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CHAPTER 1

INTRODUCTION

In this chapter, we review basic properties of functions of matrices and briefly
discuss selected application areas in which their computation occurs. After that,
we introduce several classes of functions that play an important role in many of
the publications discussed throughout Chapters 2 to 4. In the last section of this
chapter, we give a brief introduction to Krylov subspace methods, mainly to fix
terminology and notation.

None of the sections of this chapter aim to give a comprehensive overview of the
respective area. Instead, the focus is on introducing the main, recurring concepts
and on fixing notations that are used throughout this thesis. Where appropriate,
we give pointers to relevant literature for further reading.

1.1 Notation

Before starting with the actual content, we introduce some notation that we
frequently use.

The fields of real and complex numbers are denoted by R and C, respectively.
We denote by Kn the space of length-n vectors over the field K and by Km×n the
space of matrices with m rows and n columns with entries in K.

The set of polynomials (with complex coefficients) of degree at most d is denoted
by Πd.

Matrices are denoted by upper-case letters, vectors are denoted by lower-case bold
letters and scalars are denoted by regular lower-case (greek or roman) letters.
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1 Introduction

The identity matrix of size n×n is denoted by In, or simply by I if its size is clear
from the context. The ith canonical unit vector in Rn (i.e., the ith column of In)
is denoted by ei. The symbols 0 and 1 denote vectors with all entries equal to
zero or equal to one, respectively.

We denote the Euclidean vector norm (and the matrix norm it induces) by ‖ · ‖,
and the Frobenius matrix norm by ‖ · ‖F .

For a matrix A, its (i, j)-entry is denoted by [A]ij. The transpose of a matrix A
or a vector v is denoted by AT or vT and its complex adjoint by AH or vH .

The field of values (or numerical range) of a square matrix A is denoted by
W (A) := {xHAx : ‖x‖ = 1}.

1.2 Functions of matrices

When using the term matrix function in this thesis, we mean by this the extension
of a scalar function f : Ω → C, Ω ⊆ C to square matrix arguments A ∈ Cn×n,
i.e., f :M→ Cn×n,M⊆ Cn×n and we will always use the same symbol f for the
scalar function and the corresponding matrix function. Such a matrix function
can be defined in a variety of different ways, the three most common ones being via
the Jordan canonical form of A, via a relation to Hermite interpolation and via the
Cauchy integral formula; see [94, Definitions 1.2, 1.4 and 1.11]. When applicable,
all these definitions are mathematically equivalent [94, Theorem 1.12]. We recall
the latter two of these three ways of defining a matrix function in detail below,
as they form the basis of many results contained in this thesis.

Definition 1.1. Let A ∈ Cn×n and denote by λi, i = 1, . . . , s the distinct
eigenvalues of A and by ni, i = 1, . . . , s the size of the largest Jordan block
of A corresponding to λi. Then f is said to be be defined on the spectrum
of A if the values

f (j)(λi), j = 0, . . . , ni − 1, i = 1, . . . , s,

exist.

If f is defined on the spectrum of A, then the matrix function f(A) is
defined via f(A) := p(A), where p interpolates f on the spectrum of A in
the Hermite sense, i.e., it is the unique polynomial p ∈ Πdegψ−1, where ψ
denotes the minimal polynomial of A, that fulfills

p(j)(λi) = f (j)(λi), j = 0, . . . , ni − 1, i = 1, . . . , s.
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1.2 Functions of matrices

Definition 1.2. Let A ∈ Cn×n and let f be analytic on and inside a closed
contour Γ that winds around spec(A), the spectrum of A, exactly once in
counterclockwise direction. Then the matrix function f(A) is defined via

f(A) :=
1

2πi

∫
Γ

f(z)(zI − A)−1 dz. (1.1)

Matrix functions play an important role in many applications in science and
engineering, of which some frequently occur as model problems in our publications
that are summarized in this thesis. We therefore introduce them with a bit of
detail in the following examples.

Example 1.3. Probably the most important and prominent matrix func-
tion (besides the matrix inverse f(A) = A−1) is the matrix exponential,
exp(A). One of its many applications is in the solution of ordinary dif-
ferential equations (ODEs) via exponential integration schemes: By the
variation-of-constants formula, the semilinear equation

u ′(t) + Au(t) = g(u(t)), u(0) = u0 (1.2)

is solved by

u(t) = exp(−tA)u0 +

∫ t

0

exp(−(t− τ)A)g(u(τ)) dτ. (1.3)

Numerical methods for solving (1.2) now arise by appropriately approxi-
mating the integral on the right-hand side of (1.3). E.g., using a simple
rectangular rule with step size h, one obtains the approximation

u1 = exp(−hA)u0 + hϕ(−hA)g(u0),

for u1 ≈ u(h), where

ϕ(z) =
exp(z)− 1

z
. (1.4)

This is the exponential Euler scheme. Other exponential integration schemes
arise by using more sophisticated quadrature rules for the integral; see,
e.g., [101, 102] for an overview.

Example 1.4. Another application of the matrix exponential arises in the
analysis of complex networks represented by graphs. Let G = (V , E) be an
undirected graph, where V denotes the set of nodes, E denotes the set of
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1 Introduction

edges and |V| = n. For notational simplicity, we number the nodes such
that we can take V = {1, . . . , n}. The adjacency matrix AG of G is a binary
matrix with entries

[AG]ij =

{
1 if (i, j) ∈ E
0 otherwise.

It is a well-known fact that powers of the adjacency matrix encode informa-
tion about walks in the graph G. To be specific, [AkG]ij equals the number
of length-k walks in G that connect node i and node j. Thus, taking the
power series definition of the matrix exponential,

exp(AG) =
∞∑
k=0

1

k!
AkG,

one can interpret the entry [exp(AG)]ij as a weighted sum of the number
of all walks between two nodes i and j, where the influence of a walk is
discounted according to the factorial of its length.

Due to the intuition that it is easier to spread information (or some other
quantity) through a network if there exist many different short paths be-
tween nodes, the entries of exp(AG) play an important role in characterizing
the communicability of the network. In particular, in [75], it is proposed
to use the diagonal entries [exp(AG)]ii—which indicate how easy it is for
information that was sent out from node i to return to its source—as a
measure of the importance of nodes for the overall ability of the network
to spread information. This measure is called the (exponential) subgraph
centrality of node i.

Related is the Estrada index of the graph G,

EE(G) := tr(exp(AG)) =
n∑
i=1

[exp(AG)]ii,

the sum of all subgraph centralities. It measures the overall communicabil-
ity of the network and also has applications, e.g., in protein folding [71,73].

As computing the trace of an implicitly given matrix function can be a
computationally intensive task, which, e.g., requires the use of stochastic
estimators [103, 131], alternative measures have also been suggested. A
prominent alternative is the total communicability of the network,

TC(G) := 1Hexp(AG)1 =
n∑
i=1

n∑
j=1

[exp(AG)]ij, (1.5)
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1.2 Functions of matrices

introduced in [19]. In contrast to the Estrada index, walks between any pair
of nodes—instead of only walks connecting a node to itself—contribute to
this measure.

For further discussion of centrality and communicability measures, also
based on other matrix functions than the exponential, we refer the reader
to the survey [17] and the references therein.

Example 1.5. Fractional powers of matrices arise, e.g., in the context of
modeling nonlocal dynamics on complex networks. Let AG be the adjacency
matrix of a complex network (again modeled as a graph G) and let LG =
DG − AG, with [DG]ii = deg(i), be the corresponding graph Laplacian,
which is singular and positive semidefinite.

The fractional graph Laplacian LαG with α ∈ (0, 1) has recently emerged
as a tool for describing nonlocal phenomena like anomalous diffusion and
so-called Lévy flights [16, 25, 32, 33, 72].

One can show that λ = 0 is a semisimple eigenvalue of LG, so that its frac-
tional powers are well-defined [16, Proposition 2.4 & Theorem 2.5]. As LG
is a singular M-matrix, LαG is also a singular M-Matrix, which in particular
implies that its diagonal is positive and all its offdiagonal entries are non-
positive. Therefore, LαG can be interpreted as the Laplacian of a weighted,
fully connected network with the same node set as G, i.e., it introduces
“long-distance connections” between nodes that were originally not con-
nected in G. The magnitude of the entries of LαG thus provides information
about the strength or likelihood of these nonlocal effects and is therefore of
interest for understanding these phenomena.

In our publication [S13], which is discussed in Section 4.1.3, we derive
bounds for the size of the entries of the fractional Laplacian.

Example 1.6. In lattice quantum chromodynamics (QCD), the theory
describing the strong interaction between quarks and gluons is simulated
on a four-dimensional space-time lattice. The most important relation for
describing this interaction is the Dirac equation [59]

(D +m)ψ(x) = η(x), (1.6)

where m is a scalar parameter, ψ and η represent quark fields (where
ψ(x), η(x) are vectors with twelve entries, corresponding to all combina-
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1 Introduction

tions of three colors and four spins) and D is the Dirac operator

D =
3∑
i=0

γi ⊗
(
∂

∂xi
+ Ai

)
with Ai(x) ∈ C3×3 elements of the Lie algebra su(3) of the special unitary
group SU(3) and γi ∈ C4×4, i = 0, . . . , 3 generators of the Clifford algebra
C`4(C).

For simulations, the Dirac equation (1.6) is discretized on an Nt×N3
s lattice

with uniform lattice spacing a and Nt and Ns denoting the number of lattice
points in the time dimension and in each of the three spatial dimensions,
respectively. Using the Wilson discretization [168] with periodic boundary
conditions results in

(DWφ)(x) =
m0 + 4

a
φ(x)− 1

2a

3∑
i=0

(
(I4 − γi)⊗ Ui(x)

)
φ(x+ aei)

− 1

2a

3∑
i=0

(
(I4 + γi)⊗ UH

i (x− aei)
)
φ(x− aei), (1.7)

where the parameter m0 sets the quark mass, and the gauge links Ui(x) ∈
C3×3 are elements of SU(3).

The Wilson–Dirac operator (1.7) is Γ5-symmetric, i.e.,

(Γ5DW )H = Γ5DW with Γ5 = INtN3
s
⊗ γ0γ1γ2γ3 ⊗ I3;

see, e.g., [82]. For certain simulations, it is important that the discretized
operator fulfills the Ginsparg–Wilson relation

Γ5D +DΓ5 = aDΓ5D,

a lattice version of chiral symmetry [87]. This is not fulfilled by the Wilson–
Dirac operator, but by the related Neuberger overlap operator [134],

DN = ρI + Γ5 sign(Γ5DW ), where ρ > 1, (1.8)

which involves the matrix sign function. It is common practice to use the
identity sign(A) = A(A2)−1/2, to rewrite the sign function in terms of the
Cauchy–Stieltjes function (cf. Section 1.3) f(z) = z−1/2. In simulations,
one has to solve linear systems with the overlap operator, for which one
typically uses a Krylov subspace method (cf. Section 1.4). In each iteration
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1.3 Completely monotonic functions and related classes

of such a method, one needs to approximate the action of the sign function
(or the inverse square root) on a vector.

In the presence of a nonzero chemical potential ν, the links in time direction
in the Wilson–Dirac operator change, resulting in a discretized operator
Dν
W which is not Γ5-symmetric, such that the solution of systems with the

overlap operator (1.8) now involves approximating the matrix sign function
(or inverse square root) of a non-Hermitian matrix.

In all of the above applications that involve a matrix function f(A), the matrix A
to which f is applied is large and sparse. It is important to note that f(A) does
not inherit this structural property and is in general a full matrix, even when
A is extremely sparse.1 This has many important consequences, e.g., that for
large n the storage that would be required for f(A) is immense, so that explicitly
forming it is impossible even if one could afford the large computational cost.
Luckily, many applications—including those in Examples 1.3 to 1.6 above—do
not actually require the matrix function f(A) itself, but rather its action on a
vector f(A)b, a quadratic form bHf(A)b or some other quantity like its trace
that does not require storing the whole matrix. These quantities can often be
approximated efficiently by iterative methods at cost and storage much smaller
than what would be necessary for f(A); cf. Section 1.4 for a brief discussion of
Krylov subspace methods that are often used for this purpose.

1.3 Completely monotonic functions and related
classes

From the examples we hinted at in Section 1.2 it already becomes apparent that
a wide variety of different functions of matrices are of practical interest. It is
therefore quite obvious that many important statements and properties cannot
be expected to be valid for all matrix functions, but only for individual functions
or classes of functions sharing certain characteristics.

A common way of obtaining results that apply to a quite broad range of functions
is by considering function classes that allow to transfer or extend results from the
two prototypical matrix functions, the inverse and the exponential. As these two
functions are arguably by far the most important and common, they are of great
interest in their own right and very well studied, so that there exists a wide variety
of specialized algorithmic and theoretical techniques for them.

1Except for a few special cases: E.g., when A is (block) diagonal or (block) triangular, so is
f(A).
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A straight-forward approach for linking general analytic matrix functions to the
inverse function arises from the definition in terms of the Cauchy integral for-
mula (1.1). This connection can be exploited both algorithmically [81] and to
obtain theoretical results [47]. This approach has some shortcomings which some-
times limit its applicability, though. E.g., even when A is Hermitian positive
definite, the matrices zI − A for z ∈ Γ do not inherit this property, as Γ 6⊂ R in
general. Thus, taking this route, theoretical results for the inverse of Hermitian
positive definite matrices cannot be transferred to f evaluated at such matrices.

Due to this fact, it is common to restrict to more specific subsets of analytic
functions. Interestingly, the function classes that naturally arise in this setting
have also been studied intensively in several branches of pure mathematics for
more than a century. All of them are in some way related to the concept of
complete monotonicity [4, 27, 28, 147].

Definition 1.7. A function f : R+ −→ R is called completely monotonic if
it is infinitely many times continuously differentiable and satisfies

(−1)kf (k)(z) ≥ 0 for k ∈ N0 and z ∈ R+.

The first class of functions we consider is the class of (Cauchy–)Stieltjes functions,
sometimes also called Markov functions.

Definition 1.8. Let µ be a monotonically increasing, real-valued function
on R+

0 such that ∫ ∞

0

1

1 + t
dµ(t) <∞,

and let a ≥ 0. Then the function f : C \ R−
0 −→ C defined via

f(z) = a+

∫ ∞

0

1

z + t
dµ(t) (1.9)

is called (Cauchy–)Stieltjes function corresponding to µ.

It is well known that the derivatives of a Cauchy–Stieltjes function are given by

f (k)(z) = (−1)kk!
∫ ∞

0

1

(z + t)k+1
dµ(t) for all k ∈ N0,

see, e.g., [27, Section 3]. From this, it is apparent that every Cauchy–Stieltjes
function2 is completely monotonic.

2Or more precisely, its restriction to R+.
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1.3 Completely monotonic functions and related classes

Cauchy–Stieltjes function arise in a variety of applications, and several well-known
functions have a representation of the form (1.9). A few examples of important
functions belonging to this class are …

• …the inverse f(z) = z−1, generated by the step function

µ(t) =

{
0 t = 0,

1 t > 0,

• …inverse fractional powers f(z) = z−α for α ∈ (0, 1), because

z−α =
sin(απ)

π

∫ ∞

0

t−α

z + t
dt,

• …the function f(z) = log(1 + z)/z, because

log(1 + z)

z
=

∫ ∞

1

t−1

z + t
dt.

When f is a Cauchy–Stieltjes function, then f(A) can naturally be represented
as

f(A) =

∫ ∞

0

(A+ tI)−1 dµ(t). (1.10)

Formally, this can be shown by starting from the Cauchy integral formula (1.1)
with a suitable contour Γ and inserting the Stieltjes representation,

f(A) =
1

2πi

∫
Γ

f(z)(zI − A)−1 dz

=
1

2πi

∫
Γ

(∫ ∞

0

1

z + t
dµ(t)

)
(zI − A)−1 dz

=

∫ ∞

0

(
1

2πi

∫
Γ

1

z + t
(zI − A)−1 dz

)
dµ(t)

=

∫ ∞

0

(A+ tI)−1 dµ(t),

where the last equality follows from the Cauchy integral representation of the
resolvent.

When A is Hermitian positive definite, then so are all the shifted matrices A+ tI
appearing in the Stieltjes representation of (1.10). This fact has been exploited
for obtaining a wide variety of theoretical results for Stieltjes matrix functions,
see, e.g., [23,24,80,91,126] and the papers [S6,S9,S10] discussed in this thesis.

Another closely related class of functions is the set of Laplace–Stieltjes func-
tions.
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1 Introduction

Definition 1.9. Let σ be a monotonically increasing, real-valued function
on R+

0 and let a ≥ 0. Then the function f defined via

f(z) = a+

∫ ∞

0

exp(−τz) dσ(τ).

is called Laplace–Stieltjes function corresponding to σ or the Laplace trans-
form of the measure dσ.

In fact, one can show that every completely monotonic function is a Laplace–
Stieltjes function.3 This is known as Bernstein’s theorem; see, e.g., [147, Theo-
rem 1.4].

A particular implication of Bernstein’s theorem is that every Cauchy–Stieltjes
function is also a Laplace–Stieltjes function. One can make this connection even
more explicit: Using the well-known identity∫ ∞

0

exp(−τz) exp(−τt) dτ =
1

t+ z

for the Laplace transform of the exponential, together with Fubini’s theorem, one
can write a Stieltjes function as

f(z) =

∫ ∞

0

1

t+ z
dµ(t)

=

∫ ∞

0

(∫ ∞

0

exp(−τz) exp(−τt) dτ
)

dµ(t)

=

∫ ∞

0

exp(−τz)
(∫ ∞

0

exp(−τt) dµ(t)
)

dτ

=

∫ ∞

0

exp(−τz) dσ(τ),

where
dσ(τ) = g(τ) dτ with g(τ) =

∫ ∞

0

exp(−τt) dµ(t).

Thus, Cauchy–Stieltjes functions are “double” Laplace–Stieltjes functions. Just
as Cauchy–Stieltjes functions allow to transfer results for the inverse to more gen-
eral f(A)b, Laplace–Stieltjes functions allow the same for results concerning the
exponential. This has, e.g., been exploited in [23,24,126] and our own work [S5].

The last class of functions that plays an important role in this thesis is the class
of Bernstein functions. While not being completely monotonic themselves, they

3The classes actually coincide when one poses certain natural conditions on the admissible
measures.
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1.3 Completely monotonic functions and related classes

can be loosely characterized as “positive primitives of completely monotonic func-
tions”.

Definition 1.10. A function f : R+ → R is called Bernstein function if it is
infinitely many times continuously differentiable, nonnegative and satisfies

(−1)k−1f (k)(z) ≥ 0 for k ∈ N and z ∈ R+.

Each Bernstein function exhibits the so-called Lévy–Khintchine representation

f(z) = a+ bz +

∫ ∞

0

(1− exp(−tz)) dλ(t) (1.11)

where a, b ≥ 0 and λ is a positive measure (the Lévy measure) on (0,∞) such
that ∫ ∞

0

min{t, 1} dλ(t) <∞,

see, e.g., [27, 147]. Additionally, any Bernstein function admits a continuous
extension to the origin.

Important examples of Bernstein functions are …

• …the function f(z) = 1− e−tz, t ≥ 0, corresponding to the Lévy measure

λ(t) =

{
0 t = 0,

1 t > 0,

• …fractional powers f(z) = zα, α ∈ (0, 1), because

zα =
α

Γ(1− α)

∫ ∞

0

(1− exp(−tz))t−(α+1) dt

• …and the (shifted) logarithm f(z) = log(1 + z).4

Just as for Laplace–Stieltjes functions, one can use the Lévy–Khintchine repre-
sentation to transfer results from the exponential function to Bernstein functions.
Examples of this technique can be found in our papers [S5,S13].

4Note that no closed-form expression of the Lévy measure of this function is known.
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1.4 Krylov subspace methods

Krylov subspace methods are certainly the most frequently used class of meth-
ods for approximating f(A)b the action of a matrix function on a vector, or
a quadratic form bHf(A)b. For linear systems and eigenvalue problems, these
methods haven been studied since the 1950s [6,93,120], while the early references
for more general f date back to the late 1980s and early 1990s [62, 113, 144].

In this section, we give a brief overview of the main ideas behind these meth-
ods, in order to introduce the most important concepts and fix our notation. The
treatment is necessarily far from being exhaustive and we refer to, e.g., [94, Chap-
ter 13] or [89] and the references therein for more details on both polynomial and
rational Krylov methods.

We begin by defining what a Krylov subspace is.

Definition 1.11. Let A ∈ Cn×n and let b ∈ Cn. The mth (polynomial)
Krylov subspace with respect to A and b is defined as

Km(A, b) = {pm−1(A)b : pm−1 ∈ Πm−1} = span{b, Ab, . . . , Am−1b}.

The standard way of extracting an approximation for f(A)b from a Krylov sub-
space is by using a Rayleigh–Ritz procedure. Given a matrix Wm ∈ Cn×m whose
columns w1,w2, . . . ,wm form a basis of the Krylov subspace, the Rayleigh-Ritz
approximation is defined as

fm := Wmf(W
†
mAWm)W

†
mb, (1.12)

where W †
m denotes the Moore-Penrose pseudoinverse [13] of Wm. Typically,

due to numerical stability considerations, one works with an orthonormal basis
(ONB) Vm = [v1, . . . , vm], which in the polynomial case is computed by Arnoldi’s
method [6]. Collecting the coefficients of the modified Gram–Schmidt orthonor-
malization in an upper Hessenberg matrix Hm, the involved matrices fulfill the
Arnoldi relation

AVm = VmHm + hm+1,mvm+1e
H
m . (1.13)

An important consequence of (1.13) is that V H
m AVm = Hm. As V H

m b = ‖b‖e1 and
V †
m = V H

m because Vm has orthonormal columns, the Rayleigh-Ritz approximation
simplifies to

fm = ‖b‖Vmf(Hm)e1 (1.14)

and is called mth Arnoldi approximation for f(A)b. When A is Hermitian, the
Arnoldi basis vectors fulfill a three-term recurrence, so that (at least in exact
arithmetic) it is only necessary to orthogonalize each new basis vector against the
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1.4 Krylov subspace methods

two previous vectors and, accordingly, Hm is tridiagonal.5 The resulting method
is the so-called Lanczos process [120].

By [144, Theorem 3.3] it is known that fm = p∗m−1(A)b, where p∗m−1 ∈ Πm−1 is the
unique polynomial interpolating f at the eigenvalues of Hm (the Ritz values) in
the Hermite sense. It directly follows that fm = f(A)b whenever f is a polynomial
of degree at most m− 1.

This also has important consequences for obtaining convergence results for Krylov
methods6 from polynomial approximation results. For any p ∈ Πm−1, we have

‖f(A)b − fm‖ =
∥∥f(A)b − p(A)b + ‖b‖Vmp(Hm)e1 − ‖b‖Vmf(Hm)e1

∥∥
≤ ‖b‖ ·

(
‖f(A)− p(A)‖+ ‖p(Hm)e1 − f(Hm)e1‖

)
≤ 2C‖b‖ ·

(
min

p∗∈Πm−1

max
z∈W (A)

|f(z)− p∗(z)|
)
, (1.15)

with C = 1 if A is normal and C = 1+
√
2 otherwise. The last inequality (1.15) is a

result of the Crouzeix-Palencia theorem [49,51] and the fact thatW (Hm) ⊆ W (A).
Inequality (1.15) is also known as the quasi-optimality property of the Arnoldi
approximation.

From a computational perspective, the main work required for the Arnoldi ap-
proximation (1.14) consists of m matrix-vector products with A (which typically
have an overall cost of O(mn) when A is sparse with O(n) nonzeros) and the
modified Gram–Schmidt orthonormalization, which requires 2m inner products
(i.e., computational cost O(mn)) for Hermitian A and m(m−1)

2
inner products (i.e.,

computational cost O(m2n)) for non-Hermitian A.

In cases where a large number m of Krylov iterations is necessary, e.g., when f is
difficult to approximate by a low-degree polynomial on W (A), the computational
cost for the orthogonalization quickly becomes very high for nonsymmetric A
(even more so when working in a highly parallel computing environment, where
each inner product requires global communication), which can severely limit the
practical applicability of the method. Additionally, evaluating (1.14) requires
the storage of the full Krylov basis Vm,7 which can quickly exceed the available
capacity for large scale problems. E.g., when n = 107 and IEEE double precision

5For the sake of a unified presentation, we refrain from changing the notation from Hm to Tm
in the Hermitian case, as it is frequently done in the literature.

6Strictly speaking, “convergence” is not the correct term here, as a Krylov method is guaran-
teed to terminate with the exact vector f(A)b after a finite number of steps (at least in the
unrestarted case). We still use this term in accordance with the literature.

7This is in contrast to the linear system case, where the short recurrence for the basis vectors
turns into a short recurrence for the Arnoldi approximations, yielding the well-known con-
jugate gradient algorithm [93] when A is positive definite, or the SYMMLQ method [135]
when A is indefinite.
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1 Introduction

is used, each basis vector requires 80 MB of storage, so that on a system with
32 GB RAM, no more than 400 vectors can be kept in memory at the same
time.

There are two possible remedies for these computational limitations. Either, one
uses other approximation spaces with more powerful approximation properties, as,
e.g., rational Krylov subspaces [63,69,89–91,107,108,126,132,142,143,149] which
we briefly discuss below, or one resorts to restarted Krylov methods [1,40,41,65,66,
80, 81, 105, 160] which perform several cycles in which a Krylov space of (small)
dimension at most mmax is built. These methods typically delay convergence
compared to a “full” Krylov method but require a lot less computational work
per iteration. Restarted methods are described in more detail in Section 2.1 where
we discuss some of our own recent contributions to the area.

Rational Krylov methods work similarly to standard (polynomial) ones, simply
using a different approximation space.

Definition 1.12. Let A ∈ Cn×n, b ∈ Cn and fix a polynomial qm−1 ∈ Πm−1.
The mth rational Krylov subspace with respect to A, b and qm−1 is defined
as

Qm(A, b) = {rm−1(A)b : rm = pm−1/qm−1, pm−1 ∈ Πm−1}
= qm−1(A)

−1Km(A, b). (1.16)

The zeros ξ1, . . . , ξm−1 of the polynomial qm−1 in (1.16) are called the poles of the
rational Krylov space.8

An approximation from a rational Krylov space can be computed analogously
to (1.12), just that the columns of Wm now form a basis of Qm(A, b) instead of
Km(A, b). Similarly to the polynomial case, an orthonormal basis can be com-
puted by the rational Arnoldi method [142]. The corresponding rational Arnoldi
relation is a bit more involved than its polynomial counterpart (1.13),

A(VmKm + hm+1,ξ
−1
m vm+1e

H
m ) = VmHm + hm+1,mvm+1e

H
m ,

where Hm is again upper Hessenberg and Km = Im +Hm diag(ξ−1
1 , . . . , ξ−1

m ).9 In
particular, the compressed matrix V H

m AVm is not given by the matrix containing
the orthogonalization coefficients any longer. If, however, ξm = ∞, one has
V H
m AVm = HmK

−1
m so that it can be easily computed working only with matrices

of size m; see, e.g., [89, Lemma 5.6].
8Note that we allow that some of the poles ξi may be infinite.
9There exist variants of the rational Arnoldi method using so-called continuation vectors which
yield a different Km in which Im is replaced by an upper triangular matrix, but we ignore
these variants here.
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1.4 Krylov subspace methods

The main computational work in an iteration of a rational Krylov subspace
method lies in the solution of a shifted linear system of the form (A+ ξiI)x = y ,
which typically is much more costly than the matrix vector product and orthogo-
nalization that are also required. Rational Krylov methods are particularly well-
suited when (shifted) linear systems with A can be efficiently solved by a sparse
direct solver. In that case, it is common practice to cyclically repeat the poles
so that factorizations can be reused. When it is not possible to solve linear sys-
tems by a direct solver, one has to resort to so-called inner-outer Krylov schemes,
where the linear systems for the (outer) rational method are solved by another
Krylov method (the inner method). We discuss such approaches in Section 2.1.2
in the context of our publication [S9].

Two important special cases of rational Krylov methods arise from restricting to
one or two repeated poles: Alternatingly choosing poles ξ2i−1 = 0, ξ2i = ∞, i =
1, 2, . . . 10 yields so-called extended Krylov subspace methods [63,107,108,149,153,
154], while choosing a single repeated pole ξi ≡ ξ for all i yields the shift-invert
or RD-rational11 Krylov methods [69, 132]. As it is typically implemented in a
different way than “standard” rational Krylov methods, we briefly recall the usual
way of defining the shift-invert Krylov approximation. Defining B := (A− ξI)−1,
one builds an ONB Vm of the Krylov subspace Km(B, b) by the usual Arnoldi
method. Then, an Arnoldi approximation

gm := ‖b‖Vmg(Hm)e1

with g(y) = f(y−1 + ξ) is extracted. Note that g is chosen such that g(B)b =
f(A)b.

Note that for general pole sequences, even for Hermitian A, the basis vectors do
not fulfill a short-term recurrence. In [136], a short recurrence rational Krylov
method is introduced, which, however, requires the solution of a linear system with
two right-hand sides in each iteration. Clearly the shift-invert method inherits
the three-term recurrence from polynomial Krylov spaces when A is Hermitian, as
it uses the standard Arnoldi/Lanczos method, while for extended Krylov spaces,
the basis vectors fulfill a five-term recurrence in the Hermitian case [107, 108].

Note that for convergence analysis of rational Krylov methods, one can repeat
the derivation presented in (1.15) for polynomial Krylov spaces, but replace the
polynomial p∗ by a rational function with denominator polynomial qm−1 (and
arbitrary numerator polynomial). Compared to polynomials, rational functions
typically require a much lower degree for similar approximation accuracy, so that
rational Krylov methods tend to converge much more rapidly.
10Depending on the specific implementation, the order in which the poles 0 and∞ occur might

be different, and sometimes one might also, e.g., want to have more poles at∞ than at zero.
11RD means “restricted denominator”.
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1 Introduction

Clearly, as the denominator polynomial qm−1 is fixed (while the numerator poly-
nomial is chosen suitably by the method itself), the approximation quality (and
thus speed of convergence) largely depends on a proper choice of poles, so that
pole selection in rational Krylov methods has become a very active area of re-
search. While beyond the scope of this thesis, we briefly mention a few important
references: The two most commonly employed approaches are either based on
black-box adaptive pole selection strategies [91] which automatically determine
poles while running the method and strategies based on equidistributed sequences
which yield quasi-optimal poles [64, 126].
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CHAPTER 2

RESTARTED AND SKETCHED KRYLOV
METHODS FOR MATRIX FUNCTIONS

As discussed in Section 1.4, one of the main limitations when using Krylov sub-
space methods for approximating the action of a very large matrix function f(A)
on a vector is the excessive growth of memory requirements and (when A is non-
Hermitian) orthogonalization cost. To overcome this, restarts or rational Krylov
methods can be used.

Throughout this chapter, we assume that we are in a setting in which it is not
possible to efficiently solve (shifted) linear systems with A by a direct solver, e.g.,
due to size and structural properties, or even because A is not available as a
matrix, but only implicitly through a routine that returns the result of a matrix
vector product x 7→ Ax . In these cases, one is restricted to using restarted
polynomial Krylov methods (or rational Krylov methods with inner polynomial
solves). We discuss several of our contributions to these areas in Section 2.1
below.

As a very recent alternative, techniques from randomized numerical linear algebra,
namely sketching and oblivious subspace embeddings [125,146,157,170], have been
investigated as contenders for restarted methods. We cover these techniques in
Section 2.2.

2.1 Restarted Krylov subspace methods

As briefly hinted at in Section 1.4, the goal of restarted Krylov methods is to
approximate f(A)b to high accuracy while never building or storing a basis of
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2 Restarted and sketched Krylov methods for matrix functions
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Figure 2.1: Illustration of error function restarting.

a subspace of dimension larger than some small, prescribed dimension mmax.
In order to not restrict the accuracy of the method, this of course means that
one typically needs to sequentially build several subspaces of dimension mmax in
so-called cycles of the method. Restarting for matrix functions comes in two
distinct flavors, which we will refer to as error function restarting and residual-
time restarting in the following.

Error function restarting is reminiscent of how restarting for linear systems works
(used, e.g., most prominently in the context of the GMRES method [145]). We
briefly explain it for FOM (full orthogonalization method) in the following, which
is mathematically equivalent to computing the Arnoldi approximation (1.14) for
f(z) = z−1.

Consider the linear system Ax = b, assume that we have performed m steps of
FOM, yielding an approximation xm and define the residual rm := b −Axm. By
a direct computation, it fulfills the residual equation

Aεm = rm, (2.1)

where εm := x − xm denotes the error of the current approximation xm. Now,
instead of progressing with the previous FOM iteration, one can instead discard
all basis vectors computed so far and start a second cycle consisting of another m
iterations of FOM for solving (2.1). The approximation dm obtained from this cy-
cle can then be added to xm to obtain a new (and hopefully better) approximation
for x .

Restarting for more general matrix functions works very similarly, but with a
few additional caveats. In case of FOM (or any other method for solving linear
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2.1 Restarted Krylov subspace methods

systems), the problem to solve in the second (and any subsequent) cycle is again
a linear system with A, just with a different right-hand side. This does not stay
valid for more general f . Instead, in the kth cycle of the method, one has to
approximate

e(k)(A)b(k),

the action of a matrix function e(k)(A) which is different from f on a vector b(k)

which is different from b. Figure 2.1 illustrates the general principle behind error
function restarting for f(A)b.

Early work on restarting for matrix functions [65, 105, 160] represented the error
function e(k) using divided differences, which unfortunately turns out to often be
unstable in finite precision arithmetic. More stable restarts can be achieved by
exploiting integral representations of f . In [81] we developed a restarted Krylov
method for Cauchy–Stieltjes matrix functions (and related functions) based on
this idea, which approximates the error function by adaptive numerical quadra-
ture, as no numerically stable closed-form representation is known. We analyzed
its convergence in [80]. Related to error function restarting, we discuss below a
comparative study that we performed in [S9] in order to put this method into
the context of other, competing approaches, as well as our recent extension of the
ideas from [81] to Laplace transforms in [S5].

While error function restarting is quite broadly applicable to a large class of
functions (though its practical usefulness depends on a stable error function rep-
resentation which may not be available for all f), residual-time (RT) restarting is
restricted to matrix function problems with an underlying differential equation.
We briefly explain it here in the simplest possible setting, following [40]: Re-
call from Example 1.3 that exp(−A)b is the solution of the initial value problem
(IVP)

u ′(t) = −Au(t), u(0) = b (2.2)
at time t = 1. Residual-time restarting now approximates exp(−A)b by com-
bining a Krylov subspace method with a time-stepping scheme for (2.2): After
performing m Arnoldi steps, an approximation

um = ‖b‖Vm exp(−t0Hm)e1 ≈ exp(−t0A)b

for some suitably chosen time step 0 < t0 ≤ 1 is computed (we describe below
how to choose t0). After doing so, one can discard Vm and approximate u(1) =
exp(A)b as the solution of the modified IVP

ũ ′(t) = −Aũ(t), ũ(0) = um (2.3)

at time 1− t0, i.e., ũ(1− t0) ≈ exp(−A)b12 by another m Krylov iterations. This
12Note that this is no equality, as the initial condition ũ(0) = um builds on the inexact Krylov

approximation from the previous cycle.
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2 Restarted and sketched Krylov methods for matrix functions
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Figure 2.2: Schematic illustration of residual-time restarting.

process can be repeated until the final time t = 1 (for the original problem) is
reached. Figure 2.2 contains a schematic illustration of this approach.

A crucial aspect for the success of this approach is the appropriate choice of the
time step after each cycle. It can be based on the residual of um(t) from (2.3)
with respect to (2.2), i.e.,

rm(t) := −u ′
m(t)− Aum(t). (2.4)

It is well-known and straight-forward to verify that the residual (2.4) of a Krylov
approximation um takes the form

rm(t) = βm(t)vm+1 where βm(t) = −‖b‖hm+1,me
H
m exp(−tHm)e1; (2.5)

see [38, 40, 46, 61]. According to (2.5), the residual vectors can be represented as
a time-dependent scalar function βm(t) times the next Krylov basis vector, and
all quantities necessary for evaluating βm(t) are readily available from the Krylov
iteration. Due to the unit norm of vm+1, we clearly have

‖rm(t)‖ = |βm(t)|.

Furthermore, one can show that for any m ≥ 1 and any tolerance ε, there exists
an interval [0, t0] such that

|βm(s)| ≤ ε for all s ∈ [0, t0];

see [40, Lemma 1] for a more precise statement. Thus, in order to find a suitable
step size t0 for performing a “restart” as outlined above, it is proposed in [40,
Section 2.3] to monitor βm(δi) at suitably chosen sampling points δi in [0, 1].
Each evaluation of βm requires computing the exponential of anm×m Hessenberg
matrix, which therefore has about the same cost as forming the coefficient vector
of the Arnoldi approximation after m iterations. Thus, if O(1) sampling points
are used for finding t0, the asymptotic cost of the algorithm stays the same (and
the additional amount of work is hardly noticeable for large scale problems). We
briefly mention that further optimizations are possible: In [40, Section 2.4], the
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2.1 Restarted Krylov subspace methods

authors describe an adaptive version of the restarting procedure which also tries
to adapt the Krylov dimension m from one cycle to the next in order to improve
the overall run time.13

An extension of the RT restarting methodology to shift-invert [40, Section 2.5] or
more general rational Krylov methods is also straightforwardly possible, although
restarts typically play a less important role there due to the much smaller subspace
dimensions.

In addition to the exponential function, RT restarting can also be applied to a few
other matrix functions: In [41], the authors consider the inhomogeneous IVP

u ′(t) = −Au(t) + g , u(0) = b,

which is solved by
u(t) = b + tϕ(−tA)(g − Ab),

where ϕ is defined in (1.4).

In our paper [S4] we further extend the methodology to certain second-order
ODEs, whose solution involves trigonometric matrix functions and matrix square
roots; see Section 2.1.3.

We conclude this section by mentioning a rather simplistic—but often quite
efficient—alternative to restarting in the Hermitian case (where available memory
is the only limiting factor): In order to avoid storing the complete Krylov basis
Vm, one employs a two pass method [37,85]. In a first pass, one performs the Lanc-
zos process for assembling the Hessenberg matrix Hm, directly discarding a basis
vector once it is not needed any longer (so that only three basis vectors need to
be kept in memory at a time). After this, the coefficient vector c := ‖b‖f(Hm)e1
is formed and a second run of the Lanczos method is started, in which the basis
is built again and fm =

∑m
i=1 c(i)vi is accumulated on the fly, again allowing to

discard “old” basis vectors.

This approach essentially doubles the computational cost14 but in principle allows
to perform an arbitrary number of Krylov iterations, irrespective of the available
memory.15 This is the method that all restarted approaches need to be competi-
tive with in the Hermitian case.
13In the Hermitian case—ignoring some academic examples—it is in general advisable to choose

the restart length as large as the available memory permits, as this tends to lead to the
overall smallest number of iterations. In the non-Hermitian case, where orthogonalization
cost is also an issue, the “optimal” restart length might be much smaller than the maximum
admissible length, though.

14At least in terms of matrix-vector products: The second pass does not require further inner
products, as these are already stored in Hm.

15Note, however, that if m = O(1000), evaluating f(Hm) can be become non-negligible.
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2 Restarted and sketched Krylov methods for matrix functions

2.1.1 A. Frommer, K. Kahl, M. Schweitzer, and M. Tsolakis,
Krylov subspace restarting for matrix Laplace
transforms, SIAM J. Matrix Anal. Appl., 44 (2023)

In the algorithm-oriented paper [S5], we extended the quadrature-based error
function restarting approach from [81] to functions f which are Laplace trans-
forms, cf. Definition 1.9.16 When f is a Laplace transform,

f(A)b =

∫ ∞

0

exp(−tA)w(t) dt b,

and it is this connection to the matrix exponential that can be exploited for finding
an error function representation for Krylov approximations of f(A)b. The basis
of this derivation is a well-known error representation for the exponential: The
difference of exp(−tA)b and its Krylov approximation can be written as

exp(−tA)b − ‖b‖Vm exp(−tHm)e1

= −hm+1,m‖b‖
∫ t

0

exp((τ − t)A)g(τ) dτ vm+1 (2.6)

where
g(τ) = eHm exp(−τHm)e1 (2.7)

is the (m, 1) entry of exp(−τHm); see, e.g., [166, Theorem 3.1]. By integrating
over all errors (2.6) for t ranging from 0 to∞, one obtains a representation of the
error of the Krylov approximation of f(A)b as a Laplace transform of a different
measure [S5, Theorem 3.2]. To be specific,

f(A)b − ‖b‖Vmf(Hm)e1 = −hm+1,m‖b‖
∫ ∞

0

exp(−tA)w̃(t) dt vm+1,

where
w̃(t) =

∫ ∞

0

w(t+ τ)g(τ) dτ

and g(τ) is defined in (2.7).17

The result of [S5, Theorem 3.2] discussed above corresponds to the situation
after the first cycle of a restarted method. To allow for an arbitrary number of
restarts, this result needs to be applied recursively. Denoting by f

(k)
m the Arnoldi

approximation at the end of the kth restart cycle, k ≥ 1, we have

f(A)b − f (k)
m = (−1)k

(
k∏
j=1

h
(j)
m+1,m

)
‖b‖

∫ ∞

0

exp(−tA)w(k+1)(t) dt v
(k)
m+1, (2.8)

16For convenience we restrict to the case of “standard” Laplace transforms, where the measure
takes the form dσ(t) = w(t) dt.

17Guaranteeing the existence of this integral requires nontrivial considerations about the region
of absolute convergence of the new Laplace transform; see [S5, Appendix A].
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2.1 Restarted Krylov subspace methods

where
w(j)(t) =

∫ ∞

0

w(j−1)(t+ τ)g(j−1)(τ) dτ, j ≥ 2,

with w(1) = w and g(j)(τ) = eHm exp(−τH(j)
m )e1 for j ≥ 1, see [S5, Corollary 3.3].

In principle, the representation (2.8) can be used as the basis of a restarted Krylov
method for f(A)b. From a practical perspective, it has the severe disadvantage
that in the kth restart cycle, w(k) is defined via a k-fold iterated integral, which is
not only cumbersome to implement but also leads to an exponential growth of the
computational cost in the number of restart cycles when the integrals need to be
approximated by numerical quadrature. As a means to overcome this problem,
we propose in [S5, Section 5.2] to replace w(j) in (2.8) by an interpolating cubic
spline s(j), which can be evaluated at arbitrary points without needing to perform
any further costly computations with quantities from earlier cycles. This spline
can be efficiently updated from one cycle to the next and the knots used for
constructing it can be adaptively refined until the desired accuracy is reached.

As (outer) quadrature rule for (2.8), we use an adaptive Gauss–Kronrod (G7-
K15) quadrature scheme [52] applied to a subdivision of [0, 1) after applying the
variable transformation x =

√
t/(1 +

√
t).

The resulting algorithm is tested in a number of numerical experiments that show
that it is both numerically stable and can outperform competing algorithms. As
an example, we summarize (a part of) the experiment in [S5, Section 6.1], where
the approximation of f(z) = z−3/2, the Laplace transform of w(t) =

√
t, is con-

sidered. As a method to compare against, we use funm_quad, our implementation
of the restarted algorithm from [81]. While f is not a Stieltjes function, it can be
written as f(z) = z−1/2 · z−1. Thus, f(A)b can be approximated by first (approx-
imately) solving a linear system18 to obtain A−1b and then applying a restarted
Arnoldi method for the inverse square root to the resulting vector.

We test our algorithm for a discretization of the three-dimensional Laplace oper-
ator and for a discretization of a three-dimensional convection-diffusion equation
(with constant convection field), both on an equispaced grid, resulting in a Her-
mitian and a non-Hermitian model problem. Figure 2.3 reports the run time
of the two algorithms (and, for the Hermitian problem, of the two-pass Lanczos
method) for various grid sizes N . While our method is at least on par with two-
pass Lanczos in the Hermitian case, it excels in the non-Hermitian case, showing
a better scaling behavior and run times that are almost a factor 3 smaller for the
largest considered problem. For details about the algorithmic setup, parameter
choices etc., we refer to [S5, Section 6.1].
18In our experiments, we use the MATLAB implementations of the conjugate gradient

method [93] and restarted GMRES [145] for this, depending on whether A is Hermitian
positive definite or not.
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Figure 2.3: Execution times when approximating A−3/2b for varying matrix sizes n = N3.
“Laplace” denotes the algorithm from [S5], “Stieltjes” is the combination of funm_quad with
CG (left) or GMRES (right). “2P Lanczos” denotes the two-pass Lanczos method. The restart
length is m. Originally [S5, Figure 6.4].

As additional contributions, the paper [S5] also discusses the extension of the
restart methodology to two-sided Laplace transforms and to Bernstein functions,
thus widening the scope of functions to which it can be applied in a stable fash-
ion.19 We also worked out the precise connection to error function restarting
for Stieltjes functions—which are a special case of Laplace transforms, see Sec-
tion 1.3—in [S5, Corollary 3.5].

We mention in passing that subsequently, convergence of restarted Arnoldi for
Laplace transforms was further investigated in [165, Section 4.4–4.5].

2.1.2 S. Güttel and M. Schweitzer, A comparison of
limited-memory Krylov methods for Stieltjes functions of
Hermitian matrices, SIAM J. Matrix Anal. Appl., 42
(2021)

Our paper [S9] provides a unified view on convergence theory for (Krylov) meth-
ods that can be applied to compute the action of functions of Hermitian matrices
in the large-scale setting, when only limited memory is available. In particular,
we compare the restarted Arnoldi method [65, 81, 160], the multi-shift CG algo-
rithm applied to a rational approximation r ≈ f [68, 83], the two-pass Lanczos
19Notable examples of functions that belong to these classes are the square root and the gamma

function.
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2.1 Restarted Krylov subspace methods

method [85], as well as rational Krylov methods with polynomial inner solves (cf.
Section 1.4). The latter can be considered as limited memory methods because
the number of outer iterations will likely be small, while for the inner iteration, a
short-recurrence method (like the conjugate gradient method) can be used.

The overall goal of [S9] is to answer the following question, using only information
that is available a priori (or easy to compute):

“Given a limited amount of memory (storage of at most mmax vectors of length n)
and a target accuracy ε, what is an efficient way to extract an accurate approxi-
mation to f(A)b from a polynomial Krylov space?”

Our analysis focuses on the class of (Cauchy–)Stieltjes functions because they are
rather well-understood from a theoretical perspective and we were able to, e.g.,
use the convergence results obtained in [80] in our analysis.

The first part of the paper has a survey-like character, reviewing the different
methods and their convergence theory and putting them into a unified frame-
work. In this part, we also derive a new convergence estimate for the shift-invert
Lanczos method that is similar in spirit (and proof technique) to its polynomial
counterpart in [80].

In order to be able to make meaningful predictions and obtain a fair comparison,
the second part of the paper deals with inexactness in rational Krylov methods,
specifically in the shift-invert method.20 It is well-known in the context of inexact
Krylov methods for linear systems that the allowed inexactness can gradually
increase as the main iteration converges, without spoiling the overall convergence
of the method [42, 70, 156], so that later iterations become much cheaper.

In [S9, Section 4 & Appendix A], we derive similar results for the shift-invert
method. Denoting again B = (A − ξI)−1, the starting point of our derivation is
the inexact Arnoldi decomposition

B(Vm −Rm) = VmHm + hm+1,mvm+1e
H
m ,

where the columns rj of Rm are the residuals incurred when approximately solving
(A− ξI)w = vj. This can be rewritten as

(B + Em)Vm = VmHm + hm+1,mvm+1e
H
m ,

where Em := −BRmV
H
m is a matrix of rank at most m. This can be interpreted

as follows: The inexact shift-invert method computes an Arnoldi approximation
gm := ‖b‖Vmg(Hm)e1 to g(B + Em)b,21 instead of to the actually sought after
20The obtained results can be straightforwardly generalized to extended Krylov methods,

though.
21We remind the reader that g(y) := f(y−1 + ξ).
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Figure 2.4: Left: Convergence rate for the perturbed problem as a function of ‖Em‖. The
horizontal, dashed line shows the convergence rate of the unperturbed problem and the vertical
dash-dotted line shows (λmax − ξ)−1. Right: Convergence of the exact and inexact shift-invert
method when aiming for an overall tolerance of tol = 10−6 and using the relaxation strategy
outlined in (2.9)–(2.10). In both cases, A is a diagonal matrix with Chebyshev eigenvalues in
[0.1, 200]. Originally [S9, Figure A.2].

g(B)b = f(A)b. An estimate of the distance between the shift-invert method
and f(A)b can thus be obtained as

‖f(A)b − gm‖ ≤ ‖g(B + Em)b − gm‖+ ‖g(B)b − g(B + Em)b‖,

where the first term measures the Arnoldi error and the second term measures
the inexactness in the quantity that is computed.

By carefully analyzing both terms individually and exploiting geometric decay in
the coefficients of the Krylov solution, we find the following relaxation strategy,
which turns out to work well in practice: When aiming for an overall accuracy ε,
solve the first inner linear system to a residual norm of

ε1 :=
ε

2
(
(λmin − ξ)|f ′(λmin)|+ (λmax − ξ)|f ′(

√
λminλmax)|

) (2.9)

and then let the residual norm grow geometrically in further iterations,

εj =
ε1
αj−1

, j = 2, 3, . . . , where α =
4
√
κ(A)− 1

4
√
κ(A) + 1

(2.10)

is the convergence factor from an a priori convergence bound for shift-invert Lanc-
zos (with an optimized pole ξ).
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2.1 Restarted Krylov subspace methods

Figure 2.4 illustrates the influence of this relaxation strategy on the convergence of
the overall method for a simple model problem: We take A ∈ C1,000×1,000 diagonal
with Chebyshev eigenvalues in [0.1, 200.1] and b a (normalized) vector of all ones
and aim to approximate A−1/2b to a relative accuracy of 10−6.

In a series of numerical experiments, we confirm our theoretical comparison and
illustrate that the a priori convergence estimates can often successfully be used
to correctly predict the “relative performance” between the different considered
methods, thus allowing to use them for selecting the most appropriate method for
a given setting. On the other hand, predicting the actual number of matrix-vector
products that is necessary for convergence to a given accuracy turns out to be
very difficult. This comes as no surprise, as the underlying convergence estimates
typically involve large constants that are mostly artifacts of the proof technique
but are not descriptive of the actual behavior of the method.

Overall, the restarted Lanczos method and the multishift CG method (if a good
rational approximation r ≈ f is readily available) turned out to be the methods
with the best combination of ease of use, reliability and efficiency.

2.1.3 M. A. Botchev, L. A. Knizhnerman, and M. Schweitzer,
Krylov subspace residual and restarting for certain
second order differential equations, SIAM J. Sci.
Comput., 46 (2024)

In [S4], we consider an extension of RT restarting to second-order IVPs

y ′′(t) = −Ay(t) + g , y(0) = u , y ′(0) = v , (2.11)

which are solved by

y(t) = u +
1

2
t2ψ(t2A)(−Au + g) + tσ(t2A)v ,

where ψ and σ are the entire functions

ψ(x2) = 2
1− cosx

x2
, σ(x2) =

sinx

x
,

where we set ψ(0) = 1 and σ(0) = 1. Clearly (2.11) can be transformed into a
first-order ODE system

w ′(t) = −Aw(t) + ĝ , w(0) = w0,

where

w(t) =

[
y(t)
y ′(t)

]
, w0 =

[
u
v

]
, ĝ =

[
0
g

]
, A =

[
0 −I
A 0

]
,
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2 Restarted and sketched Krylov methods for matrix functions

to which the RT restarting approach from [40,41] could directly be applied. From
a computational perspective, this has several drawbacks, though. Even if A is
Hermitian, the matrix A is not, and additionally, this approach requires working
with vectors twice the size of the original problem, which increases orthogonaliza-
tion cost and storage requirements. It is therefore desirable to be able to directly
work with the second-order formulation (2.11) instead.

To solve (2.11) by a Krylov method, one needs to build bases of two Krylov spaces,
Km(A,−Au+g) and Km(A, v), yielding the associated Arnoldi decompositions

AV (ψ)
m = V (ψ)

m H(ψ)
m + h

(ψ)
m+1,mv

(ψ)
m eHm

AV (σ)
m = V (σ)

m H(σ)
m + h

(σ)
m+1,mv

(σ)
m eHm .

An approximate Krylov solution is then obtained as

ym(t) = u + y (ψ)
m (t) + y (σ)

m (t), (2.12)

with

y (ψ)
m (t) =

1

2
‖ − Au + g‖t2V (ψ)

m ψ(t2H(ψ)
m )e1, y (σ)

m (t) = ‖v‖V (σ)
m σ(t2H(σ)

m )e1.

One can then show that the residual

rm(t) = −y ′′
m(t)− Ay(t) + g

of the approximation (2.12) fulfills a relation that is similar to the first-order case,
namely

rm(t) = r (ψ)
m (t) + r (σ)

m (t),

with

r (ψ)
m (t) = −β(ψ)

m (t)v
(ψ)
m+1, β(ψ)

m (t) =
1

2
‖ − Au + g‖t2h(ψ)m+1,me

T
mψ(t

2H(ψ)
m )e1,

r (σ)
m (t) = −β(σ)

m (t)v
(σ)
m+1, β(σ)

m (t) =
1

2
‖v‖h(σ)m+1,me

T
mσ(t

2H(σ)
m )e1.

Based on the above representation of the residual, one can show that for any
m ≥ 1, the residual norm becomes arbitrarily small if t is chosen small enough.
In particular,

‖rm(t)‖ ≤ tϕ(−tω̂)
(
h
(ψ)
m+1,m‖ − Au + g‖+ h

(σ)
m+1,m‖v‖

)
, (2.13)

where ϕ(z) is defined in (1.4) and

ω̂ = min

{
−1

2
‖H(ψ)

m − I‖,−1

2
‖H(σ)

m − I‖
}
;
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2.1 Restarted Krylov subspace methods

see [S4, Proposition 2.2]. Better bounds can be obtained by expanding the residual
in terms of Chebyshev or Faber polynomials, as we show in [S4, Section 3], but
we do not report this rather technical analysis here.

Equation (2.13) directly implies that for any ε > 0 there exists t0 > 0 such that
‖rm(s)‖ ≤ ε for s ∈ [0, t0], and a RT restarting scheme can be built upon this
observation, just as in the first-order case. There are several nontrivial imple-
mentation issues to consider which do not occur in the first-order setting, though.
Many of these are related to the fact that two Krylov spaces need to be built
in order to approximate the solution of (2.11). Therefore, in order to form the
approximation (2.12) after determining a suitable step size, two Krylov bases
need to be kept in memory at the same time, i.e., if a total of m basis vectors
can be stored, then only m/2 iterations can be performed for each Krylov space,
which generally slows down convergence. If, on the other hand, the Krylov spaces
are built sequentially, one after the other, selecting an appropriate time step and
imposing a suitable residual tolerance becomes more cumbersome, as not all rele-
vant quantities are available at the same time. In [S4, Section 2.4], we discuss all
these issues and present several different algorithmic variants of the RT restarting
method, tailored to different possible scenarios.

As a possibility to speed up Krylov methods for (2.11) within the RT restarting
framework, we discuss a combination with the Gautschi cosine scheme [39,86,100]
in [S4, Section 2.5]. This scheme is based on the observation that, for any time
step δ, the solution of (2.11) satisfies

y(t+ δ)− 2y(t) + y(t− δ) = δ2ψ(δ2A)(−Ay(t) + g), (2.14)
which follows from the variation-of-constants formula. When using a fixed step
size δ and denoting yk = y(kδ), by straight-forward algebraic manipulations,
equation (2.14) can be recast as the time stepping scheme

vk+1/2 = vk +
1

2
δψ(δ2A)(−Ayk + g),

yk+1 = yk + δvk+1/2, (2.15)

vk+1 = vk+1/2 +
1

2
δψ(δ2A)(−Ayk+1 + g),

with starting vectors y0 := u and v0 := σ(δ2A)v .

Using the scheme (2.15) requires evaluating the σ-function just once for forming
the starting vector v0 and evaluating the ψ-function once per iteration,22 thus
effectively cutting the computational cost in half and avoiding the necessity to
build two different Krylov spaces per cycle. The difficulty in efficiently employing
the Gautschi scheme in practice lies in the fact that the step size δ needs to be
fixed once and for all at the start of the iteration.
22Note that the second evaluation of ψ in (2.15) coincides with the first evaluation in the next

iteration.
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Figure 2.5: CPU time used by the different algorithms for solving the anisotropic wave equa-
tion, depending on the final time t. Originally [S4, Figure 3].

Based on the maximum admissible Krylov dimension m and the desired accuracy,
one can determine a suitable δ in the first iteration (or rather when forming v0)
based on the residual norm. However, there is no guarantee that the desired
accuracy can also be reached within m Krylov steps in later cycles when using
this δ. Thus, one might be tempted to use a conservative step size selection and
choose δ much smaller than what the residual norm in the first cycle suggests,
which of course increases the overall cost of the method. This is where residual
restarting comes into play. Should it turn out that it is not possible to compute
vk+1 to the desired accuracy in a later cycle because the time step δ is too large,
one can perform a “mini restart” to bridge the gap: Based on the residual norm,
one finds δ̃ for which the approximation is accurate enough and then restarts to
complete the step from δ̃ to δ (which typically only requires very few additional
Krylov iterations). This way, one can continue the iteration, instead of needing
to start from scratch with a smaller δ.

As an illustration of the performance of the different algorithmic variants, we
consider the solution of the anisotropic three-dimensional wave equation{

utt = kxuxx + kyuyy + kzuzz,

u(0, x, y, z) = u0(x, y, z), ut(0, x, y, z) = v0(x, y, z),
(2.16)

on the domain Ω = (0, 1)×(0, 1)×(0, 1), with coefficients kx = 104, ky = 102, kz =
1 and initial conditions u0(x, y, z) =

∑3
i,j,k=1 sin(iπx) sin(jπy) sin(kπz), v0(x, y, z) =∑3

i,j,k=1 λijk · sin(iπx) sin(jπy), where λijk = π2(i2kx + j2ky + k2kz).

Figure 2.5 shows the run time that the different RT restarting schemes (with
m = 30) require to solve a semi-discretization of (2.16) on a 40× 40× 40 grid to
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an accuracy of 10−6 for different final times t, together with the run time of the
two-pass Lanczos method as baseline. It is clearly visible that for larger t, i.e.,
more difficult problems, the sequential RT restarting scheme and RT Gautschi
scheme outperform the two-pass method. This is mostly due to the fact that very
large Krylov dimensions are required for such large time steps, so that solving the
compressed problem in two-pass Lanczos becomes non-negligible.23

2.2 Krylov methods with randomized sketching

A rather new trend in numerical linear algebra is the adoption of fast and scalable
randomized algorithms for many core problems. The most prominent example of
this is probably the randomized singular value decomposition [92], which is widely
used today.

An important technique that has emerged in randomized numerical linear al-
gebra is the sketch-and-solve paradigm. It was initially designed and used for
computations with rather crude accuracy demands, as for example (low-rank)
matrix approximation [146, 171] or construction of preconditioners [9], but quite
recently—starting with [11, 133]—it was discovered that it might also be a vi-
able technique for high accuracy computations when appropriately combined with
Krylov subspace methods.

At the heart of sketching algorithms are so-called subspace embeddings [60, 146,
170], which allow to embed a (low-dimensional) subspace V of Rn into a Euclidean
space Rs of smaller dimension s� n, such that norms are distorted in a controlled
manner. To be more precise, for given ε ∈ [0, 1), a matrix S ∈ Rs×n is called ε-
subspace embedding if

(1− ε)‖v‖2 ≤ ‖Sv‖2 ≤ (1 + ε)‖v‖2, (2.17)

for all v ∈ V , or equivalently,

〈u , v〉 − ε‖u‖‖v‖ ≤ 〈Su , Sv〉 ≤ 〈u , v〉+ ε‖u‖‖v‖

for all u , v ∈ V .

Such an embedding is called oblivious if it can be constructed without explicit
knowledge of V . This is, e.g., relevant in the context of Krylov methods, as
the final Krylov subspace is not known when starting the method. Oblivious
embeddings can be constructed by probabilistic methods which only require m =
dim(V) and the target dimension s of the embedding space as input and then
23See [S4, Section 4.1] for a detailed discussion of parameters and implementation aspects, as

well as the unusual spike in the two-pass run time for t = 9.
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construct S such that (2.17) is fulfilled with high probability. These constructions
often involve randomized subsampled trigonometric transforms; see, e.g., [125,
164]. As the required sketching dimension typically depends quadratically on the
distortion ε, one needs to work with rather crude accuracies, with ε = 1/

√
2 or

ε = 1/2 being common choices.

An alternative viewpoint which is sometimes useful is that a subspace embedding
S induces a semidefinite inner product

〈u , v〉S := 〈Su , Sv〉, (2.18)

which, when restricted to V , is an actual (positive definite) inner product; see,
e.g., [12, Section 3.1].

The combination of Krylov methods with randomized sketching comes in two
“flavors”: The first class of methods performs the usual Arnoldi process, but
uses a Gram–Schmidt orthogonalization with respect to the semidefinite inner
product (2.18) instead of the standard Euclidean inner product. Examples of
this methodology include [10, 11, 163] for linear systems and eigenvalue problems
and [48, Algorithm 3] for matrix functions. The second flavor of sketched Krylov
methods employs a truncated Arnoldi method (which produces a non-orthogonal
basis) and uses randomized techniques for mitigating the negative effects of lack
of orthogonality. Notable work in this direction includes the seminal paper [133]
covering linear systems and eigenvalue problems, and our own work [S10] which
is described in more detail in Section 2.2.1, as well as [48, Algorithm 4] for the
matrix function case.

2.2.1 S. Güttel and M. Schweitzer, Randomized sketching for
Krylov approximations of large-scale matrix functions,
SIAM J. Matrix Anal. Appl., 44 (2023)

The main idea of our paper [S10] was to transfer the techniques introduced in [133]
for linear systems to matrix functions in order to reduce computational complex-
ity and communication (and possibly also storage demands) in Krylov subspace
methods. The starting point for doing so is the use of any computationally cheap
method that produces a non-orthogonal Krylov basis Wm of Km(A, b). In our
experiments, using a k-truncated Arnoldi process24 for this purpose—which re-
duces the orthogonalization cost from O(m2n) toO(mnk)—turned out to be most
successful.
24By this we mean an Arnoldi process which orthogonalizes a new basis vector only against the

k previous basis vectors, which, e.g., for k = 2 mimics the Hermitian Lanczos process.
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Working with the non-orthogonal Wm, one could in principle still obtain the
Arnoldi approximation fm via (1.12). However, as this formula involves the
Moore-Penrose pseudoinverse, both its computational cost and numerical sta-
bility properties are not very attractive. To overcome this, we propose an al-
ternative extraction procedure, which is easiest to explain for the linear system
case. Assuming we want to obtain an approximate solution x̂m(z) for a shifted
linear system (zI − A)x (z) = b from Km(A, b), we demand a sketched Galerkin
condition25

x̂m(z) = Wmŷm(z) with (SWm)
H [Sb − S(zI − A)x̂m(z)] = 0. (2.19)

If the inverted quantity in the next equation is well-defined, the coefficient vector
ŷm(t) can equivalently be written as

ŷm(z) = [(SWm)
H(zSWm − SAWm)]

−1(SWm)
H(Sb).

A corresponding approximation for f(A)b from Km(A, b) can be obtained by inte-
grating (2.19) along a suitable contour Γ, yielding after straightforward algebraic
manipulations

f̂m =
1

2πi

∫
Γ

f(z)Wm[zW
H
m S

HSWm −WH
m S

HSAWm]
−1 dz (SWm)

H(Sb)

= Wm(W
H
m S

HSWm)
−1f

(
WH
m S

HSAWm(W
H
m S

HSWm)
−1
)
(SWm)

H(Sb).

This sketched FOM (sFOM) approximation turned out to be numerically unstable
in certain situations, but fortunately there is an easy remedy to this, the so-called
“basis whitening” idea. To whiten the nonorthogonal Krylov basisWm, one starts
by computing a thin QR decomposition SWm = QmRm of the sketched basis and
then performs the replacements

SWm ← Qm, SAWm ← (SAWm)R
−1
m , Wm ← WmR

−1
m ,

where the last replacement is only done implicitly: Writing the sFOM approxi-
mation in the whitened basis yields

f̂m = Wm

(
R−1
m f

(
QH
mSAWmR

−1
m

)
QH
mSb

)
. (2.20)

By suitably ordering the computations involved in forming QH
mSAWmR

−1
m , one

can then avoid forming WmR
−1
m explicitly.26

Performing m Krylov steps and computing the sFOM approximation (2.20) re-
quires an overall computational cost of O(nm logm + m3) when truncated or-
thogonalization with k = O(1) is used and the sketching matrix S is constructed
25A similar construction was used in [12] in the context of model reduction for PDEs.
26Explicitly forming this matrix product would incur a cost of O(m2n) and would therefore

asymptotically be as expensive as simply performing the full Gram–Schmidt orthogonaliza-
tion.
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via a randomly subsampled fast Fourier transform or discrete cosine transform;
see [S10, Section 2.2] for details. Additionally, due to the use of a k-term re-
currence for basis construction, this approach allows to use a two-pass approach
for non-Hermitian matrices in case that storage requirements become a limiting
factor; see [S10, Section 4.2].

While the sFOM approximation (2.20) often works very successfully in practice, it
is quite difficult to analyze theoretically, e.g., because sketching might significantly
alter spectral properties of A. In our recent preprint [137], we perform an analysis
that explains the observed convergence behavior at least for entire functions like
the exponential.

In addition, practical problems can occur if it happens that an eigenvalue of the
sketched-and-projected matrix QH

mSAWmR
−1
m collides with a singularity of f .27

To overcome these problems, we also introduced a “sketched GMRES (sGMRES)”
approximation in [S10, Section 3], which is defined via

f̃m =
1

2πi

∫
Γ

f(z)(zSWm − SAWm)
†Sb dz (2.21)

and can be seen as a sketched counterpart of the harmonic Arnoldi approxima-
tion discussed in [98] and [80, Section 6]. In contrast to the sFOM approxi-
mation (2.20), there is no closed-form expression for the sGMRES approxima-
tion (2.21) and it therefore needs be evaluated by (adaptive) numerical quadra-
ture; see [S10, Section 4.1]. We note that in recent work [45], a similar (but not
equivalent) sketched GMRES-type approximant for f(A)b was proposed which
indeed exhibits a closed-form expression.

Despite the influence that sketching might have on spectral properties of A, it is
possible to prove that the approximation (2.21) converges to f(A)b whenever f
is a Cauchy–Stieltjes function and A is positive real.28 Indeed, according to [S10,
Theorem 3.3], we have

‖f(A)b − f̃m‖AHA ≤ C1Cε‖b‖(sin(β0))m,

where Cε =
√

(1 + ε)/(1− ε) is a constant that depends on the embedding qual-
ity, while C1 = ‖A‖f(ρ‖A‖2) and β0 = arccos(δ/‖A‖) are constants that depend
on spectral properties of A. Here, δ is the smallest real part of any element in
W (A) and ρ is the smallest real part of any element in W (A−1).

In [S10, Section 5], we illustrate the performance of the proposed methods on a
variety of examples from different applications, both to demonstrate that they are
27For the standard Arnoldi method, this cannot happen when all singularities of f lie outside

the field of values W (A).
28A matrix A is called positive real if W (A) lies in the open right half plane.
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Figure 2.6: Left: Convergence of sketched Krylov methods based on truncated Arnoldi with
truncation parameter k = 4 for the inverse square root of a convection diffusion operator. The
error of best approximation to A−1/2b from the Krylov space Km(A, b) is also shown. Right:
Sketched Ritz values spec(QH

mSAWmR
−1
m ) for m = 84 and m = 85, which are closest to the

gray vertical line at position m = 84.5 in the left plot. The jump in the sketched FOM error at
m = 85 is caused by a Ritz value being very close to the origin. Originally [S10, Figure 5.1].

very competitive with state-of-the-art alternatives and to better understand their
general behavior. We depict an exemplary convergence curve—which is quite
typical for sketched methods—in Figure 2.6. It arises from approximating the
inverse square root of a discretized convection diffusion operator with constant
convection field. Overall, the performance of the methods closely resembles that
of the standard Arnoldi method, with only a small offset in achieved error norm.
While convergence of sGMRES is very smooth, the sFOM approximation often
exhibits an erratic, “spikey” convergence curve, in particular in the initial phase of
the method when convergence is slow. As the right part of the figure illustrates,
spikes in the convergence curve are related to Ritz values coming close to the
singularity at the origin (which is more likely to happen for the sketched method
than for the standard method, as explained above).
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CHAPTER 3

FRÉCHET DERIVATIVES AND LOW-RANK
UPDATES OF MATRIX FUNCTIONS

In this chapter, we discuss both theoretical results and computational methods
regarding the Fréchet derivative of matrix functions, as well as how to update a
given, precomputed matrix function f(A) to f(A + E), where E is a matrix of
low-rank. The common trait of these two at first sight quite different problems
is that they both fit within the framework of bivariate matrix functions. Due
to this connection—which will be made more precise below—they share many
similarities both algorithmically and from a theoretical perspective.

In general, for an analytic, bivariate function f : C2 −→ C and two square
matrices A ∈ Cm×m, B ∈ Cn×n the bivariate matrix function f{A,B} is a linear
operator acting on Cm×n. One possible definition of f{A,B}, taken from [115],
is given in the following.

Definition 3.1. Let A ∈ Cm×m, B ∈ Cn×n and assume that there exist
domains ΩA,ΩB ⊂ C such that fy(x) := f(x, y) is analytic on ΩA for every
y ∈ ΩB and fx(y) := f(x, y) is analytic on ΩB for every x ∈ ΩA. Then, the
bivariate matrix function f{A,B} is defined via

f{A,B}(E) := − 1

4π2

∫
ΓA

∫
ΓB

f(x, y)(xI −A)−1E(yI −BH)−1 dy dx (3.1)

for any E ∈ Cm×n, where ΓA ⊂ ΩA,ΓB ⊂ Ω are closed contours which wind
around spec(A) and spec(B), respectively, in counterclockwise direction.
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3 Fréchet derivatives and low-rank updates of matrix functions

Besides the computation of Fréchet derivatives and low-rank updates covered in
this chapter, further important examples of numerical linear algebra problems
that can be rephrased as evaluating bivariate matrix functions are the solution of
Sylvester and Stein matrix equations; see, e.g. [119, 155].

3.1 Fréchet derivatives of matrix functions

Given a matrix function f , its Fréchet derivative at the matrix A is an operator
Lf (A, ·) which is linear in the second argument and satisfies

f(A+ E)− f(A) = Lf (A,E) + o(‖E‖), for all E ∈ Cn×n.

The Fréchet derivative has many theoretical and practical applications. Most
prominently, it plays an important role in computing or bounding the condition
number of f(A), via the relation

cond(f, A) = lim
ε→0

sup
‖E‖≤ε‖A‖

‖Lf (A,E)‖
‖f(A)‖

;

see, e.g., [94, Chapter 3] for details. Further applications which require the eval-
uation of Lf (A,E) include analysis of complex networks [74], decomposition of
tensor grids [104] or the solution of optimization problems involving matrix func-
tions [162].

The Fréchet derivative fits into the framework of bivariate matrix functions as
follows: Given a differentiable, univariate matrix function f , define the bivariate
function29

f [1](x, y) :=

{
f(x)−f(y)

x−y , for x 6= y,

f ′(x), for x = y.

Then, according to [115, Theorem 5.1],

Lf (A,E) = f [1]{A,AH}(E).

Given A and E, a conceptually simple way to compute the Fréchet derivative is
via the relation

f

([
A E
0 A

])
=

[
f(A) Lf (A,E)
0 f(A)

]
; (3.2)

see [127, Theorem 2.1]. As this formula requires evaluating a function of a 2n×2n
matrix (which will typically result in a dense matrix), it is only feasible for small-
scale matrices. For the large-and-sparse case, it was long unclear how to efficiently
29The function f [1] is a first-order divided difference of f ; see [53].
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3.1 Fréchet derivatives of matrix functions

approximate Lf (A,E) at all, and it turns out that this is mostly possible when
the direction term E is of low rank. The reason is that then (under suitable
assumptions on f), it is also possible to accurately approximate Lf (A,E) by a
low-rank matrix; see Section 3.1.1 below, which summarizes the approach devel-
oped in [S11].30 In addition to addressing this computational question, we also
discuss several other contributions to theory and applications of Fréchet deriva-
tives: Section 3.1.2 discusses an application of the Fréchet derivative in the anal-
ysis of complex networks [S15], where it can be used to rank edges according
to their importance in a network or determine suitable up-/downdates which
increase/decrease the network’s communicability. Sections 3.1.3 and 3.1.4 deal
with higher-order Fréchet derivatives, which have their main application in defin-
ing level-2 condition numbers.31. The works [S1] and [S14] on which these sections
build develop new theoretical results (in the form of explicit formulas or bounds
for—possibly structured—level-2 condition numbers) as well as a computational
method for approximating higher-order Fréchet derivatives, which improves over
all state-of-the-art methods available before. Finally, Section 3.1.5 discusses the
generalization of the matrix function Fréchet derivative to certain functions of
third-order tensors, so called t-functions [123].

3.1.1 P. Kandolf, A. Koskela, S. D. Relton, and
M. Schweitzer, Computing low-rank approximations of
the Fréchet derivative of a matrix function using Krylov
subspace methods, Numer. Linear Algebra Appl., 28
(2021)

Ourpaper [S11] introduces a Krylov subspace method for approximating Lf (A,E)
when E = bcH is of rank one (or more generally of low rank). The basis for
this method is the integral representation (3.1), which in the case of the Fréchet
derivative reduces to the simpler form

Lf (A, bc
H) =

1

2πi

∫
Γ

f(z)(zI − A)−1bcH(zI − A)−1 dz, (3.3)

where Γ is a contour that winds around spec(A) in counterclockwise direction.

Interpreting (3.3) as the integral over solutions of shifted linear systems with A
and AH , a computational method for approximating Lf (A, bcH) arises by replac-
ing these solutions by their respective Krylov approximations. To be precise,
30We note that this is very similar to the case of large-scale Sylvester or Lyapunov matrix

equations, which can only be solved by computational methods if the right-hand side term—
and thus also the solution—is of low rank.

31A “level-2 condition number” is the condition number of the condition number and thus
measures how sensitive the condition number itself is to perturbations in the data.
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3 Fréchet derivatives and low-rank updates of matrix functions

assume that we have Arnoldi decompositions

AUm = UmGm + gm+1,mum+1e
H
m ,

AHVm = VmHm + hm+1,mvm+1e
H
m ,

available, where Um and Vm are orthonormal bases of the Krylov subspaces
Km(A, b) and Km(AH , c), respectively. Then the standard FOM approximations
xm(z) for (zI − A)x (z) = b and ym(z) for (zI − AH)y(z) = c are given by

xm(z) = ‖b‖Um(zI −Gm)
−1e1, (3.4)

ym(z) = ‖c‖Vm(zI −Hm)
−1e1. (3.5)

Inserting (3.4) and (3.5) into (3.3) yields an approximation Lm ≈ Lf (A, bc
H),

Lm :=
‖b‖‖c‖
2πi

∫
Γ

f(z)Um(zI −Gm)
−1e1e

H
1 (zI −Hm)

−HV H
m dt =: UmXmV

H
m .

According to [S11, Lemma 1], the core factor Xm can be computed via the rela-
tion

f

([
Gm ‖b‖‖c‖e1eH1
0 HH

m

])
=

[
f(Gm) Xm

0 f(HH
m )

]
, (3.6)

which is very reminiscent of the basic “block formula” (3.2) for the Fréchet deriva-
tive. By employing this relation, it is not necessary to numerically evaluate the
integral representation above. Collecting the above steps gives rise to a basic
Krylov subspace method for approximating Lf (A, bcH) at the cost of 2m matrix
vector products, 2m Gram–Schmidt orthogonalization steps and the evaluation
of the function of a 2m× 2m block upper triangular matrix. Note that there are
many applications, in which it is not necessary to explicitly form Lm (which be-
comes infeasible for large n), so that it can be kept in factored form, storing only
Um, Xm and Vm. For example, matrix vector products with the Fréchet derivative
can be performed very efficiently using this representation; see also Section 3.1.2
below for more sophisticated algorithms exploiting the factorized representation
of Lm. We note that a Krylov algorithm for the approximation of bivariate matrix
functions which is mathematically equivalent to our basic method from [S11] was
independently proposed in [116].

In addition, [S11] discusses several algorithmic enhancements of the basic method
outlined above, e.g., simplifications for the case of Hermitian A as well as the use
of block methods or rational Krylov approaches [S11, Sections 2.1–2.5] as well as
accurate a posteriori error estimates [S11, Section 5]. On the theoretical side, we
prove convergence of the method for a wide range of matrix and function classes,
by essentially combining techniques used in the convergence analysis of Krylov
methods for matrix functions [80] with those used for Krylov methods for matrix
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3.1 Fréchet derivatives of matrix functions
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Figure 3.1: Error norm and (a priori) error bounds when approximating Lf (A,E) by several
of the methods proposed in [S11]. Here, A is the discretization of the two-dimensional Laplace
operator, f(z) = z−1/2 and E = bcH is a random rank-one matrix. Originally [S11, Figure 5].

equations [114]. We recall here the result of [S11, Theorem 4], which states that
for Hermitian positive definite A and f a Cauchy–Stieltjes function,

‖Lf (A, bcH)− Lm‖ ≤ 4‖b‖‖c‖ |f ′(λmin)|
(√

κ− 1√
κ+ 1

)m
, (3.7)

where λmin is the smallest eigenvalue of A and κ denotes the Euclidean norm
condition number of A.

Numerical experiments—with matrices taken both from benchmark collections
and from an application involving the simulation of nuclear transmutation—
confirm the effectiveness and numerical accuracy of the developed approach. As
an example, we report in Figure 3.1 the results of a simple experiment, in which we
approximate the Fréchet derivative of the inverse square root at the discretized
two-dimensional Laplace operator, with a randomly drawn rank-one direction
E = bcH . We test the basic Lanczos method [S11, Section 2.1], a block Lanc-
zos method which builds a single block Krylov space with starting (block) vector
[b, c] ∈ Rn×2 instead of two separate Krylov spaces [S11, Section 2.4] and an
extended Krylov method [S11, Section 2.5]. We report both the actual error as
well as the slope of the a priori convergence bounds from [S11, Theorems 4 & 6].
Both the polynomial and the extended Krylov method converge faster than pre-
dicted by the a priori bound, a typical phenomenon also known for similar bounds
for Krylov approximations of f(A)b. In particular, an a priori bound like (3.7)
cannot predict the superlinear convergence that occurs in this example.32 As
32The same is true, e.g., for the textbook convergence bound of the conjugate gradient method,

in the context of solving linear systems, which involves the same convergence factor.
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3 Fréchet derivatives and low-rank updates of matrix functions

expected, the extended Krylov subspace method converges in much fewer itera-
tions than the polynomial methods (but it requires the solution of linear systems
instead of only matrix vector products). The polynomial block Krylov method
works a bit more efficiently than the non-block method, at essentially the same
computational cost per iteration.33

3.1.2 M. Schweitzer, Sensitivity of matrix function based
network communicability measures: Computational
methods and a priori bounds, SIAM J. Matrix Anal.
Appl., 44 (2023) – Sections 2–4

In [S15], we discuss an application of the Fréchet derivative in network science.
Assume that AG is the adjacency matrix of a graph G = (V , E), representing
a complex network (e.g., a social network, traffic network, …). As outlined in
Example 1.4, total communicability TC(G) = 1Hexp(AG)1 (cf. (1.5)) is a com-
mon measure for how well the network is able to transport information (or goods,
depending on the application).

An interesting question in many areas of network science (e.g., when trying to
design optimized networks or in vulnerability analysis) is how communicability
measures such as (1.5) react to changes in the network, with the most common
change being the addition or removal of edges.

One way to approach this question is to study total network sensitivity [56],
defined as

TSij(G) := 1HLexp(AG, Eij)1 , (3.8)

where Eij = eie
H
j . Clearly, from the multivariate chain rule, TSij(G) measures

the rate of change of total communicability when the weight of edge (i, j) is
modified.34

One fundamental limitation of the practical applicability of this sensitivity con-
cept introduced in [56] is that the direction term in (3.8) depends on the considered
edge, so that computing all sensitivity values requires evaluating a quadratic form
involving a Fréchet derivative for each individual edge: In most applications, G
will be a large, sparse graph with n nodes and O(n) edges. Thus, when one tries
33In fact, the product between A and a block vector of size n× 2 instead of two matrix vector

products might actually be cheaper due to more advantageous memory access. The orthog-
onalization in a block method is typically a bit more expensive than in a method operating
just on vectors, though.

34Note that pretending that edge weights can be changed freely—although Gmight originally be
an unweighted graph—is common practice as it leads to continuous optimization problems
which are easier to tackle than the discrete optimization problems that would otherwise
arise.
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3.1 Fréchet derivatives of matrix functions

to identify an “optimal” new edge to add to the graph, there are O(n2) candi-
date edges. Even assuming the ideal setting that one evaluation of the Fréchet
derivative is possible with cost O(n)—e.g., by O(1) steps of the Krylov method
from [116, S11]—this means that finding the edge with highest total sensitiv-
ity value will have a cost of O(n3), which might already be infeasible even for
medium-scale networks.

The crucial observation for overcoming the limitation mentioned in the previous
paragraph is that according to [S15, Theorem 2.3 & Corollary 2.4], an alternative
way of defining and computing total network sensitivity is

TSij(G) = [Lexp(A
H
G ,11

H)]ij. (3.9)

The important feature of (3.9) is that the direction term in the Fréchet derivative
is independent of the edge (i, j) under consideration (and is still of rank one).
Thus, a single call of the Krylov algorithm from [116, S11] suffices to approxi-
mate all sensitivities, instead of O(n2) calls. One additional difficulty that one
needs to overcome to be able to deal with large-scale networks, though, is that
explicitly forming the approximation Lm ≈ Lexp(A

H
G ,11

H) is typically infeasible
as it requires O(n2) storage. Thus, if one is interested in finding the best edges
to add to the network (or the most important existing edges), one needs to find
the largest entries of Lm without explicitly forming it. To do so, the algorithm
introduced in [S15] leverages a maximum element estimator for implicitly given
matrices from [96] which is based on a subgradient method and only requires
performing matrix-vector products.

An additional difficulty arises from the fact that one is typically not interested in
simply finding the largest elements in Lm, but rather wants to restrict to certain
“candidate edges”.35 Therefore, one cannot work with Lm directly but must in-
stead use a masked version, Lmasked

m :=M �Lm, where the binary mask M marks
candidate edges and � denotes the Hadamard (or element-wise) matrix product.
To apply the maximum element estimator from [96] for up- or downdating net-
works, one must therefore be able to perform an efficient matrix vector product
with Lmasked

m . This is possible based on the well-known result that

(A�BCH)x =
r∑
i=1

DbiADcix , (3.10)

where bi, ci, i = 1, . . . , r are the columns of B and C, respectively, and Dy is
the diagonal matrix with the entries of the vector y on the diagonal. Thus, as
long as the matrix A in (3.10) allows an efficient matrix vector product and the
rank of BCH is not too large, efficient matrix vector products with A � BCH

35The most common cases of candidate sets—corresponding to up- and downdates,
respectively—being either all existing or all non-existing (or virtual) edges.
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3 Fréchet derivatives and low-rank updates of matrix functions

n 200 400 800 1600 3200 6400 12800

avg. deg. 9.88 10.0 10.4 10.9 11.0 11.2 11.2

Alg. from [S15]
Kryl. it. 14 17 18 22 22 23 25

HR it. 4 2 4 2 3 5 2

time 0.02s 0.03s 0.06s 0.08s 0.26s 0.70s 0.73s

Alg. from [56]
Kryl. it. 12.7 14.8 15.7 14.9 * * *

time 40s 216s 1049s 5417s * * *

Table 3.1: Results obtained for random geometric graphs of varying size. “Kryl. it.” refers to
number of iterations in the Krylov algorithm from [116,S11]. Note that the algorithm from [56]
requires many calls of this method, and we report the average number of iterations across all
runs. ”HR it.” refers to number of iterations in [96, Algorithm 5.2]. Entries marked with *
indicate that the method did not terminate within two hours. Originally [S15, Table 3.3].

are possible, keeping BCH in factored form. Fortunately, this is exactly the
case in the situation at hand. Typically, m = O(1) Krylov steps are sufficient
for approximating Lexp(A

H
G ,11

H) accurately enough, so that Lm is of low rank.
The binary mask M—which takes the role of A in (3.10)—is either the binary
adjacency matrix AG (for existing edges) or 11H − (AG + I) (for virtual edges),
both of which allow an efficient matrix vector product when G is a sparse graph.

Combining all the elements outlined above, [S15] proposes an algorithm which
(under mild assumptions) can be expected to scale linearly with the size n of the
graph, thus making it feasible to use also for large scale networks. Numerical
experiments—both on artificially generated graphs and on real-world complex
networks from various applications—confirm almost perfect linear scaling of the
method.

As an example, we report in Table 3.1 the results of an experiment where we
estimate the p = 10 virtual edges with maximum sensitivity in random geomet-
ric graphs of varying sizes in order to investigate the scaling behavior of the
method and compare it to the baseline method from [56]. The random geometric
graphs are constructed such that the average degree of their nodes is roughly 10;
Figure 3.2 shows an example of such a graph for n = 400. The results clearly
indicate the superiority over the baseline method and confirm the linear scaling;
see [S15, Example 3.5] for details on parameter choices and algorithmic setup.

In addition to the content summarized above, [S15] also contains a discussion
of how to extend the sensitivity concept from total network communicability to
other centrality and communicability measures like subgraph centrality [75] and
the Estrada index [71,73] (cf. Example 1.4) and to modifications of nodes (instead
of edges).
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3.1 Fréchet derivatives of matrix functions

Figure 3.2: Illustration of a random geometric graph with n = 400 nodes. The size and color of
nodes encodes their total communicability (with lighter colors corresponding to larger values).
Originally [S15, Figure 3.2].

The second part of [S15] discusses decay in the entries of Fréchet derivatives,
which allows to obtain a priori bounds on the sensitivities. As this part of the
paper thematically better fits into the content of Chapter 4, we discuss it in more
detail in Section 4.1.4.

3.1.3 M. Schweitzer, Integral representations for higher-order
Fréchet derivatives of matrix functions: Quadrature
algorithms and new results on the level-2 condition
number, Linear Algebra Appl., 656 (2023)

Higher-order Fréchet derivatives of matrix functions can be defined in a recur-
sive fashion. Given a matrix A, a sufficiently smooth function f and letting
L
(1)
f (A,E) := Lf (A,E), the kth Fréchet derivative of f at A is defined as the

unique multilinear function L
(k)
f (A, ·, . . . , ·) of the matrices Ei, i = 1, . . . , k that

satisfies

L
(k−1)
f (A+ Ek, E1, . . . , Ek−1)− L(k−1)

f (A,E1, . . . , Ek−1)

= L
(k)
f (A,E1, . . . , Ek) + o(‖Ek‖).

Applications of higher-order Fréchet derivatives include the computation of the
level-2 condition number [95] (also see below) as well as solving nonlinear equa-
tions in Banach spaces; see, e.g., [5]. We also refer to [141] for recent work on a
unifying, more general concept for higher-order derivatives of matrix functions,
with applications in quantum perturbation theory.
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3 Fréchet derivatives and low-rank updates of matrix functions

A level-2 condition number measures how sensitive the condition number itself is
to perturbations. For a matrix function, the (absolute) level-two condition number
can straightforwardly be defined via

cond(2)(f, A) := lim
ε→0

sup
‖Z‖≤ε

|cond(f, A+ Z)− cond(f, A)|
ε

,

a form which is not well-suited for actual numerical computations. In [95], a
bound for the level-2 condition number (with respect to the Frobenius norm) is
derived, involving the second-order Fréchet derivative. To be specific,

cond(2)(f, A) ≤ max
‖E2‖F=1

max
‖E1‖F=1

‖L(2)
f (A,E1, E2)‖F = ‖K(2)

f (A)‖,

where K
(2)
f (A) is the Kronecker matrix, a representation of the second-order

Fréchet derivative as an n4 × n2 matrix; see [95, Section 4]. In general, it is
not possible to compute the exact value of the level-2 condition number (neither
analytically nor numerically) except for certain special cases, which are discussed
in [95, Section 5].

In [S14], we derive a new integral representation for the higher-order Fréchet
derivative. This representation is then used to both extend the class of functions
for which it is possible to exactly compute the level-2 condition number and to
derive an efficient algorithm based on numerical quadrature for approximating
the higher-order Fréchet derivative.

The main result [S14, Theorem 2]—which is based on an explicit representation
of the higher-order Fréchet derivative of the resolvent—is the following. If f is
analytic on and inside a contour Γ that winds around spec(A) exactly once,

L
(k)
f (A,E1, . . . Ek) =

1

2πi

∫
Γ

∑
π∈Sk

f(ζ)Mπ(ζ;A,E1, . . . , Ek) dζ, (3.11)

where Sk denotes the symmetric group of degree k, i.e., the set of all permutations
of {1, . . . , k} and

Mπ(ζ;A,E1, . . . , Ek)

= (ζI − A)−1Eπ(1)(ζI − A)−1Eπ(2)(ζI − A)−1 · · ·Eπ(k)(ζI − A)−1.

Using (3.11) allows to derive a new upper bound for the level-2 condition number
whenever A is Hermitian positive definite and f is a Cauchy–Stieltjes function or
f(z) = zg(z) with g a Cauchy–Stieltjes function. If further the smallest eigenvalue
λmin of A is simple, this upper bound exactly agrees with a lower bound proven
in [95, Theorem 5.5]. Thus, in that case, the new upper bound actually gives
an explicit formula for the level-2 condition number. We now summarize this
result.
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Theorem 3.2. (Theorem 7 and Corollary 8 in [S14]) Let f be a Cauchy–
Stieltjes function or a function of the form f(z) = zg(z), where g is a
Cauchy–Stieltjes function and let A be Hermitian positive definite with
smallest eigenvalue λmin. Then

cond[2](f, A) ≤ |f ′′(λmin)|.

If further λmin is a simple eigenvalue of A, then

cond[2](f, A) = |f ′′(λmin)|.

For actually computing the higher-order Fréchet derivative, all commonly used
methods are based on the observation that (under suitable assumptions on the
smoothness of f), L(k)

f (A,E1, . . . , Ek) is equal to the upper right n × n block of
f(Xk), where

Xk =


A k = 0

I2 ⊗Xk−1 +

[
0 1

0 0

]
⊗ I2k−1 ⊗ Ek k ≥ 1,

and ⊗ denotes the Kronecker product.36 The (block upper triangular) matrix
Xk is of size 2kn × 2kn, so that working with it (and even storing it) quickly
becomes prohibitively costly, already for moderate values of k. Existing algo-
rithms either directly compute f(Xk) [95, Algorithm 3.6], or use a complex step
approximation [124] to reduce the computation for Xk to one that only involves
Xk−1 or Xk−2 [3, 167]. As an alternative, discretizing (3.11) by a suitable nu-
merical quadrature rule (which will typically depend on f) allows to approximate
L
(k)
f (A,E1, . . . , Ek) working only with matrices of size n×n. However, the number

of terms in the sum in (3.11) grows as k!, so that this approach is also infeasible if
k gets too large. By using a careful implementation and exploiting the fact that
many quantities can be reused across several computations, this approach often
still offers significant benefits over established methods.

The numerical experiments in [S14] show that the quadrature-based approach
typically runs significantly faster than the alternatives for values of k between 2
and 6 when the direction terms Ei are unstructured or between 2 and 8 when
the direction terms are of low rank. In the latter case, further optimizations are
possible; see [S14, Section 4.3]. We exemplarily report the results of [S14, Ex-
periment 15] in Figure 3.3, where we compare the performance of our quadrature
based method with the baseline method from [95] and the recently proposed com-
plex step approximation from [3]. Here, the direction terms are outer products
36This formula generalizes the “2× 2 block formula” (3.2) for the first-order Fréchet derivative.
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Figure 3.3: Run-time comparison of the different algorithms for n = 50 and varying k (left)
and for k = 4 and varying n (right). In both cases, the matrix A ∈ Rn×n is the tridiagonal
matrix generated by the command A = gallery('lesp',n) and the matrices E1, . . . , Ek are
outer products of canonical unit vectors. The dotted and dashed line in the right plot indicate
quadratic and cubic scaling with respect to n, respectively. Originally [S14, Figure 2].

of canonical unit vectors.37 One can clearly observe that our quadrature algo-
rithm shows a better scaling behavior when n is increased (quadratic instead of
cubic), and that for values of k ranging from 2 to 6, it is about one order of
magnitude faster than the competing methods (and still faster for k = 7, 8). We
refer to [S14, Experiment 15] for further details regarding experimental setup,
parameter choices etc.

To conclude this section, we note that an additional benefit of our quadrature
algorithm—which we haven’t explored further—is that it is trivially parallelizable,
as the computations for individual quadrature nodes are completely independent,
so that even larger gains can be expected in a parallel computing environment.

3.1.4 B. Arslan, S. D. Relton, and M. Schweitzer, Structured
level-2 condition numbers of matrix functions, Electron.
J. Linear Algebra, 40 (2024)

Our paper [S1] also deals with level-2 condition numbers of matrix functions,
which were already discussed in Section 3.1.3 above. In contrast to the usual
level-2 condition number considered in that section, this work focuses on so-called
37This is a typical case which, e.g., occurs in algorithms for the higher-order condition number.
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3.1 Fréchet derivatives of matrix functions

M Auto-
morph. Gr. (G)

Jordan Algebra (J) Lie Algebra (L)

In Orthogonal Symmetric Skew-symmetric

Σp,q Pseudo-orthogonal Pseudo-symmetric Pseudo skew-
symmetric

Rn Perplectic Persymmetric Perskew-symmetric

Jn Symplectic Skew-Hamiltonian Hamiltonian

Table 3.2: Choices forM from (3.12) leading to well-known matrix classes J, L and G. Adapted
from [S1, Table 1].

structured condition numbers, i.e., instead of allowing arbitrary perturbations
of the input, one determines the sensitivity only with respect to perturbations
which keep a certain structure in the matrix intact. This allows to better ana-
lyze structure-preserving algorithms for the computation of f(A) or its condition
number, which are known to often yield much more accurate results than their
general purpose counterparts.

In [S1], we mostly consider matrices from Lie algebras L, Jordan algebras J and
automorphism groups G corresponding to a scalar product 〈·, ·〉M , defined via

〈x, y〉M =

{
xTMy, for real or complex bilinear forms,
xHMy, for sesquilinear forms.

The matrix structures of interest then arise via

J := {A ∈ Kn×n | A? = A},
L := {A ∈ Kn×n | A? = −A},
G := {A ∈ Kn×n | A? = A−1},

respectively, where A? denotes the adjoint of A with respect to 〈·, ·〉M and K = R
or K = C. Common choices of M that give rise to practically important matrix
structures are

Σp,q =

[
Ip 0
0 −Iq

]
, Rn =

[
1

. . .
1

]
, and Jn =

[
0 In/2
−In/2 0

]
, (3.12)

where for Σp,q we have p+q = n; see Table 3.2. Additionally, we consider the class
of quasi-triangular matrices, as it can also be handled with similar techniques.

The structured level-2 condition number of a matrix function can be defined as

cond
[2]
struc(f, A) = lim

ε→0
sup

A+Z∈SM
‖Z‖≤ε

|condstruc(f, A+ Z)− condstruc(f, A)|
ε

.
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3 Fréchet derivatives and low-rank updates of matrix functions

where now SM denotes any smooth matrix manifold (which will in practice typ-
ically correspond to one of the choices outlined above) and condstruc is the usual
structured (level-1) condition number. The main result of [S1] is a novel upper
bound for the structured level-2 condition number,

cond
[2]
struc(f, A) ≤ ‖(BMB+

M ⊗ In2)K
(2)
f (A)BMB+

M‖2, (3.13)

where the columns of BM span TASM, the tangent space38 of SM at A; see [S1,
Lemma 3.1].

Based on construction formulas39 for bases of tangent spaces, an algorithm for
computing an upper bound of the structured level-2 condition number is presented
in [S1, Algorithm 1]. In numerical experiments, upper bounds for the structured
and unstructured level-2 condition number are compared to each other. As only
comparing upper bounds does not necessarily allow to draw conclusions about
the actual quantities (as long as there is no precise knowledge on the tightness of
the bounds), we also obtain lower bounds for the respective condition numbers
by employing methods from continuous optimization. The numerical results both
confirm that in most cases the upper bound (3.13) is quite tight (as it is close
to the lower bound) and that the structured level-2 condition number is often
many orders of magnitude smaller than the unstructured one (in particular for
ill-conditioned test matrices).

As an example, Figure 3.4 shows results obtained for the matrix logarithm of
orthogonal and symplectic test matrices which are constructed using Jagger’s
toolbox [109]. For the orthogonal test set, the upper bound for the structured
condition number lies on average about one order of magnitude below the un-
structured one, and the respective lower bounds confirm that the unstructured
condition number is indeed guaranteed to be smaller than the structured one.
For the symplectic test set, the difference is a lot more pronounced. While the
unstructured condition number grows proportionally to the two-norm condition
number, the structured condition number roughly stays constant across all ma-
trices. The lower bounds are again quite close to the upper bounds, indicating
that those are rather tight.40

In addition to these results [S1, Section 3.3] presents explicit formulas for the
structured level-2 condition number of the matrix exponential of Hermitian or
skew-Hermitian matrices.
38The tangent space at A is defined as TASM := {E ∈ Kn×n | ∃ a smooth curve γ : K →

SM with γ(0) = A, γ′(0) = E}.
39Based on [7] for Jordan and Lie algebras and automorphism groups and on [2] for the quasi-

triangular case.
40For the most ill-conditioned test problem, the computed lower bound lies above the upper

bound, which should of course be impossible. This is caused by accumulation of errors in
the optimization algorithm due to the very bad conditioning of the matrix.
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Figure 3.4: Structured and unstructured level-2 condition numbers for the matrix logarithm,
comparing upper and lower bounds. Left: Orthogonal matrices. Right: Symplectic matrices.
Adapted from [S1, Figure 1].

3.1.5 K. Lund and M. Schweitzer, The Fréchet derivative of
the tensor t-function, Calcolo, 60 (2023)

Recently, [123] has proposed a generalization of matrix functions to functions of
third-order tensors (see Figure 3.5), based on the t-product framework [44, 111,
112]. This framework defines a way to multiply third-order tensors, and is based
on viewing them as stacks of frontal slices (as in Figure 3.5(d)): Given two tensors
A ∈ Cn×m×p,B ∈ Cm×s×p, the t-product is defined as

A ∗ B := fold(bcirc(A)unfold(B)),

where the operations unfold and fold transform the tensor B into a block vector
of size mp× s and vice versa, i.e.,

unfold(B) :=


B(1)

B(2)

...
B(p)

 , and fold(unfold(B)) := B,

bcirc turns A into a block-circulant matrix of size np×mp,

bcirc(A) :=


A(1) A(p) A(p−1) · · · A(2)

A(2) A(1) A(p) · · · A(3)

... . . . . . . . . . ...
A(p−1) . . . . . . A(1) A(p)

A(p) A(p−1) · · · A(2) A(1)


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Figure 3.5: Different views of a third-order tensor A ∈ Cn×m×p. (a) tube fibers: A(:, j, k), (b)
column fibers: A(i, :, k), (c) row fibers: A(i, j, :), (d) frontal slices: A(i, :, :), (e) lateral slices:
A(:, j, :), (f) horizontal slices: A(:, :, k). Originally [S12, Figure 1].

and A(k) and B(k), k = 1, . . . , p denote the frontal slices of A and B, respectively.41

Clearly, the t-product is associative.

Using these definitions, the action of the tensor t-function f of A ∈ Cn×n×p on
another tensor B ∈ Cn×s×p is defined as

f(A) ∗ B := fold(f(bcirc(A)) · unfold(B)). (3.14)

The t-function f(A) itself is obtained by taking B to be the identity tensor,

f(A) := fold(f(bcirc(A)) · unfold(In×n×p))
= fold

(
f(bcirc(A))Enp×n

1

)
,

whereEnp×n
1 = e1⊗In with e1 ∈ Cp. This so-called t-function inherits many of the

usual properties of matrix functions; see [123, Section 2.2]. In [S12], we investigate
the Fréchet derivative of the t-function, which can naturally be represented as

Lf (A, C) = fold
(
Lf (bcirc(A), bcirc(C))Enp×n

1

)
;

see [S12, Lemma 2]. Besides studying elementary properties of this t-Fréchet
derivative, we also derive several useful representations for it. For example, when
f is analytic, the Fréchet derivative of the t-function can be written as

Lf (A, C) =
1

2πi

∫
Γ

f(ζ)(ζI − A)−1 ∗ C ∗ (ζI − A)−1 dζ, (3.15)

which generalizes the integral representation (3.3) for the Fréchet derivative of
matrix functions; see [S12, Lemma 5]. The inverse in (3.15) is of course to be
understood as inversion with respect to the t-product. Alternatively, generalizing
the “block representation” (3.2), the t-Fréchet derivative can be written as

Lf (A, C) = fold

f ([bcirc(A) bcirc(C)
Onp×np bcirc(A)

]) Onp×n
In

On(p−1)×n


1:np,:


41I.e., in MATLAB notation, A(k) = A(:, :, k) and B(k) = B(:, :, k).
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3.1 Fréchet derivatives of matrix functions

with Ok×` a k×` matrix of all zeros. In [S12, Section 3.4], we propose a Kronecker
representation of the Fréchet derivative of the t-function and present algorithms
for its efficient computation which exploit symmetries and shift invariances.

We then propose two different methods for approximating Lf (A, C). The first one
is a (block) Krylov approach which is applicable when the direction term C is of low
rank and is a straightforward generalization of the Krylov method from [116,S11]
described in Section 3.1.1, based on the integral representation (3.15).

The second approach exploits the well-known fact that block-circulant matri-
ces are block-diagonalized by the discrete Fourier transform (DFT) [111, 112],
which allows to decouple most computations and obtain an embarrassingly par-
allel method. The precise result is the following, and its proof is based on a
Daleckiĭ-Kreĭn-type result for block diagonal matrices [S12, Theorem 2].

Corollary 3.3. (Corollary 2 in [S12]) Let A, C ∈ Cn×n×p and let f be 2np−
1 times continuously differentiable on a region containing spec(bcirc(A)).
Further, let

(Fp ⊗ In)bcirc(A)(FH
p ⊗ In) = DA

and
(Fp ⊗ In)bcirc(C)(FH

p ⊗ In) = DC

where DA = blkdiag(DA
1 , . . . , D

A
p ), DC = blkdiag(DC

1 , . . . , D
C
p ) and Fp is

the p× p discrete Fourier transform matrix. Then

Lf (A, C) = fold

(FH
p ⊗ In)


1√
p
L1

...
1√
p
Lp


,

where the diagonal blocks Li, i = 1, . . . , p are given by

Li = Lf (D
A
i , D

C
i ), i = 1, . . . , p.

As applications of the concept, we show that the condition number of the t-
function can be related to the norm of its Fréchet derivative, as in the matrix
function case. We also show that our formalism can be used to derive a represen-
tation of the gradient of the tensor nuclear norm ‖A‖?, starting from

‖A‖2? = trace(1)(
√
AT ∗ A),

a relation recently proven in [14, Lemma 6].

We report several numerical experiments which confirm that the proposed algo-
rithms can be used to efficiently approximate the Fréchet derivative for t-functions
of small and medium scale tensors; see [S12, Section 6].

53



3 Fréchet derivatives and low-rank updates of matrix functions

3.2 Updating matrix functions subject to low-rank
modifications

Taking into account the fact that matrix function computations are often very
costly, the following is a rather obvious and relevant question:

“Assume that f(A) is already known from some previous computation, and A is
slightly altered, giving A + E. Is it possible to approximate f(A + E), starting
from f(A), at a cost that is significantly lower than that of recomputing f(A+E)
from scratch?”

Throughout, we will assume that A and E are such that f is analytic on a domain
that contains spec(A) and spec(A + E), so that in particular both f(A) and
f(A+E) are defined, and we assume that “slightly” above means that E is of low
rank r � n. One particular example of an application in which updating matrix
functions is of relevance is updating network centrality measures (cf. Example 1.4)
after modifying a graph by inserting or removing nodes or edges.

Clearly, the problem outlined above fits into the framework of bivariate matrix
functions considered in this chapter, writing

f(A+ E)− f(A) = fdiff{A,E}(I),

where
fdiff(x, y) := f(x+ y)− f(x).

For this rather simple special case, the integral representation (3.1) simplifies to

f(A+ E)− f(A) = 1

2πi

∫
Γ

f(z)(zI − A)−1E(zI − A− E)−1 dz. (3.16)

Note that this representation can also straightforwardly be derived from the sec-
ond resolvent identity [97], without needing the formalism of bivariate matrix
functions.

Closed formulas for f(A+E)− f(A) are only available in very particular special
cases, the by far most well-known one certainly being the Sherman–Morrison–
Woodbury [151, 169] formula for rank-one updates of the inverse,

(A+ bcH)−1 − A−1 = −A
−1bcHA−1

1 + cHA−1b
. (3.17)

A generalization of the Sherman–Morrison–Woodbury formula to rational func-
tions other than the inverse is given in [31, Theorem 3]. To fix notation, let
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3.2 Updating matrix functions subject to low-rank modifications

r(z) = p(z)/q(z) with polynomials p(z) =
∑mp

i=0 αiz
i and q(z) =

∑mq

i=0 βiz
i and set

m = max{mp,mq}. Then, provided that r(A) and r(A+bcH) are well-defined,

r(A+ bcH)− r(A) = XY H , (3.18)

where X,Y are defined by X = q(A)−1Km and Y H = Y H
α −M−1Y H

β (r(A)+XY H
α )

with M = I + Y H
β X and

Km = [b, Ab, . . . , Am−1b],

Lm = [c, (AH + cbH)c, . . . , (AH + cbH)m−1c],

Yα = LmH(α)H ,

Yβ = LmH(β)H .

and the Hankel matrices

H(α) =



α1 α2 · · · αmp 0 · · · 0

α2
... ... ...

... ... ... ...
αmp

... ...
0

...
... ...
0 0


∈ Cm×m

and H(β) ∈ Cm×m defined analogously.

Another example is [94, Theorem 1.35], which concerns updates of functions of
the scaled identity matrix: Given B,C ∈ Cn×r, r < n, if f is defined on the
spectrum of αIn +BCH and CHB is nonsingular,

f(αIn +BCH)− f(α)In = B(CHB)−1
(
f(αIr + CHB)− f(α)Ir

)
CH .

In other, more general cases, there are no closed formulas and one has to resort
to iterative algorithms for approximating f(A + E) − f(A). In the works [S2]
and [S3]—which are discussed in more detail below—we have proposed such algo-
rithms for general f , based on (rational) Krylov methods. More specialized algo-
rithms for updating the matrix square root have recently been proposed in [152]
and [76].

3.2.1 B. Beckermann, D. Kressner, and M. Schweitzer,
Low-rank updates of matrix functions, SIAM J. Matrix
Anal. Appl., 39 (2018)

A basic polynomial Krylov algorithm for approximating f(A+E)− f(A) is pro-
posed in [S3], specifically for the rank-one case E = bcH . It can be extended
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3 Fréchet derivatives and low-rank updates of matrix functions

to more general low-rank matrices E either by employing block Krylov methods
(see also Section 3.2.2 below) or by considering a rank-r update as a sequence
of rank-one updates. Similar to the approach outlined for Fréchet derivatives in
Section 3.1.1, the general idea is to find an approximation of the form

f(A+ bcH)− f(A) ≈ Fm := UmXm(f)V
H
m , (3.19)

where Um, Vm are bases of the Krylov subspaces Km(A, b) and Km(AH , c), re-
spectively, and we have the Arnoldi relations

AUm = UmGm + gm+1,mvm+1e
H
m ,

AHVm = VmHm + hm+1,mwm+1e
H
m .

The core factor Xm(f)
42 can be obtained from

f

([
Gm ‖b‖‖c‖e1eH1
0 HH

m + ‖c‖UH
mbeH1

])
=

[
f(Gm) Xm(f)

0 f(HH
m + ‖c‖UH

mbeH1 )

]
. (3.20)

This is motivated by [S3, Lemma 2.2], which states that

f

([
A bcH

0 A+ bcH

])
=

[
f(A) f(A+ bcH)− f(A)
0 f(A+ bcH)

]
. (3.21)

Note that the proof of this result is based on the integral representation (3.16).
Projecting relation (3.21) onto the tensorized Krylov space Km(AH , c)⊗Km(A, b)
then exactly gives (3.20).

As an important element in the convergence analysis of the resulting method, as
well as for motivating that (3.19) is indeed a sensible approximation, we derive a
polynomial exactness property in [S3, Theorem 3.2].

Theorem 3.4. (Theorem 3.2 in [S3]) Let A ∈ Cn×n, b, c ∈ Cn. Then the
Krylov subspace approximation (3.19) is exact for all p ∈ Πm, i.e.,

p(A+ bcH)− p(A) = UmXm(p)V
H
m .

Using Theorem 3.4, it is rather straightforward to obtain a convergence result
for (3.19) in the Hermitian case, exploiting a relation to polynomial approximation
problems. Specifically, [S3, Theorem 4.1] states that when A is Hermitian and f
is defined on a compact convex set E containing W (A) ∪W (A+ bbH), the error
of (3.19) satisfies

‖f(A+ bbH)− f(A)− UmXm(f)U
H
m ‖ ≤ 4 min

p∈Πm

‖f − p‖E

42We explicitly denote the dependence on f for later utility.
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Figure 3.6: Exact error norm and error bound when updating the matrix exponential under a
rank-one perturbation using the algorithm from [S3]. In this example A ∈ R100×100 is diagonal
with eigenvalues equidistantly spaced in [−20, 0] and b is a random vector of unit norm, resulting
in spec(A− bb∗) ⊆ [−20.2, 0] =: E. Originally [S3, Figure 5.1].

with the supremum norm ‖f‖E := supz∈E |f(z)|. We also derive a generalization
of this result to the non-Hermitian case based on the Crouzeix–Palencia theo-
rem [49,51], but it is of limited practical use, as it requires bounding the error of
a polynomial approximation of f on a set that contains W (A), where

A :=

[
A bcH

0 A+ bcH

]
(3.22)

is the block matrix from the left-hand side of (3.21). Unfortunately, as we illus-
trate in [S3, Section 6.2], W (A) can be significantly larger than W (A) ∪W (A+
bcH).

In later work [S2] (see Section 3.2.2 below), we present a refinement of this result
which gives much better convergence bounds also in the non-Hermitian case, based
on a bivariate extension of the Crouzeix–Palencia theorem [50]. As this tool was
not available at the time of writing [S3], we resorted to other techniques to still
obtain convergence bounds for non-Hermitian matrices.

To be specific, we exploit the integral representation (3.16) together with tech-
niques based on conformal mappings in the complex plane. This way, one can
obtain very general bounds (see, e.g., [S3, Theorem 5.1]), which depend on non-
explicit constants, though. Explicit bounds can be obtained when restricting to
specific functions. In particular, we obtain superlinear convergence bounds for the
matrix exponential [S3, Corollaries 5.3 and 5.5] and linear convergence bounds
for Stieltjes functions [S3, Theorem 5.7, Corollaries 5.8 and 5.9]. As an exam-
ple, Figure 3.6 illustrates the error bound that we obtain for the exponential;
see [S3, Example 5.4] for details. We note that the convergence rate is predicted
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very accurately, but that the magnitude of the error is severely overestimated due
to large constants in our bounds.43

In numerical experiments focusing on updating communicability measures subject
to changes in the edges of a network, we illustrate that our method works effi-
ciently and can outperform alternative approaches. We also present an experiment
based on a convection-diffusion problem in order to illustrate the performance of
our method in the non-Hermitian case. While we only have much looser conver-
gence estimates available in this case, the practical performance still turns out to
be satisfactory; see [S3, Section 6].

3.2.2 B. Beckermann, A. Cortinovis, D. Kressner, and
M. Schweitzer, Low-rank updates of matrix functions II:
Rational Krylov methods, SIAM J. Numer. Anal., 59
(2021)

Our work [S2] is a direct follow-up to [S3] discussed in Section 3.2.1 above. As new
contributions to the updating algorithm for general f , we consider projection onto
rational Krylov subspaces and directly incorporate a block Krylov framework. We
therefore write the low-rank update as BCH with B,C ∈ Cn×` in the following.
From an algorithmic point of view, these modifications are rather straightforward,
building upon the large body of available work on rational Krylov methods; see,
e.g., [29,30,89,90,142,143] and the references therein. We summarize the resulting
method in Algorithm 1, where qm(z) = (z−ξ1) · · · (z−ξm) denotes the nodal poly-
nomial corresponding to the poles ξ1, . . . , ξm ∈ C of the rational Krylov space.44

Note that due to the block setting, Um, Vm ∈ Cn×m` and Gm, Hm ∈ Cm`×m`.

Algorithm 1 Rational Krylov subspace approximation of f(A+BCH)− f(A)
1: Perform m steps of block rational Arnoldi to compute an orthonormal basis
Um of qm(A)−1Km(A,B) and set Gm = UH

mAUm.
2: Perform m steps of block rational Arnoldi to compute an orthonormal basis
Vm of q̄m(AH)−1Km(AH , C) and set H = V H

m A
HVm.

3: Compute matrix function Fm = f

([
Gm (UH

mB)(V H
m C)

H

0 HH
m + (V H

m B)(V H
m C)

H

])
.

4: Set Xm(f) = Fm(1 : m`,m`+ 1 : 2m`).
5: Return UmX(f)V H

m .

43This is a very typical phenomenon in convergence bounds for Krylov subspace methods and
not a specific shortcoming of our methodology.

44Compared to the presentation in Section 1.4, we make the non-standard choice of a denomi-
nator polynomial from Πm instead of Πm−1 here, as otherwise the resulting method would
not be equivalent to the approach from [31] when applied to a rational function.
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Similar to the polynomial exactness property stated in Theorem 3.4, we derive a
rational exactness property as backbone for further analysis of the method [S2,
Theorem 3.3]: Taking a rational function of the form r = pm/qm with pm ∈ Πm,
we have that

r(A+BCH)− r(A) = UmXm(r)V
H
m ,

provided that r(A), r(A+ BCH) as well as r(Gm), r(HH
m + (V H

m B)(V H
m C)

H) are
well-defined.

We also analyze how our method relates to the update formula from [31, Theo-
rem 3] given in (3.18). It turns out that both approaches are mathematically
equivalent in exact arithmetic when applied to a rational function, but that
our new approach can be expected to be numerically more stable. Addition-
ally, for a general function f , compared to first approximating r ≈ f and then
using [31, Theorem 3], applying our rational Krylov method requires significantly
less knowledge of spectral information on A and A+BCH : Only the denominator
polynomial qm needs to be chosen “by hand”, while the numerator polynomial is
determined automatically by the method.

We again analyze the convergence of the method based on integral representa-
tions and conformal mappings, using similar tools as outlined in Section 3.2.1.
Additionally, as was already briefly mentioned above, we also derive a strength-
ened convergence result for the polynomial Krylov method in the non-Hermitian
case [S2, Theorem 4.3]. It relates the approximation error to polynomial approx-
imations of the derivative of f . To be more precise,

‖f(A+BCH)− f(A)− UmXm(f)V
H
m ‖F ≤ 2(1 +

√
2)2‖BCH‖F inf

p∈Πm−1

‖f ′ − p‖E,

where E is a compact convex set containing W (A) and W (A + BCH), but not
necessarily W (A), with A from (3.22).

As an additional algorithmic contribution, we derive a specialized method for
low-rank updates of the matrix sign function. When approximating sign(A)b for
Hermitian, nonsingular A by Krylov subspace methods, it is common practice to
exploit the relation

sign(A) = (A2)−1/2A

and work with the Krylov subspaceKm(A2, Ab) instead ofKm(A, b); see, e.g., [68].
This has the advantage that W (A2) does not contain a singularity of the inverse
square root, so that all Krylov iterates are guaranteed to be defined. Addition-
ally, this approach typically smooths out convergence which tends to be quite
oscillatory when working with Km(A, b).

59



3 Fréchet derivatives and low-rank updates of matrix functions

0 10 20 30 40 50 60
10−7

10−5

10−3

10−1

Krylov subspace dimension

er
ro
r
no

rm
General purpose algorithm, 10 poles Sign-specific algorithm, 10 poles
General purpose algorithm, , 2 poles Sign-specific algorithm, 2 poles

Figure 3.7: Convergence curves of general purpose and sign-specific rational Krylov methods
for approximating sign(A+BB∗)−sign(A), where spec(A) ⊆ [−1,−10−2]∪[10−2, 1], ‖B‖F = 1.
The rational Krylov methods uses the poles of a Zolotarev approximation [172] of degree 2 or
10, repeated cyclically. Originally [S2, Figure 3].

Adapting this approach to Hermitian low-rank updates BJBH (with J = JH)
requires some special care. We have

(A+BJBH)((A+BJBH)2)−1/2 − A(A2)−1/2

= (A+BJBH)
(
(A2 + D̃)−1/2 − (A2)−1/2

)
+BJBH(A2)−1/2

with D̃ := ABJBH+BJBH(A+BJBH), so that a rank-` update of sign(A) cor-
responds to performing a rank-2` update of (A2)−1/2A and evaluating the action
of (A2)−1/2 on the block vector B. In [S2, Algorithm 4], we present a ratio-
nal Krylov method specifically tailored for this task, employing projection onto
qm(A

2)−1Km(A2, [B,AB]), which is well-suited for both tasks mentioned above.
Convergence of the algorithm is proven in [S2, Theorem 5.2], with the convergence
rate based on the error of best rational approximation of the inverse square root
z−1/2 on the interval

E =
[
min{λmin(A

2), λmin((A+BJBH)2)},max{λmax(A
2), λmax((A+BJBH)2)}

]
.

We also point out a curious connection to Krylov subspace methods for Sylvester
matrix equations in [S2, Section 5.2]. The solution of these can be written in
terms of the matrix sign function, and it turns out that our update algorithm
reduces exactly to well-known rational Krylov methods for matrix equations when
appropriately applied in this setting.
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3.3 Further comments on the connection between the two topics of this chapter

3.3 Further comments on the connection between
the two topics of this chapter

We conclude this chapter by providing some additional comments on a further in-
terconnection of its two main topics—Fréchet derivatives and low-rank updates—
that seems to have gone unnoticed so far. We focus specifically on the striking
algorithmic similarities of the Krylov methods we presented for both cases.

Going back to the basic block representation (3.2) for the Fréchet derivative,
we can alternatively consider the problem of finding the Fréchet derivative with
rank-one direction term E = bcH as performing an update of the block-diagonal
matrix

A :=

[
A 0
0 A

]
.

Specifically, evaluating the Fréchet derivative is equivalent to performing a low-
rank update from f(A) to

f

(
A+

[
b
0

]
[0, cH ]

)
= f

([
A bcH

0 A

])
and then extracting the top-right block. Applying, e.g., the Krylov method
from [S3] to perform this update requires building bases Um,Vm of the Krylov
spaces

Km
(
A,

[
b
0

])
and Km

(
AH ,

[
0
c

])
and forming the corresponding projections Gm := UH

mAUm, Hm := VHmA
HVm.

Due to the block-diagonal structure of A and the nonzero pattern of the involved
vectors, the orthonormal bases obtained from the Arnoldi method are simply
given by

Um :=

[
Um
0

]
and Vm :=

[
0
Vm

]
and the corresponding projections of A are

Gm = [UH
m , 0]

[
A 0
0 A

] [
Um
0

]
= Gm and

Hm = [0, V H
m ]

[
AH 0
0 AH

] [
0
Vm

]
= Hm.

For obtaining the core factor, one therefore needs to evaluate

f

 Gm ‖b‖‖c‖e1eH1
0 HH

m + ‖c‖VHm
[
b
0

]
[eH1 ,0

H ]

 = f

(
Gm ‖b‖‖c‖e1eH1
0 HH

m

)
,
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3 Fréchet derivatives and low-rank updates of matrix functions

where the equality follows from VHm

[
b
0

]
= 0. This is precisely (3.6), so that

both approaches lead to exactly the same algorithm. An advantage of the ap-
proach in [S11] is that it allows working just with W (A) for the convergence
analysis, while the “detour” via more general low-rank updates would require to
also incorporate W (A+ bcH) into the analysis.
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CHAPTER 4

DECAY BOUNDS AND PROBING
METHODS

The matrix function f(A) is in general a full matrix, even when A ∈ Cn×n is
sparse. However, many of its entries are typically extremely small, the more so
the farther they are away from the sparsity pattern of A.45 See Figure 4.1 for an
example of this phenomenon.

This decay behavior in matrix functions has been studied since a long time. Early
publications on the topic mostly focused on the important special case of banded
A, and mostly considered the inverse [57,58,67,78,79,110,130] and the exponen-
tial [18, 23, 106, 122, 139]. Further results on other classes of functions and for
more general sparsity patterns can be found in, e.g., [16, 20, 21, 23, 139, 148]; see
also the survey [15].

It is of great interest to be able to accurately predict the decay in matrix functions,
as this, e.g., allows to construct accurate sparse approximations of f(A) [138] or
related quantities; see, e.g., [34–36, 88] for applications in Markov chain queuing
models, quantum dynamics and inverse covariance estimation. More generally,
if a rapid decay in f(A) is present, this can be exploited for designing linearly
scaling algorithms for a wide variety of computational problems involving matrix
functions [20, 43].

Another application which heavily relies on decay in f(A) that has emerged in
recent years is trace estimation via probing methods [22, 84, 118, 158, 159, 161],
which we cover in more detail in Section 4.2 below.
45How exactly this should be understood will be made more precise in Section 4.1 below.
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Figure 4.1: Exponential of discretized two-dimensional Laplace operator A ∈ R64×64. Left:
Sparsity pattern of A. Right: Magnitude of the entries in exp(−A).

4.1 Decay bounds for matrix functions

A standard approach for obtaining decay bounds for functions of Hermitian—or
more generally normal—matrices which dates back at least to [58] is to exploit
a strong relationship to polynomial approximation. In order to explain this ap-
proach, we first define the graph of A and the geodesic distance in that graph.

Definition 4.1. Let A ∈ Cn×n. The (possibly directed) graph of A is
GA = (VA, EA), with nodes VA := {1, . . . , n} and edges EA := {(i, j) : aij 6=
0, i 6= j}.

The geodesic distance between two nodes i and j inGA, denoted as dist(i, j),
is the length of the shortest path starting at node i and ending at node j.

It is well-known that the nonzero entries in polynomials of a sparse matrix A
“spread out” along paths in GA. To be specific, if pm ∈ Πm, we have

[pm(A)]ij = 0 whenever dist(i, j) > m.46 (4.1)

Using this relation, setting m := dist(i, j) + 1 and letting pm be any polynomial
of degree m, we have for normal A,

|[f(A)]ij| = |[f(A)]ij − [pm(A)]ij| ≤ ‖f(A)− pm(A)‖ ≤ max
z∈E
|f(z)− pm(z)|,

where E ⊂ C is some set containing spec(A). In particular, we thus have

|[f(A)]ij| ≤ min
p∗m∈Πm

max
z∈E
|f(z)− p∗m(z)|,

46See also Example 1.4 for further explanations on the origin of this relation.
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4.1 Decay bounds for matrix functions

i.e., the magnitude of the entries in f(A) is directly related to the error of
best polynomial approximation of f on the set E. Note that when A is Her-
mitian, E can be taken as an interval on the real line, while for normal—but
not Hermitian—A one needs to take a more general convex set in the complex
plane.

As the error of best polynomial approximation decreases monotonically with m,
this result also suggests that the magnitude of [f(A)]ij can be expected to become
smaller the larger the geodesic distance dist(i, j) is.47

4.1.1 A. Frommer, C. Schimmel, and M. Schweitzer, Bounds
for the decay of the entries in inverses and Cauchy–
Stieltjes functions of certain sparse, normal matrices,
Numer. Linear Algebra Appl., 25 (2018)

In our work [S6], we mostly focused on deriving bounds for the decay in inverses
of normal matrices with spectrum located in a line segment [λ1, λ2] in the complex
plane. This class of matrices is more general than the class of Hermitian matrices,
but easier to handle than general normal matrices. As important, practically rel-
evant special cases, it contains (shifted) skew-Hermitian matrices, and Hermitian
matrices shifted by a complex multiple of the identity.

Our main result [S6, Theorem 2] concerning this type of matrices asserts that if
0 /∈ [λ1, λ2], then for i 6= j

|[A−1]ij| ≤ 2 ‖A−1‖ 1

qdist(i,j)−1
(4.2)

with
q = eRe(arcosh(x)) > 1 and x =

λ1 + λ2
λ2 − λ1

,

which is proven by exploiting approximation properties of Chebyshev polynomials.
The result can be specialized to the cases mentioned above, potentially giving
more explicit decay bounds.

When the spectrum of A contains a “hole” (typically around the intersection of
the line segment [λ1, λ2] with the real axis), it can be beneficial to reflect this
in the decay bounds instead of considering just a single line segment containing
the spectrum. For example, let A = aI + S where 0 6= a ∈ R and S is a
47Note that some of our publications discussed in the following originally stated their results for

banded matrices. For a more consistent presentation, we adapt these results to the geodesic
distance (except for results in Section 4.1.2 which only apply to tridiagonal matrices).
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Figure 4.2: Left: Bounds for [A−1/2]ij , j = 120 for the matrix A = tridiag(−1, 4,−1), n = 200.
Right: Bound (4.3) for (sI +D)−1

ij , n = 1024, j = 504 for a staggered Schwinger discretization.
Adapted from [S6, Figures 5 & 8].

nonsingular, skew-Hermitian matrix with spectrum contained in a set of the form
i[−b2,−b1]∪ i[b1, b2], where b1 = minλ∈spec(S) |λ| and b2 = maxλ∈spec(S) |λ|. Then

|[A−1]ij| ≤ 2 ‖A−1‖ ·

{
qdist(i,j) for dist(i, j) odd,
qdist(i,j)−1 for dist(i, j) even,

where
q =

(√
x+
√
x+ 1

)−1

with x =
a2 + b21
b22 − b21

. (4.3)

In a detailed comparison, we show that (4.3) potentially predicts the slope of the
actual decay a lot more accurately than (4.2), in particular when the gap around
the real axis is large. We also compare to previously proposed bounds from [58,79]
and are able to show that also in cases where (4.3) gives the same slope as the
results of [58, 79], the constant in front of qdist(i,j) is much smaller, by a factor
that scales with the reciprocal of the condition number of A, so that our decay
bounds are much tighter for ill-conditioned A.

In addition to results for the inverse, we also consider Cauchy–Stieltjes functions of
normal matrices. For Hermitian positive definite A, we improve upon a previous
result of [23]: We show in [S6, Theorem 4] that when f is a Cauchy–Stieltjes
function, we have

|[f(A)]ij| ≤ 2f(λmin) q
dist(i,j) with q =

√
κ(A)− 1√
κ(A) + 1

. (4.4)

This result improves over [23, Theorem 4.6] in two ways: First, the constant in
the decay bound is much smaller, and second, the bound has an explicit form
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4.1 Decay bounds for matrix functions

that can be evaluated analytically, while the bound of [23] can only be evaluated
using numerical quadrature.

In [S6, Lemma 3, Theorem 5 & 6] we also consider Cauchy–Stieltjes functions
of other classes of normal matrices with spectrum on a line segment, obtaining
results which are reminiscent of what we obtained for the inverse, albeit with
larger and more complicated (and sometimes non-explicit) constants.

In Figure 4.2, we illustrate the bounds we obtain for two model problems. On
the left-hand side, we report decay bounds for the square root of a shifted one-
dimensional Laplace operator, i.e., a Hermitian positive definite matrix. We ob-
serve that our bound predicts the same decay rate as the previous bound from [23],
but involves a slightly smaller constant and is thus a bit sharper. We stress again
that the main merit of the bound lies in the availability of a closed form, while the
bounds from [23] can in general only be evaluated numerically. The right-hand
side shows our new bound for the staggered Schwinger discretization from quan-
tum electrodynamics on a periodic two-dimensional lattice.48 This discretization
yields a system

(sI +D)ψ = φ,

where D is skew-Hermitian and has a spectrum that is symmetric with respect
to the origin (due to the odd-even structure of the coupling). This is exactly the
setting that is required for using our decay estimate (4.3).

4.1.2 A. Frommer, C. Schimmel, and M. Schweitzer, Non-
Toeplitz decay bounds for inverses of Hermitian positive
definite tridiagonal matrices, Electron. Trans. Numer.
Anal., 48 (2018)

The bounds derived in [S6] are of the form

|[f(A)]ij| ≤ c · qdist(i,j).

In a direct follow-up work [S7], we address two shortcomings that these bounds
have—and that they have in common with essentially all other decay bounds
for f(A) or A−1 that had been proposed in the literature up to that point. We
restrict to the case f(z) = z−1 and tridiagonal A, so that dist(i, j) = |i− j|, i.e.,
the bounds take the form

|[A−1]ij| ≤ c · q|i−j|. (4.5)
48Note that we arranged the column entries according to the underlying lattice, as this gives a

better intuition about the actual graph distances than using the linear ordering induced by
the vector indices.
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Figure 4.3: Actual magnitude of the entries of the 50th column of A−1, where A ∈ R100×100

is the matrix from [S7, Example 1.2], together with bound (4.6) for ` = 0, . . . , 99. Adapted
from [S7, Figure 3.2].

The first shortcoming of (4.5) that we address is that it can only predict a linear
decay in the entries of A−1, while one easily finds (or constructs) examples in
which the actual decay that one observes is superlinear, in particular when the
eigenvalues of A form clusters within the spectral interval.

This phenomenon can be explained quite easily by adapting a technique that
is also sometimes used for explaining superlinear convergence behavior of the
conjugate gradient method [121].

This technique requires detailed information on the spectrum, though (instead
of just the smallest and largest eigenvalue), so that it can only be seen as a
theoretical tool, not as a practical method for obtaining decay bounds in an
actual computation. It is based on the `th effective condition number, which is
defined as

κ`(A) =
λn−`
λ1

,

where λmin(A) = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax(A), so that κ0(A) = κ(A) is the
usual two-norm condition number of A. In [S7, Theorem 3.1], we show that the
entries of A−1 can be bounded in terms of the effective condition number as

|[A−1]ij| ≤
2

λ1
q
|i−j|−`
` where q` =

√
κ`(A)− 1√
κ`(A) + 1

(4.6)

for all ` = 0, 1, . . . , |i − j| − 1. Equation (4.6) gives a family of bounds for each
entry of A−1, and the value of ` which gives the tightest bound depends on the
specific entry and the eigenvalue distribution of A, as increasing ` improves the
decay rate q` but reduces its exponent. See Figure 4.3 for an illustration of the
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4.1 Decay bounds for matrix functions

family of bounds obtained this way.49 We can observe that the lower envelope
of all bounds (4.6) quite accurately predicts the actual decay behavior in the
depicted column of A−1.

The second problem is best observed when interpreting (4.5) as an entry-wise
inequality |A−1| ≤ Q, where

Q = c ·


q0 q1 q2 · · · qn−1

q1 q0 q1
. . . ...

... q1
. . . . . . ...

... . . . . . . . . . q1

qn−1 · · · · · · q1 q0

 .

The matrix Q is a Toeplitz matrix, which lies in the nature of the bound (as it
only depends on the distance of i and j). However, there is no reason to assume
that A−1 is a Toeplitz matrix, even when A itself is Toeplitz. Therefore, a bound
of this form cannot be expected to be descriptive for all parts of A−1, but rather
only for the portion which shows the slowest decay, with the bounds for other
entries in A necessarily following the same pattern.

Our approach to overcome this limitation (for tridiagonal matrices) is based on a
splitting of A into a block diagonal matrix and a rank-one matrix

A =

[
A11 A22

A21 A22

]
=

[
B1 0
0 B2

]
+ uuH , u = α

(
ek +

ak+1,k

|ak+1,k|
ek+1

)
∈ Cn, (4.7)

where A11 ∈ Ck×k, A22 ∈ C(n−k)×(n−k) and α =
√
|ak+1,k|. We then apply the

Sherman–Morrison–Woodbury formula (3.17) to the decomposition (4.7), which
allows to writeA−1 as the sum of a block diagonal and a rank-one term, which both
exhibit an exponential decay, from which the final result follows. One limitation
of this technique is that it requires B1 and B2 from (4.7) to be positive definite.
This is not necessarily the case even when A is positive definite, but it can be
guaranteed when A is, in addition, diagonally dominant.

In that case, according to [S7, Theorem 4.1], we can bound the entries of A−1

as

|[A−1]ij| ≤


c1 q

|i−j|
1 + c21 c̃ q

2k−j−i
1 for i, j ≤ k

c2 q
|i−j|
2 + c22 c̃ q

i+j−2(k+1)
2 for i, j > k

c1 c2 c̃ q
k−i
1 qj−k−1

2 for i ≤ k < j

c1 c2 c̃ q
j−k
1 qi−k−1

2 for j ≤ k < i

(4.8)

49Details on how the matrix A for this is example is constructed are given in [S7, Example 1.2],
following the principles outlined in [117, Section 6.1].
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Figure 4.4: Actual magnitude of the entries of A−1, where A ∈ R100×100 is the matrix from [S7,
Example 1.2], together with bounds obtained by combining (4.8) with (4.6) for best possible `.
Originally [S7, Figure 4.2].

where

qs =

√
κ(Bs)− 1√
κ(Bs) + 1

, κ(Bs) =
λmax(Bs)

λmin(Bs)
, cs =

2

λmin(Bs)
, s = 1, 2

and

c̃ =
|ak+1,k|

1 + |ak+1,k|
(

1
λmax(B1)

+ 1
λmax(B2)

) .
Note that the bounds in (4.8) can also be combined with the techniques using the
effective condition number discussed above, but we refrain from explicitly stating
the resulting bounds (as we also did in [S7]) as the technique is straightforward
but notation gets heavy and cluttered.

Figure 4.4 shows the bounds obtained by combining (4.6) and (4.8) in compari-
son to the classical (Toeplitz-structured) bounds from [58], again for the matrix
from [S7, Example 1.2]. One can observe that our bound predicts the qualitative
decay behavior—which is quite different in different columns of the matrix—very
well, although the size of the entries is overestimated by two or three orders of
magnitude.

We want to remark that our results from [S7]—both regarding superlinear bounds
as well as non-Toeplitz bounds—were recently extended and generalized to the
matrix sign function and spectral projectors in [21].
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4.1 Decay bounds for matrix functions

4.1.3 M. Schweitzer, Decay bounds for Bernstein functions of
Hermitian matrices with applications to the fractional
graph Laplacian, Electron. Trans. Numer. Anal., 55
(2022)

In [S13], we derive decay bounds for Bernstein functions (see Definition 1.10),
which require slightly different techniques than Cauchy–Stieltjes functions. An
added difficulty arises from the fact that our main motivation for this work was
studying the fractional graph Laplacian LαG, where α ∈ (0, 1) [25, 26, 32, 33, 72]
and LG is the Laplacian of an undirected graph G, which is a singular, positive
semidefinite matrix; cf. Example 1.5. The lack of analyticity of zα at the origin
requires special care and ultimately also leads to much slower decay than what
one observes for analytic functions.

Previously, decay bounds for the fractional graph Laplacian had been found in [16,
33], which predict a power-law decay away from the sparsity pattern of LG. In
particular, based on Jackson’s theorem [128], it is shown in [16, Corollary 3.1]
that if dist(i, j) ≥ 2, we have

|[LαG]ij| ≤
(
1 + π2/2

)
·
(
ρ(LG)

2

)α
· (dist(i, j)− 1)−α, (4.9)

where ρ(LG) denotes the spectral radius of LG.

Using the results outlined in the following, we obtain that the exponent in (4.9)
can be improved—at least asymptotically— from −α to −2α. Our results are
based on exploiting the intimate relation between Bernstein functions and the ex-
ponential, given by the Lévy–Khintchine representation (1.11), which allows one
to essentially integrate over decay bounds for the exponential in order to obtain a
decay bound for a Bernstein function. In particular, we use the result of [23, Theo-
rem 4.2], which is in turn based on the fundamental convergence result for Lanczos
approximations of the exponential due to Hochbruck and Lubich [99, Theorem 2].
Using these results gives the following general bound [S13, Lemma 3.2] which—as
the result in (4.9)—is valid for all i, j with dist(i, j) ≥ 2,

|[f(A)]ij| ≤ 10

∫ 2dist(i,j)
ρ(A)

0

4 exp(−1
4
ρ(A)t)

ρ(A)t

(
eρ(A)t

4dist(i, j)

)dist(i,j)

dλ(t)

+10

∫ dist(i,j)2

ρ(A)

2dist(i,j)
ρ(A)

exp

(
−4dist(i, j)2

5ρ(A)t

)
dλ(t)

+

∫ ∞

dist(i,j)2

ρ(A)

|[exp(−tA)]ij| dλ(t). (4.10)
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The bound (4.10) can be made more explicit for particular Bernstein functions.
In [S13, Theorem 3.3], we apply the result to fractional powers, giving

|[Aα]ij| ≤
α

Γ(1− α)
·

(
10edist(i,j)ρ(A)α

4αdist(i, j)dist(i,j)
· γ
(
dist(i, j)− α− 1,

dist(i, j)

2

)
+10

(
5ρ(A)

4dist(i, j)2

)α
·
(
Γ

(
α,

4

5

)
− Γ

(
α,

2dist(i, j)

5

))
+

ρ(A)α

α · dist(i, j)2α

)
, (4.11)

where Γ(z, s) and γ(z, s) denote the upper and lower incomplete Gamma func-
tion,

Γ(z, s) =

∫ ∞

s

tz−1e−t dt and γ(z, s) =

∫ s

0

tz−1e−t dt,

respectively.

Returning to the initial motivation of studying strength of connection in the frac-
tional graph Laplacian, it is important to observe that the first term in the above
bound goes to zero exponentially when dist(i, j) increases, so that asymptotically,
the second and third term control the decay behavior in LαG. Thus, [S13, Theo-
rem 3.3] gives an asymptotic estimate

|[LαG]ij| . C · dist(i, j)−2α,

where C is a constant that is independent of i and j, thereby improving the
exponent in the power-law decay compared to what was obtained in [16, 33]. An
illustration of this improvement is given in Figure 4.5 for a random geometric
graph; see [S13, Example 4.4] for details on how exactly the problem is set up.

Based on the results obtained for the semidefinite case, we also derive decay
bounds for Bernstein functions of positive definite matrices, exploiting the well-
known relation exp(A− λI) = exp(−λ) exp(A). This allows to shift the smallest
eigenvalue λmin of a positive definite matrix A to zero before applying [23, Theo-
rem 4.2], yielding an additional factor exp(−λmint) in all integrals. This way, we
can obtain improved, sharper bounds, which, however—in contrast to the semidef-
inite case—cannot be cast into a closed form for fractional powers50 and instead
have to be evaluated by numerical quadrature. This, however, typically does not
pose any problem for general-purpose integration packages. The improved bound

50To be precise, only the second integral in (4.12) does not have a closed form solution.
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Figure 4.5: Decay in one column of the fractional Laplacian L
1/2
G for a random geometric

graph G (on a logarithmic scale). Left: Actual decay, Center: Bound (4.9) based on Jackson’s
theorem, Right: New bound (4.11). In the center and right graph, nodes for which no bound is
available are not drawn. Originally [S13, Figure 4.2].

is again valid for dist(i, j) ≥ 2 and reads

|[f(A)]ij| ≤ 10

∫ dist(i,j)
2σ

0

exp(−(σ + λmin)t)

σt

(
eσt

dist(i, j)

)dist(i,j)

dλ(t)

+10

∫ dist(i,j)2

4σ

dist(i,j)
2σ

exp(−tλmin) · exp
(
−dist(i, j)2

5σt

)
dλ(t)

+

∫ ∞

dist(i,j)2

4σ

exp(−tλmin) dλ(t), , (4.12)

where σ = (λmax−λmin)/4; see [S13, Lemma 3.6]. We also derive alternative decay
bounds for Aα exploiting the relation Aα = A·Aα−1 involving the Cauchy–Stieltjes
function f(z) = zα−1 (see [S13, Section 3.3]), but as these bounds turned out to
be always worse than (4.12), and increasingly more so the more ill-conditioned A
becomes, we refrain from reporting them here.

4.1.4 M. Schweitzer, Sensitivity of matrix function based
network communicability measures: Computational
methods and a priori bounds, SIAM J. Matrix Anal.
Appl., 44 (2023) – Section 5

We return to [S15], which was already partly covered in Section 3.1.2. The sec-
ond part of this paper discusses decay bounds for Fréchet derivatives of matrix
functions with structured direction terms, with particular focus on modifying ad-
jacency matrices of complex networks. The results we obtain confirm the intuition
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4 Decay bounds and probing methods

that a modification of certain nodes or edges in a network typically only influ-
ences their direct surroundings heavily, but does not influence nodes which are
“far away”; see also [140] for similar results in a slightly different setting.

Similar to the case of matrix functions, decay bounds for Fréchet derivatives can
be obtained by exploiting polynomial approximation properties. The starting
point for doing so is [S15, Lemma 5.2], which can be seen as an analogue of (4.1)
for Fréchet derivatives: If pm ∈ Πm, then

[Lpm(A, eie
H
j )]uv = 0 if d(u, i) + d(j, v) ≥ m. (4.13)

The direction term in the Fréchet derivative in (4.13) plays a role when inves-
tigating sensitivity with respect to changes in the edge (i, j), cf. (3.8). Addi-
tionally, in the context of removing a node v from the network the direction
term Ev = −(evav: + a:ve

H
v ) plays a role, where av: and a:v denote the vth row

and column of A, respectively. For such direction terms, a similar result holds,
namely

[Lpm(A,Ev)]u1u2 = 0 if d(u1, v) + d(v, u2) ≥ m+ 1.

By combining these results with the bivariate extension of the Crouzeix-Palencia
theorem from [50], one can relate decay in the Fréchet derivative to polynomial
approximation of f ′ on W (A). According to [S15, Theorem 5.4 & Remark 5.5],
it holds

|[Lf (A,Eij)]uv| ≤ C · min
p∈Πm(u,v)−1

max
z∈W (A)

|f ′(z)− p(z)| (4.14)

and

|[Lf (A,Ev)]u1u2| ≤ C ·
√

deg(v) min
p∈Πmv(u1,u2)−1

max
z∈W (A)

|f ′(z)− p(z)| (4.15)

where

C =

{
1 if A is normal,(
1 +
√
2
)2 otherwise,

and we denote by deg(v) :=
∑n

u=1wvu the “weighted degree” (or “strength”) of
node v, and we define

m(u, v) := d(u, i) + d(j, v),

mv(u1, u2) := d(u1, v) + d(v, u2) + 1.

Note that for the exponential function occurring in network sensitivity, f = f ′, so
that approximation results for exp(z) can directly be employed (while for other
functions f , polynomial approximation of the derivative might not always be well
studied).
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4.1 Decay bounds for matrix functions
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bound
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Figure 4.6: Bounds for the sensitivity of subgraph centrality with respect to removal of Moor-
gate station (depicted in white) in a network describing London public transport. Left: Vi-
sualization on London map. Lighter colors correspond to high sensitivity, while darker colors
correspond to low sensitivity. Right: Plot of bounds, sorted descendingly. Originally [S15, Fig-
ures 5.1 & 5.2]. (Street map generated with cartopy [129], map data © OpenStreetMap).

Based on (4.14) and (4.15), several decay results can be obtained by tailoring
them to the shape and location of W (AG). Specifically, we present decay results
for undirected graphs, i.e., symmetric AG, where W (AG) is a real interval [S15,
Corollary 5.6 & 5.11] and for directed graphs where W (AG) is contained in a
disk [S15, Corollary 5.9 & 5.12]. The former results are based on a polynomial
approximation result from [S11, Lemma 2], while the latter employ conformal
mappings and approximation by Faber polynomials.

As an example for this type of result, we report the precise bound from [S15,
Corollary 5.11] in the following and then illustrate it on real-world data. It states
that if

√
λmax − λmin+1 ≤ m(u1, u2) ≤

λmax − λmin

2
+1, with m defined in (4.16),

we have the bound

|[Lexp(AG, Ev)]u1u2 | ≤ 2
√

deg(v)
λmax − λmin

m(u1, u2)− 1
e
λmax− (m(u1,u2)−1)2

5
4 (λmax−λmin) (4.16)

and if m(u1, u2) >
λmax − λmin

2
+ 1, we have the bound

|[Lexp(AG, Ev)]u1u2| ≤ C ·
(

e · (λmax − λmin)

4(m(u1, u2)− 1) + 2(λmax − λmin)

)m(u1,u2)−1

(4.17)

with C = 8
√

deg(v) e
λmax (m(u1,u2)−1)

λmax−λmin
.

Figure 4.6 illustrates the bounds (4.16)–(4.17). We consider a network describing
public transport in London [54, 55] and investigate how the subgraph sensitivity
of nodes reacts to the removal of the node corresponding to Moorgate station near
the city center (e.g., modeling an outage or a terrorist attack). One can clearly
observe that the nearby stations are most strongly affected, while the effect on
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4 Decay bounds and probing methods

nodes at the outskirts of London is very small. It is also interesting to observe that
the “staircase-like” shape of the bound is not only an artifact of the techniques
used for obtaining the results but is actually also visible in the actual sensitivity
values.

4.2 Probing methods for trace estimation

An important task in many areas of scientific computing and data science is
estimating the trace of an implicitly given matrix,

tr(B) =
n∑
i=1

[B]ii.

Here, implicitly given matrix typically means that the matrix can only be accessed
through a routine that returns its matrix vector product, x 7→ Bx . An important
special case on which we want to focus here arises when B = f(A) is the function
of a large, sparse matrix A. In that case, matrix vector products Bx = f(A)x can,
e.g., be approximated via a (polynomial or rational) Krylov subspace method, see
Section 1.4, but f(A) itself cannot be formed.

Probing methods are a special class of trace estimators which try to exploit the
sparsity structure of the underlying matrix A, as this sparsity structure usually
translates into a decay pattern in f(A), as we discussed in Section 4.1. These
methods were originally introduced in [161] and then later adapted and refined
in [8, 22, 118, 158, 159].

Specifically, the first step in a probing method is to construct a partition V1, . . . , Vm
of the set {1, . . . , n}. The most common approach for doing so is by choosing
V1, . . . , Vm according to the colors of a distance-d coloring [77, 150] of the graph
of A, where d is a suitably chosen parameter.51 This means that i, j ∈ V` implies
that dist(i, j) > d.

Given this partitioning, one defines the m probing vectors

v` :=
∑
i∈V`

ei, for ` ∈ {1, . . . ,m} (4.18)

and the corresponding trace estimate

tr(f(A)) ≈ Tm(f(A)) :=
m∑
`=1

vH` f(A)v`. (4.19)

51Appropriate choices of d typically depend both on the accuracy that one aims for and on
properties of A and f
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4.2 Probing methods for trace estimation

It is straightforward to prove that the error of the estimator (4.19) satisfies

|tr(f(A))− Tm(f(A))| =
∣∣∣∣ m∑
`=1

∑
i,j∈V`
i 6=j

[f(A)]ij

∣∣∣∣. (4.20)

From the definition of a distance-d coloring, it is immediate from (4.20) that
the probing approximation is exact if f is a polynomial of degree at most d, as
all entries [f(A)]ij on the right hand side of (4.20) are zero in that case. More
generally, if there is a strong exponential decay in f(A) away from the sparsity
pattern of A, one can expect the trace estimate to be rather accurate, as the
terms in the sum will be small (in particular for large values of d). In [S8], which
is discussed in Section 4.2.1, we perform a rigorous and in-depth analysis of this
methodology.

4.2.1 A. Frommer, C. Schimmel, and M. Schweitzer, Analysis
of probing techniques for sparse approximation and trace
estimation of decaying matrix functions, SIAM J. Matrix
Anal. Appl., 42 (2021)

Our paper [S8] discusses various important aspects of the probing methods that
were introduced above, the most fundamental one probably being a detailed the-
oretical analysis of its error, which was lacking in the literature so far. Start-
ing from (4.20), we derive several error estimates for the probing approxima-
tion (4.19), depending on the specific nature of the graph of A. For example,
specialized results can be derived when A is banded or when GA is a regular
grid.

We present here only two of those results, one that is specific to regular grids and
one that is applicable for general A.

When the graph of A is a regular D-dimensional grid, we provide an easily com-
putable distance-d coloring in [S8, Theorem 2.2]. We then prove in [S8, Theo-
rem 4.2] that if this coloring is used and the entries of f(A) exhibit an exponential
decay |[f(A)]ij| ≤ Cqdist(i,j), the probing error satisfies

| tr(f(A))− Tm(f(A))| ≤ 2CDnLi1−D(q
d),

where Lis(z) =
∑∞

i=1
zi

is
is the polylogarithm.52

52Note that polylogarithms of negative integer order are rational functions of the form Li−s(z) =
ps(z)

(1−z)s+1 where ps is a polynomial of degree s with ps(0) = 0.

77



4 Decay bounds and probing methods

1

2

3

4
5

6

7

8

9
10

11

12

[− 0 0 0 0 0 0 0 0 0 • 0]

⇒
1

2

3

4
5

6

7

8

9
10

11

12

[− − − 0 0 − 0 0 0 • • •]

⇒
1

2

3

4
5

6

7

8

9
10

11

12

[− − − − • − − − • • • •]

Figure 4.7: Spreading of the nonzero entries in the first three Arnoldi basis vectors, starting
with v` = e1 + e11. Entries to which only the iteration corresponding to node 1 contributed
are marked by an orange dash (−) and the corresponding nodes of the graph are marked with
orange color and a dashed line. Entries to which only the iteration corresponding to node 11
contributed are marked by a blue dot (•) and the corresponding nodes of the graph are marked
with blue color and a dotted line. Nodes corresponding to zero entries are filled white and have
a solid line. As the nodes have a distance of 5, no mixing occurs in the first three basis vectors.
Originally [S8, Figure 5.1].

A result for general A can be derived whenever a polynomial approximation prop-
erty of the form

min
pd∈Πd

max
z∈W (A)

|f(z)− pd(z)| ≤ Cqd (4.21)

with C > 0, 0 < q < 1 is available.53 Assuming that (4.21) holds, we prove
in [S8, Theorem 4.4] that

| tr(f(A))− Tm(f(A))| ≤ 2KCnqd, (4.22)

where K = 1 if A is normal and K = 1 +
√
2 otherwise. Note that the factor n

on the right-hand side of (4.22) cannot be avoided and is actually sharp, as it
is an absolute error bound; see also the numerical experiments reported in [S8,
Section 6] which confirm this.

For computing the estimate (4.19), one needs to approximate vH` f(A)v`, typically
by a Krylov subspace method. This gives rise to the question how accurate
these Krylov approximations need to be in order to not spoil the accuracy of the
overall estimator, or, phrased differently, how many Krylov iterations one needs
to perform.

To answer this, note that when starting the Arnoldi iteration with a vector of the
form (4.18), the nonzeros in the basis vectors spread out “along the edges of GA”.
As the probing vectors originate from a distance-d coloring, there is no “mixing”
between the contributions of the different nodes in V` in the first dd+1

2
e iterations;

see Figure 4.7 for an illustration.
53Actually, a similar result can also be obtained for any other form of polynomial approximation

property, but for the ease of exposition we restrict ourselves to this specific type of bound.
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4.2 Probing methods for trace estimation

Using this observation together with convergence bounds for Krylov methods, we
balance the error of the trace estimate against the Krylov error and the error
due to mixing in the basis vectors in order to determine the optimal number
of Krylov steps to perform for each quadratic form. It turns out (and this is
confirmed by numerical experiments) that if A is Hermitian, performing more
than dd+1

2
e iterations cannot be expected to increase the overall accuracy, while

for non-Hermitian A, at most d iterations should be performed; see [S8, Section 5]
for details and [S8, Section 6.1] for a corresponding numerical experiment.

As additional contributions of the paper [S8], we present several other methods
for efficiently determining a distance-d coloring, in particular a general purpose
greedy method that is applicable without relying on a specific structure in A.
We also investigate how to use probing to compute a sparse approximation of
the whole matrix f(A), which is, e.g., relevant for f(z) = z−1 in the context of
sparse approximate inverse preconditioners [26] or in inverse covariance estima-
tion [36]).

We briefly note that in the recent preprint [84], we generalize and extend the
results obtained in [S8] to the case of stochastic probing, where the nonzero entries
of the probing vectors (4.18) are chosen as Rademacher random variables. In
particular, we can improve over (4.22), showing that the error in the resulting
method can in many cases be expected to scale with

√
n rather than with n.
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CHAPTER 5

CONTRIBUTIONS TO EACH
PUBLICATION BY THE AUTHOR

Many of the publications covered in this cumulative habilitation thesis are the
result of collaborative work. Therefore, this chapter contains a summary of the
main contributions that I have made to each of these papers.

Restarted and sketched Krylov methods for matrix
functions

[S5] A. Frommer, K. Kahl, M. Schweitzer, and M. Tsolakis, Krylov
subspace restarting for matrix Laplace transforms, SIAM J. Ma-
trix Anal. Appl., 44 (2023), pp. 693–717.

• Joint work on how to obtain suitable quadrature rules

• Working out details of the connection to restarting for Cauchy–Stieltjes
functions as a special case

• Extension to Bernstein functions

• Joint implementation and experiments

[S9] S. Güttel and M. Schweitzer, A comparison of limited-memory
Krylov methods for Stieltjes functions of Hermitian matrices,
SIAM J. Matrix Anal. Appl., 42 (2021), pp. 83–107.

• General idea for comparison methodology
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5 Contributions to each publication by the author

• Joint derivation of results for inexact (polynomial) inner solves

• Joint implementation and experiments

[S4] M. A. Botchev, L. A. Knizhnerman, and M. Schweitzer, Krylov
subspace residual and restarting for certain second order differ-
ential equations, SIAM J. Sci. Comput., 46 (2024), pp. S223–S253.

• Idea to extend the residual time restarting framework to second-order
ODEs

• Derivation of main formulas and proof of basic residual bounds

• Joint development of algorithmic details

• Joint implementation and experiments

[S10] S. Güttel and M. Schweitzer, Randomized sketching for Krylov
approximations of large-scale matrix functions, SIAM J. Matrix
Anal. Appl., 44 (2023), pp. 1073–1095.

• Idea to combine Krylov methods for f(A)b with randomized sketching

• Closed-form representation for sFOM approximant

• Joint work on convergence theory

• Algorithmic details (adaptive quadrature, stopping criterion)

• Joint implementation and experiments

Fréchet derivatives and low-rank updates of matrix
functions

[S11] P. Kandolf, A. Koskela, S. D. Relton, and M. Schweitzer, Com-
puting low-rank approximations of the Fréchet derivative of a
matrix function using Krylov subspace methods, Numer. Linear
Algebra Appl., 28 (2021), p. e2401.

• Idea to develop a (tensorized) Krylov method for approximating the
whole Fréchet derivative instead of just its action on a vector

• Algorithmic details for the different considered methods

• Convergence theory for Cauchy–Stieltjes functions and the matrix log-
arithm

• Joint implementation and experiments
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[S15] M. Schweitzer, Sensitivity of matrix function based network com-
municability measures: Computational methods and a priori
bounds, SIAM J. Matrix Anal. Appl., 44 (2023), pp. 1321–1348.

• Single-authored

[S14] M. Schweitzer, Integral representations for higher-order Fréchet
derivatives of matrix functions: Quadrature algorithms and new
results on the level-2 condition number, Linear Algebra Appl.,
656 (2023), pp. 247–276.

• Single-authored

[S1] B. Arslan, S. D. Relton, and M. Schweitzer, Structured level-2
condition numbers of matrix functions, Electron. J. Linear Al-
gebra, 40 (2024), pp. 28–47.

• Development of approach for (quasi-)triangular matrices

• Proof of explicit formulas for the level-2 condition number in special
cases

• Joint implementation and experiments

[S12] K. Lund and M. Schweitzer, The Fréchet derivative of the tensor
t-function, Calcolo, 60 (2023), p. 35.

• Overall idea to investigate properties of the Fréchet derivative of the
tensor t-function

• Proof of basic properties

• Idea of using the “shift operator” as tool in derivation of several results

• Theory and algorithms for t-function condition number and tensor
nuclear norm

• Joint implementation and experiments

[S3] B. Beckermann, D. Kressner, and M. Schweitzer, Low-rank up-
dates of matrix functions, SIAM J. Matrix Anal. Appl., 39 (2018),
pp. 539–565.

• Development of algorithm (in particular for the non-Hermitian case)

• Proof of exactness property for polynomials

• Idea of using the integral representation of Cauchy–Stieltjes functions
for the convergence analysis

• Implementation and experiments
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[S2] B. Beckermann, A. Cortinovis, D. Kressner, and M. Schweitzer,
Low-rank updates of matrix functions II: Rational Krylov meth-
ods, SIAM J. Numer. Anal., 59 (2021), pp. 1325–1347.

• Proof of exactness property for rational functions

• Investigation of relation to approach from [31]

• Development of algorithm and theory for updates of the matrix sign
function

• Implementation and experiments

Decay bounds and probing methods

[S6] A. Frommer, C. Schimmel, and M. Schweitzer, Bounds for the
decay of the entries in inverses and Cauchy–Stieltjes functions of
certain sparse, normal matrices, Numer. Linear Algebra Appl.,
25 (2018), p. e2131

• Proof of results for Cauchy–Stieltjes functions

• Comparison to [58] and [79]

• Joint implementation and experiments

[S7] A. Frommer, C. Schimmel, and M. Schweitzer, Non-Toeplitz de-
cay bounds for inverses of Hermitian positive definite tridiagonal
matrices, Electron. Trans. Numer. Anal., 48 (2018), pp. 362–372.

• Idea for finding decay bounds that do not have a Toeplitz structure

• Development of block-partitioning methodology for finding decay bounds

• Joint implementation and experiments

[S13] M. Schweitzer, Decay bounds for Bernstein functions of Hermi-
tian matrices with applications to the fractional graph Laplacian,
Electron. Trans. Numer. Anal., 55 (2022), pp. 438–454.

• Single-authored

[S8] A. Frommer, C. Schimmel, and M. Schweitzer, Analysis of prob-
ing techniques for sparse approximation and trace estimation
of decaying matrix functions, SIAM J. Matrix Anal. Appl., 42
(2021), pp. 1290–1318.
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• Proof of error bounds for D-dimensional lattices involving the poly-
logarithm

• Investigation of implications for Krylov subspace methods

• Joint implementation and experiments
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