de
en
Close
Detailsuche
Bibliotheken
Projekt
Imprint
Privacy Policy
de
en
Close
Imprint
Privacy Policy
jump to main content
Search Details
Quicksearch:
OK
Result-List
Title
Title
Content
Content
Page
Page
Search the document
Co-simulation and uncertainty quantification for field/circuit coupled problems / vorgelegt von Kai Gausling. Wuppertal, 18. Januar 2019
Content
Contents
1 Introduction
2 Modeling and Simulation of Electric Circuits and Magnetoquasistatic Devices
2.1 Electric Networks
2.2 Magnetoquasistatic Approximation for Field Devices
2.3 Coupled Field/Circuit Problems
2.3.1 Time-Integration for Field/Circuit Coupled Problems
2.4 Conclusions
3 Co-Simulation
3.1 Dynamic Iteration for Coupled Problems
3.1.1 Gauss-Seidel-Type Iteration Scheme
3.1.2 DAE-DAE Coupling
3.1.3 Field/Circuit Co-Simulation
3.1.4 Conclusions
3.2 Coupling Interfaces
3.2.1 R-splitting
3.2.2 LR-coupling
3.2.3 Exact Recursion Analysis
4 Uncertainty Quantification
4.1 The Sobol Decomposition
4.1.1 Sobol Sensitivity Analysis
4.2 The Polynomial Chaos Expansion
4.2.1 Orthogonal Polynomials
4.2.2 The generalized Polynomial Chaos Expansion
4.2.3 Calculation of the gPC Coefficient Functions
4.2.4 Polynomial Chaos based Sensitivity Indices
5 Multivariate Quadrature
5.1 Tensor-Product Grids
5.1.1 Gaussian Quadrature
5.2 Sparse Grid Quadrature
6 Density Estimation in Co-Simulation
6.1 Lower Bound Estimate for Purely Algebraic Coupling
6.2 The Kernel Density Estimation Approach
6.3 The Spectral Approach
7 Numerical Examples
7.1 Fast Contraction and Higher Order Co-Simulation
7.2 Coupling Interfaces in Application
7.2.1 R-Splitting for Field/Circuit Coupled Problems
7.2.2 LR-Coupling for Field/Circuit Coupled Problems
7.3 Accuracy of the Lower Bound Estimator for Purely Algebraic-to-Algebraic Coupling
7.4 PDF estimation by using the KDE and Spectral Method
7.5 Uncertainty Quantification in Co-Simulation for Coupled Electric Circuits
8 Summary