de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
de
en
Schliessen
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Projection and nested force-gradient methods for quantum field theories / vorgelegt von Dmitry Shcherbakov, geboren in Wolgograd, Russland. Wuppertal, 26. Juli 2017
Inhalt
ACKNOWLEDGMENTS
CONTENTS
LIST OF FIGURES
1 MOTIVATION AND OVERVIEW
2 GEOMETRIC NUMERICAL INTEGRATORS
2.1 Geometric time integration of ODEs
2.2 Hamiltonian mechanics
2.3 Conservation of physical properties
2.3.1 Symmetry, time-reversibility
2.3.2 Volume-preservation, symplecticity
2.3.3 Energy conservation, convergence order
2.4 Backward error analysis
2.5 Numerical time integrators for ODEs
2.5.1 Splitting and composition methods
2.5.2 Runge-Kutta methods
2.5.3 Projection methods
2.5.4 Variational methods
2.5.5 Linear multistep methods
2.6 Numerical integration on Lie groups
2.6.1 Methods based on Magnus expansion
2.6.2 Crouch-Grossman methods
2.6.3 Munthe-Kaas methods
3 QUANTUM FIELD THEORIES ON THE LATTICE
3.1 Basic concepts of quantum field theories
3.2 Regularization on the lattice
3.2.1 Gauge fields
3.2.2 Fermion fields
3.3 Hybrid Monte Carlo algorithm
4 PROJECTION METHODS
4.1 Introduction in the projection methods
4.2 Another view on symmetric projection schemes
4.3 The Structure-preserving approach
4.4 Structure-preserving approach (= (h))
4.5 Linear projection methods
4.6 Conclusion
5 NESTED FORCE-GRADIENT METHODS
5.1 Splitting decomposition schemes
5.2 Force-gradient decomposition method
5.3 Multirate approach
5.4 Nested force-gradient schemes
5.5 Adapted nested force-gradient schemes
6 NUMERICAL RESULTS
6.1 N-body problem
6.2 Schwinger model
7 SUMMARY AND OUTLOOK
A Shadow Hamiltonian for the projection methods with =(h)
B Shadow Hamiltonian for the projection methods with 1=1(h) and 2=2(h)
C Shadow Hamiltonian for linear projection methods with =(h)