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1 Introduction

Condensed matter physics seeks to understand the collective behaviour of a large number of
interacting particles, which are mathematically described by many-body quantum mechanics.
These systems exhibit a rich variety of collective phenomena, ranging from magnetism to
superconductivity, and understanding their microscopic origin remains one of the central
challenges in the field. Even in those cases, when systems are spectrally equivalent to non-
interacting fermions, extracting meaningful information remains sometimes a non-trivial task
due to the complexity of the quantum mechanical description.

Among the most important quantities to study are dynamical two-point correlation func-
tions, which describe how physical properties of the system evolve in space and time. These
functions not only encode information about the system’s excitations and response to ex-
ternal perturbations, e.g., the electromagnetic field, but also provide a bridge between the
microscopic quantum mechanical description and experimentally observable quantities. From
the point of view of the experiment, these correlation functions are especially interesting at
finite temperatures and in the long-time, large-distance limit.

However, the calculation of dynamical correlation functions of interacting many-body
systems by means of standard methods of theoretical physics is extremely hard. Usually, it
relies on approximate methods, such as mean-field theory or perturbation theory, which ex-
pand solutions around non-interacting or weakly interacting regimes, as well as on numerical
methods, for example, the density matrix renormalization group. These methods often fail to
provide a reliable description of observables when attempting to explore strongly interacting
systems, phenomena that go beyond the perturbative regime and, in the case of numerical
methods, for long times of observation of the system.

For the special class of integrable models significant progress has been made in under-
standing the structure of their spectrum (e.g., the energy of ground and excited states),
thermodynamics (macroscopic properties) and correlation functions. For instance, for the
XXZ spin chain and the Bose gas with pairwise delta-function interaction, also known as the
non-linear Schrödinger model or Lieb–Liniger model, this progress has been achieved with the
help of a vast number of developed analytical and algebraic methods. These methods, includ-
ing the algebraic Bethe ansatz [1–3], form-factor series [4–11], the quantum transfer matrix
approach [12–14], the Fermionic basis approach [15–17], thermal form-factor series [18, 19],
and many others, allow one to derive explicit closed-form expressions for physical quantities.
Despite these advancements, extracting from such representations detailed information about
dynamical correlation functions, and, particularly, their long-time, large-distance asymptotics
at finite temperature, continues to be an open and difficult problem.

For some integrable models at their free fermion points, i.e., at such configurations of
parameters that the models become unitarily equivalent to models of free fermions, such as
the XX and XY spin chains and the impenetrable Bose gas, several correlation functions
were expressed in terms of Fredholm determinants (and their minors) of so-called integrable
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Chapter 1. Introduction

integral operators [20–26]. The Fredholm determinant is a generalization of the determinant
from finite-dimensional linear operators to infinite-dimensional ones. The representations
mentioned above are expressed in terms of the Fredholm determinants of operators V, where
V is a compact, trace-class integral operator acting on L2(C) for some contour C with an
integral kernel having a specific form [27]. The kernel of integral operator V exhibits highly
oscillatory behaviour for large values of the parameter x, which plays the role of time and/or
distance, making the asymptotic analysis significantly more challenging.

A method for calculating the asymptotics of Fredholm determinants of this type was
first developed in [28]. In particular, the long-time, large-distance behaviour of dynamical
correlation functions of the XX spin chain and the impenetrable Bose gas at finite temperature
were obtained in [25, 26, 29, 30] and [24, 31]. The development of the nonlinear steepest-
descent method [32] led to a systematic approach to the asymptotic analysis of the matrix
Riemann–Hilbert problem, associated with the Fredholm determinants of integrable operators.
This approach was successfully developed further in [33–35], but in a more general setting.
The analysis was based only on the analytic properties of certain functions entering the kernel
of the integral operator in the neighbourhood of the integration contour C.

In this thesis we extend the Riemann–Hilbert techniques of [33–35] to the case of thermal
and non-thermal dynamical correlation functions. As a first application we re-consider the
asymptotic analysis of the field–field correlation function of the impenetrable Bose gas in
thermal and non-thermal equilibrium, extending and generalizing the results of [31].

1.1 The Lieb–Liniger model

We consider canonical Bose fields Ψ(x), Ψ†(x) with canonical commutation relations:[
Ψ(x), Ψ†(y)

]
= δ(x − y),

[
Ψ(x), Ψ(y)

]
=
[
Ψ†(x), Ψ†(y)

]
= 0. (1.1)

The Hamiltonian of the Lieb–Liniger model is

H =
L̂

0

[
∂yΨ†(y)∂yΨ(y) + cΨ†(y)Ψ†(y)Ψ(y)Ψ(y)

]
dy . (1.2)

Here L is the length of the system, c > 0 is the coupling constant, and periodic boundary
conditions are implied,

Ψ(x + L) = Ψ(x), Ψ†(x + L) = Ψ†(x). (1.3)

When the coupling constant c → ∞, the model is called the impenetrable Bose gas.
The particle number operator and the momentum operator read

Q =
L̂

0

Ψ†(y)Ψ(y) dy , P = − i
2

L̂

0

[
Ψ†(y)

(
∂yΨ(y)

)
−
(
∂yΨ†(y)

)
Ψ(y)

]
dy (1.4)

and commute with the Hamiltonian

[H, Q] = [H, P ] = 0. (1.5)

Therefore, the number of particles is conserved, and the model is equivalent to n interacting
particles with pairwise δ-function interaction.

2



1.2. Fredholm determinant representation

The field at point x and at time t can be expressed as

Ψ(x, t) = ei(P x−Ht)Ψ(0, 0)e−i(P x−Ht). (1.6)

The main object of our study is the dynamical field–field correlation function

gN (x, t) = 〈φN |Ψ(x, t)Ψ†(0, 0)|φN 〉 . (1.7)

Here |φN 〉 is an N -particle reference state, a joint normalized eigenstate of operators H and
P with eigenvalues ε and p, respectively,

H |φN 〉 = ε |φN 〉 , P |φN 〉 = p |φN 〉 . (1.8)

We study correlation function (1.7) for infinite repulsion c → ∞ and in the thermodynamic
limit, when the number of particles N and the length of the system L go to infinity with a
fixed density D = N/L ,

g(x, t) = lim
c→∞

lim
N,L→∞
D= N/L

gN (x, t). (1.9)

The thermodynamics of the Bose gas in thermal equilibrium for finite coupling constant
c > 0 was studied in [36]. The probability of the state with momentum k to be occupied is
given by the filling fraction ϑ(k), which in this case turns out to be

ϑ(k) = 1
1 + e ε(k)/T

(1.10)

with T > 0 being the temperature and ε(k) the dressed energy, satisfying the Yang–Yang
equation [36].

For infinite repulsion c → ∞, filling fraction (1.10) takes the form of the Fermi distribution

ϑ0(k) = 1
1 + exp

(
k2−h

T

) (1.11)

with h being the chemical potential. The density of particles is then given by

D(h, T ) =
∞̂

−∞

dk

2π
ϑ(k). (1.12)

In general, the filling fraction ϑ(k) characterizes a macrostate that can be thought of as
an equivalence class of sequences of reference states |φN 〉 in the thermodynamic limit. In
what follows, we consider filling fraction ϑ to be a functional parameter, which means that
it might describe the thermal or a non-thermal equilibrium in which the system finds itself.

1.2 Fredholm determinant representation

For a trace-class integral operator V, acting on L2(C) for a locally rectifiable contour C, with
a kernel function V (λ, µ),

Vf(λ) =
ˆ

C

dµ V (λ, µ) f(µ), (1.13)
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Chapter 1. Introduction

its Fredholm determinant is defined by

det
C

(id + V) =
∞∑

n=0

1
n!

ˆ

C

· · ·
ˆ

C

det
1≤j,k≤n

[V (zj , zk)] dz1 · · · dzn . (1.14)

For infinite repulsion c → ∞ and in the thermodynamic limit, correlation function g(x, t),
see equations (1.7), (1.9), can be expressed in terms of a Fredholm determinant [24]1

g(x, t) = A(x, t) det
R

(id + V0) . (1.15)

The kernel V0(λ, µ) of the integral operator V0 is given by

V0(λ, µ) = 4ϑ(µ)
2πi · E0(λ)e0(µ) − E0(µ)e0(λ)

λ − µ
(1.16)

with the functions

E0(λ) = −e0(λ)
∞ 

−∞

dµ

2πi
e−2

0 (µ)
µ − λ

, e0(λ) = exp
[
− ix

2

(
p0(λ) − t

x
ε0(λ)

)]
, (1.17)

where ε0(λ) = λ2 and p0(λ) = λ are the bare energy and the bare momentum of the model.
The factor A(x, t) is given by

A(x, t) =
∞̂

−∞

dk

2π
e−2

0 (k) + 2
∞̂

−∞

dk

π
ϑ(k)E0(k)

∞̂

−∞

dq
(
δ(k − q) − R(k, q)

)
E0(q) (1.18)

with R(k, q) being the kernel of the resolvent R of operator V0,

(id + V0)(id − R) = id. (1.19)

Finally, the function ϑ(λ) is the filling fraction that characterizes the reference state |φN 〉 in
the thermodynamic limit.

Fredholm determinants have the following useful property, which follows straightforwardly
from the right-hand side of definition (1.14).

Proposition 1. The Fredholm determinant of operator V is invariant under transformation
of the kernel V (λ, µ) → V (λ, µ) a(λ)/a(µ) for arbitrary functions a(λ).

1.3 Long-time and large-distance asymptotics

Representation (1.15) for the correlation function expressed in terms of a Fredholm determi-
nant is exact and valid for any distance x, time t, and the filling fraction ϑ. Nevertheless,
it does not provide us with an intuitively clear picture of how the correlation function looks
without evaluating the Fredholm determinant numerically, for example, following [37]. On
the other hand, analytic asymptotic analysis can provide us with explicit asymptotic expres-
sions for large x and t in terms of elementary and special functions, which are much simpler
to perceive and easy to evaluate numerically.

1In this work the Fredholm determinant representation is derived for the system in thermal equilibrium,
but can be generalized for arbitrary reference state |φN 〉 using ideas originating from [36].
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1.3. Long-time and large-distance asymptotics

In particular, the long-time and large-distance asymptotic behaviour of the field–field
correlation function g(x, t) was first studied in [31] for the impenetrable Bose gas in thermal
equilibrium, i.e., for the filling fraction (1.11). The asymptotic analysis was based on a
relation between the Fredholm determinant of the integrable integral operator (1.16) and
a matrix Riemann–Hilbert problem [28] and led to an explicit asymptotic expression. The
resulting asymptotic behaviour of the correlation function depends on the relative position
of the parameter λ0 = x/2t , considered to be fixed, with respect to the Fermi points ±

√
h.

The main difficulty of the analysis is the highly oscillatory nature of the kernel of the integral
operator (1.16). The parameter λ0 is, in fact, the saddle point of the plane-wave factor e0,
see (1.17).

An important step in the asymptotic analysis of operators of the form (1.16) was made by
Deift and Zhou in [32], where the so-called nonlinear steepest descent method was developed.
This method offers a systematic analysis of oscillatory matrix Riemann–Hilbert problems
and makes it significantly simpler. Moreover, this approach makes it possible to treat the
functions in the kernel as functional parameters and to include additional functions into the
kernel. The latter was recently studied in the works [33–35], where the additional auxiliary
functions were introduced to make it possible later to deviate from the free fermion points,
i.e., to study the asymptotic behaviour of correlation functions of the Bose gas with finite
c > 0, in [38–40]. The advances made in papers [33–35] are described in more detail below.

First, the Riemann–Hilbert techniques were further developed in the static case for an
integrable integral operator with a so-called generalized sine kernel in [33]. The asymptotic
analysis of the Fredholm determinant there was based on the analytic properties of functions
entering the kernel in a neighbourhood of the integration contour [−q, q], regardless of their
specific form. Since the kernel considered in [33] is static, there is no saddle point and the
asymptotic behaviour is completely determined by the contribution of the endpoints ±q.
The fact that the integration contour is the interval [−q, q] is relevant to the model at zero
temperature, although the filling fraction might differ from the one in thermal equilibrium.

Later in [34], the generalized sine kernel was studied again in the static case, but for the
integration contour along the real axis in the case of p(λ) = λ, and explicit expressions for the
Fredholm determinant and the resolvent were derived. In this case the asymptotic behaviour
is determined by the poles of a function related to the filling fraction ϑ in a finite strip around
the real axis in the complex plane. This result, in a sense, gives access to a wider class of
filling fractions ϑ beyond zero-temperature.

Finally, the Fredholm determinant asymptotics of the time-dependent generalized sine
kernel acting on L2[−q, q] were obtained in [35]. Here the contribution to the long-time,
large-distance asymptotics is determined both by the endpoints of the integration contour
[−q, q] and by the contribution of the saddle point, and the behaviour depends on the their
relative positions.

As was mentioned above, in the Riemann–Hilbert techniques developed in [33–35] two
additional auxiliary functions were introduced, which were later used to study the asymptotics
of the correlation functions of the Bose gas in the presence of interaction [38–40]. This
method is based on an action of a functional shift operator, which effectively reproduces
the asymptotics of correlation functions of the model with finite c > 0 from the Fredholm
determinant representation for a model with c = ∞ and with these auxiliary functions.

In the first part of this work, we continue the development of these techniques. We
consider an integrable integral operator, which is both time-dependent and acts on a contour
C that is a slightly deformed contour along the real axis. In our analysis we also keep the
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Chapter 1. Introduction

two additional functions, which will allow us to get access to the Bose gas with c > 0 in the
future.

We treat the filling fraction ϑ as a functional parameter. In our asymptotic analysis
the function ϑ produces poles in the complex plane, which contribute to the asymptotic
expansion of the Fredholm determinant if they appear to be situated on the real axis. We
restrict ourselves to two cases, where there are either zero or two such poles on R, and derive
the long-time, large-distance asymptotic behaviour of the Fredholm determinant accordingly.

The asymptotic behaviour is determined by the contribution of the saddle point and the
contribution of the poles on the real axis and depends on their relative position. The resulting
asymptotic expansion of the Fredholm determinant is given as a series in x−1/2, where we
derive explicitly the first two terms (leading and sub-leading terms), a logarithmic correction
and an overall constant.

In the last Chapter, we apply the resulting asymptotic expansions to the field–field cor-
relation function of the impenetrable Bose gas. For this model the poles on the real axis
contributing to the asymptotic expansion are determined by the equation ϑ(λ) = 1/2 . For
the system in thermal equilibrium, this equation has, indeed, zero or two distinct real solu-
tions at the Fermi points ±

√
h for the chemical potential h 6= 0. That is the main reason why

we considered the cases of zero or two poles in our general asymptotic analysis, although it
is not restricted to the case of thermal equilibrium. In fact, the cases with zero or two poles
determine two classes of the filling fraction ϑ, for which our long-time, large-distance asymp-
totic analysis is valid. This allows us to derive the asymptotic behaviour of the field–field
correlation function for the impenetrable Bose gas in thermal and non-thermal equilibrium,
described by the so-called generalized Gibbs ensemble, treating both cases on the same level
of complexity.

As in the general asymptotic analysis, the asymptotic expansion of the field–field corre-
lation function is given by a series in x−1/2, where leading and sub-leading terms, as well as
a logarithmic correction and an overall constant are given explicitly. Moreover, returning to
the case of thermal equilibrium, we determine the overall constant entirely in terms of special
functions and simple integrals, thereby completing the original paper [31]. We also fix a sign
error in the sub-leading terms of the asymptotic expansion there in the time-like regime.

1.4 Problem statement

1.4.1 Integrable integral operators

We consider an integrable integral operator V with kernel of the form

V (λ, µ) = Eᵀ
L(λ) · ER(µ)

λ − µ
, Eᵀ

L(λ) · ER(λ) = 0, (1.20)

where EL, ER are vector-valued functions defined by

EL(λ) = sin (πν(λ))
(

−e(λ)
E(λ)

)
, ER(λ) = 4ϑ(λ) sin (πν(λ))

2πi

(
E(λ)
e(λ)

)
. (1.21)

The filling fraction ϑ(λ) plays the role of an integration measure. The functions E(λ) and
e(λ) are given by

E(λ) = e(λ)
[

− C(λ − i0) + e−2(λ)
exp(−2πiν(λ)) − 1

]
(1.22)
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1.4. Problem statement

R
Cλ0

λ0
Ω+Ω−

Figure 1.1: The integration contour Cλ0 in a strip Ω = {z ∈ C, |Im z| < w, for w > 0}. The
contour Cλ0 divides the strip Ω into two parts: Ω+ above the contour and Ω− below the
contour.

and

e(λ) = exp
[
− ix

2 u(λ) − g(λ)
2

]
, u(λ) = p(λ) − t

x
ε(λ). (1.23)

Here parameters x > 0 and t > 0 are the distance and the time. In applications the functions
ε(λ) and p(λ) will be the energy and momentum of the corresponding model under consid-
eration. The variable λ then plays the role of the rapidity. The function C(λ) denotes the
Cauchy transform of the function e−2(λ) with respect to the contour Cλ0 ,

C(λ) := CCλ0

[
e−2

]
(λ) =

ˆ

Cλ0

dµ

2πi
e−2(µ)
µ − λ

. (1.24)

The contour Cλ0 is a slight deformation of the contour along the real axis in such a way that

lim
λ∈Cλ0

Re λ→±∞

Im λ = ∓δ (1.25)

for some δ > 0. It is shown in Figure 1.1. The deformation of the contour along the real axis
is needed for the absolute convergence of the Cauchy transform (1.24) under the forthcoming
assumptions in the next section.

In future application to the Lieb–Liniger model with finite coupling constant c > 0, both
functions, ν and g, will be needed. For the special choice ν(λ) = 1/2 and g(λ) = 0 the kernel
of the operator V turns into the kernel for the impenetrable Bose gas, see (1.16).

For some calculations it will be more convenient to express the Cauchy transform in (1.22)
for λ ∈ Cλ0 in terms of a principal value integral and a semi-residue,

C(λ − i0) =
ˆ

Cλ0

dµ

2πi
e−2(µ)

µ − λ + i0 =
 

Cλ0

dµ

2πi
e−2(µ)
µ − λ

− 1
2e−2(λ). (1.26)

Then, the function E(λ) for λ ∈ Cλ0 can be written as

E(λ) = e(λ)
[

−
 

Cλ0

dµ

2πi
e−2(µ)
µ − λ

+ i
2e−2(λ) cot(πν(λ))

]
. (1.27)

In this work, we address the problem of calculating the long-time, large-distance be-
haviour, as x, t → +∞ with a fixed ratio x/t, of the Fredholm determinant of the integrable
integral operator (1.20) under the following assumptions on the functions entering the kernel.
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Chapter 1. Introduction

1.4.2 Assumptions

Since we would like to perform the asymptotic analysis in this work mathematically rigorously,
we will have to make certain assumptions about the functions in kernel (1.20), some of which
may appear rather technical.

We fix a strip Ω = {z ∈ C, |Im z| < w, for w > 0} and a simple contour Cλ0 ⊂ Ω, see
Figure 1.1. The functions ε, p, u, ϑ, ν, and g are assumed to have the following properties
in Ω:

• The energy ε and momentum p are holomorphic in Ω and take real values on R. They
behave as

ε(λ) ∼ λ2, p(λ) ∼ λ (1.28)

for λ ∈ Ω as Re λ → ±∞.

• The function u(λ) has a saddle point λ0 ∈ R ∩ Cλ0 , which is the unique solution of
u′(λ0) = 0 in C.

• The functions ν and g are holomorphic and bounded on Ω.

• The function ϑ(λ) is a meromorphic function for λ ∈ Ω having no poles on the contour
Cλ0 . ϑ(λ) decreases sufficiently rapidly2 for λ ∈ Ω as Re λ → ±∞ such that

e2(λ)ϑ(λ) = O(λ−∞). (1.29)

• Finally, we consider two cases of additional restrictions on the functions ν and ϑ.

1. The following two conditions are satisfied

1 + ϑ(λ)
(
e±2πiν(λ) − 1

)
/∈ (−∞, 0] (1.30)

for λ in the vicinity of the real axis.
2. There are exactly two points `, r ∈ R, ` < r, which are solutions of multiplicity

one of the following two equations, simultaneously,

e±2πiν(λ) = 1 − 1/ϑ(λ) , (1.31)

and these equations have no other solutions on the real axis. The saddle point λ0
is considered to be away from ` and r.

In both cases, we additionally assume that the following condition is fulfilled3

Im ln
[
1 + ϑ(λ0)

(
e2πiν(λ0) − 1

)]
− Im ln

[
1 + ϑ(λ0)

(
e−2πiν(λ0) − 1

)]
∈ (−π, π). (1.32)

We give a few more comments on the last assumption, which is technical, but very important,
since it determines a complex logarithm in our analysis and restricts the function ν if ϑ is
considered to be fixed.

2We will need this assumption for the convergence which we discuss in Section 2.4.3.
3This condition will be crucial, when we will construct a local solution of the Riemann–Hilbert Problem 6

in the vicinity of the saddle point in Section 2.6.
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1.4. Problem statement

The conditions in (1.30) allow us to use the principal branch of the complex logarithm,
so that the contour Cλ0 does not cross any cuts of the following logarithms

ln
[
1 + ϑ(λ)

(
e±2πiν(λ) − 1

)]
. (1.33)

It is easy to see that the function ν(λ) must have

Re ν(λ) = 1
2 + n, n ∈ Z (1.34)

and, in general, any value of Im ν(λ) at points on the cuts of the logarithms in (1.33). That
follows from the equations

1 + ϑ(λ)
(
e±2πiν(λ) − 1

)
= −a, for a ≥ 0, (1.35)

if one takes into account that ϑ(λ) ∈ [0, 1] for λ ∈ R. In particular, it follows that for a
function ν(λ), whose real part never reaches values 1/2 + n, n ∈ Z for λ in the vicinity of
R, there are no cuts and branch points of the logarithms in (1.33) in the vicinity of R. This
case is considered in Chapter 3.

The second case is, in a sense, a limiting case of the first one. In order to satisfy both
equations in (1.31) at the same points, the imaginary part of ν(λ) at the solutions must be
zero. These solutions are then the branch points of the logarithms in (1.33). The situation,
when ν(λ) reaches the values 1/2+n, n ∈ Z at some points λ ∈ R such that there are exactly
two distinct solutions of the equations (1.31), is considered as a limiting case, when two of the
branch points of logarithms (1.33) approach the real axis, if we slightly continuously deform
the function ν.

In general, the assumption on the functions ν and ϑ can be modified, and the asymptotic
analysis then admits generalizations which should be considered case by case.

Another comment concerns the asymptotic behaviour of e±2(λ). The asymptotics of
energy ε and momentum p, see equation (1.28), together with the assumption for the function
g to be bounded, implies that the function e2(λ) has the following behaviour for λ ∈ Ω as
Re λ → ±∞, ∣∣∣e2(λ)

∣∣∣ = O
(

ex Im(λ)
(

1− 2t
x

Re(λ)
))

, (1.36)

and, therefore, e±2(λ) decays exponentially for ± Im λ > 0 and Re λ → +∞ and for ∓ Im λ >
0 and Re λ → −∞. That is why we deformed the contour along the real axis into Cλ0 , see
Figure 1.1, so that the Cauchy transform (1.24) is absolutely convergent.

1.4.3 Relation to a matrix Riemann–Hilbert problem

Let χ(λ) be the unique solution of the following matrix Riemann–Hilbert problem.

Riemann–Hilbert Problem 1. Determine χ(λ) ∈ C2×2 such that

1. χ(λ) is analytic in C\Cλ0 and extends continuously from either side to Cλ0, see Fig-
ure 1.1.

2. On the contour Cλ0 the boundary values

χ±(λ) = lim
µ→λ

µ∈Ω±

χ(µ) (1.37)

9
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Cλ0

λ0

Γ(Cλ0)

Figure 1.2: The integration contour Cλ0 (dashed line) and the loop Γ(Cλ0) around it in the
positive direction (solid line).

satisfy the jump condition χ−(λ) = χ+(λ)Gχ(λ) with the jump matrix Gχ(λ) given by

Gχ(λ) = I2 + 2πi ER(λ) · Eᵀ
L(λ)

= I2 + 4ϑ(λ) sin2(πν(λ))
(

−e(λ)E(λ) E2(λ)
−e2(λ) e(λ)E(λ)

)
. (1.38)

3. χ(λ) = I2 + O
(
λ−1) as λ → ∞ up to tangential direction to Cλ0.

Then, the Fredholm determinant of the integrable integral operator (1.20) is related to
the solution χ, due to the following Proposition.

Proposition 2 ( [33, 35]). Let η ≥ 0 and Γ(Cλ0) be a loop in Ω around the contour Cλ0 in the
positive direction, see Figure 1.2. Then

∂β ln det
Cλ0

(id + V)

= −
ˆ

Γ(Cλ0 )

dz

2πi tr{χ′(z)
[
σz + 2C(z)σ+

]
χ−1(z)} (∂β ln e(z)) e−ηz2

∣∣∣∣∣∣∣∣
η=0+

. (1.39)

Here β = x, λ0 is a parameter. The matrix σ+ = σx + iσy with σα for α = x, y, z being the
Pauli matrices. The function C(z) is given by (1.24). The matrix χ(λ) is the unique solution
of the Riemann–Hilbert Problem 1.

The proof of Proposition 2 is provided in Appendix A. The regularization with parameter
η > 0 ensures that the integrand decays exponentially fast as Re z → ±∞.

We analyse the asymptotic behaviour of the Fredholm determinant using its relation (1.39)
to the matrix Riemann–Hilbert Problem 1 and asymptotically solving the Riemann–Hilbert
problem as x, t → +∞ with a fixed ratio x/t.

When we apply the asymptotic analysis to the impenetrable Bose gas, we also express
the prefactor A(x, t) in (1.15), given by (1.18), in terms of the matrix χ. Namely, we show
that A(x, t) can be expressed as

A(x, t) =
∞̂

−∞

dk

2π
e−2

0 (k) + i · lim
λ→∞

[λ · χ12(λ)] (1.40)

when ν(λ) = 1/2 and g(λ) = 0, i.e., the expression (1.15) for the correlation function g(x, t)
is given completely in terms of the solution χ of the Riemann–Hilbert Problem 1.

10



1.4. Problem statement

1.4.4 Structure of the thesis

In Chapter 2, we present all components of the Riemann–Hilbert analysis, including the
nonlinear steepest descent method. In Chapters 3 and 4, we perform the asymptotic analysis
of the Fredholm determinant of the integrable integral operator in the cases of zero and two
solutions of the equation (1.31) on the real axis, respectively. In Chapter 5 we apply our
asymptotic analysis to the field–field correlation function of the impenetrable Bose gas. In
the last section, we compare the derived asymptotic expansions for the system in thermal
equilibrium with the original work [31], see also [2], and with numerical data [41].

The resulting asymptotic expansions of the Fredholm determinant of the integrable inte-
gral operator V are formulated in Theorems 1 and 3. The application to the impenetrable
Bose gas for two classes of the filling fraction ϑ is formulated in Theorems 4 and 5, respec-
tively.

11
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2 Riemann–Hilbert analysis

In this chapter, we analyse a matrix Riemann–Hilbert problem and transform it to a form
that is amenable to a direct asymptotic analysis. This form will later be the starting point
for the asymptotic analysis of the Fredholm determinant of the integrable integral operator
V in Chapters 3 and 4.

In Section 2.1, we start with the integrable integral operator V, given by kernel (1.20). We
describe its main properties, the relation, due to Proposition 2, to the solution χ of the matrix
Riemann–Hilbert Problem 1, and the properties of the latter. Next, in Section 2.2, we explain
how a matrix Riemann–Hilbert problem transforms, if we multiply its solution by matrices
from the left and from the right, and make the first transformation of the Riemann–Hilbert
Problem 1 related to the Fredholm determinant of V.

Then in Sections 2.3–2.7, we apply more transformations to the initial Riemann–Hilbert
problem, which are required for the implementation of the nonlinear steepest descent method
[32] with some modifications, following works [33, 35]. First, in Section 2.3, we introduce an
auxiliary function, that is a solution of a scalar Riemann–Hilbert problem. This function is
chosen in such a way that it allows us to transform the Riemann–Hilbert Problem 1 into one
that has a jump matrix exponentially close to identity uniformly away from the saddle point,
which is accomplished in a few steps in Sections 2.3–2.5. Also, in Section 2.5 we characterize
additional poles, coming from the solution of equations (1.31) in the complex plane. In most
cases throughout this work, we refer to them as “poles”, although mathematically they appear
from the branch points of the logarithms (1.33) and physically they are associated with the
Fermi points of the impenetrable Bose gas in thermal equilibrium.

In Section 2.6, we construct a so-called parametrix — a local solution of a Riemann–
Hilbert problem, that mimics the behaviour in the vicinity of the saddle point. Finally, in
Section 2.7, we construct a global solution and decompose it into two parts. The first part
is expressed in terms of the solution of a singular integral equation, see Section 2.8. The
second part accounts for the contribution of the poles and is expressed in terms of the unique
solution of a linear system of equations in Section 2.9.

In addition to this chapter, we provide Appendices A–C. In Appendix A, we prove Propo-
sition 2 on the relation between the logarithmic derivative of the Fredholm determinant of
the operator V and the solution χ of the Riemann–Hilbert Problem 1. In Appendix B, we
explicitly derive the parametrix — the solution of the Riemann–Hilbert Problem 6. The
linear system, which describes the contribution of the poles, is derived in Appendix C.

2.1 Properties of integrable integral operators

First of all, we note that the kernel (1.20) is not singular at λ = µ, since by definition vectors
EL and ER are orthogonal

Eᵀ
L(λ) · ER(λ) = 0. (2.1)

13



Chapter 2. Riemann–Hilbert analysis

If detCλ0
(id + V) 6= 0, the kernel of operator R,

id − R = (id + V)−1, (2.2)

called the resolvent of V, has the same form, as the kernel of the operator V itself. Namely,
the resolvent is also an integrable integral operator, whose kernel is given by

R(λ, µ) = Fᵀ
L(λ) · FR(µ)

λ − µ
, Fᵀ

L(λ) · FR(λ) = 0, (2.3)

where vectors FL and FR are the solutions of integral equations

Fᵀ
L(λ) +

ˆ

Cλ0

dµ V (λ, µ)Fᵀ
L(µ) = Eᵀ

L(λ), (2.4a)

FR(λ) +
ˆ

Cλ0

dµ FR(µ)V (µ, λ) = ER(λ). (2.4b)

Now define matrix χ(λ) and its inverse as

χ(λ) = I2 −
ˆ

Cλ0

dµ
FR(µ) · Eᵀ

L(µ)
µ − λ

, (2.5a)

χ−1(λ) = I2 +
ˆ

Cλ0

dµ
ER(µ) · Fᵀ

L(µ)
µ − λ

. (2.5b)

One can construct vectors FL and FR from EL and ER using the matrix χ and its inverse as
follows:

FR(λ) = χ(λ)ER(λ), Fᵀ
L(λ) = Eᵀ

L(λ)χ−1(λ). (2.6)

Everything stated above can be checked directly by definitions. For example, in order to
check that χ−1 is given by (2.5b), one should multiply it by χ(λ) and use equations (2.4).

It follows from equations (2.5a) and (2.4) that the matrix χ solves the Riemann–Hilbert
Problem 1. In Appendix A we also prove Proposition 2 on the relation of the logarithmic
derivative of the Fredholm determinant of the integrable integral operator V to the solution
χ of the matrix Riemann–Hilbert Problem 1.

The property of the jump matrix that det Gχ(λ) = 1 for λ ∈ Cλ0 and asymptotic behaviour
of χ imply that

det χ(λ) = 1, (2.7)

that we state in the following proposition.

Proposition 3. Let χ ∈ C2×2 be a solution of the Riemann–Hilbert Problem 1, then det χ(λ) =
1.

Proof. The proof goes along the same lines as in [42], see page 44. If χ is the solution of the
Riemann–Hilbert Problem 1, then det χ(λ) is analytic in C\Cλ0 and for λ ∈ Cλ0 we have

(det χ)− (λ) = (det χ)+ (λ) det Gχ(λ) = (det χ)+ (λ). (2.8)

Hence, det χ(λ) is analytic in C and, since det χ(λ) = 1+O(λ−1) as λ → ∞, det χ(λ) = 1.

Moreover, det Gχ(λ) = 1 also guarantees the uniqueness of the solution if it exists, see
again [42].
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2.2 First transformation of the matrix Riemann–Hilbert problem
In what follows, we will transform one matrix Riemann–Hilbert problem into another one by
multiplying the solution of the first problem by a matrix from the left or from the right. For
all transformations, determinants of the matrices, by which we multiply, will be equal to one.
In the following two propositions, we formulate, how the jump matrices changes after such
multiplications. We will use these propositions a lot in this chapter.

Proposition 4 (Left multiplication). Let C ⊂ C be a finite union of smooth simple contours,
A(λ) ∈ C2×2 analytic in C\C such that det A(λ) = 1, and matrix L(λ) ∈ C2×2 be analytic in
the vicinity of the contour C such that det L(λ) = 1. The matrix A(λ) extends continuously
from either side to C. On the contour C the boundary values A±(λ) satisfy the jump condition
A−(λ) = A+(λ)GA(λ) with the jump matrix GA. Then the matrix L(λ) · A(λ) satisfies a
jump condition on the contour C with jump matrix given by

GLA(λ) = GA(λ). (2.9)

Proof. Denote B(λ) = L(λ)A(λ), then for λ ∈ C

B−(λ) = L−(λ)A−(λ) = L−(λ)A+(λ)GA(λ). (2.10)

On the other hand,

B−(λ) = B+(λ)GB(λ) = L+(λ)A+(λ)GB(λ). (2.11)

Since L−(λ) = L+(λ) for λ ∈ C, we get GB(λ) = GA(λ).

Proposition 5 (Right multiplication). Let C ⊂ C be a finite union of smooth simple contours,
A(λ) ∈ C2×2 analytic in C\C such that det A(λ) = 1, and matrix R(λ) ∈ C2×2 be analytic in
an open neighbourhood of the contour C except for the contour itself such that det R(λ) = 1.
The matrices A(λ) and R(λ) extend continuously from either side to C. On the contour C
the boundary values A±(λ) satisfy the jump condition A−(λ) = A+(λ)GA(λ) with the jump
matrix GA. Then the matrix A(λ) · R(λ) satisfies a jump condition on the contour C with
jump matrix given by

GAR(λ) = R−1
+ (λ)GA(λ)R−(λ). (2.12)

Proof. Denote B(λ) = A(λ)R(λ), then for λ ∈ C

B−(λ) = A−(λ)R−(λ) = A+(λ)GA(λ)R−(λ). (2.13)

On the other hand,

B−(λ) = B+(λ)GB(λ) = A+(λ)R+(λ)GB(λ), (2.14)

therefore we get GB(λ) = R−1
+ (λ)GA(λ)R−(λ).

Now, we transform the solution χ of the initial Riemann–Hilbert Problem in order to
remove the Cauchy transform C(λ) in the jump matrix Gχ and on the right-hand side of
equation (1.39). We define a matrix χ̃,

χ̃(λ) = χ(λ)
(
I2 − C(λ)σ+

)
, λ ∈ C\Cλ0 . (2.15)

Then the matrix χ̃ is the unique solution of the following matrix Riemann–Hilbert problem.
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Chapter 2. Riemann–Hilbert analysis

Riemann–Hilbert Problem 2. Determine χ̃(λ) ∈ C2×2 such that

1. χ̃(λ) is analytic in C\Cλ0 and extends continuously from either side to Cλ0, see Fig-
ure 1.1.

2. On the contour Cλ0 the boundary values χ̃±(λ) satisfy the jump condition

χ̃−(λ) = χ̃+(λ)Gχ̃(λ) (2.16)

with the jump matrix Gχ̃(λ) given by

Gχ̃(λ) =
(

1 + ϑ(λ)(e−2πiν(λ) − 1) e−2(λ)(1 − ϑ(λ))
−4e2(λ)ϑ(λ) sin2(πν(λ)) 1 + ϑ(λ)(e2πiν(λ) − 1)

)
. (2.17)

3. χ̃(λ) = I2 + O
(
λ−1) as λ → ∞ up to tangential direction to Cλ0.

Here and in the following χ̃± denotes the boundary value from the “±” side of the jump
contour. The positive (negative) side of the contour is the one to the left (right) from the
contour, when moving in the direction of the contour.

The jump matrix Gχ̃ has such a form, due to Proposition 5, which implies

Gχ̃(λ) =
(
I2 + C+(λ)σ+

)
Gχ(λ)

(
I2 − C−(λ)σ+

)
, (2.18)

and due to relation
C+(λ) − C−(λ) = e−2(λ). (2.19)

The asymptotic condition for χ̃ did not change, since C(λ) = O
(
λ−1) as λ → ∞ up to

tangential direction to Cλ0 as well.
For convenience, we introduce function

d(λ) = ln e(λ), (2.20)

and the partial derivative with respect to parameter β = x, λ0, or some other parameter
function e(λ) might depend on,

dβ(λ) = ∂βd(λ) = ∂β ln e(λ) = ∂βe(λ)
e(λ) . (2.21)

Then the right-hand side of expression (1.39) in Proposition 2 does not contain the Cauchy
transform anymore,

∂β ln det
Cλ0

(id + V) = −
ˆ

Γ(Cλ0 )

dz

2πi tr{χ̃′(z)σzχ̃−1(z)} dβ(z)e−ηz2

∣∣∣∣∣∣∣∣
η=0+

. (2.22)

The next thing needed for the nonlinear steepest descent method is to get a matrix
Riemann–Hilbert problem with a jump matrix exponentially close to identity everywhere
except for a vicinity of the saddle point. We achieve that in a few steps in the next sections.
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2.3. Scalar Riemann–Hilbert problem

2.3 Scalar Riemann–Hilbert problem

First we transform the Riemann–Hilbert Problem 2 to a one with the jump matrix having
the following form:

G(λ) =



(
∗ ∗
∗ 1

)
, Re(λ − λ0) < 0,(

1 ∗
∗ ∗

)
, Re(λ − λ0) > 0.

(2.23)

Once the jump matrix has such a form, it can be easily factorized into products of two
triangular matrices, due to the following simple identities(

1 0
c d′

)(
1 b
0 d′′

)
=
(

1 b
c bc + d′d′′

)
,

(
a′ b
0 1

)(
a′′ 0
c 1

)
=
(

a′a′′ + bc b
c 1

)
. (2.24)

To derive the jump matrix of the form (2.23), we introduce a scalar function α and a
matrix Ξ,

Ξ(λ) = χ̃(λ)ασz (λ). (2.25)

Then again due to Proposition 5, the jump matrix GΞ reads

GΞ(λ) = α−σz

+ (λ)Gχ̃(λ)ασz

− (λ) =


α−(λ)
α+(λ) (Gχ̃)11 (λ)

(Gχ̃)12 (λ)
α−(λ)α+(λ)

α−(λ)α+(λ) (Gχ̃)21 (λ) α+(λ)
α−(λ) (Gχ̃)22 (λ)

 . (2.26)

Now we require that function α is the unique solution of the following scalar Riemann–Hilbert
problem.

Riemann–Hilbert Problem 3. Determine α(λ) ∈ C such that

1. α(λ) is analytic in C\Cλ0 and extends continuously from either side to Cλ0.

2. On the contour Cλ0\{λ0} the boundary values α±(λ) satisfy the jump condition

α+(λ)
α−(λ) =


[
1 + ϑ(λ)

(
e2πiν(λ) − 1

)]−1
, Re(λ − λ0) < 0,

1 + ϑ(λ)
(
e−2πiν(λ) − 1

)
, Re(λ − λ0) > 0.

(2.27)

3. α(λ) = 1 + O
(
λ−1) as λ → ∞ up to tangential direction to Cλ0.

Here the jump condition is chosen in such a way that

α−(λ)
α+(λ) (Gχ̃)11 (λ) = 1, Re(λ − λ0) > 0,

α+(λ)
α−(λ) (Gχ̃)22 (λ) = 1, Re(λ − λ0) < 0,

(2.28)

see equations (2.17), (2.23) and (2.26). We note that the boundary values α± from the “±”
side of the contour Cλ0 now have a jump at λ0 ∈ Cλ0 , because of the jump condition (2.27).
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The scalar Riemann–Hilbert Problem 3 can be solved by the Cauchy transform of the
function in the jump condition, when the jump condition is written in additive form (by
taking the logarithm). In our case, the unique solution α(λ) is given by

α(λ) = exp
{ ˆ

C−
λ0

dµ
L`(µ)
µ − λ

+
ˆ

C+
λ0

dµ
Lr(µ)
µ − λ

}
= exp

{ ˆ

Cλ0

dµ
L(µ|λ0)
µ − λ

}
, (2.29)

where we introduced function L(λ|λ0)

L(λ|λ0) = L`(λ) · 1Re(λ−λ0)<0(λ) + Lr(λ) · 1Re(λ−λ0)>0(λ) (2.30)

with 1 being the indicator function and

L`(λ) = − 1
2πi ln

[
1 + ϑ(λ)

(
e2πiν(λ) − 1

)]
, (2.31a)

Lr(λ) = 1
2πi ln

[
1 + ϑ(λ)

(
e−2πiν(λ) − 1

)]
. (2.31b)

The contours C−
λ0

and C+
λ0

are the contours along Cλ0 from −∞ up to the saddle point λ0 and
from the saddle point λ0 to +∞, respectively, i.e.,

C±
λ0

= {z ∈ Cλ0 |± Re(z − λ0) ≥ 0} , C−
λ0

∪ C+
λ0

= Cλ0 . (2.32)

In what follows, we use both notations: with the contours C±
λ0

and with the contour Cλ0 and
the indicators.

2.3.1 Factorization of the solution of the scalar Riemann–Hilbert problem

For ε > 0 we introduce an interval (λ0 − ε, λ0 + ε). Then we can factorize the function α into
two parts

α(λ) = exp
{ ˆ

Cλ0

dµ
L(µ|λ0) − L(λ|λ0)1(λ0−ε,λ0+ε)(µ)

µ − λ

}

× exp
{

L`(λ)
λ0ˆ

λ0−ε

dµ

µ − λ
+ Lr(λ)

λ0+εˆ

λ0

dµ

µ − λ

}
. (2.33)

The first exponent on the right-hand side is holomorphic in the vicinity of λ0. The second
one has a cut and can be written for |λ − λ0| � 1 as(

λ0 − λ

λ0 − λ − ε

)L`(λ) (λ0 − λ + ε

λ0 − λ

)Lr(λ)
= (λ0 − λ + ε)Lr(λ)

(λ − λ0 + ε)L`(λ) · (λ − λ0)L`(λ)

(λ0 − λ)Lr(λ) . (2.34)

If Re(λ − λ0) > 0, then λ − λ0 = |λ − λ0| · eiϕ for ϕ ∈ (− π/2 , π/2) and

λ0 − λ = |λ − λ0| · ei(ϕ−π sgn(ϕ)). (2.35)

Hence,
(λ − λ0)L`(λ)

(λ0 − λ)Lr(λ) = (λ − λ0)L`(λ)−Lr(λ) · eπi sgn(Im λ)Lr(λ). (2.36)
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If Re(λ − λ0) < 0, then λ − λ0 = |λ − λ0| · eiϕ for ϕ ∈ (−π, − π/2) ∪ (π/2 , π) and

λ0 − λ = |λ − λ0| · ei(ϕ−π sgn(ϕ)). (2.37)

Hence,
(λ − λ0)L`(λ)

(λ0 − λ)Lr(λ) = (λ − λ0)L`(λ)−Lr(λ) · eπi sgn(Im λ)Lr(λ). (2.38)

Therefore, the second exponent in (2.33) reads

(λ0 − λ + ε)Lr(λ)

(λ − λ0 + ε)L`(λ) (λ − λ0)L`(λ)−Lr(λ) · eπi sgn(Im λ)Lr(λ), (2.39)

and the function α can be expressed as

α(λ) = κ(λ|λ0) · (λ − λ0)τ(λ) eπi sgn(Im(λ))Lr(λ). (2.40)

Here we introduced function τ(λ)

τ(λ) = L`(λ) − Lr(λ) (2.41)

and the part of α that is holomorphic in the vicinity of λ0

κ(λ|λ0) = (λ0 − λ + ε)Lr(λ)

(λ − λ0 + ε)L`(λ) exp
{ ˆ

Cλ0

dµ
L(µ|λ0) − L(λ|λ0)1(λ0−ε,λ0+ε)(µ)

µ − λ

}
. (2.42)

Remark. The function κ(λ|λ0) does not depend on ε > 0. That is easy to show if one
considers ε′ 6= ε and transforms κ(λ|λ0) with ε to κ(λ|λ0) with ε′. Another way to see that
is to take the derivative with respect to ε and show that it is zero. Moreover, the interval
might be an arbitrary (not only symmetric) interval containing λ0.

2.4 Factorization of the jump matrix

Since we multiplied χ̃ by a matrix singular at λ0, see equation (2.25), we need one more
condition for the matrix Riemann–Hilbert problem on Ξ at this point.

The matrix Ξ is the unique solution of the following matrix Riemann–Hilbert problem.

Riemann–Hilbert Problem 4. Determine Ξ(λ) ∈ C2×2 such that

1. Ξ(λ) is analytic in C\Cλ0 and extends continuously from either side to Cλ0\{λ0}.

2. On the contour Cλ0\{λ0} the boundary values Ξ±(λ) satisfy the jump condition

Ξ−(λ) = Ξ+(λ)GΞ(λ) (2.43)

with the jump matrix GΞ(λ) given by (2.26).

3. Ξ(λ) = I2 + O
(
λ−1) as λ → ∞ up to tangential direction to Cλ0.

4. As λ → λ0
Ξ(λ) =

[
Ξ0 + O(λ − λ0)

]
(λ − λ0)τ(λ)σz (2.44)

for a piecewise constant matrix Ξ0 ∈ C2×2.

Now we derive explicit expressions for GΞ for Re(λ − λ0) < 0 and Re(λ − λ0) > 0 and
factorize the jump matrix into products of upper- and lower-triangular matrices.
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2.4.1 Factorization for Re(λ− λ0) < 0

Combining equation (2.17) and (2.26), we get for Re(λ − λ0) < 0

GΞ(λ) =

 α−(λ)
α+(λ)

[
1 + ϑ(λ)(e−2πiν(λ) − 1)

] e−2(λ)(1 − ϑ(λ))
α−(λ)α+(λ)

α−(λ)α+(λ)e2(λ)ϑ(λ)e2πiν(λ)(e−2πiν(λ) − 1)2 1

. (2.45)

Next, we substitute the ratio α−(λ)/α+(λ) in the matrix element (1, 1) according to the jump
condition (2.27). Then we also use the jump condition to exchange α− ↔ α+ in elements
(1, 2) and (2, 1) the following way.

The idea of the factorization is to get in the end the jump matrices exponentially close
to identity. We factorize the matrices into a product of an upper/lower triangular matrices
containing either e−2(λ) or e2(λ). For Re(λ − λ0) < 0 these functions are exponentially
small in the regions above and below the contour Cλ0 , see expression (1.36). Also, in these
regions we can analytically continue functions α+ and α−, respectively. Therefore, we change
α− → α+ according to the jump condition (2.27) in front of e−2(λ) and α+ → α− in front of
e2(λ).

Hence, we derive the jump matrix GΞ in the form

GΞ(λ) =


1 − 4 sin2(πν(λ))ϑ(λ)(1 − ϑ(λ)) e−2(λ)(1 − ϑ(λ))

α2
+(λ)

[
1 + ϑ(λ)(e2πiν(λ) − 1)

]
−

4α2
−(λ)e2(λ)ϑ(λ) sin2(πν(λ))[
1 + ϑ(λ)(e2πiν(λ) − 1)

] 1

 . (2.46)

We note that the element (GΞ)11 can be expressed as

(GΞ)11 = 1 + (GΞ)12 (GΞ)21 , (2.47)

therefore, the jump matrix factorizes into a product of two triangular matrices with ones on
the diagonals, according to the second equation in (2.24). Thus,

GΞ(λ) = M+
` (λ)M−

` (λ), (2.48)

where matrices M+
` (λ) and M−

` (λ) are given by

M+
` (λ) = I2 + e−2(λ)Q+

` (λ)σ+, Q+
` (λ) = 1 − ϑ(λ)

α2
+(λ)[1 + ϑ(λ)(e2πiν(λ) − 1)]

, (2.49a)

M−
` (λ) = I2 + e2(λ)Q−

` (λ)σ−, Q−
` (λ) = −

4α2
−(λ)ϑ(λ) sin2(πν(λ))

[1 + ϑ(λ)(e2πiν(λ) − 1)]
. (2.49b)

The matrix M+
` (M−

` ) admits analytic continuation to the region above (below) the integra-
tion contour Cλ0 for Re(λ − λ0) < 0, where it becomes exponentially small.

2.4.2 Factorization for Re(λ− λ0) > 0

Similarly, combining equation (2.17) and (2.26), we get for Re(λ − λ0) > 0

GΞ(λ) =

 1 e−2(λ)(1 − ϑ(λ))
α−(λ)α+(λ)

−4α−(λ)α+(λ)e2(λ)ϑ(λ) sin2(πν(λ)) α+(λ)
α−(λ)

[
1 + ϑ(λ)(e2πiν(λ) − 1)

]
 . (2.50)
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2.5. Jump matrix close to identity

We substitute the ratio α+(λ)/α−(λ) into the matrix element (2, 2) according to the jump
condition (2.27). Then exchanging α− ↔ α+ in such a way that e2(λ) combines with α+ and
e−2(λ) combines with α−, we get

GΞ(λ) =


1 e−2(λ)(1 − ϑ(λ))

α2
−(λ)[1 + ϑ(λ)(e−2πiν(λ) − 1)]

−4α2
+(λ)e2(λ)ϑ(λ) sin2(πν(λ))

[1 + ϑ(λ)(e−2πiν(λ) − 1)]
1 − 4 sin2(πν(λ))ϑ(λ)(1 − ϑ(λ))

 . (2.51)

Noticing again that
(GΞ)22 = 1 + (GΞ)12 (GΞ)21 , (2.52)

we factorize the jump matrix into

GΞ(λ) = M+
r (λ)M−

r (λ), (2.53)

where

M+
r (λ) = I2 + e2(λ)Q+

r (λ)σ−, Q+
r (λ) = −

4α2
+(λ)ϑ(λ) sin2(πν(λ))

[1 + ϑ(λ)(e−2πiν(λ) − 1)]
, (2.54a)

M−
r (λ) = I2 + e−2(λ)Q−

r (λ)σ+, Q−
r (λ) = 1 − ϑ(λ)

α2
−(λ)

[
1 + ϑ(λ)(e−2πiν(λ) − 1)

] . (2.54b)

As in the previous case, the matrix M+
r (M−

r ) admits analytic continuation to the region
above (below) the integration contour Cλ0 for Re(λ−λ0) > 0, where it becomes exponentially
small.

2.4.3 Convergence

Finally, the jump matrix GΞ reads

GΞ(λ) =
{

M+
` (λ)M−

` (λ), Re(λ − λ0) < 0,

M+
r (λ)M−

r (λ), Re(λ − λ0) > 0,
(2.55)

and we obtained the factorization into product of the matrices M+
` (M+

r ) and M−
` (M−

r ),
which are exponentially close to identity for Re(λ − λ0) < 0 (Re(λ − λ0) > 0) above and
below the real axis, respectively, away from the saddle point λ0.

However, the function e±2(λ) grows exponentially fast for Re(λ) → ±∞ and δ > ∓ Im λ >
0 with δ being the regularization parameter in the definition of the contour Cλ0 , see expres-
sion (1.25). In order to have the convergence in the whole strip Ω, we additionally assumed
that e2(λ)ϑ(λ) exponentially decays for Re λ → ±∞, see equation (1.29) in Section 1.4.2. For
instance, it is enough for ϑ to have Gaussian decay exp

(
−a Re(λ)2) for some a > 0, which is

the case for the Fermi distribution (1.11).

2.5 Jump matrix close to identity

Now we introduce new oriented contours Γ±
`/r ⊂ Ω and a piecewise matrix Υ, as the matrix

Ξ multiplied by the matrices M±
`/r or their inverse, as shown in Figure 2.1. The contours will

be specified more precisely later in Section 2.6.1,
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Cλ0
λ0

Γ+
rΓ+

`

Γ−
rΓ−

`

Υ = Ξ

Υ = Ξ · M+
r

Υ = Ξ · (M−
r )−1

Υ = Ξ

Υ = Ξ · (M−
`

)−1

Υ = Ξ · M+
`

Cλ0
λ0

1

n+
r

1

n−
r

1

n−
`

1

n+
` ...

...
...

...

Figure 2.1: Definition of the piecewise analytic matrix Υ in terms of Ξ and M±
`/r on the left

and the enumerated poles from the matrices M±
`/r in the corresponding regions on the right.

We note that non-zero off-diagonal matrix elements of matrices M±
` and M±

r have poles,
which are zeroes of the corresponding denominators. We denote `±

j the roots of equation

1 + ϑ(`±
j )
(
e2πiν(`±

j ) − 1
)

= 0, (2.56a)

such that `±
j ∈ Ω± with Re(`±

j ) < λ0, and r±
j the roots of equation

1 + ϑ(r±
j )
(
e−2πiν(r±

j ) − 1
)

= 0, (2.56b)

such that r±
j ∈ Ω± with Re(r±

j ) > λ0. We assume that all the roots have multiplicity one,
i.e., they are not the roots of the derivative of the corresponding equations.

The contours Γ±
` and Γ±

r separate the poles in the sets {`±
j } and {r±

j }, respectively, from
each other. Since we multiply Ξ by matrices M±

`/r in some regions, the matrix Υ has the
same poles accordingly, see Figure 2.1. We denote the poles of Υ as

L+ = {`+
1 , . . . , `+

n+
`

}, R+ = {r+
1 , . . . , r+

n+
r

}, (2.57a)

L− = {`−
1 , . . . , `−

n−
`

}, R− = {r−
1 , . . . , r−

n−
r

}, (2.57b)

where n±
` and n±

r are the numbers of poles in the corresponding regions. The set of all the
poles of Υ is denoted as

S =
⋃

ε=±
(Lε ∪ Rε) , (2.58)

see Figure 2.1.
Remark. It may happen that some of the poles appear to be on the integration con-

tour Cλ0 . In this case one should either deform the initial integration contour Cλ0 in advance
or slightly deform the function ν(λ). We face such situation later, when we consider the
impenetrable Bose gas in Chapter 5. All the details on the poles on the integration contour
in this case are provided in Section 5.2.

Now we check what the jump condition for Ξ on the initial jump contour Cλ0 turns into.
For λ ∈ Cλ0 with Re(λ − λ0) < 0, due to (2.48), we have

Υ− = Ξ−(M−
` )−1 = Ξ+GΞ(M−

` )−1 = Ξ+M+
` M−

` (M−
` )−1 = Ξ+M+

` = Υ+. (2.59)

The same equality holds for λ ∈ Cλ0 with Re(λ − λ0) > 0, due to equation (2.53). Then the
matrix Υ does not have a jump on the initial contour Cλ0 and therefore is holomorphic across
Cλ0\{λ0}.

We denote the jump contour ΓΥ = Γ+
` ∪ Γ−

` ∪ Γ+
r ∪ Γ−

r . For now we assume that ∀λ ∈ S,
λ /∈ Cλ0 ∪ ΓΥ. Then the matrix Υ is the unique solution of the matrix Riemann–Hilbert
problem.
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2.6. Parametrix: local solution in the vicinity of the saddle point

Riemann–Hilbert Problem 5. Determine Υ(λ) ∈ C2×2 such that

1. Υ(λ) is analytic in C\ (ΓΥ ∪ S) and extends continuously from either side to ΓΥ\{λ0}.

2. On the contour ΓΥ\{λ0} the boundary values Υ±(λ) satisfy the jump condition

Υ−(λ) = Υ+(λ)GΥ(λ) (2.60)

with the jump matrix GΥ(λ) given by

GΥ(λ) =


M+

r (λ), λ ∈ Γ+
r ,

M−
r (λ), λ ∈ Γ−

r ,

M−
` (λ), λ ∈ Γ−

` ,

M+
` (λ), λ ∈ Γ+

` .

(2.61)

3. Υ(λ) = I2 + O
(
λ−1) as λ → ∞ up to tangential direction to ΓΥ.

4. As λ → λ0
Υ(λ) = [Υ0 + O(λ − λ0)] (λ − λ0)τ(λ)σz (2.62)

for a piecewise constant matrix Υ0 ∈ C2×2.

5. Υ satisfy the following regularity conditions at the poles λ ∈ S,

Υ(λ) · (M+
` )−1(λ) is regular at λ = `+

j , j = 1, . . . , n+
` ,

Υ(λ) · (M+
r )−1(λ) is regular at λ = r+

j , j = 1, . . . , n+
r ,

Υ(λ) · M−
` (λ) is regular at λ = `−

j , j = 1, . . . , n−
` ,

Υ(λ) · M−
r (λ) is regular at λ = r−

j , j = 1, . . . , n−
r .

(2.63)

Asymptotic behaviour (2.62) as λ → λ0 is readily to be checked by combining the asymp-
totic behaviour of Ξ(λ), see equation (2.44), and the corresponding matrix M±

`/r, see equa-
tions (2.49), and (2.54). For example, in the upper region, where Υ = Ξ, see Figure 2.1, we
get

Υ(λ) = (Ξ0 + O(λ − λ0)) (λ − λ0)τ(λ)σz
(
I2 + σ−(λ − λ0)2τ(λ)O(1)

)
= (Ξ0 + O(λ − λ0))

(
I2 + σ−O (1)

)
(λ − λ0)τ(λ)σz

= (Υ0 + O(λ − λ0)) (λ − λ0)τ(λ)σz
. (2.64)

The jump matrix GΥ(λ) is exponentially close to the identity for λ uniformly away from
the saddle point λ0. In exchange for such behaviour of the jump matrix, we now have an
additional singularity at λ0 and the poles λ ∈ S, with which we have to deal separately later.

First we treat the singularity at the saddle point λ0.

2.6 Parametrix: local solution in the vicinity of the saddle point
Now we construct the local solution of the matrix Riemann–Hilbert Problem 5 in the vicinity
of the saddle point λ0, the so-called parametrix.
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Chapter 2. Riemann–Hilbert analysis

There exists r > 0 such that Uλ0 = {z ∈ C, |z − λ0| < r} ⊂ Ω and

ρ = sup
λ∈Uλ0

|Re τ(λ)| < 1/2 . (2.65)

This inequality can be satisfied due to the assumption on the number of the solutions of
equation (1.31), since |Re τ(λ0)| < 1/2 and the saddle point λ0 is away from the branch
points of the logarithms L` and Lr. Recall that τ(λ) = L`(λ) − Lr(λ) with L` and Lr given
by (2.31).

2.6.1 Local parametrization

First we introduce a local parametrization for the function u(λ). From the assumptions on
the functions ε(λ), p(λ), and u(λ), it follows that u′(λ0) = 0 and u′′(λ0) < 0, and there exists
a function ω holomorphic in Uλ0 such that

u(λ) = u(λ0) − ω2(λ − λ0) (2.66)

and ω(λ − λ0) preserves the sign of imaginary part

sgn(Im ω(λ − λ0)) = sgn(Im(λ − λ0)). (2.67)

Then we define the contours Γ±
`/r in region Uλ0 such that their images are the straight lines

by angles π/4 to the real axis, see Figure 2.2.

λ0

Γ+
r

Γ+
`

Γ−
rΓ−

`

ω(λ)

λ0

e
πi
4 R+e

3πi
4 R+

e− πi
4 R+e− 3πi

4 R+

Figure 2.2: Image of the contours Γ±
`/r ∩ Uλ0 are the straight lines by π/4 to the real axis.

We note that (2.66) implies that ω(0) = 0 and straightforwardly

u′(λ) = −2ω(λ − λ0)ω′(λ − λ0) ⇒ u′(λ0) = 0. (2.68)

Next, we rewrite everything in terms of the local parametrization ω. The solution of the
scalar Riemann–Hilbert problem α, see equation (2.40), reads

α(λ) = κreg(λ|λ0) · [ω(λ − λ0)]τ(λ) eπi sgn(Im(λ))Lr(λ). (2.69)

where κreg is regular at λ0 part of function α given by

κreg(λ|λ0) =
(

λ − λ0
ω(λ − λ0)

)τ(λ)
κ(λ|λ0) (2.70)

with κ defined in equation (2.42).
We rescale the local parametrization by

√
x and introduce a new local variable

ζ(λ) =
√

x · ω(λ − λ0). (2.71)
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2.6. Parametrix: local solution in the vicinity of the saddle point

Then substituting equations (2.69) into expressions for the matrices M±
` and M±

r , see equa-
tions (2.49) and (2.54), we derive the following expressions for the matrices in the vicinity of
the saddle point λ0,

M+
` (λ) = I2 + m(λ)e−iζ2(λ)

[ζ(λ)]2τ(λ) e2πiτ(λ)σ+, M+
r (λ) = I2 + n(λ)eiζ2(λ)[ζ(λ)]2τ(λ)σ−,

M−
` (λ) = I2 + n(λ)eiζ2(λ)[ζ(λ)]2τ(λ)e2πiτ(λ)σ−, M−

r (λ) = I2 + m(λ)e−iζ2(λ)

[ζ(λ)]2τ(λ) σ+.

(2.72)

Here we introduced

m(λ) = eixu(λ0)+g(λ)κ−2
reg(λ|λ0) (1 − ϑ(λ))xτ(λ), (2.73a)

n(λ) = −4e−ixu(λ0)−g(λ)κ2
reg(λ|λ0) ϑ(λ) sin2(πν(λ))x−τ(λ). (2.73b)

In derivation of expressions (2.72), we also used equations (2.31) to express 1 + ϑ(e±2πiν − 1)
in terms of L` and Lr.

2.6.2 Local solution of the Riemann–Hilbert problem

We denote the parametrix, i.e., the solution of the local Riemann–Hilbert problem in the
region Uλ0 , as P, the corresponding jump matrix as GP and the jump contours as ΓP =
ΓΥ ∩ Uλ0 . Then the matrix P is the unique solution of a local matrix Riemann–Hilbert
problem.

Riemann–Hilbert Problem 6. Determine P(λ) ∈ C2×2 such that

1. P(λ) is analytic in Uλ0\ΓP and extends continuously from either side to ΓP\{λ0}.

2. On the contour ΓP\{λ0} the boundary values P±(λ) satisfy the jump condition

P−(λ) = P+(λ)GP(λ) (2.74)

with the jump matrix GP(λ) given by

GP(λ) =


M+

r (λ), λ ∈ Γ+
r ∩ Uλ0 ,

M−
r (λ), λ ∈ Γ−

r ∩ Uλ0 ,

M−
` (λ), λ ∈ Γ−

` ∩ Uλ0 ,

M+
` (λ), λ ∈ Γ+

` ∩ Uλ0 .

(2.75)

3. P(λ) = I2 + O
(
x− 1

2 +ρ
)

uniformly for λ ∈ ∂Uλ0.

4. As λ → λ0
P(λ) = [P0 + O(λ − λ0)] (ζ(λ))τ(λ)σz (2.76)

for a piecewise constant matrix P0 ∈ C2×2.

Here ρ is defined in (2.65) and ρ < 1/2 .
The way to construct the solution of this local Riemann–Hilbert problem is described in

detail in Appendix B. In a nutshell, one considers the problem when parameters τ , m and
n do not depend on λ, as well as the variable ζ. Then the solution of the Riemann–Hilbert
problem with piecewise constant jump matrix can be mapped to the Fuchsian differential
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Chapter 2. Riemann–Hilbert analysis

equation. Once the solution is found in all the regions one can simply recover the dependence
of τ , m, n and ζ on λ. The jump condition is then satisfied pointwise for each λ on the jump
contour.

The solution P of the Riemann–Hilbert Problem 6 is given by

P(λ) = Ψ(λ)L(λ)e
iζ2(λ)

2 σz (ζ(λ))τ(λ)σz

. (2.77)

The matrix Ψ(λ) is given in terms of the parabolic cylinder function Dτ (z), see Appendix B.2
for details,

Ψ(λ) =

 D−τ(λ)
(√

2e
πi
4 ζ(λ)

)
e− πi

4 b12(λ) Dτ(λ)−1
(√

2e− πi
4 ζ(λ)

)
e

πi
4 b21(λ) D−τ(λ)−1

(√
2e

πi
4 ζ(λ)

)
Dτ(λ)

(√
2e− πi

4 ζ(λ)
)  . (2.78)

The functions b12(λ) and b21(λ) are given by

b12(λ) = i
√

2πe
πi
4 2τ(λ)e− πiτ(λ)

2

n(λ)Γ(τ(λ)) , b21(λ) = e− πi
4 n(λ)2−τ(λ)e

πiτ(λ)
2 Γ(τ(λ) + 1)√

2π
. (2.79)

The matrix L is a piecewise matrix

L = e
πiτ(λ)

4 2
τ(λ)σz

2

(
1 0

−n(λ) exp(2πiτ(λ)) 1

)
, −π < arg(ζ(λ)) < − 3π/4 , (2.80a)

L = e
πiτ(λ)

4 2
τ(λ)σz

2

(
1 m(λ)
0 1

)
, − 3π/4 < arg(ζ(λ)) < − π/4 , (2.80b)

L = e
πiτ(λ)

4 2
τ(λ)σz

2

(
1 0
0 1

)
, − π/4 < arg(ζ(λ)) < π/4 , (2.80c)

L = e
πiτ(λ)

4 2
τ(λ)σz

2

(
1 0

−n(λ) 1

)
, π/4 < arg(ζ(λ)) < 3π/4 , (2.80d)

L = e
πiτ(λ)

4 2
τ(λ)σz

2

(
1 m(λ) exp(2πiτ(λ))
0 1

)
, 3π/4 < arg(ζ(λ)) < π. (2.80e)

We note here as well that the product of the coefficients b12 and b21 reads

b12(λ)b21(λ) = iτ(λ), (2.81)

which we will use later.

2.7 Global solution
Finally, let

Φ(λ) =
{

Υ(λ), λ ∈ C\Uλ0 ,

Υ(λ)P−1(λ), λ ∈ Uλ0 ,
(2.82)

see Figure 2.3. Then Φ is holomorphic everywhere in the complex plane, except for the
oriented contour ΓΦ = (−∂Uλ0) ∪ (ΓΥ\ΓP), and the poles S, see (2.58). We denote Γ̃±

` =
Γ±

` \(Γ±
` ∩ Uλ0) and Γ̃±

r = Γ±
r \(Γ±

r ∩ Uλ0).
Then the matrix Φ is the unique solution of the following Riemann–Hilbert problem.
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2.7. Global solution

Riemann–Hilbert Problem 7. Determine Φ(λ) ∈ C2×2 such that

1. Φ(λ) is analytic in C\ (ΓΦ ∪ S) and extends continuously from either side to ΓΦ.

2. On the contour ΓΦ the boundary values Φ±(λ) satisfy the jump condition

Φ−(λ) = Φ+(λ)GΦ(λ) (2.83)

with the jump matrix GΦ(λ) given by

GΦ(λ) =



P−1(λ), λ ∈ ∂Uλ0 ,

M+
` (λ), λ ∈ Γ̃+

` ,

M+
r (λ), λ ∈ Γ̃+

r ,

M−
` (λ), λ ∈ Γ̃−

` ,

M−
r (λ), λ ∈ Γ̃−

r .

(2.84)

3. Φ(λ) = I2 + O
(
λ−1) as λ → ∞ up to tangential direction to ΓΦ.

4. Φ satisfy the following regularity conditions at the poles λ ∈ S,

Φ(λ) · (M+
` )−1(λ) is regular at λ = `+

j , j = 1, . . . , n+
` ,

Φ(λ) · (M+
r )−1(λ) is regular at λ = r+

j , j = 1, . . . , n+
r ,

Φ(λ) · M−
` (λ) is regular at λ = `−

j , j = 1, . . . , n−
` ,

Φ(λ) · M−
r (λ) is regular at λ = r−

j , j = 1, . . . , n−
r .

(2.85)

ΓΦ
Φ = Υ

Φ = Υ

Φ = Υ

Φ = Υ

Φ = Υ

Φ = Υ
Φ = ΥP−1

Figure 2.3: Definition of the matrix Φ and the oriented contour ΓΦ.

Lastly, we use the following ansatz for the matrix Φ, which is justified a posteriori, once
the solution is found,

Φ(λ) = S(λ)Π(λ). (2.86)

Here Π is the solution of the same matrix Riemann–Hilbert problem, but without the poles,
and S(λ) is a matrix containing contributions from the poles S.

We note that multiplication by the matrix S(λ) from the left in equation (2.86) does not
change the jump condition, i.e., GΦ(λ) = GΠ(λ), according to Proposition 4.

Also, we note that
det Φ(λ) = 1, (2.87)

since all the transformations of the Riemann–Hilbert problems made in this chapter, χ →
χ̃ → · · · → Φ, do not change the determinant, and det χ(λ) = 1, see Proposition 3.

27
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2.8 Solution of singular integral equation
The matrix Π is the unique solution of the matrix Riemann–Hilbert Problem 7 for the matrix
Φ, but without poles, i.e., S = ∅. Namely, Π is the unique solution of the following Riemann–
Hilbert problem.

Riemann–Hilbert Problem 8. Determine Π(λ) ∈ C2×2 such that

1. Π(λ) is analytic in C\ΓΦ and extends continuously from either side to ΓΦ.

2. On the contour ΓΦ the boundary values Π±(λ) satisfy the jump condition

Π−(λ) = Π+(λ)GΦ(λ) (2.88)

with the jump matrix GΦ(λ), see equation (2.84).

3. Π(λ) = I2 + O
(
λ−1) as λ → ∞ up to tangential direction to ΓΦ.

There is an equivalence between Riemann–Hilbert problems and singular integral equa-
tions which allows one to express the solution Π in terms of its boundary value Π+ from the
“+” side of the contour ΓΦ,

Π(λ) = I2 −
ˆ

ΓΦ

dµ

2πi
Π+(µ) (GΦ(µ) − I2)

µ − λ
, λ ∈ C\ΓΦ. (2.89)

Then the boundary value Π+ satisfies

Π+(λ) = I2 − CΓΦ [Π+ (GΦ − I2)]+ (λ) (2.90)

with C being the Cauchy transform.
We use this equivalence to derive the asymptotic expansion for Π in terms of a Neumann

series. This will be discussed in detail in Section 3.3. Also, due to the same reasoning as for
the matrix χ in Proposition 3, we have a nice property of the matrix Π(λ), which is

det Π(λ) = 1 (2.91)

for λ ∈ C.
Since the jump matrix GΠ = GΦ and GΦ is exponentially close to identity on the jump

contours Γ̃±
`,r and uniformly close to identity on ∂Uλ0 up to corrections of order O(x−1/2+ρ),

the solution of the Riemann-Hilbert problem is I2 uniformly up to O(x−1/2+ρ).

2.9 Pole contributions: solution of the linear system

Finally, we consider the following ansatz for the matrix S(λ), see equation (2.86), which
accounts for the contribution of all poles λ ∈ S, see equations (2.56)–(2.58),

S(λ) = I2 +
n+∑̀
j=1

C+
j

λ − `+
j

+
n+

r∑
j=1

D+
j

λ − r+
j

+
n−∑̀
j=1

C−
j

λ − `−
j

+
n−

r∑
j=1

D−
j

λ − r−
j

. (2.92)

Here C±
j and D±

j are some constant matrices.
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2.9. Pole contributions: solution of the linear system

It turns out, that the regularity conditions (2.85) imply that the matrices C±
j and D±

j

can be found from a system of linear equations. All the details on the derivation of the linear
system are presented in Appendix C. Here we provide the resulting expressions for C±

j and
D±

j , and the system itself.
The matrices C±

j and D±
j can be expressed as

C+
j = σ+

`,j (0, Y+
j ) Π−1(`+

j ), D+
j = σ+

r,j (X+
j , 0) Π−1(r+

j ),
C−

j = σ−
`,j (X−

j , 0) Π−1(`−
j ), D−

j = σ−
r,j (0, Y−

j ) Π−1(r−
j ),

(2.93)

where the vectors X±
j and Y±

j of length two solve the following system of linear equations

Y+
j = W+

j +
n+∑̀
k=1
k 6=j

σ+
`,k

[
Π−1(`+

k )Π(`+
j )
]

21
`+

j − `+
k

Y+
k +

n+
r∑

k=1

σ+
r,k

[
Π−1(r+

k )Π(`+
j )
]

11
`+

j − r+
k

X+
k

+
n−∑̀
k=1

σ−
`,k

[
Π−1(`−

k )Π(`+
j )
]

11
`+

j − `−
k

X−
k +

n−
r∑

k=1

σ−
r,k

[
Π−1(r−

k )Π(`+
j )
]

21
`+

j − r−
k

Y−
k , (2.94a)

X+
j = V+

j +
n+∑̀
k=1

σ+
`,k

[
Π−1(`+

k )Π(r+
j )
]

22
r+

j − `+
k

Y+
k +

n+
r∑

k=1
k 6=j

σ+
r,k

[
Π−1(r+

k )Π(r+
j )
]

12
r+

j − r+
k

X+
k

+
n−∑̀
k=1

σ−
`,k

[
Π−1(`−

k )Π(r+
j )
]

12
r+

j − `−
k

X−
k +

n−
r∑

k=1

σ−
r,k

[
Π−1(r−

k )Π(r+
j )
]

22
r+

j − r−
k

Y−
k , (2.94b)

X−
j = V−

j +
n+∑̀
k=1

σ+
`,k

[
Π−1(`+

k )Π(`−
j )
]

22
`−

j − `+
k

Y+
k +

n+
r∑

k=1

σ+
r,k

[
Π−1(r+

k )Π(`−
j )
]

12
`−

j − r+
k

X+
k

+
n−∑̀
k=1
k 6=j

σ−
`,k

[
Π−1(`−

k )Π(`−
j )
]

12
`−

j − `−
k

X−
k +

n−
r∑

k=1

σ−
r,k

[
Π−1(r−

k )Π(`−
j )
]

22
`−

j − r−
k

Y−
k , (2.94c)

Y−
j = W−

j +
n+∑̀
k=1

σ+
`,k

[
Π−1(`+

k )Π(r−
j )
]

21
r−

j − `+
k

Y+
k +

n+
r∑

k=1

σ+
r,k

[
Π−1(r+

k )Π(r−
j )
]

11
r−

j − r+
k

X+
k

+
n−∑̀
k=1

σ−
`,k

[
Π−1(`−

k )Π(r−
j )
]

11
r−

j − `−
k

X−
k +

n−
r∑

k=1
k 6=j

σ−
r,k

[
Π−1(r−

k )Π(r−
j )
]

21
r−

j − r−
k

Y−
k . (2.94d)

Here the vectors V±
j and W±

j are given by

W+
j =

(
Π11(`+

j )
Π21(`+

j )

)
, V+

j =
(

Π12(r+
j )

Π22(r+
j )

)
, (2.95a)

V−
j =

(
Π12(`−

j )
Π22(`−

j )

)
, W−

j =
(

Π11(r−
j )

Π21(r−
j )

)
. (2.95b)
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Chapter 2. Riemann–Hilbert analysis

The coefficients σ are defined by

σ+
`,j =

h+
`,j

1 − h+
`,j

[
Π−1(`+

j )Π′(`+
j )
]

21

, σ+
r,j =

h+
r,j

1 − h+
r,j

[
Π−1(r+

j )Π′(r+
j )
]

12

, (2.96a)

σ−
`,j =

h−
`,j

1 − h−
`,j

[
Π−1(`−

j )Π′(`−
j )
]

12

, σ−
r,j =

h−
r,j

1 − h−
r,j

[
Π−1(r−

j )Π′(r−
j )
]

21

. (2.96b)

and h±
`/r are the residues of the off-diagonal matrix elements of the matrices M±

` and M±
r ,

see equations (2.49) and (2.54),

h+
`,j = res

λ=`+
j

(
M+

` (λ)
)

12
= e−2(`+

j ) · res
λ=`+

j

Q+
` (λ), j = 1, . . . , n+

` , (2.97a)

h−
`,j = − res

λ=`−
j

(
M−

` (λ)
)

21
= −e2(`−

j ) · res
λ=`−

j

Q−
` (λ), j = 1, . . . , n−

` , (2.97b)

and

h+
r,j = res

λ=r+
j

(
M+

r (λ)
)

21
= e2(r+

j ) · res
λ=r+

j

Q+
r (λ), j = 1, . . . , n+

r , (2.98a)

h−
r,j = − res

λ=r−
j

(
M−

r (λ)
)

12 = −e−2(r−
j ) · res

λ=r−
j

Q−
r (λ), j = 1, . . . , n−

r . (2.98b)

We note as well that det C±
j and det D±

j obviously equal to zero, see equations (2.93). More-
over, we have

det S(λ) = 1, (2.99)

which follows from equations (2.91), (2.87) and (2.86).
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3 Asymptotic analysis: no poles
on the real axis

In this chapter, we first derive an expression for the logarithmic derivative of the Fredholm
determinant convenient for the subsequent asymptotic analysis. In Section 3.1, we start
with Proposition 2, which relates the logarithmic derivative of the Fredholm determinant to
the solution of the matrix Riemann–Hilbert problem 1. Then we transform the Riemann–
Hilbert problem as in the previous chapter and modify the integration contours a few times
to derive the following expression for the logarithmic derivative of the Fredholm determinant
of operator V.

Proposition 6. The logarithmic derivative of the Fredholm determinant of the integrable in-
tegral operator V, given by (1.20), with respect to parameter β = x, λ0 admits the following
representation:

∂β ln det
Cλ0

(id + V) = ∂βa(x, λ0)

−
ˆ
γ0

dz

2πi tr{Π′(z)σzΠ−1(z)}∂βd(z) −
ˆ
γ0

dz

2πi tr{S′(z)Π(z)σzΠ−1(z)S−1(z)}∂βd(z)

−
∑
λ∈S

res
z=λ

(
tr{S′(z)Π(z)σzΠ−1(z)S−1(z)}∂βd(z)

)
+ O(x−∞). (3.1)

The function a(x, λ0) is given by

a(x, λ0) = 2
ˆ

Cλ0

dz L(z|λ0)∂zd(z), (3.2)

where L is given by (2.30) and d(λ) = ln e(λ). The matrix Π is the unique solution of the
Riemann–Hilbert Problem 8 and S(λ) is the matrix accounting for the contribution of the poles
in the set S, which is expressed in terms of the solution of a corresponding linear system, see
Section 2.9. Finally, the integration contour γ0 is shown in Figure 3.1.

Next, we derive asymptotic expansions for all the ingredients on the right-hand side of
expression (3.1). Namely, in Sections 3.2 and 3.3, we derive asymptotic expansions for the
parametrix P and, consequently, for the matrix Π. Then in Section 3.4 we derive asymptotic
expressions for the first two integrals on the right-hand side of expression (3.1).

In the last part of this chapter, we restrict ourselves to the case where there are no poles
on the real axis, i.e., ∀λ ∈ S, λ /∈ R. We argue that the contributions of all poles located away
from the real axis are exponentially small, which means that effectively S = ∅. Under these
assumptions, we derive the following asymptotic expansion of the Fredholm determinant.
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Chapter 3. Asymptotic analysis: no poles on the real axis

Cλ0

ΓΦ
γ0

Figure 3.1: The initial integration contour Cλ0 (dashed), the jump contour ΓΦ (black) and
the integration contour γ0 (blue).

Theorem 1. If there are no poles on the real axis, i.e., S ∩ R = ∅, then the Fredholm
determinant of the integrable integral operator V, given by (1.20), has the following asymptotic
expansion as x, t → +∞ with x/t fixed,

det
Cλ0

(id + V) = exp{C[u, ϑ, ν, g, λ0]} x− τ2(λ0)
2 exp {a(x, λ0)}

(
1 + o

(
x−1/2

))
, (3.3)

where τ(λ) = L`(λ) − Lr(λ) and a(x, λ0) is given by (3.2). The constant reads

exp{C[u, ϑ, ν, g, λ0]} = G(τ(λ0) + 1)
(2π) τ(λ0)/2

(
iu′′(λ0)

)− τ2(λ0)
2

(
κ(λ0|λ0)

)τ(λ0)

× exp
{

1
2

ˆ

Cλ0

ˆ

Cλ0

L′(λ)L(µ) − L(λ)L′(µ)
λ − µ

dλ dµ +
ˆ

C−
λ0

τ(λ)ϑ′(λ)
ϑ(λ) dλ

+
ˆ

Cλ0

Lr(λ)∂λ ln
(
1 − e2πiν(λ)

)
dλ +

ˆ

C−
λ0

τ(λ)∂λ ln sin2(πν(λ)) dλ

}
(3.4)

or equivalently

exp{C[u, ϑ, ν, g, λ0]} = G(τ(λ0) + 1)
(2π) τ(λ0)/2

(
iu′′(λ0)

)− τ2(λ0)
2 (κ(λ0|λ0))τ(λ0)

exp
{

1
2

ˆ

Cλ0

ˆ

Cλ0

L′(λ)L(µ) − L(λ)L′(µ)
λ − µ

dλ dµ −
ˆ

C+
λ0

τ(λ)ϑ′(λ)
ϑ(λ) dλ

+
ˆ

Cλ0

L`(λ)∂λ ln
(
e−2πiν(λ) − 1

)
dλ −

ˆ

C+
λ0

τ(λ)∂λ ln sin2(πν(λ)) dλ

}
. (3.5)

Here the function G(λ) is the Barnes G-function, κ(λ0|λ0) reads

κ(λ0|λ0) = exp
{

−
ˆ

Cλ0

dµ L′(µ) ln
[
(λ0 − µ) · sgn Re(λ0 − µ)

]}
, (3.6)

and the functions L(λ) := L(λ|λ0) and L′(λ) := L′(λ|λ0) are given by

L(λ|λ0) = L`(λ) · 1Re(λ−λ0)<0(λ) + Lr(λ) · 1Re(λ−λ0)>0(λ),
L′(λ|λ0) = L′

`(λ) · 1Re(λ−λ0)<0(λ) + L′
r(λ) · 1Re(λ−λ0)>0(λ)

(3.7)
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3.1. Preparation for the asymptotic analysis: deformation of the contour

with L` and Lr defined in (2.31). The integration contours C±
λ0

are introduced in (2.32).

In particular, in Section 3.5, we derive the structure of the asymptotic expansion (3.3)
as a series in x−1/2, as well as the dependence of the constant C[u, ϑ, ν, g, λ0] on the saddle
point λ0. Then in Section 3.6 we fix the constant completely. In this chapter we follow the
works [33,35].

The situation, where two poles from the set S approach the real axis, will be considered
in Chapter 4.

3.1 Preparation for the asymptotic analysis: deformation of the con-
tour

We are almost ready to use Proposition 2, which associates the logarithmic derivative of the
Fredholm determinant with the solution χ of the matrix Riemann–Hilbert Problem 1, for
asymptotic analysis. The last thing to do is to make all the transformations of the Riemann–
Hilbert problems we have so far on the right-hand side of expression (1.39). Namely, we make
the following chain of substitutions,

χ → χ̃
α−→ Ξ → Υ P−→ Φ S−→ Π, (3.8)

where some steps from the solution of one Riemann–Hilbert problem to the solution of another
one involve auxiliary constructions: the solution α of the scalar Riemann–Hilbert Problem 3,
the solution P of the local Riemann–Hilbert Problem 6 or matrix S containing the pole
contributions, see Section 2.9. Also we modify the integration contour Γ(Cλ0) between some
of these steps in order to get in the end a convenient representation for the asymptotic
analysis.

3.1.1 Contribution of the scalar Riemann–Hilbert problem

First we make the following chain of substitutions:

χ(λ) → χ̃(λ) = χ(λ)
(
I2 − C(λ)σ+

)
→ Ξ(λ) = χ̃(λ)ασz (λ), (3.9)

see equations (2.15) and (2.25). Then the trace under the integral (1.39) reads

tr
{

χ′(z)
[
σz + 2C(z)σ+

]
χ−1(z)

}
= tr

{
χ̃′(z)σzχ̃−1(z)

}
= −2∂z ln α(z) + tr

{
Ξ′(z)σzΞ−1(z)

}
. (3.10)

The first equality was already considered before, see equation (2.22). The logarithmic deriva-
tive of the Fredholm determinant (1.39) is then given by

∂β ln det
Cλ0

(id + V) = ∂βa(x, λ0) −
ˆ

Γ(Cλ0 )

dz

2πi tr
{
Ξ′(z)σzΞ−1(z)

}
dβ(z)e−ηz2

∣∣∣∣∣∣∣∣
η=0+

, (3.11)
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Chapter 3. Asymptotic analysis: no poles on the real axis

where we introduced

a(x, λ0) =
ˆ

Γ(Cλ0 )

dz

πi ∂z

(
ln α(z)

)
· d(z)e−ηz2

∣∣∣∣∣∣∣∣
η=0+

=
ˆ

Cλ0

dz

πi ∂z

(
ln α−(z)

α+(z)

)
· d(z)e−ηz2

∣∣∣∣∣∣∣∣
η=0+

. (3.12)

Now we also substitute the jump condition (2.27) and integrate the right-hand side by parts.
Due to the assumptions on the branch points of the logarithms, asymptotics of ϑ, and ν to
be bounded for λ ∈ Ω, we have

lim
Re λ→−∞

arg L`(λ) = 0, lim
Re λ→+∞

arg Lr(λ) = 0, (3.13)

and there is no contribution from the boundary term. Then the term a(x, λ0) can be written
as

a(x, λ0) = −
ˆ

Cλ0

dz

πi ln
(

α−(z)
α+(z)

)
∂zd(z)e−ηz2

∣∣∣∣∣∣∣∣
η=0+

= 2
ˆ

Cλ0

dz L(z|λ0) ∂zd(z), (3.14)

where L is defined in (2.30). Here we removed the regularization in the last expression, since
the filling fraction ϑ(z) goes exponentially fast to zero as Re(z) → ±∞, and ν is bounded.

We also note that the function a(x, λ) depends on the functional parameter ϑ(λ), as well
as on other parameters that might appear in u(λ) for a specific functions p(λ), ε(λ) and g(λ).

Since the matrix Ξ(z) is analytic for z ∈ C\Cλ0 , we can deform the integration contour
Γ(Cλ0) in the integral with Ξ(z) on the right-hand side of equation (3.11) to Γ′(Cλ0) as shown
in Figure 3.2.

I

II

III

IV

V

VI

Cλ0

λ0 Γ(Cλ0)

I

II

III

IV

V

VI

Cλ0

λ0

Γ′(Cλ0)

Figure 3.2: Deformation of the contour Γ(Cλ0) → Γ′(Cλ0) for the integral with the matrix Ξ.

Therefore, we get

∂β ln det
Cλ0

(id + V) = ∂βa(x, λ0) −
ˆ

Γ′(Cλ0 )

dz

2πi tr
{
Ξ′(z)σzΞ−1(z)

}
dβ(z)e−ηz2

∣∣∣∣∣∣∣∣
η=0+

. (3.15)
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3.1. Preparation for the asymptotic analysis: deformation of the contour

Now we can substitute Ξ → Υ → Φ, see Sections 2.5–2.7. These transformations are trivial in
the regions where the integration contour Γ′ is contained, see Figure 2.1, 2.3 and 3.2. Hence,

∂β ln det
Cλ0

(id + V) = ∂βa(x, λ0) −
ˆ

Γ′(Cλ0 )

dz

2πi tr
{
Φ′(z)σzΦ−1(z)

}
dβ(z)e−ηz2

∣∣∣∣∣∣∣∣
η=0+

. (3.16)

At this stage, the matrix Φ(z) does not have a jump on the contour Cλ0 and has the poles in
the regions II, III, V, and VI, see Figure 3.2.

3.1.2 Contribution of the poles and the local solution

Now we add and subtract integrals along the boundaries of the regions UII, UIII, UV and UVI
of the form

ˆ

∂Uv

dz

2πi tr
{
Φ′(z)σzΦ−1(z)

}
dβ(z)e−ηz2

∣∣∣∣∣∣∣
η=0+

, v ∈ {II, III, V, VI} , (3.17)

where ∂Uv is the contour around all the poles in region v, see Figure 3.3. Then the combination

Cλ0

Γ̃+
rΓ̃+

`

Γ̃−
rΓ̃−

`

UI

UII

UIII

UIV

UV

UVI

Uλ0

Γ′(Cλ0 )

∂UII ∪ ∂UIII

∂UV ∪ ∂UVI

Figure 3.3: Contours ∂Uv are the contours along the boundaries of the corresponding region
Uv in the positive directions for v = II, III, V, VI.

of the integrals, for example, along the contour Γ̃+
r is given by

ˆ

Γ̃+
r

dz

2πi
[
tr
{
Φ′

−(z)σzΦ−1
− (z)

}
− tr

{
Φ′

+(z)σzΦ−1
+ (z)

} ]
dβ(z)e−ηz2

∣∣∣∣∣∣∣∣
η=0+

. (3.18)

Next, we use the jump conditions for the matrix Φ on the contours Γ̃±
`/r, see expression (2.84)

for the jump matrix GΦ and expressions (2.49) and (2.54) for the matrices M±
` and M±

r .
Then

tr
{
Φ′

−(z)σzΦ−1
− (z)

}
− tr

{
Φ′

+(z)σzΦ−1
+ (z)

}

=


−2e−2(z)Q+

` (z) tr
{
Φ′

+(z)σ+Φ−1
+ (z)

}
, z ∈ Γ̃+

` ,

2e2(z)Q+
r (z) tr

{
Φ′

+(z)σ−Φ−1
+ (z)

}
, z ∈ Γ̃+

r ,

2e2(z)Q−
` (z) tr

{
Φ′

+(z)σ−Φ−1
+ (z)

}
, z ∈ Γ̃−

` ,

−2e−2(z)Q−
r (z) tr

{
Φ′

+(z)σ+Φ−1
+ (z)

}
, z ∈ Γ̃−

r .

(3.19)
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Chapter 3. Asymptotic analysis: no poles on the real axis

To derive this expression, for example, for z ∈ Γ̃+
r , we substitute explicitly matrix M+

r and
simplify as follows,

tr
{
Φ′

−(z)σzΦ−1
− (z)

}
− tr

{
Φ′

+(z)σzΦ−1
+ (z)

}
= tr

{
Φ′

+(z)
(
I2 + e2(z)Q+

r (z)σ−
)

σz
(
I2 − e2(z)Q+

r (z)σ−
)

Φ−1
+ (z)

}
+
(
e2(z)Q+

r (z)
)′

tr
{

σ−σz
(
I2 − e2(z)Q+

r (z)σ−
)}

− tr
{
Φ′

+(z)σzΦ−1
+ (z)

}
= 2e2(z)Q+

r (z) tr
{
Φ′

+(z)σ−Φ−1
+ (z)

}
. (3.20)

Here we used the commutation relation for the Pauli matrices [σz, σ±] = ±2σ± and noted
that the first trace in the third line is zero. At the end, the expression on the right-hand
side is analytic in region II. Therefore, we can freely deform the integration contour Γ̃+

r into
region II, which we denote γ+

r , see Figure 3.4. The evaluations for λ ∈ Γ̃±
` or Γ̃−

r are exactly
the same.

Then, the following combination of the contour integrals, see Figure 3.3, reads

ˆ

Γ′(Cλ0 )

tr
{
Φ′(z)σzΦ−1(z)

}
dβ(z)e−ηz2 dz

2πi

∣∣∣∣∣∣∣∣
η=0+

−
∑

v∈{II, III, V, VI}

ˆ

∂Uv

tr
{
Φ′(z)σzΦ−1(z)

}
dβ(z)e−ηz2 dz

2πi

∣∣∣∣∣∣∣
η=0+

=
ˆ
γ

dz

2πiGβ(z) tr
{
Φ′(z)σ(z)Φ−1(z)

}
e−ηz2

∣∣∣∣∣∣∣
η=0+

, (3.21)

where function Gβ(z) is given by

Gβ(z) = dβ(z)
[
1γ0(z) − 2e−2(z)Q+

` (z)1γ+
`

(z) + 2e2(z)Q+
r (z)1γ+

r
(z)

+ 2e2(z)Q−
` (z)1γ−

`
(z) − 2e−2(z)Q−

r (z)1γ−
r

(z)
]
, (3.22)

and matrix σ(z) is

σ(z) = σz 1γ0(z) + σ+ 1γ+
`

(z) + σ− 1γ+
r

(z) + σ− 1γ−
`

(z) + σ+ 1γ−
r

(z), (3.23)

see equation (3.19). The contour γ = γ0 ∪ γ+
` ∪ γ+

r ∪ γ−
` ∪ γ−

r is shown in Figure 3.4.
The integrals along the contours γ±

`/r are of order O(x−∞), due to the factors e±2(z), so
we neglect them, and the only integral that survives is the integral over γ0, see Figure 3.4.
Moreover, we do not need the regularization η under this integral, since the integration
contour γ0 is finite.,

Now we have the following expression for the logarithmic derivative of the Fredholm
determinant

∂β ln det
Cλ0

(id + V) = ∂βa(x, λ0) −
ˆ
γ0

dz

2πi tr
{
Φ′(z)σzΦ−1(z)

}
dβ(z)

−
∑

v∈{II, III, V, VI}

ˆ

∂Uv

dz

2πi tr
{
Φ′(z)σzΦ−1(z)

}
dβ(z)e−ηz2

∣∣∣∣∣∣∣
η=0+

+ O(x−∞). (3.24)
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Cλ0

I

II

III

IV

V

VI
Uλ0

γ0 γ+
rγ+

`

γ−
` γ−

r

Cλ0

I

II

III

IV

V

VI
Uλ0

γ0

Figure 3.4: Contours γ (on the left) and γ0 (on the right).

We note that we can remove the regularization η on the right-hand side, once the contours
∂Us for s = II, III, V, VI can be deformed in such a way that they are finite. Moreover, we
can write the residue contributions explicitly,

∑
v∈{II, III, V, VI}

ˆ

∂Uv

dz

2πi tr
{
Φ′(z)σzΦ−1(z)

}
dβ(z)e−ηz2

∣∣∣∣∣∣∣
η=0+

=
∑
λ∈S

res
z=λ

(
tr
{
Φ′(z)σzΦ−1(z)

}
dβ(z)

)
. (3.25)

We substitute this expression in equation (3.24) and obtain

∂β ln det
Cλ0

(id + V) = ∂βa(x, λ0) −
ˆ
γ0

dz

2πi tr
{
Φ′(z)σzΦ−1(z)

}
dβ(z)

−
∑
λ∈S

res
z=λ

(
tr
{
Φ′(z)σzΦ−1(z)

}
dβ(z)

)
+ O(x−∞). (3.26)

Substituting Φ(z) = S(z)Π(z), we get

tr{Φ′(z)σzΦ−1(z)} = tr{S′(z)Π(z)σzΠ−1(z)S−1(z)} + tr{Π′(z)σzΠ−1(z)} (3.27)

and, finally, derive expression (3.1) in Proposition 6, announced in the beginning of this
chapter.

3.2 Parametrix
In the following section we need the explicit large x asymptotic expansion of the inverse of
the parametrix P−1, which plays the role of the jump matrix for Π on the jump contour ∂Uλ0 .
We substitute (2.78) into (2.77) and use the asymptotic expansion of the parabolic cylinder
function as x → ∞, see equation (B.28) in Appendix B.2. We obtain

P−1(λ) = I2 +
∞∑

n=1

Pn(λ)
xn/2(λ − λ0)n

, (3.28)

where coefficients Pn(λ) for even and odd integers n are given by

P2n(λ) = (−i)n

n! 22n

(
λ − λ0

ω(λ − λ0)

)2n
(

(−τ)2n 0
0 (−1)n(τ)2n

)
, (3.29a)

P2n+1(λ) = − (−i)n

n! 22n+ 1
2

(
λ − λ0

ω(λ − λ0)

)2n+1( 0 b12 · (1 − τ)2n

(−1)nb21 · (1 + τ)2n 0

)
. (3.29b)
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Chapter 3. Asymptotic analysis: no poles on the real axis

Here (a)n denotes the Pochhammer symbol. We omit the dependence of functions b12, b21,
and τ on λ. Recall as well that b12b21 = iτ . We emphasize that the coefficients with even
indices n are diagonal and with odd indices are off-diagonal. We will use this nice property
of the coefficients Pn later. We note that the coefficient b12 and b21 depend on x, therefore,
the dependence on x is also present in the odd coefficients in expression (3.28).

3.3 Solution of the singular integral equation
In order to derive the asymptotic expansion for Π, we use the equivalence of Riemann–Hilbert
problems and singular integral equations, in particular, see equations (2.89) and (2.90). The
jump matrix is exponentially close to the identity on the contour ΓΦ except for the loop
around the saddle point in the positive direction that we denote −∂Uλ0 ⊂ ΓΦ. The jump
matrix on the contour ∂Uλ0 is given by P−1, see equation (2.84). Then equation (2.89) takes
the form

Π(λ) ' I2 +
ˆ

∂Uλ0

dµ

2πi
Π+(µ)

(
P−1(µ) − I2

)
µ − λ

. (3.30)

Substituting the asymptotic expansion for P−1 and looking for the solution of the singular
integral equation in the form

Π(λ) = I2 +
∞∑

n=1

Πn(λ)
xn/2 , (3.31)

we derive first the asymptotic expansion for the boundary value Π+. Substituting then
the asymptotic expansion for Π+ back into equation (3.30), we derive that the first three
coefficients are given by

Π1(λ) = −P1(λ0)
λ − λ0

, Π2(λ) = ∂

∂µ

(P2(µ) − P1(λ0)P1(µ)
µ − λ

)∣∣∣∣
µ=λ0

, (3.32a)

Π3(λ) = 1
2!

∂2

∂µ2

(
P3(µ) − P1(λ0)P2(µ) − P2(λ0)P1(µ) + P2

1 (λ0)P1(µ)
µ − λ

)∣∣∣∣∣
µ=λ0

− ∂

∂µ

(P ′
2(λ0)P1(µ) − P1(λ0)P ′

1(λ0)P1(µ)
µ − λ

)∣∣∣∣
µ=λ0

. (3.32b)

We note that the coefficients Πn inherit the property of the coefficients Pn to be diagonal for
even indices n and off-diagonal for odd n.

We provide as well explicit expression for the coefficients Π1

Π1(λ) = 1
λ − λ0

1√
2ω′(0)

(
0 b12(λ0)

b21(λ0) 0

)
(3.33)

and Π2

Π2(λ) = 1
(λ − λ0)2

iτ(λ0)
4(ω′(0))2 [I2 + τ(λ0)σz] + 1

(λ − λ0)
1

4(ω′(0))2

[
− ω′′(0)

ω′(0) iτ2(λ0)

+ 2iτ(λ0)τ ′(λ0) −
[
b′

12(λ0)b21(λ0) − b12(λ0)b′
21(λ0)

] ]
σz, (3.34)
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3.4. Integral over γ0

which we need in the subsequent asymptotic analysis. We emphasize that the functions b12
and b21 depend on parameter x and, therefore, the coefficients Π1 and Π2.

In particular, the functions b12 and b21, given by (2.79), see also (2.73), have the following
dependence on x

b12(λ) ∼ xτ(λ)eixu(λ0), b21(λ) ∼ x−τ(λ)e−ixu(λ0), (3.35)

and, therefore, so do the off-diagonal elements of the matrix Π1. The coefficient Π2 involves
a combination of functions b12 and b21 and their derivatives, which can be written as

b′
12(λ0)b21(λ0) − b12(λ0)b′

21(λ0) = 2iτ(λ0)τ ′(λ0) ln x + iτ(λ0)B(λ0), (3.36)

where we introduced function B(λ0) that does not depend on x. This combination produces
the term of order ln x/x . Therefore, from the coefficient Π2, we have the terms of the orders
ln x/x and 1/x in the asymptotic expansion (3.31).

Moreover, such an observation allows us to figure out the order of the coefficient Π3, which
is at most

Π3(λ)
x3/2 = O

(
(ln x)2eixu(λ0)

x3/2 −τ(λ0)

)
· σ+ + O

(
(ln x)2e−ixu(λ0)

x3/2 +τ(λ0)

)
· σ−. (3.37)

This follows from expression (3.32b), when all the derivatives act on b12(µ) and b21(µ). How-
ever, these estimates are not enough for us and, as we will see in the next section, we also
need an estimate for the coefficient Π4.

Now, as we know the coefficients Π1, Π2 explicitly and the structure of the coefficient
Π3, see expressions (3.33), (3.34) and (3.32b), we look for a solution of the singular integral
equation in the form

Π(λ) = I2 +
∞∑

n=1

Πn(λ)
xn/2 , Πn(λ) =

n∑
m=1

Πn,m(λ0)
(λ − λ0)m

. (3.38)

Substituting this ansatz into the singular integral equation, we derive the following expressions
for the coefficients Πn,m

Πn,m(λ0) = −P(n−m)
n (λ0)
(n − m)! −

n−1∑
j=1

n−j−1∑
k=0

Πn−j,n−j−k(λ0)
(n − m − k)! P(n−m−k)

` (λ0). (3.39)

This expression allows us to derive the coefficients Πn,m for n > 1 and m = 1, . . . , n from
Πn−1,k for k = 1, . . . , n − 1 starting with Π1,1(λ0) = −P1(λ0). Explicit evaluation of the
coefficients involved in Π4 allows us to see that

Π4
x2 = O

(
(ln x)2

x2

)
· I2 + O

(
(ln x)2

x2

)
· σz. (3.40)

Now we are ready to evaluate the second and the third terms on the right-hand side of
equation (3.1) in Proposition 6.

3.4 Integral over γ0

The expression under the integral over γ0, see equation (3.1) or (3.26), is proportional to

tr{Φ′(λ)σzΦ−1(λ)} = tr{Π′(λ)σzΠ−1(λ)} + tr{S′(λ)Π(λ)σzΠ−1(λ)S−1(λ)}. (3.41)
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Chapter 3. Asymptotic analysis: no poles on the real axis

The first term on the right-hand side can be expressed as a series in x−1/2 if we expand Π(λ)
as in equation (3.31). Since det Π(λ) = 1, the inverse of Π can be expressed as follows,

Π−1(λ) = σyΠᵀ(λ)σy. (3.42)

Then, an analogous expansion of Π−1 inherits the properties of the odd coefficients to be
off-diagonal and even ones to be diagonal. Hence, we get

tr{Π′(λ)σzΠ−1(λ)} = 1
x

1
2

tr{Π′
1(λ)σz} + 1

x
tr{Π′

2(λ)σz + Π′
1(λ)σzΠ−1

1 (λ)}

+ 1
x

3
2

tr{Π′
3(λ)σz + Π′

2(λ)σzΠ−1
1 (λ) + Π′

1(λ)σzΠ−1
2 (λ)}

+ 1
x2 tr{Π′

4(λ)σz + Π′
3(λ)σzΠ−1

1 (λ) + Π′
2(λ)σzΠ−1

2 (λ) + Π′
1(λ)σzΠ−1

3 (λ)} + o
(
x−2

)
. (3.43)

The traces with the factors x−1/2 and x−3/2 in front are zero, since the matrices under the
traces are off-diagonal. Moreover, we ignore the terms with x−2 in front, and write them as
O((ln x)2/x2), as we stated in (3.40). Substituting Π−1

1 = −Π1, we obtain for the first term
in the expression (3.41)

tr{Π′(λ)σzΠ−1(λ)} = 1
x

tr{Π′
2(λ)σz − Π′

1(λ)σzΠ1(λ)} + O
(

(ln x)2

x2

)
. (3.44)

The second term on the right-hand side of expression (3.41) can be written as

tr{S′(λ)Π(λ)σzΠ−1(λ)S−1(λ)}

= tr{S′(λ)σzS−1(λ)} + 1
x

1
2

tr{S′(λ)[Π1(λ), σz]S−1(λ)}

+ 1
x

tr
{

S′(λ)
(
[Π2(λ), σz] − [Π1(λ), σz]Π1(λ)

)
S−1(λ)

}
+ o

(
e±ixu(λ0)

x
1
2 ∓τ(λ0)

,
ln x

x

)
. (3.45)

Here the corrections propagate from Π1(λ) and Π2(λ), see equations (3.33) and (3.34) and
the comments right after them.

Now we simplify some traces in expressions (3.44) and (3.45), using the properties of
coefficients Πn. For example, the matrix Π′

1σzΠ1 is proportional to σz, therefore, we get

tr{Π′(λ)σzΠ−1(λ)} = 1
x

tr{Π′
2(λ)σz} + O

(
(ln x)2

x2

)
. (3.46)

Noting that [Π2, σz] = 0 and

[Π1(λ), σz] = 2Π1(λ)σz, [Π1(λ), σz]Π1(λ) = −2Π2
1(λ)σz, (3.47)

we obtain

tr{Φ′(λ)σzΦ−1(λ)} = tr{S′(λ)σzS−1(λ)} + 2
x

1
2

tr{S−1(λ)S′(λ)Π1(λ)σz}

+ 1
x

[
2 tr{S−1(λ)S′(λ)Π2

1(λ)σz} + tr{Π′
2(λ)σz}

]
+ o

(
e±ixu(λ0)

x
1
2 ∓τ(λ0)

,
ln x

x

)
. (3.48)
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We emphasize that in the last equation the asymptotic expansion for the solution of the
singular integral equation Π(λ) is used, but the pole contributions, i.e., the matrix S(λ),
is still exact. We kept it like that so far, because the matrix Π(λ) does not depend on the
number of poles and on a regime (relative position of the saddle point to the poles). We derive
asymptotic series for S(λ) corresponding to different regimes in Section 4.1–4.3 of Chapter 4,
where we consider the case of two poles on the real axis.

Before we evaluate the integral over γ0, we substitute the explicit expressions for Π1 and
Π2 into (3.46) and (3.48), see equations (3.33) and (3.34). The coefficient in front of x−1/2

in (3.48) then reads

2
x

1
2

tr
{
S−1(λ)S′(λ)Π1(λ)σz}

= 1
x

1
2

√
2

ω′(0)(λ − λ0)
[(

S−1(λ)S′(λ)
)

12 b21(λ0) −
(
S−1(λ)S′(λ)

)
21 b12(λ0)

]
. (3.49)

Using identity

Π2
1(λ) = 1

(λ − λ0)2
iτ(λ)

2(ω′(0))2 I2, (3.50)

see equation (3.33), we obtain the first coefficient in front of x−1 in (3.48)

2
x

tr{S−1(λ)S′(λ)Π2
1(λ)σz}

= 1
x

1
(λ − λ0)2

iτ(λ0)
(ω′(0))2

[(
S−1(λ)S′(λ)

)
11 −

(
S−1(λ)S′(λ)

)
22

]
. (3.51)

Finally, the second term in the same order in (3.48), that does not contain S(λ), and
which is the only term in (3.46), reads

1
x

tr{Π′
2(λ)σz} = − 1

x(λ − λ0)3
iτ2(λ0)
(ω′(0))2 + 1

x(λ − λ0)2
1

2(ω′(0))2

[ iτ2(λ0)ω′′(0)
ω′(0)

− 2iτ(λ0)τ ′(λ0) +
(
b′

12(λ0)b21(λ0) − b12(λ0)b′
21(λ0)

) ]
. (3.52)

Now we evaluate the integral over γ0. We do it separately for expressions (3.46) and (3.48)
for two reasons. Firstly, expression (3.46) does not depend on the poles and therefore on the
regime. Moreover, that is the only term contributing to the asymptotic expansion of the
Fredholm determinant in the case, where there are no poles, i.e., S(λ) = I2. Secondly, at the
end of the day, this term will be responsible for the logarithmic correction to the Fredholm
determinant asymptotics for any pole configuration.

The integral over γ0 of this term reads

ˆ
γ0

dz

2πi tr
{
Π′(z)σzΠ−1(z)

}
dβ(z) = 1

x

iτ(λ0)
2(ω′(0))2

{
− τ(λ0)d′′

β(λ0)

+ d′
β(λ0)

(
τ(λ0)ω′′(0)

ω′(0) + 2τ ′(λ0)(ln x − 1) + B(λ0)
)}

+ O
(

(ln x)2

x2

)
. (3.53)

Here we also used the definition of the function B, see equation (3.36).
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Chapter 3. Asymptotic analysis: no poles on the real axis

Integrating expression (3.48), we get
ˆ
γ0

dz

2πi tr
{
Φ′(z)σzΦ−1(z)

}
dβ(z)

= 1
x

1
2

√
2dβ(λ0)
ω′(0)

[(
S−1(λ0)S′(λ0)

)
12 b21(λ0) −

(
S−1(λ0)S′(λ0)

)
21 b12(λ0)

]
+ 1

x

iτ(λ0)
2(ω′(0))2

{
2d′

β(λ0)
[(

S−1(λ0)S′(λ0)
)

11 −
(
S−1(λ0)S′(λ0)

)
22

]
− τ(λ0)d′′

β(λ0)

+ d′
β(λ0)

(
τ(λ0)ω′′(0)

ω′(0) + 2τ ′(λ0)(ln x − 1) + B(λ0)
)}

+ o
(

e±ixu(λ0)

x
1
2 ∓τ(λ0)

,
ln x

x

)
. (3.54)

We do not have a term of order x0, since the first term on the right-hand side of (3.48) does
not have a pole at λ0. The expression above gives the “partial asymptotic expansion” of the
first two terms on the right-hand side of expression (3.1), in the sense, that the solution Π of
the singular integral equation or, equivalently, the solution of the Riemann–Hilbert Problem 8
is expanded in x−1/2, but the matrix S is kept exact.

3.5 Fredholm determinant asymptotics: no poles on the real axis
In this section, we consider the case where all the poles are away from the real axis. Then
from system of linear equations (2.94) it follows that

S(λ) = I2 + O(x−∞), (3.55)

because all the coefficients σ±
`/r are exponentially small, due to the factors e2(λ) and e−2(λ)

for λ evaluated at the poles in the corresponding coefficients h±
`/r.

Therefore, the logarithmic derivative of the Fredholm determinant, see expression (3.1)
in Proposition 2, is completely determined by the solution α of the scalar Riemann–Hilbert
Problem 3 contributing to the function a(x, λ0) and the integral over γ0 of the trace in-
volving only matrix Π (since S = I2). We evaluated the latter in the previous section,
see equation (3.53). Substituting (3.53) into (3.1) with S = I2, we derive the logarithmic
derivative of the Fredholm determinant with respect to parameter β explicitly

∂β ln det
Cλ0

(id + V) = ∂βa(x, λ0) + a2
x

+ O
(

(ln x)2

x2

)
, (3.56)

where a(x, λ0) is given by expression (3.14) and coefficient a2 by expression (3.53),

a2 = iτ(λ0)
2(ω′(0))2

[
τ(λ0)d′′

β(λ0) −
(

ω′′(0)τ(λ0)
ω′(0) + 2τ ′(λ0)(ln x − 1) + B(λ0)

)
d′

β(λ0)
]
. (3.57)

We emphasize that coefficient a2 depends on the parameter β, with respect to which we take
the derivative.

Now we consider the logarithmic derivative of the Fredholm determinant with respect to
the large parameter, β = x. This allows us to derive the first few terms of the asymptotic
expansion up to a term independent of x which still depends on all other parameters including
λ0. Then, in order to fix this constant, we consider the logarithmic derivative with respect
to the saddle point, β = λ0. Integrating the derivative with respect to λ0 from λ0 up to ±∞,
we will be able to fix the constant term completely.
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3.5.1 Dependence on x

For β = x expression (3.56) takes the form

∂x ln det
Cλ0

(id + V) = ∂xa(x, λ0) + a2
x

+ O
(

(ln x)2

x2

)
(3.58)

with a(x, λ0) given by (3.14) and a2 by

a2 = iτ(λ0)
2(ω′(0))2

[
τ(λ0)d′′

x(λ0) −
(

ω′′(0)τ(λ0)
ω′(0) + 2τ ′(λ0)(ln x − 1) + B(λ0)

)
d′

x(λ0)
]
. (3.59)

In Appendix D, we show that d′
x(λ0) = 0 and d′′

x(λ0) = i(ω′(λ0))2, see identities (D.15)
and (D.16). Thus, for β = x coefficient a2 is given simply by

a2
x

= −τ2(λ0)
2x

= −τ2(λ0)
2 ∂x ln x. (3.60)

Hence, we obtain the first terms of the asymptotic expansion of the Fredholm determinant

ln det
Cλ0

(id + V) = C[u, ϑ, ν, g, λ0] + a(x, λ0)
∣∣∣∣
g=0

− τ2(λ0)
2 ln x + O

(
(ln x)2

x

)
(3.61)

with a(x, λ0)
∣∣
g=0 given by

a(x, λ0)
∣∣∣∣
g=0

= 2
ˆ

Cλ0

dz L(z|λ0) ∂zd(z)
∣∣∣∣
g=0

. (3.62)

Here we set g = 0, since we integrate the x-derivative of the function a(x, λ0) with respect to
x, see expression (3.14), and the functions u(z) and g(z) do not depend on x,

∂xd(z) = ∂x ln e(z) = ∂x

[
− ix

2 u(z) − 1
2g(z)

]
= − i

2u(z). (3.63)

Now we already know the structure of the asymptotic expansion of ln det(id + V) in variable
x−1/2, which includes the first terms, the logarithmic correction and the order of the next
correction.

3.5.2 Dependence on λ0

Now, in order to fix the λ0-dependence of the constant C[u, ϑ, ν, g, λ0], we consider the loga-
rithmic derivative (3.56) with respect to λ0,

∂λ0 ln det
Cλ0

(id + V) = ∂λ0a(x, λ0) + a2
x

+ O
(

(ln x)2

x2

)
, (3.64)

where a2 is given by

a2 = iτ(λ0)
2(ω′(0))2

[
τ(λ0)d′′

λ0(λ0) −
(

ω′′(0)τ(λ0)
ω′(0) + 2τ ′(λ0)(ln x − 1) + B(λ0)

)
d′

λ0(λ0)
]
. (3.65)
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In Appendix D, we derived that

d′
λ0(λ0) = −ix(ω′(0))2, (3.66)

see equation (D.20). Then

a2
x

= τ(λ0)
2

[
τ(λ0)

d′′
λ0

(λ0)
d′

λ0
(λ0) −

(
ω′′(0)τ(λ0)

ω′(0) + 2τ ′(λ0)(ln x − 1) + B(λ0)
)]

. (3.67)

Now we take into account the structure of the asymptotic expansion of the Fredholm
determinant with respect to x, see equation (3.61). Comparing the λ0-derivative of expres-
sion (3.61) with expression (3.64), we obtain

∂λ0C[u, ϑ, ν, g, λ0] = ∂λ0

(
τ2(λ0)

2

)
+ τ2(λ0)

2
d′′

λ0
(λ0)

d′
λ0

(λ0) − τ2(λ0)
2

ω′′(0)
ω′(0) − τ(λ0)

2 B(λ0). (3.68)

We recall that the function B(λ0) is defined as

iτ(λ0)B(λ0) =
(
b′

12(λ0)b21(λ0) − b12(λ0)b′
21(λ0)

)
− 2iτ(λ0)τ ′(λ0) ln x, (3.69)

see equation (3.36), and it does not depend on x at all.
Integrating expression (3.68) from −∞ to λ0 and from λ0 to +∞ along the integration

contour Cλ0 , we obtain the following two representations for the constant C[u, ϑ, ν, g, λ0]:

C[u, ϑ, ν, g, λ0] = C−[u, ϑ, ν, g] + τ2(λ0)
2

+
ˆ

C−
λ0

τ2(λ0)
2

[
d′′

λ0
(λ0)

d′
λ0

(λ0) − ω′′(0)
ω′(0)

]
dλ0 −

ˆ

C−
λ0

τ(λ0)
2 B(λ0) dλ0 , (3.70a)

C[u, ϑ, ν, g, λ0] = C+[u, ϑ, ν, g] + τ2(λ0)
2

−
ˆ

C+
λ0

τ2(λ0)
2

[
d′′

λ0
(λ0)

d′
λ0

(λ0) − ω′′(0)
ω′(0)

]
dλ0 +

ˆ

C+
λ0

τ(λ0)
2 B(λ0) dλ0 . (3.70b)

Here we used the notation (2.32) for the contours C±
λ0

and denoted the integration constants
at ±∞, as

C±[u, ϑ, ν, g] = C[u, ϑ, ν, g, λ0]
∣∣∣∣
λ0=±∞

. (3.71)

Integrals with B(λ0) In order to simplify the integrals in the expressions for the constant
C[u, ϑ, ν, g, λ0] above, we need B(λ0) explicitly. First we substitute b21(λ0) into (3.69), using
identity b12(λ0)b21(λ0) = iτ(λ0), see equation (2.81),

iτ(λ0)B(λ0) =
(
b′

12(λ0)b21(λ0) − b12(λ0)b′
21(λ0)

)
− 2iτ(λ0)τ ′(λ0) ln x

= −iτ ′(λ0) + 2iτ(λ0)b′
12(λ0)

b12(λ0) − 2iτ(λ0)τ ′(λ0) ln x. (3.72)
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Then, substituting expression (2.79) for b12(λ0) and expression (2.73) for n(λ0), we get

iτ(λ0)B(λ0) = −iτ ′(λ0)+2iτ(λ0)τ ′(λ0)
(

ln 2 − πi
2

)
−2iτ(λ0)τ ′(λ0)Γ′(τ(λ0))

Γ(τ(λ0)) +2iτ(λ0)g′(λ0)

− 4iτ(λ0) ∂λκreg(λ|λ0)
κreg(λ|λ0)

∣∣∣∣∣
λ=λ0

− 2iτ(λ0)ϑ(λ0)
ϑ(λ0) − 2iτ(λ0)∂λ0 ln sin2(πν(λ0)). (3.73)

Substituting this expression under the integrals, we derive
bˆ

a

τ(λ0)
2 B(λ0) dλ0 = − τ(λ)

2

∣∣∣∣b
a

+
(

ln 2 − πi
2

)
τ2(λ)

2

∣∣∣∣∣
b

a

−
bˆ

a

τ(λ)τ ′(λ)Γ′(τ(λ))
Γ(τ(λ)) dλ

+
bˆ

a

τ(λ)g′(λ) dλ − 2
bˆ

a

τ(λ0) ∂λκreg(λ|λ0)
κreg(λ0|λ0)

∣∣∣∣∣
λ=λ0

dλ0 −
bˆ

a

τ(λ)ϑ′(λ)
ϑ(λ) dλ

−
bˆ

a

τ(λ)∂λ ln sin2(πν(λ)) dλ . (3.74)

The first integral on the right-hand side can be written in terms of the Barnes G-function,
which admits the following representation:

G(z + 1) = (2π)z/2 exp
{

− z(z − 1)
2 +

zˆ

0

t
Γ′(t)
Γ(t) dt

}
, Re(z) > −1. (3.75)

Indeed, e.g., the integral from λ0 to +∞ along the integration contour Cλ0 can be rewritten
as

−
ˆ

C+
λ0

τ(λ)Γ′(τ(λ))
Γ(τ(λ)) τ ′(λ) dλ =

ˆ

C

τ
Γ′(τ)
Γ(τ) dτ , (3.76)

where C is a contour with the end points τ(∞) = 0 and τ(λ0). Then we deform the contour C
into the one along the real axis from the origin to the point τ(λ). Hence, we have

ˆ

C

τ
Γ′(τ)
Γ(τ) dτ =

τ(λ0)ˆ

0

τ
Γ′(τ)
Γ(τ) dτ + 2πin (3.77)

for some n ∈ Z coming from the cumulative contribution of the residues. Now we can use
integral representation for the Barnes G-function (3.75). The same applies for the integral
along the contour Cλ0 from −∞ to λ0.

Then, we get the following representations for the integrals involving B(λ0),
ˆ

C−
λ0

τ(λ0)
2 B(λ0) dλ0 = −

(
1 − ln 2 + πi

2

)
τ2(λ0)

2 − ln [G(τ(λ0) + 1)] + 2πin

+ τ(λ0)
2 ln(2π) +

ˆ

C−
λ0

τ(λ)g′(λ) dλ −
ˆ

C−
λ0

τ(λ)ϑ′(λ)
ϑ(λ) dλ − 2

ˆ

C−
λ0

τ(λ0) ∂λκreg(λ|λ0)
κreg(λ|λ0)

∣∣∣∣∣
λ=λ0

dλ0

−
ˆ

C−
λ0

τ(λ)∂λ ln sin2(πν(λ)) dλ (3.78a)
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and

ˆ

C+
λ0

τ(λ0)
2 B(λ0) dλ0 =

(
1 − ln 2 + πi

2

)
τ2(λ0)

2 + ln [G(τ(λ0) + 1)] + 2πim − τ(λ0)
2 ln(2π)

+
ˆ

C+
λ0

τ(λ)g′(λ) dλ −
ˆ

C+
λ0

τ(λ)ϑ′(λ)
ϑ(λ) dλ − 2

ˆ

C+
λ0

τ(λ0) ∂λκreg(λ|λ0)
κreg(λ|λ0)

∣∣∣∣∣
λ=λ0

dλ0

−
ˆ

C+
λ0

τ(λ)∂λ ln sin2(πν(λ)) dλ . (3.78b)

for some integers n, m ∈ Z. We note that in the end, we exponentiate these expressions, so
these integers do not contribute to the asymptotic expansion of the Fredholm determinant.

The next step is to consider the logarithmic derivative of κreg(λ|λ0), see expression (2.70).
First we use

∂λ0κreg(λ0|λ0) = ∂λκreg(λ|λ0)
∣∣∣∣
λ=λ0

+ ∂λ0κreg(λ|λ0)
∣∣∣∣
λ=λ0

= κ′
reg(λ0|λ0) + ∂λ0κreg(λ|λ0)

∣∣∣∣
λ=λ0

. (3.79)

Here and in the following, we denote f ′(λ|λ0) := ∂λf(λ|λ0) for brevity. Substituting expres-
sion (2.70) into the first term on the right-hand side, we get

κ′
reg(λ0|λ0)

κreg(λ0|λ0) = κ′(λ0|λ0)
κ(λ0|λ0) − τ ′(λ0) ln ω′(0|λ0) − τ(λ0)∂λ0 ln ω′(0|λ0). (3.80)

Also, here and in the following, we denote the function ω(λ − λ0), as ω(λ − λ0|λ0), since it,
in fact, depends both on λ − λ0 and λ0.

Using equation (2.42), we get

∂λ0κ(λ|λ0)
κ(λ|λ0)

∣∣∣∣
λ=λ0

= τ ′(λ0), (3.81)

and, therefore, the second term on the right-hand side of (3.79) can be written as

∂λ0κreg(λ|λ0)
κreg(λ|λ0)

∣∣∣∣∣
λ=λ0

= τ ′(λ0) + τ(λ0)
2

ω′′(0|λ0)
ω(0|λ0) − τ(λ0)∂λ0ω′(0|λ0)

ω(0|λ0) . (3.82)

As a result, we obtain

κ′
reg(λ0|λ0)

κreg(λ0|λ0) = ∂λ0κ(λ0|λ0)
κ(λ0|λ0) − τ ′(λ0) ln ω′(0|λ0) − τ(λ0)∂λ0 ln ω′(0|λ0)

− τ ′(λ0) − τ(λ0)
2

ω′′(0|λ0)
ω(0|λ0) + τ(λ0)∂λ0ω′(0|λ0)

ω(0|λ0) (3.83)
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and the integral with κreg then takes the form

bˆ
a

τ(λ0)
κ′

reg(λ0)
κreg(λ0) dλ0 = τ(λ) lnκ(λ|λ)

∣∣∣∣b
a

−
bˆ

a

τ ′(λ) lnκ(λ|λ) dλ

− τ2

2 (λ)
[
1 + ln ω′(0|λ)

] ∣∣∣∣∣
b

a

+
bˆ

a

τ2(λ0)
2

[
∂λ0ω′(0|λ0)

ω′(0|λ0) − ω′′(0|λ0)
ω′(0|λ0)

]
dλ0 . (3.84)

Here we additionally integrated the first integral on the right-hand side by parts.
Using the following identity derived in Appendix D, see equation (D.21),

∂λ0ω′(0|λ0)
ω′(0|λ0) = 1

2
∂λ0u′′(λ0|λ0)

u′(λ0|λ0) = 3
2

ω′′(0|λ0)
ω′(0|λ0) − 1

2
d′′

λ0
(λ0)

d′
λ0

(λ0) , (3.85)

we obtain

− 2
ˆ

C−
λ0

τ(λ0)
κ′

reg(λ0)
κreg(λ0) dλ0 = −2τ(λ0) lnκ(λ0|λ0) + 2

ˆ

C−
λ0

τ ′(λ) lnκ(λ|λ) dλ

+ τ2(λ0)(1 + ln ω′(0|λ0)) −
ˆ

C−
λ0

τ2(λ0)
2

[
ω′′(0|λ0)
ω′(0|λ0) −

d′′
λ0

(λ0)
d′

λ0
(λ0)

]
dλ0 , (3.86a)

and

− 2
ˆ

C+
λ0

τ(λ0)
κ′

reg(λ0)
κreg(λ0) dλ0 = 2τ(λ0) lnκ(λ0|λ0) + 2

ˆ

C+
λ0

τ ′(λ) lnκ(λ|λ) dλ

− τ2(λ0)(1 + ln ω′(0|λ0)) −
ˆ

C+
λ0

τ2(λ0)
2

[
ω′′(0|λ0)
ω′(0|λ0) −

d′′
λ0

(λ0)
d′

λ0
(λ0)

]
dλ0 . (3.86b)

We note that the last integrals on the right-hand sides cancel the corresponding terms in
equations (3.70a) and (3.70b).

Integrals involving lnκκκ(λ|λ) The last step is to evaluate the integrals
ˆ

C−
λ0

τ ′(λ) lnκ(λ|λ) dλ ,

ˆ

C+
λ0

τ ′(λ) lnκ(λ|λ) dλ . (3.87)

First we evaluate the function κ(λ0|λ0), using equation (2.42). We substitute λ = λ0,
integrate by parts and send the regularization parameter ε to zero. We obtain

κ(λ0|λ0) = exp
{

−
ˆ

C−
λ0

dµ L′
`(µ) ln(λ0 − µ) −

ˆ

C+
λ0

dµ L′
r(µ) ln(µ − λ0)

}
. (3.88)

Now we introduce L′(λ) as

L′(λ) = L′
`(λ) · 1Re(λ−λ0)<0(λ) + L′

r(λ) · 1Re(λ−λ0)>0(λ) (3.89)
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in analogy to the function L(λ) := L(λ|λ0),

L(λ) = L`(λ) · 1Re(λ−λ0)<0(λ) + Lr(λ) · 1Re(λ−λ0)>0(λ), (3.90)

that we introduced in (2.30). We emphasize that in this notation the derivative does not act
on the indicators. Then, the function κ(λ0|λ0) can be written as

κ(λ0|λ0) = exp
{

−
ˆ

Cλ0

dµ L′(µ|λ0) ln [(λ0 − µ) sgn Re(λ0 − µ)]
}

. (3.91)

We evaluate in full details the first integral in (3.87) and provide only the resulting
expression for the second integral, because it can be derived exactly the same way. First we
substitute expression (3.91) for κ(λ|λ),

ˆ

C−
λ0

τ ′(λ) lnκ(λ|λ) dλ = −
ˆ

C−
λ0

τ ′(λ)
ˆ

Cλ0

dµ L′(µ|λ) ln [(λ − µ) sgn Re(λ − µ)] dλ . (3.92)

Then, we substitute τ(λ) = L`(λ) − Lr(λ) and L′(λ) as well, see equation (3.89), and expand
everything

ˆ

C−
λ0

τ ′(λ) lnκ(λ|λ) dλ

= −
ˆ

C−
λ0

dλ

ˆ

C−
λ

dµ L′
`(λ)L′

`(µ) ln(λ − µ) +
ˆ

C−
λ0

dλ

ˆ

C−
λ

dµ L′
r(λ)L′

`(µ) ln(λ − µ)

−
ˆ

C−
λ0

dλ

ˆ

C+
λ

dµ L′
`(λ)L′

r(µ) ln(µ − λ) +
ˆ

C−
λ0

dλ

ˆ

C+
λ

dµ L′
r(λ)L′

r(µ) ln(µ − λ). (3.93)

Here we introduced contour C±
λ similar to C±

λ0
, see equation (2.32),

C±
λ = {z ∈ Cλ0 |± Re(z − λ) ≥ 0} , C−

λ ∪ C+
λ = Cλ0 . (3.94)

Now we symmetrize the integrals and rewrite them as
ˆ

C−
λ0

τ ′(λ) lnκ(λ|λ) dλ = −1
2

ˆ

Cλ0

dλ

ˆ

Cλ0

dµ L′(λ)L′(µ) ln [(λ − µ) sgn Re(λ − µ)]

+ 1
2

ˆ

Cλ0

dλ

ˆ

Cλ0

dµ L′
r(λ)L′

r(µ) ln [(λ − µ) sgn Re(λ − µ)] . (3.95)

After integration by parts, these integrals are nothing but
ˆ

Cλ0

dλ

ˆ

Cλ0

dµ L′(λ)L′(µ) ln [(λ − µ) sgn Re(λ − µ)]

= −τ(λ0) lnκ(λ0|λ0) + 1
2

ˆ

Cλ0

dλ

ˆ

Cλ0

dµ
L′(λ)L(µ) − L(λ)L′(µ)

λ − µ
(3.96)
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and

ˆ

Cλ0

dλ

ˆ

Cλ0

dµ L′
r(λ)L′

r(µ) ln [(λ − µ) sgn Re(λ − µ)]

= −1
2

ˆ

Cλ0

dλ

ˆ

Cλ0

dµ
L′

r(λ)Lr(µ) − Lr(λ)L′
r(µ)

λ − µ
. (3.97)

Then the first integral in (3.87) can be expressed as

2
ˆ

C−
λ0

τ ′(λ) lnκ(λ|λ) dλ = −1
2

ˆ

Cλ0

dλ

ˆ

Cλ0

dµ
L′(λ)L(µ) − L(λ)L′(µ)

λ − µ

+ τ(λ0) lnκ(λ0|λ0) + 1
2

ˆ

Cλ0

dλ

ˆ

Cλ0

dµ
L′

r(λ)Lr(µ) − Lr(λ)L′
r(µ)

λ − µ
. (3.98a)

Similarly, the second integral can be written as

2
ˆ

C+
λ0

τ ′(λ) lnκ(λ|λ) dλ = 1
2

ˆ

Cλ0

dλ

ˆ

Cλ0

dµ
L′(λ)L(µ) − L(λ)L′(µ)

λ − µ

− τ(λ0) lnκ(λ0|λ0) − 1
2

ˆ

Cλ0

dλ

ˆ

Cλ0

dµ
L′

`(λ)L`(µ) − L`(λ)L′
`(µ)

λ − µ
. (3.98b)

Finally, substituting equations (3.78), (3.86), and (3.98) into expressions (3.70), we get
the following representations for the integration constant C[u, ϑ, ν, g, λ0],

C[u, ϑ, ν, g, λ0] = C−[u, ϑ, ν, g] + ln [G(τ(λ0) + 1)] − τ(λ0)
2 ln(2π) − 2πin

+ τ2(λ0)
2

(
πi
2 − ln

[
2(ω′(0|λ0))2

])
+ τ(λ0) lnκ(λ0|λ0) +

ˆ

C−
λ0

τ(λ)ϑ′(λ)
ϑ(λ) dλ

−
ˆ

C−
λ0

τ(λ)∂λ ln sin2(πν(λ)) dλ + 1
2

ˆ

Cλ0

dλ

ˆ

Cλ0

dµ
L′(λ)L(µ) − L(λ)L′(µ)

λ − µ

−
ˆ

C−
λ0

τ(λ)g′(λ) dλ − 1
2

ˆ

Cλ0

dλ

ˆ

Cλ0

dµ
L′

r(λ)Lr(µ) − Lr(λ)L′
r(µ)

λ − µ
(3.99)
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and

C[u, ϑ, ν, g, λ0] = C+[u, ϑ, ν, g] + ln [G(τ(λ0) + 1)] − τ(λ0)
2 ln(2π) + 2πim

+ τ2(λ0)
2

(
πi
2 − ln

[
2(ω′(0|λ0))2

])
+ τ(λ0) lnκ(λ0|λ0) −

ˆ

C+
λ0

τ(λ)ϑ′(λ)
ϑ(λ) dλ

−
ˆ

C+
λ0

τ(λ)∂λ ln sin2(πν(λ)) dλ + 1
2

ˆ

Cλ0

dλ

ˆ

Cλ0

dµ
L′(λ)L(µ) − L(λ)L′(µ)

λ − µ

+
ˆ

C+
λ0

τ(λ)g′(λ) dλ − 1
2

ˆ

Cλ0

dλ

ˆ

Cλ0

dµ
L′

`(λ)L`(µ) − L`(λ)L′
`(µ)

λ − µ
. (3.100)

In the next section we fix the constants C±[u, ϑ, ν, g] and, consequently, derive a complete
asymptotic expansion of the Fredholm determinant including the logarithmic correction and
the integration constant for the case of no poles on the real axis.

Remark. We note that in all the integrals in expressions (3.99) and (3.100), we do not
need the deformation of the contour for Re λ → ±∞ anymore, and can deform the “tails” of
the integration contour Cλ0 back on the real axis.

3.6 Integration constant

To finally fix the integration constants C±[u, ϑ, ν, g], we use the results from paper [33]. In
this paper, a Fredholm determinant of the so-called generalized sine kernel VGSK(λ, µ) was
studied in the static case in the large-distance limit, i.e., for t = 0 and as x → +∞. The
integral operator VGSK acts on interval [−q, q] for q > 0. Nevertheless, there is a relation
of the Fredholm determinant of the integral operator V under our consideration and the
Fredholm determinant of the integral operator VGSK, due to Propositions 7 and 8, which
allows us to derive the constants C±[u, ϑ, ν, g] explicitly.

3.6.1 Generalized sine kernel

The generalized sine kernel VGSK in [33] is defined as

VGSK(λ, µ) = γ
√

F (λ)F (µ)
2πi(λ − µ)

(
ẽ−1(λ)ẽ(µ) − ẽ(λ)ẽ−1(µ)

)
, (3.101)

where function ẽ is the function e introduced in this work, but in the static case and with
another auxiliary function g̃,

ẽ(λ) = exp
(

− ix
2 p(λ) − 1

2 g̃(λ)
)

. (3.102)

The functions g̃(λ), p(λ) and F (λ) together with the parameter γ are assumed to satisfy some
properties, see [33, Section 2.1], analogous to the assumptions we require in Section 1.4.
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Theorem 2 ( [33, Theorem 2.1]). In the limit x → +∞, the Fredholm determinant of the
generalized sine kernel VGSK, given by (3.101), behaves as

ln det
[−q,q]

(id + VGSK) = −ix
qˆ

−q

ν̃(λ)p′(λ) dλ −
[
ν̃2(q) + ν̃2(−q)

]
ln x

−
qˆ

−q

ν̃(λ)g̃′(λ) dλ + ln
[

G(1, ν̃(q)) G(1, ν̃(−q)) κν̃(q)(q)
(2qp′(q))ν̃2(q) (2qp′(−q))ν̃2(−q) κν̃(−q)(−q)

]

+ 1
2

qˆ

−q

qˆ

−q

ν̃ ′(λ)ν̃(µ) − ν̃(λ)ν̃ ′(µ)
λ − µ

dλ dµ + o(1). (3.103)

Here the functions ν̃(λ) and κ(λ) are given by

ν̃(λ) = − 1
2πi ln [1 + γF (λ)] , κ(λ) = exp

{ qˆ

−q

ν̃(λ) − ν̃(µ)
λ − ν

dµ

}
. (3.104)

The function G(1, λ) := G(1 + λ)G(1 − λ) with G(λ) being the Barnes G-function.

To establish relation to the kernel of the integral operator V with the integration contour
Cλ0 , we need the following direct corollary of Theorem 2.

Corollary 1. If the function ν̃(λ) = O(λ−∞) as Re(λ) → ±∞, then in the limit q → +∞,
the asymptotics behaviour (3.103) of the Fredholm determinant of the generalized sine kernel
VGSK reads

ln det
[−q,q]

(id + VGSK) = −ix
∞̂

−∞

ν̃(λ)p′(λ) dλ

−
∞̂

−∞

ν̃(λ)g̃′(λ) dλ + 1
2

∞̂

−∞

∞̂

−∞

ν̃ ′(λ)ν̃(µ) − ν̃(λ)ν̃ ′(µ)
λ − µ

dλ dµ + o(1). (3.105)

This corollary is straightforward, since all the terms without integrals on the right-hand
side of (3.103) go to zero.

Now we consider the kernel V (λ, µ) in the limit, where the saddle point goes to infinity,
λ0 → ±∞, which corresponds to the static case t → 0. That is easy to see if we note that
the saddle point is determined by the following equation

u(λ) = p(λ) − t

x
ε(λ) ⇒ u′(λ0) = p′(λ0) − t

x
ε′(λ0) = 0, (3.106)

which implies that
t

x
= p′(λ0)

ε′(λ0) . (3.107)

Taking into account the asymptotic behaviour of functions p(λ) and ε(λ) that we assumed
from the beginning, we derive that

lim
λ0→±∞

p′(λ0)
ε′(λ0) = 1

λ0
. (3.108)

Now we consider two limits λ0 → ±∞ separately.
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Rλ0

λ

(a) λ0 → +∞

Rλ0 λ

(b) λ0 → −∞

Figure 3.5: Deformation of the integration contour Cλ0 in the Cauchy transform C(λ − i0),
see equation (1.24), for λ0 → +∞ on the left and for λ0 → −∞ on the right. The pole of the
integrand at λ − i0 is also shown. Its residue must be taken into account for the deformation
of the integration contour on the right.

Limit λ0 → +∞ In the limit λ0 → +∞, the function E(λ), see equation (1.22), behaves
as

lim
λ0→+∞

E(λ) = 1
exp(−2πiν(λ)) − 1 e−1(λ)

∣∣∣∣
t=0

+ O(x−∞), (3.109)

since the Cauchy transform is exponentially small. That is easy to see if one deforms the
integration contour as on Figure 3.5a. Then the kernel V (λ, µ), see equation (1.20), reads

lim
λ0→+∞

V (λ, µ) = 4ϑ(µ) sin(πν(λ)) sin(πν(µ))
2πi(λ − µ)

(
e(µ)e−1(λ)

e−2πiν(λ) − 1
− e(λ)e−1(µ)

e−2πiν(µ) − 1

) ∣∣∣∣∣
t=0

. (3.110)

Using Proposition 1, we can change ϑ(µ) →
√

ϑ(λ)ϑ(µ) and it becomes easy to see that the
kernel V (λ, µ) has the same form as the generalized sine kernel with

γF (λ) = ϑ(λ)
(
e2πiν(λ) − 1

)
(3.111)

and
ẽ(λ) = e(λ)

∣∣∣∣
t=0

(e−2πiν(λ) − 1)1/2. (3.112)

The last transformation of function e(λ) to ẽ(λ) corresponds to the following choice of the
function g(λ)

g(λ) = g̃(λ) + ln
(
e−2πiν(λ) − 1

)
. (3.113)

The support of the integral operators V and VGSK are still different, but in the limit q → ∞
we have an equivalence of the kernels.

Proposition 7. In the limit x → ∞, the Fredholm determinant of the integrable integral
operator V, see equation (1.20), with λ0 → +∞ is asymptotically equivalent to the Fredholm
determinant of the generalized-sine kernel VGSK, see equation (3.101), with q → ∞,

lim
λ0→+∞

det
Cλ0

(id + V) = lim
q→∞

det
[−q,q]

(id + VGSK) + O(x−∞) (3.114)

with
γF (λ) = ϑ(λ)

(
e2πiν(λ) − 1

)
, ẽ(λ) = e(λ)

∣∣∣∣
t=0

(e−2πiν(λ) − 1)1/2. (3.115)

Now we substitute the functions γF (λ), ẽ(λ), from Proposition 7 into the asymptotic
expansion in Corollary 1 and compare it with the asymptotic expansion (3.61). We get

C+[u, ϑ, ν, g] = −
∞̂

−∞

ν̃(λ)g̃′(λ)dλ + 1
2

∞̂

−∞

∞̂

−∞

ν̃ ′(λ)ν̃(µ) − ν̃(λ)ν̃ ′(µ)
λ − µ

dλ dµ + o(1), (3.116)
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3.6. Integration constant

where function ν̃(λ), given by expression (3.104), takes the form

ν̃(λ) = − 1
2πi ln

[
1 + ϑ(λ)

(
e2πiν(λ) − 1

)]
= L`(λ), (3.117)

and function g̃ can be expressed from equation (3.113). Then the integration constant
C+[u, ϑ, ν, g] is given by

C+[u, ϑ, ν, g] = −
∞̂

−∞

L`(λ)g′(λ)dλ +
∞̂

−∞

L`(λ)∂λ ln
(
e−2πiν(λ) − 1

)
dλ

+ 1
2

∞̂

−∞

∞̂

−∞

L′
`(λ)L`(µ) − L`(λ)L′

`(µ)
λ − µ

dλ dµ . (3.118)

Limit λ0 → −∞ Next, we consider the limit as λ0 goes to −∞. This limit is slightly
trickier because from the very beginning we fixed the signs of x > 0 and t > 0 and, from
equation (3.108), it follows that the limit λ0 → −∞ corresponds to t/x → −0. In order
to have the same saddle-point analysis, we keep t > 0 and change the sign of x. Also we
note that the deformation of the contour, see Figure 3.5b, additionally produces the residue
contribution. Then

lim
λ0→−∞

E(λ) =
( 1

exp(−2πiν(λ)) − 1 + 1
)

e−1(λ)
∣∣∣∣ t=0
x→−x

+ O(x−∞)

= 1
1 − exp(2πiν(λ)) e−1(λ)

∣∣∣∣ t=0
x→−x

+ O(x−∞). (3.119)

We note that the change x → −x in the function e(λ) for t = 0 is equivalent to

e(λ)
∣∣∣∣ t=0
x→−x

= e−1(λ)
∣∣∣∣ t=0
g→−g

. (3.120)

Then the kernel V (λ, µ) takes the form

V (λ, µ) = 4ϑ(µ) sin(πν(λ)) sin(πν(µ))
2πi(λ − µ)

(
e(λ)e−1(µ)
1 − e2πiν(λ) − e−1(λ)e(µ)

1 − e2πiν(µ)

) ∣∣∣∣∣ t=0
g→−g

. (3.121)

Using Proposition 1 again, we can change ϑ(µ) →
√

ϑ(λ)ϑ(µ), and the kernel V (λ, µ) becomes
the generalized sine kernel with

γF (λ) = ϑ(λ)
(
e−2πiν(λ) − 1

)
(3.122)

and
ẽ(λ) = e(λ)

∣∣∣∣ t=0
g→−g

(
1 − e2πiν(λ)

)−1/2
. (3.123)

The relation between functions e(λ) and ẽ(λ) corresponds to the following relation of functions
g(λ) and g̃(λ)

g(λ) = −g̃(λ) + ln
(
1 − e2πiν(λ)

)
. (3.124)

Then we have the following equivalence of the kernels in this case.
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Chapter 3. Asymptotic analysis: no poles on the real axis

Proposition 8. In the limit x → ∞, the Fredholm determinant of the integrable integral
operator V, see equation (1.20), with λ0 → −∞ is asymptotically equivalent to the Fredholm
determinant of the generalized-sine kernel VGSK, see equation (3.101), with q → ∞,

lim
λ0→−∞

det
Cλ0

(id + V) = lim
q→∞

det
[−q,q]

(id + VGSK) + O(x−∞) (3.125)

with

γF (λ) = ϑ(λ)
(
e−2πiν(λ) − 1

)
, ẽ(λ) = e(λ)

∣∣∣∣ t=0
g→−g

(
1 − e2πiν(λ)

)−1/2
. (3.126)

Substituting the functions γF (λ), ẽ(λ), from Proposition 8 into the asymptotic expansion
in Corollary 1 and comparing it with the asymptotic expansion (3.61), we derive the following
expression for the constant C−[u, ϑ, ν, g]

C−[u, ϑ, ν, g] = −
∞̂

−∞

ν̃(λ)g̃′(λ)dλ + 1
2

∞̂

−∞

∞̂

−∞

ν̃ ′(λ)ν̃(µ) − ν̃(λ)ν̃ ′(µ)
λ − µ

dλ dµ + o(1). (3.127)

Here function ν̃(λ), given by expression (3.104), takes the form

ν̃(λ) = − 1
2πi ln

[
1 + ϑ(λ)

(
e−2πiν(λ) − 1

)]
= −Lr(λ), (3.128)

and function g̃ can be expressed from equation (3.124). Finally, the constant C−[u, ϑ, ν, g] is
given by

C−[u, ϑ, ν, g] = −
∞̂

−∞

Lr(λ)g′(λ)dλ +
∞̂

−∞

Lr(λ)∂λ ln
(
1 − e2πiν(λ)

)
dλ

+ 1
2

∞̂

−∞

∞̂

−∞

L′
r(λ)Lr(µ) − Lr(λ)L′

r(µ)
λ − µ

dλ dµ . (3.129)

Now we determined everything in expressions (3.70a) and (3.70b) for the integration constant.

Two representations for the integration constant and their equivalence

Finally, we substitute expressions (3.129) and (3.118) for C−[u, ϑ, ν, g] and C+[u, ϑ, ν, g] into
expressions (3.99) and (3.100) and simplify terms. At the end of the day, we have the following
two representations for the integration constant

C[u, ϑ, ν, g, λ0] = ln [G(τ(λ0) + 1)] − τ(λ0)
2 ln(2π) + 2πin

+ τ2(λ0)
2

(
πi
2 − ln

[
2(ω′(0|λ0))2

])
+ τ(λ0) lnκ(λ0|λ0) −

ˆ

Cλ0

L(λ)g′(λ)dλ

+ 1
2

ˆ

Cλ0

ˆ

Cλ0

L′(λ)L(µ) − L(λ)L′(µ)
λ − µ

dλ dµ +
ˆ

C−
λ0

τ(λ)ϑ′(λ)
ϑ(λ) dλ

+
ˆ

Cλ0

Lr(λ)∂λ ln
(
1 − e2πiν(λ)

)
dλ +

ˆ

C−
λ0

τ(λ)∂λ ln sin2(πν(λ)) dλ (3.130)
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3.6. Integration constant

and

C[u, ϑ, ν, g, λ0] = ln [G(τ(λ0) + 1)] − τ(λ0)
2 ln(2π) + 2πim

+ τ2(λ0)
2

(
πi
2 − ln

[
2(ω′(0|λ0))2

])
+ τ(λ0) lnκ(λ0|λ0) −

ˆ

Cλ0

L(λ)g′(λ)dλ

+ 1
2

ˆ

Cλ0

ˆ

Cλ0

L′(λ)L(µ) − L(λ)L′(µ)
λ − µ

dλ dµ −
ˆ

C+
λ0

τ(λ)ϑ′(λ)
ϑ(λ) dλ

+
ˆ

Cλ0

L`(λ)∂λ ln
(
e−2πiν(λ) − 1

)
dλ −

ˆ

C+
λ0

τ(λ)∂λ ln sin2(πν(λ)) dλ (3.131)

for some n, m ∈ Z. These two expressions for the integration constant do not coincide yet,
see the last three terms in both expressions and the terms with n, m ∈ Z.

Due to equation (D.12) derived in Appendix D, 2(ω′(0|λ0))2 = −u′′(λ0). We also note that
the first integrals on the right-hand side combine nicely with the term a(x, t) in the asymp-
totics of the Fredholm determinant, which recovers the initial functional dependence of the
Fredholm determinant on the combination ixu(λ) + g(λ). In other words, in the final asymp-
totic expansion for the Fredholm determinant, instead of a(x, λ0)

∣∣
g=0, see equation (3.62),

we get the complete function a(x, λ0).
At this point we derived the statement of Theorem 1. The last thing to do is to prove

the equivalence of the expressions (3.130) and (3.131) for the constant C[u, ϑ, ν, g, λ0].

Proposition 9. Expressions (3.130) and (3.131) for the integration constant C[u, ϑ, ν, g, λ0]
are equal modulo 2πi.

Proof. Two representations for the integration constant are equivalent if expression
∞̂

−∞

τ(λ)∂λ ln
(
sin2(πν(λ))

)
dλ +

∞̂

−∞

τ(λ)ϑ′(λ)
ϑ(λ) dλ

+
∞̂

−∞

Lr(λ)∂λ ln
(
1 − e2πiν(λ)

)
dλ −

∞̂

−∞

L`(λ)∂λ ln
(
e−2πiν(λ) − 1

)
dλ (3.132)

is zero modulo 2πi. Here we go back to the integration contour along the real axis, since the
integrands exponentially go to zero for large integration variables, due to the assumptions on
ϑ and ν. We express the term with sin(πν(λ)) as follows

τ(λ)∂λ ln sin2(πν(λ)) = τ(λ)∂λ ln
[(

1 − e2πiν(λ)
) (

e−2πiν(λ) − 1
)]

. (3.133)

Substituting here τ(λ) = L`(λ) − Lr(λ) and combining this term with the last two terms in
expression (3.132), we get

∞̂

−∞

L`(λ)∂λ ln
(
1 − e2πiν(λ)

)
dλ −

∞̂

−∞

Lr(λ)∂λ ln
(
e−2πiν(λ) − 1

)
dλ +

∞̂

−∞

τ(λ)∂λ ln ϑ(λ) dλ

=
∞̂

−∞

L`(λ)∂λ ln
[
ϑ(λ)

(
e2πiν(λ) − 1

)]
dλ −

∞̂

−∞

Lr(λ)∂λ ln
[
ϑ(λ)

(
e−2πiν(λ) − 1

)]
dλ. (3.134)
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Chapter 3. Asymptotic analysis: no poles on the real axis

Finally, we note that from definitions of the functions L` and Lr, see equations (2.31), it
follows that

e−2πiL`(λ) − 1 = ϑ(λ)
(
e2πiν(λ) − 1

)
, (3.135)

e2πiLr(λ) − 1 = ϑ(λ)
(
e−2πiν(λ) − 1

)
. (3.136)

Thus, expression (3.134) takes the form

∞̂

−∞

L`(λ)∂λ ln
(
e−2πiL`(λ) − 1

)
dλ −

∞̂

−∞

Lr(λ)∂λ ln
(
e2πiLr(λ) − 1

)
dλ

= −2πi
∞̂

−∞

L`(λ)L′
`(λ)e−2πiL`(λ)

e−2πiL`(λ) − 1
dλ − 2πi

∞̂

−∞

Lr(λ)L′
r(λ)e2πiLr(λ)

e2πiLr(λ) − 1
dλ. (3.137)

Now we introduce two new variables f` := L`(λ) and fr := −Lr(λ). If

lim
Re(λ)→±∞

L`(λ) = 0, lim
Re(λ)→±∞

Lr(λ) = 0, (3.138a)

then the integration contours in λ from −∞ to +∞ for integrals over f` and fr transform
into two loops in the complex plane C` and Cr, respectively, such that 0 ∈ C` and 0 ∈ Cr.
Then the expression takes the form

∞̂

−∞

L`(λ)∂λ ln
(
e−2πiL`(λ) − 1

)
dλ −

∞̂

−∞

Lr(λ)∂λ ln
(
e2πiLr(λ) − 1

)
dλ

= −2πi
ˆ

C`

f`

1 − e2πif`
df` − 2πi

ˆ

Cr

fr

1 − e2πifr
dfr . (3.139)

We note that both integrands are regular at the origin. Moreover, both integrands are
meromorphic functions that have poles at f` = n and fr = m for n, m ∈ Z, n, m 6= 0 with
residues

2πi · res
f`=n

(
f`

1 − e2πif`

)
= 2πin

−2πie2πin = −n, n ∈ Z, n 6= 0, (3.140)

2πi · res
fr=m

(
fr

1 − e2πifr

)
= 2πim

−2πie2πim = −m, m ∈ Z, m 6= 0. (3.141)

Then expression takes form

− 2πi
ˆ

C`

f`

1 − e2πif`
df` − 2πi

ˆ

Cr

fr

1 − e2πifr
dfr

= 2πi
∑

n∈Int C`
n∈Z

n + 2πi
∑

m∈Int C`
m∈Z

m = 0 mod 2πi. (3.142)

Hence, the exponents of the integration constants (3.130) and (3.131) are the same and,
therefore, the corresponding expansions for the Fredholm determinant.
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4 Asymptotic analysis: two poles
on the real axis

In this chapter, we consider the case when two poles from the set S appear to be situated on
the real axis. As we will see later in Chapter 5, this situation is quite typical. For example,
for the impenetrable Bose gas in thermal equilibrium, these poles are associated with Fermi
points, of which there are usually two. In the following, we completely ignore all the poles
away from the real axis, because their contributions are of order O(x−∞), as we argued in
the beginning of Section 3.5 in the previous chapter.

First, we start with the situation where there are no poles from S on the real axis. That
can be achieved with a slight continuous deformation of the function ν to ν̃. Then as ν̃ → ν
two poles in S approach two points on the real axis. We denote these points ` and r for ` < r
and assume that these points are away from the saddle point λ0. In this chapter we consider
three cases of how the poles approach the real axis, shown in Figure 4.1. Such a choice is
relevant to the application of the asymptotic analysis to the impenetrable Bose gas and will
be explained in the next chapter in Section 5.2.

R

`+
1

`−
1

` r λ0

(a)

R

`+
1 r+

1

`−
1 r−

1

` rλ0

(b)

R

r+
1

r−
1

` rλ0

(c)

Figure 4.1: Two poles approach the real axis as we deform ν̃ → ν: (a) in the space-like
regime I, (b) in the time-like regime, and (c) in the space-like regime II.

Two poles on the real axis can be either on both sides of the saddle point, or on one side
from it — to the right or to the left from the saddle point. We call these regimes the time-
like regime and the space-like regimes I and II, respectively. We consider them separately in
Section 4.1–4.3. First, the asymptotic analysis is performed in full detail for the space-like
regime I. Then we omit some details for the time-like regime and the space-like regime II,
since the analysis is very similar.

Finally, in Section 4.4 we explain how to derive the integration constant from the expres-
sion for the case of no poles on the real axis obtained in the previous chapter, see Theorem 1.

The main result of this chapter is formulated in the following theorem.
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Chapter 4. Asymptotic analysis: two poles on the real axis

Theorem 3. If there are exactly two poles `, r ∈ S on the real axis such that ` < r and
|Re τ(λ0)| < 1/2, then the Fredholm determinant of the integrable integral operator V, given
by (1.20), has the following asymptotic expansion as x, t → +∞ with x/t fixed,

det
Cλ0

(id + V) = exp {C[u, ϑ, ν, g, λ0]} x− τ2(λ0)
2 exp {a(x, λ0)}

×
{

1 + h`hr

(r − `)2 + 1
x1/2

1√
−u′′(λ0)

(
h`b21(λ0)
(λ0 − `)2 + hrb12(λ0)

(λ0 − r)2

)
+ o

(
x−1/2

)}
, (4.1)

where τ(λ) = L`(λ) − Lr(λ), and the function a(x, λ0) reads

a(x, λ0) = 2
ˆ

Cλ0

dz L(z|λ0) ∂z ln e(z). (4.2)

The functions b12 and b21 are defined by (2.79). The coefficients h` and hr depend on the
regime, i.e., on the relative position of the saddle point λ0 with respect to the poles ` and r,

h` =
{

h+
` , ` < λ0,

h−
r , λ0 < `,

hr =
{

h−
` , r < λ0,

h+
r , λ0 < r

(4.3)

with h±
` and h±

r defined in (2.97) and (2.98). The constant C[u, ϑ, ν, g, λ0] is given by

exp {C[u, ϑ, ν, g, λ0]} = G(τ(λ0) + 1)
(2π) τ(λ0)/2

(
iu′′(λ0)

)− τ2(λ0)
2 (κ(λ0|λ0))τ(λ0)

× exp
{

1
2

ˆ

Cλ0

dλ

ˆ

Cλ0

dµ
L′(λ)L(µ) − L(λ)L′(µ)

λ − µ
+

ˆ

C−
λ0

τ(λ)ϑ′(λ)
ϑ(λ) dλ

+
ˆ

Cλ0

Lr(λ)∂λ ln
(
1 − e2πiν(λ)

)
dλ +

ˆ

C−
λ0

τ(λ)∂λ ln sin2(πν(λ)) dλ

}
(4.4)

or equivalently by

exp {C[u, ϑ, ν, g, λ0]} = G(τ(λ0) + 1)
(2π) τ(λ0)/2

(
iu′′(λ0)

)− τ2(λ0)
2 (κ(λ0|λ0))τ(λ0)

exp
{

1
2

ˆ

Cλ0

dλ

ˆ

Cλ0

dµ
L′(λ)L(µ) − L(λ)L′(µ)

λ − µ
−

ˆ

C+
λ0

τ(λ)ϑ′(λ)
ϑ(λ) dλ

+
ˆ

Cλ0

L`(λ)∂λ ln
(
e−2πiν(λ) − 1

)
dλ −

ˆ

C+
λ0

τ(λ)∂λ ln sin2(πν(λ)) dλ

}
. (4.5)

Here the function G(λ) is the Barnes G-function, κ(λ0|λ0) reads

κ(λ0|λ0) = exp
{

−
ˆ

Cλ0

dµ L′(µ) ln [(λ0 − µ) · sgn Re(λ0 − µ)]
}

, (4.6)
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4.1. Space-like regime I

where the functions L(λ) := L(λ|λ0) and L′(λ) := L′(λ|λ0) are given by

L(λ|λ0) = L`(λ) · 1Re(λ−λ0)<0(λ) + Lr(λ) · 1Re(λ−λ0)>0(λ), (4.7a)
L′(λ|λ0) = L′

`(λ) · 1Re(λ−λ0)<0(λ) + L′
r(λ) · 1Re(λ−λ0)>0(λ) (4.7b)

with L` and Lr defined in (2.31). The integration contours C±
λ0

are introduced in (2.32).
Finally, all the integrals involving functions L`, Lr, and τ(λ) should be understood as the
limiting cases, when two poles from the set S approach the real axis, according to the Figure 4.1.

4.1 Space-like regime I

The first regime corresponds to the situation, where we have two poles `± to the left from
the saddle point `± < λ0, approaching the real axis from above and below, see Figure 4.1a.
We provide all the details on how to derive the asymptotic expansion in this case. Here we
omit as many indices as possible, when we solve the linear systems and obtain the matrix S
explicitly.

4.1.1 Solution of the linear system

The matrix S in the case of two poles to the left from the saddle point, see Section 2.9 for
n±

` = 1 and n±
r = 0, is given by

S(λ) = I2 + C−

λ − `− + C+

λ − `+ , (4.8)

where the matrices C± read

C− = σ−
` (X−, 0) Π−1(`−), C+ = σ+

` (0, Y+) Π−1(`+). (4.9)

The vectors X− and Y+ satisfy the linear system (2.94), which takes the form
X− = V− −

σ+
`

[
Π−1(`+)Π(`−)

]
22

`+ − `− Y+,

Y+ = W+ +
σ−

`

[
Π−1(`−)Π(`+)

]
11

`+ − `− X−.

(4.10)

Here

V− =
(

Π12(`−)
Π22(`−)

)
, W+ =

(
Π11(`+)
Π21(`+)

)
, (4.11)

and
σ+

` = h+
`

1 − h+
` [Π−1(`+)Π′(`+)]21

, σ−
` = h−

`

1 − h−
` [Π−1(`−)Π′(`−)]12

. (4.12)

In this case, the solution is straightforwardly given by

X− = AI
s

(
V− −

σ+
` det

(
W+, V−)

`+ − `− W+
)

, (4.13a)

Y+ = AI
s

(
W+ + σ−

` det
(
W+, V−)

`+ − `− V−
)

, (4.13b)
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Chapter 4. Asymptotic analysis: two poles on the real axis

where we introduced

AI
s =

(
1 + σ+

` σ−
` det

(
W+, V−)2

(`+ − `−)2

)−1

(4.14)

and

det
(
W+, V−

)
=
[
Π−1(`−)Π(`+)

]
11

=
[
Π−1(`+)Π(`−)

]
22

= Π11(`+)Π22(`−) − Π21(`+)Π12(`−). (4.15)

The residues at λ = `− and at λ = `+, contributing to the last term on the right-hand
side of equation (3.1), are given by

res
λ=`−

(
tr{S′(λ)Π(λ)σzΠ−1(λ)S−1(λ)}dβ(λ)

)
= 2AI

sσ−
` dβ(`−)

([
Π−1(`−)Π′(`−)

]
12 −

σ+
` det

(
W+, V−)2

(`+ − `−)2

)
(4.16a)

and

res
λ=`+

(
tr{S′(λ)Π(λ)σzΠ−1(λ)S−1(λ)}dβ(λ)

)
= −2AI

sσ+
` dβ(`+)

([
Π−1(`+)Π′(`+)

]
21

−
σ−

` det
(
W+, V−)2

(`+ − `−)2

)
. (4.16b)

These two expressions follow from the analysis provided in Appendix C.2, see equations (C.37)
and (C.41), where one substitutes expressions for matrices C± explicitly, see equations (4.9)
and (4.13). We note that we do not have terms with the derivative d′

β which come from the
first terms on the right-hand sides of equations (C.37) and (C.41), because they appear to be
multiplied by traces of off-diagonal matrices.

To derive the contribution of the integral over γ0, see equation (3.54), to the expression
of the logarithmic derivative of the Fredholm determinant (3.1), we need the matrix ele-
ments of S−1(λ)S′(λ). Due to analysis in Appendix C.2, the matrix elements are given by
expressions (C.33), which take the form

(
S−1(λ)S′(λ)

)
11 = −

AI
sσ−

`

(λ − `−)2 Π12(`−)Π22(`−) + AI
sσ+

`

(λ − `+)2 Π11(`+)Π21(`+)

−
AI

sσ−
` σ+

`

(λ − `+)(λ − `−)(`+ − `−)
[
Π2

11(`+)Π2
22(`−) − Π2

21(`+)Π2
12(`−)

]
, (4.17a)

(
S−1(λ)S′(λ)

)
22 = AI

sσ−
`

(λ − `−)2 Π12(`−)Π22(`−) −
AI

sσ+
`

(λ − `+)2 Π11(`+)Π21(`+)

+ AI
sσ−

` σ+
`

(λ − `+)(λ − `−)(`+ − `−)
[
Π2

11(`+)Π2
22(`−) − Π2

21(`+)Π2
12(`−)

]
, (4.17b)

(
S−1(λ)S′(λ)

)
12 = AI

sσ−
`

(λ − `−)2 Π2
12(`−) −

AI
sσ+

`

(λ − `+)2 Π2
11(`+)

−
2AI

sσ−
` σ+

` Π11(`+)Π12(`−)
(λ − `+)(λ − `−)(`+ − `−)

[
Π11(`+)Π22(`−) − Π21(`+)Π12(`−)

]
, (4.17c)
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(
S−1(λ)S′(λ)

)
21 = −

AI
sσ−

`

(λ − `−)2 Π2
22(`−) + AI

sσ+
`

(λ − `+)2 Π2
21(`+)

+ 2AI
sσ−

` σ+
` Π21(`+)Π22(`−)

(λ − `+)(λ − `−)(`+ − `−)
[
Π11(`+)Π22(`−) − Π21(`+)Π12(`−)

]
. (4.17d)

We note that matrix elements (1, 1) and (2, 2) differ only by the sign.

4.1.2 Asymptotic expansions

Now we substitute the solution of the singular integral equation Π as a series in x−1/2,
see equation (3.31), and expand everything in x−1/2. In order to derive the asymptotic
expansion of the Fredholm determinant, including the correction of order O(x−1/2) and the
logarithmic correction, it turns out that it is enough to expand S−1(λ)S′(λ) and the residue
contributions (4.16) up to the same order x−1/2 in the expression for the logarithmic derivative
of the Fredholm determinant. The logarithmic correction to the Fredholm determinant,
propagates from the term of order x−1 in the expansion of its logarithmic derivative with
respect to x and originates only from the integral (3.53), which is universal for all three
regimes. To argue that it is so, we expand everything explicitly up to O(x−1) in the space-
like regime. Once we convince the reader about the origin of the logarithmic corrections in
this regime, we ignore the terms of order O(x−1) for brevity in the following two sections,
since the argument stays exactly the same for all three regimes.

First, from definition (4.15), the expansion of det
(
W+, V−) reads

det
(
W+, V−

)
= 1 + 1

x

[(
Π2(`+)

)
11

+
(
Π2(`−)

)
22

+
(
Π1(`+)

)
21

(
Π1(`−)

)
12

]
+ o

(
x−1

)
. (4.18)

From equation (4.12) it follows that

σ+
` = h+

`

[
1 + h+

√̀
x

(
Π′

1(`+)
)

21
+ (h+

` )2

x

(
Π′

1(`+)
)2

21
+ o

(
e2ix[u(`+)−u(λ0)]

x1+2τ(λ0)

)]
, (4.19)

σ−
` = h−

`

[
1 + h−

√̀
x

(
Π′

1(`−)
)

12 + (h−
` )2

x

(
Π′

1(`−)
)2

12 + o
(

e2ix[u(λ0)−u(`−)]

x1−2τ(λ0)

)]
, (4.20)

and from equation (4.14) for AI
s

AI
s = ∆2

∆2 + h+
` h−

`

− 1√
x

∆2h+
` h−

`

[∆2 + h+
` h−

` ]2
[
h−

`

(
Π′

1(`−)
)

12 + h+
`

(
Π′

1(`+)
)

21

]
+ 1 + o(1)

x

{
−

∆4h+
` h−

`

[∆2 + h+
` h−

` ]3

(
(h+

` )2
(
Π′

1(`+)
)2

21
+ (h−

` )2 (Π′
1(`−)

)2
12

)

−
∆2(h+

` h−
` )2

[∆2 + h+
` h−

` ]2
(
Π′

1(`+)
)

21

(
Π′

1(`−)
)

12 + 2∆2(h+
` h−

` )3

[∆2 + h+
` h−

` ]3
(
Π′

1(`+)
)

21

(
Π′

1(`−)
)

12

−
2∆2h+

` h−
`

[∆2 + h+
` h−

` ]2
[(

Π2(`+)
)

11
+
(
Π2(`−)

)
22 −

(
Π1(`+)

)
21

(
Π1(`−)

)
12

]}
. (4.21)

For brevity, here and in the following we denote ∆ := `+ − `−.
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Chapter 4. Asymptotic analysis: two poles on the real axis

We remind again that the reader should not be scared of the coefficients in the order
1/x here or in the following, because these terms will not contribute to the final asymptotic
expansion of the Fredholm determinant. We keep all the terms with 1/x explicitly only in
this section, in order to argue that they do not matter at the end.

Residues First we expand residue contributions (4.16) into a series in x−1/2.
Using definition (4.14) of AI

s, we obtain

AI
sσ+

` σ−
` det

(
W+, V−)2

(`+ − `−)2 = 1 − AI
s, (4.22)

which slightly simplifies the last terms on the right-hand sides of expressions (4.16),

res
λ=`−

(. . . ) = 2AI
sσ−

` dβ(`−)
[
Π−1(`−)Π′(`−)

]
12 − 2(1 − AI

s)dβ(`−), (4.23a)

res
λ=`+

(. . . ) = −2AI
sσ+

` dβ(`+)
[
Π−1(`+)Π′(`+)

]
21 + 2(1 − AI

s)dβ(`+). (4.23b)

From expansion (3.31) and the properties of the coefficients Π1 and Π2, see explicit expres-
sions (3.33) and (3.34), it follows that

[
Π−1(λ)Π′(λ)

]
12 = − (Π1(λ))12

x
1
2 (λ − λ0)

+ o(x−1), (4.24)

[
Π−1(λ)Π′(λ)

]
21 = − (Π1(λ))21

x
1
2 (λ − λ0)

+ o(x−1). (4.25)

Due to these expressions, one can see that it is enough to expand the coefficient AI
s up to

order o(x−1) in the first terms on the right-hand sides of (4.23). Substituting into (4.23)
these expressions, expansion (4.21) and the coefficient Π1 and Π2, given by equations (3.33)
and (3.34), we derive the contribution of the last term on the right-hand side of expres-
sion (3.1) to the logarithmic derivative of the Fredholm determinant in the space-like regime I,

∑
λ∈{r+,r−}

res
z=λ

(
tr{S′(z)Π(z)σzΠ−1(z)S−1(z)}dβ(z)

)
= 2[dβ(`+) − dβ(`−)]h+

` h−
`

∆2 + h+
` h−

`

− 1
x1/2

2∆2
√

2ω′(0)

[
1

∆2 + h+
` h−

`

(
dβ(`−)b12h−

`

(λ0 − `−)2 −
dβ(`+)b21h+

`

(λ0 − `+)2

)

−
[dβ(`−) − dβ(`+)]h+

` h−
`

[∆2 + h+
` h−

` ]2

(
b12h−

`

(λ0 − `−)2 + b21h+
`

(λ0 − `+)2

)]
+ 1 + o(1)

x
sosc. (4.26)
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Here coefficient sosc in front of 1/x is given explicitly by

sosc · (ω′(0))2 = 2iτ(λ0)∆4(h+
` h−

` )2 [dβ(`+) − dβ(`−)]
[∆2 + h+

` h−
` ]3(`+ − λ0)2 (`− − λ0)2

+ iτ(λ0)∆2h+
` h−

` [dβ(`+) − dβ(`−)]
[∆2 + h+

` h−
` ]2

( 1 + τ(λ0)
(`+ − λ0)2 + 1 − τ(λ0)

(`− − λ0)2

)

+ iτ(λ0)∆3h+
` h−

` [dβ(`+) − dβ(`−)]
[∆2 + h+

` h−
` ]2(`+ − λ0)(`− − λ0)

[
ω′′(0)τ(λ0)

ω′(0) + B(λ0) + 2τ ′(λ0)(ln x − 1)
]

−
2iτ(λ0)h+

` h−
` ∆2[dβ(`+) − dβ(`−)]

[∆2 + h+
` h−

` ]2(`+ − λ0)(`− − λ0)

− ∆6

[∆2 + h+
` h−

` ]3

dβ(`+)

(
b21h+

`

)2

(`+ − λ0)4 − dβ(`−)

(
b12h−

`

)2

(`− − λ0)4


−

∆4h+
` h−

`

[∆2 + h+
` h−

` ]3

dβ(`−)

(
b21h+

`

)2

(`+ − λ0)4 − dβ(`+)

(
b12h−

`

)2

(`− − λ0)4

 . (4.27)

Integral over γ0 Now we derive the asymptotic expansion of the integral over γ0, see equa-
tion (3.54). We expand the matrix elements (1, 1) and (2, 2) up to order o(1),

(
S−1(λ0)S′(λ0)

)
11 = −

(
S−1(λ0)S′(λ0)

)
22 = ∆h+

` h−
`

[∆2 + h+
` h−

` ](λ0 − `−)(λ0 − `+)
+ o(1), (4.28)

and elements (1, 2) and (2, 1) up to order o(x−1/2),

(
S−1(λ0)S′(λ0)

)
12 = −

∆2h+
`

[∆2 + h+
` h−

` ](λ0 − `+)2

− 1 + o(1)
x1/2

{
∆2(h+

` )2

[∆2 + h+
` h−

` ]2(λ0 − `+)2

[
∆2
(
Π′

1(`+)
)

21
− (h−

` )2 (Π′
1(`−)

)
12

]

−
2∆h+

` h−
` (Π1(`−))12

[∆2 + h+
` h−

` ](λ0 − `+)(λ0 − `−)

}
, (4.29)

(
S−1(λ0)S′(λ0)

)
21 = −

∆2h−
`

[∆2 + h+
` h−

` ](λ0 − `−)2

− 1 + o(1)
x1/2

{
∆2(h−

` )2

[∆2 + h+
` h−

` ]2(λ0 − `−)2

[
∆2 (Π′

1(`−)
)

12 − (h+
` )2

(
Π′

1(`+)
)

21

]

+
2∆h+

` h−
`

(
Π1(`+)

)
21

[∆2 + h+
` h−

` ](λ0 − `+)(λ0 − `−)

}
. (4.30)

Now we substitute these expansions and explicit expression for the coefficients Π1 and
Π2, see (3.33) and (3.34), into expression (3.54). We obtain that in the space-like regime I
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Chapter 4. Asymptotic analysis: two poles on the real axis

the integral over γ0 is given by
ˆ
γ0

dz

2πi tr
{
Φ′(z)σzΦ−1(z)

}
dβ(z) = 1

x
1
2

√
2dβ(λ0)∆2

ω′(0)[∆2 + h+
` h−

` ]

(
b12h−

`

(λ0 − `−)2 −
b21h+

`

(λ0 − `+)2

)

+ 1
x

(
γlog + γosc

)
+ O

(
(ln x)2

x2

)
, (4.31)

where we denoted the contribution that comes only from the parametrix Π by γlog, compare
with equation (3.53),

γlog = iτ(λ0)
2(ω′(0))2

[
−τ(λ0)d′′

β(λ0)+d′
β(λ0)

(
τ(λ0)ω′′(0)

ω′(0) + 2τ ′(λ0)(ln x − 1) + B(λ0)
)]

(4.32)

and

γosc · (ω′(0))2 =
2iτ(λ0)∆d′

β(λ0)h+
` h−

`

[∆2 + h+
` h−

` ](λ0 − `+)(λ0 − `−)

+ ∆4dβ(λ0)
[∆2 + h+

` h−
` ]2


(
b21h+

`

)2

(λ0 − `+)4 −

(
b12h−

`

)2

(λ0 − `−)4

 . (4.33)

Now we are completely ready to derive the asymptotic expansion of the Fredholm determinant
in this regime.

4.1.3 Fredholm determinant asymptotic expansion

We substitute the contribution of the poles in the space-like regime I, see equation (4.26),
and the expression for the integral over γ0, see equation (4.31), into representation (3.26).
We get the following expression for the logarithmic derivative in the space-like regime I, i.e.,
for `+, `− < λ0,

∂β ln det
Cλ0

(id + V) = ∂βa(x, λ0) + a0 + a1
x1/2 − 1

x

(
γlog + γosc + sosc

)
+ O

(
(ln x)2

x2

)
, (4.34)

where a(x, λ0) is given by (3.14), and the coefficient a0 by

a0 = −
2[dβ(`+) − dβ(`−)]h+

` h−
`

∆2 + h+
` h−

`

. (4.35)

The coefficient a1 originates from expressions (4.26) and (4.31) and reads

a1 = ∆2
√

2ω′(0)

[
1

[∆2 + h+
` h−

` ]

(
2dβ(`−)b12h−

`

(λ0 − `−)2 −
2dβ(`+)b21h+

`

(λ0 − `+)2

)

−
2[dβ(`+) − dβ(`−)]h+

` h−
`

[∆2 + h+
` h−

` ]2

(
b12h−

`

(λ0 − `−)2 + b21h+
`

(λ0 − `+)2

)

− 2dβ(λ0)
[∆2 + h+

` h−
` ]

(
b12h−

`

(λ0 − `−)2 −
b21h+

`

(λ0 − `+)2

)]
. (4.36)

Finally, the coefficients γlog, γosc and sosc are given by (4.32), (4.33) and (4.27).
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4.1. Space-like regime I

Derivative with respect to x Now we consider the derivative with respect to the large
parameter, β = x. We manage to express all the coefficients in terms of x-derivatives and
integrate them after, using in some cases the following observation

∂x

[
(ln x)axbeixc

]
= (ln x)axb ∂xeixc ·

[
1 + O

(
x−1

) ]
= (ln x)axbeixc

[
ic + O

(
x−1

) ]
, (4.37)

where we assume that b, c 6= 0. For example, from the definition of coefficients b12 and b21,
see equations (2.79) and (2.73), it follows that

∂xb12(λ0) = −2dx(λ0)b12(λ0)
[
1 + O

(
x−1

)]
, (4.38a)

∂xb21(λ0) = 2dx(λ0)b21(λ0)
[
1 + O

(
x−1

)]
. (4.38b)

Also, recall that the only dependence of h+
` and h−

` on x is in the functions e∓2(`±), see
equation (2.97), therefore,

∂xh+
` = −2h+

` dx(`+), ∂xh−
` = 2h−

` dx(`−). (4.39)

The coefficients a0 can be expressed as

a0 = ∂x ln
[
∆2 + h+

` h−
`

]
, (4.40)

and the coefficient a1 as

a1
x1/2 = ∆2

√
2ω′(0)

∂x

[
1

x
1
2

1
[∆2 + h+

` h−
` ]

(
b21h+

`

(λ0 − `+)2 + b12h−
`

(λ0 − `−)2

)](
1 + O

(
x−1

) )
. (4.41)

Indeed, in the latter, when the derivative acts on h±
` , we derive the first line in equation (4.36),

and when it acts on the denominator, we obtain the second line. Lastly, the derivatives of
coefficients b12 and b21 produces the last line up to corrections of order O(x−1), see iden-
tity (4.37) or (4.38).

Now we look at the coefficients in front of 1/x. First we consider γlog, which in the end
is responsible for the logarithmic corrections to the Fredholm determinant asymptotics. In
Appendix D we explicitly show that d′

x(λ0) = 0 and d′′
x(λ0) = i(ω′(λ0))2, see identities (D.15)

and (D.16). Thus, we obtain from equation (4.32) the following expression for the coefficient
γlog for β = x,

−
γlog
x

= iτ2(λ0)d′′
x(λ0)

2(ω′(0))2 = −τ2(λ0)
2 ∂x ln x. (4.42)

In fact, that is exactly the same term as in (3.60).
Finally, all the terms in the coefficients sosc and γosc, see expressions (4.27) and (4.33),

have oscillatory dependence on x. Therefore, it follows from identity (4.37) that these terms
can be expressed as the x-derivative of something, which is effectively of order 1/x. For
clarity, despite this argument, we express (γosc + sosc)/x as the x-derivative of an explicit
expression in the space-like regime I. In what follows for all the other regimes, we skip this
explanation, since it works exactly along the same lines.
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Combining sosc and γosc together, we obtain

− (sosc + γosc) · (ω′(0))2 = −
2iτ(λ0)∆4(h+

` h−
` )2 [dx(`+) − dx(`−)]

[∆2 + h+
` h−

` ]3(`+ − λ0)2 (`− − λ0)2

−
iτ(λ0)∆2h+

` h−
` [dx(`+) − dx(`−)]

[∆2 + h+
` h−

` ]2

( 1 + τ(λ0)
(`+ − λ0)2 + 1 − τ(λ0)

(`− − λ0)2

)

−
iτ(λ0)∆3h+

` h−
` [dx(`+) − dx(`−)]

[∆2 + h+
` h−

` ]2(`+ − λ0)(`− − λ0)

[
ω′′(0)τ(λ0)

ω′(0) + B(λ0) + 2τ ′(λ0)(ln x − 1)
]

+ 2iτ(λ0)∆2h+
` h−

` [dx(`+) − dx(`−)]
[∆2 + h+

` h−
` ]2(`+ − λ0)(`− − λ0)

+ ∆6

[∆2 + h+
` h−

` ]3


(
h+

` b21
)2

(`+ − λ0)4 dx(`+) −

(
h−

` b12
)2

(`− − λ0)4 dx(`−)


+ ∆4h+

` h−
`

[∆2 + h+
` h−

` ]3


(
h+

` b21
)2

(`+ − λ0)4 dx(`−) −

(
h−

` b12
)2

(`− − λ0)4 dx(`+)


− ∆4dx(λ0)

[∆2 + h+
` h−

` ]2


(
h+

` b21
)2

(λ0 − `+)4 −

(
h−

` b12
)2

(λ0 − `−)4

 , (4.43)

where we used for one of the term in γosc that d′
x(λ0) = 0.

The x-dependent part of the first term on the right-hand side can be expressed as

∂x

{
h+

` h−
`

[∆2 + h+
` h−

` ]2
+ 1

[∆2 + h+
` h−

` ]

}

= 2[dx(`+) − dx(`−)]
{

2(h+
` h−

` )2

[∆2 + h+
` h−

` ]3
−

h+
` h−

`

[∆2 + h+
` h−

` ]2
+ h+

` h−
`

[∆2 + h+
` h−

` ]2

}

= 4[dx(`+) − dx(`−)](h+
` h−

` )2

[∆2 + h+
` h−

` ]3
. (4.44)

The term with ln(x) in the second line can be written as

∂x

{
ln x

[∆2 + h+
` h−

` ]

}
= 2[dx(`+) − dx(`−)]h+

` h−
`

[∆2 + h+
` h−

` ]2
(ln x + o(1)) . (4.45)

The terms in the lines 2–4, except for the term with ln(x), are all proportional to

∂x

{
1

[∆2 + h+
` h−

` ]

}
= 2[dx(`+) − dx(`−)]h+

` h−
`

[∆2 + h+
` h−

` ]2
. (4.46)

The last three lines on the right-hand side can be written as

−1
4∂x

 ∆4

[∆2 + h+
` h−

` ]2


(
h+

` b21
)2

(λ0 − `+)4 +

(
h−

` b12
)2

(λ0 − `−)4


 (1 + o(1)) . (4.47)
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Due to the same observation as in identity (4.37), for each derivative above it holds that

1
x

∂xf(x) = ∂x

(
f(x)

x

)(
1 + O

(
x−1

))
. (4.48)

At the end of the day, we obtain the following expression

− 1
x

(γosc + sosc) · (ω′(0))2 (1 + o(1))

= − iτ(λ0)∆4

2(`+ − λ0)2 (`− − λ0)2 ∂x

{
1
x

h+
` h−

`

[∆2 + h+
` h−

` ]2
+ 1

x

1
[∆2 + h+

` h−
` ]

}

− iτ(λ0)∆2

2

( 1 + τ(λ0)
(`+ − λ0)2 + 1 − τ(λ0)

(`− − λ0)2

)
∂x

{
1
x

1
[∆2 + h+

` h−
` ]

}

− iτ(λ0)∆3

2(`+ − λ0)(`− − λ0)

[
ω′′(0)τ(λ0)

ω′(0) + B(λ0) − 2τ ′(λ0)
]

∂x

{
1
x

1
[∆2 + h+

` h−
` ]

}

− iτ(λ0)τ ′(λ0)∆3

(`+ − λ0)(`− − λ0)∂x

{
ln x

x

1
[∆2 + h+

` h−
` ]

}
+ iτ(λ0)∆2

(`+ − λ0)(`− − λ0)∂x

{
1
x

1
[∆2 + h+

` h−
` ]

}

− 1
4∂x

1
x

∆4

[∆2 + h+
` h−

` ]2


(
h+

` b21
)2

(λ0 − `+)4 +

(
h−

` b12
)2

(λ0 − `−)4


 . (4.49)

Here one can see that these terms produce the correction of order O(ln x/x) in the asymptotic
expansion of the Fredholm determinant, see the first term on the line 5, and the correction
of order O(1/x) from the rest terms. However, the order of the corrections from the inte-
gral (3.53) involving only Π is larger.

Finally, we can integrate expression (4.34) over x,

ln det
Cλ0

(id + V) = a(x, λ0)
∣∣∣∣
g=0

+ ln
[
∆2 + h+

` h−
`

]
− τ2(λ0)

2 ln x + CI
s[u, ϑ, ν, g, λ0]

+ 1
x1/2

∆2
√

2ω′(0) [∆2 + h+
` h−

` ]

(
b21h+

`

(λ0 − `+)2 + b12h−
`

(λ0 − `−)2

)
+ o

(
x−1/2

)
. (4.50)

Exponentiating this expression, we partially reproduce the asymptotic expansion in Theo-
rem 3, when the saddle point is on the right from both poles,

det
Cλ0

(id + V) = exp
{

CI
s[u, ϑ, ν, g, λ0]

}
x− τ2(λ0)

2 exp {a(x, λ0)}
∣∣∣∣
g=0{

∆2 + h+
` h−

` + 1
x1/2

∆2
√

2ω′(0)

(
b21h+

`

(λ0 − `+)2 + b12h−
`

(λ0 − `−)2

)
+ o

(
x−1/2

)}
. (4.51)

In Section 4.4, we also determine the integration constant CI
s[u, ϑ, ν, g, λ0].

Remark. It is also possible to evaluate the next-order corrections in the asymptotic
expansion (4.51). As we see, the first corrections appear from the integral (3.53) and have
the order O((ln x)2/x2). Since they propagate from expression (3.43), one needs an explicit
expression for the coefficient Π4. This coefficient will produce a few terms of the form
(ln x)n/x for n = 0, 1, 2 in the Fredholm determinant asymptotics. Additionally, one term
of the order ln x/x (which we derived explicitly) and many more of order 1/x will appear
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Chapter 4. Asymptotic analysis: two poles on the real axis

from expression (4.49). Clearly, it is possible to go even further. The algorithm is relatively
easy, although the number of terms contributing to the asymptotics grows fast, as we have
already seen in expression (4.49). First, one has to expand everywhere the solution of the
singular integral equation Π up to higher orders, which can be found iteratively by solving
the singular integral equation, exactly as we did in Section 3.3. The second complication is
the integration of the resulting logarithmic derivative of the Fredholm determinant over x.
This can be also done, but unlike the calculations above, one should take the anti-derivative
exactly without using identities like (4.37).

In what follows, we evaluate the asymptotic expansion in the time-like regime and the
space-like regime II. We ignore the terms of order 1/x from the very beginning, since we
already know the origin of the logarithmic correction in the Fredholm determinant asymptotic
expansion, which does not depend on the regime.

4.2 Time-like regime
The second regime corresponds to the situation, where the saddle point is between two poles,
` < λ0 < r which approach the real axis from above, see Figure 4.1b. We consider the
situation corresponding to n+

` = n+
r = 1 and n−

` = nr = 0 in Section 2.9. The reason for such
choice of parameters n±

` and n±
r originates from the picture for the poles for the impenetrable

Bose gas, which we discuss in Section 5.2.

4.2.1 Solution of the linear system

In the time-like regime, the matrix S is given by

S(λ) = I2 + C+

λ − `
+ D+

λ − r
, (4.52)

where
C+ = σ+

` (0, Y+) Π−1(`), D+ = σ+
r (X+, 0) Π−1(r), (4.53)

and the vectors X± satisfy linear system (2.94), which takes the form
X+ = V+ + σ+

` [Π−1(`)Π(r)]22
r − `

Y+,

Y+ = W+ − σ+
r [Π−1(r)Π(`)]11

r − `
X+.

(4.54)

Here

W+ =
(

Π11(`)
Π21(`)

)
, V+ =

(
Π12(r)
Π22(r)

)
, (4.55)

and
σ+

` = h+
`

1 − h+
` [Π−1(`)Π′(`)]21

, σ+
r = h+

r

1 − h+
r [Π−1(r)Π′(r)]12

. (4.56)

In this case, the solution is straightforwardly given by

X+ = At

(
V+ + σ+

` det
(
W+, V+)

r − `
W+

)
, (4.57a)

Y+ = At

(
W+ − σ+

r det
(
W+, V+)

r − `
V+

)
, (4.57b)
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where we introduced

At =
(

1 + σ+
` σ+

r det
(
W+, V+)2

(r − `)2

)−1

(4.58)

and

det
(
W+, V+

)
=
[
Π−1(`)Π(r)

]
22 =

[
Π−1(r)Π(`)

]
11 = Π11(`)Π22(r) − Π21(`)Π12(r). (4.59)

Then the residues at λ = ` and at λ = r, due to Appendix C.2, see equations (C.37)
and (C.41), are given by

res
λ=`

(
tr{S′(λ)Π(λ)σzΠ−1(λ)S−1(λ)}dβ(λ)

)
= 2Atσ

+
` dβ(`)

([
Π−1(`)Π′(`)

]
21 − σ+

r det
(
W+, V+)2

(r − `)2

)
(4.60a)

and

res
λ=r

(
tr{S′(λ)Π(λ)σzΠ−1(λ)S−1(λ)}dβ(λ)

)
= 2Atσ

+
r dβ(r)

([
Π−1(r)Π′(r)

]
12 −

σ−
` det

(
W+, V+)2

(r − `)2

)
. (4.60b)

We do not have the terms with d′
β, since they are multiplied by the traces of off-diagonal

matrices, as in the previous case.
In the time-like regime, due to expressions (C.33), matrix elements (1, 2) and (2, 1) are

given by

(
S−1(λ)S′(λ)

)
12 = −

Atσ
+
`

(λ − `)2 Π2
11(`) + Atσ

+
r

(λ − r)2 Π2
12(r)

+ 2Atσ
+
` σ+

r Π11(`)Π12(r)
(λ − `)(λ − r)(r − `) [Π11(`)Π22(r) − Π21(`)Π12(r)] (4.61a)

and

(
S−1(λ)S′(λ)

)
21 = Atσ

+
`

(λ − `)2 Π2
21(`) − Atσ

+
r

(λ − r)2 Π2
22(r)

−
2Atσ

+
` σ+

r Π21(`)Π22(r)
(λ − `)(λ − r)(r − `) [Π11(`)Π22(r) − Π21(`)Π12(r)] . (4.61b)

We ignore the matrix elements (1, 1) and (2, 2), since they contribute only to the next order.

4.2.2 Asymptotic expansions

In this section we expand everything up to o(x−1/2), because, as was argued in the previous
section, the logarithmic corrections come only from the solution of the singular integral
equation Π, see expression (3.53) or its contribution to the final asymptotic expansion (4.32).

From (4.59) it follows that

det
(
W+, V+

)
= Π11(`)Π22(r) − Π21(`)Π12(r) = 1 + O

( ln x

x

)
. (4.62)

69



Chapter 4. Asymptotic analysis: two poles on the real axis

It follows from equation (4.56) that

σ+
` = h+

`

[
1 + h`√

x

(
Π′

1(`)
)

21 + o
( ln x

x

)]
, (4.63)

σ+
r = h+

r

[
1 + hr√

x

(
Π′

1(r)
)

12 + o
( ln x

x

)]
, (4.64)

and from expression (4.58) for the constant At that

At = ∆2

∆2 + h+
` h+

r
−

∆2h+
` h+

r

[∆2 + h+
` h+

r ]2

{
1√
x

[
h+

r

(
Π′

1(r)
)

12 + h+
`

(
Π′

1(`)
)

21

]
+ O

( ln x

x

)}
. (4.65)

Here we denoted again the distance between two poles as ∆ := r − `.
Finally, we expand matrix elements of S−1(λ0)S′(λ), see expressions (4.61). In order to

derive the contribution up to order o(x−1/2), we need only the first term in expansions for
matrix elements (1, 2) and (2, 1), see equation (3.54),

(
S−1(λ0)S′(λ0)

)
12 = −

∆2h+
`

[∆2 + h+
` h+

r ](λ0 − `)2 (1 + o(1)), (4.66)

(
S−1(λ0)S′(λ0)

)
21 = − ∆2h+

r

[∆2 + h+
` h+

r ](λ0 − r)2 (1 + o(1)). (4.67)

4.2.3 Fredholm determinant asymptotic expansion

Now we substitute all the expansions above and explicit expressions for coefficients Π1 and
Π2, see equation (3.33) and (3.34), into expression (4.60) for the pole contributions and into
expression (3.54) for the integral over γ0. At the end, we derive the contribution of the poles
on the right-hand side of equation (3.1),

−
∑

λ∈{`,r}
res
z=λ

(
tr{S′(z)Π(z)σzΠ−1(z)S−1(z)}dβ(z)

)
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r ]2
O
( ln x
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)
(4.68)

and the contribution of the integral over γ0,
ˆ
γ0

dz

2πi tr
{
Φ′(z)σzΦ−1(z)

}
dβ(z)

= 1
x

1
2

√
2dβ(λ0)∆2

ω′(0)[∆2 + h+
` h+

r ]

(
b12h+
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b21h+

`

(λ0 − `)2

)
+
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+ O
(
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)
. (4.69)

Combining these two contributions together, we obtain

∂β ln det
Cλ0

(id + V)

= ∂βa(x, λ0) + a0 + a1
x1/2 −

γlog
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+ O
(

(ln x)2
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)
+ h+

` h+
r
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O
( ln x
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)
, (4.70)
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where a(x, λ0) is given by (3.14) and the coefficient a0 by

a0 = 2[dβ(r) − dβ(`)]h+
` h+

r

∆2 + h+
` h+

r
. (4.71)

Finally, the coefficient a1 originates from (4.68) and (4.69), and reads
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. (4.72)

Considering the logarithmic derivative with respect to β = x and then integrating it over
x, we derive

ln det
Cλ0

(id + V) = a(x, λ0)
∣∣∣∣
g=0

+ ln
[
∆2 + h+

` h+
r

]
− τ2(λ0)

2 ln x + Ct[u, ϑ, ν, g, λ0]

+ 1
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∆2
√

2ω′(0) [∆2 + h+
` h+

r ]

(
b12h+

r

(λ0 − r)2 + b21h+
`

(λ0 − `)2

)
+ o

(
x−1/2

)
, (4.73)

which reproduces the statement of Theorem 3 in the case, where the saddle point is between
two poles.

4.3 Space-like regime II

Finally, we consider the third regime, where both poles are to the right from the saddle point,
λ0 < r±, approaching the real axis from below and above, see Figure 4.1c. This situation
corresponds to n±

` = 0, n±
r = 1 in Section 2.9.

4.3.1 Solution of the linear system

In this regime the matrix S takes the form

S(λ) = I2 + D+

λ − r+ + D−

λ − r− , (4.74)

where, according to equation (2.93),

D+ = σ+
r (X+, 0) Π−1(r+), D− = σ−

r (0, Y−) Π−1(r−). (4.75)

The linear system for vectors X+ and Y−, see equations (2.94b) and (2.94d), takes the form
X+ = V+ +

σ−
r

[
Π−1(r−)Π(r+)

]
22

r+ − r− Y−,

Y− = W− −
σ+

r

[
Π−1(r+)Π(r−)

]
11

r+ − r− X+.

(4.76)
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Here, due to equation (2.95),

V+ =
(

Π12(r+)
Π22(r+)

)
, W− =

(
Π11(r−)
Π21(r−)

)
, (4.77)

and, due to equations (2.96),

σ+
r = h+

r

1 − h+
r [Π−1(r+)Π′(r+)]12

, σ−
r = h−

r

1 − h−
r [Π−1(r−)Π′(r−)]21

. (4.78)

In this case the solution is straightforwardly given by

X+ = AII
s

(
V+ + σ−

r det
(
W−, V+)

r+ − r− W−
)

,

Y− = AII
s

(
W− − σ+

r det
(
W−, V+)

r+ − r− V+
)

,

(4.79)

where we introduced

AII
s =

[
1 + σ+

r σ−
r det

(
W−, V+)2

(r+ − r−)2

]−1

(4.80)

and

det
(
W−, V+

)
=
[
Π−1(r+)Π(r−)

]
11

=
[
Π−1(r−)Π(r+)

]
22

= Π11(r−)Π22(r+) − Π21(r−)Π21(r+). (4.81)

According to the analysis in Appendix C.2, the residues at λ = r− and at λ = r+ are
given by

res
λ=r−

(
tr{S′(λ)Π(λ)σzΠ−1(λ)S−1(λ)}dβ(λ)

)
= −2AII

s σ−
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)
, (4.82a)

and
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(
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)
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]
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r det
(
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)
, (4.82b)

see equations (C.37) and (C.41), respectively. We note again that the terms with d′
β(r±) are

absent for the same reason as in the previous two regimes.
Due to analysis in Appendix C.2, matrix elements (1, 2) and (2, 1) are given by expres-

sions (C.33), which in this regime take the form

(
S−1(λ)S′(λ)

)
12 = − AII

s σ−
r

(λ − r−)2 Π2
11(r−) + AII

s σ+
r

(λ − r+)2 Π2
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s σ−

r σ+
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(λ − r+)(λ − r−)(r+ − r−)
[
Π11(r−)Π22(r+) − Π21(r−)Π12(r+)

]
, (4.83a)
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(
S−1(λ)S′(λ)

)
21 = AII

s σ−
r

(λ − r−)2 Π2
21(r−) − AII

s σ+
r

(λ − r+)2 Π2
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− 2AII
s σ−

r σ+
r Π21(r−)Π22(r+)
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[
Π11(r−)Π22(r+) − Π21(r−)Π12(r+)

]
. (4.83b)

We ignore again the matrix elements (1, 1) and (2, 2), since they contribute only to the next
order.

Asymptotic expansions Now we substitute everywhere the solution of the singular integral
equation Π as a series in x−1/2, see equations (3.31), (3.33) and (3.34).

Expanding expression for det(W−, V−) in x−1/2, we get

det
(
W−, V+

)
= 1 + O

( ln x

x

)
. (4.84)

Next, from equation (4.78), we obtain the asymptotic expansion for σ±
r

σ+
r = h+
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[
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r√
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12 + o
( ln x
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21 + o
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, (4.86)

and, from equation (4.80), for AII
s
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Here we again introduced the distance between the poles ∆ := r+ − r−. Finally, we need
the first terms in asymptotic expansions of matrix elements (1, 2) and (2, 1) of the matrix
S−1(λ0)S′(λ0) in x−1/2, see expressions (4.83),(

S−1(λ)S′(λ)
)

12 = − ∆h−
r

[∆2 + h+
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r ](λ − r−)2 (1 + o(1)), (4.88)
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)
21 = − ∆h+

r

[∆2 + h+
r h−

r ](λ − r+)2 (1 + o(1)). (4.89)

4.3.2 Fredholm determinant asymptotic expansion

Now we substitute these expansions and expressions (3.33) and (3.34) for Π1 and Π2 into
contribution of the residues (4.82) and the integral over γ0, see equation (3.54). We derive
that in the space-like regime II, the residue contributions are given by

−
∑

λ∈{r+,r−}
res
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(
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, (4.90)
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and the integral over γ0 is given by
ˆ
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Combining these two contributions together, we finally derive
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where a(x, λ0) is given as always by (3.14) and the coefficient a0 by

a0 = 2[dβ(r+) − dβ(r−)]h+
r h−

r

∆2 + h+
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r
. (4.93)

The coefficient a1 originates from equations (4.90) and (4.91),
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[∆2 + h+
r h−

r ]2

(
b12h+

r

(λ0 − r+)2 + b21h−
r

(λ0 − r−)2

)

− dβ(λ0)
[∆2 + h+

r h−
r ]

(
b12h+

r

(λ0 − r+)2 − b21h−
r

(λ0 − r−)2

)]
. (4.94)

Considering the logarithmic derivative with respect to β = x and then integrating over
x, we derive

ln det
Cλ0

(id + V) = a(x, λ0)
∣∣∣∣
g=0

+ ln
[
∆2 + h+

r h−
r

]
− τ2(λ0)

2 ln x + CII
s [u, ϑ, ν, g, λ0]

+ 1
x1/2

∆2
√

2ω′(0) [∆2 + h+
r h−

r ]

(
b12h+

r

(λ0 − r+)2 + b21h−
r

(λ0 − r−)2

)
+ o

(
x−1/2

)
, (4.95)

which concludes the derivation of the asymptotic expansion of the Fredholm determinant in
Theorem 3, see expression (4.1).

The last step is to derive the constants in all three regimes.

4.4 Integration constant

Finally, we fix the integration constants CI
s[u, ϑ, ν, g, λ0], Ct[u, ϑ, ν, g, λ0] and CII

s [u, ϑ, ν, g, λ0]
in expressions (4.50), (4.73) and (4.95). We note that the asymptotic expansion depends on
the function ν and if we continuously change this function in such a way, that the poles go
away from the real axis and no other pole approaches R, the asymptotic expansion must
coincide with one without poles, see Theorem 1 from the previous chapter.
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We note that in all three regimes a continuous deformation of the function ν to some
function ν̃ moving the poles slightly away from the real axis makes terms

ln
[
∆2 + h+

` h−
`

]
, ln

[
∆2 + h+

` h+
r

]
, ln

[
∆2 + h+

r h−
r

]
(4.96)

go to ln ∆2 up to corrections of order O(x−∞). Hence, we obtain that

CI
s[u, ϑ, ν, g, λ0] = Ct[u, ϑ, ν, g, λ0] = CII

s [u, ϑ, ν, g, λ0] = lim
ν̃→ν

C[u, ϑ, ν̃, g, λ0] − ln ∆2, (4.97)

where the integration constant C[u, ϑ, ν, g, λ0] is given by (3.130) or by (3.131), and the
continuous deformation ν̃ → ν makes two poles approach the integration contour Cλ0 .

In this chapter we considered only three situations where two poles approaching the real
axis according to Figure 4.1, These choices are explained in the next chapter, where we apply
these results to the impenetrable Bose gas with a concrete functions u(λ), ϑ(λ), ν(λ) and g(λ).
Nevertheless, the analysis provided in this chapter can be generalized to any configuration of
the poles λ ∈ S in Ω as long as the number of poles is finite.
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5 Application to the impenetrable Bose
gas

In this chapter, we return to the impenetrable Bose gas discussed in the introduction in
Section 1.1 and apply the asymptotic analysis to the dynamical field–field correlation func-
tion (1.15). We derive explicit asymptotic expansions of the correlation function g(x, t) for
two classes of the filling fraction ϑ, depending on the number of solutions of the equation

ϑ(λ) = 1/2 (5.1)

on the real axis.
If there are no solutions of equation (5.1) on the real axis, we have the following theorem.

Theorem 4. Let the filling fraction ϑ have the following properties:

1. ϑ is holomorphic in the vicinity of the real axis;

2. ϑ(λ) ∈ [0, 1/2) for λ ∈ R;

3. ϑ(λ) decays sufficiently fast as Re λ → ±∞ such that

e2(λ)ϑ(λ) = O(λ−∞). (5.2)

Then the field–field correlation function g(x, t), given by (1.15), has the following asymptotic
expansion as x, t → +∞ with λ0 = x/2t fixed,

g(x, t) = G(τ(λ0))
(2π) (τ(λ0)−1)/2 (1 − 2ϑ(λ0))ϕ(λ0)/2π eiϕ(λ0)

ϑ(λ0)

× exp
{

− i
π

Li2 (2ϑ(λ0)) + 1
2

∞̂

−∞

dλ

∞̂

−∞

dµ
L′(λ)L(µ) − L(λ)L′(µ)

λ − µ

}

× eix2/4t(−2it)− (τ(λ0)−1)2
/

2 exp
{ ∞̂

−∞

dλ

2π
ln (1 − 2ϑ(λ)) · |x − 2tλ|

}(
1 + o

(
x−1/2

))
. (5.3)

Here the functions τ and ϕ read

τ(λ) = − 1
πi ln (1 − 2ϑ(λ)) , ϕ(λ0) = 1

π

∞̂

−∞

sgn(λ0 − µ) ln |λ0 − µ| d ln (1 − 2ϑ(µ)) . (5.4)
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The functions L(λ) := L(λ|λ0) and L′(λ) := L(λ|λ0) are given by

L(λ|λ0) = − 1
2πi sgn(λ0 − λ) ln (1 − 2ϑ(λ)) , L′(λ|λ0) = 1

2πi sgn(λ0 − λ) 2ϑ′(λ)
1 − 2ϑ(λ) , (5.5)

G is the Barnes G-function and Li2 is the dilogarithm.

We emphasize that the functions τ , ϕ, L and L′ depend functionally on the filling fraction
ϑ, i.e., are functionals of ϑ.

If there are two solutions of equation (5.1) on the real axis, the following theorem holds.

Theorem 5. Let the filling fraction ϑ have the following properties:

1. ϑ is holomorphic in the vicinity of the real axis;

2. ϑ(λ) ∈ [0, 1] for λ ∈ R;

3. ϑ(λ) decays sufficiently fast as Re λ → ±∞ such that

e2(λ)ϑ(λ) = O(λ−∞). (5.6)

4. There are exactly two distinct solutions of the equation ϑ(λ) = 1/2 on the real axis,
which we denote ±q for q > 0. The multiplicity of the solutions is one, i.e., ϑ(±q) = 1/2
and ϑ′(±q) 6= 0.

Then the field–field correlation function g(x, t), given by (1.15), has the following asymptotic
expansion as x, t → +∞ with λ0 = x/2t fixed,

g(x, t) = A(λ0)(−2it)−τ2(λ0)/2 exp
{

− itq2 +
∞̂

−∞

dz

2π
ln |1 − 2ϑ(z)| · |x − 2tz|

}

×
{

1 +
√

τ(λ0)(1 − ϑ(λ0))
ϑ(λ0) · (2t)τ(λ0)− 1

2

q
∣∣λ2

0 − q2
∣∣ eix2/4t+itq2eiχ(λ0)+iϕ(λ0)+i arg Γ(1−τ(λ0))

×
[
(λ2

0 + q2) cos
(

−xq + Ψ(λ0)
2

)
+ 2iλ0q sin

(
−xq + Ψ(λ0)

2

)]
+ o

(
x−1/2

)}
, (5.7)

where A(λ0) is given by

A(λ0) = q
G(τ(λ0) + 1)
(2π) τ(λ0)/2 |1 − 2ϑ(λ0)|ϕ(λ0)/2π

∣∣∣∣λ0 + q

λ0 − q

∣∣∣∣τ(λ0)/2

× exp
{

−ia−(λ0) − i
2π

[
Li2

(
2ϑ(λ0) + i0

)
+ Li2

(
2ϑ(λ0) − i0

)]}

× exp
{

1
2

∞̂

−∞

dλ

∞̂

−∞

dµ
L′(λ)L(µ) − L(λ)L′(µ)

λ − µ

}
(5.8)

with τ(λ) = L`(λ) − Lr(λ). The functions L(λ) := L(λ|λ0) and L′(λ) := L′(λ|λ0) read

L(λ|λ0) = L`(λ) · 1λ<λ0(λ) + Lr(λ) · 1λ>λ0(λ), (5.9a)
L′(λ|λ0) = L′

`(λ) · 1λ<λ0(λ) + L′
r(λ) · 1λ>λ0(λ), (5.9b)
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where L` and Lr are

L`(λ) = − 1
2πi ln [1 − 2ϑ(λ) + i0] , Lr(λ) = 1

2πi ln [1 − 2ϑ(λ) − i0] . (5.10)

The functions Ψ, χ, and ϕ read

Ψ(λ0) = 1
π

 ∞

−∞
sgn(λ0 − µ) ln |1 − 2ϑ(µ)| 2q

µ2 − q2 dµ , (5.11)

χ(λ0) = 1
π

 ∞

−∞
sgn(λ0 − µ) ln |1 − 2ϑ(µ)| µ

µ2 − q2 dµ , (5.12)

ϕ(λ0) = 1
π

∞ 

−∞

sgn(λ0 − µ) ln |λ0 − µ| d ln |1 − 2ϑ(µ)| . (5.13)

Finally, the function a−(λ0) is given by

a−(λ0) = 1
π

∞ 

−∞

sgn(λ0 − µ) ln |1 − 2ϑ(µ)| 1
µ + q

dµ , (5.14)

G being the Barnes G-function and Li2 the dilogarithm.

We emphasize that all the functions above (τ , L, L′, Ψ, χ, ϕ and a−) again functionally
depend on the filling fraction ϑ as in the previous theorem.

Remark. We also note that Theorem 5 can be written for non-symmetric position of the
solutions of equation ϑ(λ) = 1/2, but then the expression becomes more bulky. It is discussed
in the end of Sections 5.5.4 and can be recovered from the derivation of Theorem 5.

In Section 5.1, we specify all the functions in the asymptotic analysis of Chapters 2–4 for
the case of the impenetrable Bose gas. Next, in Section 5.2, we study how the poles approach
the real axis, which finally explains the choice of the poles in Chapter 4. Then in Section 5.3,
we obtain explicitly the functions related to the solution α of the scalar Riemann–Hilbert
Problem 3 and the function κ.

After all the preparations are made, we apply Theorems 1 and 3 and derive the Fredholm
determinant asymptotics for the two classes of the filling fractions, introduced in Theorems 4
and 5, and prove these theorems in Section 5.5.

Finally, in Section 5.6, we compare our results with those derived in [31], see also Chap-
ter XVI of [2], when the filling fraction ϑ(λ) corresponds to the impenetrable Bose gas in
thermal equilibrium, see equation (1.11). Also, we compare the asymptotic expansions with
the direct numerical analysis of the expression (1.15) and provide some more plots of the
correlation function.

One more remark is needed on Theorem 5 concerning the space-like regime II, when the
saddle point is to the left from ±q. This case is not covered by Theorem 5 in general, since
we consider x, t → +∞ and λ0 = x/2t > 0, and the saddle-point can not be to the left of
−q. However, if the filling fraction ϑ(λ) is an even function for λ ∈ R, then the correlation
function g(x, t) is symmetric under transformation x → −x and the asymptotic expansions
of g(x, t) for the space-like regimes I and II are the same.

5.1 Specification of functions
For the impenetrable Bose gas, the energy and momentum are given by

ε(λ) = λ2, p(λ) = λ. (5.15)
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Chapter 5. Application to the impenetrable Bose gas

Therefore, the function u(λ) is given by

u(λ) = λ − t

x
λ2, (5.16)

and the saddle point λ0 is determined by

u′(λ0) = 0 ⇒ λ0 = x

2t
. (5.17)

In particular, for x, t > 0, and, consequently, for λ0 > 0, the function u(λ) can be expressed
as

u(λ) = λ − λ2

2λ0
= λ0

2 − (λ − λ0)2

2λ0
. (5.18)

Therefore, we get the function ω and its derivative, see equation (2.66),

ω(λ − λ0|λ0) = λ − λ0√
2λ0

=
√

t

x
· (λ − λ0) ⇒ ω′(λ − λ0|λ0) =

√
t

x
. (5.19)

When ν → 1/2, expression (1.27) for the function E(λ) takes the form

E(λ) = −e(λ)
 

Cλ0

dµ

2πi
e−2(µ)
µ − λ

, λ ∈ Cλ0 . (5.20)

Then the kernel of the integral operator, see equation (1.20), is given by

V (λ, µ) = 4ϑ(λ)e(λ)e(µ)
2πi(λ − µ)

[  
Cλ0

dz

2πi
e−2(z)
z − µ

−
 

Cλ0

dz

2πi
e−2(z)
z − λ

]

= −ϑ(λ)e(λ)e(µ)
π(λ − µ)

[
1
π

 

Cλ0

dz
e−2(z)
z − µ

− 1
π

 

Cλ0

dz
e−2(z)
z − λ

]
, (5.21)

which reproduces the kernel (1.16), when the auxiliary function ν(λ) and g(λ) are set to
constants 1/2 and 0. Therefore, such specialization of the functions in Theorems 1 and 3
allows us to derive the asymptotic behaviour of the Fredholm determinant in the expression
for the correlation function g(x, t), see equation (1.15).

5.2 Pole structure and contribution

It is important to fix from which direction the function ν(λ) approaches 1/2, because that
determines which regions in our Riemann–Hilbert analysis the poles belong to. We consider
ν(λ) = 1/2 − δ, δ ≥ 0, as δ → 0.

Then, in the limit as δ → 0, the functions L` and Lr, given by formulae (2.31), read

lim
δ→0+

L`(λ)
∣∣∣∣
ν(λ)=1/2−δ

= − 1
2πi ln [1 − 2ϑ(λ) + i0] , (5.22)

lim
δ→0+

Lr(λ)
∣∣∣∣
ν(λ)=1/2−δ

= 1
2πi ln [1 − 2ϑ(λ) − i0] . (5.23)
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Then from equation (2.41) it follows, in particular, that

lim
δ→0+

τ(λ)
∣∣∣∣
ν(λ)=1/2−δ

= − 1
πi ln

∣∣∣1 − 2ϑ(λ)
∣∣∣ (5.24)

for λ ∈ R away from the poles and for ϑ(R) ∈ [0, 1].
Therefore, equations (2.56a) and (2.56b), which determine the set of poles S, see Sec-

tion 2.9, now take the form

ϑ(`±
j ) = 1

2 + i0, j = 1, . . . , n±
` , (5.25)

ϑ(r±
j ) = 1

2 − i0, j = 1, . . . , n±
r . (5.26)

Assuming that ϑ′(`±
j ) 6= 0 and ϑ′(r±

j ) 6= 0 for j = 1, . . . , n±
` and j = 1, . . . , n±

r , respectively,
we obtain the coefficients h±

` and h±
r , see equations (2.97) and (2.98), in the case of the

impenetrable Bose gas,

h+
` = − e−2(`+)

4ϑ′(`+)α2
+(`+)

, h+
r =

α2
+(r+)e2(r+)

ϑ′(r+) , (5.27a)

h−
` = −

α2
−(`−)e2(`−)

ϑ′(`−) , h−
r = e−2(r−)

4ϑ′(r−)α2
−(r−)

. (5.27b)

5.2.1 Thermal equilibrium

For the system in thermal equilibrium, the filling fraction ϑ is given by expression (1.11),

ϑ(λ) = 1
1 + eε(λ)/T

. (5.28)

Hence, the poles on the left from the saddle point λ0 are given by

ε(`+
a )

T
= −i0 + 2πin, n ∈ Z, (5.29)

and the poles on the right from the saddle point by

ε(r+
a )

T
= i0 + 2πin, n ∈ Z. (5.30)

Therefore, we get two possible poles on the real axis on the left from the saddle point λ0 and
two possible poles on the right, respectively,

`± = ∓(q − i0), r± = ±(q + i0) (5.31)

with q =
√

h. In any case, the pole positions coincide with the Fermi points of the model ±q
and are on the real axis for positive chemical potential h > 0. However, in our analysis it is
important how they approach the real axis in the limit ν → 1/2 − 0. That is why we keep
the regularizations ±0 in the expressions above.

Altogether, we obtain three possible regimes for q ∈ R, i.e., for h > 0:

1. Space-like regime I, Re(`±) < λ0, see Figure 5.1.

81



Chapter 5. Application to the impenetrable Bose gas

Cλ0

`+

`−

λ0

C′
λ0

`+

`−

λ0

Figure 5.1: The poles `± from L` approaching the real axis, when ν → 1/2 − 0 in the space-
like regime I, Re(`±) < λ0 on the left figure and the equivalent deformation of the integration
contour on the right figure.

Cλ0

` r

λ0

C′
λ0

` rλ0

Figure 5.2: The poles ` and r from L` and Lr, respectively, approaching the real axis, when
ν → 1/2 − 0 in time-like regime, Re(`) < λ0 < Re(r), on the left figure and the equivalent
deformation of the integration contour on the right figure.

2. Time-like regime, Re(`) < λ0 < Re(r), see Figure 5.2. For brevity, we omit upper
indices, ` := `− and r := r+.

3. Space-like regime II, λ0 < Re(r±), see Figure 5.3.

We emphasize that the deformations of the contour Cλ0 on the right-hand sides of Fig-
ures 5.1–5.3 are an illustration that explains the choice of the pole configurations considered
in Chapter 4, compare Figures 5.1–5.3 and Figure 4.1. However, every integral over the in-
tegration contour Cλ0 can not be simply evaluated using the corresponding deformation C′

λ0
of the contour. It must be evaluated depending on the integrand, especially, if there is the
function τ(λ) = L`(λ) − Lr(λ). In that case we split the integral into two parts and then
integrate them separately, according to the regularizations of L` and Lr.

For negative chemical potential h < 0, i.e., for q ∈ i · R\{0}, we do not have poles on the
real axis at all, since

ϑ(λ) = 1
1 + exp

(
λ2+|h|

T

) ≤ 1
1 + exp

(
|h|
T

) <
1
2 , λ ∈ R. (5.32)

5.3 Contribution of the solution of the scalar Riemann–Hilbert prob-
lem

In this section, we derive explicitly the contribution of the solution α of the scalar Riemann–
Hilbert Problem 3 to the Fredholm determinant asymptotic. We consider separately the case,
where there are no poles on the real axis, and the case with two poles on the real axis in all
three regimes.

In any case, the direct contribution to the Fredholm determinant asymptotics is given by

a(x, λ0) = 2
ˆ

Cλ0

dz L(z|λ0) d′(z)
∣∣∣∣
g=0

, (5.33)

see equation (3.14).
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Cλ0
r−

r+

λ0

C′
λ0r−

r+λ0

Figure 5.3: The poles r± from Lr approaching the real axis, when ν → 1/2−0 in the space-like
regime II, λ0 < Re(r±) on the left figure and the equivalent deformation of the integration
contour on the right figure.

In the case of two poles on the real axis, we also need values of the function α evaluated
at the poles for the coefficients h±

` and h±
r , see integral representation (2.29),

α(λ) = exp
{ ˆ

Cλ0

dµ
L(µ|λ0)
µ − λ

}
, (5.34)

where
L(λ|λ0) = L`(λ) · 1Re(µ−λ0)<0(µ) + Lr(λ) · 1Re(µ−λ0)>0(µ), (5.35)

and functions L` and Lr are given by (5.22).

5.3.1 The case of no poles

If there are no poles on the real axis, i.e., ϑ(λ) ∈ [0, 1/2) for λ ∈ R, then ln(1 − 2ϑ) ≤ 0 and
therefore

L(λ|λ0) = − 1
2πi ln |1 − 2ϑ(λ)| · sgn(λ0 − λ). (5.36)

In this case α contributes only to the first term of the asymptotics of the Fredholm determi-
nant, see equations (3.61) and (3.14), and its contribution is given by

a(x, λ0) =
∞̂

−∞

dz

πi sgn(λ0 − z) ln (1 − 2ϑ(z)) d′(z) =
∞̂

−∞

dz

2π
ln (1 − 2ϑ(z)) · |x − 2tz|. (5.37)

For large x, this term is responsible for the exponential decay of the Fredholm determinant
and, consequently, the correlation function.

5.3.2 Space-like regime I

In the space like regime I, see Figure 5.1, the integral over the deformed contour C′
λ0

can be
transformed into the integral over the real axis of the logarithm of the absolute value, if we
take into account the phase of the integral between the two Fermi points. We note that the
singularities at the Fermi points, i.e., at the branch points of logarithm are integrable. In
particular, substituting L(λ|λ0) explicitly, we obtain for λ ∈ R\{`+, `−}

L(λ|λ0) = − 1
2πi sgn(λ0 − λ) ln |1 − 2ϑ(λ)| − 1

21(`+,`−)(λ). (5.38)
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Thus,

a(x, λ0) =
∞̂

−∞

dz

πi sgn(λ0 − z) ln |1 − 2ϑ(z)|d′(z) −
`−ˆ

`+

dz d′(z)

=
∞̂

−∞

dz

π
ln |1 − 2ϑ(z)| · |x − 2tz| − [d(q) − d(−q)]

=
∞̂

−∞

dz

2π
ln |1 − 2ϑ(z)| · |x − 2tz| + ix

2
[
u(`−) − u(`+)

]
. (5.39)

Here in the last equality, we used that d(λ) = ln e(λ) = − ixu(λ)/2 .
Now we calculate the function α in the space-like regime I at the poles `±, see Figure 5.1,

α(`+) =
(
2iϑ′(`+)(`− − `+)

)− 1
2 exp

{
− 1

2πi

∞ 

−∞

dµ sgn(λ0 − µ) ln |1 − 2ϑ(µ)|
µ − `+

}
, (5.40a)

α(`−) =
(
−2iϑ′(`−)(`− − `+)

) 1
2 exp

{
− 1

2πi

∞ 

−∞

dµ sgn(λ0 − µ) ln |1 − 2ϑ(µ)|
µ − `−

}
. (5.40b)

Here we transform the integral over Cλ0 to the principal value integral over the real axis,
taking into account integration in vicinity of the singularities and the phase of the logarithm
for λ ∈ (`−, `+),

ln(1 − 2ϑ(λ)) = ln |1 − 2ϑ(λ)| + πi, (5.41)
see equation (5.38).

Finally, substituting expressions (5.40) into (5.27), we obtain the coefficients h±
` explicitly,

h+
` = 1

2i(`
− − `+)e−2(`+) exp

{
− i

π

∞ 

−∞

dµ sgn(λ0 − µ) ln |1 − 2ϑ(µ)|
µ − `+

}
, (5.42a)

h−
` = 2i(`− − `+)e2(`−) exp

{
i
π

∞ 

−∞

dµ sgn(λ0 − µ) ln |1 − 2ϑ(µ)|
µ − `−

}
. (5.42b)

5.3.3 Time-like regime

In the time-like regime, see Figure 5.2, we have for λ ∈ R\{`, r}

L(λ|λ0) = − 1
2πi sgn(λ0 − λ) ln |1 − 2ϑ(λ)| − 1

21(`,r)(λ). (5.43)

Thus,

a(x, λ0) =
∞̂

−∞

dz

πi sgn(λ0 − z) ln |1 − 2ϑ(z)|d′(z) −
rˆ

`

dz d′(z)

=
∞̂

−∞

dz

2π
ln |1 − 2ϑ(z)| · |x − 2tz| + ix

2 [u(r) − u(`)] . (5.44)
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Now we evaluate α(`) and α(r),

α(`) =
(
2iϑ′(`)(r − `)

)− 1
2 exp

{
− 1

2πi

∞ 

−∞

dµ sgn(λ0 − µ) ln |1 − 2ϑ(µ)|
µ − `

}
, (5.45a)

α(r) =
(
2iϑ′(r)(r − `)

) 1
2 exp

{
− 1

2πi

∞ 

−∞

dµ sgn(λ0 − µ) ln |1 − 2ϑ(µ)|
µ − r

}
. (5.45b)

Substituting these expressions into coefficients h+
` and h+

r , see equation (5.27), we get

h+
` = 1

2i(r − `)e−2(`+) exp
{

− i
π

∞ 

−∞

dµ sgn(λ0 − µ) ln |1 − 2ϑ(µ)|
µ − `

}
, (5.46a)

h+
r = 2i(r − `)e2(r+) exp

{
i
π

∞ 

−∞

dµ sgn(λ0 − µ) ln |1 − 2ϑ(µ)|
µ − r

}
. (5.46b)

5.3.4 Space-like regime II

Although, in what follows, we do not consider this space-like regime, since λ0 = x/2t > 0
and one of the poles is considered to be negative, we still provide explicit expressions for the
functions in this regime for the complete picture.

In the space like regime II, see Figure 5.3, the function L(λ|λ0) explicitly reads

L(λ|λ0) = − 1
2πi sgn(λ0 − λ) ln |1 − 2ϑ(λ)| − 1

21(r−,r+)(λ), λ ∈ R\{r−, r+}. (5.47)

Thus,

a(x, λ0) =
∞̂

−∞

dz

πi sgn(λ0 − z) ln |1 − 2ϑ(z)|d′(z) −
r+ˆ

r−

dz d′(z)

=
∞̂

−∞

dz

2π
ln |1 − 2ϑ(z)| · |x − 2tz| + ix

2
[
u(r+) − u(r−)

]
. (5.48)

The solution α of the scalar Riemann–Hilbert Problem 3 evaluated at r± reads

α(r+) =
(
2iϑ′(r+)(r+ − r−)

) 1
2 exp

{
− 1

2πi

∞ 

−∞

dµ sgn(λ0 − µ) ln |1 − 2ϑ(µ)|
µ − r+

}
, (5.49a)

α(r−) =
(
−2iϑ′(r−)(r+ − r−)

)− 1
2 exp

{
− 1

2πi

∞ 

−∞

dµ sgn(λ0 − µ) ln |1 − 2ϑ(µ)|
µ − r−

}
. (5.49b)

Therefore, the coefficients h±
r are given by

h+
r = 2i(r+ − r−)e2(r+) exp

{
i
π

∞ 

−∞

dµ sgn(λ0 − µ) ln |1 − 2ϑ(µ)|
µ − r+

}
, (5.50)

h−
r = 1

2i(r
+ − r−)e−2(r−) exp

{
− i

π

∞ 

−∞

dµ sgn(λ0 − µ) ln |1 − 2ϑ(µ)|
µ − r−

}
. (5.51)
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5.3.5 Expression for κ

For the factor C[u, ϑ, ν, g, λ0] in the Fredholm determinant asymptotics, we also need an
explicit expression for κreg(λ0|λ0), defined in (2.70). Due to equations (2.70) and (5.19), the
function κreg reads

κreg(λ0|λ0) =
(
ω′(0)

)−τ(λ0) κ(λ0|λ0) =
(

x

t

)τ(λ0)/2
κ(λ0|λ0). (5.52)

The function κ for the impenetrable Bose gas is given by

κ(λ0|λ0) = exp
{

−
ˆ

Cλ0

L′(µ|λ0) ln [(λ0 − µ) sgn Re(λ0 − µ)] dµ

}
, (5.53)

see equation (3.91), which depends on the pole configuration. In particular, in the situation
with no poles on the real axis, the function κ can be expressed as

κ(λ0|λ0) = exp
(

− i
2ϕ(λ0)

)
, (5.54)

where we introduced

ϕ(λ0) = 1
π

∞̂

−∞

sgn(λ0 − µ) ln |λ0 − µ| d ln (1 − 2ϑ(µ)) . (5.55)

In the situation with two poles on the real axis, ±q ∈ R for q > 0, in all three regimes,
the function κ(λ0|λ0) can be expressed as

κ(λ0|λ0) =
[(λ0 + q) · sgn Re(λ0 + q)

(λ0 − q) · sgn Re(λ0 − q)

] 1
2

e− i
2 ϕ(λ0) = |λ0 + q|

1
2

|λ0 − q|
1
2

e− i
2 ϕ(λ0), (5.56)

where ϕ(λ0) is defined as in (5.55), but in terms of a principal value integral,

ϕ(λ0) = 1
π

∞ 

−∞

sgn(λ0 − µ) ln |λ0 − µ| d ln |1 − 2ϑ(µ)| . (5.57)

Now we derived all the functions involved in the asymptotic expansions of the Fredholm
determinant in all the cases under consideration.

5.4 Fredholm determinant asymptotics
We are finally ready to apply the asymptotic analysis developed in Chapters 3 and 4. Namely,
we apply Theorem 1 and Theorem 3 to the Fredholm determinant of the integrable integral
operator (5.21) with the filling fractions ϑ which belong to the two classes announced in the
beginning of this chapter.

We consider these two cases separately. For brevity, we denote the constant as

C[ϑ, λ0] := C[u, ϑ, ν = 1/2 − 0, g = 0, λ0] (5.58)

in all the cases.
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5.4.1 No poles on the real axis

First, we consider the case, where the filling fraction ϑ never reaches 1/2 on the real axis.
Due to Theorem 1, the Fredholm determinant asymptotic behaviour as x, t → +∞ with

λ0 = x/2t fixed, reads

det
Cλ0

(id + V) = exp {C[ϑ, λ0]} x− τ2(λ0)
2 exp {a(x, t)}

(
1 + o

(
x−1/2

))
, (5.59)

where the function a(x, t) is given by (5.37), and the constant C[ϑ, λ0] by (3.4) or (3.5). Using
the first representation for the constant, we get

exp {C[ϑ, λ0]} = G(τ(λ0) + 1)
(2π) τ(λ0)/2 (κ(λ0|λ0))τ(λ0) (iλ0)

τ2(λ0)
2

× exp
{

−
∞̂

λ0

τ(λ)ϑ′(λ)
ϑ(λ) dλ + 1

2

∞̂

−∞

dλ

∞̂

−∞

dµ
L′(λ)L(µ) − L(λ)L′(µ)

λ − µ

}
. (5.60)

We note that the first integral is nothing but the dilogarithm function Li2(2ϑ(λ0)). Indeed,
the dilogarithm function admits the following integral representation

Li2(z) = −
zˆ

0

ln(1 − t)
t

dt , z ∈ C\(1, ∞). (5.61)

Then

−
∞̂

λ0

τ(λ)ϑ′(λ)
ϑ(λ) dλ = 1

πi

∞̂

λ0

ln(1 − 2ϑ(λ))
2ϑ(λ) d(2ϑ(λ))

= i
π

2ϑ(λ0)ˆ

0

ln(1 − 2t)
t

dt = − i
π

Li2 (2ϑ(λ0)) . (5.62)

Therefore, the constant C[ϑ, λ0] takes the form

exp {C[ϑ, λ0]} = G(τ(λ0) + 1)
(2π) τ(λ0)/2 (κ(λ0|λ0))τ(λ0) (iλ0)

τ2(λ0)
2

× exp
{

− i
π

Li2
(
2ϑ(λ0)

)
+ 1

2

∞̂

−∞

dλ

∞̂

−∞

dµ
L′(λ)L(µ) − L(λ)L′(µ)

λ − µ

}
. (5.63)

Finally, substituting here expression (5.54) for the function κ as well,

(κ(λ0|λ0))τ(λ0) = (1 − 2ϑ(λ0))
1

2π
ϕ(λ0), (5.64)
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we obtain the Fredholm determinant asymptotics,

det
Cλ0

(id + V) = G(τ(λ0) + 1)
(2π) τ(λ0)/2 |1 − 2ϑ(λ0)|

1
2π

ϕ(λ0)

× exp
{

− i
π

Li2
(
2ϑ(λ0)

)
+ 1

2

∞̂

−∞

dλ

∞̂

−∞

dµ
L′(λ)L(µ) − L(λ)L′(µ)

λ − µ

}

× (−2it)− 1
2 τ2(λ0) exp

{ ∞̂

−∞

dz

2π
ln (1 − 2ϑ(z)) · |x − 2tz|

}(
1 + o

(
x−1/2

))
. (5.65)

Since all the zeroes of 1−2ϑ(µ) are away from the real axis, all the integrals on the right-hand
side do not have any non-integrable singularities on R.

Two poles on the real axis

In the situation with two poles on the real axis, the Fredholm determinant asymptotic be-
haviour is given by Theorem 3. In particular, the constant for ν = 1/2 − 0 and g = 0
read

exp {C[ϑ, λ0]} = G(τ(λ0) + 1)
(2π) τ(λ0)/2 (κ(λ0|λ0))τ(λ0) (iλ0)

τ2(λ0)
2

× exp
{

−
ˆ

C+
λ0

τ(λ)ϑ′(λ)
ϑ(λ) dλ + 1

2

ˆ

Cλ0

dλ

ˆ

Cλ0

dµ
L′(λ)L(µ) − L(λ)L′(µ)

λ − µ

}
. (5.66)

Now the first integral with ϑ can be written as the dilogarithm Li2 (2ϑ(λ0)) only in the space-
like regime, because in the time-like regime ϑ ∈ (1/2, 1] and the dilogarithm has a cut for the
argument in (1, ∞). Substituting the function τ in terms of L` and Lr under the integral,
and taking care of the phases of the logarithms, we obtain the following expression for this
integral

ˆ

C+
λ0

τ(λ)ϑ′(λ)
ϑ(λ) dλ =

∞̂

λ0

[L`(λ) − Lr(λ)] ϑ′(λ)
ϑ(λ) dλ

= i
2π

[
Li2

(
2ϑ(λ0) + i0

)
+ Li2

(
2ϑ(λ0) − i0

)]
(5.67)

in the time-like regime. Then the constant is given by

exp {C[ϑ, λ0]} = G(τ(λ0) + 1)
(2π) τ(λ0)/2 (κ(λ0|λ0))τ(λ0) (iλ0)

τ2(λ0)
2

× exp
{

− i
2π

[Li2 (2ϑ(λ0) + i0) + Li2 (2ϑ(λ0) − i0)]
}

× exp
{

1
2

ˆ

Cλ0

dλ

ˆ

Cλ0

dµ
L′(λ)L(µ) − L(λ)L′(µ)

λ − µ

}
, (5.68)

where the boundary values of the dilogarithm coincide in the space-like regime,

Li2 (2ϑ(λ0) + i0) = Li2 (2ϑ(λ0) − i0) = Li2 (2ϑ(λ0)) , (5.69)
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5.5. Asymptotics of the field–field correlation function

since ϑ(λ) ∈ [0, 1/2) for λ > `−.
Then, in the space-like regime, the Fredholm determinant asymptotic expansion (4.1) is

given by

det
Cλ0

(id + V) = exp {C[ϑ, λ0]} x− τ2(λ0)
2 e−1(`−)e(`+) exp

{ ∞̂

−∞

dz

2π
ln |1 − 2ϑ(z)| · |x − 2tz|

}
{

1 + h+
` h−

`

(`+ − `−)2 + 1
x1/2

1√
−u′′(λ0)

(
b21h+

`

(λ0 − `+)2 + b12h−
`

(λ0 − `−)2

)
+ o

(
x−1/2

)}
. (5.70)

where we substituted expression (5.39) for the function a(x, t), and h±
` are given by (5.42),

and in the time-like regime by

det
Cλ0

(id + V) = exp{C[ϑ, λ0]}x− τ2(λ0)
2 e−1(r)e(`) exp

{ ∞̂

−∞

dz

2π
ln |1 − 2ϑ(z)| · |x − 2tz|

}
{

1 + h+
` h+

r

(r − `)2 + 1
x1/2

1√
−u′′(λ0)

(
b21h+

`

(λ0 − `)2 + b12h+
r

(λ0 − r)2

)
+ o

(
x−1/2

)}
, (5.71)

where we substituted expression (5.44) for the function a(x, t), and h+
` and h+

r are given
by (5.46).

5.5 Asymptotics of the field–field correlation function

Now we return to the expression (1.15) for the field–field correlation function of the impene-
trable Bose gas.

5.5.1 Correlation function in terms of the solution of the Riemann–Hilbert problem

First we express the prefactor A(x, t), given by equation (1.18), in terms of the solution
of the Riemann–Hilbert Problem 1. Expressing the functions under the double integral in
equation (1.18) in terms of vectors EL and ER, see equation (1.21), we obtain

2
ˆ

Cλ0

dk

π
ϑ(k)E(k)

ˆ

Cλ0

dq
(
δ(k − q) − R(k, q)

)
E(q)

= i
ˆ

Cλ0

dk (ER(k))1

ˆ

Cλ0

dq
(
δ(k − q) − R(k, q)

)
(EL(q))2 . (5.72)

On the other hand, from expression (2.5b) for the inverse of the matrix χ, it follows that

lim
λ→∞

[
λ · χ−1

12(λ)
]

= −
ˆ

Cλ0

dµ (ER(µ))1 (FL(µ))2 . (5.73)

Using equation (2.4a), which implies

(FL(λ))2 = (id − R) (EL(λ))2 =
ˆ

Cλ0

dµ (δ(λ − µ) − R(λ, µ)) (EL(µ))2 , (5.74)
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we get the right-hand side of equation (5.72). Hence,

A(x, t) =
ˆ

Cλ0

dk

2π
e−2(k) − i · lim

λ→∞

[
λ · χ−1

12(λ)
]

=
ˆ

Cλ0

dk

2π
e−2(k) + i · lim

λ→∞
[λ · χ12(λ)] . (5.75)

Transforming χ → χ̃, see equation (2.15), we get

lim
λ→∞

[λ · χ12(λ)] = lim
λ→∞

[λ · χ̃12(λ)] + lim
λ→∞

[λ · χ̃11(λ)C(λ)]

= lim
λ→∞

[λ · χ̃12(λ)] + i
ˆ

Cλ0

dk

2π
e−2(k). (5.76)

Thus, A(x, t) reads
A(x, t) = i · lim

λ→∞
[λ · χ̃12(λ)] , (5.77)

and we derive the following expression for the correlation function

g(x, t) = i · lim
λ→∞

[λ · χ̃12(λ)] · det
Cλ0

(id + V) . (5.78)

Now we substitute into this expression the asymptotic expansions for the solution χ of
Riemann–Hilbert Problem 1 and for the Fredholm determinant in each case.

5.5.2 Asymptotic expansion

Substituting the solutions of the Riemann–Hilbert problem further, χ̃ → Ξ → Υ → Φ, we
can express the matrix element χ̃12 in terms of the matrix elements of the matrices Π and S,
see equation (2.86),

lim
λ→∞

[λ · χ̃12(λ)] = lim
λ→∞

[λ · Π12(λ)] + lim
λ→∞

[λ · S12(λ)] . (5.79)

Next, expanding matrix element of Π12(λ) in x−1/2, see expansion (3.31) and explicit formulae
for the coefficients Π1 and Π2, see expressions (3.33) and (3.34), we derive

lim
λ→∞

[λ · Π12(λ)] = 1√
x

b12(λ0)√
2ω′(0|λ0)

+ o(x−1) (5.80)

and, therefore,

lim
λ→∞

[λ · χ̃12(λ)] = 1√
x

b12(λ0)√
2ω′(0|λ0)

+ lim
λ→∞

[λ · S12(λ)] + o(x−1). (5.81)

Here the matrix element S12 is exact and is not yet expanded into the series in x−1/2.
Now we substitute expressions for b12 and n, see equations (2.79) and (2.73), and express

κreg in terms of κ, see equation (5.52), then

1√
x

b12(λ0)√
2ω′(0|λ0)

= − i
√

2πeixu(λ0)

4 ϑ(λ0)Γ(τ(λ0))κ2(λ0|λ0)

[ −2ix
(ω′(0|λ0))2

]τ(λ0)− 1
2

= − i
√

2π (−2it)τ(λ0)− 1
2 eixu(λ0)

4 ϑ(λ0)Γ(τ(λ0))κ2(λ0|λ0) . (5.82)
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In the last equation we used again ω′(0) =
√

t/x , see equation (5.19). Finally, we derive

lim
λ→∞

[λ · χ̃12(λ)] = − i
√

2π (−2it)τ(λ0)− 1
2 eixu(λ0)

4ϑ(λ0)Γ(τ(λ0))κ2(λ0|λ0) + lim
λ→∞

[λ · S12(λ)] + o(x−1). (5.83)

Here function κ is given by expression (5.53) and is different for different pole configurations,
as well as the matrix S.

Next in this section, we substitute expression (5.83) into (5.78) and derive the correlation
function explicitly, first in the case where there are no poles on R, and then in the case of
two poles in the space- and time-like regimes.

Also, in what follows, we use the following expression for the product of functions ϑ(λ0)
and Γ(τ(λ0)) in the denominator in (5.83),

ϑ(λ0)Γ(τ(λ0)) = i
√

π

2iτ(λ0)

√
ϑ(λ0)(1 − 2ϑ(λ0))

1 − ϑ(λ0) ei arg Γ(1+τ(λ0)), (5.84)

which follows from the following transformation

Γ(τ(λ0)) = Γ(1 − iν0)
−iν0

= |Γ(1 − iν0)|
−iν0

ei arg Γ(1−iν0) = i
√

π

ν0 sinh πν0
ei arg Γ(1−iν0). (5.85)

Here we denoted ν0 = iτ(λ0) > 0 and used Euler’s reflection formula.

5.5.3 No poles on the real axis

If there are no poles on the real axis, S = I2 and κ(λ0|λ0) is given in terms of ϕ, see
equation (5.54), then

lim
λ→∞

[λ · χ̃12(λ)] = − i
√

2π (−2it)τ(λ0)− 1
2 eixu(λ0)eiϕ(λ0)

4ϑ(λ0)Γ(τ(λ0)) + o(x−1). (5.86)

Now we substitute this expression and the expression for the Fredholm determinant (5.65)
into (5.78). We note that Γ-function in the denominator in expression (5.86) combines nicely
with the Barnes G-function, due to the property

G(τ(λ0) + 1) = Γ(τ(λ0))G(τ(λ0)). (5.87)

In the end, we derive the asymptotic expansion of the correlation function in the case
with no poles on the real axis

g(x, t) = G(τ(λ0))
(2π) (τ(λ0)−1)/2 (1 − 2ϑ(λ0))ϕ(λ0)/2π eiϕ(λ0)

ϑ(λ0)

× e−2(λ0) exp
{

− i
π

Li2 (2ϑ(λ0)) + 1
2

∞̂

−∞

dλ

∞̂

−∞

dµ
L′(λ)L(µ) − L(λ)L′(µ)

λ − µ

}

× (−2it)− (τ(λ0)−1)2
/

2 exp
{ ∞̂

−∞

dλ

2π
ln (1 − 2ϑ(λ)) · |x − 2tλ|

}(
1 + o

(
x−1/2

))
, (5.88)

which was announced in Theorem 4.
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5.5.4 Space-like regime

In the space-like regime, there are two poles `± ∈ R such that λ0 ≥ `±. Then

lim
λ→∞

[λ · χ̃12(λ)] = lim
λ→∞

[λ · Π12(λ)] + C+
12 + C−

12. (5.89)

Calculating the matrix elements explicitly, see equations (4.9) and (4.13), we get

C+
12+C−

12 = AI
s

[
σ+

` Π2
11(`+) − σ−

` Π2
12(`−)

]
+ 2AI

sσ+
` σ−

` det
(
W+, V−)

(`+ − `−) Π11(`+)Π12(`−). (5.90)

Expanding everything in x−1/2, as in Section 4.1, we derive

lim
λ→∞

[λ · χ̃12(λ)] = ∆2h+
`

∆2 + h+
` h−

`

+ 1√
x

[
b12√

2ω′(0)
− ∆4

[∆2 + h+
` h−

` ]2
h+

`√
2ω′(0)

(
b21h+

`

(λ0 − `+)2 + b12h−
`

(λ0 − `−)2

)

+ ∆h+
` h−

`

[∆2 + h+
` h−

` ]
b12√

2ω′(0)
`+ + `− − 2λ0

(λ0 − `−)2

]
+ o

(
x−1/2

)
, (5.91)

where we denote ∆ := `+−`−. We substitute this expression and expression for the Fredholm
determinant (5.70) into (5.78), expand everything up to order x−1/2 and simplify terms. Then
we obtain

g(x, t) = i exp {C[ϑ, λ0]} exp {a(x, t)} x− τ2(λ0)
/

2

×
{

h+
` + 1√

x

b12√
2ω′(0)

[
1 + h+

` h−
`

∆2
(λ0 − `+)2

(λ0 − `−)2

]
+ o

(
x−1/2

)}
. (5.92)

Substituting expressions (5.42) for the coefficients h±
` in the space-like regime, we rewrite the

square bracket on the right-hand side as

1 + h+
` h−

`

∆2
(λ0 − `+)2

(λ0 − `−)2 = 1 + e−2(`+)e2(`−)(λ0 − `+)2

(λ0 − `−)2

× exp
{

i
π

∞ 

−∞

sgn(λ0 − µ) ln |1 − 2ϑ(µ)|
( 1

µ − `− − 1
µ − `+

)
dµ

}
. (5.93)

From this point, for brevity, we switch to the symmetric position of the poles, `− = q, `+ = −q
for q > 0, since all the expressions become less bulky, although one can straightforwardly
proceed with general positions `±. Then the expression above can be written as

1 + h+
` h−

`

4q2
(λ0 + q)2

(λ0 − q)2 = 2e−1(−q)e(q) exp(Ψ(λ0)/2)
(λ0 − q)2

×
[
(λ2

0 + q2) cos
(

−qx + Ψ(λ0)
2

)
+ 2iλ0q sin

(
−qx + Ψ(λ0)

2

)]
, (5.94)

where we introduced function Ψ(λ0),

Ψ(λ0) = 1
π

 ∞

−∞
sgn(λ0 − µ) ln |1 − 2ϑ(µ)| 2q

µ2 − q2 dµ (5.95)
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and partially substituted e2(±q) = exp(−ixu(±q)).
Lastly, we substitute expression (5.82) for b12, taking into account that κ(λ0|λ0) is given

by equation (5.56),

κ2(λ0|λ0) = λ0 + q

λ0 − q
e−iϕ(λ0). (5.96)

Finally, we use expression (5.84) for the product of the functions ϑ and Γ-function, factor
out h+

` , using equation (5.42a), and introduce function χ(λ0),

χ(λ0) = 1
π

 ∞

−∞
sgn(λ0 − µ) ln |1 − 2ϑ(µ)| µ

µ2 − q2 dµ . (5.97)

Then in the space-like regime, i.e., for q < λ0, we obtain

g(x, t) = ih+
` exp {C[ϑ, λ0]} x− τ2(λ0)

/
2 e−1(q)e(−q) exp

{ ∞̂

−∞

dz

2π
ln |1 − 2ϑ(z)| · |x − 2tz|

}

×
{

1 +
√

τ(λ0)(1 − ϑ(λ0))
ϑ(λ0) · (2t)τ(λ0)− 1

2

q(λ2
0 − q2)

e−2(λ0)e(q)e(−q)eiχ(λ0)+iϕ(λ0)+i arg Γ(1−τ(λ0))

×
[
(λ2

0 + q2) cos
(

−xq + Ψ(λ0)
2

)
+ 2iλ0q sin

(
−xq + Ψ(λ0)

2

)]
+ o

(
x−1/2

)}
, (5.98)

where constant C[ϑ, λ0] is given by expression (5.68) which takes the form

exp {C[ϑ, λ0]} = G(τ(λ0) + 1)
(2π) τ(λ0)/2 (iλ0) τ2(λ0)

/
2 |1 − 2ϑ(λ0)|ϕ(λ0)/2π

(
λ0 + q

λ0 − q

) τ(λ0)/2

× exp
{

− i
π

Li2 (2ϑ(λ0)) + 1
2

ˆ

Cλ0

dλ

ˆ

Cλ0

dµ
L′(λ)L(µ) − L(λ)L′(µ)

λ − µ

}
. (5.99)

The coefficient h+
` is given by equation (5.42a). Substituting h+

` and combining some terms
we finally obtain the statement of Theorem 5 in the space-like regime, i.e., for λ0 > q.

Remark. We note that in our asymptotic analysis the solutions of the equation ϑ(λ) = 1/2
do not have to be symmetric, i.e., λ = ±q, and may be arbitrary `∓ ∈ R. Then, the
resulting expression for the correlation function follows directly from equations (5.92), (5.93)
and (5.68), although, it becomes much more bulky.

5.5.5 Time-like regime

In the time-like regime, there are poles ` and r on the real axis such that ` < λ0 < r,
Therefore,

lim
λ→∞

[λ · χ̃12(λ)] = lim
λ→∞

[λ · Π12(λ)] + C+
12 + D+

12. (5.100)

Calculating the matrix elements explicitly, see equations (4.53) and (4.57), we get

C+
12 + D+

12 = At

[
σ+

` Π2
11(`) − σ+

r Π2
12(r)

]
−

2Atσ
+
` σ+

r det
(
W+, V+)

(r − `) Π11(`)Π12(r). (5.101)
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Denoting the difference of the poles by ∆ = r − ` and expanding everything in x−1/2, as in
Section 4.2, we derive

lim
λ→∞

[λ · χ̃12(λ)] = ∆2h+
`

∆2 + h+
` h+

r

+ 1√
x

[
b12√

2ω′(0)
− ∆4

[∆2 + h+
` h+

r ]2
h+

`√
2ω′(0)

(
b21h+

`

(λ0 − `)2 + b12h+
r

(λ0 − r)2

)

−
∆h+

` h+
r

[∆2 + h+
` h+

r ]
b12√

2ω′(0)
` + r − 2λ0
(λ0 − r)2

]
+ o

(
x−1/2

)
. (5.102)

We substitute this expression and the expression for the Fredholm determinant (5.70) into (5.78),
expand everything up to order x−1/2 and simplify terms. Then we obtain

g(x, t) = i exp {C[ϑ, λ0]} exp {a(x, t)} x− τ2(λ0)
/

2

×
{

h+
` + 1√

x

b12√
2ω′(0)

[
1 + h+

` h+
r

∆2
(λ0 − `)2

(r − λ0)2

]
+ o

(
x−1/2

)}
. (5.103)

Substituting the expressions for the coefficients h+
` and h+

r in the time-like regime, see ex-
pression (5.46), we obtain

1 + h+
` h+

r

∆2
(λ0 − `)2

(r − λ0)2 = 1 + e−2(`)e2(r) (λ0 − `)2

(r − λ0)2

× exp
{

i
π

∞ 

−∞

sgn(λ0 − µ) ln |1 − 2ϑ(µ)|
( 1

µ − r
− 1

µ − `

)
dµ

}
. (5.104)

For brevity, we consider again the case of the symmetric pole position, i.e., ` = −q and
r = q. We introduce the same function Ψ(λ0), see equation (5.95), and substitute e2(±q) =
exp(−ixu(±q)), then

1 + h+
` h+

r

4q2
(λ0 + q)2

(q − λ0)2 = 2e−1(−q)e(q) exp(Ψ(λ0)/2)
(q − λ0)2

×
[
(λ2

0 + q2) cos
(

−qx + Ψ(λ0)
2

)
+ 2iλ0q sin

(
−qx + Ψ(λ0)

2

)]
. (5.105)

The last step is to substitute expression (5.82) for b12, taking into account that κ(λ0|λ0) is
given by equation (5.56),

κ2(λ0|λ0) = λ0 + q

q − λ0
e−iϕ(λ0), (5.106)

and use expression (5.84) for the product of function ϑ and Γ-function.
Finally, in the time-like regime, i.e., for 0 < λ0 < q, we obtain

g(x, t) = ih+
` exp {C[ϑ, λ0]} x− τ2(λ0)

/
2 e−1(−q)e(q) exp

{ ∞̂

−∞

dz

2π
ln |1 − 2ϑ(z)| · |x − 2tz|

}

×
{

1 +
√

τ(λ0)(1 − ϑ(λ0))
ϑ(λ0) · (2t)τ(λ0)− 1

2

q(q2 − λ2
0)

e−2(λ0)e(q)e(−q)eiχ(λ0)+iϕ(λ0)+i arg Γ(1−τ(λ0))

×
[
(λ2

0 + q2) cos
(

−xq + Ψ(λ0)
2

)
+ 2iλ0q sin

(
−xq + Ψ(λ0)

2

)]
+ o

(
x−1/2

)}
. (5.107)
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Here the constant C[ϑ, λ0] is given by expression (5.68), which takes the form

exp {C[ϑ, λ0]} = G(τ(λ0) + 1)
(2π) τ(λ0)/2 (iλ0) τ2(λ0)

/
2 |1 − 2ϑ(λ0)|ϕ(λ0)/2π

(
λ0 + q

q − λ0

) τ(λ0)/2

× exp
{

− i
2π

[
Li2

(
2ϑ(λ0) + i0

)
+ Li2

(
2ϑ(λ0) − i0

)]}

× exp
{

1
2

ˆ

Cλ0

dλ

ˆ

Cλ0

dµ
L′(λ)L(µ) − L(λ)L′(µ)

λ − µ

}
. (5.108)

The coefficient h+
` is given by equation (5.46a). Substituting it explicitly, we derive the second

half of Theorem 5 in the time-like regime, i.e., for 0 < λ0 < q.
We note that the expressions for the asymptotic expansion of the correlation function in

the space-like and time-like regimes coincide up to a sign in the sub-leading order that can
be written universally for both regimes using modulus,

∣∣λ2
0 − q2∣∣−1. Even coefficients h+

` in
combination with the two functions e−1(q)e(−q) in the space-like regime and with e−1(−q)e(q)
in the time-like regime coincide, see expressions (5.42a) and (5.46a), for `± = ∓q and ` = −q,
r = q.

This concludes the proof of Theorem 5.

5.6 Impenetrable Bose gas in thermal equilibrium: cross-checks
In particular, Theorems 4 and 5 reproduce the asymptotic expansion of the correlation func-
tion g(x, t) derived in [2, 31] for the impenetrable Bose gas in thermal equilibrium in the
cases, where the chemical potential h < 0 and h > 0, respectively. We recall that in thermal
equilibrium the filling fraction is given by the Fermi distribution

ϑ0(λ) = 1
1 + exp

(
λ2−q2

T

) , q =
√

h. (5.109)

In this section we compare the asymptotic expansions with those in [2,31]. Unfortunately,
we are not able to check analytically the overall constant factors C[ϑ, λ0], since in [2,31] they
are given by more complicated expressions, than the representations we derived, and up to a
numerical constant. Nevertheless, we are able to compare the asymptotic behaviour for both
negative and positive chemical potential up to overall factor depending on λ0, T and h. For
positive chemical potential h > 0 in the time-like regime (|λ0| < q), we discover a mismatch
of the sign in front of the sub-leading term.

After that we compare our asymptotic expansions numerically with the numerical analysis
of the correlation function g(x, t) kindly provided to us by Alexander Weiße [41]. This allows
us to check both the constant C[ϑ, λ0] for filling fraction (5.109) and the mismatching sign
in the time-like regime.

In the end of this section we provide more plots of the correlation function, which now
are much easier to generate, since we have a complete and simple expression for the constant
C[ϑ, λ0].

5.6.1 Analytic comparison

There are a few changes of notations needed to compare our results with those from [31]
and [2]. We use tildes for the notations therefrom:
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1. The Hamiltonian is shifted by a term with the chemical potential,

H̃ =
L̂

0

[
∂yΨ†(y)∂yΨ(y) + cΨ†(y)Ψ†(y)Ψ(y)Ψ(y) − h Ψ†(y)Ψ(y)

]
dy , (5.110)

which results in a shift of the energy

ε̃(λ) = ε(λ) − h, (5.111)

and neither affects the position of the saddle point nor changes the asymptotics of the
energy, ε̃(λ) ∼ λ2.

2. The distance and time separations between two points in the correlation function (1.7)
are rescaled by a factor of two1,

x = 2x̃, t = 2t̃. (5.112)

3. The phase factor ũ(λ) is chosen with the opposite sign in front of the term xp(λ).
However, the correlation function g(x, t) is symmetric with respect to reflection x → −x,
therefore, this difference does not affect the resulting asymptotic expansion.

All these changes are easy to implement in our analysis if we substitute the function

ẽ(λ) = exp
[
− ix

2 ũ(λ)
]

, ũ(λ) = p(λ) − t

x
ε̃(λ) (5.113)

for e(λ).

Negative chemical potential h < 0

In the case of negative chemical potential h < 0, we use expression (5.88) instead of the one
in Theorem 4, since it is expressed in terms of the function e(λ), and substitute (5.113) for
e(λ). We derive the same asymptotic behaviour, see expression (XVI.9.8) in [2] and (8.8)
in [31], but with a stronger estimate on the corrections. The resulting asymptotic expansion
in the paper is given up to O(x−1/2).

Positive chemical potential h > 0

To compare the asymptotic expansions for positive chemical potential, we use expressions (5.98)
and (5.107) instead of the one in Theorem 5, since they are expressed in terms of the function
e(λ). Substituting expression (5.113) for ẽ instead of e(λ) and taking into account that now√

1 − ϑ(λ0)
ϑ(λ0) = exp

(
λ2

0 − q2

2T

)
, (5.114)

we obtain

g(x, t) ∼
{

1 +
√

τ(λ0) · (2t)τ(λ0)− 1
2

q
∣∣q2 − λ2

0
∣∣ e (λ2

0−q2)
/

2T eit(λ2
0+q2)eiχ(λ0)+iϕ(λ0)+i arg Γ(1−τ(λ0))

×
[
(λ2

0 + q2) cos
(

−xq + Ψ(λ0)
2

)
+ 2iλ0q sin

(
−xq + Ψ(λ0)

2

)]
+ o

(
x−1/2

)}
. (5.115)

1In [2, 31], x and t are also rescaled by
√

T and T , respectively, for T > 0. We omit these factors, since
that is not important for the comparison.
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This expression should coincide with the one from [31] and [2], see equations (8.12) and
(XVI.9.13), respectively. These expressions in our notations are given by

g̃(x̃, t̃) ∼
{

1 +
√

iτ(λ0) · (2t)τ(λ0)− 1
2

q(q2 − λ2
0)

e (λ2
0−q2)

/
2T eit(λ2

0+q2)eiχ(λ0)+iΨ0(λ0)

×
[
(λ2

0 + q2) cos
(

−2xq + Ψ(λ0)
2

)
+ 2iλ0q sin

(
−2xq + Ψ(λ0)

2

)]
+ o

(
x−1/2

)}
. (5.116)

Here function Ψ0(λ) is given by equation (XVI.9.12) in [2] and (8.11) in [31],

Ψ0(λ0) = −3
4π + arg Γ(−τ(λ0)) + 1

π

∞ 

−∞

sgn(λ0 − µ) ln |µ − λ0| d ln |1 − 2ϑ(µ)| . (5.117)

Using the following identity for iτ(λ0) > 0,

i arg Γ(1 − τ(λ0)) = i arg Γ(−τ(λ0)) + i arg(−τ(λ0)) = i arg Γ(−τ(λ0)) + πi
2 , (5.118)

we get

exp
{

πi
4 − 3πi

4 + i arg Γ(−τ(λ0)) + i
π

∞ 

−∞

sgn(λ0 − µ) ln |µ − λ0| d ln |1 − 2ϑ(µ)|
}

= − exp {i arg Γ(1 − τ(λ0)) + iϕ(λ0)} . (5.119)

Now, using this relation, we compare (5.115) and (5.116) and see that the asymptotic expan-
sions of the correlation function g(x, t) are the same in the space-like regime (|λ0| > q) and
have the opposite sign in front of the sub-leading correction in the time-like regime (|λ0| < q).

5.6.2 Numerical comparison

In order to check our results, especially, the sign in the time-like regime, we compare the
derived asymptotic expansions with the direct numerical analysis of representation (1.15)
performed by Alexander Weiße [41].

Negative chemical potential h < 0

First, we compare the asymptotic expansion of g(x, t) for negative chemical potential, given
by expression (5.3) in Theorem 4. We plot the real and imaginary part of the correlation
function g(x, t):

• as a function of x for x ∈ [0, 10] for the parameters h = −5, T = 4 at time t = 1, see
Figure 5.4a.

• as a function of t for t ∈ [1, 5] for the parameters h = −1, T = 2 at distance x = 10,
see Figure 5.4b.

We see that the asymptotic expansion for such choice of parameters works extremely well
already for small x and t.
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(a) Correlation function g(x, t) as a function of x for t = 1, h = −5 and T = 4.
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(b) Correlation function g(x, t) as a function of t for x = 10, h = −1 and T = 2.

Figure 5.4: Asymptotic expansion of the correlation function g(x, t) (blue) and the numerical
data [41] (red circles, every 5th point is marked on the plot).

Positive chemical potential h > 0

For positive chemical potential, the asymptotic expansion (5.7) has singular points at λ0 =
±q, i.e., for x = ±2tq. That is so, because our asymptotic analysis works for λ0 away from
the poles, which are now at the Fermi points ±q.

The singularity affects the correlation function g(x, t) significantly for wide ranges of x
and t around the singular point, when we plot g(x, t) as a function of x and t, respectively.
Moreover, the asymptotic expansion works better for larger values of x and t. That is why
we plot the correlation function the following way:

• in the space-like regime, as a function of x ∈ [5, 20] for t = 1, h = 1 and T = 1, where
the singular point is at x = 2, see Figure 5.5;

• in the time-like regime, as a function of t ∈ [1, 30] for x = 1, h = 1 and T = 0.5, where
the singular point is at t = 0.5, see Figure 5.6.
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We plot separately the leading term of the asymptotic expansion, which we denote gn=1,

gn=1(x, t) = A(λ0)(−2it)−τ2(λ0)/2 exp
{

− itq2 +
∞̂

−∞

dz

2π
ln |1 − 2ϑ(z)| · |x − 2tz|

}
, (5.120)

and the leading + the sub-leading terms, which we denote gn=2,

gn=2(x, t) = A(λ0)(−2it)−τ2(λ0)/2 exp
{

− itq2 +
∞̂

−∞

dz

2π
ln |1 − 2ϑ(z)| · |x − 2tz|

}

×
{

1 +
√

τ(λ0)(1 − ϑ(λ0))
ϑ(λ0) · (2t)τ(λ0)− 1

2

q
∣∣λ2

0 − q2
∣∣ eix2/4t+itq2eiχ(λ0)+iϕ(λ0)+i arg Γ(1−τ(λ0))

×
[
(λ2

0 + q2) cos
(

−xq + Ψ(λ0)
2

)
+ 2iλ0q sin

(
−xq + Ψ(λ0)

2

)]}
, (5.121)

where A(λ0) is given by (5.8). The singularity at λ0 = ±q is due to the function τ(λ0) and
the factor

∣∣q2 − λ2
0
∣∣−1 in front of the sub-leading correction.

We see good agreement for both the space-like and the time-like regimes even at small
distances x and times t. However, the plots in the time-like regime do not provide any
indication on the correctness of the sign, since the cases n = 1 and n = 2 are indistinguishable
and, therefore, additional verification is required.
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Figure 5.5: Correlation function g(x, t) as a function of x for t = 1, h = 1 and T = 1 in the
space-like regime. The singular point is at x = 2. Asymptotic expansion of the correlation
function g(x, t): the leading term (n = 1, dashed line) and the leading + the sub-leading
terms (n = 2, blue line); the numerical data [41] (red circles).
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Figure 5.6: Correlation function g(x, t) as a function of t for x = 1, h = 1 and T = 0.5 in the
time-like regime. The singular point is at t = 0.5. Asymptotic expansion of the correlation
function g(x, t): the leading term (n = 1, dashed line) and the leading + the sub-leading
terms (n = 2, blue line); the numerical data [41] (red circles).
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In order to argue that the sign in front of the sub-leading term in our asymptotic expansion
is correct, we plot the real and imaginary part of the ratio of our data to the numerical data,
see Figure 5.7. Since the ratio becomes closer to one for the plot with leading + sub-leading
terms (n = 2), the sign in our asymptotic expansion is correct. We also note that the ratio
oscillates around value 0.999, which is away from one. Nevertheless, it gives the relative error
of the order 10−3, which, taking into account the absolute value of the correlation function
of order 10−8 already for t > 20, is sufficient precision.
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Figure 5.7: The ratio of the asymptotic expansion of the correlation function g(x, t) to the
numerical data [41] as a function of t for x = 1, h = 1 and T = 0.5 in the time-like regime.
The asymptotic expansion is considered for the leading term (n = 1, dashed line) and the
leading + the sub-leading terms (n = 2, blue line).

5.6.3 More plots

Now, as a bonus, we show a few more plots for the correlation function g(x, t), as a function
of x, when all the parameters t, h and T are fixed except for one of them, which we slightly
change:

• different times t = 1, 1.1, . . . , 1.5 for fixed h = −5 and T = 4, see Figure 5.8a;

• different temperatures T = 4, 4.5, . . . , 6 for fixed t = 1 and h = −5, see Figure 5.8b;

• different chemical potentials h = −5, −4.5, . . . , −2.5 for fixed t = 1 and T = 4, see
Figure 5.8c.

In all the cases we consider h < 0, since the plots are more visual, although it can be done
for positive chemical potential as well. On Figures 5.8a–5.8c the bluest graphs are plotted
for the same set of parameters, t = 1, h = −5 and T = 4, as on Figure 5.4a.
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Figure 5.8: The correlation function g(x, t) as a function of x. The bluest graph on each plot
is g(x, t) for t = 1, h = −5 and T = 4, as on Figure 5.4a, and in other colours, when one of
the parameters (time, temperature or chemical potential) changes.
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Chapter 5. Application to the impenetrable Bose gas

Lastly, we present the plots with very large distance x and time t, see Figure 5.9, which
demonstrates the advantage of the asymptotic expansion formulae over the numerical analysis
of the Fredholm determinant, which becomes extremely difficult to evaluate numerically for
highly oscillating kernels of integral operators.
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Figure 5.9: Correlation function g(x, t) for h = −5 and T = 1.25: as a function of x for
x ∈ [200, 240] at t = 200 on the left and as function of t for t ∈ [200, 280] at x = 200 on the
right.
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6 Summary and outlook

In this work, we have studied the long-time, large-distance asymptotic behaviour of the field–
field correlation function g(x, t) of the one-dimensional impenetrable Bose gas in thermal and
non-thermal equilibrium. Starting with a representation of the correlation function g(x, t)
in terms of a Fredholm determinant of an integrable integral operator V0, we performed an
asymptotic analysis using Riemann–Hilbert techniques.

First, we introduced an integrable integral operator V in a more general setting than
that used in the expression for the correlation function. All functions in the kernel of the
integral operator V are defined by their analytic properties, regardless of their explicit form.
We paid special attention to the function ϑ(λ), which, in the context of the impenetrable
Bose gas characterizes the probability of the state with momentum λ to be occupied, but
mathematically plays the role of the integration measure.

Then, we used a relation of the logarithmic derivative of the Fredholm determinant of the
integrable integral operator V to an integral involving a solution of a matrix Riemann–Hilbert
problem. We obtained an asymptotic solution of the latter, utilizing the nonlinear steepest
descent method with some modifications [32–35]. Integrating an asymptotic expansion for
the logarithmic derivative, we derived an asymptotic expansion of the Fredholm determinant
for the cases, when the following equations for the measure ϑ(λ) and the auxiliary function
ν(λ), have either zero or two distinct solutions on the real axis under some assumptions,

1 + ϑ(λ)
(
e±2πiν(λ) − 1

)
= 0. (6.1)

For both cases, we obtained the asymptotic expansion as a series in x−1/2, where leading
and sub-leading terms, as well as a logarithmic correction and an overall constant, are given
explicitly.

Finally, we applied the asymptotic analysis of the Fredholm determinant of the integral
operator V to the operator V0 in the expression for the correlation function g(x, t) of the
impenetrable Bose gas by setting the functions in the kernel of V equal to those in V0.
This led to an explicit long-time and large-distance asymptotic expansion of the correlation
function including a relatively simple expression for the overall constant in terms of special
functions and simple integrals.

We compared the resulting asymptotic behaviour of the correlation function g(x, t) with
the one derived in [2, 31] for the Bose gas in thermal equilibrium, by specifying the function
ϑ as the Fermi distribution,

ϑ0(λ) = 1
1 + exp

(
λ2−h

T

) . (6.2)

The derived asymptotic expansion without the overall constant factor analytically coincided
with that from [2, 31] for the case of negative chemical potential h < 0 and for the case of
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Chapter 6. Summary and outlook

positive chemical potential h > 0 in both the space-like and time-like regimes, up to the sign
in front of the sub-leading term in the time-like regime.

Next, we compared our asymptotic expansions with numerical data [41] to check both
the mismatching sign in front of the sub-leading term in the time-like regime and the overall
constant factor, and found good agreement.

In summary, we have reconsidered and generalized the results of the seminal work [31]
with the methods of [32–35]. Using improved Riemann–Hilbert techniques, we were able to
fix a numerical integration constant that remained undetermined in [31] and to spot a sign
error in the sub-leading correction term. However, the main motivation in this thesis was
to lay the foundation for generalizations of the work of Its et al. This is now done and the
most challenging technical steps have been performed. Based on our more general matrix
Riemann–Hilbert solution, we will be able to tackle the problem of the asymptotic analysis
at finite coupling constant in future work. In fact, we have paved the way for answering a
number of interesting open questions, some of which are listed below:

1. Interacting Bose gas c > 0. The asymptotic analysis provided in Chapters 3 and 4 is
performed with two additional functions ν and g. We kept these auxiliary functions
to be able to deviate from the free fermion point in the future, i.e., to study the
correlation function g(x, t) for the finite coupling constant c > 0, using the method
developed in [38–40].

2. Other correlation functions. The method developed in this work can be applied to
other dynamical correlation functions of the (impenetrable) Bose gas. For example, a
generating function of the density–density correlation function

〈φN |ρ(x, t)ρ(0, 0)|φN 〉 , (6.3)

can be expressed in terms of a Fredholm determinant of an integrable integral operator.
Then the long-time, large-distance asymptotic behaviour can be studied with the help
of Riemann–Hilbert techniques.

3. Generalization of Riemann–Hilbert techniques. From the mathematical side, the Riemann–
Hilbert analysis of Chapters 3 and 4 may be generalized further in different directions:

• Clearly, one can consider more poles (up to any finite number) on the real axis
contributing to the asymptotic expansion, since that only requires the solution
of the linear system in Section 2.9. The complication here seems to be in the
combinatorial complexity of all possible deformations of the initial contour Cλ0

and in careful managing the phases of the complex logarithm. Of course, for some
concrete cases it can be done explicitly, but there might exist a closed expression
accounting for the contribution of all the poles in the set S positioned on the real
axis or even in the complex plane, similar to the one derived in [34] in the static
case for p(λ) = λ.

• On the other hand, the phase function u(λ) for more general energy ε(λ) and
momentum p(λ) can have more saddle points, which will involve the construction
of additional parametrices.

4. Asymptotic behaviour in the vicinity of the poles. The asymptotic analysis provided
in this work is valid for the saddle point λ0 away from the poles. This is reflected in
the presence of the singularity in the asymptotic expansion in Theorem 5 for λ0 = ±q,
and the question of the asymptotic behaviour for x ≈ ±2qt remains open.
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5. Other models. Another generalization of the Riemann–Hilbert techniques concerns the
consideration of trigonometric functions in the integration kernel instead of rational
ones, which appear, for example, in the XX spin chain. There are already two Fredholm
determinant representations known for the transverse correlation function〈

σ+(x, t)σ−(0, 0)
〉

T
. (6.4)

The recent expression derived in [19] from the quantum transfer matrix seems to be
more convenient for the asymptotic analysis than the one known before [25]. It was
already studied in the high-temperature limit using Riemann–Hilbert techniques in [43],
but the long-time and large-distance limit of this correlation function is not yet fully
studied in the time-like regime. The Riemann–Hilbert analysis in this case involves
trigonometric functions in the kernel and two saddle points in the complex plane.

6. Spectral function. Using the combination of our asymptotic expansion for large x and
long t and direct numerical analysis for small x and t, it is possible to derive the spectral
function

G(q, ω) =
∞̂

−∞

∞̂

−∞

g(x, t)eiωt−qx dx dt (6.5)

for the impenetrable Bose gas in thermal and non-thermal equilibrium and to compare
it, for example, with pure numerical analysis [44] or with experimental data from cold
atom experiments.

7. Classification of correlation functions. Another ambitious problem is to classify all
possible asymptotic behaviours of dynamical correlation functions of the (impenetrable)
Bose gas, which can be expressed in terms of Fredholm determinants of integrable
integral operators, depending on the filling fraction ϑ.
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A Logarithmic derivative of the Fred-
holm determinant

In this section, we prove Proposition 2 from the introduction, i.e., we derive the logarithmic
derivative of the Fredholm determinant

det
Cλ0

(id + V) (A.1)

with respect to some parameter β and express it in terms of the solution χ of the Riemann-
Hilbert Problem 1.

We start with formula

∂β ln det (id + V) = tr{(id − R)∂βV}. (A.2)

For convenience we introduce function F (λ, µ)

F (λ, µ) = 4ϑ(µ) sin(πν(λ)) sin(πν(µ))
2πi , (A.3)

see equations (1.20) and (1.21), so that the kernel of the integral operator V reads

V (λ, µ) = F (λ, µ)
λ − µ

[−e(λ)E(µ) + e(µ)E(λ)] . (A.4)

We assume that the only function that depends on the parameter β is e(λ). Then the
derivative of the function E(λ), see expression involving the principal value integral (1.27),
with respect to the parameter β is given for λ ∈ Cλ0 by

∂βE(λ) = E(λ)dβ(λ) − e(λ) · ∂β

 

Cλ0

dµ

2πi
e−2(µ)
µ − λ

− i
2e−1(λ)dβ(λ) cot(πν(λ))

= −E(λ)dβ(λ) − e(λ) · ∂β

 

Cλ0

dµ

2πi
e−2(µ)
µ − λ

− e(λ)dβ(λ)
 

Cλ0

dµ

2πi
e−2(µ)
µ − λ

. (A.5)

Here we use the short-hand notation (2.20) for dβ(λ) = ∂β ln e(λ) = − ∂β (ixu(λ) + g(λ))/2 .
Then we obtain

∂βV (λ, µ) = F (λ, µ)e(λ)e(µ)
λ − µ

{(
E(µ)
e(µ) + E(λ)

e(λ)

)
(dβ(µ) − dβ(λ))

+ 2
 

Cλ0

dz

2πie
−2(z)

(
dβ(µ)
z − µ

− dβ(λ)
z − λ

)
+ ∂β

 

Cλ0

dz

2πi
e−2(z)(µ − λ)
(z − µ)(z − λ)

}
. (A.6)
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Appendix A. Logarithmic derivative of the Fredholm determinant

Here and in the following the principal value integrals over z avoid singularities at z = λ, µ.
Now we transform the two lines on the right-hand side separately. We can modify the first
line with the help of the following trick:

dβ(µ) − dβ(λ)
λ − µ

= −
ˆ

Γ[λ,µ]

dz

2πi
dβ(z)

(z − λ)(z − µ) = −
ˆ

Γ[−N,N ]

dz

2πi
dβ(z)

(z − λ)(z − µ) , (A.7)

where Γ[λ, µ] is the contour around the interval [λ, µ], which is a subinterval of [−N, N ] for a
sufficiently large integer number N . We also regularize the right-hand side in order to stretch
the contour to ±∞, so it goes around the integration contour Cλ0 ,

−
ˆ

Γ[−N,N ]

dz

2πi
dβ(z)

(z − λ)(z − µ)e−ηz2

∣∣∣∣∣∣∣
η=0+

= −
ˆ

Γ(Cλ0 )

dz

2πi
dβ(z)

(z − λ)(z − µ)e−ηz2

∣∣∣∣∣∣∣∣
η=0+

, (A.8)

and derive the following expression for the first line of (A.6),

F (λ, µ)e(λ)e(µ)
λ − µ

(
E(µ)
e(µ) + E(λ)

e(λ)

)
(dβ(µ) − dβ(λ))

= −F (λ, µ)e(λ)e(µ)
(

E(µ)
e(µ) + E(λ)

e(λ)

) ˆ

Γ(Cλ0 )

dz

2πi
dβ(z)

(z − λ)(z − µ)e−ηz2

∣∣∣∣∣∣∣∣
η=0+

. (A.9)

For the second line in equation (A.6) we use a similar trick,

dβ(µ)
z − µ

− dβ(λ)
z − λ

=
ˆ

Γ[λ,µ]

dy

2πi
dβ(y)(λ − µ)

(y − λ)(y − µ)(y − z) − dβ(z)(λ − µ)
(z − λ)(z − µ)1[λ,µ](z). (A.10)

Here contour Γ[λ, µ] is the contour around interval [λ, µ]. Depending on whether z ∈ Cλ0 lies
inside the interval (λ, µ) or not, we obtain the contribution from the pole at y = z, which
corresponds to the last term on the right-hand side.

For a sufficiently large integer N interval [−N, N ] includes points λ and µ, and we have

dβ(µ)
z − µ

− dβ(λ)
z − λ

=
ˆ

Γ[−N,N ]

dy

2πi
dβ(y)(λ − µ)

(y − λ)(y − µ)(y − z) − dβ(z)(λ − µ)
(z − λ)(z − µ)1[−N,N ]\{λ,µ}(z). (A.11)

We note here that points z = λ, µ are excluded, since the integral over z is a principal value
integral avoiding singularities at these points. Then the last line of equation (A.6) takes the
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form

2
 

Cλ0

dz

2πie
−2(z)

ˆ

Γ[−N,N ]

dy

2πi
dβ(y)(λ − µ)

(y − λ)(y − µ)(y − z)

− 2
 

Cλ0

dz

2πie
−2(z) dβ(z)(λ − µ)

(z − λ)(z − µ)1Γ[−N,N ](z) + ∂β

 

Cλ0

dz

2πi
e−2(z)(µ − λ)
(z − µ)(z − λ)

= 2
 

Cλ0

dz

2πie
−2(z)

ˆ

Γ[−N,N ]

dy

2πi
dβ(y)(λ − µ)

(y − λ)(y − µ)(y − z)

+ ∂β

[  
Cλ0

dz

2πi
e−2(z)(µ − λ)
(z − µ)(z − λ)

(
1 − 1Γ[−N,N ](z)

) ]
. (A.12)

Here we interchanged the signs of the principal value integral and the derivative ∂β, because
all the integrals along Cλ0 are absolutely convergent. Moreover, the last integral on the
right-hand side goes to zero, as N → ∞,

lim
N→∞

∂β

[  
Cλ0

dz

2πi
e−2(z)(µ − λ)
(z − µ)(z − λ)

(
1 − 1[−N,N ](z)

) ]
= 0. (A.13)

Hence, the second line of equation (A.6) with the same regularization reads

2
 

Cλ0

dz

2πie
−2(z)

ˆ

Γ[−N,N ]

dy

2πi
dβ(y)(λ − µ)

(y − λ)(y − µ)(y − z)

= 2
ˆ

Cλ0

dz

2πie
−2(z)

ˆ

Γ[−N,N ]

dy

2πi
dβ(y)(λ − µ)

(y − λ)(y − µ)(y − z)e−ηy2

∣∣∣∣∣∣∣∣
η=0+

= 2
ˆ

Cλ0

dz

2πie
−2(z)

ˆ

Γ(Cλ0 )

dy

2πi
dβ(y)(λ − µ)

(y − λ)(y − µ)(y − z)e−ηy2

∣∣∣∣∣∣∣∣
η=0+

= −2
ˆ

Γ(Cλ0 )

dy

2πi
dβ(y)(λ − µ)

(y − λ)(y − µ)e−ηy2C(y)

∣∣∣∣∣∣∣∣
η=0+

. (A.14)

Noticing that there are no more singularities at z = λ, µ, we do not need the principal value
integration anymore. Then in the last equality we recover the Cauchy transform.

Finally, combining everything together, the derivative of the kernel, see equation (A.6),
has the following form:

∂βV (λ, µ) = −F (λ, µ)e(λ)e(µ)
{(

E(µ)
e(µ) + E(λ)

e(λ)

) ˆ

Γ(Cλ0 )

dz

2πi
dβ(z)

(z − λ)(z − µ)e−ηz2

+ 2
ˆ

Γ(Cλ0 )

dz

2πi
dβ(z)

(z − λ)(z − µ)e−ηz2C(z)
}∣∣∣∣∣

η=0+

. (A.15)
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Appendix A. Logarithmic derivative of the Fredholm determinant

Now we use the following identities, see equation (1.21),

EL(λ)σzER(µ) = −F (λ, µ)e(λ)e(µ)
(

E(λ)
e(λ) + E(µ)

e(µ)

)
, (A.16)

EL(λ)σ+ER(µ) = −F (λ, µ)e(λ)e(µ). (A.17)

Thus,

∂βV (λ, µ) =
ˆ

Γ(Cλ0 )

dz

2πi
Eᵀ

L(λ)Sβ(z; η)ER(µ)
(z − λ)(z − µ)

∣∣∣∣∣∣∣∣
η=0+

(A.18)

with
Sβ(z; η) = 1

2πidβ(z)
[
σz + 2C(z)σ+

]
e−ηz2

. (A.19)

Now we go back to equation (A.2) and evaluate tr{R∂βV}. We first substitute expres-
sions (2.3) and (A.18),

tr{R∂βV} =
ˆ

Cλ0

dλ

ˆ

Cλ0

dµ R(λ, µ)∂βV (µ, λ)

=
ˆ

Cλ0

dλ

ˆ

Cλ0

dµ

ˆ

Γ(Cλ0 )

dz
Fᵀ

L(λ)FR(µ)
λ − µ

· Eᵀ
L(µ)Sβ(z; η)ER(λ)

(z − λ)(z − µ)

∣∣∣∣∣∣∣∣
η=0+

. (A.20)

Next, we consider the following difference of matrices χ, see definition (2.5a),

χ(λ) − χ(z) =
ˆ

Cλ0

dµ FR(µ)Eᵀ
L(µ)

( 1
µ − z

− 1
µ − λ

)
=

ˆ

Cλ0

dµ
(z − λ)FR(µ)Eᵀ

L(µ)
(λ − µ)(z − µ) (A.21)

and use as well identity

Fᵀ
L(λ)FR(µ)Eᵀ

L(µ)Sβ(z; η)ER(λ) = tr{FR(µ)Eᵀ
L(µ)Sβ(z; η)ER(λ)Fᵀ

L(λ)}. (A.22)

Hence, we get

tr{R∂βV} =
ˆ

Cλ0

dλ

ˆ

Γ(Cλ0 )

dz
tr{(χ(λ) − χ(z))Sβ(z; η)ER(λ)Fᵀ

L(λ)}
(z − λ)2

∣∣∣∣∣∣∣∣
η=0+

. (A.23)

Using equation (2.6), i.e., Fᵀ
L(λ)χ(λ) = Eᵀ

L(λ), we derive

tr{R∂βV} =
ˆ

Cλ0

dλ

ˆ

Γ(Cλ0 )

dz
Eᵀ

L(λ)Sβ(z; η)ER(λ)
(z − λ)2

∣∣∣∣∣∣∣∣
η=0+

−
ˆ

Cλ0

dλ

ˆ

Γ(Cλ0 )

dz
tr{χ(z)Sβ(z; η)ER(λ)Fᵀ

L(λ)}
(z − λ)2

∣∣∣∣∣∣∣∣
η=0+

. (A.24)
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The first term on the right-hand side is tr{∂βV }, see equation (A.18), therefore, from equa-
tion (A.2) follows that

∂β ln det
Cλ0

(id + V) =
ˆ

Cλ0

dλ

ˆ

Γ(Cλ0 )

dz
tr{χ(z)Sβ(z; η)ER(λ)Fᵀ

L(λ)}
(z − λ)2

∣∣∣∣∣∣∣∣
η=0+

. (A.25)

Finally, we consider the derivative of the inverse matrix χ−1, see equation (2.5b),

(
χ−1(z)

)′ =
ˆ

Cλ0

dλ
ER(λ)Fᵀ

L(λ)
(λ − z)2 . (A.26)

Substituting this equation into the one above and using the identity χ−1χ′ + (χ−1)′χ = 0, we
derive

∂β ln det
Cλ0

(id + V) = −
ˆ

Γ(Cλ0 )

dz tr{χ′(z)Sβ(z; η)χ−1(z)}

∣∣∣∣∣∣∣∣
η=0+

. (A.27)

After substitution of the expression for Sβ(z; η), see equation (A.19), Proposition 2 is finally
proved.
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B Construction of the parametrix

B.1 Differential equation

First we construct the solution D(ζ) of the local Riemann–Hilbert Problem 6, but with the
constant parameters m, n and τ .

The matrix D is the unique solution of the following Riemann–Hilbert problem.

Riemann–Hilbert Problem 9. Determine D(ζ) ∈ C2×2 such that

1. D(ζ) is analytic in C\γD and extends continuously from either side to γD\{0}, see
Figure B.1.

2. On the contour γD\{0} the boundary values D±(ζ) satisfy the jump condition

D−(ζ) = D+(ζ)GD(ζ) (B.1)

with the jump matrix GD(ζ) given by

GD(ζ) =


I2 + me−iζ2e2πiτ ζ−2τ σ+, ζ ∈ e

3πi
4 R+,

I2 + ne2πiτ σ− ζ ∈ e− 3πi
4 R+,

I2 + neiζ2
ζ2τ σ−, ζ ∈ e

πi
4 R+,

I2 + me−iζ2
ζ−2τ σ+, ζ ∈ e− πi

4 R+.

(B.2)

3. D(ζ) = I2 + O
(
ζ−1) as ζ → ∞ up to tangential direction to γD.

4. As ζ → 0
D(ζ) = [D0 + O(ζ)] ζτσz

. (B.3)

for a piecewise constant matrix D0 ∈ C2×2.

The expression for the jump matrix follows from equations (2.61) and (2.72). The be-
haviour at ζ = 0 follows from equation (2.62).

Now we introduce matrix

E(ζ) = D(ζ)e−iζ2σz/2ζ−τσz (B.4)

whose jump matrix, due to Proposition 5, is now a piecewise constant matrix:

GE(ζ) =


I2 + me2πiτ σ+, ζ ∈ e

3πi
4 R+,

I2 + ne2πiτ σ− ζ ∈ e− 3πi
4 R+,

I2 + nσ−, ζ ∈ e
πi
4 R+,

I2 + mσ+, ζ ∈ e− πi
4 R+.

(B.5)
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λ0

e
πi
4 R+e
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IV
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πi
4 R+e

3πi
4 R+

e− πi
4 R+e− 3πi

4 R+

R−

I

II

III

IV+

IV−

Figure B.1: The jump contours γD on the left and γE on the right. Here R+ = (0, ∞) and
R− = (−∞, 0).

Also, we note that E(ζ) now has an additional jump on R− := (−∞, 0), due to the cut in
the transformation D → E, see equation (B.4).

Since the matrix D has no jump for real negative ζ, it follows that for ζ ∈ R−

D+(ζ) = D−(ζ) ⇒ E+(ζ) = E−(ζ)(ζ − i0)τσz

(ζ + i0)τσz = E−(ζ)e−2πiτσz
, (B.6)

i.e., the jump matrix for ζ ∈ R− reads

GE(ζ) = e−2πiτσz
. (B.7)

We denote the jump contour for the matrix E as γE = γD ∪ R−, see Figure B.1.
From the behaviour of the matrix D(ζ) at the origin, see equation (B.3), it follows that

E(ζ) is bounded at ζ = 0. Finally, matrix E(ζ) has the following asymptotics as ζ → ∞:

E(ζ) = (I2 + O(ζ−1))e−iζ2σz/2ζτσz
. (B.8)

It turns out that the solution of such Riemann–Hilbert problem with piecewise constant
jump matrix is related to a Fuchsian differential equation. To see it explicitly, we introduce
matrix ϕ(ζ),

ϕ(ζ) = E′(ζ)E−1(ζ). (B.9)

Then for ζ ∈ γE\{0} we have

ϕ−(ζ) = E′
−(ζ)E−1

− (ζ)
=
(
E′

+(ζ)GE(ζ) + E+(ζ)G′
E(ζ)

)
G−1

E (ζ)E−1
+ (ζ) = E′

+(ζ)E−1
+ (ζ) = ϕ+(ζ). (B.10)

Here we used the fact that the jump matrix is a piecewise constant matrix, i.e., G′
E(ζ) = 0.

Therefore ϕ(ζ) is holomorphic in C\{0}. Since it is also bounded at ζ = 0, Riemann’s theorem
on removable singularity ensures that ϕ(ζ) is holomorphic in the whole complex plane.

When ζ → ∞, we have

E(ζ) =
[
I2 + E−1

ζ
+ O

(
ζ−2

)]
e−iζ2σz/2ζ−τσz

, (B.11)

which implies

E−1(ζ) = eiζ2σz/2ζτσz
[
I2 − E−1

ζ
+ O

(
ζ−2

)]
(B.12)
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and

E′(ζ) =
[
−E−1

ζ2 + O
(
ζ−3

)]
e−iζ2σz/2ζ−τσz

+
[
I2 + E−1

ζ
+ O

(
ζ−2

) ](
−iζσz − τ

ζ
σz
)

e−iζ2σz/2ζ−τσz
. (B.13)

Therefore, when ζ → ∞,

ϕ(ζ) =
(
−iζσz − iE−1σz + O

(
ζ−1

))(
I2 − E−1

ζ
+ O

(
ζ−2

))
= −iζσz − i[E−1, σz] + O

(
ζ−1

)
. (B.14)

Then function
ϕ(ζ) + iζσz + i[E−1, σz] = O

(
ζ−1

)
(B.15)

is an entire function bounded at infinity. Due to the Liouville’s theorem, this function must
be constant, and therefore it is zero. Then

ϕ(ζ) = E′(ζ)E−1(ζ) =
(
−ζσz − i[E−1, σz]

)
, (B.16)

and we end up with the following Fuchsian differential equation

E′(ζ) = (−ζσz − i[E−1, σz])E(ζ). (B.17)

Denoting the matrix elements of E−1 as follows,

E−1 =
(

a b
c d

)
, (B.18)

we get

[E−1, σz] =
(

0 −2b
2c 0

)
. (B.19)

Hence, the differential equation (B.17) is equivalent to the following system of differential
equations: {

E′
1j(ζ) = −iζE1j(ζ) + 2ibE2j(ζ),

E′
2j(ζ) = iζE2j(ζ) − 2icE1j(ζ)

(B.20)

for j = 1, 2.
Differentiating both equations and substituting the first derivatives from the system, we

obtain the second order differential equations

E′′
1j(ζ) = −ζ2E1j(ζ) + (4bc − i)E1j(ζ), (B.21)

E′′
2j(ζ) = −ζ2E2j(ζ) + (4bc + i)E2j(ζ). (B.22)

The last step is to write these second order differential equations in the canonical form.
We introduce new variable ξ1 and ξ2 for E1j and E2j , respectively:

ξ1 =
√

2e
πi
4 ζ, ⇒ d

dζ
=

√
2e

πi
4

d
dξ1

, (B.23)

ξ2 =
√

2e− πi
4 ζ, ⇒ d

dζ
=

√
2e− πi

4
d

dξ2
, (B.24)
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and denote u1j(ξ1) := E1j(ζ) and u2j(ξ2) := E2j(ζ) for j = 1, 2. Then we obtain the second
order differential equations in the canonical form:

u′′
1j(ξ) +

(
2ibc + 1

2 − ξ2

4

)
u1j = 0, (B.25a)

u′′
2j(ξ) +

(
−2ibc + 1

2 − ξ2

4

)
u2j = 0 (B.25b)

for j = 1, 2.

B.2 Parabolic cylinder functions
The solutions of the differential equation

y′′(z) +
(

ν + 1
2 − z2

4

)
y(z) = 0, (B.26)

which is equivalent to (B.25), are called parabolic cylinder functions, for example, see [45, §8].
We define the parabolic cylinder function Dν in terms of confluent hypergeometric function

Dν(z) = 2
1
2 (ν−1)e− z2

4 z Ψ
(

(1 − ν)
2 ,

3
2; z2

2

)
. (B.27)

There are four (linearly dependent) functions satisfying equation (B.26), namely, Dν(z),
Dν(−z), D−ν−1(z) and D−ν−1(−z).

The asymptotic series for Dν for large values of |z| is given by

Dν(z) = zνe− z2
4

[
N∑

n=0

(−ν/2)n(−1/2 − ν/2)n

n!(−z2/2)n
+ O

(
|z|−2(N+1)

)]
, |arg z| < 3π/4 ,

(B.28)
where (a)n denotes the Pochhammer symbol. There is also a useful relation

Dν(z) = eπiνDν(−z) +
√

2π

Γ(−ν)e
πi(ν+1)

2 D−ν−1(−iz), (B.29)

which allows us to consider the parabolic cylinder functions with arguments being not only
in the region |arg z| < 3π/4 .

B.3 Construction
Now we introduce

ρ = 2ibc (B.30)

and look for the solution of the Riemann–Hilbert problem using the following ansatz

E(ζ) = E0(ζ) · Lv. (B.31)

Here matrix E0(ζ) is given by

E0(ζ) :=
(

Dρ
(√

2e
πi
4 ζ
)

c12 D−ρ−1
(√

2e− πi
4 ζ
)

c21 Dρ+1
(√

2e
πi
4 ζ
)

D−ρ
(√

2e− πi
4 ζ
) )

, (B.32)
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c12, c21 are some constants and Lv are constant matrices in each region v ∈ {I, II, III, IV−, IV+}.
We recall that there is a cut for ζ ∈ R−, therefore region IV is divided into two parts, see
Figure B.1. At this point it is not yet guaranteed that the ansatz is suitable: we still have to
satisfy the jump and the asymptotic conditions, which will determine the constants c12 and
c21 and all the matrices Lv.

B.3.1 Region II

First we study asymptotics of the matrix E, as ζ → ∞ in the region II, i.e., for −3π/4 <
arg ζ < 3π/4, using asymptotic expansion (B.28),

E(ζ) =

 2
ρ
2 e

πiρ
2 ζρe− iζ2

2 c12 2− ρ+1
2 e

πi(ρ+1)
4 ζ−ρ−1e

iζ2
2

c21 2
ρ−1

2 e
πi(ρ−1)

4 ζρ−1e− iζ2
2 2− ρ

2 e
πiρ

4 ζ−ρe
iζ2
2

 ·
(
1 + O

(
ζ−2

) )
· LII

=


1 + O

(
ζ−2) c12e

πi
4

√
2ζ

(
1 + O

(
ζ−2))

c21e− πi
4

√
2ζ

(
1 + O

(
ζ−2)) 1 + O

(
ζ−2)

 e
πiρ

4 2
ρσz

2 ζρσz e− iζ2σz

2 LII. (B.33)

On the other hand, we have

E(ζ) =
[
I2 + 1

ζ

(
a b
c d

)
+ O

(
ζ−2

)]
e− iζ2σz

2 ζ−τσz
, (B.34)

see equations (B.11) and (B.18). Therefore, we get that ρ = −τ , a = d = 0. The matrix LII
is then given by

LII = e
πiτ

4 2
τσz

2 , (B.35)

and coefficients b and c read

b = c12e
πi
4

√
2

, c = c21e− πi
4

√
2

. (B.36)

Moreover, since 2ibc =: ρ = −τ , it follows that

c12c21 = iτ. (B.37)

Thus we derived LII, the relation between c12 and c21 and checked the ansatz in region II.
Now we use the jump conditions to derive the solutions in the rest regions.

B.3.2 Region I

For ζ ∈ e
πi
4 R+ the jump condition (B.2) implies that

E0(ζ)LI ·
(

1 0
n 1

)
= E0(ζ)LII. (B.38)

Then

LI = LII ·
(

1 0
−n 1

)
=
(

1 0
−n2−τ 1

)
· LII, (B.39)

where we commuted the matrix LII to the right, using the explicit expression (B.35).
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Then the solution in region I is given by

E(ζ) = E0(ζ)LI

=
(

D−τ
(√

2e
πi
4 ζ
)

− n2−τ c12 Dτ−1
(√

2e− πi
4 ζ
)

c12 Dτ−1
(√

2e− πi
4 ζ
)

c21D−τ−1
(√

2e
πi
4 ζ
)

− n2−τ Dτ
(√

2e− πi
4 ζ
)

Dτ
(√

2e− πi
4 ζ
) )

· LII. (B.40)

Next we use relation (B.29) in order to rewrite the parabolic cylinder functions in matrix
elements (1, 1) and (2, 1). In particular, we use relation (B.29) twice for ν = −τ and
ν = −τ − 1 to derive relations

D−τ (z) = e−πiτ D−τ (−z) + i
√

2π

Γ(τ) e− πiτ
2 Dτ−1(−iz), (B.41)

D−τ−1(z) = −e−πiτ D−τ−1(−z) +
√

2π

Γ(τ + 1)e− πiτ
2 Dτ (−iz). (B.42)

Substituting z =
√

2e
πi
4 ζ and expressing the first term on the right-hand side of each equation,

we obtain

e−πiτ D−τ
(√

2e− 3πi
4 ζ
)

= D−τ
(√

2e
πi
4 ζ
)

− i
√

2πe− πiτ
2

Γ(τ) Dτ−1
(

−
√

2e− πi
4 ζ
)
, (B.43a)

−e−πiτ D−τ−1
(√

2e− 3πi
4 ζ
)

= D−τ−1
(√

2e
πi
4 ζ
)

−
√

2πe− πiτ
2

Γ(τ + 1) Dτ
(

−
√

2e− πi
4 ζ
)
. (B.43b)

Here we already recognize the matrix elements (1, 1) and (2, 1) in expression (B.40) if we set
coefficients c12 and c21 to

c12 = i
√

2π2τ e− πiτ
2

nΓ(τ) , c21 = 2−τ nΓ(τ + 1)e
πiτ

2
√

2π
. (B.44)

Then we obtain

EI(ζ) =
(

e−πiτ D−τ
(√

2e− 3πi
4 ζ
)

c12 Dτ−1
(√

2e− πi
4 ζ
)

−e−πiτ c21 D−τ−1
(√

2e− 3πi
4 ζ
)

Dτ
(√

2e− πi
4 ζ
) )

· LII. (B.45)

Now we can use the same asymptotic series for the parabolic functions, see expression (B.28),
since all the arguments are again in the region, where the asymptotic expression works,
namely, for ζ in region I, i.e., arg ζ ∈ (π/4, 3π/4),

arg
(√

2e− 3πi
4 ζ
)

∈ (−π/2, 0), arg
(√

2e− πi
4 ζ
)

∈ (0, π/2). (B.46)

Thus, as ζ → ∞, we obtain

EI(ζ) =

 2− τ
2 e− πiτ

4 ζ−τ e− iζ2
2 c12 2

τ−1
2 e− πi(τ−1)

4 ζτ−1e
iζ2
2

c21 2− τ+1
2 e− πi(τ+1)

4 ζ−τ−1e− iζ2
2 2

τ
2 e− πiτ

4 ζτ e
iζ2
2

 ·
(
1 + O

(
ζ−2

))
· LII

=


1 c12e

πi
4

√
2ζ

c21e− πi
4

√
2ζ

1

 e− πiτ
4 2− τσz

2 ζ−τσz e− iζ2
2 · LII ·

(
1 + O

(
ζ−2

))
. (B.47)

Substituting explicitly LII, see equation (B.35), we derive the correct asymptotics, see equa-
tion (B.34).
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B.3.3 Region III

Now we proceed the same way in region III, i.e., for arg ζ ∈ (−3π/4, −π/4). The jump
condition for ζ ∈ e− πi

4 R+ implies

E0(ζ)LIII = E0(ζ)LII ·
(

1 m
0 1

)
⇒ LIII = LII ·

(
1 m
0 1

)
=
(

1 m2τ

0 1

)
· LII. (B.48)

Then

EIII(ζ) = E0(ζ)LIII

=
(

D−τ
(√

2e
πi
4 ζ
)

c12 Dτ−1
(√

2e− πi
4 ζ
)

+ m2τ D−τ
(√

2e
πi
4 ζ
)

c21 D−τ−1
(√

2e
πi
4 ζ
)

Dτ
(√

2e− πi
4 ζ
)

+ m2τ c21 D−τ−1
(√

2e
πi
4 ζ
)) · LII. (B.49)

The coefficient in front of the second parabolic cylinder function D−τ in the matrix element
(1, 2) divided by c12 reads

m2τ

c12
= mnΓ(τ)e

πiτ
2

i
√

2π
= −2iΓ(τ)e− πiτ

2 sin(πτ)
i
√

2π
= −

√
2πe− πiτ

2

Γ(1 − τ) . (B.50)

Here we first substituted expression for c12, see equation (B.44) and, in the second equality,
used that

e2πiτ = 1
[1 + ϑ (e2πiν − 1)] [1 + ϑ (e−2πiν − 1)] = 1

1 − 4 sin2(πν)ϑ(1 − ϑ)
, (B.51)

see equations (2.41), (2.31a) and (2.31b). Therefore, using definitions (2.73), we obtain

mn = −4 sin2(πν)(1 − ϑ)ϑ = e−2πiτ − 1. (B.52)

Similarly the coefficient in front of the parabolic function D−τ−1 in the matrix element
(2, 2) reads

m2τ c21 = mnΓ(τ + 1)e
πiτ

2
√

2π
= −2iΓ(τ + 1) sin(πτ)e− πiτ

2
√

2π
= i

√
2πe− πiτ

2

Γ(−τ) . (B.53)

Here we substituted expression for c21, see equation (B.44), and identity for m · n, see equa-
tion (B.52).

Then we get the following combinations of the parabolic cylinder functions in matrix
elements (1, 2) and (2, 2),

Dτ−1
(√

2e− πi
4 ζ
)

−
√

2πe− πiτ
2

Γ(1 − τ) D−τ
(√

2e
πi
4 ζ
)
, (B.54a)

Dτ
(√

2e− πi
4 ζ
)

+ i
√

2πe− πiτ
2

Γ(−τ) D−τ−1
(√

2e
πi
4 ζ
)
. (B.54b)

Using identity (B.29) now for ν = τ − 1 and ν = τ , we derive relations

Dτ−1(z) = −eπiτ Dτ−1(−z) +
√

2π

Γ(1 − τ)e
πiτ

2 D−τ (−iz), (B.55)

Dτ (z) = eπiτ Dτ (−z) + i
√

2π

Γ(−τ)e
πiτ

2 D−τ−1(−iz). (B.56)
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Substituting z =
√

2e3 πi
4 ζ and multiplying both relations by e−πiτ and the first relation

additionally by −1, we obtain

−e−πiτ Dτ−1
(√

2e
3πi
4 ζ
)

= Dτ−1
(√

2e− πi
4 ζ
)

−
√

2π

Γ(1 − τ)e− πiτ
2 D−τ

(√
2e

πi
4 ζ
)
, (B.57)

e−πiτ Dτ
(√

2e
3πi
4 ζ
)

= Dτ
(√

2e− πi
4 ζ
)

+ i
√

2π

Γ(−τ)e− πiτ
2 D−τ−1

(√
2e

πi
4 ζ
)
. (B.58)

Here we recognize again the matrix elements, see equations (B.54). Therefore,

EIII(ζ) =
(

D−τ
(√

2e
πi
4 ζ
)

−e−πiτ c12 Dτ−1
(√

2e
3πi
4 ζ
)

c21 D−τ−1
(√

2e
πi
4 ζ
)

e−πiτ Dτ
(√

2e
3πi
4 ζ
) )

· LII, (B.59)

which is again suitable for the asymptotic expansion (B.28), since for arg ζ ∈ (−3π/4, −π/4)

arg
(√

2e
πi
4 ζ
)

∈ (−π/2, 0), arg
(√

2e
3πi
4 ζ
)

∈ (0, π/2). (B.60)

The asymptotic expansion coincides again with the one we need, see equation (B.34).

B.3.4 Region IV

Finally, we construct the solution in the region IV from the solutions in regions I and III. We
recall that the matrix E(ζ) has a cut for ζ ∈ (−∞, 0], therefore we need to check that the
jump condition on the cut is satisfied, as well as the asymptotic expansion in region IV.

First, using the jump condition for ζ ∈ e
3πi
4 R+, we get

E0(ζ)L+
IV = E0(ζ)LI ·

(
1 me2πiτ

0 1

)
⇒ L+

IV = LI ·
(

1 me2πiτ

0 1

)
. (B.61)

Substituting the solution in the region I, see expression (B.45), and commuting LII to the
right, we obtain

E+
IV (ζ) = EI(ζ) ·

(
1 me2πiτ

0 1

)

=
(

e−πiτ D−τ
(√

2e− 3πi
4 ζ
)

c12 Dτ−1
(√

2e− πi
4 ζ
)

−e−πiτ c21 D−τ−1
(√

2e− 3πi
4 ζ
)

Dτ
(√

2e− πi
4 ζ
) )(

1 m2τ e2πiτ

0 1

)
· LII

=
(

e−πiτ D−τ
(√

2e− 3πi
4 ζ
)

c12 Dτ−1
(√

2e− πi
4 ζ
)

+ m2τ eπiτ D−τ
(√

2e− 3πi
4 ζ
)

−e−πiτ c21 D−τ−1
(√

2e− 3πi
4 ζ
)

Dτ
(√

2e− πi
4 ζ
)

− m2τ eπiτ c21 D−τ−1
(√

2e− 3πi
4 ζ
)) · LII.

(B.62)

Substituting again c12 and c21 and using identity (B.52) for the product m · n as before, we
get the following combinations of the parabolic cylinder functions in the matrix elements (1,
2) and (2, 2),

Dτ−1
(√

2e− πi
4 ζ
)

−
√

2πe
πiτ

2

Γ(1 − τ)D−τ
(√

2e− 3πi
4 ζ
)
, (B.63)

Dτ
(√

2e− πi
4 ζ
)

− i
√

2πe
πiτ

2

Γ(−τ) D−τ−1
(√

2e− 3πi
4 ζ
)
. (B.64)
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Now we use again identity (B.29) for ν = τ − 1 and ν = τ with z =
√

2e− πi
4 ζ. We derive

relations

Dτ−1
(√

2e− πi
4 ζ
)

= −eπiτ Dτ−1
(√

2e− 5πi
4 ζ
)

+
√

2π

Γ(1 − τ)e
πiτ

2 D−τ
(√

2e− 3πi
4 ζ
)
, (B.65)

Dτ
(√

2e− πi
4 ζ
)

= eπiτ Dτ
(√

2e− 5πi
4 ζ
)

+ i
√

2π

Γ(−τ)e
πiτ

2 D−τ−1
(√

2e− 3πi
4 ζ
)
. (B.66)

Expressing the first terms on the right-hand sides, we get

−eπiτ Dτ−1
(√

2e− 5πi
4 ζ
)

= Dτ−1
(√

2e− πi
4 ζ
)

−
√

2π

Γ(1 − τ)e
πiτ

2 D−τ
(√

2e− 3πi
4 ζ
)
, (B.67)

eπiτ Dτ
(√

2e− 5πi
4 ζ
)

= Dτ
(√

2e− πi
4 ζ
)

− i
√

2π

Γ(−τ)e
πiτ

2 D−τ−1
(√

2e− 3πi
4 ζ
)
. (B.68)

Therefore, we obtain

E+
IV (ζ) =

(
e−πiτ D−τ

(√
2e− 3πi

4 ζ
)

−c12eπiτ Dτ−1
(√

2e− 5πi
4 ζ
)

−e−πiτ c21 D−τ−1
(√

2e− 3πi
4 ζ
)

eπiτ Dτ
(√

2e− 5πi
4 ζ
) )

· LII. (B.69)

Using the asymptotic expansion (B.28) again, we check that the asymptotic is correct, i.e.,
coincides with one in (B.34).

Now we use the jump condition for ζ ∈ e− 3πi
4 R+,

E0(ζ)L−
IV ·

(
1 0

ne2πiτ 1

)
= E0(ζ)LIII. ⇒ L−

IV = LIII ·
(

1 0
−ne2πiτ 1

)
. (B.70)

Then we substitute LIII in terms of LII, see equation (B.48),

E−
IV (ζ) = E0(ζ) · LIII

(
1 0

−ne2πiτ 1

)

=
(

D−τ
(√

2e
πi
4 ζ
)

−e−πiτ c12 Dτ−1
(√

2e
3πi
4 ζ
)

c21 D−τ−1
(√

2e
πi
4 ζ
)

e−πiτ Dτ
(√

2e
3πi
4 ζ
) )

· LII ·
(

1 0
−ne2πiτ 1

)
. (B.71)

Commuting LII to the right, we obtain

E−
IV (ζ) =

(
D−τ

(√
2e

πi
4 ζ
)

−e−πiτ c12 Dτ−1
(√

2e
3πi
4 ζ
)

c21 D−τ−1
(√

2e
πi
4 ζ
)

e−πiτ Dτ
(√

2e
3πi
4 ζ
) )(

1 0
−n2−τ e2πiτ 1

)
· LII

=
(

D−τ
(√

2e
πi
4 ζ
)

+ n2−τ eπiτ c12 Dτ−1
(√

2e
3πi
4 ζ
)

−e−πiτ c12 Dτ−1
(√

2e
3πi
4 ζ
)

c21 D−τ−1
(√

2e
πi
4 ζ
)

− n2−τ eπiτ Dτ
(√

2e
3πi
4 ζ
)

e−πiτ Dτ
(√

2e
3πi
4 ζ
) )

· LII. (B.72)

Substituting again c12 and c21 we get the following combinations of the parabolic cylinder
functions in the matrix elements (1, 1) and (2, 1),

D−τ
(√

2e
πi
4 ζ
)

+ i
√

2πe
πiτ

2

Γ(τ) Dτ−1
(√

2e
3πi
4 ζ
)
, (B.73)

D−τ−1
(√

2e
πi
4 ζ
)

−
√

2πe
πiτ

2

Γ(τ + 1)Dτ
(√

2e
3πi
4 ζ
)
. (B.74)
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Substituting z =
√

2e5 πi
4 ζ into equations (B.41) and multiplying both equations by eπiτ ,

we get

eπiτ D−τ
(√

2e
5πi
4 ζ
)

= D−τ
(√

2e
πi
4 ζ
)

+ i
√

2πe
πiτ

2

Γ(τ) Dτ−1
(√

2e
3πi
4 ζ
)
, (B.75)

eπiτ D−τ−1
(√

2e
5πi
4 ζ
)

= −D−τ−1
(√

2e
πi
4 ζ
)

+
√

2πe
πiτ

2

Γ(τ + 1)Dτ
(√

2e
3πi
4 ζ
)
. (B.76)

Therefore, we obtain

E−
IV (ζ) =

(
eπiτ D−τ

(√
2e

5πi
4 ζ
)

−e−πiτ c12 Dτ−1
(√

2e
3πi
4 ζ
)

−eπiτ c21D−τ−1
(√

2e
5πi
4 ζ
)

e−πiτ Dτ
(√

2e
3πi
4 ζ
) )

· LII. (B.77)

We note first that the asymptotic behaviour as ζ → ∞ coincides with (B.34). Also the jump
condition on the cut is satisfied, see equation (B.6) and expressions (B.77) and (B.69)

E+
IV(ζ)e2πiτσz = E−

IV(ζ). (B.78)

This concludes the construction of the parametrix. We explicitly checked the asymptotic
condition in all the regions and the jump condition is satisfied by construction.

Altogether, we derived that the solution of the local Riemann–Hilbert problem with con-
stant m, n and τ is given by

E(ζ) = E0(ζ) · Lv, v ∈ {I, II, III, IV−, IV+} (B.79)

with E0(ζ) given by (B.32) and
LII = e

πiτ
4 2

τσz

2 , (B.80)

see equation (B.35),

LI = LII ·
(

1 0
−n 1

)
, LIII = LII ·

(
1 m
0 1

)
, (B.81)

see equations (B.39) and (B.48), and

L−
IV = LIII ·

(
1 0

−ne2πiτ 1

)
, L+

IV = LI ·
(

1 me2πiτ

0 1

)
, (B.82)

see equations (B.70) and (B.61). Expression for the matrix L in the main text is given in
equations (2.80). Also, in the main text we introduced

b12 = c12e
πi
4 , b21 = c21e− πi

4 , (B.83)

compare equations (B.44) and (2.79).
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C Pole contribution: the solution of a
linear system

In this section, we derive the linear system (2.94) for vectors X±
j , j = 1, . . . , n±

` and Y±
j ,

j = 1, . . . , n±
r which determine the matrices C±

j , and D±
j in expression

S(λ) = I2 +
n−∑̀
j=1

C−
j

λ − `−
j

+
n+∑̀
j=1

C+
j

λ − `+
j

+
n−

r∑
j=1

D−
j

λ − r−
j

+
n+

r∑
j=1

D+
j

λ − r+
j

, (C.1)

due to formulae (2.93).

C.1 Derivation of the linear system

We start with the regularity condition on Φ, see equation (2.85). In particular, at λ = `+
j ,

for j = 1, . . . , n+
` ,

Φ(λ)
(
M+

` (λ)
)−1 = S(λ)Π(λ)

(
M+

` (λ)
)−1 (C.2)

is regular.
We introduce for convenience

S±
`,a(λ) = S(λ) −

C±
j

λ − `±
j

, j = 1, . . . , n±
` , (C.3a)

S±
r,a(λ) = S(λ) −

D±
j

λ − r±
j

, j = 1, . . . , n±
r , (C.3b)

and the residues h±
`/r, see equations (2.97) and (2.98) in the main text.

Then the regularity condition as λ → `+
j can be written as

(
S+

`,j(`+
j ) +

C+
j

λ − `+
j

)(
Π(`+

j ) + (λ − `+
j )Π′(`+

j )
) (

I2 − e−2(λ)Q+
` (λ)σ+

)

= −
C+

j Π(`+
j )h+

`,jσ+

(λ − `+
j )2 −

S+
`,j(`+

j )Π(`+
j )h+

`,jσ+

λ − `+
j

+
C+

j Π(`+
j )

λ − `+
j

− 1
λ − `+

j

C+
j ∂λ

{
Π(λ)e−2(λ)Q+

` (λ)(λ − `+
j )
} ∣∣∣∣

λ=`+
j

σ+ + O(1). (C.4)
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Appendix C. Pole contribution: the solution of a linear system

Here we substituted M+
` , see equation (2.49a) and used that the residue at `+

j is h+
`,j , see

equation (2.97a). Thus, the regularity condition implies that the coefficients in front of the
second and the first order pole at `+

j for j = 1, . . . , n+
` are zero, i.e.,

C+
j Π(`+

j )σ+ = 0 (C.5)

and
C+

j Π(`+
j ) = h+

`,jS+
`,j(`+

j )Π(`+
j )σ+ + C+

j Π′(`+
j )h+

`,jσ+. (C.6)

Here we already used that the derivative in the last line of equation (C.4) must act on the
matrix Π, otherwise, due to the condition from the second order pole, it gives zero.

The first equation implies that the matrix C+
j has the form

C+
j =

(
0 ∗
0 ∗

)
Π−1(`+

j ), (C.7)

and from the second one it follows that

C+
j Π(`+

j )
(
I2 − Π−1(`+

j )Π′(`+
j )h+

`,jσ+
)

= h+
`,jS+

`,j(`+
j )Π(`+

j )σ+. (C.8)

Multiplying from the left by (I2 − Π−1(`+
j )Π′(`+

j )h+
`,jσ+)−1 and using that

σ+(I2 − Π−1(`+
j )Π′(`+

j )h+
`,jσ+)−1 = σ+

`,jσ+ (C.9)

with

σ+
`,j =

h+
`,j

1 − h+
`,j

[
Π−1(`+

j )Π′(`+
j )
]

21

, (C.10)

we get equation
C+

j Π(`+
j ) = σ+

`,jS+
`,j(`+

j )Π(`+
j )σ+. (C.11)

The same way we analyse the regularity condition at `−
j for j = 1, . . . , n−

` and r±
j for

j = 1, . . . , n±
r . At the end, we get the following system of equations

C±
j Π(`±

j ) = σ±
`,jS±

`,j(`±
j )Π(`±

j )σ±, j = 1, . . . , n±
` , (C.12a)

D±
j Π(r±

j ) = σ±
r,jS±

r,j(r±
j )Π(r±

j )σ∓, j = 1, . . . , n±
r (C.12b)

with coefficients σ given by

σ+
`,j =

h+
`,j

1 − h+
`,j

[
Π−1(`+

j )Π′(`+
j )
]

21

, σ+
r,j =

h+
r,j

1 − h+
r,j

[
Π−1(r+

j )Π′(r+
j )
]

12

, (C.13a)

σ−
`,j =

h−
`,j

1 − h−
`,j

[
Π−1(`−

j )Π′(`−
j )
]

12

, σ−
r,j =

h−
r,j

1 − h−
r,j

[
Π−1(r−

j )Π′(r−
j )
]

21

, (C.13b)

see equations (2.96) in the main text.
The conditions at the second order poles give the form of the matrices C±

j and D±
j ,

C+
j =

(
0 ∗
0 ∗

)
Π−1(`+

j ), D+
j =

(
∗ 0
∗ 0

)
Π−1(r+

j ), (C.14)

C−
j =

(
∗ 0
∗ 0

)
Π−1(`−

j ), D−
j =

(
0 ∗
0 ∗

)
Π−1(r−

j ). (C.15)
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C.1. Derivation of the linear system

We rescale these expressions by the corresponding coefficients σ and denote the unknown
entities of the matrices by vectors X± and Y±, see equation (2.93),

C+
j = σ+

`,j (0, Y+
j ) Π−1(`+

j ), D+
j = σ+

r,j (X+
j , 0) Π−1(r+

j ), (C.16)
C−

j = σ−
`,j (X−

j , 0) Π−1(`−
j ), D−

j = σ−
r,j (0, Y−

j ) Π−1(r−
j ). (C.17)

Now we substitute the definitions of S±
`,j and S±

r,j , see equations (C.3), into the system (C.12),
and get, for example, for C+

j

C+
j Π(`+

j )
σ+

`,j

=
(
0, Y+

j

)
= Π(`+

j )σ+

+
n+∑̀
k=1
k 6=j

C+
s Π(`+

k )
`+

j − `+
k

+
n+

r∑
s=1

D+
k Π(r+

k )
`+

j − r+
k

+
n−∑̀
k=1

C−
k Π(`−

k )
`+

j − `−
k

+
n−

r∑
k=1

D−
k Π(r−

k )
`+

j − r−
k

. (C.18)

Then we substitute everywhere expressions for C±
j and D±

j in terms of X±
j and Y±

j and use
the following identities(

X±
j , 0

)
Π−1(λ)Π(µ)σ+ =

[
Π−1(λ)Π(µ)

]
11

(
0, X±

j

)
, (C.19)(

0, Y±
j

)
Π−1(λ)Π(µ)σ+ =

[
Π−1(λ)Π(µ)

]
21

(
0, Y±

j

)
. (C.20)

Therefore, we derive equation

(
0, Y+

j

)
= Π(`+

j )σ+

+
n+∑̀
k=1
k 6=j

σ+
`,k

[
Π−1(`+

k )Π(`+
j )
]

21
`+

j − `+
k

(
0, Y+

k

)
+

n+
r∑

k=1

σ+
r,k

[
Π−1(r+

k )Π(`+
j )
]

11
`+

j − r+
k

(
0, X+

k

)

+
n−∑̀
k=1

σ−
`,k

[
Π−1(`−

k )Π(`+
j )
]

11
`+

j − `−
k

(
0, X−

k

)
+

n−
r∑

k=1

σ−
r,k

[
Π−1(r−

k )Π(`+
j )
]

21
`+

j − r−
k

(
0, Y−

k

)
. (C.21)

Setting

W +
`,j = Π(`+

j )σ+ =
(

Π11(`+
j )

Π21(`+
j )

)
, j = 1, . . . , n+

` , (C.22)

we get the first set of equations in the system, see equation (2.94a).
Exactly the same way we can derive the set of equations for D−

j . For C−
j and D+

j , we
need the second pair of identities(

X±
j , 0

)
Π−1(λ)Π(µ)σ− =

[
Π−1(λ)Π(µ)

]
12

(
X±

j , 0
)

, (C.23)(
0, Y±

j

)
Π−1(λ)Π(µ)σ− =

[
Π−1(λ)Π(µ)

]
22

(
Y±

j , 0
)

, (C.24)

but derivation of all the equations in (2.94) is the same.
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Appendix C. Pole contribution: the solution of a linear system

C.2 Calculation of matrix elements and residues

Here we provide a general analysis of a 2 × 2 matrix S of the form

S(λ) = I2 + L

λ − `
+ R

λ − r
, (C.25)

given that matrices L and R do not depend on λ and det S = 1. Here we derive the matrix
elements of S−1(λ)S′(λ) and calculate the residue of this matrix at λ = ` and λ = r.

First we denote the columns of the matrices L and R as follows,

L = (L1, L2) , R = (R1, R2) (C.26)

and evaluate the determinant of the matrix S explicitly

det S(λ) = 1 + det L

(λ − `)2 + det R

(λ − r)2 + tr L

λ − `
+ tr R

λ − r
+ det (L1, R2) + det (R1, L2)

(λ − `)(λ − r) . (C.27)

Then the condition det S = 1 implies that det L = det R = 0 and

tr L − det (L1, R2) + det (R1, L2)
(r − `) = 0, (C.28)

tr R + det (L1, R2) + det (R1, L2)
(r − `) = 0. (C.29)

Therefore, it must hold that
tr L + tr R = 0. (C.30)

The inverse of the matrix S is given by

S−1(λ) =

1 + L22
λ − `

+ R22
λ − r

− L12
λ − `

− R12
λ − r

− L21
λ − `

− R21
λ − r

1 + L11
λ − `

+ R11
λ − r

 (C.31)

and the derivative of the matrix S by

S′(λ) = − L

(λ − `)2 − R

(λ − r)2 . (C.32)

In the main text we need explicit expressions for all the matrix elements of S−1(λ)S′(λ),
when we evaluate the integral over γ0, see Sections 3.4.

(
S−1(λ)S′(λ)

)
11 = − L11

(λ − `)2 − R11
(λ − r)2 − det(L1, R2)

(λ − `)2(λ − r) + det(L2, R1)
(λ − `)(λ − r)2 , (C.33a)

(
S−1(λ)S′(λ)

)
12 = − L12

(λ − `)2 − R12
(λ − r)2 + (r − `) det(L2, R2)

(λ − `)2(λ − r)2 , (C.33b)

(
S−1(λ)S′(λ)

)
21 = − L21

(λ − `)2 − R21
(λ − r)2 − (r − `) det(L1, R2)

(λ − `)2(λ − r)2 , (C.33c)

(
S−1(λ)S′(λ)

)
22 = − L22

(λ − `)2 − R22
(λ − r)2 − det(L1, R2)

(λ − `)(λ − r)2 + det(L2, R1)
(λ − `)2(λ − r) . (C.33d)
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C.2. Calculation of matrix elements and residues

Hence, the Laurent series of S−1(λ)S′(λ) around λ = ` reads

S−1(λ)S′(λ) = −
(

M`

(λ − `)2 + N`

(λ − `) + O(1)
)

, (C.34)

where matrices M` and N` are given by

M` = L − 1
r − `

(
det (L1, R2) det (L2, R2)

− det (L1, R1) − det (L2, R1)

)
(C.35)

and

N` = − 1
(r − `)2

(
det(L1, R2) + det(L2, R1) 2 det(L2, R2)

−2 det(L1, R1) − det(L1, R2) − det(L2, R1)

)
. (C.36)

Thus, for a matrix F (λ) regular at λ = `, we derive

res
λ=`

(
tr
{
S′(λ)F (λ)S−1(λ)

} )
= tr

{
res
λ=`

(
S−1(λ)S(λ)F (λ)

)}
= − tr

{
M` · F ′(`) + N` · F (`)

}
. (C.37)

Similarly, the Laurent series of S−1(λ)S′(λ) around λ = r reads

S−1(λ)S′(λ) = −
(

Mr

(λ − r)2 + Nr

(λ − r) + O(1)
)

, (C.38)

where matrices Mr and Nr are given by

Mr = R − 1
r − `

(
det (L2, R1) det (L2, R2)

− det (L1, R1) − det (L1, R2)

)
(C.39)

and

Nr = 1
(r − `)2

(
det(L1, R2) + det(L2, R1) 2 det(L2, R2)

−2 det(L1, R1) − det(L1, R2) − det(L2, R1)

)
. (C.40)

Therefore, for a matrix F (λ) regular at λ = r, we obtain

res
λ=r

(
tr
{
S′(λ)F (λ)S−1(λ)

} )
= tr

{
res
λ=r

(
S−1(λ)S(λ)F (λ)

)}
= − tr

{
Mr · F ′(r) + Nr · F (r)

}
. (C.41)

This expression can be derived from the one for the residue at λ = ` by changing L ↔ R and
` ↔ r.

Remark In the main text in Chapter 4, Sections 4.1–4.3, where we consider the case of
two poles on the real axis in three regimes. The condition det S(λ) = 1 is satisfied, since
we preserve the determinant of the solutions of all the matrix Riemann–Hilbert problems
including Φ and Π, see equation (2.86).
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D Functional identities

In the main text we have three parametrizations for the function u(λ) and its derivatives:

1. in terms of energy ε and momentum p, see definition (1.23),

2. in terms of the function d(λ), see equation (2.20),

3. in terms of the local parametrization ω, see equation (2.66).

Of course, all of them are identical, but some of them appeared to be more convenient in
different situations. Here we derive some identities between these representations and express
functions p(λ) and ε(λ), ω(λ − λ0|λ0), and d(λ) in terms of each other.

First, we note that

u(λ) = p(λ) − t

x
ε(λ) ⇒ u′(λ0) = p′(λ0) − t

x
ε′(λ0) = 0 (D.1)

which implies that
t

x
= p′(λ0)

ε′(λ0) =: f(λ0). (D.2)

Then function u(λ|λ0) := u(λ) reads

u(λ|λ0) = p(λ) − f(λ0)ε(λ). (D.3)

Therefore, we have

u′(λ) = ∂λu(λ|λ0) = p′(λ) − f(λ0)ε′(λ), (D.4)
u′′(λ) = ∂2

λu(λ|λ0) = p′′(λ) − f(λ0)ε′′(λ), (D.5)
u′′′(λ) = ∂2

λu(λ|λ0) = p′′′(λ) − f(λ0)ε′′′(λ). (D.6)

In particular, it follows that

∂λ0u′′(λ0|λ0) = u′′′(λ0) − f ′(λ0)ε′′(λ0). (D.7)

Now we consider the same derivatives expressed in terms of local variable ω(λ − λ0) :=
ω(λ − λ0|λ0), see equation (2.66)

u(λ|λ0) = u(λ0|λ0) − ω2(λ − λ0|λ0). (D.8)

First of all, we note that ω(0|λ0) = 0. Then we obtain

u′(λ) = −2ω(λ − λ0)∂λω(λ − λ0), (D.9)

u′′(λ) = −2ω(λ − λ0)ω′′(λ − λ0) − 2
(
ω′(λ − λ0)

)2
, (D.10)

u′′′(λ) = −2ω(λ − λ0)ω′′′(λ − λ0) − 6ω′(λ − λ0)
(
ω′′(λ − λ0)

)2
. (D.11)
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In particular, we get
u′′(λ0) = −2

(
ω′(0)

)2 (D.12)

and
u′′′(λ0)
u′′(λ0) = 3ω′′(0)

ω′(0) . (D.13)

Finally, we consider partial derivatives of the function d(λ) with respect to x and λ0.
First, the partial derivative dx(λ) is given by

d′
x(λ) = − i

2
(
p′(λ) − f(λ0)ε′(λ)

)
. (D.14)

Then, in particular, from u′(λ0) = 0 it follows that

d′
x(λ0) = 0 (D.15)

and d′′
x(λ0) can be expressed in terms of ω′(0),

d′′
x(λ0) = − i

2u′′(λ0) = i(ω′(0))2. (D.16)

We use these two identities in Section 3.5, when deriving the asymptotic expansion of the
logarithmic derivative of the Fredholm determinant with respect to parameter x.

Next, we consider λ0-derivative, dλ0(λ) := ∂λ0 ln e(λ), explicitly given by

dλ0(λ) = − ix
2 ∂λ0u(λ). (D.17)

Its derivatives are given by

d′
λ0(λ) = ix

2 f ′(λ0)ε′(λ), (D.18)

d′′
λ0(λ) = ix

2 f ′(λ0)ε′′(λ). (D.19)

In particular, substituting function f , see equation (D.2), and comparing the result with (D.5)
and (D.10), we obtain

d′
λ0(λ0) = ix

2
(
p′′(λ0) − f(λ0)ε′′(λ0)

)
= ix

2 u′′(λ0) = −ix(ω′(0))2. (D.20)

All the above, for example, leads to the following identity

∂λ0 ln ω′(0) = 3
2

ω′′(0)
ω′(0) − 1

2
d′′

λ0
(λ0)

d′
λ0

(λ0) (D.21)

which we used in the main text, see equation (3.85) in Section 3.5.2. Indeed, first using
equation (D.12) and then equations (D.5), (D.6), (D.19) and (D.20), we get

∂λ0 ln ω′(0) = 1
2∂λ0 ln

[
2
(
ω′(0)

)2] = 1
2∂λ0 ln

(
−u′′(λ0|λ0)

)
= ∂λ0u′′(λ0|λ0)

2u′′(λ0|λ0)

= p′′′(λ0) − f(λ0)ε′′′(λ0) − f ′(λ0)ε′′(λ0)
2u′′(λ0|λ0) = u′′′(λ0)

u′′(λ0) −
d′′

λ0
(λ0)

d′
λ0

(λ0) . (D.22)

Finally, we substitute expression (D.13) and obtain identity (D.21).
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