | 0) the_following holds: If 6y €

Irr(Lg | 0) is the Clifford correspondent of 0 € Irr(L) then bl(6y) =
bl(0h) "o, where 0} € Trr(M ) | ¢(0)) is the Clifford correspondent of

p(0).
Then the block b is iAM-good.

Proof. By [Bro90, Theorem 1.5(2)] and [Bro90, Theorem 3.1} it follows that
derived equivalences between blocks of group algebras induce character bi-
jections which preserve the height of corresponding characters. Hence, by
Theorem .28 we obtain bijections

RS : Trro(L, ¢) — Trro(G, b) and Rgf((g)) (Irrg(NL(Q), Cg) — Irrg(Ng(Q), Bg)-

We define V¥ : Irro(G, b) — Irrg(Ng(Q), Bg) to be the bijection which makes
the following diagram commutative:
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Irro(L, ¢) Irro (G, b)
2 v
Tero (M, Co) —= 9, Lno(M, Bo)

Note that the bijection RY : Irrg(L, ¢) — Irrg(G, b) is N 4(¢)-equivariant and
the bijection Ry%(a) : Irrg(NL(Q), Co) — Trg(Na(Q), Bg) is Nj,(Q, Cq)-
equivariant by Lemma. Asin Lemma, we see that Ng(Q)N; (@, Cq) =
Ne4(Q, Bg). It follows that the bijection W : Irrg(G,b) — Irrg(M, Bg) is
Ne4(Q, Bg)-equivariant.

Fix a character x € Irrg(G,b). For | € L we note that the block ‘b
of OGF eSGF also satisfies the assumptions of the theorem with the map ¢
replaced by ¢ : Trrg(L,'c) — Trrg(NL('Q),'C) given by «/(6) = o(*'6)
for § € Trrg(L,'). Using Assumption we can, by possibly taking a
G-conjugate of b, assume that the character y satisfies assumption (i) of
Theorem We denote y' := U(x) and show that the characters x and x’
satisfy the conditions of Theorem [6.15]

Since the bijection W : Irro(G, b) — Irrg(M, Bg) is Na 4(Q, Bg)-equivariant
we deduce that condition (iii) in Theorem is satisfied and we have

(MNGB(Q))X’ = MX'NGB(Q)X"

To show condition (ii) in Theorem let us first assume that GI is
not of type Dy. Since Assumption holds for the character x it follows
by Lemma that the character x extends to its inertia group in G.A.
Note that by Remark [1.26b) extendibility of characters in the situation
of Theorem is preserved. It therefore follows by Theorem that
*RY(x) extends to its inertia group in L.A. By assumption (ii), the character
©(*R% (X)) extends to its inertia group in M. Hence, by Theorem the
character x’ extends to M,,. Now Lemma shows that condition (ii) in
Theorem [6.15] is satisfied.

Now assume that G is of type Dy. We use the notation of Section [6.5]
Since Assumption holds for the character x we know by Proposition
that ¢ := *RY(x) extends to (GR4)y for every Sylow r-subgroup R of
C with r € J. By assumption (ii), it follows that ¢(¢) extends to Niz, (Q)y
for every Sylow r-subgroup R of C with » € J. Applying Proposition [6.23
again yields that y’ extends to its inertia group Ngg(Q). Thus, condition (ii)
in Theorem [6.15] is also satisfied in this case.

From Lemma and assumption (i) it follows that the first part of
condition (iv) in Theorem is satisfied. Moreover, Lemma and as-
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sumption (i) imply that the second part of condition (iv) in Theorem [6.15]
is satisfied. We have now verified all conditions of Theorem [6.15| except for
condition (v). To prove this we will show the following:

Lemma 6.28. There exist characters Xo € Irr(Gy, | x) and X}y € Trr(My | X')
satisfying BI(T5)® = bl(Xo).

Proof. Let Xo be a character of J := G extending . Let Ji, be the subgroup
of L/L corresponding to J under the natural isomorphism L/L = G/G.

Recall that C':= GT'(YS, O)del" is a complex of O[(G x LPP)A(L)]-
modules. Moreover by [BR0O6, Proposition 1.1], we have a canonical isomor-
phism )

Indfgj;fjp ; GFC(YS, O)el = GT(Y§, O)er
in Ho’(O[G x L°PP)). By Lemmanand Theoremthe complex GT (YE 0)eL

induces a splendid Rlckard equivalence between OGeS and (’)Le Thus, the

complex C' := IndJGXj Lovryacry)(Gle (YS, O)d)c induces a splendid Rickard

equivalence between OJb and OJrc, see Lemma 1.27. Denote b := bl(x)
and let ¢ be the block corresponding to b under the Rickard equivalence in-
duced by C. The cohomology of C' is concentrated in degree d := dim(Y§)

and H(C) = In dJGX;]LOPP)AJ H%(C). By Theorem [1.24] the bimodule H*(C)

induces a Morita equivalence between OJpc and OJb. We denote by

R :Irr(Jp,c) — Irr(J,b)

the associated bijection between irreducible characters and its inverse by *R.

The complex IndN‘] Q)XXNéI - (g):p)

alence between the algebras EN;(Q)Bg and kN, (Q)Cq, see Proposition
.36l Denote

(NJ(Q)XNJ (Q)°PP)A(N (Q)
CYloc = In d XCLL(Q)OPP)A(N K (GF (

AN (Q) (BTAQ<O )) induces a derived equiv-
L

fe1(®))
Cu (Q)J O))CQ'
By the proof of Lemma [1.40] it follows that

- o NSQXN, QP :
Cloc ®0 k = Inde; )5 (@emeac,, @) (Brae(C))Co

in Ho® (k[N (Q) x Ny, (Q)°P]).
The cohomology of GT'.(Y CS((S)),O)er(eE‘F) is concentrated in degree

dg = dlm(YC (Q)) by Lemmal|2.28. Moreover, the bimodule He® (Ygs((g)), O)cq

induces a Morita equivalence between O Cp(Q)cg and O Cg(Q)bg. Now
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Lemma and Corollary imply that H% (Ci,.) induces a Morita equiv-
alence between ON, (Q)Cq and ON;(Q)Bg. We denote the associated char-
acter bijection by R : Irr(Ny, (Q), Cq) — Irt(N;(Q), Bg) and its inverse

by *Riec : Irt(N;(Q), Bg) — Irr(Ny, (Q), Cg). Let ¥ = Ind5(Xo) and define

— R G(Q)O(,OO*RG( )

By construction, ' € Irr(Ng(Q) | x'). We let i € Irr(M,/) be the unique
character covering x' with Ind}y (X;) = Xj. Let 6 := *RZ(x) and 0 =
X

*RG(X). As in the proof of Theorem |4.28 we have

So) OTE@) (Co).

Q)xNj (Q)°rP do (A ~ 77dim /~N
In d L H Q(Cloc) = H; (YNU(Q)

Q)XNJL( JPPA(N(Q))

Hence, by Remark we obtain
Indy2 ) ( Ruoc(¥0)) = "B (IdyS6) (%)) = "Ry () (¥) = ¢("RE (1)) =

Thus, *Riee(X,) € Irr(Ny, (Q) | ¢(8)) is the Clifford correspondent of G(f).
Consequently, we have

bl(* Rioc(xh))”* = DI(*R(%0))

by assumption (iii). In other words, bl(* Rioc(x4)) is the Harris-Knérr corre-
spondent of bl(*R(Yo)) in the sense of Corollary [1.44]

Moreover, the bimodule H dQ(C’loC)bl( Rioc(Xg)) induces a Morita equiva-
lence between the blocks ON ;(Q)bl(x() and ON, (Q)bl(*Rioc(Xg))- On the
other hand, as shown above, we have

N QXN (@) -
Cloe Do k = Indg)() xc;ﬁ(QwPPA(NJ @) (Brae(C))

in Ho’(k[N;(Q) x N, (Q)°P*]). Since bl(* Ripe(x))) is the Harris- Knérr corre-
spondent of bl(* R(Xy)), it follows by Remark that bl(xg) is the Harris—
Knérr correspondent of bl(Yg). In other words we have bl(xg)? = bl(xo). O

We now complete the proof of Theorem [6.27 Lemma together with
Lemma implies that condition (v) in Lemma is satisfied. We let
Z :=7(G) NKer(x). Theorem applies and we obtain

(GB)\/Z.G/Z.X) 2 (MNas(Q))y/Z,Na(Q), X)-

By the Butterfly Theorem, see Theorem [6.11] it follows that ¥ : Irro(G,b) —
Irrg(M, Bg) is a strong iAM-bijection. Consequently, the block b is 1AM-
good. O
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6.7 Quasi-isolated blocks

We recall the notion of quasi-isolated blocks. Let H be a connected reductive
group with Frobenius F' : H — H. Let H* be its dual group with dual
Frobenius F*. Recall that an element ¢ € H* is called quasi-isolated if
Cp-(t) is not contained in a proper Levi subgroup of H*. We say that a
block b of HY is quasi-isolated if it occurs in OHY etHF for a quasi-isolated
semisimple element ¢t € (H*)!" of #-order.

The following remark gives the generic structure of defect groups of blocks
of groups Lie type:

Remark 6.29. Recall that for £ > 5 (and ¢ > 7 if G is of type Es) we know
by [CE99, Lemma 4.16] that every defect group D of a block b of G has a
unique maximal abelian normal subgroup ¢ such that the group extension

1-Q—=D—-D/Q—1

splits. Evidence suggests that working with () is more accessible than working
with the defect group and the iAM-condition is usually checked by working

Following the terminology in [KM15, Section 3.4] we say that an ¢-group
D is Cabanes if it has a unique maximal abelian normal subgroup.
This motivates the following hypothesis:

Hypothesis 6.30. Consider the class Hg of tuples (H, F') consisting of a
simple algebraic groups H of simply connected type over IF_p with Frobenius
F': H — H such that the Dynkin diagram of H is isomorphic to a subgraph
of the Dynkin diagram of G. Assume that for (G, F) one of the following
holds:

(a) For every (H,F") € Hg the group HY JZ(H") is an abstract simple
group. Let b be a quasi-isolated block of HY and assume that b has
a non-central defect group D. Then D has a unique maximal normal
abelian subgroup @ such that Ngr (Q) < HY and there exists an iAM-
bijection W : Trrg(H | b) — Trrg(Ngr (Q), Bg).

(b) Let (H,F') € Hg and b a quasi-isolated block of H". If b has a non-
central defect group D and HY' JZ(H") is an abstract simple group then
there exists an iAM-bijection W : Trrg(H', b) — Irrg(Nge (D), Bp).

Let G be a simple algebraic group of simply connected type such that
G/ 7Z(G)¥ is simple and non-abelian. By the explicit description of auto-
morphisms of G in Proposition [4.2] every automorphism Aut(GF) lifts to
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a bijective automorphism of G commuting with the action of F'. However,
in very small cases the group G/ Z(G)¥ is solvable, see [MT11, Theorem
24.17] for a list of these exceptions.

In the proof of Proposition we will use the following property of
Cabanes groups in an essential way (see [KM15, Lemma 3.11] for a slightly
more general statement):

Lemma 6.31. Let P := P, X P5, where Py, and Py are both Cabanes. Then P
1s Cabanes with maximal normal abelian subgroup Ay x Ay where A;, 1 =1, 2,
is the mazximal normal abelian subgroup of P;.

We keep the notation of Theorem [6.27} We aim to understand blocks of
[L, L]¥ which are covered by c.

Lemma 6.32. Suppose that we are in the situation of Theorem|[6.27. Let ¢,
be a block of [L, L|¥ covered by c. Then cq is a quasi-isolated block of [L, L)¥ .

Proof. The inclusion ¢ : [L,L] < L induces a dual morphism ¢* : L* —
[L,L]*. We let 5 := *(s) the image of s under this map. Recall that L* is
the minimal Levi subgroup of G* containing Cg-(s). Hence the element s
is quasi-isolated in L* and so ¢ is a quasi-isolated block of L. By [Bon05),
Proposition 2.3] it follows that 3 is quasi-isolated in [L,L]*. Since c is a

block of OLFeL" it follows that ¢ is a block of O[L, L] ™" From this
we conclude that ¢y is a quasi-isolated block of [L, L] O

The proof of the following proposition is similar to the proof of [NS14,
Corollary 6.3].

Proposition 6.33. Let ¢y be a quasi-isolated block of Lo := [L,L]¥ of non-
central defect. If Hypothesis holds for (G, F') then there exists a defect
group Dy of ¢y and a characteristic subgroup Qo of Dy satisfying N, (Qo) <
Ly and an iAM-bijection g : Irrg(Lg, co) — Irrg(N L, (Qo), (Co)g,)-

Proof. Since L is Levi subgroup of a simple algebraic group G of simply
connected type it follows that [L, L] is semisimple of simply connected type,
see [MT11], Proposition 12.4]. Thus, we have

[L,L] =H; x--- x H,,

where the H; are simple algebraic groups of simply connected type. We have

a decomposition
L,L|*=H] xH) x --- x H!

into adjoint simple groups.

134



The action of the Frobenius endomorphism F' induces a permutation 7
on the set of simple components of [L,L]. We let 7 = ;... 7 be the de-
composition of this permutation into disjoint cycles. For ¢ = 1,... ¢ choose
x; € II; in the support II; of the permutation m; and let n; = |II;| be the
length of ;. For every 1 < i <t the inclusion map

H, — [[ H.
zell;
induces isomorphisms between HI™ and ([],cq, He)". Consequently, we
have
Lo=[L,L"~H." x--- xHL"
and

(L7 L7 = (H) ™ < x (HG )™
in the dual group. There exists a semisimple element 5 € [L*, L*]*" of #-order
such that ¢y is a block of O[L, L]Fe[éL’L]F.
Writing 5 = s1...s, € (Hi )™ x - x (Hi)™™ with s; € (H; )™ we
obtain a decomposition
F F
e[gL,L]F _ egml R ® 6gzt'
In particular, the block ¢y can be written as ¢y = ¢;, ® - - - ® ¢;, where the ¢,
are blocks of HE™ . Note that the blocks ¢,, are quasi-isolated in HZ™ since
¢o is assumed to be quasi-isolated. In the following we denote H,, := HL™.
By possibly reordering the factors of Ly we can assume that there exists some

integer v such that the factor HI™ is quasi-simple if and only if ¢ < v. Hence
we can decompose Lg as

LO = LO,simp X LO,SOIW

such that Lo gmp = Hy, X --- X Hy, is a direct product of simple non-abelian
finite groups and L sy is a finite solvable group. This induces a decompo-
sition ¢y = € gimp ® o solv Of blocks.

By Hypothesis[6.30] there exist for each i < v a characteristic subgroup Q;
of a defect group D; of ¢; such that there exist an Nayga,) (@, C;)-equivariant
iAM-bijection ¢; : Trrg(Hy,,cz;) — Trrg(Na, (Qi), Cs,), where C,, is the

unique block of BI(Ng, (Q;) | D;) with C’QZI = ¢,,. We let
{.Tl,...,.lfv}:A1UA2U"'UAU,

be the partition such that z;, x; € A; whenever n; = n; and there exists a
bijective morphism ¢ : H,, — H, commuting with the action of F™ such
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that ¢(c,,;) = ¢,. For each i we fix a representative z;, € A;. We denote
Yi := x5 and m; 1= n,;.

For a bijective morphism ¢ : [L, L] — [L, L] commuting with F' it holds
that ¢o is quasi-isolated if and only if ¢(cy) is quasi-isolated. Moreover, the
conclusion of the proposition holds for ¢y if and only if it holds for ¢(co).
Hence, without loss of generality, we may conjugate the block ¢q by an ele-
ment of Aut(Lggimp) such that the block cggimp is of the form

Co,simp = CilAi‘u
i=1
where the ¢, are all distinct blocks. Therefore, the block stabilizer of ¢
satisfies

NAut(LO) (CO,simp) = H NAut(Hyi)(Cyi> { S|Az|

i=1

It follows that Dogimp = [, DL?” is a defect group of cggimp. Moreover,

Qosimp = [ 1, Q' il is a characteristic subgroup of Dy gimp by Lemma M
We let C gimp be the unique block of Nz, ;. (Qo simp) With defect group Do gimp

satisfying (Co simp) 0™ = o gimp. Define Hy, := H?L?i‘. For every i we have
NHA'L(Q:";?Z‘) = NHAyi (Qyi)Vli\_
Thus, for each ¢ = 1,...,u we obtain bijections
|A | Trrg(Hay,, ¢ ®|A iy — Irro(Np,, (QL‘?”),C?;‘AZ").

We claim that these bijections are iAM-bijections. Every character xy €
Irro(HAZ,cfﬁ‘ Zl) is Naug(ra ) ( Lf: |,c§i‘ ") conjugate to a character [[ | x;
such that for every ¢ and j we either have x; = x; or x; and x; are not
Aut(H4,)-conjugate. Since the relation >, is preserved by automorphisms
we may assume that y is of this form. Hence, y = Hle ¥y!, where the ¢, are

all distinct characters and the r; are some integers. Therefore, we have

t
Aut(Hy,), = H Hy, )y, LS.

In other words, the stabilizer of y is a direct product of wreath products. By
[Spal8, Theorem 2.21] and [Spal8, Theorem 4.6] the relation > is compatible
with wreath products and by [Spal8, Theorem 2.18] and [Spal8, Theorem
4.6] it is compatible with direct products. Hence we can conclude that the

|4l

bijection ¢y, " is an iAM-bijection.
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Using this it follows directy by [Spal8, Theorem 2.18| and |Spal8|, Theo-
rem 4.6] that the bijection

u
©0,simp ‘= H SDEJ‘ : Irro (Lo simp, Cosimp) — Irto(N 1, i (Qo,simp )5 Co simp)
i=1

is an iAM-bijection.

Let Dy so1v be a defect group of ¢g g1y and Cp so1v be the Brauer correspon-
dent of cogory in N, (Do). By [NS14, Theorem 7.1] there exists a strong
iAM-bijection

©0,so0lv - IrrO(LO,solv; CO,solv) — Irr0<NLQ<D0,solv>7 Co,solv)-

We note Dy = D gimp X Dosolv is a defect group of the block ¢y and Q) :=
Qosimp X Dogolv 15 a characteristic subgroup of Dy. Since the image under
an automorphism of a solvable (resp. quasi-simple) finite group is solvable
(resp. quasi-simple), we obtain

Aut(Lo) = AUt(LO,Simp> X Aut(LO,SOIV)'

Hence, by [Spal8, Theorem 2.18] and [Spal8, Theorem 4.6] we obtain an
iAM-bijection

©o = ¥0,simp X ¥0,so0lv Irro(Lo, Co) — Irr0<NLo(QO); Co)-

It finally remains to show that (g is non-central in Ly. By assumption the
block ¢y of Ly has non-central defect group Dy = Dg gimp X Do sorv. Hence, it
follows that either Dy gimp is non-central in Lg gimp Or Dp so1v is non-central in
Lo solv- In the latter case it follows immediately that () is non-central in L.
In the former case, we observe that there exists some ¢ with 1 < i < v such
that c,, has non-central defect group. In particular, Ny, (Q;) & H,,. From
this we conclude that () is non-central in L. O

6.8 Normal subgroups and character triple
bijections

In this section we will recall two general statements from the theory of charac-

ter triples which we will use in the next sections. The notation will therefore

be unrelated to the notation of the previous sections.
We need a variant of [NS14, Proposition 4.7(b)]:
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Proposition 6.34. Let X be a finite group. Suppose that N<1X and H < X
such that X = NH. Let e be a block of N with defect group Dy. Assume
that M := NN H satisfies H = MNx(Dy) and let E € BI(M | Dy) such that
Ef = e. Suppose there exists an Nx(Dy, E)-equivariant bijection

@ Irrg(N, e) — Irrg(M, E)

such that (Xg, N,0) >, (He, M, p(0)). Furthermore let J < X such that
N < J. Let c be a block of J covering f and D a defect group of ¢ satisfying
DN N =Dy and let C € BI(JN H | D) with C’ = ¢. Then there exists an
Ny (D, C)-equivariant bijection

7y Irrg(J, ¢) = Irrg(J N H,C)
such that (X,, J,7) >y (H, J O H,m;(T)) for all T € Trro(J, ¢).

Proof. This is proved as in [NS14 Proposition 4.7(b)]. We note that the
assumptions in in [NS14, Proposition 4.7(b)] are stronger. However, one can
with our weaker assumption and with the same proof show that the statement
of the proposition holds. n

We use the following statement, which is a consequence of the Dade—
Nagao—Glauberman correspondence. Recall that if N < G such that G/N
is an {-group then every ¢-block of N is covered by a unique block of G,
see [Nav98, Corollary 9.6].

Lemma 6.35. Let X be a finite group, M < X and N < M such that M /N
is an (-group. Let Dy < N be an (-subgroup with Dy < Z(M). Suppose that
co 18 an M-invariant block of N. Let e be the unique block of M covering
co and let with Brauer correspondent Ep in Ny (D). Then there exists an
Nx (D, Ep)-equivariant bijection

p : Trrg(M, e) — Trrg(Ny (D), Ep)
with (X, M,7) >, (Nx (D)., Npy (D), p(7)) for every T € Irrg(M, e).

Proof. This is a direct consequence of [NS14) Corollary 5.14]. O

6.9 Application of character triples

We keep the notation of Section [6.7, Furthermore, we fix a block ¢q of Ly =
[L, L) covered by the block c of L with defect group Dy. By [Nav98, Theorem

138



9.26] we can assume that the defect group D of ¢ satisfies Dy = DN Ly. Our
aim in this section is to obtain an iAM-bijection for the block c.

If the defect group Dy of ¢y is non-central in Ly then Proposition [6.33
yields an iAM-bijection for the block ¢q. Let us now consider the case when
the defect group Dy of ¢ is central in Lj.

Lemma 6.36. Suppose that Dy < Z(Lg). Let e be the unique block of Ly :=
LoD covering cy. Let Ep be the Brauer correspondent of e in Np, (D). Then
there exists an 1AM-bijection

@o : Irrg(Ly,e) — Irrg(N, (D), Ep).

Proof. We show that we can apply Lemma to the case M := Ly, N := Ly
and X := L; x Aut(L). Note that ¢g is indeed L; = LoD-invariant. Since
L = [L, L]Z°(L) we have Z([L, L)) < Z(L)". Consequently,

Z(IL, L") = Z([L, L))" < Z(L)" = Z(L")

by |[Bon06, Remark 6.2]. This implies Z(Lo) < Z(L1) and therefore Dy <
Z(Ly). Thus Lemma applies and the statement follows from this. O

To simplify the following calculations we introduce another notation.
Notation 6.37.

e Assume that Dy is central in Ly. Then as before we fix a defect group
D of ¢ satisfying D N Ly = Dy. We define L, := LoD and we let e be
the unique block of Ly covering ¢y. In addition, we set ) := D.

e If Dy is not central in Ly then we set Ly := Lg, e := ¢g and Q) := D,.

We note that in both cases we have Ny (Q) < L. In the first case this
follows from the assumption that ¢ has non-central defect group and in the
second case this follows by the construction in Proposition Moreover,
in both cases ¢ is a block of L covering e. This is because ¢ covers the block
co and e is the unique block of L; covering cy.

Lemma 6.38. Inypothesz’s holds for (G, F') then there exists an N 4(Q, Cg)-
equivariant bijection ¢ : Irrg(L, c) — Irrg(NL(Q), Cg) such that

((LA)x L. X) 20 (N2 (@) o0, N2 (@), 2(X))-

for every character x € Irro(L, ).
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Proof. Denote by Eg € BI(N.,(Q) | D) the unique block which satisfies
(Eg)™ = e. By Proposition and Lemma m there exists an iAM-
bijection

wo : Irrg(Ly, e) — Irrg (N, (Q), Eg).

We claim that (I:A)X acts on L;. If the defect group Dy of ¢y is non-central
in L then L; = Ly is a characteristic subgroup of L, so the claim is clear.
Assume therefore that the defect group Dy is central in Ly. Then the group
(LA), acts on L and stabilizes the block ¢. Thus, (L.A), stabilizes the defect
group D up to L-conjugation. In particular, L, = LoD is (L.A),-stable.
Hence, we can apply the Butterfly Theorem, see Theorem [6.11], and we
conclude that the bijection ¢q : Irro(Ly, e) = Irro(Ny, (@), Eg) satisfies

((LA)X,LMX) ) (NEA(Q)AOO(X% Nz, (@), ¢o(x))-

for every character x € Irro(Lq,€).

Now we apply Proposition in the case H = N; ,4(Q), N = L; and
J = L. We obtain an Nj ,(Q, Cg)-equivariant bijection ¢ : Irro(L,c) —
Irrg(NL(Q), Cg) such that

(LA)x: Ly x) 26 (NzA(@)p(), N2 (@), (X))

holds for every character y € Irrg(L, ¢). Finally, note that

NLA(Q) CQ) = N[~,A(Dﬂ CD)NL(Q),
which proves that ¢ is N 4(Q, Cg)-equivariant. O

Lemma 6.39. Suppose that Hypothesis holds for (G, F). Then there
exists a bijection @ : Irr(L | Irrg(c)) — Irr(N;(Q) | Irrg(Cg)) such that ¢
together with the bijection ¢ : Irrg(L,c) — Irrg(NL(Q),Cq) constructed in

the proof of Lemma satisfy assumptions (i)-(1ii) of Theorem [6.27

Proof. Choose a transversal T of the characters in Irro(L, ¢) under N;(c)-
conjugation. By Lemma we obtain an N; 4(Q, Cg)-equivariant bijection
@ Irrg(L, ¢) = Irrg(NL(Q), Cg) such that

(LA L x) 26 (NEa(@) o0 NL(Q), (X)),

for every character y € Irrg(L,c). Hence, for every character y € T we
obtain by Theorem [6.3] a bijection

0%) Trr(Ly, | x) = Ier(N; (Q)y | (X))
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By Clifford correspondence we then obtain a bijection
B (L | ) = (T | ().
The disjoint union of the bijections ¢,, x € T, induces a bijective map
@ Irr(L | Trrg(¢)) — Trr(My, | Trrg(Cp)).

By Lemma , the bijection @ is Irr(My, /M) x Mp-equivariant. Together
with Lemma (6.5 it follows that the bijections ¢ and ¢ satisfy assumption
(i) of Theorem [6.27 Moreover, Lemma show that assumption (ii) in
Theorem is satisfied.

Let x € Irro(L, ¢) and ¥ € Trr(L | x). Let xo € Irr(Ly | x) be the Clifford
correspondent of ¥ € Trr(L). By Deﬁnition ( i) we have

bl(xo) = bl(UiX(Xo))LX
By construction of the map ¢, the character o7 (xo) € Irr(Mj | ¢(x)) is the

Clifford correspondent of ¢(x). This shows that assumption (iii) in Theorem
[6.27 is satisfied. O

6.10 Jordan decomposition for the Alperin—
McKay conjecture

We can now prove our main theorem.

Theorem 6.40. Let G be a simple algebraic group of simply connected type
with Frobenius F : G — G. Suppose that S := GT JZ(GT) is simple and G*
15 its universal covering group. Let b be a block of OGF GF for a semisim-
ple element s € (G*)I" of {'-order. If Assumptzon holds for €& G" and
Hypothesis E 6.50) holds for the group (G, F) then every (-block b of GI s
AM-good for ¢.

Proof. As in Theorem let ¢ € Z(OLek) be the block idempotent corre-
sponding to b under the Morita equivalence between OLe and OGeS given
by HI™(YE,O)el. By Lemmaqm there exists a bijection ¢ : Irr(L |
Irrg(c)) — Irr(N ( ) | Irrg(Cg)) such that ¢ together with the bijection
¢ Irrg(L,¢) — Irrg(NL(Q),Cg) constructed in the proof of Lemma
satisfy assumptions (i)-(iii) of Theorem [6.27, Hence, by Theorem the
block b is therefore AM-good for /. ]

Remark 6.41. Assumption has been proved for all simple simply con-
nected groups G not of type D, see [CS19, Theorem B], and conjectured to
hold as well in this type. Therefore, Theorem [F] from the introduction is a
consequence of Theorem
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