Development and characterization of capillary Atmospheric Pressure Electron Capture Ionization (cAPECI) / von Valerie Ann Christin Derpmann. 2014
Content
1 Introduction
1.1 Ion Chemistry in Atmospheric Pressure Mass Spectrometry
1.1.1 Common Atmospheric Pressure Ion Sources
1.1.2 Collision Induced Dissociation
1.1.3 Ion-Molecule/Radical Reactions
1.1.4 Cluster Formation
1.2 Inlet Capillaries
1.3 Negative Ion Mass Spectrometry
1.4 Photoelectric Effect
1.5 Ionization Methods based on the Photoelectric Effect
1.6 Proton Transfer Reaction Mass Spectrometry
1.7 Analytes accessible with Negative Ionization
2 Aim of this Work
3 Experimental
3.1 Chemicals
3.2 Computational Investigations
3.3 Ion Trap Mass Spectrometer
3.4 Ion Transmission Measurements
3.5 The Photoelectric Effect at Atmospheric Pressure
3.6 Reaction Mechanism in Negative Mode API-MS
3.7 Ion Source Development
3.7.1 Sample Introduction
3.7.2 UV Lamp
3.7.3 Laminar Flow Ion Source
3.7.4 Silica Capillary
3.7.5 cAPECI Design 1
3.7.6 cAPECI Design 2
3.8 GC-cAPECI-MS Hyphenation
3.9 Atmospheric Chemistry Studies
3.10 Determination of Reaction Rate Constants
3.11 Desorption APECI
4 Ionization Mechanism in Negative Mode API-MS
4.1 Verification of Thermal Sampling
4.2 Reagent Ions
4.3 Formation of Molecular Anions
4.4 Formation of Deprotontated Anions
4.5 Dinitrotoluenes
4.6 Summary and Outlook
5 Ion Transmission Measurements
5.1 Ion Transmission of Different Materials
5.2 Dependence on Relative Humidity
5.3 Application of Voltages
5.4 Summary and Outlook
6 Ion Source Development
6.1 The Photoelectric Effect at Atmospheric Pressure
6.2 Light Source
6.3 Laminar Flow Ion Source
6.4 Silica Capillary
6.5 cAPECI Design 1
6.6 cAPECI Design 2
6.7 Summary and Outlook
7 Applications
7.1 GC-cAPECI-MS Hyphenation
7.2 Atmospheric Chemistry
7.3 Determination of Rate Constants
7.4 Desorption APECI
7.5 Summary and Outlook
8 Summary and Outlook
Abbreviations
List of Tables
List of Figures
References