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1 Introduction

Condensed matter physics seeks to understand the collective behaviour of a large number of
interacting particles, which are mathematically described by many-body quantum mechanics.
These systems exhibit a rich variety of collective phenomena, ranging from magnetism to
superconductivity, and understanding their microscopic origin remains one of the central
challenges in the field. Even in those cases, when systems are spectrally equivalent to non-
interacting fermions, extracting meaningful information remains sometimes a non-trivial task
due to the complexity of the quantum mechanical description.

Among the most important quantities to study are dynamical two-point correlation func-
tions, which describe how physical properties of the system evolve in space and time. These
functions not only encode information about the system’s excitations and response to ex-
ternal perturbations, e.g., the electromagnetic field, but also provide a bridge between the
microscopic quantum mechanical description and experimentally observable quantities. From
the point of view of the experiment, these correlation functions are especially interesting at
finite temperatures and in the long-time, large-distance limit.

However, the calculation of dynamical correlation functions of interacting many-body
systems by means of standard methods of theoretical physics is extremely hard. Usually, it
relies on approximate methods, such as mean-field theory or perturbation theory, which ex-
pand solutions around non-interacting or weakly interacting regimes, as well as on numerical
methods, for example, the density matrix renormalization group. These methods often fail to
provide a reliable description of observables when attempting to explore strongly interacting
systems, phenomena that go beyond the perturbative regime and, in the case of numerical
methods, for long times of observation of the system.

For the special class of integrable models significant progress has been made in under-
standing the structure of their spectrum (e.g., the energy of ground and excited states),
thermodynamics (macroscopic properties) and correlation functions. For instance, for the
XXZ spin chain and the Bose gas with pairwise delta-function interaction, also known as the
non-linear Schrédinger model or Lieb—Liniger model, this progress has been achieved with the
help of a vast number of developed analytical and algebraic methods. These methods, includ-
ing the algebraic Bethe ansatz [1-3], form-factor series [4-11], the quantum transfer matrix
approach [12-14], the Fermionic basis approach [15-17], thermal form-factor series [18,19],
and many others, allow one to derive explicit closed-form expressions for physical quantities.
Despite these advancements, extracting from such representations detailed information about
dynamical correlation functions, and, particularly, their long-time, large-distance asymptotics
at finite temperature, continues to be an open and difficult problem.

For some integrable models at their free fermion points, i.e., at such configurations of
parameters that the models become unitarily equivalent to models of free fermions, such as
the XX and XY spin chains and the impenetrable Bose gas, several correlation functions
were expressed in terms of Fredholm determinants (and their minors) of so-called integrable
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integral operators [20-26]. The Fredholm determinant is a generalization of the determinant
from finite-dimensional linear operators to infinite-dimensional ones. The representations
mentioned above are expressed in terms of the Fredholm determinants of operators V, where
V is a compact, trace-class integral operator acting on L?(C) for some contour C with an
integral kernel having a specific form [27]. The kernel of integral operator V exhibits highly
oscillatory behaviour for large values of the parameter x, which plays the role of time and/or
distance, making the asymptotic analysis significantly more challenging.

A method for calculating the asymptotics of Fredholm determinants of this type was
first developed in [28]. In particular, the long-time, large-distance behaviour of dynamical
correlation functions of the XX spin chain and the impenetrable Bose gas at finite temperature
were obtained in [25,26,29,30] and [24,31]. The development of the nonlinear steepest-
descent method [32] led to a systematic approach to the asymptotic analysis of the matriz
Riemann—Hilbert problem, associated with the Fredholm determinants of integrable operators.
This approach was successfully developed further in [33-35], but in a more general setting.
The analysis was based only on the analytic properties of certain functions entering the kernel
of the integral operator in the neighbourhood of the integration contour C.

In this thesis we extend the Riemann-Hilbert techniques of [33-35] to the case of thermal
and non-thermal dynamical correlation functions. As a first application we re-consider the
asymptotic analysis of the field—field correlation function of the impenetrable Bose gas in
thermal and non-thermal equilibrium, extending and generalizing the results of [31].

1.1 The Lieb—Liniger model
We consider canonical Bose fields ¥(x), ¥'(x) with canonical commutation relations:

(@), V()| =d—y),  [V@) 20| = V@), v =0 (L)

The Hamiltonian of the Lieb—Liniger model is

L
1= [ [0,91)0,9(0) + ¥ )V ()00 ¥(w)] ay. (12)
0

Here L is the length of the system, ¢ > 0 is the coupling constant, and periodic boundary
conditions are implied,

U(z+L)=V(z), Ui(z+L)=0(2). (1.3)

When the coupling constant ¢ — oo, the model is called the impenetrable Bose gas.
The particle number operator and the momentum operator read

L . L
o= [Viwrea,  P=- [ [VEY0) - OV (1
0 0
and commute with the Hamiltonian
[H,Q] = [H,P] =0, (1.5)

Therefore, the number of particles is conserved, and the model is equivalent to n interacting
particles with pairwise d-function interaction.
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1.2. Fredholm determinant representation

The field at point z and at time ¢ can be expressed as

U(z,t) = P2y, 0)e I(Po— 1Y) (1.6)
The main object of our study is the dynamical field—field correlation function

gn(z,t) = {dn|W(z, 1)U (0,0)[on) . (1.7)

Here |¢n) is an N-particle reference state, a joint normalized eigenstate of operators H and
P with eigenvalues € and p, respectively,

Hlpn) =elon), Plon) =plon) - (1.8)

We study correlation function (1.7) for infinite repulsion ¢ — oo and in the thermodynamic
limit, when the number of particles N and the length of the system L go to infinity with a
fixed density D = N/L,

glw,t) = lim  Hm gy (x,t). (1.9)
D=N/L

The thermodynamics of the Bose gas in thermal equilibrium for finite coupling constant
¢ > 0 was studied in [36]. The probability of the state with momentum k& to be occupied is
given by the filling fraction ¥(k), which in this case turns out to be

1

Ik) = T et

(1.10)
with 7" > 0 being the temperature and (k) the dressed energy, satisfying the Yang—Yang
equation [36].

For infinite repulsion ¢ — oo, filling fraction (1.10) takes the form of the Fermi distribution

1
9o (k) = (1.11)
1+exp (@)
with h being the chemical potential. The density of particles is then given by
[ dk
D(h,T) = / 2—19(k:) (1.12)
T

In general, the filling fraction ¥(k) characterizes a macrostate that can be thought of as
an equivalence class of sequences of reference states |¢n) in the thermodynamic limit. In
what follows, we consider filling fraction ¥ to be a functional parameter, which means that
it might describe the thermal or a non-thermal equilibrium in which the system finds itself.

1.2 Fredholm determinant representation

For a trace-class integral operator V, acting on L?(C) for a locally rectifiable contour C, with
a kernel function V (A, p),

Vi) = / AV ) f(), (1.13)

C
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its Fredholm determinant is defined by

det (id+V)= i / / det [V (zj,z2)]dz1---dzy, . (1.14)

1
n! 1<j,k<n
C

For infinite repulsion ¢ — oo and in the thermodynamic limit, correlation function g(z,t),
see equations (1.7), (1.9), can be expressed in terms of a Fredholm determinant [24]
g(xz,t) = A(x, t) dﬂgt (id + Vo) . (1.15)
The kernel Vj(A, 1) of the integral operator Vy is given by

40(p)  Eo(Meo(p) — Eo(p)eo(N)

Vo) = 200 ) (116
with the functions
T du eq? iz t
Eo(\) = —eo(A) ][ h 3_(‘;) co(\) = exp [—2 (po()\) - mso(x)ﬂ , (1.17)

where £o(A\) = A2 and po()\) = ) are the bare energy and the bare momentum of the model.
The factor A(x,t) is given by

MW—/%”MH/MWﬂW/MWWWJMM%@ (1.18)

with R(k, q) being the kernel of the resolvent R of operator Vo,
(id + Vp)(id — R) = id. (1.19)

Finally, the function ¥(\) is the filling fraction that characterizes the reference state |¢n) in
the thermodynamic limit.

Fredholm determinants have the following useful property, which follows straightforwardly
from the right-hand side of definition (1.14).

Proposition 1. The Fredholm determinant of operator V is invariant under transformation
of the kernel V(A p) = V(A 1) a(X)/a(p) for arbitrary functions a(\).

1.3 Long-time and large-distance asymptotics

Representation (1.15) for the correlation function expressed in terms of a Fredholm determi-
nant is exact and valid for any distance x, time ¢, and the filling fraction 9. Nevertheless,
it does not provide us with an intuitively clear picture of how the correlation function looks
without evaluating the Fredholm determinant numerically, for example, following [37]. On
the other hand, analytic asymptotic analysis can provide us with explicit asymptotic expres-
sions for large x and t in terms of elementary and special functions, which are much simpler
to perceive and easy to evaluate numerically.

'In this work the Fredholm determinant representation is derived for the system in thermal equilibrium,
but can be generalized for arbitrary reference state |¢n) using ideas originating from [36].
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1.3. Long-time and large-distance asymptotics

In particular, the long-time and large-distance asymptotic behaviour of the field—field
correlation function g(x,t) was first studied in [31] for the impenetrable Bose gas in thermal
equilibrium, i.e., for the filling fraction (1.11). The asymptotic analysis was based on a
relation between the Fredholm determinant of the integrable integral operator (1.16) and
a matrix Riemann—Hilbert problem [28] and led to an explicit asymptotic expression. The
resulting asymptotic behaviour of the correlation function depends on the relative position
of the parameter \g = x/2t, considered to be fixed, with respect to the Fermi points +v/h.
The main difficulty of the analysis is the highly oscillatory nature of the kernel of the integral
operator (1.16). The parameter \g is, in fact, the saddle point of the plane-wave factor ey,
see (1.17).

An important step in the asymptotic analysis of operators of the form (1.16) was made by
Deift and Zhou in [32], where the so-called nonlinear steepest descent method was developed.
This method offers a systematic analysis of oscillatory matrix Riemann—Hilbert problems
and makes it significantly simpler. Moreover, this approach makes it possible to treat the
functions in the kernel as functional parameters and to include additional functions into the
kernel. The latter was recently studied in the works [33-35], where the additional auxiliary
functions were introduced to make it possible later to deviate from the free fermion points,
i.e., to study the asymptotic behaviour of correlation functions of the Bose gas with finite
¢ > 0, in [38-40]. The advances made in papers [33-35] are described in more detail below.

First, the Riemann—Hilbert techniques were further developed in the static case for an
integrable integral operator with a so-called generalized sine kernel in [33]. The asymptotic
analysis of the Fredholm determinant there was based on the analytic properties of functions
entering the kernel in a neighbourhood of the integration contour [—g, ¢|, regardless of their
specific form. Since the kernel considered in [33] is static, there is no saddle point and the
asymptotic behaviour is completely determined by the contribution of the endpoints =+q.
The fact that the integration contour is the interval [—g, ¢] is relevant to the model at zero
temperature, although the filling fraction might differ from the one in thermal equilibrium.

Later in [34], the generalized sine kernel was studied again in the static case, but for the
integration contour along the real axis in the case of p(A\) = A, and explicit expressions for the
Fredholm determinant and the resolvent were derived. In this case the asymptotic behaviour
is determined by the poles of a function related to the filling fraction v in a finite strip around
the real axis in the complex plane. This result, in a sense, gives access to a wider class of
filling fractions ¥ beyond zero-temperature.

Finally, the Fredholm determinant asymptotics of the time-dependent generalized sine
kernel acting on L?[—q, q] were obtained in [35]. Here the contribution to the long-time,
large-distance asymptotics is determined both by the endpoints of the integration contour
[—¢,q] and by the contribution of the saddle point, and the behaviour depends on the their
relative positions.

As was mentioned above, in the Riemann-Hilbert techniques developed in [33-35] two
additional auxiliary functions were introduced, which were later used to study the asymptotics
of the correlation functions of the Bose gas in the presence of interaction [38-40]. This
method is based on an action of a functional shift operator, which effectively reproduces
the asymptotics of correlation functions of the model with finite ¢ > 0 from the Fredholm
determinant representation for a model with ¢ = oo and with these auxiliary functions.

In the first part of this work, we continue the development of these techniques. We
consider an integrable integral operator, which is both time-dependent and acts on a contour
C that is a slightly deformed contour along the real axis. In our analysis we also keep the
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two additional functions, which will allow us to get access to the Bose gas with ¢ > 0 in the
future.

We treat the filling fraction ¥ as a functional parameter. In our asymptotic analysis
the function ¥ produces poles in the complex plane, which contribute to the asymptotic
expansion of the Fredholm determinant if they appear to be situated on the real axis. We
restrict ourselves to two cases, where there are either zero or two such poles on R, and derive
the long-time, large-distance asymptotic behaviour of the Fredholm determinant accordingly.

The asymptotic behaviour is determined by the contribution of the saddle point and the
contribution of the poles on the real axis and depends on their relative position. The resulting
asymptotic expansion of the Fredholm determinant is given as a series in 2~1/2, where we
derive explicitly the first two terms (leading and sub-leading terms), a logarithmic correction
and an overall constant.

In the last Chapter, we apply the resulting asymptotic expansions to the field—field cor-
relation function of the impenetrable Bose gas. For this model the poles on the real axis
contributing to the asymptotic expansion are determined by the equation ¥(\) = 1/2. For
the system in thermal equilibrium, this equation has, indeed, zero or two distinct real solu-
tions at the Fermi points 4v/h for the chemical potential A # 0. That is the main reason why
we considered the cases of zero or two poles in our general asymptotic analysis, although it
is not restricted to the case of thermal equilibrium. In fact, the cases with zero or two poles
determine two classes of the filling fraction 1, for which our long-time, large-distance asymp-
totic analysis is valid. This allows us to derive the asymptotic behaviour of the field—field
correlation function for the impenetrable Bose gas in thermal and non-thermal equilibrium,
described by the so-called generalized Gibbs ensemble, treating both cases on the same level
of complexity.

As in the general asymptotic analysis, the asymptotic expansion of the field—field corre-
lation function is given by a series in 72, where leading and sub-leading terms, as well as
a logarithmic correction and an overall constant are given explicitly. Moreover, returning to
the case of thermal equilibrium, we determine the overall constant entirely in terms of special
functions and simple integrals, thereby completing the original paper [31]. We also fix a sign
error in the sub-leading terms of the asymptotic expansion there in the time-like regime.

1.4 Problem statement

1.4.1 Integrable integral operators
We consider an integrable integral operator V with kernel of the form

_EL(A)-Er(n)

: E](\)-Egr(\) =0, (1.20)

where Er, Er are vector-valued functions defined by

49(\)sin (v (X)) [ E(N)
- (6@)) . (1.21)

E.()\) = sin (7v()\)) (‘5&3) ., Ep(\) =

The filling fraction ¥(\) plays the role of an integration measure. The functions E()) and
e(\) are given by

E\) = e()) [ —COA—1i0) + ) ] (1.22)
exp(—2miv(\)) — 1 ’



1.4. Problem statement

Ao R

Cr,

Figure 1.1: The integration contour Cy, in a strip Q@ = {z € C, |Im z| < w, for w > 0}. The
contour Cy, divides the strip Q into two parts: Q above the contour and Q= below the
contour.

and
i A t
e(\) = exp —%u()\) - ‘(](2) , u(A) = p(A) — —g(A). (1.23)
x
Here parameters z > 0 and ¢ > 0 are the distance and the time. In applications the functions
£(A) and p(\) will be the energy and momentum of the corresponding model under consid-
eration. The variable A then plays the role of the rapidity. The function C(\) denotes the
Cauchy transform of the function e=2(\) with respect to the contour Cy,,

_ [ due®(p)
2miop— N

Cx

C() = Cey, [e72] V) (1.24)

The contour C,, is a slight deformation of the contour along the real axis in such a way that

li ImA=F4 1.25
g ImA=F (1.25)
Re A=+

for some § > 0. It is shown in Figure 1.1. The deformation of the contour along the real axis
is needed for the absolute convergence of the Cauchy transform (1.24) under the forthcoming
assumptions in the next section.

In future application to the Lieb—Liniger model with finite coupling constant ¢ > 0, both
functions, v and g, will be needed. For the special choice v(\) = 1/2 and g(A) = 0 the kernel
of the operator V turns into the kernel for the impenetrable Bose gas, see (1.16).

For some calculations it will be more convenient to express the Cauchy transform in (1.22)
for A € C), in terms of a principal value integral and a semi-residue,

: du e *(n) due() 1
iy — _ - . 1.2
C(A —i0) 2mi jt— A+ 10 amigi—a 2¢ W (1.26)

Cxo Cx

Then, the function E()) for A € Cy, can be written as

e? i
;L:i 7 _(l;) + e (V) cot(mr (V)| (1.27)

E(\) = e(\) l -

Cxo

In this work, we address the problem of calculating the long-time, large-distance be-
haviour, as x,t — 400 with a fixed ratio z/t, of the Fredholm determinant of the integrable
integral operator (1.20) under the following assumptions on the functions entering the kernel.

7
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1.4.2 Assumptions

Since we would like to perform the asymptotic analysis in this work mathematically rigorously,
we will have to make certain assumptions about the functions in kernel (1.20), some of which
may appear rather technical.

We fix a strip Q = {z € C,|Imz| < w, for w > 0} and a simple contour Cy, C €2, see
Figure 1.1. The functions ¢, p, u, ¥, v, and g are assumed to have the following properties
in Q:

The energy € and momentum p are holomorphic in 2 and take real values on R. They
behave as

e~ A2 p(A) ~ A (1.28)
for A € 2 as Re A — £o0.

o The function u(A) has a saddle point Ay € RN Cy,, which is the unique solution of
’U,/(Ao) =01in C.

e The functions v and g are holomorphic and bounded on 2.

o The function ¥(\) is a meromorphic function for A € € having no poles on the contour
Cyy- U(A) decreases sufficiently rapidly? for A €  as Re A\ — oo such that

2(AN)P(N) = O(A™). (1.29)

e Finally, we consider two cases of additional restrictions on the functions v and 9.

1. The following two conditions are satisfied
L+ 9() (22N — 1) ¢ (~o0,0] (1.30)

for A in the vicinity of the real axis.

2. There are exactly two points £, € R, £ < r, which are solutions of multiplicity
one of the following two equations, simultaneously,

2N — 1 1/9()) (1.31)

and these equations have no other solutions on the real axis. The saddle point \g
is considered to be away from ¢ and r.

In both cases, we additionally assume that the following condition is fulfilled?

fmn [1+9(Xo) (2™ — 1)| = ImIn [1 4+ 9(N) (e —1)] € (=7, 7). (1.32)

We give a few more comments on the last assumption, which is technical, but very important,
since it determines a complex logarithm in our analysis and restricts the function v if ¥ is
considered to be fixed.

2We will need this assumption for the convergence which we discuss in Section 2.4.3.
3This condition will be crucial, when we will construct a local solution of the Riemann-Hilbert Problem 6
in the vicinity of the saddle point in Section 2.6.

8
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The conditions in (1.30) allow us to use the principal branch of the complex logarithm,
so that the contour Cy, does not cross any cuts of the following logarithms

In [1+9(\) (27— 1)]. (1.33)
It is easy to see that the function v(\) must have
1
Rev(\) = 3 +n, nez (1.34)

and, in general, any value of Im () at points on the cuts of the logarithms in (1.33). That
follows from the equations

1+ 9(X) (eﬂ”i”(A) — 1) = —a, for a > 0, (1.35)

if one takes into account that ¥(A) € [0,1] for A € R. In particular, it follows that for a
function v(\), whose real part never reaches values 1/2 +n, n € Z for X in the vicinity of
R, there are no cuts and branch points of the logarithms in (1.33) in the vicinity of R. This
case is considered in Chapter 3.

The second case is, in a sense, a limiting case of the first one. In order to satisfy both
equations in (1.31) at the same points, the imaginary part of v(\) at the solutions must be
zero. These solutions are then the branch points of the logarithms in (1.33). The situation,
when v(\) reaches the values 1/24n, n € Z at some points A € R such that there are exactly
two distinct solutions of the equations (1.31), is considered as a limiting case, when two of the
branch points of logarithms (1.33) approach the real axis, if we slightly continuously deform
the function v.

In general, the assumption on the functions v and ¥ can be modified, and the asymptotic
analysis then admits generalizations which should be considered case by case.

Another comment concerns the asymptotic behaviour of e*2()\). The asymptotics of
energy ¢ and momentum p, see equation (1.28), together with the assumption for the function
g to be bounded, implies that the function e?(\) has the following behaviour for A € Q as
Re )\ — 400,

‘62()\)’ -0 (exIm()\)(l—if Re(A))) : (136)

and, therefore, e*2()\) decays exponentially for +Im A > 0 and Re A — 400 and for FIm \ >
0 and ReA — —oo. That is why we deformed the contour along the real axis into C,,, see
Figure 1.1, so that the Cauchy transform (1.24) is absolutely convergent.

1.4.3 Relation to a matrix Riemann—Hilbert problem

Let x(A) be the unique solution of the following matrix Riemann—Hilbert problem.
Riemann—Hilbert Problem 1. Determine x(\) € C**2 such that

1. x(N) s analytic in C\Cy, and extends continuously from either side to Cy,, see Fig-
ure 1.1.

2. On the contour Cy, the boundary values

x+(A) = lyg; x(1) (1.37)

HENL
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Figure 1.2: The integration contour Cy, (dashed line) and the loop I'(Cy,) around it in the
positive direction (solid line).

satisfy the jump condition x—(X) = x+(A)Gy(X) with the jump matriz G (X\) given by

Gy(\) = I + 271 Ex()) - E]()\)

— Lo+ 49(N) sin (rv(\) (—ejjgg@ eg;g&)) (1.38)

3. xX(\) =TI+ 0 (A1) as A — oo up to tangential direction to Cy,.

Then, the Fredholm determinant of the integrable integral operator (1.20) is related to
the solution y, due to the following Proposition.

Proposition 2 ( [33,35]). Let n > 0 and I'(Cy,) be a loop in Q@ around the contour Cy, in the
positive direction, see Figure 1.2. Then

JzIndet(id + V)
Cry

- /‘dé“““”@*+2qdaﬂx1@»<%hw@»e"* . (1.39)

27i
F(Cko) =0,
Here B = x, \o is a parameter. The matriz o+ = 0% +ioY with o for o = x,y, z being the
Pauli matrices. The function C(z) is given by (1.24). The matriz x(\) is the unique solution
of the Riemann—Hilbert Problem 1.

The proof of Proposition 2 is provided in Appendix A. The regularization with parameter
1 > 0 ensures that the integrand decays exponentially fast as Re z — +o0.

We analyse the asymptotic behaviour of the Fredholm determinant using its relation (1.39)
to the matrix Riemann—Hilbert Problem 1 and asymptotically solving the Riemann—Hilbert
problem as z,t — 400 with a fixed ratio z/t.

When we apply the asymptotic analysis to the impenetrable Bose gas, we also express
the prefactor A(z,t) in (1.15), given by (1.18), in terms of the matrix x. Namely, we show
that A(x,t) can be expressed as

Alwt)= [ Sre?®)+i- Jim X xaa(V) (1.40)

when v(\) = 1/2 and g(\) = 0, i.e., the expression (1.15) for the correlation function g(x,t)
is given completely in terms of the solution x of the Riemann—Hilbert Problem 1.

10



1.4. Problem statement

1.4.4 Structure of the thesis

In Chapter 2, we present all components of the Riemann—Hilbert analysis, including the
nonlinear steepest descent method. In Chapters 3 and 4, we perform the asymptotic analysis
of the Fredholm determinant of the integrable integral operator in the cases of zero and two
solutions of the equation (1.31) on the real axis, respectively. In Chapter 5 we apply our
asymptotic analysis to the field—field correlation function of the impenetrable Bose gas. In
the last section, we compare the derived asymptotic expansions for the system in thermal
equilibrium with the original work [31], see also [2], and with numerical data [41].

The resulting asymptotic expansions of the Fredholm determinant of the integrable inte-
gral operator V are formulated in Theorems 1 and 3. The application to the impenetrable
Bose gas for two classes of the filling fraction ¢ is formulated in Theorems 4 and 5, respec-
tively.
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2 Riemann—Hilbert analysis

In this chapter, we analyse a matrix Riemann—Hilbert problem and transform it to a form
that is amenable to a direct asymptotic analysis. This form will later be the starting point
for the asymptotic analysis of the Fredholm determinant of the integrable integral operator
V in Chapters 3 and 4.

In Section 2.1, we start with the integrable integral operator V, given by kernel (1.20). We
describe its main properties, the relation, due to Proposition 2, to the solution x of the matrix
Riemann—Hilbert Problem 1, and the properties of the latter. Next, in Section 2.2, we explain
how a matrix Riemann—Hilbert problem transforms, if we multiply its solution by matrices
from the left and from the right, and make the first transformation of the Riemann—Hilbert
Problem 1 related to the Fredholm determinant of V.

Then in Sections 2.3-2.7, we apply more transformations to the initial Riemann—Hilbert
problem, which are required for the implementation of the nonlinear steepest descent method
[32] with some modifications, following works [33,35]. First, in Section 2.3, we introduce an
auxiliary function, that is a solution of a scalar Riemann—Hilbert problem. This function is
chosen in such a way that it allows us to transform the Riemann—Hilbert Problem 1 into one
that has a jump matrix exponentially close to identity uniformly away from the saddle point,
which is accomplished in a few steps in Sections 2.3-2.5. Also, in Section 2.5 we characterize
additional poles, coming from the solution of equations (1.31) in the complex plane. In most
cases throughout this work, we refer to them as “poles”, although mathematically they appear
from the branch points of the logarithms (1.33) and physically they are associated with the
Fermi points of the impenetrable Bose gas in thermal equilibrium.

In Section 2.6, we construct a so-called parametrix — a local solution of a Riemann-—
Hilbert problem, that mimics the behaviour in the vicinity of the saddle point. Finally, in
Section 2.7, we construct a global solution and decompose it into two parts. The first part
is expressed in terms of the solution of a singular integral equation, see Section 2.8. The
second part accounts for the contribution of the poles and is expressed in terms of the unique
solution of a linear system of equations in Section 2.9.

In addition to this chapter, we provide Appendices A—C. In Appendix A, we prove Propo-
sition 2 on the relation between the logarithmic derivative of the Fredholm determinant of
the operator V and the solution x of the Riemann—Hilbert Problem 1. In Appendix B, we
explicitly derive the parametrix — the solution of the Riemann—Hilbert Problem 6. The
linear system, which describes the contribution of the poles, is derived in Appendix C.

2.1 Properties of integrable integral operators
First of all, we note that the kernel (1.20) is not singular at A = p, since by definition vectors
E; and Ep are orthogonal

El () -Egr(X) =0. (2.1)

13



Chapter 2. Riemann—Hilbert analysis

If detc, (id + V) # 0, the kernel of operator R,
id—R = (id + V)71, (2.2)

called the resolvent of V, has the same form, as the kernel of the operator V itself. Namely,
the resolvent is also an integrable integral operator, whose kernel is given by

_FL(V)-Fr(p)

R(A, ) -

. FL(N)-Fr(Y) =0, (2.3)

where vectors Fy, and Fp are the solutions of integral equations

PO+ [ duV O 0)F () = BLOV. (2.4a)
Cho

P+ [ dnFa(uV (s ) = En() (2.4D)
Cx

0

Now define matrix x(\) and its inverse as

)= [ o PR B, (2.50)
Chy
XN =T+ /du ER(Z)_'E;E(“) (2.5b)

One can construct vectors Fy and Fr from E; and Eg using the matrix y and its inverse as
follows:
Fr(A) =x(MER(N),  FL(\) =E[(M)x'(\). (2.6)

Everything stated above can be checked directly by definitions. For example, in order to
check that x~! is given by (2.5b), one should multiply it by x()\) and use equations (2.4).

It follows from equations (2.5a) and (2.4) that the matrix x solves the Riemann-Hilbert
Problem 1. In Appendix A we also prove Proposition 2 on the relation of the logarithmic
derivative of the Fredholm determinant of the integrable integral operator V to the solution
x of the matrix Riemann—Hilbert Problem 1.

The property of the jump matrix that det G, (\) = 1 for A € Cy, and asymptotic behaviour
of x imply that

det x(A) =1, (2.7)

that we state in the following proposition.

Proposition 3. Let x € C?*2 be a solution of the Riemann—Hilbert Problem 1, then det x(\) =
1.

Proof. The proof goes along the same lines as in [42], see page 44. If x is the solution of the
Riemann-Hilbert Problem 1, then det x(\) is analytic in C\Cy, and for X € Cy, we have

(det ) (A) = (det ), (A) det Gy () = (det x)., (). 23)
Hence, det x(])) is analytic in C and, since det x(A) = 1+O(A"1) as A — oo, det y(\) = 1. O

Moreover, det G, (A) = 1 also guarantees the uniqueness of the solution if it exists, see
again [42].

14



2.2. First transformation of the matriz Riemann—Hilbert problem

2.2 First transformation of the matrix Riemann—Hilbert problem

In what follows, we will transform one matrix Riemann—Hilbert problem into another one by
multiplying the solution of the first problem by a matrix from the left or from the right. For
all transformations, determinants of the matrices, by which we multiply, will be equal to one.
In the following two propositions, we formulate, how the jump matrices changes after such
multiplications. We will use these propositions a lot in this chapter.

Proposition 4 (Left multiplication). Let C C C be a finite union of smooth simple contours,
A(N) € C**2 analytic in C\C such that det A(\) = 1, and matriz L(\) € C**2 be analytic in
the vicinity of the contour C such that det L(A) = 1. The matriz A(\) extends continuously
from either side to C. On the contour C the boundary values Ay () satisfy the jump condition
A_(A) = AL (N)Ga(N) with the jump matriz G4. Then the matriz L(X\) - A(\) satisfies a
jump condition on the contour C with jump matriz given by

Gra(A) = Ga(A). (2.9)
Proof. Denote B(\) = L(A)A(X), then for A € C

Bo(\) = L_(\)A_(\) = L_(N) AL (\GA(N). (2.10)
On the other hand,

B_(\) = B+(NGp(N) = Ly N A+ (N Gp(N). (2.11)
Since L_(\) = Ly ()) for A € C, we get Gp(\) = Ga(N). 0

Proposition 5 (Right multiplication). Let C C C be a finite union of smooth simple contours,
A(X) € C**2 analytic in C\C such that det A(\) = 1, and matriz R(\) € C**2 be analytic in
an open neighbourhood of the contour C except for the contour itself such that det R(\) = 1.
The matrices A(\) and R(\) extend continuously from either side to C. On the contour C
the boundary values Ay () satisfy the jump condition A_(X\) = A4+ (N)Ga(X) with the jump
matrix G 4. Then the matriz A(\) - R(\) satisfies a jump condition on the contour C with
Jump matriz given by

Gar(\) = RF(NGAN)R-(N). (2.12)
Proof. Denote B(A) = A(A)R()), then for A € C

B-(A)=A_(MR_(\) = A, (\MGA(NR_(N). (2.13)
On the other hand,

B_(X) = BL(A)GB(A) = AL (MR (A)GB(A), (2.14)
therefore we get Gp(\) = R7'(A)GA(A\)R-()). O

Now, we transform the solution y of the initial Riemann—-Hilbert Problem in order to
remove the Cauchy transform C(A) in the jump matrix G, and on the right-hand side of
equation (1.39). We define a matrix X,

X0 =x(V) (b= CNo*),  AeC\Cy, (2.15)
Then the matrix x is the unique solution of the following matrix Riemann—Hilbert problem.
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Chapter 2. Riemann—Hilbert analysis

Riemann-Hilbert Problem 2. Determine X(\) € C**? such that

1. X(N) s analytic in C\Cy, and extends continuously from either side to Cy,, see Fig-
ure 1.1.

2. On the contour Cy, the boundary values X+(\) satisfy the jump condition
T = T (NG (2.16)

with the jump matriz Gy (\) given by

L0 - 1) e ()1 = ()
Gx(A) = ( 2(NI(N) sin?(mr())) 1+19()\)(e2”i”(/\)—1)>' (2.17)

3. X(\) =TI+ 0 (A1) as A — oo up to tangential direction to Cy,.

Here and in the following X+ denotes the boundary value from the “£” side of the jump
contour. The positive (negative) side of the contour is the one to the left (right) from the
contour, when moving in the direction of the contour.

The jump matrix G has such a form, due to Proposition 5, which implies

Gs(\) = (12 + C+(/\)a+) Gy (\) (12 - C_(A)a+) : (2.18)

and due to relation
CL () —C_(\) =e2(N). (2.19)

The asymptotic condition for ¥ did not change, since C(A\) = O (A\™1) as A — oo up to
tangential direction to Cy, as well.
For convenience, we introduce function

d(\) = Ine()), (2.20)

and the partial derivative with respect to parameter 8 = x, \g, or some other parameter
function e(\) might depend on,

dg(N) = 03d(\) = dzlne(N) =

(2.21)

Then the right-hand side of expression (1.39) in Proposition 2 does not contain the Cauchy
transform anymore,

Oglndet(id + V) = — / % tr{X'(2)o*x 1(2)} dﬁ(z)e_”‘22 . (2.22)
Cxo 27

L'(Cxy) =0,

The next thing needed for the nonlinear steepest descent method is to get a matrix
Riemann—Hilbert problem with a jump matrix exponentially close to identity everywhere
except for a vicinity of the saddle point. We achieve that in a few steps in the next sections.
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2.8. Scalar Riemann—Hilbert problem

2.3 Scalar Riemann—Hilbert problem

First we transform the Riemann-Hilbert Problem 2 to a one with the jump matrix having

the following form:
* %
( >, Re(A — X\o) <0,

cy =4Vt (2.23)
C :) Re(\ — Ag) > 0.

Once the jump matrix has such a form, it can be easily factorized into products of two
triangular matrices, due to the following simple identities

1 0 1 b\ (1 b a b\ (d 0\ [dd" +bc b (2.24)
c dJ\0 d"]  \e¢ be+dd )’ 0 1 c 1) c 1/ ‘

To derive the jump matrix of the form (2.23), we introduce a scalar function « and a
matrix =,

E\) =X\ (N). (2.25)

Then again due to Proposition 5, the jump matrix G= reads

a—(N) (Gi)u (A)
(G (V) —
G=(N) = s NG (NaZ (\) = | @+ aanA)%(A) . (2.26)
0= (o) (G (V) 57 5 (G )

Now we require that function « is the unique solution of the following scalar Riemann—Hilbert
problem.

Riemann-Hilbert Problem 3. Determine a(\) € C such that
1. () is analytic in C\Cy, and extends continuously from either side to Cy,.

2. On the contour Cx,\{ o} the boundary values ax(X) satisfy the jump condition

-1

ar(V) { (14000 (2™ —1)] 7, Re(A—x9) <0,

_ . 2.27
14+ 9(\) (e*%“/@) — 1) , Re(A —Xg) >0 (2.27)

3. a(X) =1+0 (A1) as A = oo up to tangential direction to Cy,.

Here the jump condition is chosen in such a way that

Gy W) =1, Re(A— o) >0,
+(A) (2.28)
(M) '
(Gg)yy V) =1, Re(A— o) <0,

see equations (2.17), (2.23) and (2.26). We note that the boundary values ay from the “+”
side of the contour Cy, now have a jump at Ao € Cy,, because of the jump condition (2.27).
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Chapter 2. Riemann—Hilbert analysis

The scalar Riemann—Hilbert Problem 3 can be solved by the Cauchy transform of the
function in the jump condition, when the jump condition is written in additive form (by
taking the logarithm). In our case, the unique solution a(\) is given by

_ Ly(p) / Lr(p) | _ / L(p)Xo)
a(N) = exp{ /d,u,u — + du,u [ &P dp [ (2.29)
> S %o
where we introduced function L£(A|Ag)

L(AAo) = Le(A) - Tre(r=20)<0(A) + Lr(A) - Tre(r—2¢)>0(A) (2.30)

with 1 being the indicator function and

L) = _2% In 1+ 900 () - 1)] (2.31a)
Lo\ = 2% In [1 4900 (e 20 —1)]. (2.31D)

The contours C)  and C;ro are the contours along Cy, from —oo up to the saddle point \g and
from the saddle point A\g to +0oo, respectively, i.e.,

Cx, = {2 €Cx [£Re(z = XAg) >0},  Cy UCY =Cy. (2.32)

In what follows, we use both notations: with the contours Cico and with the contour Cy, and
the indicators.
2.3.1 Factorization of the solution of the scalar Riemann—Hilbert problem

For € > 0 we introduce an interval (Ag — &, A\g +¢). Then we can factorize the function o into
two parts

a()) = exp{ / 4y Ello) - ﬁ(/\/i)\_o)j\l(/\os,AoJrs)(ﬂ)}

Ch

w—A w—A

The first exponent on the right-hand side is holomorphic in the vicinity of Ag. The second
one has a cut and can be written for |A — \g| < 1 as

( Ao — A )ﬁew ()\0 — A+ 5>£T(’\) Qo= A+ ) (A= Ag)Le) (2.34)
Ao —A—¢ Ao — A - ()\ — Ao+ 6)135()‘) ()\0 — )\)ﬁr()\) ’ ’
If Re(A — Ag) > 0, then A — \g = |A — A\g| - €% for ¢ € (— 7/2, 7/2) and
Ao — A= |\ — Ag| - ellemmsen(®)), (2.35)
Hence,
Lo(A
(A — Xg)Ze® (A = Ag) e =£r(N) _ grisgn(mN)£r(3), (2.36)

(o —nEm — 4
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2.4. Factorization of the jump matrix

If Re(A — Ag) < 0, then A — \g = |A — \o| - €!¥ for ¢ € (=7, — 7/2) U (7/2 ,7) and
Ao — A = |\ — Ag| - ellpmsen(®), (2.37)

Hence,
(A= Xg)Ee™)
(Ao =N

Therefore, the second exponent in (2.33) reads

()\ o )\O)ﬁg()\)fﬁr()\) . eﬂisgn(lm/\)ﬁr()\)' (238)

A —)\+€£T()\) - misgn(Im
EAO— Ao + 83520\) (A= 2g) rNE O risen(m VEAN), (2:39)

and the function « can be expressed as
a(A) = 2(AAg) - (A — Ag)™W) emisen(Im)) L), (2.40)
Here we introduced function 7(\)
T(A) = LeA) = L:(N) (2.41)
and the part of a that is holomorphic in the vicinity of Ag

(Ao — A+ )5 L(p|Ao) = LX) L xg—e,n0+2) (1)
7o €XP du .
()\—)\0+5) e(N) = A

(M Ao) = (2.42)

Cxro

Remark. The function »(A|Ag) does not depend on € > 0. That is easy to show if one
considers €’ # ¢ and transforms s(A|\g) with € to s(A|Ao) with ¢/. Another way to see that
is to take the derivative with respect to € and show that it is zero. Moreover, the interval
might be an arbitrary (not only symmetric) interval containing \p.

2.4 Factorization of the jump matrix

Since we multiplied X by a matrix singular at \g, see equation (2.25), we need one more
condition for the matrix Riemann—Hilbert problem on = at this point.
The matrix = is the unique solution of the following matrix Riemann—Hilbert problem.

Riemann-Hilbert Problem 4. Determine Z()\) € C?>*? such that
1. Z(X) is analytic in C\Cy, and extends continuously from either side to Cx,\{ o}
2. On the contour Cx,\{ o} the boundary values =4 (X\) satisfy the jump condition
= () =2, (\)G=() (2.43)
with the jump matriz G=(\) given by (2.26).
3. Z(A) =I+0 (A1) as A = oo up to tangential direction to Cy,.

4. As A — N
Z(\) = [0 + O\ = Xo)| (A = Ag)™™ (2.44)

for a piecewise constant matriz =g € C?*2.

Now we derive explicit expressions for Gz for Re(A — Ag) < 0 and Re(A — X\g) > 0 and
factorize the jump matrix into products of upper- and lower-triangular matrices.

19



Chapter 2. Riemann—Hilbert analysis

2.4.1 Factorization for Re(A — A\g) < 0
Combining equation (2.17) and (2.26), we get for Re(A — X\g) < 0

a-(A) i V(1 -9W)
G=()) = a0y LTI )] e (Nar () |- (2.45)
a_(A)a+()\)62()\)19(>\)e2“i”()‘)(e_%i”(’\) _ 1)2 1

Next, we substitute the ratio a—(\)/a () in the matrix element (1, 1) according to the jump
condition (2.27). Then we also use the jump condition to exchange a_ <> a4 in elements
(1,2) and (2,1) the following way.

The idea of the factorization is to get in the end the jump matrices exponentially close
to identity. We factorize the matrices into a product of an upper/lower triangular matrices
containing either e=2(\) or e(\). For Re(A — Ag) < 0 these functions are exponentially
small in the regions above and below the contour Cy,, see expression (1.36). Also, in these
regions we can analytically continue functions ay and a—, respectively. Therefore, we change
a_ — a4 according to the jump condition (2.27) in front of e=2(\) and oy — a_ in front of
e2(N).

Hence, we derive the jump matrix Gz in the form

21— 9(N)
o2 () [+ () (@) — 1)

1- 4Sin2(7w()\))29()\)(1 —9(\))

GV 12 a0 s’ (mv(3) 1 (240
T e 1]
We note that the element (Gz),; can be expressed as
(G=)11 = 1+ (G=)15 (G=)y (2.47)

therefore, the jump matrix factorizes into a product of two triangular matrices with ones on
the diagonals, according to the second equation in (2.24). Thus,

G=(\) = M (N M, (N), (2.48)

where matrices M, (\) and M, () are given by

B B 1—9()\)
Q sin?(7mv
M) =B+ EMN@Ne Q) = — it s (2.490)

[T+ D) (@0 — 1))
The matrix M (M, ) admits analytic continuation to the region above (below) the integra-
tion contour CAO for Re(A — A\g) < 0, where it becomes exponentially small.
2.4.2 Factorization for Re(A — A\g) > 0
Similarly, combining equation (2.17) and (2.26), we get for Re(A — Ag) > 0

1 e 2N —9(N)

G=()) = a-(Na+(3) . (2.50)
. [1 + 19()\)(627“1/()\) _ 1)}
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2.5. Jump matriz close to identity

We substitute the ratio a4 (A)/a—(A) into the matrix element (2,2) according to the jump
condition (2.27). Then exchanging o ¢ oy in such a way that e?(\) combines with o and
e~2(\) combines with a_, we get

e 2N =9()

1 5 -
_ a2 (M1 +3(N)(e2mv) — 1))
Gz =1 _ a? (\)e? sin? (v (2.51)
: [;J(r)\i)?(/\()?ﬁgi\i)y(x) _( 1)]()\)) 1 —4sin®(7v(X)I(N)(1 = I(N))
Noticing again that
(G=)ys =14 (G=)15 (G=)oy 5 (2.52)
we factorize the jump matrix into
Gz(A) = M7 (\) M, (N), (2.53)
where
_ 402 (N)9(N) sin?(7v(N))
ME) =B NQEWT, Q) =~ s (2.54a)
Mo = b+ e 2(0Q (WNot, Q@ (N = i) (2.54D)

) [+ 9N (e — ]

) admits analytic continuation to the region
above (below) the integration contour Cy, for Re(A—M\g) > 0, where it becomes exponentially
small.

As in the previous case, the matrix M (M,

2.4.3 Convergence
Finally, the jump matrix G= reads

MF(NM; (), Re(A— o) <0,
MF (MM (N), Re(A— o) >0,

r

G=(\) = { (2.55)

and we obtained the factorization into product of the matrices M," (M,") and M, (M,),
which are exponentially close to identity for Re(A — A\g) < 0 (Re(A — Ag) > 0) above and
below the real axis, respectively, away from the saddle point Ag.

However, the function e*2(\) grows exponentially fast for Re(\) — o0 and § > FIm \ >
0 with ¢ being the regularization parameter in the definition of the contour Cy,, see expres-
sion (1.25). In order to have the convergence in the whole strip €2, we additionally assumed
that e?(\)9(\) exponentially decays for Re A — 400, see equation (1.29) in Section 1.4.2. For
instance, it is enough for ¥ to have Gaussian decay exp(—a Re()\)Q) for some a > 0, which is
the case for the Fermi distribution (1.11).

2.5 Jump matrix close to identity

Now we introduce new oriented contours th/r C 2 and a piecewise matrix T, as the matrix

= multiplied by the matrices M ;:7" or their inverse, as shown in Figure 2.1. The contours will
be specified more precisely later in Section 2.6.1,
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Chapter 2. Riemann—Hilbert analysis

Figure 2.1: Definition of the piecewise analytic matrix T in terms of = and M ;r on the left

and the enumerated poles from the matrices M, ;T in the corresponding regions on the right.

We note that non-zero off-diagonal matrix elements of matrices M Ei and Mﬁc have poles,
which are zeroes of the corresponding denominators. We denote Ej[ the roots of equation

1+ 9(6F) (™) —1) =0, (2.562)
such that ch € Q4 with Re(ﬁjc) < Ao, and T;t the roots of equation
1+9(r) (e‘%”(”f '—1) =0, (2.56b)

such that r;t € Q4 with Re(rjj-[) > Xg. We assume that all the roots have multiplicity one,
i.e., they are not the roots of the derivative of the corresponding equations.

The contours I'; and I'}* separate the poles in the sets {Zj[} and {rji}, respectively, from
each other. Since we multiply Z by matrices M, eir in some regions, the matrix T has the
same poles accordingly, see Figure 2.1. We denote the poles of T as

Lr={e,.. .07}, RY ={r{,...,rT,}, (2.57a)
ne Ny

Lo ={,....,0_}, R ={r{,...,r _}, (2.57Db)
Ty

ny
where n}t and n are the numbers of poles in the corresponding regions. The set of all the
poles of T is denoted as
S=J (£ur9, (2.58)
e=+
see Figure 2.1.

Remark. It may happen that some of the poles appear to be on the integration con-
tour Cy,. In this case one should either deform the initial integration contour C,, in advance
or slightly deform the function v(X\). We face such situation later, when we consider the
impenetrable Bose gas in Chapter 5. All the details on the poles on the integration contour
in this case are provided in Section 5.2.

Now we check what the jump condition for = on the initial jump contour Cy, turns into.
For X\ € Cy, with Re(A — \g) < 0, due to (2.48), we have

T = E_(M[)’l = E+GE(M[)71 = E+MZFM£_(M[)71 = E+Mz+ =T (2.59)

The same equality holds for A € Cy, with Re(A — X\g) > 0, due to equation (2.53). Then the
matrix T does not have a jump on the initial contour Cy, and therefore is holomorphic across

Cro\{Ao}-

We denote the jump contour I'y = FZ UT, UT; UL, . For now we assume that VA € S,
A ¢ Cy, UD'y. Then the matrix Y is the unique solution of the matrix Riemann-Hilbert
problem.
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2.6. Parametriz: local solution in the vicinity of the saddle point

Riemann-Hilbert Problem 5. Determine Y ()\) € C?*? such that
1. YT(XN) is analytic in C\ (I'y US) and extends continuously from either side to T'y\{Ao}.

2. On the contour Ty\{\o} the boundary values Y (\) satisfy the jump condition
T = T4 (N)Gx(N) (2.60)

with the jump matriz Gy () given by

M), AeTf,
M= (N), rel,
Gr(A) = _( ) t (2.61)
MZ (A)7 )\ € FZ )
M, (), NeT/.
3. TA)=I+0 (A1) as A\ — oo up to tangential direction to I'y.
4. As A = Xo
T(A) = [To+ O\ — Xg)] (A — Ag)™N (2.62)
for a piecewise constant matriz Yo € C?*2.
5. Y satisfy the following regularity conditions at the poles A € S,
T(A) - (M) (N) is regular cuf)\:€7F i=1,....,nf,
Y(A) - (M) (N) is regular at)\—r;r, j=1,...,n}, (2.63)
T(A) - M, (A) ds regular at A =47, j=1,....n, '
T(A) - M, () is regular at A =r;, j=1,....n,.

Asymptotic behaviour (2.62) as A — \¢ is readily to be checked by combining the asymp-
totic behaviour of Z(\), see equation (2.44), and the corresponding matrix M, ;T, see equa-

tions (2.49), and (2.54). For example, in the upper region, where T = E, see Figure 2.1, we
get

T(A) = (o + O\ = X)) (A = 20)™ 7 (I + 0= (A = 20) M0 (1))
= B0+ 0= 20)) (L + 070 (1) ) (A= xg)" 7
= (Yo + O\ = X)) (A=X0)" N (2.64)

The jump matrix Gy()\) is exponentially close to the identity for A uniformly away from

the saddle point Ag. In exchange for such behaviour of the jump matrix, we now have an

additional singularity at A\g and the poles A € S, with which we have to deal separately later.
First we treat the singularity at the saddle point Ag.

2.6 Parametrix: local solution in the vicinity of the saddle point

Now we construct the local solution of the matrix Riemann—Hilbert Problem 5 in the vicinity
of the saddle point Ay, the so-called parametriz.
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Chapter 2. Riemann—Hilbert analysis

There exists > 0 such that Uy, = {z € C, |z — X\o| <7} C Q and

p= sup |[Ret(N\)| < 1/2. (2.65)
/\EUAO

This inequality can be satisfied due to the assumption on the number of the solutions of
equation (1.31), since |Re7(XAg)| < 1/2 and the saddle point Ao is away from the branch
points of the logarithms £, and £,. Recall that 7(\) = L¢(\) — £,(\) with £, and £, given
by (2.31).

2.6.1 Local parametrization

First we introduce a local parametrization for the function w(\). From the assumptions on
the functions £(\), p(A), and u(A), it follows that u'(Ag) = 0 and u”(Ag) < 0, and there exists
a function w holomorphic in U, such that

u(X) = u(Xg) — wi(A = Xo) (2.66)
and w(A — \g) preserves the sign of imaginary part
sgn(Imw(A — Ag)) = sgn(Im(A — Ao)). (2.67)

Then we define the contours F?/r in region Uy, such that their images are the straight lines
by angles m/4 to the real axis, see Figure 2.2.

Figure 2.2: Image of the contours th/r MUy, are the straight lines by 7/4 to the real axis.

We note that (2.66) implies that w(0) = 0 and straightforwardly
w'(A) = 20X =X’ (A —Xg) = u(N)=0. (2.68)

Next, we rewrite everything in terms of the local parametrization w. The solution of the
scalar Riemann—Hilbert problem «, see equation (2.40), reads

a(N) = steg(A|A0) - [w(A = Ag)]7) emisen(mANL- (), (2.69)
where ¢, is regular at Ag part of function a given by

_ T(A)
ee0) = (S ) #) (2.70)

with s¢ defined in equation (2.42).
We rescale the local parametrization by /z and introduce a new local variable

CN) = v - w(X = Ao). (2.71)
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2.6. Parametriz: local solution in the vicinity of the saddle point

Then substituting equations (2.69) into expressions for the matrices M zi and Mﬁ[, see equa-
tions (2.49) and (2.54), we derive the following expressions for the matrices in the vicinity of
the saddle point Ag,

i) |
MZ()\) = 12 + MQQWIT(A)O—J’" M:‘(A) — 12 + n()\)eICQ()\) [C(A)]QT()\)O_—’

A)]27(N)
- _ ic2(\ 27(\) 2miT(\) _— - _
MK ()‘) =1 +n()\)eC ( )[C(/\)] ( )e ( )U ) Mr (A) =1+ WUJF
Here we introduced
m(A) = eI 72 (N [Ng) (1 —9(N))2™™, (2.73a)
n(A) = —de Q09N 2 (X|Ag) I(N) sin(r (X)), (2.73b)

In derivation of expressions (2.72), we also used equations (2.31) to express 1 + 9¥(e=2™¥ — 1)
in terms of £, and L,.
2.6.2 Local solution of the Riemann—Hilbert problem

We denote the parametrix, i.e., the solution of the local Riemann—Hilbert problem in the
region Uy,, as P, the corresponding jump matrix as Gp and the jump contours as I'p =
'y NUy,. Then the matrix P is the unique solution of a local matrix Riemann-Hilbert
problem.

Riemann—Hilbert Problem 6. Determine P()\) € C?>*2 such that
1. P(N) is analytic in Ux,\I'p and extends continuously from either side to T'p\{\o}.
2. On the contour T'p\{\o} the boundary values P+(\) satisfy the jump condition
P_(\) = P (NGP(N) (2.74)

with the jump matriz Gp(X\) given by

MF(\),  AeTiniy,
M=(\ Aeln
Gp(n) = { M W AET Nl (2.75)
M; (), Ael; Nly,,
MS(\),  AeDfniy,
3. PN =I1L+0 (J:_%J”’) uniformly for X € OUy, .
4. As A — Ao
P(A) = [Po+ O\ = Ao)] (C(N)™° (2.76)

for a piecewise constant matricz Py € C>*2.

Here p is defined in (2.65) and p < 1/2.

The way to construct the solution of this local Riemann—Hilbert problem is described in
detail in Appendix B. In a nutshell, one considers the problem when parameters 7, m and
n do not depend on A, as well as the variable . Then the solution of the Riemann—Hilbert
problem with piecewise constant jump matrix can be mapped to the Fuchsian differential
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Chapter 2. Riemann—Hilbert analysis

equation. Once the solution is found in all the regions one can simply recover the dependence
of 7, m, n and ¢ on A\. The jump condition is then satisfied pointwise for each A on the jump
contour.

The solution P of the Riemann—Hilbert Problem 6 is given by

.2
i)
70"

P(N) = U(A)L(\)e (C(A))TN" (2.77)

The matrix W(\) is given in terms of the parabolic cylinder function D, (z), see Appendix B.2
for details,

sy [ . Do (V2T ) e Tb() Dy (V2e W) 0.18)
etb1(\) D_rn-1 (\/ieTC()\)> Dr oy (\/ieffC(A))
The functions bi2(A) and bai(A) are given by
iv2re® 9T\~ T5 efﬂ?in()\)2_7(’\)emeF(T(/\) +1)
bia(N) = , ba1(\) = . (2.79)
n(A)T(T(N)) V2m
The matrix L is a piecewise matrix
[=e 3 ™5 1 0 —r<arg(C(\) < — 31/4,  (2.80a)
—n(A) exp(2wiT(A)) 1) ’ '
L=e o™ ((1) mg”) , — 3n/4 <arg(C(\) < —7/4, (2.80b)
7iT(A) T()\)o'z ]_ O
L=e"1 272 (0 1) , — /4 <arg(C(\) < w/4, (2.80c)
L=y L 0 74 < arg(C(N\) < 37/4,  (2.80d)
-n(A) 1)’ '
L =e ato™ 5 ((1) m(A) eXpl(zw”(A))) , 37/4 < arg(C(\) <. (2.80e)
We note here as well that the product of the coefficients b5 and by reads
b12(N)ba1 () = iT(N), (2.81)
which we will use later.
2.7 Global solution
Finally, let
T(A reC
2 = | T . € C\ity,, (2.82)
TNP(N), Xely,,

see Figure 2.3. Then @ is holomorphic everywhere in the complex plane, except for the
oriented contour 'y = (—0Uy,) U (Tr\I'p), and the poles S, see (2.58). We denote I =
DE\(TF Nthy) and B = TE\(TE 14, ).

Then the matrix ® is the unique solution of the following Riemann—Hilbert problem.

26



2.7. Global solution

Riemann-Hilbert Problem 7. Determine ®(\) € C**2 such that
1. ®(\) is analytic in C\ (I'e US) and extends continuously from either side to I'g.

2. On the contour I'e the boundary values ®4(\) satisfy the jump condition
O_(A) = 2+ (N)Ga(X) (2.83)

with the jump matriz Ge(\) given by

73_1()\), A E 87/{)\0,

Go(\) = MF(\), Aelj, (2.84)
M[ (A)v A€ f‘Zy
M. (N), rel .

3. ®(\) =1+ 0 (A1) as A — oo up to tangential direction to I'p.

4. ® satisfy the following regularity conditions at the poles A € S,

D(N) - (M) T(N) ds regular at)\zfj, i=1,...,nf,

D(N) - (M)A is regular at X = rj, j=1,...,n5, (2.85)
() - M, (A) is reqular at A\=1L;, j=1,...,n,,
®(N) - M, (A) is reqular at A\=r;, j=1,....n,.

Figure 2.3: Definition of the matrix ® and the oriented contour I'g.

Lastly, we use the following ansatz for the matrix ®, which is justified a posteriori, once
the solution is found,
D(N) = S(MII(N). (2.86)

Here II is the solution of the same matrix Riemann—Hilbert problem, but without the poles,
and S()\) is a matrix containing contributions from the poles S.
We note that multiplication by the matrix S(A) from the left in equation (2.86) does not
change the jump condition, i.e., Gp(\) = Grr(\), according to Proposition 4.
Also, we note that
det ®(\) =1, (2.87)

since all the transformations of the Riemann—Hilbert problems made in this chapter, y —
X — -+ — ®, do not change the determinant, and det x(\) = 1, see Proposition 3.
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Chapter 2. Riemann—Hilbert analysis

2.8 Solution of singular integral equation

The matrix IT is the unique solution of the matrix Riemann—Hilbert Problem 7 for the matrix
®, but without poles, i.e., S = (). Namely, II is the unique solution of the following Riemann—
Hilbert problem.

Riemann—Hilbert Problem 8. Determine II(\) € C**2 such that
1. TI(A) is analytic in C\I'e and extends continuously from either side to I'e.
2. On the contour T'g the boundary values I (\) satisfy the jump condition
() = I, (\)Ga()) (2.88)
with the jump matriz Ge(N), see equation (2.84).
3 TN\ =+ 0 (A7Y) as A — oo up to tangential direction to I'.

There is an equivalence between Riemann—Hilbert problems and singular integral equa-
tions which allows one to express the solution II in terms of its boundary value II; from the
“+7 side of the contour I'g,

I(\) = I — / ;ﬁ‘iﬂ*(“) (MGE’(A”) mEL N (2.89)

Ig

Then the boundary value 11 satisfies
IL(A) = I — Cr, [ (G — B)], (V) (2.90)

with C being the Cauchy transform.

We use this equivalence to derive the asymptotic expansion for II in terms of a Neumann
series. This will be discussed in detail in Section 3.3. Also, due to the same reasoning as for
the matrix y in Proposition 3, we have a nice property of the matrix II(\), which is

det TI(A) = 1 (2.91)

for A € C.
Since the jump matrix Gip = Gg and Gg is exponentially close to identity on the jump
contours F;tr and uniformly close to identity on 0lU), up to corrections of order O(xfl/ 2Hey,

the solution of the Riemann-Hilbert problem is I uniformly up to O(z~/2*?),

2.9 Pole contributions: solution of the linear system

Finally, we consider the following ansatz for the matrix S()), see equation (2.86), which
accounts for the contribution of all poles A € S, see equations (2.56)—(2.58),

+ +
Ty C’+ Ny
S
j=1 i =1

+
D;
A_

T

o O- N DT

+ 1) I (2.92)
AL — N\ — 7.
Jj= J 7=1 7

Here C'Jj-[ and Dj-[ are some constant matrices.
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2.9. Pole contributions: solution of the linear system

It turns out, that the regularity conditions (2.85) imply that the matrices C’]i and D;F
can be found from a system of linear equations. All the details on the derivation of the linear
system are presented in Appendix C. Here we provide the resulting expressions for C’;E and
Dj»c, and the system itself.

The matrices Cji and Dj.[ can be expressed as

Ch=of, (0, Y I '(E), Df =o/ (X],00 T (r)),

C; =0 (X0 NG, Dy =0, (0.Y;) 17 (r)),

(2.93)

where the vectors X;t and Y;t of length two solve the following system of linear equations

nT + —1/p+ + + + —1/,.+ +
[ o, e w o [ one))
+ + s 21 ~+ ) 11 ~+
Y =W+ Tt Y+ ot X
k= i "k k=1 i Tk
oo [IENED] o [T e0mEn],
n > - X + ;;1 Foo Y, (2.94a)
+ + % Uz_k [H_I(K;)H(T;F)LQ + % Ork [H_I(T’j) ( j)} 12~y +
X =V'+ ’ Y, + : X
’ T3 i = k=1 rf =
ki
i o [N © o [ )]
4 , - 12 X + ? — 22 Y_, 294b
k=1 i =4 : kgl =y o | )
nf _+ [ —1(p+ - Lyt -
L of e ot ot [ )|
I 22 v+ " J 12 5+
X, Vj+k2:1 R Y,ngkZ1 - X
= J = J
R | ol (e Y (| IRl | R o 1 (3]
i ’ X+ ’ 2y, (2.94
K#j
nf _+ ~1(p+ - s -1+ =
_ _ Ok [H (€ )H(TJ' )}21 + < Tk [H (7 )H(rj )}11 +
Yj:Wj-i-kZl e Y +k21 e Xy
= J = J
n, -— —1(p— - n, Ly~ N
N L Ok {H (gk )H<T] )le_ Z Trk [H (rk )H(rj )}21 Y. (2.94d)
k=1 ry =4 L a TP Tk T
-

. HH([-F) . le(’l"—-*_)
;= <H21(£§)> vi= (sz(%)) ’ (2.950)

—_ (Tha(6) ~ (Ma(ry)
Vi = <H22(€;)>’ Wi = (Hm(r;))' (2.950)
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Chapter 2. Riemann—Hilbert analysis

The coefficients o are defined by

h+» h+»
UZJ' - + 1€’J+ y Ujvj - + 1T’J+ (0t ’ (2.962)
GG L=l e
h, . h.
o) 2 , o= rJ . (2.96D)

A h; [H*l(fjf)nf(zj)}lz 1—h, [Hfl(rj)ﬂ’(rf)]zl

and hzt/r are the residues of the off-diagonal matrix elements of the matrices M, gi and M7,
see equations (2.49) and (2.54),
+ _ + _ 2(pF) . + - +
h, = s (M), =€) s QF (N, j=1,...,nf,  (2.97a)
- - = —e2(07) - = = =~
hy; = N (M, (/\))21 = —e((7) o Q; (V) j=1,...,n;,  (2.97b)
and
+ _ + _ 20t . + . +
hi; = )\r:eTs‘+ (Mr ()\))21 =e*(r]) /\r:ers{r Q. (N, j=1,...,n", (2.98a)
J J
hrj == res (M7 (N))qy = —€2(r) - Tes Qr (M), i=1,...,n;. (2.98Db)
TS =r;

We note as well that det C;E and det D;»E obviously equal to zero, see equations (2.93). More-
over, we have

det S(\) = 1, (2.99)
which follows from equations (2.91), (2.87) and (2.86).
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3 Asymptotic analysis: no poles
on the real axis

In this chapter, we first derive an expression for the logarithmic derivative of the Fredholm
determinant convenient for the subsequent asymptotic analysis. In Section 3.1, we start
with Proposition 2, which relates the logarithmic derivative of the Fredholm determinant to
the solution of the matrix Riemann—Hilbert problem 1. Then we transform the Riemann—
Hilbert problem as in the previous chapter and modify the integration contours a few times
to derive the following expression for the logarithmic derivative of the Fredholm determinant
of operator V.

Proposition 6. The logarithmic derivative of the Fredholm determinant of the integrable in-
tegral operator V, given by (1.20), with respect to parameter B = x, Ao admits the following
representation:

OgIn get(id +V)= 85&(33, o)
Ao

- [ SE eI ()0 ~ [ 52 (S UE I ()87 (2)9:d(2)
X - %53 (tr{S’(:))H(z)azﬂl(z)S1(z)}8gd(z)) +0(@™™). (3.1)
The function a(z, \o) is given by
a(, o) = 2 / dz £(2|70)0.d(2), (3.2)

Co

where L is given by (2.30) and d(\) = Ine(X\). The matriz 11 is the unique solution of the
Riemann—Hilbert Problem 8 and S(\) is the matriz accounting for the contribution of the poles
in the set S, which is expressed in terms of the solution of a corresponding linear system, see
Section 2.9. Finally, the integration contour 7y is shown in Figure 3.1.

Next, we derive asymptotic expansions for all the ingredients on the right-hand side of
expression (3.1). Namely, in Sections 3.2 and 3.3, we derive asymptotic expansions for the
parametrix P and, consequently, for the matrix II. Then in Section 3.4 we derive asymptotic
expressions for the first two integrals on the right-hand side of expression (3.1).

In the last part of this chapter, we restrict ourselves to the case where there are no poles
on the real axis, i.e., VA € S, A ¢ R. We argue that the contributions of all poles located away
from the real axis are exponentially small, which means that effectively S = (). Under these
assumptions, we derive the following asymptotic expansion of the Fredholm determinant.
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Chapter 3. Asymptotic analysis: no poles on the real axis

Figure 3.1: The initial integration contour Cy, (dashed), the jump contour I's (black) and
the integration contour 7o (blue).

Theorem 1. If there are no poles on the real axis, i.e., SN R = (), then the Fredholm
determinant of the integrable integral operator V, given by (1.20), has the following asymptotic
expansion as x,t — 400 with x/t fized,

2(Ag)

%et(id +V) =exp{Clu,d,v,g9, 0]} =2 exp{a(z,No)} (1 +o0 (:1:_1/2)> , (3.3)

where T(X) = L4(X) — L(N\) and a(x, o) is given by (3.2). The constant reads

exp{Cu, ¥, v, g, \o]} = M (iu”()\o))—T (o) (%(/\0])\0)>T()‘°)

(271') T(Ao)/2
1 LML) = L)L (1) A,
Xexp{Qc/C/ - d)\d,u—i-/ ()\)19()\) dA
Ao Y20 Cxo

+ [ £,(N)oxIn (1 — &™) dx + T(/\)a)\lnsiHZ(ﬂV()\))d)\} (3.4)
Ly

or equivalently

C;(’;;());(g\o_;;) (iu”()\o)) — (2>\0)

1 LNLw) = LAL (1) ()
exp{2// - d)\d,u—/T()\) dA

Cxo Crg cr

exp{Clu,V,v, g, o]} =

+ / Ly(A\)dy In (e—2WiV<A>—1) d) — / 7(\)Oy lnsin2(7w()\))d)\}. (3.5)

C>‘0 Cj\—()

Here the function G(\) is the Barnes G-function, »(X\o|Ao) reads

#(Ao|Xo) = exp{ — / du £ (1) In [()\0 —p) -sgnRe(Ng — ,u,)} }, (3.6)

Cxo

and the functions L(X) := L(AXo) and L'(N) := L' (A Xo) are given by
L(AA0) = Le(A) - Tre(r—r0)<0(A) + Lr(A) - Tre(a—r0)>0(A), (3.7)
L'(AAo) = Ly(A) - Tre(r—r0)<0(A) + L1(A) - Trer—rg)>0(A)
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3.1.  Preparation for the asymptotic analysis: deformation of the contour

with Ly and L, defined in (2.31). The integration contours C)jfo are introduced in (2.32).

In particular, in Section 3.5, we derive the structure of the asymptotic expansion (3.3)
as a series in 7 1/2, as well as the dependence of the constant C' [u, 9, v, g, Ao] on the saddle
point Ag. Then in Section 3.6 we fix the constant completely. In this chapter we follow the
works [33,35].

The situation, where two poles from the set S approach the real axis, will be considered
in Chapter 4.

3.1 Preparation for the asymptotic analysis: deformation of the con-
tour

We are almost ready to use Proposition 2, which associates the logarithmic derivative of the
Fredholm determinant with the solution yx of the matrix Riemann—-Hilbert Problem 1, for
asymptotic analysis. The last thing to do is to make all the transformations of the Riemann—
Hilbert problems we have so far on the right-hand side of expression (1.39). Namely, we make
the following chain of substitutions,

X—>Xﬁ>E—>T£><I>i>H, (3.8)

where some steps from the solution of one Riemann—Hilbert problem to the solution of another
one involve auxiliary constructions: the solution « of the scalar Riemann—Hilbert Problem 3,
the solution P of the local Riemann—Hilbert Problem 6 or matrix S containing the pole
contributions, see Section 2.9. Also we modify the integration contour I'(Cy,) between some
of these steps in order to get in the end a convenient representation for the asymptotic
analysis.

3.1.1 Contribution of the scalar Riemann—Hilbert problem

First we make the following chain of substitutions:
W) o T =W (- CWet) 5 EN =XNaT (), (3.9)

see equations (2.15) and (2.25). Then the trace under the integral (1.39) reads

tr{X'(2) [0" +20(2)0*| X (2)} = tr {X(2)0"X " (2)}
= 20, Ina(z) + tr {Z(2)0*=7"(2)} . (3.10)

The first equality was already considered before, see equation (2.22). The logarithmic deriva-
tive of the Fredholm determinant (1.39) is then given by

dzln (élet(id + V) = dga(z, \o) — / % tr {=/(2)0*=7(2)} dg(z)e_”z2 , o (3.11)

2o 2mi

F(CAO ) n=04
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Chapter 3. Asymptotic analysis: no poles on the real axis

where we introduced

a(x, Ao) = / %@ (lna(z)) Ld(z)e

I'(Cxg) _——
B dz a_(z) 2
= / E(‘)Z (ln a+(z)) -d(z)e . (3.12)
o n=0+

Now we also substitute the jump condition (2.27) and integrate the right-hand side by parts.
Due to the assumptions on the branch points of the logarithms, asymptotics of ¥, and v to
be bounded for A € ), we have

lim argLy(\) =0, lim argL,(\) =0, (3.13)

Re A——oc0 Re A—>+4o0

and there is no contribution from the boundary term. Then the term a(z, Ag) can be written
as

a(x,Ng) = — / d—%ln (a_(z)> 8zd(z)e*’7z2 =2 / dz L(z|\g) 0.d(2), (3.14)

i ay(z)
Cx

Cx
0 =0+ 0

where L is defined in (2.30). Here we removed the regularization in the last expression, since
the filling fraction ¥(z) goes exponentially fast to zero as Re(z) — £o0, and v is bounded.
We also note that the function a(x, \) depends on the functional parameter (), as well
as on other parameters that might appear in u(\) for a specific functions p(A), e(A) and g(\).
Since the matrix Z(z) is analytic for z € C\C,,, we can deform the integration contour
I'(Cy,) in the integral with Z(z) on the right-hand side of equation (3.11) to I'V(Cy,) as shown
in Figure 3.2.

' (Cko)

Figure 3.2: Deformation of the contour I'(Cy,) — I(C,,) for the integral with the matrix .

Therefore, we get

O Indet(id + V) = dga(z, do) — / % tr {Z/(2)0°E 7 (2)} dg(z)e " . (3.15)
A T
’ I(Cag)
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3.1.  Preparation for the asymptotic analysis: deformation of the contour

Now we can substitute = — T — &, see Sections 2.5-2.7. These transformations are trivial in
the regions where the integration contour I is contained, see Figure 2.1, 2.3 and 3.2. Hence,

Oz In get(id + V) = 0ga(z, \o) — / % tr{®'(2)0" @7 (2)} clfg(z)e_”'z2 . (3.16)
Ao

21
F,(Cko) 77=0+
At this stage, the matrix ®(z) does not have a jump on the contour Cy, and has the poles in
the regions II, III, V, and VI, see Figure 3.2.

3.1.2 Contribution of the poles and the local solution

Now we add and subtract integrals along the boundaries of the regions Uy, Urrr, Uy and Uyt
of the form

/ ;—Ztr{q)’(z)a‘z@_l(z)}dﬁ(z)e_nzz , v e {II, 11, V, VI}, (3.17)
1

Uy, n=04

where OU,, is the contour around all the poles in region v, see Figure 3.3. Then the combination

Figure 3.3: Contours 0l, are the contours along the boundaries of the corresponding region
U, in the positive directions for v = II, 111, V, VL.

of the integrals, for example, along the contour fff is given by

27l
Tt

/ L [0 fe! ()o70 ()} — e {0 (2)o%0 ) ()} | ds()e™| . (38)
n=04

Next, we use the jump conditions for the matrix ¢ on the contours fzk/r, see expression (2.84)

for the jump matrix G¢ and expressions (2.49) and (2.54) for the matrices ]\JgjE and MZE.
Then

tr { @ (2)0” @ (2)} — tr {®/ (2)0* D (2)}
)

—2(z Q?(z) tr {<I>’ +<I>_1(z)} , z € er,
et o ety cei 510
Z)Qz (2)tr {®' (2)o <I>71( )}, Ze,f:_’ '
()05 () tr{<1>+ Jotep(a)),  sely.
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Chapter 3. Asymptotic analysis: no poles on the real axis

To derive this expression, for example, for z € I‘ , we substitute explicitly matrix M;" and
simplify as follows,

tr {® (2)0° @ (2)} — tr {@/ (2)0* P (2)}
= tr{@,(2) (L + (2)QF (2)07) 0* (I = 2(2)Qf ()07 ) B3 (2) }
!/
+ (62(z)Q;L(z)> tr {U_UZ (IQ - 62(2)62;"(2)0_)} —tr{®, (2)0" @ (2)}

=2e*(2)Qf (2) tr { @ ()0~ @ (2)}. (3.20)
Here we used the commutation relation for the Pauli matrices [07,0%] = +20% and noted
that the first trace in the third line is zero. At the end, the expression on the right-hand
side is analytic in region II. Therefore, we can freely deform the mtegratlon contour I’+ into
region II, which we denote v,", see Figure 3.4. The evaluations for \ € I’g or F are exactly

the same.
Then, the following combination of the contour integrals, see Figure 3.3, reads

—7722 dZ

/ tr {®'(2)0*® 7 (2)} da(2)e

I"(Cxg)

2mi
n=04

2 dz

27
n=0+

— > / tr{®(2)0*® 7' (2)} dp(2)e "
ve{IL, 1L, V, VI} g7

- [ rG@u{EFEeEe @ e (32
¥ o,

where function Gg(z) is given by

Go(2) = d(2) [ 1 (2) = 207 2(2)Q] ()1 (2) + 262 ()QF (2)1 1 (2)
+262(2)Q; ()1, (2) = 2¢ 2(2)Q; ()1, (2)], (3:22)
and matrix o(z) is
o(z) = 0% 1yy(2) + ot Li(2)+om Ls(2)+0” L-(2) + ot 1-(2), (3.23)

see equation (3.19). The contour v = vy U ’y; U~y,m U~y, U~, is shown in Figure 3.4.

The integrals along the contours 'yj;T are of order O(z~°), due to the factors e¥2(2), so
we neglect them, and the only integral that survives is the integral over 7, see Figure 3.4.
Moreover, we do not need the regularization 7 under this integral, since the integration
contour -y is finite.,

Now we have the following expression for the logarithmic derivative of the Fredholm
determinant

dz

dzln (élet(id + V) = dga(z, \o) — / o i {®'(2)0*® 7" (2)} ds(2)
Ao

- > / L ((2)0" 07 (2)} ds(2)e ™| +0(). (3.24)
ve{IL 1IL, V, VI} g7,
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3.2. Parametriz

Figure 3.4: Contours v (on the left) and 7o (on the right).

We note that we can remove the regularization 1 on the right-hand side, once the contours
OU, for s =11, II1, V, VI can be deformed in such a way that they are finite. Moreover, we
can write the residue contributions explicitly,

d

3 / 2i tr {®(2)0°® " (2)} dg(2)e "

ve{1l, 111, V, VI}(%{ m 0
v n=04

=3 res (tr{@'(z)0° @7 (2)} ds(2)) . (3.25)
AES

We substitute this expression in equation (3.24) and obtain

0y det(d-+ V) = Dpa(w do) — [ SZ 1 {#/(2)0°07 (2)} da(:)
=3 res (tr{@'(z)0°®7'(2)} ds(2)) + O(z™). (3.26)
AES
Substituting ®(z) = S(2)II(z), we get
tr{®'(2)0*® 7' (2)} = tr{S'(2)II(2)0*I1 " (2)S " (2)} + tr{Il'(2)0*I1 " (2)} (3.27)

and, finally, derive expression (3.1) in Proposition 6, announced in the beginning of this
chapter.

3.2 Parametrix

In the following section we need the explicit large x asymptotic expansion of the inverse of
the parametrix P, which plays the role of the jump matrix for IT on the jump contour U, .
We substitute (2.78) into (2.77) and use the asymptotic expansion of the parabolic cylinder
function as x — oo, see equation (B.28) in Appendix B.2. We obtain

PN =L+ nle 2/ P

m, (3.28)

where coefficients P, () for even and odd integers n are given by

=D A= 20 " ((=7)2m 0
Po(h) = S0 <W(A_AOO)) ( ) (_DN(T)%)’ (3.200)

AR R R 0 biz - (1—7)2n
P =~ ol () (o e, 00T 020
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Chapter 3. Asymptotic analysis: no poles on the real axis

Here (a), denotes the Pochhammer symbol. We omit the dependence of functions bi2, ba1,
and 7 on A. Recall as well that bisbo; = iT. We emphasize that the coefficients with even
indices n are diagonal and with odd indices are off-diagonal. We will use this nice property
of the coefficients P, later. We note that the coeflicient b2 and by; depend on z, therefore,
the dependence on z is also present in the odd coefficients in expression (3.28).

3.3 Solution of the singular integral equation

In order to derive the asymptotic expansion for II, we use the equivalence of Riemann—Hilbert
problems and singular integral equations, in particular, see equations (2.89) and (2.90). The
jump matrix is exponentially close to the identity on the contour I'g except for the loop
around the saddle point in the positive direction that we denote —0U), C I's. The jump
matrix on the contour U, is given by P!, see equation (2.84). Then equation (2.89) takes

the form ()( 1() )
dp Oy (p) (P~ (k) — Iz
II(\) ~ I — . .
W=+ [ oo T (3.30)

alx,

Substituting the asymptotic expansion for P~ and looking for the solution of the singular

integral equation in the form
> I, (A
mm:5+§:ﬂ;X (3.31)
n=1

we derive first the asymptotic expansion for the boundary value II.. Substituting then
the asymptotic expansion for II; back into equation (3.30), we derive that the first three
coefficients are given by

I () = _7;1_@;57 I(\) = 51 (Pz(u) —Mpi(i\o)Pl(M)) " (3.320)
Loy = L 9% [ P3(p) — Pir(Ao)Pap) — Pa(Ao)Prp) + Pi(Ao)Pilp)
3( ) - 21 8N2 ©w— Y e
0 (P3(M)Pi(p) — P1(Mo)Pi(Mo)Pi(p)
_3u< . )HAO (3.32b)

We note that the coefficients II,, inherit the property of the coefficients P,, to be diagonal for
even indices n and off-diagonal for odd n.
We provide as well explicit expression for the coefficients Iy

1 1 0 bia(No)
H1<)\) - )\ — )\0 \/iw’(O) (bgl(AO) 120 0 ) (333)

and IIo

Ha(N) =

1 ir(h) . 1 1 [ w0,
o2 a0y 2 TR R e l

+ 2i7(A0) 7' (o) — [B12(X0)b21(Xo) — br2(Ao)bh (Ao)] ]UZ, (3.34)

38



3.4. Integral over vy

which we need in the subsequent asymptotic analysis. We emphasize that the functions b
and be; depend on parameter x and, therefore, the coefficients II; and Ils.

In particular, the functions bi2 and by, given by (2.79), see also (2.73), have the following
dependence on x

b12()\) ~ :L,T()\)eizu()\o), boy (/\) ~ :L'_T(A)e_ixu(AO), (3‘35)

and, therefore, so do the off-diagonal elements of the matrix II;. The coefficient IIs involves
a combination of functions b1s and bo; and their derivatives, which can be written as

By5(Ao)b21(Mo) — bia(Ao)by (Ao) = 2iT(Mo)7' (No) Ina + i7(Xo) B(No), (3.36)

where we introduced function B()g) that does not depend on z. This combination produces
the term of order Inx/xz. Therefore, from the coefficient Iz, we have the terms of the orders
Inz/x and 1/x in the asymptotic expansion (3.31).

Moreover, such an observation allows us to figure out the order of the coefficient I13, which

is at most 2 izu(ho) 2 —izu(i)
H3(A\) (In z)e'*utro n (Inz)2e—wulto -~
p3/2 O < 13/2—1(o) 0" +0 23/2+7(Xo) 2 (337)

This follows from expression (3.32b), when all the derivatives act on b12(p) and bo1(p). How-
ever, these estimates are not enough for us and, as we will see in the next section, we also
need an estimate for the coefficient Ily.

Now, as we know the coefficients IIy, Iy explicitly and the structure of the coefficient
I3, see expressions (3.33), (3.34) and (3.32b), we look for a solution of the singular integral
equation in the form

II(A\) =1 + Z :cn(/);) II,(\) = Zn: —nm\20)

n=1 m:l(

(3.38)

Substituting this ansatz into the singular integral equation, we derive the following expressions
for the coefficients II,, ,,

(” m) ()\ —1n—j—
_ 0 I, - jn—j— k()\O) (n—m—k)
,.m(Xo) = T z:: Z:: (n b P, (Mo). (3.39)
This expression allows us to derive the coefficients II,, ,,, for n > 1 and m = 1,...,n from

I,_1 for £ =1,...,n — 1 starting with II; 1(Ag) = —P1(XNo). Explicit evaluation of the
coefficients involved in II4 allows us to see that

g <(h;f)2> I+ 0 <(lnf)2> L. (3.40)

X

Now we are ready to evaluate the second and the third terms on the right-hand side of
equation (3.1) in Proposition 6.

3.4 Integral over -

The expression under the integral over 7y, see equation (3.1) or (3.26), is proportional to
tr{®' (\)a® " (\)} = tr{II'(\)o*IT " (\)} + tr{S"(M)IL(N)aIT (X)) S (N)}. (3.41)
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Chapter 3. Asymptotic analysis: no poles on the real axis

The first term on the right-hand side can be expressed as a series in 2~ /2 if we expand II())
as in equation (3.31). Since det II(A\) = 1, the inverse of II can be expressed as follows,

7' (\) = oVIIT(N\)oY. (3.42)

Then, an analogous expansion of II™' inherits the properties of the odd coefficients to be
off-diagonal and even ones to be diagonal. Hence, we get

(I ()T )} = 5 (TG (N0} + 1 tr{TT(No" + T (o TI (A)}

€T2

L (I (\)0" + T () TI () + T (\)oeT1; ()}

3
2

+
x

+ % tr{IT,(\)o® + TI5(N)o*TI; (\) + TT5(N)o*TI5 (M) + I} (V) o*TI5 (M)} + o (x_Q) . (3.43)

The traces with the factors z71/2 and z73/2 in front are zero, since the matrices under the
traces are off-diagonal. Moreover, we ignore the terms with =2 in front, and write them as
O((Inx)?/x?), as we stated in (3.40). Substituting II;" = —IIy, we obtain for the first term
in the expression (3.41)

nr 2
tr{I (\)o "I (A)} = %tr{H’Q()\)a?‘ — I (NI (\)} + O ((1 x2) ) . (3.44)

The second term on the right-hand side of expression (3.41) can be written as

tr{S (VI oI (A)S™ (A)}
= tr{S'(\)o*S™ (\)} + il tr{S" (M) (N), o]~ (A)}

€Tr2

- itr {800 ([M2(1), 07 = [ (N), 7] (A)) S (W) } + 0 <

eiixu()\o) Inz

)  (345)

z3FT(N) 1z

Here the corrections propagate from II;(\) and IIz()\), see equations (3.33) and (3.34) and
the comments right after them.

Now we simplify some traces in expressions (3.44) and (3.45), using the properties of
coefficients II,,. For example, the matrix ITjo*II; is proportional to 0%, therefore, we get

/ zy11 1 / z (1I1.’,1:‘)2
tr{II'(\)o*II" (\) } = ;tr{HQ()\)a }+0 ( 5 > . (3.46)

Noting that [IIz,0%] = 0 and
(I (N), 0] = 2111 (\)o*, [T, (), %] (\) = =212 (\)o, (3.47)

we obtain

tr{®' (\)o"® " (\)} = tr{S'(\)o* S (\)} + ; tr{S™ (\) S (WL (Ao}

+ % [26r{S™ (NS (V)0 } + tr{TTy(N)o?}] + 0 <

eiixu()\o) Inz

) C(348)

23¥F7(N)
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3.4. Integral over vy

We emphasize that in the last equation the asymptotic expansion for the solution of the
singular integral equation II(\) is used, but the pole contributions, i.e., the matrix S(\),
is still exact. We kept it like that so far, because the matrix II(\) does not depend on the
number of poles and on a regime (relative position of the saddle point to the poles). We derive
asymptotic series for S()\) corresponding to different regimes in Section 4.1-4.3 of Chapter 4,
where we consider the case of two poles on the real axis.

Before we evaluate the integral over g, we substitute the explicit expressions for II; and
IT, into (3.46) and (3.48), see equations (3.33) and (3.34). The coefficient in front of z~1/2
in (3.48) then reads

i {57 (VS (I (Vo)

(ST (N)12b21(A0) = (ST(A)S' (X)), br2(Xo)] - (3.49)

Using identity

1 it(A
I@(A)::(A——A@22(w&0%2l% (3.50)

see equation (3.33), we obtain the first coefficient in front of 271 in (3.48)

2 S NS o)

_ 1 iT(/\o)
2 (A = X0)? (w(0))

5 [(STONS ) = (ST W), |- (351)

Finally, the second term in the same order in (3.48), that does not contain S(\), and
which is the only term in (3.46), reads

Loy o 1 ir2(\) 1 1 TJir*(Ao)w"(0)
20T} = SR W T - PR OF L W

- 217’()\0)7'/()\0) + (bllz()\o)bgl ()\0) — b12()\0)b/21()\0)) . (352)

Now we evaluate the integral over 7. We do it separately for expressions (3.46) and (3.48)
for two reasons. Firstly, expression (3.46) does not depend on the poles and therefore on the
regime. Moreover, that is the only term contributing to the asymptotic expansion of the
Fredholm determinant in the case, where there are no poles, i.e., S(\) = I. Secondly, at the
end of the day, this term will be responsible for the logarithmic correction to the Fredholm
determinant asymptotics for any pole configuration.

The integral over 7p of this term reads

/ %“ {IU(2)0" T (2)} ds(2) = 91;2(1:(?(;);)2{ —7(Ao)dj(Xo)
Yo
+ dj(Mo) (W +27(N\o)(Inz — 1) + B()\O)) } 10 ((11;;25)2>  (353)

Here we also used the definition of the function B, see equation (3.36).
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Chapter 3. Asymptotic analysis: no poles on the real axis

Integrating expression (3.48), we get

[ s (@@ (@)} dale)

2mi
Yo

_ 1 V2dg(Xo)
x% w'(0)

iﬂ&{w’ﬁw) (5008 Gal)yy — (57 (30)5' (o)) | ~ T 00)

[(S7(X0)S"(X0)) 15 b21(A0) = (57 (X0)S" (X)) 4y b12(Mo)]

7(Ao)w"(0) etiru0) In g

w'(0)

We do not have a term of order ¥, since the first term on the right-hand side of (3.48) does
not have a pole at \g. The expression above gives the “partial asymptotic expansion” of the
first two terms on the right-hand side of expression (3.1), in the sense, that the solution IT of
the singular integral equation or, equivalently, the solution of the Riemann—Hilbert Problem 8
is expanded in 2~/2, but the matrix S is kept exact.

+ dj3(Mo) ( +27(No)(Inz — 1) + B()\o)) } +o < ) . (3.54)

23FT(N)

3.5 Fredholm determinant asymptotics: no poles on the real axis

In this section, we consider the case where all the poles are away from the real axis. Then
from system of linear equations (2.94) it follows that

SO\ = I + O(z~), (3.55)

because all the coefficients O’?;T are exponentially small, due to the factors e?()\) and e~2(\)

for X\ evaluated at the poles in the corresponding coeflicients hzt/r.

Therefore, the logarithmic derivative of the Fredholm determinant, see expression (3.1)
in Proposition 2, is completely determined by the solution « of the scalar Riemann—Hilbert
Problem 3 contributing to the function a(z,Ag) and the integral over 7y of the trace in-
volving only matrix II (since S = Iz). We evaluated the latter in the previous section,
see equation (3.53). Substituting (3.53) into (3.1) with S = Iz, we derive the logarithmic
derivative of the Fredholm determinant with respect to parameter § explicitly

2
dsIndet(id + V) = dga(x, Ag) + % +0 ((ln 2) ) ; (3.56)

C>‘0 552
where a(z, Ao) is given by expression (3.14) and coefficient as by expression (3.53),

iT(Ao) y w"(0)7(Mo)
s oo - (<55

We emphasize that coefficient as depends on the parameter 3, with respect to which we take
the derivative.

Now we consider the logarithmic derivative of the Fredholm determinant with respect to
the large parameter, § = x. This allows us to derive the first few terms of the asymptotic
expansion up to a term independent of x which still depends on all other parameters including
Ap. Then, in order to fix this constant, we consider the logarithmic derivative with respect
to the saddle point, 8 = A\g. Integrating the derivative with respect to Ag from Ag up to +oo,
we will be able to fix the constant term completely.

ag =

+27'(No)(Inz — 1) + B(A0)> dg(Ao)] . (3.57)
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3.5.  Fredholm determinant asymptotics: no poles on the real axis

3.5.1 Dependence on x

For 8 = x expression (3.56) takes the form

2
O, Indet(id + V) = d,a(, do) + % +0 ((m z) ) (3.58)
Ao

)
with a(z, Ag) given by (3.14) and ag by

iT()‘ ) 1" w”(O)T()‘ ) / y
o lT(AO)dgC(AO) - (u(O)O +27()(Ine — 1) + BOv) ) dtc()\g)l - (359)

a9 =

In Appendix D, we show that d,(\g) = 0 and d”(\g) = i(w'(Ao))?, see identities (D.15)
and (D.16). Thus, for 8 = x coefficient ay is given simply by
ag _72()\0) 72(Xo)

< = = — In 2. .
. o 5 Oy Inz (3.60)

Hence, we obtain the first terms of the asymptotic expansion of the Fredholm determinant

- 72(;0) nz+ 0 <(lnj)2> (3.61)

Indet(id + V) = Clu, 9, v, g, Ao] + a(z, Ao)

Cx

g9=0

with a(z, )\0)|g20 given by

a(x, \o) (3.62)

o =2 / dz L(z|\o) 0,d(z)

Cxo

g=0

Here we set g = 0, since we integrate the z-derivative of the function a(x, A\g) with respect to
x, see expression (3.14), and the functions u(z) and g(z) do not depend on z,

O0zd(z) = Oy Ine(z) = 0y [—lgu(z) - ;g(z)] = —%u(z). (3.63)

Now we already know the structure of the asymptotic expansion of Indet(id + V) in variable
212, which includes the first terms, the logarithmic correction and the order of the next
correction.

3.5.2 Dependence on \g

Now, in order to fix the A\g-dependence of the constant C|u,d, v, g, Ao], we consider the loga-
rithmic derivative (3.56) with respect to Ao,

2
Oy, Indet(id + V) = 0y a(x, \o) + 240 ((ln :25) ) ’ (3.64)
C>‘O X X

where ay is given by

. iT()‘O) 1" w”(O)T()\O) / y
- [T(AO) (o) — <w/(0) 27 (0)(Ine — 1) + BOv) ) d,\o()\g)] - (3.65)

a2
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Chapter 3. Asymptotic analysis: no poles on the real axis

In Appendix D, we derived that
ho(Mo) = —iz(w(0))?, (3.66)

see equation (D.20). Then

az _ 7(Ao) R (0) (W OT0) |y v
2 lT(AO)d’,\O()\O) < () + 27" (Xo)(1 1) +B(>\0)> ] (3.67)

Now we take into account the structure of the asymptotic expansion of the Fredholm
determinant with respect to z, see equation (3.61). Comparing the Ag-derivative of expres-
sion (3.61) with expression (3.64), we obtain

(M) ) | 72 (o) dx,(Ro)  T2(No) w”(0)  T(No)
2 >+ 2 d’io()\o) > W) 2 P

(9)\00[’11,, 19, v,g, )\0] = 8)\0 ( (/\0) (3.68)

We recall that the function B(\g) is defined as

i7(A0) B(A0) = (bl2(Ao)bar (M) = bia(Mo)bhy (M) = 2ir(No)7 (o) Inz,  (3.69)

see equation (3.36), and it does not depend on x at all.
Integrating expression (3.68) from —oo to g and from Ag to +oo along the integration
contour Cy,, we obtain the following two representations for the constant Clu,v,v, g, Ao]:

72(Xo)
2

200) [#,00 O] [ 700 )
+/ ldg\o()@) w,(OJdAO / 0 B(x)dho. (3.700)

C[U,l?,]/,g,Ao] = C_[U,’ﬁ,u,g] +

C;o

7'2(/\0)
2
(M) [&,(N0)  w(0) (%)
_/ 2o ld’io()\o)_ w’(O)]d)\OJF/?OB()\O)d)\O' (3.70Db)

cr cr
Ao Ao

C[U,l?, V’guAO] = C+[u,19,y,g] +

S

Here we used the notation (2.32) for the contours C/j\to and denoted the integration constants
at f+oo, as

C’i[u, v, v, 9] = Clu, 9, v, g, \o] (3.71)

Ao==t00
Integrals with B(Ag) In order to simplify the integrals in the expressions for the constant

Clu,v,v, g, \o] above, we need B(\g) explicitly. First we substitute ba;(Ag) into (3.69), using
identity b12(Ao)b21(Ng) = iT(Ao), see equation (2.81),

i7(20) B(%0) = (bla(Mo)bar (M) — bia(Ao)bsy (M) ) = 2ir(Ao)7’ (o) In

= —it’'(\o) + 2i7'(/\0)2§82; — 2iT(Ao)T' (No) Inz. (3.72)
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3.5.  Fredholm determinant asymptotics: no poles on the real axis

Then, substituting expression (2.79) for bi2(A\g) and expression (2.73) for n(Ag), we get

iT(Ao) B(Mo) = —it'(Mo)+2iT(Xo) 7 (No) (ln2 — 7;) —217'()\0)7’/()\0)W—i-ZiT()\Q)g’(/\o)
. Ox e (>\|)\O) . 79(A0) . .
— 4it(\o) m . — 217()\0)0(/\0) — 2i7(Ag)y, Insin®(mr(Ng)). (3.73)

Substituting this expression under the integrals, we derive

b .
/T(Ao)B(AO)dAO = T(QA) g (1n2 - 7;1) 723) - /T(A)T’(A)I;((TM

2
/ [ Bvnes(AN)
- ’ _ . A Mreg 0 . -
+ / (Vg (A) dr -2 / o) BT A:AodAo / Ok

a

b
_ / (N Insin(rv(\) dA.  (3.74)

The first integral on the right-hand side can be written in terms of the Barnes G-function,
which admits the following representation:

—1) [T
Glz41) = @) 2exp] — 221 /t War 'l Re(z) > —1. (3.75)
2 I'(t)
0
Indeed, e.g., the integral from Ao to 4+-00 along the integration contour C, can be rewritten
as
I'(r(A) I(7)
— [ TN =7 (AN)dA = /T dr, (3.76)
[ /T

e
where C is a contour with the end points 7(c0) = 0 and 7(A\g). Then we deform the contour C
into the one along the real axis from the origin to the point 7(\). Hence, we have

7(Xo)

/T C'(r) dr = / T I'(r) dr 4+ 27in (3.77)
C 0

I(7) I'(7)

for some n € Z coming from the cumulative contribution of the residues. Now we can use
integral representation for the Barnes G-function (3.75). The same applies for the integral
along the contour Cy, from —oo to Ag.

Then, we get the following representations for the integrals involving B(\g),

/ L)\O)B()\o)d/\o = (1 ~hnzd m) )y, [G(7(Ao) + 1)] + 2min

2 2 2
cy,
7(Ao) (9 OV N V) oy - Onstreg(Ado)
IRALINE >+c/ (Vg (A) dx C/ NG 2(,»/ Do) O |, M
- / (A)0x lnsin?(m(X)) dA (3.78a)
cy,
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and

/ T(zAO)B(A@ dXo = (1 2+ 7;) 72(;0) +1In [G((Ao) + 1)] + 2mim — T(;‘)) In(2n)

i [ [ G ()
+/T()\)g()\)d)\ / QAR 2/ (o) e
c;‘o

C+
Ao

dXo
A=Xo

_ / (V)0 Insin?(mr(\) dA.  (3.78b)

C+
A0

for some integers n,m € Z. We note that in the end, we exponentiate these expressions, so
these integers do not contribute to the asymptotic expansion of the Fredholm determinant.

The next step is to consider the logarithmic derivative of s.es(A|Ao), see expression (2.70).
First we use

O #reg (A0 Ao) = Orztreg(AlAo) + Oxp#reg (Al Ao)
A=Ag A=Xo

= e (M0]A0) + Ong #reg(AlXo) - (3.79)
=Xo

Here and in the following, we denote f’(A|Ag) := drf(A|Ao) for brevity. Substituting expres-
sion (2.70) into the first term on the right-hand side, we get

#reg(Mo[A0) 5 (Mol Ao)
reg _ o , _ , )\ . |
g O0%0) 2 00l20) 7' (o) Inw’(0[Xg) — 7(Xo)Ox, Inw’ (0| Ag) (3.80)

Also, here and in the following, we denote the function w(A — Ag), as w(\ — Ag|Ag), since it,
in fact, depends both on A — A\g and \g.
Using equation (2.42), we get

O (Al Ao)

e N (o), (3.81)

and, therefore, the second term on the right-hand side of (3.79) can be written as

o #reg (A No) 7(Xo) w”(0[Ao) Ixow' (0] Ao)

=7'(N\o) + ——— —7(A 3.82

saes(MAo) |,y (o) + =3 w(0[Ao) (o) w(0[Ag) (382)
As a result, we obtain

! (Aol A
s 020}~ D) ) e (00) — 70010, I (0N
Hreg (A0 [NO (A0 |A0
1 /
—(xo) — (o) w”(0]Ao) Mow'(0]A0) (3.83)

> wioho) T 0
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3.5.  Fredholm determinant asymptotics: no poles on the real axis

and the integral with s5e then takes the form

b

b
%;eg(AO) =T nx . nx
[ 002 @ = )] = [ )

a a

b b 2 / "
75(Xo) [Orw'(0]X0) — w"(0]Ao)
+/ 9 [ ' (0Po) 2 (0]ho) dho. (3.84)

-2
— ?()\) 1+ Inw'(0|N)]

a g

Here we additionally integrated the first integral on the right-hand side by parts.
Using the following identity derived in Appendix D, see equation (D.21),
(9)\0(,4)/(0’)\0) . 18)\0’11”()\0’)\@ . 3 w”(O]/\o) 1 dl)io (>\0)

JOMo) 2 w(hlho)  2w/(0A)  2d5 (M) (3.85)

we obtain

%{"eg()‘o) - /
_ 26/ (o) eer (%0) dAg = —27(Ao) In s2(Xog|Ao) + QC/ 7' (A) Ins(A|X) dA
(%) [W”(OP\O) ()

2 w'(0[Ao) ), (No)

+72(N\o) (1 + Inw/(0[Ag)) — /

C;O

] do, (3.86a)

and

J{1/re ()‘0) /
- 26+/ T(/\O)%rei(%) dAo = 27(Ao) In 3¢(Ao[Ao) + 2C+/ 7 (A) In s (AA) dA
(Ao) [w”(OP\O) _ d5, (M)
2 | w(0h)  d,00)

— 72(A\o)(1 + Inw'(0|Ao)) — / 7

C+
Ao

] dXo. (3.86b)

We note that the last integrals on the right-hand sides cancel the corresponding terms in
equations (3.70a) and (3.70b).

Integrals involving In 3¢(A|A) The last step is to evaluate the integrals
/T’()\) In s¢(A|AN) dA, /T’()\) Inse(A[X) dA. (3.87)
Cro C/J\ro

First we evaluate the function »(Ag|Ag), using equation (2.42). We substitute A = Ag,
integrate by parts and send the regularization parameter £ to zero. We obtain

#aho) = exp{ = [ du Ly =) = [ du Ly Inee ~ o)} (3.88)
Cyy cjo

Now we introduce £'()\) as
L'(A) = Ly(A) - Trepr—ng)<o(X) + L1(A) - Tre(r—2g)>0(A) (3.89)
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Chapter 3. Asymptotic analysis: no poles on the real axis

in analogy to the function £(X) := L(A|Ao),
LA) = Le(A) - Tre(r—rg)<0(A) + L (A) - Tre(x=20)>0(A); (3.90)

that we introduced in (2.30). We emphasize that in this notation the derivative does not act
on the indicators. Then, the function s(\g|\g) can be written as

(Aol No) = exp { - / du £ (| M) In [(Ao — 1) sgn Re(Ng — )] } (3.91)

Cx

We evaluate in full details the first integral in (3.87) and provide only the resulting
expression for the second integral, because it can be derived exactly the same way. First we
substitute expression (3.91) for s¢(A|N),

/ (A Ins2(AJN) dX\ = — / () / dp L' (| A) In [(A — p) sgn Re(A — p)] dX. (3.92)
cx, c, Cxo
Then, we substitute 7(A) = Ly(A) — L,-(\) and £'(\) as well, see equation (3.89), and expand

everything

/ (0 In 32(A[A) dA

C;O

_ / ax / Ay LY\ L) (A — 1) + / a\ / A £ () £4(1) In(A — o)

SN SN
= [ fansigimie -0+ [ O [ duci g tnge- 2. (399
e o SV

Here we introduced contour C)jf similar to C)jfo, see equation (2.32),
Ci ={2€Cy|£Re(z—X) >0}, CrUCT=Cy. (3.94)

Now we symmetrize the integrals and rewrite them as

/ #(\) In s(A[A) d = —% / d / dp £/ OV L (1) In [ — 1) sen Re(A — )]
Cy Crng O

+i/dA/dML;(A)L;(M) In[(A — p)sgnRe(\ — )] . (3.95)
Chy  Cxy

After integration by parts, these integrals are nothing but

[ [ aue )£ n (- g sen e~ )
Chy COr

1) — LNL ()
" (3.96)

1 L'(NL
:—T()\g)ln%()\o\)\o)+2/d)\/d,u (WL
Cxro Cx
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3.5.  Fredholm determinant asymptotics: no poles on the real axis

and

[ ax [ aucie; 1m0~ wsgaRe(r - )

Cro Cx

Then the first integral in (3.87) can be expressed as

2/ ") In (AN d :_/dA/dM L(p _i(A)E’(u)
c5,

1 L)L (1) = L (N L7 (1)
T(Xo) Inse(Xo|Xo) + = [ dX [ dpu . (3.98a)
2C/0 c{ A—pu

Similarly, the second integral can be written as

2/ ") In (AN d /dk/du L) _5(/\)5’(#)
c;ro

1 Ly(N)Le(p) — Lo(AN) Lo (1)
—7(Ao) Inse(Aofho) — 5 [ dA [ dp =t £ (3.98b)
26{ cA/O A

Finally, substituting equations (3.78), (3.86), and (3.98) into expressions (3.70), we get
the following representations for the integration constant C[u,d, v, g, Ao],

7(No)

C[U, 19’ v, g, )‘0] = C_[U, ”93 v, g] +In [G(T()‘O) + 1)] - 111(27'(') — 27in

T2 i ,
2 (5~ 2007 ) + 70 (o) + / T
J

/()3,\1118111 (rv(A)) dA + = /dA/ )\ ﬁ(k)ﬁ'(u)

/ r(\) d)\—/d)\/ £ ”) E(A)U( W (3.90)
o

Ao

A0
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Chapter 3. Asymptotic analysis: no poles on the real axis

and

Clu,9,v,9, o] = Ct[u,d,v,g] + In[G(r(No) + 1)] — T(g\o) In(2m) + 2mim

72 i !
+ 00 (Bt 2 0D)?]) + )t sralra) = [ 0G0 ax
c;ro
- 1 L'(N)L(p) — LANL (1)
— [ 7(\)oxInsin®(rv(\)dA+ = [ d\ [ du
Ci/0 20!0 C!g A— U

+/T(>\)g’()\)d)\—;/d)\/d,u ﬁé(A)Eﬁ(“ﬁ:ié(A)ﬁz(“). (3.100)
Chy  Ch

C+
Ao

In the next section we fix the constants Ci[u, ¥, v, g] and, consequently, derive a complete
asymptotic expansion of the Fredholm determinant including the logarithmic correction and
the integration constant for the case of no poles on the real axis.

Remark. We note that in all the integrals in expressions (3.99) and (3.100), we do not
need the deformation of the contour for Re A — oo anymore, and can deform the “tails” of
the integration contour Cy, back on the real axis.

3.6 Integration constant

To finally fix the integration constants C*[u, ¥, v, g], we use the results from paper [33]. In
this paper, a Fredholm determinant of the so-called generalized sine kernel Viask (A, 1) was
studied in the static case in the large-distance limit, i.e., for t = 0 and as ¢ — 4o00. The
integral operator Vggk acts on interval [—gq,q| for ¢ > 0. Nevertheless, there is a relation
of the Fredholm determinant of the integral operator V under our consideration and the
Fredholm determinant of the integral operator Vagk, due to Propositions 7 and 8, which
allows us to derive the constants C*[u, ¥, v, g] explicitly.

3.6.1 Generalized sine kernel

The generalized sine kernel Vg in [33] is defined as

Vs ) = Ty S (& 00t) 202 (). .101)

where function € is the function e introduced in this work, but in the static case and with
another auxiliary function g,

) = exp (-i;’“’p(x) _ ;g(x)> . (3.102)

The functions g(A), p(\) and F(\) together with the parameter « are assumed to satisfy some
properties, see [33, Section 2.1], analogous to the assumptions we require in Section 1.4.
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3.6. Integration constant

Theorem 2 ( [33, Theorem 2.1)). In the limit x — +oo, the Fredholm determinant of the
generalized sine kernel V gsr, given by (3.101), behaves as

n et (4 + Vi) = iz | 700 (0) A~ [7a) +57(-a)] na

q
v N G(1,5(g)) G(1,7(=q)) k"9 (q) ]
—/q W (24p'(9))7*(@ (2gp/(—q))7*(~9) k(=9 (—q)
+ ;// glmﬁ("; - Z(AW(“) dAdp +o(1). (3.103)
Here the functions Uv(\) and k() are given by
B()) = _%m L47FON], A = exp { / Wdu } (3.104)

—q
The function G(1,\) := G(1 + \)G(1 — X) with G(X) being the Barnes G-function.
To establish relation to the kernel of the integral operator V with the integration contour
Ch,, we need the following direct corollary of Theorem 2.
Corollary 1. If the function v(A) = O(A™>°) as Re(\) — Loo, then in the limit ¢ — +o0,

the asymptotics behaviour (3.103) of the Fredholm determinant of the generalized sine kernel
Vask reads

In det (id+ Vasi) = —ia:_ / Z(A)p'(A) dA
- / 7(A)g (A) dA + % / / ﬁ/wﬁ(’&) — Z(AW(“) dAdp+o(1). (3.105)

This corollary is straightforward, since all the terms without integrals on the right-hand
side of (3.103) go to zero.

Now we consider the kernel V(A, i) in the limit, where the saddle point goes to infinity,
Ao — F00, which corresponds to the static case ¢ — 0. That is easy to see if we note that
the saddle point is determined by the following equation

u(A) =p(A) — %E(A) = (M) =p'(No) — %e’(Ao) =0, (3.106)
which implies that (o)
t p'(o

2= F00) (3.107)

Taking into account the asymptotic behaviour of functions p(A) and €(\) that we assumed
from the beginning, we derive that
P(do) 1

= . .1
Ao—Eo0 5/()\0) )\0 (3 08)

Now we consider two limits A\g — d-oco separately.
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Chapter 3. Asymptotic analysis: no poles on the real axis

(a) Ao = 400 (b) Ao = —o0

Figure 3.5: Deformation of the integration contour Cy, in the Cauchy transform C(\ —i0),
see equation (1.24), for A\g — 400 on the left and for A\g — —oo on the right. The pole of the
integrand at A —i0 is also shown. Its residue must be taken into account for the deformation
of the integration contour on the right.

Limit A9 — +o0o In the limit Ay — 400, the function E()), see equation (1.22), behaves

as
1

Xo—++00 — exp(—2miv())) — 1 ¢

e

+O(z7%), (3.109)
=0
since the Cauchy transform is exponentially small. That is easy to see if one deforms the
integration contour as on Figure 3.5a. Then the kernel V (A, u), see equation (1.20), reads

49(y2) sin(m(N)) sin (1) ( (e (V) e(We () )

lim V(\u) = e—2miv(d) 1  e—2miv(p) _ |

. (3.110
Ao——+o0 271'1()\ — ,U,) ( )

t=0

Using Proposition 1, we can change 9(u) — /9(A\)9(p) and it becomes easy to see that the
kernel V' (A, 1) has the same form as the generalized sine kernel with

YEQ) = 9(\) (2 — 1) (3.111)
and

(e_Qmu(/\) _ 1)1/2_ (3.112)
t=0

The last transformation of function e(\) to €(\) corresponds to the following choice of the
function g(\)

g(0) =g +n (72N 1) (3.113)

The support of the integral operators V and Vggk are still different, but in the limit ¢ — oo
we have an equivalence of the kernels.

Proposition 7. In the limit © — oo, the Fredholm determinant of the integrable integral
operator V, see equation (1.20), with \g — +oo is asymptotically equivalent to the Fredholm
determinant of the generalized-sine kernel V ggk, see equation (3.101), with ¢ — oo,

)\Olinioo (éliﬁ (id+V) = qlgf}o [i?fﬂ (id 4+ Vgsk) + O(z™>) (3.114)
with
YEQ) =00 (N — 1), ) = e(n)| (72 —1)/2, (3.115)
t=0

Now we substitute the functions vF(\), €()\), from Proposition 7 into the asymptotic
expansion in Corollary 1 and compare it with the asymptotic expansion (3.61). We get

C*u, 0, v, g = — / ﬁ(A)g’(A)dH% / / EI(A)E(“A):ZQW(“) d\dy+o(1), (3.116)
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3.6. Integration constant

where function 7(\), given by expression (3.104), takes the form
~ _ 1 2miv(A) _
(A = —5-In [1+900) (e —1)] = L), (3.117)

and function g can be expressed from equation (3.113). Then the integration constant
Ctlu,d,v,g] is given by

CHu, 9, v, g] = /[,4 d)\+/ﬁg JoxIn (72 — 1)

/ / EEA) &z(A)EQ(M) Ddp. (3.118)

—00 —00

Limit A9 —& —oo Next, we consider the limit as Ay goes to —oo. This limit is slightly
trickier because from the very beginning we fixed the signs of x > 0 and ¢t > 0 and, from
equation (3.108), it follows that the limit \g — —oo corresponds to t/z — —0. In order
to have the same saddle-point analysis, we keep t > 0 and change the sign of x. Also we
note that the deformation of the contour, see Figure 3.5b, additionally produces the residue
contribution. Then

)\OILH}OO E()\) = <eXp(—27Till/()\)) 1 + 1) 6_1()\) IL:BI + O(x—OO)
- ! e ! 7>
~ 1 —exp(27iv(\)) (M) =0 + O( ). (3.119)

We note that the change © — —z in the function e()) for ¢ = 0 is equivalent to

_ -1
e(N) — = (A) —o (3.120)
T——x g——g
Then the kernel V' (A, ) takes the form
() sinrr(V) sin(rv() (e (1) e (Velp)
V()\v /*L) - 271'1()\ _ H) 1— eQﬂ-iy()\) 1— ezﬂ'il’(/’«) 0 (3121)
9—-9

Using Proposition 1 again, we can change 9(u) — /9(X)Y(p), and the kernel V (A, 1) becomes
the generalized sine kernel with

YE) = 9(3) (e 2N 1) (3.122)
and U
o) = e, (1-emw) (3.123)

The relation between functions e(\) and €(\) corresponds to the following relation of functions
g(\) and G(A) |
g(N) = =§(0) +In (1 — &2V (3.124)

Then we have the following equivalence of the kernels in this case.
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Chapter 3. Asymptotic analysis: no poles on the real axis

Proposition 8. In the limit * — oo, the Fredholm determinant of the integrable integral
operator V, see equation (1.20), with \g — —oo is asymptotically equivalent to the Fredholm
determinant of the generalized-sine kernel V gk, see equation (3.101), with ¢ — oo,

lim det(id+V) = l1m det (id + Vggk) + O(x™™) (3.125)
Ap—>—00 C>‘0 0 [—q,q]
with
. . —-1/2
YEO) =0 (72N — 1) E) = e()) (1= ) 2 (3.126)
t=0
g——g

Substituting the functions vF'(\), €(A), from Proposition 8 into the asymptotic expansion
in Corollary 1 and comparing it with the asymptotic expansion (3.61), we derive the following
expression for the constant C~ [u, ¥, v, g]

Cu,d,v,g9] = — /N( )G (VAN + = //~/ M ~()\)g/(’u> dAdp +o(1). (3.127)

— 00 —O0

Here function (), given by expression (3.104), takes the form
oy 1 —2miv()) _
(N = —5 - In [1+900) (e —1)] =L, (3.128)

and function g can be expressed from equation (3.124). Finally, the constant C~ [u, ¥, v, g] is
given by

C[u,9,v,g] = /cr d/\+/£ JoxIn (1 — €2V dx

UL ONLe () — Lo (V)L (1)
+2/ / - dhdp. (3.129)

—00 —00

Now we determined everything in expressions (3.70a) and (3.70b) for the integration constant.

Two representations for the integration constant and their equivalence

Finally, we substitute expressions (3.129) and (3.118) for C~ [u, 9, v, g] and C*[u, 9, v, g] into
expressions (3.99) and (3.100) and simplify terms. At the end of the day, we have the following
two representations for the integration constant

Clu,9,v,9, 0] = In[G(T(No) + 1)] — (o) In(2m) + 2min

2
72 i
n <;0> (2_1 2(w '<o|Ao)>2})+r<Ao>1n%<Aoer>— / LN (A
Cxo
+;/ / L/(A)E(u))\:s()\)ﬁf(ﬂ) d/\d/i—i-/T(/\)i((;\)) I\
CAOCAO C)TO

/ L\ (1 - ™M) A+ / 7(A\)dxInsin?(7v()))dr  (3.130)
Csy
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3.6. Integration constant

and

Clu,¥,v,g, 0] = In[G(T(No) + 1)] — (%) In(27) + 27im

2
7'2 i
+ 52 (3 - n 0 ) + 700 lio) - [ v 010
C
. % / / E’(/\)E(u))\:ﬁ()\)ﬁ’(ﬂ) rdys /T(/\) ?9/(())\\)) dX
Cx Cx Cj\_o

+ / Lo In (72 — 1) dr — / (Ao Insin?(rv(\)dA  (3.131)
C>\0 C;\L()

for some n,m € Z. These two expressions for the integration constant do not coincide yet,
see the last three terms in both expressions and the terms with n,m € Z.

Due to equation (D.12) derived in Appendix D, 2(w’(0|\g))? = —u”(\g). We also note that
the first integrals on the right-hand side combine nicely with the term a(zx,t) in the asymp-
totics of the Fredholm determinant, which recovers the initial functional dependence of the
Fredholm determinant on the combination izu(A) + g(A). In other words, in the final asymp-
totic expansion for the Fredholm determinant, instead of a(z, )\0)|g:0, see equation (3.62),
we get the complete function a(z, Ag).

At this point we derived the statement of Theorem 1. The last thing to do is to prove

the equivalence of the expressions (3.130) and (3.131) for the constant C[u,, v, g, Ao].

Proposition 9. Ezxpressions (3.130) and (3.131) for the integration constant Clu,v,v, g, \o]
are equal modulo 2mi.

Proof. Two representations for the integration constant are equivalent if expression

[e.9] oo

Jmaamm)ans [t

—00 —0o0

+ / LN In (1 - ™) d / LoNdaIn (72N — 1) dx (3.132)

is zero modulo 27i. Here we go back to the integration contour along the real axis, since the
integrands exponentially go to zero for large integration variables, due to the assumptions on
¥ and v. We express the term with sin(7v())) as follows

(A9 nsin?(r(A)) = (A)dx In [ (1 = V) (e72mv) —1)]. (3.133)

Substituting here 7(A\) = Ly(\) — £,(A) and combining this term with the last two terms in
expression (3.132), we get

/ Lo (1 — O} A - / £,(\oxIn (72 _1) dx + / (V)9 In 9 (1) dA

[e.e]

= 70@@)@ In [9(A) (2™ — 1)] dr - / £,N)0x I [9(A) (72N —1)[dx. (3.134)
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Chapter 3. Asymptotic analysis: no poles on the real axis

Finally, we note that from definitions of the functions £, and L,, see equations (2.31), it
follows that

e=2mLN) _ 1 — g(\) (ezmu(x) _ 1) : (3.135)
2L _ 1 — g(\) (e—zmu(x) - 1) _ (3.136)

Thus, expression (3.134) takes the form

/ Lo\ In (724D — 1) d — / £, (A0 I (2N — 1) d

[ L (ne e L)L)
= —27i / TPV d\ — 27i / 2l ] dA. (3.137)
Now we introduce two new variables f; := L;(\) and f, := —L,(\). If
lim  Lo(\) =0, lim  £,(\) =0, (3.138a)

Re(X)—+too Re(A)—=+oo

then the integration contours in A from —oo to +oo for integrals over f, and f, transform
into two loops in the complex plane Cy and C,, respectively, such that 0 € C; and 0 € C,.
Then the expression takes the form

/ Lo\ In (724D — 1) dr — / £\ (2N — 1)

. f[ s fr
= —271'1/ mdlfg — 27 m df»,« . (3139)
&) Cr
We note that both integrands are regular at the origin. Moreover, both integrands are

meromorphic functions that have poles at f; = n and f. = m for n,m € Z, n,m # 0 with
residues

) fe 2mwin

2 - fl;isn (1 o2l ) = “omigzen —n, ne€z, n#0, (3.140)
. fr 2mim

2mi - ffg,n (1 ol ) T Topiezmm = m e Z, m#0. (3.141)

Then expression takes form

. e : fr
— 27T1/ md‘fé — 2mi m dfT’

Cg CT
=2mi Y n+2r Y m=0 mod2mi. (3.142)
nelnt Cy méelnt Cyp
nez meZ

O]

Hence, the exponents of the integration constants (3.130) and (3.131) are the same and,
therefore, the corresponding expansions for the Fredholm determinant.
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4 Asymptotic analysis: two poles
on the real axis

In this chapter, we consider the case when two poles from the set S appear to be situated on
the real axis. As we will see later in Chapter 5, this situation is quite typical. For example,
for the impenetrable Bose gas in thermal equilibrium, these poles are associated with Fermi
points, of which there are usually two. In the following, we completely ignore all the poles
away from the real axis, because their contributions are of order O(x~>°), as we argued in
the beginning of Section 3.5 in the previous chapter.

First, we start with the situation where there are no poles from S on the real axis. That
can be achieved with a slight continuous deformation of the function v to 7. Then as 7 — v
two poles in § approach two points on the real axis. We denote these points £ and r for £ < r
and assume that these points are away from the saddle point Ag. In this chapter we consider
three cases of how the poles approach the real axis, shown in Figure 4.1. Such a choice is
relevant to the application of the asymptotic analysis to the impenetrable Bose gas and will
be explained in the next chapter in Section 5.2.

X X X X
X X X X
0 x 0 % xr xri
\W4 r Ao Ve Ao 1 Ao ¢ r{
T R B R 7 R
x 0y 4y % XTry X
X X X X
X X X X
(a) (b) (c)

Figure 4.1: Two poles approach the real axis as we deform 7 — v: (a) in the space-like
regime I, (b) in the time-like regime, and (c¢) in the space-like regime II.

Two poles on the real axis can be either on both sides of the saddle point, or on one side
from it — to the right or to the left from the saddle point. We call these regimes the time-
like regime and the space-like regimes I and II, respectively. We consider them separately in
Section 4.1-4.3. First, the asymptotic analysis is performed in full detail for the space-like
regime I. Then we omit some details for the time-like regime and the space-like regime II,
since the analysis is very similar.

Finally, in Section 4.4 we explain how to derive the integration constant from the expres-
sion for the case of no poles on the real axis obtained in the previous chapter, see Theorem 1.

The main result of this chapter is formulated in the following theorem.
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Chapter 4. Asymptotic analysis: two poles on the real axis

Theorem 3. If there are exactly two poles ¢,r € S on the real axis such that { < r and
|[Re7(Xo)| < 1/2, then the Fredholm determinant of the integrable integral operator V, given
by (1.20), has the following asymptotic expansion as x,t — +o0o with x/t fired,

200

?ft (id+ V) =exp{Clu,d,v,9, 0]} 2~ 2 exp{al(z, o)}
heh, 1 1 heba1(Mo) | hrbi2(Ao) -1/
X {1+ (r—0)2 + 2172\ /Zu" () <(>\0 —0)2 + o —7")2> +o (gg 1 2)}’ (4.1)

where T(X) = Lo(N) — L-(N), and the function a(z, o) reads

a(xz, o) =2 / dz L(z|\g) O, 1ne(z). (4.2)

Cxo

The functions bia and by are defined by (2.79). The coefficients hy and h, depend on the
regime, i.e., on the relative position of the saddle point \g with respect to the poles £ and r,

hf, £<\ h, <A
h[ — {7 0 hr — ia r 05 (43)
hr? Mg < £, hr, A <7

with b and bt defined in (2.97) and (2.98). The constant Clu,d,v, g, \o| is given by

exp {C[u, 9, v, g, o]} = W (iu//O\o))_T O0) (%(}\O‘AO))T(AO)
< exp {;C/ dAC/ du L’(A)L(MA):ﬁ(A)E’(u) N /T(A)g((:)) Y
2o 2o C;O

+ / LN (1 -V dr + / T(A)@AlnsinQ(ﬂy()\))d)\} (4.4)
Cxo C)TO

or equivalently by

e (00 ™5 G

Cro Cxo

€xp {C[U, 197 v, g, )‘0]} =

A— U ()

C+
Ao

+ / L\ In (e—%”@>—1) dx — / 7(X\)Oy lnsinz(ﬂu(/\))d)\}. (4.5)
Cxro C;\FO

Here the function G(X\) is the Barnes G-function, »(Ao|\o) reads

#(Ao|Ao) = exp { - / du L' (1) In[(Xo — 1) - sgn Re(Xo — )] } (4.6)

Cx
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4.1. Space-like regime I

where the functions L(X) := L(A|[Xo) and L'(X) := L'(A|Xo) are given by

L(AA0) = Le(A) - Tre(r—r)<0(A) + Lr(A) - Tre(r=r0)>0(A), (4.7a)
L' (AAo) = LE(A) - Tre(r—r0)<0(A) + L1(A) - Trer—rg)>0(A) (4.7b)

with Lo and L, defined in (2.31). The integration contours C)jfo are introduced in (2.32).
Finally, all the integrals involving functions Ly, L., and T(X\) should be understood as the
limiting cases, when two poles from the set S approach the real axis, according to the Figure 4.1.

4.1 Space-like regime I

The first regime corresponds to the situation, where we have two poles ¢+ to the left from
the saddle point £* < )\, approaching the real axis from above and below, see Figure 4.1a.
We provide all the details on how to derive the asymptotic expansion in this case. Here we
omit as many indices as possible, when we solve the linear systems and obtain the matrix S
explicitly.

4.1.1 Solution of the linear system

The matrix S in the case of two poles to the left from the saddle point, see Section 2.9 for

njt =1 and nf =0, is given by

c~ ct

A =1 4.
S =Dt o+ (49)
where the matrices C* read
C~ =0, (X7,0) 11" (¢), Ct=o0/(0,Y")II'(¢1). (4.9)
The vectors X~ and YT satisfy the linear system (2.94), which takes the form
+ — —
X =V — O—Z [H ;4(_£+)?_(£ )} 22 Y+7
T (e 0
- +, % 11y —
Y w yZ— X,
Here
—_ (Th2(6) (M)
Vo= . Wt = , 411
<H22(€_) H21(€+) ( )
and N
h h,
F= L , S = £ . 4.12
S T T P B T e (o ) P
In this case, the solution is straightforwardly given by
+ + V-
o _ o/ det(WH, V7))
X" =A, (V — T W™ |, (4.13a)
, det(WH, vV~
Y+ = Al <W+ + 2 ‘2 +( - )V_> , (4.13b)
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Chapter 4. Asymptotic analysis: two poles on the real axis

where we introduced

Al =

S

ot det (W, V)2
<1+ £ ¢ (j+tfvz)’2v ) ) (4.14)
and
det(W*, V™) = [ (e7)m(et)] = [H’l(ﬁ)ﬂ(f)kz
= TIy1 (¢F) g (£7) — Moy (€M)TT12(£7).  (4.15)

11

The residues at A = ¢~ and at A\ = ¢, contributing to the last term on the right-hand
side of equation (3.1), are given by

res (tr{S'(VI(N)o I ()5~ (A)}ds (M)

o de -)?
=2A£azdﬁ<f—><mlw-)H'w—)]u— L )> (1.16a)

and
res, (tr{S" TN T (VST (N)}ds(N) )

o, det(W+, V—)?
:_2A§a;d5(z+)<[n1(z+)n’(z+)}21— £ i;(‘ivg’)‘; ) ) (4.16b)

These two expressions follow from the analysis provided in Appendix C.2, see equations (C.37)
and (C.41), where one substitutes expressions for matrices C* explicitly, see equations (4.9)
and (4.13). We note that we do not have terms with the derivative d; which come from the
first terms on the right-hand sides of equations (C.37) and (C.41), because they appear to be
multiplied by traces of off-diagonal matrices.

To derive the contribution of the integral over 7, see equation (3.54), to the expression
of the logarithmic derivative of the Fredholm determinant (3.1), we need the matrix ele-
ments of S (A\)S’(A\). Due to analysis in Appendix C.2, the matrix elements are given by
expressions (C.33), which take the form

Algr Algt
(S*l()\)sl()\))n = —ﬁﬂu(f*)ﬂggwf) —+ ﬁnll(£+)n21(£+>
Asop o

S GO [T M) — 15, (I ()], (417)

IO.— IO_+
(Sfl()\)S’()\))22 = ()\14_55_)21_[12(6)1_[22(£> — mnll(€+)ﬂ2l(£+)
IO.*O.'F
+ ()\ — £+)(‘§\18_Z€_§(€+ - g_) [H%l (€+>H%2(€_) - H%l (EJF)H%Q(K_)} ) (417b)
IO.— IO'+
(57 WS = 7= o () = o5 =7z T (€)

IO'_U+ + _
B (2)\14j ;Jr)((z)\n_llg(f)()gm_(é_)) [H11(£+)H22(€_) - H21(€+)H12(€_)] , (4.17¢)

60



4.1. Space-like regime I

Sy o Aoy o Aol o
(STS'(N)y = _mnmw ) + mﬂzlw )

2A£O‘€ H21(€+)H22(£ )
()\—£+)()\ =)t —107)

We note that matrix elements (1,1) and (2, 2) differ only by the sign.

[Hu(mnm(e—) - H21(€+)H12(€_)] o (4.17d)

4.1.2 Asymptotic expansions

Now we substitute the solution of the singular integral equation II as a series in z~1/2,

see equation (3.31), and expand everything in z~Y2. In order to derive the asymptotic
expansion of the Fredholm determinant, including the correction of order O(;E_l/ 2) and the
logarithmic correction, it turns out that it is enough to expand S~ (X)S’()\) and the residue
contributions (4.16) up to the same order z~/2 in the expression for the logarithmic derivative
of the Fredholm determinant. The logarithmic correction to the Fredholm determinant,
propagates from the term of order ! in the expansion of its logarithmic derivative with
respect to = and originates only from the integral (3.53), which is universal for all three
regimes. To argue that it is so, we expand everything explicitly up to O(z~!) in the space-
like regime. Once we convince the reader about the origin of the logarithmic corrections in
this regime, we ignore the terms of order O(x~!) for brevity in the following two sections,
since the argument stays exactly the same for all three regimes.
First, from definition (4.15), the expansion of det(W™, V™) reads

det(W+, V™)
e L), + (1), (1), (1), +o (). 09

From equation (4.12) it follows that

h+ (h+)2 9 eQix[u(éJr)fu()\o)}
+ 1 (p+ {4 I (pF —
of =h] [H \F<H (¢ ))21+ . (1 (e ))21+o 00 . (4.19)
B B — (h*)2 9 eQim[u(Ag)—u(Z‘)]
o, =h TE(H'(E D12 +#( ) +o |l ——=5mg ) |- (4.20)

and from equation (4.14) for Al
Al — A1 ARy
S OAZ4hfh, VT [AZ4 RS R,

N 1+4o0(1) A'hfhy,
[AZ+hfh,]3

[ (I (), + hf (T (69)), |

. ()2 (), + )2 )3,
20%(hy hy )?

A2(hfh;)? N
[A2 4+ hfh, )3

_ ¢ rpt 1(p—
s i (D) W),
_20%hi Ry
[A2 + hfhy?

(m "), (M),
[(T126%)) + (Ta(67))g — (T (), (T2(07)) | } (4.21)

For brevity, here and in the following we denote A := ¢* — ¢~.
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Chapter 4. Asymptotic analysis: two poles on the real axis

We remind again that the reader should not be scared of the coefficients in the order
1/x here or in the following, because these terms will not contribute to the final asymptotic
expansion of the Fredholm determinant. We keep all the terms with 1/ explicitly only in
this section, in order to argue that they do not matter at the end.

Residues First we expand residue contributions (4.16) into a series in z~1/2,
Using definition (4.14) of AL, we obtain
Alof oy det(WH,V™)?
00 o SHWL V)T g (4.22)

GRIE

which slightly simplifies the last terms on the right-hand sides of expressions (4.16),

)\fgsi(. ) =240, dg(¢) [T (0T (07)] , — 2(1 — AL)dg(07), (4.23a)
res (-..) = —2AL0fdg(¢F) [T (¢ (1)), + 2(1 — AD)dg(LT). (4.23D)

From expansion (3.31) and the properties of the coefficients II; and IIy, see explicit expres-
sions (3.33) and (3.34), it follows that

-1 / _ (Hl()‘))u o x—l

I A, =~ 7 o) (124)
-1 / _ (Hl()‘))m oz !

[ (MIT'(N)],, = x%(/\ ) +o(z™ ). (4.25)

Due to these expressions, one can see that it is enough to expand the coefficient AL up to
order o(z~!) in the first terms on the right-hand sides of (4.23). Substituting into (4.23)
these expressions, expansion (4.21) and the coefficient II; and IIy, given by equations (3.33)
and (3.34), we derive the contribution of the last term on the right-hand side of expres-
sion (3.1) to the logarithmic derivative of the Fredholm determinant in the space-like regime I,

_ 2[dg(£F) —dg(¢)lhhy

> ores (tr{S'(2)(2)0" T ()87 () bs(2) )

© =
ae{rt =} A2+ h/h,
1 2A2 1 dﬁ(f_)blghg dﬂ (€—~_)l)21héF
2 o (0) | A2+ il \ o= 02 (hg— )2

[dﬂ(f_) — dﬂ(€+)]h+hi b12h7 b21h+ 1+ 0(1)
) [N+@mP£€Q%—év+wﬁévﬂ+SM'@W
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4.1. Space-like regime I

Here coefficient ssc in front of 1/x is given explicitly by

Some - ((0))? = 27 (M)A (hf hy )? [da(Eh) — ds(07)]
[AZ + BfR, (6T — Xg)2 (6= — Ag)2
iT(\o)A%hy hy [ds(£) — dg(¢7)] ( 1+7(h) | 1=7(h) )
[A2 4 b hy ]2 (= X)2 (0= = N)2
ir(Ao) APh hy [ds(£1) — dg(¢7)] [w"(0)7(
[AZ £ hfh 1200 = Xo) (6~ — Xo) | w'(0)
2it(A\o)hy hy A%[dp(0F) — dg(07)]
[A2 4+ B hy 12(6F = o) (£~ = Xo)
A6 N (bglh;)z (buh;)Q
IRTENSTAE s )(£+ —)E 7 )(e— — o)

o)

+ B(Xo) + 27/ (Mo)(Inz — 1)1

- A4hzrhz e (bglh;)Q B +) (b12h2>2

&+ nn P | PO GESHH R

Integral over 79 Now we derive the asymptotic expansion of the integral over 7y, see equa-
tion (3.54). We expand the matrix elements (1, 1) and (2, 2) up to order o(1),

Ahfhy
[AZ 4+ hfhy](Ao — £7) (Ao — £7)

(Sil()\o)sl(/\o))n = — (Sil(/\o)S%)\o))QQ = + 0(1), (4.28)

and elements (1, 2) and (2, 1) up to order o(z~1/2),

v B A2}
(57 00)5" o)1 = ~735 7 h;h;]on SyTE
1+o(1 A2(hf)? , _ .o
B ;/g ){[A2+h;h:]§()Ao—z+)2 (2% (T(E9),,, = () (L)) o

AR M)y,
BT+ i hy o — 67 (ho — ) } (4.29)

» , B A2h;,;
(S (AO)S ()\0))21 - [AQ + h?hﬂf)\o _ £7)2
1+0o(1) A2(h;)? ' /
EEE { [A2 + h?hﬂg(/\o —07)? [AQ (7)1 = (b))’ (H1(£+))2J

20K hy (I (£H)
[A2Z + hjhg](g)\o - g+)(>\201_ ) } (4.30)

Now we substitute these expansions and explicit expression for the coefficients II; and
IIy, see (3.33) and (3.34), into expression (3.54). We obtain that in the space-like regime I
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Chapter 4. Asymptotic analysis: two poles on the real axis

the integral over 7 is given by

[ s (#0007 ()} dy(o) =

1 V2dz( o)A < bi2h, borhy) )
27

23 W (0)[A2 + A hy ] \ (Mo —£7)2 (Ao — £1)2
Yo

1 In2)2
+- (Mog + Yose) + O <( Zf) ) , (4.31)

where we denoted the contribution that comes only from the parametrix II by v, compare
with equation (3.53),

iT(No)

Mot = 500 [—T()\o)dg()\o)+d23()\o) (TW)W(O)

S+ 2 o) Ine — 1)+ B()\O)) ] (4.32)

and

[AZ 4+ hfhy ](Ao — £F) (Ao — £7)
2 \2
sy [ (o)’ (nat7)

A2 2 (o= (o0 )| (4.33)

Yosc - (WI(O))Q =

Now we are completely ready to derive the asymptotic expansion of the Fredholm determinant
in this regime.

4.1.3 Fredholm determinant asymptotic expansion

We substitute the contribution of the poles in the space-like regime I, see equation (4.26),
and the expression for the integral over 7, see equation (4.31), into representation (3.26).
We get the following expression for the logarithmic derivative in the space-like regime I, i.e.,
for £, 07 < N,

) ay 1 (Inz)?
85 In (gi:;(ld + V) = 85(1(1:, )\0) + ag + m — E (’Ylog + Yosc + Sosc) +0 2 , (4.34)
where a(z, A\o) is given by (3.14), and the coefficient ay by
2[dg(¢t) — dg(¢7)|hfhy
ap = — [ ﬁ( ) ,3( )] £ (435)

A%+ hfhy

The coefficient a; originates from expressions (4.26) and (4.31) and reads

ay

. A? 1 ng(f_)blghe_ 2d5(£+)b21h2_

TV (0) |[[A2+hfh ]\ o—00)2 (Ao —£1)2

 2[dg(¢r) —dg(E)hhy [ bizhy N barhf
[A2 4 by hy )2 (Ao —€7)% " (Ao —£F)?

Zdﬂ()‘O) blzhf b21h+
A+ hhy ] (()\0 — Z—)2 " o — ;+)2> ] (4.36)

Finally, the coefficients yiog, Yosc and sesc are given by (4.32), (4.33) and (4.27).
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4.1. Space-like regime I

Derivative with respect to * Now we consider the derivative with respect to the large
parameter, 5 = x. We manage to express all the coefficients in terms of xz-derivatives and
integrate them after, using in some cases the following observation

Oz {(ln x)aa:beixc} = (Inz)%b d,e®c - [1 +0 (xil) } = (Inz)%zbei®® [ic +0 (afl” , (4.37)

where we assume that b, ¢ # 0. For example, from the definition of coefficients b1 and bo1,
see equations (2.79) and (2.73), it follows that

Bubi2(No) = —2dy(Mo)bi2(No) [1 +0 (x—l)] : (4.382)
Buba1 (M) = 2dz(M\o)ba1 (o) [1 +0 (a:_lﬂ . (4.38b)

Also, recall that the only dependence of hj and h, on z is in the functions eT2(0F), see
equation (2.97), therefore,

Ohy = —2hfd,((T),  Ozh; =2h, dy (7). (4.39)
The coeflicients ag can be expressed as
ag = 0,10 [A? + b/ by |, (4.40)
and the coefficient aq as

a A2 [1 1 ( barhy n bi2h, >

- aa: 1 —_
a2 2w (0) T |23 [A2+ R ]\ (Mo —£F)2 0 (Mo —€7)?

(1+0(=7")). (4a1)

Indeed, in the latter, when the derivative acts on hzc, we derive the first line in equation (4.36),
and when it acts on the denominator, we obtain the second line. Lastly, the derivatives of
coefficients b1o and bo; produces the last line up to corrections of order O(x_l), see iden-
tity (4.37) or (4.38).

Now we look at the coefficients in front of 1/x. First we consider 7iog, which in the end
is responsible for the logarithmic corrections to the Fredholm determinant asymptotics. In
Appendix D we explicitly show that d’,(A\g) = 0 and d”(A\o) = i(w’(\o))?, see identities (D.15)
and (D.16). Thus, we obtain from equation (4.32) the following expression for the coefficient
Yog for B =7,

_M . iTz(Ao)dg(/\o) 7’2()\0)

. 20 (0))? = O Inz. (4.42)

In fact, that is exactly the same term as in (3.60).

Finally, all the terms in the coefficients sosc and 7ogc, see expressions (4.27) and (4.33),
have oscillatory dependence on x. Therefore, it follows from identity (4.37) that these terms
can be expressed as the z-derivative of something, which is effectively of order 1/z. For
clarity, despite this argument, we express (Yosc + Sosc)/x as the z-derivative of an explicit
expression in the space-like regime 1. In what follows for all the other regimes, we skip this
explanation, since it works exactly along the same lines.
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Chapter 4. Asymptotic analysis: two poles on the real axis

Combining Sesc and vose together, we obtain

, o 2ir(M) AR Ry )? [dy(67) — dy(£7)]
= (s 200e) - (WO = — 757 hf hzﬁ?’(ﬁﬁ —X0) (6= = Xo)?
_iT(M) AR hy [dy(0F) — di(£7)] ( 14+ 7(X\o) N 1—7(X\o) >
[A2 + h;th (€+ - )\0)2 (57 — )\0)2
_iT(M)APh hy [de(0F) — du(£7))] [ "(0)r
[AZ 4+ hfhy 12(6F — Xo) (0~ = No) W'(0
2i7(No)A%h) hy [dy (0F) — dy (7))
[A2 + hfh; ]2 (£+ —X0) (£~ = Xo)
A6 [ (h?b21>2 (thlg)Q _
e [ ) T )

()AO) + B(A\o) + 27 (Ao)(Inz — 1)}

- 9 9 Z
4p+1,— h+b21 h_b12
A hgfz_ ( ¢ ) 4dx f)—(£>4dx(£+)
A2+ ik, B | (6F = No) = o)

A'dy (o) (th21)2 ) (h; b12)2

_ , (4.43
B2t bk P | Do Oo—yr| 4
where we used for one of the term in 7,5 that d.(A\g) = 0.
The z-dependent part of the first term on the right-hand side can be expressed as
hfh, N 1
BNSEIUEA RN
2(hfh,)? hfh; hfh,
=2, () — () | 2t hehy chy
[A24+hyhy |3 [A24+h h 12 [AZ+h k)2
Ald, (0) — dy(07)](h)h,)?
(A% + by hy PP
The term with In(z) in the second line can be written as
Inz 2[du(£1) — du(¢7)]h{ Ry
Oy = Inz +0o(1)). 4.45
{ [A2 4+ hfhy] } [A2 4+ hfhy ]2 (na +o(1)) (4.45)
The terms in the lines 24, except for the term with In(x), are all proportional to
1 2d,(0T) — dy(¢7)|hfh,
ax — _ [ ( ) —E _)] L' . (446)
(A2 + hy by ] (A2 + Ry hy 2
The last three lines on the right-hand side can be written as
2 2
1 A hy ba hy bio
——0y ( ) + ( ) (I+0(1)). (4.47)

4 [AZ 4+ hfh 12 [(Mo—H)r (Ao — L)t
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4.1. Space-like regime I

Due to the same observation as in identity (4.37), for each derivative above it holds that

Loty =0. (52) (140 s7). a9

At the end of the day, we obtain the following expression

L (o + Some) - (&' (0))2 (1 + (1)

oz
. iT(Ag)A% 1 hihy L1 1
200t = X)2 (0 = X0)2 | @ [A2+ SRR @ [A2 4 R hy ]

_it(Ag)A? ((1+T(AO) N 1—7(Ao) ) a${1 1 }

5 F =202 (0 = X2 T [A2+hfhy]
iT(\g) A3 W (0)7(No) , 1 1
A T L) B0 2 0] {x AT ] }

_it(A)T (M) A? a Inz 1 iT(\o)A2? g lL 1
(Lt =X)L~ =Xo) " | = [AZ+1R)h,] (Ut = Xo) (L= —Xo) " | @ [A2+ hfh,]

2 2
1 1 At (hzbm) (hg_bIZ)
A\ TR o) T o — )

(4.49)

Here one can see that these terms produce the correction of order O(Inz/x) in the asymptotic
expansion of the Fredholm determinant, see the first term on the line 5, and the correction
of order O(1/x) from the rest terms. However, the order of the corrections from the inte-
gral (3.53) involving only II is larger.

Finally, we can integrate expression (4.34) over x,

2
A
In %let(id +V) = a(x, o) +1In [AQ + hZh[] T (2 0) Inz + Cu, 9, v, g, \o]

Ao g=0
1 A? borhy biah, 1/2
- . (4.50
+ 71/2 ﬁw’(()) [A2 + hZhZ] <()\0 _£+)2 + (Mo _5_)2 +o0 (:L" ) ( )

Exponentiating this expression, we partially reproduce the asymptotic expansion in Theo-
rem 3, when the saddle point is on the right from both poles,

2(2)

det(id + V) = exp { Ol 0, 1,9, o] 2~ 2% exp {a(z, Mo)}
Ao

9=0
1 A2 b21h+ bish,
A%+ hthy 4 ¢ “1/2) % (4.51

In Section 4.4, we also determine the integration constant C[u, v, v, g, Ao].

Remark. It is also possible to evaluate the next-order corrections in the asymptotic
expansion (4.51). As we see, the first corrections appear from the integral (3.53) and have
the order O((Inx)?/xz?). Since they propagate from expression (3.43), one needs an explicit
expression for the coefficient II4. This coefficient will produce a few terms of the form
(Inz)"/x for n = 0,1,2 in the Fredholm determinant asymptotics. Additionally, one term
of the order Inx/x (which we derived explicitly) and many more of order 1/z will appear
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Chapter 4. Asymptotic analysis: two poles on the real axis

from expression (4.49). Clearly, it is possible to go even further. The algorithm is relatively
easy, although the number of terms contributing to the asymptotics grows fast, as we have
already seen in expression (4.49). First, one has to expand everywhere the solution of the
singular integral equation II up to higher orders, which can be found iteratively by solving
the singular integral equation, exactly as we did in Section 3.3. The second complication is
the integration of the resulting logarithmic derivative of the Fredholm determinant over x.
This can be also done, but unlike the calculations above, one should take the anti-derivative
exactly without using identities like (4.37).

In what follows, we evaluate the asymptotic expansion in the time-like regime and the
space-like regime II. We ignore the terms of order 1/x from the very beginning, since we
already know the origin of the logarithmic correction in the Fredholm determinant asymptotic
expansion, which does not depend on the regime.

4.2 Time-like regime

The second regime corresponds to the situation, where the saddle point is between two poles,
¢ < Ao < r which approach the real axis from above, see Figure 4.1b. We consider the
situation corresponding to nZ’ =n,” =1andn, =n, =0 in Section 2.9. The reason for such
choice of parameters n}t and n* originates from the picture for the poles for the impenetrable

Bose gas, which we discuss in Section 5.2.

4.2.1 Solution of the linear system

In the time-like regime, the matrix S is given by

ct D+
S(A) =1 4.52
where
Ct=of(0,Y") I (0), Dt =g} (XT,0) I (r), (4.53)
and the vectors X satisfy linear system (2.94), which takes the form
X+ = V+ 4 02_ [Hil(g)n(r)]ﬂ Yt
r—1{ ’
_ (4.54)
Y+ — W+ o O-T-'i_ []'_‘[ 1(T)H(£)]11 X+
r—4{ )
Here
Hn(ﬁ) 1119 (T)
W = , VvVt = , 4.55
(Hzl(f) H22 (’I“) ( )
and N N
h h
+ L + r
= 3 r = . 456
TR OmO, T TR I 0
In this case, the solution is straightforwardly given by
S det(WH, V*
Xt = A, <V+ + 2 er(_ a )W+> , (4.57a)
+ + v+
Y+ = A, <W+ _ I det(wg v >V+> , (4.57b)
r —
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4.2.  Time-like regime

where we introduced

oot det(W+, vH2\ !
A = <1+ £ T (r(—£)2 ) (4.58)

and

det (W, V) = [T (OT1(r)] , = [I17 (1)T1(0)] ;= T (OTaa(r) — Moy (OTn(r).  (4.59)

Then the residues at A = ¢ and at A\ = r, due to Appendix C.2, see equations (C.37)
and (C.41), are given by

res (tr{ ' NI T (NS (M)}ds(N))

oT de + v+)2
=2A,0, dg(l) ([H‘I(K)H’(f)]zl _ord (tr(\ive);V ) > (4.60a)

and

res (tr{S'VIA)" I (A)S ™ (A)}ds())
o, det(W+, V+)?
= 2440 ds(r) ([H_I(T)H,(r)]m_ e (tr(‘ivg);v ) ) (4.60b)

We do not have the terms with d/;, since they are multiplied by the traces of off-diagonal
matrices, as in the previous case.

In the time-like regime, due to expressions (C.33), matrix elements (1, 2) and (2, 1) are
given by

oF ot
(57 NS )12 = 5 2oz (0 + i TTh(0)

2410 o Ty (€) 2 (r)
OO0 -0

[Hll(g)HQQ(T) - H21 (E)Hm(?“)] (461&)

and
o+ ot
(57 S )y = b5z T (6) = 3o T )

B 24,0, o} 1oy (€)aa(r)
A=0ON=7r)(r—12)

[Hu(@)ﬂgg (T) — H21 (€)H12 (7")] . (4.61b)
We ignore the matrix elements (1,1) and (2, 2), since they contribute only to the next order.

4.2.2 Asymptotic expansions

In this section we expand everything up to o(x_l/ 2), because, as was argued in the previous

section, the logarithmic corrections come only from the solution of the singular integral

equation II, see expression (3.53) or its contribution to the final asymptotic expansion (4.32).
From (4.59) it follows that

det (W, V+) = Iy (OLya(r) — a1 (OL1a(r) = 1+ O (h;x) | (4.62)
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Chapter 4. Asymptotic analysis: two poles on the real axis

It follows from equation (4.56) that

ot =t [1+ \% (I, (), +o (“;f) ] , (4.63)
of =hf [1 + f}% (ITy(r)) 5 + 0 (h;x) ] : (4.64)

and from expression (4.58) for the constant A; that

Ay

A? A%hfh} I iy Inz
Here we denoted again the distance between two poles as A :=r — £.
Finally, we expand matrix elements of S~ (\g)S’()\), see expressions (4.61). In order to
derive the contribution up to order o(z~'/2), we need only the first term in expansions for
matrix elements (1, 2) and (2, 1), see equation (3.54),

S (No)S" (A = A*h/ 1 1 4.66

( ( 0) ( 0))12 - _[AQ_‘_hZ»h;!»]()\O_E)Q( +O( ))7 ( . )
A2ht

(571()\0)5/(/\0))21 - - 2(1 +o(1)). (4.67)

[A%+ hyhF)(Ao = 7)

4.2.3 Fredholm determinant asymptotic expansion

Now we substitute all the expansions above and explicit expressions for coefficients II; and
II5, see equation (3.33) and (3.34), into expression (4.60) for the pole contributions and into
expression (3.54) for the integral over ~y. At the end, we derive the contribution of the poles
on the right-hand side of equation (3.1),

= Y res ({8 ()M(2)0" T (2)87 () b (=) )

Ae{e,r} #=A
_ 2[dp(r) —dp(O)nRE 1 242 1 (dﬂ(r)blzh;f B dﬁ(f)bzth>
A2 + b bt 2122w (0) | A2 + hfht \ (Ao —1)2 (Ao —0)2
 [ds(r) — ds(O)]hy hf ( biohyt _bahf ) ] hi bt (hw:) (4.68)
(A2 hf b2 Mo—1)2 " (M —1)2 [AZ 4 bR

and the contribution of the integral over -y,

[ s (@@ e (@)} dale)

2mi
Yo

23 W(0)[A% + hf b

i ﬂdﬁ()\o)AQ (( biaht b21h2_)2> + Tlog +0 ((11133)2) . (4.69)

x 22

—1)2 (M—1¢
Combining these two contributions together, we obtain

s Indet(id + V)
Cxy

B a1 Yiog (In ) hy bt Inz
_aﬁa(m,Ao)+ao+x1/2 . +O< - +[A2+hjhi]2o — ) (4.70)
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4.8. Space-like regime 11

where a(x, A\o) is given by (3.14) and the coefficient ag by

_ 2ldg(r) = dg(OlhS W

4.71
AT EE (4.71)

ao

Finally, the coefficient a1 originates from (4.68) and (4.69), and reads

A2
 V2w(0)

ai

1 QdB(T)blgh;r _ 2d5(€)b21hz_
[A2 + hjh,ﬂ (Ao —1)?2 (Ao —£)?

_ 20ds(r) = ds(Ohg R [ biohit  buhy
[A2 + hZh;f']Q Mo—1)2 (N —¥)?

_ 2dg(Mo) (blthf __bahf )] (4.72)

A2+ hfRE) \ (Mo —7)2 (Ao —£)?

Considering the logarithmic derivative with respect to = x and then integrating it over
x, we derive

2
In (get(ld + V) = Cl(-T, )\U) + In |:A2 + h;h;«i_} - T (2)\0) Inx + Ct[“v 197 v,g, )\0]
Ao g9=0
1 A2 bioh barhf 1/2
+ r__ + + N , (4.73
272 /3 (0) [AZ 1 hf i) (()\0 S e—gp) o), @)

which reproduces the statement of Theorem 3 in the case, where the saddle point is between
two poles.

4.3 Space-like regime 11

Finally, we consider the third regime, where both poles are to the right from the saddle point,
o < 7T, approaching the real axis from below and above, see Figure 4.1c. This situation
corresponds to njt =0, n;—L =1 in Section 2.9.

4.3.1 Solution of the linear system

In this regime the matrix S takes the form

D+t D~
S()\)—IQ+)\7T++)\7T77 (4.74)
where, according to equation (2.93),
Dt =gF (XT,0) T (r), D™ =0, (0,Y") 7' (r). (4.75)

The linear system for vectors X+ and Y™, see equations (2.94b) and (2.94d), takes the form

x+ _ v+ 7 )

v e 6]

(4.76)
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Chapter 4. Asymptotic analysis: two poles on the real axis

Here, due to equation (2.95),
H12(T+) _ Hll(T‘_)
vt = , W = 1, 4.77
<H22(7“+) H21(7“ ) ( )
and, due to equations (2.96),

h,t h,
A r o, r : (4.78)

TR O], T T T b [ (),

In this case the solution is straightforwardly given by

— - v+
X+ — Al <V++U’” det(W—, V )W_>,

vt 479
s rt — p— ’
where we introduced 97 -1
Al =14 U’Ta’kfftiv:]_)’zvﬂ ] (4.80)

and

det(W_,V+) = {H_l(r+)ﬂ(r_)}11 = {H_I(T_)H(Tﬂ]w

= H11<7’_>H22(?”+) - HQl(T_)Hgl(T+). (481)

According to the analysis in Appendix C.2, the residues at A = r~ and at A = r* are
given by

res ({8 (VTINS5 (A)}ds ()
_ 2
= —2A%sdg(r) ([H_l(r_)ﬂ/(r_)]zl o iii(‘ivr’)\f) ) , (4.82a)

and

res, (tr{S' I T (A)S ™ (N)}ds(N))
=2A{ofds(r) ([H1 (O ()] — (;i(‘iv;)‘fy) , (4.82b)

see equations (C.37) and (C.41), respectively. We note again that the terms with d’ﬁ(ri) are
absent for the same reason as in the previous two regimes.

Due to analysis in Appendix C.2, matrix elements (1, 2) and (2, 1) are given by expres-
sions (C.33), which in this regime take the form

Allg - _ Allg+
mnil(r ) + mniz(ﬁ)
QAEO'T_U;J_HH(T_)HQ(TJ'_)

A=rT)A=r7)(rt —7r7)

(SIS (V)1 = -

[T (7)o () = Thaa (r ) Tho(r )], (4.83a)
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4.8. Space-like regime 11

HO.— Ho.-i-
(57 NS W)y = 3 2 () = 5 s )

B 2A£IU;U;~_H21(T_)H22(T+)

A=rH)YA=r7)(rt —r7)

We ignore again the matrix elements (1,1) and (2, 2), since they contribute only to the next
order.

[T (7)) oa () = Ty (r7)Thp(r )] . (4.83D)

Asymptotic expansions Now we substitute everywhere the solution of the singular integral
equation II as a series in 7 1/2, see equations (3.31), (3.33) and (3.34).

Expanding expression for det(W~, V™) in Y2 we get
Inz
det(W—,V*t) =1 o(). 4.84
e ( ) + . ( )
Next, from equation (4.78), we obtain the asymptotic expansion for o;*
h Inz
+ _ pt r +
7t = b |1+ (), + o (x> ] , (4.85)
_ _ h ., _ Inz
g, = hT 1 + ﬁ(ﬂl(r ))21 +o0 7 y (486)
and, from equation (4.80), for Al
Im_ A?
S A2+ hfhy
A2hfh | o Inz
- W{ﬁ [hr (L (77 )21 + A (1T (r ))12} +0 (x> . (4.87)

Here we again introduced the distance between the poles A := T — r~. Finally, we need
the first terms in asymptotic expansions of matrix elements (1, 2) and (2, 1) of the matrix
S7(X\o)S’(No) in 2~ 1/2 see expressions (4.83),

—1 / Ah;
(S~(NS ()‘))12 == A2+ hifhr (A — )2 (1+0(1)), (4.88)
+
(ST NSy = — Shy (1 +0(1). (4.89)

[A2 + hfhy [N — )2

4.3.2 Fredholm determinant asymptotic expansion

Now we substitute these expansions and expressions (3.33) and (3.34) for II; and IIy into
contribution of the residues (4.82) and the integral over -y, see equation (3.54). We derive
that in the space-like regime II, the residue contributions are given by

= Y res (@S ()0 ()57 () }s(2))

)\E{T+,T_}Z:
_ 2lds(r?) —ds(rT)hhy 1 207 1 dg(r)bisht  dg(r~)barh;
- A2 + b he 222 (0) | A2+ hfhy \ (o —1T)2 (Ao —717)2
[ds(r™) —dg(r™)IhShy bizh; borh, hth- <lnx)
- — - - —Tr T 00— 4.90
ATk \Do—rn2 T Oo—r 2 ) | Vi im o\ ) 90
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Chapter 4. Asymptotic analysis: two poles on the real axis

and the integral over g is given by

[ a5 @0 ()} ds(2)

2mi
Y0
1+o(1 2d(Ao) A h, b hy b 0 Inz)?
_ +?() I\fﬁ( o)+7 bz Db ) s (nf) . (4.91)
T2 w (0)[A2 + hy hr } ()‘0 - T+) ()‘0 -r ) T T
Combining these two contributions together, we finally derive
Oz Indet(id + V)
Cry
— Opa(e No) +ap + U Mow o (WD) Rhy o(m) (4.92)
ORI AY TR IR T Ty 22 A2+ hfn 2 \z )0 Y
where a(x, \g) is given as always by (3.14) and the coefficient ay by
2ds () — ds(r )i by
_ rh 4.93
“ A hihy (4.93)
The coefficient a; originates from equations (4.90) and (4.91),
0 = 2A2 1 Cl3<7"+>blghr+ B dﬁ(?"f)bmh;
PV (0) [[A2 ]\ ot (-1 )?
 da(r™) —dg(r7)|hthy [ brohyf ba1h;
[A2 4 h;f hy ]2 Mo—rt)2 (N—717)2
dg(Ao) blgh;’— bglh;
_ — . (494
&t h \Oo—r 2 " -z Y

Considering the logarithmic derivative with respect to 8 = x and then integrating over
x, we derive

2
A
In (Ciet(id +V) =a(z,\)] +n [A2 + hjh;} T (2 0) Inz + CMu, 9, v, g, \o]
A0 g=0
1 A? biah bo1h, 1/2
r z - 4.95
+$1/2 \/5&}’(0) [AQ—I-h}Fhr_] ((/\0—7“+)2 + ()\0—7“_)2 +0<$ )7 ( )

which concludes the derivation of the asymptotic expansion of the Fredholm determinant in
Theorem 3, see expression (4.1).
The last step is to derive the constants in all three regimes.

4.4 Integration constant

Finally, we fix the integration constants C[u, 9, v, g, Ao, Ci[u, ¥, v, g, \o] and CI[u, 9, v, g, Ao]
in expressions (4.50), (4.73) and (4.95). We note that the asymptotic expansion depends on
the function v and if we continuously change this function in such a way, that the poles go
away from the real axis and no other pole approaches R, the asymptotic expansion must
coincide with one without poles, see Theorem 1 from the previous chapter.
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4.4. Integration constant

We note that in all three regimes a continuous deformation of the function v to some
function 7 moving the poles slightly away from the real axis makes terms

I [AZ4 b5k |, W [AZ4RERH], I |A% 4 RfR] (4.96)
go to In A? up to corrections of order O(z~°°). Hence, we obtain that
Clu, 9, v, g, Mo] = Cilu, 9, v, g, Xo] = C2u, 9, v, g, \g] = lim C[u, 9,7, g, \o] — In A2, (4.97)
v—v

where the integration constant Clu,v,v, g, A] is given by (3.130) or by (3.131), and the
continuous deformation 7 — v makes two poles approach the integration contour Cy,.

In this chapter we considered only three situations where two poles approaching the real
axis according to Figure 4.1, These choices are explained in the next chapter, where we apply
these results to the impenetrable Bose gas with a concrete functions u(\), ¥(A), v(A) and g(A).
Nevertheless, the analysis provided in this chapter can be generalized to any configuration of
the poles A € S in ) as long as the number of poles is finite.
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5 Application to the impenetrable Bose
gas

In this chapter, we return to the impenetrable Bose gas discussed in the introduction in
Section 1.1 and apply the asymptotic analysis to the dynamical field—field correlation func-
tion (1.15). We derive explicit asymptotic expansions of the correlation function g(x,t) for
two classes of the filling fraction ¥, depending on the number of solutions of the equation

IN) =1/2 (5.1)

on the real axis.
If there are no solutions of equation (5.1) on the real axis, we have the following theorem.

Theorem 4. Let the filling fraction ¥ have the following properties:
1. ¥ is holomorphic in the vicinity of the real axis;
2. 9(N\) €10,1/2) for A € R;
3. Y(N) decays sufficiently fast as Re \ — +oo such that

2(A\)I(N) = O(A™™). (5.2)

Then the field—field correlation function g(x,t), given by (1.15), has the following asymptotic
expansion as x,t — +oo with \g = x/2t fized,

i ele(Xo)
g(x,1) = m (1= 20(Ag)) PP/ 27 19“:/\0
v eXp{ — = Liz (29(No)) / dA / dp M = 5(/\)0(#)}

x ¢l7/4 (i)~ (rR0)=1)? /2 exp{ / ;LA In(1—29(\) - |z — m\} (1+0(2712)). (5.3)
T

Here the functions T and ¢ read

) == (1-200), p() =1 [ sealho—plnlho— 4l dln(1-20(0). (54
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Chapter 5. Application to the impenetrable Bose gas

The functions L(X) := L(A|Xo) and L'(N) := L(A|X\o) are given by

29’ (\)

. 1
L) = =5 —san(do = ) (1= 20(V), L' (AAo) = 5~ sen(do - N300y

(5.5)

G is the Barnes G-function and Liy is the dilogarithm.

We emphasize that the functions 7, ¢, £ and £’ depend functionally on the filling fraction
19, i.e., are functionals of 1.
If there are two solutions of equation (5.1) on the real axis, the following theorem holds.

Theorem 5. Let the filling fraction ¥ have the following properties:
1. ¥ is holomorphic in the vicinity of the real axis;
2. ¥9(N\) € [0,1] for A € R;
3. ¥(N) decays sufficiently fast as Re A\ — +oo such that

e2(A\)I(N) = O(A™™). (5.6)

4. There are exactly two distinct solutions of the equation 9(N\) = 1/2 on the real axis,
which we denote +q for q > 0. The multiplicity of the solutions is one, i.e., 9(+q) = 1/2
and V' (+q) # 0.

Then the field—field correlation function g(x,t), given by (1.15), has the following asymptotic
expansion as x,t — 400 with \g = /2t fized,

g(m,t) = A(Xo)(=2it) "7 0)/2 exp{ —itg® + / g—z In |1 —29(z)| - |z — 2tz|}
s

— o0

) -1
" {1+\/T(>\0)(1—19()\0)) (2)7) 2 jie?/At+itg? yix(ho)+ip(Ao)+iarg T(1-r(Ao))

(o) g |2 ¢

X {(Ag + ¢%) cos <—xq + \11(2)\0)) + 2iAgq sin (—azq + ‘1’(2)\0)” +o (x_1/2> }, (5.7)

where A(N\o) is given by

A(Xo) = qG(T(AO)AJr D py—

(27‘(‘) 7(Xo)/2

X exp {ia‘()\o)

11— 2?9(/\0)‘90()\0)/27r

[Lis (20(X0) +10) + Liz (20(Ao) — i0) }

xexp{;/dA/dM D(A)E(H)—L()\)D(M)} (5.8)

i
2

A—p
with T(A) = Lo(A) — Lr(X). The functions L(X) := L(A|Xo) and L'(X) := L'(A|No) read

L(A[Xo) = Le(A) - Tacng(A) + Lr(A) - Las g (A, (5.9a)
L' (A o) = Lo(A) - Taaxg(N) + L1 (A) - Tasag (M), (5.9b)
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where Ly and L, are

Lo = ——— [ = 2000 +10],  Lo(\) = ——1In[1 — 20()) — 0] . (5.10)

2mi 2mi
The functions ¥, x, and ¢ read

1 [ 2q
V() = = senlho = ) nfL = 2000)] 5 A, (5.11)
1 o0
XO0) = 2 £ senlho = w1 - 2000 =" au. (5.12)
1 o0
p00) =+ f sglho = o sl dln |1~ 20(). (5.13)
Finally, the function a™(\g) is given by
~ (o) 170[0 (o — ) In |1 — 20()|—— d (5.14)
a == 4 sgn(Ao— p)In|l — ——dp, :
0) = — 1 sgn(do — p Wl g
—00

G being the Barnes G-function and Lia the dilogarithm.

We emphasize that all the functions above (7, £, L', ¥, x, ¢ and a~) again functionally
depend on the filling fraction ¥ as in the previous theorem.

Remark. We also note that Theorem 5 can be written for non-symmetric position of the
solutions of equation ¥(A) = 1/2, but then the expression becomes more bulky. It is discussed
in the end of Sections 5.5.4 and can be recovered from the derivation of Theorem 5.

In Section 5.1, we specify all the functions in the asymptotic analysis of Chapters 2—4 for
the case of the impenetrable Bose gas. Next, in Section 5.2, we study how the poles approach
the real axis, which finally explains the choice of the poles in Chapter 4. Then in Section 5.3,
we obtain explicitly the functions related to the solution a of the scalar Riemann—Hilbert
Problem 3 and the function s.

After all the preparations are made, we apply Theorems 1 and 3 and derive the Fredholm
determinant asymptotics for the two classes of the filling fractions, introduced in Theorems 4
and 5, and prove these theorems in Section 5.5.

Finally, in Section 5.6, we compare our results with those derived in [31], see also Chap-
ter XVI of [2], when the filling fraction ¥(\) corresponds to the impenetrable Bose gas in
thermal equilibrium, see equation (1.11). Also, we compare the asymptotic expansions with
the direct numerical analysis of the expression (1.15) and provide some more plots of the
correlation function.

One more remark is needed on Theorem 5 concerning the space-like regime 11, when the
saddle point is to the left from +¢. This case is not covered by Theorem 5 in general, since
we consider z,t — +oo and Ao = x/2t > 0, and the saddle-point can not be to the left of
—q. However, if the filling fraction ¥(\) is an even function for A € R, then the correlation
function g(x,t) is symmetric under transformation x — —z and the asymptotic expansions
of g(x,t) for the space-like regimes I and II are the same.

5.1 Specification of functions

For the impenetrable Bose gas, the energy and momentum are given by

eN) =22 p()) =\ (5.15)
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Chapter 5. Application to the impenetrable Bose gas

Therefore, the function u(\) is given by
Lo
u(A) = — 5)\ , (5.16)

and the saddle point \g is determined by

T

ul()\()) =0 = )\0 = ﬂ (517)

In particular, for x,¢ > 0, and, consequently, for A\g > 0, the function u(\) can be expressed

as
XX (A=)

A)=A——= 1
u(d) 2o 2 20 (5.18)
Therefore, we get the function w and its derivative, see equation (2.66),
A—Xo t , \/?
A= XolAo) = =4/—- (A=A A= XolAo) =4/ —. 1
w( 0lAo) NG — 0 = W 0[Ao) . (5.19)
When v — 1/2, expression (1.27) for the function E()\) takes the form
du e*(p)
E\) =— — . 2
(\) (N o = A A € Cy, (5.20)
Co
Then the kernel of the integral operator, see equation (1.20), is given by
49(Ne(Ne(p dz e 2(z dz e 2(z
V) = BNl [ de ) f 2 )
2mi(A — p) 21 oz — 21 oz — A
A0 Cxo
-2 -2
_Ie(We(w) [1 ][ L) 1 ][ 20 o
TA—p) |7 z—p z—A
A0 Cxo

which reproduces the kernel (1.16), when the auxiliary function v(A) and g(A) are set to
constants 1/2 and 0. Therefore, such specialization of the functions in Theorems 1 and 3
allows us to derive the asymptotic behaviour of the Fredholm determinant in the expression
for the correlation function g(x,t), see equation (1.15).

5.2 Pole structure and contribution

It is important to fix from which direction the function v(\) approaches 1/2, because that
determines which regions in our Riemann—Hilbert analysis the poles belong to. We consider
v(\)=1/2—-0,0>0,as 0 — 0.

Then, in the limit as § — 0, the functions £, and L,, given by formulae (2.31), read

1
lim Ly(A =——1In[l —2¢9(\) +1i0], 5.22
Jim £ sl =200 0 (5.22)
1
lim L,(A = —1Inl[l—29(\) —i0]. 5.23
5—1>%1+ ( v(\)=1/2—6 2mi n[ ( ) ! ] ( )
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5.2. Pole structure and contribution

Then from equation (2.41) it follows, in particular, that

1
lim 7(\) = —=In|1 - 203 (5.24)
6—0+ v(A\)=1/2—6 71
for A € R away from the poles and for J(R) € [0, 1].

Therefore, equations (2.56a) and (2.56b), which determine the set of poles S, see Sec-
tion 2.9, now take the form

I(5) = % +i0,  j=1,...,nf, (5.25)
1
I(rf) = 5 -0, g= 1,...,nE. (5.26)

b T
we obtain the coefficients h;t and h, see equations (2.97) and (2.98), in the case of the
impenetrable Bose gas,

Assuming that ﬂ/(ﬁf) # 0 and ﬁ’(rj?) #0for j=1,...,nf and j = 1,...,n}, respectively,

e 2(0t o2 (rH)e2(r+
= 419/(#)(@3)(#)’ hi = +(19, 3,+)( ) (5.27a)
ko)) e
hz - 19/(6_) ) hr = 419’(7“)6&(1“_) (527b)

5.2.1 Thermal equilibrium

For the system in thermal equilibrium, the filling fraction ¢ is given by expression (1.11),

IO = 1+el<wT (5.28)
Hence, the poles on the left from the saddle point Ag are given by
5(?) — 0+ 2min, nez, (5.29)
and the poles on the right from the saddle point by
g(g) =i0+2min, neZ (5.30)

Therefore, we get two possible poles on the real axis on the left from the saddle point A\g and
two possible poles on the right, respectively,

(* = F(q—i0), ¥ =4(q+i0) (5.31)

with ¢ = v/h. In any case, the pole positions coincide with the Fermi points of the model +¢
and are on the real axis for positive chemical potential h > 0. However, in our analysis it is
important how they approach the real axis in the limit v — 1/2 — 0. That is why we keep
the regularizations £0 in the expressions above.

Altogether, we obtain three possible regimes for g € R, i.e., for h > 0:

1. Space-like regime I, Re(£*) < Ao, see Figure 5.1.
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£+
a Ao o+

X
Crg ~ s

-1
X
Figure 5.1: The poles ¢* from £, approaching the real axis, when v — 1/2 — 0 in the space-

like regime I, Re(£*) < Ag on the left figure and the equivalent deformation of the integration
contour on the right figure.

X X
g T
. P T
R R
C)\() CS\O

Figure 5.2: The poles £ and r from L, and L,, respectively, approaching the real axis, when
v — 1/2 — 0 in time-like regime, Re(¢) < Ao < Re(r), on the left figure and the equivalent
deformation of the integration contour on the right figure.

2. Time-like regime, Re(¢) < A9 < Re(r), see Figure 5.2. For brevity, we omit upper
indices, £ := ¢~ and r :=rT.

3. Space-like regime II, \g < Re(r*), see Figure 5.3.

We emphasize that the deformations of the contour Cy, on the right-hand sides of Fig-
ures 5.1-5.3 are an illustration that explains the choice of the pole configurations considered
in Chapter 4, compare Figures 5.1-5.3 and Figure 4.1. However, every integral over the in-
tegration contour Cy, can not be simply evaluated using the corresponding deformation Cf\o
of the contour. It must be evaluated depending on the integrand, especially, if there is the
function 7(\) = Ly(A) — £,(A). In that case we split the integral into two parts and then
integrate them separately, according to the regularizations of £, and L,.

For negative chemical potential h < 0, i.e., for ¢ € i- R\{0}, we do not have poles on the
real axis at all, since

1 1 1
o) = 1+ exp (%) = 1+ exp (%) - 2’

A eR. (5.32)

5.3 Contribution of the solution of the scalar Riemann—Hilbert prob-
lem

In this section, we derive explicitly the contribution of the solution « of the scalar Riemann—
Hilbert Problem 3 to the Fredholm determinant asymptotic. We consider separately the case,
where there are no poles on the real axis, and the case with two poles on the real axis in all
three regimes.

In any case, the direct contribution to the Fredholm determinant asymptotics is given by

a(xz, \o) =2 / dz L(z|\o) d'(2) , (5.33)
Cr 9=

see equation (3.14).
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+
) &(/
e

T G

r
X

Figure 5.3: The poles r* from £, approaching the real axis, when v — 1/2—0 in the space-like
regime II, \g < Re(r®) on the left figure and the equivalent deformation of the integration
contour on the right figure.

In the case of two poles on the real axis, we also need values of the function « evaluated
at the poles for the coefficients hzt and h, see integral representation (2.29),

a(N) = exp{ / duW}, (5.34)
Ch

where
L(AAo) = Le(A) - Tre(u—ng)<0(f) + Lr(A) - TRe(u—x0)>0(H); (5.35)

and functions £y and L, are given by (5.22).

5.3.1 The case of no poles

If there are no poles on the real axis, i.e., ¥(\) € [0,1/2) for A € R, then In(1 — 29) < 0 and
therefore

£\ Ao) ::——iiilnjl —29(\)| - sen(Ao — A). (5.36)

In this case a contributes only to the first term of the asymptotics of the Fredholm determi-
nant, see equations (3.61) and (3.14), and its contribution is given by

a@m:/ﬁ@mr@muw@w@zfimuﬁwwuwm(mn

For large x, this term is responsible for the exponential decay of the Fredholm determinant
and, consequently, the correlation function.

5.3.2 Space-like regime I

In the space like regime I, see Figure 5.1, the integral over the deformed contour CS\O can be
transformed into the integral over the real axis of the logarithm of the absolute value, if we
take into account the phase of the integral between the two Fermi points. We note that the
singularities at the Fermi points, i.e., at the branch points of logarithm are integrable. In
particular, substituting £(\|\g) explicitly, we obtain for A € R\{¢*, ¢~}

1 1
L(AXo) = ~3 sgn(Ag — N 1In |1 —29(N)| — 5]1(#757)()\). (5.38)
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Chapter 5. Application to the impenetrable Bose gas

Thus,
00 d Vom
a(z, M) = / 7Tfsgn(Ao — ) In |1 — 20(2)|d'(2) — /dzd’(z)
—00 ¢+
7 dz
= [ St - 2002 fo - 262 - (o) - ()
_ / ;L; In 1= 20()| - 2 — 21| + 5 [u(e) —u(t)]. (539

Here in the last equality, we used that d(\) = Ine(\) = — izu(X)/2.
Now we calculate the function « in the space-like regime I at the poles ¢+, see Figure 5.1,

a(tt) = (2w () (e~ m)‘é eXp{ - zim 7[ dpsgn(Xo — WW}» (5.40a)

In [1 — 29 (p)|

a(l™) = (—2119'(5_)(5_ - 5*))% eXp{ - L ][ dpesgn(Ao — p) =

5t } (5.40Db)
—00
Here we transform the integral over C,, to the principal value integral over the real axis,
taking into account integration in vicinity of the singularities and the phase of the logarithm
for A€ (£7,07),
In(1 —29(\)) =1n|1 — 29(N)| + =i, (5.41)

see equation (5.38).
Finally, substituting expressions (5.40) into (5.27), we obtain the coefficients h;t explicitly,

oo

1, _ i In |1 —29(u)|
+_ =2+
hy =5 (00 = £T)e™(¢ )eXP{ = ][ dpsgn(Ao — M)M——ﬁ ; (5.42a)
hy =2i(t~ — £M)e* (0™ ) exp {1 ][ dpsgn(Ao — M)W} (5.42b)
- _

5.3.3 Time-like regime

In the time-like regime, see Figure 5.2, we have for A € R\{¢,r}

LO\Ao) = —% sen(Ao — A)In |1 — 20(\)| — %n(,g,r)(x). (5.43)
Thus,
a(, o) = / % san(Ao — 2)In [1 — 20(2)[d'(2) — /dz d(2)
e ¢
_ / ;L;m 1= 20(2)] - | — 2t + o [u(r) — u(®)]. (5.4
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Now we evaluate a(¢) and «(r),

[e.o]

a(l) = (21 (€)(r — 5))_% exp{ — % ][ dpsgn(Ao — M)W}, (5.45a)
a(r) = (20 (r)(r — £))? exp{ - % ][ dusgn(Ao — M)lnllﬂ—ff(u)!}. (5.45b)

Substituting these expressions into coeflicients hj and h;, see equation (5.27), we get

o

h = %(r — e (0T exp{ - % ][ dpsgn(Ao — M)W}’ (5.46a)
ht = 2i(r — 0)e*(rT) exp {;r—][ dpsgn(Ag — M)ln|1u—_21:(,u)\} (5.46b)

5.3.4 Space-like regime I1

Although, in what follows, we do not consider this space-like regime, since \g = /2t > 0
and one of the poles is considered to be negative, we still provide explicit expressions for the
functions in this regime for the complete picture.

In the space like regime II, see Figure 5.3, the function £(A|Ag) explicitly reads

1 1 _
L(ANo) = ~5 sgn(Ag — A)In |1 — 29(N)| — 5]1(T77,,«+)(/\), AER\{r—,rT}.  (5.47)

Thus,
a(x,No) = / % sgn(Ag — 2) In|1 — 29(2)|d'(z) — /dz d(z)
— / g—;ln 11— 20(2)] - | — 2tz| + % [u(ﬁ) B u(r_)}  (5.48)

The solution a of the scalar Riemann—Hilbert Problem 3 evaluated at r* reads

_ IRy 17 In|1 — 20(u)|
+\ _ Nty (ot — 2 S - ) —
a(rh) = (2119 (r)or" —r )) exp{ 5 ][ dpsgn(Ag — p) = , (5.49a)
. o R 17 In |1 - 20(u)]
—_ (_ / + _ 2 _ _
a(r7) = ( 200 (r7)(r" —r )) exp{ 5 ][d,usgn()\o 0 p—— . (5.49Db)
Therefore, the coefficients h are given by
i In|1 -2
ht = 2i(rT —r7)e*(rT) exp {1 ][ dpsgn(Ag — “)W}’ (5.50)
T p—r
—00
1 i In|1 -2
h = e ) exp{ -1 f s - N’W}. (5.51)
2i us w=r
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Chapter 5. Application to the impenetrable Bose gas

5.3.5 Expression for s

For the factor Clu,d,v, g, Ao] in the Fredholm determinant asymptotics, we also need an
explicit expression for seg(Ao| o), defined in (2.70). Due to equations (2.70) and (5.19), the
function s, reads

’ —7(Xo) z\ TR0/
s (Dolho) = (@(0) O alo) = () #halo) (5.52)
The function s for the impenetrable Bose gas is given by
2(Xo| o) = exp{ - / L' (] Xo) In (Ao — p) sen Re(Aog — p)] dp }, (5.53)

Cx

see equation (3.91), which depends on the pole configuration. In particular, in the situation
with no poles on the real axis, the function sz can be expressed as

i
#(Ao|Ao) = exp <—290()\0)> ; (5.54)
where we introduced
1 oo
p00) =+ [ g = ) ol dln (1 - 20(). (5.55)

In the situation with two poles on the real axis, £q € R for ¢ > 0, in all three regimes,
the function s(Ag|Ag) can be expressed as

1 1
#(Nolho) = {(AO Fa) s Relho ¢ q>] Febe0o) - Rodl® o) (5.56)
(Ao — q) - sgnRe(Xo — q) o — q|2
where p(Ag) is defined as in (5.55), but in terms of a principal value integral,
1 oo
p00) =+ f g = )Xol dln |1 = 20(p). (5.57)

Now we derived all the functions involved in the asymptotic expansions of the Fredholm
determinant in all the cases under consideration.

5.4 Fredholm determinant asymptotics

We are finally ready to apply the asymptotic analysis developed in Chapters 3 and 4. Namely,
we apply Theorem 1 and Theorem 3 to the Fredholm determinant of the integrable integral
operator (5.21) with the filling fractions ¢ which belong to the two classes announced in the
beginning of this chapter.

We consider these two cases separately. For brevity, we denote the constant as

C[9, No] := Clu, ¥, v =1/2 0,9 = 0, \g] (5.58)

in all the cases.
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5.4. Fredholm determinant asymptotics

5.4.1 No poles on the real axis

First, we consider the case, where the filling fraction 9 never reaches 1/2 on the real axis.

Due to Theorem 1, the Fredholm determinant asymptotic behaviour as z,t — +oo0 with
Ao = x/2t fixed, reads

det (id + V) = exp {C19, o)} = exp Lo, 1)) (1+0(x7172)), (5.59)

where the function a(zx, t) is given by (5.37), and the constant C[¢, \g] by (3.4) or (3.5). Using
the first representation for the constant, we get

()

G(T(/\o) + 1)

exp {C[0, Ao]} = (5¢(Xol20)) ™ (i)

(27‘(‘) 7(Xo)/2
x exp{ - /7‘()\) g&) dX +% / dX / dps ‘C/(A)ﬁ(“’i : i(A)ﬁl(“) } (5.60)
Ao —00 —00

We note that the first integral is nothing but the dilogarithm function Liz(29(\g)). Indeed,
the dilogarithm function admits the following integral representation

Lig(z) = — / ln(lt—t) dt, z € C\(1,00). (5.61)
0

-/ oWy = L [P o)

d(N) ()
Ao AO
29(Xo)
i In(1 — 2t
_— / ( t Jar = — 1 1i, (20000)). (5.62)
™
0
Therefore, the constant C[J, Ag| takes the form
G(t(Xg) +1 , . ()
exp {Cl Ml = T GOula) 0 (i)
!/
x exp{ - fLIQ 20(Xo) ) /dA / du “ — LAVE (“)}. (5.63)
—p
Finally, substituting here expression (5.54) for the function s as well,
(3¢M0lA0)) ™) = (1 = 20(r0)) 270, (5.64)
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Chapter 5. Application to the impenetrable Bose gas

we obtain the Fredholm determinant asymptotics,

. _Gr(Ao) +1) (%)
gif (id+ V) = W| 20(Ao)| 77
oo o0 ’
xexp{—ng 219/\0 —l—;/d)\/du () _ﬁ(A)EW)}

—0o0

x (—2it) "2 (Ao)exp{/;ljrln(l—Qﬁ( ))-\x—ztzy}(1+o(x—1/2)). (5.65)

—00

Since all the zeroes of 1 —29(u) are away from the real axis, all the integrals on the right-hand
side do not have any non-integrable singularities on R.

Two poles on the real axis

In the situation with two poles on the real axis, the Fredholm determinant asymptotic be-
haviour is given by Theorem 3. In particular, the constant for v = 1/2 — 0 and g = 0
read

exp {C[9, \o]} = W (3¢(Mo| o))" (jAO)TQ(QAo)
X exp | — / T( )1;’8)) ! / n / dﬁ'“)ﬁ(“j: i(A)U(M)}' (5.66)
cr Chy  Cro

A0

Now the first integral with 9 can be written as the dilogarithm Lia (20(\g)) only in the space-
like regime, because in the time-like regime ¥ € (1/2, 1] and the dilogarithm has a cut for the
argument in (1,00). Substituting the function 7 in terms of £, and £, under the integral,
and taking care of the phases of the logarithms, we obtain the following expression for this
integral

/ T(A)g&) d) = / £:(\) — £2(V)] g&) d)
Cjo Ao

— | Lig (29(A i0) 4 Lig (29(Ag) — i0 5.67
— |Li2 (20(%) +10) + Liz (20(A0) — i0)]  (5.67)
in the time-like regime. Then the constant is given by

2(x)

G(7(Mo) +1)
(2m)™ 7(Xo)/2

X exp {—2; [Lis (20(Ao) + i0) + Lia (20(Ao) — 10)}}

xexp{;/d)\/dﬂ 5'@)5(#;:5@)6’@)}7 (5.68)
Chy  Cro

where the boundary values of the dilogarithm coincide in the space-like regime,

exp {C[0, Ao]} = (Ao 20)) ™ (o)

Lis (20(\o) +10) = Lis (29(\o) — i0) = Liz (20(Xo)) , (5.69)
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5.5. Asymptotics of the field—field correlation function

since ¥(A) € [0,1/2) for A > .
Then, in the space-like regime, the Fredholm determinant asymptotic expansion (4.1) is
given by

o0

(get (id+V)=exp{C[,\o]}x™ 2 e ({7 )e(f")exp o In |1 —29(2)|- |z — 2tz|
o ™

hi by 1 1 bothf biohy e
{1 + (er 7f7)2 + rl/2 _u//()\o) <()\0 7£+)2 + ()\0 *67)2 +o0 (l’ ) . (570)

where we substituted expression (5.39) for the function a(z,t), and hi are given by (5.42),
and in the time-like regime by

[e.9]

7,2
det (id + V) = exp{C[, Nolte=E e (r)e(£) exp { / ;{; |1 —29(2)| - | — 2tz!}
0
W1 1 borhi bioht .
1 ¢ {4 r 1/2 71
{ -0 T AR ) ((Ao—@”(Ao—mz +o(a™) . 67

where we substituted expression (5.44) for the function a(z,t), and b and h; are given
by (5.46).

5.5 Asymptotics of the field—field correlation function

Now we return to the expression (1.15) for the field—field correlation function of the impene-
trable Bose gas.
5.5.1 Correlation function in terms of the solution of the Riemann—Hilbert problem

First we express the prefactor A(x,t), given by equation (1.18), in terms of the solution
of the Riemann-Hilbert Problem 1. Expressing the functions under the double integral in
equation (1.18) in terms of vectors E;, and Eg, see equation (1.21), we obtain

2 [ Fowew) [ o (k-0 - Bk0) B

Co Co

=i [ ab®a®), [ da (36— 0) - BlE.0) (Br(@)y- (72)

Cxro Cxo

On the other hand, from expression (2.5b) for the inverse of the matrix x, it follows that

Jim i )] = = [ di (Bl (Pl (5.73)
Ch
Using equation (2.4a), which implies
(FL(A), = (id = R) (EL(})), = / dp (6(A = 1) = R(A, 1)) (EL ()5 (5.74)

Cx
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Chapter 5. Application to the impenetrable Bose gas

we get the right-hand side of equation (5.72). Hence,
At = [ P20 tim ot = [ 2 410 1im pexe()]. (5.75)
’ 2w A—00 X12 2w A—00 X2 ’ '

Cxo Cx

Transforming xy — X, see equation (2.15), we get

lim [A-x12(N)] = lim [A- i2(A)] + lim [A-X11(A)C(N)]
A—o0 A—o00 A—00
) . . [ dk o
= lim (v Xio(V)] i / P2 (1)
Crg
Thus, A(z,t) reads
A(z,t) =1- lim [A- x12(N)], (5.77)
A—00
and we derive the following expression for the correlation function
g(x,t) =1i- lim [A-x12(N)] - det (id + V). (5.78)
A—00 C)‘O

Now we substitute into this expression the asymptotic expansions for the solution x of
Riemann-Hilbert Problem 1 and for the Fredholm determinant in each case.

5.5.2 Asymptotic expansion

Substituting the solutions of the Riemann—Hilbert problem further, y - = - T — &, we
can express the matrix element Y12 in terms of the matrix elements of the matrices II and S,
see equation (2.86),

Jim A X12(2)] (A ()] + lim [A-S12(A)]. (5.79)

= lim

A—00
Next, expanding matrix element of II1o(\) in 2~ /2, see expansion (3.31) and explicit formulae
for the coefficients II; and Ily, see expressions (3.33) and (3.34), we derive

. 1 b1a(Xo) oz
Jim (A T (A)] = VE V3 (00) @™ (5:80)
and, therefore,
. _ 1 bia(Ao) . oz
i, 0= 7 0y A P S oG (D

Here the matrix element Sps is exact and is not yet expanded into the series in 2~1/2.

Now we substitute expressions for b13 and n, see equations (2.79) and (2.73), and express
seg 0 terms of s, see equation (5.52), then

1 bia(ho) iy/2meizu(Xo) { —2ix }T(Ao)é
VI /20 (0| Ao) 4 9( M) (T(N0)) 22 (Mol Ao) L(w'(0]A0))2
iv2m (—2it)T(R0) =3 giru(Xo)

T 49000 (T(M)) 2 (Mol ho) (5:82)
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5.5. Asymptotics of the field—field correlation function

In the last equation we used again w'(0) = \/¢/x, see equation (5.19). Finally, we derive

i . o(z™1). .

' 3 o ( 21t ) 7(Xo)— elxu()\g)
Here function s is given by expression (5.53) and is different for different pole configurations,
as well as the matrix S.

Next in this section, we substitute expression (5.83) into (5.78) and derive the correlation
function explicitly, first in the case where there are no poles on R, and then in the case of
two poles in the space- and time-like regimes.

Also, in what follows, we use the following expression for the product of functions (o)
and I'(7(\g)) in the denominator in (5.83),

1 — 2 -
19()\0 )\0 217_ \/ )\0 19 ))elargl"(l—‘,-fr()\o))7 (5.84)

which follows from the following transformation

1—\(7_()\0)) _ F(l - iVO) _ |F(1 — iVO)‘eiargF(l—iVO) —i T eiargF(l—il/o) (5 85)
—iv —iyg \ 1o sinh g ’ '

Here we denoted vy = iT(Ag) > 0 and used Euler’s reflection formula.

5.5.3 No poles on the real axis

If there are no poles on the real axis, S = Iy and »(\g|)\g) is given in terms of ¢, see
equation (5.54), then

2 (*217&)7—(}\0)7 % eixu()\o)ei‘p(>@)
49(Ao)T(7(Mo))

Now we substitute this expression and the expression for the Fredholm determinant (5.65)
into (5.78). We note that I'-function in the denominator in expression (5.86) combines nicely
with the Barnes G-function, due to the property

G(T(ho) +1) = T(7(M))G(7(X0))- (5.87)

+o(z™1). (5.86)

_ i
lim [A-X12(N)] = —
A—00

In the end, we derive the asymptotic expansion of the correlation function in the case
with no poles on the real axis

G(T AO)) ()\ )/27r eiﬂo()‘o)
91 = Gtow -7z (1= 2000) 7
/
X 6‘2(Ao)exp{ - —Lm 20(Ao)) / d\ / du N - i(A)E (u)}

x (—2if)~ (TG0)=1)?/2 exp{ ]O % In (1 —20(\)) - |z — wy} (1+0(2772)), (5.88)

—00

which was announced in Theorem 4.
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Chapter 5. Application to the impenetrable Bose gas

5.5.4 Space-like regime
In the space-like regime, there are two poles ¢* € R such that Ao > ¢*. Then

Jim [\ faz(V)] A (V)] + Oy + Oy (5.89)

= lim
A—00
Calculating the matrix elements explicitly, see equations (4.9) and (4.13), we get

2A£JZJZ det (W, V™)

Ch+Cp = Al [U;H%(ﬁ) - UZH%2(£7)} + Iy (£1)Ih2(€7). (5.90)

(e —£7)
Expanding everything in #=1/2, as in Section 4.1, we derive
A2hf
li Y - — "t
i X = R
n 1 bia A* hZ b21h2_ bi2h,
VE | V2 0) A b P VR 0) \ Do — 602 1 g — 02

AR R, b12 TANEEY A 20
+ {24
[A2 + Ry | V2w (0) (Ao — £7)?

+o(a71?), (5.91)

where we denote A := ¢+ —/~. We substitute this expression and expression for the Fredholm
determinant (5.70) into (5.78), expand everything up to order '/ and simplify terms. Then
we obtain

g(z,t) = iexp {C[V, \o]} exp {a(m’t)}x_72()\o)/2
L b2 hfh; (Ao — £1)?
X {hz_—i_\/f\/ﬁw/(()) |} éAQK ()\O_E_>2

Substituting expressions (5.42) for the coefficients hjt in the space-like regime, we rewrite the
square bracket on the right-hand side as

+o (2712 } . (5.92)

+7,— _p+)2 — )2
1+ thzf 82 — i; =1+ e2(z+)62(z)82 — i;
X exp{;_ ][ sgn(Ag — ) In |1 — 29(u)| (,u—lﬁ_ — ,u—lﬁ'i‘) du}. (5.93)

From this point, for brevity, we switch to the symmetric position of the poles, /= = ¢, {T = —¢q
for ¢ > 0, since all the expressions become less bulky, although one can straightforwardly
proceed with general positions #*. Then the expression above can be written as

hyhy (Mo +q)*  2e(—q)e(q) exp(¥(Xo)/2)

1+ =
4g? (Ao —q)? (Ao —q)?
X {(/\8 + ¢%) cos (—qx + \II(Q)\O)> + 2i\pg sin <—qx + \11(2)\0))] , (5.94)
where we introduced function ¥(\g),
1 [ 2q
T(ro) = — sgn(Ao — p) In[1 — 219’(u)lu2 — dp (5.95)
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5.5. Asymptotics of the field—field correlation function

and partially substituted e?(4q) = exp(—izu(£q)).
Lastly, we substitute expression (5.82) for b9, taking into account that »(Ag|\g) is given
by equation (5.56),
A .
(Mol o) = 2014 -ie(), (5.96)
Ao — ¢
Finally, we use expression (5.84) for the product of the functions 9 and I'-function, factor
out h/, using equation (5.42a), and introduce function x (o),

1 (o)
X0 = 2 f sl = Inf1 - 2000 " du. (5.97)

—00
Then in the space-like regime, i.e., for ¢ < Ag, we obtain

[e.9]

g(z, t) = ik exp {C0, Ao]} 2~ P9/2 e~ (g)e(—q) exp { / ;L; In|1—20(z)| - & — 2tzy}

o)L —9(0) (27005
- {1 ' V W00 a3

X [(/\3 +¢%) cos (— ‘1’(;0)> + 2i)gq sin (—xq + W(QAO))} t+o(a71/?) } (5.98)

672()\O)e(q)e(_q)eix()\o)+igo()\o)+i arg '(1—7(Xo))

where constant C[d, \g] is given by expression (5.68) which takes the form

G(r(Mo) +1) .\ 72 oy2r (Ao +q) TR0/
exp {010, Jol} = W(MO) ° )/2\1—219(%)!“"(A 2 (Az_q)
— L)L ()
xexp{ —*LIQ 29 )\0 /d)\/ — } (599)

The coefficient hZ is given by equation (5.42a). Substituting h? and combining some terms
we finally obtain the statement of Theorem 5 in the space-like regime, i.e., for A\g > gq.

Remark. We note that in our asymptotic analysis the solutions of the equation ¥(\) = 1/2
do not have to be symmetric, i.e., A = =£¢, and may be arbitrary /T € R. Then, the
resulting expression for the correlation function follows directly from equations (5.92), (5.93)
and (5.68), although, it becomes much more bulky.

5.5.5 Time-like regime

In the time-like regime, there are poles ¢ and r on the real axis such that ¢ < Ag < 7,
Therefore,

lim [A-x12(N)] = lim [ H2(N)] + Cf + Dis. (5.100)
A—00 A—00
Calculating the matrix elements explicitly, see equations (4.53) and (4.57), we get

2410 o det (WT,VT)
(r—2)

Ch+Diy= A {Ug 17, (¢) — UﬁLH%Q(T)} - 11 (€)12(r).  (5.101)
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Chapter 5. Application to the impenetrable Bose gas

Denoting the difference of the poles by A = r — £ and expanding everything in z /2

Section 4.2, we derive

, as in

A2hf
T A2+ hfhS
LA b A4 hf (bmh; N bioh; )
VI [V2w(0)  [AZ+ RS V20'(0) \ (Ao =62 (Ao —7)?
Ah?h;j— bio L+1r—2)
(A2 + W hiF] V2w (0) (Mo —7)?

We substitute this expression and the expression for the Fredholm determinant (5.70) into (5.78),
expand everything up to order z7/2 and simplify terms. Then we obtain

Jim [+ a2

+o(a7?). (5.102)

g(x,t) = iexp {C[9, Ao} exp {a(z, 1)} = (0) /2
1 b hfht (Ao —£)? _y
X {hz_‘f‘ﬁ\/w |}+ éAQ (r—/\O)Q +0($ 1 2)} (5.103)

Substituting the expressions for the coefficients h; and A in the time-like regime, see ex-

pression (5.46), we obtain

hy bt (Ao — £)?
A2 (r—o)

(Ao — 0)?

= e 2(0)e? (r)

1+

X exp{;T ][ sgn(Ao — ) In |1 — 29 (p)] (uir — Ml—€> d,u}. (5.104)

For brevity, we consider again the case of the symmetric pole position, i.e., { = —q and
r = q. We introduce the same function ¥()\g), see equation (5.95), and substitute e?(+q) =
exp(—izru(+q)), then

Wb (o +a)* _ 2¢7! (—q)e(q) exp(¥(Mo)/2)
4¢*> (g — Xo)? (¢ — Xo)?
X {()\3 + ¢%) cos <—q$ + \II(;(])) + 2i)\gq sin (—qx + \P(Q)\O))} . (5.105)

The last step is to substitute expression (5.82) for bj2, taking into account that »(Ag|Ao) is
given by equation (5.56),

1+

A .
#2(NolAo) = 209 gien0), (5.106)
q— o

and use expression (5.84) for the product of function ¥ and I'-function.
Finally, in the time-like regime, i.e., for 0 < A9 < ¢, we obtain

[e.e]

g(@,1) = ihf exp {C[9, Mo}~ ™ P2 e (—g)e(q) exp{ / ;17 In[1-20(2)| - |z — 2tz}
T()‘O)(l_ﬁ()‘())) (2t>7(>\0)_% - ix(Ao)+ie(Ao)+iar, —7(Xo
" {H\/ J(No) S Qo)elg)e(—q)eermiatorriene s
X [()\(2) + ¢°) cos (—xq—{— 111(2/\0)> + 2i\gq sin (—xq—l— \11(2)\0))] +o (x_1/2> } (5.107)
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5.6. Impenetrable Bose gas in thermal equilibrium: cross-checks

Here the constant C[1J, o] is given by expression (5.68), which takes the form

G(T(/\()) -+ 1)
(271') 7(Xo)/2

X exp {_2177 [LiQ (219()\0) + 10) + Lig (219()‘0) - iO)}}

Xexp{;/dA/du D(A)L(u)—ﬁ()\)ﬁ(ﬂ)} (5.108)
Cry  Ca

exp {C[¥, Mo]} =

7(Xo)/2
(i)\O)TQ()\O)/Z 11— 219()\0)’4,0()\0)/27r ()\O—i—q) (Ao)/

q— Ao

A—p

The coefficient h; is given by equation (5.46a). Substituting it explicitly, we derive the second
half of Theorem 5 in the time-like regime, i.e., for 0 < Ay < q.

We note that the expressions for the asymptotic expansion of the correlation function in
the space-like and time-like regimes coincide up to a sign in the sub-leading order that can
be written universally for both regimes using modulus, |)\(2) — q2]_1. Even coefficients h} in
combination with the two functions e~ (¢)e(—q) in the space-like regime and with e =1 (—q)e(q)
in the time-like regime coincide, see expressions (5.42a) and (5.46a), for /* = Fq and £ = —q,
r=q.

This concludes the proof of Theorem 5.

5.6 Impenetrable Bose gas in thermal equilibrium: cross-checks

In particular, Theorems 4 and 5 reproduce the asymptotic expansion of the correlation func-
tion g(z,t) derived in [2,31] for the impenetrable Bose gas in thermal equilibrium in the
cases, where the chemical potential h < 0 and h > 0, respectively. We recall that in thermal
equilibrium the filling fraction is given by the Fermi distribution

1
Po(\) = ., q=+Vh. (5.109)
" 1+ exp (272

In this section we compare the asymptotic expansions with those in [2,31]. Unfortunately,
we are not able to check analytically the overall constant factors C[1J, \g], since in [2,31] they
are given by more complicated expressions, than the representations we derived, and up to a
numerical constant. Nevertheless, we are able to compare the asymptotic behaviour for both
negative and positive chemical potential up to overall factor depending on Ay, 7" and h. For
positive chemical potential 4 > 0 in the time-like regime (|\o| < ¢), we discover a mismatch
of the sign in front of the sub-leading term.

After that we compare our asymptotic expansions numerically with the numerical analysis
of the correlation function g(z,t) kindly provided to us by Alexander Weifle [41]. This allows
us to check both the constant C[d, Ag] for filling fraction (5.109) and the mismatching sign
in the time-like regime.

In the end of this section we provide more plots of the correlation function, which now
are much easier to generate, since we have a complete and simple expression for the constant

C[d, Ao).

5.6.1 Analytic comparison

There are a few changes of notations needed to compare our results with those from [31]
and [2]. We use tildes for the notations therefrom:
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Chapter 5. Application to the impenetrable Bose gas

1. The Hamiltonian is shifted by a term with the chemical potential,

L
= [ [0,910)0,90) + ¥ )V )T)¥0) - h V@] G110
0

which results in a shift of the energy

E(A) =¢e(N\) — h, (5.111)
and neither affects the position of the saddle point nor changes the asymptotics of the
energy, £(A) ~ A%

2. The distance and time separations between two points in the correlation function (1.7)
are rescaled by a factor of two',

T = 27, t = 2t. (5.112)

3. The phase factor u()\) is chosen with the opposite sign in front of the term zp(\).
However, the correlation function g(z,t) is symmetric with respect to reflection x — —x,
therefore, this difference does not affect the resulting asymptotic expansion.

All these changes are easy to implement in our analysis if we substitute the function
ix

E(A) = exp [—QU(A)} a0 = pN) — éé()\) (5.113)

for e(\).

Negative chemical potential h < 0

In the case of negative chemical potential h < 0, we use expression (5.88) instead of the one
in Theorem 4, since it is expressed in terms of the function e()\), and substitute (5.113) for
e(A). We derive the same asymptotic behaviour, see expression (XVI.9.8) in [2] and (8.8)
in [31], but with a stronger estimate on the corrections. The resulting asymptotic expansion
in the paper is given up to O(z~1/2).

Positive chemical potential h > 0

To compare the asymptotic expansions for positive chemical potential, we use expressions (5.98)
and (5.107) instead of the one in Theorem 5, since they are expressed in terms of the function
e(A). Substituting expression (5.113) for € instead of e(A) and taking into account that now

_ 2 2
W = exp <)‘02Tq > : (5.114)

we obtain

7(Mo)—2
oz, 1) ~ {1 + ) - (2’”2( 0))\2|2 o (3=0%) /2T (it +0) gix(Ro) +ig(o) +iarg T(1-7(\0))
q19” — Ap

X [(A% + ¢%) cos (—:rq + \11(2)\0)> + 2i\gq sin (—xq + \11(2)\0))] +o ($—1/2> } (5.115)

'n [2,31],  and ¢ are also rescaled by VT and T, respectively, for T > 0. We omit these factors, since
that is not important for the comparison.
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5.6. Impenetrable Bose gas in thermal equilibrium: cross-checks

This expression should coincide with the one from [31] and [2], see equations (8.12) and
(XVI.9.13), respectively. These expressions in our notations are given by

7(Ao)—121
g(@,1) ~ {1 +/it(No) - (2(t)2( 0;2; o A5=0")/2T (it (W3 +4%) gix(Ro)+i%o(Ao)
qlq” — Ap

¥ (o) ¥ (o)

X [()\(2) + ¢%) cos (—21:(] + 2) + 2idgq sin (—2xq + 2)] +o ($—1/2) } (5.116)

Here function ¥o(\) is given by equation (XVI.9.12) in [2] and (8.11) in [31],

3 1
Uo(Ng) = Wi +arg'(—7(N\o)) + = ][ sgn(Ao — ) In | — Aol dIn |l — 29(p)|.  (5.117)

— 00

Using the following identity for ir(\g) > 0,

iarg D(1 — 7(X)) = iarg D(—7(\o)) + iarg(—7(\o)) = iarg [(—7(\o)) + %1 (5.118)
we get
exp {7: - % +iarg(—7(N\o)) + % ][ sgn(Ag — ) In|p — Aol dIn |1 — 29(u)| }

= —exp{iarg (1 — 7(\o)) +ip(\o)} . (5.119)

Now, using this relation, we compare (5.115) and (5.116) and see that the asymptotic expan-
sions of the correlation function g(x,t) are the same in the space-like regime (|Ag| > ¢) and
have the opposite sign in front of the sub-leading correction in the time-like regime (|Ag| < q).

5.6.2 Numerical comparison

In order to check our results, especially, the sign in the time-like regime, we compare the
derived asymptotic expansions with the direct numerical analysis of representation (1.15)
performed by Alexander Weifle [41].

Negative chemical potential h < 0

First, we compare the asymptotic expansion of g(x,t) for negative chemical potential, given
by expression (5.3) in Theorem 4. We plot the real and imaginary part of the correlation
function g(z,1t):

o as a function of z for x € [0, 10] for the parameters h = —5, T' = 4 at time ¢t = 1, see
Figure 5.4a.
o as a function of ¢ for t € [1,5] for the parameters h = —1, T' = 2 at distance = = 10,

see Figure 5.4b.

We see that the asymptotic expansion for such choice of parameters works extremely well
already for small z and t.
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(b) Correlation function g(z,t) as a function of t for z =10, h = —1 and T' = 2.

Figure 5.4: Asymptotic expansion of the correlation function g(z,t) (blue) and the numerical
data [41] (red circles, every 5th point is marked on the plot).

Positive chemical potential h > 0

For positive chemical potential, the asymptotic expansion (5.7) has singular points at Ao =
+gq, i.e., for x = +2tq. That is so, because our asymptotic analysis works for \y away from
the poles, which are now at the Fermi points +gq.

The singularity affects the correlation function g(z,t) significantly for wide ranges of x
and ¢ around the singular point, when we plot g(z,t) as a function of z and ¢, respectively.
Moreover, the asymptotic expansion works better for larger values of z and ¢. That is why
we plot the correlation function the following way:

o in the space-like regime, as a function of x € [5,20] for t = 1, h =1 and T' = 1, where
the singular point is at x = 2, see Figure 5.5;

o in the time-like regime, as a function of ¢ € [1,30] for x =1, h = 1 and T = 0.5, where
the singular point is at ¢ = 0.5, see Figure 5.6.
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5.6. Impenetrable Bose gas in thermal equilibrium: cross-checks

We plot separately the leading term of the asymptotic expansion, which we denote g,—1,

gnet (z,1) = A(Xo)(=2it) "7 M0)/2 exp{ —itg® + / gi In|1—20(z)| - |z — 2tz\}, (5.120)
T

—00
and the leading + the sub-leading terms, which we denote g,,—2,

gneo(2,1) = A(No)(=2it) "7 (0)/2 exp{ —itg® + / g—z In|1—29(z)| - |z — 2tzy}
T

—00

_1
x {1+ T()‘O)(l _ 19()‘0)) . (275)7()\0) 2 ei:):2/4t+itq2eix(/\o)Jriga()\o)JriargF(lf‘r()\o))
9(Ao) q |N§ — ¢*|

X [()\% + ¢?) cos (—xq + \11(2)\0)> + 2iAog sin (—xq + \IJ(QO))] }, (5.121)

where A()\g) is given by (5.8). The singularity at Ao = +¢ is due to the function 7(\g) and
the factor |¢* — )\%|_1 in front of the sub-leading correction.

We see good agreement for both the space-like and the time-like regimes even at small
distances = and times t. However, the plots in the time-like regime do not provide any
indication on the correctness of the sign, since the cases n = 1 and n = 2 are indistinguishable
and, therefore, additional verification is required.
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Figure 5.5: Correlation function g(z,t) as a function of z for ¢t =1, h =1 and T =1 in the
space-like regime. The singular point is at x = 2. Asymptotic expansion of the correlation
function g(z,t): the leading term (n = 1, dashed line) and the leading + the sub-leading
terms (n = 2, blue line); the numerical data [41] (red circles).
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Figure 5.6: Correlation function g(x,t) as a function of ¢ for x =1, h = 1 and 7' = 0.5 in the
time-like regime. The singular point is at ¢ = 0.5. Asymptotic expansion of the correlation
function g(z,t): the leading term (n = 1, dashed line) and the leading + the sub-leading
terms (n = 2, blue line); the numerical data [41] (red circles).
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In order to argue that the sign in front of the sub-leading term in our asymptotic expansion
is correct, we plot the real and imaginary part of the ratio of our data to the numerical data,
see Figure 5.7. Since the ratio becomes closer to one for the plot with leading 4 sub-leading
terms (n = 2), the sign in our asymptotic expansion is correct. We also note that the ratio
oscillates around value 0.999, which is away from one. Nevertheless, it gives the relative error
of the order 1073, which, taking into account the absolute value of the correlation function
of order 1078 already for ¢ > 20, is sufficient precision.
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Figure 5.7: The ratio of the asymptotic expansion of the correlation function g(x,t) to the
numerical data [41] as a function of ¢ for x =1, h = 1 and 7' = 0.5 in the time-like regime.
The asymptotic expansion is considered for the leading term (n = 1, dashed line) and the
leading + the sub-leading terms (n = 2, blue line).

5.6.3 More plots

Now, as a bonus, we show a few more plots for the correlation function g(x,t), as a function
of x, when all the parameters ¢, h and T are fixed except for one of them, which we slightly
change:

o different times t =1, 1.1, ..., 1.5 for fixed h = —5 and T = 4, see Figure 5.8a;

o different temperatures T'=4, 4.5, ..., 6 for fixed t = 1 and h = —5, see Figure 5.8b;

o different chemical potentials h = —5, —4.5, ..., —2.5 for fixed t = 1 and T = 4, see
Figure 5.8c.

In all the cases we consider h < 0, since the plots are more visual, although it can be done
for positive chemical potential as well. On Figures 5.8a—5.8c the bluest graphs are plotted
for the same set of parameters, t = 1, h = —5 and T' = 4, as on Figure 5.4a.
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(c) Different chemical potential h < 0.

Figure 5.8: The correlation function g(z,t) as a function of x. The bluest graph on each plot
is g(x,t) for t =1, h = =5 and T = 4, as on Figure 5.4a, and in other colours, when one of

the parameters (time, temperature or chemical potential) changes.
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Lastly, we present the plots with very large distance x and time ¢, see Figure 5.9, which
demonstrates the advantage of the asymptotic expansion formulae over the numerical analysis
of the Fredholm determinant, which becomes extremely difficult to evaluate numerically for
highly oscillating kernels of integral operators.
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Figure 5.9: Correlation function g(z,t) for h = —5 and T" = 1.25: as a function of z for

x € [200,240] at t = 200 on the left and as function of ¢ for ¢ € [200,280] at = = 200 on the
right.
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6 Summary and outlook

In this work, we have studied the long-time, large-distance asymptotic behaviour of the field—
field correlation function g(z,t) of the one-dimensional impenetrable Bose gas in thermal and
non-thermal equilibrium. Starting with a representation of the correlation function g(x,t)
in terms of a Fredholm determinant of an integrable integral operator Vg, we performed an
asymptotic analysis using Riemann—Hilbert techniques.

First, we introduced an integrable integral operator V in a more general setting than
that used in the expression for the correlation function. All functions in the kernel of the
integral operator V are defined by their analytic properties, regardless of their explicit form.
We paid special attention to the function ¥#(\), which, in the context of the impenetrable
Bose gas characterizes the probability of the state with momentum A to be occupied, but
mathematically plays the role of the integration measure.

Then, we used a relation of the logarithmic derivative of the Fredholm determinant of the
integrable integral operator V to an integral involving a solution of a matrix Riemann—Hilbert
problem. We obtained an asymptotic solution of the latter, utilizing the nonlinear steepest
descent method with some modifications [32-35]. Integrating an asymptotic expansion for
the logarithmic derivative, we derived an asymptotic expansion of the Fredholm determinant
for the cases, when the following equations for the measure ¢¥(\) and the auxiliary function
v(A), have either zero or two distinct solutions on the real axis under some assumptions,

L+ 9()) (227N — 1) =0, (6.1)
For both cases, we obtained the asymptotic expansion as a series in z~%2, where leading
and sub-leading terms, as well as a logarithmic correction and an overall constant, are given
explicitly.

Finally, we applied the asymptotic analysis of the Fredholm determinant of the integral
operator V to the operator Vj in the expression for the correlation function g(x,t) of the
impenetrable Bose gas by setting the functions in the kernel of V equal to those in Vj.
This led to an explicit long-time and large-distance asymptotic expansion of the correlation
function including a relatively simple expression for the overall constant in terms of special
functions and simple integrals.

We compared the resulting asymptotic behaviour of the correlation function g(x,t) with
the one derived in [2,31] for the Bose gas in thermal equilibrium, by specifying the function

¥ as the Fermi distribution,
1

- e (58]

The derived asymptotic expansion without the overall constant factor analytically coincided
with that from [2,31] for the case of negative chemical potential A < 0 and for the case of

o (M)

(6.2)
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positive chemical potential A > 0 in both the space-like and time-like regimes, up to the sign
in front of the sub-leading term in the time-like regime.

Next, we compared our asymptotic expansions with numerical data [41] to check both
the mismatching sign in front of the sub-leading term in the time-like regime and the overall
constant factor, and found good agreement.

In summary, we have reconsidered and generalized the results of the seminal work [31]
with the methods of [32-35]. Using improved Riemann—Hilbert techniques, we were able to
fix a numerical integration constant that remained undetermined in [31] and to spot a sign
error in the sub-leading correction term. However, the main motivation in this thesis was
to lay the foundation for generalizations of the work of Its et al. This is now done and the
most challenging technical steps have been performed. Based on our more general matrix
Riemann—Hilbert solution, we will be able to tackle the problem of the asymptotic analysis
at finite coupling constant in future work. In fact, we have paved the way for answering a
number of interesting open questions, some of which are listed below:

1. Interacting Bose gas ¢ > 0. The asymptotic analysis provided in Chapters 3 and 4 is
performed with two additional functions v and g. We kept these auxiliary functions
to be able to deviate from the free fermion point in the future, i.e., to study the
correlation function g(x,t) for the finite coupling constant ¢ > 0, using the method
developed in [38-40].

2. Other correlation functions. The method developed in this work can be applied to
other dynamical correlation functions of the (impenetrable) Bose gas. For example, a
generating function of the density—density correlation function

(onlp(,1)p(0,0)|oN) (6.3)

can be expressed in terms of a Fredholm determinant of an integrable integral operator.
Then the long-time, large-distance asymptotic behaviour can be studied with the help
of Riemann—Hilbert techniques.

3. Generalization of Riemann—Hilbert techniques. From the mathematical side, the Riemann—
Hilbert analysis of Chapters 3 and 4 may be generalized further in different directions:

o Clearly, one can consider more poles (up to any finite number) on the real axis
contributing to the asymptotic expansion, since that only requires the solution
of the linear system in Section 2.9. The complication here seems to be in the
combinatorial complexity of all possible deformations of the initial contour Cy,
and in careful managing the phases of the complex logarithm. Of course, for some
concrete cases it can be done explicitly, but there might exist a closed expression
accounting for the contribution of all the poles in the set S positioned on the real
axis or even in the complex plane, similar to the one derived in [34] in the static
case for p(A) = A.

e On the other hand, the phase function u(\) for more general energy e(\) and
momentum p(A) can have more saddle points, which will involve the construction
of additional parametrices.

4. Asymptotic behaviour in the vicinity of the poles. The asymptotic analysis provided
in this work is valid for the saddle point Ay away from the poles. This is reflected in
the presence of the singularity in the asymptotic expansion in Theorem 5 for A\g = +gq,
and the question of the asymptotic behaviour for x &~ +2¢t remains open.
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5. Other models. Another generalization of the Riemann—Hilbert techniques concerns the
consideration of trigonometric functions in the integration kernel instead of rational
ones, which appear, for example, in the XX spin chain. There are already two Fredholm
determinant representations known for the transverse correlation function

<a+(x, t)o (0, o>>T . (6.4)

The recent expression derived in [19] from the quantum transfer matrix seems to be
more convenient for the asymptotic analysis than the one known before [25]. It was
already studied in the high-temperature limit using Riemann-Hilbert techniques in [43],
but the long-time and large-distance limit of this correlation function is not yet fully
studied in the time-like regime. The Riemann—Hilbert analysis in this case involves
trigonometric functions in the kernel and two saddle points in the complex plane.

6. Spectral function. Using the combination of our asymptotic expansion for large = and
long ¢ and direct numerical analysis for small z and ¢, it is possible to derive the spectral
function

0o oo
G(q,w) = / / gz, t)e! =9 dy dt (6.5)

—o0 —o0
for the impenetrable Bose gas in thermal and non-thermal equilibrium and to compare

it, for example, with pure numerical analysis [44] or with experimental data from cold
atom experiments.

7. Classification of correlation functions. Another ambitious problem is to classify all
possible asymptotic behaviours of dynamical correlation functions of the (impenetrable)
Bose gas, which can be expressed in terms of Fredholm determinants of integrable
integral operators, depending on the filling fraction ¢.
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A Logarithmic derivative of the Fred-
holm determinant

In this section, we prove Proposition 2 from the introduction, i.e., we derive the logarithmic
derivative of the Fredholm determinant

det (id + V) (A1)

Cio

with respect to some parameter 5 and express it in terms of the solution x of the Riemann-
Hilbert Problem 1.
We start with formula

93 1ndet (id + V) = tr{(id — R)d3V}. (A.2)
For convenience we introduce function F'(\, i)

49(p) sin(mv(X)) sin(mv(w))

F\p) = A3
(A ) 5 , (A-3)
see equations (1.20) and (1.21), so that the kernel of the integral operator V reads
F(A,
Vo) = SO B + e(w) B (A1)

A—p

We assume that the only function that depends on the parameter 5 is e(\). Then the
derivative of the function F/()), see expression involving the principal value integral (1.27),
with respect to the parameter j is given for A € Cy, by

dpe —2( i
o i )\ ~5€ Y(N)dg(N) cot(mv(N))

95E(N) = E(\ds(A) — e af

e —2 6_2
_ —E(A)d@(A)—e()\).aﬂ][ ;1:1 u (‘;) e\ ds(\) ][ ;’T‘IM_(“A) (A.5)

Cxo Cxro

Here we use the short-hand notation (2.20) for dg(\) = dglne(A) = — 9 (ixu(X) + g(N))/2.
Then we obtain

F(%M)e()\)e(u){ (E(u) EQN) d
A— U p

IV (A p) =
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Appendix A. Logarithmic derivative of the Fredholm determinant

Here and in the following the principal value integrals over z avoid singularities at z = A, .
Now we transform the two lines on the right-hand side separately. We can modify the first
line with the help of the following trick:

G -ds) _ [ de d) [ 4 ds)
Aw / 2mi (2 = N)(z — p) / mG-NGe-p A7
A [~ N,N]

where T'[A, ] is the contour around the interval [\, ], which is a subinterval of [N, N] for a
sufficiently large integer number N. We also regularize the right-hand side in order to stretch
the contour to 00, so it goes around the integration contour Cy,,

_ de o dg(2) g dz  dg(z2) e
/ 2mi (z = A)(z — p) ' F(C/) 27 (z — \)(z — p) ! - (A8)

F[_N7N] 17:0+

and derive the following expression for the first line of (A.6),

+

o ey (@ = ds(N)

(n) | EQ) e dys) e
i ) / omi (2 — \)(z — p) . (A9)

FQ we(Ne(n) (E(u) E(A)>
E

= —F(\ pe(Ne(p) (

F(Cko) n:0+
For the second line in equation (A.6) we use a similar trick,
dg(p) _ ds(X) / dy  ds(y)(A—p) dg(2)(A — 1)
— = — - 1 z). A10
smnz=a T N0 =) G- NEw (). (A.10)
S

Here contour I'[\, u] is the contour around interval [\, u]. Depending on whether z € Cy, lies
inside the interval (A, x) or not, we obtain the contribution from the pole at y = z, which
corresponds to the last term on the right-hand side.

For a sufficiently large integer N interval [N, N] includes points A and p, and we have

_ dy  dg(y)(A— ) dg(2)(A — p)
| TNl E NG e () ()

We note here that points z = A, 4 are excluded, since the integral over z is a principal value
integral avoiding singularities at these points. Then the last line of equation (A.6) takes the
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form

4z -2y / dy  dg(y)(A—p)
2mi 2mi (y — My — ) (y — 2)
Crg I'[-N,N]
[ 2 ds()O ) . dz 22—\
"] o ()@—Mu—uﬂ”WM(%Hﬁf2mw—mu—x
[ dy  ds(y)r—p)
=2 5276 | Aot

Cxo I'[-N,N]

Lo, ][d»ZGQ(Z)(u—A)

omi (z — p)(z — \) (1 — ]lp[_N,N](Z)> ] (A.12)

Ao

Here we interchanged the signs of the principal value integral and the derivative dg, because
all the integrals along C,, are absolutely convergent. Moreover, the last integral on the
right-hand side goes to zero, as N — oo,

. dz e 2(2) (= \)
lim 95 [ ][ E T (1-1vm() ] = 0. (A.13)

Hence, the second line of equation (A.6) with the same regularization reads

5 3672(2) / dy  dg(y)(A—p)

2mi 2mi(y — Ay — w)(y — 2)
Cxo I'[-N,N]
dz -2 / dy dﬁ<y)(A - M) —ny2
= —€ z -— €
omi¢ ) 27 (y — My — )y — 2)
Cxo I'[—N,N] =0,
dz dy  dg(y)(A—p) —ny?
=2 —e (2 / — e Y
omi¢ ) 2mi (y — My — w)(y — 2)
Cxg I'(Cxy) =0y
dy ds(y)A—p) .2
=2 A A AN S UG . (A.14
/ 2mi(y — Ay — p) ) (8-14)
F(Cko) n=04

Noticing that there are no more singularities at z = X, u, we do not need the principal value
integration anymore. Then in the last equality we recover the Cauchy transform.

Finally, combining everything together, the derivative of the kernel, see equation (A.6),
has the following form:

%vu40=Fuwwuwwﬁ<EW)+E“U | e
I'(Cx)

A dpe)
w2 [N q>}

I'(Cx,) n=0+

(A.15)
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Now we use the following identities, see equation (1.21),

BLNoBal) = ~FOLweel) (1) + 1), (A.16)
B (\o ™ Br(s) = —F(\ we(Ne(j). (A.17)

Thus,

_ dz E}(\)Ss(2;n)Er (1)
95V (\ 1) = / o vt (A.18)
I'(Cx) =0
with

Ss(zm) = %dg(z) [UZ + 2C(z)a+] e (A.19)

Now we go back to equation (A.2) and evaluate tr{RdsgV}. We first substitute expres-
sions (2.3) and (A.18),

tr{ROsV} = /d)\/duR(A,u)ﬁgV(u,)\)

Cry  Cx

(M) EJ(1)Ss(2:m)ER(N)
/ ‘“/ w [ C-NG-w | A

C)‘O 17:0+

Next, we consider the following difference of matrices y, see definition (2.5a),
1 (2 = NFR(EL (1)
X/\—xz:/d Fr(p)ET ( —>:/d,u A.21

Cxo A0

and use as well identity
FL(NFr(W)EL(1)Ss(2mER(N) = tr{Fr(1)E] (1) Ss(2;m)ERr(NFL(A)}. (A.22)

Hence, we get

tr{RI5V} = / dA / dztr{(xw_X(z)(lsf(i;g)ER(A)Fz(A)} . (A.23)
Cxg  T(Cxy)

Using equation (2.6), i.e., FT (A)x(\) = E] (\), we derive

tr{ROgV} = /d)‘ / . Z/\KZER()\)
T'(Cxg) n=0+
/dA / tr{y(2) ((zz;i)f)zz(k)FE(A)} . (A24)
Crng  T(Cyy)

112



The first term on the right-hand side is tr{0sV'}, see equation (A.18), therefore, from equa-
tion (A.2) follows that

aglndet (id + V) = / dA / trix(z) ((Z;ﬁ)fﬁ(A)FE(A)} . (A.25)

C>‘O 77:0+

Finally, we consider the derivative of the inverse matrix ™', see equation (2.5b),

(x(2) = /d/\%. (A.26)

Cxr

Substituting this equation into the one above and using the identity x ™ x' + (x ) x = 0, we
derive

J31n det(ld +V)= / dztr{x'(2)Ss(z;m)x " (2)} : (A.27)

Ao
(C)\O ) ,’7:0+

After substitution of the expression for Sg(z;n), see equation (A.19), Proposition 2 is finally
proved.
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B Construction of the parametrix

B.1 Differential equation

First we construct the solution D(() of the local Riemann—Hilbert Problem 6, but with the

constant parameters m, n and 7.
The matrix D is the unique solution of the following Riemann—Hilbert problem.

Riemann-Hilbert Problem 9. Determine D(¢) € C?**? such that

1. D(C) s analytic in C\yp and extends continuously from either side to vp\{0}, see

Figure B.1.

2. On the contour yp\{0} the boundary values Dy (() satisfy the jump condition
D_(¢) = D+(¢)Gp(C)

with the jump matriz Gp(¢) given by

I +me iCe2miT =25+ e TR,
o I+ ne*™o Cce TRy,
D(g) B 12 + neiCQCQTU_, C € e%iR+7
L +me (2ot ¢e ef%RJr.

3. D) =I+0(¢Y) as ¢ — oo up to tangential direction to vp.

4. As ¢ — 0
D(¢) = [Do + O()] ¢

for a piecewise constant matriz Dy € C2*2,

The expression for the jump matrix follows from equations (2.61) and (2.72).
haviour at ¢ = 0 follows from equation (2.62).
Now we introduce matrix

E(¢) = D(Q)e /3¢

whose jump matrix, due to Proposition 5, is now a piecewise constant matrix:

3mi

I, + me?™Tgt, (ee1 Ry,
() Iy 4+ ne*™ g~ Cce TRy,
E = i
Iy +no™, CeeTR+,
Iy +mot, (ee TR,.

(B.1)

(B.2)

(B.3)

The be-

(B.4)

(B.5)
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Figure B.1: The jump contours vp on the left and vz on the right. Here Ry = (0,00) and
R_ = (—00,0).

Also, we note that E(¢) now has an additional jump on R_ := (—00,0), due to the cut in
the transformation D — E, see equation (B.4).
Since the matrix D has no jump for real negative (, it follows that for { € R_

(¢ —i0)™

— _ _ —2mito®
Di(Q)=D-(¢) = E() —E—(C)i(cﬁo)mz =E_(Q)e ) (B.6)
i.e., the jump matrix for ( € R_ reads
Gg(() = e~ 2miTo” (B.7)

We denote the jump contour for the matrix E as vg = yp UR_, see Figure B.1.
From the behaviour of the matrix D(() at the origin, see equation (B.3), it follows that
E(() is bounded at ¢ = 0. Finally, matrix E(¢{) has the following asymptotics as { — 0o:

E(C) = (I + O(¢™Y))e 77 /¢, (B.8)

It turns out that the solution of such Riemann—Hilbert problem with piecewise constant
jump matrix is related to a Fuchsian differential equation. To see it explicitly, we introduce

matrix ¢(¢),
p(C) = E'(Q)E(0). (B.9)

Then for ¢ € vg\{0} we have

p-(¢) = EL(QEZ(0)
= (B4 (Q)GE(C) + E+(¢)GE(C) G (OB (¢) = EL(OEY (Q) = ¢+(¢). (B.10)

Here we used the fact that the jump matrix is a piecewise constant matrix, i.e., G'z(¢) = 0.

Therefore ¢(() is holomorphic in C\{0}. Since it is also bounded at { = 0, Riemann’s theorem

on removable singularity ensures that ¢(¢) is holomorphic in the whole complex plane.
When ¢ — oo, we have

E(¢) = [12 + Ecl +0 (gZ)] e iC?0" /20 —T0" (B.11)

which implies

E(C) = oiPo7/2¢To" [12 _Ea g (Cz)] (B.12)
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+ [12 + B, (g*)} <—igaz - 20) e iC? 0 2¢=T0" - (B.13)

Therefore, when { — oo,

PO = (=ico* =0+ 0 (¢71)) (R - 2 +0 (¢ )
= —iCo* —i[E 1,0+ 0 (¢7). (B.14)
Then function
Q) +iCo" +i[E1,07 = 0 (¢7) (B.15)

is an entire function bounded at infinity. Due to the Liouville’s theorem, this function must
be constant, and therefore it is zero. Then

o(Q) = E(QE™(Q) = (~¢o* = i[B1,07]), (B.16)
and we end up with the following Fuchsian differential equation

E'(Q) = (=Co* —i[E_1,07]) E(C). (B.17)

Denoting the matrix elements of £_; as follows,

E_, = (CCL Z) , (B.18)

(E_1,07] = (20(; ‘02”> . (B.19)

Hence, the differential equation (B.17) is equivalent to the following system of differential
equations:

we get

{ E1;(¢) = —iCE1;(C) + 2ibEy;(C), (B.20)

Ey;(C) = iCE;(C) — 2icEn; ()
for j =1,2.
Differentiating both equations and substituting the first derivatives from the system, we
obtain the second order differential equations

E{;(¢) = =C*Ey;(C) + (4be — ) E15(¢), (B.21)
EY;(¢) = —C*E2;(¢) + (4bc + 1) Ex;(C). (B.22)

The last step is to write these second order differential equations in the canonical form.
We introduce new variable §; and & for E7; and Egj, respectively:

—V2eT¢, = — V27 d(; (B.23)
G=v2eT( = =2 (; (B.24)
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and denote u1;(&1) == E1;(¢) and ug;(§2) := Ea;(C) for j = 1,2. Then we obtain the second
order differential equations in the canonical form:

" . 1 52
" . ]‘ 62

for j =1,2.

B.2 Parabolic cylinder functions

The solutions of the differential equation

22
v (2) + (V + % — 4> y(z) =0, (B.26)

which is equivalent to (B.25), are called parabolic cylinder functions, for example, see [45, §8].
We define the parabolic cylinder function D, in terms of confluent hypergeometric function

22 - 2
Dy(z) =22 Ve~ T2 ¥ (“2”) g; Z) : (B.27)

There are four (linearly dependent) functions satisfying equation (B.26), namely, D, (z),
D,(—z), D_,_1(2) and D_,_1(—2z).
The asymptotic series for D, for large values of |z| is given by

2 [Qn (Cv/2)n(=1/2 - v/2) 2
_ v —= n n —2(N+1)
D,(z)=2"e" 4 7; (=222 + 0 (\z\ )] , larg z| < 3w/4,
(B.28)
where (a), denotes the Pochhammer symbol. There is also a useful relation
. 2 i(v
Dy(2) = €D, (—2) + ™5 D, (—iz), (B.29)

I'(=v)
which allows us to consider the parabolic cylinder functions with arguments being not only

in the region |arg z| < 37/4.

B.3 Construction

Now we introduce

p = 2ibe (B.30)
and look for the solution of the Riemann—Hilbert problem using the following ansatz
E(C) = Bo(C) - L. (B.31)

Here matrix Fy((¢) is given by

(B.32)

o= ( Dp(V2eQ) e D—p—l(\/i‘?_?O) ,

Cc21 D/H_l(ﬁe%i() D_p(\/iei%lC)
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c12, c21 are some constants and L, are constant matrices in each region v € {I, 11, III, IV~ , IV ' }.
We recall that there is a cut for { € R_, therefore region IV is divided into two parts, see
Figure B.1. At this point it is not yet guaranteed that the ansatz is suitable: we still have to
satisfy the jump and the asymptotic conditions, which will determine the constants ci5 and
co1 and all the matrices L, .

B.3.1 Region II

First we study asymptotics of the matrix E, as ( — oo in the region II, i.e., for —37/4 <
arg ¢ < 3m/4, using asymptotic expansion (B.28),

il i? 1 mi(p+1) i¢2
2§eTpCpe_CT c12 2_%6 1T (Pler _9
E(Q: —1 mi(p— i i i (1+0(¢ - L
(021 2% ¢ G (p*le_%2 2_§eTpC*pegT2 ( ( ))
_ CIQG% _
1 + O (C 2) \/§C (1 + O (C 2)) Tip po” z iC2D'z
= i e 22 Cpa e 2 LII- (B33)
Cc21€ 4 _ _
40 1+0(C)
On the other hand, we have
1fa b _ _i%e®
BO)=|k+¢ (C d) +0(¢ 2)] e T (T, (B.34)

see equations (B.11) and (B.18). Therefore, we get that p = —7, a = d = 0. The matrix Ly
is then given by

mirt r1o®

Lit=e4 22, (B.35)
and coefficients b and ¢ read
6126%i 0216_%i
b= , c= . B.36
Moreover, since 2ibc =: p = —7, it follows that
C12C21 = iT. (B.37)

Thus we derived Lig, the relation between c12 and c2; and checked the ansatz in region II.
Now we use the jump conditions to derive the solutions in the rest regions.

B.3.2 Region I
For ¢ € e%iRJr the jump condition (B.2) implies that

1 0
n 1

1 0 1 0
Ly =Ly - (n 1) = (nQ—T 1> - L, (B.39)

where we commuted the matrix L to the right, using the explicit expression (B.35).

Eo(¢)L1- ( ) = Eo(¢) L. (B.38)

Then
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Then the solution in region I is given by

E(¢) = Eo(¢) L
_ D_,(vV2e7¢) —n27 "¢ DT—l(\@e_%C) c12 DT—1(\/§¢_%C)
co1D_r—1(vV2e1¢) —n27" D.(v2e 1() D, (vV2e 1¢)
Next we use relation (B.29) in order to rewrite the parabolic cylinder functions in matrix

elements (1, 1) and (2, 1). In particular, we use relation (B.29) twice for v = —7 and
v = —7 — 1 to derive relations

) Ly (B.40)

iV2m _gir

Dor(z) = e ™ D_r(=2) + T e Dy_1(~i2), (B.41)
D_,1(2)=—e ™ D_._(—2) + F(\T/T_;rl)e_?DT(—iz). (B.42)

Substituting z = \@e%ﬁc and expressing the first term on the right-hand side of each equation,
we obtain

efﬂ'iTD_T(\/ief%C) — D_T(ﬂe%ig) — h/?(j_)QDT—l( - ﬁe*%{g)j (B.43a)

o _ 3mi i 271'6_m
e D1 (V2T = Do (VAR Q) -

2

D,(—+v2e"5¢).  (B.43b)

Here we already recognize the matrix elements (1, 1) and (2, 1) in expression (B.40) if we set
coefficients c12 and c91 to

iv/2127e 5" 2-Tnl(1 + 1)e’s
Cl2 = ——— > Co1 = ( ) . (B.44)
nl(r) Var
Then we obtain
. 3ri i
e ™ D_ 27 14 c1o D,_ 2714
EI(C) _ < o T(f E%ﬂ 12 Ur 1(\(2 C)) - L. (B45)
—e C21 D_T_l(\/ie 4 C) DT(\/§e 4 C)

Now we can use the same asymptotic series for the parabolic functions, see expression (B.28),
since all the arguments are again in the region, where the asymptotic expression works,
namely, for ¢ in region I, i.e., arg( € (7w /4,3m/4),

arg (vV2e~T() € (-1/2,0),  arg (V2e () € (0,7/2). (B.46)
Thus, as ( — oo, we obtain
T miT iCQ T—1 wi(T—1) i(2

272¢ 4 (Te 2 cp272e 1 (Tlex _

EI(C) = T+1 7i(141) i§2 T miT i§2 ’ (1 + O (C 2)) ) LH
12 2e 1 (TTlem 22¢” 4 (Te 2
1 61267rIi
. z i 2
= L Ve e (1+0(¢?)). Ba7)
c21€ 4

vV

Substituting explicitly Ly, see equation (B.35), we derive the correct asymptotics, see equa-
tion (B.34).
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B.3.3 Region III

Now we proceed the same way in region III, i.e., for arg¢ € (—37/4,—m/4). The jump
condition for ¢ € e” TR, implies

Eo(¢) Lt = Eo(¢) L1 - ((1) ?) = L= Ly- ((1) T) — ((1) me> L. (B.48)

Then

Emi(¢) = Eo(¢) L

_ ( D_(V2e5() e Dy (V2e ) +m2 DT(ﬂe?C)> L. (B.49)
ca1 D 1(vV2e7¢) Do (v2e7TC) +m27ca D 1(v/2e7¢)

The coefficient in front of the second parabolic cylinder function D_; in the matrix element
(1, 2) divided by c12 reads
m2T mnI‘(T)eWTiT B —ZiI’(T)e_WTiT sin(n7r) V2re™ 7 (B.50)
c2 iW2m iv2r o T(1-7)" ’
Here we first substituted expression for ¢, see equation (B.44) and, in the second equality,
used that

1 1
L+9(@ — 1)1+ (e 2w 1) 1-4sin(m)d(l—1)’

eQﬂ'iT _

(B.51)

see equations (2.41), (2.31a) and (2.31b). Therefore, using definitions (2.73), we obtain
mn = —4sin?(mv)(1 — 9)9 = e ™2™ — 1. (B.52)

Similarly the coefficient in front of the parabolic function D_,_; in the matrix element
(2, 2) reads
M2y — mnD(T + 1)67% _ C2i0(r +1) sin(m')e_%h i Ime 2" . (B.53)
V2 V2 I'(—7)
Here we substituted expression for ca1, see equation (B.44), and identity for m - n, see equa-
tion (B.52).
Then we get the following combinations of the parabolic cylinder functions in matrix
elements (1, 2) and (2, 2),

miT

Dot (V20 = YD (V26T 0) (B.54a)
D,(V2e~%¢) + %D_T_l(ﬂe’rg). (B.54b)

Using identity (B.29) now for v =7 — 1 and v = 7, we derive relations

V 27T miT

Dy 1(2) = =™ Dy _1(—2) + meTD,T(—iz), (B.55)
D (z) = e™ D (—2) + li(_zj)eTD_T_l(—iz). (B.56)
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Substituting z = ﬁe3%§ and multiplying both relations by e™™7 and the first relation

additionally by —1, we obtain

_e_WiTDT—l(\/ie%C) = D‘r—l(\/ie_%iC) - F(\]_/T_T:_)

27T _ miT

e T D, 1 (V27 ¢). (B.58)

i

e” " D_, (V27 (), (B.57)

DL (VAR = b, (Vi) + T

Here we recognize again the matrix elements, see equations (B.54). Therefore,

D—T(\/Ee%iC) _eiﬂ-iTCl2 DT—I(\/ie?TC)> . LH

i . 3mi B59
co1 D_r_1(v2e4() e ™D, (v2e71 () ( )

Emi(¢) = <

which is again suitable for the asymptotic expansion (B.28), since for arg( € (—3n/4, —m/4)
arg (V205 () € (—7/2,0),  arg (V2T () € (0,7/2). (B.60)

The asymptotic expansion coincides again with the one we need, see equation (B.34).

B.3.4 Region IV

Finally, we construct the solution in the region IV from the solutions in regions I and III. We

recall that the matrix E(¢) has a cut for ¢ € (—o0,0], therefore we need to check that the

jump condition on the cut is satisfied, as well as the asymptotic expansion in region IV.
First, using the jump condition for ¢ € e%RJﬁ we get

1 me?m7 1 me2mit
Eo(C)LI*V=Eo(<)L1-<0 . ) = LI+V=L1-<O ) ) (B.61)

Substituting the solution in the region I, see expression (B.45), and commuting Ly to the
right, we obtain

1 me27ri7
Eﬁv<<>:E1<c>-<0 ] )

_ < e*”iTD_T(\/ie_%C) ' C12 DT—1(\/§Q_?C)> (1 m2Te2”iT> L

—e ™My Dy (\@ef%g) DT(\/ﬁe*%C) 0 !
_ e ™TD_ (\@e*%C) ) ci2 Dr—q (\/ﬁei%o + szeWiTD—T(ﬁei%C) - L
_ef7ri7'c21 D_T_1<\/§e—%4) DT(\/ie_%C) — m27'eﬂ’i‘rc21 D_T_l(\/ie_%c) II-
(B.62)

Substituting again ci2 and o1 and using identity (B.52) for the product m - n as before, we
get the following combinations of the parabolic cylinder functions in the matrix elements (1,
2) and (2, 2),

miT

7 2me 2 3xi
D‘rfl (\/ie_Zg) - F(#ET)D,T(\/?G_TC), (B63)
D, (V2e 5 ¢) — @D_T_l(ﬂe—‘lﬂg)_ (B.64)

I'(=7)
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Now we use again identity (B.29) for v =7 — 1 and v = 7 with z = \@e_%(. We derive
relations

i : i Vv 2 wiT i
Dy 1 (V2eT¢) = —™D, 1 (V2eT T () + ﬁeTD—T(\@e*%C)v (B.65)
i s i i 2 miT i
D,(V2e5¢) = e”‘TDT(ﬂe_STC) + Il‘( ﬂ)eTD,T,l(ﬂe_gTC). (B.66)
—T
Expressing the first terms on the right-hand sides, we get
: i i V 2 wiT i
—e™ D, (V2e () = Dy (V2eTE () - F(l—”)eTD—T(x@e‘?’Tc), (B.67)
-7
i _ bmi _omi V2T i _ 3mi
e’ DT(\@e 1 ()= DT(\/ie 1() — F(_7_)6 2 D,T,l(\/§e 4+ (). (B.68)

Therefore, we obtain

Smi

e_”iTD—T(\/ie_%C) ‘ —c19e™T Dy (V2e 1 ¢

+ = .
EIV(C) - (_e—ﬂ'iT621 Dfrfl(ﬂe_%C) eﬂ'iTDT (ﬂe—%g)

)> ‘Lu.  (B.69)

Using the asymptotic expansion (B.28) again, we check that the asymptotic is correct, i.e.,
coincides with one in (B.34).

Now we use the jump condition for ¢ € e_%]&r,

1 0

_ _ 1 0
Eo(g)LIV : (nGQﬂ‘iT 1> = EO(C)LIH' = LIV - LHI . <_n62ﬂ'i7’ 1> . (B70)

Then we substitute Ly in terms of Ly, see equation (B.48),

_ 1 0
Epn(¢) = Eo(¢) - L (_nezm 1)
D_.(V2e5()  —e ey Drly (V265 () 10
= ) € Ve Ly - o ). B
ca1 D_r_1(vV2e4() ™™D, (V2e’1 () —ne 1
Commuting Ly to the right, we obtain

D*T(\/EG%C) —e_ﬂiTC12 DTI(\/ieSZIC)> < 1 0) . LII

E[_V(C) - <621 D_T_l(ﬁe%ié_) e_ﬂ.iTDT(\/ie%"i<> _n277627ri”r 1

_ D—T(\/EG%C) + n2_7e7ri7'012 DT—l(ﬂe%C) _e—7ri7—cl2 DT—l(\/iegTTiC)
21 D_r_1(V/2eT¢) = n27Te™ D, (v/2e'T () ™D (265 ()

Substituting again cjs and c2; we get the following combinations of the parabolic cylinder
functions in the matrix elements (1, 1) and (2, 1),

) -Ly. (B.72)

miT

i iv2me 2~ 3mi
D_-(v2e%¢) + % Dy_1(v2e50), (B.73)

i 2 % 3mi
D_r_1(V2e%¢) — ﬁDT(ﬂeTC). (B.74)
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Substituting z = \/§e5%( into equations (B.41) and multiplying both equations by e™"
we get

)

™D, (V2T () = D, (V2T () + %DH(&TC), (B.75)

2me 2

mm(ﬁefg). (B.76)

e’riTD—T—1(ﬁe%C) =-D_ (\@e%g) +

Therefore, we obtain

eTD_,(V2e'T () —e ey DT_I(ﬁeTO> - Ly (B.77)

Fiv(Q) = <—e”17021D—T—1 (V2e°T¢) e~ ™D, (V2e'T ()

We note first that the asymptotic behaviour as ( — oo coincides with (B.34). Also the jump
condition on the cut is satisfied, see equation (B.6) and expressions (B.77) and (B.69)

B (Q)e*™™ = En(0). (B.78)

This concludes the construction of the parametrix. We explicitly checked the asymptotic
condition in all the regions and the jump condition is satisfied by construction.

Altogether, we derived that the solution of the local Riemann—Hilbert problem with con-
stant m, n and 7 is given by

E() =Eo(¢)- Ly, ve{LILILIV_, IV} (B.79)

with Ey(¢) given by (B.32) and

Lit=e4 22, (B.SO)
see equation (B.35),

1 0 1 m
Ly =Ly - (—n 1) . L= Lu- (0 1) ; (B.81)

see equations (B.39) and (B.48), and

_ 1 0 1 me* 7
LIV = L - <_n827ri7' 1) ) LI+V =Ly (0 1 ) ’ (B82)

see equations (B.70) and (B.61). Expression for the matrix L in the main text is given in
equations (2.80). Also, in the main text we introduced

b1g = Clge%i, bo1 = co1e” 1, (B83)

compare equations (B.44) and (2.79).
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C Pole contribution: the solution of a
linear system

In this section, we derive the linear system (2.94) for vectors X;E, 73 =1,..., njt and Y;t,
j =1,...,n; which determine the matrices C;E, and Djj-E in expression
- + — +
< O W of & Dy Df
SO\ = I + - L+ — + et C.1
A)=h Z)\ T P jzl)\—rj_ jZIA—rj (©1)

due to formulae (2.93).

C.1 Derivation of the linear system

We start with the regularity condition on ®, see equation (2.85). In particular, at A = Ej,

forjzl,...,nz,

DA (M (V) = SV (M (V) (C.2)

is regular.
We introduce for convenience

c*

Szf,ta()‘)zs()‘)*ﬁ, j=1,....nf, (C.3a)
Y
DT

SN =8N - %, j=1.ng (C.3b)

J

and the residues hzt/r, see equations (2.97) and (2.98) in the main text.

Then the regularity condition as A — Ej can be written as

.
<S+ () + ch£+> (H(e]) (A — O (e}) ) (12 — e 2(NQF (A a+)
CHI(Enhf ot S )H(€+)h+ Lo (a9

N ()\ )2 A A eF

ot + O(1). (C.4)
A=tf

+C+ aA{ (\ )e‘Q(A)Qj()\)()\—Ej)}

A t;
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Appendixz C. Pole contribution: the solution of a linear system

Here we substituted Mj , see equation (2.49a) and used that the residue at €+ is hZ], ee
equation (2.97a). Thus, the regularity condition implies that the coefficients 111 front of the

second and the first order pole at Kj forj=1,... ,nZ’ are zero, i.e.,
CrI(¢f o™ =0 (C.5)
and
CIINE) = hi S (EN(E o™ + CFIU (6)hf o™ (C.6)

Here we already used that the derivative in the last line of equation (C.4) must act on the
matrix II, otherwise, due to the condition from the second order pole, it gives zero.
The first equation implies that the matrix C;f has the form

0 = _
+ _ 10+
Cj = (0 *> II (Zj ), (C.7)
and from the second one it follows that
CHII(eh) (I = T (T (E) )bt 0™ ) = by SE (0TI ot (C.8)

Multiplying from the left by (Iy — T (¢)IT'(¢] )hj ;o)™ and using that

ot (I — Hfl(ﬁj)ﬂ'(@')hzja"')_l = UZj0'+ (C.9)
with
hy
o = J , (C.10)

£,j _
1 - hy; [H 1(@})11/(5;)}21

we get equation

CJ-FH(E- ) = JMSJJ (€+) (Ej-*)crf (C.11)
The same way we analyse the regularity condition at £; for j = 1,...,n, and r for
j=1,... . At the end, we get the following system of equatlons
CII(L7) = oS5 ()L o™, j=1,...,np, (C.12a)
DII(ry) = oS, (h)I(ry )0 ™, j=1,...,n; (C.12Db)
with coefficients o given by
h. h
O-z_] = + lg"]+ + ) O-q—j_‘j = + T7J+ T 5 (C].Sa.)
P o — 12 ’ . — !
L= Ry [ ehH (] )}21 L= Rt [ e () )}12
h, h .
D05 = . lz’j_ g O = 1”_ — (C.13b)
1= hy [t )] . 1=y [0 (I (7 )}21

see equations (2.96) in the main text.
The conditions at the second order poles give the form of the matrices C;E and D;-E,

Cf = <8 I) (e, Df = (: 8) (), (C.14)
Cr = (: 8) n(e;), D; = (8 :) I (r;). (C.15)
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C.1. Derivation of the linear system

We rescale these expressions by the corresponding coefficients o and denote the unknown
entities of the matrices by vectors X* and Y=, see equation (2.93),

Ch=of (0, Y I '(e)), Df = (X[,0) 7 (r)), (C.16)
Cy =0y, (X5,0) (L), D; =0, (0,Y;) T (r}). (C.17)

Now we substitute the definitions of Slftj and Srij,

see equations (C.3), into the system (C.12),

and get, for example, for Cj

CHTI(eh)
j i’ +\ _ +y 4
3= (0,Y]) =11(¢))o
7-]
n} nt n, _,_ _ ny _ _
ZZ C:H(@) Z D;H(le) ZZ C 10(4) Z Dy 1(ry,) (C.18)
+ _ )t + _ _+ + _ - + — :
1}3;1, & =4 =G i G i G
J

Then we substitute everywhere expressions for C’ji and D;-*L in terms of Xj[ and in and use
the following identities

(X57,0) T ()Mo = [T ()1Go)],, (0.X5) (C.19)
(o,in) I (AT (p)o™ = [T (ATI()] (o,y}) (C.20)
Therefore, we derive equation
(0,Y]) =11(¢))ot
nZ’ of “Lpt + nt ot “1(pt +
Z 4k [Hfﬁgk )fl:[r(gj )} 21 (O,Y]j) n Z rk [HZJF( f )T‘Jr( ] )} 11 (O,X;)
/’z;; J k=1 J k
e opg [T (G)TI(E]) r O [T (g TI(E)) _
2 ék[ E;rfg }11 <O’Xk)+k§1 k[ eji’rk }21 (Ova> (021)
Setting
Wi = I(Eh)o " = (Ei%;) . i=1,...nf, (C.22)

we get the first set of equations in the system, see equation (2.94a).
Exactly the same way we can derive the set of equations for D; . For C’; and Dj+, we
need the second pair of identities

(XF,0) T (W)™ = [T (VI (X
(0,YE) I (W ()o~ = [ ()TI()], (Y

,0) : (C.23)
,0) : (C.24)

but derivation of all the equations in (2.94) is the same.
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C.2 Calculation of matrix elements and residues

Here we provide a general analysis of a 2 x 2 matrix S of the form

L R
4
SN =hLt 3=+ 53—

(C.25)

given that matrices L and R do not depend on A and det.S = 1. Here we derive the matrix
elements of S™(X\)S’(\) and calculate the residue of this matrix at A = £ and A = r.
First we denote the columns of the matrices L and R as follows,

L = (L1,L2), R = (R1,Rz2) (C.26)

and evaluate the determinant of the matrix S explicitly

det L det R tr L tr R det (L, Rg) + det (Ry, Lo)

det S(\) =1 C.27
IO e Sy A G W Al way Ll wps 0= —7) (C.27)
Then the condition det S = 1 implies that det L = det R = 0 and
det (L1, R det (R, L
(r—10)
det (L1, R det (R, L
iy S0 Re) et Ry, Lo) _ (C.29)
(r—10)
Therefore, it must hold that
tr L +tr R = 0. (C.30)
The inverse of the matrix S is given by
L R L R
S0\ = Tt ey Thoi s (©.31)
_ La Ry Ly, n Ru '
A= AN—r A—0 AN—r
and the derivative of the matrix .S by
L
SO = — f (C.32)

A=02 (A—1)?

In the main text we need explicit expressions for all the matrix elements of S~ ()\)S’(\),
when we evaluate the integral over v, see Sections 3.4.

(STNS' W)y = — ( AL_”W - i”r)z - Adit%;(’f{ _Q)r) ( Adit%(zilf%?, (C.33a)
(S1@ﬁ%&hf:—M€iP—(;?%2+“&fzﬁgﬁi§ﬂ, (C.33b)
(ST (V) = — ( AL_mW - )\R_er)g - (T(; f) 65126&(1:1522) , (C.33¢)
(W), = L Raz det(L1, Ry) detLaR) o

A=02 A=r2 A=00=72" A=02\-1)
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C.2. Calculation of matrix elements and residues

Hence, the Laurent series of S™())S’(A\) around A = ¢ reads

ST () = — (()\]\—@6)2 + (;E) + 0(1)) , (C.34)

where matrices My and N, are given by

. L det (Ll,RQ) det (LQ,RQ)
Me=b=— (—det (L1,R1) —det (Ls, Ry) (C:35)
and
N, — 1 det(Ll,RQ) + det(LQ,Rl) 2det(L2,R2) (C 36)
R —2det(Ly, Ry) — det(Ly, Ry) — det(La, Ry) | ° '

Thus, for a matrix F'(\) regular at A = ¢, we derive

res (i {SFNS (V) = tr {@ (S‘I(A)S(A)F(A))}
=—tr{My-F'({)+ N,-F(0)}. (C.37)
Similarly, the Laurent series of S7'()X)S’()\) around A = r reads

STV = — ((AM’;)Q + (ANTT) + 0(1)) , (C.38)

where matrices M, and N, are given by

. 1 det (Lz,Rl) det (LQ,RQ)
Mr=R=1775 (— det (L, Ry) —det (L1, Ry) (C.39)
and
N. — 1 det(Ll,Rg) —i—det(Lg,Rl) 2det(L2,R2) (C 40)
" (r—1)2 —2det(L1, Ry) —det(Ly,Rg) — det(Lo,Ry) ) ‘

Therefore, for a matrix F'(A) regular at A = r, we obtain

res (i {SVFMS (N} ) = tr {§e§ (Sl()\)S(/\)F()\))}
=—tr{M, - F'(r)+ N, -F(r)}. (C41)

This expression can be derived from the one for the residue at A = ¢ by changing L <+ R and
L.

Remark In the main text in Chapter 4, Sections 4.1-4.3, where we consider the case of
two poles on the real axis in three regimes. The condition det S(A) = 1 is satisfied, since
we preserve the determinant of the solutions of all the matrix Riemann—Hilbert problems
including ® and II, see equation (2.86).
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D Functional identities

In the main text we have three parametrizations for the function u(\) and its derivatives:
1. in terms of energy £ and momentum p, see definition (1.23),
2. in terms of the function d()\), see equation (2.20),
3. in terms of the local parametrization w, see equation (2.66).

Of course, all of them are identical, but some of them appeared to be more convenient in
different situations. Here we derive some identities between these representations and express
functions p(\) and e(XA), w(A — Ao|Ao), and d(A) in terms of each other.

First, we note that

W) =pN) ~ o) = W 00) =P () — <) =0 (D.1)
which implies that (o)
t _ p/ )\0 _
L] (D.2)
Then function u(A|Ng) := u(\) reads
u(AAo) = p(A) = f(Ao)e(A). (D.3)
Therefore, we have
W) = Byu(Ado) = p'N) — Fa)e' V), (D.4)
u"(\) = Bu(Ao) = p(3) — FRo)e" (), (D.5)
u"(A) = 8u(A o) = " (A) = F(Ro)e" (N). (D.6)
In particular, it follows that
Aot (MolAo) = u" (M) = f'(Ao)e"(No)- (D.7)

Now we consider the same derivatives expressed in terms of local variable w(A — Ag) :=
w(A — Ao|Ao), see equation (2.66)

w(AAo) = u(Xo|Aa) — w?(A = Aol Ao). (D.8)

First of all, we note that w(0|Ag) = 0. Then we obtain

W'(A) = —2w(A = Ag)Brw(A — Ag), (D.9)
u"(A) = —2w(A — o)W (A — Ag) — 2 (' (A — Ao))?, (D.10)
w"'(A) = —2w(X — Ao)w"” (A — Ag) — 6w (A — Ao) (" (A — Ao))>. (D.11)



Appendixz D. Functional identities

In particular, we get
u’(Ao) = 2 (w'(0))* (D.12)
and u///()\o) 3w1/(0)
_ , (D.13)
u(Xo)  w'(0)
Finally, we consider partial derivatives of the function d(\) with respect to = and .
First, the partial derivative d,()\) is given by

200 = —5 (')~ TR0 (V). (D.14)

Then, in particular, from u/'(A\g) = 0 it follows that
d.(M) =0 (D.15)

and d)(\o) can be expressed in terms of w'(0),

dl(%0) = =50 (o) = i(w(0))> (D.16)

We use these two identities in Section 3.5, when deriving the asymptotic expansion of the
logarithmic derivative of the Fredholm determinant with respect to parameter x.
Next, we consider Ao-derivative, dy, () := dy, Ine(\), explicitly given by

iz
dAO(A>::-%5550u(A). (D.17)
Its derivatives are given by
U lx / /
2 (A) = 5 (o) (), (D.18)
iz
ho (V) = ' (Mo)e" (V). (D.19)

In particular, substituting function f, see equation (D.2), and comparing the result with (D.5)
and (D.10), we obtain

ix ix .
dy,(Mo) = ) (" (M) = f(Mo)e" (M) = 5“"()\0) = —iz(w'(0))% (D.20)
All the above, for example, leads to the following identity

oy 3@(0)  1d5 (M)
8,\0 Inw (0) - 9 w’(O) 9 dl)\o()\O)

(D.21)

which we used in the main text, see equation (3.85) in Section 3.5.2. Indeed, first using
equation (D.12) and then equations (D.5), (D.6), (D.19) and (D.20), we get

1 1 8 1/ )\ )\
02 In/(0) = 503, In [2 (' (0))°] = 50 In(~u"(Nolo)) = W

_ P"(M0) = f(Mo)e" (Mo) = f'(M0)e" (Mo) _ u" (o) 5, (M)
2u” (Aol o) u(Xo)  dy,(Ao)

(D.22)

Finally, we substitute expression (D.13) and obtain identity (D.21).
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