de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
de
en
Schliessen
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Development of the MCM-D technique for pixel detector modules / Christian Grah. Wuppertal : Fachbereich Physik, Berg. Univ., 2005
Inhalt
Contents
Übersicht
Abstract
1 Introduction
2 The Atlas Experiment at the Lhc
2.1 The Standard Model of High Energy Physics
2.2 Lhc -- Physics at the TeV Scale
2.2.1 The Higgs Search
2.2.2 B--Physics and CP Violation
2.2.3 Searches in Supersymmetry
2.3 The Atlas Detector
2.3.1 Muon Spectrometer
2.3.2 Calorimeter System
2.3.3 The Inner Detector
2.3.4 The Data Acquisition and Trigger System of Atlas
3 Pixel Detectors for High Energy Physics Applications
3.1 Basics of Semiconductor Detectors
3.2 Pixel Detectors
3.2.1 Hybrid Pixel Detector
3.2.2 Examples of Pixel Detectors
3.3 The Atlas Pixel Detector
3.3.1 Sensors for the Atlas Pixel Detector
3.3.2 Readout Electronics -- the Front--end Chip
3.3.3 Correlated Systems apart from Modules
3.3.4 Pixel Detector Modules
4 MCM--D Technique
4.1 Standard Solution: Flex--Hybrid Approach
4.2 The Multi Chip Module--Deposited Technique
4.3 Comparison of the Solutions
4.3.1 Disadvantages of the MCM-D Technique
4.3.2 Advantages of the MCM--D Technique
4.4 Interconnection Technologies
4.4.1 Wire Bond Technology
4.4.2 Flip Chip Technology
5 Experience with the MCM--D Technique
5.1 Achievements in Developing MCM--D Modules for hep Applications
5.2 First Prototypes using MCM--D Technique
5.3 Integrated Resistors in Thin Film Layers
5.4 Estimation of Yield Expectation
5.5 High Voltage Isolation Test
6 The MCM--D Design for Atlas
6.1 Elements of the Prototype 2.0 Sensor Wafers
6.1.1 The Module's Sensor
6.1.2 Single Chip Sensors
6.2 Design Layer Description
6.3 Design Rules
6.4 MCM--D Single Chips
6.4.1 Equal--sized Single Chips
6.4.2 Equal--sized--bricked Single Chips
6.5 MCM--D Module
6.5.1 Main Balcony
6.5.2 Signal and Supply Bus Design
6.5.3 Feed--throughs
6.5.4 Small Balcony
6.6 Process Monitoring
7 The MCM--D Process
7.1 Process Flow
7.2 BCB Processing
7.2.1 Basic Properties of BCB
7.2.2 BCB Deposition and Structuring
7.2.3 Repair Options during BCB Processing
7.2.4 Comment on BCB Processing
7.3 Cu Electroplating
7.4 Test Measurements on Wafer Level
7.4.1 Repair Options after Metal Deposition
7.5 Assembly Steps
7.5.1 Flip Chip
7.6 Attachment of a Flexible Printed Circuit to MCM--D Modules
8 Production and Optimization of MCM--D Prototypes
8.1 Run Overview
8.2 Variations of Top Metallization
9 Performance of Pixel Detector Prototypes in MCM--D Technique
9.1 Overview of MCM--D Prototype Production
9.1.1 MCM--D Single Chip Assemblies
9.1.2 MCM--D Modules
9.2 Single Chip Hybrids
9.2.1 Geometrically Optimized Devices in Laboratory
9.2.2 MCM--D Hybrid with Front--end I2
9.3 Irradiation of a MCM--D Single Chip
9.3.1 Sensor Leakage
9.3.2 Threshold, Noise and Crosstalk
9.4 MCM--D Module
9.4.1 Measurement of Voltage Drop
9.4.2 Threshold and Noise Performance of MCM--D Module 2
9.4.3 Measurements with a Radioactive Source
10 Test Beam Measurements
10.1 Test Beam Setup
10.1.1 BAT
10.1.2 H8 Software Package
10.1.3 Data Analysis
10.2 Devices Under Test
10.3 Charge Collection
10.4 Spatial Resolution
11 Aspect of MCM--D Processing
11.1 Yield Aspects of the MCM--D Production
11.1.1 The Thin Film Processing - MCM--D
11.1.2 The Final Assembly
11.2 Areas of Possible Optimizations
11.3 Further Upgrading of MCM--D
Summary
A Overview of processed MCMD3 Runs at Izm
B Schematic View of Atlas Pixel Test Setup
List of Figures
List of Tables
Bibliography
Glossary
Description of Acronyms
Acknowledgements