de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
de
en
Schliessen
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Chemical modification of gas-phase cluster dynamics in ion mobility spectrometry / vorgelegt von Florian Stappert. Wuppertal, April 2022
Inhalt
1 Introduction
1.1 Ion-neutral interactions in chemical analysis
1.1.1 Cluster dynamics
1.1.2 Chemical reaction
1.1.3 Fragmentation
1.1.4 Thermodynamic versus kinetic control
1.2 Mass spectrometry
1.2.1 Atmospheric pressure ionization mass spectrometry
Electrospray ionization
Atmospheric pressure chemical ionization
Atmospheric pressure laser ionization
1.2.2 Triple quadrupole mass spectrometer
1.3 Ion mobility
1.3.1 Ion mobility spectrometry
Chemical modification in IMS
1.3.2 High kinetic energy ion mobility spectrometry
1.3.3 Differential mobility spectrometry
Typical behaviors of the α-function
Chemical modification in DMS
Hard-sphere effect
Temperature effect in DMS
1.4 Enantioselective analysis
2 Aim of this work
3 Experiments and methodology
3.1 Mass spectrometer
3.1.1 Ion sources
Turbo VTM Ion Source
nanoESI source
APLI source
3.2 Differential mobility spectrometer
3.3 High kinetic energy ion mobility spectrometer
3.4 Chemicals and gases
3.5 Numerical investigations
4 Influence of steric properties on ion separation in DMS
4.1 Analyte selection and typical MS spectra
4.2 Influence of the ion structure on differential mobility
4.2.1 Introductory measurements
Aliphatic amines
Aromatic (di-)amines
4.2.2 Diamine series
4.3 Influence of the charge level on the cluster effect
4.4 Summary and conclusion
5 Cluster dynamics under constant conditions
5.1 Cluster dynamics in HiKE-IMS
5.1.1 Proton bond water cluster system
5.1.2 Typical HiKE-IM spectra of protonated analytes
Acetonitrile (A)
Acetone (B)
Methanol (C)
1,3-Diaminopropane (D)
5.2 Humidity effect on cluster dynamic
5.2.1 Influence of humidity on the RIP
5.2.2 Humidity effect on solvent clusters
Acetonitrile
Acetone
Methanol
5.3 Temperature effect on cluster dynamic
5.3.1 Temperature effect on the RIP
5.3.2 Temperature effect on analyte-specific signals
Acetonitrile
Acetone
5.4 Chemical modification in HiKE-IMS
5.4.1 Acetonitrile
5.4.2 Acetone
5.4.3 1,3-Diaminopropane
5.5 Summary and conclusion
6 Enantiomeric separations by stereoselective clustering
6.1 Preliminary measurements
6.1.1 Amino acids
Optimization of the modifier mixing ratio
Declustering process
Optimization of DMS parameter
6.1.2 Maruoka catalyst
Cluster effect on the Maruoka catalyst
Optimization of DMS temperature
Optimization of DMS resolution
6.1.3 Optimized measurement parameters
6.2 Charged nanodroplets from ESI
6.2.1 Charged nanodroplets
6.2.2 Differential mobility of nanodroplets
Impact of DMS parameters
Effect of modification on nanodroplets
Droplet discrimination above of the actual cut-off value
6.3 Alternative ionization methods
6.3.1 Common APCI source
6.3.2 Custom APLI source
6.3.3 Common nanoESI source
6.3.4 Comparison and conclusion
6.4 Modification with enantiopure modifier
6.4.1 Maruoka catalyst
6.4.2 Phenylalanine
6.4.3 Interpretation
6.5 Numerical studies on stereoselective clustering
6.5.1 Reactant optimization
6.5.2 Numeric investigations of cluster structures
Alanine
Phenylalanine
6.6 Summary and conclusion
7 Overall summary, conclusion, and outlook
List of abbreviations
List of Figures
List of Tables
References