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Abstract

Elastomers play an important role in our everyday life. Their mechanical proper-
ties can be enhanced by addition of active fillers — usually carbon black or silica.
The filler particles, which are initially well dispersed in the polymer matrix, in
the post-mixing stages tend to form agglomerates and filler networks in a process
called flocculation. The mechanical properties of the resulting products depend on
the properties of the filler network, while the latter are strongly affected by the
chemical composition. One of the most important effects in this context is the
so-called Payne effect or the pronounced decrease in the dynamic moduli with in-
creasing strain amplitude in filled elastomers under cyclic loading. Up to now, it
is unclear, what is the main source of the Payne effect, i.e., the polymer-filler or
filler-filler interactions. Therefore, finding a relation between the chemical compo-
sition and the mechanical properties of filled rubbers is an important problem from
both scientific and manufacturing points of view. To the best of our knowledge,
to date, there is no theoretical model relating the chemical composition of a filled
elastomer on the microscopic scale to its macroscopic mechanical properties. This
work presents a simulation approach combining two models. The first one is an
extension of previous work, which presents a coarse-grained simulation approach to
filler flocculation based on the Metropolis Monte Carlo simulation. This algorithm,
called the morphology generator, minimizes the free enthalpy of the system, while
the interactions between different components are described via the experimental
interface free energies. The second model, based on the assumption of local equi-
librium, performs shear of the systems obtained via the morphology generator in
order to obtain storage and loss moduli as well as their ratio — the loss tangent or
damping. This simulation mimics dynamic mechanical analysis, or DMA, which is
widely used in laboratories to measure the mechanical performance of tire mate-
rials. Hence, the model provides a connection between the chemical composition
characterized by the experimental surface free energies and the mechanical proper-
ties of the material. The focus of this work is on the model parameterization and
on studying the properties of filled pure polymer systems and filled polymer blends
consisting of natural rubber, styrene-butadiene rubber and different types of fillers,
such as carbon black, silica or surface modified silica. We find that the typical
relaxation in the polymer-filler interface is much slower than the related relaxation
in the bulk polymer or in the filler-filler interface. One important implication is
that this leads to a realistic form of the loss tangent in the low frequency/high
temperature regime, i.e., the regime commonly associated with rolling resistance.
We propose an approach which ties the surface energies, used in the morphology
generator, to the force constants, describing interactions in the shear simulation, by
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making the latter being proportional to the interface tension. We study reversible
bond breaking and bond relaxation as functions of different parameters such as
filler dispersion, frequency, strain amplitude and filler content. Furthermore, we
consider contributions of polymer-filler and filler-filler interactions to the Payne ef-
fect in filled elastomers. In addition, we study local strain and stress distributions
in the polymer matrix surrounding the filler and in the interfaces between polymer
and filler, as well as between filler particles. We find that both the local stresses and
the local strains, aside from being dependent on the macroscopic strain amplitude,
do depend on frequency. Low excitation frequencies, allowing the local stresses and
strains to relax differently, can lead to large differences between the local and the
global quantities in certain parts/interfaces of the system. This phenomenon, which
is also strongly influenced by filler dispersion, is likely to be of significance to fatigue
and fracture in rubber composites.
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Chapter 1

Introduction

Elastomer materials are essential in construction, wearables as well as in mobility.
The biggest segment in the latter market are tires. The tire industry continuously
requires new materials, combining improved sustainability with higher performance.
However, tires have been around for more than 100 years [1], and thus it may be
surprising to the laymen that tire materials are the subject of current research and
that this research indeed still leads to better products. The reason is the extraordi-
nary complexity of elastomer composites. Physico-chemical processes on the scale
of nanometres govern product performance over tens of thousands of kilometres.
Processes in the frequency domain of molecular vibrations may determine what
happens during one as well as after one million tire revolutions. There is no exact
theory for any of this. And often, even after many decades, certain basic concepts —
like reinforcement by particulate fillers — can be understood differently by different
researchers. But there is one tool, which, by comparison, is a recent addition to the
tool chest of elastomer research. This tool is computer modelling. It is relatively
recent because the computer power needed is significant and has been available only
in the past 15 to 20 years. A comprehensive review on computer simulation of elas-
tomer nanocomposites can be found in [2]. This thesis describes a novel modelling
approach, which is intermediate between finite element and atomistic force field
calculations. With the former it shares the ability to access the macroscopic spatial
(here pum) and temporal scales. With the latter it shares the ability to include
chemical detail.

The mechanical performance of filled polymers is strongly affected by the prop-
erties of filler particles, which are widely used to reinforce the elastomer materials
[3-9]. During the mixing process, the filler particles, which are at this stage broken
down to the aggregates consisting of primary particles, are dispersed in the polymer
matrix. However, in the post-mixing stages the filler tends to re-agglomerate form-
ing larger structures — agglomerates and, at sufficiently large concentrations, filler
networks. This process is called filler flocculation, and it has a strong impact on
the dynamic mechanical and other physical properties of filled elastomers [10-17].
The filler dispersion in the elastomer matrix occurs on different levels, so that one
can distinguish between visual, macro- and micro-dispersion. In this work, we focus
on the latter, i.e., the dispersion in the range from primary particles to the filler
network on the scale of up to several pm.
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There exist several approaches to modelling of filler dispersion in the polymer
matrix. For instance, Stockelhuber et al. propose a game theory-based algorithm,
which uses experimental surface tensions of the material components [18]. Another
approach is based on local equilibrium thermodynamics [19-21]. The morphology
generator, used in this work, is an extension of the latter, where the filler floccula-
tion is modelled based on a combination of local equilibrium thermodynamics with
experimental interface tensions. The surface/interface tensions serve as a measure
of the interaction strength between different components. The impact of the surface
tensions on the filler dispersion and the material’s properties was also established
experimentally [22-26].

One of the main laboratory techniques used for measuring the performance of
elastomer materials is dynamic mechanical analysis or DMA [27-30]. During the
analysis, a specimen of a material under study is subjected to the sinusoidal stress
(or strain) and the strain (stress) in the material is determined. These quantities
are then used to calculate the loss and storage moduli of the material. The storage
modulus is a measure of the energy stored in the material, while the loss modulus
is proportional to the energy dissipated during deformation. The ratio of the loss
modulus to the storage modulus is called the loss tangent, tan § or damping. Plotted
vs. temperature, it is widely used for estimating tire performance parameters such
as rolling resistance, wet or ice grip [31]. One of the key effects in this context is
the Payne effect, i.e., the decrease in the storage modulus with increasing strain
amplitude in filled rubbers under cyclic deformation [32-36]. As the Payne effect
is not observed in unfilled rubbers, it is caused by the processes occurring due to
rubber-filler and /or filler-filler interactions. The question, which kind of interactions
provide the main contribution into the Payne effect, has been until now not resolved
[37].

In order to relate the molecular composition to the dynamic moduli, one needs
not only the information on the morphology of the filler network as a whole, but
also how the external load is distributed in the material. In this context, a concept
of the load bearing paths, discussed in [38, 39], can be helpful. According to the
scaling model, the distribution of the minimal load bearing paths is crucial for
understanding the Payne effect. On the other hand, the information on the load
distribution is also essential to study the initiation and propagation of damage
in the material. Some authors believe that the material’s strength and modulus
reinforcement in general are the result of distribution of the applied load between
matrix and filler, where filler particles bear a disproportionately higher portion of
the load [40].

The research on the properties of filled elastomers has attracted many scien-
tists that have developed numerous theoretical models and simulation approaches.
One of the most interesting questions in this context is the effect of filler. As an
example, in [41] the authors used molecular dynamics simulations to predict the
properties of unfilled and silica-filled elastomers. The inclusion of nanoparticles
increased the glass transition temperature and the elastic modulus. In addition,
under the tensile deformation, the formation of microcavities was observed at the
elastomer-nanoparticle interfaces. Lauke et al. performed a modelling of struc-
ture evolution of filled elastomers under uniaxial elongation [42|. The filler network



was represented by spherical particles of different sizes randomly distributed in a
prismatic volume. Stretching of the material resulted in a change of the distances
between originally neighbouring nodes, which exceeded the macroscopic elongation
by several times. In [43] computer simulations of filled polymer networks were per-
formed. The coarse grained dissipative particle dynamics model was used, where
the stiff and spherical particles were either well dispersed or aggregated. Oscillatory
shear was applied to the system to study the nonlinear viscoelastic behaviour of the
material, which, however, had different characteristics than the Payne effect. In
[44] the authors used a finite element computational model to study the effect of
microstructure morphology in filled elastomers on their macroscopic large deforma-
tion behaviour. This research follows the same idea of the connection between the
microscopic structure and macroscopic properties as in the present work, although
the main focus is on the Mullins effect. Long et al. developed and studied a force
equilibrium approach [45, 46]. The polymer was simulated as a network of viscous
springs. Filler particles were modelled in a similar fashion with additional breakable
bonds at the polymer-filler interface. The entire system was then subject to cyclic
strain. The Payne and Mullins effects were related to the yield and formation of
glassy bridges around the fillers. In [47] the same authors used reverse Monte Carlo
simulations to obtain the filler pair correlation function. The mechanical properties
were studied using oscillatory shear experiments. It was found that the Payne effect
can be correlated with the average number of immobilized polymer bridges between
particles. Li at el. investigated the effect of the chemical coupling between polymer
and nanoparticles on the viscoelastic properties of polymer nanocomposites using
coarse-grained molecular dynamics simulations [48|. They were able to calculate
the dynamic moduli and the loss tangent and study their changes as functions of
strain amplitude. In addition, they explored the effects of temperature, frequency
and the interfacial physical interaction between nanoparticles and polymers. Ter-
monia in [49] used Monte Carlo simulations to study the effect of particle radius
and volume fraction, trying to give a molecular explanation of the Payne effect. In
[50] the authors combined experimental DMA measurements with constitutive mod-
elling and FEM simulations to study the strain induced effects of filler reinforced
elastomers with respect to the Payne effect. Wang and colleagues used molecular
dynamics simulations to explore the effect of the nanoparticle network and its state,
i.e., from the aggregated to the uniform dispersed one, on the tensile mechanical
behaviour and the Payne effect [51]. In [52] a molecular dynamics simulation study
was presented, which allowed to observe a change in the elastic modulus as a func-
tion of strain. Two typical distribution states of nanoparticles — aggregated and
dispersed — were considered. In both cases, the Payne effect was observed, whereas
the modulus of the aggregated case was more sensitive to the imposed strain. The
authors postulated that the underlying mechanism of the Payne effect was differ-
ent for different filler dispersions. While in the aggregated case the main effect
was the disintegration of the nanoparticle network of clusters formed through di-
rect contacts, in the dispersed case the non-linear behaviour was attributed to the
destruction of the nanoparticle network of clusters formed through the bridging of
adsorbed polymer segments. Davris and colleagues presented in [53] experimental
and simulation insights into the mechanisms of reinforcement. They studied the
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impact of polymer-filler interactions on the nanocomposite microstructure and its
macroscopic dynamic mechanical properties. Based on non-equilibrium molecular
dynamics simulations, Chen et al. were able to reproduce the Payne effect in model
cross-linked elastomers containing spherical nanoparticles [54]. The magnitude of
the Payne effect was found to depend on the polymer-particle interaction and the
filler loading, while the rigid polymer shell around nanoparticles and the polymer-
shell-bridged filler network were the main contributions to reinforcement. In [55]
the authors performed molecular dynamics simulations, both on the coarse-grained
and the chemistry-specific levels, to study the impact of morphology on the me-
chanical properties. They studied the effect of different parameters, such as filler
size, shear flow, filler-filler interaction strength and heterogeneity of the filler sur-
face, on the Payne effect. As the last reference, we mention [56|, where the authors
used a machine learning approach to predict the surface energies of the polymers
and fillers, which are then correlated with the nanofiller dispersion morphology and
filler /matrix interface properties. The latter allowed predicting the thermomechan-
ical properties of nanofilled polymer composites.

The main goal of this work is a development of a modelling approach relating
the filler structure, based on the experimental surface energies of individual com-
ponents, to the mechanical properties of macroscopic materials, which can serve
for a laboratory prediction of material performance parameters. The first step is
the morphology generator — a coarse grained model, which simulates the filler floc-
culation process in filled elastomers. The algorithm utilizes a nearest neighbour
node-exchange Metropolis Monte Carlo algorithm together with experimental in-
terface tensions characterizing the interactions between the components. The model
allows varying the chemical composition and the temperature of the flocculation,
and can be used to study the compatibility between various polymers and fillers.
The morphologies are then mapped onto a topologically identical model, which
performs a virtual DMA analysis — cyclic shearing of the system with a subsequent
determination of the dynamic moduli. A general idea of cyclic shear simulations
based on the assumption of local equilibrium is originally formulated in [57, 58|;
in this work we further develop and elaborate it. In this part of the model, the
interactions are described via viscous springs, which can reversibly break depend-
ing on the interaction type. This form of the interaction potential is motivated
by the Jump-In-Jump-Out model — a model considering the behaviour of two filler
aggregates under external load [59-61|. The resulting dynamic moduli, obtained
during the shear simulation, can be computed as functions of either frequency or
strain amplitude. The focus in this work is on filled polymer blends of NR (natural
rubber) and SBR (styrene butadiene rubber). In terms of fillers, the model can be
used to simulate an arbitrary type of filler, but here we concentrate on CB (carbon
black), silica and surface modified silica. The main aspect of the connection of the
two models is finding a mapping between the morphology generator and the shear
simulation, as the interactions in the models are described differently. Therefore, a
parameterization of the model is especially important for a potential prediction of
mechanical properties. In addition, an attempt was made to tie the values of the
spring constants, used to describe the interactions in the DMA part, to the interface
tensions, that are a measure of interaction strength in the morphology generator.



1.1. OUTLINE OF THE THESIS 5

We model different types of systems, starting from pure polymers over systems
containing two components — a polymer and a filler — to filled polymer blends and
describe their properties. In addition, we study reversible bond breaking and the
Payne effect. Furthermore, we look at the local strain and stress and their de-
pendence on strain amplitude, frequency and filler dispersion. At low frequencies,
the local stresses and strains relax differently, which can lead to large differences
between the local and the global quantities in certain parts of the system. This
phenomenon can be of special significance in studying the initiation of damage and
fatigue in filled elastomer systems.

1.1 Outline of the Thesis

This thesis consists of 9 Chapters and 3 Appendices.

Chapter 2 provides theoretical background on elastomer materials. It is ex-
plained how the mechanical testing of such materials is done. In addition, main
dynamic properties of unfilled and filled elastomers are discussed. Chapter 3 dis-
cusses the morphology generator algorithm, which is based on local equilibrium
thermodynamics and experimental interface tensions. Chapter 4 is devoted to the
basics of computer simulation of dynamical mechanical analysis. This chapter ex-
plains the simulation of shear based on the local equilibrium approach. Chapter 5
discusses the parameterization of the model, i.e., how to choose and adjust the sim-
ulation parameters for different systems (pure polymers, filled one polymer systems,
unfilled and filled blends). Chapter 6 presents the simulation results for systems
comprising pure polymer plus filler. On the basis of filled natural rubber systems,
we compare different fillers, their compatibility with the polymer and their tendency
to form agglomerates. Additionally, we show why the polymer-filler interface plays
an important role in the mechanical properties of filled elastomers. Chapter 7 ad-
dresses filled polymer blends consisting of natural rubber, styrene-butadiene rubber
and different fillers. We discuss the preferential distribution of fillers in the two
polymer subphases, and the impact of filler dispersion on the dynamic mechanical
properties of filled blends. In Chapter 8 we study the contributions of polymer-filler
and filler-filler bond breaking to the energy loss in the system and, subsequently, to
the Payne effect. In addition, we consider the stress and strain distributions in the
system under load. Finally, Chapter 9 combines the conclusion with an outlook.

Appendix A provides theoretical basics of surface energies and surface tensions.
It explains main terms, such as the contact angle and the work of adhesion, and gives
an overview over experimental techniques for measuring surface energies. Appendix
B contains the theoretical background of the theory of elasticity. It introduces
essential terms like strain, stress and shows the relation between the loss modulus
and the energy loss. Appendix C compiles all the simulation parameters significant
for the model.
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Chapter 2

Elastomer Materials

This chapter gives an introduction into elastomers and their mechanical properties.
The first part of the chapter provides the chemical basics of elastomer materials and
explains the most important definitions in the context of rubber compounds. In the
second part of the chapter, we discuss how these materials are tested in laboratories
and what are typical mechanical properties of filled and unfilled elastomers. The
theoretical review in this chapter is based on [7, 19, 61-67].

2.1 Elastomers

An elastomer is a polymer exhibiting viscoelastic, i.e., both viscous and elastic,
properties during deformation [66]. A polymer is a macromolecule consisting of re-
peating units called monomers bonded together by covalent bonds. Under specific
conditions, the monomer molecules form a polymer during a process called poly-
merization. Polymer materials are usually classified as being thermoplastic, ther-
mosetting or elastomer. Thermoplastic materials are typically branched and linear
polymers, which melt when heated and solidify upon cooling, and therefore, may be
reshaped. Unlike thermoplastics, thermosets can be characterized by a close-meshed
three-dimensional network, where polymer chains are coupled together by chemical
bonds called cross-links. Cross-links drastically change properties of the polymers,
so that the resulting materials cannot be melted and they decompose upon heating.
Most elastomers are thermosets having wide-meshed cross-linking, but there exist
thermoplastic elastomers as well, which combine both thermoplastic and elastomeric
properties. Usually, elastomers are cross-linked polymers, where polymer chains are
connected by relatively weak intermolecular forces and are stretched when external
stress is applied. These viscoelastic properties strongly depend on the cross-link
density and the functionality of the junction units, and found a broad application
in the industry. Especially significant in this context and the most famous elas-
tomer is natural rubber (NR) or cis-1,4-polyisoprene. The natural rubber, as used
by industry, mainly comes from the rubber tree (Hevea brasiliensis) or others. Its
monomer unit is 2-methyl-1,3-butadiene or isoprene, which is depicted in Fig. 2.1.

Another important type of polymer, which is widely used in the tire industry,
is styrene-butadiene rubber (SBR). Its structural formula is presented in Fig. 2.2.
SBR is a synthetic rubber produced as a copolymer of styrene and butadiene. The
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2-methyl-1,3-butadiene (isoprene) cis-1,4-polyisoprene

H CH, H CH, CH, H CH,
3n  C C// . \c:c/ c= C/ \c=c/
// \ Cﬁz \c——c/ \C—C/ \CH2
H ZC CH 3 H, H, H, H, n

Figure 2.1: 2-methyl-1,3-butadiene or isoprene is a monomer unit of cis-1,4-
polyisoprene. The latter is the main component of natural rubber.

ratio between styrene and butadiene strongly affects properties of the final product,
i.e., rubbers with a low styrene content exhibit less hardness and higher elasticity.
High styrene contents result in a higher density and a higher glass transition tem-
perature, i.e., the range of temperatures over which the transition from a polymer
melt (amorphous state) to a polymer glass (solid state) occurs.

Elastomer elasticity is a result of a change in the conformation entropy of the
polymer segments between cross-links during deformation [68]. Cross-links are
needed if one wants to tie conformation changes of polymer segments to exter-
nal forces. When external stress is applied, the number of available microstates
reduces and thus the entropy decreases. When the stress is removed, the elastomer
returns to its original state, and the entropy increases again. In contrast, a sim-
ple liquid, where the molecules move independently, does not change its entropy
in response to a change in the shape of its container. Cross-linking is used in
the rubber industry to enhance the physical properties of rubber. There are two
main types of cross-links: physical cross-links and chemical cross-links. Physical
cross-links are always present and are formed by entanglements between polymer
chains. These interactions are weaker than the chemical bonds, and the domains
that act as cross-links are reversible. Chemical cross-links are formed in chemical
reactions; in this case, the resulting modification of mechanical properties strongly

CH

CH

———CH CH ——CH, —— CH—-<CH _CH_CHZ_ CH—C]—[2 b

—T— CH; CH

CH,

Figure 2.2: Structural formula of styrene-butadiene rubber or SBR.
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depends on the cross-link density. As the main quantities characterizing the me-
chanical properties of elastomers in this work, we consider storage and loss moduli.
The former describes the energy stored during deformation, while the latter is a
measure of the dissipated energy. Low cross-link densities result in increased vis-
cosities of polymer melts and, consequently, in a higher loss modulus. At very high
cross-link densities, the material becomes very rigid or glassy, which increases its
storage modulus and makes the material less deformable. The desired elastomeric
properties are obtained at intermediate cross-link densities [67]. In terms of the
number of monomers per cross-link, this would roughly correspond to 150-210 at
the cross-link densities between 3.4 and 5.0-107° mol/g [69]. Chemical cross-links
are typically covalent bonds, which are formed during a special chemical process
called vulcanization or curing. Curing systems in common use include sulphur,
peroxides, metallic oxides (e.g., ZiO) and acetoxysilanes. The most broadly used
polymers in the tire industry, NR and SBR, are also subjected to vulcanization due
to a large number of unsaturated bonds [70]. During vulcanization, polymers are
heated together with a curing system and additional reagents that can modify the
kinetics and chemistry of the process. When sulphur is used, the sulphur atoms
form the so-called sulphur bridges between the polymer chains; the sulphur bridges
can contain one or several sulphur atoms. The underlying reaction mechanism is
still not completely understood [71].

The simplest model used to qualitatively describe linear polymers is an ideal
chain model. It neglects the interactions between monomers separated by large
distances. Independent of this assumption we can always define R - the total end-
to-end vector via

!

ﬁ

s

R

Figure 2.3: End-to-end vector of a polymer R consists of bond vectors 7.

R = Zn:fi, (2.1)
=1

where 7; is the :—th segment or the bond vector and n is the number of segments.
The end-to-end vector is depicted in Fig. 2.3. If the chain is in its completely
stretched form, then the end-to-end vector is equal to the contour length of the
chain. In the freely jointed chain model, the polymer consists of freely jointed bond
vectors which have the same length || = [. The model assumes no correlations
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between bond vectors, and a polymer simply is random walk. The mean square
end-to-end distance is then given by

< R* > =nl’ (2.2)

In a typical polymer chain, however, only a limited range of values for the bond
angle is possible, which implies the correlations between neighbouring bond vectors.
These constraints are accounted for in the freely rotating chain model, which as-
sumes that a bond vector is free to rotate on a cone with a fixed cone angle, where
the main axis of the cone is defined by the preceding bond angle. In this context,
Flory introduced a quantity which is called a characteristic ratio defined via

< R?>
nl?
In a given ideal chain model, the characteristic ratio can be considered as a measure
of the polymer’s stiffness. The characteristic ratio depends on the number of bond
vectors n, but for long chains it reaches a constant value C.. It is worth mentioning
that there exist other quantities characterizing the polymer size, such as the Kuhn
length, persistence length and radius of gyration [65]. The former is used for chains
much longer than the range of correlation and is obtained by rescaling a given chain
into a freely jointed chain, such that the neighbouring segments do not correlate.
The Kuhn length is the length of the obtained segments and characterizes the
stiffness of the chain. The persistence length is defined as the length over which
correlations in the direction of the tangent are lost. It is considered to be one half
of the Kuhn length and is more appropriate than the latter for persistent flexible
polymers such as DNA. The radius of gyration is used for describing branched or
ring polymers, where the mean-square end-to-end distance cannot be well-defined.

C, =

(2.3)

2.2 Filler Particles

The main aim of using filler particles is to get significant reinforcement of the
mechanical properties of elastomers [4]. In the tire industry, the most widely used
fillers are carbon black and silica. Using the filler particles helps to achieve strong
modification of the elastic properties due to the complex filler structure. Fillers
consist of primary particles which tend to establish rigid aggregates. Aggregates
are the smallest filler structures which cannot be broken down during the mixing
process. At high concentrations these aggregates form filler agglomerates which are
less weakly coupled than the aggregates. It is also possible that the agglomerates
build a continuous filler network. If the filler is conductive, like, for instance, carbon
black, this causes a sharp step-like increase in electrical conductivity, signalling filler
percolation [72]. This also indicates that at and beyond the percolation threshold
neighbouring filler particles may be close, i.e., their separation is a few A or less. The
location of the percolation threshold depends on the particle size, where it usually
increases for larger particles. The reinforcement is achieved via two main effects:
the interaction between filler particles and surrounding polymer and the formation
of the filler network. Thus, reinforcement is a complex multiscale problem.
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bound rubber
‘ glassy layer

Figure 2.4: Different types of constrained rubber in the vicinity of the filler surface.

occluded rubber

Reinforcement requires that the components, forming the rubber, are well mixed.
To achieve this, rubber mixing consists of several steps. In the first step, a filler is
subdivided into smaller structures, allowing the incorporation into a rubber matrix,
which takes place in the next step. The incorporation is followed by mixing. Dur-
ing mixing, the filler agglomerates are broken down to aggregates and distributed
throughout the compound. The dispersion in this step occurs on different levels,
so we can distinguish between visual, macro- and micro-dispersion [73|. In the
post-mixing production stages, the initially dispersed filler tends to reagglomer-
ate or flocculate. The resulting filler dispersion is modelled by the Monte Carlo
morphology generator described in Chapter 3.

Adhesion between filler and polymer plays an important role in determining
mechanical properties of composites. The interaction between filler and elastomer
is very complex and is based on several types of forces. These forces can be divided
into dispersion and polarization forces. Dispersion or London forces act between
all atoms and molecules and usually exceed the induction and orientation forces,
providing the main contribution to long-range van der Waals forces. Polarization
or polar interactions include Keesom (dipole-dipole or orientation) interactions and
Debye (dipole-induced dipole or induction) interactions. Chemical bonds, acid-
base (e.g., hydrogen bonding) and capillary forces can affect the filler-elastomer
interaction as well. All these possible types of forces are responsible for adhesion|74].
The process of adhesion in general, and how it can be described in terms of surface
tensions, is discussed in Appendix A.

There exist several models describing the contribution of rubber to reinforcement
[75]. This contribution may also be different depending on the filler type [31]. For
highly polar fillers the filler networking mainly takes place due to direct contacts
between aggregates, e.g., hydrogen bonds, because of incompatibility with low polar
hydrocarbon rubbers [24]. For fillers with a high affinity toward rubber, the network
could be formed by a different mechanism. Due to strong polymer-filler interactions,
there is a fraction of rubber which is adsorbed on the filler surface and cannot
be extracted by the polymer solvent. This rubber is called the bound rubber,



12 CHAPTER 2. ELASTOMER MATERIALS

and in this rubber shell the mobility of the polymer segments is reduced. In the
filler network, two filler aggregates interact via these rubber shells, forming glassy
layers. During the formation of the filler network, fillers can also trap some rubber
in the void of the filler aggregates. This immobilized rubber, which is shielded
from deformation, is called trapped or occluded rubber. The immobilized rubber
chains act as rigid filler particles, increasing the effective filler loading. A schematic
presentation of a filler cluster with the adjacent rubber is shown in Fig. 2.4.

Some authors believe that the bound rubber consists of two phases with different
molecular mobility. The molecules that are attached to the filler surface form a
tightly bound phase, where the molecular mobility is strictly constrained. In a
loosely bound phase, the molecules are slightly more constrained than those in the
unfilled rubber. A filler-rubber interface model for CB-reinforced elastomer, based
on stress analysis, was proposed in [76]. The model consists of double polymer layers
with different molecular mobility: the inner glassy hard layer and the outer sticky
hard layer. The former has a thickness of about 2 nm, while the latter possesses a
thickness of 3-8 nm. The glassy hard layer increases the effective diameter of a CB
particle. When the filler volume content is above 0.2-0.25, the sticky hard layers
surrounding two adjacent carbon black particles overlap and form a network of
oriented molecules. Another model, including glassy layers around filler particles,
is put forward by Merabia et. al in [46]. This model considers reinforcement as
the result of overlapping of glassy layers between filler particles. At small volume
fractions and/or low temperatures, the glassy layers do not overlap, and the only
effect is an increase in the effective filler volume fraction. When the filler content
and/or temperature is high, then the glassy layers overlap, forming glassy bridges
between fillers. As a result, a strong reinforcement effect is observed. Additionally, it
was found, that the properties of the elastomer matrix itself change due to presence
of glassy domains and a glass transition temperature shift of the matrix in the
vicinity of fillers |77, 78]. The thickness of the layer, where the polymer chain
dynamics is significantly reduced, depends on the temperature and can be found
via [77, 79

T >
T -1, ’

e(T) = 5m(

where 6,, is the ability of the filler surface to reduce the polymer mobility, and T},
is the glass temperature. This equation holds for temperatures far from the glass
transition (7" > T, 4+ 50 K).

On the other hand, there are also studies reporting no significant effect of fillers
on the local segmental dynamics of a polymer and the glass transition of the latter.
Robertson showed in [14] that in silica-filled SBR the bulk modulus was mainly
unchanged by silanes. The silanes increased the bound rubber, but the glass tran-
sition of this bound rubber was similar to the bulk SBR. The modification of the
polymer-filler interface had almost no influence on the segmental dynamics of poly-
mer chains proximate to filler particles. Huang et al. found that in silica and carbon
black-filled NR, a bulk change in the glass transition temperature does not occur in
the presence of filler particles [80]. Thus, the issue of the existence of glassy layers
remains unresolved, and no finite conclusions can be drawn regarding this problem.
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2.2.1 Carbon Black

Carbon black is a result of incomplete combustion of petroleum products, and it
is most commonly used as a reinforcing filler in car tires or as a colour pigment in
inks, paints and plastics. Carbon black usually consists of spherical particles with a
rough surface, which form rigid aggregates with a fractal structure. Agglomeration
of the aggregates leads to the formation of a filler network at high concentrations.
The primary particles in the case of carbon black have a diameter of 5-100 nm
depending on the production process, while aggregates have dimensions of 100-
500 nm. The aggregates form agglomerates due to van der Waals forces; their
dimension is about 1-40 pm. There exists a broad variety of carbon black types
depending on the particular parameters required in production. The reinforcement
effect depends on the specific surface and the structure of primary aggregates. The
former is defined by the size of the primary particles and varies between 10 m?/g
and 200 m?/g [7]. According to ASTM D1765-21, carbon black types are typically
classified using a special code consisting of 3 digits (e.g., N339), where the first
one gives information on the average surface area, while the last two are assigned
arbitrarily. The diameter of carbon black primary particles largely affects blackness
and dispersibility. Generally, smaller particles possess higher blackness and higher
surface area but poorer dispersion due to an increase in coagulation forces. The same
applies to larger carbon black structures — aggregates and agglomerates. Hence,
blacks with larger particles provide lower reinforcement in comparison to blacks
with smaller particles.

One way to classify carbon black aggregates, based on their shape, was pro-
posed in [81]. The authors used 4 shape categories to describe the carbon black
structures: spheroidal, ellipsoidal, linear and branched. Spheroidal types are found
in a significant concentration only in thermal blacks, whereas the other shapes are
presented in all other types of carbon blacks. It was found that highly reinforcing
tread-grade carbon blacks, having a small particle size, also usually form branched
aggregates. Thus, the authors concluded that the branched aggregate percentage
has the greatest effect on the modulus. The ratio of branched aggregates decreased
for semi-reinforcing blacks and was the smallest for the largest particles. The lat-
ter had mostly ellipsoidal and spherical aggregates, while spherical ones were often
presented by single particles.

Recently, environmental concerns have promoted an increase in the production
of high-performance and ’green’ tires, where carbon black is replaced by silica as
a filler. Using silica in car tires reduces CO, emission and increases fuel efficiency.
Nevertheless, carbon black still finds application in the products, where tensile
strength and abrasion resistance are of great importance.

2.2.2 Silica

Nowadays, silica has become the filler of choice in car tires production due to a better
relation between the tire performance parameters in comparison to carbon black.
The improved rolling resistance, wet and ice grip make silica the best available filler
for winter tires as well. Silica is used in conjunction with compatibilizing agents for
better dispersion. The chemical structure of these agents, their concentration on
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the particle surface and the type of bonding to the surface as well as to the polymer
offer additional 'degrees of freedom’ to the developer.

Silica is silicon dioxide, which has the chemical formula SiOs. In nature it is
most commonly found as quartz and is the major component of sand. However,
natural forms of silica are difficult to process, and they are often harmful to health.
Therefore, silica is generally produced using synthetic chemical processes. A good
overview of the manufacture of colloidal silica is given in [82]; here we focus on two
methods: fumed or pyrogenic synthesis and precipitated synthesis.

The fumed synthesis starts with a vaporization of silicon tetrachloride in a hy-
drogen and oxygen flame at temperatures between 1100 and 1800 °C and proceeds
via polymerization and/or oxidation of SiCly:

Silica forms molten nuclei, which grow during the reaction into larger aggregates.
Then the fumed silica is extracted from HCI and purified. Varying concentration,
temperature and reaction time allows to control the particle size, size distribution
and surface area. The primary particle size of the fumed silica is 5-50 nm, the
surface area is 50-600 m?/g. Additives may also be used during or after the process
to alter the surface properties, e.g., produce hydrophilic or hydrophobic silica. The
main advantage of this method is using SiCly, which is a pollutant by-product of
the polysilicon industry. The main drawback is a large energy consumption of the
process. Fumed silica is currently used in many industries, especially where a high
degree of purity is required, such as medical applications and electrical insulation.
However, because of its high cost in comparison to, for example, precipitated silica,
fumed silica is rarely used in the tire industry. Major global manufacturers of
fumed silica are Evonik (the trademark Aerosil), Wacker Chemie (HDK) and Cabot
(Cabosil).

The precipitated silica method is the most widely used method for manufactur-
ing colloidal silica. It is based on the neutralization reaction of a soluble silicate
with an acid. As a result, a silicic acid forms at high concentrations, leading to its
polymerization and precipitation from the solution. In industry, precipitated silica
is produced mainly from sodium silicate and sulphuric acid

NaQO . 26S102 + HQSO4 — 268102 + NaQSO4 + HQO

Sulphuric acid is added to a heated solution of sodium sulfate; simultaneously,
additional components can be added to alter the properties of the final product.
During the reaction time, an intermittent stirring is used to prevent the formation
of a gel. After the reaction is finished, the silica is filtered, washed, dried and
milled. The mean particle size of the precipitated silica is 5-100 nm and the spe-
cific surface area 5-100 m?/g. The properties of the final product are affected by
variations in pH, temperature, concentrations of the components and stirring rate.
The precipitated silica is less pure than the fumed one, but the costs and energy
consumption of the method are less than in the case of the fumed synthesis. Due to
their high cost-effectiveness, precipitated silica is widely used not only in the rub-
ber industry, but also as absorbents and catalytic supports. Major manufacturers
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Figure 2.5: Functional groups of TESPT.

of precipitated silica are Evonik (Ultrasil), Solvay(Zeosil), Gujarat Multi Gas Base
Chemicals (Mansil) and IQE (Ibersil).

Fumed silica has a lower tendency to aggregate and to form agglomerates than
precipitated silica because of its lower surface density of silanol groups, which results
in a lower bulk density [83]. In general, however, silica has a stronger tendency to
flocculate than carbon black due to its high polar component of the surface energy.
The hydrogen bonding interactions between polar groups (siloxane, silanol) on the
silica surface are stronger than the interactions between the silica surface and an
elastomer. Therefore, a hydrophobic modification of the silica surface is required to
improve the compatibility of elastomer and silica. This is usually done using silanes
and will be discussed next.

Surface Modification of Silica

Surface modification of silica by a coupling agent is done to increase the interaction
strength between polymer and filler. The latter is a necessary condition for obtain-
ing products with required mechanical properties. The most common way of silica
surface treatment is silanization — the process of chemical adsorption of silanes. The
most widely used compound in this context is TESPT — bis-(triethoxysilylpropyl)
tetrasulfide, also known as Si69 [15, 60, 84-86]. TESPT has triethoxysilyl groups,
which react with the silanol groups on the silica surface. The tetrasulfide group of
the silane, in turn, forms covalent bonds with the methyl groups of the polymer.
The functional groups of TESPT are shown in Fig. 2.5. Thus, TESPT permanently
binds the polymer to the filler surface.

The silanization is usually performed in situ, when silanes are added to the mix-
ture after silica at elevated temperatures [16, 87]. The addition of silanes changes
the silica surface energy, decreasing its polar part and increasing the dispersive
component, and, consequently, strongly affects properties of the final product. For
example, the storage modulus as a function of strain amplitude for S-SBR filled
with 40 phr silica drops with an increase in the spacer length (the number of CHy
groups in the aliphatic chain) [88]. The authors in [88]| also showed, that higher
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Figure 2.6: The storage modulus vs. strain amplitude for S-SBR filled with 40 phr
silica. The concentration of Si69 used for the silica surface modification is varied.
Data is taken from [88].

concentrations of Si69 lead to a drop in the storage modulus as well (see Fig. 2.6).
The difference between unmodified and modified silica can also be seen when one
compares Ultrasil VN3 (precipitated silica) and Coupsil 8113 (the same silica, but
prereacted with Si69) [22]. The silane addition promotes a decrease in the stor-
age modulus, which can be observed in both flocculation and dynamic mechanical
measurements.

2.3 Quantities in the Rubber Industry

In the rubber industry, the quantities of different components required for produc-
tion of a particular rubber compound are usually given in special units — parts per
hundred rubber or phr. For instance, a filled elastomer with the filler loading equal
to 40 phr of filler contains 40 g of the filler per 100 g of the polymer. Using the units
of phr is especially convenient in the mixing process, because the only information
needed for the right mixing is the masses of the components. In simulations, how-
ever, another quantity is typically used — the volume fraction of a component ¢. In
order to find the volume contents of the components, based on their amount in phr,
the following relation can be used

hr;

Vi 5
Oi = = = 2.4
‘/total Zz % ( )

Here V; and p; are the volume and density of the i-th component, respectively. It is
worth noting that different types of fillers have different densities, and, consequently,
different filler volume contents, although the amounts in phr may be the same. At
the same time, mechanical properties of filled elastomers depend on the filler volume
content. Therefore, without information on the filler densities, a direct comparison
of mechanical properties observed for systems filled with different fillers is often
impossible.
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Figure 2.7: Strain u with the strain amplitude u, is applied to a sample in a DMA
run. The resulting stress function o with the stress amplitude oy has the same form,
but it is shifted by the phase shift ¢.

2.4 Mechanical Testing of Elastomers

In the case of elastomers it is their mechanical performance which is the most im-
portant. Polymers are special in this context because they combine elastic and
viscous properties in both the fluid and the solid state, so they are generally called
viscoelastic materials. For measuring the mechanical performance, several labora-
tory methods can be used. A detailed description can be found in |27, 64], and the
basics given in this section are also based on these sources. The description of the
mechanics of polymers requires basic knowledge on the theory of elasticity. The
terms strain, stress and relations between them are described in Appendix B.

A basic method to study the viscoelastic properties of a sample is the creep
testing. It involves loading of a sample followed by a measurement of the strain
as a function of time. Recovery tests look at the material’s relaxation once the
external load is removed. The tests can be done separately, but provide more
useful information when combined. Creep and creep-recovery tests are useful in
the cases, when low shear rates or frequencies are applied, as well as when the
test times are very long. The test cycles can be repeated several times at different
temperatures, allowing to mimic real conditions. The stress relaxation test is the
inverse of the creep experiment: a material is held at a constant strain and the
induced stress is measured as a function of time. These measurements often provide
important information which complements creep data. The third common test
method includes an application of a dynamic force to a sample and is called the
dynamic mechanical analysis. In this work, one of the main steps is to simulate
the dynamic mechanical analysis, therefore, in the next section we will focus on the
theory of this method.

2.4.1 Dynamic Mechanical Analysis

Dynamic Mechanical Analysis or DMA is one of the main testing methods applied
to elastomers in the rubber industry [27, 28, 68, 89|. Typically, during the analysis
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a sinusoidal stress o is applied to a material and the resulting strain u is measured,
but it can also be the other way around. Schematically, this is illustrated in Fig.
2.7. For a perfectly elastic solid, the resulting strain and the stress will be perfectly
in phase, i.e., 6 = 0. For a purely viscous fluid, there will be a 90 degree phase shift
of the strain with respect to the stress, i.e., 6 = m/2. Viscoelastic materials have
the characteristics in between, where some phase shift 6 € (0,7/2) occurs during
DMA tests [90]. This behaviour of elastomers can be modelled mechanically by
combinations of springs and dashpots, where springs model the elastic contribution
and dashpots represent the viscous contribution (see Fig. 2.8).

—T— W~
N v

Figure 2.8: Elements representing the elastic and viscous contributions. Left: the
dashpot characterized by a viscosity coefficient n; right: the harmonic spring char-
acterized by its modulus pu.

The mathematical form of these elements:
o, = (2.5)

Ty = Ny, (2.6)

Here w is the shear strain, o is the shear stress, p is the (shear) modulus, @ is the
strain rate, n is the viscosity coefficient. The first equation describes the elastic
contribution, while the second one represents the dissipative contribution. These
basic elements can then be combined into simple models. One possible combination
is the Kelvin-Voigt model, which consists of a parallel connection of a spring and a
friction pot (Fig. 2.9).

In this case

o=0,+0, U=u,=u, (2.7)

e =

Figure 2.9: The Kelvin-Voigt model.
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where o is the total stress, u is the total strain. Using Eq. (2.5) and (2.6), we
obtain

o = pu + ni. (2.8)

We assume that the shear strain is harmonic. Then the shear stress should also be
harmonic, but with a different amplitude and a phase shift:

u = ug sin(wt), (2.9)

o = ogsin(wt + 9). (2.10)

The phase shift is caused by the energy dissipation in the system. By inserting this
to (2.7) and using

sin(wt + 0) = cos(d) sin(wt) + sin(d), cos(wt),

we get
i = 7% cos(6) = 4, (2.11)
Uo
= 70 sin(d) = wn, (2.12)
U
tand = Txw, T = N/ . (2.13)

Here 7 is a relaxation time, which describes the strain relaxation. Note that the
first ="-sign in (2.11) and (2.12) define x/ and p” in general, while the second '=’-
sign in each equation is true for the particular model (in this case, the Kelvin-Voigt
model). The relaxation time can also be seen as the time required to reduce the
strain to 1/e of its initial value. The quantity x’ is the storage modulus and p”
is the loss modulus, and they are the quantities measured in experiments. The

storage modulus measures the stored energy, representing the elastic part, and the
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Figure 2.10: Hysteresis in the ¢ — u-plane for different values of §. Note that the
area enclosed by the curves gives the dissipated work ws.
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loss modulus is a measure of the energy dissipated as heat, representing the viscous
part. Note that the equations (2.11)-(2.12) are obtained under the assumption of
harmonic stress and strain, which does not always hold, especially in the case of
filled systems. Nevertheless, the discussion of most experimental data is based on
this linear or one-coefficient Fourier analysis, even for highly non-linear systems. In
this work we use this approach as well.

The combination of the storage and the loss moduli gives the complex modulus
of a sample:

W= 4. (2.14)

The quantity tan ¢ is the loss tangent, and it is equal to the ratio of the loss modulus
to the storage modulus tand = p”" /. The loss tangent is also called damping and
is widely used in the rubber industry as a direct indicator for properties like rolling
resistance and wet grip. It shows how efficient the material is in terms of energy lost
to internal friction and molecular rearrangements. One important property of the
loss tangent is that it is independent of geometry because the sample dimensions
cancel when the ratio of the moduli is taken. In addition, some earlier instruments
recorded only the phase angle and therefore the early literature uses the tand as a
measure for many properties [27]. Thus, by calculating the amplitudes og, ug and
the phase shift §, we can determine the storage and the loss moduli and the loss
tangent. However, in experiments we often do not have the pure sine strain and
stress, so we require a different way for estimating the moduli. We can, for instance,
calculate the work dissipated by a system during one shear cycle (see also B.3):

u(T) T du )
Wipss = %(0) odu = /0‘ O'Edt = Wﬂlluoa (215)

where T' = %’r is a period. If we know the dissipated work w,s, and the phase shift o
between the strain and the stress, we can calculate the loss and the storage moduli

by

17 Wioss
= 2.16
W= (2.16)
"
' I
= . 2.17
# tan o ( )

Equations (2.16) — (2.17) can be used for determining loss and storage moduli, even
if the form of the strain and stress is far away from a sine function. Fig. 2.10 shows
Wyess iN the o —wu-plane for different values of §. The area enclosed by the curves is the
respective wy,ss. In particular, = 0 yields wj,ss = 0, which corresponds to a purely
elastic system (from Eq. (2.5): 0 = pu = ogsin (wt + J) = pugsinwt = § = 0),
whereas 0 = 7/2 gives the maximum wj,ss and corresponds to a purely viscous
case (from Eq. (2.6): 0 = ni = opsin (wt + ) = nugcoswt => 6 = w/2). The
behaviour observed when ¢ > 0 is called hysteresis.

The next model is called the Maxwell model, and it is presented in Fig. 2.11. The
model consists of a spring and a dashpot in series. The model can be mathematically
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Figure 2.11: The Maxwell model.
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Figure 2.12: The Zener model.
described by the following set of equations:

o=0,=0, U=uU,+ U, (2.18)

Using the aforementioned approach, we obtain

2 2
/ TMW
_ MY 2.19
w/p g (2.19)
" TvW
_ MY 2.20
w'/ P (2.20)
1
tand = ——, (2.21)
TMW

where 7y = n/p.

As the Kelvin-Voigt and the Maxwell models are not applicable in the full fre-
quency range, we require another model. The next model is called the Zener model,
and it consists of a spring with a spring constant p; in parallel to a spring with a
spring constant us and a dashpot with a friction coefficient 7 in series (Fig. 2.12).
Hence, the Zener model is a combination of the Kelvin-Voigt and the Maxwell
models. The mathematical description of this model is

o=01+0pm
oM = 02 = 0y (2.22)
U= U] = Uy '

Upr = Uz + Uy.
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Figure 2.13: Results of the Zener model.

The indices 1 and 2 refer to p; and py. We solve this system of equations using
(2.5) and (2.6), and get

o+ Lo = piu + n(l + ﬂ)u. (2.23)
M2 H2

Using (2.9)-(2.10), we obtain

, 7202 /0 + 1

- 2.24
W= s (2.24)
” TW
e 2.25
1-0 TW
tand = 2.26
o 0 r22/0+ 1 (226)

where 7 = 1/pus and 6 = 1 /(114 p2). The quantity 7 is again a relaxation time and
describes the stress relaxation at a constant strain. If u(t = 0) = uo and a(t) = 0,
then

o(t) = (m + me*“f) %o. (2.27)
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The value of frequency w at the maximum of p” is called a characteristic fre-

quency, and it is equal to

b= L=tz (2.28)

T M

The moduli and the loss tangent as functions of frequency, obtained for the Zener
model, are shown in Fig. 2.13. The shape of the curves is a result of the elements
used in the model, i.e., the dashpot and elastic springs. At low frequencies we
observe an increase in the tand, which means that the friction element follows the
strain u(t). This is realized in the Kelvin-Voigt model because the amplitudes in
the two branches are coupled. At high frequencies the decrease in tan d requires the
decoupling of the friction elements from the excitation, so the spring takes over the
strain from the friction element, which is included into the Maxwell model. The
Zener model as a combination of the models combines both behaviours [68]. Note
that while the aforementioned models are useful in a qualitative sense on a macro-
scopic level, it is not clear how they relate to polymer networks on a microscopic
level.

One of the most important uses of the DMA is studying the relaxation processes
and transitions in a polymer. Here we can distinguish between time and temperature
runs. If a polymer is kept at a set frequency, while the temperature increases, then
a temperature scan is performed. During a time run, the specimen is held at
a constant temperature and changing of properties over time is studied. In this
context, temperature control is of special importance, especially for large sample
sizes. Poor temperature control can lead to differences in the temperature across
the sample, resulting in anomalies such as two glass transition peaks! in a single
polymer [27]. Thus, large samples require very slow heating rates. As materials are
stiff at low temperatures and soft near the melting temperature, sometimes multiple
runs may be needed using different conditions and/or different geometries. Possible
geometries for the DMA analysis will be discussed later in this chapter.

Time Mapping

To compare simulation results with experimental ones, we need a link between the
experimental time and the temperature and the ones used in the model. A possible
way to link the two scales is discussed in [57]. The tan d-curve in the Zener model
is given by (see Eq. 2.26)

— 0 ToWw
0 (rw)?/0+1’
where 0 = py /(1 + p2) and 72 = n/ps. In order to find the value of tand at

maximum, we take a derivative of 2.26 with respect to 7w and set it to zero. Thus,
we obtain

1
tand =

1 - max 2
£a11 6| gy = L~ (momaz)” (2.29)

27—2wm(zm

! Glass transition and other temperature-related processes in a polymer are discussed in Section
2.5.



24 CHAPTER 2. ELASTOMER MATERIALS

The Zener model describes the tan d vs. w qualitatively correct. Assuming that we
know tan¢d vs. w for an experimental system at a certain temperature 7', we can
calculate (2.29) to obtain the value of 75 7wS? using the height of the tand peak
at maximum. Then we repeat the same procedure for tan d vs. w obtained from the
simulation and find the numerical value for 75""w™ . We require 1/wi™ = 1/wP
i.e., 73 = 757 which relates the simulation unit of time to the experimental unit of
time. For instance, if we have a simulation frequency w*™ which we want to convert,
then the corresponding experimental frequency is given by w? = ws™ (WP [wsim ),
Note that this conversion of time units holds only for one particular temperature.
The conversion obtained using a pure rubber system is assumed fixed independent

of the filler content, i.e., for filled systems we use the same time unit conversion.

Instrumentation for DMA

There exists a broad variety of instrumentation for DMA measurements. In this
section a short introduction to the topic is given, which is mainly based on [27].

Force resonance analysers are the most common DMA analysers nowadays. They
force a sample to oscillate at a fixed frequency and can scan material properties
across a temperature range. The analysers include different parts responsible for
controlling the temperature, deformation, sample geometry and environment.

Depending on the type of the load control, the analysers can be divided into two
main groups: strain- and stress-controlled analysers. The former move the sample
a set distance and measure the stress. They usually have a better time response
for low viscosity materials and can perform stress relaxation experiments as well.
The stress-controlled analysers are cheaper; in stress control, a set force is applied
to the sample and the strain is measured. While the applied force remains the
same when temperature, time or frequency varies, the stress in the material may be
different. The constant stress is more natural in many cases since it can mimic real-
life conditions and is often more sensitive to sample changes. This type of analyser
allows to more easily perform long relaxation times or long creep experiments. Both
types of analysers give the same results as long as the DMA measurements are run
at very low strains to keep the sample within its linear region. However, in the
non-linear region the difference becomes large, as the linear relation between stress
and strain does not hold any more.

DMA analysers usually apply stress or strain in two ways. One of them is
torsional deformation, when force is applied in a twisting motion. Torsion defor-
mation is mainly used for testing of liquids and melts, but solid samples can also
be studied in such a manner. Most of torsional analysers also can perform creep-
recovery, stress-relaxation and stress-strain measurements. Another possible type
of deformation is axial. Axial analysers apply a linear force to the sample and are
typically used for solid materials. These analysers often perform flexure, tensile and
compression tests, but can also be adapted to liquid samples and to do shear. In
addition to measurements that torsional analysers can run, axial analysers can do
thermal mechanical analysis (TMA) and study materials with a large modulus. It
is worth noting that there exists a considerable overlap between the analysers and
by a correct choice of the sample geometry both types can test similar samples.
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Figure 2.14: Plates geometries. Left: parallel plates, right: cone and plates. Here d
is a diameter, 6 is a cone angle. The gap between plates is defined by the sample.
The figure is done in style of Fig. 4.11 from [27].

Sample geometry is one of the key factors affecting the dynamic moduli values.
Each of the geometries uses different equations to calculate stress and strain, and
the moduli obtained in various testing geometries are always different. In those
cases, special geometric factors are used to transfer the force and deformation into
the stress and strain. The most common geometries for axial and torsion analysers
are listed in Table 2.1. Due to the importance of the shear mode for this work, we
limit ourselves to considering the geometries allowing to apply shear deformation
to the sample.

Table 2.1: Sample geometries for DMA

Axial analysers Torsion analysers
Bending (3-Point and 4-Point) | Parallel Plate
Cantilever (Dual and Single) | Cone-and-Plate
Parallel Plate and its Variants | Torsional Beam
Shear Plates and Sandwiches Couette
Bulk

Tensile

The most common approach to measuring shear in an axial analyser is the use
of the shear sandwich fixtures. During the test, a sliding plate moves between two
samples which should be maximally close to identical. One of the restrictions of
the technique is a limited range of temperatures due to thermal expansion of the
fixture.

In torsional shear, the simplest geometry is two parallel plates with a set gap
height for a spherical sample. The gap height is determined by the sample viscosity.
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The main disadvantage of this geometry is inhomogeneity of strain: the material at
the centre barely moves, while at the edge the movement is much larger. This draw-
back can be partially overcome in the cone-and-plate geometry, which uses a cone
of a given angle instead of the top plate. Both geometries are shown in Fig. 2.14. In
the cone-and-plate geometry, at small cone angles the strain is homogeneous across
the material. This geometry is the most widely used one for testing non-Newtonian
fluids. Both parallel plates and cone-and-plate geometries are inappropriate at very
high shear rates due to failure of the material, which reaches a critical edge velocity.
Another way to overcome the inhomogeneity problem is using two opposite cones
instead of cone-plate or plate-plate geometries.

2.5 Mechanical Properties of Unfilled Elastomers

The aforementioned complex viscoelastic behaviour of polymers implies that their
mechanical properties strongly depend on temperature. This limits a range of useful
temperatures which differ for various polymers. In a DMA temperature run, one
can distinguish between three main regions on the temperature scale: the rubbery
region, the transition region and the glassy region. All these regions correspond to
different transition processes in a polymer, which can be described by either free
volume changes or relaxation times. Both descriptions, however, are equivalent. A
simple model describing transition processes in a polymer is the crankshaft model,
where the molecule is represented as a series of jointed segments. The model and
the variety of transition processes in polymers seen on a DMA scan can be found
in [27]; here we limit ourselves to the most important ones.

Fig. 2.15 shows an example of a DMA temperature run for SBR, both unfilled
and filled with carbon black N234 at various concentrations. It can be seen that
the general behaviour of unfilled and filled systems is very similar. The lowest
temperature range corresponds to the glassy region, where the polymer exhibits
glass-like properties. In this region, the storage modulus remains large and constant,
while the loss modulus is low, making the loss tangent being close to zero. As the
temperature increases, the material expands and the free volume increases. This
enables localized bond movements such as stretching and bending, as well as side
chain movements. This process, which occurs in the glassy state and thus is not
shown in Fig. 2.15, is called the gamma transition T,.

At higher temperatures there is a transition region, where a glassy solid polymer
turns into a melt-like material or, if cross-linked, into rubber. In this region, large
segments of the chain start moving, the loss modulus and the loss tangent have a
maximum, while the storage modulus drops by 2-3 orders of magnitude. The range
of temperatures, where the glass transition occurs, and where the loss tangent
reaches its highest value, is called the glass transition temperature T, [30]. As the
glass transition is the main transition for most polymers, it is also called the alpha
transition T,. The glass transition temperature typically defines the operating
range of a polymer. For polymers used in their glassy state, T represents the upper
temperature limit, while for rubbers it gives the lower operating temperature. T
strongly depends on the functional groups presented in a polymer. For instance, if
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Figure 2.15: The storage modulus, the loss modulus and the loss tangent as func-
tions of temperature for SBR filled with different loadings of CB N234 at 10 Hz and
the strain amplitude of 5%. The marked regions are: 1 - glassy region, 2 - transition
region, 3 - rubbery region. Data is taken from [31].

a polymer contains a lot of benzene rings (e.g., SBR with a large styrene content),
the movements of its chain segments are hindered, and higher T is observed.

In the so-called rubbery region, at temperatures above T, the elastic properties
of rubber dominate. The storage modulus at these temperatures is almost constant,
but the values are lower than in the glassy region. The loss tangent in this region
does not change much as well. The length of the rubbery plateau and the modulus
depend on the number of cross-links or, equivalently, the chain length between cross-
links. Hence, increased cross-linking will be indicated in DMA results by increasing
T, and g/

At high temperatures, a polymer starts to melt and flow. In this region, which is
also called the terminal region, large-scale chain slippage occurs, the storage modu-
lus decreases and the elastic properties cannot be seen any more. The temperature,
at which the transition from the rubbery state to the melt state happens, is called
the melt temperature T,,. The ability to flow depends on the molecular weight of
the polymer and the cross-link density. Polymers possessing large molecular weights
melt at higher temperatures, while the ones with very high cross-link densities do
not melt at all.

Many commercial elastomers contain additional polymers as a blend or as a
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copolymer?. Polymer blending often affects the DMA results. Typically, for block
copolymers and immiscible blends two different T;s will be seen, each corresponding
to an individual component. For miscible polymer blends and random copolymers
one single T, will be observed, which position will depend on the polymer ratio in
the mixture.

The behaviour of a polymer over the temperature scale is quite similar to the
one observed when frequency changes. At low temperatures, a material is more
rigid, and its elastic behaviour dominates. As temperature increases, the mate-
rial becomes softer and at some point starts to flow. On the other hand, at low
frequencies the material has time to relax and respond to stress, therefore, in the
low-frequency range viscous or flow behaviour dominates. The same happens if the
material is stressed over a long period of time, as frequency is the inverse of time.
When frequency increases, the material has less time to relax and becomes more
elastic. Thus, by changing the frequency a polymer experiences the same transi-
tions as when one changes the temperature, while low frequencies correspond to
high temperatures and vice versa. This principle is often referred to as the time-
temperature superposition. It is frequently applied when one wants to obtain data
outside the available frequency range of an instrument. In this case, a series of
frequency runs is performed at different temperatures. Then the curves are shifted
relative to a curve obtained at a reference temperature, giving the so-called master
curve, which covers a larger range of frequencies than each of the original runs. The
shift factors ap are usually defined according to the Williams-Landel-Ferry (WLF)
model [91]

-C(T -T,)
Co+ (T -1T,)

Here C and (5 are material constants, T' is a run temperature, T, is the reference
temperature — the temperature to which the data will be shifted. The materials
obeying the time-temperature superposition are called rheologically simple materi-
als. Natural rubber, for example, is a rheologically simple material, therefore, the
time-temperature superposition principle is often used in the rubber industry. It
is worth noting that the principle is based on several assumptions, e.g., that all
relaxation times within the sample are equally affected by temperature. In addi-
tion, mechanisms of changing the sample and their rates must be the same at all
temperatures. This is not always true, especially in the case of filled elastomers and
polymer blends, and care must be taken when applying the principle.

logar = (2.30)

2.6 Mechanical Properties of Filled Elastomers

Addition of filler particles leads to reinforcement of cross-linked polymer systems,
which significantly changes their mechanical properties. This happens, however,
only at a specific concentration called percolation threshold, where the filler con-
tent is sufficient to form a filler-filler network. Filled elastomer systems with the

2The former term refers to a physical mixture of components, while the latter — to a chemical
mixture.
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Figure 2.16: Experimental storage modulus vs. filler volume fraction in phr for
SBR filled with CB N234 at 70°C and 0.2% strain. The reinforcement slope y
is calculated based on the last four points and is equal to 2.4. The percolation
threshold is determined as an intersection of the red and blue lines plotted over
initial and last points, and in this case is at approx. 35 phr (= 15%). The data is
taken from |[31].

filler concentrations below and above the percolation threshold possess significantly
different thermal [92], electrical [29], rheological [93] and mechanical [94] properties,
therefore it can be important to determine the position of the percolation thresh-
old. In this section we will discuss changes in the mechanical properties of filled
elastomers beyond the percolation threshold.

Fig. 2.16 shows the experimental storage modulus at different filler volume
contents for SBR filled with CB N234. Initially, the storage modulus does not
increase considerably. But at concentrations above approximately 35 phr, which
roughly corresponds to 15% vol. according to (2.4), a power-law increase p' o< ¢¥
can be observed. Here y is called a reinforcement slope, and it is typically between
3 and 4, based on the assumption of self-similarity of the filler network [7]. But
what are the consequences of adding a filler in terms of other parameters, such as
temperature or strain amplitude?

Based on Fig. 2.15, one can see that the storage modulus increases with the
filler volume content throughout the temperature range. Larger ;// means that the
stiffness and the strength of the material increase, when more filler is added. The
loss modulus increases in the range of high temperatures, but does not change
significantly at temperatures below the glass transition. Larger p” assumes that
the energy dissipation in filled systems is also larger than in unfilled ones at high
temperatures. Due to the aforementioned factors, the loss tangent, as the ratio
of the moduli, plotted vs. temperature demonstrates a complex behaviour. At the
glass transition temperature, tan § drops for larger filler volume contents (region 2 in
Fig. 2.15). However, the order of the curves corresponding to different filler contents
changes in the rubbery region, i.e., at temperatures above the glass transition the
higher filled systems exhibit larger values of the loss tangent. In the glassy region,
the loss tangent does not change significantly because the values of the storage
modulus are large for both, filled and unfilled, systems. According to Fig. 1 in [31],
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Figure 2.17: Left: flocculation curves for NR melts filled with 50 phr of carbon
black with different grades. Right: the attendant Payne effect. The data is taken
from [13].

tand plotted vs. temperature can be used as a laboratory indicator for ice grip
(between —40 and —20 °C), wet grip (roughly between —10 and 20 °C) and rolling
resistance (between approx. 30 and 80 °C). An ideal material should demonstrate
significant values of the loss tangent at low temperatures to achieve the high skid
resistance and wet grip. At the same time, it has to possess a low tan d value at high
temperatures to reduce the rolling resistance. Based on Fig. 2.15, it is clear, that
the addition of filler improves the wet grip but also increases the rolling resistance.

It is well known that filler, which initially is finely dispersed in the polymer
matrix during mixing, in the post-mixing stages tends to form larger structures
— agglomerates and filler networks [10, 11, 15, 17]. This process is called filler
flocculation, and it considerably changes the mechanical properties of filled rubbers.
The filler flocculation can be monitored by studying the changes of the small-strain
storage modulus of a filled system in time. The left panel of Fig. 2.17 gives an
example of such an experiment for natural rubber melts filled with different carbon
black grades, taken from [13|. The curves in the left panel of Fig.2.17 are also
called flocculation curves, and the attendant experiments are called flocculation
tests. Initially, the storage modulus increases rapidly, but levels out after some
time. The change in i’ depends on the primary aggregate size; the sample with
the smallest CB particles (N121) shows the largest increase in the storage modulus,
while the sample containing larger particles (N550) exhibits almost no change in
the value of y/. The authors also found that while the initial increase in y’ is related
to the primary particle size, at longer time scales the flocculation kinetics depends
on the structure of carbon black and polymer macromolecules. Flocculation tests
can also provide information on the quality of microdispersion. In [95], it was found
that samples with smaller, well-distributed primary aggregates flocculate less than
samples with poor microdispersion. Other factors, affecting the storage modulus,
include filler loading, filler surface properties and mixing conditions [31, 95].

Under large deformation, the filler network, formed during flocculation, breaks
down, and the storage modulus drops to values which are close to the values obtained
for the unfilled system. This can be seen in the right panel of Fig. 2.17 as well.
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This effect is called the Payne effect, and it denotes the pronounced decrease in
the complex modulus with increasing strain amplitude in filled rubbers under cyclic
loading [38]. The effect was named after Payne, who investigated it in the 1960s
[32, 96-101|. The Payne effect is observed in both carbon black [102-104] and silica
[105] reinforced rubbers. An example of the Payne effect for SBR, filled with CB
at different filler loadings, is shown in Fig. 2.18. It can be seen, that not only
i for the filled system changes with the strain amplitude, but also p” exhibits a
maximum when plotted vs. strain.

Generally, one can distinguish between different contributions to the storage
modulus of a filled system (see Fig. 2.19). The interactions due to the polymer
network are present in both, filled and unfilled, systems and define the storage
modulus of the latter. This part of the storage modulus does not depend on the
strain amplitude, as well as the contribution due to hydrodynamic reinforcement.
Originally, Einstein found that the viscosity of a Newtonian fluid 7y changes to
7, if one adds a small amount of rigid spherical particles with volume fraction ¢
according to [106]

x="2-1412506 (2.31)
To
Here X is called the hydrodynamic amplification factor. Later Smallwood [107]
found the same equation for the shear modulus in the case of rigid spherical particles
embedded in an incompressible linear elastic matrix
x =" 14250 (2.32)
Ho
In (2.32) po is the shear modulus of the elastic matrix. The equations (2.31) and
(2.32) hold only for small ¢, assume no interactions between spheres and are true
only in the linear case, i.e., for a Newtonian liquid or a linear elastic material [108].

The Payne effect is not observed in unfilled rubbers, therefore it can be related
to either filler-filler or polymer-filler contacts (or a combination of both). However,
until now, it has been debated what kind of interactions play a predominant role in
the Payne effect. Different models have been proposed in the literature to explain
the Payne effect. One of the most well-known theories assumes the breakdown of
the filler-network being the main reason of the Payne effect [17, 35, 109-111], as
shown in Fig. 2.19. Payne assumed as well that the non-linear behaviour of filled
vulcanizates is caused by the breakdown of the carbon black network structure. In
[37] the authors found that the drop of the storage modulus vs. strain amplitude
similar to the Payne effect in filled rubbers occurs in CB-filled paraffin oil. This
strongly suggests the deformation-induced breaking of the filler network to be the
main cause for the Payne effect. But the polymer matrix was found to play a
significant role in the temperature dependence of the Payne effect. Other possible
explanations of the Payne effect include filler deagglomeration in the framework of
self-similarity [112]| or assume a more important role of the polymer-filler interface,
such as polymer debonding from the filler surface [36, 113] or strain softening of the
polymer shell around filler aggregates [114]. Ouyang proposed a network junction
model, which focuses on the rubber behaviour near the filler network junctions [33,
34].
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Figure 2.18: The storage modulus, the loss modulus and the loss tangent as func-
tions of strain amplitude for SBR, filled with different loadings of N234, at 10 Hz
and 70 °C. The data is taken from [31].
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Figure 2.19: Contributions of different effects to the storage modulus of a material.
The figure is done in style of [7].
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Figure 2.20: Storage modulus as a function of strain amplitude for SBR filled with
40 phr Aerosil 200 at different temperatires. Data is taken from [22].

The dynamic properties of filled elastomers in general, and the Payne effect in
particular, depend on temperature and filler morphology, while the latter depends
on the surface area and particle size. As the Payne effect is believed to be closely
related to the filler network structure, all the parameters affecting the filler network
will also affect the Payne effect. An example of the temperature dependence of
the Payne effect in SBR filled with Aerosil 200 (a special type of fumed silica) is
shown in Fig. 2.20. At low strains, the storage modulus of the filled system drops
when the temperature increases. For the unfilled SBR, no dependence on the strain
amplitude can be observed. At large strain amplitudes, the values of the storage
modulus for the filled system drop and become close to the values obtained for
the unfilled SBR. As another parameter affecting the Payne effect, filler surface
modifications can be named. For instance, covering the silica surface with TESPT
reduces the storage modulus and, consequently, the Payne effect (cf. Fig. 2.6).

Another important effect observed in filled rubbers is the Mullins effect, or the
pronounced stress softening [115, 116]. While the Payne effect is observed under
dynamic loading at small strain amplitudes between 0.1 and 20%, the Mullins effect
can be seen under quasi-static deformations at much larger strains. Depending on
the strain history, the material exhibits permanent changes in the elastic properties
and the hysteresis, or the area under the curve in the stress-strain plain, increases.
Most of the effect can be seen in the first deformation cycle, and after a few cycles the
material reaches a steady state, when its stress-strain behaviour does not change any
more. Although the micromechanical origin of the Mullins effect has not been fully
understood, it reflects damage in the material caused by the previous loading. The
stress softening is observed in unfilled systems as well, but the effect is much more
pronounced in elastomers containing high filler concentrations. In the literature,
the Mullins effect has been attributed to a breakdown or slippage [117] of bonds
between filler and polymer, a strain-induced crystallization-decrystallization [118] or
hydrodynamic reinforcement of the rubber matrix by filler clusters that irreversibly
break during the first deformation cycle [119].



34

CHAPTER 2. ELASTOMER MATERIALS



Chapter 3

Monte Carlo Morphology Generator

The general idea of the morphology generator was initially developed in [20, 21]
and is also thoroughly discussed in the PhD thesis of Norman Gundlach [19]. The
morphology generator combines a coarse-grained description of the components
with measured interface or surface tensions. The terms ’interface tension’, ’surface
tension’ or 'surface energy’ and experimental methods for their determination are
discussed in Appendix A. The ’old” morphology generator utilizes a cubic lattice,
and therefore cannot generate input morphologies to the mechanical analysis (DMA)
part of the model developed in this work. In this chapter, it is explained how
the cubic lattice is replaced by a neighbour list scheme. This removes any lattice
symmetry from the generated morphologies, ensuring isotropy and homogeneity. In
addition, the same neighbour list can also be used to force-couple the nodes, i.e.,
polymer volume elements and filler particles, during the DMA.

3.1 Monte Carlo Flocculation

In this section, the set up of the morphology generator will be explained. The
section also describes the cell index method, which can be used for constructing
neighbour lists in systems with a large number of particles.

3.1.1 Basic Idea

Basic elements of the model are nodes, which can be either filler particles, i.e.,
non-breakable aggregates, or polymer volume elements. The nodes can have any
spatial arrangement, i.e., they can be located on a lattice, or they can be distributed
randomly. A node possesses a property ’filler’ with probability ¢, where ¢ is the
filler volume content. There are n = ¢ - N filler nodes in the system, where N is
the total number of nodes. The particle type for the remaining N — n nodes is set
to 'polymer’. For simulations of polymer blends, we can also use more than just
one polymer. In a binary blend, we assign the properties "polymer A’ and 'polymer
B’ randomly, with probabilities given by the blend ratio. The binary blends in this
work consist of natural rubber (NR), styrene-butadiene rubber (SBR) plus, if they
are filled, carbon black or silica. It is convenient, but not essential, to initially place
the nodes on a lattice (usually an FCC-lattice). To ensure the system isotropy, the

35
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Figure 3.1: Left: a cutoff radius 7., determines the nodes which have a common
interface with a given node. Golden and green dots indicate volume elements occu-
pied by different types of polymer. Black circles are filler nodes. Common interfaces
are shown by the lines orthogonal to the dotted lines connecting the nodes. Right:
construction of a neighbour list based on 7.

lattice nodes are subsequently displaced by adding d7; to their initial positions. The
vector components 0r; , depend on d, where d denotes the initial distance between
nearest neighbours. In the following, d is the smallest linear scale in the system,
which corresponds to the center-to-center separation of two filler particles. Hence, d
sets the unit of length in the system. It is worth noting that this system preparation
is not essential for the simulation of filler flocculation, as it was shown in [20] on the
basis of the cubic lattice, but it is important for the subsequent shear simulation.
Note that the node distribution is fixed after the aforementioned randomization and
remains unchanged throughout all subsequent modelling steps.

We identify the quantity d with the diameter of the smallest non-breakable filler
aggregate. The size of these aggregates is typically larger than the size of primary
particles by a factor of two to three [120]. In experiments, the size of the smallest
non-breakable aggregates can be estimated by studying the attendant TEM images.
Then the simulated TEM images can be scaled, so that the unit of length d in the
simulation corresponds to the size of the smallest non-breakable aggregates in the
experimental system. There exists, however, no such direct correspondence for
polymer, and we define d as the linear dimension of a polymer volume element.
Note, however, that the typical separation between two cross-links in usual tire
rubbers is of the same order as the size of the smallest non-breakable aggregate
[65]. Assuming n = 200 monomers between cross-links (see also Section 2.1), one
has for their separation roughly v < R? > = by/Cyn, where b is the monomer’s
length. Taking b ~ 0.8 nm and C,, (NR) ~ 5 [7], we obtain v< R? > ~ 25 nm,
which has the same order of magnitude as the particle size.

We assign surface free energies to each node depending on its type. Every
node possesses a number of neighbouring sites, and we assume that the interactions
between them can be described via the interface free enthalpy ~;a. Here 7; is the
interface tension of the particular node-node-pair j and a is a certain interaction
area. Then we define a list of neighbours for each node using a cutoff radius r.,,
as shown in Fig. 3.1. The green and yellow colours in Fig. 3.1 correspond to NR



3.1. MONTE CARLO FLOCCULATION 37

—\
\‘/ )P/ .

@)= \‘// \
O —\@

w W

old new

Figure 3.2: An example of the Monte Carlo node exchange move.

and SBR respectively, while the black circles represent filler aggregates. Once the
list of neighbours has been constructed, we no longer need the information on the
initial lattice or the random spatial distribution of nodes, because the Monte Carlo
algorithm operates solely on the neighbour list.

The filler flocculation is simulated via a single type of site-exchange Monte Carlo
move. The Monte Carlo move consists of the nearest-neighbour node exchange of a
randomly chosen node with its random neighbour from the neighbour list. To save
the computational time, this is realized by exchanging the attendant nodes’ types.
An example of this Monte Carlo move is depicted in Fig. 3.2. Initially the central
node has the type 'polymer B’, while its neighbour in the upper right corner is
‘polymer A’. After the Monte Carlo move, the nodes exchange their types, and the
central node becomes 'polymer A’ whereas its neighbour in the upper right corner
is now "polymer B’. Each Monte Carlo move is followed by checking the Metropolis
criterion, i.e.,

exp[BAW] > &, (3.1)

where 7! = kgT, kg is the Boltzmann’s constant, 7" is the temperature, { —
RNDI]0,1] is a random number between 0 and 1. If this condition is satisfied,
then the respective move will be accepted. The quantity AW is related to the free
enthalpy change of the system dG.

Consider the equilibrium free enthalpy G of the system

Ge PG
Go2zGe ™ (3.2)
Z e
Here G; are the free enthalpies at fixed configurations i. At equilibrium
dG|T,P,Nk = ’)/jdAj, (33)

where P is the pressure, Nj is the number of nodes of type k, 7; is the interface
tension of a pair of type j and A; = n;a denotes the attendant total area of j-type
interfaces in the system. To keep things simple, we follow [19] and assume that the
effective contact area between nodes a is the same for all j. In general, however,
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Figure 3.3: Face-centered cubic lattice. Green and yellow nodes represent the poly-
mer A and B volume elements respectively, black nodes are filler aggregates.

this is not true, especially in randomized systems, where the contact area between
nodes can be different depending on the distance between them.

For a system developing towards equilibrium under N PT-conditions, we have
AW = —y;AA;, or,

exp[JAW] = exp[—Sv;aAn;]. (3.4)

The system configurations generated by using (3.4) satisfy (3.2) on average.
Hence, the algorithm will drive the system towards the lowest possible free enthalpy
G. Since the site-exchange Monte Carlo moves are local, their number will be a
rough measure of time. The last assumption is based on local equilibrium and the
local nature of Monte Carlo moves.

3.1.2 Initial Lattices

In [20] filler aggregates and polymer volume elements are modelled as cubic cells on
an attendant cubic lattice. As in this work we perform the Monte Carlo simulation
based on neighbour lists, we are not limited to any particular lattice type. Therefore,
different types of lattices can be tested, and the effect of the initial node distribution
in space on filler morphology can be studied. Note, that in this case we have to
recalculate the value of the contact area between nodes a, because the number of
nearest neighbours is different for each lattice type. In a simple cubic lattice, the
number of nearest neighbours is equal to 6, whereas the number of the nearest
neighbours in our system is defined by the cutoff radius r.,. The corrected value
of the contact area is calculated via @’ = 6a/n,, where n,, is the average number of
nearest neighbours in the system, and 6 is the number of nearest neighbours in the
cubic lattice. For instance, if n, = 12, then o’ = a/2, i.e., in the face-centered cubic
lattice, shown in Fig. 3.3, the contact area between nearest neighbours is two times
smaller than the contact area in the cubic lattice. The face-centered cubic lattice,
however, has a regular structure and cannot adequately represent rubber. Note that
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Figure 3.4: Possible distributions of the displacement ér,. Left — uniform distribu-
tion, right — Gaussian distribution.

rubber is an isotropic material and has two elastic constants, while the FCC crystal
has three different ones. To make the system isotropic, we randomly displace nodes
from their initial positions on a lattice by a displacement dr,, where o = z,y, z. We
use two different distributions of the displacement: the uniform distribution and the
Gaussian distribution, which are shown in Fig. 3.4. In the uniform distribution the
displacement depends on the minimum and maximum values a and b. Typically, the
minimum value a is set to zero. The width of the Gaussian distribution depends on
the variance, which also can be varied. Generally, larger values of the variance lead
to a broader peak. Another possible initial configuration is a random one. In this
case, coordinates of each node are set randomly within the simulation box length,
e,z €[0,L], y €0,L], z €[0,L]. Using the aforementioned randomized systems
allows avoiding undesirable effects due to irregularity of the lattice and ensures
isotropy of the simulated system. A common drawback of these systems is that the
number of neighbours of a node and the distance between them are arbitrary, and
thus, the contact area may vary significantly throughout the system.

3.1.3 Cell Index Method

The Monte Carlo morphology generator algorithm operates on systems containing
approximately 1.4 million nodes. Finding nearest neighbours and constructing a list
of neighbours in systems of such size is time and memory consuming. Note that the
usual double-loop implementation to find the neighbouring nodes scales as O(N?),
where N is the total number of nodes. In fact, with a finite cutoff radius 7., a
particle has only a limited number of neighbours equal to ~ 47/3 r2,(N/V) in a
general case, where V' is the volume of the simulation box. An alternative method
of keeping track of neighbours for large systems is the cell index method [121]. The
cubic simulation box is divided into a regular lattice of cells. The edge length of
each cell is | = L/s, where s = |L/r,:] and L is the simulation box length. Here
| 2] is the floor function, returning the largest integer that is less than or equal to
x. Next, the list of nodes in each cell is created. A node in a cell interacts only with
other nodes in the same cell and its 26 neighbouring cells. The number of cells to
accommodate all these nodes is s x s x s, where s = L/l. We identify a cell with a
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vector cell index

C=(Cs,¢y, ) (0<c, <5—1,0<¢, <s—-1;0<¢, <s—1),

and a serial cell index

c= cggs2 +cys + ¢,

or

ez = c/(s%),
¢y, = (¢/s) mod s,

¢, =c mod s.

A node with the coordinate 7 belongs to a cell with the vector cell index

Co = |ra/l] (a=1m,y,2).

The cost of this method scales with O(N) rather than O(N?) in the case of the
double-loop implementation, which allows to significantly speed up the determina-
tion of neighbours and decrease the simulation time.

3.1.4 Simulation Algorithm

Based on the information above, we can write down a simulation algorithm for
modelling of filler flocculation:

e Based on the lattice type, set initial coordinates of nodes and randomize them,
if needed.

e For each node, select the node type 'filler’ at random with the probability ¢;.
The rest of nodes has the type 'polymer’.

e Using the cell index method, find the nearest neighbours and construct a
neighbour list.

e Repeat the Monte Carlo step while ncurent step << TMC steps:

— Select a node at random.
— Choose a random neighbour of the given node.

— If the particles types are the same, then AW = 0.

If the particle types are different, calculate Weiq iocai-
— Swap the particle types.

— Calculate Wiewiocat and AW = W 10cal = Wotd,iocai -
Generate £ = RN DI0, 1].

Check the Metropolis criterion exp[SAW] > &.
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— If the inequality is satisfied, accept the step. If not, return the initial
particle types.

Note that during each MC step, we need to consider only the two nodes chosen
initially and their respective neighbours from the neighbour list. As AW is the
only quantity in the Metropolis criterion which can change, and all these changes
are local, we do not require to calculate contributions to W from other nodes. This
provides the opportunity to significantly reduce the simulation time and makes the
algorithm computationally efficient. For instance, performing 70 million MC steps
(50 MC steps per node on average and 1.4 million nodes) using the programming
language C++ takes several minutes only (on a Dell PowerEdge R7525 Server using
the AMD 7452 processor).

3.2 Screening Methods

In order to analyse filler morphologies simulated by the morphology generator and
to compare them with experimental data, we require additional screening methods.
These methods include the wetting-envelope — work of adhesion plots and trans-
mission electron microscopy (TEM). The first method is independent of simulation
and provides information on the compatibility between filler and polymer based on
their surface energies. Simulated TEM images allow visualizing filler dispersion in
a single polymer or in polymer blends and the time evolution of filler morphology.

3.2.1 Wetting-Envelope — Work of Adhesion Plots

Wetting envelopes are a helpful tool for analysing the compatibility between filler
and polymer. They are derived from the wetting-envelope equation. This equation
is obtained from (A.7) together with (A.5), when o = s and g = I:

cosf + 1
O + ) —— = \/W;i’nd + \/vé”yf- (3:5)

The equation is then solved for fixed values of the surface tensions of the liquid
and the solid and a contact angle 6 [123]. For solving this equation, we use an
approach described in [19]. We define the dispersive and the polar parts of the
surface tensions via polar coordinates for the liquid

vt = Rcosy  AF = Rsinv,
or for the solid
7%= R cosy/ AP = R'sin®’.

Solving for R and R', we get

VAdcos + /4L siny 2 4
cos v + sin (cos @+ 1)2

rwo) =
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Figure 3.5: Wetting-envelope — work of adhesion plot for natural rubber (Vl‘f =20.2
mJ/m? and b =55m]/ m?). Surface tension values are obtained by sessile drop
technique and taken from [122]. The solid lines correspond to the constant values
of the contact angle #, and dashed lines show the constant values of the difference
in work of adhesion AW. Fillers above § = 0° are perfectly wetted by the polymer.
Fillers outside the largest loop have the strongest tendency to flocculate. The plot
is made in style of [19].

d p 2 0 12
R e (cosd+ 1)

VAt cosy + fyfsinw’> 4

Then we obtain the following expressions for the surface tension of the liquid

= R,0)cosy AP = R(y,0)sinv,

and for the surface energy of the solid

v =R\ 0)cost A7 = R(¢,0)siny.

Both parts of the surface energy must be non-negative, which implies ¢ € [0, 7/2]
and ¢’ € [0,7/2]. Then for a fixed value of 6 the attendant dispersive and the polar
parts of the surface tension can be obtained. A natural choice is to consider the
polymer (p) as the liquid and the filler (f) as the solid. An example solution of the
wetting-envelope equation for a filler using the surface tension of NR is presented
in Fig. 3.5. The solid lines in the plot are obtained for the fixed values of # and are
called iso contact angle lines. Lower values of # correspond to higher wettability.
The dashed lines in the plot show areas with the constant difference in work of
adhesion — iso AW. The value of AW is given by

AW, = Wamp + Wa,ff — QWa,pfy (36)
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Figure 3.6: Simulated TEM images obtained for the NR system filled with carbon
black (74 = 20.24 mJ/m?, 4% = 5.46 mJ/m? 7§ = 20 mJ/m? ~} = 0 mJ/m?).
The thickness is 5d, the size is 50dx 50d, where d is the node diameter. The TEM
images are extracted after 50 MC moves per node on average. Left: green — polymer
nodes, black — filler nodes; right: the same as left but only filler nodes are shown.

or

AWQZQ(\/?J%—\/@QH(\/?;—\/T;)?. (3.7)

The difference in work of adhesion is the quantity used in the Metropolis criterion
(Eq. (3.4)) and denotes the Gibbs free energy change for separating a unit f —
p- interface from contact to infinity [124]. It tends to zero when the polar and
the dispersive parts of the surface energies of filler and polymer are equal and is
essential for filler flocculation [31, 125]. Larger values of AW correspond to a
stronger tendency for a filler to flocculate. Filler particles, which have the same
surface properties as the surrounding polymer, do not tend to form agglomerates
at all. Consequently, different filler surface modifications may be essential in order
to change the flocculation behaviour and improve the material’s performance.

3.2.2 TEM Images

Transmission electron microscopy is a helpful method to study the properties of
polymer nanocomposites. Aside from small angle X-ray scattering (SAXS), TEM
is the only method allowing to ’look’ into a rubber sample. Typically, experimental
samples have to be cut into slices with a thickness less than 100 nm [126]. The sim-
ulated TEM images are also obtained by cutting slices through the system and can
be helpful in visualizing the flocculation process. They can also be used to qual-
itatively compare the simulation results with experiments. The cuts are usually
extracted after a certain number of MC steps and have a fixed size and thickness.
The nodes in these images are shown as circles with a unit diameter and the atten-
dant colour corresponding to the node type. An example is presented in Fig. 3.6.
The TEM images in this figure correspond to the NR system filled with the CB-type
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Figure 3.7: Simulated TEM images with different thicknesses (from left to right:
5d, 10d, 15d). The system is NR filled with carbon black (v = 20 mJ/m?, vy =0
mJ/m?). The morphologies are extracted after 1000 MC steps per node on average.

filler. The underlying lattice is a face-centered cubic crystal, with the subsequent
random displacement of nodes according to the uniform distribution with 674 ez
= 0.3d. On the left-hand side, polymer nodes (green) are shown together with filler
nodes (black). This kind of representation allows to obtain the information on filler
distribution. The filler distribution is particularly important for polymer blends
consisting of immiscible polymers, where the polymers can form different phases.
On the right-hand side of this figure, only filler nodes are shown. The darker shades
are the result of stacking several particles along the line of sight. In this image the
filler network can be clearly seen, so this kind of visualization can be helpful in
studying the flocculation process itself and the filler network evolution with time.
It can also be used for determining the filler agglomerate size and for comparison
studies of the filler dispersion obtained for different fillers. The most information
on the filled systems can be obtained by combining both types of representation.

Note that when comparing the simulated TEM pictures with experimental ones,
not only the linear size should be considered, but also the slices’ thickness. In
Fig. 3.7 three TEMs obtained for the same system are presented, which have
different thicknesses, namely, 5d, 10d and 15d. Although the system is the same,
the morphologies look quite differently, so it is essential to compare the slice’s
thickness with the experimental one. Notice, that in the latter case, the thickness
may vary significantly depending on the experimental conditions.

3.3 Examples

In this section, some examples obtained via the MG algorithm will be discussed.
Firstly, we will compare filler morphologies obtained for different lattice types. Sec-
ondly, we will study the effect of changing the cutoff radius 7., on the average
number of nearest neighbours and, hence, on the number of interfaces in the sys-
tem. Therefore, we will also compare the morphologies modelled using various
values of r.y;.

Fig. 3.8 shows simulated TEM images obtained for different lattice types. The
last image in the bottom row corresponds to a random placement of nodes into the
simulation box, while the first picture in the upper row is obtained for a regular FCC
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Figure 3.8: Simulated TEM pictures obtained for different lattice types. The num-
ber in each panel is equal to the average number of neighbours in the system. The
cutoff radius r.,; is equal to 1.3.

Figure 3.9: Simulated TEM pictures obtained using different values of the cutoff
radius 7.,:. The number in each panel is equal to the average number of neighbours
in the system. The underlying lattice is an FCC randomized using the uniform
distribution of the displacement.
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lattice. All other images represent randomized FCC lattices, where the displacement
distribution and the distribution parameters are varied (from left to right, from
top to bottom: the uniform distribution of the displacement and 074 e = 0.3d;
Gaussian distribution with ¢ = d; Gaussian distribution with ¢ = 10 d, where d is
the node’s diameter). In the upper right corner of each panel, the average number of
nearest neighbours in the respective system is given. The system is a 50/50 blend
consisting of NR (v¢ = 20.24 mJ/m?, 72 = 5.46 mJ/m?) and SBR (v¢ = 29.91
mJ/m? % = 1.64 mJ/m?) plus filler (v = 20 mJ/m?, 7§ = 10 mJ/m?). The TEM
images are extracted after 1000 MC moves per node on average, the thickness is 5d,
and the size is 100dx 100d. The number of nodes in each system is approximately
1.4x 10°. If the size of the smallest non-breakable aggregate is about 60 nm, which
is typical for carbon black (for instance, the size of these aggregates for N234 is
66 nm [120]), then the resulting linear size of these images is in pm-range (=~ 6
pm, assuming that the polymer volume elements are of the same size as the filler
nodes). Note that generally the images look similar, i.e., the polymer blend tends
to separate forming two subphases consisting of NR and SBR. The filler typically
concentrates in the NR subphase and forms agglomerates. However, the size of the
filler agglomerates is different depending on the underlying lattice structure. The
largest filler agglomerates are observed for the regular FCC or when randomizing
displacements are small. In addition, in these cases the lattice structure can be
clearly seen. When randomizing displacements are large, e.g., for the images in
the bottom row, the filler agglomerates are small and can be hardly seen. The
pictures in the upper row are visually comparable, although the average number of
the nearest neighbours in these systems is slightly different. The system with the
uniform distribution of the displacements has an intermediate agglomerate size and
does not exhibit the regular lattice structure, i.e., it can be considered as isotropic.
Additionally, the average number of neighbours in this system is the same as in the
common FCC, which implies that the average contact area between nodes is the
same.

The cutoff radius r.,; determines the number of neighbours of a given node, i.e.,
when the cutoff distance is varied, the average number of interfaces in the system
changes. We use the 30 % uniformly displaced FCC as our standard lattice and
simulate filler flocculation using different values of the cutoff distance r.,;. The
resulting TEM images are shown in Fig. 3.9. The simulation parameters, surface
energy values and procedure for obtaining the TEM pictures are the same as above.
The average number of nearest neighbours in each system is given as well in the
upper right corner of each panel. Note that the general tendency is similar to the
one shown in the previous figure, i.e., the polymers form two subphases consisting
of NR and SBR, and the filler concentrates in the NR subphase. Simultaneously,
the cutoff distance strongly affects the obtained morphologies. The system with
5 interfaces on average looks more dispersed and homogeneous in comparison to
the system with 47 neighbours on average, although the value of the contact area
between nodes was corrected in each case. The filler agglomerate size also increases
with 7.,;. This might happen due to a more efficient site exchange, when the number
of neighbours is large, and Monte Carlo steps are accepted with a larger probability.
On the other hand, in real systems, we cannot expect a filler aggregate having 47
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different interfaces with its surrounding. Therefore, we consider r.,; = 1.3 to be the
standard value in our simulations because it corresponds to 12 nearest neighbours
(or interfaces) on average for one node — the value one would also expect from a
liquid-like packing of spheres.
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Chapter 4

Dynamic Mechanical Analysis via
Simulation

Dynamic mechanical analysis is a frequently used experimental technique to in-
vestigate the mechanical properties of elastomers. In order to study the dynamic
characteristics of systems created by the morphology generator, discussed in the
preceding chapter, we shear the virtual morphologies and compute their attendant
dynamic moduli. During shear simulations, we apply sinusoidal strain to the sys-
tem and measure the resulting microscopic stress. The definitions of stress and
strain refer to the theory of elasticity, and they can be found in Appendix B. In this
chapter, we present the basics of DMA simulations. We also discuss the setup of
the system, the simulation algorithm and how the interactions are defined, as well
as computer techniques used to model DMA.

4.1 Set Up

The Monte Carlo morphology generator, discussed in Chapter 3, typically operates
on systems containing approximately 1.4x10° nodes. The dynamic simulation, how-
ever, updates the positions, the velocities and the forces for all nodes during each
step. Hence, we must store these variables for at least 2 steps: the previous and the
newly calculated ones. This large number of variables, which are updated during
each step, effects significantly the computational time. Therefore, for investigating
the dynamic properties, we consider subsystems of the original morphology. The
linear dimension of the subsystems is five times smaller than that of the original
morphology, which is . = 100d. To keep results consistent, we cut several subsys-
tems from different places of the original system. The final result is then obtained
by averaging over these subsystems.

In the morphology generator, the interfaces between nodes are characterized
by the surface tensions of the components. In the DMA simulations, interactions
between nodes are modelled via springs. Generally, there exists no particular al-
gorithm for determining the form of the microscopic elastic forces based on the
surface energies. Here we apply the idea illustrated in Fig. 4.1. In the MG, each
node has a particular number of nearest neighbours, and it shares a common in-
terface with each neighbour. In the DMA simulation part, the interface tensions

49
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spring \ @

Figure 4.1: Left: the original spacial distribution of nodes generated by the morphol-
ogy generator; right: nodes are connected to their neighbouring nodes via attendant
springs. Note that thin lines indicate springs which are harmonic independent of
their strain, while thick lines and lines composed of both line types indicate springs
which can reversibly break depending on strain.

are replaced by attendant springs, with the force constant depending on the type
of nodes. The parametrization of the springs, describing the interactions in the
system, is discussed in Section 4.3 of this chapter.

4.2 Simulation Algorithm

We assume local equilibrium in the system, which implies that the sum of the forces
acting on a given node 7, consisting of the friction and interaction forces, is zero:

ﬁfric,i + ﬁnn,i = 0. (41)

Here F fric,i 15 the friction force and ﬁnm is the force due to interactions with neigh-
bouring nodes. Due to the balance of forces, each node moves uniformly without
acceleration. During shearing, the friction force acting on a particular node is given
by

where m; is the mass of node i, v is a friction coefficient, @; is the velocity of
node ¢ and u; is the shear velocity profile at node ¢. Note that the friction force
is determined not by the absolute velocity of node i, but by the difference of the
absolute velocity of ¢+ compared to the velocity of the shear profile at the position i.
The node will experience a drag-force trying to adjust its velocity to the motion of
the shear profile. Combining equations (4.1) and (4.2) and using m; = 1, we obtain

o i(t) = (i(t) = wi(t)) = 0. (4.3)

Now we can use the Taylor expansion of the position of the i-th node:

7 (t + 0t) = 73(t) + Ui (t)5t + O(5t?). (4.4)
Here, dt is a time step. Note that the error is of the order 6¢* due to the balance of

forces, which implies that the acceleration is zero. Using (4.3) and (4.4), we obtain
the following algorithm:

G (t) = —Ei(t) + ai(t) (4.5)

~Q|>—‘
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uz)=u-z

Figure 4.2: Left: shear velocity profile, where w4 is the macroscopic shear rate; right:
simulation snapshot of a filled binary polymer system under shear deformation.

7i(t + 0t) = 7i(t) + Ui (t)dt, (4.6)

which is implemented as follows:

e Update the shear strain u(t) = ug sin (wt) and the shear rate u(t) = uow cos (wt).

Calculate the forces F;(t) based on the coordinates from the previous step.

Calculate the velocity profile @;(t)) = a(t) - z(t).

Calculate the velocities 4;(t).

Calculate new coordinates 7;(t + 0t).

Note that the shear velocity profile i; is calculated for every node because it depends
on the position of a node in the z-direction, as shown in the left panel of Fig. 4.2.
In the right panel of this figure, a snapshot of a filled binary polymer system under
shear deformation is depicted. The system’s morphology was extracted after 1000
MC steps per node on average and represents a 50-NR/50-SBR blend with 20% vol.
filler (v = 20 mJ/m?, 7% = 20 mJ/m?) at 20% strain amplitude.

To apply the aforementioned simulation algorithm, we also have to define the
initial conditions. At time ¢t = 0, the shear u is zero:

u(t = 0) = ugsin (wt) = ygsin (w - 0) = 0,

whereas the shear rate ug is maximal and equal to

U(t = 0) = ugw cos (wt) = upw cos (w - 0) = upw.

4.3 Interactions

Combining the morphology generator with the shear simulation requires a justifi-
cation of the form of the interactions. Note that there exists no exact procedure



52 CHAPTER 4. DYNAMIC MECHANICAL ANALYSIS VIA SIMULATION

Figure 4.3: Basic types of interactions in the system and their respective forces.
From left to right: polymer-polymer, filler-polymer, filler-filler interactions. The
blue spheres represent filler particles, white — polymer volume elements.

allowing to estimate the internal forces from the surface tensions. In the DMA
simulation part, we model all types of interactions in the system via springs:

n; —
an,i = E kij (Tij,Oi - Tij)- (4-7)
=1 "

Here n; is the number of neighbours of node i, k;; is a spring constant between
nodes 7 and j, 7;; is the vector between ¢ and j, 7;; is the distance between 7 and
J and 750 is the equilibrium distance between ¢ and j assigned originally by the
morphology generator. Hence, the pair interaction potentials can be described by

1

wig = Skij(rijo = rij)". (4.8)
Basic types of interactions in the system are presented in Fig. 4.3. The interac-
tion between polymer nodes is a simple harmonic spring with the strength kpp. This
is valid for all interactions between polymer nodes, despite the polymer type. The
filler-filler interaction is also harmonic, with the strength krprp >> kpp within the
distance Rpp; beyond Rpp the filler-filler interaction is set to zero. Therefore, the
parameters krpp and Rpp model both the stiffness and the interaction range. The
interaction between polymer and filler nodes also depends on the node-to-node sep-
aration: the spring constant kpp is used at distances less than the bond-breaking
distance for the polymer-filler interaction Rpr. Beyond this cutoff distance, the
polymer-filler interaction can be characterized by the spring constant kpp. This is
again true for both polymers. This setup of springs mimics the reversible breaking
of filler-filler and polymer-filler bonds. The motivation for this type of interactions
is shown in Fig. 4.4 and is based on the Jump-in-Jump-out model for the interaction
between filler particles embedded in a polymer matrix. The model is thoroughly

discussed in [127, 128].
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Figure 4.4: Forces acting between two filler aggregates (or particles) in a polymer
matrix. Left: the red line corresponds to the harmonic restoring force due to the
elastic matrix when two neighbouring particles are separated by a distance r. The
direct short range interaction between the particles is depicted by the blue line.
Finally, the dashed green line is the sum of the two forces. The arrows indicate
the relative motion of the particles trying to establish a stable equilibrium while
being separated (right arrow; bond breaking) and upon relaxation of the outside
force causing the separation (left arrow; bond closing). Right: the spontaneous
transition from a strong spring constant to a weak spring constant at » = z mimics
the reversible bond breaking and causes energy dissipation or hysteresis (green
shading). The hysteresis here is akin to the analogous hysteresis depicted in the
more detailed sketch on the left.

We assume that two nearest neighbour filler aggregates in a polymer matrix
interact mainly via short range forces (the left panel of Fig. 4.4). An example
for such a force can be a hydrogen bond between silica particles. But a contact
between carbon black particles also has a short range component. The range of this
interaction is z, and z is between 1 A and 1 nm, while the typical aggregate size
d is usually about 50-100 nm [120]. Therefore, we can expect that z/d ~ 1072 or
even less [129].

The importance of the short range interactions in tire tread materials can be
justified if we consider the onset of the Payne effect, which is typically observed
at less than 1% strain. For sake of simplicity we consider a necklace model, which
represents an elastomer nanocomposite in one dimension as a set of filler aggregates
separated by narrow gaps filled with polymer. Under deformation, the polymer-
filled gaps must accommodate all the strain, since filler does not deform. Therefore,
the local strain in the gaps is amplified by the ratio d/d,, where d, is the gap
width (see also [38]). The early onset of the Payne effect implies that x/d is small,
i,e. ~ 0.01 or even less. When the distance between aggregates exceeds x, the
reversible breaking in the filler network occurs. Hence, reasonable values of bond
breaking distances R should be between 1.017;0 and 1.0017;;0, where 745 is an
equilibrium distance between nodes ¢ and j. Fig. 4.5 represents the idea of the
strain amplification in the context of our model.

The total interaggregate force is the sum of two contributions, the aforemen-
tioned direct particle-particle force and the linear restoring force due to the elastic
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Figure 4.5: Necklace model. Left: filler aggregates separated by narrow gaps in one
dimension before deformation. Right: Under deformation, the distance between
the aggregates exceeds the bond breaking distance R and the reversible breaking
occurs. Here r( is an equilibrium distance between two nodes.

properties of the surrounding polymer matrix. Both forces depend on the distance
between the aggregates r. An external force would result in a vertical shift of
the force curve. When the applied external force is cyclic, the resulting path in
the F' — r—plane would produce spontaneous ’jumps’ due to the loop in the force,
shown in the Fig. 4.4 by green arrows. During opening and closing of the contact
between two aggregates (jump-out-jump-in), the loop in the F' — r—plane produces
hysteresis and the energy dissipation, shown in the Fig. 4.4 as the green shaded
area [61, 130].

The right panel of Fig. 4.4 illustrates energy dissipation due to the aforemen-
tioned reversible bond breaking, and how it can be modelled in terms of springs.
The plot shows the force vs. distance behaviour for two springs with the force
constants k; and ko, where k1 > ko. Note that even if ko is set to zero, there is
always some restoring force due to the surrounding polymer matrix, and in reality
ko is never equal to 0. When external deformation is applied, the spring constant
is initially equal to k;. At r = z the spring spontaneously weakens (this is what
happens when the bond reversibly breaks) and the stretching continues with ks.
The path in the F' — r—plane, however, follows the green arrows because at each
step the system is in its force equilibrated state. Thus, the path in the F'—r—plane
during cyclic deformation leads to hysteresis (green shaded area) and dissipation of
energy. This dissipation mechanism, which occurs between real filler aggregates as
well, was studied in detail using atomistic molecular dynamic simulations [60, 131].

4.4 Boundary Conditions

In computer simulations, we cannot simulate a macroscopic system because of mem-
ory and speed constraints. However, by choosing periodic boundary conditions, we
can let a system with a small number of particles look as if it has macroscopic di-
mensions. The particles are placed in a central simulation box, which is surrounded
by infinitely many image simulation boxes due to periodic boundaries. These sim-
ulation boxes form a lattice, and every lattice cell contains the same number of
particles at the same positions (see Figure 4.6). If a particle leaves the original sim-
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Figure 4.6: Periodic boundary conditions. The central blue cell is the original
simulation box surrounded by image cells. The circle with the radius r.,; determines
the distance of interactions.

ulation box, it reappears from the opposite face. A particle can interact not only
with real particles, but also with images of the real particles, none of which needs
to be stored in the computer’s memory. The distance of interactions is typically set
by a cutoff radius r.,;. Because the original and the image cells are identical, it is
not necessary to save the positions of all images, but the positions of real particles
in the central simulation cell. If 7; are the positions of real particles in the origi-
nal simulation box, we can easily determine the positions of atoms in the periodic
images by

T—l;image _ f;real + k&’z + ZC—L‘y + mC_L’Z (49)

i, = [L,o,o],a*yz [o,L,o

—

&, = [0,0,L}, (4.10)

where L is the simulation box length, k, [, m are integers.

We can implement periodic boundary conditions by using the so-called minimum
image convention. We consider only interactions between particle pairs ij satisfying
the condition r;; < 7. For particle ¢ at position 7; = [z;,y;, 2;] and particle j at
position 7; = [x},y;, 2], ¢ # j, the minimum distance r;; is

(™R = () o () + ()2, (4.11)

iJ i iJ i
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Figure 4.7: Shear boundary conditions.

where

r" = x;; — L Round [TJ]’

yii" = Yij — L Round [TJ]’
min Zij
zii" = zij — L Round [fj]

Here z;; = x; — j, yij = ¥i — Yj, %ij = zi — 2;, and L is the length of the simulation
box. The function Round|a] rounds a to the nearest integer.

4.4.1 Shear Boundary Conditions

Applying shear requires a modification of the periodic boundary conditions. The
method for shear boundary conditions was first proposed by Lees and Edwards in
[132]. The algorithm we use here is described in [121]. The simulation box and
its images centred at (z,z) = (£ L,0), (£ 2L,0), etc., i.e., the boxes D, E and F
in Fig. 4.7 are taken to be stationary. Boxes in the layer above, (z,2) = (0, L),
(£L,L), (£2L, L), etc., i.e., A, B and C, are moving at a speed @(t) L in the positive
a-direction. Here u(t) is the shear rate, or strain rate and L is the simulation box
length. Boxes in the layer below, (z,z2) = (0,—L), (= L,—L), (£ 2L, —L), etc., i.e.,
G, H and I, move at the same speed in the negative z-direction. In this case, the
minimum image correction should be

x;j = x5 — u(t) - L Round [2—5],

where L - u(t) = Ax(t) is a current value of the displacement between the boxes in
different layers, u(t) is the dimensionless strain, z;; = z; — z;, L is the length of
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the simulation box. Hence, we apply an additional correction to the x-component,
which depends on the distance between the particles in the z-direction. The new
periodic boundary conditions are

xi; = xi; — u(t) - L Round _%],

ij

| IR

i = x;; — L Round [m—[lj
min Yij | (4.12)
yi; " = yi; — L Round [f

2" = 2 — L Round [Z—[Zj

where vi; = vi — yj, zij = 2 — 2;.

In order to avoid a substantial difference between the positions of the central
simulation box and its images, we can keep replacing particles in the central box,
as they cross the boundaries, by using additional equations. When a particle leaves
the simulation box, its position is not the same as in the case of usual boundary
conditions because the images are shifted. Therefore, we use the following correc-
tions

x=2x—u(t) - L Round [%} (4.13)
for the x-coordinate of the particle and
vy = v, — U(t) - L Round [%} (4.14)

for its velocity. Here 4(t) is again the shear rate and «(¢) - L is the difference of the
velocities between different layers. Then we apply the following equations to return
the particle back into the original simulation box

r=1x — L Round
y =y — L Round (4.15)

z =z — L Round

Sl oS N s

Fig. 4.8 presents a more detailed picture of the calculation of distances be-
tween particles in the case of shear. The blue diamond interacts with an image
of the red circle in the original simulation box, while the real red circle is sev-
eral boxes away. Initially, we make a correction to the shear in the z-direction by

x =2z — L Round [%} u(t) (blue arrow). Then we return the red circle to the central
layer of the simulation boxes by z = z — L Round [%} (purple arrow). Later, we use

x =x — L Round [%] to move the red circle into the original simulation box (green

arrow). If there is a difference in the y-coordinate, we repeat the procedure. After
applying these equations, both particles will be in the original simulation box, and
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Figure 4.8: Calculation of distances between particles for the shear boundary con-
ditions.

the distance between them can be calculated easily.

Remark: During the runs, it was found that the DMA simulation fails at
strain amplitudes above ~ 45%. The reason for such a behaviour is unclear, but as
systems fail at shear boundaries, it probably may be caused by the shear boundary
conditions, which require additional modifications for the case of large strains. In
the following, most of the curves for the dynamic moduli and the loss tangents are
terminated at uy = 20%. Selected results may include larger strains up to 40%, but
no strain amplitudes beyond 45% have been included.

4.5 Stress Calculation

During simulation, homogeneous oscillatory shear strain with amplitude ug and
frequency w is applied to the zz—plane in the +x—direction via u = wg sin(wt)
using the shear boundary conditions discussed above. The xz—component of the
microscopic stress tensor is computed via

1 xz’jzij
2V i Tz‘j
i#j

~
Ogpr

ij- (4.16)

Here x;; = x; — x; and z;; = 2; — 2z; are the distances between nodes 7 and j in the
x- and z-direction respectively, r;; is the total distance between ¢ and j, and Fj; is
the magnitude of the total force between nodes 7 and j. A more detailed discussion
of this equation can be found in Appendix B.2. As in Section 2.4.1, we assume that
the resulting stress obeys the sine function with the same frequency as the applied
strain, but with a different amplitude and a phase shift. Therefore, the stress data
is fitted via 0 = o¢ sin(wt + J), where oy and ¢ are adjustable parameters. The loss
modulus g can be obtained via the work dissipated during one shear cycle (see
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Figure 4.9: Top: a general form of the strain and stress functions; middle: hysteresis
of stress and strain for an unfilled system; bottom: hysteresis of stress and strain
for a filled system.
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Figure 4.10: Storage and loss moduli vs. strain amplitude ug (left) and frequency
w (right) obtained for a 20% filled NR system (v = 20 mJ/m? ~§ = 10 mJ/m?)
using Eq. (2.11) — (2.12) (green) and Eq. (2.15) (blue).

also (2.15))

W = ]{adu = mp"up.

Note that the dissipated work in the above equation is a well defined quantity even
in a highly non-linear composite. Applying linear analysis, we obtain the storage
and the loss moduli using (2.11) and (2.12), i.e

, O

0
= %0 cos(s
0 ” cos(d),

" 0o .
po= o sin(0).

If we plot the resulting stress versus the applied strain, we can observe the
hysteresis, which is typical for a viscoelastic material. An example of simulated
stress-strain curves is shown in Fig. 4.9. In the top panel of this figure, a general
form of the applied strain (blue curve) and the obtained stress (red curve) is shown,
as well as the fitted stress according to o = o sin(wt + §) (black dotted curve). The
phase shift between these functions gives §, and the tangent of this phase shift is
the loss tangent. In the next two panels, the stress-strain curves for both unfilled
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(middle panel) and filled systems (bottom panel) are presented. Both trajectories
start initially at the origin and then after several cycles each system reaches its
steady state. For the unfilled system, the standard elliptical shape can be observed,
which is similar to the experimental one and to the result obtained in the discussion
of the Zener model in Section 2.4.1. The case of the filled system is, however, more
complicated. The shape of the curve is highly non-linear, which is also consistent
with experiments, and the system requires more time to establish a stable trajectory.
The loss during the first cycle is larger than during the following ones. This is also
in agreement with experimental data, and a possible explanation might be that
during the first shear cycle the number of broken bonds is larger than during the
subsequent ones. Note that even though the bonds in this model are reversibly
broken, it may take significant time for them to reform. If the local deformation
persists, this may never happen. Overall, the shape of the curves allows to calculate
the area enclosed by the curve and get the value of the dissipated work. Based on
this value, the dynamic moduli can be calculated.

It is worth noting that (2.15) is based on (2.11) and (2.12) in conjunction with
o = ogsin(wt + §). This implies that the loss moduli values obtained via (2.12) and
(2.15) have to be the same. Fig. 4.10 provides an example showing the storage and
the loss moduli as functions of strain amplitude and frequency obtained using the
two approaches. The blue curves are calculated based on the value of the dissipated
work, whereas the green curves are obtained using (2.11) — (2.12). The error bars
are calculated based on five independent subsystems extracted from the final con-
figuration of a filled NR system. It can be observed, that the error bars showing
the differences between subsystems are larger than the numerical difference in the
approaches to the calculation of the moduli. Overall, the two approaches provide
sufficiently close results. The linear one-coefficient Fourier analysis is commonly
used in experiments, even for highly non-linear systems. In our model, it is also
helpful in terms of reducing the number of simulation parameters. Therefore, in
the remainder of the work, we will follow this experimental approach and will use
(2.11) and (2.12) to calculate the dynamic moduli. Eq. (2.15) will be used as a
cross-check for the obtained moduli values.
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Chapter 5

Model Parameterization

A coarse-grained modelling approach, like the one developed in this thesis, is similar
to the design of phenomenological forcefield models for atomistic simulations (e.g.,
[133]). The latter contain a large number of parameters, which must be adjusted in
a development step called parameterization using so-called training sets. A training
set is a set of experimental systems, which is small but representative for the range
of applications for which the forcefield is intended. Experiments on the training
set are carried out, and the results are matched to the model by variation of the
parameters. Generally, this is a lengthy undertaking, requiring a sizeable group of
people. This of course is not possible in the present case. Instead, the purpose of
this section is to explain how the parameterization of the coarse grained model can
be developed and, if necessary, generalized to a larger set of polymers and fillers.
The results presented in this chapter have also been published and can be found in
[129].

5.1 Morphology Generator

We focus on systems consisting of three main components: two polymers — NR
and SBR plus filler. These components can be characterized by the respective
surface tension values, which are compiled in Table 5.1. The values of the surface
tensions for the polymers are fixed, whereas the filler surface energy is variable.
By varying the filler surface energy, we can mimic different fillers, such as carbon
black and silica. The attendant morphologies, obtained for different fillers, can
also be compared to each other or to experimental ones. Subsequently, any filler
morphology can be tied to the mechanical characteristics of the system via the DMA
simulation.

In Chapter 3 we discussed the effect of the lattice type and the cutoff radius on
the resulting morphologies using some selected examples. Throughout this chapter,
we use the displaced FCC lattice with 0r = 0.3d (chosen according to the uniform
distribution) with r.,; = 1.3d. At these conditions, the average number of nearest
neighbours in the system is close to 12. We study systems with the linear dimension
L ~ 100 (in units of d), which yields for the number of nodes n = 4(%)3 ~ 1.4-106.
Here d is the nearest neighbour distance and 4 is the number of nodes per unit cell
in the FCC crystal. The parameters used for the simulation of flocculation are

63
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Table 5.1: Surface tension values of the components. The values of the surface
tensions of the polymers are taken from [122].

Component | v¢ [mJ/m?| | 4% [mJ/m?| | Vot [mJ/m?]
NR 20.24 5.46 25.70
SBR 29.91 1.64 31.55
fller 10, 20,30 | 0,5,10,20 | 10, ..., 50

Table 5.2: Parameterization of the morphology generator.

Parameter Value
lattice type randomized FCC
maximum random displacement 0.3d
simulation box linear dimension ~ 100d
number of direct neighbours 8 to 18
average number of direct neighbours ~ 12
number of nodes ~ 1.4-10°
cutoff radius 1.3d
reduced inverse temperature! a/(kgT) = 0.421 m?/mJ

compiled in Table 5.2.

The morphology generator brings the system towards the lowest possible Gibbs
free energy. In real systems, however, the lowest possible Gibbs free energy cannot
be achieved due to kinetic and spacial constrains. Therefore, for the validation of
the morphology generator and for the estimation of the number of Monte Carlo
steps required for a similar filler morphology, the simulated TEM images can be
compared to experimental ones. In addition, small angle scattering intensities for
a different number of MC steps can be computed and compared to experimental
measurements, as shown in [20, 21]. However, this a very time-consuming procedure,
which here was not possible. The experiments require synchrotron radiation, and
thus the data for specific systems are not always available.

The simulation initially starts in a system with randomly distributed nodes
and, thus, allows to observe the filler network development with the number of MC
steps. The morphologies can be extracted out of the simulation after an arbitrary
number of simulation steps. If filler agglomerates are present, their typical size
can be compared to the experimental one observed for the same fillers, polymers
and processing conditions. An example of the filler network development in time
is presented in Fig. 5.1, where only filler nodes are shown. The morphologies in
this picture correspond to a filled NR system with 20 vol. % filler and filler surface
tension values 7? = 20 mJ/m? and 7? = 0 mJ/m?; the thickness of the images
is 5 x d. The average number of MC steps per node is given above each of the
simulated TEM images. Note that the initial distribution of filler nodes is random
and, as the simulation time increases, the filler tends to form agglomerates, which

!Corresponds to T, = 140°C.
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Figure 5.1: Example of the filler network development with the number of MC
steps. The number above each panel shows the average number of MC steps per
node. Only filler nodes are present.

become larger with the number of MC steps. Notice also the loss of connectivity
between agglomerates between 100 and 500 MC steps.

Fig. 5.2 shows a simulated TEM image in comparison to an experimental TEM
image obtained for SBR with 20% of CB N330 taken from [134]. The simulated
TEM image has a thickness of 5 x d and is scaled, so that the size of the circles
in this TEM image matches the size of agglomerates in the experimental TEM
image. In addition, the TEM image is extracted after an average of 50 MC steps
per node. Notice, that the typical size of agglomerates in the simulated TEM image
is similar to the typical agglomerate size in the real TEM image. Increasing the
number of MC steps, as was shown above, leads to the loss of connectivity between
agglomerates in the simulated TEM image, which does not happen in real systems.
Therefore, 50 MC steps per node is a reasonable value to get the agglomerate size
being close to the experimentally observed one.

5.2 DMA Simulation

In the DMA part of the model, one has to find the proper values for the parameters
used during shear simulation. Initially, we will fix the parameter values for unfilled
polymers. The next step is then to find how polymer blends can be modelled. We
will continue by adding filler to the system, mimicking filled elastomer systems.
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Figure 5.2: Left: experimental TEM picture taken from [134]. Right: simulated
TEM image extracted after 50 MC steps per node on average. The thickness of
the simulated image is 5 x d. Darker regions are the result of stacking of several
particles along the line of sight.

Table 5.3: Basic parameters for DMA simulation.

Parameter Symbol Value Comments
number of nodes n 1.1—-1.3-10%
friction coefficient 0 1.0
number of strain cycles ~ 5
strain amplitude Ug 0.1 to 20 %
time step ot depends on w | e.g. 5-107* for w = 0.2

In the latter case, the parameter values describing filler-filler and polymer-filler
interactions have to be established.

5.2.1 Unfilled Pure Polymer

Before we start with filled elastomer systems, we need to adjust our model for the
case of pure polymer systems. Our general motivation is to obtain the simulated
tand curves comparable to the experimental ones for the same polymers. Subse-
quently, we can use these results to model a system with filler. At this point, there
is no need to use the morphology generator because pure polymer systems consist
of a single component. The basic parameters used for the shear simulation are
compiled in Tab 5.3.

There is only one type of interaction in unfilled systems, i.e., the interaction
between neighbouring polymer nodes, which can be described via a simple harmonic
spring kpp. In a system consisting of a network of harmonic springs, the only source
of loss is the friction loss between nodes. The left panel of Fig. 5.3 shows the
experimental loss tangents for natural rubber (NR) and styrene-butadiene rubber
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Figure 5.3: Left: the experimental tan d for NR and SBR vs. experimental frequency
w taken from [135]. Right: the simulated loss tangent tand for kpp = 0.001 and
various friction coefficients v vs. Tw; here 7 = v/kpp, w is the simulation frequency.

(SBR) vs. frequency w. In the right panel of this figure, the simulated loss tangents
tand vs. 71w for a pure polymer system with kpp = 0.001 and various friction
coefficients «y are presented. Here 7 = /kpp, i.e., changing the friction coefficient
~ only affects the position of the tand peak, but not its height. The same is true
for kpp. Note that the experimental tan § peak height in pure polymer systems lies
between 1 and 2, whereas the simulated tan d is about one order less. To be able to
adjust the height and the position of the tand peak, we require additional model
parameters.

Bimodal Distribution of Springs

A simple model that mimics dynamic mechanical properties of pure polymers is the
Zener model, discussed in Section 2.4.1. The Zener model consists of a spring p
in parallel to another spring ps and a dashpot 7 in series. The tand curve in the
Zener model is given by (see also (2.26))

1-46 Tow

tand = = AT

where 6 = p1/(p1 + pe) and 7 = 1/ us. Setting py & po yields tan § .. ~ 0.35 (see
also Fig. 2.13), which is too small compared to the experimental results. However,
by varying 6, i.e., the ratio between these two spring constants, we can adjust the
peak height of the loss tangent. The results for tand vs. 7w, obtained for different
values of @, are shown in Fig. 5.4. The lowest tand corresponds to # = 0.8, while

= 0.1 leads to the loss tangent peak being close to 1.5. Following this idea, we
model each polymer via two springs with significantly different values k. and k-.
The subscripts > and < refer to a strong and a weak bond, respectively. Note that
the terms weak and strong reflect only the values of spring constants, i.e., both weak
and strong bonds are not breakable in any sense. Within each polymer, the values
of spring constants k. and k-~ are assigned randomly, but according to a given ratio
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Figure 5.4: tan 0 obtained for the Zener model using different values of 6.

Table 5.4: Compilation of DMA parameters for pure polymers.

Parameter | Symbol | Value Comments
NR-NR EER=NRE 1078 weak spring constant
NR-NR FL AN 0.2 strong spring constant
zh 0.7 | fraction of weak springs in NR
SBR-SBR kiBR_SBR 107° weak spring constant
SBR-SBR | k3BE-SBE | (1 strong spring constant
zIBR 0.56 | fraction of weak springs in SBR

T.. The value z. is the ratio of weak springs in the system, i.e., the number of
weak springs divided by the total number of bonds. The values k., k< and x_ allow
to adjust the tan  peak position and height, as will be explained below.

We start with adjusting the peak positions using the experimental data for NR
and SBR (see Fig. 5.3). Note that the experimental peak position for SBR is located
at a lower frequency than the peak for NR, and they are separated by approximately
2 orders of magnitude in units of Hz. Fig. 5.5 shows the result of a variation of
k-, k~ and z. in a pure polymer system. The friction coefficient ~ is equal to 1.0.
Notice that smaller values of k. shift the tand peak position to lower frequencies
and increase the peak height, while changing of k- and x. affects mainly the peak
height and barely its position. We choose the values k. = 107> for SBR and k. —
1073 for NR as the standards. The reason is that for all values k. > 1072 no peak
height adjustment is possible because the peak height remains the same regardless
of k. and z.. On the other hand, the values k. < 107° require significantly smaller
time steps, which increase the computational effort.

After setting the positions of the simulated peaks for NR and SBR using dif-
ferent values of k., the next step is to adjust the peak heights according to the
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Figure 5.5: The loss tangent vs. simulation frequency w for a systematic variation
of k-, k~, and z. in a pure polymer system.



70 CHAPTER 5. MODEL PARAMETERIZATION

experimental data. To achieve that, we vary the values of k-~ and x_ for both poly-
mers. Increasing k- leads to a higher tan ¢ peak, when k. is kept constant. This
is consistent with the Zener model, where tand depends on 6 = py/(py + p2), ie.,
larger 6 values yield a higher tan d peak. The same is true, when the ratio of weak
bonds in the system x_ rises.

The final result of the adjustment together with the experimental curves is
presented in Fig. 5.6. Note that not only the peak heights are reasonably well
modelled, but also the separation between the peaks. The simulated peak widths,
however, differ from the experimental ones. They depend to some extent on the
ratio between k. and k-, but cannot be adjusted based on this set of parameters.
Note that the presented model is not suited for describing the detailed dynamics of
unfilled elastomers, since it neglects the polymer network structure. Nevertheless,
we are able to obtain results for the loss tangents in qualitative agreement with
experiments. The mapping of the simulation frequency to the real temperature
can be done based on the time-temperature superposition logw ~ 1/7" [136]. In
addition, we can use the peak positions of simulated tand curves to relate the
simulation time unit to the experimental time unit, as described in Section 2.4.1.
For instance, the experimental peak position for SBR is at roughly w,,, = 10" Hz,
while the simulation frequency at the peak ws;,, for the same polymer is about 1074,
This mapping remains a basis for any conversion as long as simulation parameters
are fixed. The values of the force constants for pure polymers are compiled in Table
5.4.

5.2.2 Polymer Blends

In polymer blends, we have to deal with one additional interaction type, i.e., the
mixed interaction between two different polymers. If polymers tend to separate
(see, for instance, the examples in Section 3.3, where NR and SBR form two sub-
phases), the interface between the polymers can significantly affect the mechanical
properties. Therefore, the main problem in modelling unfilled blends is finding the
proper values of the force constants describing the polymer interface.

To limit the number of additional parameters, we express the interaction between
two different polymers as a function of force constants for pure polymers. The
strong and weak spring constants in the interface can be then approximated via the

following mixing rules
RO = \J R RS, (5.1)
KDP =\ JRDPERT (5.2)

Here P, and P, refer to the polymers 1 and 2. The remaining adjustable quantity
is ginterface  The upper left panel of Fig. 5.7 shows experimental loss tangents
vs. frequency w in Hz for NR (green), SBR (yellow) and their 50/50 (red) and
70/30 (purple) blends. All other panels present the simulation results for tand
as a function of simulation frequency w. Note that the error bars are calculated

based on five independent simulations. Note also that the simulation includes an
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Figure 5.7: Upper left: experimental tand vs. frequency for NR, SBR and their
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frequency w. The simulation results are averages over five independent simulations.
From the upper right in counter-clockwise order: zit*rface — 1.0, 0.5 and 0.0. Note

that simulation results include an additional 30/70 blend.
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additional 30/70 blend. The value of zit*ac in the simulation was varied, and it
is equal to 1.0, 0.5 and 0.0 from left to right and from bottom to top. Notice that
the value of zit*rfce gignificantly affects the loss tangent peak height. The value of
azigterface equal to 1.0, i.e., when all springs in the interface between the polymers
are weak, leads to the highest tand. When zM°rface decreases, the loss tangent
peak height also drops. The positions of the peaks for the blends, however, do
not depend on zM*fac¢ The order of the peaks corresponds to the experimentally
observed one, i.e., a blend peak shifts to a pure polymer peak position, when the
attendant polymer ratio in the blend increases. Hence, this 'peak shift’” for different
polymer blends can be reproduced by the model. The peak height is a more complex
parameter to adjust. In experiments, the peak height of the 70/30 blend is much
lower than the ones of pure components, while the peak height of the 50/50 blend
is higher than the latter. In simulations, depending on z'M*ra the peaks of the
blends are either higher or lower than the respective peaks of pure components. For
instance, the simulated tan ¢ peak for the 70/30 blend is in good agreement with the
experiment when xi;‘terface = 0. For the 50/50 blend, the closest to the experiment

loss tangent peak is observed at xit*face — 1 Overall, there is no uniform value of

rinterface allowing to obtain the peak heights similar to the experimental ones for all
presented blends. For the later analysis we use z'2% — 1.0 because this value

provides the possibility to distinguish the blends in terms of their peak positions.

5.2.3 Filled Systems

At this point, we can include filler into the system. The springs between filler nodes
as well as between filler and polymer nodes can break reversibly. Thus, in addition
to the friction loss, which provides the main contribution to the loss modulus in
unfilled systems, we introduce loss in the filler-filler and filler-polymer interfaces
due to reversible breaking of bonds. The parameterization in this case includes
the adjustment of the filler-filler and the filler-polymer spring constants and the
bond breaking distances. One way to find the values of the spring constants is to
consider the change of the storage modulus with an increasing filler content. Beyond
the percolation threshold, one can observe a power-law dependence of the storage
modulus on the filler content, i.e., u’ o< ¢¥, where 3 < y < 4. This follows from both
the experimental findings and theoretical considerations |7]. Therefore, we have to
find such values of the force constants, that the simulated storage modulus has a
similar power law increase.

Fig. 5.8 shows filler morphologies for the silica filled NR (7? = 20 MJ/m?
'yiﬁ = 16 mJ/m?) with different ¢, given in the plot titles. Based on the filler
morphologies, we can expect the percolation threshold to be at ~ 15% filler, as at
this concentration the filler starts to form the filler network.

Initially, we choose kpr = kprp = 1.0. Then, by making alterations and by
comparing with the experimental data, we can find the values allowing the model
to reproduce the main experimental findings. On the left-hand side of Fig. 5.9,
the simulated loss tangents vs. frequency w are shown obtained for different filler
loadings (0, 10, 20 and 30%). Note that, due to addition of filler, the peak drops
and becomes broader, but the peak position does not change significantly. This
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Figure 5.8: Simulated TEM images obtained for NR filled with silica ((fy? = 20
MJ/m?, A% = 16 mJ/m?) at different filler volume contents, given in the title of

each TEM. The images are extracted after 50 MC steps per node on average, L. =
50.
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Figure 5.9: Left: The simulated tand vs. w at different filler contents given in the
legend. The system is filled NR, 7§ = 20 mJ/m? and 7} = 0 mJ/m?. In addition,
Uy — 1% RFF = RPF — 1.017"@‘70, kFF — :ICPF = 1.0. nght the experimental loss
tangent vs. temperature for NR filled with CB at w = 10 Hz and ¢ = 10, 15, 20
and 25%.
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Figure 5.10: Variation of the force constant for the polymer-filler interaction kpg in
terms of the reduced storage u//p and loss p” /g moduli vs. filler volume fraction
¢. The values pf, and pg refer to the unfilled NR. The left panel corresponds to
krr = 1; in the right panel, krr = 10. The strain amplitude ug = 1% and frequency
w is 0.002. Straight lines show different power law exponents, i.e., y = 2, 3 or 4.



76 CHAPTER 5. MODEL PARAMETERIZATION

effect of filler on the loss tangent is typical in experimental systems and is well
reproduced by the model. An example of experimental tand curves as functions
of temperature for NR filled with different filler contents of CB at w = 10 Hz is
shown on the right-hand side of Fig. 5.9. Filler increases the ’strength’ of the
material, and thus, the storage modulus. The loss modulus, however, is a more
complicated quantity. On the one hand, we can expect the loss reduction due to
occluded polymer in the polymer-filler interface. On the other hand, the filler-filler
and filler-polymer interactions, which are not present in unfilled systems, increase
the dissipation and, consequently, the loss. The loss tangent, as the ratio of these
two quantities, depends on many processes taking place in filled systems, where
some of them have opposite effects. But since the tand peak height drops with
the filler content, one can assume that at the peak position the rise in the storage
modulus overcomes the increase in the loss modulus. The low frequency (or high
temperature) side of the tand peak is particularly interesting in light of the rolling
resistance measurements. In experimental systems, at high temperatures the order
of the tan § curves, corresponding to systems with different filler contents, is reversed
in comparison to what one observes at the peak. Notice that in the simulation, the
curve for the unfilled system undercuts the curve for ¢ = 10%, and subsequently
the curve for ¢ = 20%, as the frequency decreases. The tand value for ¢ = 30%,
however, remains the smallest at the lowest measured frequency w = 1072,

Next, we consider the effect of the spring constant strength on the reduced
storage 1/(¢)/1/'(¢ = 0) and loss p”(¢)/p"(¢ = 0) moduli as functions of filler
content ¢. In Fig. 5.10 we vary the value of the force constant for the polymer-
filler interaction kpg, keeping the value of kpp fixed and equal to 1.0 (left panel)
and 10.0 (right panel). The other system parameters are the same as above. The
simulation frequency w is 0.002, i.e., the results refer to the low frequency (or high
temperature) side of the loss tangent peak. At low filler contents, the moduli values
for filled systems are close to the ones for the unfilled system. When filler is added,
the moduli start to rise, and at about 10-15% filler the percolation threshold can
be reached in most cases. Note that smaller values of kpr at the same kpp shift
the percolation threshold to higher filler contents and, simultaneously, increase vy,
especially when krpp = 10. A small kpp yields a weak interaction between polymer
and filler, such that, considerably more filler is required to increase the strength of
the material. Based on the above observations, we can roughly relate kpr to the
filler particle size. Typically, small filler particles have a larger surface area, which
corresponds to a stronger overall coupling between polymer and filler. Since the
model does not explicitly include the particle size (other than d), we can incorporate
the particle size into the model using different kpp, where smaller particles can be
characterized by larger kppr. The values of y lie in the range between 2 and 3, when
krrp = 1 and between 3 and 4 when krpr = 10. Notice that when kpr > kpp, the
overall increase of the moduli is larger than for smaller values of kpp, and in some
cases can reach 100 at ¢ = 30 % for the reduced storage modulus. The reduced
loss modulus does not exhibit a similar increase and reaches at most 20 when kpg

— kFF =10 and QZS — 30%

The next figure, Fig. 5.11, shows the impact of the bond breaking distances
on the reduced storage and loss moduli. In the left panel Rpp is varied, while
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Figure 5.11: Variation of the bond-breaking distances in terms of the reduced stor-
age (' /p, and loss p”/pg moduli vs. filler volume fraction ¢. The values py and
po refer to the unfilled NR. Left: variation of Rpp at constant Rpp = 1.01 10,
right: variation of Rpp at constant Rpp = 1.0 7;;0. The strain amplitude is 1%
and frequency is 0.002. Straight lines show different power law exponents, i.e., y =
2, 3 or 4.

Rpr is kept constant, and the right panel is obtained for different Rpp at fixed
Rpp. Notice that the two largest breaking distances lead to the same values of
the reduced storage modulus. The reason is that, on the one hand, the strain
amplitude is small. On the other hand, the breaking distance is too large, so no
bond breaking can be observed. Reducing the bond breaking distance leads to a
decrease in the reduced storage modulus. A small bond breaking distance value
yields weak bonds, which can break at a relatively short node-to-node distance.
These weak bonds considerably reduce the strength of the composite and, therefore,
the storage modulus. The value of Rpp has a stronger effect on the dynamic moduli
than Rpr due to the number of polymer-filler bonds, which significantly exceeds
the number of filler-filler bonds. The loss modulus is less sensitive to the variation
of the bond breaking distances, and the overall increase with the filler content is
smaller than for the storage modulus.

In Fig. 5.12 experimental data from [31] for tan ¢ vs. ¢ at two temperatures (0°C
(blue) and 70°C (red)) are compared with simulation results at two frequencies (w =
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Figure 5.12: Top: the experimental loss tangent for N234 (left) and silica HiSil233
(right) in Duraden 715 at 1% strain, 10 Hz, 0°C (blue) and 70°C (red); bottom:
simulation results for w = 0.01 (blue) and w = 0.0001 (red). The filler surface
tension values: 7{= 20 mJ/m* and 7} = 0 mJ/m?, the strain amplitude is 1%.
Left: kpr = kpp = 1.0; right: krpp = 10, kprp = 0.1, vp = 15. Experimental data
is taken from [31].
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Figure 5.13: Top: simulated TEM images obtained for filled NR systems. The
filler surface tension ’yjcl = 20 mJ/m? and vy = 0, 5, 10 and 20 mJ/ m? (from left
to right). Only filler nodes are shown. Bottom: the reduced storage modulus at
different frequencies for the filled NR systems shown above, where py refers to the
unfilled NR. The strain amplitude is 1%, kpr = kpr = 1.
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0.01 (blue) and w = 0.0001 (red)). Both temperature and frequency are taken from
the low frequency /high temperature side of the loss tangent peak. The experimental
results are obtained for N234 (top left) and silica (top right) in Duraden 715. The
simulated system is filled NR, where fy]‘? =20 mJ/m? and 75 =0 mJ/m?, kpr = kpp
= 1.0 (bottom left). Note that at 7" = 0°C the loss tangent drops with the increasing
filler content for both fillers. A similar decrease can be observed for the simulated
system at w = 0.01, i.e., there is a qualitative agreement between the simulation
and the experiment. This drop is mainly contributed by the aforementioned effects.
The behaviour of the loss tangent at 70°C is different. For the carbon black filled
system, one can see a continuous rise of the tan¢d at large filler contents. At this
temperature, the dissipation due to reversible bond breaking plays an essential role
in the system, and this rise of the loss overcomes the increase in the material’s
strength. We can conclude that beyond the percolation threshold the loss modulus
must obey the power law with at least the same exponent y as the storage modulus.
The silica filled system is more complicated, and the loss tangent in this case has
a maximum at the filler content near the percolation threshold. In the simulated
system, however, tan  drops beyond the percolation threshold, i.e., the increase in
dissipation is smaller than the attendant increase in the storage modulus. Hence, the
model with this particular set of force constants (krpr = kpp = 1.0) underestimates
the loss due to reversible breaking of bonds, and additional parameters are required
to increase the loss in the system.

Fig. 5.13 shows the reduced storage moduli as functions of filler volume con-
tent for four systems with different filler dispersions (’y]‘f = 20 mJ/m? ’y? is varied
between 0 and 20 mJ/m?) at various frequencies given in the title. The respective
TEM images are given in the top row, where their length is equal to 50d and the
thickness is 5d. When the simulation frequency increases, the amplitude of the stor-
age modulus drops and the dependence on the filler concentration becomes more
linear, i.e., the power governing the storage modulus beyond the percolation thresh-
old decreases. Nevertheless, the order of the curves does not significantly depend on
frequency, e.g., the system with 74 = 5 mJ/ m? (blue) exhibits the largest storage
modulus, whereas the system with the non-polar filler (green) — the smallest. When
compared to the respective TEMs, it is clear that the storage moduli are inverse to
the size of filler agglomerates, which is not in line with experimental observations.

Polymer-Filler Interface

Increasing loss in the system requires changing of the force constants involved in the
reversible breaking process, i.e., the constants for the filler-filler and the polymer-
filler interactions. So far, these spring constants are equal to each other. But by
looking at Fig. 5.10, it is clear, that large kpp and small krp at the same time
provide the required loss modulus, which has at least the same power law exponent
y as the storage modulus beyond the percolation threshold. On the left-hand side
of Fig. 5.14, the loss tangent as a function of frequency is presented, when kpp
= 10.0 and kpp = 0.1. This significant difference in the force constants for the
polymer-filler and the filler-filler interactions leads to a second peak of the tand at
high frequencies. Note that the tan d at the peak in the Zener model depends on the
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Figure 5.14: Simulated tand vs.

frequency w. The system and the simulation
parameters are the same as in Fig. 5.9. Left: kpp = 10.0, kpr = 0.1. Right: the
same, but with an additional friction coefficient for filler nodes vz = 15.
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Figure 5.15: Relaxation times in different phases.
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Figure 5.16: The storage and the loss moduli vs. filler volume content ¢ for the
filled NR systems shown in the top row of Fig. 5.13. The strain amplitude is 1%
and w = 0.001. Left: kFF = k‘pF = 1; I'ighti kFF = 10, ka — 01, YF — 15.
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Figure 5.17: The loss tangent vs. frequency w for filled NR systems with different
filler dispersions and filler contents. kpr = 0.1, krpp = 10, 7? = 20 mJ/m?. Top left
panel: uy = 1%, in all other panels uy = 2%. In addition, top row: 7? = 0 mJ/m?,
bottom left: 7§ = 10 mJ/m?, bottom right: 7§ = 20 mJ/m?>.

frequency at the peak and the relaxation time 7 = 7/us (see also Section 2.4.1).
In our model, friction is introduced via the friction coefficient ~, and the force
constants are analogous to py. The relaxation time in the model can be calculated
via 7 = v/k. If two significantly different force constants are combined with a single
value of the friction coefficient, then two different values of the relaxation time are
possible, which correspond to the two tand peaks. On the one hand, the second
peak was not present when krr = kpr = 1.0. In this case, the relaxation time for
filler nodes 77 = v/kpp is 1. On the other hand, changes in the force constants
involving filler do not affect the relaxation time in the polymer phase 7p = /kpp
because kpp remains the same. Hence, we require an additional friction coefficient
for filler nodes, which changes the relaxation time in the polymer-filler interface. If
krrp = 10 and the filler friction coefficient vz ~ 10, the relaxation time in the filler
phase is close to 1. On the right-hand side of Fig. 5.14, the loss tangents vs. w
for different filler contents are shown, when kpp = 10, kpr = 0.1 and vz = 15. All
other simulation parameters are the same as above. Using the new parameter set
increases the attendant peak heights for filled systems and shifts the peak positions
to higher frequencies, but suppresses the second peak.

To study the effect of vr on the system’s dynamics, we consider the respective
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Table 5.5: Compilation of polymer-filler and filler-filler force constants and bond
breaking distances.

Parameter Symbol | Value Comments
polymer - filler kpp 0.1 spring constant at P-F interface
kprweak 1074 spring constant after break
filler - filler kpp 10.0 spring constant at F-F interface
bond breaking Rpr 1.01745,0 P-F bond breaking separation
bond breaking Rpp 1.01745, F-F bond breaking separation
friction, NR vr, NR 15 friction for filler nodes in NR systems
friction, SBR | vr, SBR 10* friction for filler nodes in SBR systems
friction y 1.0 friction for polymer nodes

relaxation time in each interface. In the polymer-polymer interface, we define the
relaxation time as 7p = y/k~ = 0.1. This relaxation time remains the same if we
change krp and kpp. In the filler-filler interface, the relaxation time 77 &~ 1, and it
also doesn’t change significantly. In the polymer-filler interface, when kpp = kpp
= 1, the relaxation time 7pp = v/kpr = 1. If kpp = 0.1 and yp = 15, then 7pp =
vr/kpr =~ 100. The different interfaces in the system together with the respective
relaxation times are illustrated in Fig. 5.15. The previous set of force constants
does not reflect the relaxation time in the polymer-filler interface, which is extremely
long. In experimental systems, there exists a similar effect of the ’glassy layer’.
In this layer, the polymer in the direct vicinity of the filler surface has much less
mobility and slower dynamics than in the bulk. Therefore, in order to obtain the
behaviour of the mechanical moduli vs. filler volume content in good accord with
experiments, we require an additional parameter increasing the relaxation time in
the polymer-filler interface.

In the bottom right panel of Fig. 5.12, the simulated loss tangent as a function
of filler volume content is shown, when krpp = 10, kpr = 0.1 and yp = 15. At low
frequencies, the loss tangent increases with the filler content, in good qualitative
agreement with the experiment. At high frequencies, tan § remains constant as the
filler content approaches the percolation threshold and then drops. A comparison
between the two sets of force constants in terms of the storage and loss moduli is
presented in Fig. 5.16. The simulated systems are the same as in the top row of
Fig. 5.13. On the left-hand side, the moduli correspond to krpr = kpr = 1. On the
right-hand side, kpp = 10, kprp = 0.1 and v = 15. The comparison shows that the
storage modulus in the right panel of Fig. 5.16 is smaller, but the loss modulus is
larger and exhibits a similar increase as the storage modulus for filler concentrations
beyond the percolation threshold. This is not observed in the plots on the left. In
both cases, the moduli for systems with different filler morphologies increase, except
for fy? = 5 mJ/m?, which even drops in the left panel. The attendant TEM image
for this system looks homogeneous with no filler agglomerates, which results in the

2The concept of the ’glassy layer’ is also discussed in Section 2.2.
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smaller loss modulus than for other systems, where filler flocculation takes place.

Notice, that in experimental systems at high temperatures (low frequencies) the
order of the curves for systems with different filler contents is opposite to the one
observed at the peak (see also the right panel of Fig. 5.9). Initially, when kpp =
kpr = 1, the order of the curves at the peak is the same as at low frequencies, as
shown in the left panel of Fig. 5.9. Changing the force constants values to kpp
= 10 and kpp does not produce the loss tangent curves with the required order
as well (see the left panel of Fig. 5.14). But introducing the new parameter vp
allows to obtain the order of the loss tangent curves at low frequencies according
to the experimental findings (the right panel of Fig. 5.14). Fig. 5.17 shows the
loss tangent curves as functions of frequency w for NR filled systems with different
filler dispersions. The dispersive part of the filler surface energy is the same and
equal to 20 mJ/m?. In the top row ’yfﬁ = 0 mJ/m?, in the bottom left panel ’y?
= 10 mJ/m?* and in the bottom right panel 7§ = 20 mJ/m*. In addition, in the
top left panel ug = 1% and in the rest of the panels vy = 2%. Changing the
strain amplitude increases the loss tangent of the filled systems because, contrary
to unfilled polymers, both the storage and the loss moduli are not constant due to
the Payne effect. Nevertheless, the order of the curves in the range of low frequencies
is opposite to the one observed at the peak for all presented systems. As discussed
above, v increases the relaxation time in the polymer-filler interface, and this effect
is similar to a formation of ’glassy layers’ in experimental systems. Based on the
simulation results, the order of experimental loss tangent curves in the low frequency
range, obtained for different filler concentrations, is governed by the relaxation time
in the polymer-filler interface, which is extremely long. An increasing filler volume
content ensures a large number of such interfaces in the system, which shifts above
the respective tand curve at low frequencies.

The values of kpp, kpr and v for SBR filled systems were obtained based on
the aforementioned approach. It was found that the same values of krp and kpp
can be used to provide a similar increase of u’ vs. ¢. The value of vz, however, is
significantly larger and close to 10%. This is due to the difference in the respective
tan o peak positions of pure polymers, where the experimental peak position of SBR
is shifted to lower frequencies by 2 orders of magnitude in comparison to NR. This
yields the respective relaxation time for SBR to be about 2 orders larger.

The final values of force constants, bond breaking distances and friction coeffi-
cients for filled systems are compiled in Table 5.5. All the simulation parameters
used in both parts of the model, i.e., the MG and DMA, are collected in a table in
Appendix C.
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Chapter 6

Mechanical Properties of Filled
Elastomers — Filled One Polymer
Systems

In this chapter, mechanical properties of filled one polymer systems will be dis-
cussed. We will study how the mechanical properties depend on filler dispersion
based on systems consisting of one polymer and one filler. Additionally, we will
explore the effects of the filler volume content and the flocculation time on the
dynamic moduli. The second part of this chapter is devoted to the polymer-filler
interaction. We will discuss how the polymer-filler force constant kpr can be tied
to the polymer-filler interface tension v,;. This idea is illustrated by an example of
the most commonly used fillers in the tire industry — carbon black and silica. We
will look at the dispersion of these fillers in natural rubber and its impact on the
dynamic moduli and relaxation processes.

6.1 Filler Morphology — Impact of Filler Surface
Energy on Filler Dispersion

We start the discussion with the application of the MG algorithm to systems con-
sisting of either NR or SBR plus filler. The morphology generation was performed
in 20% filled systems, where the polymer surface tensions were fixed and the filler
surface energy was varied. The obtained morphologies are shown in Fig. 6.1 for
NR filled systems and in Fig. 6.2 for SBR filled systems. NR nodes are shown in
green colour, SBR nodes — in yellow colour, while filler nodes are black. Note that
for a better comparison between different cases, the morphologies in Figs. 6.1 —
6.2 show the respective systems after 1000 MC steps per node on average. For the
calculation of dynamic moduli, however, the systems after 50 MC steps per node
on average were used. In the top row of Figs. 6.1 and 6.2, the attendant wetting-
envelope — work of adhesion plots are presented. Each morphology below the plot
corresponds to a dot with the same number in the respective plot. As pointed out
Section in 3.2.1, each loop corresponds to a constant value of AW,, where AW, is
the main driving force for the filler agglomeration process. The curves labelled with
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Figure 6.1: Top: the wetting-envelope — work of adhesion plot for NR filled sys-
tems characterized by different filler surface energy values. Bottom: TEM images
corresponding to the systems shown as dots in the top plot.
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Figure 6.2: Top: the wetting-envelope — work of adhesion plot for SBR filled sys-
tems characterized by different filler surface energy values. Bottom: TEM images
corresponding to the systems shown as dots in the top plot.
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0 are obtained for a constant value of the contact angle. These loops and curves
are drawn based on the solution of Eq. (3.5), therefore, depending on the polymer
surface energy, they can look quite differently. The loops for SBR are shifted to
7 = 0 mJ/m?, and the curves with the same value of the contact angle are higher
than for NR. For both polymers, a general trend for a filler during flocculation
is similar, i.e., the largest filler agglomerates are observed for systems outside the
largest loop, for instance systems Nrs. 1, 5 and 12 in Fig. 6.1 and systems 1 and 7
in Fig. 6.2. The system Nr. 6 in Fig. 6.1, which is inside the central loop in terms
of its surface energy value, possesses the finest morphology. This overlap between
the wetting-envelope — work of adhesion plots and the obtained filler morphologies
shows how filler flocculation and wetting can be predicted based on the values of
the polymer and the filler surface tensions.

6.2 Mechanical Properties — Impact of Filler Mor-
phology on System’s Dynamics

Next, we study the mechanical properties of the aforementioned filled systems. As
an example, we consider filled NR systems and look at i/, i/ and tan d as functions
of different parameters. One of the most interesting questions in this context is
how the filler morphology, defined via the filler surface energy and the polymer
surface tension, affects the dynamic moduli of composites. In addition, we will
study the effect of the filler content variation on the system’s dynamics. Based on
Fig. 5.17, we can select particular frequencies and strain amplitudes for studying
the mechanical properties. One of the frequencies we use is w = 0.001, taken
from the low frequency side of the tand peak (or high temperature side due to the
time-temperature superposition). These low frequencies/high temperatures would
correspond to the normal working conditions of a tire and can be tied to rolling
resistance. Ideally, the frequency should be still smaller, but this is not practical,
since the computational time becomes prohibitively long. Thus, w = 0.001 is a
compromise. Another frequency we consider is w = 0.1 because it is roughly where
the tan § peak is — thus, this value is extremely useful for comparing and for getting
information on wet grip. The strain amplitude ug in experiments can vary between
0.1 and 5%; in this work, most of the results are obtained at the intermediate strain
uy = 1%.

Note that the parameters for the polymer-filler and filler-filler interactions, used
for the DMA simulations in this chapter, are compiled in Table 5.5.

6.2.1 Effect of Filler Surface Energy

The surface energy is a sum of two components, i.e., the dispersive part and the
polar part, and both of them can be varied. Either, we can keep the dispersive part
of the filler surface energy fixed and vary the polar part. Or we can as well keep the
polar part constant and change the dispersive part. Based on the wetting-envelope
— work of adhesion plot, these changes would correspond to moving parallel to
Yy = 7}1 + 7?, where 755 is constant, in the first case, or parallel to the y-axis in the
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second case. In both cases, we can tie the variations of filler morphology to the
respective changes of y/, " or tan .

The pink parallelogram in the top panel of Fig. 6.3 defines a set of systems,
where 'yj‘? is kept constant and equal to 20 mJ/m? and ’y? is varied between 0 and 20
mJ/m?2. The panels below show the attendant storage moduli, loss moduli and tan &
(from top to bottom). On the left-hand side, the strain amplitude ug is varied, while
on the right-hand side — the simulation frequency w. The systems are characterized
by the value of the polar part of the filler surface energy given in the plot legend.
Note that all systems under study exhibit the Payne effect for both moduli. The
onset of the Payne effect for the storage moduli starts at ~ 1-2% strain, whereas for
the loss modulus the onset is shifted to larger strains &~ 3-4%. In addition, a drop
in the loss modulus at small strain amplitudes can be observed, which is typical for
experimental systems (see Fig. 2.18) and can be well reproduced by the model.

The results for the dynamic moduli can be compared with the respective filler
morphologies presented in Fig. 6.1 (systems Nrs. 5-8). The filler Nr. 6 is inside the
central AW,—loop, and the respective system has the finest dispersion. In other
systems, filler agglomerates are present, with the largest agglomerate size for the
system Nr. 5 and the smallest — for the system 7. In terms of mechanical properties,
the most dispersed system Nr. 6 yields the lowest dynamic moduli and tan . This
is also reasonable from the experimental point of view, where large dynamic moduli
are typically observed for highly flocculated systems (see, for instance, [125]). The
fillers 5 and 8 are both outside the largest AW,—loop, however the filler Nr. 8
is wetted by the polymer, while the wetting between the filler Nr. 5 and NR
is low. In simulations, the system Nr. 8 exhibits the largest moduli and tand
plotted vs. frequency, while the largest filler agglomerates are found in the system
Nr. 5. Note, that the respective loss tangent values increase for systems with a
higher tendency for the filler to flocculate. In addition, the peak of the loss tangent
plotted vs. frequency is shifted to higher frequencies, when the filler dispersion
becomes more homogeneous. The dynamic moduli as functions of strain amplitude
for different systems are close to each other and even overlap. The main reason
for this subtle difference is the force constant values which are the same for all
described systems. So far, the only difference between the aforementioned systems
is in the filler distribution inside the polymer matrix. An extension of the model,
introducing the polymer-filler spring constant being proportional to the interface
tension between polymer and filler, will be discussed later in this chapter.

In Fig. 6.4 1/, ¢ and tand are shown, where v}l is varied between 10 and 30
mJ/m? and 7} is fixed and equal to 10 mJ/m*. The systems are filled with 20%
filler and correspond to panels 3, 7 and 11 in Fig. 6.1. According to Fig. 6.1, the
fillers Nrs. 3 and 7 are perfectly wetted by the polymer, whereas for the system 11
the wetting is poor due to the contact angle value § = 45°. In addition, the dot
corresponding to the filler Nr. 7 is in the middle AW,—loop, and the other two
systems are inside the largest loop. In terms of mechanical properties, the system
Nr. 11 can be characterized by the lowest values of the dynamic moduli. The other
two systems, however, exhibit very close storage and loss moduli. Therefore, the
loss tangent, as their ratio, hardly changes for different dispersive components of
the filler surface energy. Overall, comparing systems with different 755 and %’Z shows
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Figure 6.3: Top: variation of ~} at 74 = 20 mJ/m?* (pink parallelogram) in the
wetting-envelope — work of adhesion plot for NR filled systems. Bottom: the re-
spective p' (top row), p” (middle row) and tan é (bottom row) as functions of strain
amplitude ug at w = 0.001 (left) or as functions of frequency w at ug = 1% (right).
The filler content ¢ is 20%.
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that both components of the filler surface energy can affect filler dispersion in the
polymer. The effect of the filler type, which determines the filler polarity and thus
”y?, on the mechanical properties of filled systems was found to be considerably
stronger than the impact of the particle size, which is related to 7?.

6.2.2 Effect of Filler Volume Content

Experimental dynamic moduli increase with the filler volume content (see Figs.
2.15 and 2.18). Therefore, in simulations we can expect an increase of the dynamic
moduli at higher filler contents. In Figs. 6.5 and 6.6, the dynamic moduli and
the loss tangent are shown for a set of systems with different filler concentrations,
i.e., 10, 20 and 25%. As we have already shown, filler dispersion strongly depends
on the interface tension between polymer and filler. In Fig. 6.5 'yJ’Z = 5 mJ/m?
and this value corresponds to the system Nr. 6 in Fig. 6.1, which has the most
homogeneous dispersion. Fig. 6.6 is obtained for the system with 7? = 20 mJ/m?,
and this coincides with the system Nr. 8 in Fiig. 6.1. It can be seen that the dynamic
moduli for both systems increase with the filler volume content. As discussed in
the previous section, the more dispersed system has smaller values of the moduli
at the same filler content. The difference in the storage and loss moduli between
various filler contents is also less for this system. The behaviour of the loss tangent
is more complex. Generally, for the tand as a function of strain amplitude, one
can distinguish between two main regions. At strains < 2%, the loss tangents for
different filler concentrations are the same in the case of Fig. 6.6. For the system 6,
tan o drops with the increasing filler content. The order of the curves then changes
at strain amplitudes above 2% and becomes the same for both systems. In this
region, the damping rises with the amount of filler in the system.

The simulated loss tangent as a function of frequency demonstrates several im-
portant properties. The most essential is that the dependence of tan d on the filler
concentration is different with respect to filler dispersion. For the most dispersed
system Nr. 6, the loss tangent at the peak rises with the filler content, and at lower
frequencies the order of the curves is opposite to the one observed at the peak.
The system with 10% filler exhibits a broader peak than the others, and the peak
position is shifted to low frequencies. This is not observed for the system Nr. 8.
Here the tand value at the peak decreases with the increasing filler content, the
order of the curves does not change and the peaks have similar widths. Overall, the
loss tangent is a more complex value than the dynamic moduli. While the model
can qualitatively predict the behaviour of the storage and loss moduli when varying
the filler concentrations, it cannot simulate the changes in the loss tangent for all
possible filler dispersions.

6.3 Effect of Flocculation Time

It is well known that during the filler flocculation the storage modulus of a filled
rubber increases. As discussed in Section 2.6, the main reason for this increase is
a formation of the filler network. In the left panel of Fig. 2.17, an example of floc-
culation curves is shown, where the change in the storage modulus is monitored as
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Figure 6.5: The u' (top), p” (middle) and tand (bottom) as functions of strain
amplitude ug at w = 0.001 (left) or as functions of frequency w at ug = 1% (right).
The system corresponds to Nr. 6 in Fig. 6.1 (v§ = 20 mJ/m?, v = 5 mJ/m?), the
filler content is varied and given in the legend.
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Figure 6.6: The u' (top), p” (middle) and tand (bottom) as functions of strain
amplitude ug at w = 0.001 (left) or as functions of frequency w at ug = 1% (right).
The system corresponds to Nr. 8 in Fig. 6.1 (7§ = 20 mJ/m?, 74 = 20 mJ/m?),
the filler content is varied and given in the legend.
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Figure 6.7: The y/ and p” vs. the number of MC steps per node on average for
filled NR systems, where 7}[ = 20 mJ/m? and 7? is varied between 0 and 20 mJ/m?.
The strain amplitude ug is 1%, the frequency w is 0.1. Left: krr = 10, kpr = 0.1,

a function of time. In experiments, such flocculation tests are frequently combined
with the Payne effect measurements. Initially, the storage modulus, measured at
different strain amplitudes, produces a typical Payne effect-curve. Then the strain
is increased to large values, up to several hundreds percent, to ensure a complete
breakdown of the filler network. After the external strain reduces, the filler network
forms again, and the storage modulus at a small strain amplitude plotted vs. time
yields a flocculation curve.

In our model, the filler flocculation is simulated by the morphology generator,
and the number of MC steps can serve as a rough measure of time. Therefore, we
can expect a dependence of the simulated dynamic moduli on the number of MC
steps. In Fig 6.7 the simulated storage and loss moduli are presented as functions
of the number of MC steps. The simulation frequency w is the same in all panels
and equal to 0.1. On the right-hand side krpr = 10.0 and kpr = 0.1, while on the
left-hand side the force constants for the filler-filler and polymer-filler interactions
are the same, i.e., kpp = kpp = 1.0. The systems have the same ’yjf =20 mJ/m? but
different 7} (between 0 and 20 mJ/m?) and correspond to panels 5-8 in Fig. 6.1.
How the dynamic moduli change with time strongly depends on the filler dispersion
and the values of the force constants. The moduli do not change considerably with
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the number of MC steps, when krr = kpr = 1. For the system Nr. 5 the storage
modulus even drops. On the other hand, when the difference between the filler-
filler and polymer-filler couplings is substantial, both moduli increase. The curves
on the left-hand side of Fig.6.7 look similar to the experimental flocculation curves
presented in Fig. 2.17. The only system that does not exhibit the moduli increase
is the system Nr. 6 with 7? = 5 mJ/m?. This system has the most homogeneous
dispersion, with no filler network being formed during the MC simulation. Conse-
quently, the simulation time has no effect on p’ and p”. It is worth mentioning that
a similar trend is observed when w = 0.001 (not shown here). While at krp = 10
and kpr = 0.1 the moduli depend on the number of MC steps, although differently
than at w = 0.1, at kprp = kprp = 1 the loss modulus slightly increases, and the
storage modulus drops with the increasing simulation time.

6.4 Polymer-Filler Interaction

This section deals with a discussion on how we can find a relation between the
two parts of the model, i.e., the morphology generator and the shear simulation.
Remember that in the morphology generation part, we use experimental interface
tensions to model the filler flocculation. In the DMA part, the interactions between
nodes are described in terms of force constants. The latter are chosen so that the
model qualitatively reproduces the main experimental findings such as the Payne
effect, a power law increase of 1’ vs. ¢ or a drop of the tand peak height at large
filler contents. These force constants so far have no relation to the interface tensions
between the components. Hence, using one set of force constants for all fillers (kpp
= 10.0, kpr = 0.1) does not allow to distinguish between them, as shown in the
previous section. The main idea discussed in this section is to tie the force constant
of the polymer-filler interaction to the interface tension between polymer and filler,
in order to make the choice of the force constants more experiment-based.

6.4.1 Force Constants from Surface Free Energies

Consider a mechanical work done by a spring between a polymer and a filler nodes

€T €T 1
W = / Fdx = / kpp(x — x0)dz ~ §kPFd2.

Here d is a characteristic distance. We assume that kpp is the value that depends on
the surface tensions of the components, while d is not significantly affected by the
interface tension between polymer and filler. But how can this dependence look like?
There are two main thermodynamic quantities which include the surface tensions —
the work of adhesion W, and the interface tension 7, ;. Note that according to the
Dupré-Equation (A.6), the two quantities are related to each other, i.e.,

Wa =7¢+ % — Yor-
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Figure 6.8: The storage (left) and the loss (right) moduli vs. strain amplitude
for filled NR systems with ¢ = 20% and for different combinations of krr and kpp.
The frequency w is 0.001.

Using the OWRK theory (A.7), we can obtain

W, = 2(\/7?7;’ + \/7%5)

and

Tor = V7 W 2(\/7?73 + \/vivﬁ)-

Our assumption is that either kpp oc W, or kpp o< v,¢.

In Fig. 6.8 simulated dynamic moduli are presented for the 20% filled NR system
(7? = 20 mJ/m?, 7? = 0 mJ/m?) for various combinations of the force constants
kpr and kpp. Changing kppr by a factor of five from 0.1 to 0.5 leads to an increase
in the storage modulus by a factor of two and in the loss modulus by a factor of
1.5. On the other hand, decreasing krp by the same factor from 10 to 2 does not
affect considerably the storage modulus and results only in a small drop of the loss
modulus. If our assumption about the proportionality between kppr and either W,
or v,y is indeed true, then we can expect the amplitude of the dynamic moduli p/
and p” to be governed by W, (or 7,s). This can be checked based on experimental
data combining measurements of the surface energies and the respective dynamic
moduli.

At this point, we should briefly remark the following. Consider the storage
modulus of a filled system as a sum of two contributions. The first one is due to
the bulk polymer and the second is the result of filler networking (see also [39]):

p = :u;mlkpoly + Ay, (6.1)

Here Ay’ is the difference between the storage modulus of a filled elastomer at
zero strain in comparison to its value at large strain, when the filler network is
broken down. Although the first term may include a weak ¢-dependence due to
hydrodynamic reinforcement, the main effect of ¢ is concentrated in the second
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Figure 6.9: Left: the ratio of the works of adhesion vs. the ratio of experimental
storage moduli. Right: the ratio of the interface tensions vs. the ratio of experi-
mental storage moduli. The points are based on the data taken from [125] (1), [22]
(2), [137] (3), [86] (4), [138] (5).

term and may be expressed as

/ Y197"
Ap'(u = 0) ~ 7 [qb(j , (6.2)
where w is the strain amplitude, R is the aggregate size, ¢ is the filler volume
fraction and ¢, is the filler volume content at the percolation threshold. The factor
oY with Y ~ 3.5 describes the structural filler reinforcement based on the notion
of a fractal filler distribution in the polymer [7]. If we insert other typical values
such as ¢ ~ 2¢., i/ ~ 10" Pa and R ~ 107® m into (6.2), we obtain for v the
values between 10 to 100 in units of mJ/m?, which is a typical range for both
the interface tension and the work of adhesion. However, as we can see based on
(6.2), not only v may affect the storage modulus, but also R, ¢, ¢. and probably
other (unknown) quantities as well. Therefore, when comparing dynamic moduli
for different systems, this dependence must also be taken into account.

We have collected experimental data from the literature for measurements of
surface energies together with the storage modulus from either DMA or flocculation
tests. For each example, we calculated the work of adhesion and the interface
tension. Then we found the ratio of the largest and the lowest W, and 7, and the
ratio of the respective storage moduli. Note that we assume a linear proportionality
between W, (7,s) and g, which implies that W,(,s) = ay, where a is a constant. If
we take two values p} and i such that ) = nuf, with a proportionality coefficient
n, then

War = ap) = n(apy) = nW, 2

and

Wai/Waz = i/ 1ty = n. (6.3)

The same is true for 7,r. Based on (6.4), we conclude that
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Figure 6.10: Simulated TEM images for filled NR systems. From left to right: CB
(v = 30 mJ/m?, 4? = 0 mJ/m?), silica (y¢ = 20 mJ/m?, 4* = 16 mJ/m?), silanized
silica (y¢ = 20 mJ/m? 47 = 10 mJ/m?).

e If (6.4) is valid, the points should lie on the line y = z.

o If for different © = p}/ph we get the same y = W, 1/W,2, then there is no
dependence between p/ and W,.

In Fig. 6.9 two plots are shown, on the left-hand side a plot of W, /W, 2 as
a function of yf/ph and on the right-hand side a similar plot but for -, instead
of W,. Each point represents one example from the literature. The following list
compiles the examples in Fig. 6.9, using the notation of the respective study:
Example (1) is Aerosil 200 and Aerosil R974 in EPDM (ethylene propylene diene
monomer rubber) from [125]; example (2) Ultrasil VN3 and CB N330 in SBR from
Ref. [22]; example (3) is untreated Ultrasil VN3 and Ultrasil VN3 modified with
hexadecyltrimethoxysilane (C16) in SBR taken from [137]; example (4) is Ultrasil
in two rubbers (S-SBR and M-S-SBR) denoted M0 and M3 from Ref. [86]; example
(5) is conductive carbon black (CCB) in NR and carbon nanotubes (CNT) in ENR
(epoxidized natural rubber) from Ref. [138]. Based on the left panel, changing p /15
does not result in changing of W, /W, 2, which implies that the storage modulus
of the presented systems does not depend on the polymer-filler work of adhesion.
Although in the right panel the scatter is considerable, most of the points lie close to
the line y = x, so we can assume a linear dependence between the storage modulus
and the interface tension. As shown in Fig. 6.8, the simulated storage modulus is
largely governed by kpp, so

ki?F X Vpf.i: (6.4)

At this point, it is worth mentioning that the dependence between kpp and v,
is rather qualitative than quantitative because i/ depends on other quantities from
(6.2). In order to quantitatively tie the force constants to the storage modulus, the
former must include the effect of the aforementioned quantities as well.

6.4.2 Example of Different Fillers

The next step is to check our assumptions via simulation. We model three main
types of fillers possessing different polarities, i.e., carbon black, silica and silanized
silica, using different values of kpr which are now proportional to 7,;. As a polymer
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Figure 6.11: Top: the simulated ' (left) and p” (right) vs. strain amplitude g for
filled NR systems. The fillers are CB, silica and silanized silica, ¢ is 20% and w is
0.001. Bottom: the experimental p’ (left) and p” (right) vs. strain amplitude for
NR filled with 20% CB, silica and silanized silica at 0°C.
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Figure 6.14: Top: the number of reversibly broken bonds vs. simulation time for NR
systems with different fillers at vy = 10% and w = 0.1. The left panel corresponds
to filler-filler bonds, the right — to polymer-filler bonds. Bottom: stress relaxation
measurements for NR filled with CB and silanized silica.

we continue to use NR with v¢ = 20.24 mJ/m? and 7? = 5.46 mJ/m?. The values
of the filler surface energies were taken from [125]. In this study, the authors found
for carbon black N234 the dispersive part of the filler surface energy to be around
30 mJ/m?, whereas the polar part was close to zero. But also CB N121 and N339
possess numerically similar surface free energies, according to Table 1 in the same
reference. For silica the authors observed large contact angle hysteresis, so the
resulting polar part of the surface tension for Ultrasil VN3 (precipitated silica)
and Aerosil 200 (fumed silica) varies significantly for the advancing and receding
contact angles (see Table A.1). The average values, however, are close to 20 mJ/m?
for 7¢ and 16 mJ/m? for 7% [22]. The scatter was also significant for the silanized
silica Coupsil 8113. Here we found 20 mJ/m? for 'y]‘? and 10 mJ/m? for ”y? to be
reasonable. For each pair 'NR-filler’ we calculated the work of adhesion and the
interface tension. Then we set the force constants kpr to be proportional to the
respective interface tensions. The system 'NR-CB’ was chosen as a standard, for
which kprp = 0.1. The remaining kpr were calculated according to Eq. (6.4), such
that k), — ENE-CF 2 — 01 —2 . The values of W,, v,; and kpp are

TYNR-CB TYNR—-CB

compiled in Table 6.1.

Fig. 6.10 illustrates morphologies obtained for NR systems with the different
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Table 6.1: Surface tension, work of adhesion and interface tension values for NR
(v? = 20.24 mJ/m?, 47 = 5.46 mJ/m?) filled with carbon black, silica and silanized
silica.

Filler v mJ/m?] | 47 [mJ/m?| | W, | vy | kpr
CB 30.0 0.0 493164 | 0.1
Silica 20.0 16.0 58.9 | 2.8 | 0.04
Silanized silica 20.0 10.0 55.0 | 0.7 ] 0.01

fillers. Note that only filler nodes are shown. The frequency is 0.001, ¢ = 0.2, kpp
— 10 and kpp o< vps. In the row 'CB — silica — silanized silica’, the agglomerate size
decreases and the filler distribution becomes more homogeneous. Notice that the
same sequence is obtained for v,y, i.e., large values of the interface tension promote
filler flocculation. The respective dynamic moduli vs. strain amplitude for these
systems are shown in Fig. 6.11. Changing kpp leads to a separation between curves
for different fillers, and the order of the curves corresponds to the sequence of the
interface tension values. Although our initial assumption was made for y’ only,
the loss modulus demonstrates the same order of curves, i.e., the dynamic moduli
increase with the filler agglomerate size. Hence, (6.4) allows to differentiate fillers
with different surface properties. Another example is Fig. 6.12, which shows in the
top row the dynamic moduli as functions of filler volume content ¢ at w = 0.001.
In the bottom row, experimental dynamic moduli at 0°C for the same systems are
presented. Here we can differentiate the fillers as well, i.e., the smallest increase of
the moduli at high filler volume contents is observed for silanized silica. The largest
effect of the filler concentration is obtained for the CB filled system. Note that the
order of the curves for these systems is in agreement with the experimental data
for both moduli.

Another property ,which is affected by the interaction between polymer and
filler, is the system’s relaxation. The bond relaxation was studied in the following
way. The first two shear cycles are performed as discussed above. The external
deformation leads to reversible breaking of polymer-filler (PF) and filler-filler (FF)
bonds. Then the strain amplitude is set to zero, and changes in the number of
broken polymer-filler and filler-filler bonds with simulation time are monitored.
Fig. 6.13 illustrates the ratios of broken PF and FF bonds with respect to the
total number of bonds of each type vs. simulation time for NR filled with CB,
silica or silanized silica. The attendant values of kpp are given in the plot title.
The frequency w is 0.1, kprp = 10, vp = 15. The measurements are performed at
different strain amplitudes, which are listed in the legend of each plot. In general,
the curves at different strains look similar, i.e., during the first two cycles the bonds
break, and after the strain is set to zero, the number of open contacts reduces. Note
that at small strains, e.g., at ug = 0.1-2%, the number of broken bonds is small,
but it increases considerably at large strains. At the same strain, the number of
open contacts is larger in the case of polymer-filler bonds. The time required for
the complete recovery of bonds depends not only on the applied strain, but also on
the filler type, i.e., the value of the polymer-filler spring constant directly affects
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the system’s relaxation behaviour. The top row of Fig. 6.14 shows a comparison
of the relaxation curves obtained for different fillers at uy = 10%. The small kpp,
used for silanized silica, leads to the longest time required for bonds to close. This
effect is observed not only for the polymer-filler contacts, but also for the filler-filler
bonds, although kpp remains unchanged. Hence, changing kppr has an impact not
only on the polymer-filler interactions but also on the filler-filler ones. Based on
Fig.6.14, we can expect that in the row 'CB - silica — silanized silica’, the two-
component system consisting of CB and NR would relax faster than the silica filled
one, and the latter — faster than the one with silanized silica. In the bottom row
of Fig. 6.14, experimental curves are shown, which were obtained during stress
relaxation measurements for NR filled with CB and silanized silica. In fact, the CB
filled system relaxes faster, so our model can qualitatively predict the relaxation
behaviour according to experiments.

It has been shown that by a proper choice of kppr, the model can simulate the
mechanical properties of systems with different fillers in qualitative agreement with
experiment. Note that for a quantitative comparison with the experimental data, it
is essential to have reliable experimental values of the surface energies as an input
for the MG and as a measure of the polymer-filler interaction strength.



Chapter 7

Mechanical Properties of Filled
Elastomers — Filled Binary Polymer
Blends

In the previous chapter, we have shown that mechanical properties of filled one poly-
mer systems strongly depend on various system parameters such as filler dispersion,
filler content or flocculation time. In this chapter, we will look at the mechanical
properties of filled binary polymer blends. The polymer blends under consideration
are mixtures of NR, SBR and filler with different surface energy values at various
concentrations. We start with the impact of the filler surface energy on filler disper-
sion in the mixture of polymers. Then we proceed with studying the effects of filler
dispersion, filler content and blend ratio on the mechanical properties. The results
presented in this chapter have also been published and can be found in [139].

7.1 Filler Morphology — Impact of Filler Surface
Energy on Filler Dispersion

The impact of filler morphology was studied based on 50-NR/50-SBR. polymer
blends containing 20% filler. These volume fractions roughly correspond to 49
phr (parts per hundred rubber) NR and to 51 phr SBR. In the top row of Fig. 7.1,
the wetting-envelope — work of adhesion plots for the two polymers are shown. On
the left-hand side, NR is assumed to be the liquid, and on the right-hand side —
SBR. The second polymer is shown as a dot, i.e., the green dot in the right panel
is NR, and the yellow dot in the left panel corresponds to SBR. The black dots
represent fillers. The solid lines are wetting envelopes showing the constant value
of the contact angle . The dotted loops are the loops of constant AW,, which is
the main driving force for filler flocculation. Below the wetting envelope plots, the
respective simulated TEMs are shown, where each panel matches a black dot with
the same number. Here fy}l is varied between 10, 20 and 30, and fy? is varied between
0, 5, 10 and 16. This corresponds to variations in the total value of the filler surface
energy v between 10 and 46. The TEMs are extracted after 50 MC steps per node
on average, and L = 50 in the system units.
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Figure 7.1: Top: Wetting-envelope — work of adhesion plots; left - NR as the liquid,
right - SBR as the liquid. Bottom: TEM images corresponding to the systems
shown as dots in the top panels.
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Table 7.1: The surface energy values of the components.

Component \ 7?4, mJ/m? \ 7%, mJ/m? \ Yiotal, MJ/m?
Polymers
NR 20.2 5.5 25.7
SBR 29.9 1.6 31.5
Fillers

Nr. 1 (CB) 30.0 0.0 30.0
Nr. 8 (Silica) | 20.0 16.0 36.0
Nr. 7 (Silane) | 20.0 10.0 30.0
Nr. 6 20.0 5.0 25.0
Nr. 9 10.0 0.0 10.0

Table 7.2: The interface tensions and the values of the polymer-filler force constants

kPF-
Filler NR SBR
YPF, HlJ/Hl2 kpp YPF, HlJ/Hl2 kpp
Nr. 1 (CB) 6.42 1.0-107! 1.64 2.6-1072
Nr. 8 (Silica) 2.80 4.4-107* 8.39 1.3-107¢
Nr. 7 (Silane) 0.68 1.1-1072 4.53 7.1-1072
Nr. 6 0.01 1.6-10~* 1.90 3.0-1072
Nr. 9 7.24 1.1-107¢ 6.96 1.1-107¢

Based on TEMs presented in Fig. 7.1, we can draw several conclusions. In all
presented cases, we can observe a micro-phase separation leading to the formation
of domains consisting of either NR or SBR. NR/SBR blends are mostly immiscible,
and a similar degree of the phase separation can be found in experiments [122,
135, 140]. The filler distribution depends on the relation between the polymer
and the filler surface tensions. Based on the filler preferential concentration, we
can determine several types of fillers. The filler Nr. 1, for instance, has a strong
affinity to SBR due to its good wettability and low polarity. Consequently, its filler
agglomerates can be found mainly in the SBR subphase. For highly polar fillers, the
filler flocculation takes place predominantly in the NR subphase. For the fillers Nrs.
2 and 10, the value of ”y’f) = 5 mJ/m? is close to 7h of NR, so the fillers concentrate
in the NR subphase and do not form large agglomerates. In the limit case of the
system Nr. 6, the filler is homogeneously dispersed in NR. The filler Nr. 9 can be
characterized by the surface energy value that lies outside all the iso-AW, loops
and below all the iso-contact angle lines for both polymers; the filler in this case
concentrates in the interface between NR and SBR. The size of filler agglomerates
strongly depends on the position of the respective filler in the wetting envelope
plot. Plots like in Fig. 7.1 can serve as guides for the selection of certain fillers. For
example, Nr. 2 is a good choice for the blend, as it demonstrates high wettability
and comparable AW, for both polymers.

As mentioned in the previous chapter, three of the fillers presented in Fig. 7.1
correspond to the fillers commonly used in the tire industry. The filler Nr. 1 mimics
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CB N234 (carbon black), Nr. 7 is close to Coupsil 8113 (silanized silica), and Nr.
8 represents Ultrasil VN3 (untreated precipitated silica). These fillers along with
fillers Nrs. 6 and 9 were used to study the dynamic mechanical properties. The
filler Nr. 6 was chosen due to its finest dispersion among morphologies in Fig. 7.1,
while the filler Nr. 9 is of particular interest because it accumulates in the interface
between the polymers. The surface tension values of the polymers and the fillers
are collected in Table 7.1.

7.2 Mechanical Properties — Impact of Filler Mor-
phology on System’s Dynamics

To study the mechanical properties, we have to find the values of the force constants
describing polymer-filler interactions for each system. Here we follow the approach
described in Section 6.4.2. The value of vop_ng is used as a standard, for which
kprp = 0.1. All other kpp are calculated based on the value of the respective 7,;.
Table 7.2 contains the values of the interface tensions «,; and polymer-filler force
constants kpp for each pair 'polymer-filler’. Note that the pair 'SBR-Silica’ has the
largest kpr, whereas the smallest kpp was obtained for the pair 'NR-Nr.6” — the
pair with the lowest value of the interface tension.

On the left-hand side of Fig. 7.2, the storage moduli (top row), the loss moduli
(middle row) and the loss tangents (bottom row) for the filled blends are shown
as functions of strain amplitude uy at w = 0.001. In all presented systems, we
do observe the Payne effect as expected. Notice that the inflection point of the
moduli hardly depends on the filler type. In [38], it was found that the inflection
point of 1/ in highly filled rubbers is related to the ratio between the gap spacing of
neighbouring filler aggregates and the aggregate size. In our model we do not have
significant variations in the distances between nodes; in addition, the aggregate size
sets the unit of length. These model features lead to the uniformity in the positions
of the inflection points. Apart from that, we can observe certain differences in the
dynamic properties of the filled blends. For instance, the filler Nr. 6, which forms
the system with the finest filler dispersion, exhibits the lowest values of both moduli.
Comparing the plateau moduli for systems Nr. 7 and 8 shows that silanization leads
to better dispersion and, consequently, to lower values of the dynamic moduli — the
observation which is also well known from experiments [22, 141|. Notice that the
system Nr. 9, characterized by the accumulation of filler in the NR-SBR interface,
has a different shape of x’. The value of i lies significantly below than for the
systems 1 (CB), 7 (silanized silica) and 8 (silica), which have the loss moduli close to
their storage moduli. In [142], the authors studied the distribution of carbon black
in the subphases formed by the polymers in NR/SBR blends. They found that the
filler, depending on the mixing process, predominantly concentrates in either the
SBR subphase or in the interface between NR and SBR. This corresponds to the
situation shown in Fig. 7.1 for the fillers 1, 5 and 9, which have the polar parts
of the surface energy close to those of CB. In addition, the authors found that the
accumulation of filler in the polymer-polymer interface leads to an increased crack
formation. This observation is supported by the magnitude of the Payne effect,
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Figure 7.2: The simulated storage moduli i/ (top), loss moduli y” (middle) and
tand (bottom) vs. strain amplitude ug (left, w = 0.001) and frequency w (right, ug
= 1%) The systems correspond to morphologies in Fig. 7.1.
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which is the largest for the system 9, i.e., in this case the loss of the material’s
strength under deformation is the most significant.

The panels on the right-hand side of Fig. 7.2 illustrate the storage moduli p’
(top row), the loss moduli p” (middle row) and the loss tangents (bottom row)
for the aforementioned filled blends as functions of frequency w at uy = 1%. The
shape of the curves is similar to what one finds in experiments, and the respective
moduli for filled systems lie above the moduli for the unfilled blend. The loss
tangent, as the ratio of the moduli, exhibits a more complicated behaviour. For
all studied systems, one can observe the glass transition peak. As discussed above,
when filler is added, the peak height drops, whereas the peak position does not
significantly change. This behaviour can be reproduced by the model for filled
systems containing one polymer, as shown in Fig. 5.17. For the filled blends this,
however, is not observed. The position of the tan peak for the blends filled with
CB, silica or silanized silica does not change, while for the systems with fillers Nrs.
6 and 9 the peak position is shifted to higher frequencies. The height of the peaks
for filled systems is comparable with the unfilled system, and is considerably larger
in the case of the filler Nr. 6. In experimental systems, the order of the loss tangent
curves for different filler contents at low frequencies is opposite to the one observed
at the peak. Aside from the filler Nr. 9, this can be seen also for the simulated
filled blends.

On the left-hand side of Fig. 7.3, the storage moduli (top), the loss moduli
(middle) and the loss tangents (bottom) are shown as functions of strain amplitude
up at w = 0.001 for the 50-NR/50-SBR blends containing different loadings of
carbon black, i.e., 10, 20 and 30%. In experiments, the amplitude of the Payne
effect increases at larger filler contents, which is reproduced by the model for both
moduli. The lowest tan ¢ is obtained for the system with ¢ = 30%. At small strains,
the loss tangents for the other two systems are close to each other, while at large
strain amplitudes the highest value of the loss tangent was obtained for the system
with 20% filler.

In the panels on the right-hand side of Fig. 7.3, the storage moduli (top), the
loss moduli (middle) and the loss tangents (bottom) vs. frequency w at ug = 1%
are presented, when the volume content of CB is varied. The storage and the loss
moduli increase with the filler content, as one would expect based on experimental
findings, where larger moduli are found for highly filled systems [143, 144|. The
positions of the peaks and the order of the tan d curves at the peak also correspond
to experiments, i.e., the loss tangent drops for highly filled systems, whereas the
peak position does not change. As the frequency decreases, the curve for 20% filler
intersects the one for 10% CB, but the lowest value of the tand throughout the
whole frequency range was found for the 30% filled system.

In Fig. 7.4 the results are shown for the storage moduli (top), the loss moduli
(middle) and tand (bottom) vs. strain amplitude up at w = 0.001 (left) and vs.
frequency w at ug = 1% (right). In the panels, the blend ratio is varied. We studied
70-NR/30-SBR, 50-NR/50-SBR and 30-NR/70-SBR blends, where 27"/ — 1.0,
In Fig. 5.7 the effect of the blend ratio Variatticjcn was studied for unfilled blends

based on the example of tand for different x” . In that case, the variation of
the blend ratio led to different positions and peak heights of the loss tangents. For
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instance, an increase in the NR content in a blend shifted the peak position to the
peak position of pure NR. In addition, the loss tangent at the peak increased for
higher SBR contents. Hence, the set of parameters used to describe the unfilled
blends, i.e., z'erfoce kPP gnd kD72 allowed to distinguish between blends with
different contents of NR and SBR. Adding filler, however, suppresses this behaviour,
and the overall difference in the dynamic properties of filled blends with different

blend ratios becomes minor.
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Chapter 8

The Elusive Load-Bearing Path,
Frequency Dependent Heterogeneity
of Strain and Stress, and the Payne
Effect Revisited

In the preceding two chapters we have modelled the mechanical properties of elas-
tomer nanocomposites in general. In this chapter, we will look in detail at the
different types of bonds and how their breaking is affected by strain amplitude,
shear frequency, and other variables.

We start this chapter doing exactly this. Even though the initial motivation
-finding and characterizing load-bearing network paths on the level of the bonds-
had to be abandoned, the compiled information is useful and should not be omitted.
In addition, we study what happens if open bonds do not return to their original
closed state but to one with a significantly smaller force constant. This means that
certain contacts may suffer irreversible '"damage’ after experiencing high stress. Here
the bonds in question are the filler-filler and the filler-polymer bonds.

Initiated by the aforementioned ’load-bearing path’-study, we made a discovery
when we compared the stress and the strain in the various contacts — this time
including the polymer subphase as well. At shear frequencies exceeding the typ-
ical relaxation rates of the bonds in the various contacts, we find that the global
stress/strain and the local stress/strain are not very different. In addition, the local
stress/strain is rather homogeneously distributed throughout the system quite in-
dependent of filler dispersion. This changes when the excitation frequency is small
in the above sense, i.e., bonds are able to respond and relax. A pronounced redis-
tribution of local stresses and strains in the various parts of composites occurs. In
addition, the redistribution depends on filler dispersion. We emphasize that this
information is beyond the well known static (or equilibrium) stress concentration
in an elastic material in the vicinity of defects, e.g., particles or cavities. We sus-
pect that the frequency dependent stress/strain concentration may have significant
implications for long term ’damage’ in the context of wear and that the extent of
the damage can be influenced by how the filler is dispersed.

We also investigate the effect of not allowing filler-filler or filler-polymer bonds
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Figure 8.1: The filler network under deformation. The minimum, and therefore
load-bearing, path L is characterized by the end-to-end distance R. Only after [,
breaks, Lo becomes load-bearing.

to break at all. This in turn provides useful insight on the role of these con-
tacts/interfaces in the Payne effect.

All the aforementioned studies are done based on two systems with significantly
different filler dispersions, which we compare throughout the chapter. This com-
parison provides extremely useful information on the effect of filler dispersion not
only on the Payne effect in filled elastomers, but also on the local strain and stress
distributions.

8.1 Scaling Model

The goal of the scaling model, originally presented in [38], is to describe the am-
plitude and temperature dependence of the storage and loss moduli based on the
filler properties and network structure. The key elements of the model are paths
connecting particles in the filler network, as shown in Fig. 8.1. These paths can
be characterized by a backbone length L and a respective end-to-end distance R.
When external strain with the amplitude u is applied, a certain number of these
paths bear the load, which can be described by a distribution function H(L, R).
The model assumes that the minimal paths are load-bearing. For instance, in Fig.
8.1 the load-bearing path is denoted as L;. Only when this load-bearing path
breaks under external deformation, the load will be redistributed, and Ly will be-
come load-bearing. The number of load-bearing paths is proportional to the number
of contacts which will open when the paths are strained. The distribution of the
minimum paths h(L) is essential for calculating the storage modulus, i.e.,

Ap (u) oc h(L),

where Ag/(u) is the amplitude dependent part of the storage modulus and h(L’) is
the distribution of the load-bearing paths in the strained system.
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Figure 8.2: The number of broken polymer-filler bonds vs. the number of shear
cycles for a filled NR system.

The temperature dependence of the Payne effect enters into the model via the
activation energy, i.e., the energy difference between the closed and open bond-
states. The activation energy is characteristic for the bond type, e.g., a hydrogen
bond has the activation energy which is about 2.5 times larger than the van der
Waals interaction of the polymer segment.

For the description of the loss modulus, one should consider the total dissipated
energy per cycle, which in turn also depends on the chemical details of a filled
elastomer such as filler volume fraction or sulphur content. Note that based on the
model an equation for the loss tangent can also be derived [39].

Thus, according to the scaling model, the distribution function of the load-
bearing paths is essential for the mechanical description of filled elastomer systems.
If we can define the load-bearing paths in our simulation system and find their dis-
tribution function, then we will be able to check this assumption using our modelling
approach.

8.2 Bond Breaking

In our model system, there are two types of bonds which can open and close re-
versibly, i.e., the filler-filler and the polymer-filler bonds. The fractions of breakable
bonds depend on the filler volume content ¢ and the filler morphology. In 4.5, we
mentioned that filled systems in comparison to unfilled ones demonstrate a different
stress-strain behaviour during the first shear cycle (see Fig. 4.9). The additional
loss in filled systems during first shear cycles is governed by a large number of bro-
ken polymer-filler and filler-filler contacts. Fig. 8.2 shows an example on how the
number of broken polymer-filler bonds changes with the number of shear cycles in
a filled NR system. During the first cycle this number is close to 1.87x 10%, then it
decreases, and after the third cycle it does not considerably change. This is similar
to the strain-stress behaviour of real systems, where loss during the first cycles is
larger than during the following ones. Although this property is typical for filled
elastomers, we cannot expect identical strain-stress curves for all filled systems. In
the following sections, we will explore the effects of different parameters such as filler
dispersion, strain amplitude, frequency and interaction strength on bond breaking.
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Figure 8.3: TEM images for filled NR systems with ¢ = 20%. Left: 7§ = 20 mJ/m?,
7§ = 5mJ/m? right: 7§ =20 mJ/m® and 7} = 20 mJ/m*. The TEMs are extracted
after 50 MC steps per node on average.

8.2.1 Effect of Filler Dispersion

For our study we choose two systems consisting of NR and filler with considerably
different filler dispersions presented in Fig 8.3. The filler content ¢ in both cases is
20%. The value of 7 is the same and equal to 20 mJ/m?, while 7% = 5 mJ/m* on
the left-hand side (system 1) and 7§ = 20 mJ/m?> on the right-hand side (system
2). While system 1 looks more homogeneous and dispersed, in the second case we
can observe filler agglomeration taking place. As a result, the number of breakable
bonds in the systems differs significantly. System 1 contains around eight times
more polymer-filler than filler-filler bonds (22292 vs. 2822). In the second system
the number of polymer-filler bonds is only about two times larger (16006 polymer-
filler and 7370 filler-filler bonds). In order to study the effects of the filler network,
it is reasonable to compare not the total number of broken bonds per cycle, but the
relative number. The relative number of broken bonds is obtained in the following
fashion. During each shear cycle, the broken bonds of both types are counted, then
the average number per cycle is calculated. At the end, the average number is
divided by the total number of bonds of the respective type in the system. Using
this approach, we can compare the changes in the breaking statistics for the afore-
mentioned systems with respect to different parameters. Unless stated otherwise,
in the remainder of this chapter the plots on the left-hand side correspond to sys-
tem 1 and on the right-hand side to system 2. In addition, the plots in the top
row are obtained for filler-filler contacts, whereas the bottom row corresponds to
polymer-filler bonds.

8.2.2 Effect of Interaction Strength

In Chapter 5 we studied the effect of the kpp and kpp variation on the dynamic
moduli and tan d. In Fig.8.4 the ratios of open filler-filler and polymer-filler contacts
vs. strain amplitude are shown for the systems from Fig. 8.3 and for two different
sets of spring constants. In the top row krpr = kprp = 1, and in this case, there
is no difference between polymer-filler and filler-filler contacts in terms of their
interaction strength. This is reflected in the number of broken bonds, as the ratio
of the open filler-filler and polymer-filler contacts at the same ug is similar. Both
the polymer-filler and the filler-filler bonds start to break at approximately 2-3%
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Figure 8.5: The relative number of broken bonds per shear cycle vs. simulation
frequency w at different strain amplitudes ug given in the legend.

strain. When kpp increases and kpp decreases by one order, the difference between
the types of contacts becomes apparent. The polymer-filler bonds start to break
earlier, and already at uy = 1% we can observe some bonds being broken. The
number of broken polymer-filler bonds is quite substantial, and at 20% strain it is
close to 90-95% of all polymer-filler bonds in the system. This is not surprising
because these bonds have a weaker coupling strength and therefore break easier
under external deformation. The filler-filler bonds due to a stronger coupling break
at much larger strain amplitudes, and the number of open filler-filler contacts at
20% is about 13% on the left-hand side and 30% on the right-hand side. Here we can
clearly see the effect of filler dispersion, i.e., the ratio of open contacts for system 2
is larger than the respective ratio for system 1. Based on these plots, we can assume
that in system 2 the filer contacts and the filler network play an essential role in
the load distribution. In system 1, filler aggregates do not form a filler network and
the filler-filler contacts are less involved in the load bearing. As mentioned above,
the number of broken contacts is directly related to the dissipated energy, so we
can also expect that the loss modulus for system 2 is larger than the loss modulus
for system 1.

In the remainder of this chapter, we use krr = 10 and kpr = 0.1. The force
constants for other types of interactions used to obtain the results are compiled in
Table 5.5.
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8.2.3 Effect of Frequency and Amplitude

Frequency and strain amplitude are the quantities which strongly affect the me-
chanical properties of filled elastomers. Therefore, we will look at the effect of these
parameters on the bond breaking statistics.

Fig. 8.5 illustrates the relative number of broken filler-filler (top row) and
polymer-filler (bottom row) bonds vs. simulation frequency w at different strains.
When the frequency increases, the relative number of both filler-filler and polymer-
filler bonds broken during one shear cycle also rises. Typically, the simulation
frequency defines how fast the deformation is applied to the system. At low fre-
quencies, the system has enough time to change the system configuration in response
to the applied strain, e.g., at frequencies up to 1072 the filler-filler bonds do not
break at all. At higher frequencies, these changes are constrained, therefore, the
bonds break easier, and the largest number of broken bonds for both systems is
obtained at w = 0.1. At the same frequency and strain amplitude, the number
of broken bonds in system 2 is larger than in system 1. Again, in the first case,
the filler-filler bonds break more often and play a more important role in the load
distribution throughout the system. The relative number of broken polymer-filler
bonds is also less in the case of the dispersed system. Note that in general the load
bearing paths include not only direct filler contacts but also the adjacent polymer.
Hence, the difference in the number of broken bonds between the two systems may
be related to the formation of the filler network in system 2 and a more effective
distribution of the load.

The next figure, Fig. 8.6, provides a comparison between the relative number of
broken bonds vs. strain amplitude ug at different frequencies given in the legend.
These plots support our previous conclusions. The polymer-filler bonds start to
break at ug ~ 1%, which roughly corresponds to an onset of the Payne effect in
experimental systems. At high strain amplitudes, the number of broken bonds
rises, especially at high frequencies. At the largest strain amplitude ug = 20%, the
number of broken polymer-filler bonds at the highest frequency w = 0.1 is close
to 100%. The filler-filler bonds break at considerably higher strains, and the ratio
of broken bonds is lower than for the polymer-filler bonds. The number of both
filler-filler and polymer-filler bonds, which break during a shear cycle, is larger for
system 2. In the bottom row of Fig. 8.6, the attendant loss moduli are presented.
The loss modulus for system 2 is larger than the loss modulus for system 1 at the
same frequency, which supports our assumption about the dissipated energy. The
loss modulus as well as the ratio of broken bonds drop with the frequency, i.e., at
high frequencies the bond breaking process contributes more to the dissipation of
energy.

It is worth noting that the results for other filler contents under study (¢ = 10
and 30 %) are similar to the results shown here for ¢ = 20 %.

8.2.4 Effect of Filler Content

In Fig 8.7 the relative number of broken bonds is shown as a function of filler
content ¢ at w = 0.1 and various strain amplitudes given in the legend. While in
some cases the number of broken polymer-filler bonds is nearly constant, in other
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Figure 8.7: The relative number of broken bonds per shear cycle vs. filler content
¢ at different strain amplitudes ug. The simulation frequency w is 0.1.

cases it increases with the filler content as well as the number of broken filler-filler
bonds. Obviously, the number of filler-filler and polymer-filler bonds increases with
the filler content in general, but as we consider the relative number of broken bonds,
this effect has already been taken into account. Note that the loss modulus is larger
for systems with higher filler contents, i.e., the increasing ratio of broken bonds
shows that the contribution of bond breaking to the loss increases with the filler
content. At the same time, the importance of the friction loss reduces. Based on
the plots, we can also assume that this contribution is larger for system 2 than for
system 1. It is also worth mentioning that at lower frequencies, an increase in the
ratio of broken polymer-filler bonds at higher filler contents is more pronounced.

8.2.5 Orientation Dependent Breaking

The reversible bond breaking of filler-filler and polymer-filler bonds is determined
by the load distribution within the material, which is not homogeneous and depends
on filler dispersion. Therefore, we can expect that the space orientation of breakable
bonds affects how often they break. For instance, the relative elongation of bonds
parallel to the strain direction should be larger than that for the bonds with another
orientation. This idea is illustrated in the left panel of Fig. 8.8. The original system
(blue edges) is deformed on the zz—plane, and the shear direction is diagonal to the
x- and z-axes. In the deformed system (black dotted edges), the bonds parallel to
the x-axis (red colour) do not significantly elongate and should rarely break. The



126

CHAPTER 8. THE PAYNE EFFECT REVISITED

Figure 8.8: Left: the basic idea of orientation dependent bond breaking; right: a
bond type is defined via a cone angle a.
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Figure 8.9: The relative number of broken bonds per shear cycle vs. strain ampli-
tude ug. The simulation frequency w is 0.1, the cone angle o = 10°. The different
colours correspond to different bond orientations, the colour coding is the same as
in the left panel of Fig. 8.8.
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bonds parallel to the shear direction (green colour) experience the largest elongation,
and node-to-node separations in this case often exceed the bond-breaking distance.
The bonds parallel to the z-direction represent the case with an intermediate value of
the expected elongation. The bond type is defined via a cone angle «, as presented
in the right panel of Fig. 8.8. If the angle between a bond and the respective
direction (z-, z-axes or strain direction) is less than «, then the bond is considered
to have the attendant orientation type.

The simulation results for the orientation dependent breaking for the aforemen-
tioned two systems are shown in Fig. 8.9. The colour coding matches the one used
in the left panel of Fig. 8.8. The relative number of broken filler-polymer bonds is
larger than the number of broken filler-filler bonds, and for system 2 it is larger than
for system 1. Note that the bond orientation strongly affects the bond breaking,
i.e., bonds, which are parallel to the strain direction, break more often and start
to break at lower strains than the other two types of bonds. This observation is
independent of filler dispersion, as these bonds experience the largest elongation
during shear. However, the difference in the relative number of broken bonds of
different types is larger for the dispersed system. The bonds with an orientation
parallel to either z- or z-axis do not exhibit much difference in their breaking be-
haviour. It is worth noting that at lower frequencies, the difference between the
bond types decreases; the same happens if the cone angle a becomes larger. If « is
large enough, no difference is observed because many bonds with different orienta-
tions are included into just one type, and the angles defining different bond types
can overlap.

8.3 Breaking Visualization

Another feature of the model is the possibility to visualize internal strain and stress.
This can provide insight to the distribution of the local strain (stress). The latter
can be studied with respect to external deformation and filler morphology. The
local strain for each pair of nodes 7 and j can be calculated via
Uijlocal = Ma (81)
rij,eqm'l
and the contribution of this pair to the local stress is
. - L%F(T) (8.2)
ij,local — oV T ij)- .
Fig. 8.10 shows different cuts with L = 20 from the aforementioned systems,
shown in Fig. 8.3, under applied shear deformation with uy = 10%. In the back-
ground, the filler aggregates are shown. In the top row, the bonds with a positive
value of the local strain u;;,cq; are illustrated, i.e., the bonds which are elongated
during shear. The green colour corresponds to polymer-polymer (unbreakable)
bonds, while the red colour combines filler-filler and polymer-filler bonds, which
can break. In the bottom row, the bonds with a negative value of the local strain
are shown, i.e., the bonds which are compressed during deformation. The break-
able bonds have the dark blue colour and unbreakable contacts are shown in the
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Figure 8.10: Top: bonds with a positive value of the local strain, i.e., the bonds
which are elongated during shear deformation. Green colour — polymer-polymer
(unbreakable) bonds, red — filler-filer and polymer-filler (breakable) bonds. Bottom:
bonds with a negative value of the local strain, i.e., the bonds which are compressed
during shear deformation. Dark green colour — polymer-polymer (unbreakable)
bonds, blue — filler-filer and polymer-filler (breakable) bonds. All pictures are taken
in the shear plane, L = 20.

dark green colour. In both systems, the elongated bonds have a specific orientation
which is parallel to the direction of deformation. The compressed bonds are paral-
lel to the compression direction, which is orthogonal to the direction of elongation.
In general, the distribution and orientation of bonds in the systems resemble the
respective filler morphologies.

Fig. 8.11 illustrates the bonds with the largest strain and stress in the top and
bottom row, respectively. In each case, values of the local strain (or stress) are sorted
in ascending order and the top 10% are plotted in the picture. The unbreakable
bonds again have the green colour, but now we also distinguish between polymer-
filler (blue) and filler-filler (red) bonds. In general, the strain and stress distributions
depend on filler dispersion. For system 1 the pictures look more ’homogeneous’,
while in system 2 the most strain and stress are accumulated in the vicinity and
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Figure 8.11: Top: bonds with a local strain value within top 10% during shear
deformation. Bottom: bonds with a local stress value within top 10% during shear
deformation. Green colour — polymer-polymer (unbreakable) bonds, red — filler-filer
and blue — polymer-filler bonds. All pictures are taken in the shear plane, L = 20.

inside the filler agglomerates. In both cases, the bonds with the largest strain, i.e.,
which experience the largest elongation, are either polymer-polymer or polymer-
filler. The main reason is that the values of the attendant force constants are
smaller than for the filler-filler interaction. For system 2 not only the polymer-
filler and filler-filler bonds, but also the polymer-polymer bonds are concentrated
in the filler domains, forming ’cavities’, i.e. regions in which the ’green bonds’ are
noticeably less dense, in the rubber phase, where the values of the local strain are
much smaller.

For the stress distribution, the picture is entirely different, i.e., the contribution
of filler-filler bonds to the microscopic stress is much larger than their contribution
to the local strain. This is again due to the difference in the force constants, which
define the force between two nodes in Eq. (8.2). The local stress is predominantly
concentrated in the filler domains in the case of system 2, whereas the stress dis-
tribution for system 1 is more homogeneous. The cavities in the former case are
even larger than for the local strain, which implies, that the contribution of filler
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Figure 8.12: Top: bonds with the top 10% local strain (red) or the top 10% local
stress (blue). Broken bonds are excluded. Bottom: filler-filler and polymer-filler
bonds broken during a shear cycle.

domains to the local stress is more considerable than that of the rubber phase.
As for a broken filler-filler bond 0 0ca; is zero, only non-broken filler-filler bonds
contributing to the local stress are shown in the picture.

In the top row of Fig. 8.12, the distribution of both the local strain and the
local stress is shown, where broken bonds are excluded. These pictures show that
the largest elongations are observed in the polymer phase, while the largest stress
concentrates inside the filler agglomerates. The largest values of local strain are
found in the polymer phase, because in the filler-filler and polymer-filler interfaces
the bond elongation is limited by the bond breaking distances Rpr = Rpp = 1.01
rij0- Although the bonds inside filler agglomerates can break, they do not open
during the shear cycle, according to the right panel of Fig. 8.12. This happens pos-
sibly due to a high concentration of bonds with large values of the force constants,
which hinders breaking and makes these bonds in reality unbreakable. This is not
observed on the left-hand side because the dispersed system does not have such filler
domains, where the concentration of bonds with large values of force constants is
significant.
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In the bottom row of Fig. 8.12, the broken filler-filler and polymer-filler bonds
are shown. As broken bonds contribute directly to the energy dissipation, this
type of representation allows to observe the loss distribution in the system. Note
that according to the scaling model, when external deformation is applied, the
load bearing paths break first. Based on the pictures in the bottom row of Fig.
8.12, we can monitor the positions of the broken bonds and how their number
changes with the simulation time. In Fig. 8.13 snapshots from an animation are
presented showing the broken polymer-filler and filler-filler bonds at ¢t = n - 7/2,
where n = 1,2,..,8. The shear direction on the left-hand side changes from top
right to top left. The intermediate states with ¢t = m -, where m = 1,2,3,4, do
not experience any deformation (up = 0) and are shown on the right-hand side.
After the first half of the first shear cycle, some bonds remain open even when wuyg
= 0 (top right panel). The orientation of broken bonds corresponds to the shear
direction, and when the deformation is zero, the bonds do not have any particular
direction. After the first shear cycle is complete, the number of open bonds is larger
than at ¢t = m. As discussed above, the possibility for a bond to break depends on
its relative orientation to the shear direction; as the shear direction changes, the
bonds broken in the first and the second half of the cycle are different. However,
during the second cycle, the number of broken bonds does not change significantly
when uy = 0. The main difference is that the first shear cycle is performed on
an undeformed material, while the second cycle — on the previously deformed one.
This makes the first shear cycle special in terms of deformation. This behaviour
is similar to the aforementioned Mullins effect in experimental systems. Overall,
pictures like Fig. 8.12 and 8.13 may be helpful in finding and studying load bearing
paths in the system.

8.4 Local Strain and Stress Distribution

The model provides the opportunity not only to qualitatively distinguish the local
strain and stress, but also quantitatively describe the local strain and stress. One
can study the local strain and stress distributions and how the local values deviate
from the global deformation applied to the system. As large values of the local
strain and stress often lead to cracks in a material, this study can provide important
insights to the mechanisms of fatigue and damage in real systems. In addition, one
can look at local strain and stress distributions with respect to different parameters,
such as filler morphology, strain amplitude, frequency or shear cycle. In this section,
we will describe possible sources of damage and will also discuss some selected
results.

During deformation, the local strain can vary inside the material and according
to the strain amplification idea may be considerably larger than the external strain.
In Fig. 8.14 the ratios of the local strain to the global strain vs. strain amplitude
are shown. On the left-hand side, the results for the system with v; = 5 mJ/ m?
are presented and on the right-hand side the plots are obtained for the system with
ﬁ = 20 mJ/m?2. The frequency w is 0.1, which is near the glass transition peak of
NR. In the top row, the value of the maximum local strain is given (elongation),
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Figure 8.14: The ratios of the local maximal (elongation) in the top row or the
absolute value of minimal (compression) strain in the bottom row to the global
strain ug vs. wug. The plots are done for the filled NR systems with 20% vol.
filler (v¢ = 20 mJ/m?) shown in Fig. 8.3. Left: 7} = 5 mJ/m?, right: ~} = 20
mJ/m?. The local strain values are shown for polymer-polymer bonds in the pure
polymer ("NR’), polymer-polymer bonds in the filled system (‘rubber subphase’) and
breakable bonds ('PF + FF’). The averages are calculated based on top/bottom 1%
of bonds in each case. The frequency w is 0.1.
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while in the bottom row, the absolute value of the minimum local strain is shown
(compression). In Fig. 8.14 one can also distinguish between different bond types
in the system, e.g., polymer-polymer bonds in the filled system (rubber subphase)
and breakable (polymer-filler and filler-filler) bonds. In addition, the results for
pure NR are presented, which is used as a reference system. The values of the local
elongation or compression are calculated based on 1% of bonds with either the
highest or lowest value of the local strain, respectively. The error bars are obtained
based on 5 subsystems, which are cut from the same larger system. Note that for
breakable bonds, elongation is not a proper term because these bonds are broken for
all local strains exceeding 1%; in this case we talk merely about a distance between
two nodes. In general, the local strain is proportional to the global strain, making
their ratio independent of the applied deformation. The ratio of the local strain to
the global strain is close to one for all subphases, and large values of the standard
deviations suppress the difference between the curves. In terms of compression,
breakable bonds are the least deformed ones, while the strongest compression is
observed in the rubber subphase of filled systems. It is worth noting that changing
the ratio of bonds taken for the calculation of the values in Fig. 8.14 affects the
ratio of the local strain to the deformation and the error. Taking 0.1% of bonds
increases the ratio, while for 10% the ratio decreases to approximately 0.5.

Fig. 8.15 shows the ratios of the local strain to the global strain vs. global
stress ug for the aforementioned systems at w = 0.001. In the top row, the curves
for the elongation or maximal local strain are presented and in the bottom row —
for the compression or minimal local strain. In comparison to the previous figure,
showing the results at w = 0.1, in this case the respective ratios are up to 3-4 times
larger. The comparison with the unfilled system shows that the rubber subphase in
filled systems is subjected to larger elongations and compressions due to presence
of filler. The breakable bonds are the least compressible, as they show the lowest
values of the minimal local strain. While most curves do not change with u,, and
they are parallel to the z-axis, the maximal local strain for breakable bonds is about
0.5 at ug = 1% but increases for both systems with the strain amplitude. At this
frequency, the respective values of the local strain (both maximal and minimal) for
the flocculated system are also larger than for the dispersed one.

Fig. 8.16 complements Fig. 8.14 and presents the ratios of the maximal (top
row) or minimal (bottom row) local stress to the average stress in the same systems
as in Fig. 8.14 at the same frequency w = 0.1. The average stress is calculated
as the total stress divided by the total number of bonds and, thus, represents the
average 'energy density’ supplied to the system. The error bars are calculated based
on top or bottom 1% of the bonds in 5 subsystems with the same filler morphology
for the maximal and minimal stress, respectively. Both the local and global stresses
increase with the deformation, therefore their ratio is almost constant for all strain
amplitudes. The largest values of both maximal and minimal local stress can be
observed for the filler-filler bonds (FF). The maximal stress can be up to 50 times
larger than the average stress in the system. The absolute value of the minimal
local stress is at most 30 times larger than the average stress. The relative value of
the local stress is close in both systems, i.e., it is not significantly affected by filler
morphology. Rubber-rubber bonds in filled systems and in pure NR exhibit much
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Figure 8.15: The ratios of the local maximal (elongation) in the top row or the
absolute value of minimal (compression) strain in the bottom row to the global
strain ug vs. wug. The plots are done for the filled NR systems with 20% vol.
filler (7§ = 20 mJ/m?) shown in Fig. 83. Left: 7} = 5 mJ/m? right: ~} =
20 mJ/m?. The values of the local strain are shown for polymer-polymer bonds
in the pure polymer ('NR’), polymer-polymer bonds in the filled system (‘rubber
subphase’) and breakable bonds ('PF + FF’). The averages are calculated based on
top/bottom 1% of bonds in each case. The frequency w is 0.001.
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Figure 8.16: The ratios of the local maximal stress in the top row or the absolute
value of minimal stress in the bottom row to the global stress oy vs. ug. The plots
are done for the filled NR systems with 20% vol. filler (v = 20 mJ/m?) shown in
Fig. 8.3. Left: 7% = 5 mJ/m?, right: 7§ = 20 mJ/m?. The values of the local stress
are shown for all types of bonds, i.e., polymer-polymer bonds in the pure polymer
(’NR’), polymer-polymer bonds in the filled system (‘rubber subphase’) polymer-
filler ("PF’) and filler-filler ("FF’) bonds. The averages are calculated based on
top/bottom 1% of bonds in each case. The frequency w is 0.1.
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Figure 8.17: The ratios of the local maximal stress in the top row or the absolute
value of minimal stress in the bottom row to the global stress oy vs. ug. The plots
are done for the filled NR systems with 20% vol. filler (v§ = 20 mJ/m?) shown in
Fig. 8.3. Left: 7% = 5 mJ/m?, right: 7§ = 20 mJ/m?. The values of the local stress
are shown for all types of bonds, i.e., polymer-polymer bonds in the pure polymer
(’NR’), polymer-polymer bonds in the filled system (‘rubber subphase’) polymer-
filler ("PF’) and filler-filler ("FF’) bonds. The averages are calculated based on
top/bottom 1% of bonds in each case. The frequency w is 0.001.

smaller stress than filler-filler and polymer-filler bonds, i,e., the stress propagates
in the system mainly via filler-filler and polymer-filler bonds. This is probably
expected due to the values of the force constants used for the stress calculation in
(8.2). A large value of kpp ensures a considerable relative contribution of filler-filler
bonds to the total stress, while the contributions of other bonds are smaller.

The next Fig. 8.17 shows the ratios of the maximal (top) and minimal (bottom)
local stress to the average stress at w = 0.001. The plots are similar to those
shown in the previous figure. As at w = 0.1, the largest relative local stress is
observed for the filler-filler bonds. The main difference to Fig. 8.16 is the effect of
filler dispersion, which becomes apparent at w = 0.001. The relative value of the
maximal local stress in the dispersed system (left) is about 5 times smaller than
in the flocculated system (right). A similar ratio can be observed for the values of
the minimal local stress. It is worth noting that increasing the number of bonds
taken for the calculation of the average to 10% decreases the obtained local stress.
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If, however, only top/bottom 0.1% bonds are considered, the obtained values rise
significantly. Combining Figs. 8.14 — 8.17 leads to the conclusion that there are
areas in the system where the local strain and stress are considerably larger than the
applied deformation and the average stress, respectively. The number of such areas
is small with respect to the total number of bonds, mainly it is 0.1-1% of all bonds
which experience the significantly larger strain or stress. If we assume that damage
is initiated in exactly those areas, then failure of a material starts in a small number
of areas where locally the strain and stress are large. As the material approaches
fatigue, the stress concentration areas begin to initiate microscopic cracks. The
number and the size of the cracks will increase until the material fails.

Comparing Figs. 8.14 — 8.17 shows that the effect of filler dispersion on the local
strain/stress strongly depends on frequency. At w = 0.1, there are little differences
between the two morphologies. When w = 0.001, improving the filler dispersion
decreases the local strain in the rubber subphase roughly by a factor of two and the
local stress in the filler-filler interface — by a factor of five.

Fig. 8.18 shows the difference of two histograms obtained during the fifth and
the first shear cycles vs. the local strain value at different global strain amplitudes
given in the legend. On the y-axis the respective number of bonds is plotted. Two
columns correspond to the above systems with different filler dispersions presented
in Fig. 8.3. The top row shows the distribution for the polymer subphase of the
filled system, while the bottom row presents the results for the breakable subphase.
The breakable subphase includes polymer-filler and filler-filler bonds. The black
lines at 1% strain in the bottom row divide the figures in two parts, beyond these
lines the bonds are considered to be broken. Generally, the distributions for the
rubber subphase at all strains are more symmetric than for breakable bonds. At
high strain amplitudes, e.g., ug = 10 and 30 %, the width of the strain distribution
increases from the first to the fifth cycle, i.e., the local compression and elongation
become larger. During the first shear cycle, however, there are more bonds with the
local strain close to zero. The width of the local strain distribution increases with
the deformation amplitude, which complements the results shown in the Figs. 8.14
—8.15. The distribution of breakable bonds is highly asymmetric, and the distances
between nodes increase between the shear cycles. Contrary to the positive strain
side of the plot, on the compression side the distribution is close to zero below
approximately -20%.

It is worth noting that at w = 0.001, the deformation during different shear
cycles yields similar distributions. The difference of the local strain histograms in
this case is symmetric about the y-axis, while the absolute values are close to zero.

Obtaining similar histograms for the stress distribution is more complicated
than for the strain distribution due to several reasons. Firstly, because stress is
a microscopic value, the width of the distribution is much smaller. Secondly, for
broken filler-filler bonds the stress is equal to zero. If there are many broken bonds
in the system, the height of the central bin is considerable and often much larger
than the height of other bins. Moreover, the comparison between different shear
cycles did not show significant differences between the two, so the subtraction of
the histograms in this case was close to zero. Therefore, here we limit ourselves to
considering only examples of stress histograms obtained at different strain ampli-
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Figure 8.18: The difference of histograms obtained during the 5th and 1st shear
cycles vs. the local strain value at different strain amplitudes given in the legend.
Top: the polymer subphase, bottom: breakable bonds. The black lines in the
bottom row are plotted at 1% of the local strain; all bonds with the local strain
beyond this line are broken. The frequency w is 0.1. The systems are filled NR
shown in Fig. 8.3, left: 74 = 5 mJ/m?, right: 7} = 20 mJ/m?.
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Figure 8.19: Histograms obtained during the first shear cycle vs. the local stress at
different global strain amplitudes given in the legend. Top: the polymer subphase,
bottom: breakable bonds. The systems are filled NR shown in Fig. 8.3, left: fyjﬁ’ =
5 mJ/m?, right: 7§ = 20 mJ/m?.
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Figure 8.20: The number of open contacts vs. simulation time at different strain
amplitudes given in the legend. Left: krpp = kpp = 1, right: kpp = 10, kpp = 0.1,
vr = 15. Top: filler-filler bonds, bottom: polymer-filler bonds. In addition, the
system is 20% filled NR with 7§ = 20 mJ/m?, 7§ = 20 mJ/m? (the right panel of
Fig. 8.3) at w = 0.1.

tudes.

Fig. 8.19 shows the histograms of the local stress at different global strain
amplitudes given in the legend. On the y-axis, the respective number of bonds is
plotted. The plots on the left-hand side correspond to the system with fy? =5mJ/m?
and on the right-hand side — to 7? = 20 mJ/m?. The top row is obtained for the
polymer subphase of the respective filled system, and in the bottom row the results
for breakable bonds are shown. Overall, the stress distributions are asymmetric
for all presented cases, i.e., there are more bonds with a positive value of the local
stress than with a negative value. This property is demonstrated by both polymer
and breakable subphases. However, the latter can also be well distinguished based
on the behaviour at different strain amplitudes. While in the polymer subphase
the width of the distribution increases with the global strain value, it is opposite
for the breakable bonds. The height of the central bin is also different depending
on the strain amplitude and the bond type. Whereas in the polymer the height of
the central bin drops with the deformation, in the breakable subphase it increases.
When external strain increases, the internal stress rises and more and more filler-
filler bonds break. For these bonds, the stress is equal or close to zero, therefore
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the height of the central bin becomes larger, and the values, that the microscopic
stress can reach, are limited. In the rubber phase, the bonds cannot break, therefore
larger deformations lead to increasing values of the local stress. At 1% strain, the
local stress for most rubber-rubber bonds is close to zero.

8.5 Relaxation

The next example we consider in this chapter is the relaxation behaviour for a
system with different values of kpr and krp. As we have already shown in Fig.
6.13, filler dispersion can significantly affect the system relaxation, and due to
similarity of the results here we consider only the NR filled system with 7? = 20
mJ/m? shown in the right panel of Fig. 8.3.

In Fig. 8.20 two cases are presented, where in the left column kpp = kpp = 1 and
in the right column kpp = 10, kpp = 0.1 and yr = 15. The procedure for obtaining
these plots is the same as described in the discussion of Fig. 6.13. The top row shows
the number of open filler-filler bonds, whereas the bottom row presents the plots for
the broken polymer-filler bonds. Generally, the relaxation behaviour for different
types of bonds is similar at various strain amplitudes and slows drastically when
the force constants change. In addition, the number of broken polymer-filler bonds
increases, while the number of open filler-filler bonds drops, which is in agreement
with the results shown in Fig. 6.13. For instance, the polymer-filler interaction
is weaker and the respective bonds break more often. For the same set of spring
constants, the slowest relaxation is observed at the largest strain amplitude. In
both cases, the polymer-filler bonds close slower than the filler-filler ones. On the
other hand, the total number of polymer-filler bonds is significantly larger than the
number of filler-filler bonds, which may affect the relaxation time.

It is worth mentioning that an attempt was made to simulate stress relaxation
experiments, but the model was not capable of reproducing the experimental find-
ings typical for such measurements.

8.6 The Payne Effect in Filled Elastomer Systems

In this section, we will study the Payne effect in filled systems for two main cases.
In the first case, we mimic breaking of a relatively strong chemical bond with
the subsequent formation of a much weaker physical bond. After a bond breaks
once, it closes again with a spring having a weaker spring constant. For the filler-
filler interaction, based on the difference in the bond energies, we assume that
kpp atter break = 0.01kpp is reasonable, whereas for the polymer-filler interaction we
set kpp, after break — 0.1kpp. In the second case, we make some types of bonds
unbreakable in order to study the respective contributions of different bond types
to the magnitude of the Payne effect.

In Fig. 8.21 the storage u' (left) and loss p” (right) moduli vs. strain amplitude
up are presented for the systems from Fig. 8.3. The blue and green curves are
obtained for the system with v} = 20 mJ/ m? (right panel of Fig. 8.3), and red and
yellow curves — for the system with 'y? = 5 mJ/m? (left panel of Fig. 8.3). The
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Figure 8.21: The storage y' (left) and loss p” (right) moduli vs. strain amplitude
ug for filled NR systems from Fig. 8.3. Top: w = 0.001, bottom: w = 0.1. The
value of the filler-filler force constant after the break %' is varied between 10 (the

same as before the break) and 0.1.
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Figure 8.22: The storage y' (left) and loss p” (right) moduli vs. strain amplitude
ug for filled NR systems from Fig. 8.3. Top: w = 0.001, bottom: w = 0.1. The
value of the polymer-filler force constant after the break £’ is varied between 0.1

(the same as before the break) and 0.01.
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colour coding remains unchanged in the remainder of this section. The top row
corresponds to w = 0.001, and the bottom row — to w = 0.1. Here we vary the
value of krp after the break, i.e., after a filler-filler bond reversibly opens it closes
again with a weaker spring constant kp = 0.01krpp = 0.1. The attendant curves
for the dynamic moduli (blue and red) are then compared with the ones obtained
for the case when no alterations in kppr are made (green and yellow). Note that
the respective storage modulus at w = 0.1 and the loss moduli at both frequencies
for the system with the fine dispersion lie below the curves for the system with fy?
= 20 mJ/m? However, the difference between the results for various k% ,-values
after the break appears to be minor. For the dispersed system the difference in
the moduli values is within the error bars, while for the flocculated system at w =
0.1 and ug > 3% the moduli are slightly smaller when k%, = 0.1. This result is
probably expected because the number of performed shear cycles in the simulation
is small. In real systems, any dramatic changes in the dynamic moduli during the
first deformation cycles are also uncommon due to quality standards ensuring nearly
constant performance throughout the life cycle of products.

In the next Fig. 8.22, the alterations are made in the value of the polymer-filler
force constant after the break kpp. At w = 0.1, for both systems no considerable
changes are observed between the cases when kfpp = 0.1kpp (blue and red) and
kpp = kpp (green and yellow). The dynamic moduli for the flocculated system are
about two times larger than the moduli for the dispersed system. At w = 0.001, the
storage moduli for these two systems are close to each other, and both drop in the
range of the onset of the Payne effect, when £’ is reduced. The loss modulus for
the dispersed system is about three times smaller than for the flocculated system.
When k% = 0.1kpp, the height of the loss modulus peak decreases for both systems,
and for the system with ’y? = 20 mJ/m? the peak completely vanishes. Hence, the
height of the loss modulus peak at w = 0.001 depends on the polymer-filler coupling
strength kpp.

In Fig. 8.23 the blue curve for ﬁ = 20 mJ/m? and the red curve for 7? =
mJ/m? are obtained when filler-filler bonds in the system are unbreakable. They
are compared with the case when no alterations are made (the green curve for ”y? =
20 mJ/m? and the yellow curve for 7% = 5 mJ/m?). As above, in the top row w =
0.001 and in the bottom row w = 0.1. At the low frequency, only subtle differences
within the error bars can be observed for both systems. At the high frequency,
however, the magnitude of the Payne effect is significantly reduced for both moduli.
The loss modulus is more affected and becomes almost independent of the strain
amplitude. This drop of the Payne effect magnitude is also considerably larger
in the flocculated system than in the dispersed one. The finding leads us to the
conclusion that the contribution of the filler-filler contacts to the magnitude of the
Payne effect depends not only on frequency but also on filler dispersion.

The aforementioned effect was found not only for the filler-filler bonds but also
for the polymer-filler bonds. In Fig. 8.24 the blue (7} = 20 mJ/m?) and red
(”y? = 5 mJ/m?) curves show the dynamic moduli when the polymer-filler bonds
in the system are unbreakable. The green (7§ = 20 mJ/m?) and yellow (7} = 5
mJ/m?) curves show the dynamic moduli for breakable polymer-filler bonds. In

the top row w = 0.001, and in the bottom row w = 0.1. At the high frequency w
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Figure 8.23: The storage y' (left) and loss p” (right) moduli vs. strain amplitude
ug for filled NR systems from Fig. 8.3. Top: w = 0.001, bottom: w = 0.1. Green

and yellow: filler-filler bonds are breakable; blue and red: filler-filler bonds are

unbreakable.
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= 0.1, in the bottom row the difference between the two cases can be mainly seen
in the value of the storage modulus, where the Payne effect magnitude drops for
both systems. The loss modulus is unaffected by this change, and in this case, the
difference remains small. At the low frequency, one can observe an absence of the
Payne effect for the storage modulus in both systems, i.e., i/ is constant within
the strain amplitude range. The loss modulus also becomes nearly independent of
strain. While the values of the moduli at small strains do not change, as the strain
amplitude increases, the difference between the moduli for systems with breakable
and unbreakable polymer-filler bonds becomes larger. We found as well that the
1’-peak disappears; this effect is more noticeable in the dispersed system, where
the contribution of the polymer-filler bonds to the magnitude of the Payne effect is
more significant than that of the filler-filler bonds.

In Fig. 8.25 the dynamic moduli vs. strain amplitude are shown when PF
and FF bonds are breakable (the green curve for ’y? = 20 mJ/m? and the yellow
one for 74 = 5 mJ/m?) and when all the bonds are unbreakable (the blue curve
for 4% = 20 mJ/m? and the red one for 44 = 5 mJ/m?). In the latter case, no
Payne effect can be expected, as all bonds in the system resemble unbreakable
polymer-polymer bonds with different interactions strengths. And this is exactly
what happens with the dynamic moduli in Fig. 8.25. Both the storage and the loss
moduli are independent of the applied strain. The systems with unbreakable bonds
are close in their characteristics to unfilled polymer systems in the sense that they
do not exhibit the Payne effect which is typical for filled elastomers.

The model provides useful insights to the sources of the Payne effect in filled
elastomer systems. The Payne effect, which is caused by dissipation processes in
the filler network, has a complex nature. It has been a long-standing question
whether the Payne effect is due to filler-filler or polymer-filler bonds. As shown
above, this question does not have a simple answer. The contributions of filler-filler
and polymer-filler contacts to the magnitude of the Payne effect depend not only on
filler dispersion, but also on frequency. At frequencies significantly below the glass
transition, the contribution of the filler-filler bonds dominates. As the frequency
decreases, the dissipation from polymer-filler contacts overcomes the contribution
due to filler-filler bonds and becomes essential for the Payne effect.
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Chapter 9

Conclusion

The main goal of this work was the development of a modelling approach relating
filler dispersion in filled elastomers, based on the experimental surface energies of
individual components, to the mechanical properties of elastomer composites. The
approach combined two models. The first one was an extension of previous work
[19-21], which presents a coarse-grained model to filler flocculation based on the
Metropolis Monte Carlo simulation. Filler flocculation is a process, which leads
to re-agglomeration of initially well dispersed filler particles in the post-mixing
stages [10-17|. This algorithm, called the morphology generator, minimizes the free
enthalpy of the system, and the interactions between different components are de-
scribed via the experimental interface free energies. The second model performed
shearing of the systems obtained via the morphology generator to obtain the storage
and loss moduli as well as their ratio — tan . This simulation mimics the dynamic
mechanical analysis, or DMA, which is widely used in laboratories to measure the
mechanical performance of tire materials. One of the most important effects in this
context is the so-called Payne effect, i.e., the pronounced decrease of the complex
modulus with increasing strain amplitude in filled elastomers under cyclic loading
[32-36]. A long standing question, which was addressed here, is the relative impor-
tance of polymer-filler vs. filler-filler interactions in this context [37]. Generally, the
model provides a connection between the chemical composition, characterized by
the experimental surface free energies, and the mechanical properties of the mate-
rial and can serve for a laboratory prediction of material performance parameters.
In this work, we concentrated on the dispersion in the range from primary particles
to the filler network on the scale of up to several ym. The main focus was on natu-
ral rubber (NR), styrene butadiene rubber (SBR) and fillers with different surface
energies as well as on their combinations.

In Chapter 3, the morphology generator algorithm (MG) was discussed. In
addition, the concepts of wetting-envelope — work of adhesion plots and simulated
transmission electron micrographs (TEM) were introduced. The main result of
this chapter was the generalization of the previous morphology generator. The
original cubic lattice was replaced by a neighbour list allowing a variable number
of neighbouring nodes. Nodes are volume elements, whose entirety is the material
sample, representing polymer or filler particles. These particles are the smallest
unbreakable filler entities. Neighbouring nodes share a common interface. Here the
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number of neighbours a node has is close to the number of neighbours a molecule has
in a liquid. This ensures the isotropy of the elastomer material. The new MG was
tested, compared to the previous one and parameters, like the number of neighbours
a node can have, were optimized. Typically, the MG operates on systems consisting
of roughly 10 nodes. Due to the local nature of the site-exchange Monte Carlo
steps, the number of steps can, albeit roughly, be compared to time.

The output of the MG, i.e., a neighbour list representing the system morphology
at this 'time’, becomes the input of the DMA modelling. This was discussed in
Chapter 4. The main result of this chapter was an algorithm, which converts the
neighbour list to an attendant network of nodes linked via viscous springs. A
dynamically changing shear profile drives the network and the nodes in it. The
trajectories of the latter were obtained by solving the force equilibrium subject to
shear-adapted boundary conditions. Test runs yielded stress-strain behaviour in
good accord with real experiments on linear (unfilled) as well as non-linear (filled)
systems. Due to the increase in computational effort compared to the MG, in
particular when the shear frequency is low, the DMA system size was reduced to
about 10* nodes. Final results were averages over, usually, five independent systems
of this size.

The main objective of Chapter 5 was to find the parameters for both parts of the
model, i.e., the MG and the DMA. The parameters for the MG part were adjusted
based on the comparison of the simulated morphologies to experimental TEM im-
ages. The size of agglomerates and their connectivity depended to a large extent
on the simulation time. If the simulation time was too long, the loss of connectivity
between filler agglomerates was observed. Therefore, comparing the agglomerate
size in the simulated and experimental TEMs was essential for determining a proper
number of MC steps in the MG. For the parametrization of the DMA part, it was
found that two force constants with substantially different force constants are re-
quired to model loss tangents of unfilled polymers. These force constants were
distributed randomly in the system. By a proper choice of the force constant values
and their ratios, this approach allowed to simulate the heights of pure NR and SBR
peaks, as well as the separation between them. Unfilled blends can be modelled
using mixing rules, where the force constants in the polymer interface are combi-
nations of the force constants for pure polymers. The ratio between the 'weak’ and
‘strong’ spring constants in the interface had a significant impact on the tan d peak
heights for unfilled blends. When filler is added, there is a certain filler concentra-
tion, called the percolation threshold, at which the filler network forms. The filler
network formation leads to significant changes in the mechanical properties of filled
elastomers. The force constants for the polymer-filler and the filler-filler interac-
tions were chosen so that the power law increase of the simulated storage modulus
as a function of filler volume content reproduces the experimental one beyond the
percolation threshold. Also, the effects of the bond breaking distances and the
filler morphology on the dynamic moduli of filled systems were studied. In order
to obtain the tand curves for different filler contents at low frequencies in accord
with experiments, the relaxation time in the polymer-filler interface must be signif-
icantly increased. Experimentally, this situation would correspond to a formation
of a polymer layer with less mobility and slower dynamics than in the bulk. An
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important result in this context was the discovery that the long relaxation time in
the polymer-filler interface has an impact on the loss tangent in the low frequency
range — the range of particular importance in terms of rolling resistance. The force
constants for SBR filled systems were found to be close to those used for NR filled
elastomers.

The next three chapters were applications of the MG/DMA modelling tool.

Chapter 6 was devoted to filled systems, consisting of a polymer and a filler.
The main objective of the chapter was to study the effects of different parameters
such as filler morphology, filler volume content and flocculation time on mechanical
properties of filled systems consisting of one polymer plus filler. We varied gradually
the dispersive and polar parts of the filler surface energy and looked at the dynamic
moduli and tan ¢ as functions of either strain amplitude or frequency. It was found
that the filler polarity, determined by the filler type, has a more significant effect
on the dynamic moduli and the Payne effect than the filler size. The latter can
in turn be related to the dispersive contribution of the filler surface energy. The
impact of the filler content variation depended on the filler type, but in general,
and in accord with experiments, the magnitude of the Payne effect increased with
the filler concentration. Generally, the dynamic moduli increased with the number
of MC steps, which roughly corresponds to flocculation time. The plotted curves
were similar to experimental ones obtained in flocculation tests. In that chapter, we
also proposed an approach for a more experiment-based choice of the polymer-filler
force constants. Each polymer-filler force constant was set to be proportional to
the interface tension of the respective pair "polymer-filler’. Based on this approach,
we considered an example of three fillers widely used in the tire industry, i.e.,
carbon black, silica and silanized silica in NR. We studied the filler dispersion,
the Payne effect and the relaxation behaviour in these systems. The order of the
Payne effect-curves corresponded to the experimental one. The magnitude of the
Payne effect increased with the agglomerate size, i.e., finer dispersion leads to better
performance. The carbon black filled system exhibited the fastest relaxation, while
the system with silanized silica — the slowest. This finding was also supported by
stress relaxation experiments.

In Chapter 7, the main focus was on the mechanical properties of filled polymer
blends consisting of NR, SBR and a filler. We studied the filler distribution and
enrichment of polymer subphases by different fillers depending on their surface
energy. The filler morphology had a strong impact on the dynamic moduli of filled
blends. The magnitude of the Payne effect was the smallest for the system with the
finest dispersion and increased for the conventional fillers, i.e., carbon black, silica
and silanized silica. The dynamic moduli of the 50-NR/50-SBR blend filled with
carbon black increased with the filler volume content. Adding of filler, however,
suppressed the difference in the mechanical properties between blends with various
blend ratios.

In the last Chapter 8, we studied bond breaking, the Payne effect and local
strain and stress in two filled NR systems with substantially different filler disper-
sions. The main objective was to study the bond breaking in order to separate
the contributions of the polymer-filler and filler-filler bonds to the Payne effect.
Another question was to determine how much local strain and stress in some ar-
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eas of the system, i.e., different interfaces or the polymer subphase, differ from the
average stress or applied strain. The latter can provide information on possible
mechanisms of damage initiation and fatigue. An ultimate goal was to determine
and visualize the load bearing paths in the system. It was found that the ratio
of the broken polymer-filler and filler-filler bonds depends on filler dispersion and
the force constant values describing the interaction strength between nodes. The
ratio of broken bonds increased with frequency, strain amplitude and filler volume
content. The ratio of broken filler-filler bonds was smaller for the dispersed system.
The bond orientation affected the probability for a bond to break; the largest ratio
of broken bonds was found for the bonds parallel to the strain direction. The largest
local stress concentrated in the filler domains, while the largest local strain — in the
polymer phase. For a small fraction of bonds (0.1 - 1%) the local stress significantly
exceeded the average stress, and the local strain was considerably larger than the
applied strain. If damage starts in areas with substantial strain/stress, the number
of such areas should be small, and the initiation of permanent damage is a relatively
rare event. This effect also depended on frequency; at low frequencies the system
had enough time to redistribute the load, and the respective local stress and strain
were larger. The local strain and stress distributions were also studied using his-
tograms at different strains and shear cycles. The values of the polymer-filler and
filler-filler force constants after the first break hardly had an effect on the dynamic
moduli. Making certain types of bonds unbreakable, however, led to a reduction of
the magnitude of the Payne effect. The effect of the filler-filler bonds was stronger
at the higher frequency, and the effect due to the polymer-filler bonds — at the
lower frequency. Thus, the contributions of the polymer-filler and filler-filler con-
tacts to the Payne effect were different and depended on frequency. At frequencies
near the glass transition, the contribution of the filler-filler bonds dominates, so
the filler-filler bonds play a more important role in grip properties of the material.
As frequency dropped, the dissipation from polymer-filler contacts increased and
eventually overcame the contribution of the filler-filler bonds, i.e., the polymer-filler
contacts are more important for rolling resistance.

Overall, the presented model can be used as a tool for the development of novel
elastomer composites with desired mechanical properties. The model is capable of
reproducing a series of important experimental findings and can be easily extended
to more than three components. The model also allows to study macroscopic mate-
rial properties in relation to the internal dynamics and relaxation — the information
which otherwise is nearly impossible to obtain. However, the predictive power of
the model strongly depends on its input, i.e., the quality of experimental surface
tensions. Unfortunately, most of the currently available data for the dispersive and
polar parts of filler and, in part also, polymer surface tensions are quite inaccurate.
Much of what this model can accomplish in the future will depend on improving
these measurements to an accuracy of 10% and better.
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Surface Free Energies

In this chapter, we will explain the terms ’surface tension’ and ’surface energies’.
In addition, the main experimental techniques for measuring surface energies will
be discussed.

A.1 Surface Tension and Surface Energies

In materials science, the terms surface free energy and surface tension are often
used interchangeably, although, the term ’surface tension’ refers only to liquids,
while the term ’surface free energy’ is more general and can be used when referring
to solids. The molecules on the surface of a material have different energy compared
to molecules in the bulk of the material, and exactly this excess of energy is called
the surface energy. On the other hand, we can define the surface energy as the work
required to create two surfaces by cutting a bulk sample.

At a constant pressure P and a temperature T', the Gibbs free energy G is the
quantity which is commonly used to thermodynamically describe a system [145].
According to the first law of thermodynamics, we find for the internal energy of the
system

dE = dg—dw+ Y judN;. (A.1)

Here ¢ is the heat, w is the work done by the system, p; is the chemical potential
and N; is the number of moles of the i-th component. The work done by the system
can be split into two components, i.e., expansion of the system and extension of the
surface

dw = PdV — ~vdA. (A.2)

Here v is the surface tension or the force per unit length required to extend the
surface A. Using G = H —-TS, H = E+ PV and dq = TdS, where H is the
enthalpy and S is the entropy, we find for the free enthalpy

dG = VdP — SdT + vdA+ > judN;. (A.3)
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A

Figure A.1: A drop of a liquid [ (sessile drop) on a smooth solid substrate s. The
contact angle 6 is defined between the interface of the liquid with its vapour and
the surface of the solid.

The surface tension is then

oG

OAIPT N,

g (A.4)

The surface tension is thus the change in the Gibbs free energy of the system
corresponding to the unit increase in the surface area. In the case of liquids, it is
equal to the surface free energy, which is defined as the change in the Gibbs free
energy of the surface associated with a unit increase in the surface area. For a solid,
due to stretching, both quantities are not necessarily equal.

A.2 Contact Angle and Interface Tension

The surface energy is an essential quantity in studying the wetting phenomena of
liquids on solids. A measure of the wettability is a contact angle — the angle between
a liquid-vapour interface and a solid surface, shown in Fig A.1. The surface energy
can be related to the contact angle via the Young equation

Vs — Vsl = Y1 COSH. (A.5)

Here 7 is the surface energy and the subscripts s and [ correspond to the solid
substrate and the probe liquid, respectively; 74 is the interface tension or interfacial
energy between the solid and liquid phases; 6 is the contact angle. The situation
when 6 = 0° is called perfect wetting; in this case the adhesion, or the interaction
between the liquid and the solid, is stronger than the cohesion, i.e., the interaction
between the liquid molecules or between the solid molecules. When ¢ = 180°, the
cohesive forces are stronger than the adhesive ones, and no wetting is observed.
The values of the contact angle between 0° and 90° yield wetting of the surface
being favourable and correspond to high wettability. Generally, the Young equation
assumes the equilibrium state and that the solid surface is smooth and homogeneous.
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When a solid and a liquid surfaces are put together, the attractive solid-liquid
interaction reduces the interface tension by the solid-liquid work of adhesion W,.
This is expressed in the Dupré equation

W' =5+ — Yar- (A.6)

There exist several approaches to deriving the interface tension based on the
surface energies of a liquid and a solid. One of the most common ones is the
approach of Owens, Wendt, Rabel und Kaelble, also known as the OWRK theory
[146],

wE%zI%er—?(\/vaﬁJr\/7§7f>~ (A7)

The interface energies v, and ~; consist of the dispersive and polar parts, i.e, v, =
v2+47 and y; = 4! +17. The dispersive part is due to the London dispersion forces,
while the polar component includes Keesom, Debye and acid-base interactions.

The approach of Fowkes [147] is typically used for hydrocarbons, such as alkanes
and other non-polar compounds because it doesn’t consider any polar interactions.
The interface tension in this approach is given by vi2 = 71 + 72 - 2¢/7{14.

The work of Wu [148] concentrates specifically on polymers. He follows the
OWRK approach and splits the surface tensions into two components describing
dispersive and polar interactions. However, he uses a harmonic mean for both terms.

v ﬁ)
Wy W+ )
Although better results for polymers can be obtained with the approach of Wu,
the OWRK approach is widely used in both experimental [22, 122, 125, 146| and
theoretical [18, 20, 21, 31| contexts. Therefore, the relation of the OWRK theory
for the interface tension is used throughout this work.

A typical experimental approach to measuring the surface energy of a solid is
the following. The interface tension expressed according to the OWRK theory (A.7)
is combined with the Young equation (A.5), giving

cosf +1
\/%l%d + \/vé’v{’ =N (A.8)

The resulting interface tension is then given by vi2 = 71 + 2 - 4(

Dividing by /7¢, we obtain

p
ol v, cosf +1

VA VR = (A.9)
M VN 2

\b,./ ~ - S———

m X y

This is a linear equation, where x includes only the surface tension of a liquid
and y contains the contact angle. The intercept b and the slope of the line m
are defined by the dispersive and polar components of a solid, respectively. This
equation is typically used in experiments to define the surface energy of a solid,
if the surface tension of a liquid and the contact angle between the solid and the
liquid are known. The idea of the method is shown in Fig. A.2. A set of test
liquids defines the points on the z-axis, the values of x vary typically between 0
for non-polar liquids and (commonly) ~ 1.5 for water (7¢ = 26.4 mJ/m?, 7? =
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0 T X
Figure A.2: The experimental approach to finding the surface energy of a solid. A

p
set of test liquids gives the value of x = ;’—ld, the contact angle values are contained
l

iny = W . #. The surface energy of the solid is calculated from the intercept

b= /79 and the slope m = VA2

46.4 mJ/m?). Note that liquids with substantially different polarities have to be
used, otherwise it may lead to large deviations in the measurements of the surface
energy of a solid. Generally, the test liquids must be chosen with care in order to
avoid (as much as this is possible) too small contact angles, since this will reduce
the sensitivity of the method with respect to the dispersive part of v, or too large
contact angles, since this can cause gravitational distortion of the drop or it can
also mean that contact angle hysteresis becomes pronounced. In addition, the test
liquids should not react with the substrate, vaporize too quickly, or simply diffuse
into the substrate, etc.

A.3 Experimental Techniques

Various experimental techniques are in use to obtain the surface tensions of different
materials. The most popular techniques include the sessile drop and the Wilhelmy
plate method. The former is used for solids, while the latter is mainly relevant for
liquids. The main idea of these methods is to measure the contact angle €; the
surface free energy is then obtained from the Young equation (see Eq. A.5).

A method based on an entirely different approach is the inverse gas chromatogra-
phy, which is also widely used in the rubber science for measurements of the surface
energies of filler particles and their interactions with rubbers [149-152]. Another
interesting application of this method is measurements of the surface energies of
popular process oils used in the rubber industry, such as MES (mildly extracted
solvate) or TDAE (treated distillate aromatic extract) [153].
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Immersion Withdrawal

Figure A.3: Wilhelmy dynamic contact angle measurements. The advancing ¢, and
receding 0y contact angles are obtained during immersion and withdrawal of the
plate, respectively.

A.3.1 Sessile Drop

In the sessile drop method, a droplet of a liquid with a known value of the surface
tension is placed on a solid substrate. By measuring the contact angle formed by
the liquid on the solid, the surface energy of the solid sample can be calculated.
The contact angle is measured with a contact angle goniometer or tensiometer,
which allows visual analysis of the drop shape, either by eye or by image analysis
software. As the droplet is static, the contact angle obtained by this method is
referred to as static as well. The sessile drop method is one of the most commonly
used methods for determination of surface energies of polymers, as uncured rubber
samples cannot be melted [22, 86, 125, 154, 155|. The technique can also be used
for determining the surface energies of fillers, e.g., by coating an adhesive plate with
the filler powder [138, 156]. The general approach is then the one discussed above
when the contact angle values are measured using a set of test liquids. To obtain
smooth and nonpenetrable powder compacts, some additional preparations may be
required 137, 157].

A.3.2 Wilhelmy Method

In the Wilhelmy method, a thin plate usually made from platinum or glass is used,
which is called a Wilhelmy plate. This plate is immersed into and withdrawn out
of a test liquid during the dynamic measurements. The magnitude of the capillary
force F' acting on the plate is then measured, and this force is proportional to the
wetted perimeter [ and the surface tension of the liquid ~

F = ~lcosé.
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Table A.1: Surface energies in mJ/m? obtained from the advancing and receding

contact angle measurements taken from [125].

Filler Advancing contact angle | Receding contact angle
RPN Vs R s

Ultrasil VN3 pulv. | 21.5 5.5 27.0 17.9 29.7 47.6
Ultrasil VN3 gran. | 20.2 11.9 32.1 17.7 30.0 47.8
Aerosil 200 26.3 0.5 26.7 17.0 33.9 51.0
Coupsil 8113 pulv. | 27.5 0.0 27.5 17.0 33.5 50.5
CB N339 22.0 0.0 22.0 31.3 0.0 31.3

CB N990 182 0.0 18.2 19.1 239 43.0

Here 6 is the contact angle. Hence, for a series of test liquids the contact angles with
the solid can be measured and the surface energy of the solid can be calculated.

The dynamic Wilhelmy method yields two different values of the contact angle
[125]. Fig. A.3 shows a schematic picture of the Wilhelmy dynamic contact angle
measurements. The advancing contact angle is calculated during the immersion of
the plate, and the receding contact angle is obtained during the withdrawal out of
the liquid. The difference between them is called contact angle hysteresis. One of
the reasons of the contact angle hysteresis is the nature of dynamic measurements,
which are far from equilibrium. The value of the equilibrium or static contact angle
lies inside the hysteresis.

High contact angle hysteresis can be observed when measuring contact angles
of powders. In this case, the Wilhelmy plate is covered with the studied powder
and the excess is blown away by a stream of nitrogen. Note, that the Young
equation assumes that the solid surface is perfectly smooth and homogeneous. This,
however, is rarely true for powder materials. The plate covered by a powder material
possesses roughness and heterogeneity of particle layers, which results in very large
contact angle hysteresis. An example of such measurements made on powder fillers
is presented in Table A.1. Note that for some fillers, the values of the surface
energies based on the advancing and receding contact angles differ considerably.
The sessile drop method, however, often cannot be used at all due to drainage of
the drop into the porous particle layer for hydrophilic powders [125].

A.3.3 Inverse Gas Chromatography

The inverse gas chromatography method can be used to determine the surface
properties and the dispersive part of the surface energy of solid materials. In ad-
dition, different properties of polymers and nanomaterials can be studied such as
enthalpy and entropy of sorption, work of co/adhesion, surface heterogeneity and
glass transition temperature [158]. The extensive work on measuring surface ener-
gies of different fillers and studying their effect on reinforcement was done by Wang
[24-26, 159, 160].

When defining the surface energies of fillers, the filler is used as the stationary
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phase and the solute injected is called a probe. At infinite dilution, information
can be obtained regarding the solute adsorption on the filler surface and, conse-
quently, filler-probe interaction [25|. The stationary phase in the chromatographic
measurements is usually put inside special tubes called columns. Once the probe
is injected, it vaporizes and moves in a column with a flow of a carrier gas. As
the latter, frequently noble gases or nitrogen are used, which ensures the absence
of interaction between the gas and the probe, as well as between the gas and the
stationary phase. The time required for a solute to pass through a chromatography
column is called retention time, and it depends on the adsorption strength between
the filler and the solute. The volume of a carrier gas required for a probe to pass
through the column is called a retention volume and is proportional to the retention
time.

The procedures for calculating the dispersive and polar components of the solid
surface energy can be different. Here we follow 25|, which contains an example of
such a procedure.

Studies have shown that for a series of homologous n-alkanes adsorbed on silicas
and other solids at zero coverage, the free energies of adsorption change linearly
with the number of carbon atoms. The free energy of adsorption corresponding to
one methylene group can be calculated via

VN
AGepgs = —RT In ﬁ,

N(n+1)

where Viy(,) and Vy(,41) are the retention volumes of n-alkanes with n and (n+1)
carbon atoms, respectively.

Since it is assumed that no polar interactions take place between alkanes and
solid surfaces, AGcgo can be used to estimate the dispersive interaction between a
—CHs,— group and an adsorbent. In the absence of polar interactions, the work of
adhesion is given by the dispersive components of the solid and the liquid

W, =2 vldyg.

For alkanes 7, = ~¢. The work of adhesion is related to the free-energy increment
of adsorption associated with a —CHy— group, and

AG
W, = NCCLHQ = 2v/Yon27s-

Here N is Avogadro’s number and a is the area covered by a —CHy— group (0.06
nm?). The quantity yome is the surface tension of a surface constituted of closely
packed —CHy— groups and is given by

Yorz = 35.6 + 0.058(20 — 7)), in mJ /m” (A.10)

where T is the experimental temperature.
Thus, by injecting a series of n-alkanes as probes, the dispersive component of
silica surface energy can be found from the free energy of adsorption.
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Table A.2: Comparison of the dispersive component 74 in mJ/m? of the surface
energy for different fillers obtained via Wilhelmy method and 1GC.

Filler Wilhelmy method [125] | IGC [26]
CB N234 29.5 226.9
CB N330 26.4[22] 196.9
CB N339 27.0 232.4
CB N990 26.8 71.8

Ultrasil VN3 19.4 34.3
Aerosil 200 20.0 44.3

The interaction of polar probes with solid surfaces also includes a specific or
polar component. In this case, the work of adhesion can be expressed by the sum
of two terms corresponding to the dispersive and polar interactions

W, =W+ We.

In practice, one obtains a linear relationship between the free energy of adsorp-
tion of a series of alkanes and the surface area of their molecules, and this line
provides a reference. The points for polar probes lie above this reference straight
line. In this case

~AG® = NaWd=rel + NaW?,

where NaW2="¢/ gives the free energy of adsorption of an alkane with a surface area
identical to that of the given polar probe. Thus, at a given surface area of a polar
molecule, the difference between the experimental points corresponding to the polar
probe and the reference line gives the value of the polar free energy of adsorption.
The surface area a can be calculated from the liquid density and molecular weight.

Though this approach is mainly empirical, it provides the opportunity to com-
pare the surface polarities of different fillers on a unified scale.

A general problem of the methods described in this chapter is that the surface
energies obtained via different techniques can differ by an order of magnitude. A
comparison of the dispersive component of the filler surface energy calculated from
the Wilhelmy method and the inverse gas chromatography is shown in Table A.2.
While for different types of silica the dispersive components obtained via IGC are
about 2 times larger, in the case of carbon blacks the values can differ by an or-
der of magnitude. One of the reasons might be higher temperatures at that IGC
measurements are carried out. This, however, doesn’t explain such a difference in
the values for different fillers. Another possible reason is a presence of high energy
sites on the surface of carbon blacks. The surface energies obtained by contact an-
gle measurements represent the mean energy of the wide range of available surface
sites. The IGC method provides the values of v¢ at a molecular level, as the probe
concentration is small and molecules can adsorb on the highest energy sites. In
addition, the availability of those sites is better in IGC than in the macroscopic



A.3. EXPERIMENTAL TECHNIQUES 163

techniques because before the actual measurements the columns are held at high
temperatures for several hours [161].
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Appendix B

Theory of Elasticity

In this chapter, we give a general introduction to the elasticity theory and the
definitions of strain and stress tensors. The theoretical description is mainly based
on |68, 162-164].

B.1 Strain Tensor
A deformation applied to a body can be described by a vector displacement «, which

is defined as the difference between the position of a point in the undeformed body
7 and the position of the same point in the deformed body 7:

i=7' -7 (B.1)

The distance between two points, which before the deformation are located at
7 and 7+ dr, is given by|68§]

dr = \/dx% + dx3 + da}

or, using the usual summation convention for repeated subscripts, we get

dr:@.

After the deformation, the distance is equal to

dr' = \/dx’f + dxf} + dx’Z,

or

dr' = \/dz?.
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Using (B.1), we get

dr”? = (dx; + duy;)?

Ous 2
= (da; + 244 )
( T; + axk Tk
ou; ou,; Ou;
= da? + 2 —dx;d L dwyd
r; + ?xk X xﬁ+\3$k 9z, TpAT]
P ok e
8uk 18114 Qul
— dr? 2( drday + 222U g d )
+ o0x; v xk+28xk 0x; TidTk

dr? = dr* + 2updz;dzy.

Here wu;;, is the strain tensor:

L 1<3u, N ouy, n oy, %)

The most significant properties of the strain tensor are:

e The strain tensor is symmetric, i.e. u;, = ug;

e At small strains 37“;% < 27“; + %, and the strain tensor may be approxi-
mated by

Wiy N — + ) B.3

M9 <8xk ox; (B.3)

B.2 Stress Tensor

We consider a body of a volume V in mechanical equilibrium. Under deformation,
internal forces called stresses are generated, which try to restore the body to its
equilibrium state. The net force acting on the entire volume of the body is given

by [68]
/ fav.

where f is a force density. The total force can be described by

F, :/fadV7

where F,, is the a-component of the total force acting on the volume V. The stress
tensor is then can be expressed via

_ Dog,

Ts 0z,

(B.4)
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At mechanical equilibrium, the net force for an arbitrary volume is equal to
zero, which is only possible if the force density f is zero everywhere. This yields
the equilibrium conditions of the deformed elastic body

dopy
Oz

Like the strain tensor w;;, the stress tensor og, is also symmetric:

~0. (B.5)

OBy = Oqp- (B.6)
Based on its definition, it is clear that the stress tensor is a macroscopic quantity.

In our model, however, we require a microscopic quantity. To derive the microscopic
stress tensor, we start from the integration of the multiplication fz and z,

805
dVz, 7 :/:Eaf. B.7
[ aveTe = [ as, (B.7)

We apply the Gauss’s theorem to convert the volume integral on the left-hand side
of B.7 to a surface integral. We also use here the symmetry property of the stress
tensor to approximate the volume integral by its mean value (G,5)

Oog 0 ox
dVz, 7 :/dV— ToO —/dV—aa
/V ax’y v ax’y( 57) v am’y By

—~—

=0 (B.8)
= / dA N, T,05, — / dVoga,
A 1%
~ V&a/;
n70'75 = Pg. (Bg)

Here n, is the component of a surface unit vector pointing away from the surface
and Pj is the S-component of the force area density (pressure) acting on the surface.
By rewriting, we obtain

/ dAzaPgoc Y il il (B.10)
A i

The superscripts denote the particles, while the subscripts refer to the vector com-
ponents.

If we assume the shear process being a sequence of static states, we can neglect
the terms depending on the velocities, which leads to

1
6a5 ~ —V/deafﬁ

1 L
7 2Tk

Q

(B.11)
ij .t
2V £~ i ’

./L’J .
i#£]
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where 79 = z! — 27 is the distance between particles i and j in the a-direction,
ri = |7 — 77| is the total distance between i and j and F is the magnitude of the
total force between ¢ and j. This form of the stress tensor demonstrates immediately
the symmetry property. In addition, it is more convenient for calculating the stress
in simulations because it requires the distances between particles and not their
absolute coordinates.

B.3 Work in the Deformed Body

The definition of mechanical work (force times distance) yields

The minus sign implies that the work is dissipated by the system. During simulation,
a cubic volume with the side length L is sheared on the xz-plane by wu(t) in the
x-direction. Then

(B.12)

Oug 2@, ifa=z,0==2
Oxg 0, else.

Due to the shear direction, only o, component of the stress tensor is relevant, and
the components o,, and 0,. can be neglected. Using (B.12), we obtain for the
dissipated work

Wioss = /dV/ ))oa(t
_Z/VdV/dt ” Dot (B.13)
_ %/Vd‘//dtu(t)axz(t).

During DMA measurements, both strain and stress can be expressed via sine
functions, i.e, u = ug sin (wt) and o = o¢ sin (wt + §). Consider the dissipated work
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per volume in the time interval [0, to]:
IA/YZOSS
Wioss =
: v
to d
= / amd—?dt
0
o (B.14)
= / oo sin (wt + 0) uow cos (wt)dt
0
_ Joto <cos d + 2wty sind — cos (§ + 2wt0)>.
The storage p/ and the loss " moduli are given by (see also (2.11) - (2.12))
/ 0o
= —cos(d
i = 2 cosls),
" oo .
= —sin(9).
W= sin(0)
Integrating over one period tg = 27 /w yields
Oolo .
Wioss(to = 2 /w) = ((3085 +4msind — cos (6 + 47r)> B15
2 " ( ’ )
= ugmp”.

Thus, the loss modulus is proportional to the work per volume dissipated by the

system during one shear cycle and can be calculated via numerical integration of
the area under the curve in the ¢ — u plane.



170 APPENDIX B. THEORY OF ELASTICITY



Appendix C

Simulation Parameters

In this chapter, the notations and the values of the simulation parameters are
complied into one table. The table consists of several sections. In the first section,
the parameters used for the Monte Carlo morphology generator are listed. They are
followed by the values of the surface tensions of the components. The third section
presents the parameters used for the DMA simulation, with the values of the force
constants combined into a separate subsection.
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Table C.1: Simulation parameters

Parameter ‘ Symbol ‘ Value Comments
Monte Carlo Morphology Generator
Diameter of the node d 1.0 Sets the unit of length. The distance between nodes is also
equal to d
Lattice type randomized FCC FCC randomized via a random displacement
Random displacement or 0T maz = 0.3 d Chosen according to the uniform distribution
Simulation box length L ~ 100
Number of nodes n 1.372-10° Corresponds to a FCC lattice with L ~ 100
Number of MC steps Dsteps 1000 n Mimics roughly a flocculation time
Number of neighbours Nyp 12 in FCC Depends on the lattice
Cutoff radius Teut 1.3 Chosen so that n,,, =~ 12 in case of the randomized FCC
Blend ratio NR/SBR x 50/50, 30/70, 70/30
Filler content o 0.0 - 30.0 % vol.
Temperature T 0.57021 Corresponds to T, = 140 °C
Surface tensions
Surface tensions e, AP Dispersive and polar parts
NR 74 =9.69, v* = 2.61 | From experiment (v? = 20.24 and ¥ = 5.46 m.J/m?)
SBR v? = 14.31, 4? = 0.78 | From experiment (v? = 29.91 and 7* = 1.64 mJ/m?)
filler v4 = 4.8 - 14.4, 47 = | Mimics different fillers (experimentally correspond to v¢ = 10
0.0-9.6 - 30, v* = 0 - 20 mJ/m?)
Shear Simulation
Simulation box length L 20.0 Cut from the original morphology with L ~ 100
Number of nodes n 1.1-1.3-10% Corresponds to the randomized FCC lattice with L = 20.0
Number of neighbours Ny ~ 12 Taken from the MC simulation
Number of steps Ngteps 3-10°
Strain amplitude Ug 0.1-40%

CLT

SHHLANVYHVd NOLLVINNIS O XIANHddV



Frequency w 107 - 10?

Time step At 5-10~% for w = 0.2 Depends on w, so that wAtnge,s ~ 10 7

Friction coefficient ¥ 1.0

Friction coefficient for | vg 15.0

filler nodes

Force constants

Force constant k Depends on the interaction. Weak and strong spring constants
and the ratio between them are set by the experimental tan §
for pure polymers

NR-NR, weak FLA-NER 1073 Weak spring constant for NR-NR interaction

NR-NR, strong RO RN 0.2 Strong spring constant for NR-NR. interaction

Fraction of weak springs | 22" 0.7 a2 4 27 = 1.0

for NR

SBR-SBR, weak kSBIR=SBR 107° Weak spring constant for SBR-SBR interaction

SBR-SBR, strong kSBR=SBR 0.1 Strong spring constant for SBR-SBR interaction

Fraction of weak springs | #2P% 0.56 PR pSBR = 1.0

for SBR

NR-SBR, weak kY H-SBR 10~* Weak spring constant for NR-SBR interaction kXF~BF —
/kNR-NE} SBR-SBR

NR-SBR, strong kN TR=SBR 0.1414 Strong spring constant for NR-SBR interaction kYF-5BF —
/K VF-NE}SER-SBR

Fraction of weak springs | zinterface 0,0.5,1 ginterface 4 pinterface 7 ()

for NR-SBR interface

Filler-NR kNR—F 1.6:107% - 1.1-10~* kNR—F X Ypf

Filler-SBR ksBr—F 3-107%2 - 1.3-107! kspr—r X Ypf

Filler-filler kFF 10.0

€Ll



Bond-breaking distance, | Ryg_r 1.017;; Depends on the distance between nodes and corresponds to
F-NR the local strain equal to 1%
Bond-breaking distance, | Rspr_r 1.017;; Depends on the distance between nodes and corresponds to
F-SBR the local strain equal to 1%
Bond-breaking distance, | Rpp 1.017; Depends on the distance between nodes and corresponds to

F-F

the local strain equal to 1%
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