BERGISCHE
UNIVERSITAT
WUPPERTAL

Modular Transfer Reinforcement Learning in
Industrial Robotics

Modulares Transfer Reinforcement Learning fiir Industrieroboter

Der Fakultét fiir Elektrotechnik, Informationstechnik und Medientechnik der
Bergischen Universitat Wuppertal vorgelegte Dissertation zur Erlangung des
akademischen Grades eines Doktors der Ingenieurwissenschaften

von

Christian Bitter (geb. Scheiderer)

Erstgutachter: Prof. Dr.-Ing. Tobias Meisen
Zweitgutachter: Prof. Dr.-Ing. Eike Permin

Tag der miindlichen Priifung: 31.10.2025

Abstract

This dissertation makes significant contributions to the field of modular transfer re-
inforcement learning (TRL) in the context of industrial robotics. It systematically
addresses the key issue of sample efficiency and transferability in the application of
deep reinforcement learning (DRL) to industrial robotics. Given that monolithic
end-to-end DRL approaches have high data requirements and lack interpretabil-
ity and transferability, the dissertation proposes and validates a modular decision
pipeline. This pipeline decomposes robot control into four stages that address dif-
ferent aspects of the decision-making process: perception, planning, execution and
control. The contributions of this dissertation are organized according to these four
stages.

The thesis first addresses the issue of applying the discretized DRL paradigm to
industrial robot applications by devising an asynchronous DRL framework and con-
tinuous, smooth action spaces based on Bézier curves. This allows for real-time,
jerk-free robot control, reducing mechanical stress and execution time. Further, the
possibility to predict future vision-based states with generative models is explored.
For the perception module, this thesis introduces a semi-supervised learning strat-
egy which applies unsupervised autoencoder models to compress high-dimensional
image states in combination with domain knowledge in the form of segmentation
maps to extract latent representations usable by a DRL agent. The module is fully
trained in simulation with domain randomization, requiring only a single annotated
real-world image to achieve zero-shot transfer to the real-world.

Substantial contributions are further made regarding the exploitation of structure
in robotic motion for TRL. Here, the thesis shows that hierarchical reinforcement
learning (HRL) enables learning modular, task-agnostic behavioral policies at lower
levels, which are shown to be transferable to new tasks. Additionally, the concept
of assembly-by-disassembly is examined in the context of TRL. Based on the insight
that learning a corresponding disassembly task is easier than the actual assembly
task as the former is more constrained, the thesis proposes a strategy to first solve the
disassembly task and afterward use the reversed trajectories to pretrain an assembly
agent. The results demonstrate the strategy to successfully solve an assembly task
on which a direct DRL approach fails. Finally, the thesis introduces a cross-robot
imitation learning approach, where trajectories are mapped between robots of differ-
ent morphologies using explicit forward /inverse kinematics and embodiment metrics.
It is shown that the mapped demonstrations can be used for effective pretraining.

These contributions are robustly evaluated across three representative use cases: the
academic wire-loop game, a vision-driven object picking scenario, and an industrial
aircraft clip assembly task. Collectively, the results establish that modular TRL
enables more sample-efficient, performant, and more maintainable automation in
industrial robotics. The dissertation concludes with a critical appraisal, drawing
lessons from the results towards future research directions for modular and transfer-
able Al in industrial robotic applications.

Kurzfassung

Diese Dissertation tragt wesentlich zum Bereich des modularen Transfer Reinforce-
ment Learning (TRL) im Kontext der Industrierobotik bei. Sie befasst sich systema-
tisch mit der Problematik der Dateneffizienz und Transferierbarkeit von Deep Re-
inforcement Learning (DRL) in der Industrierobotik. Da monolithische end-to-end
DRL-Ansétze hohe Datenanforderungen haben und es an Interpretierbarkeit und
Ubertragbarkeit mangelt, wird in der Dissertation eine modulare Entscheidungspi-
peline vorgeschlagen und validiert. Diese Pipeline unterteilt die Robotersteuerung in
vier Phasen, die verschiedene Aspekte des Entscheidungsprozesses abdecken: Wahr-
nehmung, Planung, Ausfithrung und Steuerung. Die Beitrége dieser Dissertation sind
nach diesen vier Phasen gegliedert.

Die Arbeit befasst sich zunédchst mit der Anpassung von diskretem DRL fiir Ro-
botikanwendungen, indem ein asynchroner DRIL-Ansatz und kontinuierliche, glatte
Aktionsrdume mittels Bézier-Kurven entwickelt werden. Dies ermoglicht eine ruck-
freie Robotersteuerung und reduziert die mechanische Belastung sowie die Ausfiih-
rungszeit. Dariiber hinaus wird die Vorhersage zukiinftiger visueller Zustédnde mit
generativen Modellen erforscht. Fiir das Wahrnehmungsmodul wird in dieser Arbeit
eine semi-iiberwachte Lernstrategie eingefiihrt, die Autoencodermodelle verwendet,
um hochdimensionale Bildzustédnde zu komprimieren, um kombiniert mit Doménen-
wissen in Form von Segmentierungskarten latente Reprédsentationen zu extrahieren,
welche von einem DRL-Agenten genutzt werden kénnen. Das Modul wird vollsténdig
in der Simulation mit Domain Randomization trainiert und benétigt nur ein einziges
annotiertes reales Bild, um einen Zero-Shot-Transfer in die reale Welt zu erreichen.

Dariiber hinaus werden wesentliche Beitrage zur Strukturausnutzung in Roboter-
bewegungen fiir TRL erbracht. Es wird gezeigt, dass hierarchisches Reinforcement
Learning (HRL) modulare, aufgabenunabhéngige Verhaltensstrategien auf unteren
Ebenen erlernt, die sich auf neue Aufgaben iibertragen lassen. Zusétzlich wird das
Konzept der ,Montage durch Demontage” im Kontext von TRL beleuchtet. Basie-
rend auf der Erkenntnis, dass das Erlernen einer Demontageaufgabe aufgrund einer
starkeren Eingrenzung meist einfacher ist als die eigentliche Montageaufgabe, wird in
dieser Arbeit eine Strategie vorgeschlagen, bei der zunéchst die Demontageaufgabe
gelost und anschliefend die invertierten Trajektorien zum Vortraining eines Monta-
geagenten verwendet werden. Die Ergebnisse zeigen, dass mit dieser Strategie eine
Montageaufgabe erfolgreich gelost wird, bei der ein direkter DRL-Ansatz versagt.
Schlieflich wird in dieser Arbeit ein roboteriibergreifender Imitationsansatz vorge-
stellt, bei dem Trajektorien zwischen Robotern unterschiedlicher Morphologie un-
ter Verwendung expliziter Vorwérts- und Riickwartskinematiken und Embodiment-
Metriken iibertragen werden. Es wird gezeigt, dass die {ibertragenen Demonstratio-
nen fiir ein effektives Vortraining genutzt werden kénnen.

Diese Beitrige werden anhand von drei repriasentativen Fallbeispielen evaluiert: dem
akademischen Wire-Loop-Spiel, einem visuell gesteuerten Objekt-Picking-Szenario
und einer industriellen Montageaufgabe fiir Flugzeug-Clips. Insgesamt zeigen die
Ergebnisse, dass modulares TRL eine effizientere, leistungsfihigere und besser wart-
bare Automatisierung in der Industrierobotik ermdoglicht. Die Dissertation schlief3t
mit einer kritischen Wiirdigung, die aus den Ergebnissen Schliisse fiir zukiinftige
Forschungsansétze hinsichtlich modularer und transferierbarer KI in industriellen
Robotikanwendungen zieht.

Acknowledgments

Although my name is on the cover of this dissertation, this work would not have
been possible without the help and support of many people.

First and foremost, I am deeply grateful to my advisor Prof. Tobias Meisen for
the continuous mentorship and support. I always appreciated the ability to follow
my interests and carve my own path. Although this path included some detours
and took longer than expected, your guidance and availability on and off-topic were
invaluable to get to where I am today - both professionally and personally.

A special thanks go to my former colleagues and now friends: Jannik Peters for
many things - from fun times on the road to valuable feedback on this thesis. Hasan
Tercan for guidance as team leader, Constantin Waubert de Puiseau for letting me
crash on your couch, Robert Maack for keeping me safe in foreign countries, and
Richard Meyes for kicking this whole journey off. I am lucky to have worked with
such a collaborative and supportive team, and cherish lots of good memories in and
beyond the lab.

I would also like to thank the student assistants, collaborators, and project partners
who have worked with me over the years. In particular Timo Thun, Tim Flegel-
skamp, Nik Dorndorf, Malte Mosbach, and Lucas Kiefer.

Without taking away from the importance of the above, I am extremely grateful
to my family for having my back throughout this journey. My parents Renate and
Thomas Scheiderer especially for childcare support, always available to help out in
difficult times. Timon Vogler for hosting me when I needed a change of scenery -
sorry for eating all your food and smearing your whiteboard. Oskar Bitter for just
being you and showing me what really matters. Findus for being a loyal companion
and for barking at students who are late to lectures.

Last but certainly not least, the biggest thank-you goes to my wife, Kristina. I know
that my freedom to work on this thesis was not for free. Weekends and evenings
spent writing meant time away from the family. Night shifts, stress, and resulting
sickness were always felt and compensated by you the most. I am extremely grateful
for your encouragement, patience, and the occasional necessary challenge to my
resource management.

Publications

This dissertation is based in part on the following peer-reviewed publications, which
were written in scope of research activities at the Institute of Information Manage-
ment in Mechanical Engineering (IMA) of the RWTH Aachen University and the
Institute of Technologies and Management of Digital Transformation (TMDT) of
the University of Wuppertal. Note that publications by Christian Scheiderer and
Christian Bitter are authored by the same individual, the author of this thesis.

Thesis-related publications

Conference publications

MEYES, R., SCHEIDERER, C., AND MEISEN, T. Continuous motion planning for
industrial robots based on direct sensory input. Procedia CIRP 72 (2018), 291-296

SCHEIDERER, C., THUN, T., AND MEISEN, T. Bézier Curve Based Continuous
and Smooth Motion Planning for Self-Learning Industrial Robots. Procedia Manu-
facturing 38 (Jan. 2019), 423-430

SCHEIDERER, C., THUN, T., IDzIK, C., POSADA-MORENO, A. F., KRAMER, A.,
LoHMAR, J., HIRT, G., AND MEISEN, T. Simulation-as-a-service for reinforcement
learning applications by example of heavy plate rolling processes. Procedia Manu-
facturing 51 (2020), 897-903

SCHEIDERER, C., MOSBACH, M., POsSADA-MORENO, A. F., AND MEISEN, T.
Transfer of Hierarchical Reinforcement Learning Structures for Robotic Manipula-

tion Tasks. In 2020 International Conference on Computational Science and Com-
putational Intelligence (CSCI) (2020), IEEE, pp. 504-509

SCHEIDERER, C., DORNDORF, N., AND MEISEN, T. Effects of Domain Ran-
domization on Simulation-to-Reality Transfer of Reinforcement Learning Policies
for Industrial Robots. In Advances in Artificial Intelligence and Applied Cognitive
Computing, H. R. Arabnia, K. Ferens, D. De La Fuente, E. B. Kozerenko, J. A. Oli-
vas Varela, and F. G. Tinetti, Eds. Springer International Publishing, Cham, 2021,
pp- 157-169

MASCHLER, B., ViETz, H., TERCAN, H., BITTER, C., MEISEN, T., AND WEY-
RICH, M. Insights and example use cases on industrial transfer learning. Procedia

CIRP 107 (2022), 511-516

BITTER, C., PETERS, J., TERCAN, H., AND MEISEN, T. Industrial Cross-Robot
Transfer Learning. Procedia CIRP 120 (Jan. 2023), 1297-1302

Magazine publications

SCHEIDERER, C., AND MEISEN, T. Auf eigenen Fiilen: Machine Learning in der
Industrie. X Special 2018 - Industrial Internet of Things (2018), 48-51

MEYES, R., SCHEIDERER, C., THIELE, T., AND MEISEN, T. Selbstlernende adap-
tive Robotersteuerung: Kontinuierliche Bewegungsplanung fiir Industrieroboter auf

Basis von Sensordaten. Fabriksoftware (2018), 42-44

VieETz, H., MASCHLER, B., TERCAN, H., BITTER, C., MEISEN, T., AND WEY-
RICH, M. Industrielles Transfer-Lernen: Von der Wissenschaft in die Praxis. atp
magazin 64, 8 (2022), 86-93

Preprint publications

BiTTER, C., THUN, T., AND MEISEN, T. Karolos: An Open-Source Reinforcement
Learning Framework for Robot-Task Environments, Dec. 2022

Other publications

Conference publications

BELLGARDT, M., SCHEIDERER, C., AND KUHLEN, T. W. An Immersive Node-
Link Visualization of Artificial Neural Networks for Machine Learning Experts. In
2020 IEEE International Conference on Artificial Intelligence and Virtual Reality
(AIVR) (Dec. 2020), pp. 33-36

TERCAN, H., BITTER, C., BODNAR, T., MEISEN, P., AND MEISEN, T. Evaluat-
ing a Session-based Recommender System using Prod2vec in a Commercial Applica-
tion. In Proceedings of the 23rd International Conference on Enterprise Information
Systems (2021), SCITEPRESS - Science and Technology Publications

BiTTER, C., TERCAN, H., MEISEN, T., BODNAR, T., AND MEISEN, P. When
to Message: Investigating User Response Prediction with Machine Learning for Ad-

vertisement Emails. In 2021 jth International Conference on Artificial Intelligence
for Industries (Piscataway, NJ, 2021), K. Li and J. Shih, Eds., IEEE, pp. 25-29

PETERS, J., WAUBERT DE PUISEAU, C., TERCAN, H., GOPIKRISHNAN, A., LU-
CAS DE CARVALHO, G. A., BITTER, C., AND MEISEN, T. Emergent language:
A survey and taxonomy. Autonomous Agents and Multi-Agent Systems 39, 1 (Mar.
2025), 18

Contents

Abbreviations xi
List of Figures xiii
List of Tables xxi
1 Introduction 1
1.1 Motivation Lo 1

1.2 Research Questions 4
1.3 Use Cases oo i i i 7
1.3.1 Use Case 1: Wire-Loop Game 7

1.3.2 Use Case 2: Object Picking 9

1.3.3 Use Case 3: Clip Assembly in Aircraft Manufacturing 11

1.4 Structure 14

2 Foundations 17
2.1 Industrial Roboticso 17
2.1.1 Kinematics Description 18

2.1.2 Parametric Path Description 19

2.1.3 Closed-Loop Robot Control 20

2.2 Deep Learning 21
2.2.1 Machine Learning Fundamentals 21

2.2.2 Artificial Neural Networks 22

2.2.3 Computer Vision 23

2.3 Deep Reinforcement Learning 25
2.3.1 Reinforcement Learning Fundamentals 25

2.3.2 Deep Reinforcement Learning Algorithms for Continuous State-
Action Spaces 28

24

2.3.3 Hierarchical Reinforcement Learning
2.3.4 Environment Parallelization
Transfer Reinforcement Learning
2.4.1 Simulation-to-Reality Transfer
2.4.2 Policy Modularization

2.4.3 Imitation Learning L.

Related Work

3.1
3.2
3.3

3.4
3.5

Real-Time Asynchronous Reinforcement Learning
Sim2Real Transfer with Domain Randomization
Robotic Movement Structure Exploitation
3.3.1 Cross-Task Transfer in Hierarchical Reinforcement Learning

3.3.2 Assembly-by-Disassembly
Cross-Robot Transfer Reinforcement Learning

Research Gaps and Focus

Framework and Baselines

4.1
4.2

4.3

4.4

4.5

Learning Frameworko
Use Case 1: Wire-Loop Game
4.2.1 Environment Design
4.2.1.1 Real-World Environment
4.2.1.2 Simulation Environment
4.2.2 Agent Design
4.2.3 Experimental Evaluation
4.2.3.1 Real-World Experiments
4.2.3.2 Sim2Real Experiments
Use Case 2: Object Picking
4.3.1 Environment Design 0.
4.3.1.1 Fetch Benchmark Environments
4.3.1.2 Use-Case Specific Environment Interface
4.3.2 Experimental Evaluation, ...
4.3.2.1 Analysis of Task Difficulty
4.3.2.2 Fetch Benchmark Experiments
Use Case 3: Clip Assembly
4.4.1 Environment Design
4.4.2 Experimental Evaluation

Mapping Research Questions to Use Cases

37
38
41
45
46
48
o1
95

5 Smooth Continuous Robot Control

5.1 Smoothness-Constrained Action Space Design

5.2 Asynchronous Learning Framework

5.3 Dynamics Rollout Module Development and Validation

5.3.1
5.3.2

Dynamics Rollout Module Architecture

Dataset Collection and Training Results

5.4 Exploration of Design Choices

5.5 Asynchronous Wire-Loop Experiments

5.6 Summary

6 Sim2Real Transfer of Perception Modules

6.1 Pose Estimation Modules

6.1.1
6.1.2

Simulation Dataset

Experimental Evaluation

6.2 Image Compression Modules,

6.2.1
6.2.2
6.2.3
6.2.4

Unsupervised Image Compression
Explorative Experiments on Agent Attention
Semi-Supervised Image Compression

Semi-Supervised Compression with Domain Knowledge

6.3 Summary

7 Hierarchical and Backward Planning

7.1 Hierarchical Policy Transfer

7.1.1
7.1.2
7.1.3

Hierarchical Actor-Critic Learning Framework
Fetch Environment Variations
Experimental Evaluation
7.1.3.1 Hierarchical Actor-Critic Experiments

7.1.3.2 Low-Level Policy Transfer Experiments.

7.2 Assembly-by-Disassembly

7.2.1
7.2.2

Clip Disassembly Environment

Experimental Evaluation

7.3 SUMMAry

83
84
87
89
89
91
93
94
95

97

98

98
100
103
103
107
109
111
114

8 Cross-Robot Execution Imitation

8.1 Robot-Task Environments

8.2 Cross-Robot Imitation Learning Framework

8.2.1 Cross-Robot Behavior Similarity

8.2.2 Cross-Robot Trajectory Mapping

8.2.3 Cross-Robot Imitation Learning

8.3 Experimental Evaluation

8.4 Summary

9 Critical Reflection and Outlook

9.1 Research Question 1

9.2 Research Question 2

9.3 Research Question 3
9.4 Research Question 4

9.5 Closing Remarks

Bibliography

131
132
133
133
134
137
138
140

143
143
144
146
148
149

151

Abbreviations

Al
ANN

BC

CAD

CNN

CRIL
Cv

DDPG
DH
DL
DOF
DQN
DR
DRL

EC

GAN
GPU
Grad-CAM

HAC
HER
HRL

IFR
IK
IL
IMA

KL divergence

MARWIL
MDP

Artificial Intelligence
Artificial Neural Network

Behavioral Cloning

Computer-Aided Design
Convolutional Neural Network
Cross-Robot Imitation Learning
Computer Vision

Deep Deterministic Policy Gradient
Denavit-Hartenberg

Deep Learning

Degrees of Freedom

Deep Q-Network

Domain Randomization

Deep Reinforcement Learning

Embodiment Correspondence

Generative Adversarial Network
Graphics Processing Unit
Gradient-weighted Class Activation Mapping

Hierarchical Actor-Critic
Hindsight Experience Replay
Hierarchical Reinforcement Learning

International Federation of Robotics

Inverse Kinematics

Imitation Learning

Institute of Information Management in Mechanical Engineer-

ing

Kullback—Leibler divergence

Monotonic Advantage Re-Weighted Imitation Learning
Markov Decision Process

ML
MLP
MPC

PCA
PER
POMDP
PPO

ReLU
RL
RNN

RQ

SAC
sim2real

SOTA

TCP
TD

TE

TL
TMDT

TRL

V-HACD
VR

Machine Learning
Multilayer Perceptron
Model Predictive Control

Principal Component Analysis
Prioritized Experience Replay
Partially Observable Markov Decision Process
Proximal Policy Optimization

Rectified Linear Unit
Reinforcement Learning
Recurrent Neural Network
Research Question

Soft Actor-Critic
Simulation-to-Reality
State-of-the-Art

Tool Center Point

Temporal Difference

Transition Efficiency

Transfer Learning

Institute of Technologies and Management of Digital Trans-
formation

Transfer Reinforcement Learning

Volumetric Hierarchical Approximate Convex Decomposition
Virtual Reality

List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.1

Annual installations of industrial robots worldwide according to the
International Federation of Robotics (IFR). Data aggregated from
[120] and [121].o o

Concept of a modular decision-making pipeline for industrial robotics
consisting of perception, planning, execution and control stages.

The four Research Questions (RQs) focus on the different stages of
the modular decision-making process principle. The first RQ aims to
enable suitable control for industrial robotic systems. The remain-
ing three RQs focus on Transfer Reinforcement Learning (TRL) from
simulations, other tasks, and other robots, respectively.

The wire-loop demonstrator requires the robot to guide a loop along
a wire from one end to the other without making contact with the
wire itself.

The wire loop game is played on a 2D game plane. The game is
considered won when the loop reaches the goal zone. To reset the
game, the loop is moved from the 2D game plane to the reset plane
for collision-free movement back to the start pose or an intermediate
checkpoint pose.

The object picking demonstrator consists of a Franka Emika Panda
robot arm and a fixed camera for visual feedback. On the table, toy
building blocks are placed for the robot to pick up.

Overview of the shell structure of an airplane. The shell consists of a
metal skin, which is reinforced by vertical and horizontal struts. The
struts are connected by clips.o

The clip assembly demonstrator consists of an UR5 industrial robot,
clips and 3D-printed installation sites. The goal of the assembly task
is to insert the clips into the shell structure.

Schematic illustration of the structure of the thesis. Dots at the in-
tersections indicate relevance of the use cases for the chapters and
respective RQ)s. The experimental setup for RQ-4 reuses key elements
from the use cases in a simplified scenario.

Bézier curves are parameterized by a set of control points. Multiple
Bézier curves can be stitched together to form a continuous path by
ensuring that the control points of the adjacent curves are collinear. .

20

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

In a closed-loop control system, a controller aims to minimize the
error between a desired goal state and the system state measured by
SENSOTY eqUIPMENt.

An illustrative example of an Artificial Neural Network (ANN) archi-
tecture. The three input features are processed by three consecutive
hidden layers of 5 neurons each. The output layer consists of a sin-
gle neuron, which is interpreted as the probability whether the input
features describe adog.o

An illustrative example of a Convolutional Neural Network (CNN)
architecture. The input image is processed by three consecutive con-
volutional layers of 2x2 kernels each. The output layer consists of
a single neuron, which is interpreted as the probability whether the
input image shows adog.

Basic structure of a Reinforcement Learning (RL) setting. The agent
interacts with the environment by selecting actions based on the cur-
rent state and the policy. The environment transitions to a new state
and issues a reward signal, which is used to optimize the policy.

The Deep Deterministic Policy Gradient (DDPG) architecture con-
sists of a deterministic actor and a state-action value critic. The actor
chooses an action, which is judged by the critic. In training, the critic
provides the actor with a gradient towards more favorable actions. . .

The Proximal Policy Optimization (PPO) architecture consists of a
stochastic actor and a state-value critic. In training, the critic is
used to compute the advantage of a chosen action, which serves as a
gradient signal for the actor.

Hierarchical Reinforcement Learning (HRL) agents comprise multiple
policy levels with different temporal abstraction. The higher levels
are responsible for long-term planning and divide a task into subgoals,
which are then achieved by the lower levels. The depicted Hierarchical
Actor-Critic (HAC) architecture stacks DDPG agents..

[ustrative comparison of different parallelization strategies. Reset
and step operations are represented as outlined and filled boxes, re-
spectively. Interactions which belong to the same episode and thus
are executed sequentially in the same environment are of the same

Overview of TRL approaches. Given a source policy, this policy can
be deployed to the target domain. Depending on the transfer scenario,
modification of the source policy may be required to adapt interfaces
and /or facilitate learning. Given source demonstrations, a target pol-
icy can either be pretrained, or a pseudo-reward signal can be derived
to guide the learning process.

26

28

2.11 The Domain Randomization (DR) approach deliberately randomizes
a simulation to generate a distribution of training samples. With
enough randomization, the agent will generalize to the real-world data
distribution and overcome the Simulation-to-Reality (sim2real) gap.
Adapted from [109].

3.1 The literature survey process on the topic of real-time asynchronous
RL for RQ-1. 17 relevant articles were identified which address laten-
cies in real-world control settings.o

3.2 Distribution of strategies for real-time asynchronous RL over the
years. No clear trend regarding the emergence of a superior strat-
egy can be inferred.o

3.3 The literature survey process on the topic of DR for RQ-2. 17 rele-
vant articles were identified which address advances to the basic DR
approach.

3.4 Distribution of strategies on the topic of sim2real transfer with DR
for RQ-2. Offline guided DR has drawn more attention than online
active DR. Most recently, human-in-the-loop DR was proposed.

3.5 The literature survey process on the topic of cross-task transfer in
HRL for RQ-3. 7 relevant articles were identified which investigate
transfer of HRL sub-policies.

3.6 Distribution of strategies for cross-task transfer in HRL over the years.
While the literature is sparse, skill embeddings have drawn more at-
tention than explicitly defined subgoal spaces.

3.7 The literature survey process on the topic of assembly-by-disassembly
for RQ-3. 6 relevant articles were identified which use the solution of
a corresponding disassembly task to solve an assembly task.

3.8 Distribution of the strategies for assembly-by-disassembly over the
years. In particular the combination with Deep Reinforcement Learn-
ing (DRL) has not gained much attention.

3.9 Conceptual overview of cross-domain transfer learning. In order to
transfer expert knowledge in the form of policies or demonstrations
between two Markov Decision Process (MDP) environments, the do-
main gap must be bridged. o000

3.10 The literature survey process on the topic of cross-robot transfer rein-
forcement learning for RQ-4. 24 relevant articles were identified which
propose cross-domain mapping strategies.

3.11 Distribution of strategies for cross-robot transfer reinforcement learn-
ing over the years. Using explicit mappings is the most data-efficient
approach, but has been largely abandoned in favor of statistical meth-
ods and proxy tasks. Lo

4.1 Software architecture of the DRL framework designed for modularity,
environment parallelization, and distributed infrastructure.

38

45

4.2

4.3

4.4

4.5

4.6

4.7
4.8

4.9

4.10

411

4.12
4.13

4.14

4.15

4.16

4.17

Orchestrator benchmarking. The implementation effectively distributes
experience collection across multiple processes. Adapted from [21]. . . 60

The states in the wire-loop use case are downsampled camera images
of the loop and the wire. The downsampling factor was chosen to
reduce the state space dimensionality while still retaining relevant
image features.o 62

The simulation setup for the wire-loop use case. The simulation is
modeled after the real-world setup, featuring a URb5 robot, a loop
tool, a camera, and a background plane for visual projection. 65

Comparison of real-world and simulation state images. To achieve
more realistic state images, the same down-sampling and interpola-
tion method is applied to the simulation images instead of directly
capturing images at the target resolution. 65

Examples of the randomization strategies applied to the wire-loop use
CASEC. v v e e e e e e 66

Evaluation scenarios for the wire-loop use case. Taken from [114]. . . 69

DRL results for the real-world experiments in the wire-loop use case.
The results show that the learning framework implementation is ca-
pable of training an agent to solve the wire-loop game. The agent
progressively improves its performance, requiring less training with
each new scenario. The agent is also able to successfully learn back-
ground noise in the fourth scenario. Adapted from [114]. 69

Experimental scenarios for the DR study to test sim2real transferabil-
Wy, e 71

The benchmark environments FetchReach, FetchPush, and Fetch-
PickAndPlace from the Fetch suite [134]. 74

Overview of the environments used for the object picking use case.
With minor adaptations, a policy trained on the Fetch PickAndPlace
environment can be used in the object picking use case. 75

Optimal control solutions for the Reach and PickAndPlace tasks. . . 76

Comparison of the training framework performance to Plappert et
al. [134] for the Reach, Push, and PickAndPlace tasks. The training
framework achieves better or comparable performance on the bench-
mark tasks. 78

In the clip assembly use case, a clip (blue) is inserted into a shell
(green). 79

Example of the clip assembly environment. The shell is reduced to the
vicinity of the installation location to improve simulation performance. 80

Mesh preprocessing required to improve collision detection in simula-
tion for the clip assembly use case. 80

[ustrative example of suboptimal behavior induced by the dense re-
ward function.o Lo 81

5.1
5.2
2.3

5.4

2.5

2.6

5.7

2.8

6.1

6.2

6.3

6.4

6.5

6.6

Inference of a Bézier curve from a target pose. 85
Bézier curve encoding strategies.o 86

Sequence diagram of a standard RL framework. Due to the time-
discrete nature, real-world latencies lead to non-continuous robot mo-
tlon. 87

Sequence diagram of the proposed asynchronous RL framework. The
next action is determined based on an intermediate state and provided
to the robot in time to enable a continuous transition between actions. 88

The dynamics rollout module is based on the pix2pix architecture [77].
An encoder-decoder generator produces the next state image based
on the current state and action. A patch discriminator attempts to
distinguish between real and generated images to improve the quality
of the generated images. 91

Examples of dynamics rollout model performance. Based on the ob-
served state and action (not shown), the model predicts the resulting
next state. Compared to the ground truth next states, the model is
able to predict the wire shape with an impressively high quality for
small action magnitudes. Lo 92

Failure cases of the dynamics rollout model. The model is unable
to predict the next state for large action magnitudes and potentially
starts to hallucinate. 92

Training results of the Bézier agents. The Cartesian-3 agent was
unable to converge to a solution, while the other agents outperform
the baseline agent. Adapted from [158]. 94

Examples of the simulation dataset for the perception module of the

object picking use case. Lo 99
Bounding box predictions on the simulation test set. The perception
module is able to accurately locate the object in the image. 100

Integration of the perception module into the real-world. To improve
the performance, the model is fed with jittered image inputs. 101

Relative variation of perception module predictions for a video stream.
The noise is compensated by a moving average filter over 15 frames. . 102

Concept of using autoencoders for process-relevant feature extraction.
First, the autoencoder is trained using states as input and output to
learn a compressed latent representation. Then, the decoder is dis-
carded and replaced with an execution module which takes the learned
latent representation as input. The combination of the encoder and
execution module forms a DRL policy. 103

The reset routine of the real-world hardware setup leads to many sim-
ilar states in the dataset. In many cases, the first state of a trajectory
is virtually identical to the last state of the previous trajectory. . . . 104

6.7 Explorative dataset analysis to identify the optimal train/test split.

6.8 Quantitative evaluation of the autoencoder. The input and recon-
structed state images are shown for five randomly selected states. The
reconstructed images are more blurry, however the wire and loop are
still recognizable. Importantly, the shape of the wire is preserved, in-
dicating that this process-relevant information is successfully encoded
in the latent space.

6.9 DRL results with unsupervised autoencoder as perception module.
The agent is able to learn the wire-loop game in just 450 episodes,
significantly reducing the training effort compared to the end-to-end
baseline agent. L

6.10 Exemplary results of the segmentation autoencoder on simulated vali-
dation data. The model is able to reconstruct the segmentation masks
for the validation data with high accuracy.

6.11 Exemplary results of the segmentation autoencoder on real-world test
data. The segmentation is of poor quality, as the model is unable to
capture the wire shape.o

6.12 Concept of the enhanced approach. The real-world image is seg-
mented into objects. For each object class, a color palette is gen-
erated from its respective segments. With this color palette, DR is
constrained to generate simulation images with similar colors.

6.13 Exemplary results of the segmentation autoencoder on simulated vali-
dation data. The model is able to reconstruct the segmentation masks
for the validation data with high accuracy.

6.14 Exemplary results of the segmentation autoencoder on real-world test
data. The rough shape of the wire is captured using just a single real-
world image. Lo

7.1 Variations of the Fetch environments to investigate the transferability
of the lower-level policies. Taken from [156].

7.2 Performance of the HAC agents on the Reach task. The HAC agents
perform significantly worse, as the added overhead of the hierarchical
structure is not justified by the simplicity of the task.

7.3 Learning curve of the HAC agents on the Push task. The HAC agents
are able to solve the task significantly faster than the standard DDPG
baseline.

7.4 Exemplary solution trajectory of a HAC agent for the Push task. The
agent successfully decomposes the task by using a subgoal halfway to
the final goal.

7.5 An exemplary state of the Push task and corresponding heatmap of
the subgoal Q-values. Yellow regions indicate high, violet regions low
Q-values. . . . L

. 105

. 112

121

7.6 Learning curve of the HAC agents on the PickAndPlace task. The
HAC agents are able to successfully learn the task, unlike the standard
DDPG baseline.

7.7 Exemplary solution trajectory of a HAC agent for the PickAndPlace
task.

7.8 Transfer results for the Push-Gate Task. No conclusive advantage of
transferring pretrained lower-level policies can be observed. Adapted
from [156].

7.9 Transfer results for the Push-Gap Task. The transfer strategy appears

123

to have a negative effect on the learning efficiency. Adapted from [156].124

7.10 Strategy of a HAC agent on the Push-Gap Task. The agent learned
a risky strategy, skipping the gap in the tabletop. Taken from [156]. .

7.11 Q-value heatmap in the Push-Gap task. The highest Q-value is found
over the gap, thereby incentivizing the lower level policy to attempt
skipping the cube over the gap. Adapted from [156]..

7.12 Transfer results for the PickAndPlace-Wall task. The transferred
agents clearly outperform the agents trained from scratch. Adapted
from [156].

7.13 Transfer results for the PickAndPlace-Table task. The transferred
agents clearly outperform the agents trained from scratch. Adapted
from [156]. L

7.14 Visualization of a trajectory of a successfully transferred agent in the
PickAndPlace-Wall task.

7.15 Reward hacking in the clip assembly environment. The agent is able
to exploit the force constraint to move the clip out of the shell in a
non-reversible manner.

7.16 Performance of the DDPG agents on the clip disassembly task. The
agents are able to solve the task in 25,000 training episodes.

8.1 The modular robot-task environments allow for quick generation of
different robot-task combinations to evaluate cross-domain transfer-
ability. Adapted from [21].

8.2 The Embodiment Correspondence (EC) metric is the weighted sum of
the distances between all key points of two robot arms. As key points,
intermediate poses along the kinematic chains of the two robots are
used to capture the general shape of the arms. Taken from [19)].

8.3 The mapping strategy of the Cross-Robot Imitation Learning (CRIL)
framework. For each state of the source trajectory, the Tool Center
Point (TCP) pose is determined. Next, all possible joint configura-
tion candidates are computed with Inverse Kinematics (IK). From all
candidates, a graph is constructed, whose edge weights reflect the EC
metric and the transition cost. The target trajectory with most sim-
ilar behavior to the source trajectory is found by finding the shortest
path through the graph. Taken from [19]..

125

128

. 134

8.4

8.5
8.6

8.7

8.8

Detailed view of the graph weight computation. The EC metric is
computed from key points determined by Forward Kinematics (FK).
The transition cost is computed from an approximation of the required
action between two consecutive candidates. Taken from [19]. 136

Source agent learning curve for the Panda robot with stable convergence. 138

Example trajectory mapping demonstrating the mapping capabilities
of the proposed CRIL framework. The general shape of the arm, i.e.
the behavior, is preserved. Taken from [19]. 139

Pretraining performance of the Monotonic Advantage Re-Weighted
Imitation Learning (MARWIL) agent on the target URS robot using
the mapped target trajectory dataset. 139

Finetuning performance of the pretrained agent on the target UR5
robot. The transfer strategy clearly outperforms agents trained from
scratch. Taken from [19]. L L 140

List of Tables

1.1

3.1
3.2
3.3
3.4

3.5

4.1

6.1

7.1

Comparison of use case characteristics with respect to relevance to

Categorization of articles by strategy for real-time asynchronous RL.
Categorization of articles by strategy for DR.
Categorization of articles by interface between HRL policy layers.

Categorization of articles according to the application assembly-by-
disassembly outside or within the context of DRL.

Categorization of articles by strategy for cross-domain TRL.

Training effort for different DR parameter settings. A positive corre-
lation between the amount of randomization and the required training
effort is observed. Further, a positive effect of randomization on trans-
ferability is visible. Notably, not all parameters must be randomized
to achieve zero-shot transfer.

Gradient-weighted Class Activation Mapping (Grad-CAM) attention
maps for different agents and states. State 1 is taken from simulation
without DR, states 2 and 3 are taken from simulation with DR, and
states 4-6 are real-world images. Agent 1 was trained without, agent
3 with partial, and agent 6 with full DR. Red regions indicate high
and blue regions indicate low attention. Adapted from [154].

Performance metrics for assembly task using Behavioral Cloning (BC)
with varying number of demonstration trajectories.

108

Introduction

“In a properly automated and educated world, then, machines may prove to be the
true humanizing influence. It may be that machines will do the work that makes
life possible and that human beings will do all the other things that make life
pleasant and worthwhile.”

- Isaac Asimov

1.1 Motivation

The demand for robotic systems in the industrial environment is experiencing a sig-
nificant upward trend in the present time. The International Federation of Robotics
(IFR) has recorded an average annual increase in new robot installations of +11%
in the years between 2014 and 2023 and expects a continued positive development in
the coming years, as depicted in Figure 1.1 [120, 121]. A major reason for this is the
continuing trend towards automation, which is driven on the one hand by steadily
increasing demands on production processes in terms of speeds and cost efficiency
[112]. On the other hand, continuous technological innovation leads to a reduction in
acquisition costs as well as to improvements in the capabilities of industrial robots,
making automation solutions increasingly attractive for new application areas as

well [87, 107, 112].

A technological driver of robotic systems, which according to current forecasts will
continue to gain relevance in the coming years, are Artificial Intelligence (AI) ca-
pabilities in the form of Machine Learning (ML) algorithms [107]. According to
a position paper from leading voices in the field of AI, among others Yann Le-
Cun (Chief Al Scientist at Meta) and David Silver (Principal Research Scientist
at Google DeepMind), one subfield of ML promising significant potential towards
achieving human-level machine intelligence necessary for the automation of increas-
ingly complex tasks with industrial robots is Deep Reinforcement Learning (DRL)
[110]. DRL combines advances in Deep Learning (DL) with the principles of Re-
inforcement Learning (RL). On the one hand, the field of DL comprises the study

2 1. Introduction

600 -

500 -

400

300 A

200 A

Installations of industrial robot units [x1000]

100

>) J &) Q N 2 > S
I S I SO S A S

0 Q

Figure 1.1 Annual installations of industrial robots worldwide according to the IFR. Data
aggregated from [120] and [121].

and application of Artificial Neural Networks (ANNs) as powerful function approx-
imators, which are able to learn complex patterns from data without the need for
hand-crafted feature engineering [60, 90]. On the other hand, RL is a learning
paradigm that allows an agent to autonomously learn optimal control strategies
from experience gained through interactions with its environment [174]. The agent
first observes the state of its environment as a basis for decision-making to select
an action. The action is then executed, resulting in a change in the environment’s
state, which is again observed by the agent. In addition, the agent receives a reward
that reflects the value of the actions for the given task. This information is used
to condition the action-selection process, also referred to as the policy of an agent,
towards choosing reward-maximizing actions, which equals the solution of the given
control task.

The impressive capabilities of DRL have been demonstrated in a wide variety of
decision-making and control applications, achieving and exceeding human-level ca-
pabilities in the board games of chess, Shogi and Go [164], the card game of poker
[29], as well as the video games such as Dota [16] and StarCraft [194]. In robotics,
RL has been utilized to learn complex dexterity tasks, such as solving a Rubik’s
cube with a human-like robot hand [3], teaching a dog-like quadruped robot to walk
[132], or improving the autonomous-driving capabilities of cars [106].

DRL has the potential to revolutionize industrial automation by enabling more so-
phisticated decision-making in large and complex environments. However, despite
its early successes, the application of DRL in industrial robotics is still limited. In
their hype cycle for AT 2024, the leading research and advisory firm Gartner classifies
"Smart Robotics” as entering the "trough of disillusionment”; expecting a period of
5-10 years before mainstream industrial adoption [78]. One major challenge for the
application of DL in general and DRL in particular is the required amount of data
for training a model. This phenomenon is known as the "curse of dimensionality”
[118], which describes the exponential effort and training data required with increas-
ing dimensionality of the data space. In industrial robotics, this issue is amplified by

1.1. Motivation 3

the need for real-world interaction, which is not only time-consuming, but also bears
the risk of damaging components or leading to unwanted collisions with objects in
the robot’s environment. To address the shortcomings of data-driven ML, the re-
search area of Transfer Learning (TL) aims to reduce the amount of data required
for training a model by reusing knowledge acquired in simulation or from related
scenarios [178, 203].

With the vision of self-learning DRL agents deriving complex control policies from
experience, many research efforts in the field of DRL have focussed on developing
end-to-end learning pipelines [80, 81, 93, 168]. These approaches aim to delegate
both the feature extraction from raw sensory data and the derivation of decision-
making strategies to the agent, which promises to reduce the need for domain knowl-
edge and manual engineering efforts. However, training DRL agents end-to-end does
not come without drawbacks. Capturing the entire complexity of an industrial task
within one policy means that arriving at a suitable control policy requires the maxi-
mum amount of training effort. Further, the black-box nature of an end-to-end DRL
agent makes it difficult to verify and maintain agents in the long run. These draw-
backs are particularly relevant for industrial applications, where both safe and effi-
cient operation must be guaranteed. In contrast to the end-to-end approach, works
such as Wang et al. [199] have highlighted the benefit of combining the self-learning
capabilities of DRL agents with modular control pipeline architectures. Modularity
is a core design principle of engineering that emphasizes the separation of concerns
and the independence of components. This allows for faster and cheaper develop-
ment of individual components, as well as better interpretability and maintainability
through well-defined interfaces.

In this context, this thesis aims to contribute to the applicability of DRL in in-
dustrial robotics by leveraging the modularization of robotic decision processes into
perception, planning, execution and control stages (cf. Figure 1.2), and investigating
opportunities to efficiently develop individual policy modules using TL strategies.
The contributions are guided by Research Questions (RQs) which are outlined in
the next section. Afterward follows an introduction of three robotic use cases, in
which the development and experiments of this thesis will be conducted. Finally, an
overview of the thesis structure is provided.

= features subgoals

8) Perception Execution
<

-

c

o

g sensor data Robotic commands actions
o Control

= System

>

c

Ll

Figure 1.2 Concept of a modular decision-making pipeline for industrial robotics consisting of
perception, planning, execution and control stages.

4 1. Introduction

1.2 Research Questions

As depicted in Figure 1.3, the following RQs each focus on a different stage of the
decision-making process chain: the control interface required to interact with the
robotic system, the perception of the current environment state by extracting task-
relevant information from raw sensory data, the planning of a task-specific high-level
strategy, and the execution of robot-specific low-level behavior. The RQs are detailed
in the following.

. ra2 ! [Rag ! [Raa !

‘% | | 1 | 1 |

% I Simulations I I Other Tasks | I Other Robots I

= I | I | I I
I 1 | 1 | |
I | 1 1 1 |
1 | | | 1 |
| | 1 | 1 |

g ! : ; : : |

% ! Perception | Planning | Execution

< | | 1 | 1 |
1 | 1 | 1 |
_] \ o ___ l \ o ___ |}

o (T~~~ Tt T T T T \

c

£ ! :

S I Robotic Control I

g | System !

2 ! |

LLi I RQ-1 |

n a S T T S B B BN B A B BEE B B e e e . /

Figure 1.3 The four RQs focus on the different stages of the modular decision-making process
principle. The first RQ aims to enable suitable control for industrial robotic systems. The
remaining three RQs focus on Transfer Reinforcement Learning (TRL) from simulations, other
tasks, and other robots, respectively.

RQ-1: How can smooth, continuous movement be achieved within the RL frame-
work?

In general, robotic systems are controlled by setting motor voltages, which in turn
result in joint torques that move the physical structure of the robot. While it is
possible to use the joint torques as action space of a RL agent and training it end-
to-end, many real-world applications benefit from using abstracted action spaces.
Tasks where the robot is expected to follow a certain trajectory can be formulated
using joint positions or end effector poses, which enables an agent to focus on the
task on a higher level, rather than having to learn underlying physical relationships,
which are now handled by a low-level controller. This not only reduces the required
learning effort for one task, but also facilitates the transfer across domains by using
domain-agnostic abstraction spaces, such as the robot-agnostic trajectory of a tool
instead of the robot-specific joint torques.

However, using position-based action spaces comes at a cost, as the resulting tra-
jectories are likely to exhibit jerky and discontinuous movements when used in the
standard RL framework. This can be attributed to two reasons: On the one hand,
the inherent time-discretization of RL requires each step to be completed before a

1.2. Research Questions 5

new action is chosen. As a position controller is used to move the joints to a target
position at which movement is stopped, the application of standard RL leads to
undesired stop-and-go behavior. On the other hand, the independence of successive
actions allows an agent to perform discontinuous trajectories with jerky movement.
Such behavior in general is to be avoided, it puts high stress on mechanical compo-
nents. Recognizing these shortcomings, the first RQ prompts for an adaptation of
the standard RL framework to enable the application of RL together with position
controllers.

RQ-2: How can perception modules for vision-based robotic tasks be developed in
simulation, and how can their structure be designed when the relevant low-level
features are not immediately obvious?

As stated above, the utilization of high-dimensional sensory data, such as camera
images, is a major challenge for data-driven ML approaches due to the "curse of
dimensionality”. An intuitive solution to reduce the need for expensive real-world
data is to use simulations. Simulations not only allow for faster, parallelized, and
collision-free training runs, but also enable the incorporation of process variations
that are difficult to be recreated in the real-world setup. In contrast to those advan-
tages, an important issue with simulations is their inevitable deviation from reality
due to coarser resolutions, time-discretization, or errors in a simulation. The first
part of this RL focuses on overcoming this so-called Simulation-to-Reality (sim2real)
gap and transfer pretrained perception modules from simulation to real-world appli-
cations.

While the features to be extracted from the sensory data are sometimes easily iden-
tifiable, such as poses of task-relevant objects, this is not always the case. On the
contrary, it can be argued that especially scenarios where the relevant features are
not immediately obvious are of particular interest for the application of DRL, calling
for an ability to detect patterns which are hard to formalize by a human domain
expert. In contrast, scenarios where it is possible to create a precise world model
are more likely to be automated using traditional motion planning methods without
the need for data-driven learning. Thus, the second part of this RQ demands an
investigation into the development of perception modules to reliably extract latent
feature spaces relevant for the subsequent decision-making pipeline.

RQ-3: How can decomposition of robotic movement be leveraged to modularize
task-independent behavior policies, and how can reversibility of robotic movement
be exploited to improve training efficiency?

In a broader context, decomposition and reversibility are general concepts applicable
to a wide variety of planning tasks. On the one hand, decomposition describes the
ability to break down a task into smaller subtasks, which can be solved individually.
Given that the complexity of the subtasks is significantly lower than the complexity
of the overall task, this strategy may significantly speed up the planning effort.
Reversibility, on the other hand, describes the ability to follow a chain of decisions
in both directions. This is particularly interesting for planning tasks where the
optimal end state is known, since reasoning backwards from the end state may
provide a more efficient path than reasoning forwards from the initial state. Both
properties are frequently exploited in the robotics domain to efficiently find suitable
movement trajectories.

6 1. Introduction

Decomposition is at the core of modeling hierarchical task structures [69], and con-
structing hierarchical control schemes [104]. In context of DRL, Hierarchical Rein-
forcement Learning (HRL) approaches [34, 95, 126] have been proposed to improve
the training efficiency of agents through the separation of an agent policy into differ-
ent policy levels, each level receiving its objectives from the next higher level. The
first part of this RQ calls for an investigation into how such hierarchical structures
can be transferred across different tasks.

Likewise, reversibility is frequently used in robotics for backward planning trajec-
tories in settings where finding a trajectory from goal to start is significantly easier
than from start to goal. Example applications include pick-and-placing scenarios
[103], and assembly-by-disassembly [182, 209]. The second part of this RQ focuses
on scenarios where reversibility is only partially given, i.e. where some trajectories
cannot be executed in reverse, for example due to non-rigid, deformable interactions
between the robotic system and it’s environment.

RQ-4: How can movement trajectories be transferred between different robot
morphologies?

In the context of industrial robotic arms, it is possible for robots to possess similar
capabilities in terms of their movement and general shape. However, when viewed
from the perspective of a control agent, these robots may exhibit stark differences.
The dissimilarity arises primarily in the representation of their state and action
spaces, which can vary significantly due to differences in the underlying kinematic
models, such as the number of joints or link lengths. This discrepancy poses a signifi-
cant challenge in industrial applications where transitioning from an existing robotic
legacy system to a more advanced technological system is not a straightforward task.
This is especially amplified for DRL applications, where the data-extensive nature of
training a new agent for a new robotic system poses a significant obstacle. To facili-
tate an independence of individual robotic models and promote a selection based on
capabilities, rather than legacy, the fourth research question calls for methods which
enable the transfer of existing control solutions across robots of different morphology.

1.3. Use Cases 7

1.3 Use Cases

The contributions of this thesis towards answering the above RQs are developed
and evaluated using three robotic use cases, which will be referred to as Wire-
Loop, Object Picking, and Clip Assembly. Within the shared context of controlling
a medium-sized industrial robotic arm, the use cases provide distinct challenges
and requirements regarding the different stages of the previously outlined decision-
making process chain and are thus differently relevant to the RQs. The use cases

are compared in Table 1.1 and are detailed in the following.

Wire-Loop

Object Picking

Clip Assembly

Industrial
Transferability

Low: academic;
offers valuable
insights, but
transferability to
industry unclear

Medium: academic
scenario, but relates
to industrial
manipulation tasks

High: derived from
real-world assembly
process

Execution

(RQ-4)

collision-free
workspace by design

robot-specific
collisions possible

Smooth, High: real-time Low: real-time Low: real-time
Continuous adjustments to wire disturbances not disturbances
Control shape changes considered by excluded in
(RQ-1) experimental design | real-world assembly
process
Visual High: camera Medium: camera Low: no visual
Perception image input and image input; input required due
(RQ-2) important features | important features to precise CAD
not immediately clear (object poses) | simulation model
obvious
Planning Low: optimal Medium: entire High: very limited
Complexity trajectory only trajectory must be set of correct
(RQ-3) requires considered to avoid trajectories,
consideration of the dead-ends deviations lead to
local wire section collisions
Cross-Robot Low: limited Medium: High: real-world

assembly process

uses a robot model
with different
morphology

Table 1.1 Comparison of use case characteristics with respect to relevance to the RQs.

1.3.1 Use Case 1: Wire-Loop Game

The first use case is based on the wire-loop game that requires the player, i.e. the
robot, to guide a loop along a wire from one end to the other without making contact
with the wire itself [111, 116]. While of academic nature, succeeding in the wire-
loop game requires skills that are also required in industrial applications, such as an
ability to process high-dimensional state spaces in the form of camera images, and
an adaptability to dynamic changes in the environment, such as changes to the wire
shape or the background behind the wire.

8 1. Introduction

A hardware demonstrator depicted in Figure 1.4a serves as basis for investigating
the real-world applicability of potential automation solutions. The demonstrator
consists of an UR5 industrial robot and a metal wire of 150 cm length and 1 cm
thickness, which is placed inside the working space of the robot. The wire is fixed
on both ends, which constitute the start and goal of the game. In between the ends,
the wire can be shaped arbitrarily to generate new scenarios and even introduce
real-time process changes. As loop, the robot is equipped with a custom-made 3D-
printed tool, which consists of two metal rods enclosing the wire. The tool also holds
a camera which captures the wire section directly in front of the loop. The tool is
depicted in Figure 1.4b. The game is constrained to a 2D-plane to rule out collisions
between the wire and the robot arm, reduce the complexity for later automation
solutions, as well as reduce the engineering effort required to ensure robust resetting
routines.

(a) Overview of the wire-loop demonstrator showing the (b) The tool consists of two metal
robot holding the custom-made tool and the entire wire setup. rods enclosing the wire and a camera
Taken from [158]. for visual feedback. Taken from [114].

Figure 1.4 The wire-loop demonstrator requires the robot to guide a loop along a wire from
one end to the other without making contact with the wire itself.

To automatically detect any contact between the loop and the wire, a simple elec-
trical circuit is constructed. As both the wire and the loop are conductive, it is
possible to measure any collision of the two by measuring the resistance between
them. In the demonstrator, this is implemented by using an Arduino board and
attaching the 3,3 voltage output to the wire and an analog input pin to the loop.
With this setup, collision can be detected by monitoring the voltage at the input
pin, which will be approximately OV or 3.3V if the electrical circuit is open or closed,
respectively. With the introduction of a threshold value, the continuous measure-
ment can be converted into a boolean collision detection. Besides a collision event,
which constitutes losing the game, the successful reach of the goal end of the wire
must be detected. While the start can be expressed as an initial pose of the loop,
the goal is specified as a zone in the game plane which is to be reached by the loop.

When collision is detected or the goal zone is reached, the robotic setup must be reset,
i.e. the loop must be moved to the start of the wire or to a checkpoint position for the

1.3. Use Cases 9

next game to commence. This is accomplished by defining two planes on which the
loop is allowed to move within specified safety limits. In addition to the previously
introduced game plane in which the wire is placed, a reset plane is defined. The reset
plane is placed in parallel to the game plane at a distance where the loop cannot
collide with the wire. When resetting the robot, the loop is moved perpendicular to
the planes, from the game to the reset plane. On the reset plane, it is then moved
freely over the desired reset position. Finally, the loop is again moved perpendicular
onto the game plane. The reset procedure is visualized in Figure 1.5. To ensure the
safety of the robotic setup, a safety stop must be initiated, if any collision is detected
when moving on the reset plane, which indicates that the wire was bent outside the
game plane and is potentially stuck to the loop. In addition, the collision detection
must be closely monitored when re-engaging the loop into the game plane to avoid
bending the wire outside the game plane or damaging the loop.

start pose

goal zone

safety limits

Figure 1.5 The wire loop game is played on a 2D game plane. The game is considered won
when the loop reaches the goal zone. To reset the game, the loop is moved from the 2D game
plane to the reset plane for collision-free movement back to the start pose or an intermediate
checkpoint pose.

1.3.2 Use Case 2: Object Picking

Object picking constitutes a ubiquitous application in industrial robotics in scenarios
such as palletizing [88], bin picking [23, 30], or warehousing [38, 97]. Object picking
is typically accomplished through the deployment of a robotic manipulator, equipped
with an end effector that is specifically designed to grasp and lift the object. The
manipulator navigates towards the desired object location using motion planning
algorithms, which ensure a safe and obstacle-free path. Upon arrival at the specified
location, the end effector is engaged to seize the object using a suitable grasping or
suction mechanism. Notably, object picking can be an arduous task for industrial

10 1. Introduction

robots as objects may present with varying attributes such as size, weight, texture,
and shape, which can affect the efficiency and efficacy of the end effector. Addition-
ally, the location and orientation of the object can also affect the robot’s ability to
pick up the object effectively. To address these challenges, industrial robots require
advanced sensing and control systems, that enable the robot to adapt to the object’s
properties and pick it up with greater accuracy and efficiency.

The demonstrator for this second use case consists of a Franka Emika Panda indus-
trial robot that is mounted on a table. Toy building blocks are placed on this table
and within the workspace of the robot. As sensory equipment, a camera is installed
on the table in a fixed location. As a tool, the robot is equipped with a gripper
to enable the grasping of the building blocks, and a force-torque sensor to detect
collisions with the environment. The hardware setup is depicted in 1.6.

Figure 1.6 The object picking demonstrator consists of a Franka Emika Panda robot arm and
a fixed camera for visual feedback. On the table, toy building blocks are placed for the robot
to pick up.

A standard calibration procedure is used to calibrate the camera with respect to the
robot base frame, which requires determining the robot-to-camera transformation
matrix ,7¢. A calibration board is placed in front of the static camera, which
contains a pattern of easily identifiable key points, such as chessboard corners. By
identifying the key points in the image and using explicit knowledge about the key
point configuration, e.g. the chessboard square dimensions, it is possible to compute
the 3D coordinates of the key points in the camera frame .k;. Next, the robot
Tool Center Point (TCP) is moved to each key point and the corresponding TCP
position ,prcp; is recorded. Assuming that these two positions are equal, the robot-
to-camera transformation matrix ,7¢ can be found by solving the linear system

71 ki = prop;-

In order to successfully accomplish a pick-and-place task, a building block must be
brought within a specified threshold distance to the target pose. For the purposes
of this use case, the distance measure hereby only includes the positional distance

1.3. Use Cases 11

and not orientation. Thus, determining if a handling task was successfully solved
requires the localization of the building block. For pick-and-place tasks with one
building block, it is possible to use the gripper’s interface to determine if an object
has been gripped, which can be derived from the remaining distance between the
grippers fingers after a closing command. Afterward, the building block position can
be estimated via the known gripper pose.

To ensure a safe autonomous operation of the robot, a bounding box which the
gripper must not leave is defined. This bounding box safeguards against collisions of
the gripper with the table to avoid damage to the demonstrator. Further, the gripper
movement is restricted to four degrees of freedom, allowing translational movement
in all three spatial dimensions, but restricting rotation to the axes perpendicular to
the table surface. This design choice ensures that the gripper is always the lowest
point of contact, effectively ruling out collisions between the robot and the table.
The force-torque sensor is continuously monitored to induce protective stops when
collisions with obstacles placed inside the bounding box occur.

1.3.3 Use Case 3: Clip Assembly in Aircraft Manufacturing

The third use case is provided by a real-world industrial assembly process in aircraft
manufacturing, in particular the assembly of a shell section for the Airbus A320
family. A shell consists of four main components, depicted in Figure 1.7. A metal
skin forms the outermost layer of the shell. To provide stability to the skin, vertical
and horizontal struts are introduced. These struts are called formers and stringers,
respectively. Finally, rectangular components are used to connect stingers and form-
ers at their intersections, fusing them into a rigid structure. These components are
referred to as clips, and their collision-free assembly into the shell is the objective of
this application scenario. The assembly of clips is a task which is considered hard
to automate and often times performed by manual labor, since each clip and corre-
sponding installation location are unique and thus require a customized trajectory.
In addition, the number of units produced in the aircraft industry is significantly
lower than in other industries, e.g. automotive, reducing the economic efficiency of
automation solutions. Addressing these challenges towards automation is the focus
of this use case.

To automate the clip assembly process, the robot must first pick up a clip and
transport it to its corresponding installation site. Second, the robot must find a
collision-free path to insert the clip into the shell. The first subtask of object picking
is already considered in the second use case. The second subtask of collision-free
clip insertion is the focus of this third use case. To this end, a dedicated hardware
demonstrator based of the real-world assembly line is utilized. This demonstrator
consists of an URb industrial robot with a gripper mounted on a table. The robot is
also fitted with a force-torque sensor to detect and mitigate collisions. Three different
clips and their respective installation site are positioned within the workspace of the
robot. The installation sites include the skin, stringers and formers, which are 3D-
printed from the digital shell model and thus accurately represent the geometry of
the real-world scenario. The clips are fitted with 3D-printed inlays that allow the
robot to grasp them. The demonstrator is depicted in Figure 1.8.

12 1. Introduction

contour board
(former)

| stringer I T

Figure 1.7 Overview of the shell structure of an airplane. The shell consists of a metal skin,
which is reinforced by vertical and horizontal struts. The struts are connected by clips.

1.3. Use Cases 13

Figure 1.8 The clip assembly demonstrator consists of an URb industrial robot, clips and
3D-printed installation sites. The goal of the assembly task is to insert the clips into the shell
structure.

The aim of clip insertion is the collision-free manipulation of a given clip into its
target pose. Both position and orientation are essential to ensure that the clip
is inserted correctly. To locate the pose of the clip at any given time, the clips are
placed in fixtures which are specifically designed to accommodate the clip’s geometry
and constrain its movement. The fixtures provide a known and controlled position
and orientation of the clips. Once a clip is picked up, its pose can be derived from
the known gripper pose with a single static transformation. Thus, no additional
sensory equipment is required to determine the location of the clips and the success
of the assembly task.

The assembly procedure is split in four distinct phases: picking, insertion, removal,
and placing. The picking is achieved based on the known location of the clip in
its fixture, after which the clip is moved over the respective installation location.
Here, the to-be-developed automation solution inserts the clip into the shell. At
this stage, the demonstrator deviates from the real-world process. In the real-world
process, the robot releases the clip and leaves it assembled in the aircraft shell. In
the demonstrator however, the clip is not released, but disassembled to automati-
cally reset the setup for repeated execution. This is realized by moving the entire
assembly trajectory in reverse until the clip is returned to its fixture and the robot
is back in its initial pose, ready to process the next clip. Throughout the entire
movement, especially during the assembly and disassembly steps, the force-torque
sensor of the robot is monitored to detect undesired collisions and avoid damage to
the components of the demonstrator.

14 1. Introduction

1.4 Structure

This section provides an overview of the structure of the thesis, which is schemat-
ically depicted in Figure 1.9. The subsequent chapter 2 introduces the relevant
foundational concepts from the domains of industrial robotics, DL, Computer Vi-
sion (CV), DRL, and TL. Chapter 3 presents the State-of-the-Art (SOTA) relevant
for the RQs, setting the stage for the original contributions of the thesis. Chapter 4
provides baselines for the three use cases using standard DRL and TL approaches,
establishing performance expectations and identifying limitations that motivate the
research directions taken by this thesis in the following four chapters.

Chapter 5 explores the concept of asynchronous RL as possibility to achieve continu-
ous movement when using position control in combination with DRL. The proposed
asynchronous RL framework allows an agent to determine the next action while the
current action is still being executed, which enables a smooth transition between
RL steps. In addition, parametric curves, in particular Bézier curves, are considered
to constrain an agent’s action space to continuous trajectories and avoid undesired
jerk.

Chapter 6 investigates the development of perception modules and the possibility
to pretrain them in simulation. On the one hand, supervised learning in the form
of 6D pose estimation models are considered for the object picking task, which are
shown to be transferable from simulation to reality using Domain Randomization
(DR). On the other hand, unsupervised learning in the form of autoencoder models
is applied in the wire-loop use case, where a low-dimensional representation of the
relevant process features, i.e. the wire shape, is not self-evident. Through injecting
domain knowledge in the form of segmentation maps, meaningful low-dimensional
latent spaces are extracted.

Chapter 7 focuses on exploiting structure in robotic movement to improve learning
efficiency, as well as for modularization. The decomposition of trajectories is used
to modularize policies into hierarchical levels using HRL, where the higher levels
learn overall strategies in the form of subgoal selection, and the lower levels learn
tactical maneuvers to achieve the subgoals. In addition to improving learning effi-
ciency, it will be shown that the modularized low-level policies are task-independent
and thus reusable across different task instances. Further, the reversibility of tra-
jectories is leveraged to achieve assembly-by-disassembly with DRL, by learning a
policy for disassembly, and pretraining an assembly policy on reversed disassembly
demonstrations.

Chapter 8 delves into the domain of cross-robot TL. Specifically, it focuses on possi-
bilities to correspond two industrial robot arms of different morphology. A method-
ology is proposed which maps trajectory demonstrations from a source robot into
trajectories of a target robot by using Forward Kinematics (FK) and Inverse Kine-
matics (IK) models, whereby the general shape of the robotic arm is retained. The
mapped trajectories are then utilized to pretrain a DRL policy for the target domain
in order to decrease the amount of new experience to be collected.

Finally, chapter 9 provides a comprehensive analysis and evaluation of the research
conducted in the thesis and relates the results to the research questions. It reflects on
the strengths, limitations, and potential implications of the findings. Additionally,
future research avenues are outlined.

1.4. Structure

15

Introduction

\ 4

Foundations

A

Related Work

A

Framework and
Baselines

Smooth Continuous
Robot Control

A

Perception Module
Sim2Real Transfer

\ 4

Hierarchical and
Backward Planning

A

Cross-Robot Execution
Imitation

A

Critical Reflection
and Outlook

\. J

——— i —— ——

RQ-1

RQ-2

RQ-3

| RQ-4

Use Cases
Wire-Loop Object Clip
Game Picking Assembly

o e e e e e e e e e e e e e e e R e

Figure 1.9 Schematic illustration of the structure of the thesis.

Dots at the intersections

indicate relevance of the use cases for the chapters and respective RQs. The experimental
setup for RQ-4 reuses key elements from the use cases in a simplified scenario.

16

1. Introduction

Foundations

"Early Al was mainly based on logic. You're trying to make computers that reason
like people. The second route is from biology: You’re trying to make computers that
can perceive and act and adapt like animals.”

- Geoffrey Hinton

This chapter provides the relevant background information on the research areas in
whose intersection this dissertation is situated: industrial robotics, DRL and transfer
learning. The chapter opens with an introduction of the application domain in the
form of industrial robotics. The subsequent section introduces the field of DL, which
offers the ability for data-driven modeling of complex processes instead of relying on
domain-expertise driven and manual modeling. In this context, a particular focus
is placed on CV as a key component of modern robotic systems to extract relevant
information from visual sensory input. Next, the DRL paradigm is introduced as a
control methodology that enables agents to autonomously learn and adapt through
interactions with their surroundings. Finally, TRL is introduced as a means to
address the challenge of data inefficiency when training DRL agents.

2.1 Industrial Robotics

In general, an industrial robot system combines the manipulation capabilities of an
industrial robot, task-specific tools, sensory equipment, and a task-specific program
to automate a given task in an industrial context. According to the ISO standard
8373:2021, an industrial robot is an "automatically controlled, reprogrammable mul-
tipurpose manipulator, programmable in three or more axes, which can be either
fixed in place or fixed to a mobile platform for use in automation applications in
an industrial environment” [76]. Mechanically, a manipulator constitutes an assem-
bly of links, joints, and actuators that form the robot’s core mechanical structure.
Links are physically rigid elements, which are interconnected by joints. These joints,

18 2. Foundations

mechanical connectors, facilitate controlled motion between adjacent links. Most
commonly, joints are either prismatic or rotary, constraining the relative motion to
linear or rotary movement, respectively.

In order to modify the joint configuration and thus the shape of the manipulator,
actuators such as electrical motors are employed. By providing an interface to the
actuators, it is possible to move the manipulator in a desired fashion via task-specific
software programs. In order to automate a given task, an industrial robot is usually
combined with an end-effector. The end-effector is a tool required to accomplish
the task, e.g. a gripper or a welding gun, which is attached to the multipurpose
manipulator.

This thesis focuses on serial manipulators, which are the most common type of
manipulator found in industrial applications with a 60% market share according to
the IFR [121]. Serial manipulators are characterized by a single series of links and
joints from the robot’s base to the end-effector. Serial manipulators are often times
an anthropomorphic structure, with a robotic arm used for positioning and a robotic
wrist used for orientation of the end-effector. In contrast to serial manipulators,
parallel manipulators exhibit multiple link-joint series from the base to the end-
effector. Thus, the joint positions in a parallel manipulator are not independent
of another. While parallel manipulators are mainly chosen for tasks requiring high
precision at high speeds in limited workspaces, serial manipulators are preferred
when a larger workspace is required.

In the following, the mathematical foundations relevant to describing a robot’s kine-
matic structure and movement, as well as the fundamentals of robot control are
introduced.

2.1.1 Kinematics Description

To describe and subsequently program the movement of an industrial robot, a math-
ematical formalization is required. To this end, the field of robot kinematics deals
with the study of the geometric and spatial properties of the robot’s motion without
considering the actuator forces or torques involved. For two neighboring links in
the kinematic structure of a robot, it is possible to formalize the spatial relationship
between the coordinate systems of two adjacent links n—1 and n as a transformation
"1 (jpn), parameterized by the connecting joint’s position jp,,.

One popular method to describe such transformations is the Denavit-Hartenberg
(DH) convention [41, 67, 130]. This convention enables the description of any trans-
formation between two coordinate systems as a sequence of four elementary trans-
formations, i.e. translations Trans..s(distance) along and rotations Rot,.s(angle)
around a Cartesian axis. Each elementary transformation is parameterized by a
single parameter distance or angle, resulting in four DH parameters d;, 0;,r;, a; in
total to describe an arbitrary coordinate system transformation

T, = Trans., (d;) - Rot., ,(6;) - Trans,,(r;) - Rot,, (o) (2.1)

It is important to note that the four DH parameters may be functions of the con-
necting joint’s position, as it modifies the relative position of two links.

2.1. Industrial Robotics 19

Given a parameterized model of the kinematic chain in form of sequential trans-
formations, it is possible to analytically determine the pose, i.e. the position and
orientation, of key elements in the kinematic chain for a specific configuration of joint
positions. As transformations are chainable, the location of any coordinate system
n along the kinematic chain with respect to the coordinate system of the robot’s
base equates to °T},(jp1, ..., jpn) = °T1(p1) - ... - " 1T (jp,). This procedure of deter-
mining a pose from the joint positions is called FK. One common application is the
localization of the TCP °prep = °T,,(jp1, ..., jPn) - "Prcp, which is a process-relevant
point defined in the end-effector’s coordinate system, such as the point between the
fingers of a gripper or the tip of a welding gun.

Conversely, the kinematic chain model can also be utilized for the opposite ap-
plication: finding the joint positions which produce a desired pose, usually of the
end-effector. This procedure is called IK. Unlike FK, performing IK results in am-
biguous solutions, as most end-effector poses can be achieved with multiple different
joint configurations. Thus, IK requires an additional selection strategy to resolve
this ambiguity. Besides feasibility criteria, such as avoiding collisions and joint lim-
its, selection strategies may include performance criteria, such as minimizing joint
movement in an entire trajectory.

2.1.2 Parametric Path Description

To define and guide the motion of an industrial robot, paths represent the desired
route that the robot should follow to reach a specific location. Trajectories delve
deeper into the temporal aspect, defining how the robot should move along the
path over time. The control procedures based on paths and trajectories are called
continuous path control and trajectory control, respectively. In continuous path
control, paths are communicated to the control program of a robot as a series of
poses in planning space, i.e. the joint or end-effector pose space. Trajectory control
additionally requires the specification of the velocity profile, with which the robot
should follow the path [40].

Parametric curves are a common choice for expressing paths. Parametric curves are
mathematical representations that describe the relationship between two or more
variables in a systematic and continuous manner, allowing for the precise character-
ization of complex motion. A parametric curve function can be sampled at various
locations to generate waypoints to be sent to the robot. One such family of paramet-
ric curves which will be utilized in this thesis are Bézier curves, which are a popular
choice for designing paths in various industrial fields, such as CAD [52], as well as
robotics [74, 165].

Bézier curves allow the parametrization of a function effectively using a set of control
points [18, 50]. A Bézier curve of degree n is parameterized by n + 1 control points
Py, ... P, and is defined as B(j) = Y., bin(j) - P, with the Bernstein basis polyno-
mials b;,(j) = (7)(1 — j)"~'j’. The curve parameter j € [0,1] allows the sampling
of points continuously along the curve, whereby B(0) = F, and B(1) = P,.

One desirable characteristic of Bézier curves is that the derivative in Fy and P, is
tangent to PyP; and P, 1P,. This property allows multiple Bézier curves to be
stitched together into a single continuous curve, enabling the modeling of complex

20 2. Foundations

paths with multiple simpler piecewise sections. The parametric continuity of a curve
is thereby defined as its differentiability in all points. As Bézier curves are infinitely
differentiable, also referred to as smooth or of class C*°, the continuity of the overall
curve depends on the transitions between Bézier curves. By ensuring that for two
Bézier curves a and b of degree n, the curves touch at the end points P? = P¢ and
the control points P® |, P Pt PP are collinear, the resulting curve will be at least
of continuity C!. This is visualized in Figure 2.1. Further, it is always possible to
find a reparametrization from the Bézier curve parameters j to the time parameter
t which transforms a C™ continuous path into a C"™ continuous trajectory [28].

Py P}

Pg

Figure 2.1 Bézier curves are parameterized by a set of control points. Multiple Bézier curves
can be stitched together to form a continuous path by ensuring that the control points of the
adjacent curves are collinear.

2.1.3 Closed-Loop Robot Control

The overarching goal of robot control is to orchestrate the robot’s movements in
such a way that it can effectively manipulate its environment as desired. This
goal entails achieving a delicate balance between accuracy, speed, and safety in the
robot’s actions. Whether the objective is to assemble components, perform welding
tasks, or handle delicate materials, the control system must generate suitable robot
movements to ensure not only the successful completion of the task but also the
preservation of the robot’s integrity and the safety of its surroundings.

In general, an industrial robot system constitutes a closed-loop control system, de-
picted in 2.2. The task program thereby fills the role of the controller, which issues
movement commands to the industrial robot and end-effector based on the system
state measured via sensor equipment to achieve the task’s objective (reference). As
mentioned above, industrial robot manufacturers usually provide high-level inter-
faces, such as the ability to specify command poses which are translated by a robot-
internal control program into required actuator voltages. This significantly simplifies
the complexity of task programs, as planning can be performed in the joint space or
the end-effector pose space in the form of continuous path or trajectory control.

Generating a suitable task program is a non-trivial task and requires careful consid-
eration of the requirements of an industrial robot system. In the past, robots have
mainly been employed in static and highly repetitive environments, in which the

2.2. Deep Learning 21

reference error | I control signal I I system output
> @ ;l Controller | 4:l System | T =)

measured output

Sensor

Figure 2.2 In a closed-loop control system, a controller aims to minimize the error between a
desired goal state and the system state measured by sensory equipment.

motion of a robot can be manually programmed. However, keeping the process con-
ditions static requires a high degree of engineering effort. Consequently, as industries
evolve towards more dynamic and adaptable production environments, the need for
more advanced control methods capable of handling increasingly complex process
conditions becomes apparent. The subsequent sections introduce the key research
domains foundational to the development of such advanced control methods.

2.2 Deep Learning

The field of DL describes the subfield of ML that focuses on the application of ANN
to automatically learn and extract intricate features and patterns from data. The
following provides an introduction into the field of ML, and subsequently highlights
the key concepts behind ANN models. Further, the application domain of CV is
introduced, with a particular focus on Convolutional Neural Network (CNN) archi-
tectures. CNNs as specialized ANN architecture for image data have established a
dominance in the field of CV, achieving state-of-the-art performance in a wide range
of tasks, including robot perception [138]. CNNs will be used throughout this thesis
for any vision-related task.

2.2.1 Machine Learning Fundamentals

The field of machine learning concerns itself with methods and algorithms that enable
computers to learn from data, identify patterns, and make predictions or decisions
without being explicitly programmed for each specific task. Mathematically, a ma-
chine learning model can be described as a function y = f(z,w) which projects an
input x onto an output y in dependence of some parameters w. The general goal of
machine learning is to first specify the structure of the function f, and subsequently
find a parameter vector w with which the function will calculate an optimal output
y from an input z.

The most significant capability of machine learning systems is known as generaliza-
tion. Generalization describes the ability to determine a prediction function from
training data, which not only fits the training data, but is also able to accurately
handle inputs not included in the training set. This characteristic makes machine
learning highly attractive for problems, where the input vector space is so vast that
training with a small subset of this vector space is the only computationally feasible
option.

22 2. Foundations

The structure of the function f as well as the dimensions and meaning of the vectors
x,w and y are dependent on the specific application. In general, the machine learning
approaches can be categorized into three broad learning paradigms: supervised,
unsupervised and reinforcement learning.

Methods belonging to the domain of supervised learning use labeled training data,
meaning that, given a training sample x, the output an algorithm is expected to
produce g is known. In the training process, the parameters w are adjusted in order
to minimize the deviation, also referred to as the loss, between the model outputs
and labels for all input-label pairs (x,9) in the training data £, = Y. | f(z;, w) — 3;].
Supervised learning can further be split into classification and regression tasks. Clas-
sification tasks on the one hand require assigning discrete classes to a given input.
The function to be found is interpreted as a decision boundary in the input space,
and classifying an unknown sample becomes a matter of determining on which side
of the boundary it lies. Regression tasks on the other hand are used when trying to
approximate continuous labels.

In scenarios where labeled data is not accessible, unsupervised learning algorithms
play a pivotal role in identifying intrinsic patterns and relationships within the data.
These revealed patterns, including clusters, can subsequently be leveraged for appli-
cations like data compression [211] or anomaly detection [1]. However, distinct from
supervised learning approaches, the absence of definitive ground truth labels makes
it challenging to objectively assess the performance of unsupervised learning algo-
rithms. As a result, these methods find more frequent use in data analysis contexts
as opposed to prediction tasks.

As the third category of machine learning paradigms, RL is centered around scenarios
in which an agent engages in iterative interactions with an environment. Given that
RL is the central approach under investigation in this thesis for the automation of
industrial robotic systems, a more comprehensive introduction to the paradigm is
provided in section 2.3.

2.2.2 Artificial Neural Networks

ANNSs have revolutionized the field of machine learning by serving as powerful tools
for approximating complex functions. Inspired by the interconnected structure of
neurons in the human brain, ANN are designed to capture patterns within data [147].
At the core of ANNS lies their layered architecture, consisting of input, hidden, and
output layers. Figure 2.3 illustrates the architecture of an ANN. Each layer comprises
interconnected nodes (neurons) and an activation function. The neurons process
and transform the data and the activation function introduces nonlinearity to the
network, allowing it to model complex relationships present in data. Mathematically,
a layer describes the operation y = o(Wx), whereby W denotes the learned weight
matrix and o a nonlinear activation function!. This configuration is also referred to
as a perceptron. By stacking multiple layers and using the output from a previous
layer as input to the next layer, the resulting ANN structure, also called a Multilayer
Perceptron (MLP), is able to model complex relationships between the input and
output data.

ITo simplify the notation, it is assumed that zo = 1 and thus the weight matrix entries W; o
constitute the bias terms of the layer.

2.2. Deep Learning 23

IR
NN
/" 5K \éh/ ¥$4‘/
ORKES OKS ov‘v .‘i}(’& O
‘A\Q.A){}& AA &

NAVAS

Figure 2.3 An illustrative example of an ANN architecture. The three input features are
processed by three consecutive hidden layers of 5 neurons each. The output layer consists of
a single neuron, which is interpreted as the probability whether the input features describe a
dog.

weight [kg] =24

length [cm] =86 —> p(dog) =0.98

height [cm] = 52

ANNSs are supervised learning models and as such are trained using labeled data.
In particular, the weights of the ANN are adjusted using a technique called back-
propagation [150]. Backpropagation exploits the hierarchical nature of ANN, where
the output of a layer solely depends on its weight matrix and input, to efficiently
calculate the gradient of a given error function with respect to the weights. Once
the gradients are known, they can be used to adjust the weights towards minimizing
the prediction error, i.e. improving the performance of the ANN.

While ANNs are typically trained with labeled data, they can also be used in un-
supervised settings, for example as autoencoders [96]. An autoencoder consists of
two ANN, an encoder and a decoder. The encoder compresses input data into a
lower-dimensional latent representation z = f(x) and the decoder reconstructs the
original input from this compressed form = = g(z). The key insight is that by forc-
ing the network to pass information through a bottleneck of lower dimensionality, it
must learn to preserve the most important features while discarding irrelevant de-
tails. This enables feature extraction and dimensionality reduction without requiring
labels.

2.2.3 Computer Vision

CV is a field of artificial intelligence focused on enabling machines to interpret and
understand visual information from the world [10, 172]. In general, the goal of a CV
model is to extract meaningful features from visual sensory input, such as images and
video. Key tasks include image classification, object detection, semantic segmenta-
tion, and pose estimation, all of which are essential for autonomous decision-making
in robotic applications.

In recent years, DL has played a dominant role in the domain of CV with the ability
to learn increasingly complex features from data, in contrast to early techniques
relying on hand-crafted feature extraction and domain-expertise driven statistical
analysis [10, 31, 128, 197]. However, the application of data-driven DL methods in-
troduces a new challenge: the curse of dimensionality [118]. With respect to ANN,
this phenomenon describes the exponential growth in the computational complexity
of architecture required to handle increasing data dimensionality. This issue is partic-

24 2. Foundations

ularly pronounced in CV, where the visual input data is typically high-dimensional,
such as high-resolution images.

To address this challenge, specialized architectures have been developed to man-
age the exponential growth in computational demands. One of the most popular
approaches is the CNN, which have emerged as a powerful solution for handling high-
dimensional data like images [91, 213]. Unlike standard MLPs, CNNs are specifically
designed to exploit the spatial structure and local correlations present in grid-like
data. CNNs use convolutional layers to automatically learn features from small lo-
cal regions of the input data, which is well-suited for capturing patterns like edges,
textures, and shapes in images. By sharing weights across the entire image, CNNs
dramatically reduce the number of parameters, making them more efficient and less
prone to overfitting than fully connected MLPs.

—> p(dog) =0.98

Figure 2.4 An illustrative example of a CNN architecture. The input image is processed by
three consecutive convolutional layers of 2x2 kernels each. The output layer consists of a single
neuron, which is interpreted as the probability whether the input image shows a dog.

One of the most popular? architectures in CV is the YOLO family of models, which
are known for their high accuracy and real-time performance for object detection
[143]. The original YOLO architecture constitutes a CNN designed for 2D object
detection. In short, YOLO divides an input image into a grid of cells, and predicts
class probabilities, bounding box coordinates, and confidence scores for each cell.
Due to the simultaneous localization and classification in a single forward pass,
YOLO is able to achieve real-time performance. Based on the success of YOLO in
2D object detection, the architecture was extended to 3D object detection by means
of the YOLO6D model. The main difference to the original YOLO architecture is
that YOLOGD predicts the bounding box corners in the 2D image plane, which are
then projected into 3D space to determine the 3D pose of the object.

2The original YOLO paper was cited over 63,600 times as of July 2025.

2.3. Deep Reinforcement Learning 25

2.3 Deep Reinforcement Learning

The following section first introduces the paradigm of RL, which enables an agent
to learn a control task through interaction. Subsequently, two DRL algorithms for
continuous state-action spaces, and thus particularly suited for industrial robotics
applications, are outlined. In addition, HRL is introduced as a technique to de-
compose complex tasks into simpler sub-tasks. Finally, strategies for parallelizing
environments to speed up the training process are discussed.

2.3.1 Reinforcement Learning Fundamentals

The RL paradigm describes scenarios, where an agent interacts with an environ-
ment to collect and learn from experience. A fundamental concept in RL is the
Markov Decision Process (MDP), which provides a formal framework for modeling
these interactions. At its core, a MDP represents a decision-making problem with
four components: state space S, action space A, transition probability function
T (s'|s,a), and reward function R (s, a, s’). The state space encompasses all different
environment states an agent may observe. The action space comprises all possible
actions an agent can perform in the environment. The transition probability func-
tion describes the dynamics of the environment, i.e. the likelihood that a subsequent
state s’ will be reached when action a is performed in state s. Finally, the reward
function calculates the desirability of taking an action in a given state, effectively
encoding the underlying goal of the decision-making problem. A noteworthy char-
acteristic of MDPs is the independence of individual transitions, i.e. each transition
probability and reward solely depends on the current state and action, and not on
any previous states, decisions or rewards. This characteristic is referred to as the
Markov property and is crucial for the application of RL.

In virtually all real-world robotics applications, it is impossible to observe the com-
plete state of the environment. Instead, sensors like cameras capture only partial ob-
servations of the underlying state. This scenario is formally described by a Partially
Observable Markov Decision Process (POMDP), which extends the MDP framework
with an observation space O and observation probability function 2(o|s) that maps
states to observations. However, for clarity and simplicity, the remainder of this
thesis will use the standard MDP notation, treating observations as states, while
acknowledging that partial observability is inherent in real robotic systems. As the
implications of partial observability are not the focus of this thesis, it will be assumed
that the observation space reflects all relevant information about the environment
necessary to make an optimal decision.

The iterative interaction between an agent and its environment is depicted in Figure
2.5. At a given time step ¢, the agent first observes the current state of the envi-
ronment s; € S. Based on the state, the agent then chooses an action a; € A. The
decision-making process is referred to as the policy of the agent. The policy 7(als)
is a function which describes the probability of choosing an action given a state.
The execution of the action leads to a new state s;,1 according to the environment’s
underlying transition probability function. In addition, a scalar reward r, € R C R
is issued to the agent, which serves as learning signal to optimize the policy with a
given RL algorithm.

26 2. Foundations

Agent Environment
action
. _ Transition
[RL Algorlthm] [Policy] [function]
state
reward Reward
function

Figure 2.5 Basic structure of a RL setting. The agent interacts with the environment by
selecting actions based on the current state and the policy. The environment transitions to a
new state and issues a reward signal, which is used to optimize the policy.

The overall goal in a decision-making problem is the maximization of the expected
discounted return G; = > ;2 v*r.. Here, the discount rate v € [0, 1] determines to
which degree potential future rewards are to be taken into consideration. Different
values for v will result in different optimal policies, as low discount rates favor
immediate rewards, leading to more conservative policies. Conversely, high discount
rates lead to greater risk-taking, as immediate rewards may be forfeited in hope of
even greater future rewards.

With the expected discounted return as objective, the value of a state can be ex-
pressed by a state-value function V,(s) = E;[G¢|s; = s]. This function represents
the expected discounted return when the environment is in a given state s and all
subsequent actions are chosen from a policy . Analogously, the value of an arbitrary
action is expressed by a state-action-value function Q.(s,a) = E;[G|s; = s,a; = al,
which describes the value of taking an action a in a state s and following the
policy 7 thereafter. Due to the Markov property, the value functions can be ex-
pressed as dynamic programming equations V. (s) = E;[R; + 7Vx(st41)|s: = s| and
Qr(s,a) = Ex[Ry + vVi(si11)|s: = s,a; = a]. These equations are also known as
Bellman equations, and their recursive formulation enables the feasible computation
without the need for calculating the infinite sums of all future rewards.

Formalized value functions allow for systematic policy evaluation and comparison.
A policy 7 is considered better than another policy 7’ if V,(s) > Vi/(s) V s € S.
Thus, an optimal policy satisfies Vy«(s) > Vi(s) V s € S, 7. In RL, the goal lies in
finding such an optimal policy by using the observed reward signals as feedback to
continuously improve the decision-making capabilities.

When interacting with its environment, an agent faces the exploration-exploitation
dilemma. At every decision, the agent on one hand has the option to exploit its
current knowledge and choose the action with the highest value according to its
policy. On the other hand, since it is possible that its current worldview is flawed
and the policy may favor a suboptimal action, it could explore the effects of choosing

2.3. Deep Reinforcement Learning 27

a lower valued action, in the hope of discovering actions with actual higher values
leading to better returns. While exploration is desired at the beginning of training
to expose the agent to a wide variety of experience, exploitation is favored at later
stages to take advantage of the agents’ ability to avoid suboptimal situations.

In the pursuit of enhancing the training efficiency and effectiveness of DRL a multi-
tude of strategies and techniques have emerged as powerful tools for achieving more
rapid and effective learning. This section serves as an introduction to the key con-
cepts that are commonly employed to elevate the capabilities of DRL in general, and
for robotic applications in particular.

Uniform, Prioritized and Hindsight Experience Replay

Experience replay is a foundational technique in DRL that significantly enhances the
learning process of RL algorithms by retaining and reusing previously collected ex-
periences. It mitigates the challenge of efficiently utilizing experience data, ensuring
that the agent is exposed to a diverse range of situations throughout training. In-
stead of using each experience only once, the experience data is collected in a buffer,
from which it is sampled by the respective DRL algorithm and used to improve the
policy.

The sampling also has the added benefit of training on more heterogeneous experi-
ence data, as otherwise the agent would condition too much to recent experiences.
In its simplest form, a fixed-size buffer stores experiences, which are then uniformly
sampled during training. This random sampling prevents the agent from condition-
ing to recent or frequent experiences, and instead maintains a balanced learning
process.

Prioritized Experience Replay (PER) takes this concept a step further by assigning
priorities to experiences based on their learning potential. Instead of sampling data
from the pool of collected experience uniformly at every learning step, experiences
associated with surprising or high-error states are sampled more frequently, empha-
sizing challenging situations. This intelligent prioritization accelerates the learning
process by focusing on the most informative experiences.

In addition to deliberating selecting experiences with an expected high learning sig-
nal, it is also possible to modify experience to increase the value for learning. This
concept is embodied by Hindsight Experience Replay (HER), which addresses the
challenge of sparse rewards in goal-oriented tasks. It has proven to be particu-
larly valuable in industrial robotics settings where achieving desired goals may be
infrequent or difficult. HER works by exploiting explicit knowledge about the envi-
ronment to alter goals retrospectively, effectively re-imagining unsuccessful attempts
as successful ones. This technique allows the agent to learn from virtual successful
trajectories, even though it is not capable of producing them itself.

28 2. Foundations

2.3.2 Deep Reinforcement Learning Algorithms for Continuous
State-Action Spaces

In the context of industrial robotics, the utilization of continuous state and action
spaces is of paramount significance. Unlike discrete state spaces, which can be
limiting in their modeling capabilities, continuous state spaces allow for a more
accurate representation of the intricacies inherent in real-world scenarios. Similarly,
continuous action spaces provide the granularity of control necessary to execute
high-precision tasks within robotic systems. Due to their ability to model complex
continuous relationships within data, ANNs have also prevailed in the domain of RL,
whereby the application of ANNs in RL is referred to as DRL. A DRL architecture
particularly suited to handle continuous action spaces is the actor-critic paradigm,
which separates the policy (actor) from the value function (critic) [61]. This thesis
employs two widely adopted actor-critic algorithms®: DDPG [102] and PPO [160],
which are introduced in the following and visualized in Figures 2.6 and 2.7.

DDPG belongs to the class of off-policy algorithms. Off-policy describes the ability of
an algorithm to utilize arbitrary experience data independent of the policy which col-
lected said data. This flexibility enables the utilization an experience replay buffer,
enhancing learning efficiency and data utilization. In DDPG, the actor consists of
a deterministic policy m(a|s) = u(s), while the critic models the state-action value
Q(s,a). Both modules are implemented as ANNs. As the policy is deterministic,
exploration is achieved by superimposing the deterministic output of the policy with
noise, thus a; = p(s;) + €. The magnitude of the noise € is decayed throughout the
training to achieve a transition from exploration to exploitation. The rate of decay
is manually chosen and thus poses a weakness of DDPG. If not correctly tuned, the
agent may either explore too much or too little. While the former causes training to
progress more slowly than necessary, the latter can lead to suboptimal policies due to
a lower variance in collected experience. With the experience collected throughout
training, DDPG optimizes the critic in a supervised fashion by minimizing the state-
action value Temporal Difference (TD) error LOPPE = Q(s,a) — [r + Q(s', u(s"))].
As the actor should produce actions with a high state-action value, the policy is
optimized by minimizing LPPFE = —Q(s, u(s)).

actor

action
Policy
state

Critic state-action
(Q-Function) value

Figure 2.6 The DDPG architecture consists of a deterministic actor and a state-action value
critic. The actor chooses an action, which is judged by the critic. In training, the critic provides
the actor with a gradient towards more favorable actions.

3The original papers of Deep Deterministic Policy Gradient (DDPG) and Proximal Policy Op-
timization (PPO) were respectively cited over 19,900 and 27,700 times as of July 2025.

2.3. Deep Reinforcement Learning 29

In contrast, PPO follows an on-policy approach, which means that it requires the
training data to be collected using the current policy. As the policy is continuously
adapted through training, this effectively means that PPO does not make use of
an experience replay buffer. Despite this, PPO empirically exhibits more stable
and predictable learning behavior, making it suitable for scenarios where safety and
reliable convergence are paramount. Additionally, PPO’s ease of implementation
makes it a popular choice as DRL algorithm. The critic employed by PPO aims
to model the state-value function V(s), and is trained by minimizing the state-
value TD error LEEO =V (s) — [r + V(s')]. The actor used by PPO is a stochastic
policy m(als). Stochastic decision-making is achieved by using the policy ANN to
predict the mean p(s) and standard deviation o(s), which are subsequently used
to sample from a Gaussian distribution to produce an action a = N (u(s),o(s)).
An important feature of the Gaussian distribution is the ability to also compute
the actual probability m(a|s), with which an action was sampled. To optimize
the policy, the critic is used to first compute the advantage of each experience
A(si,a)) = Gy — V(sy) = Sico Yrek + YTV (sier) — V(si). The advantage is
thereby estimated as the deviation of the discounted return from a collected experi-
ence trajectory and the state-value predicted by the critic. Given that the rewards
used to compute the discounted return are closely tied to the policy’s performance,
it becomes evident that collected experience loses its relevance for training as soon as

the policy undergoes changes. This characteristic underscores the on-policy nature
of the PPO algorithm.

Polic action Gaussian action
y mean & std Distribution .
state p(action)

Critic state value
(V-Function)

Figure 2.7 The PPO architecture consists of a stochastic actor and a state-value critic. In
training, the critic is used to compute the advantage of a chosen action, which serves as a
gradient signal for the actor.

The policy 7 is optimized by minimizing

LPPO — qlogr(als) — min(r /madA, clip(m)moa, 1 — €,1+ €) A) (2.2)

actor

The first term in this objective constitutes an entropy regularization, which effec-
tively penalizes the policy for producing high-probability actions and thus incen-
tivizes exploration. Additionally, the probability of actions with a positive advan-
tage is increased, and conversely the probability of actions with negative advantage
is decreased. To determine the direction of the policy adjustment, i.e. the policy
gradient, the policy 7,4 with which the training data was collected is taken as ref-
erence. The policy gradient is clipped to limit the change in policy, which improves
stabilization of the training process.

30 2. Foundations

2.3.3 Hierarchical Reinforcement Learning

One major reason for poor sample efficiency of DRL algorithms is the implicit re-
quirement of an agent to simultaneously learn short-term control and long-term
planning to successfully solve a given task. This dual demand places a significant
burden on the learning process, necessitating an extensive number of interactions
with the environment to robustly attribute the outcome of action sequences to the
respective short- or long-term strategy.

HRL approaches aim to address this issue by decomposing the decision-making pro-
cess of an agent into different levels of temporal abstraction [45, 56, 57, 71, 175, 191].
Each layer constitutes a policy which are responsible for different stages in the
decision-making process. The higher levels are used to divide a task into subgoals,
which are to be achieved by the respective lower levels. Thus, by design the higher
levels take on long-term planning responsibilities, and the lower levels are tasked
with short-term situational control.

In this thesis, the HRL algorithm Hierarchical Actor-Critic (HAC) will be utilized
[95]. As depicted in Figure 2.8, HAC stacks DDPG agents to achieve hierarchical
policy structures. Algorithmically, HAC consists of a nested loop structure, where
each loop tied to an agent layer handles a different level of temporal abstraction. The
innermost loop interacts with the environment on the highest temporal frequency,
receiving subgoals and passing feedback to the next outer loop. This structure
continues until the outermost loop, the highest level, which is the level that receives
the overall task goal. Importantly, from the perspective of an individual agent
layer, the layers and environment below can be treated as abstracted high-level
environment, where the state space includes the subgoals of the respective higher
layer and the action space is the proposed subgoal. This allows for the application
of the standard DDPG algorithm to each layer.

subgoal
Policy
goal state + goal
Critic state-goal-
(Q-Function) subgoal value
action
Policy
state + subgoal
Critic state-subgoal-
(Q-Function) action value
state Robotic action

System

Figure 2.8 HRL agents comprise multiple policy levels with different temporal abstraction.
The higher levels are responsible for long-term planning and divide a task into subgoals, which
are then achieved by the lower levels. The depicted HAC architecture stacks DDPG agents.

2.3. Deep Reinforcement Learning 31

2.3.4 Environment Parallelization

Training an agent on a given task requires training data in the form of experience
collected through interaction with the environment. A common strategy to speed
up the experience collection is the utilization of multiple environments in parallel,
both in the form of simulations [89, 100, 204] or real-world industrial robotic sys-
tems [94]. In general, parallelization strategies can be divided into synchronous and
asynchronous parallelization. A popular special case of synchronous parallelization
is vectorized parallelization. The three different strategies are contrasted in Figure
2.9.

episode

A

[\
oivaton | == I B | O N
. . reset step
parallelization

e D:-_=_

Figure 2.9 lllustrative comparison of different parallelization strategies. Reset and step oper-
ations are represented as outlined and filled boxes, respectively. Interactions which belong to
the same episode and thus are executed sequentially in the same environment are of the same
color.

time

With synchronous parallelization, the interactions with the environments are ex-
ecuted simultaneously. This approach offers a significant advantage in that each
synchronized step per definition captures a result from every environment, stream-
lining the necessary overhead involved in matching the newly collected information
to the respective trajectory. The downside however is, that each parallel execution
takes as long as the slowest process.

A special instance of synchronous parallelization is vectorized parallelization, which
is preferably employed when interactions with the environment can be computed
via matrix operations. While easily implemented, all environments must carry out
the same type of operation in parallel, i.e. reset or action execution. Thus, vector-
ized environments are not efficiently used when the episode lengths of the parallel
environments vary.

In contrast, asynchronous parallelization allows each environment to progress inde-
pendently, collecting experiences and resetting on an individual basis. This approach
results in the fastest experience accumulation, as environments are not idly wait-
ing for slower environments to complete their interactions. However, it introduces
complexities related to data consistency and synchronization, necessitating a more
sophisticated management overhead of the training process to ensure correct com-
munication between the training loop and the environments.

32 2. Foundations

2.4 Transfer Reinforcement Learning

TL describes the utilization of knowledge acquired in a source domain towards the
reduction of training efforts in a target domain. How this is achieved through the
application of specific transfer learning methods depends highly on the nature of the
knowledge, as well as the differences between the source and target scenarios.

In the context of applying TL to RL, henceforth referred to as TRL, there are two
types of source domain knowledge: expert policies and demonstrations. On the one
hand, expert policies are capable of solving the source task to some degree, and
thus inherently possess knowledge about the source scenario. An expert does not
necessarily have to be a RL agent, but can be any type of controller deployable in
the source scenario, even a human operator. However, in order to be transferable,
an agent’s policy must be explicitly accessible and queryable. On the other hand,
demonstrations are recorded interactions of an expert with the source environment,
and thus contain implicit knowledge about the solution of the source task.

One special case of TRL for industrial robotics is the utilization of a simulation as
source domain to pretrain policies, which will be discussed first in the following.
Subsequently, the two main categories of TRL will be outlined, which coincide with
the two types of source domain knowledge: expert policy modification, and expert
behavior imitation learning. Imitation learning is further divided into behavioral
cloning and pseudo-reward imitation learning. While behavioral cloning uses state-
action experience, pseudo-reward imitation learning relies on a pseudo-reward signal
which captures similarity between expert and target agent behavior. The general
approaches are visualized in Figure 2.10.

2.4.1 Simulation-to-Reality Transfer

Simulations offer an intuitive possibility for efficiently developing and pretraining
control agents prior to deployment to a real-world process. This option is especially
attractive for industrial applications, as experiences from suboptimal process states,
such as products of lower quality or slower production cycles, or critical conditions,
e.g. collisions or high wear and tear of components, are infeasible to obtain using
real-world hardware. Especially for data-driven approaches like DRL algorithms, the
ability to interact with virtual environments without consequences for the real-world
production line significantly reduces both costs and risk in the industrial context.

One major challenge arising from the use of simulations for the pretraining of models
is the fact that simulations do not model the real world perfectly. Instead, deviations
exist due to various factors, from lower resolutions and discretizations required to
make simulations computationally feasible to unknown parameters or inadequately
modeled effects. The divergence between simulation and real world is referred to
as the sim2real gap [79]. Different strategies exist for overcoming the sim2real gap,
three of which will be introduced in the following. This thesis will employ the
last strategy, DR. To better understand the advantages of this approach, two other
popular strategies, system identification and domain adaptation, are presented as
comparative approaches.

2.4. Transfer Reinforcement Learning 33

Policy

Source Domain
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
O
@
31
Q1
2
=
o1
o'l
=
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

23 Pseudo-
= Reward
E Function
(0]

|

=

3

% Modified Pretrained Pseudo-
‘l_— Policy Policy Reward
< Reward
©

=

[

o

©

=2

Polic:
S Yy

Figure 2.10 Overview of TRL approaches. Given a source policy, this policy can be deployed
to the target domain. Depending on the transfer scenario, modification of the source policy
may be required to adapt interfaces and/or facilitate learning. Given source demonstrations, a
target policy can either be pretrained, or a pseudo-reward signal can be derived to guide the
learning process.

System identification approaches aim to close the gap by improving the quality of
the simulation and making the simulation as realistic as possible [33]. This approach
however requires a deep understanding of the real-world process, including under-
lying physical principles. In addition, increasing the quality of a simulation often
requires an increase in resolution of a simulation, which in turn increases computa-
tional efforts.

Domain adaptation is a different strategy which aims to augment the data produced
by an imperfect simulation. The main objective lies in finding a mapping from
the distribution of simulation data onto the distribution of real-world data. Once
found, the mapping can be applied to enhance the realism of artificially generated
training samples. Other approaches focus on mappings from both the simulation and
real-world domain into a shared feature space on which the agent is trained. The
development of suitable mappings however requires the availability of real-world
data.

In contrast to the aforementioned approaches, DR neither requires perfect simu-
lations nor real-world data to bridge the sim2real gap. Instead, the simulation is
deliberately randomized by changing various aspects from visual components, such
as colors and textures, to physical properties, such as friction parameters. Thus,
the data generated by this procedure is not of one single simulation, but of a distri-
bution of randomized simulations. As depicted in Figure 2.11, the intuition behind
this approach is that an agent exposed to this data distribution will, given enough
randomization, generalize to the real-world data distribution. Notably, it has been
shown by various previous works that agents are able to generalize and find robust

34 2. Foundations

control policies applicable to the real world target task, despite the majority of ar-
tificially generated data not necessarily being realistic [8, 131, 185]. As the DR
approach is the focus of this thesis, the related work will be examined in more detail
in chapter 3.2.

Distribution of -~ -~
randomized simulations ~

Figure 2.11 The DR approach deliberately randomizes a simulation to generate a distribution
of training samples. With enough randomization, the agent will generalize to the real-world
data distribution and overcome the sim2real gap. Adapted from [109].

2.4.2 Policy Modularization

When a source policy is available, it is possible to construct the initial target policy
using components of said source policy. In the simplest case, e.g. when the source
policy was trained in an accurate simulation or with strategies such as DR, the
policy may be taken directly without modifications. In other cases however, it is
either advantageous or even required to modify the source policy. Advantageous
modifications include the freezing or reinitialization of certain parts of a test ANN
to respectively retain generalized and reset source-domain specific knowledge. A
modification is required when the source and target scenarios differ with respect to
their state and/or action space structure, necessitating the addition of translating
structures, which enable the source policy to interface with the target environment.

To facilitate policy transfer, various previous works aim to explicitly modularize a
source policy. Modularity is an important design principle in software engineering,
which promotes the division of software systems into smaller, self-contained modules
that can be developed, modified, and tested independently. This paradigm can be
directly applied to the development of DRL control policies. When a policy can
be explicitly split into domain-agnostic and domain-specific modules, it becomes
possible to reuse the domain-agnostic components in the target domain, reducing
the transfer efforts to the adaptation of the domain-specific components.

2.4. Transfer Reinforcement Learning 35

Miiller et al. [122] apply the concept of policy modularization to separate an au-
tonomous driving system into a perception module and a driving policy. This archi-
tecture allows the independent development of a domain-agnostic perception module
using supervised learning, which is then used as feature extractor for the training
of the driving policy in a simulation. The strategy enables the authors to directly
transfer the resulting domain-agnostic driving policy from the simulation to the real
world.

Devin et al. [43] divide policies for robot manipulators into task- and robot-specific
modules. After training different task-robot module combinations, the authors
demonstrate the ability to recombine and compose policies which successfully solve
previously unseen robot-task scenarios.

Moreover, numerous previous works have demonstrated the possibility of modular-
izing task-independent behavioral skills into lower control policies, which can subse-
quently be reused in learning higher planning layers for new tasks [56, 71, 162, 191].
Here, the low-level task-agnostic policies are sometimes referred to as options [12,
53, 175].

One particular approach for policy modularization is the utilization of HRL. As
HRL is investigated in this thesis, a closer examination of the related work will be
provided in the next chapter.

2.4.3 Imitation Learning

When the domain knowledge is in the form of demonstrations generated by an expert,
this data can be used to condition an agent towards the expert behavior. As the
agent is expected to imitate the expert, TRL based on demonstrations is referred to
as Imitation Learning (IL). As depicted in Figure 2.10, there are two main strategies
to achieve IL. On the one hand the offline supervised pretraining of policies, also
referred to as Behavioral Cloning (BC) [9, 148], and on the other hand the derivation
of pseudo-reward functions which provide an agent with online reward signals that
facilitate learning [11, 54, 215].

BC stands as a foundational strategy within the realm of IL, employing expert
demonstrations as the source of knowledge transfer. By using this data to pretrain
a student policy with supervised learning, BC aims to condition the student policy
to mimic the behavior of the expert. For stochastic policies, this objective can be
expressed as minimizing the Kullback-Leibler divergence (KL divergence) between
the expert and the student policies LBY™ = |logm(a|s) — logTespert(als)|. In the
case of deterministic policies, the objective simplifies to the behavioral cloning loss
LBO = |1(8) — pexpert(s)]. For both settings, the expert demonstrations consist-
ing of the states s, actions a, and the action probabilities for stochastic experts
m(als) can be collected in an independent procedure and compiled into an offline
dataset. While conceptually straightforward and effective, BC is not without lim-
itations. As BC mimics the behavior expressed in the expert demonstrations, the
procedure highly depends on the quality of the compiled demonstration data. Mono-
tonic Advantage Re-Weighted Imitation Learning (MARWIL) takes the idea behind
BC one step further by estimating the advantage of an action and re-weighting the
available experience, putting a higher emphasis on high advantage actions [200].

36 2. Foundations

This extension requires the additional collection of rewards during the generation
of the demonstration dataset, either directly or indirectly in the form of advantage
estimates. However, the supplementary information about the quality of expert de-
cisions can significantly improve the data efficiency and success probability of a TL
attempt.

In contrast to using demonstrations in an offline supervised fashion to mimic the
behavior of an expert, a different strategy lies in deriving a pseudo-reward function
that captures the similarity between the behavior of an expert, and the current
behavior of an agent. This pseudo-reward is then combined with the reward obtained
from the environment, and effectively guides the agent to imitate the expert behavior.

Both online and offline IL strategies have their respective advantages and disad-
vantages. If the available expert demonstrations are of high quality and directly
translatable to the target domain, offline IL is an effective approach to pretrain a
policy without the need for expensive online interaction with the target environ-
ment. However, in cases where the expert demonstrations are of low quality or are
not directly mappable into target domain trajectories, online IL offer a more robust
alternative.

Related Work

"If I have seen further, it is by standing on the shoulders of giants.”
- Isaac Newton

This chapter introduces the related work relevant to the RQs investigated in this
thesis. The following four sections discuss dedicated literature surveys conducted
for each respective RQ. Each literature survey adheres to the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) approach. First, three
prominent academic literature databases were selected: IEEE Xplore!, Scopus?, and
Web of Science®. These platforms were selected based on their reputation for com-
prehensive, peer-reviewed coverage and advanced search capabilities, ensuring ac-
cess to high-quality and relevant literature. In those databases, the same keyword
searches were conducted in January and again on July Hth 2025 to include more
recent literature. The search terms were crafted by combining the primary search
term “reinforcement learning” AND “robot”, which was used for all surveys, with
a RQ-specific secondary search term, which will be provided in the respective sec-
tion. The compiled collection of articles was then deduplicated to obtain a corpus of
unique articles. This corpus was screened for relevance to the respective RQ, and the
accepted articles were analyzed in detail. Additional relevant articles were identified
in some instances through references and forward searches and were retroactively
added to the corpus. Each literature survey discusses the identified related work
and is followed by an overall assessment to put the findings in context of this the-
sis. It shall be stated that the assessments contain subjective interpretations and
critiques by the author.

https://ieeexplore.ieee.org/
’https://scopus.com/
3https://webofscience.com/

https://ieeexplore.ieee.org/
https://scopus.com/
https://webofscience.com/

38 3. Related Work

3.1 Real-Time Asynchronous Reinforcement Learning

As industrial robot systems are expected to interact with real-world environments,
respective control agents must be capable of handling the realities of the physical
world [49]. The standard RL framework is not inherently suited to be used for the
application in scenarios with real-time control requirements due to the discretization
of time into distinctly separate steps in the underlying MDP. Each time step begins
with the observation of the environment and ends with feedback about the chosen
action. When considering real-world tasks on a continuous timescale, this formaliza-
tion leads to significant drawbacks. Most notably for industrial robotic applications,
the assumption that an action has been completed before the next state is observed
and evaluated does not consider latencies, such as the time required to take a camera
image, communication overhead, inference time of the policy, or the processing of
state, action and reward data. Towards the goal of real-time control with DRL as
prompted by RQ-1, a literature survey was conducted as depicted in Figure 3.1.

search term: "reinforcement learning” AND robot
AND ("async*" OR "real-time" OR "continuous")
AND ("latenc*" OR "delay")

AND NOT ("internet of things" OR "social" OR
Database Search "human-robot" OR "multiagent” OR "multi-agent")

 SEE—
IEEE Xplore 8 Latency in real-world settings
2
 SE—
65 183 153 15 17
Scopus Deduplication ?(—:Xilﬁ
—

29
Web of 30 138

Science
— -
K / loT communication

Real-time hardware
Online learning
Distributed learning
Delayed reward settings
Resource allocation tasks

Figure 3.1 The literature survey process on the topic of real-time asynchronous RL for RQ-1.
17 relevant articles were identified which address latencies in real-world control settings.

First, an initial literature corpus was compiled from the above-mentioned databases
with the following search term: “reinforcement learning” AND robot AND (“async*”
OR 7real-time” OR “continuous”) AND (“latenc*” OR “delay”) AND NOT (“internet
of things” OR ’social” OR "human-robot” OR "multiagent” OR “multi-agent”). The
secondary search term aims to capture the challenge of real-time continuous control
through asynchronous execution and decision-making, which is necessary due to
latencies and delays in real-world robotic systems. A wildcard operator is used to
capture both "latency” and “latencies” as acceptable. As the initial search term
resulted in numerous irrelevant articles, the search term was further refined with a
set of exclusion terms to filter out articles from unrelated fields. Articles discussing
real-time systems in the context of internet of things focus primarily on conceptual,
hardware- and network-level aspects of robotic system integration. A second set of
articles was focused on social implications of robotics and requirements for real-time
communication in human-robot interaction. Finally, articles discussing multi-agent
systems were excluded due to their focus on fleet management, rather than real-time
control of individual robots. The refined search term resulted in 183 articles, from
which 17 articles emerged as relevant to RQ-1.

3.1. Real-Time Asynchronous Reinforcement Learning 39

Upon analysis of the final corpus, the categorization provided in Table 3.1 is pro-
posed, which differentiates three general strategies which will be referred to as: La-
tency Observation, State-Action Observation, and Dynamics Rollout. The strate-
gies are discussed in the following.

Latency Observation [159], [24], [153]
State-Action Observation [83], [73], [65], [140], [139], [205], [25]
Dynamics Rollout [198], [55], [32], [208], [42], [75], [201]

Table 3.1 Categorization of articles by strategy for real-time asynchronous RL.

Latency Observation strategies explicitly provide latency measurements to the agent
as part of the observation. Early works by Schuitema et al. [159] provide the first
example of taking latency into account through modifying the update rules of the
RL algorithms Q-learning and SARSA. Given the restriction of constant delays, the
authors successfully demonstrate the possibility of modelling latency into the RL
framework.

To account for variable delays, the delay measurements can be provided to the
agent as part of the observation. Sandha et al. [153] demonstrate that explicitly
providing the delay leads to better results than simply randomizing the delay during
training with the goal of achieving generalization. The authors use measurements
of the policy inference time and environment sampling time to provide the agent
with the delay information. Bohm et al. [24] utilize the observation age in form of
milliseconds since the state was observed, also successfully demonstrating a positive
effect of incorporating latency information on the learning performance.

State-Action Observation strategies provide the action history to enable implicit
inference of the actual current state of the system. Katsikopoulos et al. [83] perform
early, theoretical proofs of the possibility to transform delayed MDP into a standard
MDP without delays by adding the action history to the state. These proofs are later
confirmed by experimental evidence provided by other works, such as Haarnoja et al.
[65] who feed the past five states and actions into the agent policy report improved
performance on learning quadruped locomotion, although no further investigation
into the nature of the delay and choice of history length is provided.

Adding the state-action history is a valid approach, however it is not without draw-
backs attributable to the previously mentioned curse of dimensionality [118] (cf.
section 2.2.3). Bohm et al. [25] address the issue by using a Recurrent Neural
Network (RNN) to compress the increasing action history into a lower dimensional
encoding. While this enables an agent to handle increasing dimensionality, Ramstedt
et al. [139] show that the general approach of basing decision-making on the action
history is problematic, as the action sequences shift throughout the learning process.
This means that the experience data collected likely contains action sequences that
will no longer be relevant as the policy changes. While Ramstedt et al. [139] are
able to mitigate this issue by online updating the experience samples, the curse of
dimensionality remains.

This issue with multistep state-action histories has been addressed by Ramstedt
et al. [140] through a re-formalization of the RL framework to model real-time
interactions as the simultaneous evolution of states (system dynamics) and actions

40 3. Related Work

(policy inference). This effectively reduces the dimensionality of the required history
to a single state-action step, avoiding the curse of dimensionality. Ramstedt et
al. [140] further highlight the ability to convert their formalization with variable
latency into a constant delay MDP, whereby the latency variance translates into
a stochasticity of the transition function. A similar approach is taken by Xiao et
al. [205], who prove that knowledge of the last action and delay are sufficient to
handle latencies by deriving a continuous-time formulation of the Bellman operator.
The authors further argue that "it is often hard to accurately predict [latency| during
inference on a complex robotic system” [205] and propose using the remaining action
to be executed after state observation as suitable proxy feature.

Dynamics Rollout strategies aim to explicitly model the dynamics of the environ-
ment to predict the actual current state of the system, in contrast to providing the
agent with information that allows for implicit inference of the actual current state
of the system. Approaches mainly differ in the modelling approach, with earlier
works using classical ML techniques such as locally weighted progression regression
[198] and random forests [73], and newer approaches shifting to DL-based models
from standard ANNs [42], over probabilistic ANNs [32, 55] to RNNs [208].

As the dynamics model is separated from the decision-making process, the approach
of learning a dynamics model is not tied to the DRL paradigm. On the contrary,
learning dynamics models is a common approach in automation and control concepts
such as Model Predictive Control (MPC) [208]. The question when learning-based
approaches like DRL are justified is not explicitly addressed in the literature. How-
ever, in the case of MPC one requirement is the ability to measure the distance from
the predicted state to a desired goal. Scenarios where this is not given, e.g. due to
a vision-based state, are potential candidates for DRL approaches.

Expectedly, the dynamics rollout models are only able to predict future states with a
certain accuracy due to stochasticity in the system dynamics. Derman et al. [42] pro-
vide experimental evidence of this, showing that while their dynamics rollout model
achieves better results than a state-action observation baseline strategy, the overall
performance deteriorates with increasing delays as the prediction errors accumulate
with increasing rollout horizon.

Most recently, in 2025, Wang et al. [201] propose a combination of the latency
observation and dynamics rollout strategies. The authors use a delay estimation
module to model the statistical distribution of latencies. This information is then
used to select from a set of dynamics rollout models, which are pretrained under
different latency conditions.

The distribution of appearances of the introduced strategic approaches within the
survey corpus is depicted in Figure 3.2. Notably, there is no clear trend regarding the
emergence of a superior strategy. This is likely due to the strategies exhibiting com-
plementary strengths and weaknesses, making the suitability use-case dependent. In
summary, the Latency Observation strategy is a simple approach to directly measure
the underlying phenomenon of latencies in a low-dimensional representation. Dif-
ferent metrics can be applied to capture the latency, such as the observation age or
the policy inference time. As these metrics model the same underlying phenomenon,
there is no clear advantage in using one over the other. One drawback of the latency
observation strategy is that it requires the ability to measure the latency, which may

3.2. Sim2Real Transfer with Domain Randomization 41

add additional overhead to the system design in form of monitoring functionalities.
The State-Action Observation strategy is a more complex approach, as it requires
the agent to maintain a history of states and actions. This information however is
already available in the standard RL framework and thus easily implemented [75].
The related work has shown that the necessary history can be reduced to a single
state-action step, avoiding the curse of dimensionality. The Dynamics Rollout re-
quires explicit modeling of system dynamics, but in doing so effectively separates
latency compensation from non-delayed decision-making.

54 Category

Il |atency observation

Il state-action observation
dynamics rollout

w
L

Occurrence

N
L

> > S &
F & &
PP

QA O 3 Q N a9 D> >
O N O N N N N N
® S S S

P

Figure 3.2 Distribution of strategies for real-time asynchronous RL over the years. No clear
trend regarding the emergence of a superior strategy can be inferred.

3.2 Sim2Real Transfer with Domain Randomization

As introduced in chapter 2.4.1, the DR approach has emerged as a successful strategy
for sim2real TRL. However, the success of the approach is highly dependent on the
choice of parameters. When the set of varied simulation parameters is too small,
the agent is less likely to generalize and transfer will be unsuccessful. On the other
side, the set of parameters can be too large, encompassing parameters which are
not relevant for the task at hand. While the second case is still likely to result in
a successful transfer, it is not optimal, as the irrelevant parameter randomizations
increase the complexity of the simulation and thus unnecessarily increase the training
efforts spent on pretraining.

The following literature was identified with the search term “reinforcement learn-

ing” AND robot AND “domain randomization” AND “transfer*” AND 7sim*”, using

wildcards to capture different keyword variations, such as "transfer”, "transferabil-
YY)

ity”, "sim-to-real”, "sim2real”, and "simulation”. The resulting deduplicated corpus
of 190 articles was screened for works that go beyond the pure application of DR

42 3. Related Work

and rather focus on improving the full randomization strategy. This resulted in a
final corpus of 17 articles relevant to RQ-2. The full process is depicted in Figure
3.3.

AND *“transfer*” AND “simulation”

search term: "reinforcement learning” AND “robot”
AND "domain randomization*
f Database Search \

S
65
IEEE Xplore Advances to DR peyond pure
application

——

7

 —
88 190 111 10 17
Scopus Deduplication Fsoggrif
—

—
37
Web of 79 101

Science DR application
system identification
“human-robot collaboration” task
“expert baseline” comparison

Figure 3.3 The literature survey process on the topic of DR for RQ-2. 17 relevant articles
were identified which address advances to the basic DR approach.

For the final corpus, the articles were analyzed and then categorized as depicted in
Table 3.2 into four general approaches, which will be referred to as Standard DR,

Guided DR, Active DR, and Human-in-the-Loop DR. The categories are discussed
in the following.

Standard DR [79], [151], [185], [131], [8], [125], [124], [82]
Guided DR [72], [189)], [92], [144], [183]
Active DR [113], [135], [123]

Human-in-the-Loop DR [101]

Table 3.2 Categorization of articles by strategy for DR.

Standard DR strategies all apply DR to achieve transfer to the real-world. While
the approaches differ regarding the choice of parameters and potential randomization
schemes, they all share that no external data is used to guide the training process.
The research line of DR can be traced back to 1997 with the work of Jakobi [79], who
introduces the "radical envelope-of-noise” hypothesis to address the shortcomings of
simulations, i.e. the sim2real gap. The work marks the first successful sim2real
transfer by randomization of simulation parameters for a simple ANN policy evolved
with a genetic algorithm for a two-wheeled robot, as well as a gantry robot. The
concept has since been applied to various applications, from drone flight tasks [151]
to robotic grasping [185]. The latter work of Tobin et al. [185] marks an important
milestone in research, as it coins the now popular term "DR”, distinguishing it as a
separate method from domain adaptation.

The naive approach to DR statistically increases the chances of transfer, but at the
same time also increases the complexity of the simulation task as highlighted by
various works [8, 131]. Peng et al. [131] point out that the choice of parameters
to randomize highly influences the performance of the transfer, however they also
observe that best results are achieved by randomizing as much as possible. Simi-
lar observations are made by Andrychowicz et al. [8], who further investigate the

3.2. Sim2Real Transfer with Domain Randomization 43

influence of the choice of parameters to randomize. The authors highlight the cost
of randomizing as much as possible, as the learning task becomes more difficult,
leading to longer training times. Specifically, the authors report training times of
1.5 hours without, versus 50 hours with DR. However, simultaneously the experi-
mental results suggest that randomization of all parameters is required to achieve
best transfer results.

To improve on this naive approach, Muratore et al. [124, 125] introduce a method to
calculate an upper confidence bound on the optimality gap to estimate the transfer-
ability of a pretrained policy before deploying it to the real-world. After training on
a set of simulation parameters, the policy is transferred and finetuned on multiple
different sets of simulation parameters, which allows measuring the generalization
of the policy. As the authors point out themselves, the validity of using this metric
as measure of transferability is only given if the target domain is covered by the
source domain distribution. Also, as the policy needs to be finetuned multiple times
(using DRL) for each evaluation to achieve statistical significance, the overhead of
the method is computationally expensive.

A different approach is proposed by Josifovski et al. [82], who propose a continual
learning approach to DR, where randomization is continually added to the simulation
environment. The authors show that this leads to both faster training and better
transfer performance, as gradually increasing the complexity allows the agent to
learn more robustly.

Guided DR strategies aim to improve on the ”blind” approach of randomizing in
simulation and attempting to transfer to the real-world, by incorporating offline
data from the target domain, such as observations or expert demonstrations.

Extending on the previously discussed works by Muratore et al. [123, 124], Leibovich
et al. [92] propose a metric for estimating the sim2real transfer success of pretrained
policies. The authors measure the similarity of the policy network activations for
simulation and real-world data and provide experimental evidence, that the proposed
metric correlates with the actual transferability.

Besides measuring the sim2real gap, other works propose to use target domain data
to close the gap. Tsai et al. [189] use a single human demonstration to iteratively
refine the randomization parameters towards better matching the target domain
dynamics, focussing the parameter sampling from a uniform distribution to a dis-
tribution which promotes settings similar to the target domain. This approach is
expanded by Tiboni et al. [183], who use multiple human expert demonstrations to
estimate the probability of the demonstrations being generated by the simulation.
The authors demonstrate superior performance compared to Tsai et al. [189].

Target domain data can also be used to derive curriculum learning schedules. Her-
mann et al. [72] use demonstrations to reset the simulation close to the desired
goal state, i.e. states at the end of a demonstration trajectory. As the policy im-
proves, the proposed algorithm increases the difficulty by increasing the variance of
the randomization, resetting to states further away from the goal state, as well as
resetting to random start states. The authors show that this approach significantly
improves both the speed and overall performance of the pretrained policy. A differ-
ent approach is proposed by Ren et al. [144], who train an autoencoder to compress
high-dimensional simulation parameters (background images, meshes) into a latent

44 3. Related Work

space. By training a differentiable cost predictor model to estimate the policy per-
formance, the authors are able to select points in the latent space which are expected
to be more difficult for the policy. These latent space points are then decoded back
into the original parameter space and used for the next training iteration.

Active DR strategies attempt to use online interactions with the target environment
to improve DR. Using direct access to the target environment promises unbiased,
direct feedback, in contrast to potential biases introduced by offline data.

In line with the previous attempts at measuring the sim2real gap, Possas et al. [135]
model the posterior probability of domain parameters given observed trajectories.
This model is then continuously evaluated on target domain trajectories collected
with the current policy to sample the next set of domain parameters, selecting and
training on simulations which are more similar to the target environment. Muratore
et al. [123] propose to explicitly map domain parameters onto the overall goal, i.e.
the policy performance on the target environment. The approach iteratively trains
a policy on a set of domain parameters, before evaluating the policy in the target
domain. By modelling this relationship, the authors are able to select the domain
parameters which maximize the target domain performance. As the authors point
out, the best choice of domain parameters does not necessarily have to match the
target domain settings. However, the experiments show that if the target domain is
covered by the distribution of domain parameters of the simulation, the parameters
are likely to converge towards making the simulation as realistic as possible, closely
relating the approach to system identification.

The sim2real gap can also be closed in an adversarial manner. Metha et al. [113]
employ a discriminator to differentiate between simulation and target environment
trajectories collected with the current policy. The score of the discriminator is taken
as negative reward signal for a secondary adversarial agent which choses the next
set of simulation parameters to train on. The intuition behind this approach is that
the secondary agent is incentivized to generate simulations where the behavior of
the primary agent differs. The authors show that their algorithm outperforms other
methods regarding generalization to out-of-distribution target environments.

Human-in-the-Loop DR is an approach which actively involves human application
experts to guide the DR process. This is in contrast to the previously discussed
works, which aim to algorithmically improve and automate DR. Liebers et al. [101]
point out that the process can be significantly boosted by involving human appli-
cation experts. The authors identify different stages where such application experts
may support: the generation and refinement of the simulation environment, the se-
lection of suitable parameters for DR and their distributions, as well as validating
agent performance. While the presented case study mainly focusses on the applica-
tion of Virtual Reality (VR) to prepare and manipulate a simulation, the proposed
workflow serves as valuable framework to be expanded on by future research.

Figure 3.4 depicts the distribution of appearances of the introduced approaches in
the literature corpus over the years. Note that Jakobi et al. [79] from 1997 is omitted
for better visibility. While no statistically significant trends can be inferred, a shift
from intrinsic strategies to incorporating additional external resources is noticeable.
Also, it is interesting to note that active DR approaches, while being considered by
the research community, are limited to the years 2020 and 2021 and have since been

3.3. Robotic Movement Structure Exploitation 45

neglected. This hints to the requirement of online target environment access being
recognized as a severe limitation in the applicability of approaches.

4 Category
standard

guided

active

EE human-in-the-loop

Q N 3o ™
s & o o I

Q) G
D)))

Occurrence

o

Year

Figure 3.4 Distribution of strategies on the topic of sim2real transfer with DR for RQ-2. Offline
guided DR has drawn more attention than online active DR. Most recently, human-in-the-loop
DR was proposed.

3.3 Robotic Movement Structure Exploitation

As stated by Sutton and Barto [174] in their foundational work on RL, ”[p]ossibilities
for exploiting structure in reinforcement learning and related planning problems
have been studied by many researchers” [174]. Intuitively, position-based robotic
movement trajectories exhibit two important characteristics: decomposition and
reversibility.

Decomposition describes the fact that any trajectory that visits a set of waypoints
can be regarded as a sequence of smaller sub-trajectories, each visiting a subset of
the waypoints [175]. In terms of the MDP formalization, this is captured by the
Markov property, which states that the next state depends only on the current state
and action, making transitions independent of each other. Reversibility can be
understood as the ability to invert a trajectory to achieve moving from a goal pose
back to a start pose [58].

While the two concepts are related as strategies to exploit structure in robotic trajec-
tories, they are fundamentally different in their approach and respective application.
Therefore, two individual literature surveys were conducted, which will be reported
in the following.

46 3. Related Work

3.3.1 Cross-Task Transfer in Hierarchical Reinforcement Learn-
ing

As previously introduced, HRL modularizes policies into different levels of tempo-
ral abstraction, with the goal of reducing the complexity of the learning process
[13]. Besides the advantages regarding training efficiency, the decoupling facilitates
interpretability and promises transferability.

The following related work was identified using the search term “reinforcement learn-
ing” AND "robot” AND “transfer*” AND "hierarch*”, which was expanded with wild-
cards to capture different keyword variations, such as "transfer”, "transferability”,
"hierarchy”, and "hierarchical”. As depicted in Figure 3.5, the resulting deduplicated
corpus of 152 articles was filtered regarding relevance to the cross-task transfer of
HRL sub-policies. Common reasons for rejection were no or sim2real transfer scenar-
ios, the use of non-learned lower policies, e.g. manually designed motion primitives,
different non-robotic application domains, multi-agent coordination scenarios, and
works on task network graphs. Two potentially relevant articles needed to be dis-
carded, one for which the full article was not obtainable [210], and the other for being
in Turkish [59]. The selected 4 articles were further complemented with 3 additional
relevant articles in a forward search, resulting in a final corpus of 7 articles relevant
to the first part of RQ-3.

search term: "reinforcement learning” AND “robot”
AND “transfer” AND “hierarch*”

/ Database Search \

 S—
55 i
IEEE Xplore | transfer of HRL sub-policies
— 3

SEE—
70 152 103 4 7
Scopus Deduplication Assessment Forward
Search
~—

 SE—
27
Web of 49 99

Science
—]
\ / no / sim2real transfer

motion primitives
different application (e.g. caching)
multi-agent systems
task networks

Figure 3.5 The literature survey process on the topic of cross-task transfer in HRL for RQ-3.
7 relevant articles were identified which investigate transfer of HRL sub-policies.

Approaches to HRL in general can be categorized into two groups according to
the interface between the lower and higher level policies, summarized in Table 3.3.
The two categories referred to as Subgoal Spaces and Skill Embedding Spaces are
discussed in the following.

Subgoal Spaces [17], [34]
Skill Embedding Spaces [12], [163], [162], [152], [66]

Table 3.3 Categorization of articles by interface between HRL policy layers.

Subgoal Spaces are explicitly defined interfaces between HRL layers in the form of
waypoints. Beyret et al. [17] show that for robot trajectories, using interpretable

3.3. Robotic Movement Structure Exploitation 47

subgoal spaces offers explainability of the decision-making process in a HRL agent.
Using target waypoints as subgoals, the authors are able to visualize and reason
about the high-level strategy. Further, for any given state, the authors are able to
produce interpretable heatmaps by querying the high-level state-action value func-
tion with hypothetical subgoals.

Christen et al. [34] "argue that a key to transferability and generalization behavior
in hierarchical RL lies in enforcing a separation of concerns across different layers”
[34]. The authors separately train subgoal-conditioned controllers for manipulation
and high-level planner modules for navigation, which are then combined. While the
authors attempt transfer to different task variations, the experiments only test for
zero-shot transferability, i.e. in case of failure the agents are not further refined to
eventually solve the tasks. As less than 50% of these transfer attempts are successful,
the claim of zero-shot transferability is questionable.

Skill Embedding Spaces are latent spaces representations which encode low level
behavior and can thus be used as interfaces between HRL layers. Embeddings are
learned from data and are thus relevant for scenarios where explicitly defining suit-
able subgoal spaces is not possible.

Baretto et al. [12] demonstrate the possibility to combine individual options, i.e.
behaviors, through a weighting vector. While the authors rely on manually crafted
options to be orthogonal to each other, the ability to express more complex behaviors
through a finite set of base behaviors is a valuable insight.

To autonomously learn a skill embedding, Sharma et al. [163] propose the concept
of unsupervised DRL. The authors provide a skill embedding to an agent, and si-
multaneously train an ANN to predict the next state from the current state and
skill. The prediction accuracy is used as proxy reward for the policy, which thereby
is incentivized to maximize the mutual information between the skill and resulting
behavior. This results in a meaningful comprehensive skill embedding, which can be
used by a high-level task-specific policy. In their follow-up work, Sharma et al. [162]
expand this approach to an off-policy variant and demonstrate its effectiveness in a
real-world robotic locomotion task.

Salter et al. [152] investigate the combination of HRL with KL divergence regulariza-
tion in sequential task learning. The authors formulate an expressivity-transferability
trade-off, which postulates that increasing the expressivity of learned skills enhances
task-specific performance but inherently reduces their ability to transfer effectively
across new tasks, while prioritizing transferability leads to more general skills at the
expense of specialized task performance. The expressivity is hereby understood as
an agent’s ability to distill knowledge, which is directly related to the number of
policy input parameters, i.e. the state and goal. To reduce the parameters while
retaining expressivity, the authors propose soft-attention mechanisms. In addition, a
KL divergence regularization term is added to condition the current policy on policy
instances from previous tasks to facilitate cross-task transferability.

Hao et al. [66] use offline demonstrations to inform the training of a skill embedding
space between hierarchical layers. They use variational autoencoders to compress
the demonstrations into a latent space, from which skill and action priors are de-
rived. These priors are then used in subsequent HRL training by minimizing the KL
divergence divergence between the priors and policy behavior. This allows for the

48 3. Related Work

incorporation of prior knowledge, while retraining flexibility in the policy to account
for sub-optimalities in the demonstrations.

As seen from the distribution over the years in Figure 3.6, greater research focus
both regarding volume and recency has been on learning generalizable skill embed-
dings. Skill embeddings provide the advantage of delegating the interface between
hierarchical layers to the learning process, which in principle makes the approaches
scalable to arbitrary application settings. However, reliably training transferable
embeddings relies on statistical assumptions and is inherently difficult to verify due
to a lack of interpretability of latent spaces. Therefore, the alternative approach
of specifying subgoal spaces has its merits regarding interpretability and reduced
learning effort due to provided structure.

Category
I subgoal spaces
I skill embedding spaces

Occurrence

) Q N
s s I s

3 D
i i

Year

Figure 3.6 Distribution of strategies for cross-task transfer in HRL over the years. While the
literature is sparse, skill embeddings have drawn more attention than explicitly defined subgoal
spaces.

3.3.2 Assembly-by-Disassembly

The concept of assembly-by-disassembly is a well-known strategy in mechanical engi-
neering with a long history of research [39]. The core motivation behind this concept
is that the search space for finding an assembly trajectory may be much larger than
for a corresponding disassembly trajectory. Intuitively, starting with a fully assem-
bled object and removing parts one by one is often times much easier than figuring
out the sequence and motions to assemble the object from scratch.

In this context, the following related work was identified using the search term
“reinforcement learning” AND "robot” AND “assembly” AND “disassembly”. This
resulted in a corpus of 21 articles, which was further filtered down to 4 articles
relevant to the applicability of assembly-by-disassembly for DRL (cf. Figure 3.7).
The majority of the articles were rejected due to only considering disassembly tasks,

3.3. Robotic Movement Structure Exploitation 49

which were included in the query results as the mention of disassembly satisfies
both keywords of the secondary search term assembly and disassembly. While this
negates the original intention of the search term to identify works which explicitly
focus on both assembly and disassembly settings, the search term was not adapted
due to the small size of the raw corpus allowing for manual filtering. The selected
3 articles were further complemented with 3 additional articles in a forward search,
which do not apply DRL, but were found relevant as capturing important aspects
regarding robotic assembly-by-disassembly and thus to RQ-3. The resulting corpus
is discussed in the following, separating the approaches into those which do not use
DRL and those which do.

search term: "reinforcement learning” AND “robot”
AND “assembly” AND “disassembly”

/ Database Search \

)
IEEE Xplore ! | use disassembly for assembly
3

 SE—
7 21 16 3 6
Scopus Deduplication Assessment Forward
Search
N/
 SE—
7
Web of 5 13
Science
| —
K j pure disassembly task |

Figure 3.7 The literature survey process on the topic of assembly-by-disassembly for RQ-3. 6
relevant articles were identified which use the solution of a corresponding disassembly task to
solve an assembly task.

no RL [209], [182], [181]
with (D)RL [167], [202], [166]

Table 3.4 Categorization of articles according to the application assembly-by-disassembly out-
side or within the context of DRL.

Assembly-by-Disassembly without RL

Zakka et al. [209] use disassembly as means for data collection. The authors describe
an unsupervised disassembly process which utilizes an ANN to predict viable picking
points for a robot arm. With the predicted picking points, they randomly pick up
items and place them to the side. By reversing the recorded trajectories, the authors
generate a dataset for assembling the kit, which is used to automatically reset the
environment, as well as to learn the relation between items, their position in the kit,
as well as the assembly sequence.

Tian et al. [182] utilize the CAD model of a multipart assembly. The authors use the
assembled CAD model to successively remove parts using a hierarchical approach.
In the outer loop, a breadth-first search algorithm attempts to find the sequence
in which to remove parts from the assembly. The ability of removing an individual
part is evaluated in an inner loop, where a breadth-first search algorithm over the
action space. The identified trajectories are subsequently reversed and taken as-is
for the assembly task.

In their follow-up work, Tian et al. [181] improve their approach by including fea-
sibility checks. In particular, after each disassembly step, a physics simulation with

50 3. Related Work

the partially assembled construction is run to check if it remains stable. Thus, the
authors are able to generate more realistic disassembly, and subsequently assembly,
trajectories.

Assembly-by-Disassembly with (D)RL

Simonic et al. [167] decompose the disassembly task into a high-level graph rep-
resentation and a low-level controller. The graph nodes represent waypoints from
which multiple directions of motion are possible. The authors construct the graph
dynamically, starting from the assembled state and applying random force actions
to explore the state space and find new nodes. The trajectories between nodes are
also saved as motion primitives, forming the edges in the graph. Once the graph is
constructed, the authors are able to determine and invert the disassembly trajectory
to generate a corresponding assembly trajectory. To account for potential errors
during assembly, a retry mechanism performs partial disassembly in case the robot
gets stuck. Notably, the authors only use RL in form of the SARSA algorithm to
learn a high-level policy for finding the shortest path in the graph, i.e. the disassem-
bly trajectory. The approach also assumes a finite set of actions to identify nodes,
which is done by an inefficient brute-forcing of the action space.

Wantanabe et al. [202] apply the assembly-by-disassembly concept to determine the
correct order of parts. Similar to Simonic et al. [167], the authors learn a disassembly
sequence with DRL (Deep Q-Network (DQN)) which is subsequently inverted. While
the authors motivate their work through a robotic assembly task, the contributions
apply DRL to a simulated environment of stacked blocks, the actual assembly is
performed using hardcoded poses for pick-and-place operations.

Simonic et al. [166] also revisit their previous work [167], highlighting the inefficien-
cies of the original approach to determine nodes through brute-forcing the action
space. The authors instead propose a wall-following approach, where each path
from a previous node is evaluated twice, respectively keeping contact with the left
and right wall. A new node is added when these two trajectories diverge, indicat-
ing multiple possible directions of motion. The strategy of using RL for finding a
disassembly trajectory and subsequent trajectory reversal to generate an assembly
trajectory is identical to their previous work. Importantly, the authors also implic-
itly assume a 2-dimensional state space, which hints to a potential limitation of the
approach regarding the applicability of the wall-following strategy to 3-dimensional
spaces.

While assembly and disassembly tasks are heavily researched [141], the combination
of assembly-by-disassembly and DRL is not yet widely explored. As evidenced by the
literature survey, applications mainly focus on high-level sequence planning detached
from the actual robotic manipulation. Also, the works that do use (D)RL employ
simple algorithms such as DQN or SARSA, which assume discrete action spaces. One
potential reason for this may lie in the direct competition with other approaches of
knowledge transfer. Assembly-by-disassembly effectively requires successfully solv-
ing the disassembly task, which may be a challenging task in itself. Further, the
approach relies on the reversibility of trajectories, which is not always guaranteed.
In contrast, approaches which for example use human demonstrations may be more
appealing to generate readily available trajectories to learn from. Nonetheless, as
seen from the distribution over the years in Figure 3.8, assembly-by-disassembly has

3.4. Cross-Robot Transfer Reinforcement Learning 51

been a topic of interest since 2019, hinting to a potential future of more applications
in the field.

2 Category
H with (D)RL
B noRL

Occurrence
N

v
3V

5o} ™
U o
0> ®

P
Year

Figure 3.8 Distribution of the strategies for assembly-by-disassembly over the years. In par-
ticular the combination with DRL has not gained much attention.

3.4 Cross-Robot Transfer Reinforcement Learning

The general objective of TRL lies in the transfer of expert knowledge from the
source domain to the target domain, which are both MDPs (cf. Figure 3.9). The
differences between the source and target scenarios, i.e. the domain gap to be
overcome, can occur in all MDP components, ranging from different distributions
and dimensionalities of state and action spaces, to different dynamics and reward

functions.

W Target Domain Target Task

ST, AT, PT(s'|s,a) RT(s,a,s’)
ain Bridge
Expert Knowledge Policy
n5(als € $° € §%) T (a|s € ST)

Figure 3.9 Conceptual overview of cross-domain transfer learning. In order to transfer expert
knowledge in the form of policies or demonstrations between two MDP environments, the
domain gap must be bridged.

52 3. Related Work

The following related work was identified using the secondary search term rein-
forcement learning” AND “robot” AND “transfer” AND (“cross*” OR “morpholog*”
OR “embod*”) AND NOT ("sim-to-real” OR "sim2real”). The secondary search term
aims to capture a focus on multiple robot models, which may be expressed by differ-
ent terminology, such as "cross-robot”, “cross-domain”, different "morphologies”, and
different "embodiments”. Wildcard operators are used to account for minor keyword
variations. From this corpus, 8 articles were identified as relevant (cf. Figure 3.10).
The corpus was further expanded with 16 articles in a forward search.

search term: "reinforcement learning” AND robot
AND transfer AND ("cross*" OR "morpholog*")
AND NOT ("sim-to-real" OR "simZ2real”)

/ Database Search \

S
IEEE Xplore 37 | cross-robot transfer
16

 SE—
74 139 108 8 24
Scopus Deduplication
Search
—

28
Web of 19 54

Science
| —
K / cross-domain = cross-task

generalization
Imitation of humans

Figure 3.10 The literature survey process on the topic of cross-robot transfer reinforcement
learning for RQ-4. 24 relevant articles were identified which propose cross-domain mapping
strategies.

Acknowledging the vast imbalance between the number of articles identified in the
forward search and the initial corpus, the validity of the search term must be reflected
upon. A closer inspection of the forward search results revealed a high variability in
the description of similar concepts. For example, "inspiration”, "imitation” and "map”
are used as synonyms for "transfer” [5, 11, 54, 84, 142, 196, 215]. This diversity in
terminology suggests that the search strategy, while systematic, may not have fully
captured the breadth of relevant literature. Expanding the search terms to include
a wider range of related concepts could have yielded a more comprehensive initial
corpus, albeit at the cost of significantly increasing the number of irrelevant articles.
Nonetheless, the chosen approach provides a focused foundation for analysis without

attempting to exhaustively cover every possible phrasing in the field.

The corpus was screened for articles explicitly considering transfer across different
action spaces to focus on methods which are suitable for transfer across different
robot morphologies. Upon review, four general mapping strategies were identified
based on the type of assumptions made about the correspondence of the domains:
Hard-Coded, Finite Mapping Selection, Shared State Space, Correspondence Met-
rics, and Proxy Tasks. The categorization of the articles is provided in Table 3.5,
and the following sections discuss the approaches in detail.

Hard-Coded Mapping is arguably the most naive way to link two domains. This
approach relies on the presence of explicitly formalized domain knowledge and is
thusly not applicable for more complex scenarios. However, when possible, hard-
coded mappings are by nature the most data-efficient approach, as no learning of
mapping functions needs to take place. In 2005, Torrey et al. [187] demonstrate an

3.4. Cross-Robot Transfer Reinforcement Learning 53

Hard-Coded [187], [177]

Finite Mapping Selection [105], [169], [176], [51]

Shared State Space [11], [171], [215]

Correspondence Metrics [5], [22], [4], [85], [84], [196], [54], [63], [214]
Proxy Tasks [43], [64], [2], [142], [207], [14]

Table 3.5 Categorization of articles by strategy for cross-domain TRL.

early attempt at cross-domain transfer by manually designing a mapping function
to translate state-action value functions between two low-dimensional robotic soccer
tactics. Taylor et al. [177] also consider robotic soccer tactics and achieve transfer
by providing mappings for states and actions from target to source domain, which
allows them to reuse an existing state-action value function learned in the source
domain.

Finite Mapping Selection strategies consider scenarios where the best mapping must
be selected from a finite number of possible mapping functions. Like hard-coded
mappings, these approaches rely on the presence of explicitly formalized domain
knowledge and constitute early attempts at cross-domain transfer. The specific
approaches measure the quality of each mapping function and select the best one.
The specific approaches all share the same core idea of mapping entire transitions
across domains, evaluating the next state from the mapped state and action, and
finally comparing the determined next state to the mapped next state. The main
difference lies in evaluation of the dynamics, which can either be done with a learned

dynamics model [105, 176] or through online interaction with the target environment
[51, 169].

Shared State Space strategies exploit an explicit link of domains via a shared state
space, which in literature is predominantly used to derive pseudo rewards from source
domain state trajectory demonstrations. Baram et al. [11] train a binary classifi-
cation model to discriminate between source and target domain states, and use the
classification output as pseudo-reward for the target domain agent. Srinivas et al.
[171] project states into an embedding space and demonstrate that the distance be-
tween the embeddings of a state and a goal state can be used as a pseudo-reward
across domains. Zolna et al. [215] expand on this approach and test different dis-
criminator inputs to capture more features of a state trajectory, such as using two
subsequent states to include the transition dynamics. Most notably, the best results
are achieved when fading out the pseudo-reward over time. As the authors highlight,
solely relying on the pseudo-reward may degrade the performance of the target do-
main agent. Especially in settings where the source and target dynamics differ, the
discriminator is able to differentiate between the two domains with high accuracy,
degrading the pseudo-reward signal.

Correspondence Metrics strategies aim to use assumptions of domain similarities
to match trajectories. One approach is to use such similarity metrics as pseudo-
rewards for imitation learning. Von Eschenbach et al. [196] explicitly link two
domains by formalizing a similarity metric as the distance between key points along
robot kinematic chains. Besides the pseudo-reward approach, the authors also train a
ANN to map between the two domains by minimizing the distance metric. Instead of
explicitly formalizing a similarity metric, statistical assumptions can be used to infer
correspondences. Fickinger et al. [54] propose a Wasserstein-based distance metric

54 3. Related Work

between the state-action distributions of both domains to be used as pseudo-reward.
This allows the authors to transfer behavior across domains where an explicit metric
is not easily defined.

Under the assumption of statistical similarities, unsupervised learning and manifold
alignment approaches can be used to project transitions from both domains into a
shared embedding space. To achieve this, different methodologies were proposed,
from restricted Boltzmann machines [5], over Principal Component Analysis (PCA)
projections [22], to invertible manifold alignment [4]. The quality of mappings can
further be improved by mapping the transitions back and forth and introducing
cycle-consistency losses [85, 214], as well as adversarial discriminators that provide
additional regularization [63, 84].

Proxy Tasks are simple tasks which are solved in both domains to generate trajec-
tory datasets which can be assumed to be corresponding. Primarily, this matched
data is used to improve on the previous unsupervised approaches through super-
vised learning, such as directly learning mapping functions [207]. Alternatively, the
matched data can implicitly be used, as shown by Raychaudhuri et al. [142], who ex-
tend previously discussed unsupervised correspondence metric strategies by adding
additional regularization losses based on the samples position in the respective proxy
task trajectory to further align the embeddings.

Instead of mapping the trajectories back from the latent space, the embedding can be
used directly for cross-robot transfer by deriving pseudo-rewards [64], or as input for
different motion generation approaches [2]. As an example of the latter, Akbulut et
al. [2] use the latent space as input to a decoder which generates motion primitives.

The ability to compress behavior into latent spaces has further been used to create
skill embeddings with similar intent to the previously discussed HRL strategy of
skill embedding spaces (cf. 3.3.1), the difference being that the following approaches
do not apply the core HRL concept of temporal abstraction. Beaussant et al. [14]
show that once a robot-agnostic latent space has been created, policies can directly
be trained in the latent space, allowing for modular transfer across both robots and
tasks. Devin et al. [43] demonstrate similar modularization of policies into task-
and robot-specific modules by training on different task-robot combinations and
using the respective module combinations as policies. This allows the authors to
eventually arrive at a robot-task-independent interface and flexible recombination
of the modules.

With regard to the distribution of appearance in the literature corpus depicted in
Figure 3.11, hard-coding or selecting from finite sets of mappings were strategies of
choice in the early years. With increasing complexity of application domains, the
focus naturally shifted to more sophisticated approaches. While correspondence via
shared state spaces were briefly explored in 2018 and 2019 in the context of differ-
ent dynamics or shared visual state spaces, the special-case nature of the shared
state space assumption resulted in a shift towards more generalized strategies us-
ing correspondence metrics or proxy tasks. Both approaches have complementary
strengths and weaknesses. While for the use of proxy tasks online access to both
domains poses a strong requirement, the availability of matched trajectories explic-
itly provides the required correspondence signals and is thusly the safer approach.
In contrast, statistical approaches offer greater flexibility and scalability by infer-
ring correspondences from distributional similarities between domains, sometimes

3.5. Research Gaps and Focus 55

without requiring explicit trajectory matches. This makes them particularly appeal-
ing when direct access to paired data is impractical or unavailable. However, these
methods can be sensitive to domain shifts and rely on the correctness of statistical
assumptions, potentially leading to suboptimal or unstable transfer performance.
Ultimately, both strategies are expected to continue co-existing in the field and may
be combined to achieve the best of both worlds, as demonstrated by Raychaudhuri
et al. [142].

3 Category
hard-coded

finite mapping selection
shared state space
correspondence metrics
proxy tasks

Occurrence

-

2
§
P

Figure 3.11 Distribution of strategies for cross-robot transfer reinforcement learning over
the years. Using explicit mappings is the most data-efficient approach, but has been largely
abandoned in favor of statistical methods and proxy tasks.

3.5 Research Gaps and Focus

The literature surveys provide the necessary context for addressing the RQs of this
thesis in the upcoming chapters. For the demand of real-time control as demanded
by RQ-1, literature provides a clear answer in the form of asynchronous DRL. In the
spirit of modularization, the approach of dynamics models promises a clear separa-
tion between accounting for latencies and non-delayed decision-making. Motivated
by recent advances in the field of CV regarding image generation, this thesis will
focus on achieving DL-based dynamics rollout for vision-based state spaces.

With respect to RQ-2, the literature provides a well-established strategy for sim2real
transfer in the form of DR. As discussed, numerous works have investigated the abil-
ity to measure the sim2real gap and improvements on the randomization parameter
selection. Whereas previous works pretrain and transfer entire agents, this thesis
will investigate how visual perception modules can be effectively be pretrained in
isolation. A particular focus will be placed on scenarios where the interface between
perception module and decision-making policy is not well-defined. To this end, this

56 3. Related Work

thesis will consider unsupervised learning approaches complemented with the injec-
tion of human domain knowledge to extract meaningful latent representations.

For the structure exploitation of robotic movement prompted by RQ-3, HRL and
assembly-by-dissassemby are provided by literature as promising methodologies. For
the former, it was found that explicit subgoal spaces have been established as suit-
able interfaces, however have been largely neglected in favor of the alternative skill
embedding strategy. Arguing that explicit subgoal spaces are of high relevance for in-
dustrial applications due to their inherent interpretability promoting modularization,
this thesis will revisit this strategy and provide further investigations into the cross-
task transfer of low-level HRL policies. With respect to assembly-by-disassembly,
the concept will be directly applied to position control agents for robotic systems,
rather than high-level sequence planning as in previous works. To this end, the gen-
erated disassembly trajectories will be inverted and used for pretraining assembly
policies with BC.

While the two strategies of statistical correspondence and proxy tasks have been
identified as dominant in the research field on cross-robot TRL, this thesis will recon-
sider the seemingly discarded strategy of finite mapping selection for RQ-4. Instead
of assuming no prior knowledge about the domains and inferring correspondences
purely from data, this thesis acknowledges that in industrial robotics kinematics
models are often available and may be used to link the domains and proposes the
use of FK and IK models to translate trajectories between robot morphologies. To
address the previously mentioned ambiguity of IK, a correspondence metric inspired
by the previously identified work of von Eschenbach et al. [196] will be developed
to select from the (finite) set of IK solutions.

Framework and Baselines

)

"Experience is the teacher of all things.’
- Julius Caesar

As first step towards addressing the RQs of this thesis, baseline performances of
standard DRL and TRL approaches in the three use cases must be established. In
the following, a generalized DRL architecture is presented, which is applicable to all
three use cases. Parts of the learning framework are based on the author’s publica-
tions [21, 157]. Subsequently, for each use case, respective environment designs and
experimental results are discussed. For the wire-loop use case, the experiments in
the real world and in simulation are based on the author’s publications [114] and
[154], respectively.

4.1 Learning Framework

To train DRL agents, a suitable framework is required. While to-date a variety of
sophisticated DRL frameworks exist [98, 99, 137], the framework landscape at the
start of this thesis did not include a suitable framework for the needs of this thesis
regarding stability, feature completeness, ease of use, and extensibility. To avoid
risks associated with early-stage open-source projects, such as changing interfaces
or project discontinuation, the decision was made to develop a custom DRL frame-
work. Examples of frameworks which were identified as promising, but were since
discontinued are OpenAl baselines [44] and rlpyt [173].

58 4. Framework and Baselines

For the DRL framework, the following requirements were identified:

e Modularity and Extensibility: To support a wide variety of applications, first
and foremost given by the different use cases, the framework must be modu-
lar. In particular to facilitate the extension by use-case specific features and
adaptations warranted by the RQs to be addressed, the framework must be
designed with general interfaces. The interfaces shall enable reusability of com-
mon functionalities across different use cases, while at the same time allowing
for maximum flexibility in the implementation of use-case specific features and
adaptations.

e Environment Parallelization: To reduce the training time of DRL agents,
the framework must support environment parallelization for faster experience
collection. While not applicable to the real-world instances of the use cases,
this requirement is particularly important for any experiments and pretraining
performed in simulation.

e Distributed Infrastructure: In most industrial settings, a robotic system is
controlled by an on-site edge computer with limited computational resources.
DRL however requires significant computational resources for ANN training,
which is typically performed on a Graphics Processing Unit (GPU). While it is
possible to integrate a GPU into the edge computer, this significantly increases
the cost of the overall setup due higher hardware requirements regarding ro-
bustness in an industrial shop floor environment. To address this issue, the
framework shall support a distributed infrastructure, in which execution on
the edge computer can be decoupled from the training process on a remote

GPU cluster.

The resulting framework architecture is depicted in Figure 4.1. In the following,
different design decisions and implementation details are highlighted. At the root
of the framework is the Manager process, which is responsible for coordinating the
training loop, i.e. resetting environments, querying the agent for actions and relaying
them to the environments, and compiling experience trajectories. In settings with
distributed infrastructure, the Manager runs on the edge computer to minimize
latencies to the environments and maximize data collection efficiency. To achieve
the desired goal of decoupling the agent training from the robotic execution, the
design choice was made to implement the Agent class with a get_policy function,
which is used by the Manager to download the latest trained policy weights for local
inference.

To satisfy the requirement for environment parallelization, the Orchestrator is im-
plemented to manage the interaction between the training loop and the parallelized
environments. An asynchronous parallelization strategy is chosen (cf. chapter 2.3.4)
to maximize the interactions with the environments. To this end, the Orchestra-
tor maintains a bidirectional communication channel to each process for sending
execution commands and receiving resulting data. The communication follows a
request-response message exchange pattern, where each command by the Orches-
trator is answered by exactly one result message by the respective environment pro-
cess. This ensures, that the processes act in a predicable, well-defined fashion. From
an interface perspective, the Orchestrator provides functions to send and receive

4.1. Learning Framework 59

Manager

-experience_buffer
-policy

evaluate(actions, deterministic=True)

- ™~

«interface~ «abstract~
Orchestrator Agent
+reset(initial_states=None) +add_experience(trajectory)
+send_receive(actions) +train()
+get_reward_function() o *set_policy(

T </ A\ R
.
!
<nterface» ot
<nterface~
Environment ExperienceBuffer
SAC
+reset(state=None, goal=None)

! +add(experience)
+step(action)
v . +sample(amount)
reward_function(state, goal=None) = N
N +update(indices,importances)
+get_reward_function()

«abstract~

RobotTask \
1

«abstract~
Task

Uniform Priority FIFO

FetchPush FetchPickAndPlace

FetchReach ‘

+reset(state=None, goal=None)
+step(action)
reward_function(state, goal=None)

«abstract»
Robot

sreset(state=None) WireLoop Reach ObjectPick ClipAssembly
+step(action)

get_tcp_pose() A
moveJ(joint_angles)

movel (tcp_pose)
set_gripper(position)

4 A %
WireLoopReal ObjectPickReal ClipAssemblyReal

+reset(desired_state=None) +reset(desired_state=None) +reset(desired_state=None)

Figure 4.1 Software architecture of the DRL framework designed for modularity, environment
parallelization, and distributed infrastructure.

60 4. Framework and Baselines

information to and from the environments, which are usually executed sequentially
and can thus be combined into a send_receive function. The messages send to and
received from this function must be tagged with an environment ID, in order to send
commands to the correct processes, as well as compile received data into valid expe-
rience trajectories. These IDs are also used by the Manager to maintain dedicated
experience buffers for each environment.

The effectiveness of using environment parallelization for experience collection is
depicted in Figure 4.2. In this benchmark experiment, different numbers of parallel
environments are used to perform 1000 reset operations, while the wall clock time
taken is measured. As expected, the durations significantly drop with increasing
parallelization.

duration [s]

. — °

1 20 39 58 7 96
parallel environments / processes

Figure 4.2 Orchestrator benchmarking. The implementation effectively distributes experience
collection across multiple processes. Adapted from [21].

To enable the implementation of HER, three design choices were necessary. While
not a direct requirement for the framework, supporting common optimization tech-
niques such as HER can be understood as ensuring the extensibility of the framework.
The first design choice is to support goal-based environments in the Environment
interface, whereby standard non-goal-based environments are considered a special
subset with goal = None. The second design choice is to buffer entire trajectories
in the Manager to retain the temporal structure of the experience. This allows the
Agent to apply post-processing techniques such as HER before splitting the trajec-
tory into independent experience samples. The third design choice considers the
need of HER to retroactively modify the reward of an experience sample, which
requires access to the reward function of the environment. While it is possible to
expose the reward function in the Environment interface, the resulting communica-
tion overhead of sending vast amounts of generated experience tuples from the Agent
over the Manager to the Environment is prohibitive. Instead, the choice was made
to serialize the reward function in the environment and synchronize it once with
the agent at startup. This way, the environment always holds the single source of
truth for the reward function to account for rapid prototyping, and communication
is reduced to a single exchange.

4.2. Use Case 1: Wire-Loop Game 61

Realizing environment-specific techniques is achieved via a generic config parameter
in the reset functions of the environment hierarchy, which allows the Manager to
pass additional configuration parameters, such as the randomization probability for

DR.

The final major design choice is the modularization of environments into Task and
Robot classes. On the one hand, the Robot instances are solely responsible for
the robotic manipulator, translating actions into movement. The Task instances on
the other hand contextualize the robotic manipulator in its surroundings by provid-
ing task-specific goals and reward functions and managing the sensory equipment.
Simulated environments require the Task to supply surrounding elements, including
manipulable objects and obstacles. For real-world scenarios, the Task might also be
responsible for implementing necessary reset routines. The modularization allows
for the reuse of robot-specific implementations across different scenarios, as well as
facilitating the utilization of the framework for cross-domain TRL experiments by
enabling fast composition of different task-robot combinations.

4.2 Use Case 1: Wire-Loop Game

The wire-loop use case poses a custom scenario for which no suitable simulation
benchmark environment or comparative studies are readily available. The automa-
tion of the use case with DRL is approached in two stages. First, the real-world
setup is considered to establish a baseline performance to be used as a reference
for any subsequent investigations into optimizations. Since the direct application of
DRL to the real-world setup is expensive in terms of time and required manual su-
pervision, the second stage focuses on the development of a corresponding simulation
environment and the application of DR for sim2real TRL.

4.2.1 Environment Design

This section introduces the environments for the wire-loop use case. First, the real-
world environment is discussed, followed by the simulation environment.

4.2.1.1 Real-World Environment

Given the hardware setup outlined in chapter 1.3.1, the first step is to define the
state space. As the state must include all necessary information for an agent to make
an informed decision, the state space must include all relevant information about
the current game state. Intuitively, at a given position of the loop, only the next
few centimeters of the wire are relevant, which are captured as 1920x1080x3 high-
resolution images by the camera mounted on the loop. To reduce the dimensionality
of the state space with the goal of improving learning efficiency, the images are
downsampled to 40x40x3. This downsampling factor was manually chosen to reduce
the state space dimensionality while still retaining the necessary features in the
image, i.e. the wire and the loop (cf. Figure 4.3).

62 4. Framework and Baselines

-

(a) Raw camera image. Taken from [114]. (b) Downsampled state. Taken from [154].

Figure 4.3 The states in the wire-loop use case are downsampled camera images of the loop
and the wire. The downsampling factor was chosen to reduce the state space dimensionality
while still retaining relevant image features.

As the state space captures a local view of the wire with no information about the
global position of the loop, an action space is chosen which describes the motion
of the loop relative to the current pose. Since the wire-loop game is constrained
to a 2D-plane, the loop can be moved with three Degrees of Freedom (DOF), two
translational and one rotational. This results in a three-dimensional action vector,
which describes the forward and sideways motion as well as the rotation of the TCP
relative to the current TCP frame. To ensure that the loop does not move out of
the camera’s field of view, a maximum translation of 3 cm in each translational
DOF is chosen. For the rotational DOF, a maximum rotation of 90° is chosen, since
any larger rotation would result in the loop rotating into the wire and losing the
game in virtually all situations. Another restriction is taken by explicitly excluding
backward motion, which is accomplished by constraining the first dimension of the
action vector to be non-negative. This decision is made on the domain insight that
regressing on the wire is neither required, nor beneficial for solving the game. In
fact, any attempt to construct situations which can only be resolved by moving the
loop backwards could always be resolved through a combination of sideways motion
and rotation.

The final component required to formalize the environment is the reward function,
which is defined as follows:

~1 if collision or ¢ > 4,42
=141 if goal or checkpoint reached (4.1)
B a{ orward _ (1-75)- —i;icf otherwise

The derivation of the reward function is outlined in the following. First and foremost,
the reward must reflect the objective of the wire-loop game, which is to guide the
loop from the start to the goal without touching the wire. As a starting point, these
game rules are translated into a sparse reward function, where the reward is +1 if the
goal is reached, -1 if the wire is touched, and 0 otherwise. While this reward function
holistically encodes the game rules, training an agent with this reward function is

4.2. Use Case 1: Wire-Loop Game 63

expected to be challenging due to the long horizon of the task. Considering the wire
length of 150 ¢cm and the maximum translation of 3 cm, approximately 50 steps are
required to solve the game. Reaching the goal through exploration, i.e. choosing at
least 50 random actions which do not lead to a collision is highly unlikely. Instead,
the agent would only observe rewards of -1 and 0, and would likely deduce that the
objective of the game is to avoid the wire. While this is partially correct, from the
agent’s perspective a valid strategy to maximize the reward would be to minimize
the risk of collision by not moving at all. Therefore, additional incentives must be
added to the reward function.

On the one hand, the agent can be incentivized to make progress by exploiting the
domain knowledge that moving forward is beneficial for reaching the goal. This
is achieved by rewarding the magnitude of the forward motion a/”“*“. On the
other hand, the agent can be incentivized to progress along the wire by rewarding
the distance covered. While the overall objective is to get closer to the goal, or
vice versa farther away from the start, it is important to realize that constructing a
reward based on those distances may lead to suboptimal behavior. Since the wire
can be arbitrarily shaped, it is common that the loop will need to move backwards
on the game plane, i.e. towards the start pose. If this were to be punished, the
agent would be wrongly discouraged from the optimal solution. To solve this issue,
checkpoints are introduced along the wire to measure progress.

As the unknown arbitrary wire shape makes it impossible to statically define the
checkpoints on the game plane, they must be defined dynamically. To this end,
the next checkpoint is considered reached if the loop has moved at least [., from
the last checkpoint, where [, = 5 cm was chosen with the following rationale: The
distance of 5 cm was chosen to be sufficiently small to ensure that an agent receives
frequent positive feedback. At the same time, it is far enough to discourage reward
hacking. Reward hacking is the term used to describe a situation where an agent
learns to exploit the reward function design to maximize rewards through undesired
behavior. In the case of the dynamically checkpoints, such reward hacking would
occur if the agent would move backwards a distance of l,,. While moving backwards
is already restricted by the action space design, it is still possible for the loop to
move backwards through a combination of sideways motion and rotation, which was
referred to as tacking due to the similarity of a sailboard moving against the wind in
a zigzag pattern. Without the restriction of the wire, the agent could rotate 90° and
move sideways with 3 cm, hypothetically collecting the checkpoint reward with two
steps. While this worst case behavior will not occur with the wire inside the loop,
smaller backwards regress is still possible. It was estimated that choosing ., = 5 cm
would require an agent to realistically perform more than 3 steps to successfully tack
in backwards direction. In addition, these steps would need to be precisely executed
and would be hard to learn, as the state does not include any information about the
wire shape behind the loop. Thus, the risk of reward hacking is deemed negligible.

The concept of checkpoints allows introducing a timeout if the next checkpoint
is not reached within a given amount of time steps t,,,., which can be used to
terminate an episode if the agent fails to make sufficient progress, which is also
punished with a reward of -1. The timeout was chosen to be t,,,, = 10,which
purposefully is not too restrictive in case a situation occurs where the agent needs
to move precisely with smaller actions. To further incentivize the agent, different

64 4. Framework and Baselines

additional reward structures are possible, such as positively rewarding distance from
the last checkpoint, or negatively punishing the time to reach the next checkpoint.
In this case, the latter option was chosen as minimizing the time between checkpoints
is always valid, while maximizing the distance from the last checkpoint may lead to
unintended behavior analogous to the issues discussed above for using the distance
from the start pose as reward.

With the above considerations, the final reward function is constructed (cf. Equation
4.1). In this reward function, g € [0,1] is a tuning parameter to balance between
the two reward components of maximizing forward motion and minimizing the time
to reach the next checkpoint.

The checkpoints also allow an optimization in the reset procedure, as the loop can
be reset to the last checkpoint position instead of the start pose. This allows the
agent to continue learning on the wire section which it is currently struggling with,
instead of repeatably having to traverse the beginning of the wire which it already
knows how to navigate.

4.2.1.2 Simulation Environment

For constructing the simulation environment, the simulation software CoppeliaSim
[145] is selected due to four main reasons. First, CoppeliaSim is specifically tar-
geted at industrial robotics simulation and features a large library of pre-built robot
models, including the UR5 robot model used in the wire-loop use case. Second, a
distributed control architecture enables the simulation of multiple robots, which are
controlled independently of each other, allowing for the parallelization of environ-
ments. Third, CoppeliaSim features a remote API for Python clients, which is vital
to integrating the simulation environment with the existing Python-based learning
framework. Finally, an educational license allows free and unrestricted use in the
academic context of this thesis.

The simulation setup is depicted in Figure 4.4 and features the same UR5 robot
model as the real-world scenario, a 3D model of the loop attached to the robot
end-effector, and a camera mounted to the loop object. In front of the robot, a 3D
model of a wire is placed, behind which a 2D background plane models the black
cardboard sheet. With this setup, the resulting simulated camera image is displayed
in Figure 4.4b.

To generate the state images, it is possible to set the simulation camera to take
pictures directly in the target resolution of 40x40x3. However, as seen in Figure 4.5,
these directly sampled images are very different from the real images. To achieve
more realistic state images, the same down-sampling and interpolation method is
applied to the simulation images as in the real world, which produces simulation
states (cf. Figure 4.5) that are more similar to the real states (cf. Figure 4.5a).

In accordance with the methodology of DR, multiple parameter randomizations are
implemented. First, the colors of the wire, the loop, and the background can be
independently set to arbitrary RGB values. The textures of each item can also be
independently varied, choosing from a set of predefined textures. As compiling the
texture set required a manual processing step, the number of textures was limited to
20 to balance manual effort with required visual diversity. Additionally, the camera

4.2. Use Case 1: Wire-Loop Game 65

(a) Overview of the simulation setup. Adapted (b) Example of a simulated raw camera image
from [154]. (640x480x3).

Figure 4.4 The simulation setup for the wire-loop use case. The simulation is modeled after
the real-world setup, featuring a URbS robot, a loop tool, a camera, and a background plane

for visual projection.

(a) Real-world image after down- (b) Simulation image with direct (c) Downsampled simulation im-
sampling and interpolation. downsampling. age. Taken from [154].

Figure 4.5 Comparison of real-world and simulation state images. To achieve more realistic
state images, the same down-sampling and interpolation method is applied to the simulation
images instead of directly capturing images at the target resolution.

can be randomly moved around the loop object, allowing for a displacement of up to
1.5 ¢cm and a rotation of up to 5 degrees in each degree of freedom. Finally, random
Gaussian noise can be optionally added to the state images. Other parameters, e.g.
lighting conditions, were excluded due to lack of visible effect on the state images.
Examples of the randomized states can be seen in Figure 4.6.

66 4. Framework and Baselines

(a) No randomization.

(c) Randomization of colors and noise.

(d) Randomization of colors and textures.

(e) Full randomization of colors, textures, and noise.

Figure 4.6 Examples of the randomization strategies applied to the wire-loop use case.

4.2. Use Case 1: Wire-Loop Game 67

4.2.2 Agent Design

With the environment design and learning framework in place, the final component
to be designed is the DRL agent. As the space of possible design choices is virtually
infinite, a trial-and-error process was conducted, heavily relying on educated guesses
based on best practices and reports from literature. In the process of arriving at the
final design, the following considerations were explored:

1. Agent architecture: the final agent design was found through an iterative pro-
cess, starting from an initial oversized architecture, which was then continuously
reduced with observable performance improvements until arriving at the follow-
ing final design. Given the image-based state space design, a CNN architecture
was selected. The CNN architecture was chosen to be three layers of 30, 15, and
10 filters of size 5x5, 5x5, and 3x3, respectively. Each CNN layer is followed up
with max-pooling of size 2x2. This architectural design of gradually reducing
the feature dimensionality is standard practice in literature to extract a compact
representation of the input image. For the actor, this CNN is followed by a MLP
layer of size 200, which in turn is followed by three separate MLPs with each
two layers of size 200 and 1. The three outputs are concatenated to form the
action vector. The critic uses the same CNN model as the actor, feeding the
CNN output into a MLP with three layers of size 200, and 1. The input of the
second layer is concatenated with the three-dimensional action vector to allow the
critic to represent the state-action value. In both actor and critic architecture,
the fully connected layers use Rectified Linear Unit (ReLLU) activation functions
and a dropout rate of 0.2 is used to prevent overfitting.

2. Algorithm + action space: the initial choice of DRL algorithm was DQN, which
uses discrete action spaces. This simplification led to faster training times, how-
ever the discretization also limited the precision of the agent, in addition to
introducing a dependence on manual tuning of suitable actions. Therefore, the
decision was made to switch to a continuous action space and DDPG as suitable
learning algorithm.

3. Reward function: it was observed that selecting a tuning parameter 5 = 1 led to
a performance decrease, indicating that explicitly rewarding the forward motion
helps the agent to identify beneficial behavior faster.

4. Dropout rate: any experiments without dropout were unsuccessful, however no
optimization of the dropout rate beyond the default value of 0.2 was conducted.

5. State space: in contrast to the sole down scaling of the camera image, different
image preprocessing techniques were tested, such as grayscale conversion and
cropping. The objective of these efforts was to reduce the dimensionality, as well
as improve the signal-to-noise ratio of the state space. While the results showed
as anticipated a clear benefit in the reduction of training time, a failure in certain
scenarios was observed. One example is that when encountering bottlenecks
where two wire sections are close to each other (cf. scenario 4 in the subsequent
experimental study), cropping the image introduces critical blind spots, which
make it impossible for the agent to precisely navigate. Thus, it was decided to
provide the agent with as much raw information as possible and delegating the
identification of relevant features to the learning process.

68 4. Framework and Baselines

The lack of a more thorough exploration of different design choices is a clear limita-
tion, mainly due to the real-world nature of the scenario. Not only is execution in the
real world slower, but each interaction with the environment may lead to damage to
the hardware setup. In the case of this use case, each collision between the loop and
the wire and subsequent reset procedure may result in slight alterations of the wire
shape, which accumulate over time. One frequent failure mode encountered was that
the wire would get stuck to the loop during the reset procedure due to friction, which
effectively pulled the wire out of the 2D game plane into the reset plane. This is
catastrophic, as subsequently moving the loop to the start pose not only destroys the
wire shape, but also bears the risk of damaging the hardware. Even though detect-
ing this failure mode is straightforward via the existing collision detection to trigger
an emergency stop, the failed experimental run and required human intervention to
reset the hardware setup greatly diminished the ability for extensive hyperparameter
tuning. For the following experimental study, these limitations have to be accepted.
However, they will be revisited thereafter, where an experimental study will attempt
to facilitate the training procedure through pretraining on simulations.

4.2.3 Experimental Evaluation

This section provides the experimental results for the wire-loop use case. First, the
real-world experiments are discussed, followed by the simulation experiments.

4.2.3.1 Real-World Experiments

With the above training framework implementation in place, experiments were con-
ducted to establish an initial performance benchmark. Further points of interest are
the transferability of learned solutions to task variations, an agents’ ability to adapt
in situations where a higher precision in control is required, and the influence of
visual background noise on the performance of an agent. To this end, DRL agents
are trained on four scenarios depicted in Figure 4.7. Scenario 1 consists of a simple
"s-shaped” wire and a uniform black background, which poses as the simplest sce-
nario and proof-of-concept for learning the wire-loop game. Scenario 2 introduces
a different, slightly more complex wire shape with sharper and more diverse turns.
This scenario is used to assess an agent’s ability to generalize to new wire shapes.
Scenario 3 poses a wire shape even more complexity in the form of a bottleneck,
which requires higher precision in control. Most notably, the wire cannot be kept
in the middle of the loop to traverse the bottleneck, which is the risk-minimizing
strategy on the first two scenarios. In addition, two wire sections are captured by
the camera near the bottleneck, which are states that have not been encountered
before. Thus, an agent needs to differentiate between the wire section it is currently
traversing and needs to keep center of the loop, and the other wire section which
poses an obstacle. Scenario 4 features a wire shape similar to scenario 1, however the
black cardboard sheet is replaced with a projection screen, on which random color
images are displayed to introduce visual background noise into the states. Thus,
the fourth scenario is used to assess the influence of visual background noise on the
performance of an agent.

4.2. Use Case 1: Wire-Loop Game 69

(a) Scenario 1: A simple "s-shaped"” wire.

(c) Scenario 3: A wire with a bottleneck. (d) Scenario 4: Added visual background noise.

Figure 4.7 Evaluation scenarios for the wire-loop use case. Taken from [114]

The training results are depicted in Figure 4.8. Note that training was continued on
the first three scenarios, a new agent was trained from scratch on the fourth scenario
to make it comparable to the results from the first scenario.

70 1

60

50

40 A

steps

30 1

20

scenario 1
scenario 2
scenario 3
scenario 4

training episode

Figure 4.8 DRL results for the real-world experiments in the wire-loop use case. The results
show that the learning framework implementation is capable of training an agent to solve the
wire-loop game. The agent progressively improves its performance, requiring less training with
each new scenario. The agent is also able to successfully learn background noise in the fourth
scenario. Adapted from [114].

70 4. Framework and Baselines

The results show that the learning framework implementation is capable of training
an agent to solve the wire-loop game. On the first scenario, a solution is learned
after 700 training episodes in 23 minutes, with a final testing performance of 69
steps. This performance will be used as baseline for subsequent experiments.

Continued training of the agent on the second scenario demonstrates a clear transfer-
ability of the solution acquired on the first scenario. Notably, the agent immediately
manages to perform 26 steps without collision, presumably until it reaches a wire
section with a novel shape. Overall, the agent is able to solve the second scenario
after only 150 training episodes in 13 minutes, with a final testing performance of
64 steps. Therefore, it can be concluded that the agent learns a general strategy,
rather than memorizing individual scenarios.

On the third scenario, the policy transfer is also visible, with the initial testing
performance already at 10 steps, at which point the agent encounters the bottleneck.
As expected, this situation poses a significant obstacle to the agent, which reflects in
the remaining learning curve being stuck at the 10-step mark, until the bottleneck is
overcome, and the agent solves the scenario with 39 steps after 35 minutes. Thus, the
agent is able to adapt to a higher precision in control when needed. Remarkably, this
solution constitutes a significant improvement over the first scenario, with a 56.5%
reduction in steps. The reason for this can be seen in the learning curve, which
continuously decreases down to 7 steps. Presumably this is not due to a negative
learning effect, i.e. the agent failing earlier on the wire, but rather inversely indicates
a performance increase, as the agent learns to traverse the wire up to the bottleneck
faster. Once the bottleneck is overcome, the agent is able to find an overall faster
solution. This insight is further evidence that the agent learns a general strategy, in
this case by learning optimizations transferable to later unseen parts of the wire.

The added visual complexity in the fourth scenario expectedly results in a longer
training procedure compared to the first scenario, with a total of 950 training
episodes in 61 minutes. Again, a shorter solution was found (62 steps), hinting to the
agent constructively using the increased training time to continuously optimize its
strategy. The significant increase in training effort clearly highlights the importance
of reducing variance in the environment, such as visual background noise.

In conclusion, the initial results show that the learning framework implementation is
capable of training an agent to solve the wire-loop game. With these initial results,
a solid foundation for further investigations and optimizations is established. As
highlighted above, the biggest limitation of the current setup is its real-world nature,
which renders experiments time-consuming and potentially destructive. To address
this limitation, the subsequent investigation will focus on the use of simulations to
facilitate the training procedure.

4.2.3.2 Sim2Real Experiments

With the objective of improving the application of DRL in the wire-loop use case,
the following investigation aims to confirm the hypothesis that the pretraining will
have some positive effect on reducing the real-world training effort. DR will be ap-
plied to improve the generalization of pretrained agents to the real-world setup. As
adding additional randomizations is expected to increase the training effort in sim-
ulation, the influence of different randomization parameters is investigated. In the

4.2. Use Case 1: Wire-Loop Game 71

following, agents are pretrained in simulation with different randomization settings.
The pretrained agents are then transferred to the real-world scenario depicted in
Figure 4.9a, which is analogous to the previously discussed baseline scenario, with a
black cardboard background behind the wire.

(a) Standard black background (b) Transfer scenario with red (c) Transfer scenario with green
scenario. Taken from [154]. background variation. background variation.

Figure 4.9 Experimental scenarios for the DR study to test sim2real transferability.

The pretraining and transfer results in form of required training episodes are reported
in table 4.1. Three experiments are performed for each setting, out of which the
highest value is reported to provide an upper bound on the required training effort.

ID Randomizations Training Episodes
Color | Texture | Noise | Camera (glrr:tl:;:iz;) FE?I'trY;/; rrI;j

baseline 0 650
1 450 750
2 v v v 900 600
3 v v 1850 450
4 v v v 2200 400
5 v v v 2600 0

6 v v v v 3500 0

Table 4.1 Training effort for different DR parameter settings. A positive correlation between
the amount of randomization and the required training effort is observed. Further, a positive
effect of randomization on transferability is visible. Notably, not all parameters must be ran-
domized to achieve zero-shot transfer.

As a first observation, no significant effect can be attributed to pretraining in the ba-
sic simulation setup with no randomizations (setting 1), with the best and worst run
requiring 100 training episodes less and more than the baseline, respectively. Thus,
the basic simulation setup without randomizations does not provide any benefit in
terms of transferability. It was however clearly possible to fully close the sim2real gap
and achieve zero-shot transfer through extensive randomization, as seen in settings
5 and 6. To further validate this result, the agents were additionally tested on back-
ground variations by using red and green colored sheets to change the background
color (cf. Figures 4.9b and 4.9¢). As expected, the agents were directly transferable
to these additional scenarios, presumably since the color randomizations required
the agents to become invariant to the background color.

72 4. Framework and Baselines

Regarding the effect of different randomization parameters, the results show a clear
difference in transferability results between the different parameter sets. In gen-
eral and as expected, adding more randomizations increases the complexity of the
simulation source domain, and thus increases the required pretraining effort. Inter-
estingly, a clear negative correlation between amount of randomization and transfer
success can be identified. This indicates that more complex simulation environments
increases the generalization of an agent.

Investigating the individual randomization parameters, it can be concluded that the
application of Gaussian noise does not have any effect on the transferability (setting
3 vs. 4 and 5 vs. 6). Adding texture randomizations however has a clear benefit
(setting 3 vs. 5). Also, variations in camera location significantly improve the
transferability (setting 2 vs. 6). Contrasting texture and camera randomizations, it
can further be seen that the latter have the highest impact (setting 2 vs. 4).

These findings are plausible, as the real-world states always exhibit some sort of
color-texture variation, but this variation is unlikely follows a Gaussian distribution.
Also, in simulation the camera pose was only approximated and not finely calibrated,
thus the positive impact of camera location variation to account for this known
domain gap is comprehensible.

In conclusion, the application of DR successfully eliminated the sim2real gap and
enabled zero-shot transfer. While the best results were achieved through maximum
randomization, it was also possible to achieve the same transferability without noise
randomization, which decreased the training effort spent in simulation. Although
this insight is valuable as it points to an opportunity to reduce implementation and
training efforts, the question of how to find the optimal subset of randomization
settings before implementation remains open. Therefore, for industrial applications
where real-world training is to be minimized at highest priority, the strategy of
randomizing as much as possible and accepting potential expendable training efforts
in simulation is recommended.

4.3. Use Case 2: Object Picking 73

4.3 Use Case 2: Object Picking

Object picking, of which the second use-case is an instance of, is a ubiquitous task in
robotics. With the rising popularity of DRL, a number of benchmark environments
have been developed to standardize the development process and provide a common
ground for comparing different methods.

For this reason, the following investigation starts with a first attempt to learn the
object picking task using a publically available benchmark suite. In addition, as
the selected benchmark environment does not exactly match the use case setup, the
required modifications will be highlighted.

4.3.1 Environment Design

This section first introduces the selected benchmark environments. Subsequently,
the benchmark interfaces are related to the use-case specific hardware setup, and
the required modifications are discussed.

4.3.1.1 Fetch Benchmark Environments

One prominent benchmark suite is Farama Gymnasium [188], previously known as
OpenAl Gym [27]. The suite provides a standardized environment interface, as
well as a collection of benchmark environments. Given the popularity® of the Gym-
nasium benchmark suite, the environments can be considered stable, eliminating
potential sources of error arising from custom-built environment implementations.
When starting with this work, the Fetch suite was introduced by Plappert et al.
[134] as benchmark focussed on DRL for robotic manipulation tasks. The authors
argue that these environments pose challenging robotic manipulation tasks for DRL
methods, and provide a thorough evaluation of different optimization techniques and
hyperparameters. The benchmark was cited over 670 times as of July 2025, which
serves as a strong indicator of its adoption by the DRL research community.

The Fetch benchmark suite consists of a Fetch robot arm with a two-fingered gripper
simulated with the MuJoCo physics engine [186]. Four tasks are provided: Reach,
Push, Slide, and PickAndPlace. The Reach task is the simplest one, which requires
a control agent to reach goal poses with the robot’s TCP. The other three tasks
require a cube to be moved to a goal pose by respectively pushing, sliding, or pick-
and-placing it with the robot’s gripper.

The PickAndPlace task is the most similar to the use case, as it also requires the
robot to pick up an object and bring it to a goal pose. However, as the analysis
of Plappert et al. [134] shows, it is also the most difficult one to learn. Therefore,
Reach as the simplest task, and Push as an intermediary will also be considered to

provide a more comprehensive evaluation. The selected tasks are depicted in Figure
4.10.

!The repositories of the Gym and Gymnasium have respectively 36,200 and 9,600 stars on
GitHub as of July 2025.

74 4. Framework and Baselines

(a) Reach: The task is to reach a goal pose (red
sphere) with the TCP.

(b) Push: The task is to push a cube (black box) (c) PickAndPlace: The task is to lift a cube (black
to a goal pose (yellow box). Taken from [156]. box) to a goal pose (yellow box). Taken from [156].
Figure 4.10 The benchmark environments FetchReach, FetchPush, and FetchPickAndPlace
from the Fetch suite [134].

The continuous state spaces of the environments consist of a 10-dimensional vector
encoding the robot state, a 15-dimensional vector for the cube state (not included
in Reach), and a 3-dimensional vector describing the TCP or cube goal pose. The
continuous action spaces consist of four dimensions: three dimensions for the end-
effector position displacement, and one additional value controlling the opening and
closing of the gripper. Notably, this formalization constraints the gripper to a fixed
orientation, which significantly simplifies the tasks. In accordance with the findings
of Plappert et al. [134], a sparse reward function is applied:

r, = 0 if ||pgoal - pcube/TCPH <5cm (4 2)
t —1 otherwise |

4.3.1.2 Use-Case Specific Environment Interface

Given the use-case specific hardware setup introduced in chapter 1.3.2, two major
environment design decisions need to be made to align the benchmark environments
with the real-world scenario. The resulting environment concept is depicted in Figure
4.11.

4.3. Use Case 2: Object Picking 75

Real-World

Camera Camera >

Image i

Panda Robot Robot < J
State

A /

L Pose Detector

P e S

' N\
. Fetch
4»[Action Mapper]—i PickAndPlace ,-’[State Mapper]7

Simulation

— e e e e e e e e e e e = = e = = e = = e = = = = = = = = —— =

Figure 4.11 Overview of the environments used for the object picking use case. With minor
adaptations, a policy trained on the Fetch PickAndPlace environment can be used in the object
picking use case.

First, the state space of the benchmark environments are specific the utilized Fetch
robot arm. To account for this, the state space of the benchmark environments, in
particular the PickAndPlace environment to be used later, must be mapped into
the use-case specific state space. To achieve this, the following state mappings are
applied:

1. All state variables related to the Fetch robot base coordinate system are mapped
into the Panda base coordinate system, which is located at the midpoint of the
long edge of the table.

2. All velocity variables are removed, since they are not easily obtainable in the
real-world setup.

3. The gripper states are mapped to a binary open/closed state value.

For the action space, the relative movement is already defined as relative TCP dis-
placement, which can be considered robot-agnostic. Therefore, the only adjustment
required is to use a binary open/closed gripper action value instead of the continuous
one provided by the benchmark environments.

76 4. Framework and Baselines

4.3.2 Experimental Evaluation

This section presents the experimental results on applying the learning framework
to the benchmark environments, with the goal of establishing its performance in
comparison to the benchmark results provided by Plappert et al. [134].

4.3.2.1 Analysis of Task Difficulty

In order to gain a better understanding of the task difficulty, a preliminary inves-
tigation is conducted to establish an upper bound on the performance that can be
expected from an optimal control strategy. To this end, rule-based controllers are
implemented for the Reach and PickAndPlace tasks. The Push task is not con-
sidered, as modelling the physical dynamics of the block sliding on the table was
deemed beyond the scope of this investigation.

For the Reach task, the control strategy is straightforward. The controller computes
the vector pointing from the current TCP position to the goal position, whereby the
positions are provided as part of the state. This vector is then normalized with the
maximum achievable velocity to yield the action. The maximum achievable velocity
of 3.2 cm/step is determined empirically by analyzing the traversed TCP distances
when providing maximum action values to the environment.

The PickAndPlace task can be solved by first moving the TCP to the object’s
position, then closing the gripper to grasp the object, and finally moving the TCP
to the goal position. For the last stage, better results are achieved by using the
object position instead of the TCP position to account for grasping offsets.

The resulting control strategies are depicted in Figure 4.12 for five different random
environment initializations. The Fetch task as most primitive control task can be
solved in less than 5 steps, assuming the predefined success threshold of 5 cm, by
moving the TCP in a straight line to the goal position. The PickAndPlace task
requires more steps, taking more than 15 steps to complete. Thus, in anticipation
of the following DRL experiments, it can be concluded that the PickAndPlace task
is expected to be significantly more difficult to learn than the Reach task.

7
.. . H . .
107 \ ————— success criterion [success criterion
|
1 i

% --- 1077 N\ L

-
o

distance
distance

-
o
-
o

10_4 10_4

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
step step

(a) The Fetch Reach task is solvable in less than (b) The Fetch PickAndPlace task requires more
5 steps. than 15 steps to complete.

Figure 4.12 Optimal control solutions for the Reach and PickAndPlace tasks.

4.3. Use Case 2: Object Picking 77

4.3.2.2 Fetch Benchmark Experiments

With the training framework in place, DDPG agents were trained on the three se-
lected tasks. The hyperparameters were chosen identical to the ones used by Plap-
pert et al. [134]. The only exception is the application of HER. The authors specify
a probability of 80% for replacing the goal with the last achieved goal of a trajec-
tory (strategy final). This basic application can be significantly improved by using
different sampling strategies, as already proposed by Andrychowicz et al. [7], the
authors of HER. In this work, the best-performing future strategy of Andrychow-
icz et al. [7] is applied, which samples a random goal that was achieved later in
the trajectory. This allows for a more aggressive application of HER, where each
experience tuple can be replayed with multiple different virtual goals. Therefore,
the HER implementation is parametrized by the amount of virtual samples per real
experience samples, which is set to 4. This achieves the same distribution of 80%
virtual samples in the experience replay buffer.

Each agent is trained five times with different random seeds to account for the
stochastic nature of the entire training process. During training the agents are
tested every 1000 episodes, except for the Reach task, where the test interval is
set to 100 episodes due to the simplicity of the task. As performance metric, the
success rate of the agent over 10 test rollouts is computed. Training is performed
until either a perfect score of 100% test performance is achieved, or a threshold of
25,000 episodes is reached. The episode threshold was chosen to keep the wall clock
training time below 8 hours as training was performed on a shared GPU server with
limited availability. The results for the individual tasks are depicted in Figure 4.13.
The figures show the performance of the previously outlined training framework
(denoted as ’ours’), as well as the benchmark results taken from Plappert et al.
[134] for comparison.

The results show that the training framework implementation achieves better per-
formance than the implementation of Plappert et al. [134] on the Reach and Push
tasks. As the only meaningful difference between the two implementations lies in
the application of HER, this suggests that the improved performance is primarily
due to the future sampling strategy.

For the most relevant task with respect to the second use case, the PickAndPlace
task, neither implementation was able to fully solve the task. While the perfor-
mance initially rises faster compared to Plappert et al., the incline decreases earlier
and the two performance curves meet at 25,000 episodes, incidentally coinciding with
the maximum episode threshold. Thus, no definitive conclusion as to which imple-
mentation is better can be drawn. However, the experimental results were deemed
sufficient to draw the following conclusions.

The application of HER with the future sampling strategy achieves better results
than the basic application of HER with the final sampling strategy. Also, the
training framework implementation is able to learn benchmark tasks with a satisfac-
tory performance and can thus be used as a starting point for further development.
Third, as Plappert et al. [134] were not able to achieve a 100% success rate on the
PickAndPlace task, and the performance to the own implementation is comparable,
better results with the own implementation are not expected. Additionally, relat-
ing the 95,000 episodes used by Plappert et al. [134] to the capabilities of the own

78 4. Framework and Baselines

100

~
>~

80 1

D
o
L

'S
o
L

test success rate [%]

20 4

= ours
—— Plappert et al. (2018)

0 T T I T T T T T T .
0.0 0.1 0.2 03 2 4 6 8 10 12 14
training episode [x1000]

16

(a) The training framework achieves better performance on the Fetch Reach task.
100

80

60

40

test success rate [%]

20 4

— ours
—— Plappert et al. (2018)

0 5 10 15 20 25
training episode [x1000]

(b) The training framework achieves better performance on the Fetch Push task.
100

80 1

60

40 4

test success rate [%]

20 4

— ours
—— Plappert et al. (2018)

0 20 40 60 80
training episode [x1000]

(c) The training framework achieves comparable performance on the Fetch PickAndPlace task. The
task was not sufficiently solved by either implementations.

Figure 4.13 Comparison of the training framework performance to Plappert et al. [134] for the
Reach, Push, and PickAndPlace tasks. The training framework achieves better or comparable
performance on the benchmark tasks.

4.4. Use Case 3: Clip Assembly 79

hardware setup of roughly 8 hours per 25,000 episodes puts the training time of a
single experiment at approximately 30 hours. While this time frame may be accept-
able for a single training of a final policy, it is infeasible for any form of iterative
development given the limitations of the shared GPU server. Thus, the initial DRL
setup is not suitable to reliably develop control policies for the object picking use
case in a reasonable time frame.

4.4 Use Case 3: Clip Assembly

The clip assembly use case is derived from a real-world aircraft manufacturing pro-
cess, requiring the collision-free insertion by finding a precise robot trajectory. To
avoid inevitable damage to the real-world demonstrator through repeated collisions
throughout a DRL training process, it was decided to first use a CAD model of the
real-world assembly line as basis for developing a custom simulation environment.
Due to the high quality and documentation standards of the aircraft industry, the
digital model is of high accuracy. In addition, the same model was used to fabricate
the 3D-printed parts of the demonstrator (cf. chapter 1.3.3). Thus, any results
obtained in the simulation are expected to be directly transferable to demonstrator,
and later the real-world assembly line. In the following, the simulation environ-
ment is introduced. Subsequently, an initial attempt to learn the task with DRL is
discussed.

4.4.1 Environment Design

Given the industrial nature of the use case, the simulation environment is designed
to reflect the real-world assembly task as closely as possible. The task is to insert
a clip into a shell, starting from an initial pose approximately 5 cm away from the
installation location (cf. Figure 4.14).

v

Figure 4.14 In the clip assembly use case, a clip (blue) is inserted into a shell (green).

A reduction to the relevant parts of the process is necessary to ensure that simulation
is performed as fast as possible. To this end, clip-specific environments are created
in Pybullet, whereby for a given clip only the meshes in a vicinity of the installation
location are considered. This is achieved by clipping the meshes with a sphere

80 4. Framework and Baselines

of a given radius, centered at the installation location. Examples of the resulting
environments are depicted in Figure 4.15.

A

Figure 4.15 Example of the clip assembly environment. The shell is reduced to the vicinity of
the installation location to improve simulation performance.

To ensure that the collisions in simulation are realistic, it is also necessary to adjust
the collision shapes. In particular, the concave nature of the meshes is not suitable
for simulation, as they are approximated by a convex hull. As can be seen in Figure
4.16, this convex approximation makes the collision-free insertion of the clip impos-
sible. To address this issue, the meshes must be decomposed into a set of convex
shapes, which is achieved using the Volumetric Hierarchical Approximate Convex
Decomposition (V-HACD) algorithm [108].

hh

(a) The original mesh of the clip (b) The convex hull approxima- (¢) V-HACD provides a set of
contains concave parts, which are tion of the original mesh is too convex shapes, which are suitable

not suitable for collision detec- coarse and leads to collisions in for collision detection and precise
tion. simulation. enough for assembly.

Figure 4.16 Mesh preprocessing required to improve collision detection in simulation for the
clip assembly use case.

Translating the clip insertion task into an environment is straightforward. To de-
scribe the state, the position and orientation of the clip is considered, which are
provided relative to the goal pose. The 6D action space describes relative movement
of the clip. At reset, the clip is placed at a distance of approximately 5 cm to the
goal pose, as per specification of the real-world assembly task.

To simulate clip movement, a constraint is applied to the clip, which pulls the clip
towards the next waypoint with a specified force. This approach was also found
to be an effective way to detect collisions by checking if the waypoint was reached
within a certain amount of simulation steps.

4.4. Use Case 3: Clip Assembly 81

To communicate the task of assembly, the following reward function is used

-1 if collision
re=41 if ||pgoal — pTC’P” < (lmm, 10) (43)
0.1 % (exp(—10d) — 1) otherwise

which rewards successful assembly with 1 and otherwise issues small rewards with a
gradient towards the goal pose. Collisions with the shell are penalized heavily and
lead to a termination of the episode.

4.4.2 Experimental Evaluation

To train agents on the defined simulation environment, the same DRL framework
used for the wire-loop simulation can be reused. This clip assembly use case also
benefits from the environment parallelization strategy. Notably, HER is not used,
since each clip scenario only consists of a single goal pose, and thus the resulting
environments are not goal-conditioned. With this training setup, the first training
runs were found to be unsuccessful. The agents did not converge to the desired
behavior, and instead defaulted to strategies that kept the clip far away from the
shell.

These negative results can be attributed to two main issues with the given setup.
First, the fact that finding a suitable assembly trajectory is a task which requires
very high precision. As finding such a trajectory through exploration is highly
unlikely, the agents learned that avoiding collisions by keeping a safety distance
to minimize the risk of punishment due to collision. Second, the dense reward
function from equation 4.3 was found to be a potential source of error. While the
distance to the goal provides as a rough indicator of where to move the clip and
leads to initial progress towards the shell, the vector towards the goal, and thus the
maximum reward, does not coincide with the optimal assembly trajectory. Figure
4.17 illustrates this issue. Thus, the misalignment of the reward function and the
optimal assembly trajectory likely leads to suboptimal learning behavior.

Prcp
a

- Tmasx g &3
P Prcp (/ \
L

_— - . §
g G B S

(a) Initial pose, goal pose, and (b) The reward-maximizing ac- (c) The optimal action performs
actions. tion leads to a suboptimal pose. a rotation necessary for insertion.

't

Figure 4.17 lllustrative example of suboptimal behavior induced by the dense reward function.

While the suboptimal reward function is a design flaw that can be remedied by using
a sparse reward function, the inherent difficulty of high precision assembly for DRL
due to the high potential for failure is a fundamental challenge. The latter will be
the focus of investigation in this use case.

82 4. Framework and Baselines

4.5 Mapping Research Questions to Use Cases

In this chapter, a generalized DRL was introduced and applied to three representa-
tive industrial robotics use cases. In addition, standard TRL strategies in the form
of DR were employed. The achieved results will provide necessary baselines for the
contributions of this thesis. Revisiting the general suitability of the use cases for dif-
ferent aspects of the modular decision-making pipeline outlined in chapter 1.3, the
following value of the use cases towards addressing the RQs can be substantiated.

The flaws regarding the time-discrete nature of the standard RL framework for real-
time control addressed by RQ-1 are particularly pronounced in the wire-loop use
case where continuous, smooth trajectories are desired to both solve the game as
fast as possible, as well as mimic dynamic human game play. These goals are direct
proxies for industrially relevant parameters of reduced process time and reduced
wear and tear on mechanical components. Therefore, the wire-loop use case is a
suitable candidate to investigate RQ-1.

For the generation and sim2real transfer of perception modules as prompted by
RQ-2, both the wire-loop and object picking use cases are suitable due to their use
of visual state spaces. In the object picking use case the required feature space in
terms of object pose is well-defined. In the wire-loop use case, the relevant features
in the images, i.e. the wire and the loop, are easily identifiable. However, a suitable
encoding of these features is not self-evident. Therefore, the main focus towards
answering RQ-2 will be on the wire-loop use case, while the object picking use case
will still be considered to investigate sim2real transfer of perception modules.

To address the improved planning through exploitation of robotic movement struc-
ture in RQ-3, the object picking use case is a suitable candidate to investigate the
cross-task transfer of HRL, as the overall task can be conceptually decomposed as
consecutively bringing the object to a series of subgoals. The clip assembly use case,
by definition as assembly scenario and due to its high precision requirements, serves
as best candidate for the integration of assembly-by-disassembly with DRL.

The final RQ-4, cross-robot execution of trajectories, will not be addressed in a
specific application-driven use case. Instead, a simplified proof-of-concept task will
be considered and experiments will be restricted to simulation. The experimental
setup will however benefit from all use cases, in particular regarding the reuse of
robot simulation models.

Smooth Continuous Robot Control

"Robotics are beginning to cross that line from absolutely primitive motion to
motion that resembles animal or human behaviour.”
- Jeffrey Jacob Abrams

Smooth and continuous robot trajectories are desired both from a process and a
maintenance perspective in a wide range of industrial applications. Smoothness de-
scribes the lack of sudden directional changes, while continuity describes the lack
of abrupt changes in velocity. In general, sharp directional changes in a trajectory
require the robot to decelerate, which increases the overall process time. From a
general maintenance perspective, frequent de- and acceleration of the robot can put
significant stress on mechanical components and thus decrease their lifespans. Thus,
realizing smooth, and continuous trajectories is a highly desirable property in in-
dustrial robotic applications. In this context, the discrete-time nature of standard
RL frameworks does not account for real-world effects such as latencies of camera
equipment or policy inference. In particular with the use of position-based control,
this leads to the robot stopping at each state until the next action is provided. Fur-
ther, since a policy selects actions independent of the previous actions, the resulting
trajectories may not be smooth. This chapter addresses these shortcomings towards
answering RQ-1: How can smooth, continuous movement be achieved within the
RL framework?

The following sections investigate the realization of smooth and continuous tra-
jectories within the DRL framework, using the wire-loop use case as experimental
basis. First, an inherently smooth action space based on Bézier curves is proposed
to explicitly enforce smooth trajectories. Next, an asynchronous DRL framework is
introduced to enable continuous movement between individual actions. The asyn-
chronous DRL framework and Bézier curve action space were previously published
by the author [158]. The framework is further complemented with a dynamics roll-
out model to anticipate future states and preserve the Markovian property of the
environment.

84 5. Smooth Continuous Robot Control

5.1 Smoothness-Constrained Action Space Design

Revisiting the action space design of the wire-loop use case defined in chapter 4.2,
an action is interpreted as relative transformation to the next TCP on the 2D game
plane. The translation and rotation DOF are hereby handled independently, allowing
for relative loop movements such as moving to one side, and simultaneous rotating
to another. This design allows for maximum flexibility, since a control strategy, such
as a DRL agent, can perform arbitrary movements.

From the perspective of smoothness however, the transitions between two indepen-
dently chosen actions exhibit a discontinuous velocity profile. Since the desired
velocity between two states is directly derived from the action v; = s;11 — 8¢ = aay,
it is evident that switching from one action to another in any given state results in
an abrupt change in the desired velocity vector.

In contrast to using linear segments to connect a set of waypoints, Bézier curves were
introduced in chapter 2.1.2 as popular choice in fields such as computer graphics and
robotics to generate inherently smooth paths. In particular, the ability to combine
two Bézier curve segments to form a continuous path of class C! by constraining
the control points, as well as the ability to reparametrize a Bézier curve path into a
trajectory of same continuity class, makes them a suitable choice for the wire-loop
use case.

Considering that the Bézier curve derived from the previous action ng’l, N i
is fixed, the state s, will be at position P!~!. Thus, the first control point P}
is constrained to P} = P!~! with the orientation given by the tangent 7'~! =

e
Pfleﬁ_l. To ensure C! continuity, the second control point is constrained to P} =
Pt+ k- fﬁ’l, where k is a positive number. Thus, the first control point has one
degree of freedom. All other subsequent control points do not influence the C*
continuity of the trajectory, and can thus be arbitrarily placed. Therefore, a Bézier
curve of degree n can be parametrized with 2n — 1 parameters.

Regarding the integration of Bézier curves into the environment design, it is possible
to use the same action space as before and use Bézier curves to interpolate between
the waypoints. As depicted in Figure 5.1a, in situations where the translation and
rotation go in the same direction, a Bézier curve of degree 2 can be formed by using
the waypoints as start and end control points, and inferring the intermediate control
point as intersection of the waypoint tangents. This approach however does not work
in situations where the translation and rotation go in different directions, as the
tangents will not intersect. Such cases require a Bézier curve of degree 3, whereby
the placement of the two intermediate control points is not self-evident. As seen
in Figure 5.1b, the inherently arbitrary control point placement heavily influences
the resulting trajectory, in the worst case leading to self-intersecting trajectories.
Although this action space formulation would be a valid approach, and a DRL
can be expected to implicitly learn to avoid unfavorable trajectories, the approach
followed by this thesis is to interpret the action space as a direct placement of the
control points.

To this end, this thesis investigates two different strategies for encoding the control
points of a Bézier curve as actions. The two encoding strategies are depicted in
Figure 5.2.

5.1. Smoothness-Constrained Action Space Design 85

—— (1e-6, 1e-6)
— (05,05)
(0.8,0.5)

0.8 081

0.6 -

0.6

0.4 1 0.4

0.2 024

/|

0.0 ? T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

X

(a) A Bézier curve of degree 2 can be inferred from (b) Some target poses require Bézier curves of de-
a target pose if the tangents of the end points in- gree 3 or higher. In this case, the placement of
tersect. intermediate control points is not self-evident.

Figure 5.1 Inference of a Bézier curve from a target pose.

The first encoding strategy constructs the control points of a Bézier curve using

Cartesian coordinates (cf. Figure 5.2a). By defining the action vector as a{*""**"*™" —=

(a2 a?™], where

r,n—1

a;" e{r € R | —2pim < i < Tiim)

al" e {y eR" |0 <y < Yiim}

encode the and y coordinates of the control points in the TCP coordinate frame,
respectively. The TCP coordinate frame is defined at the first control point P} with
the y-axis pointing up in the direction of movement, i.e. in T~ direction.

The second encoding strategy uses polar coordinates to construct the control points

(cf. Figure 5.2b). Here, the action vector is defined as a?“"" = [, a?™ '], where

al™ € {d € R" |0 < d; < dyim}

a?" e {p € R | —duim < b1 < brim}

encode the distances and angles between the control points. In contrast to the Carte-
sian encoding, the control points are not placed independently, but are scaffolded
onto the previous two control points.

After the control points are determined with either encoding strategy, it is necessary
to sample waypoint poses from the resulting Bézier curve which can then be sent
to and traversed by a position controller. The waypoints should thereby not be
sampled arbitrarily: If on the one hand too few waypoints are sampled, the resulting
movement may deviate significantly from the desired trajectory. Sampling on the
other hand too many waypoints may exceed the precision granularity achievable
by the robot. Thus, the position controller must skip waypoints which are already
considered reached. In the best case, this only means avoidable computational and
communication overhead. However, with an increasing number of waypoints it is
likely that the movement of the robot will suffer if the position controller encounters
a lot of similar waypoints and skipping them takes longer than reaching them.

86

5. Smooth Continuous Robot Control

(x3, X4)

081 s
(X1, x2) __--=~
/”

0.6

0.4

(0, xp)"

0.2

0.0 ? T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X

(a) Cartesian encoding. Control points are placed
independently in the TCP coordinate frame.

0.8 4

0.6 4

0.4 4

0.2 4

0.0

0.0 0.2 0.4 0.6 0.8 1.0
X

(b) Polar encoding. Control points are placed se-
quentially based on the previous two control points.

Figure 5.2 Bézier curve encoding strategies.

To achieve an optimal sampling of waypoints, the implementation of this thesis em-
ploys a simple waypoint refinement algorithm, whose pseudocode is provided in Al-
gorithm 5.1. Given a Bézier curve B(t), the algorithm first initializes the end points
B(0) and B(1) as waypoints. For each transition between successive waypoints, the
algorithm checks if the transition satisfies specified constraints. Constraints may
include thresholds for the maximum distance or rotation between waypoint poses,
or more sophisticated conditions such as the deviation between the desired Bézier
curve segment trajectory and the approximated linear movement between the way-
points. The algorithm recursively increases the waypoint resolution where a more
fine-grained movement is required to follow the Bézier curve.

Input: low and high sampling parameters t;,,, and tp;g, Bézier curve B(t)
Output: Optimal sampling parameters tjoy, ..., thigh
1: function REFINE_WAYPOINTS(t10u, thigh, B(t))

2: I/Vlow — B(tlow)
3: Whigh < B<thigh)

4: if transition Wi, — Wi satisfies constraints then

return [¢;oy, thigh)
else

tmid — (tlow + thigh)/Q

return lower[: —1] U higher
9: end if
10: end function

lower < refine_waypoints(tiow, tmid, B(t))
higher < refine_waypoints(tmid, thigh, B(t))

> Note: Remove duplicate t,,;4

Algorithm 5.1 Bézier curve sampling algorithm.

5.2. Asynchronous Learning Framework 87

5.2 Asynchronous Learning Framework

One apparent challenge for continuous control with RL is the time-discrete nature
of standard RL frameworks. This is especially true for position-based control, where
each interaction step ends with the robot coming to a complete halt as the individual
actions are completed. Such behavior is highly unfavorable as it results in non-fluent
trajectories. In addition, standard RL does not account for real-world effects such
as latencies of camera equipment or policy inference. As illustrated in Figure 5.3,
the lack of consideration of those latencies in the wire-loop use case leads to time
intervals between separate steps where the robot does not move until the next action

is provided.

reset()
initialize() g
D R S0
<. ...
execute(ay)
[P R TorSt
evaluate(s;) »
>
< u i
execute(a;)
add_waypoints(ty)

Figure 5.3 Sequence diagram of a standard RL framework. Due to the time-discrete nature,
real-world latencies lead to non-continuous robot motion.

One strategy to achieve continuous robot motion inside the time-discrete RL frame-
work is to use an action space based on a derivative of the position-based trajectory,
such as the velocity or acceleration. With this option, the robot is able to continue
moving while the next action is determined. However, it is not trivial how a ter-
minating event, e.g. a collision, during this time interval is to be incorporated into
the synchronous communication framework. If on the one hand this negative event
is reflected in the next reward, it is wrongly associated with an action that was not
executed. On the other hand, associating the event to the correct action requires a

88 5. Smooth Continuous Robot Control

process for switching out the previous reward already communicated by the environ-
ment. In addition, using position or angle derivatives as control parameter makes the
resulting trajectory dependent on the length of a given time interval. With latencies
being unpredictable by nature, the time interval in between actions may vary, lead-
ing to noisy states and non-deterministic behavior. This effect can be mitigated by
minimizing latencies by proper system design, specifically using real-time operating
systems, high-performance hardware, and low-latency communication protocols.

To enable the use of DRL with position-based control, a reformulation of the stan-
dard DRL framework is necessary to enable parallel decision-making and execution.
To this end, this thesis proposes an asynchronous execution framework depicted in
Figure 5.4, which explicitly considers the implications of real-world latencies. The
framework is outlined in the following.

reset()
initialize() o
|
reset
.............................. i |
take_picture() -
... .'.l
D R Qe
evaluate(sg) -
>
e L N l
execute(ag) g
add_waypoints(tg)
|
execute Ty
.. Fl
comput
[P R & I R
P . | |
execute(aq)
compute
- 71922892 -.6.......

Figure 5.4 Sequence diagram of the proposed asynchronous RL framework. The next action
is determined based on an intermediate state and provided to the robot in time to enable a
continuous transition between actions.

In general, the execution of the first, the last, and the intermediate actions in a
trajectory require separate treatment. The execution of the first action in an episode
ag results in the transition to the next state s;, which is required to determine the
next action a;. However, as the first action is not completed at this stage, neither
the next state s; nor the reward ry is available. Instead, an intermediate state

5.3. Dynamics Rollout Module Development and Validation 89

s1_s is observed. Here, § € [0,1] is the time interval before the next state, at
which the intermediate state is captured. To preserve the Markovian property of
the environment, the remaining action a;_s must be observed as well. As outlined
in chapter 3.1, previous work has proposed to either provide additional features to
the policy, such as the latency or action to be executed, or to use a dynamics rollout
model to predict the future state. In this framework, an agent is provided with
the intermediate state and remaining action (s;_s5,a;—5). This enables both state-
action based policies m(a;|s;_s,a;_s), and using explicit dynamics rollout models

51 = p(s1-5, a1-5).

For any subsequent execution of actions except the last step in an episode of length
T, a for 0 < k < T, the ‘step‘ function returns the intermediate state sx,1_5 and
ap11_s required for policy inference, as well as the now available true state s and
reward r,_; associated with the previous action. At this point the experience tuple
((Sk—1-6,k—1-5), Qk—1,Tk—1, Sk) is complete. Note that for the state the intermediate
state-action pair is used, since it was provided to the policy for inference. The next
state however is the true state sg, since it is the state resulting from the action
execution.

The last action execution ar depends on when it becomes clear that the state sp
is terminal. If on the one hand it is known that the action ar is the last one, e.g.
due to the maximum number of episode steps being reached, the last reward r; can
be determined after the final action is completed. Thus, the last execution provides
the next state sp,q, the previous reward rp_q, and the last reward rr. If on the
other hand, the episode is terminated due to an unforeseen event, e.g. a collision,
the action ar is treated like any previous action, resulting in the next state sy, 1 and
the previous reward rp_;. With the attempted execution of the subsequent action
ary1, it will become clear that the episode was already terminated. Thus, the action
a4 is not executed, and the function only provides the reward r7 to complete the
last experience tuple.

5.3 Dynamics Rollout Module Development and Val-
idation

In the following, the latter approach is chosen for further investigation. Albeit the
generation of high-dimensional images is challenging, the approach decouples the
synchronous policy model from the dynamics rollout model, which can be developed
independently. In contrast, adding latency features or actions to the state space
produces policies which are only applicable to the specific latency range, or action
space definition.

5.3.1 Dynamics Rollout Module Architecture

To achieve dynamics rollout of high-dimensional states, such as the camera images
of the wire-loop use case, this thesis investigates the applicability of conditional
Generative Adversarial Networks (GANs), which have been shown to generate high-
quality, realistic images [26]. In general, a dynamics rollout model constitutes the

90 5. Smooth Continuous Robot Control

generator of a GAN, which aims to model the environments transition probability
function 7 (s'|s,a). The generator is trained on a dataset of transitions (s,a,s’)
sampled from the environment. The utilization of (s,a) as input makes the GAN
conditional, as the generator should not only produce realistic images, but also
account for the dynamics resulting from the previous state-action pair. To enhance
the quality of the generated images, a discriminator d(s) is trained to distinguish
between real and generated images.

In a preliminary experimental study, different GAN architectures were evaluated,
identifying the pix2pix architecture proposed by Isola et al. [77] as best suited.
The architecture is based on U-Net, which is an autoencoder with skip connections
between the encoder and decoder layers to better preserve high-dimensional image
features [146]. Also, the pix2pix framework employs a patch discriminator, which
focuses on local image patches instead of the entire image. The final architecture
is depicted in Figure 5.5, for which the following design decisions and adjustments
were made:

e State Dimensionality: As the pix2pix architecture was designed for images of
size 256x256, it was decided to use a higher image resolution of 480x360x3 in
the wire-loop use case, which is the resolution used to capture the images prior
to downsampling to 40x40x3.

e Action Preprocessing: With the insight that the desired dynamics rollout con-
stitutes an 2D image translation task, the action fed into the rollout model is
reduced to the 3D vector of translation and rotation, analogous to the action
space used in the previous baseline setup. In addition to reducing the ac-
tion to the relevant information, this also makes the rollout model applicable
across different action spaces, such as the Bézier curve action spaces, for which
determining the required reduction is straightforward.

e State-Action Encoding: To condition the generator on both state and ac-
tion, the original pix2pix architecture must be modified. As the state is high-
dimensional and the action is low-dimensional, the action is run through a
separate encoder to produce a latent vector of the same size as the pix2pix au-
toencoder bottleneck latent vector of size 512. This allows for a concatenation
of the latent vectors. The resulting joint vector of size 1024 must be reduced
back to the original bottleneck size of 512 in order to feed it into the decoder,
which is achieved by a single MLP layer.

e Multi-Patch Discriminator: The original pix2pix architecture utilizes a patch
discriminator, which focuses on local image patches instead of the entire image.
During the experimental process, it was found that using three discriminators
instead of one significantly improves the quality of the generated images. The
results reported below use discriminators for patch sizes 4x3, 8x6, and 16x12.
The patch sizes account for the 4:3 aspect ratio of the state images.

5.3. Dynamics Rollout Module Development and Validation 91

generator

! Encoder
I (CNN)
1
1
1

Encoder
| (FCN)
\

State
Embedding
Action
Embedding

-~ T~

\
\ Next State]

~ -

——

Decoder
(CNN)

Embedding

discriminator ‘I
—

Discriminator :

|

1

|

Patch 1
—

\ 4

EE—
.| Discriminator
Patch 2

r====—=

e/

__| Discriminator
o Patch 3

1
1
1
1
I

Figure 5.5 The dynamics rollout module is based on the pix2pix architecture [77]. An encoder-
decoder generator produces the next state image based on the current state and action. A
patch discriminator attempts to distinguish between real and generated images to improve the
quality of the generated images.

5.3.2 Dataset Collection and Training Results

To collect a suitable dataset to train the dynamics rollout model, a manual data
collection process was conducted. First, a lightweight user interface was developed
which allows for manually specifying actions to be executed on the robot. This allows
for generating trajectories which solve a given wire shape. To increase the amount
of data collected per manually specified trajectory, two strategies were employed.
On the one hand, each trajectory that solves a given wire shape in one direction
can be inverted to produce a trajectory which solves the same wire shape in the
opposite direction. This effectively doubles the amount of data collected. On the
other hand, each action can be split into multiple smaller actions, which follow the
same trajectory. This not only increases the amount of data, but also allows the
human to teach in trajectories at maximum action magnitude, and automatically
enrich the dataset with smaller action variations. It was decided to divide each
action in 2 and 3 smaller actions, which increases the data amount by a factor of 6.

These two strategies were combined, resulting in a total increase of the dataset size
by a factor of 12. A dataset of approximately 10,000 transitions was collected and
used for training the dynamics rollout model.

In general, the dynamics rollout model generates promising results, as depicted in
Figure 5.6. Despite the relatively low number of image samples considering the
higher image resolution, the trained model is able to correctly predict the next state
in the majority of test cases. Both the wire shape compared to the ground truth,
and details such as the fork tips and the wire stripe pattern are reproduced with an
impressively high quality.

As to be expected, the dynamics rollout fails for large action magnitudes, as can be
seen from the examples provided in Figure 5.7. In such cases, the camera shifts to

92 5. Smooth Continuous Robot Control

(b) Predicted next state

(c) Ground truth next state

Figure 5.6 Examples of dynamics rollout model performance. Based on the observed state
and action (not shown), the model predicts the resulting next state. Compared to the ground
truth next states, the model is able to predict the wire shape with an impressively high quality
for small action magnitudes.

a completely different section of the wire, whose shape cannot be inferred from the
previous state. Understandably, the dynamics rollout model either generates only a
partial wire shape, or hallucinates multiple potential wire sections.

Figure 5.7 Failure cases of the dynamics rollout model. The model is unable to predict the
next state for large action magnitudes and potentially starts to hallucinate.

Self-evidently a dynamics rollout model can only predict what it can infer from the
current state. This insight can most likely also be applied to the case when provid-
ing latency features or actions to the policy, as the policy is expected to implicitly
perform a dynamics rollout. While further empirical validation is needed to confirm
this hypothesis, preliminary analysis suggests that asynchronous DRL implementa-
tions require the state space to encompass at least two subsequent movements. This
constraint inherently restricts the maximum achievable action magnitude of asyn-
chronous DRL agents to approximately half that of their synchronous counterparts.

5.4. Exploration of Design Choices 93

5.4 Exploration of Design Choices

With the previously outlined asynchronous execution framework, the design of the
Bézier curve action space, and the dynamics rollout model, all components for re-
alizing asynchronous DRL in the wire-loop use case are in place. However, some
design choices remain to be made.

First and foremost, the integration of the dynamics rollout model into the asyn-
chronous execution framework must be reflected on. Given the previous results of
the dynamics rollout model, the capability of producing high-quality future state
predictions is promising. However, it was also shown that for large action magni-
tudes, the dynamics rollout model is unable to predict the next state, as the required
information cannot be inferred from the current state. Addressing this limitation
is already considered in the proposed asynchronous execution framework, and can
be achieved by using an intermediate state closer to the next state. In the above
framework formulation, this means that § should be chosen as small as possible,
while being large enough to account for the latency required to determine the next
action for achieving seamless transitions. Alternatively, the action space must be
limited, as mentioned previously.

On reducing the ¢ value in the wire-loop use case, it was experimentally found
that the latency of taking a picture, evaluating the policy, determining the new
waypoints, and sending them to the robot is below 50ms. With a maximum velocity
of Vymae = 50mm /s, which was chosen to minimize the risk of hardware damage, this
translates to a distance between the intermediate state and the next state of 2.5mm.
During this exploration, it was also found that with this distance, the intermediate
state is similar enough to the next state to prompt the hypothesis, that in the given
setup dynamics rollout is not required. While this breaks the Markovian property
of the environment, it is a reasonable assumption for the practical application in the
given use case setup. This hypothesis is supported by the work of Derman et al. [42],
who show that action delay MDPs can be converted into standard Markovian MDPs
with stochastic transitions. In the case of the wire-loop use case, the expectation
is that the added noise corresponding to the small delay is negligible enough to be
compensated by the agent. In addition to the major design choice of omitting the
dynamics rollout model, the following design choices were made:

e Action space constraints: To retain comparability with the baseline experi-
ments, the Bézier action spaces are limited to produce curves of approximately
limaz = 4.5 ¢m, which is chosen based on the maximum possible displacement

of Lmaz pasetine = /2 - (3 em)? = 4.24 em in the baseline setup.

e Reward function: Since the new Bézier action space no longer contains the
forward motion component al”*"* previously used in the reward function,
the term was removed. This equates setting the tuning parameter 3 to 1.
While similar reward function components were tested for the Bézier action
space, e.g. by including the Bézier curve length to incentivize longer actions,
no significant impact was observed. While this changes the reward function,
the forward motion component was shown to be beneficial for the learning
process in the baseline scenario (cf. chapter 4.2.2). Therefore, omitting it

in the following experiments is not expected to provide any advantage to the

94 5. Smooth Continuous Robot Control

Bézier-based agent, but may actually make learning more challenging. As a
result, any improvements observed over the baseline can be attributed to the
new approach itself, rather than to changes in the reward function.

e Waypoint spacing: Asynchronous decision-making is achieved by sampling
each Bézier curve with a maximum distance constraint of 5mm between way-
points, which results in an effective spacing between 2.5mm and 5mm, and
triggering the capture of an intermediate state once the second to last way-
point is reached.

5.5 Asynchronous Wire-Loop Experiments

Given the previously outlined design choices, the performance of four different agents
is evaluated. Two agents, Cartesian-2 and Cartesian-3, use the Cartesian encoding,
while the other two agents, Polar-2 and Polar-3, are based on the polar encoding.
Every encoding strategy is used with both quadratic and cubic Bézier curves, which
is indicated by the respective suffix number. The results are depicted in Figure 5.8.

100

80

60

steps

40 4

20 1 —— Polar-2
K_/ —— Polar-3

AZ— Cartesian-2
|—= — - baseline
0 T T T T T T T
0 100 200 300 400 500 600 700

training episode

Figure 5.8 Training results of the Bézier agents. The Cartesian-3 agent was unable to converge
to a solution, while the other agents outperform the baseline agent. Adapted from [158].

In general, the results demonstrate a clear improvement over the previous baseline
agent regarding the required learning effort, reducing the number of episodes by a
factor of 2. The Polar-3 agent achieved the overall best performance, reaching a
solution with the least amount of steps (65 steps) in the shortest amount of time
(325 episodes).

The performance curve of the Cartesian-3 agent is omitted, as this agent was unable
to converge to a solution. This may indicate a lack of scalability of the Cartesian
encoding method. As the placement of control points with the Cartesian encoding
is arbitrary, the potential for unfeasible trajectories increases with the number of
control points to be placed. Further, the ANN-based policy was initialized so that
the initial actions are close to the center of the action space. In the case of Cartesian

5.6. Summary 95

encoding, this means that all control points are initially placed close to the center
of the allowed area. This starting position is very unstable, as it is possible for the
control points to be arranged in such a way that the Bézier curve is self-intersecting.
The results therefore suggest that the Polar encoding with its higher constraint
on the placement of control points is more stable, and thus more suitable for the
wire-loop use case.

To quantify the effectiveness of the asynchronous execution framework, the wall clock
time is measured for the baseline agent and the Polar-3 agent. While the former
requires approximately two minutes to reach the end of the wire, the latter achieves
the same task in only 30 seconds. This significant difference highlights the benefit of
performing asynchronous decision-making to improve the overall efficiency of DRL
agents in industrial robotics applications.

5.6 Summary

This chapter primarily focused on the first RQ, which prompted an adaptation of
the standard RL framework to enable smooth, continuous robot movement. An
asynchronous DRL framework was proposed and validated for the wire-loop use case.
The main concept of the framework is to introduce intermediate states which are
observed before the current action execution is completed, which allows an agent to
preemptively determine the next action and achieve continuous transitions between
individual actions. The continuous transitions are complemented by a constrained
actions space, whereby parametrized Bézier curves are used to enforce smoothness
between individual trajectory segments. In the experimental validation, it was shown
that the constrained action space has the additional benefit of reducing the required
learning effort by a factor of 2. Further, the faster execution through asynchronous
decision-making reduced the execution time by a factor of 4.

Based on the previous related work proposing the use of dynamics rollout models to
anticipate the next state and restore the Markovian property of asynchronous con-
trol, the possibility to generate such a dynamics rollout model for high-dimensional
image-based state spaces was demonstrated using a GAN architecture. Besides the
proof-of-concept validation of the rollout approach, the experimental results also
showed the boundaries of the asynchronous framework. In particular, asynchronous
decision-making relies on the ability of an agent to infer the next state from the inter-
mediate state, which degrades with an increasing distance between the intermediate
and next states.

The final experimental validation however revealed that the added overhead of de-
veloping a dynamics rollout model is not required to achieve smooth, continuous
robot movement. Instead, the asynchronous execution framework can in practical
application be simplified by using intermediate states which are far enough from
the next state to account for the latency of the decision-making process, but near
enough to be considered similar. While this does not discount the approach of using
a dynamics rollout model as a general solution, it rather validates the final approach
of introducing intermediate states.

96

5. Smooth Continuous Robot Control

Sim2Real Transfer of Perception
Modules

)

"It’s not what you look at that matters, it’s what you see.”
- Henry David Thoreau

As industrial robotic applications grow more complex, so does the need for high-
dimensional sensor data to fully capture the state of real-world environments. This
is a challenge for the application of DRL, as according to the curse of dimensionality
[118], the required training effort grows exponentially with the state space dimen-
sionality. Fortunately, providing an agent with raw image data to deduce process-
relevant information in an end-to-end manner is not the only option. Separating
the feature extraction from the decision-making policy promises several advantages:
First, it is possible to employ techniques and existing models from the computer
vision domain [37, 216]. Second, vision- and decision-making aspects can be consid-
ered in isolation, and this separation of concerns should speed up the overall devel-
opment process. Finally, an explicit interface between vision and decision-making
with human-interpretable features allows for better transparency and explainability
of the agent’s decision-making process, which is not given with end-to-end policies
[36, 117]. The approach of modularization however does not come without draw-
backs and risks. Designing the interface between modules is a manual intervention,
which relies on a thorough understanding of the process at hand. Any error in
feature extraction may withhold vital information from the policy and prohibit it
from properly learning the task. In contrast, end-to-end policies are in principle
able to recover through continued learning and adaptation to new situations. This
chapter addresses these challenges towards answering RQ-2: How can perception
modules for vision-based robotic tasks be developed in simulation, and how can
their structure be designed when the relevant low-level features are not immedi-
ately obvious?

For the object picking use case, the DRL approach struggled to learn the task in the
Fetch environment (cf. chapter 4.3.2.2), which already presumes the object pose to

98 6. Sim2Real Transfer of Perception Modules

be known. Instead of making the scenario even harder to learn by using raw camera
images, it was deemed more promising to explicitly extract the object pose from the
image by means of CV. In this chapter, existing YOLO models for 6D object pose
estimation are employed to extract object poses from camera images. In particular,
simulation-to-reality transfer is considered to address the challenge of acquiring a
real-world dataset with 6D pose annotations.

For the wire-loop game use case, the goal is to develop a perception module which is
able to extract the process-relevant information from the camera images, which is the
wire and the loop. A three-step investigation is conducted to determine a suitable
feature representation. First, unsupervised autoencoders are used to compress the
image data into a low-dimensional embedding. Second, the attention of trained
DRL agents is visualized to validate the hypothesis that an agent focusses on the
same features as a human. The attention visualizations in the wire-loop use case
were previously published by the author [154]. Finally, the insights of attention
visualization are incorporated into the image compression process.

6.1 Pose Estimation Modules

Image-based object detection is a major research area in the computer vision do-
main. Numerous methods have been proposed to address this problem, ranging from
traditional hand-engineered feature detectors to modern DL approaches (cf. chapter
2.2.3). For this work, the YOLO6D model is selected for object pose estimation
in the pick-and-place use case [179]. Specifically, the implementation provided by
Viviers et al. [195] is taken as foundation, which translates the original YOLO6D
approach by Tekin et al. [179] based on YOLOv2 onto the updated, more perfor-
mant YOLOV5 architecture. Viviers et al. [195] provide an extensive comparison
of the YOLO6D model with other SOTA methods and demonstrate both highest
accuracy and fastest inference time on a public dataset, which are both important
metrics for real-world robotic applications.

To train a YOLO6D model, a dataset with 3D annotations is required. This poses
a major challenge, since 3D annotations are not easily obtainable for real-world
images. To further complicate the matter, the YOLO6D approach enhances the
variance of the training data through extensive data augmentation, most notably by
using a binary segmentation mask to isolate the object of interest and replace the
background with a random image. Self-evidently, the segmentation masks must also
be generated in addition to the 3D annotations. Instead of constructing a suitable
hardware setup to capture 3D annotations, e.g. by using markers whose 3D pose can
be identified in an image in combination with manually measuring the objects pose
to such markers, the following investigation focuses on the utilization of simulation
data to pretrain a YOLOG6D model for real-world object pose estimation.

6.1.1 Simulation Dataset

Constructing a simulation dataset requires a suitable simulation environment. In
this case, the physics simulation engine Pybullet [35] is selected due to its Python

6.1. Pose Estimation Modules 99

API, as well as its explicit focus on sim-to-real transfer for robotics. The simulation
setup necessary for this dataset features just two elements: A mesh model of the
relevant object, and a camera. Albeit the requirement of an object mesh model
poses a limitation to the approach, it can be argued that in industrial settings
digital models of relevant objects are often times available, or can be acquired e.g.
through manual modeling, 3D scanning [47], or DL-based reconstruction techniques
from 2D images [62].

To create a diverse dataset, camera images and corresponding segmentation masks
of the object, a toy building brick, are taken from different viewpoints, distances,
and orientations. Examples are depicted in Figure 6.1. Since only the relative pose
between object and camera is of interest, it was decided to place the object at origin
and move the camera around the object. In accordance with the concept of DR, the
color of the toy brick is randomized with every image. As described above, variation
of the background will be performed as a data augmentation step by the selected
YOLOGD training framework [195].

(a) The toy brick object is captured from different viewpoints and distances. In addition, the color of
the object is randomized with every image.

(b) The corresponding segmentation masks of the toy brick object are recorded to later replace the
background with random images.

Figure 6.1 Examples of the simulation dataset for the perception module of the object picking
use case.

Simulating the camera requires two 4x4 matrices: The view matrix cqmeral ™

describes the transformation from world to the camera coordinate system, and will
be randomized to capture the object from different viewpoints. The projection
Matrix jmqgee P contains the camera’s intrinsic parameters, such as focal length
and optical center, and provides the projection of 3D points into the 2D image plane.
The projection matrix is constant, as the camera’s intrinsic parameters are constant.
Determining the camera’s intrinsic parameters is an ubiquitously used technique in
the computer vision domain [212], and is thus not further elaborated on.

To record a data point, the object color and camera pose are randomized. Next,
an image and a corresponding segmentation mask are captured using the Pybullet
API. Finally, the object key points e = [2,9, 2,1] defined in homogeneous

100 6. Sim2Real Transfer of Perception Modules

coordinates are projected into the 2D image plane to obtain the final ground truth
annotation using a simple matrix operation

o camera world
imageK - z'mageP ' cameraT ' wm"ldK (6]-)

Note that the projection must further be normalized by the fourth component of
imageS to obtain the final projection

ima, eK 1 0 Cz U
K = !i == [gygy_A,EA] - [U,U,d, 1] (62)
w ww w w

For YOLOGD, only the 2D coordinates (u,v) are used and stored as ground truth
labels, and the depth d is discarded.

6.1.2 Experimental Evaluation

With the outlined data generation process, a dataset of 10,000 images is created,
ensuring sufficient data by using a 10 times larger dataset than Viviers et al. [195].
The dataset is split into a training, validation, and test set with a ratio of 80/10/10.

A YOLOG6D model is trained on the training set for 500 episodes using the standard
parameters provided by Viviers et al. [195]. The trained model achieves a mean
2D corner error of 0.93 pixels, a mean translation error of 9.3 mm, and a mean
orientation error of 2.23 degrees. While the results do not surpass the current SOTA,
Yang et al. [206] report winning the 2024 Robotic Sim2Real Challenge with pose
estimation precision within 1 cm and 2 degrees. For this object picking use case, the
accuracy is expected to be sufficient for reliable object picking. The visual inspection
of the bounding boxes in Figure 6.2 confirm the model’s ability to locate the bricks
in the image with a high precision.

i | |

. ’ ’

Figure 6.2 Bounding box predictions on the simulation test set. The perception module is
able to accurately locate the object in the image.

6.1. Pose Estimation Modules 101

With the YOLO6D model trained, the next step is to transfer it to the real-world
and integrate it into a pick-and-place pipeline. Deploying the perception module
requires transforming the YOLO6D model predictions from the camera frame into
the robot base frame, which is possible due to the camera calibration procedure
already present in the demonstrator (cf. chapter 1.3.2). The camera calibration
procedure is used to transform the YOLOG6D model predictions from the camera
frame into the robot base frame.

It was found that directly feeding the camera images into the model was insufficient,
with the perception module only sporadically locating a brick. Instead of retraining
the model with additional randomization, randomizing the real-world camera images
proved a suitable approach. By adding a color jitter, which adds random changes to
brightness, contrast, saturation, and hue, the performance of the perception module
was significantly improved. Best results were achieved by simultaneously feeding the
raw image and multiple jittered versions to the YOLOG6D model and averaging the
predictions. To balance the decreased throughput of the perception module caused
by the increased model inference time, eight jittered versions are used. Figure 6.3
contrasts the performance before and after the color jitter modification. With this
setup, an evaluation is conducted, in which object picking is attempted 100 times
at the predicted poses based on a single camera frame. This evaluation yielded a
success rate of 64%.

(a) Predictions for raw image input. No 2x2 toy (b) Predictions for jittered image input. All 2x2
brick object is detected. toy brick objects are detected.

Figure 6.3 Integration of the perception module into the real-world. To improve the perfor-
mance, the model is fed with jittered image inputs.

To understand the prediction behavior of the perception module in the real-world, a
stationary brick is placed on the table and the perception module is evaluated over
100 camera frames. As can be seen in Figure 6.4, the perception module predictions
exhibit significant noise on a real-world video stream, especially in the z-axis denot-
ing the depth estimation. This noise explains the observed low picking success rate.
To counteract this issue, a moving average filter is applied over 15 frames, which
smoothes the perception module predictions. The filter size of 15 frames was deter-
mined empirically to provide sufficient smoothing while not introducing too much
latency.

With this adjustment of smoothing the predictions over time, the pose estimations
stabilizes. The evaluation experiment is conducted again, which yielded a success

102 6. Sim2Real Transfer of Perception Modules

raw
—— moving average

0.05
0.00+
-0.051

Ax [cm]

0.251
0.00 1

Ay [cm]

-0.25

Az [cm]
o

5

Figure 6.4 Relative variation of perception module predictions for a video stream. The noise
is compensated by a moving average filter over 15 frames.

rate of 96%. The positive results of the object picking pipeline validate the modular
approach of separating perception from control, as the perception component can
be developed and tested independently before integration with the final DRL policy.
Further, the remaining development effort for the DRL policy can be limited to the
environment simplification already present in the Fetch environment of presuming
knowledge about the object pose, which is a major advantage.

6.2. Image Compression Modules 103

6.2 Image Compression Modules

In contrast to the pick-and-place use case, where the process-relevant information
in form of the object pose is easily identifiable, the same cannot be claimed for
the wire-loop use case. While the scenario is well understood and the relevant
components of wire and loop can be quickly pointed out in a state image, the question
as to how these features can be effectively extracted is not as straightforward. To
approach this problem, the following investigation will take a three-step approach.
First, unsupervised DL is considered for compressing state images into latent space
representations using a real-world dataset. To remove the dependency on real-world
data, a semi-supervised DL approach is taken to compress state images into latent
space representations using a simulation-based dataset collected with DR. Third,
the possibility to inject human domain knowledge into the semi-supervised model to
enhance sim2real transferability is investigated.

6.2.1 Unsupervised Image Compression

Before attempting to explicitly inject domain knowledge into a perception module,
it is first investigated whether process-relevant features can be extracted through
unsupervised image compression using autoencoders (cf. section 2.2.2). For the wire-
loop task, an autoencoder can potentially learn to encode the essential geometric
relationships between wire and loop into a compact latent representation, while
filtering out nuisance factors like lighting variations or background details. This
compressed representation could then serve as a more efficient and robust state
space for the reinforcement learning policy compared to raw images. The approach
is outlined in Figure 6.5.

Figure 6.5 Concept of using autoencoders for process-relevant feature extraction. First, the
autoencoder is trained using states as input and output to learn a compressed latent represen-
tation. Then, the decoder is discarded and replaced with an execution module which takes the
learned latent representation as input. The combination of the encoder and execution module
forms a DRL policy.

To test this hypothesis, a proof-of-concept investigation is conducted using a convo-
lutional autoencoder architecture and a dataset of real-world images collected from
the wire-loop setup. The convolutional autoencoder is chosen due to its ability to

104 6. Sim2Real Transfer of Perception Modules

learn spatial hierarchies of features, as well as its structural similarity to the already
employed CNN section of the DRL agent. The encoder consists of three layers of
32, 16, and 8 filters of size 3x3 and stride 2. Each layer is followed by a batch
normalization layer and a LeakyReLU activation function. This final encoder design
is an iteration on the original policy CNN architecture with the following changes.
First, the number of filters is switched to powers of two, mainly to follow popular
conventions aimed at improving training efficiency due to binary memory access of
computer systems. This change only slightly affects the number of trainable parame-
ters, and is expected to have a negligible impact. Second, the LeakyReLU activation
function is used instead of RelLU to improve training stability. This assumption is
evidenced by comparative studies in literature [119, 136]. Third, the MaxPooling
layers are replaced by adding stride to the convolutional layers to simplify the ar-
chitecture. This change is mainly motivated by the findings of Springenberg et al.
[170], who show that this replacement is possible without affecting performance.

The encoder effectively compresses a 40x40x3 image into a 4x4x8 embedding, which
constitutes a compression down to 2.6% of the original image size. The decoder
mirrors this structure to reconstruct the input image, using transposed convolutional
layers to upsample the latent representation back to the original image dimensions.
The network is trained using a basic mean squared error reconstruction loss between
the original and reconstructed image.

For the training dataset, experience data logged from previous experiments is used.
The raw dataset contains 9420 experience tuples from 2391 trajectories. With the
data being the result of DRL training runs, it is highly unbalanced. This is due to
the fact that the reset routine employed on the real-world hardware setup moves
the loop back to the previous state when the wire is touched. This means that in
many cases, the first state of a trajectory is virtually identical to the last state of
the previous trajectory. Examples are provided in Figure 6.6.

last state of trajectory 0 first state of trajectory 1 last state of trajectory 500 first state of trajectory 501

Figure 6.6 The reset routine of the real-world hardware setup leads to many similar states in
the dataset. In many cases, the first state of a trajectory is virtually identical to the last state
of the previous trajectory.

The over-representation of reset states is significantly amplified by the fact that in the
beginning of the training, the agent touches the wire immediately after reset, thereby
visiting the same state over and over again. This is reflected in the trajectory length
distribution depicted in Figure 6.7a, showing that 1382 (57.8%) of the trajectories
are 1 step long, which translates to 14.6% of the total experience tuples.

The major issue with this unbalanced dataset is that any random split of the data
into training and testing set will certainly result in the test set containing a lot of

6.2. Image Compression Modules 105

1400 100
P 1200 _
5 1000 2
3 2 60
T 800 @
5 3
5 600 @ 40
kel c
§ 400 i
= 20

200

0 0 1
0 10 20 30 40 5 60 70 0 10 20 30 40 5 60 70
Trajectory length train/test split cutoff

(a) Distribution of trajectory lengths. (b) Train/test split cutoff selection.

Figure 6.7 Explorative dataset analysis to identify the optimal train/test split.

states which the model is exposed to during training. This bears the risk that the
model overfits to this specific data distribution, and this issue not reflecting in the
test performance. To counteract this, the last experience tuple of each trajectory is
removed, reducing the dataset to size 7030. Further, the train/test split is conducted
by selecting all experiences which are at the end of long trajectories, with the as-
sumption that these states constitute wire sections which have not been frequently
visited during training. A time step of 32 is used as cutoff threshold to achieve an
80/20 train/test split (cf. Figure 6.7b).

The previously described autoencoder is trained on the state images. A qualitative
evaluation is provided in Figure 6.8, showing the input and reconstructed state
images. The results clearly show that the autoencoder is able to reconstruct the
input state images with high accuracy. As to be expected, the reconstructed images
are more blurry, however the wire and loop are still recognizable. Importantly,
the shape of the wire is preserved, indicating that process-relevant information is
successfully encoded in the latent space.

INZONTON

(a) Input state images.

INVZNTON

(b) Reconstructed state images.

Figure 6.8 Quantitative evaluation of the autoencoder. The input and reconstructed state
images are shown for five randomly selected states. The reconstructed images are more blurry,
however the wire and loop are still recognizable. Importantly, the shape of the wire is preserved,
indicating that this process-relevant information is successfully encoded in the latent space.

106 6. Sim2Real Transfer of Perception Modules

The final step of this investigation is to confirm that the compressed state space can
be utilized by a DRL policy. For this, a policy is created by combining the pretrained
perception module, i.e. the encoder, with a freshly initialized MLP analogous to the
baseline DRL agent. The policy is then trained on the real-world hardware setup
using the existing learning framework. The learning curve is depicted in Figure 6.9.

704

60 -

50

40 4

steps

301

20 A

—— autoencoder
—— baseline

0 100 200 300 400 500 600 700
training episode

Figure 6.9 DRL results with unsupervised autoencoder as perception module. The agent is
able to learn the wire-loop game in just 450 episodes, significantly reducing the training effort
compared to the end-to-end baseline agent.

The pretrained perception module enables the agent to learn the wire-loop game in
just 450 episodes, significantly reducing the training effort compared to the end-to-
end baseline agent. Thus, the initial hypothesis that unsupervised image compres-
sion can be used to extract process-relevant features from state images is confirmed.

With this result, this first proof-of-concept investigation is concluded. It is highly
likely that the performance gains could be further improved by finding more opti-
mal architecture designs, such as narrower bottlenecks to compress the state space
even further, or potentially by freezing the encoder weights and only updating the
MLP weights during training. These optimizations were not considered in this study.
Instead, the focus of investigation is shifted on addressing two limitations of the cur-
rent approach, which are the dependence on a dataset of real-world images and the
lack of domain knowledge incorporation. The second limitation can be understood
in the unsupervised nature of the autoencoder, which attempts to reconstruct the
input image regardless of process-relevance. This can partially be seen in Figure 6.8,
where in the first example lower left corner a white patch resulting from the edge
of the cardboard background, which is clearly process-irrelevant, is reconstructed.
Such a lack of process-understanding can always be expected from unsupervised
autoencoders, as the reconstruction loss does not differentiate according to process-
relevance. This prompts the question of how to inject process knowledge into the
perception module, which is the focus of the following investigations.

6.2. Image Compression Modules 107

6.2.2 Explorative Experiments on Agent Attention

To develop methods suitable for injecting process knowledge into the perception
module, it is first investigated how vision-based DRL agents perceive the wire-loop
task. The goal of this study is to understand what features are considered most
relevant for the agent’s decision-making as foundation for developing perception
modules that retain this information. While it is self-evident that process-relevant
features must be incorporated into an agent’s decision-making, the actual way in
which states are perceived is not. From the computer vision domain, several meth-
ods have been developed to make CNNs more interpretable. One popular method
is Gradient-weighted Class Activation Mapping (Grad-CAM), which visualizes the
regions of an image which most contribute to a CNN’s prediction [161]. The results
from literature suggest that the models focus on human-interpretable features for
supervised classification tasks. To confirm these findings for DRL, the Grad-CAM
method is applied to the wire-loop task.

In its original form, Grad-CAM is geared towards classification tasks, i.e. CNNs
where the output is interpreted as a one-hot class prediction. This is also reflected
in the name "Gradient-weighted Class Activation Mapping” explicitly containing
"Class”. To make the method applicable to policy CNN predicting continuous ac-
tions, the technique needs to be adapted slightly. This can be achieved with two
minor modifications. First, classical Grad-CAM restricts the heatmaps to features
which have a positive influence on the inspected class output, i.e. increases its value.
For regressive outputs however, only the magnitude and not its direction is relevant.
Thus, the activation map should highlight areas which change, both increase or de-
crease, an action output. This is achieved by removing the ReLLU activation function
in the original Grad-CAM formulation. Second, instead of focussing on each action
output individually, the activation maps of all action dimensions are combined.

For this investigation, trained agents are taken from the previous end-to-end sim2real
transfer experiments (cf. chapter 4.2.3.2). Agent 1 was trained without DR, agent
3 was trained with partial DR, and agent 6 was trained with full DR. These agents
are chosen as they exhibit different transferability, with agent 1 being the least, and
agent 6 being the most transferable. Using different state images as input, attention
maps are generated with the adjusted Grad-CAM method. The first state is taken
from simulation without DR, states 2 and 3 are taken from simulation with DR,
and states 4-6 are real-world images. The resulting activation maps are depicted in
Figure 6.1, showing the attention of the agents in red and uninfluential image regions
in blue. The agent number corresponds to the respective randomization setting ID
in the sim2real transfer experiments.

The results show that Grad-CAM attention maps can be used for understanding
the decision-making process of vision-based agents. In situations where the agents
perform well, the focus predominantly coincides with human-interpretable process-
relevant features, i.e. the wire. This is for example visible for all three agents
on state 1 included in all the DR settings state distributions. Conversely, in states
where agents are expected to perform poorly, such as agent 1 in all but the first state,
the focus lies on different image sections, which are not relevant for the task. The
most precise attention is shown for agent 6 even for unseen real-world states, which
coincides with it’s zero-shot transferability. This qualitative correlation between

108 6. Sim2Real Transfer of Perception Modules

State ID H State ‘ Agent 1 ‘ Agent 3 ‘

V)

6 l a l
Table 6.1 Grad-CAM attention maps for different agents and states. State 1 is taken from
simulation without DR, states 2 and 3 are taken from simulation with DR, and states 4-6 are

real-world images. Agent 1 was trained without, agent 3 with partial, and agent 6 with full
DR. Red regions indicate high and blue regions indicate low attention. Adapted from [154].

6.2. Image Compression Modules 109

agent performance and attention thus renders the methodology a promising tool for
estimating the transferability of pretrained agents. In particular since the method
only requires state images, which can even be obtained before implementing the full
real-world environment. The experimental evidence that an agents focus coincides
with human process understanding provides the necessary foundation for attempts
at explicitly injecting domain knowledge into the learning process.

6.2.3 Semi-Supervised Image Compression

Based on the insight that DRL agents focus on the entirety of the wire, this investi-
gation will develop a compression strategy which extracts process-relevant sections
from the raw state image. In the CV domain, this approach is called semantic seg-
mentation mapping, where the goal is to assign a class label to every pixel in an
image, e.g. in this use case all pixels belonging to the wire. A model which is ca-
pable of generating segmentation masks effectively learns to compress the raw state
input into a binary format masking process-relevant elements.

Given the previous successful utilization of autoencoders for unsupervised image
compression, an analogous encoder-decoder architecture is chosen for the segmen-
tation mapping approach to further distill information through a latent space bot-
tleneck. Therefore, the proposed approach is a semi-supervised image compression
approach, as the model is trained with supervised learning using explicit labels
(segmentation masks), but the desired output is the compressed latent space repre-
sentation.

As highlighted above, a limitation of the previous approach to unsupervised image
compression is the need for real-world data. This requirement is amplified in this
semi-supervised approach, as for each state image a corresponding segmentation
mask must be generated. Given the previous success of simulation-to-real-world
transfer in the wire-loop use case, the natural expectation is that this limitation can
be overcome by pretraining in simulation, where not only arbitrary amounts of data
can be generated at high variance with DR, but also ground truth segmentation
masks are readily available. Since agents trained with full DR were previously found
to be zero-shot transferable, this study investigates the hypothesis that DR is a
suitable approach for pretraining a semi-supervised segmentation model.

While it would have been possible to reuse the wire-loop game simulation from
chapter 4.2.1.2, the requirements in this investigation are fundamentally different.
First and foremost, this data collection effort does not require a complete modelling
of the wire-loop game including physical collisions. Additionally, moving the loop
to valid positions on the wire, i.e. where the wire is in the loop without collision,
requires significant computational overhead.

For those reasons, a dedicated simulation setup is implemented using the Pybullet
physics engine. The main difference to the wire-loop game simulation from chapter
4.2.1.2 is that the loop is kept fixed, and the wire is described as a quadratic Bézier
curve, where the first two control points are carefully placed close to the loop, such
that the wire always goes through the loop without collision. The third control
point is then randomized to generate different wire shapes. By varying the control
points, the thickness of the wire, the distance to the loop, as well as analogous to

110 6. Sim2Real Transfer of Perception Modules

chapter 4.2.1.2 colors, textures, and camera positions, a dataset of high variance can
be generated quickly (cf. Figure 6.10a).

The autoencoder architecture is kept identical to the previous unsupervised ap-
proach, with the only difference being that the mean squared error loss is replaced
with a cross-entropy loss, as the decoder now predicts the class probability of each
pixel. As the previous unsupervised approach achieved good results with 7030 real-
world images, a dataset containing 10,000 simulated state images and their corre-
sponding segmentation masks is generated, depicted in Figure 6.10a and 6.10b. The
data is split with an 80/20 ratio into training and validation data and the model is
trained for 1000 episodes. Figure 6.10c shows the final model’s ability to reconstruct
the segmentation masks for the validation data containing simulation images (cf.
Figure 6.10a). In general, the model is able to reconstruct the segmentation masks
with high accuracy.

(a) Simulated state image (input).

(b) Segmentation mask (label).

(c) Reconstructed segmentation mask for simulated validation data (prediction).

Figure 6.10 Exemplary results of the segmentation autoencoder on simulated validation data.
The model is able to reconstruct the segmentation masks for the validation data with high
accuracy.

On transfer to real-world images however, the model performs very poorly. Figure
6.11 shows the model’s performance on real-world test data. The model completely
fails to capture the wire shape, and only learned very coarsely that the loop rods
are expected at the bottom of an image. Given the previous success of DR, these
findings are surprising at first. As the model already performs well on the simulation
validation set, increasing the training dataset size is not expected to significantly
improve the sim2real transferability.

This negative outcome leaves the following conclusion: On the one hand, unsuper-
vised image compression is able to distill process-relevant information, but requires

6.2. Image Compression Modules 111

(a) Real-world state image (input).

(b) Reconstructed segmentation mask for real-world test data (prediction).

Figure 6.11 Exemplary results of the segmentation autoencoder on real-world test data. The
segmentation is of poor quality, as the model is unable to capture the wire shape.

the availability of real-world images. On the other hand, using a purely simulation-
based dataset generated with DR does not lead to generalizable compressions. These
two approaches can be considered as different extremes on a spectrum of using pure
real-world data vs. pure simulation data. This leads to the hypothesis, that combin-
ing the two approaches by including some real-world data may lead to better results,
which will be investigated in the next section.

6.2.4 Semi-Supervised Compression with Domain Knowledge

In DL applications, the manual annotation of real-world data presents a significant
hurdle due to the high cost and considerable time investment required for expert-
driven labeling, especially when precise segmentation masks are needed. Further-
more, reliance on large quantities of annotated real-world images can impede rapid
prototyping and limit the scalability of CV pipelines. Thus, it is crucial to devise
strategies that minimize dependency on real-world data collection and annotation
while still achieving robust model performance. This motivates the investigation
into leveraging domain knowledge to constrain simulation parameters, aiming to
enhance generalization and decrease the real-world labeling burden without com-
promising model accuracy. This approach is in line with the argumentation by
Liebers et al. [101], who propose the integration of human domain knowledge into
the DR process. Taking the argument for minimal real-world data to the extreme,
the following investigation aims to produce a generalizable segmentation model with
a single real-world image.

With the restriction of using just a single real-world image to keep the dependency
on real-world data minimal, data driven approaches for finding mappings between
simulation and real-world images are not feasible. Instead, the following approach
is based on the realization that DR aims to produce a high variance of inputs with
the assumption that generalization over a wide distribution includes the real-world
data. This is especially powerful in settings where the real-world data distribution is
unknown. In case of the wire-loop use case however, it is possible to quantify some

112 6. Sim2Real Transfer of Perception Modules

aspects of the real-world data distribution, such as the wire, loop, and background
colors. While it is hard to fully simulate, the hypothesis stands that constraining
DR to colors similar to the real-world not only simplifies the task by constraining
the source domain distribution, but also allows for a model to incorporate color
information.

The approach is depicted in Figure 6.12. First, a segmentation mask is generated
from the real-world image. For each object, the pixels are stored and used as a
color palette for the simulation images. To generate a randomized simulation image,
a segmentation mask is taken from simulation and each object class is filled with
a randomized variation of its corresponding color palette. As before, a dataset of
10,000 simulated images is generated and used to train the semi-supervised segmen-
tation model for 1000 episodes. The results are depicted in Figure 6.13. As with the
previous approach, the model is able to reconstruct the segmentation masks for the
validation data with high accuracy.

Figure 6.12 Concept of the enhanced approach. The real-world image is segmented into
objects. For each object class, a color palette is generated from its respective segments. With
this color palette, DR is constrained to generate simulation images with similar colors.

To evaluate the transferability of the model, real-world images are again used as test
data. As depicted in Figure 6.14, the model’s performance on real-world test data is
much more accurate. Although not perfect, the general shape of the wire is always
captured. The loop on the other hand is not properly segmented to a satisfactory
extent. As seen with the agent attention visualizations however, the wire is by far
the most process-relevant information, which is plausible since the loop is stationary
in the camera view. Thus, the likelihood that this final image compression captures
a latent feature representation which contains all process-relevant information is still
expected to be high.

6.2. Image Compression Modules 113

. .

(a) Simulation image (input).

(b) Segmentation mask (label).

(c) Reconstructed segmentation mask (prediction).

Figure 6.13 Exemplary results of the segmentation autoencoder on simulated validation data.
The model is able to reconstruct the segmentation masks for the validation data with high
accuracy.

WAV

(a) Real-world image (input).

(b) Segmentation mask (prediction).

Figure 6.14 Exemplary results of the segmentation autoencoder on real-world test data. The
rough shape of the wire is captured using just a single real-world image.

114 6. Sim2Real Transfer of Perception Modules

6.3 Summary

In this chapter, the second RQ was addressed, which prompted the utilization of
simulations for the development of perception modules.

For the object picking use case, a YOLOG6D pose estimation module was developed to
extract the position and orientation of process-relevant objects from camera images.
The sim2real transferability of the module was achieved through the use of DR in
training, combined with an augmentation strategy on the real-world images and an
averaging of the predictions over multiple frames to achieve sufficient performance.

For the wire-loop use case, a semi-supervised image compression approach was de-
veloped to distill process-relevant information from real-world images into a latent
space. In a first step, an unsupervised autoencoder was trained on real-world images,
using the trained encoder as a feature extractor for a subsequently trained policy.
While this approach reduced the DRL training effort, the need for real-world data
was identified as a limitation. In a second step, it was attempted to instead use
simulation data, exploiting the availability of ground truth segmentation masks to
inject domain knowledge into the encoder-decoder training. However, the transfer-
ability of the model to real-world images was deemed insufficient. Therefore, in a
third step, a single real-world image was used to reduce the color randomizations to
more realistic values, which was found to significantly improve the transferability of
the model.

Hierarchical and Backward Planning

“Strategy without tactics is the slowest route to victory. Tactics without strateqy is
the noise before defeat.”
- Sun Tzu

Many real-world industrial robotic applications require long-term planning capa-
bilities to navigate complex tasks that involve multiple stages, uncertainties, and
interactions with dynamic environments. Traditional DRL methods, while effective
for simple problems, often struggle to handle the complexity of such tasks due to is-
sues like exploration inefficiency and credit assignment. Both issues relate to the fact
that an agent may need to perform many actions before a reward signal is received.
On the one hand exploration inefficiency describes the challenge of finding positive
rewards through random exploration, the chance of which diminishes with the num-
ber of actions that need to be executed correctly in sequence. Credit assignment, on
the other hand, describes the challenge of determining which actions are responsible
for the received reward. Evidently, bad actions despite which a positive outcome
is achieved should not be rewarded, and good actions in an unsuccessful sequence
should not be penalized. To address these challenges, this chapter explores the ex-
ploitation of structures in robotic movement towards answering RQ-3: How can
decomposition of robotic movement be leveraged to modularize task-independent
behavior policies, and how can reversibility of robotic movement be exploited to
improve training efficiency?

The first part of RQ-2 is approached through the application of HRL in the object
picking use case. Instead of trying to solve a long-horizon task in its entirety, an
intuitive approach is to split the task into a set of subtasks which are shorter and
thus easier to learn. In the context of DRL, this approach is known as HRL, which
was introduced in chapter 3.3.1. In summary, HRL follows a "divide-and-conquer”
approach by splitting the decision-making process of a DRL agent into a hierarchy
of policies, where higher-level policies select subgoals and lower-level policies select
actions to achieve these subgoals. While at first glance this hierarchical structure

116 7. Hierarchical and Backward Planning

introduces additional complexity, it promises faster learning. On the one hand, the
lower-level policies gain faster reward feedback through shorter subtask horizons. On
the other hand, the higher-level policies learn the overall task through the selection
of fewer subgoals. In other terms, the lower-level policies learn tactics to navigate
the environment without the need to reason about the overall task, while the higher-
level policies learn strategies to solve the overall task on an abstracted level without
the need to consider step-by-step decision-making. The subdivision into task-specific
strategy and task-agnostic tactics also promises potential for transferability of the
lower-level policies to other tasks. The investigation into the cross-task transferabil-
ity of hierarchical policies was published by the author [156].

The second part of RQ-2 is examined through the integration of a backward plan-
ning strategy to the clip assembly use case. Backward planning is based on the
idea that some tasks can be solved more easily by starting from the final goal and
working backwards to the initial state. In the context of assembly, this approach is
also referred to as assembly-by-disassembly. Since it is arguably a lot easier to re-
move a part from an assembly than to put it together, backward planning promises
to be a more efficient approach for finding suitable assembly trajectories by first
finding disassembly trajectories, and subsequently reversing them to form assembly
trajectories.

7.1 Hierarchical Policy Transfer

As seen from the previous baseline experiments in chapter 4.3.2.2, the pick-and-
place task poses a challenging problem for standard DRL agents. Albeit considered
a simple task from an industrial perspective, learning success depends on the agent
finding a sequence of more than 15 actions through exploration before a positive
reward is received. In addition, the application of HER arguably does not guide
the agent towards learning how to pick up the object, as a correspondence between
actions and achieved goal, i.e. the object’s position, can only be established after
the object has been grasped.

The following investigation aims to apply HRL to the pick-and-place task to over-
come the shortcomings of standard DRL by explicitly facilitating the decomposition
of the task into more manageable subtasks. This promise of faster learning must be
confirmed first. Assuming that this assumption will hold, the hierarchical decision-
making structure of HRL further prompts the hypothesis that the lower-level policies
may be presumed task-agnostic and thus should be transferable to other tasks where
the same tactics are applicable.

To achieve this objective, the remaining chapter outlines the extension of the learn-
ing framework with HRL, as well as the adaptation of the Fetch environments to
create more complex scenario variations. The subsequent evaluation first validates
HRL as suitable approach for solving the object picking use case. Further, the trans-
ferability of lower-level policies trained on the standard Fetch environments to the
more complex scenario variations is investigated.

7.1. Hierarchical Policy Transfer 117

7.1.1 Hierarchical Actor-Critic Learning Framework

To apply HRL to the object picking use case requires an extension of the previously
developed learning framework. First, a suitable HRL algorithm must be chosen.
HAC was identified as most suitable candidate due to its intuitive design of using
DDPG agents as hierarchical layers (cf. chapter 2.3.3). This allows the standard
DDPG architecture to be interpreted as a single-layer HAC agent, allowing for a
direct comparison of the HRL approach with the previous baseline results and an
isolated evaluation of the benefit of additional hierarchical layers by keeping any
DDPG-related hyperparameters constant. From an implementation perspective, the
choice of HAC has the additional benefit of enabling the reuse of the existing DDPG
implementation, which significantly reduces development overhead.

In their paper introducing HAC, the authors describe the algorithm as a structure
of nested loops, where each loop represents a layer of the hierarchy [95]. In the
innermost loop, the actual interaction with the environment takes place, while the
outer loops are used to infer the subgoals. While this description is intuitive, it
only considers a single environment, or environments which are always at the same
time step. Given the asynchronous parallelization of environments, this design was
deemed unsuitable for the current framework.

Instead, the HAC training routine follows the following three stages, which constitute
a single interaction with the environment:

1. Top-Down Decision-Making: Given the current time step ¢, the state s; and
the goal g = g7, the agent iterates through its layers 7", ..., 7% starting with
the highest-level layer 7™. For each layer, it is checked whether the layer must
update its prediction at the current time step. If so, the layer policy 7(gi s, ¢*)
is executed with the current state and the subgoal provided by the layer above.
The so far produced data is accumulated in an experience replay buffer D¢ =
((st,9),g:"). Importantly, if a layer is determined to update, all respective
lower layers are also updated.

2. Environment Interaction: The last layer’s action prediction is passed to the
environment. The reward r;, next state s;11, and achieved goal §;,; are observed.

3. Bottom-Up Feedback: Iterating through the layers in reverse order, starting with
the lowest-level layer 7°, the reward r¢ is determined, which will be discussed in
detail below as the hierarchical dependence requires a more elaborate reward de-
sign. In addition, it is determined whether a respective layer has completed a
trajectory, i.e. whether the subgoal ¢! has been achieved, a terminal environ-
ment state has been reached, or the trajectory has reached its maximum length.
Once a trajectory is completed, it is moved to the experience replay buffer of the
respective layer.

The main advantage of this design is that it can be run for an arbitrary subset of
parallelized environments at arbitrary different time steps. It is thereby compatible
with the asynchronous environment parallelization through the orchestrator of the
framework (cf. chapter 4.1).

118 7. Hierarchical and Backward Planning

Determining the reward ri for each hierarchical layer is inherently challenging be-
cause the effectiveness of a higher layer depends on the ability of all subordinate
layers to accomplish their assigned subgoals. Even if a particular layer selects op-
timal subgoals, there is no guarantee that the lower layers will successfully achieve
them. As a result, the reward assigned to a specific layer cannot be solely based
on the agent’s overall performance. To address the issue of hierarchical dependency,
HAC differentiates between two modes: exploration and testing.

Analogous to standard DRL, exploration mode is used to explore the environment
by adding exploration noise to the policy predictions. As a result, the performance
of the lower layers cannot be assumed to consider the provided subgoals. To avoid
punishing upper layers for suboptimal behavior of the lower layers, the provided
subgoals are replaced in hindsight with the actual achieved subgoals by the lower
layers. This corrects the trajectories such that they reflect the actual experience and
do not corrupt the learning process.

In testing mode, no noise is added to the policy predictions. This can be interpreted
as the layers attempting to achieve the provided subgoals. Here, a layer is rewarded
for the feasibility of the subgoals it provides. If its lower layers fail to achieve the
subgoal, the layer is punished. This way, the layers are incentivized to provide
achievable subgoals.

7.1.2 Fetch Environment Variations

To investigate the transferability of the lower-level policies, the Fetch benchmark
environments Push and PickAndPlace were extended with additional obstacles or
intermediate objectives to generate more complex scenario variations. The result-
ing transfer environments are depicted in Figure 7.1 and constitute the following
modifications:

e Push-Gate: A barrier divides the tabletop, blocking any path from the initial
cube position and final goal pose. To solve the task, the agent must first move
the cube onto the green area to remove the barrier, before proceeding toward
the goal.

e Push-Gap: A gap in the tabletop obstructs the direct path to the goal. The
agent must navigate the cube around the gap to reach the goal. A wall is
placed on the far side of the gap to prevent the agent from attempting to skip
the cube across the gap.

e PickAndPlace-Wall: A fixed wall is placed in the middle of the tabletop, which
requires lifting the cube to reach the goal. The goals are constrained to the
table surface on the opposite side of the wall from the initial cube position.

e PickAndPlace-Table: An elevated table structure is placed on the tabletop,
onto which the cube must be lifted.

Each of these variations demands solutions that diverge from direct, shortest-path
strategies, presenting challenges that go beyond the optimal strategies of the base
environments.

7.1. Hierarchical Policy Transfer 119

(a) Push-Gate: The cube must be moved onto the (b) Push-Gap: The cube must be moved around a
green area to remove the barrier. gap in the tabletop.

(c) Pick-and-Place-Wall: The cube must be lifted (d) Pick-and-Place-Table: The cube must be lifted
over a wall. onto a table.

Figure 7.1 Variations of the Fetch environments to investigate the transferability of the lower-
level policies. Taken from [156].

120 7. Hierarchical and Backward Planning

7.1.3 Experimental Evaluation

In the following experimental evaluation, HAC agents are trained on the Fetch envi-
ronments to validate the hypothesis of improved learning performance through hier-
archical planning. Subsequently, the lower layers of the HAC agents are transferred
to the Fetch environment variations to investigate the transferability of low-level
subgoal policies.

7.1.3.1 Hierarchical Actor-Critic Experiments

With the HAC algorithm implementation outlined above, agents were trained on the
same three Fetch benchmark environments as in chapter 4.3.2.2. Here, two hyperpa-
rameter choices have to be made: the number of layers and the maximum trajectory
length for the individual layers. As determined in chapter 4.3.2.1, an optimal so-
lution to the PickAndPlace task requires approximately between 15 and 25 steps.
A hierarchical decomposition of two layers with a maximum lower-level trajectory
length of 10 was chosen to keep the architecture as simple as possible while at the
same time ensuring that at least two subgoals will need to be generated by the higher
policy. The results are depicted in Figures 7.2, 7.3, and 7.6, whereby each config-
uration was run with 5 random seeds, and the average performance and standard
deviation are reported. The figures contrast the performance of the HAC agents

with the previously established baseline results using a standard, non-hierarchical
DDPG agent.

100

— hrl
—— baseline

80

60

test success rate [%]

40 A

20

training episode [x1000]

Figure 7.2 Performance of the HAC agents on the Reach task. The HAC agents perform
significantly worse, as the added overhead of the hierarchical structure is not justified by the
simplicity of the task.

Instead of applying the same design logic to tune the parameters to the Reach
environment, which is solvable in less than 5 steps and thus would require a smaller
spacing between subgoals, it was decided to use the same configuration for all tasks.
The main reason is the clear focus is the PickAndPlace task as most relevant to
the object picking use case, rendering any tuning efforts for the other benchmark

7.1. Hierarchical Policy Transfer 121

environments out of scope for this investigation. Moreover, the deliberate presumed
misconfiguration can be regarded as opportunity to explicitly investigate the effects
on learning efficiency of HAC, which is a valuable insight for the applicability in
real-world applications where knowledge of optimal control strategies is a privilege
that cannot be presumed.

Notably, the HAC agents perform significantly worse on the Reach task, which is
expected given the hypothesized suboptimality of the hyperparameter configuration
(cf. Figure 7.2). Instead of solving the task in 100 episodes as the standard DDPG
baseline, the HAC agents require 300 episodes to arrive at a solution. Intuitively,
the optimal solution requires the highest layer to simply parrot the goal as subgoal,
in order for the lower layer to reach the goal with a single trajectory. Therefore,
the hierarchical structure does not provide any benefit. On the contrary, the results
support that adding hierarchical decomposition where it is not needed introduces un-
necessary complexity in form of communication overhead between the layers, which
severely degrades the learning efficiency.

For the Push task, the results depicted in Figure 7.3 show a clear benefit of HAC
over the standard DDPG baseline, improving the learning efficiency by more than
50%, from 15,000 to 7,000 episodes.

100

— hrl
—— baseline

80

60

40 A

test success rate [%]

20 4

0 2 4 6 8 10 12 14
training episode [x1000]

Figure 7.3 Learning curve of the HAC agents on the Push task. The HAC agents are able to
solve the task significantly faster than the standard DDPG baseline.

Figure 7.4 further shows the exemplary behavior of a HAC agent for the Push
task, which highlights a major benefit of interpretability of the hierarchical decision
process. As the subgoals are derived from the goal, which constitutes the desired
position of the cube, it is possible to visualize the subgoals. The visualization shows
that the HAC agent learned to decompose the task by using a subgoal halfway to the
final goal. Implicitly, the subgoal choice balances between shortening the distance to
the final goal and the ability of the lower layer to consistently achieve the subgoal.

In addition to visualizing the subgoals in the environment, it is also possible to
visualize the Q-value functions learned by the critics of the DDPG agents. This
methodology is adopted from [17]. Of particular interest is the Q-value approxi-
mation through the high-level policy’s critic. Since the critic aims to predict the

122 7. Hierarchical and Backward Planning

Figure 7.4 Exemplary solution trajectory of a HAC agent for the Push task. The agent
successfully decomposes the task by using a subgoal halfway to the final goal.

expected cumulative future reward given a state-action pair, and the action of the
high-level policy is the selection of a subgoal, it is possible to probe the critic for
hypothetical subgoal choices and corresponding Q-values. This is exemplified in Fig-
ure 7.5, which overlays a fixed situation, i.e. cube, goal, and TCP position, with
a heatmap of the subgoal Q-values. As expected, the Q-values increase from the
current cube position towards the goal, however not fully reaching the goal as the
high-level critic correctly learned that subgoals too far away are unreachable by the
lower-level policy.

Figure 7.5 An exemplary state of the Push task and corresponding heatmap of the subgoal
Q-values. Yellow regions indicate high, violet regions low Q-values.

7.1. Hierarchical Policy Transfer 123

For the PickAndPlace task, the results depicted in Figure 7.6 demonstrate a similar
benefit of HRL. Unlike the previous baseline results, the HAC agents are able to

solve the task reliably in 11,000 episodes, achieving a previously unattained success
rate of 100%.

100

— hrl
—— baseline

80

60

40 A

test success rate [%]

20 4

0 5 10 15 20 25
training episode [x1000]

Figure 7.6 Learning curve of the HAC agents on the PickAndPlace task. The HAC agents are
able to successfully learn the task, unlike the standard DDPG baseline.

An exemplary solution trajectory including subgoals is shown in Figure 7.7. As
before, the agent successfully decomposes the task into two sections, using a subgoal
halfway to the final goal. Thus, HRL has been demonstrated to be able to solve the
pick-and-place task where standard DRL fails.

Figure 7.7 Exemplary solution trajectory of a HAC agent for the PickAndPlace task.

7.1.3.2 Low-Level Policy Transfer Experiments

Using the variations of the Fetch benchmark environments as target environments,
an investigation into the transferability of the lower-level policies is conducted. First,
HAC agents are trained from scratch to establish a comparative baseline. Subse-
quently, HAC agents previously trained on the standard environments are taken, and
their high-level policy weights are re-initialized, effectively transferring the lower-
level policies. Finally, training is continued on the target environments. Each train-
ing is performed with 16 random seeds, and the average performance and standard
deviation are reported in Figures 7.8, 7.9, 7.12, and 7.13.

124 7. Hierarchical and Backward Planning

In the Push-Gate environment, the transferred agents exhibit a slightly steeper learn-
ing curve in the beginning of training than the agents trained from scratch (cf. Figure
7.8). However, this performance gap closes over time. Neither variant manages to
solve the task entirely within the given episode limit of 10,000 which was imposed
to limit the runtime of the experiments, and chosen based on the previous results
of the Push source environment previously being solved in 7,000 episodes. Thus, no
conclusive advantage of transferring pretrained lower-level policies can be observed.

100

—— no transfer
—— transfer

80

60

test success rate [%)]

40

20 A

0 2 4 6 8 10
training episode [x1000]

Figure 7.8 Transfer results for the Push-Gate Task. No conclusive advantage of transferring
pretrained lower-level policies can be observed. Adapted from [156].

For the Push-Gap environment, the transfer strategy appears to even have a negative
effect on the learning efficiency (cf. Figure 7.9). The transferred agents exhibit a
similar learning curve as the agents trained from scratch, but gradually fall behind
after 5,000 episodes.

100

—— transfer
— no transfer

80

60

40 4

test success rate [%]

20 4

0 2 4 6 8 10
training episode [x1000]

Figure 7.9 Transfer results for the Push-Gap Task. The transfer strategy appears to have a
negative effect on the learning efficiency. Adapted from [156].

7.1. Hierarchical Policy Transfer 125

In an attempt to understand why the transfer in the Push scenarios is unsuccessful,
a closer look at the decision-making of the agents is taken. Figure 7.10 shows a
successful attempt of a hierarchical agent to place and reach the first subgoal. Here,
it becomes apparent that the agent learned a rather risky strategy, skipping the gap
in the tabletop.

Figure 7.10 Strategy of a HAC agent on the Push-Gap Task. The agent learned a risky
strategy, skipping the gap in the tabletop. Taken from [156].

Skipping the cube across the gap requires hitting the cube with high velocity. On
closer inspection, it was found that the pretrained lower-level policy, optimized for
obstacle-free environments, learned moderate movement patterns unsuitable for this
aggressive maneuver. Surprisingly, this did not lead to the higher-level policy learn-
ing to take this into consideration and arrive at a more cautious strategy, which
proposes more conservative subgoals around the gap. Instead, the results suggest
that the higher-level policy pressured the lower-level policy to adapt the high-risk,
high-reward strategy. As inferred by the suboptimal learning curve, this readjust-
ment of the lower-level policy resulted in an increased instability of the learning
process, leading to a worse performance than agents learning the same aggressive
strategy from scratch. The analysis of the HAC agent behavior on the Push-Gap
task can again be complemented by the visualization of the subgoal Q-values, as
shown in Figure 7.11.

Figure 7.11 Q-value heatmap in the Push-Gap task. The highest Q-value is found over the
gap, thereby incentivizing the lower level policy to attempt skipping the cube over the gap.
Adapted from [156].

The heatmap confirms the previously observed behavior of the high-level policy,
which places the subgoals across the gap. It additionally uncovers that the agent

126 7. Hierarchical and Backward Planning

places some value in subgoals over the gap, which are clearly unfavorable. While this
is likely due to the analyzed agent not being trained long enough to converge to an
optimal strategy, it highlights a major weakness of DRL in general, which is the data
inefficiency of replicating easily expressible domain knowledge, such as not placing
subgoals over gaps, through pure end-to-end interaction with an environment. The
designed human interpretability of the subgoal space however may be a promising
interface to explicitly inject such domain knowledge into the learning process. How-
ever, as the Push scenario is not considered the main focus of this thesis, this line
of research is not pursued further.

In contrast, the PickAndPlace transfer experiments show a clear advantage of trans-
ferring pretrained lower-level policies, as depicted in Figures 7.12 and 7.13. In both
cases, the learning curves of the transferred agents show an immediate steep per-
formance incline reaching test success rates above 95% within 4,000 episodes. The
transferred agents thereby clearly outperform the agents trained from scratch, which
take 2-3 times the training effort. Interestingly, the latter don’t show any learning
progress for the first 5,000 episodes, but then exhibit a similarly steep performance
increase as the transferred agents, albeit with a higher variance. This is especially
remarkable when revisiting the learning curves of the source environment, which
continuously improved over the course of 11,000 episodes. This indicates that even
when the performance metrics such as the test success rate suggest that a hierarchi-
cal agent is not progressing on the overall task, valuable learning is still taking place
in the individual layers, which the agent is able to capitalize on later in the training
process.

100

80

60

40

test success rate [%]

20 4
—— lower-level transfer

—— ftraining from scratch

—— source training (PickAndPlace)

0 5 10 15 20
training episode [x1000]

Figure 7.12 Transfer results for the PickAndPlace-Wall task. The transferred agents clearly
outperform the agents trained from scratch. Adapted from [156].

An exemplary trajectory of a transferred agent in the Pick AndPlace-Wall environ-
ment is shown in Figure 7.14, which demonstrates the ability to utilize the pretrained
lower-level policy’s ability to move a block in a straight line to towards a subgoal
by using different subgoals, i.e. above the wall to circumvent the obstacle. With
these positive results on the PickAndPlace environments, the potential of transfer-
ring lower-level HRL policies can be confirmed. However, considering the negative

7.1. Hierarchical Policy Transfer 127

100

80

60

test success rate [%]

40

20 A

—— lower-level transfer
—— training from scratch
—— source training (PickAndPlace)

0 5 10 15 20
training episode [x1000]

Figure 7.13 Transfer results for the PickAndPlace-Table task. The transferred agents clearly
outperform the agents trained from scratch. Adapted from [156].

results on the Push environments, it has to be acknowledged that this transferability
is not guaranteed. If the lower-level policy behavior does not match the higher-level
policy’s expectations, the resulting adaptation of the lower-level policy may desta-
bilize the learning process compared to training from scratch.

Figure 7.14 Visualization of a trajectory of a successfully transferred agent in the
PickAndPlace-Wall task.

128 7. Hierarchical and Backward Planning

7.2 Assembly-by-Disassembly

In the clip assembly use case, the initial attempts to learn the task with DRL agents
were unsuccessful. As previously mentioned, the agents learned to keep a safe dis-
tance between the clip and the shell to avoid likely collisions. To address this issue,
the following investigation considers a simple, yet effective approach to prevent the
agent from learning the avoidance strategy: reversing the task, i.e. disassembling
the clip from its target location, and subsequently inverting the found trajectories.
Once the disassembly task is solved, the trajectories are inverted and used to train
an agent for assembly using BC.

7.2.1 Clip Disassembly Environment

While converting the environment implementation from an assembly task to a dis-
assembly task is straightforward by switching the start and goal poses, the resulting
disassembly environment is not necessarily fit for assembly-by-disassembly. Revisit-
ing the assembly environment introduced in chapter 4.4.1, clip movement is realized
with a force constraint which pulls the clip towards the next waypoint, determined
by the chosen action. As depicted in Figure 7.15, this results in a simulation where
trajectories may be non-reversible. Further, such non-reversible trajectories were
found to be exploited by agents for reward hacking [6]. Reward hacking describes
agents learning unintended strategies to maximize the reward, resulting from unfore-
seen environment mechanics such as simulation inaccuracies, or errors in the reward
function.

y A
—

Figure 7.15 Reward hacking in the clip assembly environment. The agent is able to exploit

the force constraint to move the clip out of the shell in a non-reversible manner.

In the case of the clip assembly environment, the force constraint does not account
for the orientation changes of the clip along the trajectory, allowing an agent to
forcefully yank the clip out of the shell. To address this issue, at each waypoint the
trajectory is reversed and tested for validity. If the trajectory fails to insert the clip,
the disassembly task is considered failed, resulting in a termination of the episode
and an associated maximum negative reward.

As a waypoint is never perfectly reached, but considered reached if the distance to
the waypoint is below a certain threshold, solely testing the current transition for re-
versibility is not sufficient due to stochasticity in the physics-based simulation. This

7.2. Assembly-by-Disassembly 129

changes the MDP formalism, as the reward function R (s, a, s'|77!) is no longer inde-
pendent of the previous history 7 leading up to the state s. Empirical testing showed
that retaining and checking the last two transitions for consecutive reversibility is
sufficient to guarantee valid assembly trajectories in the given use case. Thus, the
computational overhead for an episode length n from y ;_, k to 2n — 1.

7.2.2 Experimental Evaluation

With the disassembly environment in place, DDPG agents are trained on the mod-
ified task. The actor and critic ANNs are realized as 3 layers of 64 neurons each,
using ReLLU activation functions. This configuration was chosen based on an in-
tuitive estimation considering the low dimensionality of the state, goal and action
space.

The training results are depicted in Figure 7.16, showing the mean learning perfor-
mance of 10 training runs. The results clearly show that the agents are able to solve
the task in 25,000 training episodes, which in the experimental setup was achieved

in 10 minutes wall-clock time using 96 parallel environments and an Nvidia V100
GPU.

100
o5
80
_ 0.0
&
o 601
= el
© I
8 %
S F-05%
2404
173
e
204 F-1.0
0 -15
0 5 10 15 20 25 30

training episode [x1000]

Figure 7.16 Performance of the DDPG agents on the clip disassembly task. The agents are
able to solve the task in 25,000 training episodes.

To derive an agent capable of solving the original assembly task, the trained disas-
sembly agent is used to generate a set of trajectories. These trajectories are then
inverted and used to train an agent for assembly using BC. To evaluate the depen-
dence of the transferability on the number of demonstration trajectories, different
numbers of trajectories are used. The results are depicted in Table 7.1, which are
based on 10 respective post-training runs on the assembly task. As the results show,
a reliable zero-shot transfer is only possible with a sufficient number of 1,000 demon-
stration trajectories. While transfer with 100 trajectories is achievable with 5,000
additional post-training episodes, the success of this post-training is not guaranteed
and only was achieved in 3 out of 10 runs. As expected, further reducing the number
of demonstration trajectories drops the success rate to 0%.

130 7. Hierarchical and Backward Planning

BC Trajectories 0 10 100 1000
Success (%) 0 0 20 100
Episodes (x1000) - - 5 0

Table 7.1 Performance metrics for assembly task using BC with varying number of demon-
stration trajectories.

Given the high quality of the simulation due to the accurate underlying CAD model,
the assembly agents were found to be directly applicable to the real-world demon-
strator setup, given knowledge about the goal pose in the robot base coordinate
system to correctly translate TCP measurements of the robot into the state space of
the assembly agent, and subsequently translate the proposed action back into TCP
displacement coordinates. Apart from this, no further fine-tuning was required to
successfully automate the clip assembly process.

7.3 Summary

In this chapter, the third RQ was investigated, which asked for methods to exploit
structure in robotic movement through hierarchical decomposition and reversibility
of tasks.

In the object picking use case, the Fetch PickAndPlace environment was success-
fully solved using HRL with HAC, outperforming previous attempts using standard
DDPG agents. Further, the lower-level policy was transferred to task variations in-
cluding obstacles, demonstrating the potential of HRL to decompose a strategy into
task-agnostic low-level subgoal-based execution and task-specific high-level subgoal
selection. However, transfer was not found to be universally successful and may
even have a negative effect when the lower-level policy does not match the higher-
level policy’s expectations regarding precision, resulting in significant performance
degradation and additional training overhead to compensate for the mismatch.

For the clip assembly use case, assembly-by-disassembly was successfully applied.
By learning the reverse of the assembly task, agents were no longer able to avoid
contact with the shell, forcing them to learn meaningful trajectories. At the same
time, the disassembly task is arguably easier than the assembly task, as the possi-
ble collision-free movements are much more constrained, leading to faster learning.
It was discussed that not all trajectories are reversible, leading to a trajectory re-
versibility check to be included in the reward function to ensure that the learned
disassembly trajectories can subsequently be used for assembly. Subsequently, the
assembly task was successfully solved in a zero-shot manner by inverting the disas-
sembly trajectories and using them as demonstration trajectories for BC.

Cross-Robot Execution Imitation

“Imitation is the sincerest form of flattery.’

- Charles Caleb Colton

In industrial robotics, tasks are often times planned in TCP space, which reduces
the planning space to the most critical element: how a tool should be moved to
achieve the desired outcome. While this planning space is robot-agnostic, deploying
a TCP trajectory to a specific robot traditionally requires specification of the robot
configurations. This is necessary, since the mapping of a TCP pose to a joint config-
uration with IK is not unique, as for most TCP poses there are multiple viable joint
configurations. This ambiguity is traditionally managed by manually specifying the
desired joint configuration for each TCP waypoint in the trajectory, restricting the
robot’s workspace to regions where IK solutions are unique, or by imposing joint
limits to reduce the joint solution space. Such manual restrictions however require
elaborate manual analysis of the robotic system to on the one hand ensure safe op-
eration without collisions, without on the other hand limiting the efficiency of the
robot by restricting its workspace to only allow for suboptimal movement. The man-
ual labor is especially amplified in the context of cross-robot TRL, where manually
post-processing vast amounts of source domain demonstrations is not feasible. This
chapter serves as an exploratory step toward answering RQ-4: How can movement
trajectories be transferred between different robot morphologies?

The following investigation proposes a Cross-Robot Imitation Learning (CRIL) frame
work, which automatically selects target trajectories most similar to a given source
trajectory based on a joint space similarity metric. The mapped trajectories are
then used to pretrain a DRL agent for the target robot with IL techniques. Finally,
the transferability is validated by contrasting the learning performance of the pre-
trained agent to that of an agent trained from scratch on the target robot. The CRIL
framework and experimental validation were previously published by the author [19].

)

132 8. Cross-Robot Execution Imitation

8.1 Robot-Task Environments

To investigate the cross-robot transferability of learned behaviors, the modular
robot-task environment design of the framework introduced in chapter 4.1 is used to
easily exchange between the source and robot models. The Pybullet physics simula-
tion engine [35] was chosen due to its previous use in chapter 6 and thereof resulting
familiarity with the framework. Deciding against the Mujoco physics engine [186]
was a deliberate choice. Although it was previously used in the object picking use
case, at the time the decision was made the Mujoco was only available under a
restricted academic license, whereas Pybullet was freely available under an open-
source license. Figure 8.1 depicts the resulting ability to quickly generate different
robot-task combinations.

Robots

Reach

Tasks
Pick & Place

NV

Figure 8.1 The modular robot-task environments allow for quick generation of different robot-
task combinations to evaluate cross-domain transferability. Adapted from [21].

For the following experiments, a reach task is used as proof-of-concept task (cf. first
row of Figure 8.1), which requires the robot to move its end-effector to a randomly
sampled target position. The state space consists of the joint angles of the robot,

8.2. Cross-Robot Imitation Learning Framework 133

and the action space translates into relative joint angle changes. The Panda and the
URS5 are selected as source and target robot for two reasons. Besides being the robot
models used in the three use cases, the robots also differ in degrees of freedom, with
the Panda having 7 and the URb having 6 joints. Thus, the state and action spaces
of the two domains also are of different dimensionality, which must be considered by
the following CRIL framework.

8.2 Cross-Robot Imitation Learning Framework

Towards the development of a CRIL framework, the following questions must be
addressed: First, how to define and compare behaviors of different robot arms.
Second, how to map a source trajectory to a target trajectory. Third, how to use
the mapped trajectories to pretrain a DRL agent in the target domain with IL
techniques. The following sections will address these questions in detail.

8.2.1 Cross-Robot Behavior Similarity

To enable cross-robot behavior comparison, a similarity metric is developed which
measures the likeness of two robot arm trajectories, i.e. their behavior. According
to the American Psychological Association’s dictionary, behavior is “any action or
function that can be objectively observed or measured in response to controlled
stimuli.” [190]. Translating this definition to the MDP formalism, the stimuli can
be understood as a current state, and the measured response as the resulting next
state induced by the selected action.

Taking inspiration from related literature, the similarity metric proposed by von
Eschenbach et al. [196] is a suitable starting point. The authors consider a simplified
version of cross-robot behavior comparison, where they take the same robot model,
but lock joints to create robot instances with different DOF. To compare these
robots, they propose the following correspondence metric:

DS DT

wsf,s? = Z Z W5 - d(pgzapz;]) (8]')

i=0 j=0

The correspondence metric takes the weighted sum of the distances between all key
points of two robot arms. As key points, intermediate poses along the kinematic
chains of the two robots are used to capture the general shape of the arms. The
weighting matrix w; ; accounts for the comparability of different key points according
to similar location in the kinematic chain. Von Eschenbach et al. [196] consider
the same robot model and propose a distance metric which compares the position,
rotation, velocity, and angular velocity of the robot joints.

To apply this metric to compare arbitrary robot models, this thesis will only consider
the position of the key points, as joint angle values and velocities are not directly
comparable between different robot models, or would require manual formalization.
For example, the special case of identical robot models with inverted joint orienta-
tions would require explicit knowledge that joint angles of different sign are actually

134 8. Cross-Robot Execution Imitation

equivalent. The position of the key points in 3D space is however straightforward to
compare and thus a suitable generalized abstraction space.

While the orientation and velocities are hard to compare for the robot joints, it can
be applied to robot-agnostic TCP poses. Here, the entire pose, including orientation
and position, can be compared. This results in the following adjusted correspondence
metric, which combines the reduced joint distance metric of von Eschenbach et al.
[196] with the TCP distance.

DS DT
wi@ig’ = d(pireps Pirop) + Z Z wij - s — pi] (8.2)
i=0 j=0

This metric will be referred to as Embodiment Correspondence and is visualized in
Figure 8.2.

EC T T T T
pf,o P“tq.rcp st,sgo [p(t,O),O “ P(t,0),TCP] [P(m),o “P1),Tce]

Figure 8.2 The Embodiment Correspondence (EC) metric is the weighted sum of the distances
between all key points of two robot arms. As key points, intermediate poses along the kinematic
chains of the two robots are used to capture the general shape of the arms. Taken from [19].

In order to apply the EC metric, the selection of suitable key points is crucial.
This thesis follows the approach of von Eschenbach [196] and use one key point in
each robot joint, which are easily computed as the intermediate solutions of FK. To
measure the translation distance between two key points, the Euclidean distance is
used. For the TCP correspondence, the orientation difference may be computed as
the angular difference [127]. The angular difference between two orientations Ry and
R5 is computed as

0 = arccos((trace(RT Ry) —1)/2) (8.3)

8.2.2 Cross-Robot Trajectory Mapping

With the ability to quantify the similarity between two robot kinematics, two gen-
eral options can be considered to map a given source to a target joint configuration.
The first option is to exploit the differentiability of the EC metric with respect to
the robot joint angles and perform an iterative gradient descent optimization to
find corresponding joint configurations. The second option exploits explicit knowl-
edge of the robot kinematics to directly compute potential joint configurations, and
subsequently use the EC metric to select the most similar one.

8.2. Cross-Robot Imitation Learning Framework 135

For this approach, the latter option was chosen, since for the two selected robot
models, the analytical TK solutions are known and provided by previous works
(68, 70, 184, 193]. While the availability of analytical IK solutions is not always
guaranteed and poses a limitation for the applicability of the proposed approach, re-
cent advances in automatically deriving IK solutions from the robot kinematics have
been reported [129], which directly address this limitation. The proposed mapping
framework is depicted in Figure 8.3.

(0]
O
|
3 P
t+1,0
U) I}
| s
Pi+1,7CP
> T T il
[>l S0,0 St+1,0)” —
start ;',t : : end
©
[‘; T T R
% So,c Sti1,c
Sg - ses -» s{ —_— S{+1 - ses -» s%

Figure 8.3 The mapping strategy of the CRIL framework. For each state of the source
trajectory, the TCP pose is determined. Next, all possible joint configuration candidates are
computed with IK. From all candidates, a graph is constructed, whose edge weights reflect
the EC metric and the transition cost. The target trajectory with most similar behavior to the
source trajectory is found by finding the shortest path through the graph. Taken from [19].

Using an explicit analytical IK model provides two advantages: On the one hand,
the analytical solution ensures that the TCP poses are preserved across the map-
ping, which is a desired property since the TCP trajectory is the most important
process-relevant key point. On the other hand, the analytical solution is much more
efficient, as it deterministically computes all possible joint configurations in one step.
In contrast, the gradient descent approach requires an iterative optimization per so-
lution and thus may converge to a local minimum, as well as does not provide any
guarantees for finding all possible joint configurations. Further, the iterative gradi-
ent descent approach is computationally more expensive than a one-shot analytical
solution. Notably, this decision also simplifies the EC metric, as the distance be-
tween the TCP key points is by design always zero and can thus be omitted from
the computation.

When mapping entire trajectories, it is important to consider that simply mapping
the individual waypoint configurations to their respective best matching target con-
figuration may result in a trajectory which is not feasible or suboptimal for the target
robot. To address this, the transition between two consecutive waypoints must be
considered in the selection process. As elaborated above, each state sy describing
a joint space configuration of a given source trajectory is mapped to a set of key

136 8. Cross-Robot Execution Imitation

S
[0) P o — S
1 t t+1
3
s s
»n Pto " Ptrcp)
c 2
EC ©
st,stTlo b
r
T T
"[P(t,O),o " P(t,0),TCP I_
>a; o =(~"'tT+1c—-‘>'{o)/‘S <
St,07St+1,¢ ’ ’

T
St+1,0
—

I T

St0

I T T I
Stc St+1,c

=B W +(A1—p) Wi g

ST
St.St, St,07St+1,C

Target

w_r T
St,07St+1,C

Figure 8.4 Detailed view of the graph weight computation. The EC metric is computed from
key points determined by FK. The transition cost is computed from an approximation of the
required action between two consecutive candidates. Taken from [19].

points pfi using FK. Subsequently, the last key point, i.e. the TCP pose, is fed into
the IK solver of the target robot to compute all possible target joint configurations
s{. 10 < ¢ < C, which are referred to as candidates. To now find the most similar
target trajectory, a directed graph is constructed, whose nodes represent the candi-
dates and edges represent the transition between two consecutive candidates. A start
and end node is introduced, producing a graph where each path from start to end
node represents a potential target trajectory. To quantify the suitability of poten-
tial target trajectories, the respective paths through the graph are evaluated. This
requires introducing edge weights to reflect the previously introduced EC metric, as
well as the cost of transition between two candidates. The edge weight computation
is visualized in Figure 8.4 and is detailed in the following.

Since the robots use joint angle control s;11 = s; + aa;, where « is a scaling vector
to linearly map between the action space and joint angle space, the required action

. . . ~ T _
between two given consecutive states can be approximated as AT oL, (s, 1.d

s{.)/a’. This allows the computation of a Transition Efficiency (TE) metric

. T
TTE . _ ||asgjc,stT+1,d|| lf a’szc,sal’d € 'A (84)
St,crSt41,d 0 otherwise

8.2. Cross-Robot Imitation Learning Framework 137

which effectively favors actions of small magnitude and additionally removes impos-
sible transitions, i.e. actions that are not in the target action space A”, from the
graph. This leads to an overall edge weight formulation

wszusal,d - ﬁ ’ wffc,:szc + (1 - 6) : wTTE (8.5)

T
St,e5t+1,d

with the tuning parameter S € [0, 1] balancing between the two weight components.

As stated above, the selection of the best suited target trajectory requires finding
the shortest path through the graph from the start to the end node. This can be
efficiently computed using Dijkstra’s algorithm, which is a well-established method
in the field of graph theory [46]. It is important to note that the mapping can fail
if there is no valid path from the start to the end node, i.e. if the source behavior
cannot be mimicked by the target robot. This can happen if a source state cannot be
mapped to any target state candidates, resulting in a disconnected graph. Mapping
also fails if the action space of the target robot is too small to achieve the required
transitions between consecutive target states, which in the graph means edges with
infinite weight.

8.2.3 Cross-Robot Imitation Learning

With the mapping framework introduced above, it is possible to translate a set of
source trajectories into a set of corresponding target trajectories which correspond
in behavior. The final stage in the CRIL framework is to incorporate these mapped
trajectories into the training process of a DRL agent with the goal of reducing the
required amount of training in the target domain. Since the mapped trajectories
constitute target domain demonstrations, this remaining challenge can be treated as
a classical IL problem.

In the following, MARWIL is chosen as behavioral cloning method, which extends
the standard BC method by using rewards to emphasize high-value transitions and
thereby improves the quality of the pretrained policy [200]. Given the assumption
that similar behavior results in similar rewards, the rewards collected in the source
domain are directly transferable to the respective target domain transitions.

After pretraining, the agent is transferred and fine-tuned on the target environment.
For this, a different DRL algorithm from the previously used DDPG is chosen,
namely PPO. The main reasoning behind this switch is that MARWIL utilizes the
same actor and critic architectures as PPO, namely a stochastic policy m(als) and
a state-value function V' (s). This allows for a seamless transfer, whereas conversion
of MARWIL components into the deterministic policy u(s) and state-action-value
function Q(s,a) of DDPG is non-trivial. It was considered to use Soft Actor-Critic
(SAC), which like DDPG is an off-policy algorithm, while like PPO using a stochastic
policy. However, SAC also uses a state-action-value based critic, leading to the same
transferability issues as DDPG.

Since the required DRL training framework required a different algorithm in the form
of PPO, as well as an implementation of MARWIL, it was deemed more efficient
to not extend the previously developed framework, but instead utilize an existing

138 8. Cross-Robot Execution Imitation

open-source library. Specifically, RLIlib [98] was identified as most suitable, as it is an
actively maintained open-source library with a large community and comprehensive
documentation, and a dedicated focus on industrial applicability. RLIlib provides
implementations of both MARWIL and PPO, which will be used in the following
experiments.

8.3 Experimental Evaluation

In the following, the previously developed cross-robot imitation-learning framework
is evaluated regarding its ability to transfer knowledge in the form of trajectory
demonstrations from a source to a target robot. As a prerequisite for the evaluation,
source trajectory demonstrations must be generated first. To this end a DRL agent
is trained on the source Panda robot using PPO. The aggregated learning curves
of five different agents are depicted in Figure 8.5. Training is performed until a
success threshold of 98% is reached, which was chosen as a compromise between
the expectation of a near-perfect performance on the given reach task, and the
consideration that stochasticity in the initialization and dynamics of the environment
may prevent an agent from achieving perfect performance. The results show a stable

convergence of the learning curves, with agents achieving the target success rate in
4,000-5,000 episodes.

100

80

60

40

test success rate [%]

20 A

——=- success threshold (98%)

0 1 2 3 4 5
training episode [x1000]

Figure 8.5 Source agent learning curve for the Panda robot with stable convergence.

The trained source agent is subsequently used to generate trajectory demonstrations
within the source domain. To mitigate potential transferability issues arising from
insufficient data, the previously observed number of required source domain episodes
(5,000) are multiplied by a safety factor of 100, resulting in 500,000 source trajectory
demonstrations. This deliberate decision to oversize the dataset ensures a diverse
and extensive dataset that is highly likely to encompass the full behavioral repertoire
of the source robot, while also accounting for expected mapping failures due to
incompatibilities between the two robots behavioral capabilities.

8.3. Experimental Evaluation 139

Next, the source trajectory demonstrations are mapped to the target domain. Figure
8.6 depicts an exemplary trajectory mapping using the Panda robot as source and
the URb robot as target. Figures 8.6b and 8.6¢ show the trajectories resulting from
the most and least optimal path identified by the Dijkstra algorithm, respectively.
As can be seen, the proposed mapping framework correctly produces trajectories
which preserve the general shape of the arm across the two robots.

(a) Source trajectory of the (b) Best-match mapped target (c) Randomly mapped target tra-
Panda robot. trajectory of the Panda robot. jectory of the Panda robot.

Figure 8.6 Example trajectory mapping demonstrating the mapping capabilities of the pro-
posed CRIL framework. The general shape of the arm, i.e. the behavior, is preserved. Taken
from [19].

Despite the two robots being similar in size and workspace, only 132,477 target
trajectories could be successfully mapped, which is a yield of only 26.5%. As this
mapping failure was accounted for by the initial oversizing of the source demon-
stration dataset, the resulting target trajectory dataset was deemed sufficient, still
providing significantly more trajectories to the target agent than seen by the source
agent.

100

80

60

success mean [%)]

40 1

20

0 10 20 30 40 50 60
training episode [x1000]

Figure 8.7 Pretraining performance of the MARWIL agent on the target UR5 robot using the
mapped target trajectory dataset.

The agent pretraining learning curve with MARWIL is depicted in Figure 8.7. The
performance is evaluated every 1,000 episodes by deploying the agent to 100 ran-

140 8. Cross-Robot Execution Imitation

domly initialized target environments and averaging the results. Note that MAR-
WIL is a supervised learning algorithm, and thus an episode denotes one iteration
through the entire target trajectory dataset. Training is performed for a total of
100,000 episodes, with an early stopping criterion of 20,000 episodes. The learning
curve shows that MARWIL is able to reach a maximum success rate of 61% after
65,000 episodes.

Finally, the transfer through finetuning with PPO is evaluated, the results of which
are shown in Figure 8.8. A baseline is established by training PPO agents from
scratch on the target environment for 5,000 episodes. The maximum episode cutoff
was selected based on the previous results on the source environment, as the learning
performance was expected to be similar for both robots. Contrary to expectation
however, the agents struggled more on the target environment, with learning curves
converging to success rates below 80%. With this baseline, a success rate threshold of
90% is considered a significant performance improvement for the subsequent transfer
attempts. As clearly visible in the figure, the proposed transfer strategy outperforms
the baseline by a large margin, with the agents reaching success rates above 90%
after only 1,000 episodes. This validates the effectiveness of the proposed cross-robot
transfer framework.

100

80

60

40 A

test success rate [%]

20 4

—— transfer
—— baseline
=== success threshold (90%)

0 1 2 3 4 5
training episode [x1000]

Figure 8.8 Finetuning performance of the pretrained agent on the target UR5 robot. The
transfer strategy clearly outperforms agents trained from scratch. Taken from [19].

8.4 Summary

In this chapter, the fourth and final RQ was addressed, which prompted the transfer
of movement trajectories across different robot morphologies. A CRIL framework
was developed for transferring joint space trajectories. The approach consists of
mapping the source states (joint angles) into a robot-agnostic representation space
(TCP poses), which are then mapped into target state candidates using IK. A di-
rected graph is constructed, whose nodes represent the IK candidates and edges
represent the transition between two consecutive candidates. By using edge weights

8.4. Summary 141

which capture the similarity between source and target key points (joint positions)
as well as the transition cost, and subsequently finding the shortest path through the
graph, a target trajectory is identified which is most similar to the source trajectory.

The experimental evaluation showed that the proposed framework is able to transfer
trajectories from a source to a target robot and use these trajectories to pretrain a
DRL agent with IL techniques. The results demonstrate a significant positive impact
on the learning performance of the DRL agent on the target robot compared to a
baseline trained from scratch.

142 8. Cross-Robot Execution Imitation

Critical Reflection and Outlook

“Follow effective action with quiet reflection. From the quiet reflection will come
even more effective action.”
- Peter Drucker

This final chapter concludes the thesis by reflecting on the RQs and the conducted
experiments. For each RQ, the main findings are summarized, and the limitations
of the conducted experiments are discussed. Additionally, future research directions
are proposed towards further advancing the field of DRL in industrial robotics.

0.1 Research Question 1

How can smooth, continuous movement be achieved within the RL framework?

The first RQ was addressed in chapter 5, where an asynchronous DRL framework was
proposed and validated for the wire-loop use case. The main concept of the frame-
work is based on the introduction of intermediate states, which are observed while
an action is still executing, to enable a policy to preemptively determine the next ac-
tion. Further, a suitable action space based on Bézier curves was proposed to enforce
smoothness between individual trajectory segments. The final asynchronous frame-
work was found to be effective in achieving smooth, continuous robot movement
with position-based control, which was validated through the wire-loop use case.
Despite the academic nature of the use case, the results regarding the reduction of
process time and reduced wear and tear on mechanical parts through smoother mo-
tion are relevant to industrial applications. To address the non-Markovian nature of
the asynchronous framework, a dynamics rollout model was proposed to explicitly
model the system dynamics and detach the latency compensation from the non-
delayed decision-making. The experimental evaluation revealed that the dynamics
rollout model is naturally limited in its ability to predict the next state by the infor-
mation provided in a given state, hallucinating hypothetical future states otherwise.

144 9. Critical Reflection and Outlook

In addition, the system latencies were found to be low enough to allow for the use of
intermediate states without significant performance degradation. Therefore, while
the dynamics rollout model showed promise in its ability to produce future state
predictions based on the current state and pose transformation, the results remain
academic without a clear advantage for industrial applications.

The ineffectiveness of the dynamics rollout model in the wire-loop use case does
not invalidate the concept altogether. Instead, using the wire-loop use case may
be seen as a limitation in terms of not providing sufficient latencies and challenges
to justify the additional complexity of the dynamics rollout model. The approach
of using GANSs to roll out high-dimensional state spaces can however be challenged
based on the results of chapter 6, where it was shown that image-based states can
be compressed into low-dimensional embeddings which contain all relevant infor-
mation for a policy. Thus, reconstructing the next state, as done by the dynamics
rollout model, adds additional complexity without a clear advantage apart from the
interpretability of the original state space.

While lightweight policies such as the one used in the wire-loop use case are suffi-
ciently small to run the agent on-edge, and reduce latencies to a point where their
effects become negligible, it is conceivable that a growing need for intelligence in
increasingly complex scenarios will require more powerful agents, and thereby more
powerful hardware. Although the industrial readiness of such hardware is expected
to continuously improve, becoming both more powerful and more affordable, it is
also likely that trends such as Everything as a Service (XaaS) will drive applications
towards distributed architectures, where the agent is running on a remote server
[48, 157]. In the latter scenario, the question of handling latencies between the
agent and the robotic system will stay relevant and a worthy research direction for
future work. In this context, important questions are how to compress the state
information to a minimum to reduce the required bandwidth but still retain the
necessary information for the policy and how to learn a dynamics model in such a
reduced latent space to offset latencies. Further, measuring and incorporating the
stochasticity of latencies is an important topic which has been touched upon in the
related work [201], but leaves room for further investigation beyond simple latency
distributions.

9.2 Research Question 2

How can perception modules for vision-based robotic tasks be developed in simula-
tion, and how can their structure be designed when the relevant low-level features
are not immediately obvious?

The second RQ) was investigated in chapter 6, where the methodology of DR was
successfully applied to achieve sim2real transfer of a pose estimation model in the
object picking use case. The main contribution focused on the wire-loop use case,
where the task-relevant information is easily pointed out in the camera images, but a
suitable encoding is not self-evident. In a first attempt to compress the state space, a
CNN-based autoencoder was used to learn a latent space from a dataset of real-world
images. While the resulting latent space was found to be usable as input for a DRL to
improve on the initial baseline results, the unsupervised nature of the approach left

9.2. Research Question 2 145

room for improvement, such as the encoding of irrelevant features. In an exploratory
study, the attention of trained DRL agents was visualized, supporting the hypothesis
that agents focus on similar features as humans, i.e. the wire shape. To inject
this knowledge into the training process of the perception module, segmentation
maps were introduced as prediction targets to distill the autoencoder latent space
on process-relevant parts. To generate sufficient data, simulations were employed,
where the segmentation maps are easily generated. Although the autoencoder was
able to learn the segmentation task on the simulation data, the transfer to real-
world images was not successful. Based on related work that suggests focusing the
DR parameter distribution improves transferability, a single real-world image was
used to select more realistic pixel color values. With this final modification, the
autoencoder was able to learn latent space compressions transferable to real-world
images.

One aspect that was not exhaustively investigated is the amount of training data
required to learn a suitable latent space. The comparative evaluation and ranking of
the unsupervised, semi-supervised, and single real-world image approaches reveals
that the latter objectively outperforms the others in transferability and real-world
data requirements. Some of the shortcomings may however be attributed to lim-
ited data, especially in the unsupervised approach. Thus, a quantitative answer
regarding how much real-world effort was saved by the proposed approach remains
unclear. Further, the achievement of using a single real-world image for sim2real is
heavily tied to the controlled use-case environment where a single image is enough
to capture the entire color variation distribution and thus may not be claimed as
an inherent property of the approach. For example, it cannot be expected that the
policy will transfer seamlessly to scenarios without a black cardboard background
because the state images would be outside the distribution of the simulation images.
The proposed approach is expected to be very effective in industrial applications
where the state space is controllable to ensure that the visual appearance does not
deviate from the injected domain knowledge. However, for applications where this is
not the case it is likely to fail or require additional effort to fully capture the required
parameter randomization distribution.

Looking forward, several aspects remain open for future work. First, attention maps
were found to be a valuable tool for qualitatively analyzing the sim2real transferabil-
ity. Based on this analysis, quantitative metrics of the sim2real gap for vision-based
state spaces could be developed. One potential approach could lie in the combina-
tion of attention and segmentation maps to measure how much attention is placed
on manually identified relevant segments. Further, the human-in-the-loop domain
knowledge injection approach by means of annotated real-world data leaves room for
improvement and automation. On the one hand, the likely need for additional real-
world annotations in more complex scenarios elaborated on above can be supported
by the use of SOTA segmentation models, such as SAM [86], as well as methods to
automatically identify which real-world images to annotate, e.g. by using anomaly
detection techniques [149]. Mapping the real-world image segments to simulation
objects might also be performed without human involvement, e.g. by random as-
signment. While this would expand the distribution away from the real-world data,
it can be expected that the transferability of the final model is not affected, as the
optimal color combination remains part of the source domain distribution. In fact,

146 9. Critical Reflection and Outlook

it could even have a positive effect on the previous point of generalizability through
increased randomization.

Another important aspect to address is the limitation of using learned latent spaces
with respect to true modularization of the perception module. As the latent space
is arbitrarily learned by the perception module, the development of the execution
module can only commence after the perception module is trained. In addition,
every retraining of the perception module will lead to a different latent space, i.e.
a completely different interface. Investigating how latent spaces can be constrained
to be consistent, e.g. by regularization of the latent spaces, or alternatively finding
ways to easily adapt two independently trained interfaces is a highly relevant topic
for future work towards truly modular DRL policies and parallel development of
such modules.

0.3 Research Question 3

How can decomposition of robotic movement be leveraged to modularize task-
independent behavior policies, and how can reversibility of robotic movement be
exploited to improve training efficiency?

The third RQ was investigated in chapter 7, where for the first part of the RQ, the
HAC framework was applied to successfully learn the Fetch benchmark suite, most
notably solving the PickAndPlace task which the previous non-hierarchical DRL
approach failed on. To validate the hypothesis that lower layers in a hierarchical
agent encapsulate task-independent behavior, they were transferred to task varia-
tions, whereby the higher level policy was re-initialized before finetuning the entire
HAC agent on the respective new scenario. The results demonstrated mixed cross-
task transferability. The transfer was found to be of significant benefit for harder
tasks, such as the PickAndPlace variations. However, for easier tasks, such as the
Reach and Push tasks, learning from scratch outperformed the transferred agents.

While the general suitability of HRL as a decomposition approach is confirmed as
prompted by the RQ, the followed transfer methodology can be improved. In the
experimental studies, transfer was conducted by re-initializing the high-level policy
weights and continuing training on the target environment. This is a rather simple
approach, which as observed bears risk of degrading performance, presumably due
to the pretrained lower-layer adjusting to the subgoals provided by a newly trained
high-layer. A more sophisticated transfer methodology would take this into account,
potentially by initially freezing the lower-level policy weights during the transfer
process, and only unfreezing them after the high-layer has managed to utilize the
pretrained behavior. Balancing the preservation of existing skills with the potential
necessity to have the lower layer acquire new behavior patterns required for a new
task is non-trivial and prompts a dedicated investigation.

It must be acknowledged that the lower-level policies are not fully task-agnostic,
but rather agnostic to task variations. This is on the one hand due to the subgoal
space being derived from the original environments goal spaces, which for example
describes the TCP position in the Reach task, and the cube position in the Push
and PickAndPlace tasks. Thus, a transfer across different tasks is not expected to

9.3. Research Question 3 147

be successful. On the other hand, the interpretation of the subgoals differs between
tasks. Where the lower-level policy in the PickAndPlace task implicitly learns to
pick up the cube first, the lower-level policy in the Reach task learns to hit the cube
towards the goal. Between the manual design of general-purpose subgoal spaces
which only contain robot-specific information about the TCP and gripper on one
end of the spectrum, and the application of unsupervised DRL to automatically learn
task-agnostic skill embeddings on the other end, there are many possible research
avenues worth exploring.

The investigations of this thesis also do not answer the question of when such a
decomposition is actually beneficial, apart from a general observation that the benefit
seems to correlate with increasing task complexity. With a suboptimally designed
hierarchy, the learning performance is degraded. Importantly, this is true in both
directions, as the hierarchy can be too shallow, e.g. a one-layer hierarchy in the
harder Pick AndPlace task, or too deep, e.g. a two-layer hierarchy in the easier Reach
task. Instead of relying on human intuition to design the hierarchy, further research
is required to guide the hyperparameter choice, such as the number of layers and
maximum sub-trajectory length, in a more systematic way. One important first step
would lie in a larger scale of experiments to investigate potential correlations between
shared task complexity metrics, e.g. the episode length of an optimal policy, and
the best-performing HRL architecture. This already would provide a valuable prior
for the agent design process. As a complementary solution, finding a methodology
that adapts the hierarchical structure throughout training by adding or removing
temporal abstraction layers could address the issue in a curriculum learning fashion.
Here, two important questions are to be investigated. On the one hand, how to
determine when to change the architecture, which in its simplest form can follow
a fixed curriculum. On the other hand, how to transfer knowledge between the
architecture changes to improve on the naive approach of training from scratch. For
the latter, IL techniques such as BC, which were successfully applied in this thesis,
can serve as a suitable starting point.

For the second part of RQ-3, the concept of assembly-by-disassembly was applied
in the context of DRL. The proposed approach of learning the inverted task of dis-
assembly first and using the inverted trajectories as basis to pretrain a DRL agent
for assembly using IL was successfully verified by solving the original assembly task
of the clip assembly use case. The investigations revealed that partial reversibility
has to be accounted for to avoid arriving at non-reversible trajectories. The imple-
mented solution was to explicitly check for reversibility of the trajectory after every
action, which could be reduced to checking the respective last two actions. While
this validation approach is effective, it is not optimal in terms of computational effi-
ciency, requiring three times the original number of simulation steps. One potential
measure to avoid the need for this validation overhead is to use a different simulation
environment, where movement is not achieved through force constraints, but e.g. by
directly simulating position-based control.

To further improve on the proposed approach in future work, several aspects remain
open for investigation. Instead of the chosen straightforward approach of sequen-
tially learning the respective agents, a more sophisticated approach could be to learn
both tasks at the same time, either by training both agents in parallel, or by learning
a joint policy for disassembly and assembly. A potential training strategy could be

148 9. Critical Reflection and Outlook

to alternate between the two tasks in a curriculum or adversarial learning setup,
where the goal of each agent can be viewed as resetting the environment for the re-
spective other task. A potential advantage of this approach is that it is much better
suited for training in real-world environments, where resetting the environment is a
challenge in itself. In this context, another interesting aspect to consider is to allow
for partial reversibility of the trajectory, instead of eliminating it by design. This
would allow for the individual disassembly and assembly agents to find respective op-
timal policies, which may include non-reversible sub-trajectories. How to effectively
identify and share reversible solutions between the two tasks, and at the same time
leave room for task-specific optimal solutions, is an important question to explore
in future research.

9.4 Research Question 4

How can movement trajectories be transferred between different robot morpholo-
gies?

The last R(Q was addressed in chapter 8, where a CRIL framework was proposed. The
approach uses FK to map the joint angles of a source robot to a set of key points along
the kinematic chain, including the TCP pose. From this TCP pose, IK is computed
to find corresponding joint angles for a target robot. To resolve the ambiguity of 1K
producing multiple potential joint angle candidates, an embodiment correspondence
metric is used to capture the similarity of the source and target robot configurations.
Further, a graph is constructed from mapping all the states of a source trajectory,
where each path through the graph represents a potential trajectory for the target
robot. By introducing edge weights based on the embodiment correspondence metric
and estimated transition costs between individual states, the best target trajectory
is found by means of shortest path search. The proposed approach was validated by
using a set of mapped demonstrations for pretraining a target domain agent with
IL, which significantly reduced the required training effort.

The proposed approach is a promising step towards cross-robot transferability, but
leaves room for improvement. First, the embodiment correspondence metric is a
rather simplistic measure, which does not fully capture the similarity between two
robots. Further, matching the key points to each other based on the location in the
kinematic chain is a reasonable strategy, but also just a rough approximation prone to
errors. Therefore, exploring more sophisticated metrics is a valuable future research
direction. With the availability of 3D mesh models, it is for example conceivable to
calculate the true overlap between the two robots, or vice versa and arguably more
important, identify differences which may lead to unexpected collisions of the target
robot. Here, finding a balance between infinitely precise comparisons and reasonable
approximations, e.g. convex hulls, to ensure computational feasibility will be a key
challenge to consider.

Another key limitation of the presented approach lies in mapping individual states
between source and target robots, which fails to capture the temporal dependencies
and structure of entire behaviors. This state-wise mapping also leads to infeasible
transitions in the target domain, explaining the high rate of unsuccessful mappings

9.5. Closing Remarks 149

observed in the experiments. A more robust solution would be to employ sequence-
to-sequence mapping, aligning and transferring entire trajectories rather than iso-
lated states, thereby preserving the underlying behavioral intent and improving the
success rate of cross-robot transfer. This goal of capturing behavior is closely re-
lated to the previously mentioned research direction regarding comprehensive skill
embeddings.

9.5 Closing Remarks

The vision of modular DRL agents is one of flexible, reusable components promising
to enable general-purpose autonomy in dynamic and heterogeneous environments,
as well as potential for interpretability of decision-making processes. The findings
of this thesis offer a foundational step in this direction. They highlight not only
the feasibility but also the practical benefits of modularizing DRL architectures in
industrial settings to enable knowledge transfer from simulations, across different
task variations, and between different robot models.

Looking ahead, future work should delve deeper into the role of skills or behaviors
as natural interfaces between task-specific and robot-specific modules. Key open
questions include how to effectively train such skill embeddings and, equally impor-
tant, how to ensure that these embeddings are maximally reusable and interpretable.
While algorithmic advances are critical for building more capable agents, the human
element remains indispensable. Developing efficient human-in-the-loop interaction
strategies is a largely untapped challenge in DRL, where real-time guidance, correc-
tion, and teaching from humans could exponentially improve agent learning. Achiev-
ing this will demand progress not only in human-robot communication but also in
adaptive learning algorithms that can seamlessly incorporate human feedback.

Ultimately, advancing modular DRL agents is crucial for building robotic systems
that are not only intelligent and adaptive, but also maintainable, interpretable, and
deployable at scale across diverse domains and applications.

150 9. Critical Reflection and Outlook

Bibliography

1]

8]

AHMAD, S., LAVIN, A., PURDY, S., AND AGHA, Z. Unsupervised real-

time anomaly detection for streaming data. Neurocomputing 262 (Nov. 2017),
134-147.

AkBuLuT, M., OzTopr, E., SEKER, M. Y., HH, X., TEKDEN, A., AND
UGUR, E. Acnmp: Skill transfer and task extrapolation through learning

from demonstration and reinforcement learning via representation sharing. In
Conference on Robot Learning (2021), PMLR, pp. 1896-1907.

AKKAYA, I., ANDRYCHOWICZ, M., CHOCIEJ, M., LiITWIN, M., MCGREW,
B., PETRON, A., PAINO, A., PLAPPERT, M., POWELL, G., AND RIBAS,
R. Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113
(2019).

AMMAR, H. B., EaTON, E.; RuvorLo, P., AND TAYLOR, M. Unsupervised
cross-domain transfer in policy gradient reinforcement learning via manifold
alignment. In Proceedings of the AAAI Conference on Artificial Intelligence
(2015), vol. 29.

AMMAR, H. B., Mocanu, D. C., TAYLOR, M. E., DRIESSENS, K., TUYLS,
K., AND WEIss, G. Automatically Mapped Transfer between Reinforcement
Learning Tasks via Three-Way Restricted Boltzmann Machines. In Advanced
Information Systems Engineering, D. Hutchison, T. Kanade, J. Kittler, J. M.
Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Ran-
gan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum,
C. Salinesi, M. C. Norrie, and O. Pastor, Eds., vol. 7908. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2013, pp. 449-464.

AMODEI, D., OraH, C., STEINHARDT, J., CHRISTIANO, P., SCHULMAN,
J., AND MANE, D. Concrete Problems in Al Safety, July 2016.

ANDRYCHOWICZ, M., WoLsKI, F., RAy, A., SCHNEIDER, J., FONG, R.,
WELINDER, P., McGREw, B., ToBIN, J., PIETER ABBEEL, O., AND
ZAREMBA, W. Hindsight Experience Replay. In Advances in Neural In-
formation Processing Systems (2017), vol. 30, Curran Associates, Inc.

ANDRYcHOWICZ, O. M., BAKER, B., CHocIEJ, M., JOzEFOWICZ, R.,
McGREW, B., PACHOCKI, J., PETRON, A., PLAPPERT, M., POWELL, G.,
RAY, A., SCHNEIDER, J., SIDOR, S., TOBIN, J., WELINDER, P., WENG,
L., AND ZAREMBA, W. Learning dexterous in-hand manipulation. The In-
ternational Journal of Robotics Research 39, 1 (Jan. 2020), 3-20.

152

Bibliography

[9]

[10]

[11]

[12]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Bain, M., anD SaAmMmUT, C. A Framework for Behavioural Cloning. In
Machine Intelligence 15 (1995), pp. 103-129.

BALLARD, D. H., AND BROwWN, C. M. Computer Vision, 1st ed. Prentice
Hall Professional Technical Reference, Mar. 1982.

BArRAaM, N., AND MANNOR, S. Inspiration Learning through Preferences,
Sept. 2018.

BARRETO, A., BorsaA, D., Hou, S., Comanici, G., AYyGUN, E., HAMEL,
P., Tovama, D., HUNT, J., MOURAD, S., SILVER, D., AND PRECUP,
D. The Option Keyboard: Combining Skills in Reinforcement Learning. In
Advances in Neural Information Processing Systems (2019), vol. 32, Curran
Associates, Inc.

BARTO, A. G., AND MAHADEVAN, S. Recent Advances in Hierarchical Re-
inforcement Learning. Discrete Event Dynamic Systems 13, 4 (Oct. 2003),
341-379.

BEAUSSANT, S., LENGAGNE, S., THUILOT, B., AND STASSE, O. Towards
zero-shot cross-agent transfer learning via latent-space universal notice net-
work. Robotics and Autonomous Systems 184 (2025).

BELLGARDT, M., SCHEIDERER, C., AND KUHLEN, T. W. An Immersive
Node-Link Visualization of Artificial Neural Networks for Machine Learning
Experts. In 2020 IEEE International Conference on Artificial Intelligence and
Virtual Reality (AIVR) (Dec. 2020), pp. 33-36.

BERNER, C., BROCKMAN, G., CHAN, B., CHEUNG, V., DEBIAK, P., DEN-
NISON, C., FARHI, D., FISCHER, Q., HASHME, S., AND HEsSSE, C. Dota 2
with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680
(2019).

BEYRET, B., SHAFTI, A., AND FAIsAL, A. A. Dot-to-Dot: Explainable Hier-
archical Reinforcement Learning for Robotic Manipulation. In 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (Nov.
2019), pp. 5014-5019.

BfziER, P. Numerical control-mathematics and applications. Translated by
AR Forrest (1972).

BITTER, C., PETERS, J., TERCAN, H., AND MEISEN, T. Industrial Cross-
Robot Transfer Learning. Procedia CIRP 120 (Jan. 2023), 1297-1302.

BirTER, C., TERCAN, H., MEISEN, T., BODNAR, T., AND MEISEN, P.
When to Message: Investigating User Response Prediction with Machine
Learning for Advertisement Emails. In 2021 4th International Conference on
Artificial Intelligence for Industries (Piscataway, NJ, 2021), K. Li and J. Shih,
Eds., IEEE, pp. 25-29.

BirTER, C., THUN, T., AND MEISEN, T. Karolos: An Open-Source Rein-
forcement Learning Framework for Robot-Task Environments, Dec. 2022.

Bibliography 153

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

Bocsi, B., Csatd, L., AND PETERS, J. Alignment-based transfer learn-

ing for robot models. In The 2013 International Joint Conference on Neural
Networks (IJCNN) (Aug. 2013), pp. 1-7.

BocGuEg, R. Bin picking: A review of recent developments. Industrial Robot:
the international journal of robotics research and application 50, 6 (2023),
873-877.

BonmMm, P., Pounps, P., AND CHAPMAN, A. C. Non-blocking Asyn-
chronous Training for Reinforcement Learning in Real-World Environments. In
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (Oct. 2022), pp. 10927-10934.

BOnaM, P., PounDs, P., AND CHAPMAN, A. C. Feature Extraction for Ef-
fective and Efficient Deep Reinforcement Learning on Real Robotic Platforms.
In 2023 IEEE International Conference on Robotics and Automation (ICRA)
(May 2023), pp. 7126-7132.

Bourou, A., MEZGER, V., AND GENOVESIO, A. GANs Conditioning Meth-
ods: A Survey, Sept. 2024.

BROCKMAN, G., CHEUNG, V., PETTERSSON, L., SCHNEIDER, J., SCHUL-
MAN, J., TANG, J., AND ZAREMBA, W. OpenAl Gym, June 2016.

BRODTMANN, N. L., AND SCHILBERG, D. Dynamic Bézier Curves, New
Findings on Reparameterization by Arc length. Intelligent Human Systems
Integration (IHSI 2022): Integrating People and Intelligent Systems 22, 22
(2022).

BroOwN, N., AND SANDHOLM, T. Superhuman Al for multiplayer poker.
Science 365, 6456 (2019), 885-890.

Bucunorz, D. Bin-Picking—5 Decades of Research, vol. 44. Springer Inter-
national Publishing, Cham, 2016, pp. 3-12.

CHAIL, J., ZENG, H., L1, A., AND Ncal, E. W. Deep learning in computer
vision: A critical review of emerging techniques and application scenarios.
Machine Learning with Applications 6 (2021), 100134.

CHEN, B., Xu, M., L1, L., AND ZHAO, D. Delay-Aware Model-Based
Reinforcement Learning for Continuous Control. Neurocomputing 450 (2020),
119-128.

CHIUSO, A., AND PILLONETTO, G. System Identification: A Machine Learn-

ing Perspective. Annual Review of Control, Robotics, and Autonomous Sys-
tems 2, Volume 2, 2019 (May 2019), 281-304.

CHRISTEN, S., JENDELE, L., AKsAN, E., AND HILLIGES, O. Learning
functionally decomposed hierarchies for continuous control tasks with path
planning. IEEE Robotics and Automation Letters 6, 2 (2021), 3623-3630.

CoumAaNns, E.; AND BAI, Y. Pybullet, a python module for physics simulation
for games, robotics and machine learning, 2016.

154

Bibliography

[36]

[37]

[38]

[39]

[45]

[46]

[47]

CusTODE, L. L., AND IAccA, G. Interpretable pipelines with evolutionary
optimized modules for reinforcement learning tasks with visual inputs. In Pro-

ceedings of the Genetic and Evolutionary Computation Conference Companion
(Boston Massachusetts, July 2022), ACM, pp. 224-227.

DARA, S., AND TuMMA, P. Feature Extraction By Using Deep Learning: A

Survey. In 2018 Second International Conference on Electronics, Communi-
cation and Aerospace Technology (ICECA) (Mar. 2018), pp. 1795-1801.

DE KOSTER, R., LE-Duc, T., AND ROODBERGEN, K. J. Design and con-

trol of warehouse order picking: A literature review. FEuropean Journal of
Operational Research 182, 2 (Oct. 2007), 481-501.

DE MEeLLO, L. H., AND SANDERSON, A. C. A correct and complete al-
gorithm for the generation of mechanical assembly sequences. In 1989 IEEE
International Conference on Robotics and Automation (1989), IEEE Computer
Society, pp. 56-57.

DE WiT, C. C., SICILIANO, B., AND BASTIN, G. Theory of Robot Control.
Springer Science & Business Media, 2012.

DENAvIT, J., AND HARTENBERG, R. S. A Kinematic Notation for Lower-
Pair Mechanisms Based on Matrices. Journal of Applied Mechanics 22, 2 (June
1955), 215-221.

DERMAN, E., DALAL, G., AND MANNOR, S. Acting in Delayed Environ-
ments with Non-Stationary Markov Policies. In International Conference on
Learning Representations (2021).

DEvVIN, C., GuprTA, A., DARRELL, T., ABBEEL, P., AND LEVINE, S. Learn-
ing modular neural network policies for multi-task and multi-robot transfer.
In 2017 IEEE International Conference on Robotics and Automation (ICRA)
(May 2017), pp. 2169-2176.

DHARIWAL, P., HEssg, C., KLimov, O., NicHOL, A., PLAPPERT, M.,
RADFORD, A., SCHULMAN, J., SIDOR, S., WU, Y., AND ZHOKHOV, P.
OpenAl baselines, 2017.

DieNEY, B. Skill transfer and training in emergent hierarchical control sys-
tems. In Proceedings of the 1996 IEEE International Symposium on Intelligent
Control (Sept. 1996), pp. 74-79.

DuksTrA, E. W. A note on two problems in connexion with graphs. Nu-
merische Mathematik 1, 1 (Dec. 1959), 269-271.

Downs, L., Francis, A., KoeniG, N., KiINMAN, B., HICKMAN, R., REY-
MANN, K., McHUGH, T. B., AND VANHOUCKE, V. Google Scanned Objects:
A High-Quality Dataset of 3D Scanned Household Items. In 2022 International
Conference on Robotics and Automation (ICRA) (May 2022), pp. 2553-2560.

Duan, Y., Fu, G., ZHou, N., SuNn, X., NARENDRA, N. C., AND Hu,
B. Everything as a service (XaaS) on the cloud: Origins, current and fu-
ture trends. In 2015 IEEE 8th International Conference on Cloud Computing
(2015), IEEE, pp. 621-628.

Bibliography 155

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

DurLAc-ArRNOLD, G., MANKOWITZ, D., AND HESTER, T. Challenges of
Real-World Reinforcement Learning, Apr. 2019.

ENCYCLOPEDIA OF MATHEMATICS. Bézier curve.
https://encyclopediaofmath.org/index.php?title=B%C3%A9zier_curve.

FACHANTIDIS, A., PARTALAS, I., TAYLOR, M. E., AND VLAHAVAS, I.

Transfer learning with probabilistic mapping selection. Adaptive Behavior 23,
1 (Feb. 2015), 3-19.

FARIN, G. Curves and Surfaces for Computer-Aided Geometric Design: A
Practical Guide. Elsevier, 2014.

FENG, Y., Yu, W., CHEN, Y., TAN, X., WANG, R., AND MaDANI, K.
Option-based motion planning and ANFIS-based tracking control for wheeled
robot in cluttered environment. In 2015 12th International Conference on In-
formatics in Control, Automation and Robotics (ICINCO) (July 2015), vol. 01,
pp- 287-293.

FickINGER, A., COHEN, S., RUSSELL, S., AND AMO0S, B. Cross-Domain
Imitation Learning via Optimal Transport, Apr. 2022.

Firotu, V., Ju, T., AND TENENBAUM, J. At Human Speed: Deep Rein-
forcement Learning with Action Delay. ArXiv abs/1810.07286 (2018), null.

FrLoreEnsA, C., DuaN, Y., AND ABBEEL, P. Stochastic Neural Networks
for Hierarchical Reinforcement Learning, Apr. 2017.

Frans, K., Ho, J., CHEN, X., ABBEEL, P., AND SCHULMAN, J. Meta
Learning Shared Hierarchies, Oct. 2017.

GALLAGER, R. G. Reversible Markov chains. In Discrete Stochastic Processes,

vol. 48 of Journal of the Operational Research Society. Taylor \& Francis, Jan.
1997, pp. 240-245.

GOKCE, B., AND AKIN, H. L. Implementation of Reinforcement Learning by
transfering sub-goal policies in robot navigation. In 2013 21st Signal Processing
and Communications Applications Conference (SIU) (Apr. 2013), pp. 1-4.

GOODFELLOW, I., BENGIO, Y., COURVILLE, A., AND BENGIO, Y. Deep
Learning, vol. 1. MIT press Cambridge, 2016.

GRONDMAN, I.; Busoniu, L., Lopes, G. A., AND BABUSKA, R. A survey
of actor-critic reinforcement learning: Standard and natural policy gradients.
IEEFE Transactions on Systems, Man, and Cybernetics, part C (applications
and reviews) 42, 6 (2012), 1291-1307.

GUEDON, A., AND LEPETIT, V. Sugar: Surface-aligned gaussian splatting for
efficient 3d mesh reconstruction and high-quality mesh rendering. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (2024), pp. 5354-5363.

156

Bibliography

[63]

[64]

[65]

[66]

[67]

[68]

[70]

73]

[74]

Gui, H., PANG, S., FAN, Z., AND WANG, T. Two-stage motion strategy
transfer for robots across simulation and physical domains based on reinforce-
ment learning. In 2024 6th International Conference on Frontier Technologies

of Information and Computer (ICFTIC) (2024), pp. 275-278.

Gupta, A., DEVIN, C., L1u, Y., ABBEEL, P., AND LEVINE, S. Learning

Invariant Feature Spaces to Transfer Skills with Reinforcement Learning, Mar.
2017.

HaarNoOJA, T., ZHOU, A., HARTIKAINEN, K., TUCKER, G., HA, S., TAN,
J., KUMAR, V., Zuu, H., GupTA, A., ABBEEL, P., AND LEVINE, S. Soft
Actor-Critic Algorithms and Applications, Jan. 2019.

Hao, C., WEAVER, C., TaANnG, C., KawaMmoTO, K., TOMIZUKA, M., AND
ZHAN, W. Skill-Critic: Refining Learned Skills for Hierarchical Reinforcement
Learning. IEEE Robotics and Automation Letters 9, 4 (Apr. 2024), 3625-3632.

HARTENBERG, R., AND DANAVIT, J. Kinematic Synthesis of Linkages. New
York: McGraw-Hill, 1964.

Hawkins, K. P. Analytic inverse kinematics for the universal robots UR-
5/UR-10 arms. Tech. rep., Georgia Institute of Technology, 2013.

HAYES, B., AND SCASSELLATI, B. Autonomously constructing hierarchical
task networks for planning and human-robot collaboration. In 2016 IFEE
International Conference on Robotics and Automation (ICRA) (May 2016),
pp. 5469-5476.

HE, Y., AND Liu, S. Analytical inverse kinematics for franka emika panda—
a geometrical solver for 7-dof manipulators with unconventional design. In
2021 9th International Conference on Control, Mechatronics and Automation
(ICCMA) (2021), IEEE, pp. 194-199.

Hegess, N., WAYNE, G., TassA, Y., LiLLicrap, T., RIEDMILLER, M.,
AND SILVER, D. Learning and Transfer of Modulated Locomotor Controllers,
Oct. 2016.

HERMANN, L., ARGUS, M., EITEL, A., AMIRANASHVILI, A., BURGARD,
W., AND Brox, T. Adaptive Curriculum Generation from Demonstrations
for Sim-to-Real Visuomotor Control. In 2020 IEEFE International Conference
on Robotics and Automation (ICRA) (May 2020), pp. 6498-6505.

HESTER, T., AND STONE, P. TEXPLORE: Real-time sample-efficient rein-
forcement learning for robots. Machine Learning 90, 3 (Mar. 2013), 385-429.

Hwanag, J.-H., ArRkiN, R. C., AND Kwon, D.-S. Mobile robots at
your fingertip: Bezier curve on-line trajectory generation for supervisory con-
trol. In Proceedings 2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2003)(Cat. No. 03CHS37453) (2003), vol. 2, IEEE,
pp. 1444-1449.

Bibliography 157

[75]

78]

[79]

[80]

[81]

[82]

[83]

[84]

IBARZ, J., TaN, J., FINN, C., KALAKRISHNAN, M., PASTOR, P., AND
LEVINE, S. How to train your robot with deep reinforcement learning: Lessons
we have learned. The International Journal of Robotics Research 40, 4-5 (Apr.
2021), 698-721.

INTERNATIONAL ORGANIZATION OF STANDARDIZATION. [ISO 8373:2021
Robotics - Vocabulary, 2021.

IsoLa, P., Zuu, J.-Y., Zuou, T., AND Erros, A. A. Image-To-
Image Translation With Conditional Adversarial Networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2017),
pp- 1125-1134.

JAFFRI, A. Hype «cycle for artificial intelligence 2024.

https://www.gartner.com/en/articles/hype-cycle-for-artificial-intelligence,
Nov. 2024.

JAKOBI, N. Evolutionary Robotics and the Radical Envelope-of-Noise Hy-
pothesis. Adaptive Behavior 6, 2 (Sept. 1997), 325-368.

JAMES, S., DAVISON, A. J., AND JOHNS, E. Transferring End-to-End Visuo-
motor Control from Simulation to Real World for a Multi-Stage Task. In Pro-
ceedings of the 1st Annual Conference on Robot Learning (Oct. 2017), PMLR,
pp- 334-343.

JARITZ, M., DE CHARETTE, R., TOROMANOFF, M., PEROT, E., AND
NasHASHIBI, F. End-to-End Race Driving with Deep Reinforcement Learn-
ing. In 2018 IEEFE International Conference on Robotics and Automation
(ICRA) (May 2018), pp. 2070-2075.

Josirovski, J., Auppy, S., MALMIR, M., PIATER, J., KNOLL, A.,
AND NAVARRO-GUERRERO, N. Continual Domain Randomization. In
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (Oct. 2024), pp. 4965-4972.

KATsikopouLos, K., AND ENGELBRECHT, S. Markov decision processes
with delays and asynchronous cost collection. IEEE Transactions on Auto-

matic Control 48, 4 (Apr. 2003), 568-574.

K, K., Gu, Y., SONG, J., ZHAO, S., AND ERMON, S. Domain Adaptive
Imitation Learning. In Proceedings of the 37th International Conference on
Machine Learning (Nov. 2020), PMLR, pp. 5286-5295.

Kim, N. H., XiE, Z., AND PANNE, M. Learning to correspond dynamical
systems. In Learning for Dynamics and Control (2020), PMLR, pp. 105-117.

KiriLLov, A., MinTUN, E., Ravi, N., Mao, H., RoLranp, C.,
GUSTAFSON, L., X1A0, T., WHITEHEAD, S., BERG, A. C., AND Lo, W.-Y.
Segment anything. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (2023), pp. 4015-4026.

158

Bibliography

[87]

[90]

[91]

[92]

[95]

[96]

[97]

[98]

[99]

Krump, R., JURKAT, A., AND SCHNEIDER, F. Tracking the Rise of Robots:
A Survey of the IFR Database and Its Applications. Munich Personal RePEc
Archive, 2021.

Kruag, R., STovyanov, T., TINCANI, V., ANDREASSON, H., MOSBERGER,
R., FANTONI, G., AND LILIENTHAL, A. J. The Next Step in Robot Commis-
sioning: Autonomous Picking and Palletizing. IEEE Robotics and Automation
Letters 1, 1 (Jan. 2016), 546-553.

Kwok, J., LOHSTROH, M., AND LEE, E. A. Efficient Parallel Reinforcement
Learning Framework Using the Reactor Model. In Proceedings of the 36th ACM
Symposium on Parallelism in Algorithms and Architectures (Nantes France,
June 2024), ACM, pp. 41-51.

LECuN, Y., BENGIO, Y., AND HINTON, G. Deep learning. nature 521, 7553
(2015), 436-444.

LECun, Y., BOSER, B., DENKER, J. S., HENDERSON, D., HOWARD,
R. E., HuBBARD, W., AND JACKEL, L. D. Backpropagation applied to
handwritten zip code recognition. Neural computation 1, 4 (1989), 541-551.

LeiBovicH, G., JAcOB, G., ENDRAWIS, S., NOVIK, G., AND TAMAR, A.
Validate on Sim, Detect on Real - Model Selection for Domain Randomization.
In 2022 International Conference on Robotics and Automation (ICRA) (May
2022), pp. 7528-7535.

LEVINE, S., FINN, C., DARRELL, T., AND ABBEEL, P. End-to-end training

of deep visuomotor policies. Journal of Machine Learning Research 17, 39
(2016), 1-40.

LEVINE, S., PASTOR, P., KRIZHEVSKY, A., IBARZ, J., AND QUILLEN, D.
Learning hand-eye coordination for robotic grasping with deep learning and

large-scale data collection. The International Journal of Robotics Research 37,
4-5 (Apr. 2018), 421-436.

Levy, A., PraTrT, R., AND SAENKO, K. Hierarchical actor-critic. arXiv
preprint arXiv:1712.00948 12 (2017).

L1, P., PE1, Y., AND L1, J. A comprehensive survey on design and application
of autoencoder in deep learning. Applied Soft Computing 138 (2023), 110176.

L1, Y., ZHANG, R., AND JIANG, D. Order-Picking Efficiency in E-Commerce
Warehouses: A Literature Review. Journal of Theoretical and Applied Elec-
tronic Commerce Research 17, 4 (Dec. 2022), 1812-1830.

Liang, E., Liaw, R., NIsHIHARA, R., MoriTz, P., FoX, R., GOLDBERG,
K., GONZALEZ, J., JORDAN, M., AND STOICA, I. RLIib: Abstractions for

distributed reinforcement learning. In International Conference on Machine
Learning (2018), PMLR, pp. 3053-3062.

Liang, E., Wu, Z., Luo, M., MikA, S., GONZALEZ, J. E., AND STO-
1cA, I. Rllib flow: Distributed reinforcement learning is a dataflow problem.
Advances in Neural Information Processing Systems 34 (2021), 5506-5517.

Bibliography 159

[100]

[101]

[102]

103]

[104]

[105]

[106]

[107]

[108]

109

[110]

[111]

LiaNG, J., MAKOVIYCHUK, V., HANDA, A., CHENTANEZ, N., MACKLIN,
M., AND Fox, D. GPU-Accelerated Robotic Simulation for Distributed Re-
inforcement Learning, Oct. 2018.

LieBERS, C., MEGARAJAN, P., AuDA, J., STRATMANN, T. C., PFIN-
GSTHORN, M., GRUENEFELD, U., AND SCHNEEGASS, S. Keep the Human
in the Loop: Arguments for Human Assistance in the Synthesis of Simulation
Data for Robot Training. MULTIMODAL TECHNOLOGIES AND INTER-
ACTION 8, 3 (Mar. 2024), 18.

Livuicrap, T. P., HunT, J. J., PrITZEL, A., HEESS, N., ErREZ, T.,
TAssA, Y., SILVER, D., AND WIERSTRA, D. Continuous control with deep
reinforcement learning, July 2019.

Limovo, O., KoNaAr, A., ABrErT, T., KELLY, J., HOGAN, F. R.,
AND DUDEK, G. Working Backwards: Learning to Place by Picking. In
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (2024), IEEE, pp. 11155-11162.

Liu, M., Tan, Y., AND PADOIS, V. Generalized hierarchical control. Au-
tonomous Robots 40, 1 (Jan. 2016), 17-31.

Liu, Y., AND STONE, P. Value-function-based transfer for reinforcement
learning using structure mapping. In Proceedings of the National Conference
on Artificial Intelligence (2006), vol. 21, Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999, p. 415.

Lu, Y., Fu, J., TUCKER, G., PaN, X., BRONSTEIN, E., ROELOFS, B.,
Sapp, B., WHITE, B., FAusT, A., WHITESON, S., ANGUELOV, D., AND
LEVINE, S. Imitation Is Not Enough: Robustifying Imitation with Reinforce-
ment Learning for Challenging Driving Scenarios, Dec. 2022.

MAKEDON, V., MYKHAILENKO, O., AND VAzOV, R. Dominants and Fea-
tures of Growth of the World Market of Robotics. Furopean Journal of Man-
agement Issues 29, 3 (2021), 133-141.

Mamovu, K., LENGYEL, E., AND PETERS, A. Volumetric hierarchical ap-
proximate convex decomposition. Game engine gems 3 (2016), 141-158.

MASCHLER, B., ViETz, H., TERCAN, H., BITTER, C., MEISEN, T., AND

WEYRICH, M. Insights and example use cases on industrial transfer learning.
Procedia CIRP 107 (2022), 511-516.

MaTsvo, Y., LECUN, Y., SAHANI, M., Precup, D., SILVER, D.,
SuciyAMA, M., UcHIBE, E., AND MORIMOTO, J. Deep learning, rein-
forcement learning, and world models. Neural networks : the official journal
of the International Neural Network Society 152 (2022), 267-275.

MazzoTT1, L., ANGELINI, M., AND CARRICATO, M. Solving the Wire Loop
Game with a reinforcement-learning controller based on haptic feedback. In
2024 20th IEEE/ASME International Conference on Mechatronic and Embed-
ded Systems and Applications (MESA) (Sept. 2024), pp. 1-8.

160

Bibliography

[112]

[113]

114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

McKINSEY & COMPANY. Automation at scale: The benefits for payers, 2019.

MEeHTA, B., Diaz, M., GoLEMO, F., PaL, C. J., AND PAULL, L. Active

Domain Randomization. In Proceedings of the Conference on Robot Learning
(May 2020), PMLR, pp. 1162-1176.

MEYES, R., SCHEIDERER, C., AND MEISEN, T. Continuous motion planning
for industrial robots based on direct sensory input. Procedia CIRP 72 (2018),
291-296.

MEYES, R., SCHEIDERER, C., THIELE, T., AND MEISEN, T. Selbstlernende
adaptive Robotersteuerung: Kontinuierliche Bewegungsplanung fiir Industrier-
oboter auf Basis von Sensordaten. Fabriksoftware (2018), 42-44.

MEeYES, R., TERCAN, H., ROGGENDORF, S., THIELE, T., BUSCHER, C.,
OBDENBUSCH, M., BRECHER, C., JESCHKE, S., AND MEISEN, T. Motion
Planning for Industrial Robots using Reinforcement Learning. Procedia CIRP
63 (Jan. 2017), 107-112.

MiLaNi, S., TorIN, N., VELOSO, M., AND FANG, F. Explainable Rein-
forcement Learning: A Survey and Comparative Review. ACM Computing
Surveys 56, 7 (July 2024), 1-36.

MORGENSTERN, D., AND BELLMAN, R. Adaptive control processes: A
guided tour. Econometrica 30, 3 (1962), 599.

MUuJHID, A., SURONO, S., IRSALINDA, N., AND THOBIRIN, A. Comparison
and combination of Leaky ReLLU and ReLU activation function and three op-
timizers on deep CNN for COVID-19 detection. In Fuzzy Systems and Data
Mining VIII. 1OS Press, 2022, pp. 50-57.

MULLER, C. World Robotics 2022 — Industrial Robots. IFR Statistical De-
partment, VDMA Services GmbH, Frankfurt am Main, Germany, 2022.

MULLER, C. World Robotics 2024 — Industrial Robots. IFR Statistical De-
partment, VDMA Services GmbH, Frankfurt am Main, Germany, 2024.

MULLER, M., DosoviTskiy, A., GHANEM, B., AND KOLTUN, V. Driving
Policy Transfer via Modularity and Abstraction, Dec. 2018.

MURATORE, F., EILERS, C., GIENGER, M., AND PETERS, J. Data-Efficient
Domain Randomization With Bayesian Optimization. IEEE Robotics and Au-
tomation Letters 6, 2 (Apr. 2021), 911-918.

MURATORE, F., GIENGER, M., AND PETERS, J. Assessing Transferability
From Simulation to Reality for Reinforcement Learning. IEEE Transactions

on Pattern Analysis and Machine Intelligence 43, 4 (Apr. 2021), 1172-1183.

MURATORE, F., TREEDE, F., GIENGER, M., AND PETERS, J. Domain
randomization for simulation-based policy optimization with transferability
assessment. vol. 87 of Proceedings of Machine Learning Research, pp. 700—

713.

Bibliography 161

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

NacuuMm, O., Gu, S. S., LEE, H., AND LEVINE, S. Data-efficient hierar-
chical reinforcement learning. In Advances in Neural Information Processing
Systems (2018), vol. 31.

NURLANOV, Z. Exploring so(3) logarithmic map: Degeneracies and deriva-
tives. Tech. rep., Tech. Report, 2021.

O’MAHONY, N., CAMPBELL, S., CARVALHO, A., HARAPANAHALLI, S.,
HErRNANDEZ, G. V., KRPALKOVA, L., RIORDAN, D., AND WALSH, J.
Deep Learning vs. Traditional Computer Vision. In Advances in Computer
Vision, K. Arai and S. Kapoor, Eds., vol. 943. Springer International Publish-
ing, Cham, 2020, pp. 128-144.

OSTERMEIER, D., KoLz, J., AND ALTHOFF, M. Automatic Geometric
Decomposition for Analytical Inverse Kinematics, Sept. 2024.

Paur, R. P. Robot Manipulators: Mathematics, Programming, and Con-
trol: The Computer Control of Robot Manipulators. The MIT Press Series in
Artificial Intelligence. MIT Press, Cambridge, Mass, 1981.

PENG, X. B., ANDRYCHOWICZ, M., ZAREMBA, W., AND ABBEEL, P. Sim-
to-Real Transfer of Robotic Control with Dynamics Randomization. In 2018
IEEE International Conference on Robotics and Automation (ICRA) (May
2018), pp. 3803-3810.

PeEnG, X. B., Coumans, E., ZHANG, T., LEg, T.-W., TAN, J., AND
LEVINE, S. Learning agile robotic locomotion skills by imitating animals.
arXiv preprint arXiv:2004.00784 (2020).

PETERS, J., WAUBERT DE PUISEAU, C., TERCAN, H., GOPIKRISHNAN,
A., Lucas DE CARVALHO, G. A., BITTER, C., AND MEISEN, T. Emer-
gent language: A survey and taxonomy. Autonomous Agents and Multi-Agent
Systems 39, 1 (Mar. 2025), 18.

PrLAapPPERT, M., ANDRYCHOWICZ, M., RAY, A., MCGREW, B., BAKER,
B., PoweLL, G., SCHNEIDER, J., TOBIN, J., CHOCIEJ, M., WELINDER,
P., KuMAR, V., AND ZAREMBA, W. Multi-Goal Reinforcement Learning:
Challenging Robotics Environments and Request for Research, Mar. 2018.

Possas, R., BARCELOS, L., OLIVEIRA, R., Fox, D., AND RAMoOs, F.
Online BayesSim for Combined Simulator Parameter Inference and Policy Im-
provement. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (Oct. 2020), pp. 5445-5452.

Qr1, X., WEI, Y., MEI, X., CHELLALI, R., AND YANG, S. Comparative
Analysis of the Linear Regions in ReLU and LeakyReLLU Networks. In Neural
Information Processing (Singapore, 2024), B. Luo, L. Cheng, Z.-G. Wu, H. Li,
and C. Li, Eds., Springer Nature, pp. 528-5309.

RAFFIN, A., HiLL, A., GLEAVE, A., KANERVISTO, A., ERNESTUS, M.,
AND DORMANN, N. Stable-baselines3: Reliable reinforcement learning imple-
mentations. Journal of machine learning research 22, 268 (2021), 1-8.

162

Bibliography

[13]

[139)]

[140]
[141]

142]

[143]

[144]

[145]

[146]

[147]

148

[149]

[150]

RaAJ, R., AND Kos, A. An Extensive Study of Convolutional Neural Net-
works: Applications in Computer Vision for Improved Robotics Perceptions.
Sensors 25, 4 (Jan. 2025), 1033.

RAMSTEDT, S., BOUTEILLER, Y., BELTRAME, G., PAL, C., AND BiNas, J.
Reinforcement Learning with Random Delays. ArXiv abs/2010.02966 (2020),
null.

RAMSTEDT, S., AND PAL, C. Real-Time Reinforcement Learning, Dec. 2019.

RANJAN DAs, A., AND KOSKINOPOULOU, M. Toward sustainable manufac-
turing: A review on innovations in robotic assembly and disassembly. IEEE
access : practical innovations, open solutions 13 (2025), 100149-100166.

RAYCHAUDHURI, D. S., PAUL, S., VANBAAR, J., AND ROY-CHOWDHURY,

A. K. Cross-domain imitation from observations. In International Conference
on Machine Learning (2021), PMLR, pp. 8902-8912.

REDMON, J., DivvAaLA, S., GIRSHICK, R., AND FARHADI, A. You only
look once: Unified, real-time object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2016), pp. 779-788.

REN, A. Z., AND MAJUMDAR, A. Distributionally Robust Policy Learn-

ing via Adversarial Environment Generation. IEEE Robotics and Automation
Letters 7, 2 (Apr. 2022), 1379-1386.

ROHMER, E., SincH, S. P. N., AND FREESE, M. CoppeliaSim (formerly
V-REP): A Versatile and Scalable Robot Simulation Framework. In 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems (Nov.
2013), pp. 1321-1326.

RONNEBERGER, O., FISCHER, P., AND Brox, T. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In Medical Image Computing
and Computer-Assisted Intervention — MICCAI 2015, N. Navab, J. Horneg-
ger, W. M. Wells, and A. F. Frangi, Eds., vol. 9351. Springer International
Publishing, Cham, 2015, pp. 234-241.

ROSENBLATT, F. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological review 65, 6 (1958), 386.

Ross, S., GORDON, G., AND BAGNELL, D. A reduction of imitation learning
and structured prediction to no-regret online learning. In Proceedings of the

Fourteenth International Conference on Artificial Intelligence and Statistics
(2011), JMLR Workshop and Conference Proceedings, pp. 627-635.

RUFF, L., VANDERMEULEN, R., GOERNITZ, N., DEECKE, L., SIDDIQUI,
S. A., BINDER, A., MULLER, E., AND KLOFT, M. Deep One-Class Clas-
sification. In Proceedings of the 35th International Conference on Machine
Learning (July 2018), PMLR, pp. 4393-4402.

RuMELHART, D. E., HINTON, G. E.; AND WILLIAMS, R. J. Learning
representations by back-propagating errors. Nature 323, 6088 (Oct. 1986),
533-536.

Bibliography 163

[151]

[152]

[153]

[154]

[155]

[156]

[157]

158

[159]

[160]

[161]

[162]

SADEGHI, F., AND LEVINE, S. CAD2RL: Real Single-Image Flight without
a Single Real Image, June 2017.

SALTER, S., HARTIKAINEN, K., GOODWIN, W., AND POSNER, I. Priors,
hierarchy, and information asymmetry for skill transfer in reinforcement learn-
ing. 11th International Conference on Learning Representations, ICLR 2023.

SANDHA, S. S., GARcCIA, L., BALAJI, B., ANWAR, F., AND SRIVASTAVA,
M. Sim2Real Transfer for Deep Reinforcement Learning with Stochastic State
Transition Delays. In Proceedings of the 2020 Conference on Robot Learning
(Oct. 2021), PMLR, pp. 1066-1083.

SCHEIDERER, C., DORNDORF, N., AND MEISEN, T. Effects of Domain
Randomization on Simulation-to-Reality Transfer of Reinforcement Learning
Policies for Industrial Robots. In Advances in Artificial Intelligence and Ap-
plied Cognitive Computing, H. R. Arabnia, K. Ferens, D. De La Fuente, E. B.
Kozerenko, J. A. Olivas Varela, and F. G. Tinetti, Eds. Springer International
Publishing, Cham, 2021, pp. 157-169.

SCHEIDERER, C., AND MEISEN, T. Auf eigenen Fiilen: Machine Learning in
der Industrie. iX Special 2018 - Industrial Internet of Things (2018), 48-51.

SCHEIDERER, C., MOSBACH, M., POSADA-MORENO, A. F., AND MEISEN,
T. Transfer of Hierarchical Reinforcement Learning Structures for Robotic
Manipulation Tasks. In 2020 International Conference on Computational Sci-
ence and Computational Intelligence (CSCI) (2020), IEEE, pp. 504-509.

SCHEIDERER, C., THuN, T., Ibpzik, C., PosApDA-MORENO, A. F.,
KRAMER, A., LOHMAR, J., HIRT, G., AND MEISEN, T. Simulation-as-
a-service for reinforcement learning applications by example of heavy plate
rolling processes. Procedia Manufacturing 51 (2020), 897-903.

SCHEIDERER, C., THUN, T., AND MEISEN, T. Bézier Curve Based Continu-
ous and Smooth Motion Planning for Self-Learning Industrial Robots. Procedia
Manufacturing 38 (Jan. 2019), 423-430.

SCcHUITEMA, E., Busoniu, L., BABUSKA, R., AND JONKER, P. Control
delay in Reinforcement Learning for real-time dynamic systems: A memoryless
approach. In 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems (Oct. 2010), pp. 3226-3231.

SCHULMAN, J., WoLsKlI, F., DHARIWAL, P., RADFORD, A., AND KLIMOV,
O. Proximal policy optimization algorithms, 2017.

SELVARAJU, R. R., COGSWELL, M., DAS, A., VEDANTAM, R., PARIKH,
D., AND BATRA, D. Grad-CAM: Visual Explanations From Deep Networks
via Gradient-Based Localization. In Proceedings of the IEEE International
Conference on Computer Vision (2017), pp. 618-626.

SHARMA, A., AHN, M., LEVINE, S., KUMAR, V., HAUSMAN, K., AND
Gu, S. Emergent Real-World Robotic Skills via Unsupervised Off-Policy Re-
inforcement Learning, Apr. 2020.

164

Bibliography

[163]

[164]

[165)

[166]

[167]

[168]

169

[170]

[171]

[172]

[173)]

[174]

[175]

SHARMA, A., Gu, S., LEVINE, S., KUMAR, V., AND HAUsMAN, K.
Dynamics-Aware Unsupervised Discovery of Skills, Feb. 2020.

SILVER, D., HUBERT, T., SCHRITTWIESER, J., ANTONOGLOU, I., LAI,
M., Guez, A., LANcTOT, M., SIFRE, L., KUMARAN, D., GRAEPEL, T.,
LivLicrap, T., SIMONYAN, K., AND HASSABIS, D. A general reinforcement
learning algorithm that masters chess, shogi, and Go through self-play. Science
362, 6419 (Dec. 2018), 1140-1144.

SimBA, K. R., UcHiyaMA, N., AND SANO, S. Real-time smooth trajectory
generation for nonholonomic mobile robots using Bézier curves. Robotics and
Computer-Integrated Manufacturing 41 (2016), 31-42.

SIMONIC, M., UDE, A., AND NEMEC, B. Hierarchical learning of robotic
contact policies. Robotics and Computer-Integrated Manufacturing 86 (Apr.
2024), 102657.

SIMONIC, M., ZrLAJpPAH, L., UDE, A., AND NEMEC, B. Autonomous Learn-
ing of Assembly Tasks from the Corresponding Disassembly Tasks. In 2019
IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)
(Toronto, ON, Canada, Oct. 2019), IEEE, pp. 230-236.

SINGH, A., YANG, L., HARTIKAINEN, K., FINN, C., AND LEVINE, S. End-

to-End Robotic Reinforcement Learning without Reward Engineering, May
2019.

SONI, V., AND SINGH, S. Using homomorphisms to transfer options across
continuous reinforcement learning domains. In AAAI (2006), vol. 6, pp. 494
499.

SPRINGENBERG, J., DosoviTskiy, A., BrRox, T., AND RIEDMILLER, M.
Striving for Simplicity: The All Convolutional Net. In ICLR (workshop track)
(2015).

SRINIVAS, A., JABRI, A., ABBEEL, P., LEVINE, S., AND FINN, C. Uni-

versal planning networks - Long version + supplementary. vol. 11 of 35th
International Conference on Machine Learning, ICML 2018, pp. 7536-7548.

STOCKMAN, G., AND SHAPIRO, L. G. Computer Vision, 1st ed. Prentice
Hall PTR, USA, 2001.

STOOKE, A., AND ABBEEL, P. Rlpyt: A Research Code Base for Deep
Reinforcement Learning in PyTorch, Sept. 2019.

SuTTON, R. S., AND BARTO, A. Reinforcement Learning: An Introduction,
second edition ed. Adaptive Computation and Machine Learning. The MIT
Press, Cambridge, Massachusetts and London, England, 2018.

SurToN, R. S., PREcUP, D., AND SINGH, S. Between MDPs and semi-

MDPs: A framework for temporal abstraction in reinforcement learning. Ar-
tificial Intelligence 112, 1 (Aug. 1999), 181-211.

Bibliography 165

[176]

[177]

178

[179)

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

TAYLOR, M. E., KUHLMANN, G., AND STONE, P. Autonomous transfer for
reinforcement learning. In AAMAS (1) (2008), pp. 283-290.

TAavLOR, M. E., AND STONE, P. Cross-domain transfer for reinforcement
learning. vol. 227 of ACM International Conference Proceeding Series, pp. 879—
886.

TAYLOR, M. E.; AND STONE, P. Transfer learning for reinforcement learning
domains: A survey. Journal of Machine Learning Research 10, 7 (2009).

TEKIN, B., SINHA, S. N., AND Fua, P. Real-Time Seamless Single Shot
6D Object Pose Prediction. In 2018 IEEE/CVFE Conference on Computer
Vision and Pattern Recognition (Salt Lake City, UT, USA, June 2018), IEEE,
pp. 292-301.

TERCAN, H., BiTTER, C., BODNAR, T., MEISEN, P., AND MEISEN, T.
Evaluating a Session-based Recommender System using Prod2vec in a Com-
mercial Application. In Proceedings of the 23rd International Conference on
Enterprise Information Systems (2021), SCITEPRESS - Science and Technol-
ogy Publications.

TiaN, Y., WiLLis, K. D. D., AL OmaARrI, B., Lvo, J., MaA, P., L1, Y.,
Javip, F., Gu, E., JAacoB, J., SUEDA, S., Li, H., CHITTA, S., AND
Matusik, W. ASAP: Automated Sequence Planning for Complex Robotic
Assembly with Physical Feasibility. In 2024 IEEE International Conference
on Robotics and Automation (ICRA) (May 2024), pp. 4380-4386.

TiaN, Y., Xu, J., L1, Y., Lvuo, J., SUEDA, S., L1, H., WiLLis, K. D. D.,
AND MATUSIK, W. Assemble Them All: Physics-Based Planning for General-
izable Assembly by Disassembly. ACM Transactions on Graphics 41, 6 (Dec.
2022), 1-11.

TiBonI, G., ARNDT, K., AND KYRKI, V. DROPO: Sim-to-real transfer with
offline domain randomization. ROBOTICS AND AUTONOMOUS SYSTEMS
166 (Aug. 2023).

TITTEL, S. Analytical solution for the inverse kinematics problem of the
franka emika panda seven-dof light-weight robot arm. In 2021 20th Interna-
tional Conference on Advanced Robotics (ICAR) (2021), IEEE, pp. 1042-1047.

ToBiN, J., FonGg, R., RAY, A., SCHNEIDER, J., ZAREMBA, W., AND
ABBEEL, P. Domain randomization for transferring deep neural networks from
simulation to the real world. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (Sept. 2017), pp. 23-30.

Toporov, E., ErREz, T., AND TASsA, Y. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (2012), IEEE, pp. 5026-5033.

TORREY, L., WALKER, T., SHAVLIK, J., AND MACLIN, R. Using Advice
to Transfer Knowledge Acquired in One Reinforcement Learning Task to An-
other. In Machine Learning: ECML 2005 (Berlin, Heidelberg, 2005), J. Gama,
R. Camacho, P. B. Brazdil, A. M. Jorge, and L. Torgo, Eds., Springer, pp. 412—
424.

166

Bibliography

[188]

[189)]

[190]

[191]

[192]

193]

[194]

[195]

[196]

197]

ToOwERS, M., KWIATKOWSKI, A., TERRY, J., BALis, J. U., CoLA, G. D.,
DELEU, T., GouLAO, M., KALLINTERIS, A., KRIMMEL, M., KG, A.,
PEREZ-VICENTE, R., PIERRE, A., SCHULHOFF, S., Ta1, J. J., TaN, H.,
AND YOUNIS, O. G. Gymnasium: A Standard Interface for Reinforcement
Learning Environments, Nov. 2024.

Tsar, Y.-Y., Xu, H., DinG, Z., Zuang, C., Jouns, E., AND HuaANG, B.
DROID: Minimizing the Reality Gap Using Single-Shot Human Demonstra-
tion. IEEE Robotics and Automation Letters 6, 2 (Apr. 2021), 3168-3175.

VANDENBoOS, G. R. APA Dictionary of Psychology. American Psycho-logical
Association (2007).

VEZHNEVETS, A. S., OSINDERO, S., SCHAUL, T., HEESS, N., JADERBERG,
M., SILVER, D., AND KAvUukcuoGLU, K. FeUdal Networks for Hierarchical
Reinforcement Learning. In Proceedings of the 34th International Conference
on Machine Learning (July 2017), PMLR, pp. 3540-3549.

VieTz, H., MASCHLER, B., TERCAN, H., BITTER, C., MEISEN, T., AND
WEYRICH, M. Industrielles Transfer-Lernen: Von der Wissenschaft in die
Praxis. atp magazin 64, 8 (2022), 86-93.

VILLALOBOS, J., SANCHEZ, I. Y., AND MARTELL, F. Alternative Inverse
Kinematic Solution of the UR5 Robotic Arm. In Advances in Automation and
Robotics Research (Cham, 2022), H. A. Moreno, 1. G. Carrera, R. A. Ramirez-
Mendoza, J. Baca, and 1. A. Banfield, Eds., Springer International Publishing,
pp- 200-207.

VINYALS, O., BABUSCHKIN, [., CzARNECKI, W. M., MATHIEU, M.,
Dubpzik, A., CHUNG, J., CHOI, D. H., PoweLL, R., EwALDps, T.,
GEORGIEV, P., OH, J., HORGAN, D., KROI1ss, M., DANIHELKA, I.,
Huang, A., SiIFrE, L., Ca1, T., Acapriou, J. P., JADERBERG, M., VEZH-
NEVETS, A. S., LEBLOND, R., POHLEN, T., DALIBARD, V., BUDDEN,
D., SuLsky, Y., MoLrLoy, J., PAINE, T. L., GULCEHRE, C., WANG, Z.,
Prarr, T., Wu, Y., RING, R., YocATAMA, D., WUNSCH, D., McKIN-
NEY, K., SmiTH, O., ScHAUL, T., LiLLicrAP, T., KAvUukcuoGLu, K.,
HassaBis, D., Apps, C., AND SILVER, D. Grandmaster level in StarCraft
IT using multi-agent reinforcement learning. Nature 575, 7782 (Nov. 2019),
350-354.

VIviErs, C. G. A., FiLatova, L., TERMEER, M., bDE WiTH, P. H. N.,
AND VAN DER SOMMEN, F. Advancing 6-DoF Instrument Pose Estimation in

Variable X-Ray Imaging Geometries. IEEE Transactions on Image Processing
33 (2024), 2462-2476.

VON ESCHENBACH, M. E., MANELA, B., PETERS, J., AND BIESS, A.
Metric-Based Imitation Learning Between Two Dissimilar Anthropomorphic
Robotic Arms, 2020.

VourobpiMos, A., Douramis, N., DOULAMIS, A., AND PROTOPAPADAKIS,
E. Deep Learning for Computer Vision: A Brief Review. Computational
Intelligence and Neuroscience 2018 (2018), 1-13.

Bibliography 167

[198]

[199]

[200]

201]

[202]

203

[204]

[205]

206

1207]

208]

209]

WaLsH, T. J., Nourl, A., L1, L., AND LiTTMAN, M. L. Learning and
planning in environments with delayed feedback. Autonomous Agents and
Multi-Agent Systems 18, 1 (Feb. 2009), 83-105.

Wang, G., Niu, H., ZHu, D., Hu, J., ZHAN, X., AND ZHOU, G. A
Versatile and Efficient Reinforcement Learning Framework for Autonomous
Driving, Mar. 2022.

WANG, Q., XIONG, J., HAN, L., suN, p., Liu, H., AND ZHANG, T. Ex-
ponentially Weighted Imitation Learning for Batched Historical Data. In Ad-
vances in Neural Information Processing Systems (2018), vol. 31, Curran As-
sociates, Inc.

WANG, Z., XING, D., YANG, Y., AND WANG, P. Delayed dynamic model
scheduled reinforcement learning with time-varying delays for robotic control.
IEEFE Robotics and Automation Letters 10, 3 (2025), 2646-2653.

WATANABE, K., AND INADA, S. Search algorithm of the assembly sequence

of products by using past learning results. International Journal of Production
Economics 226 (2020).

WEIss, K., KHOSHGOFTAAR, T. M., AND WANG, D. A survey of transfer
learning. Journal of Big Data 3, 1 (May 2016), 9.

WENG, J., LiN, M., Huang, S.,; Liu, B., MAKOVIICHUK, D., MAKOVIY-
CHUK, V., Liu, Z., SONG, Y., Luo, T., AND JIANG, Y. Envpool: A highly
parallel reinforcement learning environment execution engine. Advances in
Neural Information Processing Systems 35 (2022), 22409-22421.

X1a0, T., JANG, E., KALASHNIKOV, D., LEVINE, S., IBARZ, J., HAUS-
MAN, K., AND HERZOG, A. Thinking While Moving: Deep Reinforcement
Learning with Concurrent Control. In International Conference on Learning
Representations (Apr. 2020).

Yang, M., Cao, H., Zuao, L., ZuanNG, C., AND CHEN, Y. Robotic
Sim-to-Real Transfer for Long-Horizon Pick-and-Place Tasks in the Robotic
Sim2Real Competition, Mar. 2025.

YANG, Q., STORK, J. A., AND STOYANOV, T. Learn from robot: Trans-
ferring skills for diverse manipulation via cycle generative networks. In 2023

IEEE 19th International Conference on Automation Science and Engineering
(CASE) (2023), pp. 1-6.

YANG, Y., CALUWAERTS, K., ISCEN, A., ZHANG, T., TAN, J., AND SIND-
HWANI, V. Data efficient reinforcement learning for legged robots. In Confer-
ence on Robot Learning (2020), PMLR, pp. 1-10.

ZAKKA, K., ZENG, A., LEE, J., AND SONG, S. Form2Fit: Learning Shape
Priors for Generalizable Assembly from Disassembly. In 2020 IEEFE Interna-
tional Conference on Robotics and Automation (ICRA) (May 2020), pp. 9404
9410.

168

Bibliography

[210]

211]

212]

[213]

214]

[215]

216]

ZHANG, Q., AND L1, M. The knowledge transfer methods and its application
in robot based on subtask hierarchical reinforcement learning. Advances in
Information Sciences and Service Sciences 4, 20 (2012), 119-128.

ZHANG, X., AND SANIIE, J. Unsupervised Learning for 3D Ultrasonic Data
Compression. In 2021 IEEFE International Ultrasonics Symposium (IUS) (Sept.
2021), pp. 1-3.

ZHANG, Z. A flexible new technique for camera calibration. IEEE Transac-
tions on pattern analysis and machine intelligence 22, 11 (2002), 1330-1334.

ZHAO, X., WANG, L., ZHANG, Y., HAN, X., DEVECI, M., AND PARMAR,
M. A review of convolutional neural networks in computer vision. Artificial
Intelligence Review 57, 4 (Mar. 2024), 99.

Zuu, R., Da1, T., AND CELIKTUTAN, O. Cross domain policy transfer with
effect cycle-consistency. In 2024 IEEE International Conference on Robotics

and Automation (ICRA) (2024), pp. 9471-9477.

ZOoLNA, K., RosTAMZADEH, N., BENGIO, Y., AHN, S., AND PINHEIRO,
P. O. Reinforced Imitation in Heterogeneous Action Space, Aug. 2019.

Zou, 7Z., CHEN, K., SHI, Z., GUO, Y., AND YE, J. Object Detection in 20
Years: A Survey. Proceedings of the IEEE 111, 3 (Mar. 2023), 257-276.

	Title
	Abstract
	Contents
	Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Use Cases
	1.3.1 Use Case 1: Wire-Loop Game
	1.3.2 Use Case 2: Object Picking
	1.3.3 Use Case 3: Clip Assembly in Aircraft Manufacturing

	1.4 Structure

	2 Foundations
	2.1 Industrial Robotics
	2.1.1 Kinematics Description
	2.1.2 Parametric Path Description
	2.1.3 Closed-Loop Robot Control

	2.2 Deep Learning
	2.2.1 Machine Learning Fundamentals
	2.2.2 Artificial Neural Networks
	2.2.3 Computer Vision

	2.3 Deep Reinforcement Learning
	2.3.1 Reinforcement Learning Fundamentals
	2.3.2 Deep Reinforcement Learning Algorithms for Continuous State-Action Spaces
	2.3.3 Hierarchical Reinforcement Learning
	2.3.4 Environment Parallelization

	2.4 Transfer Reinforcement Learning
	2.4.1 Simulation-to-Reality Transfer
	2.4.2 Policy Modularization
	2.4.3 Imitation Learning

	3 Related Work
	3.1 Real-Time Asynchronous Reinforcement Learning
	3.2 Sim2Real Transfer with <DR>
	3.3 Robotic Movement Structure Exploitation
	3.3.1 Cross-Task Transfer in Hierarchical Reinforcement Learning
	3.3.2 Assembly-by-Disassembly

	3.4 Cross-Robot Transfer Reinforcement Learning
	3.5 Research Gaps and Focus

	4 Framework and Baselines
	4.1 Learning Framework
	4.2 Use Case 1: Wire-Loop Game
	4.2.1 Environment Design
	4.2.1.1 Real-World Environment
	4.2.1.2 Simulation Environment

	4.2.2 Agent Design
	4.2.3 Experimental Evaluation
	4.2.3.1 Real-World Experiments
	4.2.3.2 Sim2Real Experiments

	4.3 Use Case 2: Object Picking
	4.3.1 Environment Design
	4.3.1.1 Fetch Benchmark Environments
	4.3.1.2 Use-Case Specific Environment Interface

	4.3.2 Experimental Evaluation
	4.3.2.1 Analysis of Task Difficulty
	4.3.2.2 Fetch Benchmark Experiments

	4.4 Use Case 3: Clip Assembly
	4.4.1 Environment Design
	4.4.2 Experimental Evaluation

	4.5 Mapping Research Questions to Use Cases

	5 Smooth Continuous Robot Control
	5.1 Smoothness-Constrained Action Space Design
	5.2 Asynchronous Learning Framework
	5.3 Dynamics Rollout Module Development and Validation
	5.3.1 Dynamics Rollout Module Architecture
	5.3.2 Dataset Collection and Training Results

	5.4 Exploration of Design Choices
	5.5 Asynchronous Wire-Loop Experiments
	5.6 Summary

	6 Sim2Real Transfer of Perception Modules
	6.1 Pose Estimation Modules
	6.1.1 Simulation Dataset
	6.1.2 Experimental Evaluation

	6.2 Image Compression Modules
	6.2.1 Unsupervised Image Compression
	6.2.2 Explorative Experiments on Agent Attention
	6.2.3 Semi-Supervised Image Compression
	6.2.4 Semi-Supervised Compression with Domain Knowledge

	6.3 Summary

	7 Hierarchical and Backward Planning
	7.1 Hierarchical Policy Transfer
	7.1.1 Hierarchical Actor-Critic Learning Framework
	7.1.2 Fetch Environment Variations
	7.1.3 Experimental Evaluation
	7.1.3.1 Hierarchical Actor-Critic Experiments
	7.1.3.2 Low-Level Policy Transfer Experiments

	7.2 Assembly-by-Disassembly
	7.2.1 Clip Disassembly Environment
	7.2.2 Experimental Evaluation

	7.3 Summary

	8 Cross-Robot Execution Imitation
	8.1 Robot-Task Environments
	8.2 Cross-Robot Imitation Learning Framework
	8.2.1 Cross-Robot Behavior Similarity
	8.2.2 Cross-Robot Trajectory Mapping
	8.2.3 Cross-Robot Imitation Learning

	8.3 Experimental Evaluation
	8.4 Summary

	9 Critical Reflection and Outlook
	9.1 Research Question 1
	9.2 Research Question 2
	9.3 Research Question 3
	9.4 Research Question 4
	9.5 Closing Remarks

	Bibliography

