de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
de
en
Schliessen
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Stabilisation of infinite-dimensional port-Hamiltonian systems via dissipative boundary feedback / vorgelegt von Dipl.-Math. Björn Augner aus Hamburg. Wuppertal, [2016?]
Inhalt
Introduction
Some Background on Functional Analysis, Evolution Equations and Systems Theory
Background on Functional Analysis and Partial Differential Equations
Background on Evolution Equations
Background on Systems Theory
Hyperbolic Partial Differential Equations on a One-dimensional Spatial Domain
Examples
Port-Hamiltonian Systems
The Generation Theorem
Standard Control Operator Formulation
Stabilisation of Port-Hamiltonian Systems via Static Linear Boundary Feedback
Known Results for the Case N = 1
Asymptotic Stability
Uniform Exponential Stability
First Order Port-Hamiltonian Systems
Second Order Port-Hamiltonian Systems
Euler-Bernoulli Beam Equations
Arbitrary N N – The Full Dissipative Case
On the H-dependence of stability properties
Examples
Passivity Based Dynamic Linear Feedback Stabilisation
The Generation Theorem – Dynamic Case
Asymptotic Behaviour
Strictly Input Passive Controllers
Strictly Output Passive Controllers
More General Impedance Passive Controllers
The Static and the Dynamic Case
Examples
Nonlinear Boundary Feedback: the Static Case
The Generation Theorem – Static, Nonlinear Case
Exponential Stability: the Case N = 1
Stabilisation: the Case N > 1
Stabilisation of the Euler-Bernoulli Beam
Examples
Passivity Based Nonlinear Dynamic Feedback Stabilisation
m-Dissipative Dynamic Control Systems
An Alternative Approach
The Nonlinear Control System
Local Existence of Solutions
Interconnection of Impedance Passive Systems
Exponential Stability
Further Results
Interconnection of Infinite Dimensional Port-Hamiltonian Systems
Directed Acyclic Graphs of Port-Hamiltonian Systems
Stability Properties
Non-autonomous Systems: The Case N = 1
Systems with Structural Damping
Bibliography