de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
de
en
Schliessen
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Reconstruction of the primary energy spectrum from fluorescence telescope data of the Pierre Auger Observatory / Heiko Geenen. Wuppertal : Fachbereich C, Physik, Berg. Univ. Wuppertal, 2007
Inhalt
1 Introduction
2 Cosmic Rays and Extensive Air Showers
2.1 Cosmic Rays
2.1.1 The Energy Spectrum of Cosmic Rays
2.1.2 The Composition of Cosmic Rays
2.1.3 Arrival Directions of Cosmic Rays
2.1.4 The GZK Cutoff
2.2 Source and Propagation Models of UHE Cosmic Rays
2.2.1 Models of the Origin of Ultra-high Energy Cosmic Rays
2.2.2 Bottom-up Origin - Astro-Physical Scenarios
2.2.3 Single-Shock Acceleration
2.2.4 Fermi Acceleration
2.2.5 Top-down models - Particle Physics Scenarios
2.2.6 Propagation Models
2.3 Air Shower Physics
2.3.1 Air Shower Development
2.3.2 The Longitudinal Shower-Profile
2.3.3 The Shower Footprint on Ground
2.4 Detection Techniques
2.4.1 Air Fluorescence Detection
2.4.2 Water Cherenkov Tanks
2.4.3 Muon Counters
2.4.4 Radio
2.4.5 The Concept of Hybrid Detection
3 The Pierre Auger Observatory
3.1 The Southern Experiment
3.2 The Surface Array in Argentina
3.2.1 Calibration
3.2.2 Data Acquisition and Trigger
3.3 The Fluorescence Telescope Sites in Argentina
3.3.1 Calibration
3.3.2 Data Acquisition and Trigger
3.3.3 Performance Tests and Calibration of the Phototubes
3.3.4 Monitoring the Experimental Site
3.3.5 Data Taking and Monitoring the Data Quality
3.3.6 Concept of the Monitoring Structure
3.3.7 Visualisation
3.3.8 Alarms
4 Reconstruction and Data Processing
4.1 Data Reconstruction
4.1.1 Event Topologies
4.1.2 SD Event Reconstruction
4.1.3 Fluorescence Data Reconstruction
4.2 Systematic Uncertainties
4.3 The Offline Framework
4.4 The Simulation and Reconstruction on the ALiCENextCluster
4.4.1 The ALiCENext Cluster
4.4.2 The Mass-Production Scheme
4.5 MySQL as DST
5 Validation of the MC Simulation and Reconstruction
5.1 The MC Sample
5.2 Fluorescence Data Simulation
5.3 Trigger Performance
5.4 Reconstruction and Performance Cuts
5.5 Performance of the FD-Reconstruction Using a Full Simulation-Reconstruction Chain
5.5.1 Reconstruction Performance of the SDP
5.5.2 Geometry Reconstruction
5.5.3 Profile Reconstructing
5.5.4 Summary
5.6 Performance of the Hybrid-Like Reconstruction
6 Data Analysis at Detector Level
6.1 Importance Sampling
6.1.1 Example: A Power-Law Spectrum
6.2 The Simulation Sample
6.2.1 The Energy Spectrum
6.2.2 The Core Position
6.2.3 The Shower Direction
6.2.4 Physics Expectation and Re-Weighting
6.3 The Data Sample and Filtering
6.4 Uptime
6.5 Data-MC Comparison and Data Quality
6.6 Effect of Input Spectrum and Composition
6.7 Extension to the Complete Data Set
6.8 Apertures of Different Event Topologies of the Pierre Auger Observatory FD
7 Physics Analysis
7.1 The Problem of Unfolding
7.1.1 Limited Acceptance
7.1.2 Limited Resolution
7.1.3 Convolution of a Power-Law Spectrum
7.1.4 General Unfolding Formalism
7.1.5 Discretisation of the Problem
7.2 Unfolding Algorithms
7.2.1 Direct Algorithms
7.2.2 Iterative Algorithms
7.3 Comparison of Unfolding Algorithms
7.4 Implementation of the Gold Algorithm
7.4.1 Regularisation by Parametrisation
7.4.2 The Iteration-Stopping Criterium
7.5 Data Analysis
7.5.1 Comparison to Other Experimental Data
8 Summary and outlook
A Simulation-Reconstruction Performance
B Dependence of the Unfolding result on the kernel MC
C Scaling other Experimental Results
D Parametrisation-Fits
E The MySQL database for the simulation-reconstruction chain
Bibliography
Glossary
Acknowledgement