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3.2.1 Successive action of T31(x̄)T21(ȳ) . . . . . . . . . . . . . . . . . . . . . . . 44

3



4 CONTENTS

3.2.2 Successive action of T32(z̄)T31(x̄)T21(ȳ) . . . . . . . . . . . . . . . . . . . 47
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4.5.3 Final summation over the partitions of ūB and v̄C . . . . . . . . . . . . . 70
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0.1 Introduction

0.1.1 Integrable systems and Bethe ansatz

Quantum low dimensional systems attract huge interest since they provide a test area for the
investigation of the general behaviour of complicated nonlinear systems. Indeed, a lot of inter-
esting phenomena in condensed matter, high-energy physics and quantum field theory emerge
due to the presence of complicated non inear interactions. The study of these systems is often
an extremely complicated task that is out of the reach of perturbative approaches. However, it
is known that in many cases interesting nontrivial many body effects prevail even if the system
is restricted to 1D. Moreover, the simplified but still nontrivial cases of 1D system allows one to
concentrate on key properties of a system while avoiding bulky technical problems. Sometimes
this allows to make crucial simplifications because the system will exhibit integrability, i.e. can
be solved exactly. We also see that a lot of specific, interesting properties emerge in 1D systems,
especially in integrable models, thus making 1D integrable models interesting in their own right.

Among these interesting systems it is worth noting t-J [16, 73–79] and Hubbard [6, 7,
71, 72] models, which describe lattice gases of strongly-correlated electrons and are expected
to exhibit the high-T superconductivity behaviour. While this phenomenon was intensively
studied over the last 50 years, still most of the mechanisms of high-T superconductivity are
unknown. One of the main open questions of the field is the mechanism of formation of electron
pairs. The derivation of exact solutions of the t-J and Hubbard models can help to answer such
a question and thus to understand the nature of the high temperature superconductivity. These
are important models from the perspective of studying the entanglement entropy and Kondo
model [9] which describes an anomalous low-T behaviour of conductivity of doped metals (Kondo
problem).

Some other widely studied integrable 1D systems are models of ions with exchange interac-
tion (Heisenberg magnets or quantum spin chains) [8] used for description of ferromagnets or
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lattice models of ferroelectricity [10]. These models were intensively studied both theoretically
(see sort review [17]) and experimentally [1–5].

The various 1D Fermi [24] and Bose [29] gases generate significant interest as their invest-
igation could allow for the creation of stable qubits, a crucial ingredient for the development of
a quantum computers. Also, motivations arise from the recent successes in the realisation of
1D optical traps that open up new possibilities for experiments with 1D systems. In the 2000s
series of such experiments were performed [11, 12, 19, 136].

In field theories, integrable models appear in the context of quantization of the gravitational
interaction in two dimensions, where Einsteins equations of general relativity are reduced to
the Liouville equation whose quantization leads to the Liouville field theory. Non-perturbative
solution of this theory could be an important step toward understanding quantum gravity.
One more integrable system is the Gross-Neveu model that describes a simple 2D version of
the quantum chromodynamics [31]. The key property of this model is an existence of the
asymptotic freedom, while in contrast to the 4D analog called Nambo-Jona-Lasinio model the
Gross-Neveu model is renormalisable. While the understanding of asymptotic freedom is one
of the most complicated and important questions in the theory of the fundamental interaction,
the understanding of this property on the simplest example can help to get an insight into the
4D problem.

Despite study of quantum integrable systems track down to work of H. Bethe published in
1931 [13] and fascinating success gained during last 80 years, a wide range of questions still
open up to now especially in field of multicomponent and nonequilibrium systems. Nontrivial
questions remaining are also system behaviour dependence on temperature, external fields,
interaction strength, etc. The reason lies in the extreme complexity of integrability. The
obtaining of the non-perturbative results requires a lot of specific and complicated mathematical
techniques. Since the publication by H. Bethe in his celebrated work on the Heisenberg spin
chains, the method, called the Bethe ansatz, became one of the most powerful and common
instrument of study of integrable systems. The method allowed to exactly calculate the spectrum
and the eigenvectors of a wide range of models. Thus, this method was used for solving the
problem of 1D Bose and Fermi gases (e.g. mixtures of gases with different particle types
and higher spins), Kondo problem, various 1D field and lattice statistical systems. Later the
approach was also generalised to the case of non-zero temperature.

From the technical sight the Bethe ansatz is roughly nothing but expansion the eigen-
vectors of the periodical system in the basis of planar waves, where each wave describes a single
(quasi)particle of the system (say, boson in 1D Bose gas or spinons in the Heisenberg magnet)
while the equation for the spectrum is nothing but a periodicity condition for the wave functions
of (quasi)particles. Consider, for example, the Heisenberg spin chain

H = J
L∑
j=1

σxj σ
x
j+1 + σyj σ

y
j+1 + ∆σzjσ

z
j+1. (0.1.1)

Here L is the chain length, operators σj (Pauli matrices) are spin operators on site j. This
Hamiltonian describes (quasi)one-dimensional electrons connected to heavy ions, on a periodic
lattice. A typical example of such system is KCuF3 (∆ = 1 in this case). The proposed
method, called also coordinate Bethe ansatz can be applied to periodical system (so σkL+1 = σk1 )
and based on presenting of system of eigenvectors in the form of a linear combination

|Ψ〉 =
∑
k1...kj

a(p1, . . . , pj |k1, . . . , kj)σ
(k1)
− · · ·σ(kj)

− Ω, (0.1.2)
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where a(p1, . . . , pj |k1, . . . , kj) are j-particles wavefunctions of corresponding (quasi)particles ex-
citations with rapidities {p1, . . . , pj} at positions {k1, . . . , kj}, Ω is the state with all spins

ordered up, and σ
(k1)
− , σ

(k2)
− , . . . are spin-flip operators that create excitations (j = L/2 cor-

responds to case where half of spins are flipped). Such linear combinations are called Bethe
vectors. The periodicity condition imposes restriction on these rapidities (called Bethe para-
meters or spectral parameters). For the isotropic (or XXX) spin chain (∆ = 1 in (0.1.1)) the
system of Bethe equations (BAE) is(

pk + i/2

pk − i/2

)L
=

j∏
`6=k

pk − p` + i

pk − p` − i
, j ≤ L/2. (0.1.3)

Since the set {p1, . . . , pj} univocal defines the energy, equation (0.1.3) can be considered as equa-
tion for the spectrum of the system. Thereby a linear combination of the secondary quantised
multiparticle wavefunctions span eigenvector of the system if their spectral parameters satisfy
the BAE. Such Bethe vectors are called on-shell. In the case where no restrictions are imposed
on spectral parameters Bethe vectors are called off-shell and they are no more eigenfunctions
of the system.

Further, that approach was generalised for an anisotriopic (or XXZ) chain [14, 15], Bose and
Fermi gases [18, 20–24], multicomponent systems [25, 27] (Nested Bethe ansatz, NBA), finite
temperature [30] (thermodynamic Bethe ansatz, TBA) and field systems [31]. Bethe ansatz
became one of most universally used approach for calculations in quantum integrable systems.

As a very simple and an intuitive approach Bethe ansatz is widely used in different fields
and proved itself a fruitful and powerful method. It turns out, however, that the method is very
complicated technically to apply to the calculation of the correlation functions of operators.
Thus, the method allows to build eigenfunctions of Hamiltonian of integrable systems, but
even the calculation of the norm of these eigenfunctions in case of many (quasi)particles is a
complicated problem [32], while the calculation of matrix elements of physical operators was
completely out of reach.

In the 70th a new method, called an Algebraic Bethe ansatz (ABA) was developed by the
Leningrad school of physics (L. D. Faddeev et al.) [34–42]. The main components of this
approach are the monodromy matrix [43–45], whose matrix entries are (quasi)particles cre-
ation/annihilation operators, the R-matrix (introduced by C. N. Yang [25] and R. Baxter [26]),
that defines 2-particle scattering processes, and the RTT− and Yang-Baxter relations on these
operators and scattering matrix entries. The new approach allowed to establish a more unified
way to construct the eigenvectors (that now are certain polynomials on the monodromy matrix
entries) and the spectrum of the system. It allows explicitly build transfer matrix of a system
(operator of evolution on the lattice), that produces in a certain way all integrals of motion.
New formulation of the Bethe ansatz allows deeply understand the nature of integrability that
now can be seen as a condition of factorisation of scattering processes into 2-particle scatterings.

Further, ABA was generalised to the case of multicomponent systems, higher spins, etc.
The method gives more simple structure of the eigenvectors, that no more contains multiple
summations on the coordinates of the (quasi)particles of the system. Calculation of the matrix
elements of operators (form factors) however still was complicated problem: although it was
possible to calculate the form factors explicitly (Izergin-Korepin formula), the final result was
given by quite bulky expression and was not suitable even for the numerical analysis.

The most important results in this direction are work [46], where the norm of eigenvectors
was calculated and work [47], where the scalar product of on-shell and off-shell Bethe vectors



8 CONTENTS

was obtained in a compact form (determinant representation of a scalar product). There was
shown, that the scalar product can be rewritten as a determinant

S({pi}|{kj}) ∼ det (N (ki, pj |{p}, {k})) , (0.1.4)

where N is special matrix, {k} are spectral parameters of the off-shell and {pj} are spectral
parameters of the on-shell Bethe vectors, #{p} and #{k} are n. The fact that one of the Bethe
vectors is still off-shell (no restriction on spectral parameters) is very important, since form
factors FOmn of arbitrary physical operator O between eigenvectors |m〉, |n〉 can be rewritten as

FOmn = 〈m|O|n〉 = 〈n|Ψ〉, (0.1.5)

where |Ψ〉 ≡ O|n〉, as it can be shown, is a linear combination of the off-shell Bethe vectors.

In the same work [47] a determinant representation for the form factors of T -matrix entries
was calculated in determinant form

F({λ}, {µ}) ∼ det (M(µi, λj |{λ}, {µ})) , (0.1.6)

where F is the form factor, the matrix M(µi, λj |{λ}, {µ}) depends on particular operator, the
sets {λ} and {µ} are rapidities of the (quasi)particles in the left and the right eigenstates.

In work [97] one-point (ultralocal) physical operators were expressed via the matrix entries
of monodromy matrix T in quantum spin chain solving a quantum inverse problem. Later, for
arbitrary models form factors of local operator were expressed via form factors of matrix entries
Tij in work [110] using composite model approach.

The discovery of the determinant representations for the form factors of ultralocal1 operators
allowed to make a breakthrough in the study of correlation functions both numerically and
analytically. Such determinant representations are very important, because they are the only
known compact form for the representation of the form factors. The two point dynamical
correlation functions of arbitrary local operators O can be presented then as the form factor
series

〈O(x, t)O†(0, 0)〉 = Z−1
∑
m,n

〈n|O(0, 0)|m〉〈m|O†(0, 0)|n〉eiωmnt−βωn−ixpmn

〈m|m〉〈n|n〉

≡ Z−1
∑
mn

∣∣FOmn∣∣2 eiωmnt−βωn−ixpmn ,

(0.1.7)

where
∣∣FOm,n∣∣ is the form factor of the operator O

FOmn =
〈n|O|m〉√
〈n|n〉

√
〈m|m〉

(0.1.8)

between the eigenstates |m〉 and |n〉, ωmn = ωn−ωm, pmn = pm−pn are energy and momentum
of states and β is an inverse temperature and Z is a statistical sum

Z =
∑
n

〈n|e−βωn |n〉
〈n|n〉

. (0.1.9)

1Below we often use term form factor of local operators implying, in fact, the form factors of ultralocal (i.e.
acting in one point, not on interval) operators.
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Figure 1: The image of zero-temperature correlator 〈σz1(t)σzm+1(0)〉 in the Heisenberg spin chain
is given in the energy–momentum coordinates (by J.-S. Caux et al. [60, 61])

The method can be easy applied for many point function too.
Finally, in a linear response theory, the transport coefficients σ can be expressed via the

correlators of correspondent currents (Kubo formula)

σ(q, ω) =
1

ωV

∫ ∞
0

dteiωt〈[J(q, t), J(q, 0)]〉+ i
ne2

ω
, (0.1.10)

where V is a system volume (in 1D length), n is density and e2 eigenvalue of a charge conjugated
to current.

The summation of form factor series is a complicated problem. A huge contribution to the
study of the analytical properties of low-temperature Bose gases, critical spin chains, etc. was
done by the Lyon group [50–52]. This method allowed finally to move to consideration of the
correlation functions, that allow to calculate, using Kubo formula, all transport coefficients in
a model under consideration. Important progress was made by Wuppertal-Shizuoka group that
allows to calculate correlation functions at non-zero temperatures [53–56] and in the dynamical
case [58, 59]. The large part of progress connected with the method of the quantum transfer
matrix [111–113], that allows to reduce double summation to just a single in (0.1.7).

The numerical algorithms for the form factor summation were developed in works of Wupper-
tal-Providence [159–162] and Amsterdam groups [60–62, 104, 135, 163]. With these algorithms
Fourier images of the form factors of were produced (see (1)).

These results show a perfect coincidence with experimental measurements [3–5] (neutron scat-
tering experiments) despite the real Heisenberg magnet is not pure 1D but rather quasi 1D that
demonstrates that restriction of real system to toy 1D model conserves the general behavior
and justify results of the long time development of the mathematical physics of 1D integrable
systems.

The key moment here become basis scanning algorithm. Performing the summation over
all states is nontrivial (and in the case of very large system an unsolvable problem), since the
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number of terms grows exponentially with the system size and degrees of freedom. But in fact
only a very limited number of form factors give a significant contribution to the form factor
series. The proper choice of such form factors is a necessary part of the numerical algorithm.
Up to now such a problem was solved for wide range of models at zero-temperature but still
unsolved for quantum transfer matrix.

One more interesting application of the ABA appears from the connection of the Bethe
vectors scalar products with the super Yang-Mills theories [118]. Thus, it was shown that the
scalar products of off-shell and on-shell Bethe vectors define many point-correlation functions
in the super-Yang-Mills theories.

0.1.2 Nested Bethe ansatz

Since all information about a physical system is encoded in the monodrom matrix, it is natural
that systems with a more complicated structure of the monodromy matrix have more rich
physics. The generating function of the integrals of motion is the transfer-matrix that is nothing
but trace of monodromy matrix. Original ABA allows to deal only with the systems whose
monodromy matrices posses algebra symmetry gl(2). Therefore, it is interesting to approach
a theory that allows to work with the monodromy matrices associated with algebra symmetry
gl(N) or graded algebra symmetry gl(m|n). Systems with such monodromy matrices have
more degrees of freedom. For instance, both Gross-Neveu field model and 1D Fermi gas are
fermionic, so that their analysis requires to take into account the spin degree of freedom. Another
important example are t-J and Hubbard lattice models or many-component Bose and Fermi
gases with (iso)spins, discussed earlier.

ABA that allows to work with such multicomponent systems is called Nested ABA (NABA).
In this approach Bethe vectors have a much more complicated structure, than in the case of
ordinary ABA. The first method of derivation of such vectors for algebra symmetry gl(3) was
developed in [63, 64] and later generalised for algebra symmetry gl(N). It was shown that in
this case Bethe vectors are polynomials of very special form in the monodromy matrix entries
contrary to ordinary ABA, where they are just monomials. The calculation of scalar products
and form factors of operators in this case is much more involved. The first results for algebra
symmetry gl(3) were obtained in [65–68]. Generalisation of such results for algebra symmetry
gl(4) and higher is still an open problem. An important point here is the fact, that monodromy
matrices associated with certain symmetry still have many degrees of freedom, so physically
different systems can have monodromy matrices associated with the same algebra symmetry.
If form factors of monodromy matrix entries that possess certain algebra symmetry are found,
the problem of calculation of one-point correlation functions is solved for all these models. For
instance, both Heisenberg spin chain and 1D spinless one-component Bose gas have monodromy
matrices associated with algebra symmetry gl(2).

This thesis is devoted to the application of NABA to the calculation of form factors and
correlation functions in case of algebra symmetry gl(2|1). It is the first non-trivial example of
such calculations in a graded algebra symmetry. Such calculation is first step in generalisation
of ABA for higher-rank algebra symmetry case, that is important, since huge number physically
interesting systems posses algebra symmetry gl(N) or gl(m|n). This case is interesting in itself,
since it has physical applications. In particular, t−J model at t=J/2 (see (1.1.31)) and 1D one-
component Fermi gas (Gaudin-Yang model) have monodromy matrices with algebra symmetry
gl(2|1). t-J model was already studied using NABA by [73–76] (see also [80, 82]). Gaudin-Yang
model was studied in [123–130, 150] (see also review [122]). Other interesting examples with
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such symmetry are models of 1D lattice gases [28, 83].
The goals of this thesis are calculations of one-point (also we call them ultralocal) form

factors and correlation functions in such model. The first step consists in the calculation (like
in usual ABA) of the determinant representation of scalar product. Such representation is
among the main results of this work. The second problem is the calculation of the determinant
representations for form factors. The last step is the numerical calculation of the correlation
function using form factor series summation.

Summarising above, we can calculate correlation functions in 1D integrable systems associ-
ated with algebra symmetry gl(2|1) using the following approach.

1. Initially the systems with finite (but still arbitrary) number of (quasi)particles are con-
sidered. In the ABA terminology it means that there is a finite number of spectral parameters
and Bethe vectors consist of a finite number of (quasi)particles creation operators. Bethe vec-
tors of the systems with gl(2|1) algebra symmetry were obtained in work [84]. As first step the
action rules of the (quasi)particles creation/annihilation operators on the Bethe vectors should
be found. Such action rules can be found relatively easy using recursion relations for the Bethe
vectors and commutation rules between the creation/annihilation operators, that are known
from the definition of monodromy matrix of system. Creation(annihilation) operators act trivi-
ally on the left(right) vacuum, so despite complicated commutation relations between these
creation and annihilation operator the computation is, in fact, nothing but normal ordering of
the operators similar to ordinary quantum field theory. It can be shown that actions of these
creation/annihilation operators on Bethe vector |ψ〉 spawn a linear combination of the off–shell
Bethe vectors |psi(n)〉

O|ψ〉 =
∑
n

Cn|ψ(n)〉. (0.1.11)

2. Using rules, established above, and a fact that a (dual)Bethe vector is special polynomial
on creation/annihilation operators that acts on (dual) vacuum Ω, it is possible to examine scalar
product of ordinary Bethe and dual Bethe vector. This technically cumbersome procedure
and result has pretty bulky form. In particular, the final expression is given by the bilinear
combination of two scalar products of special form, so called highest coefficient (details are given
in chapter 3). This form is an analog of a representation for the scalar product found in [85]
for the gl(3) algebra symmetry case. The calculated expression at this stage contains multiple
summations and barely can be applied to calculation of the correlation functions.

3. At the next step the multiple sum expression for the scalar product should be reduced to
compact form (namely, to determinant of special matrix). This is the most nontrivial phase since
there is no general approach for the calculation of such sums for arbitrary algebra symmetry
and method should be developed independently for algebra symmetry gl(2|1). In particular,
the details of calculation and result for the graded algebra symmetry are quite different form
algebra symmetry gl(3) systems.

4. Further, using already obtained scalar product and action rules of zero modes (see [86]),
the form factors of T -matrix are calculated. Since all form factors of ultralocal physical operators
can be expressed via form factors of monodromy matrix the problem of one-point correlation
function calculation is solved.

5. Finally, the form factor series should be calculated using the explicit determinant repres-
entation of the form factors and the numerical summation algorithm. At this step the “scanning
algorithm”, that allows to make a scan of the basis for choosing the most contributing form
factor, is required.
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Results, given in this thesis, were published in works [87–90].
The thesis contains 6 chapters and two appendices:

In chapter 1 the basics of ABA are introduced, the preliminary facts given and necessary
notation are defined.

Chapters 2-3 are devoted to steps 1-2 correspondingly of the plan above. Some cumbersome
but technically simple calculations here are not shown, but they can be found in the Appendices.

Chapter 4 devoted to the calculation of scalar product in the determinant form, and, as
particular case, the norm of Bethe vectors.

In chapter 5 form factor of the monodromy matrix entries are derived.
In chapter 6 numerical algorithm for the form factor series summation is developed and

correlation functions are calculated.
Appendix 1 devoted to details of calculation of the multiple actions from chapter 2.
Appendix 2 devoted to description of some properties of the highest coefficient from chapter

3.
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Chapter 1

Algebraic Bethe ansatz

1.1 Algebraic Bethe ansatz

Here the necessary tools of integrable systems are given. Nested algebraic Bethe ansatz is briefly
described. Specific terminology introduced.

1.1.1 Monodromy matrix and RTT -relation

We deal with 1D quantum integrable systmes on the lattice. In case of Heisenberg magnets, or
lattice gas models the systems are defined on a lattice, in case of Gaudin-Yang or Lieb-Liniger
type models we can define the model on a lattice for the technical convenience and consider a
continuous limit later.

The main component of integrable systems theory is the L-operator, that defines the par-
ticular physical system. L-operator satisfies the relation

R(u, v)
(
L(u)⊗ I

)(
I⊗ L(v)

)
=
(
I⊗ L(v)

)(
L(u)⊗ I

)
R(u, v), (1.1.1)

called RLL-(or RTT -)relation.

Both sides of (1.1.1) act in a tensor product of three spaces CN ⊗ CN ⊗ H, where H is
a Hilbert space of a system under consideration, called also quantum space, while spaces CN
are called auxiliary spaces. Variables u, v traditionally are called spectral parameters, in case
they satisfy a special system of equations (see (1.1.20)) we will also call them Bethe parameters.
Each L-operator acts in the tensor product of auxiliary and quantum spaces (further we will
write it as a matrix in the auxiliary space which matrix elements are operators that act in the
quantum space), R-matrix also acts in two auxiliary spaces and itself satisfies the Yang-Baxter
equation

R12(x, y)R13(x, z)R23(y, z) = R23(y, z)R13(x, z)R12(x, y). (1.1.2)

Both sides act on a tensor product of 3 spaces CN , subscripts denote the space number where
certain matrix acts nontrivially. There exist many solutions of equation (1.1.2) — rational,
trigonometric, elliptic. Further we will use only the simplest case of the rational R-matrix

R(x, y) = I + g(x, y)P, g(x, y) =
c

x− y
, (1.1.3)

that posses gl(N) symmetry. Here c is an arbitrary constant, I is the unit operator and P is

13
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operator of spaces permutation,

P =
∑
ij

Eij ⊗ Eji, where N ×N matrices Eij are defined as (Eij)kl = δikδjl (1.1.4)

Further we consider the case of gl(N) algebra symmetry, implying the use of a rational R-matrix
and auxiliary space CN .

In terms of lattice model L-operator defines lattice systems consisting of one site. In order
to have many site system the product of operators L0j , j = 1, . . . , n should be taken. Subscripts
0 here denote an auxiliary space (it is common for all L-operators), while subscripts j index
quantum spaces, each of them corresponds to one site of system

T (u) = Ln(u) . . . L1(u), Lj ≡ L0j . (1.1.5)

Correspondingly, the resulting operator will be matrix acting on the auxiliary space and an
operator on all quantum spaces, i.e. in all sites of the lattice. It can be easily shown, that if L-
operator satisfies (1.1.1), their product also satisfies same equation, where H will denote tensor
product of all quantum spaces j = 1, . . . , n. Operator (1.1.5) is called monodromy matrix.

From relation (1.1.1) and explicit expression (1.1.3) follow commutation relation for matrix
elements of T (here and further indecies numerate matrix element, not the quantum spaces, if
opposite is not stated explicitly):

[Tij(u), Tkl(v)] = g(u, v) [Tkj(v)Til(u)− Tkj(u)Til(v)] . (1.1.6)

Transfer matrix is defined as trace of the monodromy matrix

T (u) = trT (u) =
N∑
i=1

Tii(u). (1.1.7)

It is easy to show, that from (1.1.1)-relation follows

[T (u) , T (v)] = 0. (1.1.8)

Expanding (1.1.8) in Taylor series with respect to u and v at point u0, we obtain commutation
property of all coefficients of the expansion T = sumIju

j

[Ij , Ik] = 0, ∀j, k. (1.1.9)

These coefficients are some operators that act in Hilbert space H. Identifying one of Ij with
Hamiltonian of some system we obtain the model with a set of mutually commuted integrals of
motion Ij .

It follows from (1.1.31), that eigenvectors of the transfer-matrix will also be eigenvectors of
the Hamiltonian and all integrals of motion.

Since operator Li(u− ξ) also satisfies RTT -relation, it is possible to introduce monodromy
matrix

T (u|{ξ1, . . . , ξn}) = Ln(u|ξn) . . . L1(u|ξ1). (1.1.10)

We call the model, defined by this monodromy matrix, the inhomogeneous model, and the set
of parameters {ξ1, . . . , ξn} — inhomogenities. Transfer-matrix, integrals of motion, etc. are
defined for inhomogeneous model in similar way.
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1.1.2 Graded algebra case

RLL-relation and Yang-Baxter equation, introduced in (1.1.1), can be extended for the case
of graded algebras gl(m|n). Space grading Cm|n can be defined in following way : [i] = 0 for
i = 1 . . .m, [i] = 1, for i = m+ 1, . . . ,m+ n, square brackets denote parity. Matrices Eij have
grading [Eij ] = [i] + [j]. Tensor product is defined according to rule

(Eij ⊗ Ekl)·(Epq ⊗ Ers) = (−1)([k]+[l])([p]+[q])EijEpq ⊗ EklErs. (1.1.11)

The graded unity matrix and permutation operator P , acting on the tensor product of spaces
Cm|n ⊗ Cm|n are defined as

P =
∑
ij

(−1)[j]Eij ⊗ Eji, (1.1.12)

I =

m+n∑
i=1

Eii. (1.1.13)

Taking into account the grading of a tensor product and using graded R-matrix commutation
relation for matrix elements T can be written as:

[Tij(u), Tkl(v)} = (−1)[i]([k]+[l])+[k][l]g(u, v) [Tkj(v)Til(u)− Tkj(u)Til(v)] , (1.1.14)

where the graded commutator is used

[Tij(u), Tkl(v)} ≡ Tij(u)Tkl(v)− (−1)([i]+[j])([k]+[l])Tkl(v)Tij(u). (1.1.15)

Graded transfer-matrix is defined as graded supertrace of monodromy matrix

T (u) = strT (u) =

m+n∑
i=1

(−1)[i] Tii(u). (1.1.16)

All terminology introduced above conserves in case of graded algebras up to replacement
gl(N)→ gl(m|n), introducing the graded tensor product, trace and spaces Cm|n and replacement
I, P in definition of R-matrix (1.1.3) by graded.

Further we will consider graded algebra case gl(2|1).

1.1.3 Eigenvectors of transfer-matrix and Bethe equations

ABA allows to build eigenvectors of the algebra gl(m|n) case in explicit form. In particular,
these eigenvectors are polynomial of special form on matrix elements of the monodromy matrix
Tij(u) with i ≤ j acting on vector Ω, that define pseudovacuum. Vector Ω satisfies following
properties:

Tii(u)Ω = λi(u)Ω, i = 1, . . . , N,

Tij(u)Ω = 0, N ≥ i > j ≥ 1.
(1.1.17)

Here λi(u) are scalar functions, that depend on the particular physical model. Further we
also use ratios of these functions

r1(u) =
λ1(u)

λ2(u)
, r3(u) =

λ3(u)

λ2(u)
. (1.1.18)
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The particular form of polynomial, that defines Bethe vectors depends on the algebra sym-
metry. For instance, in the simplest case algebra gl(2), Bethe vectors are monomials with respect
to matrix element T12(u)

Ba(ū) = T12(u1) . . . T12(ua)Ω. (1.1.19)

T12(u) can be considered as a creation operator of (quasi)particles with rapidity u (correspond-
ingly T21 can be considered as an annihilation operator). Further we will use the following
notation for the subsets: ū = {u1, . . . , un}, v̄ = {v1, . . . , vn}, η̄ = {η1, . . . , ηn}, etc. Bethe para-
meters here are arbitrary complex numbers. In special case they satisfy system of equations,
called Bethe equations.

λ1(ui)

λ2(ui)
=

a∏
j 6=i

ui − uj + ic

ui − uj − ic
, i = 1, . . . , a, a = #ū. (1.1.20)

Definition 1.1.1. In the case when Bethe parameters ū satisfy the system of Bethe equations,
Bethe vectors become eigenvectors of the transfer-matrix. In this case we call them on-shell
Bethe vectors. Otherwise they are called off-shell Bethe vectors.

In addition to right, the left (or dual) Bethe vectors are used. In the algebra symmetry gl(2)
case they are

Ca(v̄) = Ω†T21(v1) . . . T21(va). (1.1.21)

Vector Ω† here is a dual vacuum, normalised in such way that Ω†Ω = 1.

Similarly, dual Bethe vectors become eigenvectors of the transfer matrix if the set of v̄
satisfies the same Bethe equation system (1.1.20).

In case of algebra gl(N) the procedure that allows to build Bethe vectors is based on the
modification of ABA called “nested” ABA (NABA). Consider the monodromy matrix in case
gl(2). It can be represented as a square matrix of size 2 × 2. Matrix elements of this matrix
traditionally are called as T11(u) = A(u), T12(u) = B(u), T21(u) = C(u) and T22(u) = D(u).
The monodromy matrix in case of algebra symmetry gl(3) can be represented as matrix of size
3 × 3. It can be presented as a block matrix of size 2 × 2, whose matrix elements B, C are
vectors, and element D is a 2× 2 matrix :

(
A B
C D

)
−→

T11 T12 T13

T21 T22 T23

T31 T32 T33

 =

(
A B
C D

)
, D =

(
T22 T23

T32 T33

)
,

B = {B1, B2}, C = {C1, C2}T .

(1.1.22)

Obviously, in the case of gl(N) algebra symmetry a matrix of size N can be rewritten as a
matrix of smaller sizer. In this case block D of size N −1 also can be rewritten as a monodromy
matrix with with matrix element D′ of size N − 2, and i. g. In such a way consequence of
embedding (“nesting”) can be build: gl(2) ⊂ gl(3) ⊂ · · · ⊂ gl(N), that give the name to nested
ABA.

Such consequence of nesting allows to establish explicit forms of the arbitrary (off-shell)
Bethe vectors for algebra symmetry gl(N). In work [63] using the consequence of embedding an
explicit form of the polynomials that define Bethe vector was found for an arbitrary N in case
of fundamental representation of the monodromy matrix. The following procedure was used
there.
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Consider the case of the fundamental representation of algebra symmetry gl(3). In this case
the action of T23 on the vacuum Ω is trivial, so the only possibility is to use an ansatz for the
Bethe vectors that contains only B1(ui) and B2(uj)

Ba(ū) = Fβ(ū)Bβ(ū)Ω,

Bβ(ū) ≡ Bβ1(u1) . . . Bβa(ua),
(1.1.23)

where the sum is taken over repeated (multi)index β = {β1, . . . , βa}, βi = 1, 2. Coefficients
Fβ1,...,βa here is convenient to present as components of some vector F of size a, that acts in
space H(2) = C2 ⊗ · · · ⊗ C2 (tensor product of a spaces). The structure of vector F should
be fixed from the condition that vector Ba(ū) is an eigenvector of the transfer-matrix T =
A(w) +D11(w) +D22(w). It can be shown that this leads to the following condition on F

T (2)
a,a (w)F = τ (2)(w|ū)F, (1.1.24)

here T (2)(w) and τ (2)(w|ū) are the transfer-matrix of the spin chain with the algebra symmetry
gl(2) (T (2)(w) = D11(w) + D22(w)) and its eigenvalue, ū here satisfy the system of Bethe
equation for gl(2) spin chain. In such way vector F is an eigenvector that acts in space H(2), that
is Hilbert space of inhomogeneous spin chain of length a = #ū, with vacuum Ω(2). Eigenvectors
of this model are already known

F = B(v1) · · · B(vb)Ω
(2), b = 0, . . . , a, (1.1.25)

where B are B operators in case of algebra symmetry gl(2) and Ω(2) is a corresponding vacuum.
Parameters v̄ should satisfy Bethe equations of inhomogeneous spin chain

a∏
j=1

vi − uj + c/2

vi − uj − c/2
= (−1)b−1

b∏
k 6=i

vi − vk + c

vk − vi + c
, i = 1, . . . , b, (1.1.26)

or using shorthand notation

h(vi, ū)

h(ū, vi)
= (−1)b−1h(vi, v̄)

h(v̄, vi)
, i = 1, . . . , b, (1.1.27)

#v̄ = b ≤ a, h(x, y) is defined in (1.1.36). We come to the conclusion, that eigenvectors of the
model with algebra symmetry gl(3) should depend already on two sets of Bethe parameters v̄
and ū, that satisfy coupled system of Bethe equations.

Generalisation of this approach to another model (nonfundamental representation of the
algebra) is also possible.

Remark. It is clear, that embedding can be organised in such way that matrix element A
will be itself matrix 2× 2 while D just a scalar

(
A B
C D

)
−→

T11 T12 T13

T21 T22 T23

T31 T32 T33

 =

(
A B
C D

)
. (1.1.28)

Such embedding leads to the same Bethe vectors, written, however, in different form.
The approach introduced here can be generalised for the graded algebras gl(m|n), differences

appear only the details of calculation.
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In the later works [91–93], the method of off-shell Bethe vectors calculation based on the
Drinfeld’s current realisation of the affine algebra was developed. This approach leads to the
same result and gives the hierarchy of embedding of Bethe vectors in the same way but is more
unified for all models and more simple technically. This approach can be gengeralised for the
graded algebra case. The details of calculation are to cumbersome to give here, but in worth
to note that Bethe vectors for algebra symmetry gl(2|1) case, given in the next chapter, were
obtained using exactly this approach. Work [94], where an alternative method of Bethe vectors
calculation was derived, should be also mentioned.

Remark. The definition of the off-shell Bethe vectors are not unique. The only requirement
is that under condition on the spectral parameters (the Bethe equations) any off-shell Bethe
vector should become on-shell Bethe vector that is an eigenvector of the transfer-matrix. It
is clear, that such definition allows some degrees of freedom. But all the methods, mentioned
above, result in the same off-shell Bethe vector.

As its already clear from (1.1.23)-(1.1.25), polynomials that define Bethe vectors for algebra
symmetry gl(N) are quite more complicated than in gl(2) algebra symmetry case. Thus, it
consists of all possible matrix elements Tij with i < j. Such matrix elements also can be
considered as creation operators of few types of (quasi)particles, thus in the case of algebra gl(3)
(or gl(2|1)) elements T12, T23 create particles of the first and the second types respectively, while
operator T13 creates (quasi)particles of both types (so in NABA approach for algebra symmetry
gl(n) there exist n − 1 sort of (quasi)particles). Operators Tij with i > j are the operators of
annihilation of (quasi)particles, and the diagonal matrix elements define the transfer-matrix,
that is the generation function of the integrals of motion (1.1.8)-(1.1.9). In the vacuum state
(quasi)particles are absent.

Moreover, Bethe vectors in the gl(N) algebra symmetry case depends already on a set ofN−1
variables {ū, v̄, w̄, . . . }. Thus, in case of algebra symmetry gl(3) (or gl(2|1)) vectors Ba,b(ū; v̄)
depends on two types of variables with cardinalities a and b correspondingly: ū = {u1, . . . , ua}
and v̄ = {v1, . . . , vb}, with a, b = 0, 1, . . . . Explicit form of vectors and Bethe equations for
algebra symmetry gl(2|1) are given in next chapter.

Parameters ū, v̄ are rapidities of (quasi)particles of corresponding types (we have exactly
N − 1 types of (quasi)particles and N − 1 types of spectral parameters). Bethe equations
are nothing but spectral equations. Naturally, Bethe equations also depends on the particular
algebra symmetry and the particular physical model (e.g. on set of λj). Bethe equations for
the algebra symmetry gl(2|1) are given in the next chapter.

Terminology of definition (1.1.1) can be used in the highest rank algebra too up to replace-
ment of one set of spectral parameters by N − 1 sets, that should satisfy a coupled system of
Bethe equations.

Since on-shell (dual)Bethe vectors are eigenvectors for (1.1.7) (or (1.1.16)), by definition

T (w)Ba,b(ū; v̄) = τ(w|ū, v̄)Ba,b(ū; v̄), Ca,b(ū; v̄)T (w) = τ(w|ū, v̄)Ca,b(ū; v̄), (1.1.29)

where τ(w|ū, v̄) are eigenvalue of (1.1.7) ( or (1.1.16)). An explicit form of τ(w|ū, v̄) for algebra
symmetry gl(2|1) together with the explicit form of Bethe equations are established in the next
chapter.
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1.1.4 L-operators. Gases and t-J model

One of the simplest models is the Heisenberg spin chain (0.1.1) with ∆ = 1. The Hamiltonian
of this model can be presented as

H = J
L∑
j=1

Pj,j+1, (1.1.30)

where Pij is the (graded) operator of particle permutation, the Hilbert space of one site is C2.
In the presence of multiple components model is generalised by replacement of space C2 → Cm|n
and replacement of permutation operator by operator acting in this space. In case of Fermi
particles permutation leads to appearing of sign −1.

Consider the representation of the one-dimensional model of strongly correlated electrons
called t-J model it terms of L-operators. THe Hamiltonian of such system is

H =
L∑
j=1

{
−tP

∑
σ=±1

(
c†j,σcj+1,σ + h.c.

)
P + J

(
SjSj+1 −

1

4
njnj+1

)}
. (1.1.31)

Here t is the hopping constant (probability of tunneling of electron on neighboring site), J is

spin-spin interaction of neighboring sites, operator nj,σ ≡ c†j,σcj,σ defines the electrons number
in the j-th site, nj ≡ nj,1 + nj,−1,

Saj =
1

2
σaαβc

†
j,αcj,β, α, β =↑, ↓, a = x, y, z, (1.1.32)

is the spin operator (where σa are Pauli matrices), P =
∏L
j=1(1 − nj,↑nj,↓) is the projector on

the states that do not contain double occupancy, i.e. allowing only states Ω, | ↑〉j = c†j,1Ω,

| ↓〉j = c†j,−1Ω i.e. states with no electrons in sites j or single electron with spin up or down,

{cj,σ, c†k,τ} = δjkδστ . As was shown in [75, 76, 117] in case t = −J/2 this system can be
described by L-operator

Lj(u) = uI +

(1− nj,↓)(1− nj,↑) (1− nj,↓)cj,↑ cj,↓(1− nj,↑)
(1− nj,↓)c†j,↑ (1− nj,↓)nj,↑ −cj,↓c†j,↑
c†j,↓(1− nj,↑) c†j,↓cj,↑ nj,↓(1− nj,↑)

 . (1.1.33)

This L-operator satisfies the RTT -relation, with R-matrix that posses gl(1|2) symmetry. Space
gradation is given by [1] = 0, [2] = [3] = 1.

The permutation operator Pjk can be written terms of fermions cσ, c†σ in the following way

P σjk = 1− (c†j,σ − c
†
k,σ)(cj,σ − ck,σ), j, k = 1, . . . , L, σ =↑, ↓, Pjk = P ↑jkP

↓
jk = P ↓jkP

↑
jk.

(1.1.34)

Define now permutation operator that acts on a restricted Hilbert space where double occupancy
is prohibited.

P̃jk = PjkP. (1.1.35)

Using this representation it is possible to rewrite (1.1.31) in form (1.1.30) up to constant terms,
and L-operator become the graded (1.1.3) up to common multiplier. In this form the RLL-
relation coincides with the Yang-Baxter relation. The Hilbert space is H = H1 ⊗ · · · ⊗ Hn,

where Hj become space C1|2
j with components Ω, | ↑〉j = c†j,↑Ω, | ↓〉j = c†j,↓Ω.
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1.1.5 Notation

In order to make our formulas more compact we use several auxiliary functions and conventions
on the notation.

In addition to the functions g(x, y) we also introduce the functions

f(x, y) = 1 + g(x, y) =
x− y + c

x− y
, h(x, y) =

f(x, y)

g(x, y)
=
x− y + c

c
(1.1.36)

and t(x, y) =
g(x, y)

h(x, y)
=

c2

(x− y + c)(x− y)
. (1.1.37)

These functions have obvious properties

g(x, y) = −g(y, x), h(x, y) =
1

g(x, y − c)
, f(x− c, y) =

1

f(y, x)
. (1.1.38)

We always denote sets of variables by bar: w̄, ū, v̄ etc. Individual elements of the sets are
denoted by subscripts and without bar: wj , uk, v` etc. As a rule, the number of elements in the
sets is not shown explicitly; however we give these cardinalities in special comments after the
formulae. Subsets of variables are denoted by Roman subscripts: ūI, v̄II, w̄ii etc. For example,
the notation ū⇒ {ūI, ūII} means that the set ū is divided into two disjoint subsets ūI and ūII.
We assume that the elements in every subset are ordered in such a way that the sequence of
their subscripts is strictly increasing. For the union of two sets into another one we use the
notation {ū, w̄} = ξ̄. Finally we use a special notation ūj , v̄k and so on for the sets ū \uj , v̄ \ vk
etc.

In order to avoid excessively cumbersome formulae we use shorthand notation for products
of functions depending on one or two variables. Namely, whenever such a function depends on
a set of variables, this means that we deal with the product of this function with respect to the
corresponding set, as follows:

λi(ū) =
∏
uj∈ū

λi(uj); g(xk, w̄`) =
∏
wj∈w̄
wj 6=w`

g(xk, wj); f(ūII, ūI) =
∏
uj∈ūII

∏
uk∈ūI

f(uj , uk). (1.1.39)

This notation is also used for the product of commuting operators,

Tij(ū) =
∏
uk∈ū

Tij(uk). (1.1.40)

One can easily see from the commutation relations (1.1.14) that in case [i] + [j] = 0
[Tij(u), Tij(v)] = 0, and hence, the operator product (1.1.40) is well defined. However, if
[i] + [j] = 1, then [Tij(u), Tij(v)] 6= 0, therefore we introduce symmetric operator products

Tj3(v̄) =
Tj3(v1) . . . Tj3(vn)∏
n≥`>m≥1 h(v`, vm)

, T3j(v̄) =
T3j(v1) . . . T3j(vn)∏
n≥`>m≥1 h(vm, v`)

j = 1, 2. (1.1.41)

Due to the commutation relation

[Tik(v1), Tik(v2)] = 0, if [Tik] = 0,

h(v1, v2)Tj3(v1)Tj3(v2) = h(v2, v1)Tj3(v2)Tj3(v1), j = 1, 2,

h(v2, v1)T3j(v1)T3j(v2) = h(v1, v2)T3j(v2)T3j(v1), j = 1, 2,

(1.1.42)
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in the symmetrised product all operators can be written in arbitrary order.
The shorthand notation can be used also for λi(z̄), ri(z̄) For instance,

λ2(z̄) =
∏
zj∈z̄

λ2(zj); r1(η̄II) =
∏
ηj∈η̄II

r1(ηj). (1.1.43)

In various formulae the Izergin determinant Kn(x̄|ȳ) appears1. [44], [46]. It is defined for
two sets x̄ and ȳ with common cardinality #x̄ = #ȳ = n,

Kn(x̄|ȳ) = h(x̄, ȳ)
n∏

`<m

g(x`, xm)g(ym, y`) det
n

[t(xi, yj)] . (1.1.44)

According to shorthand convention notation h(x̄, ȳ) in definition of (1.1.44) implies double
product h over sets x̄ and ȳ. Subscript n in the determinant denotes the size of matrix under
determinant. It is easy to see from definition (1.1.44) that K1(x|y) = g(x, y) and

Kn(x̄|ȳ + c) = (−1)n
Kn(ȳ|x̄)

f(ȳ, x̄)
. (1.1.45)

Other properties of Kn are given in Appendix 8.1.
For the set w̄ = {w1, . . . , wn} we define

∆′(w̄) =

n∏
j<k

g(wj , wk), ∆(w̄) =

n∏
j>k

g(wj , wk). (1.1.46)

1.1.6 Antimorphism ψ

The algebra (1.1.1) possesses an antimorphism [84]

ψ
(
Tij(u)

)
= (−1)[i][j]+[i]Tji(u), ψ

(
AB
)

= (−1)[A][B]ψ
(
B
)
ψ
(
A
)
, (1.1.47)

where A and B are arbitrary operators of fixed gradings. It follows from (1.1.47) that

ψ
(
A1 . . . An

)
= (−1)ϑnψ

(
An
)
. . . ψ

(
A1

)
, ϑn =

∑
1≤i<j≤n

[Ai] · [Aj ]. (1.1.48)

For the graded algebra gl(2|1) it is easy to check that if [i] = [j] = 0, then

ψ
(
Tij(ū)

)
= Tji(ū), ψ

(
Ti3(ū)

)
= (−1)n(n−1)/2T3i(ū), ψ

(
T3i(ū)

)
= (−1)n(n+1)/2Ti3(ū),

(1.1.49)
where n = #ū.

1Note that by definition this function depends on two sets of variables. Therefore, the convention on shorthand
notations for the products is not apply in this case.
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Chapter 2

Multiple action rules in algebra
symmetry gl(2|1)

Since in ABA monodromy matrix is basic object whose entries are building blocks for both phys-
ical operators and Bethe vectors (that are in particular on-shell case eigenvectors of Hamilto-
nian), it is natural to consider commutation relations between Tij carefully. These commutation
relations follow directly from RTT -relation, but work with them in case of large operators num-
ber is not easy. For instance, in order to commute operators T11(u) and T22(v), it is enough to
put i = j = 1, k = l = 2 in (1.1.14). Obviously, this commutation rules leads to appearance
only terms T12(u)T21(v) and T12(v)T21(u) with some coefficients in r.h.s. Commutator of oper-
ators’ products [T11(ū), T22(v̄)] in case #ū,#v̄ > 1 is, however, much more involved. Successive
application of formula (1.1.14) spawn more and more terms of different form. In general the
commutator rules for product of operators can be established [109], however, on practice only
the action rules of monodromy matrix entries onto Bethe vectors rather than commutation
relation are required.

In this chapter the action rule of Tij onto generic Bethe vectors, e.g. polynomial on Tij , i < j
acting on pseudovacuum vector are found. These results are necessary for further calculation
on scalar products and form factors. This chapter is based on the papers [87] and [90] published
by the thesis author in collaboration.

2.1 Bethe vector in gl(2|1) algebra symmetry case

Explicit representations for gl(2|1) Bethe vectors were obtained in1 [84].

Definition 2.1.1. For #ū = a and #v̄ = b define a Bethe vector

Ba,b(ū; v̄) =
∑

g(v̄I, ūI)
f(ūI, ūII)g(v̄II, v̄I)h(ūI, ūI)

λ2(ū)λ2(v̄II)f(v̄, ū)
T13(ūI)T12(ūII)T23(v̄II)Ω. (2.1.1)

Here the sum is taken over partitions v̄ ⇒ {v̄I, v̄II} and ū⇒ {ūI, ūII} with the restriction #ūI =
#v̄I = n, where n = 0, 1, . . . ,min(a, b). Recall also that we use the shorthand notation for the
products of all the functions and the operators in (2.1.1).

1The formulae for the Bethe vectors obtained in [84] differ from (2.1.1), (2.1.2) by a normalisation factor
λ2(v̄)λ2(ū) f(v̄, ū).

23
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An alternative formula for the Bethe vector is

Ba,b(ū; v̄) =
∑

Kn(v̄I|ūI)
f(ūI, ūII)g(v̄II, v̄I)

λ2(ūII)λ2(v̄)f(v̄, ū)
T13(v̄I)T23(v̄II)T12(ūII)Ω, (2.1.2)

where Kn is the Izergin determinant (1.1.44). Other notation is the same as in (2.1.1).

As mentioned, the distinctive feature of the Bethe vectors is that under certain conditions
on ū and v̄ (Bethe equations), they are eigenvectors of the transfer matrix. We will show in
section 2.1.5 that the vectors (2.1.1), (2.1.2) do possess this property.

These vectors are identical as it was shown explicitly in [109] by reordering of operators
using commutation relations. Initially to distinct form appear due to two different embedding
of matrix block 2× 2 in matrix 3× 3 during the nesting procedure (see (1.1.22) and (1.1.28)).

Further, in addition to the right Bethe vector (ordinary) we will need left (dual) Bethe
vector. Here to representation for them are given [84, 109]:

Ca,b(ū; v̄) = (−1)
b2−b

2

∑
Kn(v̄I|ūI)

f(ūI, ūII)g(v̄II, v̄I)

λ2(v̄)λ2(ūII)f(v̄, ū)
Ω†T21(ūII)T32(v̄II)T31(v̄I), (2.1.3)

and

Ca,b(ū; v̄) = (−1)
b2−b

2

∑
g(v̄I, ūI)

f(ūII, ūI)f(v̄I, ūII)g(v̄II, v̄I)h(ūI, ūI)

λ2(ū)λ2(v̄II)f(v̄, ū)
Ω†T32(v̄II)T31(ūI)T21(ūII).

(2.1.4)
Here the sum is taken over the same partitions of the sets ū and v̄ as in (2.1.1).

It can be shown [91], that the action of any monodromy matrix entry Tij on a Bethe vector
reduces to a finite linear combination of Bethe vectors. However, it is not so obvious if we
deal with explicit representations (2.1.1), (2.1.2). Furthermore, in spite of the action of Tij(z)
onto Ba,b(ū; v̄) formally can be derived via (1.1.14) and (1.1.17), actually it is pretty nontrivial
problem.

Fortunately, similarly to the gl(3) case [95] the gl(2|1) Bethe vectors possess recursions over
the number of the Bethe parameters [84]. The first recursion has the form

T12(z)Ba,b(ū; v̄) = λ2(z)f(v̄, z)Ba+1,b({ū; z}; v̄) +
b∑

j=1

g(z, vj)g(v̄j , vj)T13(z)Ba,b−1(ū; v̄j).

(2.1.5)
The second recursion reads

T23(z)Ba,b(ū; v̄) = λ2(z)h(v̄, z)f(z, ū)Ba,b+1(ū; {v̄, z})

+

a∑
j=1

g(uj , z)f(uj , ūj)T13(z)Ba−1,b(ūj ; v̄). (2.1.6)

We recall that in these formulas v̄j and ūj respectively mean v̄ \ vj and ū \ uj . The shorthand
notation for the products of the functions g and f is also used.

Equations (2.1.5), (2.1.6) allow us to built recursively Bethe vectors starting with the
simplest cases

Ba,0(ū; ∅) =
T12(ū)

λ2(ū)
Ω, B0,b(∅; v̄) =

T23(v̄)

λ2(v̄)
Ω. (2.1.7)

One can also easily derive the actions of Tij onto either Ba,0(ū; ∅) or B0,b(∅; v̄), and then, using
induction over a or b obtain the action rule in the general case. This is main task of this chapter.
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2.1.1 Bethe vectors and antimorphism ψ

Define the action of antimorphism (1.1.47) on the Bethe vectors [84]. We can always choose the
grading of Ω and Ω† such that [Ω] = [Ω†] = 0. Then we set [AΩ] = [Ω†A] = [A] and define

ψ(Ω) = Ω†, ψ(AΩ) = Ω†ψ(A),

ψ(Ω†) = Ω, ψ(Ω†A) = ψ(A)Ω,
(2.1.8)

where A is an arbitrary product of the monodromy matrix entries. It is easy to see that

[Ba,b(ū; v̄)] = [Ca,b(ū; v̄)] = b. (2.1.9)

It is also easy to check that

ψ
(
Ba,b(ū; v̄)

)
= Ca,b(ū; v̄), ψ

(
Ca,b(ū; v̄)

)
= (−1)b Ba,b(ū; v̄). (2.1.10)

Indeed, fixing partitions in (2.1.1), (2.1.3) such that #ūI = #v̄I = n and using (1.1.49) it is easy
to obtain

ψ
(
T13(ūI)T12(ūII)T23(v̄II)

)
= (−1)n(n−1)/2+(b−n)(b−n−1)/2+n(b−n)T32(v̄II)T21(ūII)T31(ūI)

= (−1)b(b−1)/2T32(v̄II)T21(ūII)T31(ūI), (2.1.11)

and, similarly,

ψ
(
T32(v̄II)T21(ūII)T31(ūI)

)
= (−1)n(n+1)/2+(b−n)(b−n+1)/2+n(b−n)T13(ūI)T12(ūII)T23(v̄II)

= (−1)b(b+1)/2T13(ūI)T12(ūII)T23(v̄II). (2.1.12)

These equations immediately imply (2.1.10).

2.1.2 Multiple action rules

The main result of this paper consists of explicit formulae of the multiple actions of the mono-
dromy matrix entries onto Bethe vectors. We show that this action always reduces to a finite
linear combination of Bethe vectors.

Everywhere in this section we assume that ū, v̄, and z̄ are three sets of generic complex
numbers with cardinalities #ū = a, #v̄ = b, and #z̄ = n, a, b, n = 0, 1, . . . . We also set
η̄ = {ū, z̄} and ξ̄ = {v̄, z̄}.

Actions Tij(z̄) with i < j

• Multiple action of T13(z):

T13(z̄)Ba,b(ū; v̄) = λ2(z̄)h(v̄, z̄)Ba+n,b+n(η̄; ξ̄). (2.1.13)

• Multiple action of T12(z):

T12(z̄)Ba,b(ū; v̄) = λ2(z̄)h(ξ̄, z̄)
∑ g(ξ̄II, ξ̄I)

h(ξ̄I, z̄)
Ba+n,b(η̄; ξ̄II). (2.1.14)

Here the sum is taken over partitions ξ̄ ⇒ {ξ̄I, ξ̄II} with #ξ̄I = n.

• Multiple action of T23(z):

T23(z̄)Ba,b(ū; v̄) = (−1)nλ2(z̄)h(v̄, z̄)
∑

Kn(z̄|η̄I + c)f(η̄I, η̄II)Ba,b+n(η̄II; ξ̄). (2.1.15)

Here the sum is taken over partitions η̄ ⇒ {η̄I, η̄II} with #η̄I = n.



26 CHAPTER 2. MULTIPLE ACTION RULES IN ALGEBRA SYMMETRY GL(2|1)

2.1.3 Actions of Tii(z̄)

In formulae (2.1.16)–(2.1.18) the sums are taken over partitions ξ̄ ⇒ {ξ̄I, ξ̄II} and η̄ ⇒ {η̄I, η̄II}
with #ξ̄I = #η̄I = n.

• Multiple action of T11(z):

T11(z̄)Ba,b(ū; v̄) = (−1)nλ2(z̄)h(ξ̄, z̄)
∑

r1(η̄I)
f(η̄II, η̄I)g(ξ̄II, ξ̄I)

h(ξ̄I, z̄)f(ξ̄II, η̄I)
Kn(η̄I|ξ̄I + c)Ba,b(η̄II; ξ̄II).

(2.1.16)

• Multiple action of T22(z):

T22(z̄)Ba,b(ū; v̄) = (−1)nλ2(z̄)h(ξ̄, z̄)
∑ f(η̄I, η̄II)g(ξ̄II, ξ̄I)

h(ξ̄I, z̄)
Kn(z̄|η̄I+c)Ba,b(η̄II; ξ̄II). (2.1.17)

• Multiple action of T33(z):

T33(z̄)Ba,b(ū; v̄) = λ2(z̄)h(ξ̄, z̄)
∑

r3(ξ̄I)
f(η̄I, η̄II)g(ξ̄II, ξ̄I)h(η̄I, η̄I)

h(ξ̄I, η̄I)h(η̄I, z̄)f(ξ̄I, η̄II)
Ba,b(η̄II; ξ̄II). (2.1.18)

2.1.4 Actions of Tij(z̄) with i > j

• Multiple action of T21(z):

T21(z̄)Ba,b(ū; v̄) = λ2(z̄)h(ξ̄, z̄)
∑

r1(η̄I)
f(η̄II, η̄I)f(η̄II, η̄III)f(η̄III, η̄I)g(ξ̄II, ξ̄I)

h(ξ̄I, z̄)f(ξ̄II, η̄I)

×Kn(z̄|η̄II + c)Kn(η̄I|ξ̄I + c)Ba−n,b(η̄III; ξ̄II). (2.1.19)

Here the sum is taken over partitions ξ̄ ⇒ {ξ̄I, ξ̄II} and η̄ ⇒ {η̄I, η̄II, η̄III} with #ξ̄I = #η̄I =
#η̄II = n.

• Multiple action of T32(z):

T32(z̄)Ba,b(ū; v̄) = (−1)
n(n−1)

2 λ2(z̄)h(ξ̄, z̄)
∑

r3(ξ̄I)
f(η̄I, η̄II)g(ξ̄II, ξ̄I)g(ξ̄III, ξ̄II)g(ξ̄III, ξ̄I)

h(η̄I, z̄)h(ξ̄I, η̄I)h(ξ̄II, z̄)f(ξ̄I, η̄II)

× h(η̄I, η̄I) Ba,b−n(η̄II; ξ̄III). (2.1.20)

Here the sum is taken over partitions ξ̄ ⇒ {ξ̄I, ξ̄II, ξ̄III} and η̄ ⇒ {η̄I, η̄II} with #ξ̄I = #ξ̄II =
#η̄I = n.

• Multiple action of T31(z):

T31(z̄)Ba,b(ū; v̄) = (−1)
n(n+1)

2 λ2(z̄)h(ξ̄, z̄)
∑

r3(ξ̄I)r1(η̄II)
g(ξ̄II, ξ̄I)g(ξ̄III, ξ̄II)g(ξ̄III, ξ̄I)

h(η̄I, z̄)h(ξ̄I, η̄I)h(ξ̄II, z̄)

× f(η̄I, η̄II)f(η̄I, η̄III)f(η̄III, η̄II)h(η̄I, η̄I)

f(ξ̄I, η̄II)f(ξ̄I, η̄III)f(ξ̄III, η̄II)
Kn(η̄II|ξ̄II + c) Ba−n,b−n(η̄III; ξ̄III). (2.1.21)

Here the sum is taken over partitions ξ̄ ⇒ {ξ̄I, ξ̄II, ξ̄III} and η̄ ⇒ {η̄I, η̄II, η̄III} with #ξ̄I =
#ξ̄II = #η̄I = #η̄II = n.

The proofs of multiple action rules are given in sections 2.2–2.4.
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2.1.5 on-shell Bethe vectors

The action formulas (2.1.13)–(2.1.21) are valid for generic complex numbers z̄, ū, and v̄. In
this section we consider them for on-shell Bethe vector Ba,b(ū; v̄), that is when the parameters
ū and v̄ satisfy a system of Bethe equations (see (2.1.30)).

In order to find explicitly the result of the transfer matrix action onto Ba,b(ū; v̄) one should
set n = 1 in (2.1.16)–(2.1.18). Then the subsets η̄I and ξ̄I consist of one element only. Obviously,
there are two essentially different types of partitions of the set η̄ = {z, ū}:

η̄I = z, η̄II = ū, (2.1.22)

η̄I = uj , η̄II = {z, ūj}, j = 1, . . . , a. (2.1.23)

Similarly, there are two different types of partitions of the set ξ̄ = {z, v̄}:

ξ̄I = z, ξ̄II = v̄, (2.1.24)

ξ̄I = vk, ξ̄II = {z, v̄k}, k = 1, . . . , b. (2.1.25)

Thus, the action of T (z) onto Ba,b(ū; v̄) can be written in the form

T (z)Ba,b(ū; v̄) = τ(z|ū; v̄)Ba,b(ū; v̄) +
a∑
j=1

ΛjBa,b({z, ūj}; v̄)

+
b∑

k=1

Λ̃kBa,b(ū; {z, v̄k}) +
a∑
j=1

b∑
k=1

MjkBa,b({z, ūj}; {z, v̄k}), (2.1.26)

where τ , Λj , Λ̃k, and Mjk are numerical coefficients. In order to find τ(z|ū; v̄) we substitute the
partitions (2.1.22) and (2.1.24) into (2.1.16)–(2.1.18). We obtain

τ(z|ū, v̄) = λ1(z)f(ū, z) + λ2(z)f(z, ū)f(v̄, z)− λ3(z)f(v̄, z), (2.1.27)

where we have used h(z, z) = 1 and K1(z|z + c) = g(z, z + c) = −1.

In order to find Λj we substitute the partitions (2.1.23) and (2.1.24) into (2.1.16)–(2.1.18).
We find

Λj = λ2(z)h(v̄, z)g(v̄, z)g(z, uj)

(
r1(uj)

f(ūj , uj)

f(v̄, uj)
− f(uj , ūj)

)
. (2.1.28)

Similarly, in order to find Λ̃k we substitute the partitions (2.1.22) and (2.1.25) into (2.1.16)–
(2.1.18). This gives us

Λ̃k = λ2(z)f(z, ū)g(v̄k, vk)h(v̄k, z)g(z, vk)

(
1− r3(vk)

f(vk, ū)

)
. (2.1.29)

If Ba,b(ū; v̄) is an eigenvector of T (z), then the coefficients Λj and Λ̃k must vanish for arbitrary
z. Setting Λj = 0 for j = 1, . . . , a and Λ̃k = 0 for k = 1, . . . , b we arrive at a system of equations

r1(uj) =
f(uj , ūj)

f(ūj , uj)
f(v̄, uj), j = 1, . . . , a,

r3(vk) = f(vk, ū), k = 1, . . . , b.

(2.1.30)
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Let us check that Mjk = 0 provided the system (2.1.30) is fulfilled. Substituting the parti-
tions (2.1.23) and (2.1.25) into (2.1.16)–(2.1.18) we obtain

Mjk = λ2(z)h(v̄k, z)g(v̄k, vk)

(
r1(uj)f(ūj , uj)

f(v̄, uj)
g(vk, uj)g(z, vk)

+ f(uj , ūj)g(uj , z)
[
g(z, vk) +

r3(vk)

f(vk, ū)
g(vk, uj)

])
. (2.1.31)

Substituting here r1(uj) and r3(vk) from equations (2.1.30), we immediately find that Mjk = 0
due to the identity

g(vk, uj)g(z, vk) + g(uj , z)g(z, vk) + g(uj , z)g(vk, uj) = 0. (2.1.32)

Thus, the system (2.1.30) can be treated as the system of Bethe equations for the parameters
ū and v̄. If (2.1.30) holds, then the corresponding Bethe vector Ba,b(ū; v̄) is on-shell, i.e. it is
an eigenvector of the transfer matrix T (z). The eigenvalue of this on-shell vector is given by
(2.1.27). At the same time, it is easy to see that the function τ(z|ū, v̄) has no poles in the points
z = uj , j = 1, . . . , a, and z = vk, k = 1, . . . , b due to the system (2.1.30).

2.1.6 Twist

Apart from the usual monodromy matrix it is convenient to consider a twisted monodromy
matrix Tκ(u) [48, 115]. For the models with gl(2|1) symmetry it is defined as follows. Let
κ be a 3 × 3 diagonal matrix κ = diag(κ1, κ2, κ3), where κi are complex numbers. Then
Tκ(u) = κT (u), where T (u) is the standard monodromy matrix.

One can easily check that the twisted monodromy matrix satisfies the RTT -relation (1.1.1)
with the R-matrix (1.1.3). The supertrace of the twisted monodromy matrix Tκ(u) = strTκ(u)
is called the twisted transfer matrix. The eigenstates (resp. dual eigenstates) of the twisted
transfer matrix are called twisted on-shell Bethe vectors (resp. twisted dual on-shell Bethe
vectors). A generic (dual) Bethe vector becomes a twisted (dual) on-shell Bethe vector, if the
Bethe parameters satisfy a system of twisted Bethe equations

r1(uj) =
κ2

κ1

a∏
k=1
k 6=j

f(uj , uk)

f(uk, uj)

b∏
l=1

f(vl, uj), j = 1, . . . , a,

r3(vj) =
κ2

κ3

a∏
l=1

f(vj , ul), j = 1, . . . , b.

(2.1.33)

Then

Tκ(w)Ba,b(ū; v̄) = τκ(w|ū, v̄)Ba,b(ū; v̄), Ca,b(ū; v̄)Tκ(w) = τκ(w|ū, v̄)Ca,b(ū; v̄), (2.1.34)

where the eigenvalue τκ(w|ū, v̄) is given by (2.1.27), in which one should replace λi(w) by κiλi(w)

τ(z|ū, v̄) = κ1λ1(z)f(ū, z) + κ2λ2(z)f(z, ū)f(v̄, z)− κ3λ3(z)f(v̄, z), (2.1.35)
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2.2 Proofs of multiple actions for Tij with i < j

Bethe vectors consist of the elements from the upper triangular part of the monodromy matrix
applied to pseudovacuum Ω (2.1.1), (2.1.2). Then, it is intuitively clear that actions of the
elements Tij with i < j are the simplest. We begin our consideration from the right-upper
corner of monodromy matrix and will move along anti-diagonal direction successively proving
the action relations.

2.2.1 Proof for T13

For n = 1 equation (2.1.13) follows directly from the definitions of the Bethe vectors. Let us
take, for instance, (2.1.1) and set there ū = {z, ū′} and v̄ = {z, v̄′}. Then the product 1/f(v̄, ū)
vanishes, as it contains 1/f(z, z). This zero, however, can be compensated if and only if z ∈ ūI

and z ∈ v̄I. Indeed, in this case the product g(v̄I, ūI) contains a singular factor g(z, z). Thus,
we should consider only such partitions, for which z ∈ ūI and z ∈ v̄I. Therefore we should set:
ūI = {z, ū′I} and v̄I = {z, v̄′I}; ūII = ū′II and v̄II = v̄′II. Then we obtain

Ba,b({z, ū′}; {z, v̄′}) =
∑

g(v̄′I, ū
′
I)
f(ū′I, ū

′
II)g(v̄′II, v̄

′
I)h(ū′I, ū

′
I)

λ2(ū′)λ2(v̄′II)f(v̄′, ū′)
g(v̄′I, z)g(z, ū′I)

× f(z, ū′II)g(v̄′II, z)h(z, ū′I)h(ū′I, z)

λ2(z)f(v̄′, z)f(z, ū′)

T13(z)

h(ū′I, z)
T13(ū′I)T12(ū′II)T23(v̄′II)Ω. (2.2.1)

After evident cancellations we arrive at

Ba,b({z, ū′}; {z, v̄′}) =
T13(z)

λ2(z)h(v̄′, z)
Ba−1,b−1(ū′; v̄′), (2.2.2)

which coincides with (2.1.13) at n = 1. The same result arises from the analysis of equation
(2.1.2).

Now we use induction over n. Assume that (2.1.13) holds for some n− 1. Then

T13(z̄)Ba,b(ū; v̄) =
T13(zn)T13(z̄n)

h(z̄n, zn)
Ba,b(ū; v̄)

= λ2(z̄n)
h(v̄, z̄n)

h(z̄n, zn)
T13(zn)Ba+n−1,b+n−1({ū, z̄n}; {v̄, z̄n})

= λ2(z̄)h(v̄, z̄)Ba+n,b+n({ū, z̄}; {v̄, z̄}), (2.2.3)

and thus, (2.1.13) is proved. �

Using (2.1.13) one can recast recursions (2.1.5) and (2.1.6) as follows:

T12(z)Ba,b(ū; v̄) = λ2(z)f(v̄, z)Ba+1,b({ū, z}; v̄)

+ λ2(z)
b∑

j=1

g(z, vj)g(v̄j , vj)h(v̄j , z)Ba+1,b({ū, z}; {v̄j , z}), (2.2.4)

and

T23(z)Ba,b(ū; v̄) = λ2(z)h(v̄, z)
(
f(z, ū)Ba,b+1(ū; {v̄, z})

+

a∑
j=1

g(uj , z)f(uj , ūj)Ba,b+1({ūj , z}; {v̄, z})
)
. (2.2.5)
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One can easily recognize in these equations the actions (2.1.14) and (2.1.15) for n = 1. Then
one should use induction over n.

2.2.2 Proof for T12

Assume that (2.1.14) holds for some n− 1. Then

T12(z̄)Ba,b(ū; v̄) = T12(zn)λ2(z̄n)h(ξ̄, z̄n)
∑ g(ξ̄II, ξ̄I)

h(ξ̄I, z̄n)
Ba+n−1,b(η̄; ξ̄II). (2.2.6)

Here η̄ = {z̄n, ū}, ξ̄ = {z̄n, v̄}, and the sum runs through the partitions ξ̄ ⇒ {ξ̄I, ξ̄II} with
#ξ̄I = n− 1. Acting with T12(zn) we obtain

T12(z̄)Ba,b(ū; v̄) = λ2(z̄)
h(ξ̄, z̄n)

h(zn, z̄n)

∑ g(ξ̄II, ξ̄I)

h(ξ̄I, z̄n)
h(ξ̄II, zn)

g(ξ̄ii, ξ̄i)

h(ξ̄i, zn)
Ba+n,b(η̄; ξ̄ii). (2.2.7)

Here already η̄ = {z̄, ū} and ξ̄ = {z̄, v̄}. The sum first is taken over partitions {z̄n, v̄} ⇒ {ξ̄I, ξ̄II}
with #ξ̄I = n− 1, and then over partitions {zn, ξ̄II} ⇒ {ξ̄i, ξ̄ii} with #ξ̄i = 1. One can say that
the sum is taken over partitions {z̄, v̄} = ξ̄ ⇒ {ξ̄I, ξ̄i, ξ̄ii} with restrictions zn /∈ ξ̄I, #ξ̄I = n− 1,
and #ξ̄i = 1. Presenting ξ̄II as ξ̄II = {ξ̄i, ξ̄ii} \ {zn} we obtain

g(ξ̄II, ξ̄I) =
g(ξ̄i, ξ̄I)g(ξ̄ii, ξ̄I)

g(zn, ξ̄I)
, h(ξ̄II, zn) = h(ξ̄i, zn)h(ξ̄ii, zn), (2.2.8)

and hence,

T12(z̄)Ba,b(ū; v̄) = λ2(z̄)
h(ξ̄, z̄n)

h(zn, z̄n)

∑ g(ξ̄i, ξ̄I)g(ξ̄ii, ξ̄I)g(ξ̄ii, ξ̄i)

g(zn, ξ̄I)h(ξ̄I, z̄n)
h(ξ̄ii, zn) Ba+n,b(η̄; ξ̄ii). (2.2.9)

Observe that the condition zn /∈ ξ̄I is ensured by the product g(zn, ξ̄I) in the denominator.
Hence, we can say that the sum is taken over partitions ξ̄ ⇒ {ξ̄I, ξ̄i, ξ̄ii} with the restrictions on
the cardinalities of the subsets only. Setting {ξ̄I, ξ̄i} = ξ̄0 we recast (2.2.9) as follows:

T12(z̄)Ba,b(ū; v̄) = λ2(z̄)
h(ξ̄, z̄)

h(zn, z̄n)

∑ g(ξ̄i, ξ̄I)g(zn, ξ̄i)h(ξ̄i, z̄n)

g(zn, ξ̄0)h(ξ̄0, z̄)
g(ξ̄ii, ξ̄0) Ba+n,b(η̄; ξ̄ii). (2.2.10)

The sum over partitions ξ̄0 ⇒ {ξ̄I, ξ̄i} can be computed via lemma 9.3.1∑
ξ̄0⇒{ξ̄I,ξ̄i}

g(ξ̄i, ξ̄I)g(zn, ξ̄i)h(ξ̄i, z̄n) = g(zn, ξ̄0)h(zn, z̄n), (2.2.11)

where we took into account that #ξ̄0 = n. Thus, we arrive at

T12(z̄)Ba,b(ū; v̄) = λ2(z̄)h(ξ̄, z̄)
∑ g(ξ̄ii, ξ̄0)

h(ξ̄0, z̄)
Ba+n,b(η̄; ξ̄ii), (2.2.12)

which coincides with (2.1.14) up to a relabeling of the subsets. �
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2.2.3 Proof for T23

Assume that (2.1.15) holds for some n− 1. Let #z̄ = n. Then we have

T23(z̄)Ba,b(ū; v̄) =
T23(zn)T23(z̄n)

h(z̄n, zn)
Ba,b(ū; v̄)

= (−1)n−1λ2(z̄n)
h(v̄, z̄n)

h(z̄n, zn)

∑
Kn−1(z̄n|η̄I + c)f(η̄I, η̄II)T23(zn)Ba,b+n−1(η̄II; ξ̄). (2.2.13)

Here η̄ = {z̄n, ū}, ξ̄ = {z̄n, v̄}, and the sum runs through the partitions η̄ ⇒ {η̄I, η̄II} with
#η̄I = n− 1. Acting with T23(zn) we obtain

T23(z̄)Ba,b(ū; v̄) = (−1)nλ2(z̄)
h(v̄, z̄n)

h(z̄n, zn)

×
∑

Kn−1(z̄n|η̄I + c)f(η̄I, η̄II)h(ξ̄, zn)K1(zn|η̄i + c)f(η̄i, η̄ii)Ba,b+n(η̄ii; ξ̄). (2.2.14)

Here already η̄ = {z̄, ū}, ξ̄ = {z̄, v̄}, and the sum is taken first over partitions {z̄n, ū} ⇒ {η̄I, η̄II}
with #η̄I = n− 1, and then over partitions {zn, η̄II} ⇒ {η̄i, η̄ii} with #η̄i = 1. Substituting here
η̄II = {η̄i, η̄ii} \ {zn} we find

T23(z̄)Ba,b(ū; v̄) = (−1)nλ2(z̄)h(v̄, z̄)

×
∑

Kn−1(z̄n|η̄I + c)K1(zn|η̄i + c)
f(η̄I, η̄i)f(η̄I, η̄ii)f(η̄i, η̄ii)

f(η̄I, zn)
Ba,b+n(η̄ii; ξ̄). (2.2.15)

Setting η̄0 = {η̄I, η̄i} and using K1(zn|η̄i + c) = −K1(η̄i|zn)/f(η̄i, zn) we obtain

T23(z̄)Ba,b(ū; v̄) = (−1)n−1λ2(z̄)h(v̄, z̄)

×
∑

Kn−1(z̄n|η̄I + c)K1(η̄i|zn)f(η̄I, η̄i)
f(η̄0, η̄ii)

f(η̄0, zn)
Ba,b+n(η̄ii; ξ̄). (2.2.16)

Now we can compute the sum over partitions η̄0 ⇒ {η̄I, η̄i} via (9.3.17)∑
η̄0⇒{η̄I,η̄i}

Kn−1(z̄n|η̄I + c)K1(η̄i|zn)f(η̄I, η̄i) = −f(η̄0, zn)Kn(z̄|η̄0 + c), (2.2.17)

which gives us

T23(z̄)Ba,b(ū; v̄) = (−1)nλ2(z̄)h(v̄, z̄)
∑

Kn(z̄|η̄0 + c)f(η̄0, η̄ii) Ba,b+n(η̄ii; ξ̄). (2.2.18)

This is exactly (2.1.15) up to the labeling of the subsets. �

2.3 Proof of the multiple action of the operator T22

The proofs for the actions (2.1.16)–(2.1.21) are much more involved than the ones considered in
the previous section. Fortunately, they all are quite similar. Therefore, we only detail one as a
typical example, the other actions being proven in the same manner. We focus on the operator
T22(u).



32 CHAPTER 2. MULTIPLE ACTION RULES IN ALGEBRA SYMMETRY GL(2|1)

The strategy of the proof is the following. First, we prove equation (2.1.17) for a = #ū = 0
and n = #z̄ = 1. This can be done either via the standard consideration of the algebraic Bethe
ansatz or using induction over b = #v̄. In both cases we use (2.1.7) and the relation

T22(u)T23(v) = f(v, u)T23(v)T22(u) + g(u, v)T23(u)T22(v), (2.3.1)

that follows from (1.1.14).

The next step of the proof is an induction over a. We assume that (2.1.17) is valid for n = 1
and some a and use recursion (2.1.5). Hereby, we use some of commutation relations (1.1.14)

T22(u)T12(v) = f(u, v)T12(v)T22(u) + g(v, u)T12(u)T22(v), (2.3.2)

[T22(u), T13(v)] = g(u, v)
(
T12(v)T23(u)− T12(u)T23(v)

)
. (2.3.3)

Finally, when equation (2.1.17) is proved for n = 1 and arbitrary a and b we use induction over
n.

Remark. We begin the proof with the case n = 1, a = 0, and arbitrary b. However, one
could also begin with the case n = 1, b = 0, and arbitrary a. For the action of the operator
T22(z) this is a matter of choice. For other operators these two starting cases could be essentially
different. For instance, one can easily see that T21(z)B0,b(∅, v̄) = 0 for arbitrary b. On the other
hand, the action T21(z)Ba,0(ū, ∅) is highly nontrivial, although it is clear that it should coincide
with the similar action in the models with gl(3)-invariant R-matrix. Obviously, in this case it
is better to begin the proof with the vector B0,b(∅, v̄).

2.3.1 Action of T22(z) at a = 0 and z = 1

In the particular case a = 0 and n = 1 equation (2.1.17) turns into

T22(z)B0,b(∅; v̄) = λ2(z)h(v̄, z)
∑ g(ξ̄II, ξ̄I)

h(ξ̄I, z)
B0,b(∅; ξ̄II). (2.3.4)

The sum is taken over partitions {z, v̄} = ξ̄ ⇒ {ξ̄I, ξ̄II} with #ξ̄I = 1. We prove this action using
the standard scheme of the algebraic Bethe ansatz. The vector B0,b(∅; v̄) is given by the second
equation (2.1.7). Thus, we should move the operator T22(z) to the right through the product
of the operators T23(vj). Using (2.3.1) we easily find

T22(z)B0,b(∅; v̄) = ΛB0,b(∅; v̄) +
b∑

j=1

ΛjB0,b(∅; {v̄j , z)), (2.3.5)

where Λ and Λj are some coefficients to be determined. Obviously, in order to obtain the
coefficient of B0,b(∅; v̄) one should use only the first term in the r.h.s. of (2.3.1). From this we
immediately find

Λ = λ2(z)f(v̄, z). (2.3.6)

Then, due to the symmetry of T23(v̄) over v̄ it is enough to find Λ1 only. Permuting T22(z)
with T23(v1) we should use the second term in the r.h.s. of (2.3.1). We have

T22(z)
T23(v̄)

λ2(v̄)
Ω = T22(z)

T23(v1)T23(v̄1)

λ2(v̄)h(v̄1, v1)
Ω = g(z, v1)T23(z)

T22(v1)T23(v̄1)

λ2(v̄)h(v̄1, v1)
Ω + UWT, (2.3.7)
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where UWT means unwanted terms, i.e. the terms that cannot give a contribution to the
coefficient Λ1. Now, moving T22(v1) through the product T23(v̄) we should use only the first
term in the r.h.s. of (2.3.1), which gives us

T22(z)
T23(v̄)

λ2(v̄)
Ω = g(z, v1)g(v̄1, v1)T23(z)

T23(v̄1)

λ2(v̄)
λ2(v1)Ω + UWT, (2.3.8)

where we used g(v̄1, v1) = f(v̄1, v1)/h(v̄1, v1). It remains to combine T23(z) and T23(v̄1) into
T23({z, v̄1}) and we arrive at

T22(z)
T23(v̄)

λ2(v̄)
Ω = λ2(z)g(z, v1)g(v̄1, v1)h(v̄1, z)

T23({z, v̄1})
λ2(v̄1)λ2(z)

Ω + UWT, (2.3.9)

leading to
Λ1 = λ2(z)g(z, v1)g(v̄1, v1)h(v̄1, z). (2.3.10)

Thus, we eventually obtain

T22(z)B0,b(∅; v̄) = λ2(z)f(v̄, z)B0,b(∅; v̄) + λ2(z)
b∑

j=1

g(z, vj)g(v̄j , vj)h(v̄j , z)B0,b(∅; {v̄j , z}).

(2.3.11)
It is easy to see that this formula coincides with (2.3.4). Indeed the first term in (2.3.11)
corresponds to the partition ξ̄I = z and ξ̄II = v̄ in (2.3.4). The other terms arise in the case of
the partitions ξ̄I = vj , j = 1, . . . , b, and ξ̄II = {z, v̄j}. Thus, action (2.3.4) is proved. �

2.3.2 Induction over a

For n = 1 equation (2.1.17) takes the form

T22(z)Ba,b(ū; v̄) = λ2(z)h(v̄, z)
∑ f(η̄I, η̄II)g(ξ̄II, ξ̄I)

h(η̄I, z)h(ξ̄I, z)
Ba,b(η̄II; ξ̄II). (2.3.12)

The sum is taken over partitions ξ̄ ⇒ {ξ̄I, ξ̄II} and η̄ ⇒ {η̄I, η̄II} with #ξ̄I = #η̄I = 1. We assume
that (2.3.12) is valid for some a ≥ 0 and b arbitrary. Then, due to recursion (2.1.5) we have

T22(z1)Ba+1,b({ū; z2}; v̄) = T22(z1)
T12(z2)Ba,b(ū; v̄)

λ2(z2)f(v̄, z2)

− T22(z1)
b∑

j=1

g(z2, vj)g(v̄j , vj)T13(z2)Ba,b−1(ū; v̄j)

λ2(z2)f(v̄, z2)
. (2.3.13)

We see that in order to compute the action of T22(z1) onto Ba+1,b({z2, ū}; v̄) we should calculate
the successive actions of the operators T22(z1)T12(z2) and T22(z1)T13(z2). This can be done via
(2.3.2) and (2.3.3)

T22(z1)T12(z2)Ba,b(ū; v̄) =
(
f(z1, z2)T12(z2)T22(z1) + g(z2, z1)T12(z1)T22(z2)

)
Ba,b(ū; v̄),

(2.3.14)

T22(z1)T13(z2)Ba,b−1(ū; v̄j) = T13(z2)T22(z1)Ba,b−1(ū; v̄j)

+ g(z1, z2)
(
T12(z2)T23(z1)− T12(z1)T23(z2)

)
Ba,b−1(ū; v̄j). (2.3.15)
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Thus, we have reduced the action T22(z1)Ba+1,b({ū; z2}; v̄) to the calculation of several successive
actions. In all of them the operator T22 acts either on Ba,b(ū; v̄) or on Ba,b−1(ū; v̄j), which are
known due to the induction assumption. The actions of other operators Tij with i < j are
already known for a and b arbitrary.

Successive action of T12 and T23

We begin our calculation with the successive action of the operators T12 and T23. Using (2.1.15)
we have

T12(z2)T23(z1)Ba,b(ū; v̄) = λ2(z1)h(v̄, z1)
∑ f(η̄I, η̄II)

h(η̄I, z1)
T12(z2)Ba,b+1(η̄II; ξ̄). (2.3.16)

Here η̄ = {z1, ū} and ξ̄ = {z1, v̄}. The sum is taken over partitions η̄ ⇒ {η̄I, η̄II} with #η̄I = 1.
Then we use (2.1.14) and find

T12(z2)T23(z1)Ba,b(ū; v̄) = λ2(z̄)h(v̄, z1)h(ξ̄, z2)
∑ f(η̄I, η̄II)

h(η̄I, z1)

g(ξ̄II, ξ̄I)

h(ξ̄I, z2)
Ba+1,b+1({η̄II, z2}; ξ̄II).

(2.3.17)
Here already ξ̄ = {z̄, v̄}, however we still have η̄ = {z1, ū}. Replacing {η̄II, z2} by η̄II we recast
(2.3.17) in the form

T12(z2)T23(z1)Ba,b(ū; v̄) = λ2(z̄)h(v̄, z̄)h(z1, z2)
∑ f(η̄I, η̄II)g(ξ̄II, ξ̄I)

f(η̄I, z2)h(η̄I, z1)h(ξ̄I, z2)
Ba+1,b+1(η̄II; ξ̄II).

(2.3.18)
Here η̄ = {z̄, ū}, and the sum is taken over partitions η̄ ⇒ {η̄I, η̄II} and ξ̄ ⇒ {ξ̄I, ξ̄II} with
#η̄I = #ξ̄I = 1. Note that the condition z2 /∈ η̄I is ensured automatically. Indeed, if z2 ∈ η̄I,
then 1/f(η̄I, z2) = 0.

Replacing here z1 ↔ z2 we obtain

T12(z1)T23(z2)Ba,b(ū; v̄) = λ2(z̄)h(v̄, z̄)h(z2, z1)
∑ f(η̄I, η̄II)g(ξ̄II, ξ̄I)

f(η̄I, z1)h(η̄I, z2)h(ξ̄I, z1)
Ba+1,b+1(η̄II; ξ̄II).

(2.3.19)
Thus, we find

g(z1, z2)
(
T12(z2)T23(z1)− T12(z1)T23(z2)

)
Ba,b(ū; v̄)

= λ2(z̄)h(v̄, z̄)
∑ f(η̄I, η̄II)g(ξ̄II, ξ̄I)

h(η̄I, z̄)
Ba+1,b+1(η̄II; ξ̄II)

×
{

f(z1, z2)

g(η̄I, z2)h(ξ̄I, z2)
+

f(z2, z1)

g(η̄I, z1)h(ξ̄I, z1)

}
. (2.3.20)

Successive action of T13 and T22

Combining the actions (2.3.12) and (2.1.13) we obtain

T13(z2)T22(z1)Ba,b(ū; v̄) = λ2(z̄)h(v̄, z1)
∑ f(η̄I, η̄II)g(ξ̄II, ξ̄I)h(ξ̄II, z2)

h(η̄I, z1)h(ξ̄I, z1)

× Ba+1,b+1({η̄II, z2}; {ξ̄II, z2}). (2.3.21)
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Here η̄ = {ū, z1} and ξ̄ = {v̄, z1}. Replacing {η̄II, z2} with η̄II and {ξ̄II, z2} with ξ̄II we arrive at

T13(z2)T22(z1)Ba,b(ū; v̄) = λ2(z̄)h(v̄, z̄)h(z1, z2)
∑ f(η̄I, η̄II)g(ξ̄II, ξ̄I)Ba+1,b+1(η̄II; ξ̄II)

f(η̄I, z2)g(z2, ξ̄I)h(η̄I, z1)h(ξ̄I, z̄)
(2.3.22)

Here already η̄ = {ū, z̄} and ξ̄ = {v̄, z̄}. The sum is taken over partitions η̄ ⇒ {η̄I, η̄II} and
ξ̄ ⇒ {ξ̄I, ξ̄II} with #η̄I = #ξ̄I = 1.

Now we are able to calculate the successive action T22(z1)T13(z2) on Ba,b(ū; v̄). Indeed,
due to (2.3.15) this successive action is given by a combination of (2.3.20) and (2.3.22). A
straightforward calculation leads us to the following representation:

T22(z1)T13(z2)Ba,b(ū; v̄) = λ2(z̄)h(v̄, z̄)h(z2, z1)
∑ f(η̄I, η̄II)g(ξ̄II, ξ̄I)

h(η̄I, z1)h(ξ̄I, z1)
Ba+1,b+1(η̄II; ξ̄II). (2.3.23)

Remark 2.3.1. Taking into account (2.1.13) we conclude that if the action (2.3.12) is valid
on the vector Ba,b(ū; v̄), then it is also valid on vectors of the special type Ba+1,b+1(ū′; v̄′), if
ū′ ∩ v̄′ 6= ∅.

Successive action of T12 and T22

Using (2.3.12) we obtain

T12(z2)T22(z1)Ba,b(ū; v̄) = λ2(z1)h(v̄, z1)
∑ f(η̄I, η̄II)g(ξ̄II, ξ̄I)

h(η̄I, z1)h(ξ̄I, z1)
T12(z2)Ba,b(η̄II; ξ̄II). (2.3.24)

Here η̄ = {ū, z1} and ξ̄ = {v̄, z1}. Applying (2.1.14) to this formula we find

T12(z2)T22(z1)Ba,b(ū; v̄) = λ2(z̄)h(v̄, z1)
∑ f(η̄I, η̄II)g(ξ̄II, ξ̄I)

h(η̄I, z1)h(ξ̄I, z1)

× h(ξ̄II, z2)
g(ξ̄ii, ξ̄i)

h(ξ̄i, z2)
Ba+1,b({η̄II, z2}; ξ̄ii). (2.3.25)

Here we first have partitions η̄ = {ū, z1} ⇒ {η̄I, η̄II} and ξ̄ = {v̄, z1} ⇒ {ξ̄I, ξ̄II}. Then we
combine ξ̄II with z2 and divide this set into new subsets {ξ̄II, z2} ⇒ {ξ̄i, ξ̄ii}. The restrictions are:
#ξ̄i = #ξ̄I = #η̄I = 1, z2 /∈ η̄I, and z2 /∈ ξ̄I. As we already did before, we replace {η̄II, z2} with
η̄II and use ξ̄II = {ξ̄i, ξ̄ii} \ {z2}. Then

T12(z2)T22(z1)Ba,b(ū; v̄) = λ2(z̄)h(v̄, z̄)h(z1, z2)

×
∑ f(η̄I, η̄II)g(ξ̄i, ξ̄I)g(ξ̄ii, ξ̄I)g(ξ̄ii, ξ̄i)

f(η̄I, z2)h(η̄I, z1)h(ξ̄I, z1)g(z2, ξ̄I)h(ξ̄I, z2)h(ξ̄i, z2)
Ba+1,b(η̄II; ξ̄ii). (2.3.26)

Setting ξ̄0 = {ξ̄i, ξ̄I} we recast (2.3.26) as follows:

T12(z2)T22(z1)Ba,b(ū; v̄) = λ2(z̄)h(v̄, z̄)h(z1, z2)

×
∑ f(η̄I, η̄II)g(ξ̄i, ξ̄I)g(ξ̄ii, ξ̄0)

g(η̄I, z2)h(η̄I, z̄)h(ξ̄I, z1)g(z2, ξ̄I)h(ξ̄0, z2)
Ba+1,b(η̄II; ξ̄ii). (2.3.27)
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The sum over partitions of the set ξ̄ = {z1, z2, v̄} is organized as follows: first, we have partitions
ξ̄ ⇒ {ξ̄ii, ξ̄0}; second we divide ξ̄0 ⇒ {ξ̄i, ξ̄I}. The latter sum consists of two terms and can be
computed straightforwardly. This leads us to

T12(z2)T22(z1)Ba,b(ū; v̄) = λ2(z̄)h(v̄, z̄)h(z̄, z̄)
∑ f(η̄I, η̄II)g(ξ̄ii, ξ̄0)

g(η̄I, z2)h(η̄I, z̄)h(ξ̄0, z̄)
Ba+1,b(η̄II; ξ̄ii),

(2.3.28)
and relabeling ξ̄0 → ξ̄I, ξ̄ii → ξ̄II we finally obtain

T12(z2)T22(z1)Ba,b(ū; v̄) = λ2(z̄)h(v̄, z̄)h(z̄, z̄)
∑ f(η̄I, η̄II)g(ξ̄II, ξ̄I)

g(η̄I, z2)h(η̄I, z̄)h(ξ̄I, z̄)
Ba+1,b(η̄II; ξ̄II).

(2.3.29)
Here the sum is taken over partitions η̄ ⇒ {η̄I, η̄II}, ξ̄ ⇒ {ξ̄I, ξ̄II}. The cardinalities of the subsets
are #η̄I = 1, #ξ̄I = 2.

Successive action of T22 and T12

Using (2.3.14) and (2.3.29) we are able to calculate the action of T22(z1)T12(z2) onto Ba,b(ū; v̄). It
is clear that for this we should take the following combination: equation (2.3.29) multiplied with
f(z1, z2) and the same equation with z1 ↔ z2 multiplied with g(z2, z1). This straightforward
calculation gives

T22(z1)T12(z2)Ba,b(ū; v̄) = λ2(z̄)h(v̄, z̄)h(z̄, z̄)
∑ f(η̄I, η̄II)g(ξ̄II, ξ̄I)

h(η̄I, z1)h(ξ̄I, z̄)
Ba+1,b(η̄II; ξ̄II). (2.3.30)

Here the sum is taken over partitions η̄ ⇒ {η̄I, η̄II}, ξ̄ ⇒ {ξ̄I, ξ̄II}. The cardinalities of the subsets
are #η̄I = 1, #ξ̄I = 2.

2.3.3 Recursion formula

Now everything is ready for the use of recursion (2.3.13). Due to (2.2.4) we can write it as
follows:

Ba+1,b({ū, z2}; v̄) =
1

λ2(z2)f(v̄, z2)

(
T12(z2)Ba,b(ū; v̄)−Ψ

)
, (2.3.31)

where

Ψ = λ2(z2)h(v̄, z2)
∑
z2 /∈ξ̄I

g(ξ̄II, ξ̄I)

h(ξ̄I, z2)
Ba+1,b(η̄; ξ̄II). (2.3.32)

Here η̄ = {z2, ū} and ξ̄ = {z2, v̄}, and we used h(z2, z2) = 1. The sum is taken over partitions
ξ̄ ⇒ {ξ̄I, ξ̄II} with #ξ̄I = 1. One more restriction z2 /∈ ξ̄I is shown explicitly by the subscript of
the sum.

Recall that we assume that the action of T22(z1) on the vectors Ba,b(ū; v̄) is given by (2.3.12)
at some value of a ≥ 0 and arbitrary b. All the vectors in the linear combination (2.3.32) have
the form Ba+1,b({ū, z2}; {v̄j , z2}), that is {ū, z2} ∩ {v̄j , z2} 6= ∅. Hence, taking into account
remark 2.3.1, the action of T22(z1) on these vectors is known and it is given by (2.3.12):

T22(z1)Ψ = λ2(z̄)h(v̄, z2)
∑
z2 /∈ξ̄I

g(ξ̄II, ξ̄I)

h(ξ̄I, z2)
h(ξ̄II, z1)

f(η̄I, η̄II)g(ξ̄ii, ξ̄i)

h(η̄I, z1)h(ξ̄i, z1)
Ba+1,b(η̄II; ξ̄ii). (2.3.33)
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In this formula η̄ = {z̄, ū} and ξ̄ = {z̄, v̄}. At the first step we have partitions {z2, v̄} ⇒ {ξ̄I, ξ̄II}.
Then we obtain additional partitions {z̄, v̄} ⇒ {ξ̄i, ξ̄ii} and η̄ ⇒ {η̄I, η̄II}. Hereby #η̄I = #ξ̄I =
#ξ̄i = 1. Thus, one can say that the set ξ̄ = {z̄, v̄} is divided into subsets {ξ̄I, ξ̄i, ξ̄ii} with the
restrictions z1 /∈ ξ̄I and z2 /∈ ξ̄I. Substituting ξ̄II = {ξ̄i, ξ̄ii} \ {z1} into (2.3.33) we obtain

T22(z1)Ψ = λ2(z̄)h(v̄, z2)
∑
z2 /∈ξ̄I

g(ξ̄ii, ξ̄I)g(ξ̄i, ξ̄I)g(ξ̄ii, ξ̄i)f(η̄I, η̄II)h(ξ̄ii, z1)

g(z1, ξ̄I)h(ξ̄I, z2)h(η̄I, z1)
Ba+1,b(η̄II; ξ̄ii). (2.3.34)

Observe that the restriction z1 /∈ ξ̄I holds automatically due to the factor g(z1, ξ̄I)
−1. In order

to get rid of the restriction z2 /∈ ξ̄I we present T22(z1)Ψ as a difference of two terms. The first
term is just the sum over partitions in (2.3.34), where no restrictions on the partitions of the
set ξ̄ are imposed. In the second term we simply set ξ̄I = z2. Thus,

T22(z1)Ψ = Ψ′ −Ψ′′, (2.3.35)

where

Ψ′ = λ2(z̄)h(v̄, z2)
∑ g(ξ̄ii, ξ̄I)g(ξ̄i, ξ̄I)g(ξ̄ii, ξ̄i)f(η̄I, η̄II)h(ξ̄ii, z1)

g(z1, ξ̄I)h(ξ̄I, z2)h(η̄I, z1)
Ba+1,b(η̄II; ξ̄ii), (2.3.36)

and

Ψ′′ = λ2(z̄)h(v̄, z2)
∑ g(ξ̄ii, z2)g(ξ̄i, z2)g(ξ̄ii, ξ̄i)f(η̄I, η̄II)h(ξ̄ii, z1)

g(z1, z2)h(η̄I, z1)
Ba+1,b(η̄II; ξ̄ii). (2.3.37)

In (2.3.37) we have {ξ̄i, ξ̄ii} = {v̄, z1}, therefore

Ψ′′ = λ2(z̄)h(v̄, z1)f(v̄, z2)
∑ g(ξ̄ii, ξ̄i)f(η̄I, η̄II)

h(ξ̄i, z1)h(η̄I, z1)
Ba+1,b(η̄II; ξ̄ii). (2.3.38)

In (2.3.36) we can take the sum over partitions into subsets ξ̄i and ξ̄I, because it consists of
two terms only:

g(ξ̄i, ξ̄I)

g(z1, ξ̄I)h(ξ̄I, z2)
+

g(ξ̄I, ξ̄i)

g(z1, ξ̄i)h(ξ̄i, z2)
=
h(z1, z2)

h(ξ̄0, z2)
, (2.3.39)

where ξ̄0 = {ξ̄i, ξ̄I}. Thus,

Ψ′ = λ2(z̄)h(v̄, z2)h(z1, z2)
∑ g(ξ̄ii, ξ̄0)f(η̄I, η̄II)h(ξ̄ii, z1)

h(ξ̄0, z2)h(η̄I, z1)
Ba+1,b(η̄II; ξ̄ii), (2.3.40)

and extracting the product h(ξ̄, z1) we recast (2.3.40) as follows:

Ψ′ = λ2(z̄)h(v̄, z̄)h(z̄, z̄)
∑ g(ξ̄ii, ξ̄0)f(η̄I, η̄II)

h(ξ̄0, z̄)h(η̄I, z1)
Ba+1,b(η̄II; ξ̄ii). (2.3.41)

Here the sum is taken over partitions η̄ ⇒ {η̄I, η̄II}, ξ̄ ⇒ {ξ̄0, ξ̄ii} with #η̄I = 1, #ξ̄0 = 2.
Comparing this expression with (2.3.30) we see that

Ψ′ = T22(z1)T12(z2)Ba,b(ū; v̄). (2.3.42)

Thus, we find from the recursion (2.3.31)

T22(z1)Ba+1,b({ū, z2}; v̄) =
T22(z1)T12(z2)Ba,b(ū; v̄)−Ψ′ + Ψ′′

λ2(z2)f(v̄, z2)
=

Ψ′′

λ2(z2)f(v̄, z2)
. (2.3.43)
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Substituting (2.3.38) in this expression, we arrive at

T22(z1)Ba+1,b({ū, z2}; v̄) = λ2(z1)h(v̄, z1)
∑ g(ξ̄II, ξ̄I)f(η̄I, η̄II)

h(ξ̄I, z1)h(η̄I, z1)
Ba+1,b(η̄II; ξ̄II), (2.3.44)

where we have relabeled ξ̄i → ξ̄I and ξ̄ii → ξ̄II. Thus, the induction step is completed. �

2.3.4 Induction over n

Actually, the induction over n for the action of T22(z̄) is a combination of the corresponding
proofs for the actions of T12(z̄) and T23(z̄). Assume that (2.1.17) is valid for some n− 1. Then

T22(z̄)Ba,b(ū; v̄) = (−1)n−1λ2(z̄n)h(ξ̄, z̄n)
∑ f(η̄I, η̄II)g(ξ̄II, ξ̄I)

h(ξ̄I, z̄n)
Kn−1(z̄n|η̄I + c)T22(zn)Ba,b(η̄II; ξ̄II).

(2.3.45)
Here the sum is taken over partitions {z̄n, v̄} = ξ̄ ⇒ {ξ̄I, ξ̄II} and {z̄n, ū} = η̄ ⇒ {η̄I, η̄II} with
#ξ̄I = #η̄I = n− 1. Acting with T22(zn) onto Ba,b(η̄II; ξ̄II) we obtain

T22(z̄)Ba,b(ū; v̄) = (−1)nλ2(z̄)
h(ξ̄, z̄n)

h(zn, z̄n)

∑ f(η̄I, η̄II)g(ξ̄II, ξ̄I)

h(ξ̄I, z̄n)
Kn−1(z̄n|η̄I + c)

× h(ξ̄II, zn)
f(η̄i, η̄ii)g(ξ̄ii, ξ̄i)

h(ξ̄i, zn)
K1(zn|η̄i + c)Ba,b(η̄ii; ξ̄ii). (2.3.46)

Here already ξ̄ = {z̄, v̄} and η̄ = {z̄, ū}, and we have additional partitions {ξ̄II, zn} ⇒ {ξ̄i, ξ̄ii}
and {η̄II, zn} ⇒ {η̄i, η̄ii} with #ξ̄i = #η̄i = 1. Thus, we can say that we have the sum over
partitions ξ̄ ⇒ {ξ̄I, ξ̄i, ξ̄ii} and η̄ ⇒ {η̄I, η̄i, η̄ii} with restrictions zn /∈ η̄I and zn /∈ ξ̄I.

Substituting ξ̄II = {ξ̄i, ξ̄ii} \ {zn}, η̄II = {η̄i, η̄ii} \ {zn} and denoting ξ̄0 = {ξ̄i, ξ̄I}, η̄0 = {η̄i, η̄I}
we obtain

T22(z̄)Ba,b(ū; v̄) = (−1)nλ2(z̄)
h(ξ̄, z̄)

h(zn, z̄n)

∑ f(η̄I, η̄i)f(η̄0, η̄ii)g(ξ̄i, ξ̄I)g(ξ̄ii, ξ̄0)

f(η̄I, zn)g(zn, ξ̄I)h(ξ̄I, z̄n)h(ξ̄0, zn)

×Kn−1(z̄n|η̄I + c)K1(zn|η̄i + c)Ba,b(η̄ii; ξ̄ii). (2.3.47)

Observe that the restrictions zn /∈ η̄I and zn /∈ ξ̄I hold automatically due to the factors f(η̄I, zn)
and g(zn, ξ̄I) in the denominator of (2.3.47). Using K1(zn|η̄i + c) = −K1(η̄i|zn)/f(η̄i, zn) we
recast (2.3.47) in the form

T22(z̄)Ba,b(ū; v̄) = (−1)n−1λ2(z̄)
h(ξ̄, z̄)

h(zn, z̄n)

∑ f(η̄0, η̄ii)g(ξ̄ii, ξ̄0)

f(η̄0, zn)g(zn, ξ̄0)h(ξ̄0, z̄)

×
{
g(ξ̄i, ξ̄I)g(zn, ξ̄i)h(ξ̄i, z̄n)

}{
Kn−1(z̄n|η̄I + c)K1(η̄i|zn)f(η̄I, η̄i)

}
Ba,b(η̄ii; ξ̄ii). (2.3.48)

The sums over partitions ξ̄0 ⇒ {ξ̄i, ξ̄I} and η̄0 ⇒ {η̄i, η̄I} (see the terms in braces) were already
computed (see (2.2.11) and (2.2.17)). Thus, we arrive at

T22(z̄)Ba,b(ū; v̄) = (−1)nλ2(z̄)h(ξ̄, z̄)
∑ f(η̄0, η̄ii)g(ξ̄ii, ξ̄0)

h(ξ̄0, z̄)
Kn(z̄|η̄0 + c) Ba,b(η̄ii; ξ̄ii), (2.3.49)

which ends the proof. �
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2.4 Induction over n for the actions of Tij(z̄) with i > j.

The action formulas for all other elements of the monodromy matrix can be proved exactly in
the same manner. However, it is clear that the technical difficulty of the proofs increases when
moving from the right top corner of the monodromy matrix to the left bottom corner. It is
due to the form of the recursion formulas and the commutation relations (1.1.14). For example,
we have seen that for the derivation of the action of T22(z̄) one should know the actions of
T12(z̄) and T23(z̄) onto Bethe vectors. The latest are relatively simple. However, one can easily
convince oneself that to get the action of Tij(z̄) with i > j, it is necessary to know the actions of
the diagonal elements Tii(z̄), which are more involved. Therefore, we omit the detailed proofs
of the multiple actions of the operators T11(z̄) (2.1.16), T33(z̄) (2.1.18), and the operators Tij(z̄)
from the lower-triangular part of the monodromy matrix (2.1.19)–(2.1.21). However, as an
illustration of the method, we prove the multiple action of the operator T21(z̄) assuming that
the action of a single operator T21(z) is known.

As previously, the proof goes by induction over n = #z̄. We assume that the action (2.1.19)
holds for some n− 1. Then acting successively with T21(z̄n) and T21(zn) on Ba,b(ū; v̄) we obtain

T21(z̄)Ba,b(ū; v̄) = λ2(z̄)
h(ξ̄, z̄n)

h(zn, z̄n)

∑
r1(η̄I)

f(η̄II, η̄I)f(η̄II, η̄III)f(η̄III, η̄I)g(ξ̄II, ξ̄I)

h(ξ̄I, z̄n)f(ξ̄II, η̄I)

×Kn−1(z̄n|η̄II + c)Kn−1(η̄I|ξ̄I + c) h(ξ̄II, zn)r1(η̄i)
f(η̄ii, η̄i)f(η̄ii, η̄iii)f(η̄iii, η̄i)g(ξ̄ii, ξ̄i)

h(ξ̄i, zn)f(ξ̄ii, η̄i)

×K1(zn|η̄ii + c)K1(η̄i|ξ̄i + c)Ba−n,b(η̄iii; ξ̄ii). (2.4.1)

Here #η̄i = #η̄ii = #ξ̄i = 1 and #η̄I = #η̄II = #ξ̄I = n − 1. Originally we have partitions
{z̄n, ū} = η̄ ⇒ {η̄I, η̄II, η̄III} and {z̄n, v̄} = ξ̄ ⇒ {ξ̄I, ξ̄II}. Then we have additional partitions
{zn, η̄II} ⇒ {η̄i, η̄ii, η̄iii} and {zn, ξ̄II} ⇒ {ξ̄i, ξ̄ii}. Thus, in equation (2.4.1) we have {z̄, ū} = η̄
and {z̄, v̄} = ξ̄. Setting there η̄III = {η̄i, η̄ii, η̄iii} \ {zn} and ξ̄II = {ξ̄i, ξ̄ii} \ {zn} we arrive at

T21(z̄)Ba,b(ū; v̄) = λ2(z̄)
h(ξ̄, z̄)

h(zn, z̄n)

∑
r1(η̄I)r1(η̄i)

f(η̄ii, η̄i)f(η̄ii, η̄iii)f(η̄iii, η̄i)g(ξ̄ii, ξ̄i)

h(ξ̄i, zn)f(ξ̄ii, η̄i)

× f(η̄II, η̄I)f(η̄II, η̄i)f(η̄II, η̄ii)f(η̄II, η̄iii)f(η̄i, η̄I)f(η̄ii, η̄I)f(η̄iii, η̄I)g(ξ̄i, ξ̄I)g(ξ̄ii, ξ̄I)

h(ξ̄I, zn)h(ξ̄I, z̄n)f(ξ̄i, η̄I)f(ξ̄ii, η̄I)f(η̄II, zn)g(zn, ξ̄I)

×Kn−1(z̄n|η̄II + c)K1(zn|η̄ii + c)Kn−1(η̄I|ξ̄I + c)K1(η̄i|ξ̄i + c)Ba−n,b(η̄iii; ξ̄ii). (2.4.2)

Now we set {η̄I, η̄i} = η̄0, {η̄II, η̄ii} = η̄0′ , and {ξ̄I, ξ̄i} = ξ̄0. We also transform K1(zn|η̄ii + c) =
−K1(η̄ii|zn)/f(η̄ii, zn) and K1(η̄i|ξ̄i + c) = −K1(ξ̄i|η̄i)/f(ξ̄i, η̄i). Then (2.4.2) takes the form

T21(z̄)Ba,b(ū; v̄) = λ2(z̄)
h(ξ̄, z̄)

h(zn, z̄n)

∑ r1(η̄0)f(η̄0′ , η̄0)f(η̄0′ , η̄iii)f(η̄iii, η̄0)g(ξ̄ii, ξ̄0)g(ξ̄i, ξ̄I)

h(ξ̄I, z̄)f(ξ̄i, η̄0)f(η̄0′ , zn)f(ξ̄ii, η̄0)g(zn, ξ̄I)h(ξ̄i, zn)

× {Kn−1(z̄n|η̄II + c)K1(η̄ii|zn)f(η̄II, η̄ii)}
{
Kn−1(η̄I|ξ̄I + c)K1(ξ̄i|η̄i)f(η̄i, η̄I)

}
Ba−n,b(η̄iii; ξ̄ii).

(2.4.3)

The sums over partitions in braces can be computed via (9.3.17):∑
η̄0′⇒{η̄II,η̄ii}

Kn−1(z̄n|η̄II + c)K1(η̄ii|zn)f(η̄II, η̄ii) = −f(η̄0′ , zn)Kn(z̄|η̄0′ + c), (2.4.4)
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and ∑
η̄0⇒{η̄I,η̄i}

Kn−1(η̄I|ξ̄I + c)K1(ξ̄i|η̄i)f(η̄i, η̄I) = (−1)n−1Kn(ξ̄0|η̄0)

f(ξ̄I, η̄0)
. (2.4.5)

Substituting this into (2.4.3) we arrive at

T21(z̄)Ba,b(ū; v̄) = λ2(z̄)
h(ξ̄, z̄)

h(zn, z̄n)

∑ r1(η̄0)f(η̄0′ , η̄0)f(η̄0′ , η̄iii)f(η̄iii, η̄0)g(ξ̄ii, ξ̄0)

h(ξ̄0, z̄)f(ξ̄ii, η̄0)g(zn, ξ̄0)

×Kn(z̄|η̄0′ + c)Kn(η̄0|ξ̄0 + c)
{
g(ξ̄i, ξ̄I)h(ξ̄i, z̄n)g(zn, ξ̄i)

}
Ba−n,b(η̄iii; ξ̄ii), (2.4.6)

where we again replaced Kn(ξ̄0|η̄0) by Kn(η̄0|ξ̄0 + c) via (1.1.45). The sum over partitions in
braces can be calculated via lemma 9.3.1∑

ξ̄0⇒{ξ̄I,ξ̄i}

g(ξ̄i, ξ̄I)h(ξ̄i, z̄n)g(zn, ξ̄i) = h(zn, z̄n)g(zn, ξ̄0). (2.4.7)

Thus, we finally obtain

T21(z̄)Ba,b(ū; v̄) = λ2(z̄)h(ξ̄, z̄)
∑ r1(η̄0)f(η̄0′ , η̄0)f(η̄0′ , η̄iii)f(η̄iii, η̄0)g(ξ̄ii, ξ̄0)

h(ξ̄0, z̄)f(ξ̄ii, η̄0)

×Kn(z̄|η̄0′ + c)Kn(η̄0|ξ̄0 + c)Ba−n,b(η̄iii; ξ̄ii), (2.4.8)

which coincides with the original formula up to the labeling of the subsets. �

2.4.1 Conclusion

The result of this chapter is explicit multiple action formulae for the monodromy matrix entries
Tij on the generic (off-shell) Bethe vectors. Comparison of these multiple action formulae
with algebra rank symmetry gl(3) case [84] demonstrates, that formulae are similar. The main
difference is that replacement of Izergin determinants Kn(ū|v̄) by functions g(ū, v̄) (that is itself
determinant of Cauchy matrix). This property provides some simplification of formulae and
give a hope that scalar product of tho Bethe vectors in case of graded algebra symmetry is
simpler than in algebra symmetry gl(3) case and determinant representation can also be found.
Computation of this scalar product is further step, considered in next chapter. Formulae,
established here, is a necessary step for this calculation.



Chapter 3

Scalar product of the Bethe vectors

As it is described in the previous chapter (dual) Bethe vectors are special form polynomials on
the entries from (lower)upper triangular part of the monodromy matrix applied to the (left)
right pseudovacuum. Here the entries from lower triangle part (Tij , i > j) acts trivially on
the right vacuum while the entries from upper triangle part (Tij , i < j) act trivially on the left
vacuum. The diagonal operators actions on both vacuuma are known. Hereby, for calculation of
the scalar product of the usual and the dual Bethe vectors it is required to perform the normal
ordering of operators. The multiple action rules is very convenient for this purpose, because as
was already mentioned direct application of the commutation relations (1.1.14) can be bulky
problem. Instead, action rules allow to act by monodromy matrix entries Tij with i > j from
the left (dual) Bethe vector on the right Bethe vector and application of these formulae provides
much more efficient way of normal ordering.

The result should be a function that does not contain any operators. Here this function is
calculated and a formula for scalar product derived. This chapter is based on the paper [88]
published by the thesis author in collaboration.

3.1 Generic form of scalar product of Bethe vectors

The scalar product of Bethe vectors is defined as

Sa,b ≡ Sa,b(ūC ; v̄C |ūB; v̄B) = Ca,b(ūC ; v̄C)Ba,b(ūB; v̄B) , (3.1.1)

where all the Bethe parameters are generic complex numbers. We have added the superscripts
C and B to the sets ū, v̄ in order to stress that the vectors Ca,b and Ba,b may depend on different
sets of parameters.

Being a scalar function, the scalar product is invariant under the action of the antimorphism
ψ (1.1.47)

ψ
(
Sa,b(ū

C ; v̄C |ūB; v̄B)
)

= Sa,b(ū
C ; v̄C |ūB; v̄B). (3.1.2)

On the other hand, acting with ψ on the r.h.s. of (3.1.1) and using the explicit representations
(2.1.1) and (2.1.3) for the Bethe vectors we find

ψ
(
Ca,b(ūC ; v̄C)Ba,b(ūB; v̄B)

)
= Ca,b(ūB; v̄B)Ba,b(ūC ; v̄C) = Sa,b(ū

B; v̄B|ūC ; v̄C). (3.1.3)

Here we have used ψ(Tj3) = T3j and ψ(T3j) = −Tj3 for j = 1, 2 (see (1.1.47)). Then using
(1.1.48), and the fact that the total number of odd operators T3j and Tj3 with j = 1, 2 in the
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scalar product is equal 2b, we arrive at (3.1.3). Thus, we conclude that the scalar product is
invariant under the permutation of the sets {ūC , v̄C} ↔ {ūB, v̄B}:

Sa,b(ū
C ; v̄C |ūB; v̄B) = Sa,b(ū

B; v̄B|ūC ; v̄C). (3.1.4)

In order to calculate the scalar product one can take an explicit formula for the dual Bethe
vector ((2.1.3) or (2.1.4)) and then use the formulas of the multiple actions (2.1.19)–(2.1.20).
Basing on these formulas we can present the scalar product of Bethe vectors in the following
schematic form:

Sa,b(ū
C ; v̄C |ūB; v̄B) =

∑
r1(w̄i)r3(w̄ii)Wpart(w̄i; w̄ii; w̄iii). (3.1.5)

Here a set w̄ is the union of all the Bethe parameters: w̄ = {ūC , ūB, v̄C , v̄B}. The sum is
taken over partitions of this set into three subsets w̄ ⇒ {w̄i, w̄ii, w̄iii}. The functions Wpart are
some rational coefficient. Their explicit forms are not important for now. We stress in (3.1.5)
that a part of the Bethe parameters w̄i becomes the arguments of the functions r1, while the
parameters w̄ii become the arguments of the functions r3. The remaining parameters w̄iii enter
the rational functions Wpart only.

Let us call the set {ūC , ūB} the parameters of u-type. Correspondingly, we call the set
{v̄C , v̄B} the parameters of v-type.

Conjecture 3.1.1. The set w̄i in (3.1.5) consists of parameters of the u-type only, while the set
w̄ii consists of the parameters of v-type, that is, w̄i ⊂ {ūC , ūB} and w̄ii ⊂ {v̄C , v̄B}. Moreover,
#w̄i = a and #w̄ii = b.

Proof. Let us prove that w̄i ⊂ {ūC , ūB}. For this we take the dual Bethe vector in
the form (2.1.4). Let us fix a partition ūC ⇒ {ūC

I , ū
C
II } in (2.1.4), such that #ūC

I = n,
n = 0, 1, . . . ,min(a, b). Calculating the scalar product we first act with the operators T21(ūC

II )
onto the Bethe vector. Then due to (2.1.19) we obtain a sum over partitions of the set
{ūC

II , ū
B}. The terms of this sum are proportional to the products of the functions r1(η̄I),

where η̄I ⊂ {ūC
II , ū

B} and #η̄I = a− n. Hence, the parameters η̄I are of the u-type.
Next, we act with the operators T31(ūC

I ) onto obtained Bethe vectors via (2.1.21). We
get new partitions of the set

{
{ūC , ūB} \ η̄I

}
and new products of functions r1, say, r1(η̄I′).

Obviously, η̄I′ ⊂
{
{ūC , ūB} \ η̄I

}
and #η̄I′ = n. Thus, the total number of the functions r1 is

equal to a, and all their arguments are of the u-type.
Finally, we should act with the product of the operators T32(v̄C

II ). But due to (2.1.20) this
action does not produce new functions r1. Thus, we have proved that w̄i ⊂ {ūC , ūB} and
#w̄i = a.

Similarly, one can prove that w̄ii ⊂ {v̄C , v̄B} and #w̄ii = b. However, for this one should
take representation (2.1.3) for the dual Bethe vector. Then all the functions r3 will be produced
under the successive actions of the operators T32(v̄C

II ) and T31(v̄C
I ). Repeating the considerations

above we prove that all the parameters w̄ii are of the v-type and their total number is equal to
b. �

Due to proposition 3.1.1 one can recast (3.1.5) in the form

Sa,b(ū
C ; v̄C |ūB; v̄B) =

∑
r1(η̄I)r3(ξ̄I)Wpart(η̄I; η̄II|ξ̄I; ξ̄II). (3.1.6)

Here η̄ = {ūC , ūB} and ξ̄ = {v̄C , v̄B}. The sum is taken over partitions η̄ ⇒ {η̄I, η̄II} and
ξ̄ ⇒ {ξ̄I, ξ̄II}, such that #η̄I = a and #ξ̄I = b. Setting in (3.1.6)

η̄I = {ūB
I , ū

C
II }, η̄II = {ūB

II , ū
C
I }, #ūB

I = #ūC
I = k, k = 1, . . . , a;

ξ̄I = {v̄B
I , v̄

C
II }, ξ̄II = {v̄B

II , v̄
C
I }, #v̄B

I = #v̄C
I = n, n = 1, . . . , b,

(3.1.7)
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we arrive at a representation

Sa,b(ū
C ; v̄C |ūB; v̄B) =

∑ r1(ūC
II )r1(ūB

I )r3(v̄C
II )r3(v̄B

I )

f(v̄C , ūC)f(v̄B, ūB)
Wpart

(
ūC

II , ū
B
II , ūC

I , ū
B
I

v̄C
I , v̄

B
I , v̄C

II , v̄
B
II

)
. (3.1.8)

Here the sum runs over all the partitions ūC ⇒ {ūC
I , ū

C
II }, ūB ⇒ {ūB

I , ū
B
II }, v̄C ⇒ {v̄C

I , v̄
C
II } and

v̄B ⇒ {v̄B
I , v̄

B
II } with #ūC

I = #ūB
I and #v̄C

I = #v̄B
I . The functions Wpart are rational coefficients,

which depend on the partitions but do not depend on the functions r1 and r3. We also have
extracted explicitly the product f(v̄C , ūC)−1f(v̄B, ūB)−1 that plays the role of a normalisation
factor.

Definition 3.1.1. We call the highest coefficient Za,b(ū
C ; ūB|v̄C ; v̄B) the function Wpart that

corresponds to the extreme partitions ūC
I = ūB

I = ∅ and v̄C
II = v̄B

II = ∅:

Wpart

(
ūC , ūB, ∅, ∅
v̄C , v̄B, ∅, ∅

)
= Za,b(ū

C ; ūB|v̄C ; v̄B). (3.1.9)

In other words, Za,b(ū
C ; ūB|v̄C ; v̄B) is the coefficient of the product r1(ūC)r3(v̄B).

One also can define a conjugated highest coefficient corresponding to the extreme partition
ūC

II = ūB
II = ∅ and v̄C

I = v̄B
I = ∅, that is the coefficient of the product r1(ūB)r3(v̄C). However,

due to (3.1.4) it is clear that

Wpart

(
∅, ∅, ūC , ūB,
∅, ∅, v̄C , v̄B

)
= Za,b(ū

B; ūC |v̄B; v̄C). (3.1.10)

We will show that all other coefficients Wpart are equal to bilinear combinations of the highest
coefficient and its conjugated.

Conjecture 3.1.2. For a fixed partition with #ūC
I = #ūB

I = k and #v̄C
I = #v̄B

I = n, (where
k = 0, . . . , a and n = 0, . . . , b), the coefficient Wpart has the form

Wpart

(
ūC

II , ū
B
II , ūC

I , ū
B
I

v̄C
I , v̄

B
I , v̄C

II , v̄
B
II

)
= f(ūB

II , ū
B
I )f(ūC

I , ū
C
II )g(v̄B

II , v̄
B
I )g(v̄C

I , v̄
C
II )f(v̄C

I , ū
C
I )f(v̄B

II , ū
B
II )

× Za−k,n(ūC
II ; ūB

II |v̄C
I ; v̄B

I ) Zk,b−n(ūB
I ; ūC

I |v̄B
II ; v̄C

II ) . (3.1.11)

The main goal of this paper is to find an explicit formula for the highest coefficient Za,b and
to prove the representation (3.1.11) for the coefficient Wpart.

Comparing (3.1.11) with the similar formula for the gl(3)-based models [85] one can see
that they are very similar. It is enough to replace the product g(v̄B

II , v̄
B
I )g(v̄C

I , v̄
C
II ) in (3.1.11)

with the product f(v̄B
I , v̄

B
II )f(v̄C

II , v̄
C
I ) in order to reproduce the formula of the paper [85]. One

should remember, however, that the highest coefficients also have different representations in
the models described by gl(2|1) and gl(3) algebras. In particular, it will shown that in the
case under consideration the highest coefficient Za,b admits a single determinant representation,
while in the gl(3) case such a determinant formula is not known.
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3.2 Successive actions

In the previous section we have described how the scalar product depends on the functions rk.
Our goal now is to find explicitly the rational coefficients Wpart. For this we calculate successive
action of the operators Tij with i > j onto a generic Bethe vector. This calculation is based
on the results of previous chapter where the multiple actions of the monodromy matrix entries
were computed.

3.2.1 Successive action of T31(x̄)T21(ȳ)

We start with the successive action of the products T31(x̄)T21(ȳ). Let #x̄ = n and #ȳ = a− n
where n = 0, 1, . . . ,min(a, b). Define

Gn,a(x̄, ȳ) =
T31(x̄)T21(ȳ)

λ2(x̄)λ2(ȳ)
Ba,b(ū; v̄). (3.2.1)

Using successively (2.1.19) and (2.1.21) we obtain

Gn,a(x̄, ȳ) = (−1)
n(n+1)

2 h(v̄, ȳ)h(ȳ, ȳ)
∑

r1(η̄I)
f(η̄II, η̄I)f(η̄II, η̄III)f(η̄III, η̄I)g(ξ̄II, ξ̄I)

h(ξ̄I, ȳ)f(ξ̄II, η̄I)

×Ka−n(ȳ|η̄II + c)Ka−n(η̄I|ξ̄I + c)h(ξ̄II, x̄)h(x̄, x̄)r3(ξ̄i)r1(η̄ii)
g(ξ̄ii, ξ̄i)g(ξ̄iii, ξ̄ii)g(ξ̄iii, ξ̄i)

h(η̄i, x̄)h(ξ̄i, η̄i)h(ξ̄ii, x̄)

× f(η̄i, η̄ii)h(η̄i, η̄i)

f(ξ̄i, η̄ii)f(ξ̄iii, η̄ii)
Kn(η̄ii|ξ̄ii + c) B0,b−n(∅; ξ̄iii). (3.2.2)

The sum is organized as follows. First the sets {ȳ, ū} and {ȳ, v̄} are divided respectively into
subsets {η̄I, η̄II, η̄III} and {ξ̄I, ξ̄II} with the restriction #ξ̄I = #η̄I = #η̄II = a − n. Then the
sets {x̄, η̄III} and {x̄, ξ̄II} are divided respectively into subsets {η̄i, η̄ii} and {ξ̄i, ξ̄ii, ξ̄iii} with the
restriction #ξ̄i = #ξ̄ii = #η̄i = #η̄ii = n.

It is convenient to introduce the sets η̄ = {ȳ, x̄, ū} and ξ̄ = {ȳ, x̄, v̄}. Then we can understand
the sum in (3.2.2) as the sum over partitions η̄ ⇒ {η̄I, η̄II, η̄i, η̄ii} and ξ̄ ⇒ {ξ̄I, ξ̄i, ξ̄ii, ξ̄iii} with
the restrictions mentioned above and an additional constrain x̄ ∩ {η̄I, η̄II, ξ̄I} = ∅. Hereby η̄III =
{η̄i, η̄ii} \ x̄ and ξ̄II = {ξ̄i, ξ̄ii, ξ̄iii} \ x̄. Then we have

f(η̄II, η̄III)f(η̄III, η̄I) =
f(η̄II, η̄i)f(η̄II, η̄ii)f(η̄i, η̄I)f(η̄ii, η̄I)

f(η̄II, x̄)f(x̄, η̄I)
, (3.2.3)

and
g(ξ̄II, ξ̄I)

f(ξ̄II, η̄I)
=

g(ξ̄i, ξ̄I)g(ξ̄ii, ξ̄I)g(ξ̄iii, ξ̄I)f(x̄, η̄I)

g(x̄, ξ̄I)f(ξ̄i, η̄I)f(ξ̄ii, η̄I)f(ξ̄iii, η̄I)
. (3.2.4)

Observe that the restrictions x̄∩ η̄II = ∅ and x̄∩ ξ̄I = ∅ hold automatically due to the presence of
the product f(η̄II, x̄) in the denominator of (3.2.3) and the product g(x̄, ξ̄I) in the denominator
of (3.2.4). Indeed, 1/f(η̄II, x̄) = 0 as soon as x̄∩ η̄II 6= ∅ and 1/g(x̄, ξ̄I) = 0 as soon as x̄∩ ξ̄I 6= ∅.
Actually, one can easily see that the condition x̄ ∩ η̄I = ∅ also holds, although the product
f(x̄, η̄I) in the denominator of (3.2.3) is compensated by the same product in the numerator of
(3.2.4). Indeed, we have seen that x̄ ∩ ξ̄I = ∅, that is to say, x̄ ⊂ {ξ̄i, ξ̄ii, ξ̄iii}. But in this case
x̄ ∩ η̄I = ∅ due to the products of the f -functions in the denominator of (3.2.4).
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Thus, we can recast (3.2.2) as follows:

Gn,a(x̄, ȳ) = (−1)
n(n+1)

2
h(ξ̄, ȳ)h(ξ̄, x̄)

h(x̄, ȳ)

∑
r1(η̄I)r1(η̄ii)r3(ξ̄i)

× f(η̄II, η̄I)f(η̄II, η̄i)f(η̄II, η̄ii)f(η̄i, η̄I)f(η̄ii, η̄I)f(η̄i, η̄ii)h(η̄i, η̄i)

f(η̄II, x̄)f(ξ̄i, η̄I)f(ξ̄ii, η̄I)f(ξ̄iii, η̄I)f(ξ̄i, η̄ii)f(ξ̄iii, η̄ii)

× g(ξ̄i, ξ̄I)g(ξ̄ii, ξ̄I)g(ξ̄iii, ξ̄I)g(ξ̄ii, ξ̄i)g(ξ̄iii, ξ̄ii)g(ξ̄iii, ξ̄i)

h(ξ̄I, ȳ)h(ξ̄I, x̄)h(η̄i, x̄)h(ξ̄i, η̄i)h(ξ̄ii, x̄)g(x̄, ξ̄I)

×Ka−n(ȳ|η̄II + c)Ka−n(η̄I|ξ̄I + c) Kn(η̄ii|ξ̄ii + c) B0,b−n(∅; ξ̄iii). (3.2.5)

Here we have also used

h(x̄, x̄)h(ξ̄II, x̄) =
h(ξ̄, x̄)

h(ξ̄I, x̄)
. (3.2.6)

In (3.2.5) the sum is taken over partitions η̄ ⇒ {η̄I, η̄II, η̄i, η̄ii} and ξ̄ ⇒ {ξ̄I, ξ̄i, ξ̄ii, ξ̄iii}. The
restriction are imposed on the cardinalities of the subsets only.

One can reduce the number of subsets in (3.2.5). Let η̄0 = {η̄I, η̄ii}. Then (3.2.5) takes the
form

Gn,a(x̄, ȳ) = (−1)
n(n+1)

2
h(ξ̄, ȳ)h(ξ̄, x̄)

h(x̄, ȳ)

∑
r1(η̄0)r3(ξ̄i)

f(η̄II, η̄0)f(η̄i, η̄0)

f(ξ̄iii, η̄0)f(ξ̄i, η̄0)
Ka−n(ȳ|η̄II + c)

× f(η̄II, η̄i)h(η̄i, η̄i)g(ξ̄i, ξ̄I)g(ξ̄ii, ξ̄I)g(ξ̄iii, ξ̄I)g(ξ̄ii, ξ̄i)g(ξ̄iii, ξ̄ii)g(ξ̄iii, ξ̄i)

f(η̄II, x̄)h(ξ̄I, ȳ)h(ξ̄I, x̄)h(η̄i, x̄)h(ξ̄i, η̄i)h(ξ̄ii, x̄)g(x̄, ξ̄I)
B0,b−n(∅; ξ̄iii)

× f(η̄ii, η̄I)

f(ξ̄ii, η̄I)
Ka−n(η̄I|ξ̄I + c) Kn(η̄ii|ξ̄ii + c). (3.2.7)

We see that the sum over partitions η̄0 ⇒ {η̄I, η̄ii} involves the terms in the last line only. This
sum can be computed via lemma 9.3.2. Using (9.3.17) we find

∑
η̄0⇒{η̄I,η̄ii}

Ka−n(η̄I|ξ̄I + c) Kn(η̄ii|ξ̄ii + c)
f(η̄ii, η̄I)

f(ξ̄ii, η̄I)

=
(−1)n

f(ξ̄ii, η̄0)

∑
η̄0⇒{η̄I,η̄ii}

Ka−n(η̄I|ξ̄I + c) Kn(ξ̄ii|η̄ii)f(η̄ii, η̄I) =
(−1)aKa({ξ̄I, ξ̄ii}|η̄0)

f(ξ̄ii, η̄0)f(ξ̄I, η̄0)
. (3.2.8)

Thus, (3.2.7) takes the form

Gn,a(x̄, ȳ) = (−1)a+
n(n+1)

2
h(ξ̄, ȳ)h(ξ̄, x̄)

h(x̄, ȳ)

∑
r1(η̄0)r3(ξ̄i)Ka−n(ȳ|η̄II + c)

× f(η̄II, η̄0)f(η̄II, η̄i)f(η̄i, η̄0)h(η̄i, η̄i)g(ξ̄i, ξ̄I)g(ξ̄ii, ξ̄I)g(ξ̄iii, ξ̄I)g(ξ̄ii, ξ̄i)g(ξ̄iii, ξ̄ii)g(ξ̄iii, ξ̄i)

f(η̄II, x̄)f(ξ̄ii, η̄0)f(ξ̄I, η̄0)f(ξ̄iii, η̄0)f(ξ̄i, η̄0)h(ξ̄I, ȳ)h(ξ̄I, x̄)h(η̄i, x̄)h(ξ̄i, η̄i)h(ξ̄ii, x̄)g(x̄, ξ̄I)

×Ka({ξ̄I, ξ̄ii}|η̄0) B0,b−n(∅; ξ̄iii). (3.2.9)
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Now we define ξ̄0 = {ξ̄I, ξ̄ii}. Then (3.2.9) can be written as

Gn,a(x̄, ȳ) = (−1)a+
n(n−1)

2
h(ξ̄, ȳ)h(ξ̄, x̄)

h(x̄, ȳ)

∑
r1(η̄0)r3(ξ̄i)Ka−n(ȳ|η̄II + c)Ka(ξ̄0|η̄0)

× f(η̄II, η̄0)f(η̄II, η̄i)f(η̄i, η̄0)h(η̄i, η̄i)g(ξ̄i, ξ̄0)g(ξ̄iii, ξ̄0)g(ξ̄iii, ξ̄i)

f(η̄II, x̄)f(ξ̄0, η̄0)f(ξ̄iii, η̄0)f(ξ̄i, η̄0)h(η̄i, x̄)h(ξ̄i, η̄i)h(ξ̄0, x̄)
B0,b−n(∅; ξ̄iii)

× g(ξ̄ii, ξ̄I)

h(ξ̄I, ȳ)g(x̄, ξ̄I)
. (3.2.10)

The sum over partitions ξ̄0 ⇒ {ξ̄I, ξ̄ii} involves the terms in the last line only. It can be computed
via (9.3.16):

∑ g(ξ̄ii, ξ̄I)

g(x̄, ξ̄I)h(ξ̄I, ȳ)
=

(−1)n(a−n)

g(ξ̄0, x̄)

∑ g(ξ̄ii, ξ̄I)g(ξ̄ii, x̄)

h(ξ̄I, ȳ)

=
(−1)n(a−n)

g(ξ̄0, x̄)

∑
g(ξ̄ii, ξ̄I)g(ξ̄ii, x̄)g(ξ̄I, ȳ − c) =

h(x̄, ȳ)

h(ξ̄0, ȳ)
. (3.2.11)

Thus, we arrive at

Gn,a(x̄, ȳ) = (−1)a+
n(n−1)

2 h(ξ̄, ȳ)h(ξ̄, x̄)
∑ r1(η̄0)r3(ξ̄i)

h(ξ̄0, x̄)h(ξ̄0, ȳ)
Ka−n(ȳ|η̄II + c)Ka(ξ̄0|η̄0)

× f(η̄II, η̄0)f(η̄II, η̄i)f(η̄i, η̄0)h(η̄i, η̄i)g(ξ̄i, ξ̄0)g(ξ̄iii, ξ̄0)g(ξ̄iii, ξ̄i)

f(η̄II, x̄)f(ξ̄0, η̄0)f(ξ̄iii, η̄0)f(ξ̄i, η̄0)h(η̄i, x̄)h(ξ̄i, η̄i)
B0,b−n(∅; ξ̄iii). (3.2.12)

Finally, after a relabeling of the subsets η̄0 → η̄I, η̄i → η̄II, η̄II → η̄III, ξ̄i → ξ̄I, ξ̄0 → ξ̄II, ξ̄iii → ξ̄III,
we recast (3.2.12) as follows:

Gn,a(x̄, ȳ) = (−1)a+
n(n−1)

2 h(ξ̄, ȳ)h(ξ̄, x̄)
∑ r1(η̄I)r3(ξ̄I)

h(ξ̄II, x̄)h(ξ̄II, ȳ)
Ka−n(ȳ|η̄III + c)Ka(ξ̄II|η̄I)

× f(η̄III, η̄I)f(η̄III, η̄II)f(η̄II, η̄I)h(η̄II, η̄II)g(ξ̄I, ξ̄II)g(ξ̄III, ξ̄II)g(ξ̄III, ξ̄I)

f(η̄III, x̄)f(ξ̄, η̄I)h(η̄II, x̄)h(ξ̄I, η̄II)
B0,b−n(∅; ξ̄III). (3.2.13)

We recall that the cardinalities of the subsets are

#η̄I = a, #η̄II = n, #η̄III = a− n,
#ξ̄I = n, #ξ̄II = a, #ξ̄III = b− n.

(3.2.14)

Remark 3.2.1. Strictly speaking, the sets η̄ and ξ̄ in equation (3.2.13) should be understood as

η̄ = {x̄+ ε1, ȳ + ε1, ū+ ε1},
ξ̄ = {x̄+ ε2, ȳ + ε2, v̄ + ε2},

at εk → 0, k = 1, 2. (3.2.15)

The point is that individual factors in (3.2.13) may have singularities, if we set εk = 0. For
instance, if ξ̄II∩ η̄I 6= ∅, then the Izergin determinant Ka(ξ̄II|η̄I) is singular. However, these poles
are compensated by the product f(ξ̄, η̄I)

−1. Therefore, for appropriate evaluating the limit we
should have εk 6= 0. In order to lighten the formulas we do not write these auxiliary parameters
εk explicitly, but one has to keep them in mind when doing the calculations.
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3.2.2 Successive action of T32(z̄)T31(x̄)T21(ȳ)

Let now #z̄ = b− n. Then we define

T32(z̄)T31(x̄)T21(ȳ)

λ2(z̄)λ2(x̄)λ2(ȳ)
Ba,b(ū, v̄) =

T32(z̄)

λ2(z̄)
Gn,a(x̄, ȳ) = Hn,a,b(x̄, ȳ, z̄)Ω. (3.2.16)

In order to act with T32(z̄) onto Gn,a(x̄, ȳ) we should use (2.1.20). Let us denote the union
{x̄, ȳ} as ūC (as it will be in the case of the scalar product). Then we obtain

Hn,a,b(x̄, ȳ, z̄) = (−1)a+
n(n−1)

2
+

(b−n)(b−n−1)
2 h(v̄, ūC)h(ūC , ūC)

∑ r1(η̄I)r3(ξ̄I)r3(ξ̄i)

h(ξ̄II, ūC)

×Ka−n(ȳ|η̄III + c)Ka(ξ̄II|η̄I)
f(η̄III, η̄I)f(η̄III, η̄II)f(η̄II, η̄I)h(η̄II, η̄II)

f(η̄III, x̄)f(ξ̄, η̄I)

× g(ξ̄I, ξ̄II)g(ξ̄III, ξ̄II)g(ξ̄III, ξ̄I)

h(η̄II, x̄)h(ξ̄I, η̄II)
g(ξ̄ii, ξ̄i). (3.2.17)

Here the partitions of the set η̄ remain the same as in (3.2.13). The partitions of the remaining
variables are organized as follows. We first have the partitions of the set {ūC , v̄} = ξ̄ ⇒
{ξ̄I, ξ̄II, ξ̄III}. Then we combine {z̄, ξ̄III} and obtain additional partitions {z̄, ξ̄III} ⇒ {ξ̄i, ξ̄ii} with
the restriction #ξ̄i = #ξ̄ii = b− n.

We should substitute ξ̄III = {ξ̄i, ξ̄ii} \ z̄ into (3.2.17). Then, using

g(ξ̄III, ξ̄II)g(ξ̄III, ξ̄I)

f(ξ̄, η̄I)
=
g(ξ̄i, ξ̄II)g(ξ̄ii, ξ̄II)g(ξ̄i, ξ̄I)g(ξ̄ii, ξ̄I)

f(v̄, η̄I)f(ūC , η̄I)g(z̄, ξ̄I)g(z̄, ξ̄II)
, (3.2.18)

we arrive at

Hn,a,b(x̄, ȳ, z̄) = (−1)a+
n(n−1)

2
+

(b−n)(b−n−1)
2 h(v̄, ūC)h(ūC , ūC)

∑ r1(η̄I)r3(ξ̄I)r3(ξ̄i)

h(ξ̄II, ūC)

×Ka−n(ȳ|η̄III + c)Ka(ξ̄II|η̄I)
f(η̄III, η̄I)f(η̄III, η̄II)f(η̄II, η̄I)h(η̄II, η̄II)f(z̄, η̄I)

f(η̄III, x̄)f(ξ̄, η̄I)

× g(ξ̄I, ξ̄II)g(ξ̄i, ξ̄II)g(ξ̄ii, ξ̄II)g(ξ̄i, ξ̄I)g(ξ̄ii, ξ̄I)g(ξ̄ii, ξ̄i)

h(η̄II, x̄)h(ξ̄I, η̄II)g(z̄, ξ̄I)g(z̄, ξ̄II)
. (3.2.19)

Here we have denoted by ξ̄ the union {z̄, ūC , v̄}. This set is divided into four subsets ξ̄ ⇒
{ξ̄i, ξ̄ii, ξ̄I, ξ̄II} with the cardinalities #ξ̄i = #ξ̄ii = b− n, #ξ̄I = n, and #ξ̄II = a.

Let ξ̄0 = {ξ̄i, ξ̄I}. Then

Hn,a,b(x̄, ȳ, z̄) = (−1)a+n(b+1)+
b(b−1)

2 h(v̄, ūC)h(ūC , ūC)
∑ r1(η̄I)r3(ξ̄0)

h(ξ̄II, ūC)
Ka−n(ȳ|η̄III + c)

×Ka(ξ̄II|η̄I)
f(η̄III, η̄I)f(η̄III, η̄II)f(η̄II, η̄I)h(η̄II, η̄II)f(z̄, η̄I)g(ξ̄0, ξ̄II)g(ξ̄ii, ξ̄II)g(ξ̄ii, ξ̄0)

f(η̄III, x̄)f(ξ̄, η̄I)h(η̄II, x̄)g(z̄, ξ̄II)

× g(ξ̄i, ξ̄I)

h(ξ̄I, η̄II)g(z̄, ξ̄I)
. (3.2.20)

The sum over partitions ξ̄0 ⇒ {ξ̄I, ξ̄i} involves the terms in the last line only. It can be computed
via (9.3.16): ∑ g(ξ̄i, ξ̄I)

h(ξ̄I, η̄II)g(z̄, ξ̄I)
=

(−1)b−n

g(z̄, ξ̄0)

∑ g(ξ̄i, ξ̄I)g(ξ̄i, z̄)

h(ξ̄I, η̄II)
=

h(z̄, η̄II)

h(ξ̄0, η̄II)
. (3.2.21)
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Substituting this into (3.2.20) we find

Hn,a,b(x̄, ȳ, z̄) = (−1)a+n(b+1)+
b(b−1)

2 h(v̄, ūC)h(ūC , ūC)
∑ r1(η̄I)r3(ξ̄0)

h(ξ̄II, ūC)

× f(η̄III, η̄I)f(η̄III, η̄II)f(η̄II, η̄I)h(η̄II, η̄II)f(z̄, η̄I)g(ξ̄0, ξ̄II)g(ξ̄ii, ξ̄II)g(ξ̄ii, ξ̄0)h(z̄, η̄II)

f(η̄III, x̄)f(ξ̄, η̄I)h(η̄II, x̄)h(ξ̄0, η̄II)g(z̄, ξ̄II)

×Ka−n(ȳ|η̄III + c)Ka(ξ̄II|η̄I). (3.2.22)

Finally, relabeling ξ̄0 → ξ̄I and ξ̄ii → ξ̄III we arrive at

Hn,a,b(x̄, ȳ, z̄) = (−1)a+n(b+1)+ b2−b
2
h(ξ̄, ūC)

h(z̄, ūC)

∑
r1(η̄I)r3(ξ̄I)Ka(ξ̄II|η̄I)Ka−n(ȳ|η̄III + c)

× f(η̄0, η̄I)h(η̄0, η̄II)g(η̄III, η̄II)f(z̄, η̄I)h(z̄, η̄II)g(ξ̄I, ξ̄II)g(ξ̄III, ξ̄I)g(ξ̄III, ξ̄II)

h(ξ̄I, η̄II)f(ξ̄, η̄I)h(η̄II, x̄)f(η̄III, x̄)g(z̄, ξ̄II)h(ξ̄II, ūC)
. (3.2.23)

Recall that in this formula η̄ = {x̄, ȳ, ū}, ξ̄ = {z̄, x̄, ȳ, v̄}, and we denote ūC = {x̄, ȳ}. The
sum is taken over partitions η̄ ⇒ {η̄I, η̄II, η̄III} and ξ̄ ⇒ {ξ̄I, ξ̄II, ξ̄III}. Hereby η̄0 = {η̄II, η̄III}. The
cardinalities of the subsets are

#η̄I = a, #η̄II = n, #η̄III = a− n,
#ξ̄I = b, #ξ̄II = a, #ξ̄III = b− n.

(3.2.24)

3.3 Highest coefficient

Equation (3.2.23) allows us to obtain an explicit representation for the scalar product of Bethe
vectors. Using (2.1.4) we find

Sa,b =
(−1)

b2−b
2

f(v̄C , ūC)

∑
g(v̄C

I , ū
C
I )f(ūC

II , ū
C
I )f(v̄C

I , ū
C
II )g(v̄C

II , v̄
C
I )h(ūC

I , ū
C
I ) Hn,a,b(ū

C
I , ū

C
II , v̄

C
II ). (3.3.1)

The sum is taken over partitions ūC ⇒ {ūC
I , ū

C
II } and v̄C ⇒ {v̄C

I , v̄
C
II }, where #v̄C

I = #ūC
I = n, and

n = 0, 1, . . . ,min(a, b). The function Hn,a,b(ū
C
I , ū

C
II , v̄

C
II ) itself is given as a sum over partitions

described in (3.2.23). Namely, the union {ūC , ūB} is divided into three subsets and the union
{v̄C

II , ū
C , v̄B} also is divided into three subsets. Although the resulting formula is explicit, it is

inconvenient for later use. Therefore, we will try to simplify it. To do this, we introduce a new
function.

Definition 3.3.1. Let x̄, ȳ, t̄, s̄, and β̄ be five sets of generic complex numbers with cardinalities
#x̄ = n, #ȳ = m, and #β̄ = n+m. The cardinalities of the sets t̄ and s̄ are not fixed. Define
a function

Jn,m(x̄; ȳ|t̄; s̄|β̄) = ∆n+m(β̄)∆′n(x̄)∆′m(ȳ) det
n+m
Jjk, (3.3.2)

where

Jjk =
g(βj , xk)

h(βj , xk)
, k = 1, . . . , n;

Jj,k+n = g(βj , yk)
h(βj , t̄)

h(βj , s̄)
, k = 1, . . . ,m;

j = 1, . . . , n+m. (3.3.3)
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Developing the determinant in (3.3.2) with respect to the first n columns (see Appendix 9.2
for more details) we obtain a presentation of Jn,m as a sum over partitions of the set β̄:

Jn,m(x̄; ȳ|t̄; s̄|β̄) =
∑

Kn(β̄I|x̄)
g(β̄II, β̄I)g(β̄II, ȳ)h(β̄II, t̄)

h(β̄I, x̄)h(β̄II, s̄)
. (3.3.4)

Here the sum is taken over partitions β̄ ⇒ {β̄I, β̄II}, such that #β̄I = n and #β̄II = m.

3.3.1 First representation for the highest coefficient

Let us find the highest coefficient Za,b(ū
B; ūC |v̄B; v̄C). We recall that up to the normalisation

factor
(
f(v̄C , ūC)f(v̄B, ūB)

)−1
it is the rational coefficient of the product r1(ūB)r3(v̄C) (see

(3.1.10), (3.1.11)).

Obviously, for this we should set η̄I = ūB and ξ̄I = v̄C in (3.2.23). However, ξ̄I ⊂ {v̄C
II , ū

C , v̄B}.
Hence, one can have ξ̄I = v̄C if and only if v̄C

II = v̄C , and thus, v̄C
I = ∅. But #v̄C

I = #ūC
I = n in

(3.3.1), therefore ūC
I = ∅ and n = 0. Thus, (3.3.1) takes the form

r1(ūB)r3(v̄C) Za,b(ū
B; ūC |v̄B; v̄C)

f(v̄C , ūC)f(v̄B, ūB)
=

(−1)
b2−b

2

f(v̄C , ūC)
H0,a,b(∅, ūC , v̄C)

∣∣∣
η̄I=ūB ; ξ̄I=v̄C

. (3.3.5)

Substituting the conditions η̄I = ūB and ξ̄I = v̄C into (3.2.23) we should take into account that
#η̄II = n = 0 (see (3.2.24)). Hence, η̄II = ∅, which implies η̄III = η̄0 = ūC . Thus, substituting
these subsets into (3.2.23) we find

r1(ūB)r3(v̄C) Za,b(ū
B; ūC |v̄B; v̄C) = (−1)ah(v̄B, ūC)h(ūC , ūC)r1(ūB)r3(v̄C)

×Ka(ū
C |ūC + c)

∑
Ka(ξ̄II|ūB)

g(ξ̄III, v̄
C)g(ξ̄III, ξ̄II)

h(ξ̄II, ūC)
, (3.3.6)

where the sum is taken over partitions {ūC , v̄B} = ξ̄ ⇒ {ξ̄II, ξ̄III} with #ξ̄II = a and #ξ̄III = b.
Due to (1.1.45) we conclude that Ka(ū

C |ūC + c) = (−1)a, and we arrive at

Za,b(ū
B; ūC |v̄B; v̄C) = h(v̄B, ūC)h(ūC , ūC)

∑
Ka(ξ̄II|ūB)

g(ξ̄III, v̄
C)g(ξ̄III, ξ̄II)

h(ξ̄II, ūC)
. (3.3.7)

Finally, using {ūC , v̄B} = ξ̄ we recast (3.3.7) as follows:

Za,b(ū
B; ūC |v̄B; v̄C) =

∑
Ka(ξ̄II|ūB)g(ξ̄III, v̄

C)g(ξ̄III, ξ̄II)h(ξ̄III, ū
C)

= h(v̄B, ūB)h(ūC , ūB)
∑

Ka(ξ̄II|ūB)
g(ξ̄III, v̄

C)g(ξ̄III, ξ̄II)h(ξ̄III, ū
C)

h(ξ̄II, ūB)h(ξ̄III, ūB)
. (3.3.8)

Comparing (3.3.8) and (3.3.4) we conclude that

Za,b(ū
B; ūC |v̄B; v̄C) = h(v̄B, ūB)h(ūC , ūB) Ja,b(ū

B; v̄C |ūC ; ūB|{v̄B, ūC}). (3.3.9)

Thus, we have obtained an explicit representation for the highest coefficient Za,b(ū
B; ūC |v̄B; v̄C)

in terms of the determinant of the (a+ b)× (a+ b) matrix Jjk (3.3.3).
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3.3.2 Second highest coefficient

In order to obtain the second highest coefficient Za,b(ū
C ; ūB|v̄C ; v̄B) it is enough to make the

replacements ūC ↔ ūB and v̄C ↔ v̄B in (3.3.9). On the other hand, this coefficient should arise
if we set η̄I = ūC and ξ̄I = v̄B in (3.2.23). However, if we do so, then we do not obtain (3.3.9)
with the replacements mentioned above. Instead, we obtain much more sophisticated formula
involving many sums over partitions. This ‘break of symmetry’ occurs because we use a specific
representation (2.1.4) for the dual Bethe vector. If we would use equation (2.1.3) for Ca,b(ū; v̄),
then we would have an analog of (3.3.9) for Za,b(ū

C ; ūB|v̄C ; v̄B), however, we would have a more
complex formula for Za,b(ū

B; ūC |v̄B; v̄C).
A ‘complex’ formula for the highest coefficient provides us with a very non-trivial identity

for Za,b(ū
C ; ūB|v̄C ; v̄B), that will be used later. In order to obtain this identity we first make

several additional summations in (3.3.1). Let us rewrite this equation explicitly

Sa,b =
h(v̄B, ūC)h(ūC , ūC)

f(v̄C , ūC)

∑
(−1)a+n(b+1)g(v̄C

I , ū
C)g(ūC

II , ū
C
I )h(v̄C

I , ū
C
II )g(v̄C

II , v̄
C
I )h(ūC , ūC

I )

× r1(η̄I)r3(ξ̄I)Ka(ξ̄II|η̄I)Ka−n(ūC
II |η̄III + c)

× f(η̄0, η̄I)h(η̄0, η̄II)g(η̄III, η̄II)f(v̄C
II , η̄I)h(v̄C

II , η̄II)g(ξ̄I, ξ̄II)g(ξ̄III, ξ̄I)g(ξ̄III, ξ̄II)

h(ξ̄I, η̄II)f(ξ̄, η̄I)h(η̄II, ūC
I )f(η̄III, ūC

I )g(v̄C
II , ξ̄II)h(ξ̄II, ūC)

. (3.3.10)

The sum over partitions into subsets ξ̄II and ξ̄III, as well as the sum over partitions ūC ⇒ {ūC
I , ū

C
II }

can be computed in terms of the function J (3.3.2). Let ξ̄0 = {ξ̄II, ξ̄III}. Then

∑
ξ̄0⇒{ξ̄II,ξ̄III}

Ka(ξ̄II|η̄I)g(ξ̄I, ξ̄II)g(ξ̄III, ξ̄I)g(ξ̄III, ξ̄II)

g(v̄C
II , ξ̄II)h(ξ̄II, ūC)

=
(−1)ab+n+bg(ξ̄0, ξ̄I)h(ξ̄0, η̄I)

g(v̄C
II , ξ̄0)h(ξ̄0, ūC)

Ja,b−n(η̄I; v̄
C
II |ūC ; η̄I|ξ̄0). (3.3.11)

Similarly, one can verify that∑
ūC⇒{ūCI ,ū

C
II }

Ka−n(ūC
II |η̄III + c)g(ūC

II , ū
C
I )h(v̄C

I , ū
C
II )h(ūC , ūC

I )

h(η̄II, ūC
I )f(η̄III, ūC

I )

= (−1)a+n+anh(v̄C
I , ū

C)

g(η̄III, ūC)
Ja−n,n(η̄III; v̄

C
I |ūC + c; η̄0 + c|ūC − c). (3.3.12)

Substituting these results into (3.3.10) we find

Sa,b =
h(v̄B, ūC)h(ūC , ūC)

f(v̄C , ūC)

∑
(−1)b+ab+n(a+b+1)r1(η̄I)r3(ξ̄I)Ja,b−n(η̄I; v̄

C
II |ūC ; η̄I|ξ̄0)

× Ja−n,n(η̄III; v̄
C
I |ūC + c; η̄0 + c|ūC − c)f(η̄0, η̄I)h(η̄0, η̄II)g(η̄III, η̄II)

× h(v̄C
II , η̄II)f(v̄C

I , ū
C)g(v̄C

II , v̄
C
I )g(ξ̄0, ξ̄I)h(ξ̄0, η̄I)

g(η̄III, ūC)f(ūC , η̄I)f(v̄B, η̄I)h(ξ̄I, η̄II)g(v̄C
II , ξ̄0)h(ξ̄0, ūC)

. (3.3.13)

The sum is taken over partitions:
(1) v̄C ⇒ {v̄C

I , v̄
C
II } with #v̄C

I = n and #v̄C
II = b− n;

(2) {ūC , v̄B, v̄C
II } = ξ̄ ⇒ {ξ̄I, ξ̄0} with #ξ̄I = b and #ξ̄0 = b+ a− n;

(3) {ūC , ūB} = η̄ ⇒ {η̄I, η̄0} and η̄0 ⇒ {η̄II, η̄III} with #η̄I = a, #η̄II = n, and #η̄III = a− n.
In all these partitions n = 0, 1, . . . ,min(a, b).
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Due to proposition 3.1.1 the function r3 depends on the variables of the v-type only. Hence,
ξ̄I ∩ ūC = ∅, that is ūC ⊂ ξ̄0. Therefore, we can set ξ̄0 = {ūC , ξ̄II}. Substituting this into (3.3.13)
we obtain

Sa,b =
h(v̄B, ūC)

f(v̄C , ūC)

∑
(−1)b+n(a+b+1)r1(η̄I)r3(ξ̄I)Ja,b−n(η̄I; v̄

C
II |ūC ; η̄I|{ξ̄II, ū

C})

× Ja−n,n(η̄III; v̄
C
I |ūC + c; η̄0 + c|ūC − c)f(η̄0, η̄I)h(η̄0, η̄II)g(η̄III, η̄II)

× h(v̄C
II , η̄II)f(v̄C

I , ū
C)g(v̄C

II , v̄
C
I )g(ξ̄II, ξ̄I)h(ξ̄II, η̄I)g(ξ̄I, ū

C)

g(η̄III, ūC)g(ūC , η̄I)f(v̄B, η̄I)h(ξ̄I, η̄II)g(v̄C
II , ξ̄II)h(ξ̄II, ūC)g(v̄C

II , ū
C)
. (3.3.14)

In this formula ξ̄ = {v̄C
II , v̄

B}, #ξ̄I = b and #ξ̄II = b − n. All other subsets are the same as in
(3.3.13).

Now everything is ready to formulate the second representation for the highest coefficient
Za,b(ū

C ; ūB|v̄C ; v̄B). For this we set η̄I = ūC and ξ̄I = v̄B. Then automatically η̄0 = ūB, ξ̄II = v̄C
II

and we also can set η̄II = ūB
I , η̄III = ūB

II . Substituting this into (3.3.14) and keeping in mind
remark 3.2.1 we obtain

Za,b(ū
C ; ūB|v̄C ; v̄B) = f(v̄B, ūB)f(ūB, ūC)

∑
(−1)n(a+b+1)+bg(v̄C

II , v̄
C
I )f(v̄C

I , ū
C)

× Ja−n,n(ūB
II ; v̄C

I |ūC + c; ūB + c|ūC − c)h(ūB, ūB
I )g(ūB

II , ū
B
I )h(v̄C

II , ū
B
I )g(v̄C

II , v̄
B)h(v̄C

II , ū
C)

g(ūB
II , ū

C)h(v̄B, ūB
I )g(v̄C

II , ū
C)h(v̄C

II , ū
C)

× lim
η̄I→ūC
ξ̄II→v̄CII

Ja,b−n(η̄I; v̄
C
II |ūC ; η̄I|{ūC , ξ̄II})

g(ūC , η̄I)g(v̄C
II , ξ̄II)

. (3.3.15)

Using (9.3.3) and (9.3.4) we find

lim
η̄I→ūC
ξ̄II→v̄CII

Ja,b−n(η̄I; v̄
C
II |ūC ; η̄I|{ūC , ξ̄II})

g(ūC , η̄I)g(v̄C
II , ξ̄II)

= (−1)b+ng(v̄C
II , ū

C), (3.3.16)

and we thus arrive at

Za,b(ū
C ; ūB|v̄C ; v̄B) = f(ūB, ūC)f(v̄B, ūB)

∑
(−1)n(a+b)Ja−n,n(ūB

II ; v̄C
I |ūC + c; ūB + c|ūC − c)

× h(ūB
I , ū

B
I )f(ūB

II , ū
B
I )

f(v̄C
I , ū

C)h(v̄C
II , ū

B
I )g(v̄C

II , v̄
C
I )g(v̄C

II , v̄
B)

h(v̄B, ūB
I )g(ūB

II , ū
C)

. (3.3.17)

Here the sum is taken over partitions ūB ⇒ {ūB
II , ū

B
I } and v̄C ⇒ {v̄C

I , v̄
C
II } with #v̄C

I = n and
#ūB

II = a− n.
This is the second representation for the highest coefficient discussed above. It will play the

key role below, therefore we formulate it as a proposition.

Conjecture 3.3.1. For arbitrary sets of complex numbers t̄, x̄, s̄, and ȳ with cardinalities
#t̄ = #x̄ = a and #s̄ = #ȳ = b the following identity holds:

Za,b(t̄; x̄|s̄; ȳ) = f(x̄, t̄)f(ȳ, x̄)
∑

(−1)n1(a+b)J`2,n1(x̄II; s̄I|t̄+ c; x̄+ c|t̄− c)

× h(x̄I, x̄I)f(x̄II, x̄I)
f(s̄I, t̄)h(s̄II, x̄I)g(s̄II, s̄I)g(s̄II, ȳ)

h(ȳ, x̄I)g(x̄II, t̄)
. (3.3.18)
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Here `2 = #x̄II, n1 = #s̄I. The sum is taken over partitions

x̄⇒ {x̄I, x̄II}, s̄⇒ {s̄I, s̄II}, (3.3.19)

with a restriction #s̄I = #x̄I (which is equivalent to `2 + n1 = a).

Proof. Setting in (3.3.17) ūC = t̄, ūB = x̄, v̄C = s̄, and v̄B = ȳ we obtain (3.3.18).

3.3.3 General formula for the scalar product

Now we turn back to equation (3.3.14). To proceed further we should specify all the subsets.
Let v̄C = {v̄C

i , v̄
C
ii , v̄

C
iii} and v̄B = {v̄B

i , v̄
C
ii }. We set

v̄C
I = v̄C

iii, v̄C
II = {v̄C

i , v̄
C
ii },

v̄B = {v̄B
i , v̄

B
ii },

ξ̄I = {v̄C
i , v̄

B
ii }, ξ̄II = {v̄C

ii , v̄
B
i },

with

{
#v̄C

s = ns,

#v̄B
s = ms,

s = i, ii, iii. (3.3.20)

It is easy to see that the following conditions for the cardinalities hold:

niii = n, ni + nii = b− n, mi +mii = b, mi = ni. (3.3.21)

Let also

ūC = {ūC
i , ū

C
0 }, ūC

0 = {ūC
ii , ū

C
iii},

ūB = {ūB
i , ū

B
0 }, ūB

i = {ūB
ii , ū

B
iii},

η̄I = {ūC
i , ū

B
0 }, η̄0 = {ūC

0 , ū
B
i },

with

{
#ūC

p = kp,

#ūB
p = `p,

p = 0, i, ii, iii. (3.3.22)

We have the following conditions for the cardinalities:

ki + k0 = `i + `0 = a, ki = `i, k0 = `0. (3.3.23)

Observe that we do not fix a distribution of the parameters ūC and ūB among the subsets η̄II

and η̄III. It is important, however, that #η̄II = n = niii and #η̄III = a− n.
Using (9.3.3) and (9.3.4) we obtain

Ja,b−n(η̄I; v̄
C
II |ūC ; η̄I|{ūC , ξ̄II})

g(ūC , η̄I)g(v̄C
II , ξ̄II)

= (−1)b−n
g(v̄C

ii , ū
C)g(v̄B

i , ū
C
i )h(v̄C

ii , ū
C
0 )

g(ūC
0 , ū

B
0 )g(v̄B

i , v̄
C
i )h(v̄C

ii , ū
B
0 )

× J`0,ni
(ūB

0 ; v̄C
i |ūC

0 ; ūB
0 |{ūC

0 , v̄
B
i }). (3.3.24)

Due to (3.3.9) this function reduces to the highest coefficient

J`0,ni
(ūB

0 ; v̄C
i |ūC

0 ; ūB
0 |{ūC

0 , v̄
B
i }) =

Z`0,ni
(ūB

0 , ū
C
0 |v̄B

i , v̄
C
i )

h(ūC
0 , ū

B
0 )h(v̄B

i , ū
B
0 )

. (3.3.25)

Now we substitute (3.3.24), (3.3.25) into (3.3.14). We also write explicitly the products
g(v̄C

II , v̄
C
I ), g(ξ̄II, ξ̄I), f(η̄0, η̄I), and combine {v̄C

ii , v̄
C
iii} = v̄C

0 . Then we have

Sa,b =
1

f(v̄C , ūC)

∑
r1(ūC

i )r1(ūB
0 )r3(v̄C

i )r3(v̄B
ii ) Z`0,ni

(ūB
0 , ū

C
0 |v̄B

i , v̄
C
i )
f(ūB

i , ū
C
i )f(v̄B

ii , ū
C)

f(v̄B, ūB
0 )f(v̄B

ii , ū
C
i )

× f(ūC
0 , ū

C
i )f(ūB

i , ū
B
0 )g(v̄C

0 , v̄
C
i )g(v̄B

i , v̄
B
ii )

{
Ja−n,n(η̄III; v̄

C
iii|ūC + c; η̄0 + c|ūC − c)

× (−1)n(a+b−ni)h(η̄II, η̄II)f(η̄III, η̄II)
f(v̄C

iii, ū
C)g(v̄C

ii , v̄
C
iii)g(v̄C

ii , v̄
B
ii )h(v̄C

ii , η̄II)

g(η̄III, ūC)h(v̄B
ii , η̄II)

}
. (3.3.26)
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Here the sum is organized as follows. First, we have partitions

ūC ⇒ {ūC
i , ū

C
0 }, ūB ⇒ {ūB

i , ū
B
0 }, #ūC

0 = #ūB
0 = `0,

v̄C ⇒ {v̄C
i , v̄

C
0 }, v̄B ⇒ {v̄B

i , v̄
B
ii }, #v̄C

i = #v̄B
i = ni.

(3.3.27)

After this we have two additional partitions: the set v̄C
0 is divided into subsets v̄C

ii and v̄C
iii; the

union of the subsets η̄0 = {ūC
0 , ū

B
i } is divided into subsets η̄II and η̄III (see the terms in braces in

(3.3.26)). Hereby we have one restriction for the cardinalities #v̄C
iii = #η̄II = n = niii. Let us

write separately this additional sum over partitions in braces of (3.3.26)

F(ūC ; η̄0; v̄C
0 , v̄

B
ii ) =

∑
η̄0⇒{η̄II,η̄III}
v̄C0 ⇒{v̄Cii ,v̄

C
iii}

Ja−n,n(η̄III; v̄
C
iii|ūC + c; η̄0 + c|ūC − c)

× (−1)n(a+b−ni)h(η̄II, η̄II)f(η̄III, η̄II)
f(v̄C

iii, ū
C)g(v̄C

ii , v̄
C
iii)g(v̄C

ii , v̄
B
ii )h(v̄C

ii , η̄II)

g(η̄III, ūC)h(v̄B
ii , η̄II)

. (3.3.28)

Comparing (3.3.28) with (3.3.18) one can see that they coincide after appropriate identi-
fication of the subsets and their cardinalities. Namely, (3.3.28) turns into (3.3.18) under the
replacements b− ni → b, ūC → t̄, η̄0 → x̄, v̄C

0 → s̄, v̄B
ii → ȳ. Thus, due to Proposition 3.3.1 we

obtain

F(ūC ; η̄0; v̄C
0 , v̄

B
ii ) =

Za,b−ni
(ūC ; η̄0|v̄C

0 , v̄
B
ii )

f(η̄0, ūC)f(v̄B
ii , η̄0)

. (3.3.29)

Thus, substituting this into (3.3.26) we arrive at

Sa,b =
1

f(v̄C , ūC)

∑
r1(ūC

i )r1(ūB
0 )r3(v̄C

i )r3(v̄B
ii ) Z`0,ni

(ūB
0 , ū

C
0 |v̄B

i , v̄
C
i )
f(ūB

i , ū
C
i )f(v̄B

ii , ū
C)

f(v̄B, ūB
0 )f(v̄B

ii , ū
C
i )

× f(ūC
0 , ū

C
i )f(ūB

i , ū
B
0 )g(v̄C

0 , v̄
C
i )g(v̄B

i , v̄
B
ii )
Za,b−ni

(ūC ; η̄0|v̄C
0 , v̄

B
ii )

f(η̄0, ūC)f(v̄B
ii , η̄0)

. (3.3.30)

It remains to simplify the ratio Za,b−ni
(ūC ; η̄0|v̄C

0 , v̄
B
ii )/f(η̄0, ū

C). It can be done via (3.3.9),
(9.3.3):

Za,b−ni
(ūC ; η̄0|v̄C

0 , v̄
B
ii )

f(η̄0, ūC)f(v̄B
ii , η̄0)

=
f(v̄C

0 , ū
C
0 )Za−`0,b−ni

(ūC
i ; ūB

i |v̄C
0 , v̄

B
ii )

f(ūB
i , ū

C
i )f(v̄B

ii , ū
B
i )f(v̄B

ii , ū
C
0 )

. (3.3.31)

Substituting this into (3.3.30) we obtain

Sa,b =
∑

r1(ūC
i )r1(ūB

0 )r3(v̄C
i )r3(v̄B

ii )f(ūC
0 , ū

C
i )f(ūB

i , ū
B
0 )g(v̄C

0 , v̄
C
i )g(v̄B

i , v̄
B
ii )

× f(v̄C
0 , ū

C
0 )f(v̄B

i , ū
B
i )

f(v̄C , ūC)f(v̄B, ūB)
Z`0,ni

(ūB
0 , ū

C
0 |v̄B

i , v̄
C
i ) Za−`0,b−ni

(ūC
i , ū

B
i |v̄C

0 , v̄
B
ii ). (3.3.32)

It is easy to see that after appropriate relabeling the subsets we arrive at

Sa,b =
∑

r1(ūC
II )r1(ūB

I )r3(v̄C
II )r3(v̄B

I )f(ūC
I , ū

C
II )f(ūB

II , ū
B
I )g(v̄C

I , v̄
C
II )g(v̄B

II , v̄
B
I )

× f(v̄C
I , ū

C
I )f(v̄B

II , ū
B
II )

f(v̄C , ūC)f(v̄B, ūB)
Za−k,n(ūC

II , ū
B
II |v̄C

I , v̄
B
I ) Zk,b−n(ūB

I , ū
C
I |v̄B

II , v̄
C
II ), (3.3.33)

where k = #ūC
I = #ūB

I and n = #v̄C
I = #v̄B

I . Comparing this result with (3.1.8) and (3.1.11)
we see that proposition 3.1.2 is proved.
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3.4 Scalar product in the gl(1|1) sector

Consider a particular case of the subalgebra gl(1|1), generated by the operators T23(u), T22(u),
T33(u) and T32(u). In this case one should set ūC = ūB = ∅ in the formulas for the scalar
product. Then the highest coefficient simplifies as

Z0,b(∅; ∅|s̄; ȳ) = ∆b(s̄)∆
′
b(ȳ) det

b
g(sj , yk) = g(s̄, ȳ), (3.4.1)

where we used an explicit representation for Cauchy determinant

det
m
g(uj , vk) =

g(ū, v̄)

∆′m(ū)∆m(v̄)
. (3.4.2)

The scalar product (3.3.33) takes the form

S0,b =
∑

r3(v̄C
II )r3(v̄B

I )g(v̄C
I , v̄

C
II )g(v̄B

II , v̄
B
I )g(v̄C

I , v̄
B
I )g(v̄B

II , v̄
C
II ), (3.4.3)

where the sum is taken over partitions v̄C ⇒ {v̄C
I , v̄

C
II } and v̄B ⇒ {v̄B

I , v̄
B
II } such that #v̄C

I = v̄B
I .

It is easy to see that this sum reduces to a single determinant

S0,b = ∆′b(v̄
C)∆b(v̄

B) det
b

[
g(vC

j , v
B
k )
(
r3(vB

k )− r3(vC
j )
)]
. (3.4.4)

Indeed, developing the determinant in (3.4.4) via Laplace formula and using (3.4.2), (9.2.5) we
obtain the sum (3.4.3).

Thus, the scalar product of Bethe vectors in gl(1|1) integrable models admits a determinant
representation without any restriction on the Bethe parameters. This is not surprising, as these
models are equivalent to free fermions [76, 80].

3.5 Different representations for the highest coefficient

If v̄C = v̄B = ∅, then formula (3.3.33) describes the scalar product in the gl(2)-based models. In
this case the scalar product admits a determinant representation, if one of the Bethe vectors is
an eigenvector of the transfer matrix. One expects that in the general gl(2|1) case the sum over
partitions in (3.3.33) also can be reduced to a single determinant for some particular cases of
Bethe vectors. To make this reduction one should have different representations for the highest
coefficient Za,b(t̄; x̄|s̄; ȳ). In this section we give several formulas for Za,b in terms of sums over
partitions and multiple contour integrals.

We have already obtained an expression for Za,b as the determinant of an (a+ b)× (a+ b)
matrix

Za,b(t̄; x̄|s̄; ȳ) = h(w̄, t̄)∆a+b(w̄)∆′a(t̄)∆
′
b(ȳ) det

a+b
Jjk, (3.5.1)

where w̄ = {x̄, s̄} and the matrix Jjk is defined in (3.3.3):

Jjk =
g(wj , tk)

h(wj , tk)
, k = 1, . . . , a;

Jj,k+a = g(wj , yk)
h(wj , x̄)

h(wj , t̄)
, k = 1, . . . , b;

j = 1, . . . , a+ b. (3.5.2)
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Developing the determinant with respect to the a first columns we obtain

Za,b(t̄; x̄|s̄; ȳ) =
∑

Ka(w̄I|t̄)h(w̄II, x̄)g(w̄II, ȳ)g(w̄II, w̄I). (3.5.3)

The sum is taken over partitions {x̄, s̄} = w̄ ⇒ {w̄I, w̄II} with #w̄I = a and #w̄II = b.
Let us give several alternative representations for the highest coefficient.

• As a sum over partitions of t̄ and ȳ:

Za,b(t̄; x̄|s̄; ȳ) = f(s̄, t̄)f(ȳ, x̄)
∑

g(η̄I, η̄II)
h(t̄, η̄II)

h(s̄, η̄II)
Ka(x̄|η̄I). (3.5.4)

Here the sum is taken over partitions {t̄, ȳ + c} = η̄ ⇒ {η̄I, η̄II} such that #η̄I = a and
#η̄II = b.

• As a sum over partitions of t̄ and x̄:

Za,b(t̄; x̄|s̄; ȳ) = (−1)ah(x̄, x̄)h(s̄, x̄)g(x̄, ȳ)g(s̄, ȳ)∑
Ka(t̄− c|ξ̄I)

h(ξ̄I, t̄)g(x̄, ξ̄I)g(s̄, ξ̄I)

g(ξ̄I, ȳ)
g(ξ̄I, ξ̄II). (3.5.5)

Here the sum is taken over partitions {t̄, x̄− c} = ξ̄ ⇒ {ξ̄I, ξ̄II} such that #ξ̄I = #ξ̄II = a.

• As a sum over partitions of s̄ and ȳ:

Za,b(t̄; x̄|s̄; ȳ) = (−1)a+bf(x̄, t̄)f(s̄, t̄)
∑

g(ν̄I, ν̄II)Ka+b({ν̄I, t̄− c}|{x̄, s̄}) (3.5.6)

Here the sum is taken over partitions {s̄− c, ȳ} = ν̄ ⇒ {ν̄I, ν̄II} such that #ν̄I = #ν̄II = b.

All the sum formulas listed above follow from (3.5.3) and can be proved via reduction of
the sums over partitions to multiple contour integrals of Cauchy type. Let us show how this
method works.

Consider a b-fold integral

I =
(−1)b

(2πic)bb!

∮
w̄

Ka+b(w̄|{t̄, z̄ + c})h(z̄, x̄)
g(z̄, ȳ)g(z̄, w̄)

∆b(z̄)∆
′
b(z̄)

dz̄, (3.5.7)

where w̄ = {s̄, x̄} and dz̄ = dz1, . . . , dzb. We have used a subscript w̄ on the integral symbol in
order to stress that the integration contour for every zj surrounds the set w̄ in the anticlockwise
direction. We also assume that the integration contours do not contain any other singularities of
the integrand. Similar prescription will be kept for all other integral representations considered
below.

The only poles of the integrand within the integration contours are the points zj = wk.
Evaluating the integral by the residues in these poles we obtain (see appendix 9.1 for details)

I = (−1)b
∑

Ka+b(w̄|{t̄, w̄II + c})h(w̄II, x̄)g(w̄II, ȳ)g(w̄II, w̄I), (3.5.8)

where the sum is taken over partitions of w̄ into subsets w̄I and w̄II with #w̄I = a and #w̄II = b.
Due to (1.1.45) we have

Ka+b(w̄|{t̄, w̄II + c}) = (−1)bKa(w̄I|t̄), (3.5.9)
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and comparing the obtained sum with (3.5.3) we immediately obtain I = Za,b(t̄; x̄|s̄; ȳ).
Similarly, one can check that the sum over partitions in (3.5.3) can be presented as an a-fold

contour integral

Za,b(t̄; x̄|s̄; ȳ) = (−1)b
h(w̄, x̄)g(ȳ, w̄)

(2πic)aa!

∮
w̄

Ka(z̄|t̄)g(z̄, w̄)

h(z̄, x̄)g(z̄, ȳ)∆a(z̄)∆′a(z̄)
dz̄, (3.5.10)

where now dz̄ = dz1, . . . , dza. Indeed, taking the residues in the points z̄ = w̄I we obtain

Za,b(t̄; x̄|s̄; ȳ) = (−1)bh(w̄, x̄)g(ȳ, w̄)
∑ Ka(w̄I|t̄)g(w̄I, w̄II)

h(w̄I, x̄)g(w̄I, ȳ)
. (3.5.11)

Multiplying the terms of the sum with the prefactor h(w̄, x̄)g(ȳ, w̄) we arrive at (3.5.3).
Let us turn back to the integral (3.5.7). Obviously, it can be calculated taking the residues

in the poles outside the original integration contour. It is easy to see that for arbitrary zj
the integrand behaves as 1/z3

j at zj → ∞. Hence, the residue at infinity vanishes. The poles
outside the original integration contours are in zj = yk and zj = sk− c (the poles at zj = xk− c
are compensated by the zeros of the product h(z̄, x̄)). Thus, we can move the original contour
surrounding w̄ to the points ν̄ = {ȳ, s̄− c}

Za,b(t̄; x̄|s̄; ȳ) =
1

(2πic)bb!

∮
ν̄

Ka+b(w̄|{t̄, z̄ + c})h(z̄, x̄)
g(z̄, ȳ)g(z̄, w̄)

∆b(z̄)∆
′
b(z̄)

dz̄. (3.5.12)

It is convenient to transform the integrand, applying (8.1.6) to Ka+b(w̄|{t̄, z̄ + c}). Then sub-
stituting w̄ = {x̄, s̄} and using elementary properties of f(z, w) we obtain

Za,b(t̄; x̄|s̄; ȳ) =
(−1)a+b

(2πic)bb!

∮
ν̄

Ka+b({t̄− c, z̄}|w̄)f(w̄, t̄)h(z̄, x̄)g(z̄, ȳ)g(z̄, x̄)g(z̄, s̄)

f(z̄, x̄)f(z̄, s̄)∆b(z̄)∆
′
b(z̄)

dz̄, (3.5.13)

and after simplification we arrive at

Za,b(t̄; x̄|s̄; ȳ) =
(−1)a+bf(w̄, t̄)

(2πic)bb!

∮
ν̄

Ka+b({t̄− c, z̄}|w̄)
g(z̄, ν̄)

∆b(z̄)∆
′
b(z̄)

dz̄. (3.5.14)

Now all the poles are explicitly combined in the product g(z̄, ν̄). Hence, the result of the
integration gives the sum over partitions of ν̄ ⇒ {ν̄I, ν̄II} with #ν̄I = #ν̄II = b, which coincides
with (3.5.6).

Applying (1.1.45) to Izergin determinant Ka+b({ν̄I, t̄− c}|{x̄, s̄}) in (3.5.6), we have

Ka+b({ν̄I, t̄− c}|{x̄, s̄}) = (−1)bKa+2b({ν̄, t̄− c}|{x̄, s̄, ν̄II + c})
= (−1)bKa+2b({ȳ, s̄− c, t̄− c}|{x̄, s̄, ν̄II + c}) = Ka+b({ȳ, t̄− c}|{x̄, ν̄II + c}). (3.5.15)

Then the sum over partitions in (3.5.6) is equivalent to a multiple contour integral

Za,b(t̄; x̄|s̄; ȳ) =
(−1)af(x̄, t̄)f(s̄, t̄)

(2πic)bb!

∮
ν̄

Ka+b({ȳ, t̄− c}|{x̄, z̄ + c}) g(z̄, ν̄)

∆b(z̄)∆
′
b(z̄)

dz̄. (3.5.16)

Using (8.1.6) we recast (3.5.16) as

Za,b(t̄; x̄|s̄; ȳ) =
(−1)bf(ȳ, x̄)f(s̄, t̄)

(2πic)bb!

∮
ν̄

Ka+b({x̄− c, z̄}|{ȳ, t̄− c})
f(z̄, ȳ)f(z̄, t̄− c)

g(z̄, ν̄)

∆b(z̄)∆
′
b(z̄)

dz̄. (3.5.17)
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Setting now η̄ = {t̄, ȳ + c} we obtain

Za,b(t̄; x̄|s̄; ȳ) =
(−1)bf(ȳ, x̄)f(s̄, t̄)

(2πic)bb!

∮
ν̄

Ka+b({x̄− c, z̄}|η̄ − c)
h(z̄, t̄)g(z̄, η̄ − 2c)

h(z̄, s̄)∆b(z̄)∆
′
b(z̄)

dz̄. (3.5.18)

Now we can evaluate the integral by the residues outside the integration contours. All of them
are collected in the product g(z̄, η̄ − 2c). Taking the residues in the points η̄ − 2c and using
h(x− 2c, y) = −h(y, x) we immediately arrive at (3.5.4).

Similarly, starting with the integral representation (3.5.10) one can obtain the sum formula
(3.5.5).

Conclusion

In this chapter the scalar product of two generic (off-shell) Bethe vectors was calculated in
model with algebra symmetry gl(2|1). The final formula is expressed via the highest coefficient
that were calculated using multiple action fomulae. In general expression resemble the similar
representation for scalar product of Bethe vectors in case of algebra symmetry gl(3) but details
and explicit expressions for the highest coefficient differs. An interested and useful property
is existence of a determinant representation for highest coefficient in algebra symmetry gl(2|1)
case in contrary to gl(3).

The final formula contain multiple summation and barely can be used in application. The
exception is gl(1|1) subalgebra case, where the compact formula (3.4.4) was obtained. However,
it is expected that similar to gl(2) and gl(3) under some restriction on the spectral parameters
the final formula can be reduced compact form, and similar to gl(2) and gl(3) case it is naturally
to expect that this form should be determinant of some matrix. Such compact representations,
of course, is more acceptable for both numerical and analytical calculation of the form factors.
The calculation of scalar product performed in next chapter.



58 CHAPTER 3. SCALAR PRODUCT OF THE BETHE VECTORS



Chapter 4

Determinant representation of scalar
product

Scalar product representation (3.3.33) is extremely bulky due to presence of multiple sum over
partition. It is possible to obtain similar expressions for one-point form factors, but, as already
mentioned, application of such formulae to calculation of correlation functions via form factor
sum is not easy. Even application of such expression numerical computation does not look
promising.

Up to now both set of spectral parameters were free. However, in case of gl(2) algebra
symmetry it is possible to rewrite (3.3.33) in compact form in case when one of the Bethe vectors
is on-shell (i.e. spectral parameters of this vector satisfy Bethe equation) [47]. This compact
expression is determinant representation of scalar product. In case of algebra symmetry gl(3)
determinant representation was also derived (see [67, 68, 119]) but with more heavy restriction:
the second vector was twisted on-shell (i.e. the second set of spectral parameters satisfy the
system of twisted on-shell Bethe equation). This was, at least, enough in order to obtain
determinant representation for the ultralocal form factors.

For further study of integrable systems with graded algebra symmetry it is important to
obtain as general as possible formulae for the scalar product. Thus, an ideal case could be
the situation when the determinant representation exists for the scalar-product of on-shell and
off-shell Bethe vectors. It allows to calculate form factors and correlation of any multi-point
operators since for any set of local operators O1, . . . , O` their action on on-shell Bethe vector
create a finite linear combination of off-shell Bethe vectors |ψk〉 with known coefficients Ck.

O1O2 . . . O`|ψ〉 =
∑
k

Ck|ψk〉, (4.0.1)

The knowledge of scalar product between on-shell and off-shell Bethe vectors allows to derive
[48, 49, 57, 100, 101, 103, 110] representation for the ultralocal form factors 〈n|O1 . . . O`|m〉
and, at least zero-temperature, correlation functions without form factor series calculation1.

It turns out, that in the algebra symmetry case gl(2|1) it is possible to find determinant
representation for the scalar product in more general case than in gl(3). The determinant
representation can be found if both sets of spectral parameters satisfy only part of the Bethe
equation. We call such case product of semi-on-shell Bethe vectors.

1It should be noted that correlation functions and form factors in this approach are given by multiple sums
or, thermodynamic limit, integrals (so-called integral representations). Computation of these integrals is itself
quite complicated problem (see [156–158]).

59
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The result and the details of calculation are given below. This chapter is based on the paper
[89] published by the thesis author in collaboration.

4.1 Generalised model

In concrete quantum models the functions r1(z) and r3(z) are fixed. Then the system of Bethe
equations (2.1.30) determines the admissible values of the parameters ū and v̄. Eventually these
values characterize the spectrum of the Hamiltonian of the quantum model under consideration.

In the framework of the generalized model one can consider the Bethe parameters {ū, v̄}
and the functions {r1(uj), r3(vk)} as two types of variables [46]. The first type comes from the
R-matrix, the second type comes from the monodromy matrix. In the case of generic Bethe
vectors these two types of variables are independent. Of course, in the case of (twisted) on-shell
Bethe vectors they become related by the (twisted) Bethe equations.

One can also consider an intermediate case, when only a subset of {r1(uj), r3(vk)} is related
to the Bethe parameters {ū, v̄} by a part of the Bethe equations. For instance, we can impose
the first set of equations (2.1.30) involving the functions r1(uj), without imposing the second
set of equations for r3(vj) (or vice versa). In the case of a concrete model this means that
a part of the Bethe parameters remains free, while the other parameters become functions of
them. We call a Bethe vector possessing this property a semi-on-shell Bethe vector. Thus, the
semi-on-shell Bethe vectors occupy an intermediate position between generic and on-shell Bethe
vectors.

4.2 Scalar products

4.2.1 Scalar product of semi-on-shell Bethe vectors

The main result of this chapter is a determinant representation for the scalar products of semi-
on-shell Bethe vectors. Consider the scalar product (3.1.1), where the following constraints are
imposed:

r1(uC
j ) = κ

a∏
k=1
k 6=j

f(uC
j , u

C
k )

f(uC
k , u

C
j )

b∏
l=1

f(vC
l , u

C
j ), j = 1, . . . , a,

r3(vB
k ) =

a∏
l=1

f(vB
k , u

B
l ), k = 1, . . . , b.

(4.2.1)

Here κ is a complex parameter. If we set κ = κ2/κ1, then we easily recognize the first set of
equations (2.1.33) for the parameters {ūC , v̄C} and the second set of equations (2.1.30) for the
parameters {ūB, v̄B}. Thus, Ba,b(ūB; v̄B) is a semi-on-shell Bethe vector, while Ca,b(ūC ; v̄C) is a
dual twisted semi-on-shell Bethe vector.

Let x̄ = {ūB, v̄C}. Define an (a+ b)× (a+ b) matrix N with the following entries:

Njk =
(−1)a−1r1(xk)

f(v̄C , xk)
t(uC

j , xk)h(ūC , xk) + κt(xk, uC
j )h(xk, ū

C),
j = 1, . . . , a
k = 1, . . . , a+ b,

(4.2.2)
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and

Na+j,k =
g(xk, v̄

B)

g(xk, v̄C)

(
1− r3(xk)

f(xk, ūB)

)
×

(
g(xk, v

C
j )h(xk, ū

B) +
(−1)a−1r1(xk)r3(vC

j )h(ūB, xk)

κf(vC
j , ū

C)f(v̄B, xk)h(vC
j , xk)

)
,

j = 1, . . . , b,
k = 1, . . . , a+ b.

(4.2.3)

Conjecture 4.2.1. The scalar product Sa,b (3.1.1) with constraint (4.2.1) has the following
determinant representation

Sa,b = ∆a+b(x̄)∆′a(ū
C)∆′b(v̄

C) det
a+b
N , (4.2.4)

where ∆ and ∆′ are defined in (1.1.46).

The proof of representation (4.2.4) will be given in section 4.5.

It follows from (3.3.33) that the scalar products are symmetric under the simultaneous
replacement ūC ↔ ūB and v̄C ↔ v̄B. Therefore making this replacement in (4.2.1)–(4.2.4) we
obtain a determinant presentation for the scalar product of another set of semi-on-shell Bethe
vectors.

It is interesting to see how the matrix elements Njk depend on the functions r1 and r3.
Namely, one can easily show that Njk might depend on r3(vC

k ), however, they do not depend on
r3(uB

k ). Indeed, if xk = uB
k in (4.2.3), then r3(xk) is multiplied with the product 1/f(xk, ū

B),
which vanishes for xk ∈ ūB. Similarly, the function r1(xk) always enters either with the product
1/f(v̄C , xk) or 1/g(v̄C , xk). Both these products vanish for xk ∈ v̄C , therefore the matrix
elements Njk might depend on r1(uB

k ) only.

Finally, looking at (4.2.3) for k > a (that is, xk ∈ v̄C), we see that Njk ∼ δjk due to the
product 1/g(v̄C , xk). Thus, the right-lower block of the matrix N is diagonal.

4.2.2 Scalar product of twisted and usual on-shell Bethe vectors

Equation (4.2.4) has important particular cases. First of all, it describes a scalar product of
twisted and usual on-shell Bethe vectors. Let the twist matrix be κ = diag(κ1, κ2, κ3). Then
one should set κ = κ2/κ1 in (4.2.1) and impose two additional constraints

r1(uB
j ) =

a∏
k=1
k 6=j

f(uB
j , u

B
k )

f(uB
k , u

B
j )

b∏
l=1

f(vB
l , u

B
j ), j = 1, . . . , a,

r3(vC
k ) =

κ2

κ3

a∏
l=1

f(vC
k , u

C
l ), k = 1, . . . , b.

(4.2.5)

In this case the vector Ba,b(ūB; v̄B) becomes an on-shell Bethe vector, while Ca,b(ūC ; v̄C) becomes
a twisted on-shell Bethe vector. Then their scalar product has the determinant representation
(4.2.4), where

Njk = h(xk, ū
B)

(
t(uC

j , xk)
f(v̄B, xk)h(ūC , xk)

f(v̄C , xk)h(ūB, xk)
+
κ2

κ1
t(xk, u

C
j )
h(xk, ū

C)

h(xk, ūB)

)
, j = 1, . . . , a,

(4.2.6)
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Na+j,k = h(xk, ū
B)
g(xk, v̄

B)

g(xk, v̄C)

(
1− κ2

κ3

f(xk, ū
C)

f(xk, ūB)

)(
g(xk, v

C
j ) +

κ1

κ3h(vC
j , xk)

)
, j = 1, . . . , b,

(4.2.7)
and k = 1, . . . , a+ b in both formulas.

4.2.3 Norm of on-shell Bethe vector

The second particular case of (4.2.4) is the norm of on-shell Bethe vector. For this one should
set2 κ̄ = 1 and consider the limit uB

j → uC
j = uj , v

C
j → vB

j = vj . Then the result has the form

‖Ba,b(ū; v̄)‖2 = (−1)a+b
b∏

j=1

a∏
k=1

f(vj , uk)
a∏

j,k=1
j 6=k

f(uj , uk)
b∏

j,k=1
j 6=k

g(vj , vk) det
a+b
N̂ . (4.2.8)

Here N̂ is an (a+ b)× (a+ b) block-matrix. The left-upper block is

N̂jk = δjk

[
c
r′1(uk)

r1(uk)
+

a∑
`=1

2c2

u2
k` − c2

−
b∑

m=1

t(vm, uk)

]
− 2c2

u2
kj − c2

, j, k = 1, . . . , a, (4.2.9)

where ukj = uk − uj and r′1(uk) means the derivative of the function r1(u) at the point u = uk.
The right-lower block is diagonal

N̂j+a,k+a = δjk

[
c
r′3(vk)

r3(vk)
+

a∑
`=1

t(vk, u`)

]
, j, k = 1, . . . , b, (4.2.10)

where r′3(vk) means the derivative of the function r3(v) at the point v = vk. The antidiagonal
blocks are

N̂j,k+a = t(vk, uj), j = 1, . . . , a, k = 1, . . . , b, (4.2.11)

and
N̂j+a,k = −t(vj , uk), j = 1, . . . , b, k = 1, . . . , a. (4.2.12)

It is easy to relate the determinant of the matrix N̂ with the Jacobian of the Bethe equations.
Namely, let

Φj = log
( r1(uj)

f(v̄, uj)

a∏
k=1
k 6=j

f(uk, uj)

f(uj , uk)

)
, j = 1, . . . , a,

Φa+j = log

(
r3(vj)

f(vj , ū)

)
, j = 1, . . . , b.

(4.2.13)

Then the Bethe equations for the sets ū and v̄ take the form

Φj = 2πinj , j = 1, . . . , a+ b, (4.2.14)

where nj are integer numbers. A straightforward calculation shows that

N̂j,k = c
∂Φj

∂uk
k = 1, . . . , a,

N̂j,a+k = c
∂Φj

∂vk
, k = 1, . . . , b,

j = 1, ..., a+ b. (4.2.15)

2Here and below the notation κ̄ = 1 means κ1 = κ2 = κ3 = 1.
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4.3 Orthogonality of the eigenvectors

Consider the scalar product of twisted on-shell and usual on-shell vectors. In this case the
entries of the matrix N are given by (4.2.6), (4.2.7). Assume that {ūC , v̄C} 6= {ūB, v̄B} at
κ = 1. Then in the limit κ = 1 we obtain the scalar product of two different on-shell Bethe
vectors, which should be orthogonal. Let us show this.

To prove the orthogonality of on-shell Bethe vectors we introduce an (a + b)-component
vector Ω

Ωj =
1

g(uC
j , ū

B)

a∏
k=1
k 6=j

g(uC
j , u

C
k ), j = 1, . . . , a,

Ωa+j =
1

g(vC
j , v̄

B)

a∏
k=1
k 6=j

g(vC
j , v

C
k ), j = 1, . . . , b.

(4.3.1)

Due to the condition {ūC , v̄C} 6= {ūB, v̄B}, the vector Ω has at least one non-zero component.
Using the contour integral method (see Appendix 9.3.1) one can easily calculate the following

sums:

a∑
j=1

t(uC
j , xk)Ωj =

h(ūB, xk)

h(ūC , xk)
− g(xk, ū

C)

g(xk, ūB)
,

b∑
j=1

g(xk, v
C
j )Ωa+j =

g(xk, v̄
C)

g(xk, v̄B)
− 1,

a∑
j=1

t(xk, u
C
j )Ωj =

g(xk, ū
C)

g(xk, ūB)
− h(xk, ū

B)

h(xk, ūC)
,

b∑
j=1

Ωa+j

h(vC
j , xk)

= 1− h(v̄B, xk)

h(v̄C , xk)
.

(4.3.2)

Using these results we obtain∑a
j=1NjkΩj

h(xk, ūB)
=
f(v̄B, xk)

f(v̄C , xk)

(
1− f(ūC , xk)

f(ūB, xk)

)
+
κ2

κ1

(
f(xk, ū

C)

f(xk, ūB)
− 1

)
, (4.3.3)

and∑b
j=1Na+j,kΩa+j

h(xk, ūB)
=

(
1− κ2

κ3

f(xk, ū
C)

f(xk, ūB)

)[(
κ1

κ3
− 1

)
g(v̄B, xk)

g(v̄C , xk)
+ 1− κ1

κ3

f(v̄B, xk)

f(v̄C , xk)

]
. (4.3.4)

Note that if xk ∈ {ūB, v̄C}, then
(
f(xk, ū

B)f(v̄C , xk)
)−1

= 0,
(
f(xk, ū

B)g(v̄C , xk)
)−1

= 0, and(
f(ūB, xk)f(v̄C , xk)

)−1
= 0. Therefore the terms proportional to these products vanish. Thus,

neglecting such the terms we find∑a+b
j=1NjkΩj

h(xk, ūB)
= 1− κ2

κ1
+

(
κ1

κ3
− 1

)(
g(v̄B, xk)

g(v̄C , xk)
− f(v̄B, xk)

f(v̄C , xk)

)
+
f(xk, ū

C)

f(xk, ūB)

(
κ2

κ1
− κ2

κ3

)
. (4.3.5)

We see that this linear combination of rows of the matrix N vanishes at κ̄ = 1. Hence, the
determinant vanishes at κ̄ = 1, which means that two different on-shell vectors are orthogonal.

4.4 Form factors of diagonal elements

We define form factors of the diagonal monodromy matrix entries as matrix elements of the
operators Tii(z) between two on-shell Bethe vectors. We use a standard method for their
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calculation [95, 115]. Let

Q = C(κ)
a,b (ū

C ; v̄C)
(
strTκ(z)− strT (z)

)
Ba,b(ūB; v̄B). (4.4.1)

Here Tκ(z) is the twisted monodromy matrix and T (z) is the usual monodromy matrix. We

assume that Ba,b(ūB; v̄B) is an on-shell Bethe vector and C(κ)
a,b (ū

C ; v̄C) is a dual twisted on-shell
Bethe vector. In order to stress this difference we have added a superscript κ on the dual twisted

Bethe vector. Obviously, C(κ)
a,b (ū

C ; v̄C) turns into the usual dual on-shell Bethe vector at κ̄ = 1.

On the one hand

Q =

3∑
i=1

(−1)[i](κi − 1)C(κ)
a,b (ū

C ; v̄C) Tii(z) Ba,b(ūB; v̄B). (4.4.2)

On the other hand

Q =
(
τκ(z|ūC , v̄C)− τ(z|ūB, v̄B)

)
C(κ)
a,b (ū

C ; v̄C)Ba,b(ūB; v̄B), (4.4.3)

where τκ(z|ūC , v̄C) and τ(z|ūB, v̄B) respectively are the eigenvalues of the twisted and usual
transfer matrices. Comparing (4.4.2) and (4.4.3) we find

Ca,b(ūC ; v̄C) Tii(z) Ba,b(ūB; v̄B)

= (−1)[i] d

dκi

[(
τκ(z|ūC , v̄C)− τ(z|ūB, v̄B)

)
C(κ)
a,b (ū

C ; v̄C)Ba,b(ūB; v̄B)
]
κ̄=1

. (4.4.4)

Here Ca,b(ūC ; v̄C) is the value of the vector C(κ)
a,b (ū

C ; v̄C) at κ̄ = 1. Since this vector is a dual
on-shell vector, we obtain a form factor of Tii(z) in the l.h.s. of (4.4.4). In the r.h.s. of (4.4.4)
we should distinguish between two cases. If {ūC , v̄C} = {ūB, v̄B} = {ū, v̄} at κ̄ = 1, then the
derivative in (4.4.4) acts on τκ(z|ūC , v̄C) only, and we find

Ca,b(ū; v̄) Tii(z) Ba,b(ū; v̄) = (−1)[i]‖Ba,b(ū; v̄)‖2 d

dκi
τκ(z|ūC , v̄C)

∣∣∣
ūC=ū, v̄C=v̄

κ̄=1

. (4.4.5)

Note, that here we have the full derivative over κi. Therefore, it acts also on the Bethe paramet-
ers {ūC , v̄C}, because due to the twisted Bethe equations they implicitly depend on the twist
parameters: ūC = ūC(κ) and v̄C = v̄C(κ).

If {ūC , v̄C} 6= {ūB, v̄B} at κ̄ = 1, then universal form factor [86] of operators Tij(z) can be
defined

F(i,j)
(
ūC ūB

v̄C v̄B

)a′,a
b′,b

=
F (i,j)

(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

τ(z|ūC , v̄C)− τ(z|ūB, v̄B)
. (4.4.6)

where

F (i,j)
(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

= Ca′,b′(ūC ; v̄C)Tij(z)Ba,b(ūB; v̄B). (4.4.7)

It is easy to show that the functions F(ij) do not depend on z. Indeed, it follows from the
commutation relations (1.1.14) that

[T (z), Tij(w)] = [T (w), Tij(z)], (4.4.8)
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where T is the transfer matrix (1.1.16). Hence, for arbitrary on-shell Bethe vectors Ca′,b′(ūC ; v̄C)
and Ba,b(ūB; v̄B) we obtain

Ca′,b′(ūC ; v̄C)[T (z), Tij(w)]Ba,b(ūB; v̄B) = Ca′,b′(ūC ; v̄C)[T (w), Tij(z)]Ba,b(ūB; v̄B). (4.4.9)

Using (1.1.29) we find(
τ(z|ūC , v̄C)− τ(z|ūB, v̄B)

)
Ca′,b′(ūC ; v̄C)Tij(w)Ba,b(ūB; v̄B)

=
(
τ(w|ūC , v̄C)− τ(w|ūB, v̄B)

)
Ca′,b′(ūC ; v̄C)Tij(z)Ba,b(ūB; v̄B), (4.4.10)

where τ are eigenvalues of the transfer matrix. Equation (4.4.10) immediately yields

Ca′,b′(ūC ; v̄C)Tij(w)Ba,b(ūB; v̄B)

τ(w|ūC , v̄C)− τ(w|ūB, v̄B)
=

Ca′,b′(ūC ; v̄C)Tij(z)Ba,b(ūB; v̄B)

τ(z|ūC , v̄C)− τ(z|ūB, v̄B)
. (4.4.11)

It is clear that the l.h.s. of (4.4.11) depends on w, while the r.h.s. depends on z. Thus, the
ratio (4.4.6) does not depend on the argument of the operator Tij .

Form factors (4.4.6) are called universal, because they are determined by the R-matrix
only. In other words, for a given R-matrix they do not depend on the monodromy matrix, and
hence, they are model independent. Indeed, all the dependence of the form factors on a specific
model is hidden in the functions r1 and r3. However, since the Bethe parameters satisfy Bethe
equations, the dependence on r1(ui) and r3(vi) actually disappears due to (2.1.30). Hence, the
only functions which ‘remember’ about the original model are r1(z) and r3(z). But we have
seen that the universal form factors do not depend on z, therefore they do not depend on r1(z)
and r3(z). Thus, as we have claimed above, they do not depend on the monodromy matrix of
the model.

Remark. Strictly speaking the universal form factors do not depend on the functions rk, if
ūC∩ ūB = ∅ and v̄C∩ v̄B = ∅, that is when the Bethe parameters of both vectors are all different.
Otherwise, if, for instance, uC

j = uB
k , then the universal form factors depend on the logarithmic

derivative log′ r1(uB
k ) of the function r1(u) [86]. Similarly, if vC

j = vB
k , then the universal form

factors depend on the logarithmic derivative log′ r3(vB
k ) of the function r3(v).

Particular case of diagonal form factors, considered in this chapter, is given by following
formulae

F
(ii)
a,b (ūC ; v̄C |ūB; v̄B) =

Ca,b(ūC ; v̄C) Tii(z) Ba,b(ūB; v̄B)

τ(z|ūC , v̄C)− τ(z|ūB, v̄B)
, (4.4.12)

here a′ = a, b′ = b. In this case, due to the orthogonality of Bethe vectors at {ūC , v̄C} 6=
{ūB, v̄B}, the derivative in the r.h.s. of (4.4.4) acts on the scalar product only. Therefore we
obtain for the universal form factor of Tii(z)

F
(ii)
a,b (ūC ; v̄C |ūB; v̄B) = (−1)[i] d

dκi
C(κ)
a,b (ū

C ; v̄C)Ba,b(ūB; v̄B)
∣∣∣
κ̄=1

. (4.4.13)

Thus, for the calculation of the Tii(z) universal form factors, it is enough to differentiate w.r.t.
κi the scalar product of the twisted and usual on-shell vectors and then set κ̄ = 1.

Suppose that Ωp 6= 0 for some p ∈ {1, . . . , a + b} in the vector (4.3.1). Then we can add
to the p-th row of the matrix N all other rows multiplied with Ωj/Ωp. It is clear that after
this the elements of the p-th row are given by (4.3.5) with the common prefactor Ω−1

p . Then to
calculate the form factor of Tii(z) it is enough to differentiate the p-th row with respect to κi
at κ̄ = 1. Hereby we should simply set κ̄ = 1 everywhere else. We obtain

F
(i,i)
a,b (ūC ; v̄C |ūB; v̄B) = Ω−1

p f(v̄C , ūB)h(ūB, ūB)∆′(ūC)∆(ūB)∆(v̄C)∆′(v̄C) det
a+b
N (i). (4.4.14)
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Here the entries N (i)
jk of the matrix N (i) do not depend on i = 1, 2, 3, for all j 6= p. In other

words, they are the same for all F
(ii)
a,b . More precisely, if 1 ≤ j ≤ a, then

N (i)
jk = t(uC

j , xk)
f(v̄B, xk)h(ūC , xk)

f(v̄C , xk)h(ūB, xk)
+ t(xk, u

C
j )
h(xk, ū

C)

h(xk, ūB)
, k = 1, . . . , a+ b, (4.4.15)

and if 1 ≤ j ≤ b, then

N (i)
a+j,k = −g(xk, v̄

B)

g(xk, v̄C)

(
1− f(xk, ū

C)

f(xk, ūB)

)
t(vC

j , xk), k = 1, . . . , a+ b. (4.4.16)

The p-th row depends on the specific universal form factor F
(ii)
a,b , i = 1, 2, 3:

N (1)
pk = 1 +

g(v̄B, xk)

g(v̄C , xk)
− f(v̄B, xk)

f(v̄C , xk)
− f(xk, ū

C)

f(xk, ūB)
,

N (2)
pk = −1,

N (3)
pk = N (1)

pk +N (2)
pk ,

k = 1, . . . , a+ b. (4.4.17)

Recall that here p is an arbitrary integer from the set {1, . . . , a+ b} such that Ωp 6= 0. Observe,
that equations (4.4.17) imply the vanishing of the form factors of strT (z) between different
states, in accordance with the orthogonality of on-shell Bethe vectors.

Form factors of the non-diagonal matrix entries Tij are considered in the next chapter.

4.5 Calculating the scalar product

In this section we prove Proposition 4.2.1. Our starting point is the sum formula (3.3.33) for
the scalar product of generic Bethe vectors that contains multiple summations. With the semi-
on-shell condition on the spectral parameters of the Bethe vectors this formula can be rewritten
in determinant form.

4.5.1 Summation over the partitions of ūC and v̄B

It is convenient to use two different representation for highest coefficients in (3.3.33). For the
first one we us representation

Za,b(t̄; x̄|s̄; ȳ) =
∑

g(ω̄II, ω̄I)h(ω̄II, x̄)g(ω̄II, ȳ) Ka(ω̄I|t̄). (4.5.1)

Summation is taken over partitions {x̄, s̄} = ω̄ ⇒ {ω̄I, ω̄II} with restrictions #ω̄I = a, #ω̄II = b.
For the second highest coefficient following representation is used:

Za,b(t̄; x̄|s̄; ȳ) = f(s̄, t̄)f(ȳ, x̄)
∑

g(η̄I, η̄II)
h(t̄, η̄II)

h(s̄, η̄II)
Ka(x̄|η̄I). (4.5.2)

The sum is taken over partitions {t̄, ȳ + c} = η̄ ⇒ {η̄I, η̄II} with restrictions #η̄I = a, #η̄II = b.
Substituting (4.5.1) for Za−k,n(ūC

II , ū
B
II |v̄C

I , v̄
B
I ) and (4.5.2) for Zk,b−n(ūB

I , ū
C
I |v̄B

II , v̄
C
II ) into the

representation (3.3.33) we obtain

Sa,b =
∑

r1(ūC
II )r1(ūB

I )r3(v̄C
II )r3(v̄B

I )f(ūC
I , ū

C
II )f(ūB

II , ū
B
I )g(v̄C

I , v̄
C
II )g(v̄B

II , v̄
B
I )

× Ka−k(ω̄I|ūC
II )Kk(ū

C
I |η̄I)

f(v̄C , ūC
II )f(v̄B

I , ū
B)

g(ω̄II, ω̄I)h(ω̄II, ū
B
II )g(ω̄II, v̄

B
I )g(η̄I, η̄II)

h(ūB
I , η̄II)

h(v̄B
II , η̄II)

. (4.5.3)
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Here we have additional summations over the partitions {ūB
II , v̄

C
I } = ω̄ ⇒ {ω̄I, ω̄II} and {ūB

I , v̄
C
II +

c} = η̄ ⇒ {η̄I, η̄II}, such that #ω̄I = a− k, #ω̄II = n, #η̄I = k, and #η̄II = b− n.

Let suppose that the constraints (4.2.1) are fulfilled. Then taking the products of (4.2.1)
with respect to the corresponding subsets we obtain

r1(ūC
II ) = κa−k

f(ūC
II , ū

C
I )

f(ūC
I , ū

C
II )
f(v̄C , ūC

II ),

r3(v̄B
I ) = f(v̄B

I , ū
B).

(4.5.4)

Substituting these expressions into (4.5.3) we arrive at

Sa,b =
∑

κa−kr1(ūB
I )r3(v̄C

II )f(ūB
II , ū

B
I )g(v̄C

I , v̄
C
II )g(ω̄II, ω̄I)g(η̄I, η̄II)

× h(ūB
I , η̄II)h(ω̄II, ū

B
II )
[
f(ūC

II , ū
C
I )Ka−k(ω̄I|ūC

II )Kk(ū
C
I |η̄I)

]
·
[
g(v̄B

II , v̄
B
I )
g(ω̄II, v̄

B
I )

h(v̄B
II , η̄II)

]
. (4.5.5)

Here in the second line we have allocated with square brackets the terms depending on the
subsets of ūC and the subsets of v̄B respectively. The sum over partitions ūC ⇒ {ūC

I , ū
C
II } can

be computed via (9.3.17):∑
Ka−k(ω̄I|ūC

II )Kk(ū
C
I |η̄I)f(ūC

II , ū
C
I ) = (−1)kf(ūC , η̄I)Ka({η̄I − c, ω̄I}|ūC). (4.5.6)

The sum over partitions v̄B ⇒ {v̄B
I , v̄

B
II } can be computed via (9.3.16):

∑
g(v̄B

II , v̄
B
I )
g(ω̄II, v̄

B
I )

h(v̄B
II , η̄II)

= (−1)n
∑

g(v̄B
II , v̄

B
I )g(v̄B

I , ω̄II)g(v̄B
II , η̄II − c) = (−1)n

g(v̄B, ω̄II)h(ω̄II, η̄II)

h(v̄B, η̄II)
.

(4.5.7)
Substituting these results into (4.5.5) we arrive at

Sa,b =
∑

κa−k(−1)k+nr1(ūB
I )r3(v̄C

II )f(ūB
II , ū

B
I )g(v̄C

I , v̄
C
II )f(ūC , η̄I)

× g(ω̄II, ω̄I)g(η̄I, η̄II)g(v̄B, ω̄II)h(ω̄II, ū
B
II )
h(ūB

I , η̄II)h(ω̄II, η̄II)

h(v̄B, η̄II)
Ka({η̄I − c, ω̄I}|ūC). (4.5.8)

We recall that in this formula

#ūB
I = k, #ūB

II = a− k, #v̄C
I = n, #v̄C

II = b− n,
#ω̄I = a− k, #ω̄II = n, #η̄I = k, #η̄II = b− n.

(4.5.9)

4.5.2 Partial summation over the partitions of ūB and v̄C

In order to go further we specify the subsets in (4.5.8) as follows

ūB
I = {ūB

i , ū
B
ii}, ūB

II = {ūB
iii, ū

B
iv}, ω̄I = {ūB

iii, v̄
C
iv}, ω̄II = {ūB

iv, v̄
C
iii},

v̄C
I = {v̄C

iii, v̄
C
iv}, v̄C

II = {v̄C
i , v̄

C
ii }, η̄I = {ūB

ii , v̄
C
i + c}, η̄II = {ūB

i , v̄
C
ii + c}. (4.5.10)

The cardinalities of the introduced sub-subsets are #ūB
j = kj and #v̄C

j = nj for j = i, ii, iii, iv.
It is easy to see that kii + ki = k, niii + niv = n, kiv = niv, and ki = ni.
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Equation (4.5.8) takes the form

Sa,b =
∑

κa−k(−1)k+nr1(ūB
i )r1(ūB

ii )r3(v̄C
i )r3(v̄C

ii )
f(ūC , ūB

ii )

f(v̄C
i , ū

C)

× f(ūB
iii, ū

B
i )f(ūB

iv, ū
B
i )f(ūB

iii, ū
B
ii )f(ūB

iv, ū
B
ii )g(v̄C

iii, v̄
C
i )g(v̄C

iv, v̄
C
i )g(v̄C

iii, v̄
C
ii )g(v̄C

iv, v̄
C
ii )

× g(ūB
iv, ū

B
iii)g(ūB

iv, v̄
C
iv)g(v̄C

iii, ū
B
iii)g(v̄C

iii, v̄
C
iv)g(ūB

ii , ū
B
i )g(ūB

ii , v̄
C
ii + c)g(v̄C

i + c, ūB
i )g(v̄C

i , v̄
C
ii )

× g(v̄B, ūB
iv)g(v̄B, v̄C

iii)

h(v̄B, ūB
i )h(v̄B, v̄C

ii + c)
h(ūB

iv, ū
B
iii)h(ūB

iv, ū
B
iv)h(v̄C

iii, ū
B
iii)h(v̄C

iii, ū
B
iv)

× h(ūB
i , ū

B
i )h(ūB

ii , ū
B
i )h(ūB

i , v̄
C
ii + c)h(ūB

ii , v̄
C
ii + c)

× h(ūB
iv, ū

B
i )h(ūB

iv, v̄
C
ii + c)h(v̄C

iii, ū
B
i )h(v̄C

iii, v̄
C
ii + c) Ka({ūB

ii − c, v̄C
i , v̄

C
iv, ū

B
iii}|ūC). (4.5.11)

Here we have used the relation f(x, y + c) = 1/f(y, x).
Now we combine the sub-subsets of ūB and v̄C into new subsets

ūB
I = {ūB

i , ū
B
iv}, v̄C

I = {v̄C
i , v̄

C
iv},

ūB
II = {ūB

ii , ū
B
iii}, v̄C

II = {v̄C
ii , v̄

C
iii}.

(4.5.12)

Due to (4.5.10) we have #ūB
I = #v̄C

I = ni + niv ≡ nI. Observe that these new subsets are
different from the subsets used, for example, in (3.3.33). We use however the same notation, as
we deal with sums over partitions, and therefore it does not matter how the separate terms in
these sums are denoted.

Then using (1.1.38) we recast (4.5.11) in a partly factorised form

Sa,b = (−1)b
∑

ūB⇒{ūBI ,ū
B
II }

v̄C⇒{v̄CI , v̄
C
II }

f(ūB
I , ū

B
II )h(ūB

I , ū
B
I )g(v̄C

II , v̄
C
I )g(v̄B, ūB

I )g(v̄B, v̄C
II )g(v̄C

II , ū
B
II )h(v̄C

II , ū
B)

×GnI(ū
B
I |v̄C

I )L(u)
a ({ūB

II , v̄
C
I }|ūC)L(v)

b (v̄C
II |ūB). (4.5.13)

Here the partitions of the sets ūB and v̄C are explicitly shown by the superscripts of the sum.

The functions GnI , L
(u)
a , and L(v)

b in their turn are given as sums over partitions into sub-subsets.
We have for GnI

GnI(ū
B
I |v̄C

I ) =
∑

ūBI ⇒{ū
B
iv, ū

B
i }

v̄CI ⇒{v̄
C
i , v̄

C
iv}

κ−ni r̂3(v̄C
i )r̂1(ūB

i )g(ūB
i , ū

B
iv)g(v̄C

iv, v̄
C
i )
g(ūB

iv, v̄
C
iv)

h(v̄C
i , ū

B
i )
, (4.5.14)

where we introduced new functions r̂1(uB
j ) and r̂3(vC

j ) through the following equations:

r1(uB
j ) = r̂1(uB

j )
f(uB

j , ū
B
j )

f(ūB
j , u

B
j )
f(v̄B, uB

j ), r3(vC
j ) = r̂3(vC

j )f(vC
j , ū

C). (4.5.15)

For the two other functions we have

L(u)
a ({ūB

II , v̄
C
I }|ūC) =

∑
ūBII⇒{ū

B
ii ,ū

B
iii}

Ka({ūB
ii − c, v̄C

I , ū
B
iii}|ūC)

× κa−kii(−1)kii
r1(ūB

ii )

f(v̄C , ūB
ii )
f(ūC , ūB

ii )f(ūB
iii, ū

B
ii )f(v̄C

I , ū
B
ii ), (4.5.16)
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and

L(v)
b (v̄C

II |ūB) =
∑

v̄CII⇒{v̄
C
ii ,v̄

C
iii}

(−1)nii
r3(v̄C

ii )

f(v̄C
ii , ū

B)
. (4.5.17)

We would like to stress that passing from (4.5.11) to (4.5.13) we did not make any transforms.
One can check that substituting (4.5.14), (4.5.16), and (4.5.17) into (4.5.13) we turn back to
(4.5.11).

The sums over partitions in (4.5.14), (4.5.16), and (4.5.17) can be easily calculated. The
most simple is the sum (4.5.17)

L(v)
b (v̄C

II |ūB) =
∏

vCj ∈v̄CII

(
1−

r3(vC
j )

f(vC
j , ū

B)

)
. (4.5.18)

If we introduce

ϕ(z) = 1− r3(z)

f(z, ūB)
, (4.5.19)

and extend our convention on the shorthand notation to this function, then

L(v)
b (v̄C

II |ūB) = ϕ(v̄C
II ). (4.5.20)

The sum (4.5.14) also is quite simple, because actually this is the Laplace expansion of the
determinant of the sum of two matrices (see appendix 9.3.2 for more details). Indeed, it is
enough to present (see (9.3.15))

g(ūB
iv, v̄

C
iv) = ∆niv(v̄C

iv)∆′niv
(ūB

iv) det
niv

(
g(ūB

ivk
, v̄C

ivj
)
)
,

1

h(v̄C
i , ū

B
i )

= ∆ni(v̄
C
i )∆′ni

(ūB
i ) det

ni

( 1

h(v̄C
ij
, ūB

ik
)

)
,

(4.5.21)

and we immediately recognize the Laplace formula in (4.5.14). Thus,

GnI(ū
B
I |v̄C

I ) = ∆nI(v̄
C
I )∆′nI

(ūB
I ) det

nI

(
g(uB

Ik
, vC

Ij
) +H(uB

Ik
, vC

Ij
)
)
, (4.5.22)

where

H(uB
k , v

C
j ) =

r̂3(vC
j )r̂1(uB

k )

κh(vC
j , u

B
k )

. (4.5.23)

Finally, the sum (4.5.16) can be computed via Lemma 9.3.3. Namely, if we set in (9.3.18):
m = a, ξ̄ = ūC , w̄ = {ūB

II , v̄
C
I } and

C1(w) =
−r1(w)

f(v̄C , w)
, C2(w) = κ, (4.5.24)

then we obtain equation (4.5.16). Indeed, in this case one has C1(vC
j ) = 0 due to the product

1/f(v̄C , w) in (4.5.24). Hence, we automatically have v̄C
I ⊂ w̄II, otherwise the corresponding

contribution to the sum vanishes. This means that when splitting the set w̄ = {ūB
II , v̄

C
I } into

two subsets we actually should consider only the partitions of the set ūB
II into ūB

ii and ūB
iii, as we

have in (4.5.16). We obtain

L(u)
a (w̄|ūC) = ∆′a(ū

C)∆a(w̄) det
a

(
M(uC

j , wk)
)
, (4.5.25)
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with

M(uC
j , wk) = (−1)a−1 r1(wk)

f(v̄C , wk)
t(uC

j , wk)h(ūC , wk) + κt(wk, uC
j )h(wk, ū

C), (4.5.26)

and w̄ = {ūB
II , v̄

C
I }.

4.5.3 Final summation over the partitions of ūB and v̄C

Let x̄ = {ūB, v̄C}. Consider a partition of x̄ into subsets x̄I and x̄II. Let x̄I = {ūB
II , v̄

C
I } and

x̄II = {ūB
I , v̄

C
II }. Then (4.5.13) can be written in a relatively compact form

Sa,b = (−1)b
∑

x̄⇒{x̄I,x̄II}

h(x̄II, ū
B)g(v̄B, x̄II)ϕ(x̄II)g(x̄II, x̄I)

×
∆nI(v̄

C
I )∆′nI

(ūB
I )

g(ūB
I , v̄

C
I )

det
nI

(
g(uB

Ik
, vC

Ij
) +H(uB

Ik
, vC

Ij
)
)

∆′a(ū
C)∆a(x̄I) det

a

(
M(uC

j , xIk
)
)
. (4.5.27)

Here we have used ϕ(uB
j ) = 1.

Our goal is to reduce (4.5.27) to an equation of the following type:

∑
x̄⇒{x̄I,x̄II}

g(x̄II, x̄I)∆a(x̄I) det
a

(
Aj(xIk

)
)

∆b(x̄II) det
b

(
Bj(xIIk

)
)

= ∆a+b(x̄) det
a+b

 Aj(xk)
− − −
Bj(xk)

 .

(4.5.28)
Here in the r.h.s. we have a matrix consisting of two parts: the entries in the first a rows are
Aj(xk), while in the remaining rows one has Bj(xk).

Looking at (4.5.27) we see that we can set Aj(xk) = M(uC
j , xk). We also have a product

g(x̄II, x̄I). The products h(x̄II, ū
B), g(v̄B, x̄II), and ϕ(x̄II) can be easily absorbed into the determ-

inant of the matrix Bj(xk). It remains to construct this matrix Bj(xk).
Consider a function Fb(z̄|v̄C) depending on b variables z̄ and b variables v̄C

Fb(z̄|v̄C) = ∆′b(z̄)∆b(v̄
C) det

b

(
Bj(zk)

)
, (4.5.29)

where

Bj(zk) =
g(zk, v

C
j ) +H(zk, v

C
j )

g(zk, v̄C)
. (4.5.30)

Obviously, Fb(z̄|v̄C) is a symmetric function of z̄ and a symmetric function of v̄C . Let z̄ = x̄II =
{ūB

I , v̄
C
II }. Due to the symmetry of Fb(z̄|v̄C) we can say that the parameters ūB

I correspond to
the first nI columns of the matrix Bj(zk), i.e. zk = uB

Ik
for k = 1, . . . , nI. Then in the remaining

columns we should set znI+k = vC
IIk

, k = 1, . . . , b−nI. It is easy to see that in these last columns

Bj(v
C
IIk

) = δjk

b∏
`=1

vC` 6=v
C
IIk

1

g(vC
IIk
, vC
` )
, k = 1, . . . , b− nI, (4.5.31)

where δjk = 1 if vC
j = vC

IIk
, and δjk = 0 otherwise. Thus, the determinant reduces to the

determinant of the matrix of the size nI × nI. Simple calculation shows that

Fb({ūB
I , v̄

C
II }|v̄C) =

∆nI(v̄
C
I )∆′nI

(ūB
I )

g(ūB
I , v̄

C
I )

det
nI

(
g(uB

Ik
, vC

Ij
) +H(uB

Ik
, vC

Ij
)
)
, (4.5.32)
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which is exactly the expression in (4.5.27). Thus, we recast (4.5.27) as follows:

Sa,b = (−1)b∆′b(v̄
C)∆′a(ū

C)
∑

x̄⇒{x̄I,x̄II}

g(x̄II, x̄I)∆b(x̄II)∆a(x̄I)

× det
b

(
h(xIIk

, ūB)g(v̄B, xIIk
)ϕ(xIIk

)Bj(xIIk
)
)

det
a

(
M(uC

j , xIk
)
)
. (4.5.33)

It remains to use (4.5.28) and we end up with

Sa,b = ∆′b(v̄
C)∆′a(ū

C)∆a+b(x̄) det
a+b

 M(uC
j , xk)

− − − − − − − − − − − −
−h(xk, ū

B)g(v̄B, xk)ϕ(xk)Bj(xk)

 , (4.5.34)

where x̄ = {ūB, v̄C}. Substituting here M(uC
j , xk) and Bj(xk) we arrive at the statement of

Proposition 4.2.1.

Conclusions

In this chapter determinant representation for the scalar product of two semi-on-shell Bethe
vectors was derived for integrable model with gl(2|1) algebra symmetry. The particular case of
such scalar product is product of on-shell and twisted on-shell Bethe vectors.

It should be noted, that this result is more general in comparison to the gl(3) algebra
symmetry case, where only determinant product of the on-shell and twisted on-shell Bethe
vectors was derived. Such generalisation was expected from a comparison of the scalar products
in two particular cases: gl(2) (subalgebra of gl(3)) and gl(1|1) (subalgebra of gl(2|1)). While
in the first case only determinant representation for the scalar product of on-shell and off-shell
Bethe vectors was known, in the second case the compact formula (3.4.4) was obtained for two
generic Bethe vectors. Since, it was natural to expect that grading provide some simplifications
in the scalar product computation.

The form factors of the diagonal monodromy matrix entries also were derived here. Using
determinant representation for the form factors and zero modes approach (see [86]) determinant
representation for all monodromy matrix entries Tij(u) can be derived.



72 CHAPTER 4. DETERMINANT REPRESENTATION OF SCALAR PRODUCT



Chapter 5

Form factors

In the previous chapter form factors of the diagonal entries of monodromy matrix and scalar
product of two semi-on-shell Bethe vectors were derived. Now, using zero modes method, all
remaining form factors can be derived. This chapter is based on paper [90] published by thesis
author in collaboration.

5.1 Form factor of monodromy matrix entries

In previous chapter form factors of the monodromy matrix entries were defined as

F (i,j)
(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

= Ca′,b′(ūC ; v̄C)Tij(z)Ba,b(ūB; v̄B). (5.1.1)

Here both Ca′,b′(ūC ; v̄C) and Ba,b(ūB; v̄B) are on-shell Bethe vectors, the parameter z is an
arbitrary complex number, and

a′ = a+ δi1 − δj1,
b′ = b+ δj3 − δi3.

(5.1.2)

Universal form factors F(i,j) were also defined, for {ūC , v̄C} 6= {ūB, v̄B} case. The set of connec-
tions between form factors can be found even without knowledge about their explicit form.

Conjecture 5.1.1. Form factors F (i,j) and F (j,i) are related by

F (i,j)
(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

= (−1)θijF (j,i)
(
z
∣∣∣ ūB ūC

v̄B v̄C

)a,a′
b,b′

, (5.1.3)

where
θij = 0, [i] + [j] = 0, mod (2),

θij = b, [i] = 0, [j] = 1,

θij = b+ 1, [i] = 1, [j] = 0.

(5.1.4)

Proof. Since a form factor F (i,j) is a c-number function, it is invariant under the action of
the antimorphism ψ:

ψ

(
F (i,j)

(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

)
= F (i,j)

(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

. (5.1.5)
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On the other hand, action of ψ on the r.h.s. of (5.1.1) gives

ψ
(
Ca′,b′(ūC ; v̄C)Tij(z)Ba,b(ūB; v̄B)

)
= (−1)([i]+[j])(b+b′)+b′bψ

(
Ba,b(ūB; v̄B)

)
ψ
(
Tij(z)

)
ψ
(
Ca′,b′(ūC ; v̄C)

)
= (−1)θijCa,b(ūB; v̄B)Tji(z)Ba′,b′(ūC ; v̄C), (5.1.6)

where (1.1.47), (2.1.9), (2.1.10) is used, and

θij = ([i] + [j])(b+ b′) + b′b+ b′ + [i][j] + [i]. (5.1.7)

Thus, we have reduced the form factor F (i,j) to the form factor F (j,i). In order to simplify the
phase factor we can use (5.1.2)

b′ − b = δj3 − δi3 = [j]− [i]. (5.1.8)

After elementary algebra we obtain

θij = ([j] + [i])b+ [i][j] + [i], mod (2), (5.1.9)

and it is straightforward to check that this expression is equivalent to (5.1.4). �

It follows from (5.1.3) that form factors of diagonal matrix elements F (i,i) are invariant under
the replacement ūC ↔ ūB and v̄C ↔ v̄B. This invariance yields the following transformation of
the corresponding universal form factors

F(i,i)
(
ūC ūB

v̄C v̄B

)a,a
b,b

= −F(i,i)
(
ūB ūC

v̄B v̄C

)a,a
b,b
. (5.1.10)

The minus sign appears due to the denominator in (4.4.6). For the universal form factors of
the off-diagonal matrix elements it is easy to obtain obtain

F(3,1)
(
ūC ūB

v̄C v̄B

)a,a+1

b,b+1
= (−1)b+1F(1,3)

(
ūB ūC

v̄B v̄C

)a+1,a

b+1,b
, (5.1.11)

F(3,2)
(
ūC ūB

v̄C v̄B

)a,a
b,b+1

= (−1)b+1F(2,3)
(
ūB ūC

v̄B v̄C

)a,a
b+1,b

, (5.1.12)

and

F(2,1)
(
ūC ūB

v̄C v̄B

)a,a+1

b,b
= −F(1,2)

(
ūB ūC

v̄B v̄C

)a+1,a

b,b
. (5.1.13)

5.2 Determinant formulas for form factors

Considering form factors of the monodromy matrix entries one should distinguish between two
cases1: (1) {ūC , v̄C} = {ūB, v̄B}; (2) {ūC , v̄C} 6= {ūB, v̄B}. The first case occurs only for form
factors F (i,i) of diagonal matrix elements Tii(z). Indeed, the condition {ūC , v̄C} = {ūB, v̄B}
implies a′ = a and b′ = b (see (5.1.2)), which is possible for diagonal entries Tii(z) only. We
first present the results for this case.

1Here and below for brevity we write {ūC , v̄C} = {ūB, v̄B}, although one should understand this condition as
ūC = ūB and v̄C = v̄B.
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5.2.1 Form factors between identical states

Let ūC = ūB = ū and v̄C = v̄B = v̄. The form factors F (i,i) have the following determinant
representations:

F (i,i)
(
z
∣∣∣ ū ūv̄ v̄ )a,a

b,b
= (−c)a+b

b∏
j=1

a∏
k=1

f(vj , uk)
a∏

j,k=1
j 6=k

f(uj , uk)
b∏

j,k=1
j 6=k

g(vj , vk) det
a+b+1

N̂ (i,i). (5.2.1)

In order to describe the (a + b + 1) × (a + b + 1) matrices N̂ (i,i) we combine the sets ū and v̄
into a set x̄ = {u1, . . . , ua, v1, . . . , vb}. Then

N̂ (i,i)
j,k =

∂Φj

∂xk
j, k = 1, . . . , a+ b,

N̂ (i,i)
a+b+1,k = (−1)[i]∂τ(z|ū, v̄)

∂xk
, k = 1, . . . , a+ b,

N̂ (i,i)
j,a+b+1 = δi1 − δi2, j = 1, . . . , a,

N̂ (i,i)
j,a+b+1 = δi3 − δi2, j = a+ 1, . . . , a+ b,

N̂ (i,i)
a+b+1,a+b+1 = (−1)[i]∂τκ(z|ū, v̄)

∂κi
.

(5.2.2)

Here Φj are given by (4.2.13), and the eigenvalues of the usual and twisted transfer matrices
τ(z|ū, v̄) and τκ(z|ū, v̄) are defined respectively in (2.1.27) and (2.1.35). The proof of the
determinant formula (5.2.1) is given in (5.3).

5.2.2 Form factors between different states

Notation

If {ūC , v̄C} 6= {ūB, v̄B}, then the universal form factors are well defined. We assume that the
sets of Bethe parameters ūC , v̄C , ūB, v̄B are fixed and their cardinalities are

#ūC = a′, #ūB = a, #v̄C = b′, #v̄B = b, (5.2.3)

where a′ and b′ are related to a and b by (5.1.2). Before giving explicit determinant presentations
for the universal form factors we introduce several new functions.

We introduce a function

H(ūC ; ūB; v̄C) = f(v̄C , ūB)h(ūB, ūB)∆′(ūC)∆(ūB)∆(v̄C)∆′(v̄C). (5.2.4)

The function H plays the role of a universal prefactor that appears in all determinant formulas
for form factors. One should remember, however, that in spite of this function has the universal
representation (5.2.4), the cardinalities of the sets ūC , ūB, and v̄C are different for the different
form factors.

Since we consider the case {ūC , v̄C} 6= {ūB, v̄B}, there exists at least one component of vector
(4.3.1) Ωp such that Ωp 6= 0.

Finally, for fixed sets of variables ūC , ūB, v̄C , and v̄B we introduce two rectangular matrices
L and M. The matrix L has the size a′ × (a+ b′) and its entries are

Lj,k = t(uC
j , xk)

(−1)a
′−1r1(xk)h(ūC , xk)

f(v̄C , xk)h(xk, ūB)
+ t(xk, u

C
j )
h(xk, ū

C)

h(xk, ūB)
,

j = 1, . . . , a′,
k = 1, . . . , a+ b′.

(5.2.5)
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The matrix M has the size b′ × (a+ b′) and its entries are

Mj,k = −t(vC
j , xk)

g(v̄B, xk)

g(v̄C , xk)

(
1− r3(xk)

f(xk, ūB)

)
,

j = 1, . . . , b′,
k = 1, . . . , a+ b′.

(5.2.6)

Here the set x̄ is the union of two sets: x̄ = {ūB, v̄C}. Actually, both matrices L andM consist
of two blocks depending on whether xk ∈ ūB or xk ∈ v̄C . The structures of these blocks are
very different, and we give now a more detailed description of them.

First of all, we note that 1/f(v̄C , xk) = 0 if xk ∈ v̄C , and 1/f(xk, ū
B) = 0 if xk ∈ ūB.

Therefore we obtain

Lj,k+a = t(vC
k , u

C
j )
h(vC

k , ū
C)

h(vC
k , ū

B)
, k = 1, . . . , b′, (5.2.7)

and

Mj,k = −t(vC
j , u

B
k )
g(v̄B, uB

k )

g(v̄C , uB
k )
, k = 1, . . . , a. (5.2.8)

The product 1/g(v̄C , xk) also vanishes, if xk ∈ v̄C . However, this zero can be compensated
by the pole of the function t(vC

j , xk), if xk = vC
j . Therefore, the block of the matrix M with

k > a has diagonal structure:

Mj,a+k = −δjk
g(v̄B, vC

k )

g(v̄C
k , v

C
k )

(
1−

f(vC
k , ū

C)

f(vC
k , ū

B)

)
, k = 1, . . . , b′. (5.2.9)

Here we replaced the function r3(vC
k ) with the product f(vC

k , ū
C) due to the Bethe equations.

One should remember, however, that this replacement is possible only if v̄C∩ v̄B = ∅. Otherwise,
if some parameters vC

j1
, . . . , vC

j`
from the set v̄C coincide with the parameters vB

j1
, . . . , vB

j`
from

the set v̄B, then one should first take the limits vC
js
→ vB

js
in (5.2.6) and only after this we can

impose Bethe equations for the functions r3(vC
k ).

Similarly, if ūC ∩ ūB = ∅, then the matrix elements Lj,k with j = 1, . . . , a′ and k = 1, . . . , a
take the form

Lj,k = (−1)a
′+at(uC

j , u
B
k )
f(v̄B, uB

k )h(ūC , uB
k )

f(v̄C , uB
k )h(ūB, uB

k )
+ t(uB

k , u
C
j )
h(uB

k , ū
C)

h(uB
k , ū

B)
. (5.2.10)

Determinant formulas

Here the list of determinant representation for universal form factors of monodromy matrix
entries Tij(z) is given. Certainly, it should be enough to give explicit formulas for F(i,j) with i ≤ j
only, because making replacements ūC ↔ ūB and v̄C ↔ v̄B one can recast the remaining form
factors (see (5.1.11)–(5.1.13)). However, the matrices Lj,k and Mj,k, as well as the prefactor
H are not symmetric over these replacements. Therefore, changing ūC ↔ ūB and v̄C ↔ v̄B in
the determinant formulas given below we obtain more representations for the universal form
factors.

• Diagonal form factors. F(i,i). In this case a′ = a and b′ = b.

These determinant representations were derived [88] and already were given in previous
chapter (see (4.4.14)-(4.4.17)). It should be noted that the form factors are symmetric with
respect to any of the four sets of Bethe parameters. This symmetry follows from the symmetry
of the Bethe vectors. Therefore, without any loss of generality one can assume in (4.4.14) that
p = a or p = a+ b.
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• For the universal form factor F(1,2), we have a′ = a + 1 and b′ = b. Let Ωa+1 6= 0. Then
F(1,2) has the form

F(1,2)
(
ūC ūB

v̄C v̄B

)a+1,a

b,b
=

H

Ωa+1
det
a+b
N (1,2), (5.2.11)

where

N (1,2)
j,k = Lj,k, j = 1, . . . , a,

N (1,2)
j+a,k =Mj,k, j = 1, . . . , b,

(5.2.12)

and k = 1, . . . , a+ b. The set x̄ = {uB
1 , . . . , u

B
a , v

C
1 , . . . , v

C
b }.

• For the universal form factor F(2,3), we notice that a′ = a and b′ = b+ 1. Let Ωa+b+1 6= 0.
Then F(2,3) has the form

F(2,3)
(
ūC ūB

v̄C v̄B

)a,a
b+1,b

= (−1)b+1 H

Ωa+b+1
det
a+b+1

N (2,3), (5.2.13)

where

N (2,3)
j,k = Lj,k, j = 1, . . . , a,

N (2,3)
j+a,k =Mj,k, j = 1, . . . , b,

N (2,3)
a+b+1,k = 1,

(5.2.14)

and k = 1, . . . , a+ b+ 1. The set x̄ = {uB
1 , . . . , u

B
a , v

C
1 , . . . , v

C
b+1}.

• For the universal form factor F(1,3), one sees that a′ = a+ 1 and b′ = b+ 1. Let Ωa+1 6= 0.
Then F(1,3) has the form

F(1,3)
(
ūC ūB

v̄C v̄B

)a+1,a

b+1,b
= (−1)b+1 H

Ωa+1
det
a+b+1

N (1,3), (5.2.15)

where

N (1,3)
j,k = Lj,k, j = 1, . . . , a,

N (1,3)
j+a,k =Mj,k, j = 1, . . . , b+ 1,

(5.2.16)

and k = 1, . . . , a+ b+ 1. The set x̄ = {uB
1 , . . . , u

B
a , v

C
1 , . . . , v

C
b+1}.

• For the universal form factor F(2,1), one has a′ = a− 1 and b′ = b. It has the form

F(2,1)
(
ūC ūB

v̄C v̄B

)a−1,a

b,b
= H det

a+b
N (2,1), (5.2.17)

where

N (2,1)
j,k = Lj,k, j = 1, . . . , a− 1,

N (2,1)
a,k = −1,

N (2,1)
j+a,k =Mj,k, j = 1, . . . , b,

(5.2.18)

and k = 1, . . . , a+ b. The set x̄ = {uB
1 , . . . , u

B
a , v

C
1 , . . . , v

C
b }.
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• For the universal form factor F(3,2) with a′ = a and b′ = b− 1. It has the form

F(3,2)
(
ūC ūB

v̄C v̄B

)a,a
b−1,b

= (−1)b−1H det
a+b−1

N (3,2), (5.2.19)

where
N (3,2)
j,k = Lj,k, j = 1, . . . , a,

N (3,2)
j+a,k =Mj,k, j = 1, . . . , b− 1,

(5.2.20)

and k = 1, . . . , a+ b− 1. The set x̄ = {uB
1 , . . . , u

B
a , v

C
1 , . . . , v

C
b−1}.

• For the universal form factor F(3,1) and a′ = a− 1 and b′ = b− 1. It has the form

F(3,1)
(
ūC ūB

v̄C v̄B

)a−1,a

b−1,b
= (−1)b−1H det

a+b−1
N (3,1), (5.2.21)

where
N (3,1)
j,k = Lj,k, j = 1, . . . , a− 1,

N (3,1)
j+a,k =Mj,k, j = 1, . . . , b− 1,

N (3,1)
a,k =

(−1)a−1r1(xk)h(ūC , xk)

f(v̄C , xk)h(xk, ūB)
− h(xk, ū

C)

h(xk, ūB)
,

(5.2.22)

and k = 1, . . . , a+ b− 1. The set x̄ = {uB
1 , . . . , u

B
a , v

C
1 , . . . , v

C
b−1}.

The proofs of the determinant representations for the universal form factors of off-diagonal
matrix elements will be given in section 5.5.

5.3 Proof of determinant formula for diagonal form factor

Form factors of the operators Tii(z) were calculated in chapter 4.4 (see also paper [89]). It was
shown that F (i,i) are proportional to derivatives on κi of twisted transfer matrix eigenvalue:

F (i,i)
(
z
∣∣∣ ū ūv̄ v̄ )a,a

b,b
= (−1)[i]dτκ(z|ūC , v̄C)

dκi

∣∣∣
κ̄=1

Ca,b(ū; v̄)Ba,b(ū; v̄). (5.3.1)

A peculiarity of this representation is that we have a full derivative of τκ(z|ūC , v̄C) over κi.
In other words, one should consider the Bethe parameters ūC and v̄C as implicit functions of
κi, whose dependence on the twist parameters is determined by the twisted Bethe equations
(2.1.33). In this section we show that representation (5.3.1) and (5.2.1) are equivalent.

Consider a solution {ūC(κ), v̄C(κ)} of the twisted Bethe equations such that {ūC(κ), v̄C(κ)} →
{ū, v̄} as κ̄→ 1. Then, similarly to (4.2.13), we introduce an (a+ b)-component vector ΦC as

ΦC
j = log

(
r1(uC

j )

f(v̄C , uC
j )

f(ūC
j , u

C
j )

f(uC
j , ū

C
j )

)
, j = 1, . . . , a,

ΦC
a+j = log

(
r3(vC

j )

f(vC
j , ū

C)

)
, j = 1, . . . , b.

(5.3.2)

Comparing this vector with the vector Φ (4.2.13) we see that ΦC → Φ as2 κ̄→ 1.

2Here and below κ̄ = 1 stands for κ1 = κ2 = κ3 = 1. We also assume that the condition κ̄ = 1 automatically
yields ūC = ū and v̄C = v̄.
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Taking the logarithm of the twisted Bethe equations (2.1.33) we obtain

ΦC
j = log

(
κ2

κ1

)
, j = 1, . . . , a,

ΦC
a+j = log

(
κ2

κ3

)
, j = 1, . . . , b.

(5.3.3)

Differentiating these equations over κi at κ̄ = 1 we find

a∑
k=1

∂Φj

∂uk

duC
k

dκi

∣∣∣
κ̄=1

+
b∑

k=1

∂Φj

∂vk

dvC
k

dκi

∣∣∣
κ̄=1

= δ2i − δ1i, j = 1, . . . , a,

a∑
k=1

∂Φa+j

∂uk

duC
k

dκi

∣∣∣
κ̄=1

+

b∑
k=1

∂Φa+j

∂vk

dvC
k

dκi

∣∣∣
κ̄=1

= δ2i − δ3i, j = 1, . . . , b,

(5.3.4)

where we have taken into account that ΦC
j = Φj , u

C
j = uj , and vC

j = vj at κ̄ = 1.

Let x̄ = {uC
1 , . . . , u

C
a , v

C
1 , . . . , v

C
b }. Then using (5.2.2) we recast (5.3.4) as follows:

a+b∑
k=1

N̂ (i,i)
j,k

dxk
dκi

∣∣∣
κ̄=1

= δ2i − δ1i, j = 1, . . . , a,

a+b∑
k=1

N̂ (i,i)
a+j,k

dxk
dκi

∣∣∣
κ̄=1

= δ2i − δ3i, j = 1, . . . , b.

(5.3.5)

Hence, if we multiply the columns N̂ (i,i)
j,k with k = 1, . . . , a+b by the coefficients dxk/dκi and add

this linear combination to the last column of the matrix N̂ (i,i), then we obtain zeros everywhere
except the right-lower element. For this non-zero entry we obtain

N̂ (i,i)
a+b+1,a+b+1 +

a+b∑
k=1

N̂ (i,i)
a+b+1,k

dxk
dκi

∣∣∣
κ̄=1

= (−1)[i]∂τκ(z|ū, v̄)

∂κi
+ (−1)[i]

a+b∑
k=1

∂τ(z|ūC , v̄C)

∂xk

dxk
dκi

∣∣∣
κ̄=1

= (−1)[i]dτκ(z|ūC , v̄C)

dκi

∣∣∣
κ̄=1

. (5.3.6)

Thus, we arrive at

F (i,i)
(
z
∣∣∣ ū ūv̄ v̄ )a,a

b,b
= (−c)a+b

b∏
j=1

a∏
k=1

f(vj , uk)
a∏

j,k=1
j 6=k

f(uj , uk)
b∏

j,k=1
j 6=k

g(vj , vk)

× (−1)[i]dτκ(z|ūC , v̄C)

dκi

∣∣∣
κ̄=1

det
a+b
N̂ (i,i), (5.3.7)

where now the size of the matrix N̂ (i,i) is (a + b) × (a + b). Comparing this expression with
(4.2.8) we reproduce representation (5.3.1). �
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5.4 Zero modes

It was shown in the paper [86] that in the models with gl(N)-invariant R-matrix all the form
factors can be obtained from one initial form factor and taking special limits of the Bethe
parameters. Our method was based on the use of zero modes of the monodromy matrix. This
approach can be applied to the models with gl(m|n) symmetry without significant changes. In
this section we give a brief description of this method and find simple relations between different
form factors.

The basis of the zero modes method is an expansion of the monodromy matrix T (u) into a
series over inverse spectral parameter

Tij(u) = δijI +

∞∑
n=0

Tij [n]
(
c
u

)n+1
. (5.4.1)

Note that the expansion (5.4.1) yields similar expansions for the functions λi(u) and rk(u)

λi(u) = 1 +
∞∑
n=0

λi[n]
(
c
u

)n+1
, i = 1, 2, 3

rk(u) = 1 +

∞∑
n=0

rk[n]
(
c
u

)n+1
, k = 1, 3.

(5.4.2)

Assumption (5.4.1) implies that the Bethe vectors remain on-shell if one of their parameters
tends to infinity. This is because the structure of the Bethe equations (2.1.30) is preserved when
rk(u)→ 1 at u→∞.

The operators Tij [0] are called the zero modes. They span a gl(2|1) superalgebra. Sending
in (1.1.14) one of the arguments to infinity we obtain commutation relations of the zero modes
and the operators Tkl(z)

[Tij [0], Tkl(z)} = (−1)[l]([i]+[j])+[i][j]
(
δilTkj(z)− δkjTil(z)

)
, (5.4.3)

showing that the monodromy entries form an adjoint representation of the gl(2|1) superalgebra
generated by the zero modes.

5.4.1 Action of the zero modes onto Bethe vectors

The explicit formulas for the action the operators Tij(z) onto Bethe vectors were derived in [87].
Taking the limit z →∞ in those expressions we obtain the action of the zero modes Tij [0]. The
action of Tij [0] with i < j is given by

T13[0]Ba,b(ū; v̄) = − lim
w→∞

(
−w
c

)b+1 Ba+1,b+1({ū, w}; {v̄, w}), (5.4.4)

T23[0]Ba,b(ū; v̄) = − lim
w→∞

(
−w
c

)b+1 Ba,b+1(ū; {v̄, w}), (5.4.5)

T12[0]Ba,b(ū; v̄) = lim
w→∞

w
c Ba+1,b({ū, w}; v̄). (5.4.6)

Let us show how one can obtain these equations. For this we consider the simplest case
(5.4.4). The action of the operator T13(w) onto a Bethe vector Ba,b(ū; v̄) is (see [87])

T13(w)Ba,b(ū; v̄) = λ2(w)h(v̄, w) Ba+1,b+1({ū, w}; {v̄, w}). (5.4.7)
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Multiplying both sides by w/c, taking the limit w → ∞, and using the asymptotic properties
of the functions h(v, w) (1.1.38) and λ2(w) (5.4.2) we immediately arrive at (5.4.4).

The parameters ū and v̄ in (5.4.4)–(5.4.6) are a priori generic complex numbers, but they
may satisfy the Bethe equations in specific cases. Then in the r.h.s. of (5.4.5) and (5.4.6) we
obtain on-shell Bethe vectors, because the infinite root w together with the sets ū and v̄ satisfy
Bethe equations due to the condition (5.4.2).

Applying the antimorphism ψ to the actions (5.4.4)–(5.4.6) we obtain

Ca,b(ū; v̄)T31[0] = lim
w→∞

(
w
c

)b+1 Ca+1,b+1({ū, w}; {v̄, w}), (5.4.8)

Ca,b(ū; v̄)T32[0] = lim
w→∞

(
w
c

)b+1 Ca+1,b(ū; {v̄, w}), (5.4.9)

Ca,b(ū; v̄)T21[0] = lim
w→∞

w
c Ca+1,b({ū, w}; v̄). (5.4.10)

As in the above case, if the parameters {ū, v̄} satisfy Bethe equations, then {ū, v̄, w} also satisfy
Bethe equations as w →∞.

Similarly to the gl(N) case (see [96]) the on-shell vectors (resp. dual on-shell vectors)
depending on finite Bethe roots are singular weight vectors of the zero modes Tij [0] with i > j
(resp. Tij [0] with i < j):

Tij [0]Ba,b(ū; v̄) = 0, i > j,

Ca,b(ū; v̄)Tij [0] = 0, i < j.
(5.4.11)

These equations can be obtained from the explicit formulas of the actions of Tij onto Bethe
vectors 2.1.2.

5.4.2 Relations between different form factors

The zero modes allow us to find simple relations between different form factors. As a starter,
we consider an example. Setting in (5.4.3) j = k = l = 2 and i = 1 we obtain

[T12[0], T22(z)] = −T12(z). (5.4.12)

Let Ca+1,b(ū
C ; v̄C) and Ba,b(ūB; v̄B) be two on-shell vectors with all their Bethe parameters

finite. Then (5.4.12) yields

Ca+1,b(ū
C ; v̄C)T12(z)Ba,b(ūB; v̄B) = −Ca+1,b(ū

C ; v̄C)T12[0]T22(z)Ba,b(ūB; v̄B)

+ Ca+1,b(ū
C ; v̄C)T22(z)T12[0]Ba,b(ūB; v̄B). (5.4.13)

The first term in the r.h.s. vanishes as T12[0] acts on the dual on-shell Bethe vector. The action
of T12[0] on the on-shell vector Ba,b(ūB; v̄B) is given by (5.4.6), hence,

Ca+1,b(ū
C ; v̄C)T12(z)Ba,b(ūB; v̄B) = Ca+1,b(ū

C ; v̄C)T22(z) lim
w→∞

w
c Ba+1,b({ūB, w}; v̄B). (5.4.14)

Since the original vector Ba,b(ūB; v̄B) was on-shell, the new vector Ba+1,b({ūB, w}; v̄B) with
w → ∞ also is on-shell. Therefore, in the r.h.s. of (5.4.14) we have the form factor of T22(z),
and we arrive at

F (1,2)
(
z
∣∣∣ ūC ūB

v̄C v̄B

)a+1,a

b,b
= lim

w→∞

w

c
F (2,2)

(
z
∣∣∣ ūC {ūB ,w}
v̄C v̄B

)a+1,a+1

b,b
. (5.4.15)
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Thus, the form factor F (1,2) can be obtained from F (2,2) by sending one of the Bethe parameters
to infinity.

The relation (5.4.15) can be easily reformulated for the universal form factors. Indeed,
looking at the explicit expression (2.1.27) for the eigenvalue τ(z|ū, v̄) we see that

lim
uj→∞

τ(z|ū, v̄) = τ(z|ūj , v̄), lim
vk→∞

τ(z|ū, v̄) = τ(z|ū, v̄k). (5.4.16)

Thus, if one of the Bethe parameters goes to infinity, then the transfer matrix eigenvalue τ(z|ū, v̄)
turns into the eigenvalue depending on the remaining Bethe parameters. Hence, we arrive at

F(1,2)
(
ūC ūB

v̄C v̄B

)a+1,a

b,b
= lim

w→∞

w

c
F(2,2)

(
ūC {ūB ,w}
v̄C v̄B

)a+1,a+1

b,b
. (5.4.17)

Similarly, starting with the universal form factor F(2,2) and using commutation relations
(5.4.3) we can obtain all the universal form factors F(i,j) with |i− j| = 1:

F(2,3)
(
ūC ūB

v̄C v̄B

)a,a
b+1,b

= lim
w→∞

(
−w
c

)b+1

F(2,2)
(
ūC ūB

v̄C {v̄B ,w}

)a,a
b+1,b+1

, (5.4.18)

F(2,1)
(
ūC ūB

v̄C v̄B

)a−1,a

b,b
= lim

w→∞

w

c
F(2,2)

(
{ūC ,w} ūB
v̄C v̄B

)a,a
b,b
, (5.4.19)

F(3,2)
(
ūC ūB

v̄C v̄B

)a,a
b−1,b

= − lim
w→∞

(w
c

)b
F(2,2)

(
ūC ūB

{v̄C ,w} v̄B
)a,a
b,b
. (5.4.20)

The universal form factors F(i,j) with |i − j| = 2 can be obtained as the limits of F(i,j) with
|i− j| = 1, for example,

F(1,3)
(
ūC ūB

v̄C v̄B

)a+1,a

b+1,b
= lim

w→∞

(
−w
c

)b+1

F(1,2)
(
ūC ūB

v̄C {v̄B ,w}

)a+1,a

b+1,b+1
, (5.4.21)

F(3,1)
(
ūC ūB

v̄C v̄B

)a−1,a

b−1,b
= lim

w→∞

w

c
F(3,2)

(
{ūC ,w} ūB
v̄C v̄B

)a,a
b−1,b

. (5.4.22)

Thus, starting with F(2,2) and taking different limits of the Bethe parameters we obtain all the
universal form factors of the off-diagonal matrix elements of the monodromy matrix. Formally,
F(1,1) and F(3,3) can be also included in this scheme, for example,

F(1,1)
(
ūC ūB

v̄C v̄B

)a,a
b,b
− F(2,2)

(
ūC ūB

v̄C v̄B

)a,a
b,b

= lim
w→∞

w

c
F(1,2)

(
{ūC ,w} ūB
v̄C v̄B

)a+1,a

b,b
. (5.4.23)

However, in our case this relation is not needed, because determinant representations for all
diagonal universal form factors were already derived in previous chapter.

It should be noted that the possibility of considering the limit of an infinite Bethe parameter
is based on the use of the generalised model. On the one hand, in this model, the Bethe
parameters are arbitrary complex numbers. Hence, one of them can be sent to infinity. On the
other hand, the existence of an infinite root in the Bethe equations agrees with the expansion
(5.4.2). At the same time, since the final expression for form factors depends on r1 and r3 only
through the eigenvalue τ(z|ū, v̄), the condition (5.4.2) is not a restriction on the form factors.
It can be checked for instance in Bose gas models [69], where the relations between form factors
and the zero modes method both apply, although the condition (5.4.2) is not fulfilled.
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5.5 Form factors of off-diagonal elements

In this section we deduce from the zero modes method determinant representations for the
universal form factors of the operators Tij(z) with i 6= j. Consideration is restricted with two
typical examples of F(1,2) and F(3,2). All other determinant representations for the universal
form factors can be obtained in a similar manner.

5.5.1 Form factor F(1,2)

Due to (5.4.17) the form factor F(1,2) is a limiting case of the form factor F(2,2). The determinant
representation for the latter is given by (4.4.14)–(4.4.17), where without any loss of generality
we can set p = a + 1. In these expressions we also should replace a with a + 1 and ūB with
{ūB, w} Then we have

F(1,2)
(
ūC ūB

v̄C v̄B

)a+1,a

b,b
= lim

w→∞

wH

cΩa+1
det
a+b+1

N (2,2). (5.5.1)

For taking the limit it is convenient to multiply the first a rows of the matrix N (2,2) by the
factors −w/c. Then we obtain

F(1,2)
(
ūC ūB

v̄C v̄B

)a+1,a

b,b
= lim

w→∞

(
−c
w

)a wH

cΩa+1
det
a+b+1

◦
N (2,2)
j,k . (5.5.2)

where
◦
N (2,2)
j,k = −w

c
N (2,2)
j,k , j = 1, . . . , a,

◦
N (2,2)
j,k = N (2,2)

j,k , j = a+ 1, . . . , a+ b+ 1.

(5.5.3)

Now let us give explicit expressions for the prefactor and the matrix elements in (5.5.2).
The factor H is

H(ūC ; {ūB, w}; v̄C) = f(v̄C , ūB)h(ūB, ūB)∆′(ūC)∆(ūB)∆(v̄C)∆′(v̄C)

× f(v̄C , w)h(w, ūB)h(ūB, w)g(w, ūB) = f(v̄C , w)f(w, ūB)h(ūB, w)H(ūC ; ūB; v̄C), (5.5.4)

where H(ūC ; ūB; v̄C) is given by (5.2.4). Hence, due to (1.1.38) we find

lim
w→∞

(
−c
w

)a
H(ūC ; {ūB, w}; v̄C) = H(ūC ; ūB; v̄C). (5.5.5)

The coefficient Ωa+1 is equal to

Ωa+1(ūC ; {ūB, w}) =
1

g(uC
a+1, w)

g(uC
a+1, ū

C
a+1)

g(uC
a+1, ū

B)
=

Ωa+1(ūC ; ūB)

g(uC
a+1, w)

, (5.5.6)

and therefore

lim
w→∞

c

w
Ωa+1(ūC ; {ūB, w}) = −Ωa+1(ūC ; ūB), (5.5.7)

where Ωa+1(ūC ; ūB) is given by (4.3.1). Thus, the prefactor coincides with the one in (5.2.11)
up to the sign.
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Consider now the matrix elements
◦
N (2,2)
j,k . First of all

◦
N (2,2)
a+1,k = −1 for all k = 1, . . . , a+b+1.

If j, k 6= a+ 1, then

◦
N (2,2)
j,k (ūC ; {ūB, w}; v̄C)

= −w
c

(
(−1)ar1(xk)t(u

C
j , xk)h(ūC , xk)

f(v̄C , xk)h(xk, ūB)h(xk, w)
+
t(xk, u

C
j )h(xk, ū

C)

h(xk, ūB)h(xk, w)

)
,

j = 1, . . . , a,
k = 1, . . . , a+ b+ 1,
k 6= a+ 1,

(5.5.8)

◦
N (2,2)
a+1+j,k({ū

B, w}; v̄C ; v̄B)

= −t(vC
j , xk)

g(v̄B, xk)

g(v̄C , xk)

(
1− r3(xk)

f(xk, ūB)f(xk, w)

)
,

j = 1, . . . , b,
k = 1, . . . , a+ b+ 1,
k 6= a+ 1.

(5.5.9)

Here {x1, . . . , xa} = {uB
1 , . . . , u

B
a } and {xa+2, . . . , xa+b+1} = {vC

1 , . . . , v
C
b }. Taking the limit

w →∞ we obtain

lim
w→∞

◦
N (2,2)
j,k (ūC ; {ūB, w}; v̄C)

=
(−1)ar1(xk)t(u

C
j , xk)h(ūC , xk)

f(v̄C , xk)h(xk, ūB)
+
t(xk, u

C
j )h(xk, ū

C)

h(xk, ūB)
,

j = 1, . . . , a,
k = 1, . . . , a+ b+ 1,
k 6= a+ 1,

(5.5.10)

lim
w→∞

◦
N (2,2)
a+1+j,k({ū

B, w}; v̄C ; v̄B)

= −t(vC
j , xk)

g(v̄B, xk)

g(v̄C , xk)

(
1− r3(xk)

f(xk, ūB)

)
,

j = 1, . . . , b,
k = 1, . . . , a+ b+ 1,
k 6= a+ 1.

(5.5.11)

Finally, for the elements
◦
N (2,2)
j,a+1 with j 6= a+ 1 we have

◦
N (2,2)
j,a+1(ūC ; {ūB, w}; v̄C) =

−w
c

(
t(uC

j , w)
(−1)ar1(w)h(ūC , w)

f(v̄C , w)h(w, ūB)
+
t(w, uC

j )h(w, ūC)

h(w, ūB)

)
, j < a+1,

(5.5.12)
◦
N (2,2)
j,a+1({ūB, w}; v̄C ; v̄B) = −t(vC

j , w)
g(v̄B, w)

g(v̄C , w)
, j > a+ 1, (5.5.13)

and sending there w to infinity we obtain

lim
w→∞

◦
N (2,2)
j,a+1(ūC ; {ūB, w}; v̄C) = lim

w→∞

◦
N (2,2)
j,a+1({ūB, w}; v̄C ; v̄B) = 0. (5.5.14)

We see that the (a + 1)-th column of the matrix
◦
N (2,2)
j,k contains only one non-zero element

◦
N (2,2)
a+1,a+1 = −1. Thus, the determinant in (5.5.2) reduces to the determinant of the (a + b) ×

(a + b) matrix with the matrix elements (5.5.10) and (5.5.11). Obviously, this representation
coincides with the expressions (5.2.11) and (5.2.12).
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5.5.2 Form factor F(3,2)

The form factor F(3,2) also can be obtained as a limit of the form factor F(2,2) via (5.4.20). We
use again representation (4.4.14)–(4.4.17), but now it is convenient to set p = a + b. We also
should replace v̄C with {v̄C , w}. Then

F(3,2)
(
ūC ūB

v̄C v̄B

)a,a
b−1,b

= − lim
w→∞

(w
c

)b H

Ωa+b
det
a+b
N (2,2). (5.5.15)

For taking the limit we multiply the rows with j = a+ 1, . . . , a+ b− 1 of the matrix N (2,2) by
the factors c/w. Then we obtain

F(3,2)
(
ūC ūB

v̄C v̄B

)a,a
b−1,b

= − lim
w→∞

w

c

(w
c

)2b−2 H

Ωa+b
det
a+b

◦
N (2,2)
j,k . (5.5.16)

where
◦
N (2,2)
j,k = N (2,2)

j,k , j = 1, . . . , a,

◦
N (2,2)
j,k =

c

w
N (2,2)
j,k , j = a+ 1, . . . , a+ b− 1,

◦
N (2,2)
a+b,k = N (2,2)

a+b,k = −1.

(5.5.17)

Now let us give explicit expressions for the prefactor and the matrix elements in (5.5.16).
The factor H is

H(ūC ; ūB; {v̄C , w}) = f(v̄C , ūB)h(ūB, ūB)∆′(ūC)∆(ūB)∆(v̄C)∆′(v̄C)

× f(w, ūB)g(w, v̄C)g(v̄C , w) = f(w, ūB)g(w, v̄C)g(v̄C , w)H(ūC ; ūB; v̄C), (5.5.18)

where H(ūC ; ūB; v̄C) is given by (5.2.4). Hence, due to (1.1.38) we find

lim
w→∞

(w
c

)2b−2
H(ūC ; ūB; {v̄C , w}) = (−1)b−1H(ūC ; ūB; v̄C). (5.5.19)

The coefficient Ωa+b is equal to

Ωa+b({v̄C , w}; ūB) =
g(w, v̄C)

g(w, v̄B)
, (5.5.20)

and therefore
lim
w→∞

c

w
Ωa+b({v̄C , w}; ūB) = 1. (5.5.21)

Consider now the matrix elements
◦
N (2,2)
j,k . If k 6= a+ b, then

◦
N (2,2)
j,k (ūC ; ūB; {v̄C , w})

=
(−1)a−1r1(xk)t(u

C
j , xk)h(ūC , xk)

f(v̄C , xk)f(w, xk)h(xk, ūB)
+
t(xk, u

C
j )h(xk, ū

C)

h(xk, ūB)
,

j = 1, . . . , a,
k = 1, . . . , a+ b− 1,

(5.5.22)

◦
N (2,2)
a+j,k(ū

B; {v̄C , w}; v̄B)

= − c
w
t(vC

j , xk)
g(v̄B, xk)

g(v̄C , xk)g(w, xk)

(
1− r3(xk)

f(xk, ūB)

)
,

j = 1, . . . , b− 1,
k = 1, . . . , a+ b− 1.

(5.5.23)
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Here {x1, . . . , xa} = {uB
1 , . . . , u

B
a } and {xa+1, . . . , xa+b−1} = {vC

1 , . . . , v
C
b−1}. Taking the limit

w →∞ we obtain

lim
w→∞

◦
N (2,2)
j,k (ūC ; ūB; {v̄C , w})

=
(−1)a−1r1(xk)t(u

C
j , xk)h(ūC , xk)

f(v̄C , xk)h(xk, ūB)
+
t(xk, u

C
j )h(xk, ū

C)

h(xk, ūB)
,

j = 1, . . . , a,
k = 1, . . . , a+ b− 1,

(5.5.24)

lim
w→∞

◦
N (2,2)
a+j,k(ū

B; {v̄C , w}; v̄B)

= −t(vC
j , xk)

g(v̄B, xk)

g(v̄C , xk)

(
1− r3(xk)

f(xk, ūB)

)
,

j = 1, . . . , b,
k = 1, . . . , a+ b− 1.

(5.5.25)

Finally, for the elements
◦
N (2,2)
j,a+b with j 6= a+ b we have

◦
N (2,2)
j,a+b(ū

C ; ūB; {v̄C , w}) =
t(w, uC

j )h(w, ūC)

h(w, ūB)
, j = 1, . . . , a, (5.5.26)

◦
N (2,2)
a+j,a+b(ū

B; {v̄C , w}; v̄B) = 0, j = 1, . . . , b− 1, (5.5.27)

and sending there w to infinity we obtain that
◦
N (2,2)
j,a+b → 0 as w →∞ for j < a+ b.

We see that the last column of the matrix
◦
N (2,2)
j,k contains only one non-zero element

◦
N (2,2)
a+b,a+b = −1. Thus, the determinant in (5.5.16) reduces to the determinant of the (a +

b − 1) × (a + b − 1) matrix with the matrix elements (5.5.24) and (5.5.25). Obviously, this
representation coincides with (5.2.19), (5.2.20).

Remark. In all considerations above we assumed that Bethe parameters of on-shell Bethe
vectors Ca′,b′(ūC ; v̄C) and Ba,b(ūB; v̄B) were finite. However, if rk(z)→ 1 at z →∞, then Bethe
equations (2.1.30) admit infinite solutions as well. The peculiarity of such infinite roots is that
the corresponding Bethe vectors are no longer singular vectors of the zero modes Tij [0] with
i > j (respectively, the operators Tij [0] with i < j do not annihilate dual on-shell vectors with
infinite parameters). This property played an essential role in our derivations, therefore one
might have impression that the case of infinite Bethe roots requires a special study. However,
as it was shown in [86] for the models with gl(3)-invariant R-matrix, all relations between the
form factors remain valid even in the presence of infinite Bethe parameters. The method of the
work [86] can be used for the models described by the gl(2|1) superalgebra without any changes.
Therefore we do not give here a special consideration to this problem.

5.6 Form factors in the models described by gl(1|2) superalgebra

As already mention, models possessed gl(1|2) and gl(2|1) symmetry are isomorphic. To dis-
tinguish object belonging to these two algebras below everything pertain to gl(1|2) algebra
symmetry case will be marked with tilde symbol. In particular, the new gradation appears

[̃1] = 0 and [̃2] = [̃3] = 1. Monodromy matrix entries are denoted as T̃ij , and their vacuum

eigenvalues as λ̃j , Bethe vectors are denoted as B̃a,b(ū, v̄), etc.
Isomorphism ϕ defined in following way.
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Definition 5.6.1. Let ̄ = 4− j. Then

ϕ :


[j] → [̃j] = [̄] + 1,

Tij(u) → (−1)[j][i]+[j]+1 T̃̄,̄ı(u)

λj(u) → λ̃j(u) = −λ̄(u).

(5.6.1)

Hence,

ϕ(AB) = ϕ(A)ϕ(B). (5.6.2)

Remark. There is a big freedom in the definition of ϕ. Namely, we can use the following
action Tij(u) → (−1)[j][i]+α[i]+β[j]+γ T̃̄,̄ı(u), where α, β, and γ are arbitrary constants. Indeed,

if the operators T̃ij(u) satisfy the commutation relations of gl(1|2), then multiplication by

(−1)α[i]+β[j]+γ is equivalent to the multiplication of the monodromy matrix T̃ by diagonal
twists (from the left by diag((−1)α[i]) and from the right by diag((−1)β[j]+γ)). It is clear that
after this multiplication the commutation relations are preserved. We have used this possibility
in (5.6.1) in order to have

ϕ
(
str(T (u)

)
= str T̃ (u). (5.6.3)

However, even this additional restriction does not fix completely the action of ϕ. We could
choose, for instance, Tij(u)→ (−1)[j][i]+[i]+1 T̃̄,̄ı(u).

5.6.1 Bethe vectors

Bethe vectors in gl(1|2) were constructed in [84]:

B̃a,b(ū; v̄) = (−1)a
∑ g(ūI, v̄I)f(v̄I, v̄II)g(ūII, ūI)h(v̄I, v̄I)

λ̃2(ūII)λ̃2(v̄)f(ū, v̄)
T̃13(v̄I)T̃23(v̄II)T̃12(ūII)Ω̃. (5.6.4)

The dual vectors have the following explicit form

C̃a,b(ū; v̄) = (−1)
a(a−1)

2

∑ g(ūI, v̄I)f(v̄I, v̄II)g(ūII, ūI)h(v̄I, v̄I)

λ̃2(ūII)λ̃2(v̄)f(ū, v̄)
Ω̃†T̃21(ūII)T̃32(v̄II)T̃31(v̄I). (5.6.5)

Then, assuming that ϕ(Ω) = Ω̃ and ϕ(Ω†) = Ω̃† we find

ϕ
(
Ba,b(ū; v̄)

)
= B̃b,a(v̄; ū), ϕ

(
Ca,b(ū; v̄)

)
= C̃b,a(v̄; ū). (5.6.6)

Here we have (dual) Bethe vectors of gl(2|1) in the l.h.s., and (dual) Bethe vectors of gl(1|2) in
the r.h.s. One can also easily check that

ψ
(
B̃a,b(ū; v̄)

)
= (−1)aC̃a,b(ū; v̄), ψ

(
C̃a,b(ū; v̄)

)
= B̃a,b(ū; v̄). (5.6.7)

5.6.2 Form factors

Form factors of the operators Tij(z) depend on the functions λk(z). Therefore they are not
invariant under the action of ϕ:

ϕ
(
F (i,j)

(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

)
= F (i,j)

(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

∣∣∣
λk(z)→−λk̄(z)

. (5.6.8)
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On the other hand we have

ϕ

(
F (i,j)

(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

)
= ϕ

(
Ca′,b′(ūC ; v̄C)Tij(z)Ba,b(ūB; v̄B)

)
= (−1)[j][i]+[j]+1C̃b′,a′(v̄C ; ūC)T̃̄,̄ı(z)B̃b,a(v̄B; ūB) = (−1)[j][i]+[j]+1F̃ (̄,̄ı)

(
z
∣∣∣ v̄C v̄B

ūC ūB

)b′,b
a′,a

. (5.6.9)

Thus, we obtain

(−1)[j][i]+[j]+1F̃ (̄,̄ı)
(
z
∣∣∣ v̄C v̄B

ūC ūB

)b′,b
a′,a

= F (i,j)
(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

∣∣∣
λk(z)=−λ̃k̄(z)

. (5.6.10)

Changing here

ūC,B ↔ v̄C,B, a↔ b, a′ ↔ b′, ̄↔ i, ı̄↔ j, (5.6.11)

we find

F̃ (i,j)
(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

= (−1)[̄][̄ı]+[̄ı]+1F (̄,̄ı)
(
z
∣∣∣ v̄C v̄B

ūC ūB

)b′,b
a′,a

∣∣∣
λk(z)=−λ̃k̄(z)

. (5.6.12)

It remains to use [̃j] = [̄] + 1, and we finally arrive at

F̃ (i,j)
(
z
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

= (−1)[̃j][̃i]+[̃j]+1F (̄,̄ı)
(
z
∣∣∣ v̄C v̄B

ūC ūB

)b′,b
a′,a

∣∣∣
λk(z)=−λ̃k̄(z)

. (5.6.13)

Thus, the form factors of the monodromy matrix entries in the models with gl(1|2) and gl(2|1)
symmetries are related to each other by the replacement of variables (5.6.11).

Conclusion

The main results of this chapter are formulae for determinant representations of the monodromy
matrix entries form factors in the integrable models possessed gl(2|1) and gl(1|2) algebra sym-
metries. These results can be directly applied to the computation of form factors of ultralocal
operators and, correspondingly, correlation functions of integrable models using form factor
series (0.1.7). This problem is considered in next chapter.

Calculation of form factors and scalar product in the models with algebra symmetry gl(m|n),
m,n ≥ 2 is an open question. Any results for such algebras will be extremely important for
description of integrable higher-spin and multicomponent Fermi gases (see review [122]) and
supersymmetric Yang-Mills theories [118]. Zero modes method can be applied also there, so in
order to obtain all form factor it is required to compute just one and other can be obtained
by taking special limits. However, it is clear that even computation of single form factor is an
extremely complicated problem in the higher rank algebra symmetry case. For instance, it is
not clear what can be possible generalisation of formulae for the matrix block (5.2.5)-(5.2.6) in
the determinant.

One more interesting problem is a computation of the form factors in case of the trigono-
metric R-matrix.



Chapter 6

Correlation functions in
Gaudin-Yang model

The problem of representations of ultralocal operators form factors via monodromy matrix
entries form factors was solved in [68, 86] for arbitrary algebra gl(N) and generalised for graded
algebra symmetry case in [98]. For fundamental models the solution of the quantum inverse
problem can be also applied (see [80, 97]). It provides us iwth the possibility to calculate correl-
ation functions using form factor series summation (0.1.7). This summation can be performed
both analytically and numerically. Below the numerical approach is developed for integrable
1D Fermi gas described by Gaudin-Yang model.

6.1 1D Fermi gases

One-dimensional gases have been intensively studied during many years. Such models attract a
lot of attention since there was found that they are often exactly solvable by the Bethe ansatz
technique and other methods [18, 20–25, 27]. The non-perturbative description of Bose and
Fermi gases was studied in a giant number of works (see reviews [122, 134]). The experimental
progress in the realisation of the 1D optical traps [138–141] and the search for the perspective
methods for realisation of quantum bits renew interest on these models.

The object of our interest is an integrable model of one dimensional Fermi gas described
by the Gaudin-Yang model [25, 32]. This model among with the Lieb-Liniger model (Bose
analog) is the simplest example of the low-dimensional models with the ultralocal interaction.
We restrict ourselves here to the model with spin-1/2. Integrable models with the higher spins,
multiple components and mixtures of Bose and Fermi gases also exist but their description
requires calculation of the form factors by ABA approach in algebra symmetry case gl(m|n)
with m+ n > 3 that is an open problem.

The experimental realisations of 1D Fermi systems were done in [136, 137]. Properties of the
Gaudin-Yang model were studied in [123–130]. Spectrum, phase diagrams, thermal behavior,
relaxation properties were considered. Correlation functions were examined in [131–133] using
CFT prediction or Luttinger liquid approach. However, the description of correlation functions
in such models is far from being complete. The goal of the current chapter is to present the
numerical algorithm that allows to describe the correlation functions of the 1D spin-1/2 Fermi
gas. This method is loosely based on the ABACUS algorithm that was developed in the works
[60, 61, 104, 135] (see also [159–162] and review [163]) and gave perfect description of the

89
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one-component spinless Bose gas, Heisenberg spin chains, etc. This technique is, in fact, the
procedure of the numerical summation of the form factors of ultralocal (one-point) operators,
that can be calculated using the algebraic Bethe ansatz approach (ABA). Our current task is the
generalisation of the ABACUS technique to the spin-1/2 Fermi gases and t-J supersymmetric
model. The final result is a Fourier map of correlators called dynamical structure factor (DSF).
We present our result as a density diagram in energy-momentum coordinates. Experimentally
such image can be obtained via the light scattering measurement.

6.1.1 Ultralocal operator via ABA

Form factors of the monodromy matrix entries Tij with algebra symmetry gl(2|1) were calculated
in [90] and are given in chapters 4-5 ((4.4.14)-(4.4.17) and (5.2.11)-(5.2.21)). Any ultralocal
physical operator can be expressed via these operators. Particular cases are given in the next
section. Form factors of the ultralocal operators O(m) are connected to the universal form
factors of the monodromy matrix entries Tij as [98]

Oij
(
m
∣∣∣ ūC ūB

v̄C v̄B

)a′,a
b′,b

=

(
`1(ūC)`3(v̄B)

`1(ūB)`3(v̄C)
− 1

)
F(i,j)

(
ūC ūB

v̄C v̄B

)a′,a
b′,b

, (6.1.1)

where `1, `3 are r1 and r3 for the one-site model, m is the discrete coordinate on the lattice.
Finally, the connection between physical operators O and the ultralocal operators Oij depends
on the specific model and particular operators.

6.1.2 Gaudin-Yang model

The Hamiltonian of the one-dimensional Fermi gas with the ultralocal interaction is given by

H =

∫ L

0
dx
{
∂ψ†α∂ψα + cψ†αψ

†
βψβψα

}
, α, β =↑, ↓, (6.1.2){

ψ†α(x), ψβ(y)
}

= δαβδ(x− y), (6.1.3)

the sum is taken over repeated indices. The Bethe ansatz description of this model was given
by [32] (see also [25]). Gaudin-Yang model corresponds to the choice r1(uj) = −1, r3(vj) =
− exp(ivjL) in (6.2.8). The case of zero magnetic field is considered for simplicity and chemical
potential is chosen to be zero since we consider case of fixed particles number and chemical
potential gives just trivial shift of the ground state. Variables v̄ are momenta of the fermions.
Variables ū are rapidities of the excitations corresponding to spin flipping. Experimentally
coupling constant c can be tuned by external magnetic field using Feshbach resonance [142–
145]. Here and below ~=m=1 convention is used.

A similar system of one-component Bose gas with the delta-interaction was studied numer-
ically in [104, 135]. Below we study only the case with repulsive interaction, so c > 0.

The connection of form factors of the monodromy matrix entries to form factors of local
operators (6.1.1) in the Gaudin-Yang model is given by

Ca+2−k,b+1(ūC , v̄C)ψ†k(x)Ba,b(ūB, v̄B) = i
√
cF(k,3)

(
ūC ūB

v̄C v̄B

)a+2−k,a

b+1,b
, k = 1, 2, (6.1.4)

Ca−i+j,b(ūC , v̄C)ψ†i (x)ψj(x)Ba,b(ūB, v̄B) = −P(v̄B, v̄C)eixP(v̄B ,v̄C)F(i,j)
(
ūC ūB

v̄C v̄B

)a−i+j,a
b,b

,

i, j = 1, 2,

(6.1.5)
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with the energy and the momentum of the excited states are given by

ω = ω(v̄B)− ω(v̄C), ω(v̄) =

b∑
i=1

v2
i , q(v̄) =

b∑
i=1

vi, P = q(v̄B)− q(v̄C). (6.1.6)

These formulae are direct corollary of the general formula (6.1.1). The derivation for the Fermi
gas coincides with the one for the Bose gas given in [68].

6.2 Calculation of the DSF in 1D integrable model via ABA

6.2.1 Form factor series

Two point dynamical correlation function of arbitrary operators O (0.1.7) at zero temperature
can be presented as the form factor series

〈O(x, t)O†(0, 0)〉 =
∑
m

〈0|O(0, 0)|m〉〈m|O†(0, 0)|0〉
〈m|m〉〈0|0〉

eiωmt−ixpm ≡
∑
m

∣∣FOm∣∣2 eiωmt−ixpm , (6.2.1)

where
∣∣FOm∣∣ is the form factor of the ultralocal operator (0.1.8) between the state |m〉 and the

ground state.
The problem is the summation of series (6.2.1). Analytically such form factor series was

studied in [50–55, 58, 59]. However, quite often summation of (6.2.1) can be performed only
numerically. The method of numerical calculation of the DSF based on the form factor summa-
tion formula was developed in the works of M. Karbach, G. Müller [159–162] and J.-S. Caux et.
al. [60, 61, 104, 135, 163]. Our current task is the generalisation of this method to the higher
rank algebra symmetry case.

6.2.2 Eigenstates

Generic (off-shell) Bethe vectors become the eigenvectors if their spectral parameters satisfy the
system of BAE. Naturally, the different solutions of BAE correspond to different eigenstates.
Hence, in the ABA approach the states are numerated by the solutions of BAE. The number
of BAE solutions should coincide with the dimension of the Hilbert space of the model under
consideration1. This property provides completeness of the Bethe ansatz and was conjectured
since the very first work of H. Bethe [13] but was never rigorously proven for a wide range of
models, except some cases, such as XXX or XXZ Heisenberg spin chains [152–154, 164]. Quite
a general proof was done in [146], where the string hypothesis (see 6.2.3) was developed2. The
string hypothesis provides a classification of all solutions of Bethe equations and allows to proof
the completeness, however, it is not proven itself and often is violated [147–149, 151]. An im-
portant remark here is that the number of violations growths as square root of a (quasi)particles
number that is infinitely slow in comparison with the total number of solutions. Thus, it can
be expected that in absolute majority of situations violation of the string hypothesis does not
play significant role, and even if some solutions are lost (hence, some terms in form factor series

1It should be noticed, that there also exist some solutions of the BAE that do not corresponds to any Bethe
state, these solutions are called nonphysical. Of course, only the total number of physical solutions coincides with
the dimension of the Hilbert space.

2Firstly the string hypothesis was conjectured by H. Bethe.
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are omitted), the deviation of form factor series (6.2.1) from the correct value is expected to be
negligible. The experience shows that this expectation is correct and dropping part of basis in
series (6.2.1) is acceptable.

6.2.3 Classification of solutions

We refer to the first and the second equation of (2.1.30) as the first and the second level (of
BAE nesting) correspondingly. We call in the same way variables ū and v̄ as the first and the
second level Bethe parameters (or the spectral parameters).

The string hypothesis allows to classify the solutions of the BAE and provides significant
simplification of the BAE solution method.

Definition 6.2.1. Among the solutions of BAE there exist solutions, with few Bethe parameters
connected by the following relations

uαs,j = uαs + ic(s− 2j)/2 + δαs,j , j = 1, . . . , s, δαs,j ∼ e−|c|L, =m (uαs ) = 0. (6.2.2)

Such solutions are called strings. Here s is the length of the string, i.e. the number of Bethe
parameters in the string, L is a system size, α is a string counter (indicates the particular string
α among all the string of length s) and j counts Bethe parameters inside one string. δαs,j gives
deviations of the solution from the ideal string. uαs is a string center (defines the real part of
the string).

From the definition it is clear that strings are symmetric w.r.t. the real axis. The strings of
length one are just real solutions (i.e. all Bethe parameters have zero imaginary part)3.

The assumption of the string hypothesis is that all possible solutions of the Bethe equation
are given by the strings. Particular solution of BAE consists from the set of strings of arbitrary
lengths. Of course, the total number of Bethe parameters should be conserved

∞∑
s=1

sMs = a, (6.2.3)

where Ms is the number of strings of length s. In case of the nested Bethe ansatz Bethe
parameters of each level of nesting can form strings.
Remark. The restrictions on the length of strings can appear in particular models in dependence
on model parameters tuning. For example, in 1D Bose gas (Lieb-Liniger model [20–23]) with
repulsive interaction there are no solutions of BAE with strings longer than 1, so all Bethe
parameters are real (or have a common shift in the complex plane). While in case of attractive
interaction strings of any length are allowed.

The string hypothesis does not give all possible solutions, for instance, another types of
complex solutions with shift in complex direction by 2ic can exist, moreover for long strings the
dependence of δαs,j on L can be not exponential but is a power law. The type and number of
string hypothesis violations depend on the model and specific tuning of model parameters such
as magnetic field, coupling constant, etc., but as is already mentioned it often does not play
significant role for numerical computation. In case of Gaudin-Yang model with c > 0 it can be
expected that for a wide range of parameters the complex solutions do not play a significant
role at all, similarly to case of the repulsive Bose gas.

3For the BAE in form (2.1.30) these Bethe parameters will be sifted in the complex plane by ic/2, but we
always can make a shift of u by ic/2 directly in the BAE and obtain real solutions.
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6.2.4 Basis scanning algorithm

In order to calculate the form factor sum over all possible physical solutions they should be found
explicitly from the BAE. Of course, numerically the summation in (6.2.1) can be performed only
for a finite number of Bethe parameters, i.e. for the system with finite number of (quasi)particles,
but hopefully we can hold this number big enough to obtain results that describe the behavior
of the system in the thermodynamic limit well enough.

Even numerical summation of the form factor series (6.2.1) for the finite system size will be
an impossibly complicated task if all contributions to the sum will be taken into account. Indeed,
even in the system with the final dimension of Hilbert space, the total number of states growths
exponentially with the grows of the system size. Consider, for instance, an ordinary Heisenberg
spin-1/2 chain (0.1.1). The Hilbert space has dimension 2N for the chain of length N . In this
model excitations above the vacuum state are magnons and Bethe parameters are rapidities
of the magnons. In the anti-ferromagnetic regime (energy constant in front of Hamiltonian
is negative) the number of magnons in the ground state is M = N/2 (correspondingly, the
cardinality of ū is a = N/2), the number of all possible solutions in this spin sector is CaN .
Hence, in the ABA approach the number of the Bethe parameters is a ∼ N , they are defined by
the system of nonlinear equation (BAE) and the total number of solutions growth as CaN with
the growth of system size. Moreover, in the case of Bose or Fermi gases the dimension of the
Hilbert space is infinite even for the finite size systems. Hence, calculations of the form factor
sum seems to be an extremely complicated task unless some restriction that allows to cut the
basis will be found.

However, not all form factors in the series (6.2.1) are equal. Some form factors give significant
contributions while the vast majority are neglectable small. Fortunately, in most situations it
is easy to choose the form factor types that give the most significant contributions to the series.
Moreover, some general procedure that scan the basis in order to choose only some particular
contributions to the form factor sum can be found.

For this purpose we consider the classification of the states in terms of solutions of BAE
(2.1.30). Details depend on specific model and specific regime of the model. We consider here
Gaudin-Yang model (6.1.2) with repulsive interaction (c > 0). Then the second level Bethe
parameters are always real as in Bose gas (only the strings of length 1 are allowed), while the
first level of Bethe parameters form strings of any length [150]. Further, we call solutions that
contain only strings of length 1 just the real solutions, since all parameters can be made real by
proper shift, while solutions, that contain strings of length 2 or more, traditionally are called
the string solutions.

Since we assume the connection (6.2.2) between part of Bethe parameters, the number of
Bethe equations should be reduced to the number of all string centers that are only unknown
variables [146]. Gaudin-Yang Bethe equations (2.1.30) can be rewritten [150] as

b∏
j=1

e

(
unα − vj
nc

)
= −

∞∏
m=1

nm∏
β=1

Enm

(
unα − umβ

c

)
, n = 1, 2, . . . , α = 1, . . . , nm, (6.2.4)

eiLvj =
∞∏
s=1

ns∏
α=1

e

(
vj − unα
nc

)
, j = 1, 2, . . . , b, (6.2.5)
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with

Enm(x) =

 e
(

x
|n−m|

)
e2
(

x
|n−m|+2

)
e2
(

x
|n−m|+4

)
· · · e2

(
x

n+m−2

)
e
(

x
n+m

)
, n 6= m,

e2
(
x
2

)
e2
(
x
4

)
· · · e2

(
x

2n−2

)
e
(
x
2n

)
, n = m,

(6.2.6)
where e(x) = arctan(x)4.

There are known from the experience [60, 61, 104, 135, 163] two conjectures that provide
good approximation for zero temperature case. They never were proven rigorously but rather
established and checked numerically.

Conjecture 6.2.1. Form factors between ground states and excited state that contain the string
longer than one decreases with the growth of the string’s length. The form factors decrease with
the growth of number of strings with a length more that 1.

The conjecture (6.2.1) is not itself a strict quantitative criteria, but gives good approximation
for the repulsive case (see however discussion at the end of the subsection). The details are
discussed below. The method of precision control is discussed in the end of the section.

It is convenient in addition to spectral parameters {ū}, {v̄} to introduce two sets of the
quantum numbers {I} and {J} whose cardinalities are given by #Ī = #ū = a, #J̄ = #v̄ = b.
They are defined as the phases of the l.h.s. of the BAE system. In [150] there were restrictions
on the quantum numbers in the Gaudin-Yang model derived

Jj = 1, 2, . . . ,

|Inα | =
1

2

∣∣∣b− 1−
∑

tnmMm

∣∣∣ , tnm = 2Min(m,n)− δmn.
(6.2.7)

The logarithm of (6.2.4)-(6.2.5) in case M1 = a, Mn = 0 for n > 1 (only solutions with no
strings) is

0 =

a∑
k 6=j

e1(uj − uk) +

b∑
k=1

e1/2(vk − uj) + 2πiIj ,

ivjL =

b∑
k=1

e1/2(vj − uk) + 2πiJj .

(6.2.8)

The phases {I, J} are the (half)integer5 numbers. Every given set {I, J} defines in unique way
the set {ū, v̄}, every Ij corresponds to some uj , and Jk to vk.

The second restriction on all possible solutions is a number of the particle/hole excitations
that should be taken into account.

Conjecture 6.2.2. Form factors decrease with the growth of a particles/holes excitations num-
ber, so the most significant contributions to the sum (6.2.1) are given by the form factors between
the ground state and the excited states with only very few particles/holes. The same is true for
the NABA, with a correction, that excitations should be considered on both first and second
levels of nesting. Actually, below will consider excitations with no more than two particles/holes
on the each level.

4We shift here u` in BAE by −ic/2 for further convenience.
5It depends on specific form factor
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Remark. Of course, the reduction of series (6.2.1) to the one- or two-particle/hole excitations
is enough if the system size is finite, that is obviously used in the case of numerical calculation.
In case of system in the thermodynamic limit i.e. L → ∞, a = #ū → ∞, b = #v̄ → ∞
but a/L → na, b/L → nb, the families of many particle/hole excitations should be taken into
account. See details in [50–54].

The basis scanning. Even between the states with one- or two-particles/holes there are
more and less important. In order to choose the most significant, the “basis scanning” algorithm
can be used. Consider one particle/hole excitations on the first level of nesting, i.e. replace one
of numbers {I}, say Ik, by I ′k that lies outside the Fermi interval. We memorize among all such
excited states these that give the largest contributions and denote them as {I ′k, J}’s (k = 1, . . . , a
denotes the quantum number that was moved and I ′k denotes the value of quantum number after
it was moved outside the Fermi zone). The number of the important (in sense that they give
significant contribution to the form factor series) excited states usually is much smaller than the
number of all possible one particle/hole excitations at the first level of nesting. The second level
of nesting is still unperturbed yet. Now it is enough to add one particle/hole excitation on the
second level only to the chosen states {I ′k, J}. These states give most significant contributions
among all possible states with one particle/hole excitations on the first and the second levels
simultaneously. Again, we choose among these excitations the most significant contributions.
Denote them as {I ′j , J ′k} (k = 1, . . . , a, j = 1, . . . , b). The next set of excitations can be build
adding one particle/hole excitation on the first or the second level to the states from {I ′j , J ′k}.
Such scanning procedure allows us significantly reduce the number of states that are taken into
account in all the sum in (0.1.7) without significant loose of precision.

String contributions. Above we consider the system with an arbitrary cardinality a. This
means, that a spins is flipped. It is especially interesting consider the case a = b/2. In case of
zero magnetic field and zero temperature this case corresponds to zero magnetization of system
and is global ground states (for every fixed a and b there are their own ground states, but
case a = b/2 is global, i.e. the lowest energy state among all choice a, b). As above, we can
try restrict ourselves by the BAE solutions with no strings. From the system (6.2.7) it is easy
to show, that in this case Imax (Imin) coincides with right (left) Fermi boundary on this level
of nesting. This means that the “real” one particle/hole excitations are not possible on this
level. However, the string solutions still exist and should be included into consideration. In
this case these excitations already can not be neglected. Among the strings there exists their
own gradation of “importance”. Thus, the states with a small number of strings of short length
always give more contribution, than the states with the long and/or multiple strings.

Another situation is a case of the negative coupling constant c. In this case the ground state
contains strings on the second level of nesting and the solutions with strings on the both levels
are expected to give most significant contributions to the form factor sum.

Precision control. Since instead of summation over the full Hilbert space only the very
limited part of the basis is used without any rigorous proof of such restriction in the general
case, the method of precision control of the scanning procedure is required. It can be provided
by the sum rules, i.e. certain relations on the form factor sum that can be established from the
general quantum mechanical conservation laws. The idea of using such formulae as a control
method follows back to [159–162]. The particular sum rules depend on the model and the
particular form factor, however the main idea is very simple. At least in some cases the sum of
all (or part of) the form factors are known from some conservation laws. If all form factor in
the series is non-negative and sum is (near) satisfied by some finite number of contributions, it
is clear that the rest do not play significant role.
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6.2.5 Correlator 〈ψ†↑(x, t)ψ↑(0, 0)〉

Consider the correlation function of two field operators 〈ψ†↑(x, t)ψ↑(0, 0)〉. We call corresponding
DSF S23 because field operator ψ↑ coincides (up to the factor c) with the local operator obtained
from the monodromy matrix element T23

S23(q, ω) =

∫ ∞
−∞

dteiωt
∫

dx

(2π)
e−ixq

〈
ψ†↑(x, t)ψ↑(0, 0)

〉
= 2πLc

∑
{v̄B ,ūB}

∣∣∣∣F(2,3)
(
ūC ūB

v̄C v̄B

)a,a
b+1,b

∣∣∣∣2 δq−q(v̄B ,ūB)δ (ω(ūB, v̄B)− ω) . (6.2.9)

Here {ūB, v̄B} is Bethe parameters that corresponds to excited states and we perform the sum-
mation over all (important) states. The set {ūC , v̄C} corresponds to the vacuum state. On
Fig.6.1-6.2 S23 is shown as function of q, ω for the different values of the coupling constant c
and for the different numbers of flipped spins.
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Figure 6.1: The diagram of S23(q, ω) in plane ω − q at c = 0.32 (left) and c = 7.32 (right) with
2 spins down. Density of particles is 0.4. In contrary to the spinless Bose system all density is
concentrated near the lower threshold even in the case of weak interaction. In fact the density
with higher energy is not equal zero, but is so low that is is not distinguishable on the diagram
without logarithmic scaling of colour.

Here the system of 40 fermions is considered. The system size L is taken 1006. The energy
and momentum are measured correspondingly in 0.01L−2 and 0.01L−1 units.

6The statement about system size itself has no sense, since all system parameters can be renormilised in such
a way that L will appears only in combination Lc (all Bethe parameters will be also rescaled). Hereby, the length
can be measured in any convenient in particular case units (say nanometers), while in order to restore the proper
physical units it is enough to rescale c, that itself leads to rescaling of all Bethe parameters and, correspondingly,
to rescaling of ω and q.
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Figure 6.2: The diagram of S23(q, ω) in plane ω − q at c = 0.32 (left) and c = 7.32 (right) with
10 spins down. Density of particles is 0.4. In fact the density with higher energy is not equal
zero, but is so low that is is not distinguishable on the diagram without the logarithmic scaling
of colour.

Sum rule

For the correlator of 〈ψ†(x, t)ψ(0, 0)〉 the rule is given by

1

L

∑
q

∫
dω

(2π)
S23(q, ω) =

n− n↓
L

=
b− a
L

, (6.2.10)

i. e. we just reproduce the density of particles with the spin up.

6.2.6 Correlator 〈ψ†↑(x, t)ψ↓(x, t)ψ
†
↓(0, 0)ψ↑(0, 0)〉

Correlator of fields with the different spin projections can be expressed via the correlator of the
monodromy matrix entries T12 and T21. We call corresponding DSF S12(q, ω)

S12(q, ω) =

∫ ∞
−∞

dteiωt
∫

dx

(2π)
e−ixq

〈
ψ†↑(x, t)ψ↓(x, t)ψ

†
↓(0, 0)ψ↑(0, 0)

〉
= 2πL

∑
{v̄B ,ūB}

|P|2
∣∣∣∣F(1,2)

(
ūC ūB

v̄C v̄B

)a+1,a

b,b

∣∣∣∣2 δq−q(v̄B ,ūB)δ (ω(ūB, v̄B)− ω) . (6.2.11)

On Fig.6.3-6.4 S12 is shown as a function of q, ω for the different values of the coupling
constant c and for the different numbers of the flipped spins. The system of length 160 with 74
(Fig.6.3) and 55 (Fig.6.4) fermions is considered.
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Figure 6.3: The diagram of S12(q, ω) in plane ω − q at c = 0.52 (left) and c = 7.52 (right) with
2 spins down. Density of particles is 0.46.

Sum rule

The simplest situation of x = 0 static correlation function can be considered. In this way the
inverse Fourier transform is a sum

1

L

∑
q

∫
dω

(2π)
S12(q, ω) = 〈ψ†↑(0, 0)ψ↓(0, 0)ψ†↓(0, 0)ψ↑(0, 0)〉. (6.2.12)

The later can be rewritten, using the commutation relations (6.1.3), via correlators 〈n↑(0, 0)n↓(0, 0)〉
and n↑. The DSF for this correlator we call S↑↓(k, ω) and the correlation function can be cal-
culated using the inverse Fourier transform that coincides with the following sum rule in case
x = 0, t = 0

1

L

∫
dω

(2π)
S↑↓(k, ω)ω = 0. (6.2.13)

This sum rule, however, can not be considered as the good instrument, since at some energy
region the correlator becomes negative, and it can be used as a good verification method only if
all the contributions with a given momenta is taken into account, that is not practically possible.

Instead the following method can be used. According to the Hellmann-Feynman theorem
for arbitrary continuous parameter λ and the eigenstates ψ = ψλ

〈ψλ|
∂H

∂c
|ψλ〉 =

∂E

∂c
= 2g↑↓(0), (6.2.14)

where g↑↓(x) = 〈n↑(x)n↓(x)〉. The ground state energy was derived in [127]

E =
n3π2

3

[
1− 4 log 2

γ
+

12 log2 2

γ2
− 32 log3 2

γ3
+

8π2ζ(3)

5γ3

]
+O(c−4), P = 0,

E =
n3π2

3

[
1−

8n↓
c

+
48n2

↓
c2
− 1

c3

(
256n3

↓ −
32

5
π2n2n↓

)]
+O(c−4), P & 0.5,

(6.2.15)



6.2. CALCULATION OF THE DSF IN 1D INTEGRABLE MODEL VIA ABA 99

0 25 50 75 100 125 150 175
k

50

100

150

200

250

300

350

0.000

0.002

0.004

0.006

0.008

0 25 50 75 100 125 150 175
k

50

100

150

200

250

300

350

400

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

Figure 6.4: The diagram of S12(q, ω) in plane ω − q at c = 0.52 (left) and c = 7.52 (right) with
12 spins down. Density of particles is 0.34.

where

P =
n↑ − n↓

n
, (6.2.16)

is a polarization and γ = c/n.

6.2.7 Correlator 〈n↑(x, t)n↑(0, 0)〉

Correlator of the fields with the different spin projection can be expressed via the correlator of
the monodromy matrix entries T11. We call corresponding DSF S11(q, ω)

S11(q, ω) =

∫ ∞
−∞

dteiωt
∫

dx

(2π)
e−ixq 〈n↑(x, t)n↑(0, 0)〉

= 2πL
∑

{v̄B ,ūB}

|P|2
∣∣∣∣F(1,1)

(
ūC ūB

v̄C v̄B

)a,a
b,b

∣∣∣∣2 δq−q(v̄B ,ūB)δ (ω(ūB, v̄B)− ω) . (6.2.17)

S11 is shown as function of q, ω for the different values of the coupling constant c with the
18 flipped spins. The system size is taken 80 and 74 fermions in the system.

Correlator 〈n↑(x, t)n↑(0, 0)〉 was measured in the experiment with a gas of atoms of 6Li [165]
where gas was confined in a crossed dipole trap. The coupling constant is proportional to the
scattering length a that was tuned using the Feshbach resonance. Strong and intermediate
coupling regimes were considered 1/(kFa) = 1 and 1/(kFa) = 0. The DSF was measured at
k = 4.5kF and for a wide range of energies. The DSF of S11 and DSF S↑↓ (Fourier image of
correlator 〈n↑(x, t)n↓(0, 0)〉), measured in [165], are shown on Fig.6.6. In fact, this is the vertical
cut of DSF image at fixed momenta. The nontrivial result is a presence of few maximums of
the DSF at different energies.
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Figure 6.5: The diagram of S11(q, ω) in plane ω− q at c = 0.42 (left) and c = 20.52 (right) with
18 spins down. Density of particles is 0.46. Two independent “profile” of excitations can be
seen at strong interaction regime. In fact, only the lower threshold of the lower “profile” can be
seen without application of the logarithmic scale. For weak interaction only one “profile” exist
at all.

The direct comparison with the experiment is not possible, since measurement was done at the
relatively high momentum and at the relatively high energy region, not shown on (6.2.17). At
such momentum clearly the two- and tree- particle/hole contributions should already contribute.
However, it can be expected that the general pattern should be similar.

From the Fig.6.5 and BAE (6.2.4)-(6.2.5) it is clear, that the shape of the DSF should be
“a superposition” of the two type of excitations: the excitations on the second level of nesting,
whose spectrum and DSF resemble those for the Bose gas [62, 104, 135] and the excitations on
the first level of nesting, whose spectrum of the XXX spin chain [60, 61] spectrum. In particular,
with the fixed second level of variables, the first level BAE are just BAE of the inhomogeneous
XXX spin chain (see (1.1.27)) and the homogeneous limit of the DSF for spin-spin correlator is
shown on Fig.1 in the introduction. Vice versa, if we consider the case without the first level
of nested variables (all spin up, so #ū = ∅) we deal with 1D free fermions, whose behaviour
is similar to 1D bosons, since even for Bose gas Pauli exclusion principle is present in 1D and
there is not too much difference between Bose and Fermi gases expected for the density-density
correlator.

Creating the one particle excitation on the second level we “move right” on ω−q plane since
the momentum of such form factor increases. When we increase the energy of this particle we
obviously move along the parabolae on ω−q plane. The DSF profile here just resemble the case
of 1D Bose gas. Creation of excitations on the first level leads to duplication of such profiles in
the ω − q plane, since for fixed Bethe parameters on the second level of nesting we have many
possibilities of excitations distributions on the first level. This is obviously clear from 6.5 on
the low energy/momenta region, where we can see two shifted Bose gas-like profiles. The cuts
of such profile at few fixed momenta are shown on Fig.6.7 and resemble two peaks structure
measured in [165] and shown on Fig.6.6.
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Figure 6.6: Spin-parallel and spin-antiparallel components of the dynamic structure factor of
a strongly interacting Fermi gas measured at (a) 1/(kFa) = 0, and, (b) at 1/(kFa) = 1.0.Red
upright triangles are the spin-parallel structure factor S11(k, ω) and blue inverted triangles are
the spin anti-parallel response S↑↓(k, ω). Solid lines are a guide to the eye. Insets show zoomed
in plots of the high frequency region where S↑↓(k, ω). ωr = ~k2

F /2m. [165].

Similar picture will appears also with the two-, three- particles/holes excitations and at higher
energies/momenta and was measured in [165] for the fixed momenta and clearly seen on Fig.6.6
at 1/(kFa) = 0.

For the weak coupling case the second peak is not presented, however, and this coincides
with theoretical computation (see left part of 6.5). This shows that the form factors at weak
coupling is significantly differs from zero only at one fixed configuration of the first level (spin
flips) excitations.

6.3 Conclusion

The first main result of this chapter is a description of the generalisation of the algorithm,
developed in [60, 61, 104, 135, 159–162] for the algebra symmetry case gl(2). The details of the
algorithm slightly varies for different models and different correlators, but the general schema is
very similar and loosely resemble the case of the algorithm for the algebra symmetry gl(2) based
models. The only complexification is the appearance of the second level of nesting. It provides us
with several problems. The first one is the computation of the BAE solutions and form factors.
Thus, the complexity of the numerical algorithm growths as ≈ a6.62... for a (quasi)particles
number a. Appearance of the second level of nesting leads to growth (a + b)6.62... where b is a
number of (quasi)particles on the second level of nesting. The second problem is a growth of a
number of contributions that should be taken into account. The number of the one-particle/hole
contributions is ∼ CaL. Appearance of the second level gives the additional factor ∼ Cba to the
number. Even taken into account, that the amount of the numerically significant form factors
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Figure 6.7: S11 at c = 20.52 at momenta k = 40, 80, 120, 160, 200.

is, let say, approximately 1-2% of the overall number of the one-particle/hole form factors
(it strongly depends on a particular model and particular form factors), the total number of
contributions that should be calculated become giant in comparison with the algebra symmetry
gl(2) case even for the relatively small systems. This problem strongly restricts the precision of
the numerical algorithm, especially in the situations when two-, three-, etc. particle/hole form
factors should be taken into account. The solution of such problem is seen in an analytical
study of the form factor behaviour. Thus, if it will be possible to understand what types of
excitations give the most significant contributions to the form factor series for a particular set
of model’s parameters and particular form factors, it can be possible significantly increase the
productivity of the basis scanning algorithm and choose the very limited number of form factor
from the very beginning. This problem is especially important in context of generalisation of the
algorithm to the higher algebra rank symmetry case. Thus, if the determinant representation
for the form factors of ultralocal operators will be found for algebra symmetry gl(N) N > 3 (or
graded algebras) the method in principle can be applied to these cases too. The same is true for
B-, C- and D- algebra series. Moreover, even despite the fact that in general the determinant
representations for the form factors of ultralocal operators for the algebra symmetry gl(2|2),
gl(4) related model are unknown, the particular cases with one (quasi)particles on the third
level or the second level of nesting can be studied now. Such form factors, for instance, allow
to describe the Green function of one impurity particle moving through the 1D volume.

The developed algorithm was applied to the model of spin-1/2 integrable Fermi gas. Few
correlation functions were probed. The most interesting case is seems to be the (6.2.17) since it
can be compared with the measured in the recent experiment on (quasi) 1D Fermi gas. Another
correlation functions are also expected to be measured and it will be interesting to compare
such experimental results with our theoretical prediction.

Finally, it is also possible to apply this numerical method to the supersymmetric t-J model
and other models related to algebra symmetry gl(2|1) or gl(1|2).
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Conclusion

Despite an extensive study and significant successes of the ABA and other methods, the de-
scription of quantum integrable models are far from being complete. Even in the theory of the
simplest one-component models a lot of white spots remains. Moreover, especially interesting
multicomponent models are much less studied and a lot of their properties are unknown or
are conjectured. The study of these models requires improvement of already existing tools and
methods. NABA technique is one of very perspective approaches in this direction, but is quite
complicated to use and often requires some improvement and brushing in order to be applic-
able. The goal of this work was the development of approaches that will allow to study at least
two-component models within NABA. Below we remind the result of this thesis and further
perspectives.

The main results of this thesis are compact representations for scalar products and form
factors of ultralocal operators in the 1D integrable models based on the algebra symmetry gl(2|1)
or gl(1|2). Among the models associated with these symmetries are 1D spin-1/2 Fermi gas with
ultralocal interaction, supersymmetric t-J model, lattice gases. The spectra, phase diagrams
and some thermodynamic properties of such models have been already studied earlier. Non-
perturbative computation of the transport coefficients, non-equilibrium behaviour, dynamical
properties of these models were not done yet, however. Calculation of the compact repres-
entations of the form factors is the first and necessary step to progress in the study of these
models.

Important continuation in this direction could be a computation of the ultralocal form
factors in the case of models associated with the algebra symmetry gl(m|n) with n,m ≥ 2 or
gl(N), N ≥ 4. Among models with these algebra symmetries are Fermi/Bose gases with higher
spins and/or multiple component mixtures and different lattice gases. Nonperturbative study
of these gases is a highly nontrivial problem in any approach, and the Bethe ansatz is not an
exception. While it is not a big deal to write formal expressions for the form factors in these
cases, computation of the compact formulae, suitable for further application, is an extremely
complicated problem. Moreover, it is not even clear what generalisation is expected in this
direction. Thus, lines and columns of matrix under determinant (4.4.15)-(4.4.16) (or (4.2.2)-
(4.2.3)) are numerated by sets {ūC , v̄B} and {ūB, v̄C} correspondingly. It is hard to guess how
should be numerated the lines and the columns in the gl(4) (or gl(2|2)) algebra symmetry
case. The first way in this direction can be some representation for the scalar product and
form factors in the case of algebra symmetry gl(3) (or gl(2|1)) where lines and columns are
numerated in a more natural way by {ūB, v̄B} and {ūC , v̄C}. Also, an interesting development
in this direction is computation of such scalar products and form factors in the model associated
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with trigonometric R-matrix.

One more important direction is the calculation of the scalar product of the on-shell and off-
shell Bethe vectors that is important for description of correlation functions in super Yang-Mills
theories. Calculation of these scalar products is much more complicated than semi-on-shell case
derived in these thesis and is known only for an algebra symmetry gl(2).

According to the Kubo formula transport coefficients can be expressed via the correlators
of corresponding currents. The last can be calculated now using compact representations of
form factors and scalar product derived in the thesis. Correlation functions computation itself
is a very nontrivial problem that is not completely solved even in the simpler case of algebra
symmetry gl(2). Few different approaches exist here. The first one is the multiple integral
representation formulae derived in gl(2) algebra symmetry case in [48, 49, 57, 100, 101, 103,
110]. Derivation of these formulae requires on-shell–off-shell scalar product (see discussion in
introduction to Chapter 4), that is not known, or some manipulations with multiple contour
integrals as an intermediate step (see, for instance, [57]) that is a complicated task in higher
rank algebra symmetry case1. Moreover, integral representations itself are not a complete
solution of the problem, since these multiple integrals are not easy to factorise even in the case
of algebra symmetry gl(2). The important results in this direction were obtain in [156–158] but
the generalisation to the higher rank algebra case is far from being complete.

The second approach is a form factor series summation. This approach proved to be fruitful
in correlation function computations in case of the algebra symmetry gl(2) [50–55, 58, 59]. It
can be applied for many model in presence of dynamics, magnetic fields, nonperiodic bound-
aries, etc. The application of the quantum transfer matrix (QTM) was proven to be quite
useful in the case of non-zero temperature. The analysis of thermodynamic behaviour of form
factor series is also complicated task and the details strongly depends on the model, set of
model parameters, temperature, etc. The generalisation of form factor series analysis to the
higher rank algebra symmetry case could give significant progress in the understanding of the
multicomponent system. Some advance in this direction was done in [155] for zero temperature
situation. Among the obstacles in finite temperature case is a problem of QTM equations ana-
lysis in the higher rank algebra symmetry. The further progress in correlation function study
requires the derivation of the new form of equations for Bethe parameters in case of the non-zero
temperature.

On the other hand, numerical approach to the form factor series summation was developed
in the series of works [60–62, 104, 135, 159–163]. It allows to derive results for the dynamical
correlation function using the easy and not resource consuming algorithm. The generalisation
of this algorithm is done in the last chapter of thesis. This is the second result of these thesis.
The resources consumption of the method is much higher, since fast growth of the basis size
and correspondingly contributions to the form factor sum. However, the method is still useful
for the zero or ultra low temperatures. The main disadvantage of this algorithm remains the
requirement of explicit solution of BAE. While it is easy to do for the ordinary Bethe equations
using the string hypothesis it is not the case for finite temperature, when QTM Bethe equations
are used. The string hypothesis is no more applicable in this case and the solution of the Bethe
equation is a very complicated task.

Finally, the huge progress would be a development of similar approaches to the model
associated with algebra symmetries so(2n), so(2n+ 1), since a lot of integrable systems like the

1In the particular case of fundamental systems, multiple integral formulae in the thermodynamic limit at zero
temperature can be derived using also the vertex operator approach avoiding ABA. We are not going to discuss
it here since it does not allow to describe Fermi gases that is our object of interest.
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Hubbard model or model of higher spin gases are related to such algebras.
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Chapter 8

Appendix 1

In this appendix some formulae, used in chapters 2-4, are proven. Appendix is based on paper
[87] published by thesis author in collaboration.

8.1 Identities for rational functions

Lemma 8.1.1. Let w̄, ū and v̄ be sets of complex variables with #ū = m1, #v̄ = m2, and
#w̄ = m1 +m2, where m1 and m2 are fixed arbitrary integers. Then

∑
g(w̄I, ū)g(w̄II, v̄)g(w̄II, w̄I) =

g(w̄, ū)g(w̄, v̄)

g(ū, v̄)
. (8.1.1)

The sum is taken with respect to all partitions of the set w̄ into subsets w̄I and w̄II with #w̄I = m1

and #w̄II = m2.

The proof of this lemma is given in [109]. Let us show how lemma 9.3.1 works. In equation
(2.2.11) we have a sum

I =
∑

ξ̄0⇒{ξ̄I,ξ̄i}

g(ξ̄i, ξ̄I)g(zn, ξ̄i)h(ξ̄i, z̄n), (8.1.2)

where #ξ̄i = 1 and #ξ̄I = n− 1. First, we reduce this sum to the form (9.3.16) using h(u, v) =
1/g(u, v − c). We have

I = −h(ξ̄0, z̄n)
∑

ξ̄0⇒{ξ̄I,ξ̄i}

g(ξ̄i, ξ̄I)
g(ξ̄i, zn)

h(ξ̄I, z̄n)
= −h(ξ̄0, z̄n)

∑
ξ̄0⇒{ξ̄I,ξ̄i}

g(ξ̄i, ξ̄I)g(ξ̄i, zn)g(ξ̄I, z̄n − c).

(8.1.3)
Now we can directly apply (9.3.16), and we arrive at

I = −h(ξ̄0, z̄n)
g(ξ̄0, zn)g(ξ̄0, z̄n − c)

g(z̄n − c, zn)
= g(zn, ξ̄0)h(zn, z̄n). (8.1.4)

8.1.1 Izergin determinant properties

Isergin determinant Kn(x̄|ȳ) is symmetric function on x1, . . . , xn and symmetric function on
y1, . . . , yn. It has asymptotic 1/xn (correspondingly 1/yn) at xn → ∞ (correspondingly yn →
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∞) and other variables are fixed. Izergin determinant has simple pole at xj = yk. It follows
directly from the definition (1.1.44) that Kn(x̄|ȳ) possesses following properties:

Kn+m({x̄, z̄ − c}|{ȳ, z̄}) = Kn+m({x̄, z̄}|{ȳ, z̄ + c}) = (−1)mKn(x̄|ȳ), #z̄ = m, (8.1.5)

and

Kn(x̄− c|ȳ) = Kn(x̄|ȳ + c) = (−1)n
Kn(ȳ|x̄)

f(ȳ, x̄)
. (8.1.6)

Lemma 8.1.2. Let w̄, ū and v̄ be sets of complex variables with #ū = m1, #v̄ = m2, and
#w̄ = m1 +m2. Then∑

Km1(w̄I|ū)Km2(v̄|w̄II)f(w̄II, w̄I) = (−1)m1f(w̄, ū)Km1+m2({ū− c, v̄}|w̄). (8.1.7)

The sum is taken with respect to all partitions of the set w̄ into subsets w̄I and w̄II with #w̄I = m1

and #w̄II = m2.

The proof of this Lemma is given in [66].
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Appendix 2

In this appendix some formulae, used in chapters 2-4, are proven. Appendix is based on paper
[88] published by thesis author in collaboration.

9.1 Computation of integrals

Conjecture 9.1.1. Let w̄ = {w1, . . . , wN} be a set of complex numbers. Let F(z̄) be a function
of n variables z1, . . . , zn (n ≤ N). Assume that F(z̄) is a symmetric function of z̄ and that it
is holomorphic with respect to each zj within a domain containing the points w̄. Define

〈F〉 =
1

(2πic)nn!

∮
w̄

g(z̄, w̄) dz̄

∆n(z̄)∆′n(z̄)
F(z̄). (9.1.1)

Here dz̄ = dz1, . . . , dzn and the integration contour for every zj surrounds the points w̄ in the
anticlockwise direction. We assume that there is no other singularities of the integrand within
the integration contours. Then

〈F〉 =
∑

g(w̄I, w̄II)F(w̄I), (9.1.2)

where the sum is taken over partitions w̄ ⇒ {w̄I, w̄II} such that #w̄I = n.

Proof. We use induction over n. For n = 1 the statement of the proposition is obvious.
Suppose that it is valid for some n− 1. Then splitting z̄ = {zn, z̄n} we obtain

〈F〉 =
1

(2πic)nn!

∮
w̄

g(zn, w̄)g(z̄n, w̄)F({z̄n, zn}) dz̄n dzn
∆n−1(z̄n)∆′n−1(z̄n)g(zn, z̄n)g(z̄n, zn)

=
∑ g(w̄I, w̄II)

2πicn

∮
w̄

g(zn, w̄II)F({w̄I, zn}) dzn
g(w̄I, zn)

, (9.1.3)

where the sum is taken over partitions w̄ ⇒ {w̄I, w̄II} such that #w̄I = n − 1. Performing the
integration over zn we find

〈F〉 =
1

n

∑ g(w̄I, w̄II)g(w̄i, w̄ii)

g(w̄I, w̄i)
F({w̄I, w̄i}), (9.1.4)
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where we obtain an additional partition w̄II ⇒ {w̄i, w̄ii} with #w̄i = 1. Substituting in (9.1.4)
w̄II = {w̄i, w̄ii} and setting there {w̄i, w̄I} = w̄0 we arrive at

〈F〉 =
1

n

∑
g(w̄0, w̄ii)F(w̄0). (9.1.5)

Now the sum over partitions is organized as follows. First we have the partitions w̄ ⇒ {w̄0, w̄ii}
with #w̄0 = n, and then we have the additional partition w̄0 ⇒ {w̄i, w̄I} with #w̄i = 1. Obvi-
ously, the sum over the later partition gives n, and we obtain the statement of the proposition.
�

Note that if n > N in (9.1.1), then 〈F〉 = 0.

9.2 Summation formulas

Lemma 9.2.1. Let ξ̄, ᾱ and β̄ be sets of complex variables with #α = n, #β = m, and
#ξ = n+m. Then∑

Kn(ξ̄I|ᾱ)Km(β̄|ξ̄II)f(ξ̄II, ξ̄I) = (−1)nf(ξ̄, ᾱ)Kn+m(ᾱ− c, β̄|ξ̄). (9.2.1)

The sum is taken with respect to all partitions of the set ξ̄ into subsets ξ̄I and ξ̄II with #ξ̄I = n
and #ξ̄II = m.

The proof of this lemma can be found in [65].

Lemma 9.2.2. For any set of functions φk(β), k = 1, . . . , n+m, let

Φn+m(β̄) = ∆n+m(β̄) det
n+m

φk(βj), (9.2.2)

where β̄ = {β1, . . . , βn+m}. Then

Φn+m(β̄) =
∑

∆n(β̄I) det
k=1,...,n

φk(βIj ) ·∆m(β̄II) det
k=1,...,m

φn+k(βIIj ) · g(β̄II, β̄I)

=
∑

Φn(β̄I)Φ̂m(β̄II)g(β̄II, β̄I), (9.2.3)

where Φn(ξ̄I) is built on the functions φk, k = 1, . . . , n, while Φ̂m(ξ̄II) is built on the functions
φn+k, k = 1, . . . ,m.

Proof. Developing the determinant in (9.2.2) over the first n columns via Laplace formula we
obtain

Φn+m(β̄) = ∆n+m(β̄)
∑

(−1)PI,II det
k=1,...,n

φk(βIj ) det
k=1,...,m

φn+k(βIIj ), (9.2.4)

where the sum is taken over partitions β̄ ⇒ {β̄I, β̄II} such that #β̄I = n. The sign PI,II is the
parity of a permutation mapping the union {β̄I, β̄II} into the naturally ordered set β̄. One can
get rid of this sign presenting ∆n+m(β̄) as follows

∆n+m(β̄) = (−1)PI,II∆n(β̄I)∆m(β̄II)g(β̄II, β̄I). (9.2.5)

Substituting (9.2.5) into (9.2.4) we immediately arrive at (9.2.3). �
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We use several particular cases of (9.2.3) in the core of the paper. Let

φk(β) =
g(β, xk)

h(β, xk)
, k = 1, . . . , n;

φk+n(β) = g(β, yk)
h(β, t̄)

h(β, s̄)
, k = 1, . . . ,m,

(9.2.6)

where x̄, ȳ, t̄, and s̄ are some sets of parameters. Then the matrix elements φk(βj) coincide
with the entries Jjk (3.3.3). Hence, we obtain for Jn,m(x̄; ȳ|t̄; s̄|β̄) (3.3.2)

Jn,m(x̄; ȳ|t̄; s̄|β̄) = ∆′n(x̄)∆′m(ȳ)
∑

∆n(β̄I) det
n

(
g(βIj , xk)

h(βIj , xk)

)
×∆m(β̄II) det

m

(
g(βIIj , yk)

h(βIIj , t̄)

h(βIIj , s̄)

)
g(β̄II, β̄I). (9.2.7)

Now we use the definition of Izergin determinant

∆′n(x̄)∆n(β̄I) det
n

(
g(βIj , xk)

h(βIj , xk)

)
=
Kn(β̄I|x)

h(β̄I, x̄)
, (9.2.8)

and an explicit expression (3.4.2) for Cauchy determinant detm g(βIIj , yk). Substituting these
expressions into (9.2.7) we find

Jn,m(x̄; ȳ|t̄; s̄|β̄) =
∑ Kn(β̄I|x)

h(β̄I, x̄)
· g(β̄II, ȳ)

h(βII, t̄)

h(βII, s̄)
g(β̄II, β̄I), (9.2.9)

which coincides with (3.3.4).

Another example used in the text is

φk(β) = g(β, xk), k = 1, . . . , n;

φk+n(β) = g(β, yk), k = 1, . . . ,m.
(9.2.10)

Then using explicit representation of the Cauchy determinant (3.4.2) we have

Φn+m(β̄) =
g(β̄, x̄)g(β̄, ȳ)

∆′n+m({x̄, ȳ})
. (9.2.11)

On the other hand, it follows from (9.2.3) that

g(β̄, x̄)g(β̄, ȳ)

∆′n+m({x̄, ȳ})
=
∑

∆n(β̄I) det
k=1,...,n

g(βIj , xk) ·∆m(β̄II) det
k=1,...,m

g(βIIj , yk) · g(β̄II, β̄I). (9.2.12)

Multiplying (9.2.12) with ∆′n(x̄) and ∆′m(ȳ) and using (3.4.2) we arrive at

∑
g(βI, x̄)g(βII, ȳ)g(β̄II, β̄I) =

g(β̄, x̄)g(β̄, ȳ)

g(x̄, ȳ)
, (9.2.13)

where the sum is taken with respect to the partitions of the set β̄ into subsets β̄I and β̄II with
#β̄I = n and #β̄II = m.
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9.3 Reduction properties of Jn,m

Consider a function Jn+1,m({x̄, z′}; ȳ|t̄; s̄|{β̄, z}) defined by (3.3.2). Let z′ → z. Then the matrix
element g(z, z′)/h(z, z′) becomes singular and the determinant reduces to the product of this
singular element and the corresponding minor. After elementary algebra we obtain

lim
z′→z

1

g(z, z′)
Jn+1,m({x̄, z′}; ȳ|t̄; s̄|{β̄, z}) = g(β̄, z)g(z, x̄)Jn,m(x̄; ȳ|t̄; s̄|β̄). (9.3.1)

Similarly, if we consider the function Jn,m+1(x̄; {ȳ, z′}|t̄; s̄|{β̄, z}) in the limit z′ → z, then
the matrix element g(z, z′)h(z, t̄)/h(z, s̄) becomes singular. The determinant again reduces to
the product of this singular element and the corresponding minor, and we find

lim
z′→z

1

g(z, z′)
Jn,m+1(x̄; {ȳ, z′}|t̄; s̄|{β̄, z}) = g(z, β̄)g(ȳ, z)

h(z, t̄)

h(z, s̄)
Jn,m(x̄; ȳ|t̄; s̄|β̄). (9.3.2)

Equations (9.3.1), (9.3.2) obviously could be generalized to the case when z and z′ are
respectively replaced with the sets z̄ and z̄′ such that #z̄ = #z̄′ = ρ ≥ 1. Then

lim
z̄′→z̄

1

g(z̄, z̄′)
Jn+ρ,m({x̄, z̄′}; ȳ|t̄; s̄|{β̄, z̄}) = g(β̄, z̄)g(z̄, x̄)Jn,m(x̄; ȳ|t̄; s̄|β̄), (9.3.3)

and

lim
z̄′→z̄

1

g(z̄, z̄′)
Jn,m+ρ(x̄; {ȳ, z̄′}|t̄; s̄|{β̄, z̄}) = g(z̄, β̄)g(ȳ, z̄)

h(z̄, t̄)

h(z̄, s̄)
Jn,m(x̄; ȳ|t̄; s̄|β̄). (9.3.4)

One more obvious reduction is

Jn,m(x̄; ȳ|{t̄, z̄}; {s̄, z̄}|β̄) = Jn,m(x̄; ȳ|t̄; s̄|β̄). (9.3.5)

9.3.1 Summation rules

Single sums

Here an example of the derivation of identities (4.3.2) are given.
Consider a contour integral

I =
1

2πi

∮
|z|=R→∞

dz

xk − z

b∏
l=1

z − vB
l

z − vC
l

. (9.3.6)

Taking the residue at infinity we find that I = −1. On the other hand, this integral is equal to
the sum of the residues within the integration contour. Hence,

−1 = −
b∏
l=1

xk − vB
l

xk − vC
l

+
b∑

j=1

1

xk − vC
j

∏b
l=1(vC

j − vB
l )∏b

l=1, l 6=j(v
C
j − vC

l )
. (9.3.7)

Rewriting everything in terms of the function g we obtain

b∑
j=1

g(xk, v
C
j )Ωa+j =

g(xk, v̄
C)

g(xk, v̄B)
− 1. (9.3.8)

This is one of the identities in (4.3.2). All the other identities can be proved exactly in the same
way.
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9.3.2 Multiple sums

Laplace formula

Let #ū = #v̄ = n. Let A and B be n× n matrices whose matrix elements are indexed by the
parameters uj and vk: Ajk = A(uj , vk) and Bjk = B(uj , vk). The Laplace formula gives an
expression of det(A+B) in terms of detA and detB:

det
(
A(uj , vk) +B(uj , vk)

)
=
∑

(−1)[Pu]+[Pv ] det
(
A(uIj , vIk

)
)

det
(
B(uIIj , vIIk

)
)
. (9.3.9)

The sum is taken over partitions ū⇒ {ūI, ūII} and v̄ ⇒ {v̄I, v̄II} with the restriction #ūI = #v̄I.
Recall that according to our convention the elements of every subset are ordered in the natural
order. [Pu] denotes the parity of the permutation mapping the union {ūI, ūII} into the naturally
ordered set ū. The notation [Pv] has an analogous meaning. Equivalently, one can say that
[Pu] + [Pv] is the parity of the permutation mapping the sequence of the subscripts of the union
{ūI, ūII} into the sequence of the subscripts of the union {v̄I, v̄II}.

Let us introduce two functions

A(ū|v̄) = ∆n(ū)∆′n(v̄) detA(uj , vk) and B(ū|v̄) = ∆n(ū)∆′n(v̄) detB(uj , vk). (9.3.10)

These functions depend on two sets of variables ū and v̄. They are symmetric over ū and
symmetric over v̄. Then equation (9.3.9) can be written in the following form:

∆n(ū)∆′n(v̄) det
(
A(uj , vk) +B(uj , vk)

)
=
∑
A(ūI|v̄I)B(ūII|v̄II)g(ūII, ūI)g(v̄I, v̄II). (9.3.11)

Indeed, multiplying (9.3.9) with ∆n(ū)∆′n(v̄) and using obvious relations

∆n(ū) = (−1)[Pu]∆nI(ūI)∆n−nI(ūII)g(ūII, ūI),

∆′n(v̄) = (−1)[Pv ]∆′nI
(v̄I)∆

′
n−nI

(v̄II)g(v̄I, v̄II),
(9.3.12)

we arrive at (9.3.11).

In section 4.5 we use (9.3.11) in the particular case of Cauchy determinants. For complete-
ness, we recall that for arbitrary complex ū and v̄ with #ū = #v̄ = n the Cauchy determinant
is defined as

Cn = det

(
1

uj − vk

)
. (9.3.13)

It has an explicit presentation in terms of double products

Cn =

∏
1≤k<j≤n(uj − uk)(vk − vj)∏n

j=1

∏n
k=1(uj − vk)

. (9.3.14)

From this we immediately obtain

g(ū, v̄) = ∆n(ū)∆′n(v̄) det
(
g(uj , vk)

)
,

1

h(ū, v̄)
= ∆n(ū)∆′n(v̄) det

(
1

h(uj , vk)

)
. (9.3.15)
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Other sums over partitions

In the core of the proof, we use different equalities, that were proven elsewhere. We recall them
in the present appendix.

Lemma 9.3.1. Let w̄, ū and v̄ be sets of complex variables with #ū = m1, #v̄ = m2, and
#w̄ = m1 +m2. Then ∑

g(w̄I, ū)g(w̄II, v̄)g(w̄II, w̄I) =
g(w̄, ū)g(w̄, v̄)

g(ū, v̄)
, (9.3.16)

where the sum is taken with respect to all partitions of the set w̄ into subsets w̄I and w̄II with
#w̄I = m1 and #w̄II = m2.

The proof of this Lemma is given in [109].

Lemma 9.3.2. Let w̄, ū and v̄ be sets of complex variables with #ū = m1, #v̄ = m2, and
#w̄ = m1 +m2. Then∑

Km1(w̄I|ū)Km2(v̄|w̄II)f(w̄II, w̄I) = (−1)m1f(w̄, ū)Km1+m2({ū− c, v̄}|w̄). (9.3.17)

The sum is taken with respect to all partitions of the set w̄ into subsets w̄I and w̄II with #w̄I = m1

and #w̄II = m2.

The proof of this Lemma is given in [66].

Lemma 9.3.3. Let w̄ and ξ̄ be two sets of generic complex numbers with #w̄ = #ξ̄ = m. Let
also C1(w) and C2(w) be two arbitrary functions of a complex variable w. Let us extend our
convention on the shorthand notation to the products of these functions. Then∑

Km(w̄I − c, w̄II|ξ̄)f(ξ̄, w̄I)f(w̄II, w̄I)C1(w̄I)C2(w̄II)

= ∆′m(ξ̄)∆m(w̄) det
m

(
C2(wk)t(wk, ξj)h(wk, ξ̄) + (−1)mC1(wk)t(ξj , wk)h(ξ̄, wk)

)
. (9.3.18)

Here the sum is taken over all possible partitions of the set w̄ into subsets w̄I and w̄II.

The proof of this Lemma is given in [66].
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[71] K. A. Chao, J. Spa lek, A. M. Oleś, Kinetic exchange interaction in a narrow S-band, J.
Phys. C 10 (1977), 271.

, Canonical perturbation expansion of the Hubbard model, Phys. Rev. B 18 (1978),
3453–3464.
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