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Abstract

Owing to the unique characteristics of terahertz (THz) waves and their interaction with
matter, THz imaging has significant potential in diverse fields, including life sciences,
non-destructive quality control, and security. However, today’s THz technology faces
major obstacles in providing the cost, compactness, and functional scope that is re-
quired to facilitate a wide-reaching use outside the laboratory. Therefore, the general
aim of this thesis is to increase the societal impact of THz technology by exploring novel
THz imaging modalities with integrated circuits (ICs) based on conventional silicon tech-
nolgy.

Previous research in THz ICs mostly focused on building compact integrated source and
detector components for far-field imaging systems that exploit the ability of THz waves to
penetrate through diverse dielectric materials. One part of this thesis joins this research
and demonstrates low-cost volumetric THz imaging based on computed tomography with
silicon components for the first time. To this end, a high-power 0.43 THz source in 0.13 µm

silicon-germanium heterojunction bipolar transistor (SiGe HBT) technology is developed
in this thesis. However, the resolution of THz far-field imaging is limited by diffraction to
the millimeter range, whereas some of the most promising THz applications in life sciences,
such as intraoperative imaging of cancerous tissue, are in need for a microscopic resolution
to resolve material properties on the cellular level.

This thesis presents the realization of microscopic THz imaging with a silicon-based sen-
sor system. The central contribution of this work is the development and analysis of a
128-pixel THz near-field sensor System-on-a-Chip (SoC) operating at 0.55 THz and show-
ing a spatial resolution around 10 µm. The sensor exploits the capacitive near-field interac-
tion between split-ring-resonator probes and imaging objects, giving an imaging contrast
based on the dielectric permittivity. To simultaneously enable real-time image acquisi-
tion, high sensor sensitivity, and an integration level that is comparable to conventional
consumer electronics, the full integration capabilities of a high-speed 0.13 µm SiGe bipo-
lar CMOS (SiGe-BiCMOS) technology are exploited. In particular, the presented SoC
employs cointegration of a chip-scale one-dimensional THz sensor front-end, analog signal
processing, and digital circuitry for controlling the chip and external communication. The
achieved results in terms of imaging speed, system cost, and integration level reach well
beyond the state of the art in THz near-field imaging.

The ability to rapidly acquire THz images with micrometer-scale resolution will be of

benefit to fundamental research into material properties in the THz range and lays the

foundation for the exploration of THz bioimaging applications on the cellular level. In

particular, the sensor enables the conduction of large-scale clinical studies on the relevance

of microscopic THz imaging to ex vivo tumor margin assessment in breast cancer surgeries

for the first time.
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Zusammenfassung

Aufgrund der spezifischen Eigenschaften von THz-Wellen und deren Wechselwirkung mit
Materie bietet die THz-Bildgebung erhebliches Potenzial in diversen Anwendungsbereichen,
unter anderem in den Biowissenschaften, der zerstörungsfreien Qualitätskontrolle und in
Sicherheitsanwendungen. Die gegenwärtigen THz-Systeme erfüllen jedoch nicht die Vor-
aussetzungen in Bezug auf Kosten, Kompaktheit und Funktionsumfang, um eine weitreich-
ende Verwendung außerhalb von Laborumgebungen zu ermöglichen. Das übergeordnete
Ziel dieser Dissertation ist es daher, den gesellschaftlichen Einfluss von THz-Technologie
durch die Realisierung neuartiger THz-Bildgebungsmodalitäten mit integrierten Schal-
tungen (IC) in konventioneller Siliziumtechnologie zu erhöhen.

Die bisherige Forschung in THz-ICs fokussierte sich vorwiegend auf die Entwicklung kom-
pakter Strahlungsquellen und Detektoren für Fernfeld-Bildgebungssysteme, welche die
Eigenschaft von THz-Wellen, verschiedene dielektrische Materialien zu durchdringen, aus-
nutzen. Ein Teil dieser Dissertation fügt sich in diese Forschung ein und demonstriert erst-
mals die kostengünstige volumetrische THz-Bildgebung unter Verwendung des Prinzips der
Computertomographie mit Siliziumkomponenten. Dazu wird im Rahmen dieser Disserta-
tion eine hochkompakte 430 GHz Quelle mit hoher Sendeleistung in einer 0.13 µm SiGe-
HBT Technologie entwickelt. Die räumliche Auflösung von solchen Fernfeldbildgebungs-
systemen wird allerdings durch Beugungseffekte bei Terahertzwellen auf den Millime-
terbereich begrenzt. Einige der vielversprechensten THz-Anwendungen in den Biowis-
senschaften, wie die intraoperative Bildgebung von Krebsgewebe, benötigen jedoch eine
Auflösung im Mikrometerbereich, um die Messung von Materialeigenschaften auf zellulärer
Ebene zu ermöglichen.

Diese Dissertation präsentiert die Realisierung von THz-Mikroskopie mit einem silizium-
basierten Sensorsystem. Der zentrale Beitrag dieser Arbeit ist die Entwicklung und die
Analyse eines 128-pixel THz Nahfeldsensorchips, welcher bei einer Frequenz von 550 GHz

arbeitet und eine Auflösung von ca. 10 µm aufweist. Der Sensor nutzt die kapazitive
Nahfeldwechselwirkung zwischen Split-Ring-Resonatoren (SRRs) und dem Objekt und
ermöglicht somit einen Bildgebungskontrast, der von der dielektrischen Permittivität bes-
timmt wird. Um gleichzeitig eine Bildgebung in Echtzeit, eine hohe Sensorempfindlichkeit
und ein Integrationsniveau zu ermöglichen, das mit herkömmlicher Unterhaltungselek-
tronik vergleichbar ist, werden die vollständigen Integrationsfähigkeiten einer 0.13 µm

SiGe-BiCMOS-Technologie genutzt. In dem Chip wird ein eindimensionales THz-Sensor-
Frontend, die analoge Signalverarbeitung und eine digitale Schaltung für die Steuerung
und die externe Kommunikation kointegiert. Die so erzielten Ergebnisse in Bezug auf
Bildgebungsgeschwindigkeit, Systemkosten, und Integrationsniveau gehen weit über den
aktuellen Stand der Technik der THz-Nahfeld-Bildgebung hinaus.
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Die Fähigkeit, mikroskopische THz-Aufnahmen schnell zu erzeugen, wird der Erforschung

von Materialeigenschaften im THz-Frequenzbereich zu Gute kommen und legt die Grund-

lage für die Untersuchung von Anwendungen in der biologischen THz-Bildgebung auf

zellulärer Ebene. Insbesondere können mit dem hier präsentierten Sensor erstmals um-

fassende Studien zur klinischen Relevanz von THz-Wellen für die intraoperative mikro-

skopische Tumorranderkennung bei der Brustkrebsbehandlung durchgeführt werden.
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Chapter 1
Introduction

The observation of the interaction of electromagnetic waves with matter is the most po-

tent means of acquiring information about our surroundings. It is no surprise that vision

emerged as the principal orientation and localization sense of humans and other developed

species. However, being optimized to the intensity of the sun’s radiation perceived on

earth, human sight accesses only a small portion of the electromagnetic spectrum, and di-

verse characteristics of wave-matter interaction are hidden to our eyes. Ever since Maxwell

laid the theoretical foundations of electromagnetism, researchers have hence aimed to ac-

cess waves that are not covered by human vision to enhance the understanding of nature

and to explore new technology. For the majority of the electromagnetic spectrum, they

were successful, and related inventions have profoundly impacted our daily life. For in-

stance, the exploitation of radio waves and long microwaves for wireless communication

and radar is a core pillar of the new information age. These frequency bands are today

conveniently accessed with modern low-cost nanoelectronics based on silicon technology.

Furthermore, photonic technology for the mid/near-infrared, visible, and ultraviolet fre-

quency bands has steadily matured, leveraging applications in vision, microscopy, spec-

troscopy, and wire-line communications. On another note, X-ray technology emerged as

an indispensable tool in modern medical diagnosis and treatment.

The terahertz (THz) range has lagged behind others in terms of utilization and societal

impact because of the inability of electronic and photonic technology to access this band

efficiently. The THz range lies between the microwave and the infrared region, as shown

in Figure 1.1. While the exact definition of the THz range varies among communities and

is a matter of individual preference, this work uses the most common classification in the

electronics community and defines frequencies from 0.3 THz to 3 THz as the THz range.
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Figure 1.1.: The part of the electromagnetic spectrum spanning from microwaves to X-
rays. (f: Frequency, λ: Wavelength).

Just like other electromagnetic waves, THz waves and their interaction with matter are

unique from a phenomenological standpoint. On the one hand, THz waves show promise

for material characterization. The photon energy levels of THz waves are common to

many rotational and vibrational resonances of gas phases, to fundamental excitations of

crystalline solids, and to collective vibrational modes of biomolecules and hydrogen-bond

networks [1]–[4]. On the other hand, THz waves possess unique properties for imaging.

Due to the low photon energy, THz radiation is not harmful, and many optically opaque

materials like paper, plastics, and cardboard are transparent to THz radiation. Besides,

water molecules strongly absorb, and metals reflect THz waves, providing a distinct con-

trast in imaging applications.

Despite these intriguing properties, the lack of compact and low-cost technology solutions

has limited the utilization of THz waves to a few application niches and fundamental sci-

ences. Highly sophisticated electronic instrumentation has been used for decades in radio

astronomy to analyze the thermal emission lines of the interstellar medium [5], [6]. More-

over, electronic THz systems relying on split-block hollow waveguide assemblies combined

with III-V circuits or Schottky diodes show promise to be utilized in some low-volume

imaging applications, e.g., in mass transit security and loss prevention in industry [7], [8].

The research in material characterization with THz waves is mostly driven from the pho-

tonics domain. With the advent of THz time-domain spectroscopy (TDS) 30 years ago [9],

[10], researchers gained access to a laboratory tool for broadband THz spectroscopy. A

diverse set of potential applications has since then been identified, ranging from the de-

tection of hazardous materials in security applications to biomedical applications such as

label-free DNA detection [11] and cancer diagnostics [own1], [own2].

Most of the contemporary research in THz applications addresses far-field imaging and

sensing involving free-space traveling waves. Due to diffraction, the resolution of obser-

vations in the far-field is limited to the macroscopic scale for imaging with THz waves.

The relevant characteristic features of many applications in biomedicine, quality con-

trol, and fundamental science, however, range far below the diffraction limit and require

devices for microscopic and nanoscopic imaging operating in the near-field. Figure 1.2

compares the characteristic length scales of some potential applications in the THz fre-



Chapter 1. Introduction 5

10cm1cm1mm

viruses

THz NSOM

10nm 100nm 1µm 10µm 100µm

 

chromosomes

 
THz far-field imager

THz Solvation Cemistry

Biomedical Applications

Nondistructive TestingSolid State Physics

THz CMOS Cameras  THz near-field ICs

security

fingerprint
tissue

semiconductors

packaging

http://ticwave.comwww.witec.de

1 nm

proteins,

antibodies

DNA bases

T
H

z

 d
iff

r
a

c
tio

n
 lim

it

Figure 1.2.: Potential terahertz imaging and sensing applications ordered by characteristic
length scales of the relevant features.

quency range. As of yet, THz imaging beyond the diffraction limit is implemented using

THz near-field scanning optical microscopy (NSOM) [12]. Although very high spatial

resolution down to 20 nm–40 nm can be achieved [13], typical NSOM systems require

demanding instrumentation and long measurement times to reach a reasonable system

sensitivity. As a result, THz NSOM systems are constrained to the laboratory use and

applications in fundamental science such as the visualization of carrier dynamics in semi-

conductors [14].

The previous remarks underline that the traditionally exploited photonic and electronic

platforms for both far-field and near-field THz imaging suffer from severe drawbacks for

practical adoption, including high system cost, low achievable integration level, or low

reliability. Therefore, the broad aim of this thesis is to leverage THz applications by

means of integration and miniaturization of THz systems. This thesis contributes to the

disciplines of THz far-field and THz near-field imaging. The herein presented integrated

systems and components are based on modern nanoscale silicon process technologies. Sil-

icon technology addresses the shortcomings of present THz technology by concurrently

offering economies of scale, small form-factors, and unprecedented integration capability

at the highest industry standards. Although silicon devices are pushed to operate in their

technological limits in the THz range, latest advancements in high-speed silicon process

technology and THz circuit design techniques have led to first demonstrations of highly

capable integrated THz systems. Further research in THz integrated circuits (ICs), such

as the one presented in this thesis, will thus be central for the exploration of THz appli-

cations that require compact THz microsystems for sensing [15]–[17] or far-field imaging

components at a reasonable price-performance ratio [own3][18].
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The primary aim of this thesis is to put forward a method for microscopic THz material

characterization and imaging that is more practically applicable as compared to NSOM.

To this end, a miniaturized THz near-field sensor system based on cutting-edge silicon

technology is developed. It is hoped that the herein presented findings open doors for

further research in yet inaccessible biomedical THz applications with significant relevance.

In particular, the presented device should allow to conduct comprehensive studies on the

clinical relevance of THz waves to microscopic ex vivo tumor margin assessment in breast

cancer surgery for the first time [own1], [own2].

1.1. Central Research Questions and Contributions

The research questions that are sought to be answered in this thesis are listed below. The

related original contributions of this work are also given.

Central Research Question

How to build silicon-based THz systems for real-time microscopy in the THz

frequency band?

To resolve microscopic object features in the THz band, THz sensors relying on the con-

fined interaction of electromagnetic waves with objects in the near-field have to be em-

ployed. Previous research presented silicon-integrated single-pixel near-field sensors based

on split-ring-resonator (SRR) probes with a microscopic resolution at around 550 GHz

[15][19]. This work aims to integrate such sensors into chip-scale multi-pixel sensor sys-

tems by exploring the full integration capabilities of silicon technology. Integration efforts

targeting high-speed image acquisition are vital to the development of future THz sensor

systems for biomedical applications. In this context, the following research sub-questions

arise:

• How to understand and model the contrast mechanisms of SRR-based integrated

THz near-field sensors?

• How to build a scalable system architecture to enable chip-scale multi-pixel arrays

of THz near-field sensors with minimum pixel pitch?

• Can multi-pixel near-field sensor systems be advanced towards System-on-a-Chip

(SoC)-level integration, combining THz with low-frequency mixed-signal function-

ality to concurrently enable imaging with high sensitivity and high speed?
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• Can such systems be used as a tool for biomedical applications such as tumor

margin assessment in breast cancer surgery?

Original Contributions:

The most significant contribution of this thesis is the development of a chip-scale THz

near-field sensor array with 128-pixels, real-time imaging capabilities, and a spatial imag-

ing resolution around 10 µm in 0.13 µm silicon-germanium (SiGe) heterojunction bipolar

transistor (HBT) technology [own1], [own4]–[own6]. The presented device employs the

cointegration of a scalable one-dimensional THz sensor front-end, including all functions

such as illumination, sensing, and detection with mixed-signal processing. Moreover, this

work develops and analyzes an equivalent circuit model to advance the understanding in

near-field interaction of SRR probes with objects and the formation of the sensor response.

Finally, the study presents human tissue imaging experiments to demonstrate the utility

of the device. To the best of the author’s knowledge, the presented device is the world’s

first integrated multi-pixel sensor for microscopic THz imaging.

Supplementary Research Question

How to realize advanced THz far-field imaging concepts, such as 3D imaging, with

miniaturized silicon-based THz components?

To enhance utilization and acceptance of THz far-field imaging systems, compact source

and detector systems offering a reasonable price-performance ratio and increased function-

ality are required. In particular, advanced far-field imaging concepts such as volumetric

imaging with computed tomography (CT) [own3], diffuse scene imaging [20], and com-

pressed imaging [own7] show high potential regarding practical adoption if the required

components can be integrated into low-cost silicon technology. However, the limited speed

of silicon devices constitutes an ongoing scientific challenge, requiring new design method-

ologies and integration concepts to make THz imaging systems in silicon applicable. Thus,

another part of this thesis serves to advance the discipline of silicon-based THz far-field

imaging. The study is limited to the design of incoherent THz sources in silicon technology

and their application in CT imaging. In this context, the following research sub-questions

arise:

• How to achieve acceptable power levels with silicon-based THz sources for practical

imaging applications?

• Can THz CT be realized when only relying on silicon-based components?
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Original Contributions:

The design of an integrated incoherent (unlocked) doubler-based THz source in 0.13 µm

SiGe HBT technology is explored in the scope of this thesis. The source utilizes optimized

extraction of the second harmonic and shows a total radiated power of −6.3 dBm at

around 430 GHz [own8]. To the best of the author’s knowledge, this is the highest radiated

power reported among silicon-based single-radiator sources above 350 GHz. The presented

source and a state-of-the-art SiGe HBT power detector are furthermore employed in a low-

cost THz CT system [own3], [own7]. With this system, 3D imaging of hidden objects is

presented. To the best of the author’s knowledge, the THz CT imaging system is the first

one to rely only on low-cost silicon components.

1.2. Thesis Structure

This thesis is divided into four major parts, comprising a total of eight chapters. They

are organized as follows:

Part I: Context. Part I, including Chapter 1 and Chapter 2, gives the motivation

and the scientific context for this thesis. Chapter 2 first provides the theoretical back-

ground regarding the contrast mechanisms and spatial resolution in THz imaging. The

chapter concludes with a literature review of previous work in the field of THz technol-

ogy.

Part II: Far-field Imaging. This part addresses the supplementary research question

and systems for diffraction-limited far-field THz imaging. Chapter 3 presents the design

of the silicon-based 430 GHz source. Chapter 4 briefly introduces the fundamentals of CT

and thereafter, demonstrates THz CT with silicon components.

Part III: Near-field Imaging. This part addresses the central research question and

systems for THz imaging in the near-field. Chapter 5 provides the necessary background

for THz near-field imaging in silicon technology. Chapter 6 presents a lumped equivalent

circuit model of the sensor. Chapter 7 presents the design and experimental characteriza-

tion of the chip-scale THz near-field sensor array.

Part IV: Conclusion. This part summarizes the thesis and gives suggestions for future

research.



Chapter 2
Terahertz Imaging and Sensing

This chapter opens with a brief introduction of the theoretical principles that govern

imaging and sensing with THz waves. The discussion evolves around the fundamental

quantities of imaging systems: contrast and spatial resolution. Imaging contrast originates

from the spatial variation of the optical properties of a sample, which are dictated by

the dielectric permittivity. Starting from Maxwell’s equation, the dielectric permittivity

is defined, and the fundamental principles of wave-matter interaction are described. The

specifics of the constitution of the dielectric permittivity in the THz range are highlighted.

Thereafter, the chapter elaborates on spatial resolution. The diffraction limit in far-field

imaging systems and the means to circumvent the diffraction limit with near-field imaging

are discussed. It is shown that the spatial resolution of THz far-field imaging systems is not

sufficient for applications such as biomedical tissue imaging, which forms the motivation

for the design of the integrated near-field THz imaging systems presented Part III of this

thesis. The chapter closes with a literature review on contemporary THz technology for

imaging and sensing.

2.1. Contrast in Terahertz Imaging

2.1.1. Macroscopic Electrodynamics

The interaction of THz waves with matter is governed by Maxwell’s equations. THz

imaging is usually concerned with the macroscopic interaction of source-free matter with
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time-harmonic fields. In this case, Maxwell’s equations are given as:

∇×E = −jωB, (2.1)

∇×H = jωD + jf , (2.2)

∇ ·D = ρf , (2.3)

∇ ·B = 0, (2.4)

where E denotes the electric field, B the magnetic flux density, H the magnetic field, D

the electric displacement, jf the free current density, and ρf the free charge density. The

properties of matter appear in the definitions ofD andH, which relate to the fundamental

fields E and B as follows:

D = εE = ε0E + P = εrε0E, (2.5)

H =
1

µ
B =

1

µ0
−M =

1

µ0µr
B, (2.6)

where ε0 and µ0 are free-space permittivity and permeability, ε and µ are the permittivity

and permeability, εr and µr are the relative permittivity and the relative permeability. P

and M denote the polarization and magnetization, respectively. Since magnetic interac-

tion tapers off in the lower GHz frequency range in natural materials (µ → µ0), we are

mostly concerned with the electric material properties at THz frequencies. Three phenom-

ena describe these: i.) The current conduction losses caused by the collision of free carriers

within the material, ii.) polarization, i.e., the alignment and generation of electric dipoles,

and iii.) dielectric losses. The conduction losses relate jf to E through the conductivity

σ as:

jf = σE. (2.7)

The dielectric effects are described by the complex-valued relative permittivity εr:

εr = ε′r − jε′′r , (2.8)

where the real part covers phase shift and dispersion, and the imaginary covers the di-

electric losses. Combining Equation 2.7 and Equation 2.8 with the Maxwell-Ampère law

(Equation 2.2) gives:

∇×H = jωεE + σE = (σ + ωε0ε
′′
r)E + jωε0ε

′
rE = jω

[
ε0ε
′
r − j

(
ε0ε
′′
r +

σ

ω

)]
E. (2.9)

This equation reveals that the conductive loss and the dielectric loss behave phenomeno-

logically similar. Hence, it is convenient to combine both in a modified imaginary part of
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the relative permittivity with ε′′r + σ
ε0ω
→ ε′′r . This leads to the definition of an ’effective’

relative complex permittivity, which will be denoted with εr throughout the rest of this

thesis. Furthermore, the complex-plane angle of the reaction to an external E field in

Equation 2.2 can be defined as the loss tangent:

tan δ =
ε′′r
ε′r

+
σ

ωε0ε′r
. (2.10)

As of yet, no restrictions have been made on the permittivity itself, and in fact, it reflects all

the complexity of the underlying physical processes. It can be non-linear, anisotropic, and

a function of time and temperature. But most importantly, the permittivity is frequency-

dependent1.

The optical properties of materials are often more conveniently expressed in terms of the

complex refractive index ñ, defined as the square root of the permittivity:

ñ =
√
εr = n− jκ, (2.11)

where n is the real refractive index, and κ is the extinction coefficient.

2.1.2. Absorption and Dispersion

The effect of the material properties on electromagnetic waves and related observables can

be examined based on the general expression of propagating plane waves:

E = E0e
j(ωt−kx), (2.12)

where the wavenumber k is connected to the permittivity through the dispersion relation

for nonmagnetic materials as:

k =
√
εrε0µ0ω. (2.13)

Since the permittivity is complex, the wavenumber can be split into a real part and an

imaginary part with k = β−j α2 , thereby giving for the electric field of the wave:

E = E0e
−α

2
xej(ωt−βx). (2.14)

Here, α is the attenuation constant describing the absorption of waves in media, and β is

the phase constant describing the spatial scale of oscillation. Typical detectors for THz
1It is noted that not only the real part describing dispersion, but also the imaginary part describing losses
is frequency-dependent (εr(ω) = ε′r(ω) − jε′′r (ω)). They are related to each other through Kramers-
Kronig relations [21]. The indication of frequency dependency is herein dropped for simplicity.
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waves measure the radiation intensity I, which is proportional to the square of Equa-

tion 2.14. The magnitude of the time-averaged Poynting vector gives the radiation inten-

sity and has the form of the Beer–Lambert Law:

|< S > |= I =
1

2

√
εrε0
µ0

E2
0e
−αx = I0e

−αx. (2.15)

Hence, an attenuation constant greater than zero leads to an exponential attenuation of

the wave intensity in space. To provide a better understanding of the relationship between

wave propagation and the material properties, α and β can be expressed in terms of the

dielectric permittivity:

α = 2
ω
√
µ0ε0√
2

√
|ε′r − jε′′r |−ε′r (2.16)

β =
ω
√
µ0ε0√
2

√
|ε′r − jε′′r |+ε′r. (2.17)

Based on these relationships, a few interesting observations can be made. There are two

ways of how a wave can be attenuated (α > 0). Either, the material possesses a non-

zero imaginary part of the permittivity (ε′′r > 0), i.e., the material is lossy such that

the energy of the wave is converted into heat. The relationship between attenuation

and losses is nonlinear but monotonic, such that an increase in material losses always

leads to an increase in attenuation. This is the typical case for lossy dielectrics or for

conductors above the plasma frequency (see Section 2.1.4). Or, the material shows a

negative real part of the permittivity. Assuming a lossless material (ε′′r = 0), the absorption

coefficient and the phase constant then become α = 2ω
√
µ0ε0

√
|ε′r| and β = 0, respectively.

This describes an exponentially decaying standing wave, which is commonly termed as an

evanescent wave. Notably, a wave incident on such material does not lose energy but

is rather completely reflected back. As it will be shown in Section 2.1.4, metals exhibit

a large negative real part of the permittivity in the THz range, which is why they are

excellent reflectors.

2.1.3. Reflection and Transmission at Material Boundaries

When a wave hits the boundary between two plane media, it is split into a transmitted

and a reflected wave whose magnitudes and propagation directions depend on the material

properties and the incident angle. Most generally, we consider arbitrarily polarized trans-

verse electromagnetic waves, which can be decomposed into perpendicular (s-polarized)

and parallel (p-polarized) components. The polarizations are orthogonal to each other and

reference to the plane of incidence. Figure 2.1 depicts the geometrical relations and the

direction of the field components. Maxwell’s Equations imply that the tangential compo-
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Figure 2.1.: Illustration of the field components of an electromagnetic wave at a planar
boundary for s-polarized (a) and p-polarized (b) waves.

nents of the electric and the magnetic field are continuous across the boundary. This can

be used to derive the law of refraction, generally known as Snell’s law, and the law of re-

flection. For nonmagnetic materials, they are respectively given as:

√
εr,1 sin θi =

√
εr,2 sin θt and (2.18)

θi = θr. (2.19)

The boundary conditions furthermore determine the reflection and transmission coeffi-

cients for the amplitudes of the s-polarized and p-polarized wave components:

rs =

√
εr,1 cos θi −

√
εr,2 cos θt

√
εr,1 cos θi +

√
εr,2 cos θt

(2.20)

ts =
2
√
εr,1 cos θi

√
εr,1 cos θi +

√
εr,2 cos θt

(2.21)

rp =

√
εr,2 cos θi −

√
εr,1 cos θt

√
εr,2 cos θi +

√
εr,1 cos θt

(2.22)

tp =
2
√
εr,1 cos θi

√
εr,2 cos θi +

√
εr,1 cos θt

. (2.23)

The fraction of the intensity of the wave that is reflected at the boundary is termed the

reflectance R. Since the intensity is proportional to the square of the amplitude (see

Equation 2.15), the reflectance can be written as:

Rs = |rs|2 and Rp = |rp|2, (2.24)

whereas the reflectance needs to be calculated individually for both polarizations. Because

power needs to be conserved at the boundary, the fraction of the intensity of the wave
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transmitted is given as:

Ts = 1−Rs =

√
εr,2
√
εr,1

cos θt
cos θi

|ts|2 and Tp = 1−Rp =

√
εr,2
√
εr,1

cos θt
cos θi

|tp|2. (2.25)

Typical dielectrics are considerably polarizable in the THz band (εr > 1). Therefore, the

contrast in THz imaging systems relying on propagating waves does not only originate

from the characteristic absorption but also from Fresnel losses, i.e., from power loss due

to reflection or refraction at material boundaries.

2.1.4. Wave-Matter Interaction Phenomena in the THz Band

The previous sections discussed how the dielectric permittivity of matter influences wave

propagation. This section gives a brief overview on the physical effects defining the dielec-

tric permittivity in the THz range. The interaction of time-harmonic fields with matter is

governed by the dynamics of the induced motion of charged particles. There are multiple

mechanisms related to the microscopic atomic, molecular, and intermolecular structures

that add up to the overall macroscopic dispersion and absorption of matter. All of them

depend on the photon energy E = hf , and thus the frequency. Several characteristic ener-

gies of such mechanisms fall into the THz band (E = 1.2 meV–12 meV). In the following,

the classical models to describe the effects defining the permittivity at THz frequencies are

briefly discussed, including the Lorentz model for resonance excitation of bound charges,

the Drude model for conduction of free carriers, and the Debye model for dipolar relaxation

processes.

Resonance Effects: The Lorentz Oscillator Model

The interaction of waves with bound charges influences the dielectric function. Bound

charges are displaced with respect to their average equilibrium position by an external

field due to the Lorentz force. This causes a net dipole moment, which contributes to

the polarization. Upon displacement, bound charges experience a restoring force, which

gives rise to a harmonic oscillation motion characterized by a resonant frequency ω0.

This oscillator model is called the Lorentz oscillator model. It was initially introduced to

describe electrical polarization, i.e., the displacement of the electron shell with respect to

its nucleus. The resonance frequency of electrical polarization is typically in the ultra-violet

frequency range (f0 ≈ 1015 Hz) due to the small mass of the involved particles. However,

the Lorentz oscillator model provides a good qualitative description of other effects that

are resonant in the THz band, such as low-frequency vibrations in ionic crystals [2] and

bending and stretching of hydrogen bonds [22].
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Figure 2.2.: Classical Lorentz model for bound-charge resonance effects. Illustration, after
[23] (a), and relative permittivity close to the resonance frequency (b).

Figure 2.2(a) illustrates the Lorentz oscillator model [23], which is analogous to the

spring-mass systems of classical mechanics. The equation of motion for the interaction

of a bound charge with a monochromatic wave of the form E(t) = E0e
jωt is written

as:
d2x

dt2
+ γ

dx

dt
+ ω2

0x =
q

m∗
E(t), (2.26)

where q is the charge, m∗ is the effective mass of the particle, and γ is the damping

coefficient describing the average rate at which the oscillator loses energy. The motion

induces a polarization, which is given by the average displacement x of the bound charges

with a carrier density N :

P = Nqx = (εr − εr,∞)ε0E(t), (2.27)

where εr,∞ is the real relative permittivity in the high-frequency limit. Equation 2.26 and

Equation 2.26 can be combined into a polarization equation:

d2P

dt2
+ γ

dP

dt
+ ω0P =

Nq2

m∗
E(t). (2.28)

Solving the polarization equation for the complex relative permittivity yields:

εr = εr,∞ +
ω2
p

ω2
0 − ω2 + jωγ

, (2.29)

where the plasma frequency ωp = Nq2

m∗ε0
was introduced. Figure 2.2(b) depicts the real and

imaginary part of the relative permittivity close to the resonant frequency ω0. The imagi-

nary part peaks at the resonance frequency, giving rise to strong absorption, according to

Equation 2.14.
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Free Carrier Conduction: The Drude Model

Materials possessing a significant amount of free carriers, such as metals or semiconductors,

can be modeled with the Drude model. Free electrons are not bound with a restoring force

or potential barrier but rather move against a fixed background of positive ions. In other

words, the spring in Figure 2.2 is cut, and charges are allowed to move freely. Current

conduction thus represents a limiting case of the Lorentz oscillator model with ω0 → 0.

Therefore, Equation 2.29 simplifies to the Drude permittivity as:

εr = εr,∞ −
ω2
p

ω2 − jωγ
, (2.30)

where γ denotes the average rate of collisions of the carriers with the lattice. The carriers

are assumed to lose their momentum in the scattering process. Figure 2.3 depicts the real

and imaginary parts of the relative permittivity for gold in the electromagnetic spectrum

from the upper millimeter-wave (mmWave) band to the ultra-violet band [24]. For frequen-

cies below the plasma frequency (ω � ωp), the Drude model gives a large real and imagi-

nary part for the permittivity. This results in the typical wave-interaction for metals char-

acterized by small penetration depths and strong reflective behavior.

For frequencies above the plasma frequency, conductors resemble the behavior of lossy

dielectrics. Incident waves are thus able to propagate, and the conductor becomes mostly

transparent. The plasma frequency is proportional to the square root of the carrier density

and thus very large for metals (typically in the ultra-violet frequency range). Intrinsic

semiconductors, however, show plasma frequencies well below the THz band. For example,

the plasma frequency of intrinsic silicon with a carrier density in the order of 1× 1010 cm−3

is below 1 GHz. This leads to low-loss wave propagation and has motivated the use of

silicon lenses for optical purposes in the THz band.

Relaxation: The Debye Model

The Lorentz model described in Section 2.1.4 is based on the assumption that a restoring

force repels the system back into equilibrium. Such behavior is typically related to induced

dipoles rather than permanent dipoles. The orientation of permanent dipoles in matter

is normally arbitrary. If an electrical field is applied, the dipoles are reoriented slightly

in their thermal motion, thereby yielding a net polarization. In contrast to the Lorentz

oscillator, there is no resonance behavior when the field is turned off. The reorientation

of the dipoles towards equilibrium is rather a relaxation process governed by the interac-

tion of dipoles with their environment in the statistical process of thermal motion. The
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Figure 2.3.: Real and imaginary part of the relative permittivity of gold as a function of
frequency. The relative permittivity is calculated based on the Drude model
with εr,∞ = 1, ωp/2/π = 2.18× 103 THz, and γ/2/π = 6.45 THz. After [24].

Figure 2.4.: Debye-type frequency dependency of the relative permittivity for a hypothet-
ical material with εs = 5 and ε∞ = 1, and τ = 1/ω0.

related polarization mechanism is called oriental polarization or Debye relaxation and is

of cardinal importance for describing the properties of polar liquids in the microwave and

THz bands.

In the simplest form, the relative permittivity of this mechanism can be described by the

Debye equation:

εr = εr,∞ +
εs − εr,∞
1 + jωτ

, (2.31)

where εs denotes the static relative permittivity at ω = 0, and τ is the relaxation time.

Figure 2.4 shows the real and imaginary parts of the relative permittivity for a hypo-

thetical Debye-type material. At low frequencies (ω � 1/τ), the dipoles follow applied

electric fields with a phase lag, which is described by the real part of the permittivity.
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Figure 2.5.: Characteristic frequencies of resonant interaction of THz waves with matter.
Adapted from [3].

With increasing frequency, the increasing motion radius leads to higher losses. When the

frequency of the applied field is much larger than the inverse of relaxation time (1/τ � ω),

the diples cannot follow the field anymore, and no losses due to polarization are induced

(ε′′r → 0).

Characteristic Frequencies in the THz Band

Figure 2.5 gathers the relevant resonance mechanisms for the different phases of matter

that fall into the THz band and its vicinity. In the microwave and THz bands, many gases

exhibit distinct spectral absorption fingerprints that are related to transitions between

rotational quantum levels of polar molecules [1]. The high specificity of these rotational

transitions has made rotational spectroscopy a valuable alternative to the established

mid-infrared vibrational and rotational-vibrational spectroscopy, which is based on the

high-energy vibrations (bending and stretching of molecules) that are also indicated in

Figure 2.5.

In liquids and solids, molecules cannot freely rotate, and such resonances do not exist.

However, low-energy vibrational modes associated with large collective motions of molecule

systems can show characteristic resonance behavior in the THz range. This has been

exploited for a variety of applications, including the detection of illicit drugs [25] and
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explosives [26], for the investigation of biomolecules such as DNA [3], and for the probing

of solvation dynamics [4]. Furthermore, some fundamental phonon modes in organic and

inorganic crystals fall into the THz range [2], [3].

An important note has to be given regarding the specificity of the THz spectra: Since

the collision and relaxation rates increase for dense matter, line-widths and quality factors

(Qs) are significantly smaller for liquids and solids. Resonances in low-pressure gases show

a Q of approximately 106, and resonances in gases near atmospheric pressure show a Q

of approximately 102 [27]. Resonances in liquids and solids, however, show very small Q,

leading to almost continuous spectra.

Water as a Contrast Agent
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Figure 2.6.: Attenuation of electromagnetic radiation by atmospheric gases. After (ITU-R
2003).

THz waves are very sensitive to water. Water (H2O) is a polar molecule: The two hydrogen

atoms each share an electron with the oxygen atom to form a covalent bond. Since

oxygen has a higher electronegativity than hydrogen, the side of the molecule with the

oxygen atom is negatively charged. In gases such as water vapor, the dipolar nature of

water gives rise to the aforementioned resonant peaks due to rotational transitions. At

atmospheric pressure, these resonances lead to broad absorption peaks, which compound

the so-called continuum absorption whose physical origins are still debated [28], [29]. As

shown in Figure 2.6, THz waves, therefore, attenuate rapidly in the atmosphere (more than

10 dB m−1 around 550 GHz). Joined with the free-space path loss and the lack of powerful

radiators in the THz band, it is challenging to maintain appropriate signal strength over

reasonable path lengths for many terrestrial applications.
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In contrast, the lossy character of water in the liquid phase can serve as a valuable con-

trast mechanism in the THz band. It is not surprising that the first demonstration of

THz imaging utilized the strong absorptive contrast between humid and dry features of

leaves [30]. Today, the interest in the THz response of water stems primarily from its

cardinal importance to biomedical applications. Nearly all biological processes involve

water. In biological environments, the hydrogen atoms form hydrogen bonds with other

electronegative atoms or with other water molecules. The bulk dielectric relaxation and

some distinct intermolecular vibrational energies of hydrogen bond networks fall into the

THz band [3]. Such hydrogen bonds exist in practically all biological environments; they

thus contribute significantly to the overall dielectric response of relevant biological sam-

ples.

The dielectric behavior of water is influenced by two relaxation phenomena (Debye-type),

leading to a significant loss in the microwave and low THz frequency band, and by several

bending and stretching modes (Lorentz-type) that are resonant above 3 THz [22]. As it is

to be shown in Section 2.3.4, we can only access the lower end of the THz spectrum with

silicon circuits, where the relaxation dominates the dielectric behavior. A slow relaxation

process giving a loss peak at around 20 GHz is related to the cooperate reorientation

dynamics of large hydrogen bond structures. A faster relaxation process gives a loss peak

at around 1 THz2.

slow relaxation

fast relaxation

Figure 2.7.: Measured real and imaginary parts of the relative permittivity of liquid water.
The imaginary parts resulting from the slow and fast Debye relaxations are
also shown. The extracted parameters for the fast and slow Debye term are
∆εr,1 = 73.19, τ1 = 8.33 ps and ∆εr,2 = 2.24, τ1 = 0.1 ps. By courtesy of
Quentin Cassar, University of Bordeaux, France.

2There is still an ongoing debate on the physical origin of the fast relaxation in water. Hypotheses relate
the fast relaxation either to rotations of weakly bonded molecules, or to different molecule motions [22]
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To demonstrate the dielectric properties of liquid water, its complex relative permittivity

was measured with a commercially available THz TDS system (TPS spectra 3000 from Ter-

aView) in a transmission-mode setup between 0.1 THz–1.5 THz. The results are depicted

in Figure 2.7. According to the previous remarks, the results were fitted to a dielectric

response comprising the superposition of two Debye terms as:

εr = εr,∞ +
∆εr1

1 + jωτ1
+

∆εr2
1 + jωτ2

, (2.32)

where ∆ε1,2 denotes the step size in the real part of the permittivity of the relaxation

process. The imaginary parts of the fitted Debye terms are also shown. The high-frequency

Lorentz terms were omitted because of their low contribution in the measured bandwidth.

This model is commonly referred to as the double Debye model. The results underline the

aforementioned lossy characteristic of water in the THz range.

2.1.5. Application: Breast Cancer Margin Assessment

In recent years there has been increasing interest in THz techniques for biomedical imag-

ing of human tissues [31]–[33][own1], [own2]. In particular, prior research has shown that

malignant tissue exhibits different electromagnetic properties than healthy tissue in the

THz band [3]. One of the most promising applications in this field is the use of THz

imaging in breast cancer surgeries.With more than 2 million new cases in 2018 [34], breast

cancer is the most common cancer type among women by far. Diagnosed women typi-

cally undergo surgery to remove the tumor. Due to technological advances in early cancer

diagnosis, surgeries removing only the primary tumor while conserving the rest of the

breast are increasingly ordinary. This method, however, shows limited precision, and up

to 20% of the cases exhibit malignant tissue at the margins of the excised material [35],

[36], indicating that the tumor has not been entirely removed. These margins are typi-

cally assessed in a postoperative microscopic histopathologic examination, which can take

several days. In the case of detection of a positive margin, a second surgery is required,

resulting in increased mortality risk and costs. Hence, there is an urgent need for an

imaging device providing an accurate and fast assessment of tumor margins in the course

of the surgery.

Fitzgerald et al. were the first to demonstrate a distinct contrast between healthy and

malignant breast tissue in the THz range [37]. Since then, several studies have consistently

reported higher refractive indices and absorption coefficients for malignant tissue than for

healthy tissue at the lower end of the THz band using THz TDS imaging systems [32], [38],

[39][own2]. Figure 2.8 shows exemplary the results presented in [own2]. The results are

the mean values of ten fresh tissue samples, and the error bars represent a 95% confidence
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(a) (b)

Figure 2.8.: The measured absorption coefficient (a) and refractive index (b) of benign,
malignant, and adipose tissue over the frequency range 0.2 THz–0.8 THz. Af-
ter [own1] © 2019 IEEE.

level. The measurements were obtained with a reflection-mode THz TDS setup. The tissue

composition of such samples depends on the patient, but usually includes adipose tissue,

benign, and malignant tissue. A strong contrast is visible between adipose and malignant

or benign tissue. The differentiation between malignant and benign tissue proves to be

more challenging. Malignant tissue clearly depicts a higher refractive index, particularly

at low THz frequencies. Below until around 500 GHz, the absorption coefficient is not

differentiable, whereas a difference is visible in the 550 GHz range.

The physical origins of the contrast are still under investigation. Human tissue exhibits

a complex inhomogeneous cell structure. Since the largest human cells are typically sized

some tens of micrometers, it is challenging to link the origins of the observed contrast to

microscopic phenomena with the as-yet employed macroscopic imaging techniques. How-

ever, the key contrast factor is suspected to be attributed to increased water concentration

in the diseased tissue, to which THz waves are particularly sensitive, as explained earlier.

Due to the strong correlation of the THz tissue response to the response of water, previ-

ous studies have extracted the double Debye model parameters to quantify the dielectric

response of different human tissue types at THz frequencies [32][own2]. Note that the ma-

terial properties show a smooth variation over frequency, and no specific resonances are

visible. Therefore, even relative permittivity characterization at a single frequency should

offer a useful contrast for tumor identification and margin assessment. This is the key

observation justifying the single-frequency operation of the near-field sensors presented in

Part III of this thesis.

Figure 2.9 compares a 560 GHz reflection amplitude image with a photograph and the

results of a histopathological assessment for the same tissue sample. The THz image was
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Figure 2.9.: Image comparison for a tissue sample containing a non-invasive breast car-
cinoma. Photograph (a), a 560 GHz THz reflection-mode image (b), and
histopathology results (c). By courtesy of Quentin Cassar, University of Bor-
deaux, France.

scanned with a THz TDS setup operating in reflection-mode. The THz image shows a

clear contrast between healthy breast tissue and carcinoma. However, it is also visible

that the employed far-field imaging technique cannot sufficiently resolve the tumor mar-

gins. The exact structure of the tumor is not depicted in the THz image, even for this

relatively large tumor. A spatial resolution in the range between 1 µm–10 µm is expected

to be necessary to localize tissue margins precisely and to provide insights into the THz

properties at the cellular level [own1]. The following section discusses the limitations

of spatial resolution in far-field imaging and how these can be overcome with near-field

imaging.

2.2. Spatial Resolution in Terahertz Imaging

2.2.1. Limitations of Far-Field Imaging

In far-field imaging systems, propagating electromagnetic waves are used to illuminate an

imaging object, whereas the distance between the object and optical elements is signif-

icantly larger than the illumination wavelength λ. Ernst Abbe discovered in 1873 that

lenses act as diffracting apertures, fundamentally limiting the achievable resolution of far-

field imaging systems to around half a wavelength [40]. In the following, the so-called

’angular spectrum representation of optical fields’ [41], [42] is used to explain the origin of

the diffraction limit.

In imaging applications, we are interested in how spatial information contained in the

field distribution in an object plane is transferred to an image plane, as illustrated in

Figure 2.10. A monochromatic wave in two-dimensional vacuum is considered here to

keep it simple. Now, the complex amplitude of the electrical field E(x, z), describing, for
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Figure 2.10.: The angular spectrum representation of optical fields in two-dimensional
space. The bottom illustrates the waves originating from an object plane in
reciprocal space. Transverse spatial frequencies are indicated in red. Trans-
verse wavenumbers (kx) are restricted to a circular area with radius k. The
optical system, depicted in real space, collects only a limited amount of spa-
tial frequencies in the object plane (diffraction). Adapted from [42].

example, a source or a scatterer, is considered to be known in the object plane with z = 0.

The field is then described as a linear superposition of plane waves. In any plane with

z = const., the one-dimensional Fourier transform of E(x, z) with respect to x can be

evaluated as:

Ê(kx, z) =
1

2π

∫ ∞
−∞

E(x, z)e−jkxx dx, (2.33)

where kx is the angular spatial frequency in the object plane. The complex amplitude

E(x, z) of the time-harmonic electrical field with propagation constant k = ω
c satisfies the

Helmholtz equation3:

∇2E(x, z) + k2E(x, z) = 0. (2.34)

To obtain the evolution of the Fourier spectrum with propagation from the object plane to-

wards z-direction, the Fourier transform of the field is inserted into Equation 2.34:

∂2Ê(kx, z)

∂k2
z

+ k2
zÊ(kx, z) = 0, (2.35)

where the wave vector kz in propagation direction depends on kx as can be inferred from

3The temporal dependency of the electrical field with E(x, z, t) = E(x, z)e−jωt is omitted for simplicity.
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the dispersion relation:

kz =
√
k2 − k2

x. (2.36)

Assuming that the wave only propagates towards the image plane (kz > 0), the solution

to Equation 2.35 is:

Ê(kx, z) = Ê(kx, 0)ejkzz. (2.37)

Applying the inverse Fourier transform to Ê(kx, z), a solution to the field for arbitrary z

is found:

E(x, z) =

∫ ∞
−∞

Ê(kx, 0)ej(kxx+kzz) dkx. (2.38)

Recalling Equation 2.36, two characteristic solutions can be obtained for the spatial fre-

quencies in the object plane. If |kx|< k, kz is real-valued, producing a propagating plane

wave. By contrast, if |kx|> k, kz is imaginary, producing a wave that decays exponentially

in the z-direction. More generally expressed, if the spatial variations of a target located in

a certain plane are smaller than the wave vector component in the direction perpendicular

to this plane, the resulting wave is not propagating but spatially confined within its vicin-

ity in this direction. An alternative way of interpretation is that the spatial information

contained in the object plane is low-pass filtered by wave propagation. Hence, if the field

is laterally confined to ∆x, the maximum spatial variation for which the spectrum can

obtain significant values is kx = k ≈ 2π
∆x .

The larger the angle θ between the propagation direction and the z-axis, the larger the

propagated spatial oscillation in x-direction. As such, the lateral confinement relates to

the angular aperture of the field. This effect is termed diffraction. When propagating

through the optical system, the kx values are furthermore low-pass filtered. The filter

cutoff is the maximum angular aperture that the optical system can collect, also called

the numerical aperture (NA). Applying the Rayleigh-criterion, the diffraction-limited

spatial resolution in the far-field, i.e., at large distances from the object plane, is given

as:

∆xmin ≈ 0.61
λ

n sin θ
, (2.39)

where n sin θ = NA, and n is the refractive index of the medium between the object and

the optical system. A qualitatively similar relation can be derived for the resolution limit

imposed by the diffraction-limited spot size of a focused beam.

For air as the propagation medium4 (nair ≈ 1) and a hemispherical aperture (sin(θ) =

1), the maximum resolution for far-field imaging systems is around λ/2. For example,

4While oil-immersion techniques, which are commonly applied in light microscopy, are impractical in the
THz frequency band due to strong absorption and sample contamination, solid immersion techniques
have been successfully utilized to increase spatial resolution[43]
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the spatial resolution of a monochromatic 500 GHz imaging system is around 300 µm at

best.

2.2.2. Breaking the Diffraction Limit

The previous discussion highlights that the spatial resolution of far-field imaging sys-

tems is determined by the wavelength employed, which is in the millimeter-range at

THz frequencies. For applications targeting material characterization, one implication

is that the dielectric and conductive properties of a sample are averaged over macroscopic

length scales. To characterize the localized electromagnetic properties in microscopic or

nanoscopic length scales, one has to access the fields in close vicinity to the object plane

– also called the near-field. The methods of near-field probing can be generally catego-

rized into two different groups. One measures evanescent waves emitted due to scattering

at sub-wavelength objects [12]. These methods are prevalent for nanoscopic imaging in

the THz range, which will be discussed in more detail in Section 2.3.1. The other one

employs ’active’ probing. Here, the near-field of a probe is brought in close vicinity to

a sample, thereby changing the field distribution and the stored energy of the near-field

depending on the material properties. Such probes can be realized with sub-wavelength

antenna-like devices in the form of electrically small dipoles, open-ended waveguides, or a

variety of other geometries [42]. Since a sub-wavelength dipole-type antenna is the basis

of the near-field sensor presented later in this work, these devices are briefly discussed in

the following.

The fields of an antenna can be separated into three regions: the reactive near-field zone,

the radiating near-field zone, and the far-field zone. Both the radiating near-field and

the far-field zones encompass the outgoing propagating waves. The fields in the reactive

near-field zone are static and not propagating. For a very small electric dipole antenna

with diameter D � λ, the reactive near-fields dominate the field pattern, and propagating

waves are suppressed [44]. Such a dipole antenna is illustrated in Figure 2.11(a). Note the

analogy to the free-space low-pass filtering for small spatial frequencies discussed in the

previous section: Since the spatial frequency of the antenna fields is much smaller than

the wavelength, no propagating waves are induced. However, the near-field of electrically

small antenna probes is an involved function of the antenna geometry and the properties

of the surrounding media. It is noted that the term evanescent wave is typically only used

for exponentially decaying waves, whereas the near-fields of the small antenna probes

decay with the squared distance or faster [42]. Such a probe exhibits almost no radiation

losses but rather stores energy in its capacitive reactance. Therefore, the size of the near-

field, and hence the spatial resolution, is determined by the characteristic size D of the
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Figure 2.11.: Near-field sensing based on electrically small dipole probes. Illustration of
the probe (a), and equivalent circuit of a sensing scenario (b).

probe.

Approaching a sample media with a small antenna probe disturbs the reactive field and

induces a change in the input admittance of the probe. The simplified lumped equivalent

circuit of a sensing scenario is depicted in Figure 2.11(b), where Zobj is the impedance of

the sample, C0 is the static capacitance of the probe, and Cc is the coupling capacitance

of the probe to the sample. The sensing admittance Ys is given as:

Ys =

(
1

jωCc + Zobj

)−1

+ jωC0. (2.40)

For a homogeneous bulk sample interacting with the entire volume of the sensing near-field

governed by D, the object impedance can be estimated as a capacitor with a geometrical

capacitance ε0D, filled with the permittivity εr = ε′r−jε′′r of the sample [42]:

Zobj ≈
1

jωε0εrD
. (2.41)

With appropriate means of sensing object-induced changes in Ys, one can achieve sub-

wavelength resolution imaging with an imaging contrast based on the complex permittivity.

A detailed discussion on this sensing mechanism and on how to integrate such probes in

silicon technology follows in Chapters 5, 6, and 7.

2.3. Review of Contemporary THz Technology

This section provides a brief review of contemporary THz technology. To connect with

the previous discussion on methods to break the diffraction limit, first, the state of the

art in sub-wavelength sensing with THz waves is discussed. This will give the background
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Figure 2.12.: Illustration of an exemplary aperture-based THz-near-field scanning optical
microscopy (NSOM) system (a-NSOM) (a). A sub-wavelength sized aper-
ture is illuminated with a THz source producing a near-field in the vicinity
of the aperture which is scattered by the sample. Illustration of an exemplary
scattering-probe-tip-based THz-NSOM system (s-NSOM) (b). A vibrating
probe tip is illuminated from the far-field. The near-field information is scat-
tered from the tip and collected with a THz detector and lock-in techniques.

for the near-field imaging part of this work presented in Chapters 5, 6, and 7. Subse-

quently, a brief review of traditional THz technology and silicon-based THz technology

is given to provide a background for the far-field imaging part of this work discussed in

Chapters 3, and 4. Parts of the discussion presented in this section have been published

in [own7].

2.3.1. Review of THz Near-Field Imaging Methods

The common methods for sub-wavelength resolution (also called super-resolution) imaging

in the THz range have been adapted from NSOM in the visible spectrum [45]. NSOM

is an umbrella term for methods that exploit the interaction of evanescent waves with a

specimen to resolve sub-wavelength sized features in a raster scan. The most common form

of NSOM is based on sub-wavelength sized metallic or optically gated apertures (a-NSOM)

for field confinement [12]. As depicted in Figure 2.12(a), a remotely illuminated aperture

is brought into close vicinity of the specimen leading to object-dependent distortion and

scattering of the near-field. In the first demonstration of THz-NSOM in 1998, Hunsche et

al. achieved a spatial resolution of λ/4 at 1.3 THz by utilizing far-field illumination of a

tapered metal tube with an elliptical aperture and far-field collection of the scattered near-

field [46]. However, far-field collection severely limits the signal-to-noise ratio (SNR) of

this setup, especially for tiny apertures. Since the near-field signal at the aperture decays

exponentially in its direct proximity, large optics are required to collect the scattered waves.
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This problem has been addressed by placing detectors in a distance considerably smaller

than the aperture size. For example, a spatial resolution of 9 µm was reported in [47], with

the setup comprising an 8 µm large aperture and a cooled two-dimensional electron gas as

the detector in a gallium arsenide (GaAs)/Aluminum-GaAs heterostructure located 60 nm

below the aperture. Moreover, tapered waveguides [48] and corrugated apertures [49] are

frequently used to improve the coupling efficiency of the illumination path. However, the

aperture cut-off frequency effectively limits the achievable spatial resolution of a-NSOM

systems.

THz NSOMmethods that exploit scattering probe tips (s-NSOM) have been shown to yield

significantly higher resolution down to the nanometer scale [12]. In this technique, tapered

metallic tips are illuminated from the far-field, creating a localized near-field in the vicinity

of the tip apex, as shown in Figure 2.12(b). The near-field information is transformed into

weak propagating fields by scattering in the sample-tip system. The spatial resolution is

defined only by the tip geometry, which entails a trade-off between sensitivity and resolu-

tion. Furthermore, the weak near-field THz signal is submerged within a strong far-field

component of the incident illuminating wave. To extract the weak near-field scatter from

this strong background clutter, the probes are mechanically modulated (vibrated), and

lock-in techniques are applied. Such methods enable remarkable spatial resolution down

to 40 nm by using atomic-force microscopy cantilevers as scattering tips [50]. An alterna-

tive method to eliminate the background clutter issue is to collect the near-field in close

proximity of the tip using electro-optic crystal plates or photoconductive probe tips. A

spatial resolution of 150 nm was reported for a tip with a 30 nm diameter apex illuminated

by a monochromatic gas laser source at 2.54 THz [12] and around 5 µm for a broadband

system with a photoconductive 1.8 µm wide probe tip [51].

NSOM systems remain highly sophisticated in regard to the required illumination and

detection components and the mechanical and optical setup. Even with cooled detectors

and high-power THz sources, long integration times are needed to achieve a reasonable

SNR. Although a few attempts have been made to reduce the image acquisition time by

using multi-pixel [52] or electro-optic crystal detection [53], these systems similarly exhibit

a high level of sophistication. The previous remarks clearly illustrate that the high system

cost and the low integration level of conventional THz equipment constitutes a bottleneck

for the exploration of new applications. Thus, classical NSOM systems are solely applied

in laboratory environments and in fundamental science.
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2.3.2. Traditional THz Technology

The traditional domain of THz technology is far-field imaging. Far-field imaging modalities

can be generally divided into passive and active types. Passive (radiometric) imaging relies

on the temperature-dependent intensity contrast of ambient (black-body) THz radiation.

Active THz imaging employs THz sources for illumination of objects to increase the SNR.

Here, the contrast is governed by the medium-specific attenuated wave propagation and

interface interaction detailed above.

The most pervasive applications are found in the areas of radio astronomy and earth

observation, where high-sensitivity heterodyne receivers are used to investigate the mole-

cular composition and dynamics of the interstellar medium and Earth’s atmosphere [5].

The instrumentation for these applications is based on either local oscillator (LO)-driven

Schottky-diode mixers [54]–[56], or on sophisticated detector technology that requires cryo-

genic cooling. Such detectors, including superconductor-insulator-superconductor devices,

hot-electron bolometers, and Josephson junctions, show tremendous sensitivity close to the

quantum limit [55], [57]. However, the implications of the cooling requirements on sys-

tem weight, turn-on time, and cost have impeded the transfer of this technology to other

applications.

Today’s available THz equipment for terrestrial use can be divided into electronic and

photonic solutions. The electronic solutions rely primarily on split-block hollow waveg-

uide assemblies with Schottky diodes and III-V devices or micro-machined bolometer

arrays. There are various remarkable advances in this field, including the commercial

development of GaAs Schottky-diode-based multiplier sources, delivering up to 35 µW

at 1.9 THz [58], and the first demonstration of amplification above 1 THz using an in-

dium phosphite (InP) high-electron-mobility transistor (HEMT) technology [59]. Still,

because of non-compatibility with conventional microelectronic packaging, or the neces-

sity of adequate cooling, such THz electronics mostly target performance-driven niches.

For example, passive imaging systems based on InP HEMT low-noise preamplification [7],

[8] or kinetic inductance bolometer arrays [60], and active radar imaging systems based on

Schottky diodes [61], only show potential for imaging applications that can tolerate costly

and stationary systems, such as mass transit security and loss prevention. Notably, some

electronic THz systems for real-time active transmission imaging are already commercially

available for applications such as conveyor belt imaging [62] or the security screening of

letters and packages [63].

In the field of photonic THz equipment, THz TDS systems have emerged as a valuable

laboratory tool for fundamental THz science and imaging [64], [65]. In THz TDS, a non-
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linear crystal, typically low-temperature grown GaAs, is illuminated with an ultra-fast

laser pulse from a Ti-Sapphire laser to generate electron-hole pairs. These carriers are

accelerated in a static electrical field, leading to a broadband THz pulse. THz TDS can

be used for transmission and reflection measurements and allows to extract the material

properties in more than a decade of bandwidth, as shown in Section 2.1. Furthermore,

continuous-wave (CW) photonic sources based on quantum cascade lasers can now generate

up to 1 W of power at 3.4 THz. These sources, however, typically require cooling, and their

operation is limited to frequencies above 2 THz [66].

In summary, it can be stated that the aforementioned THz platforms all suffer from distinct

drawbacks for mass deployment; namely system cost, achievable integration level, or relia-

bility. Moreover, the currently utilized microelectronic packaging techniques for electronic

THz systems cannot easily support the tight tolerance levels required for THz applications

and are not scalable to large volumes. Low-cost THz applications, therefore, require single-

chip solutions that make complex microelectronic assembly obsolete.

2.3.3. Silicon Technology for THz Systems

Silicon devices have been mostly disregarded as a potential candidate to leverage the

practical adoption of THz technology because of their low carrier mobility and long carrier

transit times. The typically cited figure-of-merits for transistor speeds are fT /fmax, which

respectively describe the maximum frequency at which devices show current gain and the

maximum frequency for which devices can amplify power [67]. Since most high-frequency

circuits aim to transfer, generate, and amplify power, the fmax is usually a more meaningful

metric of the device speed.

Complementary metal-oxide semiconductor (CMOS) technology undergoes continuous

gate-length scaling, which increases the intrinsic speed of metal-oxide-semiconductor field-

effect transistors (MOSFETs) as a by-product. However, the fmax of fully-wired devices

decreases for the most advanced CMOS nodes (<45 nm) because of the deterioration of

gate and via resistances as a consequence of transistor scaling [68]. Moreover, the high

mask cost of CMOS wafers in advanced technology nodes necessitates a large volume for

CMOS to be economically viable. As of yet, it is unclear if there will be sufficiently large

market segments in the THz band to justify the use of CMOS.

An alternative to CMOS is SiGe HBT technology, which requires significantly less litho-

graphic effort for higher fmax values. Since integrated SiGe HBTs are vertical devices,

improvements in device speed mostly come from the optimization of parasitics and doping

profiles rather than from technology scaling alone. Hence, further advances in SiGe HBT
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technology are not necessarily linked to increasing mask costs. A 0.13 µm SiGe HBT tech-

nology with 500 GHz fmax is now commercially available [69], and research activities have

demonstrated 700 GHz fmax in 0.13 µm SiGe HBT [70]. SiGe HBT technology is just on

the verge of enabling circuits showing power gain above 300 GHz [own9][71], [72]. Results

obtained from a theoretical analysis of the electrical performance limits of SiGe HBTs in-

dicate that operating frequencies of 1 THz and beyond are within reach in the future [73].

Hybrid technologies that utilize the concurrent integration of high-speed SiGe HBT de-

vices for the THz front-ends and low-cost CMOS for mixed-signal baseband processing thus

show great potential to emerge as the primary platform for THz ICs.

However, silicon technology imposes considerable challenges for THz IC integration. First,

advances in frequency performance are inherently linked to a reduction in device break-

down voltages. For high-speed 0.13 µm SiGe HBT technology, the open-base collector-

emitter breakdown voltage is BVceo =1.6 V [69], whereas CMOS technology exhibits gate-

oxide breakdown voltages of only 1.2 V for the 65 nm node [74] and below for more ad-

vanced nodes. Secondly, the technology stack of foundry-level silicon technology presents

an increasingly unfavorable environment for antenna and passives implementation in the

THz band. Typically, several metal layers are embedded in a thin dielectric stack, com-

monly denoted as back end of line (BEOL), on top of a lossy silicon substrate. The BEOL

fabrication enforces strict design rules on the density of metal structures, which escalate

the modeling and design effort of on-chip antennas and passives. The design of on-chip

antennas in silicon technology is particularly challenging given potential multi-mode prop-

agation issues (e.g., surface waves) [75], [76], and the difficulties in achieving appropriately

high directivity of the antenna system to provide sufficient link budget for practical ap-

plications. This motivated the extensive use of back-side radiating on-chip antennas with

auxiliary silicon lenses [77], [78].

2.3.4. THz Components in Silicon Technology

Modern nanoscale CMOS and SiGe HBT technologies offer economies of scale, small form-

factors, and unprecedented integration capability at the highest industry standards. THz

ICs are, therefore, an interesting option for applications that require extremely compact

THz microsystems for sensing [15]–[17] or active imaging components at a reasonable price-

performance ratio [own3][18]. However, the benefits of economic viability and system size

are not the only drivers for research in THz ICs. The design-space, which opens up by

device plurality, reconfigurability, and THz-mixed signal cointegration, promises to expand

the functional scope of THz imaging systems. Applications such as THz-light field imaging

based on CMOS detector focal-plane arrays [79], and broadband passive spectroscopy [80],
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Figure 2.13.: Comparison of state-of-the-art THz sources in CMOS and SiGe HBT tech-
nologies. Adapted from [own7].

have been demonstrated based on THz ICs that approach integration-levels comparable to

the ones exhibited in conventional consumer electronics. However, most research activities

aim at advancing source and detector performance to overcome the speed limitations of

silicon devices.

Sources

Since the first demonstration of a CMOS THz source ten years ago [81] which radiated

−42 dBm at 410 GHz, tremendous progress has been made towards the provision of suitable

power levels for imaging applications with THz ICs. The advances were enabled by both

new design methodologies for the proper synthesis of passive embedding networks to opti-

mize the harmonic generation [82], [83][own8], and novel scalable system architectures [20],

[84]–[86]. Figure 2.13 depicts a scatter plot of sate-of-the-art CMOS and SiGe HBT ra-

diation sources above 250 GHz. The sources are grouped into unlocked oscillator-based

sources [20], [84], [85], [87]–[95][own8], [own10] and into oscillator- or multiplier-chain-

based sources that can be locked to an external phase-stable reference signal [71], [83],

[86], [96]–[103].

Currently, the upper frequency limit for fundamental circuit operation for the fastest

0.13 µm SiGe HBT technology with fmax =500 GHz [69] is just below the mmWave-THz
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transition. Radiated power levels up to 8.5 dBm have been demonstrated for power-

amplifier-based transmitter front-ends at 240 GHz, with a 3-dB bandwidth of 35 GHz

in an experimental 0.13 µm SiGe HBT technology with fT /fmax =350 GHz/550 GHz [96].

Above 300 GHz, amplification is no longer available in practice. Hence, silicon THz sources

employ the frequency translation process of strongly driven nonlinear high-speed devices.

The nonlinear THz front-end circuit is either directly implemented as a harmonic N-push

oscillator or as a frequency multiplier circuit. Both approaches entail a conversion loss,

which increases rapidly with the harmonic order and the frequency of the driving sig-

nal. Therefore, contrary to the typical 20 dB/decade roll-off for power amplifiers below

fmax (Johnson Limit) [104], the data-points indicate an around 40 dB/decade power roll-off

for single-radiator sources in the THz band.

Notably, the small size of on-chip THz passives and the abundant availability of tran-

sistors have motivated the research in single-chip multi-element radiators. Innovative

device/electromagnetic codesign architectures that utilize synchronized 2D oscillator ar-

rays broke the power roll-off trend, delivering a power of up to 5.2 dBm at 317 GHz with a

16-element array [86] and −10.9 dBm at 1.01 THz with a 42-element array [85] in 0.13 µm

SiGe HBT technology. Furthermore, the baseband processing capabilities of silicon tech-

nology have been exploited for the reconfiguration of radiation patterns of multi-element

sources to diffuse scene illumination at 530 GHz [20] or phased array functionality at

338 GHz [84] and 400 GHz [97].

Receivers

Similarly to the first silicon-based THz source demonstrations, the first silicon-based THz

focal-plane array (FPA) was demonstrated 10 years ago [105]. Since then, the research in

silicon THz IC receivers is largely focused on advancing the sensitivity and bandwidth of

direct power detectors. Silicon technology features high fabrication yield and the avail-

ability of on-chip baseband processing circuits, enabling the integration of detectors into

chip-scale FPA with on-chip read-out circuitry. Therefore, silicon detectors offer signifi-

cantly higher integration capabilities compared to the prevalent room-temperature THz

detector technologies like Schottky barrier diodes, InP HEMT low-noise amplifiers, Golay-

cells, micro-bolometers and pyroelectric detectors [106]–[109].

Due to the lack of low-noise preamplification in the THz band, silicon power detectors are

implemented as antenna-coupled direct detectors. Therefore, the predominantly exploited

methods for THz direct detection are either non-quasistatic self-mixing in MOSFET chan-

nels [110]–[117] or rectification in the base-emitter junction of a high-speed HBT [76],

[118]–[120]. At THz frequencies, both device classes operate close-to or above their cut-off
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frequencies defined by the carrier transit time, and their response and operation band-

width are severely influenced by the efficiency of coupling the THz radiation into the

intrinsic device. Since broadband operation is typically desired for practical implemen-

tations to allow versatile application scenarios at low cost, classic narrowband microwave

matching techniques made way for innovative antenna-device codesign approaches. In

particular, antenna systems based on backside-radiating on-chip primary antennas and

external hyper-hemispherical silicon lenses have been demonstrated to simultaneously pro-

vide pW/
√
Hz-level noise-equivalent power (NEP) across several hundreds of Gigahertz

bandwidth [113]–[116], [120].

MOSFET direct power detectors are operated without drain-source bias (’cold’) and in

moderate inversion for the highest responsivity. The lowest reported NEP is in the range

of 12 pW/
√

Hz–14 pW/
√

Hz with a 3-dB radio frequency (RF) operation band of around

650 GHz–1000 GHz in 65 nm CMOS [115]. Please note that although device scaling can

result in lower thermal noise of the MOSFET channel, the so far reported detector perfor-

mance (responsivity, NEP, operation bandwidth) did not considerably improve by migra-

tion to nanometric CMOS technology nodes. One of the possible main reasons for that is

the very high (kΩ-range) and frequency-dependent impedance of the MOSFET operating

in moderate inversion, which makes efficient and broadband coupling to on-chip antennas

very challenging. Contrary to that, the impedance levels associated with a base-emitter

junction of HBTs at THz frequencies should facilitate considerably broader frequency oper-

ation range, although the literature still reports very few implementations of such detectors

at THz frequencies. An NEP of 2.7 pW/
√

Hz was reported for a dual-polarized detector

at 430 GHz for the 0.13 µm SiGe HBT technology node [121], and further base-emitter

junction optimization should result in substantial improvements of detector performance.

Schottky diodes in CMOS technology were also reported for THz signal rectification at

860 GHz with an NEP of 42 pW/
√

Hz [122].

Hetero-/homodyne receivers in silicon technologies above 300 GHz are still very scarce.

They rely on a mixer-first architecture with predominantly sub-harmonic operation, yield-

ing relatively poor conversion gain and noise figure [18], [102], [123]. Furthermore, their

integration comes with significant complexity. In particular, the design of receiver arrays

remains a formidable challenge due to the fundamental issues related to LO power distribu-

tion, limited LO drive power, and power consumption [78]. Only a few works have shown

low-pixel-count arrays operating at or below the lower boundary of the THz range [124],

[125].
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Part II.

Far-Field Imaging





Chapter 3
Frequency-Doubler-Based 0.43 THz

Source for Active Far-Field Imaging

This part of the thesis addresses active THz far-field imaging with silicon-based compo-

nents. Active THz imaging systems either operate coherently or incoherently. The co-

herent approach employs phase-stable locked sources and heterodyne receivers. Coherent

active systems provide high sensitivity and concurrent detection of amplitude and phase.

Besides the issues of heterodyne receiver implementation mentioned in Section 2.3.4, co-

herent imaging suffers from unwanted imaging artifacts caused by wave-interference of

specular reflections [20]. By contrast, incoherent active imaging only measures the power

with direct detectors, which can be conveniently integrated into large-scale FPAs for video-

rate imaging [116]. Moreover, sources based on free-running high-frequency oscillators can

be exploited for illumination, which naturally exhibit low phase and frequency stability,

thereby mitigating the interference effect mentioned above [89].

However, incoherent active imaging systems, especially the ones targeting video-rate imag-

ing with FPAs, require considerable illumination power – usually exceeding the capabil-

ities of current silicon-based THz sources. The work described in this chapter relates to

the development of self-sustained doubler-based sources. The chapter presents a source

radiating up to −6.3 dBm at 430 GHz implemented in a high-speed 0.13 µm SiGe HBT

technology [own8]. The source architecture enables a relatively high DC-to-THz efficiency

of 0.14 % and occupies small chip area. Hence, the source can be conveniently populated

into large-scale array modules to overcome the power limitations of a single source in future

work. In this context, the presented source lays the foundation for advanced incoherent

active imaging concepts, which go beyond the traditional focused illumination concepts
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Figure 3.1.: Imaging concepts for active transmission-mode THz imaging. Traditional fo-
cused illumination imaging (a), collimated illumination imaging with frames
per second (fps) detection (b), and coded illumination imaging (c).

Figure 3.2.: Schematic of a nonlinear two-port used as a harmonic generator. The output
power of the desired harmonic depends on the harmonic terminations at the
input and at the output.

requiring mechanical translation, as illustrated in Figure 3.1. For example, multi-pixel

source modules based on this source can potentially be used in conjunction with FPAs for

video-rate collimated-beam imaging [20], or to build single-pixel cameras employing coded

illumination for computational imaging [126], [127][own7]. Some of the results and figures

presented in this chapter have been originally published in [own8].

3.1. Design Considerations

Power generation close-to or beyond fmax relies on the extraction of the harmonic content

generated in the nonlinear transconductance, capacitance, and output resistance profile

of the device. Figure 3.2 shows the general schematic of a harmonic generator circuit,

modeling the transistor as a nonlinear two-port. Given a fixed available drive power at
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Figure 3.3.: Architecture of the source presented in this work (a). A high-frequency os-
cillator drives a frequency doubler that connects to an on-chip antenna. The
simplified schematic of the doubler in common-collector topology is shown in
(b).

the fundamental frequency (H1), two key aspects need to be considered for maximum

power extraction at a certain harmonic (Hn). First, the device size and the conduc-

tion angle needs to be optimized for maximum harmonic current [128]. Secondly, due

to internal mixing of frequency components in the device nonlinearity, the harmonic cur-

rent at a certain harmonic is an involved function of the voltages at all harmonics [129],

[130]. Hence, all relevant harmonic terminations at the two-port need to be optimized

individually to maximize the harmonic power transfer to the output. Multi-harmonic

load-pull large-signal simulations are usually required to deduce these optimum termina-

tions.

Figure 3.3(a) depicts the circuit architecture of the source presented in this chapter. The

source comprises a differential high-frequency oscillator, a balanced frequency doubler, and

a single-ended on-chip antenna. Frequency doublers usually employ balanced common-

emitter (CE) pairs or balanced common-collector (CC) pairs. The balanced CC circuit

architecture depicted in Figure 3.3(b) is used in this work. It was shown in [131] that the

CC shows higher maximum output power. More particularly, the second harmonic voltage

swing at the emitter terminals can contribute additional second harmonic current through

the device transconductances if the phase relations between the common-mode base and

emitter voltages are designed appropriately. The balanced CC topology exhibits an AC-

ground for the differential fundamental mode at the shared emitter node. Therefore, the

key harmonic terminations are the differential input impedance at the fundamental (ZS,H1),

the common-mode second-harmonic input impedance (ZS,H2), and the output impedance

at the second harmonic (ZL,H2). In order to maximize the fundamental drive voltage,

unwanted reflections of the fundamental have to be avoided. Hence, ZS,H1 needs to be

conjugately matched to the differential input impedance of the CC pair. Due to the strong

feedback provided by the base-emitter junction, the optimum selection of ZL,H2 and ZS,H2
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are interdependent. In practice, ZS,H2 cannot be easily set independently from ZS,H1, as the

termination networks share the same passives. It is noted that second harmonic reflectors

in the form of short circuit stubs can be implemented without influencing the fundamental

matching in a small bandwidth. Such reflectors, however, reduce the output power for the

CC topology [131]. Hence, the design of the second harmonic output termination needs

to take full consideration of the fundamental matching circuit and the related second

harmonic common-mode impedance at the input.

3.2. Implementation

The source is implemented in a 0.13 µm SiGe HBT technology SG13G2 from IHP Micro-

electronics offering an fT /fmax of 300 GHz/450 GHz and a 12 µm-thick 7-metal aluminum

back-end with two thick top-metal layers and MIM-capacitors [69]. Figure 3.4 shows

the complete schematic of the source. All inductances are implemented with shielded

coplanar-waveguide transmission lines. The oscillator is a differential Colpitts oscillator

with a cascode stage. The fundamental oscillation frequency of fH1 ≈ 220 GHz is set by

the base transmission line TLB, the base-emitter junction capacitance of Q1,2, and the

emitter capacitor CE. Due to the high loss of integrated varactors, no explicit frequency

tuning capabilities are implemented. However, some implicit tunability is given by the

bias-dependence of the diffusion capacitances of Q1,2. The emitter transmission line TLE

is a quarter-wavelength stub at the oscillation frequency and provides a DC current path

to the transistors. The cascode stage serves two purposes. It isolates the oscillator out-

put from the doubler and it increases the output power. The devices are modeled with

HICUM models, whereas the passive components are simulated in full-wave EM simula-

tions (Ansys HFSS). The simulated output power of the oscillator is around 5 dBm at

223 GHz.

Based on the simulated oscillator output power, the doubler emitter area is chosen to

be 3×(0.12×0.96)µm2. In view of the remarks given in the previous section, the in-

terstage matching network comprising TLC, TL1, CC and TL2 is designed to concur-

rently match the fundamental and provide a good solution for the common-mode 2nd-

harmonic base termination at the input using load-pull simulations. An optimum second

harmonic load for the designed input matching circuit of ZL,H2=(40+j50)Ω is also deduced

from harmonic load-pull simulations. The output termination is realized by transforming

the capacitive impedance of an on-chip antenna through the transmission lines TL4 and

TL6.
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Figure 3.4.: Circuit schematic of the THz source. The unit emitter area is
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Figure 3.5.: Chip micrograph (a), illustration of the packaging scheme (b), and picture of
the assembled source (c). After [own8] © 2017 IEEE.

Figure 3.5(a) shows the chip micrograph. The antenna is a wideband lens-coupled circular-

slot antenna and is similar to that presented in [own10][132]. The main radiating slot

aperture is created in the common circuit ground plane and supports a linear polarization

excited by a circular patch probe located in its center. The power at the fundamental

oscillator frequency possibly leaking from the doubler is attenuated by a high antenna

input reflection coefficient in this frequency range. The diameters of the circular probe

and the ground aperture are 106 µm and 152 µm, respectively. For test purposes, the

chip was mounted on the back of a 3-mm diameter hyper-hemispherical lens made of

high-resistivity silicon and wire-bonded onto a small FR-4 printed circuit board (PCB).

Figure 3.5(b) depicts an illustration of the packaging concept, and Figure 3.5(c) shows a

picture of the packaged source. Full-wave simulations of the completely packaged lens-

coupled module were performed. The additional implementation loss in the source output

power is estimated to be around 20 %. The simulated antenna directivity is 19.5 dBi at

the source operating frequency of 430 GHz.

3.3. Experimental Characterization

The setup shown in Figure 3.6(a) was used to measure the frequency and the antenna

pattern of the source. Figure 3.6(b) shows the down-converted spectrum of the source in

the vicinity of the radiation frequency, and Figure 3.6(c) shows the simulated and mea-

sured tuning curve of the source for different oscillator supply voltages and a constant

external base voltage. A phase-noise of −89 dBc/Hz at 10 MHz offset was estimated in

a measurement with a battery power supply. The measured frequency decreases with in-

creasing supply voltage, which resembles the trend observed in simulations. The source

can be tuned between 426 GHz–437 GHz. Figures 3.6(d)(e) show the measured and simu-

lated E-plane and H-plane radiation patterns. The measured directivity is 21.3 dBi, and
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the side-lobe level is around −17 dB. The antenna directivity is calculated by integrating

the measured values of the 2-D power spectral-density pattern scanned over a sector of

the front hemisphere. The back-side radiation was not measured and may lead to some

artificially increased antenna directivity.

Absolute free-space power measurements at THz frequencies are very challenging. Power

measurement with a harmonic mixer suffers from the poorly calibrated and time-varying

mixer conversion gain. The photo-acoustic power meters, such as the Thomas Keating

power meter, offer a large aperture and do not require extensive calibration. However, they

are not frequency-selective and capture all harmonics potentially radiated by the source.

In contrast, power measurements with a calorimeter, such as the Ericson PM4, allow

controlling the lower end of the measurement bandwidth by using the cut-off frequency

of a waveguide taper inserted between the meter head and the antenna. Here, the power

is measured in the far-field and de-embedded from the Friis-transmission equation. This

approach naturally exhibits higher uncertainty since the received power levels in the far-

field are low, and accurate knowledge of the directivities of the receiving and sending

antenna is required. In this work, a combined verification approach is used to mitigate

the individual shortcomings of both methods.

For an accurate assessment of the absolute radiated power of the source, the Thomas

Keating power meter was used in the measurement setup shown in Figure 3.7(a). Two

elliptical mirrors are used to refocus the beam to the meter head at the Brewster’s angle.

Figure 3.7(b) shows the radiated power measured in this manner and compares it to the

simulated on-chip power of the source. The power peaks at −6.6 dBm at a supply volt-

age around 4.5 V. For higher supply voltages, the oscillator enters the breakdown region,

and the power drops rapidly. The measured values are significantly lower than the simu-

lated values at low supply voltages, possibly indicating a lower fundamental drive power.

For higher supply voltages, the output power shows a good correlation considering the

additional implementation loss of the lens-coupled on-chip antenna.

In order to verify that the power measured with the Thomas Keating power meter is

the power at the second harmonic and not at the fundamental, the power was measured

with a PM4 calorimeter as shown in Figure 3.7(c). A horn antenna with an estimated

directivity of 23 dBi at the operation frequency and a WR2.2 waveguide was used to reject

the potential fundamental leakage. Figure 3.7(d) shows the measured power for different

distances d between source and the horn antenna and the calculated radiated power derived

from Friis-transmission equation for the same source bias point as that applied for the

Thomas Keating power meter measurements. The output power follows the expected

1/d2 proportionality and is on average −6.3 dBm. The source consumes 165 mW of DC
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ferent distances from the source. The radiated power is calculated using
Friis-transmission equation with the directivities Dsource = 21.3 dBi, and
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power, thereby giving a DC-to-THz efficiency of 0.142 %. The fundamental leakage was

attempted to be measured in free-space with another antenna-coupled harmonic mixer

(OML). The signal levels were found to be below the noise floor of the IF output. From

this and the good correlation between the two power measurements, it can be concluded

that the fundamental leakage of the source should be very low.

3.4. Summary and Conclusions

A 0.43 THz source implemented in a 0.13 µm SiGe HBT technology has been reported in

this chapter. The large-signal optimization of the harmonic terminations of a balanced

CC doubler is utilized to optimize the efficiency of the harmonic power extraction close to

the fmax of the technology. To enable low power and low area consumption, the doubler

is driven by a differential Colpitts oscillator. The source radiates up to −6.3 dBm at
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0.43 THz and shows a DC-to-THz conversion efficiency of 0.142 %.

The source may find application in large-scale incoherent source arrays for realizing ad-

vanced far-field imaging concepts such as video-rate collimated-beam imaging [20], or

computational imaging [126], [127][own7]. In particular, it consumes around three times

less area and shows four times higher output power as compared to the single source ele-

ments employed in the incoherent 0.53 THz source array presented in [20], which represents

the current state of the art. However, the increase in output power has to be put into

perspective because of the lower operating frequency of the source presented here. The

implementation of an array based on this source, however, remains the objective of future

work. The following chapter demonstrates the utility of the single-pixel source by using it

for THz CT.



Chapter 4
3D Terahertz Imaging Based on

Computed Tomography

Since the first demonstration of THz transmission imaging by Hu et al. in 1995 [30],

most studies on THz imaging were focused on 2D imaging. Because 2D imaging only

provides limited information content for thick objects with high volumetric complexity,

there has been an increasing effort to extend THz imaging modalities to 3D imaging. 3D

visualization of the objects’ internal structure may be particularly valuable for applications

in industrial quality control, e.g., for the localization of cracks and defects in composite

materials, or for the content inspection of packaged goods [133]. Another interesting use

case for 3D THz imaging could arise for non-invasive analysis of archaeological findings,

e.g., inspection of wrapped mummies [134], sealed pottery [135], or imaging of human

bones [136].

Various techniques have been investigated for the acquisition of 3D images at THz frequen-

cies, including time-of-flight measurements in reflection-mode [137], diffraction tomogra-

phy [138], tomosynthesis [137], imaging with binary lenses [139], and CT with ultra-short

THz pulses [140] or CW sources [135]. All these studies, however, have relied on bulky

and expensive traditional THz equipment.

THz tomography competes against the highly established X-ray CT, which usually pro-

vides far superior image quality in terms of spatial resolution. However, there could be

extensive added value in the exploration of THz waves for CT imaging. The absorption in

low-density materials is relatively stronger for THz waves because of the higher dielectric
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losses. Moreover, hazardous X-ray radiation requires costly security measures. Eventu-

ally, the previously detailed advances in silicon-integrated THz components could enable

the realization of ultra-low-cost 3D THz CT imaging systems [own3], promising increased

exploitation for future industrial applications. The demonstration of such a system is the

ultimate aim of the work presented in this chapter.

CT operates in transmission-mode, which sets challenging requirements on the perfor-

mance of the source and detector components. The resolvable object depth of a THz

CT system for a certain material is ultimately limited by the SNR, which is influenced

by the source power, the quality of the optical train, and the NEP of the detector. Al-

though the exact performance requirements for the components are application-specific,

it is illustrative to construct a hypothetical imaging scenario to strengthen the point.

Assuming a moderate acquisition speed with an integration time of τ =1 ms per line

projection, the equivalent read-out bandwidth of the detector is 500 Hz (BW = 1
2τ ). Us-

ing a detector with an NEP of 100 pW/
√

Hz, the minimum detectable power becomes

2.2 nW (Pmin = NEP
√
BW ). For a 4 cm thick plastic object with an attenuation co-

efficient of α = 0.5 cm−1 [23], 13.5 % of the power passes through the object. Conse-

quently, for a minimum SNR of 20 dB, the required radiated power of the source is around

1.5 µW. In practice, Fresnel losses of the object and losses of the optical components

can tighten these requirements significantly. However, with the advances in THz silicon

technology summarized in Section 2.3.4, such performance metrics are now in the feasible

range.

The chapter opens by briefly reviewing the fundamentals of CT. After that, a silicon-based

THz CT system operating at 430 GHz is described and characterized. Finally, 3D imaging

of objects embedded into polystyrene foam is demonstrated. Some of the results and figures

presented in this chapter have been originally published in [own7].

4.1. Fundamentals of Computed Tomography

The word tomography is derived from the Greek word tome (cut). The imaging procedure

aims to reconstruct cross-sectional 2D images of an object (cuts) based on the absorption

experienced by an electromagnetic wave due to traveling through the object. This is

achieved by acquiring the projection of the object onto a plane for different incident

angles of the wave and by subsequent image reconstruction with appropriate algorithms.

Figure 4.1 illustrates the principle of CT. CT was initially developed for X-rays. Due to

the low permittivity of materials in the X-ray band (εr ≈ 1), Fresnel losses can be mostly

neglected. Hence, X-rays can be considered to travel in straight lines through objects.
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Figure 4.1.: Principle of CT. Absorption projections Rθ are measured for different angles
of a half-cycle θ ∈ [0, π]. The measured projects arranged along θ are called
sinogram. Reconstruction algorithms are used to synthesize the original object
characterized by its absorption function f(x, y) from the sinograms. The
process is repeated to allow different heights for 3D reconstruction.

This assumption is carried throughout the following mathematical description of the CT

principle, albeit noting that it may lead to inaccurate results for the THz band, where

Fresnel losses can contribute significantly to the image contrast. Neglecting reflection and

refraction, the intensity of a transmitted wave is determined by the absorption integral

along its optical path. According to Equation 2.15, the intensity I is described by the

Beer–Lambert Law for inhomogeneous media:

I = I0e
−

∫
L f(x,y) dl, (4.1)

where I0 denotes the intensity without absorption, L describes the optical path, and

f(x, y) is the local absorption function of the object. By rearranging Equation 4.1, the

total absorption R, also called projection, can be described as:

R(L) = − log
I

I0
=

∫
L
f(x, y) dl. (4.2)

Equation 4.2 is the Radon transform of the absorption function f(x, y), which is named

after the mathematician Johann Radon who derived that an object can be reconstructed

perfectly from a full continuous set of such line integrals [141]. In practice, the intensities

I and I0 are the observables that can be measured with a power detector. Because of the

angle-dependency of the projections, the integration lines are more conveniently described

in polar coordinates:

Lθ,s = {(x, y) = x cos θ + y sin θ = ρ} , (4.3)
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where θ is the angle between the x-axis and the perpendicular to the integration line, and

ρ is the signed orthogonal distance of the line to the origin. One can easily show that

the angle-dependent projection of a single point f(x, y) describes a sine function. This

is the reason why the illustration that gathers projections is typically called a sinogram.

The radon-transformed local absorption function of a cross-section can then be defined

as:

R(θ, ρ) =

∫ ∞
−∞

∫ +∞

−∞
f(x, y)δ(ρ− x cos θ − y sin θ) dx dy. (4.4)

Equation 4.4 is a measured quantity. Since the Radon transform is symmetric (R(θ, ρ) =

R(θ + π,−ρ)), it is sufficient to acquire a half-cycle of projection angles, i.e., θ ∈ [0, π].

In typical CT imaging experiments, the sinograms are taken for multiple cross-sections to

enable 3D reconstruction of the object.

As of yet, we have just modeled the acquisition process and did not cover the means

to reconstruct f(x, y) from the measured quantities. The methods for reconstruction

for radon-transformed data can be grouped into two categories. The first category in-

cludes direct methods based on the filtered back-projection (FBP). The FBP is given

by:

f(x, y) =

∫ π

0
dθ

[∫ ∞
−∞
|ω| F {R(θ, ρ)} e2πjωρ

]
ρ=x cos θ+y sin θ

, (4.5)

where ω is the spatial frequency, and F is the Fourier transform. In practice, the acquired

data is not continuous, and Equation 4.5 is used in a discretized form. Today, the FBP is

the standard algorithm for tomographic imaging with X-rays.

The second group includes algebraic methods such as Algebraic Reconstruction Technique

(ART) [142], Simultaneous Iterative Reconstruction Technique (SIRT) [143], and Simul-

taneous Algebraic Reconstruction Technique (SART) [144]. These methods compare the

sinograms of computational estimates of the local absorption function with the measured

sinograms and correct the estimations iteratively to approach an acceptable solution for

the original image [145]. While such methods are much more computationally intensive as

compared to FBP, they exhibit several advantages for tomographic imaging in the THz

range. First, they offer superior image quality for a smaller set of projections [133]. This is

particularly beneficial since long scanning times remain a major problem for THz CT (see

Section 4.2). Moreover, the algebraic methods allow the inclusion of a priori knowl-

edge of the object, which is commonly given in practical applications in the field of in-

dustrial quality control. As such, a combination of ray-tracing and iterative methods

could yield significantly enhanced image quality in the presence of Fresnel losses [146]–

[148].
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Figure 4.2.: Illustration of the THz CT experiment. The setup consists of a 430 GHz
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50-mm polytetrafluoroethylene (PTFE) lenses. The object is rotated (φ) and
stepped in the 2D object plane (y,z).

Figure 4.3.: Picture of the THz CT setup. After [own3] © 2017 IEEE.

4.2. THz Computed Tomography with Silicon-Based

Components

4.2.1. Experimental Setup

Figure 4.2 depicts the experimental setup of the THz CT system, and Figure 4.3 shows

a picture of the system. The object is placed in the focal spot of a 2f -2f optical train,

where f denotes the focal length of the focusing lens. The source beam is focused in the

object plane and subsequently refocused to the detector with four 5 cm-diameter PTFE

lenses. The lenses exhibit a focal length of 10 cm, and the total size of the optical train is

40 cm. With this arrangement, only a single projection line is acquired at a time. Hence,

the object is mounted to a y-z axis stepper motor stage and a piezo rotation stage to

enable acquisition of the projections at different heights.

The SiGe HBT source with −6.1 dBm radiated power at 430 GHz presented in Chapter 3

is used as a source. A source antenna gain of approximately 21 dBi is selected by choosing
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Figure 4.4.: Chip micrograph (a) and the schematic (b) of the antenna-coupled detector.
The key characterization results including the NEP voltage responsivity as a
function of frequency are depicted in (c). After [149] © 2017 IEEE.

a 4 mm-diameter hyperhemispherical silicon lens to allow the appropriate coupling of the

radiation to the optical train. The detector is the broadband antenna-coupled SiGe HBT

direct detector presented in [149]. The device was fabricated in an experimental 0.13 µm

SiGe HBT technology with a peak ft/fmax of 350 GHz/550 GHz. Figures 4.4(a)(b) show

the micrograph and the schematic of the detector. The detector comprises a differentially

driven common-base device pair, which provides rectification of the impinging THz wave in

its nonlinear base-emitter junction. To supply broadband operation, the impedance profile

of the antenna is optimized to represent a broadband complex-conjugated match to the

detector. The detector is fixed to a 3-mm diameter hyper-hemispherical silicon lens with

epoxy and is assembled to a low-cost FR-4 board. Figure 4.4(c) shows the measured NEP

and voltage responsivity Rv (for a 1.83 kΩ external load resistor) as a function of frequency.

At the operating frequency of the source of 430 GHz, the NEP and voltage responsivity

are 2.8 pW/
√

Hz and 7.5 kV W−1, respectively. The reader is referred to [149] for design

and measurement details. As it will be detailed in Chapter 5, SiGe HBT detectors suffer

from severe low-frequency noise below 100 kHz. To avoid a related deterioration of the

dynamic range (DR) of the system, the source is chopped at 120 kHz, and the detector

output is read out with an external lock-in amplifier (LIA) with 3 ms integration time.

The DR is defined as the ratio between the detected voltage at the LIA output without

an object present and the standard deviation of the voltage noise in the absence of the

THz beam. The measured DR of this system is 71.2 dB.

The spatial resolution of a focused far-field imaging setup depends on the size of the

focus spot, which is influenced by the wavelength and the employed optics. Hence, an

appropriate choice of the optical components and their accurate alignment is key to achieve

a good imaging resolution. Moreover, the depth of focus of the beam should be chosen

based on the lateral extension of the 3D object to ensure uniform sampling of the object.
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Figure 4.5.: Knife-edge characterization of the beam profile. Illustration of the knife-edge
measurement procedure (a). Measured normalized power responses and Gaus-
sian fits in the focus point and 3 cm apart from the focus point for translation
in z-direction (b) and y-direction (c). The corresponding axes are shown in
Figure 4.2.

The depth of focus of Gaussian beams is commonly described with the Rayleigh length,

which is proportional to the square of the beam waist in the focus point [150]. Hence, THz

CT setups typically require the spatial resolution to be traded against the depth of focus by

employing smaller optics. In the present setup, the optics were designed to accommodate

moderately sized objects with a lateral extension of a few centimeters. Based on the

measured radiation pattern of the source presented in Figure 3.6, the Gaussian waist radius

in the focus point and the Rayleigh length can be calculated to be 1.25 mm and 7 mm at

430 GHz for the PTFE lenses with 10 cm focal length1, respectively.

To assure a well-behaved Gaussian beam profile along the optical train, the beam propaga-

tion was consecutively optimized using element-wise beam profile measurements with the

SiGe HBT detector mounted to an industrial robot. All components were subsequently

fixed to a cage system to ensure the stability of the optical alignment. The imaging reso-

lution of the setup was quantified using the knife-edge method depicted in Figure 4.5(a).

A metal object with a sharp edge was mounted to a high-precision translation stage and
1The Gaussian waist radius is here defined as the distance from the optical axis where the intensity of
the beam has decreased to 1/e2 of its maximum value.
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was moved into the beam to block off parts of the radiation. Figures 4.5(b)(c) show the

normalized measured power received by the detector for y- and z-axis knife translation

in the focus point and 3 cm apart from the focus point. The beam waist radius is then

obtained with a Gaussian fit for the transmitted power P as [151]:

P =
Pmax

2

[
1 + erf

(√
2

(d− d0)

w

)]
, (4.6)

where Pmax is the total power of the unblocked beam, d − d0 is the signed knife-edge

distance from the point where half of the power is blocked, w is the 1/e2 beam radius, and

erf(t) is the Gaussian error function defined as follows:

erf(t) =
2√
π
e−t

2
dt. (4.7)

The measured Gaussian 1/e2 beam radius for the y-axis is 1.49 mm in the focus point

and 3.24 mm at 3 cm distance. The respective values for the z-axis are 1.64 mm and

2.81 mm. The measured spot size is slightly larger in comparison to the calculation but

shows reasonable agreement in view of uncertainty regarding the exact lens parameters.

The beam radius in the spot size for the y-axis translates to a maximum spatial resolution

of 1.9 mm according to a 10%-90% edge width criterion.

4.2.2. Imaging Results

A cuboid made of polystyrene with a metal knife blade and a hypodermic needle inside

its protective casing was scanned. Polystyrene foam exhibits an absorption coefficient of

less than 0.001 cm−1 at 1 THz and an almost constant refractive index of n = 1.02 in the

THz band [152]. The resulting transparency makes it an ideal material for the visual-

ization of embedded objects with THz CT. Figure 4.6(a) shows a picture of the objects,

and Figure 4.6(b) shows corresponding results of the volume render after tomographic

reconstruction [own7]. A total of 18 projections were acquired in 282 minutes with a

10° angle resolution and a 1 mm step size. The required 2D projection size to capture

the whole object was 54 mm×68 mm, leading to a total scanning speed of 11.7 mm3 s−1

when referred to the reconstructed volume. The bottleneck for the scanning time is the

mechanical translation in the stepped movement. Due to its better image reconstruction

quality for a limited set of projections, a reconstruction algorithm based on SART has been

favored over the FBP. Figure 4.6(c) shows the 2D slices for all acquired heights synthe-

sized with the SART algorithm of the ASTRA Tomography Toolbox [153] (360 iterations).
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4.2.3. Discussion

The simple, low-cost THz CT setup is capable of visualizing the macroscopic structure of

the embedded objects. It is noted that the hypodermic needle inside the plastic casing

is, however, not resolved since the needle width (400 µm) is significantly smaller than the

spatial resolution of the imaging setup. The results highlight that the image contrast is not

solely defined by the absorption of the material but also by Fresnel losses. This leads to an

information ambiguity between absorption, refraction, and reflection. The effect is most

notably visible at the boundaries of the polystyrene foam in Figure 4.6(c). If the contrast

would only rely on the material’s absorption, one would expect a subtle but homogeneous

signal for the foam. The reconstruction, however, depicts a contour caused by the Fresnel

losses for large incident angles of the radiation at the foam boundary. The same reasoning

can be given for the fact that the needle casing exhibits a similar image contrast at its

boundaries as compared to the fully reflecting metal blade.

4.3. Summary and Conclusions

This chapter demonstrates the feasibility of low-cost THz CT imaging systems, relying

only on compact silicon components. Using the 430 GHz source presented in Chapter 3

and a broadband SiGe HBT power detector [149], the 3D structure of an object compris-

ing a knife blade and a packaged hypodermic needle embedded in polystyrene foam was

successfully reconstructed. The THz CT system shows a dynamic range of 71.2 dB and

an approximate spatial resolution of 1.9 mm. Contrary to this work, prior studies have

mostly relied on expensive and bulky pulsed electro-optical components [138], [154], or

on high-power Schottky-diode or backward-wave oscillator sources [133], [155]. As such,

this study promises increased exploitation of THz CT systems in price-driven applications

such as industrial quality control.

However, the required image acquisition time is undoubtedly too long to raise an interest

in the practical adoption of this system at the current stage. The total acquisition time for

the here presented scan exceeded four hours, whereas practical acquisition times should

not exceed a few seconds. The bottleneck for the acquisition time is currently the stepped

mechanical translation. In another study, we have shown that the acquisition time can be

substantially reduced down to a few minutes with continuous object translation [own3].

Moreover, rapid THz CT volume acquisition within seconds has been readily demonstrated

by 1D and 2D collimated beam object illumination with non-silicon high-power sources

and concurrent detection with electro-optical crystals [154] or THz cameras [155]. The

realization of such approaches with silicon components sets demanding requirements in
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terms of source power, but it should be worth to conduct future research in this area in

view of the ongoing advances in silicon THz source technology.

An additional arguable weakness of the presented system, but also THz CT systems in

general, is the ambiguity regarding the image contrast. Losses due to reflection and re-

fraction lead to severe image distortion, which limits the use of THz CT to objects with

low permittivity. Other studies indicate that a combination of ray-tracing and iterative

reconstruction methods could significantly mitigate these distortions [146]–[148]. However,

an assessment of whether such methods can be reliably applied to THz systems remains

the objective of future research.

The results presented in this part of the thesis underline the limitations of the far-field

imaging systems in terms of spatial resolution. As detailed in Chapter 2, the diffraction-

limited spatial resolution in the millimeter-range may be sufficient for imaging of macro-

scopic objects, but various applications, in particular biomedical applications, require a

spatial resolution in the micrometer-range. The following part of the thesis explores the

means to break the diffraction limit for microscopic THz imaging with silicon technology.
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Figure 4.6.: CT-Imaging results for a knife blade and packaged hypodermic needle embed-
ded in polystyrene foam. Picture showing the objects (a), 2D volume render
after tomographic reconstruction with SART algorithm [144], [153] (b), and
2D slices in x-y-plane for different heights (z-values) (c). The data was ac-
quired with 1 mm spatial and 10◦ angular steps. The acquisition time was
282 min. After [own7] © 2019 IEEE.
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Part III.

Near-Field Imaging





Chapter 5

THz Near-Field Sensing in Silicon

Technology

As elaborated in Section 2.2, THz near-fields interacting with micro- and nanoscale phe-

nomenon show potential for a wide range of applications, most notably in the field of

biomedical imaging. So far, these applications remain unexplored because of the low

sensitivity, low integration level, and high cost, confining current THz near-field imaging

methods, i.e., a-NSOM and s-NSOM, to the laboratory use. However, initial demonstra-

tions of novel THz near-field imaging devices in modern nanoscale silicon technology have

successfully cleared some of the bespoke bottlenecks for the practical adoption of THz

near-field sensing by substantially increasing the integration level and sensitivity [15],

[19][own11], [own12]. More particularly, related advances were enabled by cointegrating

a SRR sub-wavelength near-field probe, a THz illumination source, and a THz detector

on the same silicon die into a single sensing pixel. These studies were undertaken at our

research group at the University of Wuppertal and remain the only demonstrations of

single-pixel silicon-integrated THz near-field sensors to date. This chapter reviews this

work and, thereby, provides the necessary context for the later chapters of this disserta-

tion. The fundamental sensing principle and the architecture of integrated SRR-based

sensors are presented, and prior studies are discussed in view of their performance, limi-

tations, advantages, and drawbacks. In this context, it is noted that some of the results

and figures presented here have been originally published in [own11], [own12], and [15],

[19].
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Figure 5.1.: Illustration of a near-field probe based on a SRR. After [own5] © 2018 IEEE.

5.1. Resonator-Based Sensing in Planar Technology

The common methods for electromagnetic material characterization with near-fields fall

into one of two categories: non-resonant or resonant methods. The non-resonant meth-

ods deduce the material properties from impedance and phase velocity measurements in

transmission or reflection setups. Here, the electromagnetic energy is directed towards a

sample trough a transmission line, e.g., by microstrip lines, hollow waveguides, or coaxial

lines [156]. Since the transmission line bandwidth dictates the total bandwidth, which

is typically large, non-resonant methods are well suited for broadband material charac-

terization. By contrast, the resonant methods generally are narrowband. They rely on

the measurement of the reflection or transmission behavior of resonant structures that are

loaded with a sample. The main advantage of resonant methods is that the rapid changes

of the resonator impedance close to the resonance frequency can significantly enhance

the accuracy and sensitivity as compared to the non-resonant methods. In view of the

implementation challenges associated with building broadband integrated THz systems

and the lack of strong spectral features of solids and liquids in the lower THz range (see

Section 2.1.5), a resonance method has been favored in the initial studies on integrated

THz near-field sensors [own11], [own12][15], [19].

The presented devices rely on resonance-enhanced sensing with SRRs as probes. In essence,

a SRR is a simple metal ring with a gap, as depicted in Figure 5.1. The geometry shows an

LC-resonance arising from the self-inductance (L) of the metal ring and the capacitance

of the split-gap (C). The resonance frequency fc is described by:

fc =
1

2π
√
LC

. (5.1)

If the SRR is appropriately illuminated at the resonance frequency, charges accumulated in
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the ring ends lead to an electric-dipole-type field in the vicinity of the gap. The electric field

cyclically exchanges energy with the magnetic fields caused by counteracting ring currents.

When the gap spacing is selected to be significantly smaller than the excitation wavelength,

the gap acts as a near-field generator with a capacitive and mostly non-radiating response,

as detailed in Section 2.2.2. The near-field sensing mechanism based on the split-gap field

can be intuitively explained as follows. If the electric field of the resonator is disturbed by

a close-by object that increases the effective dielectric permittivity, the capacitance of the

split-gap increases, thereby leading to a lower resonance frequency.

5.1.1. Perturbation Theory

A more general formulation of the resonance behavior of a SRR can be given based on the

perturbation theory [157]–[159]. Although this theory was first developed for microwave

resonant cavities [157], it should be stressed that it can be applied to any electromagnetic

resonator, including SRRs [160]. As a consequence of Maxwell’s curl equations, the nor-

malized, object-induced change in resonance frequency is given as:

∆f

fc
=
f2 − fc
fc

= −
˝

V (∆εE2 ·E∗1 + ∆µH2 ·H∗1 ) dV˝
V (εE2 ·E∗1 + µH2 ·H∗1 ) dV

, (5.2)

where V is the perturbed volume, f2 is the shifted resonance frequency, ε and µ are

the permittivity and permeability without perturbation, ∆ε and ∆µ are the changes in

permittivity and permeability. E1 and H1 represent the fields without perturbation,

and E2 and H2 are the fields with perturbation. Although being exact, Equation 5.2

is not very useful since it is typically not possible to find closed-form expressions of the

perturbed fields E2 and H2. However, if the perturbation is assumed to be small and the

field distribution is assumed to be unchanged, then Equation 5.2 can be approximated as

follows:
∆f

fc
= −
˝

V

(
∆ε|E1|2+∆µ|H1|2

)
dV˝

V (ε|E1|2+µ|H1|2) dV
. (5.3)

Because of the limited validity of the small perturbation assumption and because of the still

required knowledge of the unperturbed fields (E1 and H1) in Equation 5.3, the use of the

perturbation theory for analytical extraction of material properties is mostly restricted

to special cases and simple geometries; although such extraction has been successfully

demonstrated for various scenarios [161], [162]. In Section 6.1 it will be shown that the

geometry of the resonator and dielectric in the split-gap vicinity is too complex for an

analytical approach to be practical. However, the previously mentioned intuitive explana-

tion of the SRR sensing mechanism finds itself in Equation 5.3. Assuming that there is no

perturbation of the permeability (∆µ = 0) and noting that in resonance the time average
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of the energy stored in the resonator is two times the energy stored in the electric field,

Equation 5.3 can be furthermore simplified [159]:

∆f

fc
≈ −
˝

V ∆ε|E1|2dV
2
˝

V ε|E1|2dV
, (5.4)

thereby indicating that if the effective permittivity of the volume of the resonance structure

increases (
˝

V ∆ε · dV > 0), the resonance frequency decreases.

5.1.2. Planar SRRs for Imaging

The results from the perturbation theory have important implications on the objective to

use SRRs as THz imaging devices. Equation 5.2 highlights that any perturbation of the

electric or magnetic field of the SRR leads to a change in resonance frequency. Hence,

to operate as an imaging device with well-behaved spatial sampling properties, the field-

object interaction should be confined to a localized volume, i.e., the electrical field of the

split-gap.

This is a challenging requirement for SRRs that are implemented in a planar technology,

and it is the reason why most previous studies on THz sensing with SRRs were limited to

bulk material characterization rather than imaging. More particularly, the interaction of

near-fields generated by SRR-based metamaterials with objects nearby has been demon-

strated for permittivity and thickness sensors in the THz frequency band [163], [164]. Since

such sensors rely on transmission minimum measurements, they favor very high resonance

frequency shifts per refractive index unit (RIU). Consequently, thin low-permittivity sub-

strates are used as resonator carriers to maximize the electric flux available for interaction

with the object above the substrate [165]. Figure 5.2 illustrates the related problem. A

planar resonator geometry on an electrically thin substrate carrier exposes reactive near-

fields of different types to the sensing surface along its geometry. Asides from the electric

field of the split gap, such fields may include the magnetic fields of the ring and other

parasitic electric fringing fields. These fields can interact with an imaging sample placed

on top, potentially resulting in an adverse sample-position dependent sensor response,

ambiguous spatial sampling behavior, and a spatial resolution that is mostly limited to

footprint of the whole SRR [19].

In principle, planar technology offers two options to mitigate this problem. One solution

is exposing the split-gap field to the edge of the chip instead of the top surface, as shown

in Figure 5.3(a). As such, a study using edge sensors on Rogers RT/Duroid laminates suc-

cessfully demonstrated super-resolution imaging for planar SRR probes at around 6.5 GHz

with a lateral resolution of 0.7 mm [166]. Given the present aim of sensor integration into
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Figure 5.2.: Illustration of the near-fields of a SRR-based surface sensor in a planar tech-
nology.
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Substrate
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Figure 5.3.: Simplified illustration of the two fundamental sensing topologies for SRR-
based near-field sensors in planar technology. The surface sensor exposes a
sensing volume to the chip top surface (a) and the edge sensor to the chip
edge (b).

silicon technology and achieving spatial resolutions in the µm-range, edge sensors are dif-

ficult to apply because the thickness of the dielectric at the chip edge needs to be both

accurately controlled and extremely thin. Consequently, costly post-processing of the chip

in the form of micro-machining is required.

The other solution is illustrated in Figure 5.3(b). Here a SRR near-field probe that exploits

the multi-layer BEOL of a silicon technology is used to build a 3D SRR geometry that

limits the surface field exposure to the electric field of the split gap. This implementation

was favored for the THz near-field probes shown in [own11], [own12] and [15], [19] because

of the ease of fabrication and its potential to scale to 2D arrays. A detailed discussion

on related challenges and implementation aspects of the 3D SRR geometry follows in

Section 5.3.

5.2. Incoherent Sensing Concept

As outlined in Section 5.1, SRR-based near-field sensors rely on the measurement of the

resonant frequency shift induced by objects that are placed in the sensing volume of
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the resonator. However, the typically employed methods to detect frequency shifts are not

effectively applicable in integrated circuits at THz frequencies but are limited to microwave

and mmWave frequencies where the appropriate circuit complexity can be provided by

the fastest technology nodes. More particularly, one commonly applied method relies on

operating the resonator in transmission-mode and measuring the stopband minimum of

the resonator’s insertion loss with spectrum analysis [167], [168]. However, unlike as in the

lower frequency regions, the transmission minima for THz-SRRs are only poorly defined

since high losses of on-chip inductors and transmission lines deteriorate the quality factor

of the resonator. Furthermore, spectrum analysis at THz frequencies requires the on-chip

integration of a broadband heterodyne two-port system. Such systems typically employ

frequency multiplier chains which are not applicable for large-scale array integration since

they exhibit excessive power and area consumption [18].

Another method that is more suitable for multi-pixel integration is the direct detection

of an oscillation frequency shift induced by the loading of an LC-oscillator tank. Re-

lated works have demonstrated low-complexity sensing circuitry and multi-pixel integra-

tion based on frequency divider chains in the mm-Wave band [169]–[171]. Unfortunately,

neither silicon-based fundamental oscillators nor frequency dividers are yet available at

THz frequencies.

In this section, an alternative incoherent sensing concept relying on the measurement

of the power transmission modulation through a loaded SRR is discussed. The idea

prioritizes implementation simplicity, allowing for a small sensor footprint and scalable

circuit architectures while simultaneously providing appropriate sensitivity at THz fre-

quencies.

5.2.1. Concept Description

Contrary to measuring the resonance frequency itself, the frequency shift is translated to

the measurement of the temporal power transmission change of a bandstop filter at a fixed

frequency. The bandstop characteristic is realized by loading a transmission line (host line)

with a SRR. Figure 5.4(a) depicts the block diagram of the related sensor architecture,

and Figure 5.4(b) illustrates the operation principle. An on-chip free-running voltage-

controlled oscillator (VCO) oscillator illuminates the SRR with a THz wave of frequency

fo, which is typically chosen to be just above the SRR resonant frequency fc. A broadband

THz power detector with a voltage response Vo proportional to the incident power Pi is then

used to measure the transmitted power through the bandstop filter. If an imaging object

with non-unity relative permittivity is brought into direct vicinity so that it interacts

with the electric flux of the SRR, capacitive coupling leads to a reduction in the SRR
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Figure 5.4.: Incoherent near-field sensor. Block diagram (a) and illustration of the sensor
operation principle (b). After [own5] © 2018 IEEE.

resonance frequency to f ′c. The loaded SRR thus exhibits a monotonously decreasing

resonance frequency for objects with increasing relative permittivity. As a consequence,

the SRR transmission coefficient α at frequency fo is increased. The change in transmitted

power compared to a non-loaded reference can be measured at the power detector with a

difference measurement.

The resulting difference signal ∆Vo is hereafter termed as the sensor response, which can be

expressed as a function of the source, detector, and resonator characteristics. It is assumed

that αX is the SRR power transmission factor (|S21|2) at fo when object X is placed in the

sensing volume of the SRR. The factor αX , thereby, depends on the complex permittivity

of object X. If Posc is the power emitted by the oscillator and RV is the detector voltage
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responsivity, then ∆Vo,X for the object X can be written as:

∆Vo,X = Posc(αX − αnoObj)RV . (5.5)

Here, αnoObj is the SRR power transmission factor in the absence of any object other than

air (εr ≈ 1). Note that since fo > fc, a reduction in fc in the presence of an object X

would lead to an increased power transmission at fo.

The described sensing concept translates the sensor response from the frequency domain

to the amplitude domain. This entails several considerations regarding the response for-

mation:

• The sensor response does not only depend on the sensitivity in terms of resonance

shift per RIU but also on the depth and slope of the bandstop notch. Hence, a

high modulation depth needs to be achieved (see Figure 5.4). Along with the source

output power, the detector responsivity, and inherent noise contributions, this de-

termines the SNR of the sensor.

• A change in the resonator quality factor, which may be caused by loading the SRR

with a lossy medium, causes a change in transmitted power. Consequently, the

sensor is prone to response ambiguity between the real and imaginary part of the

object’s permittivity. Chapter 6 discusses this topic in more detail.

• The dependency on both frequency shift and quality factor implies the necessity of

careful electromagnetic design of the SRR to ascertain that the sensor is sensitive

for a large range of materials. The sensor response should change gradually with

varying permittivity of the objects, reaching saturation for metals (εr ≈ ∞). This

is achieved by a well-tailored relationship between resonance shift per RIU and the

quality factor of the SRR. A higher quality factor implies a higher sensitivity for a

smaller range of measurable permittivity values and vice versa.

5.2.2. Sensor Illumination

Figure 5.5(a) depicts the schematic of a single-ended sensor, showing the SRR-loaded host

line at the output of an oscillator. Suppression of the power transmission occurs because

the SRR-loaded transmission line shows high impedance at resonance, thereby reflecting

the THz wave to the source. To exhibit a transmission zero, the host line and the SRR

should be properly aligned with respect to their respective electromagnetic symmetry

planes [172]. As it will be detailed in Chapter 6, a transmission line symmetrically loaded
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with two SRRs that are oriented orthogonal to the host line axis gives rise to strong single-

mode magnetic coupling with aligned magnetic symmetry planes that can be conveniently

utilized in planar technology.

Another central aspect of the sensor illumination is the choice and design of the illu-

mination source. The reduced complexity required for the illumination source is a key

advantage of the incoherent sensing scheme. As discussed in Chapter 3, compact, high-

power on-chip THz sources can be integrated by utilizing free-running fundamental os-

cillators that operate close to the integration limits in terms of frequency, and harmonic

extraction can be used to generate power beyond fmax. A few specific requirements for

the oscillator design arise in the context of near-field sensing and the incoherent sensing

scheme:

1. Similar to the requirement of confinement of the SRR fields detailed in Section 5.1,

the oscillator should not be sensitive to objects placed on the top surface of the chip.

It is noted that this sensitivity is not only related to the oscillator output power

but also to the oscillation frequency since any shift in oscillation frequency is also

translated to a change in received power level at the detector.

2. The oscillation frequency should be insensitive to changes in the load impedance

so that the power modulation is uniquely caused by the object-induced shift of the

SRR resonance frequency.

3. A very high oscillation frequency is required. Although the achievable spatial reso-

lution is not dependent on the frequency but rather on the geometry of the SRR,

a high excitation frequency allows using SRRs with a low total footprint, which is

crucial for dense multi-pixel sensor integration.

Colpitts triple-push oscillators (TPOs) in CC topology are applied as illumination sources

[own11], [own12], [15], [19], which allows harmonic upconversion of the fundamental oscil-

lation frequency, fosc/3, with a compact form factor. Figure 5.5(a) shows the simplified

schematic of a TPO, and Figure 5.5(b) shows the corresponding phase diagram for output

branch currents at the fundamental oscillation frequency and at the third harmonic. The

oscillator comprises three individual CC Colpitts oscillators in a star connection with a

negative resistance implemented by an emitter capacitance Ce in series feedback. The

oscillation frequency is set by the series resonant tank formed by TLb, the base-emitter

junction capacitance, and Ce. To address the first requirements in the aforementioned

list, all inductances are implemented with striplines, thereby shielding all electromagnetic

fields of the oscillator from the chip top surface. The second and third requirements in the

list are fulfilled inherently by the operation principle of the TPO. If the common output
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node is loaded sufficiently to suppress fundamental oscillation in the common-mode, a pro-

gressive phase shift of 120° is established between the oscillator branches [173]. Hence, the

fundamental output current superimposes nondestructively, and the third harmonic cur-

rent generated in the strongly driven base-emitter junction of the SiGe-HBTs superimposes

constructively at the star node. The star node furthermore embodies an AC-ground at the

fundamental oscillation frequency, thus preventing any oscillator pulling at the fundamen-

tal caused by the strongly varying reflection coefficient of the SRR.

It is noted that the requirement for isolation of the fundamental oscillation with respect

to the SRR resonance behavior could be similarly achieved with any N-push topology

because all these circuits exhibit an AC-ground at the common node. However, so far, the

TPO has been favored because it shows a good compromise between achievable oscillation

frequency (above 500 GHz) and available output power level (several tens of µW) for near-

field sensing.
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3rd Harmonic Phase Diagram
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Figure 5.5.: Sensor illumination with Colpitts triple-push oscillators. Simplified sensor
schematic (a) and phase relationships for the three oscillator cores at the
fundamental oscillation frequency and at the third harmonic (b). Phases
superimpose deconstructively and constructively at the fundamental and at
the third harmonic, respectively.
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5.2.3. Power Detection

The incoherent operating scheme facilitates direct downconversion of the THz wave trans-

mitted through the resonance structure to DC by means of a broadband power detector.

For this purpose, the non-linearity of the base-emitter junction of high-speed SiGe-HBT

devices has been exploited in all prior studies. SiGe-HBT devices have been favored over

MOSFET power detectors as they exhibit significantly lower input impedance, thereby

facilitating detector integration without a dedicated tuned frequency-selective structure

for matching. Hence, SiGe-HBT detectors provide a more robust near-field sensor design

procedure, which relies on the precise frequency alignment of the resonator stopband with

the limited tuning range of the oscillator source.

RFin

DCout

RF filter

RbB C

E
Re

Ib Ic

CjeC  +b

Bias

Figure 5.6.: Schematic of a common-emitter SiGe-HBT power detector with equivalent
circuit of the transistor.

A SiGe-HBT power detector circuit can be implemented with a single device in common-

emitter topology, as shown in Figure 5.6. Contrary to traditional diode-connected recti-

fiers, the transistor is operated as a 3-terminal device with a disconnected collector and

base. This minimizes the parasitic leakage of the THz wave to the substrate through

the large collector-substrate capacitance and improves isolation between the RF input

and the DC output [19], [120]. To furthermore mitigate the unintended nonlinearities,

the RF signals coupling through the base-collector capacitance is suppressed with an RF

filter at the collector node, which is designed to provide an AC-ground at the collec-

tor.

The nonlinear frequency-dependent response of such a SiGe-HBT detector in forward ac-

tive region can be analyzed by Volterra series expansion [174]. In the second-order approx-

imation, the output DC-current based on the high-frequency equivalent circuit depicted

in Figure 5.6 (Cbc is omitted) can be calculated as follows:

Idc =
V 2
be

Vt

[
(1 + gmRe)

2 +R2ω2
(
gm
ωt

+ Cje

)2
] · gm

1 + gmRe
, (5.6)
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where R = Re + Rb, Rb is the base resistance, Re is the emitter resistance, Vbe is the

base-emitter input voltage, gm is the transconductance, Cje is the base-emitter junction

capacitance, and ωt is the small-signal current unity-gain cut-off angular frequency. No-

tably, V 2
be is proportional to the input power via Ohm’s law. Here, the proportionality

factor is the frequency-dependent current responsivity RI of the detector, which drops

with 20 dB/dec at high frequencies [175].

Detector Noise

The detector noise contribution in the incoherent sensing scheme is of primary concern

for sensitive sensor operation. More particularly, the direct down-conversion of the THz

wave to DC requires the detector low-frequency noise to be taken into account. The phys-

ical origins of low-frequency noise in contemporary high-speed SiGe-HBT transistors can

be diverse, and they are strongly dependent on the bias conditions. On the one hand,

the collector current shot noise resulting from discrete majority carrier flow through the

base-emitter junction dominates the white (flat) noise spectrum of the intrinsic transis-

tor. On the other hand, the noise of high-speed SiGe-HBT can be seriously penalized

at low frequencies due to 1/f noise and generation-recombination (GR) noise caused by

defects in the semiconductor layers. Here, the origin of the 1/f-noise are fluctuations in

conductivity related to both mobility and number of carriers [176], and the GR noise is

due to carrier trapping-detrapping process among energy states [177], [178]. These ran-

dom nanoscopic effects are particularly pronounced for deeply scaled high-speed devices

with low emitter area and perimeter [178]. Hence, low-frequency noise is a serious con-

cern in the incoherent sensing scheme, which favors minimum-size devices for best current

responsivity.

Figure 5.7 exemplary shows the measured noise output voltage for a minimum-size detector

device in IHP’s high-speed 0.13 µm BiCMOS SiGe-HBT technology [179]. A detector bias

of Vbe =0.815 V was selected to yield optimum responsivity, and the device was biased in

the forward active region [19]. The previously detailed low-frequency noise is present at

frequencies below around 100 kHz, and it can be orders of magnitude higher than the white

noise floor of the detector. More particularly, the plateau visible between 1 kHz–10 kHz is

untypical for 1/f-noise and thus indicates that GR-noise is the main noise contributor in

this frequency range.

Given the described incoherent sensor operation concept, it is therefore desirable to miti-

gate low-frequency noise contributions by operating with a chopped oscillator signal. Fig-

ure 5.8 qualitatively illustrates the power spectral density at the detector output for a CW

and a chopped oscillator signal. If the oscillator is periodically turned on and off with a
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frequency higher than the low-frequency noise corner frequency, the resultant square-wave

signal can subsequently be read out with a higher SNR as compared to the CW operation

using lock-in detection.

Figure 5.7.: Spectral density of the measured noise output voltage for a minimum-size de-
tector device in IHP’s high-speed 0.13 µm BiCMOS SiGe-HBT technoloy [179].
The device is loaded with loaded with a 17 kΩ resistor. After [19].

CW
chopped

Figure 5.8.: Qualitative illustration of the detector output power spectral density over
frequency for a CW and square-wave modulated (chopped) oscillator signal.
Chopping leads to a rectangular output signal, which is a superposition of odd
harmonics in frequency domain.

5.2.4. Figure-of-Merits

This section discusses the key figures-of-merits of the incoherent sensing scheme and how

to interpret them in view of near-field imaging applications.
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Sensitivity

The sensor sensitivity is defined as the minimum detectable change in power transmission.

For this metric to be meaningful for practical applications, it should be linked to the

intended contrast mechanism. As it will be detailed in Section 6, SRR-based near-field

sensors respond strongly to both the dielectric permittivity of the object and the spatial

displacement of the object. For material characterization, the sensor sensitivity defined as

the minimum detectable change in dielectric permittivity is a key parameter. As it will be

detailed in Chapter 6, the power transmission through the SRR is sensitive to both the

real part ε′r and the imaginary part ε′′r of the relative permittivity, and thus it can also be

defined for both.

For small changes in relative permittivity, the relationship between SRR power transmis-

sion factor α and εr can be linearly approximated at the excitation frequency. Thereby, the

minimum detectable change in relative permittivity, ∆εr,min, can be defined as:

∆εr,min =
Vn,int

Posc ·RV ∂α
∂εr

, (5.7)

where Vn,int is the total voltage noise integrated over the sensor read-out bandwidth fRBW .

It is important to note that the power transmission sensitivity factor ∂α
∂εr

is dependent on

the slope of the stopband notch at the excitation frequency and specific resonator frequency

shift per RIU for a certain dielectric loading. The sensitivity is thus always required to be

put in relation to the excitation and loading conditions. On another note, Equation 5.7

assumes CW illumination and should be modified with an added prefactor in the denom-

inator to account for the different amplitudes of the square-wave Fourier decomposition if

the sensor is operated in a chopped operation mode.

Dynamic Range

In accordance with other electronic systems for imaging, a DR can be defined, which de-

scribes the fundamental image contrast limit of the sensor. DR is defined as the maximum

response ∆Vo,max divided by the total noise at the detector output. Since the maximum α

value is obtained for a perfect electrical conductor (PEC) object, the maximum measurable

∆Vo at the sensor is given as:

∆Vo,max = PoscRV (αPEC − αnoObj). (5.8)
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Therefore, the DR of the sensor is:

(5.9)DR[dB] = 20 log10

(
∆Vo,max
∆Vo,min

)
= 20 log10

(
PoscRV (αPEC − αnoObj)

Vn,int

)
.

5.3. Single-Pixel THz Near-Field Sensors

The aforementioned SRR-based incoherent sensing concept has been applied to build var-

ious types of single-pixel THz near-field imaging devices. The studies include CW and

chopped single-ended sensors [19][own12], and a CW differential sensor [15]. Table 5.1

lists the key design aspects, performance metrics, and shows the micrographs of the sen-

sors. All sensors operate around 550 GHz and show lateral resolutions in the range of

10 µm. The sensors presented in [19] and [own12] use the same TPO and SRR, but a

chopping technique enabled a significant improvement of the DR from 42 dB to a maxi-

mum of 115 dB in a 1 Hz noise integration bandwidth, respectively. In general, the single-

ended and differential sensors show similar performance metrics. Since one of the key

contributions of this thesis is the demonstration of a multi-pixel sensing SoC based on the

single-ended sensor (Chapter 7), this section briefly summarizes important aspects of the

related SRR design. The reader is referred to [19] for a more detailed discussion and the

characterization of the whole sensor.

5.3.1. Cross-Bridged Double Split-Ring Resonator

As highlighted in Section 5.1.2, to operate as a super-resolution imaging device, the ex-

posed fields of the SRR are required to be highly confined to an electrically small area

with high electric flux density. The sensor response needs to be spatially monotonous, and

all fields related to the illumination and detection paths and the electromagnetic fields of

the resonator outside of the sensing volume need to be enclosed in the substrate to avoid

parasitic object interactions.

Hence, a 3D resonator topology exploiting the multilayer BEOL stack of a high-speed

SiGe-HBT technology was used to spatially engineer the exposed fields [19][own12]. Fig-

ure 5.9 shows the BEOL stack of the 0.13 µm SiGe BiCMOS technology. It exhibits seven

aluminum layers, including two thick top metal layers embedded in 15.3 µm thick silicon

dioxide on top of a 50 Ω·cm silicon substrate. The chip top surface is furthermore covered
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Table 5.1.: State-of-the-art Integrated Single-Pixel THz Near-Field Sensors

Reference [19] [own13] [15][own11]

Micrograph

300

oscillator

resonator

4
0

0
 μ

m
  

285 μm  

detector

Technology 0.13µm SiGe-HBT 0.13µm SiGe-HBT 0.13µm SiGe-HBT
Operation Mode single-ended, single-ended, differential,

continuous wave chopped continuous wave
SRR Topology 3-D cross-bridged 3-D cross-bridged 3-D SRR

double SRR double SRR
Operating Frequency 534GHz–562GHz 532GHz–562GHz 533GHz–555GHz

Resolution 10µm–12 µm 10µm–12µm 8µm–10µm
Dynamic Range 42 dB1 115 dB2 40 dB1

Power Consumption 48mW 24mW 112mW
1 Estimated from the image in Fig. 19 in [19]. Noise integration bandwidth is unknown.
2 Referenced to a 1Hz noise integration bandwidth.
3 Estimated from the image in Fig. 24a) in [15]. Noise integration bandwidth is unknown.

with a 600 nm thick silicon-nitride passivation. The fundamental idea behind 3D SRR in-

tegration is to vertically separate the split-gap from the rest of the resonator and a buried

transmission line that couples to the SRR. This can be realized by placing the sensing

layer in the topmost metal layer (TM2) and the rest of the resonator and the host line in

lower metal layers (M5-TM1).

Figure 5.10 shows the whole coupled SRR structure for near-field imaging at around

550 GHz. The key resonator parameters such as modulation depth, quality factor, spa-

tial resolution, and resonance frequency shift per RIU are complexly dependent on the

resonator topology, leading to various implementation challenges. In this regard, a brief

discussion of the 3D topology is given as follows.

Resonator Topology

The resonator comprises two parallel SRRs, which are magnetically coupled to a TM1

host line. The two SRRs are ’cross-bridged’, meaning that their respective open ring ends

are connected in TM2 in the magnetic symmetry plane, thereby forming a shared split-

gap without changing the current distribution in the individual rings. This split-gap is

realized in the form of two electrically short (15 µm) and closely spaced (3 µm) 4.5 µm-wide

parallel strips, which are differentially driven with antiparallel currents by the magnetic

excitation to support the generation of an electric-dipole type sensing field. The geometry

of the sensing strips defines the spatial resolution of the sensor and is limited in its spatial
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Figure 5.9.: Multi-layer (7-AL) 15.3 µm-thick BEOL-stack of IHP’s SG13G2 0.13 µm SiGe-
BICMOS technology. The vertical allocations of the SRR elements are indi-
cated. By courtesy of Bernd Heinemann, IHP GmbH, Germany.
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Figure 5.10.: On-chip 3D SRR integrated into a multi-layer BEOL-stack [19]. 3D view (a)
and top view (b). The resonator dimensions are: W = 4.5 µm, S = 3 µm,
L = 15 µm. After [own5] © 2018 IEEE.
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dimensions by the design rules of the technology. It is noted that the sensing strips in

TM2 are furthermore covered by a 2 µm thick dielectric layer, which limits the minimum

object-to-sensor distance and serves as a protection layer. The rest of the SRR is located

in the lower metal layers. In addition to the sensing strips, a deeply buried split-gap

(M5) adds to the total capacitance to reduce the footprint of the SRR. The resonator

wires comprise two components. First, lines parallel to the host line provide the coupling

mechanism through magnetic induction. To increase the coupling strength, the ground

shield is patterned underneath these lines. Secondly, TM1 microstrip lines are used to close

the ring. Chapter 6 provides a detailed discussion of the means to model this resonator

structure.

Simulations of the Electric Field

To analyze the electric field distribution in the sensing volume and the perturbation of

these fields when objects are placed in the sensing volume, the 3D SRR was simulated in

full-wave electromagnetic simulations (Ansys HFSS). The BEOL-stack was build accord-

ing to the technology specification, whereas the metal lines were assumed the be made

out of aluminum, and the BEOL dielectric was assumed to be made of lossless SiO2 with

a homogeneous relative permittivity of 4.1. As depicted in Figure 5.9, the BEOL top

surface of this technology is not chemical-mechanical planarized, thus giving a finite de-

gree of planarization. Most importantly, the specific BEOL topology leads to an air gap

located between the sensing strips. Since this is the volume with the highest electric flux

density, the BEOL topology has a major influence on the field distribution. Furthermore,

its exact topology is difficult to predict for small metal spacings that approach the min-

imum design rules as it is the case here. In the simulations, the BEOL structure was

approximated to be trapezoidal, which yielded the best fit between measurements and

simulations [19].

Figure 5.11(a) shows the simulated E-field magnitude on the top sensing surface of the

resonator at the nominal resonance frequency of 535 GHz [19], and Figure 5.11(b) shows

the total E-fields for the resonator cross-section along the center microstrip host line for

various object loads. The objects were modeled as lossless dielectrics and PEC cubes

of dimensions 30 µm×30 µm×30 µm and were placed in direct contact with the chip top

surface. The amplitudes are calculated for a 1-W reference excitation power. The sim-

ulation results in Figure 5.11(a) clearly show the electric-dipole field distribution, with

the field in between the strips being predominantly tangential (Ex) to the surface and

normal components rising on the top surface (Ez). Moreover, the area of significant field

magnitude is limited to the vicinity of the sensing strips, which is the key property to
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achieve high spatial resolution. The simulation furthermore highlights the axial symme-

try in both vertical and horizontal orientations, which is an essential feature for imaging.

As to the field perturbation due to object loading (Figure 5.11(b)), it is visible that the

field confinement between the sensing strips and the object surface grows with the sample

dielectric permittivity and is highest for the PEC object. This is the underlying effect

causing an increased total capacitance in the sensing region.

Simulation of the Sensor Response

Figure 5.12(a) shows the simulated sensor power transmission coefficient. The quality fac-

tor of the transmission stopband is five, and the modulation depth is 14.4 dB. Confirming

the assertions mentioned in Section 5.2.4, the change rate of resonant shift per RIU is not

constant but reduces with increasing dielectric permittivity. Hence, the power transmis-

sion to both metallic objects and lossless dielectrics with dielectric permittivity varying

from 1 to infinity can be mapped with compression into a monotonic image contrast. This

becomes more apparent if the power transmission for the different objects is referenced

to the case with no object loading, as shown in Figure 5.12(b). It can be seen that the

image contrast is frequency-dependent with a maximum power response of 0.58 appearing

for PEC slightly above the resonance frequency at 540 GHz. In view of the remarks in

Section 5.2.4, this choice in excitation frequency maximizes the DR but not the sensitivity

of the sensor. For the highest sensitivity, the frequency has to be aligned with the steepest

slope rate.

5.3.2. On Imaging and Practicability

Although the integrated single-pixel THz near-field sensors offer improvements in DR and

system cost as compared to the traditional THz near-field techniques, there remain major

challenges for practical applications. The planar integration with the sensing field exposed

to the chip top surface restricts the material types to be imaged. In particular, solid objects

are required to be exceptionally smooth so that a constant probe-to-object distance can

be held without the object crashing into the chip surroundings. This restriction is not

present for the NSOM techniques using pointed probes such as scattering tips or tapered

apertures, where the probe-to-object distance can be controlled with the methods used

in traditional nanoscopy, e.g., laser deflection in contact-mode or force feedback in non-

contact-mode [180].

Combined with the requirement for prolonged raster scans, the imaging and material

characterization experiments with integrated single-pixel THz near-field sensors have been
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Figure 5.11.: Simulated E-field maps in the resonator at 535 GHz. (a) E-field components
at the sensing surface with no object present and (b) total E-fields for the
resonator cross section along the center microstrip host line. The fields are
calculated for a 1-W input excitation power. For the coordinate system
definition, the reader is referred to Figure 5.10. After [19] © 2017 IEEE.
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Figure 5.12.: Simulated frequency dependence of the power transmittance of the sensor
(|S21|2) (a) and sensor power response (|S21,obj|2 − |S21,0|2) with loading of
objects with varying dielectric permittivity and for PEC (b). The curves are
normalized to the unit input excitation power.

rudimentary in prior studies. They mostly served as a proof-of-concept. In that regard,

it was experimentally verified that the sensors exhibit an image contrast that depends on

the dielectric permittivity by measuring a varying sensor response for varying material

under test (MUT)s [15], [19]. Similarly, another study indicated the potential to use these

sensors for aqueous solution analysis and verified that the sensors are responsive to the

varying dielectric permittivity of differently concentrated sugar solvents [own13]. With

respect to imaging, 2D images of metal cutter blade tips were obtained in around 10 min

long raster scans with simple mechanical object fixation and translation using stepper

motors [15], [19].

5.4. Summary

The principle of incoherently THz near-field sensing with SRRs is discussed in this chap-

ter. First, the sensing phenomenology is discussed, and an understanding of the design

challenges related to building sub-wavelength THz near-field probes in planar silicon tech-

nology is provided. The chapter motivates the use of an incoherent sensing concept and in-

cludes remarks on its realization and figure-of-merits to quantify its electrical performance.

After a brief review of the state of the art in single-pixel near-field sensors, the focus is laid

on the SRR design of the single-ended sensor implementations.





Chapter 6
Modeling of Cross-Bridged Double

Split-Ring Resonators

This chapter presents a framework for the modeling of cross-bridged double split-ring

resonator topology described in Section 5.3.1. First, the focus is laid on modeling the

sensing strips and their interaction with objects exhibiting varying material properties

and locations. A model describing the whole SRR topology is subsequently introduced,

extracted, and validated in full-wave EM simulations for the topology of the 550 GHz SRR

reported in [19].

6.1. Modeling of the Sensing Strips

The sensing mechanism of the strips relies on the change in equivalent capacitance in-

duced by objects that disturb the electric field. Such scenarios are commonly described

using analytical approaches such as the perturbation theory mentioned in Section 5.1.1 or

conformal mapping [181]. However, the BEOL surface in this technology is not planarized

(see Figure 5.9), and its factual topology after fabrication is expected to exhibit some un-

certainty, especially for small spacings of the sensing strips. The related complex electric

field distribution cannot be conveniently expressed analytically.

Therefore, the near-field sensing mechanism is described by means of a physical equivalent

circuit model and simulation-based empirical modeling of its effective electric properties.

Because of the anti-parallel current flow, the two strips resemble a differentially excited

line pair in which the shunt admittance between the lines changes with object loading.
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Figure 6.1.: Equivalent circuit model for near-field sensing strips implemented in the top-
metal layer of a silicon BEOL (a). 2D simulation setup (Ansys Q3D Solver) for
the extraction of the sensing strip parameters C ′s and G′s at 550 GHz (b). The
figure depicts an exemplary result for a centered copper object of dimensions
30 µm×20 µm at 5 µm distance from the chip top surface (y =5 µm). The lines
correspond to the lines of constant electric field magnitude for a differential
voltage excitation with 1 V magnitude.

The electric field is perpendicular to the line axes, and its direction varies with sinusoidal

excitation. Figure 6.1(a) shows the equivalent circuit of the loaded sensing strips. The

circuit is similar to the one presented described in Section 2.2.2 and [171]. The capaci-

tance between the sensing strips is divided into a capacitor C0, which lumps together the

direct shunt capacitance between the strips, and a capacitor Cc, representing the coupling

capacitance to the MUT through the BEOL and a potentially present air gap between

chip and MUT. The MUT itself is modeled by an equivalent circuit for lossy dielectrics

comprising the parallel connection of a capacitor Cmut and a conductance Gmut. While

being a complex function of the object geometry and location, Cmut and Gmut are pro-

portional to the real part ε′r,mut and imaginary part ε′′r,mut of the dielectric permittivity,

respectively [171].

Based on this model, the input admittance, Ys, of the loaded sensing strips can be calcu-

lated. The imaginary part of Ys is given by:

Im(Ys) = ωC0 +
ωCcG

2
mut + ω3CcCmut (Cc + Cmut)

G2
mut + ω2 (Cc + Cmut)

2 (6.1)

and the real part is given by:

Re(Ys) =
C2
cGmutω

2

G2
mut + ω2 (Cc + Cmut)

2 . (6.2)
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The analysis indicates that the model shown in Figure 6.1 can be furthermore transformed

into a parallel CG-equivalent circuit with frequency-dependent elements. In the following,

the elements of this equivalent circuit are referred to as the sensing capacitance, Cs, and

the sensing conductance, Gs. Both Cs and Gs are a function of the complex dielectric

permittivity of the MUT described by CMUT and GMUT , which implies that the resonance

frequency of the whole SRR is also dependent on the dielectric and conductive losses of

the MUT.

Recognizing that the sensing strips resemble an electrically short differential transmission

line segment, Cs andGs can be approximated by simulating the capacitance per unit length

C ′S and the conductance per unit length G′s of the line and subsequent multiplication of

these with the physical length of the strips. Figure 6.1(b) depicts the simulation setup

in the 2D quasi-static electromagnetic field solver (Ansys Q3D Extractor). With a line

spacing of 3 µm and a line width of 4.5 µm, the geometry is chosen to be to equal the strip

geometry of the resonator presented in Section 5.3.1 and [19]. Furthermore, the geometry

of the dielectric around the sensing strips is approximated to be trapezoidal [19], and the

dielectric of the BEOL is assumed to be lossless. A simulative study on the change in

C ′s and G′s with respect to varying material properties and object location is conducted

subsequently. The simulation frequency is chosen to be 550 GHz in all simulations, which

lies in the middle of the operation region of the SRR.

6.1.1. Response to Varying Material Properties

The influence of a load with varying complex permittivity was simulated by placing a

30 µm×20 µm dielectric block in direct contact with the sensing surface. Figure 6.2(a)

shows the simulated capacitance C ′S and Figure 6.2(b) shows the simulated conductance

G′s for different ε′r and loss tangents. For the unloaded case (εr = 1) and for loading with

a PEC object, the simulated C ′s is 77 aF/µm and 128 aF/µm, respectively. The expected

behavior of increasing C ′s with increasing ε′r can be observed as well as the dependency

of C ′s on the loss tangent, as derived in Equation 6.1. However, the relative change in

effective capacitance due to losses in the MUT is only a minor effect as compared to the

change related to ε′r.

6.1.2. Response to Spatial Object Displacements

The highly confined electrical fields of the strips clearly entail a high sensitivity to spatial

object displacements. The most important related properties are the lateral resolution

and the sensor sensitivity as a function of object distance to the sensing surface, which
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S S

Figure 6.2.: Simulated dependency of the parallel CG-circuit of the sensing strips as a
function of the complex permittivity of the object at 550 GHz. Sensing capac-
itance per unit length (C ′s) (a), and sensing conductance per unit length (G′s)
(b). An object of dimensions 30 µm×20 µm was simulated in direct contact
with the sensing surface (z = 0).

are primarily dependent on the strip geometry. Although an ample simulative study of

these properties requires the full 3D SRR topology to be taken into account because of

the non-uniform field distribution of the SRR [19], it is worth pointing out that reducing

the simulation problem to 2D lessens the required memory significantly as compared to

full-wave 3D simulations.

Figure 6.3 plots the capacitance response as a function of the object distance to the sensing

surface for PEC and dielectric objects of dimensions 70 µm×20 µm. The capacitance re-

sponse is thereby defined as the object-induced change in sensing capacitance C ′s referenced

to the capacitance without object loading, C ′s,0. The observation space was limited to the

reactive near-field zone, i.e., to distances d of the object to the sensing surface significantly

smaller than the free-space wavelength at 550 GHz. Interestingly, two distinct decay zones

can be observed. At distances greater than 5 µm, the decay rate is inversely proportional

to > d2, which is in reasonable agreement with the theoretically expected decay behavior

of an electric dipole, as described in Section 2.2. In the direct vicinity of the sensing strips

(d <5 µm), the capacitive response and, thus, the related electric field magnitude is an

involved function of the BEOL and the sensing strip topology. A functional description of

the decay behavior could not be inferred by curve fitting here.

Analogously, the lateral resolution was simulated for a PEC as a function of distance from

the object to the sensing surface. The object was translated in x- and y-direction. Here,

the lateral distance represents the distance from the object center to the origin of the

x-axis, as depicted in Figure 6.2. Figure 6.4 shows the sensing capacitance per unit length
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C ′s as a function of displacement. The slope of the capacitance response is less abrupt

when the distance of the object to the sensing surface increases. This effect originates in

the fact that the electric field ’smears out’ causing broadening of the surfaces of constant

electric field strength. Moreover, the edge response exhibits a plateau which stems from

surface regions of low field intensities (see Figure 5.11) caused by the non-planar BEOL

geometry. A lateral resolution according to a 10%-90% rising/falling edge criterion can

be derived for varying object height and is shown in Figure 6.4(b). In direct contact with

the chip surface, the lateral resolution is 10 µm for both metallic and dielectric objects,

which is close to the spatial extension of the sensing strips (12 µm). Furthermore, the

lateral resolution decays rapidly, e.g., for PEC objects at a distance of 15 µm, it is only

40 µm. It is visible that the decay in lateral resolution for dielectrics is slower as compared

to metallic objects. This can be attributed to the different interaction phenomenology

between metallic and dielectric objects.

It needs to be emphasized that the here derived lateral resolution can only serve as a

qualitative measure for the lateral resolution of the whole SRR when it is operated in the

incoherent sensing scheme presented in Section 5.2. The lateral resolution of the entire

sensor has to be derived based on the 10%-90% rising/falling edge criterion applied to

the power response, which is a complex function of sensing frequency and curvature of

the transmission notch [19]. Thus, it is not linearly dependent on the change in SRR

capacitance.

/ 1/d  -1/d  2 3

Figure 6.3.: Simulated capacitive response of the sensing strips as a function of object to
chip surface distance for different dielectrics and a PEC object. Capacitive
response is defined as the object-induced change in sensing capacitance with
respect to a unloaded reference (C ′s − C ′s,0).
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Figure 6.4.: Simulated sensing capacitance C ′s as a function of lateral distance from the
symmetry axis (x = 0 in Figure 6.1) and the distance of the object from
the chip surface for a PEC object (a). Simulated lateral resolution of the
capacitive response (10%-90% rising/falling edge criterion) as a function of
the object’s distance from the chip surface for different dielectrics and a PEC
object (b).

6.2. Modeling of the Resonator Topology

Expanding on the results of the previous section, the behavior of the entire 3D SRR

topology can be interpreted by means of an equivalent circuit model. Notably, the key

resonator dimensions are between λ/20 − λ/5 at the resonance frequency of 550 GHz

(λSiO2 = 272 µm), which is in the transition region between the valid range for lumped

circuit abstraction and the necessity of consideration of distributed effects. For the sake of

simplicity, the here presented equivalent circuit model is semi-lumped, which turns out to

allow a sufficiently accurate behavioral analysis of the SRR. The schematic of the model

shown in Figure 6.5 has been derived in accordance with the models commonly used for

metamaterial transmission lines loaded with SRRs [182]–[185]. The element choice and

their physical background are discussed in the following:

• Host line: The host line is modeled using the nominal-π transmission line repre-

sentation. Ctl represents the shunt admittance. The series impedance is divided into

two parts: an uncoupled line section, Ltl, modeling the entrance and exit part of the

host line and a magnetically coupled line section, Ls, modeling the middle part of

the host line. The middle line section exhibits a high magnetic field component due

to the ground plane opening.

• Magnetic coupling: Ls couples magnetically to the two parallel, equally-sized

resonator lines Lr1,2. In view of the field distortion caused by the cross-bridge con-
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necting the two parallel SRRs, a mean mutual inductance, M1, is derived during

parameter extraction. The coupling is thereby assumed to be predominantly mag-

netic because of the orthogonal orientation of the SRR symmetry plane with respect

to the host line axis. Apart from the coupling of the host line to the SRRs, the

mutual coupling between the two parallel SRRs is taken into account by introducing

the mutual inductance M2 between the two inductors Lr1.

• Split-ring inductance: As discussed in Section 5.3.1, the lines closing the SRR

rings are led back to the ground-plane to allow a confined, low-loss wave propagation

in a microstrip-mode. The inductance of these lines is modeled by inductor Lr2, and

the line capacitance is absorbed into the split-gap capacitance Csg.

• Split-ring capacitance: The buried split-gap is modeled as a series capacitor Csg.

Notably, the shunt capacitance of the feed to the split-gap can also be absorbed into

Csg. Based on the discussion in Section 6.1, the sensing capacitance can be modeled

as the parallel connection of the object-tunable sensing capacitance Cs and sensing

conductance Gs.

Lr2 Lr1
Lr2

Csg

Rr

RrLr1

Ls

Lr2Lr2

L  /2tl L  /2tl

C  /2tl C  /2tl

PORT1 PORT2

M1

M1
M2

Csg

Cs

1/Gs

Rtl

Figure 6.5.: Equivalent circuit model for the cross-bridged double SRR near-field probe
topology.
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6.2.1. Analysis of the Object-Induced Frequency Shift

The resonance frequency behavior of the SRR can be derived by converting the reciprocal

two-port into its π equivalent model, where the impedance of the two shunt branches and

of the series branch are expressed by Zp1(jω) = (Y11+Y12)−1, Zp2(jω) = (Y22+Y12)−1, and

Zs(jω) = −Y −1
12 , respectively [159]. Since the shunt branches are exclusively capacitive,

the transmission zeros of the two-port are defined by the poles of the series reactance,

which represents the reflected impedance of the coupled SRR network. To simplify the

analysis, the SRR, the host line, and the sensing capacitance are assumed to be lossless

by setting Rr = Rtl = 0 and Gs = ∞, which has no influence on the deduction of the

resonance frequency. The series impedance of the two-port can then be derived based on

Kirchhoff’s circuit laws and is found to be:

Zs(jω) = jω (Ls + Ltl) +
jω32CsrrM

2
1

−CsrrM2ω2 − ω2

ω2
0

+ 1
, (6.3)

where Csrr = Cs/2 + Csg is the parallel connection of split-gap and sensing capacitance

and ω0 = [(Ls + Lr) (Cs/2 + Csg)]
−1/2 is the resonance frequency of a single SRR without

cross-coupling. Here, the split-ring inductances Lr1 and Lr2 are merged into Lr. Equating

the denominator of Equation 6.3 with zero gives the resonance frequency ω1 of the cross-

bridged SRR:

ω1 =
ω0√

1 +M2/(Ls + Lr))
. (6.4)

Interestingly, the mutual inductive coupling between the two resonators results in a re-

duction of the resonant frequency. For a negligible mutual coupling between the two

resonators (M2 = 0), the SRR resonance frequency ω1 is equal to ω0. Moreover, the reso-

nance frequency shift caused by loading the SRR with an object is captured by ω0, which

is a function of Cs.

6.2.2. Parameter Extraction

Parameters for the cross-bridged double SRR topology presented in Section 5.3.1 were

extracted. At first, a rough estimate of the component values is derived from individually

simulating the equivalent values of the components in the quasi-static field solver Ansys

Q3D Extractor at 550 GHz. Thereby, the mutual inductive coupling (M1,M2), the self-

inductance and capacitance of the host line (Ltl,Ls,Ctl), and of the coupled lines of the
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SRR (Lr1) are deduced by multi-line 2D simulations. Values for the split-gap capacitance

Csg and the partial inductance of the microstrip line Lr2 are inferred from 3D simula-

tions based on the method of moments. The sensing capacitance Cs and conductance

Gs are mapped one-to-one from the simulations conducted in Section 6.1 by multiplying

the object-dependent capacitance and conductance per unit length by the 19 µm exten-

sion length of the sensing strips. This allows a direct transfer of the simulated 2D strip

response caused by spatial displacements and varying materials to the sensor response

formation as a whole, building a base for a simplified examination of the SRR behav-

ior.

To account for discontinuity effects between the lumped elements and to accurately model

the line-loss in view of parasitic radiation and current crowding effects in the dense 3D

geometry, fine-tuning of the equivalent circuit parameters is conducted based on the whole

3D SRR geometry. Thus, a final set of parameters listed in Table 6.1 is inferred by the fit-

ting of the SRR scattering parameters derived from the equivalent model to the results of

full-wave EM simulations. Pursuing a similar simulation setup as compared to the one de-

scribed in Section 5.3.1, the 3D resonator topology was loaded with a 30 µm×30 µm×15 µm

cube placed in direct contact with the sensing surface. Initially, the mutual inductance ac-

counting for the resonator cross-coupling is derived by comparing the resonance frequency

of the 3D half-circuit with a single SRR (ω0 in Equation 6.4) with the resonance frequency

for the whole cross-bridged double SRR topology (ω1 in Equation 6.4). While not being

negligible, the influence of the cross-coupling is minor, shifting the resonance frequency

only from 527 GHz to 519 GHz. Subsequently, tuning of the total SRR inductance and ca-

pacitance ratio is conducted by matching the object-induced frequency shift of the model

to simulation results. Finally, the line losses and the mutual inductance M1 are inferred

by matching the resonator quality factor and modulation the depth.

6.3. Model Validation

To validate the proposed model, a comparison with full-wave electromagnetic simulations

(Ansys HFSS) regarding the power transmittance (|S21|2) through the SRR is conducted.

Since the notch slopes and the baseline power transmittance are very sensitive to the

resonator load defined by the source and load impedance, the model port impedances are

reconciled with the simulated wave impedance of the host line (Z = 96 Ω). A collection of

curves for i) lossless objects with varying dielectric permittivity and PEC and ii) objects

with a fixed ε′r of 4 and varying loss tangents is depicted in Figure 6.6 and Figure 6.7.

A good quantitative agreement can be observed for the whole curve set. Most notably,
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Table 6.1.: Extracted parameters of the equivalent circuit for the SRR shown in Fig-
ure 5.10.

Parameter Value
LTL 7.7 pH
Ls 22.4 pH
Lr1 22.4 pH
Lr2 9.1 pH
CTL 2.1 fF
Csg 1.5 fF
Cs object-dependent – 1.46 fF-2.44 fF1

Gs object-dependent
Rs 2.4 Ω

Rtl 5.4 Ω

M1 13.05 pH
M2 1.3 pH

1 The stated capacitance range spans from the low-
est perceivable capacitance occurring in the un-
loaded case (εr = 1) to the highest one occurring
for PEC objects.

the region of interest for incoherent sensor operation, i.e., the steep rising slope of the

transmission notch, is accurately modeled.

The comparison furthermore verifies the validity of the presented modeling approach for

the sensing strips loaded with lossy objects presented in Section 6.1. An increasing loss

tangent leads to a slight reduction in resonant frequency, which is more pronounced for

high loss tangents (tan δ > 0.4). This is in line with the simulated dependency of the

sensing capacitance on the object losses, as shown in Figure 6.2.

" r'1
410PE

C

Figure 6.6.: Comparison of the power transmittance (|S21|2dB) between the equivalent cir-
cuit model and electromagnetic simulations for different lossless dielectrics
and a PEC object.
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Figure 6.7.: Comparison of the power transmittance (|S21|2dB) between the equivalent cir-
cuit model and electromagnetic simulations for a dielectric with an ε′r of 4 and
varying loss tangents.

6.4. Discussion

The herein developed framework for modeling and understanding of the SRR behavior

provides valuable insight into the interpretation of the sensor response in view of the object-

induced transmission modulation scheme described in Section 5.2.

6.4.1. Sensor Response Ambiguity

Most importantly, the sensor voltage response ∆Vo (see Equation 5.5) is ambiguous to the

material properties and spatial displacement of the target object:

∆Vo = f(er, x, y, z), (6.5)

where x,y, and z describe the object location in the 3D volume. As such, the measure-

ment of the object-induced transmission modulation prohibits direct evaluation of the

quantitative material data. For example, in imaging experiments where either the surface

topology of an object or the absolute distance of the object to the sensor is unknown,

the imaging contrast cannot be uniquely attributed to the relative permittivity of the

object. To make it worse, the high spatial confinement of the resonator near-fields leads

to a significantly higher sensor sensitivity to spatial object displacements as compared to

material variations, which can only be accounted for by very accurate distance control in

the nanometer-range.
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On another note, the sensor response ambiguity to the real and imaginary part of the

relative permittivity turns out to be frequency-dependent. To illustrate this, Figure 6.8

shows the simulated power transmittance sensitivity δ|S21|2/δεr to both for a lossy object

with εr,0 = 4 − j2.4 and a lossless object with εr,0 = 4. The sensitivity to the imaginary

part shows a positive peak close at the resonance frequency due to modulation of the

notch depth. With increasing frequency, it crosses zero before showing a negative peak

at the higher end of the bandstop slope. The sensitivity to the real part peaks at the

frequency exhibiting the highest power transmission gradient. A suitable allocation of

the excitation frequency can thus be chosen to isolate the responses caused by the real

or the imaginary part of the object, e.g., by selecting a frequency at the zero-crossings

of the respective sensitivity curves. In practice, however, it is challenging to supply the

required excitation bandwidth for optimization of both the sensitivity to the real part and

to the imaginary part for a wide range of materials due to the tuning range limitations of

integrated THz-VCOs.

6.4.2. Considerations for Practical Applications

The sensor exhibits a sensitivity reduction to the real part with increasing losses, which

can be attributed to a decrease in modulation depth and quality factor, leading to a lower

power transmission gradient (see Figure 6.7). For the simulated lossy object, the peak

sensitivity to the real part drops below the sensitivity to the imaginary part. As such,

an appropriate allocation of the excitation frequency has to be assessed based on the

desired application-specific imaging contrast mechanism. For example, for the imaging

of semiconductor doping concentrations, the dominant contrast can be expected to stem

from changes in the material’s bulk conductivity. Placing the excitation frequency at

the resonance frequency should thus be preferred in this case. Other target applications

for the sensor such as the discrimination of benign and malignant tissue, as described in

Section 2.1.5, are expected to exhibit a mixed contrast that is dependent on both imaginary

and real part of the relative permittivity.

To illustrate this, full-wave EM simulations of the power transmittance for different tis-

sue types in direct contract with the sensing surface are shown in Figure 6.9. The real

and imaginary parts of the dielectric permittivity for cancerous, fatty, and fibrous tissue

at around 500 GHz were extracted from the THz TDS measurements published in [39].

The power transmittance features a high contrast of up to 3 dB between fatty and fi-

brous or cancerous tissue. A distinction between cancerous and fibrous tissue, however,

can be expected to be challenging with a maximum difference in power transmittance

of 0.5 dB. Although the difference in complex permittivity for these tissue types is only
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subtle, cancerous tissue exhibits a higher real part and more losses, thereby leading to

a synergistic increase in power transmission. Notably, this can not be formulated as a

general statement for all material constellations since objects may also exhibit counter-

acting dependency. In these cases, measurement of the rising slope gradient by detuning

the oscillator excitation frequency could potentially be used to solve the related response

ambiguity.

Figure 6.8.: Simulated power transmittance sensitivity δ|S21|2/δεr to the real and imagi-
nary part of the relative permittivity for a lossy object with εr,0 = 4−j2.4 and
a lossless object with εr,0 = 4. The resonance frequency is around 505 GHz
for both objects.

Figure 6.9.: Simulated frequency dependence of the power transmittance of the sensor
(|S21|2) for different breast tissue types. Complex permittivity values for the
tissues are extracted from [39].





Chapter 7
A THz Near-Field Sensor

System-on-a-Chip in SiGe-HBT

Technology

The framework for understanding, analyzing, and modeling integrated SRR-based THz

near-field sensors presented in Chapter 5 and Chapter 6 referred to the first research on

single-pixel prototypes [15], [19] [own11], [own13]. In Chapter 5, it is shown that such

sensors promise improvements compared to THz-NSOM regarding sensitivity and integra-

tion levels. In that regard, the achieved lateral resolution of 10 µm combined with an SNR

around 40 dB enabled the acquisition of 2D THz near-field images with low-cost hardware.

However, single-pixel sensors require raster scanning for image acquisition, which hampers

their use in practical applications. For example, interoperative ex vivo imaging for cancer

margin detection has to deal with soft tissue samples which are accompanied by blood

and other fluids. In this context, raster scanning is simply impossible because the sample

will stick to the sensor and cause inhomogeneous image acquisition. One could poten-

tially circumvent such problems by integrating large-scale sensor arrays to eliminate the

need for mechanical translation. Ultimately, a 2D array implementation would solve the

scanning issue, but remains objective of future work due to as yet unstated challenges for

ultra-dense SRR packaging, which will be discussed in Section 7.1.

The ultimate aim of the study presented in this chapter is to investigate whether a 1D

chip-scale near-field array can be integrated with high pixel density to reduce the re-

quired mechanical translation for 2D image acquisition to one axis, thereby enhancing
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Figure 7.1.: Illustration of the 1D near-field sensor SoC. 128 near-field pixels are arranged
in a line and cointegrated with a readout integrated circuit (ROIC). The chip
supports both analog and a digital read-out mode. After [own5] © 2018
IEEE.

the practicability of THz near-field sensing. Furthermore, it is investigated if such sen-

sors can be advanced towards SoC-level integration, being comparable with ubiquitous

imaging hardware such as optical CMOS image sensors and capacitive fingerprint sensors.

For the whole study presented in this chapter, a commercial high-speed 0.13 µm SiGe-

BiCMOS technology with an ft/fmax of 300/450 GHz from IHP Microelectronics is used

as a design platform. The contributions of this chapter mostly accord with the contri-

butions published in [own4], [own14], [own5], and [own1]. They can be summarized as

follows:

• A 128-pixel near-field sensing SoC for real-time (up to 28 fps) imaging at 550 GHz

with around 10 µm lateral resolution is demonstrated. An illustration of the near-

field sensor SoC, indicating the compact cointegration of THz front-end and a mixed-

signal ROIC, is depicted in Figure 7.1. The SoC is packaged into a 3-layer FR-4 PCB

module comprising FPGA-based control and external supply regulation. Since the

module includes all sensing functionality, including illumination, sensing, detection,

and post-processing, it can be operated as a stand-alone imaging device – powered

and interfaced only by a conventional Universal Serial Bus (USB) port.

• To facilitate chip-scale sensor integration, a scalable THz front-end for multi-pixel

near-field arrays is introduced (Section 7.1). The front-end reuses the 550 GHz SRR

and the TPO presented in [19]. It makes use of a parallel sensor excitation scheme

and utilizes 4-way equal-power splitter networks to enable dense SRR placement

along a line. In regard, the design of integrated Wilkinson power splitters in the THz

range along with the associated parasitic cross-coupling effects in between pixels is

discussed.

• A rolling shutter array read-out architecture for incoherent near-field sensor opera-

tion employing SiGe-HBT power detectors is proposed (Section 7.2). It encompasses

digitally controlled analog signal conditioning and an on-chip lock-in amplifier for

phase-sensitive detection outside of the detector low-frequency noise in real-time.
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The SoC furthermore supports on-chip analog-to-digital (A/D) conversion for a

digital-only read-out via a Serial Peripheral Interface (SPI).

• Imaging experiments are conducted to demonstrate the utility of the SoC (Sec-

tion 7.5). Imaging of planar solids is demonstrated by using a fine AFM-calibration

nickel grid as an imaging object to evaluate the 2D imaging performance. Fur-

thermore, biometric human fingerprint reading is demonstrated as a use case for

profilometric imaging. Lastly, imaging of a 5 µm thick excised breast tissue sample

is shown.

7.1. A Scalable Front-End for THz Near-Field Sensors

It is asserted in Section 5.2 that the object-induced transmission modulation scheme is

suitable for large-scale sensor array integration due to its implementation simplicity. While

this is true since the non-coherent sensor operation enables low power and low energy con-

sumption, multiple challenges still remain. These become clear when the design objectives

for a multi-pixel architecture are defined: A multi-pixel near-field imager should allow for a

dense imaging object coverage without dead zones between the sensing elements, while si-

multaneously providing sufficient sensor sensitivity in view of potential pixel cross-coupling

effects.

As depicted in the micrographs gathered in Table 5.1, the single-pixel sensors presented

in prior studies [15], [19] [own11], [own13] exhibit a severe size mismatch between the

sub-wavelength sized SRR and the illumination source. In general, on-chip harmonic

THz oscillators whose operating frequency is set close to the practical limit of device

operation (around fmax/3) require low-loss inductances implemented as wavelength-scale

transmission lines. Similar to the sensing strips of the SRR, these lines are typically

allocated in the thick top-metal layers of the BEOL to increase the surface area for current

conduction and thereby increase the quality factor of the inductance. Given that the SRR

dimensions are of sub-wavelength size, the illumination source dominates the total sensor

footprint. Therefore, integration of many of such pixels would lead to massively spatially

undersampled imaging arrays with low sensor fill factors1. For example, the fill factors for

the sensors in [15], and [own13] are limited to around 5 % for 1D arrays and 0.5 % for 2D

arrays.

1In analogy to CMOS image sensors the fill factor is here defined as the ratio of the image sensor’s
sensitive area to it’s total area.
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7.1.1. A 1D Multi-Pixel Architecture

The proposed solution to increase the sensor fill factor is to have multiple SRRs sharing a

common oscillator. In this work, a parallel illumination architecture uses a power splitter

network to distribute the oscillator power to a line of SRRs spatially. Figure 7.2 illustrates

the arrangement. The sensors are grouped into subarrays of four SRR-detector units and

are connected in parallel to a corresponding source element by means of a 4-way equal-

power splitter. The SRRs in each group are arranged in a line with 50 µm pitch between

the elements, which is selected as a compromise between fill factor and pixel cross-coupling

through the near-field, as to be detailed in Section 7.1.3.

The described arrangement facilitates 2D imaging for translational scans orthogonal to

the sensing line. To further double the 1D pixel density for such imaging experiments,

two sensor rows are vertically mirrored and offset by half the sensor pitch, resulting in a

staggered arrangement. The two opposing sensing rows are separated by 110 µm. This

gives an array architecture that is scalable in one dimension with a fill factor of 48 % and

a 1D pixel density of 1016 dpi.

However, as a result of the discrete 1D pixel pitch of 25 µm, images remain slightly

undersampled with respect to the intrinsic pixel resolution, which is around 10 µm for the

SRR utilized in the present design [19]. As a consequence, the maximum unambiguously

resolvable image features are limited to dimensions of 50 µm by the Nyquist-Shannon

sampling theorem. Nevertheless, the array could also be used in a 2D raster-scanned

imaging setup to allow the acquisition of 2D images with the intrinsic SRR-limited lateral

resolution.

7.1.2. Design of a Shielded Wilkinson Power Splitter Network

The power splitter network has a determining influence on the overall performance of the

multi-pixel architecture. Given that the sensor’s DR and SNR are proportional to the

excitation power (Equation 5.8), maintaining a low insertion loss of the network is crucial.

Another key property is the isolation between output ports. As a consequence of the

parallelization, the SRRs of a subarray are coupled through the shared power splitters.

Since the SRRs innately exhibit a strongly object-dependent input impedance when being

operated in resonance, there is a necessity to isolate the output ports so that reflected

signals do not propagate through other SRRs in the subarray, thereby leading to pixel

cross-coupling. These requirements preclude non-isolating power combiner/splitter types

commonly used in mm-Wave ICs such as transformer-based series and parallel combiners
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Figure 7.2.: Parallel power splitter based sensor illumination scheme. Two rows are verti-
cally mirrored and offset by half the single-row sensor pitch of 50 µm to double
the fill factor.
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Figure 7.3.: Schematic of the modified Wilkinson power splitter [189].

[186] and zero-degree combiners [187] and favor the use of a Wilkinson power divider, which

exhibits isolation of the output ports for matched input ports [188].

However, in order to be compatible with integration at THz frequencies and with the in-

tend of spatial power distribution, the classic design from Wilkinson needs to be extended

with additional transmission line segments. Figure 7.3 shows the schematic of the modified

Wilkinson power splitter [189]. In the classic Wilkinson divider implementation, the elec-

trical length Θ2 is zero. When the other circuit parameters are selected as Z01 =
√

2ZS1,

Θ01 = π/2, and R = 2ZS1, the isolation is provided by destructive interference: If a signal

is reflected at Port2, the wave traveling along the resistor branch and the wave reflected

from the source are out of phase and of equal amplitude at Port3. Thereby, the isolation

resistor R should behave ideally as a lumped element without introducing a phase shift.



104 Chapter 7. A THz Near-Field Sensor System-on-a-Chip in SiGe-HBT Technology

However, since resistors are typically implemented as resistive sheets in the front end of

line, large via stacks are required to access the resistor, inevitably leading to a significant

phase shift at THz frequencies. In addition, the two splitter branches are very close to

each other if Θ2 is zero. Therefore, proximity effects can severely reduce the isolation and

complicate the design process. To avoid these problems, the Wilkinson power splitter can

be modified by adding transmission lines in series to the isolation resistors, as depicted in

Figure 7.3. Thereby, the parasitic phase shift of the via stack and the distributed effects

of the resistor sheet can be absorbed into the line, and the branches can be spatially sep-

arated. It is noted that isolation between Port2 and Port3 can still be generally provided

with the modified structure if the splitter is designed accordingly [189]. Most importantly,

the difference between electrical lengths of the two branches for the reflected waves should

be half a wavelength (∆Θ = 2Θ1 − 2Θ2 = π).

An additional design requirement for near-field sensors is that the insertion loss of the

power splitter should not be sensitive to objects placed on top of it. In the same way as

the illumination source, the power splitter fields are thus required to be confined within

the BEOL to avoid potential disturbances of the insertion loss caused by object-induced

changes in the characteristic impedance of the transmission lines. Hence, the lines have to

be implemented as striplines with a ground plane in the topmost aluminum layer, limiting

the maximum characteristic impedance to around 50 Ω in the present BEOL stack. It is

noted that the related limited design space for the line impedances also prohibits the use

of the classic N -way Wilkinson designs because the characteristic impedances of the lines

have to scale with
√
N [159].

The design of the 550 GHz power splitter network is conducted by inferring initial param-

eters by hand calculations based on the design equations listed in [189] and subsequent

electromagnetic optimization. Figure 7.4 shows a 3D view of the simulation model of the

4-pixel subarray, including the 4-way equal-power splitter network. The power splitter

is implemented in a ladder structure with three 2-way modified Wilkinson splitters and

is matched to the 50 Ω output impedance of the illumination source. The physical line

lengths of the arm segments and spacers are selected to simultaneously provide isolation

and sufficient spatial separation for the SRR placement; they are 90 µm and 14 µm, re-

spectively. The lines are implemented as 50 Ω striplines with the signal conductor placed

in the second layer from the top. The resistor R is a 40 Ω poly-silicon resistor. Figure 7.4

furthermore shows 25 fF metal-insulator-metal (MIM) capacitors between the SRRs and

the detectors. The capacitors are self-resonant at 550 GHz and provide DC-isolation be-

tween the illumination source and the power detectors to facilitate a chopped operation

mode.
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Figure 7.4.: Simplified EM-model of the 4-pixel sensor subarray including 4-way power
splitter, four sensors, and series MIM capacitors. Simulation ports are in-
dicated as IN (power divider input), OUT1-4 (power divider outputs), and
DET1-4 (power detector inputs). After [own5] © 2018 IEEE.

Using full-wave simulations (Ansys HFSS), the splitter network characteristics are ana-

lyzed. Figure 7.5 provides the S-parameters of the 4-way splitter network. The parasit-

ically added insertion loss of a single 2-way power splitter is 0.9 dB at 540 GHz, leading

to a total insertion loss of 7.8 dB in between the input port (IN) and each of the output

ports (OUT1-4). For matched port conditions, the isolation of all output ports is larger

than 30 dB in the operation bandwidth. Figure 7.6 shows the simulated power response

of a single SRR, including the power divider network and the series MIM capacitor for

various object loading conditions. Conducting a similar simulation method as in Chap-

ter 5, 30 µm×30 µm×20 µm sized dielectric and metallic (PEC) blocks are placed in direct

contact with the chip top surface. It is visible that the sensor response is well preserved

in the presence of the capacitor. For the entire subarray circuit, the maximum power

response for a metal object occurs at 535 GHz and is 7.2 % of the power available from

the oscillator.

7.1.3. Impact of Parasitic Cross-Coupling Effects

As mentioned before, parasitic coupling mechanisms between pixels have to be taken into

account. Because of the specific row arrangement, two different coupling phenomena

need to be considered: i.) Direct coupling through the power splitter network, and ii.)

coupling through the reactive and radiative near field. Both phenomena are discussed in

the following.
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Figure 7.5.: Simulation results of the complete 4-way divider. The isolation is shown only
for two representative output ports.

Figure 7.6.: Simulated power response for objects with εr = 2, 4, and PEC at a single SRR
with a 25 fF series MIM capacitor including feed network.

Coupling Through the Power Splitter Network

The overall splitter network operates with unmatched boundary conditions on all ports,

and these vary dynamically with different object loading conditions. The resulting reflec-

tions and impedance imbalances at the internal divider nodes lead to a finite variation of

the power division ratios. Although the good isolation between the detector ports provided

by the power splitter strongly mitigates this effect (Figure 7.5), isolation is still finite, and

the described effect is not negligible. It is noted that since the sensor response is de-

rived from absolute power difference measurements, the parasitic cross-coupling translates

to ambiguity and desensitization in the sensor response. In other words, if the sensor re-

sponse of an observed pixel changes with the objects present on the neighboring pixels, the
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Figure 7.7.: Parallel power divider based sensor illumination scheme. Two rows are ver-
tically mirrored and offset by half the single-row sensor pitch to double the
fill factor. The arrangement requires pixel cross-coupling to be taken into
account.
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Figure 7.8.: Simulated power transmission (IN-to-DETx) for one selected detection path
(DET1) in a 4-way power sensor arrangement as a function of frequency for
different object loading conditions while influenced by a closest-proximity pixel
(DET2).

object present on the observed pixel cannot be accurately identified.

This desensitization was also investigated with electromagnetic simulations (Ansys HFSS).

Figure 7.7 illustrates the simulation test case. In order to emulate a realistic coupling

scenario, the power transmission through one selected detection path (DET1), which is

referred to as the victim pixel, is simulated for different object loading conditions (No Ob-

ject, PEC, εr = 2, 2.1, 4) while being influenced by an aggressor pixel (DET2) with varying

object material properties (PEC, εr = 4). Figure 7.8 gathers the relevant simulation re-

sults. The worst-case coupling scenario occurs for a metal aggressor on the neighbor pixel

and no object on the victim pixel. In this case, the resonant curve of the victim pixel is

shifted down in frequency. For frequencies from 540 GHz–560 GHz, this shift corresponds
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to a relative power change at the detector input between −21 dB and −14 dB when referred

to the maximum power response for a metal object. This, in turn, relates to a relative

permittivity uncertainty of around 0.1 for an object with εr = 2, for example. It is noted

that when the aggressor object is placed in the other branch (DET3, DET4) the response

is found to be complementary in terms of the frequency shift variation of the resonant

curve.

As such, the coupling through the power splitter network is expected to be a limiting factor

for the sensitivity of the system, which is also verified in the experimental characterization

in Section 7.4. However, the practical limitations that the cross-coupling imposes on

the system are complex and can vary from application to application. For example, the

derived relative permittivity uncertainty of 0.1 is only valid for the investigated worst-

case where a low permittivity object needs to be sensed in the presence of metal features

in the object. However, in the targeted applications such as the differentiation of tissue

types, the object under test is more homogeneous (Figure 6.9). Since the uncertainties

scale with the material-dependent sensor response, the cross-coupling is expected to be

less significant in such applications.

Coupling Through the Reactive and Radiative Near Field

The dense SRR arrangement additionally introduces cross-coupling between the adjacent

pixels due to the radiative and reactive near-field zones of the SRRs. Figure 7.9 shows the

simulated coupling between two sensors that are separated by 50 µm (center-to-center)

and not connected through the power divider network. The coupling is taken as the

parasitic power received at one detector output while driven by another resonator input

port. Similar to the previous analysis, the most critical configuration occurs if the aggressor

sensor is covered with metal while the victim has no object above it. For this configuration,

the coupling level change was simulated to be below −46 dB at the detector input for the

entire sensor frequency operation range and is thus considered to have minor influence

when compared with the coupling introduced by the power division network. The coupling,

however, increases rapidly when the SRR pitch is reduced.

7.2. Design and Implementation of the SoC

Having expounded on a suitable THz front-end architecture for large-scale integration of

1D near-field arrays, this section presents an entire SoC design based on this architecture.
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Figure 7.9.: Simulated coupling between two pixels with 50 µm pitch that are not con-
nected through the power divider network. The coupling is taken as the par-
asitic power received at one detector output (DETx) while driven by another
resonator input port (OUTy) and includes complete feed layout as shown in
Figure 7.4.

So far, most studies on integrated THz systems do not go beyond prototype implementa-

tions by the standards of modern integrated systems. As such, they typically implement

only the THz functionality and have to rely on additional external equipment and elec-

tronics for post-processing. Although some studies on the large-scale integration of THz

detectors and THz sources with digital pixel selection logic have indicated directions to-

wards more integrated THz systems [20], [116], being components for far-field imaging,

they innately require secondary hardware in form of external optics and a radiation or de-

tection counterpart to be practical. Interestingly, such practical limitations to integration

are not present for THz near-field imaging. Here, all functionality, including illumination,

sensing, detection, and post-processing can be integrated on a single die, thereby allowing

to get rid of every secondary hardware – enabling to build a stand-alone THz imaging

device.

7.2.1. System-on-a-Chip Architecture

Figure 7.10 shows the chip micrograph of the SoC. The total die size is 1.75 mm×6.10 mm.

The sensor array comprises a total of 128 pixels. The sensing strip length is 3.2 mm,

which represents the object’s size limit for 1D scans. However, the architecture presented

here is scalable and thereby applicable to larger arrays and die sizes. Two options for

chip-to-package interconnects are supplied. The chip can be connected either via wire

bonding or via thermocompression bond bumps and through-silicon vias (TSVs), which
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Figure 7.10.: SoC chip micrograph (6.10 × 1.75 mm2). The total sensing area is 3.2 mm
long. The blacked-out region contains circuits that are not related to the
near-field array. After [own5] © 2018 IEEE.

will be detailed in Section 7.3.1. To prevent physical damage of the bondwires in the wire

bonding option, some separation of the sensing area to the bond pads is required. Hence,

a 2.5 mm long spacer is introduced. The spacer area contains circuits that are not related

to the SoC and thus has been blacked-out in the micrograph.

Figure 7.11 shows the block diagram of the chip. An overview of the SoC’s functionality

and the architectural choices is given as follows:

• Illumination/ Sensing/ Detection: The array consists of two 64-pixel rows of

SRRs and SiGe-HBT power detectors. Each row is divided into 16 subarrays of

four pixels that are driven concurrently from an individual chopped 0.56 THz TPO

(Section 7.2.2) using the power splitter network presented in Section 7.1.1.

• Rolling Shutter Operation: The array is operated in a rolling shutter mode. Only

a single TPO and a single detector are powered on at a time, and the sensing array

is scanned sequentially. This architectural choice is motivated by the low efficiency

of on-chip THz sources, as detailed in Chapter 3. More particularly, a concurrent

illumination of a large-scale array would increase power consumption significantly

[20], which is especially harmful in view of potential temperature-sensitive imaging

objects placed in close proximity to the chip. By contrast, the rolling shutter mode

allows a scalable circuit architecture with low power consumption.

• Analog Signal Conditioning: The sequential operation furthermore enables im-

plementation of a global read-out chain. Hence, all pixels share an active p-channel

MOSFET (pMOS) load. Since the realized SiGe-HBT detector circuit requires a
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Figure 7.11.: Block diagram of the implemented SoC with the externally required com-
ponents. The chip comprises a total of 128 near-field pixels and an on-chip
lock-in amplifier read-out. An application-specific integrated circuit (ASIC)
controls pixel selection (row, col) analog-to-digital converter (ADC) clock-
ing (adcclk) and gain and reference settings of the read-out (LIgain, detbias,
BPgain, refctrl).

high supply voltage in the range of 3.3 V (Section 7.2.3), a variable gain band-pass

amplifier is used to condition the analog signal for low-voltage 1.2 V mixed-signal

post-processing (Section 7.2.4).

• Lock-In Amplification: As detailed in Section 5.2.3, low-frequency noise of the

SiGe-HBT power detector can severely limit the achievable sensor sensitivity for

CW operation. In addition, the noise 1/f-noise contribution of the shared active

pMOS load exaggerates the problem. Therefore, the THz wave for sensor illumina-

tion is chopped by periodically powering down the active TPO. Subsequent on-chip

demodulation of the down-converted rectangular signal is facilitated by a LIA (Sec-

tion 7.2.4).

• Analog-to-Digital Conversion: The chip can be operated either by monitoring

the analog outputs of the band-pass amplifier or the lock-in amplifier (TP1 and TP2

in Figure 7.11) or in a fully digital mode. Therefore, the lock-in amplifier output is

digitized with a 6-bit flash ADC (Section 7.2.5).

• Digital Interfacing/ SoC Reference Control: To be robust to process variations

and be compatible with a wide range of imaging scenarios, the SoC is equipped with

means of adjusting the gain and the bias voltages of the read-out chain digitally.
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In addition, a band-gap reference generator is used to provide process, voltage, and

temperature (PVT) stable voltages to the chip. A cointegrated ASIC provides all

digital functionality including the control of the reference voltages, the control of the

rolling shutter pixel select logic, the procvessing of the ADC signals, and the external

communication based on an SPI interface. The ASIC was synthesized directly from

Verilog-Code using the standard cell library provided by the foundry.

The following sections provide more detailed descriptions of the individual circuit blocks.

7.2.2. Triple-Push Illumination Source

The on-chip oscillators are based on the strip-line shielded common-collector TPO topology

that is described in Section 5.2. Figure 7.12 shows the circuit schematic. The RF design

of the TPO is similar to the one shown in [19]. The fundamental oscillation frequency

is set by the 6.5 fF large MIM-capacitor CE, the base-emitter junction capacitance of

the 5×0.13 µm×0.96 µm large core devices (T1-T3) and the stripline TLB, which has a

simulated equivalent inductance 37 pH. The dependence of the oscillation frequency on

the base-emitter junction capacitance allows for frequency tuning by changing the base

bias voltage. Due to the strong reverse transmission behavior of the common-collector

Colpitts topology, the collector reactance has a high impact on the third harmonic power

matching at the base terminal [20][own10]. Therefore, a 12 pH collector inductance (TLC)

is used to tune out the imaginary part of the base input impedance at the third harmonic

and optimize the third harmonic power. In accordance with [19], the TPO layout was

simulated with a 3D full-wave EM solver (Ansys HFSS). Circuit simulations based on

a HICUM device model predict an output power of 50 µW and an oscillation frequency

around 0.53 THz.

The TPO biasing circuit supports electronic chopping. The base bias is provided with a

quarter-wavelength stub (TLbias), which is shorted with a self-resonant capacitor at the

third harmonic (Cbias). A current-mirror biasing scheme is applied for external reference

current control (OSCREF), source chopping, and oscillator addressing. To allow rolling

shutter operation, a single oscillator is selected with the row enable signal (row), provided

by thin-gate-oxide 1.2 V CMOS logic from the ASIC. The row signal is additionally and-

gated with an externally supplied chopping signal (chop). The resulting signal is used to

periodically turn on/off the selected TPO by switching the common DC base bias between

a low-ohmic connection to OSCREF and ground through analog switches M1,2. The pull-up

and pull-down time constants were selected to allow chopping at frequencies higher than

the low-frequency noise corner of the detector read-out (≈100 kHz).
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Figure 7.12.: Circuit schematic of the triple-push oscillator including base pull-down logic
for oscillator selection and source chopping. The emitter area of the SiGe-
HBT devices is AE = 0.12×0.96 µm2 (×1).

7.2.3. Power Detection Circuits

Figure 7.13 illustrates the circuit hierarchy of the analog front-end. After the SRRs,

the THz wave is coupled capacitively (Cc = 25 fF) to SiGe-HBT power detectors with

0.12 µm×0.96 µm emitter area (T6). As described in Section 5.2.3, the base-emitter junc-

tion non-linearity of the high-speed transistors is exploited for broadband THz rectification

beyond the device fmax [120].

To avoid mitigation of the detector sensitivity due to common-mode noise, the detector

circuit exhibits a pseudo-differential architecture. Two SiGe-HBT devices, T5 and T6,

are biased at the same current through the globally shared current mirror formed by M5,

M6, and M7. The THz wave is coupled directly to the base of T6, and T5 serves as a

reference device. The quiescent detector current can be digitally controlled with 5-bit

accuracy through an integrated current-steering digital-to-analog converter (DAC) (not

shown) to cover the bias voltages in which the SiGe-HBT devices are most sensitive to

THz waves [19], i.e., the DAC supplies the currents for active device operation at base bias

voltages VBE between 0.8 V–0.86 V. Contrary to the implementation in [19], where the

detector base is inherently biased by the oscillator base node, the DC isolation provided

by Cc necessitates a distinct detector bias circuit. For this purpose, a resistive biasing
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Figure 7.13.: Circuit architecture of the THz front-end and analog read-out circuitry. The
unit emitter area of the SiGe-HBT devices is AE(x1) = 0.12 x 0.96 µm2.
After [own5] © 2018 IEEE.

scheme with the base resistors RB1 and RB2 was selected. The resistors thereby serve as

high-ohmic blockers for the THz signal and prevent leakage of the THz power to T5. It

is noted that resistive biasing was favored over biasing with a THz choke because there is

practically no chip area available for transmission line implementation in the vicinity of

the SRRs. However, resistive biasing contributes significant thermal noise at the detector

output. More particularly, since the detector device T6 is biased in the active region,

the noise current of RB1 and RB2 is amplified by the device’s current gain. Hence, the

resistor size has to be selected as a compromise between noise performance and RF-

blocking characteristics. For the present design, a resistor size of 600 Ω was selected,

resulting in an 8.4 dB reduction in noise performance.

The detector base current is applied through a beta-helper current mirror reference branch.

Whereas the mirror device (T5) is implemented at the pixel level, and the beta-helper

transistor (T7) is shared among all pixels. Detector selection can thus be performed with

small-size thick-gate-oxide analog switches (M5,6) that are controlled by the ASIC after

voltage level conversion from 1.2 V to 3.3 V logic levels. As described in Section 7.2.1,

only a single detector in the array is selected at a time, while all the other detectors are

off. Thereby, only one detector drives the shared active pMOS load formed by M6 and

M7. The load devices are designed to be large enough so that their noise contribution is

negligible (W6,7/L6,7=200 µm/10 µm).
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Figure 7.14.: Schematic of the AC-coupled band-pass amplifier with digital gain control
(a), schematic of the low-voltage op-amp used in the band-pass amplifier
(b), and simulated voltage gain versus frequency for maximum, medium,
and minimum gain setting (c).

7.2.4. Analog Signal Processing

AC-Coupled Band-Pass Amplifier

The detector output requires buffering and DC-level conversion to be subsequently pro-

cessed with either the 1.2 V read-out chain or with external measurement equipment. For

this task, a band-pass amplifier with DC offset rejection is implemented [190]. The ampli-

fier is based on an operational amplifier (op-amp) in a feedback configuration. Figure 7.14

shows the schematic. The core amplifier is a noise-optimized CMOS two-stage op-amp with

n-channel differential inputs and a Miller compensated class-A output stage. Contrary to

using the typically employed current-mirror loaded differential input stages, current-source

loads, and subsequent differential to single-ended conversion with a folded cascode current

mirror is used to increase the common-mode input range [191]. Owing to the thereby

achieved large input common-mode range of 0.38 V–0.96 V, the op-amp can serve as the

core amplifier in multiple other circuits of the SoC. The op-amp furthermore shows an

open-loop gain of 62 dB, 58° phase margin, a gain-bandwidth product of 15 MHz, and a
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noise spectral density of around 100 nV
√
Hz
−1

in the chopping frequency range around

100 kHz. Therefore, the noise contribution of the amplifier is minor, and the total noise

of the read-out chain remains dominated by the detector noise.

The band-pass amplifier exhibits a low-frequency high-pass corner defined by parallel

RC-feedback. The feedback comprises MOS-bipolar pseudo-resistors to achieve feedback

resistance values of around 100 MΩ with small area consumption and digitally-controllable

MIM-capacitor banks to control the gain by adjusting the ratio C1/C2. The midband

center frequency (≈70 kHz) is aligned to cover the targeted chopping frequency range, and

the midband gain can be set in a range between 0 dB–42 dB. This enables robust signal

conditioning for different oscillator and detector bias points. The band-pass output is also

multiplexed to a pad, which is used as a test point (TP1) for array characterization in an

analog read-out mode (see Section 7.4.3).

Lock-in Amplification

The LIA schematic is presented in Figure 7.15. First, a passive switched capacitor (SC)

mixer down-converts the electronically chopped output of the band-pass filter to DC by

multiplying it with the same chopping signal deriving the base-bias of the TPO. The result-

ing pseudo-differential signal is then filtered with a third-order SC low-pass filter, whose

cut-off frequency is carefully selected to allow for a real-time video-rate read-out while min-

imizing the total integrated noise at the output. A read-out rate of 28 fps for 128 pixels

allows for a maximum integration time of around 280 µs per pixel. Assuming that the RC

filter requires a settling time of 4τ (where τ is the filter time constant) to reach a steady-

state, this results in a filter cut-off frequency of around 2.27 kHz. This is adjusted with

an external sampling clock LPclk of 1.5 MHz, which can be further tuned to optimize the

frame rate and the SNR. The filtered signal is buffered through an instrumentation ampli-

fier based on the same op-amp as shown in Figure 7.14, whose gain can be adjusted in the

range of 0 dB–30.8 dB via a digitally programmable resistor bank.

7.2.5. Digital Interfacing and ASIC

The output of the instrumentation amplifier is thereafter sampled with a 6-bit flash ADC.

The flash architecture was chosen to support fast sampling for the potential use of suc-

cessive approximation algorithms and runtime adjustments of the DR to accommodate

oscillator and detector PVT variations and different sensor response values due to differ-

ent materials. The measured effective number of bits (ENOB) for the ADC is 5.85, and
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Figure 7.15.: LIA schematic. The LIA comprises a switched-capacitor mixer, a 3-stage SC
low-pass filter and a variable-gain instrumentation amplifier. After [own5]
© 2018 IEEE.

the ADC reference voltage is programmable to a minimum voltage range of 300 mV (min.

LSB ≈ 4.7 mV).

Figure 7.16 shows the block diagram of the ASIC. A finite state machine sequences the

processing of the flash ADC data and the writing of the on-chip control registers for

the read-out gain, the voltage references, and the detector bias. The ASIC furthermore

includes an SPI slave for communication with an external controller. To economize on

the number of I/O-pads, the ADC sampling clock is directly derived with a divide-by-10

clock divider from the clock of the SPI bus. The flash ADC clock furthermore triggers

the increment of a row/column counter to sequence the rolling-shutter operation with a

subsequent encoding of the binary counter data into a one-hot code. To enable zooming

into a sub-array or monitoring of only a single pixel, the counting range can be adjusted

with row and column limiting registers. The rolling shutter control scans through the

defined pixel range and continuously streams out the ADC values taken at the end of the

pixel observation periods through the SPI interface. As such, only a single ADC value is

captured for every pixel.

However, the array can be programmed to dwell on a single pixel for multiple ADC samples

by setting the limiting registers so that only a single-pixel is selected. As such, external

software averaging or accumulate-and-dump filtering can be used to increase the digital

DR. It is noted that the limiting registers can be reprogrammed on-the-fly so that fast
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Figure 7.16.: Block diagram of the ASIC.
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Figure 7.17.: Simplified timing diagram of the rolling shutter mode taking multiple samples
per pixel.

rolling shutter operation is still facilitated in this operation mode. Figure 7.17 shows the

related timing diagram. As to be detailed in Section 7.4.3, after each pixel switch, a

settling time for the DC of the read-out chain must be awaited before the ADC samples

can be considered valid.

7.2.6. SoC Reference Generation

To allow accurate long-term measurements, the temperature stability of the read-out chain

is of critical importance. Therefore, the SoC features a variable biasing scheme that can

either use dedicated external low-noise voltage/current references for highly demanding

applications or an on-chip reference generator enabling a compact sensor module design

and fast digital reconfiguration. The supply voltages for the THz front-end in the 3.3 V-

domain, i.e., the oscillator and detector voltages, are supplied exclusively externally be-

cause of the high current requirements. The critical read-out voltages in the 1.2 V-domain
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with absolute voltage dependence and low current drive requirements such as the ADC and

lock-in amplifier reference voltages can be either derived directly from a band-gap voltage

reference and digitally controllable DC-amplifiers or they can be supplied externally. The

on-chip band-gap circuit is a BiCMOS ultra-low-voltage reference [192], [193] with 3-bit

trimmable sink resistors to compensate for PVT variations of the voltage and tempera-

ture curvature, showing a simulated nominal output voltage of 600 mV and a temperature

coefficient of 13.66 ppm/◦C between 0 ◦C–100 ◦C.

7.3. Sensor Module

7.3.1. Packaging

Since the sensor should support the imaging of wet and soft samples in direct-contact

measurements, proper sensor encapsulation and packaging are of critical importance for

practical use scenarios of the SoC. The first level of sensor protection is facilitated by

the 2 µm thick passivation layer, which is part of the BEOL-stack of the technology. The

SoC features the two packaging options. The first option, depicted in Figure 7.18(a),

utilizes TSVs to connect the die to a PCB carrier via thermocompression bond bumps

through its backside. Ultimately, this is the preferred option as it leads to a flat scan-

ning surface, thereby facilitating imaging of objects with dimensions exceeding the size

of the die itself. Although the chip mask-set provides the means of enabling this option,

TSVs with patterned backside metallization have been unavailable for the manufacturing

process in this work. It is, however, planned to implement TSVs in future fabrication

cycles.

Since the potential lack of TSV integration was already presumed during the design, the

SoC was equipped with a second packaging option based on regular wire-bonding, as shown

in Figure 7.18(b). As noted in Section 7.2.1, a 2.5 mm safety distance from the sensors to

the bondpads is introduced, which increases the allowed object size for flat solids given the

uneven scanning surface resulting from the bondwires. To furthermore mitigate the risk

of collisions between bondwires and the scanned object and to avoid current conduction

between bondwires in wet environments, the bondwires and the PCB area surrounding

the chip are encapsulated with the preselected epoxy resin so that only the sensing surface

is left exposed.
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Figure 7.18.: Illustration of the two packaging options. SoC assembly with the die con-
nected to a PCB carrier through the chip backside using TSVs (a) and stan-
dard wire-bonding and bondwire encapsulation (b).

7.3.2. Module and Electronic Periphery

The sensor module is assembled in a three-layer FR-4 PCB stack with the top PCB carrying

the SoC and the lower two PCBs carrying discrete electronic periphery. Figure 7.19 depicts

the near-field sensor module and a close-up of the encapsulated SoC. The dimensions of the

module are 6 cm×5 cm×3 cm. The total power consumption of the SoC is between 37 mW–

104 mW, which is dominated by the oscillator power consumption, which is 30.4 mW for

VCCosc = 1.6 V and 97.4 mW for VCCosc = 2.2 V. The detector circuitry including the 3.3 V

logic consumes 1.6 mW, and the 1.2 V mixed-signal read-out circuitry consumes 4.8 mW.

All supply voltages are derived from the 5-V power supply of a USB connection using

linear voltage regulators, resulting in a total power consumption of 0.6 W for the complete

imaging module.

The SoC is interfaced with a Xilinx Spartan 6 field-programmable gate array (FPGA) via

an SPI bus that is clocked at 10 MHz. The chopping and low-pass clocks are directly pro-

vided by the FPGA. The chip continuously streams out the ADC values to the FPGA via

SPI, which passes the output to a computer via USB after averaging and offset-correction.

Hence, the module can be controlled and powered with a single USB-port from the com-

puter level with software-packages based on MATLAB or Python.
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Figure 7.19.: Picture of the packaged imaging module with a 50 cent euro coin for size
comparison. The chip is wire-bonded and encapsulated with epoxy resin.
After [own5] © 2018 IEEE.

7.4. Experimental Characterization

This section details the experimental characterization of the SoC. The parameters charac-

terizing the sensor operation can be separated into two groups. The first group is related

to the spatial distribution of the electrical near-fields in the sensing volume and includes

parameters such as the lateral resolution and the response decay rate. The second group

is related to the electronic performance of the mixed-signal read-out circuitry of the SoC

and encompasses the DR, the sensitivity, and reliability considerations such as pixel varia-

tions and pixel cross-coupling. However, an integral characterization of the inherent sensor

characteristics is problematic because of the employed incoherent sensing scheme and the

limitations of the available THz on-wafer measurement equipment. For example, the SRR

excitation frequency and the SRR stopband characteristics cannot be measured directly

when embedded in the SoC. In order to nevertheless allow for proper deembedding of

the sensor characteristics, the output power and frequency tuning range of the oscillator

were first measured with a breakout circuit in free-space. Another problem is the lack

of reference materials and objects with well-defined complex permittivity at the measure-

ment frequency around 550 GHz and proper microscale geometry for the characterization

of the sensor sensitivity and the lateral resolution. In view of these limitations, some of

the parameters derived in this section remain estimations based on the currently available

measurement capabilities.

The measurements conducted with the SoC were performed primarily with the measure-

ment setup depicted in Figure 7.20. An object was positioned above the sensing surface

with a 3D translation stage at a wafer probe station to measure the spatial and static
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Figure 7.20.: Characterization setup of the SoC. A metal needle is positioned above the
sensing surface for characterization of the sensor response. After [own5]
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sensor response for both the analog read-out measured at TP1 and the digital read-out

using the on-chip LIA and ADC. The measurement of the spatial resolution is inferred

from [19], where a single-pixel version of the sensor is similarly characterized on a wafer

probe station with the object mounted to a 3D translation stage. A more detailed de-

scription of the experimental methods used to measure the different parameters is given

in the corresponding sections.

7.4.1. Oscillator Breakout Measurements

Because of the aforementioned problems of measuring the oscillator characteristics of the

SoC, a break-out circuit of the TPO was fabricated to facilitate free-space characterization.

For this purpose, a wideband lens-coupled on-chip circular slot antenna [132],[own10] was

designed to operate in the same impedance system to preserve the inherent oscillator char-

acteristics. The backside of the chip was glued to a 3-mm hyper-hemispherical silicon lens.

The additional implementation loss of the antenna system due to finite antenna efficiency

and multiple reflections at the lens aperture [194] was estimated to be around 20 %–30 %

for the antenna operating in the transmit mode based on full-wave EM simulations (Ansys

HFSS).

Figure 7.21(a-d) shows the measurement setups respectively for the free-space frequency

and power measurements, the breakout micrograph, and the measured results. The fre-

quency tuning range of the oscillator was measured with a spectrum analyzer and an
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Figure 7.21.: TPO breakout measurements are gathered, including frequency measurement
setup (a), power measurement setup (b), breakout micrograph (c), and mea-
sured frequency and power of the TPO as a function of supply voltage (d).
After [19] © 2017 IEEE.

antenna-coupled 18th-harmonic mixer from Radiometer Physics, whereas the free-space

output power was characterized with a Thomas Keating photoacoustic absolute power

meter. The oscillator was chopped electronically at 35 Hz to avoid the influence of ther-

mal emission on the measured power. For oscillator supply voltages between 1 V–2.6 V,

the measured frequency tuning range is 534 GHz–562.5 GHz, and the radiated power

stays within 5.1 µW–28.2 µW. Considering the mentioned antenna implementation loss,

the maximum power of the on-chip TPO can be estimated to be around 35.25 µW.

When comparing the TPO tuning range with the rising slope of the SRR stopband (pre-

viously shown in Figure 5.12), it is visible that both are well aligned. It is noted that the

base bias circuit of the TPOs in the SoC is different from the one employed in the break-
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out. In view of the resulting distinct supply-dependent device capacitances, the curves

shown in Figure 7.21 cannot be mapped one-to-one to the TPO of the SoC. However,

the measurement is expected to provide a reasonable estimation since all measured bias

conditions can also be covered by the TPO of the SoC by appropriate adjustment of the

external base-bias voltage OSCREF (Section 7.2.2).

7.4.2. Measurement of the Lateral Resolution

An accurate determination of the lateral resolution according to the 10 %–90 % rising/falling

edge criterion [195] requires objects that exhibit very sharp edges. As elaborated in Sec-

tion 6.1.2, the perturbation of the sensor near-fields is considerable if an object is placed

several micrometers apart from the sensing surface. Therefore, the edges should also be at

least 5 µm–6 µm high so that the sensor can develop the full response. In view of the diffi-

culties of fabricating such samples, the lateral resolution was estimated with acute metallic

and ceramic objects, i.e., a 30 µm wide metallic tip and a 55 µm wide ceramic capillary

made of Alumina Zirconia (Al2O3+ZrO2) with dielectric permittivities of Alumina and

Zirconia of around 10 and 22, respectively.

Figure 7.22(a) illustrates a perspective sketch of the objects placed above the single-pixel

sensor. To minimize the edge rounding effects caused by the oval shape of the objects,

they were positioned to be parallel to the chip surface and translated along their length (x-

axis) [19]. This scanning direction allows more accurate measurement of the edge response

since the edge roundness orthogonal to this direction is more distinct as compared to the
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edge roundness parallel to it. However, only a single edge response can be measured in

this way because the sensor stays completely covered by the object when it passed its

edge. It is furthermore noted that round object edges lead to an underestimation of the

resolution.

Figure 7.22(b) shows the measured normalized edge responses at 545.4 GHz [19]. For the

metallic tip, the 10 %–90 % distances along x-axis and y-axis are estimated to be 11 µm–

12 µm and 10 µm–11 µm, respectively. For the ceramic capillary, the edge response was only

measured along x-axis. The measured 10 %–90 % distance is with 12 µm–13 µm slightly

worse as compared to the metallic object, which is to be expected from simulations [19].

However, the difference is within the positioning inaccuracy of the measurement setup,

which is around 1 µm–2 µm. The measurements generally show reasonable agreement

with the 2D simulations from Section 6.1.2 (x-direction only) and the full-wave electro-

magnetic (EM) simulations presented in [19]. It is noted that for both measurements

along the x-axis the plateau of the edge response seen in simulations is reproduced (see

Figure 6.4). Such a plateau is not visible for the y-axis scan. All slopes, however, remain

monotonic, thereby leading to a unique spatial response, which is a critical feature for

imaging.

7.4.3. Analog Read-Out

Time-Domain Measurements

Figure 7.23 shows measured time-domain voltages at the band-pass output (TP1). The

first plot depicts a 5 ms long time series with the array operated in rolling shutter mode.

Since the dwell time per pixel was set to 1.2 ms for this measurement, the time series

includes four pixel switches. The plot clearly depicts the presence of unwanted voltage

spikes initiated by the pixel switch events. The spike direction and amplitude depend

on between which pixels the transition happens and is repeatable for the same switching

event. Therefore, it is presumed that the spikes arise from process-induced variations of

the DC transconductance of the power detectors, which in combination with high-ohmic

active pMOS loads lead to varying DC voltage levels at the band-pass inputs. Due to the

AC-coupling, the charges on the band-pass input capacitors require rebalancing. This is

a slow process because of the high feedback resistance. For some switching events, the

voltage spikes are so pronounced that the op-amp rails, leaving the common-mode input

range. Hence, a minimum settling time of 250 ms is introduced, which limits the maximum

frame rate for the read-out of the 128-pixel array to 31.25 fps. To illustrate the behavior

of the band-pass output voltage when the monitored sensor is loaded with an object, the
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Figure 7.23.: Transient voltages measured at the band-pass output (TP1). A 5 ms time-
frame including four pixel switches (a) and a 40 ms time frame for an
unloaded sensor (air) and a sensor loaded with a human fingertip (b).
(VBE = 816 mV, GBP = 0 dB, fchop = 200 kHz).
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Figure 7.24.: Measured voltage response of a single pixel for full coverage with a metal
needle as a function of oscillator supply voltage, VCCOSC. (VBE = 816 mV,
GBP = 0 dB, fchop = 100 kHz). After [own5] © 2018 IEEE.

measured voltage for a 40 µs time series for a single pixel being unloaded (air) and loaded

with a human fingertip is shown Figure 7.23(b). Even without object coverage, a significant

AC offset is present, which underlines the necessity of defining the voltage response as a

difference between loaded and unloaded conditions (Equation 5.5).

Measurement of the Voltage Response

Figure 7.24 shows the maximum voltage response of a single sensor as a function of the

oscillator supply voltage. A detector base bias voltage of 0.816 V, a band-pass gain of

GBP = 0 dB, and a chopping frequency fchop = 100 kHz was chosen as the nominal operation

setting after experimentally optimizing the voltage response with respect to the voltage

headroom of the read-out circuitry. The measurements were performed by subtracting

the RMS voltage of the first chopper harmonic at TP1 with full metal-needle coverage

in direct contact from the measured value with no object present. The highest sensor

response of around 103 mV is achieved between VCCosc = 2 V–2.2 V. The trend shows

good correlation to the single-pixel results exhibiting the same TPO and SRR combination

[19].

Noise Measurements

The measured and simulated noise-voltage spectral density for different detector base

bias voltages is given in Figure 7.25. The noise roll-off caused by the limited bandwidth

of the detector read-out accurately follows the trend predicted by simulation, whereas
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Figure 7.25.: Measured and simulated noise voltage at the band-pass output (TP1)
(GBP = 0 dB) for different detector base bias voltages (VBE). After [own5]
© 2018 IEEE.

the measured noise floor is around 2.2 dB higher compared with simulations. The curve

pairs A,B and D,E compare the measured noise floor when the oscillator is continuously

running or is turned off. The differences between the curves are found to be not signif-

icant and verify that no broadband noise is downconverted by the square-law detector.

Dynamic Range Measurements

The DR of the analog read-out was characterized with an external 5210 Dual Phase Analog

LIA set to a 1 ms integration time with 12 dB/Octave filter slope, which corresponds to an

equivalent noise bandwidth (ENBW) of 125 Hz and a frame-rate of 1.17 fps for the array

considering settling to 99 % of the final value of each pixel. The oscillator was operated

at VCCOSC = 2.2 V and with the aforementioned nominal operation setting. The LIA

reference was directly derived from the chopper signal of the FPGA. Figure 7.27 shows

a 180 s long time series that was recorded at TP1. The output amplitude exhibits a

compelling low-frequency background drift with a long-term noise voltage of 322 µVrms.

Since the TPO and detector operate well beyond fmax, the total power transfer is strongly

vulnerable to temperature variations.

However, because of the applied source modulation, the low-frequency background drift

is not dominated by the detector 1/f-noise, and thus, still significantly mitigated as com-
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(a) (b)

Figure 7.26.: Simulated spot noise at 100 kHz at the band-pass output (Vnoise) (a) and
transimpedance ZTrans from the detector to the band-pass output (b) for
different power detector base bias voltages (VBE) and band-pass gain set-
tings (GBP). After [own5] © 2018 IEEE.

pared to the DC-operated single-pixel sensors [19][15]. A median filter with 1 Hz cut-off

frequency was applied to the measured data and subtracted from the raw data to remove

the background drift, as shown in Figure 7.27. The noise voltage in the filtered signal

is 66 µVrms. With the measured voltage response of ∆Vo,max = 103.5 mV (Figure 7.24)

this results in DRa = 63.8 dB for the analog read-out. For comparison, the DR for the

nominal operation setting can be estimated based on simulations of the analog read-out

circuitry and the oscillator measurements detailed in Section 7.4.1. Figure 7.26 shows the

simulated spot noise at 100 kHz at the band-pass output and the transimpedance, ZTrans,

from the detector to the band-pass amplifier output for various THz detector bias currents

and band-pass gain settings. Taking into account the Fourier decomposition, which intro-

duces a factor of
√

2
π for the first harmonic of the chopped signal, the DR can be calculated

according to Equation 5.8 as:

DR[dB] = 20 log10

√
2
π Posc(αPEC − αnoObj)RI · ZTrans

Vn,int
, (7.1)

where RI is the current responsivity of the THz detector. Based on the measured os-

cillator output power (35 µW), the simulated transmission factors of αPEC = 0.087 and

αnoObj = 0.016 (Figure 7.6), and the detector current responsivity (0.48 A/W [19]), the

maximum DR can be estimated to be DRsim,1Hz = 96.3 dB when referred to a 1 Hz noise

bandwidth. Considering the ENBW of 125 Hz of the external LIA, the expected DR

inferred from simulations is DRsim,125Hz = 75.3 dB, indicating that the signal exhibits

additional noise components close to the carrier, such as low-frequency amplitude noise

introduced by the TPO or the detector, which are not considered in the DR calcula-
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tion.

Sensitivity Estimation

A measurement of the sensitivity of the sensor requires reference materials whose complex

dielectric permittivity is accurately known within the permille range. Since such materials

are currently not available, the sensor sensitivity is estimated based on the measured

RMS voltage noise, the stopband properties, and read-out simulations. For small changes

in relative permittivity, the relationship between SRR power transmission factor α and εr
can be assumed to be approximately linear. Thereby, the minimum detectable change in

relative permittivity, ∆εr,min, can be estimated as follows:

∆εr,min =
Vn,int√

2
π Posc ·RI · ZTrans

∂α
∂εr

, (7.2)

where ∂α
∂εr

is the power transmission factor gradient for a certain SRR excitation frequency

and object permittivity. For example, for an object with εr = 4 and an excitation fre-

quency of 540 GHz, the simulated ∂α
∂εr

is 0.0105, and ∆εr,min can be estimated to be 0.003

for the measured DR of 63.8 dB and 0.015 when the background drift is not removed.

Figure 7.27.: Measured 180 s long time series at TP1. The long-term and short-term noise
voltage is 322 µVrms and 66 µVrms for 1 ms lock-in integration time, respec-
tively. For short-term noise, the raw data was filtered with a median filter
with a 1 Hz cutoff frequency. (VCCosc = 2.2 V, VBE = 816 mV, GBP = 0 dB,
fchop = 100 kHz). After [own5] © 2018 IEEE.
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7.4.4. Measurement of the Response Decay-Rate

The measured decay-rate of the sensor voltage response as a function of the sample dis-

tance is shown in Figure 7.28 for a metallic tip. The sample-to-object distance was changed

with a z-axis stepper motor. Because of the limited accuracy of the measurement setup,

four measurement series were recorded and averaged. The shown response is normalized

to the maximum response when the tip is in direct contact with the passivation. The mea-

sured results show good agreement with the simulated and measured decay-rate for small

distances (< 5 µm) that were previously shown in [19]. For distances larger than 5 µm,

the voltage response decays with around −1 dB µm−1. The SNR at 20 µm distance for the

metal object was measured to be around 20 dB in a 51 Hz read-out bandwidth. Compared

with the DC-operated sensor in [19], the DR increase by using chopping techniques enables

a considerable extension of the sensing range.

Figure 7.28.: Measured normalized voltage response decay-rate for a metallic tip as a func-
tion of sensor-to-object distance averaged (black) over four measurement
series (grey). The red line indicated a decay rate of around -1 dB/µm
for distances > 5µm. (VCCosc = 2.2 V, VBE = 816 mV, GBP = 0 dB,
fchop = 100 kHz).

7.4.5. Measurement of Pixel Cross-Coupling

As discussed in Section 7.1.3, cross-coupling caused by the 4-way power division network

leads to an uncertainty of the measured values that scales with the material-dependent

response values and can be of concern if absolute permittivity values are of interest

rather than image contrast. Cross-coupling was characterized for the worst-case scenario.

Thereby, the change in transmitted power through a single SRR caused by placing a metal
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needle on top of another pixel in the same subarray was measured, similarly to the simu-

lations provided in Section 7.1.3. The measurement was repeated for all victim/aggressor

combinations in the 4-pixel subarray. The coupling was found to be between −12 dB and

−16 dB with respect to the maximum power response of the sensor at the detector in-

put and is thus 2 dB–5 dB higher compared with the simulation results, which hints to a

frequency misalignment of the power divider network and the SRR. According to Equa-

tion 7.2, the absolute uncertainty in relative permittivity can be calculated by replacing

Vn,int with the measured parasitic voltage response. For the worst-case, the uncertainty

can be estimated to be around 0.33 for VCCOSC = 2.2 V and ∂α
∂εr

= 0.01 for an object

with εr = 1.

7.4.6. Impact of Process Variations

Another source of uncertainty of the absolute read-out values stems from process variation.

Figure 7.29 plots a histogram for the normalized voltage response for all 128 pixels of a

single die. The pixels were subsequently selected and monitored. The sensors show a

normalized mean response of 76 % of the maximum response. There are a few outliers

that show low voltage response. Trials on several samples revealed that the position

of these outliers on the chip is random and not correlated to a specific circuit pattern

or global process gradient. In particular, high variance in the sensor excitation power

between different sub-arrays can be excluded as a potential cause, because a low response

is observed for a few but not for all of the pixels in the sub-array. Hence, these variations are

expected to primarily originate from process variations in the sensitive THz power detector

devices. Note that a pixel-dependent correction factor can compensate variations in the

detector responsivity or TPO output power. A suitable calibration procedure to derive

this factor, however, requires reference measurements with accurately defined material

properties for every pixel and thus remains objective of future studies. Moreover, the SoC

supports individual pixel biasing, and it can thus be calibrated to yield a similar absolute

sensor response for all pixels.

7.4.7. Digital Read-Out

For the characterization of the digital read-out mode, a chopping frequency of 197.2 kHz

and an SC sampling clock LPclk of 1.5 MHz (filter cutoff 2.27 kHz) were used. The instru-

mentation amplifier voltage gain was set to 0 dB, and the ADC reference voltages were

experimentally adjusted to cover the signal swing at the LIA output while minimizing ex-

tra voltage margins to provide an optimum resolution. The corresponding lower and upper
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mean=0.76
stddev=0.17

Figure 7.29.: Measured normalized voltage response variations for full coverage with a
metal needle for for all 128 pixels of a single die. After [own5] © 2018 IEEE.

reference voltages were 0.409 V and 0.954 V, respectively, indicating an ADC resolution of

around 9.8 mV.

Repeated measurements were made for the object response to characterize the statistical

noise. Because of the aforementioned voltage spikes at the pixel switching events, a waiting

period of 280 µs was programmed between each measurement, allowing the LIA output

to reach its steady state. After each wait time, multiple samples were recorded with

the ADC in a burst mode at 1 MHz, which were then averaged in an external FPGA.

A standard deviation was calculated from a large number (>50,000) of such averaged

samples, which was considered equivalent to the noise for DR calculations. Expected

frame rates were also calculated by dividing the measurement rate by the number of

pixels in the array.

Figure 7.30 shows the measured DR and the frame rate as a function of the averaging

factor. The measured DR exhibits reasonable agreement with the expected 3 dB/octave

noise reduction due to oversampling and is DRd,28fps = 38.5 dB for a frame rate of 28 fps

with 4 averaged samples. The high dynamic current drawn by the chopped oscillators

introduces ground-bounce and chopping transients at the ADC input, which deteriorate

the DR for small numbers of averaged samples because of aliasing.
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Figure 7.30.: Measured dynamic range and frame rate of the digital read-out for different
accumulation factors of the external average-and-dump filter. The resulting
ENOB at the filter output is also indicated. (VCCosc = 2.2 V, VBE = 816 mV,
fchop = 197.2 kHz).

7.5. Imaging Experiments

7.5.1. Imaging of a Human Fingerprint

Context

As discussed earlier, the sensor response is a function of the material-dependent electri-

cal field disturbance in the sensing volume of the resonator. For imaging objects with

homogeneous dielectric permittivity, the sensor can be used for µm-scale profilometry by

mapping the decay of the electrical field strength and the resulting sensor response to the

sensor-to-object distance. Whilst absolute distance measurements require thorough cali-

bration as well as accurate reference measurements of the object’s dielectric permittivity,

relative measurements are sufficient for applications that aim to distinguish characteristic

topology features. The imaging of ridges and valleys of human fingerprints is one such

example.

Biometric fingerprint scanning is today widely adopted. Apart from its traditional ap-

plication fields in forensic sciences and homeland security, fingerprint scanners are now

the de facto standard access barrier for smartphones. There exists a variety of image

acquisition methods, from which the most widely adopted are optical, ultrasonic, and ca-

pacitive sensing. The optical sensors rely on the illumination of a transparent prism and

measurement of the reflection pattern with the finger placed on top of the prism. This
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method is expensive and easy to spoof, but one can achieve high image resolution and

large acquisition areas. The ultrasonic sensors measure acoustic pulse echoes at the tissue

boundaries and have recently been applied in solid-state electronics [196]. These sen-

sors enable imaging of the sub-surface dermal fingerprint and are thus particularly spoof

resistant and reliable, even in wet environments. Their fabrication, however, relies on ex-

pensive wafer-bonded two-chip assemblies comprising a high-voltage LDMOS driver chip

and a MEMS chip to implement piezoelectric micromachined ultrasonic transducers. The

contemporary low-cost imaging technique is based on capacitive sensing. Here, electrode

arrays sensing the change in electrode capacitance induced by a finger are implemented

as single-chip solutions in conventional CMOS technology [197]. Despite their exceptional

price-performance ratio, capacitive sensors suffer from low SNR, require the finger to be

very close to the electrodes (< 100 µm), and they perform poorly when the finger is wet

or exceptionally dry. In this study, a proof-of-concept is demonstrated, showing that THz

near-field imaging can function as an alternative to the aforementioned imaging methods

for biometric fingerprint acquisition. With the small sensing range of the near-field SoC,

it’s high sensitivity to water and other contaminants, and it’s low fabrication cost it shares

most of the advantages and disadvantages of capacitive sensors.

Experiment

Figure 7.31 shows an optical image of an ink-and-paper fingerprint, as well as a THz near-

field image of the same finger. For the acquisition of this image, the near-field array was

translated in a continuous 1D movement along the direction orthogonal to the sensing

stripe. The finger was in direct contact with the chip surface without the support of

any high-precision mechanical setup – a similar scanning procedure as compared with

conventional optical or capacitive swipe sensors. The on-chip digital read-out was utilized

for data logging and was operated with a speed of 15 fps. A total image size of 842×128
pixels with a pixel pitch of 25 µm in y-direction and 14.25 µm in x-direction was acquired

in a scanning time of about 30 s. Because of the staggered pixel arrangement, offset

correction of 110 µm was applied in post-processing. The measurements were repeated

multiple times with no damage to the sensing surface. However, after each scan, particle

leftovers had to be removed with isopropanol.

Discussion

The results demonstrate that the characteristic ridges and valleys, sized between 100 µm–

500 µm, can be easily resolved by the near-field SoC. Similarly, the ridge bifurcation points
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Figure 7.31.: Optical image of an ink-and-paper fingerprint (a) and scanned THz near-
field image (b). Data was acquired with continuous 1D translation. The
ridge bifurcation points (1-3) and some sweat pores (4-5) are marked. Image
size = 842×128, Tscan ≈ 30 s. After [own5] © 2018 IEEE.

can be identified. The image further suggests that the ridge sweat pores, which are not

visible in the ink-and-paper image, can also be resolved. Thus, the sensor resolves all

levels of specific ridge details [197]. The image is substantially oversampled, and the image

acquisition time can be reduced to 5 s without losing information.

The results indicate a competitive image quality to other techniques [196]. Most partic-

ularly, the fixed image resolution in y-direction of 1016 dpi, defined by the SRR spacing,

exceeds the resolution of most state-of-the-art fingerprint sensors [197] and the minimum

resolution required for FBI certification by a factor of two [198]. However, a study com-

paring the presented THz near-field technique with the conventional methods should be

conducted in the future to assess the sensor performance for this application quantita-

tively. Future studies may also aim to identify if additional information related to person-

dependent dielectric properties of the finger skin at THz frequencies can serve as an ad-

ditional tool for identification. Finally, it is noted that the SoC design did not explicitly

target this application and that there may be several means of improving the applicability

of THz near-field imaging for biometric fingerprint imaging as compared to the present

implementation. For example, the lateral resolution could be reduced to increase the

sensing range, hence facilitating additional sensor protection such as a protective silicate

layer. The main disadvantage compared to state-of-the-art sensors, however, remains the
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1D sensor implementation requiring a swipe movement. Future 2D array integration is

thus instrumental in having any realistic chance of biometric THz near-field fingerprint

imaging to be applied in practice.

7.5.2. Imaging of a Nickel Grid

Experiment

A first THz near-field microscopy experiment with accurately controlled 1D sensor trans-

lation was conducted on a fine metal grid to demonstrate the feasibility of imaging of

planar solids and to verify the spatial resolution inferred by the single-pixel measurements

detailed in Section 7.4.2. Contrary to the uncomplicated methodology for fingerprint

acquisition, imaging of solid samples necessitates accurate height control and a stable me-

chanical setup to prevent deterioration of the image SNR due to mechanical vibrations

and to avoid damaging of the SoC passivation. For this purpose, a commercially avail-

able scanning tunneling microscope (STM) setup (Semilab Navigator 220) was modified

to accommodate the sensor. Figure 7.32 gathers pictures of the imaging setup. A step-

per motor translation stage for the z-axis is mounted together with an optical microscope

and a tilt-adjustable high-precision x,y piezo table on a rigid granite boulder to minimize

relative vibrations. At the time of this experiment, the sensor module design detailed in

Section 7.3 was in its early development stages. Therefore, an external FPGA and exter-

nal power supplies were used. The sensor was mounted to the x,y-table, and the grid was

glued to a rubber holder, which was fixed at the z-axis stage. The imaging object was a

nickel transmission electron microscopy (TEM) support grid with 50 µm bar width and a

250 µm pitch between bars (VecoSpecimen Grid 0100-NI). The grid z-position was aligned

to yield the maximum sensor response. Hence it is expected that the grid was in close

to direct contact to the sensor surface (< 5 µm). The exact distance of the grid to the

sensor could, however, not be quantified because of the limitations of the measurement

setup.

Figure 7.33 shows the image of the grid acquired with a 1 µm step size, an accumulation

factor of 1024, and a frame rate of 6 fps. The image size is 1500×128 pixels and was

captured in a scanning time of 6 min 45 s. It is noted that the 1 µm step size leads to

substantial oversampling. Considering a 25 µm step size and an optimized electrical/

mechanical timing, the scanning time for the same area could potentially be reduced to

around 22 s, and even less is lower accumulation factors are used. In the same way as

compared to the fingerprint measurement, offset correction of 110 µm was applied in post-

processing.
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Figure 7.32.: Pictures of the imaging setup (a),(b), and micrograph of the grid and the
chip to visualize the size relations (c). The sensor is mounted to a piezo
controlled x-y translation stage and the nickel mesh is glued to a rubber
holder and mounted to a z-translation stage on a granite boulder.

Discussion

The microscopic structure of the grid is visible in the image. Except for offset correction,

no post-processing or response calibration was applied to the sensor. Hence, the image

depicts a vertical line pattern related to the varying response of the individual pixels.

Some of the pixels show no response at all, which is to be expected in the presence

of the low-response pixels identified in Section 7.4.6. A varying contrast strength can be

observed for different regions of the grid, thereby indicating that the grid was not perfectly

planar but slightly bend. Figure 7.33(b) plots the ADC count of four adjacent pixels for

translation along a single bar-edge, which is highlighted in Figure 7.33(a). The bar edges

are resolved with 14 µm–18 µm according to a 10 %–90 % rising-to-falling edge criterion.

This is slightly higher than the lateral resolution of 10 µm–12 µm measured with the metal
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needle (Section 7.4.2). The difference can potentially be attributed to a softer bar-edge

profile of the grid.

7.5.3. Imaging of Breast Tissue

Context

THz near-field imaging shows potential for ex vivo histopathology, as detailed in Sec-

tion 2.1.5. In particular, previous studies identified the dielectric permittivity at THz

frequencies as a promising contrast mechanism for the differentiation between benign and

malignant tissue but, so far, the conventional spectroscopic far-field THz imaging tech-

niques lack the required resolution for accurate margin identification. To make an initial

assessment of the applicability of the developed SoC for such applications, an imaging ex-

periment was conducted on a human breast tissue sample. The experimental method was

compliant with the fundamental ethical principles stipulated in the Helsinki Declaration

and its later revisions [199].

Experiment

First, the tissue sample was excised from a patient in a breast-conserving surgery. Then,

the fresh tissue was paraffinized, cut into 5 µm-thick slices, deposited on a glass speci-

men slide, and deparaffinized. The slide was subsequently mounted to the z-axis trans-

lation stage of the aforementioned modified STM setup. Figure 7.34 shows a picture of

the experimental setup. With the imaging object and the sensor being a planar solid,

the setup required further means of relative planarization between both. Hence, the z-

axis was equipped with a manual tilt adjustment stage and an objective holder at the

x,y-table to enable sample planarization through optical focus alignment from the bot-

tom.

Figure 7.35 gathers an optical microscopic image, a height map acquired with a Veeco

Dektak 150 Surface Profiler, and scanned 0.55 THz near-field images [own1]. A key differ-

ence to typical microscopic sensing methods relying on raster scanning with small aper-

tures or tips is that the present sensor exhibits a large solid and planar surface, making

measurements with constant object-to-sample-distance impossible. Therefore, the THz

images were scanned at three constant heights: in direct contact and at distances of 1 and

2 µm, as respectively shown in Figure 7.35(c)-(e). To deduce the direct-contact height,

the sensor was approached with the sample until no further change in sensor response

could be observed. The absolute distance was then deduced from the relative distance to
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Figure 7.33.: Scanned 2D image of a nickel mesh (a), and ADC output for translation along
a single bar edge for four adjacent pixels (b). The mesh exhibits a bar width
and pitch of 50 µm and 250 µm, respectively. Image size = 128×1500, Step-
size = 1 µm, Tscan = 6 min 45 s. The section for the bar edge measurement
is highlighted in (a). Lateral resolution based on 10 %–90 % rising-to-falling
edge criterion is also indicated. After [own5] © 2018 IEEE.
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Figure 7.34.: Picture of the measurement setup for the tissue scan.

the direct-contact height. The scan time for the 3.1 mm×3.2 mm large imaging area was

11 min at a 22 µm horizontal step size, giving 142×128 pixels. The image was stepped only

in x-direction, with a step and dwell time of 2 s and 2.5 s, respectively. The dwell time

was chosen as a compromise between a sufficiently large settling time and an averaging

factor of 3840. The images were post-processed with the software Gwyddion [200]. The

image tilt was leveled by mean plane subtraction, and the row pattern resulting from sen-

sor sensitivity variations of the individual pixels was aligned with a median of differences

algorithm.

Discussion

In comparison with the THz far-field images of excised tissue shown in Section 2.1.5, the

near-field images clearly exhibit sufficiently high contrast and resolution to facilitate mi-

croscopic feature extraction. The best image quality is achieved in direct contact with the

sample (∆z = 0), giving a DR of the image of 38.7 dB. At one micrometer distance, the DR

drops to 35.5 dB, which is about 7 dB more than expected from the measurement of the re-

sponse decay on the first micrometer (Figure 7.28). A potential reason for this discrepancy

could be a slight tilt misalignment between the sensor and the glass specimen slide leading

to a finite distance and reduced response in the direct-contact scan. At a two micrometer

distance, the DR of 27.6 dB roughly aligns with the expected decay.

It is clearly visible that the near-field images mostly resemble the height profile depicted

in Figure 7.35. This is expected in view of the pronounced height variation of the tissue

sample. To isolate the image contrast resulting from electromagnetic material properties of

such samples, calibration methods that account for the distance have to be investigated in

future work. For example, the function of the response decay-rate could be used to subtract



142 Chapter 7. A THz Near-Field Sensor System-on-a-Chip in SiGe-HBT Technology

4z = 1 ¹m 4z = 2 ¹m 

(a)

(c)

(d) (e)

1 2 3

1

2

3

(b)

1 2 3

1 2 3

1

2

3

1

2

3

4z = 0 ¹m 

1 2 3

1

2

3

DR=38.7 dB

DR=35.5 dB DR=27.6 dB

3.94 

3.50 

3.00 

2.50 

2.00 

1.50 

1.00 

0.23 
[¹m]

1.0

1.5

2.0

2.5

3.0

0.8

1.2

1.4

1.6

1.8

2.0

1.0

0.5

0.7

0.6

0.8

0.9

1.0

[a.u.]

[a.u.] [a.u.]

Figure 7.35.: Imaging of breast tissue. Micrograph (a), height profile (b), and THz near-
field images at different distances (∆z) from the sample (c)–(e). The dynamic
range of the images is indicated. It represents the ratio between maximum
signal amplifude and the rms background noise in the bottom-left 15×15
pixel image section.
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out the height dependency. It is noted that the decay rates have to be measured with more

accuracy and for more material types to enable this calibration approach. Moreover, in

view of the non-continuous response decay at small distances (Figure 7.28), measurement of

the absolute object-to-sample-distance is required for calibration, which was not possible

with the employed experimental setup. On another note, no histopathological results

could be obtained for the tissue sample so that an evaluation of the sensor’s capability to

differentiate between healthy was not possible.

In summary, the ability to operate many near-field sensors concurrently in a SoC im-

plementation provides, for the first time, the required simultaneous imaging speed and

resolution to support intraoperative applications. However, whether or not THz near-

field imagers can be established as a medical tool with good sensitivity and specificity for

tumor margin identification during cancer surgeries requires future investigations. The

presented imaging SoC can, however, be used for the conduction of such statistically sig-

nificant studies, and thereby assess the medical relevance of THz contrast mechanisms

for bioimaging applications in general. Unlike as compared to spectroscopy, where double

Debye model parameters are often used for classification, the SoC measures at a single

frequency. Therefore, other classifiers and variables need to be found in the future. The

question of whether an absolute or a contrast-based measurement brings more insight

needs to be answered as well. This requires further studies for pathology assessment in an

operating room.

7.6. Summary and Conclusion

The study presented in this chapter set out to determine whether THz near-field sensing

can be accelerated toward practical applications by the integration of sensor arrays in

silicon technology. For this purpose, a 128-pixel SoC for THz near-field imaging at 550 GHz

was fully integrated in 0.13 µm SiGe BiCMOS technology and assembled into a stand-

alone sensor module. All THz functions, such as sensor illumination, near-field sensing,

and power detection, are concurrently integrated with a large-scale read-out scheme, an

integrated lock-in amplifier, and digital signal processing.

The chip exploits the interaction of the highly-confined E-fields of 3D SRRs with an imag-

ing object. It achieves a lateral resolution around 10 µm with an imaging contrast based

on the dielectric permittivity in the THz range. The worst-case estimated uncertainty for

the real part of the relative permittivity is 0.33. A 1D array architecture is proposed that

makes use of THz power distribution networks to account for the size mismatch of THz

on-chip oscillators and super-resolution sensing elements. Thereby, a high 1D fill factor
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Figure 7.36.: Illustrative comparison between the presented THz near-field sensor IC and
contemporary THz near-field technology.

of 48 % with a 1D pixel density of 1016 dpi is achieved. The chip shows a dynamic range

of DRd,28fps = 38.5 dB at a frame rate of 28 fps in a digital read-out mode and a dynamic

range of DRa = 63.8 dB in an analog read-out mode for external lock-in detection with a

1 ms time-constant.

Table 7.1 compares the presented sensor with different terahertz and microwave near-field

imaging methods and devices, and Figure 7.36 shows a qualitative comparision with con-

ventional THz NSOM methods. The presented sensor overcomes various bottlenecks of

traditional THz near-field imaging technology. In particular, the on-chip cointegration

of all sensor functions mitigates the sensitivity problems of THz NSOM methods result-

ing from remote illumination and detection. By further employing multi-pixel integration

on a chip-scale, real-time imaging with unprecedented SNR is presented, enabling micro-

scopic THz image acquisition within seconds. At the same time, the presented sensor

exhibits shortcomings such as a solid, planar sensing surface, narrowband operation, and

a design-rule-limited spatial resolution around 10 µm. As such, the presented device is not

generally set to challenge THz NSOM in its laboratory use. Rather, new THz microscopy

applications fundamentally requiring integrated microsystems and high-speed imaging are

targeted. In this context, successful demonstrations of microscopic imaging of human tis-

sue and biometrical fingerprint acquisition are shown in this chapter. However, this work

only assesses a portion of the potential application scope for the sensor. Other potential

applications can be found, for example, in microfluidics, where the sensor may be used

to simultaneously measure filling levels and the state and dynamics of liquid mixtures.

Or it may be employed for the quality control of semiconductor fabrication, e.g., for the
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measurement of doping gradients.
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Chapter 8
Thesis Summary

8.1. Summary and Conclusions

This thesis described the development of highly-integrated systems in silicon technology

for novel imaging concepts with terahertz (THz) waves. So far, the progress towards

practical adoption of THz technology is inhibited by the size and cost limitations of tra-

ditional electronic and photonic THz equipment. Despite its low device speeds, silicon

technology offers the means to increase the societal impact of THz technology signifi-

cantly. The advantages of silicon technology are twofold. First, integrated THz circuits

can be manufactured at low cost and packaged into compact systems whose integration-

level is comparable to the ones we are used to from conventional consumer electronics.

Secondly, the mixed-signal capabilities and the yield offered by silicon technology enable

the integration of chip-scale THz systems with enhanced functionality. The work described

in this thesis exploits both advantages to demonstrate low-cost microscopic and volumetric

THz imaging with compact silicon components for the first time.

Although the strong sensitivity of THz waves to water promises to enable a variety of

applications in life sciences, THz imaging techniques either lacked the spatial resolution

or the appropriate integration level to be applied in practice. In particular, the thesis

motivated the use of THz imaging for the assessment of tumor margins in breast cancer

treatment, which requires a spatial resolution on the scale of micrometers and image

acquisition within a few minutes. In this context, the central aim of this research was to

develop a silicon-based sensor system for real-time imaging of the microscopic material

properties in the THz frequency band.
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To achieve this aim, a fully integrated 128-pixel System-on-a-Chip (SoC) for real-time

super-resolution near-field imaging at around 550 GHz in a 0.13 µm SiGe BiCMOS tech-

nology was developed in this thesis. Following previous research on integrated single-pixel

sensors [15], [19][own11], [own13], the chip exploits the capacitive interaction between on-

chip split-ring-resonators (SRRs) and the imaging object. Three-dimensional cross-bridge

double SRRs showing a spatial resolution of around 10 µm were used [19]. To increase

the understanding of the sensor response formation, a lumped equivalent circuit model

of the complex 3D sensor structure was developed and analyzed within the scope of this

work. It was shown that appropriate allocation of the SRR excitation frequency is key

to control the sensor sensitivity regarding the real-part and imaginary-part of the per-

mittivity. Two key contributions enabled the chip-scale integration of near-field sensors.

First, a parallel sensor excitation scheme based on 4-way power division networks was

proposed for the one-dimensional scaling of SRR near-field sensors with high fill factor.

Secondly, a rolling-shutter sensor read-out architecture utilizing on-chip lock-in detection

was developed. To allow a compact implementation and real-time operation, the here

developed SoC offers the full set of functionality, including THz near-field sensing, analog

signal conditioning, analog-to-digital conversion, and a digital communication interface.

The finally presented imaging module operates as a stand-alone device. It can be pow-

ered and controlled only by a conventional USB port, not requiring any additional THz

instrumentation for imaging. These contributions significantly enhance the practicability

of THz near-field imaging. More particularly, they enabled the demonstration of image ac-

quisition of objects with dimensions of several mm2 within a few minutes. High-resolution

THz imaging of excised human breast tissue and human fingerprints was shown, which

constitutes the first demonstration of microscopic THz imaging with integrated multi-pixel

near-field sensors.

Furthermore, the thesis explored a low-cost all-silicon volumetric THz imaging system

operating at 430 GHz. The system is based on the principle of computed tomography

and acquires 3D absorption data of an object in a focused transmission-mode setup. In

contrast to previous demonstrations of THz CT systems relying on costly and bulky tra-

ditional THz equipment, both transmitter and receiver were implemented in a 0.13 µm

SiGe HBT technology and packaged into very compact modules. Imaging results of a

polystyrene foam cube with a concealed knife blade and a packaged hypodermic needle

were presented, demonstrating the feasibility of the implemented imaging system to be

used for applications in non-destructive industrial quality control. The key enabler for the

THz CT system is a high-power 430 GHz radiation source, whose development was also

presented in this thesis. A record in radiated power for silicon-integrated sources above

350 GHz of −6.3 dBm was achieved by utilizing optimized harmonic extraction for a circuit
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architecture comprising a high-frequency oscillator and a doubler coupled to an on-chip

antenna.

8.2. Future Directions

Microscopic Imaging This thesis established the novel research area of fast microscopic

THz imaging with integrated circuits. It is hoped that the potential significance of this

area for applications in life sciences encourages future research to address the shortcomings

and limitations of this study. More particularly, the scope of this thesis was limited to

sensor development and initial demonstrations of the imaging functionality. Therefore,

more research is required to assess the applicability of integrated THz near-field sensors

for biomedical applications such as cancer diagnostics. It is noted that this research needs

to be interdisciplinary, involving medical scientists, physicists and electrical engineers.

Such a collaborative approach is pursued in the second phase of the ongoing research

project Near-Sense: A silicon-based terahertz near-field imaging array for ex vivo life-

science applications, which was funded by the German Research Foundation within the

Priority Program SPP 1857 Electromagnetic Sensors for Life Sciences (ESSENCE). The

herein presented sensor array allows ESSENCE to statistically investigate the medical

relevance of THz near-field sensing for marker-free breast cancer margin identification on

a large set of samples. The premise for such studies is that the image contrast uniquely

depends on the electromagnetic material properties, and not the object’s distance to the

sensor. Therefore, we propose a method in which freshly extracted tissue samples are

pressed directly onto the sensor surface to planarize the sample and to remove blood and

other fluids from the imaged regions. The potential of this method can be already assessed

with the current 1D sensor array implementation, but eventually requires 2D sensor arrays

and a flip-chip sensor packaging concept where all interconnects are accessible on the chip

back-side to be practical. Notably, applications may also desire absolute determination of

the complex permittivity in non-contact measurements, which will require further research

on calibration methods for resolving the ambiguity between object distance and material

properties.

From the design perspective, the large-scale integration of 2D near-field sensor arrays

remains challenging. In particular, the 1D pixel geometry of the presented THz front-end

is not scalable to 2D geometries without introducing significant spatial under-sampling

due to the size of the employed oscillators and power distribution networks. Hence, new

design methodologies and different sensing concepts are required to facilitate 2D sensor

integration and single-shot imaging. Moreover, the read-out architecture presented in this

thesis operates in a rolling-shutter mode, which limits the individual pixel observation
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time. The research into new read-out architectures for continuous pixel observation in a

global shutter mode could significantly increase the signal-to-noise ratio and the imaging

speed.

Volumetric Imaging The advances in THz CT presented in this thesis are not yet suf-

ficient for the widespread adoption of this imaging method. Future research will have to

address the prohibitively long scanning times ranging from several minutes to a few hours,

to accelerate the progress towards real-world applications. As such, it is essential to remove

the bottleneck of 3D mechanical translation by realizing methods for 2D imaging with-

out raster-scanning such as collimated-beam imaging or compressed sensing with silicon

components. However, for such methods to be applicable, future research in high-power

silicon-integrated THz sources is required. To advance silicon THz source technology to-

wards sufficient performance remains a highly sought-after achievement – not only for the

herein presented THz CT system but for THz science as a whole. Future research may

push the collaborative progress in high-speed silicon technology development and THz

design technique. In particular, a continued effort in exploiting the abundance of devices

available in silicon technology will be required to counteract the speed limitations of single

devices. Here, the large-scale implementation of THz sub-circuits that use the codesign

of electromagnetic structures and active circuitry for power combining [84]–[86], [88], [93],

and the design of large-scale source modules with individually reconfigurable source units

[20] range among the most promising research directions.
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