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This thesis explores social dilemmas in science and collective cognition more generally,
using high-energy physics as a primary example. Through multiple computational case-
studies, it examines how scientists in this field navigate dilemmas related to specialization,
adaptation, cooperation, and coordination.

The core contribution of this research is the development of an “adaptive multi-agent
system” framework for understanding and modelling collective cognition at large. This
framework integrates concepts from social epistemology, game theory, and cognitive and
complexity sciences in order to investigate how rationally bounded agents, operating
within structured social networks, resolve social dilemmas arising in scientific contexts.
Three central tenets guide this approach: (1) collective cognition gives rise to emergent
social dilemmas with significant epistemic implications, (2) understanding these dilemmas
requires a computational framework drawing from a wide range of disciplines, and (3) to
better understand collective cognition, we need computational approaches that are both
formal and empirical.

Three case studies in high-energy physics illustrate different aspects of the framework.
The first study examines the growing divide between phenomenologists and theorists, par-
ticularly in relation to the theory of supersymmetry. The second analyzes how physicists
collectively balance specialization and adaptation in a changing scientific landscape, us-
ing Inverse Optimal Transport to assess how cognitive costs shape research trajectories.
The final case study investigates the trade-offs and dilemmas involved in the diffusion of
scientific conventions by applying a novel statistical physics approach to a sign convention
in physics.

This thesis offers new perspectives for the philosophy of science, the sociology of
science, and computational social science. First, it shows how the notion of collective
cognition offers new insights on longstanding issues such as scientific underdetermination
and the relation between the cognitive and the social in science. In addition, this thesis
contributes to fill a gap between qualitative and quantitative social studies of science,
through novel implementations of qualitative insights into quantitative analyses, and
by demonstrating the potential of computational models to assist the formation of new
philosophical or sociological concepts. Finally, this thesis shows how inverse problems can
bridge otherwise disconnected formal and empirical traditions in computational social
science. It also suggests that recurrent patterns of self-organization in socio-cognitive
systems could be understood functionally as solutions to social dilemmas, opening up
new research opportunities in the science of complex systems.
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Chapter A

Introduction

High-energy physics is perhaps the most spectacular achievement of modern science, and
much of our fascination for it owes to the marvelous complexity of particle physics instru-
ments. The Large Hadron Collider, the largest particle accelerator ever built, is the cul-
mination of this scientific enterprise. It is deployed underground, through a 27-kilometer
circular tunnel situated as far as 175 meters below the surface. In both directions of this
tunnel, protons are accelerated at nearly the speed of light and made to collide at vari-
ous focal points, at a rate of about one billion collisions per second. Around each focal
point lies a sophisticated machinery of absurd proportion; the ATLAS experiment, for
instance, is a 25-meter wide and 46-meter long bundle of sensors and wires weighing no
less than 7 000 tons. As these sensors are traversed by the products of particle collisions,
they produce electric signals that are transformed into numerical data. In the process,
the instrumental complexity becomes computational: the experiments at the LHC record
about 90 millions of gigabytes of data per year [1]. The ATLAS experiment itself requires
∼3 000 computers for reconstructing the physical processes underlying the sensor data,
and ∼30 000 more computers scattered around the globe for simulation and data analysis
[2]. Numerical simulations of the ATLAS detector alone require modelling about 300
millions objects. Complexity, however, is not confined to experiments: in fact, as one
enters the realm of theory, high-energy physics also strikes its mathematical complexity.
It is indeed difficult to think of areas of mathematics that have no part to play in it, and,
in fact, many of them have developed from the needs of fundamental physics!

However, perhaps the most fascinating form of complexity manifested through high-
energy physics is its social complexity. ATLAS gathers around 3 000 collaborators from
all over the world, and the Large Hadron Collider as a whole involves roughly 10 000 sci-
entists. Beyond these large-scale collaborations, our theoretical knowledge of the physical
world has been refined and transmitted over generations and generations by thousands
of scientists. All other forms of complexity (whether instrumental, computational, math-
ematical, and so forth) would not have come to fruition without achieving a tremendous
magnitude of cooperation, spanning across borders and extending over decades. Coop-
eration, however, and especially at such scales, brings its own set of challenges – we will
call them dilemmas. For instance, particle physicists are confronted with major decisions
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8 CHAPTER A. INTRODUCTION

which eventually shape the field for decades, such as: “should we build one large experi-
ment, or two smaller ones?”. Such issues, we will find, are by no means idiosyncratic to
high-energy physics, in spite of its apparent singularity: many prominent methodological
challenges faced by physicists are in fact experienced across the sciences. Nevertheless,
because of its size, high-energy physics exacerbates the sorts of issues that collectives must
overcome in order to produce complex knowledge generally. Thus, while the large-scale
experiments described above were meant to probe the fundamental laws of the physical
world, we might as well use them as probes of the laws of collective minds, too.

The present thesis makes a small and humble step towards this ambitious goal by
outlining the contours of a collective cognition approach to science through multiple
case-studies of high-energy physics research. This proposal rests on three tenets. The
first is that collective cognition (broadly speaking) gives rise to emergent phenomena
that manifest as non-trivial social dilemmas with significant epistemic implications in
the context of scientific inquiry. The second tenet is that, in order to understand col-
lective cognition in a scientific setting, we should expand our theoretical toolkit beyond
philosophy and sociology of science, by appealing to an “adaptive multi-agent system”
framework, integrating concepts and insights from cognitive science, game theory, social
epistemology, cultural evolution, and complex systems (among others). The third tenet
is methodological; it contends that, to understand how agents navigate dilemmas and
trade-offs in contexts of collective cognition, we should appeal to computational meth-
ods, both formal and empirical. To support and illustrate such an approach, the thesis
articulates three case-studies of high-energy physics, whose stringent division of labor
and large-scale collaborations exacerbate the sort of dilemmas that may generally arise
in contexts of collective cognition.

This introductory chapter is organized as follows. §A.1 argues for a shift in focus from
individual to collective cognition in science studies, drawing beyond social epistemology
and the sociology of scientific knowledge. §A.2 argues that collective cognition entails
dilemmas of various kinds (such as collective action problems) with important implica-
tions for scientific inquiry. §A.3 introduces an “adaptive multi-agent system framework”
for investigating such dilemmas by computational means, formal and empirical. Then,
§A.4 shows how the three papers included in the present thesis illuminate multiple social
dilemmas arising in the context of high-energy physics by progressively leveraging mul-
tiple dimensions of this framework. §A.5 summarizes the insights of these three papers
for computational social science, the sociology and philosophy of science, and the joint
research program in which the thesis was conducted. I also reflect on the future perspec-
tives for the approach developed in this thesis in science studies and computational social
science.

A.1 From individual cognition to collective cognition
What is collective cognition? According to Cosma Shalizi, it refers to “[those] forms
of individual cognition [that] are enhanced by communication and collaboration with
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other intelligent agents”, of which “modern science” provides “the most spectacular and
important instance” [3]. Beyond their individual cognitive abilities, humans crucially
rely on collective cognition, and their survival depends extensively on their aptitudes for
social and cultural learning [4, 5]. In fact, it has been argued that even our capacity to
reason – to which we might want to attribute much of our species’ success – is fallible
when used internally and may have instead evolved for social purposes such as persuasion
and argumentation1 [6]. Similarly, empirical studies have shown that efficient learning
can emerge in collectives when individuals follow simple social heuristics rather than
sophisticated reasoning [7]. Generally speaking, humans are truly remarkable for their
propensity to produce increasingly complex “cumulative culture” over generations, via
the cultural transmission of know-how, technology, and even scientific knowledge [8, 9].
Cultural and technological innovation is fundamentally a collective process – a byproduct
of the “collective brain” [10] – resulting from successive iterations and improvements
without necessarily requiring causal understanding of the resulting solutions [11], such
that individual cognition may play a limited role. As a result, technological and cultural
complexity scales with population size [12, 13]: in other words, only “collective brains” a
certain size can achieve and maintain a given level of complexity.

Some have gone further and argued that all intelligence is fundamentally collective, as
it emerges from the collective behavior of lower-level parts (e.g. neurons) at every level
in the hierarchy of biological systems [14]2. Taken together, these perspectives suggest
that collective behavior is fundamentally constitutive of scientific knowledge, rather than
an accidental aspect of it, in contrast to philosophical views that neglect or dismiss the
causal role of social processes in the emergence of rationality [17]. For instance, Laudan
has claimed that “whenever a belief can be explained by adequate reasons, there is no
need for, and little promise in, seeking out an alternative explanation in terms of social
causes” [18]3. Such a “methodological” stance, however, would leave us entirely ignorant
of how (and to what extent) “rationality” can arise as an emergent feature of collective
behavior (as in the examples listed above). As Giere puts it, “from the perspective of
distributed cognition, what many regard as purely social determinants of scientific belief
can be seen as part of a cognitive system […] There is no longer a sharp divide […] The
cognitive and the social overlap [my emphasis]”45. Consequently, the success of science

1In particular, [6] discusses the implications of this theory for the philosophy of science, and underplays
the role of individual genius.

2See also Hayek ([15, 16]), who believed that complex distributed systems such as the mind or society
at large could not achieve complete oversight over their “own” distributed process.

3One way to reject this opposition (or “division of labor”, cf. [18]) between rational and sociological
explanations in science studies, is to consider that the behavior of scientist collectives can and should
always receive sociological explanations that are independent from the truth or falsity of what scientists
conceive as knowledge. This strategy, which implies that the same sociological processes determine
scientists’ beliefs irrespective of whether these are “true” or “false”, was the path taken by the advocates
of the “strong programme” in the sociology of science. This “social constructivist” (or reductionist)
program has been criticized for promoting relativism and undermining trust in science. By contrast, the
present thesis is interested in the mechanisms through which rationality can emerge from the social.

4Note that Giere has also proposed to distinguish distributed cognition from mere collective cognition.
The latter, in particular, may include non-human parts [20] (as in Latour’s Actor-Network Theory).

5Similarly, before Giere, Thagard suggested regarding science as “distributed computing”, in an at-
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cannot be explained without making reference to its collective dimension. One might say
that the collective is the cognitive system.

However, this collective dimension simultaneously gives rise to emergent challenges
that scientists must properly navigate in order for “the whole” (i.e. the collective) to
truly exceed “the sum of its parts” (i.e. the individuals). Understanding these phenom-
ena demands a shift in focus from individual cognition to collective cognition. How can
we achieve such a move? A promising possibility is by extending traditional approaches
to the social dimension of science by developing accounts of short-sighted and “cognitively
bounded” individuals that can nevertheless collectively achieve impressive epistemic out-
comes. This includes how collectives can mimic Bayesian learning, even when individuals
do not behave like sophisticated Bayesian agents [7]. Interestingly, we might find some
inspiration as far reaching as animal studies, given that collective cognition [22], and
even cumulative culture [23, 24], are phenomena observed across multiple species, includ-
ing those whose individual cognitive abilities are not particularly impressive. Perhaps
provocatively, we might say that there are things we can learn about science by looking
at collectives of scientists in the same way we look at ant colonies and bee hives.

Before we make such a drastic move, we may begin by turning to extant approaches
to the social dimension of science. Social epistemology, in particular, has specifically
developed from the recognition that there is more to say about truth-seeking activities
in groups compared to truth-seeking activities among isolated epistemic agents. Em-
blematic of this line of thought is the “independence thesis”, which states that individual
rationality and group rationality are partially independent, such that, for instance, a
learning strategy that is optimal for agents learning in isolation, may fail for agents
learning in group [25]. To support the independence thesis, formal social epistemolo-
gists have produced evidence in the form of computer simulations of agent-based models.
This has shown that some level of conservatism in the face of new empirical evidence
could improve group learning [26]. Additionally, social epistemology has emphasized the
non-triviality of judgment aggregation in groups, often in the form of impossibility the-
orems [27]. Both the independence thesis and the literature on judgment aggregation
have provided justification for the view that “more is different” [28], and that collective
cognition is characterized by emergent phenomena that should be studied in their own
right. In particular, refusing to acknowledge these emergent features may, according to
the independence thesis, lead to erroneous normative claims about scientific methodol-
ogy. This general view is increasingly acknowledged by philosophers of science; in fact,
many of them have adopted this line of research, and several emblematic works around in
the independence thesis are explicitly models of scientific inquiry. These ideas have even
influenced philosophers of science interested in metaphysics and ontology; for example,
Stanford argues that a commitment to scientific realism requires some confidence that sci-
entists can freely explore the space of “conceivable alternatives” to our best theories, but
that it may not be the case at present, due to the incentive structures of contemporary
scientific institutions [29].

tempt to clarify the relationship between the social and the cognitive in science [21].
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Social epistemology, however, cannot be the sole input in our understanding of collec-
tive cognition. Most veristic approaches in social epistemology assume strong individual
rationality to begin with, while neglecting cognitive constraints on individual reason
(“bounded rationality”), and are not so interested in rationality as an emergent (rather
than merely improved) feature of the collective. Conceptually, the present thesis is sym-
pathetic to prior proposals to regard science as “distributed computation” [21] or “dis-
tributed cognition” [19]. Yet, these proposals have not been fully articulated, formalized,
or concretely applied. This thesis contributes an attempt to resolve this gap. In doing
so, I will not draw from a single disciplinary corpus; as I explore “social dilemmas” in sci-
ence and high-energy physics in particular, I find that many perspectives must be brought
together in their analysis. I am most interested in perspectives that are amenable to com-
putational applications or have normative potential. In particular, I focus on dilemmas
and trade-offs with significant methodological implications.

A.2 Dilemmas and trade-offs in collective cognition
To engage our discussion of dilemmas and trade-offs in collective cognition, let us start
with a curious observation about ATLAS and CMS, the two largest experiments from the
Large Hadron Collider at CERN. Interestingly, these two experiments pursue nearly iden-
tical research goals [30], and yet they actively maintain their independence, by developing
independent research instruments and strategies, and even by restricting communications
between their teams at certain times. This might seem like a wasteful duplication of ef-
forts, given that both experiments are considerably large and expensive, gathering about
3 000 collaborators each. This decision, however, addresses a fundamental social dilemma
between independent and cooperative learning, as we will see below. In a nutshell, the
duplication of efforts at ATLAS and CMS may be costly, but it increases the probability
that at least one experimental design is successful (in addition to providing a means of
independently reproducing discoveries made in each experiment) [30].

More generally, collective cognition gives rise to emergent social dilemmas and trade-
offs between competing objectives. By focusing on these dilemmas, the present thesis
proposes to directly tackle features of collective cognition that are universal (observed
throughout a wide array of situations much beyond high-energy physics or even science),
non-trivial (susceptible of being improperly addressed), and bear significant consequences
on epistemic outcomes. We can distinguish two broad kinds of social dilemmas (i-ii).

First (i), social dilemmas are generally conceived as collective action problems [31].
These arise when individuals would collectively benefit from cooperating – by coordinat-
ing their efforts and dividing labor in certain ways –, but struggle to do so, for instance
because they lack information, proper incentives, or central oversight. As discussed below
(§A.3.4), collective action problems pervade collective cognition and occasionally conduce
to epistemic failures, unless they are corrected with devices such as norms or institutions.
Prominent collective action problems include free-riding (when individuals exploit the col-
lective instead of contributing to its welfare) and lack of coordination (when individuals’
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actions are mutually inconsistent).
Second (ii), even in presence of central institutions effectively promoting collective

action, collective epistemic enterprises imply emergent trade-offs between disadvantages
that must be balanced with each other in non-trivial ways. This requires an expanded
understanding of social dilemmas. A very well known example of epistemic trade-off is
the balance between exploration (the costly search for potentially superior solutions to
a problem) and exploitation (the immediate appeal to known solutions, potentially at
the expense of unknown superior alternatives) [32]. This trade-off, of course, occurs even
among isolated epistemic agents. However, in the context of collective epistemic enter-
prises, the allocation of cognitive labor among individuals (who does what) introduces
new degrees of freedom responsible for additional trade-offs. For instance, collectives
must balance independent learning – in which individuals or small groups explore diverse
alternatives in parallel by restricting cooperation and exchanges of information –, and
cooperative learning – in which individuals divide the cognitive labor or communicate
extensively. While independent learning can be slow and unsuitable for achieving elabo-
rate solutions, cooperative learning can be sub-par [33] due to higher coordination costs
[34] or a lower diversity of alternatives explored [26, 35]. Therefore, it is often reasonable
to strike a balance between independence and cooperation [36]. In science, small teams
(which can pursue independent learning in parallel) and large teams (which rely on co-
operative learning) play complementary roles [37], reflecting the comparative advantages
of smaller versus higher degrees of cooperation. This helps us understand why CERN
decided to duplicate major efforts between ATLAS and CMS. While each experiment
requires a large amount of internal cooperation to function, it is necessary to engineer
some level of independence in order to avoid being stuck with one suboptimal and poten-
tially dysfunctional experimental design. The strategy of pursuing two experiments with
identical goals (rather than just one, or more than two) is a solution (or compromise) to
this particular dilemma.

Let us stress again, however, that such dilemmas extend much beyond the case of
large “Big Science” collaborations. For instance, in mathematics, where scientific col-
laborations are relatively infrequent and small [38], increasing levels of specialization are
undermining the coordination of research efforts [39], which illustrates a more universal
trade-off between diversity and coordination [34]. Indeed, collectives must sometimes
decide whether to focus on a single cognitive task, which limits the amount of knowl-
edge they may gain, or instead to divide their attention among multiple tasks, which
constrains the magnitude of social learning and cooperation that may be achieved. This
trade-off is the focus of Chapter 1. Chapter 2 investigates another trade-off, between
specialization and adaptation in a collective setting, and Chapter 3 investigates three
trade-offs involved in conventions, including the tension between social, temporal, and
contextual consistency. While every chapter involves a case-study of high-energy physics,
the dilemmas under investigation are each much more broadly relevant for collective cog-
nition. Before discussing the contribution of each chapter in more detail (which will be
done in §A.4), let us lay out the framework underlying all three papers.
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Figure A.1: Collective cognition in adaptive multi-agent systems. This formal
framework contains three ingredients. (I) The problem structure defines the cognitive
task navigated by the collective, typically formalized as multi-armed bandits (left) or
complex landscapes over large spaces of solutions (right). (II) The agents themselves
(the nodes in the graph), arranged according to a social structure, defined by the flows
of information among agents or other relevant relationships, which are typically encoded
as graphs. (III) Interactions between agents are influenced by incentives structures,
shaped by cooperation and coordination problems, social norms, and institutions. As
shown in purple, all these components (I-III) co-evolve in ways that confer the system its
adaptive nature.
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A.3 An adaptive multi-agent system approach to col-
lective cognition

The present thesis proposes a computational approach to multiple social dilemmas aris-
ing in collective cognition. In this section, I enumerate several perspectives relevant
to collective cognition, including the special case of scientific inquiry. I then combine
them into an “adaptive multi-agent system framework” [3], as represented in Fig. A.1.
This framework captures essential universal features of intelligent collectives in a way
that is directly amenable to computational analyses. It includes three components; (I)
the structure of the problems that collectives aim to solve (§A.3.1); (II) the multi-agent
system itself, composed of rationally bounded individuals (§A.3.2) organized and con-
nected through a social structure (§A.3.3); and (III) the incentive structure shaping the
interactions between individuals and their learning strategies (§A.3.4).

This framework aims to provide a blueprint that can be used as a starting point for any
analysis of collective cognition, including scientific inquiry, regardless of the discipline.
This is not to ignore the extent of the differences among the sciences [41] 6; however, the
phenomena described below tend to arise universally across all the sciences, since there
are none that do not involve collective cognition.

A.3.1 Problems and learning in collective cognition

The functional role of collective cognition is to perform cognitive tasks. Therefore, com-
putational approaches to collective cognition generally begin by assuming a model of the
cognitive task at hand (see item (I) in Fig. A.1). We may highlight three recurrent formal
strategies for modeling cognitive tasks in social epistemology, management science, learn-
ing theory, and adjacent fields. The first approach is to model individuals’ knowledge as
probabilistic beliefs, such that individuals seek evidence (on their own or with the help
of others) to update and improve their own subjective priors about the truth-value of
various statements (such as the truth of a scientific hypothesis). However, the aim of
collective cognition is not merely to compile observations and produce truth-statements.
Fortunately, many alternatives approaches dispense with the notion of “truth”. One of
them is the appeal to multi-armed bandits (MABs). MABs are “slot machines” with
n > 1 arms taken to represent alternative theories or solutions. Each time an individual
pulls the lever of slot machine i, they receive a random reward Ri drawn from an unknown
distribution that varies across arms. MABs are the prototypical model of explore-exploit
dilemma, which arise when individual must choose between exploring the space of solu-
tions (in this case, by trying out multiple arms to learn their reward distribution, even
those that seem inferior) or exploiting their present knowledge (by pulling the arm that
seems best at a certain time, even though it might in fact be suboptimal). Finally,

6Cetina [41] argues that there are substantive differences among fields, and suggests that “distributed
cognition” is rather specific to high-energy physics. But there is no difference of nature between high-
energy physics and other fields in that respect, only a difference of scale.
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another popular approach to modeling epistemic problems are “epistemic landscapes”.
These models (inspired from adaptive fitness landscapes in evolutionary biology) assume
that individuals explore the space of potential solutions to an epistemic problem, looking
for the solutions of maximal “fitness” (the best solutions). If the space of solutions is
two-dimensional, then their fitness can be represented along a third dimension (height),
thus forming a surface (or landscape) of solutions [42]. However, fitness landscape models
often involve a high-dimensional spaces, with a flexible number of dimensions [43]. The
degree of complexity (or ruggedness) of these landscapes can also often be adjusted, such
that more complex problems require deeper exploration and are more difficult to solve.

Few attempts have been made to map actual problem spaces to these formal complex
landscape models. The closest precedent is [44], in which a fitness landscape of religious
systems – a cultural rather than epistemic landscape – is reconstructing empirically using
historical cultural data. In Chapter 3, I use this approach to recover the complex cultural
fitness landscape of a collection of typesetting conventions in scientific papers. In science
studies, however, it is much more common to recover latent “epistemic spaces” from
corpora of scientific texts by computational means. For instance, word embeddings are
now a widespread approach for locating scientific concepts into abstract high-dimensional
spaces, in which the “distance” between words is a measure of semantic dissimilarity [45,
46]. Alternatively, topic modelling is a widespread approach for mapping out documents
in a multi-dimensional conceptual space [47, 48]. Both techniques (word embeddings and
topic models) are leveraged simultaneously in Chapter 2 in order to measure the research
portfolios of physicists throughout time. Chapter 1 also uses topic modeling to explore the
dynamics of the multiple contexts in which supersymmetry arises in high-energy physics.

Whatever the structure of the problem, a population of epistemic agents (e.g. scien-
tists) engages with it through learning strategies which specify how individuals search and
process information7. In collective cognition, these strategies build upon the information
gathered by others.

A.3.2 Cognition among rationally bounded agents

How can collectives be intelligent, when they gather relatively short-sighted individuals?
In order to understand how and when collective cognition subdues individual cognition,
we must better understand the limitations of individual cognition. Our cognitive ca-
pacities are notoriously bounded, for multiple reasons: first, we have access to limited
information and/or limited computational capacities for processing this information; we
“suffer” from an array of cognitive biases, such as confirmation bias [49]; and we often
rely on imperfect heuristics to achieve “satisficing” rather than optimal solutions [50].
Most crucially, our cognitive limitations prompt us to specialize – by concentrating our
intellectual resources into bounded epistemic domains – and divide cognitive work among
individuals, which in turns raises multiple challenges for scientific inquiry. Specialization
is the focus of chapters 1 and 2, which respectively discuss the implications of the disunity

7These include, for instance, greedy searches for MABs, hill climbing for complex landscapes, etc.
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of physics research and the tension between adaptation and specialization.
Chapter 2, in particular, measures the “cognitive costs” of moving across research

areas in high-energy physics, and proposes a measure of “intellectual capital”, i.e., a proxy
for individuals’ cognitive resources. It shows that physicists’ collective adaptive patterns
(in response to new evidence or theoretical innovations) are fundamentally constrained
by their prior knowledge. This explains the occurrence of path-dependency in scientific
exploration, and to some extent justifies some degree of conservatism in science.

Cognitive factors also surface in Chapter 3, which discusses the trade-offs involved in
scientific conventions. In particular, the paper shows that, presumably in order to avoid
cognitive costs, individuals tend to stick to their favorite scientific convention, even if it
is inferior in a given context. Incidentally, this observation is achieved by appealing to
an item-response model, a popular modeling strategy in cognitive psychology. Generally
speaking, cognitive science provides insights about the individual agents’ themselves, as
well as some basic rules about their psychology and how they interact with other agents.
In addition, bounded rationality plays an important role in collective behavior given that
agents’ partial and imperfect knowledge of the intentions of others has important effects
on the way they may interact and/or their ability to achieve cooperation. Finally, as
discussed in §A.5.3, the inverse problem methods used in chapters 2 and 3 both provide
measures of the efficiency (or degree of rationality) of utility-maximizing agents.

A.3.3 Social structure in collective cognition

The performance of collectives generally depends on their social structure. This includes
communication structures, which determine the flow of information among individuals
[51], in addition to collaboration and decision structures. In computational approaches,
social structure is most prominently formally encoded by graphs (or networks), which
define “dyadic” relationships between pairs of agents8. In science, such relationships
can encode, for instance, who collaborates with whom [52], who sends e-mails to whom
[53], who cites whom, or more generally, who communicates evidence to whom [51, 54].
Formal approaches to collective cognition (in social epistemology, for example) typically
compare the outcomes of various network topologies [54, 55], capturing features of complex
networks such as clustering (i.e. local community structure), small-world properties (the
existence of relatively short paths between any two individuals), or hubs (highly connected
individuals). Empirical studies of social networks in collective cognition have similarly
explored the relationship between the performance of teams and their social structure [33,
56]. Others have investigated the correlation between individual performance and position
in a network [57–59]. Chapter 2 contributes to this literature by measuring the effect of
scientists’ social capital on their ability to adapt to changing circumstances. Beyond
network structure, social structure includes social identities, group membership, and
demographic variables that can affect collective dynamics as well. Indeed, Chapter 3 finds

8However, higher-order structures (such as collaborations) may be more adequately represented by
hypergraphs, which define simultaneous relationships between two or more individuals.
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that the propagation of scientific conventions can be influenced both by social network
infrastructure (e.g. via the imitation of peers, or formally speaking one’s neighbors in the
social network) and membership to a particular research area (or “disciplinary matrix”
[60]). Additionally, group membership can sustain homophilic behavior and in turn drive
discrimination, marginalization, and belief polarization [61–63].

A.3.4 Incentives and collective action problems in collective cog-
nition

In collective cognition, epistemic agents are generally self-interested. But, how can agents
pursuing their own interests nevertheless succeed in producing reliable knowledge to the
benefit of the public? One answer is that institutional incentives in science are articulated
around a “credit” economy incentivizing the production of truth [64, 65]. This includes
implicit social norms, such as the priority rule, according to which credit should be
given to the first discoverers of a truth [66]. The interests of scientists, however, are
determined not only by their institutional environment, but also by how the behavior of
others. Such dependencies are well described by the framework of game theory, which has
been notoriously applied to wide-ranging situations such as conflicts [67], the evolution
of cooperation [68], or conventions [69]. Game theory formalizes the collective action
problems that arise when individuals would collectively benefit from cooperating in some
way, but struggle to do so due to a lack of information or conflicting individual incentives.
Incidentally, collective cognition often involves collective action problems, since the degree
to which a collective achieves epistemic progress depends on each individual’s willingness
to contribute to the task [70].

A first kind of collective action problem arises when individuals “free-ride” by ex-
ploiting the information and knowledge accumulated by groups instead of contributing
their own [71, 72]. For instance, using a multi-armed bandit approach, [72] shows that
scientists may be incentivized to remain conservative towards the dominant paradigm,
which is detrimental to the exploration of potentially superior alternatives. Generally
speaking, collective intelligence is a public good that must occasionally be protected by
enforcing cooperation [70]. In addition to “over-exploitation”, anti-cooperative behavior
notoriously raises issues of deception and trust, which also require strong social norms or
institutional safeguards.

Another example of collective action problems are coordination problems, which arise
when individuals are better off agreeing to a particular course of action among multi-
ple reasonable possibilities. Collectives can perform worse than isolated individuals for
certain problem-solving tasks when they cannot properly coordinate their efforts [73].
In high-energy physics, this has major implications, since large-scale experiments such
as particle colliders require high levels of coordination; therefore, physicists must agree
about which experiment to perform collectively, even though multiple experiments could
reasonably be deemed equally interesting. For instance, whether CERN should “replace”
the Large Hadron Collider with larger a circular electron-positron collider, or a linear
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accelerator instead, is in a way “conventional” since both possibilities have their own
epistemic merits. Indeed, “conventions”, per Lewis [69], are solutions to coordination
problems. Chapter 3 explores trade-offs and dilemmas affecting the scientific conventions
using the example of a perfectly innocuous sign convention in high-energy physics.

A.3.5 Adaptive and evolutionary processes in collective cogni-
tion

So far, the picture I have painted – a (I) fixed problem, explored by a (II) population
of agents interacting along a rigid social structure and influenced by (III) constant back-
ground incentives – is overly static. In reality, these three components are co-evolving,
whether change is driven by exogenous factors (e.g. changes in the institutional environ-
ment) or endogenous factors (for instance, agents adjusting their behavior in response to
innovations). Below, we consider several ways in which multi-agent systems can exhibit
evolutionary or “adaptive” behavior.

First, the problem structure itself (Fig. A.1, §I) may evolve over time, reflecting
transformations [40] which, in the context of science, may be driven by theoretical and
technological disruptions or shifting institutional incentives. In a computational frame-
work, this sort of configuration can be modeled with time-varying landscapes or multi-
armed bandits, which prompt agents to adapt. The magnitude of environmental change
influences the optimal solutions to the exploration/exploitation dilemma: for instance,
unstable environments prompt more exploration than stable ones. In addition, not all
agents respond identically to environmental changes, due to path dependency [74]. In par-
ticular, changes in scientists’ research interests are a byproduct of both the environment
and their prior research interests, as shown in Chapter 2.

In addition to responding to changes in their environment, epistemic agents can adjust
their strategy (e.g. their research focus) based on socially learned and culturally trans-
mitted information. While communication enhances the diffusion of knowledge, it can
also trigger erratic information cascades, herd behavior and ambulance chasing [75, 76],
or the nucleation of scientific “bubbles” [77]. Furthermore, the social structure itself (the
relationships between agents) may change over time, both due to environmental pressure
and endogenous dynamics (self-organization). The latter are typically modeled by ran-
dom walks (when agents locally explore their social network) or preferential attachment
(when agents prefer to form relationships with more central individuals) leading to “the
rich get richer” types of dynamics [58, 78]. Chapter 1 reveals conceptual transforma-
tions in the citation network across theory and phenomenology in response to epistemic
change in high-energy physics, which clearly illustrates how such change (Fig. A.1, §I)
impacts the communication structure through which scientists exchange knowledge and
information (Fig. A.1, §II).

Finally, the incentive structure can also shift due to institutional change, which itself
can alter the problem structure by inverting the priority order of different problems [40].
Social and scientific norms themselves may evolve overtime (Fig. A.1, §III), as potentially
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described by the frameworks of evolutionary game theory or repeated games [79, 80]. For
instance, evolutionary models can account for the emergence [81] and discontinuation
[82] of poor statistical practices in science as well as the prevalence of risk-taking and
conservatism in research [83].

In addition, an often overlooked aspect of scientific change (but generally important
for collective cognition at large) is the generational and demographic dynamics that can
affect science over longer time scales. For instance, demographic processes can result
in maladaptive losses of knowledge and skills [84, 85] from which it can be difficult
to recover. This issue is particularly salient in large-scale physics experiments: their
planning and construction can span over decades (the Future Circular Collider at CERN
is not expected to start before the mid 2040s), and their operation will require a new
generation of physicists to be trained before crucial knowledge and know-how is lost9.

In general, all of these evolutionary and adaptive changes are unfolding simultaneously
and interacting with each other via complex feedback loops. While a detailed account
of the mechanisms driving their co-evolution is beyond the scope of the present thesis,
following [40], we may summarize the general idea by stating that collective cognition
involves adaptive multi-agent systems, in reference to the theory of complex adaptive
systems [86]. Their adaptive dimension stems from the co-evolution of the three main
ingredients of the framework (Figure A.1): the problem structure, the social structure,
and the incentive structure.

A.3.6 Bridging two traditions in computational social science
This thesis proposes a computational approach to collective cognition. However, we
may distinguish two relevant traditions in computational social science; although there
is some overlap and interactions between the two, these traditions have developed their
own journals, communities, and methods/topics of inquiry. This thesis makes an effort to
bring these two traditions together, in chapters 2 and 3 specifically (in contrast, Chapter
1 falls more into the traditional digital humanities literature).

The first tradition (in chronological order) finds its origins in the sciences of compu-
tation and complexity, and relies essentially on formal models and computer simulations.
These include agent-based models, which are typically used the explore surprising pat-
terns of collective behavior that can emerge from simple sets of rules dictating the ways
agents interact with each other. Illustratory (and often considered seminal) of this line of
approach is Thomas Schelling’s model of racial segregation in cities, which demonstrates
that spatial segregation can arise from small homophilic preferences [87]. This compu-
tational tradition has since been embraced by social epistemologists, and it constitutes
the principal mode of inquiry for computational philosophy of science [88]. Most cultural
evolutionary perspectives on science rely on this approach [65]. Computer simulations

9Again, this sort of challenge goes beyond large-scale physics; for what to train the next generation
of scientists, when the future is so uncertain, is a universal problem across the sciences. In fact, scientific
institutions generally address this problem by maintaining a broad range of knowledge and skills, whose
significance might increase in the future.
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can dispense with unrealistic assumptions introduced for practical purposes10, which en-
ables the exploration of more complex and realistic models. Nevertheless, ABMs and
formal models of multi-agent systems necessarily remain limited idealizations of real-life
scenarios, and what we may learn from this approach is a matter of debate [89]. This is
especially true when no attempt is made to connect such models to empirical data, as is
generally the case with models of the social organization of science [90].

The second tradition in computational social science is much more recent, and, unlike
the previous one, much more empirical and data-driven. In a nutshell, this tradition
appeals to computational means, such as natural language processing or network analysis,
and generally rudimentary statistical approaches, such as statistical testing, either to
describe naturalistic data11 using exploratory analyses, or to test specific hypotheses (e.g.:
is X correlated with Y? Does A cause B?). This new paradigm was made possible by the
increasing availability of numerical datasets (whether it includes natively numerical Big
Data or digitalized corpora), methodological innovations in computer science and machine
learning, and increasingly widespread access to computing resources. This approach to
computational social science has somewhat eclipsed the former tradition (not without
causing frustration among certain communities [91]).

The present thesis attempts to combine these two approaches. Formal computational
models are valuable because they clarify the theoretical assumptions underlying a par-
ticular reasoning, and they sometimes enable predictions. Additionally, they allow the
transfer of insights across systems: as Smaldino puts it, “when you know that a system in
question involves features and constraints similar to those in models you have seen before,
insight into how they operate can follow” [92]. This appears very clearly in chapters 2 and
3. The first paper relies on Optimal Transport in order to describe collective adaptation
in science. Optimal Transport is a mathematical optimization framework12 that aims to
find the most economic way of displacing matter or goods, by minimizing transportation
costs. This “model transfer” [94] invites us to view the tension between specialization and
adaptation as one between the imperative to adapt to new research opportunities and the
imperative to minimize cognitive costs. The second paper applies the Ising model to the
diffusion of scientific conventions. The Ising model is a physical model introduced in 1920
to account for the spontaneous magnetization of ferromagnetic materials as arising from
purely local microscopic interactions between neighboring “spins” [95]. In social systems,
it can explain the emergence of collective behavior due to micro-level interactions, and it
has become widely popular in that context as a result [96]. In Chapter 3, I show that the
Ising model can also capture the structure of coordination games on complex networks,
as well as the competing effect of local and global mechanisms of coordination that may

10As Miller and Page put it, “we want to study models with a few agents, rather than those with only
one or two or infinitely many. We want to understand agents that are neither extremely brilliant nor
extremely stupid, but rather live somewhere in the middle” [86, p. 7]. Yet such silly assumptions have
long been necessary for the sake of mathematical intelligibility.

11As opposed to experimental data.
12First introduced in 1781 by French mathematician Gaspard Monge in a military setting [93], and

later refined by Leonid Kantorovich in the context of economic planning
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simultaneously shape individuals’ attitudes towards multiple possible conventions.
In this thesis, these computational models are not merely used to formulate theoretical

assumptions or generate insights transferable across systems. They are also used to
extract empirical information from real systems. To this end, I rely on so-called inverse
problems, which consist in inferring the rules underlying a set of behavioral observations.
For instance, in Chapter 2, I appeal to Inverse Optimal Transport, an emerging topic in
computer science, to infer the underlying migration cost matrix (the cost of moving from
one research area to another) minimized by high-energy physicists’ adaptive patterns in
response to changes in their field. In Chapter 3, I solve the inverse Ising problem to
measure the magnitude of the contribution of local and global coordination processes
shaping physicists’ preferences towards a sign convention. I further show that once these
contributions have been measured, they may be used as summary statistics to assess
the relative plausibility of various models of preference-formation, including models of
cultural transmission. To this end, I appeal to “simulation-based inference” [97] with
deep-learning [98], a recent approach for performing Bayesian inference about agent-
based models from empirical data in spite of their computational complexity. Generally
speaking, inverse problems are a promising strategy for bridging formal and empirical
computational social science.

The framework outlined above can serve as a blue print for formal and empirical
investigations of social dilemmas in collective cognition. Not every aspect of it has to
be involved in every approach, but starting from any problem-situation in collective
cognition, one can start by looking at Figure A.1 and ask which ingredients of this
framework are relevant.

A.4 Application to social dilemmas in high-energy
physics

The present thesis investigates social dilemmas in high-energy physics by leveraging mul-
tiple aspects of the framework just outlined. It proceeds in three chapters. Chapter 1
is much more similar to traditional digital humanities paper, and therefore stands aside
from the other two. It was undertaken at a time when the project was more focused on
a specific theory in fundamental physics. Chapters 2 and 3, by contrast, go further and
further in implementing the perspective of the adaptive multi-agent system approach to
collective cognition.

Chapter 1 explores the tension between unity and pluralism in high-energy physics
through a rudimentary quantitative case-study of supersymmetry. While this theory has
been extremely influential in the field over the past 40 years, it has disappointingly failed
to materialize at the Large Hadron Collider, which has led to a situation of crisis. How-
ever, Chapter 1 shows that supersymmetry is unequally appraised throughout the field.
As I demonstrate using quantitative analyses of scientific literature, high-energy physics
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is divided in two theoretical traditions, phenomenology and pure-theory, carried out by
distinct communities, with their own theoretical “language”. While interest in supersym-
metry has been declining rapidly among phenomenologists since the start of the LHC, as
many of them lost faith that it would ever materialize, reference to supersymmetry has
remained more steady among theorists, who value its mathematical properties regardless
of the empirical support it has received. Finally, I investigate the “trading zone” [99]
between phenomenology and theory by looking into the concepts that have sustained ex-
changes between them throughout time. To this end, I explore the keywords that travel
in the citation network, which convey the communication structure (Fig. A.1,§II) uniting
the field. I find that while supersymmetry historically played a significant role in tying
these two “subcultures” [99], it is now being superseded in the “trading zone” by other
concepts such as black holes, dark matter, and gravitational waves. More generally, I
find a growing disconnect between particle collider phenomenology and theory. The field
is now facing a dilemma: it must decide whether to promote unity, by seeking devel-
opments that can sustain fruitful trades between particle phenomenology and theory, or
to embrace a pluralist approach, even if that implies a growing disconnect between two
traditions with a history of close cooperation.

Chapter 2 focuses on the tension between specialization and adaptation. While sci-
entists must specialize by concentrating their intellectual resources into rather narrow
cognitive domains, they must also remain able to adapt to changing circumstances, which
may prompt the acquisition of new knowledge. To understand how scientists navigate
this trade-off, I study the trajectory of a cohort of ∼2 000 high-energy physicists between
2000 and 2020. This time period is particularly interesting, since the Large Hadron
Collider and new experimental opportunities (such as direct dark matter searches and
gravitational wave astronomy) have profoundly reshaped the landscape of experimental
opportunities (Fig. A.1,§I). Using an embedding topic model trained on 180 000 scientific
abstracts, I measure the research portfolios of the physicists (i.e. how they have divided
their attention across 15 research areas) before and after the start of the LHC. While the
cohort’s research interests have been rather stable, dark matter research has doubled, to
the detriment of neutrino physics and the physics of the electroweak sector, which is the
physical domain explored at the LHC. This shows that the cohort has adapted to shift-
ing incentives increasingly favoring dark matter over particle collider phenomenology. In
addition, using Inverse Optimal Transport, I show that the observed collective patterns
of change are structured by learning costs: the cohort has adapted in a way that tends
to minimize cognitive learning costs, which demonstrates that specialization constrains
collective adaptation. Finally, I investigate the effect of multiple variables on scientists’
individual ability to adapt. In particular, I show that the diversity of their intellectual
and social capital is associated with larger magnitude of change. By contrast, “power”
(the magnitude of social capital (Fig. A.1,§II) is associated with more stable research
agendas.

Chapter 3 investigates multiple dilemmas and trade-offs involved in the propagation
and adoption of scientific conventions. The first trade-off concerns the imperatives of



A.5. IMPLICATIONS AND OPPORTUNITIES ACROSS DISCIPLINES 23

social consistency (driven by coordination costs, Fig. A.1, §III), sequential consistency
(driven by the cost of switching between different conventions), and contextual consis-
tency (driven by maladaptation costs, Fig. A.1,§I) that individuals must balance when
choosing between competing conventions. The second trade-off is the competition be-
tween local processes (propagating locally throughout a social network, Fig. A.1,§II)
and global processes (exogenous to social networks) in the propagation of conventions.
Finally, the third trade-off is the balance between decision optimality and decision costs
in cases where individuals must resolve conflicting preferences about which convention to
use. I develop a statistical physics approach to these dilemmas, which I then apply to a
sign convention in high-energy physics (the metric signature). I find evidence that social,
sequential, and contextual consistency all influence scientists’ attitude towards this con-
vention. Using an Ising model approach, I also find evidence for both local and global
processes in their diffusion, although global effects (driven by scientists’ primary research
area) seem to dominate. I then show that the magnitude of local and global processes
measured with the Ising model can be used as summary statistics for comparing the rel-
ative plausibility of more realistic models of the formation of scientists’ preferences with
simulation-based inference. This in particular allows us to rule out purely global processes
of cultural transmission. Finally, I find that scientists appeal to leadership and seniority
to resolve conflicting preferences about which convention to use in collaborations, which
suggests that decision costs prime over optimality (e.g. collective satisfaction) for this
specific convention.

A.5 Implications and opportunities across disciplines

Each of these chapters make contributions to the specific topics they address – the dis-
unity of physics, adaptation in science, and conventions –, which are developed at length
within each paper. In addition, as a whole, these three chapters also suggest broader
implications and perspectives for multiple disciplines, which I propose to discuss in this
section. First, this thesis leads to a generalized notion of collective constraint that can
unify diverse views about conventionality and underdetermination in the philosophy of
science (§A.5.1). Second, this thesis illustrates how the gap between qualitative and
quantitative approaches in social studies of science can be addressed in a bidirectional
way, not just by implementing concepts into quantitative work, but also by using compu-
tational model as a source of inspiration in the formation of concepts (§A.5.2). Third, this
thesis shows how inverse problems can bridge two otherwise disconnected traditions in
computational social science, while suggesting a new range of explanations for recurrent
patterns of self-organization in collective systems (§A.5.3).
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A.5.1 Implications for the philosophy of science

Undetermination and collective constraints in science

Scientific underdetermination is a major theme in epistemology and philosophy of sci-
ence [100]. In a nutshell, underdetermination arguments (which come in different flavors)
generally purport that evidence only loosely constrains our beliefs. A popular variant
of underdetermination famously defended by Quine [101], and known as epistemological
holism, contends that the truth-value of statements cannot be determined in absolute
terms, independently of our beliefs about other statements. Consequently, scientific ev-
idence can only refute collections of beliefs at best [100]. Underdetermination is often
perceived as a challenge to rationality, which implies constraints on what constitutes
rational beliefs. This is why, in order to refute claims about scientific practice that he
perceived as social reductionists, Galison elaborated a defense of the robustness of sci-
ence, explicitly articulated around the notion of constraints [102]. These constraints, as
per Galison, can come in many kinds – experimental, phenomenological, or theoretical,
and short-lived or long-term, depending on how far their impact on science goes [102,
103]. Generally speaking, they put some limits on underdetermination, such that not any-
thing goes. However, as Chapter 3 shows by investigating conventions in science, many
constraints on rational behavior are not individual but collective (or perhaps holistic).
Collective constraints arise when the attitude towards a particular choice among several
alternatives is constrained only in relation to other choices. In the case of conventions,
collectives constraints can be i) social, ii) sequential, and iii) contextual. Let us take
for instance left-hand versus right-hand driving: whether I should drive to one side or
the road or the other is not constrained in itself, unless it is specified how others will
behave. Such situations – which fall into social constraints (Table A.1a) – are known
as a coordination problems, and David Lewis based his study of conventions around a
game theoretical account of such problems [69] . Certain conventions, however, are only
constrained sequentially (Table A.1b). For instance, assume you must choose between
different keyboard layouts (QWERTY, QWERTZ, AZERTY, etc.). It does not matter so
much what choice someone makes as long as his or her choice remains consistent through-
out time. Finally, certain choices are only constrained contextually (Table A.1c), that
is, in relation to a set of other interconnected choices. Unit systems are a good example;
depending on the task at hand, it might make more sense to measure lengths in millime-
ters as opposed to light-years, although there is no universally correct or superior choice.
Chapter 3 performs an empirical analysis of a sign convention in high-energy physics
and finds that all of social, sequential, and contextual constraints jointly influence the
attitude of individuals towards conventions. The empirical analysis is built upon a mixed
game-theoretic and statistical physics framework that formalizes the notion of collective
constraint in both an utilitarian (Table A.1) and probabilistic languages. This paper
is a contribution to prior philosophical literature in two respects. First, it shows that
Lewis’ [69] account of conventions, which is focused on their social dimension, must be
expanded to include temporal and contextual consistency. It is quite remarkable that the



A.5. IMPLICATIONS AND OPPORTUNITIES ACROSS DISCIPLINES 25

xj = xj =
xi = (1, 1) (0, 0)
xi = (0, 0) (1, 1)

(a) Social consistency.
Alice and Bob are better off
if they agree on either or

.

xt+1 = xt+1 =
xt = 1 0
xt = 0 1

(b) Sequential consis-
tency. Alice is better off
if she consistently chooses

or .

y = y =
x = 1 0
x = 0 1

(c) Contextual consis-
tency. Alice is better of if
she chooses either or

.

Table A.1: Collective consistency as coordination games involving Alice ( ) and Bob
( ), or Alice alone. Each table represents a payoff matrix associated with a “collective”
choice.

same game theoretic account can describe the three dimensions of collective consistency
(Table A.1). Conversely, this work supports a form of holism such as that of Quine (by
establishing that conventions are collective, i.e. holistic constraints), and simultaneously
suggests that epistemic holism must also incorporate social and temporal dimensions.
More specifically, if multiple collections of beliefs are logically consistent, it might make
sense to choose the one more aligned to the present social setting, or to choose one that
minimizes cognitive change – even if this reinforces path dependence in our exploration of
the space of ideas. This means individuals may choose one system (or web) of compatible
beliefs over another conventionally, but in a nevertheless rational way – by addressing
the reasonable needs to coordinate their beliefs at a social level and to minimize cognitive
efforts.

Underdetermination and pursuit-worthiness

Underdetermination is traditionally discussed in the context of acceptance, which affects
the assessment of the truth-value of theoretical statements. However, another pervasive
debate in philosophy of science concerns whether methodology underdetermines scientific
developments; and as Thomas Nickles has argued, underdetermination also affects pursuit,
that is, our assessment of which research directions are worth exploring next [104, p. 167,
§17]. The underdetermination of pursuit is particularly severe a priori, since science is
by essence open-ended: it is precisely the goal of scientific inquiry to explore a range of
possibilities. Nevertheless, not every decision of pursuit in science is equally reasonable
– again, there has to be “constraints” on what should be the next step of inquiry. This
thesis provides several examples of collective constraints on the underdetermination of
pursuit in high-energy physics.

First, collective constraints can be social constraints, which arise when a certain choice
is constrained only in relation to choices made by others, as exemplified by coordination
problems (Table A.1a). In assessments of scientific pursuit worthiness, such problems may
arise when an important level of cooperation is required to explore a particular research
direction, even if this direction is somewhat arbitrary (or “conventional” [69]). This is
obvious in large-scale particle-physics experiments, which entail the commitment of a
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large collective to one particular research effort among other reasonable alternatives. For
instance, Table A.1a may describe the choice between two equally promising experiments,
that may only succeed if both Alice and Bob partake in it.

Additionally, sequential constraints arise when certain choices are constrained only
in relation to past decisions. For instance, in Table A.1b, regardless of which choice
Alice makes, she benefits from remaining committed to it. In science, a major driver of
such types of constraints is the need for scientists to capitalize on prior knowledge and
achievements, for cognitive or material reasons. Chapter 2 demonstrates that patterns
of collective adaptation in high-energy physics over the past decades have indeed been
structured by the minimization of individual “efforts” given the aggregate patterns of
change observed among a cohort of physicists (Fig. A.2). It suggests that the recent shift
towards dark matter in particle physics can be understood as a strategy for making the
best of particle physicists’ prior knowledge, in a context where further exploration of the
high-energy frontier in particle accelerators becomes increasingly less attractive. By con-
trast, if one seeks purely empirical justifications for the pursuit of dark matter, it might be
more difficult to fully appreciate the rationality of its pursuit over that of competing ap-
proaches such as modified gravity. In addition, sequential constraints strongly influence
large-scale particle-physics experiments. For instance, the underground Large Hadron
Collider reuses a significant amount of infrastructure from prior experiments, including
the tunnel of its predecessor (LEP), which is itself built upon its ancestors. Sequen-
tial constraints capture the fact that progress is impossible if one constantly overthrows
prior scientific capital (whether this entails knowledge or material resources). Sequential
constraints give rise to path dependency, but are nevertheless necessary for conducting
science.

Finally, contextual constraints arise when a certain choice is only constrained in re-
lation to other choices for epistemic or instrumental reasons. While the context includes
the surrounding system of beliefs [101], it may also include non-epistemic values and axi-
ological commitments. Chapter 1 shows that physicists diverge in their assessment of the
pursuit-worthiness of supersymmetry, since this theory is increasingly unlikely to support
phenomenological progress while remaining crucial in highly theoretical developments in
quantum gravity. Therefore, the pursuit-worthiness of supersymmetry is not constrained
(or determined) in absolute terms: it can only be assessed in relation to other choices
(e.g. whether to require immediate or foreseeable phenomenological implications) that
may themselves be subject to revision.

From the point of view of the philosophy of science, the “collective cognition” perspec-
tive hints at additional criteria for heuristic appraisal that may provide further constraints
and justifications for our scientific conduct (as in the case of dark matter). These are espe-
cially valuable in high-energy physics, which suffers from a scarcity of empirical evidence,
and subsequently from higher levels of epistemic underdetermination [105]. In addition,
the approach developed in this thesis suggests normative implications for the allocation
and divison of labor in science. For instance, the Optimal Transport [106] approach de-
veloped in Chapter 2 assumes the existence of a collective constraint on the (supposedly
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optimal) distribution of research efforts across research topics (which, roughly speaking,
specifies how much effort should be devoted to each of multiple topics). By incorpo-
rating the need to minimize cognitive learning costs, Optimal Transport can translate
this collective constraint into individual constraints by deriving an optimal allocation of
individual labor (the gray arrows in Fig. A.2): for instance, individuals who have skills
and knowledge relevant to particle phenomenology are better equipped to search dark
matter compared to others13.

Figure A.2: Scientists’ adaptive patterns in the epis-
temic space, as they relocate from the blue nodes to the
red nodes. Given the target distribution of research ef-
forts (in red), Optimal Transport provides the assignments
(gray arrows) that minimize the distance traveled in the
epistemic space, which measures the cognitive effort of each
scientist.

A.5.2 Implications for the sociology of science
There is a significant gap in the “world-views” of qualitative and quantitative science
studies, which focus on different phenomena and revolve around distinct ontologies [108].
This thesis proposes to address this gap in two different ways. One of them (the top-down
approach) is to provide novel ways of operationalizing central qualitative notions from
the sociology of science into quantitative analyses of scientific literature. I illustrate this
strategy with two such concepts: Galison’s trading zones, and Bourdieu’s capital. How-
ever, another way to establish connections between qualitative and quantitative research
is to draw qualitative insights from computational models (the bottom-up approach).
Computational models, indeed, can serve as a source of inspiration in the process of
generating concepts for the social sciences.

The top-down approach: from concepts to quantitative measures

The concept of trading zone was introduced by Galison [99] in order to account for how
physicists with highly different expertise (and jargon) achieve mutual understanding.
Since then, this concept has spurred many works in social studies of science [109]. Yet,
perhaps surprisingly, Chapter 1 is the first quantitative operationalization of the concept.
In this paper, I show that citations in science are a proxy for the “trades” occurring
between different scientific cultures. I use this approach to explore the concepts that have
contributed to sustaining trades between different areas of high-energy physics throughout
time, by locating the keywords most frequently involved in citations across these research
areas. This reveals, among other things, a major shift from collider physics to astrophysics
in the trading zone between pure theory and phenomenology.

13See [107] for an exploration of the relation between game theory and the original Monge problem in
Optimal Transport.
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Pierre Bourdieu has tremendously influenced the sociology of science, and many quan-
titative sociologists of science and bibliometricians have naturally sought to translate ma-
jor concepts of his work into quantitative measures [110], including the notion of capital.
Per Bourdieu, capital (the assets that individuals may leverage in a competitive setting)
can come in many forms: intellectual, social, symbolic, etc. Despite the influence of this
notion in quantitative studies of science, this thesis reveals gaps in previous bibliometric
approaches to Bourdieu’s notion of capital. For instance, Chapter 2 investigates the effect
of the diversity of scientists’ intellectual capital on their ability to adapt. Prior works
have not provided satisfactory measures for the diversity of scientists’ intellectual capital,
which prompted me to develop a novel information-theoretical approach based on embed-
ding topic modeling. In addition, while [111] acknowledged that scientists’ social capital
is multi-dimensional, featuring at least two partially independent components – diversity
and power –, their own operationalization of each of these dimensions of social capital
turned out to be inappropriate. In particular, their measure for diversity is based on
scientists’ degree-centrality in their social network (e.g. their amount of collaborators),
irrespective of the similarity or dissimilarity of their collaborators’ profiles. In response,
Chapter 2 proposes a measure for the diversity of social capital that captures the intellec-
tual diversity that one has access to through their social network. Chapter 2 then shows
that these two dimensions of social capital (diversity and power) have opposite effects
on the magnitude of change in scientists’ research interests over time: diversity enhances
change, while power enhances stability. This observation would not have been possible
had we limited ourselves to the measure of diversity from [111].

The bottom-up approach: from computational models to qualitative concepts

Quantitative studies of science need not be subordinate to high-level qualitative theory;
instead, we may use computational approaches as a source of inspiration in the formation
of qualitative concepts. Chapter 3, for instance, uses the Ising model to explain the
formation of physicists’ preferences towards a sign convention. This model comes from
statistical physics, where it was introduced to describe “spin systems” and spontaneous
magnetization in certain materials. In such materials, atomic spins are influenced by two
forces, which are the two components of the Ising model: the local effect of their neighbors,
and the effect of the external magnetic field in which they are plunged. Chapter 3 builds
upon these two components of the model and proposes a similar distinction between local
processes in the diffusion of conventions (which spread throughout a social network) and
global processes (external to the social network). While local processes of coordination
can include imitation or strategic adaptation, global processes include formal institutions
and central authorities (or disciplinary matrices, in the context of science). Therefore,
the distinction not only has a clear meaning in the Ising model, but also a significance for
social systems. In fact, the strong entrenchment of the divide in a robust model, which
can extract quantitative information about real systems, gives us some confidence that
the concept designates something real – to paraphrase Hacking [112], “if I can [measure
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it], then [it is] real”.

Another fruitful example is the notion of collective consistency (already discussed
in our discussion of underdetermination), which regroups social consistency (the coordi-
nation of individuals’ behavior), sequential consistency (the coordination of consecutive
actions in a mutually coherent way), and contextual consistency (the collective consis-
tency of simultaneous beliefs or actions). While these seem like highly heterogeneous
imperatives, Chapter 3 demonstrates that they can be modeled in similar ways. I have
shown that one can appeal to a unified game-theoretic description of these three con-
straints (Table A.1). Alternatively, one may appeal to a unified probabilistic definition:
collective consistency at large involves constraints on a joint probability distribution (i.e.
p(x1, . . . , xn)), without entailing constraints on the marginal probability distributions
p(x1), . . . , p(xn). In the case of left-hand versus right-hand driving, for instance, it is
more probable that two individuals driving past each other will adopt the same behavior
– [p(L,L) = p(R,R)] > [p(L,R) = p(R,L)] – but this does not say which outcome they
should prefer on average – such that p(x1 = L) = p(x1 = R). In terms of the Shan-
non entropy H, conventionality implies that H(x1, . . . , xn) �

n→+∞

∑
i H(xi): on average,

the joint-strategy of the agents is comparatively much constrained than their individual
strategies.

The Ising model used in Chapter 3 is a simple account of how such purely collective
constraints may surface14, and is directly tied to two-player, two-action games, such as
those represented in Table A.1 [114]. For instance, sequential consistency can be modeled
by a Markov chain, where transitions between inconsistent actions introduce “switching
costs”. However, such a model has the same structure as the Ising model on a one-
dimensional lattice. Additionally, contextual consistency (i.e. the consistency of a set of
beliefs and cultural practices) can also be reasonably captured by an Ising model. In fact,
the Ising model can adequately model cultural fitness landscapes, as previously shown by
[44], and as we demonstrate again in Chapter 3 through the empirical reconstruction of a
fitness landscape of multiple conventional choices. If collective consistency, in its different
forms, can be modeled using the same basic formal components, we may be more willing
to consider that the notion, in spite of its breadth, exhibits high coherence. In the end,
the finding that social and contextual constraints can be made sense of using the exact
same framework suggests that it does provide an account of why and how, as Giere puts
it [19], “the social and the cognitive overlap”. This confirms that computational models
can provide conceptual clarification.

14The Ising model is simple because it only assumes pairwise interactions, which provides enough
complexity to characterize a broad class of systems. Indeed, seemingly higher-order correlations often
emerge from simpler pairwise interactions [113].
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A.5.3 Implications for complexity and computational social sci-
ence

Inverse problems for social science

This thesis makes several methodological contributions to the field of computational so-
cial science, in particular through novel applications of inverse problems under Bayesian
inference. For instance, Chapter 2 is the first empirical application of Probabilistic Inverse
Optimal Transport [115], and shows the promise of Optimal Transport as an alternative
to traditional models of mobility such as the gravity model [116]. In addition, Chapter
3 is the first paper to apply the inverse Ising problem in order to retrieve the structure
of an underlying coordination game from behavioral data. This effort follows very recent
theoretical work drawing the connection between the Ising model and coordination games
[114] that had not been applied empirically before. I also show that the Ising model can
disentangle endogenous collective behavior (emerging out of local interactions through-
out a network) from exogenous collective behavior (arising from factors transcending the
network) using a set of behavioral observations. While the Ising model is rather formal
and unrealistic, as I demonstrate, solving the inverse Ising problem can help compare
the plausibility of more realistic agent-based models of collective behavior by providing
summary statistics measuring the contribution of these two general processes of coor-
dination. This suggests exciting research directions at the intersection between “social
physics” [117] and recent developments in simulation-based inference with deep-learning
[97]. Generally speaking, as discussed above, inverse problems establish a bridge between
often disconnected traditions in computational social science A.3.6.

To further stress the value of the inverse problems in computational social science, let
us emphasize a finding of Chapters 2 and 3 that has only been briefly discussed in both
of these papers. Both Inverse Optimal Transport and the inverse Ising problem effec-
tively retrieve utility functions out of behavioral data (which are respectively shaped by
migration costs and coordination costs). That is, these methods enable us to learn what
agents are “optimizing” for. Fortunately, these do not imply or require that agents are
perfectly efficient and rational. In both cases, these methods can in fact simultaneously
measure the degree of efficiency and rationality of the agents. In Inverse Optimal Trans-
port, inefficiency is captured by an entropic regularization term (which was historically
introduced for completely different reasons). In the inverse Ising model, the inverse tem-
perature β – which is also related to entropy – is a measure of efficiency. This parameter
is related to the degree of rationality of individual agents in a coordination game context
[114]. It follows from the assumption that agents follow a noisy best-response strategy
(the so-called logit rule, which is a simple model of bounded rationality).

Social dilemmas and self-organization

In collective cognition, socio-epistemic systems “adapt” to their environment by “self-
organizing” into rich complex structures featuring recurrent patterns [118]. One such
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pattern is modularity, which arises when different parts of a system “specialize” into dif-
ferent functions [119]. Another example is hierarchies. Take this very thesis, for example.
It is organized hierarchically, into chapters, which are divided into sections, which are
themselves divided into subsections, that are themselves broken up into paragraphs. This
structure has a functional role: it serves to indicate the nested imbrication of modules
(ideas and arguments) into submodules, and considerably speeds up the search of relevant
information. What is the function of hierarchies, in socio-epistemic systems in particu-
lar? I suggest hierachies in socio-epistemic systems may serve to resolve multiple of the
social dilemmas identified throughout this thesis. For instance, Chapter 2 focuses on the
trade-off between specialization and adaptation, and found that the “cost” of shifting
attention from one topic to another is shaped by the probability that an author holds
knowledge in these two topics (i.e., by their cognitive proximity). Incidentally, Chapter
2 finds hints that knowledge is distributed hierarchically among physicists, who are more
likely to hold expertise in topics that belong to a same area (and so forth, across all
levels of the hierarchy; see Figure A.3a). This implies that it is easier to migrate across
subtopics within the same topic than to migrate across broader topics. A hierarchical
distribution of knowledge can help relieve the tension between specialization and adap-
tation by taking advantage of shared background knowledge between “siblings” at each
level of the hierarchy. For instance, physicists may switch from collider physics to dark
matter physics, which is relatively easy; if necessary, they may leave high-energy physics
for another kind of physics research, which might be a bit harder, but who still salvaged
some amount of background knowledge.

Domain 1

Field 1

Sub-field 1

Topic 1 Topic 2

Sub-field 2

Topic 3 Topic 4

Field 2

Sub-field 3

Topic 5 Topic 6

Sub-field 4

Topic 7 Topic 8

(a) Example of hierarchical knowledge structure.

CERN

LHC

ATLAS CMS

SPS

AWAKE COMPASS

(b) Hierarchical structures at CERN.

Figure A.3
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Another social dilemma that is partially relieved by appealing to hierarchical struc-
tures is the trade-off between independent and cooperative learning. Scientists must rely
on cooperation, in order to elaborate complex solutions and take advantage of each oth-
ers’ knowledge, but they also need to preserve some independence, in order to explore
alternative strategies in parallel. If we take the example of CERN again, we can see
that its infrastructure follows some sort of hierarchical structure, by running multiple
accelerators, which themselves run multiple experiments (Figure A.3b). Such a structure
directly relieves the tension between independent and cooperative learning: both the
Large Hadron Collider (LHC) and the Super Proton Synchrotron (SPS) benefit from a
certain amount of shared infrastructure, but they nevertheless play complementary roles.
At the same time, each accelerator diversifies its own scientific output by running multiple
experiments (ATLAS and CMS, among others, at the LHC; AWAKE and COMPASS,
among others, at the SPS), which themselves benefit from some form of cooperation by
relying on the same accelerators. The hierarchical structure in Figure A.3b therefore di-
rectly addresses the need to diversify research (by pursuing multiple independent efforts)
and yet coordinate these efforts (to reap the benefits of cooperation). Similarly, prelimi-
nary findings suggest that the community structure of theoretical physics is arranged into
hierarchical levels that correlate with levels in the linguistic hierarchy of knowledge in
the field (see Figure A.4). Such correspondence may indicate the adaptive co-evolution
of epistemic and social structures, in such a way that alleviates the tension between
coordination and specialization.

To conclude, one might say that further investigation of social dilemmas arising in con-
texts of collective cognition may help us understand structural patterns emerging across
a range of complex systems, including (but not limited) to modularity and hierarchy.

A.5.4 Implications for scientific and institutional change
This thesis was conducted as part of the research training group on Transformations of
Science and Technology since 1800. In the last section of this chapter, I propose to reflect
upon the contribution of the present thesis to the research program of our group. Before
I elaborate, let me just stress that our collective is committed to an interdisciplinary
perspective on science; the present thesis clearly exhibits this orientation, since it gathers
very diverse perspectives and finds implications across multiple fields (Figure A.5). In
what follows, I discuss the other dimensions of our research program.

Topics, processes, and institutions

Our research group proposes to acknowledge that transformations in science involve three
inter-related layers: topics (the intellectual product of scientific research), processes (the
making of science), and institutions. To understand how science has evolved over the past
centuries, we must acknowledge that these dimensions have co-evolved in interaction with
each other. In this respect, the adaptive multi-agent system framework outlined in this
introduction provides a flexible account of the co-evolution of these three dimensions: in
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(a) Hierarchical linguistic structure. Colors
indicate the most frequent topic among each
author’s publications. Topics are recovered
by performing unsupervised clustering on the
sentence embeddings derived from the ab-
stracts of D = 228 748 publications [120].

(b) Hierarchical community structure. Col-
ors indicate each author’s community, across
three levels of the hierarchy in the degree-
corrected hierarchical stochastic block model
[121].

Figure A.4: Partition of authors in the co-authorship network, across different levels of
the hierarchy of topics (left) and communities (right). Excerpt from a work in progress
with Mike D. Schneider.

Fig. A.1, the problem structure and the solutions explored by the epistemic agents rep-
resent the topics; the agents’ learning strategies, in contrast, represent the processes; and
the incentive structures represent the institutions (whether these are formal institutions,
or more or less implicit social norms). As I have shown, these three dimensions interact
with each other via complex mechanisms such as feedback loops, which may be formalized
in terms of complex adaptive systems [86, 40]. Therefore, historians, sociologists, and
philosophers of science might find useful resources in this approach to scientific change,
acknowledging the complex interplay between topics, processes, and institutions. More
specifically, Chapter 1 shows how division of labor in high-energy physics (processes)
can lead to self-reinforcing epistemic divergences between different communities (topics).
Chapter 2 shows how the experimental landscape, which is itself shaped by institutions re-
defines the scientists’ research agendas (processes). Finally, each of the three dimensions
of conventions introduced in Chapter 3 (contextual, sequential, and social consistency)
can be associated with one layer: contextual consistency demands that topics be mutu-
ally coherent systems of beliefs; sequential consistency demands that processes involve
coherent sequences of actions; and social consistency expresses a drive for institutions co-
ordinating individuals’ behavior. Therefore, the formal model of conventions introduced
in Chapter 3 directly provides an account of the interactions between these three layers.
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Historical institutionalism and modes of change in science

Another aim of our research group has been to explore potential implications of “his-
torical institutionalism” (HI) for the understanding of scientific change. Historical in-
stitutionalism is a framework from political science that acknowledges that institutional
arrangements cannot be understood without reference to their history. At the core of
historical institutionalism lies the concept of path-dependence, according to which prior
arrangements can significantly constrain future developments. Institutional change nev-
ertheless takes place through two broad kinds of patterns, namely punctuated equilibria
and gradual change. In the former, institutions enjoy long periods of stability (equilibria)
separated by short periods of significant transformations with long-lasting effects (critical
junctures). However, institutional transformations may also result from more continuous
and incremental change with significant cumulative effects overtime. Our group proposes
to investigate whether a typology of gradual institutional change developed by historical
institutionalists [122] can account for transformations in science more generally. This
includes displacement (when former rules are abandoned and replaced by new ones), lay-
ering (when new rules are added), and drift (when old rules acquire a new meaning under
new circumstances). Our group proposes to apply this framework not just to formal in-
stitutions but also to the other dimensions of science discussed above, that is, topics and
processes. Previous works have shown that this typology of change could account for the
shift from high-energy physics to photon science among organizations such as DESY and
SLAC [123–125] in response to adaptive pressures. Chapter 2 goes further and applies
this typology of incremental change to characterize the adaptation strategies of individ-
ual scientists. Indeed, as noticed by [126], scientists tend to revise their research agendas
gradually, in order to “retain” the benefits of their expertise while progressively engag-
ing in new opportunities. This, however, entails multiple forms of intellectual change.
First, scientists can repurpose their prior knowledge (e.g. prior concepts) to new ob-
jectives, which I call conversion, following the terminology of HI. However, adaptation
can sometimes prompt scientists to expand their knowledge by acquiring new concepts or
techniques for their research (layering). Finally, it may be that scientists have to abandon
certain kinds of knowledge altogether in the face of new circumstances (displacement).
Fundamentally, gradual change appears to be a rather universal adaptation strategy aris-
ing from the need to adjust large accumulations of capital (intellectual, social, material,
institutional, …) to new realities. It appears in different forms in high-energy physics –
for instance, the CERN reused the tunnel from a prior experiment (LEP) for the Large
Hadron Collider (conversion), which also relies on prior accelerators such as the Super
Proton Synchrotron as injectors layering.

Institutions, adaptation, and evolution

While evolutionary models have proven successful in describing certain aspects of tech-
nological change, it remains an open question whether evolutionary theory provides a
satisfactory account of institutional change. For it to be the case, institutions should
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undergo processes of variation and selection that result in the “gradual accumulation of
beneficial changes” [127]. I have just made the argument that there is a parallel to be
drawn between the forms that “variation” take in institutional change and in technolog-
ical or scientific change. By contrast, [127] believe that the analogy is limited for several
reasons: institutional variation is too constrained (since it requires social coordination,
only a few “equilibria” can be explored), and the fitness of institutional arrangement
depends on how many people adhere to them, which diminishes the efficiency of the se-
lection process. Nevertheless, processes such as group-level selection could help explain
how institutions and norms become gradually more adaptive over time [128].

In any case, studies of institutional change may benefit from a complex adaptive
system perspective coupled with evolutionary insights. Take for instance the idea of
“niche construction”, according to which species do not just passively adapt to their
environment, but also reshape it in a co-evolutionary process [129]. [130] have proposed
to view institution-building as a process of social niche construction, whereby humans
establish a background of “stable incentives” that render long-term strategic planning
possible. In a nutshell, institutions reshape our cultural environment in a way that
promotes stability and enables adaptive learning. In the long run, however, such stability
can lead to runaway growth. The larger the niche becomes, the more individuals may rely
on it, until it reaches its carrying capacity and becomes unstable. This is well exemplified
by the exponential growth of science in the course of the 20th century [131]. Such growth
is not sustainable: scientific institutions are increasingly overpopulated, which encourages
the emergence of harmful behavior (e.g. “publish or perish”, and other practices that can
undermine the credibility of science) as competition intensifies. While it might seem
counter-intuitive that the same processes that promote stability can eventually lead to
instability, such kinds of dynamics are ubiquitous and well understood in the framework
of complex adaptive systems.
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ABSTRACT

According to Peter Galison, the coordination of different “subcultures” within a scientific field
happens through local exchanges within “trading zones.” In his view, the workability of such
trading zones is not guaranteed, and science is not necessarily driven towards further
integration. In this paper, we develop and apply quantitative methods (using semantic,
authorship, and citation data from scientific literature), inspired by Galison’s framework, to the
case of the disunity of high-energy physics. We give prominence to supersymmetry, a concept
that has given rise to several major but distinct research programs in the field, such as the
formulation of a consistent theory of quantum gravity or the search for new particles. We show
that “theory” and “phenomenology” in high-energy physics should be regarded as distinct
theoretical subcultures, between which supersymmetry has helped sustain scientific “trades.”
However, as we demonstrate using a topic model, the phenomenological component of
supersymmetry research has lost traction and the ability of supersymmetry to tie these
subcultures together is now compromised. Our work supports that even fields with an initially
strong sentiment of unity may eventually generate diverging research programs and
demonstrates the fruitfulness of the notion of trading zones for informing quantitative
approaches to scientific pluralism.

1. INTRODUCTION

This paper focuses on High-Energy Physics (HEP), the field of physics concerned with the fun-
damental entities of nature, and “supersymmetry,” a symmetry between the two basic types of
particles in nature. The idea of supersymmetry has brought together many of the most signif-
icant developments in the field throughout the past 50 years, all the way from the highly
abstract world of string theorists, deep down to the machinery of underground particle col-
liders. However, none of the discoveries that supersymmetry promised have materialized as
expected; as much as supersymmetry may be necessary to theorists seeking to unify the forces
of nature into a coherent picture, it is increasingly plausible that it will not be of much use to
experimentalists looking to find new particles. Throughout this case study, therefore, our work
exhibits the disunity of science, by demonstrating that even scientific fields with a strong “sen-
timent” of unity, such as HEP (Wilson, 1986), can eventually fail to coordinate various research
efforts. Our paper is guided by the idea that empirical case studies, although seemingly narrow
in scope, do enrich our understanding of the nature of scientific enterprise (in this case, the
nature of the coordination of diverse scientific cultures), and that quantitative studies of
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science should provide conceptually informed tools for carrying out such case studies, pref-
erably in ways that can be generalized for a variety of contexts.

We start by presenting Galison’s notions of subcultures and trading zones, which is the
framework for studying the plurality of science and the dynamics of interactions between sci-
entific fields that underlies our investigation (Section 2.1). We will then provide the necessary
background knowledge for understanding the context of our case study before laying out our
hypotheses: that theory and phenomenology, over the historical period considered (1980–
2020), are to be regarded as two distinct theoretical subcultures within HEP; that supersym-
metry generated diverse research programs, some being phenomenological and some being
more theoretical; and that supersymmetry significantly contributed to sustaining successful
trades between theory and phenomenology until it was put in doubt by experimental data
(Section 2.2). We then elaborate our motivation for addressing these hypotheses through quan-
titative methods (Section 2.3). Then, Section 3 details the quantitative methods that were
deployed in order to address each of the three claims put forward in the introduction. It starts
with a description of the data on which our analysis rests and how it was collected (Section
3.1). Section 3.2 elaborates quantitative methods for assessing the level of semantic and social
autonomy of certain categories (subcultures), and applies these methods to the two theoretical
subcultures in HEP. Section 3.3 elaborates a methodology based on topic models in order to
address the “plasticity” and “plurality” of supersymmetry, which can in principle be applied to
all “boundary objects,” (i.e., those objects that can be traded between distinct subcultures
while preserving and sustaining their distinctness). Finally, Section 3.4 provides a quantitative
model for locating “trading zones” or more broadly concepts that enhance trades between
subcultures (or scientific disciplines in general), and applies the model to the exchanges
between the theoretical subcultures of HEP. Section 4 reveals and interprets the results of these
analyses. Finally, Section 5 explores the consequences of this work, both for our case study
(supersymmetry within HEP) and for the more general question of the plurality of science from
a quantitative perspective.

2. BACKGROUND

2.1. Subcultures and Trading Zones: Galison’s Approach to the Plurality of Science

If science is a unified enterprise, what is the nature of the relationship between fields as diverse
as physics, biology, psychology, and economics? Can we translate all the concepts of these
disciplines into a basic (say, physical) scientific language, as Carnap proposed? Or, are all
these fields so incommensurable and autonomous that it is impossible to translate their respec-
tive entities, laws, and explanations from one’s language to another’s, as proponents of a
pluralistic view defend (e.g., Cartwright, 1999; Dupré, 1983; Suppes, 1978)? Disciplines them-
selves can be so diverse, too, that the nature of what makes their own unity is not necessarily
obvious. For instance, the nature of the unity of physics has been the matter of much debate,
with sometimes serious political implications: Reductionist views (which imply that HEP is the
most fundamental, because it supposedly entails any higher-level theory) were mobilized to
justify the funding of large particle physics facilities (Cat, 1998), potentially to the detriment of
more “useful” projects, as certain condensed matter physicists argued (Martin, 2018, Ch. 9).
Instead, the latter argued that macroscopic systems have emergent properties that cannot be
derived from “fundamental” laws. They were most often proponents of a “methodological”
form of unity (Martin, 2018, p. 233), according to which the field is bound together by shared
norms and conceptual tools (Cat, 1998, p. 267), rather than by relations of logical deduction
from the most fundamental to the least fundamental theories. This view provided an
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intellectual and philosophical basis for elevating the prestige of condensed matter physics
(Martin, 2018, pp. 148–149), thus putting condensed matter and high-energy physicists on
a more equal footing.

Even within the subfield of particle physics, there is a strong contrast between theorists and
experimentalists. In fact, the nature of the relationship between the objects manipulated by,
say, experimentalists (for instance, tracks within a cloud chamber, or electrical signals from a
sensor) and the more abstract entities manipulated by theorists (e.g., “quarks,” “gluons,” or
“strings”) has been the subject of much philosophical debate. Inheriting a positivist view, some
would grant experiment a more fundamental status, by defending its ability to provide robust
empirical statements that could dictate theoretical change. Others, such as Kuhn, argued that
empirical statements cannot be isolated from a theoretical paradigm and emphasized the
“primacy” of theory (Galison, 1988)1. It is in order to overcome this debate about the relation-
ship between experiment and theory within the context of physics that Galison originally
developed his concepts of subcultures and trading zones (Galison, 1987, 1997). However,
these notions may apply more generally whenever distinct scientific communities attempt to
overcome difficulties to communicate and achieve coordination (Collins, Evans, & Gorman,
2010, p. 8). Consequently it is useful in a much broader range of contexts than the narrow case
of physics; for instance, it is generally useful for studying the dynamics of interactions between
disciplines in science2. Below, we propose a brief summary of the concepts of subcultures and
trading zones and the rationale for their introduction.

The notion of subcultures was introduced by Galison (1987, 1988) to account for two
characteristics of HEP: First, that it is subject to a strong division of labor, such that “theory,”
“experiment,” and “instrumentation” are carried out by different groups of people (Galison,
1987, p. 138), with their own skill sets and bodies of knowledge; and second, that each of
these “subcultures” is partially autonomous (i.e., none of them is completely subordinate to
the others). We can highlight two tangible components of such subcultures: a social
component—the community of practitioners—and a linguistic component—the language
specific to each community.

For Galison, then, the question is what makes these subcultures part of a “larger culture”
(physics), while retaining that their successful coordination is a “contingent matter” (Galison,
1997, p. 18); and his answer is “trading zones.” Trading zones allow knowledge to be
exchanged across different subcultures, inasmuch as the practitioners of distinct communities
can locally agree on the usefulness of certain constructs despite the distinctiveness of their
respective languages, commitments, aims, and methodologies. That trading occurs within
“zones” captures the fact that the exchange procedure is “local” rather than “global,” such
that subcultures working out trades with each other can retain much of their autonomy in
the process.

What kinds of goods may be subject to these “trades”? Examples of tradable goods are
“boundary objects,” that is, “objects that are both plastic enough to adapt to local needs
and constraints of the several parties employing them, yet robust enough to maintain a

1 For instance, in his historical account of the discovery of quarks, Pickering (1984, p. 411) endorses the
Kuhnian view: “To attempt to choose between old- and new-physics [gauge] theories on the basis of a com-
mon set of phenomena [experimental facts] was impossible: the theories were integral parts of different
worlds, and they were incommensurable.” Instead, Galison emphasizes the relative continuity and robust-
ness of experimental “facts,” across theoretical changes.

2 For example, Kemman (2021) describes Digital History as a trading zone.
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common identity across sites” (Star & Griesemer, 1989, p. 393)3. Trading zones may give rise
to a purposefully crafted interlanguage that allows for further communication and coordina-
tion (a “pidgin”). If the interlanguage grows, it may turn into a full-blown language (a “creole”);
this signals the emergence and stabilization of a new scientific discipline of its own.

Arguably, this is the process through which “phenomenology”—a subfield of HEP at the
boundary between theory and experiment—has developed (Galison, 1997, p. 837). However,
we may wonder whether phenomenology is still merely dedicated to bridging the gap between
the theoretical and experimental cultures, or whether it acquired enough autonomy to depart
from the supremacy of abstract theory (e.g., by relying on independent sources of inspiration
for its own enterprise rather than by seeking to establish connections between high theory and
experiment). In the following section we will suggest treating “theory” and “phenomenology”
in HEP as two distinct subcultures, such that they may both enjoy considerable autonomy and
eventually fail to coordinate their developments—thus extending the distinction made by
Galison between theory, experiment, and instrumentation.

2.2. Supersymmetry Across Theory and Phenomenology

2.2.1. Theory and phenomenology as distinct subcultures within HEP

HEP involves a complex web of mathematical and technical knowledge concerning the
details of the often abstract underlying theories, the behavior of the instruments that are
assembled within sophisticated experiments, statistical notions for the analysis of the data
derived from these experiments, etc. As a result of this complexity, there is a strong division
of labor within HEP, and we can even distinguish two different groups within the theorists
themselves. Although “pure” theorists (we will call them “theorists,” in accordance with
the terminology within the field) are driven by “the abstract elaboration of respectable
theories,” phenomenologists (the second kind of theorists) are often more concerned with
“the application of less dignified models to the analysis of data and as a guide to further
experiment” (Pickering, 1984), or at least more concerned with experimental consequences
rather than with high theory. This division is itself strong enough that these two kinds of
physicists can generally receive different training and diverge early in their careers, although
some physicists—usually prominent ones—have expertise in both these domains and are able
to sustain exchanges between the two. Therefore, in the present paper, we will make the
following claim:

Claim 1: Over the historical range considered (1980–2020), categories “theory” and
“phenomenology” in HEP should be regarded as distinct subcultures with their own bodies
of knowledge, ontologies, and methodologies, and are carried out by different people.

It is not controversial in itself that “theory” and “phenomenology” are different matters in
HEP; these are now distinct categories within the HEP literature and it is not uncommon for
physicists to label themselves as “theorists” or “phenomenologists” depending on their special-
ization. However, our claim goes further by stating that the nature of their work is so distinct
that it should not be assumed a priori that they can sustain fruitful connections; per Galison,
we should not expect a priori that subcultures are bound to cooperate flawlessly under any
circumstance; we should instead remain open to the possibility that they may fail to produce

3 In the context of physics, Darrigol’s theoretical modules (Darrigol, 2007, p. 214), or multipurpose scientific
instruments (Shinn & Ragouet, 2005, pp. 179–182), may be other examples of such tradable goods.
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constructs of shared value within the contexts of their respective enterprises. There may not
even be one single overarching goal that is equally shared and sought after by HEP theorists
and phenomenologists, and it is even less certain that their respective methods should equally
contribute to achieving their goals at any time4. In the following subsection, we will propose
that supersymmetry exemplifies the contingent ability of high-energy physicists to coordinate
their respective methods and goals in a successful way. It does so because the story of super-
symmetry is that of a partial failure, rather than that of a total success. Although successful
cases of cross-fertilization across fields are valuable to illustrate the notion of trading zones,
that science (and even physics itself, as Galison claims, against a symbiotic view of theory and
experiment) is disunified is better exemplified by those cases where scientific cultures attempt
and fail to establish coordination. The dramatic story of supersymmetry provides such an
example.

2.2.2. Supersymmetry as a tradable good between theory and phenomenology

Supersymmetry is a symmetry that relates the two fundamental kinds of particles that arise in
nature: fermions and bosons. It was postulated simultaneously and independently by several
physicists in the early 1970s, who were each motivated by very different goals5. Supersymme-
try rapidly gathered substantial attention from the theoretical community. The reasons were
manifold, but they were clearly theoretical rather than empirical, as early reviews of the topic
show6. First, symmetry principles play a fundamental role in HEP, and supersymmetry was an
especially attractive symmetry because of its peculiar properties. Second, supersymmetry can
naturally give rise to gravity, as was observed by Volkov and Akulov (1973), suggesting that it
could lead to a consistent theory of quantum gravity. This feature of supersymmetry gave birth
to an entire research program, “supergravity,” which then spanned several decades7. Third,
although quantum field theory is prone to mathematical difficulties due to divergences
appearing in the perturbative calculations of certain quantities, in many instances, such infin-
ities were suppressed in supersymmetric theories.

However, as appealing as it was to theorists, supersymmetry posed a number of empirical
difficulties. First, supersymmetry establishes a symmetry between bosons and fermions; and
yet, at first it was not at all clear which of the bosons and fermions should have been related
to each other by this symmetry. Moreover, if supersymmetry were perfectly realized in nature,
the particles it relates should have identical masses, which was also in contradiction with the
data. This contradictory situation was well summarized by Witten (1982) in his Introduction to
supersymmetry:

[Supersymmetry] is a fascinating mathematical structure, and a reasonable extension of cur-
rent ideas, but plagued with phenomenological difficulties. […] Supersymmetry is a very
beautiful idea, but I think it is fair to say that no one knows what mysteries of nature (if
any) it should explain.

4 Galison (1995) provides a distinction between two kinds of theorists similar to the one we propose to make
here, resting on the recognition that these two groups rely on very different sets of constraints as guides
towards theoretical progress.

5 For a history of early supersymmetry, see Kane and Shifman (2000).
6 Fayet and Ferrara (1977), Freedman (1979), and Taylor (1984) provide a good overview of the main argu-
ments for supersymmetry in its early days, all of which are highly theoretical.

7 Later on, supersymmetry proved even more interesting to theorists, by improving the consistency of string
theory, and by supporting the conjectured AdS/CFT correspondence, yet another major development in
quantum gravity research.
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Still, efforts to incorporate supersymmetry into a theory consistent with the data were under-
taken over several years, and they culminated in what is now called the Minimal Supersym-
metric Standard Model (MSSM) (Dimopoulos & Georgi, 1981; Fayet & Ferrara, 1977). The
MSSM is the result of reconciling the achievements of the Standard Model of Particle Physics
(SM) (the best theoretical account available at the time and still today) with the requirement of
supersymmetry. This, however, has very undesirable consequences. Compared to the SM, the
MSSM introduces 105 additional unspecified parameters, so that supersymmetry can accom-
modate a large range of observations, and has little predictive power in general (Parker, 1999,
p. 1). In particular, although supersymmetry predicts the existence of many new particles (the
“superpartners”), there is a priori little chance that these particles will have just the right
properties to be discoverable in experiments. If not, supersymmetry may be of high value to
theorists (because of its mathematical properties, and its promise to achieve a coherent
account of quantum gravity), while being of low value to phenomenologists who are interested
in building predictive models that can lead to the discovery of new particles or phenomena8.

Yet, in 2011, supersymmetry was perceived across the field as the theory beyond the SM
that was most likely to manifest itself in experiments (Mättig & Stöltzner, 2019, 2020). Argu-
ably, the reason why it became highly credible and valuable to phenomenologists as well was
that it could solve the so-called “naturalness” problem of the standard model on the condition
that it was discoverable. In parallel to these developments around supersymmetry, there was
indeed increasing recognition that an explanation was required as to why the mass of the
Higgs boson (an important piece of the SM) could be many orders of magnitude below the
mass scale at which the unification of forces is assumed to take place. It was also realized that
supersymmetry could provide an answer to this “naturalness” problem (Veltman, 1981;
Weinberg, 1979; Witten, 1982), but only as long as the masses of the superpartners (the par-
ticles predicted by supersymmetry) are not too high, so that they should be discoverable in
future experiments9. In light of this, supersymmetry became of very high value to phenome-
nologists and experimentalists as well, rather than just a mathematical toy for the theorists to
play with10.

This situation is summarized in Figure 1. As theorists work out a path towards their goals
(e.g., the unification of forces, or the formulation of a consistent theory of quantum gravity),
they rely on theoretical heuristics such as renormalizability, symmetry principles, and consis-
tency requirements. (Galison, 1995). In that context, supersymmetry emerges as a very
valuable concept. Phenomenologists, on the other hand, try to work out a path towards the
discovery of “new physics” (evidence for new phenomena unaccounted for by the SM) by

8 Supersymmetry suffers from other disadvantages. For instance, many parameters of the theory imply certain
phenomena to extents that have not been observed, such as baryon and lepton number violation, or flavor-
changing neutral currents (Weinberg, 1995, pp. 201–209, 235–240), which requires ad hoc explanations as
to why, although allowed by the model, these mechanisms do not occur in nature.

9 One can put other constraints on the MSSM, by requiring that supersymmetry explains dark matter, or that it
ensures the convergence of the “couplings” that measure the strength of the fundamental forces at different
length scales, which suggests it should play a role in the unification of these forces. However, as Giudice and
Romanino (2004) put it, “the unification and dark-matter arguments [for supersymmetry] are not in general
sufficient to insure that new physics be within the LHC discovery reach, contrary to the naturalness
criterion.”

10 The naturalness argument also provides a “narrative” that connects what theorists are concerned with (the
details of the theories at energy scales unattainable in the experiment) to what experimentalists can probe. As
Borrelli (2015, p. 76) puts it, “the strength of the naturalness narrative is largely due to its flexibility, which
allows it to become a unifying factor in the high-energy community and to bridge the gap between theorists
and experimenters.”
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relying instead on more generic models and constraints derived from experimental data (e.g.,
from particle colliders or astrophysical observations). It is the naturalness requirement that
makes supersymmetry valuable to phenomenologists as well, by strengthening the belief that
supersymmetric particles should have masses that are low enough to be discoverable. In this
way, supersymmetry effectively enhances the “trading zone” between theorists and phenom-
enologists: Both communities can acknowledge its value in spite of the vast differences in their
aims, methods, and objects of inquiry.

It is now time to introduce the last (but not the least) player in our drama: the Large Hadron
Collider (LHC). Operating since 2010, the LHC is the largest physics experiment ever built. By
performing particle collisions at the highest energies ever achieved, it promised to discover
supersymmetric particles, provided that they had the properties prescribed by the naturalness
problem that supersymmetry should solve. However, no such discovery has been made, which
suggests that the “naturalness problem” was unwarranted (Giudice, 2018). If there is no nat-
uralness problem, then, supersymmetry is left unconstrained again; there is no guarantee that
supersymmetric particles will ever be discovered; and its phenomenological value plunges
back to the depths from which it surfaced. Therefore we will put forward the following claim,
which will also be evaluated in the present paper:

Claim 2: Supersymmetry occurs in a variety of partially independent contexts within HEP,
some of which belong to “theory” and some of which belong to “phenomenology,” and
these applications of supersymmetry have responded differently to the LHC’s failure to find
supersymmetric particles.

Furthermore, we hypothesized that supersymmetry should be losing its ability to sustain
trades between theory and phenomenology. Therefore, we will evaluate the following claim:

Claim 3: Supersymmetry sustained trades between theory and phenomenology in HEP
until it was challenged by the LHC’s failure to observe the particles predicted by
supersymmetry.

If theorists and phenomenologists fail to share a similar appraisal of supersymmetry, then
this may pose a serious problem for the field: This would imply that theorists’ research pro-
grams can persist despite their low value to phenomenologists, and conversely that

Figure 1. Supersymmetry in the trading zone between theory and phenomenology. Theorists and
phenomenologists have different aims and methodologies, and whether they can both positively
appraise a particular construct is not guaranteed. In the case of supersymmetry, it is the naturalness
requirement that ensures that the MSSM is so valuable to both subcultures. As a result, supersym-
metry enhances a trading zone between these two cultures.
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experimental input has little to offer to theorists; if that is the case, then the unity of HEP would
indeed be fragilized. Therefore, addressing claims 1–3 (1—that theory and phenomenology
are partially autonomous subcultures of HEP; 2—that supersymmetry arises in distinct, auton-
omous contexts, which responded differently to the absence of supersymmetric particles at the
LHC; and 3—that the value of supersymmetry for bridging together subcultures of physics has
decreased as a result of the failure of phenomenological supersymmetry) should contribute to
answering the questions of what makes and unmakes unity in HEP.

2.3. Towards a Quantitative Assessment of Subcultures and Trades

In the following, we propose an array of quantitative methods implementing several
dimensions of Galison’s framework for addressing the plurality of science, which evaluate
the claims put forward above. To this end, we will rely on authorship data (for investigating
the social entrenchment of theory and phenomenology as distinct subcultures), semantic
analyses (for investigating the linguistic divide between these subcultures as well as the
plurality of supersymmetry research), and citation data (in order to locate “trading zones”
within the field). To our knowledge, this is the first attempt to implement Galison’s frame-
work into a quantitative analysis of scientific literature. Of course, the plurality of science
and the coordination between scientific fields have already been addressed quantitatively in
numerous publications. In the context of physics research, for instance, Battiston, Musciotto
et al. (2019) have evaluated the ability of physicists to publish in various subfields. In
particular, they demonstrate that high-energy physicists are among the most specialized
physicists (i.e., they have a high probability of publishing only in their primary subfield),
although their work does not distinguish between the various kinds of high-energy physicists,
which will be done in the present paper. There remains to address the linguistic component
of the divide between these subcultures, in particular theory and phenomenology, and to
this end we will propose a novel strategy based on semantic data (titles and abstracts of the
literature).

As for the analysis of the plurality of supersymmetry-related research in HEP, we will
develop a topic model approach in order to identify clusters of concepts that are most likely
to be associated with supersymmetry in the literature, and we will explore the dynamics of
supersymmetry research throughout time.

Finally, we will assess the intensity of trades between theoretical subcultures and locate the
concepts that facilitate these trades. Yan, Ding et al. (2013) proposed a quantitative assessment
of dependency relations between scientific disciplines based around a metaphor with interna-
tional trade, by measuring quantities such as “exports,” “imports,” or “self-dependence” of
various fields throughout time based on citation data. However, this work does not investigate
what exactly allows these trades to happen (e.g., which concepts sustain them). This requires
combining citation data with semantic information about papers’ concepts, as achieved by
Raimbault (2019), who proposed measures of interdisciplinarity built upon such data. Similarly
to Yan et al. (2013), we will assess the self-dependence of experiment, phenomenology, and
theory in HEP based on the citation network. However, we will also evaluate the ability of
different concepts (such as supersymmetry) to sustain trades across subcultures throughout
time by combining semantic and citation data.

More broadly, this work will add to quantitative studies of science literature, by helping to
fill a gap that has come to the attention of the community. As stressed by Leydesdorff, Ràfols,
and Milojević (2020), Kang and Evans (2020), and Bowker (2020), quantitative and qualitative
studies of science have mostly diverged in their goals and “world views,” urging the need to
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“bridge the gap” between them. We propose, therefore, a bridge connecting these two forms of
scientific study. First, we demonstrate that quantitative methods can address questions raised
by the philosophy, history, and sociology of physics. Moreover, we show that concepts from
qualitative science studies can give structure to quantitative methods, in line with the call by
Heinze and Jappe (2020) to inform quantitative analyses with “middle-range theories” (of
which Galison’s trading zones are an example). As a result, our methods are in principle
meaningful in any context where such a theory is valid—whenever scientific cultures attempt
to achieve coordination—well beyond the case study proposed in this paper.

3. METHODS

3.1. Data

Our data consist of the scientific literature on HEP and the semantic, authorship, and citation
information that it entails, which is of interest for our questions.

The data were retrieved using the Inspire HEP database (Moskovic, 2021). Inspire HEP is a
platform dedicated to the HEP community and is maintained by organizations that include
CERN, DESY, Fermilab, and SLAC. It aggregates publications from the HEP literature, and
maintains a list of institutions and collaborations involved in the community, while also pub-
lishing job offers. It replaced Spires in 201211.

The database is fed by an automatic aggregator that retrieves articles from multiple
sources12 including a number of databases (Astrophysics Data System, arXiv, etc), research
institutions (CERN, DESY, Fermilab, IHEP, IN2P3, SLAC), and scientific editors, such as the
American Physics Society or Springer.

Inspire then aggregates data from these sources with automated crawlers, and it performs
manual curation for completion or error-correction13, including author name disambiguation.
This database has a strong yet untapped potential for quantitative analyses. However, only
contents related to HEP are subject to a systematic effort of collection and curation, and the
data should be used preferably in analyses whose scope is limited to HEP, thereby making it
unsuitable for studying interactions between HEP and other fields of physics (e.g., condensed
matter physics).

The database includes data about the contents of the literature (title, summary, sometimes
keywords), the authors (name, unique identifier, institutional affiliations), dates corresponding
to different events related to each paper, associated experiments, and references of the articles.
The only data pertaining to the contents of the articles that are consistently available and that
we have used in the present paper are titles and abstracts. Articles are categorized according to
a classification scheme compatible with that of the arXiv preprint platform. This scheme
includes categories such as Theory-HEP, Experiment-HEP, Phenomenology-HEP, and
Astrophysics. Categories of papers published on arXiv.org are extracted directly from
the platform (where they are defined by the authors, while being subject to moderation and
controls). Categories of papers not published on arXiv.org are now assigned manually by

11 “Physicists, start your searches: INSPIRE database now online,” Symmetry, May 24, 2012, https://www
.symmetrymagazine.org/breaking/2012/05/24/physicists-start-your-searches-inspire-database-now-online.

12 Melissa Clegg, “INSPIRE Content Sources,” May 30, 2020, https://help.inspirehep.net/knowledge-base
/inspire-content-sources/.

13 Stella Christodoulaki, “Content Policy,” March 4, 2020, https://help.inspirehep.net/knowledge-base/content
-policy/.
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curators. Categories of papers inherited from the ancestor of Inspire HEP (Spires) and absent
from arXiv.org were derived according to a mapping between Spires’ classification and the
current arXiv-based classification. In this paper, we rely mostly on three categories that entail
most of the HEP literature: Theory-HEP, Phenomenology-HEP, and also Experiment-

HEP, which typically entails papers that report empirical results such as statistical analyses
of experimental data. A portion of the articles between the years 1990 to 1995 was not
categorized, which led to some issues with the data collection process, as described in the
Supplementary materials. For this reason, our longitudinal analyses will focus on later years,
which does not prevent us from addressing our research questions. The analysis of subcultures
spans the years 1980 to 2020. The years prior to 1980 could also have been interesting for
this analysis, but the corresponding data was of lower quality.

3.2. Social and Semantic Analysis of Subcultures of HEP

The first claim that we seek to establish is that “theory” and “phenomenology” should both be
regarded as distinct subcultures within physics. There are two components to subcultures: a
linguistic one (they should have vocabularies that are distinct enough to signal complementary
bodies of knowledge) and a social one (they should correspond to distinct groups of people).
Therefore we will proceed twofold. First, we will demonstrate that theory and phenomenology
manipulate vocabularies that are so distinct that we can predict with reasonable accuracy
whether a paper belongs to one of these categories based on the words present in its abstract;
our predictive model will then be used to unveil the ontological differences between these
subcultures. Second, we will show that these categories from the literature are associated with
different communities.

3.2.1. The semantic divide between theory and phenomenology

If it is possible to tell whether a paper is theoretical or phenomenological based on the words it
contains, then this implies that these categories use partially distinct vocabularies (i.e., that
each of these two categories has its own “language”) in a way that allows papers from one
category to be distinguished from those from another. If that is the case, we can then examine
the nature of the linguistic divide between theory and phenomenology in order to better
understand their differences. In what follows, we apply this strategy using statistical methods,
based on the classification of HEP literature provided by Inspire HEP14. Although we are more
interested in the divide between “theory” and “phenomenology,” we also include “experi-
ment” (which Galison himself labeled as a subculture of its own) in our analysis in order to
emphasize its differences with phenomenology.

To establish whether we can predict which articles d belong to any of the categories c 2
{Experiment, Phenomenology, Theory}, we will build a simple linear logistic regression using a
bag-of-words as the predictive features. In this approach, the corpus is represented by a matrix
B = (bd,i) 2 ℝD×V, where D is the number of documents, V is the size of the vocabulary, and bd,i
is the number of occurrences of the word (or expression15) i in the document d. This represen-
tation excludes a lot of semantic information that results from the knowledge of the ordering of
the words and the structure of sentences within the documents; it is in line with our goal to find
out whether the vocabularies of each category are so distinct that the mere presence or

14 As this classification relies on a manual assignment of the different categories, any potential linguistic divide
between them cannot be the byproduct of some algorithmic bias.

15 We also include some n-grams in the model (i.e., expressions of several words), provided they follow certain
predefined syntactic patterns (e.g., “adjective + noun”).
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absence of certain words can be used to infer the category of a document. We perform a nor-
malization of the bag-of-words prior to the regression by applying the tf-idf transformation16 to
(bd,i), resulting in a normalized bag-of-words which we will name (b0

d;i). More specifically, our

predictive model is defined as:

P d 2 cð Þ ¼ logit−1 βc þ
XV
i¼1

βcib
0
di

 !
(1)

This model is then trained on N = 100,000 articles of our database from 1980 to 2020 that
belong to any of the following categories: Experiment-HEP, Phenomenology-HEP, and
Theory-HEP17. The vocabulary used in the regression is the V expressions (n-grams, up to
four words long) among those that belong to predefined syntactic patterns18, that have the
highest “unithood” as measured in Omodei (2014)19. The size of the vocabulary V is chosen
to be a round number that is just high enough to reach about the maximum accuracy of the
model, as evaluated on the test set (which consists of 10,000 articles not present in the training
set). The accuracy of the predictions of the model is evaluated using the same test set. The
coefficients βci are then analyzed to extract the words that are the most discriminatory between
“theory” and “phenomenology,” thus revealing the most salient differences. For that, we
retrieve those expressions i that maximize βth,i − βph,i and βph,i − βth,i. Because of the inverse
document frequency transformation applied prior to the regression, expressions that are more
common are favored by this selection process.

3.2.2. The social divide between theory and phenomenology

What does it mean to say that theory and phenomenology have a “demographic component,”
as Galison (1987, p. 138) puts it, regarding theory and experiment in HEP? It means that these
categories of the literature are supplied by distinct groups of people: “theorists” and “phenom-
enologists.” Therefore, we will investigate whether it is the case that experimental, phenom-
enological, and theoretical papers are published by three distinct groups of physicists, such
that these physicists usually contribute mostly to just one of these categories. Again, “experi-
ment,” which is a paradigmatic example of subculture in Galison’s view, is also included in
our analysis. It will be useful to assess whether the distinction between phenomenology and
theory is comparable to the distinction between theory and experiment (the one initially
stressed by Galison).

Let Nij be the number of articles coauthored by a physicist i that belong to the category j 2
{theory, phenomenology, experiment}, and Ni the total number of articles coauthored by i. Let
us assume Nij ∼ Binomial(Ni, pij), where pij is the latent probability that a paper from physicist i
belongs to the category j20. Because the researchers coauthored widely varying amounts of

16 For a definition of the tf-idf transformation, and information theoretic justifications of its relevance, see Beel,
Gipp et al. (2015) and Robertson (2004). We use scikit-learn’s implementation of the inverse-document fre-
quency transformation, which is idf = 1 + log(1/f ), where f is the fraction of documents in which a word
occurs. It differs from the “textbook” definition log(1/f ) because of the regularization term (+1).

17 The fit is performed with the scikit-learn python library (Pedregosa, Varoquaux et al., 2011) using L2
regularization.

18 We choose a subset of the syntactic patterns used to analyze the Association for Computational Linguistics
Anthology Corpus in Omodei (2014).

19 The “unithood” measures “the degree of strength or stability of syntagmatic combinations or collocations”
(Kageura & Umino, 1996).

20 As these categories are not mutually exclusive in our database (an article may belong to more than one of
them), a multinomial process would not be a good fit.
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publications (ranging from a few papers to hundreds), we assumed that the latent probabilities
pij were described by the following model:

Nij ∼ Binomial Ni ; pij
� �

pij ∼ Beta αj ;βj

� �
αj ;βj ∼ Exponential 1ð Þ

The binomial process assumes that each physicist can be imputed a constant latent fraction
of papers in each category. The beta prior is a flexible distribution over probabilities, which
can be either unimodal or bimodal. The exponential prior over α and β is agnostic regarding
these two possibilities, and its exact shape does not significantly matter, considering the
amount of available data. Most crucially for us, this model allows us to combine information
from researchers with many papers and researchers with very few papers; for those with few
papers, the estimation of the latent probabilities is more influenced by the shape of the beta
distribution. The model was fitted to 2,500 researchers randomly sampled among those with
more than three publications in HEP for 1980–2020. In order to evaluate the social entrench-
ment of these categories, we verify that most physicists contribute mostly to just one of these
categories.

3.3. Assessing the Plurality of Supersymmetry Research with Topic Models

Our second claim pertains to the plurality of supersymmetry research. In this section, we pres-
ent our methodology for assessing the plurality of supersymmetry-related research, by recov-
ering the contexts (i.e., the topics in which supersymmetry occurs) and by evaluating the
extent of their independence and how they responded to the results of the LHC. More broadly
we provide a methodology for investigating scientific “objects” akin to “boundary objects” in
that they are “plastic enough to adapt to local needs and constraints of the several parties
employing them” (Star & Griesemer, 1989, p. 393), by unveiling the plurality and autonomy
of the contexts in which such objects may arise.

3.3.1. Model

To evaluate in which contexts supersymmetry arises within the HEP literature, we have chosen
to subdivide the literature into subtopics using an unsupervised probabilistic topic model,
namely the Correlated Topic Model (CTM; Blei & Lafferty, 2007). We do not use conventional
classifications such as the Physics and Astronomy Classification Scheme (PACS) codes from the
American Institute of Physics (AIP), because they were not available for the whole data set –
PACS codes were only available starting from 1995, and only for a subset of the papers, which
may not be representative of the whole. Besides, PACS codes are too numerous (more than
5,000 categories)21 for our purposes. Therefore, we opted to extract the topics in the literature
using unsupervised topic models instead.

Probabilistic topic models generally assume that each document of a corpus is a mixture of
variable proportions of a certain amount of topics, each of these topics having their own
vocabulary distribution. When trained on a corpus, such models simultaneously learn the
“topics” in the corpus (and their vocabulary), as well as the relative contribution of each topic
to each document of the corpus. These models have demonstrated their ability to capture the
semantic information contained within the scientific and academic literature, as shown in

21 “Full list of PACS numbers,” Physics-Uspekhi, https://ufn.ru/en/pacs/all/.
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previous work22, even from abstracts alone (Syed & Spruit, 2017); as a result, this technique
has seemingly taken precedence over network-based semantic maps (Leydesdorff & Nerghes,
2016, Figure 1). Although co-occurrence networks may have more conceptual bearing in the
STS tradition, we have preferred topic models for their intrinsic ability to capture the polysemy
of certain words (e.g., “supersymmetry”), in terms of the probabilities that such words can arise
in different contexts (i.e., topics).

In particular, we have chosen the CTM for its ability to capture correlations between topics.
In this model, the contribution of a topic z to a document d, P(z|d ), is assumed to be drawn
from a hierarchical model involving a correlated multivariate distribution (Blei & Lafferty,
2007):

β
→
d ∼N μ→;

X� �
(2)

P zjdð Þ ¼ exp βd;zPk
i¼1 exp βd;i

(3)

Through the covariance matrix
P

, the CTM is able to learn correlations between topics,
and therefore to account for the fact that some topics are more likely to occur together
within one document. Moreover, our intuition is that using the CTM allows the derivation
of a more realistic topic distribution for short texts such as abstracts, for which the small
numbers of words only moderately inform the prior topic distribution. Most importantly, this
model allows us to directly assess the level of independence between the topics derived by
the model, which is important for assessing the autonomy of the contexts in which super-
symmetry arises.

The model is trained on N = 120,000 articles randomly sampled from those between
1980–2020 that belong to any of the categories Theory-HEP, Phenomenology-HEP,
Experiment-HEP, and also Lattice (a theoretical approach to HEP, with ties to both theory
and phenomenology, and in which we expected supersymmetry to potentially arise as well).
The procedures for extracting the input vocabulary and for choosing the hyper-parameters are
described in detail in Sections S3.1 and S3.2, respectively, of the Supplementary material. Two
methodological contributions can be highlighted. First, we included informative n-grams
matching predefined syntactic patterns in the vocabulary in order to preserve more semantic
information. Second, we made a prudent and balanced use of perplexity and topic coherence
measures in order to recognize the advantages and limitations of both these kinds of measures
for assessing the quality of topic models and choosing the best hyperparameters. The proce-
dure resulted in the extraction of 75 topics (see Section 3.4 of the Supplementary material for
the full list).

3.3.2. Interpretation and validation

Once the model was trained, we manually assigned a label to each topic, by inspecting and
interpreting their top-words and the categories from the PACS classification of the physics lit-
erature that were most correlated to each topic23. Informing our interpretation of each topic

22 Notable examples are Griffiths and Steyvers (2004), Hall, Jurafsky, and Manning (2008), and Nichols (2014);
see Malaterre, Chartier, and Pulizzotto (2022) for a more recent application in the context of History and
Philosophy of Science, and Allen and Murdock (2022) for an assessment of the potential and limitations of
these methods in the field.

23 We used pointwise mutual information (see Eq. 1 in Section S3.3) measure of correlation.
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with these correlations rather than the sole top-words help overcome issues associated with
the interpretation of fat-tailed topic-word distributions based on a handful of top-words (Allen
& Murdock, 2022; Chang, Boyd-Graber et al., 2009). We failed to provide a meaningful label
for some topics, but this had little impact on the rest of the analysis. Finally, in order to assess
the meaningfulness of the metrics produced by the model (the document-topic distributions
and the topic-word distributions), we performed an additional validation procedure using
the PACS classification of the literature and the input of independent experts (see
Supplementary material, Section S3.3).

In Section 4.2, the model is applied to a number of tasks: the evaluation of the contexts (i.e.,
topics) in which supersymmetry occurs in the literature, the extent of the correlation between
these contexts, and finally the trends in research involving supersymmetry since the start of
the LHC.

3.4. Locating Trades Across Scientific Cultures

In this section, we elaborate a longitudinal methodology for locating trades between scientific
cultures, which we use to assess the ability of supersymmetry to enhance trades between the
theoretical and phenomenological cultures of HEP throughout time. Trading zones can
manifest themselves in a myriad of ways, some of which are readily prone to a quantitative
analysis. For instance, citing the example of quantum chromodynamics, a theory of the strong
interaction, Galison notes that “the contact between the experimenters and the phenomeno-
logical theorists had grown to the point where Andersson [a theorist] and Hofmann [an exper-
imentalist] could coauthor a Physics Letter” (Galison, 1997, p. 655). In that sense, a paper
coauthored by scientists from different cultures is indicative of a trading zone, such that
coauthorship data can in principle be used to probe trades across scientific cultures. Another
manifestation of trading zones can be found in the citation network, which encodes exchanges
of knowledge across publications, and sometimes across subcultures. Indeed, that a phenom-
enological publication, for instance, cites a theoretical paper indicates that phenomenologists
can acknowledge the value and significance of certain theoretical constructs (that are present
in this specific paper) in their enterprise. Although in principle both the citation networks and
the collaboration networks could be used for our purpose, the present analysis will rely on the
former. Indeed, the citation graph preserves more information about the directionality of the
exchanges involved, thus supporting the trade metaphor in Yan et al. (2013). Intuitively, it is
also less vulnerable to nonepistemic factors, as is the case with authorship (e.g., physicists
authoring papers they did not contribute to, as is frequent in large collaborations in the field).
In addition, for validation purposes, we show in the Supplementary material (Section S4 and
Figure S3) that the citation network can indeed reveal the relative autonomy (self-reliance) of
HEP subcultures but also the special role of the phenomenological subculture in sustaining
the unity of HEP by channeling trades across theory and experiment (which hardly communi-
cate directly otherwise). This further supports the use of the citation graph use as a means of
locating trades.

To assess the ability of supersymmetry to facilitate trades between theorists and phenome-
nologists, we develop a method that combines two important aspects of Galison’s trading
zones: their locality and their linguistic component (the “interlanguage”). In particular, we
look for scientific concepts that are most likely to be involved in trades between these subcul-
tures throughout time. To this effect, we perform the analysis on a subset of the citation graph,
such that the nodes are limited to theoretical and phenomenological papers, excluding cross-
listed papers (those that belong to both these categories). For each of these two theoretical
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cultures, we derive a list of informative keywords from the abstracts of the papers by extracting
n-grams (n ≥ 2) matching certain syntactic patterns. We retain the top N keywords (sorted by
decreasing unithood) such that at least 95% of the abstracts contain at least one of the N key-
words; this yields N = 1,370 keywords specific to the phenomenological culture and N =
1,770 keywords specific to the theoretical culture. From this we derive a bag of words bik
for each publication such that bik = 1 if keyword k is present in abstract i, and bik = 0 other-
wise. We then evaluate the probability that the keyword occurs in an abstract given that the
paper is involved in a trade between a theoretical and a phenomenological paper at a time t,
which we write P(bk = 1|tradei→j, t). We consider trades in both directions: phenomenological
papers citing theoretical papers (th→ph), then in a second process theoretical papers citing
phenomenological papers (ph→th). To what extent supersymmetry helps sustain the trading
zone between these theoretical cultures is roughly measured by P(bk = 1|trade, t) for those
keywords k related to supersymmetry. In this analysis, we explore 3.7 million citations appear-
ing in papers published between t = 2001 and t = 2019 (covering similar ranges prior and after
the start of the LHC). We included all cited papers from 1980 onwards (180,000 total)24. How-
ever, because cross-listed papers, which we excluded, have become much more common in
the database starting from 2010 for spurious reasons (a change in the classification procedure),
we ran a separate analysis to assess the robustness of our results. In this second analysis, we
included cross-listed papers and assigned them only one category based on their authors’
primary subfield (the subfield to which they contribute the most). We found both analyses
to produce similar results. In the following we report the results obtained by excluding
cross-listed papers.

4. RESULTS

4.1. Theory and Phenomenology as Distinct Subcultures

Let us now examine our first claim that “theory” and “phenomenology” should be regarded as
distinct subcultures within HEP. The claim requires that these categories mobilize distinct
bodies of knowledge that manifest themselves through distinct vocabularies. As shown in
Table 1, it is indeed possible to predict with reasonable accuracy whether a paper belongs
to either one of these categories based on the vocabulary in its abstract. The accuracy is higher
than 90% for “theory” and reaches 86% for “phenomenology,” far above what one would
obtain from assigning the most probable class irrespective of the contents, purely based on
their frequency. This conclusion holds throughout the whole historical period considered
(see Sections S2 in the Supplementary material). This supports the existence of a linguistic
divide between these two theoretical cultures over the years 1980 to 2020.

Our model also unveils the expressions that are most capable of discriminating between
theory and phenomenology, as shown in Table 2. One striking difference between theory
and phenomenology appears to be the importance of space-time related concepts in theory
(“space-time,” “geometry,” “manifold,” “dimension,” “coordinate,” etc.). The objects (entities)
of interest also differ, which signals an ontological divergence: On the pure theory side, “black
hole[s]” and “strings” are prominent entities, whereas particles (“quark,” “neutrino,” “gluon,”
“hadron,” “nucleon,” etc.) belong to the realm of phenomenology. Among those terms most
specific to phenomenology but absent in pure theory, we also find the notions of model
(“mssm,” “standard model”), and effective field theories (“effective theory,” “chiral

24 It is unlikely that recent papers would cite publications from before 1980.
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perturbation theory”) which are approximate theories emerging from more fundamental theo-
ries. Moreover, the mention of “experimental data” is a distinctive feature of phenomenology:
Theory is not directly committed to establishing a connection with empirical results. Interest-
ingly, one aspect of supersymmetry (the MSSM) appears as markedly phenomenological,
whereas “supergravity” is specifically theoretical.

Similarly, keywords that discriminate the most between experiment and phenomenology
are shown in Table 3. They confirm the theoretical (“model,” “scenario,” “effective theory,”
“implication”) and computational (“estimate,” “approximation,” “contribution,” “numerical
result,” “correction”) nature of phenomenology, as opposed to the empirical, “fact-based”
dimension of experiment (“measurement,” “search,” “experiment,” “event,” “result,” “evi-
dence,” “data”).

What about the “demographic component” of the divide between theory and phenomenol-
ogy? Do these categories have social counterparts? The results of our social analysis are shown
in Figure 2. Figure 2 is a ternary diagram in which each red dot represents a physicist and is
positioned according to the relative prevalence of each category (among experiment, phenom-
enology and theory) among the papers they authored or coauthored. The majority of the dots
are clustered near vertices, which means that most physicists dedicate themselves to mostly
one of these categories. In particular, the inner part of the ternary diagram, which corresponds
to physicists with balanced contributions to each category, is almost empty. We do find that
some authors are scattered along the experiment-phenomenology edge and the
phenomenology-theory edge; still, our results suggest that the category of phenomenology
does feature a “demographic” counterpart as well, although it is more porous than experiment
or pure theory. Therefore, phenomenologists do, to some extent, constitute a social group dis-
tinct from that of theorists (and experimentalists); however, phenomenology seems to play a
special role in sustaining some form of cooperation between experimentalists and theorists.

Table 1. Accuracy of the model for predicting which categories HEP papers belong to. The precision
of the model for each category is estimated based on the test corpus. For reference, the accuracy of a
naive model that assigns the most likely class irrespective of any information about the papers is given
(baseline). The size of the vocabulary used for the predictions is set to 500 words and expressions

Theory Phenomenology Experiment

Model accuracy 91% 86% 92%

Baseline 55% 51% 84%

Table 2. Vocabulary specific to phenomenology (left column) versus theory (right column)

Vocabulary specific to phenomenology Vocabulary specific to theory

quark, lhc, qcd, neutrino, experimental data, mssm, dark matter,
extra dimension, parton, phenomenology, gluon, color, mixing,
standard model, electroweak, collider, nucleon, effective
theory, sensitivity, new physic, high energy, hadron, chiral
perturbation theory, next-to-leading order, impact, neutrino
mass, resonance, signal, process, accuracy, collaboration,
distribution, flavor, decay, effective field theory, determination,
violation, evolution, account, meson, element, baryon, higgs,
contribution, gamma

algebra, manifold, geometry, space time, partition, modulus
space, gravity, theory, branes, correspondence, central
charge, deformation, action, chern-simons, duality, string,
horizon, supergravity, ad, quantum, space-time, yang-mills,
coordinate, entropy, conformal field theory, sitter, field,
construction, surface, dimension, boundary, transformation,
black hole, solution, mechanic, space, conjecture, type, class,
quantization, dirac, formulation, background, connection,
massless

Quantitative Science Studies 686

How research programs come apart

D
ow

nloaded from
 http://direct.m

it.edu/qss/article-pdf/4/3/671/2351862/qss_a_00262.pdf by Ecole N
orm

ale Supérieure  user on 27 February 2025

65



Overall, we find that 81% of high-energy physicists publish more than 80% of their papers in
just one of these categories, which is clear evidence of specialization.

Our quantitative analysis supports our claim that, at least over the years 1980 to 2020, the-
ory and phenomenology should be regarded as distinct subcultures with partially distinct lan-
guages. Consequently, strategies ought to be devised for them to properly communicate and
coordinate their efforts, as long as physicists believe it to be necessary or worthwhile. It follows
that their unity should not be assumed; instead, why a trading zone may be successfully
worked out remains to be explained. Before we turn to the ability of supersymmetry to sustain
the coordination between these subcultures, we will address the plurality of supersymmetry
research itself.

4.2. The Plurality of Supersymmetry

In this section, we apply our methods to address our second claim regarding the plurality of
supersymmetry research and the recent decline in phenomenological supersymmetry research
as a response to LHC results.

Topic models are able to link one word to several topics, thus allowing us to unveil different
aspects of supersymmetry (i.e., different contexts25 in which this concept may occur). For three
words w that explicitly refer to supersymmetry (“supersymmetry,” “supersymmetric,” “susy”26),
we evaluated the probability P(z|w) that these words occur in the context of a topic z
according to

P zjwð Þ ¼ P w jzð ÞP zð Þ
P wð Þ (4)

where P(w|z) is frequency of the term w within the topic z, P(z) is the marginal probability of
topic z, and P(w) is the overall term-frequency of w. The five most probable topics for each
ofthe words “supersymmetry,” “supersymmetric,” and “susy” are shown in Figure 3 (for the
other topics, the probability P(z|w) for w 2 {“supersymmetry,” “supersymmetric,” “susy”} is
residual). We can see that each of these terms may indeed occur in relation to a variety of
topics: “supersymmetric theories” (which entail supersymmetry in string theory, or

25 Like Allen and Murdock (2022), we caution that these “topics” may not be as coherent as the common
understanding of the word may suggest and that they should really be understood as different “contexts,”
although we use both terms interchangeably below.

26 Short for “supersymmetry.”

Table 3. Vocabulary specific to phenomenology (left column) versus experiment (right column)

Vocabulary specific to phenomenology Vocabulary specific to experiment

experimental data, qcd, mssm, quark, dark matter, lhc, color,
phenomenology, gluon, plasma, new physic, heavy ion
collision, account, inflation, parton, evolution, high energy,
factorization, effect, implication, scenario, potential,
approach, contribution, electroweak, process, mixing, model,
estimate, numerical result, accuracy, integral, approximation,
neutrino, unification, higgs, possibility, bound, neutrino mass,
calculation, case, early universe, sensitivity, generator,
extra dimension

detector, sample, measurement, search, upper limit,
confidence, experiment, atlas, target, cm, luminosity, event,
proton-proton collision, evidence, resolution, fraction,
result, gev, first time, beam, expectation, yield, tev, world,
top quark, branching, range, technique, muon, limit, study,
construction, data, reaction, recent result, mev, system,
investigation, section, paper, observation, respect, differential
cross section, electron, experimental result
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Figure 2. Relative fraction of articles from any of the categories “Experiment,” “Phenomenology,”
and “Theory” for 2,500 high-energy physicists. Each physicist among those sampled is represented
by a red dot on the diagram, positioned according to the estimate of (pi,exp, pi,ph, pi,th), the proba-
bility that any of his articles belong to those three categories. The dashed lines, along the direction
of the arrows, form a grid along which one can read the relative importance of each category for

every physicist pijP
k
pik

� �
. Physicists near the vertices of the triangle contribute almost exclusively to one

category; those near an edge contribute quasi-exclusively to two categories. Most physicists are
located near a vertex, thus contributing to mostly one category.

Figure 3. The many uses of supersymmetry. For three terms w refering to supersymmetry (“super-
symmetric,” “supersymmetry,” and “susy”), the five topics z that are most likely to have led to their
occurrence and theirrespective conditional probability P(z|w) are shown. “Supersymmetry” and
“supersymmetric” have similar distributions, and mostly occur within theoretical topics. “Susy”’s
topic distribution is much more peaked, and most often occurs within phenomenological topics.
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supersymmetric gauge theories in general), “sigma models (?),” “Higgs sector beyond the SM,”
“supergravity,” “Higgs boson,” “supersymmetric particles,” and “flavor physics.” The meaning
of the “sigma models” context is unclear, although it comprises most occurrences of terms
relating to superspaces and superfields. These concepts are directly tied to supersymmetry.
They arise from the abstract extension of space by introducing extra anticommuting coordi-
nates. That supersymmetry spans across distinct topics constitutes evidence for the diversity of
its uses. It is also notable that several of these topics are in fact dominated by supersymmetry
(“supersymmetric theories,” “supergravity,” and “supersymmetric particles”). This stresses the
importance of supersymmetry in the HEP literature.

Moreover, although all these words (“supersymmetry,” “supersymmetric,” and “susy”)
should refer to the same concept, we find that they are in fact related to different topics:
“supersymmetry” seems to encompass more theoretical aspects of supersymmmetry (e.g.,
supergravity) but “susy” is more likely to occur in relation to supersymmetric particles (phe-
nomenological supersymmetry). In fact, we find that 60% of papers mentioning “supersymme-
try” belong to theory (versus ∼40% to phenomenology) and only 30% of papers mentioning
“susy” in their abstract belong to “theory” (versus 70% to phenomenology).

That these topics are at least partially independent can be assessed by inspecting the covari-
ance matrix

P
of the CTM from which they were derived. We therefore compute the corre-

lation matrix27 between the seven topics most commonly associated with supersymmetry; the
results can be found in Figure 4. Overall the correlations are close to 0, which suggests that
these topics are rather independent, with a few exceptions. In particular, pairs of topics that
belong to the same kind (theoretical or phenomenological) are moderately correlated; pairs of
topics that are directly tied to supersymmetry (e.g., supergravity and phenomenological super-
symmetry) but of different nature (in this case, theoretical and phenomenological, respectively)
are less correlated. Further visual evidence is provided in Figure S2 in Section 3.5 of the
Supplementary material.

From these results, one can see that supersymmetry is itself a diverse concept. It arises in a
variety of partially independent contexts. In particular, theoretical and phenomenological
aspects of supersymmetry are quite independent. How have these different aspects of super-
symmetry evolved after the negative results of the searches for supersymmetric particles at
the LHC?

To address this question, we evaluate the evolution of supersymmetry research in HEP from
the first results of the LHC (2011) until today. For that, similarly to Hall et al. (2008), we assess
the relative importance PðzjyÞ of each topic z for every year y from 2011 to 2019:

P zjyð Þ ¼ 1
Dy

X
d2y

P zjdð Þ (5)

where Dy is the number of articles first submitted in year y. We then selected the three topics
with the highest increase (rising topics) and decrease (declining topics) in magnitude over this
period. For that, P(z|y) was fitted to a linear time trend (P(z|y) = azy + bz), discarding topics for
which the correlation was not significant (i.e., R = 0 is excluded from the 99% CI). Then the
topics were sorted according to the best fit value of az, the rate of increase of its magnitude per

27 The Pearson correlation coefficients Rij can be deduced directly from the covariance matrix � of the CTM

model—cf. Eq. 2—according to Rij =

P
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ii

P
jj

q .
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year (similarly to what was done in Griffiths and Steyvers (2004)). We apply the procedure to
all papers mentioning at least one of the words “supersymmetric,” “supersymmetry,” or “susy”
in their title or abstract in the years following the start of the LHC. The results are shown in
Figure 5.

Figure 4. Correlation between the topics most associated to supersymmetry. The Pearson correla-
tion ranges between −1 (perfect anticorrelation) and 1 (perfect correlation). A correlation close to 0
means that a pair of topics is partially independent (i.e., that they can arise or not in variable pro-
portions in a paper).

Figure 5. Declining and rising topics among those that mention supersymmetry since the first
results of the LHC (2011–2019). On the left, the three topics that are declining the fastest: “Super-
symmetric particles,” “Higgs sector beyond the SM,” and “Higgs boson.” On the right, the three
fastest rising topics are “Supergravity,” “Amplitudes and Feynman Diagrams,” and “Conformal Field
Theory.”
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According to these results, the most rapidly declining topics among articles that mention
supersymmetry are Higgs-sector related topics and phenomenological supersymmetry (i.e.,
phenomenological aspects of supersymmetry). By contrast, two of the (relatively) increasingly
active topics are very theoretical (in particular, Supergravity and Conformal Field Theory). To
understand these dynamics, it is therefore necessary to distinguish theoretical supersymmetry
from phenomenological supersymmetry. As physicist Mikhail Shifman argued in an early
assessment of the first results of the LHC in 2012,

[Theoretical supersymmetry] is an example of a complete success story. I use the word ‘the-
oretical’ to differentiate from ‘phenomenological’ supersymmetry … which … at the moment
has a rather murky status. Theoretical supersymmetry proved to be a powerful tool with
which to deal with quantum field theory, especially at strong coupling, a regime which
was considered intractable for decades …. Progress in this line of research … is absolutely
steady. (Shifman, 2012, p. 6)

Shifman’s assessment strikingly converges with the patterns that emerge from our analysis.
Topic models reveal the plurality of supersymmetry in HEP. They support that supersymmetry
arises in different contexts, some theoretical and others phenomenological. They allowed us to
demonstrate that these “faces” of supersymmetry have responded differently to the absence of
evidence for supersymmetric particles at the LHC. Indeed, although phenomenologists find
supersymmetry to be much less valuable in the light of the most recent experimental findings,
theorists may still rely on it for their own endeavor. This supports that cultures can “trade”
certain concepts (according to Galison’s terminology) while retaining much of their autonomy,
including in their own appraisal of the usefulness of these concepts28.

In the next section, we investigate the contribution of supersymmetry to sustaining the
trading zone between these theoretical traditions throughout time.

4.3. Supersymmetry in the Trading Zone Between Theory and Phenomenology

Which concepts sustain trades within HEP? As proposed in Section 3.4, we measure the ability
of certain concepts (keywords) to sustain trades through time in terms of the probability that
each of these concepts occurs in citations across theory and phenomenology. The results are
shown in Figures 6 and 7.

Both these figures show the probability of occurrence of the five most common keywords
(left side) and the five most common supersymmetry-related keywords (right side) involved in
trades across these subcultures (excluding redundant keywords). Figure 6 shows those proba-
bilities for trades where phenomenological papers draw from theoretical papers. Three main
trends are revealed: the fall of trades involving extra-dimensions (hypothesized spatial dimen-
sions beyond the four space-time dimensions for which we have direct evidence); the increase
in trades involving black holes; and, directly relevant to our third claim, the decline of trades
involving supersymmetry, despite a short increase after the start of the LHC in 2010. Interest-
ingly, in the early 2000s, “supersymmetric model[s]” had a tradability on par with that of the
keywords most involved in these trades. Moreover, “low energy” appears to be one of the most
frequent keywords in phenomenological imports of theoretical papers, which makes sense
because the low-energy limit of theories of, say, strings and quantum gravity is what matters
most from a phenomenological standpoint (it is what can be observed). Turning to Figure 7—

28 “… trading partners can hammer out a local coordination, despite vast global differences.” (Galison, 1997,
p. 783)
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trades involving theoretical references—we get an even more striking picture of the demise of
“extra dimensions,” which were involved in about 30% of the trades in 2001 and went down
to 5% only. Similarly, “weak-scale,” which refers to the domain of phenomena targeted by the
LHC, has become much less frequent in the “trading zone” (from ∼10% of trades to ∼2%).

Figure 6. Inside the trading zone: Probability that certain keywords appear in the abstract of a
theoretical paper involved in a trade (a phenomenological paper citing a theoretical paper). To
the left, the five keywords are those with the highest peak probability of occurrence; to the right
are the five keywords with the highest probability of occurrence among supersymmetry-related key-
words. Redundant keywords (whose normalized pointwise mutual information with a more frequent
keyword exceeds 0.9) are excluded.

Figure 7. Inside the trading zone: Probability that certain keywords appear in the abstract of a
phenomenological paper involved in a trade (a theoretical paper citing a phenomenological paper).
To the left, the five keywords are those with the highest peak probability of occurrence; to the right
are the five keywords with the highest probability of occurrence among supersymmetry-related key-
words. Redundant keywords (whose normalized pointwise mutual information with a more frequent
keyword exceeds 0.9) are excluded.
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This suggests that phenomenological models dedicated to this domain of phenomena have
become much less useful to the “theoretical” subculture over time. On the other hand, “dark
matter”29 is increasingly common in the phenomenological papers theorists draw from. This
suggests dark matter is deemed valuable for the theoretical enterprise as well. This figure also
confirms the overall decline of supersymmetry in the trading zone, thus providing further sup-
port to our third claim: Supersymmetry does not connect developments from the theoretical
programs to progress in the phenomenological program as much as it did prior to the LHC.
Astrophysical topics, on the other hand, seem to be taking up an increasing proportion of the
trading zone.

5. DISCUSSION

5.1. Conceptually Informed Methods in Quantitative Science Studies

Before exploring the implications of this case study, we want to emphasize that Galison’s con-
ceptual framework has been a fruitful guide for our quantitative approach. The linguistic com-
ponent of his notion of subculture led us to build a bag-of-words model for measuring the
extent of the divide between two theoretical cultures and for unveiling the concepts that
are specific to these cultures as well as their methodological and ontological differences.
The social autonomy of these subcultures, too, can be readily quantified from authorship data.
Furthermore, the notion of a trading zone invited us to explore citations quantitatively (as a
proxy of scientific “trades”) while devising ways to determine their “location” in the semantic
space. We also found that topic models can reveal the plurality of contexts in which a concept
may arise, and how the dynamics of these contexts compare throughout time. Although we
have applied our topic model approach to supersymmetry, in principle, it can be applied to
any kind of “boundary object,” understood in the broad sense of a shared notion that allows
some coordination to be achieved while preserving the distinctness of the scientific cultures at
play. In the end, these methods illuminated our study of supersymmetry in HEP, and provided
further grounds for Galison’s claim that unity is a contingent matter.

5.2. Unity Challenged?

The two theoretical subcultures we have distinguished—“pure” theory and phenomenology—
no longer seem to value supersymmetry equally. Supersymmetry indeed fails to provide
equally satisfying solutions to the heterogeneous commitments of high-energy physicists,
which poses a challenge to the unity of the field. Indeed, the example of supersymmetry shows
that what drives theoretical progress may not drive phenomenological progress—in contrast
with the expectations of the community regarding supersymmetry prior to the LHC as surveyed
by Mättig and Stöltzner (2019, 2020)—and developments in these subcultures may become
quite orthogonal.

Of course, supersymmetry is not the only channel of coordination between the theoretical
and phenomenological cultures in their search for “new physics.” Another channel, for
instance, has been the notion of extra dimensions (see Figures 6 and 7), which dominated
trades in the early 2000s to an extent we did not expect before conducting this analysis. Extra
dimensions are required by string theory, but they are also subject to trades with

29 Dark matter refers to the observation that a significant fraction of the mass of the universe is currently
unexplained.
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phenomenologists interested in their observable consequences. However, no evidence for
extra dimensions was found at the LHC. This further supports that the goals that drive theoret-
ical research programs, such as string theory (like the search for a quantum description of grav-
ity), may not serve the phenomenologists’ agenda so well.

Eventually, the LHC provided “a test of the unity of physics”30, and its verdict was ruthless.
In the future, will the field strive to regain unity (possibly to the detriment of certain research
programs), or will the socially entrenched divergences between these “cultures” of HEP pre-
vail? We may assume that the challenge is merely transitory, and that theorists will eventually
move to other theories, which will be more successful from an empirical or phenomenological
standpoint. However, the divergence between these theoretical cultures has become axiolog-
ical (Camilleri & Ritson, 2015; Laudan, 1984), in the sense that they prioritize different episte-
mic goals31; and this divergence may persist as long as their differences in aims persist; as
Galison puts it, “there is no teleological drive towards ever-greater cohesion,” and “fields pre-
viously bound [may] fall apart” (Galison, 1997, p. 805). As illustrated in Figure 1, the aim of
the theorists is to achieve the unification of the fundamental forces and a coherent theory of
quantum gravity. By contrast, the aim of phenomenologists is to guide the experiment towards
promising directions where evidence of “new physics” may be found. Both these aims may
seem well-founded; however, there is no reason to expect that a simultaneous solution can be
worked out. The apparent failure of supersymmetry to provide such a simultaneous solution
does not undermine by itself the relevance of the “theorists”’ aims, nor does it undermine the
methodology they deploy for addressing their goals (e.g., their trust in certain theoretical con-
straints, cf. Galison, 1995). It does, however, challenge the belief that such methods can pro-
vide grounds for progress to the field as a whole; indeed, unification and quantum gravity
might eventually not provide much reliable guidance to the experimental side. Conversely,
it can very well be that the details of the theory “at high energy,” where quantum effects matter
to gravity, cannot be extrapolated from our knowledge of the low-energy theory (i.e., the one
that we can probe in our experiments). As a result, Dawid (2013) argues for recourse to meta-
empirical assessment of theories in theoretical physics, given that empirical input under-
determines the directions of potential progress in quantum gravity. Disagreements in the aims
of a scientific enterprise may not always be resolved on purely epistemic grounds, and a res-
olution, provided it occurs, may involve some sort of negotiation instead. As long as theorists
believe in the feasibility of their aims, they may pursue these aims even if it further isolates
them from other cultures32. Alternatively, they could decide that the schism should be
resolved; as Galison puts it, distinct scientific cultures “can … understand that the continuation
of exchange is a prerequisite to the survival of the larger culture of which they are part”
(Galison, 1997, p. 803). Meanwhile, the trading zone between theory and phenomenology
is shifting from collider physics to astrophysics (whether it concerns dark matter, black holes,
or the early universe).

30 Wilson (1986, p. 29) (cited in Cat, 1998, p. 292) used this expression in reference to the now aborted Super-
Conducting Supercollider, also in reference to supersymmetry.

31 Laudan (1984) refers to disagreements in the goals of scientific inquiry as axiological disagreements.
Camilleri and Ritson (2015), for instance, have argued that certain controversies around string theory could
be understood in terms of an instance of axiological disagreement.

32 More drastically, Cao and Schweber (1993) expressed the view that the theories at different energy scales
(i.e., corresponding to different ranges of phenomena) are irreducible, and they argued for a “pluralist view of
possible theoretical ontologies” while challenging the possibility of achieving a “ultimate stable theory of
everything” (pp. 69–71). According to this view, the plurality of ontologies in physics is not an accident but
the result of partially disconnected “phenomenological domains” through which knowledge cannot be
deduced from one another. For criticisms of this view, see Castellani (2002) and Rivat and Grinbaum (2020).
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5.3. Trading Zones as a Means to Sustain Diversity

More generally, the example of HEP and supersymmetry demonstrates how disunity can be
endogenously produced in the fabric of science. Even initially tightly bound scientific cultures
can diverge into quite distinct and autonomous programs, with different ontologies, method-
ologies, and aims, as new domains of inquiry open up (e.g., quantum gravity) and warrant new
modes of knowing. The extent of the coordination between disciplines will in general depend
on epistemic factors (depending on how fruitful certain “trades” turn out to be), but also on
nonepistemic factors: For instance, it may depend on the institutional setting, or whether such
exchanges are incentivized or “coerced” (Collins et al., 2010).

Paradoxically, it can be noted that trading zones can stabilize the heterogeneity of cultures
within a field, by sustaining the practitioners’ beliefs that, in spite of the large differences in
what they are doing, their respective efforts somehow support each other. If that is the case,
there is no perceived need for a profound realignment of their respective practice. Trading
zones can contribute, therefore, to a mutual process of legitimization of heterogeneous
scientific practices, which is not necessarily tantamount to further ontological unity. To further
emphasize that, it is useful to come back to the example of HEP, and most particularly that of
string theory, a highly theoretical research program driven by the pursuit of a consistent theory
of quantum gravity. String theorists such as Matt Strassler have argued that even if string theory
did not directly provide testable predictions to phenomenologists and experimentalists, it gen-
erated mathematical tools that could be useful to their practice, such as for predicting the
behavior of a quark-gluon plasma (Ritson, 2021). Consequently, phenomenologists may have
a low appraisal of string theory in terms of its ability to generate models for testing its assump-
tions about nature, while still recognizing the usefulness of what string theorists do for them, as
some of their work is effectively “applicable.” As Ritson and Camilleri (2015) put it, “if string
theory has proved so useful for branches of physics whose scientific status is not in question, it
can be argued it forms a legitimate part of physics.” Supersymmetry itself may be experiencing
the same fate, considering that “supersymmetry as a tool for exploring gauge dynamics at
strong coupling … is taking precedence over phenomenology” (Shifman, 2020, pp. 7–8). Such
trades do support the usefulness of the theoretical program to other endeavors, without nec-
essarily implying further integration of the subcultures of HEP (ontological unity), just like suc-
cessful interdisciplinary work does not necessarily amount to further integration of disciplines
(Grüne-Yanoff, 2016).

5.4. Limitations and Future Work

Before concluding, we would like to hint at several directions for future work that could over-
come certain limitations of the present methodology and further inform the question of the
disunity of science.

First, none of our semantic methods distinguished between different kinds of words, that is,
which words refer to, say, methods (such as computation techniques) rather than entities (e.g.,
strings, particles). It would be interesting to evaluate to what extent the coordination between
theoretical cultures involves ontological or mere methodological trades, depending on
whether the constructs of high theory are referred to as the proper description of nature or
as mere mathematical tools, and how this may have changed throughout time. This might
uncover evidence for a shift from an ontological to a more methodological coordination
between the subcultures of HEP, as the arguments for supersymmetry and string theory as
“tools” rather than accurate accounts of the natural world suggest.
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Another direction of future work involves the topic model approach. Although the topic
model used in this work yielded seemingly acceptable results overall, some topics were diffi-
cult to interpret. In that respect, we made several improvements compared to previous works,
by training the model on not just single words but also n-grams matching specific and presum-
ably semantically informative syntactic patterns and by informing our interpretation of topics
using correlations with a standard classification (rather than the top-words only). Yet, further
improvements could be made. First, vocabulary selection could be enhanced by a better
handling of mathematical expressions, such as by parsing LaTeX formulas. The NLTK library
picked up some of these expressions, and as they captured some information about the doc-
uments, we did not exclude them from the vocabulary; however, this way of proceeding does
not preserve the underlying mathematical structure, although it may be valuable to distinguish
references to, say, specific particles, or certain symmetry groups, based on their mathematical
notations. We may also want the model to learn to discard uninformative words such as result,
parameter, or model. In our case, we found such vague words to be clustered in three topics
that we labeled as jargon which correlated very poorly with the standard classification (see
Tables S1 and S2 in the Supplementary material), but they should ideally not emerge as distinct
topics on par with more meaningful topics. To this end, we may want to build on Griffiths,
Steyvers et al. (2004), which provides a model that is able to distinguish between “semantic”
and purely “syntactic” clusters of words without prior knowledge of the language. A more crit-
ical limitation of topic models pertains to the challenge of hyperparameter tuning, considering
that it is unclear which performance metric should be maximized in the process. Although we
proposed a procedure for choosing these parameters that accounts for known limitations to the
reliability of perplexity or topic coherence metrics, nonparametric methods may provide a bet-
ter answer to this fundamental issue (Gerlach, Peixoto, & Altmann, 2018).

Finally, the historical scope of our analysis was limited by our database. In particular, we
were only able to analyze the theory/phenomenology divide over a restricted time range
(1980–2020), and we could not reveal how such a divide has historically emerged. By con-
trast, Galison has proposed a number of explanations for the earlier decoupling of theory and
experiment, such as increased specialization and the increased time scales of experiments
(Galison, 1987, p. 138).
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S1 Data collection

Our goal was to collect the whole HEP literature from 1980 to 2020 from the public Inspire HEP API
(Moskovic, 2021). For that, we collected metadata for all articles through automated search requests,
category per category, and year per year. This strategy was intended to abide with the limitations of
the API, in terms of matching entries per search request. However, it appeared that many articles in
years 1990 to 1995 were not categorized, and therefore our collection strategy missed many HEP articles
from this period. In order to recover these articles, we gathered all articles that were referenced in
publications collected through the first batch but which were missing. This methods fails to recover
articles that were not cited in any article from the first batch. More importantly, the lack of categories
means that selecting all HEP papers during the problematic time period will require unlabeled articles to
be manually or automatically classified. Although there are ways to circumvent these issues and to assess
their potential implications, we have decided to narrow down several analyses to years 2001 onwards in
the present work.

S2 Text-classifier performance stability

The categories (Theory-HEP, Phenomenology-HEP and Experiment-HEP) that we trained our classifier
(3.2) to predict have been assigned in different ways in the Inspire HEP database. Although a majority
were categorized based on arXiv’s classification system, some papers were not, especially those published
before arXix was introduced (in the early 1990s). It might seem unclear whether these classification
procedures are consistent and revealing of distinct underlying cultures. In order to demonstrate that it is
the case, in Figure S1, we show that the performance of the text-classifier is nonetheless roughly stable
throughout the period considered (1980–2020). To this end, we subdivide this time-range in bins of five
years and perform k-fold cross-validation using each five year bin for the validation set (and the papers
from the other bins for the training set). Accuracy remains high and approximately stable over the years
1980 to 2020; therefore, these various classification procedures, and the underlying identity of each of
these subcultures, must be rather consistent over this period.

S3 Topic model

S3.1 Data and vocabulary selection

The model is trained on N = 120, 000 articles randomly sampled from those in the 1980-2020 period
that belong to any of the categories Theory-HEP, Phenomenology-HEP, Experiment-HEP, and Lattice.
Titles and abstracts of each papers are concatenated in order to maximize the textual content used for
training. Very short texts (less than 100 characters) are removed.

Before applying the model, we performed a number of pre-processing steps on the abstracts with
the goal of maximizing the amount of useful information in the training data. This procedure, largely
inspired from Omodei 2014 and implemented with the use of the NLTK library (Bird et al., 2009), is as
follows:
Address(es) of author(s) should be given
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Fig. S1 Accuracy of the text-classifier from Section 3.2 as a function of the papers’ years of publication. Error-bars
represent the 95% confidence interval. Dashed lines show the accuracy of the baseline model (which may vary only due
to variations in the frequency of each category, since the baseline model always predicts the most common class). The
accuracy is roughly constant across time for each of the three categories, despite significant variations in the frequency of
each class.

– Tokens (words separated by punctuation or spaces) are extracted from the text and transformed to
lower-case.

– All single nouns and adjectives are retrieved from these tokens.
– We also retrieve all n-grams that match specific syntactic patterns (e.g. “adjective+noun+noun”,

such as “supersymmetric standard model”, “effective field theory”).
– Single words are lemmatized, i.e. they are normalized to their root (e.g. “symmetries” becomes “sym-

metry”).
– Words and expressions that occur less than 20 times are removed.

First, these steps allow us to reduce noise by removing words that convey little to no information
about the topics of the articles (such as stop words). Second, extracting n-grams that matching certain
syntactic patterns allows us to preserve some information about the relative position of words within
the abstracts – which CTM do not do otherwise – while taking advantage of our prior knowledge of the
documents’ language. For instance, the word “dark” may convey different meanings depending on whether
it occurs immediately before the word “matter”, or, alternatively, “energy”; similarly, the occurrence of
the expression “dark matter” in a text conveys more information than the simultaneous occurrence of
“dark” and “matter” without more knowledge about their relative position.

As a result of this procedure, the vocabulary contains V = 18,658 “words”, with 58 words per article
on average.

S3.2 Hyper-parameters

The implementation of the CTM by Tomotopy (Bab2min et al., 2021) has three hyper-parameters: the
amount of topics k, an α⃗ parameter that controls the sparsity of the document-topic distribution (θd,i),
and a η⃗ parameter that controls the sparsity of the topic-word distribution (the vocabulary associated to
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each topic). For choosing the amount of topics k, we considered three values that seemed acceptable in
terms of interpretability and compliance with the values from the literature: 50, 75 and 100. We assumed
α⃗ and η⃗ to be symmetric, i.e. α1 = αk = α and η1 = ... = ηV = η1. We considered α ∈ {10−2, 10−1, 1}
and η ∈ {10−3, 10−2, 10−1}, according to values encountered in the literature. We then trained the model
for each triplet of k, α and η among the candidate values. We rejected all triplets that led to significant
overfitting, by comparing the perplexity2 obtained for the training corpus and that obtained by applying
the trained model to a validation set of abstracts unseen during training. Although Chang et al. (2009)
have shown that perplexity could be negatively correlated to human judgments about the interpretability
of the topics recovered by topic models, we believe it is a suitable metric to discard models that fail to
capture meaningful regularities in the data, which is the case of models that show overfitting. Among
the remaining models, we then selected the two models with the highest normalized pointwise mutual
information coherence, a coherence metric frequently used to assess the consistency of topic models
(Hoyle et al., 2021). Topic coherence metrics in general, as stressed by Hoyle et al., are not very strongly
correlated with human judgments about the quality of a model; however, we believe they may be useful
to discard certain models in order to limit the amount of those that should be inspected manually (since
manual inspection is time-consuming and quite subjective). We finally inspect manually the two models
with the highest coherence measure, and choose the one with k = 75, α = 0.1 and η = 0.001. Our
preference for this model stemmed from the fact that it contained more topics than the other remaining
model, and that these more numerous topics seemed reasonably consistent.

S3.3 Validation

Since the model infers document-topic distributions and topic-word distributions, we would like to assess
the validity of these metrics, i.e. “their ability to measure what they purportedly measure” (Bannigan
& Watson, 2009, p. 3240). In order to simultaneously assess both measures, we designed the following
protocol. First, we derived the Physics and Astronomy Classification Scheme® (PACS) categories c that
were the most correlated to each topic z (this approach is in a sense comparable to that employed in
Griffiths and Steyvers 2004, who extracted the topics that were more strongly associated with PNAS
categories). For that, we listed the categories c that maximize the pointwise mutual information with
each topic z according to:

pmi(z, c) = log
p(z|c)
p(z)

(1)

Where p(z) is the marginal probability of the topic z, and p(z|c) the probability that a word in a
document belongs to a topic z given that the document was assigned the PACS category c. Thefore,
pmi(z, c) measures the increase in probability of a given topic provided that a PACS category is present.
The 5 categories most correlated to each topic are given in table S2, which helped inform our choice for
each tpic label, in complement to their top-words.

Then, we submitted the lists of PACS categories thus constitued to a human task derived from the
methodology of Bennett et al. (2021), as follows:

1. We draw at random a topic z1 with a probability equal to its marginal probability
2. We draw at random 5 PACS categories c1, ..., c5 among the 10 most correlated to z1, as described

above.
3. Then, we do any of the following, with equal probability 1/2:

(a) We draw at random another topic z2 ̸= z1 with probability p(z2)
1−p(z1)

, and we pick at random 5
PACS categories c6, ..., c10 among those most correlated with it.

(b) Alternatively, we draw c6, ..., c10 from the 5 remaining PACS categories most associated to z1
4. We submit c1, ..., c5 and c6, ..., c10 to an expert unaware of the model. The expert is asked to guess

whether the two lists of 5 categories were drawn from one and same general topic, or whether they
were drawn from two separate topics.

5. The procedure is repeated a certain amount of times. The final score is the fraction of correct re-
sponses.

1 This is common in the literature, but this choice is disputable, cf. Wallach et al. 2009. One implication of symmetric
priors is that topics must have comparable probabilities. This also has an impact on the meaning of topics.

2 Perplexity is the exponential of the average log-likelihood per word, cf. Blei et al. 2003. It measures the improbability
of a corpus according to a given model.
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The rationale for this method is that good scores should only be achievable provided the topics are
rather coherent, and that the document-topic distributions θd,i are reasonably accurate. The final average
score is 0.74 for 100 guesses from two HEP PhD students, which is significantly better than a random
baseline (0.5). This shows that, to some extent, the topic distributions derived for each article correlate
with PACS categories that are rather coherent with each other.

S3.4 Topics

Table S1: Most frequent terms for each topic.

Most frequent expressions

Topic (context)

Algorithms and calculation
techniques

simulation, carlo, monte, lattice, method, correlation, distribution, cluster, generator, statistical, study, function,
scaling, size, event

Amplitude of scattering pro-
cesses

amplitude, contribution, state, interaction, resonance, final, final state, process, exchange, reaction, tree, scatter-
ing, double, polarization, level

Amplitudes and Feynman
Diagram

amplitude, function, loop, limit, pole, conformal, relation, integral, diagram, correlation, scattering, analytic,
block, correlators, feynman

Analyses and measurements
from colliders

data, measurement, event, result, detector, experiment, gev, algorithm, analysis, muon, experimental, energy,
precision, fit, beam

Annihilation and scattering
cross-sections

section, cross, annihilation, photon, energy, scattering, gev, production, total, elastic, process, pair, total cross
section, total cross, elastic scattering

Astrophysics star, wave, nuclear, matter, neutron, collision, gravitational waves, energy, nuclear matter, flow, density, gravi-
tational, relativistic, heavy-ion, equation

Black holes black, hole, black hole, black holes, horizon, entropy, extremal, radiation, schwarzschild, thermodynamics, black
hole solutions, black hole entropy, hawking, charge, kerr

Boundary conditions/non-
locality

boundary, condition, boundary conditions, state, tensor, entropy, entanglement, distance, case, surface, general,
correlation, boundary condition, term, phys

CP violating processes cp, asymmetry, violation, parameter, b0, bound, direct cp, direct, mixing, penguin, decay, constraint, experimental,
direct cp violation, effect

Chiral symmetry chiral, quark, qcd, lattice, chiral symmetry, mass, chiral perturbation theory, chiral perturbation, pion, condensate,
baryon, transition, perturbation, flavor, symmetry

Conformal Field Theory conformal, string, algebra, theory, conformal field, conformal field theory, central, central charge, conformal field
theories, charge, operator, open, superconformal, virasoro, representation

Cosmological sources cosmic, spectrum, scale, energy, ray, universe, radiation, gravitational, cosmological, power, observation, cmb,
background, cosmic ray, cosmic rays

Cosmology and gravity cosmological, gravity, constant, axion, scale, lorentz, universe, cosmological constant, violation, problem, quantum,
vacuum, cosmology, time, planck

Cross-sections in colliders production, section, cross, collision, energy, lhc, rapidity, process, pair, pp, inclusive, differential, fusion, nuclear,
gev

Dark matter (particles and
direct searches)

dark matter, matter, dark, dm, particle, detection, direct detection, direct, wimp, relic, relic density, density,
annihilation, search, candidate

Dark matter in the universe dark, matter, dark matter, dark energy, model, abundance, energy, sector, constraint, density, candidate, galaxy,
universe, cold, scenario

Decay measurements decay, state, d, meson, stat, syst, +/−, +−, fraction, final, final state, width, ratio, pi+, final states

Detectors detector, experiment, physic, beam, high, crystal, nuclear, liquid, performance, precision, resolution, high energy,
search, target, chamber

Double-beta decay mass, baryon, decay, scalar, beta, double beta decay, double, double beta, scale, light, neutrinoless, effective,
glueball, gev, hierarchy

Early-universe and other
cosmological data

constraint, big bang, big, galactic, signal, cosmic microwave, background, axion, bound, galaxy, bang, microwave,
halo, detection, dm

Effective Field Theory field, effective, theory, effective field theory, effective field, noncommutative, action, effective action, scalar, scalar
field, potential, effective theory, effective potential, eft, non-commutative

Electromagnetism magnetic, field, particle, magnetic field, electric, relativistic, electromagnetic, effect, plasma, moment, energy,
medium, magnetic fields, external, electromagnetic field

Events in colliders (kinemat-
ics?)

production, collision, jet, tev, lhc, collider, event, transverse, large hadron collider, energy, large hadron, hadron,
pair, pp, luminosity

Events in colliders (signa-
tures?)

jet, event, lhc, tev, production, cm, pair, atlas, final state, final, collision, data, luminosity, channel, large hadron
collider

Experimental investigation
of the leptonic sector

decay, search, data, limit, gamma, collider, muon, gev, measurement, signal, experiment, detector, magnetic
moment, event, upper

Experimental jargon result, mass, effect, large, parameter, energy, value, analysis, small, order, region, current, due, contribution,
present

Experiments on light photon, electron, particle, experiment, mi, laser, compton, optical, mo, beam, light, atom, year, math, pulse

Field theory and gravity scalar, field, scalar field, mode, gravity, massive, scalar fields, gravitational, potential, massless, perturbation,
geodesic, background, metric, spacetime

Continued on next page
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Table S1: Most frequent terms for each topic.

Most frequent expressions

Topic (context)

Flavor mixing cp, violation, asymmetry, mixing, matrix, lepton, cp violation, flavor, standard model, model, quark, phase,
standard, angle, mass

Flavour physics mass, lepton, bound, flavour, flavor, decay, neutrino, heavy, scale, generation, violation, light, quark, coupling,
number

Form factors factor, form, nucleon, electromagnetic, pion, electromagnetic form, electromagnetic form factors, momentum, form
factors, result, ratio, 2, transfer, nn, form-factors

Gauge Theory gauge, theory, action, invariance, field, lorentz, transformation, invariant, brst, yang-mills, symmetry, effective
action, lattice gauge, massive, covariant

Gauge symmetry break-
ing/GUTs

symmetry, gauge, su, model, group, theory, breaking, anomaly, fermion, spontaneous, unification, representation,
discrete, symmetric, grand

Gravitons and extra-
dimensions

gravity, dimension, scalar, extra, field, constant, brane, cosmological, massive, cosmological constant, extra di-
mensions, scalar field, bulk, graviton, derivative

Hadronic zoo state, resonance, d, gev, mev, b, channel, e+e−, charmonium, narrow, b, molecule, s1, reaction, e+

Heavy quarks and ions quark, heavy, hadron, distribution, collision, production, gluon, hadronic, qcd, heavy quark, heavy ion, charm,
correlation, ion, heavy ion collisions

Higgs boson higgs, boson, model, standard model, mass, standard, coupling, gauge, sector, sm, higgs mass, doublet, higgs
boson, neutral, scalar

Higgs sector beyond the SM higgs, model, standard model, standard, boson, electroweak, supersymmetric, lhc, minimal, supersymmetric stan-
dard model, collider, tev, mass, scalar, supersymmetric standard

High-energy source fluxes energy, flux, source, high energy, spectrum, high, event, signal, emission, time, radiation, solar, information,
gravitational wave, such

Holographic Principle and
dualities

conformal, dual, holographic, boundary, entropy, cft, entanglement, ad, bulk, defect, theory, conformal field,
correspondence, conformal field theory, entanglement entropy

Inflation inflation, perturbation, universe, inflationary, field, scalar, cosmological, inflaton, cosmology, potential, scalar
field, initial, evolution, fluctuation, curvature

Lattice calculation tech-
niques

operator, lattice, matrix, fermion, loop, wilson, theory, element, gauge, function, action, calculation, continuum,
expansion, method

Lepton/Meson decay decay, branching, ratio, semileptonic, meson, fraction, asymmetry, mode, measurement, rate, br, nu, semileptonic
decays, inclusive, lifetime

Lie algebra algebra, space, integral, representation, function, group, operator, invariant, form, path, transformation, lie,
differential, product, partition

Loops and higher order ex-
pansions in Feynman Dia-
grams

correction, order, one-loop, term, contribution, radiative corrections, approximation, qed, calculation, loop, ra-
diative, logarithmic, effective, expansion, expression

M-theory and theories of ev-
erything

theory, gauge, duality, supergravity, string, dual, action, dimensional, type, background, m-theory, reduction,
dimension, abelian, field

Matter in Yang-Mills theo-
ries

su, symmetry, fermion, gauge, chiral, mass, model, breaking, coupling, boson, flavor, color, composite, quark,
dirac

Measurements and analysis
of colliders data

data, measurement, uncertainty, experiment, analysis, experimental, fit, determination, systematic, first, theo-
retical, error, parameter, detector, current

Meson phenomenology meson, state, resonance, vector, decay, mass, width, mev, pseudoscalar, pion, amplitude, experimental, channel,
quark, wave

Neutrino physics neutrino, oscillation, mass, experiment, majorana, neutrino mass, right-handed, neutrino oscillations, neutrino
oscillation, flavor, interaction, supernova, antineutrino, seesaw, sterile

Non-abelian theories gauge, field, spin, topological, theory, chern-simons, higher spin, abelian, vortex, non-abelian, gauge field, dirac,
term, hall, fermion

Partons distributions qcd, distribution, parton, next-to-leading order, order, function, nlo, gluon, jet, next-to-leading, correction, trans-
verse, momentum, calculation, perturbative

Perturbative QCD qcd, perturbative, factorization, anomalous, order, contribution, result, function, approach, perturbative qcd,
calculation, anomalous dimension, coefficient, kernel, expansion

Phenomenological jargon state, new, interaction, coupling, physic, strong, problem, particle, theory, recent, such, bound, model, approach,
role

QCD calculation techniques propagator, expansion, lattice, gluon, effective, finite, loop, theory, potential, qcd, numerical, gauge, perturbative,
method, regularization

Quantum Chromodynamics
(QCD)

rule, sum, qcd, wall, domain, qcd sum rules, viscosity, qcd sum, quark, heavy, shear viscosity, shear, vacuum,
condensate, bubble

Quantum Field Theory theory, field, quantum, equation, solution, classical, dimension, quantum field, class, quantum field theory, prob-
lem, space-time, dimensional, two-dimensional, arbitrary

Quantum Systems and
Equations of motion

equation, hamiltonian, constraint, system, term, formalism, charge, monopole, dirac, solution, first, second, ki-
netic, nonlinear, part

Quantum systems and ther-
modynamics

system, energy, time, quantum, state, fluctuation, density, gas, dynamic, thermal, temperature, phase, casimir,
force, surface

Renormalization renormalization, group, flow, point, coupling, scale, fixed, uv, rg, ir, cutoff, infrared, fixed point, effective, ultra-
violet

Scattering of composite par-
ticles

scattering, function, data, proton, structure, nucleon, inelastic, distribution, moment, deep, dipole, q2, inelastic
scattering, hera, target

Continued on next page
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Table S1: Most frequent terms for each topic.

Most frequent expressions

Topic (context)

Search for BSM physics physic, new, new physics, standard model, experiment, standard, neutral, search, tau, measurement, current,
decay, future, lepton, rare

Sigma models (?) model, symmetry, supersymmetric, supersymmetry, sigma, term, integrable, lagrangian, algebra, su, group, chiral,
deformation, fermionic, sl

Solar neutrinos neutrino, oscillation, solar, mixing, solar neutrino, angle, atmospheric, neutrino mass, sterile, atmospheric neu-
trino, experiment, hierarchy, sterile neutrinos, matrix, sterile neutrino

Space-time geometry and
gravity

solution, gravity, spacetime, metric, gravitational, ad, geometry, space, flat, curvature, sitter, singularity, general,
dilaton, einstein

Spin/angular momen-
tum/polarization

momentum, polarization, asymmetry, angular, spin, distribution, angular momentum, polarized, reaction, trans-
verse, cross, section, beam, production, photon

States of matter phase, transition, critical, temperature, point, holographic, spectral, order, exponent, behavior, imaginary, critical
point, finite temperature, finite, first order

String theory string, solution, charge, soliton, branes, configuration, topological, type, monopoles, open, flux, bps, tachyon,
background, vortex

Supergravity supergravity, modulus, manifold, type, space, calabi-yau, supersymmetric, geometry, supersymmetry, moduli
space, topological, bps, class, curve, iib

Supersymmetric particles mass, susy, parameter, soft, neutralino, space, scale, mssm, squark, region, scenario, constraint, gluino, gaugino,
large

Supersymmetric theories theory, gauge, supersymmetric, yang-mills, supersymmetry, anomaly, supergravity, duality, chiral, n = 4, super,
n = 2, super yang-mills, branch, su

Theoretical jargon model, case, structure, limit, new, term, function, such, number, different, method, particular, property, spectrum,
approach

Thermodynamics phase, temperature, transition, potential, density, chemical, finite, finite temperature, matter, chemical potential,
critical, high, thermal, order, first order

Top quark quark, top, top quark, mass, decay, bound, standard model, top quark mass, coupling, new physics, lepton, top
quarks, standard, chiral quark, physic

Topology space, dimension, modulus, string, bundle, manifold, vacuum, extra, moduli space, heterotic, torus, instanton,
singularity, compact, theory

Table S2: PACS categories most correlated to the topics derived with the unsupervised
model. Correlation is measured as the mutual pointwise information (pmi).

pmi
topic PACS category

Algorithms and
calculation
techniques

Lattice theory and statistics 1.39
Lattice gauge theory 1.17
Lattice QCD calculations 1.12
Particle correlations and fluctuations 0.99
Inelastic scattering: many-particle final states 0.80

Amplitude of
scattering
processes

Baryon resonances (S=C=B=0) 1.13
Pion-baryon interactions 1.10
Meson-meson interactions 1.03
Nucleon-nucleon interactions 0.93
Dispersion relations 0.92

Amplitudes and
Feynman Diagram

Analytic properties of S matrix 1.66
Properties of perturbation theory 1.57
General properties of perturbation theory 1.39
Dispersion relations 1.04
Lattice theory and statistics 0.86

Analyses and
measurements
from colliders

Neutrino-induced reactions 0.96
Muons 0.89
Neutrino, muon, pion, and other elementary particle detectors; cosmic ray detectors 0.81
Pion-baryon interactions 0.79
Meson production 0.77

Annihilation
and scattering
cross-sections

Total cross sections 1.60
Hadron production in e−e+ interactions 1.23
Meson production 1.11
Elastic and Compton scattering 1.07
Electromagnetic processes and properties 1.03

Astrophysics

Collective flow 1.91
Hydrodynamic models 1.74
Particle correlations and fluctuations 1.52
Relativistic heavy-ion collisions 1.38
Particle and resonance production 1.35

Black holes

Black holes 2.64
Quantum aspects of black holes, evaporation, thermodynamics 2.59
Physics of black holes 2.57
Classical black holes 2.55
Higher-dimensional black holes, black strings, and related objects 2.38

Boundary
conditions/non-
locality

Entanglement and quantum nonlocality 1.18
Theory of quantized fields 0.90
Foundations of quantum mechanics; measurement theory 0.80
Conformal field theory, algebraic structures 0.71
Integrable systems 0.70

CP violating
processes

Decays of bottom mesons 1.53
Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elements 1.48
Bottom mesons (|B|>0) 1.34

Continued on next page
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Table S2: PACS categories most correlated to the topics derived with the unsupervised
model. Correlation is measured as the mutual pointwise information (pmi).

pmi
topic PACS category

Charge conjugation, parity, time reversal, and other discrete symmetries 1.30
Decays of bottom mesons 1.19

Chiral symmetry

Chiral Lagrangians 1.55
Chiral symmetries 1.54
Lattice QCD calculations 1.48
Light quarks 1.30
Lattice gauge theory 1.21

Conformal Field
Theory

Conformal field theory, algebraic structures 1.72
Algebraic methods 1.34
Nonperturbative techniques; string field theory 1.19
Lattice theory and statistics 1.15
M theory 0.99

Cosmological
sources

Background radiations 1.86
Observational cosmology (including Hubble constant, distance scale, cosmological
constant, early Universe, etc)

1.55

Neutrino, muon, pion, and other elementary particles; cosmic rays 1.49
Dark energy 1.29
Cosmology 1.21

Cosmology and
gravity

Lorentz and Poincaré invariance 1.34
Loop quantum gravity, quantum geometry, spin foams 1.32
Axions and other Nambu-Goldstone bosons (Majorons, familons, etc.) 1.30
Dark energy 1.28
Quantum cosmology 1.26

Cross-sections
in colliders

Total cross sections 1.57
Inclusive production with identified hadrons 1.43
Particle and resonance production 1.42
Production 1.40
Inclusive production with identified leptons, photons, or other nonhadronic particles 1.36

Dark matter
(particles and
direct
searches)

Dark matter 2.36
Elementary particle processes 1.94
Neutrino, muon, pion, and other elementary particle detectors; cosmic ray detectors 1.40
Neutrino, muon, pion, and other elementary particles; cosmic rays 1.18
Supersymmetric partners of known particles 1.15

Dark matter in
the universe

Dark matter 1.86
Dark energy 1.69
Elementary particle processes 1.44
Observational cosmology (including Hubble constant, distance scale, cosmological
constant, early Universe, etc)

1.36

Cosmology 1.27

Decay
measurements

Decays of charmed mesons 1.93
Decays of bottom mesons 1.91
Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elements 1.83
Decays of J/�, Υ, and other quarkonia 1.82
Bottom mesons (|B|>0) 1.82

Detectors

Neutrino, muon, pion, and other elementary particle detectors; cosmic ray detectors 1.48
Muons 0.99
Ordinary neutrinos 0.98
Neutrino interactions 0.91
Solar neutrinos 0.87

Double-beta
decay

Baryons 1.20
Charmed baryons (|C|>0, B=0) 1.08
Glueball and nonstandard multi-quark/gluon states 1.03
Bottom baryons (|B|>0) 0.99
Hadron mass models and calculations 0.97

Early-universe
and other
cosmological
data

Background radiations 1.57
Dark matter 1.38
Axions and other Nambu-Goldstone bosons (Majorons, familons, etc.) 1.28
Neutrino, muon, pion, and other elementary particles; cosmic rays 1.27
Elementary particle processes 1.11

Effective Field
Theory

Noncommutative field theory 1.89
Noncommutative geometry 1.77
Quantum mechanics 0.85
Nonlinear or nonlocal theories and models 0.82
Canonical quantization 0.81

Electromagnetis
m

Hydrodynamic models 1.45
Collective flow 1.31
Electric and magnetic moments 1.16
Relativistic heavy-ion collisions 1.11
Relativistic wave equations 1.11

Events in
colliders
(kinematics?)

Limits on production of particles 1.71
Production 1.60
Inclusive production with identified leptons, photons, or other nonhadronic particles 1.57
W bosons 1.53
Jets in large-Q2 scattering 1.53

Events in
colliders
(signatures?)

Limits on production of particles 1.69
Jets in large-Q2 scattering 1.56
Production 1.45
Inclusive production with identified leptons, photons, or other nonhadronic particles 1.37
W bosons 1.35

Experimental
investigation
of the leptonic
sector

Limits on production of particles 1.38
Electromagnetic decays 1.30
Decays of J/�, Υ, and other quarkonia 1.26
Decays of J/�, Υ, and other quarkonia 1.19
Muons 1.18

Experimental
jargon

Electromagnetic corrections to strong- and weak-interaction processes 0.35
Solar neutrinos 0.30
Electroweak radiative corrections 0.30
Nucleon-nucleon interactions 0.29
Neutrino-induced reactions 0.25

Experiments on
light

Specific calculations 1.31
Elastic and Compton scattering 1.26

Continued on next page
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Table S2: PACS categories most correlated to the topics derived with the unsupervised
model. Correlation is measured as the mutual pointwise information (pmi).

pmi
topic PACS category

Electromagnetic processes and properties 1.09
Axions and other Nambu-Goldstone bosons (Majorons, familons, etc.) 1.09
Quantum electrodynamics 1.08

Field theory
and gravity

Classical general relativity 1.10
Modified theories of gravity 1.08
Lower dimensional models; minisuperspace models 1.06
Fundamental problems and general formalism 1.05
Classical black holes 1.02

Flavor mixing

Quark and lepton masses and mixing 1.36
Flavor symmetries 1.30
Charge conjugation, parity, time reversal, and other discrete symmetries 1.28
Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elements 1.10
Neutrino mass and mixing 1.06

Flavour physics

Global symmetries (e.g., baryon number, lepton number) 1.04
Flavor symmetries 1.03
Non-standard-model neutrinos, right-handed neutrinos, etc. 1.02
Unification of couplings; mass relations 1.00
Quark and lepton masses and mixing 0.99

Form factors

Electromagnetic form factors 1.97
Relativistic quark model 1.34
Protons and neutrons 1.33
Hyperons 1.18
Sum rules 1.18

Gauge Theory

Gauge field theories 1.20
Lorentz and Poincaré invariance 1.16
Canonical formalism, Lagrangians, and variational principles 1.10
Lagrangian and Hamiltonian approach 1.09
Noncommutative field theory 1.08

Gauge symmetry
breaking/GUTs

Unified theories and models of strong and electroweak interactions 1.34
Unification of couplings; mass relations 1.26
Spontaneous breaking of gauge symmetries 1.15
Unified field theories and models 1.14
Spontaneous and radiative symmetry breaking 0.96

Gravitons and
extra-
dimensions

Higher-dimensional gravity and other theories of gravity 1.41
Gravity in more than four dimensions, Kaluza-Klein theory, unified field theories;
alternative theories of gravity

1.39

Modified theories of gravity 1.34
Lower dimensional models; minisuperspace models 1.08
String and brane phenomenology 1.04

Hadronic zoo

Decays of J/�, Υ, and other quarkonia 1.92
Heavy quarkonia 1.73
Exotic mesons 1.71
Decays of J/�, Υ, and other quarkonia 1.65
Mesons with S=C=B=0, mass > 2.5 GeV (including quarkonia) 1.58

Heavy quarks
and ions

Particle and resonance production 1.40
Particle correlations and fluctuations 1.39
Collective flow 1.38
Relativistic heavy-ion collisions 1.37
Fragmentation into hadrons 1.29

Higgs boson

Other neutral Higgs bosons 1.91
Supersymmetric Higgs bosons 1.87
Non-standard-model Higgs bosons 1.77
Extensions of electroweak Higgs sector 1.73
Standard-model Higgs bosons 1.69

Higgs sector
beyond the SM

Other neutral Higgs bosons 1.65
Supersymmetric Higgs bosons 1.64
Non-standard-model Higgs bosons 1.60
Extensions of electroweak Higgs sector 1.55
Standard-model Higgs bosons 1.37

High-energy
source fluxes

Neutrino, muon, pion, and other elementary particles; cosmic rays 1.39
Neutrino, muon, pion, and other elementary particle detectors; cosmic ray detectors 1.33
Solar neutrinos 1.28
Background radiations 0.89
Ordinary neutrinos 0.74

Holographic
Principle and
dualities

Entanglement and quantum nonlocality 1.89
Gauge/string duality 1.53
Conformal field theory, algebraic structures 1.43
Higher-dimensional black holes, black strings, and related objects 1.06
Quantum aspects of black holes, evaporation, thermodynamics 1.02

Inflation

Particle-theory and field-theory models of the early Universe (including cosmic pan-
cakes, cosmic strings, chaotic phenomena, inflationary universe, etc.)

1.80

Origin and formation of the Universe 1.78
Observational cosmology (including Hubble constant, distance scale, cosmological
constant, early Universe, etc)

1.76

Background radiations 1.70
Quantum cosmology 1.67

Lattice
calculation
techniques

Lattice QCD calculations 1.38
Lattice gauge theory 1.36
Lattice theory and statistics 0.80
General properties of perturbation theory 0.76
Renormalization 0.74

Lepton/Meson
decay

Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elements 1.97
Decays of charmed mesons 1.94
Decays of bottom mesons 1.89
Decays of charmed mesons 1.86
Bottom mesons (|B|>0) 1.81

Lie algebra

Algebraic methods 1.39
Integrable systems 1.28
Geometry, differential geometry, and topology 1.19
Noncommutative geometry 1.03
Quantum mechanics 0.94

Continued on next page
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Table S2: PACS categories most correlated to the topics derived with the unsupervised
model. Correlation is measured as the mutual pointwise information (pmi).

pmi
topic PACS category

Loops and
higher order
expansions in
Feynman
Diagrams

Electromagnetic corrections to strong- and weak-interaction processes 1.32
Electroweak radiative corrections 1.23
Specific calculations 1.08
Summation of perturbation theory 1.00
General properties of perturbation theory 0.98

M-theory and
theories of
everything

M theory 1.63
Supergravity 1.34
Nonperturbative techniques; string field theory 1.27
Compactification and four-dimensional models 1.22
D branes 1.13

Matter in Yang-
Mills theories

Technicolor models 1.23
Unified theories and models of strong and electroweak interactions 1.06
Unification of couplings; mass relations 0.99
Composite models 0.94
Spontaneous breaking of gauge symmetries 0.88

Measurements
and analysis of
colliders data

Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elements 0.90
Solar neutrinos 0.87
Muons 0.84
Neutrino, muon, pion, and other elementary particle detectors; cosmic ray detectors 0.75
Decays of charmed mesons 0.73

Meson
phenomenology

Other mesons with S=C=0, mass < 2.5 GeV 1.53
Hadron mass models and calculations 1.48
Meson-meson interactions 1.45
Mesons 1.41
Glueball and nonstandard multi-quark/gluon states 1.37

Neutrino
physics

Ordinary neutrinos 2.04
Solar neutrinos 1.98
Non-standard-model neutrinos, right-handed neutrinos, etc. 1.97
Neutrino mass and mixing 1.94
Neutrino, muon, pion, and other elementary particles; cosmic rays 1.92

Non-abelian
theories

Gauge field theories 1.04
Magnetic monopoles 1.03
Canonical formalism, Lagrangians, and variational principles 0.97
Lagrangian and Hamiltonian approach 0.88
Noncommutative field theory 0.87

Partons
distributions

Summation of perturbation theory 1.62
Factorization 1.49
Production 1.46
Jets in large-Q2 scattering 1.44
Perturbative calculations 1.43

Perturbative
QCD

Factorization 1.17
Summation of perturbation theory 1.10
Perturbative calculations 1.03
Production 0.66
Heavy quark effective theory 0.65

Phenomenologica
l jargon

Foundations of quantum mechanics; measurement theory 0.34
Axions and other Nambu-Goldstone bosons (Majorons, familons, etc.) 0.31
Loop quantum gravity, quantum geometry, spin foams 0.30
Experimental tests of gravitational theories 0.29
Potential models 0.27

QCD calculation
techniques

Gluons 1.29
General properties of perturbation theory 1.02
Renormalization 0.96
General properties of QCD (dynamics, confinement, etc.) 0.94
Lattice gauge theory 0.89

Quantum
Chromodynamics
(QCD)

Sum rules 2.24
Other nonperturbative calculations 1.42
Bottom baryons (|B|>0) 1.32
Charmed baryons (|C|>0, B=0) 1.26
Heavy quark effective theory 1.16

Quantum Field
Theory

Foundations of quantum mechanics; measurement theory 1.32
Quantum mechanics 1.15
Algebraic methods 1.06
Canonical quantization 0.97
Theory of quantized fields 0.95

Quantum Systems
and Equations
of motion

Canonical formalism, Lagrangians, and variational principles 1.23
Magnetic monopoles 1.15
Lagrangian and Hamiltonian approach 1.11
Relativistic wave equations 1.04
Canonical quantization 1.00

Quantum systems
and
thermodynamics

Hydrodynamic models 1.21
Theory of quantized fields 0.96
Foundations of quantum mechanics; measurement theory 0.93
Entanglement and quantum nonlocality 0.90
Quark-gluon plasma 0.75

Renormalization

Renormalization group evolution of parameters 1.77
Renormalization 1.46
General properties of perturbation theory 0.85
Technicolor models 0.85
Other nonperturbative techniques 0.81

Scattering of
composite
particles

Total and inclusive cross sections (including deep-inelastic processes) 1.78
Photon and charged-lepton interactions with hadrons 1.65
Elastic and Compton scattering 1.49
Regge theory, duality, absorptive/optical models 1.35
Polarization in interactions and scattering 1.32

Search for BSM
physics

Muons 1.12
Decays of K mesons 1.09
Decays of taus 1.09
Neutrino, muon, pion, and other elementary particle detectors; cosmic ray detectors 1.07
Neutral currents 1.05

Sigma models
(?)

Integrable systems 1.74

Continued on next page
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Table S2: PACS categories most correlated to the topics derived with the unsupervised
model. Correlation is measured as the mutual pointwise information (pmi).

pmi
topic PACS category

Algebraic methods 1.23
Supersymmetry 1.09
Lattice theory and statistics 1.00
Conformal field theory, algebraic structures 0.99

Solar neutrinos

Solar neutrinos 2.64
Ordinary neutrinos 2.30
Neutrino mass and mixing 2.13
Non-standard-model neutrinos, right-handed neutrinos, etc. 1.98
Neutrino, muon, pion, and other elementary particles; cosmic rays 1.89

Space-time
geometry and
gravity

Exact solutions 1.75
Classical general relativity 1.57
Einstein-Maxwell spacetimes, spacetimes with fluids, radiation or classical fields 1.53
Classical black holes 1.51
Higher-dimensional black holes, black strings, and related objects 1.51

Spin/angular mo
mentum/polariza
tion

Polarization in interactions and scattering 1.80
Photon and charged-lepton interactions with hadrons 1.47
Fragmentation into hadrons 1.41
Inclusive production with identified hadrons 1.35
Meson production 1.21

States of
matter

Quark deconfinement, quark-gluon plasma production, and phase transitions 1.09
Finite-temperature field theory 1.08
Gauge/string duality 1.02
Lattice theory and statistics 0.90
Quark matter 0.84

String theory

D branes 1.86
Magnetic monopoles 1.71
Nonperturbative techniques; string field theory 1.67
Extended classical solutions; cosmic strings, domain walls, texture 1.52
Strings and branes 1.46

Supergravity

M theory 1.62
Supergravity 1.58
Compactification and four-dimensional models 1.51
Nonperturbative techniques; string field theory 1.37
Geometry, differential geometry, and topology 1.30

Supersymmetric
particles

Supersymmetric partners of known particles 1.68
Supersymmetric models 1.35
Supersymmetric Higgs bosons 1.27
Unification of couplings; mass relations 0.85
Non-standard-model Higgs bosons 0.82

Supersymmetric
theories

Supersymmetry 1.37
M theory 1.35
Supergravity 1.20
Nonperturbative techniques; string field theory 1.05
Gauge field theories 1.05

Theoretical
jargon

Integrable systems 0.36
Quantum mechanics 0.36
Foundations of quantum mechanics; measurement theory 0.33
Algebraic methods 0.31
Fundamental problems and general formalism 0.28

Thermodynamics

Quark deconfinement, quark-gluon plasma production, and phase transitions 1.62
Quark matter 1.61
Finite-temperature field theory 1.57
Quark-gluon plasma 1.35
Other models for strong interactions 1.11

Top quark

Top quarks 1.96
Neutral currents 1.20
Limits on production of particles 1.07
Other neutral Higgs bosons 0.98
Other gauge bosons 0.97

Topology

Compactification and four-dimensional models 1.40
Geometry, differential geometry, and topology 1.31
Nonperturbative techniques; string field theory 1.20
M theory 1.11
Strings and branes 1.04

S3.5 Topics and their correlation with categories

Below, we evaluate how topics compare with the classification of the literature. For that, we generated
a 2D representation of the semantic space by applying a t-SNE transformation (van der Maaten &
Hinton, 2008) on the distance matrix 1−Rij , where Rij is the correlation matrix for the 75 topics from
the CTM. The t-SNE transformation aims to reduce dimensionality (from 75 to 2) while preserving
distances, such that highly correlated topics should appear close to each other on the resulting 2D map.
We then colored each topic according to the category (among theory, phenomenology and experiment)
that has the strongest association (normalized pointwise mutual information) with this topic. The graph
was then rotated such that the x-axis would explain most of the variance in these three categories. Topics
related to supersymmetry were emphasized and labeled. The resulting map is shown in Figure S2.

Although the t-SNE transformation does not yield very stable results, it generally appears (as in
this figure) that topics most associated with a given category (e.g. theory) appear closer to each other,
such that these three categories explain part of the variance in the semantic space. Second, in this
representation, the distinction between phenomenological supersymmetry and theoretical supersymmetry
is supported by the emergence of two separate clusters of supersymmetry-related topics.
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Fig. S2 Semantic map extracted from the topic model, after applying a t-SNE transformation. Each dot represents a
topic. Each topic is assigned the category, among theory, phenomenology and experiment, that is most associated with it.
Correlated topics appear closer to each other. For each category, the density of topics along the x-axis is shown in the lower
plot.

S4 Validity of the citation network for exploring the trading zone

Below, we support the relevance of the citation network as a means of exploring trading zones between
scientific cultures by showing it can be used to recover known facts, in particular i) that theory and
experiment in HEP do not communicate directly and ii) that phenomenology channels most exchanges
across them.

We build a citation network where each node is one paper of the literature and the edge between
nodes x and y is assigned a weight wx,y = 1 if x cites y and 0 otherwise. From this we can define the
amount of citations of papers from the category i to a paper from the category j as:

nij =
∑

x∈i,y∈j

wxy

(
∑

c 1c(x))(
∑

c 1c(y))
(2)

Where 1c(x) = 1 if x belongs to c ∈ {Experiment, Phenomenology, Theory}, and 0 otherwise. We
then normalize nij by the amount of citations from category i, thus yielding the normalized matrix
ñij . By construction, 0 ≤ ñij ≤ 1 is the effective fraction of references from papers of category i
to papers of category j. The matrix is built from the citation network between 2001 and 2019. We
then verify that ñii is high (papers mostly cite papers from the same category); and that for cross-
culture citations (i ̸= j), ñij ≪ 1 unless i or j is “phenomenology”; i.e., “trading zones” in the field
occur around phenomenology. Evaluating the fraction of citations from papers of a category i that
target papers from a category j yields the matrix in Figure S3. In this matrix, borrowing the trade
metaphor from Yan et al. (2013), non-diagonal elements represent “imports” (references to publications
from other subcultures) and diagonal elements measure the “self-dependence” of each subculture. The
results confirm that most citations occur within categories, emphasizing the relative autonomy of each of
these subcultures including phenomenology – it is less obvious for experimental papers, which are much
more scarce then the others, and cannot cite themselves as much. Moreover the results confirm that most
trades involve phenomenology: cross-citations between purely theoretical and experimental papers are
very rare (∼1% of their references). Overall, “theory” is highly self-reliant.
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Abstract
How do scientists navigate between the need to capitalize on their prior knowledge
through specialization, and the urge to adapt to evolving research opportunities?
Drawing from diverse perspectives on adaptation, this paper proposes an
unsupervised Bayesian approach motivated by Optimal Transport of the evolution of
scientists’ research portfolios in response to transformations in their field. The model
relies on 186,162 scientific abstracts and authorship data to evaluate the influence of
intellectual, social, and institutional resources on scientists’ trajectories within a cohort
of 2108 high-energy physicists between 2000 and 2019. Using Inverse Optimal
Transport, the reallocation of research efforts is shown to be shaped by learning costs,
thus enhancing the utility of the scientific capital disseminated among scientists. Two
dimensions of social capital, namely “diversity” and “power”, have opposite
associations with the magnitude of change in scientists’ research interests: while
“diversity” is associated with greater change and expansion of research portfolios,
“power” is associated with more stable research agendas. Social capital plays a more
crucial role in shifts between cognitively distant research areas. More generally, this
work suggests new approaches for understanding, measuring and modeling
collective adaptation using Optimal Transport.

Keywords: Adaptation; Specialization; Science of science; Cultural evolution;
Computational social science; Optimal transport

1 Introduction
Scientists are subject to conflicting incentives. On the one hand, they must work within
the realm of their expertise, where they can most effectively exploit their prior knowl-
edge and compete with peers; this conservative preference for familiar research topics is
at the root of specialization. On the other hand, scientists are simultaneously compelled
to revise their research interests to engage with more promising research areas in order
to benefit from more exposure or to secure funding. Thus, in some instances, specializa-
tion is at odds with the need to adapt to the decline of certain research opportunities and
the growth of new ones. How do scientists navigate the trade-off between specialization
(i.e. the concentration of their intellectual resources within a narrow cognitive range) and
adaptation (i.e. the need to adjust these resources to new realities)? This conflict differs
from the “essential tension” between “tradition” and “innovation” proposed by Kuhn [1],
or that between “exploration” and “exploitation” [2], which have both been explored quan-

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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titatively in previous works [3–9]. First, “adaptation” is not tantamount to innovation or
disruption, for it can be a conformist move (e.g. as a result of a bandwagon effect [10]).
Moreover, unlike “exploration”, adaptation is not identical to a search strategy in a static
landscape [11], but rather the convergence towards a new state more congruent with cur-
rent realities. Disruptions due to breakthroughs in Machine Learning or challenges due
to climate change urge to understand how scientists adapt to changing circumstances.
Therefore, the present paper investigates scientists’ responses to changes in their field
(whether driven by epistemic or institutional factors), and the effect of their capital (in-
tellectual, social, or institutional) on their ability to adapt. Drawing insights on adaptation
from cultural evolution and institutional change, we develop an unsupervised Bayesian
approach to analyze changes in scientists’ research agenda while measuring the effect of
“capital” (intellectual or social) on their individual trajectories. The model is applied to a
cohort of high-energy physicists between the years 2000 and 2019, a time during which
the historical driver of progress in the field – particle accelerators – have been contested
by emerging astrophysical experiments, thus transforming the landscape of opportunities.

Our approach reveals trends in the field: the boom of dark matter research – fueled
by shifts away from the physics of neutrinos and the electroweak sector – and the par-
tial disintegration of string theory into the study of black holes and holography/dualities.
More importantly, this analysis also shows that changes in scientists’ research portfolios
are shaped by learning costs, as scientific communities adapting to new circumstances
address an “Optimal Transport” problem by reallocating research efforts efficiently. Opti-
mal Transport is a mathematical framework initially concerned with the optimal displace-
ment and allocation of resources [12–14], and has since then found wide-ranging applica-
tions. We show that it also provides a characterization of scientists’ behavior, as driven by
the need to maximize the utility of their scientific capital under changing circumstances.
Moreover, the comparative analysis shows that two dimensions of social capital, namely
“diversity” and “power” [15], have opposite associations with change. While “diversity” of
social capital – the extent to which scientists have access to diverse cognitive resources via
their collaborators – is correlated with greater change and further diversification of scien-
tists’ research interests, “power” – roughly speaking, the size of their network – is associ-
ated with more stability in their research interests. Social capital has a stronger associa-
tion with transfers between research areas that are more cognitively “distant”. There is no
discernible effect of institutional stability after controlling for academic age (although af-
filiation data is a bit noisy in the dataset). Overall, we contribute: i) a conceptual account of
the features of change in scientists’ research interests; ii) a novel methodological approach
that introduces a model of scientists’ trajectories connected to Optimal Transport and
measures of intellectual capital, social capital, diversity, and power; and finally, iii) some
empirical evidence from high-energy physics. More generally, this paper addresses the
relative lack of empirical works within the body of literature that investigates science as
a cultural evolutionary system [16]. It demonstrates that Optimal Transport provides an
insightful description of certain aspects of collective adaptation, but also computational
tools (such as Probabilistic Inverse Optimal Transport [17] and OT based measures of
change) for measuring adaptive behavior, and more generally, mobility in physical and
abstract spaces.

In what follows, Sects. 1.1 and 1.2 summarize previous research and lay out the con-
ceptual background on which the analysis rests, and Sect. 1.3 introduces the context of
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high-energy physics to which the model is applied. Section 2 elaborates the methodology:
the data 2.1, the topic model approach for measuring authors’ research portfolios 2.2, the
proposed measures of intellectual and social capital 2.3, and the model of scientists’ trajec-
tories 2.4. Section 3 presents the results: i) the transfers of attention from one research area
to another due to changes in the scientific landscape; ii) the structuring role of learning
costs in the observed patterns of adaptation 3.1, and iii) the effect of capital (intellectual
and social) and institutional stability on physicists’ strategies 3.2.

1.1 Empirical background
Several works have investigated the evolution of scientists’ research interests. For instance,
by mapping the trajectories of 103,246 physicists over 26 years using the American Phys-
ical Society (APS) dataset and its topic classification (the Physics and Astronomy Classi-
fication Scheme® (PACS)), Aleta et al. [5] demonstrated that a majority of physicists grad-
ually migrate to entirely different topics by the end of their careers while often staying
within the same general area. They reveal differences between subfields of physics, such
that “exploitation” (i.e. specialization, as opposed to the “exploration” of new topics) is
especially prevalent in particle physics. Using the same data, Jia et al. [4] instead find an
exponentially decaying distribution of changes in scientists’ interests. Previous works gen-
erally agree, however, on the graduality of change in research topics [4–6], as previously
observed by Gieryn [18]. Recognizing that scientists typically investigate several research
questions in parallel, Gieryn proposed four mechanisms of gradual change, including “ac-
cretion” (a problem is added to their “problem set”), “selective substitution” (one problem
is replaced by another), and “selective disengagement” (one problem is neglected).

While [4–6] document the structure of changes in scientists’ interests, they do not relate
these transformations to changes in epistemic and institutional context, or to the scien-
tists’ incentives and resources. Tripodi et al. [7] have taken a step in this direction. Using
the APS dataset, they show that physicists are more likely to explore areas to which they
are connected via their collaborators, and highlight the crucial importance of collabora-
tions in the expansion of research portfolios, especially for the exploration of research
areas distant from one’s core specialization. However, their work does not primarily ad-
dress the transformations of scientists’ research portfolios throughout time – they do not
quantify “change” –, and they recognize the need for further longitudinal analyses. Finally,
previous works have explored the connection between spatial mobility patterns and scien-
tific mobility using gravity or radiation models [8, 9]. In particular, [8] used such methods
to compare the characteristics of two types of scientists, “explorers” as opposed to “ex-
ploiters”.

The present paper complements previous works on changes in scientists’ research in
several ways. First, since the focus is on adaptation strategies, the core of our approach is
both comparative (as in [7], and unlike other previous works) and longitudinal (unlike [7],
although their paper includes longitudinal robustness checks). Second, this contribution
evaluates previously unexplored aspects, such as the choice between expansion or consol-
idation of research portfolios and the effect of affiliation stability. Third, this work relates
the findings to the epistemic context of the field and its transformations by performing the
analysis at a circumscribed scale (high-energy physics). Fourth, this work does not rely pri-
marily on the APS dataset and PACS categories, on which most previous works depend
[4, 5, 7, 19], or any other pre-existing classification of the literature. Research areas are
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Figure 1 Changes in a scientist’s “research portfolio” over time. Colors designate research areas. Resources
entail any intellectual or methodological assets that a scientist uses to investigate problems in each area.
“Conversion” repurposes knowledge to new goals. “Displacement” is the replacement of certain research
interests with little or no transfer of prior knowledge, as illustrated by the green area. Layering is the
introduction of new research interests via the addition of new knowledge

clustered using an unsupervised topic model, such that this approach measures linguistic
change, which is arguably a more direct proxy of cognitive change. Fifth, this paper is the
first application of the Probabilistic Inverse Optimal Transport approach from [17], which
provides an alternative to other approaches to mobility (e.g. gravity models). Finally, the
proposed approach is grounded in theory, by operationalizing concepts such as capital
[20, 21], and by exploiting theoretical insights from diverse approaches to “adaptation”.

1.2 Conceptual framework
A central dilemma of adaptation consists in choosing which resources to leverage among
those already available (although those may be suboptimal or irrelevant under new cir-
cumstances) and which resources to abandon and replace with others (which may be in-
efficiently costly). By adapting gradually, scientists can strategically retain the benefits of
“problem retention” (e.g., the exploitation of “accumulated skills and resources” in one
area, or “of an established research network”, [18, p. 106]) while progressively investing
resources in new research directions. This is illustrated in Fig. 1, which represents the
research portfolios of one scientist during two distinct time periods. Cells indicate the
resources exploited by the scientist (e.g., concepts, models, methods, etc.) and colors in-
dicate to what problem areas this knowledge is applied. Figure 1 shows how scientists can
enter new research areas by repurposing certain resources to new ends [22, 23]. We call
this strategy “conversion”, in reference to the typology of incremental institutional change
proposed by Mahoney et al. [24]1.

Not all knowledge can be successfully applied to new research areas: as illustrated in
Fig. 1, entering new research areas typically requires “layering”,2 that is, the introduction of
new concepts, models, or methods, on top of prior knowledge. The acquisition of knowl-
edge entails learning costs, which can be partially avoided by collaborating with experts
in the target domain [7]. Another mode of change is displacement, when the replacement
of one research area for another involves significant neglect of prior knowledge. This may

1Indeed, as shown in previous works on the transformations of high-energy physics facilities to photon science instru-
ments [25–27], historical institutionalism can account for gradual adaptations with large cumulative effects taking place in
response to scientific and technological change [28]. In this paper, we apply the typology of change to individuals rather
than organizations.
2Again, borrowing the terminology from historical institutionalism.
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not be the preferred strategy, since it fails to take advantage of accumulated resources.
However, certain knowledge may not apply to a new context, or sometimes there might
be reasons to suspend a line of research in order to focus on more promising topics. Over-
all, we expect that these transformations will manifest themselves as changes in scientists’
linguistic behavior, i.e., as changes in the vocabulary of their publications. Generally, we
expect an important amount of continuity in linguistic behavior, given the need to mini-
mize cognitive learning costs by capitalizing on prior knowledge.

Scientists manage two kinds of assets when navigating the trade-off between special-
ization and adaptation: their own prior expertise, and the expertise to which they have
access through their social network. Both constitute “capital” [21], i.e. assets that individ-
uals accumulate and leverage in the competitive context of their field. “Capital” (whether
“economic”, “cultural”, “social” or even “symbolic”, cf. [21]) defines the scope of scientists’
opportunities and therefore their ability to adapt. This paper considers the intellectual
capital possessed by scientists in the form of scientific knowledge, and social capital.
Measures that represent these concepts will be proposed, and their effect on the mag-
nitude of transfers of attention across research areas will be evaluated. Emphasis will be
put on the divide underlined in [15] between two dimensions of social capital, namely
“power” (roughly speaking, network size in the present paper) and “diversity” (of cognitive
resources). Group diversity is generally recognized as a factor of adaptation in an evolv-
ing environment or in the context of collective problem-solving [29–32]. “Power” is also
plausibly associated with higher abilities.

While capital defines scientists’ opportunities, it is not sufficient to explain why scien-
tists do turn to new research areas or not, which also requires understanding actors’ in-
centives and why they must respond to these incentives. Consequently, the present paper
also considers the effect of institutional stability and academic age on migrations between
research areas, since the need to respond to changes in the epistemic and institutional en-
vironment is presumably different for, say, tenured physicists versus postdocs. Moreover,
we may assume that younger and older generations play different roles in cultural change
and collective adaptation in general [33]. Finally, the effect of productivity will also be
considered.

1.3 The case of high-energy physics: navigating a changing epistemic landscape
High-energy physics is a prime example for investigating adaptation in a transforming
scientific landscape. As this field relied on the input of increasingly large particle collid-
ers to achieve progress, it has accumulated considerable capital directed towards collider
physics in the form of large infrastructure and complex knowledge. These efforts culmi-
nated in 2010 with the start of the Large Hadron Collider (LHC), the largest accelerator
ever. However, the LHC has found no evidence for anything that was not already predicted
by the Standard Model of particle physics, and it is increasingly plausible that no future
accelerator could ever find any evidence for new particles, leading to a situation of “crisis”
[34]. Although the LHC will continue to take data for years and plans for successors are
being discussed [35], some have speculated that particle physics as we know it has come to
an end [36, 37], “the proscenium [being] captured by astrophysics and cosmology” instead
[37]. However, according to physicist Mikhail Shifman the “pause in accelerator programs
we are witnessing now is not necessarily [. . . ] the end of explorations at [high energies]”;
instead, such explorations “will continue, perhaps in a new form, with novel devices” [38].
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Indeed, new experimental opportunities have emerged in parallel, including gravitational
waves astronomy (since 2015 [39]), searches for dark matter of astrophysical origin in un-
derground facilities, and more precise observations of the cosmic microwave background
(see Fig. 10, Appendix A.1). Morever, astrophysics seems to be increasingly replacing par-
ticle colliders in citations across experimental and theoretical high-energy physics [40].
The present paper investigates how high-energy physicists have adapted in reaction to
these transformations.

2 Methods
2.1 Data
Our source is the Inspire HEP database [41]. It aggregates High-Energy Physics (HEP) lit-
erature from various sources, including the main scientific publishers and arXiv, and has
been used in a few works [40, 42–45]. For the literature on HEP, it is more comprehensive
than the often used APS dataset which is limited to a few journals.3 Moreover, it imple-
ments both automatized and manual measures for the disambiguation of author names,4

thus allowing careers’ analyses [44] (nevertheless, occasional misidentifications remain
possible). The database also contains data on experiments; consequently, the evolution of
the landscape of experimental opportunities can be retrieved (see Fig. 10, Appendix A.1).

The analysis includes all papers from the categories “Theory-HEP” and “Phenomeno-
logy-HEP” (inspired from arXiv’s categories “hep-th” and “hep-ph”), to which most HEP
publications belong, which amounts to D = 186,162 articles between 2000 and 2019. The
minority of purely experimental high-energy physics publications are excluded: such pa-
pers are typically authored by thousands of collaborators, and authorship data provide
no information about individual experimentalists’ specialization. Therefore, this paper
documents how theorists and phenomenologists have adapted to the changes outline
above.

For the longitudinal analysis, two time periods are considered. An initial phase (2000-
2009) is used to infer a reference “research agenda” for each physicist in the cohort, as well
as their intellectual and social capital. A late phase (2015-2019) is used to measure how
each physicist’s research agenda has shifted in comparison to the initial time period, in
the context of the changes outlined above. The five-year gap between these two periods
allows to measure the cumulative effect of the transformations in the scientific landscape
that have unfolded gradually between 2010 and 2015 (had they been sudden, we would
not have introduced such a wide gap – see Fig. 10, Appendix A.1), together with the ef-
fect of the capital accumulated prior to these transformations. Only physicists with ≥ 5
publications during each time period (2000 to 2009, and 2015 to 2019) are included, re-
sulting in a cohort of N = 2108 physicists. This study therefore considers physicists that
have remained dedicated to high-energy physics, thus revealing adaptation and “survival”
strategies within HEP, excluding authors that exited the field. This author inclusion rule
excludes scientists who publish very irregularly; however, although scientists who contin-
uously publish are a minority, they make up most of the publications in their field.5 We do

3https://journals.aps.org/datasets.
4Besides the use of “advance algorithms” of author-disambiguation, Inspire invites scientists to correct their own publica-
tion record on the website (https://twiki.cern.ch/twiki/pub/Inspire/WebHome/INSPIRE_background.pdf, June 2014).
5Less than 1% of scientists active in the years 1996 to 2011 have published every year during this period, and yet they are
responsible for 47% of the publications [46]; the 13% of physicists with ≥ 16 publications between 1985 and 2009 account
for 82% of publications [9].
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not seek “representativeness”, but rather to achieve enough variance to uncover patterns
among this particular cohort of productive high-energy physicists. The median academic
age of the cohort was 23 years in 2015. 49% of these physicsts have had an affiliation that
spanned the entire time period (see Appendix A.2, Fig. 11).

2.2 Measuring research portfolios
Research portfolios are evaluated in terms of the distribution of keywords (n-grams)
that belong to each research area within the scientists’ publications’ abstracts. Instead of
reyling on PACS categories and citation data as in most previous works, research areas
are extracted with a topic model that recovers latent “topics” within the corpus and their
vocabulary distributions, while directly classifying keywords into separate research areas.
Arguably, texts provide a more direct access to the kinds of knowledge leveraged by a sci-
entist in their publications: linguistic flexibility implies cognitive flexibility and a low com-
mitment to a specific body of knowledge. Moreover, this approach is applicable to a wider
range of situations for which only textual data (even short texts) are available. For instance,
PACS codes are only sparsely available in the recent HEP literature. A coarse-grained clas-
sification of the literature into K0 = 20 broad “topics” is performed. The number of topics
is always somewhat arbitrary, but that topic models give some control over the cognitive
scale is a feature, rather than a bug:6 as Gieryn [18] puts it, “in such analyses [of problem
change], empirical findings will in part reflect the defined scope of problem areas”, which
is itself arbitrary. In our case, we would ideally like our clustering to be just fine-grained
enough to measure the impact of the shifts in the landscape of experimental opportunities
that we are interested in (the start of the LHC, the rise of new probes of dark matter and
black holes, etc.). In this respect, K0 = 20 turns out to be just sufficient to discern the ef-
fects of the transformations in HEP discussed in Sect. 1.3 as well as the observed evolution
in the popularity of various kinds of experiments shown in Appendix A.1, Fig. 10. Addi-
tional models were trained for robustness assessment, setting different values for K0 (15,
20, 25). More coarse-grained models (using lower values of K0) are typically less able to ob-
serve fine-grained patterns of adaptation to changing experimental opportunities, and the
initial K0 = 20 model is better at distinguishing black hole phenomenology from cosmo-
logical phenomenology than the most fine-grained model (see Appendix A.3.5, Fig. 14).

We use an embedding model [47], a recent and straightforward approach that relies on
pretrained embeddings representations of the n-grams and provides more reliable clas-
sifications for heavy-tailed vocabulary distributions than previous models such as Latent
Dirichlet Allocation [48]. Given the coarseness of the clustering, Language Models were
not deemed necessary. The model is trained on D = 186,162 abstracts published between
2000 and 2019. Tokens are extracted from the papers’ titles and abstracts by filtering n-
grams between one and three words matching syntactic expressions susceptible of carry-
ing scientific information (by designating concepts, models, methods, etc.), following the
procedure from [40, 49]. Embeddings are learned using a skip-grap model in L = 50 di-
mensions (few are needed given the small size of the vocabulary, V = 4751; nevertheless,
some analyses are re-iterated with L = 150; see Appendix A.3, Fig. 12) [50]). We obtain the
topics listed in Appendix A.3, Table 1. Four of the 20 resulting topics regroup keywords

6Previous works based on the PACS categories have leveraged the different levels of this hierarchical classification system
to investigate different scales.
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Figure 2 Initial (in blue) and late (in red) research portfolios of two physicists. Physicist A shifted their focus
from neutrinos physics to dark matter7 . Physicist B, on the other hand, pursued a remarkably stable research
agenda

that do not clearly refer to any specific research area (e.g. “paper”, “approach”) and cor-
relate poorly with the PACS categories, which suggests their lack of scientific dimension.
Consequently, the present analysis only considers the K = 15 remaining topics that desig-
nate actual research areas (as confirmed by their strong tendency to preferably cite them-
selves, cf. Appendix A.3.4, and their correlation patterns with the PACS classification, cf.
Figure 15, Appendix A.3.6). In order to enhance the robustness of the topic removal pro-
cess, we made sure all retained topics had a maximal loading on the PACS classification
higher than that of all removed topics.

Then, we derive ndk , the amount of keywords in the abstract of d that refer to a re-
search area k (using the method described in Appendix A.3.2), and consequently Xa,k , the
amount of times keywords (“resources”, i.e. concepts, models, methods, etc.) in relation
to research area k have occurred in papers (co-)authored by a in the initial time-period
(2000 to 2009). Mathematically, Xa,k =

∑
d∈[2000,2009],a∈Ad

nd,k , where Ad is the set of authors
of a publication d. The matrix Ya,k is derived similarly, using publications from the later
time period (2015 to 2019). Research portfolios are then normalized into distributions
xak ≡ Xak/

∑
k′ Xak′ and yak ≡ Yak/

∑
k′ Yak′ , thus encoding how scientists divided their at-

tention during each period. This approach ensures that research portfolios are evaluated
based on the frequency of keywords that belong to each “topic”, according to the idea illus-
trated in Fig. 1. Therefore, this approach captures variations in the prevalence of different
kinds of vocabulary (and thus bodies of knowledge) exploited in scientists’ publications.
For purposes of illustration, Fig. 2 shows the research portfolios of one physicst who mi-
grated from neutrinos to dark matter physics, and of one physicist who maintained their
research agenda over the time periods considered.

2.3 Measuring capital
As shown by Schirone [51] in an extensive review of references to Bourdieu in bibliomet-
rics, most mentions of capital focus on symbolic and social capital. Only a dozen works
considered cultural/intellectual capital, and none of those proposed a measure that ade-
quately captured the distribution of capital across epistemic domains. Therefore, an alter-
native unified approach for measuring the distribution of intellectual and social capital is
proposed below.

7Physicist A’s personal website reads: “I am working on particle astrophysics and cosmology. In particular, I am interested
in dark matter problem in the Universe, and how to probe it using annihilation products such as energetic gamma rays
and neutrinos. [. . . ] I started my research career by studying supernova neutrinos from various aspects [our emphases].”
(https://staff.fnwi.uva.nl/s.ando/eng/Research.html). This is therefore an instance of “conversion” of prior knowledge to
new purposes, one of the forms of change drawn from historical institutionalism represented in Fig. 1.
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2.3.1 Intellectual capital
Intellectual capital is represented by a vector Ia = (Iak) that measures the concentration
of a’s intellectual resources in each domain k ∈ {1, . . . , K}. It is constructed in a way similar
to xa, summing the contribution of keywords dedicated to each research area in the publi-
cations of each author between 2000 and 2009 (thus excluding publications that belong to
the outcome research portfolio ya), except that publications are now weighed differently
depending on the amount of authors. Indeed, publications with fewer co-authors convey
more information about each author’s own expertise. The weight is 1

|Ad | , where |Ad| is the
amount of authors of publication d:8

Iak ∝
∑

d∈[2000,2009],a∈Ad

nd,k

|Ad| (1)

Ia is normalized, such that
∑

k Iak = 1; therefore, Ia only captures the ways scientists
divide their cognitive resources between research areas, rather than the “absolute magni-
tude” of their knowledge of each area (by contrast, the measure of semantic capital pro-
posed in [52] measures total knowledge but cannot capture diversity).

2.3.2 Social capital
Many measures of scientists’ social capital have been proposed [15, 51], the simplest be-
ing the amount of collaborators of a scientist (i.e. degree centrality in the co-authorship
network [52]). Other measures revolve around betweeness centrality, which captures the
extent to which an actor “bridges” a network (e.g. “brokerage”, i.e., the ability of an individ-
ual to overcome “structural holes” in a social network [53]). Abbasi et al. [15] distinguish
two general approaches to social capital, depending on whether the emphasis is placed on
“power” versus “diversity”. Measures of social capital (as those discussed in [15]) typically
represent social capital by single scalars; however, social capital has multiple dimensions.
In fact, according to Bourdieu [20], “the volume of social capital possessed by a particular
agent [. . . ] depends on the extent of the network of links that he can effectively mobilize,
and on the volume of capital (economic, cultural or symbolic) possessed by each of those
to whom he is linked”. In that respect, social capital can come in different forms depending
on the resources being leveraged via one’s network. In the following, we focus on the intel-
lectual dimension of social capital, which we represent by a vector Sa defined as the sum of
the intellectual capital of a’s collaborators, weighted by the strength of their relationship:

Sa ≡
∑

c∈co-authors(a)

wacIc\a (2)

Ic\a is the intellectual capital of c, evaluated by excluding papers co-authored with a (in
order to disentangle the effect of an author’s own knowledge and that available to them via
their collaborators). Collaborators outside the cohort are taken into account. The weight
wac, which represents the strength of the relationship between a and c, is defined as:

wac ≡ max
d|{a,c}⊂Ad

1
|Ad| – 1

(3)

8A justification for this weight is that the probability that a given author has been responsible for introducing any particular
concept or method present in the paper is O(1/|Ad|).
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Where Ad is the set of the co-authors of a paper d. This weighing scheme – inspired
from [54] – captures the fact that a paper with, say, two co-authors, signals a stronger
relationship between the authors than a publication with a dozen authors.9 However, it
does not take into account the recency and frequency of collaborations.

2.3.3 Diversity and power
Measures of “diversity” (and “power”) can be readily derived from Ia (and Sa). A common
measure of diversity is the Shannon entropy H [55]. Let D(Ia) = exp H(Ia) be the diversity of
intellectual capital (and D(Sa) = exp H(Sa) that of social capital). Roughly speaking, these
are measures of how many research areas scientists have divided their cognitive or social
resources among. In the cohort, individuals typically have cognitive resources in several
research areas (μD(Ia) = 5.6, σ = 2.0), and social capital is even more diverse (μD(Sa) = 7.8,
σ = 2.1). In fact, intuitively, scientific collaborations enable individuals to take advantage
of their group’s diversity. Furthermore, D(Ia) and D(Sa) are highly correlated (R = 0.75);
indeed, individuals with more diverse expertise are more able to engage with diverse col-
laborators. Since the diversity of social capital is mostly expected to enhance individuals’
abilities when it exceeds that of their own knowledge, from now on, only excess social cap-
ital diversity D∗(Sa) (defined as the residuals of the linear regression of D(Sa) against D(Ia),
by ordinary least squares) is considered.10

The “power” dimension of social capital is evaluated as the magnitude of social capital:

P(Sa) ≡
∑

k

Sak =
∑

c∈co-authors(a)

wac (4)

“Power” is therefore the amount of collaborators weighed by the strength of each rela-
tionship. Our measures of diversity and power depart from [15], which conflates diversity
with network size and power with performance. By combining semantic and authorship
data, our approach assesses diversity more directly.

Alternative measures of diversity and power are considered for robustness assessment.
The alternative measure of diversity is based on Stirling’s index, and the alternative mea-
sure of power uses the notion of brokerage. All these measures are defined and compared
in Appendix A.4.

2.4 Modelling trajectories
The model for the late research portfolio Ya is schematically illustrated in Figs. 3a, 3b, 3c,
and a more formal representation is given in Fig. 3d. It captures the idea expressed in
Fig. 1 that research portfolios are transformed via strategic transfers of knowledge and
attention from one research area to another. Occurrences of keywords that belong to each
research area k in papers by a in the late time period, Ya ∈ N

K , are assumed to be drawn
from a hierarchical multinomial logistic model. Ya results from a linear combination of the
initial research portfolio, xa, and a mixing matrix θa that measures the fraction of attention
redistributed from each research area to another. θa is drawn from a hierarchical process,

9Assuming that in a collaboration, each author interacts with a constant amount of co-authors in practice (regardless of
the total amount of co-authors), then the probability that they had interactions with one specific co-author in particular
is ∝ 1

|Ad |–1 .
10This approach aims to address the difficulty of determining the direction of the causal relationship between social re-
sources and research interests raised by Tripodi et al. [7].
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Figure 3 3a,3b,3c: Transfers of attention across research areas. xa and ya are the distributions scientist a’s
attention across research areas in two consecutive time periods. θak = (θakk′ ) represents the fraction of the
attention devoted by an author a to a topic k redirected to topics k′ ∈ {1, . . . ,K}, as scientists repurpose,
expand or concentrate their knowledge. By definition,

∑
k′ θakk′ = 1. Fig. 3d: Hierarchical model. θa is drawn

from a hierarchical process, with intellectual and social capital (Ia and Sa) as covariates. Observed variables are
represented in gray, latent variables in white

thus capturing the “average” cohort behavior. Formally speaking, Ya is assumed to derive
from a multinomial process involving linear combinations of (xak):

Ya ∼ multinomial(
K∑

k=1

xakθak1, . . . ,
K∑

k=1

xakθakK ) (5)

Where θakk′ is the fraction of attention to a topic k by a that has been redirected to a topic
k′. θ is a function of intellectual capital Ia and social capital Sa according to the following
generalized linear model:

θak = softmax (βak1 + γk1Ia1 + δk1Sa1, . . . ,βakK + γkK IaK + δkK SaK ) (6)

δkk′ is the effect of the scientists’ social capital in a research area k on the magnitude of
transfers from k to k′. Similarly, γkk′ is the effect of having more expertise in k′ (intellec-
tual capital) on shifts from k to k′. High values of the diagonal elements of γ would imply
that physicists are more conservative towards research areas in which they concentrate
more expertise. The coefficients βakk′ encode the average behavior of the cohort plus indi-
vidual deviations to the average behavior that are unexplained by the covariates.11,12 The

11The priors for this hierarchical model are:

βakk′ ∼ N (μkk′ ,σkk′ ) for 1 ≤ k′ ≤ K – 1 and βakK =μkK (7)

μkk′ ∼ N (λ × νkk′ , 1) (average behavior) (8)

δkk′ ∼ N (δ0 + λ′ × νkk′ , 1) (effect of social capital) (9)

γkk′ ∼ N (0, 1) (effect of intellectual capital) (10)

σ ∼ Exponential(1) (11)

Where νkk′ is the fraction of physicists with expertise in k (that is, with more intellectual capital than average in k) who
also have expertise in k′ . Priors must be thought thoroughly, as certain invariances can lead to identification issues – for
instance, shifting μ by a constant does not change the likelihood.
12The fit is performed with Stan’s Hamiltonian Monte-Carlo sampler (HMC is better behaved than Gibbs for such prob-
lems).
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Figure 4 (a) Aggregate transfers of attention across research areas, between 2000-2009 (to the left) and
2015-2019 (to the right). Widths of flows are proportional to

∑
a Xakθakk′ . Insignificant transfers (that happen

less than expected by chance alone assuming uniform mixing) are transparent. (b) For purposes of clarity, the
same figure is repeated to the right, highlighting only the flows directed towards “Dark matter”

ability of the model to predict individual trajectories is assessed in Appendix A.5, for var-
ious temporal segmentations of the initial and late research portfolios and topic models.
The model is better at predicting individual trajectories for larger adaptive responses and
longer time-scales.

Our model is strongly connected to Optimal Transport [56, 57], which seeks opti-
mal ways to “transport” an input distribution (say, x = (xk)) to a target distribution (e.g.,
y = (yk′ )) through “transfers” (θkk′) across their components while minimizing a cost func-
tion

∑
k,k′ xkθkk′Ckk′ (where Ckk′ is a cost matrix) [14]. The difference is that the proposed

Bayesian approach estimates transfers θkk′ by minimizing a likelihood rather than a cost
function. However, the connection with Optimal Transport suggests an economic inter-
pretation of the reallocation of research efforts, which will be leveraged in Sect. 3.1 to
show that patterns of change in research interests are shaped by learning costs.

3 Results
Figure 4a shows the aggregate transfers of attention at the level of the cohort revealed by
the model. The most obvious feature is the remarkable stability of most research areas: in-
deed, physicists’ conservatism toward their research area due to specialization is known
to be particularly high in HEP [5]; late research portfolios are largely constrained by prior
research interests: they exhibit path dependence [11] (using Inverse Optimal Transport,
Sect. 3.1 shows that these patterns are structured by learning costs). Conservatism seems
especially prevalent in the case of “collider physics”, a research area dedicated to knowl-
edge specific to particle accelerators. Nevertheless, “dark matter” has doubled, fueled by
a shift away from “neutrinos and flavor physics”, and “electroweak sector”, a phenomenal
domain studied at the LHC (Fig. 4b).13,14 This confirms that the cohort has responded

13The electroweak notably includes Higgs physics, which are very prominent at the LHC, where the Higgs boson was
discovered.
14The migration of many particle physicists towards dark matter provides an explanation for the persisting schism between
two research programs in fundamental physics, namely dark matter particle research and modified gravity. Both research
programs seek to explain a shared set of anomalies in astronomical observations, and yet their communities communicate
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Figure 5 Aggregate transfers of attention throughout the years 2000 to 2019, considering four time-intervals
of five years each. μ(D) is the average portfolio diversity of the cohort during each time-period

to changes in the landscape of experimental opportunities. Moreover, “string theory and
supergravity” has declined in favor of “AdS/CFT” (a research program that explores dual-
ities between theories of quantum gravity and certain types of theories of quantum field
theory) and “black holes”.15 Of course, this rough description must be considered with
caution, as interpreting clusters from topic models is notoriously hard, and these topics
in particular can regroup quite heterogeneous research programs.

While the paper focuses on two time periods (2000-2009 and 2015-2019), multiple alter-
native temporal segmentations can be considered. Figure 5 shows the transfers of research
attention of a cohort of physicists across four time-periods of five years each. It reveals that
the changes outlined above have unfolded rather gradually. The average diversity of physi-
cists’ research portfolio (μ(D), the average of the exponentiated entropy of x) during each
five-year time-bin is also shown. It has gradually increased over the years (P < 10–4): on
average, physicists have expanded their portfolio. Interestingly, the average linguistic di-
versity of each individual paper increased as well (with a confidence level P < 10–4) from
2.81 topics per paper (2000-2004) to 2.96 (2015-2019). This means physicists diversified
their research portfolios in part by diversifying the knowledge leveraged within each of
their individual papers (rather than solely by writing multiple papers on separate issues).

very little [58, 59]. Our approach suggests that particle physicists’ interest in dark matter is in great part motivated by the
fact this is a natural extension of their previous research; particle physicists would therefore not consider the alternative to
dark matter (modified gravity), given this topic that would make little use of their expertise.
15This converges with physicist Peter Woit’s controversial assessment that “string theorists” are no longer doing string
theory per se, though they keep identifying themselves as string theorists. As Peter Woit puts it, citing the 2022 “Strings”
conference: “one thing that stands out is that the string theory community has almost completely stopped doing string
theory.”; and, “[presentations’ titles] make very clear what the string theory community has found to replace string theory:
black holes” (Woit, 2022, https://www.math.columbia.edu/~woit/wordpress/?p=12981).
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3.1 The structuring effect of learning costs on scientists’ behavior
As research priorities change, research efforts must be efficiently reallocated among sci-
entists, given their prior knowledge. Here, we leverage the similarity between our model
of scientists’ trajectories and Optimal Transport (OT) [56, 57] to formulate the observed
behavior in economic terms and demonstrate that the shifts of attention are structured by
the minimization of “learning costs”, thus providing a first-order explanation of the aggre-
gate patterns of change in high energy physicists’ research interests. Optimal Transport is
a mathematical framework first introduced by Gaspard Monge for finding optimal ways of
displacing piles of sand in a military context [12], and later refined by Leonid Kantorovitch
in the context of economic planning [13].

Let x =
∑

a xa be the cohort’s initial distribution of attention across research areas (sum-
ming over each author a), and y =

∑
a ya the late distribution. Let us further assume that

x and y can be considered “fixed” by the institutions (scientific leadership, laboratories,
funding agencies, etc.) that define scientific priorities throughout time. In order to achieve
the distribution of research efforts y given the previous distribution x, some scientists
must redirect their attention away from certain research areas (for which yk < xk) and
towards more pressing ones (for which yk > xk). What is the most efficient way to real-
locate research efforts and achieve the transition from x to y? Intuitively, research areas
should be assigned to scientists in a way that requires as few of them as possible to acquire
new knowledge – in other words, in a way that minimizes learning costs, given the way
knowledge is distributed among individuals. This, we show, can be framed as an Optimal
Transport problem. Let Tkk′ be the coupling matrix that encodes how much attention has
been shifted from one research area k to a research area k′. There are two constraints on
Tkk′ :

∑
k′ Tkk′ = xk , and

∑
k Tkk′ = yk′ . These constraints encode the need to adapt (since

y �= x). But T must also minimize learning costs (C), which we assume to be linear in T
for simplicity:16 C =

∑
k,k′ Tkk′Ckk′ , where Ckk′ is a cost matrix. The problem of finding the

couplings Tkk′ that minimize the “transportation” costs (given a cost matrix Ckk′ and the
constraints on Tkk′ ) is an instance of Optimal Transport problem [14]. Typical instances
of OT problems include how to efficiently transport (say, ore from mines to factories) or
the optimal assignment of workers to firms [60]. In our case, the couplings are known
(they were recovered by the model from Sect. 2.4), and we want to infer the underlying
cost matrix that these couplings minimize. The transfers from a research area k to k′ for
each individual are simply xakθakk′ . Summing over individuals yields the coupling matrix
Tkk′ =

∑
a xakθakk′ , which measures how much attention was shifted away from k and to-

ward k′ at the cohort level.
The problem of recovering the cost matrix Ckk′ given the couplings is an Inverse Op-

timal Transport problem. Below, this problem is solved using the probabilistic method
proposed in [17].17 This method requires to put a prior on P(Ckk′ ) – indeed, infinitely
many cost matrices yield the same optimum, and priors are needed to lift this degen-
eracy. Following [17], we consider a prior such that

∑
k,k′ Ckk′ = cst. We assume that

16Roughly speaking, this linear assumption entails that scientists from a given research area are equally able to shift atten-
tion to another research area. In practice, some scientists have more abilities to switch to a given research area, and the
cost will increase non-linearly as more and more scientists are required to make the transition, including those less able to
make the switch.
17It should be noted that the approach by Chiu et al. [17] does not entail the assumption that scientists’ behavior is perfectly
minimizing the cost matrix. Indeed, the optimization problem they consider includes an entropic regularization term; while
this term is often introduced for numerical reasons, in the case of human behavior, it can be taken to represent inefficiencies
and random deviations from the optimum behavior [61].
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Figure 6 Learning costs and knowledge gap. The cost of shifting attention from one area to another (left
plot) is in great part determined by how frequently individuals hold knowledge in both areas (right plot)

E(Ckk′) ∝ softmax(β × (1 – νkk′ )),18 where νkk′ is the fraction of physicists who already
held expertise in k′ among those who already held expertise in k, and β ∼ N (0, 1) is the
effect of learning costs on Ckk . If νkk′ ∼ 1 (i.e. 1 –νkk′ ∼ 0), then shifting attention from k to
k′ does not entail the acquisition of additional knowledge, and Ckk′ should be almost zero.
If νkk′ = 0 (i.e. 1 –νkk′ = 1), any scientist shifting from k toward k′ must acquire new knowl-
edge, and the cost should be maximal. If actual behaviors do involve the minimization of
learning costs, we should observe a strong correlation between Ckk′ and the “knowledge
gap” (1 – νkk′ ).

Using the “MetroMC” algorithm proposed in [17], we empirically recover Ckk′ , the un-
derlying cost matrix, as shown in Fig. 6a. We find a strong correlation with the “knowledge
gap” (shown in Fig. 6): R(Ckk′ , 1 – νkk′) = 0.76, such that R2 = 0.58 (Fig. 17, see also Ap-
pendix A.6). Using a finer-grained temporal segmentation (2000-2004 → 2005-2009), the
resulting correlation is similar (R2 = 0.62). The empirical cost of shifting research efforts
from one research area to another is therefore shaped by learning costs. The derivation
of Ckk′ is potentially useful: one could in principle predict aggregate transfers of attention
given a counterfactual target distribution of research efforts y using optimal transport and
plugging-in Ckk′ as the cost matrix [57].

Under changing circumstances, research efforts must be reallocated efficiently. Scien-
tific norms and institutions must address an Optimal Transport problem by providing
incentives for scientists to conform to new research imperatives, in a way that factors
“learning costs”. Consequently, shifts between research areas which entail the acquisition
of new knowledge (layering) must be less likely that those which can take advantage of
prior knowledge (conversion). In the case of HEP, it does seem that adaptative patterns
are structured by this OT problem. Interestingly, the matrices in Fig. 6a and 6b feature
blocks (indicative of an underlying hierarchical structure), such that it is easier for scien-

18This prior has the merit of simplicity – it is a simple generalized linear model with the desired support.
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tists to migrate within than across these blocks. While these observation characterizes the
cohort’s behavior, drivers of differences among individuals are considered next.

3.2 Individual behavior and the effect of capital
3.2.1 Magnitude of change and capital
We propose a change score ca that measures how much the research agenda of a scien-
tist has changed between the two time periods under consideration, defined as the total
variation distance between their initial and late research portfolios:

ca ≡ dTV(xa, ya) =
1
2

∑

k

|yak – xak| (12)

This measure of change is naturally motivated by Optimal Transport: it is the minimal
cost of transporting xa to ya if the cost matrix has zeros on the diagonal and ones every-
where else (Ckk = 0 and Ckk′ = 1 for k �= k′.). This measure, however, weighs migrations
across different research areas identically, regardless of their cognitive proximity. We will
therefore also consider a second measure of change, the “cognitive distance” (da), defined
as the minimum cost of transporting xa to ya [14] induced by the cost matrix empirically
recovered (see Fig. 6a) using the Inverse Optimal Transport approach described in the
previous section. Another interesting aspect of Optimal Transport is indeed its ability to
provide “distances” between distributions that emphasize certain costs in particular.19

ca is comprised between 0 (if research attention has remained identically distributed)
and 1 (if the research agenda has been entirely redistributed). Large values of ca are rare,
with 50% of authors lying between 0.21 and 0.40 (Appendix A.7.1, Fig. 18). Although the
absolute value of ca (and da) has limited interpretability (it depends on the choice of “cog-
nitive scope” and the duration of the time periods considered, and ca is never expected
to be exactly zero due to random fluctuations and measurement noise), it allows for com-
parisons between physicists. We evaluate the effect of several factors on ca: i) the diver-
sity of intellectual capital D(Ia); ii) the excess diversity of social capital D∗(Sa); and iii) the
magnitude of social capital (“power”). We also consider the effect of iv) affiliation stability,
represented by a binary variable sa (sa = 1 if scientist a has at least one affiliation that spans
the whole time range considered, and sa = 0 otherwise), the effect of v) academic age, and
productivity, estimated from vi) all papers and vii) solo-authored papers. We perform a
linear regression of ca as a function of these variables, adjusting for Za = arg maxk xak , i.e.
physicists’ primary research area over the years 2000 to 2009 (see the model specification
in Appendix A.7.1).

The results are shown in Fig. 7. The diversity of intellectual capital has a significant pos-
itive effect: physicists with resources in many areas tend to revise their research agenda
more. There is also evidence of a small but positive effect of diversity of social capital on
the magnitude of changes in scientists’ research focus (interpreting these results in terms

19Given a cost matrix Ckk′ , we can define a measure of the gap from one distribution x to another distribution y, as the
minimum cost of displacing x to y:

d(x,y) = min
θkk′

θ1=1,θT x=y

∑

kk′
xkθkk′Ckk′ (13)

If the cost matrix meets certain properties (such as symmetry), then d is a distance. See [14] for more on the metric
properties of OT.
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Figure 7 Effect of intellectual capital, social capital, and institutional stability the magnitude of changes in
high-energy physicists’ interests.. Change (ca) is the total variation distance and weighs migrations across
research areas equally. The cognitive distance (da) gives more weight to migrations across cognitively distant
research area. Diversity is evaluated as the exponential of the Shannon entropy of the distribution of
intellectual and social capital across research areas. The effect of the primary research area during the initial
period (2000-2009) was also included as a control. Three research areas have a significant (95% CL) effect. Error
bars indicate 95% credible intervals; μ(β) denotes the mean posterior effect size. R2 = 0.17. Continuous
variables (diversity, power and ca) are standardized

of Optimal Transport, we might say that social capital helps overcome cognitive learning
costs). However, the magnitude of social capital, “power”, has a negative direct effect on
change. In other words, “power” is associated with stability, and “diversity” with change.
It is noteworthy that these dimensions of social capital have opposite effects. More senior
physicists are more conservative toward their research agenda, possibly because they ex-
perience less incentive to “adapt”. This comes in contrast with [6]. The difference could
stem in the specificity of high-energy physics, and in the fact that change is measured in
linguistics terms (instead of relying on citation patterns) at a rather coarse-grained scale
in the present paper. There is no discernible effect of affiliation stability after adjusting
for academic age. However, affiliation data is a bit noisy, and this could have the conse-
quence of underestimating the effect of institutional stability relative to that of academic
age. Finally, productivity (in co-authored papers) is associated with stability. Overall, en-
trenchment (age, power, productivity, specialization) all drive stability and conservatism.

Unsurprisingly, both research areas that have shrunk considerably have a significant
positive effect on migration scores. “Collider physics” and “dark matter”, on the other hand,
have a negative effect on the magnitude of change. All effects combined, physicists whose
primary category is “Collider physics” are the most conservative, with an average change
score 24% lower than the rest of the cohort; the long time-scales of collider experiments
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provide stable opportunities to physicists in that area [62, p. 138], thus promoting conser-
vatism. The variance explained remains low (R2 = 0.17): these factors only partially explain
differences between individuals.

ca neglects the cognitive gap between research areas. Using our alternative measure of
change that takes into account cognitive distance (da), the diversity of intellectual and
social capital has slightly larger effects. The robustness of these results is assessed by us-
ing different operationalizations of diversity and power in Appendix A.7.3), Table 3. Most
findings are stable, except that “brokerage” (unlike the magnitude of social capital, i.e. de-
gree centrality) has no direct effect on change (beyond the effect of productivity resulting
from co-authored publications).

In addition, in order to exclude the influence of direct collaborations on change, we con-
ducted a second comparative analysis including only scientists’ first-authored and last-
authored publications in their research portfolios.20 The effect of the diversity of intel-
lectual and social capital is stable; however, the direct effect of power is reduced (Ap-
pendix A.7.3, Tables 5 and 6). Moreover, the analysis was reproduced across different
choices of temporal segmentation and using different topic models. The previous find-
ings remain stable.

3.2.2 Diversification versus concentration
Research portfolios can be altered by two opposite strategies. One is “diversification”, i.e.
the addition of new research areas. Another is “concentration”, i.e. the desertion of research
areas to focus increasingly on others (Fig. 1 illustrates how this can happen, whether via
“conversion” or “displacement”). Figure 8 shows the effect of the same factors as above
on the probability that physicists have i) entered at least one new research area in be-
tween the two periods or ii) exited one research area (model description provided in Ap-
pendix A.7.2).21

The diversity of intellectual capital has a strong positive effect on the probability of ex-
iting a research area; intuitively, scientists with diverse interests can afford to disengage
from certain research areas even if this implies to abandon maladaptive prior knowledge
(“displacement”). Excess diversity of social capital increases the probability of entering
new research areas, but has no discernible effect on the probability of exiting research
areas. In contrast, there is some evidence that “power” decreases the probability of leav-
ing a research area. Figure 8 shows the direct effect of power (controlling for productivity
due to co-authored papers), which does not pass the 95% significance test; however, the
total effect of power22 on the probability of leaving a research area is significantly neg-
ative (μ(β) = –0.24, P(β > 0) < 10–4). Presumably, having many collaborators allows sci-
entists to remain committed to many research areas with minimal personal investment,

20It is important to emphasize that alphabetical ordering is still very prevalent in this field [63], and therefore this strategy
does not address the issue entirely.
21A research area k is considered “entered” by a when xak < 1

N

∑
a′ xa′k and yak > 1

N

∑
a′ ya′k ; conversely, a research area is

considered exited when xak > 1
N

∑
a′ xa′k and yak < 1

N

∑
a′ ya′k .

22That is, assuming the following causal structure:
Power Productivity

Leaving
research area
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Figure 8 Effect of capital and institutional stability on the probability of entering new research areas or
exiting previously explored ones. Bars indicate 95% credible intervals. μ(β) denotes the mean posterior effect
size. Continuous variables (diversity and power) are standardized

thus stabilizing their research agendas. Moreover, “power” also decreases the probability
of entering new research areas; this suggests that powerful scientists have less incentives
to invest resources in new topics. String theory & supergravity has a significant positive
effect of both entering and exiting research areas (suggesting physicists frequently “re-
placed” it with another topic). “Dark matter” has a negative effect on the probability of
entering a new research area, possibly because scientists with prior commitment to this
research area had less incentive to diversify their research portfolio and more incentive to
focus increasingly on this topic given its success over the following years. These conclu-
sions hold as alternative measures of diversity and power are considered (A.7.3, Table 4).

Again, we ran a second analysis considering only scientists’ first-authored and last-
authored publications. The effects of intellectual and social diversity remain stable. How-
ever, the effect of productivity resulting from co-authored papers no longer has an effect
on the probability of exiting a research area when only first- and last-authored papers are
included in physicists’ research portfolios (Table 8, Appendix A.7.3.). The results are gen-
erally stable across different topic models and temporal segmentations, except for i) the
effect of academic age on the probability of exiting a research area, which is not consis-
tently 95% CL significant; and ii) the effect of the diversity of social capital on the proba-
bility of entering a new research area, which is zero in one particular configuration (Tables
7 and 8, Appendix A.7.3.).

3.2.3 Why diversity promotes change
Access to diverse cognitive resources is associated with change. To see why, it is insightful
to look into how the concentration of scientists’ intellectual capital in each research area k
(Ia = (Iak)) affects their trajectories. In the model introduced in Sect. 2.4, the diagonal co-
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Figure 9 Effect of intellectual and social capital on transfers across research areas. Rows represent research
areas of origin and columns represent target areas. Effect sizes are expressed in log-odds (log [θakk′ /(1 – θakk′ )],
where θakk′ is the fraction of attention to k redirected to k′) per unit of intellectual or social capital in the
target research area k′ . Effects that are not significant (at the 95% credible level) are displayed in white for
purposes of clarity

efficients of the γ matrix measure the effect of having intellectual resources in a certain
area on the commitment to this area. As shown in Fig. 9a, most coefficients on the diago-
nal are significantly positive: physicists with a strong specialization in a research area tend
to preserve their specialization in this area.

The effect of social capital on transfers across research areas (δkk′ , Eq. (6)), is shown
in Fig. 9b. Statistically significant effects are always positive: scientists tend to redirect
attention to research areas in which they have more collaborators involved, in line with a
very recent observation by Venturini et al. [64].

Moreover, we find a strong correlation between the effect of social capital (δkk′ ), and
νkk′ ∈ [0, 1], the fraction of physicists with more expertise than average in a research area k′

among those who have more expertise than average in k (see Eq. (9), Sect. 2.4). δkk′ de-
creases by 1.5 unit of standard deviation on average as νkk′ goes from 0 (nobody holds
expertise in both research areas k and k′) to 1 (everyone with expertise in k has expertise
in k′). Social capital plays a more important role in shifts between cognitively distant re-
search areas, in line with a previous finding by Tripodi et al. [7]. These general patterns (the
association between the concentration of intellectual capital in one area and the commit-
ment to this area, and the increasing effect of social capital with cognitive dissimilarity) are
insensitive to the temporal segmentation in place (see Figure 19, Appendix A.9 for similar
Figures based on a different segmentation).

4 Discussion
This paper addressed the conflict between specialization and adaptability in science. To
this end, an unsupervised Bayesian approach was developed, based on the idea that trans-
formations in the scientific landscape prompt scientists to efficiently repurpose their prior
knowledge. The model simultaneously measures transfers of attention across research ar-
eas and the effect of various variables on the evolution of scientists’ research portfolios, in
particular intellectual and social capital.

The model was applied to a cohort of N = 2108 high-energy physicists between the years
2000 and 2019. At the macroscopic level, it reveals the decline of neutrinos physics due
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to migrations towards the electroweak sector (explored at the LHC) and more impor-
tantly towards dark matter. Similarly, many physicists have shifted resources from the elec-
troweak sector towards dark matter. Moreover, string theory & supergravity has started to
disintegrate into black holes and AdS/CFT research. The cohort has therefore responded
to new experimental opportunities as well as to theoretical developments in quantum
gravity.

Then, leveraging the connection between our model and Optimal Transport (OT), we
showed that the reallocation of research efforts among scientists is shaped by learning
costs. Indeed, under changing circumstances, scientific institutions must address an OT
problem by efficiently reallocating research efforts in a way that balances learning costs
and the imperative to adapt to new circumstances. This has the effect of enhancing the
utility of the scientific capital disseminated amongst scientists as the perceived payoff of
certain research areas change. OT structurally explains path dependency, as individuals
experiencing pressures to adapt seize the nearest opportunity available to them. OT is also
methodologically useful: Inverse OT allows one to derive cost functions from observed
behavior, and thus offers a potential way to better connect empirical data with evolution-
ary agent-based models of scientists’ behavior that postulate latent utility functions [16].
Moreover, it has the potential of informing policy by identifying potential bottlenecks if
research efforts were to be reallocated in certain ways (as one can use OT to estimate
the “cost” of various counterfactual scenarios). Overall, the OT approach illustrates that
the adaptability of epistemic communities is constrained by how knowledge is distributed
among individuals (specialization).

The longitudinal comparative analysis of physicists’ trajectories revealed that the diver-
sity of intellectual and social capital is positively associated with change: diversity pro-
motes adaptability under new circumstances, and therefore diversifying research portfo-
lios is a reasonable strategy when the future is uncertain. However, enforcing diversity can
lead to suboptimal allocations of research efforts under stable circumstances [30]. Differ-
ences among research areas are found: physicists expert in particle colliders have remained
particularly conservative, possibly because they have secured long-term research oppor-
tunities (thanks to very large investments in particle accelerators like the LHC). There is
also evidence that physicists specialized in dark matter have been consolidating their spe-
cialization, presumably because the increasing popularity of the topic encouraged them
to double down their investment in this research area. Higher concentrations of intellec-
tual capital in certain research areas generate stronger commitment towards these areas;
therefore, specialized scientists are more at risk of being trapped in a sunk cost fallacy as
their expertise becomes unsuitable for new circumstances. However, specialized scientists
can offset the risks associated with specialization by diversifying their social network. This
raises the possibility of free-riding, as scientists are encouraged to focus on what seems
most promising at the time and let their peers take the risk of exploring alternatives until
their value is established [65]. Additionally, social capital plays an increasingly important
role as scientists expand their research agenda further beyond their specialization, as ob-
served by [7], suggesting that collaborations are crucial in overcoming cognitive barriers
between research areas. Unlike diversity, “power” is associated with more stable research
interests: presumably, cooperation can safeguard individuals from adaptive pressures, and
most importantly minimizes the cost of remaining invested in certain areas.
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We have described renewal strategies of research portfolios according to a typology of
incremental change developed in the context of historical institutionalism, which has been
shown to account for how organizations like DESY and SLAC have transitioned from HEP
to multi-purpose photon science. Adaptation strategies include the “conversion” of prior
knowledge to new purposes, the “layering” of additional research interests via the acquisi-
tion of new knowledge, or the “displacement” of former research commitments resulting
in a loss of knowledge. The connection with institutional change stems from the fact that
institutions can face a challenge similar to that experienced by specialized scientists con-
fronted with transformations in their scientific landscape, in that they too must sometimes
adapt and redirect accumulated capital in directions that may not have been foreseen at
the time of their “design”. The LHC itself has evolved through similar processes of gradual
repurposing of prior infrastructure, including the accelerator’s tunnels [66]: adaptation
prompts individuals (and collectives) to efficiently repurpose capital previously accumu-
lated in different forms (cultural, social, economic, etc.). Following [11], we conclude that a
better understanding of collective adaptation benefits from the pooling of diverse insights:
while studies of institutional change have documented strategies of gradual adaptation
that progressively leverage and repurpose accumulated capital when change is difficult, the
literature on cultural evolvability stresses the critical roles of diversity and social learning.
In return, this work provides an empirical contribution to the literature that treats science
as a cultural evolutionary system [16].

Throughout the paper, various methodological limitations were raised. First, the re-
quirement on the quantity of authors’ publications makes the cohort atypical. A second
issue, already noted by Gieryn [18], lies in the arbitrariness in the choice of temporal and
cognitive scopes for measuring change. In this paper, the choice in temporal segmenta-
tion was driven by the time-scale associated with the transformations in the landscape of
experimental opportunities. For shorter time-scales, the very notion of research portfolio
– as operationalized in this paper – may break down and lose any predictive force. As per
the cognitive scope, previous works (e.g. [4, 5, 7]) have typically relied on the hierarchical
PACS classification of physics literature, such that cognitive scales were imposed. For this
work, the literature was divided into 15 topics that captured the features of change in the
epistemic landscape discussed above, i.e. the rise of new probes of the cosmos, but other
scales could have been considered. Moreover, although the unsupervised topic model ap-
proach is arguably a better proxy of cognitive change, it introduces noise which could in
part explain the low predictive power of the models of change in scientists’ research agen-
das. Additionally, the topic model was trained on the entire time range covered by the
analysis. Changes in the relationships between topics and in their own vocabulary dis-
tributions are not considered, even though they constitute another interesting linguistic
dimension of adaptive patterns that would deserve further investigation. Morever, the cost
of shifting from one research area to another, is itself time-varying quantity in reality. Fi-
nally, one must be cautious before drawing strong causal conclusions from these findings.
While the causal pathway “power → collaborations → stabilization of research interests”
seems to be a reasonable interpretation of the results, the relationship between diversity
and change is less clear; they could both be confounded by a latent trait specific to certain
researchers (e.g. the “explorers” in [67]). Moreover, the sample size (N = 2108) is insuf-
ficient to explore sophisticated interactions or potential moderators in the comparative
analysis.
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Appendix: Supplementary material
A.1 Transformations in high-energy physics

Figure 10 Share of citations of each of the most cited experiments in high-energy physics literature,
between 2000 and 2019. Hatched rectangles correspond to experiments observing particles produced in
colliders or nuclear reactors; other rectangles correspond to observations of phenomena or particles of
astrophysical origin. We use citation and experiment data from the Inspire HEP database [41]. The
classification of these experiments is our own

A.2 Cohort characteristics

Figure 11 Distribution of academic age (in 2019) and affiliation stability within the considered cohort.
Academic age (left plot) is evaluated as the time passed since the first publication. There is a cut-off in the
distribution academic age due to the requirement on publication counts between 2000 and 2009. The
median academic age is 27 years in 2019. 49% of the cohort has had at least one permanent affiliation
spanning the period under consideration (right plot). As expected, permanent affiliations are associated with
higher academic ages (bars indicate quartiles)
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A.3 Topics
A.3.1 Word embeddings dimension
The word2vec skip-gram models is trained using different values for L the dimension of the
embeddings’ space. L = 50 (the choice made in the present paper) generally lies somewhere
between under-fitting and over-fitting. The latter is a concern due to the small sample size
(the model is trained on abstracts rather than full-texts).

Figure 12 Loss of the word2vec model as a function of the embeddings dimension (L)

A.3.2 Keyword classification
In the Embedding Topic Model used in the present paper – as in topic models in general–,
documents are mixtures of several topics; moreover, keywords may belong to several top-
ics. This is a desirable feature: certain concepts serve different purposes depending on the
context, and some concepts do not clearly belong to any research area. More importantly,
this is crucial to the present approach, given that we must be sensitive to situations in
which scientists have repurposed certain concepts to new research goals; i.e., instances
where the same resources are applied in a new context (a new research area). For that,
each keyword i from a document d is assigned a research area zdi := arg maxk=1,...,K P(zdi =
k|wdi, θd), which is the research area most probably associated with the keyword i given
the topic distribution of the document θd – i.e. the context. In fact:

zdi := arg max
k=1,...,K

P(zdi = k|wdi, θd) = arg max
k=1,...,K

P(wdi|zdi = k)P(zdi = k|θd)

P(wdi|θd)
(14)

In the process, we discard ambiguous keywords for which H(zdi) ≥ log 2, where H de-
notes the entropy of the distribution P(zdi = k|wdi). Either such keywords do not carry
any scientific content, or the context is insufficient to disambiguate among the possible
research areas to which they might belong.

The average effective amount of topics in documents according to the topic model –
measured as exp H(θd) where H is the Shannon entropy – is 7.5, which is unrealistically
high. The filtering and classification procedure reduces the average effective amount of
topics to ∼3.0 per document, which is much more informative. This procedure is espe-
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cially important for short texts such as abstracts, which poorly constrain the latent topic
distribution θd .

A.3.3 List of topics

Table 1 Research areas, their top-words, and their correlation with a standard classification (PACS)

Research area Top words Most correlated PACS categories

AdS/CFT boundary, holographic, flow, bulk,
critical, conformal, critical_point,
boundary_theory, cfts, point, bootstrap,
central, conformal_anomaly, strip, fixed,
free, entanglement_entropy,
conformal_field_theory, criticality,
condition

Gauge/string duality (0.27)
Conformal field theory, algebraic [. . . ] (0.23)
Theory of quantized fields (0.15)
Theories and models of [. . . ] (0.14)
Critical point phenomena (0.14)

Black holes hole, black_hole, gravity, black, horizon,
geometry, gravitational, spacetimes,
spacetime, curvature, thermodynamics,
einstein, schwarzschild, metric, ad, hair,
relativity, space_time, observer,
graviton

Quantum aspects of black holes, [. . . ] (0.51)
Classical black holes (0.41)
Physics of black holes (0.32)
Exact solutions (0.24)
Higher-dimensional black holes, [. . . ] (0.23)

Classical fields scalar, general, first, scalar_field,
massless, real, explicit, dynamical,
second, exact, special, linear, full,
symmetric, static, electromagnetic,
classical, nonlinear, approximate,
non_trivial

Modified theories of gravity (0.19)
Lorentz and Poincaré invariance (0.16)
Nonlinear or nonlocal theories and [. . . ] (0.11)
Exact solutions (0.10)
Higher-dimensional gravity and [. . . ] (0.10)

Collider physics distribution, collision, production,
cross_sections, section, parton, hadron,
cross, cross_section, process,
hadronic_collision, scattering,
correction, fragmentation, partons,
kinematics, transverse, impact, event,
partonic

Perturbative calculations (0.29)
Polarization in interactions and [. . . ] (0.28)
Inclusive production with [. . . ] (0.27)
Total and inclusive cross sections [. . . ] (0.26)
Relativistic heavy-ion collisions (0.25)

Cosmology constant, cosmological, inflation,
cosmic, perturbation, vacuum,
universe, inflationary, cosmology,
fluctuation, inhomogeneity, tension,
lambda, planck, inflaton,
cosmological_perturbation, era, epoch,
density, background

Particle-theory and field-theory [. . . ] (0.59)
Cosmology (0.32)
Observational cosmology (including [. . . ] (0.28)
Dark energy (0.25)
Background radiations (0.21)

Dark matter matter, dark, dark_matter, detection,
dm, signal, abundance, observation,
relic, direct, constraint, candidate,
wimp, asymmetric, prospect,
dark_matter_particle, center,
detectable, cold, contribute

Dark matter (0.74)
γ -ray (0.22)
Cosmic rays (0.19)
γ -ray sources; γ -ray bursts (0.17)
Elementary particle processes (0.17)

Electroweak sector standard, higgs, boson, particle,
standard_model, physic, lhc, sm, top,
tev, collider, mssm, electroweak,
minimal, phenomenology, extension,
extra, supersymmetric_model,
superpartners, new_particle

Extensions of electroweak Higgs sector (0.34)
Supersymmetric models (0.33)
Non-standard-model Higgs bosons (0.30)
Supersymmetric partners of known [. . . ] (0.28)
Standard-model Higgs bosons (0.27)

Gauge theory & Grand
Unification

dimension, coupling, scale, structure,
operator, fermion, value, matrix,
number, su, charge, sector, spin, group,
topological, anomalous, breaking,
anomaly, global, flavor

Unified theories and models of [. . . ] (0.22)
Unification of couplings; mass relations (0.17)
Quark and lepton masses and mixing (0.13)
Unified field theories and models (0.12)
Field theories in dimensions other [. . . ] (0.12)
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Table 1 (Continued)

Research area Top words Most correlated PACS categories

Hadrons decay, data, channel, bound,
resonance, gamma, meson, width,
experimental_data, collaboration, kaon,
prediction, experimental,
measurement, admixture, narrow,
process, hadronic_decay, s0, ratio

Decays of bottom mesons (0.30)
Decays of J/ψ , Y, and other quarkonia (0.24)
Meson-meson interactions (0.21)
Decays of bottom mesons (0.20)
Bottom mesons (|B|>0) (0.19)

Neutrinos & flavour
physics

neutrino, violation, oscillation, flavor, cp,
angle, mixing, experiment, lepton,
flavour, hierarchy, majorana,
cp_violation, beta, leptogenesis,
asymmetry, neutrino_mass,
neutrino_oscillation, smallness,
generation

Neutrino mass and mixing (0.74)
Non-standard-model neutrinos, [. . . ] (0.41)
Ordinary neutrinos (0.30)
Neutrino interactions (0.28)
Quark and lepton masses and mixing (0.23)

Perturbative methods amplitude, qcd, loop, diagram, sum,
contribution, perturbative, expansion,
vertex, rule, light_cone,
perturbative_qcd, propagator,
approach, correlator, one_loop,
evaluation, nonperturbative, kernel,
diagrammatic

General properties of perturbation [. . . ] (0.25)
Other nonperturbative calculations (0.24)
Sum rules (0.22)
Perturbative calculations (0.21)
General properties of QCD [. . . ] (0.16)

QCD quark, chiral, magnetic, baryon,
relativistic, moment, qcd, light_quark,
strong, heavy, heavy_quark, lattice,
magnetic_field, electric,
deconfinement, chromodynamics,
current, diquarks, plasma, color

Lattice QCD calculations (0.27)
Chiral symmetries (0.26)
Chiral Lagrangians (0.25)
Quark-gluon plasma (0.23)
General properties of QCD [. . . ] (0.20)

Quantum Field Theory quantum, group, quantum_field,
representation, quantisation, mechanic,
quantum_field_theory, transformation,
hamiltonians, algebra,
finite_dimensional, quantization,
commutator, algebraic, arbitrary,
operator, qft, invariant, analog,
associated

Algebraic methods (0.26)
Noncommutative field theory (0.25)
Quantum mechanics (0.22)
Noncommutative geometry (0.19)
Quantum groups (0.18)

String theory &
supergravity

string, supersymmetric, superstring,
six_dimensional, modulus, super,
instantons, supergravity, dyons, n2,
mathcaln, superpotentials, heterotic,
sigma_models, n1, n4, gauged, space,
deformation, compactifications

Supersymmetry (0.31)
Strings and branes (0.29)
Supergravity (0.29)
Compactification and four- [. . . ] (0.25)
D branes (0.20)

Thermodynamics potential, effective, interaction, limit,
temperature, action, finite, local,
freedom, approximation, level, weak,
chemical, force, effective_field_theory,
lagrangian, finite_temperature,
effective_field, degree, effective_theory

Finite-temperature field theory (0.26)
Chiral symmetries (0.09)
Nuclear forces (0.08)
Quark-gluon plasma (0.08)
General properties of QCD [. . . ] (0.08)

Uninterpretable approach, method, analysis, recent,
calculation, numerical, formalism,
study, prediction, sigma, previous,
work, theoretical, systematic,
comparison, uncertainty, agreement,
good, investigation, paper

Lattice QCD calculations (0.07)
Baryon resonances (S=C=B=0) (0.05)
Other nonperturbative calculations (0.05)
Few-body systems (0.05)
Lagrangian and Hamiltonian approach (0.05)

Uninterpretable solution, equation, phase, space, time,
system, transition, region, condition,
constraint, dynamic, class, background,
configuration, wave, range, motion, set,
star, instability

Exact solutions (0.14)
Nonlinear or nonlocal theories and [. . . ] (0.11)
Extended classical solutions; [. . . ] (0.10)
Relativistic wave equations (0.10)
Modified theories of gravity (0.09)
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Table 1 (Continued)

Research area Top words Most correlated PACS categories

Uninterpretable form, correction, momentum, tensor,
mode, relation, higher, factor, vector,
invariant, formula, angular, part,
theorem, spectrum, power,
dimensional, invariance, expression,
derivative

Electromagnetic form factors (0.17)
Protons and neutrons (0.10)
Lorentz and Poincaré invariance (0.08)
Gauge field theories (0.06)
Dispersion relations (0.06)

Uninterpretable spectrum, low, problem, low_energy,
important, high, property, high_energy,
small, physical, soft, fundamental,
behavior, analytic, behaviour, spectral,
dispersion, essential, phenomenon,
regime

General properties of QCD [. . . ] (0.07)
Regge formalism (0.07)
Wave propagation, transmission and [. . . ] (0.05)
Elastic scattering (0.05)
Lattice gauge theory (0.05)

Uninterpretable different, possible, particular, present,
various, mechanism, type, example,
massive, several, scenario, simple,
single, similar, consistent, addition,
hand, different_type, interesting, way

Particle-theory and field-theory [. . . ] (0.07)
Modified theories of gravity (0.07)
Field theories in dimensions other [. . . ] (0.05)
Cosmology (0.05)
Dark energy (0.05)

A.3.4 Topic validation using the citation network
In order to validate the consistency and scientific dimension of the topics that were re-
covered, we verify that papers from a given topic tend to cite more papers from the same
topic. Let Nk,k′ be the amount of citations of articles that belong to topic k′ originating
from articles that belong to k, and N =

∑
k,k′ Nk,k′ the total number of citations. From this

matrix, a normalized pointwise mutual correlation npmi(k, k′) is calculated:

npmi(k, k′) = log
Nk,k′/N

(
∑

i Nk,i/N)(
∑

i Ni,k′/N)
(15)

npmi(k, k′) is shown in Fig. 13. It measures how frequent citations from k to k′ are, rela-
tive to what would be expected if citations were uniformly distributed. The diagonal values
are positive, indicating that the topics we retrieved tend to refer to themselves significantly
more than expected by chance alone, providing further evidence of their scientific content
and coherence.

A.3.5 A comparison of three topic models
Figure 14 compares the ability of three topic models to measure the transformations in
high-energy physics research resulting from changes in the landscape of experimental op-
portunities. In the coarse-grained model (K0 = 15, in the middle), many types of exper-
iments are lumped together into a single topic. It is therefore ill-suited for assessing the
impact of the transformations in the landscape of experimental opportunities. The model
used throughout the paper is well able to distinguish neutrino research for dark matter
research, which have both undergone significant transformations according to Fig. 10. It
is also better able to separate black hole phenomenology and cosmology, compared to the
fine-grained model (K0 = 25).

A.3.6 Topic validation using the PACS classification
Blue cells show that the research areas recovered from the topic model correlate with the
PACS classification (which further confirms their scientific dimension), but also that they
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Figure 13 Normalized pointwise mutual information npmi(k, k′) of the citation matrix Nk,k′ . Positive values (in
blue) indicate that the y-axis research area cites the x-axis research area more often than expected by chance;
negative values indicate that citations occur less than expected by chance. When shown, individual values
indicate how many times citations occur compared to chance alone. For instance, papers about Hadrons cite
papers about Perturbative methods 1.4 times what would be expected if citations were uniform across
research areas

Figure 14 Origin of papers citing each type of experiment, according to three topic models: the model
considered throughout the present paper (to the left), a model with fewer topics (K0 = 15), and a model with
more topics (K0 = 25). A value of one (dark red) indicates that 100% of the papers citing a certain type of
experiment (cf. rows) originate from a given topic (cf. columns)
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Figure 15 Correlation between PACS categories present in ≥ 100 publications in the corpus (rows), and the
research areas recovered by the topic model (columns). Each colored cell indicates the correlation between a
leaf category of the hierarchical PACS classification and one of the topics from the topic model

can give a different picture. For instance, each of the topics “dark matter”, “black holes”
and “cosmology” span over several higher-level categories of the PACS classification (e.g.
“fundamental astronomy . . . ” and “specific theories and interaction models . . . ” for dark
matter).
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Figure 16 Correlation between different measures of capital. Measures considered in priority in this analysis
are shown in bold. Alternative measures are shown for comparison purposes. By construction, excess social
diversity is orthogonal to intellectual diversity (R = 0)

A.4 Measures of capital
Figure 16 shows the Pearson correlation between different measures of the diversity of
intellectual and social capital and of power, as evaluated among the cohort of high-energy
physicists. For comparison purposes, an alternative measure of diversity based on Stir-
ling’s index [68], with prior applications to studies of interdisciplinarity [69, 70] is evalu-
ated.23 A measure of brokerage is also considered.24

As shown in Fig. 16, the entropic measure of diversity considered in this paper corre-
lates strongly with the Stirling measure. The magnitude of social capital (which is similar
to degree centrality) correlates weakly with excess social diversity, thus emphasizing that
power and diversity are partially orthogonal aspects of social capital. The magnitude of
social capital is strongly correlated with brokerage; indeed, strongly connected scientists,
with higher degree centrality, are also those scientists who initiate collaborations between
otherwise disconnected scientists, as measured by brokerage.

A.5 Model performance over multiple corpora, temporal segmentations, and
topic granularities

The predictive power of the model can be assessed by evaluating the total variation dis-
tance between the true distribution ya and the predicted distribution ypred

a . This perfor-

23The Stirling-based diversity measured is evaluated as:

DStirling = 1 –
∑

k,k′
dkk′ Iak Iak′ (16)

Where dkk′ is the fraction of scientists who have more expertise than average in both k and k′ among those that have
expertise in one or the other (i.e., a similarity matrix). This follows from previous approaches for measuring research
interdisciplinarity [69, 70].
24We evaluated brokerage as the amount of pairs of scientists that have collaborated with a given physicist while having
no common collaborator except for this physicist. This effectively measures the extent to which this physicist connects
otherwise disconnected scientists.
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Table 2 Performance of the actual model versus that of the baseline model for various corpora,
temporal segmentations, topic model parameters, and authorship criteria

Corpus Authorship K L Cohort
size

Temporal
segmentation

Model
μ(dTV(ya ,ya

pred))
Baseline
μ(dTV(ya ,xa))

HEP Any 20 50 2108
2000–2009
2015–2019

0.306 0.316

HEP 1st/last 20 50 2108
2000–2009
2015–2019

0.306 0.316

HEP Any 20 50 1836
2000–2004
2005–2009

0.262 0.262

HEP Any 20 50 2530
2005–2009
2010–2014

0.261 0.265

HEP Any 20 50 3816
2010–2014
2015–2019

0.246 0.244

HEP Any 15 50 2375
2000–2009
2015–2019

0.293 0.297

HEP Any 25 50 2109
2000–2009
2010–2019

0.315 0.328

HEP Any 15 50 2069
2000–2009
2015–2019

0.290 0.295

HEP Any 20 150 2169
2000–2009
2015–2019

0.309 0.318

ACL Anthology Any 20 50 578
2002–2011
2012–2022

0.337 0.466

mance metric is calculated via 10-fold cross-validation. It is compared to a baseline model
that predicts no change in the research agenda (ybaseline

a = xa). The results are shown in
Table 2. For the cohort of high-energy physicists, the model performs only marginally
better than the baseline, given that individuals have remained quite conservative on aver-
age, most of the fluctuations being difficult to predict. Table 2 also considers a cohort of
scientists from the ACL anthology corpus of computational linguistics research [71], by
running the same pipeline (the measurement of research portfolios during two consecu-
tive time periods using our topic model approach and the training of the trajectory model).
Although the data are of significantly lesser quality, research portfolios have undergone
much more significant transformations in this dataset (see Appendix A.10, Fig. 20). Con-
sequently, our model performs much better than the baseline for this cohort.

A.6 Learning costs and optimal transport
The MCMC algorithm from [17] is run on 1,000,000 iterations of the “MetroMC” algo-
rithm, using what the authors call a “P1” prior (that is, a prior such that

∑
kk′ Ckk′ = C0 =

cst25). More precisely, we assume that:

P(ckk′ |pkk′ ) =
1
Z

1
∏

kk′
c1/2

kk′
exp (–αDKL(ckk′ ||pkk′ )) with ckk′ = Ckk′/C0 (17)

and pkk′ = softmax(β(1 – νkk′)) (18)

25We chose the minimum value of C0 for which the system admitted a solution.
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Figure 17 Cost of shifting a unit of cohort’s research attention from k to k′ as a function of the fraction of
physicists with expertise in k′ among those with expertise in k (νkk′ )

(17) is sometimes referred to as the entropic prior [72, 73]. The mean posterior values
of Ck,k′ are shown in Fig. 17, as a function of the knowledge gap from k to k′. The knowl-
edge gap 1 – νkk′ is the fraction of experts in k who do not hold significant expertise in k′

(ν is shown in Fig. 6b). A significant correlation is found (R = –0.76). This is true also for
the replication dataset of computational linguistics research (Appendix A.10), for which
R = –0.63.

A.7 Effect of capital on strategies of change
A.7.1 Model for the magnitude of change
The model for ca is:

z(ca) ∼N (μa,σ )

μa = β int-divz(D(Ia)) + βsoc-divz(D∗(Sa)) + βpowerz(P(Sa)) + βstabilitypa

+ βagez(aa) + βprodz(πa) + μarea
ka + μ

ka = arg max
k

xak

β ,μ ∼N (0, 1)

|μarea
k | ∼ Exponential(τ )

τ ,σ ∼ Exponential(1)

Where z(·) denotes standardized variables.

A.7.2 Model for the probability of having entered/exited a research area
The model for the probability pa of having entered a new field:

logit(pa) = β int-divz(D(Ia)) + βsoc-divz(D∗(Sa)) + βpowerz(P(Sa)) + βstabilitypa

+ βagez(aa) + βprodz(πa) + μarea
ka + μ
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Figure 18 Distribution of change and cognitive distances in the cohort. Higher values correspond to more
drastic changes in a scientists’ research agenda

ka = arg max
k

xak

β ,μ ∼N (0, 1)

|μarea
k | ∼ Exponential(τ )

τ ,σ ∼ Exponential(1)

The same model structure is used for the probability of having exited a research area.

A.7.3 Effect of capital and robustness checks

Table 3 Effect of each variable on (a) the change score and (b) the cognitive distance for each
model. The reference model uses entropy as the diversity measure D and the magnitude of
intellectual capital as a measure of power P. Values indicate the mean posterior effect size and the
95% credible interval. Significant effects are shown in bold

Predictor Dep. variable

Change score (ca), model: Cognitive distance (da), model:

Reference D = Stirling P = Brokerage Reference D = Stirling P = Brokerage

Intellectual capital
(diversity)

+0.28+0.044
–0.044 +0.28+0.042

–0.043 +0.27+0.044
–0.043 +0.33+0.043

–0.042 +0.34+0.042
–0.042 +0.32+0.043

–0.043

Social capital (diversity) +0.09+0.04
–0.04 +0.07+0.04

–0.04 +0.08+0.04
–0.04 +0.11 +0.04

–0.041 +0.09+0.04
–0.04 +0.1+0.04

–0.04

Social capital (power) –0.09+0.06
–0.06 –0.07+0.06

–0.06 –0.02+0.05–0.05 –0.14+0.061
–0.061 –0.12+0.06

–0.06 –0.05+0.05–0.05

Stable affiliation –0.01+0.09–0.09 –0.009+0.09–0.09 –0.0008+0.09–0.09 –0.007+0.09–0.09 +0.0009+0.09–0.09 +0.01+0.09–0.09

Academic age –0.1+0.05
–0.05 –0.1+0.05

–0.05 –0.1+0.047
–0.047 –0.07+0.05

–0.05 –0.07+0.047
–0.047 –0.08+0.05

–0.05

Productivity
(co-authored)

–0.12+0.058
–0.059 –0.12+0.058

–0.058 –0.17+0.052
–0.053 –0.1+0.06

–0.06 –0.1+0.058
–0.056 –0.17+0.053

–0.052

Productivity
(solo-authored)

–0.05+0.041
–0.04 –0.05+0.04

–0.04 –0.06+0.04
–0.04 –0.04+0.04–0.04 –0.03+0.04–0.04 –0.04+0.04

–0.04

Hadrons –0.009+0.2–0.2 –0.11+0.18–0.2 –0.008+0.2–0.2 +0.03+0.1–0.1 –0.05+0.1–0.2 +0.04+0.1–0.1

String theory & supergravity +0.28+0.15
–0.15 +0.34+0.18

–0.18 +0.25+0.15
–0.15 +0.11+0.13–0.11 +0.21+0.15

–0.15 +0.07+0.1–0.1

Perturbative methods +0.12+0.22–0.18 +0.06+0.2–0.2 +0.13+0.22–0.18 +0.15+0.22–0.17 +0.1+0.21–0.17 +0.16+0.23–0.18

Classical fields –0.25+0.36–0.59 –0.21+0.38–0.55 –0.23+0.35–0.57 –0.19+0.27–0.58 –0.17 +0.3
–0.51 –0.16+0.26–0.55

Collider physics –0.19+0.16
–0.17 –0.34+0.19

–0.19 –0.2+0.17
–0.17 –0.02+0.1–0.1 –0.16+0.15

–0.16 –0.03+0.1–0.1

Neutrinos & flavour physics +0.21+0.18
–0.17 +0.17 +0.2

–0.18 +0.18+0.18
–0.17 +0.11+0.16–0.13 +0.1+0.2–0.1 +0.09+0.2–0.1
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Table 3 (Continued)

Predictor Dep. variable

Change score (ca), model: Cognitive distance (da), model:

Reference D = Stirling P = Brokerage Reference D = Stirling P = Brokerage

Black holes +0.06+0.2–0.2 +0.15+0.22–0.19 +0.05+0.2–0.2 –0.03+0.1–0.2 +0.06+0.2–0.1 –0.04+0.1–0.2

Gauge theory & Grand
Unification

–0.07+0.3–0.4 –0.05+0.3–0.4 –0.06+0.3–0.3 –0.02+0.2–0.3 +0.003+0.3–0.3 –0.008+0.2–0.3

Dark matter –0.27+0.24
–0.25 –0.32+0.26

–0.27 –0.28+0.24
–0.25 –0.13+0.17–0.23 –0.18 +0.2

–0.24 –0.13+0.17–0.23

Thermodynamics +0.14+0.36–0.26 +0.27+0.41–0.32 +0.16+0.37–0.27 +0.1+0.34–0.2 +0.25+0.41–0.29 +0.12+0.36–0.21

Cosmology –0.02+0.16–0.17 +0.01+0.2–0.2 –0.03+0.2–0.2 –0.06+0.1–0.2 –0.02+0.1–0.2 –0.06+0.13–0.17

Electroweak sector –0.14+0.15–0.16 –0.21+0.18
–0.18 –0.17+0.16

–0.16 –0.04+0.1–0.1 –0.1+0.13–0.15 –0.07+0.1–0.1

QCD –0.009+0.2–0.2 –0.07+0.2–0.2 +0.001+0.2–0.2 +0.02+0.1–0.1 –0.03+0.14–0.16 +0.04+0.1–0.1

Quantum Field Theory +0.04+0.2–0.2 +0.09+0.2–0.2 +0.04+0.21–0.19 –0.09+0.2–0.2 –0.04+0.2–0.2 –0.08+0.2–0.2

AdS/CFT +0.003+0.2–0.2 +0.07+0.3–0.2 +0.005+0.2–0.2 +0.02+0.2–0.2 +0.11+0.27–0.2 +0.03+0.2–0.2

Table 4 Effect of each variable on (a) the probability of having entered a new research area and
(b) the probability of having exited a research area, for each model. The reference model uses
entropy as the diversity measure D and the magnitude of intellectual capital as a measure of
power P. Values indicate the mean posterior effect size and the 95% credible interval. Significant
effects are shown in bold

Predictor Dep. variable

Entered a new research area, model: Exited a research area, model:

Reference D = Stirling P = Brokerage Reference D = Stirling P = Brokerage

Intellectual capital
(diversity)

+0.2+0.11
–0.11 +0.17+0.1

–0.1 +0.19+0.11
–0.11 +1+0.14

–0.14 +0.85+0.12
–0.12 +1+0.14

–0.14

Social capital (diversity) +0.22+0.1
–0.1 +0.18+0.1

–0.1 +0.22+0.099
–0.1 +0.04+0.1–0.1 +0.04+0.1–0.1 +0.04+0.1–0.1

Social capital (power) +0.006+0.1–0.1 +0.03+0.15–0.15 +0.04+0.1–0.1 –0.03+0.2–0.2 +0.02+0.2–0.2 +0.03+0.1–0.1

Stable affiliation –0.19+0.22–0.22 –0.18+0.22–0.22 –0.19+0.22–0.22 +0.04+0.2–0.2 +0.06+0.2–0.2 +0.04+0.24–0.24

Academic age +0.04+0.12–0.11 +0.04+0.1–0.1 +0.04+0.1–0.1 –0.21+0.12
–0.12 –0.21+0.12

–0.12 –0.22+0.12
–0.12

Productivity
(co-authored)

–0.07+0.1–0.1 –0.08+0.1–0.1 –0.09+0.1–0.1 –0.28+0.15
–0.14 –0.28+0.15

–0.15 –0.31+0.13
–0.13

Productivity
(solo-authored)

–0.05 +0.1
–0.09 –0.05 +0.1

–0.09 –0.06+0.1–0.1 –0.02+0.1–0.1 –0.007+0.1–0.1 –0.03+0.1–0.1

Hadrons –0.14+0.29–0.36 –0.24+0.33–0.39 –0.14+0.29–0.35 +0.03+0.3–0.2 –0.09+0.3–0.4 +0.04+0.3–0.2

String theory &
supergravity

+0.32+0.32
–0.3 +0.4+0.35

–0.33 +0.32+0.32
–0.29 +0.3+0.34

–0.3 +0.65+0.39
–0.38 +0.28+0.34–0.29

Perturbative methods +0.11+0.45–0.35 +0.09+0.5–0.4 +0.11+0.45–0.35 –0.03+0.29–0.34 –0.13 +0.4
–0.48 –0.03+0.3–0.3

Classical fields +0.22+1.1–0.6 +0.34+1.4–0.7 +0.22+1.1–0.6 –0.07+0.4–0.6 –0.07+0.7–0.8 –0.07+0.4–0.6

Collider physics –0.43+0.33
–0.34 –0.61+0.33

–0.34 –0.42+0.33
–0.34 –0.01+0.2–0.2 –0.28+0.32–0.37 –0.02+0.2–0.2

Neutrinos & flavour
physics

+0.08+0.3–0.3 +0.04+0.3–0.3 +0.07+0.3–0.3 –0.21+0.25–0.35 –0.31+0.35–0.41 –0.21+0.26–0.36

Black holes –0.0006+0.3–0.3 +0.06+0.4–0.3 –0.003+0.3–0.3 +0.08+0.4–0.3 +0.43+0.53–0.45 +0.08+0.4–0.3

Gauge theory & Grand
Unification

–0.04+0.6–0.6 –0.04+0.6–0.7 –0.03+0.6–0.6 –0.08+0.4–0.6 –0.11+0.64–0.79 –0.08+0.4–0.6

Dark matter –0.62+0.55
–0.56 –0.68+0.55

–0.56 –0.63+0.55
–0.56 –0.05+0.3–0.4 –0.11+0.42–0.5 –0.05+0.3–0.4

Thermodynamics –0.03+0.5–0.6 +0.01+0.62–0.58 –0.02+0.5–0.6 –0.05+0.4–0.6 +0.03+0.7–0.6 –0.05+0.41–0.53

Cosmology –0.07+0.3–0.4 –0.03+0.3–0.4 –0.07+0.3–0.4 +0.09+0.4–0.3 +0.36+0.56–0.43 +0.09+0.4–0.3

Electroweak sector +0.05+0.3–0.3 +0.009+0.3–0.3 +0.05+0.3–0.3 –0.003+0.2–0.2 –0.04+0.3–0.3 –0.009+0.2–0.2

QCD +0.008+0.3–0.3 –0.03+0.3–0.4 +0.01+0.3–0.3 +0.04+0.32–0.26 +0.04+0.4–0.4 +0.04+0.3–0.3

Quantum Field Theory +0.15+0.52–0.38 +0.22+0.57–0.41 +0.15+0.52–0.38 +0.05+0.4–0.3 +0.26+0.64–0.44 +0.05+0.4–0.3

AdS/CFT +0.14 +0.6
–0.42 +0.22+0.67–0.47 +0.14+0.59–0.42 –0.06+0.4–0.5 +0.07+0.6–0.5 –0.06+0.3–0.5
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Figure 19 Effect of intellectual and social capital on transfers across research areas. Rows represent research
areas of origin and columns represent target areas. Effect sizes are expressed in log-odds (log [θakk′ /(1 – θakk′ )],
where θakk′ is the fraction of attention to k redirected to k′) per unit of intellectual or social capital in the
target research area k′ . Effects that are not significant (at the 95% credible level) are displayed in white for
purposes of clarity

Figure 20 Aggregate transfers of attention across research areas in the ACL anthology corpus of
Computational Linguistics, between 2002-2011 (to the left) and 2012-2022 (to the right). Widths of flows are
proportional to

∑
a Xakθakk′ . Transfers less frequent than expected by chance alone are transparent

A.8 Additional robustness checks
The robustness of the results of the comparative analysis is assessed by varying different
parameters:

• The papers included in each authors’ portfolio (any paper versus first-authored and
last-authored papers only).

• The amount of topics in the topic model (K0).
• The amount of dimensions for the word embeddings (L).
• The temporal segmentation for the early and late research portfolios.
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A.9 Trajectory model parameters evaluated on a different time period
To further assess the robustness of the findings, the effect of intellectual and social capital
on individual trajectories is measured on a different temporal segmentation (2000-2004 to
2005-2009). We make similar findings: the concentration of intellectual capital in one area
promotes either commitment to this research area (or transfers in related areas). Social
capital, on the other hand, matters increasingly as cognitive distance increases.

A.10 Replication corpus
For purposes of testing and replication, certain analyses have been reproduced on the ACL
anthology corpus of Computational Linguistics research.

The transfers of attention are shown in Fig. 20. Compared to the high-energy physics
corpus, it features significant disruptions (e.g., the emergence of new topics, such as “deep
learning”, “sentiment analysis” and “embeddings & pre-trained models”).

Acronyms
APS, American Physical Society; HEP, High-Energy Physics; LHC, Large Hadron Collider; OT, Optimal Transport; PACS,
Physics and Astronomy Classification Scheme®.
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Abstract

Outside ideal settings, conventions are shaped by heterogeneous competing pro-
cesses that can challenge the emergence of norms. In order to acknowledge this
complexity, this paper develops a generalized account of conventions and identifies
three trade-offs involved in their diffusion: (I) the trade-off between the impera-
tives of social, sequential, and contextual consistency that individuals balance when
choosing between conventions; (II) the competition between local (bottom-up) and
global (top-down) coordination, depending on whether individuals coordinate their
behavior via interactions throughout a social network or external factors transcend-
ing the network; and (III) the balance between decision optimality (e.g., collective
satisfaction) and decision costs when collectives with conflicting preferences choose
a convention. A broadly applicable statistical physics framework for exploring these
trade-offs is developed and applied to a sign convention in physics. The method
can infer the structure of the underlying coordination game, the networks of social
interactions involved, and the processes through which conflicts are resolved. This
shows that the purpose of conventions may exceed coordination, and that indi-
vidual preferences towards conventions are concurrently shaped by cultural factors
and multiple social networks. Finally, this work emphasizes the role of leadership
in the resolution of conflicts.

Keywords: conventions; collective cognition; cultural evolution; Ising model; inverse
problems; simulation-based inference.

1 Introduction
Since David Lewis [1], conventions (including linguistic norms, technological or manufac-
turing standards, and many other social norms) are primarily conceived as solutions to
coordination problems [2]. Yet, the attitude of individuals towards conventions involves

1Interdisciplinary Centre for Science and Technology Studies (IZWT), University of Wuppertal, Ger-
many

2Département d’Études Cognitives, École Normale Supérieure, Paris, France
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a multitude of factors beyond social coordination, resulting in tensions that may disrupt
the emergence of a universal norm. To acknowledge this complexity, this paper develops
a generalized statistical physics account of conventions and identifies three trade-offs in-
volved in their diffusion and the resolution of conflicts in the absence of consensus. The
first trade-off is the balance between i) social consistency (driven by coordination with
peers), ii) sequential consistency (driven by the cost of switching from one practice to
another), and iii) contextual consistency (driven by a need for consistency with other
choices or cultural traits) (§1.2). The second trade-off involves the balance between local
(or bottom-up) versus global (or top-down) coordination, depending on whether individ-
ual preferences are formed endogenously through local interactions on a social network, or
by factors transcending the network structure (or both, in possibly contradicting ways)
(§1.3). Finally, the last trade-off is the balance between decision costs and the opti-
mality of the outcome in the resolution of conflicts (§1.4). To explore these trade-offs,
we apply a statistical physics framework to behavioral data about a sign convention in
physics. This statistical framework allows us to retrieve information about individuals’
decision-making, the structure of the underlying coordination problem, and the multiple
infrastructures (whether social or cultural) involved in the propagation of a convention.

First, we show that scientists’ attitude is driven by sequential consistency, as they
tend to maintain a preferred choice in their solo-authored publications independently of
the target research area (§2.1). Then, we show that scientists’ preferences are correlated –
albeit imperfectly – with those of their co-authors, which means that some level of social
coordination is achieved (§2.2). In order to explain how, the relative contribution of local
coordination (via dyadic interactions with peers) and global coordination (i.e. via shared
culture) is measured by solving an inverse Ising problem over the authors’ collaboration
and citation network. This shows that both local and global processes contribute to
coordinating scientists’ preferences. Third, we assess the plausibility of three mechanisms
of preference-formation according to their ability to explain the observed magnitudes of
local and global coordination, and find slightly more evidence for a model of cultural
transmission involving the imitation of peers (§2.3). Finally, we infer the process through
which scientists resolve conflicts about which convention to use in collaborations (§2.4).
We find evidence that the last author’s preference most often prevails, thus highlighting
the role of seniority and power in the resolution of conflicts. Taken together, these
results indicate that decision-making processes related to conventions involve multiple
and sometimes conflicting factors.

1.1 Background
While formal models of the diffusion of conventions provide rich insights by focusing on
one or a few key features of the phenomena of interest, they may also leave out crucial
aspects of reality by stripping away too much of its complexity [3], or by neglecting the
interactions between phenomena studied in isolation. For instance, [4, 5] demonstrated
the importance of accurately representing the topological features of complex networks

2
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(including their small-world, scale-free or clustering properties) for modeling and simulat-
ing the propagation of conventions. Similarly, while controlled experiments can uncover
certain aspects of conventions in idealized settings [6–10], they may conceal the fact that
complex heterogeneous processes and multiple social infrastructures can drive or prevent
the emergence of conventions in naturalistic situations [11]. Fortunately, the advent of
large online communities has opened up opportunities to investigate the diffusion of real
norms and conventions in complex networks [12–15]. Such data-driven approaches, how-
ever, have barely extended to the study of scientific conventions1. Yet, “conventionalism”
can be traced back to Poincaré and his account of the epistemic status of the axioms
of geometry [16]. In fact, conventions are ubiquitous in science [17], including statisti-
cal practices (e.g. statistical significance thresholds [18]), measurement strategies [19],
and unit systems. By exploring a scientific convention, this work highlights the inter-
actions between multiple phenomena involved in the diffusion of conventions that prior
works have addressed separately or ignored, and provides cues for understanding how
conventions can fail to develop into universal norms, in naturalistic settings.

Let us introduce the convention emphasized in the present paper. In relativistic
physical theories (such as general relativity and quantum field theory), the “metric tensor”
is a mathematical object that represents the metric properties of space-time. Broadly
speaking, the metric tensor can take either of the two following forms:

+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 or


−1 0 0 0

0 +1 0 0

0 0 +1 0

0 0 0 +1


The first choice (+,−,−,−) is known as the mostly minus convention while the sec-

ond choice, (−,+,+,+) is referred to as the mostly plus convention. These choices are
physically equivalent and lead to identical predictions. However, depending on which
choice one makes, certain quantities arising in calculations will take either positive or
negative values. Interestingly, there is no norm and both conventions are used.

1.2 The trade-off between social, sequential, and contextual
consistency

While Lewis’ account of conventions is focused on their social dimension, earlier accounts
provide different perspectives: the holist account of conventionalism, for instance, con-
tends that we may choose freely between distinct but collectively coherent systems of
beliefs [16]. Below, these two perspectives on conventions are unified into a single notion
of collective consistency, formalized using elements of game theory and statistical physics.
This reveals that conventions involve multiple dimensions that can compete with each
other.

1with the exception of [15], which investigates LaTeX macros naming conventions in scientific papers.
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xj = xj =
xi = (1, 1) (0, 0)
xi = (0, 0) (1, 1)

(a) Social consistency.
Alice and Bob are better off
if they agree on either or

.

xt+1 = xt+1 =
xt = 1 0
xt = 0 1

(b) Sequential consis-
tency. Alice is better off if
she consistently chooses
or .

y = y =
x = 1 0
x = 0 1

(c) Contextual consis-
tency. Alice is better of
if she chooses either or

.

Table 1: Collective consistency as coordination games involving Alice ( ) and Bob ( ),
or Alice alone. Each table represents a payoff matrix associated with a “collective” choice.

Social consistency and coordination costs Conventions are mainly conceived as
solutions to coordination problems [1], which arise when individuals would benefit from
acting in a mutually consistent way, but struggle to do so – maybe, for instance, because
they lack the information necessary for achieving joint-action [1, 2]. Conventions can solve
coordination problems by providing individuals with expectations about how others will
behave in a given setting, a paradigmatic example being left-hand versus right-hand traf-
fic. In absence of universal conventions, individuals experience coordination costs in their
interactions. When interactions involve two people at a time, coordination costs can be
represented by a payoff matrix that defines the utility (i.e. the rewards) ui,j(xi, xj) for
agents i and j as a function of xi and xj, their respective strategies (Table 1a) (for clar-
ity, we consider binary conventions labeled by x ∈ {−1,+1}). Additionally, coordination
costs are specified by a network structure capturing the frequency of interactions wij be-
tween any pair (i, j) of agents. In naturalistic scenarios, given observations of individuals’
strategies, one may want to retrieve the structure of the underlying game or to identify
the relevant social network(s). Fortunately, coordination games such as 2 can be mapped
onto models from statistical mechanics such as the Ising model [20, 21], which, as we
show, enables empirical explorations of conventions. To this end, one constructs a “po-
tential” U(x1, . . . , xN) [22] (a collective utility), which is a function of the joint strategy
of every individual 1 ≤ i ≤ N that varies by

∑
j wij[ui(x

′
i, xj)− ui(xi, xj)] as any agent i

unilaterally changes their strategy from xi to x′
i. Under a simple evolutionary rule2, the

probability of a particular combination of individual strategies is:

P (x1, . . . , xN) =
1

Z
eβU(x1,...,xN ) (1)

Where Z is a normalization constant and β ≥ 0 controls the degree of rationality –
and efficiency – of the agents [21]. In statistical physics, (1) is the Boltzmann distribution;
U is (up to a minus sign) the energy potential of a particular configuration, and β is the
inverse temperature3. This probabilistic framework enables the retrieval of information
about the coefficients of the payoff matrices (ui, uj) or the network structure (wij) from
observations of individuals’ strategies, as shown in §2.2. In the case of Table 1a, this

2For “potential” games, the “logit” rule and the Glauber dynamics lead to the above Boltzmann
distribution [22, 23].

3Often, β may be omitted without loss of generality through proper rescaling of U .
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gives the Ising model [24]:

P (x1, . . . , xN) =
1

Z
e

β
2

∑
ij wijxixj (2)

Sequential consistency and switching costs In addition to addressing coordination
problems, conventions enable individuals to settle on one choice once and for all, in a way
that facilitates future moves. Consider keyboard layouts (e.g. qwerty). While there
exists many such layouts, we benefit from settling on a single one, even if our choice is
arbitrary and different from our peers’. In that respect, certain conventions can serve
a purely internal purpose of consistency, as if individuals “played” a coordination game
with themselves, such that their payoffs depend on the mutual coherence of their actions.
To model sequential consistency, let xit be the convention employed by agent i at time
t ∈ {1, . . . , T}. A simple model of the utility of a sequence of choices for an isolated
individual is a Markov model U(xi1, . . . , xiT ) =

∑T−1
t=1 u(xi,t, xi,t+1), where u(xt, xt+1) is

the payoff matrix associated with the transition from xt to xt+1 (Table 1b). In such a
model, agents experience costs every time they switch from one convention to another.
Alternatively, sequential consistency may reflect lasting preferences with memory effects
due to complex long-range interactions between individual actions. Instead, one might
consider the effective model U(xi1, . . . , xiT ) =

∑T
t=1 u

xit
i where ux

i designates the utility
associated with choice x for agent i. Again, we may assume that the probability of a
particular sequence takes the form P (xi1, . . . , xiT ) ∝ eβU(xi1,...,xiT ), where β is, as before,
a measure of efficiency.

Contextual consistency and maladaptation costs Some conventions are less con-
ventional than others [25, 26]: certain choices can be maladaptive and less likely to
be adopted. However, which conventions are more or less adaptive may depend on
the context. Unit systems are a good example: while light-years might be a conve-
nient unit of length for astronomers, engineers may reasonably prefer meters. Mal-
adaptation costs indicate an inconsistency between a convention and other interacting
choices or cultural traits. This can be thought of in terms of a cultural fitness land-
scape [27], where U(xi,1, . . . , xi,C) describes the fitness of a configuration of C traits
xi = (xi,1, . . . , xi,C) ∈ {±1}C . It is possible that the choice between, say, xi,1 = −1 or +1

is “conventional”, in that there is no universally superior choice across the landscape (i.e.
Ex∼p[U(x)|x1 = −1] ' Ex∼p[U(x)|x1 = +1], where p is the joint probability distribution
over all traits), even though certain regions in the landscape may locally favor a specific
choice for x1

4. The cultural landscape can be modeled using the same building blocks as
for social and sequential consistency, by considering pairwise interactions between cultural
traits (i.e. epistasis [28]), cf. Table 1c. Then, assuming the co-evolution of traits follows
the Glauber dynamics or the logit rule, their distribution converges to an Ising model.

4This is obvious in the context of language. The mapping between objects and symbols is highly
conventional; however, for a given pre-existing language, the choice of how to name a new object can be
constrained by preceding linguistic infrastructure.

5

142CHAPTER 3. DILEMMAS AND TRADE-OFFS IN THE DIFFUSION OF CONVENTIONS



Therefore, cultural landscapes involving multiple traits and conventions can sometimes be
reconstructed empirically (although approximately) by solving an inverse Ising problem,
following [27]. In certain cases, this can reveal a plurality of collectively consistent systems
of choices: A demonstration is proposed in S4.2, using collections of naming conventions in
a scientific typesetting language, following upon [15]. When the position of agent i in the
landscape can be considered fixed, except for a trait k, the relative reward for their choice
xi,k ∈ {±1} reduces to U(xi,1, .., xi,k, .., xi,C)− U(xi,1, ..,−xi,k, .., xi,C) ≡ Bix

i
k = ±Bi.

Broadly speaking, conventionality arises when behavior is determined by “collective”
rather than individual constraints – in other words, the marginal probability of a par-
ticular outcome p(xi) is weakly constrained; only the joint probability of all outcomes
p(x1, . . . , xn) is, due to synergistic interactions between individuals, cultural traits, or
consecutive choices. For example, in the case of sequential consistency, the first move
does not matter, as long as the entire sequence of actions is collectively consistent. Con-
textual consistency is also a collective constraint, since it assumes there is no way to
universally reject a particular choice independently from other choices5. Interestingly, all
three imperatives can be modeled using the same fundamental game-theoretic building
blocks (Table 1), given that two-person coordination games, and the Ising model, provide
a simple account of the interactions between more-or-less conventional traits.

In the most general case, all three factors can be involved in conventions, albeit to
varying extents. For the metric signature, coordination costs are plausible (it should
be easier to collaborate with scientists who will systematically agree to using your fa-
vorite convention, and it is easier to copy results if they are systematically derived with
the same convention). Switching costs are seemingly plausible, as working with differ-
ent metric signatures implies keeping track of which sign certain quantities must take
according to which convention is used. Finally, context-dependent maladaptation costs
might be involved too. For instance, for problems that involve “proper time” calcula-
tions, the mostly minus metric is advantageous, since then proper time is equal to the
pseudo-distance between events rather than minus the pseudo-distance. The diffusion
of conventions involving these three imperatives in conjunction involves the co-evolution
of (xict) ∈ {±1}N×C×T . It can be simulated by flipping traits (xi,c,t+1 = −xi,c,t) with
probability p = min[1, exp(β∆uic)] where ∆uic is the variation in reward associated with
switching from xict to −xict. Traits with comparatively large switching costs are less likely
to flip and can be considered fixed. The ability of such a model to explain physicists’
attitude towards the metric signature is evaluated in §2.3.

When individuals behave consistently and uniformly, it is difficult to infer which fac-
tor was determinant in the adoption of a norm. However, when variations are observed,
these can be leveraged to infer the underlying processes. In §2.1, we start by evaluating
the importance of sequential and contextual consistency in the case of the metric signa-
ture. It will be shown that both matter, but sequential consistency matters more, such
that individuals tend to stick to their favorite convention across different contexts. Physi-

5See epistemological holism, according to which beliefs are constrained collectively rather than indi-
vidually [29].
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cists therefore have preferences towards a metric signature, and we may ask how these
preferences are formed. In §4, we also examine the relative contribution of social and
contextual consistency in the formation of scientists’ preferences. When the two compete
with each other, individuals play an asymmetric game (Table 2) which parameters (J , the
contribution of social consistency) and B (contextual consistency) can be measured em-
pirically using an Ising model. Interestingly, these two parameters simultaneously encode
a universal competition between local and global coordination.

Table 2: Generic payoff matrix of a two-player two-action coordination game. Cells
indicate (ui(xi, xj), uj(xi, xj)), the rewards of i and j as a function of their joint strategy. J
measures the synergistic benefit of coordination, and (Bi, Bj) measures the “preferences”
of i and j, due to (for instance) their positions in the cultural landscape.

xj = xj =
xi = (+J −Bi,+J −Bj) (−J −Bi,−J +Bj)
xi = (−J +Bi,−J −Bj) (+J +Bi,+J +Bj)

1.3 Local and global processes in the diffusion of conventions
The emergence of social norms is the byproduct of both “local”, “dyadic” processes and
pre-existing “broader population-level infrastructure” [2], including social networks or
central authorities [30]. In particular, we propose a distinction between local and global
processes of coordination. “Local” coordination refers to bottom-up coordination via local
interactions on a network (e.g. by the imitation of peers [31], or strategic adjustment
to their behavior), as opposed to “global”, top-down processes resulting from external
factors transcending the network structure, including institutions, “central authorities”
[30], but also any pre-established cultural traits or common knowledge shared within
different groups. Global coordination can arise when individuals share the understanding
that one option is intrinsically superior (sign(Bi) = sign(Bj) and |Bi|, |Bj � 1 in Table 2).
In scientific communities, local processes may propagate over a co-authorship network,
while global factors may include a shared “disciplinary matrix” [32]6.

Figure 1 illustrates how local and global processes may generate different patterns of
coordination. In this particular example, local coordination fails to produce consensus
as the network is stuck into a Nash equilibrium. Occasionally, “global” processes may
solve this type of failure. Alternatively, local and global forces may push in opposite
directions and complicate the emergence of a norm [33] – for instance, if different groups
with incompatible inclinations come into contact. Figure 1 also shows that the Ising
model can correctly infer the actual coordination process for each toy example.

In §2.2, using an Ising model, we measure the contribution of local (J) and global
(B) mechanisms to the formation of physicists’ preferences. We find evidence for both

6This distinction between local and global differs from that suggested in [15], which opposes dynamics
in the diffusion of conventions at the microscopic and macroscopic (or aggregate) levels.
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Figure 1: Left. Local coordination: nodes align to their neighbors through pairwise
interactions. They may get stuck in a Nash equilibrium. Right. Global coordination:
nodes are coordinated by a common cause transcending the graph structure (with some
possible noise). Local and global processes generally predict different patterns of coordi-
nation, which means their contribution can be inferred from behavioral data. In each of
these toy examples of local and global coordination, the Ising model correctly identifies
the most likely process.

local and global effects in the case of the metric signature, while the latter seem to pre-
dominate. Moreover, as will be shown in §2.3, this Ising model approach can serve as a
basis for comparing the plausibility of more realistic mechanisms of preference-formation,
according to whether they generate local or global coordination patterns.

1.4 Optimality versus decision costs in the resolution of conflicts
In the absence of norms, how can individuals with conflicting preferences achieve coor-
dination? In scientific collaborations, authors must sometimes overcome such conflicts.
They must then operate a trade-off between “optimality” (e.g. the maximization of their
collective satisfaction), and “decision costs”. Indeed, co-authors can seek to maximize
their collective satisfaction by making a collective decision, through deliberation of bar-
gaining. However, this can be cumbersome: not all decisions deserve to be put under the
whole collective’s scrutiny, and it might be easier to let a leader decide, potentially at
the expense of collective agreement. It is indeed well known that power and leadership
can mitigate decision and coordination costs [34, 35]. In §2.4, we infer the mechanisms
via which physicists resolve conflicts in co-authored papers. We find some evidence that
leadership also plays a role in the resolution of conflicting preferences towards the metric
signature, resulting in suboptimal decisions given that individual preferences are only par-
tially aggregated within collaborations. While dictatorial strategies of conflict-resolution
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fail to represent individual preferences, they may occasionally yield superior outcomes by
producing more mutually coherent collections of decisions than e.g. majority voting [36,
p. 23].
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Figure 2: Three trade-offs affecting conventions and their relationships.

We have identified three trade-offs affecting conventions. Figure 2 summarises these
trade-offs and highlights their interactions. In what follow, we show how statistical
physics and inverse problems can provide empirical evidence for these trade-offs.

1.5 Data
Literature in high-energy physics is collected from the Inspire HEP database, which in-
cludes various metadata (authorship, institutional affiliations, etc.). When available, the
LaTeX source of each paper is retrieved from arXiv. 22500 papers from four categories
(Phenomenology-HEP, Theory-HEP, General Relativity & Quantum Cosmology, and As-
trophysics) are successfully classified into either metric signature (±1) using a small set
of regular expressions (see S4.1).

2 Results

2.1 Beyond coordination: the role of sequential and contextual
consistency

We have postulated that in addition to social coordination, individuals’ attitude to-
wards conventions may also be influenced by imperatives of sequential and contextual
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consistency. If sequential consistency matters, individuals should tend to use the same
convention throughout their own works. By contrast, if individuals behave differently
across research areas, we may infer that they value contextual consistency.

Below, we measure the importance of sequential and contextual consistency in scien-
tists’ behavior. We consider only solo-authored papers, for which the choice of metric
purely reflects the sole author’s choice. In order to capture the imperatives of sequential
and contextual consistency, we assume that the probability that an author i uses the +1

sign convention in a paper d is:

P (xd = +1|i, c) = logit−1(θi + bc) =
e

1
2
(θi+bc)

e
1
2
(θi+bc) + e−

1
2
(θi+bc)

(3)

where θi is a latent parameter that encodes author i’s preference (θi > 0 implying
a preference for the +1 convention) and bc is a latent parameter that encodes the bias
associated with context c (the category of literature to which the paper belongs7). In
our account of conventions, θi is the mean-field effect of sequential consistency, and bc is
the mean-field effect of cultural traits interacting with the choice of the metric signature,
given their distribution in a research area c. We assume that θi is drawn from a mixture
of two distributions (θi = ±µ), such that the model may capture the existence of two
populations with a preference for each metric. We also assume that bc ∼ N (0, 1)8. If |µ|
is typically large, and larger than |b|, this would imply that scientists have preferences
that generally exceed the influence of the context. As shown in Figure 3a, we find
that scientists do have preferences that they tend to maintain across contexts, although
there is some evidence that they occasionally adapt to the target research area. While
we interpret such deviations from an author’s preference as adaptation to the subject
matter, they could indicate adaptation to the audience of the paper, in pursuit of social
consistency (code-switching).

Figure 8b 9 confirms that authors tend to generally stick to the same metric in their
works and that the prevalence of each preference varies depending on the authors’ pri-
mary research area. This shows that authors manage the tension between sequential and
contextual consistency by developing preferences adapted to their cultural environment.

2.2 Local versus global coordination: an Ising model approach
If scientists’ attitude towards the sign convention was dictated by social consistency, then,
their preferences should be aligned with their social environment. While there exists no

7In case a paper belongs to multiple categories, we average bc over all these categories.
8We assume that:

θi =

{
+µ with probability pCi

−µ with probability 1− pCi

where Ci is the primary research area of author i and µ ∼ Exponential(1). The ability of this item-
response model to reconstruct the latent parameters µ and b is tested with simulated data assuming no
effect of sequential consistency, i.e. θi = 0 for every author (S4.3, Figure 9).

9Given Ni, the amount of solo-authored papers by an author i with an explicit choice of metric
signature, and ki the amount of those using the +1 convention, we assume that ki ∼ Binomial (Ni, pi),
with pi ∼ Beta (αCi

, βCi
) and αc, βc ∼ Exponential(1).
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Figure 3: Importance of sequential and contextual consistency in scientists’
behavior.

universal norm at the level of the entire field, it could still be the case that scientists are
at least behaving in a way consistent with their own collaborators. To establish whether
this is the case, we explore the co-authorship graph (Figure 4), where each node i on the
graph (each author) possesses a favorite convention xi ∈ {±1} (as measured from their
solo-authored publications). The weights of the edges (wij) encode the strength of the
relationship between co-authors i and j10. We may then measure the average alignment
between co-authors, 〈xixj〉 =

∑
i,j wijxixj/

∑
i,j wij. We find 〈xixj〉 = +0.32, which is

significantly more than would be expected by chance alone (P < 10−4)11: despite the
absence of universal norm, scientists’ preferences are positively correlated with those of
their collaborators.

How did such partial alignment emerge? Coordination among physicists may be
achieved either locally (via short-range interactions between scientists), or globally, via
shared culture. To delineate these two possibilities, we model physicists’ preferences with
an Ising model, with parameters J and B, such that the probability P (x1, . . . , xn|J,B)

of observing a particular configuration x1, . . . , xn is:

10We use wij =
∑

d|{i,j}⊂Ad

1
|Ad|−1 , where Ad is the set of co-authors of publication d, following [37].

11We compare the observed value of 〈xixj〉 to what would be expected if authors chose one or the
other convention at random, with probabilities equal to the frequency of each convention. This null
model predicts E[〈xixj〉] = 0.10, far below the observed value.
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P (x1, . . . , xn|J,B) =
1

Z(J,B)
eU(x1,...,xn,J,B) (4)

with U =
∑
i,j

Jwijxixj︸ ︷︷ ︸
local

coordination

+
∑
i

BCi
xi︸ ︷︷ ︸

global
coordination

(5)

Where Ci is the primary research area of i. J captures the effect of local coordination
via pairwise interactions on the graph. B = (Bc) captures the global effect of each
research area: their effect is global in that they equally affect all individuals within a
group regardless of their position in the network. The Ising model follows naturally from
eq. (1), §1.2 in coordination games. The B term introduces an asymmetry between
authors from different research areas12.

If J > 0, the potential U is higher in configurations in which nodes share the orien-
tation of their neighbors. Such systems may undergo phase transitions towards config-
urations in which individual nodes spontaneously align over large distances. Although
originated from spin physics, the Ising model provides a concise description of the emer-
gence of collective behavior at large [24, 38].

In our case, we would like to infer the posterior distribution P (J,B|x1, . . . , xn) given
(x1, . . . , xn). However, this distribution is computationally intractable, and we use the
pseudo-likelihood approximation [39] which is accurate, efficient, and robust to missing
data as we show in S4.4. The results are shown in Table 3. The inverse Ising ap-
proach reveals that research areas have large global effects, and that local coordination
of co-authors has a small but statistically significant effect. However, this convention
may propagate locally via channels others than collaborations, including citations (Fig-
ure 5). We account for this possibility by introducing an additional local contribution
Jcit

∑
j w

cit
ij xj in the pseudo-likelihood ((6)), induced by the authors’ citation graph Gcit

which captures “who cites who”13. The weights wcit
ij of the edges of Gcit measure the

frequency of citations of j by i, given wcit
ij =

∑
d,d′|i∈Ad,j∈Ad′ ,i 6=j

cdd′
|Ad||Ad′ |

with cdd′ = 1 if d
cites d′ and 0 otherwise. After adding this contribution to (6), we find that both J and
Jcit are significantly positive; that is, both co-authors and publications seem to carry an
influence14.

To assess which of local or global coordination dominate, we evaluate the fraction
of authors for which local contributions in (6) exceed the global effect of B. We find
that local effects exceed and reverse global effects for 7% of the sample of 2 277 au-
thors (CI95% = [3%–15%]). In addition, we find that the inclusion of local effects only

12Unlike Table 2, we assume that the effect of the asymmetry between research areas does not scale
linearly with each node’s degree centrality (ki =

∑
j wij). Instead, each strategy is associated with a

constant payoff ri = BCi
xi regardless of the interactions involving i [21]

13The pseudo-likelihood approach can directly accommodate asymmetric interactions in directed net-
works.

14That J remains positive after accounting for citations suggests that correlations between co-authors’
preferences may not be explained solely by correlations in their research.
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Figure 4: Metric signature preferences in the co-author network. Each node is
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component is shown.
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marginally improves the model’s predictive accuracy, from an average of 67.7% (only
considering global effects) to 70.2%. Therefore, local processes play a smaller role.

Measurements of J and B may be confounded by hidden structures. For instance,
while B was assumed to be uniform within each of the four research areas, it may vary
across subtopics within each research areas. If their effect is omitted, this might inflate
the estimate of J . To assess this possibility, a linear Support Vector Machine classifier was
trained to predict the metric signature from sentence embeddings of scientific abstracts.
The accuracy on a test-set was 73%, slightly above the accuracy of a classifier relying
only on the four categories (70%); in other words, categories contain most of the relevant
contextual information. Conversely, the effect of each research area may reflect unmodeled
social structures. Therefore, the Ising model is an effective parameterization, and the
values of J and B may vary depending on the networks and scales under consideration.
Finally, when the social structure is entirely correlated with another interacting trait,
their relative effect cannot be teased apart.
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Figure 5: Illustration of local coordination in multilayered social networks.
Nodes can be connected through different kinds of relationships (for instance, authors
can be related via collaborations (G) or citations (Gcit)). In this diagram, patterns of
coordination are better explained by the directed graph at the top (Gcit). The Ising
model correctly identifies the relevant social structure.

2.3 Inferring mechanisms of preference formation
The Ising model is certainly not a realistic description of how individuals form preferences.
Nevertheless, idealized models from statistical physics can provide clues about the actual
process. Below, we assess the relative plausibility of three hypothetical mechanisms
according to their ability account for the observed values of J and B.

The first proposed mechanism (M1) is an agent-based model in which scientists op-
erate a trade-off between social consistency (driven by coordination costs), sequential
consistency (driven by switching costs), and contextual consistency (driven by maladap-
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tation costs, i.e. incompatibility with their research area). In this model, the network is
initialized in a random state; then, at every step of the simulation, scientists follow a best
response strategy, by evaluating whether they would be better off changing their prefer-
ence or not, given the magnitude of each of these costs, their probability of publishing
in each research area, and their collaborators’ preferences15 (in that scenario, coordina-
tion is channeled by co-authorship and not citations). The second mechanism considered
(M2) is a global process of cultural transmission whereby scientists adopt a convention
at the start of their career with a probability that depends on their primary research
area, and on the time at which their career started. Such process is meant to capture
the transmission of conventions via cultural artefacts such as textbooks (S4.7). Finally,
the third mechanism considered (M3) is a process of local cultural transmission, in which
scientists copy the preference of their first co-author16.

Figure 6 shows that each model predicts different patterns for J and B. In particular,
since it explicitly implements coordination costs (which are themselves driven by local
interactions), the “strategic agent” model can predict large values of J . The model of
cultural transmission via imitation predicts slightly higher values of J than global cultural
transmission, but generally smaller values of B. Because of these distinctive patterns, we
can compare each model’s ability to account for the data using simulation-based inference
[40]. As shown in Figure 6, the results seem to rule out purely global cultural transmission
which fails to explain the magnitude of local coordination. There is slightly more evidence
of partial local cultural transmission model.

2.4 Inferring mechanisms of conflict resolution
Coordination failures give rise to conflicts. Given that physicists’ preferences are not
perfectly aligned to those of their collaborators, they must occasionally resolve disagree-
ments about which metric signature to use as they co-author a paper. We stressed that
the resolution of conflicts in such scenarios implied a trade-off between optimality and
decision costs: while some decisions may be superior to others, the cost of arguing and
properly aggregating each author’s input may exceed the benefits.

Below, we consider multiple preference aggregation strategies and estimate their
prevalence given data about the metric signature selected in co-authored papers. As
we will show, this provides indirect information about how authors navigate this trade-
off in the case of the metric signature. We leverage papers with an identified metric
signature S ∈ {±1} for which all authors’ preferences (xi, . . . , xn) ∈ {±1}n were mea-
sured independently from single-authored papers. For many of these papers (182 papers
with two authors, 28 papers with three authors, and 4 papers with four authors), authors
have conflicting preferences. Since different processes of preference-aggregation occasion-
ally predict different outcomes given (xi, . . . , xn) ∈ {±1}n, we may infer their relative

15See S4.6 for a more precise description.
16The preference of scientists with no “parent” in the graph is drawn according to the same global

process as in the global cultural transmission model (M2), such that the process M3 includes both local
and global mechanisms. In total, in this model, 10% of authors form a preference by imitation.
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given the data. Right plot: posterior probability of each model given the observed
parameters of the Ising model.

likelihood from the data.
In contrast to [15], which explored conventions for LaTex macros, we consider strate-

gies of conflict-resolution suggested by the literature on judgment aggregation [41, 42].
First, we consider “dictatorial” strategies, whereby a specific author (the first author, the
last author, or any other one) imposes their favorite convention (which, again, is indepen-
dently measured from their solo-authored publications). Dictatorial strategies dismiss all
information about other authors or the research context, such that the resulting decision
is potentially suboptimal. We also consider a “majoritarian” process, whereby the ma-
jority preference is selected, thus maximizing collective satisfaction. These two strategies
(dictatorial and majoritarian) are probably the most classic examples in social choice the-
ory and in the preference and judgment aggregation literature [41, 42]. It is also tempting
to consider the achievement of consensus through deliberation, another popular exam-
ple. However, it seems difficult to infer whether a decision was reached from deliberation
based solely on the observed outcome and each individual’s initial preference. Instead,
we consider a “random” process, equivalent to a coin-flip (in fact, in the two-author case,
a coin-flip is presumably equivalent to deliberation, if both authors are equally influ-
ential in the deliberation). Finally, we include a “conventional” process, whereby the
signature most frequent in a given context is retained, irrespective of the authors’ pref-
erences. We then estimate the prevalence prevalence πk of each preference aggregation
strategy Ak ∈ {A1, . . . }, given that P (S|x1, . . . , xn) =

∑
k P (S|x1, . . . , xn, Ak)P (Ak), and

Ak ∼ Categorical(πk).
Results are shown in Figure 7, given a flat Dirichlet prior on πk. Due to the sample size,

error bars are quite wide. Nevertheless, dictatorial strategies prevail (πdictatorial > 0.73 at
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1Figure 7: Prevalence of aggregation strategies. Error bars indicate 95% credible intervals.
The dominant strategy seems to be that the last author dictates the metric convention.

the 95% credible level for the two-author case and πdictatorial > 0.57 for the three+-author
case – which is almost always three authors), even in the 3+ authors case (for which
majority vote is possible): inequalities in the status of authors can help expedite judg-
ment aggregation. More interestingly, in the two-author configuration, there is conclusive
evidence that the first author is less likely to choose the metric signature compared to
the last author (P (πfirst-author > πlast-author) = 0.008). For 3+ authors, the data leans
towards this direction as well (P (πfirst-author > πlast-author) = 0.222); moreover, middle-
authors seem less likely to dictate the final choice. The last author (who is generally in a
leadership position) therefore seems to enjoy more influence, even though the first author
carries a greater share of work (in principle) and would benefit from using their favorite
metric signature17. This convergences with [15], which finds that “fights” for visible con-
ventions in scientific papers are more often won by experienced authors. This emphasizes
the role of leadership in the resolution of conflicts, and suggests that for this particular
convention, “optimality” (whether in the sense of promoting collective agreement, or the
first author’s satisfaction) is sacrificed.

3 Discussion
This paper introduced a statistical physics account of conventions capturing the hetero-
geneous competing processes influencing their adoption. This account acknowledges that
individuals attitude’ towards conventions is dictated not only by an imperative of social

17Authorship norms are known to vary across fields [43]. To verify that these interpretation hold in
fundamental physics, we evaluated the probabilities that the first-author or the last-author are strictly
older than the other co-authors. We found an association between last-authorship and seniority (see S4.9
for more details).
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coordination, but also by purely internal imperatives of sequential consistency (the need
to avoid switching back-and-forth between different choices) and contextual consistency
(the need to adopt mutually coherent systems of choices, as in epistemological holism
[16]). Broadly speaking, conventionality arises when a collection of choices or traits is
constrained only collectively, due to synergistic interactions between individual choices.
Interestingly, all three imperatives (social, sequential, and contextual consistency) can be
modeled by coordination games on some underlying graph structure, or, alternatively, by
an Ising model on a graph. This connection with the Ising model can be leveraged to
extract empirical information about real-life conventions. As we showed, it can infer the
structure of the underlying social coordination game and the social networks involved, or
reconstruct the underlying cultural landscape, in the case of systems of conventions.

Additionally, the framework predicts that social coordination can arise out of either
local (or bottom-up) coordination, driven by dyadic interactions on a network, or from
global (top-down) coordination, relying on shared culture and knowledge or institutions
transcending the social infrastructure. The contribution of these two processes in real-life
conventions can also be measured with an Ising model approach. Additionally, different
models of preference-formation (imitation, adaptation, cultural artifacts, etc.) predict
different magnitudes of local and global coordination, such that the magnitude of these
two channels of coordination can help determine the actual underlying process in real
conventions. In the case of the metric signature, using simulation-based inference, we
found slightly more evidence in favor of cultural transmission of preferences via the im-
itation of a peer, a process that can explain a small but non-vanishing magnitude of
local coordination. In scientific communities, it may explain which aspects of epistemic
cultures belong to a “disciplinary matrix” [32] (the set of practices and values that scien-
tists adopt as part of the process of acquiring and conforming to a disciplinary identity)
and which aspects emerge more spontaneously and locally. More generally, we show how
the Ising approach provides a relatively model-independent way of discriminating local
(i.e. emergent and endogenous) from global (exogenous) collective synchronization using
behavioral network data.

Finally, it was argued that the resolution of conflicts between multiple conventions
implies a trade-off between the optimality of the outcome (e.g., the degree of collective
satisfaction) and decision costs (i.e. the cost of reaching a decision). We illustrated
this trade-off using the example of the metric signature. We inferred the prevalence of
various preference-aggregation strategies in co-authored papers, and found more evidence
for “dictatorial” strategies. Specifically, we found that the last-author’s preference has a
higher chance of prevailing, leading to suboptimal outcomes. Therefore, leadership and
seniority play a role in addressing coordination problems in the absence of norm.

Overall, this work provides an array of tools for understanding either the lack of norm
or the persistence of inferior norms and practices in a wide range of contexts. The pro-
posed framework can be generalized in several ways. For instance, while the Ising model
presupposes pairwise interactions (between, say, individuals, or cultural traits), complex
systems often involve higher-order interactions. In particular, scientists frequently in-
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teract in collaborations involving more than three authors. Such complex interactions,
whether they involve multiple individuals or cultural traits, can be encoded by hyper-
graphs [21]. In our framework, this leads to a generalized Ising model [44]. Moreover,
although this paper this paper limits itself to a binary convention, the approach can be
extended to conventions involving more than two alternatives, as in the Potts model [45].
Finally, in contrast to [15], this paper has not paid much attention to temporal dynamics,
due to the temporal sparsity of the data. Nevertheless, exploring such dynamics would
provide more information about the underlying processes of transmission, or about how
sequential consistency plays out over time.
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4 Supplementary materials

4.1 Regular expressions for determining the metric signature
The following case-insensitive regular expressions have been used to detect occurences of
the mostly minus signature:

• (([,\s\{\}]*)(\+|1)([,\s\{\}1]*)){1}(([,\s\{\}]*)\-([,\s\{\}1]*)){3,}

• (mostly[-\s]*minus|west[-\s]*coast)

• g_\{(00|tt)\}[\s]*=[\s]*[+]?[\s]*1

• \\Box(\^(\{2\}|2))?[\s]*\+[\s]*m\^(\{2\}|2)

Symmetric expressions are conversely employed for detecting instances of the mostly
plus metric signature.

4.2 Reconstructing cultural landscapes of conventions
This section illustrates the ability of the Ising model to reconstruct cultural fitness land-
scapes of conventions. To this end, following [15], we explore ten naming conventions
involving LaTeX macros abbreviating the name of frequently used LaTeX commands.
For instance, instead of writing \begin{equation} at the beginning of each equation,
authors often use an abbreviated name (e.g. \be) by defining a custom macro (e.g.
\newcommand{\be}{\begin{equation}}). The choice of abbreviated name is conven-
tional and in principle at the author’s discretion. For instance, certain authors prefer
“\beq” over \be. We collect occurrences of the two most frequent abbreviated names
for each of ten such conventions, labeled by −1 (for the shorter version, for instance
\be) and +1 (for the longer version, for instance \beq). Following our framework,
we assume that the fitness of a combination of choices is given by the Ising model,
U(x1, . . . , x10) =

∑
ij Jijxixj +

∑
i hixi. Assuming Jij, hi ∼ N (0, 1) and, using data from

77 000 papers in which at least one convention appears, we solve an inverse Ising prob-
lem to recover (Jij) and (hi). The results are shown in Figure 8. This reveals strong
interactions between two pairs of choices: the abbreviations of (\begin{equation},
\end{equation}), and those of (\begin{eqnarray}, \end{eqnarray}).
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(a) Ising model representation of a cultural
landscape involving ten binary conventions,
following [27]. Each convention represents a
choice between two options to shorten the
name of a LaTeX command. Edges repre-
sent interactions between conventions. Thick
edges designate traits that must be mutually
consistent. Node colors indicate the intrinsic
advantage of a specific choice (blue indicates
that the shorter abbreviation is favored, red
indicates a general preference for the longer
abbreviation). Interactions between two traits
can be seen as coordination games. The in-
verse Ising problem recovers the coefficients
of the underlying payoff matrices.

(b) Three-dimensional representation of the
cultural landscape. Each of the 210 = 1024
potential combination of traits is mapped
onto two dimensions using multidimensional
scaling. The height and color of the land-
scape indicates the fitness of each combi-
nation. There are four large peaks (in
red). The black dots represent the config-
urations in which the abbreviations for the
pairs (\begin{equation}, \end{equation})
& (\begin{eqnarray}, \end{eqnarray}) are
consistent.

Figure 8: Cultural landscape of common abbreviations of LaTeX commands..
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4.3 Sequential versus contextual consistency: model assessment
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1Figure 9: The analysis in 2.1 is re-iterated with simulated data instead of actual data.
The simulation assumes that θi = 0 for all authors (i.e. there is no effect of consistency),
while each research area has a significant effect. The inference correctly finds that |θ| is
nearly zero and correctly identifies the ground truth size of the effect of each research
area (+2, -2, +1, and -1 respectively).

4.4 Inverse ising problem and the pseudo-likelihood approach
The pseudo-likelihood method [39] transforms the inverse Ising problem into a tractable
logistic regression, based on the likelihood of observing each individual spin conditional
on the others, i.e.:

∏
i

P (xi = +1|{xj 6=i}) =
∏
i

e+J
∑

j wijxj+BCi

e+J
∑

j wijxj+BCi + e−J
∑

j wijxj−BCi

(6)

Using simulated configurations of G, we demonstrate that the pseudo-likelihood ap-
proach provides reliable estimates of J and B, if all xj are observed, and for J ≤ 10−2

(Figure 10). In the case that a value xj is unknown, due to a lack of paper solo-authored
by j with an identified metric signature, then author j is omitted from the sums in (6).
This is equivalent to imputing xj = 018. We find that this approach is able to recover
reliable information about the true value of J (Appendix 4.4, Figure 10). However, we
may fear that the imputation of missing data (equivalently interpretable as the removal
of unobserved nodes from the network) introduces bias in our inference [27]. A proper
handling of unknown authors’ preferences would require marginalizing eq. (6) over the

18This imputation strategy is also equivalent to restricting the inference procedure to a sub-graph of
the co-authorship graph, including only the nodes and edges involving the 2 277 authors whose preference
could be identified in at least one solo-authored paper.
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2m possible combinations of the m underlying unobserved signatures19. Unfortunately,
the amount of missing data makes this impossible. However, this issue is not necessarily
critical if, ultimately, we are less interested in recovering the exact values of J and B

than in using the estimates as summary statistics for the purpose of comparing multiple
models of the formation of individual preferences. Then, as long as each model predicts
distinct patterns for the best-fit values of J and B, the procedure remains useful. In
any case, simulations show that the measured value of J is very correlated with the true
value, even when nodes with missing data are masked during the inference process (cf.
Appendix 4.4, Figure 10). Finally, missing data could be a feature rather than a bug;
they might manifest the fact that certain authors make no explicit use of a specific metric
signature, in which case it is reasonable to assume that they may not exert any influence
over their co-authors’ preferences.
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Figure 10: Robustness of the pseudo-likelihood approach for measuring J and B. “True”
values of J and B are drawn at random [J ∼ Exponential(1/J∗), B ∼ N (0, 1)]. Node
configurations (xi) are drawn at random according to the Ising model for each values of
J and B, using Gibbs sampling, either i) removing or ii) including nodes corresponding
to authors whose preference is not observed in the data. Finally, the maximum likelihood
estimates (MLE) JMLE and BMLE are recovered with the pseudo-likelihood approach, for
each configuration (xi), imputing xi = 0 for authors whose preference was not observed in
our data. The best-fit values are in reasonably good agreement with the true values over
the simulated range, although they are much less accurate in the case where unobserved
authors are included in the Gibbs sampling process.

19An alternative would be Gibbs sampling, which may handle missing data without marginalization,
though it turned out to perform worse than HMC in the present case.
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Effect size CI95% Effect size CI95%
Parameter

J +0.013 [+0.009, +0.017] +0.0095 [+0.0052, +0.014]
Jcit - - +0.00049 [+0.00023, +0.00075]
B(hep− ph) -0.86 [-0.99, -0.73] -0.77 [-0.91, -0.64]
B(hep− th) -0.22 [-0.29, -0.15] -0.17 [-0.24, -0.095]
B(gr− qc) +0.075 [-0.0069, +0.16] +0.076 [-0.0066, +0.16]
B(astro) -0.6 [-0.74, -0.47] -0.59 [-0.73, -0.46]

Table 3: Parameters of the Ising model.

4.5 Models of preference formation
Three models are considered: a strategic agent model (M1), a global-transmission model
(M2), and a local transmission model (M3). Many samples are drawn according to each
generative process M1,M2,M3. For each sample, we infer the parameters of the Ising
model (B, J and Jcit) – ignoring the authors whose actual preference is unknown, in order
to preserve the compatibility with the values of B, J and Jcit inferred from the actual
data). Since each model generates slightly different patterns for these parameters (Figure
6), these can be used as summary statistics for estimating their relative plausibility given
the observed data, P (M |J, Jcit,B). For this task, we use simulation-based inference [40]
with BayesFlow [46, 47]. This procedure allows to perform Bayesian inference when one
lacks an analytical expression for the likelihood P (D|M), and all that can be done is
drawing samples by simulating the generative process M . This technique is especially
useful for making inferences about models defined by complex programs, such as agent-
based models. When the data is highly dimensional (as in the present case), this approach
requires “summary statistics” [40]. Interestingly, the parameters of the Ising model can
serve this role. Figure 12 confirms that the procedure exhibits some ability to discriminate
the three models.

4.6 Strategic agent model
The “strategic agent” model proceeds as follow:

1. The parameters of the model are drawn at random:

• cb ∼ N (0, 1), defined for each research area b, is the (dis)advantage of the +1

convention in b. The cost of using a convention x in context b is max(0,−xcb).

• cc ∼ Exponential(〈di〉) represent the magnitude of coordination costs, where
〈di〉 is the average degree-centrality of authors in the co-authorship graph.
The mean is thus set such that 〈cc〉〈di〉 = 1.

• The cost of switching from one convention to another is fixed (cs = 1)20.
20This breaks a degeneracy of the model due to scale-invariance (if all costs were rescaled by a certain

quantity, agents’ behavior would remain identical).
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2. At t = 0, the network is initialized in a random state: xi,t=0 is set to either −1 or
+1 with equal probabilities.

3. At t + 1, each agent compares their payoff in two scenarios: i) they switch their
preference (xi,t+1 = −xi) or ii) they maintain it (xi,t+1 = xi). The difference in
payoffs is:

∆ = −cs−cc
∑
j

wij (max(0, xj,txi,t)−max(0,−xj,txi,t))−
∑
b

pib (max(0, xi,tcb)−max(0,−xi,t+1cb))

(7)

Where pib is the probability that i publishes in research area b. If ∆ > 0, i switches
their preference. The cost of switching (cs) introduces an asymmetry in ∆ and has
the effect of a conservative bias.

4. The process is repeated 50 times. The amount of steps reflects a compromise
between performance and convergence.

This best-response strategy model is similar to common logit-response approaches to
belief dynamics such as [48], in the limit β → +∞ (see eq. 1.6).

4.7 Global transmission model
For the global transmission model, we assumed that the probability of adopting a specific
convention depends on both time and the author’s primary research area. The time-
dependence was captured by a random walk. The rate of change in the random walk
was obtained by fitting the model to data on reference books for which approximate
patterns of citations throughout time could be measured. We manually determined the
metric convention used in each of these references. These gave us a measure of the
prevalence of each convention in the citations of reference textbooks’ throughout time.
Unfortunately, this measure itself was too imperfect to reflect the actual probability that
a scientist adopts a convention from a specific textbooks. Nevertheless, we used the rate
of variation of this measure with time in our random walk model.

4.8 Distribution of summary statistics across models
Conditioning the outcome of simulations on high-dimensional data D to evaluate P (·|D)

is difficult because the probability of generating exactly D becomes virtually zero. One
should therefore condition on summary statistics T living in a lower dimensional space.
Ideally, the mapping f : D 7→ T should be chosen in a way that maximizes our ability to
tell apart the hypotheses that we seek to discriminate. In our case, f : (x1, . . . , xn) 7→ J,B

may not be optimal in that specific sense, but it has some discriminating power (see
Figure 12) and has the merit of interpretability. A trivially better summary statistic for
assessing the plausibility of, say, the model of local cultural transmission would be, for
instance, the average rate of agreement between each author’s and their first co-author
(whose preference they should have imitated, according to the model).
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1Figure 11: Bottom-left pair plot: distribution of summary statistics for each model
(shown in colors), compared to the summary statistics derived from the data (shown
as black stars). Plots on the diagonal show the marginal posterior distribution of each
summary statistics for each model (gray bars represent the 95% posterior credible interval
of each parameter given the data). Top-right bar plot: posterior probability of each
model given the observed parameters of the Ising model.
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1Figure 12: Reliability of the simulation-based model comparison approach. The confusion
matrix represents the probability that a sample drawn from the horizontal model is
attributed to the vertical model.

4.9 Authorship norms
We investigated authorship norms in fundamental physics (excluding experimental physics,
which are not considered in this paper and have very unusual norms). We found that
the author-list of 79% of two-author papers are alphabetically ordered. Given that for
n authors, there is a 1/(n!) chance that any ordering is equal to the alphabetical order,
this implies that 56% of two-author papers author-lists are intentionally ordered [43].
This number goes down to 45% for four-author publications. Therefore, despite a high
prevalence of alphabetical ordering in fundamental physics compared to other disciplines
(as found by [43]), in about half of the publications the ordering of authors is meaningful.

Most importantly, we found evidence that last-authorship is associated with seniority:
in 54% of two-author papers, the last author has an academic age strictly higher than
the first author; in comparison, in only 40% of cases, the first-author has strictly higher
seniority compared to the last-author. In the three-author case, the last author has the
strictly highest seniority in 29% of cases, versus 17% for the first-author.
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