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Abstract

It is known that in many functions of large and sparse matrices the entries exhibit
a rapid decay such that most of them are very small in magnitude. It is possible
to give upper bounds for the magnitude of the entries which capture this decay
without actually computing the matrix function, called decay bounds. In this thesis
we derive new decay bounds for special types of matrices and functions, including
the inverse as an important special case. In addition, based on the results for
the inverse, we formulate decay bounds for Cauchy–Stieltjes functions of certain
classes of matrices. The superiority of the new bounds compared to bounds from
the literature is shown and illustrated in numerical experiments.

Furthermore, we discuss the practical relevance of this decay property. In particu-
lar, the decay in matrix functions reveals the existence of a sparse approximation.
We exploit the decay property in order to compute sparse approximations and the
trace of matrix functions, where decay bounds can be used for an error analysis.
The resulting methods are compared to previous approaches from the literature
and numerical examples show the effectiveness of the proposed methods.
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Chapter 1
Introduction

For a given scalar function f and a square matrix A it is possible to define a
matrix f(A) such that it provides a useful generalization of the scalar function
f(z) with argument z ∈ C. Those matrices f(A) are called matrix functions
or functions of matrices. One of the most important and popular special case
is given by the matrix inverse A−1 generated by the scalar function f(z) = z−1

which arises in many areas of numerical linear algebra, e.g., in the solution of
systems of linear equations. Furthermore, lots of other matrix functions play an
important role in plenty of applications. The matrix function f(A) = exp(A) is
frequently used for the numerical solution of time-dependent differential equations
or the analysis of dynamical systems [40]. In addition, it is an important tool for
the analysis of networks, as well as the resolvent, generated by the scalar function
f(z) = (α − z)−1 with α ∈ C [29, 30, 31]. The matrix sign function f(A) =
sign(A) has important applications in control theory [40, 82] and lattice quantum
chromodynamics [14, 74, 103]. Inverse fractional powers f(A) = A−α with α ∈
(0, 1) are strongly related to the matrix sign function and arise in generalized
eigenvalue problems [75, Section 15.10] and fractional differential equations [16].
An abundance of further applications of matrix functions can be found in [53,
Chapter 2].

In this thesis we assume that the considered matrices A are large and sparse. Since
we only deal with square matrices, we denote with an n-dimensional matrix (or
a matrix of dimension n) a matrix of size n× n. While matrices of dimension n
in general have up to n2 nonzero entries, we say that an n-dimensional matrix
is sparse if it only contains O(n) nonzero entries. In a less stricter definition,
a matrix A is sparse if it is gainful to use a special storage format which only
considers the nonzero entries of A and if it is profitable to make use of the sparsity
of A in matrix computations like the computation of Av for a given vector v. If
a matrix is not sparse, we call it dense. Sparse matrices naturally arise in plenty
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1 Introduction

of applications like in the discretization of continuous problems. For example,
a D-dimensional partial differential equation of second order can be discretized
by using a (2D + 1)-point stencil on a uniform lattice, where every central point
couples with its two nearest neighbors in each dimension of the lattice. This results
in a discretized problem including a matrix with only 2D + 1 nonzero entries per
row. Furthermore, lots of important types of graphs or networks result in sparse
adjacency matrices, e.g., if the graph is planar or if the maximal degree of the
graph is bounded. The consideration of large and sparse matrices leads to two
crucial problems in the computation of matrix functions:

1. The computation of f(A) has in general a cost of O(n3) for an n-dimensional
matrix A. Thus, the computation of f(A) is very expensive for large matrices.

2. The matrix f(A) is dense (apart from certain special cases) such that it is
not possible to store f(A) for large dimensional problems, while this was
possible for the sparse matrix A.

For large and sparse matrices A most of the past and current research deals
with the problem of computing f(A)v for a given vector v without computing
f(A) explicitly, see, e.g, [36, 40, 53, 54]. This is motivated by the fact that the
computation of f(A) is way to costly and that in many applications only a vector
f(A)v is needed instead of of the whole matrix f(A). For example, the solution
of a system of linear equations Ax = b is given by the vector A−1b and we do
not explicitly require the matrix A−1. On the other hand, even if we concede
the high computational cost of computing f(A), the storage problem still remains
which makes the computation of f(A) impossible. The goal of this thesis is
to fix the occurring two problems for some types of large, sparse matrices by
exploiting a phenomenon which is called decay in matrix functions. A possible
consequence of such a decay in matrix functions is that most of the entries of f(A)
are very small in magnitude (and therefore negligible) and that the remaining
important parts in f(A) are only given by O(n) entries. Hence, this phenomenon
reveals the possibility for the computation of a precise but sparse approximation
of the dense matrix f(A). In this thesis we will provide the theoretical basis for
this phenomenon, given by decay bounds of matrix functions, which solves the
illustrated storage problem in some cases. In addition we propose efficient ways
for the computation of f(A) (or more precisely a sparse approximation of f(A))
for large, sparse matrices A.

This thesis is organized as follows: In order to make our work as self-contained
as possible we first present some basic material in Chapter 2. This especially
includes the formal definition of matrix functions and some computational aspects
associated with large and sparse matrices A. The results of this thesis are then
given in Chapter 3 and Chapter 4. In Chapter 3 we introduce decay bounds for
matrix functions which are the theoretical basis for the results in Chapter 4. In
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particular, in Chapter 3 we introduce some known results from the literature,
as well as new results for special types of functions and matrices. Some of our
results in Chapter 3 have already been published in [38] and [39]. In Chapter 4 we
then exploit the decay in f(A) for certain matrix computations associated with
matrix functions as the computation of a sparse approximation of f(A) with low
computational cost. Furthermore, an important part of this chapter is devoted
to the use of the results of Chapter 3 for the computation of the trace of matrix
functions without computing f(A) explicitly. In Chapter 5 we summarize the
results of this thesis and give concluding remarks on possible future research
topics.
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Chapter 2
Review of basic material

This chapter gives an overview of basic definitions and properties required for the
development of the results in this thesis. We start with fundamental definitions
and properties of general matrix functions, and we subsequently discuss important
aspects and problems arising in the computation of functions of large and sparse
matrices in particular. In Section 2.2 we review the classical terminology of graph
theory and present the intimate relation between graphs and matrices which will
be useful throughout this thesis. In addition, this relation yields an important
application of functions of matrices in network analysis. Concluding this chapter,
we introduce certain types of minimal polynomials which are fundamental for the
development of the results in Chapter 3.

2.1 Functions of matrices

In this section we define the matrix function f(A) ∈ Cn×n for a given scalar
function f and a matrix A ∈ Cn×n such that f(A) represents a meaningful gen-
eralization of the scalar variable f(z) for z ∈ C. For example, for f(z) = z−1

and the corresponding matrix function f(A) = A−1 we want the matrix products
AA−1 and A−1A to be the identity element I in Cn×n, i.e, f(A) should result in
the classical matrix inverse of A. Similarly, for a square root A1/2 of a matrix A
we expect the relation (A1/2)2 = A. In addition, if f is a polynomial or in general

if f has a power series expansion f(z) =
∞∑
k=0

ak(z − α)k for |z − α| < r, then it

seems to be natural to define

f(A) =
∞∑
k=0

ak(A− αI)k
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2 Review of basic material

under some conditions on A with respect to the set of convergence. There are
several equivalent definitions for functions of matrices fulfilling these requests and
which give a meaningful definition for general scalar functions f . We present
three of those definitions in Section 2.1.1. They directly provide ways for the
computation of the matrix f(A) which are especially not feasible for large and
sparse matrices A. Hence, we discuss some computational aspects in particular
for functions of large and sparse matrices in Section 2.1.2.

2.1.1 Basic definitions

The following definitions and results mainly follow the presentation in [53, Chapter
1]. An overview of functions of matrices can also be found in [40, 48, 55].

A matrix A ∈ Cn×n can be expressed in Jordan canonical form A = WJW−1, with
a nonsingular matrix W ∈ Cn×n and a block diagonal matrix J = diag(J1, . . . , Jp),
with Jordan blocks Jk of the form

Jk =


λik 1

λik
. . .
. . . 1

λik

 ∈ Cmk×mk ,

where λik is an eigenvalue of A and m1 +m2 + · · ·+mp = n. Let λ1, . . . , λs, s ≤ p
be the distinct eigenvalues of A, then ni denotes the size of the largest Jordan
block corresponding to the eigenvalue λi and we call ni the index of λi. Now, a
function f is said to be defined on the spectrum of A if the values

f (j)(λi), j = 0, . . . , ni − 1, i = 1, . . . , s

exist. With these notations we give the following definition of matrix functions.

Definition 2.1. Let A ∈ Cn×n be given in Jordan canonical form A =
WJW−1 and let f be defined on the spectrum of A. Then we define

f(A) := Wf(J)W−1 = W diag(f(J1), . . . , f(Jp))W
−1, (2.1)

with

f(Jk) :=


f(λik) f ′(λik) . . .

f (mk−1)(λik )

(mk−1)!

f(λik)
. . .

...
. . . f ′(λik)

f(λik)

 ∈ Cmk×mk ,

where λk is the eigenvalue corresponding to the Jordan block Jk.
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2.1 Functions of matrices

Definition 2.1 reveals an important spectral property of matrix functions: The
eigenvalues of f(A) are given by f(λi) since f(A) is similar to the triangular
matrix f(J) with diagonal entries f(λi). In addition, for a diagonalizable matrix
A the Jordan canonical form reduces to the eigendecomposition A = WΛW−1,
where Λ = diag(λ1, . . . , λn), thus

f(A) = Wf(Λ)W−1 = W diag(f(λ1), . . . , f(λn))W−1,

so the eigenvectors of A coincide with those of f(A) for diagonalizable matrices A.
For general matrices, every eigenvector of A is also an eigenvector of f(A) which
can be easily seen due to the following equivalent definition of matrix functions.

Definition 2.2. Let f be defined on the spectrum of A ∈ Cn×n and let the
minimal polynomial of A be of degree m. Then we define f(A) := p(A), where
p is the unique polynomial of degree less than m that satisfies the interpolation
conditions

p(j)(λj) = f (j)(λj), j = 1, . . . , ni − 1, i = 1, . . . , s,

and p is called the Hermite interpolating polynomial.

With Definition 2.2 we directly see a further important property: Every matrix
function is a polynomial in A and only depends on the values of f (and derivatives
of f) on the spectrum of A. If f has a power series of the form

f(z) =
∞∑
k=0

ak(z − α)k

for |z − α| < r, then f(A) can be expressed as

f(A) =
∞∑
k=0

ak(A− αI)k

if σ(A) ⊂ {z ∈ C : |z − α| < r} (see, e.g., [53, Section 4.7]). However, an
interesting consequence of Definition 2.2 is that f(A) is also expressible as a
polynomial of degree at most n− 1.

Our last definition of matrix functions is based on the Cauchy integral formula for
analytic functions f . In this definition we have stricter conditions on the function
f compared to Definitions 2.1 and 2.2 but in contrast to these definitions it can
be directly generalized to operators on infinite-dimensional spaces.
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2 Review of basic material

Definition 2.3. Let A ∈ Cn×n be a complex matrix and let f be analytic on
a region Ω ⊆ C containing σ(A). Let Γ be a closed contour in Ω that encloses
σ(A), then we define

f(A) :=
1

2πi

∫
Γ

f(t)(tI − A)−1dt.

This definition based on an integral expression of f is not restricted to the Cauchy
integral formula. If f has another integral expression, e.g., a Stieltjes integral
expression, then f(A) can be defined in the same manner as in Definition 2.3.
This will be an important fact at some points throughout this thesis.

The following result reveals the equivalence of the introduces definitions.

Theorem 2.4. Let A ∈ Cn×n be a complex matrix and let f be defined on σ(A).
Then the Definitions 2.1 and 2.2 are equivalent. If f fulfills the conditions of
Definition 2.3, then Definition 2.3 is equivalent to Definitions 2.1 and 2.2.

Proof. See, e.g., [53, Theorem 1.12] and [55, Theorem 6.2.28].

2.1.2 Computational aspects

An obvious way to compute the matrix f(A) directly follows from Definition 2.1
of Section 2.1.1. If A can be expressed as A = WBW−1, such that f(B) is easily
computable, we use the relation

f(A) = Wf(B)W−1.

For diagonalizable matrices we can use the eigendecomposition A = WΛW−1,
where f(Λ) is just given by f(Λ) = diag(f(λ1), . . . , f(λn)). If the matrix W is
ill-conditioned or for general matrices, the Schur decomposition A = WTWH can
be used instead and the problem of computing f(A) reduces to the problem of
computing f(T ) for an upper triangular matrix T where the entries [f(T )]ij can be
computed recursively [53, Theorem 4.11]. This method is in general not feasible
for large matrices, due to the high computational cost for determining a suitable
decomposition of A. The high computational cost for large matrices A is also
apparent for other direct techniques for computing f(A). Further direct methods
for the computation of f(A) for small matrices A can be found in [53, Section 4]
and [40].
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2.1 Functions of matrices

Another well known problem in the computation of matrix functions for large
and sparse matrices A is the (in general) full structure of f(A). This results in
the problem that we are not able to store the matrix f(A) while this is possible
for the sparse matrix A. However, in many applications only the vector f(A)v
or the bilinear form vHf(A)v for a given vector v ∈ Cn is needed instead of the
whole matrix f(A). A familiar application is, e.g., the solution of systems of linear
equations Ax = b, where x = f(A)b, with f(z) = z−1. Similar to iterative solvers
for systems of linear equations, there exist iterative methods for the computation
of f(A)v and vHf(A)v for general functions f . The most important iterative
methods for computing those quantities belong to the class of Krylov subspace
methods. We now consider the so-called Arnoldi/Lanczos approximations of f(A)v
and vHf(A)v, based on the Arnoldi/Laczos process.

The Arnoldi process provides a matrix Vm ∈ Cn×m and an upper Hessenberg
matrix Hm ∈ Cm×m with Hm = V H

mAVm, m ≤ n, where the columns of Vm form
an orthonormal basis of the Krylov subspace Km(A, v) := span{v,Av, . . . , Am−1v}.
The Arnoldi algorithm is presented in Algorithm 2.1. In line 8 of Algorithm 2.1
the case hj+1,j = 0 is considered and it can be shown that this condition is
fulfilled if and only if the Krylov subspace Kj(A, v) is invariant under A, i.e., if
Kk(A, v) = Kj(A, v) for k ≥ j; see [85, Proposition 6.6].

Algorithm 2.1: Arnoldi’s method.
Input: Matrix A, vector v and number of iterations m.
v1 = 1

‖v‖2v1

for j = 1, . . . ,m do2

wj = Avj3

for i = 1, . . . , j do4

hi,j = vHi wj5

wj = wj − hi,jvi6

end7

hj+1,j = ‖wj‖28

if hj+1,j = 0 then9

stop10

end11

vj+1 = 1
hj+1,j

wj12

end13

If A is Hermitian, the Arnoldi algorithm simplifies to the Lanczos process and
only the last two computed basis vectors vj and vj−1 are required for computing
the current vector vj+1, i.e., there is a three-term recurrence relation for the
basis vectors. This can be easily seen by the fact that the Hessenberg matrix
Hm = V H

mAVm is Hermitian if A is Hermitian, hence, Hm is tridiagonal and
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2 Review of basic material

therefore hi,j = 0 for i < j − 1. Because of the tridiagonal structure of Hm in the
Lanczos process this matrix is sometimes denoted as Tm in the literature. In the
following we maintain the notation Hm for ease of presentation. Algorithm 2.2
presents the Lanczos process for Hermitian matrices A.

Algorithm 2.2: Lanczos method.
Input: Hermitian matrix A, vector v and number of iterations m.
v1 = 1

‖v‖2v1

h1,0 = 02

for j = 1, . . . ,m do3

wj = Avj − hj,j−1vj−14

hj,j = vHj wj5

wj = wj − hj,jvj6

hj+1,j = ‖wj‖27

if hj+1,j = 0 then8

stop9

end10

vj+1 = 1
hj+1,j

wj11

end12

With the resulting matrices Vm ∈ Cn×m and Hm ∈ Cm×m and by denoting with
e1 the first canonical vector of evident size, the Arnoldi/Lanczos approximations
of f(A)v and vHf(A)v are given by

f(A)v ≈ Vmf(Hm)V H
mv = ‖v‖2Vmf(Hm)e1 (2.2)

and
vHf(A)v ≈ vHVmf(Hm)V H

mv = ‖v‖2
2e
T
1f(Hm)e1, (2.3)

provided that f is defined on σ(Hm). These approximations are exact if the Krylov
subspace Km(A, v) is invariant under A. Such an m can be very large in general
(indeed at most n which immediately follows from the Cayley-Hamilton theorem),
so we hope to obtain a good approximation of these quantities for a small number
of iterations m. Then the large problem of size n is reduced to a problem of size
m and f(Hm) can be computed by a direct method.

For the inverse, the proposed approximation of f(A)v leads to the Full Orthog-
onalization Method (FOM) for linear systems Ax = b. This choice for an m-th
iterate realizes the condition that the m-th residual rm := b− Axm is orthogonal
to the Krylov subspace Km(A, r0). If A is in addition Hermitian positive definite,
we have the additional property that the m-th iterate minimizes the error in the
A-norm over the subspace Km(A, r0), i.e., we obtain the conjugate gradients (CG)
method. All these properties and further Krylov subspace methods for solving
linear systems can be found in [85].
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2.1 Functions of matrices

Before we discuss some interesting properties of these approximations for general
functions f , we give some remarks on the choice of the number of iterations m.

Remark 2.5. The simplest way to abort the process is to stop, when two iterates
differ less than a given threshold. In this case we need to compute the matrices
f(Hk) for k = 1, . . . ,m in every iteration step. Of course, this is not desirable but
this can be done without further restrictions. For Hermitian matrices, an iterative
algorithm for determining |eT1 f(Hk)e1 − eT1 f(Hk−1)e1| in step k of the Lanczos
process is described in [18] without computing f(Hk) or f(Hk−1) explicitly. �

Remark 2.6. Another and computationally better possibility is to choose the
number of iterations based on error bounds for them-th iterate of the Arnoldi/Lanc-
zos process. There exist numerous a priori and a posteriori bounds for the error
‖f(A)v−‖v‖2Vmf(Hm)e1‖2 for certain classes of functions and matrices (see, e.g.,
[37, 40] for rational functions, [54, 84] for the exponential or [88] for Stieltjes
functions). Of course, these bounds can be used for the bilinear forms vHf(A)v
as well and we obtain error bounds for the m-th iterate based on error bounds for
the Arnoldi/Lanczos approximation of f(A)v since

|vHf(A)v − ‖v‖2
2e
H
1 f(Hm)e1| = |vHf(A)v − ‖v‖2v

HVmf(Hm)e1|
≤ ‖v‖2 ‖f(A)v − ‖v‖2Vmf(Hm)e1‖2. (2.4)

However, in some cases more accurate error bounds can be derived for the approx-
imation of bilinear forms by using the relation to Gauss quadrature, which will be
discussed in the following. Error bounds based on this relation are for example
given in [18] for the Lanczos approximation of vHf(A)v for Hermitian matrices A.
�

Now, we review some interesting properties of the approximations (2.2) and (2.3).

Theorem 2.7. Let A ∈ Cn×n be a complex matrix and let Vm and Hm be the
matrices obtained by m steps of the Arnoldi process. Then the approximation (2.2)
is exact for polynomials of degree at most m− 1, i.e.,

pk(A)v = ‖v‖2Vmpk(Hm)e1, k = 1, . . . ,m− 1.

In addition,

‖v‖2Vmf(Hm)e1 = p̃m−1(A)v,

where p̃m−1 is the unique polynomial of degree at most m− 1 that interpolates f
on the spectrum of Hm.

Proof. See [53, Lemma 13.4 and Theorem 13.5].
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2 Review of basic material

With Theorem 2.7 the exactness for polynomials of degree m−1 for m steps of the
Arnoldi/Lanczos process directly transfers to the Arnoldi/Lanczos approximation
of vHf(A)v. However, we can establish better exactness results in this case,
especially for Hermitian matrices based on the relation between bilinear forms
vHf(A)v and Riemann-Stieltjes integrals which we will discuss in the following.
For a detailed overview of the computation of bilinear forms and the connection
to Riemann-Stieltjes integrals and Gauss quadrature see [47] and the references
therein.

For a Hermitian matrix A ∈ Cn×n, we have an eigendecomposition

A = UΛUH ,

where U ∈ Cn×n is a unitary matrix whose columns are the normalized eigenvectors
of A and Λ ∈ Rn×n a diagonal matrix with the eigenvalues of A ordered as
λ1 ≤ λ2 ≤ . . . ≤ λn on the diagonal. We have

vHf(A)v = vHUf(Λ)UHv = uHf(Λ)u =
n∑
i=1

f(λi)|ui|2 (2.5)

with u = UHv. Now, the last expression can be interpreted as the Riemann-
Stieltjes integral ∫ λn

λ1

f(λ)dα(λ) (2.6)

where the function α is given as

α(λ) =


0 if λ < λ1∑i

j=1 |uj|2 if λi ≤ λ < λi+1∑n
j=1 |uj|2 if λn ≤ λ

.

Hence, (2.5) can be approximated by applying Gauss quadrature to the integral
(2.6), i.e.,

vHf(A)v =

∫ λn

λ1

f(λ)dα(λ) ≈
N∑
i=1

wif(ti) +
M∑
j=1

vjf(zj), (2.7)

where the weights [wi]
N
i=1, [vj]

M
j=1 and the nodes [ti]

N
i=1 are unknowns, and the nodes

[zj]
M
j=1 are prescribed. For M = 0 we just have the Gauss rule with no prescribed

nodes. The choice M = 1 and z1 = λ1 or z1 = λn leads to the Gauss-Radau rule,
and for M = 2 with z1 = λ1 and z2 = λn we obtain the Gauss-Lobatto rule. Since
the eigenvalues of A and therefore α are not explicitly known, we use the following
relation between Gauss quadrature and the Lanczos process.
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2.1 Functions of matrices

Theorem 2.8. Let A be Hermitian and Hm be the matrix obtained by m steps
of the Lanczos process with respect to A and v, where ‖v‖2 = 1. Then the Gauss
quadrature approximation of (2.6) with N = m and M = 0 is given by

N∑
i=1

wif(ti) = eT1 f(Hm)e1

Proof. See [47, Theorem 6.6].

The same statement holds for the Gauss-Radau and Gauss-Lobatto rule with
modified matrices H̃m+1 (see [47, Section 6]). For example, for the Gauss-Radau
rule we have to extend the matrix Hm in such a way that it has an additional
prescribed eigenvalue λ1 or λn. For having an additional eigenvalue λ, we need
to solve the system (Hm − λI)x = β2

mem, where βm is the norm of the last
orthogonalized vector in the Lanczos process before normalization. Then the
matrix H̃m+1 is given by

H̃m+1 =

(
Hm βmem
βme

T
m λ+ xm

)
.

For the Gauss-Lobatto rule we need to prescribe the two additional eigenvalues
λ1 and λn.

Under certain conditions, the approximation (2.7) is an upper or a lower bound
for the bilinear form vHf(A)v: If f (2n)(ξ) > 0 for all n and ξ ∈ (λ1, λn) then the
approximation (2.7) provides a lower bound if the Gauss rule is used and an upper
bound in the case of the Gauss-Lobatto rule. For the Gauss-Radau rule an upper
bound can be obtained with z1 = λ1 if f (2n+1)(ξ) < 0 for all n and ξ ∈ (λ1, λn).
With z1 = λn we compute a lower bound. For example, when f is completely
monotonic, i.e., when f satisfies

(−1)kf (k)(z) ≥ 0 for all k ∈ N0 and z ∈ R+,

then all these conditions are fulfilled if A is Hermitian positive definite. Examples
of completely monotonic functions are obviously given by f(z) = z−1 or by f(z) =
exp(−az) with a ≥ 0. In Section 3.3 we introduce the important class of Cauchy–
Stieltjes and Laplace–Stieltjes functions. It can be shown that every Cauchy–
Stieltjes function f : R+ → R is completely monotonic and that a function
f : R+ → R is completely monotonic if and only if it can be expressed as a
Laplace–Stieltjes integral [13]. Hence, it is possible to compute upper and lower
bounds for the Lanczos approximation of vHf(A)v for a large class of functions.

Since the Gauss quadrature rule (2.7) is exact for polynomials of degree 2N−1 (see
[47, Section 6.2]) the approximation (2.3) is exact for vHf(A)v if f is a polynomial
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2 Review of basic material

of degree at most 2m− 1. Because of the additional prescribed quadrature nodes
in the Gauss-Radau and Gauss-Lobatto rule, these quadrature rules are exact
for polynomials of degree 2N and 2N + 1, respectively, which directly lead to
exact approximations for polynomials of degree at most 2m and 2m + 1. These
exactness results establish an approximately twice as fast convergence of the
Lanczos approximation of vHf(A)v compared to the approximation of f(A)v. In
addition, we do not need to store the whole (dense) matrix of basis vectors Vm
since the basis vectors can be normalized with only two previous basis vectors and
the matrix Vm does not appear in the Lanczos approximation of vHf(A)v. For
non-Hermitian matrices, an exact result can be obtained for polynomials of degree
at most 2m−1 by using the nonsymmetric Lanczos process with m iterations (see
[47, Section 8.1]) but in return two matrix-vector products with respect to A and
AH are required in every iteration step, which overall leads to the same number of
matrix-vector products as for the Arnoldi process with 2m steps. For the Arnoldi
approximation (2.3) we obtain an exact result for polynomials of degree at most
m, which directly follows from the equality

vHg(A)Hf(A)v = eT1 g(Hm)Hf(Hm)e1 for all (g, f) ∈Wm,

from [17, Theorem 2.2] where Wm = (Pm−1 ⊕ Pm) ∪ (Pm ⊕ Pm−1). By setting
g(z) = 1, we have the claimed exactness.

The computation of bilinear forms vHf(A)v will be an important part in Section 4.4
and is therefore summarized in Algorithm 2.3.

Algorithm 2.3: Arnoldi/Lanczos approximation of vHf(A)v.
Input: Matrix A, vector v and number of iterations m.
Set ṽ = 1

‖v‖2v1

if A is Hermitian then2

Run m iterations of the Lanczos process with respect to A and ṽ and3

compute the tridiagonal matrix Hm for the Gauss rule or a tridiagonal
matrix H̃m+1 for the Gauss-Radau or Gauss-Lobatto rule.

else4

Run m iterations of the Arnoldi process with respect to A and ṽ and5

compute the Hessenberg matrix Hm.
end6

Compute ‖v‖2
2e
T
1 f(Hm)e1 (or ‖v‖2

2e
T
1 f(H̃m+1)e1, respectively).7

2.2 Graph theory

Throughout this thesis we will often use connections between properties of a matrix
A and the corresponding graph G(A) or vice versa. Therefore, in this section

14



2.2 Graph theory

we introduce central definitions and results from graph theory. For an elaborate
introduction into graph theory and graph algorithms see, e.g., [28, 32, 60, 100, 105].
Classical and well-known definitions for graphs are embedded in the running text
while new or modified definitions are emphasized.

A graph is defined as an ordered pair G = (V,E) where V is a set of nodes and E
is a set of edges. We distinguish between directed and undirected graphs. In an
undirected graph, the edges have no orientation and are therefore defined by an
unordered pair of nodes {v, w} where v, w ∈ V . For an edge {v, w} ∈ E, the nodes
v and w are said to be adjacent and v and w are incident to the edge {v, w} and
vice versa. Similarly, two edges are called adjacent if they share a common vertex.
The degree deg(v) of a node v is defined as the number of adjacent nodes and
∆(G) := max{deg(v) : v ∈ V } defines the maximum degree over all nodes v in G.
In a directed graph (or digraph), the edges are defined by an ordered pair of nodes
(v, w) so that now an edge between two nodes has a direction. Every undirected
graph can be considered as an directed graph by replacing every (undirected)
edge {v, w} by two (directed) edges (v, w) and (w, v). In the undirected graph |G|
corresponding to a directed graph G, every edge (v, w) is replaced by an undirected
edge {v, w}. For an undirected graph G we set |G| = G. The indegree degin(v) of
a node v in a digraph G = (V,E) is defined as the number of edges ending in v,
i.e., the number of edges (w, v) ∈ E. Similarly, the outdegree degout(v) is defined
as the number of edges beginning in v, i.e., the number of edges (v, w) ∈ E.

We define a walk of length k from node v1 to vk+1 in a graph (digraph) G as
a sequence of nodes (v1, . . . , vk+1), where {vi, vi+1} ∈ E ((vi, vi+1) ∈ E) for i =
1, . . . , k. A walk is closed, if v1 = vk+1. A path of length k from v1 to vk+1 in G is
a walk (v1, . . . , vk+1), where vi 6= vj for i, j = 1, . . . , k + 1. The geodesic distance
d(v, w) of two nodes v, w ∈ V is the length of the shortest path from v to w in G.
We set d(v, w) = 0 for v = w and d(v, w) =∞ if v 6= w and there is no path from
node v to node w. Of course, for undirected graphs we have d(v, w) = d(w, v) for
all v, w ∈ V which in general is not true for directed graphs.

Definition 2.9. The undirected distance d̄(v, w) of two nodes v, w ∈ V in
the graph G = (V,E) is the length of the shortest path connecting nodes v
and w in |G|.

For the defined distances the relation

d̄(v, w) ≤ min{d(v, w), d(w, v)} (2.8)

holds, where equality always holds for undirected graphs since d̄(v, w) = d(v, w) =
d(w, v), while a strict inequality is possible for undirected graphs as demonstrated
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2 Review of basic material

in a simple example in Figure 2.1. The diameter of a graph G = (V,E) is defined
as

diam(G) = max
i,j∈V

d(i, j).

For a graph G we define the corresponding adjacency matrix A(G) as follows.

Definition 2.10. Let G be a graph with nodes V = {1, . . . , n} and edges E.
The adjacency matrix of G is a matrix A(G) ∈ {0, 1}n×n with entries

[A(G)]ij =

{
1 if (i, j) ∈ E or i = j

0 else .

This definition slightly differs from most classical definitions of adjacency matrices
of graphs. In Definition 2.10 the whole diagonal of A(G) is nonzero while in
classical definitions a diagonal entry is nonzero if and only if the corresponding
node has a self loop. Of course, in most applications it is important to store this
self loop information. In this thesis it will be more important to have the following
relation between the powers of the matrix A(G) and the distances of the nodes in
G which requires an adjacency matrix as defined above.
LetA := A(G) be the adjacency matrix of a graphG. Of course, an entry ai,j, i 6= j
of A indicates whether the nodes i and j are adjacent, i.e., whether there is a walk

of length one between these nodes. Similarly, an entry [A2]ij =
n∑
k=1

aikakj of A2

gives us the information whether there is a walk from i to j with length two. In
general, we have

[Ad]ij =
n∑

k1=1

n∑
k2=1

. . .

n∑
kd−1=1

aik1ak1k2 . . . akd−1j 6= 0

if and only if there is a walk from i to j with length d. If the adjacency matrix
A is defined in the classical way, the entry [Ad]ij is in addition the number of
walks between i and j with exactly length d. On the other hand, if we define
the adjacency matrix A as in Definition 2.10 the entry [Ad]ij not only gives the
information whether there is a walk between i and j with exactly length d, it
indicates if there is a walk between i and j with length at most d, due to the
nonzero diagonal entries which represent artificial self loops. Now, since a walk
with length at most d between i and j also implies a path between i and j with
length at most d, we have the following relations between the powers of the
adjacency matrix A(G) and the distances of the nodes in the graph G.
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v w

Figure 2.1: Directed Graph with
d(v, w) = d(w, v) =∞ and d̄(v, w) = 2.

1 2 3 4

Figure 2.2: Undirected Graph from Ex-
ample 2.12.

Lemma 2.11. Let G be a graph and A := A(G) the corresponding adjacency
matrix as defined in Definition 2.10. Then for d ≥ 1 the following equivalent
statements hold:

(i) [Ad]i,j = 0 if and only if d(i, j) > d.

(ii) [Ad]ij 6= 0 if and only if d(i, j) ≤ d

These statements do not hold if the adjacency matrix A is defined in the classical
way which is illustrated in the following example.

Example 2.12. Let G = (V,E) be an undirected graph with V = {1, 2, 3, 4} and
E = {{1, 2}, {2, 3}, {3, 4}}. G is illustrated in Figure 2.2. For the distances of
the nodes in G we have d(1, 2) = d(2, 3) = d(3, 4) = 1, d(1, 3) = d(2, 4) = 2 and
d(1, 4) = 3. There are no self loops in G, hence the classical adjacency matrix
Ã(G) is given by

Ã(G) =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


and therefore

Ã(G)2 =


1 0 1 0
0 2 0 1
1 0 2 0
0 1 0 1

 .
Now, [Ã(G)2]1,2 = [Ã(G)2]2,3 = 0 and d(1, 2) = d(2, 3) = d(3, 4) ≤ 2, so
Lemma 2.11 does not hold for A = Ã(G) and d = 2. In contrast if A = A(G) is
given by

A(G) =


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

 ,
then

A(G)2 =


2 2 1 0
2 3 2 1
1 2 3 2
0 1 2 2

 ,
and Lemma 2.11 holds for A = A(G) and d = 2. �
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2 Review of basic material

For the classical adjacency matrix A = Ã(G) we only have the implication d(i, j) ≤
d if [Ad]ij 6= 0 and [Ad]ij = 0 if d(i, j) > d, respectively, i.e., if [Ad]ij = 0 we cannot
guarantee that d(i, j) > d.

However, the classical adjacency matrix is an important tool in network analysis
[29]. A graph is sometimes called a network if it stems from the modeling of a real
world problem. Examples are railway networks, road networks or social networks.
Oftentimes, a problem is modeled by a weighted graph or network where weights
are assigned to the edges representing, e.g., lengths, costs or capacities. Definitions
like the length of a walk or distances between nodes can be adapted by considering
the weights of the edges. In the analysis of networks, functions of matrices play
an important role as we will see in the following.

In network analysis quantities of interest are, e.g., the centrality or connectivity
of nodes. Those centrality or connectivity measures are used for rating the “im-
portance” of nodes and links between them in a network. The simplest way of
rating the centrality of a node is given by the degree centrality, where nodes with
high degree are more important or central than nodes with low degree. Such a
centrality measure is easily available but it does not capture the global structure of
the network. Hence, further quantities for the centrality of a node considering the
global structure of the graph were developed [29, 30, 31]. The so called subgraph
centrality of a node i is given by

SC(i) := [exp(A)]ii

where A is the classical adjacency matrix of the network. To see why this measure
might be an appropriate (global) quantity for rating the centrality of a node, we
write

[exp(A)]ii =
∞∑
k=1

[Ak]i,i
k!

,

i.e., the i-th diagonal entry of the exponential of an adjacency matrix of a network
is the sum over the number of closed walks with length k for node i in which the
number of walks with length k is weighted by the factor 1

k!
. The scaling factor

represents the fact that shorter walks are typically more important than longer
walks since information can be passed more quickly and efficiently through short
walks. The sum over all nodes of the subgraph centrality is known as the Estrada
Index

EE(G) := tr(exp(A)) :=
n∑
i=1

∞∑
k=0

[Ak]i,i
k!

which is often used for normalization purposes. With this centrality measure based
on the exponential, the structure of a network is represented more comprehensively
than by just considering direct neighbors. Instead of using the scaling factor 1

k!
it

is possible to assign other decreasing weights ck ≥ 0. Then, if
∑∞

k=0 ckz
k converges
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2.2 Graph theory

for |z| < ρ(A), where ρ(A) is the spectral radius of the adjacency matrix A, the
f -centrality of a node i is given by

[f(A)]ii

for a function

f(z) =
∞∑
k=0

ckz
k. (2.9)

An important function for the f -centrality of a node besides the exponential is
given by the resolvent. The resolvent centrality of a node i is defined as

RC(i) := [(αI − A)−1]ii =
∞∑
k=0

α−(k+1)[Ak]ii,

where α > max{1, ρ(A)}.
Besides the centrality of a node, the communicability between two nodes i and
j does also play an important role in the analysis of networks. Similar to the
definition of the f -centrality, the f -communicability of two nodes is defined as

[f(A)]ij,

for a function f with power series (2.9). The (i, j)-entry then represents the
sum over the number of walks with length k from node i to j in which the
number of walks with length k is scaled by ck. Again, important examples for
f -communicability of two nodes are induced by the exponential and the resolvent.
Hence, these measures in graph and network analysis illustrate an important
application for functions of large, sparse matrices.

So far, we defined matrices A(G) corresponding to a network or graph G. The
other way around, we can define a graph G(A) corresponding to a matrix A. The
(directed) graph G(A) = (V,E) corresponding to a matrix A ∈ Cn×n is defined
by the set of nodes V = {1, . . . , n} and the set of edges E = {(i, j) ∈ V × V :
aij 6= 0, i 6= j}. The corresponding undirected graph |G(A)| is given by the tuple
(V, |E|) with |E| = {{i, j} : (i, j) ∈ E}.

Definition 2.13. We call a matrix A structurally symmetric if G(A) = |G(A)|.

Obvious examples of structurally symmetric matrices are Hermitian and skew-
Hermitian matrices. In the following, we will sometimes work with the graph G(A)
of a matrix A and the corresponding adjacency matrix from Definition 2.10, since
we are interested in the distances of the nodes in G(A). Note that the adjacency
matrix of G(A) is given by a binary matrix which represents the off-diagonal
sparsity pattern of A with full diagonal.
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2 Review of basic material

2.3 Minimal polynomials

In this section, we introduce certain types of minimal polynomials. We define a
minimal (or optimal) polynomial p∗ ∈ Pm as a polynomial which minimizes ‖p‖
over all polynomials p ∈ Pm with an additional normalization condition which
excludes the trivial choice p∗ = 0. In the following, we consider the minimal
polynomial p∗ with respect to the supremum or Chebyshev norm on a set Ω ⊆ C
which is defined for real- or complex-valued functions f defined on Ω as

‖f‖Ω := sup
z∈Ω
|f(z)|.

In addition, we claim that Ω is a compact set and p∗ ∈ Pγm := {p ∈ Pm : p(γ) = 1}
for γ /∈ Ω. Summarizing, we are interested in a polynomial p∗ which solves the
minimization problem

min
p∈Pγm
‖p(z)‖Ω = min

p∈Pγm
max
z∈Ω
|p(z)|. (2.10)

Sometimes, the minimal polynomial solving (2.10) is called a min-max polyno-
mial with respect to Ω. For some sets Ω the minimal polynomial p∗ is explicitly
known. If Ω is an interval [a, b], then the Chebyshev polynomials lead to optimal
polynomials for the minimization problem (2.10). These types of polynomials are
discussed in detail in Section 2.3.1. For general sets Ω, the minimal polynomial
is not explicitly known but there exist asymptotically optimal polynomials, i.e.,
polynomials that converge to the minimal polynomial for increasing m. For a
large class of sets Ω those asymptotically optimal polynomials are given by the
Faber polynomials introduced in Section 2.3.2.

2.3.1 Chebyshev polynomials

Chebyshev polynomials can be defined in several equivalent ways. In this section,
we introduce some of those definitions and important properties of Chebyshev
polynomials. For a detailed overview see [81] or [43, Chapter 3].

Definition 2.14. The m-th Chebyshev polynomial Tm is defined by

Tm(z) =

{
cos(mξ) where cos(ξ) = z for z ∈ [−1, 1],

cosh(mξ) where cosh(ξ) = z for z /∈ [−1, 1].
(2.11)
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−1 0 1
−1
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Figure 2.3: Chebyshev polynomials Tm for m = 2, 3, 4, 5.

Definition 2.14 does not immediately reveal Tm to be a polynomial of degree m.
By induction, it can be shown that the three-term recurrence relation

Tm+1(z) = 2zTm(z)− Tm−1(z), (2.12)

with T1(z) = z and T0(z) = 1, holds. The relation (2.12) is sometimes used
as a definition of Chebyshev polynomials in the literature, since it immediately
establishes the polynomial property. Based on (2.12) with T1(z) = z and T0(z) = 1
we easily obtain the next few Chebyshev polynomials

T2(z) = 2z2 − 1,

T3(z) = 4z3 − 3z,

T4(z) = 8z4 − 8z2 + 1,

T5(z) = 16z5 − 20z3 + 5z

illustrated in Figure 2.3.

With Definition 2.14 and the identities cos(z) = 1
2
(eiz + e−iz) and cosh(z) =

1
2
(ez + e−z), respectively, we obtain the alternative expression

Tm(z) =
1

2
(wm + w−m), (2.13)

where

z =
1

2
(w + w−1). (2.14)

Equation (2.14) has two solutions which are inverses of each other, i.e., the value
of Tm(z) does not depend on which of these solutions is chosen. The equation
(2.14) is also known as the Joukowski mapping which maps a circle centered at
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Figure 2.4: The Joukowski mapping z = 1
2(w + w−1).

the origin to an ellipse with focal points −1 and 1. This mapping will play an
important role in the analysis of the results in Chapter 3 and is illustrated in
Figure 2.4.

The most important property of these polynomials for this thesis is the minimiza-
tion property of normalized Chebyshev polynomials. The polynomial

Pm(z) =
Tm(z)

Tm(γ)
(2.15)

solves the minimization problem

min
p∈Pγm

max
z∈[−1,1]

|p(z)|,

and since
max
z∈[−1,1]

|Tm(z)| = 1

we have

min
p∈Pγm

max
z∈[−1,1]

|p(z)| = 1

|Tm(γ)| .

This result can be easily generalized to any interval [a, b] by using the transfor-
mation t = 1 + 2 z−b

b−a (see [85, Section 6.11] and the references therein). Hence,
normalized Chebyshev polynomials are minimal polynomials with respect to in-
tervals. There is also an interesting relation between Chebyshev polynomials and
minimal polynomials with respect to ellipses.

Let Cρ be a circle with radius ρ, centered at the origin. By applying the Joukowski

mapping, we obtain an ellipse Eρ with focal points -1 and 1 and semi-axes ρ−ρ−1

2

and ρ+ρ−1

2
. Now, it is shown in [85, Theorem 6.5] that

ρm

|wγ|m
≤ min

pm∈Pγm
max
z∈Eρ
|pm(z)| ≤ ρm + ρ−m

|wmγ + w−mγ |
, (2.16)
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where wγ is defined by γ = 1
2
(wγ + w−1

γ ) and γ is chosen such that pm(γ) = 0.
The upper bound in (2.16) is achieved by the normalized Chebyshev polynomial
(2.15). This can be seen by the fact that Tm(γ) = wmγ + w−mγ and

max
z∈Eρ
|Tm(z)| = max

w∈C(0,ρ)

∣∣∣∣12(wm + w−m)

∣∣∣∣ ≤ max
w∈C(0,ρ)

1

2
(|w|m+|w|−m) =

1

2
(ρm+ρ−m),

(2.17)
and this upper bound is reached for w = ρ. Since the difference between the upper
and lower bound for the min-max problem in (2.16) tends to zero for increasing m,
Chebyshev polynomials are asymptotically optimal for ellipses Eρ. By applying a
variable transformation, this results holds for general ellipses.

The following lemma gives a useful lower bound with respect to Chebyshev poly-
nomials which will be used for some of the results in Chapter 3.

Lemma 2.15. Let Tm be the Chebyshev polynomial of degree m and let z ∈ R be
of the form z = 1 + 2x, x ∈ R. Then

Tm(z) ≥ 1

2

(√
x+
√
x+ 1

)2m

.

Proof. See [85, Section 6.11.3].

The existence of the three-term recurrence relation (2.12) also follows from the
fact that the Chebyshev polynomials {Tm}∞m=0 form a sequence of orthogonal
polynomials on [−1, 1] with respect to the weight function (1− z2)−1/2, i.e.,∫ 1

−1

Tm(x)Tk(x)
dx√

1− x2
= Nmδmk,

with N0 = π and Nm = π
2

if m 6= 0. If f is a function which is continuous on
[−1, 1], then f has a Chebyshev series expansion

f(x) =
∞∑
k=0

ckTk(x), for x ∈ [−1, 1]

with coefficients

ck = N−1
k

∫ 1

−1

f(x)Tk(x)√
1− x2

dx = N−1
k

∫ π

0

f(cos(t)) cos(kt)dt.

This result can be generalized to functions continuous on a line segment [a, b] in
the complex plane, i.e.,

[a, b] := {z ∈ C : z = ax+ b(1− x), 0 ≤ x ≤ 1, a, b ∈ C},
by considering the function g = f ◦ t−1 where t is a affine linear function which
maps the line segment [a, b] to the interval [−1, 1]. This directly follows from [15,
Theorem 7], a convergence result of the Chebyshev series on ellipses.
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2.3.2 Faber polynomials

Faber polynomials can be viewed as a generalization of Chebyshev polynomials
which are asymptotically optimal for a larger class of sets Ω than ellipses. The
following definitions and properties of Faber polynomials can be found in [96].

Let the extended complex plane be defined as C := C ∪ {∞} and let G be a
bounded simply connected domain with boundary Γ such that D := C \ (G ∪ Γ)
is simply connected. Then by the Riemann mapping theorem there exists a
unique function w = Φ(z) holomorphic in D \ {∞}, which maps D conformally
and univalently onto the domain |w| > 1, i.e., onto the outside of the unit disk,
satisfying

Φ(∞) =∞, Φ′(∞) =: γ > 0.

The condition Φ′(∞) = γ > 0 is sometimes written as

lim
z→∞

Φ(z)

z
= γ > 0,

i.e., w = Φ(z) has a simple pole at z =∞ and the Laurent expansion of Φ(z) in
some neighborhood of z =∞ is given by

Φ(z) = γz + γ0 +
γ1

z
+
γ2

z2
+ · · ·+ γk

zk
+ · · · .

For a non-negative integer m we consider

Φ(z)m =
(
γz + γ0 +

γ1

z
+
γ2

z2
+ · · ·+ γk

zk
+ · · ·

)m
= γmzm + a

(m)
m−1z

m−1 + a
(m)
m−2z

m−2 + · · ·+ a
(m)
1 z + a

(m)
0 (2.18)

+
b

(m)
1

z
+
b

(m)
2

z2
+ · · ·+ b

(m)
k

zk
+ · · · .

Now, the Faber polynomial Φm(z) of degree m with respect to G is given by the
polynomial part of (2.18), i.e.,

Φm(z) = γmzm + a
(m)
m−1z

m−1 + a
(m)
m−2z

m−2 + · · ·+ a
(m)
1 z + a

(m)
0 .

Example 2.16. If the domain G is a disk D(z0, r) = {z ∈ C : |z − z0| ≤ r} then
the Riemann mapping is given by

φ(z) =
z − z0

r

and thus the Faber polynomials with respect to G are

Φm(z) =

(
z − z0

r

)m
, m = 0, 1, 2, . . . .

�
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2.3 Minimal polynomials

Example 2.17. It can be shown (see, e.g., [96, p. 36]) that the Faber polynomials
with respect to the line segment [−1, 1] are given by

Φm(z) =

{
T0(z) for m = 0,

2Tm(z) for m ≥ 1,

where Tm are the Chebyshev polynomials introduced in Section 2.3.1. �

Let ΓR denote the line in the z-plane, which under the mapping w = Φ(z) goes
onto the circle |w| = R > 1, i.e.,

ΓR = {z : |Φ(z)| = R}

and let GR denote the interior of ΓR. Then the representation

Φm(z) =
1

2πi

∫
ΓR

Φ(t)m

t− z dt, z ∈ GR

holds and can be considered as a definition of Faber polynomials, as well. Let
the function z = ψ(w) be the inverse function of w = Φ(z) which maps the
domain |w| > 1 conformally and univalently onto the domain D. Then with the
substitution x = ψ(t) we alternatively obtain

Φm(z) =
1

2πi

∫
|x|=R

xmψ′(x)

ψ(x)− zdx, z ∈ GR.

Using these expressions, one can show that a function f analytic on GR can be
expressed as Faber series

f(z) =
∞∑
m=0

amΦm(z), z ∈ GR

with

am =
1

2πi

∫
|t|=r

f(ψ(t))

tm+1
dt =

1

2πi

∫
Γr

f(x)Φ′(x)

Φm+1(x)
dx

where 1 < r < R (see [96, Chapter 3]).

An important property of normalized Faber polynomials Φm(z)/Φm(γ) is the
asymptotical optimality for a bounded simply connected set Ω in the sense that

lim sup
m→∞

(
min
p∈Pγm
‖p‖Ω

)1/m

= lim
m→∞

( ‖Φm‖Ω

|Φm(γ)|

)1/m

,

which directly follows from [89, Proposition 3.6].
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Chapter 3
Bounds for the decay in functions of
matrices

The computation of matrix functions f(A) is a challenging task especially for large
and sparse matrices A. A major problem is the in general full structure of f(A)
which makes it impossible to store the matrix f(A), although this was possible
for the sparse matrix A. This problem is common knowledge for the inverse but it
is also apparent for general matrix functions. In [11] the full structure of f(A) is
proven for irreducible matrices A and a large class of functions f . Based on this
result, it seems to be impossible to compute f(A) if A is a large, sparse matrix.
However, even if f(A) is dense, it sometimes has a special structure which is
related to the sparsity pattern of A.

Example 3.1. Figure 3.1 shows the magnitude of the entries of the (dense)
matrices A−1 with A = tridiag(−1, 4,−1) and B1/2 with B = ( A A

A A ), both
of dimension n = 100. We observe that most of the entries are very small in
magnitude and that the important, large entries are localized around the sparsity
patterns of the matrices A and B, respectively. In particular, we have a decay of
the entries away from the primal sparsity patterns. �

The decay of the entries of matrix functions was first discussed for the inverse
of banded matrices in [23]. Example 3.1 shows that this phenomenon is not
restricted to the inverse but is also apparent for other functions and general sparse
(not necessarily banded) matrices. This decay behavior and localization property
in matrix functions was noticed for many types of functions and matrices. A
survey on this topic can be found in [8]. A definition of a decaying matrix is given
in [8], where the considered matrix is not necessarily a matrix function. Thus, we
give the following definition to specify the decay in matrix functions.
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3 Bounds for the decay in functions of matrices

Figure 3.1: Magnitude of the entries of A−1 with A = tridiag(−1, 4,−1), A ∈ R100×100

(left) and B1/2, B = ( A A
A A ), A ∈ R50×50 (right).

Definition 3.2. Let A ∈ Cn×n be a complex matrix, let f be a function
defined on the spectrum of A and let d(i, j) denote the distance between the
nodes i and j in G(A), the graph of A. Then the matrix f(A) is said to have
decay away from the sparsity pattern of A if there exist a constant C and a
function φ(x), both independent of n, such that

|[f(A)]ij| ≤ Cφ(d(i, j)) for i, j ∈ {1, . . . , n}, (3.1)

where the function φ(x) is defined and positive for x ≥ 0 and φ(x) → 0 for
x→∞.

We distinguish between certain modes of decay based on the function φ. For
example, for φ(x) = qx with q < 1 we have a decay which is termed exponential in
[8] and which is faster than an algebraic decay where φ(x) = (1 +x)−1. Especially
an exponential decay is of great practical interest. In [8, 11] sequences of n × n
matrices {An} with exponential off-diagonal decay are considered (for off-diagonal
decay we replace d(i, j) by |i− j|) and the following result was proven in [11].

Theorem 3.3. Let {An} be a sequence of n×n matrices satisfying an exponential
off-diagonal decay, i.e.,

|[An]ij| ≤ Cq|i−j|

where C and q < 1 do not depend on n. Then for all ε > 0 there exists m̃
independent of n such that

‖An − A(m)
n ‖1 < ε
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for m > m̃ where A
(m)
n ∈ Cn×n is a matrix with [A

(m)
n ]ij = 0 for |i − j| > m,

containing only O(n) nonzeros.

Proof. Let A
(m)
n be defined by

[A(m)
n ]ij :=

{
[An]ij, if |i− j| ≤ m

0 otherwise
.

then

‖An−A(m)
n ‖1 = max

1≤j≤n

n∑
i=1

|[An]ij−[A(m)
n ]ij| ≤

n∑
k=m+1

2Cqk ≤
∞∑

k=m+1

2Cqk ≤ 2Cqm+1

1− q .

Now for a given ε > 0 one can find m̃ such that

2Cqm+1

1− q ≤ ε

for every m ≥ m̃.

This result induces the possibility for computing a sparse approximation of a in
general dense matrix f(A) with an exponential (off-diagonal) decay. The assertion
of Theorem 3.3 does not hold in full generality for exponential decaying matrices,
i.e., matrices with |[An]ij| ≤ Cqd(i,j) where the distance between the nodes is given
with respect to a prescribed graph (see the discussion in Section 4.2). However, if
most of the entries of f(A) are very small in magnitude, as illustrated in Exam-
ple 3.1, then it should be possible to compute f(A) via a sparse approximation.
For example, in this case an obvious sparse approximation of f(A) is given by the

matrix f̃(A) with

[f̃(A)]ij =

{
0 if |[f(A)]ij| is sufficiently small,

[f(A)]ij else,

i.e., by setting all those entries [f(A)]ij to zero which are (in absolute value) smaller
than a prescribed threshold. Of course, it is not reasonable to first compute all
entries of f(A), e.g., by computing the bilinear forms eTi f(A)ej, and then setting
them to zero if they are small enough. Therefore it would be interesting to
determine regions with small entries a priori without computing the entries of
f(A). There are already lots of publications dealing with the decay behavior of
matrix functions and upper bounds for the entries of f(A) for special types of
functions and matrices. Especially for the matrix inverse there are results for
Hermitian and certain types of tridiagonal matrices [23, 26, 34, 58, 71, 72, 76].
Also for the exponential, decay bounds were derived for special types of matrices
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3 Bounds for the decay in functions of matrices

[12, 57, 91]. These results are restricted to quite special classes of matrices in order
to obtain sharp bounds for the entries |[f(A)]ij|. We also find bounds for more
general settings, e.g., for the inverse of general matrices [23] or bounds for normal
matrices and functions, which are analytic on a set containing the spectrum of A
[10, 11]. These results are mainly of theoretical interest, since their decay bounds
are rather pessimistic and/or very hard or impossible to compute in practice.

In this chapter we want to develop new decay bounds for special types of functions
(especially the inverse and Cauchy–Stieltjes functions) including results which
are intended for practical implementations as well as results which are mainly
of theoretical interest. We first introduce the relation between decay in matrix
functions and polynomial approximation, following the fundamental idea for the
results in [23]. In Section 3.2 we use this relation for decay bounds for the inverse
of special types of matrices. Results for functions which can be defined by an
integral transform are discussed in Section 3.3.

Many of the results in this chapter have already been published in [38] and
[39], while some are modified or completely new. We will refer to this at the
corresponding results.

3.1 Relation between decay in matrix functions and
polynomial approximation

In [23] a polynomial approximation of the inverse was used for decay bounds
of Hermitian, positive definite, banded matrices. This approach can be easily
transferred to general functions of sparse matrices. In this section we briefly
sketch a generalization of the result in [23], yielding a relation between polynomial
approximation and the decay in general matrix functions.

Let f be a function defined on a compact set Ω ⊂ C. We define the best polynomial
approximation p∗m of degree at most m for f on Ω as the polynomial which solves
the min-max problem

min
pm∈Pm

max
z∈Ω
|f(z)− pm(z)|

and we define the corresponding error Em(f,Ω) as

Em(f,Ω) := max
z∈Ω
|f(z)− p∗m(z)|. (3.2)

Assume we have a function f which is defined on the spectrum of A and we are
interested in an upper bound for the entries |[f(A)]ij|. Based on the relation
between powers of A and the distances of the nodes in G(A) (see Section 2.2) we
have [pm(A)]ij = 0 for every polynomial of degree m < d(i, j). Let p∗m be the best
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3.1 Relation between decay in matrix functions and polynomial approximation

polynomial approximation of degree m = d(i, j)− 1 for f on a set Ω containing
the spectrum of A. Then

|[f(A)]ij| = |[f(A)]ij − [p∗m(A)]ij| ≤ ‖f(A)− p∗m(A)‖2. (3.3)

If A is normal, the eigendecomposition A = UΛUH with Λ diagonal and U unitary
induces the relation

‖f(A)− p∗m(A)‖2 = ‖U(f(Λ)− p∗m(Λ))UH‖2

= ‖f(Λ)− p∗m(Λ)‖2

= max
z∈σ(A)

|f(z)− p∗m(z)|

≤ Em(f,Ω), (3.4)

i.e., every (i, j)-entry of the function of a normal matrix can be bounded by
the error of a (not necessarily best) polynomial approximation of f of degree
m = d(i, j)− 1 on Ω.

For non-normal, but diagonalizable matrices A = WΛW−1 we obviously have the
relation

‖f(A)− pm(A)‖2 ≤ ‖W‖2‖W−1‖2Em(f,Ω) = κ(W )Em(f,Ω),

where κ(W ) is the condition number of W , i.e., it is possible to bound the entries of
a function of a non-normal, diagonalizable matrix A with the error of a polynomial
approximation as well. However, the additional constant κ(W ) might be very large
for highly non-normal matrices, which makes this bound useless in practice. In
addition the computation of κ(W ) is typically not feasible. Alternatively, for
non-normal matrices A the following relation can be used.

For a compact set Ω̃ ⊂ C containing W (A), the field of values of A, and f

continuous on Ω̃ and analytic on the interior of Ω̃, the relation

‖f(A)‖2 ≤ C max
z∈W (A)

|f(z)| ≤ C max
z∈Ω̃
|f(z)| (3.5)

holds for a constant C (the so called Crouzeix constant) with 2 ≤ C ≤ 1 +
√

2
(see [20] and the reference therein). Hence, the entries of functions of non-normal
matrices can be bounded by the error of a polynomial approximation with respect
to a set Ω̃ containing W (A). Again, for highly non-normal matrices such a bound

might be too pessimistic since the set Ω̃ containing W (A) can be very large

compared to a set containing the spectrum of A and therefore the error Em(f, Ω̃)
might be very large as well.

Based on these relations, in some cases decay bounds immediately follow from
well known results in approximation theory. We now present two examples from
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3 Bounds for the decay in functions of matrices

the literature for decay bounds based on polynomial approximation. Most of
the results in the literature were formulated for β-banded matrices. We say that
a matrix A has bandwidth β � n (or, as a shorthand, that A is β-banded) if
aij = 0 for |i− j| > β. Using this definition, a tridiagonal matrix has bandwidth
β = 1, a pentadiagonal matrix has bandwidth β = 2 and so on. A matrix is said
to have upper bandwidth β and lower bandwidth γ if aij = 0 for i − j > β or
j − i > γ. Many of the results from the literature in the following sections are
formulated for β-banded matrices, i.e., for β = γ but they can be easily transferred
to matrices with different upper and lower bandwidths as well. In addition, they
can be generalized to sparse matrices by using the distance d(i, j) of the nodes i
and j in G(A).

For the first result we need to define the ellipse Eρ with focal points -1 and 1 and

semi-axes ρ−ρ−1

2
and ρ+ρ−1

2
. Based on an upper bound for the error of a polynomial

approximation on ellipses due to Bernstein (see, e.g., [67, Theorem 68]) we obtain
the following result for a large class of functions f which was given in [10].

Theorem 3.4. Let A be Hermitian and β-banded with spectrum contained in
[−1, 1]. Let f be analytic on the interior of an ellipse Eρ and continuous on Eρ
for ρ > 1 and let f(z) be real for real z. Then

|[f(A)]ij| ≤ C

(
1

ρ

) |i−j|
β

, (3.6)

with

C =
2ρM(ρ)

ρ− 1
and M(ρ) = max

z∈Eρ
|f(z)|.

The bound of Theorem 3.4 actually represents a family of bounds for different
choices of ρ > 0. Clearly, for the decay rate it would be advantageous to choose ρ
as large as possible but then the constant, including the quantity maxz∈Eρ |f(z)|,
deteriorates, especially if f is not an entire function but has a singularity on the
boundary of an ellipse Eρ̄, ρ < ρ̄. Thus, it is not trivial to find the minimizer of the
right-hand side of (3.6) as a function in ρ but it can be determined (sometimes only
numerically) in many cases. This theorem is formulated for Hermitian matrices
with spectrum in [−1, 1] but it can be generalized to normal matrices with spectrum
on a real interval [λmin, λmax] by using a transformation t which maps [λmin, λmax]
to the interval [−1, 1]. This was already mentioned in [10]. We now formulate a
generalized version of Theorem 3.4. With E(ρ, f1, f2) we denote an ellipse with
focal points f1 and f2 and semi-axes 1

4
|f1 − f2|(ρ− ρ−1) and 1

4
|f1 − f2|(ρ+ ρ−1).

Corollary 3.5. Let A be normal with spectrum contained in the real interval
[λmin, λmax]. Let f be analytic on the interior of an ellipse E(ρ, λmin, λmax) and
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3.1 Relation between decay in matrix functions and polynomial approximation

continuous on E(ρ, λ1, λ2) for ρ > 1 and let f(z) be real for real z. Then

|[f(A)]ij| ≤ C

(
1

ρ

) |i−j|
β

, (3.7)

with

C =
2ρM(ρ)

ρ− 1
and M(ρ) = max

z∈E(ρ,λmin,λmax)
|f(z)|.

Proof. The transformation

t(z) =
λmin + λmax − 2z

λmax − λmin

maps the interval [λmin, λmax] to [−1, 1] and the ellipse E(ρ, λmin, λmax) to Eρ.
Thus, we can apply Theorem 3.4 to the matrix function g(B), where g = f ◦ t−1

and B = t(A) with σ(B) ⊂ [−1, 1]. The assertion then follows by the back
transformation of the quantities.

Note that this result cannot be generalized to matrices with spectrum on a complex
line segment [λ1, λ2] as the result from Bernstein only holds when f(z) is real
for real z and this is in general not the case for the function f ◦ t−1 if λ1 and λ2

are complex numbers. However, the result of Theorem 3.4 shows the existence
of exponentially decaying bounds for a large class of functions and matrices. An
even more general result is given in [78]. This result is formulated for non-normal
matrices where the function f is analytic on a convex continuum containing the
field of values. The result is based on Faber polynomials and the Faber series of
f introduced in Section 2.3.2.

Theorem 3.6. Let A be a matrix with upper bandwidth β and lower bandwidth γ
and define

ξ =

{
d(i− j)/βe, if i ≤ j

d(j − i)/γe, if j ≤ i.

Let E be a convex continuum containing the field of values of A and let Φ be the
conformal mapping of E. If f is analytic on the set Gτ := {w : |Φ(w)| < τ} with
τ > 1 and bounded on the boundary of Gτ , then

|[f(A)]ij| ≤ 2
τ

τ − 1
max
|z|=τ
|f(Φ−1(z))|

(
1

τ

)ξ
. (3.8)

With Theorem 3.6 we again obtain a family of bounds and we have a trade-off in
the choice of τ similar to the choice of ρ in Theorem 3.4. The larger τ , the better
is the decay rate but the worse is the corresponding constant. Theorem 3.6 is
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3 Bounds for the decay in functions of matrices

formulated for general convex, compact sets E and we are faced with the problem
of finding a conformal mapping of the set E. More concrete bounds can be easily
obtained by choosing sets E for which the conformal mapping is explicitly known.
We now formulate the corresponding results for line segments and disks as we need
the resulting bounds for a comparison in Section 3.2.3. Note that matrices with
field of values on a line segment [λ1, λ2] are normal, which directly follows from
[59, Theorem 5]. In addition, since for normal matrices A the field of values of A
is the convex hull of σ(A) (see, e.g., [55, Section 1.2]), we have W (A) ⊂ [λ1, λ2] if
and only if σ(A) ⊂ [λ1, λ2]. Thus we obtain the following result.

Corollary 3.7. Let A be a normal matrix with σ(A) ⊂ [λ1, λ2] and let f be
analytic on the interior of the ellipse E(τ, λ1, λ2) and bounded on the boundary of
E(τ, λ1, λ2) for τ > 1. Then

|[f(A)]ij| ≤ 2
τ

τ − 1
max

z∈E(τ,λ1,λ2)
|f(z)|

(
1

τ

)d(i,j)

.

Proof. We apply Theorem 3.6 to E = [λ1, λ2]. Let t be the transformation
which maps [λ1, λ2] to [−1, 1] and J be the Joukowski mapping (2.14). Then the
conformal mapping Φ of E is given by Φ = J−1 ◦ t. Thus, we have

Gτ = {w : |Φ(w)| < τ} = {Φ−1(z) : |z| < τ} = {t−1(J(z)) : |z| < τ}

which is just the interior of the ellipse E(τ, λ1, λ2). In addition, using

max
|z|=τ
|f(Φ−1(z))| = max

z∈E(τ,λ1,λ2)
|f(z)|

gives the result.

Similarly, we can formulate the result of Theorem 3.6 if E is a disk:

Corollary 3.8. Let A be a matrix with field of values in a disk D(z0, r) with
center z0 and radius r and let f be analytic on the interior of the disk D(z0, rτ)
and bounded on the boundary of D(z0, rτ) for τ > 1. Then

|[f(A)]ij| ≤ 2
τ

τ − 1
max

z∈D(z0,rτ)
|f(z)|

(
1

τ

)d(i,j)

.

Proof. The assertion follows by noticing that the conformal mapping of D(z0, r)
if given by Φ(z) = (z − z0)/r.
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3.2 Bounds for the inverse

In [78] bounds for the exponential and the inverse square root are derived based on
Theorem 3.6 with respect to a (horizontal) ellipse containing the field of values of A
and then the optimal τ which minimizes the right-hand side of (3.8) is determined.

With Theorem 3.4 and Theorem 3.6 we have results for very general settings
resulting in implicit bounds where lots of parameters have to be determined in
order to obtain practical bounds for concrete problems. In the following we will
restrict the class of functions to obtain sharper and more practical bounds, starting
with decay bounds for the inverse of certain types of normal matrices.

3.2 Bounds for the inverse

As the probably most important matrix function, we first consider decay bounds
for the inverse. There are already lots of results for the inverse of certain types
of matrices. In Section 3.2.1 we will discuss known results which are formulated
for banded matrices but can be easily generalized to arbitrary sparse matrices.
We skip those results which are restricted to very special classes of matrices, e.g.,
tridiagonal matrices where the tridiagonal structure of the matrix is explicitly
used [58, 71, 72, 76]. We introduce new results for the inverse in Section 3.2.2. In
Section 3.2.3 we then compare them to the results from the literature.

3.2.1 Literature review

The pioneering result for the inverse of Hermitian, positive definite matrices from
Demko, Moss and Smith [23] uses the approach described in Section 3.1 and the
explicit knowledge of the error of the best polynomial approximation of the inverse
on a positive interval. In addition, an extension to the non-Hermitian case was
given in [23]. The results are summarized in the following theorem.

Theorem 3.9. Let A be a Hermitian positive definite and β-banded matrix with
smallest eigenvalue λmin, largest eigenvalue λmax and condition number κ(A) =
λmax/λmin. Then

|[A−1]ij| ≤ Cq
|i−j|
β (3.9)

with

q =

√
κ(A)− 1√
κ(A) + 1

and C = max

{
1

λmin

,

(
1 +

√
κ(A)

)2

2λmax

}
. (3.10)

If A is nonsingular and β-banded, then

|[A−1]ij| ≤ C1q
|i−j|
β

1 (3.11)
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3 Bounds for the decay in functions of matrices

with

q1 =

√
κ(A)− 1

κ(A) + 1
, κ(A) = ‖A‖2‖A−1‖2 (3.12)

and

C1 = (2β + 1)q−2
1 ‖A−1‖2κ(A) max

{
1,

(
1 + κ(A)

κ(A)

)2

/2

}
. (3.13)

It was shown in [23] that the bound of Theorem 3.9 for Hermitian positive definite
matrices is sharp in the sense that the decay rate is exact for certain types of
tridiagonal Toeplitz matrices. This was not shown for the second statement, which
follows from the first one by using the relation A−1 = AH(AAH)−1. Note that
the condition number of A appears as a multiplicative factor in the definition
of the constant C1 in the non-Hermitian case. Due to this factor, the entries of
A−1 are highly overestimated by the bound (3.11) in many cases especially for
ill-conditioned problems, so the quality of the results might get worse by enlarging
the class of matrices.

In [35] the important class of matrices of the form

A = cI + dT where T = TH , c, d,∈ C, d 6= 0, (3.14)

is considered, resulting in the following bounds for the entries of the inverse.

Theorem 3.10. Let A be a matrix of type (3.14) and β-banded. Define λ1 =
c+ dλmin(T ) and λ2 = c+ dλmax(T ). Let a = (λ2 + λ1)/(λ2 − λ1) be represented
as a = αR cos(ψ) + iβR sin(ψ) with 0 ≤ ψ < 2π and

αR =
1

2

(
R +

1

R

)
and βR =

1

2

(
R− 1

R

)
.

Then

|[A−1]ij| ≤
2R

|λ1 − λ2|
B(a)

(
1

R

) |i−j|
β

, (3.15)

where R is the solution of

1

2

(
R +

1

R

)
=
|λ1|+ |λ2|
|λ1 − λ2|

with R > 1

and

B(a) = β−1
R

R√
α2
R − cos(ψ)2(αR +

√
α2
R − cos(ψ)2)

.
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3.2 Bounds for the inverse

3.2.2 New results

In this section we introduce results which are based on the approach described in
Section 3.1, i.e., we need a polynomial approximation pm of the inverse on a set Ω
containing the spectrum of A. Actually, we do not explicitly need the polynomial
pm but rather a bound for the error maxz∈Ω |z−1 − pm(z)|. Therefore, instead
of looking for a polynomial approximation of the inverse directly it is possible
to consider a normalized polynomial approximation of the zero function. Those
polynomials also play an important role in iterative methods for the solution of
systems of linear equations. For instance, they are used as iteration polynomials
for Krylov subspace methods (e.g., the Chebyshev iteration [48, Section 11.2])
or for an convergence analysis of the CG method or GMRES [85, Section 6.11].
Of course, the best polynomial approximation of the zero function on a compact
set Ω ⊂ C leads to the minimal polynomials defined in Section 2.3. We now use
the polynomials introduced in Section 2.3 with respect to certain sets, especially
ellipses and, as a special case, line segments. In the following E(ρ, f1, f2) is an
ellipse with ρ ≥ 1, focal points f1 and f2 and semi-axes 1

4
|f1 − f2|(ρ − ρ−1) and

1
4
|f1− f2|(ρ+ ρ−1). As a short-hand, we use the notation Eρ := E(ρ,−1, 1). Note

in particular that E(1, f1, f2) is a line segment connecting f1 and f2, as this is an
important special case.

We start with a result for matrices where the spectrum lies in an ellipse exclud-
ing the origin. As already mentioned in Section 2.3, Chebyshev polynomials
are asymptotically minimal polynomials on ellipses E(ρ, f1, f2), i.e., they can be
viewed as a polynomial approximation of the zero function for E(ρ, f1, f2). Before
the corresponding result is shown, we need some auxiliary results with respect to
the function cosh : C→ C due to Definition 2.14 of Chebyshev polynomials.

Lemma 3.11. Let z ∈ C be a complex number, then Re(z) = 0 if and only if
cosh(z) ∈ [−1, 1].

Proof. First we assume that Re(z) = 0, i.e., z = αi for α ∈ R. Then

cosh(z) =
1

2

(
eαi + e−αi

)
=

1

2

(
eαi +eαi

)
= Re

(
eαi
)
∈ R

and

| cosh(z)| = |Re
(
eαi
)
| ≤ | eαi | = 1,

i.e., cosh(z) ∈ [−1, 1].

Now we assume cosh(z) ∈ [−1, 1]. Then we know that

cosh(z) =
1

2

(
eRe(z) eIm(z)i + e−Re(z) e− Im(z)i

)
=

1

2

(
eRe(z) eIm(z)i + e−Re(z) eIm(z)i

)
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3 Bounds for the decay in functions of matrices

is real if and only if Re(z) = −Re(z), i.e., Re(z) = 0 or eIm(z)i ∈ R. Assume
eIm(z)i ∈ R, then x := ez ∈ R and the function |1

2
(x + x−1)| attains its minimum

at x = ±1. Therefore | cosh(z)| = |1
2
(x + x−1)| > 1 if x 6= ±1. If x = ez = ±1,

then Re(z) = 0. Summarizing we have Re(z) = 0 if cosh(z) ∈ [−1, 1].

Lemma 3.12. Let λ1, λ2 ∈ C be complex numbers and assume 0 /∈ [λ1, λ2]. Then
x := λ1+λ2

λ2−λ1 /∈ [−1, 1].

Proof. We have

x =
λ1 + λ2

λ2 − λ1

=
|λ2|2 − |λ1|2 + λ1λ2 − λ1λ2

|λ2 − λ1|2
.

Since λ1λ2 − λ1λ2 = 2 Im(λ1λ2)i, x is real if and only if

λ1λ2 = λ1λ2. (3.16)

By multiplying (3.16) with λ1λ2 we see that for λ1, λ2 6= 0 equation (3.16) is
equivalent to λ1 = αλ2, with α = ±|λ1/λ2|. Since 0 /∈ [λ1, λ2] we have α =
|λ1/λ2| > 0 and therefore

x =
1 + α

1− α > 1

if x is real, hence x /∈ [−1, 1].

Now we can show the following result for normal matrices, which is not published
in [38] and which can be viewed as a generalization of Theorem 2 in [38].

Proposition 3.13. Let A be a normal matrix with spectrum contained in an
ellipse E(ρ, f1, f2) excluding the origin. Define x := f1+f2

f2−f1 . Then for i 6= j

|[A−1]ij| ≤ ‖A−1‖2
1 + ρ−2d(i,j)

1− q−2d(i,j)

(
ρ

q

)d(i,j)

≤ C

(
ρ

q

)d(i,j)

(3.17)

with

C =
2 ‖A−1‖2

1− q−2
and q = eRe(z) > 1,

where z is the solution of

x = cosh(z) with Re(z) ≥ 0.

Proof. Let Tm+1 be the Chebyshev polynomial of degree m + 1 and define the
function t(z) := f1+f2−2z

f2−f1 which maps the ellipse E(ρ, f1, f2) to the ellipse Eρ, then
the polynomial

Pm+1(z) =
Tm+1(t(z))

Tm+1(t(0))
=
Tm+1(t(z))

Tm+1(x)
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3.2 Bounds for the inverse

is the normalized Chebyshev polynomial of degree m+1 with respect to the ellipse
E(ρ, f1, f2). Due to the normalization, we have Pm+1(z) = 1− zpm(z) where pm
is a polynomial of degree m. We use pm as a polynomial approximation of the
inverse on E(ρ, f1, f2), and based on (3.3) and (3.4) we have

|[A−1]ij| ≤ max
z∈σ(A)

∣∣∣∣1z − pm(z)

∣∣∣∣ = max
z∈σ(A)

∣∣∣∣Pm+1(z)

z

∣∣∣∣ ≤ ‖A−1‖2 max
z∈σ(A)

|Pm+1(z)|
(3.18)

for m = d(i, j)− 1. Because of (2.17)

max
z∈σ(A)

|Pm+1(z)| ≤ max
z∈E(ρ,f1,f2)

|Pm+1(z)| ≤ ρm+1 + ρ−(m+1)

2 |Tm+1(x)| . (3.19)

Using the representation (2.11) with x = cosh(z), we find

1

|Tm+1(x)| =
1

|cosh((m+ 1) z)|
=

2

|ez(m+1) + e−z(m+1)|
≤ 2∣∣∣|ez|m+1 − |ez|−(m+1)

∣∣∣
=

2

|qm+1 − q−(m+1)| .

Since we choose for z the solution of x = cosh(z) with Re(z) ≥ 0, we have
q = eRe(z) ≥ 1. The assertion q > 1 follows by the fact that 0 /∈ [f1, f2], thus
x = cosh(z) /∈ [−1, 1] and therefore Re(z) 6= 0 (see Lemma 3.12 and Lemma 3.11).
Thus

1

|Tm+1(x)| ≤
2

qm+1 − q−(m+1)
. (3.20)

Putting (3.18), (3.19) and (3.20) together, we obtain

|[A−1]ij| ≤ ‖A−1‖ ρ
m+1 + ρ−(m+1)

qm+1 − q−(m+1)
= ‖A−1‖ 1 + ρ−2(m+1)

1− q−2(m+1)

(
ρ

q

)m+1

≤ C

(
ρ

q

)m+1

.

Using m+ 1 = d(i, j) gives the desired result.

It is not immediately clear, that the bound of Proposition 3.13 does represent
an exponential decay bound since we need the condition ρ < q. The next result
shows that this is actually the case due to the assumption 0 /∈ E(ρ, f1, f2).

Lemma 3.14. Let E(ρ, f1, f2) be an ellipse excluding the origin and let q be
defined as in Proposition 3.13. Then ρ < q, i.e., the bound of Proposition 3.13
does represent an exponential decay bound.
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3 Bounds for the decay in functions of matrices

Proof. First note, that E(ρ, f1, f2) can be constructed, by mapping a disk with
radius ρ and centered at 0 to the ellipse Eρ and mapping Eρ to E(ρ, f1, f2), so we
have

E(ρ, f1, f2) =

{
t ∈ C : t =

f1 + f2 − w(f2 − f1)

2
, w =

1

2
(z + z−1), |z| ≤ ρ

}
.

Hence, the condition 0 ∈ E(ρ, f1, f2) is equivalent to the existence of a z ∈ C with
|z| ≤ ρ and 0 = (f1 + f2 − w(f2 − f1))/2 which is equivalent to

1

2
(z + z−1) =

f1 + f2

f2 − f1

. (3.21)

Now assume q ≤ ρ. Note that by the substitution z′ = ez an alternative repre-
sentation of q in Proposition 3.13 is given by q = |z′|, where z′ is the solution of
(3.21) with |z′| > 1. Hence, we have z′ ∈ C with |z′| = q ≤ ρ and (3.21) which is
equivalent to 0 ∈ E(ρ, f1, f2). This contradicts the assumption on E(ρ, f1, f2).

Remark 3.15. The right hand side in (3.17) is only given for clarifying the
existence of an exponential decay bound with constant C. In practice it would

be more suitable to compute the decreasing function ‖A−1‖ 1+ρ−2d(i,j)

1−q−2d(i,j) in d(i, j),

which tends to ‖A−1‖ for d(i, j)→∞. For normal matrices the quantity ‖A−1‖2

can be bounded by 1/minz∈E(ρ,f1,f2) |z|. �

Remark 3.16. The result of Proposition 3.13 can be generalized to non-normal
diagonalizable matrices A = WΛW−1, by adding the factor κ(W ) to the constant
C or by considering the field of values. Then it is reasonable to modify the proof of
Proposition 3.13 to avoid additional constants for a bound of ‖A−1‖. In equation
(3.18) of the proof, we can directly bound the maximum over the discrete set σ(A)
(or W (A), respectively) by the maximum over the set E(ρ, f1, f2) such that the
factor ‖A−1‖ is just replaced by 1/minz∈E(ρ,f1,f2) |z|. �

Proposition 3.17. Let A be a matrix with field of values contained in an ellipse
E(ρ, f1, f2) excluding the origin. Define x := f1+f2

f2−f1 . Then for i 6= j

|[A−1]ij| ≤ C

(
ρ

q

)d(i,j)

(3.22)

with

C =
1 +
√

2

minz∈E(ρ,f1,f2) |z|
2

1− q−2
and q = eRe(z) > ρ ≥ 1,

where z is the solution of

x = cosh(z) with Re(z) ≥ 0.
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3.2 Bounds for the inverse

It is not immediately clear how to find an appropriate ellipse including σ(A) or
W (A), respectively. If the spectrum of a normal matrix A lies in a line segment
[λ1, λ2], then the result of Proposition 3.13 can be applied to the ellipse E(1, λ1, λ2)
and we “only” need the two endpoints of the line segment λ1 and λ2. The resulting
bounds for normal matrices are given in Theorem 3.18. Note that normal matrices
with spectrum on a line segment are of the form (3.14) and important special
cases are given by (shifted) Hermitian and skew-Hermitian matrices.

Theorem 3.18. Let A be a normal matrix with spectrum in a complex line segment
[λ1, λ2] excluding the origin. Define x := λ1+λ2

λ2−λ1 . Then for i 6= j we obtain the
bound

|[A−1]ij| ≤ C

(
1

q

)d(i,j)

(3.23)

with

C =
2 ‖A−1‖
1− q−2

and q = eRe(z) > 1,

where z is the solution of

x = cosh(z) with Re(z) ≥ 0.

Proof. The bound follows by applying Proposition 3.13 to the ellipse E(1, λ1, λ2) =
[λ1, λ2].

We already published a similar result in [38], with sightly different proof.

Now we consider several special cases of normal matrices with eigenvalues on a
line segment for which the approach of Theorem 3.18 is either not applicable,
or for which better bounds can be obtained by using different techniques. In
particular, we consider the important class of shifted skew-Hermitian matrices
whose eigenvalues lie in a set of the form E = a+

(
i[−b2,−b1] ∪ i[b1, b2]

)
, as well

as the case of Hermitian indefinite matrices and skew-Hermitian matrices with
eigenvalues below and above the origin. For those the approach of Theorem 3.18
cannot be applied since then 0 ∈ [λ1, λ2] for any line segment [λ1, λ2] containing
σ(A).

Theorem 3.19. Let A be a nonsingular matrix of the form A = S + aI with
a ∈ R where S is skew-Hermitian and its spectrum is contained in a set of the
form i[−b2,−b1] ∪ i[b1, b2] with b1, b2 ∈ R and b1 < b2. Then

|[A−1]ij| ≤ C ·
{
qd(i,j) for d(i, j) even

qd(i,j)−1 for d(i, j) odd
(3.24)

where

C =
2√

a2 + b2
1

, q =
(√

x+
√
x+ 1

)−1

and x =
a2 + b2

1

b2
2 − b2

1

(3.25)
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3 Bounds for the decay in functions of matrices

Proof. Define Ω := a + (i[−b2,−b1] ∪ i[b1, b2]), then σ(A) ⊂ Ω. For bounds
for the entries |[A−1]ij| we will find bounds for Em(f,Ω) with f(z) = z−1 and
m = d(i, j) − 1. In the following we just write Em(Ω). The set Ω is mapped

onto the interval [−1, 1] by the transformation t = 1 + 2
(z−a)2+b21
b22−b21

. We define the

polynomial P2k of degree 2k as

P2k(z) = Pk(t) =
Tk(t)

Tk(t0)
with t0 = 1 + 2

a2 + b2
1

b2
2 − b2

1

. (3.26)

The polynomial P2k approximates the zero function on Ω, so that the polynomial
p2k−1 defined by P2k(z) = 1− zp2k−1(z) is a polynomial approximation of f(z) =
1/z on Ω. For m odd, i.e., m = 2k − 1, we find

Em(Ω) ≤ max
z∈Ω

∣∣∣∣1z − pm(z)

∣∣∣∣ = max
z∈Ω

∣∣∣∣Pm+1(z)

z

∣∣∣∣ ≤ maxz∈Ω |Pm+1(z)|
minz∈Ω |z|

=
|Tm+1

2
(t0)|−1√

a2 + b2
1

.

With Lemma 2.15 we obtain

Tm+1
2

(t0) = Tm+1
2

(
1 + 2

a2 + b2
1

b2
2 − b2

1

)
≥ 1

2

(√
a2 + b2

1

b2
2 − b2

1

+

√
a2 + b2

1

b2
2 − b2

1

+ 1

)m+1

.

Summarizing, we have
Em(Ω) ≤ C qm+1 (3.27)

for m = 2p− 1 and
Em(Ω) ≤ Em−1(Ω) ≤ C qm (3.28)

for m = 2p. Hence, for i 6= j we bound the entries |[A−1]ij| by using the bounds
(3.27) and (3.28) for m = d(i, j)− 1. Since the bound

|[A−1]ij| ≤ ‖A−1‖2 ≤
1√

a2 + b2
1

holds for all i, j the bound (3.24) also holds for i = j.

As a direct consequence, we also find a result for Hermitian indefinite matrices
with an imaginary shift.

Corollary 3.20. Let A be a nonsingular matrix of the form A = T + i · aI
with a ∈ R where T is Hermitian and its spectrum is contained in a set of the
form [−b2,−b1] ∪ [b1, b2] with b1, b2 ∈ R and b1 < b2. Then the bound (3.24) of
Theorem 3.19 holds for the entries |[A−1]ij|.

Proof. We can write A as A = iB with B = S + aI, S = −iT . Then

|[A−1]ij| = |[(iB)−1]ij| = | − i[B−1]ij| = | − i| |[B−1]ij| = |[B−1]ij|. (3.29)

Since B fulfills the assumptions of Theorem 3.19 and σ(B) ⊂ a + (i[−b2,−b1] ∪
i[b1, b2]), we can apply the bound (3.24).
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3.2 Bounds for the inverse

As a special case, Theorem 3.19 and Corollary 3.20 yield results for indefinite
Hermitian or skew-Hermitian matrices without a shift. In this case, the formula
for the decay rate q greatly simplifies, as shown in the following result.

Corollary 3.21. Let A be indefinite Hermitian or skew-Hermitian and nonsingu-
lar. Then the entries of A−1 can be bounded by

|[A−1]ij| ≤ 2 ‖A−1‖2 ·
{
qd(i,j) for d(i, j) even

qd(i,j)−1 for d(i, j) odd
(3.30)

where

q =

√
κ(A)− 1

κ(A) + 1
.

Proof. The indefinite Hermitian and skew-Hermitian cases are special cases of
Theorem 3.19 and Corollary 3.20 for a = 0. A straightforward calculation shows
that

q2 =

(√
a2 + b2

2

a2 + b2
1

− 1

)
/

(√
a2 + b2

2

a2 + b2
1

+ 1

)
for the decay rate q from Theorem 3.19. Now for a = 0, b1 = minλ∈σ(A) |λ| and
b2 = maxλ∈σ(A) |λ| we obtain

q2 =
b2
b1
− 1

b2
b1

+ 1
=
κ(A)− 1

κ(A) + 1

and C = 2‖A−1‖2 which completes the proof.

We published the results of Theorem 3.19, Corollary 3.20 and Corollary 3.21 in [38].
All the results in this section are based on (asymptotically) minimal polynomials
with respect to a set containing the spectrum of A. So far we considered ellipses,
line segments (as a special case of ellipses) and “splitted” line segments. The
following result which was not given in [38] is a straightforward generalization of
this approach based on the Faber polynomials introduced in Section 2.3.2.

Proposition 3.22. Let A be normal and let Ω be a compact, simply connected
set containing the spectrum of A and excluding the origin. Then

|[A−1]ij| ≤
maxz∈Ω |Pd(i,j)(z)|

minz∈Ω |z|
,

where Pm(z) = Φm(z)/Φm(0) and Φm(z) is the m-th Faber polynomial with respect
to Ω.
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3 Bounds for the decay in functions of matrices

Now, by using other sets Ω than ellipses or line segments, additional results can
be obtained. As an example, we give the corresponding result for Ω := D(z0, r),
i.e., Ω is a disk with center z0 and radius r. We also give the generalized result for
non-normal matrices, since we use these bounds for a comparison in Section 3.2.3.

Corollary 3.23. Let D(z0, r) be a disk excluding the origin and containing the
spectrum of a normal matrix A. Then

|[A−1]ij| ≤ C qd(i,j)

with C = 1/minz∈D(z0.r) |z| and q = r/|z0|.
For non-normal matrices the bound

|[A−1]ij| ≤ (1 +
√

2)C qd(i,j)

holds, where D(z0, r) is a disk excluding the origin and containing the field of
values of A.

Proof. The assertion directly follows using (3.5), Proposition 3.22 and the fact
that the conformal map of D(z0, r) is given by Φ(z) = (z − z0)/r.

As another example, the conformal map of so called “bratwurst” sets sΩε was
given in [64] in order to develop a polynomial iterative method for solving systems
of linear equations. The results in [64] can immediately be used to formulate decay
bounds for matrices in cases where it is not possible to enclose the spectrum by a
convex set excluding the origin.

Corollary 3.24. Let γ ∈ δD(0, 1) and χ ∈ (0, 2π). Let A be normal with σ(A) ⊆
sΩε where

sΩε := {sΨε(z) : z ∈ D(0, 1)}, Ψε(z) :=
(z − γNε)(z − γMε)

(Nε −Mε)z + γ(NεMε − 1)
,

Nε :=
1

2

(
P

1 + ε
+

1 + ε

P

)
, Mε :=

(1 + ε)2 − 2

2 tan(φ/4)(1 + ε)
,

P := tan(χ/4) + (cos(χ/4))−1, εmax := tan(χ/4)(1 + tan(χ/8)

and ε ∈ [0, εmax). Then

|[A−1]ij| ≤
V (sΩε)

π
(
N

d(i,j)
ε +M

d(i,j)
ε − (−Sε)d(i,j)

)
where V (sΩε) is the boundary rotation of sΩε.

The sets sΩε generated by the mapping Ψε are exemplarily illustrated in Figure 3.2
for s = 1, γ = −1, χ = π/2 and different values of ε.
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ε = 0.1

ε = 0.2

ε = 0.3

Figure 3.2: Sets sΩε with s = 1, γ = −1, χ = π/2 and ε = 0.1, 0.2, 0.3.

3.2.3 Comparison and numerical examples

In this section we compare various aspects of the introduced bounds from the
literature and our new bounds from Section 3.2.2.

We start with the discussion of the results of Theorem 3.18 for matrices with
spectrum on a line segment excluding the origin. In Section 3.1 we introduced
Corollary 3.7 (as a consequence of Theorem 3.6 from [78]) which can be used for
normal matrices with spectrum on a line segment and functions analytic on ellipses
with focal points λ1 and λ2. Hence, it would be interesting to check whether there
is an improvement by using the approach for the inverse of Section 3.2.2 instead of
using the general result of Theorem 3.6 applied to a line segment and the inverse.

Since the inverse has a singularity in 0, the maximal τ such that f is analytic on
the interior of the ellipse E(τ, λ1, λ2) and bounded on the boundary of E(τ, λ1, λ2)
is smaller than the absolute value of the solution of

1

2
(z + z−1) =

λ1 + λ2

λ2 − λ1
,

which is just q as defined in Theorem 3.18, i.e., 1 < τ < q. Therefore the decay
rate of Theorem 3.18 is always better than the decay rate from Corollary 3.7 in
the case of the inverse. At the same time, the constant from Corollary 3.7 is given
by

2τ

τ − 1
max

z∈E(τ,λ1,λ2)
|z−1| = 2

1− τ−1

1

minz∈E(τ,λ1,λ2) |z|
=: I · II,

whereas the constant from Theorem 3.18 can be bounded by

2

1− q−2

1

minz∈[λ1,λ2] |z|
=: Ĩ · ĨI.
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3 Bounds for the decay in functions of matrices

As already mentioned, there is a trade-off in Corollary 3.7 for the choice of τ . For
the decay rate and the factor I it would be advantageous to choose τ as large
as possible. By setting τ = q we obtain the decay rate from Theorem 3.18 and
a factor I which is still larger than Ĩ. At the same time, the factor II tends to
infinity for τ → q. For the factor II it would be advantageous to choose τ as small
as possible. By setting τ = 1, the factor II coincides with ĨI but I is not defined
and we would have no decay in the bound of Corollary 3.7. Summarizing, the
bound of Theorem 3.18 is sharper than the bound of Corollary 3.7 even if we use
the optimal choices of τ for the decay rate and the factors I and II, independently,
implying that for any choice of τ the bound of Theorem 3.18 is smaller than that
of Corollary 3.7. We conclude that the approach of Section 3.2.2 leads to better
decay bounds for the inverse in comparison to results for general functions applied
to the inverse and we do not need to solve any minimization problem.

For the next comparison we consider the classical results of Theorem 3.9 from
[23]. The first result of Theorem 3.9 was formulated for the inverse of Hermitian
positive definite matrices. Since Hermitian positive definite matrices belong to
the class of normal matrices with spectrum on a line segment, we can use the
approach of Section 3.2.2 for those types of matrices as well, i.e., we can bound
the entries of A−1 by

|[A−1]ij| ≤
maxz∈[λmin,λmax] |Pm+1(z)|

minz∈[λmin,λmax] |z|
,

where Pm+1 is a normalized Chebyshev polynomial of degree m+ 1 = d(i, j). We
actually know that the result of Theorem 3.9 will lead to better results for these
types of matrices, since it is based on the explicit knowledge of the error of the
best polynomial approximation of the inverse on a positive interval, and it was
shown in [23] that this bound is sharp for certain types of matrices. However, it
is interesting to check the quality of the bounds based on minimal polynomials by
applying the approach of Section 3.2.2 to Hermitian positive definite matrices (and
in addition, we will need the resulting decay bound on a later point) and compare
them to the results of Theorem 3.9 for Hermitian positive definite matrices.

Using the normalized Chebyshev polynomial Pm+1 of degree m+ 1 = d(i, j) with
respect to the line segment [λmin, λmax] where λmin, λmax > 0 are the smallest and
largest eigenvalues of A, we obtain the bound

|[A−1]ij| ≤
maxz∈[λmin,λmax] |Pm+1(z)|

minz∈[λmin,λmax] |z|
=

(
Tm+1

(
λmax+λmin

λmax−λmin

))−1

λmin

. (3.31)

Using Lemma 2.15 and the identity(√
λmin

λmax − λmin

+

√
λmin

λmax − λmin

+ 1

)2

=

√
κ(A) + 1√
κ(A)− 1

(3.32)
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Figure 3.3: Exact values and bounds for |[A−1|ij , j = 120 of dimension n = 200 for
A = tridiag(1, i,−1) + 2I (left) and A = tridiag(−1, 4,−1) + 2iI (right).

we find the bound

|[A−1]ij| ≤
2

a
qd(i,j), (3.33)

where q is the decay rate of Theorem 3.9, i.e., the decay rates coincide. For the
constant C of Theorem 3.9 we have 1

a
≤ C ≤ 2

a
which shows that in the worst case

the constant deteriorates by a factor of two if we apply the approach of Section 3.2.2
to Hermitian positive definite matrices instead of using the result of Theorem 3.9.
Hence, in the Hermitian positive definite case we obtain an acceptable decay
bound (also with sharp decay rate) when using the approach of Section 3.2.2
which can also be applied to general matrices with spectrum on a line segment.
Note that we do not obtain this bound by just applying Theorem 3.18 to the
interval [λmin, λmax] since Lemma 2.15 can only be used in the real case. However,
this comparison illustrates that a deterioration of the bounds caused by using
the bound (3.31) instead of the the error of the best polynomial approximation is
maintainable.

For non-Hermitian matrices with spectrum on a line segment excluding the origin,
we can alternatively use the second result of Theorem 3.9 for general matrices.
In this case we have rather different results for both, the constant and the decay
rate. The decay rate (3.12) and constant (3.13) depend on the condition number
κ(A), whereas the decay rate and constant of Theorem 3.18 only depend on
the two endpoints of the line segment which are not necessarily related to the
condition number of A. In Figure 3.3 we see the exact absolute values of the
120-th column of the inverse of two tridiagonal matrices and the corresponding
bounds of Theorem 3.9 and Theorem 3.18. While the bound of Theorem 3.18
perfectly captures the decay in A−1, the decay rate (3.12) is too large compared
to the actual decay rate. These examples show, that it is profitable to use the
special structure of the spectrum of A.
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Now we consider the result of Theorem 3.10 for matrices of the form (3.14). Note
that this class of matrices coincides with the class of normal matrices with spectrum
on a line segment, so Theorem 3.10 and Theorem 3.18 are intended for the same
types of matrices. At the same time the decay rates given in these theorems
coincide, which can be seen as follows.

The decay rate of Theorem 3.10 is given by q−1
1 where q1 > 1 is defined as the

solution of
1

2
(z + z−1) :=

|λ1|+ |λ2|
|λ1 − λ2|

=: x1 with z > 1,

whereas in the decay rate q−1
2 of Theorem 3.18, the value of q2 > 1 can be written

as the absolute value of the solution of

1

2
(z + z−1) =

λ1 + λ2

λ2 − λ1

=: x2 with |z| > 1. (3.34)

Now, the condition q1 = q2 means that q1 and the solution of (3.34) lie on the
same circle Cq1 with radius q1 which is equivalent to the condition that x1 and x2

lie on the same ellipse E with focal points −1 and 1, where E is the Joukowski
mapping of Cq1 . This is equivalent to

|x2 − 1|+ |x2 + 1| = 2x1,

which is obviously true, so the decay rates q1 and q2 coincide. Hence we have
no improvement here with respect to the decay rate, but with the approach of
Section 3.2.2 we obtain a much simpler constant which will especially be useful
for the results in Section 3.3. In addition we provided a detailed discussion and
comparison of the decay rate to previous results, which was not given in [35].

In Theorem 3.19 we considered special types of shifted skew-Hermitian matrices,
which e.g., represents an important class of matrices arising in lattice QCD (an
example of such a matrix is given in Section 3.3.3). For those types of matrices
the bounds of Theorem 3.18 can be used as well, hence, in the following we will
check if it is advantageous to use this more extensive knowledge of the structure
of the spectrum. For this, we compare the decay rate of Theorem 3.18 (which is
equal to the decay rate from Theorem 3.10) when applied to those shifted skew
Hermitian matrices to the decay rate from Theorem 3.19. Recall that the former
can be written as q−1

2 where q2 the solution of (3.34) whereas the latter is given
by

q3 =
(√

x3 +
√
x3 + 1

)−1
< 1 with x3 =

a2 + b2
1

b2
2 − b2

1

, (3.35)

At first glance it might seem that the result of Theorem 3.18 yields a sharper
bound as the decay rate q−1

2 does not depend on the distance of the spectrum
of A to the real axis, i.e., on the conditioning of the skew-Hermitian matrix S.

48



3.2 Bounds for the inverse
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Figure 3.4: Decay rates predicted by Theorem 3.18 and Theorem 3.19 for a shifted skew-
Hermitian matrix of dimension n = 100 with spectrum contained in the line segment
E = 1 + (i[−6,−b1] ∪ i[b1, 6]) for values of b1 ranging from 0 to 5.

Interestingly, however, the opposite is the case: If S is non-singular, i.e., b1 > 0,
the bound of Theorem 3.19 gives the better decay rate, i.e.,

q3 < q−1
2 .

To explore this, we set λ1 = a+ b2 i and λ2 = a− b2 i. Hence

x2 =
λ1 + λ2

λ2 − λ1

=
a

b2

i

and therefore the solution of (3.34) is given by

z =

 a

b2

+

√(
a

b2

)2

+ 1

 i

and we obtain

q2 = |z| = a

b2

+

√(
a

b2

)2

+ 1 =
√
|x2|2 +

√
|x2|2 + 1.

Since |x2|2 ≤ x3 with equality if and only if b1 = 0, this shows q3 < q−1
2 for

b1 > 0 and q2 = q−1
2 for b1 = 0. In conclusion we find that the smaller the gap

b1 around the real axis is, the closer the decay rate of Theorem 3.18 is to that of
Theorem 3.19. This is illustrated in Figure 3.4, in which we compare the predicted
decay for a shifted skew-Hermitian matrix with a = 1, b2 = 6 and different values
of b1.
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3 Bounds for the decay in functions of matrices

As a last comparison for matrices with spectrum on a line segment, we consider
the Hermitian indefinite case which is treated in Corollary 3.21. As the results of
Theorem 3.18 and Theorem 3.10 are not applicable here, we compare our result to
the general result of Theorem 3.9. Both results give the same decay rate, so that
our new result does not give an improvement in this respect. It, however, yields a
better constant. In Theorem 3.9, the constant for β-banded matrices is given by

C1 = (2β + 1)q−2
1 ‖A−1‖2κ(A) max

{
1,

(
1 + κ(A)

κ(A)

)2

/2

}
,

while in the new bound from Corollary 3.21 it is given by

C = 2‖A−1‖2.

Therefore, their ratio is

C

C1

=
q2

1

(β + 1
2
)κ(A) max{1, (1+κ(A)

κ(A)
)2/2}

< 1.

For large condition numbers κ(A), the terms q2
1 and max{1, (1+κ(A)

κ(A)
)2/2} both

tend to one, so that in this case the ratio between the constants approximately
becomes

C

C1

≈ 1

(β + 1
2
)κ(A)

,

showing that the constant C of Theorem 3.18 is smaller by a factor which depends
both on the bandwidth and the condition number of A.

We concluded Section 3.2.2 with the observation that the use of normalized Faber
polynomials leads to additional results for general matrices. As an example, we
presented Proposition 3.23 for matrices with spectrum or field of values on a
disk excluding the origin. As an additional comparison, we consider the result
of Corollary 3.8 (which is a consequence of Theorem 3.6 from [78]) for general
analytic functions applied to f(z) = z−1. For non-normal matrices we obtained
in Proposition 3.23 the bound

|(A−1)ij| ≤
1 +
√

2

minz∈D(z0,r) |z|
·
(

r

|z0|

)d(i,j)

, (3.36)

where D(z0, r) is a disk containing the field of values of A. On the other hand,
the bound of Corollary 3.8 is given by

∣∣(A−1)i,j
∣∣ ≤ 2τ

τ − 1

1

minz∈D(z0,rτ) |z|

(
1

τ

)d(i,j)

, (3.37)
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with 1 < τ < |z0|/r, where the upper bound for τ follows from the singularity
of the inverse in 0. So we have a similar situation as in the comparison of the
bounds of Corollary 3.7 and Theorem 3.18 for matrices with spectrum on a line
segment. There is a trade-off in the choice of τ in (3.37). For the decay rate it
would be advantageous to choose τ as large as possible, but then the constant
tends to infinity. For the second factor of the constant it would be optimal to
choose τ as small as possible but then the decay rate tends to one and the first
factor of the constant tends to infinity. So again, the bound (3.36) is similar to
the bound (3.37) with optimal choices of τ independently for every factor. The
additional fact that 1 +

√
2 < 2 τ

τ−1
shows, that for any choice of τ the bound

(3.36) is sharper than (3.37).

We conclude this section with a numerical example, which reveals an important
drawback of the bounds developed so far.

Typically, the quality of decay bounds is illustrated by showing the actual decay
in one row or column of the inverse and comparing it to the bound for this row
or column. In the example below, we instead compare the whole matrix A−1

to a matrix containing the bounds for every entry |[A−1]i,j|. For example, if we
apply the bounds of Theorem 3.9 to a tridiagonal matrix, then collecting all the
bounds (3.9) in a matrix Q yields the symmetric Toeplitz structure

Q = C ·


q0 q1 · · · · · · qn−1

q1 q0 q1 . . .
...

... q1
. . . . . .

...
...

. . . . . . . . . q1

qn−1 · · · · · · q1 q0

 , (3.38)

which, by Theorem 3.9, fulfills
|A−1| ≤ Q, (3.39)

where “≤” and “| · |” are understood component-wise. Similarly, all the results on
decay bounds for banded matrices from [8, 11, 12, 35, 38, 71, 72, 76] also result
in a Toeplitz structured matrix Q of bounds since for all entries with the same
distance between the nodes the same bound is used. However, even when A is a
banded Toeplitz matrix, A−1 is in general not Toeplitz which indicates that the
bound (3.39) will typically not bound all the entries of A−1 equally well when
going along a specific sub- or superdiagonal. We now give an example where this
effect is particularly pronounced.

Example 3.25. We construct a symmetric, tridiagonal matrix with prescribed
spectrum following the construction principle developed in [62, Section 6.1]. The
idea is to start with a diagonal matrix containing the prescribed eigenvalues,
and then to apply a series of (two-sided) Givens rotations in order to introduce
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Figure 3.5: Magnitude of the entries of A−1 (left) and Q from (3.38) (right), where A
is the matrix from Example 3.25.

nonzero elements on the sub- and superdiagonal. Nonzero elements that are
introduced outside the band are immediately chased off the bottom right corner
of the matrix, similarly to Schwarz band reduction [87]. Specifically, we construct
a symmetric positive definite tridiagonal matrix A ∈ R100×100 with logarithmically
spaced eigenvalues in the interval [10−2, 102]. Figure 3.5 shows the magnitude of
the entries of A−1 and of the Toeplitz matrix (3.38) containing the bounds from
Theorem 3.9. Two problems with the bound are apparent: On the one hand, the
magnitude of the entries is very severely overestimated due to a super-exponential
decay in A−1, and on the other hand, the structure of A−1 is far from being
Toeplitz, in contrast to the matrix Q. �

In the next section we develop a theoretical framework for explaining and ac-
curately predicting a decay behavior as observed in the example above for the
Hermitian positive definite case.

3.2.4 Bounds with non-Toeplitz structure

In this section we want to find alternative ways to formulate decay bounds which
capture the actual decay of a matrix function more accurately, even in extreme
situations as given in Example 3.25.

First, we show how to obtain a family of decay bounds based on full spectral
information of A, in contrast to the bound in Theorem 3.9 which is only based
on the largest and smallest eigenvalue, i.e., the spectral interval. Although this
information is typically not available in practical situations, it will help us to
make a first step towards explaining the decay behavior observed for the matrix A
from Example 3.25. As these bounds turn out to be still not necessarily accurate,
we improve them further by relating the decay above and below the diagonal
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3.2 Bounds for the inverse

of the kth column of A−1 to the eigenvalues of (slightly modified) k × k and
(n− k)× (n− k) submatrices of A, respectively. By combining both approaches,
we obtain sharp bounds for the entries of A−1, even in extreme situations as the
one from Example 3.25.

The decay bounds from Theorem 3.9 are obtained by using Ω = [λmin(A), λmax(A)]
in the approach outlined in Section 3.1 and then using the best polynomial ap-
proximation for the inverse on a real positive interval. A drawback of the bounds
of Theorem 3.9 is that they cannot accurately capture the actual decay behavior if
the decay is super-exponential. This problem is comparable to what one observes
for the classical textbook convergence bound for the conjugate gradient method;
see, e.g., [85]: While for a given condition number one can always find a matrix
such that the bound for step k is sharp, it is typically neither sharp for other
matrices with the same condition number, nor for other steps of the iteration.
In the same way, one cannot expect the decay bounds from Theorem 3.9 to be
sharp for all matrices with a given condition number, or even just for all entries
of one specific matrix. In particular, the classical CG convergence result only
predicts linear convergence (and similarly, the bound of Theorem 3.9 only predicts
exponential decay), while in practice one often observes super-linear convergence
due to spectral adaptation. A simple approach for explaining the super-linear CG
convergence is based on bounding the iteration polynomial from the CG method
by other, so-called composite polynomials, which leads to a family of bounds. This
approach is described in detail in [65, Chapter 5.6.4]. To transfer this approach,
we cannot use the bounds of Theorem 3.9. Instead, we use the approach which
leads to the bound (3.33) from Section 3.2.3 for Hermitian positive definite matri-
ces, which gives the same decay rate as in Theorem 3.9 and a constant which, in
the worst case, deteriorates by a factor of two. The advantage is that with this
approach we may use the same idea as for the CG convergence analysis to explain
a super-exponential convergence behavior. Altogether this gives the following
family of bounds based on the effective condition number. This result is already
published in [39].

Theorem 3.26. Let A ∈ Cn×n be a Hermitian positive definite and β-banded
matrix with eigenvalues λmin(A) = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax(A). Further, let us
define

κ`(A) =
λn−`
λ1

, q` =

√
κ`(A)− 1√
κ`(A) + 1

and C =
2

λ1

. (3.40)

Then the entries of A−1 can be bounded as

|[A−1]i,j| ≤ C q
|i−j|
β
−`

` for all ` = 0, 1, . . . ,

⌊ |i− j|
β

⌋
. (3.41)

Proof. Instead of bounding the entries of the inverse by using the polynomial
approximation on an interval containing the spectrum of A directly, we now first
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3 Bounds for the decay in functions of matrices

work with the discrete set σ(A) = {λ1, . . . , λn}. Because of (3.4) with m =
d(i, j)− 1 = d|i− j|/βe − 1 we can bound the entries of the inverse as

|[A−1]i,j| ≤ min
pm∈Pm

max
z∈{λ1,...,λn}

|z−1 − pm(z)|

= min
Pm+1∈Pm+1

Pm+1(0)=1

max
z∈{λ1,...,λn}

∣∣∣∣Pm+1(z)

z

∣∣∣∣
≤ 1

λ1

min
Pm+1∈Pm+1

Pm+1(0)=1

max
z∈{λ1,...,λn}

|Pm+1(z)|

≤ 1

λ1

min
Pm+1−`∈Pm+1−`
Pm+1−`(0)=1

max
z∈{λ1,...,λn}

|r`(z)Pm+1−`(z)|

where

r`(z) =
n∏

i=n−l+1

(
1− z

λi

)
is a polynomial which satisfies r`(0) = 1, r`(λi) < 1 for i = 1, . . . , n − ` and
r`(λi) = 0 for i = n− `+ 1, . . . , n. Therefore, the entries of the inverse can further
be bounded as

|[A−1]i,j| ≤
1

λ1

min
Pm+1−`∈Pm+1−`
Pm+1−`(0)=1

max
z∈{λ1,...,λn−`}

|r`(z)Pm+1−`(z)|

≤ 1

λ1

max
z∈{λ1,...,λn−`}

|r`(z)| min
Pm+1−`∈Pm+1−`
pm+1−`(0)=1

max
z∈{λ1,...,λn−`}

|Pm+1−`(z)|

≤ 1

λ1

min
Pm+1−`∈Pm+1−`
Pm+1−`(0)=1

max
z∈[λ1,λn−`]

|Pm+1−`(z)|

=
1

λ1

(
Tm+1−`

(
λn−` + λ1

λn−` − λ1

))−1

where Tm+1−` is the Chebyshev polynomial of degree m+ 1− `. Again, by using
Lemma 2.15 and equation (3.32) with λmin = λ1 and λmax = λn−` we obtain

max
z∈[λ1,λn−`]

|Tm+1−`(z)| ≤ 2 qm+1−`
` ,

so that the bound (3.41) follows by using |i− j|/β ≤ m+ 1.

The family (3.41) of bounds can potentially predict the decay behavior in A−1

much more accurately than (3.9) – which is contained as a special case for ` = 0
(except for a factor of two in the constant) – if one chooses the value of ` which
minimizes (3.41) for each entry [A−1]i,j.
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Figure 3.6: Magnitude of the entries of A−1 (left) and Q from (3.42) (right), where A
is the matrix from Example 3.25.

Example 3.27. We consider the matrix from Example 3.25 again, but this time
define a matrix Q of bounds such that

Qi,j = min
`=0,...,b |i−j|β c

Cq
|i−j|
β
−`

` , (3.42)

where q` and C are defined as in (3.40). Note that the choice of ` which minimizes
the right-hand side of (3.42) depends on the distribution of the eigenvalues of
A. A larger number ` improves the effective condition number and therefore the
decay rate q`, but at the same time the exponent |i−j|

β
− ` decreases. Therefore,

the distribution of the eigenvalues determines whether the improvement of the
decay rate outweighs the smaller exponent.

The magnitude of the entries of the resulting matrix Q is given in Figure 3.6
(together with the magnitude of the absolute entries of A−1 for comparison). In
contrast to what we observed in Figure 3.5, the entries are not overestimated
as much as before (though still by several orders of magnitude), and at least in
the first few rows and columns (which correspond to the front part of the plotted
surfaces), the qualitative decay behavior is predicted quite accurately. For the other
rows and columns, however, the decay behavior predicted by the bounds is still not
satisfactory. To better understand why this is the case, we take a closer look at the
decay behavior in two individual columns in Figure 3.7. On the left-hand side, the
magnitude of the entries of the first column of A−1 and the corresponding bounds
are given, and on the right-hand side, the same information is shown for the 50th
column. The plot on the right-hand side nicely illustrates the main problem that
still occurs with (3.42): While the bounds obtained by (3.42) give a better idea of
the actual decay behavior, they still lead to a symmetric Toeplitz structure of Q.
As a consequence, the bound for the 50th column in the right part of Figure 3.7 is
symmetric with respect to the 50th entry, and the bounds for the first 50 entries
of the first column plotted in the left part of Figure 3.7 agree with the bounds
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Figure 3.7: Magnitude of the entries of the first (left) and 50th (right) column of A−1

and corresponding bounds (3.42), where A is the matrix from Example 3.25.

for entries 51–100 of the 50th column. This means in particular that the decay
predicted “above” the diagonal (i.e., for i < j) is the same as the decay predicted
“below” the diagonal (i.e., for i > j), although the actual decay is very different
for these two parts of the 50th column. Whenever this is the case, any symmetric
Toeplitz-structured bound has this shortcoming as it must be valid for both parts
of the column, and will thus be forced to follow the part of the column with the
“slower decay”. �

Theorem 3.26 can immediately be generalized to Hermitian and positve definite
matrices with an arbitrary, not necessarily banded, sparsity pattern by replacing
the quantity |i− j|/β by the distance d(i, j) of the nodes i and j. Everything then
works in a completely analogous manner and we can state the following result
without proof, which is also published in [39].

Theorem 3.28. Let A ∈ Cn×n be Hermitian positive definite and let λmin(A) =
λ1 ≤ λ2 ≤ · · · ≤ λn = λmax(A) be the eigenvalues of A. Let κ`(A), q` and C = 2

λ1

be defined as in Theorem 3.26. Then the entries of A−1 can be bounded as

|[A−1]i,j| ≤ C q
d(i,j)−`
` for all ` = 0, 1, . . . , d(i, j). (3.43)

Motivated by Example 3.27, we now proceed to show how to obtain bounds that
are not restricted to a Toeplitz structure any longer. In doing so we use the bound
of Theorem 3.26 for submatrices of A. We again first consider the tridiagonal
case. The basic idea is to perform a rank-one modification of a tridiagonal matrix
A that reduces it to block diagonal form (similar to what is done in the divide
and conquer algorithm for the symmetric tridiagonal eigenvalue problem [51]). By
applying the Sherman–Morrison formula [93], the inverse of A can then be written
as the sum of the inverse of a block diagonal matrix and a rank-one matrix. The
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result then follows from the fact that both the inverse of the block diagonal matrix
and the rank-one term exhibit off-diagonal decay.

We fix k ∈ {1, . . . , n− 1} and decompose

A =

[
A11 A22

A21 A22

]
=

[
B1 0
0 B2

]
+ uuH , u = α(ek +

ak+1,k

|ak+1,k|
ek+1) ∈ Cn, (3.44)

with α =
√
|ak+1,k|, ek, ek+1 the kth and k+1st canonical unit vector in Cn. Note

that B1 ∈ Ck×k is tridiagonal and that it differs from A11 only in its (k, k) entry,
which is [B1]k,k = ak,k − |ak+1,k|. Similarly, B2 ∈ C(n−k)×(n−k) is tridiagonal too,
and it differs from A22 only in its (1, 1) entry, which is [B2]1,1 = ak+1,k+1− |ak+1,k|.
Theorem 3.29. Let A ∈ Cn×n be a tridiagonal Hermitian positive definite matrix.

Assume that B1 and B2 in (3.44) are positive definite, and define for s = 1, 2

κs =
λmax(Bs)

λmin(Bs)
, qs =

√
κs − 1√
κs + 1

, cs =
2

λmin(Bs)
.

Then the entries of A−1 can be bounded as

|[A−1]i,j| ≤


c1 q

|i−j|
1 + c2

1 c̃ q
2k−j−i
1 for i, j ≤ k

c2 q
|i−j|
2 + c2

2 c̃ q
i+j−2(k+1)
2 for i, j > k

c1 c2 c̃ q
k−i
1 qj−k−1

2 for i ≤ k < j

c1 c2 c̃ q
j−k
1 qi−k−1

2 for j ≤ k < i

with the constant

c̃ =
|ak+1,k|

1 + |ak+1,k|
(

1
λmax(B1)

+ 1
λmax(B2)

) ≤ |ak+1,k|.

Proof. We set B = diag(B1, B2). The Sherman–Morrison formula gives

A−1 = B−1 − B−1uuHB−1

1 + uHB−1u
=: B−1 −R.

Obviously, we thus have

|[A−1]i,j| ≤ |[B−1]i,j|+ |Ri,j|,

and as the inverse ofB is given byB−1 = diag(B−1
1 , B−1

2 ), we can use Theorem 3.26
for ` = 0 applied to B1 and B2 in order to bound the entries of B−1 as

|[B−1]i,j| =


|[B−1

1 ]i,j| ≤ c1 q
|i−j|
1 for i, j ≤ k

|[B−1
2 ]i,j| ≤ c2 q

|i−j|
2 for i, j > k

0 otherwise

.
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Denoting with M•,` the `-th column of a matrix M , we get

B−1u = α

[
[B−1

1 ]•,k
ak+1,k

|ak+1,k| [B
−1
2 ]•,1

]
,

which shows that the absolute values of the entries of the rank-one term R are
given by

|Ri,j| =
α2

1 + uHB−1u
·


|[B−1

1 ]i,k| · |[B−1
1 ]j,k| ≤ c2

1 q
k−i
1 qk−j1 for i, j ≤ k

|[B−1
2 ]i−k,1| · |[B−1

2 ]j−k,1| ≤ c2
2 q

i−k−1
2 qj−k−1

1 for i, j > k

|[B−1
1 ]i,k| · |[B−1

2 ]j−k,1| ≤ c1 c2 q
k−i
1 qj−k−1

2 for i ≤ k < j

|[B−1
1 ]j,k| · |[B−1

2 ]i−k,1| ≤ c1 c2 q
k−j
1 qi−k−1

2 for j ≤ k < i

,

where we applied the bounds for the inverse also to these terms. Due to the
relation

uHB−1u = α2
(
[B−1

1 ]k,k + [B−1
2 ]1,1

)
,

we further find

1 + uHB−1u ≥ 1 + α2

(
1

λmax(B1)
+

1

λmax(B2)

)
.

Putting all these inequalities together gives the desired result.

This theorem is also published in [39]. We discuss Theorem 3.29 in the following
remarks.

Remark 3.30. The result of Theorem 3.29 is based on Theorem 3.26 with ` = 0
for ease of presentation. It is possible to rewrite it in the spirit of (3.42) to
obtain sharper decay bounds. We will state and illustrate the resulting bounds in
Example 3.33 below, but refrain from giving a formal proof, because it is essentially
the same as that of Theorem 3.29. �

Remark 3.31. A crucial assumption in Theorem 3.29 is that B1 and B2 are
positive definite. One situation in which this assumption is guaranteed to be
fulfilled is when A is strictly diagonally dominant, as in this case B1 and B2

inherit this property and must therefore also be positive definite. �

Remark 3.32. Theorem 3.29 only applies to the case of tridiagonal matrices, i.e.,
matrices with bandwidth β = 1. To modify it in order to account for matrices
with bandwidth β > 1, one can use a rank-β modification that again reduces it
to block diagonal form and then proceed in an analogous manner. However, the
quality of the bounds obtained this way will deteriorate more and more the larger
the bandwidth is. Another possible generalization of Theorem 3.29 is to consider
general sparse matrices, where we can find a low-rank modification of A such that
the graph of the resulting matrix is disconnected. Then, by renumbering the nodes,
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Figure 3.8: Magnitude of the entries of A−1 (left) and the bounds from (3.45) (right),
where A is the matrix from Example 3.25.

we also obtain a decomposition which is given by the sum of a block diagonal
matrix and a low-rank matrix. In this case, the exponent |i − j| is replaced by
d(i, j), the graph distance between the nodes i and j. Again, the resulting bounds
can be combined with the super-exponential bounds for a general sparsity pattern,
according to Theorem 3.28. �

Using Theorem 3.29 (modified accordingly to Remark 3.30), we are now in a
position to compute bounds that accurately predict the decay behavior of the
inverse for the matrix A from Example 3.25.

Example 3.33. In this example, we illustrate the bounds arising from the block-
partitioning approach of Theorem 3.29. As Theorem 3.29 gives possibly different
bounds for an entry of |[A−1]i,j| for each value of k, the best possible bounds are
obtained by computing bounds for every k = 1, . . . , n − 1 and then taking the
smallest among those bounds, i.e.,

|[A−1]i,j| ≤ min
k=1,...,n−1

Q
(k)
i,j , (3.45)

where

Q
(k)
i,j =


c1 q

|i−j|
1 + c2

1 c̃ q
2k−j−i
1 for i, j ≤ k

c2 q
|i−j|
2 + c2

2 c̃ q
i+j−2(k+1)
2 for i, j > k

c1 c2 c̃ q
k−i
1 qj−k−1

2 for i ≤ k < j

c1 c2 c̃ q
j−k
1 qi−k−1

2 for j ≤ k < i

. (3.46)

Note that all quantities on the right-hand side of (3.46) depend on k. The resulting
matrix of bounds (3.45) arising for the matrix A from Example 3.25 is illustrated
on the right-hand side of Figure 3.8 with the magnitude of the entries of A−1 given
on the left-hand side again. We observe a considerable improvement compared to
the bounds (3.42) shown in Figure 3.6. In particular, the matrix of bounds is not
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3 Bounds for the decay in functions of matrices
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Figure 3.9: Bounds for A−1 obtained by combining Theorem 3.26 with Theorem 3.29,
where A is the matrix from Example 3.25.
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Figure 3.10: Magnitude of the entries of the first (left) and 50th (right) column of A−1

and corresponding bounds obtained by combining Theorem 3.26 with Theorem 3.29,
where A is the matrix from Example 3.25.

a Toeplitz matrix any longer and can thus better capture the different decay rates
above and below the diagonal.

Further improvements can be obtained by combining the approach of Theorem 3.29
with that of Theorem 3.26, i.e., replacing the bounds in (3.45) by bounds involving
the effective condition numbers of the diagonal blocks B1 and B2 for suitable
values of `. The bounds that are obtained this way (when always selecting the
best possible value ` for each entry |[A−1]i,j|) are depicted in Figure 3.9. These
bounds resemble the actual decay behavior in A−1 even better, and in order to
allow another comparison to the results presented in Example 3.27, we show a
comparison of the exact values of the first and 50th column of A−1 with our
bounds in Figure 3.10. While still overestimating the entries by about two orders
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3.3 Bounds for functions defined by an integral transform

of magnitude, the qualitative decay behavior is resolved quite well by these new
bounds. �

Remark 3.34. In contrast to most bounds from the literature, these bounds can
predict a super-exponential decay behavior and do not obey a Toeplitz structure,
hence, they more accurately predict the actual decay in A−1. However, the bounds
in the presented form are not meant to be used for practical computations, as
they require complete spectral information on several submatrices of A. �

3.3 Bounds for functions defined by an integral
transform

So far we directly obtained decay bounds for a matrix f(A) by using the error of
a polynomial approximation of f on a set containing the spectrum of A. Another
approach is given by using an integral representation of f and by applying known,
sharp decay bounds for the functions arising in the integrand in order to obtain
sharp bounds for f(A) this way. For example, based on Definition 2.3 of matrix
functions, the entries of a matrix f(A) can be written as

[f(A)]ij =
1

2πi

∫
Γ

f(t) [(tI − A)−1]ij dt

for every function f that is analytic on and inside a closed contour Γ that encloses
σ(A). Thus, the entries can by bounded by

|[f(A)]ij| ≤
1

2πi

∫
Γ

|f(t)| |[(tI − A)−1]ij| dt.

Now, by using decay bounds for |[(tI − A)−1]ij| we immediately obtain proper
(but also only implicit and not practical) bounds for a large class of functions.

In the following we will use this approach for special types of functions which can
be expressed as an integral transform and where decay bounds for functions in the
integrand were already obtained. In some cases, we even obtain explicit bounds,
i.e., bounds where no integral appears, by further bounding the resulting integral.
Mainly, we will consider Cauchy–Stieltjes functions which are defined as functions
f : C \ R−0 → C with

f(z) =

∫ ∞
0

dµ(τ)

z + τ
, (3.47)

where µ is a monotonically increasing, real-valued and non-negative function on
[0,∞). Hence, the bounds for the inverse obtained in Section 3.2 can be used to
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3 Bounds for the decay in functions of matrices

obtain decay bounds for Cauchy–Stieltjes functions of matrices. Interestingly, the
inverse itself is a Cauchy–Stieltjes function, generated by the step function

µ(t) =

{
0 for t = 0

1 for t > 1.

Other important examples of functions which can be expressed by an integral of
the form (3.47) for z ∈ C \ R−0 are given by

z−α =
sin(απ)

π

∫ ∞
0

t−α

z + t
dt

for α ∈ (0, 1) and
log(1 + z)

z
=

∫ ∞
1

t−1

z + t
dt.

This approach was already used in [12] to obtain bounds for Cauchy–Stieltjes
and Laplace–Stieltjes functions of banded, Hermitian positive definite matrices.
Laplace–Stieltjes functions can be defined by the integral representation

f(z) =

∫ ∞
0

exp(−τz)dα(τ)

for z ∈ C with Re(z) > 0, where α is a real-valued, nondecreasing function.
Examples of Laplace–Stieltjes functions are given by

1− exp(−z)

z
=

∫ 1

0

exp(−tz)dt

and

z−
1
2 =

∫ ∞
0

exp(−tz)√
πt

dt,

where the representation of z−
1
2 can be seen by substituting tz = x and using the

identity ∫ ∞
0

exp(−x)√
x

dx = Γ

(
1

2

)
=
√
π,

where Γ is the gamma function (see, e.g., [2]). In [12] decay bounds for the
exponential where used to obtain decay bounds for the entries of Laplace–Stieltjes
functions of Hermitian matrices.

3.3.1 Literature review

In this section we review decay bounds for Cauchy–Stieltjes and Laplace–Stieltjes
functions of banded, Hermitian positive definite matrices using the approach
outlined above. For Cauchy–Stieltjes functions, Theorem 3.9 from [23] can be
used and we immediately obtain the following result from [12].
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3.3 Bounds for functions defined by an integral transform

Theorem 3.35. Let A be a β-banded and Hermitian positive definite matrix and
let f be a Cauchy–Stieltjes function. Then the entries of f(A) can be bounded by

|[f(A)]ij| ≤
∫ ∞

0

C(τ)q(τ)
|i−j|
β dµ(τ) (3.48)

with q(τ) = (
√
κ(τ)− 1)/(

√
κ(τ) + 1), κ(τ) = (λmax + τ)/(λmin + τ) and

C(τ) = max

 1

λmin + τ
,

(
1 +

√
κ(τ)

)2

2(λmax + τ)

 . (3.49)

In order to use these bounds in practice, the integral (3.48) has to be evaluated
numerically and it is not even clear whether its value is finite. Hence, it would be
advantageous to find a finite upper bound of (3.48) which shows the existence of
the integral in the first place and which can be used as an explicit bound for the
entries of f(A). For the special case f(z) = z−1/2 the bound

|[A− 1
2 ]ij| ≤ (C(0) + C2)q(0)

|i−j|
β (3.50)

with

C2 =

(
1 +

√
κ(0)

)2

2

was derived in [12].

Using the same approach for Laplace–Stieltjes matrix functions, we first need
results for the exponential. Based on convergence results of the Lanczos approxi-
mation of the exponential in [54], the following decay bounds for the exponential
were derived in [12].

Theorem 3.36. Let A be a Hermitian, β-banded matrix with eigenvalues in the
interval [0, 4ρ]. Then for i 6= j and ξ = d|i− j|/βe we have

|[exp(−τA)]ij| ≤ Φ(ξ, ρ)

with

Φ(ξ, ρ) =

10 exp
(
− ξ2

5ρτ

)
for
√

4ρτ ≤ ξ ≤ 2ρτ

10 exp(−ρτ)
ρτ

(
e ρτ
ξ

)ξ
for ξ ≥ 2ρτ.

(3.51)

Note that this results holds for general Hermitian matrices, as for any Hermitian
matrix A the spectrum of the matrix A− λminI is contained in an interval [0, 4ρ].
Thus, for exp(−τA) the bound of Theorem 3.36 holds with the additional factor
exp(−λminτ) (since clearly the matrices A and λminI commute). Using the results
for the exponential, the following results have been obtained in [12].
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3 Bounds for the decay in functions of matrices

Theorem 3.37. Let A be a Hermitian, β-banded matrix and let Â = A− λminI
be a matrix whose spectrum is contained in [0, 4ρ]. Then for a Laplace–Stieltjes
function f and ξ = d|i− j|/βe the entries of f(A) can be bounded by

|[f(A)]ij| ≤
∫ ∞

0

exp(−λminτ)|[exp(−τÂ)]ij|dα(τ)

≤ 10

∫ ξ
2ρ

0

exp(−λminτ)
exp(−ρτ)

ρτ

(
e ρτ

ξ

)ξ
dα(τ)

+ 10

∫ ξ2

4ρ

ξ
2ρ

exp(−λminτ) exp

(
− ξ2

5ρτ

)
dα(τ) (3.52)

+

∫ ∞
ξ2

4ρ

exp(−λminτ)|[exp(−τÂ)]ij]|dα(τ).

Note again that the results of Theorem 3.36 and Theorem 3.37 can be generalized
to sparse matrices just by replacing ξ by d(i, j). However, in [12] bounds for the
important class of matrices with Kronecker structure of the form

A = A⊕ A := A⊗ I + I ⊗ A (3.53)

were derived explicitly, by using the relation

exp(−τA) = exp(−τA)⊗ exp(−τA). (3.54)

Using relation (3.54) results in the following bounds for the exponential, where the
indices i and j are written as the pairs of coordinates i = (i1, i2) and j = (j1, j2)
in the related two-dimensional grid.

Theorem 3.38. Let A be Hermitian with bandwidth β and spectrum contained in
[0, 4ρ]. Let A be of structure (3.53), then it holds

[exp(−τA)]ij = [exp(−τA)]i1j1 [exp(−τA)]i2j2 ,

and therefore, for τ > 0 and ξ1, ξ2 ≥
√

4ρτ ,

|[exp(−τA)]ij| ≤ Φ(ξ1, ρ)Φ(ξ2, ρ),

where ξk = d|ik − jk|/βe, k = 1, 2 and Φ is defined by (3.51).

For Laplace–Stieltjes functions the authors from [12] further presented the bound

|[f(A)]ij| ≤
∫ ∞

0

exp(−2λminτ) |[exp(−τÂ)]i1j1| |[exp(−τÂ)]i2j2 | dα(τ), (3.55)
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3.3 Bounds for functions defined by an integral transform

where A is defined as in Theorem 3.38, Â = A − λminI and λmin the smallest
eigenvalue of A. Using the bound for the exponential from Theorem 3.36 for
the integrand in (3.55) directly would lead to an excessive fragmentation of the
integral due to the definition of the function Φ. Hence, it was suggested in [12] to
bound (3.55) by (∫ ∞

0

exp(−λminτ)|[exp(−τÂ)]i1j1|2dα(τ)

) 1
2

·(∫ ∞
0

exp(−λminτ)|[exp(−τÂ)]i2j2|2dα(τ)

) 1
2

(3.56)

such that the two integrals can now be bounded according to (3.52) from Theo-
rem 3.37 which requires the evaluation of six integrals. It was additionally noted
in [12] that this approach can be generalized to the case where A is the Kronecker
sum of three and more banded matrices. At this point we want to emphasize that
in this case again a bound like (3.56) is necessary and the number of integrals
increases with the number of matrices in the Kronecker sum.

3.3.2 New results

In this section we present improvements of the results introduced in the previous
section and we extend the results for Cauchy–Stieltjes functions to a larger class
of matrices using the results from Section 3.2.

Recalling the definition of a Stieltjes function from (3.47), we can obtain bounds
for Cauchy–Stieltjes matrix functions of sparse, normal matrices by exploiting
decay bounds for (A+ τI)−1, the inverses of shifted versions of A. The following
theorem shows that it is possible to obtain explicit bounds, i.e., bounds in which
no integrals appear anymore, for any Stieltjes function of a Hermitian positive
definite matrix. This is similar to what was done in [12] for the special case of
the inverse square root.

Theorem 3.39. Let f be a Cauchy–Stieltjes function of the form (3.47) and let
A be Hermitian positive definite. Then the entries of f(A) can be bounded by

|[f(A)]ij| ≤ 2f(λmin) qd(i,j) with q =

√
κ(A)− 1√
κ(A) + 1

. (3.57)

Proof. Using Theorem 3.35 for general sparse matrices, we have

|[f(A)]ij| ≤
∫ ∞

0

C(τ)q(τ)d(i,j) dµ(τ). (3.58)
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3 Bounds for the decay in functions of matrices

Since for τ ≥ 0 we have

q(τ) =

√
κ(τ)− 1√
κ(τ) + 1

=

√
λmax + τ −

√
λmin + τ√

λmax + τ +
√
λmin + τ

=
λmax − λmin(√

λmax + τ +
√
λmin + τ

)2 ≤
λmax − λmin(√
λmax +

√
λmin

)2 = q

we obtain the bound

|[f(A)]ij| ≤ qd(i,j)

∫ ∞
0

C(τ) dµ(τ). (3.59)

The integrand C(τ) is defined in (3.49), where the second argument of the maxi-
mum can be bounded as

(1 +
√
κ(τ))2

2(λmax + τ)
=

1

2(λmax + τ)
+

1√
(λmin + τ)(λmax + τ)

+
1

2(λmin + τ)
≤ 2

λmin + τ
,

which obviously is also an upper bound for the first argument in (3.49), such that∫ ∞
0

C(τ) dµ(τ) ≤
∫ ∞

0

2

λmin + τ
dµ(τ) = 2f(λmin).

With the following lemma we can give similar bounds for other classes of normal
matrices with σ(A) ⊂ C \ R−0 , namely (shifted) skew-Hermitian matrices.

Lemma 3.40. Let A = M + sI be a matrix with MH = −M and s ≥ 0. Define

λ̂ := argmin
λ∈σ(A)

|λ|.

Then

‖(A+ τI)−1‖2 ≤
√

2

|λ̂|+ τ
for τ ∈ R+

0 . (3.60)

Proof. Since A and thus A+ τI is (shifted) skew-Hermitian, we have

‖(A+ τI)−1‖2 =
1

minλ∈σ(A) |λ+ τ | =
1

|λ̂+ τ |
.

The function g(τ) = |λ̂|+τ
|λ̂+τ | attains its maximum at τ = |λ̂|. Hence, we obtain

g(τ) ≤ 2|λ̂|
|λ̂+ |λ̂| |

=
2∣∣∣ λ̂|λ̂| + 1

∣∣∣ ≤ 2√
2

=
√

2,

where the second inequality holds due to Re(λ̂) ≥ 0. The assertion then follows

because g(τ) ≤
√

2 implies 1

|λ̂+τ | ≤
√

2

|λ̂|+τ .
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3.3 Bounds for functions defined by an integral transform

Theorem 3.41. Let A be a nonsingular, skew-Hermitian matrix and let f be a
Cauchy–Stieltjes function of the form (3.47). Then the entries of f(A) can be
bounded by

|[f(A)]ij| ≤ 2
√

2 f(‖A−1‖−1
2 ) ·

{
qd(i,j) for d(i, j) even

qd(i,j)−1 for d(i, j) odd

with

q =

√
κ(A)− 1

κ(A) + 1
.

Proof. We know from Corollary 3.21 that

|[f(A)]ij| =
∣∣∣∣∫ ∞

0

[(A+ τI)−1]ij dµ(τ)

∣∣∣∣ ≤ ∫ ∞
0

2 ‖(A+ τI)−1‖2 q(τ)d(i,j) dµ(τ)

(3.61)
with

q(τ) =

√
κ(A+ τI)− 1

κ(A+ τI) + 1

holds for d(i, j) even. Define a := minλ∈σ(A) |λ| and b := maxλ∈σ(A) |λ|. Then for
τ ≥ 0 the inequality

κ(A+ τI)− 1

κ(A+ τI) + 1
=

√
τ2+b2

τ2+a2
− 1√

τ2+b2

τ2+a2
+ 1

= 1− 2√
τ2+b2

τ2+a2
+ 1

≤ 1− 2
b
a

+ 1
=
κ(A)− 1

κ(A) + 1
,

holds because τ2+b2

τ2+a2
= 1 + b2−a2

τ2+a2
is monotonically decreasing in τ . This gives

q ≥ q(τ) for all τ ≥ 0, and from (3.61) we therefore obtain

|[f(A)]ij| ≤ qd(i,j)

∫ ∞
0

2 ‖(A+ τI)−1‖2 dµ(τ).

With Lemma 3.40 it follows∫ ∞
0

2 ‖(A+ τI)−1‖2 dµ(τ) ≤
∫ ∞

0

2
√

2

a+ τ
dµ(τ) = 2

√
2f(a) = 2

√
2f(‖A−1‖−1

2 ).

The case where d(i, j) is odd can be treated in an analogous manner.

A similar result can be obtained for general normal matrices where the spectrum
is contained in a line segment [λ1, λ2].
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3 Bounds for the decay in functions of matrices

Theorem 3.42. Let A be a normal matrix with σ(A) ⊂ [λ1, λ2] and [λ1, λ2]∩R−0 =
∅. Then there exist real numbers γ ∈ [1,∞) and τ ∗ ∈ R+

0 such that for all i 6= j
the entries of f(A) can be bounded by

|[f(A)]ij| ≤
∫ ∞

0

‖(A+ τI)−1‖2
2

1− q(τ)−2
q(τ)−d(i,j) dµ(τ) (3.62)

≤ γ f(‖A−1‖−1
2 )

2

1− q(τ ∗)−2
q(τ ∗)−d(i,j) (3.63)

with
q(τ) = eRe(z) > 1,

where z is the solution of x(τ) = cosh(z) with

x(τ) =
λ1 + λ2 + 2τ

λ2 − λ1

.

For i = j we obtain
|[f(A)]ii| ≤ γ f(‖A−1‖−1

2 ). (3.64)

Proof. The inequality (3.62) immediately follows by applying Theorem 3.18 to
A + τI. In particular, [λ1, λ2] ∩ R−0 = ∅ implies that 0 6∈ [λ1 + τ, λ2 + τ ] for all
τ ∈ R+

0 , so with Lemma 3.11 and 3.12 we have q(τ) > 1 for all such τ .
Postponing the proof to the end, let us assume that we already know that q(τ)
has a minimum on R+

0 and let τ ∗ = argminτ∈R+
0
q(τ) denote the corresponding

minimizer. Then (3.62) can be bounded by∫ ∞
0

‖(A+ τI)−1‖2 dµ(τ)
2

1− q(τ ∗)−2
q(τ ∗)−d(i,j).

Defining |λ̂| := minλ∈σ(A) |λ| = ‖A−1‖−1
2 , we then obtain

‖(A+ τI)−1‖2 =
1

minλ∈σ(A) |λ+ τ | ≤
γ

|λ̂|+ τ

for some γ ∈ [1,∞) which can be seen from the equivalent formulation

g(τ) :=
|λ̂|+ τ

minλ∈σ(A) |λ+ τ | ≤ γ,

where this upper bound γ exists since g is a continuous function in τ ≥ 0, g(0) = 1
and limτ→∞ g(τ) = 1.

Overall, we have the estimate∫ ∞
0

‖(A+ τI)−1‖2 dµ(τ) ≤
∫ ∞

0

γ

‖A−1‖−1
2 + τ

dµ(τ)

= γ f(‖A−1‖−1
2 ).
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Figure 3.11: Contour lines of the function h(z).

It remains to show that the minimizer τ ∗ of q(τ) on R+
0 exists. We define the

function

h : C→ [1,∞) with h(z) = eRe(w)

where w is the solution of z = cosh(w) with Re(w) ≥ 0. Then it holds q(τ) =
h(x(τ)), such that we can now investigate the function h and the argument x(τ)
for τ ∈ R+

0 instead.

The contour lines of h on levels ρ ∈ [1,∞) defined by {z ∈ C : h(z) = ρ} are given

by confocal ellipses Eρ with focal points -1 and 1 and semi-axes ρ−ρ−1

2
and ρ+ρ−1

2
.

This can be seen as follows: For a given ρ ∈ [1,∞) the equation

ρ = h(z) = eRe(w) = | ew | (3.65)

is fulfilled for all those z ∈ C, for which ew lies on a circle with radius ρ centered
at the origin. Since w is defined as the solution of z = cosh(w) and cosh(w) can
be interpreted as the Joukowski mapping of ew, equation (3.65) is fulfilled for
all z ∈ C that lie on the ellipse Eρ. Hence, the contour lines of the function h
on levels ρ ≥ 1 are confocal ellipses Eρ with focal points -1 and 1, as illustrated
in Figure 3.11. Note in particular, that the values of h on these ellipses Eρ are
trivially monotonically increasing with increasing ρ.

At the same time x(R+
0 ) := {x(τ) : τ ∈ R+

0 } is a half-line with endpoint x(0)
not intersecting the interval [−1, 1] (see Lemma 3.12). Hence, h(x(τ)) > 1 and
h(x(τ))→∞ for τ →∞, thus h(x(τ)) = q(τ) must attain a minimum for τ ∈ R+

0 .
The minimum on the half line x(R+

0 ) is either given by the endpoint x(0) or a point
of tangency x(τ ∗) of the half line x(R+

0 ) and an ellipse Eρ∗ with minimal ρ∗ > 1.
Such a point x(τ ∗) is exemplarily illustrated in Figure 3.12 for a shifted Hermitian
matrix with spectrum contained in the line segment [λ1, λ2] = [−3 + i, 1 + i].
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◦ x(0)

• x(τ∗)

Figure 3.12: Contour lines of h(z) (blue lines) and x(R+
0 ) (red line) for the line segment

[λ1, λ2] = [−3 + i, 1 + i].

Calculating γ and τ ∗ explicitly might be too expensive in general, but Theo-
rem 3.42 shows that the integral (3.62) exists and can thus, e.g., be approximated
numerically. In the next theorem we show that τ ∗ can be easily calculated for
shifted skew-Hermitian matrices and Hermitian matrices with a complex shift.

Theorem 3.43. Let A be of the form A = M + i · sI, where M = MH , or of the
form A = M + sI, where M = −MH , with s ∈ R. Further let σ(A) ⊂ [λ1, λ2]
with [λ1, λ2] ∩ R−0 = ∅. Then there exists a real number γ ∈ [1,∞) such that for
all i 6= j we have

|[f(A)]ij| ≤ γ f(‖A−1‖−1
2 )

2

1− q(τ ∗)−2
q(τ ∗)−d(i,j) (3.66)

with

τ ∗ = max
{

0,−Re(λ1)+Re(λ2)
2

}
, (3.67)

where q(τ) is defined as in Theorem 3.42. For i = j we obtain

|[f(A)]ij| ≤ γ f(‖A−1‖−1
2 ). (3.68)

Proof. The assertion is proven by showing that

argmin
τ∈R+

0

q(τ) = max
{

0,−Re(λ1)+Re(λ2)
2

}
.

First let A be Hermitian with complex shift i · s, i.e., Im(λ1) = Im(λ2) = s. Then
the imaginary part of x(τ) is constant and

Re(x(τ)) =
Re(λ1) + Re(λ2) + 2τ

Re(λ2)− Re(λ1)
.
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3.3 Bounds for functions defined by an integral transform

Hence, x(R+
0 ) is a half-line which is parallel to the real axis. Therefore, if x(R+

0 )
does not cross the imaginary axis, Re(arcosh(x(τ))) attains it minimal value for
τ = 0. Otherwise q(τ) is minimal for the intersection with the imaginary axis,
i.e., for Re(x(τ)) = 0 (see the example of Figure 3.12), which is the case when
τ = −(Re(λ1) + Re(λ2))/2 holds. Thus, x(R+

0 ) intersects the imaginary axis if
and only if −(Re(λ1) + Re(λ2))/2 ≥ 0.

Now consider the shifted skew-Hermitian case. Then we have Re(λ1) = Re(λ2) = s
and the real part of x(τ) is constant. For the imaginary part we have

Im(x(τ)) =
2s+ 2τ

Im(λ1)− Im(λ2)
.

With similar arguments as above, q(τ) is either minimal if τ = 0 or at the intersec-
tion of x(R+

0 ) with the real axis, i.e., if τ = −s = −(Re(λ1) + Re(λ2))/2 ≥ 0.

By imposing further conditions on A, it is possible to specify the constant γ. For
instance, for A = M+sI with MH = −M and s ∈ R+, we know from Lemma 3.40
that γ =

√
2, hence, the entries of A are bounded by

|[f(A)]i,j| ≤ f(‖A−1‖−1
2 )

2
√

2

1− q−2
q−d(i,j), (3.69)

where q = q(0). For Cauchy–Stieltjes functions of the form f(z) = z−α with
α ∈ (0, 1) the bound (3.69) provides bounds for shifted Hermitian matrices A =
M + i · sI, with MH = M , as well, since there exists a shifted skew-Hermitian
matrix B with A = iB and

|[A−α]ij| = |[(iB)−α]ij| = |i−α[B−α]ij| = |[B−α]ij|.

The presented new results for matrices of Cauchy–Stieltjes functions are already
published in [38] with a slightly different proof of Theorem 3.42. We now consider
bounds for Laplace–Stieltjes functions of matrices with Kronecker structure based
on the graph distance. The following results and the corresponding discussion in
Section 3.3.3 for Laplace–Stieltjes functions are not mentioned in our publication
[38]. In [12] the relation

exp(−τA) = exp(−τA)⊗ exp(−τA) (3.70)

is used to find bounds for the exponential and Laplace–Stieltjes functions of
matrices A of the form (3.53). Alternatively, a generalized version of Theorem
3.36 for sparse matrices can be applied to matrices of the form (3.53) where the
distances of the nodes d(i, j) is explicitly known, resulting in the following corollary.
We inherit the conditions of Theorem 3.38 in order to make a comparison between
the following bounds and the bounds of Theorem 3.38 easier.
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3 Bounds for the decay in functions of matrices

Corollary 3.44. Let A be Hermitian with bandwidth β and spectrum contained
in [0, 4ρ]. Let further A be defined as A = I ⊗A+A⊗ I, then for ξ1 + ξ2 ≥

√
8ρτ

we obtain
|[exp(−τA)]ij| ≤ Φ(ξ1 + ξ2, 2ρ),

where ξk = d|ik − jk|/βe, k = 1, 2 and Φ defined by (3.51).

Proof. The bound directly follows by using the generalization of Theorem 3.36 with
ξ = d(i, j) and by noticing that d(i, j) = ξ1 + ξ2 in G(A) and that σ(A) ⊂ [0, 8ρ]
if σ(A) ⊂ [0, 4ρ] (see, e.g., [55, Theorem 4.4.5]).

This result for the exponential was already mentioned incidentally in [12]. Us-
ing Corollary 3.44 for the exponential, we can formulate the following result for
Laplace–Stieltjes functions of matrices with Kronecker structure based on the
graph distance.

Corollary 3.45. Let A = I ⊗A+A⊗ I be a matrix with A Hermitian and λmin

the smallest eigenvalue of A. Let the spectrum of Â := A− 2λminI be contained
in [0, 4ρ] and let f be a Laplace–Stieltjes function. Then the bound

|[f(A)]ij| ≤ 10

∫ ξ1+ξ2
2ρ

0

exp(−2λminτ)
exp(−ρτ)

ρτ

(
e ρτ

ξ1 + ξ2

)ξ1+ξ2

dα(τ)

+ 10

∫ (ξ1+ξ2)
2

4ρ

ξ1+ξ2
2ρ

exp(−2λminτ) exp

(
−(ξ1 + ξ2)2

5ρτ

)
dα(τ)

+

∫ ∞
(ξ1+ξ2)

2

4ρ

exp(−2λminτ)|[exp(−τÂ)]ij]|dα(τ),

holds, where the last term can be bounded by∫ ∞
(ξ1+ξ2)

2

4ρ

exp(−2λminτ)dα(τ).

Proof. We clearly have

|[f(A)]ij| ≤
∫ ∞

0

|[exp(−τA)]ij|dα(τ).

Since λmin is the smallest eigenvalue of A, 2λmin is the smallest eigenvalue of A
(see, e.g., [55, Theorem 4.4.5]) and therefore the spectrum of Â := A− 2λminI is
contained in an interval [0, 4ρ]. Hence,

|[f(A)]ij| ≤
∫ ∞

0

exp(−2λminτ)|[exp(−τÂ)]ij|dα(τ)
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3.3 Bounds for functions defined by an integral transform

can be bounded via Corollary 3.44 with an adapted ρ. In addition we have

|[exp(−τÂ)]ij| ≤ ‖ exp(−τÂ)‖2 ≤ 1

for all τ ≥ 0, such that the bound for the last term holds.

The advantages of using the results based on the graph distance given by Corol-
lary 3.44 and Corollary 3.45 compared to the results based on relation (3.70) are
pointed out in the next section.

3.3.3 Comparison and numerical examples

In this section we illustrate some of the bounds obtained in Section 3.3.2 and
compare them to the results from the literature presented in Section 3.3.1 if possi-
ble. We begin by investigating the case of Cauchy–Stieltjes functions of Hermitian
positive definite matrices, where explicit bounds are given in Theorem 3.39. In
[12] the explicit bound (3.50) was obtained for the inverse square root so we now
compare the bounds for the special case f(z) = z−1/2. The bound of Theorem 3.39
is then given by

|[A− 1
2 ]ij| ≤

2√
λmin

qd(i,j) (3.71)

with

q =

√
κ(A)− 1√
κ(A) + 1

,

whereas the bound from [12] is given by

|[A− 1
2 ]ij| ≤ C q

|i−j|
β (3.72)

with

C = C(0) +

(
1 +

√
κ(A)

)2

2

and C(τ) as defined in (3.49). Therefore we only need to compare the constants
2/
√
λmin and C. First we consider the case when C(τ) is given by the first quantity

of the maximum (3.49), i.e.,

C =
1

λmin

+

(
1 +

√
κ(A)

)2

2
≥ 1

λmin

+ 2.

Since we have

f(x) =
1

x
− 2√

x
+ 2 =

1− 2
√
x+ 2x

x
=

(1−√x)
2

+ x

x
> 0
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3 Bounds for the decay in functions of matrices

for x > 0, we obtain f(λmin) > 0, and therefore

C >
2√
λmin

.

On the other hand, if C(τ) is given by the second quantity of the maximum, then
the constant C reads

C =

(
1 +

√
κ(A)

)2

2λmax

+

(
1 +

√
κ(A)

)2

2
=

(
1 +

√
κ(A)

)2

2λminκ(A)
+

(
1 +

√
κ(A)

)2

2
.

Hence, we now investigate the function

f(x, y) =

(
1 +
√
y
)2

2xy
+

(
1 +
√
y
)2

2
− 2√

x

=
1 + 2

√
y + y + xy + 2xy

√
y + xy2 − 2

√
xy

2xy

with x > 0 and y ≥ 1. For y ≥ 1 we have
√
y ≥ 1 and y2 ≥ y, so that for x > 0

we obtain

f(x, y) >
y + xy + 2xy + xy − 2

√
xy

2xy

=
1 + 4x− 2

√
x

x
=

(1−√x)
2

+ 3x

x
> 0.

Therefore we have f(λmin, κ(A)) > 0, i.e.,

C >
2√
λmin

.

Summarizing, the bound of Theorem 3.35 can be used for any Cauchy-Stieltjes
function and in addition it is sharper than the explicit bound from [12] for the
special case f(z) = z−1/2.

For the matrix
A = tridiag(−1, 4,−1) ∈ C200×200

the exact values of the 120th column of A−1/2 as well as the bounds from The-
orem 3.35 of [12] (evaluated by numerical quadrature), (3.71) and (3.72) are
depicted in Figure 3.13. Of course, all approaches give the same decay rate, but
the constant obtained in Theorem 3.39 is slightly smaller than the one in (3.72).
This gives us a sharper bound, which almost agrees with the quadrature based
bound from Theorem 3.39 (which is the sharpest of the bounds, as the explicit
bounds are obtained by bounding the terms appearing in the integral in (3.48)).
Figure 3.14 shows the same experiment for the function f(z) = z−1/4. In this case,

74



3.3 Bounds for functions defined by an integral transform
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bound (3.71)

bound (3.72)

Figure 3.13: Exact values and bounds for |[A−1/2]ij | of column j = 120 with A =
tridiag(−1, 4,−1).
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Figure 3.14: Exact values and bounds for |[A−1/4]ij | of column j = 120 with A =
tridiag(−1, 4,−1).
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Figure 3.15: Exact values and bounds for [A−1/2]ij (left) and [A−1/4]ij (right) of column
j = 120 with A = tridiag(1, i,−1) + 2 · I of dimension n = 200.

no explicit bound was obtained in [12]. For that reason we are just able to compare
the bound of Theorem 3.39 to that of Theorem 3.35 from [12] which has to be
evaluated by numerical quadrature. Of course, the quadrature based bound is
sharper than the bound from Theorem 3.39 but the difference between the bounds
is not visible in Figure 3.14. Hence, with the explicit bound of Theorem 3.39 we
obtain sharp decay bounds without needing to use numerical quadrature.

In a second series of experiments, we compute bounds for the entries of the matrix
functions A−1/2 and A−1/4, where A is now the shifted skew-Hermitian matrix

A = tridiag(1, i,−1) + 2 · I ∈ C200×200.

For the shifted skew-Hermitian case, no bounds were provided in [12], so that
we only compare our bound from Theorem 3.43 to the exact value. The results
of these experiments are shown in Figure 3.15. We again observe a very good
approximation of the actual decay rate and the magnitude of the entries is only
slightly overestimated, giving sharp bounds overall.

In order to also show a numerical example for a non-banded sparse matrix, we
consider the staggered Schwinger discretization arising in quantum electrodynam-
ics, the basic quantum field theory for the interaction of electrons and photons
according to the standard model of Theoretical Physics. The discretization we
are considering here uses a periodic two-dimensional lattice, where at each lattice
site x = (i, j) the unknown ψi,j couples with its direct neighbors as

s ψi,j + u1
i,jψi+1,j + ηi,ju

2
i,jψi,j+1 − u1

i−1,jψi−1,j − ηi,ju2
i,j−1ψi,j−1 = φi,j, (3.73)

i, j = 1, . . . , N, ηi,j = (−1)i.

Herein, the indices i−1, i+1, j−1, j+1 are to be understood modulo N to account
for the periodicity. The numbers u1

i,j and u2
i,j represent the SU(1) background
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Figure 3.16: Exact values and bounds for |[(sI +D)−1/2]ij | of column j = 504 for the
staggered Schwinger discretization of dimension n = 1024 with lexicographic ordering
of the nodes (left) and on a two-dimensional grid (right).

field, i.e. they are randomly distributed complex numbers of modulus 1. Clearly,
(3.73) results in a system

(sI +D)ψ = φ (3.74)

with a skew-Hermitian matrix D. The spectrum of D = −DH is not only purely
imaginary, but also symmetric with respect to the origin due to the odd-even
structure of the coupling. The graph underlying D is the periodic N ×N lattice,
so that here we are in the presence of the general case where the graph distance
contributes to the decay bounds. For N = 32, Figure 3.16 shows the exact decay
for the 504th column of the inverse square root corresponding to the point (16, 24)
on the lattice and the bounds from Theorem 3.43. The left panel arranges the
values according to a one-dimensional, lexicographic ordering of the lattice points,
whereas the right panel gives the same information arranged on the underlying
two-dimensional lattice. Again, the proposed decay bounds give a good impression
of the actual decay in (sI +D)−1/2.

A similar discussion and comparison of the new decay bounds for Cauchy–Stieltjes
function can also be found in [38]. We now continue with a discussion of the results
for the exponential and Laplace–Stieltjes functions of matrices with Kronecker
structure of the form (3.53), not given in [38]. The bound of Theorem 3.38 for
the exponential was obtained by using the relation (3.70) resulting in the bound

|[exp(−τA)]ij| ≤ Φ(ξ1, ρ)Φ(ξ2, ρ), (3.75)

whereas the bound of Corollary 3.44, given by

|[exp(−τA)]ij| ≤ Φ(ξ1 + ξ2, 2ρ), (3.76)
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Figure 3.17: Exact values and bounds for |[exp(−A)]ij | of column j = 94 for the matrix
A = A⊕A with A = tridiag(−1, 4,−1) (left) and the corresponding ratio between the
bounds based on the Kronecker structure (KS) and the graph distance (GD) (right).

is only based on the graph distance in G(A). An apparent advantage of (3.76) in
contrast to (3.75) is that it is defined for more entries of exp(−τA), since the first
bound is only defined for i, j ∈ {1, . . . , n} with ξ1 ≥

√
4ρτ and ξ2 ≥

√
4ρτ while

the second is defined for all i, j ∈ {1, . . . , n} with ξ1 + ξ2 ≥
√

8ρτ . Furthermore,
experiments show that the bound (3.76) is slightly sharper than (3.75) for many
entries of exp(−τA). In Figure 3.17 we see the exact absolute values of the 94th
column of exp(−A), where A = A ⊕ A with A = tridiag(−1, 4,−1), as well as
bound (3.75) based on the Kronecker structure and the bound (3.76) based on the
graph distance. Here, more entries of exp(−A) can be bounded by the approach
based on the graph distance. For entries where (3.75) and (3.76) are both defined,
Figure 3.17 also shows the corresponding ratio between the bounds, where KS
denotes the bound (3.76) based on the Kronecker structure and GS denotes the
bound (3.76) based on the graph distance. We see that for most of the entries
the ratio is larger than one (illustrated by the red line), i.e., the bound (3.76) is
sharper than (3.75) for most of the entries.

Since the bounds for Laplace–Stieltjes functions immediately follow from the
bounds for the exponential, we here have similar results for matrices with Kronecker
structure (3.53). The bound of Corollary 3.45 based on the graph distance is
defined for more entries of the matrix function than the bound (3.55) based on
the Kronecker structure. In Figure 3.18 we have the exact values and the bounds
for the 94th column of f(A), where f(z) = (1− exp(−z))/z and A = A⊕A with
A = tridiag(−1, 4,−1). Again, the ratio between the proposed bounds shows that
bound (3.76) is sharper than (3.75) for most of the entries.

As a second example for a Laplace–Stieltjes function, we consider the function
f(z) = z−1/2. The results for the 94th column of f(A) are depicted in Figure 3.19
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Figure 3.18: Exact values and bounds for |[(I − exp(−A))A−1]ij | of column j = 94 for
the matrix A = A ⊕ A with A = tridiag(−1, 4,−1) (left) and the corresponding ratio
between the bounds based on the Kronecker structure (KS) and the graph distance
(GD) (right).
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Figure 3.19: Exact values and bounds for |[A−1/2]ij | of column j = 94 for the matrix
A = A⊕A with A = tridiag(−1, 4,−1) (left) and the corresponding ratio between the
bounds based on the Kronecker structure (KS) and the graph distance (GD) (right).

79



3 Bounds for the decay in functions of matrices

0 100 200 300 400

10−15

10−10

10−5

100

exact
Laplace-Stieltjes
Cauchy-Stieltjes

Figure 3.20: Exact values and bounds for |[A− 1
2 ]ij | of column j = 94 for the matrix

A = A⊕A with A = tridiag(−1, 4,−1) based on the Laplace–Stieltjes integral expression
and the Cauchy–Stieltjes integral expression.

and the ratio between the bounds shows that the bound based on the graph
distance is sharper than the bound based on the Kronecker structure for all entries
of the 94th column.

Since f(z) = z−1/2 is also a Cauchy–Stieltjes function, in Figure 3.20 the bound
based on the Cauchy–Stieltjes integral expression of f from Theorem 3.39 is
compared to the bound based on the Laplace–Stieltjes expression of f from Corol-
lary 3.45. We see that in this case, we obtain better results with the bound for
Cauchy–Stieltjes functions, where in addition no integral has to be computed.

A further advantage of the bounds for Laplace–Stieltjes functions of matrices with
Kronecker structure based on the graph distance is the easy generalization to
matrices of the form A = A1 ⊕ A2 ⊕ · · · ⊕ Ak. Then the quantity ξ1 + ξ2 just
needs to be replaced by ξ1 + ξ2 + · · ·+ ξk in Corollary 3.45 and we still only need
to compute three integrals. On the other hand, using the Kronecker structure
explicitly as suggested in [12] leads to a bound where 3k integrals have to be
computed, and the numerical examples show that this additional effort does not
necessarily result in sharper decay bounds. Summarizing, it seems to be sufficient
and even more effective to use the general graph distance approach instead of
considering any structure of the matrix (besides for determining the distance of
the nodes).
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Chapter 4
Exploiting the decay in matrix functions

In this chapter we develop methods which explicitly use the decay property in
matrix functions for associated, important matrix computations. We are espe-
cially interested in methods which scale linearly with the matrix dimension. The
problems we are considering include

• computing sparse approximations of matrix functions (Section 4.2),

• approximating f(A)v for a given vector v (Section 4.3) and

• approximating traces of matrix functions (Section 4.4).

Besides giving some theoretical results, all these sections basically consider two
approaches for the computations of the quantities of interest. The first one is
based on the Chebyshev series expansion as introduced in Section 2.3 for some
types of matrices, while the second one uses a special coloring of the nodes in
G(A), the graph of A. Computing such a distance-d coloring of a graph is a crucial
task for the development of these approaches and is therefore discussed in detail
in a preliminary section. Some of the methods we introduce are already used
heuristically for certain applications by assuming a decay in the corresponding
matrix. In these cases we supply a more extensive theoretical analysis by using
decay bounds of matrix functions as developed in Chapter 3.

In the following sections we often need to compute the quantities vTf(A)v and
f(A)v for several vectors v. To this purpose we can use the Lanczos or Arnoldi
approximation introduced in Section 2.1.2. We want to emphasize that the con-
ditions under which we can guarantee a rapid decay in f(A) are essentially the
same as those for a fast convergence of the Lanczos/Arnoldi approximations for
vTf(A)v and f(A)v. This will be discussed in detail in Section 4.3. Hence, we
can assume that an accurate approximation can be reached with a small number
of iterates, i.e., we have m� n in Algorithm 2.1 and Algorithm 2.2, respectively.

81
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Since the Arnoldi process requires O(m2n) operations for a sparse matrix A and
since we assume that an accurate approximation can be reached for m � n we
consider that the quantities vTf(A)v and f(A)v can be computed with a cost of
O(n). We want to clarify that most of the error results in the following sections
are formulated for the exact quantities vTf(A)v and f(A)v. It is straight forward
to formulate results which consider additional errors caused by the computations
of vTf(A)v and f(A)v via the Lanczos or Arnoldi process. For this we refer to
the remarks given in Section 2.1.2, especially for the Lanczos approximation of
vTf(A)v. A formulation of an error bound which considers the error caused by
the computation of vTf(A)v is exemplarily given in Section 4.4.2.

In order to check the quality of the proposed methods, we mainly consider problems
of moderate size. For a comparison, we compute the “exact” quantities of interest
via built-in MATLAB functions associated with matrix functions, such as the
functions inv or sqrtm for the computation of the inverse or the square root of
matrices, respectively. In Section 4.4.2 we then exemplarily consider problems of
large size where we cannot compute the exact quantities via built-in MATLAB
functions and the quality of the approximations can only be checked with the
proposed error bounds.

4.1 Preliminaries: The computation of a distance-d
coloring

The coloring of graphs is an extensive field in graph theory. Starting with the
familiar Four Color Problem (see, e.g., [106]), first mentioned in 1852, the number
of further coloring problems for graphs massively increased over the recent years.
The distance-d coloring of a graph is a crucial tool for the development of the
methods and results described in the following sections. Therefore, we will discuss
some aspects and methods related to this special coloring problem. A distance-d
coloring of a graph is defined as follows.

Definition 4.1. For a graph G = (V,E), a distance-d coloring is a mapping
col : V → {1, . . . , k} such that col(i) 6= col(j) if d(i, j) ≤ d. A distance-d
coloring is optimal if the number k of colors is minimal among all distance-d
colorings of G.

Even for d = 1 the problem of finding an optimal coloring is NP-hard for general
graphs [63]. The number of colors in an optimal coloring is called the chromatic
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number. Besides the problem of determining an optimal distance-d coloring, the
distance-d coloring problem also includes the determination of the chromatic
number or deciding whether a graph is distance-d colorable with k colors [92].
There are numerous results on upper and lower bounds for the chromatic number
of general and specific graphs, see, e.g., [61, 68, 69, 104].

In the following, we are interested in a low-cost method for computing a distance-d
coloring of a graph for a given distance d. Ideally, the computation should not
exceed a work of O(|V |+ |E|). Of course, with this restriction we can not expect
an optimal coloring. Instead, our goal is to produce a coloring with a sufficiently
small number of colors. Low-cost methods for the coloring of a graph are well
studied for the case d = 1. In the literature, a distance-1 coloring is called the
classical (vertex-)coloring of G. Some heuristics for a classical coloring of a graph
can be found in [63, Chapter 1] for undirected graphs. In the following we will
discuss some heuristics for general distance-d colorings of undirected graphs. For
directed graphs G, these heuristics can be applied to the corresponding undirected
graph |G|. Since the two conditions d(i, j) > d and d(j, i) > d need to be
fulfilled for col(i) = col(j) in a distance-d coloring of a directed graph G and since
d̄(v, w) ≤ min{d(v, w), d(w, v)} (see Section 2.2), we obtain a distance-d coloring
for G if we have a distance-d coloring for the graph |G|.
An efficient way for computing a coloring of a graph is based on a greedy strategy.
For a sequence of nodes K = (w1, . . . , wn), Algorithm 4.1 produces a distance-1
coloring for an undirected graph G. Depending on how one orders the nodes
in the sequence K one obtains an abundance of distance-1 coloring algorithms,
like the random sequential (RS), the larges first (LF), or the smallest last (SL)
method which all have a cost of O(|V | + |E|) [63, Chapter 1]. It is possible to
extend Algorithm 4.1 to a greedy algorithm for general distance-d colorings, given
in Algorithm 4.2.

Algorithm 4.1: Greedy algorithm for a distance-1 coloring.
Input: Graph G = (V,E) and sequence of nodes K.
Output: Distance-1 coloring col.
for i = 1 : n do1

col(wi) = 02

end3

for i = 1 : n do4

col(wi) = min{k > 0 : k 6= col(w) if {wi, w} ∈ E}5

end6

The most crucial point in Algorithm 4.2 is the computation of the sets Wi, which
are the sets of nodes with illegal colors for wi, i.e., all nodes with distance of at
most d. An easy way to define those sets is given by the relation between the
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4 Exploiting the decay in matrix functions

Algorithm 4.2: Greedy algorithm for a distance-d coloring.
Input: Graph G = (V,E), sequence of nodes K and distance d.
Output: Distance-d coloring col.
for i = 1 : n do1

col(wi) = 02

end3

for i = 1 : n do4

Wi := {w ∈ V : w 6= wi and d(wi, w) ≤ d}5

col(wi) = min{k > 0 : k 6= col(w) for all w ∈ Wi}6

end7

distances of the nodes in G and powers of the adjacency matrix A(G) as discussed
in Section 2.2. Since in the graph of A(G)d the nodes i and j are adjacent if and
only if d(i, j) ≤ d, the sets Wi can by defined by

Wi = {w ∈ V : w 6= wi and [A(G)d]w,wi 6= 0}
= {w ∈ V : w 6= wi and {w, vi} ∈ Ed},

where Ed is the set of edges in the graph of the matrix A(G)d. The computa-
tion of the matrix A(G)d requires at most 2blog2 dc matrix-matrix products [53,
Section 4.1]. If A(G) is large and sparse, fast and efficient sparse matrix-matrix
multiplications are, e.g., discussed in [22, 73, 77].

Alternatively, we can solely work with the graph G and obtain the following result.

Proposition 4.2. Let G be a graph with maximal degree ∆(G). Then Algorithm
4.2 computes a distance-d coloring with at most ∆(G)d + 1 colors and can be
implemented with cost O(∆(G)dn).

Proof. First note that for a node wi, i ∈ {1, . . . , n} we have

|Wi| ≤ ∆(G) + ∆(G) (∆(G)− 1) + · · ·+ ∆(G) (∆(G)− 1)d−1

= ∆(G)
d−1∑
k=0

(∆(G)− 1)k ≤ ∆(G)
d−1∑
k=0

(
d− 1

k

)
(∆(G)− 1)k

= ∆(G)d,

i.e., there are at most ∆(G)d nodes with distance at most d. Thus, there must be
at least one available color for wi in {1, . . . ,∆(G)d + 1} and therefore Algorithm
4.2 assigns a color col(wi) with col(wi) ≤ ∆(G)d + 1. Since this holds for all nodes
wi, Algorithm 4.2 computes a distance-d coloring with at most ∆(G)d + 1 colors.

The set Wi with |Wi| ≤ ∆(G)d can be computed with a work of at most O(∆(G)d)
by following all paths from wi with length at most d. In addition, the minimal
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4.1 Preliminaries: The computation of a distance-d coloring

1 2 3 4 5 6 7

Figure 4.1: Graph with a full 2-banded
adjacency matrix.

1 2 3 1 2 3 1

Figure 4.2: Optimal distance-1 coloring
of the graph of Figure 4.1.

available color for wi can be found in O(∆(G)d + 1) since we know that |Wi| ≤
∆(G)d and col(wi) ∈ {1, . . . ,∆(G)d + 1}. Overall this gives a cost of O(∆(G)dn).

In general, if A(G) is large and sparse, the maximal degree ∆(G) is small and
independent of the problem size n. Thus, solely working with the graph with cost
O(∆(G)dn) might be cheaper than computing the matrix A(G)d if A(G) is large
and sparse.

We now discuss special classes of graphs where a distance-d coloring can be given
explicitly, i.e., a distance-d coloring can be obtained in O(n) work.

Let G be a graph with full, β-banded adjacency matrix, i.e., [A(G)]i,j = 0 for
|i−j| > β and [A(G)]i,j 6= 0 for |i−j| ≤ β. Such a graph is illustrated in Figure 4.1
with n = 7 and β = 2. Then it is easy to see that an optimal distance-1 coloring
is given by c : {1, . . . , n} → {1, . . . , β + 1} with

col(i) = (i− 1) mod (β + 1) + 1, i = 1, . . . , n,

and the β + 1 color classes are given by

col−1(j) =

{
i : i = j + k(β + 1), k = 0, . . . ,

⌊
n− j
β + 1

⌋}
, j = 1, . . . , β + 1.

Such an optimal coloring is shown in Figure 4.2, again for a 2-banded matrix. Now
we know that A(G)d is a full, dβ-banded matrix, and since a distance-d coloring of
G is equivalent to a distance-1 coloring of the graph of A(G)d, an optimal distance-
d coloring for G is accordingly given by col : {1, . . . , n} → {1, . . . , dβ + 1} with

c(i) = (i− 1) mod (dβ + 1) + 1, i = 1, . . . , n

and

col−1(j) =

{
i : i = j + k(dβ + 1), k = 0, . . . ,

⌊
n− j
dβ + 1

⌋}
, j = 1, . . . , dβ + 1.

Of course, such a coloring might not be optimal for graphs with banded adjacency
matrices with zero entries within the bandwidth. However, we can use this
approach as a heuristic for a distance-d coloring of graphs with banded adjacency
matrices. If the matrix is just sparse and not necessarily banded (we only call
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4 Exploiting the decay in matrix functions

a matrix banded, if β � n), one could first determine a sequence of nodes K =
(w1, . . . , wn) such that the bandwidth of the corresponding permuted adjacency
matrix is reduced and preferably small. The problem of finding such a permutation
is an important topic in the context of direct solvers for systems of linear equations,
and lots of low-cost methods have been proposed over the last years; see, e.g.,
[19, 21, 42, 66, 80, 94]. The probably most familiar and fundamental heuristic for
determining such a permutation is the algorithm of Cuthill and McKee proposed
in [21] with cost O(|V | + |E|). An overview and comparison of various recent
low-cost heuristics is given in [50]. Hence, if the adjacency matrix is banded
with low bandwidth or if the nodes can be permuted such that the corresponding
permuted adjacency matrix has a low bandwidth, then Algorithm 4.3 should
provide a satisfactory distance-d coloring of the graph. The cost of Algorithm 4.3
is dominated by the computation of the sequence of nodes K = (w1, . . . , wn).

Algorithm 4.3: Distance-d coloring algorithm.
Input: Graph G = (V,E) and distance d.
Output: Distance-d coloring col.
Compute a sequence of nodes K = (w1, . . . , wn) such that the1

corresponding permuted adjacency matrix has a small bandwidth β
for i = 1 : n do2

col(wi) = (i− 1) mod (dβ + 1) + 13

end4

Now assume that the graphG = (V,E) is a regularD-dimensional lattice forD > 1.
For D = 1 we obtain a tridiagonal adjacency matrix, so we have a special case
of the banded case discussed above and an optimal distance-d coloring is known
anyway, requiring d+ 1 colors. First, we notice that the greedy coloring algorithm
can be specified for those graphs. If G is a regular D-dimensional lattice, then
every node w can be naturally defined by coordinates w = (w[1], . . . , w[D]) ∈ ZD
such that d(v, w) = ‖v − w‖1 = |v[1] − w[1]| + · · · + |v[D] − w[D]| for w, v ∈ V .
An example for such a numbering of the nodes is shown in Figure 4.3 for a two-
dimensional 7× 7 lattice with 0 ≤ w[1], w[2] ≤ 6. Hence, the sets Wi in Algorithm
4.2 can be defined by

Wi = {w ∈ V : w 6= wi and ‖w − wi‖1 ≤ d},

i.e., the sets Wi are all those nodes in V which lie in a ball around wi with radius
d with respect to the ‖ ·‖1-norm. In addition, the maximal number of nodes which
have to be examined to compute a set Wi can be specified.

Let us define LD(d) := |{z ∈ ZD : ‖z‖1 ≤ d}|. If wi is a central node in the lattice,

i.e., if d ≤ w
[k]
i ≤ n − d for k = 1, . . . , D, then |Wi| = LD(d) − 1. Otherwise
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4.1 Preliminaries: The computation of a distance-d coloring

LD(d)− 1 represents an upper bound for |Wi|. It is known that

LD(d) =
D∑
k=0

(
D

k

)(
d+D − k

D

)
where we set

(
n
k

)
= 0 if n < k [5, Theorem 2.7]. In addition, LD also provides

a lower bound for the number of colors needed for a distance-d coloring. Since
the distances between all points z ∈ ZD in a disk with radius bd/2c is lower
than or equal to d (distance and radius has to be understood with respect to the
‖ · ‖1-norm), a lower bound for the chromatic number of a distance-d coloring of
a D-dimensional lattice is given by LD(bd/2c).
Instead of using the greedy approach, it is also possible to give an explicit distance-
d coloring for regularD-dimensional lattices. ForD = 2 even an optimal distance-d
coloring is explicitly known.

Theorem 4.3. Let G = (V,E) be a 2-dimensional N1 ×N2 lattice. Let any node
w ∈ V be defined by its coordinates w = (w[1], w[2]), with 0 ≤ w[1] ≤ N1 − 1 and
0 ≤ w[2] ≤ N2 − 1. Then an optimal distance-d coloring with

⌈
1
2
(d+ 1)2

⌉
colors

is given by

col(w) =

{
(w[1] + (d+ 1)w[2]) mod (2m2 + 2m+ 1) if d even,

(w[1] + dw[2]) mod (2m2 + 4m+ 2) if d odd,
(4.1)

with m =
⌈
d
2

⌉
.

Proof. See the proof of Theorem 6 in [33].

For general D-dimensional lattices, an explicit hierarchical distance-d coloring
was recursively computed in [95] for distances d = 2i, i = 0, 1, . . ., producing
2Di+1 = 2dD colors. Such a distance-2i coloring is obtained by coloring sublattices
generated by a distance-2i−1 coloring of the lattice, starting with a classical Red-
Black ordering of the nodes which represents the coloring for i = 0. An apparent
drawback of this coloring is that for distances d = 2i−1 +1, . . . , 2i−1 we necessarily
need to compute a distance-2i coloring which can result in more colors than
necessary. For the applications in [95] it is actually useful to have such a nested
coloring of the grid (which will be discussed in detail in Section 4.4), but for our
purpose we are only interested in a distance-d coloring with a preferably small
number of colors for arbitrary distances d. So alternatively we give the following
explicit coloring for D-dimensional lattices:

Theorem 4.4. Let G = (V,E) be a D-dimensional N1 × N2 · · · × ND lattice.
Let any node w ∈ V be defined by its coordinates w = (w[1], . . . , w[D]), with
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0,0 0,1 0,2 0,3 0,4 0,5 0,6

1,0 1,1 1,2 1,3 1,4 1,5 1,6

2,0 2,1 2,2 2,3 2,4 2,5 2,6

3,0 3,1 3,2 3,3 3,4 3,5 3,6

4,0 4,1 4,2 4,3 4,4 4,5 4,6

5,0 5,1 5,2 5,3 5,4 5,5 5,6

6,0 6,1 6,2 6,3 6,4 6,5 6,6

Figure 4.3: Two-dimesional 7 × 7 lat-
tice, where each node is defined by two
coordinates 0 ≤ w1, w2 ≤ 6.

1 4 7 1 4 7 1

2 5 8 2 5 8 2

3 6 9 3 6 9 3

1 4 7 1 4 7 1

2 5 8 2 5 8 2

3 6 9 3 6 9 3

1 4 7 1 4 7 1

Figure 4.4: Distance-2 coloring pro-
duced by (4.2).

0 ≤ w[i] ≤ Ni − 1, i ∈ 1, . . . , D. Then a distance-d coloring with (d + 1)D colors
is given by

col(w) =

(
D−1∑
k=0

w̃[k](d+ 1)k

)
+ 1 (4.2)

where

w̃[k] = w[k] mod (d+ 1). (4.3)

Proof. Since for every node w = (w[1], . . . , w[D]) we have w̃[k] ∈ {0, . . . , d} for
k = 1, . . . , D, we know that (4.2) produces at most (d+ 1)D colors. Now assume
col(w) = col(v) for nodes w 6= v. We want to show that d(v, w) = ‖v − w‖1 > d.

Because of (4.3), we have w[k] = (d+ 1)a+ w̃[k] and v[k] = (d+ 1)b+ ṽ[k] for some

integers a, b ≥ 0 and since col(w) = col(v) we have w̃[k] = ṽ[k] for all k = 1, . . . , D.

Since w 6= v there exists at least one k such that w[k] = (d + 1)a + w̃[k] 6=
(d+ 1)b+ ṽ[k] = v[k] which is equivalent to a 6= b for d ≥ 0. By fixing such a k we
obtain

d(w, v) = ‖w − v‖1 ≥ |w[k] − v[k]| = (d+ 1)|a− b| ≥ d+ 1.

For D = 2 the coloring of Theorem 4.4 needs twice as many colors as the optimal
coloring. However, the coloring can be used for general D-dimensional lattices
where we did not find an optimal coloring in the literature for D ≥ 3. In addition,
the special structure of the coloring (4.2) will be useful at a later point since it
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d optimal greedy hierar. (4.2)

1 2 2 2 4
2 5 7 8 9
3 8 8 32 16
4 13 19 32 25
5 18 23 128 36
6 25 33 128 49
7 32 36 128 64
8 41 52 128 81

d greedy hierar. (4.2)

1 2 2 8
2 12 16 27
3 20 128 64
4 42 128 125
5 60 1024 216
6 102 1024 343
7 133 1024 523
8 202 1024 729

Table 4.1: Number of colors for the various distance-d colorings of D-dimensional lattices
with D = 2 (left) and D = 3 (right).

has two important characteristics. First of all, the construction is based on the
fact that we color the nodes in the cube defined by all nodes w with 0 ≤ w[k] ≤ d
for all k = 1, . . . , D with (d + 1)D colors as illustrated in Figure 4.4 (red, solid
square). This coloring is then repeated by shifting the initial cube through the
entire grid (red, dashed squares). Secondly, with this coloring every color class
represents a coarse grid, where the distances between the nodes in one color class
are multiples of the distance d + 1. This is exemplarily illustrated in Figure 4.4
where the green nodes represent one color class, defining the coarse grid. Thus,
based on the structure of this special coloring, we have a more detailed information
about the distances of the nodes within one color class which will be helpful for
an error analysis in one of the following sections.

We will now briefly compare the number of colors obtained by the greedy approach
and the explicit colorings of Theorem 4.4 and the hierarchical coloring from [95],
where we consider D = 2, 3 and different values of d. Of course, the number of
colors for the hierarchical coloring and for the coloring (4.2) is independent of the
lattice sizes N1, . . . , ND. For the greedy approach we used a lexicographic ordering
of the nodes. For large lattices, the number of colors only slightly changes if we
vary the lattice sizes. This can be explained by the fact that the greedy approach
assigns colors by only using local information of the graph. Hence, we can assume
that the number of color obtained by the greedy approach is also independent of
the lattice sizes if d� Nk for k = 1, . . . , D.

Table 4.1 shows the number of colors obtained by the different approaches. For
D = 2 the chromatic number is explicitly known such that the other approaches
(which can be used for general D) can be compared to an optimal coloring in
this case. We see that the greedy approach produces a surprisingly good coloring
where the number of colors only slightly differs from the chromatic number. The
coloring (4.2) produces twice as many colors than necessary, but it performs much
better compared to the hierarchical coloring from [95], due to the fact that with the
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4 Exploiting the decay in matrix functions

hierarchical coloring only distance-2i colorings can be produced. This is even more
conspicuous for three dimensional lattices. Although the coloring (4.2) produces
around three times as many colors as the greedy approach, we again want to
emphasize, that the coloring (4.2) can be produced with a cost of O(n) (and in
parallel), and that the special structure of the coloring is useful at a later point.

4.2 Sparse approximations of functions of matrices

The decay in functions of matrices establishes the possibility for computing f(A)
or, more precisely, a sparse approximation of f(A). In Chapter 3 we provided
an exponential decay property of matrix functions for a large class of functions f
and matrices A. As a motivation for the existence of a sparse approximation for
exponentially decaying matrices, we have the following essential result from [9].

Theorem 4.5. Let {An} be a sequence of n× n matrices having an exponential
decay with respect to a sequence of graphs {Gn} with bounded maximal degree
∆(Gn) ≤ c for all n. Then for every ε > 0, An contains at most O(n) entries
greater than ε in magnitude.

In addition, for matrices with exponential off-diagonal decay, we already know
from Theorem 3.3 that there exists a banded approximation of such matrices with
O(n) entries such that the error in the ‖ · ‖1-norm does not depend on the matrix
dimension. We now want to find a generalization of Theorem 3.3 for matrices
with general exponential (not necessarily off-diagonal) decay. For this we define
the level sets of a node j ∈ {1, . . . , n} in a graph as

L(k)
n (j) := {i : 1 ≤ i ≤ n, d(i, j) = k}, k = 0, . . . , n− 1,

L(∞)
n (j) := {i : 1 ≤ i ≤ n, d(i, j) =∞}.

Note that for any node j we have

{1, . . . , n} = ∪n−1
k=0L

(k)
n (j) ∪ L(∞)

n (j),

since every node i has either a distance smaller than n − 1 from j or cannot be
reached from j in which case i ∈ L(∞)

n (j). With these notation we can give the
following generalization of Theorem 3.3.

Theorem 4.6. Let {An} be a sequence of n× n matrices with exponential decay
property

|[An]ij| ≤ Cqd(i,j), q < 1

with respect to a sequence of graphs {Gn} with polynomial bounded level sets, i.e.,
for each node j ∈ {1, . . . , n} we have

|L(k)
n (j)| ≤ K kα

90



4.2 Sparse approximations of functions of matrices

for K > 0 and α > 0. For m > 0 define the matrix A
[m]
n via

[A[m]
n ]ij =

{
[An]ij if d(i, j) ≤ m

0 otherwise
. (4.4)

Then for ε > 0 there exists an m̃ independent of n such that ‖An −A[m]
n ‖1 < ε for

all m ≥ m̃.

Proof. Let m1 := m1(q, α) be such that kαq
k
2 < 1 holds for k > m1. Then for

m > m1 we obtain

‖An − A[m]
n ‖1 =

n
max
j=1

n∑
i=1

∣∣[Am]ij − [A[m]
n ]ij

∣∣ =
n

max
j=1

∑
i: d(i,j)>m

∣∣[A[m]
n ]ij

∣∣
≤ n

max
j=1

∑
i: d(i,j)>m

Cqd(i,j) ≤ n
max
j=1

C
n−1∑

k=m+1

|L(k)
n (j)|qk

≤ CK
n−1∑

k=m+1

kαqk ≤ CK
∞∑

k=m+1

kαq
k
2 q

k
2

≤ CK
∞∑

k=m+1

q
k
2 ≤ CK

q
m+1

2

1−√q .

Let m2 := m2(q, ε) be such that

CK
q
m+1

2

1−√q < ε

holds for m > m2. Then the assertion holds for m̃ = max{m1,m2}.

Clearly, for α = 0 we just obtain the statement of Theorem 3.3 and now we have
a similar results for more general important cases, e.g., when the graphs {Gn} are
regular D-dimensional lattices, where α = D−1 (see Lemma 4.33 in Section 4.4.2).

Note that the condition on the sequence of graphs Gn of Theorem 4.5, i.e., a
bounded maximal degree, is not sufficient to formulate an analogous result. This
was done in [9] but the following example disproves this assertion.

Example 4.7. Let 0 < q < 1, let t ∈ N be such that tq > 1 holds, and let Gn be
the full t-ary tree with height p, which gives n = 1 + t+ · · · tp = (tp+1− 1)/(t− 1).
Then the maximal degree of the graphs Gn can be bounded by ∆(Gn) ≤ t. Let j

be the root of this tree so that the level set L
(k)
n (j) is formed exactly by all nodes

at depth k in the tree, implying

|L(k)
n (j)| = tk, k = 0, . . . , p, L(∞)

n (j) = ∅.
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4 Exploiting the decay in matrix functions

Let An be the matrix with [An]ij = qd(i,j). Then An has exponential decay with
respect to Gn, and for all m we have

‖An − A[m]
n ‖1 ≥

∑
i∈Dmn (j)

|[A[m]
n ]ij|

=

p∑
k=m+1

|L(k)
n (j)|qk

=

p∑
k=m+1

tkqk

≥ (p−m)(tq)m+1,

where the last inequality holds because of tq > 1. Thus, the first m for which
‖An − A[m]

n ‖1 < 1 holds is m = p = Ω(log n), in which case we have A
[m]
n = An. �

Obviously, the problem with this example is the exponential growth of the level
sets while “only” having an exponential decay in An. For graphs {Gn} with
exponentially growing level sets, one needs to make sure that tq < 1 holds, where
L

(k)
n (j) ≤ K tk for all nodes j = 1, . . . , n, and then the result holds in this case as

well.

Summarizing, for a large class of functions f and matrices A, we motivated the
existence of an approximation of a decaying matrix functions f(A) with O(n)
entries and with an error which is independent of the matrix size. We discuss
efficient low-cost methods for the computation of such sparse approximations in
the next section.

4.2.1 Computing a sparse approximation

So far we only established the existence of a sparse approximation of exponentially
decaying matrix functions but it is not immediately clear how to compute those
approximations. A naive idea is to use decay bounds as given in Chapter 3 to
determine all entries [f(A)]ij which are larger than a given threshold ε (which
are at most O(n), based on Theorem 4.5) and then compute only these entries
via the Lanczos or Arnoldi process introduced in Section 2.1.2. However, the
approximation of O(n) bilinear forms leads to a complexity of at least O(n2).
Hence, for computing an approximation in linear cost, decay bounds for matrix
functions must be exploited in a different way. In this section we will discuss two
approaches for the computation of a sparse approximation. The first is based on
a polynomial series expansion of the function f . The chosen polynomial series
is motivated by the decay property in f(A). The second approach requires a
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distance-d coloring of G(A), the graph of A, as discussed in Section 4.1 where a
suitable distance d can be chosen with respect to decay bounds for f(A).

Let f be a function which can be expressed as a polynomial series expansion

f(z) =
∞∑
k=0

ckpk(z) for z ∈ E, (4.5)

where pk(z) are polynomials of degree k. If A is a normal matrix with σ(A) ⊂ E
then

f(A) =
∞∑
k=0

ckpk(A).

Hence an approximation of f(A) is naturally given by the truncated series

m∑
k=0

ckpk(A), (4.6)

which is a polynomial in A of degree at most m, since the polynomials pk, k =
1, . . . ,m are polynomials of degree k. Thus, the number m should be rather small
and independent of n in order to guarantee the sparsity of this approximation.
Depending on the properties of the function f on the set E, there could be several
series expansions of the form (4.5), e.g., the Taylor series for infinitely differentiable
functions at a ∈ C with E = {z ∈ C : |z − a| < R} and pk(z) = (z − a)k.
In the following we are interested in a polynomial series expansion of f such
that f(A) is well approximated by (4.6) for a small number m (, i.e., such that
(4.6) converges rapidly to f(A) for increasing m) with easy computable matrices
pk(A), k = 1, . . . ,m. We naturally have a fast convergence of the approximation
(4.6) for fast decaying coefficients ck. Hence, we are looking for an expansion
such that the corresponding coefficients ck rapidly become small in magnitude for
increasing k. In the following we concentrate on normal matrices with spectrum
on a line segment.

In Section 2.3.1 we introduced Chebyshev polynomials and the Chebyshev series
expansion for functions f that are continuous on a line segment. If the spectrum
of A lies on a line segment [λ1, λ2], then f(A) can be approximated by

f(A) ≈ Pm(A) :=
m∑
k=0

ckTk(t(A)) (4.7)

with

ck =
2

π

∫ 1

−1

f ◦ t−1(x)Tk(x)√
1− x2

dx, k ≥ 1, (4.8)
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4 Exploiting the decay in matrix functions

where t is the affine linear transformation which maps the line segment [λ1, λ2]
to the interval [−1, 1]. Based on the three-term recurrence relation (2.12) we
accordingly have

Tk+1(A) = 2ATk(A)− Tk−1(A), k = 1, 2, . . . (4.9)

with T0(A) = I and T1(A) = A. Hence, m−1 matrix-matrix products are required
to compute the approximation Pm(A). We will now investigate the coefficients ck
in order to see if the truncated Chebyshev series is a good choice for approximating
a decaying matrix function f(A):

Let us define

p∗m(z) := argmin
pm∈Pm

max
z∈[λ1,λ2]

|f(z)− pm(z)|.

Then p∗m ◦ t−1 is a polynomial of degree at most m since t (and therefore t−1) is
of the form t(z) = az + b, a, b ∈ C. Because of the orthogonality of Chebyshev
polynomials with respect to the weight function (1− z2)−1/2 we obtain for k ≥ 1

|ck| =
∣∣∣∣ 2π
∫ 1

−1

(
f ◦ t−1(x)− p∗k−1 ◦ t−1(x)

) Tk(x)√
1− x2

dx

∣∣∣∣
≤ 2

π

∫ 1

−1

|Tk(x)|√
1− x2

dx max
x∈[−1,1]

|f ◦ t−1(x)− p∗k−1 ◦ t−1(x)|

=
4

π
max

z∈[λ1,λ2]
|f(x)− p∗k−1(x)| = 4

π
Ek−1(f, [λ1, λ2]), (4.10)

using ∫ 1

−1

|Tk(x)|√
1− x2

dx = 2.

This means that the magnitude of the coefficients can be bounded by the error
of the best polynomial approximation on a line segment [λ1, λ2] which is also an
upper bound for the entries of f(A), as presented in Section 3.1. Hence, a fast
decay in f(A) indicates a fast convergence of Pm(A) to f(A). Note that actually
the Chebyshev series expression of f can be viewed as an explanation for a decay
in f(A). If there exists a good polynomial approximation of f on a set containing
the spectrum of A, then the coefficients ck decay fast for increasing k, resulting in
a fast decay in f(A) based on the spreading sparsity pattern of the powers of A.

The fast convergence of the Chebyshev series is frequently used in numerical
computations associated with functions on real intervals. The Chebfun software
package in Matlab exploits lots of useful properties of Chebyshev polynomials
for tools working with functions on intervals [99]. For example, it provides a
polynomial approximation based on the truncated Chebyshev series and based on
polynomial interpolation with Chebyshev nodes [99, Chapter 4].
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4.2 Sparse approximations of functions of matrices

The coefficients ck of the Chebyshev series can be computed numerically by

ck ≈
2

M

M∑
j=1

f ◦ t−1(cos(tj)) cos(ktj), k ≥ 1, (4.11)

where tj = π(j− 1
2
)/M and M is the number of quadrature points. The coefficient

c0 can be approximated accordingly to the coefficients ck with the factor 1/M
instead of 2/M . This is also implemented in the Chebfun toolbox for the real
case.

It was already suggested in [11] to approximate a decaying matrix f(A) in O(n)
complexity by a truncated Chebyshev series. The complexity of O(n) was estab-
lished by the fact that the number m is chosen with respect to decay bounds
for f(A) which are independent of the problem size n. In addition, it was rec-
ommended to increase the accuracy of the approximation while keeping the cost
linear by using a dropping strategy, where for k > m all entries in Tk(t(A)) outside
the sparsity pattern of Tm(t(A)) are dropped and the resulting matrices are used
for computing the consecutive matrices via relation (4.9). This strategy is only
reasonable if the matrices Tk(t(A)) exhibit a decay which is comparable to that
of f(A) since only in this case the dropped matrices are related to the matrices
Tk(t(A)), k > m. Numerical examples showed that this is actually not the case
and that dropping is not necessary (and even rather detrimental) for fast decay-
ing coefficients. In addition, when using this dropping strategy it seems to be
impossible to give a practical error bound for the resulting approximation. In
contrast, using the approximation Pm(A) without dropping, we easily obtain the
error bound

‖f(A)− Pm(A)‖2 ≤
∞∑

k=m+1

|ck| (4.12)

which immediately follows from ‖Tk(t(A))‖2 ≤ 1 for normal matrices A and which
was also given in [11]. This bound can be refined for functions analytic inside an
ellipse E(ρ, λ1, λ2) with focal points λ1 and λ2 and semi-axis 1

4
|λ1 − λ2|(ρ− ρ−1)

and 1
4
|λ1− λ2|(ρ+ ρ−1). Note that there are already results from Bernstein which

deal with the error of the truncated Chebyshev series. In [67, Theorem 68] the
error maxz∈E(ρ,−1,1) |f(z)−Pm(z)| was bounded in order to obtain an error bound
for the best polynomial approximation. This bound was already used for the decay
bounds of Theorem 3.4 from [10]. As already discussed in Section 3.1, this results
can only be generalized for λ1, λ2 ∈ R, so for general line segments [λ1, λ2] we
need another approach which is based on the error of the truncated Faber series.

Proposition 4.8. Let A be normal with spectrum contained in [λ1, λ2] and let f
be analytic in the interior of an ellipse E(ρ, λ1, λ2) and continuous on E(ρ, λ1, λ2)
for ρ > 1. Let Pm(A) be the truncated Chebyshev series (4.7). Then it holds

‖f(A)− Pm(A)‖2 ≤ C

(
1

ρ

)m
,
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4 Exploiting the decay in matrix functions

with

C =
4

π(ρ− 1)

2M(ρ)

1− ρ−1
and M(ρ) = max

z∈E(ρ,λ1,λ2)
|f(z)|.

Proof. Based on (4.10) we will first find a bound for the error of the best polynomial
approximation of f on [λ1, λ2] of degree at most k − 1. Since f is analytic inside
of the ellipse E(ρ, λ1, λ2) it can be expressed as a Faber series

∞∑
`=1

a`Φ`(z) for z ∈ E(ρ, λ1, λ2),

where the coefficients a` and Faber polynomials Φ` are defined in Section 2.3.2.
Let

pk−1(z) :=
k−1∑
`=1

a`Φ`(z)

be the truncated Faber series which is a polynomial of degree at most k− 1. Then

Ek−1(f, [λ1, λ2]) ≤ max
z∈[λ1,λ2]

|f(z)− pk−1(z)| ≤ max
z∈E(ρ,λ1,λ2)

|f(z)− pk−1(z)|.

Based on well known error results for the truncated Faber series (see, e.g., [27] or
[6] and the references therein) we obtain

max
z∈E(ρ,λ1,λ2)

|f(z)− pk−1(z)| ≤ C̃

(
1

ρ

)k
where

C̃ =
2M(ρ)

1− ρ−1
.

Using (4.12) we obtain

‖f(A)− Pm(A)‖2 ≤
∞∑

k=m+1

4

π
C̃

(
1

ρ

)k
=

4

π

1

ρ− 1
C̃

(
1

ρ

)m
.

Note that the truncated Faber series was also used for obtaining the decay bound
of Corollary 3.7 in Chapter 3 with the decay rate ρ−1. We showed in Section 3.2
that it is possible to obtain a better decay rate for the inverse. Accordingly we
can give the following bound for the inverse with faster convergence rate than the
one from Proposition 4.8 for general analytic functions.
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4.2 Sparse approximations of functions of matrices

Proposition 4.9. Let A be a normal matrix with spectrum in the line segment
[λ1, λ2] excluding the origin. Define x := λ1+λ2

λ2−λ1 . Let Pm(A) be the truncated

Chebyshev series (4.7) with f(z) = z−1. Then it holds

‖A−1 − Pm(A)‖2 ≤ C

(
1

q

)m
,

with

C =
4

π(q − 1)

2

1− q−2
max

z∈[λ1,λ2]
|z−1| and q = eRe(z) > 1,

where z is the solution of

x = cosh(z) with Re(z) ≥ 0.

Proof. Using normalized Chebyshev polynomials and the arguments for the proofs
of Proposition 3.13 and Theorem 3.18 of Section 3.2.2 we obtain for f(z) = z−1

Ek−1(f, [λ1, λ2]) ≤ C̃

(
1

q

)k
with

C̃ =
2

1− q−1
max

z∈[λ1,λ2]
|z−1|.

Thus

‖f(A)− Pm(A)‖2 ≤
∞∑

k=m+1

4

π
C̃

(
1

q

)k
=

4

π

1

q − 1
C̃

(
1

q

)m
.

With those (a priori) error bounds, we know that a prescribed accuracy ε of the
approximation can be reached at the latest for m = blog 1

q
C/εc. The other way

round, if the maximal possible m is restricted due to the computational cost and
storage, an upper bound for the accuracy of a computable approximation can be
provided. Note that the error bounds are independent of the dimension n and
that we can assume that Pm(A) is sparse, since m does not depend on n, either.

For general matrices, i.e., not necessarily normal matrices with spectrum on a line
segment, one could use a polynomial series expansion with respect to the Faber
polynomials introduced in Section 2.3.2. An error bound can easily be obtained
by using classical results for the error of the truncated Faber series which was
already used in the proof of Proposition 4.8. In general, Faber polynomials Φk

do not satisfy any recurrence relation such that it is not possible to formulate a
simple update formula for the polynomials Φk. This is a major drawback for the
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4 Exploiting the decay in matrix functions

computation of a sparse approximation via Faber polynomials and in [97] ways to
overcome this problem are discussed.

We again refer to the results in [22, 73, 77] for computing sparse matrix-matrix
products. However, even if the number of matrix-matrix products is rather small
for fast decaying matrices f(A), the computation of the polynomials Tk(A) might
be expensive for large matrices A. Thus, we now introduce an approach which
is based on a distance-d coloring of |G(A)|, where d is chosen with respect to
decay bounds for f(A), i.e., d is independent of n. We already discussed ways
for computing such a coloring in Section 4.1. We showed in Proposition 4.2 that
Algorithm 4.2 can be implemented with a work of O(∆(G)dn) for a graph G with
maximal degree ∆(G). If we assume that we have a sequence of matrices An such
that ∆(G(An)) ≤ c for all n, then the maximal degree of the graphs of An and the
distance d are both independent of n. Hence, a distance d coloring of G(An) can
be obtained with complexity O(∆(G(An))dn) = O(n). In addition, we introduced
important classes of graphs for which a distance-d coloring is explicitly known.
Thus, we now assume that a distance-d coloring of |G(A)| is cheaply available.

A method for computing a sparse approximation which uses a distance-d coloring is
based on the following idea: Even if we cannot compute f(A), we can approximate
f(A)v for a vector v via the Arnoldi/Lanczos process as introduced in Section 2.1.2.
So a naive idea is to compute the i-th column f(A)ei, drop small entries and use
the remaining entries for the i-th column of our sparse approximation. Similar
to the computation of O(n) entries eTi f(A)ej, this is not feasible since we have a
cost of at least O(n) for each computation of the form f(A)v. Since most of the
entries of the i-th column f(A)ei are dropped anyway, it would be advantageous to
choose a small number of vectors v1, . . . , vm where m� n, such that each vector
f(A)v` contains information about several columns of f(A) and such that f(A)
can be approximated by computing only m vectors f(A)v`. In the following we
discuss how to obtain suitable vectors v1, . . . , vm for a decaying matrix f(A).

Assume we have decay bounds for the matrix f(A) depending on the distance of
the nodes in the graph of A as described in Chapter 3. Then for a threshold ε we
can determine a distance d such that

|[f(A)]ij| ≤ ε for d(i, j) > d. (4.13)

Let G(A) = (V,E) be the graph corresponding to A, then we can partition the
set of nodes V into non-empty subsets V1, . . . , Vm, i.e.,

V = V1 ∪ . . . ∪ Vm and V` ∩ Vp = ∅ for `, p = 1, . . . ,m,

such that

d̄(i, j) > 2d if i 6= j and i, j ∈ V` for ` = 1, . . . ,m. (4.14)
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4.2 Sparse approximations of functions of matrices

Note that we consider such a partitioning of the nodes with respect to the undi-
rected distance d̄, and it can be realized by a distance-2d coloring of the undirected
graph |G(A)|. Let col : V → {1, . . . ,m} be the corresponding coloring, then

V` = {i ∈ V : col(i) = `} ` = 1, . . . ,m. (4.15)

For
v` :=

∑
i∈V`

ei, ` ∈ {1, . . . ,m},

we define the approximation f(A)[d] of f(A) with entries

[f(A)[d]]ij :=

{
[f(A)v`]i for j ∈ V` if d̄(i, j) ≤ d

0 if d̄(i, j) > d
. (4.16)

Since d(i, j) ≥ d̄(i, j) > d, we know that the dropped entries are smaller than
the threshold ε, and the error of the remaining entries can also be bounded by a
multiple of ε as shown in the following result.

Proposition 4.10. Let |[f(A)]ij| ≤ ε for d(i, j) > d and let f(A)[d] be the matrix
defined by (4.16). Then for every (i, j)-entry we have the error bound

|[f(A)]ij − [f(A)[d]]ij| ≤
{

(|V`| − 1)ε for j ∈ V` if d̄(i, j) ≤ d

ε if d̄(i, j) > d
.

Proof. The assertion is clear for d̄(i, j) > d. So consider an (i, j)-entry with
d̄(i, j) ≤ d. Then we have

[f(A)[d]]ij = [f(A)v`]i =
∑
k∈V`

f(A)ik,

for j ∈ V`. Thus,

[f(A)[d]]ij − [f(A)]ij =
∑
k∈V`
k 6=j

f(A)ik. (4.17)

Now assume that d̄(i, k) ≤ d holds for k ∈ V` with k 6= j. Then we obtain

d̄(j, k) ≤ d̄(i, k) + d̄(i, j) ≤ 2d (4.18)

which is a contradiction to j, k ∈ V`. Thus d(i, k) ≥ d̄(i, k) > d, and therefore we
have

|[f(A)]ij − [f(A)[d]]ij| ≤
∑
k∈V`
k 6=j

ε = (|V`| − 1)ε.
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4 Exploiting the decay in matrix functions

The relation (4.18) explains why we needed to use the undirected distance d̄, since
otherwise we cannot guarantee that |[f(A)]ik| ≤ ε holds with k ∈ V`, k 6= j for a
structurally non-symmetric matrix A.

Proposition 4.10 immediately leads to error bounds for ‖f(A)−f(A)[d]‖ for certain
matrix norms. For example, we easily obtain

‖f(A)− f(A)[d]‖2 ≤ ‖f(A)− f(A)[d]‖F ≤ n(s− 1)ε

or

‖f(A)− f(A)[d]‖1 ≤ n(s− 1)ε

for s = max` |V`|. In addition, for some types of graphs we explicitly know the
size of the color classes, hence we obtain a priori error bounds without applying a
coloring algorithm. Since in general already the size of the color classes depends
on the dimension n, we will always obtain error bounds which depend on the the
problem size if we use the result of Proposition 4.10 for error bounds. For matrices
with polynomially bounded level sets we can give an error result which does
not depend on the dimension n, similar to the theoretical result for exponential
decaying matrices of Theorem 4.6.

Theorem 4.11. Let f(A) ∈ Cn×n be a matrix with exponential decay away from
the sparsity pattern of A. Assume for G(A) that

|L(k)(j)| ≤ K kα

holds for all j = 1, . . . , n, where L(k)(j) = {i : 1 ≤ i ≤ n, d̄(i, j) = k}, i.e., there
is a polynomial bound for the size of the (undirected) level sets for each node in
G(A). Let f(A)[d] be the matrix defined by (4.16). Then for every ε > 0 there
exists d̃ independent of n such that

‖f(A)− f(A)[d]‖1 ≤ ε

holds for d ≥ d̃.

Proof. Since f(A) has an exponential decay property, there is a constant C and
a decay rate q < 1, both independent of n, such that we have

|[f(A)]ij| ≤ Cqd(i,j).
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Now, for every d > 0 we have

‖f(A)− f(A)[d]‖1 =
n

max
j=1

n∑
i=1

|[f(A)]ij − [f(A)[d]]ij|

=
n

max
j=1

 ∑
i

d̄(i,j)>d

|[f(A)]ij|+
∑
i

d̄(i,j)≤d

∑
k∈V`
k 6=j

|[f(A)]ik|


≤ n

max
j=1

(
n−1∑
i=d+1

|L(i)(j)|Cqi +
d∑
i=1

|L(i)(j)|
n−1∑
k=d+1

|L(k)(i)|Cqk
)

(4.19)

≤
∞∑

i=d+1

KiαCqi +
d∑
i=1

Kiα
∞∑

k=d+1

KkαCqk,

where we used (4.17) for the second equality and also again used the fact that we
have d(i, k) > d for k ∈ V`, k 6= j. As shown in the proof of Theorem 4.6 there
exists a d1 such that

∞∑
i=d+1

KiαCqi ≤ Ĉq
d+1
2

for d > d1 with Ĉ = CK
1−√q . Hence, we obtain

‖f(A)− f(A)[d]‖1 ≤
(

1 +
d∑
i=1

Kiα

)
Ĉq

d+1
2

for d > d1. Since
∑d

i=1 i
α < dα+1, we can find d2 such that(

1 +
d∑
i=1

Kiα

)
Ĉq

d+1
2 < ε (4.20)

for d ≥ d2. Then the assertion holds for d̃ = max{d1, d2}.

Again, this error result includes lots of important cases, e.g., when A is banded
or G(A) is a regular D-dimensional grid. In practice, one can either use an error
bound based on Proposition 4.10 or a bound which follows from (4.19) by using
more detailed information about the level sets of the graph. This is exemplarily
illustrated in the next section.

In this section we discussed two approaches. The Chebyshev approach is simple
and intuitive, and it was already considered in the literature. However, the
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4 Exploiting the decay in matrix functions

class of matrix functions for which we can use this approach is restricted and
the computation of several matrix-matrix computations might be a problem in
practice for large matrices A. The second approach is based on a distance-d
coloring of the graph of A. This approach can be applied to general matrices
and it does not require the computation of matrix-matrix products. On the other
hand we need to compute vectors of the form f(A)v for several vectors v and an
additional distance-d coloring of the graph of A. In the following section, several
numerical examples demonstrate the accuracy of the proposed approximations.

4.2.2 Numerical examples

For demonstrating the quality of the results in Section 4.2.1, we apply the discussed
approaches to two test matrices.

Our first test matrix is the Hermitian, positive definite matrix

Atridiag := tridiag(−1, 4,−1), (4.21)

where we know that σ(A) ⊂ [2, 6], independent of the matrix dimension n which,
e.g., directly follows from the Gershgorin circle theorem (see, e.g., [48, Theo-
rem 7.2.1]). This is an important information for us since we need this spectral
information for the error results introduced in Section 4.2.1.

As a second test matrix we consider the shifted skew-Hermitian matrix

Aschwing := sI +D (4.22)

from (3.74) in Section 3.3.3 with shift s = 5. This matrix stems from a staggered
Schwinger discretization on a periodic two-dimensional lattice and we know that
the spectrum of Aschwing is symmetric with respect to the real axis. Using the
Gershgorin circle theorem and the fact that all off-diagonal entries of Aschwing

have modulus one, we know that the spectrum of Aschwing is contained in the line
segment [s+ 4i, s− 4i] independent of the lattice size.

For these test matrices we first consider the computation of a sparse approximation
of f(A) based on the Chebyshev approach.

Results for the Chebyshev approach

In the following numerical examples we compute sparse approximations with
respect to the functions f(z) = z−1 and f(z) = z−1/2 for each of our two test
matrices Atridiag and Aschwing.
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Figure 4.5: Chebyshev approach: Error ‖A−1−Pm(A)‖2 for A = Atridiag for fixed m = 5
and different dimensions n = 100, . . . , 2000 (left) and for fixed dimension n = 1000 and
different degrees m = 1, . . . , 10 (right).

Example 4.12. We consider the matrix A = Atridiag and the function f(z) = z−1.
For the Chebyshev approximation of A−1 we can use the (dimension independent)
error bound of Proposition 4.9 with λ1 = 2 and λ2 = 6. If we fix the degree m
of the approximation Pm(A), then for m = 5 we obtain with Proposition 4.9 the
error bound ‖f(A)− Pm(A)‖2 ≤ 6.9 · 10−4, independent of n. The actual error of
the approximation Pm(A) for m = 5 and increasing dimensions n = 100, . . . , 2000
is illustrated on the left-hand side of Figure 4.5. Here we see the convergence of
the error for increasing n and the independence of the matrix size for large n. On
the right-hand side of Figure 4.5, the matrix dimension is fixed while the degree
m of the approximation Pm(A) increases. Of course, the approximation Pm(A)
has bandwidth m and is therefore sparse for m� n. The predicted convergence
rate of Proposition 4.9, which is also the predicted decay rate of A−1, coincides
with the actual convergence rate. Hence, we again see the strong relation between
the decay behavior of A−1 and the convergence rate for the approximation Pm(A)
of f(A). �

Example 4.13. We consider the matrixA = Atridiag and the function f(z) = z−1/2.
For the Chebyshev approximation ofA−1/2 we can use the (dimension independent)
family of bounds of Proposition 4.8 with λ1 = 2 and λ2 = 6. We computed the
minimum over these family of bounds numerically by the discrete variation of
the parameter ρ > 1 and by considering the singularity of f in z = 0. If we
fix the degree m of the approximation Pm(A), then for m = 5 we obtain with
Proposition 4.8 the error bound ‖f(A)− Pm(A)‖2 ≤ 1, 9 · 10−3, independent of n.
The actual error of the approximation Pm(A) for m = 5 and increasing dimensions
n = 100, . . . , 2000 is illustrated on the left-hand side of Figure 4.6. Here, the
error bound overestimates the actual error by around one order of magnitude.
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Figure 4.6: Chebyshev approach: Error ‖A−1/2 − Pm(A)‖2 for A = Atridiag for fixed
m = 5 and different dimensions n = 100, . . . , 2000 (left) and for fixed dimension n = 1000
and different degrees m = 1, . . . , 10 (right).

On the right-hand side of Figure 4.6, the matrix dimension is fixed while the
degree m of the approximation Pm(A) increases. Again we see that the error
bound overestimates the actual error by one order of magnitude and is worse
compared to the results for the inverse. However, the predicted convergence rate
of Proposition 4.8 well captures the actual convergence rate of the error. The
approximation Pm(A) has bandwidth m and is therefore sparse for m� n. �

For the same functions, we repeat the experiments for our second test matrix.

Example 4.14. We consider the matrix A = Aschwing of dimension n = 322 and
the function f(z) = z−1. For the Chebyshev approximation of A−1 we can use
the error bound of Proposition 4.9 applied to the line segment [s+ 4i, s− 4i]. In
Figure 4.7 we see the exact error ‖f(A) − Pm(A)‖2 and the error predicted by
Proposition 4.9. Note again, that the error is independent of the matrix size, thus,
the same error bound holds for a discretization with an arbitrary number of grid
points. In Table 4.2 we see the error for m = 1, . . . , 5 and the number of nonzeros
of our approximation Pm(A) compared to the number of nonzeros in the sparse
matrix A. Based on the fast convergence of the coefficients ck (and of the entries
of A−1, respectively) we obtain a satisfying sparse approximation of A−1, even for
small numbers m. �

Example 4.15. We consider the matrix A = Aschwing of dimension n = 322 and
the function f(z) = z−1/2. For the Chebyshev approximation of A−1/2 we use
the family of error bound of Proposition 4.8 for the line segment [s+ 4i,m− 4i].
Again, we computed the minimum over these family of bounds numerically. In
Figure 4.8 we see the exact error ‖f(A) − Pm(A)‖2 and the error predicted by
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Figure 4.7: Chebyshev approach: Error
‖A−1 − Pm(A)‖2, m = 1, . . . , 10 where
A = Aschwing of dimension n = 322.

m ‖A−1 − Pm(A)‖2 nnz(Pm(A))

1 3.5 · 10−2 nnz(A)
2 1.1 · 10−2 2.6 · nnz(A)
3 3.5 · 10−3 5 · nnz(A)
4 1.1 · 10−3 8.2 · nnz(A)
5 3.4 · 10−4 12.2 · nnz(A)

Table 4.2: Chebyshev approach: Error
‖A−1 − Pm(A)‖2 where A = Aschwing of
dimension n = 322 and number of nonze-
ros in Pm(A) (nnz(Pm(A))) in relation to
the number of nonzeros in A (nnz(A)).

Proposition 4.8, which is again independent of the matrix dimension. The quality
of the error bound is worse compared to that of the inverse but again the actual
convergence rate is well captured by the bound of Proposition 4.8. In Table 4.3 we
see the error for m = 1, . . . , 5 and the number of nonzeros of our approximation
Pm(A) compared to the number of nonzeros in the sparse matrix A. �

The numerical examples show that the Chebyshev approach leads to good sparse
approximations of matrix functions f(A) for normal matrices A with spectrum
on a line segment. The proposed error bounds (especially the bounds of Propo-
sition 4.9 for the inverse) give us a good impression of the actual convergence of
the Chebyshev approximation of f(A). However, the class of matrix functions
where we can apply the Chebyshev approach is restricted and the computation
of several matrix-matrix products might be too expensive in practice. Thus, we
now repeat the numerical examples for our second approach for the computation
of f(A) where no matrix-matrix products are required and which can be used for
general matrix functions

Results for the coloring approach

We now consider the approach based on a graph coloring which can be applied
to general matrices. In the following experiments we compute approximations
of f(A) for the functions f(z) = z−1 and f(z) = z−1/2 for each of our two test
matrices Atridiag and Aschwing.
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2 4 6 8 10

10−6

10−4

10−2

100

‖A−1 − Pm(A)‖2
bound Prop. 4.8

Figure 4.8: Chebyshev approach: Error
‖A−1/2 − Pm(A)‖2, m = 1, . . . , 10 where
A = Aschwing of dimension n = 322.

m ‖A−1 − Pm(A)‖2 nnz(Pm(A))

1 3.2 · 10−2 nnz(A)
2 8.1 · 10−3 2.6 · nnz(A)
3 2.3 · 10−3 5 · nnz(A)
4 6.4 · 10−4 8.2 · nnz(A)
5 1.8 · 10−4 12.2 · nnz(A)

Table 4.3: Chebyshev approach: Error
‖A−1/2 − Pm(A)‖2 where A = Aschwing of
dimension n = 322 and number of nonze-
ros in Pm(A) (nnz(Pm(A))) in relation to
the number of nonzeros in A (nnz(A)).

Example 4.16. We consider the matrix A = Atridiag and the function f(z) = z−1.
By using Theorem 3.9 from [23] with λmin = 2 and λmax = 4 we obtain decay
bounds defined by the constant C and a decay rate q. Using (4.19) and the fact
that each level set in G(A) has at most 2β elements if A is β-banded we obtain
the error bounds

‖f(A)− f(A)[d]‖1 ≤ 2βC
n−1∑
i=d+1

qi(1 + 2dβ) ≤ 2βC
1 + 2dβ

1− q qd+1. (4.23)

Thus, we have a (dimension independent) error bound for the matrix A = Atridiag

with β = 1.

In the left panel of Figure 4.9 we see the error ‖f(A) − f(A)[d]‖2 for the fixed
distance d = 5 and increasing dimension n = 100, . . . , 2000. Similar to the
Chebyshev approximation, the error in the ‖ · ‖2-norm converges for increasing
dimension, so that for large n we can consider it to be independent of the matrix
size. The error bound is formulated for the error in the ‖ · ‖1-norm and with (4.23)
we obtain for d = 5 the error bound

‖f(A)− f(A)[5]‖1 ≤ 5.6 · 10−3,

whereas the actual error in the ‖ · ‖1-norm is approximately given by

‖f(A)− f(A)[5]‖1 ≈ 5.8 · 10−4

for n = 100, . . . , 2000, i.e., the actual error is overestimated by one order of
magnitude. The same is observable if we fix the dimension and vary the distance
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Figure 4.9: Coloring approach: Error for the approximation f(A)[d] with f(z) = z−1

and A = Atridiag for fixed d = 5 and different dimensions n = 100, . . . , 2000 (left) and
for fixed dimension n = 1000 and different distances d = 1, . . . , 10 (right).

d. In the right panel of Figure 4.9 we see the error in the ‖ · ‖1-norm and the
error bound (4.23) which overestimates the actual error by around one order of
magnitude. The actual convergence rate is well captured by the bound but not
as accurate as in the Chebyshev approach. Note that for a given distance d we
need to compute a distance-2d coloring resulting in 2d+ 1 colors for a tridiagonal
matrix, i.e., we need to compute 2d+ 1 vectors f(A)v for constructing the sparse
approximation with bandwidth d. Hence, for d = 10 we obtain an accuracy of
around 10−6 with only 21 vector computations of the form f(A)v. �

Example 4.17. We consider the matrixA = Atridiag and the function f(z) = z−1/2.
For the Cauchy–Stieltjes function f(z) = 1/

√
z we can use the decay bound from

Theorem 3.39 for obtaining an error bound with (4.23). The results are illustrated
in Figure 4.10. The error bound (4.23) overestimates the actual error by around
two orders of magnitude for d = 10 and the predicted convergence rate is slightly
too slow compared to the actual convergence rate. Again, for d = 10 we see
that it is possible to reach an accuracy smaller than 10−6 with only 21 vector
computations.

�

We repeat the experiments for the same functions and the staggered Schwinger
matrix.

Example 4.18. We consider the matrix A = Aschwing of dimension n = 322 and
the function f(z) = z−1. For error bounds of our approximation we use the
decay bounds of Theorem 3.18 for the inverse of matrices with spectrum on a line
segment. The actual error of an approximation for the inverse (in the ‖·‖1-norm) is
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Figure 4.10: Coloring approach: Error for the approximation f(A)[d] with f(z) = z−1/2

and A = Atridiag for fixed d = 5 and different dimensions n = 100, . . . , 2000 (left) and
for fixed dimension n = 1000 and different distances d = 1, . . . , 10 (right).

illustrated in Figure 4.11 together with the error bounds based on Proposition 4.10
and based on (4.19) using the fact that the number of nodes with exactly length i
in G(A) is 4i, since G(A) is a periodic two-dimensional lattice. The bound based
on Proposition 4.10 captures the convergence rate of the error well but the constant
is way too large. The bound based on (4.19) predicts a too slow convergence, since
the linear part of the bound (based on the linear growing of the level sets) initially
distorts the exponential decay of the error. For growing d, the exponential part will
dominate such that the predicted decay of the error then captures the actual decay
for large d. In Table 4.4 we vary the distances d = 1, . . . , 5 resulting in m colors
for the distance-2d coloring of the graph, i.e., m vectors of the form f(A)v have
to be computed for obtaining the corresponding approximation. Note that the
resulting number of vector computations is independent of the matrix dimension.
In Table 4.4 we also see the number on nonzero elements in the approximation
compared to the number of nonzeros in A. Hence, the full matrix f(A) can be
well approximated by the sparse matrix f(A)[d]. �

Example 4.19. We consider the matrix A = Aschwing of dimension n = 322 and
the function f(z) = z−1/2. For the function f(z) = z−1/2 we use the decay bounds
of Theorem 3.42 for Cauchy–Stieltjes functions of matrices with spectrum on a
line segment and obtain error bounds based on Proposition 4.10 and based on
(4.19). The results, which are illustrated in Figure 4.12, are comparable to the
results for the inverse. In Table 4.5 we vary the distances d = 1, . . . , 5 resulting
in m colors for the distance-2d coloring of the graph, i.e., m vectors of the form
f(A)v have to be computed for obtaining the corresponding approximation. Note
again that the number of necessary vector computations is independent of the
matrix dimension. �
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Figure 4.11: Coloring approach: Error ‖f(A)− f(A)[d]‖1, d = 1, . . . , 10 with f(z) = z−1

where A = Aschwing of dimension n = 322.

d m ‖f(A)− f(A)[d]‖2 nnz(f(A)[d])

1 9 5.5 · 10−2 nnz(A)
2 25 1.6 · 10−2 2.6 · nnz(A)
3 44 4.4 · 10−3 5 · nnz(A)
4 77 1.2 · 10−3 8.2 · nnz(A)
5 131 3 · 10−4 12.2 · nnz(A)

Table 4.4: Coloring approach: Error ‖f(A) − f(A)[d]‖2, d = 1, . . . , 5 with f(z) = z−1

where A = Aschwing and number of nonzeros in f(A)[d] (nnz(f(A)[d])) in relation to the
number of nonzeros in A (nnz(A)).
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Figure 4.12: Coloring approach: Error ‖f(A)−f(A)[d]‖1, d = 1, . . . , 10 with f(z) = z−1/2

where A = Aschwing of dimension n = 322.
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4 Exploiting the decay in matrix functions

d m ‖f(A)− f(A)[d]‖2 nnz(f(A)[d])

1 9 1.2 · 10−1 nnz(A)
2 25 3.5 · 10−2 2.6 · nnz(A)
3 44 9.7 · 10−3 5 · nnz(A)
4 77 2.5 · 10−3 8.2 · nnz(A)
5 131 6.2 · 10−4 12.2 · nnz(A)

Table 4.5: Coloring approach: Error ‖f(A)− f(A)[d]‖2, d = 1, . . . , 5 with f(z) = z−1/2

where A = Aschwing and number of nonzeros in f(A)[d] (nnz(f(A)[d])) in relation to the
number of nonzeros in A (nnz(A)).

Summarizing, the Chebyshev approach leads to good approximations of f(A)
and provides satisfying error bounds. However, the class of matrix functions is
restricted and we need to compute several matrix-matrix products for constructing
the approximation. On the other hand, the approximation based on a coloring of
G(A) can be applied to general matrices. Instead of matrix-matrix products we
need to compute several matrix-vector products for the computation of vectors
of the form f(A)v via the Lanczos or Arnoldi process. We saw that the coloring
approach also results in accurate approximations but the proposed error bounds
are inferior compared to the Chebyshev approach.

4.3 Approximation of f (A)v

The computation of vectors of the form f(A)v for matrices A ∈ Cn×n, functions f
defined on σ(A) and vectors v ∈ Cn is an important task in matrix computations.
One of the most important example is the solution of linear systems Ax = b, given
by x = A−1b, and in the previous section we needed to compute f(A)v for several
vectors v in order to obtain a sparse approximation of f(A). In Section 2.1.2 we
introduced the Arnoldi/Lanczos approximation f(A)v ≈ ‖v‖2Vmf(Hm)e1, where
Hm = V H

m AVm and the columns of Vm are an orthonormal basis of the Krylov sub-
space Km(A, v) computed by the Arnoldi/Lanczos process. Numerical examples
show that a rapid decay in f(A) indicates a fast converges of the Arnoldi/Lanczos
approximation. This intimate relation is obvious for the inverse and Hermitian
positive definite matrices: In this case, the Lanczos approximation leads to the
conjugate gradients approximation for the solution of linear systems. The classical
conjugate gradients convergence rate (see, e.g., [85, Section 6.11.4]) coincides with
the decay rate from Theorem 3.9 for the inverse of Hermitian positive definite ma-
trices. For general matrices A and functions f , we already know (see Section 3.1)
that the entries of f(A) can be bounded by

|[f(A)]ij| ≤ C max
z∈Ω
|f(z)− pm(z)|
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4.3 Approximation of f(A)v

where 2 ≤ C ≤ 1 +
√

2 and Ω is a set containing W (A), the field of values of A,
for every polynomial pm of degree m < d(i, j). At the same time for a vector v
with ‖v‖2 = 1 we have the bound

‖f(A)v − Vmf(Hm)e1‖2 ≤ 2C max
z∈Ω
|f(z)− pm−1(z)| (4.24)

for every polynomial pm−1 of degree at most m− 1 which can be seen as follows.

Because of Theorem 2.7 the Arnoldi approximation Vmf(Hm)e1 of f(A) is exact if
f is a polynomial of degree at mostm−1, i.e., we have pm−1(A)v = Vmpm−1(Hm)e1.
Thus,

‖f(A)v − Vmf(Hm)e1‖2 = ‖f(A)v − pm−1(A)v + Vmpm−1(Hm)e1 − Vmf(Hm)e1‖2

≤ ‖f(A)− pm−1(A)‖2 + ‖pm−1(Hm)e1 − f(Hm)e1‖2.

Using relation (3.5) and the fact that W (Hm) ⊂ W (A) ⊂ Ω gives the bound (4.24).
The bound (4.24) was already used in [6] for the development of error bounds of
the Arnoldi approximation of f(A)v.

Summarizing, a fast convergence of

Em(f,Ω) := min
pm∈Pm

max
z∈Ω
|f(z)− pm(z)|

is a sufficient condition for both, a fast decay in f(A) and a fast convergence of
the Arnoldi/Laczos approximation. Therefore we expect a fast convergence of the
Arnoldi/Lanczos approximation if we identify a rapid decay in f(A). In addition,
in some cases we can exploit the decay in f(A) for the computation of f(A)v
in order to obtain reliable error bounds and/or to save computational cost and
storage. Those alternatives to the Arnoldi/Lanczos approximation are introduced
and discussed in the following section.

4.3.1 Exploiting the decay for the computation of f(A)v

If A is normal with spectrum on a line segment, then we can use an approxima-
tion of f(A)v which is based on the truncated Chebyshev series Pm(A) of f(A)
introduced in Section 4.2. We obtain

f(A)v ≈ Pm(A)v =
m∑
k=0

ckTk(t(A))v

where ck are the Chebyshev coefficients (4.8), Tk are the Chebyshev polynomials of
degree k and t is the linear transformation which maps the line segment containing
the spectrum of A onto the interval [−1, 1]. Based on the three term recurrence
relation (2.12), we automatically have a three term recurrence relation for the
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4 Exploiting the decay in matrix functions

Algorithm 4.4: Chebyshev approximation of f(A)v.

Input: Matrix A with σ(A) ⊂ [λ1, λ2], function f , vector v and number of
iterates m.

Output: Approximation xm = Pm(A)v of f(A)v
Define t(z) := λ1+λ2−2z

λ2−λ1 .1

Ã = t(A)2

v0 = v3

v1 = Ãv4

x0 = c0v05

for k = 1, . . . ,m do6

Compute ck via (4.11).7

xk = xk−1 + ckvk8

vk+1 ← 2Ãvk − vk−19

end10

vectors vk := Tk(t(A))v, similar to the three term recurrence relation for the basis
vectors of the Krylov subspace in the Lanczos process. The resulting algorithm is
given in Algorithm 4.4.

Such a Chebyshev approximation of f(A)v was already considered in the paper
[25] from 1989 for symmetric matrices A where also the approximation based on
the Lanczos process was discussed. Today, the Lanczos or Arnoldi process seems
to be the first choice for the computation of f(A)v. However, a fast decay in
f(A) indicates a fast convergence of the Chebyshev series, hence, the Chebyshev
approximation of f(A)v seems to be a good choice in this case as well. In contrast
to the Lanczos/Arnoldi approximation, we need information about the spectrum
of A and the numerical computation of the coefficients ck via (4.11) is necessary.
On the other hand, we do not need to store an n ×m matrix or to compute a
matrix f(Hm), and the three term recurrence relation holds for general normal
matrices with spectrum on a line segment. In addition, with Proposition 4.8 and
Proposition 4.9 we immediately obtain error bounds by using ‖f(A)v−Pm(A)v‖2 ≤
‖f(A)− Pm(A)‖2‖v‖2 .

Besides the Chebyshev approach we now consider an approach which can only be
applied to the inverse since it uses the residual r = b − Ax. Thus, we will call
it the approach based on the residual. A similar approach was already used for
the construction of preconditioners, which can be found in [7, Section 5] and the
references therein. Now we will use this idea to approximate a decaying vector
x = A−1b. In the following we use MATLAB notation to refer to specific rows or
columns of a matrix or to certain entries of a vector, respectively.

If we have exponential decay bounds for A−1, given by a constant C and a decay
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rate q, then the entries of x can be bounded by

|xi| =
∣∣∣∣∣
n∑
j=1

bjAij

∣∣∣∣∣ ≤ C
n∑
j=1

|bj|qd(i,j). (4.25)

Clearly, based on (4.25) we can only guarantee a decay in x, if b is either sparse
or if there is a rapid decay in b as well. With (4.25) we can identify whether
there is a decay in x and, as a consequence, whether most of the entries in x are
negligible. In this case we can find a sparse approximation x̂ of x. Using (4.25)
we can determine a set

H := {i ∈ {1, . . . , n} : |xi| ≤ ε}

for a given threshold ε. If we define J := {1, . . . , n} \ H, then an approximation
x̂ of x is obviously given by

x̂j :=

{
xj if j ∈ J
0 else

(4.26)

and we immediately obtain the error bound ‖x− x̂‖2 ≤
√
|H| ε. Of course, x̂ can

be approximated by using the Arnoldi/Lanczos approximation and setting

x̂(J ) ≈ ‖b‖2Vm(J , :)f(Hm)e1,

which can be done for general functions f . For the inverse we can use the residual
and approximate x̂ by the vector

x̃ := argmin
x∈CnJ

‖b− Ax‖2, (4.27)

where Cn
J := {x ∈ Cn : xj = 0 for all j /∈ J }, i.e., we are looking for the

solution x̃ with the same sparsity pattern as x̂, minimizing the residual. Since
Ax = A(:,J )x(J ) holds for a vector x ∈ Cn

J , the least squares problem (4.27) is
equivalent to the problem of finding a solution ỹ with

ỹ = argmin
y∈C|J |

‖b− A(:,J )y‖2. (4.28)

Since A is sparse and we only consider a few columns of A, we can assume that
lots of rows in A(:,J ) are zero. If we define the set

I := {i ∈ {1, . . . , n} : there exists a j ∈ J such that A(i, j) 6= 0},

the least squared problem (4.28) is equivalent to

ỹ = argmin
x∈C|J |

‖b(I)− A(I,J )y‖2 (4.29)
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4 Exploiting the decay in matrix functions

and x̃ can be computed by setting x̃(J ) = ỹ. If most of the entries in the solution x
are very small in magnitude, then the least squares problem (4.29) is much smaller
than the original problem and can be solved by direct methods. For constructing
a preconditioner as described in [7, Section 5], this approach was used for b = ei
with i = 1, . . . , n and the sparsity pattern of powers of A was used for determining
the set J instead of decay bounds for A−1.

For an error bound of the approximation x̃ we can use the error of the sparse
approximation x̂ defined in (4.26).

Proposition 4.20. Let x̃ be the approximation defined by (4.27) with respect to
a given threshold ε. Then it holds

‖x− x̃‖2 ≤ κ(A)
√
|H| ε.

Proof. Because of the minimization property (4.27) and x̂ ∈ Cn
J we have ‖b −

Ax̃‖2 ≤ ‖b− Ax̂‖2. Thus,

‖x− x̃‖2 ≤ ‖A−1‖2‖b− Ax̃‖2

≤ ‖A−1‖2‖b− Ax̂‖2

≤ ‖A−1‖2‖A‖2‖x− x̂‖2

≤ κ(A)
√
|H| ε.

In the following section we will test the Chebyshev approach for general functions
and the approach based on the residual for the inverse for two test matrices A.

4.3.2 Numerical examples

For testing the approaches introduced in Section 4.3.1 we use the matrices Atridiag

from (4.21) of dimension n = 1000 and Aschwing from (4.22) of dimension n = 322.

Results for the Chebyshev approach

In the following examples we illustrate the quality of the Chebyshev approximation
of f(A)v for the function f(z) = z−1/2 and vector v = e1 + en compared to that
of the Lanczos and Arnoldi approximation.
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Figure 4.13: Chebyshev approach: Error of the approximations of f(A)v in ‖ · ‖2-norm
with f(z) = z−1/2 and v = e1 + en for A = Atridiag (left) and A = Aschwing (right).

Example 4.21. For the matrix A = Atridiag we obtain error bounds for the
Chebyshev approximation of f(A)v based on Proposition 4.8. The minimum over
the family of bounds is computed numerically, where we need to consider the
singularity of f at z = 0. The left-hand side of Figure 4.13 shows the error of
the Chebyshev approximation Pm(A)v, the error of the Lanczos approximation
‖v‖2Vmf(Hm)e1 and the error bound based on Proposition 4.8 for m = 1, . . . , 20.
The number m is in addition the number of necessary matrix-vector products for
both, the computation of Pm(A)v and ‖v‖2Vmf(Hm)e1. Figure 4.13 demonstrates
the fast convergence of the Lanczos approximation of f(A)v. Other numerical
examples, not shown here, also show that the Lanczos approximation with at
most m = 20 iterations leads to an accurate approximation of f(A)v, independent
of the matrix dimension. However, we see that the approximation based on the
Chebyshev approach is slightly better than the Lanczos approximation and we
obtain an error bound that captures the actual convergence of the methods. Note
that the error bound does not depend on the matrix dimension n and we obtain
the same error bound for A = Atridiag and vector v = e1 + en for arbitrary n. �

Example 4.22. We repeat the experiment for A = Aschwing and obtain similar
results as in the previous example, illustrated on the right-hand side of Figure 4.13.
We have a fast convergence of the Arnoldi approximation but the Chebyshev
approximation results in slightly better approximations. The convergence rate in
the bound of Proposition 4.8 well captures the actual convergence. �

In these two examples, the Chebyshev approach leads to slightly better approx-
imations than the Lanczos and Arnoldi approximations while needing the same
number of matrix-vector products. For the Chebyshev approximation we need
to find an interval containing the spectrum A but we do not need to store an
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4 Exploiting the decay in matrix functions

n×m matrix or to compute a matrix f(Hm). In addition, we have a three term
recurrence relation for general normal matrices with spectrum on a line segment.

We intentionally did not show numerical examples for the inverse, since there are
already an abundance of iterative methods for the solution of systems of linear
equations (see, e.g, [85]). A strongly related iterative method for the solution of
systems of linear equations is given by Chebyshev iteration (see, e.g., [48, Section
11.2]). Instead of the Chebyshev series this approach uses a normalized Chebyshev
polynomial similar to what was done in Section 3.2 for the development of decay
bounds for the inverse.

For the inverse we now show numerical examples for the (non-iterative) method
based on the residual.

Results for the approach based on the residual

We again consider our two test matrices and the right-hand side b = e1 + en. With
decay bounds for A−1 given by a constant C and a decay rate 0 < q < 1 we then
obtain the bound

|xi| ≤ C(qd(1,i) + qd(n,i))

for the entries of the solution x = A−1b. For our examples, the distances between
the nodes are easy available.

Example 4.23. ForA = Atridiag we can use the decay bounds of Theorem 3.9 from
[23] for Hermitian positive definite matrices. The results for the approximation
x̃ for a given threshold ε are shown in Table 4.6. For the computation of x̃ we
need to solve a least-squares problem of size |J | × |I|. Since the sets J and I
are computed with respect to decay bounds for A−1, the size of the least squares
problem is independent of the matrix dimension. Based on the fast decay in A−1

and accurate decay bounds, we only have to solve very small-dimensional least-
squared problems in order to obtain a good sparse approximation of the vector
x = A−1b. The resulting error lies one order of magnitude below the threshold ε,
but the error bound based on Theorem 4.20 overestimates the error by about two
orders of magnitude. �

Example 4.24. For the matrix A = Aschwing we can use the decay bounds from
Theorem 3.18 for matrices with spectrum on a line segment. Table 4.7 shows
the results for the approximation x̃ of x = A−1b. For a given threshold ε, the
dimensions |J | and |I| of the least-squares problem are larger compared to the
previous example, but note again that the size of the least-squares problem is
independent of the matrix dimension for our test matrix A = Aschwing. Again, the
resulting error lies one order of magnitude below the threshold ε, but the error
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ε |J | |I| ‖x− x̃‖2 error bound

10−1 4 6 2.8 · 10−2 9.5
10−2 6 8 7.6 · 10−3 9.4 · 10−1

10−3 10 12 5.4 · 10−4 9.4 · 10−2

10−4 14 16 3.8 · 10−5 9.4 · 10−3

Table 4.6: Results for the approximation x̃ of x = A−1b for A = Atridiag of dimension
n = 1000.

ε |J | |I| ‖x− x̃‖2 error bound

10−1 4 24 6.7 · 10−2 3.9
10−2 24 40 5.3 · 10−3 3.8 · 10−1

10−3 60 112 3.3 · 10−4 3.8 · 10−2

10−4 112 144 2.8 · 10−5 3.7 · 10−3

Table 4.7: Results for the approximation x̃ of x = A−1b for A = Aschwing of dimension
n = 322.

bound based on Theorem 4.20 overestimates the error by about two orders of
magnitude. �

The two examples showed that it is possible to obtain a good sparse approximation
of a decaying vector f(A)v by solving a least squares problem of small and n-
independent size. For both examples the factor

√
|H| in the error bound of

Theorem 4.20 depends on the dimension n and it would be advantageous to
formulate an n-independent error bound, but we couldn’t find one. By now, the
threshold ε based on decay bounds for A−1 gives us a better impression of the
actual error than the proposed error bound.

The numerical examples for the two approaches showed that it can be profitable
to consider the decay property in f(A) for the computation of f(A)v and that it
is even possible to obtain better results than the classical used Lanczos or Arnoldi
approximation of f(A)v.

4.4 Approximation of the trace of matrix functions

The computation of the trace of matrix functions is an important task in many
applications. As examples, the trace of the inverse is needed in the study of
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4 Exploiting the decay in matrix functions

fractals [86], generalized cross-validation and its applications [46, 49], or in lattice
quantum chromodynamics (QCD) [24, 90]. In graph theory, the Estrada index, a
total centrality measure for networks, is defined as the trace of the exponential of
the adjacency matrix of a graph [30, 45] and an analogous measure is given by the
trace of the resolvent [29, Section 8.1]. For Hermitian positive definite matrices A,
one can compute the log-determinant log(det(A)) as the trace of the logarithm of
the matrix A. Amongst others, the log-determinant is needed in machine learning
and related fields [79, 83]. For non-Hermitian matrices, the absolute value of
the determinant can also be computed with the help of the trace of the matrix
logarithm [3], which is also useful in many applications, e.g., if the sign of the
determinant is irrelevant or explicitly known. Plenty of further applications can
be found in [101, 102].

In this section, we consider the problem of computing

tr(f(A)) =
n∑
i=1

[f(A)]ii

for large, sparse matrices A ∈ Cn×n and functions f defined on the spectrum of
A. Of course, for small matrices A ∈ Cn×n, it is possible to explicitly compute
f(A) and extract the diagonal entries to determine tr(f(A)). Because of the com-
putational cost and the storage required for determining the (dense) matrix f(A),
this is not feasible for large, sparse matrices A. Alternatively, the computation
of n bilinear forms eTi f(A)ei, e.g., with the Lanczos or Arnoldi process, avoids
the storage problem but leads to computational complexity comparable to that
of a dense matrix computation. Thus, we are looking for a method where a much
smaller number of bilinear forms vTf(A)v have to be computed, but where we still
obtain a good approximation of tr(f(A)). The central question is how to choose
this small number of suitable vectors v. Bai et al. [3] proposed a Monte Carlo
approach based on a result from [56] to estimate tr(f(A)). Most of the trace esti-
mators currently used are based on this Monte Carlo approach [47, 52, 101] which
are sometimes called stochastic trace estimators. The Monte Carlo estimator for
the trace of matrix functions is based on the following result from [56]:

Proposition 4.25. Let A be an n × n matrix and let V be the discrete random
variable which takes the values 1 and −1 each with probability 0.5. Let v be a
vector of n independent samples from V . Then the random variable X := vTAv
is an unbiased estimator of tr(A), i.e.,

E[X] = tr(A),

and we have

var[X] = 2
∑
i 6=j
|aij|2.
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4.4 Approximation of the trace of matrix functions

In the following we denote with Zn2 the set of sample vectors defined in Propo-
sition 4.25. Based on the results of Proposition 4.25 we define the Monte Carlo
estimator of tr(f(A)) as

1

r

r∑
i=1

vTi f(A)vi (4.30)

for r sample vectors v1, . . . , vr ∈ Zn2 . The law of large numbers establishes the
convergence of (4.30) to tr(f(A)) for increasing r. However, we want to determine
just a few expressions of the form vTf(A)v for obtaining a feasible trace estimator,
i.e., we want r � n. To check the quality of this stochastic trace estimator for
a number of samples r, we can use the corresponding confidence interval of the
unknown parameter E[X]; see, e.g., [70, Chapter 9]:

For a random variable X, the (1−α) percent confidence interval for the unknown
parameter E[X] and samples x1, . . . , xr is given by[

x̄− z(1−α
2

)
σ[X]√
r
, x̄+ z(1−α

2
)
σ[X]√
r

]
, (4.31)

where x̄ is the sample mean, σ[X] =
√

var[X] is the standard deviation of X, and
z(1−α

2
) is the (1− α

2
)-quantile of the standard normal distribution. In our setting,

the samples are given by xi := vTi f(A)vi, i = 1, . . . , r and x̄ is the proposed trace
estimator. Unfortunately, the standard deviation σ[X] cannot be determined in
practice, since we know from Proposition 4.25 that it is given by the off diagonal
entries of the unknown matrix f(A). Therefore, the sample standard deviation

s =

(
1

r − 1

r∑
i=1

|x̄− xi|2
)1/2

can be used instead. In this case, for a small sample size we have to use the
(1 − α

2
)-quantile of the t-distribution instead of the normal distribution for the

(1 − α) percent confidence interval. The confidence interval (4.31) establishes a
convergence rate of r−1/2 for the error |E[X] − x̄| which might be a problem in
practice, as illustrated in the following example.

Example 4.26. Consider the matrix A = Atridiag from (4.21) of dimension n =
1000. We want to compute tr(A−1) ≈ 288, 63 with the Monte Carlo method.
The left panel of Figure 4.14 shows the exact trace tr(A−1) together with the
estimates and the corresponding 99% confidence interval for increasing number of
sample vectors. The right hand side of Figure 4.14 illustrates the relative error for
increasing number of sample vectors and an error bound based on the confidence
interval. Already for a small number of samples, the relative error lies between
10−2 and 10−3. However, the convergence of the estimator is typically very slow
such that even if we reach the dimension of the matrix (where it would be possible
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Figure 4.14: Monte Carlo approximation of tr(A−1).

to specify the exact trace with the same number of vectors) the relative error still
ranges between 10−2 and 10−3. This example illustrates, that we can not reach a
certain accuracy, say a relative error of 10−4, with a feasible number of samples. �

We want to emphasize that the Monte Carlo approach is a black box method, i.e.,
no information about A or f is required to obtain an approximation of tr(f(A)).
However, we saw in Example 4.26 that increasing the effort (e.g., by increasing
the number of sample vectors) does not necessarily result in a significant better
approximation. An advancement of the classical Monte Carlo approach is given by
the Multilevel Monte Carlo method [44, Section 1.2] which additionally requires
approximations of the considered random variable:

Assume we have a sequence of approximations X0, . . . XL for a random variable
X with increasing accuracy. If E[XL] is a good approximation of E[X] but X
and XL have similar variances, do not benefit from estimating E[XL] instead of
E[X]. Therefore, we use the linearity of the expectation operator and obtain the
identity

E[XL] = E[X0] +
L∑
`=1

E[X` −X`−1]. (4.32)

Now, a Monte Carlo approach can be used to determine all or just some of the
occurring expected values in (4.32) and we obtain a Multilevel Monte Carlo method.
The sequence X0, . . . XL should fulfill two requirements to make the Multilevel
Monte Carlo method profitable: For small ` ∈ {0, . . . , L} the required expected
values should be either known, be easily computable by a direct method, or an
evaluation with large number of samples should be realizable in an efficient way.
For large `, it should be possible to estimate the expected values accurately with
just a few samples, i.e., we expect small variances of the random variables (X` −
X`−1). As an example, for a Multilevel Monte Carlo method for an estimator of
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4.4 Approximation of the trace of matrix functions

tr(f(A)) we assume we have a sequence of matrices A0, . . . , AL which approximate
the matrix f(A). Then we define X` := vTA`v, where v ∈ Zn2 . If we have
f(A) ≈ AL, we obtain tr(f(A)) = E[X] ≈ E[XL] = tr(AL). Then we write

tr(f(A)) ≈ tr(AL) = E[vTALv] = E[vTA0v] +
L∑
`=1

E[vT (A` − A`−1)v]

where we see that the sequence of matrices A0, . . . , AL should be chosen such that
the sum of off diagonal entries in A` − A`−1 is small for large `, since then the
variance of (X`−X`−1) is small and just a few samples are needed for computing a
good approximation of the corresponding expected values. The rest of the required
expected values should be computable in an efficient way. Of course, the most
challenging task in the Multilevel Monte Carlo method is to determine suitable
variables X0, . . . , XL, i.e., matrices A0, . . . , AL in our situation.

We want to find alternatives for the classical stochastic trace estimator by ex-
ploiting the decay in matrix functions. To overcome the problem of the slow
convergence of the stochastic trace estimator as illustrated in Example 4.26 we
have basically two possibilities. First, we try to reduce the variance such that a
better estimator can be obtained for a small number of samples vectors. In Section
4.4.1 we will use the decay property in matrix functions to implement this. Note
that reducing the variance does not change the convergence of the method, given
by r−1/2, where r is the number of sample vectors. Hence, a second idea is to find
a method which has a faster convergence compared to the Monte Carlo approach.
Such (non-stochastic) methods will be discussed in Section 4.4.2.

4.4.1 Acceleration of the basic Monte Carlo method

In this section we use spectral information of A for obtaining an improved stochas-
tic estimator of tr(f(A)). Similar to the previous sections we will discuss two
approaches: The first is based on a Chebyshev expansion of f , while the second
is based on a coloring of G(A).

As discussed in Section 4.2, for normal matrices A with spectrum on a line segment
and functions f such that f(A) has a fast decay, f(A) can be well approximated
by the truncated Chebyshev series Pm(A) of degree m. Consequently, the trace
of f(A) can be well approximated by the trace of Pm(A). A suitable m can be
determined with the a priori error bounds given in Proposition 4.8 and Propo-
sition 4.9. Although the determined m is independent of the matrix dimension,
the computation of Pm(A) might be a problem due to the required matrix-matrix
multiplications. However, we can use the truncated Chebyshev series to formulate
a Multilevel Monte Carlo method for the computation of tr(f(A)). Here, we define
the sequence of matrices approximating f(A) by A` = P`(A), ` = 0, . . . , L, where
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4 Exploiting the decay in matrix functions

L is chosen such that we have f(A) ≈ PL(A). It is clear that A`−A`−1 = c`T`(A)
holds. Since the coefficients c` decay exponentially, the off diagonal entries of
c`T`(A) should be rather small for large ` and thus, the variance of the estimator
vT c`T`(A)v, where v is a Zn2 -random vector, is small such that tr(c`T`(A)) can be
well approximated with a small number of sample vectors. This motivates the
usage of Chebyshev polynomials for a Multilevel Monte Carlo method. So for
0 ≤ s ≤ L we have

tr(f(A)) ≈ tr(PL(A)) = tr(Ps(A)) +
L∑
s+1

tr(c`T`(A)),

where s is chosen such that tr(Ps(A)) can be computed exactly and tr(c`T`(A)),
` = s + 1, . . . , L can be approximated by the stochastic trace estimator. The
computation of vT c`T`(A)v can be realized by ` matrix-vector multiplications,
based on the three term recurrence relation (4.9). Using p sample vectors for
each estimation of tr(c`T`(A)), ` = s+ 1, . . . , L leads to (L− s)p sample vectors,
in total. Based on the exponential decay of the coefficients c` it could be also
reasonable to decrease the number of sample vectors for increasing `, based on
the decreasing variance of the random variables. The resulting algorithm (with a
fixed number of sample vectors per trace) is given in Algorithm 4.5.

Algorithm 4.5: Stochastic Chebyshev estimator of tr(f(A)).

Input: Matrix A with σ(A) ⊂ [λ1, λ2] and function f .
Output: Estimator t of tr(f(A)).
Determine suitable L via Proposition 4.8 or Proposition 4.9.1

Choose 0 ≤ s ≤ L such that tr(Ps(A)) is computable.2

Set t = tr(Ps(A)).3

for ` = s+ 1, . . . , L do4

Produce p sample vectors v1, . . . , vp ∈ Zn2 .5

t← t+ 1
p

∑p
i=1 v

T
i c`T`(A)vi6

end7

For general decaying matrices f(A) one can use a method which is based on a
coloring of G(A). If f(A) has an exponential decay property, then we can assume
that many entries in f(A) are very small in magnitude. Since the variance of
the stochastic trace estimator is determined by the magnitude of the off-diagonal
entries, it would be advantageous if the variance would be only given by those
small off-diagonal entries. Hence, we divide the whole trace of f(A) into subtraces
which can be computed stochastically with corresponding small variances. This
can be done as follows.

Let d be a preferably small distance such that

|[f(A)]ij| ≤ ε for d(i, j) > d (4.33)
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4.4 Approximation of the trace of matrix functions

for a given threshold ε. Such a d can be determined by appropriate decay bounds
for f(A). Let V1, . . . , Vm be a partition of V = {1, . . . , n} such that

d(i, j) > d if i 6= j and i, j ∈ V` for ` = 1, . . . ,m (4.34)

in G(A) which can be found by a distance-d coloring of G(A) and using (4.15).
Then clearly we have

tr(f(A)) =
m∑
`=1

tr`(f(A))

where

tr`(f(A)) :=
∑
i∈V`

[f(A)]ii (4.35)

are subtraces of f(A) which now can be estimated stochastically by using sample
vectors

v[`] =
∑
i∈V`

xiei (4.36)

where xi ∈ Z1
2. Using p sample vectors for each subtrace, we overall need to

compute mp bilinear forms. Based on the small variance of the estimator for the
subtraces, we expect a small number of samples to be necessary in order to obtain
a good approximation. Note that for each subtrace the variance of the estimator
is given by

2
∑
i,j∈V`
i 6=j

|[f(A)]ij|2

which can be easily bounded by

2|V`|(|V`| − 1)ε2,

i.e., for some types of matrices, where we know |V`|, we can formulate an a priori
confidence interval for our estimator without computing a distance-d coloring.
The algorithm for such an estimator is summarized in Algorithm 4.6 for a given
distance d.

This approach is already used in lattice QCD for the inverse (see, e.g., [4] or [41]
and the references therein), where it is called dilution. Motivated by the decay
in matrix functions, this approach can be used for general matrices and general
functions. In addition, using decay bounds for matrix functions, we can formulate
upper bounds for the variances of the estimators, leading to a priori error bounds
for the estimator based on the confidence interval (4.31) in some cases. Amongst
others, the deviation of such bounds is discussed in the next section for an easy
example.
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4 Exploiting the decay in matrix functions

Algorithm 4.6: Stochastic estimator of tr(f(A)) based on a distance-d
coloring.

Input: Matrix A, function f and distance d.
Output: Estimator t for tr(f(A)).
Compute the sets V1, . . . , Vm with a distance-d coloring of G(A).1

Set t = 0.2

for ` = 1, . . . ,m do3

Compute sample vectors v
[`]
1 , . . . , v

[`]
p given by (4.36).4

t← t+ 1
p

∑p
i=1 v

[`]
i

T
f(A)v

[`]
i5

end6

4.4.1.1 Numerical examples

In this Section we demonstrate the quality of the proposed trace estimators for
our test matrices Atridiag from (4.21) and Aschwing from (4.22) for f(z) = z−1.

Results for the Chebyshev approach

Example 4.27. We consider the matrix A = Aschwing of dimension n = 322. The
exact trace is approximately given by tr(A−1) ≈ 178.95. For the Multilevel Monte
Carlo method based on the Chebyshev series, we choose L = 15 and s = 3, i.e., we
need to compute tr(P3(A)) directly and the remaining L− s traces are computed
by the stochastic trace estimator. The left panel of Figure 4.15 shows the relative
error of the classical Monte Carlo approach compared to the Multilevel Monte
Carlo approach for increasing number of sample vectors. Note that we need to
compute L − s = 12 remaining traces stochastically, hence, the total number
of sample vectors are multiples of 12 for the Multilevel Monte Carlo method if
we use the same number of samples per trace. Additionally, the relative error
| tr(A−1]− tr(P3(A))|/ tr(A−1) is shown, which is comparable to the relative error
of the Monte Carlo estimator. Hence, we see that the additional (stochastically)
computed traces improve the relative error by around one order of magnitude. �

Example 4.28. We consider the matrix from Example 4.26, i.e., A = Atridiag of
dimension n = 1000. The right-hand side of Figure 4.15 shows the results for
L = 15 and s = 1, i.e., the trace of P1(A) is computed directly and the remaining
traces are computed stochastically. We see that the Chebyshev approach leads to
slightly better estimators compared to the classical Monte Carlo method. However,
we also plotted the relative error for tr(P1(A)) which does already has an accuracy
of around 10−4 because of the fast convergence of the Chebyshev series. Hence,
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Figure 4.15: Relative errors for the estimators of tr(A−1) based on the Chebyshev series
(MultiMC), for the classical Monte Carlo estimator (MC) and for the trace of the matrix
Ps(A) with A = Aschwing (left) and A = Atridiag (right).

we do not benefit from the additional stochastically computed traces (not even for
s = 1) but quite the contrary, so the Multilevel approach is not profitable here. �

The two examples indicates that the Multilevel Monte Carlo based on the Cheby-
shev series leads to better results compared to the classical Monte Carlo method.
However, for fast decaying matrices already the trace of Ps(A) with small s can
be an accurate approximation of the actual trace and the additional stochastically
computed traces can be destructive as illustrated in Example 4.28.

Results for the coloring approach

We repeat the experiments for the approach based on a distance-d coloring for
the same matrices and the same function f(z) = z−1.

Example 4.29. We consider the matrix A = Aschwing of dimension n = 322. We
choose the distance d = 3, resulting in eight color classes, i.e., the total number of
sample vectors are multiples of eight if we use the same number of sample vectors
for each subtrace induced by the color classes. In the left panel of Figure 4.16
we see the relative error of the classical Monte Carlo method compared to the
approach based on a distance-d coloring for increasing (total) number of sample
vectors. Already for the small distance d = 3 we have an improvement of around
two orders of magnitude. �

Example 4.30. We repeat the experiments for the matrix A = Atridiag of dimen-
sion n = 1000 considered in Example 4.26. We use the distance d = 5, resulting
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Figure 4.16: Relative errors for the estimators of tr(A−1) based on the coloring approach
(coloringMC) and for the classical Monte Carlo estimator (MC) for A = Aschwing with
d = 3 (left) and A = Atridiag with d = 5 (right).

in six color classes, i.e., we need to compute six subtraces. The right-hand side
of Figure 4.16 depicts the results for the relative error compared to the classical
Monte Carlo estimator for increasing (total) number of sample vectors, where we
used the same increasing number of sample vectors for each subtrace. In this
example, already the distance d = 5 leads to an improvement of around three
orders of magnitude. Note again that for each subtrace, the variance of the Monte
Carlo estimator is given by

2
∑
i,j∈V`
i 6=j

|[f(A)]ij|2

which can be easily bounded by using decay bounds for f(A). We now derive
a priori error bounds for the approximation based on the coloring approach for
A = Atridiag.

For the matrix A = Atridiag we can use the decay bounds of Theorem 3.9 from [23].
Using an obvious coloring of G(A) with d+ 1 colors, we obtain

2
∑
i,j∈V`
i 6=j

|[A−1]ij|2 ≤ 2
∑
i,j∈V`
i 6=j

C2q2d(i,j)

≤ 4C2|V`|
∞∑
i=1

q2di

≤ 4C2

⌈
n

d+ 1

⌉
q2d

1− q2d

for each color class V`, i.e., we obtain an upper bound for the variance of the
stochastic trace estimator for each subtrace. Let tr`(f(A)) be a subtrace defined
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in (4.35) and let x̄` be the Monte Carlo estimator of tr`(f(A)) with p samples.
Then the error of the approximation x̃ :=

∑d+1
`=1 x̄` based on the (1− α) percent

confidence interval (4.31) for the estimation of each subtrace can be bounded by

|x̃− tr(f(A))| =
∣∣∣∣∣
d+1∑
`=1

x̄` −
d+1∑
`=1

tr`(f(A))

∣∣∣∣∣ ≤
d+1∑
`=1

|x̄` − tr`(f(A))|

≤
d+1∑
`=1

z(1−α
2

)√
p

√√√√2
∑
i,j∈V`
i 6=j

|[f(A)]ij|2

≤ (d+ 1)
z(1−α

2
)√

p
2C

√⌈
n

d+ 1

⌉
qd√

1− q2d

This error bound together with the error bound of the classical Monte Carlo
Method is shown in Figure 4.16 as well. Both bounds are normalized in order to
compare them to the exact errors. The improvement of the approximation based
on the coloring compared to the classical Monte Carlo method is well captured by
the bounds. Note again that the bound for the error of the Monte Carlo method
is an a posteriori error bound since it uses the sample standard deviation as an
estimator for the actual standard deviation. �

Concluding, these examples illustrate that it is possible to increase the accuracy
of the classical Monte Carlo method by using the decay property in f(A). We
considered an example where it is possible to formulate a priori error bounds for
the estimator by using decay bounds for the matrix f(A) in order to bound the
variance of the estimator. Those bounds can be formulated for all types of matrices
A where a coloring of G(A) is explicitly known. However, even if the accuracy of
the estimator can be improved for decaying matrices f(A), we still have a slow
convergence for increasing number of sample vectors. Vividly, the error curve is
only shifted downwards by a few orders of magnitude if we fix the numbers s
or d, respectively. Hence, in the next section we are looking for (non-stochastic)
methods which exhibit a faster convergence of the error for increasing numbers of
vectors.

4.4.2 Non-stochastic approximation

Similar to the classical Monte Carlo approach, we want to develop a method which
induces an approximation of tr(f(A)) as the sum of a small number of bilinear
forms vTf(A)v. In order to obtain a good accuracy, we again choose the vectors
based on the decay property in f(A) and a coloring of G(A), the graph of A.
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For matrices with spectrum on a line segment we already noticed the fast con-
vergence of Pm(A) to f(A) for decaying matrices f(A). Hence the trace of the
approximation Pm(A) should result in a good estimator of tr(f(A)). The com-
putation of m matrix-matrix products might be to expensive in practice. Thus,
we are now looking for a way to compute tr(Pm(A)) without computing Pm(A)
explicitly.
For a given degree m, we can compute a partition V1, . . . , Vk such that

d(i, j) > m if i 6= j and i, j ∈ V` for ` = 1, . . . , k

via a distance-m coloring of |G(A)|. If we define

v` :=
∑
i∈V`

ei, ` ∈ {1, . . . , k}

then we see that

vT` Pm(A)v` =
∑
i,j∈V`

[Pm(A)]ij =
∑
i∈V`

[Pm(A)]ii

holds, since Pm is a polynomial of degree m and therefore we have [Pm(A)]ij = 0
if d(i, j) > m. Thus,

tr(Pm(A)) =
k∑
`=1

vT` Pm(A)v`,

i.e., tr(Pm(A)) can be computed via km matrix-vector multiplications.

Note that this approach can be combined with the Multilevel Monte Carlo method
based on the Chebyshev series introduced in the previous section. If the compu-
tation of Ps(A) is too costly due to the required matrix-matrix products, then
one can compute tr(Ps(A)) with the approach described above. This is for ex-
ample reasonable, when the graph of A has no regular structure, i.e., when we
need to use the greedy approach for a coloring with cost O(∆(G(A))mn). To
keep the constant ∆(G)m small, one can choose a small degree m in order to
obtain a cheaply available approximation. If the resulting approximation is not
accurate enough, then one can add stochastically computed traces with small
variances. This hybrid method combines a non-stochastic approximation based on
a distance-d coloring and a Monte Carlo method.

For general matrices we can use a similar approach based on a distance-d coloring
of G(A). Assume we have exponential decay bounds for f(A). Then we can
determine a distance d such that

|[f(A)]ij| ≤ Cqd(i,j) ≤ ε for d(i, j) > d (4.37)
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for a given threshold ε > 0. With a distance-d coloring of G(A) = (V,E) and
using (4.15) we find a partition V1, . . . , Vk of V with

d(i, j) > d if i 6= j and i, j ∈ V` for ` = 1, . . . , k (4.38)

and we define
v` :=

∑
i∈V`

ei, ` ∈ {1, . . . , k}. (4.39)

Then we have
vH` f(A)v` =

∑
i∈V`

[f(A)]ii +
∑
i,j∈V`
i 6=j

[f(A)]ij,

and therefore

tr(f(A)) =
n∑
i=1

[f(A)]ii =
k∑
`=1

vH` f(A)v` −
k∑
`=1

∑
i,j∈V`
i 6=j

[f(A)]ij.

Now, we define our approximation for the trace of f(A) as

T (f(A)) :=
k∑
`=1

vH` f(A)v` (4.40)

with error

|tr(f(A))− T (f(A))| =

∣∣∣∣∣∣∣∣
k∑
`=1

∑
i,j∈V`
i 6=j

[f(A)]ij

∣∣∣∣∣∣∣∣ . (4.41)

The computation of the proposed approximation T (f(A)) is summarized in Algo-
rithm 4.7.

Of course, the choice for the vectors v` is motivated by the error (4.41) since with
this choice the addends in (4.41) are very small in magnitude (smaller than ε) and
the error can be easily bounded by

|tr(f(A))− T (f(A))| ≤
k∑
`=1

∑
i,j∈V`
i 6=j

ε =
k∑
`=1

|V`|(|V`| − 1)ε. (4.42)

For matrices for which an explicit coloring of the graph is known, the bound
(4.42) represents an a priori error bound without actually computing a distance-d
coloring. If we assume that the size of the color classes is asymptotically given by
O(n/k), i.e., if the nodes are distributed uniformly among the color classed, and
if the number of colors k is independent of n, then the error bound (4.42) is of
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4 Exploiting the decay in matrix functions

Algorithm 4.7: Non-stochastic approximation of tr(f(A)) based on a
distance-d coloring.

Input: Matrix A and exponential decay bounds defined by a constant C
and a decay rate q.

Output: Approximation T (f(A)) of tr(f(A)).
Select ε > 0.1

Set d = logq(ε/C).2

Compute a distance-d coloring col : V → {1, . . . , k} of G(A).3

Set Tf (A) = 0.4

for ` = 1, . . . , k do5

Compute x` = vT` f(A)v` with v` as in (4.39).6

T (f(A))← Tf (A) + x`7

end8

order O(n2ε). The explicit representation (4.41) of the error is of great practical
interest and in the following we give a more extensive error analysis where we
discuss cases in which better error bounds than the trivial bound (4.42) can be
obtained.

If the decay bounds for computing the distance d stem from a bound for the error
of a polynomial approximation, e.g., as in the results in Section 3.2, then it is
possible to obtain a sharper error bound.

Theorem 4.31. Let A ∈ Cn×n and let f be defined on the spectrum of A. Assume

|[f(A)]ij| ≤ ‖f(A)− pm(A)‖2 ≤ Cqd(i,j)

for a polynomial pm of degree m = d(i, j) − 1. Let Cqd(i,j) ≤ ε for d(i, j) > d.
Then for the approximation T (f(A)) defined by (4.40) we have

|tr(f(A))− T (f(A))| ≤
k∑
`=1

|V`|
√
|V`| − 1 ε. (4.43)

Proof. First note that for a vector x ∈ Cn and a set V` ⊆ {1, . . . , n} we have the
relation ∑

i∈V`
|xi| ≤

√
|V`|

(∑
i∈V`
|xi|2

)1/2

≤
√
|V`|‖x‖2.
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4.4 Approximation of the trace of matrix functions

Hence, ∑
i,j∈V`
i 6=j

|[f(A)]ij| =
∑
i,j∈V`
i 6=j

|[f(A)]ij − [pm(A)]ij|

=
∑
j∈V`

∑
i∈V`
i 6=j

|[f(A)]ij − [pm(A)]ij|

≤
∑
j∈V`

√
|V`| − 1 ‖f(A)ej − pm(A)ej‖2

≤
∑
j∈V`

√
|V`| − 1 ‖f(A)− pm(A)‖2

≤
∑
j∈V`

√
|V`| − 1 ε

= |V`|
√
|V`| − 1 ε.

Using

|tr(f(A))− T (f(A))| ≤
k∑
`=1

∑
i,j∈V`
i 6=j

|[f(A)]ij|

gives the result.

If we again assume a uniform distribution of the nodes among the color classes,
this improved error bound of Theorem 4.31 is of order O(n3/2ε). Depending on the
coloring of G(A) it is possible to give O(nε) error bounds based on more detailed
information of the distances between the nodes in one color class. If we use the
coloring of Algorithm 4.3 in Section 4.1 for matrices which can be permuted to
a matrix with small bandwidth, we obtain the following improved error bound
depending on the distance d.

Theorem 4.32. Let f(A) ∈ Cn×n be a matrix with exponential decay property
with respect to G(A), i.e.,

[f(A)]ij ≤ Cqd(i,j)

for a constant C and a decay rate 0 < q < 1. Let T (f(A)) be defined by (4.40),
where the vectors v` are computed with respect to a coloring produced by Algo-
rithm 4.3 for a given distance d. Then

| tr(f(A)− T (f(A))| ≤ 2nC
qd

1− qd .
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4 Exploiting the decay in matrix functions

Proof. Based on (4.41) and using the decay bounds, the error can be bounded by

|tr(f(A))− T (f(A))| ≤
k∑
`=1

∑
i,j∈V`
i 6=j

|[f(A)]ij| ≤
k∑
`=1

∑
i,j∈V`
i 6=j

Cqd(i,j), (4.44)

with k = dβ+1 where β is the bandwidth of the permuted matrix of Algorithm 4.3.

For ease of presentation, we assume that A does already have the bandwidth β
from line 1 of Algorithm 4.3, i.e., K = (1, . . . , n), otherwise we first apply the
corresponding permutation on A. Using Algorithm 4.3 we obtain the sets

V` =

{
`+ k(dβ + 1), k = 0, . . . ,

⌊
n− `
dβ + 1

⌋}
, ` = 1, . . . , dβ + 1.

Hence, a set of nodes V` can be written as

V` = {w1, . . . , w|V`|}, ` = 1, . . . , dβ + 1

with
wk := `+ (k − 1)(dβ + 1).

Within a set V`, we have the distance relations

d(wi, wj) > |i− j|d, i, j ∈ {1, . . . , |V`|}, i 6= j (4.45)

which can be seen as follows.

Based on Lemma 2.11 of Section 2.2, for i, j ∈ {1, . . . , |V`|} with i 6= j the condition
(4.45) is equivalent to [A|i−j|d]wi,wj = 0, where A is the adjacency matrix of G(A),
i.e., A is a binary matrix with the same off-diagonal sparsity pattern as A and full
diagonal. In particular, A is β-banded, thus A|i−j|d is |i − j|dβ-banded. Hence,
due to

|wi−wj| = |`+ (i− 1)(bβ+ 1)− (`+ (j− 1)(βd+ 1)| = |i− j|(dβ+ 1) > |i− j|dβ,

we have [A|i−j|d]wi,wj = 0, i.e., d(wi, wj) > |i− j|d.

Because of (4.45) we know that for every node w ∈ V` we have d(w,wi) > 2d for
at least |V`| − 2 nodes wi ∈ V` \ {w}, d(w,wi) > 3d for at least |V`| − 4 nodes
wi ∈ V` \ {w} and so on. Hence we obtain

k∑
`=1

∑
i,j∈V`
i 6=j

Cqd(i,j) ≤
k∑
`=1

|V`|
∞∑
i=1

2Cqid = 2Cn
qd

1− qd .
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4.4 Approximation of the trace of matrix functions

A similar O(nε) error bound can be formulated if G(A) is a regular D-dimensional
lattice and if the coloring of Theorem 4.4 is used. For this we need the following
lemma in order to bound the level sets in regular D-dimensional lattices.

Lemma 4.33. Let L=
D(d) := |{z ∈ ZD : ‖z‖1 = d}|, then L=

d ≤ 2DdD−1.

Proof. We already introduced the identity

LD(d) := |{z ∈ ZD : ‖z‖1 ≤ d}| =
D∑
k=0

(
D

k

)(
d+D − k

D

)
from [5, Theorem 2.7] in Section 4.1. With this formula we obtain

L=
D(d) = LD(d)− LD(d− 1) =

D∑
k=0

(
D

k

)(
d+D − k − 1

D − 1

)
,

where we used
(
n+1
k+1

)
=
(
n
k

)
+
(
n
k+1

)
.

We will now use a proof technique called double counting (see, e.g., [1, Section
20]) to prove that

D∑
k=0

(
D

k

)(
d+D − k − 1

D − 1

)
(4.46)

is equal to
D−1∑
k=0

(
D

k

)(
d− 1

D − 1− k

)
2D−k. (4.47)

For this, we first give a combinatorial interpretation of equation (4.46), then
formulate an equivalent statement which at last results in equation (4.47).

Let X = {X1, . . . , XD} be a set with D elements and let Y = {Y1, . . . , Yd−1} be a
set with d− 1 elements with X ∩ Y = ∅. Then (4.46) counts the number of ways
for choosing subsets A ⊆ X and B ⊆ X ∪ Y with |B| = D − 1 and A ∩ B = ∅.
This can be seen as follows.

If 0 ≤ k ≤ D is the number of elements in A, then
(
D
k

)
counts the number of ways

for choosing A. Since A ∩ B = ∅ there are D + (d− 1)− k elements left for the
set B. Thus, the number of ways for choosing B with |B| = D − 1 is given by(
d+D−k−1

D−1

)
. The sum over the number of elements in A gives (4.46).

Now, choosing such a B ⊆ X ∪ Y with |B| = D − 1 and A ∩B = ∅ is equivalent
to choosing subsets N ⊆ X and M ⊆ Y such that |M | + |N | = D − 1 and
(N ∪M) ∩ A = ∅. Hence, we now count the number ways of choosing subsets
A ⊆ X, N ⊆ X and M ⊆ Y with |M | + |N | = D − 1 and (N ∪M) ∩ A = ∅. If
1 ≤ k ≤ D−1 is the number of elements in M , then there a

(
D
k

)
ways for choosing
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M . The number of ways for choosing the left D − 1− k elements of N out of Y
is given by

(
d−1

D−1−k
)
. Since (N ∪M) ∩ A = ∅ there are D − k elements left for A,

i.e., there are 2D−k ways for choosing A. The sum over the number of elements in
M gives (4.47).

As a last step, we need to bound (4.47), where we use(
n

k

)
=

n!

(n− k)!k!
=

n

n− k
(n− 1)!

(n− k − 1)!k!
=

n

n− k

(
n− 1

k

)
,

(
n
k

)
≤ nk

k!
and 2n ≤ (n+ 1)! which can be easily shown by induction. We have

D−1∑
k=0

(
D

k

)(
d− 1

D − 1− k

)
2D−k =

D−1∑
k=0

D

D − k

(
D − 1

k

)(
d− 1

D − 1− k

)
2D−k

≤ D
D−1∑
k=0

1

D − k

(
D − 1

k

)
(d− 1)D−1−k

(D − 1− k)!
2D−k

= 2D
D−1∑
k=0

(
D − 1

k

)
(d− 1)D−1−k

(D − k)!
2D−k−1

≤ 2D
D−1∑
k=0

(
D − 1

k

)
(d− 1)D−k−1

= 2DdD−1,

where the last equality stems from the binomial theorem for ((d− 1) + 1)D−1.

As a consequence of Lemma 4.33, we now know that for each node in a regular
D-dimensional lattice the number of nodes with exactly distance d can be bounded
by 2DdD−1. We use this for the following result.

Theorem 4.34. Let A ∈ Cn×n be a matrix where G(A) is a regular D-dimensional
lattice. Let f(A) have an exponential decay with respect to G(A), i.e.,

[f(A)]ij ≤ Cqd(i,j)

for a constant C and a decay rate 0 < q < 1. Let T (f(A)) be defined by (4.40),
where the vectors v` are computed with respect to the coloring of Theorem 4.4 for
a given distance d > 1. Then

| tr(f(A))− T (f(A))| ≤ 2CDn

(
D − 1

e ln(1/q)

)D−1
qd−1

1− qd−1
.
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4.4 Approximation of the trace of matrix functions

Proof. Again, the error can obviously be bounded by

|tr(f(A))− T (f(A))| ≤
k∑
`=1

∑
i,j∈V`
i 6=j

|[f(A)]ij| ≤
k∑
`=1

∑
i,j∈V`
i 6=j

Cqd(i,j), (4.48)

where the sets V` are computed with respect to the coloring (4.2) of Theorem 4.4.
One characteristic of the coloring (4.2) is that each color class represents a coarse
grid where the distances between the nodes in one color class are multiples of d
(see Figure 4.4). From Lemma 4.33 we know that for a D-dimensional grid, for
each node the number of nodes with exactly distance i can be bounded by 2D iD−1,
thus

k∑
`=1

∑
i,j∈V`
i 6=j

Cqd(i,j) ≤
k∑
`=1

|V`|
∞∑
i=1

2D iD−1Cqid

≤ 2CDn
∞∑
i=1

iD−1qi qi(d−1).

The function g(i) = iD−1qi with i ≥ 1 attains its maximum at i = (D−1)/ ln(1/q).
Thus, it follows that

iD−1qi ≤
(

D − 1

e ln(1/q)

)D−1

and

2CDn
∞∑
i=1

iD−1qi qi(d−1) ≤ 2CDn

(
D − 1

e ln(1/q)

)D−1 ∞∑
i=1

qi(d−1)

≤ 2CDn

(
D − 1

e ln(1/q)

)D−1
qd−1

1− qd−1
.

Note that the bound 2D iD−1 for the number of nodes with exactly distance
i is sharp for D = 1, 2 but deteriorates for increasing dimension, so for large
dimensions a sharper bound can be used in order to obtain improved error bounds.
The numerical examples in the next section illustrate that the error of the proposed
approximations linearly scales with the dimension n of the matrix, i.e., O(nε) error
bounds are optimal for our approximation.

We now briefly discuss some aspects with respect to additional errors caused by
the computation of the bilinear forms vTf(A)v via the Arnoldi or Lanczos process.

135



4 Exploiting the decay in matrix functions

For the computation of the approximation T (f(A)) we need to compute k bilinear
forms where k is the number of colors in the distance-d coloring. In this case we
obtain an approximation T̃f (A) of Tf (A), i.e.,

T (f(A)) =
k∑
`=1

vH` f(A)v` ≈
k∑
`=1

‖v`‖2
2e
T
1 f(H(`)

m`
)e1 =: T̃ (f(A)),

where H
(`)
m` are the matrices obtained by the Lanczos or Arnoldi process with

respect to A and v`, ` = 1, . . . , k. If we want to compute bounds for the error of
our approximation, we need to take into account that the bounds presented so far
only represent upper bounds for the error | tr(f(A))−T (f(A))|. The actual error
of our approximation can be bounded by

| tr(f(A))− T̃f (A)| = | tr(f(A))− Tf (A) + Tf (A)− T̃f (A)|
≤ | tr(f(A))− Tf (A)|+ |Tf (A)− T̃f (A)|,

i.e., we have an additional error of up to |Tf(A) − T̃f(A)|. If the conditions are
fulfilled to compute upper and lower bounds for the bilinear forms vTf(A)v with
the Gauss, Gauss-Radau or Gauss-Lobatto rule (see Section 2.1.2), we can give
upper and lower bounds TU(f(A)) and T L(f(A)) for T (f(A)) as the sums over
the upper and lower bounds of the bilinear forms. Then, for an approximation
T̃ (f(A)) ∈ [T L(f(A)), T U(f(A))] we have

|T (f(A))− T̃ (f(A))| ≤ TU(f(A))− TL(f(A)).

In the next section, we give an example where we consider the additional er-
ror |Tf(A) − T̃f(A)|. In practice it should be sufficient to use the bounds for
the error | tr(f(A)) − Tf(A)| to get a good impression of the convergence of the
approximation.

4.4.2.1 Numerical examples and comparison to previous approaches

In this section we demonstrate the efficiency of the proposed approximation of
the trace of matrix function based on a distance-d coloring, and then we discuss
the relation of the proposed method to other methods from the literature.

Numerical examples

It is clear that the approximation tr(Pm(A)) of tr(f(A)) is accurate if Pm(A) is a
good approximation of f(A), and several numerical examples for this approxima-
tion were already given in Section 4.2. Hence, in the following we will concentrate
on the coloring approach which can be applied to general matrices.
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Figure 4.17: Error | tr(A−1)− Tf (A)| and error bound of Theorem 4.32 for A = Atridiag

for increasing dimensions n = 100, . . . , 1000 and distance d = 5 (left) and for increasing
distances d = 1, . . . , 15 and dimension n = 1000 (right).

We will first discuss results for the matrix A = Atridiag of moderate dimensions
in order to check the quality of the approximation and the corresponding error
bounds.

Example 4.35. We consider the matrix A = Atridiag and f(z) = z−1. The
left panel of Figure 4.17 shows the results of the approximation for increasing
dimension and fixed distance d = 5. The (absolute) error bound of Theorem 4.32
perfectly captures the exact error curve of the approximation. We also depicted
the relative error and the relative error bound of the approximation and we see
that the relative error is almost constant for increasing dimension. Thus, the
error scales linearly with the dimension n, so it seems to be natural to have error
bounds which depend on the dimension n. On the right panel of Figure 4.17 we
fix the dimension to n = 1000 and increase the distances d. The x-axis represents
the number of colors in the corresponding distance-d coloring, which is just given
by d+ 1 in the tridiagonal case, so we need to determine d+ 1 bilinear forms for
the approximation of the trace. Note that this example was already considered
in Example 4.26 for illustrating the convergence of the classical Monte Carlo
approach, where the relative errors of the approximations linger between 10−2 and
10−3 for increasing sample vectors. In contrast, using the approach based on a
distance-d coloring leads to a fast convergence of the approximation for increasing
distances d corresponding to increasing number of vectors. �

We will now consider two examples where we cannot compute the exact traces due
to the large dimensions of the problems, hence, we can only use the error bounds
to check the quality of the approximation.
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Figure 4.18: Error of the approximation of
tr((αI − A)−1) for A = Aadj based on a
distance-d coloring compared to the Monte
Carlo approach depending on the number
of vectors k.

d k error bound approx.

2 9 2.1 · 104 1.1 · 105

4 25 7.2 · 102 1.05 · 105

6 49 31 1.04 · 105

8 81 1.4 1.04 · 105

10 121 5.9 · 10−2 1.04 · 105

Table 4.8: Results for the approximation
of tr((αI−A)−1) (approx.) with A = Aadj

for increasing distances d and the error
bound of Theorem 4.34.

Example 4.36. We consider a regular 103× 103 grid with lexicographic ordering
of the nodes {1, . . . , n}, n = 106 and remove the edges (1, 2) and (n− 1, n). The
corresponding adjacency matrix A = Aadj is of dimension n = 106. In Section 2.2
we introduced the resolvent

f(A) = (αI − A)−1

with α > 1 and α /∈ σ(A). This matrix function is often used for the analysis of
networks, because of the relation

(αI − A)−1 =
∞∑
i=0

α−(i+1)Ai,

i.e., the factor α scales walks with certain length in order to clarify that typically
short walks are more important than long walks. We now consider α = 10 (note

that σ(A) ⊂ [−4, 4]) i.e. walks with length i are scaled with
(

1
10

)i
. In network

analysis the trace of the resolvent is used as a normalization factor for centrality
and communicability measures of graphs.

For this graph we can apply the coloring of Theorem 4.4 for d = 1, . . . , 10 resulting
in (d + 1)2 color classes, such that we can use Theorem 4.34 for an error bound.
For the approximation we need to compute the bilinear forms vT (αI − A)−1v for
(d+ 1)2 vectors v. For the computation of the bilinear forms we use the Lanczos
approximation with respect to the matrix αI − A and the function f(z) = z−1.
For this matrix and function we can compute upper and lower bounds for the error
of the approximation of vT (αI − A)−1v‘ (see Section 2.1.2), i.e., we can compute
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Figure 4.19: Error of the approximation
of tr(A−1) with A = Aschwing of dimension
n = 216 based on a distance-d coloring com-
pared to the Monte Carlo approach for in-
creasing number of vectors k.

d k error bound approx.

1 4 - 1.15 · 104

3 16 9.3 · 102 1.15 · 104

7 64 8.5 1.15 · 104

15 256 8.6 · 10−4 1.15 · 104

Table 4.9: Results for the approximation
of tr(A−1) (approx.) with A = Aschwing of
dimension n = 216 for increasing distances
d and the error bound of Theorem 4.34.

error bounds for the approximations of the bilinear forms. In this example we
stop the process if the computed error bound is smaller that 10−10 and we use the
arithmetic mean of the computed upper and lower bound as our approximation.
Hence, the additional error of the approximation of the trace caused by the Lanczos
approximation is smaller than 10−10 times the number of vectors. For this example
the number of iterates in the Lanczos process lies between 9 and 10. In Table
4.8 we see the results for increasing distances d, resulting in k = (d + 1)2 color
classes if we use the coloring of Theorem 4.34. The error bounds in Table 4.8
are based on Theorem 4.34 and, e.g., for d = 10 we obtain the approximation
tr(A−1) ≈ 1.04 · 105 with an absolute error which is smaller than 5.9 · 10−2,
i.e., the approximation is pretty accurate for an approximation with only 121
vectors. Using this approximation as exact trace, we can compute the error of
the approximations for smaller distances d. Figure 4.18 shows the error of the
approximations for increasing number of vectors. For comparison, we also depicted
the error of the classical Monte Carlo approach, again using the approximation
for d = 10 as exact value. We once again observe the classical convergence
behavior of the Monte Carlo approach: We obtain a pretty good approximation
for a small number of sample vectors but the error stagnates for an increasing
number of samples. In contrast, we have a fast convergence of the error for the
approximation based on the distance-d coloring of G(A). �

Example 4.37. As a next example we again consider the staggered Schwinger
discretization on a 28 × 28 lattice, which results in the matrix Aschwing from (4.22)
of dimension n = 216. In order to apply the error bounds of Theorem 4.34, we need
to use the coloring of Theorem 4.4 for D-dimensional lattices. Since now G(A)
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Figure 4.20: Cautionary example: Decay bounds of Theorem 3.18 for the 504th column
of A−1 (left) and error of the approximation of tr(A−1) compared to the Monte Carlo
approach (right) with A = Aschwing of dimension n = 322.

is a periodic two-dimensional lattice, the coloring of Theorem 4.4 only leads to a
distance-d coloring for G(A) if d is of the form d = 2i − 1. In Table 4.9 we have
the results for distances d = 1, 5, 7, 15 resulting in k = (d+ 1)2 color classes. The
k bilinear forms are computed with the Arnoldi approximation where the process
stops if two iterates differ by less than 10−10. For this example, the number of
iterations lies between 13 and 15. For d = 15 we need to compute 256 bilinear
forms which results in the approximation tr(A−1) ≈ 1.15 · 104 with an absolute
error less than 8.6 · 10−4, i.e., we obtain a pretty accurate approximation of the
trace. Using this approximation as exact value for tr(A−1), we see in Figure 4.19
the error of the coloring approach for d = 1, 3, 7 compared to the Monte Carlo
approach for an increasing number of sample vectors. The approach based on a
distance-d coloring immediately results in better approximations than the Monte
Carlo approach. �

We conclude the numerical experiments with a cautionary example in order to
illustrate the limits of this approach.

Example 4.38. Let A = Aschwing be the staggered Schwinger discretization of size
n = 322 with shift s = 0.1. The left panel of Figure 4.20 shows the exact absolute
values of the 504th column of A−1 on the underlying grid, together with decay
bounds based on Theorem 3.18. Two problems with this example are apparent:
The constant of the decay bound is way to large compared to the exact entries of
f(A) and actually there is no decay in A−1 which is at least well captured by the
decay bound. If we now use the approach based on a distance-d coloring, we see in
the right panel of Figure 4.20 that we do not benefit from this approach compared
to the Monte Carlo approach. In addition, the error bound is useless based on the
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4.4 Approximation of the trace of matrix functions

overrated bound for the entries of A−1. Hence, this example illustrates that this
approach is only reasonable and superior to the Monte Carlo approach, if there
is a substantial decay in f(A). In addition, for obtaining useful error bounds we
indeed need sharp bounds for the entries of f(A). �

Comparison to previous approaches

We will now discuss the relation of this method to some results from the literature.
The proposed approach is strongly related to a method for computing an approxi-
mation of the diagonal of the inverse of Hermitian matrices from [98], where it is
called probing. This method in [98] is based on the following proposition, where
D(A) denotes a diagonal matrix whose diagonal entries coincide with those of A.

Proposition 4.39. Let A ∈ Cn×n and let Vs ∈ Rn×s be a matrix with no zero
rows. Then

D(A) = D(AVsV
T
s )D(VsV

T
s )−1 (4.49)

holds if each i-th row of Vs is orthogonal to all those rows j of Vs for which aij 6= 0
holds.

Hence, the diagonal of a matrix A can be computed via the right-hand side
of (4.49) if A has an appropriate sparsity pattern. This proposition is used in
[98] for computing the diagonal of A−1 by using the sparsity pattern of a sparse
approximation of A−1. Motivated by the Neumann expansion, the sparsity pattern
of the matrix Ap is used where a suitable p is determined by computing and
analyzing one column of the inverse. The matrix Vs is computed by using the
greedy graph coloring algorithm applied to the the graph G(Ap). As a last step,
for computing A−1Vs, a sequence of s linear systems has to be solved, where s is
the number of colors needed to color the graph G(Ap). It is proposed in [98] to use
Krylov subspace methods to solve the sequence of linear systems. This approach
is closely related to the proposed trace estimator: As mentioned in Section 4.1,
the distance-d coloring problem for G(A) is equivalent to the distance-1 coloring
problem of G(Ad). In our approach, the distance d was chosen with respect to
decay bounds for f(A), i.e., it is the smallest number such that Cqd ≤ ε for a
preassigned threshold ε > 0. Now, if we have d = p, where p is the determined
number of the approach in [98], the columns of the matrix Vs ∈ Rn×s coincide
with the vectors v` if the distance-d coloring of G(A) and the distance-1 coloring
of G(Ap) coincide. In addition, we clearly have

tr(A−1VsV
T
s ) =

s∑
`=1

vH` A
−1v`

if v` are the columns of Vs ∈ Rn×s. Hence, we conclude that the methods result in
the same approximation if d = p and if we use the method from [98] for computing
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4 Exploiting the decay in matrix functions

the trace of the inverse of Hermitian matrices. In [98] no bound for the error
of the estimator of the diagonal was given, such that there is no possibility to
check the quality of the approximation. Based on the fact that the approximation
was motivated by the error (4.41) instead of Proposition 4.39 we were able to
formulate error bounds based on decay bounds for f(A). Using the approach in
[98] for the computation of the trace of matrix functions was also considered in
[95] for matrices A, where G(A) is a regular D-dimensional lattice. The authors
in [95] reveal the problem that if the distance d is changed then the vectors v` and
the corresponding bilinear forms must be recomputed from scratch. Hence, they
developed a method based on a hierarchical distance-d coloring of D-dimensional
lattices (see Section 4.1) where the graph is successive colored until all nodes
have different colors. The advantage of this approach is that one can increase
the distance d until a certain accuracy of the trace estimator is reached, and in
each step one can reuse previous computations. However, no criterion for the
accuracy of the computed estimator was given in [95] and therefore it is not clear
which distance d finally leads to a sufficient trace estimator. In contrast, since
we motivated the proposed approximation by the error (4.41), we were able to
formulate error bounds depending on the distance d. In addition, we have a
priori error bounds, i.e., bound without actually computing a distance-d coloring,
for D-dimesional lattices in Theorem 4.34. Thus, we can determine a suitable
distance d in advance such that it is not necessary to compute the approximation
for several distances d.
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Chapter 5
Conclusions

In the introduction of this thesis, we emphasized the two major problems in the
computation of matrix functions f(A) for large and sparse matrices A: The high
computational cost and the impossibility of storing the dense matrix f(A). In the
thesis we showed that the storage problem can be solved in several cases, motivated
by the existence of a sparse approximation of f(A) based on an exponential decay
of the entries in f(A). We then proposed ways for the computation of a sparse
approximation of f(A) with linear cost. In detail, we obtained to following results.

In Chapter 3 we provided conditions under which we can guarantee an exponential
decay in f(A) for special functions f and important classes of matrices A. The
results gave us sharp bounds for the entries |[f(A)]ij| in many cases and we
illustrated the superiority of the newly developed bounds over the general results
from the literature in the considered cases. We also discussed the limitation
of the proposed bounds: The bound of an entry of f(A) only depends on the
corresponding graph distance in the graph of A and we presented an example
where this fact results in the overestimation of many entries of A−1 for a specially
constructed tridiagonal matrix A. The classical decay bounds result in Toeplitz-
type bounds for banded matrices while it is not necessarily the case that f(A) is
a Toeplitz matrix. Hence, we gave a theoretical framework for the computation
of non-Toeplitz bounds in order to fix this problem. This approach requires the
knowledge of the complete spectrum of several submatrices of A, which is not
feasible in practice. Finding ways to efficiently compute non-Toeplitz bounds in
practical situations remains an interesting topic for future research.

The results of Chapter 3 reveal the existence of a sparse approximation of f(A)
with a dimension-independent error in lots of important special cases. This was
proven in Chapter 4 where we also discussed ways to compute such a sparse
approximation with linear cost. In addition, the decay in matrix functions was
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used for further important matrix computations, such as the computation of
f(A)v for a given vector v. We illustrated the strong relation between the decay
property in f(A) and the convergence of classical Krylov subspace approximations
of f(A)v. Although the computation of f(A)v is well studied for lots of functions
f (especially for the inverse), we discussed some approaches where the decay in
matrix functions could be further exploited for saving cost and/or storage. It
would be interesting to find other approaches which consider the decay in f(A)
for the efficient computation of the vector f(A)v.

Finally, we considered the computation of the trace of matrix functions. We
pointed out that the decay in f(A) can be used for Monte Carlo trace estimators,
as well as for approximations of the trace based on non-stochastic methods. Some
of the introduced methods were already considered in a similar manner in the
literature. With decay bounds, as presented in Chapter 3, we were able to supply
an error analysis for the proposed approximations. Improving decay bounds for
f(A) for certain types of functions f and matrices A automatically improves the
proposed error bounds for these approximations. On the other hand, in order
to obtain a more accurate error prediction, it would be interesting to see if one
can supply a more extensive analysis of the occurring errors for general matrices
similar to what was done for banded matrices or matrices, where the corresponding
graph is a regular lattice. This probably requires a more extensive analysis of
the distance-d coloring problem. Most of the proposed methods are based on a
distance-d coloring of G(A), the graph of A. There are lots of theoretical results
for this optimization problem but only few results are known concerning the
development of low-cost methods for the computation of a distance-d coloring and
an analysis of the resulting coloring. Hence, it would be of great practical interest
to fill this gap for general graphs, as this thesis illustrates the importance of this
special optimization problem in numerical linear algebra.

The decay of the entries of matrix functions is an interesting phenomenon from
the theoretical point of view. I addition, this thesis demonstrates that this topic is
practically relevant for important computational problems associated with matrix
functions. We hope that this thesis will help to rise the awareness of this frequently
appearing phenomenon and that the exploitation of this decay property and of
decay bounds of matrix functions will develop into a widely used and helpful tool
for further matrix computations and applications.
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Throughout this thesis, scalars and vectors are denoted by lower-case letters and
matrices are denoted by upper-case letters. In addition, the following notations
are used:

ai,j the (i, j)-th entry of the matrix A
AH the complex adjoint of a matrix A
A(G) the adjacency matrix of a graph G
C the field of complex numbers
d(i, j) distance between nodes i and j in a graph
ei the i-th column of the identity matrix
[f(A)]i,j the (i, j)-th entry of the matrix f(A)
G(A) the graph of a matrix A
i the the imaginary unit
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Im(z) the imaginary part of a complex number z
λmin(A) the smallest eigenvalue of a Hermitian matrix A
λmax(A) the largest eigenvalue of a Hermitian matrix A
pm a polynomial of degree m
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R the field of real numbers
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