de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
de
en
Schliessen
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Geometric integration on Lie groups and its applications in lattice QCD / vorgelegt von Michèle Wandelt. Wuppertal, 7. Februar 2020
Inhalt
Contents
List of Figures
1 Introduction
I Foundations
2 Lattice QCD and Differential Equations
2.1 Gauge Fields in Lattice QCD
2.1.1 Lattice Gauge Fields
2.1.2 Plaquettes, Staples and Gauge Invariance
2.2 Hamiltonian Equations of Motion
2.2.1 The Hamiltonian
2.2.2 Hamiltonian Equations of Motion.
2.2.3 Derivation of the Hamiltonian Equations of Motion
2.2.4 Structure of the Hamiltonian Equations of Motion.
2.3 Hybrid Monte Carlo Method
2.4 The Wilson Flow
2.5 Summary
3 Numerical Integration of Differential Equations on Lie Groups
3.1 Foundations
3.1.1 Differential Equations on Lie Groups
3.1.2 Numerical Integration via Local Parameterization
3.1.3 Runge-Kutta Methods in the Abelian Case
3.2 Runge-Kutta Methods for Lie Groups
3.2.1 Lie-Euler
3.2.2 Crouch-Grossmann Runge-Kutta
3.2.3 Munthe-Kaas Runge-Kutta
3.3 Summary
II Developments in Lie Group Methods
4 Runge-Kutta Methods for Lie Groups
4.1 Step Size Control
4.1.1 Step Size Prediction for the Abelian Case
4.1.2 Step Size Control for Munthe-Kaas Runge-Kutta Schemes
4.2 The Cayley Transform
4.2.1 The Cayley Transform as Local Parameterization
4.2.2 Numerical Integration with the Cayley Mapping
4.3 Summary
5 Geometric Numerical Integration
5.1 Geometric Integration
5.2 Störmer-Verlet or Leapfrog Method
5.2.1 The Abelian Case
5.2.2 Leapfrog for Lie Groups
5.2.3 Leapfrog using the Cayley Mapping
5.3 Symmetric Partitioned Runge-Kutta Methods
5.3.1 The Abelian Case
5.3.2 The Non-Abelian Case
5.4 Time-reversible Projection Schemes
5.4.1 Projection Schemes for the Abelian Case
5.4.2 Projection Schemes for the Non-Abelian Case
5.5 Summary
6 Exponential Smoothing Splines
6.1 Minimization Problem
6.2 Relation to Other Splines
6.3 The Exponential Smoothing Spline and its Coefficients
6.4 Lagrange Parameter
6.5 Example
6.6 Summary
III Simulation
7 HMC in Lattice QCD
7.1 HMC Simulations on Lattice Gauge Fields
7.1.1 HMC
7.1.2 Tests for Geometric Integration
7.2 Geometric Integration Methods
7.2.1 Leapfrog Method
7.2.2 The Cayley-Leapfrog Method
7.2.3 The Symmetric Partitioned Runge-Kutta Method
7.2.4 The Time-Reversible Projection Method
7.3 Summary
8 The Wilson Flow and Finite Temperature QCD
8.1 The Model
8.2 Step Size Control for Munthe-Kaas Runge-Kutta Methods
8.3 Energy Difference Method for the Critical Temperature
8.4 Summary
9 Conclusion and Outlook
9.1 Conclusion
9.2 Outlook
Acknowledgements
10 Appendix
.1 Similarity Transformations
.2 Example: Deriving Hamiltonian Equations of Motion for SU(2)
.3 Exponential Smoothing Spline