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Abstract

The risk analysis of road tunnels faces a growing complexity in fire scenarios, e.g. caused by
new energy carriers. Essentially, such complex scenarios involve many interactions between
the tunnel users, the fire source and the safety measures. One example is the alarm of tunnel
users either initiated by the perception of smoke or by the fire alarm system. To consider
these interactions for the quantification of consequences, e.g. fatalities, risk analysis requires
a complex model. However, the complex model can compute in practice only few discrete
scenarios due to its high computational cost, whereas risk analysis generally needs the con-
sequences of a high number of random scenarios. Metamodels can solve this contradiction.
They are able to approximate the consequences of many random scenarios with low compu-
tational cost based on the consequences of few discrete scenarios computed with the complex
model. The efficiency of metamodels depends on the required number of these discrete sce-
narios. In this sense, this dissertation proposes an efficient metamodel within an innovative
methodology for risk analysis of road tunnels to allow to consider an increased complexity of
scenarios.
This metamodel applies the following methods or models: the projection array-based design
method specifies the experimental design for the discrete scenarios; the combination of the
fire model FDS and the microscopic evacuation model FDS+Evac constitutes the complex
model; and moving least squares produces the response surface model. The response surface
model approximates the consequences of the random scenarios and therewith introduces an
uncertainty, called metamodel uncertainty, which is quantified with the prediction interval
method. Additionally, stochastic individual characteristics of tunnel users in discrete scenar-
ios computed with FDS+Evac attribute evacuation uncertainties to the consequences. An
original development in this dissertation, the ’direct approach’, directly transfers the evacu-
ation uncertainties of the discrete scenarios to any random scenario.
The evaluation of the metamodel in this dissertation shows following results. Firstly, the
response surface model sufficiently represents the consequences of the complex model. Sec-
ondly, the metamodel uncertainty is also essential for this representation, but the prediction
interval method reveals a drawback in the risk analysis. Potential approaches to deal with
this drawback are discussed. Finally, the direct approach reproduces the evacuation uncer-
tainty of the complex model which then clearly affects the consequences of random scenarios.
Therefore, the consideration of the evacuation uncertainty plays an important role for the
risk analysis. Furthermore, the projection array-based design method was adapted in this
dissertation with two approaches, namely the combination of the experimental designs for
FDS and FDS+Evac as well as their sequential refinement. Both approaches contribute to
the efficiency of the metamodel.
These results lead to following conclusions. Firstly, the metamodel efficiently integrates the
consequences of discrete scenarios into risk analysis and thus allows to consider an increased
complexity. Secondly, the metamodel is an advancement for risk analysis not only for road
tunnels but also more general in fire safety engineering. For these two reasons, the metamodel
might be interesting for other methodologies for risk analysis. In addition, the metamodel
is generic and is therefore widely applicable on other issues beside from risk analysis, e.g. to
assess the safety of structures related to time-consuming experiments depending on multiple
variables.
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Kurzfassung

Risikoanalysen für Straßentunnel müssen eine immer größere Komplexität in Brandszenarien
berücksichtigen, beispielsweise verursacht durch neue Energieträger. Dabei hängt die Kom-
plexität von Szenarien mit einer Vielzahl von Interaktionen zwischen den Tunnelnutzern,
der Brandquelle und den Sicherheitsmaßnahmen zusammen. Zum Beispiel werden Tunnel-
nutzer entweder direkt durch Rauch oder durch die Brandmeldeanlage alarmiert. Um die
Interaktionen bei der Berechnung der Konsequenzen, wie z.B. getötete Personen, zu berück-
sichtigen, benötigen Risikoanalysen komplexe Modelle. Allerdings können komplexe Mod-
elle wegen ihres hohen Zeitaufwandes nur wenige diskrete Szenarien simulieren, wohingegen
Risikoanalysen auf Konsequenzen einer Vielzahl von Zufallsszenarien basieren. Als Lösung
dieses Widerspruchs kommen Metamodelle in Betracht. Sie können die Konsequenzen von
vielen Zufallsszenarien innerhalb kurzer Zeit näherungsweise berechnen und verwenden dafür
die Konsequenzen von wenigen mit dem komplexen Modell simulierten diskreten Szenarien.
Die Effizienz von Metamodellen hängt dabei mit der nötigen Anzahl von diskreten Szenar-
ien zusammen. Demnach wird in dieser Dissertation ein effizientes Metamodell in eine selbst
erstellte Methodik zur Risikoanalyse für Straßentunnel integriert, um damit eine höhere Kom-
plexität der Szenarien einbeziehen zu können.
Das Metamodell setzt sich aus folgenden Methoden und Modellen zusammen: die ’projec-
tion array-based design’-Methode definiert den Simulationsplan für die diskreten Szenarien;
eine Kombination aus dem Brandmodell FDS und dem mikroskopischen Evakuierungsmodell
FDS+Evac bildet das komplexe Modell; und ’moving least squares’ dient zur Erstellung des
Antwortflächenmodells. Das Antwortflächenmodell berechnet näherungsweise die Konsequen-
zen der Zufallsszenarien und erzeugt dadurch eine Unsicherheit, die Metamodellunsicherheit.
Sie wird mit der ’prediction interval’-Methode bestimmt. Zusätzlich verursachen individu-
elle Eigenschaften der Tunnelnutzer in den mit FDS+Evac simulierten diskreten Szenarien
Evakuierungsunsicherheiten in den Konsequenzen. Ein in der Dissertation neu entwickelter
Ansatz, der ’direkte Ansatz’, überträgt die Evakuierungsunsicherheit der diskreten Szenarien
unmittelbar auf die Zufallsszenarien.
Die Untersuchung des Metamodels in der Dissertation führte zu folgenden Ergebnissen. Er-
stens, das Antwortflächenmodell bildet die Konsequenzen der diskreten Szenarien ausreichend
genau ab. Zweitens, dazu trägt die Metamodellunsicherheit wesentlich bei. Allerdings zeigt
die ’prediction-interval’-Methode einen Nachteil für die Risikoanalyse. Zur Lösung dieses
Nachteils werden potentielle Ansätze diskutiert. Und drittens, der direkte Ansatz gibt die
Evakuierungsunsicherheiten des komplexen Modells wieder, welche dann die Konsequenzen
der Zufallsszenarien deutlich beeinflussen. Aus diesem Grund ist die Evakuierungsunsicher-
heit für die Risikoanalyse wichtig. Zusätzlich wurde die ’projection array-based design’-
Methode in dieser Dissertation mit zwei Ansätzen angepasst: der Verknüpfung beider Sim-
ulationspläne für FDS und FDS+Evac sowie deren schrittweisen Verfeinerung. Die Effizienz
des Metamodels wird durch beide Ansätze erhöht.
Diese Ergebnisse führen zu folgenden Schlussfolgerungen: erstens, das Metamodell integri-
ert die Konsequenzen der diskreten Szenarien auf eine effiziente Weise in die Risikoanalyse
und ermöglicht dadurch die Berücksichtigung einer höheren Komplexität; und zweitens, das
Metamodell stellt einen Fortschritt für Risikoanalysen nicht nur für Straßentunnel sondern
auch allgemein im Brandingenieurwesen dar. Aus diesen beiden Gründen kann das Meta-
modell für andere Methodiken zur Risikoanalyse interessant sein. Zudem ist das Metamodel
flexibel auf andere Problemstellungen außerhalb der Risikoanalyse anwendbar, wie z.B. der
Bewertung der Bauwerkssicherheit, welche von zeitaufwändigen Untersuchung und mehreren
Variablen abhängt.
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‘Drawing lines between points’ - Three questions to the title.

What is a metamodel?
Fire safety engineers often want to know the maximum temperature in a room fire and for
this, they apply complex models. Complex models are able to compute the temperature
everywhere in the room at every time in detail. Hence, they cause high computational costs
and therewith limit the number of simulations. For this reason, fire safety engineers can
compute the maximum temperature in only few discrete scenarios, e.g. with a small and a
large fire size, like of a radio and a couch. But if they want to know the maximum temperature
for many different fire sizes, e.g. because many different things in the room can burn, complex
models can no longer be used.
In this case, a metamodel can help. The metamodel needs the maximum temperatures of
only few discrete scenarios computed with the complex model, for example with the small
and the large fire size. These discrete scenarios, with its maximum temperature and its fire
size, can be imagined as points shown in the figure below. With these points, the metamodel
can predict the maximum temperature for different fire sizes with only small computational
costs. In other words, the metamodel can quickly draw a line between the points. The line
represents unknown points, which could not be computed with the complex model.
Of course, the metamodel cannot predict the maximum temperature precisely. As a conse-
quence, there will be a difference between the maximum temperature determined with the
metamodel and the unknown maximum temperature, which (was not, but) would be com-
puted with the complex model. This difference is called metamodel uncertainty and can be
illustrated by the thickness of the line.
Where is the problem with complex scenarios in risk analysis of road tunnels?
An important aim of risk analysis is to evaluate the effects of safety measures on the safety
of tunnel users. Hence, there are many interactions between the fire, the tunnel users and
the safety measures. These interactions make the fire scenario complex. For instance, the
fire alarm system detects the smoke and alerts the tunnel users. To cover all these inter-
actions, risk analysis requires complex models. But the complex model allows to compute
only few discrete scenarios, whereas the risk analysis needs many different scenarios. This
contradiction limits the complexity of scenarios to be considered in the risk analysis.
How does the metamodel of this dissertation help for the risk analysis?
A metamodel can solve this contradiction as illustrated in the figure. For this, the discrete
scenario depends not only on the fire size but also on the fire growth, the number of tun-
nel users and their individual reaction time. And its outcome are fatalities instead of the
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maximum temperature. To compute the fatalities, the complex model additionally includes
the evacuation. The evacuation involves e.g. the random individual walking speed. As a
consequence, repeated simulations of the same discrete scenario will lead to variations in the
fatalities, called evacuation uncertainty.
The metamodel comprises several approaches to reduce the required number of discrete sce-
narios. For instance, it allows their stepwise simulation until the metamodel uncertainty
is low enough. Hence, these approaches reduce the computational costs and increase the
efficiency of the metamodel.
As a result, the efficient metamodel allows to consider an increased complexity of scenarios in
the risk analysis. This is especially true in comparison to the direct use of discrete scenarios,
common in other risk analyses. Moreover, the metamodel includes the metamodel uncertainty
and the evacuation uncertainty into risk analysis. The evacuation uncertainty is realised with
an original approach. Both uncertainties are important for the results of risk analysis but
were ignored in most other risk analyses. To conclude, this metamodel is an advancement
for risk analysis and might therefore be interesting. Furthermore, everyone can employ it to
simply draw lines between points whatever the points shall mean.
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Nomenclature

The page numbers refer to the first introduction of the abbreviations and symbols.

Abbreviations
App. appendix p. 7

CFD computational fluid dynamics p. 2

ED experimental design p. 4

FA failure of tunnel alarm p. 1

FDS Fire Dynamics Simulator p. 2

FF fraction of fatalities; fractions of fatalities (FFs) p. 14

FFD full factorial design p. 31

FoM first order method p. 41

HGV heavy good vehicle p. 17

HRR heat release rate p. 2

LHD Latin hypercube design p. 31

LIl linear local interpolation p. 40

LIn nearest local interpolation p. 40

MLS moving least squares p. 38

ORS observed random sample p. 23

PA projection array p. 32

PAD projection array-based design p. 31

RSM response surface model p. 4

sc scenario p. 14

SoM second order method p. 41

Subs. subsection p. 7

TA tunnel alarm p. 1
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Risk factors and intermediate nodes
χHGV ratio of HGV p. 19

fa failure of tunnel alarm (node) p. 19

fsc frequency of scenario in 1
year p. 14

HRRmax maximum heat release rate p. 18

Ṅadtv average daily traffic volume p. 19

Ntu number of tunnel users p. 14

tmax time to maximum heat release rate p. 19

tpre maximum pre-evacuation time p. 19

ltunnel tunnel length p. 19

FF ξ and results y where y ≡ ξ and Y ≡ ξ

ξ fraction of fatalities p. 14

ξc FF (complex model) of a single replication p. 23

ξ̄c data base for the mean FF of all scenarios in an ED p. 24

ξ̄c mean FF (complex model) p. 23

ξ̄c
lim limit for data points in the evacuation uncertainty p. 49

ξ̃c data base for the FF of all replications of each scenario in an ED p. 24

ξ̃c FF (complex model) with all replications, ORS p. 23

ξ̂c,ξ̂c relative ORS (complex model) p. 47

ξ̄,ξ̄ FF (RSM) for multiple or one random scenarios p. 25

ξ̃,ξ̃ FF (metamodel) with metamodel uncertainty and evacuation uncertaintyp. 25

ξ̃ε,ξ̃ε FF (metamodel) integrating the evacuation uncertainty p. 43

ξ̃m,ξ̃m FF (metamodel) integrating the metamodel uncertainty p. 41

ξ̄FoM FF (FoM model) p. 41

ξ̄LIl FF (LIl model) p. 40

ξ̄LIn FF (LIn model) p. 40

ξ̄MLS FF (MLS model) p. 41

ξ̄SoM FF (SoM model) p. 41

∆ξ̄m,∆ξ̄m prediction interval p. 42

δξ̃m,δξ̃m metamodel uncertainty p. 41

Dξ̃c
q largest absolute difference p. 27
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Ξ∗ unclipped FF in the system model without specifications p. 50

Ξ̃ FF in the system model p. 20

Ξ̄ FF in the system model based on ξ̄ p. 50

Ξ̃ε FF in the system model based on ξ̃ε p. 50

Ξ̃m FF in the system model based on ξ̃m p. 50

Greek letters
α confidence level p. 27

α∗ empirical confidence level p. 43

β regression coefficients p. 38

ε̃,ε̃ relative evacuation uncertainty p. 43

ηind relative effect of a risk factor on individual risk p. 28

ηsoc relative effect of a risk factor on societal risk p. 28

µ arithmetic mean p. 23

ρsp Spearman’s rank correlation coefficient p. 28

σ2
X variance estimator using the complete data base p. 40

σ2
−i variance estimator using the leave-one-out approach p. 40

ω weighting parameter for MLS p. 44

Latin letters (lower case)
b MLS estimators p. 41

bls least squares estimators of β p. 39

d euclidean distance between two data points p. 33

erd euclidean relative difference between two RSMs at evaluation points p. 51

erdq erd between quantiles of two frequency distributions p. 51

i,j,n integer for iteration p. 15

p probability p. 18

℘̃ polynomial terms of an arbitrary point p. 39

pstretch stretching parameter p. 35

s2,s2 prediction variance p. 42

s2
q90 90%-quantile of the prediction variances s2 at multiple arbitrary points p. 45

var variance p. 38

w weighting function p. 41
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x risk factor p. 14

~x set of risk factors p. 14

~xevac evacuation scenario p. 22

~xfire fire scenario p. 22

~xi discrete scenario, data point p. 22

x̃ random scenario p. 14

Latin letters (upper case)
D discrete distribution p. 15

Ndps number of data points or scenarios in an ED p. 23

Nfat number of fatalities p. 14

Nmami number of EDs used for the maximin optimisation p. 33

Nmima number of EDs used for the minimax optimisation p. 33

Nnb number of neighbours p. 44

Nrep number of replications p. 23

Nrf number of risk factors p. 14

Nterms number of terms p. 38

P polynomial terms of the ED X p. 38

R risk analysis p. 27

Rind individual risk p. 11

Rsoc societal risk curve p. 11

S system model simulation p. 27

T Student distribution p. 42

U uniform distribution p. 18

W weighting matrix p. 41

X experimental design p. 23

Xevac experimental design for evacuation scenarios p. 23

Xfire experimental design for fire scenarios p. 23

XFFD full factorial design p. 31

XPAD projection array-based design p. 32

X̃ random scenarios in a Monte-Carlo simulation p. 14
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A Introduction

App. G.1 defines and explains some ’terms’ highlighted in the text.

A.1 Motivation and objectives

Complexity of real fire scenarios in road tunnels
’As new energy carriers find their way into tunnels, they will, likewise, require further study.
Naturally, the primary foci of such future research should be on the fires behaviours and on
risks for tunnel users and firefighters’ [1, p. 1446]. The need of research on risks of tunnel users
becomes even more pressing with view on future huge tunnel projects such as in Sydney [2] or
very large fire scenarios in road tunnels in combination with spilled liquids as in a Norwegian
road tunnel in 2015 [3].
In real fire scenarios like the one in the Norwegian road tunnel, many ’events’ and inter-
actions take place between the tunnel users, the fire source and the safety measures. For
example, the individual alarm of the tunnel users by the perception of smoke depends on the
smoke spreading in the tunnel as well as on the individual position of the tunnel user. In
case of a tunnel alarm (TA) the fire alarm system detects smoke and alerts all tunnel users
simultaneously. In this case, there can be also a failure of the tunnel alarm (FA). A further
interaction between the fire source and the safety measures can be illustrated by the emer-
gency ventilation: the ventilation system forces longitudinal ventilation with fans aiming to
influence the smoke spread.
These interactions show that real fire scenarios are complex. In general, complex systems
can consist of a ’myriad [of] subsystems; each of which can be characterised by a hierarchy
of shared or interacting components’ [4, p. 85]. In other words complexity ’is linked to the
difficulty of predicting system behaviour based on the system’s constituents parts’ and ’is
an acknowledgement of limitations in the understanding of [...]’ systems [5, p. 169]. In this
sense, the description of future trends in research on tunnel fires emphasises the complexity by
acknowledging ’huge gaps in knowledge on fire characteristics inside tunnels’ [6, p. 42]. It also
highlights the growing ’Interest in use of water-based fire suppression systems in tunnels’ as
well as that ’Nowadays, the use of alternative fuel vehicles such as electric battery vehicles has
been widely spread worldwide.’ Thus, the complexity of real fire scenarios might increase in
the coming years especially when alternative fuel vehicles ’are running in urban underground
tunnels with heavy traffics’ [6, p. 42].

Introduction to risk analysis
A ’risk analysis’ provides information to evaluate the effect of safety measures in complex
scenarios with the aim of limiting the risks for the tunnel users [7, p. 58]. Risk analysis in
this dissertation is understood as the quantification of risks with risk measures. ’Risk’ means
the combination of frequencies and ’consequences’ of scenarios where the consequences are
expressed in terms of fatalities among tunnel users.
Risk analysis quantifies the frequency and consequences in a high number of random scenarios,
i.e. scenarios with random values of risk factors. ’Risk factors’, also named as ’risk indicators’
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in Berchtold 2016 [8] and Berchtold 2018 [9], are factors which have effects on risks of tunnel
users, e.g. the maximum heat release rate (HRR). For the quantification of risks, risk analysis
uses simplified system models of real fire scenarios. The structure of the system model
comprises multiple risk factors. Furthermore, risk analysis directs at random scenarios on
the entire domain of risk factors which is named as ’global objective’ [10, p. 17], e.g. fire
scenarios with maximum HRRs from five to 200 MW. To be more clear, ’local objective’ in
contrast would focus on a single scenario, e.g. for the optimisation of the ventilation system
for a maximum HRR of 30 MW.
Complex models can be applied to determine the consequences within the system model. In
general, a complex model causes high computational cost. Examples are models based on
computational fluid dynamics (CFD) methods like the Fire Dynamics Simulator (FDS) [11],
which are named in the following as CFD models. In this dissertation the complex model is
a combination of

• a fire model based on a CFD method, which computes the fire scenarios, i.e. the spread
of heat and smoke, and considers fire risk factors related to the fire source;

• an evacuation model for the evacuation of tunnel users, which computes the evacuation
scenarios obtaining the smoke spread from the fire model and considers evacuation risk
factors related to the evacuation of tunnel users as well as fire risk factors to consider
the smoke spread;

• and an incapacitation model to determine the occurrence of fatalities.
The uncertainties in a fire model are mostly specified in the risk factors whereas the evacuation
model further considers individual characteristics of tunnel users and their variations. These
variations cause uncertainties called evacuation uncertainties.
Due to the high computational cost, complex models can only be used to determine the
consequences of a limited number of scenarios with discrete values of risk factors, briefly
called ’discrete scenarios’. However, the limited number of discrete scenarios should cover
the global objective of risk analysis.

Current state of methodologies for risk analysis of road tunnels
Different methodologies for risk analysis or ’risk assessment’ for road tunnels exist to evaluate
the risks of tunnel users and the effects of safety measures. This dissertation exemplifies the
current state of the art with some methodologies and in particular focuses on their approaches
used to determine the consequences. A more comprehensive overview was published by the
World Road Association [12, p. 64ff].
A direct comparison of the following methodologies with the innovative methodology devel-
oped in this dissertation was not possible, since these methodologies provide more a frame-
work describing risk factors and boundary conditions rather than detailed calculation meth-
ods. Thus, the engineering offices conducting risk analyses often use their own proprietary
approaches. Nevertheless, these approaches could adopt parts of this innovative methodology.
The methodologies of Germany [13] and in Austria [14] employ CFD models, both suggest-
ing FDS, to determine the smoke spread in discrete fire scenarios with the maximum HRRs
shown in Tab. A.1. The methodology of Austria furthermore combines the CFD model with
a one-dimensional tunnel model which provides the initial ventilation conditions influenced
by traffic conditions. With regard to the evacuation scenario, the methodology of Germany
applies a one-dimensional evacuation model which considers the effects of smoke and tem-
perature on the deterministic walking speed of tunnel users. The methodology of Austria
also applies a one-dimensional evacuation model which considers the effect of smoke on the
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Table A.1: Overview on fire scenarios with discrete maximum HRRs in different method-
ologies for risk analysis of road tunnels.

methodology fire model maximum HRR
Germany [13] CFD model (e.g. FDS) 5, 30, 50, 100 MW
Austria (TuRisMo) [14] CFD model (e.g. FDS)

in combination with
one-dimensional tunnel
model

5, 30, 100 MW

Schubert 2011 [15] expert judgement 5, 30, 100 MW
The Netherlands [16] − 5, 10, 25, 50, 100, 200 MW

walking speed as well as variations of individual characteristics of tunnel users. Accordingly,
both methodologies employ a combination of a CFD model and a one-dimensional evacuation
model to determine the consequences in discrete scenarios.
Furthermore, the methodology of Austria [14] applies the ’mapping approach’ to determine
the consequences in random scenarios. For this, the methodology uses few fire scenarios
analysed with simulations of the CFD model and many simulations of random evacuation
scenarios. The evacuation scenarios obtain the smoke spread of the fire scenarios. If a random
evacuation scenario requires a fire scenario between two available simulations with the CFD
models e.g. with a maximum HRR of 75 MW, then the probabilities of consequences of both
neighbouring simulations with the CFD models, i.e. 30 MW and 100 MW, are weighted
linearly according to the maximum HRR. In conclusion, the mapping approach is similar to
a local linear interpolation of consequences.
The methodology for risk analysis of road tunnels of Schubert 2011 in cooperation with the
Federal Roads Office in Switzerland and the Norwegian Public Roads Administration [15]
was developed for its application in Switzerland and Norway. This methodology determines
the consequences in fire and evacuation scenarios based on expert judgement. The system
model comprises 21 risk factors in total, i.e. fire risk factors, evacuation risk factors as well
as risk factors for the frequency of the scenario. The structure of the system model consists
of a Bayesian network whereas the other methodologies use event trees.
The methodology of the Netherlands [16] considers next to the hazard fire additionally other
hazards from dangerous goods. The documentation on the methodology is only available in
Dutch language. Thus, the overview here is also based on further documents or publications
like in Nelisse 2016 [17]. The methodology uses tabular data and considers the spread of
smoke and temperatures in discrete fire scenarios shown in Tab. A.1. It serves as basis for
other methodologies in European countries.
Moreover, Berchtold 2014 [18] has shown that methodologies for risk analysis of road tunnels
differ in many parts. Examples provided in this dissertation are the different number of
risk factors in the system model, e.g. the methodology of Germany with regard to the event
tree for the fire scenarios [13, p. 27f] in comparison to the Bayesian network with 21 risk
factors in Schubert 2011 [15, p. 18]. The methodologies also determine the consequences
with different fire models, either with CFD models, based on expert judgement [15] or with
the mapping approach using results of simulations of complex models for random scenarios
as in the methodology of Austria [14].

Introduction to the metamodel
The mapping approach constitutes an example for the application of a metamodel in a
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methodology for risk analysis of road tunnels. The methodology of Austria applies it to get
the consequences of a high number of random scenarios required for risk analysis. Namely,
it derives the consequences by local linear interpolation. In more detail, a metamodel is ’A
model which is intended to give an all-inclusive picture of a process, system, etc., especially
by abstracting from more detailed individual models contained within it’ [19]. Or in other
words, it is a ’model of the system being modelled by the computer simulation’ [20, p. 481]
which in brief means that a metamodel is a model of the complex model.
The metamodel uses results, i.e. consequences, of few discrete scenarios computed with the
complex model and determines the consequences of many random scenarios with low compu-
tational cost. As a result, it represents the unknown consequences of the complex model for
random scenarios which are then adopted in the risk analysis. Principally, the metamodel
consists of three parts e.g. summarised in Queipo 2005 [21, p. 3]: first, the experimental de-
sign (ED); second, the data base for results of scenarios computed with the complex model;
and third the response surface model (RSM).
Since the metamodel simplifies the complex model and given that simplifications cause ’model
uncertainties’ which are the ’inability of [...] models to accurately represent the true physical
behaviour of the system’ [22, p. 9], metamodels cause ’metamodel uncertainties’. The meta-
model uncertainty depends on the number of scenarios in the data base. Thus, an efficient
metamodel reduces the number of simulations of scenarios with the complex model which are
required to get an adequate RSM, namely shown by ’verification’ and ’validation’.

Motivation and objectives of this dissertation
Looking at the differences in methodologies for risk analysis of road tunnels and on the
increasing complexity of real fire scenarios, this dissertation bases on assumption 1 (complex
scenarios): the analysis of consequences in complex scenarios requires complex models as well
as multiple risk factors. In more detail, the complex model is able to reproduce interactions
in complex scenarios, e.g. the smoke spread in the tunnel, the individual alarm of tunnel
users by the perception of smoke or interactions between the ventilation system and the
smoke spread. Multiple risk factors are required e.g. for the HRR of the fire including the
fire growth, the evacuation of tunnel users as well as the failure of safety measures.
Since risk analysis directs at complex scenarios with the global objective, assumption 1 can
arise to a challenge: complex models with their high computational cost and the global
objective limit the number of risk factors and the number of scenarios computed with the
complex model. But both limitations impose therefore constraints to the complexity of
scenarios which can be considered in risk analysis. Concerning the limitation of risk factors,
for instance, experiments show large variations in the time to the maximum HRR, i.e. the risk
factor which describes the fire growth [23, p. 3]. But the methodology of Austria explicitly
avoids a variation of the time to the maximum HRR in order to reduce the number of
simulations with the CFD model [14, p. 21]. Consequently, possible effects of the time to
the maximum HRR on consequences, e.g. in relation to the time of tunnel users required for
evacuation or the time to full emergency ventilation, are not taken into account. Concerning
the limitation of the number of scenarios, the consequences are determined only for discrete
scenarios with maximum HRRs of e.g. 30 MW and 100 MW. But there might be unknown
interactions between the maximum HRR and the consequences, for instance, the smoke layer
might affect the tunnel users only above a specific maximum HRR. Then, there will be a
strong change in the consequences of scenarios around this specific maximum HRR. Only two
discrete scenarios can obviously not replicate this strong change. These different consequences
might be important for risk analysis which for this reason directs at a high number of different
scenarios. Another conclusion of the challenge might be to avoid complex models, e.g. as in
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the methodology for Switzerland and Norway of Schubert 2011 [15]. But without complex
models difficulties in modelling of interactions and thus of their effect on consequences may
arise, e.g the individual alarm of tunnel users or the TA which depends on the spread and the
detection of smoke. Concluding, the application of complex models to increase the complexity
of scenarios can actually reduce the complexity of scenarios by neglecting possible interactions.
The motivation of this dissertation is to overcome this challenge and to allow to consider
an increased complexity of scenarios in risk analysis of road tunnels to take into account
the growing complexity of real fire scenarios. For this reason, this dissertation develops an
innovative methodology for risk analysis of road tunnels which aims at two objectives.

• Objective 1 (metamodel) is to introduce a metamodel to integrate complex scenarios, in
more detail complex models and multiple risk factors, into the risk analysis. For this:
a) the RSM should represent the unknown results of the complex model with focus on
the global objective; b) the metamodel should reproduce the evacuation uncertainty of
the complex model; and c) the methodology for risk analysis should lead to reproducible
results. Objective 1a and objective 1c seem to be obvious. But objective 1a directs in
particular on the global objective which is essential for risk analysis and objective 1c is
important because the results of risk analysis should be independent from the specific
metamodel.

• Objective 2 (efficiency) is the efficiency of the metamodel to allow to focus on the com-
plexity in scenarios. The efficiency is not quantified in comparison to other metamodels
since the results are specific to the data base. But it is realised by the metamodel itself
as well as by the specification of particular approaches within the metamodel.

To sum up, this dissertation focuses on the metamodel within the methodology for risk
analysis of road tunnels. Thus, the methodology for risk analysis bases on the hypothesis
that a metamodel is able to solve the challenge. To be noted, the combinations of fire,
evacuation and incapacitation models to a complex model is readily available and for this
reason is not examined in detail in this dissertation.
Finally, there is ongoing work on the ’validation’ of and to increase the ’trust in risk manage-
ment’ [24, p. 123] because for risk analyses in safety science the ’quality control mechanisms
for assessing the credibility [...] and the validity of their results are not equally well devel-
oped’ compared to other scientific disciplines. To follow this work, this dissertation attempts
to validate the results of the methodology for risk analysis by questioning their plausibility.
With the focus of this dissertation on the metamodel and the knowledge on the metamodel
uncertainty and the evacuation uncertainty, this dissertation states assumption 2 (plausibil-
ity): the metamodel uncertainty and the evacuation uncertainty are required to increase the
plausibility of results of risk analysis.

Expected impact
The methodology for risk analysis together with the metamodel of this dissertation can have
an impact in three different parts. First, since the methodology for risk analysis aims at
objective 1 and objective 2, it allows an increased complexity of scenarios. Bearing the
growing complexity of real fire scenarios in mind, an influence on other methodologies for
risk analyses of road tunnels can be expected. Second, due to the efficiency of the metamodel,
the methodology can be also interesting for risk analysis of other complex systems with focus
fire safety engineering. For this reason, the flexibility of methods is one argument for their
selection, esp. for the system model and the complex model. Third, as a consequence of the
general applicability of the metamodel and due to objective 1 and objective 2, the metamodel
can also support in various issues with similar challenges, i.e. related to complex models but
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also complex experiments with multiple ’variables’ and global objective, like the assessment
of the safety of structures.

A.2 Outline

According to its objectives, this dissertation proposes and evaluates an innovative method-
ology for risk analysis of road tunnels. For this, it parts into the five following chapters.
Chapter B, Chapter C and Chapter D describe the methodology developed in this dis-
sertation. They split up into two parts: the first section introduces the theory in general
whereas the following sections detail the methods and models applied in the methodology of
this dissertation. Subsequently, the fifth chapter evaluates the methodology and queries the
assumptions and objectives. Finally, the last chapter summarises the results and concludes
with regard to the expected impact.
Chapter B illustrates the entire methodology and introduces the basic terms. It begins with
the approach to quantify risks and proceeds with the fire and evacuation scenario in the
system model. Yet, its focus lies on the model to determine the consequences, namely the
consequence model, and therewith also on the complex model, its CFD model and microscopic
evacuation model, as well as the metamodel.
Next, Chapter C details the first part of the metamodel. The ED is subjected to the projec-
tion array-based design method of Leoppky 2012 [25] which in particular provides the basis
for objective 2 (efficiency). And, since this method extends the Latin hypercube design [26],
it also suffices objective 1 (metamodel). So, after its reasoned selection, the algorithms in
the projection array-based design method are explained, esp. with respect to the assumptions
and objectives.
After the complex model and the ED which together result in the second part of the meta-
model, the data base, Chapter D completes the metamodel describing the RSM, the meta-
model uncertainty and the evacuation uncertainty. In detail, the RSM derives from the
response surface method moving least squares [27]. Moving least squares was selected in
order to meet assumption 1 (complex scenarios) and to provide the basis for objective 1
(metamodel). Correspondingly, the metamodel uncertainty is based on the prediction inter-
val method by Kim 2008 [28]. And last but not least, the ’direct approach’ was originally
developed in this dissertation to reproduce the evacuation uncertainty of the complex model
according to objective 1 (metamodel). The idea for the direct approach stems from the aver-
aged variance in Salemi 2016 [29]. Therefore, next to the description of these three methods,
the chapter also outlines approaches for their verification, ’calibration’ and validation.
The evaluation in Chapter E concentrates on the assumptions and objectives in this dis-
sertation as condensed in Tab. A.2. Section E.1 covers all data bases used in the system
model and therewith establishes the first and the second part of the metamodel. Consecu-
tively, Section E.2 directs at the RSM subjected to moving least squares but it also studies
the prediction interval method, i.e. the metamodel uncertainty arising from the RSM. The
aims of this section are to specify the default RSM used for subsequent evaluations as well
as to validate both methods. To complete the evaluation of the metamodel, the evacuation
uncertainty within the complex model is first assessed in Section E.3 and second, the direct
approach is calibrated and validated. Afterwards, Section E.4 is dedicated to the results of
risk analysis. In particular, it questions: the effects of the metamodel uncertainty and of the
evacuation uncertainty; the reproducibility of the results; as well as the effects of risk factors.
And to conclude, it scrutinises these results as an attempt for the validation of the entire
methodology for risk analysis.
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Table A.2: Assumptions (A) and objectives (O) investigated in the sections of Chapter E;
the highlighted sections reason their final evaluation.

A1 O1a O1b O1c O2 A2
E.4.3 E.2.1 E.2.1 E.2.1 E.2.2 E.4.1

E.2.2 E.3.1 E.4.2 E.4.4
E.2.3 E.3.2 E.4.4
E.2.4
E.2.5

At the end of this dissertation, the assumptions and objectives are revisited in Chapter
F and summarised with their confirmation or refutation. Additionally, it is argued why
this dissertation can advance risk analyses not only for road tunnels but also for fire safety
engineering in general. Then, the chapter focuses on the expected impact, in particular,
that the metamodel can be not only applied on complex models but also on time consuming
experiments. Lastly, the it stresses the contribution of the direct approach to the expected
impact.

A.3 Current state of research

The current state of research of this dissertation splits up into the different parts of the
methodology for risk analysis. In more detail, it is described at the beginning of each chapter
from Chapter A to Chapter D, namely in:

• Subs. ’Current state of methodologies for risk analysis of road tunnels’ (p. 2) in Chapter
A;

• Subs. ’Current research on methodologies for risk analysis in fire safety engineering’ (p. 9)
as well as Subs. ’Current research on the theory of risk analysis’ (p. 13) in Chapter B;

• Subs. ’Current methods for EDs’ (p. 31) in Chapter C;
• and finally, an overview on response surface methods in Section D.1.2.

The latter two chapters describe the current state of research which derives from a structured
literature overview and respectively leads to the choice of the projection array-based design
method and of moving least squares. Summing up, the first section of each chapter sketches
the theoretical framework whereas the following sections detail the methods and models
applied within the methodology.
The literature referenced in this dissertation comes from a literature study which was not
limited to but considered in particular publications with regard to methodologies for risk
analysis, the system model of the road tunnel and the application of metamodels. It was
performed over the entire period of this dissertation and based mainly on: the structured
literature overviews on ED methods and response surface methods; commonly known rel-
evant books, further references of publications as well as different sources in the internet;
and a monthly review of journals. This monthly review comprised the following six journals
published by Elsevier, Springer or Wiley: Fire Safety Journal, Fire Technology, Reliability
Engineering and System Safety, Risk Analysis, Safety Science, and Tunnelling and Under-
ground Space Technology. Thus, these peer reviewed journals were central to the literature
study and cover the research fields fire, risk and tunnels.
In total, the literature study comprises approximately 350 review or research articles, 100
chapters or contributions of about 75 books or proceedings, and 60 standards or other reports.
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These publications were studied with a different level of detail, i.e. from an overview to a
comprehensive understanding of their content. Finally, the study resulted in about 1700
personal notes structured and tagged with an open source software for reference management
and knowledge organisation.
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B Innovative methodology for risk analysis

This dissertation concentrates on the development of a metamodel used for risk analysis of
road tunnels. But first, all parts of the methodology for risk analysis are introduced. Sec-
tion B.1 explains the decisions for the methods, models and approaches in these parts and
finally sets them in relation to current research on the theory of risk analysis. Then, Sec-
tion B.2 outlines the approach for risk analysis using the Monte-Carlo method and Section B.3
illustrates the system model emphasising the graph as well as the fire and evacuation sce-
nario. Next, Section B.4 describes the consequence model with focus on the metamodel. And
finally, Section B.5 closes with methods used to evaluate the methodology for risk analysis.

B.1 Overview on literature

Next to the different methodologies for risk analysis outlined in Section A.1, also a variety
of methodologies in fire safety engineering with other focus than road tunnels exist. These
methodologies are subjected to a higher variety of methods and models for they are less
specialised on their application in practice than the methodologies for risk analysis of road
tunnels. Subs. ’Current research on methodologies for risk analysis in fire safety engineer-
ing’ (p. 9) sketches the current state with some examples. This overview helps to identify
several methods, models or approaches applied in the methodology for risk analysis of this
dissertation which then contribute to its innovation. Hence, the subsequent subsections
outline: the system model used for risk analysis; the consequence model; the metamodel
uncertainty and the evacuation uncertainty; as well as the current state of research on the
theory of risk analysis.

Current research on methodologies for risk analysis in fire safety engineering
Some publications were selected from the literature study conducted during this dissertation

to give a short overview on the current state of research on risk analysis in fire safety engi-
neering. These publications do not necessarily describe comprehensive methodologies for risk
analysis but may also concentrate on specific parts. Additional criteria for the selection were
the recency as well as the use of fire models, e.g. based on CFD methods. The publications
are condensed in this subsection with regard to the system model, the consequence model
and, if available, the metamodel.
To begin, Albrecht 2014 [30] expresses the life safety in a multi-purpose community assembly
building with the probability for safe evacuation. The probability for safe evacuation derives
from a comparison of the required safe egress times with the available safe egress times of
random scenarios. On the one side, a ’simple evacuation’ [31, p. 1060] model determines the
required safe egress time in evacuation scenarios with one evacuation risk factor and three
’environmental variables’. And on the other side, the fire model FDS analyses the available
safe egress time in fire scenarios depending on five fire risk factors. More precisely, the
available safe egress times of the random scenarios stem from a metamodel with a central
composite design as ED and moving least squares as response surface method [31]. The
metamodel is set up in sequential refinement steps to reduce the metamodel uncertainty as
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well as the number of risk factors. The sequential refinement of the metamodel directs at the
local objective, namely where the available safe egress time equals the required safe egress
times.
Next, the methodology published by de Sanctis 2016 [32] aims at the risk-based optimisation
of the door width in a retail building in case of fire. For this, it compares available safe
egress times with the required safe egress times in random scenarios and finally obtains the
life quality index. The required safe egress time depends on three evacuation risk factors
and five environmental variables and is quantified with a one-dimensional evacuation model.
The fire model computes the available safe egress time in fire scenarios with four risk factors.
Describing the selection of the fire model, the publication reasons that CFD models are more
appropriate in case of emergency ventilation with fans whereas zone models are suitable
for compartment fires without emergency ventilation. Accordingly, the zone model OZone
determines the smoke layer thickness. Then, the height of the smoke-free layer is assumed to
be uncertain. At last, a metamodel with polynomial chaos expansion and 104 ’quasi-random’
data points with the uncertain results from OZone lead to the probability density function
of the required safe egress time.
Weyenberge 2017 [33] describes a risk analysis for life safety in a multi-purpose community
assembly compartment. It refers to Weyenberge 2016 [34] which only sketches a methodology
for risk analysis but details the bow-tie structure used as the structure of the system model
in a rail tunnel. The risk analysis of Weyenberge 2017 [33] consists of successive parts: the
fire model FDS; the metamodel for the fire model; the evacuation model; the metamodel for
the evacuation model; the incapacitation model; and finally the reliability analysis. The main
focus lies on the comparison of two metamodels for the fire model, both with Latin hypercube
designs as EDs but with the different response surface methods moving least squares and
polynomial chaos expansion. For the comparison, the metamodels are validated with an
additional validation set. Then, they quantify the CO concentration in fire scenarios with
three risk factors plus two spatial and one temporal variables. At the end, the publication
gives an outlook to include uncertainties in the metamodel for the evacuation model with
variables describing the group of occupants, i.e. risk factors, and environmental variables for
individual characteristics of occupants.
Most recently, Anderson 2018 [35] conducted a risk-based analysis of the community-averaged
extent of fire damage in residential buildings of the United States. In particular, the study
comprises representative single family homes based on statistical data. It investigates the
consequence ’floor area of a home damaged by a fire’ in more than 5000 random scenarios
applying the zone model CFAST. Arguments for the decision for CFAST were ’familiarity to
the authors, speed of computation, and its history of verification and validation’ and ’other
potential options’ for the fire model would have been the ’Fire Dynamics Simulator (FDS)
or New Zealand’s BRANZFIRE’ in Anderson 2018 [35, p. 6].

Risk analysis and the system model
Beside from event trees, methodologies for risk analysis also apply different structures for

their system models like the bow-tie structure in Weyenberge 2016 [34] or Bayesian networks
in Schubert 2011 [15]. The bow-tie structure splits the scenario in a fault tree which spec-
ifies the ’critical event’ e.g. the fire in the road tunnel, and the event tree leading to the
consequences. In contrast, Bayesian networks combine the description of the scenario and
the determination of consequences in a single directed acyclic graph. This graph is ’efficient
in regard to the graphical representation of complex systems’ [15, p. 14]. In other words,
its clear structure supports the flexibility for adaptions in the system model and also for
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other complex systems than road tunnels. Because of this flexibility, a directed acyclic graph
establishes the structure of the system model in this dissertation.
The system model serves to analyse the frequency and consequences in random scenarios.
To generate the random scenarios, the methodologies for risk analysis commonly carry out
Monte-Carlo simulations. For risk analysis, it is essential to cover scenarios with rare events
because of their potentially high consequences, for instance the large fire with spilled liquids
mentioned in Section A.1. In the understanding of this dissertation, a rare event is linked
to the FA in combination with a maximum HRR of 100 MW. The latter value derives from
the methodologies for risk analysis of road tunnels esp. from Germany, shown in Tab. A.1
(p. 3). Since scenarios with rare events have small frequencies in a Monte-Carlo simulation,
risk analysis requires a high number of random scenarios to consider their consequences
appropriately. For example, importance sampling in the Monte-Carlo method [36, p. 296]
reduces the required number of random scenarios by adapting the frequency of rare events
with the aim to increase the frequency of random scenarios with rare events.
After the Monte-Carlo simulation, risk analysis ends with the quantification of risks with risk
measures. Common risk measures in risk analysis of road tunnels are the individual risk and
the societal risk [12, p. 21, 28]. Other risk measures are for example: first, the probability
of safe evacuation in Albrecht 2014 [30]; second, measures which do not consider the safety
of occupants like the floor area in Anderson 2018 [35]; or third, based on financial aspects
to value the life of an occupant in Schubert 2011 [15] or de Sanctis 2016 [32]. But the first
and second of the other measures are not in the meaning of ’risk’ used in this dissertation
and the third of these measures demands additional variables. Concluding, with the focus of
this dissertation on the metamodel, the risks are quantified with the common risk measures
individual risk and societal risk.
In general, the individual risk Rind is defined as the ’Measure of fire risk limited to conse-
quences experienced by an individual and based on the individual’s pattern of life’ [37, p. 3]
and the societal risk Rsoc is the ’Measure of fire risk combining consequences experienced
by every affected individual’ [37, p. 4]. Applied on road tunnels, the individual risk is ’the
probability that an average unprotected person, permanently present at a certain location, is
killed due to an accident resulting from a hazardous activity’ [38, p. 383] and the societal risk
’reflects the relationship between frequency and the number of people suffering from a specified
level of harm in a given population from the realization of specified hazards’ [38, p. 383].

Consequence model
Both risk measures take into account the frequency and the consequences of random sce-

narios. The frequency of fires in road tunnels can be quantified as exemplified in Nelisse
2016 [17], even for fires with rare events and small statistical basis. With regard to the
consequences, the quantification on basis of statistical data is e.g. possible for single family
houses in case of small fires [39]. But the frequency of real fire scenarios in road tunnels is very
small [15, p. 65f; 38, p. 385] and the frequency of fire scenarios with consequences in terms of
fatalities is evidently lower. This fact explains the lack of empirical models for consequences
in road tunnels and the few models based on expert judgement, e.g. in Schubert 2011 [15,
p. 65f]. Therefore, the term ’consequences model’ in this dissertation means the model used
to determine the consequences on the basis of a complex model, namely a ’deterministic fire
model’, a ’stochastic evacuation model’ and an incapacitation model.
The consequence models of methodologies for risk analysis in fire safety engineering usually
apply CFD models for the fire model but also zone models where appropriate. Then, they
mostly combine the fire model with a one-dimensional evacuation model. Looking at the
incapacitation model, the methodologies often refer to threshold values e.g. for the optical
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density in Albrecht 2011 [31], the height of the smoke-free layer in de Sanctis 2016 [32] or the
carbon monoxide concentration in Weyenberge 2017 [33]. An alternative is the cumulative
fractional effective dose during the evacuation of occupants, e.g. in the methodology of Al-
brecht 2011 [31] or is discussed in Weyenberge 2017 [33]. Moreover, the consequence model
can also comprise a metamodel, for example the mapping approach in the methodology of
Austria [14] for risk analysis of road tunnels. Other methodologies use metamodels for de-
terministic results of the CFD models in Albrecht 2011 [31], in Weyenberge 2017 [33] or for
results of a deterministic zone model also subjected to uncertainties in case of de Sanctis
2016 [32].
This summary provides the background for conclusions on the consequence model in this
dissertation. First, a CFD model is used as fire model to account the interactions in complex
scenarios. Second, the evacuation of tunnel users is computed with a microscopic evacuation
model despite the common use of one-dimensional evacuation models in other methodologies
for risk analysis. This choice has two reasons: to evaluate whether microscopic evacuation
models are required with respect to complex scenarios; and to increase the flexibility of
the methodology for other complex systems. Third, the fractional effective dose by Purser
[40] models the incapacitation because of the cumulative effect of smoke on tunnel users.
Furthermore, the fire model as well as the evacuation model were also chosen in order to
question assumption 1 (complex scenarios). For the same reason, the fire scenario considers
two fire risk factors for the HRR and the evacuation scenario depends on three evacuation
risk factors to describe the tunnel users as well as the failure of tunnel alarm. And last
but not least, the metamodel is also a part of the consequence model as stated in objective
1 (metamodel) to integrate complex scenarios into risk analysis with its global objective.
With respect to objective 2 (efficiency), sequential refinement, as in Albrecht 2014 [30], could
improve the efficiency of the metamodel but with the global objective and not with the local
objective. To sum up, the decision for a CFD model, a microscopic evacuation model, the
number of risk factors, as well as the metamodel comply with the objectives and assumptions
in Section A.1 and contribute to the innovation of the methodology of this dissertation.

Metamodel uncertainty and evacuation uncertainty
In general, Der Kiureghian 2009 [41, p. 105ff] distinguishes uncertainties in two types. On the
one hand, epistemic uncertainties are ’caused by the lack of knowledge’ to which ’the modeller
sees a possibility to reduce them by gathering more data or by refining models’. On the other
hand, aleatory uncertainty originate from an ’intrinsic randomness of a phenomenon’ and the
’modeller does not foresee the possibility of reducing them’. And additionally, ’it is the job
of the model builder to make the distinction’. These definitions allow to categorise the meta-
model uncertainty as well as the evacuation uncertainty introduced in Section A.1 into these
two types and to generalise their application. Since the ’inaccuracy of the metamodels can be
interpreted as the metamodel uncertainty where the true response is unknown except at the
sample points’ [28, p. 1] and the ’inaccuracy’ of the metamodel could be reduced by sequen-
tial refinement, the metamodel uncertainty is an epistemic uncertainty. The methodology by
de Sanctis 2016 [32] describes model uncertainties in the ’smoke layer thickness’ which is an
example for another epistemic uncertainty. Next, the evacuation of tunnel users is subjected
to ’intrinsic’ randomness [42, p. 178; 43, p. 1; 44, p. 166] due to environmental variables
like individual characteristics of tunnel users. Accordingly, the evacuation uncertainty is
considered to be an aleatory uncertainty.
The methodologies for risk analysis in fire safety engineering account the metamodel uncer-
tainty and the evacuation uncertainty in different ways. The metamodel uncertainty is either
used for: refinement of the metamodel with the aim of reducing metamodel uncertainty in
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Albrecht 2014 [30]; and the validation of the metamodel in Weyenberge 2016 [34]. But both
methodologies do not transfer the metamodel uncertainty to the results of risk analysis. The
evacuation uncertainty arises from variations in individual characteristics of occupants in the
methodologies of Austria [14], of Albrecht 2014 [30] or of de Sanctis 2016 [32]. And also the
methodology published in Weyenberge 2017 [33] provides an outlook to include evacuation
uncertainties into the metamodel. To conclude, this dissertation innovatively integrates the
metamodel uncertainty and evacuation uncertainty into the metamodel and in the results of
risk analysis, esp. with regard to assumption 2 (plausibility).

Current research on the theory of risk analysis
Subs. ’Risk analysis and the system model’ (p. 10) shows that the approach used for risk anal-
ysis in this dissertation is also common in other methodologies for risk analysis in fire safety
engineering. This approach refers to the definition of risk provided in Subs. ’Terms related
to risk analysis’ (p. G-1) of App. G.1 and applies Monte-Carlo simulations for its calculation.
But there is lots of research on the theory of risk analysis itself. Thus, this subsection briefly
sketches few publications to show the current state of research and then closes with their
relation to this dissertation.
To begin, Goerlandt 2017 [24] summarises and discusses the current research on the theory
to risk. For instance, Goerlandt 2017 refers to critical reviews like Pasman 2017 [45]. This
publication reveals weaknesses in methods used for the quantification of consequences in risk
analysis of the oil and gas industry.
Aven provides the theoretical background for several publication in Goerlandt 2017 [24]. In
detail, Aven 2012 [46] comprehensively describes the theory to risk analysis. Aven 2012 begins
with the historical development of risk analyses and then introduces the classical approach
using Monte-Carlo simulation to model probabilities. Afterwards, this classical approach is
criticised because the ‘Risk is a constructed quantity that puts focus in the wrong place,
on measuring fictional quantities’ [46, p. 36]. Accordingly, Aven 2012 [46, p. 47ff] proposes
another concept of risk. In this concept, risk is understood as consequences of events and
their associated uncertainties. In particular, it includes further background knowledge on the
uncertainties. Together with several other publications, Aven 2014 [47] puts this concept into
a conceptual risk framework, e.g. to avoid simplifications in models with the aim to increase
the knowledge on uncertainties.
Next, Berner 2016 [48] contributes to the proposed concept of risk by Aven 2012 [46] and
therefore describes an approach to decide which assumptions within a risk analysis have
to be strengthened by further knowledge. This approach consists of six settings. The last
setting refers to assumptions having high effect on the risk measure but they base only on
poor knowledge and there is a high belief that this assumption might not be true. Berner
2016 further discusses this case and for instance suggests to apply ‘imprecise probabilities’ to
these assumptions.
Coming back to the issue of complexity introduced in Section A.1, Jensen 2018 defines ‘an
activity is considered complex if we have poor knowledge about the consequences of the activ-
ity’ [5, p. 171]. After profound discussion from different perspectives, Jensen 2018 concludes
that the ’concept of risk makes sense in conjunction with complex systems’ but the ‘lack
of knowledge regarding causal chains [...] make the [...] the assessment of risk difficult’ [5,
p. 173]. The first conclusion also yields for the concept of risk applied in this dissertation in
particular and also in general for fire safety engineering.
Additional to Jensen 2018 [5], Haimes 2018 [4, p. 95f] develops ten guiding principles for
risk analysis of complex ‘systems of systems’. These principles for instance are: the ‘meta-
modeling and subsystems integration’, which ‘must derive from the intrinsic states of the
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system of system’; the consideration of ‘epistemic and aleatory uncertainty‘; and to ‘account
for risks of low probability with extreme consequences’.
Last but not least, Hansson 2014 [49] asks in the title: ‘Is risk analysis scientific’? To
answer this question, Hansson 2014 discusses important elements of science and therewith
mentions aspects like: the aim of science to find the ‘most reliable knowledge’; its ‘capability
of self-improvement’; ‘hypothesis testing’ as well as the ‘acceptance of different types of
explanations’. Hansson 2014 also remarks that ‘the representation of epistemic uncertainty
is a major challenge for risk analysis’ [49, p. 1180] and finally, comes to the conclusion that:
‘risk analysis is scientific, when understood as consisting of [...] knowledge about risk-related
phenomena, [and of] [...] approaches [...] to [...] assess [...] risk‘ [49, p. 1181]. Thus, this
conclusion is also true for the risk analysis in this dissertation.
To sum up, the current research on the theory of risk analysis address several issues which
are also related to this dissertation. First, the challenge stated in Section A.1 copes with
the complexity within the calculation of consequences and the use of complex models also
emphasised in Haimes 2018 [4], Jensen 2018 [5], Pasman 2017 [45] and Aven 2014 [47]. Sec-
ond, the concerns with epistemic uncertainties in Haimes 2018 and Hansson 2014 [49] which
matter not only within the metamodel but also in the complex model of this dissertation.
Third, the consideration of rare events with large consequences described in Haimes 2018 and
Berner 2016 [48] is also discussed in Subs. ’Risk factors’ (p. G-5) of App. G.2. Concluding, sev-
eral developments can be made within the methodology for risk analysis developed in this
dissertation but up to now, the focus is on the metamodel.

B.2 Risk analysis

The results of a risk analysis derive from random scenarios of a Monte-Carlo simulation. For
this, the system model specifies a random scenario with specific random values of all risk
factors and calculates its frequency fsc in 1

year where the subscript means ’scenario’ and its
fraction of fatalities (FF) ξ. The FF results from Eq. B.1 with the number of fatalities Nfat

and the number of tunnel users Ntu. Additionally, Tab. B.1 introduces the notation for risk
factors and random scenarios.

Table B.1: Notation used to denote risk factors and scenarios.
notation description
x risk factor
~x = [x1, . . .] set of risk factors
x̃ random scenario with random values of the risk factors ~x
Nrf number of risk factors, Nrf ≡ ‖~x‖
X̃ random scenarios of a Monte-Carlo simulation, i.e. x̃ ∈ X̃

Nmcs number of random scenarios in a Monte-Carlo simulation Nmcs ≡
∥∥∥X̃∥∥∥

ξ = Nfat

Ntu
(B.1)

A rare event in a random scenario of a Monte-Carlo simulation is caused by a specific value xi

of at least one risk factor with a low probability in its original discrete probability distribution,
namely Dor(xi) = ε with ε ≈ 0. In order to increase the frequency of a random scenario with
this rare event, importance sampling adapts the original probability distribution to Dis with
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Dis(xi) > 0. Consequently, this adaption needs adjustments in the frequency of the random
scenario, i.e. the frequency is weighted with the weighting factor shown in Eq. B.2.

ωis,i = Dor (xi)
Dis (xi)

(B.2)

Both risk measures, the individual risk and the societal risk, consider importance sampling.
Eq. B.3 defines the individual risk Rind with the index i denoting the different random scenar-
ios of the Monte-Carlo simulation. Societal risks are usually expressed in societal risk curves
Rsoc given in Eq. B.4 and first exemplified in Fig. E.18b (p. 80). In more detail, the frequency
of all random scenarios with a specific number of fatalities Nfat of the societal risk curve is
given in Eq. B.5. The part of the societal risk curve with small numbers of fatalities is called
the ’lower part’ in contrast to the ’upper part’ for high numbers of fatalities up to the upper
limit Nfat,max. To concentrate on reproducible results, societal risk curves in this dissertation
are reduced to numbers of fatalities that exceed a frequency of Rsoc (Nfat) > 10−8 1

year .

Rind = 1
Nmcs

Nmcs∑
i=1

ωis,i · fsc,i · ξi (B.3)

Rsoc = [Rsoc (Nfat = 0) , Rsoc (Nfat = 1) , . . . , Rsoc (Nfat = Nfat,max)] (B.4)

Rsoc (Nfat) = 1
Nmcs

Nmcs∑
i=1

ωis,i · fsc,i · δK with δK =
{

1 for Nfat,i ≥ Nfat

else 0
(B.5)

B.3 System model

The system model simplifies real fire scenarios for risk analysis. To explain the system
model: first, the structure of the system model is outlined; second, the scenario is illustrated
qualitatively; and finally, the risk factors and the entire structure of the system model are
detailed more precisely.

Graph structure of the system model
A review illustrated in Berchtold 2014 [18] first provided the basis for the graph of the system
model. Here, Fig. B.1 depicts the directed acyclic graph used as structure of the system model
and App. G.3 briefly outlines its implementation. The directed edges of the graph connect
the parent nodes to their subsequent nodes. And the nodes of the graph are split up into
risk factors and intermediate nodes. The former ones describe the random scenario and the
latter ones help to structure the graph clearly.
According to Berchtold 2016 [8], the system model can be divided into the three subsystems
frequency, fire and evacuation connected to the frequency model, the fire model and the
evacuation model respectively. But the system model in Berchtold 2016 [8] comprises twelve
risk factors whereas the system model in this dissertation distinguishes between eight risk
factors and six intermediate nodes. This discrepancy derives from Berchtold 2016 [8] which
first, includes the failure of tunnel alarm in the risk factor ’time of tunnel alarm’, second, does
not consider the nodes ’frequency of scenario’ and ’fraction of fatalities’, but third, considers
the specific frequency of fire to be a risk factor. Now, the system model amalgamates the
specific frequency of fire and the intermediate node frequency of scenarios as detailed in
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Figure B.1: Graph structure of risk factors and intermediate nodes highlighting the subsys-
tems for: frequency, fire and evacuation and frequency which are connected to
the frequency model, fire model and evacuation model.

App. G.2.3. These differences yield the two additional nodes in the system model of this
dissertation. Hence, both system models are equal, but the illustration and notation changed.
Tab. B.2 shows the brief notation for the risk factors. For the sake of brevity and without
loss of information in the text, the brief notation serves for both, to name the node and to
symbolise its results. Only the node ’fraction of fatalities’ is briefly denoted with ’node FF’
to clearly differentiate between the node and its results.

Table B.2: Probability distributions of risk factors: default models (above); and additional
uniform distributions U for HRRmax and Ntu (below).

risk factor notation model
maximum HRR (default) HRRmax/MW D ({5, 30, 50, 100}) =

{0.9, 0.09, 0.009, 0.001}
time to maximum HRR tmax/s U (600, 1200)
maximum pre-evacuation time tpre/s U (100, 300)
number of tunnel users (default) Ntu analytical model
failure of tunnel alarm fa D ({TA, FA}) =

{0.99, 0.01}
ratio of HGV χHGV U (0.05, 0.45)
average daily traffic volume Ṅadtv/(veh. / day) U (5000, 40000)
tunnel length ltunnel/km U (1, 3)
maximum HRR (uniform) HRRmax/MW U (25, 200)
number of tunnel users (uniform) Ntu U (30, 180)
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To sum up, the risk factors and intermediate nodes in the graph specify each fire and evacu-
ation scenario.

Fire and evacuation scenario
Fig. B.2 depicts the bi-directional road tunnel with two lanes, a width of 9.5 m, a height of
4.5 m and a slope of 1%. The tunnel length varies within the system model according to its
risk factor but the domain of the complex model is fixed to 650 m. App. G.2.1 provides further
information on this geometry, the layout and the equipment which in summary represents a
common road tunnel in Germany and is conform to German legislation [50].
The fire scenario begins with the ignition of a vehicle after an accident or a technical defect.
Its frequency fsc is affected by the risk factors average daily traffic volume Ṅadtv and tunnel
length ltunnel. The ignition initiates a tailback of vehicles but still more vehicles enter the
tunnel. Then, the HRR of the fire grows depending on the risk factors maximum HRR
HRRmax and time to maximum HRR tmax. As soon as the HRR reaches five MW, the fire
detection system recognises the fire. At the same time, the longitudinal emergency ventilation
system starts and produces a gas flow in downhill direction to maintain a thermally-driven
uphill gas speed of less than 1.5 m

s . It takes 30 seconds to full emergency ventilation and the
fans are switched off again before disturbing the smoke layer. Also immediately with the fire
detection, the TA, if not failed because of the risk factor fa, triggers the tunnel closing which
prevents further vehicles from entering the tunnel.

0 m 150 m 300 m 450 m-200 m

upper evacuation area
pair of fans

fire
source

slope: 1%width: 9.5 m;height: 4.5 m;tunnel data:

concrete

open
boundary

open
boundary

concrete

emergency exit
pair of fans

Figure B.2: Geometry and layout of the road tunnel in the system model; figure is not in
scale.

The evacuation scenario focuses on the upper evacuation area next to the fire source and
takes into account the smoke spread of the fire scenario. The number of tunnel users Ntu in
the evacuation area depends on the numbers of cars, heavy good vehicles (HGVs) and buses.
Each tunnel user is either alerted individually by smoke or simultaneously with the other
tunnel users by the TA. Subsequently to the alarm, the tunnel users start to evacuate to the
emergency exit after their individual pre-evacuation times. The individual pre-evacuation
times are drawn from a uniform distribution between zero and the risk factor maximum pre-
evacuation time tpre denoted with U (0, tpre). The individual walking speed can be impeded
by two factors: jams at the emergency exit, i.e. a bottleneck [51]; and the smoke spreading in
the road tunnel. Furthermore, the smoke can incapacitate the tunnel users. The evacuation
scenario ends when all tunnel users either reached the emergency exit or were incapacitated.
At last, the FF derives from the number of fatalities and the number of tunnel users in the
upper evacuation area.
In accordance with the focus on the upper evacuation area, the definitions of risk measures
[38, p. 383] require adaptions. The individual risk is now defined with ’the annual frequency
that an unprotected tunnel user being permanently present in the upper evacuation area next
to the fire source will die’. And the societal risk is ’the annual frequency that a specified
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minimum number of tunnel user will die in the upper evacuation area next to the fire source’.
Both risk measures are not specific to the tunnel length and thus depend on this risk factor.
Next to the jam of tunnel users at the emergency exit, the TA constitutes a discrete event in
the evacuation scenario. In case of a scenario with TA, the TA alerts multiple tunnel users
simultaneously. But the distribution of the individual pre-evacuation times blurs the peak of
tunnel users starting to walk. In case of a scenario with FA, the individual pre-evacuation
times of the tunnel users are not affected by the discrete event TA. Hence, the scenarios with
TA are more complex than scenarios with FA.
In line with Section A.1, the complexity of the system model and of the fire and evacuation
scenario are defined: by a system which comprises many subsystems; and, by the difficulty
of predicting the effects of risk factors on the FF because of interactions in the fire and
evacuation scenario. First, as Fig. B.1 highlights, the system model can be split into different
subsystems for frequency, fire and evacuation. Moreover, e.g. the subsystem fire contains
further subsystems like the fire source or the ventilation system. Second, the fire source,
the tunnel users and the safety measures interact in many ways in the fire and evacuation
scenario. Examples are: the individual alarm of tunnel users in combination with the smoke,
the TA of all tunnel users, or the emergency ventilation interacting with the smoke spread.
Because of these interactions, each risk factor in the system model has an unknown effect
on the FF. In conclusion, the system model but also the fire and evacuation scenario in the
complex model are complex.
At last, the fire scenario and the evacuation scenario originate from the fire model and from
the evacuation model respectively. But the terms ’fire scenario’ and ’evacuation scenario’ are
only applied in this dissertation to emphasise their origins. For brevity, the term ’scenario’
means the evacuation scenario based on the fire scenario. And again for brevity, specific
scenarios are shortly named for instance with sc(100 MW, 1000 s, 120 s, 105, fa = 0) for the
scenario with HRRmax = 100 MW, tmax = 1000 s, tpre = 120 s, Ntu = 105 and fa = TA.

Risk factors
After the qualitative illustration of the scenario in the system model, this subsection now
outlines the risk factors. Tab. B.2 summarises their models and App. G.2.2 details the back-
ground and provides the original references.
Tab. B.2 also shows the default model and the uniform distribution of the risk factor maximum
HRR HRRmax. The default model is subjected to a discrete distribution, in generally denoted
for any risk factor x with D ({x1, . . .}) = {p1, . . .}, the value on the domain xi and the
corresponding probability pi. It considers fully developed fires with more than five MW
either caused by accidents or by technical defects and does not distinguish between vehicle
types. Because of the small probability for large fires, importance sampling adapts the original
discrete probability distribution as given in Tab. B.3. Additionally, the uniform distribution
serves for evaluations within the consequence model.
Nota bene, also the probabilities in the probability distribution of the risk factor maximum
HRR, and not only its results, clearly influence the risk measures. For instance, random
scenarios with high maximum HRRs and small probabilities occur rarely during a Monte-
Carlo simulation and their increased FFs are averaged in Eq. B.3 and Eq. B.5 of the risk
measures. As a result, these random scenarios contribute less to the risk measures than
other random scenarios. Importance sampling clarifies this effect by reducing the product of
frequency and FF with the weighting factor of Eq. B.2. A similar effect can be observed in
the risk factor failure of tunnel alarm.
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Table B.3: Probabilities for the original discrete distribution Dor and the adapted discrete
distribution Dis of the importance sampling for the risk factors HRRmax and
fa.

HRRmax /MW 5 30 50 100
Dor 0.9 0.099 0.0009 0.0001
Dis 0.1 0.3 0.3 0.3
fa TA FA
Dor 0.99 0.01
Dis 0.5 0.5

The model for the failure of tunnel alarm fa describes an original probability of FA per
demand of 1%. This probability is increased with the model for importance sampling in
Tab. B.3.
The time to maximum HRR tmax and the maximum pre-evacuation time tpre are based on
uniform distributions with their minimum and maximum values taken from experiments or
studies. The maximum pre-evacuation time includes the reaction time and time to leave the
vehicle. But this model neglects tunnel users deciding to stay in their vehicles.
The number of tunnel users Ntu results from the number and the type of vehicles in the upper
evacuation area, namely cars, HGVs and buses. Thus, the analytical model relates to the
parent nodes number of vehicles and ratio of HGV. Disregarding these relations, this node is
a risk factor and not an intermediate node because of its clear visualisation of the evacuation
scenario. Next to the analytical model, the risk factor also comprises the uniform distribution
in Tab. B.2 because of its direct link to the evacuation model. The uniform distribution is
merely based on assumptions and is used for evaluations within the consequence model.
Finally, the parent nodes of the frequency of scenario fsc, namely the ratio of HGV χHGV ,
the average daily traffic volume Ṅadtv and the tunnel length ltunnel all apply general models.
A general model means a large domain for the independent variables of the probabilistic
model. In contrast, tunnel specific models have specific domains of one particular tunnel.
Thus, the uniform distributions of the risk factors stem from statistics of many German road
tunnels. The risk factor ratio of HGV not only determines results for HGV but also for cars
and buses. And, results of the node tunnel length are valid in the system model but not in
the consequence model.

Intermediate nodes
As for the risk factors, App. G.2.3 provides the background and the references for the inter-

mediate nodes.
The analytical model for the frequency of scenario fsc depends on the parent nodes average
daily traffic volume and tunnel length. It is valid for road tunnels with bi-directional traffic
on two lanes without additional access roads. Also, it produces results for the frequency of
fully developed fires with a maximum HRR of more than five MW as consequence of accidents
or technical defects. In the latter case, burning vehicles can sometimes leave the tunnel which
reduces the frequency of a fire.
The intermediate nodes time of fire detection and time of tunnel alarm are closely connected.
The time of fire detection is equal to the time when the HRR reaches five MW. Failures of
the fire detection system are not assumed. Then, the result of the node time of tunnel alarm
is also identical with the time of fire detection as long as no FA occurs. Thus, it additionally
depends on the node failure of tunnel alarm.
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The number of vehicles has the parent nodes average daily traffic volume, time of tunnel
alarm and traffic speed. The node traffic speed is the weighted average of the allowed traffic
speeds of cars and HGVs in road tunnels and therefore requires the risk factor ratio of HGV.
All vehicles in the the upper evacuation area next to the fire source count to the number
of vehicles under the assumption of free-flowing traffic. The counting splits up between two
phases: first, before the time of tunnel alarm where the vehicles stop at the end of the
tailback; and second, after the time of tunnel alarm where all vehicles stop immediately with
the TA.
Finally, the parent nodes maximum HRR and time to maximum HRR, maximum pre-
evacuation time, number of tunnel users and failure of tunnel alarm amalgamate in the
intermediate node FF. This node directly connects to the consequence model and hence also
to the metamodel. But the metamodel can lead to a FF below zero and above one which
contradicts the ’fraction’ of fatalities in the system model. For this reason, the results of the
metamodel have to be clipped to comply with the system model. To distinguish both FFs,
the unclipped FF within the metamodel is denoted with ξ, and the clipped FF in the system
model is denoted with 0 ≤ Ξ̃ ≤ 1.

B.4 Consequence model with the metamodel

The consequence model within the node FF consists of the complex model as well as of the
metamodel. This section first details the discrete scenario computed within the complex
model and reasons the choice of the CFD model and the microscopic evacuation model.
Then, it introduces the complex model from the perspective of the system model as well
as the metamodel. Since the evacuation model of the complex model causes evacuation
uncertainties, the section finally outlines some approaches to examine the results of discrete
scenarios subjected to uncertainties. The notation mostly concentrates on the FF as results
of the consequence model. But the notation does not narrow the general applicability of
the metamodel on various other issues. Accordingly, Subs. ’Remarks on the mathematical
notation’ (p. G-3) of App. G.1 defines the more general notation.

Discrete scenario in FDS and FDS+Evac
The description of the scenario is now completed with its realisation in the CFD model

and the microscopic evacuation model. For this purpose, the next paragraphs first outline
publications with regard to the application of FDS and the microscopic evacuation model
FDS with Evacuation (FDS+Evac) [52], then sketch the fire and evacuation scenarios and
provide a short discussion of epistemic uncertainties in the FF of the complex model.
FDS and FDS+Evac are common fire and evacuation models in fire safety engineering and
thus contribute to the current state of research in this field. For instance, the methodologies
for risk analysis by Albrecht 2014 [30] and Weyenberge 2017 [33] apply FDS and Anderson
2018 [35] at least discusses its use. Even in more complex geometries, like metro stations,
FDS serves to determine the available safe egress time [53]. In the context of road tunnels,
e.g. the methodologies for risk analysis of Germany [13] and Austria [14] suggest FDS as
fire model. Truchot 2018 [54] examines the consequences determined with the fractional
effective dose in FDS with regard to a real fire scenario in a road tunnel. To end this
line, there are several other examples for the application and validations of FDS for road
tunnels briefly summarised in Seike 2017 [55]. Seike 2017 [55] additionally gives an overview
on microscopic evacuation models used for road tunnels, among them FDS+Evac. Next,
Ronchi 2013 [56] evaluates FDS+Evac and other microscopic evacuation models simulating
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the effects of fires on the evacuation of tunnel users in a road tunnel. And also interesting
for the evacuation through emergency exits, FDS+Evac was successfully validated for the
flow of persons through bottlenecks but at the same time it revealed discrepancies in other
measures like the walking speed [57]. Concluding, both, FDS and FDS+Evac are commonly
used and evaluated with regard to road tunnels and thus, both models are also suitable for
their application within the methodology of this dissertation.
The fire scenario is realised in FDS with the tunnel geometry and the layout depicted in
Fig. B.2 (p. 17). For this, the domain consists of a single mesh with a cell size of 0.25 m
and ends with two open boundaries. Its length of 650 m is independent to the corresponding
risk factor in the system model. Because of the length of the domain, the pressure solver
in FDS led to numerical instabilities during the setup of the fire scenario. This issue could
be solved with four leaks, i.e. small open boundaries without real analogies, distributed over
the entire tunnel length close to the ceiling. A later discussion with a developer of FDS
corroborated that this approach might be the only way to attain stable solutions. The
arrangement of the leaks resulted from a screening and led to the least effect on the gas flow
in the road tunnel. The screening further comprised for instance the length of the domain,
the mesh design together with the cell size, as well as parameters related to the longitudinal
emergency ventilation system and the fire source. The ventilation system comprises two pairs
of fans which interact with the gas and smoke spread. Namely, the fans automatically adapt
their mass flow to the gas velocity in the road tunnel and detect smoke to switch off the
ventilation. Beside the fans, the three-dimensional fire source representing a HGV, is the
only additional obstacle like cars. The HRR of the fire source depends on the risk factors
maximum HRR and time to maximum HRR. It follows an exponential function describing
the growth and the decay period [58, p. 260] as detailed in Subs. ’Exponential HRR curve
of the fire source’ (p. G-11) of App. G.4. In the same section, Subs. ’FDS input file’ (p. G-12)
complements the description of the entire model of the road tunnel.
There are different ways to adopt the smoke spread of FDS in the evacuation scenario.
e.g. Weyenberge 2017 [33] in Subs. ’Current research on methodologies for risk analysis in
fire safety engineering’ (p. 9) applies a metamodel to indirectly connect FDS with a one-
dimensional evacuation model. But in case of FDS+Evac, its developers intend to directly
link evacuation scenarios to fire scenarios of FDS. Therefore, the complex model in this
dissertation corresponds to this intention.
The evacuation scenario defined in Subs. ’FDS+Evac input file’ (p. G-15) of App. G.4 is fo-
cused on the upper evacuation area next to the fire source. During its initialisation, Ntu

tunnel users are uniformly distributed over the entire length of the evacuation area. But,
they only occupy both evacuation paths with a width of two metres on each side of the
road. Their individual characteristics, i.e. environmental variables like the walking speed or
the body size, are attributed to default parameters of FDS+Evac. After the initialisation,
the evacuation scenario begins at the same time as the ignition of the fire source in the fire
scenario. The tunnel users are either alerted by TA at a HRR of five MW or individually
by smoke. The individual alarm depends on the position of each tunnel user as well as on a
threshold value for the local smoke density, i.e. the visibility. This threshold value was de-
termined during a screening. After the alarm of tunnel users, their individual pre-evacuation
time passes. It derives from the risk factor maximum pre-evacuation time. Subsequently, the
tunnel users move alongside the road to the emergency exit in the centre of the evacuation
area. They can overtake each other but are only allowed to cross the road in the vicinity of
the emergency exit. Their individual walking speed can be impeded by smoke according to
an experimental correlation [52, p. 23]. The correlation depends on the minimum walking
speed which was specified for road tunnels according to publications [59, p. E.1; 60, p. 550;
61, p. 31]. The smoke also affects their incapacitation calculated with the fractional effective
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dose method by Purser [40]. To sum up, the evacuation scenario was specified with default
parameters of FDS+Evac as well as with parameters and assumptions identified during a
screening or derived from other publications. Moreover, its plausibility was reasoned during
the setup. e.g. without effects of smoke, the movement of tunnel users seems to be plausible
because of the simple geometry of the road tunnel and the virtually unimpeded walking speed
due to the small number of tunnel users.
However, the FF as result of fire and evacuation scenarios is subjected to high epistemic un-
certainties. e.g. particular epistemic uncertainties lie in the calculation of gas concentrations
with FDS [52, p. 15]. And with regard to the evacuation scenario, few examples are: the dif-
ferent correlations between the visibility and walking speed as discussed in Ronchi 2013 [56];
’the general lack of theoretical understanding on human performance [walking speed] in smoke
[which] makes it difficult to provide a definite interpretation of the available data-sets [corre-
lations]’ [62, p. 419]; as well as uncertainties in the fractional effective dose concept ’because
the endpoints [e.g. for incapacitation] cannot be fully quantified within narrow limits with-
out performing experimental human exposures to a variety of complex and dangerous toxic
effluent mixtures’ [40, p. 2/90]. But there are some hints not to falsify the results in the fire
and evacuation scenarios: ’FDS+Evac has been the model that best represented the impact
of smoke on agent walking speeds’ [56, p. 152]; Truchot 2018 [54] found no inconsistencies
between the fractional effective dose of simulations with FDS in comparison to a real tunnel
fire incident; and, Berchtold 2016 [8] compared three real tunnel fires to FDS and FDS+Evac
simulations and did not reveal obvious contradiction in the number of fatalities.
This short discussion of epistemic uncertainties in the complex model shall suffice, because
this dissertation focuses on the metamodel. Hence, the epistemic uncertainties in the com-
plex model are not quantified and not considered in the methodology for risk analysis.
Though, epistemic uncertainties are considered to be crucial for risk analysis as discussed
in Subs. ’Current research on the theory of risk analysis’ (p. 13) and hence, an approach to
include these epistemic uncertainties would be similar to the metamodel uncertainty and is
exemplified in de Sanctis 2016 [32]. Concluding, the complex model with FDS and FDS+Evac
is used in this dissertation to quantify the FF acknowledging the epistemic uncertainties.

Complex model within the system model
Within the complex model, the fire model FDS provides the smoke spread of a fire scenario for
the evacuation model FDS+Evac. For this, the discrete fire scenario ~xfire

i =
[
HRRmax,i, tmax,i

]
depends on the fire risk factors maximum HRR and time to maximum HRR. Subsequently, the
evacuation model computes the discrete evacuation scenario with the evacuation risk factors
maximum pre-evacuation time, number of tunnel uses and failure of tunnel alarm. Since
the evacuation scenario also takes the smoke spread into account, it additionally adopts the
values of the fire risk factors in the fire scenario ~xevac

j =
[
HRRmax,i, tmax,i, tpre,j , Ntu,j , faj

]
.

During the simulation of the evacuation scenario, the incapacitation model of FDS+Evac
determines the number of fatalities and afterwards Eq. B.1 yields the FF. Accordingly, the
result of the complex model, i.e. the FF, comes from simulations of the discrete fire and
evacuation scenarios. To describe the discrete scenarios in the complex model, the notation
follows Tab. B.4.
But FFs of evacuation scenarios are subjected to evacuation uncertainties. To quantify the
evacuation uncertainties, an evacuation scenario consists of Nrep replications. A replication
is a repeated simulation of a stochastic model with equal values of the ’control variables’
but with by their nature varying values of the environmental variables. E.g. replications are
used in Salemi 2016 [29] to quantify aleatory uncertainties in general or in Ronchi 2014 [43] to
analyse evacuation uncertainties. In this dissertation, the replications of one discrete scenario
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Table B.4: Notation used for the complex model.
notation description
~xi discrete scenario, data point
~xfire fire scenario
~xevac evacuation scenario
Nrep number of replications of a discrete scenario
ξc FF of a single replication
ξ̃c

i =
[
ξc

i,1, ξc
i,2, . . . , ξc

i,Nrep

]
FF of a discrete scenario with all replications (ORS)

ξ̄c
i mean FF of ξ̃c

i

with equal values in the risk factors produce the result ξ̃c
i ≡ ξ̃c (~xi) =

[
ξc

i,1, ξc
i,2, . . . , ξc

i,Nrep

]
.

Another term for this result is observed random sample (ORS). This term signalises the
results of a discrete scenario and emphasises its frequency distribution. Despite the evacuation
uncertainty, the arithmetic mean ξ̄c

i = µ(ξ̃c
i ) and the variance of the FF are considered to

be deterministic in case of a sufficient number of replications, esp. with regard to the effects
caused by risk factors.
The mean FF on the entire domain of the fire and evacuation risk factors establishes the
response surface of the complex model. But the exact ’shape of the response surface’ is un-
known because the complex model computes only some discrete scenarios. In this dissertation
the shape of the response surface is continuous between the theoretical limits zero and one.
Even discrete events in the scenario like the TA do not cause discontinuities since the occur-
rence of discrete events changes continuously together with the values of the risk factors. But
discrete events might contribute to the complexity of the response surface. The complexity
of the response surface concerns with its shape on the entire domain. A complex response
surface has a shape with large second derivatives and might reveal inflection points. To sum
up, the shape of the response surface for the FF is continuous, should be differentiable, and
is expected to be more complex than a quadratic polynomial because of its lower and upper
limits.

Metamodel
The metamodel aims to reproduce the response surface of the complex model, or shortly

to build a RSM. For this, the metamodel comprises three integral parts: the ED, the data
base and the RSM. Beside these integral parts, the metamodel uncertainty arises from the
simplifications in the RSM, and the evacuation uncertainty comes from the evacuation model.
Thus, the metamodel uncertainty and the evacuation uncertainty take also part to integrate
the results of the complex model into the system model. The integration consists of two steps:
first, the results of the RSM, the metamodel uncertainty and the evacuation uncertainty join
to the results of the metamodel; then, the node FF integrates the FF of the system model.
Fig. B.3 depicts the integral parts as well as the integration into the system model and
App. G.3 sketches its implementation. The following paragraphs detail the integral parts
of the metamodel and finally outline possible approaches to achieve higher efficiency. Also
Tab. B.5 summarises the notation for the metamodel and therefore supplements Tab. B.1 and
Tab. B.4.
An ED serves for the ’specification of points [discrete scenarios] in the experimental region
[domain] at which we wish to compute the response [result].’ according to Santner 2003 [10,
p. 121]. Hence, the ED X =

[
~x1, ~x2, . . . , ~xNdps

]T
specifies Ndps ’data points’, i.e. discrete
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Ξ̃
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ξ̄ (TA) ξ̄ (FA)

ξ̃c (TA) ξ̃c (FA)

Xfire Xevac

Ntu

HRRmax tpre

smoke spreadtmax

risk factors
system model

Rind Rsoc

random scenarios
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data base

RSM

evacuation uncertainty

metamodel uncertainty

Figure B.3: Three integral parts of the metamodel (white layers): in the EDs, the evacu-
ation scenarios Xevac adopt the smoke spread of the fire scenario ~xfire ∈ Xfire

(red point), the other evacuation scenarios are not shown; the data base con-
tains the results of all replications which lead to the evacuation uncertainty
(sketched blue); the RSM approximates the results at random scenarios and
causes the metamodel uncertainty. Next, the node FF (grey layers) integrates
the results of random scenarios in the metamodel into the system model.

scenarios, for the data base. The number of data points in some specific EDs is also denoted
with ‖X‖.
The complex model with its fire model and evacuation model demands two different EDs.
On the one hand, the ED Xfire defines fire scenarios with the fire risk factors ~xfire =[
HRRmax,i, tmax,i

]
. And on the other hand, the ED Xevac describes the evacuation scenarios

~xevac =
[
HRRmax,i, tmax,i, tpre,i, Ntu,i

]
. For brevity, the ED Xevac is commonly denoted with

X, but the symbols Xevac and Xfire highlight the different scenarios if required.
The domains for fire risk factors and evacuation risk factors in the EDs are equal to the
domains of the uniform distributions in Tab. B.2 (p. 16). Therefore, the two risk factors
maximum HRR and number of tunnel user deviate from their default models. The deviating
domain of the risk factor maximum HRR is based on the assumption that fire scenarios with
HRRmax < 25 MW do not lead to fatalities, and the domain for the number of tunnel users
is reasoned in App. G.2.2.
After simulating the scenarios of the EDs with the complex model, the results are saved in
the corresponding data base of the metamodel used in the consequence model of the system
model, or shortly data base for the system model. Thus, the data base for the system
model contains the data points together with the results of the simulations. Basically, the
ORS, i.e. all replications of the scenario, constitute the results. Accordingly, the data base
is ’boldly denoted’ with ξ̃c ≡ ξ̃c

X =
[
ξ̃c

1, ξ̃c
2, . . . , ξ̃c

Ndps

]T
with the ED X. But to emphasise

the deterministic results, namely the mean FF, the data base is symbolised with ξ̄c ≡ ξ̄c
X =[

ξ̄c
1, ξ̄c

2, . . . , ξ̄c
Ndps

]T
.
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Table B.5: Notation used for the metamodel.
notation description
X ED
Ndps number of data points in the ED Ndps ≡ ‖X‖
Xfire ED for fire scenarios
Xevac ED for evacuation scenarios, also briefly denoted with X

ξ̃c data base for the FFs of all replications of all scenarios in an
ED

ξ̄c data base for the mean FF of all scenarios in an ED
ξ̃ FF of the metamodel with the combined integration of the

metamodel uncertainty and evacuation uncertainty for one
random scenario

ξ̄ FF of the RSM or of the metamodel without metamodel un-
certainty or evacuation uncertainty for one random scenario

ξ̃, ξ̄ corresponding results for multiple random scenarios

Next, the response surface method applies a data base to set up the model of the response sur-
face, literally the response surface model. In this dissertation, the response surface methods
generally use deterministic results of the complex model and their RSMs produce determin-
istic results. This approach has two reasons: first, it is common in case of evacuation models
to compute multiple replications and draw separate conclusions from the means of their re-
sults and their variances, e.g. as outlined in Ronchi 2014 [43]; and second, to separate the
evacuation uncertainty from the RSM in order to question assumption 2 (plausibility). The
deterministic result of a RSM for a random scenario x̃, or in other words ’arbitrary point’,
and the data base ξ̄c

X is denoted with ξ̄X . It approximates the unknown deterministic result
of the complex model ξ̄c (x̃) for this random scenario.
Tab. B.5 extends the notation for results of the metamodel. For the sake of brevity, the
symbols for multiple results are also used to directly name the RSM or metamodel without
referring to the results. Vice versa, the terms ’RSM’ or ’metamodel’ sometimes, and in
particular in tables, have the meaning of ’results of the RSM’ or ’results of the metamodel’.
To be noted, the ED for simulations with the evacuation model neglects the evacuation risk
factor failure of tunnel alarm because of its two discrete results TA and FA. In order to include
this risk factor, two different data bases comprise either scenarios with TA or scenarios with
FA but stem from the same ED as illustrated in Fig. B.3. Consequently, both corresponding
RSMs also use the same ED. This dissertation usually describes both data bases or RSMs
independent from TA or FA but if required distinguishes the RSMs of the ED Xi with ξ̄Xi,0

or ξ̄Xi (TA) for scenarios with TA and ξ̄Xi,1 or ξ̄Xi (FA) for scenarios with FA.
With respect to the efficiency of the metamodel in objective 2 (efficiency), it is crucial to
reduce the required number of simulations with the fire model, i.e. CFD model. In con-
trast, the number of simulations with the evacuation model is less important because CFD
models cause substantially higher computational cost. Hence, the metamodel pursues two
approaches to increase the efficiency: the combination of EDs and the sequential refinement.
The combination of the ED for fire scenarios and the ED for evacuation scenarios allows that
multiple evacuation scenarios obtain the smoke spread of a single fire scenario as exemplified
in Fig. B.3. Thus, the number of data points in the ED for fire scenarios is smaller than
for evacuation scenarios, namely

∥∥∥Xfire
∥∥∥ < ‖Xevac‖ and with

∥∥∥~xfire
∥∥∥ < ‖~xevac‖. Next, the

sequential refinement of the metamodel comprises different refinement steps with focus on
high metamodel uncertainties. Fig. B.4 sketches the four successive steps within one refine-
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ment step. The successive steps are: first, to set up the initial ED with a small number of
data points; second, to perform the simulations with the complex model at the data points
and to add their results to the data base; third, to set up the RSM; fourth, to evaluate the
metamodel, e.g. for its use in the risk analysis; and finally before revisiting step two again,
to add new data points to the ED with focus on regions of the domain with high metamodel
uncertainty. Summing up, the sequential refinement targets at two capabilities: to focus on
regions with high metamodel uncertainties, briefly named as ’focused sequential refinement’;
and to avoid conservative estimates of the number of data points in the initial ED. The latter
capability differs to a batch design, i.e. an ED with a single batch of data points without
sequential refinement.

initial ED

data base

setup of the
RSM

evaluation of the
metamodel

new data points

simulation with the
complex model

Figure B.4: Successive steps within one refinement step in the sequential refinement of the
metamodel.

Evaluation of ORSs
The evaluation of the frequency distribution of ORSs provides an important basis for the

reproduction of the evacuation uncertainty of the complex model. For this, this subsection
describes three approaches. The main focus lies on an approach to determine the required
number of replications in the ORSs. Then, the last two paragraphs deal with approaches to
compare the frequency distributions of ORSs and to test their distribution type.
First, the bootstrap approach [63] is suitable to assess the entire frequency distribution of
ORSs in contrast to Ronchi 2014 [43]. In general, the approach is used to determine standard
errors for statistics of an empirical frequency distribution of an ORS. For this, it draws
random samples from the empirical frequency distribution and determines the statistic for
each random sample to get the standard error. The random samples are called bootstrap
samples in this dissertation. In detail, a bootstrap sample results from a random experiment
with replacement with the ORS as data base and has the same number of replications.
Accordingly, the bootstrap approach serves to determine the required number of replications
in this dissertation. The number of replications is sufficient if the ORS reproduces the ’un-
known probability distribution’. The term ’unknown probability distribution’ describes the
real probability distribution of the results of the stochastic complex model behind the ORS
and thus is equal to the term ’evacuation uncertainty’. But it applies for available ORS of
discrete scenarios whereas ’evacuation uncertainty’ is used for results of random scenarios
disregarding specific ORSs. Since the ORS is the single available information on the un-
known probability distribution of a discrete scenario, the reproducibility of the ORS itself
implies that it also reproduces the unknown probability distribution. So, if the frequency
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distributions of bootstrap samples are different to the ORS, a reproduction of the unknown
probability distribution seems unlikely and more replications are required. On the other
hand, if the frequency distributions of the bootstrap samples are similar to the ORS, the
ORS is reproducible. At the same time, it is likely that the ORS reproduces the unknown
probability distribution.
Second, the bootstrap approach bases on the comparison of frequency distributions. Qual-
itatively, one option is to visually juxtapose the frequency distributions of the ORS with a
randomly chosen bootstrap sample. Quantitatively, the quantiles qj of the FFs in the boot-
strap samples are compared. More precisely, the mean of all bootstrap samples for each
quantile, i.e. the mean bootstrap quantiles ξ̃∗

qj
are compared to the quantiles of the FF in

the ORS ξ̃c
qj

. Then, Eq. B.6 quantifies the largest absolute difference. If it is smaller than
a threshold value, the bootstrap samples and the ORS are similar. The threshold value is
derived from a visual analysis of the results.

Dξ̃c
q = max

{∣∣∣ξ̃c
qj

− ξ̃∗
qj

∣∣∣ , . . . |∀qj

}
(B.6)

Third, the test of the distribution type of ORSs follows the one-sample Kolmogorov-Smirnoff
test [64, p. 352f]. In this test, the null hypothesis states that the ORS is subjected to e.g. a
normal distribution and the test statistic is dKS,crit =

√
−0.5 ln(α/2)

Nrep
with Nrep as sample size

and the two-sided confidence level α. The test returns dKS,max and the p-value pKS of the
test. The null hypothesis is to reject if dKS,max > dKS,crit or if pKS < α.

B.5 Approaches for the evaluation of risk analysis

The consequence model provides the FF of the system model for Monte-Carlo simulations.
The Monte-Carlo simulations have two different foci and are named with ’system model
simulation’ and ’risk analysis’. The system model simulation S serves for the evaluation of
single nodes in the system model, esp. of the metamodel in the node FF. For this, the risk
factors maximum HRR and number of tunnel users use their uniform distributions shown
Tab. B.2 on p. 16. Hence, all risk factors generate uniformly distributed results which favours
an even spread of random scenarios on the entire domain. Contrary, risk analyses R using the
default models of all risk factors aim at random scenarios with frequencies corresponding to
real tunnel fires. However, their assessment does not necessarily look at their risk measures
but can also concentrate on the node FF.
The differences in the methodologies for risk analysis of road tunnels outlined in Section A.1
motivate the evaluation of risk analyses R with regard to: the effect of risk factors on their
results; and the plausibility of their risk measures. But first, risk analyses must lead to con-
verging results during Monte-Carlo simulations. Thus, the evaluation bases on the following
approaches.

Convergence in the Monte-Carlo simulation
The convergence measure υconv in Eq. B.7 serves to quantify the convergence of a scalar
measure Υ in a Monte-Carlo simulation, e.g. the FF or the individual risk. It applies the
arithmetic mean of the scalar measure with µ (Υ)n = 1

n

∑n
i=1 Υi for different numbers of

random scenarios n ≤ Nmcs and with Υi ∈ Υ for one random scenario. Additionally, the
successive arithmetic means ~µ = [µ1, . . . , µNmcs ] illustrate the convergence. So, the conver-
gence measure, similar to Ronchi 2014 [43], can be used to determine the required number of
random scenarios until its convergence in a Monte-Carlo simulations.
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υconv = µNmcs − µ0.9·Nmcs

µNmcs
(B.7)

Effect of risk factors on risk measures
The Spearman’s rank correlation coefficient ρsp [64, p. 372] is a measure for monotonic cor-
relations, e.g. between a risk factor and the FF. This measure does not directly inform on
quantitative effects. But a clear the monotonic correlation of one risk factor implies smaller
influences of other risk factors as long as the monotonic correlation is reasonable. Thus, a
high correlation coefficient of one risk factor qualitatively indicates smaller effects of other
risk factors and vice versa for low correlation coefficients.
Complementing these qualitative results, the relative effect of risk factors on risk measures
quantifies the effects directly. The relative effect was already published by Berchtold 2016 [8]
but was later adapted to be more clear.
The relative effect of a risk factor x on individual risk in Eq. B.8 is defined with the ’relative
difference between the maximum and minimum individual risks proportional to the mean
individual risk’ and is depicted in Fig. B.5a. For this definition, the maximum and minimum
individual risks consider random scenarios of different regions in the domain of the risk factor.
Namely, Rind

minmax
= minmax

{
Rind

1 , . . . , Rind
n

}
where the individual risk with random scenarios of

each region of the risk factor is Rind
i ≡ Rind (xi). And, the mean individual risk takes into

account all random scenarios the entire domain of the risk factor.

ηind = Rind
max − Rind

min

Rind (x) (B.8)
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Figure B.5: Terms used to determine the relative effect of risk factors.

Similarly, the relative effect on societal risk in Eq. B.9 and Fig. B.5b is the ’mean over all
number of fatalities of the absolute difference between the lower and the upper societal risk
curve proportional to the common societal risk curve’ with the absolute difference in Eq. B.10.
The lower and the upper societal risk curve are denoted with Rsoc

a ≡ Rsoc (xa) as well as
Rsoc

b ≡ Rsoc (xb). They consider random scenarios with intervals between the 10%- and
50%-quantiles of the domain of the risk factor xq10 < xa < xq50 as well as xq50 < xb < xq90

respectively. In contrast, the common societal risk curve Rsoc
0 = Rsoc (x) is subjected to

random scenarios on the entire domain. To increase the reproducibility of this relative effect,
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different steps have been introduced, e.g. the limitation of the maximum number of fatalities.
These steps reduce dispersions in the upper part of the societal risk curve.

ηsoc = 1
Nfat

Nfat∑
Nfat,i=1

∆Rsoc (Nfat,i)
Rsoc

0 (Nfat,i)
(B.9)

∆Rsoc (Nfat,i) = |Rsoc
a (Nfat,i) − Rsoc

b (Nfat,i)| (B.10)

Plausibility of risk measures
The discussion of the plausibility of results of risk analyses bases on the concept of falsification.
For this, Popper’s falsifiability criterion tells that ’statements or systems of statements, in
order to be ranked as scientific, must be capable of conflicting with possible or conceivable
observations’ as discussed in Hansson 2014 [49, p. 1175]. Accordingly, if ’statements’, i.e. risk
measures, contradict ’observations’, the results of risk analyses are falsified and seem not to
be plausible.
The first observation relates to accepted risk measures. The accepted individual risk in
the Netherlands depends on ’the degree to which the activity is voluntary’, e.g. Rind

accepted =
10−4 1

year for ’employees’ to Rind
accepted = 10−6 1

year for ’persons living near the [road] tunnel’
[65, p. 218f]. Also, Vrijling 1998 [66, p. 143] describes a difference by an order of magnitude of
two for activities with ’direct benefit’. Looking at the accepted societal risk curve, it varies in
the same order [65, p. 218f; 66, p. 143; 67, Fig. 2] where Wahlström 2018 [67, Fig. 2] depicts
accepted societal risk curves of seven European countries as shown in Fig. B.6. Additionally,
the limiting and the accepted societal risk curves in Bedford 2001 [68, p. 8f] differ with an
equal range. The former one is Rsoc

limit (Nfat) = 10−3−2Nfat 1
year which is not to be exceeded,

and the latter one is Rsoc
accepted (Nfat) = 10−5−2Nfat 1

year .

Figure B.6: Accepted societal risk curves of European countries; the figure was adopted
from Wahlström 2018 [67, Fig. 2].

Next, observation two stems from an overview on societal risk curves in ’several hypothetical
and comparable real [road] tunnels’ of Wahlström 2018 [67, Fig. 6] depicted in Fig. B.7. In
particular, these societal risk curves comprise scenarios with more than 100 fatalities.
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Figure B.7: Risk curves from risk analyses of ’hypothetical and comparable real [road] tun-
nels’; the figure was adopted from Wahlström 2018 [67, Fig. 6].

Concluding, the evaluation of the plausibility of risk measures derives from falsification
with two observations: first, the accepted risk measures with the individual risk between
10−6 1

year ≤ Rind ≤ 10−4 1
year and the societal risk curve between the accepted and the lim-

iting societal risk curves; and second, the societal risk curve should resemble the results of
other risk analyses in [67, Fig. 6], esp. with respect to the number of fatalities. Beside, the
risk measures of risk analyses should not be subjected to larger variations than an order of
magnitude of two.
But the focus on the upper evacuation area in the system model requires some discussion as
already detailed in Berchtold 2016 [8]. With regard to the individual risk, the FF in the upper
evacuation area is expected to be higher than in other parts of the road tunnel. Hence, the
individual risk considering the entire tunnel is elevated in this methodology for risk analysis.
On the other hand, the number of fatalities is only counted in the upper evacuation area.
This focus underestimates the number of fatalities in the entire road tunnel, particularly in
case of scenarios with rare events and also affects the frequency of scenarios in the upper part
of the societal risk curve.
To be noted, both observations derive from theory or other risk analyses and not from real fire
scenarios. Thus, the comparison will only be used to question the results of the methodology
for risk analysis in this dissertation and not to calibrate or improve the risk analysis itself.
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C Experimental design

The ED constitutes the first integral part of the metamodel and specifies the discrete scenarios
for the simulations with the complex model. Section C.1 introduces different methods used
for the setup of an ED. Then, Section C.2 describes the projection array-based design (PAD)
as it is used in this dissertation and details some differences to the original publication of
the PAD method in Leoppky 2012 [25]. Section C.3 briefly summarises the entire setup of an
ED and sketches the selection process. The selection process finally results in an ED which
serves for the data base, the second integral part, of the metamodel.

C.1 Overview on literature

In Subs. ’Metamodel’ (p. 23) it is shortly reasoned why the RSMs in this dissertation are sub-
jected to deterministic results of the complex model. Also, Santner 2003 [10, p. 124] assumes
that deterministic models are generally applied for ’computer experiments’ and hence ’A sin-
gle observation at a given set of inputs [data point] gives us perfect information about the
response [result of the complex model] at that set of inputs, so replication is unnecessary’.
With this assumption, the publication then derives two principles for EDs: first, ’Designs
should not take more than one observation [deterministic result] at any set of inputs [data
point]’; and second, EDs ’[...] should allow one to fit a variety of models and should provide
information about all portions of the experimental region [entire domain]’, in other words, the
EDs should direct at the global objective. Hence, Santner 2003 recommends to ’use [experi-
mental] designs that spread the points at which we observe the response evenly throughout
the region’ which is named as ’space-filling’. Equally, Myers 2002 [20, p. 482] describes the
same principles for deterministic ’computer models’.

Current methods for EDs
Full factorial designs (FFD) [10, p. 126], denoted with XFFD, are basic EDs which achieve

both principles. In particular, a FFD with two levels having only data points at the outer
vertices of the domain, is called two-level FFD.
Also, Latin hypercube designs (LHD), originally published in [26], meet both principles ac-
cording to the publications [10, p. 125; 20, p. 482]. For instance, the risk analysis in fire
safety engineering of Weyenberge 2017 [33] applies LHDs. Thus, the LHD method is suitable
for objective 1 (metamodel). The setup of LHDs was already detailed in various ways, e.g.
[10, p. 127; 69], which necessitates only to emphasise two characteristics: the LHD method
is subjected to a structure which can lead to issues in the sequential refinement of a LHD;
and LHDs can lack of space-filling due the randomness in their setup.
Accordingly, the aim of a structured literature overview on EDs for computer experiments was
to choose a method for EDs on the basis of the current state of research with: the capability
for focused sequential refinement on regions of the domain; and an improved space-filling
compared to the LHD method. As a result, the PAD method of Leoppky 2012 [25] serves for
the ED in this dissertation. Therewith, the ED can improve the efficiency of the metamodel
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and directs at the global objective. Hence, the PAD method provides the basis for objective
2 (efficiency) and objective 1 (metamodel) respectively.
In detail, the PAD method extends the structure of LHDs as depicted in Fig. C.1. The
structure of LHDs consists of ’disjoint subsets [...] of equal probability’ [69, p. 312] named as
substrata. Thus, the LHD-condition is to yield exactly one data point in each substratum of
the ED. Accordingly, the number of data points equals the number of substrata. Moreover,
a PAD XPAD is subjected to a structure of projection arrays (PA) formed by strata. The

number of strata is Nstrata =
⌈

N
1

Nrf
dps

⌉
with d e as the ceiling function, and the number of

projection arrays is NNrf
strata [25]. The additional PA-condition is to have at maximum one

data point in each PA of the ED. Concluding, the PA-condition supports the LHD-condition
and enhances the even spread of data points on the entire domain. In other words, the PAD
method improves the space-filling of the LHD method.

x10 1
0

1

x2

projection array

initial ED

PAD

substructure

structure

stratum

substratum

Figure C.1: Composed ED with focus on the outer vertices of the domain with the risk
factors x1 and x2; the initial ED is located at the outer vertices.

Focused sequential refinement and improvement of space-filling
Originally, the PAD method allows to focus on single strata or projection arrays during the
sequential refinement as illustrated in Leoppky 2012 [25, Fig. 4]. This approach can cause
large differences in the number of data points between neighbouring projection arrays or
strata. In contrast, the approach applied in the metamodel of this dissertation accounts for
a steady increase of the number of data points to the region of the domain in focus.
Leoppky 2012 [25, p. 1495f] illustrates and recommends near orthogonal arrays to improve
space-filling, similar to orthogonal array-based LHDs [21]. However, this approach subjects
data points to random positions within a PA which requires further improvement of space-
filling, e.g. with the optimisation of distance measures as in publications [10, p. 138] and [69,
p. 311]. Therefore, the PAD method in this dissertation neglects the orthogonality of arrays
but merely optimises distance measures resulting in good space-filling of the EDs.
Optimisations of distance measures, i.e. the maximin or minimax distances, are useful in
case of randomness in the setup of EDs, e.g. with the LHD or the PAD method. The
maximin optimisation specifies the maximin distance dmaximin of an ED. In other words,
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it maximises the minimum euclidean distance between all data points in Nmami random
EDs according to Eq. C.1 with Eq. C.2. Next, the minimisation of the maximum euclidean
distance from any arbitrary point x̃ ∈ X̃ in the domain to its closest data point is called the
minimax optimisation. It results in the minimax distance dminimax with Eq. C.3 and Eq. C.4
after evaluating Nmima random EDs. Beside the maximin and minimax optimisation, this
dissertation also minimises the coefficient of variation of euclidean distances between all data
points dcov. As a result, the distance measures dmaximin, dminimax and dcov can be used to
evaluate space-filling of EDs.

dmaximin = max {dmin (X1) , . . . , dmin (XNmami)} (C.1)

dmin (X) = min {d (~xi, ~xk) , . . . |∀~xi ∈ X ∧ ~xi 6= ~xk ∈ X} (C.2)

dminimax = min {dmax (X1) , . . . , dmax (XNmima)} (C.3)

dmax (X) = max
{

d (x̃, ~xi) , . . . |∀~xi ∈ X, x̃ ∈ X̃
}

(C.4)

C.2 Projection array-based design applied in the metamodel

Subs. ’Metamodel’ (p. 23) provides the background on the ED with regard to the efficiency
of the metamodel, in particular it introduces the focused sequential refinement on regions of
the domain as well as the combination of EDs. Now, the entire algorithm to setup an ED
in this dissertation is described with, firstly, some preliminary assumptions, details to the
PAD algorithm espacially with regard to the focus, the sequential refinement and last the
space-filling of the ED. Finally, the combination of EDs for fire and evacuation scenarios is
explained. This algorithm completely uses a unit hypercube with the domain [0, . . . , 1] for
each risk factor.

Preliminary assumptions
The ED in this dissertation is composed of a two-level FFD X0 = XFF2 as initial ED and a
PAD XPAD

1 in the first refinement step: X1 =
[
XFF2T

, XPAD
1

T
]T

. This composition prevents
extrapolation of RSMs. Because the two-level FFD has multiple data points at the outer
vertices of the domain, the number of substrata has to be adapted in the setup of the PAD.
In detail, 2 · 2‖~x‖−1 = ‖XFF2‖ data points of the two-level FFD are in the outer substrata
of all risk factors as it is obvious in Fig. C.1. Two options for adaptions are apparent. First,
to keep the number of substrata equal to the number of data points in the composed ED.
But this option would lead to two substrata empty on each risk factor. And second, to not
consider the data points of the two-level FFD at all causing three data points at the outer
substrata. Another option is to consider multiple data points of an outer substratum as only
one data point on each risk factor. Hence, the number of substrata in the composed ED is
by two higher than the number of data points in the mere PAD, namely ‖XPAD‖ + 2. The
latter option seems to favour the evenly distributed data points and is for this reason used
in this dissertation.
Commonly, the width of substrata of LHDs depends on the probability distribution of the risk
factors, e.g. as for the improved sampling in Monte-Carlo simulations [69]. But the metamodel
in this dissertation aims to reduce the metamodel uncertainty efficiently. Additionally, system
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model simulations outlined in Section B.5 only use uniform distributions in all risk factors.
As a consequence, the widths of substrata does not depend on the probability distributions
in the risk factors but are adapted to focus on regions with high metamodel uncertainty.

PAD algorithm
The PAD algorithm for a batch of data points differs to the description in Leoppky 2012 [25]

in order to flexibly compose EDs of different methods. It mainly differs in successively adding
single data points to the existing ED instead of adding a batch of data points in a whole. But
before adding all the data points of the entire batch, the levels of strata and substrata are
specified to correspond to the final number of data points of the entire ED. Fig. C.2 shows
the three steps to add one data point. First, a PA is randomly chosen among all PAs without
a data point. Second, the substrata of this PA are prioritised with three priority levels for
each risk factor. The priority of a substratum depends: on existing data points, i.e. free
or full; and on whether the substratum is either completely in the PA or overlaps with the
stratum limits, referred to as complete or overlapping. The priority levels are: three, for free
and complete substrata; two, for free and overlapping substrata; and one, for full substrata.
A data point added to a full substratum with the priority level one fails the LHD-condition.
Therefore, the substrata with the priority level one are only considered in the PAD algorithm
if necessary to complete the entire batch of data points. Third, the data point is added to
the existing data points of the ED. For this, a substratum is randomly chosen among all
substrata with the highest priority level and with a width-weighted probability. Then, the
data point is uniformly distributed within the limits of the chosen PA and substrata. Finally,
the PAD algorithm stops if the required number of data points of the batch is reached.

x10 1
0

1

x2

x10 1
0

1

x2

x10 1
0

1

x2

fullfree
overlapping
selected

substrata:
full
free, chosen

PA:
full

PA:

Figure C.2: Three steps of the PAD algorithm to add a new data point: first, to randomly
choose a free PA without existing data point (left); second, to set the priority
levels of the substrata within the PA for each risk factor and select the sub-
stratum with the highest priority level (centre); third, to add a new data point
to the selected substrata (right).

The even spread of data points in the domain depends on the LHD-conditions of data points
in the PAD. If data points are subjected to substrata with the priority level one and fail
the LHD-condition, another substratum remains empty. The empty substratum leads to the
preference of substrata completely lying in a stratum which means an uneven spread of data
points in the domain of the risk factor. In case of complete LHD-condition, that is all data
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points achieve the LHD-condition, the PAD algorithm guarantees an even spread of data
points despite the prioritisation of substrata. The reasons are: the random choice of a PA
without existing data point; the filling of all substrata with one data point according to the
LHD-condition; and the width-weighted choice of a substratum. As a consequence, there is
neither a preference of a PA nor of both parts of an overlapping substratum.

Focus on regions of the domain
The approach to focus on a region of the domain aims at the steady increase of the number of
data points to this region. Basically, it stretches the level widths wlevel of strata or substrata
with Eq. C.5. The term ’level’ specifies a particular stratum or substratum. Hence, the
number of levels Nlevels is equal to the number of strata or substrata. The stretching further
depends on the level centre xlevel of the risk factor x ∈ [0, . . . , 1] in the unit hypercube and
is axially symmetric to the domain centre x = 0.5. After the stretching of all levels, the sum
of all level widths is again normalised to the domain of the unit hypercube.

wlevel = exp (|xlevel − 0.5| · log (pstretch))∑Nlevels
level=1 wlevel

(C.5)

The stretching parameter pstretch controls the focus on regions. pstretch = 1 maintains equal
level widths without focus on a particular region. With pstretch > 1 the focus lies on the
centre of the domain and with pstretch < 1 the level widths shrink to the outer vertices as
exemplified in Fig. C.1. Up to now, the same stretching parameter is valid for all risk factors
leading to an identical focus.

Sequential refinement
Fig. B.4 on p. 26 depicts the successive steps within one sequential refinement step. Eq. C.6

summarises the first step of these successive steps, i.e. adding new data points XPAD
new with

the PAD algorithm, to get from the ED Xi−1 to the ED Xi. The PAD algorithm begins with
the setting of new strata and substrata for the ED Xi with respect to its number of data
points and its stretching parameter. The new strata and substrata naturally differ to the
previous ED Xi−1 and as a consequence existing data points in the ED Xi−1 can fail the PA-
or LHD-conditions. In this case, Leoppky 2012 [25, p. 1501] accepts fails with the remark ’In
general it is possible to have repeated combinations [more than one data point] in an induced
PA structure [a projection array] from a PA-based design.’

Xi =
[
Xi−1

T , XPAD
new

T
]T

(C.6)

However, the PAD method in this dissertation applies an approach to prevent fails of PA-
and LHD-conditions during the setup of the ED Xi. This approach bases on the assumption
of the number of data points and the stretching parameter of a future ED Xi+1. Afterwards,
it checks the PA- and LHD-conditions for the data points of the ED Xi with regard to the
assumed strata and substrata of the future ED Xi+1. So, there is an option to discard the
ED Xi during selection of the ED as a consequence of this additional check.

Improvement of space-filling
The automatic improvement of space-filling uses the maximin and minimax optimisations

which both employ the randomness in the PAD algorithm. The maximin optimisation is
nested in the minimax optimisation and also integrates the improvement of PA- and LHD-
conditions.
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For the setup of the ED Xi, the maximin optimisation generates Nmami EDs {Xi,1, . . . , Xi,Nmami}
according to the PAD algorithm. It determines the distance measure dmin between new data
points XPAD

new,j to all data points in Xi,j for each ED Xi,j with Eq. C.2. Also, the integrated
improvement of PA- and LHD-conditions discards an ED Xi,j if its data points fail more often
in the PA- or LHD conditions than an automatically set threshold value. In this case, the
ED Xi,j does not count to the total number Nmami. A fail can be either caused in the PAD
algorithm by the choice of a substrata with the priority level one, the adapted strata and
substrata in the sequential refinement or by the combination of fire and evacuation scenarios.
Finally, the maximin optimisation chooses the ED Xmami

i ≡ Xmami
i,j with dmaximin according

to Eq. C.1.
The minimax optimisation first defines a FFD representing the arbitrary points XFFD ≡
X̃ in Eq. C.4. The FFD has either 50 levels in the ED for fire scenarios Xfire with two
risk factors or ten levels in the ED for evacuation scenarios with four risk factors. Next,
the minimax optimisation produces Nmima EDs

{
Xmami

i,1 , . . . , Xmami
i,Nmima

}
all subjected to the

maximin optimisation and picks the ED Xmima
i ≡ Xmima

i,j with dminimax in accordance with
Eq. C.4 and Eq. C.3. To sum up, the ED Xmima

i was subjected to the maximin and minimax
optimisations and finally serves for the selection of the ED Xi.

Combination of EDs
The discrete fire and evacuation scenarios for the complex model are based on two different

EDs Xfire and Xevac. Usually, the values of fire risk factors of an evacuation scenario do not
correspond to the values of fire risk factors of an fire scenario, namely ~xfire

i ∈ Xevac 6= ~xfire
j ∈

Xfire∀i, j. Thus, the ED for evacuation scenarios has to be adapted in order to combine the
evacuation scenarios with the fire scenarios, i.e. to consider the smoke spread. More precisely,
the fire risk factors of the evacuation scenario ~xevac

i ∈ Xevac adopt the values of the fire risk
factors of a fire scenario ~xfire

j ∈ Xfire leading to ~xfire
i ∈ Xevac = ~xfire

j ∈ Xfire. For this adaption,
there are two basic modes to choose the fire scenario ~xfire

j ∈ Xfire for the evacuation scenario
~xevac

i ∈ Xevac.
The mode ’projection array’ compares the projection arrays with strata of the ED Xfire

of an evacuation scenario PA
(
~xfire

i ∈ Xevac
)

with the projection arrays of all fire scenarios
PA

(
~xfire

j ∈ Xfire
)

∀j. Then, the fire risk factors of the evacuation scenario ~xevac
i ∈ Xevac

adopt the values of the fire risk factors of the fire scenario ~xfire
j ∈ Xfire with equal projection

arrays PA
(
~xfire

i ∈ Xevac
)

= PA
(
~xfire

j ∈ Xfire
)
. But the ED Xfire does not necessarily occupy

all PAs. Hence, there might be no fire scenario which matches the PA of the evacuation
scenario: PA

(
~xfire

i ∈ Xevac
)

6= PA
(
~xfire

j ∈ Xfire
)

∀j. As a result, the combination of this
evacuation scenario with a fire scenario is not successful. Therefore, the evacuation scenario
has to be discarded leading to an empty substratum and a fail in the LHD-condition.
In the mode ’closest’, the fire risk factors of the evacuation scenario ~xevac

i ∈ Xevac adopt the
values of the fire risk factors of the fire scenario ~xfire

j ∈ Xfire with the smallest euclidean dis-
tance, d

(
~xfire

i , ~xfire
j

)
= min

{
d
(
~xfire

i ∈ Xevac, ~xfire
j ∈ Xfire

)
∀j
}

, between both scenarios. But
the projection arrays of both scenarios may differ, i.e. PA

(
~xfire

i ∈ Xevac
)

6= PA
(
~xfire

j ∈ Xfire
)
.

Thus, the PAs of the fire risk factors in the evacuation scenario change which can result in
the fail of the PA-condition.
Concluding, the combination of both basic modes brings advantages. In detail, if the mode
’projection array’ does not lead to a successful combination of an evacuation scenario with a
fire scenario and this evacuation scenario is required to reach the number of data points to
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complete the entire batch in the ED Xevac, the mode ’closest’ is used. The mode ’closest’
definitely combines the evacuation scenario with a fire scenario. This combination leads to
good space-filling due to the PA-condition with only some fails in PA- and LHD-conditions.
Finally, the number of fire scenarios is lower than the number of evacuation scenarios to
increase the efficiency of the metamodel. Hence, multiple evacuation scenarios aggregate
in the region of the same fire scenario as highlighted in Fig. E.2 on p. 54. In other words,
these evacuation scenarios have equal values in their fire risk factors and consequently fail
the LHD-condition. For this reason, the fire risk factors of evacuation scenarios are excluded
for the evaluation of the LHD-condition.

C.3 Setup and selection of the experimental design

Fig. C.3 sketches the setup and selection of the final ED Xi in a refinement step of the ED
Xi−1. The selection process begins with the definition of the new strata and substrata for
the ED Xi and continues with the setup of multiple EDs

{
Xmima

1 , . . .
}
. The setup is detailed

in Section C.2, esp. with regard to Subs. ’PAD algorithm’ (p. 34), Subs. ’Focus on regions of
the domain’ (p. 35) and Subs. ’Improvement of space-filling’ (p. 35). Obviously, the setup of
an ED for evacuation scenarios Xevac

i requires the corresponding ED for fire scenarios Xfire
i

as explained in Subs. ’Combination of EDs’ (p. 36). The selection process continues with the
analysis of the distance measures dminimax, dmaximin and dcov, as well as of the LHD- and PA-
conditions. It is divided into successive steps each with focus on different measures. Hence,
there are options to discard EDs, e.g. subjected to possible fails in PA- or LHD-conditions in
future EDs discussed in Subs. ’Sequential refinement’ (p. 35). And at the end, it remains one
ED Xi which finally specifies the discrete scenarios for the data base used in the metamodel.

Xi−1 Xfire
i

in case of Xevac

{X1, . . .}

{
Xmami

1 , . . .
}

{
Xmima

1 , . . .
}

maximin optimisation

minimax optimisation

dmin

dmax

dcov PA- /LHD- PA- /LHD-

Xi

discard Xi

for future Xi+1

conditions conditions

strata and sub-
strata for Xi

Figure C.3: Process to setup and select an ED Xi: the setup of one ED Xmima
i (green

arrows) bases on Nmami · Nmima EDs subjected to maximin and minimax op-
timisations with the option to discard EDs failing the PA- or LHD-conditions
(red arrow); and the selection process (blue arrow) bases on multiple Xmima

i

and evaluates each ED with the distance measures dminimax, dmaximin and dcov
and with regard to the PA- and LHD-conditions (red arrows).
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D Response surface method and metamodel

After the ED and the data base, the RSM is the third integral part of the metamodel.
First, Section D.1 presents different response surface methods and provides the background
to the metamodel uncertainty and the evacuation uncertainty. Then, Section D.2 describes
specific approaches used for the RSM and the metamodel uncertainty in this dissertation.
And Section D.3 concentrates on the direct approach originally developed for the evacuation
uncertainty in this dissertation. Finally, Section D.4 outlines the integration and evaluation
of the metamodel in the system model. To sum up, moving least squares (MLS) is established
to be used in the system model. For this purpose, the subsections use the general notation
outlined in Subs. ’Remarks on the mathematical notation’ (p. G-3) of App. G.1 to emphasise
the generality of the metamodel.

D.1 Overview on literature

In Subs. ’Metamodel’ (p. 23) of Section B.4 the use of deterministic RSMs in this dissertation
is explained. With this background and the background in Section D.1.1, Section D.1.2 gives
an overview on different response surface methods used for risk analysis and provides the
reasons for the selection of MLS in this dissertation. Afterwards, Section D.1.3 describes
MLS in detail. And finally, the metamodel uncertainty as well as the evacuation uncertainty
for the metamodel are established in Section D.1.4 and Section D.1.5.

D.1.1 Response surface methods and model adequacy checking

This section first introduces the general formulation of RSMs on the basis of the global least
squares regression method. Then, it directs at methods for the validation of RSMs, or in
other words for the model adequacy checking.

Global least squares regression method
Myers 2002 [20, p. 18ff] describes the background for the linear least squares regression

method. For this method, Eq. D.1 defines a multiple linear regression model. It considers
the deterministic results of the complex model at Ndps data points ~xi ∈ X in the data base
Ȳ

c. Their corresponding approximation errors δy are supposed to be normally distributed
with the mean µ (δy) = 0 and the variance var (δy). The underlying polynomial to the
regression model consists of polynomial terms with the regression coefficients β. The number
of polynomial terms is denoted with Nterms ≡ ‖β‖. Eq. D.2 and Eq. D.3 exemplify a linear
and a quadratic polynomial for two control variables at the data point ~xi = [xi,1, xi,2] [20,
p. 56]. Accordingly, the polynomial terms P represent the ED X in a Ndps × Nterms matrix.

Ȳ
c = Pβ + δy (D.1)

ȳc
i = β0 + β1xi,1 + β2xi,2 (D.2)
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ȳc
i = β0 + β1xi,1 + β2xi,2 + β11x2

i,1 + β22x2
i,2 + β12xi,1xi,2 (D.3)

The linear regression in Eq. D.4 minimises the variance of the approximation errors var (δy)
and results in the least squares estimators bls of the regression coefficients β. Next, the least
squares estimators in the dot product of Eq. D.5 lead to the result of the RSM ȳ0 = ȳ (x̃0) at
an arbitrary point with the polynomial terms ℘̃0. Since the least squares estimators yield for
the entire domain, Eq. D.4 and Eq. D.5 constitute a global RSM without ’spatial sensitivity’.

bls =
(
P T P

)−1
· P T Ȳ

c (D.4)

ȳ0 = ℘̃T
0 · bls (D.5)

In general, the RSM approximates the results of the complex model and does not interpolate
them. The difference between approximation and interpolation lies in the residuals, i.e.
the difference between the result of the RSM and the result of the complex model at a
data point ȳc (~xi) − ȳ (~xi). Approximation leads to residuals different to zero whereas the
residuals are zero in case of interpolation. Furthermore, the term ’near interpolation’ means
an approximation with residuals close to zero.

Model adequacy checking
The validation of a RSM consists of two parts in which the residuals ’play an important

role in judging model adequacy’ according to Myers 2002 [20, p. 43]. The first part questions
the assumption in the least squares regression on the normally distributed approximation
errors in Eq. D.4. For this purpose, normal probability plots are used. The second part
concerns with the accuracy of the RSM with regard to the results of the complex model and
applies the generalisation error. Summing up, both parts of the model adequacy checking
evaluate whether the metamodel fits adequately and therewith provides the basis for objective
1 (metamodel).
A normal probability plot illustrates the residuals of a RSM [20, p. 43]. For this, it shows the
residuals of all data points normalised to the domain [0, 1] on the vertical axis. The residuals
are plotted in relation to the corresponding quantiles of a standard normal distribution on
the horizontal axis. The first normal probability plot in this dissertation is exemplified in
Fig. E.5 on p. 58.
Next, the generalisation error gmse in Eq. D.6 is based on the ’leave-one-out cross-validation’
[21, p. 10]. ’Leave-one-out’ means that the result ȳ−i ≡ ȳX−i (~xi) at the data point ~xi stems
from a RSM subjected to the data base of the ED excluding this data point X−i ≡ Xi \ ~xi.
The generalisation error is similar to the prediction error sum of squares in Myers 2002 [20,
p. 46]. There, it was introduced for model adequacy checking, esp. to ensure that the RSM
represents the response surface.

gmse = 1
Ndps

Ndps∑
i=1

(ȳ−i − ȳc
i )2 (D.6)

Close to Eq. D.6, the variance estimator of the RSM derives from Eq. D.7 where the degree of
freedom is Ndps − Nterms with Nterms = ‖β‖ [28, p. 3]. The residuals in Eq. D.7 are analysed
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by two different ways in this dissertation. First, in the variance estimator σ2
X , the result of

the RSM ȳi ≡ ȳX (~xi) is subjected to the data base of the complete ED X. And second, the
variance estimator σ2

−i uses the leave-one-out approach for the result of the RSM ȳ−i instead
of ȳi in Eq. D.7. Thus, it is similar to the generalisation error.

σ2 = 1
Ndps − Nterms

Ndps∑
i=1

(ȳi − ȳc
i )2 (D.7)

The generalisation error further provides information on the bias and variance of a RSM [20,
p. 442]. Looking at the bias error, Santner 2003 [10, p. 124] continues the description of the
ED cited in Section C.1 with: ’Uncertainty arises in computer experiments because we do not
know the exact functional form of the relationship between the inputs [arbitrary point] and
the response, although the response can be computed at any given input [data point]. Any
functional models [response surface models] that we use to describe the relationship are only
approximations [simplifications]. The discrepancy between the actual response produced by
the computer code [result of the complex model at a data point] and the response we predict
from the model we fit [response surface model] is our error. [...] we referred to such error
as model bias.’ Or briefly, the bias error is the difference between the result of the RSM
and the result of the complex model. Therefore, it can be quantified with the residuals at
all data points [21, p. 5]. The variance error ’measures the extent to which the surrogate
model [RSM][...] is sensitive to a particular data set D [ED]. Each data set D corresponds
to a random sample [data points] of the function of interest [response surface]’ [21, p. 5]. In
other words, it expresses qualitatively the sensitivity of the RSM to variations in the ED.
And coming back to the generalisation error, there is always a ’trade-off between bias error
and variance error’ [21, p. 5] in the fitting of a RSM depending on its spatial sensitivity.

D.1.2 Current response surface methods

Apart from the global least squares regression method, a structured literature overview on
the current research on response surface methods revealed the common use of neural net-
works as well as of MLS for risk analysis. Beside this common use, MLS was chosen for the
methodologies for risk analysis in fire safety engineering by Albrecht 2014 [30] and Weyen-
berge 2017 [33] as revealed in Section B.1. Consequently, and because of its global objective,
MLS serves as response surface method in this dissertation. But next to MLS, the global least
squares regression method as well as two local interpolation methods used for risk analysis
of road tunnels according to Section A.1 are evaluated.
The two local interpolation methods for nearest (LIn) as well as for linear (LIl) local inter-
polation are similar to the use of discrete scenarios in the methodology of Germany [13] and
to the mapping approach in the methodology of Austria [14] respectively. Both methods are
realised with a method for unstructured data points. On the one hand, a LIn model Ȳ

LIn

directly adopts for the result at an arbitrary point the result of the data point with the small-
est euclidean distance between both. Accordingly, LIn models are highly spatially sensitive
and lead to a ’discontinuous’ shape. On the other hand, the result of the LIl model Ȳ

LIl at
an arbitrary point derives from the linear interpolation between the ’neighbours’ disregarding
other data points and thus, it neglects non-linearities. Hence, the shape of the LIl model is
continuous but not differentiable at data points. Additionally, the LIl model adopts results
of LIn in case of extrapolation, for instance occurring during the leave-one-out approach.
Section D.1.1 already introduced the global least squares regression method. In more detail,
the first order method (FoM) and the second order method (SoM) base on polynomials
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like Eq. D.2 and Eq. D.3 respectively. With these polynomials, Eq. D.5 leads to global RSMs,
namely the FoM and SoM models, which are not spatially sensitive. Their results are denoted
with Ȳ

FoM and Ȳ
SoM.

D.1.3 Moving least squares method

MLS was first proposed by Lancaster 1981 [27] and e.g. more recently outlined by Most
2008 [70]. Basically, it applies a locally weighted least squares regression of a linear or
quadratic polynomial according to Eq. D.2 or Eq. D.3 at an arbitrary point x̃0. For this,
Eq. D.8 extends Eq. D.4 with the weighting matrix W 0 ≡ W (x̃0). The weighting matrix is
a diagonal matrix which maps the weighting function w (x̃0, ~xi) to the data points ~xi ∈ X.
More precisely, the weighting depends on the euclidean distance between the arbitrary point
to each data point. Therewith, the MLS estimators b0 ≡ b (x̃0) are only valid for the arbitrary
point. And as a consequence, Eq. D.9 leads to a local result of the MLS model ȳ0 ≡ ȳ (x̃0) in
contrast to Eq. D.5. In general, the results of a MLS model are denoted with Ȳ , the symbol
Ȳ

MLS is only used to clearly differentiate among other response surface methods.

(
P T W 0P

)
· b0 = P T W 0Ȳ

c (D.8)

ȳ0 = ℘̃T
0 · b0 (D.9)

Usually, MLS is used for deterministic complex models but in Salemi 2016 [29] MLS is sub-
jected to aleatory results of stochastic complex models. Furthermore, the MLS model in
Salemi 2016 [29] depends on a large number of control variables. Hence, this example demon-
strates that MLS is suitable for the evacuation uncertainty as well as that MLS suffices as-
sumption 1 (complex scenarios) with regard to multiple risk factors. Moreover, the global
objective of MLS is the basis for objective 1 (metamodel).

D.1.4 Metamodel uncertainty and the prediction interval method

Section B.1 introduces the metamodel uncertainty with the ’inaccuracy of the metamodel’ [28,
p. 1]. More precisely, the metamodel uncertainty δỹm

0 is the difference between the result of
the RSM and the unknown result of the complex model δỹm

0 = ȳ0 − ȳc
0 at an arbitrary point

x̃0. It is subjected to a normal distribution with the mean µ (δỹm) = 0 and the variance
var (δỹm). Eq. D.10 integrates the metamodel uncertainty into the metamodel, namely a
non-relative integration equal to Nannapaneni 2016 [22, Eq. 7] or Kim 2008 [28, Eq. 25].
The result of the metamodel integrating the metamodel uncertainty at an arbitrary point
is denoted with ỹm

0 and explicitly does not consider the evacuation uncertainty. Thus, this
result represents the unknown result of the deterministic complex model ȳc

0 at an arbitrary
point.

ỹm
0 = ȳ0 + δỹm

0 (D.10)

After this background, a method to describe the metamodel uncertainty of MLS as well
as methods for its evaluation are presented in Subs. ’Prediction interval method’ (p. 42) and
Subs. ’Validation of the prediction interval method’ (p. 42). For this, Tab. D.1 repeats the
notation introduced together with the response surface methods and extends the notation
for the metamodel uncertainty. And in addition to the following precis, G.5 details the
mathematical background of the prediction interval.
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Table D.1: Notation related to response surface methods, the metamodel uncertainty and
the evacuation uncertainty.

notation description
P polynomial terms of the ED X
℘̃ polynomial terms of an arbitrary point
bls least squares estimators
σ2

−i variance estimator using the leave-one-out approach
σ2

X variance estimator using the complete data base
W weighting matrix
w weighting function
b MLS estimators
δỹm metamodel uncertainty
ỹm result of the metamodel integrating the metamodel uncertainty
∆ȳm prediction interval
s2 prediction variance
ε̃ relative evacuation uncertainty
ỹε result of the metamodel integrating the evacuation uncertainty

Prediction interval method
The ’prediction interval is for predicting the interval of the "value of a single future obser-

vation" at a point. Therefore, the prediction interval of the response surface is used for the
design optimization [...]’ [28, p. 4]. Therewith, Kim 2008 [28] introduces a method for the
metamodel uncertainty of MLS which is named as prediction interval method in this disser-
tation. Following this citation, the method serves for the calibration of the RSM and also to
quantify the metamodel uncertainty.
Eq. D.11 [28, Eq. 25] defines the prediction interval ∆ȳm

0 at an arbitrary point x̃0. The
prediction interval is subjected to the Student distribution T with its statistic tα/2,Ndps−Nterms

for a two-sided confidence level α and the degree of freedom Ndps − Nterms. It further applies
the ’variance of the prediction error’ s2 ≡ s2 (ȳ0 − ȳc

0), or shortly prediction variance, for
the variance of the metamodel uncertainty var (δỹm). Eq. D.12 [28, Eq. 21] specifies the
prediction variance with the variance estimator σ2 according to Eq. D.7.

∆ȳm
0 =

∣∣∣∣tα/2,Ndps−Nterms ·
√

s2
0

∣∣∣∣ (D.11)

s2
0 = σ2 ·

(
1 + (℘̃0)T ·

(
P T W 0P

)−1
· P T W 0W 0P ·

(
P T W 0P

)−1
· ℘̃0

)
(D.12)

Validation of the prediction interval method
The validation of the prediction interval method has two foci: its spatial sensitivity; as well

as its predictive capability. The latter focus follows in particular the citation at the beginning
of Subs. ’Prediction interval method’ (p. 42).
Since MLS is subjected to linear or quadratic polynomials, local high second derivatives
in the response surface should lead to locally increased residuals. Also, there should be a
local correlation between residuals and metamodel uncertainties. Accordingly, the prediction
interval method should be spatially sensitive to the shape of the response surface. Hence
motivated by this rationale, the validation of the spatial sensitivity directs at the visual
assessment of the correlation between prediction variances and residuals at data points.
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Next, the predictive capability is validated with regard to the confidence level α of the
prediction interval in Eq. D.11 of the RSM Ȳ Xeval

. In this validation, the confidence level α
is juxtaposed to an empirical confidence level α∗. The latter one is the probability p that other
real data points lie within the prediction interval ∆ȳm

Xeval
(α) of the RSM Ȳ Xeval

as shown
in Eq. D.13. This equation basically compares the results of two models: the RSM Ȳ Xeval

and the real model Ȳ
∗ providing the real data points. The real data points derive either

from the results of another RSM Ȳ Xreal
or directly of the results of the data base Ȳ

c
Xreal

.
In both cases, the real model Ȳ

∗ is based on the ED Xreal which is a disjoint set to Xeval,
i.e. Xreal ∩ Xeval = {}. In other words, the RSM Ȳ Xeval

is independent to the real model
Ȳ

∗. Concluding, Eq. D.13 allows to validate the predictive capability in two approaches: the
split-sample validation and the complete-sample validation.

α∗ = p
(
Ȳ Xeval

− ∆ȳm
Xeval

(α) < Ȳ
∗

< Ȳ Xeval
+ ∆ȳm

Xeval
(α)
)

(D.13)

The split-sample validation is based on Queipo 2005 [21, p. 10]. It splits the data base of the
ED X into the two disjoint equally sized random subsets Xeval and Xreal. Then, Ȳ Xeval

is
the RSM based on the ED Xeval. And Ȳ

∗ = Ȳ
c
Xreal

directly represents the real data points
~xi ∈ Xreal of the complex model. Due to the randomness in the choice of the EDs Xeval and
Xreal, the empirical confidence level α∗

mean is the mean of n repetitions of the split-sample
with Eq. D.13.
The complete-sample validation [28, p. 5] evaluates the prediction interval with results of
another real model. The real model is either an analytical function as a substitute of the
complex model or a second RSM. In contrast to the split-sample validation, the RSM Ȳ Xeval

applies the complete data base of the ED Xeval. Also, the results of the real model are:
Ȳ

∗ = Ȳ
c
Xreal

in case of an analytical function; or Ȳ
∗ = Ȳ Xreal

in case of another RSM based
on the data base of the ED Xreal. In both cases, the real model Ȳ

∗ provides the real data
points at arbitrary points X̃.
At last, the prediction interval method has predictive capabilities if both confidence levels
α∗ ≈ α are approximately the same. If the empirical confidence level is clearly increased
α∗ > α, the prediction interval is conservative. In other words, more real points of the real
model Ȳ

∗ lie within the prediction interval as expected by the confidence level α.

D.1.5 Evacuation uncertainty and the averaged variance

Evacuation uncertainties, or aleatory uncertainties in general, originate from various environ-
mental variables in the complex model according to Section B.1. As outlined in Subs. ’Complex
model within the system model’ (p. 22), the complex model produces ORSs with replications
to describe the evacuation uncertainty at data points. The evacuation uncertainty at an ar-
bitrary point x̃0 derives from these ORSs and is integrated into the metamodel with Eq. D.14
with the symbols in Tab. D.1. As a consequence, the evacuation uncertainty should be suffi-
ciently spatially sensitive to reproduce differences in the ORSs.
The relative integration in Eq. D.14 requires the relative evacuation uncertainty ε̃0 ≡ ε̃ (x̃0).
And it leads to the result of the metamodel integrating the evacuation uncertainty ỹε

0 ≡ ỹε (x̃0)
but neglects the metamodel uncertainty. Concluding, the result of Eq. D.14 represents the
unknown result of the stochastic complex model at the arbitrary point x̃0.

ỹε
0 = ȳ0 · ε̃0 (D.14)

43



Section D.2

Salemi 2016 [29] presents an approach to derive the aleatory uncertainty at an arbitrary point
from the ORSs. This approach is integrated in a metamodel using MLS. It is sketched with:
’Run the simulation model [complex model] at design points [data points][...]. Compute the
sample averages across replications [mean result] and estimate the variance of a replication
at each of the design points’ [29, p. 8]; and ’use the variance estimate at neighbors [...] to
estimate’ [29, p. 13] the averaged variance at an arbitrary point. Then, the averaged variance
is used to determine the ’prediction window’ for MLS.
In more detail, the averaged variance at an arbitrary point x̃ results in three steps: first,
to define a subset of ORSs Ỹ c

nb = {ỹc
0, . . . , ỹc

nb} of Nnb ≡ ‖Xnb‖ neighbours Xnb ∈ X to
the arbitrary point; second, to calculate the variances σ2

(
Ỹ c

Nnb

)
=
{
σ2 (ỹc

0) , . . . , σ2 (ỹc
nb)
}

of
each ORS in the subset; and finally, to determine the mean of the variances of σ2

(
Ỹ c

Nnb

)
with Eq. D.15 to yield the averaged variance at the arbitrary point.

σ2
(
Ỹ c

Nnb

)
= 1

Nnb

Nnb∑
i=1

σ2 (ỹc
i ) with σ2 (ỹc

i ) ∈ σ2
(
Ỹ c

Nnb

)
(D.15)

Salemi 2016 [29, p. 12] suggests the number of neighbours Nnb = 5 · Nrf which depends on
the number of control variables. Additionally, it remarks that the choice of the number of
neighbours is not critical but it should be high enough to reduce the uncertainties in the
variance estimates at the data points. However, the definition of the ’prediction window’
implies that the number of neighbours is a key parameter for the spatial sensitivity of the
evacuation uncertainty.

D.2 Approaches applied in the metamodel

After the introduction of MLS and the metamodel uncertainty in Section D.1.1 to Sec-
tion D.1.4 now follows the description of different specific approaches for the metamodel
used in this dissertation. The description first directs at MLS, then comes to the prediction
interval method and beside also sketches some approaches for other response surface methods.
But in general, all methods and approaches in the metamodel base on the unit hypercube as
domain of the control variables.

Weighting functions
The least squares regression of MLS in Eq. D.8 considers the local weighting of data points

with a weighting function w in the weighting matrix. However, ’There are various types of
weighting functions [...]’ [28, p. 3], or shortly called ’weighting types’ for MLS. The most
common weighting types base either on polynomials or on Gaussian functions but also other
weighting types have been developed, e.g. in Most 2008 [70].
MLS applies three different weighting types in this dissertation: the Gaussian function wg [70,
Eq. 12]; the polynomial function wp [28, Eq. 4a]; and a function based on a quadratic fraction
wq [70, Eq. 16] shown in Eq. D.16, Eq. D.17 and Eq. D.18 respectively. They all depend on
the euclidean distance di ≡ d (x̃, ~xi) between a data point ~xi ∈ X and the arbitrary point x̃
as well as on the weighting parameter ω > 0. The weighting parameter is a global parameter
which yields on the entire domain. In case of very small weighting parameters, the RSM is
highly spatially sensitive whereas a very large weighting parameter results in a global RSM
without spatial sensitivity.
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wg,i = exp
(

− d2
i

ω2

)
(D.16)

wp,i =

1 − 6 ·
(

di
ω

)2
+ 8 ·

(
di
ω

)3
− 3 ·

(
di
ω

)4
for di

ω ≤ 1
0 for di

ω > 1
(D.17)

wq,i = ω2

(di + ω)2 (D.18)

Calibration algorithm
The calibration algorithm aims to reduce the metamodel uncertainty of a MLS model accord-
ing to its data base. As stated in Subs. ’Prediction interval method’ (p. 42), the metamodel
uncertainty depends on the prediction variance s2 in Eq. D.12 and thus also on the variance
estimator. The variance estimator σ2

−i is similar to the generalisation error according to
Subs. ’Model adequacy checking’ (p. 39). So, since the generalisation error is used for model
adequacy checking, the prediction variance s2 is also suitable as measure for the model cali-
bration of MLS, e.g. as in Kim 2008 [28]. Consequently, the calibration algorithm minimises
the 90%-quantile s2

q90 of the prediction variance at ‖XFFD‖ ≥ 103 arbitrary points evenly
distributed on the entire domain.
For this minimisation, the calibration algorithm determines following MLS attributes: the
polynomial degree, the weighting type and the weighting parameter. The polynomial degree
is either one for a linear or two for a quadratic polynomial in the local weighted least squares
regression of Eq. D.8. Commonly, the quadratic polynomial serves as default for Monte-Carlo
simulations in the system model. But if the data base comprises less than three data points
per control variable, i.e. Ndps < 3Nrf , the calibration algorithm employs the linear polynomial.
Next, the weighting functions is based on one of the weighting types in Eq. D.16, Eq. D.17 or
Eq. D.18. And finally, the weighting parameter adapts to a wide range of values.

FoM and SoM models in the metamodel
For the sake of simplicity, the global least squares regression methods are also realised with

the calibration algorithm of MLS. Hence, FoM and SoM models originate in Eq. D.8 with
linear or quadratic polynomials and with the weighting matrix as an identity matrix. As a
result, the global least squares regression is similar to Eq. D.4 without the weighting of data
points. This simplification also entails that a SoM model equals a FoM model ξ̄SoM ≡ ξ̄FoM

if the data base contains less than three data points per control variable.

Integration of MLS models into the system model
The direct calculation of results with a MLS model at arbitrary points, called the direct

mode, causes increased run times in comparison to other response surface methods, esp. local
interpolation methods. For this reason, the system model applies the direct mode only in few
Monte-Carlo simulations. Instead, it applies the ’indirect mode over fixed points’ depicted
in Fig. G.1 (p. G-9). This mode requires a precalculation of the results for each MLS model
at ‖XFFD‖ ≥ 105 evenly distributed fixed points on the entire domain. In other words, the
fixed points constitute the data base for a second RSM, a LIl model. The LIl model stems
from a method using structured data points and reproduces the results of MLS at arbitrary
points. Summing up, the indirect mode over fixed points aims to achieve quick results in
Monte-Carlo simulations with only negligible additional uncertainties in comparison to the
direct mode.
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Integration of the metamodel uncertainty
As outlined in Section D.1.4, the metamodel uncertainty derives from the prediction interval

method and is integrated into the metamodel with Eq. D.10 on p. 41. In detail, the variance
in the metamodel uncertainty at an arbitrary point x̃0 is subjected to the prediction variance
var (δỹm

0 ) = s2 (x̃0) of Eq. D.12. Hence, it is either based on the variance estimator σ2
X or

σ2
−i in Eq. D.7 (p. 40). As a result, the metamodel uncertainty δỹm

0 ≡ δỹm (x̃0) is given by
Eq. D.19 where t̃Ndps−Nterms ∼ T is a random value drawn from the Student distribution T
with the degree of freedom Ndps − Nterms. Concluding, the probability p that the metamodel
uncertainty lies within the prediction interval of Eq. D.11 is equal to the confidence level α,
namely p (δỹm

0 ≤ ∆ȳm
0 (α)) = α.

δỹm
0 = s2 (x̃0) · t̃Ndps−Nterms (D.19)

Metamodel uncertainty for LIn and LIl models
The metamodel uncertainty for local interpolation methods is also integrated with Eq. D.10.

But Eq. D.19 has to be adapted: first, the variance in the metamodel uncertainty bases on the
variance estimator var (δỹm

0 ) = σ2
−i (x̃0) instead of the prediction variance s2; and second, the

degree of freedom of the Student distribution Ndps − Nrf depends on the number of control
variables. Additionally, it has to be noted, that a LIl model adopts results of LIn in case
of extrapolation according to Section D.1.2. Consequently, the variance estimator in a LIl
model is identical with the variance estimator in a LIn model, i.e. σ2

−i

(
ξ̄LIl

)
≡ σ2

−i

(
ξ̄LIn

)
if the leave-one-out approach is applied together with a small number of data points in the
data base.

D.3 Original direct approach for the evacuation uncertainty

Inspired by Salemi 2016 [29], the original direct approach was developed to integrate the evac-
uation uncertainty at arbitrary points into the metamodel. It realises the relative evacuation
uncertainty introduced in Section D.1.5 without the assumption of a distribution type, like
the Student distribution in Subs. ’Integration of the metamodel uncertainty’ (p. 46). Namely,
it directly uses the ORSs and therewith takes into account that the assumption of a single
distribution type might not be valid with regard to potential differences in the frequency dis-
tributions of ORSs. To describe the direct approach, the first subsection introduces the basis
and Tab. D.2 summarises the notation. Then, the subsequent subsections provide a detailed
description how to derive the evacuation uncertainty, discuss the direct approach and finally
outline its calibration and validation. In contrast to the previous sections, this section applies
the notation for the FF to comply with the discussion of the results in the system model.
But it still uses the general wording which emphasises that the direct approach is broadly
applicable for ORSs of different stochastic models.

Table D.2: Notation in the direct approach.
notation description
ξ̂c relative ORS
ξ̂c

Nnb
combined relative sample
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Introduction
The evacuation uncertainty at an arbitrary point in the direct approach fundamentally

bases on the ORSs of Nnb neighbours XNnb and is from this point of view similar to the
averaged variance. The number of neighbours governs the spatial sensitivity of the evacuation
uncertainty. For instance a small number of neighbours leads to high spatial sensitivity and
vice versa.
More precisely, the direct approach comprises three principal steps. To begin, it determines

the relative ORS ξ̂c
i ≡ ξ̂c (~xi) =

{
ξ̃c

i,0
ξ̄c

i

, . . . ,
ξ̃c

i,Nrep
ξ̄c

i

}
for each data point ~xi ∈ X in the data

base. In other words, the results of all Nrep replications of an ORS are divided by its mean
result and are then attributed to the discrete uniform distribution Ud

({
ξ̂c

i,j , . . . |∀ξ̂c
i,j ∈ ξ̂c

i

})
={

1∥∥ξ̂c
i

∥∥ , . . .

}
. Next, the direct approach combines the relative ORSs of all Nnb neighbours of

an arbitrary point x̃ ∈ X̃ leading to the combined relative sample ξ̂c
Nnb

=
{

ξ̂c
1, . . . , ξ̂c

Nnb

}
.

Thus, the combined relative sample contains Nrep · Nnb replications which are subjected
to the specific discrete distribution D

(
ξ̂c

Nnb

)
. At last, Eq. D.20 directly draws a result of

one replication from this discrete distribution. This result becomes the relative evacuation
uncertainty ε̃0 ≡ ε̃ (x̃) which is finally integrated into the metamodel with Eq. D.14.

ε̃0 ∼ D
(
ξ̂c

Nnb

)
(D.20)

Combination of the relative ORSs
Eq. D.21 details the general approach to combine the frequency distributions of the relative
ORSs of all neighbours for an arbitrary point x̃. In this combination, the sample weighting
factor ωs,i weights each relative ORS individually. Therefore, the probability to draw the
result of a replication ξ̂c

i,j from the combined relative sample D
(
ξ̂c

Nnb

)
is p

(
ξ̂c

i,j

)
= ωs,i∥∥ξ̂c

i

∥∥ .

D
(
ξ̂c

Nnb

)
= D

(
ωs,i · D

(
ξ̂c

i

)
, . . .

)
=


 ωs,i∥∥∥ξ̂c

i

∥∥∥ , . . .

 , . . .

 (D.21)

In contrast to this general approach, the direct approach realises the combination in three
successive steps for each arbitrary point x̃ as depicted in Fig. D.1:

1. to choose a relative ORS ξ̂c
i of a data point ~xi ∈ Xnb with the probability p (~xi) of the

discrete distribution D
({

ξ̂c
i , . . . |∀ξ̂c

i ∈ ξ̂c
Nnb

})
= {p (~xi) , . . .};

2. to draw a random result of a replication ξ̂c
i,j ∈ ξ̂c

i from this ORS with the discrete

uniform distribution Ud

({
ξ̂c

i,j , . . . |∀ξ̂c
i,j ∈ ξ̂c

i

})
=
{

1∥∥ξ̂c
i

∥∥ , . . .

}
;

3. to integrate the relative evacuation uncertainty ε̃ = ξ̂c
i,j into the metamodel model.

Concluding, the probability to draw the relative evacuation uncertainty ε̃ = ξ̂c
i,j is p

(
ξ̂c

i,j

)
=

p (~xi) · 1∥∥ξ̂c
i

∥∥ . Hence, this probability agrees with the general approach in Eq. D.21 if the

probability to choose a relative ORS is identical with the sample weighting factor p (~xi) = ωs,i.
The combined relative sample should correspond to the unknown true evacuation uncertainty
at the arbitrary point. However, there are no definite clues to the exact spatial relation be-
tween the frequency distributions of the ORSs that leads to the evacuation uncertainty. More-
over, this spatial relation is supposed to be different for each arbitrary point. Accordingly,
the appropriate combination of relative ORSs in Eq. D.21 is unknown.

47



Section D.3

ξ̂c
2

p (ξc)

HRRmax

tmax

ξ̂c
1

p (ξc)

~x1

ξ̂c
1,j

~x2

x̃

p (~x1) p (~x2)

ε̃

Figure D.1: Three steps (highlighted red) for the combination of ORSs for the arbitrary
point x̃ in the direct approach: first, random choice of the data point ~x1 with
the probability p (~x1); second, random choice of a result of the relative ORS
ξ̂c

1,j ∈ ξ̂c
1; third, integration of the relative evacuation uncertainty ε̃ into the

metamodel.

As a consequence, the combination of relative ORSs bases on three combination modes,
namely ’closest’, ’uniform’, and ’linear’. These combination modes specify the probability
p (~xi) to choose a relative ORS ξ̂c

i on different basic ways. First, the combination mode clos-
est chooses the closest data point ~xi to the arbitrary point with the probability p (~xi) = 1.
In other words, the number of neighbours is Nnb = 1 which leads to a spatially discontinuous
relative evacuation uncertainty. Second, the combination mode uniform assigns equal prob-
abilities p (~xi) = 1

Nnb
to all neighbours. Accordingly, it averages the results of all neighbours

similar to the averaged variance. And third, the combination mode linear linearly weights
the neighbours with probabilities p (~xi) depending on their euclidean distance d (x̃, ~xi) to the
arbitrary point.

The basic linear equation in the combination mode linear is p (~xi) = 1 − d
(

x̃,~xi

)
dcrit

with the
parameter critical distance dcrit > 0. With this equation, an arbitrary point at a data
point x̃ = ~xi ∈ X is assigned to the probability p (d (x̃, ~xi) = 0) = 1 which matches the
unknown evacuation uncertainty. Furthermore, it yields: p (~xi)

!= 0 if d (x̃, ~xi) > dcrit;
and ∑Nnb

i=1 p (~xi)
!= 1 with ~xi ∈ Xnb. These conditions lead to the critical distance dcrit =∑Nnb

i=1 d
(

x̃,~xi

)
Nnb−1 for Nnb > 1. It requires an adaptive number of neighbours, e.g. because of the

first condition with regard to x̃ = ~xi ∈ X. Consequently, different arbitrary points x̃ ∈ X̃
consider different number of neighbours denoted in the set Nnb = {Nnb1, . . .}. And finally,
the linear equation is p (~xi) = 1 − (Nnb−1)·d

(
x̃,~xi

)∑Nnb
i=1 d

(
x̃,~xi

) .

Discussion of the relative integration
The evacuation uncertainty at an arbitrary point derives from the ORSs of its neighbours.
Therewith, the direct approach is similar to the averaged variance in Section D.1.5. But a
non-relative combination of the ORSs like in Eq. D.15 can lead to following issue within the
metamodel.
The issue might occur at an arbitrary point x̃ which is close to a data point ~xi ∈ XNnb with
a small mean result ξ̄c

i ≈ 0 and also a small variance σ2
(
ξ̃c

i

)
≈ 0. The RSM at the arbitrary

point approximates the small mean result of the complex model and yields also ξ̄ (x̃) ≈ 0.
Yet, another neighbour ~xj ∈ XNnb to the arbitrary point might be subjected to an elevated
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mean result ξ̄c
j > 0. Obviously, its variance is increased in comparison to the variance of

the other data point σ2
(
ξ̃c

j

)
> σ2

(
ξ̃c

i

)
. Consequently, the non-relative combination also

leads to an increased variance σ2
(
ξ̃c

Nnb

)
> 0 at the arbitrary point which then results in

an increased evacuation uncertainty and finally in an increased result of the metamodel
ξ̃ε (x̃) > 0. Furthermore, a non-relative integration according to Eq. D.10 (p. 41) can still
raise this result or in contrast contribute to a result below zero ξ̃ε (x̃) < 0. Summing up, the
outcome of the metamodel at the arbitrary point based on the non-relative combination and
integration can contradict the expected result, i.e. close to zero ξ̃ε (x̃) ≈ ξ̄ (x̃) ≈ 0.
For this reason, the direct approach establishes the relative combination in Eq. D.21 and
produces the relative evacuation uncertainty with Eq. D.20. Then, the metamodel relatively
integrates the evacuation uncertainty with Eq. D.14. Both steps are supposed to solve this
issue and make the metamodel applicable on response surfaces with large spatial variations
in the aleatory uncertainties.
But another issue arises from the relative evacuation uncertainty, esp. in combination with
a low spatial sensitivity. For instance, the mean result of a RSM at an arbitrary point x̃ is
elevated ξ̄ > 0 and the corresponding combined relative sample considers several neighbours
in a large region. Hence, the combined relative sample can contain a data point ~xi with a
small mean result ξ̄c

i ≈ 0 and therewith potentially high values ξ̂c
i,j � 0 in the replications of

its relative ORS ξ̂c
i,j ∈ ξ̂c

i . As a consequence, Eq. D.20 might draw a high relative evacuation
uncertainty ε̃ � 0, i.e. an outlier among results ε̃ of multiple arbitrary points x̃ ∈ X̃. In the
end, the high relative evacuation uncertainties together with the elevated mean result at the
arbitrary point ξ̄ > 0 contribute in Eq. D.14 to the result of the metamodel with ξ̃ε > 1. But
this result contradicts the system model as outlined in Subs. ’Intermediate nodes’ (p. 19).
Two factors can prevent this drawback of the relative evacuation uncertainty. First, the num-
ber of neighbours adapts the spatial sensitivity of the evacuation uncertainty, in other words,
the region around an arbitrary point where data points are considered. Hence, decreasing
the number of neighbours should also reduce possible differences among the mean results of
their ORSs. Correspondingly, a sufficient spatial sensitivity limits the probability for high
relative evacuation uncertainties. Second, the direct approach limits data points with small
mean results. More precisely, if the mean result of a data point ~xi is below the parameter
ξ̄c

i ≤ ξ̄c
lim, all values in its relative ORS are manipulated to ξ̂c

i = ~1. These values drawn for
the evacuation uncertainty will not affect the result of the metamodel in Eq. D.14. Beside
these manipulations, ξ̂c

i = ~1 originates also from ORSs with ξ̃c
i = ~0 or by chance directly from

a replication ξ̂c
i,j ∈ ξ̂c

i .

Calibration and validation of the evacuation uncertainty
The definition of outliers in relative evacuation uncertainties ε̃ of arbitrary points X̃ derives
from the interquartile range [64, p. 26]. In detail, the relative evacuation uncertainty at an
arbitrary point ε̃ (x̃) is an outlier if ε̃ (x̃) > 10 · (ε̃q99 − ε̃q01) + ε̃q99 where ε̃q01 and ε̃q99 are the
1% and 99%-quantiles among all relative evacuation uncertainties ε̃. In case of an outlier, its
value is set to ε̃ (x̃) = 10 · (ε̃q99 − ε̃q01) + ε̃q99 . Accordingly, the direct approach identifies and
alters only very clear outliers.
The combination of ORSs, the relevance of the spatial sensitivity as well as the occurrence of
outliers in the relative evacuation uncertainty demands a calibration of the direct approach for
the metamodel. The calibration bases on the relative evacuation uncertainties ε̃ of multiple
arbitrary points X̃ and directs at: first, the effects of the parameter ξ̄c

lim on the frequency
distribution of the relative evacuation uncertainties ε̃, esp. the number of arbitrary points
equal to one ‖ε̃ = 1‖; second, on the number of outliers ‖outliers‖; and third, on the spatial
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sensitivity, esp. the number of arbitrary points with
∥∥∥ξ̃ε > 1

∥∥∥. Finally, the calibration specifies
the default combination mode as well as the default parameters to limit the data points ξ̄c

lim

as well as the number of neighbours Nnb.
Looking on the validation of the evacuation uncertainty, the direct approach has to reproduce
the ORS of a data point ~xi. Therefore, it directly draws a result from the relative ORS ξ̂c

i .
So, for multiple arbitrary points X̃, multiple results are drawn with replacement from this
relative ORS, and of course also from other data points. As a result, the relative evacuation
uncertainty ε̃ comprises a bootstrap sample of the relative ORS ξ̂c

i . Concluding, the approach
in Subs. ’Evaluation of ORSs’ (p. 26) evaluates the reproduction of ORSs also with bootstrap
samples and for this reason it allows at the same time the evaluation whether the direct
approach represents an ORS. Additionally, the evaluation of arbitrary points with the relative
evacuation uncertainty ε̃ = 1 as well as of the spatial sensitivity of the combination modes
contribute to the validation. The former ones are mostly linked to ORSs with results equal
to zero ξ̃c = ~0.

D.4 Approaches for the integration and evaluation of the
metamodel

The setup of the metamodel consists of sequential refinement steps outlined in Subs. ’Meta-
model’ (p. 23) of Section B.4 as well as in Section C.3. Each refinement step comprises the
setup of a RSM according to Subs. ’Calibration algorithm’ (p. 45) of Section D.2. Next, the
metamodel applies Eq. D.22 on each result of the RSM ȳ0 ∈ Ȳ for the combined integration of
the metamodel uncertainty and the evacuation uncertainty. More precisely, this equation first
determines the unknown result of the deterministic complex model ỹm

0 and then employs the
relative evacuation uncertainty ε̃0. Therewith, it amalgamates Eq. D.10 as well as Eq. D.14
and finally yields the result of the metamodel ỹ0 ∈ Ỹ .

ỹ0 = ỹm
0 · ε̃0 = (ȳ0 + δỹm

0 ) · ε̃0 (D.22)

However, this result, i.e. the FF ξ̃0 ∈ ξ̃, does not represent a physical quantity within the
system model as outlined in Subs. ’Intermediate nodes’ (p. 19). Hence, the results of the
metamodel have to be clipped to 0 ≤ Ξ̃ ≤ 1 for the integration into the system model.
Tab. D.3 provides an overview on the notation for the FF in the system model on the basis
of the metamodel. Merely the symbol Ξ∗ denotes the FF in the system model which is still
unclipped and without specifications of the metamodel.

Table D.3: Notation for the FF used in the system model.
system model metamodel remarks
0 ≤ Ξ̃ ≤ 1 ξ̃ as Eq. D.22 metamodel uncertainty, evacuation uncertainty
0 ≤ Ξ̃m ≤ 1 ξ̃m as Eq. D.10 no evacuation uncertainty, i.e. ε̃ = ~1
0 ≤ Ξ̃ε ≤ 1 ξ̃ε as Eq. D.14 no metamodel uncertainty, i.e. δξ̃m = ~0
0 ≤ Ξ̄ ≤ 1 ξ̄ RSM
Ξ∗

{
ξ̄, ξ̃m, ξ̃ε, ξ̃

}
unclipped, without specification of the metamodel

After the integration into the system model, it follows the evaluation of the metamodel in
each refinement step. The evaluation directs esp. on the convergence of the results of the
RSM as well as of the prediction variance s2 during the sequential refinement. As soon as
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both results converge, the metamodel does not require additional data points in the data
base. So, the default RSM in the consequence model of the system model, shortly default
RSM, can be specified together with the final refinement step.
The evaluation directs at the comparison of results of different metamodels and mainly com-
prises three approaches. For the first two approaches, the symbol Υ represents a sample of
a measure at arbitrary points X̃, e.g. the result of the RSM ξ̄ or the relative evacuation un-
certainty ε̃. Also, Υqi denotes the i%th quantile and the terms ’lower’ and ’upper quantiles’
are either subjected to small or high values of i ∈ {1, . . . , 99}. One approach, the quantile
plot, juxtaposes the frequency distributions of two samples Υ0 and Υ1 of the same measure.
Namely, its horizontal and the vertical axes both show the quantiles of the samples Υ0 and
Υ1 respectively. A smaller dispersion of the sample Υ1 leads to lower quantiles above and
upper quantiles below the diagonal in the quantile plot, and vice versa for a larger disper-
sion. The quantile plot is first exemplified in Fig. E.18a on p. 80 and resembles the normal
probability plot introduced in Section D.1.1. Together with the quantile plot, the euclidean
relative difference erdq

(
Υ1,Υ0) [71] quantifies the difference between both samples based on

1000 quantiles. Next, the relative quantile plot, e.g. depicted in Fig. E.21 (p. 86), is similar
to the quantile plot. But its vertical axis shows the relative difference between the quantiles
Υ1

qi
/Υ0

qi
− 1 of both samples and thus emphasises the differences between both frequency

distributions more clearly. Last but not least, the quantification of differences between two
metamodels bases on ‖XFFD‖ ≥ 105 evaluation points. The evaluation points are identi-
cal with the fixed points in Subs. ’Integration of MLS models into the system model’ (p. 45)
and provide either the mean results of the RSM Ȳ or the prediction variances s2 of the
RSMs. With regard to the mean results Ȳ , the euclidean relative difference erd determines
the difference between to RSMs. And for the prediction variance s2, the comparison of RSMs
concentrates on their 90%-quantile s2

q90.
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E Evaluation of the innovative methodology
for risk analysis

Section B.3 and Section B.4 introduce the metamodel within the system model which serves
for the methodology for risk analysis and Chapter C and Chapter D provide the details. So,
subsequent to the scrutiny of the metamodel in App. G.6, now, the evaluation of the entire
methodology follows. Hence, the results within the system model are in terms of the FF and
still subjected to certain aleatory uncertainties. But these aleatory uncertainties do not affect
the conclusions in this chapter.
The evaluation first covers all integral parts of the metamodel. Namely, the EDs and the data
bases are described in Section E.1 and in Section E.2 the response surface method is examined
together with the metamodel uncertainty. Then, the evacuation uncertainty is scrutinised in
Section E.3. This entire assessment is based on system model simulations differentiated to
risk analyses in Section B.5. Section B.5 also introduces different approaches to evaluate risk
analyses. With these methods, the risk analysis described in Section B.2 is finally examined
in Section E.4.

E.1 Data bases for the system model

The evaluation of the methodology for risk analysis applies different data bases for the
system model. For each data base, the ED X specifies the data points outlined in Sec-
tion B.4. Section C.3 sketches the selection process for the ED X which considers multiple
EDs

{
Xmima

1 , . . .
}

and bases on the distance measures dminimax, dmaximin and dcov intro-
duced in Section C.1. Each ED Xmima was built with the methods described in Section C.2.
Accordingly, the total number of EDs considered in the selection process for one data base
with the ED X, i.e. comprising all minimax and nested maximin optimisations for all Xmima,
was in the order of magnitude of 4 or 5.
The main focus during the selection process was different for fire scenarios and evacuation
scenarios. With regard to fire scenarios of the ED Xfire, the focus was on dmaximin to get
clearly different values of risk factors causing different interactions. And with regard to evac-
uation scenarios of the ED Xevac, the focus was on the minimisation of dcov to guarantee an
even distribution of data points on the entire domain. The mere optimisation of dminimax or
dmaximin would have little effect due to the higher number of evacuation scenarios in com-
parison to fire scenarios. Additionally, if the data base was sought for sequential refinement,
the selection process focused less on dminimax due to possible improvements in subsequent
refinement steps. Also, different focus was on the complete LHD- and PA-condition. On the
one hand for fire scenarios of the ED Xfire, most EDs for the setup of Xmima, and conse-
quently also the ED Xmima, had complete LHD- and PA-conditions. As a consequence, the
selection process put little focus on both conditions. On the other hand, the setup and the
selection process of EDs for evacuation scenarios of the ED Xevac considered continuously
the LHD- and PA-condition: in particular during the maximin optimisation, in detail the
approach to prevent the fail of PA- and LHD-condition outlined in Subs. ’Sequential refine-
ment’ (p. 35); and during the combination of EDs with the mode ’combination’ outlined in
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Table E.1: Parameters for data bases used in the system model; Xnew and Xi−1 add up to
Xi according to Eq. C.6 (p. 35); the notations for the ORSs ξ̃c in the data base
and the mean results ξ̄ follow the same conventions.
data base Xi Xi−1

∥∥∥Xfire
∥∥∥ ‖Xevac‖ pstretch (Xnew) Nrep

ξ̃c
X0

X0 − 4 16 − 200
ξ̃c

X1
X1 X0 6 48 1.0 200

ξ̃c
X2

X2 X1 10 96 0.1 200
ξ̃c

X3
X3 X2 14 144 0.01 200

ξ̃c
X1a

X1a X0 6 48 1.0 200
ξ̃c

Xb
Xb X0 10 96 1.0 200

Subs. ’Combination of EDs’ (p. 36). Finally, the selection of the final ED X was based on a
visual comparison of few EDs Xmima. The visual comparison identified only small variations
in their data points. For this reason, the setup of the ED X led to reproducible results
meaning that the number of minimax and maximin optimisations was sufficient.
After the selection process, EDs specify the data points of the data bases for the system model.
The data bases used in the evaluation of the methodology for risk analysis have three different
foci. The first focus is on the sequential refinement of the metamodel with the data bases ξ̄c

X0
,

ξ̄c
X1

, ξ̄c
X2

and ξ̄c
X3

. The EDs are respectively X0 = XFF2 which is a two-level FFD, X1, X2
and X3 as illustrated in Fig. E.1a and Fig. E.1b. The stretching parameter was pstretch = 1
in the first refinement step to the ED X1. Then, the evaluation of prediction variances
s2 of the RSMs ξ̄X1 and ξ̄X2 exemplified in Fig. E.4 as well as preliminary results, e.g. in
Subs. ’Comparison to the Kim 2008 [28]’ (p. G-20) indicated increased prediction variances at
the outer vertices. Hence, the focus was set to the outer vertices for the subsequent refinement
steps to the EDs X2 and X3. Second, the evaluation focuses on the sensitivity of the RSM to
variations in the ED. This evaluation applies the data base ξ̄c

X1a
with data points specified

in the ED X1a shown in Fig. E.2a and Fig. E.2b. To be equivalent to the ED X1, both EDs
comprise the same number of data points. Third, the interest lies on the batch design with
the data base ξ̄c

Xb
and the corresponding ED Xb depicted in Fig. E.3a and Fig. E.3b.

This data base has two purposes: first, to juxtapose the default RSM ξ̄X2 and the batch RSM
ξ̄Xb

based on sequential refinement and the batch design, respectively; second, to analyse the
sensitivity of the RSM to variations in the ED. Consequently, the batch design Xb has the
same number of data points as the ED X2. To summarise, Tab. E.1 provides an overview on
all data bases for the system model and App. G.7 shows all fire and evacuation scenarios in
these data bases.
The data bases comprise results, i.e. the ORSs or the mean FF, of the evacuation scenarios
with Nrep = 200 replications which was increased in successive steps during the evaluation of
the methodology for risk analysis. The evaluation in this chapter puts large interest in the
RSMs and metamodels. Two separate RSMs for scenarios with TA and FA result from the
same ED Xevac as reasoned in Subs. ’Metamodel’ (p. 23). Hence as basis for the subsequent
sections, Tab. E.2 provides an overview on the RSMs and their MLS attributes according to
the calibration algorithm of MLS in Subs. ’Calibration algorithm’ (p. 45).

E.2 Response surface method and metamodel uncertainty

In Subs. ’Metamodel’ (p. 23) it is stated that the ED, the data base and the RSM are integral
parts of the metamodel. Additionally, the metamodel comprises the metamodel uncertainty
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Table E.2: MLS attributes of all RSMs used in the system model for scenarios with TA
(above) and FA (below); the default RSM is denoted with ξ̄X2 ; the batch RSM
is denoted with ξ̄Xb

.
RSM data base weighting type polynomial degree parameter ω

ξ̄X0,0 ξ̄c
X0,0

wp 1 1.768
ξ̄X1,0 ξ̄c

X1,0
wg 1 0.432

ξ̄X2,0 ξ̄c
X2,0

wp 2 1.206
ξ̄X3,0 ξ̄c

X3,0
wp 2 0.984

ξ̄X1a,0 ξ̄c
X1a,0

wg 1 0.356
ξ̄Xb,0 ξ̄c

Xb,0
wg 2 0.748

ξ̄X0,1 ξ̄c
X0,1

wp 1 1.760
ξ̄X1,1 ξ̄c

X1,1
wg 1 0.477

ξ̄X2,1 ξ̄c
X2,1

wq 2 0.160
ξ̄X3,1 ξ̄c

X3,1
wq 2 0.489

ξ̄X1a,1 ξ̄c
X1a,1

wg 1 0.330
ξ̄Xb,1 ξ̄c

Xb,1
wq 2 0.538

as well as the evacuation uncertainty. In Section E.1 the ED and the data bases are estab-
lished. Accordingly, the RSM and the metamodel uncertainty come next to be examined.
The examination splits up in following steps, all based on system model simulations described
in Section B.5: Section E.2.1 aims at the model adequacy checking of MLS and the prediction
interval method; Section E.2.2 copes with the sequential refinement of the metamodel and the
default RSM is specified as well as juxtaposed with the batch RSM; the prediction interval
method is validated in comparison to the accuracy of the RSM in Section E.2.3; the shape of
the RSM is studied and MLS is validated with focus on the global objective in Section E.2.4;
and, other response surface methods with regard to the application in risk analysis are inves-
tigated in Section E.2.5 which finalises the validation of MLS. The subsequent system model
simulations as well as the risk analyses often apply the indirect mode over fixed points intro-
duced in Subs. ’Integration of MLS models into the system model’ (p. 45). As a prerequisite,
Subs. ’Integration of the RSM into the system model’ (p. G-34) in App. G.8 proved the accu-
racy of the indirect mode in comparison to the direct mode. Consequently, the notation in
this dissertation does not differentiate between the two modes.

E.2.1 MLS and prediction interval method

At the beginning, MLS is examined in App. G.6, its calibration algorithm with the three
weighting types as well as the prediction interval method. As a result, both methods are
successfully verified and it is stated that MLS with the calibration algorithm leads to adequate
results. In a next step, this section directs at the evaluation of all RSMs shown in Tab. E.2
and therewith follows three aims: first, to evaluate the residuals as part of model adequacy
checking outlined in Section D.1.1; second, to select the variance estimator, either σ2

X or
σ2

−i, to be used in the prediction variance of the prediction interval method; and third, to
discuss the spatial sensitivity of the prediction interval method described in Subs. ’Validation
of the prediction interval method’ (p. 42). Finally, this section is concluded by stating the
adequacy of MLS and the importance of the metamodel uncertainty and therefore this section
contributes to the validation of the metamodel.
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Table E.3: Results of the split-sample validation with n = 100 replications for the default
RSM ξ̄X2 for TA (above) and FA (below): the empirical confidence level α∗

mean

of the prediction interval method depends on the confidence level α as well as
on the prediction variance with the variance estimators σ2

X or σ2
−i.

RSM α α∗
mean

(
σ2

X

)
α∗

mean

(
σ2

−i

)
ξ̄X2,0 0.50 0.48 0.78
ξ̄X2,0 0.75 0.63 0.89
ξ̄X2,0 0.90 0.77 0.95
ξ̄X2,0 0.95 0.81 0.97
ξ̄X2,1 0.50 0.21 0.74
ξ̄X2,1 0.75 0.36 0.91
ξ̄X2,1 0.90 0.53 0.97
ξ̄X2,1 0.95 0.62 0.98

The model adequacy checking of the RSMs used in the system model bases on the evaluation
of normal probability plots according to Section D.1.1. Nearly every RSM corresponds to
the results of the default RSM depicted in Fig. E.5a and Fig. E.5b. Namely, their residuals
revealed no apparent deviation from the normal distribution. Except, the RSM ξ̄X3 for TA
deviated more strongly at the lowest quantiles of the residuals in Fig. E.5c but its other
residuals appeared to be normally distributed. Concluding, with these few exceptions in
mind, all RSMs used in the system model fit adequately to their data bases.
The split-sample validation outlined in Subs. ’Validation of the prediction interval method’ (p. 42)
was used to choose between the variance estimators σ2

X or σ2
−i in Eq. D.7 (p. 40) of the pre-

diction variance (Eq. D.12, p. 42). For this, the empirical confidence level α∗
mean in Eq. D.13

(p. 43) based on 100 repetitions with following specifications: Ȳ Xeval
∈ ξ̄X2 and Ȳ

∗ ∈ ξ̄c
X2

were both based on the subsets of their data base; and Ȳ Xeval
served to analyse α∗

mean

(
σ2

X

)
and α∗

mean

(
σ2

−i

)
. As general outcome, the empirical confidence levels of all RSMs of the

system model were in line with the results of the RSM provided in Tab. E.3. In more detail,
the prediction intervals based on the variance estimator σ2

X showed small predictive capabil-
ities. And in case of the variance estimator σ2

−i, the prediction intervals were always slightly
conservative and thus comparable to the results in Kim 2008 [28, Tab. 1]. These results
are in contrast to Subs. ’Comparison to the Kim 2008 [28]’ (p. G-20) in App. G.6.1 where σ2

X

led to good predictive capabilities and σ2
−i led to too conservative prediction intervals. De-

spite these differences, the prediction variance of the prediction interval method applies the
variance estimator σ2

−i since it leads to adequate results with regard to the system model.
With view on the spatial sensitivity of the prediction interval method, all RSMs used in
the system model led to similar results as in Fig. E.6a and Fig. E.6b for the default RSM.
These figures illustrate that the prediction variance is independent to residuals at data points.
Essentially, because the prediction variance in Eq. D.12 considers residuals globally by the
variance estimator σ2 of Eq. D.7. Moreover, Fig. G.2 on p. G-19 and Fig. G.3 confirm these
results. Nota bene, Fig. E.6c and Fig. E.6d emphasise a characteristic of the prediction vari-
ance exemplarily for the RSM ξ̄X1 . Namely, the prediction variances at data points clearly
split up into two groups. A detailed analysis uncovers that the elevated prediction variances
belong to data points located at the outer vertices of the domain. Concluding, the prediction
variance is independent to the residuals only with differences between data points at the
centre and the outer vertices. In other words, the prediction interval method is not spatially
sensitive and hence, does not depend on the shape of the RSM.
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Figure E.5: Frequency distributions of the residuals of RSMs; the residuals of the default
RSM ξ̄X2 fit to a normal distribution (above) whereas the residuals of the RSM
ξ̄X3 (TA) show some deviations (below); the scales differ between the figures.
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Figure E.6: Correlation of the prediction variance to residuals for the default RSM ξ̄X2

(above) and the RSM ξ̄X1 (below) at all their data points; the scales differ
between both figures.

As a consequence, the prediction interval method reveals a drawback at vast plain response
surfaces of the FF close to zero ξ̄ ≈ 0, e.g. depicted in Fig. E.13a on p. 71. In this region,
the metamodel uncertainty is expected to be small because of two reasons: first, since the
results of all data points in this region are close to zero, i.e. ξ̄c ≈ 0, the residuals should
also be small; second, the results of the RSM should be close to zero, i.e. ξ̄ ≈ 0 because
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of the results of neighbouring data points. But the prediction variance, and thus also the
metamodel uncertainty based on the prediction interval method, in this region is elevated as
shown in Fig. E.14a. Additionally, the non-relative integration of the metamodel uncertainty
into the metamodel with Eq. D.10 (p. 41) transfers this drawback of the prediction interval
method to the results of the metamodel.
But two approaches might improve the metamodel uncertainty. First, the metamodel uncer-
tainty could consider local residuals. Since residuals are spatially sensitive to the shape of the
RSM as discussed in Subs. ’Validation of the prediction interval method’ (p. 42), the meta-
model uncertainty would be sensitive to the shape of the response surface too. Accordingly,
the metamodel uncertainties would be small in regions with small second derivatives of the
RSM, e.g. with the FF close to zero, i.e. ξ̄ ≈ 0, as in Fig. E.13a. In conclusion, this metamodel
uncertainty is expected to be less conservative. Second, additional data points could reduce
the metamodel uncertainty. For this approach, the assumption in Subs. ’Metamodel’ (p. 23)
that scenarios with HRRmax < 25 MW do not cause fatalities could be expanded to an ad-
ditional region. This additional region could be specified with the knowledge on results of
the complex model of previous refinement steps. Then, the data base of the RSM could be
manually extended with data points to decrease the prediction variance in this region. These
manual data points ~xi ∈ Xmanual have a FF equal to zero ξ̃c

manual = ~0. To sum up, App. G.9
shortly outlines this second approach and illustrates its effects.
To conclude, MLS with the calibration algorithm and the prediction interval method using
the variance estimator σ2

−i lead to adequate results in the system model. Hence, MLS ade-
quately represents the deterministic results of the complex model. However, the validation
process identified one potential drawback of the prediction interval method, in detail, not to
be spatially sensitive. But the integration of the metamodel uncertainty into the metamodel
is important unrelated to the underlying method as exemplified in Subs. ’Basic characteris-
tics’ (p. G-19) in App. G.6.1. Thus, MLS and the metamodel uncertainty provide the basis
for objective 1 (metamodel).

E.2.2 Sequential refinement

The focused sequential refinement and the combination of EDs to achieve an efficient meta-
model were introduced in Subs. ’Metamodel’ (p. 23) of Section B.4. Subs. ’Focus on regions of
the domain’ (p. 35), Subs. ’Sequential refinement’ (p. 35) and Subs. ’Combination of EDs’ (p. 36)
in Section C.2 provide the details and Tab. E.1 on p. 53 in Section E.1 establishes the data
bases for the sequential refinement. Now, the evaluation of the sequential refinement of the
metamodel targets at: first, the convergence of the results of the RSM and the prediction
variance during sequential refinement leading to the default RSM of the system model in
Subs. ’Convergence of the RSM and the prediction variance’ (p. 60); and second, the com-
parison of the default RSM to the batch RSM in Subs. ’Focused sequential refinement in
comparison to the batch design’ (p. 66) to identify advantages of the sequential refinement.
To complete the discussion of the efficiency, Berchtold 2018 [9] highlighted the contribution
of the combination of EDs to the efficiency.

Convergence of the RSM and the prediction variance
The convergence of the results of the RSM ξ̄ and the prediction variance s2 is important

for the setup of the metamodel as outlined in Section D.4. The evaluation of the convergence
bases on the RSMs ξ̄X0 , ξ̄X1 , ξ̄X2 and ξ̄X3 . In more detail, the system model simulations
S0, S1, S2 and S3, described in Section B.5, produced the following results with Nmcs = 104

random scenarios.
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Tab. E.4 shows the euclidean relative difference erd of all RSMs relative to the RSM ξ̄X3

as well as their prediction variances s2
q90. The sequential refinement achieved a monotonic

decrease of the euclidean relative difference and a mostly monotonic decrease of the prediction
variance. Additionally, Fig. E.7 illustrates the convergence of the results between the RSMs
ξ̄X2 and ξ̄X3 and Fig. E.8 shows the convergence of the FF Ξ̄ in the system model simulations.
These results have already been published by Berchtold 2018 [9], the next paragraphs will
discuss them in detail.

Table E.4: Prediction variance s2
q90 and euclidean relative difference erd

(
ξ̄Xi , ξ̄X3

)
for the

RSMs of the sequential refinement (TA: above, FA: below).
RSM

√
s2

q90 erd
ξ̄X0,0 0.163 0.54
ξ̄X1,0 0.061 0.30
ξ̄X2,0 0.031 0.10
ξ̄X3,0 0.032 0.00
ξ̄X0,1 0.155 0.24
ξ̄X1,1 0.053 0.14
ξ̄X2,1 0.031 0.05
ξ̄X3,1 0.037 0.00

The refinement steps achieve a convergence between the results of the RSMs ξ̄X2 and ξ̄X3 .
With a closer look, the euclidean relative difference between the RSMs ξ̄X2 and ξ̄X3 is larger
for scenarios with TA than for scenarios with FA, namely erd

(
ξ̄X2,0 , ξ̄X3,0

)
> erd

(
ξ̄X2,1 , ξ̄X3,1

)
.

The rationale for the larger euclidean relative difference originates in the complexity of the
response surface defined in Subs. ’Complex model within the system model’ (p. 22). Scenarios
with TA lead to a more complex shape of the response surface than scenarios with FA as
discussed in Section B.3. The juxtaposed figures Fig. E.7a vs. Fig. E.7c (p. 62), Fig. E.11a vs.
Fig. E.11b (p. 67), Fig. E.12a vs. Fig. E.12b (p. 68) as well as Fig. E.13a vs. Fig. E.13b (p. 71)
exemplify this statement. As a consequence, the RSM for scenarios with FA requires less data
points to reach convergence than the RSM for scenarios with TA. Therefore, the RSM for
scenarios with TA is still subjected to differences, i.e. erd, between ξ̄X2,0 and ξ̄X3,0 in contrast
to ξ̄X2,1 and ξ̄X3,1 . However, Fig. E.8 shows good convergence between the FF Ξ̄2 and Ξ̄3
in the system model simulations S2 and S3 which consider scenarios with both TA and FA.
With regard to the prediction variance s2

q90, the RSMs ξ̄X2 and ξ̄X3 show small differences. In
case of scenarios with TA, the prediction variance of ξ̄X2,0 and ξ̄X3,0 even increases again. To
summarise, this discussion leads to following conclusions: first, the difference in the results
of risk analyses R using the FF Ξ∗

2 and Ξ∗
3 are expected to be small; and second, subsequent

refinement steps of the RSM ξ̄X2 , esp. for FA, will cause only small differences in the results.
Hence, additional sequential refinement for the RSM ξ̄X2 is not required.
One interesting result in the convergence of the prediction variance is the increase of the
prediction variance s2

q90 between the RSMs ξ̄X2,1 and ξ̄X3,1 for scenarios with FA. In contrast,
the RSMs ξ̄X2,0 and ξ̄X3,0 for scenarios with TA lead similar prediction variances. And again
the reason lies in the complexity of the response surfaces. As outlined before, scenarios
with TA lead to more complex response surfaces. Consequently, the weighting parameter
ω decreased between ξ̄X2,0 and ξ̄X3,0 whereas the other MLS attributes remained equal as
shown in Tab. E.2. Therefore, the spatial sensitivity of the RSM increases which allows
the adaptation to new data points as illustrated in Fig. E.9. The increase in the spatial
sensitivity leads also to similar prediction variances between the RSMs ξ̄X2,0 and ξ̄X3,0 for
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Figure E.7: Convergence of the results of RSMs during the sequential refinement in the
region of sc(− MW, − s, 124 s, 101, fa = −) (above: TA, below: FA); the
scales differ between the figures.

scenarios with TA. On the other hand, scenarios with FA cause less complex response surfaces.
Thus, the RSMs ξ̄X2,1 and ξ̄X3,1 become less spatially sensitive, i.e. the weighting parameter
ω increases and the other MLS attributes do not change, which again results in an increase of
the prediction variance s2 of the RSM ξ̄X2,1 compared to the RSM ξ̄X3,1 . To explain this in
detail: new data points elevate the variance estimator σ2

−i when their results are different to
the RSM with low spatial sensitivity because the RSM does not adapt to the new data points.
Correspondingly, the prediction variance s2 increases globally. In summary, the increase of
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Figure E.8: Difference of the frequency distributions of the FFs Ξ̄0, Ξ̄1, Ξ̄2, Ξ̄3 relative to
the FF Ξ̄3; the FFs show convergence between Ξ̄2 and Ξ̄3; the FFs stem from
system model simulations subjected to the RSMs ξ̄X0 , ξ̄X1 , ξ̄X2 and ξ̄X3 using
the indirect mode over fixed points.

prediction variance between the RSMs ξ̄X2,0 and ξ̄X3,0 of scenarios with TA can be reasoned
by the complexity of the response surface.
Another aspect is the prediction variance of a RSM subjected to an ’infinite’ number of
data points. In this case, the residuals, using leave-one-out, are expected to be very small
because of very close neighbours. Hence, the variance estimator σ2

−i and prediction variance
s2 might be small depending on aleatory uncertainties in the results of the complex model ξ̄c.
Subs. ’Calibration algorithm’ (p. G-22) in App. G.6.1 provides an example of a RSM subjected
to no aleatory uncertainties. In conclusion, the final convergence of the prediction variance
depends on the aleatory uncertainties in the results of the complex model ξ̄c.
Fig. E.10a uncovers one more interesting result: the prediction variance s2 of ξ̄X1 is clearly
elevated close to data points in the centre of the domain. The preliminary discussion in
Subs. ’Basic characteristics’ (p. G-19) in App. G.6.1 mentioned only a slight elevation of the
prediction variance at data points. The subsection further reasoned the strong elevation
of the prediction variance of an arbitrary point at the outer vertices of the domain with
the larger distance to most data points. But now, the rationale for the elevated prediction
variances is mainly rooted in the combination of the EDs for fire and evacuation scenarios
Xfire and Xevac described in Subs. ’Combination of EDs’ (p. 36). The combination leads to
an aggregation of multiple evacuation scenarios {~xevac ∈ Xevac, . . .} on a single fire scenario
~xfire ∈ Xfire. Thus, a random scenario x̃, varied on fire risk factors with constant values in the
evacuation risk factors, can be close to multiple evacuation scenarios {~xevac ∈ Xevac, . . .} all
having equal values in the fire risk factors. In that case, the weighting matrix W in Eq. D.12
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Figure E.9: Results of RSMs during the sequential refinement shown in the region of
sc(− MW, − s, 241 s, 118, fa = 0); the RSM ξ̄X3 adapts to new data points
related to the fire scenario sc(165.1 MW, 631.9 s, − s, −, fa = 0) (highlighted
red); the data points are projected (proj.) to the bottom of the figure.

(p. 42) is subjected to higher values which this time leads to the elevated prediction variances
in the local region of x̃ shown in Fig. E.10a. A similar effect was not obvious in Subs. ’Basic
characteristics’ (p. G-19). Differently, a random scenario x̃, varied on evacuation risk factors
but with constant values in the fire risk factors, has rather similar distances to evacuation
scenarios {~xevac ∈ Xevac, . . .} which again have identical values in the fire risk factors. As a
consequence, the random scenario x̃ has rather constant, but elevated, prediction variances
in its local region as can be seen in Fig. E.10b. Further results, e.g. in Fig. E.10c, indicate
that the refinement step from ξ̄X1 to ξ̄X2 reduces the central elevated prediction variances.
Finally, three conclusions originate in these observations. First, the combination of EDs leads
to stronger elevation of the prediction variance in the region of data points in the centre of the
domain. From this result, it is expected that sequential refinement with only new evacuation
scenarios ‖Xevac

i ‖ >
∥∥Xevac

i−1
∥∥ but without new fire scenarios

∥∥∥Xfire
i

∥∥∥ =
∥∥∥Xfire

i−1

∥∥∥ would not be
efficient in decreasing the prediction variance. Second, the argumentation for the elevated
prediction variance at outer vertices in Subs. ’Basic characteristics’ (p. G-19) is still valid.
Hence, the focused sequential refinement on the outer vertices remains important for the
metamodel used in the system model. And third, the sequential refinement does not only
lead to global effects as shown in Tab. E.4, but also to local effects as illustrated in Fig. E.10a
and Fig. E.10c.
To finally emphasise the conclusions from the sequential refinement: first, the results of the
RSM and the prediction variance s2

q90 converge between the RSMs ξ̄X2 to ξ̄X3 ; second, the
focused sequential refinement achieves a sufficient data base for the metamodel with ten
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Table E.5: Prediction variance s2 and euclidean relative difference erd ≡ erd
(
ξ̄Xi , ξ̄X2

)
for

the RSMs ξ̄X2 and ξ̄Xb
.
RSM

√
s2

q90 erd
ξ̄X2,0 0.031 0.00
ξ̄Xb,0 0.039 0.147
ξ̄X2,1 0.031 0.00
ξ̄Xb,1 0.031 0.059

simulations of fire scenarios and 2 ·96 simulations of evacuation scenarios considering TA and
FA; and third, the RSM ξ̄X2 is specified as default RSM used in the system model. Hence,
the default RSM is supposed to be sufficient for risk analysis.

Focused sequential refinement in comparison to the batch design
Subs. ’Metamodel’ (p. 23) describes the contribution of the focused sequential refinement to

the efficiency of the metamodel. To further evaluate the efficiency, this section quantifies and
discusses the prediction variance of the default RSM ξ̄X2 in comparison to the batch RSM
ξ̄Xb

shown in Tab. E.2.
Tab. E.5, Fig. E.11 and Fig. E.12 provide an overview on the results of the RSMs ξ̄X2 and
ξ̄Xb

. The euclidean relative differences erd between both RSMs were only slightly elevated in
relation to the differences between the RSMs ξ̄X2 and ξ̄X3 in Tab. E.4. And again, scenarios
with FA caused smaller differences compared to scenarios with TA due to the lower complexity
of the response surface, namely erd

(
ξ̄Xb,1 , ξ̄X2,1

)
< erd

(
ξ̄Xb,0 , ξ̄X2,0

)
. Thus, to great extent,

both RSMs ξ̄X2 and ξ̄Xb
led to similar shapes with the largest differences at the outer vertices.

The latter observation seems to justify the increased prediction variance at the outer vertices
demonstrated in Fig. E.10 and indicates that the focus on the outer vertices during sequential
refinement is useful.
With regard to the prediction variance s2

q90, the default RSM and the batch RSM had similar
results for scenarios with FA, i.e. s2

q90

(
ξ̄X2,1

)
≈ s2

q90

(
ξ̄Xb,1

)
. But for scenarios with TA,

the default RSM was subjected to a smaller prediction variance than the batch RSM with
s2

q90

(
ξ̄X2,0

)
< s2

q90

(
ξ̄Xb,0

)
. The reason for this outcome is not immediately obvious but

the adapted batch RSM ξ̄Xb∗,0 allows the insight. But the first important fact is that the
data base ξ̄c

Xb
of the batch RSM provides more data points in the centre of the domain than

the data base ξ̄c
X2

of the default RSM. Also, the complexity of the response surface, i.e. the
second derivative, is higher in the centre than at the outer vertices which is exemplified by
Fig. E.11a. Coming now to the adapted batch RSM ξ̄Xb∗,0 , it is subjected to the same data
base ξ̄Xb,0 as the batch RSM but the weighting type is wp (Eq. D.17 on p. 45) instead of wg.
Due to this alteration, the adapted batch RSM and the default RSM ξ̄X2,0 both base on
the same weighting type. As result, the corresponding weighting parameters reveal that the
adapted batch RSM ξ̄Xb∗,0 , and thus presumably also the batch RSM ξ̄Xb,0 , is less spatially
sensitive than the default RSM which is the second important fact. The two facts derived
here lead to increased residuals for the variance estimator σ2

−i which consequently causes the
higher prediction variance s2

q90 of the batch RSM ξ̄Xb,0 in comparison to the default RSM
ξ̄X2,0 .
Some conclusions can be drawn from these results. First, variations in the ED of the default
RSM have small effects on the RSM ξ̄X2 in comparison to ξ̄Xb

. Second, the sequential refine-
ment can lead to smaller metamodel uncertainties, i.e. prediction variances, compared to a
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Figure E.11: Comparison of the results of the default RSM ξ̄X2 with results of the batch
RSM ξ̄Xb

for sc(− MW, − s, 124 s, 154, fa = −); the scales differ between
both figures.
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Table E.6: Empirical confidence level α∗ according to complete-sample validation for the
RSMs ξ̄X1 and ξ̄X2 depending on the confidence level α.

Ȳ Xeval
Ȳ

∗
α = 0.50 α = 0.75 α = 0.90 α = 0.95

ξ̄X1,0 ξ̄X1a,0 0.90 0.99 1.00 1.00
ξ̄X1,0 ξ̄X2,0 0.65 0.87 0.96 0.99
ξ̄X1,0 ξ̄X3,0 0.66 0.88 0.96 0.99
ξ̄X1,1 ξ̄X1a,1 0.78 0.95 1.00 1.00
ξ̄X1,1 ξ̄X2,1 0.60 0.91 0.98 1.00
ξ̄X1,1 ξ̄X3,1 0.64 0.93 0.99 1.00
ξ̄X2,0 ξ̄Xb,0 0.73 0.91 0.97 0.98
ξ̄X2,0 ξ̄X3,0 0.93 0.97 0.98 0.99
ξ̄X2,1 ξ̄Xb,1 0.87 0.96 0.99 1.00
ξ̄X2,1 ξ̄X3,1 0.91 0.98 0.99 1.00

batch design. And third, the focus on outer vertices of the domain seems to be useful for three
reasons: the elevated prediction variance at the outer vertices; the larger differences in the
shapes of the RSMs ξ̄X2 and ξ̄Xb

at the outer vertices; and, the local effects of the sequential
refinement discussed in Subs. ’Convergence of the RSM and the prediction variance’ (p. 60).
Moreover, the sequential refinement until convergence is reached avoids a ’conservative guess’
for the number of data points as discussed by Berchtold 2018 [9]. To illustrate this advantage,
the default RSM required ten simulations of fire scenarios and 2 · 96 evacuation scenarios for
TA and FA shown in Tab. E.1 (p. 53) but the risk analysis in Berchtold 2016 [8] applies a
batch RSM subjected to 20 fire scenarios and 2 · 400 evacuation scenarios. Consequently, this
advantage and the previous conclusions demonstrate that the focused sequential refinement
increases the efficiency of the metamodel. Accordingly, the PAD with sequential refinement
and focus contributes to objective 2 (efficiency).

E.2.3 Predictive capability of the prediction interval method

A drawback of the prediction interval method is identified in Section E.2.1 but Subs. ’Basic
characteristics’ (p. G-19) in App. G.6.1 illustrates the importance of the metamodel uncer-
tainty. As a consequence, it is important to validate the prediction interval method which
is used for the metamodel uncertainty. In the validation, it is examined whether the predic-
tion interval method is able to predict the ’value of a single future observation’ [28, p. 4]
as outlined in Subs. ’Prediction interval method’ (p. 42). With this aim, the study considers
subsequent refinement steps, i.e. the RSMs ξ̄X1 , ξ̄X2 and ξ̄X3 as well as variations in the
ED with the RSMs ξ̄X1a and ξ̄Xb

being equivalent to the RSMs ξ̄X1 and ξ̄X2 respectively.
To quantify the predictive capability of the prediction interval method, the complete-sample
validation in Subs. ’Validation of the prediction interval method’ (p. 42) is applied. It serves
to evaluate the empirical confidence level α∗ according to Eq. D.13 (p. 43). Eq. D.13 is speci-
fied with Ȳ Xeval

and Ȳ
∗ both shown in Tab. E.6 where Ȳ

∗ provides results at the evaluation
points representing the arbitrary points X̃.
Tab. E.6 presents the empirical confidence levels. First, the evaluation of subsequent refine-
ment steps considers the pairs of RSMs ξ̄X1 to ξ̄X2 and ξ̄X2 to ξ̄X3 . The RSM ξ̄X0 comprises
only data points at the outer vertices and consequently its prediction interval is exceptionally
conservative with empirical confidence levels of α∗ = 1.00 for all confidence levels α ≥ 0.5.
Concerning the RSM ξ̄X1 , its prediction interval is conservative with values for the empirical
confidence level comparable to the values in Kim 2008 [28, Tab. 1]. And for the RSM ξ̄X2 the
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prediction interval is again more conservative due to convergence between the results of the
RSMs ξ̄X2 and ξ̄X3 . Second, with regard to the variations in the EDs, the prediction intervals
of the RSMs ξ̄X1 and ξ̄X2 are very conservative to the RSM ξ̄X1a in the former case and still
fairly conservative in the latter case. The reason for the latter result is the similarity between
the RSMs ξ̄X2 and ξ̄Xb

as illustrated in Subs. ’Focused sequential refinement in comparison
to the batch design’ (p. 66). To sum up, the increased conservativeness of the prediction in-
terval method might be related to its drawback. Accordingly, the approaches to improve the
metamodel uncertainty discussed in Section E.2.1 could reduce the conservativeness for even
better predictive capabilities.
Concluding, the prediction interval method based on variance estimator σ2

−i leads to conser-
vative results which confirms the results in Section E.2.1. But more important, the validation
was successful in reference to ’predicting the interval of the value of a single future observa-
tion’ [28, p. 4]. This conclusion is in particular true for subsequent refinement steps as well
as to variations in the ED. In other words, the accuracy of the RSM with regard to unknown
results of the complex model corresponds to the prediction interval.

E.2.4 Risk factors, discrete events and global objective

In Section A.1 it is explained that the risk analysis directs at complex scenarios with the
global objective. Then, Section B.3 presents the complex scenarios which consider multiple
risk factors, i.e. the parent nodes of the node FF, and discrete events. A short discussion of
the effect of discrete events on the shape of the response surface follows in Subs. ’Complex
model within the system model’ (p. 22) in Section B.4. To extend this discussion, the shape
of the RSM is explored with attention to, firstly, the correlation of risk factors and secondly,
the effect of discrete events. Moreover, Section D.1.3 describes that MLS is suitable for the
global objective. Accordingly, thirdly, MLS is validated with focus on the global objective.
For these analyses, a visual evaluation of the RSM ξ̄X3 serves as basis. Additionally, the SoM
model ξ̄SoM

X3
, with the background in Subs. ’FoM and SoM models in the metamodel’ (p. 45),

shall emphasise the difference of the MLS model to a global quadratic polynomial.
Fig. E.13 and Fig. E.14 act as example for this study. Furthermore, Fig. E.13a and Fig. E.14a
show the increased prediction variance in a region where the FF is close to zero, i.e. ξ̄ ≈ 0.
Therefore, these figures illustrate the reason for the approaches to improve the metamodel un-
certainty outlined in Section E.2.1. Also, Fig. E.13a confirms the assumption in Subs. ’Meta-
model’ (p. 23) in Section B.4 that the number of fatalities is zero for scenarios with a maximum
HRR of HRRmax < 25 MW.
The risk factors maximum HRR HRRmax, time to maximum HRR tmax, maximum pre-
evacuation time tpre and number of tunnel users Ntu, i.e. parent nodes of the node FF, caused
different correlations to the results of the RSM. First, the correlation between HRRmax and
the results of the RSM ξ̄X3 is more complex than a global quadratic polynomial as depicted
in Fig. E.13a. Second, tmax shows a correlation that is more complex than a global linear
but less complex than a global quadratic polynomial according to Fig. E.13b and Fig. E.13d.
And third, Fig. E.14c and Fig. E.14d demonstrate the more or less linear correlation of tpre.
These figures also illustrate that the RSM ξ̄X3 is only subjected to small effects of Ntu.
For completeness, Fig. E.15 changes the perspective and exemplifies the correlation between
the ’time’ risk factors tmax and tpre. Concluding, the implementation of the PAD could be
improved with reference to Subs. ’Focus on regions of the domain’ (p. 35). Currently, all risk
factors are subjected to the same number of strata. But since, the risk factors contribute
differently to the complexity in the shape of the RSM, different numbers of data points
are required to reproduce their correlations. Consequently, the number of strata could be
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Figure E.13: Correlations between risk factors and the results of the RSM ξ̄X3 in the region
of sc(− MW, − s, 194 s, 171, fa = −) in comparison to the RSM ξ̄SoM

X3
; the

RSM ξ̄X3 adapts to new data points (highlighted red) in Fig. E.13a; the scales
differ between the figures.
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;

Fig. E.14a uncovers the drawback of the prediction interval method: the pre-
diction variance should be small in the region where the results of the data
base and of the RSM are close to zero, i.e. ξ̄c

X3
≈ 0 and ξ̄X3 ≈ 0 according to

Fig. E.13a; the scales differ between the figures.
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specified individually for each risk factor in the PAD. This adaption could further increase
the efficiency of the metamodel.
The jam of tunnel users at emergency exits and the tunnel alarm are discrete events in the
system model which raises the question on their effects on the shape of the RSM. First, the
shape of the RSM ξ̄X3 reveals no hints on jams because of the rather small number of tunnel
users in the evacuation area. But with regard to the tunnel alarm, an effect is recognisable.
The tunnel alarm depends on HRRmax and tmax, accordingly the effect appears on the fire
risk factors. Juxtaposing Fig. E.13a and Fig. E.13b, the second derivative of the response
surface along the diagonal between the outer vertices (HRRmax = 25 MW, tmax = 600 s) and
(HRRmax = 200 MW, tmax = 1200 s) seems to be higher for scenarios with TA than for sce-
narios with FA. This interpretation bases on the larger plain response surface for TA in com-
parison to the steady increase right from the axes at tmax = 1200 s and HRRmax = 25 MW.
In more detail, the event of tunnel alarm alerts multiple TUs at the same time narrowing the
period when the TUs reach the emergency exit. As a consequence, the tunnel alarm causes
a steep increase of the FF, i.e. if the alarm was not early enough. Of course, the individual
pre-evacuation times as well as the individual positions of TUs blur this increase leading to
a differentiable response surface. In case of FA, the individual alarm of TUs depends on the
smoke spread and the positions of the TUs. This interaction widens the period for arriving
at the emergency exit and additionally blurs the increase of the FF.
Finally, Fig. E.13a highlights two characteristics concerning the global objective of MLS. First,
the MLS model ξ̄X3 is able to adapt to data points as can be also seen in Fig. E.9 on p. 64.
And, MLS reproduces the large horizontal response surface, i.e. ξ̄c ≈ 0 for small HRRmax

and high tmax, together with an adjacent high gradient in the response surface. Thus, these
two observations support the conclusion that MLS adequately reproduces complex response
surfaces on the entire domain.

E.2.5 Response surface methods

The study in Section E.2.4 proved that MLS is suitable for risk analysis which directs at
complex response surfaces with the global objective. Since other response surface methods,
namely FoM, SoM, LIn and LIl are also used in risk analysis as outlined in Section D.1.2, this
study extends Section E.2.4 accordingly. For this, the focus lies on first, the bias and variance
error of the RSMs of the different response surface methods, second, their shapes and third,
their effects on results of risk analysis. The RSMs are denoted with ξ̄MLS, ξ̄FoM, ξ̄SoM, ξ̄LIn,
ξ̄LIl. It has to be kept in mind, that the RSMs of FoM and SoM are equal for the data
bases ξ̄c

X0
and ξ̄c

X1
as outlined in Subs. ’FoM and SoM models in the metamodel’ (p. 45) with

ξ̄FoM ≡ ξ̄SoM. Furthermore, Subs. ’Metamodel uncertainty for LIn and LIl models’ (p. 46) of
Section D.2 states that the variance estimators of LIn and LIl are identical for the data base
ξ̄c

X0
, written σ2

−i

(
ξ̄LIl

X0

)
≡ σ2

−i

(
ξ̄LIn

X0

)
. At last, the study aims at the final validation of MLS

models, esp. the default RSM.

Bias error and variance error of the RSM
Response surface methods naturally affect the bias and variance error of their RSMs. Con-

sequently, model adequacy checking in this dissertation comprises the evaluation of the bias
and variance error in comparison to other response surface methods. Section D.1.1 describes
the background for model adequacy checking. Accordingly, the generalisation error provides
information on bias error and variance error and can be represented by the variance estimator
σ2

−i. Additionally, the variance error expresses qualitatively the sensitivity of the RSM to
variations in the ED. Hence, the euclidean relative difference at the evaluation points of two
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Figure E.15: Correlation between tmax as well as tpre and their effect on the results of the
RSM based on the data base ξ̄c
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in sc(190 MW, − s, − s, 171, fa = −) (above)

and sc(118 MW, − s, − s, 171, fa = −) (below); the scales differ between the
figures.
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Table E.7: Variance estimator σ2
−i for RSM of different response surface methods subjected

to the data bases of all refinement steps (TA: above, FA: below).
data base σ2

−i

(
ξ̄MLS

)
σ2

−i

(
ξ̄FoM

)
σ2

−i

(
ξ̄SoM

)
σ2

−i

(
ξ̄LIn

)
σ2

−i

(
ξ̄LIl

)
ξ̄c

X0,0
0.14 0.24 − 0.29 −

ξ̄c
X1,0

0.05 0.14 − 0.06 0.06
ξ̄c

X2,0
0.03 0.12 0.05 0.05 0.04

ξ̄c
X3,0

0.03 0.11 0.05 0.05 0.04
ξ̄c

X0,1
0.13 0.29 − 0.37 −

ξ̄c
X1,1

0.05 0.16 − 0.04 0.04
ξ̄c

X2,1
0.03 0.13 0.03 0.05 0.04

ξ̄c
X3,1

0.03 0.13 0.04 0.05 0.04

RSMs based on two equivalent data bases allows a qualitative comparison of the variance
error. The equivalent data bases are ξ̄c

X1
and ξ̄c

X1a
as well as ξ̄c

X2
and ξ̄c

Xb
.

Tab. E.7 provides an overview on the variance estimators of the different RSMs. In particular,
FoM led to an increased variance estimator. In detail, the variance estimator of the RSMs
of ξ̄FoM are higher than the RSMs of SoM because of the smaller polynomial degree in
FoM. Comparing LIn and LIl, LIl considers more data points, i.e. neighbours to an arbitrary
point, than LIn which concentrates on the closest neighbour. As a consequence, the variance
estimators of the RSMs ξ̄LIl

X2
and ξ̄LIl

X3
were slightly lower than for the RSMs ξ̄LIn

X2
and ξ̄LIn

X3
.

MLS caused the lowest variance estimator with an exception for ξ̄c
X1,1

due to the quadratic
polynomial and the local weighting of all data points. Furthermore, MLS could still reduce the
generalisation error by using the variance estimator as measure in the calibration algorithm
instead of the prediction variance s2

q90.
The sensitivity of the RSMs to variations in their EDs is shown by the euclidean relative differ-
ence erd in Tab. E.8. The results depend on the spatial sensitivity of the RSMs. Accordingly,
LIn led to the highest variations which is emphasised with Fig. E.16a and Fig. E.16b. These
variations cause high uncertainties in the results of the RSM esp. for small numbers of data
points. LIl and MLS are roughly comparable in their spatial sensitivity, also depicted in
Fig. E.16c and Fig. E.16d. And finally, FoM and SoM models are subjected to the small-
est spatial sensitivities. Thus, the global least squares regression methods cause the lowest
variance error.
Summing up, MLS focuses on the global objective and is for this reason more spatially
sensitive than global least squares regression methods. As a result, MLS models, using the
calibration algorithm, cause an increased variance error but are able to reduce the bias error.
Therefore, among FoM, SoM, LIn and LIl, MLS achieves the highest accuracy of RSMs with
respect to the generalisation error.

Shape of the RSM
Beside from the bias and variance error, the validation of the MLS model comprises the

evaluation of the MLS model with respect to the shape of the response surface. The response
surface is, according to Subs. ’Complex model within the system model’ (p. 22) continuous,
differentiable and rather complex in its shape. But the RSMs of the response surface meth-
ods are attributed to different spatial sensitivities as sketched in Section D.1.2, and are for
this reason differently suitable for the response surface. Thus, the shapes of the RSMs are
qualitatively juxtaposed in Fig. E.17 and compared quantitatively with the euclidean relative
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Table E.8: Sensitivity of RSMs subjected to different response surface methods to variations
in the ED: quantified with the euclidean relative difference erd between X1 and
X1a (above) and between X2 and Xb (below).

TA FA
erd

(
ξ̄MLS

X1
, ξ̄MLS

X1a

)
0.14 0.10

erd
(
ξ̄FoM

X1
, ξ̄FoM

X1a

)
0.08 0.08

erd
(
ξ̄SoM

X1
, ξ̄SoM

X1a

)
− −

erd
(
ξ̄LIn

X1
, ξ̄LIn

X1a

)
0.72 0.61

erd
(
ξ̄LIl

X1
, ξ̄LIl

X1a

)
0.14 0.07

erd
(
ξ̄MLS

X2
, ξ̄MLS

Xb

)
0.15 0.06

erd
(
ξ̄FoM

X2
, ξ̄FoM

Xb

)
0.04 0.04

erd
(
ξ̄SoM

X2
, ξ̄SoM

Xb

)
0.10 0.04

erd
(
ξ̄LIn

X2
, ξ̄LIn

Xb

)
0.48 0.39

erd
(
ξ̄LIl

X2
, ξ̄LIl

Xb

)
0.11 0.07

difference erd at the evaluation points relative to the RSM ξ̄MLS. First, the RSMs of MLS
and LIl were able to reproduce large horizontal response surfaces adjacent to high gradients
exemplified in Fig. E.17a. This ability is additionally emphasised for MLS in Fig. E.13a on
p. 71. Next, Fig. E.17c demonstrates that LIn was also reproduces the large horizontal shape
but it causes discontinuities which lack of real analogies in the response surface. In contrast,
the RSM of FoM could not replicate the horizontal shape but led to FF below zero. The
same yields for SoM but in a less distinct way as shown in Fig. E.17d. Concluding, these
results indicate sufficient spatial sensitivity of the RSMs of MLS and LIl whereas the other
response surface methods fail to meet real analogies in the response surface.
Tab. E.9 reveals in combination with Fig. E.13c and Fig. E.13d on p. 71 that SoM was sub-
jected to the smallest euclidean relative difference to MLS. This similarity was in particular
pronounced for scenarios with FA because of the less complex response surface. But MLS
still causes a smaller variance error shown in Tab. E.7. Accordingly, the increased spatial
sensitivity of MLS models show advantages with regard to the global objective. More clearly,
Fig. E.17d expresses this advantage in the sc(25 MW, 1200 s, − s, −, fa = 0) with a FF close
to zero: MLS approximated the FF to zero at this scenario whereas SoM led to increased
results with ξ̄c

X2
≈ 0; ξ̄MLS

X2
≈ ξ̄c

X2
; ξ̄SoM

X2
> ξ̄c

X2
.

Also, the RSMs of LIl and MLS resulted in a small euclidean relative difference which cor-
responds to the qualitative evaluation. In more detail, the RSM ξ̄MLS

X1
is subjected to a

linear polynomial similar to LIl, whereas the RSM ξ̄MLS
X2

bases on a quadratic polynomial.
Therefore, the RSM ξ̄LIl

X1
is closer to ξ̄MLS

X1
than ξ̄LIl

X2
to ξ̄MLS

X2
because of the same polynomial

degree with erd
(
ξ̄MLS

X1
, ξ̄LIl

X1

)
< erd

(
ξ̄MLS

X2
, ξ̄LIl

X2

)
. But as downside of LIl, its RSMs are not

differentiable at data points, e.g. shown in Fig. E.17b, which might cause discrepancies to
very complex response surfaces. Fig. E.17b displays another discrepancy of the RSM of LIl,
namely the particular shape of an elevated FF at the outer vertices of the domain. The par-
ticular shape originates in the method using unstructured data points and contributes to the
higher euclidean relative difference between LIl and MLS in comparison to SoM and MLS.
Finally, the RSMs of LIn, FoM and SoM miss real analogies to the response surface e.g.
with respect to discontinuous, global linear or quadratic shapes. Quantitatively, MLS, SoM
and LIl lead to similar results of their RSMs. But the medium spatial sensitivity of MLS
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Table E.9: Euclidean relative difference erd between RSMs of different response surface
methods and the MLS model for all refinement steps (TA: above, FA: below);
brief notation for erd

(
ξ̄SoM

)
= erd

(
ξ̄MLS, ξ̄SoM

)
.

data base erd
(
ξ̄FoM

)
erd

(
ξ̄SoM

)
erd

(
ξ̄LIn

)
erd

(
ξ̄LIl

)
ξ̄c

X0,0
0.25 − 0.82 0.32

ξ̄c
X1,0

0.38 − 0.49 0.15
ξ̄c

X2,0
0.53 0.20 0.49 0.34

ξ̄c
X3,0

0.54 0.21 0.44 0.31
ξ̄c

X0,1
0.20 − 0.69 0.21

ξ̄c
X1,1

0.26 − 0.38 0.10
ξ̄c

X2,1
0.29 0.05 0.35 0.16

ξ̄c
X3,1

0.29 0.03 0.33 0.15

achieves the smallest generalisation error discussed in Subs. ’Bias error and variance error
of the RSM’ (p. 73). Consequently, models of MLS and LIl most reasonably represent the
response surface and thus show advantages for the global objective.

Results of risk analysis
The methodology for risk analysis applies the system model as well as the metamodel in

the consequence model both described in Section B.3 and Section B.4. Hence, the differences
in the shapes of the RSMs caused by the response surface methods suggest effects on the
results of risk analysis. To examine these effects, system model simulations produce results
for Nmcs = 106 random scenarios. Each system model simulation uses one of the response
surface methods as well as the data base ξ̄c

X2
. Tab. E.10 introduces the notation of the system

model simulations S and the FF in the system model Ξ̄. The following comparison uses the
system model simulation SMLS as reference.

Table E.10: Effects of different response surface methods on the individual risk of system
model simulations with the data base ξ̄c

X2
.

response surface method MLS FoM SoM LIn LIl
S SMLS SFoM SSoM SLIn SLIl

Rind/
(
10−3 1

year

)
4.5 6.7 5.0 4.8 5.9

Tab. E.10, Fig. E.18a and Fig. E.18b provide the results of risk analysis, namely the individual
risk Rind, the FF in the system model Ξ̄, and the societal risk curve. The FF Ξ̄ disregard
the metamodel uncertainty and the evacuation uncertainty to clearly evaluate the effect of
the shapes of the RSMs. Opposite to Subs. ’Shape of the RSM’ (p. 75), the results reveal no
effects of local differences in the RSMs but global effects on the entire domain for random
scenarios with TA and FA at the same time. Nonetheless, some global effects can be reasoned
with local differences.
The RSM ξ̄LIn resulted in elevated FF e.g. in the region of the sc(200 MW, 600 s, − s, −,
fa = 0) in Fig. E.17c. With respect to the results of the system model simulation SLIn, this
result is apparent in the upper quantiles of Ξ̄LIn in Fig. E.18a. More precisely, more random
scenarios lead to high FF compared to Ξ̄MLS which again contribute to an increased upper
part of the societal risk curve in Fig. E.18b.
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Figure E.18: Effect of different response surface methods on results of system model simu-
lations with the data base ξ̄c

X2
.

Examining Fig. E.18a, fewer random scenarios with FF close to zero Ξ̄FoM happened in the
system model simulation SFoM relative to SMLS. This characteristic contributes to an in-
creased individual risk since random scenarios with a high frequency fsc have elevated FF.
Also, there are less scenarios with high FF which reduces the upper part in the societal risk
curve.
Most random scenarios in the system model simulation SLIl had a slightly increased FF Ξ̄LIl

in comparison to the results of Ξ̄MLS with reference to Fig. E.18a. The particular shape at
the outer vertices of the RSM ξ̄LIl might be a factor to this outcome. Consequently, fewer
random scenarios with a FF close to zero occur which results in an increased individual risk
and a small increase in the societal risk curve.
The system model simulations SSoM and SMLS came to a similar frequency distribution in
the FF of random scenarios Ξ̄. Accordingly, their individual risks and societal risk curves
deviated only slightly. This similarity stems from the quantitative similar shapes of the
RSMs discussed in Subs. ’Shape of the RSM’ (p. 75). But Subs. ’Shape of the RSM’ (p. 75)
also emphasised some advantages of MLS with regard to the global objective and some fails
of SoM in local real analogies to the response surface.
As expected, these results prove that the choice of the response surface method affects the
results of risk analysis. Another implication is, that the mere evaluation of the global results
of risk analysis might not be enough to get adequate results for local random scenarios. For
this, it might be beneficial to investigate the shape of the RSM in detail.

Summary and conclusion
The response surface methods represent differently the complex response surface on the

entire domain. First, the shapes of the RSMs of FoM and SoM have little real analogies and
FoM reveals the highest generalisation error. Accordingly, the global least squares regression
methods are less suitable for the global objective together with complex response surfaces.
Second, LIn produces RSMs with discontinuous shapes which miss real analogies and clearly
affect the results of risk analysis. Also, the high variance error of LIn models leads to
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increased uncertainties in the RSMs, in particular in case of data bases with a small number
of scenarios. This might be true for methodologies for risk analysis of road tunnels which
are based on few discrete scenarios, i.e. LIn, as outlined in Section A.1. At last, LIl models
are comparable to MLS models with regard to the bias and variance error as well as the
shape of the RSMs. Exceptions are the particular shapes at the outer vertices of the domain
which lack for real analogies in the response surface and contribute to increased results of
risk analysis. However, available methods for LIl allow a simple setup. Accordingly, it might
be advisable to use LIl instead of LIn for risk analysis due to its higher accuracy and better
real analogy to the response surface.
Summing up, MLS is favourable for risk analysis in comparison to other response surface
methods. Some advantages are the small generalisation error as well as the representation of
the complex response surface, esp. with regard to the continuous and differentiable shape.
Together with following earlier results in: Subs. ’Convergence of the RSM and the prediction
variance’ (p. 60) in Section E.2.2 which proved the convergence of the results of the RSM;
Section E.2.3 which demonstrated that the accuracy of the RSM corresponds to the prediction
interval; and Section E.2.4 which illustrated the adequate reproduction of complex response
surfaces on the entire domain; it is concluded that the results of the default RSM represent
the deterministic results of the complex model and that MLS is able to direct at the global
objective. Finally, these conclusions prove the successful validation of the default RSM.
Thereby, MLS contributes to objective 1 (metamodel).

E.3 Evacuation uncertainty

The integral parts of the metamodel as well as the metamodel uncertainty were already
examined in Section E.1 and Section E.2. But the complex model, providing results for the
data base of the metamodel, comprises an evacuation model which causes the evacuation
uncertainties. Therefore, the evacuation uncertainty comes at last in the assessment of the
metamodel. First, the ORSs in the data base, i.e. the results of all replications of each
scenario computed with the complex model, are evaluated in Section E.3.1. Then, the direct
approach used to integrate the evacuation uncertainty at arbitrary points into the metamodel
is scrutinised in Section E.3.2.

E.3.1 Observed random samples of the complex model

Looking at the ORSs, two questions arise. First, how many replications are required to repro-
duce the unknown probability distributions behind the ORSs, i.e. the evacuation uncertainty
of the complex model? Second, does a particular distribution type, e.g. the normal distribu-
tion, fit to the ORSs? To answer both question, the evaluation considers the data bases of
the three different foci ξ̃c

i ∈
{
ξ̃c

X3
, ξ̃c

X1a
, ξ̃c

Xb

}
which comprise 512 data points in total. But

for obvious reasons, all ORSs equal to zero, namely ξ̃c
i = ~0, are excluded which leaves 316

data points.

Number of replications
Subs. ’Evaluation of ORSs’ (p. 26) describes the approach used to determine the required

number of replications in the ORSs. The approach bases on a quantitative and a qualitative
comparison of an ORS with bootstrap samples. The quantitative comparison provides results
of the largest absolute difference Dξ̃c

q according to Eq. B.6 on p. 27. For this, 104 bootstrap
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samples were sufficient to get reproducible results. In case of the qualitative comparison, a
figure juxtaposes the frequency distribution of a bootstrap sample and the ORS.
First, less than five, the exact number depends on the randomness in the bootstrap samples,
of the 316 ORSs led to largest absolute differences with Dξ̃c

q > 0.03. In particular, the lower
and the upper quantiles were responsible for these results. The visual analysis, exemplified
in Fig. E.19a and Fig. E.19b, revealed that their maximum values lied clearly apart to the
central part of the frequency distribution. The bootstrap samples rarely reproduced the
extrema but showed small differences in other quantiles. Second, around 20 ORSs resulted in
largest absolute differences of 0.02 < Dξ̃c

q < 0.03. Again, mostly the lower and upper quantiles
caused these values whereas the other quantiles differed only to small extent as depicted in
Fig. E.19c and Fig. E.19d. Third, the other bootstrap samples had also essentially the same
frequency distribution as their ORSs. As a result, the ORSs and the bootstrap samples were
mostly similar in all data points.
In addition, the mean and variance of the ORSs converged with Nrep = 200 replications.
This conclusion derives from the approach published by Ronchi 2014 [43] which resembles the
approach outlined in Section B.5, i.e. Eq. B.7 on p. 28. In consequence, mean and variance of
the FF can be regarded as deterministic which corroborates the assumption in Subs. ’Complex
model within the system model’ (p. 22) in Section B.4.
In summary, the bootstrap samples could reproduce the ORSs in most data points. This result
implies that 200 replications are sufficient to reproduce the unknown probability distributions
for results of the complex model. Of course, for many data points, less replications could
suffice. Therefore, an individual number of replications depending on the largest absolute
difference could reduce the number of replications in many data points.

Distribution type
Often, a frequency distribution of a sample is assumed to be normally distributed. This

assumption might be also one choice for the ORSs with regard to the application in the
evacuation uncertainty. To question this assumption, the one-sample Kolmogorov-Smirnoff
test, outlined in Subs. ’Evaluation of ORSs’ (p. 26), was used with the null hypothesis stating
that the ORSs are normally distributed. The test comprised all ORSs unequal to zero and
used the confidence level α = 0.05, the test statistic dKS,crit = 0.096 and the sample size
equal to the number of replications Nrep = 200.
As a result, the null hypothesis had to be rejected for 149 of 316 data points. The ORSs
in these data points had two main characteristics. First, the modal of the ORS was zero.
Consequently, the normal distribution resulted in values below zero, e.g. for sc(79 MW, 671 s,
288 s, 34, fa = 0) in Fig. E.20a. Second, the ORS consisted only of a small number of
discrete values as for sc(94 MW, 1031 s, 285 s, 80, fa = 0) in Fig. E.20d which contradicts
the continuous normal distribution. But also ORSs of scenarios like sc(165 MW, 632 s, 106 s,
50, fa = 1) depicted in Fig. E.20e and Fig. E.20f were rejected although they had none
of these characteristics. Additionally, the assumption of a Rayleigh distribution with the
interval [0; ∞] led to a similar number of rejections. And the beta distribution, because of
the interval [0; 1] often used for probabilities, brought less rejections but some data points
with substantial differences between the ORS and the beta distribution.
These results indicate that, first, the variety of different frequency distributions of the ORSs
are also subjected to different unknown probability distributions, and second, that the as-
sumption of a normal distribution is not valid for many ORSs. Hence, they provide the basis
for the direct approach to integrate the evacuation uncertainty into the metamodel.
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Figure E.19: Examples of a bootstrap sample in comparison to the ORS ξ̃c
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data points with large absolute differences Dξ̃c
q.
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Figure E.20: Examples for ORSs of different data points: frequency distribution of the
ORS (left) with the number of bins to get at least five replications in each
bin; normal probability plot of the ORS to the normal distribution N (µ, σ)
(right); the scales differ between the figures.
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E.3.2 Direct approach

Section D.1.5 provides the background for the evacuation uncertainty as well as the averaged
variance and Section D.3 describes the direct approach which was developed during this dis-
sertation to integrate the evacuation uncertainty into the metamodel. The verification went
hand in hand with the implementation of the direct approach. The next steps in the devel-
opment are the calibration and the validation. They both base on system model simulations
with the data base ξ̃c

X2
. With regard to the definition of ’validation’ in Subs. ’Terms related to

the evaluation of the accuracy of models’ (p. G-2), the data base can be regarded as the ’real
world’ because its ORSs shall be represented. The system model simulations apply results of
the metamodel ξ̃ε in Nmcs = 106 random scenarios. For this, the metamodels disregard the
metamodel uncertainty but for obvious reasons consider the evacuation uncertainty with the
direct approach attributed to the default parameters: combination mode linear; ξ̄c

lim = 10−4

for the limit for data points; Nnb = 5 · Nrf = 20 as initial number of neighbours for the
automatic reduction in the combination mode linear according to the averaged variance in
Section D.1.5; and Nrep = 200, i.e. all replications in the ORSs.
The following subsections describe the calibration, in other words the specification of the
default parameters, and outline the validation. The validation demonstrates that the results
of the direct approach require only little manipulations and correspond to real analogies, i.e.
the different frequency distributions of the ORSs identified in Subs. ’Distribution type’ (p. 82).
For this, the subsections discuss the spatial sensitivity of the results, for instance the num-
ber of random scenarios with

∥∥∥ξ̃ε > 1
∥∥∥, and evaluate the number of random scenarios with

‖ε̃ = 1‖ which might originate from manipulations to limit outliers. At the end, the direct
approach should achieve a sufficient spatial sensitivity as stated in Section D.1.5. And, it
should represent the evacuation uncertainty of the complex model for random scenarios.

Reproducibility of results
Eq. D.20 on p. 47 emphasises that the relative evacuation uncertainty ε̃ of one scenario is

subjected to aleatory uncertainties. Naturally, relative evacuation uncertainties ε̃ of Nmcs ran-
dom scenarios in a Monte-Carlo simulation are subjected to even more aleatory uncertainties
resulting in an individual frequency distribution of ε̃. Hence, six system model simulations
S0, . . . , S5 with identical parameters, models and modes, esp. in the direct approach serve
to quantify the effects of the aleatory uncertainties on the frequency distribution. This as-
sessment allows to judge the reproducibility e.g. of the frequency distribution of ε̃ and of risk
measures to be able to identify effects of other parameters or modes in the direct approach.
Fig. E.21a depicts the relative differences in the frequency distributions of ε̃ for all system
model simulations. As a result, the relative difference between quantiles of ε̃ are mostly below
0.02 with exceptions at the lower and upper quantiles. With regard to the risk measures,
the individual risk was essentially the same with Rind = 1.5 · 10−2 1

year and Fig. E.21b shows
variations in the upper part of the societal risk curve.
These results suggest that relative differences between quantiles of ε̃ of less than 0.02 as well
as the variations in the societal risk curve are caused by aleatory uncertainties in the relative
evacuation uncertainty itself or by random scenarios in Monte-Carlo simulations. Therefore,
larger variations in the frequency distribution of ε̃ or in risk measures are likely to stem from
modes or parameters in the direct approach used in the system model simulations of the
following subsections.
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Figure E.21: Reproducibility of the relative evacuation uncertainty ε̃ in six system model
simulations with identical parameters.

Combination mode
The direct approach considers the combination modes uniform, closest and linear for the

combination of neighbouring ORSs. Since the combination modes diverge in their spatial
sensitivity and the spatial sensitivity is relevant to represent the ORSs, the combination
mode is selected accordingly. The selection bases on three system model simulations with
the combination modes uniform, closest and linear denoted with Suni, Sclo, Slin. All system
model simulations do not limit their data points with the parameter ξ̄c

lim = 0 to clearly show
all effects on the relative evacuation uncertainty.
The system model simulations provide the results of the relative evacuation uncertainty ε̃
and of the metamodel ξ̃ε. First, the different combination modes had no clear effect on the
number of random scenarios with ‖ε̃ = 1‖, in other words, they account specific regions of
the domain in the same way, for instance where the ORSs are equal to zero. But the system
model simulations Sclo and Slin led to higher dispersions in ε̃ than Suni as displayed in
Fig. E.22. Additionally, the combination mode uniform had also an effect on

∥∥∥ξ̃ε > 1
∥∥∥ which

was ten times higher than for the combination modes closest and linear. These results of the
metamodel require adaptions to meet the FF in the system model as outlined in Section B.3.
But even for the combination mode uniform,

∥∥∥ξ̃ε > 1
∥∥∥ is far lower than the number of random

scenarios with results of the RSM below zero, namely
∥∥∥ξ̄ < 0

∥∥∥, causing adaptions, too. So,
the direct approach is responsible for only a small number of adaptions in the results of the
metamodel.
The elevated value in

∥∥∥ξ̃ε > 1
∥∥∥ clearly emphasises the lowest spatial sensitivity of the combi-

nation mode uniform which can be reasoned with the highest number of neighbours. On the
contrary, the combination mode closest is most spatially sensitive but also spatially discontin-
uous. However spatial discontinuities in the evacuation uncertainty miss real analogies in the
response surface. At last, the spatial sensitivity of the combination mode linear depends on
the euclidean distance between a random scenario and its neighbours. On the one hand, if a
random scenario is equal to a data point, i.e. ε̃ (x̃) ≡ ξ̂c (~xi) if x̃ = ~xi, the relative evacuation
uncertainty represents exactly the relative ORS because the number of neighbours shrinks
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Figure E.22: Effects of the combination modes uniform, closest and linear (Suni,Sclo, Slin

respectively) on ε̃; relative quantile plot relative to Suni.

to Nnb = 1. This behaviour is prescribed by the equation used for the linear weighting of
neighbours. On the other hand, if a random scenario has rather equal distances to its neigh-
bours, the linear weighting takes more ORSs into account, i.e. up to the initial number of
neighbours. Additionally, the combination modes linear and closest result in much the same
frequency distribution of ε̃ except for the lower quantiles as shown in Fig. E.22. This result
proves the high spatial sensitivity of the combination mode linear.
Finally, the combination mode linear is highly spatially sensitive. As a consequence, the
direct approach uses the combination mode linear as default weighting mode.

Outliers in the relative evacuation uncertainty
Outliers in the relative evacuation uncertainty have their origin in large values in combined

relative samples, in more detail in ORS with very small mean FF, i.e. ξ̄c ≈ 0. They can lead
to results of the metamodel with ξ̃ε > 1 which contradicts the real analogy in the response
surface. To avoid such contradictions, the prevention of outliers bases on the limitation of
data points with ξ̄c < ξ̄c

lim. The determination of the parameter ξ̄c
lim comprises two steps.

First, the evaluation of the mean FF in ORSs to narrow the range of ξ̄c
lim. This evaluation

considers all ORSs of the three data bases ξ̃c
i ∈

{
ξ̃c

X3
, ξ̃c

X1a
, ξ̃c

Xb

}
. And second, the precise

specification of ξ̄c
lim with system model simulations. The system model simulations S1e−5,

S1e−4, S5e−3, S1e−3 and S1e−2 are subjected to different parameters for ξ̄c
lim as shown in

Tab. E.11. Finally, the aim is to specify ξ̄c
lim to reduce the number of outliers in the relative

evacuation uncertainty without large effects on its frequency distribution.
First, Tab. E.11 shows the number of data points with ξ̄c ≤ ξ̄c

lim denoted with ‖Xlimited‖.
As a result, one ORS had a mean FF of 0 < ξ̄c ≤ 10−4 and six additional ORSs had
10−4 < ξ̄c ≤ 10−3. Then, the number of data points ‖Xlimited‖ increased monotonically with
ξ̄c

lim. Consequently, the parameter ξ̄c
lim should be in the range of 10−5 < ξ̄c

lim < 10−3.
Second, according to Fig. E.23a and Tab. E.11, outliers in the relative evacuation uncertainty
ε̃ only occurred in the system model simulation S1e−5 and hence were linked to ORSs with
ξ̄c ≤ 10−4. The outliers had values of ε̃ ≈ 100 and were sometimes in conjunction with
random scenarios with ξ̄ > 0.01. These outliers lead to results of the metamodel with ξ̃ε > 1

87



Section E.3.2

Table E.11: Effects of ξ̄c
lim on: data points in data bases ξ̃c

X3
, ξ̃c

X1a
, ξ̃c

Xb
(left part); results

of system model simulations (right part).
ξ̄c

lim ‖Xlimited‖ S ‖outliers‖
∥∥∥ξ̃ε > 1

∥∥∥ ‖ε̃ = 1‖
≤ 10−5 196 S1e−5 ≈ 100 ≈ 140 ≈ 295000
≤ 10−4 197 S1e−4 0 ≈ 100 ≈ 305000
≤ 10−3 203 S1e−3 0 ≈ 60 ≈ 311000
≤ 5 · 10−3 218 S5e−3 0 ≈ 15 ≈ 321000
≤ 10−2 228 S1e−2 0 ≈ 10 ≈ 343000
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Figure E.23: Effects of ξ̄c
lim ∈

{
10−5, 10−4, 5 · 10−3, 10−3, 10−2} (S1e−5, S1e−4, S5e−3 and

S1e−2 respectively) on ε̃.

as a consequence from Eq. D.14 on p. 43. Regarding to the number of random scenarios
with

∥∥∥ξ̃ε > 1
∥∥∥, the parameter ξ̄c

lim showed clear effects. This result confirms the purpose
of the limitation of data points, namely to avoid large values in the relative ORS ξ̂c by
setting ξ̂c = ~1 in case of ξ̄c ≤ ξ̄c

lim. Therefore, the parameter ξ̄c
lim substantially influences the

number of random scenarios with ‖ε̃ = 1‖ and at the same time the frequency distribution
of ε̃ as highlighted in Fig. E.23b. Hence, with the aim to avoid large effects on the frequency
distribution of ε̃, it is reasonable to set ξ̄c

lim as small as possible.
Concluding, the default parameter for the limit for data points is ξ̄c

lim = 10−4. This default
parameter allows to remove outliers and at the same time to limit the manipulations in the
frequency distribution of the relative evacuation uncertainty.

Number of neighbours
The number of neighbours Nnb is crucial for the spatial sensitivity of the direct approach as

already seen in Subs. ’Combination mode’ (p. 86). For this reason, this subsection deals with
its reasoned specification. But the default combination mode linear automatically reduces the
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automatic reduction in the combination mode linear of Nmcs = 106 random
scenarios in Slin; the initial number of neighbours was Nnb = 96.

number of neighbours as exemplified in Fig. E.24 for the system model simulation Slin. For
this reason, the system model simulations S5, S10, S20, S48, S96 apply the combination mode
uniform with the respective numbers of neighbours and generate results for the specification.
Tab. E.12 presents the relative evacuation uncertainty ε̃ and the results of the metamodel ξ̃ε

for the different numbers of neighbours Nnb. First, the number of random scenarios with∥∥∥ξ̃ε > 1
∥∥∥ was small for system model simulations with Nnb ≤ 20 and increased for Nnb ≥ 48

which gives a first hint on the spatial sensitivity. Second, the numbers of random scenarios
with ‖ε̃ = 1‖ were rather constant for Nnb ≤ 20. This result corresponds to Tab. E.11 and
indicates that the random scenarios with ε̃ = 1 are linked to ORSs with ξ̃c = ~0 and thus have
real analogies. Above Nnb ≥ 20, the number of random scenarios with ‖ε̃ = 1‖ increased
which proves the decreasing spatial sensitivity of the relative evacuation uncertainty. To be
more specific, data points with ξ̄c < ξ̄c

lim and i.e. ξ̂c = ~1 are only located at the outer vertices
of the domain with a low maximum HRR and a high time to maximum HRR. Hence, a lower
spatial sensitivity, in other words a larger region around a random scenario, increases the
frequency of these data points within the combined relative sample and thus increases the
frequency of random scenarios with ε̃ = 1. Third, the frequency distribution of the relative
evacuation uncertainty reacted in accordance with the number of random scenarios with
‖ε̃ = 1‖. The effects are not shown explicitly but are similar to Fig. E.23b of Subs. ’Outliers
in the relative evacuation uncertainty’ (p. 87). Finally, the system model simulation Slin with
the number of neighbours shown in Fig. E.24 led to results in line with the system model
simulations using the combination mode uniform.
Looking at the averaged variance outlined in Section D.1.5, the number of neighbours Nnb
should be high enough to reduce the uncertainties of the variance estimates at data points.
For this, Nnb = 5 · Nrf is suggested which depends on the number of risk factors. In contrast,
the number of neighbours in the direct approach should be low enough to achieve sufficient
spatial sensitivity. Since the spatial sensitivity depends on the number of neighbours along
each risk factor, the number of neighbours for the direct approach also depends on the number
of risk factors and is independent to the number of data points in the data base.
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Table E.12: Effects of Nnb in system model simulations with combination mode uniform
(above); results of system model simulation with combination mode linear (be-
low).

S Nnb ‖ε̃ = 1‖
∥∥∥ξ̃ε > 1

∥∥∥
S5 5 ≈ 304000 ≈ 200
S10 10 ≈ 310000 ≈ 400
S20 20 ≈ 310000 ≈ 900
S48 48 ≈ 324000 ≈ 2000
S96 96 ≈ 386000 ≈ 2000
Slin linear ≈ 304000 ≈ 100

To sum up, the direct approach with the combination mode uniform and a number of neigh-
bours of Nnb = 5 · Nrf = 20 is sufficiently spatially sensitive. Fig. E.24 shows that the com-
bination mode linear considers virtually always more than one and less than 20 neighbours.
This result implies that it is even more spatially sensitive as the combination mode uniform
as discussed in Subs. ’Combination mode’ (p. 86) without being spatially discontinuous. Con-
sequently, Nnb = 20 is used as default initial number of neighbours in the combination mode
linear.

Number of replications
Subs. ’Number of replications’ (p. 81) established that ORSs with Nrep = 200 replications

are sufficient to reproduce the unknown probability distributions of the complex model.
In this case, as is deduced in Section D.3, the direct approach is likely to represent the
ORSs. This rationale is now questioned with respect to results of system model simula-
tions. On the one hand, system model simulations with different numbers of replications
Nrep ∈ {200, 150, 100, 50, 10} in their ORSs, e.g. denoted with S200, direct at the sensitiv-
ity of their results to the number of replications in the ORSs. The ORSs in these system
model simulations uses only the first consecutive Nrep results of all 200 replications of the
original ORSs. On the other hand, five system model simulations S150,0, . . . , S150,4, all with
Nrep = 150 replications in their ORSs, serve to assess the reproducibility of the relative
evacuation uncertainty. But still, the ORSs of the same data points differ among the system
model simulations because each ORS consists of Nrep = 150 randomly drawn results without
replacement of the original ORS.
Fig. E.25a and Fig. E.25b depict the results of the system model simulations S200, . . . , S10.
The frequency distributions of the relative evacuation uncertainty ε̃ in the system model sim-
ulation S150 revealed only small effects in comparison to S200 but system model simulations
with Nrep ≤ 100 replications in the ORSs led to considerable effects. The individual risk of
Rind = 1.5 · 10−2 1

year was similar for all system model simulations but the societal risk curve
was subjected to increased variations in the upper part for system model simulations with
Nrep ≤ 100 replications in the ORSs. System model simulation S10 led by hazard to similar
results as system model simulation S200. A similar approach as for the reproducibility of re-
sults with Nrep = 150 replications would highlight the uncertainties in the results. The latter
result has to be seen with respect to Fig. E.21b of Subs. ’Reproducibility of results’ (p. 85).
Accordingly, the direct approach with Nrep ≥ 150 replications in the ORSs has small effects
on the results of system model simulations.
Fig. E.26 demonstrates the reproducibility of the relative evacuation uncertainty ε̃ of the
system model simulations S150,0, . . . , S150,4. The differences of the frequency distribution of
the relative evacuation uncertainty are mostly below 0.03 except for the lower and upper
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Figure E.25: Effects of Nrep ∈ {200, 150, 100, 50, 10} on results of the system model simu-
lations; the system model simulations S are denoted correspondingly.

quantiles. These differences are hardly higher than in Fig. E.21a of Subs. ’Reproducibility
of results’ (p. 85). Thus, ORSs with Nrep = 150 replications are sufficient to reproduce the
frequency distribution of the relative evacuation uncertainty in system model simulations.
Lastly, these results approve the conclusion in Subs. ’Number of replications’ (p. 81) in Sec-
tion E.3.1: Nrep = 200 replications are sufficient for the results of system model simulations.

Summary and conclusions
It is stated in Subs. ’Combination mode’ (p. 86) and Subs. ’Number of neighbours’ (p. 88)

that the direct approach using the combination mode linear with Nnb = 20 replications is
highly spatially sensitive without being spatially discontinuous. Furthermore, the parameter
ξ̄c

lim = 10−4 is specified in Subs. ’Outliers in the relative evacuation uncertainty’ (p. 87) to
remove all outliers in the relative evacuation uncertainty. And finally, with Nrep = 200 repli-
cations in the ORSs according to Subs. ’Number of replications’ (p. 90), the calibration and
validation ensured that the direct approach is sufficiently spatially sensitive and reduces the
manipulations in the evacuation uncertainty. As a consequence, the direct approach repre-
sents the ORSs and more general also the evacuation uncertainties of the complex model for
random scenarios. For this reason the direct approach contributes to objective 1 (metamodel).

E.4 Risk analysis

After the examination of the metamodel with system model simulations in Section E.1, Sec-
tion E.2 and Section E.3, now follows the evaluation of the risk analyses conducted with the
methodology developed in this dissertation. The differentiation between system model sim-
ulation and risk analysis originates in Section B.5. The evaluation comprises: the effects of
the metamodel uncertainty and the evacuation uncertainty in Section E.4.1; the convergence
during sequential refinement in Section E.4.2; the effects of risk factors in the system model in
Section E.4.3; and the final scrutiny of the results of risk analysis in Section E.4.4. As a result
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of Subs. ’Convergence of risk measures during Monte-Carlo simulation’ (p. G-34) in App. G.8,
the risk analyses base on the defaults Nmcs = 106 random scenarios as well as importance
sampling in the risk factors HRRmax and fa. These defaults ensure the convergence of risk
measures.

E.4.1 Metamodel uncertainty and evacuation uncertainty

Subs. ’Metamodel’ (p. 23) of Section B.4 explains the integration of the results of the meta-
model into the system model and Section D.4 particularly focuses on the combined integration
of the metamodel uncertainty and the evacuation uncertainty. After the prediction interval
and the direct approach were examined in Section E.2 and Section E.3, now follows the assess-
ment of their effects on the results of risk analysis. This assessment combines two perspectives
and for this specifies the risk analyses in Tab. E.13 subjected to different metamodels with
and without metamodel uncertainty or evacuation uncertainty. The first perspective concen-
trates on the FF in the system model of the single risk analysis Rm,ε as denoted in Tab. D.3
on p. 50. It further considers only random scenarios with HRRmax > 25 MW which is the
lower limit in the ED defined in Subs. ’Metamodel’ (p. 23). To begin with the details, the FF
of the RSM ξ̄ of all random scenarios in Rm,ε forms the basis. These results are combined
with the metamodel uncertainties δξ̃m and the relative evacuation uncertainties ε̃ according
to Eq. D.22 on p. 50. One yields the different FFs of the different metamodels in Tab. E.13 by
fixing the results for the metamodel uncertainty or the evacuation uncertainty in the manner:
ξ̄ with δξ̃m = ~0 and ε̃ = ~1; ξ̃m with ε̃ = ~1; ξ̃ε with δξ̃m = ~0; and ξ̃ with the results for
δξ̃m and ε̃ directly of the risk analyses Rm,ε. Finally, the FF of the metamodels ξ̄, ξ̃m,
ξ̃ε and ξ̃ are all clipped to [0, . . . , 1] to be in accordance with the FF in the system model.
This approach guarantees that the metamodels ξ̄, ξ̃m, ξ̃ε and ξ̃ are based on the same ran-
dom scenarios of Rm,ε. Consequently, the different FFs of the metamodels of each random
scenario are directly comparable without effects of the aleatory uncertainties in the system
model. The second perspective is less sophisticated. It plainly compares the risk measures
of the risk analyses R0, Rm, Rε, Rm,ε all with different random scenarios.
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Table E.13: Risk analyses with different integration of the metamodel uncertainty and the
evacuation uncertainty and their results of the individual risk Rind.

R metamodel metamodel uncertainty evacuation uncertainty Rind /10−5

year
R0 ξ̄ no no 1.1
Rm ξ̃m yes no 8.3
Rε ξ̃ε no yes 1.1
Rm,ε ξ̃ yes yes 8.2

The results are jointly discussed from both perspectives in the following paragraphs. The
discussion refers to the results depicted in Fig. E.27a and Fig. E.27b for the first perspective
and to the individual risk in Tab. E.13 as well as the societal risk curve in Fig. E.27c for
the second perspective. But first, the FF of the metamodel was below one for all random
scenarios, Ξ∗ ≤ 1, for all risk analyses because the risk factor maximum HRR now obtains
values of HRRmax ≤ 100 MW in contrast to the system model simulations in the earlier
sections. On the other side, around 40% of the FF of the metamodel were below zero and
had to be clipped to be conform with the FF in the system model. It is to be noted, that
neither the metamodel uncertainty nor the evacuation uncertainty much affected the number
of random scenarios that had to be clipped in their results.
With respect to the metamodel ξ̃m only with the metamodel uncertainty, the effects on the
results of the risk analysis Rm are twofold. Random scenarios with small FF ξ̄ ≈ 0 led to high
metamodel uncertainties in Fig. E.27a. This result stems from the drawback of the prediction
interval method discussed in Section E.2.1 which is transferred into the system model by the
non-relative integration with Eq. D.10 (p. 41). Next, random scenarios with high FF had
similar frequency distributions in ξ̄ and ξ̃m as illustrated in the upper part of the quantile
plot in Fig. E.27b. In other words, the metamodel uncertainty had small effects. To sum up,
the effects of the metamodel uncertainty on the results of the risk analysis Rm are: a large
increase of the individual risk and of the lower part of societal risk curve in Tab. E.13 and
Fig. E.27c resulting from random scenarios with small FF; and small effects on the upper
part of the societal risk curve due to random scenarios with high FF.
Coming to the metamodel ξ̃ε only with the evacuation uncertainty and the risk analysis Rε,
it caused a larger dispersion in the frequency distribution of the FF ξ̃ε compared to ξ̄ in
Fig. E.27b. e.g. Fig. E.27a displays that the evacuation uncertainty reduces many random
scenarios with a FF from clearly above zero ξ̄i > 0 to zero ξ̃ε

i = 0. This reduction derives
directly from replications in relative ORSs equal to zero as a result of the direct approach
introduced in Section D.3, ε̃ = ξ̂c

i,j = 0 with ξ̂c
i,j ∈ ξ̂c

i at a data point ~xi. Also, random sce-
narios with the relative evacuation uncertainty ε̃ = 1, i.e. lying on the diagonal in Fig. E.27a,
are mostly the direct result of the ORSs as proved in Subs. ’Number of neighbours’ (p. 88).
Additionally, Fig. E.27a and Fig. E.27c demonstrate general effects on the results of risk anal-
ysis as a consequence of the relative integration of the evacuation uncertainty. In detail,
the evacuation uncertainty had small effects at random scenarios with small FF ξ̄ leading
to small effects on the individual risk and at the lower part of the societal risk curve. But
the relative integration of the evacuation uncertainty contributed to large effects at random
scenarios with high FF ξ̄ which resulted in large effects on the upper part of the societal risk
curve.
Lastly, Fig. E.27c shows the united effects of the combined integration of the metamodel
uncertainty and the evacuation uncertainty in the risk analysis Rm,ε. In particular, the
metamodel uncertainty affected the lower part of the societal risk curve and the evacuation
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uncertainty affected the upper part of the societal risk curve. Both effects correspond to the
combined integration with Eq. D.22 on p. 50.
These results prove that the metamodel uncertainty and the evacuation uncertainty clearly
affect the results of risk analysis. They further lead to the statement that the combined inte-
gration of metamodel uncertainty and evacuation uncertainty is important for risk analysis
which is necessary for assumption 2 (plausibility). This statement is further strengthened
with: the importance of the metamodel uncertainty illustrated in Subs. ’Basic character-
istics’ (p. G-19) in App. G.6.1 and despite the drawback of the prediction interval method;
and the realistic representation of the ORSs in the evacuation uncertainty highlighted in
Subs. ’Summary and conclusions’ (p. 91).

E.4.2 Convergence of risk measures during sequential refinement

In Section B.1 a metamodel for the methodology for risk analysis was demanded which is
suitable for sequential refinement and directs at the global objective. Obviously, the sequential
refinement affects the results of risk analysis. Coping with this fact, Subs. ’Convergence of
the RSM and the prediction variance’ (p. 60) in Section E.2.2 specified the default RSM and
supposed that the default RSM is sufficient for risk analysis. The global objective of risk
analysis led to the choice of the response surface method MLS as explained in Section D.1.2.
But a comparison of different response surface methods in Subs. ’Bias error and variance
error of the RSM’ (p. 73) identified that MLS models are attributed to an increased variance
error to favour the global objective. These two findings, the specification of the default
RSM and the increased variance error, call for: the confirmation that the metamodel with
the default RSM, the metamodel uncertainty and the evacuation uncertainty is sufficient for
risk analyses; and the evaluation of the effect of the increased variance error on the results
of risk analysis, i.e. the sensitivity of the results to variations in the ED as described in
Section D.1.1. Therefore, the risk analyses in Tab. E.14 are assessed in this section. These
risk analyses either use the metamodel ξ̃ with the metamodel uncertainty and the evacuation
uncertainty or the metamodel ξ̃ε without the metamodel uncertainty. The latter risk analyses
with the metamodel ξ̃ε are intended to exclude the drawback of the prediction interval.

Table E.14: Risk analyses R based on the metamodel ξ̃ (with metamodel uncertainty and
evacuation uncertainty) and ξ̃ε (without metamodel uncertainty); results of the
individual risk Rind and the euclidean relative difference erdq of the quantile
plot in Fig. E.28a; erdq is relative to R3 or R3,ε, with the short notations for
erdq (Ri, R3) and erdq (Ri,ε, R3,ε).

data base ξ̃ ξ̃ε Rind (Ri) / 1
year erdq (Ri) Rind (Ri,ε) / 1

year erdq (Ri,ε)
ξ̄c

X0
R0 R0,ε 47 · 10−5 1.7 49 · 10−6 0.92

ξ̄c
X1

R1 R1,ε 15 · 10−5 0.50 6.7 · 10−6 0.41
ξ̄c

X2
R2 R2,ε 8.3 · 10−5 0.05 11 · 10−6 0.05

ξ̄c
X3

R3 R3,ε 7.8 · 10−5 0.00 4.6 · 10−6 0.00
ξ̄c

X1a
R1a R1a,ε 8.0 · 10−5 0.22 3.1 · 10−6 0.27

ξ̄c
Xb

Rb Rb,ε 9.8 · 10−5 0.07 10 · 10−6 0.08

For questioning the default RSM, Fig. E.28a, Tab. E.14 and Fig. E.28b inform on the results
of the FF in the system model, the individual risk and the societal risk curves respectively
for the risk analyses using the metamodel ξ̃. At the beginning, the risk analysis R0 markedly
deviated to the other risk analyses in the FF as well as in the risk measures. Then, both risk
measures decreased monotonically during the sequential refinement from the risk analysis R0
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to R3. Between the risk analyses R2 and R3, the difference in the FFs was reasonably small,
esp. in comparison to the former refinement step between R1 and R2. Hence, the individual
risks of R2 and R3 are similar in relation to the variations in the accepted risk measures of
an order of magnitude of two as outlined in Section B.5. And also the societal risk curves
resemble each other in particular in the maximum number of fatalities. So, the results of risk
analysis converged between the risk analyses R2 and R3.
The results of the risk analyses R1 and R1a, subjected to variations in their EDs, differed
considerably. In contrast, the risk analyses using the metamodels ξ̄X2 and ξ̄Xb

led to close
results in the FF in the system model and consequently led to similar risk measures. These
results imply that the risk analysis R2 is less sensitive to variations in the ED than the risk
analysis R1.
Two outcomes are relevant after juxtaposing the risk analyses subjected to metamodels ξ̃ε

disregarding the metamodel uncertainty with the other risk analyses. During sequential
refinement, the effect of the metamodel uncertainty was strikingly if one compares the dif-
ferences between the risk analyses R0 and R3 with the differences between R0,ε and R3,ε. In
particular Fig. E.28a and Fig. E.28c as well as Fig. E.28b and Fig. E.28d highlight this effect
for the FF in the system model as well as the societal risk curve. Additionally, Tab. E.14
quantifies it with the euclidean relative differences between Ξ̃ (R0) and Ξ̃ (R3) as well as
Ξ̃ (R0,ε) and Ξ̃ (R3,ε). With regard to the sensitivity to variations in the ED, the risk anal-
yses R2 and Rb as well as R2,ε and R3,ε reveal that the metamodel uncertainty reduces
the sensitivity of the FFs. The sensitivity to variations in the ED between Ξ̃ (R2) and
Ξ̃ (Rb) is indirectly shown over Ξ̃ (R3): erdq

(
Ξ̃ (R2) , Ξ̃ (R3)

)
≈ erdq

(
Ξ̃ε (R2,ε) , Ξ̃ε (R3,ε)

)
and erdq

(
Ξ̃ (Rb) , Ξ̃ (R3)

)
= 0.072 < erdq

(
Ξ̃ε (Rb,ε) , Ξ̃ε (R3,ε)

)
= 0.08. Summing up, the

metamodel uncertainty contributes strongly to the risk measures and it further decreases the
sensitivity to variations in the ED.
The latter conclusions substantiate Section E.4.1 where it is stated that the metamodel un-
certainty and the evacuation uncertainty are important for risk analysis. But more impor-
tant, the risk measures converged with the risk analyses R2. Thus, the results confirm
the conclusions on the default RSM in Subs. ’Convergence of the RSM and the prediction
variance’ (p. 60) and of Berchtold 2018 [9] which does not consider the evacuation uncer-
tainty. Moreover, referring to the conclusions of Subs. ’Bias error and variance error of the
RSM’ (p. 73), risk measures of the risk analysis R2 have small sensitivity to variations in the
ED. This result has following implications: the increased variance error of MLS has little
effect on results of risk analysis; accordingly, the selection of the ED outlined in Section C.3
and detailed for the system model in Section E.1 is less important. In summary, the meta-
model with the default RSM, the metamodel uncertainty and the evacuation uncertainty is
sufficiently accurate for risk analysis. So, together with the conclusions in App. G.8, this
section proves that the methodology for risk analysis using the metamodel ξ̃X2 , more pre-
cisely the default RSM, the metamodel uncertainty and the evacuation uncertainty, leads to
reproducible results. At last, the methodology for risk analysis contributes to objective 1
(metamodel).

E.4.3 Risk factors

In Section A.1 is shown that methodologies for risk analysis of road tunnels apply different
numbers of risk factors. For this reason, the system model in Section B.3 comprises also
multiple risk factors which apparently have different effects on the risk measures. Section B.5
sketches two approaches to determine the effects: the Spearman’s rank correlation coefficient;
and the relative effect on the individual risk and on the societal risk curve. The effects are
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Figure E.28: Effects of the ED on results of the risk analyses R in Tab. E.14 based on
a metamodel without metamodel uncertainty (ξ̃: above); with metamodel
uncertainty and evacuation uncertainty (ξ̃ε: below); the scales differ between
the figures.
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discussed in the next subsections and finally the most important risk factors in the system
model are defined. The discussion bases on results of the risk analysis Rdef ≡ Rdef,1 with
the default methods, modes and parameters including the metamodel uncertainty and the
evacuation uncertainty. An exception is the increased number of random scenarios with
Nmcs = 107 since the relative effect on the individual risk splits the domain of a risk factor
into ten equally spaced intervals. The risk analysis Rdef,2, which is equal to Rdef,1, indicated
the reproducibility of the effects of the risk factors on the FF in the system model and on
the individual risk but gave hints on dissimilarities in the societal risk curve.

Effects on the FF in the system model
Fig. E.29 depicts the correlation to the FF in the system model of the risk factors maximum

HRR HRRmax, time to maximum HRR tmax, maximum pre-evacuation time tpre and number
of tunnel users Ntu. These risk factors are parent nodes of the node FF. In general, the results
approved the discussion in Section E.2.4. Furthermore, Tab. E.15 provides an overview on the
correlation coefficients for all risk factors and therewith gives also a qualitative impression
on the effect on the FF.

Table E.15: Correlation coefficient ρsp between results of risk factors and the FF in the
system model of the risk analysis Rdef ; the p-value is zero due to the large
variations in the FFs.

risk factor notation ρsp

maximum HRR HRRmax 0.46
time to maximum HRR tmax −0.26
maximum pre-evacuation time tpre 0.14
failure of tunnel alarm fa 0.14
number of tunnel users Ntu −0.05
average daily traffic volume Ṅadtv −0.01
ratio of HGV χHGV 0.00
tunnel length ltunnel 0.00

First of all, the risk factors HRRmax and tmax had clear effects on the FF in the system
model. The pre-evacuation time of tunnel users should have similar effects as tmax but the
risk factor tpre is the maximum pre-evacuation time among all tunnel users. Hence, the
individual tunnel users have smaller, distributed, pre-evacuation times. In consequence, the
effect of tpre was smaller as also illustrated in Fig. E.15 (p. 74).
The risk factor failure of tunnel alarm fa caused a similar correlation coefficient to the FF as
tpre. Since the alarm of tunnel users is either initiated individually by smoke or by the tunnel
alarm, the latter one establishes the upper limit. Hence, the individual time of alarm of a
tunnel user is limited by the intermediate node ’time of tunnel alarm’ and thus, also by the
risk factor fa. Hence, the risk factor fa is similar to the risk factor tpre which constitutes the
upper limit of the individual pre-evacuation time of a tunnel user. This similarity leads to
the comparable effects of tpre and fa on the FF and also to the reduced effect with respect to
the risk factors HRRmax and tmax. But still, Fig. E.13a and Fig. E.13b (p. 71) or Fig. E.14c
and Fig. E.14d on p. 72 highlight the differences between FFs of random scenarios with TA
or FA. So, the event of ’failure of tunnel alarm’ is important in the scenario of the system
model.
According to Fig. E.29d, showing the effect of the number of tunnel users Ntu on the FF, the
random scenarios split up into two groups. These two groups depend on the risk factor fa
with the distinct events TA and FA. The TA prevents vehicles from entering the tunnel and
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keeps the ’number of vehicles’ as well as the Ntu low, esp. in case of a fast fire growth. At
the same time, the TA reduces the individual pre-evacuation time which leads to the effect
on the FF. This rationale states that the effect of the risk factor Ntu on the FF is caused by
the effect of the risk factor fa on the pre-evacuation time of tunnel users. In other words,
the Ntu in a random scenario has small direct effect on the FF because of few interactions
among tunnel users, e.g. there are no hint on jams at emergency exits in Section E.2.4.

Relative effect on the individual risk
The relative effects of risk factors on the individual risk derive from Eq. B.8 on p. 28.

Tab. E.16 summarises the results for all risk factors.

Table E.16: Relative effects of risk factors on: individual risk ηind which is similar for Rdef,1
and Rdef,2 (left); societal risk ηsoc in qualitative order of the risk factors for
both Rdef,1 and Rdef,2 (right).

risk factor ηind Rdef,1 (ηsoc) Rdef,2 (ηsoc)
HRRmax 3.3 HRRmax HRRmax

fa 2.0 fa fa

Ṅadtv 1.3 tpre Ṅadtv

Ntu 1.1 tmax tpre

χHGV 1.1 Ṅadtv tmax

ḟfire 1.1 Ntu Ntu

ltunnel 1.0 ltunnel χHGV

tmax 0.3 χHGV ḟfire

tpre 0.2 ḟfire ltunnel

The risk factors HRRmax and fa led to the highest relative effects on the individual risk.
Beside the FF, both risk factors also influence the frequency of a random scenario fsc used
to determine the individual risk with Eq. B.3 on p. 15. The frequency of a random scenario
depends on the probability distributions of both risk factors described in Tab. B.3 (p. 19). In
a nutshell: the smaller the probability of a certain value of a risk factor in a random scenario,
the smaller is the contribution of the random scenario to the individual risk. This effect
counteracts a potentially increased FF. For instance, random scenarios with FA contribute
less to the individual risk than random scenarios with TA due to their smaller frequency
and despite their higher FF. Section B.3 addresses this issue in more detail. Concluding, the
probability distribution of the risk factors HRRmax and fa also contributed to effects on the
individual risk.
The parent nodes of the node fsc Ṅadtv, ḟfire and ltunnel as well as the risk factor χHGV

apply general models. But despite these models, their relative effect on the individual risk
was smaller in comparison to the risk factors HRRmax and fa. And tunnel specific models
would even reduce this effect.
Next, the risk factor Ntu has small effects on the FF and no direct effect on the frequency of a
random scenario. Consequently, its effect on the individual risk is mostly indirect originating
from the risk factor fa.
Lastly, the risk factors tmax and tpre are neither subjected to general models nor depend on
other risk factors but base on uniform distributions which means no effect on the frequency
of a random scenario. This fact resulted in far smaller relative effects on the individual risk,
even for the risk factor tmax strongly affecting the FF in the system model. With reference
to Eq. B.8, fixed values for tmax cause an absolute difference between the minimum and the
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maximum individual risk smaller than an order of magnitude of two, i.e. the variations in the
accepted individual risk with Rind between Rind

min = 6.6 · 10−5 1
year and Rind

max = 9.3 · 10−5 1
year .

This result further emphasises its small contribution.

Relative effect on the societal risk curve
Eq. B.9 on p. 29 produced the relative effects of the risk factors on the societal risk curve.

But, in contrast to the FF in the system model and the individual risk, the relative effects
were hardly reproducible e.g. ηsoc (HRRmax) = {3.1, 2.2}, ηsoc

(
Ṅadtv

)
= {1.1, 1.6}. Actually,

the steps to increase the reproducibility introduced in Section B.5 did not succeed. However,
more restrictions like further reducing the maximum number of fatalities would obliterate
the information content of the societal risk curve. For this reason, Tab. E.16 now includes
the qualitative order of the risk factors for both risk analyses Rdef,1 and Rdef,2.
At least remain some concluding remarks. The risk factors HRRmax and fa led constantly to
the largest relative effects on the societal risk curve. These outcomes suggest their importance
thereon. The risk factor Ntu has small direct effect on the FF and no direct effect on the
frequency fsc of a random scenario. But it affected at least the societal risk curve to some
extent. This effect stems from the definition of the societal risk in Eq. B.4 (p. 15): Ntu is
directly linked to the number of fatalities in Eq. B.1 on p. 14 and thus also directly linked
to the societal risk. Accordingly, a detailed model for the frequency distribution of the Ntu

seems to be relevant for risk analysis.

Summary and conclusions on the most important risk factors
The final evaluation of the effects of risk factors mostly considers the FF and the individual

risk because of the limited information gained from the societal risk curve. To begin, the
risk factor HRRmax is most important for risk analysis due to its influence on the FF as well
as on the frequency of a random scenario and the ensuing relevance for both risk measures.
Next, the risk factor fa revealed a smaller correlation coefficient to the FF of the system
model but still influences the frequency of a random scenario which increases the effect on
the individual risk. It further has clear effects on the FF between equal random scenarios
with TA and FA. Hence, the event of tunnel alarm and its failure is also important for risk
analysis. On the other side, the risk factor tmax does not contribute to the frequency of a
random scenario. But its strong correlation to the FF of a random scenario emphasises its
importance in the consequence model and thus also for risk analysis, esp. with regard to
scenarios with rare events and high consequences. Finally, the risk factors Ṅadtv, ḟfire, ltunnel

and χHGV are less important for the individual risk than HRRmax or fa. Additionally, their
importance will decrease in case of tunnel specific models ranking them fourth for the most
important risk factors.
The risk factors Ntu and tpre contribute little to the individual risk but their results provide
insights to the choice of the fire model and the evacuation model. The risk factor tpre has
larger effects on the FF in the system model in comparison to Ntu. This result implies, that
the evacuation model should focus on the pre-evacuation time whereas modelling interactions
among tunnel users is less important because of few interactions throughout the scenario.
Therefore, microscopic evacuation models are not necessarily required for risk analysis of
road tunnels. This conclusion corroborates the one-dimensional evacuation models used in
methodologies for risk analysis of road tunnels outlined in Section A.1 but conflicts with
assumption 1 (complex scenarios) with regard to microscopic evacuation models. Moreover,
the focus on the pre-evacuation time raises another implication. Since, the risk factors fa and
tmax are important for risk analysis, also the individual alarm of tunnel users is important,
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Table E.17: Most important risk factors in risk analysis Rdef .
risk factor notation remark
maximum HRR HRRmax

failure of tunnel alarm fa
time to maximum HRR tmax due to the effect on the FF
parent nodes of fsc Ṅadtv, ḟfire, ltunnel, χHGV regarding tunnel specific models

e.g. in case of FA. For this, CFD methods are advantageous, i.e. for the interactions between
the fire source, the emergency ventilation and the tunnel users which this time confirms
assumption 1 (complex scenarios) with respect to the CFD method.
The previous rationale results in the most important risk factors highlighted in Tab. E.17. The
three most important risk factors are parent nodes of the node FF and thus directly linked
to the complex model as depicted in Fig. B.1 on p. 16. Consequently, multiple risk factors are
required for the interactions in complex scenarios which again confirms assumption 1 (complex
scenarios). Later on, the development of the system model should concentrate on the nodes
of the most important risk factors in order to reproduce the interactions in real tunnel fires.
The models in these nodes could be refined with subsystems of multiple risk factors as parent
nodes, e.g. discussed in Berchtold 2016 [8] and suggested by Haimes 2018 [4]. Or, the risk
factor HRRmax now applies a discrete distribution in case of risk analyses due to the lack of
more detailed models. But effects of discrete scenarios in the RSM, i.e. by the use of LIn,
illustrated in Subs. ’Shape of the RSM’ (p. 75) and Subs. ’Results of risk analysis’ (p. 79) show
the demand for an improvement with a continuous probability distribution.

E.4.4 Scrutiny

Section A.1 motivates the final scrutiny of the results of the methodology for risk analysis in
the following subsections. First, Section E.4.3 and Section E.4.2 are revisited in Section E.4.3
and Section E.4.2 respectively where the reproducibility of the results is questioned. Then,
in Subs. ’Plausibility of risk measures’ (p. 105) the emphasis is put on the effects of the meta-
model uncertainty and the evacuation uncertainty with reference to Section E.4.1. And finally,
Subs. ’The effect of the risk analyst’ (p. 106) closes with the discussion of further epistemic
uncertainties from the perspective of the risk analyst.
For the scrutiny, the subsections juxtapose different risk analyses shown in Tab. E.18. These
risk analyses either derive from the methodology for risk analysis developed in this dissertation
and are indexed with D or from the methodology for risk analysis in Berchtold 2016 [8] with
the index I. Whereas the system models are equal for both cases, the differences lie in the
metamodels detailed in Tab. E.18 and Tab. E.19. In case of the risk analysis RI , the data base
has not been available and accordingly RI could not be used to produce quantitative results.
As a consequence, the risk analysis RI,r reproduces the results of RI with a different data
base of a later research step. This data base deviates to the data base of RI in two points:
first, in the number of data points and second, in the domain of the risk factor HRRmax in
the ED as described in Tab. E.19. Despite these differences, the results of both risk analyses,
i.e. the individual risk with Rind (RI) = 2.4 · 10−7 1

year , Rind (RI,r) = 8.5 · 10−7 1
year . and

the societal risk, were comparable. Hence, the results of the risk analysis RI,r represent the
results of RI .

Reproducibility of the most important risk factors
The most important risk factors are defined in Subs. ’Summary and conclusions on the most
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Table E.18: Risk analyses based on different metamodels with their results on the individual
risk Rind.

R methodology metamodel background Rind / 1
year

RD dissertation ξ̃ with metamodel uncertainty and
evacuation uncertainty as concluded
in Section E.4.1

8.3 · 10−5

RD,ε dissertation ξ̃ε only evacuation uncertainty to avoid
drawback of the prediction interval
method

1.1 · 10−5

RD,f dissertation ξ̄ neither metamodel uncertainty nor
evacuation uncertainty to be close
to RI

1.1 · 10−5

RD,LIl dissertation ξ̄LIl as RD,f but with response surface
method LIl similar to RI

0.7 · 10−5

RI ISTSS 2016 ξ̄LIl based on methodology in Berchtold
2016 [8]

2.4 · 10−7

RI,r ISTSS 2016 ξ̄LIl reproduction of RI 8.5 · 10−7

Table E.19: Parameters of the RSMs used in the risk analyses RD, RI and RI,r; the number
of fire scenarios and evacuation scenarios in the data base are denoted with∥∥∥Xfire

∥∥∥ and ‖Xevac‖.
RD RI RI,r∥∥∥Xfire

∥∥∥,‖Xevac‖ 10, 96 20, 400 18, 157
domain of HRRmax /MW in the ED [25 . . . 200] [25 . . . 100] [25 . . . 200]
response surface method MLS LIl LIl

important risk factors’ (p. 101) using the risk analysis RD. Also, Berchtold 2016 [8] presented
most important risk factors derived from the risk analysis RI . These findings now allow to
briefly discuss the reproducibility of the results of risk analyses. Apart from the metamodels
in both risk analyses, also the approach to evaluate the relative effect of risk factors on risk
measures in RI differed to the approach outlined in Section B.5. Although the approach for
RI still applied Eq. B.8 and Eq. B.9 on p. 28, the relative effect of a risk factor derived from a
screening of multiple risk analyses, each with a fixed value for the risk factor. Furthermore,
the nodes Ntu, probability for failure of the TA, ḟfire and ’traffic speed’, which is an analytical
function in the risk analysis RD, used independent uniform distributions during the screening.
But in spite of these differences, both approaches lead to qualitatively similar results in case
of identical risk analyses.
Both risk analyses led to the most important risk factors: HRRmax, fa and tmax for the risk
analysis RD; and HRRmax, Ntu, fa with tmax on the fourth rank for the risk analysis RI . On
the one hand, the focus in this dissertation, i.e. the evaluation of RD, lies on the metamodel
and not on the system model. For this reason, the risk factor Ntu is less important than other
risk factors. On the other hand, the focus in case of RI was on the system model and not on
the metamodel. Accordingly, the risk factor Ntu was identified as one of the most important
risk factors due to its direct link to the societal risk in Eq. B.5 on p. 15. But if the risk factor
Ntu had not been considered, the third most important risk factor would have been the risk
factor tmax leading to equal qualitative orders for the most important risk factors. With
this rationale, the differences in the most important risk factors of both risk analyses can be
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Figure E.30: Risk measures of risk analyses based on two different methodologies accord-
ing to Tab. E.18: developed in this dissertation (for different metamodels);
in Berchtold 2016 [8]; Rsoc

accepted and Rsoc
limit are the accepted and the limited

societal risk curves introduced in Section B.5; the societal risk curve is limited
to Nfat with Rsoc (Nfat) > 10−10 1

year (as in Wahlström 2018 [67, Fig. 6]).

reasoned by different foci of the evaluations and not by qualitatively different results of the
risk analyses.

Effects of the metamodel
In Section E.4.2 the effect of different refinement steps on the results of risk analysis was

quantified and concluded that risk analyses using the default RSM, the metamodel uncer-
tainty and the evacuation uncertainty lead to reproducible results. Following this conclusion,
this subsection aims at the effects of different metamodels on the results of risk analysis
with regard to differences: first, caused by variations in the ED and the response surface
method LIl, i.e. RD,LIl and RI ; and second, caused by disparate response surface methods
together with variations in the ED, namely RD,f and RI . The results of both assessments are
summarised in Tab. E.18 for the individual risk and in Fig. E.30 for the societal risk curve.
First, the risk analyses RD,LIl and RI resulted in comparable societal risk curves and in
individual risks which is 30 times higher for RD,LIl than for RI . To compare, the risk
analyses R2 and Rb of Section E.4.2 led to similar individual risks. The metamodels of both
risk analyses R2 and Rb also applied different data bases but considered the metamodel
uncertainty and the evacuation uncertainty in contrast to the risk analyses RD,LIl and RI .
Additionally, Subs. ’Bias error and variance error of the RSM’ (p. 73) revealed similar variance
errors for the response surface methods MLS and LIl. Thus, this comparison suggests, that
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the metamodel uncertainty and the evacuation uncertainty contributes to a reduction of the
sensitivity to variations in the ED.
Second, the individual risk of the risk analysis RD,f with MLS was about 45 times higher
to the risk analysis RI with LIl and both societal risk curves resembled each other. Also
in case of the risk analyses RD,f and RD,LIl, both with the same data base, MLS led to
the increased individual risk. In contrast, according to Subs. ’Results of risk analysis’ (p. 79)
LIl caused higher individual risks in system model simulations than MLS. This disagreement
originates from the default model of the risk factor HRRmax which leads to random scenarios
with maximum HRRs of HRRmax ≤ 100 MW in the risk analyses RD,f , RD,LIl and RI .
Consequently, the particular shape of ξ̄LIl identified in Subs. ’Shape of the RSM’ (p. 75) at
the outer vertices of HRRmax ≈ 200 MW has no effect. Accordingly, there is no contradiction
to the conclusions in Subs. ’Summary and conclusion’ (p. 80) that the particular shape of LIl
raises the individual risks.
These results corroborate the conclusions in Section E.2.5 that MLS and LIl lead to similar
results. They also confirm Section E.4.2 that the metamodel uncertainty and in this subsec-
tion also the evacuation uncertainty further reduce the sensitivity to variations in the ED.
This conclusion again manifests that the metamodel uncertainty and evacuation uncertainty
are important for risk analysis stated in Section E.4.1. Additionally, the results again exem-
plify that the selection of the ED is less important for risk analyses as already concluded in
Section E.4.2. And finally, variations in the ED as well as different response surface methods
together with variations in the ED cause smaller effects on risk measures than the variations
of accepted risk measures discussed in Section B.5. In other words, differences in the design
of the metamodel lead to variations in the results of risk analysis that seem to be acceptable
with regard to general variations in risk measures described in literature. Therefore, the
methodology for risk analysis leads to reproducible results and substantiates the conclusion
in Section E.4.2.

Plausibility of risk measures
The scrutiny now culminates in the discussion of the plausibility of the risk measures. For

this, the discussion follows the approach of falsification outlined in Section B.5, in more detail,
the comparison to two observations: first, to the accepted risk measures, i.e. the accepted
individual risk with 10−6 1

year ≤ Rind
accepted ≤ 10−4 1

year and the limiting Rsoc
limit as well as the

accepted societal risk curves Rsoc
accepted depicted in Fig. E.30; and second, the societal risk

curves of other risk analyses in Wahlström 2018 [67, Fig. 6], esp. random scenarios with
more than Nfat > 100 fatalities. Furthermore, it has to be kept in mind that the focus on
the upper evacuation area described in Section B.3 leads to elevated individual risks and the
underestimation of high numbers of fatalities with effects on the societal risk curve. These
two observations serve for the falsification of the results of a risk analysis. If the results
clearly contradict the observations, then, the risk analysis seems not to be plausible, else, it
could not be falsified. After the conclusions of Section E.4.1, the discussion focuses on the
metamodel uncertainty and the evacuation uncertainty and hence, on the risk analyses RD,f ,
RD,ε and RD.
Tab. E.18 and Fig. E.30 provide the results of the individual risks and the societal risk curves.
To begin, the risk analysis RD,f disregarding the metamodel uncertainty and the evacuation
uncertainty resulted in an individual risk within the accepted range. But the societal risk
curve and above all the number of fatalities seem to be underestimated in comparison to
both observations which is supposed to be a contradiction. Next, considering only the evac-
uation uncertainty, both risk measures of the risk analysis RD,ε seem to be in line with the
observations. And at last, the risk analysis RD noticeably overestimated random scenarios
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with small numbers of fatalities. This outcome derives from the drawback of the prediction
interval method and appears to contradict both observations on the societal risk curve.
To conclude, the results of the risk analyses RD,f and RD seem not to be plausible whereas
the results of RD,ε could not be falsified. These results imply that the evacuation uncertainty
increases the plausibility of the results of risk analysis whereas the metamodel uncertainty
based on the current implementation of the prediction interval method counteracts. As a
consequence, the results confirm the assumption 2 (plausibility) with regard to the evacuation
uncertainty and refute it for the metamodel uncertainty. But Section E.2.1 describes two
approaches to improve the metamodel uncertainty and App. G.9 exemplifies one. After an
improvement, future results might finally also confirm assumption 2 (plausibility) with regard
to the metamodel uncertainty.

The effect of the risk analyst
Section B.1 introduces epistemic uncertainties as result from lack of knowledge, e.g. with

regard to the selection of the model by the developer of the risk analysis, shortly risk analyst.
For instance, the risk analyses RI and RD,f were both based on reasonable assumptions in
the point of view of the risk analyst, that is then for Berchtold 2016 [8] and now for this
dissertation. These risk analyses had the same focus and accordingly the same assumptions
on the metamodel uncertainty and the evacuation uncertainty. But the risk analyst decided
to select different response surface methods and different EDs. Subs. ’Effects of the meta-
model’ (p. 104) fortunately uncovers that the risk analyses RI and RD,f lead to reproducible
results.
Evidently, the risk analyst has more options in the setup of the metamodel and these op-
tions can of course affect the results of risk analyses. One example is the integration, or
disregarding, of the metamodel uncertainty or the evacuation uncertainty into risk analysis
as can be seen in other methodologies for risk analyses in fire safety engineering outlined
in Section B.1. Possible effects on the results are illustrated in Fig. E.27 (p. 94). Another
example is the selection of a different response surface method, e.g. LIn. Section A.1 outlines
methodologies for risk analysis of road tunnels using LIn and Subs. ’Summary and conclu-
sion’ (p. 80) in Section E.2.5 summarises possible outcomes. The risk analyst has even more
options in the system model, e.g. multiple models for nodes like the maximum HRR or the
frequency of scenarios referenced in App. G.2 and in general a variety of different references
for models for other risk factors. This variety of models also implies the use of approaches like
imprecise probabilities discussed by Berner 2016 [48]. And all these different models might
have unknown effects on the results of risk analysis.
At least, this issue is an interesting research topic referring to the validity of the results of risk
analysis discussed in Goerlandt 2017 [24, p. 123]. A possible approach could be a systematic
setup of a system model from small complexity to high complexity in its structure hand
in hand with a continuous sensitivity analysis. For such a study, the methodology for risk
analysis in this dissertation, with the graph structure for the system model, the efficiency
of the metamodel and the identification of most important risk factors, provides a profound
basis.
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F Summary and conclusions

Section A.1 outlines the background for risk analysis of road tunnels and derives that the
analysis of consequences in complex scenarios requires complex models as well as multiple
risk factors (assumption 1). Assumption 1 can arise to a challenge for risk analyses, namely
that the complex model and the global objective limit the number of risk factors as well as
the number of scenarios computed with the complex model. These limitations again limit the
complexity of scenarios considered in the risk analysis. The motivation of this dissertation is
to overcome this challenge and to allow an increased complexity of scenarios in risk to take
into account the increasing complexity of real fire scenarios.
For this reason, an innovative methodology for risk analysis of road tunnels was developed in
this dissertation with two objectives: to introduce a metamodel in the methodology in order
to integrate complex scenarios into risk analysis (objective 1); and to achieve an efficient
metamodel to be able to focus on the complexity in scenarios (objective 2). Finally, the
plausibility of the results of risk analysis was questioned under the assumption that the
metamodel uncertainty and the evacuation uncertainty contribute to an increased plausibility
of the results (assumption 2).
This chapter first outlines how both objectives of this dissertation were achieved and the as-
sumptions either confirmed or refuted. Then, it draws the final conclusions of this dissertation
and lastly discusses the expected impact.

Querying the assumptions and objectives of this dissertation
Assumption 1 (complex scenarios) states that the analysis of consequences in complex scenar-
ios requires complex models as well as multiple risk factors. To question this assumption, this
dissertation describes a complex scenario in the system model and discusses its complexity in
Section B.3. Furthermore, the metamodel comprises the PAD as well as MLS methods which
are both suitable for a high number of risk factors as discussed for MLS in Section D.1.3.
Finally, it is concluded in Section E.4.3 that: firstly, microscopic evacuation models are not
required because of only few interactions among the tunnel users; secondly, CFD models are
important for risk analysis due to the individual alarm of tunnel users by the perception
of smoke, e.g. influenced by the emergency ventilation; and thirdly, the most important risk
factors, namely the maximum HRR, the failure of tunnel alarm and the time to the maximum
HRR are directly linked to the complex model as shown in Fig. B.1 on p. 16 which shows the
relevance of multiple risk factors in complex scenarios. In summary, these conclusions refute
assumption 1 for microscopic evacuation models but confirm assumption 1 for CFD models
as well as for multiple risk factors.
According to objective 1 (metamodel), the metamodel should be able to integrate complex
scenarios into risk analysis. For this, PAD and MLS both direct at the global objective of
risk analysis as outlined in Section C.1 and Section D.1.3. Furthermore, the verification and
validation in Section E.2.1 show that MLS leads to adequate results and that the metamodel
uncertainty is important for the metamodel despite the drawback of the prediction interval
method. These conclusions provide the basis for objective 1. Objective 1 comprises three
different parts which are outlined in the following three paragraphs. In the paragraphs it is
deduced that: a) MLS, b) the direct approach and c) the metamodel and its integration into
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risk analysis contribute to objective 1. Thus, these conclusions prove that the methodology
for risk analysis with the metamodel achieves objective 1.
For objective 1a, it is concluded in Section E.2.5 that the default RSM represents the results of
the complex model and is able to direct at the global objective of risk analysis. This conclusion
bases also on: firstly, the specification of the default RSM in Subs. ’Convergence of the RSM
and the prediction variance’ (p. 60) in Section E.2.2; secondly, Section E.2.3 which states that
the accuracy of the default RSM corresponds to the prediction interval; and finally, the results
of Section E.2.4 deduce that MLS reproduces the results of complex response surfaces on the
entire domain.
Objective 1b covers the reproduction of the evacuation uncertainty of the complex model
within the metamodel. In order to reach this objective, the direct approach was originally
developed in this dissertation based on the results in Subs. ’Distribution type’ (p. 82) demon-
strating the relevance of such approach. It follows the calibration and validation process of the
direct approach, e.g. the limitation of outliers in the evacuation uncertainty in Subs. ’Outliers
in the relative evacuation uncertainty’ (p. 87). The calibrations in Subs. ’Combination mode’ (p. 86)
and Subs. ’Number of neighbours’ (p. 88) lead to the high spatial sensitivity of the direct ap-
proach required for the realistic representation of the ORSs. In Subs. ’Number of replica-
tions’ (p. 90) it is also concluded that 200 replications of evacuation scenarios are sufficient
to reproduce the evacuation uncertainty which backs the conclusions in Subs. ’Number of
replications’ (p. 81). To end this argumentation, Section E.3.2 summarises that the direct
approach represents the evacuation uncertainties of the complex model.
For the last part of objective 1, objective 1c claims that the methodology for risk analysis
leads to reproducible results. Therefore, App. G.8 provides the necessary background stating
that the integration of the RSM into the system model with indirect mode over fixed points
is accurate and that the risk measures converge in Monte-Carlo simulations with 106 random
scenarios. Then, the evaluation of the sequential refinement of the metamodel in Section E.4.2
leads to the conclusion that the default RSM is sufficiently accurate and that the methodology
for risk analysis leads to reproducible results. Section E.4.4 corroborates this conclusion in
Subs. ’Reproducibility of the most important risk factors’ (p. 102) as well as further discussions
in Subs. ’Effects of the metamodel’ (p. 104).
Objective 2 (efficiency) is concerned with the efficiency of the metamodel. For this, two ap-
proaches within the PAD described in Section C.2 aim at the efficiency of the metamodel: the
focused sequential refinement as well as the combination of EDs. Both approaches have been
developed in this dissertation. To prove objective 2: firstly, it is stated in Subs. ’Convergence
of the RSM and the prediction variance’ (p. 60) of Section E.2.2 that the data base of the
default RSM with simulations of ten fire scenarios with the CFD model and simulations of
2 · 96 evacuation scenarios for TA and FA with the microscopic evacuation model is sufficient
for the convergence of the results of the RSM; secondly, the conclusion of Subs. ’Focused
sequential refinement in comparison to the batch design’ (p. 66) sais that the focused sequen-
tial refinement can reduce the metamodel uncertainty efficiently and prevents conservative
guesses of the number of simulations with the complex model; and thirdly, Berchtold 2018 [9]
highlights that the combination of EDs allows a small number of simulations with the CFD
model. Nota bene, the convergence depends on the specific shape of the response surface.
Additionally, the other response surface methods evaluated in Section E.2.5 lacked for real
analogies in the response surface. For these reasons, the efficiency was not quantified in
comparison to other response surface methods but the metamodel based on MLS and PAD
achieves objective 2 esp. through the focused sequential refinement and the combination of
EDs.
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At last, assumption 2 claims that the metamodel uncertainty as well as the evacuation un-
certainty are required to increase the plausibility of results of risk analysis. To question
this assumption, Section B.5 describes the evaluation of the plausibility of risk measures by
falsification. Then in a first step, it is concluded in Section E.4.1 that the combined inte-
gration of the metamodel uncertainty and the evacuation uncertainty is important for risk
analysis which is necessary for the assumption 2. On top, the results in Section E.4.2 and
Subs. ’Effects of the metamodel’ (p. 104) of Section E.4.4 assert the importance of the meta-
model uncertainty and evacuation uncertainty for risk analysis. Finally in Subs. ’Plausibility
of risk measures’ (p. 105), the risk measures are compared to accepted risk measures and so-
cietal risk curves of other risk analyses of road tunnels and it is concluded that: firstly, the
evacuation uncertainty contributes to an increased plausibility; and secondly, the metamodel
uncertainty might contribute to an increased plausibility. The effect of the metamodel un-
certainty depends on its further improvement. Two potential improvements were outlined in
Section E.2.1 and one is illustrated in App. G.9. Consequently, the results confirm assumption
2 with regard to the evacuation uncertainty but for now refute assumption 2 with regard to
the metamodel uncertainty.

Closing conclusions
The metamodel, namely the RSM together with the metamodel uncertainty and the evac-
uation uncertainty, achieves both objectives of this dissertation. Though the efficiency was
not compared to other response surface methods, Section E.2.5 reveals a lower generalisation
error of MLS compared to LIn for the data base of the default RSM. This result proofs the
increased efficiency of the metamodel in comparison to the direct use of discrete scenarios.
Hence, it confirms the hypothesis that a metamodel constitutes a possible solution to the
challenge stated in Section A.1. Summing up, the metamodel within the innovative method-
ology for risk analysis allows to consider an increased complexity of scenarios. Accordingly,
the metamodel is suitable to reproduce all necessary interactions of real fire scenarios for the
evaluation of safety measures, which seems of particular interest with regard to their growing
complexity.
Section B.1 outlines the metamodels of other methodologies for risk analysis of road tunnels
and in fire safety engineering. As a result, methodologies for risk analysis of road tunnels
often use discrete scenarios in the consequence model whereas metamodels, like the mapping
approach, are rarely applied. Methodologies for risk analysis in fire safety engineering more
often apply metamodels. These metamodels are commonly used for deterministic models
like fire models and their sequential refinement focuses on the local objective. Finally, the
methodologies rarely consider the effect of the metamodel uncertainty on the results of risk
analysis. In contrast: the metamodel developed in this dissertation is applicable on stochastic
models; the sequential refinement directs at the global objective, in particular on regions of the
domain with increased metamodel uncertainty; and the metamodel uncertainty is considered
in the results of risk analysis. For these three reasons and with respect to the importance
of the metamodel uncertainty and the evacuation uncertainty for the results of risk analysis,
the metamodel is an advancement among methodologies for risk analysis of road tunnels and
in general for fire safety engineering.

Expected impact of this dissertation
The advanced metamodel and the innovative methodology for risk analysis of this dissertation
can have an impact in three different parts: firstly, risk analysis of road tunnels; secondly, risk
analysis in fire safety engineering; and thirdly, on various other issues in engineering apart
from the risk analysis. The metamodel and the methodology for risk analysis both employed
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in these parts could finally lead to an economic and social impact because of an efficiently
increased level of safety.
Firstly, other methodologies for risk analysis of road tunnels could adopt parts of this method-
ology as mentioned in Subs. ’Current state of methodologies for risk analysis of road tun-
nels’ (p. 2). Esp. parts leading to the increased efficiency in the analysis of consequences
might be useful: namely, the metamodel using MLS and PAD in general; and in particular,
the PAD method with the sequential refinement, the focus on high metamodel uncertainties
as well as, if required, the combination of EDs. Finally, these parts could help to consider
more interactions during the evaluation of scenarios.
Secondly, as a consequence of the advanced metamodel, the methodology for risk analysis
might be also interesting for risk analysis of other complex systems with focus on fire safety
engineering. To facilitate the application on other complex systems, the methodology applies
flexible methods. In particular, the structure of the system model, realised with a directed
acyclic graph, has a clear structure and a high flexibility. The implementation of the directed
acyclic graph is shortly outlined in App. G.3. Also, the CFD model FDS and the microscopic
evacuation model FDS+Evac can be used in general for fire safety engineering.
Thirdly, the generic metamodel is widely applicable on other issues with similar challenges.
In particular, the metamodel: is suitable for multiple control variables, also for more than
four control variables as shown in this dissertation; can reproduce complex response surfaces
with global objective as illustrated in Section E.2.4; and can use results of stochastic and
deterministic complex models as data base. Consequently, the metamodel is also applicable
for time consuming experiments with multiple control variables and global objective as they
are common in the assessment of the safety of structures.
Last but not least, the direct approach can contribute to the impact because of three charac-
teristics. One important characteristic is that the direct approach avoids assumptions on the
distribution type which is important for ORSs subjected to different unknown probability dis-
tributions as depicted in Subs. ’Distribution type’ (p. 82). Another important characteristic is
its high spatial sensitivity which allows large variations in aleatory uncertainties in the results
of different, also neighbouring, data points as discussed in Subs. ’Combination mode’ (p. 86).
The background for the high spatial sensitivity are the relative combination of ORSs and
the relative integration into the metamodel described in Section D.3. Finally, the direct ap-
proach is also applicable on small number of replications as discussed in Subs. ’Number of
replications’ (p. 90). This characteristic might be useful for stochastic models with increased
computational cost, e.g. microscopic evacuation models in comparison to one-dimensional
evacuation models.
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G Appendix

G.1 Definition of terms

Terms related to risk analysis
The understanding of the term risk in this dissertation bases on: first, the meaning of Kaplan
with ’The notion of risk, therefore, involves both uncertainty and some kind of loss or damage
that might be received.’ [72, p. 12]; second and more recently, ’Risk is often expressed in terms
of combination of the consequences of an event (including changes in circumstances) and the
associated likelihood of occurrence’ [73, p. 1]; and third, with regard to fire risk analysis
[74, p. 6], fire risk combines the expected frequency of a scenario and its expected damages.
Consequences are the ’outcome of an event affecting objectives’ [73, p. 1–6]. To be noted,
the term event in this dissertation means a ’thing that happens or takes place, especially one
of importance’ [19], for instance the tunnel alarm, and therewith is in contrast to ’incident’ or
’accident’ (Note 3) [73, p. 4]. To complete, a scenario is understood as ’a postulated sequence
or development of events’ [19]. To sum up, ’risk’ in this dissertation means the combination
of frequencies and consequences of scenarios.
Risk analysis is the ’process to comprehend the nature of risk and to determine the level
of risk’ [73, p. 5]. Hence, the quantitative risk analysis quantifies the frequency of scenario
and the possible damages, or fatalities, and further considers the effects of safety measures
[74, p. 16, 44]. Often, the term ’risk assessment’ is used equally to ’risk analysis’. But
this dissertation distinguishes between both terms. Hence, risk assessment is the ’overall
process of risk identification, risk analysis, and risk evaluation’ [73, p. 4].

Term risk factor
Section A.1 introduces ’factors which have effects on risks’ to specify scenarios. There are

at least two common options to briefly name these factors: risk indicator or risk factor.
With regard to the Oxford dictionary, an ’indicator’ is a ’thing that indicates the state or level
of something’ and a factor is a ’circumstance, fact, or influence that contributes to a result’
[19]. WebOfScience revealed about 300 articles for ’risk indicator’ and 31000 articles for ’risk
factor’ according to the search detailed in Tab. G.1. On the one hand, the term ’risk indicator’
had different interpretations among these publications. For instance, a risk indicator is, first,
a factor that indicates the risk in a system like the fatality rate [75, p. 97] or second, they
’characterise the system [...] and are input variables for the risk model. Risk indicators x are
defined as any observable or measurable characteristic of the system influencing the risk’ [76,
p. 18]. The former use is in the meaning of risk measure; the latter use would be similar
to the ’factors which have effects on risks’ in this dissertation. On the other hand, the term
’risk factor’ had consistent interpretations in several articles, e.g. ’factor that contributes to
risks (in a Bayesian network)’ [77, p. 515ff]. To conclude, ’risk factor’ is more common and
more specific than ’risk indicator’. Consequently, this dissertation applies the term risk factor
for ’factors which have effects on risks’ despite the former use of risk indicator in Berchtold
2016 [8] and Berchtold 2018 [9].
Furthermore, it is important to differentiate between risk factor and variable. A risk factor
is a variable within the system model outlined in Section B.3. In particular, the term ’risk
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Table G.1: Search items to get publications on ’risk indicator’ and ’risk factor’ (results from
2015).

item risk indicator risk factor
title risk NEAR/0 indicator risk NEAR/0 factor
data base WebOfScience WebOfScience
research field Science Technology Science Technology
type Article Article
research area mathematics, engineering,

physics, transportation,
nuclear science technology

mathematics, engineering,
physics

number of articles 292 31675

factor’ emphasises the relation of a variable to risk analysis. Hence, it is similar to control
variable of Subs. ’Distinction between deterministic and stochastic models’ (p. G-2), i.e. its
value has an effect on the risk of a scenario. With regard to Monte-Carlo simulations, the
value of a risk factor depends on a probabilistic model causing aleatory uncertainties but this
is not in the meaning of an environmental variable. To sum up, this dissertation mainly
applies the term ’risk factor’ in the meaning of control variables, only Chapter D uses the
term ’control variable’ to emphasise its general applicability and to be consistent with more
general publications.
At last, risk factors allow to differentiate between scenarios quantitatively. E.g. the max-
imum pre-evacuation time among all tunnel users is a risk factor whereas the individual
pre-evacuation time of one tunnel user cannot be used to differentiate between scenarios.
Hence, the latter one is not a risk factor or control variable.

Terms related to the evaluation of the accuracy of models
In general, a model is a ’simplified description of a system’ whereas a method is a ’particular

procedure’ [19]. The simplifications in a model demand the evaluation of its accuracy. Refer-
ring to fire safety engineering [78, p. 3f], the evaluation comprises: the verification, which
is the ’process of determining that a calculation method implementation accurately repre-
sents the developer’s conceptual description of the calculation method and the solution to the
calculation method’; and the validation, namely the ’process of determining the degree to
which a calculation method is an accurate representation of the real world from the perspec-
tive of the intended uses of the calculation method’. These, definitions for instance apply to
the fire model or the evacuation model. And in the same line but in a more general context,
Nannapaneni 2016 [22, p. 9] parts the evaluation into: the model calibration to ’estimate
model parameters based on input / output data’; the model verification to ’quantify numer-
ical solution errors’; and the model validation to ’identify model form errors [uncertainties]
by comparison with physical observations’. To conclude, this dissertation rather relates to
the latter definitions for the evaluation of the accuracy of the metamodel.

Distinction between deterministic and stochastic models
The description of models first requires the definition of variables. In the mathematical

meaning, a variable is a ’quantity which during a calculation is assumed to vary or be capa-
ble of varying in value’ [19]. In more detail, Santner 2003 [10, p. 15] differentiates between:
control variables ’control the product or process’; and environmental variables ’depend
on specific user or on the environment at the time the item is used’, thus, environmental vari-
ables are ’random with a distribution that is known or unknown’. And to complete, Santner

G-2



Appendix G.1

2003 [10, p. 15] names ’model variables’ which cause the ’uncertainty in the mathematical
modelling that relates other inputs to outputs’. However, the latter term is not used in this
dissertation.
Myers 2002 [20, p. 481] refers to two types of models, the deterministic model and the stochas-
tic model. Accordingly, the results of a deterministic model, e.g. a fire model based on
the CFD method or a zone model, mostly depend on control variables whereas environmen-
tal variables have only small effects. The latter statement relies on the experience with fire
models that time dependent variations in local quantities like the temperature are small
in comparison to the effects originating from variations in risk factors. Next, in case of a
stochastic model, like an evacuation model, environmental variables prevail. Examples for
environmental variables are the individual position or the individual pre-evacuation time of
tunnel users. As a consequence, the results of stochastic models are subjected to aleatory
uncertainties.

Remarks on the mathematical notation
The results of the consequence model are equally expressed in terms of the FF denoted with

ξ as well as with the general symbol y. This ambiguity has mainly two reasons: first, y
emphasises the general applicability of the metamodel, i.e. it is not limited to the FF of the
consequence model; and second, y corresponds to other literature. Accordingly, the general
notation with y is mainly used in Chapter D. To sum up, it yields y ≡ ξ in this dissertation
where both symbols follow the same conventions and hence, the nomenclature shows only
symbols for the FF.
This dissertation applies a bold symbols for results of the consequence model. The bold
notation highlights multiple results structured in column vectors or matrices in contrast to
a single result. It serves to clarify mathematical functions. For instance, ξ̄ comprises results
of the RSM at multiple arbitrary points whereas ξ̄ denotes the result at a single arbitrary
point. But the notation is not entirely consistent for better legibility in some parts, e.g. the
symbol for the ED X is not bold.

Terms related to spatial
The term spatial is not limited to physical space but refers to an arbitrary space in the

domain, i.e. the unit hypercube, of the ED. Two terms are also directly connected to spatial:
local means spatially close or in a small region of the domain; and global labels a large
region or the entire domain.
The term shape of the response surface describes the form of the response surface, e.g.
with second derivatives or discontinuities. Spatial sensitivity has mainly two meanings
related to: first, the correlation between a measure, e.g. the prediction variance, and the
shape of the response surface; and second, the different effects of data points on the result of
the RSM at an arbitrary point depending on their euclidean distances. Salemi 2016 [29, p. 8f]
exemplifies the latter meaning with the ’prediction window’ outside which data points have
no effect on a result of the result of the RSM.
The spatial sensitivity can be either low, high or even lead to discontinuities. First, the
consideration of data points in a large region around an arbitrary point for a result leads
to its low spatial sensitivity. An example is a global RSM where the regression coefficients
are identical on the entire domain leading to equal effects of all data points. Second, the
result of a highly spatially sensitive RSM considers only local data points to its arbitrary
point. In other words, close data points have large effects on the result and data points with
a large euclidean distance to the arbitrary point have only small effects. At last, spatially
discontinuous is the discontinuous transition of a measure in the domain.
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Terms related to data point or discrete scenarios
A data point represents a discrete scenario in an ED as well as its result simulated with

the complex model. The term scenario is used with regard to risk analysis and to distinguish
between fire scenarios and evacuation scenarios. The term data point: first, signalises the
flexibility of the methods for other applications; second, emphasises simulations with the
complex models and their results; and third, is used for abstract purposes, e.g. for the
euclidean distance within the domain.
The terms neighbour and arbitrary point are closely related to data point. Arbitrary point
denotes a scenario with random or arbitrary values of risk factors together with its result,
e.g. determined with the metamodel. A neighbour is a data point of a subset of an ED
Xs ∈ X within a small euclidean distance around an arbitrary point.

G.2 Background for the system model

Section B.3 introduces the road tunnel, the risk factors and the intermediate nodes of the
scenario in the system model. Now, this section provides the background together with the
literature. To begin, the system model and in particular the tunnel geometry is not based on
a particular tunnel but generally represents a common road tunnel in Germany.

G.2.1 Road tunnel

The tunnel geometry is mainly determined by its slope, its cross-section and the tunnel length
and corresponds to German legislation [50, p. 11ff]. German legislation allows slopes in road
tunnels of up to five percent. Thus, the system model assumes a slope of one percent to take
into account its effect on the smoke spread, but still to be representative for other road tunnels.
Also with regard to other road tunnels, the cross-section agrees with the common tunnel type
10.5 T, i.e. with a width of 9.5 m and the height of 4.5 m, for two lanes and bi-directional
traffic. The evacuation paths in this tunnel type have a width of 1.5 m which already includes
the safety margin to the road. However, the evacuation paths in the evacuation scenario of
FDS+Evac described in Subs. ’Discrete scenario in FDS and FDS+Evac’ (p. 20) have a width
of two metres to enable tunnel users to overtake each other. At last, the tunnel length in the
system model is set with the corresponding risk factor in App. G.2.2.
The layout of the road tunnel in the system model comprises: first, emergency exits; second,
the emergency ventilation system; and third, the systems for fire detection and tunnel alarm.
First, road tunnels with a length of more than 400 m are obliged to have emergency exits at
least every 300 m [50, p. 35, 40]. Hence, the emergency exit in the system model lies in a
distance of 150 m to the fire source and has a width of one metre. Second, German legislation
allows longitudinal emergency ventilation systems until tunnel lengths of 1200 m [50, p. 22ff].
The system model comprises this ventilation system despite its risk factor can reach values
of up to 3000 m. But the ventilation system is reasoned with: its conservativeness for tunnel
lengths of more than 400 m because of its little sophistication; its suitability for the tunnel
length within the complex model; and its suitability for tunnel lengths of up to 3000 m in case
of uni-directional traffic. During the self-rescue phase, the longitudinal emergency ventilation
system directs downward the road tunnel and maintains a gas velocity of less than 1.5 m

s to
not disturb the smoke layer. For the same reason, the fans are switched off within the smoke
layer. And third, App. G.2.3 describes the remaining safety systems of the layout together
with the intermediate nodes time of fire detection and time of tunnel alarm.
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G.2.2 Risk factors

Second, the models of all risk factors are shortly summarised in Tab. B.2 on p. 16.

Maximum HRR HRRmax /MW
The default model of the maximum HRR stems from the methodology for risk analysis for

road tunnels in Germany and is therewith valid for fully-developed fires ignited either as a
consequence of accidents or by technical defects [13, p. 30]. To be noted, it excludes fires
of dangerous goods vehicles and does not differentiate between cars and HGVs. In detail,
the model comprises a discrete distribution for values of the maximum HRR from five to
100 MW. The default model was chosen for its application in Germany, but of course, other
models are available: e.g. for Austria [14, p. 15] based on statistical data [79, p. 17], or for
France [59, Apdx. C].
Other publications consider fires in road tunnels with maximum HRRs larger than 300 MW
[61, p. 61; 80, p. 31; 81, p. 33]. Even more, Section A.1 mentions a real tunnel fire with an
estimated maximum HRR of about 400 MW [3]. However, these publications mostly refer to
fire scenarios related to dangerous goods vehicles. But an experiment in a road tunnel similar
to the system model measures maximum HRRs of until 200 MW. And to complete, fires of
cars in road tunnels commonly reach less than ten MW [23, p. 3; 61, p. 61; 82, p. A-1ff; 83,
p. 2]. Concluding, the uniform distribution of the maximum HRR has the limits 25 MW and
200 MW for fires without dangerous goods where Subs. ’Metamodel’ (p. 23) reasons the lower
limit.

Time to maximum HRR tmax /s
Only few information on the time to maximum HRR of HGV fires in road tunnels exist. For

instance, Lönnermark 2004 [23, p. 3] summarises ten experiments with the time to maximum
HRR between eight and 18 minutes. Also, the French guide on specific hazard investigations
in road tunnels [59, Apdx. C.1] suggests values of more than ten minutes for fire scenarios
with maximum HRRs larger than 30 MW. According to these results, the default model for
the time to maximum HRR bases on a uniform distribution between ten and 20 minutes.

Maximum pre-evacuation time tpre /s
The pre-evacuation time begins with the alarm of tunnel users and ends when they start to

move. Several studies on the pre-evacuation time of tunnel users are available, e.g. publica-
tions [60; 84; 85]. In particular, publications [59, Apdx. E.2; 86, p. 462; 87, p. 26] report short
maximum pre-evacuation times of about 100 s. In contrast, other publications [61, p. 31; 88,
p. 75] state large maximum pre-evacuation times of about 300 s. Summing up, the maximum
pre-evacuation time of the system model is defined with a uniform distribution between 100 s
and 300 s to cover the large range of possible values. But, this model does not consider tunnel
users who stay in their vehicles.
Section B.3 establishes the uniform distribution of individual pre-evacuation times among
tunnel users between zero and the maximum pre-evacuation time of a scenario. Therewith,
it complies with a recommendation in RiMEA 2009 [89, p. 22]. However, RiMEA 2009 also
recommends a normal distribution as well as Ronchi 2012 [88, p. 75] uses it. Additionally,
Norén 2003 [90, p. 32ff] applies the normal distribution for the time to leave the car as well as
for the ’hesitation time’. However, an evaluation of the pre-evacuation times mentioned in the
previous paragraph uncovered clear variations in their standard deviation and in particular
in their coefficient of variations. Furthermore, a screening in the evacuation scenario of
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FDS+Evac identified strong effects of these parameters on the results of the simulations. The
screening also implied that the uniform distribution leads to similar results as the normal
distribution. For these reasons, the system model favours the uniform distribution.

Number of tunnel users Ntu

This risk factor comprises all tunnel users within the upper evacuation area next to the fire
source. Its default model derives from BASt 2009 [91, p. 12] and depends on the risk factor
ratio of HGV and on the intermediate node number of vehicles. The results of these nodes
lead to the number of cars, HGVs and buses which are not rounded because of the small
fraction of buses. Furthermore, BASt 2009 assumes that cars, HGVs and buses are occupied
with 1.5, 1.1 and 40 tunnel users respectively. Finally, the number of tunnel users of all
vehicles types sums up to the total number of tunnel users.
Next to the default model, the risk factor also comprises a uniform distribution with the limits
of 30 and 180 tunnel users. These values respectively derive from the assumptions that, first,
30 cars, each with one occupant, line up over the entire length of the upper evacuation area,
and second, that there are three buses and the rest of cars with a mean of about two tunnel
users.

Failure of tunnel alarm fa

There are only few information on the probability of the failure of tunnel alarm in a road
tunnel. Hence, it is supposed to be equal to the probability of failure of the fire detection
system. This system fails in one percent of its demand assumed in the methodology of
Germany [13, p. 30]. Also, a screening in the system model revealed that a variation of
this probability within reasonable ranges had little effects on the results of risk analysis.
Accordingly, the probability is a fix value which leads to FA in one percent of all scenarios.

Ratio of HGV χHGV

Different publications report the ratio of HGV of: twelve percent for Switzerland and Norway
according to Schubert 2011 [15, p. 34]; 14% in Norway in 2014 [92, p. 104]; and 14% to 31%
in Italian road tunnels in 2011 [93, p. 169]. With regard to Germany, the ratio of HGV with
buses and dangerous goods vehicles varied between five and 45% on motorways in 2011 [94].
The ratio of buses among HGV is about five percent [91, p. 12]. Consequently, the risk factor
adopts a uniform distribution between five percent and 45% including five percent of buses
and therewith constitutes a general model to account for arbitrary road tunnels.

Average daily traffic volume Ṅadtv /veh.
day

As for the ratio of HGV, the average daily traffic volume also strongly depends on the
section of a road. For example, two- and three-lane road tunnels in Italy are respectively
used by 4500 to 40761 and by 11439 to 32260 vehicles per day [93, p. 169]. Additionally,
Tab. G.2 exemplifies some values for German highways and federal roads with two lanes in
2011 [94]. As a result, the average daily traffic volume in Caliendo 2012 [93, p. 169] seems to
be reasonable for the general model of the road tunnel in the system model with its two lanes
and the bi-directional traffic. For this reason, the uniform distribution in this risk factor has
the limits of 5000 veh.

day and 40000 veh.
day vehicles per day. To be noted, the values of this risk

factor always yield for both directions.
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Table G.2: Tunnel length ltunnel and average daily traffic volume Ṅadtv for road tunnels in
Germany with bi-directional traffic and two lanes based on BASt 2011 [94]; the
roads are either abbreviated with ’A’ for highway or ’B’ for federal road; some
information beside from the traffic data are based on wikipedia.de.

name road section ltunnel /km Ṅadtv/, veh.
day

Malbergtunnel B260 Fachbach-Bad Ems 1.6 10000
Bürgerwaldtunnel A98 Tiengen-West - Lauchrin-

gen
1.435 9500

Gmünder Einhorn Tunnel B29 Haupttunnel [95] 1.687 19600
Saukopftunnel B38 LG Saukopftunnel - L3408 2.715 15200
Michaelstunnel B500 Tunnel Baden-Baden -

L500 KVP Cite Baden-
Baden

2.544 31200

Heslacher Tunnel B14 Vaihingen - Heslach West 2.300 33200

Tunnel length ltunnel /km
The tunnel length derives from values of BASt 2011 [94] exemplified in Tab. G.2. Thus,

the general model of the risk factor applies a uniform distribution between one and three
kilometres.

G.2.3 Intermediate nodes

Third, the section continues with the background to the intermediate nodes which were
introduced in Section B.3.

Frequency of scenarios fsc / 1
year

The model for the frequency of scenarios bases on CETU 2003 [59, Apdx. B.1]. It considers
fires ignited in case of accidents or due to technical defects and is valid for road tunnels
with two lanes, bi-directional traffic, as well as no additional access roads. Furthermore, it
assumes that vehicles after their ignition can leave the tunnel within a distance of 200 m
in the direction to the tunnel portals. However, vehicles can not leave the tunnel in case
of accidents which occurs in one of 30 scenarios. According to these assumptions, Eq. G.1
includes a reduction factor and also considers the risk factors average daily traffic volume as
well as tunnel length.

fsc = ḟfire (χHGV ) ·
(29

30 ·
(

1 − 0.2 km
ltunnel

)
+ 1

30

)
· ltunnel · Ṅadtv · 365 days

year (G.1)

Moreover, Eq. G.1 indirectly introduces the risk factor ratio of HGV together with the variable
specific frequency of fire ḟfire, i.e. the frequency of fire per driven vehicle kilometre. More
precisely, the specific frequency of fire differs between cars and HGVs. For cars, the value is
given with 2 · 10−8 · 0.05 /(veh. km) where the second factor was adopted of the methodology
of Germany [13, p. 28] to exclude self-extinguishing fires. HGVs are subjected to a value
of 1.5 · 10−8 /(veh. km) which is valid for fires not brought under control and for ’trunk
roads’ with regard to the bi-directional traffic. Accordingly, the specific frequency of fire in
Eq. G.1 derives from the average of both values weighted with the ratio of HGV. Nota bene,
it is possible to average both values since both fire risk factors with effects on the HRR are
supposed to be independent from the risk factor ratio of HGV.
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Of course, the values for the specific frequency of fire are subjected to uncertainties, e.g.
CETU 2003 [59, Apdx. B.1] provides a wider range of values besides from trunk roads. For
this reason, several different models to describe the frequency of scenarios exist, e.g. in
methodology of Germany [13, p. 27ff] or in Schubert 2011 [15, p. 55].

Detection time of fire
The guideline for German road tunnels demands the detection of a pool fire with a HRR of

five MW within 60 s [50, p. 24]. Accordingly, the fire detection system in the system model
detects the fire as soon as it reaches a HRR of five MW. Thus, the detection time of fire
derives from the exponential function in Eq. G.2 (p. G-11). Additionally, the methodology of
Germany [13, p. 30] assumes a failure of the fire detection system in one percent of all fires.
However, the system model does not consider the failure of fire detection. This simplification
originates in the screening during the setup of the fire and the evacuation scenario. The
screening uncovered that a failure of fire detection and consequently no emergency ventilation
had little effect on the outcome of the scenario.
Of course, the fire detection depends on many different factors [96, p. 705ff], e.g. the type of
the detection system, detection by tunnel users, or the type and location of the fire source.
With the knowledge on the importance of the alarm of tunnel users, a further refinement of
the system model could begin with this intermediate node.

Time of tunnel alarm
There are few information on the time of tunnel alarm, e.g. that it ranges between 120 s and

300 s [61, p. 31]. For this reason, the tunnel alarm of the fire alarm system is directly linked to
the intermediate node time of fire detection. However, the time of tunnel alarm additionally
considers the risk factor failure of tunnel alarm. Namely, the time of tunnel alarm does not
affect the evacuation scenario in case of FA.

Number of vehicles Nvehicle

The model for the number of vehicles derives from CETU 2003 [59, Apdx. E.1]. It is valid
for free-flowing traffic and focuses on the upper evacuation area. According to CETU 2003 ,
the model splits up into two phases, i.e. before and after the time of tunnel alarm. Before,
the vehicles line up in a tailback beginning directly after the fire source. Afterwards, the
vehicles stop immediately and hence have the same front-to-front distances as in free-flowing
traffic. Consequently, this intermediate node depends on the risk factor average daily traffic
volume as well as on the intermediate nodes traffic speed and time of tunnel alarm.

Traffic speed
According to BASt 2009 [91, p. 12], vehicles drive with the speed allowed by the speed limits.
For HGV, the speed limit is 80 km/h [91, p. 12]. And for cars, the speed limit is commonly
80 km/h but in some cases up to 100 km/h [50, p. 29ff]. The system model assumes the latter
value of 100 km/h. Hence, this intermediate node results in the averaged speed for cars and
HGV, i.e. 100 km/h and 80 km/h, weighted with the ratio of HGV.

G.3 Python modules

Section B.3 and Section B.4 introduce the system model and the consequence model with
focus on the metamodel. Now, this section sketches the different classes written in Python
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to realise the methodology for risk analysis developed in this dissertation. It also highlights
some details with regard to the implementation of the nodes in the system model.
Fig. G.1 provides an overview on the different classes and data bases used in the method-
ology. First, the class MLS refers to the data bases for the system model containing FFs
at discrete scenarios. The discrete scenarios were specified with an ED of the class ED as
described in Section C.3. Their results were simulated with FDS and FDS+Evac according
to Subs. ’Discrete scenario in FDS and FDS+Evac’ (p. 20). The class MLS establishes the
metamodel according to its inputs, i.e. the specific data base as well as further options, as
detailed in Section D.1.3, Section D.1.4 and Section D.2. The MLS attributes of each meta-
model are saved in a data base and can be reloaded for equal inputs. Second, the node FF
integrates the results of the metamodel into the system model via two modes. Section D.4
describes the integration and Subs. ’Integration of MLS models into the system model’ (p. 45)
of Section D.2 introduces the modes. In case of the direct mode, the node FF directly applies
a metamodel to get the FFs at the random scenarios of a Monte-Carlo simulation. In case of
the indirect mode, the node FF derives the FFs from the data base for the fixed points. This
data base contains results of the FF at the fixed points precalculated for various metamodels
with different inputs. Finally, the class GRAPH initiates a system model object with its
graph depicted in Fig. B.1 on p. 16. The graph also initiates the Monte-Carlo simulation in
the system model and receives the results of risk analysis determined according to Section B.2.

ED

fixed points

FF MLS

NODEFF

MLS
attributes

SYSTEM
MODEL

GRAPH

data flow
indirect mode
direct mode

own
class data baseexternal

model

FDS+Evac
FDS and

Figure G.1: Data flow between the classes developed in this dissertation, the external mod-
els and data bases used to reduce the computational effort.

The different classes of the nodes in the system model all inherit from the same class NODE
written in the following reduced code. The graph object initiates only a single node which
serves to quantify the risk measures. Subsequently, this node initiates its parent nodes,
namely the frequency of scenarios and the node FF. These two nodes continue the graph
as depicted in Fig. B.1. Generally, the entire graph is set up with a bottom-up approach.
Namely, each node initiates its parent nodes which are defined in corresponding list of their
classes. Equally, each node triggers its parent nodes to produce the results for a Monte-Carlo
simulation. Consequently, neither the graph object nor the nodes contain the information on
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the entire graph. Moreover, there is no connection from a parent node to a child node. For
this reason, each node is directly linked to the graph object to facilitate the transfer of the
results of a Monte-Carlo simulation for the final evaluation in the graph object.

class NODE(object,metaclass=Singleton):
def __init__(self,g=None):

self._parents=[]#list for parent nodes defined in each node
self._result=None#updated after _run_sim()
self._graph=g#link to the graph object g

def _run_sim(self): #method triggers the parent nodes to produce results
self._result=np.nan#specific model for each node

The bottom-up approach produces a specific issue when a parent node has multiple child
nodes, for instance the maximum HRR. In this case, the class of the parent node is initiated
by every child node which would lead to multiple node objects each producing different results
during a Monte-Carlo simulation. To prevent the existence of multiple objects of one class,
the class node derives from the metaclass SINGLETON shown in the following reduced code.
The SINGLETON always returns the object of its first initialisation during all subsequent
initialisations of its class.

class SINGLETON(type):
_instances={}
def __call__(self, *args, **kwargs):

if self not in self._instances:
self._instances[self] = super(SINGLETON, self).__call__(*args, **kwargs)

return self._instances[self]

Furthermore, the class NODEFF applies another metaclass because it had to be revised
completely during the development of the methodology for risk analysis. The aim of the
revision was to establish a completely new class using MLS but still to be able to apply
the deprecated class with its local interpolation methods. Additionally, the parent nodes of
the node FF should call the node FF object always in the same way independent from its
specific class. To achieve these objectives, the class NODEFF derives from the metaclass
FFSPLIT as shown in the following reduced code. This metaclass simply reads the options
specified in the graph object during its initialisation and accordingly selects either the new
or the deprecated class. Then, it returns the corresponding object to the class NODEFF. As
a result, the object of the node FF always stems from the same class NODEFF.

class FFSPLIT(type):#metaclass for the node FF
def __call__(self,*args,**kwargs):#is executed before the __init__ method

g=args[0]
specs=g._get_options(’FF’)[’S’]#reads options defined in the graph object g
if ’deprecated’ in specs:#switches between different classes depending on

the option in graph
return FFLIN(g)#object of the deprecated class using local interpolation

else:
return FFMLS(g)#object of the class using MLS

class NODEFF(metaclass=FFSPLIT):#Node FF represented either by the deprecated or
current class
def __init__(self,g):#initiated in the graph object g
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pass

G.4 Complex model

Subs. ’Discrete scenario in FDS and FDS+Evac’ (p. 20) describes the fire and evacuation
scenarios simulated with FDS and FDS+Evac. To complement the description, this section
first defines the time-dependent HRR curve applied in the complex model which is crucial for
the FF. In the same subsection, it also gives some background to the fire source. Subsequently,
it provides the input files for the simulations with FDS and FDS+Evac. The second input
file additionally comprises the option to consider a second emergency exit as well as the
evacuation to the upper tunnel portal for a more flexible exit selection. Moreover, it already
describes variables to include mobility-impaired occupants.

Exponential HRR curve of the fire source
The time-dependent HRR Q̇ (t) in MW follows the exponential function Eq. G.2 according

to Ingason 2009 [58, p. 260]. However, more recently, Ingason 2015 [97, p. 136] uncovered a
linear increase of the HRR in road tunnels. The exponential function therewith comprises
the growth and the decay period of the fire. For this purpose, Eq. G.2 applies the parameters
k = HRRmax

Q ·r and r =
(
1 − 1

n

)1−n
where Q in MJ is the calorific value of the fire source, i.e.

the HGV. The fire source in the complex model is subjected to the assumption that a HGV
with a small calorific value automatically leads to a smaller maximum HRR HRRmax than a
HGV with a high calorific value. In other words, the maximum HRR linearly correlates with
the calorific value. According to the median values of experiments in road tunnels [23, p. 3],
HGVs with a heat capacity of about Q ≈ 75 · 103 MJ led to fires with a maximum HRR of
HRRmax ≈ 50 MW . These results together with the linear correlation result in the calorific
value of the fire source of Q = 75·103 MJ

50 MW · HRRmax depending on the risk factor maximum
HRR. At last, the parameter n in Eq. G.2 derives from Eq. G.3 with the risk factor time to
maximum HRR tmax in s.

Q̇ (t) = HRRmax · n · r
(
1 − e−kt

)n−1
· e−kt (G.2)

tmax = ln(n)
HRRmax

Q

(
1 − 1

n

)1−n (G.3)

Next, the fire source in the fire scenario of FDS bases on a user-specified fuel in the simple
chemistry model to generally represent fires in road tunnels. At the beginning, a screening
in the fire scenario uncovered clear effects on the FF of following parameters: first, the heat
of combustion; second and third, the yields for soot ṁsoot

ṁfuel
and carbon monoxide ṁCO

ṁCO2
. ṁ

are the corresponding combustion and production rates in mass per time. As a consequence,
first, the user-specified fuel bases on acetone C3H6O with a heat of combustion of 28560 kJ

kg
[98, p. 3440]. The heat of combustion is neither low nor high and thus should represent
other fuels in road tunnels. However, acetone itself is not representative with regard to the
other parameters. Thus, they were specified independently to the actual values of acetone.
Second, there are little information on the soot yield of fires in road tunnels. For instance,
Mulholland 2003 [99, p. 2/259] describes values in the range of ṁsoot

ṁfuel
= {0.01 . . . 0.19} kgsoot

kgfuel
.
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Hence, the fire scenario in FDS adopts a medium soot yield of ṁsoot
ṁfuel

= 0.1 kgsoot

kgfuel
. And third,

according to PIARC 1999 [61, p. 65], the ratio between carbon monoxide and carbon dioxide
is ṁCO

ṁCO2
≈ 0.05 kgCO

kgCO
. This value results in the carbon monoxide yield of ṁCO

ṁCO2
= 0.1221 kgCO

kgfuel

following the simple chemistry model in the FDS user guide [11, p. 131f]. Summing up, these
three parameters were determined to generally represent fuels in road tunnels but they are
not subjected to epistemic or aleatory uncertainties despite their clear effects on the FF.
For this reason, the variation of these parameters throughout the system model could reveal
interesting results.

FDS input file

Overview on variables (to set up simulations automatically):
<<name>> : <<<name>>>
<<template_name>> : <<<template_name>>>
<<HRR_max>> : <<<HRR_max>>>
<<t_HRR_max>> : <<<t_HRR_max>>>
<<t_vent>> : <<<t_vent>>>
<<HRR_PUA>> : <<<HRR_PUA>>>
<<HRR_string>> : see at HRR_curve

Legend:
name : name of fire simulation
HRR_max /MW : maximum HRR (risk factor)
t_HRR_max /s : time to maximum HRR (risk factor)
t_vent /s : begin of ventilation
HRR_PUA /(kW/,m^2) : HRR_max / 162.5 m^2 * 1000
HRR_string : string to describe the time-dependent HRR in FDS

&HEAD CHID=’<<<name>>>’, TITLE=’FDSF-SyMo based on template <<<template_name>>>.’ /
&MISC

RESTART=.FALSE.,
TMPA=10.0,
GVEC=-0.098095,0,-9.8095,
U0=1.0,
EVACUATION_DRILL=.FALSE.,
EVACUATION_MC_MODE=.FALSE.,
NO_EVACUATION=.FALSE.,
EVAC_PRESSURE_ITERATIONS=50,
EVAC_TIME_ITERATIONS=50, /

&MESH IJK=2600,40,18, XB=-200.0,450.0,0.0,10.0,0.0,4.5, /
&TIME T_END=1200.0 /1200
&DUMP NFRAMES=2400, DT_HRR=1., DT_DEVC=1, DT_RESTART=5.0, /
&PRES MAX_PRESSURE_ITERATIONS=20, /

==========FIRE GEOMETRY==========
----------Activation time of ventilation----------
&DEVC ID=’TimerVent’, QUANTITY=’TIME’, SETPOINT=<<<t_vent>>>, INITIAL_STATE=.FALSE.,

XYZ=0,0,0, /
----------FIRE SOURCE:----------
&SURF ID=’FIRE’, HRRPUA=<<<HRR_PUA>>>, COLOR=’RED’, RAMP_Q=’HRR_curve’/
&OBST XB=-10.0,10.0,3.5,6.0,0.5,3.0, SURF_IDS=’FIRE’,’FIRE’,’INERT’, EVACUATION=.

FALSE., /

G-12



Appendix G.4

&OBST XB=-10.0,10.0,3.5,6.0,0.0,0.5, SURF_ID=’INERT’, COLOR=’BLACK’, EVACUATION=.
FALSE., /

&RAMP ID=’HRR_curve’, T=0.0, F=0.0000,/
<<<HRR_string>>>
&REAC ID=’model’,

FUEL = ’ACETONE’,
HEAT_OF_COMBUSTION = 28560.0,
FORMULA = ’C3H6O’,
CO_YIELD=0.1221,
SOOT_YIELD=0.1, /

----------TUNNEL BOUNDARIES----------
&VENT MB=’ZMIN’, SURF_ID=’ROAD’ / road surface
&VENT MB=’XMIN’, SURF_ID=’OPEN’ / Portal 1
&VENT MB=’XMAX’, SURF_ID=’OPEN’ / Portal 2
&VENT MB=’ZMAX’, SURF_ID=’TUNNEL WALL’ /
&VENT MB=’YMIN’, SURF_ID=’TUNNEL WALL’ /
&VENT MB=’YMAX’, SURF_ID=’OPEN’ /
&OBST XB=-200.0,450.0,9.5,10.0,0.0,4.5, SURF_ID=’TUNNEL WALL’, EVACUATION=.FALSE.,/

tunnel wall
&HOLE XB=-125.5,-124.5,9.49,10.01,4.0,4.5, /
&HOLE XB=-25.5,-24.5,9.49,10.01,4.0,4.5, /
&HOLE XB=274.5,275.5,9.49,10.01,4.0,4.5, /
&HOLE XB=374.5,375.5,9.49,10.01,4.0,4.5, /
&SURF ID=’TUNNEL WALL’, MATL_ID=’CONCRETE’, THICKNESS=1.0, BACKING=’INSULATED’,

COLOR=’GRAY’, TRANSPARENCY=0.0, /
&SURF ID=’ROAD’, MATL_ID=’ASPHALT’, THICKNESS=1.0, BACKING=’INSULATED’, COLOR=’DIM

GRAY’, /
------------VENTILATION------------
JET FAN at -150 lower y: u at 60 m, switches of at -90 m
&OBST XB=-150.0,-149.5,0.0,1.5,3.0,4.5, COLOR=’GOLDENROD’/
&VENT XB=-150.0,-150.0,0.0,1.5,3.0,4.5, SURF_ID=’HVAC’,ID=’in-15018’,COLOR=’BLACK’/

Inlet
&VENT XB=-149.5,-149.5,0.0,1.5,3.0,4.5, SURF_ID=’HVAC’,ID=’out-15018’,COLOR=’BLACK’/

Outlet
&HVAC ID=’in-15018’,TYPE_ID=’NODE’,DUCT_ID=’fan-15018’,VENT_ID=’in-15018’,/
&HVAC ID=’out-15018’,TYPE_ID=’NODE’,DUCT_ID=’fan-15018’,VENT_ID=’out-15018’,/
&HVAC ID=’fan-15018’, TYPE_ID=’DUCT’, NODE_ID=’in-15018’,’out-15018’, VOLUME_FLOW

=55.575, AREA=2.25, RAMP_ID=’vent-150’, DAMPER=.TRUE., CTRL_ID=’DampCTRL-150’, /
&OBST XB=-151.0,-148.0,0.0,0.0,3.0,4.5, COLOR=’GOLDENROD’/
&OBST XB=-151.0,-148.0,1.5,1.5,3.0,4.5, COLOR=’GOLDENROD’/
&OBST XB=-151.0,-148.0,0.0,1.5,3.0,3.0, COLOR=’GOLDENROD’/
&OBST XB=-151.0,-148.0,0.0,1.5,4.5,4.5, COLOR=’GOLDENROD’/
JET FAN at -150 upper y: u at 60 m, switches of at -90 m
&OBST XB=-150.0,-149.5,8.0,9.5,3.0,4.5, COLOR=’GOLDENROD’/
&VENT XB=-150.0,-150.0,8.0,9.5,3.0,4.5, SURF_ID=’HVAC’,ID=’in-15098’,COLOR=’BLACK’/

Inlet
&VENT XB=-149.5,-149.5,8.0,9.5,3.0,4.5, SURF_ID=’HVAC’,ID=’out-15098’,COLOR=’BLACK’/

Outlet
&HVAC ID=’in-15098’,TYPE_ID=’NODE’,DUCT_ID=’fan-15098’,VENT_ID=’in-15098’,/
&HVAC ID=’out-15098’,TYPE_ID=’NODE’,DUCT_ID=’fan-15098’,VENT_ID=’out-15098’,/
&HVAC ID=’fan-15098’, TYPE_ID=’DUCT’, NODE_ID=’in-15098’,’out-15098’, VOLUME_FLOW

=55.575, AREA=2.25, RAMP_ID=’vent-150’, DAMPER=.TRUE., CTRL_ID=’DampCTRL-150’, /
&OBST XB=-151.0,-148.0,8.0,8.0,3.0,4.5, COLOR=’GOLDENROD’/
&OBST XB=-151.0,-148.0,9.5,9.5,3.0,4.5, COLOR=’GOLDENROD’/
&OBST XB=-151.0,-148.0,8.0,9.5,3.0,3.0, COLOR=’GOLDENROD’/
&OBST XB=-151.0,-148.0,8.0,9.5,4.5,4.5, COLOR=’GOLDENROD’/
JET FAN at 420 lower y: u at 300 m, switch off at 300 m
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&OBST XB=420.0,420.5,0.0,1.5,3.0,4.5, COLOR=’GOLDENROD’/
&VENT XB=420.0,420.0,0.0,1.5,3.0,4.5, SURF_ID=’HVAC’,ID=’in42018’,COLOR=’BLACK’/

Inlet
&VENT XB=420.5,420.5,0.0,1.5,3.0,4.5, SURF_ID=’HVAC’,ID=’out42018’,COLOR=’BLACK’/

Outlet
&HVAC ID=’in42018’,TYPE_ID=’NODE’,DUCT_ID=’fan42018’,VENT_ID=’in42018’,/
&HVAC ID=’out42018’,TYPE_ID=’NODE’,DUCT_ID=’fan42018’,VENT_ID=’out42018’,/
&HVAC ID=’fan42018’, TYPE_ID=’DUCT’, NODE_ID=’in42018’,’out42018’, VOLUME_FLOW

=55.575, AREA=2.25, RAMP_ID=’vent+420’, DAMPER=.TRUE., CTRL_ID=’DampCTRL420’, /
&OBST XB=419.0,422.0,0.0,0.0,3.0,4.5, COLOR=’GOLDENROD’/
&OBST XB=419.0,422.0,1.5,1.5,3.0,4.5, COLOR=’GOLDENROD’/
&OBST XB=419.0,422.0,0.0,1.5,3.0,3.0, COLOR=’GOLDENROD’/
&OBST XB=419.0,422.0,0.0,1.5,4.5,4.5, COLOR=’GOLDENROD’/
JET FAN at 420 upper y: u at 300 m, switch off at 300 m
&OBST XB=420.0,420.5,8.0,9.5,3.0,4.5, COLOR=’GOLDENROD’/
&VENT XB=420.0,420.0,8.0,9.5,3.0,4.5, SURF_ID=’HVAC’,ID=’in42098’,COLOR=’BLACK’/

Inlet
&VENT XB=420.5,420.5,8.0,9.5,3.0,4.5, SURF_ID=’HVAC’,ID=’out42098’,COLOR=’BLACK’/

Outlet
&HVAC ID=’in42098’,TYPE_ID=’NODE’,DUCT_ID=’fan42098’,VENT_ID=’in42098’,/
&HVAC ID=’out42098’,TYPE_ID=’NODE’,DUCT_ID=’fan42098’,VENT_ID=’out42098’,/
&HVAC ID=’fan42098’, TYPE_ID=’DUCT’, NODE_ID=’in42098’,’out42098’, VOLUME_FLOW

=55.575, AREA=2.25, RAMP_ID=’vent+420’, DAMPER=.TRUE., CTRL_ID=’DampCTRL420’, /
&OBST XB=419.0,422.0,8.0,8.0,3.0,4.5, COLOR=’GOLDENROD’/
&OBST XB=419.0,422.0,9.5,9.5,3.0,4.5, COLOR=’GOLDENROD’/
&OBST XB=419.0,422.0,8.0,9.5,3.0,3.0, COLOR=’GOLDENROD’/
&OBST XB=419.0,422.0,8.0,9.5,4.5,4.5, COLOR=’GOLDENROD’/
----------BI-DIRECTIONAL TRAFFIC----------
&RAMP ID=’vent-150’, T=-3.0, F=1.0, DEVC_ID=’FUV+06055’/left end of evacuation area
&RAMP ID=’vent-150’, T=3.0, F=-1.0, /
&RAMP ID=’vent+420’, T=-3.0, F=1.0, DEVC_ID=’FUV+30055’/right end of evacuation area
&RAMP ID=’vent+420’, T=3.0, F=-1.0, /
&CTRL ID=’DampCTRL-150’, INITIAL_STATE=.FALSE., FUNCTION_TYPE=’ALL’, INPUT_ID=’

TimerVent’,’FOD-09059’, LATCH=.FALSE., /
&CTRL ID=’DampCTRL420’, INITIAL_STATE=.FALSE., FUNCTION_TYPE=’ALL’, INPUT_ID=’

TimerVent’,’FOD+36059’, LATCH=.FALSE., /
----------TUNNEL MATERIALS----------
&MATL ID = ’ASPHALT’,

EMISSIVITY=0.7,
DENSITY=2100,
SPECIFIC_HEAT=1.000,
CONDUCTIVITY=0.7, /

&MATL ID = ’CONCRETE’,
EMISSIVITY=0.7,
DENSITY=2400,
SPECIFIC_HEAT=1.000,
CONDUCTIVITY=1.111, /

==========EVAC GEOMETRY===========
&MESH

IJK=900,24,1,
XB=0,450,0.0,12.0,0.5,1.5,
EVAC_Z_OFFSET=1.00,
EVACUATION=.TRUE.,
EVAC_HUMANS=.TRUE.,
ID=’MainEvacGrid’, /

The exact geometry for evac is not relevant in case of the fire scenario.
...
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==========Output of computed data:==========
The exact output is not relevant here.
...
&TAIL /

FDS+Evac input file

Overview on variables:
<<name>> : <<<name>>>
<<template_name>> : <<<template_name>>>
<<fire_name>> : <<<fire_name>>>
<<HRR_max>> : <<<HRR_max>>>
<<t_HRR_max>> : <<<t_HRR_max>>>
<<t_reac_max>> : <<<t_reac_max>>>
<<n_tu>> : <<<n_tu>>>
<<f_alm_tu>> : <<<f_alm_tu>>>
<<t_alm_tu>> : <<<t_alm_tu>>>
<<xi_mip>> : <<<xi_mip>>>
<<n_ad>> : <<<n_ad>>>
<<n_mi>> : <<<n_mi>>>

Legend:
name : name of evacuation simulation
template_name : name of template
fire_name : name of fire simulation (fire)
HRR_max /MW : maximum HRR (fire risk factor)
t_HRR_max /s : time to maximum HRR (fire risk factor)
t_reac_max /s : maximum pre-evacuation time (evacuation risk factor)
n_tu : number of tunnel users (evacuation risk factor)
f_alm_tu : failure of tunnel alarm (evacuation risk factor)
t_alm_tu /s : time of tunnel alarm (depends on HRR, 1200 in case of failure of

tunnel alarm)
xi_mip : ratio of mobility-impaired persons
n_ad : number of adults
n_mi : number of mobility-impaired persons

&HEAD CHID=’<<<name>>>’, TITLE=’FDSE-SyMo based on template <<<template_name>>>.’ /
&MISC

EVACUATION_DRILL=.FALSE.,
EVACUATION_MC_MODE=.TRUE.,
NO_EVACUATION=.FALSE.,
EVAC_PRESSURE_ITERATIONS=50,
EVAC_TIME_ITERATIONS=50, /

&TIME T_END=1200 /1200
&DUMP NFRAMES=2400, /
&MESH

IJK=900,24,1,
XB=0,450,0.0,12.0,0.5,1.5,
EVAC_Z_OFFSET=1.00,
EVACUATION=.TRUE.,
EVAC_HUMANS=.TRUE.,
ID=’MainEvacGrid’, /

&PERS ID=’Adult’,
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DEFAULT_PROPERTIES=’Adult’,
HUMAN_SMOKE_HEIGHT=1.6,
OUTPUT_SPEED=.TRUE.,
OUTPUT_FED=.TRUE.,
COLOR_METHOD=5,
SMOKE_MIN_SPEED=0.25,
TDET_SMOKE_DENS=0.000001,
FED_DOOR_CRIT=1.0,
DET_EVAC_DIST=0,
DET_MEAN=<<<t_alm_tu>>>,
PRE_EVAC_DIST=1,
PRE_LOW=0,
PRE_HIGH=<<<t_reac_max>>>, /

&PERS ID=’MobilityImpaired’,
DEFAULT_PROPERTIES=’Elderly’,

HUMAN_SMOKE_HEIGHT=1.6,
OUTPUT_SPEED=.TRUE.,
OUTPUT_FED=.TRUE.,
COLOR_METHOD=5,
DET_EVAC_DIST=0,
DET_MEAN=<<<t_alm_tu>>>,
PRE_EVAC_DIST=1,
PRE_LOW=0,
PRE_HIGH=<<<t_reac_max>>>, /

&EVAC ID = ’AD’,
NUMBER_INITIAL_PERSONS = <<<n_ad>>>,

XB =30.0,270.0,0.0,9.5,0.5,1.5,
AVATAR_COLOR = ’BLUE’,
PERS_ID = ’Adult’,

AGENT_TYPE=2,
KNOWN_DOOR_NAMES=’EmOut1+’, /

&EVAC ID = ’MI’,
NUMBER_INITIAL_PERSONS = <<<n_mi>>>,

XB =30.0,270.0,0.0,9.5,0.5,1.5,
AVATAR_COLOR = ’RED’,
PERS_ID = ’MobilityImpaired’,

AGENT_TYPE=2,
KNOWN_DOOR_NAMES=’EmOut1+’, /

&OBST XB=0.0,450.0,9.5,12.0,0.5,1.5, SURF_ID=’Evac Wall’, EVACUATION=.TRUE., OUTLINE
=.TRUE.,/wall

&OBST XB=0.0,300.0,2.0,7.5,0.5,1.5, SURF_ID=’INERT’, COLOR=’WHITE’, EVACUATION=.TRUE
., TRANSPARENCY=0.1, /cars

&EVHO XB=155.0,145.0,0.9,9.1,0.5,1.5, /emergency exit
&HOLE XB=155.0,145.0,0.9,9.1,0.5,1.5, EVACUATION=.TRUE., /EmEx1+ (passage to

emergency exit)
&HOLE XB=155.0,145.0,9.4,12.0,0.5,1.5, EVACUATION=.TRUE., /EmEx1+ (compartment)
&OBST XB=155.0,150.5,9.3,9.3,0.5,1.5, SURF_ID=’Evac Wall’, EVACUATION=.TRUE., /EmEx1

+ (wall)
&OBST XB=149.5,145.0,9.3,9.3,0.5,1.5, SURF_ID=’Evac Wall’, EVACUATION=.TRUE., /EmEx1

+ (wall)
&EXIT

ID=’EmEx1+’,
XB=150.5,149.5,10.0,10.0,0.5,1.5,
HEIGHT=2.0,
SHOW=.TRUE.,
IOR=2,
COUNT_ONLY=.TRUE.,
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COLOR=’GREEN’, /
&EXIT

ID=’EmOut1+’,
XB=155.0,145.0,12.0,12.0,0.5,1.5,
XYZ=150,9.0,4.0,
HEIGHT=4.0,
SHOW=.TRUE.,
IOR=2,
COUNT_ONLY=.FALSE.,
COLOR=’GREEN’, /

&HOLE XB=445.0,435.0,0.9,9.1,0.5,1.5, EVACUATION=.TRUE., /EmEx2+ (passage)
&HOLE XB=445.0,435.0,9.4,12.0,0.5,1.5, EVACUATION=.TRUE., /EmEx2+ (compartment)
&OBST XB=445.0,440.5,9.3,9.3,0.5,1.5, SURF_ID=’Evac Wall’, EVACUATION=.TRUE., /EmEx2

+ (wall)
&OBST XB=439.5,435.0,9.3,9.3,0.5,1.5, SURF_ID=’Evac Wall’, EVACUATION=.TRUE., /EmEx2

+ (wall)
&EXIT

ID=’EmEx2+’,
XB=440.5,439.5,10.0,10.0,0.5,1.5,
HEIGHT=2.0,
SHOW=.TRUE.,
IOR=2,
COUNT_ONLY=.TRUE.,
COLOR=’RED’, /

&EXIT
ID=’EmOut2+’,
XB=445.0,435.0,12.0,12.0,0.5,1.5,
XYZ=440,9.0,4.0,
HEIGHT=4.0,
SHOW=.TRUE.,
IOR=2,
COUNT_ONLY=.FALSE.,
COLOR=’RED’, /

&TAIL /

G.5 Background to the prediction interval method

Section D.1.4 introduces the prediction interval method used for the metamodel uncertainty
in this dissertation. Now, this section derives the prediction interval in accordance with Kim
2008 [28]. To begin, it later refers to following transformations:

1. var
(
bTB

)
= bT · var (B) b;

2. cov (A,A) = var (A) with respect to the notation in [28, Eq. 7] cov (a) = cov (a, a);

3. (AB)T = BTAT ;
(
AT

)−1
=
(
A−1)T ; (c · A)T = c · AT ; and W T = W .

Where A, i.e. a, as well as B are matrices, b is a column vector, c is a scalar and W is the
diagonal matrix in Eq. D.8 (p. 41) for MLS.
The prediction interval originates in the variance of the deterministic result of MLS with
Eq. G.4. More precisely: var (ȳ0) = var

(
℘̃T

0 b0
)

= ℘̃T
0 var (b0) ℘̃0 = ℘̃T

0 cov (b0) ℘̃0 with Eq. D.9
[28, Eq. 12], transformation 1, and transformation 2, respectively.

var (ȳ0) = ℘̃T
0 cov (b0) ℘̃0 (G.4)
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Then, cov (b0) in Eq. G.4 becomes with Eq. D.8 [28, Eq. 6] and transformation 1:

cov (b0) = cov
((

P T W 0P
)−1

P T W 0Ȳ
c
)

=
((

P T W 0P
)−1

P T W 0

)
· cov

(
Ȳ

c
)

·
((

P T W 0P
)−1

P T W 0

)T

In this term, it yields cov
(
Ȳ

c
)

= cov (P · β + δy) = 0 + cov (δy) = var (δy) = σ2 with the
transformation 2 where δy is the approximation error in Subs. ’Global least squares regression
method’ (p. 38) and its latter factor becomes with transformation 3:((

P T W 0P
)−1

P T W 0

)T

=
(
P T W 0P

)−1 (
P T W 0

)T

= W T
0 P

(
P T W 0P

)−1

= W 0P
(
P T W 0P

)−1

Altogether, the transformations conform to [28, Eq. 7] which leads with Eq. G.4 to the
confidence interval in Eq. G.5 [28, Eq. 14].

var (ȳ0) = σ2 (℘̃0)T
(
P T W 0P

)−1
P T W 0W 0P

(
P T W 0P

)−1
℘̃0 (G.5)

’The confidence interval is for estimating the interval of the mean response. However, the
prediction interval is for predicting the interval of the value of a single future observation
at a point.’ [28, p. 4] ’The expected value of the prediction error is’ zero [28, p. 4] and the
prediction variance is:

var (ȳc
0 − ȳ0) = var (ȳc

0) + var (ȳ0) − 2 · cov (ȳc
0, ȳ0)

= var (ȳc
0) + var (ȳ0) − 0 = σ2 + σ2 (. . .)

Hence, the prediction variance finally results in Eq. D.12 on p. 42. Concluding, Eq. D.12 states
the mathematical background for the prediction interval ∆ȳm.

G.6 Scrutiny of MLS and the prediction interval method

Prior to the final evaluations of the system model in Chapter E, this section scrutinises
the implementation of MLS together with its calibration algorithm as well as the prediction
interval method. First, App. G.6.1 describes the verification and first validation of both
methods with different RSMs. The RSMs use results of analytical functions, representing the
complex model, as data base. And finally, App. G.6.2 discusses the effects of weighting types
on the default RSM introduced in Tab. E.2 on p. 56.

G.6.1 Verification and first validation

This section aims at the verification and first validation of the implementations of MLS and
the prediction interval method using analytical functions. For this: Subs. ’Basic character-
istics’ (p. G-19) evaluates qualitatively a RSM; Subs. ’Comparison to the Kim 2008 [28]’ (p. G-
20) quantifies the predictive capability of the prediction interval method; and Subs. ’Calibration
algorithm’ (p. G-22) analyses RSMs based on different numbers of data points. Finally,
Subs. ’Conclusions’ (p. G-23) states the successful verification of MLS and the prediction in-
terval method.
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Figure G.2: Symmetrical and differentiable shape of the results of the RSM Ȳ basic and the
prediction interval ∆ȳm for the analytical function Ȳ

c in Eq. G.6.

Basic characteristics
At the start, this evaluation exemplifies some basic characteristics of MLS and the prediction
interval method and serves as a first verification of their implementations. For this, the ana-
lytical function Eq. G.6 with the control variable x ∈ [0, . . . , 1] represents the complex model.
It provides results for the data base of the RSM at eleven data points evenly spread on the
entire domain. The function is symmetric and has one non-differentiable point. The calibra-
tion algorithm of MLS described in Subs. ’Calibration algorithm’ (p. 45) results in the RSM
Ȳ basic subjected to a linear polynomial, the polynomial function wp of Eq. D.17 (p. 45) and
the weighting parameter ω = 0.23. The prediction interval method bases on the prediction
variance in Eq. D.12 (p. 42) with the variance estimator σ2

X in Eq. D.7 (p. 40).

ȳc = |2x − 1|0.5 (G.6)

Fig. G.2 illustrates the results of the RSM and the prediction interval with a confidence level of
α = 0.7. The visual evaluation led to three observations: first, that the shape of the RSM and
the prediction interval is symmetrical which is analogous to the analytical equation; second,
that the RSM is differentiable, esp. in the region of the non-differentiable point; and third,
that the prediction interval qualitatively corresponds to the confidence level. Furthermore, a
quantitative inspection of the matrices esp. in Eq. D.8 on p. 41 for MLS and in Eq. D.12 for
the prediction variance revealed no hints on numerical instabilities.
As another result, the prediction interval at data points is slightly elevated. But more ap-
parent, the prediction interval increases at the outer vertices of the domain. Scrutiny of
numerical values in Eq. D.12 uncovered that the weighting matrix W at an arbitrary point at
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Table G.3: MLS attributes of different RSM for the analytical function in Eq. G.7 used for
comparison to Kim 2008 [28, Fig. 5d].

RSM weighting type polynomial degree parameter ω

Ȳ g,man wg 1 0.17
Ȳ p,man wp 1 0.39
Ȳ opt wp 2 0.34

the outer vertices comprises smaller values due to the large distances to most data points in
comparison to the weighting matrix at an arbitrary point in the centre. This fact causes the
increased prediction variance since the variance estimator is constant on the entire domain.
To sum up, the weighting matrix and thus the distance to data points has clear effect on the
prediction variance at the outer vertices. Thus, it appears that more data points close to the
outer vertices will decrease the prediction interval in these regions.
To be noted, the prediction interval at data points is not zero which is in line with the
prediction variance in Eq. D.12. This characteristic reflects that MLS does not interpolate
but approximates to the data points which causes the residuals, i.e. the difference between
the results of the RSM and the data points. Accordingly, the metamodel should consider the
metamodel uncertainty to take this difference into account.
In summary, MLS and the prediction interval method lead to reasonable results. Further-
more, the results indicate that the metamodel uncertainty is important for the metamodel
to represent the unknown results of the complex model.

Comparison to the Kim 2008 [28]
This subsection compares results of MLS with results shown in Kim 2008 [28, Fig. 5d]. It

further validates the prediction interval method using either σ2
X or σ2

−i as variance estimator
in Eq. D.7 of the prediction variance in Eq. D.12. Thus, both examinations contribute to the
verification of the implementations of MLS and the prediction interval method and to the
validation of the prediction interval method. The data base for the RSMs results from eleven
evenly spread data points on x ∈ [−1, . . . , 1] of Eq. G.7 [28, Eq. 28]. Since Kim 2008 [28]
does not provide information on the MLS attributes, the RSMs Ȳ g,man and Ȳ p,man base
on the Gaussian function wg in Eq. D.16 and the polynomial function wp in Eq. D.17 (p. 45)
respectively. Both RSMs are subjected to weighting parameters set manually in order to
reproduce the RSM Ȳ pub of Kim 2008 [28, Fig. 5d]. The optimised RSM Ȳ opt is the result
of the calibration algorithm in Subs. ’Calibration algorithm’ (p. 45). To sum up, Tab. G.3
provides an overview on the MLS attributes of all RSMs.

ȳc = 0.5x5 − 1.5x4 − 2.5x3 + 0.53x2 + 1.3x + 2 (G.7)

Fig. G.3 shows the results of the RSMs with a confidence level of α = 0.7 for the prediction
intervals. Both RSMs Ȳ g,man and Ȳ p,man resemble the RSM Ȳ pub as it was the aim of their
manual calibration. Also, both prediction intervals of the RSMs Ȳ g,man and Ȳ p,man are
virtually identical. The RSM Ȳ opt, as result of the calibration algorithm, approximated well
to Eq. G.7 on the entire domain. It further appears that the prediction interval of the RSM
Ȳ opt is smaller compared to the prediction intervals of the RSM Ȳ g,man or Ȳ p,man. The small
prediction interval of the RSM Ȳ opt is reasonable since Eq. G.7 is entirely deterministic and
not related to aleatory uncertainties which indicates that the calibration algorithm performs
well. Again, the prediction intervals of all RSMs increase at the outer vertices which agrees
with the results in Kim 2008 [28, Fig. 5d].
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Figure G.3: Reproduction of the results Ȳ pub of the RSM in Kim 2008 [28, Fig. 5d] with the
RSMs Ȳ g,man and Ȳ p,man subjected to different weighting types; comparison
to the RSM Ȳ opt based on the calibration algorithm.

Finally, the complete-sample validation in Subs. ’Validation of the prediction interval method’ (p. 42)
determined the predictive capability of the prediction interval method either based on σ2

X

or σ2
−i. The corresponding empirical confidence levels of Eq. D.13 (p. 43) are denoted with

α∗ (σ2
X

)
and α∗ (σ2

−i

)
. Eq. D.13 was further specified with: Ȳ Xeval

= Ȳ opt which is used to
determine α∗ (σ2

X

)
and α∗ (σ2

−i

)
; and Ȳ

∗ = Ȳ
c
Xreal

which is the analytical function shown
in Eq. G.7 providing results at 101 evenly spread data points, in more detail at X̃ = XFFD

with 101 levels in one dimension. With a confidence level of α = 0.7 according to the Kim
2008 [28, Fig. 5d], Eq. D.13 led to: α∗ (σ2

X

)
= 0.77 which is comparable to α∗ = 0.82 in Kim

2008 [28, Tab. 1]; and α∗ (σ2
−i

)
= 1.00. From these results derives that σ2

X leads to conser-
vative prediction intervals with good predictive capability and σ2

−i leads to too conservative
prediction intervals, in other words small predictive capability.
In conclusion, the results did not reveal obvious problems in the implementation of MLS and
the calibration algorithm or the prediction interval method. Also, they indicate a correspon-
dence between the predictive capabilities of the predication interval method using σ2

X and
the results in Kim 2008 [28, Fig. 5d].
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Table G.4: RSMs with their MLS attributes subjected to the analytical function in Eq. G.7
with different numbers of data points used to evaluate the calibration algorithm.
RSM Ndps weighting type polynomial degree parameter ω

Ȳ 3,l 3 wp 2 1
Ȳ 3,g 3 wp 2 1000
Ȳ 6 6 wp 2 0.75
Ȳ 51 51 wp 2 0.065

Calibration algorithm
The focus lies now on the performance of the calibration algorithm and also on MLS in

case of overfitting. An overfitted RSM is caused by too many model parameters for a too
small number of data points. It interpolates exactly to the data points and also reproduces
aleatory uncertainties in the results of the complex model. But a deterministic RSM should
not replicate aleatory uncertainties and hence, the residuals should not be zero.
This evaluation still applies Eq. G.7 representing the complex model. But the RSMs rely on
different numbers of data points Ndps evenly spread on the domain, i.e. X = XFFD with the
corresponding number of levels and one dimension. Tab. G.4 provides an overview on the
MLS attributes of the different RSMs.
Three data points inevitably lead to overfitting of a quadratic polynomial. To evaluate
MLS in case of overfitting, two RSMs are subjected to different manually set weighting
parameters: Ȳ 3,l, namely local, represents a MLS model with high spatial sensitivity; and
Ȳ 3,g, namely global, has low spatial sensitivity. For six data points, the RSM Ȳ 6 results from
the calibration algorithm and represents an intermediate step in the sequential refinement
of the experimental design. Finally, the RSM Ȳ 51, based on 51 data points and optimised
with the calibration algorithm, serves to assess the results of MLS and the prediction interval
method subjected to an ’infinite’ number of data points.
The results of the RSMs are shown in Fig. G.4. The RSMs Ȳ 3,l and Ȳ 3,g both led to essen-
tially the same results, in more detail a global quadratic polynomial, because the weighting
matrix W is an identity matrix ensuing no effect of the weighting parameter. Thus, the
global quadratic polynomial indicates overfitting of MLS. For six data points, the RSM Ȳ 6
did not interpolate to the data points but approximated them demonstrating the trade-off
between bias error and variance error in the calibration algorithm. At last, for the RSM Ȳ 51
the calibration algorithm led to a small value of the weighting parameter which means a high
spatial sensitivity with near interpolation to the data points and consequently small residuals.
The small residuals again result in small prediction variances and prediction intervals. These
results are reasonable since Eq. G.7 is not subjected to aleatory uncertainties.
The RSMs Ȳ 3,l and Ȳ 3,g illustrate the overfitting of MLS in case of an analytical equation
which raises the question on overfitting of MLS using the data base for the system model.
Since the mean results of the complex model used in the data base are considered to be
deterministic with small aleatory uncertainties as outlined in Subs. ’Complex model within
the system model’ (p. 22), near interpolation of MLS is no sign for overfitting. However, a
RSM subjected to overfitting can still be identified by the shape of a global linear or quadratic
polynomial and small effects of the weighting parameter on the RSM. But in this dissertation,
MLS is subjected to a linear polynomial, i.e. with a small number of polynomial terms, in
case of a small number of data points as outlined in Subs. ’Calibration algorithm’ (p. 45).
Hence, overfitting of MLS in the system model is not expected.
The previous results lead to two conclusions. First, the calibration algorithm based on the
prediction variance, i.e. also on the generalisation error, leads to a trade-off between bias
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Figure G.4: Effect of different numbers of data points on the shapes of the RSMs in Tab. G.4;
the data points ~xi are only plotted for Ȳ 3,l, Ȳ 3,g and Ȳ 6.

error and variance error. The generalisation error serves for the same purpose as discussed
in Section D.1.1 which corroborates this conclusion. Second, in case of an ’infinite’ number
of data points and small aleatory uncertainties, the metamodel uncertainty would be close to
zero.

Conclusions
The results provided in this section give no hints on wrong implementation of MLS and

the prediction interval method. Thus, this section adds to a successful verification of both
methods. Moreover, MLS with the calibration algorithm leads to adequate results.

G.6.2 Weighting types in the calibration algorithm of MLS

The calibration algorithm of MLS comprises three different weighting types: wg in Eq. D.16,
wp in Eq. D.17 and wq in Eq. D.18 as described in Subs. ’Weighting functions’ (p. 44). This
section now questions the effect of these weighting types on the RSM by comparing different
RSMs. The RSMs all use the data base of the default RSM in Tab. E.2 (p. 56) but apply
different weighting types. For that reason, the calibration algorithm is restricted to specific
weighting types and polynomial degrees for the RSMs but freely calibrates their weighting
parameters ω. The default RSM bases on the unrestricted calibration algorithm and is
denoted with ξ̄Xopt ≡ ξ̄Xp,2 for TA and ξ̄Xopt ≡ ξ̄Xq,2 for FA. Tab. G.5 provides an overview
on the RSMs and their MLS attributes.
The complete-sample validation outlined in Subs. ’Validation of the prediction interval method’ (p. 42)
determined the predictive capability of the prediction interval of the default RSM. For this,
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Table G.5: RSMs based on different weighting functions for TA with the weighting pa-
rameter ω (TA) and for FA with ω (FA); the default RSM is ξ̄Xopt ≡ ξ̄Xp,2 for
scenarios with TA and ξ̄Xopt ≡ ξ̄Xq,2 for scenarios with FA; short notation for the
euclidean relative difference erd ≡ erd

(
ξ̄Xi , ξ̄Xopt

)
with TA and FA in brackets.

RSM weighting type polynomial degree ω (TA) ω (FA) erd (TA) erd (FA)
ξ̄Xg,2 wg 2 0.522 0.792 0.02 0.02
ξ̄Xq,2 wq 2 0.004 0.160 0.06 0.00
ξ̄Xp,2 wp 2 1.206 1.140 0.00 0.04
ξ̄Xg,1 wg 1 0.271 0.305 0.17 0.08
ξ̄Xq,1 wq 1 0.004 0.004 0.24 0.10
ξ̄Xp,1 wp 1 0.729 0.768 0.18 0.08

Eq. D.13 (p. 43) for the empirical confidence level α∗ specified: Ȳ Xeval
= ξ̄Xopt ; and Ȳ

∗ = ξ̄Xi

with the RSMs ξ̄Xi shown in Tab. G.5 which provided results at the evaluation points repre-
senting the arbitrary points X̃. As a result, the empirical confidence levels for all RSMs of
the three weighting types with quadratic polynomials were close to α∗ = 1.00 for confidence
levels α > 0.5. Accordingly, all RSMs of the three weighting types with quadratic polyno-
mials lay within the prediction interval of the default RSM. In other words, the prediction
interval method covered the effect of the different weighting types on the RSMs.
The euclidean relative difference describes the effect of the weighting types on the RSMs more
precisely. Tab. G.5 shows the euclidean relative difference between the different RSMs ξ̄Xi

to the default RSM ξ̄opt at all evaluation points. Obviously, RSMs subjected to linear poly-
nomials caused larger euclidean relative differences than RSMs with quadratic polynomials.
Thus, the polynomial degree has more effect on the RSM than the weighting type.
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Figure G.5: Difference between the result of the MLS models ξ̄Xp,2 (default RSM), ξ̄Xg,2

and the SoM model ξ̄SoM
X2

for TA in the region of scenario sc(− MW, − s, 194 s,
101, fa = 0); the figures display all data points ~xi ∈ ξ̄c

X2
, for this reason, the

results of the RSM are not close to all data points.
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One result is worth discussing: the RSM ξ̄Xg,2 fitted closely, i.e. with small euclidean relative
difference, to the default RSM ξ̄Xopt for TA and FA. This result might indicate insufficient
model adequacy of the RSM ξ̄Xg,2 as discussed in Subs. ’Calibration algorithm’ (p. G-22) for
overfitting. But Fig. G.5 on p. G-24 exemplarily illustrates the difference of the RSM ξ̄Xg,2

for TA to a SoM model ξ̄SoM
X2

. Because of this dissimilarity, there is no reason to assume
insufficient model adequacy. In summary, the calibration algorithm using the three different
weighting types leads to adequate RSMs.

G.7 Fire and evacuation scenarios of the data bases for the system
model

The data bases introduced in Section E.1 comprise several fire scenarios and evacuation sce-
narios. The following two subsections provide information on each scenario, in detail: name,
ED, as well as the risk factors maximum HRR HRRmax, time to maximum HRR tmax, max-
imum pre-evacuation time tpre, number of tunnel users Ntu, and failure of tunnel alarm
fa. Furthermore, the second subsection shows the arithmetic mean µ(ξ̃c) and the standard
deviation σ(ξ̃c

i ) of the FFs of all 200 replications.
The simulations for fire and evacuation scenarios ran on different workstations using Win-
dows 7 and the then current version of FDS and FDS+Evac. Furthermore, the JARA-HPC
Vergabegremium and VSR commission on the supercomputer JURECA at Forschungszen-
trum Jülich granted additional run time on their clusters used for test purposes of the fire
and evacuation scenarios.
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List of fire scenarios in data bases

name ED HRRmax /MW tmax /s

FDSF0000 Xfire
0 25 600

FDSF0001 Xfire
0 200 600

FDSF0002 Xfire
0 25 1200

FDSF0003 Xfire
0 200 1200

FDSF0004 Xfire
1 94 1031

FDSF0005 Xfire
1 131 770

FDSF0006 Xfire
1a 151 962

FDSF0007 Xfire
1a 74 836

FDSF0008 Xfire
2 41 946

FDSF0009 Xfire
2 185 856

FDSF0010 Xfire
2 79 671

FDSF0011 Xfire
2 145 1136

FDSF0012 Xfire
3 165 632

FDSF0013 Xfire
3 35 720

FDSF0014 Xfire
3 191 1079

FDSF0015 Xfire
3 59 1162

FDSF0016 Xfire
b 115 1121

FDSF0017 Xfire
b 156 764

FDSF0018 Xfire
b 47 934

FDSF0019 Xfire
b 91 676

FDSF0020 Xfire
b 110 890

FDSF0021 Xfire
b 170 992

List of evacuation scenarios in data bases

name ED name (fire) HRRmax /MW tmax /s tpre /s Ntu fa µ(ξ̃c) σ(ξ̃c)
FDSE0000 Xevac

0 FDSF0000 25 600 100 30 FA 0.00 0.000
FDSE0001 Xevac

0 FDSF0001 200 600 100 30 FA 0.62 0.096
FDSE0002 Xevac

0 FDSF0002 25 1200 100 30 FA 0.00 0.000
FDSE0003 Xevac

0 FDSF0003 200 1200 100 30 FA 0.07 0.046
FDSE0004 Xevac

0 FDSF0000 25 600 300 30 FA 0.00 0.000
FDSE0005 Xevac

0 FDSF0001 200 600 300 30 FA 0.85 0.063
FDSE0006 Xevac

0 FDSF0002 25 1200 300 30 FA 0.00 0.000
FDSE0007 Xevac

0 FDSF0003 200 1200 300 30 FA 0.21 0.083
FDSE0008 Xevac

0 FDSF0000 25 600 100 180 FA 0.00 0.000
FDSE0009 Xevac

0 FDSF0001 200 600 100 180 FA 0.71 0.030
FDSE0010 Xevac

0 FDSF0002 25 1200 100 180 FA 0.00 0.000
FDSE0011 Xevac

0 FDSF0003 200 1200 100 180 FA 0.08 0.022
FDSE0012 Xevac

0 FDSF0000 25 600 300 180 FA 0.00 0.000
FDSE0013 Xevac

0 FDSF0001 200 600 300 180 FA 0.88 0.027
FDSE0014 Xevac

0 FDSF0002 25 1200 300 180 FA 0.00 0.000
FDSE0015 Xevac

0 FDSF0003 200 1200 300 180 FA 0.22 0.032
FDSE0016 Xevac

1 FDSF0003 200 1200 219 140 FA 0.17 0.036
FDSE0017 Xevac

1 FDSF0003 200 1200 134 111 FA 0.11 0.030
FDSE0018 Xevac

1 FDSF0004 94 1031 149 39 FA 0.01 0.017
FDSE0019 Xevac

1 FDSF0002 25 1200 216 164 FA 0.00 0.000
FDSE0020 Xevac

1 FDSF0002 25 1200 125 102 FA 0.00 0.000
FDSE0021 Xevac

1 FDSF0005 131 770 289 152 FA 0.42 0.052
FDSE0022 Xevac

1 FDSF0005 131 770 121 155 FA 0.23 0.035
FDSE0023 Xevac

1 FDSF0000 25 600 187 120 FA 0.00 0.000
FDSE0024 Xevac

1 FDSF0003 200 1200 276 87 FA 0.20 0.044
FDSE0025 Xevac

1 FDSF0004 94 1031 201 71 FA 0.04 0.022
FDSE0026 Xevac

1 FDSF0004 94 1031 206 170 FA 0.04 0.016
FDSE0027 Xevac

1 FDSF0005 131 770 110 75 FA 0.22 0.043
FDSE0028 Xevac

1 FDSF0005 131 770 240 48 FA 0.31 0.077
FDSE0029 Xevac

1 FDSF0001 200 600 177 58 FA 0.75 0.058
FDSE0030 Xevac

1 FDSF0004 94 1031 266 42 FA 0.07 0.042
FDSE0031 Xevac

1 FDSF0000 25 600 255 93 FA 0.00 0.000
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name ED name (fire) HRRmax /MW tmax /s tpre /s Ntu fa µ(ξ̃c) σ(ξ̃c)
FDSE0032 Xevac

1 FDSF0005 131 770 188 158 FA 0.28 0.036
FDSE0033 Xevac

1 FDSF0002 25 1200 227 63 FA 0.00 0.000
FDSE0034 Xevac

1 FDSF0000 25 600 171 53 FA 0.00 0.000
FDSE0035 Xevac

1 FDSF0001 200 600 143 116 FA 0.73 0.041
FDSE0036 Xevac

1 FDSF0003 200 1200 195 45 FA 0.15 0.055
FDSE0037 Xevac

1 FDSF0001 200 600 232 146 FA 0.84 0.032
FDSE0038 Xevac

1 FDSF0005 131 770 170 69 FA 0.26 0.054
FDSE0039 Xevac

1 FDSF0004 94 1031 159 175 FA 0.02 0.009
FDSE0040 Xevac

1 FDSF0002 25 1200 280 99 FA 0.00 0.000
FDSE0041 Xevac

1 FDSF0001 200 600 248 88 FA 0.83 0.037
FDSE0042 Xevac

1 FDSF0005 131 770 242 109 FA 0.34 0.054
FDSE0043 Xevac

1 FDSF0005 131 770 154 123 FA 0.26 0.040
FDSE0044 Xevac

1 FDSF0004 94 1031 141 130 FA 0.01 0.008
FDSE0045 Xevac

1 FDSF0004 94 1031 285 80 FA 0.08 0.031
FDSE0046 Xevac

1 FDSF0004 94 1031 264 135 FA 0.07 0.022
FDSE0047 Xevac

1 FDSF0000 25 600 115 81 FA 0.00 0.000
FDSE0048 Xevac

0 FDSF0000 25 600 100 30 TA 0.00 0.000
FDSE0049 Xevac

0 FDSF0001 200 600 100 30 TA 0.22 0.082
FDSE0050 Xevac

0 FDSF0002 25 1200 100 30 TA 0.00 0.000
FDSE0051 Xevac

0 FDSF0003 200 1200 100 30 TA 0.00 0.000
FDSE0052 Xevac

0 FDSF0000 25 600 300 30 TA 0.00 0.000
FDSE0053 Xevac

0 FDSF0001 200 600 300 30 TA 0.66 0.085
FDSE0054 Xevac

0 FDSF0002 25 1200 300 30 TA 0.00 0.000
FDSE0055 Xevac

0 FDSF0003 200 1200 300 30 TA 0.12 0.060
FDSE0056 Xevac

0 FDSF0000 25 600 100 180 TA 0.00 0.000
FDSE0057 Xevac

0 FDSF0001 200 600 100 180 TA 0.34 0.039
FDSE0058 Xevac

0 FDSF0002 25 1200 100 180 TA 0.00 0.000
FDSE0059 Xevac

0 FDSF0003 200 1200 100 180 TA 0.00 0.000
FDSE0060 Xevac

0 FDSF0000 25 600 300 180 TA 0.00 0.000
FDSE0061 Xevac

0 FDSF0001 200 600 300 180 TA 0.72 0.037
FDSE0062 Xevac

0 FDSF0002 25 1200 300 180 TA 0.00 0.000
FDSE0063 Xevac

0 FDSF0003 200 1200 300 180 TA 0.12 0.025
FDSE0064 Xevac

1 FDSF0003 200 1200 219 140 TA 0.06 0.022
FDSE0065 Xevac

1 FDSF0003 200 1200 134 111 TA 0.00 0.002
FDSE0066 Xevac

1 FDSF0004 94 1031 149 39 TA 0.00 0.000
FDSE0067 Xevac

1 FDSF0002 25 1200 216 164 TA 0.00 0.000
FDSE0068 Xevac

1 FDSF0002 25 1200 125 102 TA 0.00 0.000
FDSE0069 Xevac

1 FDSF0005 131 770 289 152 TA 0.26 0.049
FDSE0070 Xevac

1 FDSF0005 131 770 121 155 TA 0.01 0.008
FDSE0071 Xevac

1 FDSF0000 25 600 187 120 TA 0.00 0.000
FDSE0072 Xevac

1 FDSF0003 200 1200 276 87 TA 0.10 0.036
FDSE0073 Xevac

1 FDSF0004 94 1031 201 71 TA 0.00 0.000
FDSE0074 Xevac

1 FDSF0004 94 1031 206 170 TA 0.00 0.001
FDSE0075 Xevac

1 FDSF0005 131 770 110 75 TA 0.00 0.006
FDSE0076 Xevac

1 FDSF0005 131 770 240 48 TA 0.15 0.055
FDSE0077 Xevac

1 FDSF0001 200 600 177 58 TA 0.48 0.069
FDSE0078 Xevac

1 FDSF0004 94 1031 266 42 TA 0.01 0.017
FDSE0079 Xevac

1 FDSF0000 25 600 255 93 TA 0.00 0.000
FDSE0080 Xevac

1 FDSF0005 131 770 188 158 TA 0.09 0.026
FDSE0081 Xevac

1 FDSF0002 25 1200 227 63 TA 0.00 0.000
FDSE0082 Xevac

1 FDSF0000 25 600 171 53 TA 0.00 0.000
FDSE0083 Xevac

1 FDSF0001 200 600 143 116 TA 0.42 0.047
FDSE0084 Xevac

1 FDSF0003 200 1200 195 45 TA 0.03 0.027
FDSE0085 Xevac

1 FDSF0001 200 600 232 146 TA 0.62 0.045
FDSE0086 Xevac

1 FDSF0005 131 770 170 69 TA 0.06 0.029
FDSE0087 Xevac

1 FDSF0004 94 1031 159 175 TA 0.00 0.000
FDSE0088 Xevac

1 FDSF0002 25 1200 280 99 TA 0.00 0.000
FDSE0089 Xevac

1 FDSF0001 200 600 248 88 TA 0.61 0.059
FDSE0090 Xevac

1 FDSF0005 131 770 242 109 TA 0.17 0.048
FDSE0091 Xevac

1 FDSF0005 131 770 154 123 TA 0.04 0.020
FDSE0092 Xevac

1 FDSF0004 94 1031 141 130 TA 0.00 0.000
FDSE0093 Xevac

1 FDSF0004 94 1031 285 80 TA 0.02 0.014
FDSE0094 Xevac

1 FDSF0004 94 1031 264 135 TA 0.01 0.009
FDSE0095 Xevac

1 FDSF0000 25 600 115 81 TA 0.00 0.000
FDSE0096 Xevac

1a FDSF0001 200 600 133 92 FA 0.70 0.046
FDSE0097 Xevac

1a FDSF0002 25 1200 182 62 FA 0.00 0.000
FDSE0098 Xevac

1a FDSF0006 151 962 171 155 FA 0.18 0.031
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name ED name (fire) HRRmax /MW tmax /s tpre /s Ntu fa µ(ξ̃c) σ(ξ̃c)
FDSE0099 Xevac

1a FDSF0006 151 962 137 49 FA 0.15 0.043
FDSE0100 Xevac

1a FDSF0006 151 962 287 114 FA 0.25 0.045
FDSE0101 Xevac

1a FDSF0001 200 600 218 53 FA 0.80 0.056
FDSE0102 Xevac

1a FDSF0002 25 1200 267 102 FA 0.00 0.000
FDSE0103 Xevac

1a FDSF0003 200 1200 209 125 FA 0.16 0.034
FDSE0104 Xevac

1a FDSF0003 200 1200 144 87 FA 0.11 0.035
FDSE0105 Xevac

1a FDSF0001 200 600 261 100 FA 0.84 0.041
FDSE0106 Xevac

1a FDSF0000 25 600 202 70 FA 0.00 0.000
FDSE0107 Xevac

1a FDSF0007 74 836 255 140 FA 0.04 0.016
FDSE0108 Xevac

1a FDSF0006 151 962 250 76 FA 0.23 0.045
FDSE0109 Xevac

1a FDSF0006 151 962 114 168 FA 0.14 0.029
FDSE0110 Xevac

1a FDSF0000 25 600 121 88 FA 0.00 0.000
FDSE0111 Xevac

1a FDSF0001 200 600 184 158 FA 0.80 0.031
FDSE0112 Xevac

1a FDSF0002 25 1200 213 167 FA 0.00 0.000
FDSE0113 Xevac

1a FDSF0003 200 1200 225 57 FA 0.17 0.054
FDSE0114 Xevac

1a FDSF0006 151 962 200 107 FA 0.20 0.036
FDSE0115 Xevac

1a FDSF0007 74 836 190 149 FA 0.02 0.011
FDSE0116 Xevac

1a FDSF0007 74 836 158 172 FA 0.01 0.008
FDSE0117 Xevac

1a FDSF0000 25 600 169 135 FA 0.00 0.000
FDSE0118 Xevac

1a FDSF0000 25 600 271 114 FA 0.00 0.000
FDSE0119 Xevac

1a FDSF0007 74 836 148 122 FA 0.01 0.007
FDSE0120 Xevac

1a FDSF0007 74 836 161 71 FA 0.01 0.014
FDSE0121 Xevac

1a FDSF0003 200 1200 291 127 FA 0.21 0.040
FDSE0122 Xevac

1a FDSF0006 151 962 231 36 FA 0.21 0.063
FDSE0123 Xevac

1a FDSF0007 74 836 236 43 FA 0.03 0.026
FDSE0124 Xevac

1a FDSF0006 151 962 242 153 FA 0.23 0.034
FDSE0125 Xevac

1a FDSF0007 74 836 279 82 FA 0.06 0.026
FDSE0126 Xevac

1a FDSF0006 151 962 124 96 FA 0.14 0.035
FDSE0127 Xevac

1a FDSF0002 25 1200 108 101 FA 0.00 0.000
FDSE0128 Xevac

1a FDSF0001 200 600 133 92 TA 0.37 0.052
FDSE0129 Xevac

1a FDSF0002 25 1200 182 62 TA 0.00 0.000
FDSE0130 Xevac

1a FDSF0006 151 962 171 155 TA 0.02 0.012
FDSE0131 Xevac

1a FDSF0006 151 962 137 49 TA 0.00 0.008
FDSE0132 Xevac

1a FDSF0006 151 962 287 114 TA 0.13 0.033
FDSE0133 Xevac

1a FDSF0001 200 600 218 53 TA 0.55 0.065
FDSE0134 Xevac

1a FDSF0002 25 1200 267 102 TA 0.00 0.000
FDSE0135 Xevac

1a FDSF0003 200 1200 209 125 TA 0.05 0.020
FDSE0136 Xevac

1a FDSF0003 200 1200 144 87 TA 0.00 0.005
FDSE0137 Xevac

1a FDSF0001 200 600 261 100 TA 0.64 0.052
FDSE0138 Xevac

1a FDSF0000 25 600 202 70 TA 0.00 0.000
FDSE0139 Xevac

1a FDSF0007 74 836 255 140 TA 0.00 0.003
FDSE0140 Xevac

1a FDSF0006 151 962 250 76 TA 0.09 0.034
FDSE0141 Xevac

1a FDSF0006 151 962 114 168 TA 0.00 0.000
FDSE0142 Xevac

1a FDSF0000 25 600 121 88 TA 0.00 0.000
FDSE0143 Xevac

1a FDSF0001 200 600 184 158 TA 0.54 0.046
FDSE0144 Xevac

1a FDSF0002 25 1200 213 167 TA 0.00 0.000
FDSE0145 Xevac

1a FDSF0003 200 1200 225 57 TA 0.06 0.030
FDSE0146 Xevac

1a FDSF0006 151 962 200 107 TA 0.05 0.023
FDSE0147 Xevac

1a FDSF0007 74 836 190 149 TA 0.00 0.000
FDSE0148 Xevac

1a FDSF0007 74 836 158 172 TA 0.00 0.000
FDSE0149 Xevac

1a FDSF0000 25 600 169 135 TA 0.00 0.000
FDSE0150 Xevac

1a FDSF0000 25 600 271 114 TA 0.00 0.000
FDSE0151 Xevac

1a FDSF0007 74 836 148 122 TA 0.00 0.000
FDSE0152 Xevac

1a FDSF0007 74 836 161 71 TA 0.00 0.000
FDSE0153 Xevac

1a FDSF0003 200 1200 291 127 TA 0.11 0.028
FDSE0154 Xevac

1a FDSF0006 151 962 231 36 TA 0.08 0.045
FDSE0155 Xevac

1a FDSF0007 74 836 236 43 TA 0.00 0.000
FDSE0156 Xevac

1a FDSF0006 151 962 242 153 TA 0.09 0.023
FDSE0157 Xevac

1a FDSF0007 74 836 279 82 TA 0.00 0.007
FDSE0158 Xevac

1a FDSF0006 151 962 124 96 TA 0.00 0.002
FDSE0159 Xevac

1a FDSF0002 25 1200 108 101 TA 0.00 0.000
FDSE0160 Xevac

2 FDSF0010 79 671 273 126 FA 0.17 0.034
FDSE0161 Xevac

2 FDSF0009 185 856 270 136 FA 0.50 0.046
FDSE0162 Xevac

2 FDSF0009 185 856 179 59 FA 0.30 0.063
FDSE0163 Xevac

2 FDSF0008 41 946 118 35 FA 0.00 0.000
FDSE0164 Xevac

2 FDSF0011 145 1136 294 147 FA 0.16 0.033
FDSE0165 Xevac

2 FDSF0011 145 1136 132 160 FA 0.06 0.021
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name ED name (fire) HRRmax /MW tmax /s tpre /s Ntu fa µ(ξ̃c) σ(ξ̃c)
FDSE0166 Xevac

2 FDSF0011 145 1136 236 142 FA 0.13 0.030
FDSE0167 Xevac

2 FDSF0001 200 600 257 51 FA 0.83 0.054
FDSE0168 Xevac

2 FDSF0009 185 856 138 156 FA 0.28 0.034
FDSE0169 Xevac

2 FDSF0009 185 856 104 44 FA 0.25 0.074
FDSE0170 Xevac

2 FDSF0008 41 946 297 128 FA 0.00 0.000
FDSE0171 Xevac

2 FDSF0009 185 856 115 167 FA 0.26 0.032
FDSE0172 Xevac

2 FDSF0003 200 1200 261 52 FA 0.18 0.054
FDSE0173 Xevac

2 FDSF0010 79 671 225 63 FA 0.14 0.043
FDSE0174 Xevac

2 FDSF0011 145 1136 292 48 FA 0.15 0.055
FDSE0175 Xevac

2 FDSF0003 200 1200 106 85 FA 0.08 0.028
FDSE0176 Xevac

2 FDSF0004 94 1031 104 159 FA 0.00 0.002
FDSE0177 Xevac

2 FDSF0010 79 671 102 31 FA 0.05 0.038
FDSE0178 Xevac

2 FDSF0010 79 671 129 89 FA 0.09 0.034
FDSE0179 Xevac

2 FDSF0003 200 1200 198 107 FA 0.15 0.035
FDSE0180 Xevac

2 FDSF0001 200 600 162 174 FA 0.79 0.029
FDSE0181 Xevac

2 FDSF0000 25 600 298 100 FA 0.00 0.000
FDSE0182 Xevac

2 FDSF0008 41 946 146 143 FA 0.00 0.000
FDSE0183 Xevac

2 FDSF0011 145 1136 128 118 FA 0.05 0.021
FDSE0184 Xevac

2 FDSF0002 25 1200 111 150 FA 0.00 0.000
FDSE0185 Xevac

2 FDSF0009 185 856 184 134 FA 0.32 0.040
FDSE0186 Xevac

2 FDSF0008 41 946 278 168 FA 0.00 0.000
FDSE0187 Xevac

2 FDSF0000 25 600 235 152 FA 0.00 0.000
FDSE0188 Xevac

2 FDSF0001 200 600 112 73 FA 0.66 0.053
FDSE0189 Xevac

2 FDSF0005 131 770 210 93 FA 0.29 0.048
FDSE0190 Xevac

2 FDSF0004 94 1031 157 60 FA 0.02 0.016
FDSE0191 Xevac

2 FDSF0002 25 1200 152 68 FA 0.00 0.000
FDSE0192 Xevac

2 FDSF0008 41 946 167 67 FA 0.00 0.000
FDSE0193 Xevac

2 FDSF0011 145 1136 119 36 FA 0.05 0.035
FDSE0194 Xevac

2 FDSF0009 185 856 274 77 FA 0.48 0.059
FDSE0195 Xevac

2 FDSF0011 145 1136 259 172 FA 0.15 0.030
FDSE0196 Xevac

2 FDSF0008 41 946 108 162 FA 0.00 0.000
FDSE0197 Xevac

2 FDSF0000 25 600 137 176 FA 0.00 0.000
FDSE0198 Xevac

2 FDSF0010 79 671 288 34 FA 0.17 0.062
FDSE0199 Xevac

2 FDSF0009 185 856 268 36 FA 0.46 0.083
FDSE0200 Xevac

2 FDSF0003 200 1200 252 173 FA 0.20 0.033
FDSE0201 Xevac

2 FDSF0010 79 671 213 179 FA 0.14 0.031
FDSE0202 Xevac

2 FDSF0000 25 600 246 41 FA 0.00 0.000
FDSE0203 Xevac

2 FDSF0010 79 671 123 165 FA 0.08 0.025
FDSE0204 Xevac

2 FDSF0009 185 856 291 178 FA 0.54 0.040
FDSE0205 Xevac

2 FDSF0010 79 671 282 171 FA 0.18 0.032
FDSE0206 Xevac

2 FDSF0008 41 946 285 33 FA 0.00 0.000
FDSE0207 Xevac

2 FDSF0005 131 770 295 45 FA 0.40 0.071
FDSE0208 Xevac

2 FDSF0010 79 671 273 126 TA 0.05 0.018
FDSE0209 Xevac

2 FDSF0009 185 856 270 136 TA 0.32 0.046
FDSE0210 Xevac

2 FDSF0009 185 856 179 59 TA 0.10 0.041
FDSE0211 Xevac

2 FDSF0008 41 946 118 35 TA 0.00 0.000
FDSE0212 Xevac

2 FDSF0011 145 1136 294 147 TA 0.08 0.027
FDSE0213 Xevac

2 FDSF0011 145 1136 132 160 TA 0.00 0.000
FDSE0214 Xevac

2 FDSF0011 145 1136 236 142 TA 0.04 0.017
FDSE0215 Xevac

2 FDSF0001 200 600 257 51 TA 0.61 0.076
FDSE0216 Xevac

2 FDSF0009 185 856 138 156 TA 0.04 0.016
FDSE0217 Xevac

2 FDSF0009 185 856 104 44 TA 0.01 0.013
FDSE0218 Xevac

2 FDSF0008 41 946 297 128 TA 0.00 0.000
FDSE0219 Xevac

2 FDSF0009 185 856 115 167 TA 0.02 0.012
FDSE0220 Xevac

2 FDSF0003 200 1200 261 52 TA 0.09 0.042
FDSE0221 Xevac

2 FDSF0010 79 671 225 63 TA 0.02 0.019
FDSE0222 Xevac

2 FDSF0011 145 1136 292 48 TA 0.08 0.041
FDSE0223 Xevac

2 FDSF0003 200 1200 106 85 TA 0.00 0.000
FDSE0224 Xevac

2 FDSF0004 94 1031 104 159 TA 0.00 0.000
FDSE0225 Xevac

2 FDSF0010 79 671 102 31 TA 0.00 0.000
FDSE0226 Xevac

2 FDSF0010 79 671 129 89 TA 0.00 0.000
FDSE0227 Xevac

2 FDSF0003 200 1200 198 107 TA 0.04 0.017
FDSE0228 Xevac

2 FDSF0001 200 600 162 174 TA 0.51 0.037
FDSE0229 Xevac

2 FDSF0000 25 600 298 100 TA 0.00 0.000
FDSE0230 Xevac

2 FDSF0008 41 946 146 143 TA 0.00 0.000
FDSE0231 Xevac

2 FDSF0011 145 1136 128 118 TA 0.00 0.000
FDSE0232 Xevac

2 FDSF0002 25 1200 111 150 TA 0.00 0.000
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name ED name (fire) HRRmax /MW tmax /s tpre /s Ntu fa µ(ξ̃c) σ(ξ̃c)
FDSE0233 Xevac

2 FDSF0009 185 856 184 134 TA 0.12 0.029
FDSE0234 Xevac

2 FDSF0008 41 946 278 168 TA 0.00 0.000
FDSE0235 Xevac

2 FDSF0000 25 600 235 152 TA 0.00 0.000
FDSE0236 Xevac

2 FDSF0001 200 600 112 73 TA 0.29 0.056
FDSE0237 Xevac

2 FDSF0005 131 770 210 93 TA 0.11 0.034
FDSE0238 Xevac

2 FDSF0004 94 1031 157 60 TA 0.00 0.000
FDSE0239 Xevac

2 FDSF0002 25 1200 152 68 TA 0.00 0.000
FDSE0240 Xevac

2 FDSF0008 41 946 167 67 TA 0.00 0.000
FDSE0241 Xevac

2 FDSF0011 145 1136 119 36 TA 0.00 0.000
FDSE0242 Xevac

2 FDSF0009 185 856 274 77 TA 0.31 0.057
FDSE0243 Xevac

2 FDSF0011 145 1136 259 172 TA 0.06 0.020
FDSE0244 Xevac

2 FDSF0008 41 946 108 162 TA 0.00 0.000
FDSE0245 Xevac

2 FDSF0000 25 600 137 176 TA 0.00 0.000
FDSE0246 Xevac

2 FDSF0010 79 671 288 34 TA 0.05 0.038
FDSE0247 Xevac

2 FDSF0009 185 856 268 36 TA 0.29 0.076
FDSE0248 Xevac

2 FDSF0003 200 1200 252 173 TA 0.09 0.024
FDSE0249 Xevac

2 FDSF0010 79 671 213 179 TA 0.02 0.010
FDSE0250 Xevac

2 FDSF0000 25 600 246 41 TA 0.00 0.000
FDSE0251 Xevac

2 FDSF0010 79 671 123 165 TA 0.00 0.000
FDSE0252 Xevac

2 FDSF0009 185 856 291 178 TA 0.38 0.044
FDSE0253 Xevac

2 FDSF0010 79 671 282 171 TA 0.05 0.019
FDSE0254 Xevac

2 FDSF0008 41 946 285 33 TA 0.00 0.000
FDSE0255 Xevac

2 FDSF0005 131 770 295 45 TA 0.25 0.073
FDSE0256 Xevac

3 FDSF0013 35 720 136 62 FA 0.00 0.000
FDSE0257 Xevac

3 FDSF0015 59 1162 281 178 FA 0.00 0.000
FDSE0258 Xevac

3 FDSF0009 185 856 290 96 FA 0.51 0.057
FDSE0259 Xevac

3 FDSF0014 191 1079 287 38 FA 0.25 0.076
FDSE0260 Xevac

3 FDSF0015 59 1162 130 57 FA 0.00 0.000
FDSE0261 Xevac

3 FDSF0002 25 1200 222 40 FA 0.00 0.000
FDSE0262 Xevac

3 FDSF0015 59 1162 127 32 FA 0.00 0.000
FDSE0263 Xevac

3 FDSF0015 59 1162 269 139 FA 0.00 0.000
FDSE0264 Xevac

3 FDSF0011 145 1136 249 36 FA 0.13 0.056
FDSE0265 Xevac

3 FDSF0011 145 1136 155 49 FA 0.07 0.034
FDSE0266 Xevac

3 FDSF0005 131 770 297 172 FA 0.46 0.056
FDSE0267 Xevac

3 FDSF0008 41 946 102 125 FA 0.00 0.000
FDSE0268 Xevac

3 FDSF0012 165 632 297 148 FA 0.80 0.034
FDSE0269 Xevac

3 FDSF0000 25 600 272 163 FA 0.00 0.000
FDSE0270 Xevac

3 FDSF0014 191 1079 286 149 FA 0.26 0.035
FDSE0271 Xevac

3 FDSF0010 79 671 176 171 FA 0.12 0.028
FDSE0272 Xevac

3 FDSF0008 41 946 160 169 FA 0.00 0.000
FDSE0273 Xevac

3 FDSF0009 185 856 245 174 FA 0.47 0.038
FDSE0274 Xevac

3 FDSF0012 165 632 277 177 FA 0.80 0.032
FDSE0275 Xevac

3 FDSF0015 59 1162 139 161 FA 0.00 0.000
FDSE0276 Xevac

3 FDSF0012 165 632 114 165 FA 0.59 0.036
FDSE0277 Xevac

3 FDSF0013 35 720 192 153 FA 0.00 0.000
FDSE0278 Xevac

3 FDSF0013 35 720 253 83 FA 0.00 0.000
FDSE0279 Xevac

3 FDSF0013 35 720 283 145 FA 0.00 0.000
FDSE0280 Xevac

3 FDSF0009 185 856 144 38 FA 0.27 0.075
FDSE0281 Xevac

3 FDSF0004 94 1031 120 78 FA 0.00 0.006
FDSE0282 Xevac

3 FDSF0014 191 1079 167 55 FA 0.17 0.048
FDSE0283 Xevac

3 FDSF0012 165 632 125 66 FA 0.52 0.062
FDSE0284 Xevac

3 FDSF0008 41 946 263 131 FA 0.00 0.000
FDSE0285 Xevac

3 FDSF0014 191 1079 116 46 FA 0.13 0.049
FDSE0286 Xevac

3 FDSF0013 35 720 108 157 FA 0.00 0.000
FDSE0287 Xevac

3 FDSF0012 165 632 299 47 FA 0.78 0.064
FDSE0288 Xevac

3 FDSF0008 41 946 101 54 FA 0.00 0.000
FDSE0289 Xevac

3 FDSF0012 165 632 106 50 FA 0.49 0.076
FDSE0290 Xevac

3 FDSF0004 94 1031 118 179 FA 0.00 0.004
FDSE0291 Xevac

3 FDSF0004 94 1031 291 42 FA 0.09 0.045
FDSE0292 Xevac

3 FDSF0013 35 720 103 33 FA 0.00 0.000
FDSE0293 Xevac

3 FDSF0015 59 1162 293 30 FA 0.00 0.000
FDSE0294 Xevac

3 FDSF0004 94 1031 107 39 FA 0.00 0.005
FDSE0295 Xevac

3 FDSF0011 145 1136 112 173 FA 0.04 0.018
FDSE0296 Xevac

3 FDSF0005 131 770 104 176 FA 0.22 0.030
FDSE0297 Xevac

3 FDSF0014 191 1079 114 179 FA 0.14 0.029
FDSE0298 Xevac

3 FDSF0013 35 720 295 35 FA 0.00 0.000
FDSE0299 Xevac

3 FDSF0005 131 770 109 37 FA 0.21 0.064
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name ED name (fire) HRRmax /MW tmax /s tpre /s Ntu fa µ(ξ̃c) σ(ξ̃c)
FDSE0300 Xevac

3 FDSF0013 35 720 292 166 FA 0.00 0.000
FDSE0301 Xevac

3 FDSF0011 145 1136 284 178 FA 0.16 0.032
FDSE0302 Xevac

3 FDSF0011 145 1136 296 31 FA 0.16 0.065
FDSE0303 Xevac

3 FDSF0015 59 1162 105 179 FA 0.00 0.000
FDSE0304 Xevac

3 FDSF0013 35 720 136 62 TA 0.00 0.000
FDSE0305 Xevac

3 FDSF0015 59 1162 281 178 TA 0.00 0.000
FDSE0306 Xevac

3 FDSF0009 185 856 290 96 TA 0.35 0.050
FDSE0307 Xevac

3 FDSF0014 191 1079 287 38 TA 0.13 0.055
FDSE0308 Xevac

3 FDSF0015 59 1162 130 57 TA 0.00 0.000
FDSE0309 Xevac

3 FDSF0002 25 1200 222 40 TA 0.00 0.000
FDSE0310 Xevac

3 FDSF0015 59 1162 127 32 TA 0.00 0.000
FDSE0311 Xevac

3 FDSF0015 59 1162 269 139 TA 0.00 0.000
FDSE0312 Xevac

3 FDSF0011 145 1136 249 36 TA 0.05 0.037
FDSE0313 Xevac

3 FDSF0011 145 1136 155 49 TA 0.00 0.003
FDSE0314 Xevac

3 FDSF0005 131 770 297 172 TA 0.29 0.047
FDSE0315 Xevac

3 FDSF0008 41 946 102 125 TA 0.00 0.000
FDSE0316 Xevac

3 FDSF0012 165 632 297 148 TA 0.62 0.046
FDSE0317 Xevac

3 FDSF0000 25 600 272 163 TA 0.00 0.000
FDSE0318 Xevac

3 FDSF0014 191 1079 286 149 TA 0.14 0.029
FDSE0319 Xevac

3 FDSF0010 79 671 176 171 TA 0.00 0.004
FDSE0320 Xevac

3 FDSF0008 41 946 160 169 TA 0.00 0.000
FDSE0321 Xevac

3 FDSF0009 185 856 245 174 TA 0.29 0.040
FDSE0322 Xevac

3 FDSF0012 165 632 277 177 TA 0.60 0.041
FDSE0323 Xevac

3 FDSF0015 59 1162 139 161 TA 0.00 0.000
FDSE0324 Xevac

3 FDSF0012 165 632 114 165 TA 0.22 0.036
FDSE0325 Xevac

3 FDSF0013 35 720 192 153 TA 0.00 0.000
FDSE0326 Xevac

3 FDSF0013 35 720 253 83 TA 0.00 0.000
FDSE0327 Xevac

3 FDSF0013 35 720 283 145 TA 0.00 0.000
FDSE0328 Xevac

3 FDSF0009 185 856 144 38 TA 0.05 0.034
FDSE0329 Xevac

3 FDSF0004 94 1031 120 78 TA 0.00 0.000
FDSE0330 Xevac

3 FDSF0014 191 1079 167 55 TA 0.03 0.022
FDSE0331 Xevac

3 FDSF0012 165 632 125 66 TA 0.21 0.054
FDSE0332 Xevac

3 FDSF0008 41 946 263 131 TA 0.00 0.000
FDSE0333 Xevac

3 FDSF0014 191 1079 116 46 TA 0.00 0.003
FDSE0334 Xevac

3 FDSF0013 35 720 108 157 TA 0.00 0.000
FDSE0335 Xevac

3 FDSF0012 165 632 299 47 TA 0.58 0.082
FDSE0336 Xevac

3 FDSF0008 41 946 101 54 TA 0.00 0.000
FDSE0337 Xevac

3 FDSF0012 165 632 106 50 TA 0.13 0.056
FDSE0338 Xevac

3 FDSF0004 94 1031 118 179 TA 0.00 0.000
FDSE0339 Xevac

3 FDSF0004 94 1031 291 42 TA 0.02 0.022
FDSE0340 Xevac

3 FDSF0013 35 720 103 33 TA 0.00 0.000
FDSE0341 Xevac

3 FDSF0015 59 1162 293 30 TA 0.00 0.000
FDSE0342 Xevac

3 FDSF0004 94 1031 107 39 TA 0.00 0.000
FDSE0343 Xevac

3 FDSF0011 145 1136 112 173 TA 0.00 0.000
FDSE0344 Xevac

3 FDSF0005 131 770 104 176 TA 0.00 0.003
FDSE0345 Xevac

3 FDSF0014 191 1079 114 179 TA 0.00 0.001
FDSE0346 Xevac

3 FDSF0013 35 720 295 35 TA 0.00 0.000
FDSE0347 Xevac

3 FDSF0005 131 770 109 37 TA 0.00 0.008
FDSE0348 Xevac

3 FDSF0013 35 720 292 166 TA 0.00 0.000
FDSE0349 Xevac

3 FDSF0011 145 1136 284 178 TA 0.08 0.024
FDSE0350 Xevac

3 FDSF0011 145 1136 296 31 TA 0.08 0.048
FDSE0351 Xevac

3 FDSF0015 59 1162 105 179 TA 0.00 0.000
FDSE0352 Xevac

b FDSF0016 115 1121 202 52 FA 0.06 0.035
FDSE0353 Xevac

b FDSF0000 25 600 177 80 FA 0.00 0.000
FDSE0354 Xevac

b FDSF0016 115 1121 289 66 FA 0.11 0.039
FDSE0355 Xevac

b FDSF0003 200 1200 141 98 FA 0.11 0.036
FDSE0356 Xevac

b FDSF0000 25 600 144 92 FA 0.00 0.000
FDSE0357 Xevac

b FDSF0003 200 1200 187 96 FA 0.15 0.036
FDSE0358 Xevac

b FDSF0017 156 764 232 79 FA 0.46 0.056
FDSE0359 Xevac

b FDSF0017 156 764 248 54 FA 0.48 0.069
FDSE0360 Xevac

b FDSF0021 170 992 256 127 FA 0.25 0.041
FDSE0361 Xevac

b FDSF0001 200 600 161 177 FA 0.79 0.028
FDSE0362 Xevac

b FDSF0016 115 1121 156 41 FA 0.03 0.029
FDSE0363 Xevac

b FDSF0002 25 1200 260 74 FA 0.00 0.000
FDSE0364 Xevac

b FDSF0017 156 764 104 148 FA 0.27 0.036
FDSE0365 Xevac

b FDSF0018 47 934 295 92 FA 0.00 0.000
FDSE0366 Xevac

b FDSF0003 200 1200 120 135 FA 0.09 0.028
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name ED name (fire) HRRmax /MW tmax /s tpre /s Ntu fa µ(ξ̃c) σ(ξ̃c)
FDSE0367 Xevac

b FDSF0002 25 1200 192 144 FA 0.00 0.000
FDSE0368 Xevac

b FDSF0016 115 1121 109 132 FA 0.01 0.008
FDSE0369 Xevac

b FDSF0018 47 934 226 39 FA 0.00 0.000
FDSE0370 Xevac

b FDSF0018 47 934 238 111 FA 0.00 0.000
FDSE0371 Xevac

b FDSF0020 110 890 280 166 FA 0.20 0.033
FDSE0372 Xevac

b FDSF0002 25 1200 167 124 FA 0.00 0.000
FDSE0373 Xevac

b FDSF0020 110 890 240 114 FA 0.17 0.042
FDSE0374 Xevac

b FDSF0003 200 1200 222 108 FA 0.17 0.035
FDSE0375 Xevac

b FDSF0003 200 1200 269 123 FA 0.20 0.036
FDSE0376 Xevac

b FDSF0017 156 764 129 115 FA 0.29 0.041
FDSE0377 Xevac

b FDSF0017 156 764 263 175 FA 0.55 0.042
FDSE0378 Xevac

b FDSF0001 200 600 197 120 FA 0.80 0.037
FDSE0379 Xevac

b FDSF0017 156 764 176 90 FA 0.34 0.054
FDSE0380 Xevac

b FDSF0021 170 992 172 35 FA 0.19 0.065
FDSE0381 Xevac

b FDSF0020 110 890 210 71 FA 0.15 0.046
FDSE0382 Xevac

b FDSF0017 156 764 179 137 FA 0.38 0.045
FDSE0383 Xevac

b FDSF0020 110 890 292 84 FA 0.19 0.044
FDSE0384 Xevac

b FDSF0017 156 764 164 171 FA 0.37 0.040
FDSE0385 Xevac

b FDSF0018 47 934 282 44 FA 0.00 0.000
FDSE0386 Xevac

b FDSF0002 25 1200 119 126 FA 0.00 0.000
FDSE0387 Xevac

b FDSF0001 200 600 235 49 FA 0.81 0.058
FDSE0388 Xevac

b FDSF0018 47 934 274 149 FA 0.00 0.000
FDSE0389 Xevac

b FDSF0003 200 1200 195 61 FA 0.15 0.048
FDSE0390 Xevac

b FDSF0016 115 1121 297 106 FA 0.11 0.031
FDSE0391 Xevac

b FDSF0017 156 764 278 70 FA 0.53 0.061
FDSE0392 Xevac

b FDSF0018 47 934 230 73 FA 0.00 0.000
FDSE0393 Xevac

b FDSF0018 47 934 199 118 FA 0.00 0.000
FDSE0394 Xevac

b FDSF0002 25 1200 253 116 FA 0.00 0.000
FDSE0395 Xevac

b FDSF0021 170 992 206 64 FA 0.22 0.056
FDSE0396 Xevac

b FDSF0019 91 676 147 141 FA 0.16 0.038
FDSE0397 Xevac

b FDSF0003 200 1200 216 145 FA 0.17 0.035
FDSE0398 Xevac

b FDSF0001 200 600 245 76 FA 0.83 0.044
FDSE0399 Xevac

b FDSF0021 170 992 272 45 FA 0.26 0.066
FDSE0400 Xevac

b FDSF0019 91 676 265 47 FA 0.22 0.060
FDSE0401 Xevac

b FDSF0001 200 600 111 140 FA 0.70 0.039
FDSE0402 Xevac

b FDSF0021 170 992 144 156 FA 0.19 0.032
FDSE0403 Xevac

b FDSF0016 115 1121 132 161 FA 0.02 0.012
FDSE0404 Xevac

b FDSF0001 200 600 163 61 FA 0.74 0.058
FDSE0405 Xevac

b FDSF0018 47 934 156 33 FA 0.00 0.000
FDSE0406 Xevac

b FDSF0021 170 992 190 133 FA 0.21 0.035
FDSE0407 Xevac

b FDSF0019 91 676 181 158 FA 0.18 0.033
FDSE0408 Xevac

b FDSF0000 25 600 183 40 FA 0.00 0.000
FDSE0409 Xevac

b FDSF0000 25 600 169 171 FA 0.00 0.000
FDSE0410 Xevac

b FDSF0019 91 676 214 81 FA 0.19 0.043
FDSE0411 Xevac

b FDSF0019 91 676 152 56 FA 0.15 0.054
FDSE0412 Xevac

b FDSF0018 47 934 151 101 FA 0.00 0.000
FDSE0413 Xevac

b FDSF0002 25 1200 218 87 FA 0.00 0.000
FDSE0414 Xevac

b FDSF0021 170 992 135 36 FA 0.17 0.069
FDSE0415 Xevac

b FDSF0018 47 934 122 129 FA 0.00 0.000
FDSE0416 Xevac

b FDSF0020 110 890 208 164 FA 0.15 0.028
FDSE0417 Xevac

b FDSF0017 156 764 223 110 FA 0.44 0.048
FDSE0418 Xevac

b FDSF0019 91 676 258 165 FA 0.24 0.038
FDSE0419 Xevac

b FDSF0019 91 676 106 102 FA 0.13 0.035
FDSE0420 Xevac

b FDSF0001 200 600 204 142 FA 0.82 0.033
FDSE0421 Xevac

b FDSF0019 91 676 286 104 FA 0.24 0.047
FDSE0422 Xevac

b FDSF0016 115 1121 243 153 FA 0.09 0.025
FDSE0423 Xevac

b FDSF0017 156 764 114 52 FA 0.28 0.060
FDSE0424 Xevac

b FDSF0021 170 992 266 97 FA 0.26 0.045
FDSE0425 Xevac

b FDSF0000 25 600 283 85 FA 0.00 0.000
FDSE0426 Xevac

b FDSF0021 170 992 251 151 FA 0.25 0.035
FDSE0427 Xevac

b FDSF0018 47 934 115 59 FA 0.00 0.000
FDSE0428 Xevac

b FDSF0002 25 1200 125 68 FA 0.00 0.000
FDSE0429 Xevac

b FDSF0000 25 600 227 173 FA 0.00 0.000
FDSE0430 Xevac

b FDSF0018 47 934 133 155 FA 0.00 0.000
FDSE0431 Xevac

b FDSF0019 91 676 139 168 FA 0.16 0.033
FDSE0432 Xevac

b FDSF0016 115 1121 202 52 TA 0.00 0.007
FDSE0433 Xevac

b FDSF0000 25 600 177 80 TA 0.00 0.000
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name ED name (fire) HRRmax /MW tmax /s tpre /s Ntu fa µ(ξ̃c) σ(ξ̃c)
FDSE0434 Xevac

b FDSF0016 115 1121 289 66 TA 0.04 0.027
FDSE0435 Xevac

b FDSF0003 200 1200 141 98 TA 0.00 0.004
FDSE0436 Xevac

b FDSF0000 25 600 144 92 TA 0.00 0.000
FDSE0437 Xevac

b FDSF0003 200 1200 187 96 TA 0.03 0.017
FDSE0438 Xevac

b FDSF0017 156 764 232 79 TA 0.26 0.051
FDSE0439 Xevac

b FDSF0017 156 764 248 54 TA 0.28 0.065
FDSE0440 Xevac

b FDSF0021 170 992 256 127 TA 0.12 0.029
FDSE0441 Xevac

b FDSF0001 200 600 161 177 TA 0.51 0.037
FDSE0442 Xevac

b FDSF0016 115 1121 156 41 TA 0.00 0.000
FDSE0443 Xevac

b FDSF0002 25 1200 260 74 TA 0.00 0.000
FDSE0444 Xevac

b FDSF0017 156 764 104 148 TA 0.01 0.008
FDSE0445 Xevac

b FDSF0018 47 934 295 92 TA 0.00 0.000
FDSE0446 Xevac

b FDSF0003 200 1200 120 135 TA 0.00 0.000
FDSE0447 Xevac

b FDSF0002 25 1200 192 144 TA 0.00 0.000
FDSE0448 Xevac

b FDSF0016 115 1121 109 132 TA 0.00 0.000
FDSE0449 Xevac

b FDSF0018 47 934 226 39 TA 0.00 0.000
FDSE0450 Xevac

b FDSF0018 47 934 238 111 TA 0.00 0.000
FDSE0451 Xevac

b FDSF0020 110 890 280 166 TA 0.08 0.021
FDSE0452 Xevac

b FDSF0002 25 1200 167 124 TA 0.00 0.000
FDSE0453 Xevac

b FDSF0020 110 890 240 114 TA 0.05 0.021
FDSE0454 Xevac

b FDSF0003 200 1200 222 108 TA 0.06 0.022
FDSE0455 Xevac

b FDSF0003 200 1200 269 123 TA 0.10 0.033
FDSE0456 Xevac

b FDSF0017 156 764 129 115 TA 0.04 0.020
FDSE0457 Xevac

b FDSF0017 156 764 263 175 TA 0.36 0.043
FDSE0458 Xevac

b FDSF0001 200 600 197 120 TA 0.54 0.050
FDSE0459 Xevac

b FDSF0017 156 764 176 90 TA 0.12 0.037
FDSE0460 Xevac

b FDSF0021 170 992 172 35 TA 0.03 0.031
FDSE0461 Xevac

b FDSF0020 110 890 210 71 TA 0.03 0.019
FDSE0462 Xevac

b FDSF0017 156 764 179 137 TA 0.15 0.038
FDSE0463 Xevac

b FDSF0020 110 890 292 84 TA 0.08 0.030
FDSE0464 Xevac

b FDSF0017 156 764 164 171 TA 0.12 0.034
FDSE0465 Xevac

b FDSF0018 47 934 282 44 TA 0.00 0.000
FDSE0466 Xevac

b FDSF0002 25 1200 119 126 TA 0.00 0.000
FDSE0467 Xevac

b FDSF0001 200 600 235 49 TA 0.58 0.078
FDSE0468 Xevac

b FDSF0018 47 934 274 149 TA 0.00 0.000
FDSE0469 Xevac

b FDSF0003 200 1200 195 61 TA 0.03 0.024
FDSE0470 Xevac

b FDSF0016 115 1121 297 106 TA 0.05 0.023
FDSE0471 Xevac

b FDSF0017 156 764 278 70 TA 0.35 0.056
FDSE0472 Xevac

b FDSF0018 47 934 230 73 TA 0.00 0.000
FDSE0473 Xevac

b FDSF0018 47 934 199 118 TA 0.00 0.000
FDSE0474 Xevac

b FDSF0002 25 1200 253 116 TA 0.00 0.000
FDSE0475 Xevac

b FDSF0021 170 992 206 64 TA 0.07 0.032
FDSE0476 Xevac

b FDSF0019 91 676 147 141 TA 0.00 0.005
FDSE0477 Xevac

b FDSF0003 200 1200 216 145 TA 0.05 0.018
FDSE0478 Xevac

b FDSF0001 200 600 245 76 TA 0.60 0.057
FDSE0479 Xevac

b FDSF0021 170 992 272 45 TA 0.12 0.048
FDSE0480 Xevac

b FDSF0019 91 676 265 47 TA 0.07 0.040
FDSE0481 Xevac

b FDSF0001 200 600 111 140 TA 0.33 0.043
FDSE0482 Xevac

b FDSF0021 170 992 144 156 TA 0.01 0.010
FDSE0483 Xevac

b FDSF0016 115 1121 132 161 TA 0.00 0.000
FDSE0484 Xevac

b FDSF0001 200 600 163 61 TA 0.44 0.061
FDSE0485 Xevac

b FDSF0018 47 934 156 33 TA 0.00 0.000
FDSE0486 Xevac

b FDSF0021 170 992 190 133 TA 0.06 0.022
FDSE0487 Xevac

b FDSF0019 91 676 181 158 TA 0.02 0.013
FDSE0488 Xevac

b FDSF0000 25 600 183 40 TA 0.00 0.000
FDSE0489 Xevac

b FDSF0000 25 600 169 171 TA 0.00 0.000
FDSE0490 Xevac

b FDSF0019 91 676 214 81 TA 0.04 0.024
FDSE0491 Xevac

b FDSF0019 91 676 152 56 TA 0.01 0.010
FDSE0492 Xevac

b FDSF0018 47 934 151 101 TA 0.00 0.000
FDSE0493 Xevac

b FDSF0002 25 1200 218 87 TA 0.00 0.000
FDSE0494 Xevac

b FDSF0021 170 992 135 36 TA 0.01 0.013
FDSE0495 Xevac

b FDSF0018 47 934 122 129 TA 0.00 0.000
FDSE0496 Xevac

b FDSF0020 110 890 208 164 TA 0.03 0.014
FDSE0497 Xevac

b FDSF0017 156 764 223 110 TA 0.25 0.047
FDSE0498 Xevac

b FDSF0019 91 676 258 165 TA 0.08 0.026
FDSE0499 Xevac

b FDSF0019 91 676 106 102 TA 0.00 0.000
FDSE0500 Xevac

b FDSF0001 200 600 204 142 TA 0.57 0.044
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name ED name (fire) HRRmax /MW tmax /s tpre /s Ntu fa µ(ξ̃c) σ(ξ̃c)
FDSE0501 Xevac

b FDSF0019 91 676 286 104 TA 0.10 0.031
FDSE0502 Xevac

b FDSF0016 115 1121 243 153 TA 0.02 0.011
FDSE0503 Xevac

b FDSF0017 156 764 114 52 TA 0.02 0.020
FDSE0504 Xevac

b FDSF0021 170 992 266 97 TA 0.13 0.036
FDSE0505 Xevac

b FDSF0000 25 600 283 85 TA 0.00 0.000
FDSE0506 Xevac

b FDSF0021 170 992 251 151 TA 0.11 0.028
FDSE0507 Xevac

b FDSF0018 47 934 115 59 TA 0.00 0.000
FDSE0508 Xevac

b FDSF0002 25 1200 125 68 TA 0.00 0.000
FDSE0509 Xevac

b FDSF0000 25 600 227 173 TA 0.00 0.000
FDSE0510 Xevac

b FDSF0018 47 934 133 155 TA 0.00 0.000
FDSE0511 Xevac

b FDSF0019 91 676 139 168 TA 0.00 0.003

G.8 Prerequisites for reproducible results in the methodology for
risk analysis

Objective 1 (metamodel) requires the reproducibility for the results of the methodology for
risk analysis. As prerequisites, the following subsections first, evaluate the accuracy of the
indirect mode over fixed points and second, establish defaults for risk analyses to ensure the
convergence of risk measures.

Integration of the RSM into the system model
Subs. ’Integration of MLS models into the system model’ (p. 45) describes two modes to

integrate the RSMs of MLS into the system model, namely the direct mode and the indirect
mode over fixed points. To prove the accuracy of the indirect mode, two system model
simulations with Nmcs = 106 random scenarios are compared, first, with the direct mode Sdir

and second, with the indirect mode over fixed points S fps. The FF in the system models Ξ̄dir

and Ξ̄fps consider neither the metamodel uncertainty nor the evacuation uncertainty and are
both based on the data base ξ̄c

X2
.

Fig. G.6a illustrates the frequency distribution of the results of both metamodels in a quantile
plot and Fig. G.6b depicts the societal risk curves. Both figures reveal nearly identical results
of the system model simulations which also yields for the individual risk. Furthermore, the
indirect mode over fixed points outperformed the run time of the direct mode by a factor of
less than 0.01.
To conclude, the indirect mode over fixed points, i.e. an additional RSM, has negligible
effects on the results of Monte-Carlo simulations in the system model but reduces the run
time considerably. Of course, parallel computing in the implementation of MLS might be
another option to reduce the run time. This improvement would at the same time simplify
the data flow sketched in Fig. G.1 (p. G-9) and could be realised in further developments of
the metamodel. But for now, the indirect mode is considered to be accurate and the notation
in this dissertation does not differentiate between the two modes.

Convergence of risk measures during Monte-Carlo simulation
Section B.1 outlines that methodologies for risk analysis commonly use Monte-Carlo sim-

ulations to quantify the risk measures. In particular, it is important to consider scenarios
with rare events, i.e. fires with maximum HRRs of HRRmax = 100 MW together with FA.
However, scenarios with rare events occur infrequently in Monte-Carlo simulations which de-
mands a large number of random scenarios to achieve convergence of risk measures during
Monte-Carlo simulation. To reduce the required number of random scenarios, the risk factors
HRRmax and fa employ importance sampling detailed in Section B.2 and Section B.3. Thus,
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Figure G.6: Effects of the indirect mode over fixed points in the system model simulations
S fps in comparison to the the direct mode Sdir.

Table G.8: Risk analyses RHRRmax,fa with importance sampling (IS) in risk factors HRRmax

and fa.
R IS in HRRmax IS in fa

R0,0 no no
R0,1 no yes
R1,0 yes no
R1,1 yes yes

it is important for the reproducibility of results of risk analysis to: verify the importance
sampling in both risk factors; and to determine the required number of random scenarios.
With these aims, this evaluation compares different risk analyses provided in Tab. G.8. The
risk analyses apply the default RSM ξ̄X2 without metamodel uncertainty or evacuation uncer-
tainty to emphasise the effects of importance sampling. They produce results in Nmcs = 106

random scenarios which comprise: first, the number of random scenarios with rare events∥∥∥X̃rare

∥∥∥; second, the FF in the system model Ξ̄; third, the individual risk Rind; and fourth,
the societal risk curve. The convergence of the FF and the individual risk is quantified
with the convergence measure υconv defined with Eq. B.7 (p. 28) in Section B.5. The figures
illustrating the convergence as well as the convergence measures are by nature subjected to re-
markable aleatory uncertainties. However, the results reflect the common gain of importance
sampling.
With regard to the verification of importance sampling, Fig. G.7a and Fig. G.7b illustrate
the convergence of the individual risk and of the FFs for all risk analyses using importance
sampling towards the risk analysis R0,0 without importance sampling. Also, the numbers
of random scenarios with rare events are in accordance to the probabilistic models used for
importance sampling shown in Tab. B.3 on p. 19. Hence, importance sampling in the Monte-
Carlo simulation generates accurate results.
Fig. G.7c and Fig. G.7d, focussing on the first Nmcs = 105 random scenarios, give better
insight to the convergence of the individual risk and the FF. In general, the risk analyses
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Figure G.7: Convergence of the individual risk Rind and the FF in the system model Ξ̄ of
risk analyses RHRRmax,fa with importance sampling in the risk factors HRRmax

and fa for Nmcs = 106 random scenarios (above) and the focus on the first
Nmcs = 105 random scenarios (below).
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Table G.9: Results of risk analyses with importance sampling: frequency of random scenario
with rare events and convergence measure υconv for the individual risk Rind and
the FF in the system model Ξ̄;

∥∥∥X̃rare

∥∥∥ is the number of random scenarios with
rare events.∥∥X̃rare

∥∥
Nmcs

υconv

(
Rind

)
υconv

(
Rind

)
υconv

(
Ξ̄
)

υconv

(
Ξ̄
)

R
Nmcs 106 105 106 105 106

R0,0 1 · 10−6 2 · 10−2 10 · 10−4 1 · 10−3 4 · 10−4

R0,1 50 · 10−6 2 · 10−2 3 · 10−4 15 · 10−3 6 · 10−4

R1,0 2.9 · 10−3 1 · 10−2 0.8 · 10−4 3 · 10−3 8 · 10−4

R1,1 0.15 1 · 10−2 5 · 10−4 15 · 10−3 1 · 10−4
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Figure G.8: Effect of importance sampling in risk factors HRRmax and fa on the societal
risk curves of risk analyses R with Nmcs = 106 random scenarios.

R1,1 with importance sampling in both risk factors converged fastest. These results comply
with the convergence measures in Tab. G.9. Namely, both risk analyses R1,1 and R1,0 using
importance sampling in the risk factor HRRmax had the smallest convergence measures.
Further, the convergence measures decreased with more than one order of magnitude from
Nmcs = 105 to Nmcs = 106 random scenarios. At last, Fig. G.8 describes the societal risk
curves. The risk analyses R1,1 and R1,0 revealed similar results and the risk analyses R0,0
without importance sampling deviated strikingly. This latter result derives from the small
number of random scenario with rare events. In numbers, the risk analysis R0,0 requires
about 103 times more random scenarios to get a comparable number of random scenarios
with rare events as R1,0 and thus a comparable societal risk curve as R1,1.
Briefly, the importance sampling reduces the required number of random scenarios. Since, the
convergence measures between Nmcs = 105 and Nmcs = 106 random scenarios still deviate,
Nmcs = 106 random scenarios as well as importance sampling in the risk factors HRRmax and
fa are required for convergence of risk measures in risk analyses. This conclusion serves as
default for the following risk analyses.
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Table G.10: MLS attributes for RSMs additionally subjected to manual data points for
scenarios with TA (above) and FA (below).

RSM weighting type polynomial degree parameter ω

ξ̄X2m,0 wg 2 0.459
ξ̄X3m,0 wp 2 0.987
ξ̄X2m,1 wg 2 0.459
ξ̄X3m,1 wp 2 0.870

G.9 Improvement of the metamodel uncertainty by additional data
points

Section E.2.1 reveals the drawback of the prediction interval method. The drawback occurs
in regions of the domain where the results of the complex model and of the metamodel
are close to zero. In these regions, the metamodel uncertainty is expected to be small but
the prediction variance contradicts this expectation as illustrated in Fig. E.13a (p. 71) and
Fig. E.14a. Additionally, Section E.2.1 outlines two approaches to cope with this drawback.
Now, this section exemplifies the second approach to reduce the metamodel uncertainty
locally, namely to extend the data base with manual data points.

For this purpose, 81 manual data points with results of zero ξ̃c
manual =

[
~0, . . . ,

]
extend

the data base ξ̃c
2 and consequently also ξ̃c

3. The manual data points derive from a FFD
Xmanual = XFFD with three levels highlighted in Fig. G.9a. Their distinct region of 25 MW ≤
HRRmax ≤ 75 MW 1000 s ≤ tmax ≤ 1200 s, 100 s ≤ tpre ≤ 125 s, 30 ≤ Ntu ≤ 150 derives
from previous results, i.e. Fig. E.11a, Fig. E.11b on p. 67 and Fig. E.13b, Fig. E.13a on p. 71.
The latter two figures result from scenarios with higher pre-evacuation times of tpre = 194 s
and thus show higher FF as expected in the region of the manual data points. Consequently,
the data bases are subjected to the EDs X2m =

[
X2

T , XT
manual

]T
and X3m =

[
X3

T , XT
manual

]T
and lead to the RSMs in Tab. G.10.
As a result, the results of the RSM ξ̄X2m are mostly similar to the former RSM ξ̄X2 as
shown in Fig. G.9a. The largest differences appear at the transition between the region of
the manual data points to the region with high gradients as visible in Fig. G.9b. With regard
to the prediction variance, the manual data points cause a global decrease in comparison to
the prediction variance of the RSM ξ̄X2 but the prediction interval of the RSM ξ̄X2m is still
conservative to results of the RSMs ξ̄X2 and ξ̄X3m . And more important, the manual data
points reduce the prediction variance locally in comparison the other regions as revealed in
Fig. G.9c and Fig. G.9d.
To sum up, this example proves that manual data points can reduce the drawback of the
prediction interval method. Thus, the approach would be, plainly spoken, the cherry on the
cake within the system model. However, these manual data points of this example could be
located more efficiently after a sensitivity analysis, esp. to limit their effects on the shape of
the RSM. They also increased the local number of data points in comparison to other regions.
Consequently, the weighting function of MLS in Subs. ’Weighting functions’ (p. 44) could be
improved with a local weighting parameter or a prediction window as in Salemi 2016 [29].
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