de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
de
en
Schliessen
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Perturbative calculations and their application to Higgs physics / Tom J. E. Zirke. 2014
Inhalt
Contents
List of Figures
Listings
Acronyms
Introduction: The Higgs, the LHC, and the Tool Box
1 Higgs Physics
1.1 Properties of the Weak Interaction
1.2 The Higgs at the LHC
1.2.1 Interlude: Hadronic Processes
1.2.2 Higgs Production and Decay in the Standard Model
1.2.3 Higgs Search and Discovery
1.2.4 Measuring Higgs properties
1.3 The Higgs and New Physics
1.3.1 Sensitivity to Higher Scales
1.3.2 Extended Higgs Sector
2 Perturbative Calculations
2.1 Matrix Elements from Feynman Diagrams
2.2 Regularization of Infinities
2.3 Renormalization
2.4 Infrared Singularities
2.4.1 Mass Factorization
2.4.2 Dipole Subtraction
2.5 Asymptotic Expansions
2.6 Program Setup
Higgs Strahlung at the LHC: Standard Model and Beyond
3 Higgs strahlung at the LHC: Introduction
3.1 Motivation
3.2 Contributions to the Cross Section
3.3 The HW/HZ ratio
4 ggHZ at Next-to-Leading Order
4.1 Motivation
4.2 General Strategy and Leading-Order Results
4.2.1 Choice of Gauge
4.2.2 Effective Lagrangians
4.2.3 Numerical Consequences
4.3 Next-to-Leading Order Calculation
4.3.1 Virtual Corrections
4.3.2 Real Corrections
4.3.3 Numerical Results
4.4 Conclusion
5 Higgs Strahlung: From SM to 2HDM
5.1 The Two-Higgs-Doublet Model
5.2 Theory of Higgs Strahlung in the 2HDM
5.3 Numerical Results
5.3.1 Setup and Choice of Input Parameters
5.3.2 Light Higgs
5.3.3 Heavy and Pseudoscalar Higgs
5.3.4 Boosted Scenario
5.4 Conclusions
Numerical Integration of Loop Integrals in Four-Dimensional Regularization
6 Introduction to FDR
6.1 Isolation of UV Divergencies
6.2 Definition of the FDR Integral
6.3 Properties of the FDR Integral
7 Local Counterterms for FDR Integrals
7.1 Motivation
7.2 General Considerations
7.3 The One-Loop Infrared-Finite Case
7.4 Analytic Continuation: a One-Loop Example
7.5 The Two-Loop Case
8 Application to Two-Loop Vacuum Integrals
8.1 Implementation
8.1.1 Overview and Input
8.1.2 Part I: FORM
8.1.3 Part II: Mathematica
8.1.4 Part III: c++
8.2 phitogammagamma at NLO QCD
8.2.1 Notation for the Amplitude
8.2.2 Results in Dimensional Regularization
8.2.3 Evaluation with FDRcalc
8.3 The rho Parameter to Order GF Mt2 alphas
8.4 The Photon Propagator to Order alpha alphas
8.5 Conclusion and Outlook
Appendix
A Dimensionally-Regulated Integrals
A.1 Massless One-Loop Integrals
A.1.1 Definitions
A.1.2 Scalar Integrals
A.1.3 Passarino-Veltman Reduction
A.1.4 Integration Routine tribox
A.1.5 Definition of Coefficients
A.2 Phase-Space Parametrization
A.2.1 Phase Space for Two Massive Particles
A.2.2 Phase Space for Two Massive and One Massless Particle
B FDR Integrals
B.1 Parametrization of FDR-Regulated Integrals
B.1.1 Scalar Integrals
B.1.2 Tensor Integrals
B.2 Two-Loop Counterterms: The Special Cases
B.2.1 The Case N1=0
B.2.2 The Cases Ny<2
B.2.3 The Case N1=0 and Ny=1
B.3 Standard Integrals
B.3.1 One Loop
B.3.2 Two Loop
B.4 Miscellaneous
Bibliography
Danksagung