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One has the impression that modern physics is based on assumptions which somehow
are similar to the smile of a cat that is not even there.

Albert Einstein

"Well! I’ve often seen a cat without a grin," thought Alice; "but a grin without a cat! It’s
the most curious thing I ever saw in all my life!"

Lewis Carroll - Alice in Wonderland

If quantum mechanics hasn’t profoundly shocked you, you haven’t understood it yet.

Niels Bohr
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Abstract

The thermochemistry and reaction dynamics of polar gas phase molecules cluster-
ing around an ion in atmospheric pressure ionization mass spectrometry (API-MS)
dominate many observed effects. While the equilibrium conditions under elevated
pressure conditions determine the distribution of the available charges inside differ-
ent clusters, the reaction dynamics under non-equilibrium conditions downstream
of the instrument will determine the ultimate fate of these clusters. Together, this will
dictate the final degree of charging (e.g., protonation) of the analyte.

In this work, two examples of the effect of clustering in MS are studied by using
Computational Chemistry. In the first example, charge depletion and charge reten-
tion in nanoESI-MS for a small peptide, Substance P, is investigated. By modeling
the thermochemical data and potential energy paths for proton transfer (PT), it is
shown that protic solvent vapors like methanol (MeOH) can abstract a proton from
the multiply charged peptide. This is due to their ability to form hydrogen bond
networks. The resulting charge dilution upon increasing cluster sizes lowers barrier
heights along the PT paths. Aprotic solvent molecules as for example acetonitrile
(ACN), however, lack the ability to form cluster networks at the charge site. Thus,
there is no trend observed regarding the barrier heights for PT. The charge is thus
retained and not depleted. This is in accordance with experimental findings, where
Substance P is observed in its 3+ charge state when ACN is added to the gas phase,
but is found mainly in its 2+ charge state with MeOH vapor added.

The second example deals with the effect of dynamic clustering in differential mo-
bility spectrometry. This is done by modeling the geometry, temperature dependent
collision cross section (CCS), and electrical field dependent ion temperature and mo-
bility of many cluster structures in the framework of the Mason-Schamp equation ap-
plying the two-temperature theory. Thermochemical weighting yield the cluster size
distribution and ensemble averaged mobility in dependence of the field strength. It
is shown that increasing the field strength leads to higher ion temperatures and sub-
sequent evaporation of the solvent molecules, which are firmly bound at low field
strengths. This leads to an overall decrease of CCS and thus to an increase of mobil-
ity. Calculating dispersion plots from these data and comparison with experimental
results, semi-quantitative agreement is found. Especially the good accordance with
trends observed regarding different solvents, the background temperature and the
solvent vapor concentration highlights the importance of dynamic clustering for dif-
ferential mobility. The importance of correctly modeling the CCS as a function of
temperature and using two-temperature theory to model the "hard-sphere" effect is
also emphasized.
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From these two case studies, it becomes apparent that the thermochemical stabil-
ity of cluster systems needs to be considered. However, a strong obstruction in the
modeling of these cases is the breakdown of the harmonic approximation (HA) usu-
ally used in the calculations. Due to their loosely bound nature, anharmonic ef-
fects gain significance. Two new approaches are presented in this work to account
for these effects for a more accurate description of the thermochemistry. The first
uses the well known Vibrational Perturbation Theory to 2nd order (VPT2) in a hybrid
approach. To reduce computational time, only the harmonic contributions are cal-
culated with high accuracy, while the minor anharmonic effects are calculated with
faster, less accurate methods. The second approach uses a modified version of the
quasi-harmonic approximation (QHA). Instead of using Cartesian or internal coor-
dinates, the configurational distribution, obtained from molecular dynamics (MD)
simulations, is represented in normal coordinates. Overall translation, overall rota-
tion and internal rotations are projected out of the MD trajectories by enforcing ex-
plicitly the Eckart-Sayvetz conditions for these motions, leaving only true vibrational
movement. Both developed methods were tested by calculating the dissociation en-
thalpies of different proton bound cluster systems. Comparison with standard meth-
ods regarding experimental results showed that both methods have similar or better
accuracy than the HA. Similar accuracy is only achieved for challenging cases with
many internal rotations or very flexible structures. Here, the developed methods as
well as the HA exhibit significant deviations from experimental results. Thus, the two
methods capture the anharmonic effects to some degree and perform better than the
HA for systems of small to medium anharmonicity. For strongly anharmonic systems
their performance has room for improvement.
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1 Motivation

Mass spectrometry (MS) is a widely used tool in many fields of analytical chemistry:
In biochemistry, protein sequencing [1], lipids [2], metabolites [3], carbohydrates [4,
5], protein-drug interactions [6, 7] and many more are studied. Fuel composition
[8], environmental analysis [9], food-safety [10], and structure elucidation of small
molecules [11] are also important fields in which MS is used, as well as fundamental
areas as for example ion-spectroscopy [12, 13], ion-molecule interactions [14], photo-
and ion-dissociation [15–17]. This list is by no means complete and consequently
the development of improved MS instruments and methods is not only subject to
research [18] but also commercially interesting, valued almost 5 billion USD on the
global market in 2016 and growing [19].

In general, an analyte molecule is first ionized in an environment (solid, liquid,
gaseous, vacuum) with a certain ionization method. Through electrical fields, the ion
is guided to an analyzer section of the instrument, in which different ions are sepa-
rated by their mass-to-charge ratio, m/z. Finally, the ion is detected. Scanning the
analyzer to allow for many different m/z and recording the ion intensity at each step
yields a mass spectrum. Each stage, i.e., the ionization environment (and the transfer
into it), the particular ionization method, the ion guiding, the m/z analysis, and the
ion detection is a whole research field on its own and many different methods for all
stages have been developed. It is not the scope of this work to give a detailed descrip-
tion of these stages, the reader is referred to one of the many textbooks about mass
spectrometry (for example [20, 21]). However, the first stages, i.e., the ion generation
and transfer are of great importance for this work and should be reviewed here. Since
it is more common, only positive ionization mode will be discussed. The conditions
in the ion transfer stages are also of interest when the pressure has to be reduced
between ion source and mass analyzer, and will be outlined briefly.

Low Pressure Ionization In the most simple of cases, the analyte A is already in
the gas phase and is ionized by means of energetic electrons (70 eV) at low pressures
(around 10−6 mbar) according to

A+e− A+•+2e− (R 1.1)

a process known as electron ionization (EI). Because a good amount of energy is trans-
ferred to the internal degrees of freedom of the analyte and there are hardly any col-
lisions at that pressure to dissipate the excess energy, the A+• often fragments inside
the ion source region. The fragments produced through a cascade of unimolecular
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1 Motivation

decay reactions are highly reproducible and can be used for identification and struc-
tural elucidation when compared with data base spectra. In this type of instrument,
pressure reduction between ionization source and mass analyzer is not that crucial
because the ion source pressure is already very low.

Another ionization technique is called chemical ionization. Here, the analyte is
diluted in a reactant gas, R, (e.g., CH4, NH3, ...) which is primarily ionized through
EI. Due to elevated pressures in the ion source (a few mbar), the ionized reactant
molecules can transfer their charge to the analyte in a collision event via multiple
ways, e.g., proton transfer or charge transfer:

A+R+• [A+H]++ [R − H]• (R 1.2)

A+R+• A+•+R (R 1.3)

These processes deposit far less excess energy in the ionic products and thus less frag-
mentation is observed. The information of the molecular mass, often not obtained
with EI, is very valuable for analyte identification. It also enhances sensitivity in rou-
tine applications because the signal intensity is not distributed over many fragments.

However, since multiple channels for ionization are possible and there may be
enough collisions for further reactions, more than one signal can be observed. The
rate constants for different processes (kinetics) and - given sufficient time - maybe
even the thermodynamic stability of different products (thermochemistry) will influ-
ence the observed ion distribution. Already at this stage, ion-molecule reactions are
pivotal for either the explanation of an observed mass spectrum or the design of an
experiment, e.g., the choice of the reactant gas.

Atmospheric Pressure Ionization There are many reasons why ionization at at-
mospheric pressure (API) is today one of the most prominent ionization methods.
Many analytes in chemistry, especially in biochemistry, are present in aqueous solu-
tion. Transferring them into the gas phase in sufficient amounts is rather challenging
when the pressure has to remain low. However, if the ionization chamber is tolerant
to high pressures, the analyte solution (or the liquid exiting a liquid chromatograph)
can be sprayed through a heated capillary into a stream of heated nitrogen, efficiently
transferring the analyte to the gas phase. This allows the coupling of liquid chro-
matography (LC) with MS, which was one of the initial goals of introducing API-MS
[22, 23]. Because a heated filament for the production of electrons is not stable under
such conditions, new ionization techniques had to be developed. The first instru-
ments used a 63Ni foil to produce highly energetic electrons via β decay. Already in
1973 [22], the authors noticed the following reaction cascade, established only three
years earlier [24]:

N2 +e− N2
++2e− (R 1.4)

N2
++2N2 N4

++N2 (R 1.5)

N4
++H2O H2O++2N2 (R 1.6)
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H2O++H2O H3O++OH (R 1.7)

H+(H2O)n−1 +H2O+N2 H+(H2O)n +N2 (R 1.8)

The proton bound water clusters, H+(H2O)n, were always observed in the spectra,
even without any solvent introduced, and it was argued that traces of water are always
present on the instrument walls and thus in the ion source gas phase. The ubiquitous
presence of water can be stretched even further: Since the ion sources at atmospheric
pressure are not required to be completely air-tight, air from the laboratory can enter
the chamber. Even an air-tight source will adsorb rather sticky water molecules on all
surfaces upon exposure to ambient air. Additionally, the modern ambient ionization
methods are operated in the laboratory air directly, being exposed to water in the low
percent range [25].

At atmospheric pressure, termolecular reactions (Reactions (R 1.5) and (R 1.8)) are
feasible and due to residence times of up to 100 ms in the ionization chamber [23]
it can be safely assumed that the system is actually in thermal equilibrium [23, 25]
- which is in stark contrast to the vacuum ionization techniques. The thermochem-
istry of the water cluster system is well established [26] and the cluster size distri-
bution Pn depends on the temperature and the partial pressure of water. In general
these clusters are comparably stable: The free enthalpy of reaction for the H+(H2O) +
H2O H+(H2O)2 reaction is 101.7 kJmol−1 at 300 K [26]. Thus, even for low mixing
ratios of 1 ppmV water, the n = 4 cluster is the most abundant cluster size [25].

Further ionization techniques, e.g., plasma driven API sources (corona discharges
[27] or helium plasmas [28–30]) follow essentially the same reaction cascade (R 1.4)-
(R 1.8), yielding protonated water clusters, as reviewed in Ref. [25]. It was shown
that API sources using VUV lamps or lasers to ionize dopant molecules prior to ana-
lyte ionization, essentially yield water clusters as well [31, 32]. Although it is always
possible that certain species along this cascade, e.g., N4

+ or HeM directly ionize the
analyte molecule, the water clusters will play an essential role due to Kebarle’s water
exchange reaction [33]:

[H+ (H2O)n]++X [H+X+ (H2O)n−1]++H2O (R 1.9)

Here, X can be a solvent molecule S from the LC injection or the analyte A. As stated
before, the system can be assumed to be in thermodynamic equilibrium. Thus, the
available charges will be distributed over clusters of the general form [H + (H2O)n +
(S)m + (A)l]+ where n, m and l are integers including zero, depending on the gas phase
basicity and relative concentration of H2O, S and A.

In other ionization techniques as for example Electrospray Ionization (ESI), the
cluster mechanism will be important as well. In ESI, the analyte solution is sprayed
inside a strong electrical field gradient, leading to the formation of a Taylor cone [34,
35]. This in turn leads to highly charged droplets, which eventually produce charged
analyte molecules. The mechanism still remains elusive and several models have
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been proposed (ion evaporation model [36, 37], charge residue model [38–40], chain
evaporation model [41–43]). However, in all cases, the analyte interacts with solvent
molecules in the liquid phase, at the liquid/gaseous interface or in the gas phase (in
the high pressure regions). Thus, the charges located at the analyte will be stabi-
lized by interactions with solvent molecules and it is reasonable to assume that this
stabilized system will survive the transition to the gas phase, as observed in many dif-
ferent computer simulations by e.g., the Konermann group [42–46] and supported by
studies on the evaporation process in ESI [47]. Thus, this process eventually leads to
clusters which - at sufficient pressure - will equilibrate with the surrounding environ-
ment.

Some mass spectrometers also contain a stage where ions are separated by their
mobility (Ion Mobility Spectrometry, IMS) or differential mobility (Differential Mo-
bility Spectrometry, DMS or Field-Asymmetric Waveform Ion Mobility Spectrome-
try, FAIMS) prior to mass analysis. Since the pressure conditions are often atmo-
spheric pressure or slightly below, (dynamic) clustering with solvent molecules has
been shown to be an important factor in these instruments [48–51].

Ion Transfer Since most mass analyzers operate at low pressures (< 10−6 mbar) to
provide a collision free environment necessary for ion separation, the pressure has
to be reduced between the ion source and the analyzer region. This is typically done
by multiple pressure reduction stages and differential pumping. In the first pressure
reduction down to a few mbar, the ion/matrix mixture is expanded from the exit of
a small diameter capillary or orifice into a much lower pressure region, creating a
hydrodynamic flow or jet expansion [52]. There, the velocity distribution becomes
much narrower, i.e., the random motion is transformed into the forward motion away
from the capillary or orifice exit. As a consequence, also the internal degrees of free-
dom loose thermal energy and the ion/matrix mixture is effectively cooled. Since
still sufficient collisions occur during this process, a new thermal equilibrium, cor-
responding to the low temperatures and concentrations is the matrix, is established.
Sampling from this region can easily produce species as for example [H+(H2O)12]+

[32]. Downstream of the Mach disc, created by the jet expansion, a new equilibrium
is established because the forward kinetic energy is distributed back into all acces-
sible degrees of freedom through collisions. Sampling behind the Mach disc shows
considerably smaller cluster size distributions (n = 4±1) under the same conditions
[32].

To efficiently separate the ions from the background gas, electrical fields are used to
guide the ions while pumping away the neutrals. Under such conditions, the reduced
electrical field strength, i.e., the ratio of the field strength and the particle density, can
reach quite high values. Since the acceleration by the electrical field is countered
only by very few collisions, the mean collision energy is elevated, potentially result-
ing in fragmentation of the clusters, possibly also of the analyte molecule [25, 32]. It is
this stage, at which the dynamics - not the thermochemistry - of the possible proton
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transfer reactions inside a cluster determines the final charge carrier observed in the
mass analyzer. To reiterate, the thermochemistry at the various equilibrium stages
determines the cluster size distribution [H + (H2O)n + (S)m + (A)l]+ entering the ion
transfer region and the proton transfer dynamics at the non-equilibrium stages dic-
tate the final protonation site. The fact that indeed [A + H]+ is observed with many
different API methods, even if deuterated dopants are used [53], supports this rea-
soning [25]. It is of largest benefit to any analytical chemist that this complex system
eventually leads to the singly or multiply protonated analyte, [A + nH]n+.

Theoretical Investigations To exploit this benefit as much as possible, the ther-
mochemical and dynamical processes mentioned can be studied in more detail. This
might help to design the experiment (e.g., choice of solvent, additives) in favorable
ways, increasing sensitivity and even selectivity. While thermochemical data of pro-
tonation reactions can be obtained experimentally by van-’t-Hoff plots and have been
reported for many different cases [54], the system one is interested in, may have not.
More so, reaction dynamics are governed by the shape of the molecular interaction
potential surface, i.e., barrier heights along pathways or flatness of certain areas. The
complex interplay of the energy needed for a reaction pathway and the state density
of critical configurations, quantities that eventually determine the probability of a
reaction (see section 2.4), are difficult to access experimentally.

For such cases, Computational Chemistry may aid in overcoming such difficulties
as it gives insights into both, thermochemistry and reaction dynamics. Its capabili-
ties and limitations will be discussed in detail in Chapter 2. Briefly, using quantum
mechanics or parameters derived from that, the electronic and geometric structure
of molecules can be studied. In particular, the potential energy surface, the under-
lying object that determines both thermochemistry and reaction dynamics, can be
computed for - in principle - any given system. Although it is an ongoing field of
research and a number of difficulties are still present, many different research fields
including mass spectrometry, use Computational Chemistry to understand experi-
mental results, support drawn conclusions and direct future work. Just to name a
few examples from the MS community, Computational Chemistry is widely used in
the modeling of peptide or protein structure [55–58], has been used to study various
ionization mechanisms and characteristics [30, 59–61] and understand unknown ion
transformation reactions [62–65], is combined with Infra-Red Multiple Photon Dis-
sociation (IRMPD) experiments to identify isomers and protonation sites [15], was
applied to characterize ion transfer conditions [66, 67], was used to study clustering
in DMS devices [68, 69], among many others. Thus, it is the aim of this work to use
computational methods to study a number of specific questions arising from MS ex-
periments but also to combine, refine and develop new methods of calculation for
more accurate data.
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Structure of this Work To address the aim of this work more precisely, Chap-
ter 3 deals with ion transformation processes, i.e., charge depletion or charge reten-
tion due to clustering with added solvent molecules. These effects were observed ex-
perimentally in nanoESI-MS for a small peptide, Substance P, and the thermochem-
istry and reaction dynamics of these systems are studies using small model analytes.
Chapter 4 focuses on the modeling of an ion’s behavior in a DMS cell due to dynamic
clustering with different solvent molecules. The ion’s differential mobility is com-
puted from first principles and compared with experimental data to support the sug-
gested mechanism of dynamic clustering being a major factor in separating ions in
a DMS cell. Chapter 5 deals with a more theoretical topic, i.e., the development of a
new method to calculate thermochemical data of highly anharmonic species, such as
proton bound clusters. The use of standard methods for the calculation of vibrational
partition functions is a large source of error when dealing with such systems and con-
sequently there is a need for more accurate methods, especially in the context of this
work.

The main parts of the individual chapters are manuscripts which have been sub-
mitted for publication (first author). If the manuscripts are already published, the re-
spective citation is given. Additional sections in each chapter describe supporting or
follow-up work, which mostly has been submitted for publication as well (co-author
work, also mentioned in the respective chapter).
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2 Introduction to Computational
Chemistry

This chapter introduces the reader to the general area of Computational or Quan-
tum Chemistry. The topics covered are the foundation of what follows in the re-
maining chapters and thus, are not necessary to understand the results presented but
rather are meant to introduce the general concepts, work flows and objects a quan-
tum chemist deals with. It will also help to put the used and developed methods in
to perspective and allows the reader to judge their capabilities and limitations. Basic
concepts of quantum mechanics, i.e., wavefunctions, eigenvalues, operators, etc., are
not discussed here. For literature suggestions about general quantum mechanics as
well as quantum chemistry, the reader is referred to [70–74].

Computational Chemistry uses quantum mechanics to study atoms or molecules.
Because the Schrödinger equation for such complex systems is not solvable, sim-
plifications have to be made. A very obvious one is that only the time-independent
Schrödinger equation is solved since the most systems are considered temporally
stable. However, even then the total wavefunction of a molecule with MN nuclei,
ψtot(r ,R), depends on the coordinates of the electrons, r , as well as on the coordi-
nates of the nuclei, R , rendering the solution of the Schrödinger equation impossible
even for simple systems such as H2

+. The Born-Oppenheimer approximation sep-
arates the total wavefunction into an electronic and a nuclear part and states that
the kinetic energy of the nuclei does not affect the electronic wavefunction. This is
reasoned by the fact that the electrons are moving much faster than the nuclei and
thus "instantly" adapt to every new nuclear geometry. The total Schrödinger equa-
tion reads:

Ĥtotψtot(r ,R) = Etot(r ,R)ψtot(r ,R)(
T̂e + T̂N + V̂ee + V̂eN + V̂NN

)
ψtot(r ,R) = Etot(r ,R)ψtot(r ,R)

(2.1)

where Ĥ is the Hamilton operator containing kinetic and potential energy operators,
T̂ and V̂ , respectively, which consider the electrons (subscript e) and nuclei (sub-
script N) and their pairwise interactions, and Etot is the systems total energy. The
Born-Oppenheimer approximation now splits the equation into two parts:(

T̂e + V̂ee + V̂eN
)︸ ︷︷ ︸

Ĥe

ψe(r ;R) = Ee(r ;R)ψe(r ;R) (2.2a)

(
T̂N + V̂NN +Ee(R)

)︸ ︷︷ ︸
ĤN

ψN(R) = Etot(R)ψN(R) (2.2b)
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where the electronic wavefunctionψe depends on the nuclear coordinates only para-
metrically and the electronic energy Ee enters the nuclear Hamiltonian as simple
function, independent from the electron movement. The two potential energy terms
in the nuclear Hamiltonian ĤN, i.e., Ee and V̂NN, where the latter is readily calculated
from the Coulomb repulsion of the nuclei, are combined to the total potential en-
ergy of the molecule Epot(R) at the nuclear geometry R . Thus, solving the electronic
part (Eq. (2.2a)) for many different but fixed nuclear geometries yields the Potential
Energy Surface (PES), which in return is used as input for solving the nuclear part
(Eq. (2.2b)) of the Schrödinger equation. The next two sections address each of these
problems, respectively, the last three sections in this chapter describe how thermo-
chemical parameters, quantities from reaction dynamics and collision cross sections
are calculated from those results.

2.1 Electronic Structure Calculations

This section illustrates how Computational Chemistry solves the electronic part of
the Schrödinger equation (Eq. (2.2a)). Due to the Born-Oppenheimer approximation,
the nuclei are always spatially fixed at coordinates R .

2.1.1 Hartree-Fock Theory

The Equations Since the problem is still not solvable analytically, the electronic
wavefunction of an Me-electron system is approximated through a Slater determi-
nant containing one-electron wavefunctions, called spin orbitals:

ψe(r1,ξ1, ...,rMe ,ξMe ) =

1p
Me!

∣∣∣∣∣∣∣∣∣∣
η1(r1)α(ξ1) η1(r1)β(ξ1) η2(r1)α(ξ1) · · · ηm(r1)β(ξ1)

η1(r2)α(ξ2) η1(r2)β(ξ2) η2(r2)α(ξ2) · · · ηm(r2)β(ξ2)
...

...
...

. . .
...

η1(rMe )α(ξMe ) η1(rMe )β(ξMe ) η2(rMe )α(ξMe ) · · · ηm(rMe )β(ξMe )

∣∣∣∣∣∣∣∣∣∣
(2.3)

The spin orbitals η jα or η jβ are composed of a spatial orbital η j (ri ) depending on
the spatial coordinates of electron i and a spin partα(ξi ) or β(ξi ) depending on some
spin coordinates ξi of electron i . This apparently cumbersome description is neces-
sary to fulfill the Pauli principle, i.e., the wavefunction of a system containing iden-
tical fermions changes sign under exchange of two particles. This corresponds to an
exchange of two rows of the matrix, which changes the sign of the determinant as re-
quired. Since each spatial orbital η j is combined with two different spin functions, it
is occupied with two electrons of opposite spin. This is a well-known empirical fact
from the structure of the periodic table of the elements. The shown determinant cor-
responds to the case that Me is an even number (closed-shell case) and m = Me/2.
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2.1 Electronic Structure Calculations

For a molecule, the spatial orbitals η j are in general unknown and thus approxi-
mated through a linear combination of atomic orbitals (LCAO), φk :

η j =
Mbasis∑
k=1

ck jφk (2.4)

These basis functions are located at the nuclei positions and thus mimic the concept
of atomic orbitals combining to molecular orbitals (MOs). The type and number of
basis functions applied is a crucial part in electronic structure calculations as will be
discussed below.

The Slater determinant now consists of known functions but unknown coefficients
ck j . For their determination, the variational principle is applied, stating that the
energy of any approximate wavefunction ψapprox is greater or equal to the actual
(ground state) energy E0:

E0 ≤ Eψapprox =
〈
ψapprox|Ĥe|ψapprox

〉
(2.5)

Thus, one has to find the coefficients ck j such that the energy of the corresponding
wavefunction becomes minimal. Setting the first derivative to zero:

∂
〈
ψapprox|Ĥe|ψapprox

〉
∂ck j

= 0 (2.6)

leads to the Roothaan-Hall equations, which are a set of non-standard eigenvalue
problems. The coefficients ck j , which one wants to solve for, are also needed as input
and thus, the system is solved iteratively in a procedure called Self-Consistent Field
(SCF). The name results from the fact that the electron density (the field in which
the electrons move), determined by the summation over the occupied orbitals of the
previous iteration step, influences the solution in the next iteration step and thus,
eventually converges to a fixed density.

The output of these calculations are the coefficients ck j , which yield the Me/2 oc-
cupied and (Mbasis − Me)/2 virtual molecular orbitals η j (Eq. (2.4)), as well as their
corresponding energies ε j . These type of calculations are called Hartree-Fock (HF)
calculations and are the foundation of all ab initio approaches.

Basis Sets While the described formalism is fixed (except maybe the convergence
threshold of the SCF equations), the basis set passed on to the HF equations is an
important choice the user has to make. The accuracy of the calculations will greatly
depend on this choice and thus a deeper understanding of the form of these basis
set is beneficial. Since the Schrödinger equation for the H atom is analytically solv-
able, the general form of the atom orbitals is know: Each orbital is described by three
quantum numbers (n, l ,ml ), with the principal quantum number n = 1,2,3, ..., the az-
imuthal quantum number l = 0,1, ...,n −1 and its magnetic orientation ml =−l , ..., l .
This structure is reproduced by Gaussian-Type Oribtals (GTO) of the form:

φGTO = xa yb zc exp
(−ζ(

x2 + y2 + z2)) (2.7)

9



2 Introduction to Computational Chemistry

where x, y and z are the Cartesian coordinates with respect to the nucleus, the basis
function is centered at. The sum a +b + c mimics the azimuthal quantum number
where a+b+c = 0 corresponds to an s-orbital, a+b+c = 1 corresponds to a p-orbital
and so forth. ζ is a coefficient describing the radial decay of the wavefunction, small
numbers corresponding to a slow decay. A minimal basis set would contain only one
such function for each electron. However, such calculations are very inaccurate be-
cause the basis set is very inflexible. It is beneficial to apply much more basis func-
tions than electrons to allow for a more flexible description of the resulting molecular
orbitals. For example, Figure 2.1a shows a basis set for the H-atom containing two
s- and one p-function (i.e., a 2s1p basis set). Having two s-orbitals (called double-
zeta basis set) allows the HF formalism to mix them in the linear combination of Eq.
(2.4) according to the variational principle, which will result in a more accurate de-
scription of the real wavefunction. Although the electron density around an H-atom
is spherically symmetric, this might not be the case for an H-atom bound to, e.g.,
an oxygen atom. Thus, higher angular momentum functions (called polarized func-
tions) are also added to allow for this inhomogeneity, in this case one p-function in
each spatial direction. The first s-function is made out of three GTOs with already
fixed coefficients, called a contracted Gaussian. The reason is that the form of the
Gaussian, i.e., the exp

(−ζr 2
)

decay, chosen because of easier numerical integration,
actually is the wrong decay when compared to the analytical solutions of the H-atom,
where a exp(−ζr ) dependency is found. Thus, the sum of three GTOs is used to re-
produce the correct decay.

Figure 2.1b shows a 3s2p1d basis set for oxygen. This basis is also of double-zeta
quality because the valence shell (n = 2) has two functions for each orbital. However,
the 1s orbital (core electrons) is only described by one 5-GTO contracted Gaussian.
Since the core orbitals are less important for the chemical behavior, the number of
basis functions are often reduced to save computational time. Having multiple-zeta
quality for the valence shell while having a smaller number of functions for the core
shell is called split-valence type basis set. Again, a higher angular momentum func-
tion (d-function) is given as polarizing function.

To see the results of the HF formalism, Figure 2.1c shows the three lowest occu-
pied molecular orbitals obtained from the solution of the HF equations for the OH
radical at 1 Å nuclear separation using the basis set shown in Figures 2.1a and 2.1b.
As expected, the lowest MO is basically just the 1s-function of the oxygen atom. The
second lowest MO is then a combination of the s-orbitals of both the oxygen and the
hydrogen atoms, weakly contributing to the chemical bond. The third MO is mainly a
combination of the oxygens 2p-functions with the 1s-function of the hydrogen atom,
representing the main binding orbital (since electron density at both nuclei is signif-
icant). For clarity, higher orbitals including virtual ones are not shown.

The discussed basis set, known as def2-SVP [75], is a rather small one. For a good
accuracy, at least triple-zeta quality with more than one polarization function is rec-
ommended [75]. Also diffuse functions, having very small ζ, are often added since
they are able to describe electron density also far from the nucleus, important for
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anions or delocalized systems. Popular basis sets are the ones of Dunning [76–79],
Ahlrichs [75, 80, 81], and Pople [82, 83]. While a larger basis set will increase accuracy,
it also increases computational effort significantly. Thus, a balance between accuracy
and cost has to be found - as always in computational approaches.

Post-HF Methods The HF formalism suffers from some significant approxima-
tions. Firstly, the electron correlation is not treated directly but through each elec-
tron interacting with the total electron density. Secondly, the electronic wavefunc-
tion is approximated by one Slater determinant, however, especially for higher spin
states, it can be shown that multiple determinants are required to accurately describe
the correct wavefunction. Configuration Interaction (CI) calculations approximate
the ground state wavefunction as linear combination of Slater determinants. Besides
the HF determinant, additional ones are introduced, where occupied orbitals are re-
placed by virtual ones, representing electronic excitation. This is often restricted to
singly, doubly or triply excited determinants and thus, methods termed CID, CISD or
CISD(T) are used. The same approach but with an exponential expansion of the ex-
cited determinants, the Coupled Cluster (CC) calculations are commonly used, again
limiting the number of excitations (CCSD, CCSD(T)). While in these cases the form
of the orbitals η j are only calculated once through the HF formalism and then the
coefficients for the determinant expansion are determined in a decoupled step, Com-
plete Active Space Self Consistent Field (CASSCF) calculations vary all coefficients (for
MOs and determinants) simultaneously. A different, perturbative approach, termed
Møller-Plesset Perturbation Theory tries to estimate the electron correlation directly
through an expansion of the energy up to a certain term (MP2, MP3, MP4).

These methods always add considerable computational effort to the HF formalism
but also increase the accuracy greatly. Since they are not used in this work, the reader
is referred to the literature for a more detailed description.

2.1.2 Density Functional Theory

The Kohn-Sham Approach A different formalism, developed parallel to the HF
method, is called Density Functional Theory (DFT) and relies on the concept that the
ground state energy E (0) is computable from the ground state electron density ρ(0)

e (r )
directly. Thus, there exists a functional F such that

E (0) =F
[
ρ(0)

e (r )
]+∫

ρ(0)
e (r )VeN(r )dr (2.8)

holds, where the integral describes the energy resulting from the Coulomb potential
between the electron density and the nuclei, VeN. The functional F has to account
for the kinetic energy of the electrons T and their pairwise interaction energy Eee:

F
[
ρe(r )

]= T
[
ρe(r )

]+Eee
[
ρe(r )

]
(2.9)
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Assuming all functionals in Eq. (2.9) are known and there is a way of describing the
electron density, the only task is to find the particular density that minimizes the en-
ergy in Eq. (2.8) by means of the variational principle [84]. In this ideal situation, DFT
would actually be exact and outperform all HF approaches [73]. However, neither is
the case: The exact form of the functional F is not known and there is no trivial way
of expressing the electron density.

To actually apply DFT, two main concepts are introduced [85]. Addressing the de-
scription of the electron density, wavefunction theory is used similar to the HF ap-
proach: A Slater determinant similar to the one in Eq. (2.3) is built, having spin or-
bitals ϕ jα and ϕ jβ. The electron density can then expressed as:

ρe(r ) =
Me∑
j=1

∣∣ϕ j (r )σ j
∣∣2 (2.10)

where σ j is the appropriate spin function, α or β, of electron j .
Addressing the form of the functional F , Kohn and Sham [85] separated the func-

tional into parts, which can be calculated exactly and "the rest". The known parts
are the kinetic energy of the electrons neglecting their interactions, TS, and the en-
ergy through the Coulomb potential, J . The residual part of the kinetic energy, TC,
correcting for the electron correlation and being rather small compared to TS, as well
as the non-classical exchange and correlation potential energies, Encl, are combined
into an unknown term, the so-called exchange-correlation functional EXC:

F
[
ρe(r )

]= TS
[
ρe(r )

]+ J
[
ρe(r )

]+TC
[
ρe(r )

]+Encl
[
ρe(r )

]︸ ︷︷ ︸
EXC[ρe(r )]

(2.11)

Combining Eqs. (2.8), (2.11) and (2.10) leads to an expression of the energy in terms
of the orbitals ϕ j . Applying the variational principle, i.e., which orbitals have to be
used to minimize the energy, it can be shown that the resulting density has to form
an effective potential

Veff(r ) =
∫

ρe(r ′)∣∣r − r ′∣∣dr ′+ δEXC

δρe(r )
−

MN∑
k=1

zk e
∫

ρe(r )

|Rk − r |dr (2.12)

such that the orbitals are eigenfunctions to a Hamiltonian applying this particular
potential: [

T̂e +Veff
]
ϕ j = ε jϕ j (2.13)

In other words, the MOs are determined such that the electron density in Eq. (2.10)
approximates the true ground state density ρ(0)

e (r ) best. Thus, the main difference
between HF and DFT is that in the former case the orbitals are optimized to approx-
imate the exact wavefunction while in the latter case they are optimized to approxi-
mate the exact electron density.

As in the HF formalism, these equations have to be solved iteratively since the elec-
tron density is determined by the orbitals through Eq. (2.10) but the orbitals rely on
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the electron density through Eq. (2.13) and (2.12). Again, a basis set description of the
orbitals is used (cf. Eq. (2.4)), and thus, the coefficients ck j have to be determined.
Having an infinite basis set and an exact expression for EXC this would lead to the ex-
act ground state energy. However, the form of the exchange-correlation functional is
unknown and thus, approximations have to be used.

DFT in Practice Over the years, many different functionals, EXC, have been devel-
oped. Some rely on drastic physical simplifications to arrive with an expression, some
fit parameters to empirical data. Most functionals are designed as either exchange or
the correlation part, only some are designed for both. In principle, any exchange can
be combined with any correlation functional, although the accuracy varies. Thus,
some combinations have been found to perform well. For example Becke’s three pa-
rameter exchange functional [86] combined with the correlation functional devel-
oped by Lee, Yang and Parr [87], termed B3-LYP (or B3LYP), is probably the most fre-
quently used functional for organic molecules. A variation of this functional, includ-
ing a perturbative approach to 2nd-order for electron correlation is termed B2PLYP
and considerably increases accuracy at the cost of computational effort though [88].

Dispersion effects, also called van der Waals or London forces, are weak forces
acting over large distances, resulting from fluctuations in the electron density. In
wavefunction theory these fluctuations are treated in multi-determinant calculations
through singly excited determinants. If a rather local orbital is excited, the change in
electron density will influence nearby electrons, resulting in weak (attractive) correla-
tions [89, 90]. In DFT, these interactions are often described by parametrized pairwise
energy terms of the form −C6/R6

i j (or higher orders), added to the DFT-energy. The
dispersion correction is parametrized for many different functionals and adds no sig-
nificant computational effort to the calculations, though being a somewhat coarse
approximation. Popular dispersion corrections were developed by Grimme, e.g., the
GD3 [91] or GD3(BJ) [92] dispersion corrections. These types of interactions are espe-
cially important for weakly bound systems (molecular clusters, hydrogen bonds, van
der Waals complexes, etc.) because in these cases the long-range forces dominate the
total interaction energy.

When choosing a particular method to determine the electronic energy, wavefunc-
tion or density functional theory, only the electronic problem of a molecule is "solved".
In the Born-Oppenheimer approximation, the position of the nuclei, R , is a pure
matter of choice. The next section will discuss methods to find particularly interest-
ing molecular geometries, such as minima or transition states, pathways connecting
these, as well as different methods to describe the movement of the nuclei within the
PES.
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2.2 Nuclear Position and Movement

2.2 Nuclear Position and Movement

Following the Born-Oppenheimer approximation, the potential energy surface (PES),
termed Epot(R), is defined as the sum of the electronic energy Ee(R), determined with
any method described in the previous section, and the energy resulting from the nu-
clear Coulomb repulsion potential VNN(R) at a particular nuclear geometry R , i.e.,

Epot(R) = Ee(R)+ 1

4πε0

MN−1∑
k=1

MN∑
l=k+1

zk zl e2

|Rk −R l |
(2.14)

This is not the total energy of the molecule, Etot, since the kinetic energy of the nuclei
is not accounted for in Eq. (2.14). Within the Born-Oppenheimer approximation, the
PES is the potential, the nuclei move in. Since R is a 3MN dimensional vector (al-
though only 3MN−6 dimensions are of interest, see below), the PES is a hypersurface
and multidimensional mathematical analysis is applied for its description. The first
and second derivatives of the potential energy with respect to the nuclear coordinates
are thus a vector, the gradient g , and a matrix, the Hessian H , respectively, with their
entries

gi =
∂Epot

∂Ri
(2.15a)

H i j =
∂2Epot

∂Ri∂R j
(2.15b)

These two quantities are very helpful for the analysis of the PES and can be com-
puted analytically for most electronic structure methods, in particular, HF and DFT.
For some advanced wavefunction theory methods, only numerical approaches exist.
Although they are computed with considerable computational cost (especially the
Hessian is cumbersome) they are crucial for all questions about the nuclear position
and movement as is discussed in the next three sections.

2.2.1 Geometry Optimization

Equilibrium Geometry A common task in Computational Chemistry is the deter-
mination of the equilibrium geometry of a molecule. This is represented by a (local
or global) minimum of the PES and the concept is that this is how a molecule would
look like in the real world. As known from standard mathematical analysis, a mini-
mum is a configuration Rmin such that the gradient is zero and the Hessian is positive
definite, i.e., has only positive eigenvalues. Since it is impossible to invert this prob-
lem, i.e., find the position Rmin from only the condition that g (Rmin) = 0, a numerical
approach is required. Guessing a reasonable approximation of the equilibrium struc-
ture with the users chemical intuition, the actual minimum is found by a gradient
descent approach: At the guess geometry Rguess, the energy and its gradient are cal-
culated and then a new geometry is defined by following the gradient downhill from
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the old one:

Rguess
(k+1) = Rguess

(k) −λ(k)g
(
Rguess

(k)
)

(2.16)

where λ is a scaling factor. The energy and its gradient at the new geometry are cal-
culated again and the procedure is repeated until a certain threshold regarding the
change in either energy or gradient is met, i.e., until convergence is reached. The
equations shown are simple representations. Modern algorithms often take more so-
phisticated approaches. Strictly speaking, this only yields the next local minimum
and there is no guarantee that the global minimum is obtained. This is why chemical
intuition is so important and why Computational Chemistry is still chemistry and not
informatics.

Additionally, it is even not guaranteed that a minimum is reached at all, since the
gradient is zero at many points, i.e., maxima or saddle points. The latter are a mini-
mum in some but a maximum in the other coordinates. Thus, to ensure that a mini-
mum is found, the Hessian is computed and diagonalized. If R is given in 3MN Carte-
sian coordinates, six of the eigenvalues will be zero. They correspond to the three
overall translations and three rotations of the molecule, which do not change the po-
tential energy in Eq. (2.14). Thus, to decide whether the found geometry is a min-
imum, only the 3MN −6 (or 3MN −5 for linear molecules) non-zero eigenvalues are
studied. In practice, this is more complicated and will be covered in the next section.

PES Scans While the equilibrium geometry of a molecule is of great importance,
chemistry deals with molecular change and thus, reaction pathways and transition
states are also of interest. It is straightforward to perform the gradient descent method
with one coordinate fixed: The respective entry in the gradient is set to zero and the
coordinate will not change. Since the molecular geometry R can also be represented
by internal coordinates such as bond distances, angles and torsion angles, an opti-
mized geometry under the constrain that, e.g., a certain bond is held fixed at 1.5 Å,
may be obtained. When the fixed parameter is then incrementally changed, the min-
imum energy path along this coordinate is scanned. This can be pictured as changing
one parameter, while the remaining geometry is allowed to relax. These PES scans are
useful for transition state searches, analysis of binding situations and general analysis
of the PES in areas of interest.

When a maximum along a PES scan is found, this geometry can be used as a first
guess structure for an actual transition state (TS) search. In principle, this is similar
to the gradient descent approach, however, the gradient is modified such that it fol-
lows the negative eigenvectors uphill. Compared to a minimum search this is much
more difficult and transition state searches, although crucial for chemistry, are still
an elaborate task. Again, at the obtained geometry, the Hessian should be calculated
and in addition to the six zero and 3MN −7 positive eigenvalues, one should be neg-
ative. The corresponding eigenvector, i.e., the change in geometry along which the
PES is a maximum, should correspond to the reaction path.

When a TS is obtained, the reaction pathway can be calculated as well. While a PES
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Figure 2.2: H-atom abstraction from methane by an OH radical. The surface is ob-
tained by varying the C – H and C – O distances, while all other parameters
are allowed to relax. The green line corresponds to the minimum energy
path through this surface, i.e., the reaction coordinate.

scan is already a good approximation, the actual reaction path is generally lower in
energy and should be computed whenever possible. In these algorithms, a minimum
on a hypersphere around the TS is searched. This corresponds to the geometry with
the lowest energy within close vicinity to the TS. The obtained geometry is then again
used as center of a hypersphere and the iterative procedure is continued until the
center of the sphere is lower in energy than every other point considered, i.e., it is a
(local) minimum. This algorithm can be pictured as moving downhill from the TS as
steeply as possible, finding the next (local) minimum on the PES and thus the lowest
energy path from this minimum to the TS. Calculating this path for both sides of the
TS, the lowest reaction path between two minima, connected by this TS is obtained.
The path obtained is the reaction coordinate, or intrinsic reaction coordinate, IRC
[93]. Figure 2.2 shows the reaction path for the H-atom abstraction from methane by
an OH radical, superimposed on a 2D PES scan, upon varying the C – H and H – O dis-
tances. The contour lines below the surface show that the reaction indeed progresses
through a TS.

Today there are fully-automated algorithms that try to find the lowest energy path
from a minimum structure, which prevents the elaborate TS search [94]. However, the
computational demand of such methods is rather high and chemical intuition and
preliminary information about the progression of a reaction can still compete with
those approaches. With the ever growing computational power though, automated
methods will certainly become more popular in the future.
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2.2.2 Vibrations and Rotations

Up to now, the kinetic energy of the nuclei was not considered. Scans and individual
points on the PES still represent resting nuclei and the movement of nuclei along
a reaction path is an imagination rather than actually dealing with kinetic energy,
momentum, and velocities. While a direct treatment of these quantities are covered
in the next section, this part deals with solving the nuclear Schrödinger Eq. (2.2b)
and thus taking the kinetic energy of the nuclei into account in a time-independent,
quantum state approach.

Rigid-Rotor / Harmonic-Oscillator The 3MN degrees of freedom can be sep-
arated into three translational, three rotational (if the molecule is not linear) and
3MN−6 internal, or vibrational degrees. While the translational motion is completely
independent of the PES, the rotations depend on the position of the minimum and
the vibrations on the curvature of the surface. The moment of inertia tensor I can
be computed and diagonalized using the calculated equilibrium geometry. Its eigen-
values are the principle moments of inertia Iaa , Ibb and Icc , which correspond to the
independent rotation around the principle axes a, b and c. The rotational constants
at the equilibrium position Ae , Be and Ce , appearing in the corresponding Hamilto-
nian, can then be calculated according to

Λ= h

8π2cIλλ
(Λ,λ) ∈ {(Ae , a), (Be ,b), (Ce ,c)} (2.17)

It is assumed that the molecule rotates rigidly (no centrifugal distortion and without
any coupling from the vibrational motion, i.e., change of geometry through vibra-
tional broadening). This may not hold true for very loosely bound molecules; a better
description is discussed below.

The vibrational motion is more complicated than the rotation. Without going into
detail (cf. [95, 96] for a more elaborate discussion), the (mass-weighted) Hessian
computed in Cartesian coordinates at the equilibrium geometry is transformed into
a Hessian in internal coordinates q , where the overall translation and rotation have
been separated out, i.e., these coordinates are orthogonal to the internal ones. The
theoretical foundation of this separation was developed by Eckart [97] and later by
Sayvetz [98] and Wilson [99, 100]. This new Hessian is then diagonalized yielding
3MN − 6 new coordinates Q , called normal coordinates. In the molecule, they cor-
respond to the independent normal vibrations. Along these coordinates, the PES is
approximated through a Taylor series up to second order, i.e., as parabola. Then,
all vibrations are harmonic and independent from each other and the Schrödinger
equation can be solved analytically for each vibration. The eigenvalues in the new
Hessian correspond to the force constants Fl of the harmonic oscillation and, taking
the reduced mass of each vibration µl into account, yield the normal frequencies ωl ,
observable in infra-red or Raman spectroscopy [95, 96]. The vibrational energy levels
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and the zero-point energy (ZPE) are then

Ev1,v2,...,v3MN−6 =
3MN−6∑

l=1
~ωl

(
vl +

1

2

)
(2.18a)

EZPE = E0,0,...,0 =
3MN−6∑

l=1

1

2
~ωl (2.18b)

Reducing the vibrational problem to the harmonic oscillator approximation simpli-
fies the treatment significantly. Basically, only the Hessian at the equilibrium ge-
ometry has to be computed and everything else is obtained from the eigenvectors
and eigenvalues without any significant additional computational effort. The vibra-
tional Schrödinger equation is not explicitly solved during this procedure since the
energy levels are analytically known. The force constants and reduced masses of the
vibrations, the only input parameters needed, directly follow from the diagonaliza-
tion process. However, this approximation can introduce significant errors. For one,
anharmonicity is not considered, which can be especially important for flat poten-
tials along certain normal coordinates (e.g., weakly bound systems). Additionally,
the normal mode analysis (NMA) yields coordinates, which are only locally indepen-
dent from each other, i.e., the off-diagonal elements in the (diagonalized) Hessian
are zero only at the equilibrium geometry or in close proximity. If a molecule vibrates
significantly, either through high temperature, vibrational excitation or if, again, the
potential is very flat, the normal coordinates are not independent from each other
anymore and couple. More elaborate methods, trying to incorporate these effects,
are discussed below.

Another problem in the harmonic oscillator approximation are internal rotations
(IRs). While the described geometry optimization yields a minimum, maybe even the
global one, there are several other minima easily accessible, if the molecule has inter-
nally rotating groups with small barriers (see Fig. 2.3b). Neglecting these additional
minima and treating the global one as harmonic potential is only valid when the bar-
riers are high and the molecule is trapped inside the corresponding minimum. Even
when the rotating group is completely symmetric and the potential has only one min-
imum (Fig. 2.3a), the periodicity of the potential changes the energy levels compared
to the harmonic oscillator. In the extreme case, where the barrier height is negligible,
i.e., a free rotation, the energy levels are given by [101, p. 438]:

EK = ~2K 2

2IIR
K = ...,−2,−1,0,1,2, ... (2.19)

where IIR is the reduced moment of inertia of the rotation and K is a quantum num-
ber. In particular, the lowest energy level (K = 0) is zero. Thus, internal rotations
can introduce significant errors to the harmonic approximation if not treated sepa-
rately. Automated treatments within the NMA framework have been published [102]
but close inspection of the results is still necessary.
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(a) Ethane rotation
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(b) 1,2-dichloroethane rotation

Figure 2.3: Harmonic approximation (red line) for periodic potentials (blue line) oc-
curring in e.g. internal rotations. If the rotating group is completely sym-
metric (e.g. a methyl group), all periodic minima are the same. However, if
the rotating group is asymmetric as a −CH2Cl group, several minima exist
along rotation, given that the framework rotated against is also asymmet-
ric.

Treating Anharmonicity A popular extension to the harmonic oscillator / rigid
rotor approximation uses a perturbative treatment and is called Vibrational Pertur-
bation Theory to 2nd Order (VPT2). In contrast to the harmonic approximation, the
Taylor expansion of the PES is not truncated after the quadratic but after the quartic
term [103]:

Epot =
1

2

∑
l

Fl l Q2
l +

1

6

∑
l st

Fl stQl QsQt +
1

24

∑
l stu

Fl stuQl QsQtQu (2.20)

where Fl l are the quadratic, Fl st the cubic and Fl stu the quartic force constants. Since
the potential is expanded with respect to the normal coordinates Ql and their off-
diagonal force constants Fl s are zero by construction of the normal coordinates, only
the diagonal quadratic force constants Fl l appear in the equation. The energy levels
of this potential are then also a Taylor series but for VPT2 truncated after the second
term:

Evib = hχ0 +
∑
l=1

~ωl

(
vl +

1

2

)
+

∑
l=1

∑
s≤l

hχl s

(
vl +

1

2

)(
vs +

1

2

)
(2.21)

The vibrational anharmonic constants χ are applied as frequency to be consistent
with the vibrational frequencies,ωl . However, most reports in the literature and com-
putational chemistry programs report them as wavenumbers. Analytical equations
for the determination of the χl s are available using the force constants appearing
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in Eq. (2.20). They include also effects such as rotational-vibrational interactions
through Coriolis coupling and centrifugal distortion. Consequently, the rotational
constants Ae , Be and Ce are also changing using the vibrationally averaged geometry
including centrifugal distortion rather than the equilibrium one. This resembles a far
more realistic description of the PES since the vibrational levels are not equidistant
but converge towards higher level numbers, rotational-vibrational coupling is incor-
porated to some degree, and also the rotational levels are adjusted to more realistic
values. The energy difference between the lowest and first excited vibrational levels
are thus called fundamental frequencies and can be calculated as

νl =ωl +2χl l +
1

2

∑
l 6=s

χl s (2.22)

Central to this treatment are the force constants Fl l , Fl st and Fl stu of Eq. (2.20). Mod-
ern implementations of the VPT2 method calculate them by numerical differentia-
tion along the normal coordinates [104, 105]: Displacing the geometry by a step size
δ along both sides of a normal coordinate l and calculating the second derivative ma-
trix at these geometries leads to three Hessians, H (−δl ), H (0), and H (δl ), which are
used to estimate the third and fourth derivative by numerical differences. Recent im-
plementations of VPT2 also include correction necessary through degeneracy, inter-
nal rotations, and resonances [106]. The computational cost is significantly higher as
compared to the harmonic approximations since 2(3MN−6)+1 Hessian calculations
have to be performed in contrast to only one. Additionally, the accurate determina-
tion of the higher force constants through the numerical approach is rather difficult
and close inspection of results from the automatized procedures implemented is still
necessary. As in all perturbation approaches, the formalism only works well when the
perturbative corrections are small compared to the unperturbed (here the harmonic)
part. This does not hold true for all systems of interest.

While the above approaches rely on an analytical approximation to the PES, the vi-
brational Schrödinger equation can also be solved for a potential given by grid points
along a coordinate. This is performed with the Fourier-Grid-Hamiltonian Method
[107]. From PES scans, the potential is obtained at defined grid points and the al-
gorithm directly yields the amplitudes of the vibrational wavefunctions at these grid
points, additionally to the energy levels. While this is an accurate method since it does
not rely on any approximation of the PES (and increasing the number of grid points
through interpolation will increase accuracy), it is only extended up to three dimen-
sions [108] and thus the coordinates used are intrinsically assumed to be indepen-
dent from each other. Thus, considering the coupling between all modes as through
the anharmonic vibrational constants χl s is not possible. The best approximation
would be scans along the normal coordinates, since they fulfill the requirement of
decoupling best and their reduced masses are easily calculated from the NMA. Nev-
ertheless, methods have been developed, which use internal [109, 110] or Cartesian
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[111] coordinates as well. Solving the vibrational Schrödinger equation for a given
potential is rather fast; the calculation of the PES at the grid points is, however, the
most time consuming part of these methods. A sufficient density of grid points is
required, even when additional points are created by interpolation, and thus, about
10-100 energy calculations have to be performed for a single coordinate.

2.2.3 Molecular Dynamics Simulations

Solving the rotational-vibrational Schrödinger equation (even with all the mentioned
approximations) treats the movement of the nuclei in a quantum fashion. In Molecu-
lar Dynamics (MD) simulations, however, the nuclei are treated as classical particles.
This is reasoned by their much larger mass, as compared to electrons, and thus slower
movement. For classical non-relativistic movement the Newton equations of motion
are valid and hence, the movement of the nuclei on the PES can be studied by numer-
ical integration over time [112]. Given the nuclei positions in Cartesian coordinates,
R , and their masses as a (3MN×3MN) matrix (where each mass appears three times),
M , the equations of motion read

M ·a = M · d2R

dt 2 =−g (R) =−dEpot (R)

dR
(2.23a)

dR = v dt (2.23b)

dv = a dt (2.23c)

where v and a are the velocity and acceleration vectors in Cartesian coordinates, re-
spectively. Given a nuclear geometry R(t ) and a velocity vector v (t ) at a time t , the
potential energy and its derivative are evaluated through Eq. (2.23a). The former ve-
locity value is used to update the geometry to R(t +dt ) through Eq. (2.23b) and then
the velocity is updated to v (t +dt ) through Eq. (2.23c) with the acceleration obtained
from the potential gradient (Eq. (2.23a)). In both cases, a finite time difference has
to be used, thus dt → ∆t . Today, more elaborate numerical integration schemes are
applied but they rely on the same fundamentals.

Since the integration scheme is fully determined, the only question is, how the po-
tential and its gradient are evaluated at each time step. Early approaches, termed
Born-Oppenheimer-Molecular-Dynamics, just applied the full SCF calculations. This
is very time consuming and long molecular trajectories are not feasible in this man-
ner. Thus, most MD methods step away from quantum mechanics completely and
use parametrized force fields to calculate the potential. A lot of effort is necessary to
develop force fields and their parameter sets, and many different types are available:
sometimes specific for defined molecular classes, sometimes rather universal. While
they are computationally fast, their accuracy strongly depends on (1) the functional
form of the force field, i.e., what type of interactions are covered and how, and (2) the
parameter set, i.e., are the force constants, equilibrium bond lengths, and other pa-
rameters applicable in the system at hand. For example, the AMBER force field [113]
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describes bond stretches and valence angles with a harmonic potential around the
equilibrium value, torsion angles as simple periodic functions with equal minima
and non-bonded interactions through Lennard-Jones interactions accompanied by
Coulomb interactions of partial atomic charges. Due to the harmonic bond stretches,
this force field is unable to form and break bonds, and the description of the PES
will only be accurate close to the equilibrium geometry. Even in close vicinity to the
equilibrium geometry, the description will only be accurate when the parameter set
applied to the force field is accurate and applies to the system studied. Inaccurately
determined partial charges, for example, will lead to a poor description of the non-
bonded interactions. Thus, the major drawback of force field based computational
chemistry is the lack of ab initio generality.

Already in 1985, an ab initio MD (AIMD) code was reported [114], which circum-
vents the full calculation of the SCF density at each time step by propagating the
molecular orbitals within the classical equations. A later implementation, named
Atom-Centered-Density-Matrix-Propagation (ADMP) [115–117], propagates the full
density matrix rather than the individual orbitals by assigning a fictitious mass to it
and thus also a velocity and kinetic energy. This kinetic energy is completely inde-
pendent from the one appearing in the DFT functional (Eq. (2.11)) and has actually
no physical meaning. Relying on the idea that the electron density will vary slowly
as the nuclei move, it is adjusted under certain boundary conditions within only one
SCF step per time step. This makes this approach feasible for small to medium sized
molecules, offering a route to study the movement of the nuclei on the completely
anharmonic surface.

2.3 Thermochemistry

Many applications in chemistry are dealing with a thermalized ensemble of molecules,
i.e., a number of particles N having a temperature T . If the volume is fixed, such an
ensemble is called the canonical ensemble, or NV T ensemble. The internal energy,
corresponding to the temperature, is distributed among all degrees of freedom. Thus,
zero-point corrected electronic energies are only part of the information regarding
the energetics, since the mean internal energy in one molecule has to be taken into
account as well. Therefore, statistical thermodynamics is used to predict thermody-
namic properties such as internal energies, enthalpies, entropies and free enthalpies.
The central quantity in this formalism is the partition function Z . In a general case of
N particles, being able to occupy some energy levels with energy Ei and degeneracy
ρS , Z is defined as

Z =
∑

i
ρ(i )

S exp

(
− Ei

kB T

)
(2.24)

where the sum runs over all levels and kB is the Boltzmann constant. The parti-
tion function defines the ensemble average of molecules having energy E ∗, 〈N (E ∗)〉,
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Table 2.1: Translational, rotational, vibrational and electronic partition functions for
molecules, cf. [118, p. 104].

Contribution Formula Magnitude Approximation

Translation Ztrans =
(

2πmkB T
h2

)3/2
V 1024 particle in 3D box

Rotation Zrot = 1
σrot

(
kB T
hc

)3/2 (
π

Ae Be Ce

)1/2
103 rigid rotor

Vibration Zvib = ∏
l

[
1−exp

(
− ~ωl

kB T

)]−1
1-10 harm. oscillator

Int. Rot. ZIR = 1
σIR

(
8π3 IIRkB T

h2

)1/2
1-10 free rotor

Electronic Zelec = ∑
i ρ

(i )
S exp

(
− Ei

kB T

)
1 HF/DFT calc.

m: mass of molecule, kB : Boltzmann constant, T : absolute temperature, h: Planck constant,
V : volume, σ: symmetry number, c: speed of light, Ae ,Be ,Ce : rotational constants (in cm−1),
ωl : normal frequencies, IIR: reduced moment of inertia, Ei : electronic energy levels (incl.
ZPE) with degeneracy ρ(i )

S

through the Boltzmann distribution:

〈N (E ∗)〉
N

= 1

Z (T )
ρ∗

S exp

(
− E ∗

kB T

)
(2.25)

In case of molecules, the internal energy can be distributed among translational, ro-
tational, vibrational and electronic degrees. Assuming these contributions to be in-
dependent from each other (which already neglects rotational-vibrational coupling),
the total partition function becomes a product of the individual partition functions:

Z = ZtransZrotZvibZelec (2.26)

For each of these contributions, closed equations can be found when appropriate ap-
proximations are made, as summarized in Table 2.1. For example, if a harmonic os-
cillator is assumed, each vibration is independent from the others and the vibrational
partition function becomes a product of the contribution of each vibration. The par-
titioning of the energy over the equidistant energy levels within each oscillator can be
calculated and yields the presented formula. This equation is used, even when fun-
damental frequencies νl are applied [104], since mostly low lying vibrational levels
are populated at normal temperatures and the different spacing towards higher level
numbers can be neglected. This approach is called simple perturbation theory [119].
Analytical equations exist for an anharmonic oscillator including the different spac-
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ing [120], however, they are much more complicated and still rely on some degree of
approximation.

Sometimes rather crude approximations are used to derive these formulas. Nev-
ertheless, they provide a connection between molecular parameters derived from
quantum mechanical calculations, such as rotational constants or normal frequen-
cies, and thermodynamic quantities such as the Gibbs free enthalpy, G ,

G(T )−G(0) =−N kB T ln

(
Z

N

)
(2.27a)

Gcorr =G(T )−G(0)+EZPE (2.27b)

The two quantities, G(T )−G(0) and Gcorr describe the change in Gibbs free enthalpy
from 0 K to a temperature T since absolute enthalpies are not accessible in thermody-
namics. Having these quantities defined, Gibbs free reaction enthalpies for chemical
reactions can be computed, essential to the prediction and understanding of reaction
pathways

∆RG =
∑

products

[
Epot(Rmin)+Gcorr

]− ∑
reactants

[
Epot(Rmin)+Gcorr

]
(2.28)

In summary, while the potential and kinetic energies of the electrons as well as the
Coulomb repulsion of the nuclei are summarized in the total potential energy Epot,
the kinetic energy of the nuclei is subject to a thermal distribution among all degrees
of freedom, given through the partition function Z , above the quantum mechanically
introduced ZPE, incorporated into Gcorr.

The partition function also aids to calculate the ensemble distribution among dif-
ferent conformers (e.g., protonation sites, rotamers, etc.). Using the superposition
approximation [121–123], each of these local minima on the PES with energy Ei , is
assumed to be independent from the others and its partition function Zi is calcu-
lated in the usual way. The population, Pi , of configuration i is then calculated as

Pi =
Zi exp

(
−Ei−Eref

kB T

)
∑

j Z j exp
(
−E j−Eref

kB T

) = Zi∑
j Z j

(2.29)

where Eref is the energy of the lowest energy configuration and each E j includes the
respective ZPE. Comparing this expression to the Boltzmann distribution, (2.25), it
can be seen that the partition function, Z j , of each minimum acts as degeneracy fac-
tor, ρS . Thus, the normal exponential decay of the population with respect to the
energy is applied where each conformer has a state density equal to its individual
partition function. The sum in the denominator is thus also a partition function.
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2.4 Reaction Dynamics

Reaction dynamics deals with non-equilibrium conditions. Thus, time becomes an
important factor. For an elaborate discussion, the reader is referred to textbooks such
as [118]. In many reaction mechanisms, unimolecular decay steps play a key role.
E.g., the dissociation of a cluster AB into fragments A and B, induced by a collision
partner M

AB+M A+B+M (R 2.1)

can be rewritten as a combination of activation, internal equilibrium, and dissocia-
tion [124]:

AB+M AB∗+M (R 2.2)

AB∗ K ‡

AB‡ (R 2.3)

AB‡ k‡

A+B (R 2.4)

Here, AB∗ describes an energized molecule and AB‡ the molecule in its critical config-
uration, or transition state. K ‡ is thus the equilibrium constant of this internal energy
redistribution and k‡ is the rate constant from this configuration into the dissociation
channel. This separation was introduced by Eyring and Polani [125, 126].

Gas-phase proton transfer reactions

AH++B A+BH+ (R 2.5)

can be expressed in a similar fashion:

AH++B [A···H+···B] (R 2.6)

[A···H+···B]
K ‡

[A···H+···B]‡ (R 2.7)

[A···H+···B]‡ k‡

A+BH+ (R 2.8)

The critical configuration AB‡ is often depicted as loose TS [62], i.e., there is no actual
barrier but the energy along the reaction coordinate rises and asymptotically reaches
the product energy. In these cases, phase-space theory is used and the TS is located
at the centrifugal barrier [127–129]. In contrast, the definition of a TS as discussed
above (section 2.2.1) corresponds to a well defined, tight transition state. Figure 2.4
pictures both situations.

It is easier to work in a microcanonical framework, i.e., treating AB∗ as a molecule
with a particular energy E ∗, as defined in Fig. 2.4. The following treatment of the
reaction rate of unimolecular dissociation, i.e., kuni(E ∗), is called statistical rate the-
ory or RRKM theory, named after its authors Rice, Ramsperger, Kassel, and Marcus.
The central quantity is the state density ρS . It already appeared in section 2.3 as de-
generacy of a quantum level in the Boltzmann distribution. Although quantum levels
are discrete, the number of states per unit energy is treated as continuous function,
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AB∗ AB‡ → A + B
ρ∗

S ρ‡
S

E0

E ∗

E ‡

Reaction coordinate

E
n

er
gy

(a) Tight TS

AB∗ AB‡ →A + B
ρ∗

S ρ‡
S

E0

E ∗

E ‡

Reaction coordinate

(b) Loose TS

Figure 2.4: Schematics of PES for reaction dynamics [62, 118]. Certain energies (mea-
sured between ZPE levels) as well as state densities (ρS) are defined. Note,
that the transition state both situations have the same height but not the
same state density.

the state density. This approximation loses its validity for small molecules (less than
four nuclei) or small energies E ∗. For a molecules with many vibrational degrees
of freedom (even methane already has nine), the different combination of quantum
numbers in Eq. (2.18a) results in numerous discrete energy levels per unit energy,
validating the assumption of a continuous state density. For a multidimensional har-
monic oscillator, a semi-classical equation for the state density can be given

ρS(E ) = 1

(s −1)!

E s−1∏s
l=1~ωl

(2.30)

although better approximations exist [130, 131]. Here, ωl are the normal frequencies
and s is the number of vibrations, which is 3MN −6 for a stable structure but 3MN −7
for a (tight) TS, since the reaction coordinate is not a stable vibration.

As Eq. (2.30) shows, the state density is proportional to E s−1, thus growing steeply
with E . If the rotational levels, which are even more closely spaced, are taken into ac-
count as well, it becomes apparent that a continuous approximation is valid. This
also supports another important assumption in RRKM theory: The energy is dis-
tributed fast (compared to kuni) over all vibrational degrees of freedom, a process
called intra-molecular vibrational redistribution (IVR). Even when a specific vibra-
tional mode is excited by, e.g., the collision in Reaction (R 2.2), this energy is dis-
tributed over all modes through coupling of the densely spaced vibrational levels.
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The integral of ρS from zero up to a certain energy E is called the state or level
number NS and, following Eq. (2.30) is approximated by

NS(E ) =
E∫

0

ρS(Ẽ ) dẼ = 1

s!

E s∏s
l=1~ωl

(2.31)

This number grows even faster with energy than the state density.

The state density ρS determines the equilibrium between the excited molecule AB∗

and the TS AB‡ through

K ‡ =
ρ‡

S(E ‡)

ρ∗
S (E ∗)

(2.32)

Note that the state densities are generally different functions for the two configu-
rations AB∗ and AB‡ since the number and also the frequencies of the vibrations
change. The energy at which they are determined is also different (cf. Fig. 2.4), in
particular E ‡ < E ∗. Thus, the state density at the TS is generally much smaller, i.e.,
ρ‡

S(E ‡) ¿ ρ∗
S (E ∗) and thus K ‡ ¿ 1. This explains why a molecule is "stable", or better

meta-stable, even when the internal energy E ∗ is higher than the barrier height E0:
Assuming fast IVR, it is rather unlikely that all energy E ∗ is concentrated in the reac-
tion coordinate, especially, if ρ∗

S (E ∗) becomes high and there is a high state density
for energy storage.

Once the critical configuration is reached, it is assumed that half the molecules dis-
sociate while the other half reacts back to the excited molecule AB∗. The movement
along the reaction coordinate is treated as a translational rather than a vibrational
movement. Thus, the excess energy E ‡ can be distributed along vibrational, rota-
tional and this particular translational degree of freedom. Hence, it is possible that
a high vibrational level is populated in the TS but the kinetic energy along the reac-
tion coordinate is only small. Or a low vibrational level is populated in the TS and
most of the energy E ‡ is concentrated in the translational movement. This is why the
state number N ‡

S and not the state density of the TS appears in equation (2.33), which
represents the final result of RRKM theory:

kuni(E
∗) = drxn

N ‡
S (E ‡)

hρ∗
S (E ∗)

(2.33)

All levels up to E ‡ can contribute to the reaction, leaving the left-over energy to the
translation along the reaction coordinate. drxn is the degeneracy of the reaction chan-
nel.

Following RRKM theory, the microcanonical rate constant of the unimolecular dis-
sociation solely depends on the ratio of the state number in the TS and the state
density of the stable molecule. As stated before, the state density in the TS is much
smaller than in the stable molecule since the energy and the number of vibrations
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is lower (as pictured in Fig. 2.4 through the different shading of the state densities).
However, since the state number increases faster with energy than the state density
(NS ∝ E s vs. ρS ∝ E s−1), the reaction rate effectively increases with energy.

When comparing the state density of a loose and a tight transition state, it is seen
that a loose TS has a higher state density than a tight TS [62]. The reason is that a tight
TS has 3MN −7 vibrational degrees of freedom, a loose TS only has 3MN −12 where
the remaining five are rotations of the fragments against each other in the phase-
space limit [128]. Because rotational levels are much more closely spaced, the state
density is higher in a loose TS, as pictured in Fig. 2.4 by the different shading of the
state densities in the loose and tight TS. If a molecule can decompose over a loose
or a tight TS, both having the same barrier height E0, the loose TS is favored. This is
an important consequence of RRKM theory and is a key issue for the discussion in
Chapter 3.

RRKM theory is part of Computational Chemistry because all necessary input pa-
rameters, i.e., geometries of stable molecules and TS, their (ZPE corrected) energy
difference, and their state densities through their vibrational frequencies and rota-
tional constants are available from calculations.

The microcanonical rate constant is useful, when the molecule is excited to a de-
fined energy E ∗ through a laser or some well defined collision event in molecular
beam studies. However, a canonical rate, i.e., a rate at a fixed temperature rather
than at fixed energy is required when the molecule is thermally excited, i.e., through
multiple collisions. The microcanonical rate is transformed into a canonical rate by
weighting the microcanonical rates at each E ∗ by their respective thermal popula-
tion, given by the Boltzmann distribution in Eq. (2.25). Hence,

kuni(T ) =
∞∫

0

kuni(E
∗)

1

Z∗(T )
ρ∗

S (E ∗) exp

(
− E ∗

kB T

)
dE ∗

= drxn
1

hZ∗(T )

∞∫
0

N ‡
S (E ‡)

ρ∗
S (E ∗)

ρ∗
S (E ∗) exp

(
− E ∗

kB T

)
dE ∗

= drxn
1

hZ∗(T )

∞∫
0

N ‡
S (E ‡) exp

(
− E ∗

kB T

)
dE ∗

= drxn
kB T

hZ∗(T )

∞∫
0

ρ‡
S(E ∗) exp

(
− E ∗

kB T

)
dE ∗

= drxn
kB T

hZ∗(T )
exp

(
− E0

kB T

) ∞∫
0

ρ‡
S(E ‡) exp

(
− E ‡

kB T

)
dE ‡

kuni(T ) = drxn
kB T

h

Z ‡(T )

Z∗(T )
exp

(
− E0

kB T

)

(2.34)

Here, it is used that E ∗ = E0 +E ‡ and that
∫ ∞

0 ρ‡
S(E ‡) exp

(−E ‡/kB T
)

dE ‡ is just the
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partition function of the TS, Z ‡(T ). Note the factor of kB T appearing from line three
to four. For more details on this derivation, see [118, p. 238f].

The last equation is the Eyring equation [125, 126], which was derived indepen-
dently to RRKM theory for calculations of a thermal rate constants. The consistency
of both theories is very reassuring and thus both are important tools in Computa-
tional Chemistry.

2.5 Collision Cross Section Modeling

Collision Dynamics The modeling of collision cross sections (CCS) is not tradi-
tionally part of Computational Chemistry. Nevertheless, it is closely related and an
important part of this work. Especially in modern mass spectrometry, where ions
are often either generated at atmospheric pressure or separated at elevated pressure
conditions through their (differential) ion mobility, their motion through gases, de-
termined by their CCS, is an important factor to consider. While the fundamentals
of ion mobility [132] will not be discussed in this section, since they are not directly
related to Computational Chemistry, the modeling of CCSs in general is covered.

In a gas at temperature T and particle density N , the gas particles of mass mbg have
many different velocities v , described by the Maxwell-Boltzmann distribution:

P (v)dv = 4π

(
mbg

2πkB T

)3/2

v2 exp

(
−

mbg v2

2kB T

)
dv (2.35a)

〈v〉 =
√

8kB T

πmbg
(2.35b)

The kinetic energy of a single particle is 1/2mv2. However, the energy of a collision
between a particle of interest, having mass mp , and the background gas, is not the
sum of their kinetic energies. Upon an elastic collision, the velocity of the center of
mass (CoM) of the two particles is not changing (neither in magnitude nor in direc-
tion) and thus, this part of the kinetic energy is not available for the collision. If the
total kinetic energy is rewritten as

Ekin = 1

2
mbg v2

bg +
1

2
mp v2

p

= 1

2
µv2

r +
1

2

(
mbg +mp

)
v2

CoM

(2.36)

it becomes clear that the collision energy (first term in the latter expression) is defined
by the reduced mass, µ= mp mbg /(mp +mbg ), and the relative velocity vr = vp −vbg .
If the particle of interest is diluted in the background gas and thus, can be treated
as ensemble with the same temperature, the distribution of the relative velocities is
also a Maxwell-Boltzmann distribution applying the reduced mass. Consequently, an
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ensemble average can be defined as well:

P (vr )dvr = 4π

(
µ

2πkB T

)3/2

v2
r exp

(
− µv2

r

2kB T

)
dvr (2.37a)

〈vr 〉 =
√

8kB T

πµ
(2.37b)

A single collision event is fully defined by the reduced mass of the collision part-
ners, their relative velocity and its impact parameter b, i.e., the minimum distance of
the initial trajectories [133, p. 49]. While the total collision energy is given by the ini-
tial kinetic energy, 1/2µv2

r , the interaction potential V between the collision partners
will influence the energetics as well, as shown in Fig. 2.5, which depicts a collision
event in the CoM frame. As a results of an (elastic) collision, the trajectories change
by an angle θ, the scattering angle. In principle, it can be computed from the know
parameters of the collision, assuming specular scattering [134], through [133, p. 51]

θ (vr ,b) =π−2b

∞∫
Rm

[
R2

√
1− b2

R2 − V (R)

1/2µv2
r

]−1

dR (2.38)

where the integration is over the distance R of the collision partners from the distance
of closest encounter, Rm (see Fig. 2.5) to infinity.

The scattering angle is the central quantity when dealing with collisions because
it is directly related to the amount of momentum transferred between the collision
partners along vr , i.e., µvr (1−cosθ) [132, p. 145]. Integrating over a circle around vr

yields the momentum transfer (or diffusion) cross section QD [132–135]

QD (vr ,b) = 2π

∞∫
0

(1−cosθ (vr ,b))b db (2.39)

For a simple, spherical symmetric hard-sphere potential, Eq. (2.39) yields a cross
section of πb2

min [136], where bmin is the hard-sphere distance, which is the known
collision cross section from standard kinetic gas theory. However, for more realistic
potentials, the scattering angle depends not only on the distance (defined through b),
but also on the collision energy (defined through the relative velocity vr ). Thus, for an
ensemble average, taking into account many collisions with different relative veloci-
ties, instead of just using 〈vr 〉 from Eq. (2.37b), integration of QD over vr , weighted by
the respective Maxwell-Boltzmann distribution (cf. Eq. (2.37a)), has to be performed:

Ω(1,1) =
(

µ

2kB T

)3 ∞∫
0

v5
r exp

(
− µv2

r

2kB T

)
QD (vr ,b) dvr

= π

8

(
µ

kB T

)3 ∞∫
0

v5
r exp

(
− µv2

r

2kB T

) ∞∫
0

2b (1−cosθ (vr ,b)) dbdvr

(2.40)
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mbg

mp

b

b

CoM

Rm

R

θ

mp > mbg

Figure 2.5: General collision schematics with impact parameter b, closest encounter
Rm and scattering angle θ. The plane shown is oriented perpendicularly
to the velocity of the center of mass (CoM). Note that b does not change
upon an elastic collision [133, p. 448].

This quantity is called the collision integral. It is noted that a term of v5
r appears in

the integral, which is an additional factor of v3
r compared to the Maxwell-Boltzmann

distribution. This takes into account that the collision frequency (and thus the prob-
ability of a collision) is proportional to vr and that the plane of the encounter can
move with the center of mass velocity (∝ v2

r ) [135]. The normalization factors are
chosen such thatΩ(1,1) =πb2

min for a hard-sphere collision [132, 136, 137]. The super-
script (1,1) indicates that this integral is a special case of a more general definition.
While this is sufficient for this work, i.e., dealing with mobility, it is noted that for
other transport coefficients, such as viscosity and the mean free path, other forms or
even combinations of different integrals are necessary [133, p. 484, 524].

When addressing collisions between atoms and molecules, the orientation of the
collision has to be taken into account as well, since the potential is not spherically
symmetric anymore. An atom hitting the molecule with the same impact parameter
and relative velocity will be scattered differently, when colliding with a different site
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2.5 Collision Cross Section Modeling

of the molecule. Thus,Ω(1,1) has to be averaged over all possible impact orientations,
given by the three Euler angles α, β, and γ [136, 137]:

Ω(1,1)
avg = 1

8π2

2π∫
0

dα

π∫
0

sinβ dβ

2π∫
0

dγ

π

8

(
µ

kB T

)3 ∞∫
0

v5
r exp

(
− µv2

r

2kB T

)
dvr

∞∫
0

2b
(
1−cosθ

(
α,β,γ, vr ,b

))
db

(2.41)

α and β are the spherical coordinates, which give the orientation of one axis of the
molecule with respect to the fixed coordinate system: Hence, the integration is the
same as over the surface of a sphere. γ describes the rotation around this axis: Hence,
the integration is over a circle [138]. The latter was already mentioned, when the in-
tegration around vr was performed to yield QD . The additional normalization factor
of 1/8π2 accounts for the integration over all three angles. The integrals are sepa-
rated since the integration variables are independent from each other. However, the
scattering angle now depends on all five parameters, i.e., θ

(
α,β,γ, vr ,b

)
.

Numerical Approaches to the CCS Solving the integral in Eq. (2.41) is rather
difficult. For atom-atom collisions, full ab initio potentials can be calculated. Due to
the spherical symmetry, these can be used to analytically solve Eqs. (2.38) and (2.41).
For molecule-atom interactions, however, such ab initio PESs are far too complex to
be calculated. Even if, analytically solving Eq. (2.38) for all combinations of param-
eters α, β, γ, vr , and b, on which the scattering angle depends, would be impossible
and thus is to solve Eq. (2.41). One possible numerical solution to this problem is
called the trajectory method [136, 137]. Here, a number of particles are initialized
with different starting conditions, i.e., orientations, impact parameters, and relative
velocities. Then, their trajectories upon collision are explicitly calculated (via Eqs.
(2.23a)-(2.23c)) for a given potential V (see below) and the scattering angle is mea-
sured after the collision event. Given enough trajectories, the averages in Eq. (2.41)
are approximated to a sufficient degree.

The potential necessary for the trajectory calculation may be obtained through a
full HF or DFT treatment at each time step. However, this is computationally very de-
manding since many different trajectories have to be evaluated. Thus, it is expressed
by simple functional forms defined for pair-wise interactions between the colliding
atom and each nucleus in the molecule. Different forms of these potentials exists
[137, 139–141]. They are often simple Lennard-Jones 12-6 or Exp-6-type potentials
for the van der Waals (vdW) interaction, combined with possible ion-induced dipole
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(IID) and ion-quadrupole (IQ) potentials:

Vtot =VvdW +VIID +VIQ (2.42a)

VvdW =
MN∑
i=1

εi

[
1.84×105 exp

(
12Ri

R∗
i

)
−2.25

(R∗
i

Ri

)6]
(2.42b)

VIID =−αe2

2

[(
MN∑
i=1

zi Xi

R3
i

)2

+
(

MN∑
i=1

zi Yi

R3
i

)2

+
(

MN∑
i=1

zi Zi

R3
i

)2]
(2.42c)

VIQ =
MN∑
i=1

3∑
j=1

zi z j e2

Ri j
(2.42d)

At every time step during each individual trajectory calculation, the potentials are
evaluated for the distance Ri from the collision atom to each nucleus i in the molecule
and then summed over all MN nuclei. The parameters of the vdW interaction, i.e., the
equilibrium distance R∗

i and the potential well depth εi have to be taken from force
fields or parametrized to reproduce experimental CCS. In Eq. (2.42c), α is the polar-
izability of the collision gas, zi are the partial charges of the nuclei in the molecule
and Xi , Yi and Zi are their Cartesian coordinates. For IQ interactions to occur, the
collision gas has to have a quadrupole moment. The latter becomes important, when
molecular collision gases, as for example N2, are considered. For simplicity reasons,
N2 is treated as atom for the vdW and IID potentials, but for the IQ potential, a charge
separation of z j = −0.4825e on the two nuclei, countered by a point charge of z j =
+0.965e in between, is used to model the quadrupole moment. The second sum in
Eq. (2.42d) runs over these three charges [141].

The input needed for such calculations is thus the geometry of the molecule, for
which the CCS is to be calculated, as well as the partial charges of each nucleus.
These data are readily obtained by standard ab initio calculations (HF, post-HF or
DFT), which explains the close relation of CCS modeling to Computational Chem-
istry. This relation is also highlighted through the use of force fields describing the
vdW interactions.

It is noted that this definition of the (averaged) collision integral,Ω(1,1)
avg seems to be

rigorous. However, it neglects orientational preferences, which might appear for ions
in electric fields, as well as inelasticity of collisions, where momentum conservation
does not hold anymore. The nuclei of the molecule are fixed in space at positions
X , Y and Z and do not move upon collision. An even more rigorous approach to the
calculation of CCS, i.e., by actually performing MD simulations of a molecule in a gas,
explicitly modeling inelastic collisions as been introduced recently [142]. Addition-
ally, it is noted that the described formalism is purely classical. Thus, quantum effects
of the scattering process [133, p. 69, 668] are completely ignored.
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3 Charge Retention/Charge Depletion
in ESI-MS

Preceding work to this chapter has been published in

M. Thinius, C. Polaczek, M. Langner, S. Bräkling, A. Haack, H. Kersten, and T. Benter,
“Charge Retention/Charge Depletion in ESI-MS: Experimental Evidence”, Journal of
The American Society for Mass Spectrometry, DOI: 10.1021/jasms.9b00044 (2020)

and is summarized in the Introduction section below. The main part of this chapter
is reprinted with permission from

A. Haack, C. Polaczek, M. Tsolakis, M. Thinius, H. Kersten, and T. Benter, “Charge
Retention/Charge Depletion in ESI-MS: Theoretical Rationale”, Journal of The Amer-
ican Society for Mass Spectrometry, DOI: 10.1021/jasms.9b00045 (2020). Copyright
2020 American Chemical Society.

3.1 Abstract

Gas phase modification in ESI-MS can significantly alter the charge state distribution
of small peptides and proteins. The preceding paper presented a systematic experi-
mental study on this topic using Substance P and proposed a charge retention/charge
depletion mechanism, explaining different gas- and liquid-phase modifications. In
this work we aim to support this rational by theoretical investigations on the pro-
ton transfer processes from (multiply-)charged analytes towards solvent clusters. As
model systems we use small (di-)amines as analyte and methanol (MeOH) and ace-
tonitrile (ACN) as gas phase modifiers. The calculations are supported by a set of
experiments using (di-)amines, to bridge the gap between the present model system
and Substance P used in the preceding study. Upon calculation of the thermochemi-
cal stability as well as the proton transfer pathways, we find that both ACN and MeOH
form stable adduct clusters at the protonation site. MeOH can form large clusters
through a chain of H-bridges, eventually lowering the barriers for proton transfer to
an extent that charge transfer from the analyte to the MeOH cluster becomes feasible.
ACN, however, cannot form H-bridged structures due to its aprotic nature. Hence, the
charge is retained at the original protonation site, i.e., the analyte. The investigation
confirms the proposed charge retention/charge depletion model. Thus, adding apro-
tic solvent vapors to the gas phase of an ESI source more likely yields higher charge
states than using protic compounds.
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3 Charge Retention/Charge Depletion in ESI-MS

3.2 Introduction

High charge states of peptides or proteins generated with electrospray ionization
(ESI) are favorable for structural investigations in mass spectrometry. Increasing the
charge state lowers the m/z ratio so that larger proteins can be analyzed by stan-
dard mass analyzers [145, 146]. Furthermore, dissociation efficiencies are enhanced,
which is relevant to sequence analysis [147]. Adding supercharging agents (SCAs)
such as m-nitrobenzyl alcohol to the solution phase increases the mean as well as the
maximum charge state of proteins [148, 149]. The mechanism of this supercharging
is rationalized in terms of a local enrichment of the SCAs around the protein caused
by rapid water/solvent loss. Unfavorable charge stabilization in the bulk liquid phase
forces the protons (or metal cations) to remain at the protein site, which in turn leads
to a higher charge state [150].

However, other methods add polar solvent vapors to the gas phase of the ion source
to change the charge state distribution [151–153]. In the work described in the pre-
ceding article of this journal issue, we investigated the charge state distribution of
Substance P (SP) generated with a nano-ESI (nESI) source with different gas phase
modifiers [143]. The fact that adding acetonitrile (ACN) mainly yielded [SP + 3H]3+

ion signals whereas methanol (MeOH) exclusively produced the [SP + 2H]2+ charge
state ion signals indeed strongly suggests that gas phase modifiers can significantly
change the observed charge state distribution. Due to Coulombic repulsion (as dis-
cussed in [143]; see also Supporting Information), it is very unlikely that an additional
charge is transferred to the [SP + 2H]2+ to form the [SP + 3H]3+ in the gas phase, e.g.,
via proton transfer from a protonated solvent or modifier molecule. Hence, the only
pathway that leads to the [SP + 3H]3+ is the initial production of the 3+ charge state
followed by charge retention throughout the ion transfer from the ion source to the
mass analyzer. Depending on their properties, gas phase modifiers seem to either
retain the initial analyte charge(s) or remove/deplete them via proton transfer reac-
tions.

Work from the Russell group [47, 154, 155] shows that the initial, kinetically trapped
structure of [SP + 3H]3+ in the gas phase is probably as follows: Two of the protons are
H-bonded intramolecularly and are thus protected from removal. The third charge
however resides at the guanidine group of arginine and is located at the outside of the
polypeptide. This would explain why the charge state can only be altered between 3+
and 2+. Gas phase proton transfer from multiply-charged proteins to bases such as
dimethylamine or even water has been observed before and even used to deliberately
reduce the charge state [156–159]. It is also known that MeOH can remove the charge
from protonated molecules with lower proton affinity (PA) through gas phase proton
transfer even in medium pressure regions [160]. However, the PA of methylguanidine
(acting as simple model for the active amino acid in SP) of about 1000 kJmol−1 [161]
is higher than the PAs of ACN (779.2 kJmol−1) and MeOH (754.3 kJmol−1) [162]. Even
when the proton of interest resides at the amine group of lysine, the PA would still
be higher (methylamine, again acting as model substance, has a PA of 899.0 kJmol−1
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3.2 Introduction

[162]). From these simple considerations, both ACN and MeOH should not be able to
remove the charge via proton transfer.

In the preceding publication in this journal [143] as well as in other reports [163],
it is argued that one of the two following mechanisms potentially leads to charge de-
pletion: i) the abundant gas phase modifiers cause an enrichment of these modifiers
in the ESI generated droplets at late evaporation stages. This may even slow down
the evaporation rate, which is supported by our CID experiments conducted: Adding
gas phase modifiers did not lead to any fragmentation of SP, whereas fragmentation
was observed in the absence of the modifiers [143]. When the evaporation process
is slowed down significantly, a small droplet may enter the collision region and colli-
sional activation does not lead to fragmentation of SP but only to further evaporation
of the droplet. Similar observations with non-covalent protein complexes were ratio-
nalized in the same way [164]. In these droplets, proton transfer can occur due to a
stabilizing effect for solvated protons. ii) Another plausible mechanism is the growth
of small modifier clusters at the protonation site in the gas expansion in the first pres-
sure reduction stage of the mass spectrometer: Since the local temperature drops
significantly due to the adiabatic expansion, the abundant modifier molecules can
"condense" at the charge site. When the cluster size is sufficiently large, the PA of the
cluster exceeds the PA of the protonated amino acid. From a molecular point of view,
these two mechanisms are similar: In both cases the modifier molecules concentrate
around the charge site - in the liquid or gas phase - and may remove the proton in a
proton transfer reaction forming protonated modifier clusters. From a macroscopic
point of view, there is a continuous transition between small, modifier-rich droplets,
and clustering of modifier around the charge site.

In this contribution, we model the proton transfer reaction by bringing a number of
modifier molecules in close proximity to the charge site, which, for simplicity reasons,
will be called "clusters" from here on.

Proton bound MeOH clusters are known since long [165] and their PAs have been
determined for different n [166]. For n = 3, the PA of the MeOH cluster is 937.2 kJmol−1

and thus exceeding that of methylamine. Because of its structure, MeOH can form
large stable clusters through hydrogen bond networks as shown by theoretical in-
vestigations [167–169]. For ACN, however, this is more difficult. ACN can stabilize
a proton only with one H-bond without offering another H-bonding site. Any ad-
ditional ACN molecule can only form weaker interactions as for example CH···N,
dipole-dipole or electron-donating interactions (see below). Therefore, (ACN)2H+

with a PA of about 895 kJmol−1 [170–172] is the largest closed solvent shell cluster
(in the literature the term "closed shell cluster" is also used) [173]. Larger clusters
(ACN)nH+ with n ≥ 3 are rather unstable and are only rarely observed [174–176].
Mechanistically both modifiers S must initially stabilize/solvate the charge through
formation of a hydrogen bond of the type A+ – H···S. It is argued that ACN will remain
a ligand, MeOH however can remove the charge via proton transfer, when a suffi-
ciently large cluster network is formed. These theoretical considerations are sup-
ported by experimental results [143]: Using ACN as gas phase modifier, [SP + 3H +
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ACN]3+ was observed as a significant signal, whereas the [SP+nH+MeOH]n+ (n = 2,3)
clusters were not observed. Instead, MeOH formed protonated clusters of the type
(MeOH)n(H2O)mH+, where n = 10−30 and m = 0−3. In addition to protonated ACN
monomers (ACN)H+ and dimers (ACN)2H+, no other ACN clusters were observed. For
more details cf. [143].

In this work the mechanism of "supercharging" (or much more appropriate: charge
retention) through gas phase modifiers is investigated, i.e., if and how protons resid-
ing at the basic sites of amino acids are transferred to modifier molecules or clusters
via proton transfer reactions. Because the mechanisms and fundamental reasons are
difficult to access with experimental methods, this work mainly contains theoretical
investigations on primary amines acting as model systems for lysine. Only selected
experimental data are presented to validate the theoretical findings regarding these
model systems.

3.3 Methods

3.3.1 Computational Methods

All calculations are carried out with the Gaussian09 [177] program package. Density
functional theory (DFT) is used with the B3LYP [86, 87] functional and def2-TZVPP
[75] basis set for every geometry optimization. Empirical dispersion corrections (-D)
[178] are always applied for a better description of loosely bound clusters. Scans of
bond distances or - in case of observed transition states (TS) - intrinsic reaction co-
ordinate calculations [93] are conducted at the same level of theory.

For thermochemical data the B3LYP-D/def2-TZVPP optimized geometries are used
to conduct frequency calculations for obtaining zero-point energy and thermody-
namic functions at the same level of theory [179]. Additionally, single point energy
calculations are performed with the more accurate B2PLYP-D [88] functional using
the larger def2-QZVPP basis set to correct for electron correlation and to reduce ba-
sis set superposition error. This method, using the B2PLYP-D/def2-QZVPP//B3LYP-
D/def2-TZVPP electronic energy combined with the B3LYP-D/def2-TZVPP thermo-
dynamic functions, is validated by calculating the proton affinity (PA) and gas phase
basicity (GB) of ACN, MeOH and methylamine (see Table 3.1). It is found that using
the refined electronic energy increases the accuracy, whereas the computational time
remains reasonable. Especially for ACN, the experimentally measured PA or GB are in
much better agreement. It is noted that the B2PLYP-D/def2-QZVPP//B3LYP-D/def2-
TZVPP electronic energy deviates only in the 10− 100µEh range from the value ob-
tained with a full geometry optimization on B2PLYP-D/def2-QZVPP.

3.3.2 Experimental Methods

Experiments were performed with a Bruker micrOTOF instrument (Bruker Dalton-
ics, Bremen, Germany). Ion transfer stage voltages, optimized for the low mass range

38



3.4 Results and Discussion

Table 3.1: Proton affinities (PA) and gas phase basicities (GB) in kJmol−1 at 298.15 K
calculated at B3LYP-D/def2-TZVPP and by combining B2PLYP-D/def2-
QZVPP//B3LYP-D/def2-TZVPP electronic energies with B3LYP-D/def2-
TZVPP thermal energy.

MeOH ACN MeNH2

Method PA GB PA GB PA GB

B3LYP 759.8 729.4 792.9 761.8 904.0 869.6

B2PLYP//B3LYP 754.8 724.4 784.6 753.5 899.2 864.8

Lit. (exp.) [162] 754.3 724.5 779.2 748 899.0 864.5

and minimum fragmentation, are as followed: capillary exit: 50 V, skimmer 1: 35 V,
skimmer 2: 23 V, hexapole 1: 22 V, hexapole 2: 20.6 V, hexapole RF: 80 V, lens trans-
fer time: 25µs, lens pre-pulse storage time: 5µs, lens 1 storage: 30 V, lens 1 extrac-
tion 21.5 V, lens 2: 9 V, lens 3: −20 V, lens 4: 0 V, lens 5: −27.5 V. The experimental
setup has been described previously [143]. Briefly, the ions are generated from a cus-
tom nano-electrospray ionization source, which is mounted directly onto the inlet
capillary of the mass spectrometer. The source chamber is flushed with nitrogen.
The gas phase modifiers are introduced to the ion source via the nitrogen gas line.
The resulting mixing ratio of the modifiers is varied between 0.1 and 15 %V. Solvents
used for sample preparation and gas phase modification all have HPLC grade purity.
1,9-diaminononane, 1,8-diaminooctane, 1,5-diaminopentane, 1,3-diaminopropane,
ethylenediamine, 1,2-phenylenediamine, n-hexylamine, n-butylamine were used as
analytes. The electrospray solutions are composed of acetonitrile/water (1/1) and
methanol/water (1/1), respectively, with 0.1 % formic acid (≥ 98%) and 0.1 mM/1 mM
analyte concentrations. All chemicals were purchased from Sigma-Aldrich Chemie
(Munich, Germany) and are used without further purification.

3.4 Results and Discussion

3.4.1 Structure and Thermochemistry of the Different Clusters

The observed differences of the behavior of MeOH and ACN regarding charge reten-
tion or charge depletion must have something to do with their structures and their
ability to form larger clusters, because their PAs are comparable. Although the struc-
tures of the homogeneous MeOH clusters were recently calculated [169], structural
analysis of the ACN clusters used restrictions during geometry optimization and has
become obsolete [171]. Here, we present full geometry optimizations at the B3LYP-
D/def2-TZVPP level of theory for homogeneous MeOH clusters up to n = 4 and ACN
clusters up to n = 3. Additionally, the analyte adduct clusters, i.e., the protonated
amine (or diamine) with n ligands [A + H + Sn]+, are geometrically optimized as well.
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Homogeneous Cluster Figure 3.1 shows the geometries of the homogeneous pro-
tonated solvent clusters, SnH+. Full Cartesian coordinates are given in the Supporting
Information of the original publication. The structures shown always correspond to
the global minimum structures with respect to the Gibbs enthalpy.

As already mentioned in the literature for MeOH [169], when n is odd, there is an
oxygen atom with two closely bound protons and when n is even, the additional
proton is located between two oxygen atoms. The entire cluster structure is bound
through a linear chain of hydrogen bonds, and thus, the charge formally resides in
the center of the H-bond chain but is effectively distributed over the entire cluster. A
small asymmetry is discernible for n = 4: the two hydrogen bonds binding the proton
are not equally long (1.135 Å and 1.271 Å). This was already mentioned in the litera-
ture [169]. A cyclic structure exists for n = 4, but is less stable than the linear structure
[169]. The thermodynamic stabilities of the MeOH clusters calculated in the present
work are summarized in Table 3.2, with good agreement with experimental data.

The ACN clusters behave differently: Because ACN can only act as a donor for one
hydrogen bond without offering a new acceptor site as MeOH does, direct interaction
with the charge is possible only via direct binding to the proton. For n = 2, the most
stable configuration is a linear arrangement of the two ACN molecules, which was al-
ready proposed in the literature [171]. However, in contrast to this report, the present
results suggest that the symmetric dimer, where both N – H distances are equal, is
more stable than the asymmetric dimer. This is probably due to the lack of polar-
ization and diffuse functions applied in the former study. Using the B3LYP-D/def2-
TZVPP model chemistry, the asymmetric configuration has no minimum on the po-
tential energy surface. For n = 3 however, neither the symmetric cluster with a C3 axis,
nor a T-shaped system appears to have a minimum with the present method applied.
Instead, the third ACN binds to a mostly unchanged dimer through an interaction of
the CN lone pair with the π-system of another ACN molecule. The proton does not
seem to be able to bind three ACN molecules. The binding energy of the third ACN
is consequently low (∆ (Eelec +EZPE)2→3 = 0.442eV compared to 0.931 eV for MeOH
n = 2 → 3), supporting the experimental findings that (ACN)2H+ is the largest closed
solvent shell cluster [173]. A configuration where the third ACN binds in a head-to-
tail fashion is possible but less stable by 18 kJmol−1. The calculated thermodynamic
stability of the ACN clusters is always larger than the experimentally derived values
(cf. Table 3.2). Especially for the trimer the difference is comparably large with the
calculated energy being 1.5 times the experimental value. This may be due to the
failure of the harmonic approximation for the calculation of the vibrational partition
function of the clusters, caused by significant anharmonic effects. For example, a vi-
bration corresponding to the proton motion between the two ACN nitrogen atoms in
the dimer is very poorly described by the harmonic potential around the minimum
(leading to a normal frequency of 300 cm−1). A scan of the energy along this nor-
mal coordinate reveals a potential being rather flat around the equilibrium but rising
steeply for smaller N – H distances (see Fig. 3.8b). The fundamental frequency is thus
expected to be much higher than the harmonic, leading to a smaller partition func-
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(MeOH)H+ (MeOH)2H
+ (MeOH)3H

+ (MeOH)4H
+

(ACN)H+ (ACN)2H
+ (ACN)3H

+

Figure 3.1: Optimized geometries of the (MeOH)nH+ (n = 1, ...,4) and (ACN)nH+ (n =
1,2,3) clusters obtained at the B3LYP-D/def2-TZVPP level of theory. Al-
though there are more conformers possible, only the global Gibbs en-
thalpy minimum structures are shown.

Table 3.2: Stability of the homogeneous clusters by combining B2PLYP-D/def2-
QZVPP//B3LYP-D/def2-TZVPP electronic energies with B3LYP-D/def2-
TZVPP thermal energy. Values are −∆homG in kJmol−1 for the reactions
S(n – 1)H+ + S SnH+ at 298.15 K.

S –– MeOH S –– ACN

n = 1 2 3 4 n = 1 2 3

This work 724.4 105.8 54.9 30.2 753.5 108.2c 21.3

Lit. (exp.)a 724.5 100.1 55.0 30.2 748 92.6 14.1

Lit. (calc.)b 116.7 48.5 38.1

a n = 1 from [162], all other values calculated with measured data from Ref. [54]
b calculated on M062X/6-31++G(d,p) [168]
c including free rotor correction to the partition function
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tion. Strong anharmonicity in proton-sharing systems is long known from theory and
experiments [180–182]. Also, the internal rotations of the methyl groups around the
N – C – C axis are essentially barrier free. The barrier height in the dimer is estimated
to be 3.43µeV (see Fig. 3.8a). Thus the partition function was corrected assuming a
free internal rotor [101, 102]:

ZIR = 1

σIR

(
8π3IIRkB T

h2

)1/2

= 2.62 (3.1)

where σIR = 3 is the symmetry number of the rotation, kB the Boltzmann constant,
h the Planck constant, T the absolute temperature and IIR = 2.66×10−47 kgm2 the
reduced moment of inertia. This reduces the difference to the experimental value to
2.4 kJmol−1. Hence, anharmonic effects seem to have a greater contribution to the
error. A free rotor correction was thus not performed for the trimer.

Amine-Solvent Adduct Clusters Fig. 3.2 shows stable geometries of the adduct
clusters [A + H + Sn]+. Again, full Cartesian coordinates are given in the SI of the origi-
nal publication. For the MeOH clusters, it is clearly visible that each cluster is formed
through a chain of hydrogen bonds, where each additional MeOH binds to the free
hydrogen of the OH group of the former MeOH. Although there are other structures,
e.g. a cyclic one for n = 4, or cage structures, where all MeOH molecules bind to dif-
ferent hydrogens of the amine, these linear configurations are most likely promoting
proton transfer because the solvent cluster moiety at the charged analyte site is rem-
iniscent of the respective isolated protonated solvent cluster (cf. Fig. 3.1). This is
the reason why we presented these conformations, despite the fact that they may not
represent the global energy minimum. Although the PA of the trimer is already larger
than that of methylamine, the proton still resides at the amine and is not incorpo-
rated into the MeOH cluster. This is in agreement with an investigation of protonated
trimethylamine/MeOH clusters [183]. In this work, the authors report that the first
linear [MeNH2 + H + (MeOH)n]+ cluster with both an amine and a MeOH ion core is
found for n = 6.

The situation is different for ACN. The [MeNH2 + H + (ACN)2]+ cluster has its global
minimum for a configuration, where the two ACN molecules bind to different pro-
tons of the amine. These geometries are also possible for MeOH, but in case of ACN,
only this cluster is expected to exist. We tried to optimize a structure with the sec-
ond ACN binding to the first one in a similar fashion as the third ACN binds to the
(ACN)2H+ cluster, namely via a weak interaction of the CN lone pair to the π-system
of the ACN (cf. Figure 3.1). However, there is no or only a very shallow minimum,
which is most probably not stable under thermal conditions; furthermore, both ACN
molecules binding to the same proton does not result in a stable geometry. There is
probably a stable although much weaker configuration, where the second ACN binds
to the tail of the first. This configuration however does not lead to the global mini-
mum of the (ACN)2H+ cluster via proton transfer and the proton transfer energetics is
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[MeNH3+MeOH]+ [MeNH3+(MeOH)2]
+ [MeNH3+(MeOH)3]

+ [MeNH3+(MeOH)4]
+

[MeNH3+2ACN]
+ [MeNH3+3ACN]

+[MeNH3+ACN]
+

Figure 3.2: Optimized geometries of the [MeNH2 + H + (MeOH)n]+ (n = 1, ...,4) and
[MeNH2 + H + (ACN)n]+ (n = 1,2,3) clusters obtained at the B3LYP-D/def2-
TZVPP level of theory.

Table 3.3: Stability of the adduct clusters by combining B2PLYP-D/def2-
QZVPP//B3LYP-D/def2-TZVPP electronic energies with B3LYP-D/def2-
TZVPP thermal energy. Values are −∆mixG in kJmol−1 for the reactions
[MeNH2 + H + S(n – 1)]+ + S [MeNH2 + H + Sn]+ at 298.15 K.

S –– MeOH S –– ACN

n = 1 2 3 4 n = 1 2 3

This work 54.7 24.5 5.6 -4.9 79.4 54.4 42.0

Lit. (exp.) 49.3a 77.8b 48.4b 29.9b

a Ref. [184]
b Ref. [185]
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most likely similar to the situation of only one ACN present. Hence, the bound ACN
molecules present at the charge site of the analyte do structurally not resemble the
(most stable) homogeneous proton bound ACN cluster - which is in contrast to the
MeOH case. The resulting effects are discussed in the following.

Table 3.3 shows the thermodynamic stability of the adduct clusters. For MeOH,
each additional ligand binds further and further away from the charge site - because
the proton remains located at the amine. The Gibbs enthalpy gained by growing thus
diminishes rapidly. For n = 4, further increase of the cluster size even seems to be
thermodynamically unfavorable, i.e., the gain of binding energy is not large enough
to compensate the entropy loss. In case of ACN, however, the energy decreases far
less pronounced, because every new ACN molecule binds directly to the charge site.
Experimental data for ACN indicate that the stability of the larger clusters is overes-
timated in the calculations, most probably due to anharmonic effects of the NH – N
bridges. However, the principal conclusion still holds.

With the GB of methylamine, the cluster and the adduct stabilities, the Gibbs en-
thalpy of the adduct formation ∆AssG (MeNH3

+ + nS [MeNH2 + H + Sn]+), their
dissociation towards the products ∆DissG ([MeNH2 + H + Sn]+ MeNH2 + SnH+),
and the overall reaction∆RxnG (MeNH3

+ + nS MeNH2 + SnH+) is calculated using
a thermodynamic cycle:

∆AssG(n) =
n∑

i=1
∆mixG(i −1 → i ) (3.2)

∆DissG(n) =−
n∑

i=1
∆mixG(i −1 → i )+GPB(MeNH2)+

n∑
i=1
∆homG(i −1 → i ) (3.3)

∆RxnG(n) = GPB(MeNH2)+
n∑

i=1
∆homG(i −1 → i ) (3.4)

where ∆mixG(i −1 → i ) are the Gibbs enthalpies of growth of the adduct clusters as
listed in Table 3.3, and ∆homG(i −1 → i ) are the Gibbs enthalpies of growth of the ho-
mogeneous clusters as listed in Table 3.2. ∆RxnG incorporates the energy gain through
the proton transfer and also the contribution from the solvent-solvent bindings. This
cycle was chosen because we believe that it reflects the actual steps, i.e., the solvent-
solvent binding occurs sequentially at the charge site (and not a neutral solvent clus-
ter Sn binding to the charge site). The three reaction steps are shown in Fig. 3.3 for
MeOH and ACN. For both modifiers the overall reaction is thermodynamically fa-
vorable for n ≥ 3. This supports the notion that with increasing number of solvent
molecules, the proton transfer from an analyte is possible, even when its PA or GB is
higher than that of the solvent. However, in both cases the adduct clusters [MeNH2 +
H + Sn]+ are constantly lower in energy as compared to their dissociation products,
i.e., ∆DissG(n) is positive for all n. It follows that in thermodynamic equilibrium a
distinct distribution of the adduct clusters should be present.

There are two main differences discernible for MeOH and ACN: First, the mixed
MeOH clusters are not as stable and not much energy is gained by adding more and
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Figure 3.3: Gibbs enthalpy (Eqs. (3.2)-(3.4)) through association, Ass (MeNH3
+ +

nS [MeNH2 + H + Sn]+) and for the overall reaction, Rxn (MeNH3
+ +

nS [MeNH2 + H + Sn]+ MeNH2 + SnH+) relative to the reactants,
Rct (MeNH3

+ + nS, black) for (a) MeOH and (b) ACN for different n. Blue:
this work, red: experimental data from literature (see Tables 3.2 and 3.3).

more MeOH. In case of ACN, the energy is significantly lower and every additional
solvent adds a significant amount of binding energy. Second, the dissociation en-
ergy for MeOH decreases with n because the energy gain in the homogeneous clus-
ters is still large. This results in a comparably small value for ∆DissG(4;MeOH) of
29.4 kJmol−1. In case of ACN, however,∆homG(i −1 → i ) becomes rather small due to
the unfavorable binding situation in the trimer, which decreases the smallest disso-
ciation energy to ∆DissG(2;ACN) = 136.9kJmol−1. In summary, because the energy of
the mixed clusters for MeOH is not lowered significantly, whereas the homogeneous
cluster are still gaining energy, the dissociation energy is becoming smaller with n.
For ACN, the mixed clusters are lower in energy but the homogeneous clusters are
not becoming much more stable, which results in a considerably higher dissociation
energy for every n.

Due to the high collision energies and steep concentration gradients in the differ-
ent pressure reduction stages of the mass spectrometer, the chemical system is not
in thermodynamic equilibrium during the ion transfer to the mass analyzer. Clus-
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3 Charge Retention/Charge Depletion in ESI-MS

ter dissociation processes occur and lead to either the protonated amine and neutral
solvent or the protonated solvent cluster and the neutral amine. The kinetics of the
latter reaction path, the proton transfer to the homogeneous solvent clusters, is in-
vestigated in the next section.

3.4.2 Proton Transfer Paths

The potential energy surfaces (PES) of the different adducts were investigated with
respect to the corresponding proton transfer reactions. Starting from the optimized
geometries of the [A + H + Sn]+ clusters, the H-bounded proton was moved away from
the amine nitrogen with a step size of 0.05 Å. Whereas this distance was held con-
stant for each step of the scans, all other internal parameters were allowed to relax.
According to [186], the parameter δmay be defined as a measure of the proton trans-
fer progression

δ= d(Namine,H)−d(S,H) (3.5)

where d(X,Y) is the distance between atoms X and Y and S is either the methanol
oxygen or the acetonitrile nitrogen. When a transition state (TS) is found on the PES,
the intrinsic reaction coordinate (IRC) is calculated.

Amine-methanol Clusters In Figure 3.4 the calculated PES scans for the linear
[MeNH2 + H + (MeOH)n]+ (n = 1, ...,4) proton transfer reactions are shown. As dis-
cussed in the structure section, there is only one minimum structure for each cluster
and the corresponding geometry shows a protonated amine and the MeOH molecules
acting as ligands (Fig. 3.2). Hence, moving the proton towards the MeOH cluster,
the energy increases and finally approaches the value of the reaction products. The
terminal points of each scan are located in the product channel of the PES, i.e., the
O – H distance does not change significantly anymore and only the amine nitrogen is
moved away from the proton.

The binding energy of additional H-bonded MeOH molecules is similar for each
cluster, as seen in the energy differences of the four equilibrium geometries. How-
ever, throughout the scans, the energy contribution caused by the more favorable
charge stabilization in the larger clusters becomes apparent. This is shown by the dif-
ferent gradients of the PES’: Moving the proton from the amine towards the methanol
molecule (δ< 0), the PES’ have positive curvatures. When the proton is closer to the
MeOH oxygen than to the amine nitrogen (δ > 0), the curvature changes its sign for
higher n: The initial incline is lowered and a plateau forms around 0.25 Å, caused by
the initial OH bond of the first MeOH being stretched towards its acceptor oxygen
and thus delocalizing the charge from the first oxygen into the cluster. For n = 3,4
the second proton transfer, with the second H atom moving along the H-bond chain
towards its acceptor oxygen atom, is discernible in the scans. Hence, the H-bond net-
work between the MeOH molecules is a crucial characteristic for the lower steepness
of the PES’.
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Figure 3.4: PES scans for the [MeNH2 + H + Sn]+ clusters with S being (a) MeOH and (b)
ACN. Energies are obtained at the B3LYP-D/def2-TZVPP level of theory.
Dashed lines connect bound and unbound configurations. The first point
for each scan corresponds to the minimum structure, the H-bound proton
is then moved towards the MeOH oxygen or ACN nitrogen, respectively. All
energies are given relative to that of the reactants.

All of the reactions shown have single-well potentials, and thus there are no tran-
sition states to surpass. Assuming a [MeNH2 + H + (MeOH)n]+ cluster is gaining en-
ergy in the reaction coordinate through collisions, it can decompose into MeNH2 +
(MeOH)nH+ or release one MeOH molecule. The latter reaction path is always lower
in energy for the four PES’ calculated, although the state density of both channels
should be similar, because they are dissociative channels. Hence it does not repre-
sent the favored reaction channel and the mixed clusters should still be detectable
[187].

Amine-acetonitrile Clusters Figure 3.4 also shows the PES scans for the ACN
clusters. Whereas for n = 1 the potential curve is similar to the MeOH case, for n =
2 there are significant differences. The most obvious difference is a second mini-
mum with an ACN ion core, which resembles the homogeneous ACN dimer having
a MeNH2 ligand weakly binding to the proton (see Fig. 3.9). Both minima are con-
nected via a TS located 1.64 eV above the lower minimum, i.e., the cluster with amine
ion core. A TS for the reaction of the proton bound ACN dimer with methylamine was
already considered in an experimental study [188]. This TS exists, because for the
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3 Charge Retention/Charge Depletion in ESI-MS

proton transfer to occur, the second ACN molecule has to move away from its pro-
ton to bind to the transferred one. While the proton does not move initially (cf. the
steep increase in energy caused by small change in δ), the second ACN moves away
from its proton resulting in a configuration, where both ACN bind to the same pro-
ton. This configuration, where three electron rich nitrogen atoms bind to the same
proton, is energetically not favorable. The proton transfer occurs with the proton
moving from the amine-ACN bridge to the ACN – ACN bridge and, with subsequent
loss of the amine, the energy decreases until the second minimum is reached. Con-
sequently, the TS exists because the two ACN molecules, unlike MeOH, cannot form
a moiety at the charge site, which is structurally similar to the isolated homogeneous
cluster.

For the proton transfer to occur, the system has to pass through a TS, which is en-
ergetically favored but kinetically hindered. When the [MeNH2 + H + 2ACN]+ clus-
ter is formed and subsequently collisionally activated, the cleavage channel towards
[MeNH2 +H+ACN]+ +ACN is much lower in energy than the TS, which yields (ACN)2H+.
Additionally, the state density of the TS is much lower than that of the cleavage reac-
tions [62], which renders the passing of the TS statistically unfavorable. Thus, proton
transfer is very unlikely to occur with ACN as modifier because it cannot form H-bond
networks.

Comparison with Experimental Results Due to the low-mass cut off of the
mass spectrometers used, methylamine was replaced with larger primary amines,
i.e., n-butylamine and n-hexylamine. It is assumed that the length of the hydrocar-
bon chain has a less pronounced effect on the amine-solvent interaction than the
solvent itself. No significant differences between n-butylamine and n-hexylamine re-
sults were noticed. In the following thus the proxy R – NH2 is used for both species.

The effect of MeOH and ACN vapor added to the ion source gas on the observed
ion population is investigated. When the amine is electrosprayed from ACN/H2O so-
lution, the cluster [R – NH2 + H + ACN]+ is abundantly present in the mass spectra.
Adding ACN to the ion source gas results in detection of the second cluster [R – NH2 +
H + 2ACN]+. Increasing the ACN addition promotes the intensity of the second ACN
cluster but even when the ion source gas is saturated with ACN vapor, no higher
amine-ACN clusters are observed. When using MeOH as gas phase modifier, the
[R – NH2 + H + MeOH]+ is the only amine-MeOH cluster ion present in the mass spec-
trum. Thus with both solvents, amine-solvent clusters are observed, which is consis-
tent with the theoretical findings. The maximum cluster number is n = 2 for ACN and
n = 1 for MeOH. The difference in the maximum cluster number is rationalized by
their thermodynamic stability. Regarding declustering as well as proton transfer pro-
cesses, Figure 3.3 clearly shows that the amine-ACN clusters are more stable and have
larger dissociation energies, so that the second ACN cluster is surviving the elevated
ion temperatures during transfer in contrast to the second MeOH cluster.

The ion signal intensity is strongly affected by the gas phase modification. In-
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creasing the MeOH gas phase mixing ratio continuously reduces the total ion cur-
rent (TIC). Additionally, the sum of all analyte related intensities (bare and clustered
protonated amine) normalized to the TIC, in the following referred to as normalized
analyte intensity, decreases as well. In contrast, the addition of ACN enhances the
TIC and the absolute analyte intensity equally; the normalized analyte intensity re-
mains unchanged. Based on the theoretical investigations it is concluded that proton
transfer in the presence of MeOH is likely to occur but proton transfer in the presence
of ACN is very unlikely; the experimental results fully support this conclusion. Proton
transfer to MeOH clusters can explain the observed loss of protonated analyte with
MeOH addition. Presumably, due to the low-mass cut off of the mass spectrometer
the protonated MeOH-clusters are not observed resulting in a reduced TIC. On the
contrary, the increasing analyte signal intensities with ACN addition indicates that
proton transfer to ACN clusters does not occur but rather charge depletion is reduced.
However, it is noted that the changes in signal intensities are not solely due to charge
retention and charge depletion processes, but in addition due to altered spraying and
ionization efficiencies due to the gas phase modification. Because proton transfer
from a singly protonated amine to a solvent molecule/cluster is not experimentally
observed, also doubly protonated amines are studied. The results are discussed in
the following section.

3.4.3 Multiply Charged Analytes

In the experiments [143], Substance P was recorded as a triply and doubly charged
ion. Although the distance and the electrostatic shielding through the peptide be-
tween the different charge sites [154] is large, the effect of a spatially close charge on
the proton transfer reactions was thus investigated with a corresponding proxy: Dou-
bly protonated ethylene diamine ([H – EDA – H]2+), considered as a rather stressed
model system, was studied. The distance between the formally charged nitrogen
atoms is only 3.84 Å. In addition, the two CH2 spacer groups offer little electrostatic
shielding. This model system is thus regarded as an upper limit scenario regarding
effects caused by a second charge site within an ion.

Theoretical Findings Figure 3.5 shows the PES scans for the EDA – MeOH (n =
1,2,3) and – ACN (n = 1,2) clusters. Potential energy due to Coulomb repulsion is
acquired because proton transfer and subsequent increase of the fragment distance
leads to separation of the two charges. Consequently, all reaction products are lower
in energy as compared to structures where the two charges are in close vicinity. This
observation explains why analytes exhibit charge retention or depletion and never
charge increase in the gas phase. There is a stable adduct structure of the composi-
tion [H – EDA + H + Sn]2+ for all clusters studied. Thus, there always has to be a TS,
which connects this local minimum with the decreasing Coulomb-repulsion domi-
nated energy path towards the products.
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Figure 3.5: PES scans for the [A + H + Sn]2+ (A = H – EDA) clusters with S being (a)
MeOH or (b) ACN. Energies are obtained at the B3LYP-D/def2-TZVPP level
of theory. Dashed lines connect bound and unbound configurations. The
minimum structure of each cluster is marked with a label; dotted lines
indicate the hydrogen bond and solid lines the shorter, covalent bond.

Focusing on the MeOH clusters (cf. Fig. 3.5a), for n = 1 there is an amine ion core
and the energy initially rises along δ. This is analogous to the methylamine systems
and is due to the higher basicity of nitrogen as compared to oxygen. Only very late in
the product channel, i.e., for an O – H distance near equilibrium and at a long N – H
distance, there is a transition state (0.58 eV above the minimum), indicating that the
charge stabilization through the ligand (in this case nitrogen) becomes smaller than
the Coulomb repulsion of the two charges. Adding another MeOH to the system re-
veals an interesting effect: For EDA the MeOH ion core (δ> 0), i.e., a proton residing
within the MeOH cluster and H – EDA+ acting as ligand (highlighted as dotted and
solid lines in the labels of Fig. 3.5) is the only minimum with a bound configuration,
whereas for methylamine the amine ion core (δ < 0) is still the favorable configu-
ration (even for n = 4). The separation of the charges by moving one proton along
the hydrogen bond chain within the MeOH cluster is energetically favored. Note that
there is no second bound-state minimum with an amine ion core. Progressing along
δ, i.e., moving the H – EDA+ away from the MeOH cluster (the proton already is near
its equilibrium position at the MeOH oxygen) the energy rises to a TS as already ob-
served for n = 1. In addition to the favored configuration of the MeOH ion core the
energy difference between the minimum and the TS is much lower (0.18 eV). This re-
sults in a better charge distribution because the H-bond chain promotes the proton
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transfer. This effect is even more pronounced for n = 3, where the energy barrier for
the proton transfer is < 0.05eV.

For n = 1 the ACN system behaves similarly to the MeOH system with an energy
barrier of 0.52 eV. However, for n = 2 the most stable configuration is still the amine
ion core. Particularly the second minimum observed for methylamine (ACN ion core)
vanishes in this case and the energy decreases monotonically from the observed TS
towards the products. The small contribution of an amine binding to the (ACN)2H+

cluster, as already observed through the shallow minimum in the methylamine case
(Fig. 3.4), is overcome by the Coulomb repulsion of the two charges. Moreover, the
energy barrier for n = 2 is 0.89 eV and thus even higher than for n = 1. This is due to
the same issues regarding forming the homogeneous ACN cluster in the methylamine
case. ACN lacks the ability to form solvent cluster moieties at the charge site with sim-
ilar configurations as the homogeneous isolated ACN clusters, which requires large
geometrical changes and a high energy increase for the proton transfer.

In summary, the second charge strongly influences the proton transfer to attached
ligands. In this model, proton bound solvent structures similar to the free (MeOH)nH+

clusters are readily formed at the charge site, because they offer much better charge
stabilization than the doubly charged amine. For n ≥ 2 only a MeOH ion core is ob-
served. The small barriers leading to dissociation of the protonated ligand structure
are then easily overcome. ACN struggles with the formation of the homogeneous
clusters at the charge site and a high energy TS hinders the proton transfer. Although
the TS is lower in energy than the cleavage channel of losing one ACN, the state den-
sity is much lower. Additionally, when the two charges do not interact as strongly due
to increased electrostatic shielding, this energy difference may be reversed. Hence,
proton transfer to larger ACN clusters is unlikely even in multiply-charged molecules.

Comparison with Experimental Results Larger and higher-mass analytes than
EDA were experimentally studied as both singly protonated and doubly protonated
species are of interest. The terminal diamines 1,2-diaminoethane, 1,3-diaminopro-
pane, 1,5-diaminopentane, 1,8-diaminooctane and 1,9-diaminononane are investi-
gated. Qualitatively no differences were observed in the results. Therefore, in the
following, diamine (H2N – R – NH2), is used as a proxy for all analytes studied.

The effect of MeOH and ACN on the observed ion population is illustrated in Figure
3.6. Representative mass spectra are given in Figure 3.10. When the diamine is elec-
trosprayed from an ACN/H2O solution and then exposed to MeOH vapor, the bare
singly protonated diamine, [H2N – R – NH2 + H]+ dominates the spectrum. Diamine-
ACN clusters [H2N – R – NH2 + 2H + (ACN)n]2+ are hardly observed. The bare doubly
protonated diamine is observed with low abundance (cf. Fig. 3.6a). Clustering with
MeOH is very rarely observed; only diaminononane and -octane yield clusters of the
type [H2N – R – NH2 + 2H + (MeOH)n]2+ with n = 1−3, in addition to the mixed sol-
vent cluster [H2N – R – NH2 + 2H + (ACN)(MeOH)]2+. These diamine-MeOH clusters
are much lower in intensity than the bare [H2N – R – NH2 + H]+ signal. The averaged
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Figure 3.6: Influence of (a) MeOH and (b) ACN on the observed ion population of
1,8-diaminooctane (M), which serves as a model system for all diamine
measurements. The intensities (normalized to TIC) are plotted on a lin-
ear ordinate-scale between 0 and 10−2 and on a logarithmic ordinate-scale
above.

charge state approaches 1 with MeOH addition, as shown in Fig. 3.7. Since electro-
spraying from a MeOH/H2O solution already leads to an average analyte charge state
close to one, the average charge state is slightly reduced even further by MeOH vapor
addition. It is concluded that the addition of MeOH changes the initial ion popula-
tion towards the singly protonated bare diamine (charge depletion), which is readily
rationalized by the proposed proton transfer reaction.

In the presence of ACN - regardless of being supplied via spraying an analyte/ACN
solution or via addition to the gas phase, or both - the doubly protonated diamine-
ACN clusters, [H2N – R – NH2 + 2H + (ACN)n]2+ with n = 1−6, dominate the spectrum,
where the averaged cluster number is dependent on the ACN gas phase mixing ratio
(cf. Fig. 3.6b) and the analyte used. The doubly protonated bare diamine is observed
with lower abundance. Because the doubly protonated cluster species are gener-
ated to such an extent and wide range, the averaged charge state is shifted towards
2 with increasing ACN vapor addition (see Fig. 3.7). In contrast, the singly protonated
species is solely clustered with one ACN molecule. Both singly protonated species,
[H2N – R – NH2 + H]+ and [H2N – R – NH2 + H + ACN]+, have low abundances, espe-
cially when the ACN mixing ratio is high (> 2%). It is concluded that ACN promotes
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Figure 3.7: Mean charge state of 1,8-diaminooctane in dependence of the gas phase
mixing ratio of ACN and MeOH.

the doubly protonated species via clustering (charge retention). The experiments
provide no indication for proton transfer to ACN ligands. Therefore, the experimental
observations regarding the interactions between ACN and the diamines strongly sup-
port the theoretical findings. Furthermore, the experimental results strongly suggest
that the MeOH clusters [H2N – R – NH2 + 2H + (MeOH)n]2+ are significantly less stable
than the ACN clusters [H2N – R – NH2 + 2H + (ACN)n]2+, which is in good agreement
with the calculated PES scans.

3.5 Conclusion

The thermochemical stabilities of proton transfer intermediates and products of pro-
tonated methylamine reacting with either methanol or acetonitrile as modifiers, i.e.,
[MeNH2 + H + Sn]+ and SnH+, where S = MeOH, ACN were studied. The methanol
clusters exhibit a trend toward better stabilization with increasing ligand number n
through the hydrogen bond network they can establish, although proton transfer is
thermochemically unfavorable for all cluster sizes investigated. Acetonitrile cannot
form larger homogeneous clusters and thus there is no trend observed.

This rationale is reinforced by the potential energy surfaces calculated for the cor-
responding proton transfer reactions. Not only the energy difference between the
mixed clusters but also the steepness of the potential along the reaction coordinate
is lowered when larger MeOH clusters are considered. This is due to charge dilu-
tion along the hydrogen bond network in the cluster. ACN molecules clustered at the
charge site need to undergo extensive geometrical changes and thus high activation
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barriers to transfer a proton away from the amine. This conclusion can be extended
regarding other gas phase modifiers, as studied in the preceding publication: When
the modifier is aprotic, as for example diethyl ether or acetone and thus cannot form a
hydrogen bond network, retention of higher charge states is observed because proton
transfer is hindered. Protic modifiers, for example ethanol, iso-propanol or ammo-
nia, respectively, can form hydrogen bond networks and thus can remove a charge
from the analyte molecule.

The effect of a second charge present on the analyte was also investigated. Doubly
protonated ethylene diamine was studied with methanol and acetonitrile as modi-
fiers. For methanol it is observed that for n ≥ 2 the proton is not stabilized at the
amine but moves toward the methanol ligands. Then the small barrier towards the
proton transfer reaction products (further decreasing with increasing cluster size) is
easily overcome. This is consistent with the experimentally observed shift in the av-
erage charge state of diamines down to +1 upon MeOH vapor addition. ACN has a
large barrier for n = 2 and proton transfer is not becoming favorable with increasing
cluster size, as was supported by experimental observations of stable diamine-ACN
clusters. The observed trends fully support the conclusion that protic solvents can
remove a proton from the analyte, whereas aprotic solvents will only bind to a proton
without removing it.

These findings have implications regarding the charge state distributions of small
peptides or proteins in ESI-MS. Adding aprotic compounds to the gas phase of the
ionization source can lead to higher charge state distributions than using protic (or
no) substances - provide no other processes as for example protein unfolding or dis-
sociation of protein complexes occur. We explicitly move away from the term "super-
charging" in this context, normally referring to liquid phase modification. Our stud-
ies clearly demonstrate that in the gas phase no additional charge is transferred to an
analyte but only existing charge states are retainable. Besides retention, only deple-
tion of higher charges states through polar gas phase modifiers is possible, which will
transfer protons into small solvent clusters. Currently, it remains unclear, whether
the proton transfer occurs in a small droplet or within the gas phase cluster forming
at the charge site. This issue is subject to ongoing experiments and calculations. The
present results support both pathways.
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3.6 Supporting Information

Coulomb Repulsion Consideration Charging an already charged molecule in
the gas phase via e.g., proton transfer (PT), is unlikely. For large distances, i.e., be-
fore the electron densities overlap significantly, the interaction potential between two
singly charged molecules can be approximated through the Coulomb potential

Epot =
1

4πε0

e2

R
(3.6)

If a distance of, e.g., R = 4Å is assumed before the potential flattens due to interac-
tions of the electron densities, the potential energy would be 3.6 eV. To be that close
in a collision, the center of mass collision energy

Ekin = 1

2
µv2

r (3.7)

would need to be greater or equal to that value. For a heavy analyte as for example SP
colliding with a light acid as H3O+, the reduced mass, µ, is approximately equal to the
mass of the lighter collision partner, thus, 19 amu. Thus, the relative velocity would
need to be

vr =
√

2 ·7.2eV

19amu
= 6050ms−1 (3.8)

or larger. Assuming a Maxwell-Boltzmann distribution of the relative velocities as in
Eq. (2.37a) at a temperature of 300 K, the portion of velocities ≥ 6050ms−1 can be
calculated as

P
(
vr ≥ 6050ms−1)= ∞∫

6050ms−1

4π

(
µ

2πkB T

)3/2

v2
r exp

(
− µv2

r

2kB T

)
dvr

= 3.8×10−60

(3.9)

Thus, protonating an already charged molecule in the gas phase essentially impossi-
ble.
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Additional Figures More details as for example Cartesian coordinates and ener-
gies can be found in the SI of the original publication [144].
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Figure 3.8: PES scans and subsequent fits for the internal rotation (Q1) and the H+-
movement along the N – H+ – N bond (Q6) of the (ACN)H+ cluster. The
strong fluctuation along Q1 is because the accuracy of the SCF equations
is of same magnitude as the barrier of the IR. The harmonic fit along Q6

considers only the curvature at the minimum as usually done by the NMA.

Figure 3.9: Additional structure of the [MeNH2 + H + 2ACN]+ cluster, corresponding
to the second minimum in Fig. 3.4b.
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Figure 3.10: Mass spectrum of 1,8-diaminooctane (M) electrosprayed from ACN/H2O
soltuion with (a) 0.8 %V MeOH and (b) 0.25 %V ACN present in the ion
source. The signal intensities are normalized to the most intense signal.
Addition of MeOH vapor promotes the intensity of the singly protonated
amine while the addition of ACN increases the amount and intensity of
doubly protonated signals.

57



3 Charge Retention/Charge Depletion in ESI-MS

3.7 Follow-up work

As stated in Section 3.4.1, the inherent anharmonicity of loosely bound clusters intro-
duces errors to the thermochemical data. To tackle this issue, the capabilities of the
VPT2 method (see Section 2.2.2) in this regard are investigated. Because a full VPT2
treatment on the chosen level of theory is computationally demanding, a new hybrid
method is developed. This section gives a thorough description, the obtained re-
sults for the studied clusters, i.e., the (MeOH)nH+ (n = 1,2,3,4), (ACN)nH+ (n = 1,2,3),
[MeNH3 + (MeOH)n]+ (n = 1,2,3,4) and [MeNH3 + (ACN)n]+ (n = 1,2,3) clusters, and
an evaluation of the used method. More details regarding this follow-up work can be
found in Ref. [189].

3.7.1 Description of the Method

Balancing the computational demand and the accuracy of a method is one of the
most challenging tasks in Computational Chemistry. While the harmonic approxi-
mation to the PES is rather simple to compute (only one Hessian calculation at the
equilibrium geometry), large errors can be introduced by neglecting anharmonic ef-
fects. In contrast, VPT2 is designed to manage anharmonicity in a perturbative man-
ner but it needs 2(3MN−6)+1 Hessian calculations and is thus very time consuming.
A general path of solving such issues is to define hybrid methods: Calculate the time
consuming parts on a low level of theory but increase the accuracy when possible.
This is already used in this chapter when geometry optimization and Hessian calcu-
lations for normal frequencies on B3LYP-D/def2-TZVPP are combined with a more
accurate description of the electronic energy by using B2PLYP-D/def2-QZVPP.

The basic idea of this follow-up work is to calculate the anharmonic corrections
to the harmonic approximation on a lower level of theory and thus save computing
time. Recalling from Section 2.2.2, the vibrational frequencies and zero-point energy
can be corrected by the anharmonic constants χ0 and χkl (see eqs. (2.21) and (2.22)).

νk = ω̃k +2χkk +
1

2

∑
k 6=l

χkl (3.10)

EZPE =χ0 +
1

2

∑
k

(
ω̃k +

1

2
χkk +

1

2

∑
l>k

χkl

)
(3.11)

Similar to that, the rotational constants at the equilibrium position Ae , Be , and Ce can
be corrected using the vibro-rotational matrix

(
αa

k ,αb
k ,αc

k

)
(to obtain the rotational

constants at the vibrationally averaged geometry, A0, B0 and C0) and the centrifugal
distortion tensor ταβγδ (to account for centrifugal distortion), where k and l are in-
dices for the normal coordinates and α, β, γ, δ are indices for the principal axes a, b
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and c [103, 105]:

A′
0 = Ãe −

1

2

∑
k
αa

k︸ ︷︷ ︸
A0

+ 1

4
(3τbcbc −2τcaca −2τabab)︸ ︷︷ ︸

centrifugal distortion term

(3.12)

B ′
0 = B̃e −

1

2

∑
k
αb

k +
1

4
(3τcaca −2τabab −2τbcbc ) (3.13)

C ′
0 = C̃e −

1

2

∑
k
αc

k +
1

4
(3τabab −2τbcbc −2τcaca) (3.14)

All quantities in the above equations marked with˜, i.e., the harmonic parts of νk , A′
0,

B ′
0 and C ′

0 are calculated with greater accuracy and only the small correction terms
are calculated with lower accuracy. Since the anharmonic constants are not very sen-
sitive to the level of theory [190], this combination is valid.

Following simple perturbation theory [104, 119], the more accurate frequencies
and rotational constants, νk , A′

0, B ′
0 and C ′

0, are then used for the calculation of parti-
tion functions according to the standard formula derived for the harmonic case (see
Table 2.1)

Zvib =
∏
k

[
1−exp

(
− hνk

kB T

)]−1

(3.15)

Ztor =
1

σrot

(
kB T

hc

)3/2 (
π

A′
0 B ′

0 C ′
0

)1/2

(3.16)

and to calculate the thermodynamic correction to the Gibbs enthalpy, Gcorr, the an-
harmonic corrected ZPE is used (Eq. (3.11)).

To actually conduct this hybrid anharmonic treatment, first, a geometry optimiza-
tion and frequency calculation is conducted on the medium B3LYP-D/def2-TZVPP
level of theory and the harmonic frequenciesωk and equilibrium rotational constants
Ae , Be and Ce are saved. Using that geometry, a single-point energy calculation is per-
formed on the high B2PLYP-D/def2-QZVPP level to refine the electronic energy Eelec.
After that, the geometry is reoptimized on the lower B3LYP-D/def2-SVP level of the-
ory and a full VPT2 treatment is performed. The reoptimization is necessary, because
the minimum geometry on the medium level, Rmed

min , might not be exactly the mini-

mum on the lower level, R low
min. The anharmonic constants, χ0, χkl , αa,b,c

k and ταβγδ,
calculated from the numerical determination of the force constants (see Eq. (2.20)),
are saved and combined with the harmonic values calculated on the medium level
according to Eqs. (3.10)-(3.14). Thus, the most time consuming part, i.e., the calcula-
tion of 2(3MN −6)+1 Hessians, is conducted on the lowest level of theory.

For a test of this hybrid method, the calculated partition functions can be com-
pared with those obtained from a VPT2 treatment fully performed on the medium
level of theory. This comparison is shown for the vibrational partition function of
some small test cases in Table 3.4, additional to the harmonic result on the medium

59



3 Charge Retention/Charge Depletion in ESI-MS

level. First of all, it should be noted that even for the molecules chosen, which are
rather strongly bound, there is a significant difference between the harmonic and
VPT2 results, highlighting the importance of anharmonic effects. The newly devel-
oped hybrid method is able to correct the harmonic partition functions with the an-
harmonic constants computed on the lower level of theory, so that the difference to
the medium level VPT2 becomes much smaller. Additionally, the time needed for
VPT2 (hybrid) compared to VPT2 (med) is a factor of 5 less for the chosen levels of
theory and thus a significant speed up can be achieved.

Table 3.4: Vibrational partition function, ln(Zvib), calculated with different methods.
med is B3LYP-D/def2-TZVPP, hybrid the method described in the text.

MeOH ACN (ACN)H+ MeNH3
+

harmonic (med) -53.5 -47.2 -58.4 -83.0

VPT2 (hybrid) -52.7 -46.6 -57.5 -82.0

VPT2 (med) -52.7 -46.5 -57.5 -81.5

3.7.2 Results and Discussion

The results shown in Table 3.4 are very promising and the developed hybrid method
is applied to the clusters studied above in this chapter, i.e., the (MeOH)nH+ (n =
1,2,3,4), (ACN)nH+ (n = 1,2,3), [MeNH3 + (MeOH)n]+ (n = 1,2,3,4), and [MeNH3 +
(ACN)n]+ (n = 1,2,3) clusters. In particular, the thermochemistry of the proton trans-
fer reactions (Eqs. (3.2)-(3.4), Fig. 3.3) is studied.

Table 3.5 shows the calculated Gibbs energies of the association, dissociation and
overall reaction, i.e., ∆AssG , ∆DissG and ∆RxnG for both the original method used ear-
lier in this chapter and the newly developed hybrid method. For n = 1, both methods
perform comparably well and show only small deviations to experimental data. How-
ever, for increasing n the differences to the available experimental data increases for
both methods. In particular, the hybrid method does not show a clear superiority
over the original method, i.e., the deviations to the experimental values are some-
times larger, sometimes smaller than with the original method.

There are multiple reasons, why this could be the case. One important fact to notice
is that the DFT functionals B3LYP as well as B2PLYP are parametrized to fit thermo-
chemical data most accurately within the harmonic approximation. Thus, the good
performance is often due to the wrong reasons: Calculate the electronic structure
such that within the harmonic approximation, good thermochemical data is pro-
duced - not such that the real electronic structure is reproduced best. Introducing
anharmonic corrections will thus lift this error cancellation and this better descrip-
tion of the PES will reveal the flaws in the electronic structure calculation. While the
magnitude of this effect is difficult to estimate, it is important to notice.
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Table 3.5: Proton Transfer thermochemistry of the Amine-Solvent clusters at 298.15 K.
Here, harm describes the B3LYP-D/def2-TZVPP thermo- plus B2PLYP-
D/def2-QZVPP electronic energy, whereas hybrid is the method described
in this section, i.e., the same as harm but with anharmonic corrections
computed on B3LYP-D/def2-SVP.

MeOH ACN

Method n = 1 2 3 4 n = 1 2 3

∆AssG harm -54.7 -83.6 -82.3 -101.6 -79.4 -133.8 -175.8

hybrid -53.0 -77.7 -88.6 -120.2 -84.2 -139.3 -192.7

expa -49.4 -77.8 -126.2 -156.1

∆DissG harm 195.1 118.2 62.0 51.1 190.7 136.9b 157.5

hybrid 191.4 112.1 69.2 89.5 194.4 144.4 158.5

expc 189 190 141 157

∆RxnG harm 140.4 34.6 -20.3 -50.5 111.2 3.0b -18.3

hybrid 138.4 34.4 -19.4 -30.6 110.1 5.1 -34.1

expd 140.0 39.9 -15.1 -45.3 112.4 14.7 0.6

a Ref. [184] for MeOH and Ref. [185] for ACN
b including free rotor correction for the internal rotation
c calculated as difference between ∆RxnG and ∆AssG (see Eqs. (3.2)-(3.4))
d Ref. [184] for MeOH and Ref. [54, 191–193] for ACN

Nevertheless, there are inherent problems with the new hybrid method. The most
important one is due to the different harmonic frequency calculations, i.e., the dif-
ferent Hessians, H med

(
Rmed

min

)
vs. H med

(
Rmed

min

)
. Not only are the equilibrium ge-

ometries slightly different, also the Hessians may differ due to the different levels of
theory. Thus, also the normal frequencies and even the normal coordinates can de-
viate. This leads to serious problems: The assignment of the anharmonic corrections
of mode k low to the "correct" mode kmed is not a straight forward procedure since the
order of the modes (by frequency) may differ between the two levels of theory. In this
work, the assignment is made according to the normal coordinates, i.e., where Q low

k
and Qmed

k have the largest overlap. However, especially with low frequency modes in
cluster structures, this can be rather difficult.

There are also general problems with VPT2. While the PES is not approximated as
a simple parabola anymore, it is sill assumed to be a single well. However, especially
if internal rotations (free or hindered) exist, the thermochemistry will be inaccurate.
Moreover, the low normal frequencies can become as small as the anharmonic cor-
rections, sometimes leading to negative fundamental frequencies. This can happen,
if the numerical determination of the higher order force constants, by calculating
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Hessians at displacements along the normal coordinates, fails due to the multi-well
character of an internal rotation. This is problematic especially for weakly bound
cluster structures.

As already mentioned earlier in this chapter (Section 3.4.1), the potential along
a normal coordinate can sometimes differ largely from a parabola rendering a per-
turbative treatment rather difficult. For example, harmonic frequency of the proton
movement inside the (ACN)2H+ cluster is calculated to be 300 cm−1 (medium level).
As can be seen in Fig. 3.8b, the potential can better be described by a quartic fit and
a VTP2 treatment (also on the medium level) leads to a fundamental frequency of
5772 cm−1, which is surely not realistic. Perturbative approaches perform well only if
the corrections are small compared to the unperturbed value, which is not the case
for this vibration.

3.7.3 Conclusion

To evaluate the newly developed hybrid method, it can be stated that a significant
speed up of the VPT2 treatment with comparably resutls can be achived (Table 3.4).
However, this will only work well when covalently bound molecules are studied, where
VPT2 can be applied well. Loosely bound clusters with strong anharmonic modes,
many internal rotations and even coupling between modes are difficult to treat with
VPT2 in general. Hence, also the hybrid method will fail.

Even for molecules not as difficult, errors can arise through the difference in the
calculated Hessians at the slightly different equilibrium geometries leading to a dif-
ficult assignment of the normal coordinates. Two solutions are proposed: (1) The
original normal coordinates could be retained and only the additional Hessian cal-
culations at the displaced geometries (for the determination of the force constants)
could be conducted at the lower level of theory. (2) An automatized procedure could
be implemented for the comparison of the normal coordinates calculated at the two
levels, i.e., maximizing the dot product and thus ensure maximum overlap. How well
those approaches work is difficult to judge but worth trying in the future.
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The main part of this chapter has been reprinted with permission from

A. Haack, J. Crouse, F.-J. Schlüter, T. Benter, and W. S. Hopkins, “A First Principle
Model of Differential Ion Mobility: the Effect of Ion-Solvent Clustering”, Journal of
The American Society for Mass Spectrometry 30, 2711–2725 (2019). Copyright 2019
American Chemical Society.

The Follow-up work section is adapted with permission from

J. Crouse, A. Haack, T. Benter, and W. S. Hopkins, “Understanding non-traditional
differential mobility behavior: a case study of the tricarbastannatrane cation,
N(CH2CH2CH2)3Sn+”, Journal of the American Society for Mass Spectrometry, DOI:
10.1021/jasms.9b00042 (2020). Copyright 2020 American Chemical Society.

Preceding work can be found in [196].

4.1 Abstract

The use of Differential Mobility Spectrometry (DMS) as a separation tool prior to
mass analysis has increased in popularity over the years. However, the fundamental
principles behind the difference between high- and low-field mobility is still a matter
of debate - especially regarding the strong impact of solvent molecules added to the
gas phase in chemically-modified DMS environments. In this contribution we aim to
present a thorough model for the determination of the ion mobility over a wide range
of field strengths and subsequent calculation of DMS dispersion plots. Our model
relies on first principle calculations only, incorporating the modeling of the "hard-
sphere" mobility, the change in CCS with field strength and the degree of clustering
of solvent molecules to the ion. We show that all three factors have to be taken into
account to qualitatively predict dispersion plots. In particular, Type A behavior (i.e.
strong clustering) in DMS can only be explained by a significant change of the mean
cluster size with field strengths. The fact that our model correctly predicts trends be-
tween differently strong binding solvents, as well as the solvent concentration and the
background gas temperature highlights the importance of clustering for differential
mobility.
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4.2 Introduction

4.2.1 Mobility at low field strength

The movement of ions through a collision gas at elevated pressures induced by an
electrical field is of great interest in mass spectrometry and related areas: Not only
is ion mobility important in modern atmospheric pressure ionization sources [197–
199], in Ion Mobility Spectrometry (IMS) it is used to separate ions according to their
size prior to mass analysis [200–202]. The mobility of ions has also been subject
to theoretical investigations [132, 203–205] since it offers insights into fundamental
physics of collisions and ion-neutral interactions, e.g., kinetic theory in the context of
the Boltzmann transport equation [206].

The acceleration of the ion ensemble through the electrical field is countered by
collisions with the background gas, leading to a constant drift velocity vD propor-
tional to the applied field strength, E :

vD = K (E) ·E (4.1)

The proportionality constant K is called the ion mobility and, for low field strengths1

(as applied in IMS), can be regarded as constant. In this zero-field limit, the mobility
can accurately be described by the Mason-Schamp equation:[132]

K (0) = 3

16

(
2π

µkB T

)1/2 ze

NΩ(T )
(4.2)

Here, µ is the reduced mass of the ion-neutral pair, kB is the Boltzmann constant, T
the gas temperature, ze the ions charge, N is the neutral particle density andΩ is the
collision cross section (CCS) of the ion in the particular collision gas. This equation is
used, for example, to determine the CCS from mobility measurements, opening the
opportunity to identify compounds when compared to theoretical determination of
the CCS (see for example [207–210]). The latter can be performed by numerically
solving the following equation:[136, 137]

Ω(1,1) = 1

8π2

2π∫
0

dα

π∫
0

sinβ dβ

2π∫
0

dγ

π

8

(
µ

kB T

)3 ∞∫
0

v5
r exp

(
− µv2

r

2kB T

)
dvr

∞∫
0

2b
[
1−cosθ

(
α,β,γ, vr ,b

)]
db

(4.3)

1Since the collision frequency of the ions with the background gas depends on the applied field
strength E and the particle density N , changing both parameters by the same factor does not change
the amount of energy and momentum gained by the ions. For that reason, the reduced field strength
Er = E/N , given in Townsend, Td (1Td = 10−21 Vm2) is typically used to describe the experimental
conditions. This way, the categorization of "low" and "high" (reduced) field strengths is indepen-
dent of pressure (and temperature) and actually reflects the mean collision energy experienced by
the ions [135].
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Here, the angles α, β and γ describe the orientation of the impact between ion and
collision gas, b is the impact parameter, vr the relative velocity and θ the resulting
scattering angle, which depends on all these parameters and the interaction potential
between the collision partners. We note that this equation provides only a first order
approximation to the collision cross section (hence the (1,1) superscript), but it is
commonly used and yields sufficiently accurate results [137].

4.2.2 Mobility at high field strength

If the field strength is further increased, the gas phase ion mobility starts to change
[132]. From a theoretical standpoint, the change of the mobility becomes significant
when the velocity distribution of the ion ensemble starts to differ from the veloc-
ity distribution of the collision gas, i.e., when the acceleration through the electri-
cal field significantly increases the collision frequency over the thermal collision rate
[135]. One popular approach to describe the two different velocity distributions is the
so-called two-temperature theory [211–213] in which the velocity distribution of the
ions (in the direction of the electric field) is described by a different temperature than
the distribution of the collision gas. While still assumed to be a 1-D Maxwellian distri-
bution, the higher temperature, Tion , broadens the distribution, allowing for higher
ion velocities. The collisions between ions and neutrals are then determined by the
relative velocity distribution, which depends on the reduced mass of the ion-neutral
pair and an effective temperature, Teff , which can be expressed as:[211–213]

Teff = Tbath +
mbathv2

D

3kB
(4.4)

Here, mbath is the mass of the collision gas. Although this formula is used for any type
of potential with good accuracy [132, p. 154], it is only exact when a repulsive R−4

potential between ion and neutral is assumed [214].
Applying this effective temperature instead of the background gas temperature to

the Mason-Schamp equation (Eq. (4.2)) greatly improves the accuracy of the equa-
tion at higher field strengths [214]. It can also be applied to the theoretical descrip-
tion of the CCS by calculating Ω(1,1) at Teff instead of T . With that, the Boltzmann
weighting of the relative velocities vr (exponential in fourth integral of Eq. (4.3))
then accounts for the correct shape of the distribution by applying not only the re-
duced mass but also the effective temperature. If the ions are polyatomic, the high
impact collisions will also deposit energy into the internal degrees of freedom of the
molecule. While there is some theoretical work on the influence of inelastic collision
on the mobility [132, chapter 6-6], their contributions are often ignored for simplicity
reasons.

4.2.3 Differential Mobility Spectrometry

The electric field dependency of the mobility is exploited in Differential Mobility Spec-
trometry (DMS) [215–219], also known as Field-Asymmetric Waveform Ion Mobil-
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ity Spectrometry (FAIMS). Briefly, the ions are introduced to a small gap between
two parallel plate electrodes at atmospheric pressure. On the plates, an asymmetric
waveform is applied to produce an oscillating electric field orthogonal to the gas flow
stream. The so-called "separation field" (peak-to-peak voltage in the order of 1-4 kV),
creates a high-field phase in one and a low-field phase in the opposite direction such
that the integral over one waveform cycle is zero [220]. Ideally, this would be a rect-
angular waveform, where the low field portion has 1/n − th the amplitude and lasts
n times as long. However, in practice other, more practical waveforms are applied,
e.g., a two-harmonics or double sine waveform (see below). Because of the field de-
pendency of the ion mobility, the overall displacement towards the electrodes is not
canceled and ions are dragged towards one of the plates, eventually being neutral-
ized and precluding their detection. This drift is compensated by a constant voltage
(called compensation voltage; 0-100 V in magnitude) applied on the electrodes. By
scanning this compensation voltage, different ions are able to pass through the DMS
cell. Thus, while in traditional IMS ions are mainly separated by their CCS, in DMS
the difference in high- and low-field mobility is the characteristic which separates the
ions.

Adding solvent vapor in low concentrations to the gas phase often increases the dif-
ferential mobility effect and thus the separation capability [217]. Three main trends
are observed in experiments [217, 221]: the ions mobility appear larger in high- than
in low-field (Type A), larger in the low-field than in the high-field (Type C) and an
intermediate case, where the high-field mobility is larger at first, but eventually the
low-field mobility exceeds that of the high-field condition (Type B). These types can
be easily identified by varying the separation field amplitude and recording the com-
pensation voltage required for optimal transmission, yielding a so-called dispersion
plot. It should be noted that these types are not intrinsically different. For example,
any Type A case would become a Type B case for high enough field strengths since the
low-field mobility eventually overcomes the high-field one (see below). Also, Type C
can be seen as limiting case of Type B, where the initial excess of the high-field mo-
bility over the low-field mobility vanishes.

Besides the theoretical improvements with regard to the mobility at higher field
strengths mentioned above, no thorough model yet exists to explain differential mo-
bility under various experimental conditions. The effect of solvent vapor in partic-
ular is still a matter of debate; while its effect through the change of the interac-
tion potential and subsequent change in CCS has been discussed [50], other litera-
ture reports suggest a dynamic clustering/declustering mechanism [49–51]. In the
high-field, where the ions internal energy increases due to collisional heating, firmly
bound solvent molecules will boil off, decreasing the overall average CCS and thus in-
creasing the ensemble mobility (as observed for Type A ions). Even in IMS it has been
shown that (dynamic) clustering has to be considered when modeling the reactant
ion peak (RIP), e.g., the proton bound water cluster system [H + (H2O)n]+ [48].

In this contribution we present a thorough model for the calculation of an ion’s mo-
bility under different conditions and over a wide range of field strengths, incorporat-

66



4.3 Computational Methods

ing two-temperature theory, the temperature dependence of the CCS, and the effect
of ion-solvent clustering. To test our model, we simulate dispersion plots of tetram-
ethyl ammonium (Me4N+) in a pure nitrogen atmosphere and seeded with methanol
(MeOH), acetonitrile (ACN) and acetone (ACE). Experimental DMS data for those
conditions are available in the literature [68] and show a range of different behav-
ior, i.e., from Type C, very weak Type B (no modifier added), strong Type B (MeOH
added) and Type A (ACN, ACE) behavior. We reproduce these data by applying the
same formalism for each system studied and having the results solely determined by
the nature of the system (i.e. not through fitting to experimental data or introduction
of system specific parameters). Our model strongly suggests the importance of clus-
tering/declustering reactions for differential mobility and yields the first thorough
method for the estimation of trends in of dispersion plots from first principles.

4.3 Computational Methods

4.3.1 Ab initio calculations

To explore the large configurational space accessible to larger cluster sizes (different
binding sites/configurations of the solvents to the ion), we performed basin hopping
(BH) simulations to find candidate structures for further optimization. Details of the
basin hopping algorithm can be found elsewhere [222, 223]. Briefly, to generate ran-
dom input structures, different moieties (ion and n solvents) were each rotated by a
random angle of −10° ≤ φ≤ 10° around their body-fixed x, y or z axis and randomly
translated along the overall x, y or z axis by −0.5Å ≤ l ≤ 0.5Å. If dihedral angles were
suspected to influence the potential energy (e.g., methyl group rotation in MeOH
compared to a fixed ion-HO framework), they were also randomly altered with an
angle −5° ≤ϕ≤ 5°. These random structures were optimized using the AMBER force
field [113] accompanied by partial charges calculated with the Merz-Singh-Kollman
scheme [224, 225] for a "guess structure" optimized at the B3LYP-GD3/6-31++G(d,p)
[83, 86, 87, 91] level of theory. This procedure yielded up to 20000 structures per
cluster. These structures were subsequently combined into energy bins of a certain
size and the lowest energy structure in each bin were used for geometry compari-
son. Describing the geometry of a molecule by a vector of mass-weighted distances
to the center of mass, two geometries can be compared by cosine similarity, i.e., mea-
suring the angle between these two vectors. If the angle was smaller than a prede-
fined threshold, the structures were categorized as being identical. The BH algorithm
would typically find 10 to 50 unique candidate structures.

Each of the unique candidate structures was then re-optimized at the B3LYP-GD3
/ 6-31++G(d,p) level of theory, as suggested for the MobCal-MPI code [141] (see be-
low). Many candidate structures identified by molecular mechanics yielded the same
structure following DFT treatment. DFT optimizations typically produced 1-4 struc-
tures for which ESP charges [224, 225] and frequency calculations were also per-
formed to obtain input for partition function calculations (see below). Additional
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single-point energy calculations were performed at the B2PLYP-GD3BJ/def2-TZVPP
[75, 88, 92] level of theory for a better description of the electronic energy. Each of
those structures is defined by the number of solvent molecules n = 0,1,2, ..., and an
index to name different conformers α= a,b,c, ..., e.g., [Me4N + (ACN)2]+

b.
For some test cases, molecular dynamic (MD) simulations were performed to test

the influence of vibrational broadening (due to elevated ion temperatures) on the
CCS. Because simple force fields neglect the anharmonic nature of loosely bound
clusters, we conducted ab initio MD simulations with the Atom Centered Density Ma-
trix Propagation (ADMP) [115–117] model using, again, the B3LYP-GD3/6-31++G(d,p)
level of theory. This version of a Car-Parinello [114] density matrix propagation is
much faster than to actually solve the SCF equations at each time step, allowing us to
perform 5000×0.2fs trajectories on a full quantum mechanical (QM) potential energy
surface (PES). To model the temperature effect, a kinetic energy of (3MN −6)kB Tion,
with MN being the number of atoms, kB the Boltzmann constant and Tion the ions
temperature, was applied, randomly distributed over the nuclei. This yields a mean
kinetic energy of 1/2kB Tion per vibrational degree of freedom, as should be the case
for a thermalized multidimensional harmonic oscillator.

All ab initio and molecular mechanics calculations were conducted with the GAUS-
SIAN 16 program package [226].

4.3.2 CCS calculations

Collision cross section (CCS) calculations (Eq. (4.3)) were performed with the recently
developed MobCal-MPI code [141] using the trajectory method [136, 137], which al-
lows for fast calculations of the CCS through parallelization of the different trajecto-
ries. We slightly modified the code to be able to adjust the temperature which is used
for the Boltzmann weighting of the relative velocities (see Eq. (4.3)) and set it to the
effective temperature studied (Eq. (4.4)). All calculations were performed in molec-
ular nitrogen and using 10 cycles, 48 velocity parameter integrations and 512 impact
parameter integrations as suggested by the authors [141]. We used either the equilib-
rium geometry or 100 random samples from the MD simulations (conducted at the
corresponding temperature), all accompanied by the determined ESP charges and
MMFF94 van der Waals parameters [227, 228], to calculate the CCS over a range of
effective temperatures. These datapoints were subsequently fitted to a simple func-
tion of the form a Teff

b + c. We have no complete physical meaning to this fitting
function. It is stated in the literature [50, 132], that the CCS is proportional to Teff

−1/2

for low temperatures / field strengths and an ion/neutral potential proportional to
R−4. However, the corresponding fitting function a Teff

−0.5 + c showed systematic
deviation from the data, probably due to elevated (effective) temperatures. Thus, we
chose to also adjust the exponent for a more accurate interpolation. In terms of phys-
ical meaning, the offset c can be seen as CCS in the infinite temperature limit, when
all long-range interactions become negligible and only the hard-sphere core is con-
tributing to the CCS [229].
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4.3.3 Mobility calculations

The individual drift velocity vD of each structure (n,α) considered is calculated with
Eq. (4.1) using the Mason-Schamp expression for the mobility, K (Eq. (4.2)), the ap-
plied field strength, E and two-temperature theory, i.e., setting T → Teff (Eq. (4.4)).
Since the effective temperature is not known a priori, we start by using the back-
ground gas temperature, Tbath, use the obtained drift velocity to calculate the effec-
tive temperature with Eq. (4.4) and again, calculate the drift velocity with Eq. (4.1)
and (4.2). This is done iteratively until the effective temperature obtained converges
to a predefined threshold of 10−4 K. In this self-consistent calculation, Ω(T ) is also
updated at every iteration step to the effective temperature applied using the analyt-
ical fitting function determined beforehand. Having an analytical function for Ω(T )
dramatically speeds up the calculations since otherwise the CCS would have to be
computed at every step of this self-consistent calculation explicitly using MobCal-
MPI. As a consequence of the different CCS values (viz. their fitting functions), each
cluster has a different effective temperature and a different drift velocity.

4.3.4 Boltzmann weighting

For simplicity, we assume complete equilibration of the system at any given field
strength. A detailed discussion of this assumption is given below. To obtain the pop-
ulation distribution of a thermalized system with different local minima, e.g. dif-
ferent conformers, the quantum-harmonic superposition approximation (QHSA) is
typically used [121–123]. In this formalism, the density of states in each minimum is
assumed to be independent from each other and thus, the relative population Pi of
minimum i can be calculated from the vibrational partition function Zvib,i and the
zero-point corrected electronic energy E0,i , both readily available from ab initio cal-
culations:

Pi =
Zi∑
j Z j

with Zi = Zvib,i exp

(
−E0,i −E0,ref

kB T

)
(4.5)

where the sum in the denominator runs over all minima considered.
We have to modify this description in two ways. First, we are considering dissoci-

ation equilibria (viz. solvent molecules evaporating from the ion) and thus the total
partition function has to be used (including rotational and translational contribu-
tions). Also, the concentration of the solvent [S] has to be considered, because it de-
termines the collision frequency between ions and solvent molecules which, in turn,
determines the equilibrium constant. In particular, if the solvent concentration is
zero, the population of any cluster has to be zero as well, independent from any en-
ergy differences. This leads to

Zi =
(

[S]

N

)ni

Ztot,i Z ñ−ni
tot,S exp

(
−E0,i −E0,ref

kB T

)
(4.6)

where N is the total particle density and ni the number of solvent molecules firmly
attached to the ion in structure i . The partition function for the system is thus a
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product of the (total) partition function of the ionic cluster i and the (total) partition
function of each unbound solvent, with ñ being the largest cluster size considered.
For example, if ñ = 1, the partition function of the bound cluster is just Ztot,i whereas
the partition function of the dissociated system is Ztot,i−1Ztot,S. This ensures that the
partition functions are being calculated in the same configurational space, treating
the bound and dissociated states as two "local minima" on the same PES. The con-
tributions of the additional translational degrees of freedom in ZS under dissociation
is describing an increase in entropy when forming two particles out of one. A sim-
ilar, although not as thorough, formalism was already used in the literature for the
determination of field dependent mobilities under consideration of clustering [50].

The second modification is necessary due to the different ion temperatures of each
structure considered, assuming that the internal degrees of freedom are also heated
and thus also have a temperature of Tion. Initially, we want to deduce the appropriate
formula for a simple system containing two local minima, A and B, as shown in Figure
4.1, and then move on to the generalization of multiple minima. For simplicity, we
drop the index on the energy (E0 → E ). The total partition function of the system can
then be written as an integral over the total density of states ρ(E ) and the Boltzmann
weighting function f (E ):

Z =
∞∫

0

ρ(E ) f (E ) dE (4.7)

The normal superposition approximation now states:

Z =
∞∫

EA=0

ρA(E ) f (E ) dE +
∞∫

EB

ρB(E ) f (E ) dE =ZA +ZB (4.8)

While the first term, ZA, is just the partition function ZA of minimum A, the second
term can be written in a different way:

∞∫
EB

ρB(E )exp

(
− E

kB T

)
dE =

∞∫
EB

ρB(E )exp

(
−E −EB

kB T

)
exp

(
− EB

kB T

)
dE

= exp

(
− EB

kB T

) ∞∫
EB

ρB(E )exp

(
−E −EB

kB T

)
dE

(4.9)

If we now set E −EB = Ẽ and recognize that ρB(E ) = 0 for E < EB, the integral becomes
the partition function of B:

exp

(
− EB

kB T

) ∞∫
0

ρB(Ẽ )exp

(
− Ẽ

kB T

)
dẼ = ZB exp

(
− EB

kB T

)
(4.10)
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Figure 4.1: Quantum Harmonic Superposition Approximation (QHSA). The popu-
lation density in minimum A is according to exp(−E /kB TA) (red) and
minimum B is exp(−(E −EB)/kB TB) (green) scaled by the constant value
of the exponential of minimum A at the energy of minimum B, i.e.,
exp(−EB/kB TA). See text for details.

In total this yields:

Z =ZA +ZB = ZA exp

(
− EA

kB T

)
︸ ︷︷ ︸
=1, since EA=0

+ZB exp

(
− EB

kB T

)
(4.11)

which is the normal superposition approximation described in Eq. (4.5).
If we consider Figure 4.1, it can be seen that the constant exp(−EB/kB T ) is a scaling

factor for the population density function for minimum B with respect to minimum
A because the population density of minimum A declines to this value at that particu-
lar energy. For the case of different temperatures in minima A and B, their Boltzmann
functions will become fA(E ) = exp(−E /kB TA) and fB(E ) = exp(−(E −EB)/kB TB). How-
ever, one must still scale the population distribution in minimum B with the expo-
nential of minimum A since that describes the overall population density at the given
energy. Hence, we set

Z =
∞∫

0

ρA(E ) fA(E ) dE +exp

(
− EB

kB TA

) ∞∫
EB

ρB(E ) fB(E ) dE

= ZA (TA)+ZB (TB) exp

(
− EB

kB TA

) (4.12)
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Thus, the partition function of each minimum is calculated at their respective tem-
perature, however, the scaling factor of the partition function in minimum B is deter-
mined by the exponential decay of the population density in the next lower energy
minimum. For any system with multiple, energy sorted minima (i.e. E0,i+1 > E0,i for
all i ), the scaling factors of all lower energy minima have to be taken into account.
With the lowest energy set to zero (E0,1 = 0), it follows that:

Z1 = Z1 (T1) (4.13a)

Zi = Zi (Ti )
i∏

j=2
exp

(
−E0, j −E0, j−1

kB T j−1

)

= Zi (Ti )exp

(
−

i∑
j=2

E0, j −E0, j−1

kB T j−1

)
for i ≥ 2

(4.13b)

It is worth mentioning that this weighting reduces back to the standard superposition
approximation if all Ti are equal.

Assuming that the dissociated solvent molecules are not heated by the electric field,
their partition function is calculated at the background gas temperature. Hence, we
set Zi ZS → Zi (Ti )ZS(Tbath). Including the concentration dependency, this leads to

Z1 =
(

[S]

N

)n1

Z1(T1)ZS(T )ñ−n1 (4.14a)

Zi =
(

[S]

N

)ni

Zi (Ti )ZS(T )ñ−ni exp

(
−

i∑
j=2

E0, j −E0, j−1

kB T j−1

)
for i ≥ 2 (4.14b)

We calculate all partition functions using standard formula (see Table 2.1) since they
have a relatively simple functional dependence of the temperature and all other input
data (e.g., mass, rotational constants, normal frequencies; read in from the ab initio
output) have to be determined only once, independent from the temperature.

For the determination of the ensemble mobility, we just weight the individual mo-
bilities by the now accessible relative populations:

〈K 〉ens =
∑

i
Ki Pi (4.15)

We want to point out that this approach assumes fast thermal equilibrium compared
to any change in the field strength. This means that we assume an ionic cluster, as
soon as it adopts a new structure through dissociation or change of conformation,
equilibrates to the new effective temperature determined by its CCS instantly. For
fast varying fields (compared to collision frequencies), this may not hold true and ki-
netic simulations with RRKM theory determined rate constants would be needed to
accurately determine the relative population of each cluster structure. This would
also circumvent the rather strange assumption of thermal equilibrium between sys-
tems having different temperatures, which clearly is in contrast to the zeroth law of
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thermodynamics. One would then calculate the rate constants for association A+ +
S [A + S]+ with the collision frequency applying Teff of A+, since this temperature
describes the relative velocity distribution between ion and neutral. The rate con-
stant for dissociation [A + S]+

a A+ + S or rearrangement [A + S]+
a [A + S]+

b would
be calculated applying Tion of [A + S]+

a, since this temperature determines the inter-
nal energy and thus state density at the dissociation or transition state energy. This
approach will be subject to future work.

4.3.5 Dispersion Plot calculation

With the described formalism the ensemble mobility of a cluster-solvent system (Eq.
(4.15)) can be calculated for any given field strength E , which is introduced in the
Mason-Schamp equation for the self-consistent determination of the drift velocity
and effective temperature. By varying the field strength E , the field dependency of the
(ensemble) mobility can be calculated, typically described by the α function, defined
as

α(E) = 〈K (E)〉ens

〈K (0)〉ens
−1 (4.16)

Just to repeat, at any given field strength, the CCS, the mobility, the partition function
and the Boltzmann weight for all structures are re-calculated at the effective temper-
ature determined at this field strength. In case of the zero-field mobility 〈K (0)〉ens,
this reduces to the background gas temperature.

The α function and its derivative with respect to the field strength, α′ = dα/dE , can
now be used to calculate the compensation voltage (CV ) for a known separation field.
Given the peak-to-peak separation voltage SVpp and using a double sine waveform
with maximum amplitude D = 2/3 SVpp [218]:

E(t ) = D

d

(
2

3
sin(ωt )+ 1

3
sin

(
2ωt − π

2

))
(4.17)

in which d is the gap size in the DMS cell, the CV can be calculated according to [50,
215]:

CV =− 〈α(E(t )) ·E(t )〉wf

1+〈α(E(t ))〉wf +〈α′(E(t )) ·E(t )〉wf
·d (4.18)

In this equation, the averages 〈· · · 〉wf are taken over one cycle of the waveform. Do-
ing this for multiple values of SVpp , a full dispersion plot can be calculated from first
principles. We want to point out that through our assumption of fast equilibration
and thus "equilibrium" α functions, the actual waveform frequency, ω, does not ap-
pear in our calculations. Our results thus correspond to the limiting case where ω
is small compared to all chemical processes. Although the calculated α curves could
be compared to experimentally determinedα functions (available from experimental
dispersion plots through a least square fit procedure also relying on Eq. (4.18) [215,
217]), we wanted to provide a method to produce dispersion plots since they are more
readily available from experiment and thus easier for comparison.
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4.4 Results and Discussion

We applied the above formalism to tetramethyl ammonium (Me4N+) in gaseous molec-
ular nitrogen seeded with either methanol (MeOH), acetonitrile (ACN) or acetone
(ACE) vapor. These systems are a good test of theory, because experimental DMS
data is readily available [68], the measured dispersion plots show very different be-
havior (Type A and Type B, depending on the solvent-modified environment), and
the system size is relatively small, allowing for faster computation.

4.4.1 Cluster structures

Figure 4.2 shows all structures n,α for the [Me4N + (ACN)n]+ ion-solvent cluster sys-
tems found by the BH search outlined above. Structures for the ACE and MeOH sys-
tems and energies can be found in Fig. 4.8. For n = 1 only one unique conformer
was found, i.e., where the solvent binds to the triangular face of the tetramethyl am-
monium ion. Multiple structures were found for n = 2 where the two solvents either
bind to two different faces of the tetrahedron (α= a structures) or interact with each
other. For example, MeOH shows a structure where the two solvents are forming a
hydrogen bond chain ([Me4N + (MeOH)2]+

c ). Since we found [Me4N + (ACN)2]+ to be
highly populated for low field strengths (see below, especially Fig. 4.5), we also added
the lowest-energy conformer n = 3 cluster to the formalism. Hence, for all solvents,
we ensured that the highest cluster numbers considered are only slightly populated
at low field strengths.

Taking a look at the calculated zero-point energy corrected binding energies ∆E0,
it becomes clear that MeOH is a rather weak binding solvent (∆E0 = 0.45eV), whereas
ACN and ACE interactions with Me4N+ are much stronger (∆E0 = 0.63eV and ∆E0 =
0.64eV, respectively). This drives the cluster stability and the field dependency of the
cluster size distribution, ultimately leading to different α functions and dispersion
plots (see below).

The cluster geometries reveal an inherent problem with the described formalism;
since loosely bound, the cluster structures are not very rigid and describing them as
isolated states whose partition functions are calculated in the rigid-rotor / harmonic-
oscillator approximation is a source of error. For example, internal rotations may
have small barriers and should thus be treated as a free rotation rather than a vibra-
tion. While this could be done in principle – although it would take some work –
other problems are more difficult to deal with. The inherent anharmonicity of the
dissociation coordinates, the number of low frequency modes, and the (presumably)
low barrier transition between two cluster conformers of the same size all introduce
error within the harmonic-oscillator approximation to the PES and the superposition
approximation. We chose our approach for the sake of having closed formula for the
partition function in which the (ion) temperature can be applied in a straight for-
ward way and we expect that this should be qualitatively correct for relatively rigid
systems. However, our approach is not expected to perform well for fluxional, highly
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Figure 4.2: Geometries of all [Me4N + (ACN)n]+ clusters optimized at the B3LYP-
GD3/6-31++G(d,p) level of theory. Zero-Point corrected binding energies,
∆E0, are given in eV relative to the fully dissociated state. Solvents prefer
interacting via the triangular faces of the tetramethyl ammonium ion.

anharmonic species.
We should also note that there is always the possibility, that some local minima

were missed with the BH workflow and hence were not included in the formalism.
We tried to minimize this source of error by optimizing additional manually gener-
ated cluster structures not provided by BH (e.g. solvents binding to the edges of the
tetrahedron) but none of those were found to be stable minima.

4.4.2 CCS fits: MD vs. rigid samples

The collision cross section (CCS) of a molecule is temperature dependent in two
ways: (1) the effective temperature (following two-temperature theory), which de-
scribes the relative velocity distribution between ions and collision gas, enters Eq.
(4.3) directly, and (2) the internal energy of a molecular ion, corresponding to the ion
temperature, will increase the vibrational motion and thus the occupied configura-
tional space. Point (2) is not taken into account by Eq. (4.3). Thus, performing MD
simulations at a certain ion temperature and taking random sample geometries to
calculate the CCS for each geometry with Eq. (4.3) at the respective effective tem-
perature should incorporate both effects. We note, though, that inelastic collisions
are not modeled this way because the geometries employed for MobCal-MPI calcu-
lations are treated as rigid. New approaches to this problem have been published
recently [142] and it would be interesting to compare the results of the method pre-
sented here when modeling the inelasticity of collisions.
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To conduct our treatment, we took 100 random geometries from each MD sim-
ulation, hence performing 100 CCS calculations for each temperature. We assume
Tion ≈ Teff as should be true for an atomic collision gas and molecular ions [132, p.
358]. Although our calculations are performed in molecular nitrogen, we assume this
relation holds true, rationalized by the rather stiff nature of the N2 bond.

Figure 4.3 shows the results for Me4N+, [Me4N + ACE]+, and [Me4N + (ACE)2]+
a. We

only studied the temperature range up to 700 K because of the time-consuming MD
simulations. Generally, it can be noted thatΩMD ≥Ωrigid, i.e., the rigid CCS are always
within the MD distributions but towards the lower end, hinting at the anharmonic
nature of the PES. For a completely harmonic oscillator, these averages should be
equal. Taking a look at the results for Me4N+ (Fig. 4.3a), it is safe to say that the con-
tribution due to vibrational extension is negligible compared to the error of the CCS
calculation, i.e., the distributions are very narrow and easily within the error of the
rigid calculations. To some degree, this still holds true for the [Me4N + ACE]+ cluster
(Fig. 4.3b), although a significant increase in the width of the distributions is visible.
In both cases, though, the difference between the fitting functions is negligible. In
the case of the [Me4N + (ACE)2]+

a cluster (Fig. 4.3c), the width of the CCS distributions
from MD sampling becomes relatively large. We conducted an in-depth analysis of
the MD simulation performed at 450 K, where the distribution covers a range of more
than 10 Å2. During the trajectory, one of the ACE molecules moved from one face
of the tetramethyl ammonium to another. When ACE passes over the edge, the ion-
solvent cluster increases in size, explaining the broad distribution (skewed towards
higher CCS) observed. This, again, hints that the harmonic oscillator treatment for
the partition function could be improved by explicitly correcting for anharmonicity.
While the mean values still agree within error, the error of the rigid structure CCS does
not encompass the entire MD distribution.

We chose to perform rigid CCS calculation only and ignore the vibrational broad-
ening for two reasons. First, a single fitting function, even when considering all MD
data, cannot account for the width of the CCS distribution and we are only using the
average value of the CCS in the Mason-Schamp equation. Insufficient sampling of the
accessible configurational space due to missed ergodic mixing is also a major prob-
lem of the MD approach and is likely the reason for the nonphysical set of parameters
obtained for [Me4N + (ACE)2]+

a (c should be positive, b is very different compared to
the other functions, see Fig. 4.3c). Second, there are two counteracting effects regard-
ing the temperature. Although the actual size of the molecule increases with tempera-
ture due to vibrational broadening, the overall CCS decreases because the long-range
interactions with the background gas become less important for higher relative ve-
locities [229]. The fact that the two fitting functions in the [Me4N + (ACE)2]+

a case
seem to meet again towards higher temperatures could be interpreted in this man-
ner. This might not be the case for all systems: Especially peptides or proteins can
show significant unfolding and thus overall increase of CCS with (effective) temper-
ature [229]. Relying only on a single geometry optimization (for CCS calculations at
all temperatures) in contrast to a set of rather time-consuming MD simulations (for
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Figure 4.3: Calculated CCSs and respective fitting functions for the MD simulations
(blue) and the rigid ion/cluster structures (red) over a range of effective
temperatures. (a) Me4N+ (b) [Me4N + ACE]+ (c) [Me4N + (ACE)2]+

a. The CCS
distributions for each MD simulation are also shown (right) as histogram
and smooth Gaussian kernel distribution.
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each different temperature) dramatically speeds up the whole formalism. The use of
MD simulations for the CCS fit and an opportunity to calculate the partition function
from the trajectories is discussed below.

We now focus on the fitting functions themselves, which are given for all molecules
in Table 4.1. Functions in Table 4.1 differ from those shown in Figure 4.3 owing to the
extended temperature range. The ranges were extended because mobility calculation
for some species yielded higher temperatures than 700 K; extended fits ensure that
the CCS at a specific temperature was always interpolated and never extrapolated.
Because the exponent can vary, the fitting parameters are rather insensitive, i.e., two
different sets of parameters can yield a very similar fitting function in the tempera-
ture range studied. However, those two functions can differ significantly outside of
that temperature range, rendering extrapolation of the CCS rather difficult. It would
be beneficial to fix the exponent to a value derived from theoretical considerations,
since it might well be a constant. While this is beyond the scope of this work, we do
note that the average exponent is around −0.72 and no trend regarding cluster size is
visible. Also, it is always lower than the value of −0.5, which was previously described
in the literature [50].

Regarding the other two parameters, it can be seen that there is a positive correla-
tion of the offset c with size of the cluster geometry. This is expected since the offset
can be interpreted as CCS in the infinite temperature limit, i.e., when long-range in-
teractions are minimized and the CCS is determined only by hard-sphere collisions
[229]. The proportionality constant a seems to decrease with size of the ion. Another
benefit of knowing the exponent, b, from theory would be that a and c could be de-
termined from just two CCS calculations, covering the needed temperature range.

We should note that the CCS calculations were performed in nitrogen gas only. All
interaction with the solvent vapor is modeled only by the stable clusters. However,
having about 1.5 mol% solvent in the gas phase, should have an influence on the CCS
not only because they are larger than N2, but also because they have a permanent
dipole moment and thus different interaction potentials (V ∝ R−2 for ion-permanent
dipole compared to V ∝ R−4 for ion-induced dipole). Blanc’s law [230] could be used
to account for this additional effect by calculating the CCS in N2 and in the appropri-
ate solvent vapor, then averaging the two according to their respective mole percent.
However, we have no means to calculate the CCS in a pure, e.g., MeOH environment
with comparable accuracy as for N2. Also, Blanc’s law would be a rather rough ap-
proximation for the mixture at higher field strengths. Thus, it is rather difficult to
estimate the error but we expect it to be small enough for the goal of this paper. Note
also that the interaction potential parameters implemented in the MobCal-MPI code
were trained to reproduce experimental CCS at 298.15 K. Although these parameters
could be different at different temperatures, we assumed them to be constant at all
temperatures. Since long-range interactions become less important with increasing
effective temperature, the error introduced by using fixed parameters should vanish
for higher temperatures [140].
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Table 4.1: Parameters for CCS fitting functions (Ω(1,1) = a Teff
b +c). For each ion a dif-

ferent temperature range is considered, depending on the observed maxi-
mum effective temperature. The smaller ions can move faster and thus can
have a higher effective temperature.

Cluster T range in [K] a in [Å2 K−b] b c in [Å2]

Me4N+ 298 – 1300 6250.7 −0.7587 23.15

[Me4N + ACE]+ 298 – 900 6006.8 −0.7619 49.63

[Me4N + (ACE)2]+
a 298 – 700 4284.0 −0.6903 68.90

[Me4N + (ACE)2]+
b 298 – 700 4751.3 −0.7152 66.92

[Me4N + (ACE)2]+
c 298 – 700 4697.6 −0.7073 65.64

[Me4N + (ACE)2]+
d 298 – 700 4543.0 −0.6911 69.46

[Me4N + ACN]+ 298 – 900 5956.0 −0.7719 44.63

[Me4N + (ACN)2]+
a 298 – 700 4556.2 −0.7227 61.95

[Me4N + (ACN)2]+
b 298 – 700 4928.9 −0.7139 61.88

[Me4N + (ACN)2]+
c 298 – 700 4380.7 −0.6952 56.05

[Me4N + (ACN)3]+
a 298 – 700 3725.6 −0.6739 77.73

[Me4N + MeOH]+ 298 – 900 5601.3 −0.7481 36.56

[Me4N + (MeOH)2]+
a 298 – 700 4076.4 −0.6894 44.77

[Me4N + (MeOH)2]+
b 298 – 700 5367.5 −0.7467 50.25

[Me4N + (MeOH)2]+
c 298 – 700 5690.0 −0.7479 50.61

4.4.3 Mobility calculations

Having determined the geometries, CCS fits, partition function parameters, and en-
ergies, we can now conduct the mobility calculations. Figure 4.4 shows exemplary
results for the [Me4N + (ACE)n]+ system for two different field strengths, i.e., 25 Td
and 76 Td. A background gas temperature of 373 K and a solvent concentration of
1.5 mol% was applied.

In Figures 4.4a-c, which show the self-consistent mobility results, it can be seen
that a larger CCS correlates with a lower effective temperature and also a lower drift
velocity, as one would expect. During the low-field condition the effective tempera-
ture is only slightly increased compared to the background gas, whereas substantial
heating occurs for the small Me4N+ ion under high-field conditions. This behavior
arises due to the increase in drift velocity owing to the higher electric field and con-
comitant decrease in CCS (see Fig. 4.4c and Fig. 4.3). The effective temperatures of
the larger clusters also increase with field strength, but not as much as it does for the
small bare ion.

The data from Fig. 4.4b-c gives the opportunity to calculate collision frequencies
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according to two-temperature theory [132, p. 275]. For the smallest ion, i.e., Me4N+,
we estimate the collision frequency with N2 to be 1.5×1010 s−1 at 25 Td. While the
larger clusters have a higher CCS, their relative velocities are smaller due to the lower
effective temperature and the higher reduced mass. The resulting collision frequency
is in the same order of magnitude, e.g. for the [Me4N + (ACE)2]+

a cluster at 25 Td about
2.1×1010 s−1. Typical DMS devices operate with a waveform frequency in the MHz
regime, thus, the collision frequency is four orders of magnitude higher. This vali-
dates our assumption of instant thermalization since there is a sufficient number of
collisions per cycle of the waveform.

Figure 4.4d shows the Boltzmann weighing factors derived from our implementa-
tion of the superposition approximation, again assuming Tion ≈ Teff [132, p. 359].
Since the [Me4N + (ACE)2]+

a cluster is energetically lowest, its weight factor is always
1, independent of temperature (cf. Eqs. (4.13a), (4.14a)). In contrast, the bare ion
has the lowest weighting because it is the highest in energy (no contributions from
bound solvents). Multiplying these weights with the partition functions plotted in
Fig 4.4e result in the population distribution shown in Fig 4.4f. Although the bare
ion has the lowest weight, its partition function is orders of magnitude larger due to
the additional translational degrees of freedom (or in other words, the entropy gain
due to complete dissociation). Changing the field strength results in a change in the
Boltzmann weights and the associated partition functions. The careful interaction of
those two values ultimately determines the relative population of each cluster struc-
ture. Since the variation in weights and partition functions are not the same for all
structures, the resulting population distribution changes with field strength. As ex-
pected, the mean cluster size decreases with higher field strength, ultimately leading
to a higher ensemble mobility (Type A behavior).

It should be noted that, while the self-consistent calculation is an elegant way of
calculating drift velocity and effective temperature from just the CCS, the use of the
Mason-Schamp equation is still a source of some error. Even when applying two-
temperature theory, there are known deviations in the order of 10 % at higher field
strengths [214]. Although there are higher order corrections possible to two-temper-
ature theory, as well as a different approach called momentum-transfer theory [135,
214], to date there is no closed formula available which correctly predicts the mobility
of an ion for high field strengths.

We also want to stress that the error in the partition function calculations increases
with temperature. This is due to: (1) neglecting anharmonic contributions, which be-
come more important at higher temperatures (as apparent in the CCS distributions,
see Fig. 4.3), and (2) neglecting ro-vibrational coupling, which increases with tem-
perature and is especially significant for low frequency dissociative modes.

Hence, both factors in Eq. (4.15), i.e., the individual mobility and the relative pop-
ulation are source to an increasing error with increasing field strength.

Figure 4.5a shows theα function and its derivative, as determined with our method,
for the [Me4N + (ACN)n]+ system in N2 with Tbath = 373K and a solvent vapor con-
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Figure 4.4: (a) drift velocities, (b) effective temperatures, (c) collision cross sections,
(d) Boltzmann weights, (e) partition functions and (f) cluster size distribu-
tions for 25 Td (500 V/mm at 1 atm and 373 K, blue data) and 76 Td (1500
V/mm at 1 atm and 373 K, red data) for the [Me4N+(ACE)n]+ system. As
expected, the increase in field strength, and thus effective temperature,
shifts the cluster size distribution to smaller cluster sizes, increasing the
overall mobility of the ensemble (Type A). For a detailed explanation of
the panels, see text.
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Figure 4.5: (a) α curve and its derivative (b) relative ion-solvent cluster population
as a function of reduced field strength (E/N ) for the [Me4N + (ACN)n]+

system. The strong increase in α corresponds to a Type A behavior and
is reasoned by the overall decrease of CCS due to a smaller average cluster
size. Only for high field strengths, where only the bare ion is populated, the
hard-sphere effect becomes significant and the α curve returns to smaller
values. Similar figures for MeOH and ACE can be found in Fig. 4.9

centration of 1.5 mol%. Figure 4.5b shows the corresponding relative population of
each cluster structure. The small changes of the distribution up to 20 Td lead to
an almost constant mobility (or α function), which can be interpreted as the well-
known field independency of the mobility in the low-field limit. Further increasing
the field strength leads to a gradual decrease of the mean cluster size and thus mean
CCS, which in turn increases the mobility of the ensemble (Type A). At very high field
strengths, when there is no larger change in cluster size distribution (Pn=0 → 1) and
the individual CCS has almost converged to its asymptote c, the mobility actually de-
creases due to the fact that K ∝ 1/

p
Teff (cf. Eq. (4.2)). Thus, three major factors

contribute to the overall mobility of an ensemble: (1) the general K ∝ 1/
p

Teff effect
(sometimes called "hard-sphere effect" [217]), (2) the change of CCS when the back-
ground gas is polarizable and (3) the change in the cluster distribution when there
are polar solvents able to form stable clusters with the ion.

4.4.4 Dispersion plots

Figure 4.6 shows the calculated and experimental dispersion plots for Me4N+ in pure
N2 and seeded with 1.5 mol% of MeOH, ACN and ACE. Although the authors of the
experimental paper report a temperature of 423 K inside the DMS cell [68], using
a thermocouple for a coarse measurement of the gas temperature inside the DMS
cell, we found the temperature to be only around 373 K. Consequently, we applied
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Figure 4.6: Calculated (blue) and experimental (orange) dispersion plots for Me4N+

in (a) N2 at 1 atm and 373 K, and (b) N2 seeded with MeOH, (c) ACN, and
(d) ACE as modifiers (1.5 mol% at 373 K). The experimental data are taken
from [68].

Tbath = 373K in the calculations. Variations of the temperature used for the calcula-
tions showed some noticeable change in the dispersion plots within ±20 degrees but
no qualitative difference within the aim of this work. A gap size of d = 1mm is used
is Eq. (4.17) and (4.18) and we discretized the waveform into 1000 time steps for the
averages in Eq. (4.18), which was sufficient with regard to convergence.

First, we discuss the dispersion plot of the pure nitrogen environment. Because
the CCS of the bare ion decreases with effective temperature, the mobility increases
slightly at lower field strengths, thus requiring negative CVs to correct trajectories.
Further increasing the separation field strength leads to hard-sphere scattering, which
requires increasingly positive CV values for optimal ion transmission. Thus, a very
weak Type B curve is generated. The calculated dispersion plot nicely reproduces the
experimental data and the two curves match qualitatively.

Upon adding a weakly-interacting solvent vapor to the system, i.e., MeOH, where
only n = 1 is populated even at low field strengths (see Fig. 4.9b), the Type B curve be-
comes more pronounced (i.e., the minimum CV becomes more negative and shifts to
higher SV values). Our model is able to reproduce this behavior qualitatively, as well
as the overall shape of the curve. In particular the SV where the CV has a minimum,
called SV @CVmin in the literature and reported to correlate with binding energy and
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other physicochemical parameters such as pKa , pKb and Hammett parameters [231],
is nicely reproduced. Introducing a more strongly-interacting solvent vapor (ACN,
ACE) yields Type A behavior for the range of SV studied. This indicates that the ion
mobility under the high-field conditions is larger than under low-field conditions.
Again, this behavior is qualitatively reproduced by our model. Note, that the formal-
ism is the same in all cases; no system specific parameters are introduced and every
result arises from the (modeled) nature of the system itself.

At SVpp > 2000V significant deviations occur between calculated and experimental
dispersion curves, especially for ACN. There are several sources that could give rise
to these errors. As mentioned previously, the description of the partition functions
for high ion temperatures and the use of the Mason-Schamp equation for very high
field strengths introduce errors. In addition of those sources of error, our assumption
of instant equilibration could break down. While the N2 collision frequency in the
order of 1010 s−1 should be sufficient to thermalize the ions fast enough, the cluster-
ing reaction depends on the collision frequency with the solvents rather than with
N2. This number is difficult to calculate since we don’t have access to Ω(1,1)

solvent. A
rough estimate could be given by just scaling the N2 collision frequency by the mol%
of the solvents which would give a frequency in the order of 108 s−1. Thus, there are
only about 100 collisions per cycle of the waveform with solvent molecules. Fig. 4.5
shows that at low-field conditions the n = 2 cluster dominates the population, while
at high-field conditions only the bare ion is populated (SVpp = 4000V corresponds
to a maximum reduced field strength of 135 Td under the given conditions). Thus,
having a waveform frequency of ω= 3MHz, the cluster formation reaction might not
be fast enough due to insufficient collision numbers to populate the n = 2 state to
its equilibrium value. Additionally, the rate of evaporation given by the unimolecular
decay of the heated ions in the high-field portion could also be a limiting factor. Es-
pecially a change from n = 2 to n = 0 could be difficult to achieve on these time scales.
Indeed, the more negative CV values, compared to the experimental values, suggest
a larger dynamic change in clustering in the calculations than in the experiment. Ki-
netic simulations with theoretically determined rate constants could circumvent this
problem and lead to a more accurate population distribution. The deviations in the
ACE case are significantly smaller and indeed the change in cluster size between high-
and low-field is not as pronounced (see Fig. 4.9a), supporting the suggested error due
to non-equilibrium conditions. For MeOH, an underestimation instead of an overes-
timation is visible and the deviations are smaller overall (see Fig. 4.6b). Since MeOH
shows only weak clustering compared to ACN and ACE (see Fig. 4.9b), we don’t ex-
pect kinetic effects to play a major role. Thus, the deviations are solely due to other
errors already mentioned, e.g., neglecting anharmonicity of the PES and the use of
two-temperature theory for very high field strengths.

It is important to stress again the critical role of the CCS fitting function. Applying a
Ω∝ 1/

p
Teff fitting function as stated in the literature [50, 132] would actually cancel

the two-temperature effect in the Mason-Schamp equation, as already mentioned in
the literature [50]. This would lead to a constant mobility for the pure N2 environment
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leading to no differential mobility (CV = 0V for all SVpp ). This is clearly not observed
in the experimental data (see Fig. 4.6a). The determined exponent of b <−0.5 is thus
critical for reproducing the correct form of the dispersion plot.

To further test our model, we exploited varying the background gas temperature and
the solvent concentration (see Fig. 4.7). Experimental data [50, 215, 219, 232] show
that with increasing concentration of the solvent vapor, more negative CV values are
needed to transmit the ions through the DMS cell. This results in a pronounced Type
B behavior that evolves into Type A as concentration increases. This can be explained
by a higher degree of clustering and thus larger change in CCS upon evaporation since
an increase in gas phase concentration will shift the equilibrium towards more clus-
tered ions. This is modeled by the concentration dependency of the relative popu-
lation (cf. Eq. (4.6) and (4.14)) and our model nicely reproduces this trend (see Fig.
4.7a).

Increasing the background gas temperature reduces clustering due to an increased
internal energy and subsequent shift of the equilibrium towards higher degree of dis-
sociation. Consequently, less pronounced Type B behavior is observed experimen-
tally as Tbath increases [51, 219, 233]. Again, our model reproduces this trend cor-
rectly (see Fig. 4.7b). When Tbath is raised to the point at which ion-solvent clustering
is prevented even at low-field conditions, the dispersion plot converges to that of the
pure N2 atmosphere (cf. Fig. 4.7b dashed line) as expected.
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Figure 4.7: (a) Variations of modifier concentration and (b) background gas temper-
ature for Me4N+ in N2 (1 atm) seeded with MeOH (expt conditions are at
1.5 mol% MeOH and 373 K). Increasing the concentration as well as de-
creasing the temperature leads to pronounced Type B behavior due to
higher degree of clustering.
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4.5 Conclusion

The ability of our model to reproduce dispersion plots for different separation con-
ditions, i.e., different (or no) solvents added, different concentrations and different
background gas temperatures, strongly suggests that we capture the most important
effects leading to differential mobility, namely clustering, the hard-sphere effect and
the change in individual CCS with effective temperature.

Using two-temperature theory we model the overall dependence of the ion mobil-
ity with field strength. This is important to account for the overall decrease of mobil-
ity with field strength, known as the hard-sphere effect. With no solvent added and
having a very weakly polarizable gas like Helium, this effect is dominant, leading to
Type C behavior. While two-temperature theory covers most of this effect, it is only
an approximation and known to show deviations for very high field strengths [214].
Higher order terms or a different approach called momentum-transfer theory [135,
214] could improve this description.

Having a polarizable collision gas like N2, it is important to model the temperature
dependence of the CCS. The reported dependency ofΩ(1,1) ∝ T −0.5

eff [50, 132] not only
shows systematic deviations from calculated CCS values, in combination with two-
temperature theory it also fails to reproduce Type B or Type C systems. We model
the functional dependency by fitting a more general function to CCS values of the
equilibrium structure at different temperatures. Doing this, we neglect vibrational
broadening of the molecule and inelasticity of collisions.

If solvents are added to the gas phase, clustering plays an important role and only
when this is taken into account, Type A dispersion plots can be predicted. We model
the cluster size distribution by assuming fast thermal equilibrium and using a special
version of the superposition approximation, applying harmonic approximations to
the partition functions. While this seems to model the data qualitatively, two main
errors are introduced: (1) the equilibrium condition might not hold for fast oscillat-
ing fields. Kinetic simulations with theoretically determined rate constants would
give a better description of the population distribution. (2) the simple description of
the partition functions neglects anharmonicity of the PES, as well as ro-vibrational
coupling and easy conversion between cluster structures. This could be partially
improved by using e.g. the quasi-harmonic approximation [234–236], where the vi-
brational partition function is determined from MD simulations on the anharmonic
surface. Conducting MD simulations for a set of temperatures (ensuring sufficient
sampling of the configurational space) could be used to obtain a more accurate de-
scription of the temperature dependence of the vibrational partition function as well
as more accurate CCS fits (accounting for vibrational broadening).

Despite the simplifications made, our model is able to predict trends in DMS dis-
persion plots from first principles for different experimental conditions, i.e., different
(or no) solvents added, different solvent concentration and different background gas
temperature. To our knowledge, this is the first time a thorough model is presented
that can account for all these effects. The importance of different contributions to
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overall mobility, especially clustering with solvent molecules, is highlighted.
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Figure 4.8: Geometries of all [Me4N + (ACE)n]+ and [Me4N + (MeOH)n]+ clusters op-
timized at the B3LYP-GD3/6-31++G(d,p) level of theory. Zero-Point cor-
rected binding energies, ∆E0, are given in eV relative to the dissociated
state.
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Figure 4.9: (i)α curve and its derivative and (ii) relative ion-solvent cluster population
as a function of reduced field strength (E/N ) for the [Me4N + (ACE)n]+ and
[Me4N + (MeOH)n]+ systems.

4.7 Follow-up work

To further test the finding that dynamic clustering is a major contribution to differ-
ential mobility, as well as testing the capabilities of the developed model for the pre-
diction of trends in dispersion plots, unusual experimental results can be used. One
such case are Type D dispersion plots [237, 238], where the ions show Type C behavior
initially but switch to Type A above a certain SV value. Hypothesizing very strong but
inflexible clustering, a solvent would bind to the ion and would be stable throughout
the whole waveform cycle. In absence of dynamic clustering, the differential mobil-
ity would be negative, leading to the (initial) Type C behavior. Only when the field
becomes strong enough, dynamic clustering starts, eventually leading to Type A be-
havior, as explained above in this chapter.

As an example case for ions with Type D behavior, the tricarbastannatrane cation,
N(CH2CH2CH2)3Sn+ (see Fig. 4.10), is chosen. IRMPD studies [239] have shown that
the tin atom offers a very potent binding site to solvent molecules, rendering the tri-
carbastannatrane ion a good example to study strong clustering ions.
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(a) Side view (b) Front view

Figure 4.10: Geometry of the tricarbastannatrane ion. The N – Sn bond inside the cage
resembles a C3 symmetry axis. Hydrogen atoms are removed for clarity.

4.7.1 Methods

Experimental For a detailed description of the experimental methods, the reader
is referred to the original paper [195]. Briefly, tricarbastannatrane chloride is dis-
solved in a 99:1 acetonitrile/methanol mixture leading a 100 ngmL−1 ESI solution.
The differential mobility is studied with a DMS coupled to a hybrid triple quadrupole
linear ion trap (SCIEX; Concord, ON, Canada), either in pure N2 environment or N2

seeded with 1.5 mol% of ACN or ACE. The bath gas temperature is also varied, set-
ting the DMS plate temperatures to 150 ◦C, 225 ◦C, and 300 ◦C. The peak-to-peak SV
is varied from 0−4000V.

Computational The computational methods are essentially the same as described
above in this chapter. However, for a better description of the electronic energy, the
single-point energy calculations are performed on the B2PLYP-GD3BJ/def2-TZVPP
level of theory including counterpoise correction [240] to account for basis set super-
position error. To calculate the partial charges on tin, an atomic radius of 2.17 Å was
chosen [241], the atomic polarizability, necessary for the MMFF94 force field, was set
to 7.809 Å3 [242].

4.7.2 Results and Discussion

The suggested strong clustering ability of the tricarbastannatrane ion is investigated
by analyzing the mass spectrum observed under the different DMS conditions (N2

pure and seeded with ACN or ACE). While the first quadrupole (Q1) is scanned, the
third (Q3) is set to transmit only the bare tricarbastannatrane ion. For the pure N2

environment in the DMS cell, the mass spectrum only show the A+ signal, suggesting
that no significant clustering due to the ESI solution occurred. However, seeding the
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Table 4.2: Gibbs enthalpies of cluster dissociation of the tricarbastannatrane-solvent
clusters with different binding motifs and up to two solvent molecules.
Negative values suggest spontaneous dissociation.

Reaction Solv
Binding Energy / kJmol−1

150 ◦C 225 ◦C 300 ◦C

ACE 39.2 30.7 22.4

ACN 48.7 41.9 35.2

ACE 6.2 0.3 -5.3

ACN 7.7 2.1 -3.3

ACE 28.2 19.5 11.0

ACN 32.8 26.0 19.2

ACE -4.9 -10.8 -16.6

ACN -8.2 -13.8 -19.3

DMS cell with solvents, the [A + ACE]+ and [A + ACN]+ clusters are the main signals,
although the unclustered tricarbastannatrane signal is observed as well. These re-
sults suggest (1) that the clusters form to a significant amount only when solvents are
added to the DMS cell, (2) that they are stable enough to survive the ion transfer into
Q1 but (3) fragment between Q1 and Q3. The missing signals of the multiple clustered
species suggest that the binding energies of additional solvents is much lower.

These findings are supported by the theoretical calculations of Gibbs enthalpies of
cluster dissociation (cf. Eq. (2.28)), as shown in Table 4.2. The binding motifs where
the solvent binds to the tin are much more stable as shown by the large positive dis-
sociation enthalpies. The N-binding is much weaker, sometimes even spontaneous
dissociation (negative∆RG) is predicted. This renders tricarbastannatrane a good ex-
ample case of very strong and exclusive clustering, i.e., one solvent binds strongly to
the ion and essentially prevents further clustering.

Experimental and theoretical dispersion plots are shown in Fig. 4.11. Regarding the
pure N2 environment, Fig. 4.11a, the experimental results show Type C behavior as
expected for a rigid, non-clustering ion (hard-sphere effect). This behavior is, as well
as the dependency on the bath gas temperature, correctly predicted by the model
described in this chapter, as can be seen in Fig. 4.11d. Note though, that the absolute
compensation voltages are overestimated.

In N2 environment seeded with 1.5 mol% of ACE or ACN, Type D behavior is ob-
served (Fig. 4.11b and 4.11c). I.e., for low SVpp values, positive CV values are needed
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Figure 4.11: Experimental (a-c) and theoretical (d-f) dispersion plots of
N(CH2CH2CH2)3Sn+ in a pure N2 environment and N2 seeded with
1.5 mol% of ACE and ACN. All panels show three temperatures corre-
sponding to DMS plate temperatures of 150 ◦C ( ), 225 ◦C ( ) and
300 ◦C ( ).
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for ion transmission. This is the behavior of a rigid, non-clustering ion. Only when a
certain separation amplitude is reached, the dispersion plots rapidly move to nega-
tive CV values, normally hinting to dynamic clustering. Furthermore, increasing the
bath gas temperature, the transition from positive to negative CV values appears at
lower SVpp values. This is very unusual since the increase of the collision gas temper-
ature normally leads to more positive CV values (see for example Fig. 4.7b).

Following the hypothesis stated above, the strong bound N(CH2CH2CH2)3Sn+···S
cluster, where S is either ACE or ACN, survives the whole waveform cycle for low sep-
aration field amplitudes. Furthermore, since the binding to one S essentially prevents
additional clustering (see Table 4.2), there is no dynamic clustering, leading to the ob-
served Type C behavior. Only when the separation amplitude reaches high enough
values that dynamic clustering starts, the CV values shift to the negative. Increasing
the background gas temperature, and thus the internal energy, increases Teff (see Eq.
(4.4)) and thus dissociation / dynamic clustering starts at lower separation field am-
plitudes. Thus, the observed Type D behavior is explained by the hypothesized strong
clustering.

To further support this model, the theoretical dispersion plots are determined with
the method outlined above. As can be seen in Fig. 4.11e and 4.11f, the observed
Type D behavior as well as the unusual dependency of the dispersion curves on the
background gas temperature is correctly predicted. It should be noted that the agree-
ment is only semi-quantitative in that CV values are overestimated (both in positive
and negative direction). Especially for the ACN environment, a much larger Type
C maximum is predicted than observed. Reasons for the discrepancy are likely the
inaccuracy of the Mason-Schamp equation at high field strengths even with two-
temperature theory applied, the negligence of anharmonic effects for the partition
functions, neglecting the effect of the added solvents on the collision cross section,
and possible non-equilibrium conditions due to the fast changing field - as already
discussed above. Nevertheless, this agreement allows to further analyze the calcu-
lated ion populations for different experimental conditions (SVpp , Tbath).

This is done in Fig. 4.12, where the population, Pn , of the clustered and unclus-
tered ion of the N(CH2CH2CH2)3Sn+···ACE system, averaged over one waveform cy-
cle, is plotted against the respective separation field amplitude, SVpp . It is clearly
visible that the clustered species dominates the ion distribution for low SVpp values.
〈Pn=1〉wf ≈ 1 means that even during the high field phase, no significant decluster-
ing occurs. This supports the hypothesis of the clustered ion acting as rigid molecule
without dynamic clustering for small SVpp values. Only then the field induced heat-
ing becomes large enough (larger separation field amplitudes), dynamic clustering
starts: 〈Pn=1〉wf falls significantly below unity while 〈Pn=0〉wf rises by the same amount,
meaning that during the high field portion of the respective separation field cycle,
the cluster dissociates. Increasing the effective temperature through heating of the
background gas promotes this effect and the point at which dynamic clustering starts
shifts to lower SVpp values. It is noted that these points accord well with the region in
the (measured) dispersion plots, where the initial Type C behavior switches to Type A.
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These critical points in the Type D behavior are thus well captured by the presented
model.
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Figure 4.12: Population of the clustered and unclustered tricarbastannatrane ion, av-
eraged over the whole waveform, for multiple separation field ampli-
tudes and background gas temperatures. The clustered species domi-
nates the distribution throughout the whole waveform. Only when SVpp

becomes large enough, the average population falls significantly below
unity because the cluster dissociates during the high field portion of the
waveform.

4.7.3 Conclusion

Tricarbastannatrane cations in a N2 environment seeded with 1.5 mol% of ACE or
ACN show unusual Type D behavior in dispersion plot measurements. This follow-up
work confirms the hypothesized explanation for the Type D behavior, i.e., extremely
strong and also exclusive clustering of solvents to the ion. The observed clustered
species in the mass spectrum (where only n = 0,1 is recorded) as well as the tempera-
ture dependency of the Type D curves, i.e., higher bath gas temperatures lead to more
negative CV values, are strong evidences for this model since they readily can be ex-
plained by the suggested strong clustering. Theoretical modeling of the measured
dispersion plots, on the basis of dynamic clustering, show good semi-quantitative
agreement with respect to the form of the dispersion curves as well as the bath gas
temperature dependency. The modeled binding energies and resulting cluster pop-
ulation distribution, showing strong and exclusive clustering, further support the hy-
pothesized model.

This study resembles yet another strong evidence that dynamic clustering of ions
and solvents during the asymmetric waveform inside the DMS cell is a major fac-
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tor contributing to the field dependency of the ion mobility. Moreover, the ability to
(semi-quantitatively) predict unusual Type D behavior and its background gas tem-
perature dependency with the presented theoretical model further suggests that the
major factors of differential mobility are incorporated in the calculations, i.e., hard-
sphere effect, the dependency of the CCS on the effective temperature and dynamic
clustering with solvent molecules during the waveform cycle.
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5 Thermochemistry from MD
Simulations

Nomenclature of coordinates in this chapter vary from the rest of this work to be con-
sistent with the nomenclature used in the literature. Some parts of this chapter were
published by John Wiley & Sons Ltd under a CC-BY license in

A. Haack, T. Benter, and H. Kersten, “Computational analysis of the proton bound
acetonitrile dimer, (ACN)2H+”, Rapid Communications in Mass Spectrometry, DOI:
10.1002/rcm.8767 (2020)

5.1 Abstract

The theoretical treatment of loosely bound protonated gas phase clusters is rather
challenging, since common ab-initio approaches do not correctly reflect the distinct
anharmonic conformation of the potential energy surface. This contribution devel-
ops a theoretical framework, based on the quasi-harmonic approximation (QHA),
to calculate vibrational partition functions and thermochemical properties of small
molecular clusters. Multiple molecular dynamics simulations of all studied molecules
provide configurational distributions and ensure for sufficient ergodic mixing. For
the description of the configurational distribution we use normal coordinates from
standard ab initio normal mode analysis, rather than Cartesian or internal coordi-
nates. Possible erroneous effects from large amplitude motion are avoided by trans-
forming the molecule into the Eckart frame for each time step along the trajectory.
Furthermore, the Eckart-Sayvetz condition is explicitly enforced for internal rota-
tions, which are well known to falsify QHA results. Partition functions of these mo-
tions are then calculated with standard formulas. We apply our treatment to two ex-
amples, namely the formation of the proton bound acetonitrile dimer (ACN)2H+ and
a mixed amine-methanol cluster [MeNH3 + MeOH]+. While in the case of ACN our
method performed better than the standard harmonic approximation, it was slightly
worse in the latter. Inherent errors and possibilities for improvement are discussed.

5.2 Introduction

Proton bound clusters are ubiquitously present in atmospheric pressure (AP) mass
spectrometry as multiple publications, reviews and book articles [25, 29, 31, 244–
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5 Thermochemistry from MD Simulations

246] have shown. Many ionization techniques generate abundant primary ions, e.g.,
the initially formed N2

+ in APCI [27, 247, 248], which are prone to subsequent trans-
formation into cluster structures with any dipole moment holding molecule present
in the ion source. Main actors are water from ambient air and solvent molecules
from a liquid sample injection. Consequently, the presence of charged water [26, 32],
methanol [165, 187, 188] and acetonitrile [170, 174–176] cluster distributions have
been reported, just to name a few. These somewhat stable ions can further react
with neutral analyte (or dopant) molecules to form mixed solvent-analyte clusters,
also reported in the literature [32]. Thermodynamics essentially determines whether
the analyte is protonated to obtain a [M + H]+ signal, the mixed cluster remains or
the analyte is not protonated at all [31, 143, 144]. This includes parameters such as
solvent concentration, pressure, ion temperature through electric field strength and
ion transfer to the analyzer [32], which always need to be considered and carefully as-
sessed for a comprehensive description. Also the ESI process is largely determined by
cluster formation, either due to shrinking droplets (charge residue model [38, 39]) or
ejection from the droplets (ion evaporation model [36]). There is also strong evidence
in the differential mobility (DMS, FAIMS) community that the periodic formation and
decomposition of solvent clusters around the analyte with changing ion temperature
in high and low field phases highly contributes to the different observed mobilities
[68, 69, 194, 217, 231]. In previous publications [143, 144] we have shown the pivotal
role of prolonged cluster chemistry with gas phase additives that strongly enhance or
decrease ion signals and alter the observed charge state distribution of peptides or
small multiple charged diamines. Despite their importance, in particular regarding
ion generation and suppression, often little attention is paid to the cluster chemistry
in AP ion sources [25].

A comprehensive theoretical framework to predict dominant cluster species and
their thermodynamic properties would be of great benefit for more tailored experi-
mental designs. Indeed, theoretical investigations of reaction mechanisms or ther-
mochemistry are increasingly used owing to increasing computing power, improving
method accuracy and not least the possibility to employ black-box program pack-
ages, making it available to a broader spectrum of users. For proton bound clusters,
however, standard methods often fail. This is mainly attributed to the commonly ap-
plied harmonic approximation (HA) for the description of the potential energy sur-
face (PES). If the potential is highly anharmonic, has two or more wells or would bet-
ter be described by a quartic, rather than a quadratic function - all long known char-
acteristics for H-bonded systems [186, 249] - then a HA based PES will introduce large
errors to the derived energy levels, partition functions and thermochemical proper-
ties like enthalpy, entropy and Gibbs enthalpy. Additionally, internal rotations around
the H-bond often show very low barriers opening the configurational distribution to
occupy multiple wells. In a recent publication [144] we stumbled upon an especially
difficult case, the proton bound acetonitrile dimer (ACN)2H+. Firstly, the course of
potential energy for the oscillating proton between the two ACN nitrogen atoms es-
sentially followed a quartic form. Secondly, the energy barrier for the internal rota-
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tion of the two methyl groups with respect to each other was reported to be as little as
1.26×10−7 Eh, which makes it a free rotor rather than a vibration. Redoing these cal-
culations with an increased accuracy even lowered the barrier to 9.6×10−8 Eh (see
Figure 5.3a). Different methods have been introduced over the years to explicitly
tackle these issues. One famous approach to the anharmonicity of the potential is
the vibrational perturbation theory to 2nd order (VPT2), where the potential along the
normal coordinates is described by the harmonic term and an additional anharmonic
one, also incorporating the pair-wise coupling of the modes [103]. These vibrational
anharmonic constants are computed from numerical 3rd and 4th derivatives along the
normal coordinates [104, 105] and corrections are made to the normal frequencies,
the zero point energy (ZPE) and the rotational constants since ro-vibrational cou-
pling, like centrifugal distortion, can be incorporated in this treatment. An improved
theory (HDCPT2), paying special attention to symmetry, resonances and internal ro-
tation, has been reported [106] and is implemented in the GAUSSIAN 16 program
package [226]. This treatment, as all perturbative approaches, only works well with
a relatively small anharmonic contribution compared to the harmonic part. How-
ever, this is not the case for a quartic potential and double well potentials cannot be
accounted for either. For a small number of problematic modes, the potential can
be scanned and the nuclear Schrödinger equation can be explicitly solved for these
modes, e.g., by means of the Fourier Grid Hamiltonian method [107]. This approach
is fairly accurate for any shape of potential energy curve, however, it neglects the cou-
pling between modes - although the Fourier Grid Hamiltonian method has been ex-
tended up to three dimensions [108] - and it is rather cumbersome, since it requires a
scan for each single mode. It is worth noting that this procedure can also be done by
scanning any internal coordinate, not only the normal coordinates [109, 110]. With
the free available NuSol program [111] the wavefunction of an oscillating proton can
readily be calculated in three-dimensional space, provided that its motion is com-
pletely decoupled from any other degree of freedom. A more general treatment of
the nuclear motion is the Vibrational Self Consistent Field (VSCF) approach [250],
which has been combined with electronic structure calculations and perturbation-
theoretic extensions [251]. Herein the nuclear Schrödinger equation is solved around
the equilibrium from a full grid or polynomial representation of the PES under the as-
sumption that the total wavefunction is a product of the wavefunctions of each mode.
In this way, one obtains a set of single-mode Schrödinger equations based on an ef-
fective potential, which takes into account the impact of all other modes. Hence, the
wavefunctions are iteratively determined until this effective potential converges. In
principle, this is a fairly accurate approach, especially with the pairwise interactions
between the normal modes. The bottleneck however, is the representation of the PES
through gird points in one to four dimensions. This is very time consuming even for
fairly small systems (< 10 atoms).

In this work we estimate partition functions and derive thermochemical data for
proton bound clusters with the quasiharmonic approximation (QHA). This formal-
ism was introduced by Karplus and Kushick [234–236], first in 1981, and was origi-
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nally designed for macromolecules. Pros and cons of the QHA approach for the spe-
cific case of proton bound clusters will be discussed with respect to computational
cost and accuracy.

5.3 Theory and Methods

5.3.1 The quasiharmonic approximation (QHA)

Following closely the description of Levy et al. [235], the classical partition function
of a molecule containing MN atoms can be expressed as

Z = 1

h3MN

∫
exp

(−βH
)

dpx dx (5.1)

with h as the Planck constant, β = 1/kB T the inverse temperature with kB as the
Boltzmann constant and H = Ekin(px )+ Epot(x) the classical Hamiltonian depend-
ing on 3MN Cartesian coordinates x and their conjugate momenta px . Separating
out translational and overall rotational motion (neglecting ro-vibrational coupling)
leaves the classical vibrational partition function

Zvib = 1

h3MN−6

∫
exp

(−βHint
)

dpq dq (5.2)

with integration over the internal coordinates q and their conjugate momenta pq .
The internal Hamiltonian Hint reads

Hint =
1

2
pq

T ·G−1 ·pq + 1

2
q T ·F ·q (5.3)

with the kinetic and potential energy matrices G and F , respectively. G is also known
as Wilson’s G-matrix [100] and includes the transformation between Cartesian and
internal coordinates

Gi j =
3MN∑
k=1

1

mk

∂qi

∂xk

∂q j

∂xk
(5.4)

The derivatives in Eq. (5.4) depend on q , consequently the G-matrix changes with
the geometry of the molecule [110]. Nevertheless, for simplicity this matrix is usu-
ally treated as a constant, taking the derivatives at the equilibrium geometry q0. Up
to here, the formalisms for the HA and the QHA are the same. The essential differ-
ence of both approaches lies in the definition of the force constant matrix F . For the
harmonic approximation F is defined as

F HA
i j =

(
∂2V

∂qi∂q j

)
q0

(5.5)

whereas Karplus and Kushick [234] suggested

F QHA
i j = kB T [σ−1]i j with

σi j =
〈(

qi −〈qi 〉
)(

q j −〈q j 〉
)〉 (5.6)
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for the quasiharmonic approximation. In the latter, σ is the covariance matrix of the
internal coordinates and its averages 〈· · · 〉 are taken over an ensemble at temperature
T , readily obtainable from molecular dynamics (MD) or Monte Carlo (MC) simula-
tions around the equilibrium geometry.

With this definition of the F-matrix, the configurational distribution of the molecule
becomes a 3MN−6 dimensional Gaussian and the integral in Eq. (5.2) can be analyti-
cally solved (after integration over the momenta and the assumption that G does not
change with q):

Zvib =
(√

2πkB T

h

)3MN−6 √
det

(
G−1|q0

) √
(2π)3MN−6 det(σ) (5.7)

This is the key assumption in the QHA. The Gaussian (given by the equilibrium value
q0 and the covariance matrix σ) represents the configurational distribution, deter-
mined on the full anharmonic surface and considering pairwise correlation of coor-
dinates, while remaining in the harmonic formalism.

As suggested by Karplus and Kushick and pointed out by recent reviews [252, 253]
on the QHA, internal coordinates, such as bond-angle-torsion (BAT) coordinates,
yield considerably more accurate results than the respective Cartesian coordinates,
which are commonly used by standard software packages. Despite this clear sug-
gestion, we explicitly choose for normal coordinates instead of BAT coordinates, for
reasons explained in the next section.

5.3.2 Implementation and special considerations

As pointed out in the literature [254], only a valid set of coordinates can be used to
uniquely define Wilson’s G-matrix. This is tricky, since in the (ACN)2H+ cluster, all but
the methyl hydrogen atoms are positioned on the z-axis. Consequently, the definition
of a set of BAT coordinates is rather impractical, since torsion angles will eventually
lead to singularities at the equilibrium geometry. Instead, we decided to use normal
coordinates Qi as a special kind of internal coordinates. Those are readily obtained
from ab initio normal mode analysis (NMA) at the equilibrium geometry. GAUSSIAN
16 provides the normal coordinates in form of derivatives ∂xk /∂Qi , scaled with the re-
duced mass µi of the respective mode, such that the sum of the squares of the Carte-
sian displacements is 1 [96]. With this definition, the inverse of Wilson’s G-matrix can
be calculated as follows

[
G−1]

i j =
3MN∑
k=1

mkp
µiµ j

∂xk

∂Qi

∂xk

∂Q j
(5.8)

According to Eq. (5.8) the matrix is equal to the unity matrix I , i.e., G−1 = I , which
compiles with the definition of mass-weighted normal coordinates. That is, the square
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of their temporal derivatives directly yields the kinetic energy (right side of the follow-
ing equation):

2Ekin =
3MN−6∑

i=1

3MN−6∑
j=1

[
G−1]

i j

∂Qi

∂t

∂Q j

∂t
=

3MN−6∑
i=1

(
∂Qi

∂t

)2

(5.9)

This is only equal to the double sum, which is the kinetic energy for any given set of
internal coordinates, when G−1 = I .

At this point only the covariance matrix σ is left for computing the vibrational par-
tition function based on Eq. (5.7). For that, the MD trajectory calculations require the
conversion of mass-weighted Cartesian coordinates to normal coordinates at each
time step t . This is simply implemented by the transposed, orthonormal transfor-
mation matrix between Cartesian and normal coordinates (given by the derivatives
∂xk /∂Q j )

Qi (t ) =
3MN∑
k=1

∂Qi

∂xk

p
mk (xk (t )−xk (0)) (5.10)

However, since normal coordinates are just a special linear combination of Cartesian
coordinates, they suffer from some of the same problems. Overall translation and ro-
tation would erroneously contribute to the normal coordinates although they do not
belong to the 3MN −6 internal degrees of freedom. In addition, internal rotations (as
do any large amplitude motion) severely change the position of atoms such that their
overlap with the normal coordinate is incorrectly diminished. Hence, these motions
have to be separated out from the MD trajectory before performing the transforma-
tion according to Eq. (5.10).

One can separate out the overall translation and rotation by shifting and rotating
the coordinate system to the Eckart frame [97]. For each geometry in the MD trajec-
tory the center of mass (CoM) is set to zero and three Eckart vectors F1, F2 and F3 are
determined to rotate the coordinate system to the Eckart frame { f1, f2, f3} [255]. Fi-
nally, the Cartesian displacementsρ = x−x(0) are then converted into displacements
in the Eckart frame ρ(E) [256]. For a detailed description of this transformation the
reader is referred to Appendix A of this chapter.

As pointed out by Sayvetz [98], internal rotations have to be separated out alike the
overall translation and rotation. For any arbitrary internal rotor, the Eckart-Sayvetz
conditions are given by Kirtman [257–259]. After defining the internal rotor and the
rotational axis, we rotate the two fragments (internal rotor and framework) by an an-
gleα and β, respectively, such that the Eckart-Sayvetz condition is fulfilled. A numer-
ical minimization procedure determines those two angles. For a detailed formulation
of the condition and the determination of the angles see Appendix B of this chapter.
Note that the internal rotation correction is done prior to the Eckart frame transfor-
mation since the internal rotation would eventually lead to an erroneous rotation of
the Eckart frame.

For MIR internal rotations, the number of vibrations and hence the number of nor-
mal coordinates reduces to 3MN −6−MIR. Thus, the dimensionality of the matrices
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in Eq. (5.7) changes and the powers have to be reduced as well.
This reduced vibrational partition function is multiplied by the partition function

of the internal rotations, which in case of negligible barriers are calculated according
to

ZIR = 1

σIR

√
8π3IIRkB T

h2 (5.11)

with σIR the symmetry number of the internal rotor (e.g., 3 for methyl group rota-
tions) and IIR the reduced moment of inertia of the rotor around the internal rota-
tional axis. For symmetric tops attached to a framework, IIR can be calculated with

IIR = I ′
(

1−
∑

λ∈{a,b,c}

α2
i I ′

Iλλ

)
(5.12)

In this equation, I ′ = ∑
ml ′d

2
l ′ represents the moment of inertia of the top around

the axis, with the sum running over all rotating atoms l ′ with masses ml ′ and their
distances dl ′ with respect to the rotational axis. The sum in Eq. (5.12) runs over the
three principal axes a, b, c with the principal moments of inertia Iλλ of the entire
molecule (cf. Subsection 2.2.2) and αi the direction cosines of the rotational axis
onto the principal axes. For non-symmetric tops, the formulas are more complicated
but reported in the literature [260–262].

Having separated out those non-vibrational motions the transformation accord-
ing to Eq. (5.10) can now be performed with the new Cartesian displacements ρ(E).
From the MD trajectories in normal coordinates, the covariance matrix and its de-
terminant are readily calculated and the (reduced) vibrational partition function can
be obtained by means of Eq. (5.7). As pointed out by Rojas et al. [236], a correction
can be made to the configurational partition function Z QHA

c , which is the last term in
Eq. (5.7). By calculating the QHA F-matrix from the obtained covariance matrix via
Eq. (5.6) and using V QHA = 1/2QT F QHAQ (see Eq. (5.3)), the correction can be calcu-
lated from the difference of the QHA potential V QHA and the "real" potential energy
V obtained from the MD trajectory according to

Z QHA
c

Zc
=

〈
e+β(V −V QHA)

〉
(5.13)

Zc is the "real" configurational partition function and the expression 〈· · · 〉 averages
over every single time step of the MD simulation. The inverse of this number, termed
fcorr, can then be multiplied with Zvib.

Finally, we simply multiply the vibrational, rotational (obtained by standard ap-
proximations), translational and, if necessary, internal rotational partition functions
to obtain the total partition function Ztot, from which the Gibbs enthalpy corrections
Gcorr is readily calculated with

Gcorr =−kB T ln(Ztot) (5.14)
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It should be mentioned that the ZPE of the molecule never occurs in this formalism
since MD simulations assume classical behavior of the nuclei and also the partition
functions are determined from classical statistical mechanics.

Once Gcorr and the electronic energy E0 for all reactants and products are calcu-
lated, the Gibbs enthalpies of reaction, e.g., for a cluster association reaction, are ob-
tained according to

∆RG =
∑

products
(E0 +Gcorr)−

∑
reactants

(E0 +Gcorr) (5.15)

5.3.3 Electronic structure and MD simulations

All calculations were carried out with the GAUSSIAN 16 program package [226]. Op-
timization and NMA as well as PES scans were conducted with the density functional
theory applying the B3LYP functional [86, 87] with GD3(BJ) dispersion correction [92]
using the def2-TZVPP basis set [75]. The empirical dispersion correction was applied
since long range contributions are important in non-covalent bonded systems. In-
tegration grids and convergence criteria were manually set to more grid points and
tighter thresholds, respectively. For the MD simulations we decided upon ab initio
molecular dynamics (AIMD) for a better description of the bonding situation, instead
of using simple force fields. The implemented Atom Centered Density Matrix Prop-
agation (ADMP) [115–117] routine in GAUSSIAN 16 uses a Car-Parrinello approach
[114], which is much faster than solving the full electronic Schrödinger equation at
each time step. To further speed up the calculations, the smaller def2-SVP basis set
was used. 15000×0.2fs time steps accounted for a total simulation time of 3 ps. The
total initial kinetic energy of the molecule in its equilibrium position was randomly
assigned to the nuclei with (3MN −6)kB T so that on average each mode would have
a total energy of kB T as should be the case for a thermalized harmonic oscillator. For
each system at least three trajectories were calculated with different initial kinetic en-
ergy assignments to account for the lack of ergodic mixing in a single MD trajectory.

5.4 Results and Discussion

5.4.1 (ACN)2H+

Geometry optimization and NMA Geometry optimization and NMA for the ace-
tonitrile dimer were carried out at the B3LYP-GD3BJ/def2-TZVPP level of theory. As
apparent from Fig. 5.1a the equilibrium structure belongs to the D3d point group
with the proton (hereafter labeled H+) as the inversion center symmetrically lying be-
tween the two nitrogen atoms. All but the methyl hydrogen atoms are located on the
same axis and the methyl groups are found in a staggered conformation. Table 5.1
summarizes all the geometrical parameters of the equilibrium structure. Early the-
oretical investigations by Deakyne et al. [171] suggested an asymmetric equilibrium
structure of the dimer to be energetically slightly more favorable than the symmetric
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(a) (ACN)2H+ cluster (b) [MeNH3 + MeOH]+ cluster

Figure 5.1: B3LYP-GD3BJ/def2-TZVPP optimized geometries of the (ACN)2H+ and
[MeNH3 + MeOH]+ clusters. While the protonated ACN dimer is highly
symmetric (D3d point group), the amine cluster shows no symmetry ele-
ments. In case of the (ACN)2H+ cluster the H+ forms an inversion center
with equal distance to both binding nitrogen atoms, whereas in case of
the amine-methanol cluster the binding proton is closer to the nitrogen
atom (1.06143 Å) than to the oxygen atom (1.61839 Å). This is expected ac-
cording to the general difference in basicity between those two functional
groups.

Table 5.1: Optimized geometrical parameters for the (ACN)2H+ cluster (D3d point
group).

Parameter R(H+,N) R(N,C) R(C,C) R(C,H) A(H,C,H)

Value / Å or ° 1.26202 1.14236 1.44362 1.09025 109.463

one. However, as already shown in a previous publication [144], we cannot confirm
their results.

The normal modes, their frequencies and irreducible representations can be found
in Table 5.5. As mentioned before, the lowest mode describes an internal rotation of
the methyl hydrogens. Because of the large distance, there is basically no interaction
and the barrier height is negligible. The negative frequency found in the GAUSSIAN
16 result is very small and rather deemed to be zero, which reasons the assumption of
a free rotor. Two also very important modes are Q6 and Q7 describing the asymmetric
and symmetric stretching modes of the two N – H+ distances, respectively. In the first
case, the H+ moves back and forth between two fixed ACN molecules (a2u symmetry)
and in the second case the two ACN move relative to the fixed H+ (a1g symmetry).
Fig. 5.2 shows a 2D PES scan (in C3v symmetry) with the two N – H+ distances var-
ied and all other parameters allowed to relax. The two modes are indicated by the
dashed red lines whereas the solid red line represents the minimum energy paths of
the dissociation towards (ACN)H+ + ACN. A closer look at this PES clearly illustrates
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the problems with the harmonic approximation. First, the potential along Q6 is very
poorly described by a parabola, but rather by a quartic slope [144]. Such a shallow
potential drives exceptionally large amplitudes, which means that the asymmetric
stretch does in fact not follow the straight line but will essentially bend along the val-
ley. This is interpreted as a coupling of the modes Q6 and Q7. Second, while Q6 = 0 is
a minimum for Q7 = 0, it actually is a maximum for Q7 > 0 (towards top right) and the
potential along Q6 becomes a symmetric double well potential (see Fig. 5.3b). Conse-
quently, the calculated harmonic value of 201.4 cm−1 for Q6 is not reliable due to the
strong crosstalk from Q7. Experimentally a more trustworthy value for Q6 might well
be accessible with Infrared-Multiphoton Dissociation (IRMPD) spectroscopy, since
the large change of dipole moment indicates very strong infra-red absorption for this
mode. GAUSSIAN 16 calculations predict an extraordinarily high integrated absorp-
tion cross section on the order of 7800 kmmol−1.
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Figure 5.2: Relaxed potential energy surface scan of the two N – H+ distances for the
(ACN)2H+ cluster. Q6 and Q7 are the normal modes describing the asym-
metric and symmetric stretching modes of the two N – H+ distances, re-
spectively. The solid red line shows the lowest energy path towards the
two dissociation channels. The molecules geometry at every point on this
surface belongs to the C3v point group, whereas the diagonal (along Q7)
belongs to the D3d point group.
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Figure 5.3: PES scans along the internal rotation (Q1) and the H+-movement along the
N – H+ – N bond (Q6 for different positions of Q7) of the (ACN)H+ cluster.
Compared to Fig. 3.8a, the Q1 scan is performed at a better SCF accuracy.
For Q6, the double-well character for elongated values of Q7 becomes ap-
parent (cf. also Fig. 5.2).

Treatment of the vibrations outside the HA The GAUSSIAN 16 software pack-
age does allow for vibrational calculations with anharmonicity contributions based
on vibrational perturbation theory. However, the implemented VPT2 method gave
unreliable results for the investigated cluster structures as well. We performed a par-
tial anharmonic treatment considering only modes Q2 to Q33 since the internal rota-
tion (Q1) is handled as a free rotor. Also, its negative frequency leads to complications
in the anharmonic treatment. One striking result is that the fundamental frequency
of Q6 is calculated to be 8639 cm−1, which is surely not realistic. As stated above,
VPT2 can handle only small anharmonic contributions, a quartic potential, however,
largely differs from a parabola. Second, the cubic and quartic force constants ob-
tained by numerical differentiation, are often not consistent. We observed values for
Fi j k and F j i k differing by up to 200 % though both should in fact be equal. Similar
significant deviations were observed for cubic and quartic force constants of degen-
erate modes although symmetry reasons enforce the exact same values. Above all,
these results led us to the conclusion that force constants from numerical differenti-
ation are not consistent for the studied cluster structures and consequently the VPT2
method was deemed inapplicable.

Before following up with the final QHA approach we investigated the aforemen-
tioned PES scan method for the moving proton. As stated, Q6 describes the propa-
gation of H+ between the two ACN molecules along the z-axis and Q18 / Q19 are the
two degenerate modes (eu symmetry) with the proton moving along the x- and y-
axis, i.e., orthogonal to the molecular axis. In all three modes, the two ACN molecules
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virtually do not move. In that way, we calculated a 3D PES of the propagating pro-
ton with fixed ACN molecules inside a 41×0.02Å grid in z- and a 61×0.02Å grid in
x- and y-direction. Fortunately, symmetry reasons allowed to reduce the calculation
effort to one eighth of the cube. The derived potential was handed over to the NuSol
program together with the required mass input of 1 amu. The 3D nuclear wavefunc-
tion was then calculated with the DVR algorithm [263] and we obtained fundamental
transition frequencies of 1141 cm−1 for the z-direction and 1157 cm−1 for the two or-
thogonal directions. The vibrational modes Q18 and Q19 with virtually quadratic pro-
gression of the potentials are close to the harmonic value of 1259 cm−1. In contrast,
the frequency for Q6 significantly deviates from the 201.4 cm−1 as obtained in the
harmonic case. However, as pointed out before, the validity of the latter value seems
very questionable since the harmonic treatment entirely neglects the impact of Q7 on
this mode. A final, interesting observation results from the fact that the fundamental
frequencies of Q18, Q19 and Q6 are very similar, almost degenerate. This leads to a
spatial distribution alike the 1-electron wavefunctions of the hydrogen atom, which
indeed can be expected, since in both cases a single particle moves in a nearly cen-
trosymmetric potential. The respective potential can be found in Fig. 5.4.

QHA results Most promising to tackle the vibrational partition functions of the
clusters was the QHA method. Herein, the overall translational and rotational par-
tition functions were calculated from standard approximations from quantum me-
chanics as found in the GAUSSIAN 16 thermochemistry output [96]. For the two frag-
ments ACN, (ACN)H+ as well as for the proton bound cluster (ACN)2H+ we conducted
geometry optimization, NMA and three MD simulations with different starting condi-
tions. For the two fragments only the Cartesian coordinates along the MD trajectories
were Eckart frame corrected, whereas internal rotation was additionally separated
out for the cluster (prior to the Eckart frame correction) according to the numerical
approach described in Appendix B. Since both fragments rotate with respect to the
fixed coordinate system, the correction was applied for both fragments to prevent an
overall rotation of the Eckart frame. Principally the Eckart treatment is designed to
manage such situations, however, we noticed severe numerical instabilities for the
following reason: When the molecule rotates 60°, the Eckart frame jumps back to its
original position due to the C3-symmetry of the molecule. At this point small hy-
drogen vibrations, independent from the rotation, cause numerous jumps around
the 60° mark, which leads to virtually random movement and thus large errors in the
transformation to the normal coordinates. Accordingly, it is easier to explicitly avoid
the overall rotation by correcting the internal rotation of both fragments. The methyl
hydrogen atoms were chosen to determine the center of mass (CoM) of the internal
rotor and the axis of rotation was chosen to be the vector drawn from the CoM of
the entire molecule to the CoM of the internal rotor R ′−R . Since in the equilibrium
geometry the rotor is balanced, σ′ was set to zero (see Appendix B).

To demonstrate the Eckart-Sayvetz condition, Fig. 5.5 illustrates the result of a sin-
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Figure 5.4: 3D PES scans for the H+ movement between the two stationary ACN
molecules. The z-axis connects the two nitrogen atoms while the x- and
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Figure 5.5: lα′ vectors of three methyl hydrogen atoms projected onto the x y-plane
(a) before and (b) after the internal rotation correction. The starting points
are indicated, the trajectory is shown for 2000 time steps. The clockwise
rotation of the methyl group is corrected while retaining all other hydro-
gen vibrational modes.

gle MD simulation, with the lα′ vectors of three methyl hydrogen atoms projected
onto the x y-plane without (Fig. 5.5a) and with (Fig. 5.5b) the correction. The two
diagrams clearly show that the clockwise rotation of the methyl group is correctly
removed while the other vibrations are retained. Note that a simple rotation of the
atoms, e.g., with the H5 positioned on the y-axis, will not have the same effect since
its vibration would impact the motion of the two other atoms. Only a correction with
the Eckart-Sayvetz condition retains the original motion orthogonal to the rotation.

Subsequent to the internal rotor correction, we used the Eckart frame treatment
for each time step to then calculate the normal coordinates from the Cartesian dis-
placements according to Eq. (5.10). Then the covariance matrices σ of all three MD
trajectories were averaged and used to calculate the (reduced) vibrational partition
function via Eq. (5.7) for the cluster as well as for the fragments. Table 5.2 lists the re-
sults from the QHA treatment. The internal rotation partition function of the cluster
was calculated from Eq. (5.11) with a reduced moment of inertia of IIR = 1.602amuÅ2

and a symmetry number of σIR = 3. There are a couple of interesting points to dis-
cuss: (1) In view of the fact that the covariance matrix is the key for the entire QHA,
its determinant should be assessed with respect to consistency. In particular its con-
vergence over the MD simulations conducted should be confirmed, since the matrix
depends on the averaged fluctuation of the normal modes around their equilibrium
positions. (2) The validity of the QHA with assumed Gaussian distributions for each
normal mode should be proven.
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Figure 5.6: Diagnostic plots for the QHA for the ACN system. (a) The convergence of
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((b) Q2, (c) Q6, (d) Q18, (e) Q29) for the (ACN)2H+ cluster.

Fig. 5.6a shows the convergence of the covariance matrix for the ACN dimer in
dependence of the number of time steps. The determinant is shown in a logarith-
mic scale and thus the values are linearly proportional to the calculated Gibbs en-
thalpy correction. The plot clearly shows that a single MD simulation with 15000 time
steps is not enough for the determinant to converge, due to lacking ergodicity. Any
new MD simulation with different starting conditions significantly adds to det(σ) and
the slope rapidly levels off. Eventually, the determinant sufficiently converges within
three MD simulations, though more time steps would certainly increase the accuracy.

Fig. 5.6b-e show the configurational distributions for four selected modes and their
respective Gaussian fittings. Their standard deviations were defined by

p
σi i from

the QHA results. In most cases this type of fitting sufficiently describes the real dis-
tribution, as exemplary shown for Q6 and Q18. Deviations from an ideal Gaussian
function are observed for Q29 and Q2. The latter forms two smaller satellites with
a distance of ±1.5 amu1/2 Å around a relatively broad main peak with ±0.5 amu1/2 Å
base width. This multimodal character is combined to a broader unimodal configu-
rational distribution. As a result, the QHA predicts a Gaussian function for Q2 with
a rather large standard deviation of 0.757 amu1/2 Å. The persistence of the two satel-
lites with increasing sampling time is still in question. In case of actual distribution
density, though, the QHA will take them into account, whereas the HA reflects the
narrow distribution only. Q29 is the other mode that needs to be looked at in terms of
the Gaussian representation. The apparent asymmetry in the MD distribution cannot
be exactly traced by a Gaussian function. Instead, the QHA distribution accounts for
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this asymmetry by broadening. This leads to a slower descent towards positive values
than the actual distribution, but the left flank is matched nicely for a large portion of
the distribution. In conclusion, the QHA accounts for anharmonic behavior by sim-
ply broadening the Gaussian functions, which fully complies with the concept of an
ensemble average.

As shown in Table 5.2 we noticed a quite large deviation for the correction factor
fcorr from Eq. (5.13) between the two fragments and the cluster. A value closer to
unity relates to a better description of the configurational partition function by the
QHA. For the two fragments the treatment is probably sufficient since fcorr is rela-
tively large. For the cluster, however, a two orders of magnitude smaller value for
fcorr is obtained. This translates to a considerable correction and indicates that the
QHA description of the PES is a challenging task due to the very flexible system and
consequently largely anharmonic surface. Obviously, this correction will significantly
increase the accuracy of our treatment.

Additional attention should be paid to the large deviation between the QHA and
the harmonic vibrational partition functions in Table 5.2. The HA partition function
results from quantum mechanics and accordingly allows for the right description of
quantum effects such as the ZPE and the negligence of modes with hνÀ kB T . In
stark contrast, the QHA partition function is based on classical assumptions, which
allow uniformly distributed energy among all degrees of freedom. Consequently,
even high frequency modes have an average energy of kB T . We tested the temper-
ature dependence of the QHA partition function for ammonia. For small tempera-
tures the partition function deviated orders of magnitude from the harmonic value,
whereas they matched for large temperatures, i.e., when quantum effects become
negligible and hν ¿ kB T applies for every mode. However, the calculation of the
Gibbs reaction enthalpy, which is simply based on the differences of Gcorr, compen-
sates this effect to a certain extent, even for intermediate temperatures. This is readily
explained, since the high frequency modes are retained upon cluster formation, their
contribution to Gcorr should finally cancel out. The newly formed modes in associa-
tion of the fragments, however, are usually of low frequency and hν¿ kB T applies.
Hence, a classical description of these new modes is eligible since quantum effects
are rather small.

The obtained value of −97.30 kJmol−1 for the Gibbs reaction enthalpy of the clus-
ter association reaction compares well with the experimental value of −92.2 kJmol−1

[54] - significantly better than the harmonic value (with the internal rotor correction
already included) of −108.57 kJmol−1. This improvement is probably due to mainly
two aspects: First, the inclusion of mode coupling effects - in contrast the covariance
matrix σ in the harmonic treatment is diagonal – and secondly, mode anharmonic-
ities are considered by broadening of the respective Gaussian distribution. Hence,
this provides a more balanced description of the configurational distribution then
the pure harmonic results.
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Table 5.2: QHA results for the acetonitrile system at 298.15 K: The electronic energy
E0, the determinant of the covariance matrix det(σ), where M = 3MN −
6−MIR is the number of vibrations and the natural logarithm of all parti-
tion functions, i.e. the corrected vibrational partition function Z QHA,corr

vib =
fcorrZ QHA

vib (the correction factor itself is also given), the harmonic vibra-
tional partition function Z HA

vib for comparison, the internal rotor partition
function ZIR and the overall rotational and translational partition functions
Zrot and Ztrans, respectively, are given. The resulting Gibbs enthalpy correc-
tion Gcorr and the Gibbs reaction enthalpy ∆RG for the cluster association
are also reported.

ACN (ACN)H+ (ACN)2H+

E0 / Eh −132.816103564 −133.127065632 −265.996251514

det(σ) / (amuÅ2)M 1.1723×10−32 1.2505×10−38 1.4578×10−68

fcorr 0.317831 0.600657 0.003921

ln
(

Z QHA,corr
vib

)
−27.042012 −30.567615 −54.663061

ln
(
Z HA

vib

) −47.534292 −58.670193 −98.827696

ln(ZIR) - - 0.963855

ln(Zrot) 7.809736 7.887583 9.947041

ln(Ztrans) 16.150450 16.186853 17.208483

Gcorr / Eh 0.002910 0.006131 0.025063

∆RG / kJmol−1 −97.30

5.4.2 [MeNH3 + MeOH]+

Geometry optimization and NMA As a second example for the QHA approach
we investigated the protonated methanol-methylamine cluster [MeNH3 + MeOH]+

as shown in Fig. 5.1b. The closer proximity of the proton towards the nitrogen than
to the oxygen atom with distances of 1.06143 Å and 1.61839 Å, respectively, is read-
ily explained by simple basicity considerations. This geometry stands in stark con-
trast to the perfectly symmetrically ACN dimer. The NMA of the equilibrium geom-
etry shows that many of the fragment modes remain undisturbed despite the clus-
ter formation, which indicates very little coupling between the two fragments. In
Fig. 5.7 we assigned each mode of the cluster to the respective mode of the frag-
ments (detailed assignment can be found in Table 5.6). As can be seen, few modes
do show notable changes: First of all, the internal rotation around the main bond
(C – O or C – N) of each fragment (modes 1) splits into two modes because the over-
all rotations around these axes becomes an internal motion. That means one rota-
tion of each hetero-atom group is blue shifted for stability reasons which the hydro-
gen bond brings in, whereas the methyl rotations are clearly red shifted due to the
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larger mass of the rotating counterpart. The remaining four additional modes be-
low 500 cm−1 belong to a new internal rotation of the fragments against each other
(lowest mode), the bending of the almost linear hydrogen bridge in two dimensions
and finally the dissociation coordinate, i.e. the elongation of the H+ – O distance. An-
other significant change is observed for the N – H stretch modes. In the separated
MeNH3

+ fragment the three coordinates combine to one symmetric and two asym-
metric stretching modes (modes 16-18), whereas the N – H+ stretching is completely
decoupled from the other two in the clustered structure. The other two eventually
combine to a symmetric and asymmetric stretching mode like in H2O. In princi-
pal, the [MeNH3 + MeOH]+ cluster has five internal rotations: Q1 (rotation of the
fragments against each other), Q2 and Q5 (rotation of the methyl groups in MeOH
and MeNH3

+, respectively), Q7 (rotation of the – OH group) and Q8 (rotation of the
– NH3

+ group). The obtained normal frequencies of the latter two are rather high,
which suggest a fairly large barrier induced by the hydrogen bond. Also Q5 shows a
significant higher frequency than the lower two modes, which is probably due to the
sterical hindrance of the three nitrogen-bonded hydrogen atoms. Consequently, only
the two lowest internal rotations need to be corrected in our treatment.

QHA results Consistent with the statement above, no MD simulations showed in-
ternal rotations other than the two lowest ones mentioned. Therefore, only these
two motions were separated according to the Eckart-Sayvetz condition and all other
modes were treated as ordinary oscillators. Also, the internal rotations of the two frag-
ments were treated as ordinary oscillations since we did not observe any rotation in
the corresponding MD simulations either. For each of the three molecules we ran up
to six MD simulations, with an applied energy of (3MN−6)kB T , randomly assigned to
the nuclei and with different starting conditions for each simulation. For the cluster,
large amplitude motions were separated according to the following order: (1) Cor-
rection of the internal rotation of the two fragments rotating against each other. Its
rotational axis was more elaborately drawn from the CoM of the entire molecule to
the CoM of each fragment, since neither the O – H+, the H+ – N nor the N – O bond suf-
ficiently encompassed this motion. To prevent an overall rotation, we corrected for
both fragments. (2) Correction of the internal methyl group rotation in MeOH with
the C – O bond as the rotational axis. In this configuration only the hydrogen atoms
rotate as a much smaller fragment compared to the residual molecule, which makes
it reasonable to correct for the rotation of these hydrogen atoms only. (3) Convert the
molecule into the Eckart frame. With the transformation of the Cartesian displace-
ments into normal coordinates, we obtained the covariance matrix for each simu-
lation. Subsequently we averaged the covariance matrices, calculated the correction
factor of Eq. (5.13) and determined the (reduced) vibrational partition function of the
molecule according to Eq. (5.7). The internal rotational partition functions of the two
considered rotations were obtained according to Eq. (5.11) with a reduced moment
of inertia, calculated from formulas given in the literature [260–262].
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ter. The dashed lines indicate the assignment of the modes, i.e., which
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Table 5.3 summarizes the QHA results for the protonated methanol-methylamine
cluster. Just as is the case with ACN, the correction factor is much smaller for the clus-
ter than for the fragments. This indicates a significant difference between the QHA
and ab-initio potential with a strong anharmonic character. Also, the vibrational par-
tition functions calculated with the QHA approach differ largely from the ones calcu-
lated with the standard HA due to neglected quantum effects. Regarding the finally
obtained Gibbs reaction enthalpy, the QHA gives a surprisingly inaccurate value com-
pared to the experimental result of −49.31 kJmol−1 [184]. In fact, the calculated pure
harmonic value of −59.28 kJmol−1 is even closer to the literature value, however, still
with a significant deviation from the experiment. This outcome is rather unexpected
considering the good results for the QHA treatment of the (ACN)2H+ cluster.
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Table 5.3: QHA results for the amine-methanol system at 298.15 K: Listed are the elec-
tronic energy E0, the determinant of the covariance matrix det(σ), with
M = 3MN −6−MIR as the number of vibrations and the natural logarithm
of all partition functions, i.e., the corrected vibrational partition function
Z QHA,corr

vib = fcorrZ QHA
vib (the correction factor itself is also given), the har-

monic vibrational partition function Z HA
vib for comparison, the internal rotor

partition function ZIR and the overall rotational and translational partition
functions Zrot and Ztrans, respectively, are given. The resulting Gibbs en-
thalpy correction Gcorr and the Gibbs reaction enthalpy ∆RG for the cluster
association are also reported.

MeOH MeNH3
+ [MeNH3 + MeOH]+

E0 / Eh −115.781709438 −96.2659366250 −212.082861611

det(σ) / (amuÅ2)M 3.8346×10−32 1.5646×10−50 5.9329×10−77

fcorr 0.331338 0.396865 0.000512

ln
(

Z QHA,corr
vib

)
−26.417544 −41.983030 −64.577338

ln
(
Z HA

vib

) −53.822945 −83.555063 −136.467535

ln(ZIR) - - 3.117, 1.240

ln(Zrot) 8.053511 7.356496 11.499821

ln(Ztrans) 15.778953 15.780068 16.819231

Gcorr / Eh 0.002441 0.017795 0.030121

∆RG / kJmol−1 −66.50

5.4.3 QHA discussion

Some sources of error should be discussed. It is clear that the real configurational
distribution is not a multidimensional Gaussian but can have an asymmetric form
along certain modes. Rojas et al. [236] developed an extension of the QHA to higher
moments to account exactly for these types of shapes. We did not include higher
moments but it would be in principle possible. One should also keep in mind that
the conducted MD simulation in fact represents a microcanonical (or NV E ) ensem-
ble since only one particle at constant energy is considered. To model the canonical
(or NV T ) ensemble with a partition function at constant temperature, we applied
(3MN −6)kB T energy to the molecule randomly distributed among all modes. How-
ever, if we calculate the kinetic energy in each mode (each summand of Eq. (5.9)
separately), average over the whole simulation time and then determine a tempera-
ture Ti = 2

〈
Ekin,i

〉
/kB for each mode Qi , we find that the mean temperature is not

the same for all modes. E.g., for the three MD simulations of (ACN)H+, the lowest
mean temperature is only 134 K in Q2 while the highest is 543 K in Q4. Though this
problem can be addressed by longer simulation time or more MD simulations with
different starting conditions, it is worth noting that the mean temperature, averaged
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Figure 5.8: Boltzmann plots of Ekin distributions for (ACN)H+. The temperatures de-
picted are calculated from the slopes of the fitting functions, which should
be −(kB T )−1, if the data follow a Boltzmann distribution.

over all modes, is 288 K and thus close to the originally set 298.15 K. Additionally, the
distribution of kinetic energy in each mode is an exponential distribution, i.e., higher
kinetic energies are less likely and the most probable kinetic energy is zero. This is
equivalent to the Boltzmann population distribution of energy levels for a harmonic
oscillator in a canonical ensemble according to the term exp(−hνi /kB T ). Some of
these distributions are shown in Fig. 5.8 as Boltzmann plots. Note that most of the
latter plots do not exactly follow a straight line as expected for a real Boltzmann dis-
tribution, however, they do reflect the exponential dependency of population vs. en-
ergy. Since the temperatures are determined from these Boltzmann plots, special at-
tention to the validity of their respective values should be paid. In some cases, those
values differ significantly from the above mentioned definition of the temperatures
in each mode. Nevertheless, each mode does have different energies according to a
Boltzmann distribution, or at least similar to it. This finding supports the capabil-
ity of our formalism to model canonical ensembles with certain energy distributions
in each mode, while fairly correct temperatures are predicted based on the overall
energies.

A closer look should as well be paid to low frequency modes with large amplitudes.
Therefore the (ACN)2H+ cluster is a good example with its two degenerated modes
Q2 and Q3, which correspond to a bending of the two fragments with the H+ as the
angles vertex. Since the NMA is only valid for small changes in the Cartesian coordi-
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nates, large amplitude motions will introduce errors in this formalism, which is the
reason for the separation of internal rotations in the first place. The shallow poten-
tial for this bending allows the molecule to move atoms far away from the z-axis. In
this scenario any other mode with contributions along this axis, e.g. the C – N stretch-
ing, will instantly have a smaller overlap with this axis and consequently decrease the
value for Qi since it now stretches along a vector containing z- and x- (or y-) con-
tributions. This problem could be avoided with the use of BAT-coordinates but, as
discussed before, this was not applicable in the case of the ACN dimer.

Apparently, our formalism works not as well for the [MeNH3 + MeOH]+ cluster.
Quantum effects of the modes are unlikely the cause of significant deviation because
all new modes are very low lying and thus classical (cf. Fig. 5.7). All high frequency
contributions are very similar to their counterparts in each fragment and consequently
annul for the Gibbs reaction enthalpy. The error due to low frequency modes and
their large amplitude should be similar to the ACN case and does not intuitively ex-
plain the larger deviation. One new type of error could be introduced by the two
internal rotations in the following way: The lack of symmetry might cause the equi-
librium geometry to slightly deviate in the different wells along the first internal rota-
tion. This speculation is supported by visible bending in the MD simulation since it
is not a rotation around the O – H+ or N – H+ bond but rather a rotation of both frag-
ments around their individual CoM. This bending is essential to retain the H-bond
and removing only the rotation but not this bending could introduce an error. Also,
the order of sorting the rotations out remains a matter of pure choice. Intuitively we
started with the larger motion, however, this could as well introduce some error if
the modes are not perfectly orthogonal to each other. Furthermore, the remaining
vibrations after the internal rotor correction reveal a quite significant motion of the
atoms, although they are not rotating. This can be an indication for an inappropriate
correction for this asymmetric cluster geometry, since the same procedure resulted in
fixed hydrogen atoms for the symmetric (ACN)2H+ example (Fig. 5.5b). Using a parti-
tion function derived for a free rotor (Eq. (5.11)), which was a good assumption in the
(ACN)2H+ case, might also introduce an error having different well depths of the large
internal rotation. To minimize errors owing to failed convergence or ergodicity, we
ran up to six MD simulations per molecule. Indeed, the configurational distributions
along the modes all look very Gaussian and the QHA distribution fits most of them
very well. Also, the determinant is very close to convergence with six MD trajectories.
Therefore, failed convergence is probably not the reason for this substantial error. A
closer look at fcorr reveals a value which is by an order of magnitude smaller than for
the (ACN)2H+ cluster. This could indicate inherent problems with this molecule since
the QHA potential seems to largely deviate from the ab-initio one. With eight low ly-
ing modes, the amine cluster could just be a bit too flexible to determine accurate
values of Qi via the Cartesian transformation.
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5.5 Summary and Conclusions

The QHA was applied to small molecular clusters to determine absolute classical vi-
brational partition functions and to derive thermochemical data from molecular dy-
namics simulations. For the proton bound acetonitrile dimer, as the first example,
normal coordinates from standard ab initio normal mode analysis were used to de-
scribe the configurational distribution. It was important to separate large amplitude
motions such as the overall translation, overall rotation and internal rotation. This
was accounted for in an automated procedure for each time step of the MD simula-
tion, in which the molecules coordinates were converted into the Eckart frame and
internal rotations were separated by meeting the Eckart-Sayvetz condition. The par-
tition functions for the separated motions were calculated from standard formula.
The covariance matrix of the normal coordinates, derived from the MD simulations,
was assessed for convergence, for deviations from the multidimensional Gaussian as-
sumed by the QHA and for the mean temperature in each mode. The resulting Gibbs
enthalpy of the association reaction deviated by only 5 % compared to experimental
findings, which seemed to prove the applicability of this method to small molecular
clusters.

In stark contrast are the QHA results for the second investigated system. The ob-
tained Gibbs enthalpy for the formation of the asymmetric [MeNH3 + MeOH]+ cluster
differed by 26 % compared to an experimental value in the literature. A few inherent
problems with the application of the QHA were identified, such as the negligence
of vibrational quantum effects, the slow convergence regarding ergodic mixing, the
flawed Gaussian approximation of asymmetric configurational distributions and er-
rors introduced by large amplitude motions. Nevertheless, it remains unclear why
this method worked well in one case and did not in the other. More cluster exam-
ples are in preparation to further investigate this approach and additionally we are
working on the QHA for the amine-methanol cluster with BAT coordinates.

Although fully automated, our method is computationally expensive because of the
ab initio MD simulations additional to the standard NMA (for (ACN)2H+, one 15000
time step long trajectory needed 18 h). However, for the investigated system size, it is
still faster than a full VPT2 or VSCF calculation (full VPT2 on (ACN)2H+ takes about
20.5 h; VSCF takes multiple days with the same computational resources), in particu-
lar since the multiple MD simulations can run in parallel on suitable computer clus-
ters.
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5.6 Appendix A - The Eckart Frame

In the equilibrium configuration of a molecule containing MN atoms define an arbi-
trary set of three axis given by three normalized and orthogonal vectors {e1,e2,e3}.
The vectors from the origin of this coordinate system to each atom α are called r 0

α.
Let R0 be the center of mass (CoM) of the molecule. The so called static model is now
defined by vectors c 0

α drawn from the CoM to each atom [255], thus

c 0
α = r 0

α−R0 (5.16)

For any instantaneous configuration, i.e., at each time step of the MD simulation, the
dynamic model can now be used to calculate three Eckart vectors F1, F2 and F3 by

Fi =
MN∑
α=1

mαc0
α,i (rα−R) (5.17)

where rα and R are now drawn to the instantaneous position of the atoms. From
these, the Gram matrix F is obtained through

F =

 F1 ·F1 F1 ·F2 F1 ·F3

F2 ·F1 F2 ·F2 F2 ·F3

F3 ·F1 F3 ·F2 F3 ·F3

 (5.18)

Via standard matrix algebra a matrix F−1/2 can be obtained for which F−1/2 ·F−1/2 =
F−1 holds. The Eckart frame, three new normalized and orthogonal vectors to set at
the CoM R , is then calculated from(

f1, f2, f3
)= (F1,F2,F3) ·F−1/2 (5.19)

Linear algebra basis transformation is then used to bring the vectors drawn from the
CoM to the position of the atoms in the equilibrium configureation, i.e., c 0

α, from the
original to the Eckart orientation:

Cα =
3∑

i=1
c0
α,i fi (5.20)

Defining Cartesian displacement vectors ρα for each atom α via

ρα = rα−R −Cα (5.21)

displacements in the Eckart frame ρ(E)
α can be calculated according to [256]:

ρ(E)
α =

 ρα · f1

ρα · f2

ρα · f3

 (5.22)

These displacements are now free of overall translation and overall rotation, which
might be introduced through numerical error in the MD simulation. Also, the dis-
placements are now small enough that the transformation to normal coordinates can
be conducted [256].
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5.7 Appendix B - Separating out Internal Rotation

Following Kirtman [259], to separate out internal rotation, we define vectors cα′ drawn
from the center of mass (CoM) of the entire molecule R to each atom of the internal
rotor rα′ (all single primed quantities refer to the internal rotor). Further, set the CoM
of the internal rotor as R ′ and define dα′ = cα′ − c 0

α′ the displacements of the atoms
from their equilibrium position during the MD simulation. We can now define vec-
tors drawn from the CoM of the internal rotor to the atoms of the rotor:

lα′ = cα′ − (
R ′−R

)= rα′ −R ′ (5.23)

If the rotor is unbalanced, setσ′ as the normal from the axis of internal rotation to R ′,
the former being defined as

z ′ = ζ′+λez ′ (5.24)

where ζ′ is any point on the axis and ez ′ a normalized vector parallel to the axis. Then,
σ′ can be calculated from

σ′ = R ′− (
ζ′+ (

ez ′ · (R ′−ζ′))ez ′
)

(5.25)

The Eckart-Sayvetz condition for the internal rotation now reads [259]

0 =
∑
α′

mα′
((
σ′0 + l 0

α′

)
×dα′

)
·ez ′ (5.26)

where bothσ′ and lα′ are taken at the equilibrium geometry (superscript "0"), whereas
the rotation axis ez ′ is updated at every time step since is can change due to other in-
ternal motion. At any time step of the MD simulation, this sum is calculated and if
it does not yield zero, the atoms of the internal rotor can be rotated around an angle
β such that the Eckart-Sayvetz condition is fulfilled. Adjusting a parameter such that
another quantity yields zero is a standard minimization procedure and can be per-
formed numerically. With the given notation, rotating all atoms of the internal rotor
around z ′ reads

r̃α′ = ζ′+ez ′
(
ez ′ · (rα′ −ζ′))+cosβ

(
ez ′ × (

rα′ −ζ′))×ez ′+sinβ
(
ez ′ × (

rα′ −ζ′)) (5.27)

where r̃α′ is the new position of the atoms from which the Eckart-Sayvetz condition
in Eq. (5.26) is calculated. If the two fragments of the internal rotation are similar
in weight, hence, both of them rotate significantly, it is useful to perform this cor-
rection to both fragments independently. Otherwise the internal rotation would be
transformed to an overall rotation. In principal, this would be taken care of through
putting the molecule in the Eckart frame (performed after the internal rotation cor-
rection), however, it is numerically more stable to not introduce an overall rotation
for reasons explained in the text.
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5.8 Supporting Information

Tables 5.4-5.6 show the frequencies (ω) and reduced masses (µ) of the normal modes
calculated in this work. For symmetric structures, the irreducible representations are
given, for the asymmetric [MeNH3 + MeOH]+ cluster, each mode is assigned to its
corresponding mode in the fragments (cf. Fig. 5.7). Experimental data for the neutral
fragments, i.e., ACN and MeOH can be found in the literature [264].

Table 5.4: Normal frequencies of ACN, (ACN)H+, MeOH and MeNH3
+ calculated at

the B3LYP-GD3(BJ)/def2-TZVPP level of theory.

ACN (C3v ) (ACN)H+ (C3v )

No ω [cm−1] µ [amu] Irr. Rep. No ω [cm−1] µ [amu] Irr. Rep.

1,2 383.8278 3.7968 e 1,2 397.9396 2.6194 e

3,4 576.2860 1.2340 e

3 931.7197 4.6047 a1 5 921.6415 4.4269 a1

4,5 1063.7246 1.4481 e 6,7 1040.9057 1.5187 e

6 1414.8814 1.2317 a1 8 1392.6331 1.2150 a1

7,8 1475.2883 1.0381 e 9,10 1426.7417 1.0359 e

9 2367.8959 12.5576 a1 11 2383.9696 6.4582 a1

10 3051.4479 1.0335 a1 12 3029.2283 1.0318 a1

11,12 3120.3759 1.1020 e 13,14 3109.8293 1.1025 e

15 3680.6703 1.1425 a1

MeOH (Cs) MeNH3
+ (C3v )

No ω [cm−1] µ [amu] Irr. Rep. No ω [cm−1] µ [amu] Irr. Rep.

1 293.7752 1.0709 a′′ 1 289.3908 1.0078 a2

2 1044.7946 3.2254 a′ 2,3 912.9836 1.0535 e

3 1081.5201 1.3491 a′ 4 924.3051 5.1137 a1

4 1171.5037 1.2672 a′′ 5,6 1281.1962 1.4080 e

5 1371.1656 1.2878 a′ 7 1471.0790 1.1406 a1

6 1481.7174 1.1338 a′ 8,9 1501.0055 1.0365 e

7 1495.5962 1.0484 a′′ 10 1530.2826 1.1625 a1

8 1509.8121 1.0442 a′ 11,12 1671.0430 1.0394 e

9 2991.6967 1.0360 a′ 13 3087.6305 1.0296 a1

10 3036.3218 1.1053 a′′ 14,15 3187.3223 1.1108 e

11 3110.0860 1.0968 a′ 16 3402.8885 1.0306 a1

12 3841.3936 1.0665 a′ 17,18 3476.0606 1.0931 e
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Table 5.5: Normal frequencies of the (ACN)2H+ cluster calculated at the B3LYP-
GD3(BJ)/def2-TZVPP level of theory. The irreducible representations cor-
respond to the point group of the molecule, D3d .

No ω [cm−1] µ [amu] Irred. Rep.

1 -1.4967 1.0078 a1u

2,3 53.3522 3.7362 eu

4,5 129.9326 5.8025 eg

6 201.3918 1.0300 a2u

7 355.0749 5.7220 a1g

8,9 406.4703 3.3961 eu

10,11 418.1781 3.7793 eg

12 951.9972 4.6350 a2u

13 1000.4961 5.4427 a1g

14,15 1054.7798 1.4970 eu

16,17 1054.8761 1.4951 eg

18,19 1258.4921 1.0545 eu

20 1407.6015 1.2242 a1g

21 1407.8258 1.2162 a2u

22,23 1451.6043 1.0365 eg

24,25 1451.6476 1.0362 eu

26 2425.1955 12.2918 a2u

27 2444.9692 12.6540 a1g

28 3050.0515 1.0330 a2u

29 3050.1785 1.0329 a1g

30,31 3128.1794 1.1025 eg

32,33 3128.1818 1.1025 eu
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Table 5.6: Normal frequencies of the (ACN)2H+ cluster calculated at the B3LYP-
GD3(BJ)/def2-TZVPP level of theory. Each mode is assigned to a mode in
the separated fragments if possible. It is also indicated when the original
modes red/blue-shifted due to the cluster formation.

No ω µ Description MeNH3
+ MeOH

[cm−1] [amu] No ω No ω

1 14.59 2.0785 IR around H+-bridge

2 68.53 1.2235 IR of – Me in MeOH 1 293.78

3 93.83 2.3661 N – H+ – O bending

4 114.61 2.1282 N – H+ – O bending

5 174.36 1.2737 IR of – Me in MeNH3
+ 1 289.39

6 303.15 3.3894 NH+ – O stretch (dissoc. coord.)

7 321.08 1.1100 IR of – OH in MeOH 1 293.78

8 462.77 1.0923 IR of – NH3
+ in MeNH3

+ 1 289.39

9 940.20 1.0522 asym twisting in MeNH3
+ 2 912.98

10 963.12 5.0211 C – N stretch in MeNH3
+ 4 924.31

11 968.74 1.0593 asym wagging in MeNH3
+ w/ H+ 3 912.98

12 1002.59 7.6357 C – O stretch in MeOH 2 1044.79

13 1089.65 1.0888 asym wagging in MeOH 3 1081.52

14 1172.74 1.2506 twisting in MeOH 4 1171.71

15 1287.57 1.3838 sym wagging in MeNH3
+ w/ H+ 5 1281.20

16 1302.28 1.3865 sym twisting in MeNH3
+ w/o H+ 6 1281.20

17 1373.26 1.2881 sym wagging in MeOH 5 1371.17

18 1470.69 1.1472 sym H – C – H bend in MeNH3
+ 7 1471.08

19 1486.96 1.1265 sym H – C – H bend in MeOH 6 1481.72

20 1493.55 1.0446 asym1 H – C – H bend in MeOH 7 1495.60

21 1502.30 1.0381 asym1 H – C – H bend in MeNH3
+ 8 1501.01

22 1505.80 1.0346 asym2 H – C – H bend in MeNH3
+ 9 1501.01

23 1513.38 1.0383 asym2 H – C – H bend in MeOH 8 1509.81

24 1562.16 1.1472 sym H – N – H bend w/ H+ 10 1530.28

25 1670.72 1.0288 asym1 H – N – H bend w/o H+ 11 1671.04

26 1737.50 1.0413 asym2 H – N – H bend (H+⊥N – O) 12 1671.04

27 2769.50 1.0839 asym1 N – H stretch (H+) ? 3402.89

28 3052.38 1.0293 sym C – H stretch in MeOH 9 2991.70

29 3086.61 1.0306 sym C – H stretch in MeNH3
+ 13 3087.63

30 3131.28 1.1093 asym1 C – H stretch in MeOH 10 3036.32

31 3145.23 1.1069 asym2 C – H stretch in MeOH 11 3110.09

32 3179.72 1.1097 asym1 C – H stretch in MeNH3
+ 14 3187.32

33 3180.40 1.1091 asym2 C – H stretch in MeNH3
+ 15 3187.32

34 3453.12 1.0530 sym N – H stretch w/o H+ ? 3467.06

35 3505.27 1.0926 asym2 N – H stretch w/o H+ 18 3476.06

36 3827.47 1.0667 O – H stretch 12 3841.39
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It is the aim of this work to use computational methods to study a number of specific
questions arising from MS experiments but also to combine, refine and develop new
methods of calculation for more accurate data. Thus, this summary is organized into
two sections, addressing the modeling of experimental questions and the develop-
ment of new computational methods, respectively, followed by a general conclusion.

6.1 Answering Questions from Experiment

In this work, two main questions from experiment were investigated. First, the pro-
cess of "supercharging" or better "charge retention vs. charge depletion" in gas-
phase modified nESI-MS. Second, the effect of dynamic clustering, i.e., the depen-
dence of an ion-cluster distribution on the field induced, effective temperature, in
Differential Mobility Spectrometry, DMS.

Charge Retention/Depletion in nESI-MS Experimental investigations on the
charge state distribution of small proteins created by nESI-MS exhibit a pronounced
dependence on the modification of the gas phase of the ion source, i.e., adding polar
compounds. In particular, using either methanol (MeOH) or acetonitrile (ACN) the
main charge state of Substance P (SP) observed is shifted between 2+ and 3+, respec-
tively. Simple considerations regarding the Coulomb repulsion of charges in the gas
phase show that further charging of ions in the gas phase is not possible. Hence, the
higher charge state can only form in the solution phase and then is either retained or
depleted by proton transfer (PT). Whether the charge depletion happens in the solu-
tion phase (inside a small droplet), or in the gas phase (via cluster chemistry involv-
ing MeOH or ACN), remains unclear. It was hypothesized, why an enriched MeOH
atmosphere depletes the higher charge state, while an ACN atmosphere retained it: A
protic gas phase modifier as for example MeOH forms hydrogen-bond chains at the
protonation site and thus increases its proton affinity until proton transfer becomes
thermodynamically favorable. Charge depletion is indeed observed in the presence
of protic modifiers (methanol, ethanol, ammonia), while charge retention is observed
with aprotic ones (acetonitrile, acetone, diethyl ether).

To further investigate this hypothesis, the PT from a protonated primary amine
as model system towards MeOH or ACN clusters is investigated. The geometry and
thermochemical stability of the homogeneous (S)nH+ and mixed [MeNH3

+ + (S)n]+

clusters (S=ACN,MeOH) are calculated. The most important conclusion drawn from
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these calculations is that MeOH forms hydrogen-bond chains for the homogeneous
as well as the mixed clusters. In particular, the protonated MeOH clusters do already
form at the protonated amine site. In contrast, ACN does not offer further binding
sites for additional modifier molecules. Any additional ACN molecule binds to the
amine directly and not to the already present modifier molecules.

Potential energy surface (PES) scans for the PT reactions from the amine to each of
these clusters reveals the important effect of the homogeneous clusters being already
formed at the charge site: While the equilibrium cluster geometry always shows the
proton residing at the amine (for up to four MeOH added), the PT paths become less
steep with increasing cluster size. Although for the calculated systems the PT was al-
ways thermodynamically less favorable than evaporation of a single MeOH molecule,
the less steeper PT paths lead to enhanced population density in the product chan-
nel. Thus, PT is possible under high energy collisions. In stark contrast, ACN showed
high energy barriers for the PT reactions due to large geometrical changes necessary
for the formation of, e.g., the (ACN)2H+. The high energy barrier and low state density
in this tight transition state renders PT unlikely.

Since Substance P is observed as multiply charged molecule, the effect of the ad-
dition of a second charge on the PT paths is investigated. As model system, double
protonated ethylene diamine is used. Although the close proximity of the two charges
represents a rather drastic case, the observed trends are useful to draw conclusions.
Indeed, very different PT paths are observed: Because of the Coulomb repulsion of
the two charges, the PT is energetically favorable for all systems studied. All mixed
clusters show a stable minimum, hence, the PT path has to overcome a barrier for de-
protonation. However, bound MeOH clusters show decreasing barrier heights with
cluster size, while in the ACN case still energetically elevated transition states have to
be overcome. This is rationalized by the charge dilution due to the hydrogen-bond
chain inside the MeOH clusters, promoting proton transfer.

Thus, the hypothesized model of charge retention/depletion is supported by this
theoretical investigation and the deeper insight into the molecular processes occur-
ring are of great benefit to design further experiments. Future work may focus on the
actual calculation of rate constants from the determined PES scans via a RRKM the-
ory treatment (cf. Section 2.4). Additionally, performing the PT potential scans for
the actual Substance P molecule rather than for model compounds are of interest, to
capture the effect of additional charges more realistically. Performing RRKM calcu-
lations for the PT at Substance P is the ultimate goal since it enables the estimation
of the charge state distribution, which can be directly compared with experiment.
Results from these investigations aid to answer the question, whether PT happens
inside a small droplet or with gas phase clusters since the rate constants for both pro-
cesses should be very different and should vary differently with the concentration of
the modifier.
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Dynamic Clustering in DMS Differential Mobility Spectrometry becomes an in-
creasingly popular tool in analytical chemistry. Through the characteristic differ-
ence between the high- and low-field mobility in an electrical field, ions are sep-
arated prior to mass analysis. While experimental effects regarding the electrical
fields, background gas temperature, and chemical environment used, are well stud-
ied, there is no in-depth model yet, which predicts the differential mobility behavior
under various experimental conditions. Especially the effect of gas phase modifica-
tion through the addition of solvent molecules, leading to an increasing mobility with
field strength, is difficult to model. While the change of the collision environment
certainly affects the collision cross section (CCS), dynamic clustering is also hypoth-
esized to explain the observed effects: At low field strengths, the ions are close to ther-
mal conditions and thus cluster with the solvent molecules. At high field strengths,
however, high energy collisions lead to an increased ion temperature, effectively re-
ducing the mean cluster size leading to a higher mobility.

To study this effect from a modeling perspective, the geometry, partition func-
tions and CCS (as a function of temperature) are calculated for a number of cluster
structures. Using the Mason-Schamp equation and applying two-temperature the-
ory, the effective temperature of each cluster structure is calculated for a particular
field strength. Since the clusters are assumed to be in constant dynamic equilibrium
with each other, the ensemble mobility is calculated as a weighted average of the indi-
vidual cluster mobilities. To determine the weighting factors, which resemble the rel-
ative populations of each structure, a modified version of the superposition approx-
imation is used. This modification allows for different temperatures for each cluster,
which is necessary due to their different CCSs. The computed cluster distributions
show a decreasing mean cluster size with increasing field strength, as suggested by
the hypothesis. The fundamental reason for this behavior is the entropy gain upon
evaporation of the clusters, eventually overcoming the binding energy at higher ion
temperatures. This thermodynamic consideration neglects all kinetic effects as for
example rate constants of dissociation.

From the field dependent ensemble mobility, dispersion plots are calculated for a
case study and compared to experimental data. The system investigated is a tetram-
ethyl ammonium ion in different environments, i.e., pure N2 and N2 seeded with
methanol, acetonitrile and acetone. It is shown that the usage of the two-temperature
theory, the correct modeling of the temperature dependency of the CCS, and the de-
gree of clustering are all relevant to reproduce the observed dispersion plots. While
only semi-quantitative agreement is observed, these findings strongly support the
hypothesis that the dynamic clustering mechanism is a major contributor to differ-
ential mobility when the gas phase is seeded with polar modifiers.

Future work will focus on the refinement of the presented model. The usage of two-
temperature theory is important, however, it is only an approximation and known to
yield incorrect mobilities at very high field strengths. Additionally, the thermochemi-
cal procedure used to determine the cluster distribution neglects anharmonic effects
of the loosely bound clusters, as well as the dynamics of binding and dissociating.
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Both do most probably contribute significantly to the deviations observed between
model and experimental data. Another important contribution to differential mo-
bility could be the change in CCS caused by the presence of modifiers even without
any dynamic clustering. The interaction potential between ion and polar neutrals vs.
unpolar neutrals is very different and should affect the CCS to a significant degree.
Incorporation of these effects in the CCS calculations will increase the accuracy of
the model.

6.2 Developing new Calculation Methods

The development of new methods for the calculation of thermochemical data for
loosely bound clusters is the second goal of this work since these data are crucial
for the understanding of many chemical processes at or close to equilibrium. This is
addressed with two different approaches: The development of a new hybrid method
incorporating anharmonic contributions at low computational cost, and the usage
of the quasi-harmonic approximation (QHA) in normal coordinates with special en-
forcement of the Eckart-Sayvetz conditions for overall movement and internal rota-
tions.

Hybrid VPT2 Approach Vibrational Perturbation Theory to 2nd order (VPT2) is
a well known approach to incorporate anharmonic effects to the partition functions
and thus thermochemical stability of molecules. Since its computational cost is rather
high, a hybrid model is proposed, where the harmonic contributions are calculated
at a high, the anharmonic ones at a low level of theory. Harmonic frequencies and
equilibrium rotational constants are determined at higher accuracy, whereas the vi-
brational anharmonic constants, vibration-rotation coupling matrix and centrifugal
distortion constants are calculated with lower accuracy.

For small test molecules, it is shown that similar results are obtained by the hybrid
method in comparison to a high level VPT2 treatment while only a fraction of the
time was needed. As these results are promising and since this work mainly deals
with loosely bound clusters, this new method is applied for these molecules as well.
However, the developed formalism shows a number of obstacles when dealing with
cluster structures. Large anharmonic effects or internal rotations are known to be
troublesome for VPT2 in general, but the hybrid method is even more sensitive to
such issues. This is mainly because the equilibrium geometry and Hessian are not
the same at the two levels of theory. For such systems the hybrid method yields re-
sults with similar accuracy as the standard harmonic approximation but does not
show an overall improvement. However, molecules without these troublesome fea-
tures are accurately studied with this hybrid method, saving a significant amount of
computational time compared to the full high-level VPT2 treatment.
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Quasi-harmonic approximation in Normal Coordinates A second approach
to increase the accuracy of thermochemical data for cluster systems applies the quasi-
harmonic approximation (QHA). Within this formalism, molecular dynamics (MD)
simulations of a molecule are conducted at a defined temperature around the equi-
librium geometry. Within a chosen set of coordinates, the occupation distribution of
the configurational space is recorded. Approximating it by a multidimensional Gaus-
sian function, the covariance matrix of the coordinates directly yields the configura-
tional partition function, from which the vibrational partition function is obtained.

Two innovative modifications of this treatment are developed. First, the set of coor-
dinates in which the configurational distribution is represented are chosen to be the
normal coordinates of the molecule. They are obtained by a standard normal mode
analysis and are generally applicable. In contrast, internal coordinates such as bond
lengths, angles or dihedrals are sometimes difficult to define, especially for (ACN)2H+,
which is of special interest. Second, large amplitude motions such as overall trans-
lation, overall rotation or internal rotation (which was troublesome throughout the
whole preceding work), are separated out of the configurational space by explicity
enforcement of the Eckart-Sayvetz conditions along the MD trajectories.

The thermochemical stability with regard to dissociation for proton bound clusters,
i.e., the (ACN)2H+ and [MeNH3 + MeOH]+ clusters, motivated by the preceding work,
are studied. Multiple MD simulations are conducted for the clusters and fragments
and transformed into the respective Eckart-Sayvetz enforced frame. Vibrational par-
tition functions are calculated within the QHA, internal rotations are treated as free
rotor, and overall motions (translation and rotation) are treated by standard meth-
ods. This formalism worked well for the proton bound ACN dimer. The free enthalpy
of dissociation is calculated much closer to the experimental value as compared to
results from standard methods, which show large deviations. However, the mixed
amine-methanol cluster is not only much more complicated due to more than one
internal rotation, its calculated dissociation enthalpy also deviates stronger from ex-
perimental values than using standard methods.

The developed formalism clearly needs to be improved. One issue is that the vi-
brational partition function is treated purely classically. Thus, any quantum effects
as for example the vanishing heat capacity for modes with hνl À kB T , are not con-
sidered. There is a variation of the QHA, where the covariance matrix in Cartesian
coordinates is diagonalized to obtain ensemble averaged normal coordinates from
the eigenvectors and an analogon to the harmonic frequencies from the eigenvalues.
These are then used with the standard formula for the vibrational partition function
which do include quantum effects. The developed treatment for the enforcement
of the Eckart-Sayvetz conditions is applicable here as well and first test calculations
show some promising results. However, some problems still need to be solved regard-
ing the convergence of the covariance matrix, ensuring complete ergodic mixing to
cover the complete configurational space. Additionally, the internal rotations of very
flexible molecules are still rather troublesome because of their multi-well character
and their coupling to other modes.

127



6 Summary and Outlook

6.3 General Conclusion

Cluster chemistry has been demonstrated to be very important in API-MS. In partic-
ular, clusters formed from the charged analyte with neutral, polar solvents in the gas
phase are strongly influencing many areas in MS. For example, their thermochem-
istry determines the degree of clustering at equilibrium conditions often observed
under atmospheric pressure conditions (ion source, IMS/DMS cell). This determines
the ion mobility in an electrical field but also the population entering the lower pres-
sure regions inside a mass spectrometer, i.e., mean cluster size, or whether the an-
alyte is charged at all. Under non-equilibrium conditions, often observed at high
reduced field strengths (ion transfer, DMS cell), this cluster distribution is exposed
to high energy collisions. The molecular dynamics, determined by the shape of the
potential energy surface determines the faith of these clusters, e.g., whether a charge
is retained at the analyte or is transferred to the solvent molecules. A fundamental
understanding of both processes, equilibrium distribution and non-equilibrium dy-
namics, at various experimental conditions, is crucial for the understanding of the
process happening between ionization and detection.

This work clearly demonstrates that Computational Chemistry in conjunction with
experimental investigations represents a powerful tool to study these kinds of ques-
tions. Not only are thermochemical data, cluster structures or collision cross sections
obtainable from calculations, also potential energy pathways for chemical reactions,
eventually even their rate constants through RRKM calculations, can be computed.
However, since Computational Chemistry is still an evolving field of research, it is
important to consider the validity of the used calculation methods. In this work, es-
pecially the thermochemical stability of loosely bound clusters is difficult to address,
since the standard harmonic treatment to the PES introduces large errors. Thus, ef-
forts are put forward to develop new methods for more accurate predictions. While
these show the inherent difficulties when dealing with those types of molecules, some
progress was made. There are still many possibilities for further explorations in this
field of research.
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