de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
de
en
Schliessen
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Modeling filler flocculation in elastomers : an approach based on surface free energies and Monte Carlo simulation / vorgelegt von Norman Gundlach. Wuppertal, 2019
Inhalt
1 Introduction
1.1 Outline of the Thesis
1.2 References
2 The Morphology Generator – Introduction and Impact of Heterogeneity in Single Polymers
2.1 The Morphology Generator
2.1.1 Determining the Filler Volume Content
2.1.2 Homogeneous and Heterogeneous Silanization
2.2 Monte Carlo Simulation of Flocculation
2.2.1 The Metropolis Criterion
2.2.2 Introduction of Surface Free Energies
2.2.3 Example Mixing of Water and Oil
2.2.4 Basic Quantities of the System
2.3 Screening Methods
2.3.1 Wetting-Envelope - Work of Adhesion Plots
2.3.2 TEM – Transmission Electron Microscopy
2.3.3 SAXS – Small Angle X-ray Scattering
2.4 Example Systems – the Potential of the Morphology Generator
2.4.1 Wetting-Envelope - Work of Adhesion Plots
2.4.2 TEM Pictures and SAXS Intensities
2.4.3 Compatibility of Modified and Unmodified Silica with Polymers
2.5 Mimicking Filler Particles in Single Polymers – Impact of Parameters
2.5.1 Wetting-Envelope - Work of Adhesion Plots
2.5.2 Impact of Flocculation Time
2.5.3 Varying the Filler Volume Content
2.5.4 Varying the Temperature
2.6 Conclusion
2.7 References
3 Binary Polymer Blends – Impact of Homogeneity
3.1 Changes due to Homogeneity
3.1.1 The Morphology Generator
3.1.2 Screening Methods
3.2 Mimicking Homogeneous Filler Particles in Polymer Blends
3.2.1 The Recipe
3.2.2 Wetting-Envelope - Work of Adhesion Plots
3.2.3 50/50-NR/SBR Blend
3.2.4 70/30-NR/SBR Blend
3.2.5 Impact of Higher Filler Volume Content
3.3 Long Term Structural Evolution
3.3.1 Interphase Aggregation – A Special Case
3.3.2 50/50-NR/SBR Blend
3.4 Conclusion
3.5 References
4 Binary Polymer Blends – Impact of Heterogeneity
4.1 Changes due to Heterogeneity
4.1.1 The Morphology Generator
4.1.2 Screening Methods
4.2 Mimicking Heterogeneous Filler Particles in Polymer Blends
4.2.1 The Recipe
4.2.2 Wetting-Envelope - Work of Adhesion Plots
4.2.3 50/50-NR/SBR Blend with theta = 0.50
4.2.4 50/50-NR/SBR Blend – Impact of Variable theta
4.3 Conclusion
4.4 References
5 Conclusion
5.1 Outlook
5.2 References
Appendices
A Filler, Rubber, and Silanization – The Nomenclature
A.1 Elastomers
A.2 Filler Particles
A.2.1 Inert Fillers
A.2.2 Reinforcing Fillers and Properties
A.2.3 Types of Reinforcing Filler
A.3 Surface Treatment of Filler Particles
A.4 References
B Surface and Interfacial Free Energies
B.1 Van der Waals Forces
B.2 Surface Free Energies and Surface Tensions
B.2.1 Motivation
B.2.2 Thermodynamics and Statistical Mechanics
B.2.3 Temperature Dependency
B.3 Interfacial Tension and the Work of Adhesion
B.3.1 Temperature Dependency
B.4 Wettability and the Contact Angle
B.5 Experimental Methods
B.5.1 Sessile Drop
B.5.2 Pendant Drop
B.5.3 Wilhemy Plate
B.6 References
C Small Angle Scattering
C.1 Basic Theoretical Principles
C.2 Single Particles and Dilute Systems
C.2.1 Limit of Small Scattering Length
C.2.2 Limit of Large Scattering Length
C.2.3 Unified Approximation for Small Angle Scattering
C.3 Densely Filled Systems
C.3.1 Mass Fractals
C.3.2 Particle Form Factor
C.3.3 Structure Factor
C.4 References
D Simulation Methodology
D.1 Monte Carlo Simulations
D.1.1 Random Numbers
D.1.2 Introductory Example – Simple Sampling Monte Carlo
D.1.3 Importance Sampling – The Metropolis Algorithm
D.2 Periodic Boundary Conditions and Minimum Image Convention
D.3 The Morphology Generator
D.3.1 Derivation of the Metropolis Criterion
D.3.2 Functionality
D.3.3 Runtime
D.4 References
List of Tables
Abbreviations
Table of Variables
Index