de
en
Close
Detailsuche
Bibliotheken
Projekt
Imprint
Privacy Policy
de
en
Close
Imprint
Privacy Policy
jump to main content
Search Details
Quicksearch:
OK
Result-List
Title
Title
Content
Content
Page
Page
Search the document
Simulation of ion dynamics in atmospheric pressure ionization sources / vorgelegt von Walter Wißdorf. 2014
Content
1 Introduction
1.1 Background
1.2 Scope and aim of this work
2 Dynamics of gas phase ions at atmospheric pressure
2.1 Introduction
2.2 Ion transport at atmospheric pressure
2.2.1 Ion transport by electric and magnetic fields
2.2.2 Ion transport by diffusion and convection in flowing gas
2.2.3 Convection, diffusion and migration: Nernst-Planck equations - electrokinetic transport
2.2.4 The bulk gas flow: Navier-Stokes equations
2.3 Chemical transformations
3 Approaches of gas phase ion simulation at AP
3.1 Continuum model
3.2 Numerical solution of PDE problems by discretization
3.2.1 Finite element method
3.2.2 Finite volume method
3.2.3 Finite differences method
3.3 Particle tracing models
3.3.1 Interaction with background gas particles / Collision models
3.3.2 Space charge handling
4 Software Packages
4.1 Comsol Multiphysics
4.2 SIMION charged particle simulator
5 Simulation of ion migration in a slow gas flow
5.1 Introduction / Motivation
5.2 Experimental verification
5.3 Numerical Models
5.3.1 Simulation of the fluid flow (CFD)
5.3.2 Electrokinetic flow simulation
5.3.3 Particle tracing simulation
5.4 Results
5.4.1 Experimental verification
5.4.2 Numerical Results
5.5 Conclusions
6 Simulation of ion acceptance distributions (DIA)
6.1 Introduction
6.2 Experimental
6.2.1 Photoionization
6.2.2 Atmospheric Pressure Laser Ionization
6.2.3 Measurement Principle
6.2.4 AP Ion source and MS setup
6.2.5 Experimental determination of DIAs
6.3 Numerical Model and Simulation
6.3.1 CFD model of the MPIS
6.3.2 CFD result data transformation
6.3.3 Ion migration simulation
6.4 DIA Visualization
6.4.1 Interactive DIA visualization: Web DIA Explorer
6.5 Results
6.5.1 CFD Simulations: Bulk gas flow in MPIS
6.5.2 DIA Simulations: Effects of ion source parameters
6.5.3 Ion trajectories
6.5.4 Effects of simulation parameters
6.5.5 3d DIA
6.5.6 Ion transfer times
6.6 Numerical Costs
6.7 Conclusions
7 Simulation of reacting ions at AP
7.1 Reaction Simulation (RS), a monte carlo model for chemical reactions
7.1.1 Linearized reaction probability model
7.1.2 RS implementation
7.2 Simulation of the proton bound water cluster RIP in AP-IMS
7.2.1 Ion Mobility Spectrometry
7.2.2 Proton bound water-cluster Reactant Ion Peak (RIP)
7.2.3 Experimental determination of the water cluster RIP drift time
7.2.4 Numerical Models
7.2.5 Results
7.2.6 Conclusions
7.3 An outlook towards ion temperature simulation
7.3.1 Ion temperature model
7.3.2 Model examples
7.3.3 Conclusions
8 Final conclusions and outlook
9 Appendix
9.1 Deduction of viscous damping
9.2 Linearization of reaction probabilities
Glossary
List of Symbols
Bibliography