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Chapter

Introduction

Many physical phenomena, such as fluid dynamics, electrodynamics, heat
transfer (and many more) can be modeled by partial differential equations
(PDEs). As these equations generally cannot be solved analytically, we rely on
numerical simulations. To this end, the problem needs to be discretized which
is the process of transferring the continuous problem, the PDE, to a discrete
counterpart, i.e., the problem is described only approximately on a discrete set
of points in space (and time). This discrete set is often the result of a simple
equidistant segmentation of the space of interest as illustrated in Figure 1.1.
Often we end up with linear systems of equations where every point only
interacts with its nearest neighbors. The solutions of these discrete problems
are then approximations to the original continuous problems. In Example 1.1
we demonstrate this construction for the Poisson equation.

In the research of phenomena resulting from atomic-scale properties, scientists
do face problems with a predefined underlying structure. For example in solid
state physics, the basic research of solid materials, a tight-binding method is
used which models the interaction of each atom with its nearest neighbors [2].
In simulations to investigate material properties, linear systems of equations
need to be solved which are inherently formulated on the occurring geometric
arrangement of its atoms [13, 48]. For example, in Figure 1.2 the atomic
structure of graphene is illustrated where every circle represents one carbon
atom.

As all these linear systems tend to be very large and sparse, direct methods
to solve these problems become prohibitively expensive and unsuitable. With
a suitable iterative method, however, such systems can be solved fast and
efficiently. Among the most efficient iterative solvers are (geometric) multigrid
methods, which make use of the underlying structure in a way that the com-
putational cost grows only linearly with increasing problem size [47]. Due to
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Figure 1.1.: A rectangular tiling. Figure 1.2.: Atomic structure of
graphene.

this optimal scaling, multigrid methods can outperform other methods from a
certain problem size onwards. Nevertheless, in contrast to many other direct
and iterative methods, multigrid methods usually do not work out of the box.
Its components need to be constructed with respect to certain parameters
of the problem and finely tuned. In order to do so, one requires a deeper
understanding of the underlying problem.

Local Fourier analysis (LFA) is a powerful tool used in the construction and
analysis of multigrid methods first introduced in [10]. The fundamental idea
of LFA is to leverage the connection between position space and frequency
space via the Fourier transform. That is, in case the involved operators can be
described by stencils in position space, meaning that they are translationally
invariant, their Fourier transform yields so-called symbols, which can be han-
dled much more easily. In the context of multigrid methods LFA can be used
to obtain precise approximations of the asymptotic convergence rate by assess-
ing the spectral radius of the corresponding error propagation operator [40].
This approximation of the convergence rate is (asymptotically) still valid if the
translational invariance is slightly violated, as for example when lexicographic
Gauss-Seidel type smoother are used, or in the case of certain non-periodic
boundary conditions [11, 38, 45]. In other cases a similar convergence rate
can usually be obtained by additional processing [23, 47]. Due to these facts,
LFA is one of the main tools in the quantitative analysis of two- and multigrid
methods.

An introduction to LFA including several examples can be found in [47, 51].
Multigrid methods have first been considered for the solution of the linear
systems of equations originating from the discretization of (elliptic) PDEs [47].
Due to the fact that the simplest tiling of space is rectangular and discretiza-
tions are particularly simple to carry out on such tilings, the usual multigrid
components and the LFA have originally been designed and tailored for such
discretizations (cf. [47, 51]). Several other geometries, including systems of
PDEs, have been considered in the past as well. LFA has been carried out for



operators defined on triangular tilings in [17] and on hexagonal tilings in [53].
Further, it has been applied to edge-based quadriliteral discretizations [7],
regular Voronoi meshes associated with acute triangular grids [37], edge-based
discretizations on triangular grids [39] and jumping coefficients on rectangular
grids [6]. These papers do a complete two-grid analysis, and in some cases
even a three-grid analysis, which was first introduced in [50].

While the concept of LFA is well understood, its application quickly becomes
complex and involved the more frequencies get intermixed, e.g., by block
smoothers, in a three-grid analysis, or in higher dimensional problems (n > 2).
Thus, there exists software that automates the application of LFA [36, 51]. In
contrast to the software described in [51], which basically consists of a collection
of templates corresponding to certain smoother and restriction/prolongation
strategies for specific problems, the software [36], freely available on GitHub,!
can be used to analyze arbitrary translationally invariant operators on rect-
angular grids. This software has for example been used to analyze colored
block Jacobi methods in combination with aggressive coarsening applied to
PDEs with jumping coefficients in [6, 35]. As the number of frequencies which
get intermixed increases with the block-size of the smoother and the growing
coarsening rate, a manual analysis of this problem would be laborious.

The bulk of the analysis in the previously mentioned references is mainly
carried out in frequency space. LFA with an emphasize on position space
is rare in the literature. In [21] a position space oriented LFA is introduced
under the name compact Fourier analysis where block Toeplitz matrices are
used in order to capture the different classes of unknowns.

This thesis consists of two major parts with different objectives. In the first
part of this thesis we present an approach to LFA which unifies the position
space oriented approaches and allows the treatment of operators on arbitrary
repetitive structures. To do so, we introduce a mathematical framework for the
analysis of translationally invariant operators which alter value distributions
on lattices and crystals [2, 41]. These structures can be based on arbitrary
sets of primitive vectors, including non-orthogonal ones, i.e., non-rectangular
structures. These crystal structures, which naturally occur in the tight-binding
descriptions of solid-state physics [2] or discretizations of systems of PDEs,
enable the convenient and concise description of the resulting operators and
allow for the automatic generation of their representations when enlarging their
translational invariance, e.g., coarsening in the context of multigrid methods.
Furthermore, they are very helpful in the representation of overlapping and
non-overlapping block smoothers. This framework is developed to such an
extent that the only task required of the user is to provide a description of the
occurring operators with respect to (potentially non-matching) descriptions
of the underlying repetitive structures, i.e., each operator can be supplied in

lgithub.com/hrittich/1fa-lab
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the simplest or most convenient representation. The remainder of the analysis
can then be carried out automatically. In contrast to previously developed
LFA, this is achieved by explicitly including a connection of the operator
to its underlying structure. On the one hand, this allows us to automate
the transformation of operators in position space, e.g., by finding a least
common lattice of translational invariance of two operators and to rewrite
their representations accordingly. On the other hand, this focus on structure
yields a natural representation and discretization of the dual space that enables
the automation of the frequency space part of the analysis as well. All these
tasks can be carried out using basic principles and normal forms of integer
linear algebra [41]. In combination, these developments alleviate the use of
LFA by removing any manual calculations. That is, neither a mixing analysis
nor transformations of operators to common (and rectangular) translational
invariances have to be carried out by hand. While the automated LFA does
not necessarily enlarge the set of methods that are analyzable by conventional
LFA, it enables the reliable and easy-to-use analysis of complex methods on
complicated structures (e.g., overlapping block smoothers and discretizations
of systems of PDEs). An open-source Python implementation of the automated
LFA framework [24] is freely available on GitLab.?

The automation does have some limitation in terms of the smoothers that can
be analyzed. Any sequential, i.e., lexicographic, smoother with overlapping
update regions changes values in the overlap multiple times in one application.
This cannot be easily translated to the structures introduced in this paper.
While such smoothers have been analyzed in frequency space before (cf. [26,
27, 43]), this particular treatment of sequential overlap is momentarily not
covered in this framework.

The second part of this thesis contains a derivation of a geometric multi-
grid method for the tight-binding Hamiltonian of graphene. The obtained
method, i.e., the coarse-grid correction in combination with a simple sequential
smoother, along with a proof via local Fourier analysis regarding its robust-
ness and efficiency has already been published in [23]. In addition to these
results, we present an in-depth analysis of the coarse grid correction as well as
alternative smoothers which show better performance and can be parallelized.
The special characteristic of the tight-binding Hamiltonian of graphene is two-
fold. Besides the already mentioned unusual geometric structure, the resulting
linear system of equations is maximally indefinite, i.e., it has an equal number
of positive and negative eigenvalues. Multigrid methods for indefinite prob-
lems have been considered mainly in the context of the indefinite Helmholtz
equation or other second order elliptic boundary value problems. Typically,
convergence of a multigrid method for these problems can only be guaranteed
if particular conditions are fulfilled; cf. [4, 5, 8, 9, 42, 52]. The most prominent
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restriction oftentimes requires that the coarsest grid needs to be sufficiently
fine/large. This means that there is no such method with the typical multi-
grid advantage—an asymptotic convergence rate independent of the grid size.
Recently, in the context of Lattice Gauge Theory algebraic multigrid methods
have experimentally been shown to be efficient for indefinite spin systems in [3,
15, 25, 31]. However, no theoretical proof of convergence is available for these
methods.

In addition to these two major topics, we present a general symmetry analysis
of block smoothers, i.e., domain decomposition methods. Due to increasingly
parallel computing environments such smoothers have become more and more
important to achieve high efficiency in multigrid solvers as they can be easily
parallelized and possess nice data locality. In order to realize the full potential
of these block smoothers one has to color the blocks such that any two blocks
of the same color decouple and thus can be processed in parallel. We show
that the ordering in which the colors are processed can have a large influence
on the convergence rate of the resulting two- and multigrid method. As the
number of different orderings to be considered grows factorial with the number
of colors, we demonstrate how to determine orderings which yield the same
convergence rate due to algebraic and geometric symmetries of the underlying
crystal structure.

The thesis is organized as follows. We first introduce normal forms for integer
matrices in Chapter 2 which play an important role in Chapter 3, where we
present basic notation to describe the underlying structures of the operators
we want to analyze: lattices and crystals. In the context of LFA we are in-
terested in translationally invariant operators which alter value distributions
on crystals. These kinds of operators and their properties are specified in
Chapter 4. In particular, we present similarity transformations of these op-
erators referring to the non-unique representation of the underlying crystal
structure which make an automated analysis of compositions of operators pos-
sible. The similarity transformations make up a large part of the algorithms
listed in Appendix A used in the automated local Fourier analysis (aLFA). In
Chapter 5, we introduce some main principles of iterative methods. Splitting
methods, which are a sub-class of iterative methods, are then brought into
the context of Chapter 4 in Section 5.2. Afterwards, we study (geometric)
multigrid methods in Section 5.3. Throughout Chapter 5 we show several
examples, including multicolored block smoother, applied to the (discretized)
Laplacian to illustrate the application of the algorithms of alLFA and also
validate the developed theory. Based on the determined convergence rates of
a multicolored block smoother, we then use this example to study how equiv-
alent orderings can be determined using underlying algebraic and geometric
symmetries. Furthermore, we show a general approach to smoothing analysis
within the aLFA framework in Section 5.5. Finally, Chapter 6 deals with the
tight-binding Hamiltonian of graphene and the developed multigrid method.



CHAPTER 1. INTRODUCTION

Several of the presented results are obtained using the previously developed
automated local Fourier analysis. Note that a list of frequently used symbols
can be found at the end this thesis.

Due to the importance for the first few chapters of this thesis we introduce
the following model problem.

Example 1.1. The Laplacian A is an operator used to model several physical
phenomena. For example, it describes the heat flow in solid materials as a
result of temperature differences. We consider this operator

Pu  Ou

on the unit square [0, 1) with periodic boundaries, i.e., the domain of interest
resembles the surface of a torus. We can define this domain as

Q:={[z] : v € R?},
where its elements [z], [y] € 2 are defined by
[z] = [Z] & there exist i,j € Z such that x = T + ia; + jas,

where a1 = (1,0) and ay := (0,1). A function f € L(2,C) may describe
the heat-flux density applied to the torus. Then, the solution u of the Poisson
equation

—Au = fin Q,

corresponds to the equilibrium the system will eventually end up in.

In order to calculate uw numerically, we consider a simple tiling of the space of

/N X 7\ 7 a’l N a27 Z) j E : .

The definition of the elements carries over as
2] = [y] € Qv if [2] = [y] € Q.

Using the finite central differences scheme on €y)n we get a second order
approximation

Ah : of(Ql/N, C) — I(Ql/N,C)

of the Laplacian A with
1

|
—Apuiy = 25 (AU — Uiy — Uiory — Uige — Uigo1) = fig

h2



Ui, j4+1

ui—1,5 | Ui, j Uig1,5
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N

Figure 1.3.: Section of the discretized unit cell €2, as well as the connections
of one unknown with its neighbors corresponding to the discretized Laplacian.

where u;; and f;; correspond to the value of u and f at [x] = [ixar + j+as]
respectively. Due to the periodicity we restrict ourselves toi,j € {0,1,..., N —
1}. Introducing the notation
U; = (Uz‘,O, . -Ui,N—l)T and f; = (fi,()) e fi,N—l)Ta
these equations can be written in matrix notation by
B —I -1 U fo 4 -1
1 |- : : —
11-1 B : | | B= 1 4
B2 SR S
—1I —I B lun— S -1 4

The underlying structure of this problem is illustrated in Figure 1.5.






Chapter 2

Normal forms of integer matrices

In this chapter we briefly review two normal forms of integer matrices which
play an important role in Chapter 3 in the classification of lattices. We
introduce them beforehand separated from this context. The presented results
can for example be found in more detail in [30, 41].

Definition 2.1. A matriz U € Z™*" is called unimodular if det(U) € {£1}.
Lemma 2.2. The following elementary (column) operations are unimodular:
(i) exchanging two columns,
(17) multiplying a column with —1 and
(1ii) adding an integral multiple of one column to another.

Proof. Let us denote these column manipulations by A — AU. Then the
matrix U € Z™*" fulfilling the mentioned operations has to be the identity
matrix with the following modifications respectively:

(i) two columns of U are exchanged,
(ii) one diagonal entry is —1 instead of 1 and
(iii) one off-diagonal entry is changed to some o € Z from 0.
These matrices are obviously unimodular. O]

Lemma 2.3. If U € Z™" js unimodular, then U~ is unimodular. Thus,
U:2Z" = Z" is a bijection.

Proof. Due to Cramer’s rule we have the equality

U™t = cof (U)" = cof (U)7,

“det(U)

where cof (U) denotes the cofactor matrix of U, which is integral. O
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2.1. The Hermite normal form

Unimodular matrices define an equivalence relation on the set of matrices via

A~ B <= there exists an unimodular U, such that AU = B.

The first normal form we present is the Hermite normal form, a unique tri-
angular representation of integral matrices in the equivalence class induced
by ~. The Hermite normal form answers for example whether two lattices
are equivalent.

Definition 2.4. We say H = (h;;);; € R"" is in Hermite normal form
(HNF) if

e M is upper triangular, i.e., h;; =0, i > j.
e non-negative, i.e., h;; > 0, and

o its unique row-wise maximum is located on the diagonal, i.e., h;; > h; ;,
] >1.
Theorem 2.5. Every nonsingular matriz A € Q™" can be brought into Her-

mite normal form by an unimodular transformation, i.e., there is an unimod-
ular matric U € Z"*", such that H = AU 1is in Hermite normal form.

Proof. The following constructive proof is split into two steps and uses ele-
mentary column operations only. We assume without loss of generality that
A = (a;;);; is integral. First, we show that A can be brought into upper
triangular form by eliminating nonzero entries below the diagonal row-wise.
We start with the last row [ p, 1 ‘ n 2 ‘ o ‘ Ap, } and perform the following
steps.

1. For each negative row-entry below the diagonal a,, ;, we multiply column
a; by —1, such that a,; > 0 for all j < n.

2. Due to A being nonsingular, there is at least one nonzero entry a,;,
j < n. If the diagonal element is zero, we exchange columns a; and a,
such that a,, is now nonzero.

3. Finally, we eliminate the nonzero entries of row n below the diagonal
elementwise. Let a,;, 7 < n, be a nonzero element. The Euclidean
algorithm applied to a, ; and a,,,, generates a sequence (g )x of quotients
and a sequence (ry); of remainders with ro = a,,, 71 = @, ; and

The2 = Q—1Tk—1 + Tk <> Tp=Tp_ 92— Q_1Tk—1, (2.1)

with |rp1] < |r%l, 7 = 0 and r;_; = ged(an;, anyn). We apply these
steps of the Euclidean algorithm to column j for each k = 2, ... ,lAc as
follows:

10



2.2. THE SMITH NORMAL FORM

a) Exchange columns a; and a,,, such that a,, ; = 74— and a,,,, = 74_1.

b) Add an integral multiple of column a,, to a;, i.e., aj = a; — gx—_1an,
such that a,,; = ry_2 — qx_17%—1 = 7%, cf. equation (2.1).

After this procedure the diagonal element a,,, is equal to the greatest
common divisor of all original row entries a, 1, an2, ..., ayn-

It follows by induction, that these steps can be applied row-wise from bottom
to top to obtain an upper triangular matrix as these operations only change
entries in the the upper left matrix block of size i x 1.

The second step brings the upper triangular matrix into the desired shape,
that is, we reduce or increase the off-diagonal entries such that the maximum
is then located on the diagonal and all entries are non-negative. We again work
row-wise from bottom to top. Let a;;, j > i, be an element with a; ; < 0 or
a; j > a;;. We apply division by the diagonal entry with remainder, i.e., a;; =
qa;; +r, to column a;. That is, a; < a; — qa;, such that a; ; = a; ; —qa;; =1
with 0 < r < a;;. As this operation does not alter the entries below row 1,
we can hereby bring all the off diagonal entries into the desired form when
successively working from bottom to top to obtain the HNF H. O]

Theorem 2.6. The Hermite normal form H of a matriz A € Q"*"™ is unique.

Proof. Without loss of generality we can restrict ourselves to integral matrices.
Let us assume that H = AU, H = AU’ € Z™" are two Hermite normal
forms of A with H # H’. The matrices differ in at least one column j, i.e.,
H; # Hj. Let us denote the difference by d := H; — H}. Due to the fact
that any column Hj, of H' can be expressed as an integral linear combination
of the columns of H, the same is true for d. Let ¢ be the largest index of a
nonzero entry in d, i.e., d; # 0 and d; =0 for j =i+ 1,...,n. As H is upper
triangular, we can rewrite d as an integral linear combination of the columns
Hy, k < 4. In particular, d; has to be an integral multiple of h;;. Thus, we
have 0 # |h;; — h;j| = |d;| > hy;. On the other hand, as 0 < h;; < h;; as well
as 0 < hj; < hy, we have |hy; — hj;| = |d;i| < h;. Thus our assumption is
incorrect, and the matrices H and H' are equal. O

Remark 2.7. In consequence of Theorems 2.5 and 2.6, every unimodular
matriz U can be split into a sequence of the elementary operations introduced
in Lemma 2.2.

2.2. The Smith normal form

In case we additionally allow also elementary row operations, we can bring
each integral matrix into Smith normal form, a unique diagonal matrix repre-
sentation.

11



CHAPTER 2. NORMAL FORMS OF INTEGER MATRICES

Definition 2.8. We say S € R™*" is in Smith normal form (SNF) if
e S is diagonal, i.e., S = diag(oy,...,0,), and

e the diagonal entries satisfy o; | 0,41 for alli = 1,...,n — 1. These
entries are called the elementary divisors.

Theorem 2.9. Every nonsingular matriz A € Q™™ can be brought into Smith
normal form by unimodular row- and column-transformations, i.e., there exist
unimodular matrices U,V € Z™*", such that S = VAU is in Smith normal
form.

Proof. Without loss of generality we can again restrict ourselves to integral
matrices. We can bring A into the form

_ 4| 0
VleUl N A N [0 A2:n,2:n‘| ’

by repeatedly applying the following operations:

1. Using elementary column operations, we can eliminate all nonzero entries
above the diagonal in the first column ,[ a2 ‘ a3 ‘ . ‘ a1, } in a similar
way as we did in step 3 in the proof of Theorem 2.5 using the Euclidean
algorithm.

2. Analogously, using elementary row operations, we can eliminate all

T
nonzero entries below the diagonal in the first row [ as ‘ as ‘ o ‘ n 1 } )

This needs to be done repeatedly as column operations may introduce nonzero
entries in the first row whereas row operations introduce nonzero entries in
the first column. Nevertheless, after each step, the diagonal entry is equal to
the greatest common divisor of the first row or column, respectively. Thus,
it gets smaller in every single step until it is equal to the greatest common
divisor o7 = ged(A) of all matrix entries a; ;, 4,7 =1,...,n.

Note, that ged(A) is a divisor of gcd(zzlg:ng:n) due to

A A
ged(A) ' ged(A)

Zn><n 3 ‘/1

This procedure can repeatedly be applied to the remaining blocks Ai:n,i;n,
i =2,...,n, until we obtain a diagonal matrix which is in SNF. O

Remark 2.10. The Smith normal form S of a matriz A is again unique as
the product oy - - - 0; is equal to the ged of all i X i minors of A for alli [41,

p. 50].

12



2.2. THE SMITH NORMAL FORM

Remark 2.11. The given constructive proofs to compute the Hermite and
Smith normal form are impractical for large matrices for stability and com-
plexity reasons. An overview of various algorithms for the calculation of these
normal forms can be found in [18]. Implementations for the computation of
these normalforms are for example part of the PARI software package [32].

13






Chapter

Crystalline structures

In this chapter we introduce some of the basic principles of lattices and crystals.
Most of the basic results presented in this section can be found in [19, 41].
An (ideal) crystal is an infinite repetition of some structure element. The
structure element can for example be a single atom or some arbitrary complex
molecule consisting of very many atoms. For our purposes it is simply a subset
of points which are defined later on. At first, we analyze its infinite repetition
which is specified by the Bravais lattice defined below. We especially study
these basic structures with respect to their non-uniqueness. These results are
eventually used in the automation process of the LFA.

3.1. Lattices

Definition 3.1. Let ay,as,...,a, € R" be linearly independent vectors. An
n-dimensional (Bravais) lattice L is the set of points

n
L:{x:ZO@&gGRn : Oél,OzQ,...,OZnEZ}.

(=1
The vectors ay,as,...,a, are known as the primitive vectors of L. Using ma-
triz notation, i.e., A := { ai ‘ as ‘ ‘ an ], we can abbreviate the notation

L(A):=AZ"=L
and call A the lattice basis.

Remark 3.2. One easily sees that (L,+) forms a group, i.e., 0 € L and for
xz,y € L we have x +y € L as well as —x € L.

15



CHAPTER 3. CRYSTALLINE STRUCTURES

An example of a 2-dimensional Bravais lattice is given in Figure 3.1. As it
can be seen, the set of primitive vectors spanning a lattice is not unique. In
fact, for any n-dimensional lattice L, n > 1, there are infinitely many different
sets of primitive vectors.

Lemma 3.3. Let L(A) and L(C) be two Bravais lattices. We have L(A) D
L(C) if and only if M := A~'C € Z™™. We call L(C) a sublattice of L(A).

Proof. First, let L(A) D L(C). For every unit vector e; there exist m; € Z",
such that

Gej = ﬂmj < ﬂ_IGej =m;.

HenceM:[ml‘mg‘...‘mn}:ﬂ_leeznxn.

On the other hand, let M = A~'C € Z"" and z € L(C), i.e., there exists
y € Z" such that x = Cy. We then have A(A'Cy) = z € L(A) due to
A 1Cy € Z" and thus, L(A) D L(C). O

Theorem 3.4. Let L(A) and L(C) be two lattices. We have the following
equivalence.

(i) L(A) = L(C).
(ii) A1C € ZVM and C-\A € 77"
(iii) There exists a unimodular matriz U, such that C = AU.

(iv) A and C have the same Hermite normal form.

Proof. The equivalences (i) < (i) and (iii) < (iv) are given by Lemma 3.3
and Theorem 2.5, respectively. The statement (iii) = (i) is clear due to
Lemma 2.3, i.e., U= A 1C € Z"" and U~! = C~' A € Zv™,

Regarding the statement (i7) = (ii7) we make the observation det(A1C) =

c(ii:tt((;)) € Z and its inverse det(C'A) = iztt((?)) € Z. Thus, both determinants

must simultaneously be +1 or —1 and hence C = AU with U := A 'C
unimodular. O

Remark 3.5. Theorem 3.4 especially states that L(U) = Z™ for every uni-
modular matrix U € Z™*".

The following theorem plays a key-role in the automation process of the
local Fourier analysis as we eventually want to find a matching description
of the underlying structure of two operators and rewrite their representation
accordingly.

16
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Theorem 3.6. Let L(A) and L(B) be two n-dimensional lattices. If there is
an integer r, such that

M =rA"'B 2™ (3.1)

then there is a lattice L(C) with L(C) C L(A) and L(C) C L(B) with | det(C)|
as small as possible. A lattice basis of L(C) is then given by

C = BTNy,

where Ng is a diagonal matriz with

r r
Ng = di o
= 128 (gcd(r, o) ged(r, an)>

and S = VIMT™! = diag(oy,...,0,) is the Smith normal form of M. We
call L(C) the least common multiple of L(A) and L(B) and write

L(C) = lem(L(A), L(B)).

Remark 3.7. An integer r such that equation (3.1) holds can always be found
if A and B are rational matrices. In the case of A, B € Z™", r = det(A) is
a valid choice due to the formula
1 _ 1
det(A)
The case M = r A—B ¢ Z™™ for all v € Z implies that that there is no lattice
basis C with L(C) C L(A) and L(C) C L(B).

cof ().

Proof. Due to Lemma 3.3, we need to find integral matrices Nz, Ng, such
that

L(C) = L(ANz) = L(BNg)

with | det(Nz)| and | det(Ng)| as small as possible. Making use of Theorem 3.4,
ie.,

L(B) =L(BV1), L(C)=L(Cl),
for any unimodular matrices Uy, V;, we can assume the equality
ANz = BUNg

for any unimodular U and Ny in Hermite normal form (cf. Theorem 2.5).
Plugging in the Smith decomposition VST of M = r A '® and defining
U:=T7" we find

Nyz=A'BT 1Ny
1
T

17



CHAPTER 3. CRYSTALLINE STRUCTURES

Both matrices

(Ng)i1 - (Ng)in % (Ng)ig - (Ng)int

Ng = :

T -
(N@)n,n (N@)n,naTn

have to be integral with
det (V)] = | TT(¥a)s | and |det(5N)| = | TT(N)s
as small as possible. It can easily be verified that
ks = o)

is the optimal choice for the diagonal entries. With this choice, the off-diagonal
entries (Ng); ; have to be integral multiples of (Ng);;. Due to the fact that
Ny is in Hermite normal form, the off-diagonal entries are zero. O]

3.2. Primitive cells

Definition 3.8. A primitive cell = = Z(A) C R™ of a Bravais lattice L(A)
is a (connected) volume of space that, if translated by all vectors of L, fills up
R™ completely without any overlap, i.e.,

Uger{z +& : £€Z} =R",
Sometimes = is called a tiling of R". A common choice for primitive cells is
given by
PA):=A0,1)" ={y eR" : y=> aar, 0 <y <1},
=1
i.e., parallelotopes spanned by the primitive vectors of L(A).
Another common choice is the Wigner-Seitz cell =,, which is the set of all

points whose distance from a central lattice point x € L is smaller than the
distance from any other lattice point, i.e.,

Bei={y €R": [z —yl2 < |7 —yllo, T € L\ {}}.}

The Wigner-Seitz cell is more widely used in crystallography as in addition to
to its independence of the primitive vectors, it inherits the full symmetry of the

IThis set actually only becomes a primitive cell if half the boundary is added.

18



3.2. PRIMITIVE CELLS

b) ) ) o 0 0 ) C
0 1
a, a,
m m m m m m m m m m

Figure 3.1.: A Bravais lattice, two different sets of primitive vectors A (©)
and AW as well as three examples of primitive cells. The Wigner-Seitz cell

=, reveals symmetries of the lattice which cannot directly be deduced from
the parallelotopes #(A () and P(AM).

Bravais lattice [19]. An example is given in Figure 3.1, where the Wigner-Seitz
cell shows an invariance under reflection along the horizontal and vertical axis
while the depicted parallelotopes do not reveal this property of the Bravais
lattice.

Remark 3.9. Regarding primitive cells we would like to note the following.

o A Voronoi decomposition of a lattice consists exclusively of congruent
Wigner-Seitz cells.

o Fwery primitive cell = inherits exactly one lattice point, i.e., [LNZE| = 1.

Theorem 3.10. All primitive cells = of a lattice L(A) have the same size.
Thus, its volume is given by vol(Z) = vol(P(A)) = | det(A)|.

Proof. We denote the characteristic function by 1z with 1z(x) = 1 if z € =
and 0 else. Since Z is a primitive cell, we have for every x € R" exactly one
y € L, such that 1=(z +y) =1 and 1g(x +y) =0 for g € L\ {y}. Thus, we
have

vol(Z2) = [1lz(x)dx = [ ¥ lz(x+y)dx
R™ P(A) yeL 0
= [ dz = vol(P(A)).
P(A)

19



CHAPTER 3. CRYSTALLINE STRUCTURES

3.3. Crystals

In this section we extend the above theory to crystals which is not just an
infinite repetition of one single point, but instead an infinite repetition of
an arbitrary structure. Without loss of generality we restrict the structure
elements to primitive cells of the lattice.

Definition 3.11. Let L(A) be a lattice and s € Z(A)™, m € N be the struc-
ture element. A crystal is defined by the set of tuples

L*(A) :={(z + 51,2+ 859,..., 2+ 86,) : © € L(A),5 = (51,...,5m)}

We abbreviate the notation of the elements of L*(A) with x + s = (x + 81,z +
52,...,I+5m).

Remark 3.12.

o Fuvery lattice is a crystal with the structure element being a single point,

i.e., L(A) = LO(A).

o We denote the structure elements as tuples instead of a set of points, since
we want to study value distributions on crystals and particular operators
which manipulate them. For this purpose, the order of a structure element
is of importance.

3.4. Quotient spaces

Given a sublattice L(C) C L(A), we obviously have that (L(C),+) is a sub-
group of L(A). Thus, we can consider the quotient group or factor group

LA fue)-

One can interpret this as a finite sample of L(A) corresponding to a primitive
cell of L(C) where opposing boundaries are identified. As we can fill up the
space of this quotient space completely by an integral number of primitive
cells P(A) without any overlap, it makes also sense to consider

) i),

For quotient spaces we have two different applications in mind. The primary
purpose is, that it allows us to turn an infinite dimensional setting, a crystal
or lattice, to a finite one. This is discussed in more detail in Chapter 4. Addi-
tionally, in the automation process of LFA, we rewrite crystals and operators
on crystals with respect to a coarser (least common) sublattice. The notion
of quotient spaces helps to implicitly define an appropriate structure element
as we will see in this section.
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3.4. QUOTIENT SPACES

Definition 3.13. Let L*(A) be a crystal and L(C) C L(A) be a sublattice.
We define the crystal torus T% o by

T;z,e = L3(A) /L(G).

For every x+s € L%(A), their equivalence class [x+s] is in 1% o. Furthermore,
the elements of T% o are defined by the equivalence

[t +s]=[y+s] <= there exists z € L(C), such that x =y + z.

Remark 3.14. We may call Tﬁ?}e a lattice torus and just denote it by Tz c.

Remark 3.15. The number of elements in T% . are equal to |det(A~'C)
due to

vol(P(C det(C _1
‘L(ﬂ)/L(@)’ = vol((@((ﬂ)))) = ]|det((ﬂ))‘\ = ’det(ﬂ G)‘

For theoretical and practical reasons, e.g., in Theorem 4.3 and Algorithm A.3,
it is necessary to be able to list all elements of a torus 7% _z,, = {[z] € T% 4 -
r€PAM)NL(A)}, M € Z™™, uniquely.

Example 3.1. To illustrate this point, consider an arbitrary lattice L(A) with
A € R¥*2 and the lattice torus Tz 7y with

2 3

M= [my m] = lz -2

] , MMy, Mo € 227

as depicted in Figure 3.2. Even though we know that the quotient space consists
of |Ta.am| = |det(M)| = 10 different elements, there is no apparent canonical
list of these elements. We briefly interrupt this example in order to show how
such a canonical ordering of lattice points on a torus can be formulated using
the Hermite or Smith normal form of M.

Theorem 3.16. Let Tz ¢ be arbitrary, i.e., C = AM for some M € Z"*".
o Let H € Z™*" be the HNF of M with entries H;; (cf. Definition 2.4).

Defining the index set [ = Iy x Iy x ... x I, by I, :={0,1,..., Hy — 1},
we then obtain

with [%’j +5] 7£ [.%j/ +5] -~ j?éj/ el
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CHAPTER 3. CRYSTALLINE STRUCTURES

Figure 3.2.: The Hermite normal form H and the Smith normal form S of M
yield lattice bases which allows us to define a canonical lexicographic ordering
of the lattice points of a crystal torus Tz am = Ta.an = T3 z5-

o Let S = UMV € Zv™" denote the Smith decomposition of M with
diagonal entries o; (cf. Definition 2.8) and unimodular matrices U,V .
Defining the index set I =1, x Iy x ... x I, by I, :=={0,1,... 00— 1},
we then obtain

T5e={lzj+5] : xj=Aj, jel}

with [x; + 5] # [z +5] & j#j €1, where A := AU denotes the
altered lattice basis.

Proof. Both statements are a direct consequence of the triangular or diagonal
shape of the normal forms and Theorem 3.4, i.e., lattices are not changed by
unimodular column transformations. On the one hand we have

j?{,e - j?,ﬂM = Tj?,J(H‘

The second statement follows from AS = CV and hence

S _ S5 _ 5
AC — TﬂU,GV - Tﬁ,ﬁS' .

Example 3.1. We continue with Example 3.1 by applying Theorem 3.16 which
yields:
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3.4. QUOTIENT SPACES

e The Hermite normal form H of M is given by

5 2

H=[h h)= [0 )

] , hl,hg € Z2.

Thus, a unique list of all representatives of T’z _an s given by

Taam =Tran = {[z] = a1 + jaaz] : 71 €10,1,2,3,4}, jo € {0,1}}.

e The Smith decomposition of M is given by

S I[Sol SOJZ[(I) 100]:[—411 —ﬂMH _gl

Thus, another unique list of all representatives of Tz anm is given by

Taam =Tz 75 = {[z] = [1G1 + jado] : j1 € {0},72 € {0,1,...,9}},

where A = {&1 &2} =A [_i _ﬂ

All tori representations Tz anm, Taan and Ty 74 are depicted in Figure 3.2.

In the remainder we drop the bracket notation for reasons of readability.

Besides the fact that the primitive vectors of a lattice are not unique, a crystal
can further be rewritten with respect to another coarser (sub-)lattice. This
statement is captured in detail in the following theorem.

Theorem 3.17 (Rewriting a crystal with respect to a sublattice).
Let L*(A) be a crystal and L(C) C L(A) a sublattice. Denoting Tze =
{t1,..., t,},% the set

E(C)={z+0€R": € P(A),ze{ts,...,t,}}
defines a primitive cell of L(C), and the tuple
u = (tl +51,...,t1 +5m,t2 +51,---7tp+5m) EE(G)pm

defines a structure element of L*(C) such that L*(C) = L*(A), meant as a
one-to-p correspondence.

2Recall that a unique list of representatives Tre ={t1,...,4} can be found via Theo-
rem 3.16.

23



CHAPTER 3. CRYSTALLINE STRUCTURES

O:OOO:OQO:OQO:OLOU G Lovojg

30303029 i
0000 Q o o) o

@0 0 OQOAOQO Qoo o7 o7 o7 Q\fi

Figure 3.3.: Two different representations of an infinite repetition of some
structure. Left: A crystal represented by L°(A) with a structure element
of size 2. Right: The same crystal represented by LT%»G(G) with a structure
element of size 4.

ol o9 9o
o oP 0©° oo
oL o9 ¢ - o

Proof. Without loss of generality we may assume t; € P(C), j = 1,...,p.
Then, each element in L*(A) can be written as

z=(Ax+51,...,Ax + )

and there is a unique y, such that Az = Cy = Cly| + C(y — |y]) with
Clyl e L(C)and C(y— |y]) =t; € P(C)NL(A). Thus, we find z as a unique

part of the element
Clyl] +u=_(..,Clyl+t+s,...)0=(..,2,...).

This argument works in the other direction in the same way. O

In order to make the following presentation as comprehensible as possible we
opt to write L™ (€) instead of L*(C) as defined in Theorem 3.17.

This theorem is illustrated in Figure 3.3, where a repetitive structure X is

~J

represented in two different ways. On the left it is represented by L°(A) = X

~Y

with a structure element of size 2. On the right it is represented by L%7.c(€) =
X, where the underlying lattice is a sublattice of lesser density L(C) C L(A)
and a structure element consisting of all 4 points found in one primitive cell of
L(C). A classification of X with a denser lattice than L(A) and/or structure
element of smaller size than 2 does not exist.

Remark 3.18. Due to Theorem 3.17 we also have

Tz = L*(A /L =~ L1e(6) /L(Z) -

as long as L(Z) C L(C) C L(A).
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3.5. The dual lattice

For the analysis of operators on lattices/crystals as introduced in Chapter 4
the concept of the dual lattice comes in handy.

Definition 3.19. Let L(A) be a lattice. Its dual lattice L(A)* is the set
L(A)" :={keR" : (k,x)y € Z for all x € L}.
The elements of L(A)* may often be referred to as wave vectors.

Lemma 3.20. The dual lattice L(A)* = L(B) is given by B := (A1)T. The
primitive vectors 61,6, ...,6, € R" of L(B), i.e., the columns of B, fulfill the
condition <6Z',Qj>2 = (Sij; ’l,j = 1, 2, o,

Proof. Let x € L(A) and k € L(B) be arbitrary. There exists A\, x € Z", such
that © = A\ and k = Bk. The inner product of k£ and x is

(k,z)o = (B, ANy = (k, BT AN)y = (k, (A1) AN)y = (K, \)2 € Z.
Thus, we have L(B) C L(A)*.

For the other direction let k € L(A)*. There exists a unique k € R™, such
that Bk = k. Then

Z > (k,Ae)s = (Br) ' Ae; = kT A Ae; = Ky,
where e; denotes the ith unit vector. Hence k € 2", i.e.,, L(A)* C L(B). O
Remark 3.21. Regarding the dual lattice, we like to point out the following:

o Many different names are commonly used for the Bravais lattice L and
the dual lattice L* depending on the context. The former is also referred
to as the direct lattice, primal lattice or position space. In a physics
context it is more common to use the reciprocal lattice (also known as the
phase space) instead of the dual lattice which is simply a scaled version
of the dual lattice defined by (6;,a;)e = 2md;;. The Wigner-Seitz cell of
the reciprocal lattice is known as the first Brillouin zone.

e The dual of the dual lattice is again the direct lattice as (A~T)"T = A,

e The volume of a primitive cell of the dual lattice is equal to the reciprocal
volume the direct lattice, i.e., vol(P(A~T)) = vol(P(A))~ .

o The dual of a lattice torus is given by

Tz = (L0 fuz)) =L@ fuay-

An illustration of a lattice torus T'z z along with its dual T7 5 is given
in Figure 3.4.
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Figure 3.4.: A lattice torus T’z z (a) and its dual torus 7% 5 (b). In here, the
lattices bases are denoted by A = [ ai ‘ as } , L = { 51 ‘ 52 } and AT =

latlas ]|, 277 =515 |
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Chapter

Operators on lattices and crystals

LFA is usually understood as an idealized analysis of operators on repetitive
structures by neglecting boundary conditions and considering an infinite do-
main. To some extent this perspective justifies the analysis of methods which
can be described using a (constant) stencil for all unknowns which do not lie
at or near the boundary, as it is the case for lexicographic Gauss-Seidel type
smoother (cf. Section 5.2). However, this point of view has some drawbacks.
We only work with operators as part of numerical simulations, i.e., we face
only a finite numbers of unknowns/lattice points anyway. Furthermore, an
exact mathematical theory in an artificial infinite setting is unnecessarily com-
plicated and, from this point of view, we do not have a one-to-one connection
to an actually implemented method.

Thus, in this thesis we restrict ourselves to a finite setting by considering
quotient groups of crystals

2z = L*(A) /L(Z)

with L(Z) C L(A) being an arbitrary sparse sublattice of L(A). The main
purpose is to simplify the theory. Additionally, we always have a one-to-one
link to a finite problem with periodic boundary conditions. Occasionally, in
case we do not want to specify Z explicitly, we may use the term Tz to
describe arbitrary large but finite tori 7'z z, L(Z) C L(A).

4.1. Function spaces

Let us now elaborate on the function space of such quotient groups in order
to describe value distributions and operators which manipulate them.
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CHAPTER 4. OPERATORS ON LATTICES AND CRYSTALS

Definition 4.1. Let T% ; = L*(A) /L(Z); s € Z(A)™. We equip the func-
tion space

°C<T;l71) = I(Tﬂ’z, Cm) = {f = (fl, R fm) : Tﬂ’z — Cm}

with the scalar product

fog) = 5 (@) 9@

- |Tﬂ’z| z€T 7 z

where the summands (f(x),g(x))e := Yy2q fe(x)ge(z) denote the Euclidean
scalar product on C™,

Remark 4.2. In the above definition each function f; corresponds to the
values on the shifted sublattice (T'z z + 5;) even though the argument of the
function does not reflect the additional shift by s;. Another possible definition
would be

A A A

LT52) == 1 fn): [ (Taz +5s;) — C}

which would clarify this issue, but then again this approach would get inconve-
nient later on.

Theorem 4.3. The functions

2mi(k,)

e 2. Tﬂ;; —C, ke T;Z,I

(i) are well-defined and
(it) form an orthonormal basis of L(T7z) ={f:Taxz — C} wrt (-,-).

Proof. Without loss of generality we assume that S = A~1Z € Z™" is in
Smith normal form with diagonal entries o1, 09, ..., 0, (cf. Theorem 3.16).

Regarding (i), let z,y € L(A) with  —y € L(Z), ie., [z] = [y] € Taz.
Then there exists a z € Z", such that * — y = Zz = ASz. Furthermore, let
k] €Ty 2 =Tz-v g7, i, k= Z Tk = A"TS Tk for some k € Z". Then,

627Ti(k,x—y> 21i{ A" TS Tk, ASz) 2mi(K,2)2 1

2 — ¢ 2 — ¢

Hence, e?m k202 — 2milkv)2 if (7] = [y].

Regarding (ii), we first observe that the number of wave functions is equal to
the number of lattice points due to

| det(Z)]

Tra| = | det(a"T)]
AT T det ()]

= |det(5)| = det(Z )| = |T7 zI-
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Now let k', k" € T% 5 be arbitrary. By defining k& = &’ — &” the scalar product
can be rewritten as follows

<€27ri<k’,->2 627T’L'<k’//,‘>2> _ 1 Z e27ri<k,x)2.

’ |Tﬂ"z‘ IET]7Z

For k = 0 we obviously get

1

. 1
2mi(k,x)o —
e =i > 1=
|3ﬂ,z’ z€T 7.z ‘ ﬂ,zl z€Tq,z

Thus, we assume k # 0 and show that this sum equals zero. Using @ := Z~7
and the fact that S is in SNF, we have

Taz="Tazs={x=>_jeac: (j1,J2.---,Jn) € I},
=1

T;l,Z = Tsz’jlfT = T@,@S = {k = Zk‘g(ﬂg : (k’l, k’g, .. ,kn) S ]},

where the index set [ = I} X Iy X ... x I, is defined by I, := {0,1,...,00— 1}
for all ¢ (cf. Theorem 3.16). Furthermore, the columns of @ = BS~! are

simply given by ¢, = 0, '6,. Now let x denote the smallest index of a nonzero
coefficient of k, then the wavevector k can be expressed as

kZZk(&gZZkgO'Zlﬁg:kHO';l&c—f— Z k’gO’ZIBZ.
l=kK {=k+1
Using this representation of k in the initial scalar product, we get

1 2mik,z)2

e

[Eas xeTﬂl

n op—1

Z Z 27 kZ§ ljgag

n op— 1
Z Z 2milkkog [*@+Zg o1 k‘CO' lvc Zg 1]50.5

51]50

!Tﬂ

n op—1

Z Z 2T Beo g beicac)s | 2milkuoy b a2

1 O'g—l or—1
— Z Z 2™ Oty keog HBesicac)2 Z o2milkno brjnan)z |

Jr=0
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Finally, using the geometric sum formula! as well as the fact that k, €

{1,...,00 — 1} C Z, the innermost sum can be rewritten to
(J’g—l ox—1 X ]
. —lg 2miky K
Z 627”(’{:“0.” brrar)2 = Z |:€( oK ):| =0. ]
j=0 =0

Theorem 4.4. An orthonormal basis for the function space &L (1% 5) is given
by the wave functions

e1 = (e2mitk)2 0,0,...,0),
= (0,e?mik)2 0 0),

€2k

Cmk = (07 07 S 707 627ri<k7‘>2)7
with k € T% z and 5 = ($1,...,5m).

Proof. The basis functions e;, k € T ; form an orthonormal basis of the
lattice torus oL (17,z + 5;) due to Theorem 4.3. Thus, it is clear that these
functions ez, j = 1,...,m, k € T% 5 form an orthonormal basis of oL (1% 5 ).[]

The orthonormal basis of Theorem 4.4 can be split into subsets with respect
to the wavevector k.

Definition 4.5. We denote the m-dimensional space of harmonics of the func-
tion space £L(1% ) by

Hy =span{e;r : j=1,...,m},

where e, denotes the wavefunction as specified in Theorem 4.4. Thus we find
UkeT;}’Z Hy, = °C<Tj7(,z:)-

The basis we use is particularly simple in terms of its theoretical utility and,
as we will see later-on, its practical application. Each space of harmonics
Hy, is spanned by the basis which consists of m = |s| wavefunctions with
frequency k, where each single one only takes values on a certain torus Tz z+s5;,
g=1...,m.

Now recall that for each crystal T% , and a sublattice L(C) C L(A) there is
a congruent crystal representation 7¢ ; = T% o, u = T%  according to Theo-
rem 3.17. This theorem further implies a congruence of the function spaces

L(T72) = L(TE 2)

given by the following natural isomorphism.

122;3 rb = 1= for p £ 1.

1—7r
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Y

Definition 4.6. Let T% , = T¢  be two representations of one crystal with
L(C) CL(A) andu= (t; +51,...,ts + 5, to +51,..., 4, +5,) =T5 0. The
natural isomorphism 7 : L (T% ») —+ &L (T8 ) between these two corresponding
function spaces is given by

L(T72)2 ()= W) =C+4),. . O +4)) € LTE 2)

as (f) and (nf) describe the same value distribution on the crystal.

Remark 4.7. This natural isomorphism implies that the coarsest possible
crystal interpretation is simply the complex coordinate space

C"P = L(Ty ) = L(T5 )

with p := [Tz z|. Note, that the scalar product on L(T% ) is equal to the
Fuclidean scalar product on C™ up to the factor p.

According to Definition 4.5 an orthonormal basis of the spaces of harmonics HS
of L(T¢ 7) is given by ejcfj w- Applying the natural isomorphism of Definition 4.6
to the orthonormal basis efk of the spaces of harmonics Hy' of £L(T% ») yields
another basis of Hy as it lifts the functions from «£(T% z) to £L(T¢ 7). The
following theorem shows that this basis is orthogonal and answers the questions
how these two bases are related.

Theorem 4.8. Let T% ; = T¢ 5 be two representations of one crystal with
L(C) CL(A) , 8 =(s1,...,8m), t=(ti,...,4,) = Txge and (ug,... Uy,) =
(t1+s,...,t,+s). Let us further denote the corresponding spaces of harmonics
with H' = span{ef}, : j =1,...,m} and Hi = span{e$, : j =1,... ,mp}.
Then, for each k € T¢ 5 we find

Hy =span{nefy .y, : ki € The, j=1,....,m}.

This set of basis functions nefk +, s indeed orthogonal. Thus, another (ordered)

orthonormal basis of HS is given by the columns of the block matriz E =
l(Ei,j)i,j with

p

EiJ — diag(€2ﬂ'z<k+kj,-+ti+51>2’ 627T’L<k+kj,-+ti+52>2, . ’627T’L<k+kj,-+ti+5m>2>'

where (ky,..., ky) =T c.

Proof. Note, that the columns of E correspond to nefk 4k, up to the scaling
p. Furthermore, by using ¢*™*#2 = 1 for all x € Te z and k; € T ¢ this
statement can be proven analogously to Theorem 4.3. O]
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(b)

Figure 4.1.: In (a) two representations T}?) =T t= (t,to,t3,t4) = Tre,
C = 2A4, of the same crystal are depicted. In (b) the corresponding dual space
is depicted. The transition from £ (Tf’g) to L(T¢ z) in position space is a
superimposition in frequency space such that the spaces of harmonics H kﬂ+k¢
of L(T }?’)Z) collapse to the space of harmonics Hy of £L/(T¢ ).

This theorem basically tells us that the transition from £(7% ) to £L(T¢ z)
in position space is a superimposition in frequency space such that the spaces
of harmonics H, ;. collapse to Hi. This connection is illustrated in Figure 4.1
for € = 24 and s = (0). As already stated, each (block-)column of the
ordered basis F of Theorem 4.8 is simply the result of the application of the
natural isomorphism 7 to the wavefunctions efk vk Laz — Clkl and thus,
this basis is still connected to the primal frequency k +k; € T o, k € Te z.

This lifted basis ne/’, is commonly used in conventional LFA (cf. [47]). It is
especially useful in what is known as a smoothing analysis, which is explained
in detail in Section 5.5.

Independent of the particular choice of basis for the spaces of harmonics, we
further need the Fourier transform of value distributions on crystal tori for
theoretical purposes which is defined as follows.

Definition 4.9. The Fourier transformation & : L (Tl7z) — £L(17% z) is

defined by
1 .
Z f(x)€727r1(-,:v>2 )

‘Tﬂ,zy S -

JO) = (@00 =

It is a bijection and the inverse Fourier transform is given by

S Fherniteon

VI z| ket ,

O =G0 = ———
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Proof. We have

LS Jeiton || h)

\V T2,z keTy, o

(F(F)K) =

A,z
o 1 T 2mi{k—k,x)2
A,Z lEeT},Z z€T7,z
= > (k)6 = f(k)
keTs, ,

for every k € T% 5 due to Theorem 4.3. Obviously (¥ ~'F f)(z) = f(z) has to
be true, since we can just exchange the roles of the direct 7% , and the dual
lattice (T% 2)* = T'a 2. O

Definition 4.10. The Fourier transformation & : £L(T% z) — £L((T% 2))
for value distributions on crystal tori is defined componentwise

gaflz(gfl,...,gfm), f:<f177fm)€£(qu,Z)

4.2. Operators
In this section we take a look at specific operators L which alter value distri-
butions f € £L(T% ) on crystal tori.
Definition 4.11. A lattice-operator is a linear function
L: OC(TjLz) — £(Tﬂ7z),

where

is the set of all value distributions on a lattice.

Definition 4.12. A crystal-operator is a linear function

L= (Li,La,...,Ly) L(T% ) = L(T4 ),
Fes Lf = (Li(f1, oo f)s e os Ln(fry oo f))e

We call the linear functions Lj : L(T% z) — £(Tj}{’z) subcrystal-operators

which alter value distributions f; € I(T;jz) = L(T'7z) associated to the
shifted lattice tori Tz z + t;.
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Remark 4.13. e FEvery lattice-operator L : L(Tzz) — L(Trz) can
always be seen as a subcrystal-operator L; via Lj(f1, fo, ..., fm) = Lf;.
On the other hand a subcrystal-operator may depend on all subcrystal
functions (f1, fa, .., fm), thus it can in general not be seen as a lattice
operator.

o Whenever we apply a lattice-operator L : L(Tzz) — L(Taz) to a
crystal-function f = (f1,..., fm) € L(T% ), it is meant componentwise,
i.e., we have Lf == Lf where L : &L ( %.z) = L(T% 2) given by Lf :=
(Lfi,Lfa,...,Lfm).

In the context of local Fourier analysis we are interested in operators which
can be represented in (block) stencil notation. That is, translationally in-
variant operators that can be written as multiplication operators. These two
properties are in fact equivalent as it is a well-known result from functional
analysis (cf. [44, Theorem 3.16]). In this section we give a proof for this
theorem fitting our setting and notation. In order to proof this statement we
further show another important result, namely that the spaces of harmonics Hj,
(cf. Definition 4.5) are invariant subspaces of translationally crystal operators.
This immediately provides information about the spectrum of these types of
operators.

For each a € L(A) a translation operator is defined by
Ta : I(Tﬂ) — °C<Tﬂ)>Taf() = f( + a)'

We can express an arbitrary translation operator by concatenating transla-
tions of primitive vectors. Due to a = 3, jeas, we have T, = T/ ... Tin,
These primitive translations lead to the definition of translationally invariant
operators.

Definition 4.14. Let L : L(T%) — L(T%) be a crystal operator. It is called
(A - )translationally invariant if it commutes with every translation by a prim-
1tive vector, i.e.,

LT, — T,L =0 for all primitive vectors a of L(A).

Lemma 4.15. The eigenfunctions of an A -translationally invariant lattice-
operator L : L(Tr,z) = &L (T7,z) are *™*02 ke Ty .

Proof. Due to Theorem 4.3 we know that the wavefunctions form an orthonor-
mal basis of L (17 z), i.e.,

L (T7,z) =span {22 o b =3"kby, (ki,...,k,) € I},
/=1
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4.2. OPERATORS

forsomeset I = Iy x---x1I, C [0,1)". Let k = >}, keby for some (kq, ..., k,) €
I be arbitrary. We can rewrite the application of L on a wavefunction by

27r2 Yo __ Z ay, e27rz (K',) (41)

k'el

for some oy, € C. On the one hand we have

2mi(k, Yo __ 2mik! Yo 27rzk 27rz<k’ )
To,Le Z apTge Z Qe
k'el kel

On the other hand we find
Taj LeQﬂi(k,-)Q _ LTaj 627ri<k,~>2 _ L€27rikj 627ri(k,-)2 _ 627rikj (L62m<k">2)7
and, by inserting equation (4.1) we get

- . - e . o
€2mk] (L627rz(k, >2> _ 627rzkj Z ak/€2m<k )2 Z ak/€2wzk] 627rz(k , >2‘
k'el k'el

Thus, for every £’ we have

2mik; 2mik’

. ik 2k’
e = ™R = (e — TR = 0.

Hence, we must have oy = 0 whenever k; # k) (due to k;, k; € P(B), B =
A~T). Since j was arbitrary, we find

L627ri(k,-)2 — O{k€2m‘<k7.>2- ]

This statement can be extended to translationally invariant crystal operators.

Theorem 4.16. Let L : L(T% ;) — L(T% z) be an A-translationally in-
variant crystal-operator. Then, for each subcrystal operator Lj : L(T% o) —

L(T5 ), j€{l,...,m}, we have
Li(esy) € span{e? i)z}

for every £ € {1,...,m}, k € T% 5. Thus Hy = span{e;;, : j=1,...,m} is
L-invariant, i.e.,

Proof. We restrict ourselves to a single component of L, i.e., a subcrystal
operator L; : L(1% z) — £L(T'7,z) associated to 1T’z z + s;. We have

Ljeor = L;(0,...,0,e* k2, Z a2k

for some a ‘ecC. Now, in a very similar manner to the proof of Lemma 4.15,
we eventually obtain Ljeq ), = af'e®™#)2 for every (. Hence, L(Hy) C Hy. [
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CHAPTER 4. OPERATORS ON LATTICES AND CRYSTALS

Due to this theorem we are able to make a connection to multiplication
operators, which are formally defined as follows.

Definition 4.17. A multiplication operator L : r,C(T}( z) = L(T%2), |s] =

m, |t| =n, is defined by multiplication matrices m ) e Cvm yeTqz, such
that

L) = > mPfa+y)
y€l 7 z
foreach f=(f1,.... fm)" €L(T%2) and x € Txz.
Theorem 4.18. Every A -translationally invariant crystal-operator
L I(Tj?(,z) - °C(Tj'fz,;z:)
is a multiplication operator and vice versa.

Proof. 1t is easy to see that a multiplication operator L with multipliers m(Ly) €
C™*™ is translationally invariant. We have

(T.Lf) () = (Lf)(z +a) =Y m flz +a+y)
yeL
as well as
(LT, f)(z ZmL S +y) = Zm flx+a+y).
yeL yeL

In order to see that a translationally invariant operator is a multiplication
operator we make use of the Fourier transform

. 271'2 °CT5
f() \/@ke%zf ’e ( Jl;ZZ)

with

T, —27rz J;TEZ*:J:T*,Cm
f() \/mme%zf s (( A ) ) (( ﬂ,Z) )

to obtain

(FT.f)k)=F S Fk)ermithtoz | (k)

\/ |Tﬂ z| ket ,
Z Z f 27rz k,x+a)2 —27ri(fc,ac>2

|Tﬂ7z| z€Tgz \ k€T 4

(4.2)
2627ri<fc,a>2 1 Z (}'(k) Z eQﬂ'i(klAc,z#»a)g)

Tzl keTy o x€Tr,z

262ﬂi<fc,a>2 Z (}'(k)ékk)

KETY o

_ 627”‘(1},@)2(94]0)(]%) _ 627ri<l;:,a>2}(]%).
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Furthermore there exist numbers aff € C due to Theorem 4.16 such that

Liecx = ad€e2mitk: (4.3)
for each j, and
fa) = 1 }-(k)€2m(k )2
Taz| ket ,
= 2 (BB ke (44)

W

Using equations (4.2) to (4.4) we find

1 m N
(Lif)(7) = ——— > Lijecr(x)f (k)
Tr,z| ket , c=1
1 moo. A R
_ Z Oéi;<€2m<k7x>2 f((k;)
Tr,z| ket , c=1
1 mo
= Sl (FTofo) (k)
Tr,z| ket , c=1
1 LU
= > Yt (Fhl+ @)k
Ta,z| ket , c=1
1 mo .
- S D SNATRSEE
|Tﬂ,I| kET} z ¢=1 yGTﬂyz
¢ 1 1, _—2mi
=Y S hlyta) e ¥ affenits
y€Tx,z (=1 \/ |Tﬂ,z| keT? o

Now, using colon notation?, we have

(Lif)(@) = > (mP);.f(z +y)

y€Tq z

with .
o

7y
VI z| ket ,

and we are able to rewrite the application of L by

(L)) = (Laf, .. Lnf)

2 A, . refers to row i, A. ; refers to column j of a matrix A.
1, ’ 5J J
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= 3 (M) S+, (mP)e Sz +y)

y€Tl 7,z
My o mP)im] [z +y)
P ) (M) nd (T +Y)
= 3 P f@+y). O

y€Tlq z

Due to the fact that the subspaces Hj are L-invariant, we can easily represent
any A-translationally invariant operator via its symbols.

Definition 4.19. Let L : L(T% ;) — L(T% 2) be a multiplication operator
with

(LA @) = S mP fz+y), mY e clixl,

y€T 7 z

We define the symbol of L by

L= > m(Ly)m,(gy) with m,(cy) = e2milky)z,
y€Tlq,z

In case s = t the spectrum of L can then be extracted from its symbols Ly.

Corollary 4.20. Let L : L(T% ) — L (1% z) be a multiplication operator
with

(LA)(@) = S mPfz+y), mY e cllixll

y€Ta z
Then spec(L) = Ugers _ spec(Ly).

Proof. Follows immediately due to the orthonormality of the basis ey (cf. The-
orem 4.4) and the L-invariance of the subspaces Hy (cf. Theorem 4.16). [

Remark 4.21. As already stated in the beginning of this chapter, the main
purpose of Z, i.e., the set of primitive vectors that define an arbitrary sublattice
L(Z) of L(A), is to simplify the theory developed in Section 4.2 by turning an
infinite dimensional setting (a crystal L*(A)) to an (arbitrarily large) finite
one (a crystal tori T% ). Then, in Corollary 4.20 Z explicitly specifies the
resolution of the frequency space as seen in Figure 3.4, i.e.,

Thz=LEZ ) NP,

where the spectrum of the multiplication operator is sampled. Due to the recip-
rocal nature of the dual space, the larger | det(Z)| is, the finer the resolution
becomes. This corresponds to a one-to-one link to a finite domain with periodic
boundary conditions.
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4.2. OPERATORS

We illustrate these results with an example.

Example 4.1. Consider the discrete Laplacian (cf. Ezample 1.1) on T% o
with
110 1
Z:[01‘|, ﬂ:hZ:[al‘aQ}, hENGTLdSZ(O),

given by L[A, 5] : L(T% z) — £L(T% z) with nonzero multipliers:

(61) _ 1

mL[ﬂ,ﬁ] - T h2
(—az2) _ 1 (0) _ 4 (a2) 1
mL[ﬂQ,s] — Tz Myas — B2 mLQﬂ,s} - T2
(=a1) _ 1
mL[]ll,s] - TR

A plot of this stencil is given in Figure 4.2a. We can compute its symbol
according to Definition 4.19:
1 . ) . .
(L[ﬂ,ﬁ])k — ﬁ(ll . €2mk1 o 6727mk1 o e27rzk2 . 67271*1]{2)

2
= ﬁ@ — cos(2mky) — cos(27ks)).

The complete spectrum spec(L[ A, s]) is given by the set of all scalar symbols
(LA, s])x with

ke (Trz) =2@BY)nZ2=8W0,1)2nz? @Y =7aT= l g 2 ] :
cf. Corollary 4.20. Thus, the spectrum can be plotted with respect to the
wavevector k € T 5 as shown in Figure 4.2b. In here, we used a spacing of
h = 1/64 resulting in 64% symbols or eigenvalues.

Remark 4.22. The symbol Ly of a multiplication operator L : L(T¢ ;) —
L(T¢ 2), 5 = (u,...,u.), is the transformation matriz of the linear transfor-

mation L|y, : Hy — Hy with respect to the ordered basis {elyk/, €k er,k}
of Hy, cf. Theorem 4.4. The computation of this symbol is particularly easy
as it is simply the sum over all multipliers m(Ly) times a specific phase in

dependence of the position y.

Recall Theorem 4.8, i.e., let T% o = T¢ o be two representations of one
crystal with L(C) C L(A) , s = (81,...,8m), t = (t1,...,t,) = Tz and
(Ug, ... Upp) = (b +5,..., 4, +5). Then, another ordered orthonormal basis
E of Hy, is given by Theorem 4.8. The symbol of L|g, with respect to this new
basis is then given by L, = E'L,E. This change of basis plays an important
role in the so-called smoothing analysis which we are going to use in Sec-
tion 5.5. Note, that in case the underlying operator L is A-translationally
invariant, the matriz Ly, is block diagonal.
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\ Pmax — 8

r? - spec((Lix,&)k)

|
R

(a) L[.ﬂj, 5]7 L(T7) —L(Tx) (b) Eigenvalues of (L[A,s])

Figure 4.2.: (a) A schematic representation of the discrete Laplacian L[A, s].
(b) A plot of its spectrum with respect to k € (T'7,z)*.

4.3. Automated Local Fourier Analysis (aLFA)

Up to now we introduced notation and derived some general statements about
individual multiplication or translationally invariant operators. Using this, we
are able to fully analyze a single multiplication operator. However, we are
often interested in analyzing a composition of several operators using LFA.
Such a composition of operators typically corresponds to an error propagator
of an iterative method as we will see in Chapter 5. In this section we deal
with compositions of multiplication operators in two steps.

First, we give rules of computation on the level of multiplication operators
and on the level of their symbols under the condition that the corresponding
domains and codomains are compatible.

Second, we derive statements to automatically make codomains and domains
compatible in order to allow for a user friendly description of all occurring
operators. That is, it should be possible to describe operators in terms of
their individual translational invariance and ordering of the structure element
without having to worry about compatibility issues with other operators on
the input level of the analysis. These statements make up a large part of the
automation process of this framework. The algorithms corresponding to these
statements are listed in Appendix A.

Compositions of multiplication operators

Calculus of multiplication operators plays a key-role in local Fourier analysis.
In this section we list all elementary operations, such as addition and multipli-
cation. As long as the corresponding domains and codomains of multiplication
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4.3. AUTOMATED LOCAL FOURIER ANALYSIS (ALFA)

operators are identical we can use the following rules of computation on the
level of multiplication operators.

Lemma 4.23. Let two multiplication operators be given by

L:L(Thz) = L(Thz), (LH@)= > (y)f(x + ), m(Ly) € Cltixlsl,

y€Tl 7,z
G:oL(Thy) = L(T52), Gf)a)= 3 mPfr+y), mY e Clixh,
ye€Tz z

Then the following operators are multiplication operators as well:

(i) If s = u and t = v, then L+ G : L(T% 3) — L(TY ;) with m%ﬂ)_(; =

m(y) + m(y)

(i) Ifo = s, then L-G : L(T% z) = L(T ) withmPr, = ¥ mP-m&.

ytw=z
(i) The adjoint is given by L* : L(T% ) — L(T% 2) with mi) = (m([y))*.
Proof. Straight-forward calculation yields:
(i) (Lf)(x) + ZmL x+y)+2y:m(ay)f($+y)
— Z (y) (y) Vflz +y).

(i) [L(GHI(x) =Y. mP S me fla+y+w)
=Z[ > m%”mg“)]f(wz).

z ytw=z

(iii) L* is the unique operator such that (Lf,g) = (f,L*g) for all value
distributions f € L(T% ), g € L(T% ). Thus,

Tazl-(Lf.g) = > Y (m’flz+y) g(x)):

xETﬂ z yETJl Zz

= Y Y (flaty). mP)gl@+y—y)

€17 7z y€Ta x

= 3 (f2), Y (mE ) gz + w))

z€T7,z weTln,z

= 3 (f(2), S mig(z +w))e
ZGTﬂyz wGTj[,z

= |Tazl-{f,L*g).
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We further show computation rules on the level of symbols (cf. Definition 4.19).
While computing the sum, a product and taking the transpose can easily be
done on both levels, taking the (pseudo-)inverse is simple only on the level
of symbols. The (pseudo-)inverse of a multiplication operator may have an

arbitrarily large number? of multipliers m%_)l # 0 and thus there is no simple
rule to compute it.

Theorem 4.24. Let two multiplication operators be given by

L:L(T5z) = L(Thz), (L) = Y mf fle+y), mi eClixl,

y€Tlq,z
G: L(Th7) = L(Thz) (GH)= > m fle+y), m e Clb
y€lq z

with corresponding symbols Ly and Gy. Then we have the following statements.

(i) Assuming that s = u and t = v, the symbols of L + G are given by

(i) Assuming that v = s, the symbols of L - G are given by Ly, - G.
(iii) The symbols of L* are given by L.
(iv) If L|g, is nonsingular, then the symbol ((L|g, )~ ")k is given by (Ly)™*

Proof. Let er(x) denote an arbitrary value distribution in Hjy. That is, given
Qa, ..., 0, € C we have

= e, = (ape?mithatsn g etrilketomn T o gpan(Hy).

Using Lemma 4.23 we obtain by direct calculation:

() (Len)(x) = S(mi ) enla +y) = (Zm?mk ) en(t) = Lieula).

Y

(i) (LGep)(x (Zm<y> ) (ch m!" ) () = LiGrex().
(iii) ((L+ G)eg)(x) = Zy)m%’)ek(:v +y) + Xy) mg)ek(as +vy) = (L + Gi)ex(z).

(iv) Follows immediately from ey (z) = Li(L™)rer(z) = (L1 Lirer (). 0

3Bounded by the number of lattice points on the (arbitrarily large) torus.
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Crystal representations, natural isomorphisms and similarity
transformations

In general, we are given several multiplication operators, each defined with
respect to their own (minimal) translational invariance. In order to analyze
such a composition we thus need to find a common denominator, i.e., a lattice
basis corresponding to the collective translational invariance, and rewrite the
operators accordingly. Such a (smallest) common denominator is given by
Theorem 3.6.

Given a multiplication operator defined on some crystal, a change of the
representation of a crystal turns out to be a similarity transformation. In the
following we work out such transformations using the natural isomorphism 7
of function spaces introduced in Definition 4.6.

Theorem 4.25 (Rewriting an operator with respect to a sublattice).
Consider crystals L*(A), LY(A), a sublattice L(C) C L(A) and a multiplica-

tton operator

L:L(TY) = L(TY), = mPfx+y), mP eckp
y€Tla
Then, using Tz ¢ = {tl, .., 4y}, the multiplication operator
(Gg)(z Z mPg(x+y), m e crldxl
yeTe
with block matrices (m(Gy))Z-,k = m(Ly_tin) € CIXRI fulfills the commutative

diagram:

L(T5) —— L(T%)
lna ln‘
L(TY) —F— L(TF).
Here, the mappings for s € {9,c},
N L(T5) = LTE),  fO) = (FE+t) o f+ 1)),
denote the natural isomorphisms between the congruent crystal representations.
Proof. A straightforward calculation for each block-row i yields

(LA (@) = (L)@ +t) = Ep: > m T fa by b+t

k=1 yET@

= Z S mP T fa byt )

k=1 yETp D
P

= 3 S (mE)irf (@ +y+ )

yeTe k=1

= [GUf+t),. - flz+))]l = (G @)
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We illustrate this theorem with an example.

Example 4.2. We now express the discrete Laplacian L{A,s| : L(T% z) —
L(T% z), already introduced and analyzed in Ezample 4.1, with respect to the
sublattice

L(C) C L(A), G:{al—i—ag‘al—@]:{cl‘@}.

The structure element 5 := (0,a1) = T% o, which fulfills T% , = Tg’z, consists
of two points depicted as gray and white circles in Figure 4.3a. We have

L[C,8] = nLA, sl - L(Te,) = L(Te), 1:L(T%2) = L(Tey),

with nonzero multipliers:

(—2) _ 1[0 —1 @) _ 100

mL[eQ,a T R2 {0 0] mL[laa T~ h2 [_1 0
(—a—c2) _ 1 |0 —1 © _ 1| 4 -1 (@+e) _ 1| 00
mL[el,a Y= {0 0} Myes — 12 {_1 4 mL[le,’g]2 T R_1 0

(—1) _ 1|0 =1 @ _ 11 00
mL[Gl,ﬂ T~ h2 L) O} mL[QG,Q ~ h2 [_1 0

The application of this operator reads as

LC, 50 (z) = H [_‘11 _ﬂ o (z)

+ lg _(1)] (U2 —c1) + V(z —c2) + (2 —c1 — )]

+ [_(1) O] (W(z+c1)+V(r+c)+ V(x4 +c2)]l.

uw(z +aq)
representation is given in Figure 4.3a. According to Definition 4.19, its symbol
is given by

for each function ¥(x) = l € .,L’(Tg’z). A schematic plot of this

1[4 | | |
(L[G,ﬁ])k = ﬁ |:;1 Zf] , Y = 1 e47rzk1 o e47rzk2 o e47n(k1+k2)’
k

with

1 1
(2) 2 (2) _ p-T _ [z 12
ke ®B)Ynz*, B9 =cC _ll/Q _1/2]h.
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h? - spec((Lic,5))k)

(a) L[C,5]=: L(T¢) — L(T¢) (b) Eigenvalues of (L[C,3])

Figure 4.3.: (a) A schematic representation of the discrete Laplacian with
respect to another representation of the underlying crystal. (b) A plot of its
spectrum plotted along @(B?), B? = -7,

In contrast to Example 4.1, this symbol now has two eigenvalues instead of one,
resulting in two surfaces plotted along the primitive cell (B?)) in Figure 4.3b,
which is half the size of P(BW). This plot illustrates once more that coars-
ening in position space corresponds to a superimposition in frequency space
as already worked out in Theorem 4.8. One can obtain the plot of (L[ A, s])x,
given in Figure 4.2b, from the plot of (L[C,3])x, given in Figure 4.3b, by disas-
sembling the two surfaces into several pieces and shifting them along integral
multiples of ng) and b§2).

Example 4.3. The system matrix

B —I —I
1 | =
A=l I B
h e T
—I -1 B

of Example 1.1 is obtained by a transformation of the discrete Laplacian Lz 4
to the coarsest possible crystal interpretation L[Z >T§z,z]7 i.e., the underlying
lattice torus consists of a single lattice point whereas the structure element con-
tains all unknowns. This operator L[Z, T% ] fulfills the following commutative
diagram

L S
I(Tﬂ’z) L OC(TJ'{,I)

K [
L[Z,T5 ] ;
L(T57) —5 L(T%).

Due to the fact that the lattice torus Tz z only consists of a single point, i.e.,
[z] = [y] for each [x],[y] € Tz z, the matriz A is equal (up to a permutation)
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to the sum of all multipliers

_ (v)
A= Z mLy[Z,TjZ,’l]'

y€eL(Z)

This observation shows that this framework can also be used to quickly produce
the necessary matrices in order to prototype a multigrid method — even though
we use it mainly for the extraction of its spectrum in order to improve multigrid
methods and obtain their convergence rates.

We again like to emphasize that Z implies the resolution of the frequency
space as already mentioned in Remark 4.21. The complete spectrum of the
system matriz A is equal to the eigenvalues of (Lizgq)r when k is sampled
along L(Z7T), i.e.,

spec(A) = {spec ((L[ﬂyﬂ)k) ke nL(z )}

Using Theorem 4.25 we now know how to rewrite multiple multiplication
operators with respect to some common crystal structure with a coarser trans-
lational invariance. Due to the fact that we do not make any assumption
on the initial representation of the crystal structures, the resulting structure
elements of Theorem 3.16 might differ in their orderings and might contain
shifts with respect to the common shift invariance. To automatically remove
these differences and determine the corresponding transformations of the asso-
ciated multiplication operators we first define the notion of congruent structure
elements.

Definition 4.26. Two crystal tori TS = T%, A € R™ are congruent with
respect to L(A) if the structure elements are of the same size, i.e., |s| = [t| = m,

and there is a permutation © : {1,...,m} — {1,...,m} as well as shifts
y; € L(A), such that

S; = Y; Tt

For the sake of automation, we need a unique representation of a structure
element. We introduce the following normal form and the required transfor-
mations to transfer any operator to this form.

Definition 4.27. Let L : L(T%) — JL(T%) be a multiplication operator. We
say L is in normal form if

e the coordinates of the structure elements are found in the primitive cell,

i.e., 0;,¢; € P(A) = A[0,1)" for each i, ],

o the structure elements 0 and ¢ are sorted lexicographically.”

“In case d; = 0; or ¢; = ¢; for any i # j a consistent ordering of i, j has to be defined a
priori.
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We now derive the implications of Definition 4.26 for multiplication operators
when the structure element is element wise shifted or permuted. We do so
in two steps, Theorem 4.28 and Theorem 4.29. First, we show that a shift
of an entry of the structure element in the codomain or domain results in a
modification of the corresponding row or column of the non-zero multipliers,
respectively.

Theorem 4.28 (Shifted structure elements). Consider the two multipli-
cation operators L : L(T%) — L(T%) and G : L(TY) — L(T%) defined
by
_ (v) (v) [t]x]s]
ZmLf($+Z/)a my’ €C )

y€T
(Gg)(z) = > mL g (x +1y), mg’) € ClulxIt,
IS

Let further t be a structure element which is obtained from t when shifted
element-wise along L(A), i.e.,

t:(tb7tm>:(%1+y177Em+ym):%+(y1>7ym)a
where yy, ..., Ym € L(A) and m = |t|. Then, the operators L and G given by

LNH@) = X mPf@+y), mW¥ ectixsl mW),; = my),,
y€T g

GHx) = X mPfa+y), mY ekl mW),; = my™),
y€T g

fulfill the commutative diagram:

L(T5) —E— L(Th) —— L(T%)

X JT y
L(TY)
Proof. The natural isomorphism between the two corresponding function
spaces is given by
T: °C(T57) _>°C(T}()7 f = (fl)"'afm) = (fl( _y1>w~7fm(' _ym)) :Tf
as f and (Tf) describe the same value distribution on the crystal.® Again, a

straightforward calculation yields

ls|

(TLAH@ = [(LHE =yl = X S (mi)isfile =y +v)

y€Tz j=1
|s|

- Z Z y+yz )igfilx +y) = [Z m(Ly)f(x—l—y)]l

yeT 7 j=1 yeT 7z
Analogously we find [(GT 1g)(z)]; = [ZyeTﬂ (m( ))g( + )i 0

5The left-hand side of [(Tf)(x)]; = fi(x — ;) corresponds to the value at position z +t; =
(x — y;) + t; which coincides with the position of the value of the right-hand side.
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Finally, we show that permutations of the entries of the structure element result
in a transformation of the non-zero multipliers by corresponding permutation
matrices.

Theorem 4.29 (Permuted structure elements). Consider the two mul-
tiplication operators L : L(T%) — L(TY) and G : L(TY) — L(TY) defined
by

=Y mPf@+y), mg ec

IS
= > mL g (x+y), m(c‘?) € ClulxId,
yeT

Let further t be a structure element which is a permuted version of t, i.e.,

t= (%1, - ,%m) = (t'rr(l)a oo ,tﬂ(m)) =m,t

where m = |t|, 7 : {1,...,m} — {1,...,m} is a permutation and m, €
{0,1}™*™ the corresponding permutation matriz. Then, the operators L and
G given by

L)) = Y m%’)f(x—i-y), m(ﬁy) e ClIXIsl with m(y) = m,my,
y€Tn

(GH) = > mg’)f(x+y), mg’) € ClIXIt ith m(g) = mm1
y€Tn

fulfill the commutative diagram:
L(T5) —— L(TY) —= L(TY)

NP 2T

L(TY)

Proof. Due to the fact that the natural isomorphism p : L(T%) — &£ (T%) is
a multiplication operator defined by (pf)(z) = m, f(z) for all z € L(A), the
statement is true due to the rules of computation in Lemma 4.23. O]

Implementation algorithms

Theorem 3.16 and Theorems 3.6, 3.17, 4.25, 4.28 and 4.29 allow for the au-
tomatic adjustment of crystal representations within the LFA. The corre-
sponding detailed algorithms which make use of these results are given in
Appendix A.

Throughout Sections 5.2 and 5.3 we illustrate how to use these algorithms in
order to analyze iterative methods. This should serve to some extend as a
tutorial. In here, we only use function calls of Algorithms A.1, A.4 and A.7
explicitly. We briefly present their function header:
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4.3. AUTOMATED LOCAL FOURIER ANALYSIS (ALFA)

e Algorithm A.4 corresponds to Theorem 4.25. It is used to rewrite a
multiplication operator L : L(T%) — &L/(T%) with respect to a sublattice
L(C) C L(A) such that L = G : L(TR) — L(T}) via

G < LatticeCoarsening(L,C)

as already illustrated in Example 4.2.

e Algorithm A.7 corresponds to Theorems 4.28 and 4.29 and is used to
modify the structure element of the domain and codomain of a single
multiplication operator L : L(T%) — £L(T%) via

L + ChangeStructureElement(L,D,¢),

such that L = L : L(T%) — L(T%).

e Algorithm A.1 is used to automatically compute the complete spectrum
X = {spec(f(LY, ..., LN : ke (A ) nL(ZT)}

of a composition f(L™M),.. .,L(K?) ; I(T}jz) — L(T% z) of several
multiplication operators L) : Tj,;ij)->7z — T};J(;)z via
X « ComputeSpectrum(f, (LY, ..., LI)) Z).

In here, the (smallest) common denominator of all lattices L(A) =
lem(L(A @), L(AY))), 4,5 =1,..., K, is automatically computed and all
operators are rewritten with respect to this translational invariance. Af-
ter that, all structure elements are normalized such that the domains and
codomains of the operators are compatible among each other. Finally, the
operator composition f((L™M)g, ..., (LU)),) and its eigenvalues are com-
puted on the level of the symbols for each k € T% , = P(AT)NL(ZT).
Thus, Z should a basis of a sublattice of L(A) as it specifies the resolu-
tion of the frequency domain #(A 7). In case we are not interested in a
specific resolution of the frequency space this input £ should be omitted.
Then, a standard equidistant discretization of, for example, 20" points
is used which corresponds to £ := 20.4. The algorithmic procedure is
summarized in Figure 4.4.

The remaining Algorithms A.2, A.3, A.5 and A.6 are implicitly used within Al-
gorithms A.1, A.4 and A.7. This collection of algorithms are the basis of the
framework aLFA: automated local Fourier analysis.
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ComputeSpectrum

Input

Multiplication operators

Lg: L(L(A)) = L(L(Ay))

Composition function
L= f(LY, ... 1)
=Lpom...01 1L

Determine least common sublattice
L(C) C L(Ay) for all £

Transform operators

L)) — LL(A)
L)) —— L(LH(E))
Normalize strucN,ture elements
{Dé,fp}«f»{bg,@} s.t.
{00, 8} "= {01, T}
Calculate symbols
(L£>k € CleelxPel and
Ly = (Lin)k om-1---01 (L1)k

Output

Sampled spectrum
specy (L) = U spec(Ly)
keT?,

A,z

Figure 4.4.: The algorithmic procedure of the automated local Fourier anal-
ysis to compute the spectrum of a composition of several multiplication oper-

ators.
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Chapter

Linear iterative methods

In this chapter we introduce, based on [40], a class of iterative methods in
order to solve linear systems of equations

Az = b, (5.1)

where A € C™*" and b € C" correspond to the system matrix and the right
hand side, respectively.

An iterative method is a process which starts with an initial guess (¥ € C*
and produces a series of iterates #(®), (M) ... which (hopefully) converges to a
solution of equation (5.1).

We restrict ourselves to the following kind of linear iterative methods.

Definition 5.1. A (consistent and stationary) linear iterative method is de-
fined by the iteration rule

g® D = (1 — 571 A)z® 4 571
for some matriz S € C™*™,

Remark 5.2. Regarding this definition we like to note the following.

e This method is called consistent due to the fact that a solution x of Ax = b
is a fixpoint of this method, i.e., (I —S™'A)x+S~0 =2 — S0+ S51b =
x.

o [t is called stationary as the iteration rule is independent of the iteration
count k.

e The matrixz S is typically some approximation of A with the property
that the systems Sy = z are inexpensive to solve.
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CHAPTER 5. LINEAR ITERATIVE METHODS

o We may also consider singular matrices S. Then, the iteration rule is
replaced by

(I —STA)z® 4 5tp,
where ST denotes the Moore-Penrose pseudoinverse [33].

Definition 5.3. Let x denote the solution of Ax = b and x® the iterate of
an iterative method. We denote the kth iteration error and residual by

B = g — 1

el B and r® = Ae® = p— Az
respectively.
Lemma 5.4. Given an iterative method we have

e® D) — (T — 571 A4)e®)
Thus, the operator (I — S™1A) is referred to as the error propagator.
Proof. On the left hand side we have

e® ) — g — b — (1 = S71A)2® + 51p)
=z — S — (I —51A)z®

and on the other side we have

(I—81A)e® =T -5 Az —2®)=2—-5"— (T -5"14)z®. O

Remark 5.5. When we use the phrasing the (iterative) method (I — S™'A)
we mean the corresponding consistent linear iterative method

g® ) = (1 — §71A) 2™  §=1p,

Lemma 5.6. Starting with the initial quess ©) = 0, the iterates ¥ of a
linear iterative method (I — S™'A) are given by

g®) = (I —[I—-S7'AA

Proof (by induction). The statement is obviously true for £k = 0. Thus, we
assume that the statement is true for some £ € N and find

g* ) — (1 — §~ 1A) )+ S
= —S'TAI —[I - STA)A D+ S
=([-5 1A] [[—STtAP A+ 571
= —[I—-StAFYHA . O
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5.1. Convergence theory

With respect to the convergence of linear iterative methods we like to review
several important results.

Theorem 5.7. A linear iterative method (I —S™1A) converges for any initial
quess to a solution x iff

lim (I — S7*A)* = 0.

k—o00

Proof. We have
lim e® =0 < lim (I — S7'A)Y =0 & lim (I - S'A)F=0. O

k—o0 k—o0 k—o0

Theorem 5.8. We have the equivalence

p(G) <1< lim G*¥ =0

k—o00

and
p(G) > 1 <= lim ||G*|| = oo,
k—o0

where p(G) = max{|\| : X eigenvalue of G} denotes the spectral radius of
G. Thus, a linear iterative method converges for any initial starting guess iff

p(I —S™1A) < 1.

Proof. Let us denote with J = XGX ! the Jordan canonical form of G' with

Ji
Aol

Ai

Jy

where \; denote the eigenvalues of G. Now, let us consider a single Jordan
block J; = (\; - id + E) of size p, where E denotes the nilpotent part of the
matrix. Then, for k > p, we have E¥ = 0 and thus

=1l /I o
JF=\id+E)f =) ( .)AfﬂEﬂ.
j=0 \J
As increasing the exponent of £7 simply shifts its ones to the right, all the
entries in J* are (located in the upper triangular part and) given by ay :=
(];) A7 and we have

k41 245

P = (e (L =),

Qp1 = Q- (>\i :
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CHAPTER 5. LINEAR ITERATIVE METHODS

This recurrence relation tells us that all the entries converge to zero iff |\;| < 1
due to j < p and thus

lim Jf =0 <= |\<1

k—o0
as well as
lim || Ji||F =00 <= |N|>1.
k—oo
Hence,
lim G* = lim X 'J*X =0 < p(G) < 1
k—o00 k—o0
and

lim [|G*|| = lim || X 'J*X|| = 0o <= p(G) > 1. O
k—oo k—o00

Despite the question whether an iterative method G := I — S~!A converges or
not, a statement about the convergence speed is at least of similar importance,
i.e., we are interested in a number v € R, such that

le™ D] < vlle®]
is true for every error e which implies
@] < v

Such an upper bound is obviously given by v := ||G||, but this bound is
in general too pessimistic. We would like to point out a connection to the
eigenvalues of G. In general we just have ||G|| > p(G) for any matrix norm [40].
Equality holds for hermitian matrices, i.e.,

G =G = ||G] = p(G),

due to the fact that the singular values of hermitian matrices are equal to its
absolute eigenvalues [46]. Except for this class of matrices we at least find
that p(G) is an average measure due to the following formula.

Theorem 5.9 (Gelfand’s formula). We have
p(G) = lim [|G*|%.
k—o0

Proof. This formula is a direct consequence of Theorem 5.8 applied to ,O(TG)JFE
and 7;;(6%—5’ e > 0, in order to obtain ||Gk|]% < p(G)+¢ and HG’“H% > p(G)—e
respectively for large k. O

Thus, for large k& we find
™0 ~ p(G)[e™ ]

as long as the initial error e(® contains a component in direction of the eigen-
function corresponding to the largest absolute eigenvalue. Thus, p(G) is often
referred to as the general convergence factor.
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5.2. Splitting methods

The operator S of an iterative method (I —S~!A) often results from a splitting
of the system matrix A. We introduce certain splitting methods and bring it
into the context of Chapter 4 in order to extract the eigenvalues of the error
propagator using the algorithms in Appendix A.

In the following we consider the translationally invariant operator

L:L(T5) = LT5), L) := Y mPfla+y), s =m.

y€Ta z

Then, the system matrix A obtained from the commutative diagram

GE(qu,;z:) —t °C(TJ57,:Z§)

I [

5

L(T5) — LT5).

is a block matrix consisting of the blocks m(Ly) e cmxm,

Non-overlapping block methods

Now consider a splitting of the system matrix A into a block-diagonal part
Ap, (Ap)ii = mg]), and the lower and upper remainder A; and Ay, i.e.,

schematically we have

A = Ap + Af + Ay

The most common splitting methods are

1. relaxed (block-)Jacobi,

2. and relaxed (block-) Gauss-Seidel,

1
Sasw = —Ap + Ap,
w
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where w = 1 corresponds to the unrelaxed scheme, w < 1 to under- and w > 1
to over-relaxation. The Jacobi scheme is obviously translationally invariant
itself with

(L)) = (7" Syonf)(x) = ~mi? f(2).

In contrast, the Gauss-Seidel method is not translationally invariant. But,
provided that the unknowns are lexicographically ordered and that A only
interacts with neighbors of small distance, i.e.,

m? =0 o |yl<d

for some d > 0, an application of Gauss-Seidel can be expressed as a mul-
tiplication operator for all unknowns with distance greater than d from the
boundary.

Thus, in order to analyze a (block)-Gauss-Seidel scheme, we use the multipli-
cation operator

(Laswf)(x ZmL flx+y)+ m(o)f()

y<x
where y < x corresponds to the ordering of the unknowns.

Remark 5.10. The application of a block Jacobi or Gauss-Seidel sweep with
a blocksize smaller than the size of the structure element of the given crystal
operator results in an additional splitting of the central multiplier mg)). An
example is given in Section 6.3 in the analysis of the Kaczmarz method applied
to the tight-binding Hamiltonian. (This basically corresponds to a scalar Gauss-
Seidel method applied to a crystal operator with a structure element of size

2.)

Example 5.1. We again consider the discrete Laplacian of Fxample 1.1,
A=nLy": °C<T§fqz> — £(T§fq;z:>

with

zzllﬂ, J(:h%:[al\@}, h=—.

By applying the relaxed Jacobi iteration, w = %, to Ax = b with some highly
oscillating initial error (9, we see in Figure 5.1 that this method quickly damps
the highly oscillatory part. In contrast, a (remaining) smooth error is only
reduced very slowly.
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5.2. SPLITTING METHODS

(c) k=5 (d) k=10

Figure 5.1.: The kth iteration error of (relaxed) Jacobi, w = ‘—;, applied to
the Laplace equation after kK = 0,3,5 and 10 iterations.

In order to explain this behavior, we take a look at the spectral radius of the
error propagator. The symbol of the error propagator is given by

Ge=I—-Lj,L)=(1- %Q(L)k)
h? 2
=(1- Eﬁ(z — cos(2mky) — cos(27ky)))

1
= 5(1 + 2 cos(2mky ) + 2 cos(2mks)).

A plot of the spectral radii p(Gy) is shown in Figure 5.2. This plot shows
the factor by which an error in the direction of e*™%)2 is decreased by one
Jacobi iteration. It can be seen that smooth functions, i.e., wave functions
corresponding to wavevectors k near the corners of P(B), B = AT, are way
less damped than oscillatory wave functions.
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by
£~
EANS
SN,

Figure 5.2.: Spectral radii of the relaxed Jacobi method Gy = (I — L;léL)k
’5
plotted along P(B), B = A T.

Colored and overlapping block-methods

Consider a subset s(!) of the structure element s, i.e.,

5 — (51.(1), o ,Sig)), {igl), o >il(cll)} C {1, e ,m},
1

1

such that

KQ {0} C EC] {s.).

A simultaneous update of all unknowns 7' jq(i% corresponds to the method
: 1
(= (L5)'L) with (LYLf)(@) = (Cmpaymmpm) f (),

where mpu) denotes a projection onto the subset sV, i.e., it is a diagonal
matrix defined by

1 ife=je iV, i}
0 else.

(mpw)e; = {

In matrix format this method relates to the error propagator
1= (S04 LT ) = LT )

with
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where the splitting is schematically given by

A = Apy + Ao + Ay
Using multiple such subsets sV, ..., s with
s kj m
U U{ﬁim} = U{se},
j=1e=1 ° =1

the iterative method corresponding to the error propagator

[T¢ —@P)') or T - (570)14)

j=1 j=1
defines a colored block-method. In here, each s corresponds to a single color.
An overlap exists if the domain decomposition is not disjoint.

Remark 5.11. Usually these subsets s are chosen in a way, such that all
non-central multipliers mP<1>m%)mP(1>, y # 0, are 0. In this case the subsystem
decomposes into several small decoupled systems and the matriz inversion of
S% = Apa) is cheap and can easily be parallelized.

Example 5.2. The red-black Gauss-Seidel method results from a splitting of
unknowns in two sets X = X,0qUXpjaer such that any two unknowns x;, x; € Xy,
¢ = red, black, are not adjacent to each other as illustrated in Figure 5.3a. We
already introduced this crystal X = 1% 5, 5 := (0,a1), in Ezample 4.2 with
Té?;)z; = X,.q and TE?; = Xpuer- A simultaneous update of all unknowns of
one color is cheap if the underlying operator solely connects black with red and
red with black unknowns as it is the case for the discretized Laplacian

L= L[A,s]: L(Tx) — L(Tx), ﬂ:hl(l)(”.

The red-black error propagator is then defined as
G = (I = Lyj,q:LIC.8])(I = LI4L[C.8]) : L(T8 2) = L(TE 2),

red

where L[C,s] = L[ A, s| is simply the Laplacian with respect to Tg’z and the
operators Ly, and L..q have the nonzero multipliers

o |1 0 o (1 0 d(o)_OO(o)OO
ML= 10 ol ™uead o ol @ Lo = g 1| "ed |0 1]

The spectral radii of the symbols Gy, of the red-black error propagator are plotted
in Figure 5.3b with k € ®P(B), B = C~T. Note, that we find 2 eigenvalues per
wavevector k. Thus, this plot is not directly comparable with Figure 5.2, where
we find 1 eigenvalue per wavevector, cf. Example 4.2.

We summarize how this result can be obtained using the algorithms of Ap-
pendixz A.
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(a) (b)

Figure 5.3.: a) [llustration of the red-black splitting, b) The spectral radius of
the symbol of the red-black Gauss-Seidel error propagator G : L(1¢) — L(17)
plotted along P(B) , B =C~T.

Analysis of the red-black method using aLFA:
Define the discretized Laplacian L = L[A,s] : L(T%) — L(T%) with
A = [ ay | a } =z é (1) ] with the structure element s = (0) and

nonzero multipliers
4
m )T v=0
L =
5] h% y € {£ay, tas}.

Obtain the description of the discrete Laplacian w.r.t. the translational
invariance of the red-black splitting C = [al +ay ay —Q2:| via Algo-

rithm A.4:
L[A,s] < LatticeCoarsening(L[A,s],C)

Make sure that the structure elements of the domain and codomain are
ordered as desired, i.e., 5 = (0,ay), via Algorithm A.7:

L[C,s] «+ ChangeStructureElement(L[A,§],5,5)

Define the operators Ly : £L(Tg) — £L(T) with nonzero multipliers m(Loe) =
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pgmg)[)c)’apg, ¢ € {black,red} and

o foo
Pred = 0 0|’ DPbolack = 0 1!°

Compute the spectral radii with Algorithm A.1 via
ComputespeCtra(f7 ([7 L7 Lr‘ed7 Lblack)):

where f denotes the composition of the error propagators

(I, L, Lyeg, Loar) —— (I — (Lygaer) L) (I = (Lyeg) L),

. J

Example 5.3. We show an example of a four-color overlapping block color
method applied to the Laplacian

0

L

The four colors correspond to the non-disjoint splitting depicted in Figure 5.4.
This splitting is chosen in a way, such that each connected set of 9 unknowns
of one color does not interact with other unknowns of the same color with
respect to the discretized Laplacian. Thus, it is cheap to update all unknowns
corresponding to one color at once. The splitting/coloring has a translational
invariance of C := 4A. Rewriting the lattice torus Tz as a crystal torus with
respect to the lattice L(C), i.e., Tz = T¢, we find that the structure element
t=(ti,...,t16) = T g consists of the 16 elements

1

L =L[A,s]: L(T2) = L(Tz), A=h [ 0

t=(i-a1+J-as)ij=o,.3
= (0,a1,...,3a1,as, a1 + as, ...,3a; + 3as).

The non-disjoint splitting is then given by the structure elements

sV = (i-a1+j as)ijeo.2 = (t,te, 3t t6, b7, to, tig, t11); 7V =0
5@ — 50 124, BN )
s@ = s 4 24, = s 4706
sW = s 4 2a; + 2a, =: s 474,

such that T8V =@,757=@,1" =@ and Tg"= 4.

A simple way to obtain the corresponding error propagator of the splitting
method, which updates the unknowns corresponding to Té}“) simultaneously, is
to simply derive them from the underlying system operator L as follows. First,
we need to find a description L of the underlying operator, the discretized
Laplacian L, with respect to the translational invariance of the splitting C.
After that the structure element needs to be adjusted such that all unknowns

61



CHAPTER 5. LINEAR ITERATIVE METHODS

and their couplings among each other are found within the central multiplier

m(AO). Consider the structure element t. As can be seen in Figure 5.4, the

couplmg among the unknowns s which we want to update simultaneously are
found in the multipliers:

m if 0 =1,
n@%mEM if 0 =2,
m@,%ﬁﬂ if 0 =3

i%m@“ &) f g =4,

Thus, in order to obtain suitable desel"iptions for t©) 0 € {2,3,4}, we need to
consider shifted versions L[C,t*)] = L with

@ =470 (5.2)

Then, the error propagator corresponding to a block Jacobi update can be written
as

G(z) _ (I (L ]))TL[G t(@ ]) GC(Tt(@)) N £(Té(2)>

with (LY f)(z) := (mpmf{)@ t(mmp)f(:r;) where mp 1is the diagonal matrix

(5.3)

0 else.

1 1€41,2,3,5,6,7,9,10,11
<mp>--={ { }

A plot of the spectral radii of the error propagator which updates all four colors
successively (G = [1j_, G©)) is given in Figure 5.4b. Note once again that this
plot cannot be directly compared with Figure 5.2 or Figure 5.3b, since we are
only looking the largest of 16 eigenvalues per wavevector.

We summarize the procedure in which we obtain the error propagators and
their spectral radii by making use of the algorithms given in Appendiz A.

Analysis of the 4-color overlap method using aLFA:

Denote the discretized Laplacian with L = L[ A, s| and obtain the descrip-
tion of the discretized Laplacian with respect to the translational invariance
of the splitting via Algorithm A.4:

L « LatticeCoarsening(L[A,s],C).

Adjust the structure elements, such that the connections among the un-
knowns updated simultaneously are found within the central multiplier
via Algorithm A.7:

L[C, t)] + ChangeStructureFlement (L, " ?),
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(o] [Cho] LN

(b)

Figure 5.4.: a) Illustration of the domain composition corresponding of the
four color overlap method. Each unknown belongs 1, 2 or 4 different colors.
The iterative method successively updates unknowns of one color. b) Spectral
radii of the symbols of G = [T;_, G* with k € P(B), B = (4.2)~"

where 19 is defined according to equation (5.2). Use mp as defined in equa-
tion (5.3) to define the operators

(£) (£)
L L(TE) = L), mily = mpm, omp

The computation of the eigenvalues of the error propagator is then carried
out with Algorithm A.1 via

ComputeSpectra(f, (I, L, LY LA L) 1.W))

where the function f denotes the composition of the error propagators

4
(1,L, LY, L@ L® LW) — [[( L) :=G.

(=1

5.3. Multigrid methods

We introduce multigrid methods from a matrix point of view before putting
them into the context of Chapter 4 using an example. In Example 5.1 we
demonstrated that a splitting method is able to quickly reduce errors in the
direction of eigenvectors corresponding to large eigenvalues. Errors in the
direction of the eigenvectors corresponding to small eigenvalues, on the other
hand, remained virtually unaffected. This behavior showed up as the smooth-
ing of the error. A multigrid method relies on the efficient interplay between a
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smoother GG, which typically is one of the simple stationary iterative schemes
of Chapter 5, and a coarse grid correction that is able to treat error compo-
nents untouched by the smoother on a coarser scale. In order to formulate the
coarse grid correction one first has to specify suitable coarse degrees of freedom.
Oftentimes this corresponds to a splitting of the grid points X (|X| = n) of
the current level into variables which are used on the coarse grid, X¢, and the
remainder X/. Once the choice of coarse degrees of freedom has been made,
appropriate interpolation and restriction operators need to be defined

P:R"™ —R" and R:R"— R",
where n, denotes the number of coarse degrees of freedom, e.g., n. = | X¢|.
Additionally, we need to find a suitable coarse grid operator
A.:R™ — R,

One typical choice is A, = RAP and in the case of A being symmetric the
restriction operator is typically chosen as PT, which results in a Galerkin coarse
grid correction. The system matrix A, should in general be chosen in way such
that the solution of A.x. = r. is equal to the coarse representation of the fine
grid error. A pseudo-code of the two-grid method is given in Algorithm 5.1.

The (V-cycle) multigrid method is obtained by replacing successively (A4.)" by
(a single iteration of) another two-grid method [47].

Algorithm 5.1: Tentative two-grid method.

Input: Initial guess z(©)

1 form=2,...

2 (M) = GV (A, z(m=1) b) > pre-smooth vy times
3 re = R(b — Az(™) > coarsen the residual
4 z. = (A)Tr. > solve the coarse grid problem
5 (™ = z(m) 4 pg, > interpolate and correct
6 (M) = G2 (A, 2™ b) > post-smooth vy times

We can write the two-grid and the multigrid method in terms of a linear
iterative method (I — S™'A) provided that the initial guess :c,(go) is zero on
every grid level k£ and that the smoother is a consistent linear iterative method.

Lemma 5.12. The two-grid method is defined by the error propagators,
M =G"?KG"
and
K =[I — PA'RA|

where G denotes the error propagator of the smoother. These operators are
called two-grid operator and coarse grid correction operator, respectively.
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Proof. The coarse grid correction of Algorithm 5.1 applied to some x(o1q) yields
Z(new) = L(old) T PAC_IR@ — Ax(old))
= (I — PA;'RA)x(ga) + PA. ' Rb.

Thus, the method is a consistent linear iterative method with the associated
error propagator K = [[ — PA;'RA]. Since G is an error propagator itself,

the product M = G"? KG" is again an error propagator. O]
Lemma 5.13. The m-grid multigrid method is defined by the error propaga-
tors

M, =G K,G}
and

Ko = (Iy — PilIrs1 — M)A ReAy),

fort=0,....,m—1 and M,, = 0. The operators Gy, I,, Py, A; and R, denote
smoother, identity, prolongation, grid operator and the restriction on grid level

l.

Proof (by induction). Let m € N be arbitrary. We obviously have that the
formula is correct for M,,_; and thus we only need to prove the statement for
My while assuming that the formula is correct for My, ..., M,,. One iteration
of the multigrid method is given by Algorithm 5.1 where solving the coarse
grid problem in line 5 is replaced by a single iteration of the iterative method
defined by the error propagator M;. As the initial guess :x§°> of the coarse grid
problem
Az = Ro(bo — Ao (ola))

is equal to zero we can apply Lemma 5.6 and find
x1 = (It — M) AT Ro(bo — Ao (o1a))-
Thus, for the coarse grid correction we find

T (new) = T(old) + Poxy
= (ot + Po(l1 — M1) AT Ro(bo — Ao (1))
= ([0 — PO(Il — M1>AI1R0AO)1.(0ld) -+ po(Il — Ml)AflRobo.

This implies the error propagator

Ko == ([0 - PO(Il - M1>AI1R0A0)
and hence My = G KoGy'. O
In this thesis we restrict ourselves to a single pre-smoothing step (14 = 1)

and fully neglect post-smoothing (v, = 0) and thus only consider the simple
two-grid error propagator given by

M = KG.
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Analysis of a multigrid method via aLFA

We already demonstrated how to use the algorithms in Appendix A in order
to analyze smoother GG in Section 5.2. In order to extract the spectrum of a
two-grid method

M = KG,

we further have to specify the coarse grid correction operator K. As an exam-
ple we consider the full coarsening strategy with the full weighting (Galerkin)
scheme which is commonly used for scalar elliptic discretized PDEs on rectangu-
lar grids. A schematic stencil of the full weighting restriction and prolongation
is given in Figure 5.5. The restriction operator is a multiplication operator

R:oL(Tiy) — L(TLY),

) t = <O7a17a27a1 + (12) = Tﬂ,Zﬂ?

WhereTQfﬂ,ﬂ:[al‘ag}:l 110

0|1
denotes the fine crystal rewritten with respect to the translational invariance
2A and T. 2(2 denotes the coarse crystal. The nonzero multipliers of R are
given by

mi =[0201 pP=[22 1]

mGe ) =100 2 1] mG= =10 00 1

The spectral radii of the two-grid correction operator can be obtained with
Algorithm A.1 via

ComputeSpectra(f,I, R, L,G),
where the function f denotes the composition of the error propagators

(R,L,G) L (I — RY(RLR")'RL)G = KG = M.

Numerical results

In this section we show results for the Galerkin multigrid method with the
previously introduced full weighting scheme applied to the Laplacian on the
rectangular grid.

As a smoother G we consider the four different methods introduced in Sec-
tion 5.2, namely
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5.3. MULTIGRID METHODS

Figure 5.5.: Schematic stencil of the full weighting intergrid operators.

1. the relaxed Jacobi (w = %),

2. (unrelaxed) lexicographic Gauss-Seidel,
3. (unrelaxed) red-black Gauss-Seidel and
4. the (unrelaxed) four-color overlap block method.

In Figure 5.6 the plots of the spectral radii of the two-grid error propagators
M = KG

for the first three smoothers are given with respect to 27'® = (24)~T whereas
the analysis in case of the overlap smoother is given with respect to 47 '@ =
(4A4)~T. In Figure 5.7 a plot of the measured asymptotic convergence rate
of an actual implementation of the multigrid method with respect to the
discretization parameter h is given. It can be seen that the convergence
estimate mostly coincides with the measured rate. In the case of the Jacobi
smoother the estimate is exact as long as the tested torus size T% , is large
enough, i.e., the resolution of the dual space is fine enough. To be more
precise, the estimate is exact iff £ € (17 ,z)*, where k is the wavevector
corresponding to the largest eigenvalue p = p((KG)j) (cf. Remark 4.21). The
convergence estimate in the case of the lexicographic Gauss-Seidel smoother
is only asymptotically (h — 0) exact due to the fact that the representation
as a multiplication operator is only correct for the unknowns that are not
located at the bottom or left boundary due to the lexicographical ordering
(cf. Section 5.2).

Remark 5.14. In the case of the four-color overlap block method we used the
ordering (cf. Figure 5.4a)

s Ly 5@ 5@y 4O
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(2) pmax[2grid, Jacobi] = 0.6 (b) pmax[2grid, lex. GS] =04

265 16
A/\,\/\/_://\/ 0.

/\ 0-02\-

1
» 101

(¢) pmax|2grid, red-black] = 0.25 (d) pmax[2grid, 4color] = 0.043

Figure 5.6.: Spectral radii of the symbols of the two-grid error propagator
M, B =A"T. (a) relaxed Jacobi, (b) Gauss-Seidel, (c) red-black Jacobi, (d)
four color overlap block

PV, S S S — T —
PGauss-Seidel |- ;_;4%___%_2_1—:—: i
Pred-black [~ |
1 B
P4color |- i = = o 3

01 I S | | | | 1

8 162432 48 64 96 128 "

Figure 5.7.: Measured two-grid asymptotic convergence rate with respect to
different smoother: —— relaxed Jacobi, —a— Gauss-Seidel, —e— red-black
Gauss-Seidel, —a— four color block overlap.
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to obtain the convergence estimate of p = p(KG1G4G2G3) = 0.043.

Out of the 24 possible permutations, we obtain a total of 3 different convergence
estimates. The other two convergence rates are for example found using the
orderings 1,2,3,4 and 1,2,4,3 and the corresponding two-grid convergence
rates are

p(KG1G2G3G4) = 0.0625 and p(KG1G2G4G3) =0.11.

We are going to study symmetries of the two-grid method for this smoother in
detail in Section 5.4.

In Figure 5.8 we also show results of the m-grid analysis, m = 3,4, for the
Gauss-Seidel and the relaxed Jacobi (w = %) method. It can be seen that the
asymptotic convergence rate only changes very slightly from 2 to 4 grid. This
means that the convergence rates of the two-grid method can be maintained
without solving the coarse grid problems exactly.

5.4. Symmetries in colored smoothers

As mentioned in the numerical results of Section 5.3, out of the 4! = 24 possible
permutations

o€ Sym, :={o :{1,2,3,4} — {1,2,3,4}, bijective}

of the four color overlap smoother we only obtain 3 different convergence rates
when it is used in the two-grid method using full-coarsening:

4
{p(K 1] Gow)) : o0 € Sym,} = {0.043, 0.0625, 0.11}.

i=1

In this section we discuss how to systematically work out the symmetries of
a two-grid error propagator. As the number of permutations grows factorial
with the number of different colors, it can be useful (or even necessary) to
reduce the number of orderings to be analyzed beforehand instead of testing
them all.

On the one hand, there is a simple algebraic argument which lets us reverse
the order of the smoother without changing the convergence rate, i.e.,

p(KG\Gs...Gr) = p(KGpGo_r ... G1).
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(¢) pmax[3grid, lex. GS] = 0.412 (d) pmax[4grid, lex. GS] = 0.412

Figure 5.8.: Spectral radii of the symbols of the m-grid error propagator,
B = A", (a) Relaxed Jacobi, w = 2, m = 3, (b) Relaxed Jacobi, w = %,
m =4 (c) Gauss-Seidel, m = 3, (d) Gauss-Seidel, m = 4.
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5.4. SYMMETRIES IN COLORED SMOOTHERS

Theorem 5.15 (Algebraic symmetry). Consider the operator
(I — L,L)(I —LyL)---(I — L, L) e C**"

where I € C™" denotes the identity, Ly, Ls,...,L,, € C"" are symmetric,
i.e., Ly = LT, and L € C™" is nonsingular and symmetric. Then we have

spec(({ — L1 L)(I — LoL)--- (I — L, L))
—spec((I — LiLY(I — Ly L)(I — Ly 1 L) -+ (I — LaL)).

Proof. A straightforward calculation yields:
spec((I — LyL)(I — LoL)--- (I — Ly, L))

=spec([(I — L L)(I — LyL)--- (I — L,,L)]")

=spec(L™ (I — LL,)LL (I — LLy,_y)---(I — LL,)L)

=spec((I — L, L)(I — Ly,1L)--- (I — L1L))

=spec((I — LiL)(I — Ly L)Y(I — Ly L) -+ (I — LyL)) O

On the other hand, the coarse grid correction operator K usually fulfills several
geometric symmetries which can potentially be applied to the smoother in
order to work out equivalent orderings. These symmetries can simply be
worked out by making use of the so-called two-dimensional space groups also
known as the wallpaper groups [1], which are mathematical classifications of
two-dimensional repetitive patterns. For our purpose, a repetitive pattern
simply corresponds to a crystal. Besides its translational invariance there
can be the following elementary symmetric operations which map a crystal to
itself:

e n-fold rotations, (n = 2,3,4,6),
e reflections and
e glide reflections.

As there are only 17 different wallpaper groups in total, one can quickly work
out to what wallpaper group a given crystal corresponds.

Remark 5.16. In this section we restrict ourselves to the 2-dimensional case.
A generalization to any dimension is possible, but more complicated [29].

As an example we consider the four-color smoother introduced in Example 5.3
in combination with the full-coarsening scheme. The fine crystal with respect
to the lattice basis 24, given by

1 l 1|0

t e
L@a), A=+l

] ) t= (0,@1,&2,@1 +d2)7
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Figure 5.9.: The coarse crystal corresponds to the wallpaper group p4mm.

corresponds to the wallpaper group p4mm.! This wallpaper group consists of
the following elementary symmetries:

rotations reflections
2 3 4 6 mirror- glide-
1 - 2 - 3 1

An illustration of the coloring of the smoother, the crystal L'(2.4) and its
symmetries is given in Figure 5.9. Here, the n-fold rotational centers are
depicted with diamonds (n = 2) and squares (n = 4), whereas solid lines
correspond to reflections and dashed lines to glide reflections. Each single
operator of the coarse grid correction K = (I — PL;'RL) and thus the coarse
grid correction operator itself fulfills these symmetries as well. The application
of the geometric symmetry operations of p4mm to the coloring yields the
following permutations o; € Symy:

¢t symmetry operation 0

1 2-fold rotation ¢ (1,3)(2,4)
2 4-fold rotation M (1,2,4,3)
3 4-fold rotation (2,3)

4 reflection — (1,3)(2,4)
5 reflection —— (2,3)

6 reflection — ()

7 glide-reflection (1,2,4,3)

In here, we use the cycle notation, i.e., a permutation o = (s1,5s9,...,S)

corresponds to the mapping s; — s9 > ... — Si_1 > S — Sq1.
These 7 permutations o; are generators of a permutation group

H={oy,...,00):={0 : 0 =0j0),...04, ji €{1,...,T}}?

IThis wallpaper group is also known as p4m.
2This group H is actually isomorphic to the dihedral group Dy.

72



5.5. SMOOTHING ANALYSIS

This group H is a subgroup of the symmetric group Sym, and splits it into 3
different cosets Hg = {hg : h € H}, g € Sym,, of size 8, i.e.,

H\Sym, ={Hg : g € Sym,} =: {H;, Hy, H3} with:

H, H, H,
§) (3,4) (2,3,4)
(2,3) (24,3)  (24)
(1,2)(34) (1,2) (1,3,2)
(1,2,4,3) (1,2,3) (1,3)
(134,2) (142  (1,4,3.2)
(1,3)(24) (1,423) (1,4,3)
(1,4) (1,3.4)  (1,2,3.4)
(L4)(2,3) (1,3,24) (1,2,4)

These cosets can for example be computed with GAP, a system for computa-
tional discrete algebra [16]. For each j € {1,2,3} we have

4
HP(KHGW)) D05 € HjH =1

i=1

and each H; corresponds to a specific shape:

j 1 2 3

Shape of H; | 4 TT

p(K T1 Goyy) | 0.0625 011 0.043

For this two-grid method the algebraic symmetry (cf. Theorem 5.15) does not
further reduce the number of distinct orderings, but, for example, the fact that
the convergence rates of full-coarsening in combination with either red-black or
black-red smoothing are equal, i.e., p(K GreaGpiack) = P(K GplackGrea) = 0.25,
is a consequence of this algebraic symmetry and not due to geometric reasons
(cf. Section 5.3).

5.5. Smoothing analysis

In the analysis and construction of multigrid methods a so-called smoothing
analysis is very common. An introduction to this type of analysis is for example
given in [47]. Such an analysis assumes an idealized coarse grid correction
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which completely eliminates smooth errors. We start by reviewing some of the
examples already discussed, before presenting a general approach to smoothing
analysis in the aLFA framework.

Recall, that we computed the spectrum of the Jacobi method via its symbols
Gk, k € T% - in Example 5.1. In here, the wavevectors k € T% 5 near L(A™T)

correspond to smooth functions (k)2 71(707);Z — C. Thus, a smoothing
analysis is done by discarding certain wavevectors, i.e., the smoothing analysis
corresponds to the computation of the quantity

sup{p(Gy) : k € Ty 7 not near L(A ")}
We specify this statement by considering the coarse crystal Té??),z we used
in Section 5.3. For reasons of dimensionality, i.e., |1z 27| = 4, at most a quarter
of all wavefunctions e?™*2 k€ T% . can be eliminated. For each k €

P(A~T) the idealized coarse grid correction with respect to this coarse crystal

is assumed to remove exactly the smoothest out of the four wavefunctions
e2milktkivle s T 5 C, (i, ko, kg, ka) = T% 5 4, that is

j= argmin{||k+k; — k[ : ke L(AT)}. (5.4)

je{1727374}

In Figure 5.10a a plot of the smoothing analysis for the relaxed Jacobi method
is given, where the areas corresponding to equation (5.4) are greyed out.

However, the smoother to be analyzed may have a coarser translational in-
variance A, L(A) C L(A), than the underlying system operator and thus

mixes wavefunctions e?7(k-)2 ; Tﬁl’)z — C. If this translational invariance is

A

smaller than the coarse crystal, i.e., L(2A4) C L(A), which is the case for
Jacobi, lexicographic Gauss-Seidel and red-black Gauss-Seidel, we can analyze
the smoother with respect to the translational invariance L(2.47). That is, we
compute the symbols Gy € C** of G : L(T¢ z) = L(TE 7), u = Té%ﬂ, with

respect to the standard ordered basis [eLk ek - 6474, cf. Theorem 4.4.

Next, we transform these symbols according to Remark 4.22 in order to obtain
the transformation matrix @k = F~'GE with respect to the ordered basis
E given by Theorem 4.8. This ordered basis F consists of the four basis
functions L(ne?r it +hi02) j = 12,34, where 1 : L(T'%%) — L(T¢) is the
natural isomorphism between the fine crystal representations, cf. Definition 4.6.
The smoothing analysis now amounts to the computation of sup{p(ZyGy) :
ke P((24)7T")}, where Z, corresponds to the filter which discards smooth
wavefunctions. Thus, Z; € C*** is a diagonal matrix, where (Zy);; is either
1 or 0 depending on whether the wavevector k + k; corresponds to a low or
high frequency mode, cf. equation (5.4). In case the smoother does not mix

frequencies, i.e., it can be analyzed with respect to the translational invariance

74



5.5. SMOOTHING ANALYSIS

\g’

(@) p(Gk) (b) p(ZiGy)

Figure 5.10.: Smoothing analysis of the relaxed (w = 2) Jacobi iteration,
Pmax = 0.6, B = AT, ( ) A plot of the spectral radii G}, with respect to

the spaces of harmonics Hy, of £ (T z)- The areas corresponding to smooth

wavefunctions are greyed out. (b) A plot of p(Z,Gy) with respect to the spaces
of harmonics Hy of L(T% 27, z), W= Ty 97, where Z, corresponds to the filter
which discards smooth wavefunctions. The plot in (b) can be obtained from
(a) by taking the maximum of the superimposition of its four quarters.

A of the underlying system operator, a connection from the simple smoothing
analysis, where certain areas of (A7) are discarded, to this general analysis
is apparent due to the fact that the transition from o/ (TjZ :z) to L(T57 7) is
a superimposition in frequency space, cf. Theorem 4.8. For example, the plot
of p(Zkék) in Figure 5.10b, where G corresponds to relaxed Jacobi, can be
obtained from Figure 5.10a by taking the maximum of the superimposition of
the four quarters (excluding the grey zones). Plots of p(ZkG x) for lexicographic
Gauss-Seidel and red-black Gauss-Seidel are given in Figures 5.12a and 5.12b.

In case the translational invariance of the smoother is coarser than the trans-
lational invariance of the coarse grid as it is the case for the four-color overlap
smoother (44 vs. 24), we lift the analysis to the function space oL(T}7 7),

Q’L - Due to a coarsening ratio of a quarter, Z; now has to eliminate
the smoothest 4 of the 16 basis functions.

The predictions obtained by the smoothing analysis coincide with the actual
convergence rate using the full-weighting Galerkin scheme in case of relaxed
Jacobi (.6) and red-black Gauss-Seidel (.25). The predictions of lexicographic
Gauss-Seidel (smoothing analysis: .5, two-grid analysis: .4) and the four-color
overlap scheme (smoothing analysis: .057, two-grid analysis: .043) are slightly
off, cf. Figure 5.6.
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/L

ift of HZ vla n

Figure 5.11.: Arrangement of translational invariances (L() system opera-
tor, L(§) smoother, L(C) coarse grid) in the general smoothing analysis, where

L(é) denotes the least common sublattice of all translational invariances.

General smoothing analysis As already seen, the smoothing analysis via
the basis lifting of Theorem 4.8 is particularly simple if the translational
invariances of the system operator A, of the smoother & and the coarse grid
C are nested. That is, in case L(C) C L(S) C L(A) the basis of H is lifted

to eC(TCT’}C() and the smoothest |s| of the |17 ¢
discarded by Zj.

- |s| basis functions need to be

If on the other hand L(S$) C L(C) C L(A), the basis of H is lifted to e[’(TST%%S)

and the |Tq.| - |Tae|”" - |s| smoothest of the |T% | - |s| basis functions are
discarded by Zj.

This leaves the case, where both L(8) C L(A) and L(C) C L(A), but neither
L($) € L(C) nor L(C) C L(S). In that case a smallest common sublattice
L(C) can be found according to Theorem 3.6 such that L(C) C L(S) and

. T
L(C) C L(C). Lifting the basis of H' to £L(T,7 ) the smoothing analysis

discards the |T; 5|-|T7.c| ' +|s| smoothest of the \T]{ o|-|s| basis functions. The
arrangement of translational invariances of this most general case is illustrated
in Figure 5.11.
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0.3
1
e/ 561
(a) pmax/lex. GS] =0.5 (b) pmax|red-black] = 0.25
1
;62
4 8
N S
S

=

S
(=)
L

Ly 61

(¢) pmax[4color] = 0.057

Figure 5.12.: Spectral radii of the symbols 7, G, which correspond to the
smoothing analysis for different choices of G. (a) lexicographic Gauss-Seidel,
(b) red-black Gauss-Seidel, (c¢) four color overlap block smoother.
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Chapter

Graphene

In this chapter we study the geometric structure of graphene, the tight-binding
Hamiltonian operator L and finally construct and analyze a multigrid method
for linear systems of equations originating from this operator. As already men-
tioned in the introduction, several results of this chapter are already published
in [23]. In this article the results are obtained using conventional LFA. Due
to the hexagonal structure of graphene, the lexicographic ordering of Kacz-
marz and the mixing analysis of the coarse grid correction which involves a
mixing of eight frequencies, the analysis turned out to be quite lengthy. In
this chapter we stick to the terminology of Chapters 3 and 4 and make use of
the algorithms of Appendix A to analyze the problem and the method even
though we do not explicitly state the function calls as we did in Section 5.2.
We furthermore present some additional results, such as an in-depth analysis
of the coarse grid correction and a parallelizable block smoother which are not
contained in [23].

6.1. Crystal structure of graphene

Carbon materials occur in many different allotropes. Besides the well-known
forms of graphite and diamond, researchers recently isolated graphene, a single
layer of carbon atoms bonded in a hexagonal or honeycomb structure. The
distance a of two neighboring carbon atoms in graphene is approximately
1.42A = 1.42-10~°m. Graphene is the basic element of fullerenes, which are
molecules of carbons in the form of a sphere (Buckminsterfullerene Cgg), tubes
(carbon nanotubes) and many other shapes [14, 20].

The graphene structure can be described as a crystal L*(4) where the under-
lying lattice is triangular. This means that each three nearby lattice points
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Figure 6.1.: The graphene crystal L°(A4) and all its elementary symmetry
operations. (O atom of type A, ® atom of type B)

form an equilateral triangle. We have

3 V3 3 V3

Ls(ﬂ)7 ap = (27 7)00 ag = (* —7>CL,

with the structure element
1 2
5= (51752)a 51 = (a70) = g(al +a'2)7 50 = (2(1,0) = é(al +a2)'

To distinguish the atoms we denote L(A) + s; by type A and L(A) + s
by type B. As illustrated in Figure 6.1, this crystal L*(A) possesses several
symmetries besides the translational invariance. In here n-fold rotational
symmetry centers are depicted with diamonds (n = 2), triangles (n = 3) and
hexagons (n = 6), whereas solid lines correspond to reflections and dashed lines
to glided reflections. It is well-known that the crystal symmetries correspond to
the wallpaper group p6mm,* i.e., the following elementary symmetry operations
map the crystal to itself:

rotations reflections
2 3 4 6 mirror- glide-
1 1 - 1 2 2

6.2. Tight-binding Hamiltonian

In order to calculate the electronic band structure of graphene a tight-binding
Hamiltonian approach can be used which considers electrons hopping between

!This wallpaper group is also known as p6m.
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atoms with a hopping energy ¢ that only depends on the distance of the atoms.
Such an operator is defined by

Li: LT 2) = LT%2), (Lf)(x) = Y mP f(x+y)

y€Tl 7,z
with

) _ |yll2) t(lly + 1]12)
bty = sill2) - £(llyll2)

for some function ¢ : {||z + s¢||2 : * € L(A),¢ = 1,2} — R. The hopping
energy t decreases exponentially with distance. Thus, good approximations are
already achieved by considering only couplings to the nearest, next-nearest and
next-to-next nearest-neighbors. To simplify the notation, let ng,nq,...,€ R
denote the ordering of the distances {||z+s¢[|2 : © € L(A),¢ = 1,2} = U;{n,},
ie.,

n;g <mn;<1<j.

We then denote the tight-binding Hamiltonian L; with the hopping energies

t; fori=0,1,...,M
t(n;) =
0 else.

by Liigt1,....tn]- For example, in the case of L = Ly, ;,; we have

(L)) = > mP f(z+y)

yeTx

for all x € Tz with nonzero multipliers

I (S o _[00
mi ) = lo o] mit = L&l 0]
(0 — to

L ti to
I [ e _ 00
my = [0 01 mi® = [tl 0}

as illustrated in Figure 6.2. Values [to, 1, ...] for the hopping energies found
in the literature [34] are approximately

tW =10, -2.7]eV  (t® = [-.36,-2.78, —.12, —.068]eV)
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Figure 6.2.: Schematic stencil of the tight-binding Hamiltonian Ly, of
graphene (nearest-neighbor (NN) description).

in the nearest-neighbor NN (third-nearest-neighbor 3NN) description.

The eigenvalues (of the symbols) of the tight-binding Hamiltonians L,u) (NN)
and L,s (3NN) are plotted in Figure 6.3 along #(®B), where the dual lattice
basis is given by

The wavevectors
1 2 2 1

1 31+32, 2 31+32

are called Dirac points and correspond to the kernel of the tight-binding
Hamiltonian, i.e., spec[(Ljo,-1))k;] = spec[(L(-36,—2.78 - .12,—068) ;] = {0}, J =
1,2. Thus, the kernel of the tight-binding Hamiltonian is four-dimensional
and a basis is given by

627ri<Kj,27+51)2 0
Fk, U Eg, = span{ ,

S I PR R S (31

The nearest-neighbor and third-nearest-neighbor Hamiltonians are obviously
very similar. The spectra basically only differ far away from the Dirac points.
Thus, if a multigrid method performs well in the nearest-neighbor case, it
certainly is a suitable preconditioner for the third-nearest-neighbor case. Due
to this fact we simply stick to the nearest-neighbor model for the remainder
of this chapter.

Remark 6.1. In fact, the off-diagonal elements of

(gl tly+s1l2)] amie
L L= 67” g,y>2’
L =2 |u(lly - salla) (Il
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which correspond to the interaction between the two sublattices L(A) + 81 and
L(A) + s, for an arbitrary t are always equal to zero. This is due to the
fact, that this sum can be grouped in triplets, each corresponding to the 3-fold
symmetry of the crystal. For each y = jia1 + jaas € L(A) we have

Ci = t(lly £ s1ll2) = t(l| B2z (y £ 51)[|2) = (|| Rax (y £ 51)]]2),
where R%ﬁ denotes the (counter clockwise) rotation matriz. Due to
R%wsl =61 —ag and R%sl =61 —ay
the corresponding coefficients of C'y are given by
2mi(K;y)2 2R Rag Y02 omi(K;—as)s

Using the equality e*™\Kifov)2 — o2milB-oK;v)2 qnd the fact that R,=K; €
L(B) + K;, m € Z, we find

627ri<Kj,ngTw Y2

27ri<Kij47wy>2ezm(Kj,fm)z.

e and e

2ritHG R ag v)2 for allm,n € Z.

Thus, the sum is equal to the sum over all three 3rd roots of unity which is 0.

The diagonal entries of (L;)x;,, corresponding to the intra-action of the A and
B sublattices, are in general not equal to zero. In the third-nearest-neighbor
description we have ty = 3 -ty and, because the six coefficients of ta, given by

2mi(Kj,£(a1—a2))2

627rz(Kj,:ta1)2’ 627T1<Kj,:|:ﬁ2>2’ e ’

sum up to —3, we find spec[(L[3t27t17t27t3])Kj] = {0}.

Remark 6.2. The wavefunctions on a graphene torus 1%  corresponding to
the Dirac points K1 and Ky are well defined, i.e., the tight-binding Hamiltonian
system is singular iff there are integer o, B € Z as well as unimodular U,V €
Z2*2 such that

-1 o a 0
UA ZV_3[O 5]

6.3. Components of the geometric multigrid
method

As already mentioned in Section 6.2 we restrict ourselves to the nearest-
neighbor Hamiltonian L := Ly ;). In this section we present the components
of a geometric multigrid method to solve the linear system

Av=b, A=nLp": LTLE) - LTy ).

As we use the Galerkin-approach, we only have to describe the smoother and
the interpolation operator.
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spec (L, (1))k) * 27 spec (L, (3))k) * 5vg

(a) Nearest-neighbor model (b) Third-nearest-neighbor model
Figure 6.3.: The eigenvalues of the tight-binding Hamiltonian plotted along
P(B), B=AT.

Smoother

Due to the fact that the underlying system is (maximally) indefinite, many
splitting methods perform poorly or not at all. We found the following two
strategies which can be used as a smoother as part of a multigrid method.

Remark 6.3. The name smoother should not be taken literally in this context.
Figenfunctions corresponding to eigenvalues nearby the Dirac points Ki, Ko
are highly oscillating. Such errors remain nearly unaffected by the methods
presented in the following.

Kaczmarz-method

The Kaczmarz iteration can be viewed as the (scalar) Gauss-Seidel iteration
on the normal equations AT Az = ATb [22]. For the nearest-neighbor model
(t =10,—1]) we find

L{ - Ly = Ligoq) = L : L(T%2) = LT3 2),
which is a system without any interaction between the two triangular lattices

consisting solely of atoms of type A and B.2 We assume that the crystal points
are lexicographically numbered from bottom to top and left to right as depicted

2In the third-nearest-neighbor model such a decoupling does not occur.
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6.3. COMPONENTS OF THE GEOMETRIC MULTIGRID METHOD

Figure 6.4.: a) Lexicographic ordering of the graphene crystal. b) Status
of unknowns within a Kaczmarz iteration. Unknowns already updated @ ;
current unknown to be updated 49 ; remaining unknowns not yet updated

@ . ¢) Spectral radii p(Gx)y, of the error propagator Gx = (I — L' Liz 1)
of the Kaczmarz method plotted along P (B), B = A~T. We have p(Gk) = 1.

in Figures 6.4a and 6.4b. Due to that ordering, we describe the Kaczmarz-
method with respect to the shifted structure element (cf. Section 4.3)

t = (t(l), {(2))7 ) — 5(1)’ 12 = 5@ _ as.
The error propagator of the Kaczmarz method is given by
G = (I = Lg'L) : L(T ) = L(Th 2),

where L = L. The operator Lk is a multiplication operator with

0 ify; >0o0r gy >0
(L)) = > mPf+y), mi) =S uim”) fory=0
velzz m(y) else
; .

This is the (block) Gauss-Seidel operator Lgg defined in Chapter 5 with the
difference that we use the lower triangular part of the central multiplicator
m(io) instead of the complete 2 x 2 block. A plot of p((Gx)x) is given in Fig-
ure 6.4c.

Overlapping Hexagons

Consider the non-disjoint splitting/coloring of the graphene crystal into hexagons
as depicted in Figure 6.5. This splitting has a translational invariance of
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Figure 6.5.: Illustration of the domain decomposition into hexagons. Each
unknown belongs to 3 different colors.

C = 2A4. Rewriting the graphene crystal 7% with respect to this coarser
lattice L(C), we find T% = T} with the structure element

tz(tl,...,tg):(5,5—|—a1,5+a2,5+a1—|—a2). (62)
The splitting is then given by the structure elements

t0) = (g, t3, ty, t5, t, t7)
t@ =W + q,

@ =W+ q

tW =t + a; + ay

such that 752 1,727 2@,75" =@ and T2 =@. Note, that the restriction
of the tight-binding formulation to a hexagon is a nonsingular linear system of
equations of size 6 x 6. For Hamiltonians of the type Ly, ;,) as in the case of the
nearest-neighbor description each two different hexagons of the same color do
not interact. Thus, a Jacobi sweep on the unknowns of one color is cheap and
additionally yields a good degree of parallelism. For operators with greater
interaction range one has to use more colors. For example, for operators of
type Ly,,...1,) as it is the case in the third-nearest-neighbor description, one has
to use at least 7 colors to decouple the system as depicted in Figure 6.6. Plots
of the spectral radii of the error propagators corresponding to the four-color
overlap smoother

4
(Gt k= T = L5 L),
m=1

using a relaxation of w € {3, 1} are given in Figures 6.7a and 6.7b. Addition-

ally, in Figure 6.7c a plot of the spectral radii of (G}%3 4) in dependence of the
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Figure 6.6.: Illustration of the domain decomposition into 7 hexagons. Each
unknown belongs to 3 different colors.

relaxation parameter w € [0, 1] is depicted. It can be seen that the spectral
radius is greater than 1 for any choice of w. Thus, this method cannot be used
as a standalone solver.

Remark 6.4. The spectrum of G"* does not depend on the ordering at all
due to the geometric symmetries of the graphene crystal (cf. Figure 6.1). Nev-
ertheless, the ordering has an impact when used as part of a multigrid method
as we will discuss in more detail in Section 6.5.

Intergrid transfer

We choose a coarsening of the graphene crystal in analogy to full-coarsening
of a rectangular grid depicted in Figure 6.8. The coarse crystal without the
fine grid points is simply given by

25
T2J(

which is again a honeycomb structure and a subset of the fine graphene crystal.
The latter is meant in the following sense. Recall from equation (6.2) that we
have T% = Ty, with the structure element

t= (tl,...,tg) = (5,5+a1,5+a2,5+a1 —|—a2).

The structure element 2s of the coarse crystal T5% corresponds to
2(51,52) = (52,51 +ap + (lg) = (fg,t7).

Thus, an atom of type A. (B.) on the coarse crystal is of type B (A) on the
fine lattice.
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61

62
(a) w= %, supy, pr ~ 1.004 (b) w =1, sup, px =~ 1.56
1.5 ‘
%
1 : Jw
0 1 1
2

(c) supy, pi in dependence of w

Figure 6.7.: Plots of the spectral radii of the four-color block smoother
G =110~ LYL).

Figure 6.8.: Coarsening strategy of the graphene crystal.
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The main idea in the construction of the interpolation operator
P=Pol:L(T3) = L(T3;) =5 L(T35) = L(T3),

is the exact preservation of the kernel modes of the tight-binding Hamiltonian.
Recall from equation (6.1) that the kernel is four dimensional and corresponds
to the two Dirac points Ky = %61 + %52, Ky = %61 + é62, B =A"T. A kernel
function on the fine graphene crystal 7% is of the form

Uy(z)

D

|f¥j X 627rz'<Kj ,T+s1)2
7j=1,2

ﬁj . eQni(Kj ,T+52)2

1 EGC(T}), Oéj,BjER, reTy.

The application of the natural isomorphism 7 : L (T%) — L(T4 ;) yields

;- 2Tt
B; - e2mitKiatta)a
a; - 2Tl )
B, - e2mitK atta) )
MY ¢](z) = Oj  2milKp s | € L(Ty ), forall x € Toy.
j=1,2 ﬁj . €2m‘<Kj,a:+t6>2
a; - 2Tt
_Bj . e?ﬂi(Kj,x—i-tg)Q_

Now, consider such a function consisting of the same frequencies on the coarse
crystal

/B. . 627Ti<Kj,JI+251>2 2% B ~
-7 o2mi(Kj,1+282)2 € L(Tyy), a;B8;€R, z€Tha.

B] i 627ri<Kj ,o+t2)2

o O

([0 )(z) = ) € L(Ty7), for all x € Ty.

j=1,2 0
&j . eQﬂi(Kj ,z+t7)2

0

Thus, by choosing &; = a; and Bj = B3;, we preserve the kernel modes if P
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fulfills the following linear system of equations

] . ] oy - €2l )
. 27ri<K‘,:E+12>2
B; - e2milKjztta) By - e
J Qi - e27TZ<Kj,$+f3>2
0 J
R /8] . eQWi(Kj,x+t4>2
P 0 - Q- 627Ti<Kj,$+f5>2 (63>
Jj=1.2 0 j=1,2 |7 ]
} B . e27rz(Kj,m+t6)2
s e?m(Kj,:c—‘r’w)Q J
J o - 627Ti<Kj,$+f7>2
0 J
L | B] X eQWi(Kj,z-‘rtg)z

for all x € To 4, aq, as, B1, B2 € R. In order to fulfill these equations, the value
at a point located at z +t;, j = 1,3,5,7 (j = 2,4,6,8), x € Toz, needs to be
interpolated from the values at the coarse crystal points positioned at y + t;
(y +t2), y € Toz. This means that a point of type A (B) need to interpolate
from coarse crystal points of the other species B, (A.).

The 2nd and 7th row of equation (6.3) are obviously fulfilled if we simply carry
over the values, thus we choose the identity on the fine crystal points which
make up the coarse crystal, i.e.,

P’ " ):1d.

3%
The other equations can be fulfilled by interpolating from at least two coarse
crystal points. For reasons which become clear in the theoretical analysis in
Section 6.4 we opt to use the four, instead of only two, closest coarse crystal
points of the opposite species. This choice is depicted in Figure 6.9. Consider
for example row 3 of equation (6.3). Here, the four interpolation points are
located at x + a5 and = £ (2a; — az). The corresponding four interpolation
weights w = (ws, @Ws, wy, Wy) are obtained by solving

eQwi([ﬁ,ag}g e27ri<K1,fa2>2 eQwi(Kl,Qalf(m)g 627ri<K1,72a1+a2)2_ 1
627ri<K2,ag>2 e27ri<K2,—a2>2 eQwi(Kz,Qal—ag)g 627Ti<K2,—2a1+a2)2 W = 1
4__ - 4__ - . . -
e3Tt g3 6071'1 6707rz B 1
< e%ﬂi efgfrz 2mi —omi | W= 1
s s

< Ll V3 1 V3, 1Y~ 1]
2 2 2 2 d L~

In order to fulfill these equations the shortrange interpolation weights need to
be equal, i.e., Wy = ws. The linear system of equations results in the relation

We =wp+wp—1. (6.4)

Note, that this choice is also valid for the other fine crystal points due to the
three-fold rotational symmetry of the crystal. Finally, the representation as a
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multiplication operator of our prolongation

(PH@)= Y m@fx+y), mY e R

yETo

is illustrated in Figure 6.9 and its nonzero multipliers are given by (0 is replaced
by - for the sake of readability):

- wp

(2a1—-2a2) — |We
mp

C W

“2ay) _ %) _
m(P 2) = msf‘) =

m(l;zurz@) _ mga’l{»ZuQ) _

m® =

© Ws Ws

(=2a1) — | ° : (2a2) — |We
. WS v

—2a1+2a3) —
mfp a1+2a2) = wr

6.4. Analysis of the coarse grid correction

In this section we analyze the influence of the interpolation weight combination
(cf. equation (6.4)) to the coarse grid correction. (Due to the fact that the
coarse grid correction operator is a projection, we do not get any insight by
extracting its eigenvalues. Thus, we instead proceed as follows.)

Recall that the derived interpolation weights ensure that the Dirac modes
e?™{Ke)2 are exactly preserved. We not only want to preserve the Kernel,
we especially want that wave functions nearby are preserved as accurately as
possible due to the fact that any smoother performs poorly on errors in the
direction of eigenfunctions corresponding to small eigenvalues. Reconsider for
example row 3 of equation (6.3) which can be written as f(K;) = 0 with

f(k') _ <€27ri<k,a2>2 + 627ri<k,7a2>2)w5 + e27ri(k,2a17a2>2w£ + e2ﬂi<k,72a1+a2>2@£ o 17
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where w, = wy + W, — 1. Now, using polar coordinates for the wavevector
k,ie., k= Ky + p(r,¢), p(r,¢) = r[cos(¢),sin(¢)], an error measure of the
prolongation of wavefunctions in proximity to a Dirac point is given by

Bl ) 1= supd{ | 3 1+ (10D ) (65

(For symmetry reasons it is sufficient to consider a single row of equation (6.3)
around one Dirac point.) A plot of equation (6.5) is shown in Figure 6.10. As
one can see, the error F is constant along the distance to (3, 3) in the 1-norm.
Regarding this result, the best interpolation weight combination is given by
(we, Wg) = (%, %), and w, = 0. Unfortunately, for this choice, the spectrum of
the coarse grid operator L. = PTL[Oy_l]P has additional kernel functions at
k¢ {K,, K5} as can be seen in Figure 6.11. As a result, the two-grid method
amplifies errors in the direction e2™*+2)2 for some small £ € R? which causes
divergence of the method. We now study which interpolation weights are

allowed with respect to the spectrum of L..

Lemma 6.5. Given an interpolation operator P with interpolation weights
we, Wp and ws the Galerkin coarse grid operator

L.=P'Ly yP:L(T55) — L(T3%)

is given by

L.= L[to t1,t2,t3,t4]

Figure 6.9.: Illustration of interpolation using weights — w,, —> w, and

We.
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60
40
20

0.5
we 1

Figure 6.10.: Error measure of the prolongation of wavefunctions in proximity
to a Dirac point in dependence of the interpolation weight combination (wy, @y).

10+0
3b1 3b1

1071
‘ ’ 102
»
1074

1 1 1 1 1
302 302 302 302 3b2 o

Figure 6.11.: Logarithmic plots of the spectra of L, = PTL[O,_I]P for different
choices of the interpolation weights w, = &, and w, = 2w, — 1; color indicates

p((Le)k)- (From left to right: wy =0, wy = ¢, we = 1, wy = 3 and wy = 3).

with tg =ty = 0 and

t1 = —6w? — 4w, — dw,(wp + Dy) — 2w7 — 20y,
t3 = —2w§ — 2wy — dwawp — 2@?,
ty = —2w.wp — 2wply.
Proof. This result directly follows from Lemma 4.23. O

The symbol of this coarse grid operator is in general given by

0 SAG) ‘

Lk = |——
Low=12— 0
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A

N\

_2 | \ : =
3 1 — —
1 1 1 2
6 3 2 3
we

Figure 6.12.: Plot of the area W C {(z,y —2) : = € (0,1),y € (3,3)}
from which one can chose interpolation weight combination (wy, @) as well as

several contour lines of the error measure E(wy,Dy).

Using the result of Lemma 6.5 we found® the contour lines of v, 5, (k) = 0
for fixed k # {K;, K3}. Each contour line correspond to one ellipse and all
ellipses fill up R? except a small area W C {(z,y —z) : z € (0,1), y € (3,2)}
plotted in Figure 6.12. This plot also includes the contour lines of the error
measure E(wy,@,) (cf. equation (6.5)). We have

[0 € spec((Le)r) © k € {K1, Ky} <= (wi, @) €W,

which means that the two-grid method diverges if (wy, @s) ¢ W.

Thus, the best convergence rate of a two-grid method for any smoother is

most certainly found in the top-right region of W, i.e., near the line segment
(we, @) € {(x—e,2—x—¢) : x €[g, 3]} for some small ¢ > 0. Using only 2
interpolation weights is not allowed as both corresponding points (0,0) and

(3,3) are outside of W. Three instead of four interpolation weights can be

used due to (3, %) x {0} € W. Here, the weight combination (wg, ws) = (3, —3)

yields the best preservation of the wavefunctions close to the Dirac modes.

3Using a Computer Algebra System.
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6.5. Convergence rates of the multigrid method

In this section we present spectral radii of the derived two-grid method
M= KG

for the tight-binding formulation of graphene, where G corresponds to one
pre-smoothing iteration, with respect to various degrees of freedom. First,
we consider Kaczmarz smoothing and show the influence of the interpolation
weights on the actual convergence rate of the method (cf. Section 6.4). After
that, we analyze the overlapping hexagon smoother with four and seven colors.

Kaczmarz

We first consider the two-grid method with the error propagator M = KG,
where G corresponds to a single iteration of Kaczmarz. A plot of the spec-
tral radii p(M) of the two-grid error propagators for varying interpolation
weights (wg,@wy) € W is shown in Figure 6.13. We have a relatively large
stable plateau of a convergence rate of [.75, .77]. Furthermore a connection
to the standalone analysis of the coarse grid correction (cf. Section 6.4) can
be seen. As predicted, the best convergence rate of p &~ .749 is obtained for
a choice (wg,wy) on the line segment {(z —¢,%2 —x —¢) : x € [¢, 3]} which
corresponds to the best preservation of the wavefunctions nearby the Dirac
modes. However, the minimum along the line (wy,0) is not exactly found at
(%, 0). Instead, a marginally better choice for this particular smoother can be
found at approximately (.545,0).

In Figure 6.14 we show the spectral radii of the multigrid V-cycle error prop-
agator using m = 2,...,6 levels of the multigrid hierarchy in combination
with a single pre-smoothing iteration of Kaczmarz. In here we used the in-
terpolation weights w, = .5, Wy = 0 and w, = w; + wy — 1 on each level. The
convergence rate decays only slightly from 2 to 3 grid, but stays constant for
m > 3 which proves the robustness of multigrid method.

Overlapping Hexagons
In this section we analyze the two-grid method using the four and seven color
overlapping hexagon smoother introduced in Section 6.3.

For this two-grid method we have several additional degrees of freedom besides
the choice of the interpolation weights. We can furthermore freely choose

e the relaxation parameter w € (0, 1) and

e the ordering in which we update the blocks.
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0.9
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Figure 6.13.: Plot of the spectral radii of the two-grid error propagator M =
K G using Kaczmarz smoothing with respect to the choice of the interpolation
weights (wp, Wr), ws = wy + @y — 1 (NN description).

0.78
0.76 ! ! ! m
2 3 4 5 6

Figure 6.14.: Spectral radii of the m-grid error propagator with a single
pre-smoothing iteration of Kaczmarz.
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Figure 6.15.: The four color overlap splitting, the coarse graphene crystal
L'(24) and all its elementary symmetries.

Using four colors

First, we reduce the number of 4! = 24 different orderings in which one can
update four colors analogously to Section 5.4. The coarse grid correction
operator K fulfills the crystal symmetries of the wallpaper group p6mm as de-
picted in Figure 6.15. Due to the fact that most of these elementary symmetry
operations yield the same permutations, it is sufficient to consider for example
the six-fold symmetry o; := (1,3,2) € Sym, and the horizontal reflection
oy 1= (2,3) € Sym, as generators for the permutation group H := (o4, 03).
This group H splits Sym, into 4 different cosets Hg = {hg : h € H},
g € Sym,, i.e.,

H\Sym4 = {Hg g c Sym4} = {Hl,HQ,H3,H4},

where H,; := {0 € Sym, : 0(4) = i}. Using the algebraic symmetry (cf. The-
orem 5.15), we can further merge H; with H, and Hs with H3. Thus, we end
up with two different orderings, for example

A :=(1,2,3,4) and B := (1,2,4,3).

In Figure 6.16 a contour plot of the spectral radii of the two-grid error propaga-
tor K G is shown, where we use the ordering 20 = (1,2, 3,4) and no relaxation,
i.e., w = 1. As can be seen, for the interpolation weight combination w, = .5,
Wy = 0 and wy; = wy + @y — 1, we have a convergence rate below 10715 i.e., it
is a direct solver. A plot of the (absolute part of the) sorted spectrum of the
error propagator GG of the four-color overlap smother is given in Figure 6.17,
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Figure 6.16.: Plot of the spectral radii of the two-grid error propagator KG
using the four color overlap smoother with the ordering 20 = (1,2, 3,4) with
respect to the choice of the interpolation weights with respect to the choice of
the interpolation weights (wy, @y), ws = wp + Oy — 1.

ie., spec( ) = {1, A with [ M| < X < ... < |\,| where we used
G: £( 52.1001) = L (T34 .100) resulting in n = 20000 eigenvalues. One can
see that exactly 75% of the eigenvalues are below 10~17.4 Due to the fact that
the coarsening factor is 25%, the coarse grid correction can at most eliminate
25% of these eigenvalues. As this is exactly the case, we have found an ex-
ample of a perfect interplay of smoother and coarse grid correction using a
sparse/local interpolation which makes it an exceptional result. Usually, such
an optimal interpolation turns out to be a dense matrix [12].

From here on we restrict ourselves to exactly these interpolation weights.

Figure 6.18 shows the convergence rates in dependence of the relaxation pa-
rameter w for both orderings 2 and B for the fixed interpolation weight com-
bination (w, @y, ws) = (.5,0,—.5). The ordering B = (1,2,4, 3) is far inferior
to ordering 2 as this smoother only works with under-relaxation and we can
only obtain a convergence rate of p ~ .35 for w ~ .7 at best.

4These eigenvalues are probably only > 0 for numerical reasons.
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FNIO S

1 1
1 2

Figure 6.17.: Plot of the sorted spectrum |\;| < ... < |A,| of the error
propagator G of the four-color smoother.

1 4
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0.6 1
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Figure 6.18.: Plot of the spectral radii of the two-grid error propagator KG
using the four color overlap smoother with interpolation weights (wy, @y, ws) =
(.5,0,—.5) in dependence of the relaxation parameter w. —— ordering 2 =
(1,2,3,4); ---- ordering B = (1,2,4, 3).
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Using seven colors

When using the third-nearest-neighbor Hamiltonian or when solving the Galerkin
coarse grid problem one has to use more than four colors to decouple the sys-
tem. Thus, we briefly show results for a seven color smoother applied to the
nearest-neighbor Hamiltonian.

Again, we can reduce the number of 7! = 5040 different permutations us-
ing the elementary symmetry operations of the coarse grid operator (cf. Fig-
ure 6.19). Note, that the mirror symmetries of the wallpaper group p6mm
are not compatible with the seven color splitting: For example, a reflection
along the horizontal axis does not yield a well defined generator as this re-
flection for example yields the inconsistent permutations 3 — 3 and 3 — 7.
Thus, we restrict ourselves to the permutations of the wallpaper group p6,
a sub-group of p6mm without any reflections. Then, we can reduce the
7! = 5040 permutations to 120 distinct orderings. Using the algebraic sym-
metry (cf. Theorem 5.15), this number can further be reduced to 64, i.e., we
have 5040 = 8 cosets of size 42 + 56 cosets of size 84.

Figure 6.20 shows the convergence rates with respect to the relaxation pa-
rameter w for two selected orderings 2l and ‘B using the interpolation weight
combination (wy, Wy, ws) = (.5,0,—.5). These two orderings correspond to the
best and the worst possible choice. For the best possible ordering we find

7
argmin(minp(KH Goiyw)) =A=1(1,2,4,6,3,7,5) =

o€Sym, Y i=1

with a convergence rate of p(K szl Gaiy,7) =~ 0.23 and for the worst possible
ordering we have

7
argmax(minp(KH Goiyw)) =B =1(1,2,3,4,5,6,7) =

oc€ESym, w i=1

with a convergence rate of p(K [I/_; Gs@).4) ~ 0.68. Thus, the number of
colors and the ordering can have a big influence on the convergence rate of
the method. Furthermore, a lexicographic ordering can be the worst possible
choice.

6.5.1. Open boundaries
In this section we study the multigrid performance applied to non-periodic

graphene samples. At first, we introduce the graphene samples to which the
multigrid method is applied.
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Figure 6.19.: The four color overlap splitting, the coarse graphene crystal
LY(2A4) and all its elementary symmetries.

1 -
0.8 “Sse. /
0.6
Q
0.4
0.2 e
0 w
0 0.2 0.4 0.6 0.8 1

Figure 6.20.: Plot of the spectral radii of the two-grid error propagator KG
using the seven color overlap smoother with interpolation weights (wy, Wy, ws) =
(.5,0,—.5) in dependence of the relaxation parameter w. —— ordering 2 =
(1,2,4,6,3,7,5); ---- ordering B = (1,2,3,4,5,6,7).
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Rectangular Graphene sheets

For numerical simulations we implemented the presented multigrid method
for finite rectangular subsection of the graphene crystal.

Definition 6.6. Define a rectangular graphene patch G, ¢ with n,m,¢ € N
by
Gume =L (A)NP(A-C),

with

o_ [n 62%+n‘|

_ 2n+m
m —l=

where N, = ged(2n + m,2m +n). One easily checks that (Acy) is orthogonal

to (Acy). Its chiral angle is given by 0 = —¢ + tan’l(ﬁ%); cf. Figure 6.21a.

Remark 6.7. Due to symmetries of the crystal, all possible rectangular patches
G me are defined by

n,m,f € N\O and n>m,

which restricts the chiral angle to 0° < 6 < 30°.

e Forn=m (0 =0°), we obtain an armchair boundary in the direction
of (Acy) and a zigzag boundary in the direction of (Acsy), as illustrated
by the horizontal and vertical boundary in Figure 6.21a.

o The number of atoms in G, ,, ¢ s

[(Acy) x (Acy)|  4l(n* 4+ nm + m?)
’CLl X CL2| a N,« ’

’Gn,m,f| =2

where X denotes the vector product operator.

Typical boundary conditions for rectangular graphene sheets G,, ,, , are open
and periodic. Open boundary conditions are realized by simply omitting the
terms of the tight-binding Hamiltonian which would belong to off-lattice points.
Carbon nanotubes correspond to periodic boundary conditions in one direction
and are obtained from G, ,, ¢ by rolling it up along (A«c;) such that € G, ¢
is identified with x + (A«cy); cf. Figure 6.21b. Periodic boundary conditions
along both basis vectors correspond to the graphene torus

e = A) /L(ﬂ -C)-
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(a) (b)
Figure 6.21.: (a) An example of a finite graphene sample G421, === zigzag
boundary; - armchair boundary. (b) The corresponding nanotube when

periodic boundary conditions in the direction of A ¢, are applied.

Numerical results

In the following we used a single iteration of Kaczmarz smoothing in our
multigrid method in combination with the interpolation weight combination
(wg, (:)g, ws) = (5, 0, —5)

In accordance to Figure 6.21a, we denote the boundary at Ac¢; by z; and the
one at Acy by x9. Further o refers to an open and p to a periodic boundary
condition. Thus, in short-hand notation we describe the different cases by the
tuple (x1, z2), where 1,25 € {p,0}.

In the first set of tests, we consider a graphene sample with chiral angle
6 = 0°, which results in a pure armchair boundary at Ac¢; and a pure zigzag
boundary at Acy. In terms of the multigrid construction, we simply remove
any interpolation across an open boundary. That is, fine grid points near
the open boundary interpolate from fewer than 3 coarse grid points, but use
the same weights as interior points. As it can be seen in Figure 6.22, the
convergence of the multigrid method remains unchanged in the case (o, p), i.e.,
when using open boundary conditions at the armchair boundary. In contrast
convergence stagnates in the cases (p,0) and (o0, 0).

As it has been observed experimentally and shown analytically in [14, 49], the
presence of open boundary conditions along a zigzag edge, as it is the case
n (p,0) and (o,0), leads to edge states Wgs. These are eigenmodes which are
damped exponentially towards the inner sites perpendicular to the zigzag edge.
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The number of edge states scales linearly with the length of the zigzag edge
[le2]f2-

In our experiments, we found that an error composed of edge states can neither
be resolved efficiently by further relaxation at the boundary nor by different
choices of the coarse grid correction. Thus, we tried to fix the method in the
following way. In order to prevent the presence of edge states on the coarse
grid, we interpolate periodically across the open zigzag boundary, despite the
open boundary condition, such that the interpolation in the cases (1, 0) is now
identical to the interpolation in the cases (z1,p). With that choice, the coarse
grid operator A, = PT AP is periodic at the zigzag boundary and it does not
contain any edge states. As can be seen in the left plot of Figure 6.23, this
approach does improve convergence in the (p, o) case, but leads to stagnation
at the level of the largest eigenvalue corresponding to an edge state. Thus, we
additionally apply deflation on the finest level using the analytical description
of the edge states Wgg given in [49]. That means that we remove from the
current iterate the part in the direction of the edge states via

v

(Ugs, Ugs)o

The resulting method shows a convergence similar to the theoretical prediction,
as illustrated in the right plot of Figure 6.23. The case (0,0) is very similar
to the case (p,0) and the multigrid method can be fixed in a similar way.

Rotated graphene samples with chiral angle 0° < 6 < 30° have boundaries
with a mixture of armchair and zigzag sites. According to [28], already a very
small number of zigzag sites lead to edge states. In Figure 6.24 we apply the
above construction of periodic interpolation, despite open boundary conditions,
combined with deflation to rotated graphene samples. The results are similar
to the 6 = 0° case and it stands to reason that a convergence rate close to the
theoretical bound can be achieved with further adjustments at the boundary.
However, to our knowledge, no analytical description of the edge states in
the general case Gy, ,,, ¢ exists so that they have to be calculated numerically
beforehand in order to use them in the deflation procedure.
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Figure 6.22.: Convergence of the multigrid method (5 level V-cycle)
on Ggyps64 using different combinations of boundary conditions. (——

theor. bound, ---- (0,0), (0,p), —— (p,0) and -~ (p,p))
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Figure 6.23.: Convergence of the multigrid method (5 level V-cycle) on dif-
ferent graphene patches G,, ,, 16 using (p, o) boundary conditions. Left: periodic
interpolation across the open boundary; right: periodic interpolation and de-

flation. (—— theor. bound, ---- n = 16, n=232,---n=48 and -~ -
n = 64)
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Figure 6.24.: Convergence of the two-grid method on rotated graphene
patches G,,,,—12 using (o,p) boundary conditions. Left: periodic interpola-
tion across the open boundary; right: periodic interpolation and deflation.
(— theor. bound, ----n = 4, n=6,---n=10and - --n=14)
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Chapter

Conclusion

In this thesis we studied translationally invariant operators on crystals using
techniques from integer linear algebra and crystallography. Upon these results
we showed connections to iterative splitting methods using multicolor (or
domain decomposition type) block Jacobi and Gauss-Seidel type methods, as
well as geometric multigrid methods. The outcome of the theoretical study are
several algorithms which make up a practical framework to analyze multigrid
methods with minimal effort, i.e., the description of the occurring operators.
Furthermore, we have shown how a general smoothing analysis can be carried
out within this framework. A Python3 implementation of this framework is
publicly available on GitLab [24].

We applied the framework to several smoother and multigrid methods for the
discretized Laplacian operator for demonstrative purposes and to validate the
framework. Even though this framework and the theory does not necessarily
enlarge the set of methods that are analyzable by LFA| it enables the reliable,
quick and easy-to-use analysis of complex methods on complicated structures.

The automation presented in this paper does have some limitation. Each
individual operator in the analysis is only allowed to change each value of
the value distribution at most once. This limitation solely restricts the class
of smoothers that can be analyzed with this approach. Any sequential, i.e.,
lexicographic, smoother with overlapping update regions changes values in the
overlap multiple times in one application. This cannot be easily translated
to a corresponding local multiplication operator, but it can be dealt with
in frequency space (cf. [26, 27, 43]). This particular treatment of sequential
overlap is momentarily not covered in our framework. Note, that the mere
presence of overlap is not the problem here. By introducing a coloring, such
that the complete sweep can be split into a sequence of updates where each
one of them only changes values at most once, automated LFA can be applied
(cf. Section 5.2). Due to the fact that a coloring in overlapping approaches
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also favors parallelism over their sequential counterparts, this limitation is
relatively minor when targeting actual applications.

We furthermore have shown how to construct a scalable multigrid method with
optimal complexity for the maximally indefinite system of equations arising in
the tight-binding formulation of graphene. Besides the sequential Kaczmarz
smoother, we developed a parallelizable block overlap method with superior
performance. For this multigrid method we furthermore did a standalone
analysis of the coarse grid correction which provides deeper insight into the
behavior of the method. This lead to the discovery of a two-grid method with
an optimal local interpolation which is surprising as the optimal interpolation is
usually a dense matrix (cf. [12]). In addition, we have shown that the ordering
of a colored smoother can have a great influence on the convergence speed of
a multigrid method. By exploiting the geometric and algebraic symmetries
of a (colored) smoother, we illustrated how to reduce the factorial number of
different orderings to be analyzed. Finally, we provide an ansatz for how the
edge states induced by open boundary conditions at zigzag boundaries can be
treated efficiently. By a combination of periodic interpolation over the open
boundary, to prevent edge states on the coarser grids, and deflation of the
edge states on the finest grid, the multigrid method converges according to
the theoretically predicted rate.
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Appendix

Algorithms

A comprehensive list of the algorithms used within the automated local Fourier

analysis.

Algorithm A.1: Spectra of a composition of multiplication operators.

[0 B N

Function X = ComputeSpectrum(f, (LM, ... L

Input: L) : T}(ZJ)) — T};Zj),m(;(% e CltVIxIsV1 4 ¢ L(AY)), composition

function f and (optionally) a sublattice L(Z) C L(A).

Output: Spectrum X := {spec(f(LM,...,LFN),) : ke 2(A-T)NnL(Z~T)} of

the operator composition f(L®"), ..., LE)): L(T5 ;) — L(T% 7)
1), %)
(i(l), cee f/(K)) = MakeOperatorsCompatible(L") ... L))  See Algo-

rithm A.5
if Z is not None then

‘ Z =204 > Use an equidistant sampling of 20™ points.
Sample the dual lattice to obtain k € #(A-T)NL(Z~T) > See Remark 4.21
Compute the spectrum of the composition operator of symbols

f(L,(cl), e L,(CK)) > See Theorem 4.24

Algorithm A.2: Normalize a multiplication operator.

Input: L: T% — T4, m\" e cltxlsl 2 c L(7).
Output: G = L in normal form with G : T% — T},,mg) e Clolxlul 2 e L(A).

1 Function G = Normalize(L) > See Definition 4.27
2 uj =s5; — A| A 's;] forall j=1,...,|s] > Shift into P(A) = A[0,1)™
3 v, =t; — A|A | forall j =1,...,[¢ > Shift into #(A) = A[0,1)"
4 Sort u and v lexicographically

5 G = ChangeStructureElement(L,u, v) > See Algorithm A.7
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Algorithm A.3: Find all elements in the quotient space of two lat-
tices.

Input: Two n-dimensional lattices with L(C),L(A) with L(C) C L(A).
Output: Structure element s =Tz ¢ = L(A) /L(G)

1 Function s = ElementsInQuotientSpace(A,C) > See Theorem 3.16
2 H = Hermite normal form of A 1€ > See Theorem 2.5
3 m = H?:l hz77 > Size of s
4 5;=0foralli=0,...,m > Initialize s
5 fori=1,2,...,m

6 k=i-1

7 for j=1,2,....n

8 t = mod(k, h; ;) > Shift in direction a;
9 k= k=t

hj,

10 5; = 5; +ta;

Algorithm A.4: Rewrite a multiplication operator w.r.t. a coarser
lattice.

Input: L : 7% — T;q,m(Lm) € CltIXIsl 2 € L(A), and a sublattice L(€C) D L(A)
Output: G = L with G : T — T2, m{%) e Clxlul 2 e L(C).

1 Function G = LatticeCoarsening(L,C) > See Theorem 4.25
2 ¢ = ElementsInQuotientSpace(A, C) > See Algorithm A.3
3 u=(er+5,...,¢¢ +5),0=(er+t,...,¢+1t) > Define structure elements
4 (mg)) =0 € ClvIxlul for all y € L(C) > Initialize new multipliers
5 for m%) #0

6 for (i,5) € {1,...,e|}?

51 p—1 e
7 ‘ (mg Lo (e e’)J))m = m(Ly) > Define multipliers block-wise

Algorithm A.5: Rewriting multiplication operators w.r.t. a single
lattice.

Input: L(J) . T;((J])) — ngj)7miig) c C‘f(j)‘xlﬁ(”"x c L(ﬂ(]))

Output: ﬁ('jl) =~ L) in normal form,
i(]) . T}l[(J) N T;{(y),mg&) c C|n(1)|x‘u(1)‘7x c L(ﬂ)

1 Function (ﬁ(l), ce ﬁ(K)) = MakeOperatorsCompatible(L(1), ... LK)
2 A =AW
3 forj=2,....K
4 ‘ A = LeastCommonMultiple (A, A7) > See Algorithm A.6
5 for j=1,....K
6 v = LatticeCoarsening(LU), A) > See Algorithm A.4
7 iV = Normalize(f/(])) > See Algorithm A.2
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Algorithm A.6: Find a least common multiple of two lattices.

Input: Lattice basis B, A € R™"*"
Output: Lattice basis C, s.t. L(C) C L(A) and L(C) C L(B)

1 Function C = LeastCommonMultiple(A,B) > See Theorem 3.6
2 Find an integer r, s.t. M = r A~ '® is integral

3 Compute Smith normal form S = V-IMT! of M > See Theorem 2.9
4 (Ng)ii =r1-ged(r,s; )L, C =BT 1Ny > Define the lattice basis

Algorithm A.7: Changing the structure elements.

Input: Structure elements u = 5, v 2t w.r.t. L(A) and
L:T5 - T4, mi eclixlsl » e ().
Output: L = L with L : T% — 1%, m{” € ClIXI & e ().

1 Function L = ChangeStructureElement(L,u,v) > See Theorems 4.28 and 4.29

2 my =0 € {0, 1}l m, =0 € {0, 1}1UxI > Initialize permutation
matrices
3 for (i,7) € {1,...,]s|}? > Compute changes in d
4 if A~!(s; —u;) is integral then
5 ¢ =5; —Uj > Save shift
6 (mz)ji=1 > Save permutation
7 for (i,5) € {1,...,[t}? > Compute changes in ¢
8 if A71(t; —v;) is integral then
9 fi=t —v; > Save shift
10 (me)ji =1 > Save permutation
11 (m(iy)) =0 ¢ Cltixlsl for all y € L(A) > Initialize new multipliers
12 for mgy) #0
13 for (i,7) € {1,..., |4} x {1,...,]s|}
14 (m%ﬂjﬂi))i’j = (mgly))i7j > Incorporate shifts e and f,
see Theorem 4.28
15 m(ﬁy) = Mg - m(ﬁy) ~m; ! for all y € L(A) > Incorporate permutations,
see Theorem 4.29
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Nomenclature

X*  The adjoint operator of X.

cof (A) The cofactor matrix of A.

Xt The Moore-Penrose pseudoinverse of X .
det(A) The determinant of A.

err, A wavefunction (0,...,0, ¥k +s02 (0 0) on the function space
L (1% 2) of a crystal torus (see Theorem 4.4).

n The natural isomorphism 7 : L(T7.2z) — ,C(TGT;%G), L(Z) c L(C) C
L(A) (see Definition 4.6).

||  The floor function applied to x.
ged(a, b) The greatest common divisor of a and b.

Xy Either the symbol of a multiplication operator X w.r.t. the wavevector
k (see Definition 4.19) or the space of Harmonics if X = H (see Defini-
tion 4.5).

L(A) The n-dimensional Bravais lattice AZ", A € R™™ (see Definition 3.1).

LS(A) The crystal {(z+s1,x+52,...,2+8y) : © € L(A)}, wheres € Z(A)™
(see Definition 3.11).

L(A)* The dual lattice of L(A) defined by L(A~T) (see Definition 3.19).
lem(a,b) The least common multiple of two integers a and b.

lem(L(A),L(B)) The sublattice L(C) C L(A), L(C) C L(B), with |det(C)|
as small as possible (see Theorem 3.6).
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Nomenclature

L(X,Y) The set of functions {f : X — Y} (see Definition 4.1).
L(X) The set of functions {f : X — C} (see Definition 4.1).

L (1% ) The set of functions £L(T'7,z,C™) (see Definition 4.1).
a|b a divides b without remainder.

m®¥ A multiplier of a multiplication operator L : £L(T%) — L£(T%) such
L p p b A A

that Lf(z) =3, mW f(z +y) (see Definition 4.17).
P(A) The parallelotope A[0,1)™ (see Definition 3.8).
p(X) The spectral radius of X.
spec(X) The set of all eigenvalues of X.

Sym, The symmetric group of degree N (see Section 5.4).

Tze The lattice torus or quotient space L(A) /L(G) (see Definition 3.13).
T% ¢ The crystal torus or quotient space L*(A) / L(C) (see Definition 3.13).

T% z The lattice torus defined by the dual lattices L(Z)" / L(A)* (see Re-
mark 3.21).

Tz  Anarbitrary large but finite lattice torus 7'z z, L(Z) C L(A) (see Chap-
ter 4).

T%  Anarbitrary large but finite crystal torus 7% o, L(Z) C L(A) (see Chap-
ter 4).

XT  The transpose of X.

E(A) A primitive cell of L(A) (see Definition 3.8).
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