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1 Introduction

Combinatorial optimization focuses on selecting an optimal subset from a typically huge
but finite set of discrete objects or options. These options often represent elements such
as edges in a graph or a network and encompass several well-studied problem classes, in-
cluding scheduling, facility location, graph partitioning, vehicle routing, and network flow
problems. These problems have widespread applications in logistics, telecommunications,
operations research, and various other fields.

Among these, this thesis primarily focuses on network flow problems, which arise when
a commodity moves through an underlying network, creating a flow of resources or in-
formation. Nowadays, these networks are everywhere in our daily lives, appearing in
various forms, from transportation, communication, and power distribution networks to
supply chains and social interactions. Consider, for example, navigation systems finding
the shortest or most sustainable path between your location and desired destination. The
very influential textbook by Ahuja et al. [1993] presents over 150 applications of network
flow problems across various fields such as engineering, management, and scientific do-
mains. These problems are fundamental and well-studied in combinatorial optimization
and have been addressed since the early 1950s [see, e.g. Ahuja et al., 1993; Bertsekas,
1998, and the references given therein].

The minimum cost flow problem involves moving a static flow through a network at
minimal cost. The given network has specific nodes that supply the flow units while
others demand it. The flow units are moved along the arcs of the network. The flow along
these arcs is constrained by specified lower and upper bounds, known as capacities, and
has associated costs per flow unit. The objective is to find a flow that satisfies supply,
demand, and capacity constraints and minimizes the overall cost. The minimum cost
flow problem has numerous real-world applications, especially in industry and decision-
making, such as inventory planning, data scaling, lot sizing, location problems, DNA
sequence alignment, and project management [Ahuja et al., 1993]. Moreover, the minimum
cost flow problem contains several combinatorial optimization problems as special cases.
Among others, the important transportation problem and the assignment problem reduce
to the minimum cost flow problem. The problem can be described more mathematically
in the following way. Given a directed graph with n nodes V = {v1, . . . , vn} and m
arcs A = {e1, . . . , em}, non-negative arc costs and non-negative integer capacities, and
an integer-valued supply/demand bv for each node v ∈ V , the task is to determine a b-
flow, or referred to as flow, with minimum total cost, i. e., a network flow that respects
the capacities on all arcs a ∈ A and has flow balance exactly bv in each node v ∈ V .
For the single-objective version of this problem, there are various polynomial algorithms.
A comprehensive overview of the related literature for minimum cost flow problems is
provided in Ahuja et al. [1993]. However, real-world problems often involve multiple
conflicting objectives, and no solution optimizes all objectives simultaneously.
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Chapter 1 Introduction

Imagine a group of friends from Germany planning a surf trip to the beautiful town of
Ericeira, Portugal. They have several transportation options to reach Ericeira, including
planes, cars, trains, buses, or combinations, each providing different costs, travel times,
and environmental impacts. Planes and trains from Germany may only connect to larger
nearby cities, such as Lisbon, requiring additional transportation afterward. Moreover,
the group may not have enough car seats for everyone, or there may not be enough
remaining tickets available for the cheapest flight or train, potentially forcing the group
to split up and take separate routes. The group aims to find the cheapest, fastest, and
most sustainable transportation. However, no possibility minimizes all three objectives.
Arriving by plane in Lisbon and then renting cars might be the fastest option, but it is also
the least sustainable. Driving with the own cars is likely the cheapest but slower option.
On the other hand, only opting for trains and buses is the most sustainable option, but it
comes with being slower and potentially more expensive. Therefore, the objectives conflict
and a trade-off must be made between time, cost, and sustainability.

This scenario shows that these multi-objective problems appear in our daily lives. As
stated in Ehrgott [2005]:

Life is about decisions. Decisions, no matter if made by a group or an indi-
vidual, usually involve several conflicting objectives. The observation that real
world problems have to be solved optimally according to criteria, which prohibit
an “ideal” solution [. . . ] has led to the development of multicriteria
optimization.

Multi-objective problems with conflicting objectives arise in many real-world problems,
including logistics, economics, finance, and more. In those conflicting scenarios, no solution
exists that optimizes all objectives simultaneously. In particular, one is interested in
finding solutions with the property that it can only be improved with respect to one
objective if at least one other objective deteriorates. Such a solution is called efficient
solution or Pareto-optimal solution and its image is called nondominated point.

Various approaches exist for tackling multi-objective optimization problems. The pri-
mary approaches can be categorized as the following. In a-priori methods, the decision-
maker specifies their preferences, such as weights or goals, before the optimization process
begins. In a-posteriori methods, the optimization process generates a set of efficient solu-
tions, allowing the decision-maker to select the most suitable one afterward. In interactive
methods, the decision-maker interacts with the optimization process iteratively, refining
preferences and guiding the search for the most suitable solution.

This thesis primarily focuses on a-posteriori methods, aiming to determine all or a
suitable subset of the efficient solutions or nondominated points, for a summary of solution
concepts in multi-objective optimization, see Serafini [1986]. One subset of interest could
be the set of all supported efficient solutions, which are those efficient solutions that can
be obtained as optimal solutions of a single-objective problem that optimizes a convex
combination of the multiple objectives with weights strictly greater than zero. While
multi-objective linear optimization problems only contain supported efficient solutions,
the efficient solution set of multi-objective combinatorial optimization problems, such as
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multi-objective network flow problems, also contain nonsupported efficient solutions. The
nonsupported efficient solutions typically outnumber the supported ones, where the latter
are more straightforward to determine, can serve as high-quality representations [Sayın,
2024], and can be used as a foundation for two-phase methods to generate the entire
nondominated point set. Despite their importance, several characterizations for supported
efficient solutions and thus supported nondominated points are used in the literature.

The multi-objective integer minimum cost flow problem is significantly more challeng-
ing than its single-objective counterpart. The multi-objective case has been reviewed
in Hamacher et al. [2007b], where the authors comment on the lack of efficient algorithms.
Multi-objective integer minimum cost flows, like any discrete multi-objective optimization
problem, can be considered as enumeration problem. This involves enumerating all non-
dominated points or subsets of the nondominated point set with respect to other solution
concepts. Determining the complete nondominated point set for multi-objective integer
minimum cost flow problems is known to be intractable in the sense that the number of
nondominated points grows exponentially with the problem size [Hansen, 1980]. Further-
more, the corresponding canonical decision problem, i.e., finding a feasible flow that has
cost lower or equal to a given value for each objective, is NP-complete.

Optimization problems are often classified based on whether they can be solved in
polynomial or exponential time. However, many multi-objective discrete optimization
problems are intractable, meaning that the cardinality of the nondominated point set grows
exponentially with respect to the input size [Hansen, 1980; Hamacher and Ruhe, 1994;
Ehrgott, 2005, . . . ]. Even when finding a single solution may be easy, or the corresponding
canonical decision problem may be solvable in polynomial time, enumerating all desired
solutions of such an intractable problem in polynomial time is impossible. Therefore,
another approach is needed to classify the “hardness” of such intractable enumeration
problems. For such problems, one may seek algorithms with a running time that can be
bounded by a polynomial in both the input and the output size. Such algorithms are
known as output-polynomial time algorithms. For a detailed discussion of output-sensitive
complexity, we refer to the survey Johnson et al. [1988]. Such an algorithm, or proof
that no such algorithm can exist (unless P = NP), can indicate whether the intractable
enumeration problem can be considered as “easy” or “hard”.

One goal of this thesis is to determine whether output-polynomial time algorithms exist
for different solution concepts for the multi-objective integer minimum cost flow problem
and to verify if the supported nondominated points yield high-quality representations of
the complete nondominated point set.

Outline and Contribution of this thesis

This thesis presents new algorithms to determine alternative solutions and various subsets
of the efficient set for the multi-objective integer minimum cost flow problem. It analyzes
the output sensitivity complexity with respect to different solution concepts. The thesis is
a step toward addressing the open question of whether output-polynomial time algorithms
exist for these different solution concepts. The thesis shows how to compute the complete
nondominated point set as well as specific subsets, such as the supported nondominated

3



Chapter 1 Introduction

points, and evaluates the quality of the supported nondominated points as representations
of the entire nondominated point set. Furthermore, while several characterizations exist
for supported efficient solutions, the thesis summarizes equivalent definitions and charac-
terizations for supported efficient solutions. It introduces a distinction between supported
and weakly supported efficient solutions.

This thesis is structured as follows: Chapter 2 sets up the notation and terminology and
provides essential definitions and foundational concepts for the subsequent chapters. This
includes an introduction to computational complexity, polyhedral theory, linear program-
ming, multi-objective optimization, graph theory, and the minimum cost flow problem.

Chapter 3 presents scalarization-based algorithms for multi-objective combinatorial op-
timization problems. It focuses on methods that decompose the overall problem into a
series of scalarized single-objective subproblems, which can then be solved using available
single-objective (IP-)solvers. The presented methods are generic, i.e., they are indepen-
dent of specific problem structures and hence generally applicable. Furthermore, the chap-
ter references foundational results and algorithms, establishing connections with various
aspects such as search region, search zones, local upper bounds, defining points, com-
plexity results, and redundancy avoidance. It emphasizes the importance of these generic
approaches and underscores their efficiency in solving multi-objective combinatorial op-
timization problems while exploring a wide range of options for their implementation.

Chapter 4 addresses an inconsistency in various definitions of supported nondominated
points within multi-objective combinatorial problems (MOCO). Despite the importance
of supportedness, several different characterizations for supported efficient solutions (and
supported nondominated points) are used in the literature. While these definitions are
equivalent for multi-objective linear problems, they can yield different sets of supported
nondominated points for MOCO problems. The chapter shows by an example that these
definitions are not equivalent for MOCO or general multi-objective optimization problems.
Moreover, the structural and computational properties of the resulting sets of supported
nondominated points are analyzed. Equivalent definitions and characterizations for sup-
ported efficient solutions are summarized, and a distinction between supported and weakly
supported efficient solutions is introduced.

While multi-objective linear optimization problems only contain supported nondomi-
nated points, the nondominated set of multi-objective combinatorial optimization prob-
lems, such as integer network flow problems, may also contain weakly supported and non-
supported nondominated points. These points generally outnumber the supported ones
and are more challenging to determine, as they cannot be obtained as optimal solutions of
weighted sum problems with weights strictly greater than zero. Chapter 5 considers the
supported nondominated points as representations for the complete nondominated point
set in network flow problems. Various quality metrics, such as coverage error, hypervolume
ratio, and ε-indicator, are presented and used to analyze and compare the quality of these
representations. Multiple classes of network flow problems are generated to evaluate the
representations. The results indicate that the supported nondominated points consistently
provide high-quality representations.
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Chapter 6 addresses the problem of determining all optimal integer solutions of a linear
integer network flow problem, referred to as the all optimal integer flow (AOF) problem.
A new algorithm is derived with improved time complexity compared to existing state-of-
the-art algorithms for determining the set of all optimal integer flows. Our improvement
is made possible by replacing the shortest path sub-problem with a more efficient way
to determine a so-called proper zero cost cycle using a modified depth-first search tech-
nique. This algorithm serves as a foundational tool for the solution methods presented
in Chapter 7 and Chapter 8.

As a byproduct, the analysis yields an enhanced algorithm to determine the k best
integer flows. Furthermore, lower and upper bounds for the number of all optimal integer
and feasible integer solutions are established based on the fact that any optimal solution
can be derived from an initial optimal tree solution combined with a conical combination
of incidence vectors of all induced cycles with bounded coefficients.

Chapter 7 addresses the problem of enumerating all supported efficient solutions for
multi-objective integer minimum cost flow problems, providing insights into the time
complexity for enumerating all supported nondominated points and all supported effi-
cient solutions. An output-polynomial time algorithm to determine all supported efficient
solutions is derived. Moreover, it proves that the existence of an output-polynomial time
algorithm to determine all weakly supported nondominated points (or all weakly sup-
ported efficient solutions) for a multi-objective integer minimum cost flow problem with a
fixed number of d ≥ 3 objectives can be excluded unless P = NP. It also shows that there
cannot exist an output-polynomial time algorithm for the enumeration of all supported
nondominated points that determine the points in a lexicographically ordered way in the
outcome space unless P = NP.

Chapter 8 proposes novel methods for identifying supported nondominated points in bi-
objective minimum cost flow problems accompanied by a numerical comparison between
decision- and objective-space methods. A novel, equivalent, and more compact formulation
of the minimum cost flow ILP formulation used in the ε-constraint scalarization approach
is introduced, demonstrating enhanced efficiency in the numerical tests.

Chapter 9 concludes the thesis by summarizing the main contributions and remarks for
future research.

Credits and Publications

Some parts of this thesis are the result of joint work which has been published, submitted,
or will be submitted:

• Chapter 3 is based on a book chapter, co-authored with Kathrin Klamroth and
Kerstin Dächert, which appears in Dächert et al. [forthcoming].

• Chapter 4 is the result of joint work with Michael Stiglmayr and is available as
a technical report in Könen and Stiglmayr [2025b], which has been accepted for
publication in the Journal of Multi-Criteria Decision Analysis.
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Chapter 1 Introduction

• The content of Chapter 5 is based on joint work with Lara Löhken, Michael Stiglmayr
and Kathrin Klamroth and will be submitted.

• The content of Chapter 6 is based on the joint work with Daniel Schmidt and Chris-
tiane Spisla and has been published in Könen et al. [2022a].

• The results presented in Chapter 7 and Chapter 8 are the outcome of joint work with
Michael Stiglmayr. They have resulted in a publication Könen and Stiglmayr [2025a]
and a technical report Könen and Stiglmayr [2023], which has been submitted to the
Journal of Combinatorial Optimization.

• Chapter 2 sets the preliminaries for the following chapter and contains parts from
all articles and the book chapter.
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2 Preliminaries

This chapter states all the necessary basic definitions and notations used throughout the
thesis. Its purpose is to set a consistent and coherent notation.

Key conventions include:

• Scalars and vectors are represented by lowercase Latin or Greek letters (e.g., y, and
λ, ε). Vectors are distinguished by superscripts (e.g., x1, x2) and components of
vectors by subscripts (e.g., x1, x2).

• Sets are denoted by Roman or Greek capital letters (e.g., A,B, and Λ,Σ), exceptions
are the general notation of the basic number sets N,Z,Q,R, displaying the sets of
natural, integer, rational and real numbers, respectively. The non-negative orthant
of Rp is denoted by Rp= := {x ∈ Rp : x = 0} and analogously its interior Rp> and

Rp≥ := {x ∈ Rp : x = 0, x 6= 0}. Sets displaying a feasible decision or outcome space
of an optimization problem are displayed by calligraphical letters (e.g., X ,Y).

• Matrices and problems are also indicated with Roman capital letters (e.g., A,E).
Derived problems are distinguished by superscript variants (e.g., EFIN).

The reader is assumed to be familiar with basic concepts of linear and integer program-
ming, network optimization, graph theory, and combinatorial optimization. However, the
key concepts used in the thesis are stated below. All definitions and results here are stan-
dard and can be found, along with their proofs, in various texts books on combinatorial
optimization, notably those by Ahuja et al. [1993], Nemhauser and Wolsey [1999], Schri-
jver [2003], and Korte and Vygen [2012]. If a theorem is presented without a proof, the
proof can be found in the corresponding reference. When a proof is provided for a theorem
with cited reference, it is based on the proof in the source (although it may differ slightly;
compare proofs as needed).

This chapter first introduces computational problems, algorithms, and their complexity
in Section 2.1. Section 2.2 introduces linear and integer linear optimization and polyhe-
dral theory. Next, in Section 2.3, the scope is extended to multi-objective optimization
problems Section 2.4, covers essential definitions from graph theory, and introduces the
most well-known graph problems relevant to the thesis. Finally, Section 2.5 addresses the
central problem class of network flow problems and their related issues.

2.1 Computational Complexity

In this section, computational problems, the concepts of input and output, and operations
involved in algorithms are formalized. Also, the necessary definitions for classifying the
complexity of algorithms are provided. This section is primarily based on the textbooks
by Papadimitriou [1994], Schrijver [2003], and Korte and Vygen [2012].
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Chapter 2 Preliminaries

2.1.1 Algorithm Design and Computational Problems

Informally, a computation problem defines a desired input-output relationship, and an
algorithm is a well-defined procedure that details how to achieve this relationship by
transforming the input values into output values through a sequence of operations.

Alphabet, Language The input of an algorithm refers to the provided data for process-
ing, while the output is the result produced by the algorithm. Both can take various forms,
such as numbers, characters, or abstract objects like graph nodes, and can be represented
or stored as finite strings of bits (0’s and 1’s). For example, a sorting algorithm takes a
list of numbers as input and outputs the list sorted in non-decreasing order.

An alphabet Σ is a finite set of such symbols or characters. This thesis considers only
the binary alphabet given by the set {0, 1}, where a string or word over Σ is a sequence of
elements from the alphabet. The set Σ∗ consists of all possible strings over the alphabet
Σ. A language is a subset I ⊆ Σ∗ over the alphabet Σ.

The encoding length of a data structure is the length of the string s required to represent
it, denoted by |s|. The encoding length of a natural number n ∈ N represented by its binary
representation is bounded by dlog(n + 1)e. For an integer z ∈ Z, the encoding length is
dlog2(|z|+ 1)e+ 1 to account for the sign. A rational number r ∈ Q, expressed as r = p/q
with p, q ∈ Z, q ≥ 1, and greatest common divisor gcd(p, q) = 1, has an encoding length
of 1 + dlog(|p| + 1)e + dlog qe. For a vector x ∈ Qn or a matrix A ∈ Qm×n, the encoding
length is the sum of the encoding lengths of its components. The encoding of complex
structures as graphs will be discussed in the respective Section 2.4.

Random Access Machine The complexity of an algorithm or computational problem
is defined with respect to a computational (or machine) model like a turing machine
model or random access machine (RAM) model. This thesis adopts the RAM model,
which consists of a central processing unit (CPU) (single processor) with a finite set of
instructions and a memory array where each cell can be accessed directly in constant time
(random-access memory). The instructions are executed sequentially, without concurrent
operations, including arithmetic operations, data movement, and control instructions, each
of which takes a constant amount of time. This computational model is an abstraction
that allows algorithms to be compared based on performance by counting the number of
basic operations performed. RAMs are equivalent to Turing machines in polynomial time
complexity. An algorithm that runs on a RAM in polynomial time implies the existence
of a polynomial-time constrained Turing machine, see Papadimitriou [1994]. We refer
to Cormen et al. [2001] and Sipser [2012] for an concise definition and overwiev of RAMs.

Polynomial Time Solvability Since the RAM is the fixed algorithmic model in this thesis,
any reference to an algorithm implies a RAM-based algorithm. An algorithm is referred
to as polynomial time algorithm if the number of steps is bounded by a polynomial in
the input size |x| for x ∈ I ⊆ Σ∗. Here, a step or operation consists of performing a
single instruction. This concept will be formalized further to analyze the running time of
algorithms in more detail.
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2.1 Computational Complexity

Order of Growth The order of growth of a function describes its asymptotic behavior,
providing characterizations of the upper bound on the running time of algorithms.

Definition 2.1 (Korte and Vygen, 2012). Let f, g : I → R> be two functions. The function
f is in O(g), if there exist constants α, β > 0 such that f(x) ≤ αg(x) + β for all x ∈ I.

For two words s, x ∈ Σ∗, the length |s| of s is said to be in poly(|x|) if there exists a
polynomial p such that |s| ∈ O(p(|x|)).

Running-time The worst-case time complexity of an algorithm provides an upper bound
for the running time of any input, and it is used throughout this thesis to analyze the
complexity of algorithms.

Definition 2.2 (Korte and Vygen, 2012). Let A be an algorithm that accepts inputs from
a set of instances (language) I ⊆ Σ∗, and let f : N → R>. If there exists a constant α
such that A terminates after at most αf(|x|) + β elementary steps for any x ∈ I, then A
is said to run in time O(f), also refereed to as the running-time or time complexity of A.

Let n = |x| be the size of the input, n̄ the number of elements of the input, ñ the largest
numeric value in the input, and k ∈ Z>. Then A is said to run in:

• linear time if A has time complexity O(n),

• polynomial time if A has time complexity O(nk),

• strongly polynomial time if A has time complexity O(n̄k), and

• pseudo polynomial time if A has time complexity O(ñk).

If an algorithm A computes the output f(x) ∈ Y for each input x ∈ I ⊆ Σ∗, then A is
said to compute the function f : X → Y . A function is computable in polynomial time if
some polynomial time algorithm computes it.

Decision Problem A decision problem is a problem that can be posed as a yes/no ques-
tion regarding the input values. This type of problem is central to studying algorithms
and complexity because it simplifies the analysis by reducing problems to their core com-
ponents. It will be shown that optimization problems can be reduced to decision problems,
and we can define the complexity classes with regard to decision problems.

Definition 2.3. A decision problem is a pair D = (I, Y ) such that

1. I ⊆ Σ∗ is the set of instances for some fixed alphabet Σ, and

2. Y ⊆ I is the set of yes-instances and I\Y is the set of no-instances.

Then, for a given word (input) x ∈ I, the problem is to determine whether x ∈ Y .

An example of a decision problem is the subset-sum problem, defined as follows:

9
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Definition 2.4. Given a set N = {1, . . . , n} of n items with positive integer weights
w1, . . . , wn and a real value k, the subset sum problem (SSP) is to find a subset of N such
that the corresponding total weight is exactly equal k. The formal definition is given by

n∑
j=1

wj xj = k

xj ∈ {0, 1} ∀j ∈ {1, . . . , n}

also written as {
(w, k) : w>x = k, x ∈ {0, 1}n

}
. (SSP)

Definition 2.5. A decision algorithm for a decision problem D is a random access ma-
chine that computes the function f : I → {0, 1} such that

1. on input x ∈ I it outputs f(x) = 1 for x ∈ Y and f(x) = 0 for x ∈ I\Y , and

2. on every input terminates after a finite number of steps.

If such a decision algorithm exists, a decision problem D is called decidable. If the algo-
rithm runs in polynomial time, D is called polynomial decidable.

The set of instances I ⊆ Σ∗ is said to be (polynomial) decidable if the corresponding
decision problem D∗ = (Σ∗, I) is (polynomial) decidable. For a decision problem D =
(I, Y ), it is always assumed that I is polynomial decidable.

Optimization Problem Optimization problems, particularly combinatorial and multi-
objective optimization problems, are the primary object of this thesis. This section intro-
duces the classical concept of single-objective optimization. Since maximization can be
defined analogously to minimization, all terms will be introduced for minimization, with
the understanding that the corresponding definitions for maximization are analogous.

Definition 2.6. An optimization problem consists of a set of instances and is defined for
an instance by:

min
x∈X

f(x), (OP)

where f : Rn → R is a real valued objective function and X ⊆ Rn is the set of feasible
solutions to a given instance.

For each optimization problem, a corresponding decision problem can be defined as: Given
an optimization problem minx∈X f(x) and a constant k ∈ Z, then the corresponding deci-
sion problem asks if there is a feasible solution x ∈ X with value f(x) ≤ k. An example
of an optimization problem is the knapsack problem, defined as follows:

Definition 2.7. Given a set N = {1, . . . , n} of n items, each with a positive integer
weight w1, . . . , wn and a positive integer profit p1, . . . , pn, and a real value capacity k1, the
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knapsack problem (KP) is to find a subset of N such that the total weight does not exceed
k1 and the total profit is maximized. The formal definition is given by

max
x∈X

n∑
j=1

pjxj

where X = {x ∈ {0, 1}n :
∑n

j=1wjxj ≤ k1}.

The corresponding decision problem is then defined as{(
w, p, k1, k2

)
: w>x ≤ k1, p

>x ≥ k2, x ∈ {0, 1}n
}
. (KP)

These definitions do not depend on the input encoding. However, since this thesis considers
the complexity of algorithms, the above definitions can also be stated more algorithmically,
as in Korte and Vygen [2012] or Bökler [2018].

Definition 2.8 (Bökler, 2018). An (algorithmic) optimization problem is a triple O =
(I, S, v) where

1. a set of instances I ⊆ Σ∗,

2. a mapping S : I → 2Σ∗ which maps an instance x ∈ I to its set of feasible solutions
Sx with, and

3. a mapping v : I×S(I)→ Q which maps each solution of a given instance to its value
in this instance.

For every x ∈ I, it must hold that for each s ∈ Sx, the length |s| is in poly(|x|). It is
assumed that S is computable, Sx is polynomial time decidable for every x ∈ I, and v is
polynomial time computable. The goal is to find for an instance x ∈ I a solution s ∈ Sx
such that there is no s′ ∈ Sx with v(x, s′) ≤ v(x, s).

Note that this definition reduces the mapping from a real-valued function to a rational-
valued function since computational representation only can represent rational numbers.

Definition 2.9 (Bökler, 2018). The corresponding decision problem to an optimization
problem is

{(x, k) ∈ I ×Q : ∃s ∈ Sx with v(x, s) ≤ k},

or more formal the tuple (I ×Q, Y ) with (x, k) ∈ Y where (x, k) ∈ I ×Q if there exists
s ∈ Sx with v(x, s) ≤ k.

The existence of a polynomial time algorithm for the decision problem implies that the
corresponding optimization problem can also be solved in polynomial time by employing
techniques like binary search. This linkage allows many optimization problems to be
tackled efficiently when their corresponding decision problems are known to be solvable in
polynomial time, see Sipser [2012].
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2.1.2 Complexity Classes

For many combinatorial optimization problems, polynomial-time algorithms are known
from literature. However, there are also problems for which no such algorithms are known.
Although we cannot prove the non-existence of a polynomial-time algorithm, it is possible
to classify problems as “hard” based on computational complexity theory. Complexity
classes are used to categorize decision problems rather than the corresponding algorithms
according to their computational complexity.

P and NP One of the most important class is the set P, which is refereed to as the set
of efficiently solvable problems. Another important complexity class is NP.

Definition 2.10. The set P is the set of all decision problems for which a polynomial
time algorithm exists.

Definition 2.11 (Schrijver, 2003). The set NP is the set of all decision problems D =
(I, Y ) for which there exists a decision problem D′ = (I ′, Y ′) such that x ∈ Y if and only
if there exists word w with size bounded by poly(|x|) such that (x,w) ∈ Y ′. The word w is
called a certificate for x, and an algorithm A for D′ is referred to as certificate-checking
algorithm.

NP stands for nondeterministically polynomial time, since the string w could be chosen by
the algorithm by guessing. So, guessing leads to a polynomial time algorithm. Informally,
the class NP can be described as the set of all decision problems that can be solved by
a polynomial time nondeterministic algorithm. It holds P ⊆ NP, since an algorithm for
D′ outputs x by deleting w and then applies the algorithm for D as a certificate-checking
algorithm. However, whether P 6= NP is unknown, making this one of the most important
open problems in complexity theory. However, it is strongly believed that they are not
equal.

Reducibility and Hardness Reducibility is used to show relationships between problems
by transforming one problem into another and showing that the problem is not easier than
the other.

Definition 2.12. A decision problem D′ = (I ′, Y ′) can be polynomial reduced to a de-
cision problem D = (I, Y ) if there exists a function f : I ′ → I computable in polynomial
time such that f(x) ∈ Y if x ∈ Y ′ and f(x) ∈ I\Y if x ∈ I ′\Y ′. We write D′ ≤P D.

Proposition 2.13 (Korte and Vygen, 2012). If D′ polynomially reduces to D and if there
is a polynomial time algorithm for D, then there is a polynomial time algorithm for D′.

Definition 2.14. A decision problem D is called NP-hard if all other problems in NP
polynomially transform to D. If D ∈ NP and D is NP-hard the problem is called NP-
complete.

Stephen Cook introduces the concept of NP-completeness in his famous work Cook [1971],
where he proved that the satisfiability problem is NP-complete, by demonstrating that the
satisfiability problem is both in NP and NP-hard. In Karp [1972], other NP-complete
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problems are presented, by proving that they can be polynomially reduced to the satisfi-
ability problem, thereby establishing their equivalent computational complexity.

Theorem 2.15 (Karp, 1972). The subset sum problem (SSP) is NP-complete.

Theorem 2.16 (Karp, 1972). The knapsack problem (KP) is NP-complete.

Symmetrically to NP-problems to which it is easy to verify yes-certificates, the class
co-NP is the set of decision problems on which it is easy to verify a no-decision if a
no-certificate is given.

Definition 2.17. For a decision problem D = (I, Y ), its complement is defined as the
decision problem (I, I\Y ). The class co-NP consists of all problems whose complements
are in NP. A decision problem P ∈ co-NP is called co-NP-complete if all other problems
in co-NP polynomially transform to P.

Theorem 2.18 (Korte and Vygen, 2012). A decision problem is co-NP-complete if and
only if its complement is NP-complete.

2.1.3 Output-polynomial Complexity

This section formally introduces the theory of output-sensitive complexity of enumeration
problems. For a comprehensive introduction, see Johnson et al. [1988]. The concepts
discussed here are based on Bökler [2018].

Enumeration Problem While decision problems seek the existence of a solution to some
problem instances, in many parts of this thesis, the interest lies in finding multiple solu-
tions, including scenarios where alternative optimal solutions for optimization problems
are sought or in multi-objective optimization where subsets of efficient solutions are re-
quested. Such problems can be defined as enumeration problems, where we aim to output
all solutions.

Definition 2.19. An enumeration problem is a pair (I, C) such that

1. I ⊆ Σ∗ is the set of instances for some fixed alphabet Σ,

2. C : I → 2Σ∗ maps each instance x ∈ I to its configurations C(x), and

3. the encoding length |s| for s ∈ C(x) for x ∈ I is in poly(|x|),

where Σ∗ can be interpreted as the set of all finite strings over {0, 1}.

We assume that I is decidable in polynomial time and that C is computable.

Definition 2.20. An enumeration algorithm for an enumeration problem E = (I, C) is
a random access machine that

1. on input x ∈ I outputs each c ∈ C(x) exactly once, and

2. on every input terminates after a finite number of steps.

13
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Definition 2.21. An enumeration algorithm for an enumeration problem E = (I, C)
is said to run in output-polynomial time (is output-sensitive) if its running time is in
poly(|x|, |C(x)|) for x ∈ I.

Definition 2.22. An enumeration problem is called intractable if the cardinality of the
configuration set is exponential in the size of the instance.

Finished Decision Problem A finished decision problem EFIN for an enumeration prob-
lem E = (I, C) is defined as follows: Given an instance x ∈ I of the enumeration problem
and a subset M ⊆ C(x) of the configuration set, the goal is to decide if M = C(x), i.e.,
to determine if all configurations have been found.

Theorem 2.23 (Lawler et al., 1980). If the enumeration problem E can be solved in
output-polynomial time, then EFIN ∈ P.

2.2 Polyhedral Theory and Linear Programming

This section summarizes the necessary definitions of polyhedral theory and linear pro-
gramming, mainly based on the textbooks by Nemhauser and Wolsey [1999] and Schrijver
[2003].

2.2.1 Polyhedral Theory

This thesis uses the notation A+B := {a+b : a ∈ A, b ∈ B} and A·B := {a·b : a ∈ A, b ∈ B}
for the Minkowski sum and the Minkowski product of two sets A,B ⊆ Rd, respectively. For
a set C, we define the boundary of C by ∂C. In the following, let n and m be non-negative
scalars.

Hyperplane, Half-space The subset {x ∈ Rn : Ax = b} ⊆ Rn, with A ∈ Rm×n and
b ∈ Rm is called an affine subspace of Rn. A hyperplane in Rn is a subset

H = {x ∈ Rn : a>x = b} ⊆ Rn

for a ∈ Rn\{0} and b ∈ R, representing an affine subspace of dimension n− 1. The vector
a is called the corresponding normal vector to the hyperplane. The set {x ∈ Rn : a>x ≤ b}
defines a half-space, whose boundary is the corresponding hyperplane H.

Polyhedron and Polytope A polyhedron is the intersection of a finite number of half-
spaces. Formally, it can be written as the set

P = {x ∈ Rn : Ax 5 b}

with A ∈ Rm×n and b ∈ Rm. Sets of the form {x ∈ Rn : Ax = b} are also polyhedra, since
they can be rewritten as {x ∈ Rn : (−A)x 5 −b}. Intersecting finitely many polyhedra
results in a polyhedron; therefore, the set {x ∈ Rn : Ax = b} is also a polyhedron since it
represents the intersection of {x ∈ Rn : Ax = b} and {x ∈ Rn : Ax 5 b}. Half-spaces, the
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empty set, and the entire space Rn also qualify as polyhedra, with ∅ = {x ∈ Rn : 0>x = 1}
and Rn = {x ∈ Rn : 0>x = 0}. A polyhedron P is called rational if there is a matrix
A ∈ Qm×n and a vector b ∈ Qm such that P = {x ∈ Rn : Ax 5 b}. In the following, if not
otherwise mentioned, only rational polyhedra are considered.

A polytope is a bounded polyhedron. Formally, for a polytope P , there exits r > 0 such
that P ⊆ {x ∈ Rn : ‖x‖ < r}. A polytope can be equivalently described as the convex hull
of a finite set of points X = {x1, . . . xk}, i.e.,

P = conv{x1, x2, . . . , xk} :=

{
k∑
i=1

λix
i : xi ∈ X,λ ∈ Rk, k ∈ N, λi ≥ 0,

k∑
i=1

λi = 1

}
,

see e.g., Nemhauser and Wolsey [1999].

Face An inequality a>x ≤ b is valid for a polyhedron P if it is satisfied by all x ∈ P ,
or equivalently, if P ⊆ {x ∈ Rn : a>x ≤ b}. Let a>x ≤ b a valid inequality of P , then
F = {x ∈ P : a>x = b} is called a face of P . Note that both P and ∅ are faces of P . If
F := {x ∈ P : a>x = b} 6= ∅, then {x ∈ Rn : a>x = b} is a supporting hyperplane. In this
context, a>x = b induces or supports the face F . Each face F is itself a polyhedron. A
non-empty face F of P is a facet of P if dimF = dimP − 1. A face with dimF = 1 is
called an edge. The face F is a vertex or supported solution of P if dimF = 0.

Interior Point, Ray An interior point of a polyhedron P ⊆ Rn is a point x ∈ P that lies
strictly inside the polyhedron, meaning there exists a small positive radius ε > 0 such that
the open ball B(x, ε) = {y ∈ Rn : ‖y − x‖ < ε} is entirely contained within P . Formally,
x is an interior point of P if B(x, ε) ⊆ P for some ε > 0. If x ∈ P is not an interior point,
it is said to lie on the boundary of P . In the context of polyhedra, a ray r ∈ Rn \ {0} is a
direction in which the polyhedron extends infinitely, i.e., for a polyhedron P ⊆ Rn, a ray
r is a direction such that x + λr ∈ P for any λ = 0 and x ∈ P . If a ray is a face of the
polyhedron, it is called extreme ray.

2.2.2 Linear Programming

A linear program (LP) problem involves optimizing a linear objective function over a
polyhedron.

Definition 2.24. A linear program problem is defined as

min
x∈X

c>x (LP)

with the feasible region X = {x ∈ Rn : Ax 5 b, x = 0} containing the set of all feasible
solutions and x ∈ X representing a vector of decision variables. The vector c ∈ Rn is the
vector of cost coefficients for the linear objective function c>x, and A ∈ Rm×n, b ∈ Rm
describes the m linear constraints defining the feasible region X . The space Rn is referred
to as the decision space and R is the objective space.
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Including different types of constraints, such as equality constraints, into a polyhedral
representation is straightforward. The extension of the non-negativity constraint xi ≥ 0
for all i = 1, . . . n can be done without loss of generality since two variables x+

i − x
−
i = xi

with x+
i , x

−
i ∈ R= can model an unbounded variable xi ∈ R. To maximize an objective

function c>x it is equivalent to minimize −c>x instead.

Optimal Solution A LP is infeasible if the polyhedron X of the feasible region is empty,
meaning no points x ∈ Rn= satisfy all the constraints simultaneously. A LP problem is
called unbounded if the objective function can be arbitrarily decreased within the feasible
region, i.e., if for all M ∈ R there ∃x ∈ X such that c>x < M . In this case, the
optimization direction −c is a ray of the polyhedron.

Theorem 2.25 (Nemhauser and Wolsey, 1999). If a LP is neither infeasible nor un-
bounded, then it attains the optimum at a vertex of the polyhedron X .

Throughout this thesis, we are often interested in determining more than one optimal
solution if alternative optimal solutions exist. The following statement will help identify
all optimal solutions for a LP.

Theorem 2.26. The set of all optimal solutions of a LP that is neither unbounded nor
infeasible is attained in a face F = H ∩ X of the polytope X and a supporting hyperplane
H of X .

Proof. Since X is neither infeasible or unbounded, there exists y∗ = minx∈X {c>x}. It
holds that c>x = y∗ for all x ∈ X , and there exists at least one x∗ with c>x∗ = y∗.
Therefore, F = {x ∈ X : c>x = y∗} is a non-empty face of X . Thus, all optimal solutions
are given by F .

Duality The dual problem to a linear program can serve as a certificate for optimality
and is a fundamental concept in optimization theory. It establishes a relationship between
a given optimization problem and a related problem, known as the dual problem. The
study of duality is particularly useful in deriving bounds on the optimal solution, providing
optimality conditions, and developing efficient algorithms.

Definition 2.27. For a LP minx∈Rn{c>x : Ax 5 b, x = 0} the dual program (DP) problem
is given by

max
y∈Rm

{b>y : A>y 5 c, y 5 0}.

The dual problem (DP) is also a linear programming problem and is referred to as the
dual of the primal LP. A solution of DP is called dual solution. The dual of the DP is
the primal LP. The dual program provides a lower bound on the objective function of the
primal problem. Specifically, for any feasible solution y to the dual, the value b>y is a
lower bound on c>x for any feasible solution x. This relationship is known as the weak
duality.

Theorem 2.28 (Nemhauser and Wolsey, 1999). If x ∈ X is a feasible solution to the
primal LP and y is a feasibly solution to the dual problem, then

b>y ≤ c>x.
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Proof. Let x, y feasible solutions. Consider the primal constraint Ax 5 b if multiplied
with y 5 0

y>Ax ≥ y>b

is still valid for all x ∈ X . Rewrite

b>y ≤ x>A>y.

Since y is feasible it holds A>y ≤ c and x ≥ 0 and hence

b>y ≤ x>A>y ≤ x>c = c>x.

These feasible solutions do not necessarily exist, in these cases, however, the weak duality
theorem has immediate consequences.

Property 2.29. For the primal LP and its DP, the following statements hold:

1. If the primal problem is unbounded, the dual problem is infeasible.

2. If the dual problem is unbounded, the primal problem is infeasible.

3. If the primal problem has a feasible solution x and the dual problem has a feasible
solution y with b>y = c>x, then x and y are optimal solutions to the primal problem
and dual problem, respectively.

If both the primal and the dual program have a feasible solution, the bound provided by
the dual program is tight, which is known as strong duality.

Theorem 2.30. If the primal or dual problem has a finite optimal solution, so does the
other and it holds

min
x∈Rn
{c>x : Ax 5 b, x = 0} = max

y∈Rm
{b>y : A>y 5 c, y 5 0}.

The following complementary slackness conditions, provide a direct relation of the two
problems, a necessary and sufficient optimality condition for both the primal and dual
problem.

Theorem 2.31 (Nemhauser and Wolsey, 1999). If x is a feasible solution of the primal
LP min{c>x : Ax 5 b, x = 0, x ∈ Rn} and y is a feasible solution for the dual given by
max{b>y : A>y 5 c, y 5 0, y ∈ Rm} then x, y are optimal solutions if and only if

• for all j = 1, . . . , n with xj > 0 it holds
∑m

i=1 aijyi = cj, and

• for all i = 1, . . . ,m with yi < 0 it holds
∑n

j=1 aijxj = bi.

Note that all proofs can be found in the corresponding references.
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Solution Methods Linear programming (LP) problems can be solved using a variety of
solution methods, each with its own strengths and shortcomings, based on the specific
characteristics and size of the LP problem at hand.

1. Simplex Method: Developed by Dantzig [1947], the simplex method is a procedure
that iteratively moves from one vertex to another along the edges of the feasible
region to find an optimal vertex. It is in practice and, on average, quite efficient, de-
spite no polynomial time worst-case time complexity has been proved. The current
pivot selection rules have been proven to have exponential worst-case time com-
plexity. Moreover, there is also the interesting open question if the diameter of
polyhedron can be exponential in its dimension and the number of facets. If so, even
an “optimal” pivot rule would not ensure polynomial time complexity, as the length
of the shortest path from the starting solution to the optimal solution might have
an exponential number of facets.

2. Interior Point Methods: These methods, pioneered by Karmarkar [1984], approach
the optimal solution from within the feasible region rather than traversing the bound-
ary. They are polynomial-time algorithms and are highly effective for large-scale LP
problems, competing with the simplex method. While the theoretically run-time is
polynomial in contrast to the simplex method, which can be exponential in the worst
case—in practice, they often perform comparably to the simplex method. In Rene-
gar [1988], the first path-following method was introduced, where the search for the
optimal solution follows a carefully designed trajectory through the interior of the
feasible region, guided by a sequence of barrier functions. This approach has since
become one of the most widely used variants of interior point methods, offering both
strong theoretical guarantees and competitive practical performance.

3. Primal-dual Methods: First presented by Dantzig and Ford [1956] as another means
of solving linear programs. These methods are iterative algorithms that simulta-
neously consider the primal and dual formulations. By iteratively improving both
the primal and dual solutions while maintaining duality feasibility and primal near-
feasibility to achieve the optimal solution. Starting with a dual feasible solution, the
primal-dual method, given a current feasible dual solution, looks for a primal feasible
solution that obeys the complementary slackness condition. While primal-dual meth-
ods have, in their original form, not survived as algorithms for linear programming,
they have found widespread use for devising algorithms for some combinatorial op-
timization problems, such as network flow problems, where they exploit the network
structure [Ford and Fulkerson, 1956; Ford and Fulkerson, 1962].

For a comprehensive overview of these solution methods and even more methods, such as
the ellipsoid method, we refer to the textbooks by Schrijver [1998], Nemhauser and Wolsey
[1999], and Korte and Vygen [2012].

Integer Linear Programming If in a LP it is further required that each component for
the vector of decision variables is an integer, i.e., x ∈ Zn, we speak of an integer linear
program (ILP).
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Definition 2.32. An integer linear program (ILP) problem is defined as

min
x∈X

c>x

with the feasible region X = {x ∈ Zn : Ax 5 b, x = 0} = P ∩ Zn=. If only a subset of the
variables is restricted to an integer value, the corresponding problem is called mixed integer
linear (MILP) program. When the variables x ∈ {0, 1}n model only binary decisions, the
problem is called binary integer linear program (BILP).

Unless P = NP, no polynomial-time algorithm exists that solves ILP in general [Karp,
1972]. However, the solution of the linear relaxation associated with an ILP, obtained by
omitting the integrality condition on the variables x, can provide an approximation or lower
bound for the optimal objective value of the ILP. Specific polynomial-time algorithms have
been developed for particular classes of ILPs. These classes often relate to combinatorial
problems having specific structural properties. Other solution concepts include:

1. Branch and Bound Methods: First presented by Land and Doig [1960], these meth-
ods gained significant attention in the literature and became widely adopted in
discrete programming and optimization. These methods partition the feasible re-
gion recursively, generating smaller subproblems by bounding the optimal solution
within each partition, e.g., by making use of the linear relaxations of an ILP. Sub-
problems can be discarded if their bound proves worse than the best-known feasible
solution, effectively pruning the search space and improving efficiency. This strategy
enables Branch and Bound to solve many ILPs to optimality, though its performance
depends heavily on problem structure and the applied bounding techniques.

2. Cutting Plane Methods: These methods, first presented by Gomory [1958], iteratively
tighten the relaxation of an ILP by systematically adding constraints (cutting planes)
derived from violated inequalities found during the solution process. At each step,
the method identifies a facet of the feasible region that is violated by the current
solution, and a cutting plane is added to eliminate the infeasible region, progressively
tightening the relaxation. This process continues until an optimal integer solution
is found or further cuts are no longer effective.

We refer to the textbooks by Wolsey [1998] and Nemhauser and Wolsey [1999] for a
comprehensive overview of these solution methods.

Integer Polyhedra and Total Unimodularity In specific cases, the structure of a polyhe-
dron can exhibit integrality properties, in which the vertices of the polyhedron correspond
to integer solutions. In such cases, the linear relaxation problem has an integer optimal
solution.

Definition 2.33. A polyhedron P is an integer polyhedron if each face of P contains at
least one integer point, i.e., if and only if all vertices v of P are integer.

Consider an ILP with a feasible region given by X = P ∩Zn where P = {x ∈ Rn : Ax 5 b}.
If P is an integer polyhedron, it holds that

19



Chapter 2 Preliminaries

min
x∈X

c>x = min
x∈P

c>x,

meaning the linear relaxation problem has an integer optimal solution, and we can obtain
an optimal solution to the ILP by solving the linear relaxation problem. This characterizes
integer polyhedra.

Theorem 2.34 (Schrijver, 1998). A rational polyhedron P in Qn is integer if and only if
for each c ∈ Qn the value of maxx∈P {c>x} is an integer if it is finite.

Total unimodularity of matrices is an important property for verifying if a polyhedron is
integer.

Definition 2.35. A matrix A is said to be totally unimodular if every square submatrix,
defined by an arbitrary subset of row and column indices of A (of the same cardinality),
has a determinant equal to 0, 1, or −1. In particular, each entry of a totally unimodular
matrix is 0, 1, or −1.

Theorem 2.36 (Schrijver, 1998). A polyhedron is an integer polyhedron if A is totally
unimodular and b ∈ Zm.

It follows that each LP that has integer data and a totally unimodular constraint matrix
has integer optimum primal and dual solutions.

Property 2.37. If A ∈ Rm×n is totally unimodular and b ∈ Zm, c ∈ Zn, then the primal
and dual problem

min
x∈Rn

{
c>x : Ax 5 b, x = 0

}
= max

y∈Rm

{
b>y : A>y 5 c, y 5 0

}
have integer optimum solutions if both optima are finite.

2.3 Multi-Objective Optimization

This section extends single-objective optimization problems to multi-objective optimization
problems and is mainly based on the textbooks by Steuer [1986] and Ehrgott [2005].

Multi-objective optimization (MOO) is gaining significant attention in academic litera-
ture due to its ability to address the conflicting objectives which appear in many real-world
problems, including supply chains, transportation networks, environmental management,
financial portfolio optimization and several others. In general, there is no solution that
simultaneously optimizes all conflicting objectives. In a-posteriori approaches, one is in-
terested in finding solutions with the property that none of the objectives can be improved
without the deterioration of at least one other objective.

Definition 2.38. A multi-objective optimization (MOO) problem is defined by

min
x∈X

f(x) = (f1(x), . . . , fp(x))> , (MOO)
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where f : Rn → Rp is a vector-valued objective function composed of p ≥ 2 real valued
objective functions fk : Rn → R for k ∈ {1, . . . , p} and X ⊆ Rn denotes the set of feasible
solutions. We call Rn the decision space and Rp the objective space. The image of the
feasible set

Y := f(X ) = {f(x) : x ∈ X} ⊆ Rp

is called the set of feasible outcome vectors in the objective space.

Pareto Concept of Optimality We assume that the objective functions are in general
conflicting, which implies that we exclude the existence of an ideal solution that minimizes
all objectives simultaneously. In this situation, the concept of Pareto optimality is used,
based on the component-wise order in Rp.

Definition 2.39. Let y1, y2 ∈ Rp. We write:

• y1 5 y2 if y1
i ≤ y2

i for i = 1, . . . , p,

• y1 ≤ y2 if y1 5 y2 but y1 6= y2 and

• y1 < y2 if y1
i < y2

i for i = 1, . . . , p.

Definition 2.40. A feasible solution x∗ ∈ X is efficient if there is no feasible solution
x ∈ X such that f(x) ≤ f (x∗). If x∗ is efficient, f (x∗) is called nondominated point. If
for x, x′ ∈ X hold that f(x′) ≤ f (x), then x′ is said to dominate x and f(x′) dominates
f (x). Feasible solutions x∗, x′ ∈ X are equivalent if f(x∗) = f (x′). The set of efficient
solutions is denoted by XE ⊆ X and the set of nondominated points by YN ⊆ Y. Moreover,
a feasible solution x′ is called weakly efficient if there is no other solution x such that
f(x) < f(x′). Furthermore, a feasible solution x∗ ∈ X is called properly efficient (in
Geoffrion’s sense, Geoffrion [1968]), if it is efficient, and if there is a real number M > 0
such that for all k and x ∈ X satisfying fk(x) < fk(x

∗) there exists an index j such that
fj(x

∗) < fj(x) such that

fk(x
∗)− fk(x)

fj(x)− fj(x∗)
≤M.

The image y∗ = f(x∗) is called properly nondominated.

In the following, it is assumed that the multi-objective optimization problem has at least
one nondominated point, i.e., YN 6= ∅, and that Y is a closed set. The polyhedron
Y= := conv(YN + Rp=) is called the upper image of Y.

Minimal Complete Set When solving multi-objective problems, they can be solved con-
cerning different solution concepts, and it is important to specify what class of set of
efficient solutions is searched and be aware of the (partial or complete) enumeration of
equivalent solutions. For example, the complete set of all efficient solutions XE can be
searched. However, if we speak about the task to determine all nondominated points YN ,
we want to determine a minimal complete set of X ′ ⊆ XE .
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Definition 2.41. If a subset X ′E ⊆ XE fulfills f(X ′E) = YN , i.e., for each y ∈ YN there
exists at least one x′ ∈ X ′E such that f(x) = y, X ′ is called a complete set of efficient
solutions. A complete set is called minimal complete set if it contains no equivalent
solutions, i.e., solutions mapping to the same nondominated point.

Ideal and Nadir Point It is assumed that the objective functions are conflicting, implying
that no solution minimizes all objectives simultaneously. Therefore, a point combining the
minimal values for all objectives, called the ideal point (denoted by yI), does not belong
to YN but can be used as a component-wise lower bound for all nondominated points.
We assume, without loss of generality, that the ideal point is positive, ensuring that the
origin dominates it. Conversely, vectors that define upper bounds on objective function
vectors y are represented by the Nadir point yN , which is composed of the component-wise
yNi = max{yi : y ∈ YN} over the nondominated set, assuming that YN is bounded.

Canonical Decision Problem There exist results on the NP-hardness of decision prob-
lems associated with multi-objective optimization problems.

Definition 2.42. For a multi-objective optimization Problem MOO, the canonical decision
problem MOODec is defined as: Given a vector k ∈ Rp does there exists a feasible solution
x ∈ X such that f(x) 5 k.

It is shown that MOODec is NP-hard for general MOO problems, which can be seen as
an informal evidence that MOO is a hard problem, while also being intractable in general.

Scalarization To solve multi-objective problems, scalarization based methods are a com-
mon concept in multi-objective optimization. It involves converting a multi-objective
optimization problem, particularly its vector-valued objective function, into a sequence of
optimization problems with scalar-valued objective function and/or parameterized con-
straints. Various scalarizations exist, which mainly differ in the complexity of the refor-
mulation and the quality of the obtained solution. Ideally, the solution of a scalarization
yields an efficient solution or is infeasible.

One straightforward scalarization method combines the multiple objectives into one by
assigning a weighting parameter to each original objective and by summing these weighted
objectives. This technique, known as the weighted-sum method, was introduced by Gass
and Saaty [1955] as a “parametric function” for linear optimization problems with two
objectives.

Definition 2.43. Let ‖x‖1 denote the 1-norm of x ∈ Rp, i. e., ‖x‖1 :=
∑p

i=1 |xi|. For the
weighted sum method, the set of normalized weighting vectors is defined as the set Λp =
{λ ∈ Rp> : ‖λ‖1 = 1} or Λ0

p = {λ ∈ Rp≥ : ‖λ‖1 = 1} if weights equal to zero are included.

The weighted-sum scalarization with λ ∈ Λp or λ ∈ Λ0
p is defined as the parametric

program

Pλ := min
x∈X

λ>f(x) (Pλ)

with f(x) as in Definition 2.38.
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Theorem 2.44 (Ehrgott 2005). For λ ∈ Λ0
p, every optimal solution of Pλ is a weakly

efficient solution of (MOO). Moreover, every optimal solution of Pλ problem is (properly)
efficient for (MOO) if λ ∈ Λp.

Multi-Objective Linear Programming A specific, well-studied class of MOO are the
multi-objective linear programs (MOLP) and multi-objective integer linear programs
(MOILP).

Definition 2.45. A multi-objective linear optimization program (MOLP) is defined by

min
x∈X

y(x) = (y1(x), . . . , yp(x))> = Cx, (MOLP)

with X := {x ∈ Rn : Ax 5 b, x = 0}. Thereby, the rows ck (k = 1, . . . , p) of the cost
matrix C ∈ Rp×n contain the coefficients of the p linear objective functions yk(x) = ck x
for k ∈ {1, . . . , p} and the matrix A ∈ Rm×n, b ∈ Rm formulates the m linear constraints.

If all decision variables are further restricted to the set of integers, i.e., x ∈ Zn, we obtain
a multi-objective integer linear program. Note that if for a MOILP with C ∈ Zp×n
or MOCO, we sometimes write z(x) = Cx for the objective function.

Theorem 2.46 (Isermann 1974). Considering MOLP problems, for every efficient solu-
tion x̄ ∈ XE, there exists a λ ∈ Λp such that x̄ is an optimal solution of the weighted sum
scalarization (Pλ).

Hence, for a MOLP, the efficient set XE equals the union over all sets of optimal solutions
of Pλ for λ ∈ Λp.

However, in the non-linear case and for multi-objective combinatorial (MOCO) prob-
lems, nondominated points can also be located in the interior of the upper image, i.e., in
int(conv(Y +Rp=)). These so-called nonsupported points typically outnumber these points

that can be obtained with the weighted sum method [Visée et al., 1998]. To obtain these
points, alternative scalarization methods, such as the ε-constraint method, are required.
However, these approaches may disrupt the combinatorial structure. Consequently, de-
termining the set of efficient solutions for MOILP is significantly more challenging as
compared to MOLP, and finding the complete nondominated point set is intractable for
most MOILP problems. Current methods struggle to scale with the number of objec-
tives [Ehrgott, 2005]. Therefore, it is important to distinguish between different types
of efficient solutions. This distinction will be examined in the subsequent section, fo-
cusing on the major problem class in this thesis, known as multi-objective combinatorial
optimization (MOCO).

2.3.1 Multi-Objective Combinatorial Optimization

Formally, a single-objective combinatorial optimization problem (with a linear objective
function) can be formulated as follows:
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Given: finite ground set E
feasible subsets I ⊆ 2E

c : E → R
for F ⊆ E : c(F ) :=

∑
e∈F c(e)

Find: I∗ ∈ I such that c (I∗) ≤ c(I) for all I ∈ I

For example, E can be the set of edges of a connected undirected graph, and I can be
the set of all spanning trees in this graph. (Graphs and spanning trees will be presented
in Section 2.4). However, in the following definition of a multi-objective combinatorial
optimization problem we use the index formulation of a combinatorial problem.

Definition 2.47. A multi-objective combinatorial optimization (MOCO) problem is de-
fined as

min
x∈X

z(x) = (z1(x), . . . , zp(x))> = Cx, (MOCO)

where X := {x ∈ {0, 1}n : Ax = b}, with the cost matrix C ∈ Zp×n contains the rows
ck of coefficients of p linear objective functions zk(x) = ckx for k ∈ {1, . . . , p} and A ∈
Zm×n, b ∈ Zm describe the m constraints. The constraints define combinatorial structures
such as paths, trees, or cycles in a network or partitions of a set. All coefficients are
assumed to be integers.

This definition includes various problems such as multi-objective spanning trees, shortest
paths, knapsack, and assignment problems.

Nondominated Frontier For MOLP or MOCO problems, the nondominated frontier can
be defined in the following way:

Definition 2.48. The nondominated frontier is the set

{y ∈ conv(YN ) : conv(YN ) ∩ (y − Rp=) = {y}}.

The nondominated frontier equals the nondominated set of conv(YN ) and can be charac-
terized as the union of the maximal nondominated faces of the upper image Y= [Ehrgott,
2005]. Hereby, a nondominated face F ⊆ Y= is a face of the upper image Y= such that
all its points are nondominated with respect to Y=. Similarly, F ⊆ Y= is called a weakly
nondominated face if all its points are weakly non-dominated. A face F is called max-
imally nondominated if there is no other nondominated face G of Y= such that F is a
proper subset of G (F ( G). This would imply that the dimension of G is be greater
than the dimension of F . The preimage FX of a maximally nondominated face FY of Y=,
i.e., all solutions whose image lies in FY , is denoted as the maximally efficient face. Note
that FX might not be a face of the feasible set, the polyhedron X , since multiple feasible
solutions (located on different faces of X ) could map to the same nondominated point
y ∈ Y. Figure 2.1 illustrates the nondominated frontier, the weighted sum method, the
Ideal and Nadir point of a bi-objective problem (p = 2).
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conv(YN + R2
=)

−λ
yI

yN

y1

y2

Figure 2.1: An illustration of the outcome space of a bi-objective problem, highlighting the
concept of the nondominated frontier, Ideal and Nadir point. The black lines
display the complete nondominated frontier and can be found when varying λ
within Λp.

(Extreme) Supported and Nonsupported Solution Two major challenges are associated
with MOCO problems as compared to their single objective counterparts. Firstly, they
belong to the class of computationally intractable problems [Ehrgott, 2005]. Secondly, in
MOCO or MOILP problems, nondominated points can be located in the interior of the
upper image, which typically outnumber the solutions on the nondominated frontier. (see,
e.g., Visée et al. 1998). Hence, a distinction between different classes of efficient solutions
is required.

Definition 2.49. The set of efficient solutions XE can be distinguished in the following
classes:

1. Extreme supported solutions are those solutions whose image lies on the vertex set of
the upper image. Their image is called an extreme supported nondominated point;
we use the notations XES and YES for the extreme supported efficient solution set
and extreme supported nondominated point set, respectively.

2. An efficient solution is called supported efficient solution if it is an optimal solution
to the weighted sum scalarization Pλ for λ ∈ Λp, i.e., an optimal solution to a single
objective weighted-sum problem where the weights are strictly positive. Its image
is called supported nondominated point; we use the notations XS and YS for the
supported efficient solution set and supported nondominated point set, respectively. A
supported nondominated point is located on the nondominated frontier, i.e., located
on the union of the maximal nondominated faces.

3. Weakly supported efficient solutions are efficient solutions that are optimal solutions
of Pλ for λ ∈ Λ0

p, i.e., an optimal solution to a single-objective weighted sum prob-
lem with weights strictly or equal to zero. Their images in the objective space are
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weakly supported nondominated points. All weakly supported nondominated points
are located on the boundary of the upper image Y=.

4. Nonsupported efficient solutions are efficient solutions that are not optimal solutions
of Pλ for any λ ∈ Λ0

p. Nonsupported nondominated points lie in the interior of the
upper image.

Figure 2.2 illustrates extreme supported, supported, and nonsupported nondominated
points as well as the upper image in the bi-objective case.

z1

z2

conv(YN + R2
=)

extreme supported nondominated

supported nondominated

nonsupported nondominated

dominated

Figure 2.2: Illustration of the upper image Y= := conv(YN+R2
=) and the different solution

types.

The nonsupported nondominated points typically outnumber the supported ones and
are not as straightforward to obtain as the supported nondominated points. However, as
observed in Sayın [2024], the supported nondominated set or extreme supported nondom-
inated set already provide high-quality representations.

However, in the context of MOCO problems, other definitions and characterizations for
supportedness are also used. Chapter 4 introduces these different definitions and proves
that these are not equivalent in the case of general optimization problems. As a result,
they generate different sets of supported efficient solutions and, consequently, different
supported nondominated point sets with different properties. It also formally introduces
the distinction between supported and weakly supported nondominated points and proves
that the weakly supported nondominated points can be a proper subset of supported
nondominated points in MOCO problems.

Solution Methods Two highly promising approaches for solving MOCO problems are
generic scalarization-based algorithms and two-phase methods. A comprehensive review
of exact methods can be found in Ehrgott and Wiecek [2005] and with a specific focus on
discrete MOO in Halffmann et al. [2022].

Generic scalarization-based methods decompose the overall problem into a series of
scalarized single-objective problems that can be solved with efficient available single-
objective IP solvers. The scalarization transforms the optimization problem with multiple
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objectives into a problem with a single objective and parameters that somehow control
how the original objectives are embedded into the transformed problem. The indepen-
dence from specific problem structures is appealing since the transformation done during
the scalarization typically destroys or alters the combinatorial structure of the problem.
Generic approaches have many different implementation possibilities and offer flexibility,
including choices of the sequence of subproblems, scalarization strategies, and decisions
regarding the computation of the complete or a representation of the set of nondominated
points. Generic scalarization-based methods and their efficient implementation possibili-
ties will be presented in Chapter 3.

Two-phase methods represent another well-known approach. The first phase determines
the set of (extreme) supported nondominated points by using that the image of these
points are optimal solutions of weighted sum problems with positive weights. In the
second phase, other efficient solutions, such as the nonsupported or, if necessary, the
remaining nonextreme supported, are determined, usually using enumerative methods.
In that phase, information from supported nondominated points from the first phase is
used to determine a search area in the objective space that contains all nonsupported
nondominated points. Several established algorithms are used for both phases for bi-
objective problems. Commonly, the first phase is done using dichotomic search [Aneja
and Nair, 1979], while the second phase relies on enumerative methods, such as ranking
approaches (see, e.g., Przybylski et al. [2008]) and branch and bound procedures (see,
e.g.,Visée et al. [1998]). A survey of multi-objective branch and bound methods is given
by Przybylski and Gandibleux [2017] and recently in Bauß et al. [2024].

However, methods for enumerating the extreme supported nondominated points in
MOCO problems with more than two objectives are rather limited. Przybylski et al.
[2010a] present a recursive method for identifying these points in general MOILP prob-
lems. Özpeynirci and Köksalan [2010] and Przybylski et al. [2019] propose a method based
on a dichotomic approach to compute this set. Additionally, weight space decomposition
methods, such as those used in multi-objective simplex variants (e.g., Yuf and Zeleny
[1976]), offer alternative approaches. For a broader discussion of these and other methods,
we again refer to the surveys in Ehrgott and Wiecek [2005] and Halffmann et al. [2022].
Another important method for enumerating extreme supported nondominated points is
the dual variant of the Benson algorithm [Ehrgott et al., 2012]. A key proof concerning
the running time of the dual variant is presented by Bökler and Mutzel [2015], which plays
an important role in the following section.

Multi-objective Problem as Enumeration Problem MOCO problems, like any discrete
multi-objective optimization problem, can be considered as enumeration problems. This
involves enumerating all nondominated points or subsets of the nondominated point set
with respect to other solution concepts.

Optimization problems are often classified based on whether they can be solved in
polynomial or exponential time. However, for many MOCO problems, the cardinality of
XE and YN itself grows exponentially with respect to the input. Thus, even if it is an easy
task to determine one efficient solution or nondominated point, enumerating all desired
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solutions in polynomial time is impossible. Hence, we are interested in whether such
problems are solvable in output-polynomial time. A MOCO problem is called intractable
if |YN | can be exponential in the size of an input instance.

Since output-polynomial time is defined with respect to both the input and the output
of an algorithm, it is crucial to specify the output being considered. An algorithm for
solving MOO might be output-polynomial when the output is defined as the set of all
efficient solutions. However, the same runtime may not be output-polynomial if the output
is instead defined as the set of all nondominated points.

To formalize this, let C be the configuration set of all efficient solutions, and C∗ be
the configuration set of all nondominated points. An output-polynomial time algorithm
E = (I, C), which enumerates all efficient solutions exactly once, will also yield all nondom-
inated points. However, this does not guarantee that the algorithm is output-polynomial
with respect to the configuration set of all nondominated points C∗, since there may exist
exponentially many efficient solutions that map to only a few nondominated points. Conse-
quently, the same algorithm, when considered with the configuration set C∗ as E = (I, C∗),
may output elements of the configuration set (i.e., the nondominated points) multiple
times, potentially even an exponential number of times. As illustrated in Section 2.5.3,
there exists an example of a multi-objective flow problem that contains

(
2n−1
n

)
efficient

solutions, all mapping to a single nondominated point.

Some results show under which circumstances a given set can either be found in output-
polynomial time or not. For enumerating the extreme supported nondominated points in
MOCO problems, the following result could be shown by Bökler and Mutzel [2015].

Theorem 2.50 (Bökler and Mutzel, 2015). For every MOCO problem P with a fixed
number of objectives, the set of extreme nondominated points of P can be enumerated in
output-polynomial time if the weighted-sum scalarization of P can be solved in polynomial
time.

For any MOCO problem satisfying the required conditions, the dual variant of the Benson
Algorithm [Bökler and Mutzel, 2015] can be employed to enumerate the set of extreme
supported nondominated points in output-polynomial time. Throughout this thesis, sim-
ilar characterizations for solving MOCO with respect to other solution concepts, such as
(extreme) supported efficient solutions or nondominated points for MOCO problems, will
be presented.

2.4 Graph and Network

This section introduces several basic definitions of graph theory based on the textbooks
by Ahuja et al. [1993] and Diestel [2006]. Additionally, some of the most significant graph
problems considered throughout the thesis are presented. The section begins by defining
undirected and directed graphs.

28



2.4 Graph and Network

2.4.1 Undirected Graph

Definition 2.51. An (undirected) graph is an ordered pair G = (V,E), where V is the
set of n nodes and E = {{i, j} : i, j ∈ V } is the set of m (unordered) pairs of V called
edges. For an edge {i, j} ∈ E, it is allowed that i = j. In this case, the edge {i, i} is called
a loop. Furthermore, the set E can also contain multiple edges between the same pairs of
nodes, known as parallel edges. A graph is called simple if neither parallel edges nor loops
exist. Otherwise, we refer to such graphs as multigraphs, where a multi-set technically
replaces the set E to accommodate multiple occurrences of the same edge.

A graph G is called finite if |V | and |E| are finite. In the following, we assume that the
considered graphs are finite and simple.

Given a mapping φ : E → Y that assigns each edge e ∈ E a value in an arbitrary set Y ,
the image of an edge {i, j} under φ is denoted as φij = φ({i, j}). Similarly, for a mapping
γ : V → Y ′, the image of node i under γ is denoted as γi = γ(i).

Adjacency and Incidence Two nodes i and j are adjacent if {i, j} ∈ E. In this case,
j is called a neighbor of i. A node i ∈ V is incident to an edge e ∈ E if i ∈ e. Two
edges e, f ∈ E are adjacent if e ∩ f 6= ∅. Otherwise, they are called disjoint. The graph’s
structure can be represented through its adjacency matrix or its incidence matrix. The
adjacency matrix of a graph G = (V,E) is the |V |×|V |matrix MAD, where mAD

ij is defined
as the number of edges connecting i and j. In a simple graph, this matrix indicates the
existence of the edge (i, j) ∈ E if mAD

ij = 1 and 0 otherwise. Note that for an undirected

graph, the adjacency matrix is symmetric, i.e., mAD
ij = mAD

ji .

The incidence matrix of a graphG = (V,E) is the |V | × |E| matrix M IN , where mIN
i,j

represents the relationship between node i and edge e. In an undirected graph, mIN
ie = 1

if i ∈ V is incident to edge e ∈ E and 0 otherwise. Each column of the incidence matrix
has exactly two ones corresponding to the two nodes connected by the edge.

Degree and Neighbor The set of incident edges of a node i is defined by δ(i) = {{i, j} :
{i, j} ∈ E}. The degree of a node i ∈ V , denoted by deg(i), is the number of its incident
edges, i.e., deg(i)=|δ(i)|. The set of neighbors of the node i ∈ V is denoted by N(i) =
{j ∈ V : {i, j} ∈ E}.

Walk, Path, and Cycle A walk in an undirected graph G = (V,E) is a finite sequence
P = {v0, e1, v1, . . . , ek, vk} with k ≥ 0, where v0 is the start node and vk is the end node,
and ei = {vi−1, vi} ∈ E. This is a walk from v0 to vk, briefly called a (v0, vk)-walk. In
simple graphs, we also write P = {v0, v1, . . . , vk} instead of P = {v0, a1, v1, . . . , ak, vk}.
The length |P | of a walk is given by the number of its k edges. A node-disjoint walk is a
walk in which all nodes are pairwise distinct, called a path. Therefore, a path is a walk
without any repetition of nodes. A cycle is a walk {v0, . . . , vk} for which v0 = vk holds,
and the nodes v1, . . . , vk are pairwise distinct. A graph G is called acyclic if it contains
no cycles.
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Cut For a graph G and a node subset X ⊂ V , δ(X) = E(X,V \X) = {{i, j} ∈ E : i ∈
X, j ∈ V \X} is called a cut in G and δ(X) is the induced cut of X. Thus, a cut partitions
the node set into two parts and defines a set of edges consisting of those edges that have
one endpoint in X and another endpoint in V \X. If for two distinguished nodes s and t
it holds that s ∈ X and t /∈ X, δ(X) is called a s-t cut.

Subgraph A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′) such that V ′ ⊆ V
and E′ ⊆ {{i, j} ∈ E : i, j ∈ V }. The subgraph G′ is induced by V ′ if E′ = {{i, j} ∈
E : i, j ∈ V ′}, meaning it contains each edge in E having both endpoints i, j ∈ V ′. The
induced subgraph is denoted as G (V ′). Note that E(V ′) denotes the set of edges that
have both endpoints in V ′, i.e., e = (i, j) ∈ E(V ′) if i, j ∈ V ′. A graph G′ = (V ′, E′) is a
spanning subgraph of G = (V,E) if G′ is a subset and V ′ = V .

Connectivity and Tree Spanning subgraphs are useful for studying the properties and
structures of the original graph while considering only a subset of its edges. An important
type of a spanning subgraph is the spanning tree. A tree is an important concept in
graph theory that arises in various network flow algorithms and properties discussed in
this thesis. In our subsequent discussion in later chapters, we use some of the following
elementary properties of trees.

Two vertices i, j ∈ V are called connected if a path exists from i to j. A graph is called
connected if every pair of nodes is connected. An acyclic graph is denoted as a forest.
If a forest is connected, it is a tree. A tree T is a spanning tree of G if T is a spanning
subgraph of G. Each spanning tree of a connected graph contains exactly n − 1 edges.
The edges e ∈ E(T ) are tree edges, and edges e ∈ E\E(T ) are called non-tree edges.

Property 2.52 (Ahuja et al., 1993). For a tree of G, the following conditions hold:

• A tree with n nodes contains exactly n− 1 edges.

• A tree has at least two leaf nodes (i.e., nodes with degree 1).

• A unique path connects every two nodes of a tree.

A connected subgraph of a tree is called subtree. A tree can have an arbitrary but fixed
node called its root. Then we regard a rooted tree as though it was hanging from its root.

Let T be a spanning tree of the graph G. Adding any non-tree edge to the spanning
tree T creates exactly one cycle. Any such cycle is referred to as a fundamental cycle
or induced cycle of G with respect to the tree T . Since a simple graph with |E| = m
contains m− n+ 1 non-tree arcs, there are m− n+ 1 induced cycles with respect to any
spanning tree. A spanning tree is again obtained if one arbitrary arc in an induced cycle
is deleted. This property allows the creation of different trees by replacing one tree arc
with a non-tree arc in an initial tree to obtain a new tree.
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2.4.2 Directed Graph

A directed graph is defined in the same manner as an undirected graph, except that edges
are ordered pairs of distinct nodes, referred to as arcs.

Definition 2.53. A directed graph or digraph is a pair D = (V,A), where A ⊆ V ×V is
a set of m ordered pairs of V . An element (i, j) ∈ A denotes a directed or oriented arc
from i (tail) to j (head). Arcs (i, j) and (j, i) are referred to as anti-parallel, and (j, i)
is called the reverse arc of (i, j). A directed network is a directed graph where nodes and
arcs have associated numerical values (typically, costs, capacities, supplies and demands).

In slight abuse of the notation, we use the terms “graph” and “network” synonymously.

Definition 2.54. For each directed graph D, an underlying undirected graph GD = (V,E)
is defined by neglecting the orientation of the arcs in A, i.e., E : = {{i, j} : (i, j) ∈ A}.

Note that some definitions applicable for undirected graphs in the previous subsection
can be analogously applied to directed graphs or are transferable from D = (V,A) when
considering the underlying undirected graph GD = (V,E) and are not repeated in this
section.

Adjacency and Incidence The adjacency matrix of a directed graph is the |V | × |V |
matrix, where mAD

ij is the number of arcs (i, j) ∈ A. In a simple graph, this matrix

indicates the presence or absence of an arc between nodes i and j and mAD
ij = 1 if (i, j) ∈ A

and 0 otherwise. Unlike the undirected case, this matrix is not necessarily symmetric for
directed graphs due to the ordering of the arc (i, j) in the directed case.

The incidence matrix of a directed graph D = (V,A) is the |V |×|A| matrix M IN , where
mIN
ia = 1 if i ∈ V is the tail of arc a = (i, j) ∈ A, and mIN

ja = −1 if node j is the head of
a, and 0 otherwise. Each column of the incidence matrix has exactly one 1 and one −1,
corresponding to the direction of the arc from one node to another.

In-degree and Out-degree The set N in(i) = {j ∈ V : (j, i) ∈ A} are the predecessors
and Nout(i) = {j ∈ V : (i, j) ∈ A} successors of i, respectively. The set of neighbors
N(i) of i is N(i) = N in(i) ∪ Nout(i). The arc sets δin(i) = {(j, i) : (j, i) ∈ A} and
δout(v) = {(i, j) : (i, j) ∈ A} are the incoming and outgoing arcs of node i, respectively.
Again, δ(i) = δin(i) ∪ δout(i). The cardinality of the set of incoming arcs of a node i is
known as its in-degree, denoted by degin(i) = |δin(i)|, and the cardinality of the set of
outgoing arcs of a node i is known as its out-degree, denoted by degout(i) = |δout(i)|.

Directed Walk, Path and Cylce A (directed) walk in a digraph D = (V,A) is a finite
sequence {v0, a1, v1, . . . , ak, vk}, where (vi−1, vi) ∈ A. If all nodes in the walk are distinct,
it is called a (directed) path. A (directed) cycle is a directed walk where v0 = vk and
v1, . . . , vk are pairwise distinct. The set of arcs of an undirected walk, path, or cycle in a
digraph, i.e., a walk, path, cycle in the undirected underlying graph, can be partitioned
into forward and backward arcs. An arc (i, j) ∈ A in the undirected walk is a forward arc
if the walk visits node i prior to node j, and is a backward arc otherwise.
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Cut and Connectivity A directed graph is called strongly connected if the graph contains
at least one directed path from every node to every other node. In the directed case, the
induced cut is defined similarly to the undirected case but separated into δout(X) =
A(X,V \X) = {(i, j) ∈ A : i ∈ X, j ∈ V \X} and δin(X) = A(V \X,X) = {(i, j) ∈ A : i ∈
V \X, j ∈ X}. It holds that δout(X) = δin(V \X).

2.4.3 Directed Depth First Search

The following presents a graph-searching algorithm for a directed graph. Graph searching
involves systematically following the edges or arcs to visit the nodes. This process can
reveal much about the graph’s structure, and many algorithms begin by searching their
input graph to gather this structural information. Specifically, the directed depth-first
search algorithm is a crucial foundation for a later algorithm introduced in Chapter 6.
The reader is assumed to be familiar with undirected depth-first search, which is covered
in standard literature such as Ahuja et al. [1993]. This subsection is based on Cormen
et al. [2001].

Basic Principles The depth-first search (DFS) algorithm explores a graph D in O(m+n)
time by following a strategy of exploring “deeper” into the graph whenever possible, i.e.,
leaving nodes as early as possible. It explores arcs from the most recently discovered node
with unexplored arcs. Once all arcs from this node have been explored, DFS backtracks to
the preceding node to continue the search. This process ends if all reachable nodes from
the source are discovered. If undiscovered nodes remain, the DFS procedure will select
one node as a new source and repeat the search. In that case, DFS will create more than
one DFS tree. This process continues until every node in the graph has been discovered.

The correctness and complexity analysis will not be covered in the following description
and can be found in Cormen et al. [2001]. However, due to the significance of different arc
types in a DFS forest, the (directed) DFS algorithm, the arc types, and the key properties
of the DFS forest are presented.

DFS Forest Because the search may repeat from multiple sources, the DFS algorithm
creates a DFS-forest, denoted by Γ = {T1, . . . Tl} of D, consisting of several depth-first
trees. For each tree T ∈ Γ and each node i ∈ T , πi is defined as the predecessor of i ∈ T .
Furthermore, let dfs(i) denote the DFS number (analogous to discovery time in Cormen
et al. [2001]) of node i, i.e., the number when node i is first visited (discovered) during the
DFS process. Let further ti denote the time when node i is finished, that is, when all arcs
of node i are considered. These timestamps for each node i provide important information
about the graph structure. For a tree T ∈ Γ, the node i with the lowest dfs-number is
called the root, and the tree T is called rooted tree. A rooted tree is regarded as though
it were hanging from its root, and the arcs in a rooted tree define predecessor-successor
(or parent-child) relationships. A node j ∈ T with T ∈ Γ is called ancestor of i ∈ T if j
is in the path from the root to the node only using arcs in the tree. A node j is called
descendant of node i in T if and only if i is an ancestor of node j. Given two nodes i, j ∈ T ,
their lowest common ancestor is the deepest node that is an ancestor of both nodes. This
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means it is the node with highest DFS number that has both nodes as descendants (where
we allow a node to be a descendant of itself).

Types of Arcs in DFS The DFS-forest contains different arc types, which will be pre-
sented in the following.

Definition 2.55 (Cormen et al., 2001). Tree arcs are the arcs in the trees of the DFS-
forest. Backward arcs are the arcs (i, j) connecting a vertex i to an ancestor j in the same
DFS-tree. Non-tree arcs (i, j) are called forward arcs if the arc connects a vertex i to a
descendant j in the same DFS-tree. All other arcs are called cross arcs.

Algorithm: Directed DFS with Arc Type Detection In the context of a DFS, nodes are
typically marked with three different colors to track their state during the traversal. Note
that sometimes numbers instead of colors are used. A node i is white if it has not been
discovered yet, i.e., before time dfs(i). Initially, all nodes are white. Gray if it has been
discovered but not fully explored. This means that the DFS has started visiting this node
and is in the process of visiting its descendants, i.e., in between time dfs(i) and ti and
black if it has been fully explored, i.e., in time after ti. The pseudocode in Algorithm 1
and Algorithm 2 displays the basic DFS algorithm, which directly detects the different
types of arcs in the DFS forest.

Algorithm 1: Directed DFS with Arc Type Detection

Input: Directed graph D = (V,A)
Output: DFS numbers dfs(i) for i ∈ V , predecessors πi for i ∈ V , arc types

1 for each node i ∈ V do
2 color(i)← white
3 πi ← ∅
4 dfs(i)← 0

5 end
6 time ← 1
7 for each node i ∈ V do
8 if color(i) = white then
9 DFS-Visit(i,time)

10 end

11 end

2.4.4 Multi-Objective Graph Problems

This section presents two fundamental graph problems that are relevant for the thesis.
Both problems have numerous applications in optimization.

Multi-Objective Minimum Spanning Tree The minimum spanning tree (MST) problem
is a well-studied problem in combinatorial optimization. It involves finding a spanning tree
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Algorithm 2: DFS-Visit

1 procedure DFS-Visit(i,time):
2 color(i)← gray
3 dfs(i)← time
4 time ← time +1
5 for each node j adjacent to i do
6 if color(j) = white then
7 arc (i, j) is a tree arc
8 DFS-Visit(j)

9 end
10 else if color(j) = gray then
11 arc (i, j) is a back arc
12 end
13 else if color(j) = black then
14 if dfs(i) < dfs(j) then
15 arc (i, j) is a forward arc
16 end
17 else
18 arc (i, j) is a cross arc
19 end

20 end

21 end
22 color(i) ← black

23 end

of a weighted, connected, undirected graph that minimizes the sum of its edge weights.
For a comprehensive overview, we refer to the textbook by Ahuja et al. [1993]. For the
multi-objective variant, we refer to Ehrgott et al. [2012].

Definition 2.56. Given a Graph G = (V,E) and a cost function c : E → Rp that assigns
a cost vector to each edge, the multi-objective minimum spanning tree problem is defined
as

min
T∈T

c(T ) = (c1(T ), . . . , cp(T ))> = Cx, (MMST)

where T is the set of all spanning trees of G, C ∈ Rp×n is the cost matrix containing the
rows ck of coefficients of the p linear objective functions and ci(T ) =

∑
e∈T c

i
e.

The single objective (p = 1) problem can be solved in polynomial time with the well-known
greedy algorithms such as Prim’s [Prim, 1957] and Kruskal’s [Kruskal, 1956], which can be
implemented to run O(m + n log n) time; see, e.g., Schrijver [2003]. The multi-objective
minimum spanning tree problem can also be formulated as the following multi-objective
integer linear program:
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min Cx

s.t.
∑
e∈E

xe = n− 1∑
e∈E[U ]

xe ≤ |U | − 1 ∀ U ⊆ V, S 6= ∅

xe ∈ {0, 1} ∀ e ∈ E

where the cost matrix C ∈ Zp×n contains the rows ck of coefficients of the p linear objective
functions and where xe is a binary variable indicating whether edge e is included in the
MST (xe = 1) or not (xe = 0) and E[U ] := {e = (i, j) ∈ E : i, j ∈ U}.

Any feasible solution x defines an incidence vector of a spanning tree of G. The convex
hull of the incidence vectors of all spanning trees of G is called the spanning tree polytope,
which has an integer polytope [Schrijver, 2003]. Therefore, we can replace x ∈ {0, 1}m
by xe ≥ 0 for all e ∈ E and consider the linear relaxation problem to obtain an optimal
solution. Note that this so-called subtour elimination IP formulation uses exponentially
many constraints.

The multi-objective minimum spanning tree is known to be intractable and the finished
decision problem and the canonical decision problem are known to be NP-hard, even in
the case of two objectives.

Theorem 2.57 (Camerini et al., 1984). The finished decision problem of the bi-objective
spanning tree problem is NP-complete.

The NP-completeness proof is done by a polynomial time reduction from the Knapsack
Problem to the finished BMST (BMSTFIN) problem.

Theorem 2.58 (Hamacher and Ruhe, 1994). The bi-objective spanning tree problem is
intractable.

Proof. Consider the complete graph on n nodes, i.e., G contains n nodes and m = n(n−
1)/2 edges, connecting every pair of distinct nodes by a unique edge. This graph contains
nn−2 spanning trees. For each edge ei, define c1

ei = 2i−1, c2
ei = 2m − 2i−1 which implies

c1
ei + c2

ei = 2m. Therefore, for all spanning trees T ∈ T , the corresponding outcome
vectors are located on the hyperplane with c1(T ) + c2(T ) = (n − 1)2m. Additionally,
c1 (T1) 6= c1 (T2) for all pairs of spanning trees T1, T2 ∈ T with T1 6= T2. As a result, all
spanning trees have pairwise incomparable weights and are thus efficient. With all weights
being different, |YN | = |T | = nn−2.

Multi-Objective Shortest Path Problem The shortest path problem involves finding the
shortest path between two nodes in a weighted, directed graph, where the sum of the arc
weights along the path is minimized. For a comprehensive overview, we refer again to the
textbook by Ahuja et al. [1993]. For the multi-objective variant, we refer to Ehrgott et al.
[2012].
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Definition 2.59. Given a directed graph D = (V,A), a cost function c : A → Rp that
assigns a cost vector to each arc, a source node s ∈ V , and a target node t ∈ V , the
(multi-objective) shortest path problem is defined as:

min
P∈Ps,t

c(P ) = (c1(P ), . . . , cp(P ))> = Cx, (MOSP)

where Ps,t is the set of all paths from s to t in G, the matrix C ∈ Rp×n is the cost
matrix containing the rows ck of coefficients of the p linear objective functions and ci(P ) =∑

e∈P c
i
e for i ∈ {1, . . . , p}.

The single-objective variant (p = 1) can be solved in polynomial time using well-known
algorithms such as Dijkstra’s and Bellman-Ford algorithm. Dijkstra’s algorithm, which
is only suitable for graphs with non-negative arc weights, can be implemented to run in
O(m + n log n) time using a priority queue (see, e.g., Schrijver [2003]). The Bellman-
Ford algorithm, which handles graphs with negative arc weights, runs in O(mn) time if
no negative cycle exists. A distance table (or matrix) is a representation of the shortest
distances between each pair of nodes and may be computed in time O(n3) using the
Floyd-Warshall algorithm or in time O

(
n2 log n+mn

)
by (essentially) repeated calls of

Dijkstra’s algorithm if the graph contains non-negative costs. The latter is more efficient
on sparse graphs. A comprehensive overview of these Algorithms can be found in Cormen
et al. [2001].

The shortest path problem can also be formulated as the following integer linear pro-
gram:

min Cx

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa =


1 if v = s

−1 if v = t

0 otherwise

∀ v ∈ V

xe ∈ {0, 1} ∀ a ∈ A

where xa is a binary variable indicating whether edge a is included in the path (xa = 1)
or not (xa = 0). Any feasible solution x corresponds to an incidence vector of a path
from s to t in G. The convex hull of the incidence vectors of all such paths is called the
path polytope, which is an integer polyhedron [Schrijver, 2003]. Therefore, we can replace
x ∈ {0, 1}m with xa ≥ 0 for all a ∈ A and consider the linear relaxation problem to obtain
an optimal solution.

The multi-objective minimum shortest path problem is known to be intractable. The
finished decision problem and the canonical decision problem are known to be NP-hard,
even in the case of two objectives.

Theorem 2.60 (Serafini, 1986). The finished bi-objective shortest path (BOSPFIN) prob-
lem is NP-complete.
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The NP-completeness proof is done by a polynomial time reduction from the Knapsack
Problem to the BOSPFIN problem.

Theorem 2.61 (Hansen, 1980). The bi-objective shortest path problem is intractable.

Proof. Consider a graph with an odd number of n nodes V = {v1, . . . , vn} with v1 = s
and vn = t and three arc types defined by

a = (v2k−1, v2k+1) , i = 1, 2, . . . , n−2
2 with cost c(a) =

(
2

2k−2
2 , 0

)
a = (v2k−1, v2k) , i = 1, 2, . . . , n−2

2 with cost c(a) =
(

0, 2
2k−2

2

)
a = (v2k, v2k+1) , i = 1, 2, . . . , n−2

2 with cost c(a) = (0, 0).

A visualization of this graph can be found in Figure 2.3. It holds that each path has costs

∑
a∈P

(c1(a) + c2(a)) =

n−2
2∑
i=1

2
2k−2

2 =

n−3
2∑
i=0

2i = 2
n−1
2 − 1

and that for each z ∈
{

0, . . . , 2
n−1
2 − 1

}
there is a path P from v1 = s to vn = t with∑

a∈P c1(a) = z and
∑

a∈P c2(a) = 2
n−1
2 −1− z. Therefore all 2

n−1
2 paths are efficient and

|YN | = 2
n−1
2 .

v1 v2 v3 v4 v5 vn(0, 1) (0, 0) (0, 2) (0, 0) (0, 0)

(1, 0) (2, 0)
. . .

. . .

(2
n−1
2 , 0)

Figure 2.3: A graph with exponential many efficient solutions (paths). Note that the cost
labels are transposed in this figure.

Theorem 2.62 (Bökler et al., 2017). There is no output-polynomial algorithm for the MOSP
problem unless P = NP, even in the bi-objective case (p = 2).

Proof. For the proof, it is shown that the finished decision problem MOSPFIN is co-NP-
hard. By Theorem 2.23, this indicates that an output-polynomial algorithm for MOSP
implies P = co-NP, and therefore P = NP. This is shown by reducing instances of the
complement of the Knapsack problem:{(

w, p, k1, k2

)
: w>x ≤ k1, p

>x ≥ k2, x ∈ {0, 1}n
}
. (KP)

Assuming without loss of generality that w, p ∈ Nn with wi, pi > 0 for all i = 1, . . . , n,
k1, k2 ∈ N, w>1 > k1, and p>1 > k2, the problem remains NP-complete under these
conditions [Kellerer et al., 2004]. Consequently, the complement, co-KP, is co-NP-hard.
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An instance Î of the MOSPFIN problem is constructed from an instance I of the KP
problem. The instance includes nodes {v1

i , v
2
i } for i ∈ {1, . . . , n}, and an additional node

v1
n+1. For each item i ∈ {1, . . . , n}, there is an arc

(
v1
i , v

2
i

)
with cost (wi, 0)>, an arc(

v1
i , v

1
i+1

)
with cost (0, pi)

>, and an arc
(
v2
i , v

1
i+1

)
with cost 0. The node v1

1 is identified
with s, the node v1

n+1 is identified with t. There is an additional arc (s, t) with cost

(k1 + 1, 0)> and an additional path (s, v, t) with cost
(
0, p>1− k2 + 1

)>
. To complete the

reduction, set M :=
{

(k1 + 1, 0)> ,
(
0, p>1− k2 + 1

)>}
. The construction of the graph is

illustrated in Figure 2.4. The instance is valid, and there are at least two Pareto-optimal

paths: (s, t) and (s, v, t), with costs (k1 + 1, 0)> and
(
0, p>1− k2 + 1

)>
, respectively. Both

paths are Pareto-optimal because w, p > 0 for all i ∈ {1 . . . , n} and thus all other paths
have either non-zero components in their objective function values or one objective equals
the sum of all objective components and have value 0 in the other. All steps can be
performed in polynomial time in the input instance I. Now, consider an instance I /∈
co-KP, or equivalently I ∈ KP. There exists x ∈ {0, 1}n such that w>x ≤ k1 and
p>x ≥ k2 ⇔ p>(1− x) ≤ p>1− k2. Using this solution, a path P in the MOSP instance
Î is constructed: For every i with xi = 1, the route through node v2

i is taken, inducing a

cost of (wi, 0)>. For every i with xi = 0, the direct route through arc
(
v1
i , v

1
i+1

)
is taken,

inducing a cost of (0, pi)
>. It follows that c1(P ) = w>x ≤ k1 and c2(P ) = p>(1 − x) ≤

p>1 − k2. Hence, Î /∈ MOSPFIN since P is neither dominated by (s, t) nor (s, v, t).
Suppose for some instance I, the constructed instance Î /∈ MOSPFIN, meaning there is an
additional nondominated path P apart from (s, t) and (s, v, t). Since it is not dominated
by (s, t) and (s, v, t), it must be that c1(P ) ≤ k1 and c2(P ) ≤ p>1 − k2. A solution
to KP in I can be constructed as follows: The path P cannot take arcs from (s, t) or
(s, v, t), so it must take the route through the v1

i and v2
i nodes. For every i ∈ {1 . . . , n},

it can either take arc
(
v1
i , v

2
i

)
or
(
v1
i , v

1
i+1

)
. If it takes the first arc, set xi := 1; if it

takes the second arc, set xi := 0. This solution then has cost w>x = c1(P ) ≤ k1 and
p>x = p>1− c2(P ) ≥ k2. Therefore, I ∈ KP or equivalently I /∈ co-KP. This proves that
the reduction is a polynomial-time reduction from the complement of KP to the finished
decision variant of MOSP, thus establishing the theorem.

2.5 Single and Multi-objective Minimum Cost Flow Problem

This section focuses on the single and multi-objective minimum cost flow problems. For
an in-depth overview of the single-objective minimum cost flow problem, the textbook
by Ahuja et al. [1993] is recommended. Additionally, Hamacher et al. [2007b] comprehen-
sively reviews the relevant literature on the multi-objective minimum cost flow problem.

The chapter begins by presenting the general notation and assumptions. Afterwards,
the main properties and results are introduced, starting with the single-objective case and
then extending to the multi-objective case.
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v2
1

v1
2 v2

2
v1

3

(0, p>1− k2 + 1)

(w1, 0) (w2, 0)

(0, p1) (0, p2)

(k1 + 1, 0)

. . .

. . .

v

v1
1 = s v1

n+1 = t

Figure 2.4: The reduction in the proof of Theorem 2.62 presented in Bökler et al. [2017].
Note that the cost labels are transposed in this figure.

2.5.1 General Notation and Assumptions

Flow A network flow problem involves moving a commodity through a network. Certain
nodes supply the commodity, while other nodes demand it. The commodity is transported
along the network’s arcs, with the flow along these arcs constrained by specified lower and
upper bounds, known as capacities.

Definition 2.63. Let D = (V,A) be a directed graph with n nodes V = {v1, . . . , vn} and m
arcs A = {e1, . . . , em}. Let lij and uij denote the integer-valued, non-negative, finite lower
and upper capacity bounds, respectively, for each arc (i, j) ∈ A. Here, bi is the integer-
valued flow balance of the node i ∈ {1, . . . , n} where nodes with bi > 0 are supply nodes,
bi < 0 are demand nodes, and bi = 0 are transshipment nodes. A function f : A → R≥0

with f(i, j) = fij is called a feasible flow if f satisfies

lij ≤ fij ≤ uij for all (i, j) ∈ A, (capacity constraint)∑
j:(i,j)∈A

fij −
∑

j:(j,i)∈A

fji = bi for all i ∈ V. (flow balance constraint)

If further f = (fij)ij∈A ∈ Zm= the flow is called an integer flow.

a
b = 1

1

2

1

1

2
1 2

(`12, f12, u12)

(0, 2, 5)

Figure 2.5: Illustration of a node a and an arc (1, 2), demonstrating the satisfaction of the
flow balance and capacity constraints, respectively. In the figure on the left,
the arcs are labeled with their corresponding flow values.
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Figure 2.6: Example of a network with lower and upper bounds on the left. Nodes without
labels are assumed to be transshipment nodes, i.e., bi = 0. The goal is to send
ten flow units from node 1 through node 5 across the network. The figure on
the right shows a feasible flow in this network, with arcs labeled in green where
the flow value is greater than zero.

Multi-Objective Minimum Cost Flow Problem Given a p-dimensional cost vector that
assigns a cost vector to each arc, the multi-objective integer minimum cost flow problem
asks for a feasible flow with minimal cost.

Definition 2.64. Given a directed graph D = (V,A), a cost function c : A → Rp that
assigns a cost vector to each arc, lower and upper capacity bounds, and a flow balance
vector as above, the (multi-objective) minimum integer cost flow problem is defined as:

min
f∈F

c(f) = (c1(f), . . . , cp(f))> = C · f, (MOIMCF)

where F is the set of all integer flows in D, C ∈ Rp×n is the cost matrix containing
the rows ck of coefficients of the p linear objective functions and ci(f) =

∑
a∈A c

i
afa for

i ∈ {1, . . . , p}.

Note that the continuous multi-objective minimum cost flow (MOMCF) problem is the
LP-relaxation of MOIMCF problem. Due to the total unimodularity of MOMCF, each
extreme supported nondominated point of MOMCF has an integer preimage since u and
b are integral (see Ahuja et al. [1993]). In other words, the sets of extreme supported
nondominated points of MOMCF and MOIMCF, and thus the respective upper images,
coincide. In the remainder of this thesis, only integer flows are considered, and from now
on, flow always refers to an integer flow.

Assumptions In the context of the minimum cost flow problem, several common assump-
tions are made. It is assumed that the underlying directed graph D is connected. If the
graph is not connected you can solve the problem on every connected component disjointly.
Moreover, it is assumed that

∑
i∈V bi = 0; otherwise the problem would be infeasible. It

is further assumed that at least one feasible flow exists.

Without loss of generality, one can assume that lij=0 for all arcs (i, j) ∈ A. If this is not
the case, a simple network transformation can be applied to achieve zero lower bounds.
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For each arc with lij > 0, at least lij units of flow must be sent along this arc. To remove
the lower bound, set the new lower bound l′ij = 0 and reduce the capacity of the arc
by the amount of the lower bound, i.e., u′ij = uij − lij . Adjust the flow to account for
the lower bound by introducing a new flow variable f ′ij for the transformed arc such that
f ′ij = fij − lij , where fij is the original flow on arc (i, j). Next, update the demand at the
nodes i and j to reflect the adjustments made to the arc, i.e. b′i = bi− lij and b′j = bj + lij ,
see Ahuja et al. [1993].

It is assumed that every pair of nodes is reachable through a directed path in both
directions. If necessary, this assumption can be enforced by adding artificial arcs (r, j)
and (j, r) for each node j ∈ V , using an arbitrarily chosen but fixed root r and assigning
a sufficiently high cost and capacity to each of these arcs. In any optimal solution, such
arcs will only have flow greater than zero if the problem has no feasible solution without
these arcs.

In the exposition of the thesis, it is assumed that D contains no parallel or anti-parallel
arcs, i.e., if (i, j) ∈ A, then (j, i) /∈ A, to avoid any confusion with the notation. However,
the only difficulty with multiple arcs between a pair of nodes is keeping track of the relation
that links residual arcs with original arcs, which can be done as explained in Sedeño-Noda
and Espino-Mart́ın [2013]. Modifying the algorithms in further sections is straightforward
to deal with graphs containing multiple arcs between a pair of nodes.

2.5.2 Single-Objective Minimum Cost Flow Problem

The single-objective minimum cost flow problem is a fundamental and well-studied prob-
lem in combinatorial optimization. For the single-objective version, various polynomial
and even strongly polynomial algorithms exist. For a comprehensive overview, see Ahuja
et al. [1993] or Bertsekas [1998]. Before discussing the algorithms, the most important
concepts and optimality criteria for network flows are stated. Many of these concepts can
be transferred to the multi-objective case.

Residual graph The residual graph is central to many network flow algorithms, repre-
senting and dealing with the remaining capacity of arcs after accounting for the current
flow.

Definition 2.65. For a given network D, Df = (V,Af := A+ ∪ A−) is defined as the
residual graph with respect to a feasible flow f , where

A+ := {(i, j) : (i, j) ∈ A, fij < uij} and A− := {(j, i) : (i, j) ∈ A, fij > lij}.

In Df , the residual capacities and residual costs are defined by uij(f) := uij − fij > 0
and cij(f) := cij, respectively, if (i, j) ∈ A+ and uij(f) := fji − lji > 0 and cij(f) := −cji,
respectively, if (i, j) ∈ A−.
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The cost of a directed cycle C in Df is given by c(f, C) :=
∑

(i,j)∈C cij(f) and let χ(C) ∈
{−1, 0, 1}A be the (directed) incidence vector of C with

χij(C) :=


1, if C traverses (i, j) in Df ,

−1, if C traverses (j, i) in Df ,

0, otherwise

for all (i, j) ∈ A.

We say that f ′ is obtained from f by augmenting f along C by λ if we set f ′ := f+λχ(C).
The cost c(f ′) of f ′ is exactly c(f) + λc(f, C). An undirected cycle CD in D is called
augmenting cycle with respect to a flow f if whenever augmenting a positive amount of
flow on the arcs in the cycle, the resulting flow remains feasible. Each augmenting cycle
with respect to a flow f corresponds to a directed cycle C in Df , and vice versa [Ahuja
et al., 1993]. We call CD the equivalent of C in D. Augmenting a flow f over a cycle
C ∈ Df by one unit yields another feasible flow f ′ = f + χ(C). This is because, C is
a directed cycle in Df , augmenting along C increases and decreases flow on arcs in the
cycle, maintaining flow conservation at each node. In addition, for any arc (i, j) in C,
either (i, j) is in the original graph G and fij < cij and hence fij + 1 ≤ cij , or (j, i) is
in G and fji > 0 and hence fji − 1 ≥ 0. Thus, augmenting along C respects the capacity
constraints.

The following fact is well-known for two feasible integer flows.

Property 2.66 (Schrijver, 2003). If f and f ′ are two feasible integer flows, then there
are directed cycles C1, . . . , Ck ⊂ Df and integers λ1, . . . λk > 0 such that

f ′ = f +

k∑
j=1

λjχ(Cj),

c(f ′) = c(f) +

k∑
j=1

λjc(f, Cj).

Negative-Cycle Optimality Condition The first optimality condition can be stated using
the residual graph. The negative cycle optimality condition states that a flow f is optimal
if and only if Df does not contain a negative cost cycle.

Theorem 2.67 (Ahuja et al., 1993). For a minimum cost flow problem with network D,
a flow f is an optimal flow if and only if Df does not contain a negative cost cycle.

Proof. Let f be an optimal flow. If there exists a cycle C in Df with c(f, C) < 0 exists,
then the flow f ′ = f + χ(C) would be a feasible flow with c(f ′) = c(f) + c(f, C) < c(f),
which contradicts the optimality of f . Conversely, if Df does not contain any negative
cycle, then by Property 2.66, no feasible flow f ′ with less cost than c(f) can exist.

Duality For the following optimality conditions, concepts from duality theory will be
used, see Section 2.2.2. To derive the dual, we associate dual variables πi with the flow
conservation constraints (one for each node i ∈ V ) and τij with the capacity constraints
fij ≤ uij (one for each arc (i, j) ∈ A).
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Definition 2.68. The dual to the minimum cost flow problem is given by:

max
∑
i∈V

πibi −
∑

(i,j)∈A

τijuij

s.t. πi − πj − τij ≤ cij ∀(i, j) ∈ A

τ ≥ 0.

Note that the dual variables τij in an optimal solution can always be chosen as τij =
max{0,−(cij + πi − πj)} (see, Ahuja et al. [1993]). Hence, the dual problem reduces to
finding a feasible vector π that minimizes the objective function

∑
i∈N biπi.

Reduced Cost The dual variable πi represents the node potential at node i ∈ V . For a
given set of node potentials π the reduced cost cij of a given arc (i, j) are defined as

cij := cij + πi − πj .

For forward arcs (i, j) ∈ A+ of the residual network, the residual reduced cost is defined
as cij(f) := cij(f) + πi − πj = cij + πi − πj . For backward arcs (j, i) ∈ A−, we define the
residual reduced cost as cji(f) = cji(f) + πj − πi = −cij + πj − πi = −cij .

Property 2.69. The cost of a cycle C in Df is

c(f, C) =
∑

(i,j)∈C

cij(f) =
∑

(i,j)∈C

cij(f) +
∑

(i,j)∈C

(πi − πj) =
∑

(i,j)∈C

cij(f) = c(f, C).

Therefore, a negative cycle C in Df with negative costs c(f, C) is also negative regarding
the residual reduced costs c(f, C), implying an alternative form of the negative optimality
condition, referred to as reduced cost optimality condition.

Theorem 2.70 (Ahuja et al., 1993). A feasible flow f is optimal for the minimum cost
flow problem if and only if corresponding node potentials π exist that satisfy the following
reduced cost optimality condition:

cij(f) ≥ 0 ∀(i, j) ∈ Af .

Complementary Slackness Condition While the negative cycle and reduced cost opti-
mality conditions apply to the residual graph, the complementary slackness optimality
condition reformulates these conditions in terms of the original graph, based on the com-
plementary slackness optimality conditions of linear programming.

Theorem 2.71 (Ahuja et al., 1993). A feasible flow f is an optimal flow of the minimum
cost flow problem if and only if feasible node potentials π exist such that the reduced costs
and flow values satisfy the complementary slackness optimality conditions for every arc
(i, j) ∈ A:

(i) If cij > 0, then fij = 0.

(ii) If 0 < fij < uij , then cij = 0

(iii) If cij < 0, then fij = uij .

43



Chapter 2 Preliminaries

Any node potential π that satisfies the complementary slackness optimality conditions,
and consequently the reduced cost optimality conditions, is optimal. For a given optimal
flow f , an optimal node potential π can be determined by computing the shortest path
distances in Df from an arbitrary but fixed root node r to all other nodes i ∈ V . Since it
is assumed that every pair of nodes is reachable through a directed path in both directions
and given that f is optimal (implying no negative cycles exist in Df ), all nodes i ∈ V are
reachable from r in Df . Therefore, the shortest path distances are well-defined.

Tree Solution The concepts of tree solutions and induced cycles are central to numerous
algorithms, including the well-known network simplex algorithm first presented in Dantzig
[1951], and will be important for the algorithms discussed in the following chapters. Any
basic feasible solution f of MCF corresponds to a (not necessarily unique) spanning-tree
structure (T, L, U). For simplicity, we shall abbreviate spanning tree as tree in the sequel
and refer to a tree T when we mean its set of arcs.

Definition 2.72. The flow f and an associated tree structure (T, L, U) is called a tree
solution if it consists of a spanning tree T of D and a disjoint set A\T = L ∪̇U such that
the flow f satisfies

fij = lij for all (i, j) ∈ L,
fij = uij for all (i, j) ∈ U.

If a feasible (optimal) flow exists, then there also exists a feasible (optimal) tree solu-
tion [Cook et al., 1998], respectively. The network simplex algorithm always determines
an optimal tree solution [Ahuja et al., 1993].

The negative optimality condition states that a flow f is optimal if and only if Df does
not contain a negative cycle and a tree solution helps us find cycles in Df quickly: Indeed,
given a tree solution f with an associated tree structure (T, L, U), it suffices to check
cycles that arise by inserting a single edge of A \T into T in order to prove the optimality
of f , see Cook et al. [1998] for details. This verification can be further simplified if a node
potential is considered, i.e., a vector π ∈ RV , where πv is defined to be the cost of the
(unique) simple undirected path in T from an arbitrary but fixed node r to v. Here, the
cost of an arc (i, j) ∈ D traversed in forward direction by the path contributes positively
to the total cost, whereas the cost of a backwards-traversed arc contributes negatively.
Then, the following property holds:

Property 2.73 (Ahuja et al., 1993). A tree solution f with an associated tree structure
(T, L, U) is optimal if

(i) cij = 0 for all (i, j) ∈ T,
(ii) cij ≥ 0 for all (i, j) ∈ L,
(iii) cij ≤ 0 for all (i, j) ∈ U.

These three conditions are equivalent to cij(f) ≥ 0 for all (i, j) ∈ Df . The equation (i)
is always true by the definition of the node potential π. With conditions (ii) and (iii), it
follows that any cycle in Df has a non-negative cost. Hence, f is an optimal flow. The
overall advantage of this kind of node potential is that we can construct cycles by inserting
one single edge to T with some nice properties, which we will introduce below.
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Definition 2.74 (Cook et al., 1998). Let (i, j) /∈ T be a non-tree arc.

(i) There exists a unique cycle C(T, L, U, (i, j)) induced by (i, j), that is formed by
(i, j) together with the j-i path in T , designated with P Tj,i. This cycle is from now on
referred to as Cij.

(ii) The arc (i, j) defines the orientation of the cycle Cij. If (i, j) ∈ L, then the orien-
tation of the cycle is in the same direction as (i, j). If otherwise (i, j) ∈ U , then the
cycle’s orientation is in the opposite direction. We define the set of all arcs (u, v)

in Cij that are in the same direction as the orientation of the cycle with
−→
Cij and the

set of all arcs (u, v) that are opposite directed with
←−
Cij.

See Figure 2.7 for an illustration.

r

i

j

e3

e4

e0

e1

e2

Figure 2.7: Example of the unique cycle Ce0 induced by e0. Non-tree arcs are drawn as

dashed lines. In this example e0 ∈ L and therefore
−→
Ce0 = {e0, e2, e4} and

←−
Ce0 = {e1, e3}.

Property 2.75 (Cook et al., 1998). Given a tree structure (T, L, U), the unique cycle Cij
induced by an arc (i, j) 6∈ T satisfies:

• For all arcs (u, v) ∈ Cij it holds that (u, v) ∈ T ∪ (i, j).

• The cost of Cij is given by c(Cij) = cij if (i, j) ∈ L and c(Cij) = −cij if (i, j) ∈ U .

Solution Methods Minimum cost flow problems can be solved using a variety of poly-
nomial time and strongly polynomial time algorithms, each designed to efficiently identify
the optimal flow. These methods include capacity scaling, cost scaling, simplex methods,
cycle-canceling techniques, relaxation algorithms, out-of-kilter algorithms, and primal-
dual approaches. Below is a brief overview of some key algorithms, with a more compre-
hensive discussion of nearly all solution techniques available in Ahuja et al. [1993].

1. Cycle-Canceling Algorithm: Introduced by Klein [1967], this algorithm is one of the
earliest methods for solving the minimum cost flow problem by systematically elim-
inating negative cost cycles in the residual network. The algorithm incrementally
reduces the overall flow cost by iteratively identifying and canceling these cycles.
An extension, known as the mean cycle-canceling algorithm, was presented in Gold-
berg and Tarjan [1989], which focuses on identifying and canceling cycles with the
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minimum mean cost in the residual network. This extension results in a strongly
polynomial time algorithm with a running time of O(n2m3 log n), see Ahuja et al.
[1993].

2. Network Simplex Method: An adaptation of the simplex method for network flow
problems, first presented in Dantzig [1951]. Later, several authors improved the
algorithm. In Orlin [1997], the first polynomial runtime algorithm with a complexity
of O(n2m log(nζ)), where ζ represents the maximum cost of any edge was presented.
This was further refined to O(nm log n log(nζ)) in Tarjan [1997]. It operates on
feasible spanning tree structures of the network, pivoting between these trees to find
the minimum cost flow. It makes use of the induced cycles of a spanning tree, helping
find a negative cycle in the graph by just inserting a single edge of a non-tree arc
into the tree. The algorithm always determines an optimal tree solution and has
proven to be highly efficient in practice.

3. Enhanced Capacity Scaling Algorithm: Developed by Orlin [1993], this algorithm
builds on earlier capacity scaling methods by incorporating advanced scaling tech-
niques that enhance efficiency. It reduces the number of augmenting path computa-
tions, solving the minimum cost flow problem as a sequence of O(m log n) shortest
path problems. This approach achieves a worst-case running time of O

(
(m log n)(m+

n log n)
)
, making it a strongly polynomial time algorithm [Ahuja et al., 1993].

2.5.3 Multi-Objective Minimum Cost Flow Problems

As discussed, various polynomial algorithms exist for the single-objective version of the
minimum integer cost flow problem. However, real-world scenarios often involve multi-
ple objectives, which may be conflicting, making it impossible to find a single solution
that optimizes all objectives simultaneously. This typically results in many incompara-
ble solutions. These multi-objective integer minimum cost flow (MOIMCF) problems are
significantly more challenging to solve, as reviewed in Hamacher et al. [2007b], where the
authors highlight a lack of algorithms designed explicitly for MOIMCF.

The MOIMCF problem can be relaxed to a linear program by removing the integrality
constraints on flow values. This LP relaxation is denoted as the multi-objective minimum
cost flow (MOMCF) problem. With the relaxed problem, only supported nondominated
points of MOIMCF can be obtained. However, in the original MOIMCF problem, both
nonsupported and supported nondominated points can be present. Figure 2.8 presents a
bi-objective example along with the corresponding solution types. Figure 2.9 illustrates
the outcome space for the example given in Figure 2.8.

Hardness and Intractability The multi-objective shortest path problem (MOSP) is a
special case of the multi-objective integer minimum cost flow problem [Ahuja et al., 1993].
The s-t path problem can be transformed into a minimum cost flow problem by setting
all arc capacities to one and sending one unit of flow from s to t, with bs = 1, bt = −1,
and bv = 0 for all v ∈ V \{s, t}. In this modified network, an optimal flow corresponds to
the shortest path from s to t. Consequently, the finished decision problem and canonical
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Figure 2.8: Illustration a bi-objective integer minimum cost flow problem. The example
includes ten distinct nondominated points, and 83 non-efficient flows. The
output space is visualized in Figure 2.9.

decision problem of the multi-objective integer minimum cost flow problem are NP-hard
and the enumeration problem intractable even in the case of two objectives. The proofs
follow directly from Theorem 2.60 and Theorem 2.61, respectively.

Theorem 2.76. The finished bi-objective minimum cost flow problem is NP-complete.

Theorem 2.77. The bi-objective minimum integer cost flow problem is intractable.

The number of supported nondominated points, even note that the number of extreme
supported nondominated points, of a bi-objective integer minimum cost flow problem can
grow exponentially in the input size. Thus, the enumeration problems of determining
all supported nondominated points or extreme supported nondominated points are in-
tractable. In the example provided by Hansen [1980] for Theorem 2.61, the objective
function values for an exponential number of efficient paths are located on a single line.

Specifically, all 2
n−1
2 nondominated points in this instance are supported, leading to an

exponential number of supported solutions in the objective space. Furthermore, Ruhe
[1988] proves the existence of bi-objective integer minimum cost flow problem instances
with 2n extreme supported nondominated points. This establishes the following theorem:

Theorem 2.78 (Ruhe, 1988). The number of (extreme) supported nondominated points
in a bi-objective integer minimum cost flow problem can be exponential in the input size.

Solution Methods Hamacher et al. [2007b] provide an overview of the literature of exact
and approximation methods for solving MOIMCF and MOMCF problems. Approximation
algorithms typically compute a subset of the efficient solutions. The authors also observe
that the literature generally focuses on bi-objective problems and highlights a gap in the
availability of algorithms on MOIMCF problems with more than two objectives.

Any approach for MOILP or MOCO problems, as discussed in Section 2.3, can be
applied to solve MOIMCF problems, including generic scalarization-based methods, two-
phase approaches, and the dual variant of the Benson algorithm. The latter can be used to
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96 144 extreme
100 138 supported
103 135 nonsupported
104 132 extreme
107 129 nonsupported
111 123 supported
114 120 nonsupported
118 114 supported
125 105 extreme
136 99 extreme

Figure 2.9: Illustration of an upper image Y= = conv(Y + R2
=) and the different solution

types of the given BOIMCF problem in Figure 2.8. Note that the origin of
this plot is at (90, 90)> and not all dominated vectors are displayed in the
figure.

determine the set of extreme supported nondominated points. However, a few specialized
algorithms exploit the network structure of BOIMCF problems, and even fewer for the
multi-objective variant of the problem. Some of them are presented below.

For bi-objective minimum cost flow problems, the parametric network flow algorithm
can be effectively used in the first phase of two-phase methods. For instance, Raith and
Ehrgott [2009] apply the Two-Phase Method to solve BOIMCF, utilizing a parametric
network simplex method in the first phase to identify extreme supported solutions. This
is followed by a flow ranking algorithm in the second phase, such as the one proposed
by Hamacher [1995], (or the improved version that will be presented in Chapter 6), which
can be used to generate the remaining supported and nonsupported solutions.

Eusébio and Figueira [2009a] propose an algorithm for BOIMCF that integrates the
ε-constraint method with a branch-and-bound approach. In the multi-objective case,
Eusébio and Figueira [2009b] compute the complete set of supported efficient integer so-
lutions for MOIMCF problems. They demonstrate that these supported solutions are
connected by chains of zero-cost cycles in the residual graphs.

Other methods, such as those presented in Sun [2011] and Eusébio et al. [2014], offer
approaches for identifying subsets or representations of MOIMCF problems. However, a
detailed discussion of these methods is beyond the scope of this thesis, as our focus lies
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on the output-sensitivity analysis of different solution concepts.

Output-Sensitivity Analysis This thesis focuses on the output-sensitive analysis for dif-
ferent solution concepts. Let C be the configuration set of all supported efficient solutions
and C∗ the configuration set of all nondominated points. As mentioned before, an output-
polynomial time algorithm E = (I, C), which determines all supported efficient solutions
exactly once, would also yield all nondominated points. However, it might not be output-
polynomial w.r.t. this task, as there might be an exponential number of efficient solutions
mapping to a small number of nondominated points. Thus, the algorithm for E∗ = (I, C∗)
may output the elements (i.e., the nondominated points) more than once or even exponen-
tially many times. Consider, for example, a directed graph with {1, . . . , n} transshipment
nodes, a node s and t with flow balance n and −n, respectively. The graph contains the
arcs (s, i) and (i, t) for all i ∈ {1, . . . , n} with upper capacity n. The cost of all arcs is
equal to (1, 1)> ∈ R2. Then we have

(
2n−1
n

)
supported efficient solutions, but all map to

the same extreme supported nondominated point. Figure 2.10 illustrates this construction
with n = 4 nodes.

s

1 2 3 4

t

Figure 2.10: Example of a BOIMCF with n = 4 transshipment nodes, one supply node s
with bs = 4, and a demand node t with demand bt = −4. All arcs have a
capacity of n = 4 and costs equal to (1, 1)>. The problem contains

(
2n−1
n

)
=(

7
4

)
= 35 supported efficient solutions, all mapping to a single nondominated

point.
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This chapter presents scalarization-based algorithms for multi-objective combinatorial op-
timization. It focuses on methods that decompose the overall problem into a series of
scalarized single-objective subproblems, which can then be solved using available single-
objective (IP-)solvers. The presented methods are generic, i.e., they are independent of
specific problem structures and hence generally applicable. They exhibit flexibility by
accommodating different implementation possibilities, including choices of the sequence
of subproblems, scalarization strategies, and decisions regarding the computation of the
complete or a representation of the nondominated point set.

Furthermore, the chapter references foundational results and algorithms, establishing
connections with various aspects such as search region, search zones, local upper bounds,
defining points, complexity results, and redundancy avoidance. It emphasizes the impor-
tance of these generic approaches and underscores their efficiency in solving multi-objective
combinatorial optimization problems while exploring a wide range of options for their im-
plementation.

To keep the notation in this chapter simple, we will not always distinguish between
row and column vectors in the following. In particular, when listing outcome vectors for
specific problem instances, we will often write these vectors as row vectors and omit the
transposed sign whenever there is no risk of misinterpretation.

This chapter is based on a book chapter, co-authored with Kathrin Klamroth and
Kerstin Dächert, which appears in Dächert et al. [forthcoming].

3.1 Introduction

Combinatorial optimization (CO) problems (not necessarily with multiple objectives) have
a specific structure, wherefore they are often solved by very specific solution methods.
Prominent examples are the Hungarian method for assignment problems, Dijkstra’s algo-
rithm for shortest path problems, Prim’s and Kruskal’s algorithms for minimum spanning
tree problems, and the Chinese Postman method for shortest closed paths or circuits.
However, it is also possible to apply rather generic methods that are applicable to general
discrete (integer) optimization problems, such as the well-known branch-and-bound or
branch-and-cut methods. Efficient implementations of such methods are readily available
in solvers such as CPLEX and Gurobi.

MOO problems (not necessarily combinatorial) can be approached in various ways.
A generic approach is a so-called scalarization methods that transform the given multi-
objective optimization problem into one – or a series of – associated single-objective prob-
lems with modified (i.e., scalarized) objective functions and, potentially, additional con-
straints and variables. Scalarizations usually support the selection of parameters that
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somehow control how the original objectives are embedded into the transformed problem.
There are ways to combine all objectives into one new objective. There are also scalariza-
tion techniques in which some or all original objectives appear as new constraints. This
chapter discusses the corresponding formulations as well as theoretical properties in detail.

On this basis, we approach MOCO problems from a quite general perspective. How-
ever, the combinatorial structure of MOCO problems yields discrete nondominated sets,
a property that is heavily exploited in this chapter.

In particular, this chapter describes generic scalarization based algorithms for MOCO
problems that combine scalarization techniques with generic single-objective solvers. Ap-
plying a generic single-objective solver is appealing since highly efficient implementations
are available and they are independent of specific problem structures. Indeed, the trans-
formation inherent in standard scalarization methods typically destroys or alters the com-
binatorial structure of the problem.

A few considerations should be made that lead to different recommendations concerning
the choice of a specific scalarization technique. First, it is important to determine whether
the goal is to generate the entire nondominated set or only a subset (i.e., a representation)
of it. Second, one should decide whether the scalarization needs to be complete, i.e.,
whether every nondominated point needs to be determinable with an appropriate choice of
the scalarization parameters. The latter usually requires more complex scalarizations and,
hence, in general, longer solution times. Some methods switch from “easy” scalarization
(in the early phases of an optimization process) to more “complex” scalarizations later (to
identify potentially missing nondominated points). The two-phase method is a prominent
example of this approach. Even if the two questions formulated above seem to be closely
related, they should be answered separately.

As often the case in MOO, problems with two objectives are structurally more straight-
forward than those with three or more objectives. Indeed, the nondominated set of bi-
objective problems can always be sorted such that the objective values of the first objective
are increasing while those of the second objective are decreasing. This significantly sim-
plifies any decomposition strategy in the objective space. In this chapter, we focus on
MOO problems in arbitrary dimensions. Nevertheless, the bi-objective case remains im-
portant for visualization purposes and for explaining complex relations, at least partially.
Therefore, this chapter also presents several examples and figures with two objectives in
this chapter, keeping in mind that this is the “easy” case. While linking the two solution
concepts for CO and MOO is relatively straightforward in the bi-objective case, it is not
evident how to design such an algorithm for three or more objectives in an efficient way,
that is, to solve as few optimization problems as possible, to avoid the regeneration of
already known nondominated points, to keep the storage for computation small, and so
on.

The remainder of this chapter is structured as follows. Sections Section 3.2 and Sec-
tion 3.3 present the preliminaries for this chapter. In Section 3.2, two scalarization tech-
niques well-suited for a generic MOCO approach are introduced and discussed. Section 3.3
then introduces the concepts of search regions and search zones. A comprehensive overview
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of the literature on generic scalarization-based algorithms is provided in Section 3.4. Fi-
nally, Section 3.5 presents generic scalarization approaches for bi-objective and multi-
objective combinatorial optimization problems, along with examples of these methods.

3.2 Scalarization Methods

The conventional strategy for addressing MOO problems involves scalarization. These
methods convert multi-objective optimization problems into corresponding single-objective
optimization problems, thereby facilitating their solution using standard optimization
solvers.

Ideally, scalarization methods should exhibit the following desirable properties (see, e.g.,
the comprehensive surveys of Ehrgott [2006] and Miettinen and Mäkelä [2002]):

Correctness: An optimal solution of the scalarization is always (weakly) efficient.

Completeness: Every non-dominated point can be identified through an appropriate
selection of scalarization parameters.

Simplicity: The scalarized problem is not more complex to solve than the corresponding
single-objective problem.

Linearity: If the constraints and objectives of a MOCO problem are linear, the scalarized
counterparts should also maintain linearity.

Depending on the application context (and on the MOCO problem at hand), this list
may be extended by further properties.

Various scalarization techniques exist, each possessing its unique set of desirable prop-
erties. In addition to the weighted-sum scalarization presented in Definition 2.43, this
section presents and discusses two scalarizations in more detail that are particularly well
suited in the context of a generic scalarization based algorithm.

3.2.1 Epsilon-Constraint Scalarization

The Epsilon-constraint (also ε-constraint or budget-constraint, see, Haimes et al. [1971])
scalarization consists in selecting one objective function zj , where j ∈ 1, . . . , p, for min-
imization while imposing upper bounds εi ∈ R on all other objective functions zi, with
i ∈ Ij := {1, . . . , p} \ {j}:

min
x∈X
{zj(x) : zi(x) ≤ εi for i ∈ Ij} (3.1)

The following properties are well-known [Ehrgott, 2005]:

Lemma 3.1. Every optimal solution x̄ ∈ X of an ε-constraint scalarization (3.1) is weakly
efficient for MOCO, and at least one of the optimal solutions of (3.1) is efficient for
MOCO.
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Weakly efficient solutions can be avoided by adopting a two-stage procedure in the form
of:

min
x∈X

{
p∑
i=1

zi(x) : zj(x) = zj(x̄), zi(x) ≤ εi for i ∈ Ij

}
(3.2)

over the set of optimal solutions of Problem (3.1).

Note that only optimal solutions of (3.1) are feasible for (3.2). However, this two-
stage approach, in general, requires two solver calls. This can be avoided by alternatively
adding an appropriate augmentation term to Problem (3.1) in the first stage, leading to
an augmented ε-constraint scalarization

min
x∈X

{
zj(x) + ρ

p∑
i=1

zi(x) : zi(x) ≤ εi for i ∈ Ij

}
(3.3)

which returns an efficient solution of MOCO. Here, ρ > 0 is an appropriately chosen small
augmentation parameter; see, e.g., Ehrgott and Ruzika [2008] and Mavrotas [2009]. Hence,
ε-constraint scalarization ensures completeness, correctness, and linearity, rendering it one
of the most commonly employed scalarization methods.

However, a drawback of the ε-constraint scalarization is that the additional budget con-
straints often increase the problem’s computational complexity. For MOCO problems, the
ε-constrained scalarizations are often NP-hard, even if the corresponding single-objective
problems are polynomial solvable (e.g., in minimum-cost-flow problems, shortest-path-
problems, etc.), as discussed in Ehrgott [2006]. Therefore, the method lacks the simplicity
property.

3.2.2 Weighted Distance and Reference Point Methods

In the realm of compromise programming methods, the goal is to seek solutions as close
as possible to a pre-specified reference point zR ∈ Y. While the Ideal point zI would be
the best possible outcome, yet impossible to obtain, this point or an utopia point that
slightly dominates the Ideal point in all components is often chosen as a reference point.
Given a distance measure d : Rp × Rp → R= the compromise programming problem can
be formulated as:

min
x∈X

d
(
z(x), zI

)
. (3.4)

Commonly employed distances are from the class of `q-norms (typically called `p-norms
in the mathematical context; however, p already denotes the number of objectives here).
Alongside the reference point z∗, and a weight vector λ ∈ Rp> reflecting the relative
importance of the individual objective functions, the weighted lq-norm scalarization with
1 ≤ q <∞ can be expressed as:

min
x∈X

(
p∑
i=1

λi|zi(x)− zRi |q
) 1

q

. (3.5)
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Special cases, particularly q = 1 and q → ∞, hold significant importance. For q → ∞, a
notable special case emerges as the weighted Tchebycheff scalarization given by:

min
x∈X

max
i∈{1,...,p}

λi|zi(x)− zRi |. (3.6)

When zR aligns with the Ideal point (or a point dominating the Ideal point), the absolute
values in equations (3.5) and (3.6) can be omitted. This simplification renders problem
(3.5) equivalent to a weighted sum scalarization for p = 1, and problem (3.6) can be
reformulated as:

min
x∈X

{
α : λi(zi(x)− zRi ) ≤ α ∀i ∈ {1, . . . , p}

}
(3.7)

We refer again to Ehrgott [2005] for the following result.

Lemma 3.2. If zR is the ideal point or a utopia point, then every optimal solution x̄ ∈ X
of a weighted Tchebycheff scalarization (3.6) is weakly efficient for MOCO, and at least
one of the optimal solutions of (3.6) is efficient for MOCO.

Similar to the ε-constraint scalarization, weakly efficient solutions can be mitigated by
either solving a second-stage problem or incorporating an augmentation term. However,
selecting an appropriate augmentation parameter is crucial to avoid numerical issues or
missing efficient solutions, as detailed in Dächert et al. [2012].

If the reference point zR is the ideal point or a utopia point, then the weighted Tcheby-
cheff scalarization (3.6) is correct, complete, and linear. However, as in the case for the
epsilon-constraint scalarization, weighted Tchebycheff scalarizations are in general not
simple due to the introduction of additional constraints.

Figure 3.1 illustrates the additional constraints added to the problem in the respective
scalarization. In addition, exemplary level curves of the respective objective functions are
shown.

Remark We acknowledge the existence of numerous other scalarization approaches, both
related and unrelated, each with its unique set of advantages and limitations. Among them
are methods such as Benson’s method [Benson, 1978], the direction method of Pascoletti
and Serafini [Pascoletti and Serafini, 1984], and hypervolume scalarization [Paquete et al.,
2022]. Every scalarization method that is correct and complete can be used within a
generic MOCO approach.

3.3 Search Region and Search Zones

In the previous section, we discussed two correct and complete scalarizations methods, i.e.,
scalarizations that enerate one (weakly) non-dominated point for each set of parameters
(or show that none exists wrt. the given parameter settings). However, in general, not only
one nondominated point but a (or the) set of nondominated points shall be generated. If
the points are computed in a sequence and not at once (e.g., in parallel implementations),
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Figure 3.1: The weighted-sum method is illustrated on the left, with three different weights
represented by distinct colors. The (ε-constraint method ) is shown in the
middle, illustrated with three different ε-constraints. Extreme supported
nondominated points are marked with filled cycles, supported nondominated
points with unfilled cycles, nonsupported non-dominated points with squares,
and dominated points with crosses. Additionally, the (weighted Tchebycheff
method) is depicted with various weights and level curves passing through z1,
z2, and z4. Using the ε-constraint method with these constraints, the points
z1, z2, and z4 are also images of the produced solutions, respectively. However,
in the weighted-sum method, a single-objective problem with weights corre-
sponding to the orange line would yield the point z1. For the red line, the
single-objective problem would produce z1, z2, and z3 as images of optimal
solutions. Similarly, a solution with z4 as the image would be optimal for a
single-objective problem with weights corresponding to the blue line. Impor-
tantly, no weights in the weighted-sum scalarization would make z4 an image
of any optimal solution.

we can use information from the already generated points. More precisely, we can exclude
the part of the outcome space that is dominated by an already generated point. We
call the remaining space search region since our search for further nondominated points
concentrates on this area. The search region can be expressed as the union of hypercubes
or hyperrectangles, called search zones in the following. Each search zone can be described
by an upper bound vector, which we call local upper bound in the context of the search
region. Below, we provide formal definitions of these concepts as in Dächert et al. [2024].

Definition 3.3. For a given set of outcome vectors N ⊆ Y, the search region S(N)
describes the part of Rp that is not dominated by any point of N , i.e., the part that
potentially contains further non-dominated points. Formally, it is defined as

S(N) = Rp\
(
N + Rp=

)
= Rp\ {z ∈ Rp : ∃ z̄ ∈ N with z̄ 5 z} .

A concise characterization of S(N) can be achieved by using a finite set of axis-parallel
hyperrectancles called search zones, induced by a finite set of local upper bounds U(N).
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A local upper bound u ∈ U(N) is a maximal point in the objective space that is not
dominated by any point of N . Following the exposition in Klamroth et al. [2015], we
assume that the initial search region is restricted to a bounding box with lower bound
(m, . . . ,m)T ∈ Zp and an upper bound (M, . . . ,M)T ∈ Zp ( with m < M). These bounds
may be derived, for example, from global lower and upper bounds on the attainable
objective function values or provided by the decision maker. We include p dummy points
di = Mei ∈ Zp for i = 1, . . . , p in the set N , i.e. di ∈ N , to delimit the bounding box,
where ei denotes the i-th unit vector in Rp .

Definition 3.4. Every local upper bound u ∈ U(N) defines a search zone

C(u) = {z ∈ Rp : z < u} = u− Rp>

Thus, the search region S(N) can be described by the union of the search zones induced
by a finite set of local upper bouds U(N) such that

S(N) = {z ∈ Rp : ∃u ∈ U(N), z < u}

=
⋃

u∈U(N)

C(u).
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Figure 3.2: Dominated area in (displayed in blue), search zones (displayed in green), and
local upper bounds in the bi-objective instance after adding the first (left
figure) and the second non-dominated point (right figure).

The set U(N) requires updating whenever a new non-dominated point z̄ is found. Ef-
ficient operations to iteratively update the set U(N) and detect redundant local upper
bounds when further non-dominated points are added to N have been described by Klam-
roth et al. [2015] and Dächert et al. [2017], and will be discussed in Section 3.5.

Figure 3.2 and Figure 3.3 display the search region and the upper bound set with respect
to one or two non-dominated points for example instances with two and three objective
functions, respectively.

Example 3.5 (Klamroth et al., 2015). To illustrate the concept of local upper bounds con-
sider the set of the two non-dominated points z1 = (3, 5, 7)> and z2 = (6, 2, 4)> yielding the
local upper bounds u1 = (3,M,M)>, u21 = (6, 5, 10)> , u22 = (10, 2, 10)>, u31 = (6, 10, 7)>,
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Figure 3.3: Dominated area (displayed in blue), search zones (displayed in green), and
upper bounds in the tri-objective case with respect to one (left side) and two
(right side) after adding the first nondominated point(s). The perspective is
from above, looking towards the origin, with the dominated area appearing as
sections cut out from the initial bounding box. To enhance the understanding
of the view, a squirrel from the TikZlings package is added at the bottom of
the cut-out area, specifically in the free space removed from the initial box.

and u33 = (10, 10, 4)>, i.e., U
({
z1, z2

})
=
{
u1, u21, u22, u31, u33

}
, which are displayed in

Figure 3.3.

The number of local upper bounds is bounded by

|U(N)| = O
(
|N |b

p
2c
)

for p ≥ 2,

derived from results in algorithmic geometry Boissonnat et al. [1998] and Kaplan et al.
[2008]. This bound is tight [Klamroth et al., 2015]. However, different point sets generally
induce different numbers of search zones. In the case of p = 3 objectives and points given
in general position (i.e., for each objective no pair of points shares the same value), the
number of search zones is precisely equal to 2n+ 1 irrespective of the position of the given
point set, see Dächert and Klamroth [2015].

3.4 Survey of Literature

This section presents a survey on algorithms for scalarization-based algorithms for multi-
objective optimization problems. We focus on exact algorithms which yield the entire
set of nondominated points. Moreover, while the methods in the multi-objective case are
also applicable in the bi-objective case, we review methods that are explicitly designed for
bi-objective problems separately. We refer to the recent survey given in Halffmann et al.
[2022] and Dächert [2014] for a more comprehensive review.
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3.4.1 Bi-Objective Problems

One reason for the specific role of bi-objective problems is that, in this case, Pareto optimal
solutions can be sorted such that their objective values increase in one objective and
decrease in the other objective. In this way, a natural ordering within the nondominated
set is induced, facilitating central operations like decomposition, bound computations, and
filtering for dominated solutions. This is used in the context of objective space methods,
which will presented in the following.

Aneja and Nair [1979] use the weighted sum method for solving bi-objective linear
programs. They focus on determining the extreme supported nondominated points saved
in increasing order based on the first objective. Starting with the determination of the two
lexicographic minima, the algorithm performs iterations using weighted sums, removing
pairs of indices when no further extreme nondominated points exist between them. The
authors show that if the bi-objective problem has k extreme nondominated points (k ≤ 2),
the algorithm performs exactly 2k−3 iterations after having determined the lexicographic
minima.

Chalmet et al. [1986] propose a similar algorithm for bi-objective integer problems, im-
posing constraints to eliminate known nondominated points and their dominated regions.
Their approach involves solving subproblems with respect to local Nadir points. With
the help of the hybrid scalarization that combines a weighted sum with appropriate con-
straints, it is possible to generate all supported and nonsupported nondominated points.
It is shown that 2|YN | + 1 integer programs are solved in total. Their approach can be
extended to problems with more than two objectives. We will discuss this extension in
Section 3.4.2 below.

Eswaran et al. [1989] address nonlinear integer bi-objective problems using a weighted
Tchebycheff method with normalized weights. The initial weight space is divided into
subintervals, each boundary representing previously solved instances of weighted Tcheby-
cheff problems. Iteratively, a subinterval is chosen and refined by determining a new
weight through simple bisection. If the solution yields a new nondominated point, the
current subinterval is split into two. The presented algorithm ensures the generation of all
nondominated points. Similarly, Sayın and Kouvelis [2005] propose a two-stage weighted
Tchebycheff method to solve bi-objective discrete optimization problems. Thereby, two
variants are employed, where the first uses the Ideal point and the second uses the origin
as fixed reference point. The weights are computed based on the fixed reference point
and the local Nadir point of two adjacent nondominated images. Ralphs et al. [2006] pro-
pose an algorithm for integer bi-objective optimization using the (augmented) weighted
Tchebycheff method. They improve the approach of Eswaran et al. [1989] by computing
the weights of the subproblems based on the local Ideal and local Nadir point with respect
to the two nondominated points between in which a new nondominated point is sought.
The algorithm is shown to solve 2|YN | − 1 subproblems, where the generation of the lex-
icographic maxima is included and the computation of each lexicographic maximum is
counted as one subproblem. Jakubovski Filho et al. [2019] expands the work of Ralphs
et al. [2006] by iteratively solving Tchebycheff problems with equal weights while changing
both the reference point and the bounding box with respect to previously found points.
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Ulungu and Teghem [1995] address bi-objective combinatorial optimization problems
using a two phase method, determining all supported nondominated points with a weighted
sum scalarization. The second phase investigates triangles between adjacent supported
nondominated points with a problem-specific combinatorial procedure.

Hamacher et al. [2007a] presents a-priori and a-posteriori algorithms for discrete bi-
objective optimization using a lexicographic ε-constraint method. Initially, the method
partitions the rectangle defined by the images of the two lexicographically optimal solutions
into a lower and an upper rectangle along a horizontal axis. Subsequently, the lower
rectangle undergoes a search for a nondominated point by addressing a lexicographic
optimization problem. Upon identifying a nondominated point in the lower rectangle, any
dominated part of the upper rectangle is discarded. Following this, the upper rectangle
undergoes a similar search for a nondominated point by addressing another lexicographic
optimization problem focused on the other objective. This iterative procedure is then
repeated for all newly formed rectangles.

Dächert et al. [2012] explore the challenge of determining the augmentation parameter
in the augmented weighted Tchebycheff problem within the bi-objective framework. The
aim is to strike a balance: it should be small enough to ensure that no nondominated
point is missed yet large enough to mitigate potential numerical complications.

3.4.2 Multi-Objective Problems

In the following, we describe concepts for more than two objectives. We refer again
to a recent overview of exact methods Halffmann et al. [2022] and Dächert [2014]. Fol-
lowing Halffmann et al. [2022], we decided to split the considered articles into different
categories to improve the overall presentation. While this chapter focuses on image space
decomposition methods, we only consider epsilon constraint and image space decompo-
sition methods and do not cover or only mention shortly the articles on two-phase and
branch and bound methods. While norm-based methods play a minor role in the context
of multi-objective minimization with more than two objectives, we do not allocate them an
additional subparagraph. Additionally, although we discuss disjunctive constraint meth-
ods in Section 3.5.2.3, we do not include a separate subparagraph in this survey, referencing
the relevant literature only in the corresponding section.

Methods based on Epsilon Constraint Scalarizations Epsilon constraint scalarizations
lend themselves for scalarization based algorithms since they admit simple a direct sub-
problem formulations.

Chalmet et al. [1986] propose a recursive procedure to determine the entire set of non-
dominated points for integer problems in maximization format. Specifically, for the tri-
objective case, they first identify all nondominated points concerning the first two ob-
jectives and that are lexicographically maximal regarding the third objective (given the
computed values in the first two objectives). Among these points, the one with the mini-
mal value in the third objective, denoted as z̄, is identified. Subsequently, the constraint
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z3(x) ≥ z̄3 + 1 is incorporated into the subproblem formulation. This modification allows
once more the determination of all nondominated points with respect to z1 and z2 for the
modified subproblem. Additional constraints are added to ensure that no nondominated
point is computed more than once. For more than three objectives, further levels of re-
cursion are required. The authors show that at least p|YN |+ 1 integer programs need to
be solved.

Laumanns et al. [2006] propose a method that relies on the decomposition of the ob-
jective space into disjoint cells based on already computed nondominated points. Using a
lexicographic ε-constraint method as scalarization, the search region can be projected to
an (p− 1)-dimensional subspace. In every iteration, the algorithm investigates all current
cells in a specified order until a new point is obtained. They show that in the worst-case,
at most (|YN |+ 1)p−1 subproblems have to be solved in the course of the algorithm.

Özlen and Azizoğlu [2009] propose a recursive algorithm using constrainted weighted
sum problems with global lower and upper bounds on the objectives, which are computed
before the recursion starts. For general p ≥ 2, a complexity of O(|YN |p−1) with respect to
the number of subproblems is derived.

The work by Özlen et al. [2014] enhances the recursive algorithm initially introduced
by Özlen and Azizoğlu [2009] by incorporating information from previously solved sub-
problems’ solutions. This entails saving the right-hand side vectors alongside either the
corresponding nondominated point or indicating infeasibility for the subproblem. Prior to
tackling a new subproblem with an upper bound u, the algorithm checks for the existence
of a relaxation, denoted by a saved subproblem with a bound u′ where u′ ≤ u. Two
cases may occur: if the relaxation proves infeasible, it implies the current problem is also
infeasible. Conversely, if the relaxation is feasible and all its outcomes are feasible for the
current problem, then the set of outcomes for the relaxation matches those of the current
problem. Alrabeeah et al. [2020] further refine this method, resulting in reduced CPU
times and the number of integer programs that need to be solved. An implementation in
C is presented, showcasing substantial savings of up to 95% compared to the algorithm of
Özlen and Azizoğlu [2009]. Additionally, when tested on a knapsack problem with three
objectives, as employed in Laumanns et al. [2005], the enhanced approach is compared
to both the algorithm of Laumanns et al. [2005], revealing significant time savings in the
computational time.

Kirlik and Sayın [2014] formulate a two-stage ε-constraint formulation, removing the
fixed order in which the cells are investigated, the next cell selected is always the one with
the largest (p − 1)-dimensional volume between the Ideal point and the upper bound of
the corresponding cell. This small change significantly reduces the number of subprob-
lems solved. However, the theoretical worst-case bound is not improved in comparison to
the approach of Laumanns et al. [2005] and Laumanns et al. [2006]. The authors imple-
ment their method in C++ using Cplex 12.4 and conduct numerical tests on knapsack
and assignment problems with three and four objectives. For tri-objective problems, their
approach is compared with those of Sylva and Crema [2004], Laumanns et al. [2005], and
Özlen and Azizoğlu [2009]. The four-objective problem is solvable only by the authors’ new
method and the one of Özlen and Azizoğlu [2009]. Results demonstrate the superiority of
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the proposed method over others. Additionally, for p = 3, the average number of solved
subproblems per non-dominated point is at most 1.99. In an expansion of their earlier
work, “Generating representative sets for multiobjective discrete optimization problems
with specified coverage errors” [2025] introduce a new algorithm for generating represen-
tative solution sets for multiobjective discrete optimization problems, ensuring a specified
coverage error. The algorithm, which builds on their method presented in Kirlik and Sayın
[2014], builds on a polynomial-time method to compute an upper bound on the compu-
tationally demanding coverage error, making the approach more practical. The algorithm
shows significant savings in computational effort, particularly for tri-objective problems,
with performance improving almost linearly as the coverage error tolerance increases.

Generic Scalarization Based Image Space Decomposition Methods In this section, we
explore criterion search methods designed to decompose the search region. With the im-
proved efficiency of single-objective IP solvers, recent research has shifted towards image
space decomposition methods, yielding algorithms that demonstrate remarkable perfor-
mance in computational studies. However, as these methods exclusively operate within
the image space, they often overlook valuable information embedded within the problem
structure during algorithm design.

Tenfelde-Podehl [2003] proposes a recursive approach for MOCO problems. Initially,
for a problem with p objectives, all corresponding (p − 1)-objective problems are solved,
potentially involving further recursion until bi-objective problems are derived. These bi-
objective problems are then resolved using established methods. As per Ehrgott and
Tenfelde-Podehl [2003], solving all (p − 1)-objective problems yields a subset of the non-
dominated set of the original problem, encompassing all points that define components of
the Ideal and Nadir points. Using these findings, the regions that contain all remaining
nondominated points may reside can be delineated after solving all (p−1)-objective prob-
lems. In the subsequent stage, for each nondominated point z̄ computed in the first stage,
p hyperplanes hi(z̄) = {z ∈ Rp : zi = z̄i}, for i = 1, . . . , p, are introduced to subdivide
the feasible outcome set bounded by the Ideal and nadir points into boxes. Some of these
boxes can be directly excluded due to the nondominated points obtained in the first stage.
All remaining boxes after this reduction are grouped based on several objectives.

In Dhaenens et al. [2010], the authors expand upon the method introduced by Tenfelde-
Podehl [2003] with a three-stage procedure. The initial stage mirrors that of Tenfelde-
Podehl [2003], while the second stage involves the selection of a well-dispersed subset
from the points computed in the first stage. In the final stage, all remaining points are
computed, resulting in an enhanced decomposition of the search region.

Dächert and Klamroth [2015] present an approach to compute the entire nondominated
set of a tri-objective optimization problem. The key novelty lies in the linear dependence of
the required subproblems on the number of nondominated points independent of the chosen
scalarization. They develop a split criterion based on a neighborhood relation between
local upper bound sets to avoid the generation of redundant boxes and to keep the number
of subproblems to be solved low. This approach, initially presented for the tri-objective
case, has been generalized to any number of objectives by Dächert et al. [2017]. However,
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the linear dependence holds only in the bi- and tri-objective cases and increases by one with
every two additional objectives. They implement their method in Matlab using Cplex 12.5
and compare it with Matlab reimplementations of Lokman and Köksalan [2013], Özlen
et al. [2014], and Kirlik and Sayın [2014], all utilizing ε-constraint scalarization. For a tri-
objective knapsack problem across five instances, they find that their approach consistently
requires exactly 2|YN | − 1 subproblems. In comparison, Kirlik and Sayın [2014] requires
even fewer subproblems, while Lokman and Köksalan [2013] surpasses this number in all
instances, as noted in the respective papers. Additionally, Özlen et al. [2014] sometimes
requires more and sometimes fewer subproblems than Dächert and Klamroth [2015].

Klamroth et al. [2015] develop a generic method to compute the entire nondominated
set for any number of objectives. This approach, akin to Dächert and Klamroth [2015],
utilizes local upper bounds, which are updated directly with the help of defining points,
i.e., nondominated points which define components of local upper bounds. The authors
offer variants for both the “general position” and “non-general position” cases. Assuming
that the number of objectives is fixed, it is shown that the number of search zones grows
only polynomially with the number of nondominated points.

Tamby and Vanderpooten [2020] expand the work of Klamroth et al. [2015] by using
specific properties of the ε-constraint scalarization alongside the structural characteristics
of the search region. This enables them to further decrease both the number and complex-
ity of the subproblems that must be addressed when iteratively exploring search regions.

Boland et al. [2016] propose the L-Shape Method to generate all nondominated points
of a tri-objective integer optimization problem. The L-Shape Search Method uses the
formulation of Sylva and Crema [2004] but only consider at most one point to formulate
disjunctive constraints. Geometrically, this implies that only rectangular sets and sets
with a L-shape are considered, hence the name. Rectangles are explored depending on
their area by searching for a nondominated point with its projection lying in the rectangle.
Either a nondominated point with its projection in the rectangle is found, or it follows that
no nondominated point is contained in the rectangle. In the former case, the nondominated
point induces a L-shape contained in the rectangle, which is then further explored. In the
latter case, the rectangle gets discarded from consideration. Since the same nondominated
point might be generated more than once, the authors use enhancement strategies by
checking already generated points before solving an optimization problem. Besides, the
method also benefits from the use of good starting solutions for the IPs. In Boland et al.
[2017a], they extend the L-shape search methodto any number of objectives. In contrast,
it operates in the full-dimensional space. The authors implement their method in C++
using Cplex 12.5.1 and conduct a comparison with Özlen et al. [2014] and Kirlik and Sayın
[2014]. They find that their method consistently outperforms both other approaches across
the tested instances. On average, it is 32% faster than Özlen et al. [2014] and 17% faster
than Kirlik and Sayın [2014]. Additionally, the number of solved IPs is reduced by 42% and
8%, respectively. Furthermore, the authors investigate the impact of their enhancements,
revealing a reduction in the number of solved IPs by approximately 35%

Boland et al. [2017b] presents the so-called quadrat shrinking method aimed at identi-
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fying the complete set of nondominated images for a tri-objective problem. The method
employs the same scalarization and the same definition of boxes as Kirlik and Sayın [2014]
but it diverges by altering the order of box traversal. Rather than relying on a volume-
based measure, the authors adopt an iterative approach, exploring the top and right
boundaries of the boxes until no new nondominated points are discovered. They present
an implementation in C++ utilizing Cplex 12.6. They conduct a comparative analysis
with algorithms proposed by Özlen et al. [2014], Kirlik and Sayın [2014], Boland et al.
[2016], and a re-implementation of Dächert and Klamroth [2015] in C++. Across a set
of tri-objective instances, they find that their method consistently outperforms all other
approaches in terms of CPU time. Specifically, it is on average 39% faster than Özlen
et al. [2014], 28% faster than Kirlik and Sayın [2014], 17% faster than Boland et al. [2016],
and 16% faster than Dächert and Klamroth [2015].

Dächert et al. [2024] present a thorough analysis of the generic approaches of Klam-
roth et al. [2015] and Dächert et al. [2017] and suggest the Defining Point Algorithm
(DPA) as a simple and efficient implementation operating fully in the objective space.
The DPA keeps the number of required subproblems at a minimum by avoiding redun-
dancies. Moreover, it offers compatibility with various scalarizations, each resulting in
similarly straightforward subproblems without using disjunctive (and complicating) con-
straints. The implementation builds upon prior findings but presents a novel combination
of them using epsilon-constraint scalarizations. They provide an implementation in C++
and use Cplex 12.9. They conduct a comparison with algorithms proposed by Özlen et al.
[2014], Kirlik and Sayın [2014], and Boland et al. [2017a]. The DPA consistently out-
performs all other approaches in terms of CPU time. Across Knapsack and Assignment
instances with up to 5 objectives, it is on average 46% faster than Özlen et al. [2014],
54% faster than Kirlik and Sayın [2014], and 81% faster than Boland et al. [2017b]. More-
over, in high-dimensional instances with up to 10 objectives, their algorithm demonstrates
superior performance in terms of CPU time compared to the other three approaches on
average.

3.5 Generic Algorithms

This chapter begins by introducing a foundational, simple, and prototypical formulation
of an objective space algorithm. This algorithm is based on an appropriate decomposi-
tion of the search region and the iterative solving of scalarized single-objective IPs using
conventional IP solvers. The general framework of the algorithm, as outlined in Dächert
et al. [2024], is provided in the pseudocode below.

The advantage of using these generic scalarization-based algorithms lies in their inde-
pendence from specific problem structures. They offer flexibility by accommodating var-
ious implementations and realizations, including the sequencing of subproblems and the
scalarization strategies within these subproblems. These choices directly influence how
the objective space or the search region, representing the area where as-yet-undiscovered
nondominated points can lie, is decomposed differently, as well as the formulation of sub-
problems.
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Algorithm 3: Generic Scalarization-Based Algorithm

Data: MOCO problem
Result: Set of nondominated points YN

1 Determine initial search region
2 while exists unexplored search zones of the search region do
3 Choose search zone, solve subproblem ‘therein’
4 if subproblem infeasible then remove explored search zone from search region
5 else
6 save new nondominated point zs

7 update search region based on zs

Consequently, key operations in this framework include describing and updating the
search region to facilitate its decomposition into search zones, and selecting appropriate
scalarizations to formulate subproblems within the respective search zones. The previ-
ous description of the search region based in Section 3.3 was induced through the local
upper bunds, while the most important scalarizations, including their descriptions, were
expounded in Section 3.2.

Both decomposition and subproblem formulation significantly influence the computa-
tional efficiency of the overall method. Decomposition directly affects the number of solver
calls, while the complexity of subproblems dictates the computational time required for
each solver call. Notably, these two factors are interconnected, wherein the formulation of
more complex subproblems can lead to substantial reductions in the search region, conse-
quently decreasing the number of solver calls. However, this usually comes at the price of
more expensive solver calls.

The method operates through iterative searches for new nondominated points. In
essence, given an initial area of interest, i.e., an initial search region, each solver call
results in either the generation of a new nondominated point (leading to a reduction of
the search region by removing the dominated region) or the indication that the correspond-
ing subproblem is infeasible. In the latter case, the corresponding part of the search region
is excluded from further evaluations, as it does not contain any additional nondominated
point.

Upon discovering and incorporating a new nondominated point into the set, the search
region undergoes updates, and the search for yet-undiscovered nondominated points con-
tinues. The core of these algorithms lies in the description of the search region through its
decomposition into a finite set of axis-parallel hyperrectangles known as search zones. Ef-
fective update operations, strategically implemented to avoid redundancies, play a crucial
role in this process.

Since bi-objective problems (p = 2) benefit from a natural ordering, which simplifies
operations such as decomposition, bound computation, and filtering of dominated points,
this section begins with a focus on the bi-objective case.
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3.5.1 Bi-Objective Problems

The bi-objective case (p = 2) exhibits several specific properties that are not present in
the general multi-objective case (p ≥ 3):

• When sorting the nondominated points in increasing (decreasing) order based on one
component, they are automatically sorted decreasingly (increasingly) with respect
to the other component.

• Two nondominated points can not share the same value in one component. In other
words, if two points are equal in one component, at most, one of the points must be
either weakly nondominated or dominated.

3.5.1.1 Algorithm Based on a ε-Constraint Scalarization

If the minimal complete nondominated set of a bi-objective problem is sought, it can
be computed with the help of the ε-constraint method within n + 1 iterations, where
n denotes the cardinality of YN . More precisely, a variant of the ε-constraint method
is needed since the classic ε-constraint method only yields weakly efficient solutions, as
discussed in Section 3.2.

The idea of the algorithm is quite simple. By formulating appropriate ε-constraint
problems, the nondominated points are generated in increasing order of one of their com-
ponents. This requires the solution of n subproblems. The last subproblem ensures that
no further nondominated point exists. Hence, a total of n + 1 subproblems are required.
In the following, we describe this algorithm in more detail.

Initially, we have to fix the concrete shape of the ε-constraint problem. One design
question concerns the decision which component is used for the objective function and
which one for the constraint. This decision is arbitrary but has to be taken beforehand.
Without loss of generality, we minimize with respect to the first component and restrict
the second component in the following, which yields an ε-constraint problem of the form

min
x∈X
{z1(x) : z2(x) ≤ ε} (3.8)

with ε ∈ R. The second design question is related to the fact that the solution of (3.8)
is only weakly efficient. As discussed in Section 3.2, various approaches ensure that the
obtained solution is indeed nondominated. Since we want to solve as few IPs as possi-
ble, choosing the variant that adds an augmentation term to the objective function is
preferable. Thus, we solve

min
x∈X
{z1(x) + ρz2(x) : z2(x) ≤ ε} (3.9)

with ε ∈ R, ρ ∈ R. The parameter ρ ∈ R has to be chosen dependent on the problem
data to avoid the solution of unnecessary subproblems. Appropriate selection requires
knowledge of the bounds of the nondominated set. One possibility consists of solving the
two problems
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min
x∈X
{zi(x)} (3.10)

for i = 1, 2. Let us denote the corresponding solutions by x1, x2. Both solutions are weakly
efficient solutions. The first component of x1 and the second component of x2 define the
Ideal point, i.e., zI = (z(x1

1), z(x2
2))>.

The point composed by the other two components (z(x2
1), z(x1

2))> equals the Nadir point
if the solutions x1, x2 are nondominated. Otherwise, it is an upper bound on the nadir
point that can also be used to compute ρ. Let us define zM = (z(x2

1) + δ, z(x1
2) + δ)>

with δ > 0 as upper bound on the Nadir point zN . Then, ρ can be chosen between 0 and
(zM2 − zI2)−1, e.g., as

ρ =
1

zM2 − zI2 + 1
. (3.11)

A similar interval is constructed in Özpeynirci and Köksalan [2010].

Instead of solving the two additional IPs (3.10) to derive valid bounds on the nondom-
inated set, one can also try to estimate bounds for the given MOCO problem directly.

After fixing the scalarization, we can formulate the algorithm, see Algorithm 4. The
initial steps consist of the computation of bounds on the nondominated set as well as
setting initial values for ρ and ε. Furthermore, a counter k as well as the set of generated
nondomianted points S are defined. The main loop starts thereafter. In each iteration,
problem (3.9) is solved with a different parameter value ε. The latter is set to the value
of the second component of the previously generated nondominated point minus a value
between 0 and 1. The main loop and the overall algorithm end as soon as problem (3.9)
is infeasible. Note that the value of parameter ρ is set once in the beginning but is not
changed afterward. It is possible to adapt ρ as well, but it is not needed, at least unless
the value of ρ is not close to machine accuracy, which might cause us to run into numerical
problems.

Algorithm 4: Augmented ε-constraint method for bi-objective problems

Data: BOCO problem
Result: Minimal complete set S

1 Solve x∗ ← argmin{z1(x) : x ∈ X} and x∗∗ ← argmin{z2(x) : x ∈ X}
2 Set zI ← (z1(x∗), z2(x∗∗))> and zM ← (z1(x∗∗), z2(x∗))>

3 Set ρ← 1
zM2 −zI2+1

, ε← zM2 + 1, k ← 1, S ← ∅
4 while x̄ = argmin{z1(x) + ρz2(x) : z2(x) ≤ ε, x ∈ X} has a feasible solution x̄ do
5 Save solution as xk ← x̄, add zk ← z(x̄) to S

6 Set ε← zk2 − 0.5
7 Increase counter k ← k + 1

8 return S
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Algorithm 4 computes the complete nondominated set of a bi-objective problem within
n+1 iterations, assuming that bounds on the nondominated set are available or computed
in advance. This small number of iterations is achieved because the points are generated
in a sorted way, and the ε-constraint method is used as scalarization.

In Section 3.3, we introduced the concept of the search region as that part of the out-
come space where undiscovered nondominated points might exist. With every generated
nondominated point, the search region shrinks. In Algorithm 4, we do not explicitly state
the search region since it is rather simple and consists solely of one search zone in every
iteration.

The initial search region is given by the rectangle spanned by the lower bound (zI1 , z
I
2)>

and the upper bound (zM1 , zM2 )>. With every generated point zk the search region can
be shrunk to the rectangle spanned by the local lower bound l = (zk1 , z

I
2)> and the local

upper bound u = (zM1 , zk2 )>. Figure 3.4 displays the shrinking of the search zone during
the first iteration of Algorithm 4. Thereby, the part left of zk must be empty due to the
ε-constraint method.

ε

d1

d2

u

l

zM

z1

z1

z2

ε
z2

d1

d2

u

l

zM

z1

z1

z2

Figure 3.4: Shrinking of the search zone during the first determined non-dominates points
during Procedure 4. Note that we use the origin as first lower bound for the
initial region instead of the Ideal point zI (which is dominated by the origin).

The local upper bound u, more precisely its second component, is used to define the
parameter ε for the next iteration. The local lower bound l is not necessarily needed;
it might remain constant throughout the whole algorithm. We only use it to define the
parameter ρ in the beginning.

3.5.1.2 Generic Algorithm Independent of a Specific Scalarization

A general algorithm, independent of the ε-constraint method for scalarization, has already
been formulated in Algorithm 3 and is presented in more detail below.

The procedure begins with computing an initial search region, which can be done by
computing a global lower and upper bound, similar to Algorithm 4. The main loop
iterates until the search region becomes empty. Initially, the search region consists of a
single search zone. By setting the parameters of the chosen scalarization appropriately,
the search zone is scanned for nondominated points. If the scalarization is infeasible, the
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search zone is removed from the search region, and a new iteration starts. However, if a
nondominated point is found, it is stored, and the search zone is updated based on that
point. Specifically, the part of the search zone that is dominated by the generated point
can be removed. Thus, the search zone split into two new search zones.

In the main loop, this algorithm requires, at most, 2n + 1 subproblems, n to find
each nondominated point, and n + 1 to detect that all search zones between adjacent
nondominated points are empty.

Algorithm 3 combined with a scalarization such as the weighted Tchebycheff scalar-
ization is particularly interesting when an incomplete representation shall be generated,
i.e., if the algorithm is interrupted prematurely. Then, restricting the main loop of Algo-
rithm 3 and Algorithm 4 to the same number of iterations, a much better dispersion of the
nondominated points can be achieved by Algorithm 3 since the points are not necessarily
generated in a sorted way.

Algorithm 3 can also be combined with the ε-constraint method in a very efficient way
if the concrete ε-constraint method is not fixed in advance but changes in each iteration.
This means that we solve min{z1(x) + ρz2(x) : z2(x) ≤ ε, x ∈ X} and min{z2(x) +
ρz1(x) : z1(x) ≤ ε, x ∈ X} alternately with an appropriately formulated parameter ε.
Thereby, we generate the points in a sorted way alternately from both sides. The algorithm
stops “when the two ends meet”, i.e., when the same solution as in the iteration before
is generated. Then, the search region is empty. This approach requires the solution
of n + 1 subproblems. Thus, it has the same complexity as Algorithm 4. The main
advantage compared to Algorithm 4 is that already generated points might serve as feasible
starting solutions, see Tamby and Vanderpooten [2020]. Moreover, the coverage of the
nondominated set is better when the algorithm is stopped prematurely.

3.5.1.3 Disjunctive Constraints

In Algorithm 3, we save the search region as the union of rectangular search zones. In
each iteration, one of the current search zones is chosen and inspected. Another idea
uses the concept of disjunctive constraints to formulate the search region. By introducing
additional binary variables it is possible to represent the union of the rectangular search
zones explicitly. Let Mj be an upper bound on zj for every j = 1, 2 and x1, . . . , xk−1

denote the efficient solutions found in the previous iterations. Then, the set of constraints

zj(x) ≤
(
zj(x

i)− 1
)
yij +Mj(1− yij), j = 1, 2, i = 1, . . . , k − 1,

yi1 + yi2 ≥ 1, i = 1, . . . , k − 1,

yij ∈ {0, 1}, j = 1, 2, i = 1, . . . , k − 1,

(3.12)

describes the search region.

Figure 3.5 illustrates the impact of these constraints, along with the two binary variables
for one nondominated point zs and two nondominated points. These constraints eliminate
the dominated part of zs (z1, z2), leaving only the search region remaining. Due to the
constraint ys1 + ys2 ≥ 1, either one of the binary variables ys1 or ys2 must be equal to 1. If
ys1 = 1 and ys2 = 0, only the left part of zs is feasible; conversely, if ys1 = 0 and ys2 = 1, only
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the lower part of zs is feasible. When both are equal to 1, only the part of the search region
remains feasible where points dominate zs. However, as zs represents a nondominated
point, no feasible point can exist within that region. Considering this for any previously
identified nondominated point zi where i ∈ {1, . . . , k − 1}, these combinations result in
the search region being the only remaining area.
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(0, 1)(1, 1)

zM
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z1

z2

z2

d1

d2
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(1, 1, 1, 1) (0, 1, 1, 1) (0, 1, 0, 1)
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Figure 3.5: Illustration of the search zone given by the disjunctive constraints. The vectors
(y1

1, y
1
2)> and (y1

1, y
1
2, y

2
1, y

2
2)> are given, respectively. Note, that we used as

search zone the constraint zj(x) ≤ (zj(x
i))yij +Mj(1− y1

j ). However since we
are considering a MOCO problem we even could shorten the search zone by
taking zj(x) ≤ (zj(x

i)− 1)yij +Mj(1− y1
j ) as above.

These constraints are added to the scalarization. With every efficient solution, two
additional binary variables, as well as, three additional constraints, have to be added to
the formulation, see i.e., Klein and Hannan [1982] and Sylva and Crema [2004]. Therefore,
the underlying IPs become more and more costly to be solved.

There are also hybrid methods in the literature, such as the L-shape method of Boland
et al. [2016] and Boland et al. [2017a].

3.5.2 Multi-Objective Problems

The case involving three or more objectives becomes much more complex than the bi-
objective case since the nondominated points cannot be sorted strictly anymore. Never-
theless, certain concepts from the previous section can still be translated.

3.5.2.1 Early approaches

As in the bi-objective case, it is still possible to generate the points in increasing order
with respect to one component if the ε-constraint method or a variant of it is used as
scalarization. Since the nondominated points can take any values in the remaining p − 1
components, the choice of the right-hand side ε is no longer as clear as in the bi-objective
case, where we use the value of the previously generated nondominated point.

To better understand what happens, let us begin by considering the case p = 3 first.
Again, without loss of generality, let us generate the nondominated points in increasing
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order of their first component, i.e., let us solve

min
x∈X
{z1(x) : zi(x) ≤ εi, i = 2, . . . , p} (3.13)

with ε ∈ Zp−1. Thus, for p = 3, the values of ε have to be selected from a two-dimensional
grid whose values are defined by the components of previously generated nondominated
points. When a point zn is generated, we insert its second and third components into the ε-
grid. The part up-right of it can be removed by the definition of nondominance. However,
the part down-left can contain points, which, due to their higher first component, do not
dominate zn. Hence, further points might be found in all three cells. See Figure 3.6 for an
example. The upper corner of one of these cells is used to define the ε values in the next
iteration. The generated point cuts the grid into further cells. If the point lies in the part
down-left from another point, it affects all three cells around it. Figure 3.6 illustrates
this scenario. In total, the k nondominated points found so far cut the initial cell into
(k + 1)p−1 disjoint cells. It is now crucial how to handle these cells.
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Figure 3.6: Illustration of the two-dimensional grid-projection onto the second and third
objective of the three-dimensional example of Figure 3.3. While z2

2,3 lies in the

part down-left from z1
2,3, it affects all three cells around it.

Laumanns et al. [2006] present an algorithm that turns the lower and upper edge of each
of these cells into two-sided constraints of a lexicographic ε-constraint method . To the best
of our knowledge it is the first algorithm that uses the components of previously generated
points in an explicit and stringent way. However, it solves far too many subproblems by
processing the cells one by one. Kirlik and Sayın [2014] add a simple but important detail
to Laumanns et al. [2006] approach: in each iteration, they select the cell with the largest
projected volume between the upper edge of a cell and the Ideal point. While this change
does not improve the theoretical worst-case bound, it drastically improves its practical
runtime. However, the same total number of cells is stored and slows down the algorithm
in higher dimensions.

Another idea that uses the ε-constraint method as scalarization reduces the dimension of
the subproblems by fixing component values until bi-objective optimization problems are
obtained. In the tri-objective case, this means to fix the third component and search for
all nondominated points with respect to the first two components that satisfy the bound
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on the third component. The constructed bi-objective problems are solved as described
in Section 3.5.1. Among the computed points, the point with the largest third component
is used to update the bound on the third component. Then, a new recursion starts,
computing again all nondominated points with respect to the first two components. For
problems with four or more objectives, further recursions are needed. It can be proven
that this recursive approach indeed finds all nondominated points of the original problem.
However, a clear drawback is that the same nondominated points are typically computed
in several recursive iterations. Hence, this idea requires so-called enhancement techniques
that save generated nondominated points together with the bounds of the scalarization.
Also, infeasible problems are saved. Before solving a subproblem, it is checked whether
the solution is already known or the problem is infeasible [Chalmet et al., 1986; Tenfelde-
Podehl, 2003; Özlen and Azizoğlu, 2009].

3.5.2.2 Generic Algorithm Independent of a Specific Scalarization

As described for the bi-objective case, we can also use the generic algorithm displayed
in Algorithm 3 independent of a specific scalarization in the multi-objective case. What
changes significantly with respect to the bi-objective case is the update of the search
region. In the bi-objective case, a nondominated point lies in exactly one search zone
(also called box). The latter is subdivided by the nondominated point into two new
search zones. In the multi-objective case, a nondominated point might lie in multiple
search zones. All these search zones have to be considered in the updating process. If we
subdivide each search zone containing the current nondominated point into p new search
zones, we create redundant ones. It is possible to filter out redundant search zones by
pairwise comparisons [Przybylski et al., 2010b] or to prevent their creation by formulating
specific criteria.

The latter is proposed in Dächert and Klamroth [2015] and Klamroth et al. [2015]. The
approach of Dächert and Klamroth [2015] save a box together with its neighboring boxes.
By comparing the components of the current nondominated point to the components of its
respective neighbors, it is possible to detect redundant boxes before creating them. The
approach of Klamroth et al. [2015] saves so-called defining points for each search zone. The
comparison of components is then analogous to Dächert and Klamroth [2015], replacing
the neighbors by the defining points.

Especially in the case that the nondominated points are not in general position, i.e., for
each objective, no pair of points shares the same value, the algorithm of Klamroth et al.
[2015] can be implemented in a much more straightforward way. While Klamroth et al.
[2015] provide an algorithm with redundancies elimination with an enhanced filtering step
as Przybylski et al. [2009], we focus on the presented redundancy avoidance, which will be
described in more detail below.

Algorithm 5 is similar to Algorithm 1 from Klamroth et al. [2015], with adaption to the
notation of this thesis and minor modifications similar to the Defining Point Algorithm
presented in Dächert et al. [2024]. It refines the general Algorithm 3. Algorithm 6 corre-
sponds to Algorithm 5 from Klamroth et al. [2015]. The main difficulty of Algorithm 5
applied to the multi-objective case compared to the bi-objective case is hidden in the main
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loop in the line “Update U(N)”. Algorithm 6 shows this update in the non-general case.
It will be described in more detail below.

Definition 3.6. For an local upper bound u ∈ U(N) all components ui, i = 1, . . . , p are
induced by a corresponding zsi of a point zs ∈ N that satisfies zsi = ui and zsj ≤ uj for all
j ∈ {1, . . . , p}\{i}. We call such a point defining point for component i of the local upper
bound u.

Moreover, once we identify at least one nondominated point z within the interior of the
bounding box (typically achieved after solving the initial subproblem), the global upper
bound (M, . . . ,M)T is dominated, and each local upper bound contains at least one defin-
ing point that is not a dummy point.

In a broader context, whenever a new nondominated point z̄ is discovered within U(N),
the set U(N) necessitates an update: for all U(N) with z̄ < u, u is replaced by p smaller
local upper bounds u1, . . . , up. These bounds are defined as follows:

uij =

{
z̄j , j = i
uj , j 6= i

for i = 1, . . . , p.

In essence, to compute ui, the i-th component of u is substituted with the value of the non-
dominated point z̄ in the i-th component while leaving all other components unchanged.
Thus, all components of a local upper bound u result from previously generated upper
bounds for p − 1 components and from the currently added point z̄ for the remaining
component. This ensures that ui 5 u for all i = 1, . . . , p, effectively reducing the search
region. For clarity, we refer to the resulting local upper bound ui as an i-child of u. It
is worth noting that z̄ < u may hold true for multiple local upper bounds in U(N). In
such scenarios, some of the generated i-children may be redundant for describing U(N ∪ z̄)
and can thus be eliminated. The process of identifying redundant local upper bounds is
extensively detailed in works by Dächert and Klamroth [2015], Klamroth et al. [2015], and
Dächert et al. [2017]. They also outlined efficient procedures for iteratively updating the
set U(N) upon the addition of further nondominated points to N .

Algorithm 6 uses defining points to avoid the existence of redundant search zones. Before
going into the details of the procedure, we state some findings from Klamroth et al. [2015].
Sine we added dummy points in the initial set of nondominated points N , any component
value of a local upper bound is defined by a point in N .

Observe that a dummy point dj can only define the j-th component of any local upper
bound, which equals M . Given that no point from YN falls below or equals m on any
component, m can not serve as a component value of a local upper bound. Therefore,
and since M is unique in the component values of a dummy point, dj stands as the only
dummy point capable of defining component j.

For any z ∈ Rp, let z−j denote the (p−1)-dimensional vector comprising all components
of z excluding component j, for a given j ∈ {1, . . . , p}. Furthermore, for any z, a ∈
Rp and any j ∈ {1, . . . , p}, (zj , a−j) represents the vector (a1, . . . , aj−1, zj , aj+1, . . . , ap)

>,
referred to as the j-th projection of vector z onto vector a. Note that, in the following of
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this chapter, we do not distinguish between column and row vectors, and thus omit the
transpose notation for simplicity.

The subsequent proposition gives valuable property to those points that define each
component of a local upper bound.

Proposition 3.7 (Klamroth et al., 2015). For any local upper bound u ∈ U(N) and
j ∈ {1, . . . , p}, there exists z ∈ N̂ such that zj = uj and z−j < u−j.

Consequently, we can define those points that define local upper bounds.

Definition 3.8 (Klamroth et al., 2015). For any local upper bound u ∈ U(N), we denote
by Zj(u) = {z ∈ N̂ : zj = uj and z−j < u−j} the set of defining points of u for component
j, j ∈ {1, . . . , p}.
Rather than computing all projections, we can now precisely characterize the projections
that are kept in the set P to circumvent redundancies.

Theorem 3.9 (Klamroth et al., 2015). Let N be the set of already found nondominated
points, and let z̄ be the newly found nondominated point of YN . Consider a local upper
bound u ∈ U(N) such that z̄ < u. Let zmax

j (u) = maxk 6=j min
{
zj : z ∈ Zk(u)

}
. Then, for

any j ∈ {1, . . . , p}, (z̄j , u−j) is a local upper bound of U(N∪{z̄}) if and only if z̄j > zmax
j (u)

According to Theorem 3.9, we can avoid redundancies by keeping track of the p points
that define each local upper bound and only generating the projections of z̄ satisfying the
conditions of Theorem 3.9. The corresponding algorithm is detailed in Algorithm 6. Note
that each component of the vector zmax(u) for a given local upper bound u is utilized at
most once in all iterations of Algorithm 6. Hence, it is computed only prior to its use,
namely in Step 7. Moreover, this vector is not sufficient to compute the vector zmax

(
uj
)

associated with a local upper bound uj defined from u. Indeed, it is required to keep track
of all points that define the component values of uj , as is done in Steps 12-14.

Example 3.10 (Klamroth et al., 2015). To illustrate the concept of defining points and
redundancy avoidance, reconsider the example out of Figure 3.3, which is displayed again
in Figure 3.7. The points that are added are z1 = (3, 5, 7)> and z2 = (6, 2, 4)>. First it
holds U(∅) = {(M,M,M)>}. The defining points are given by d1, d2, d3. At the first iter-
ation, z1 yields the three local upper bounds, namely u1 = (3,M,M)>, u2 = (M, 5,M)>,
and u3 = (M,M, 7)> so that U

({
z1
})

=
{
u1, u2, u3

}
. The points that define the local

upper bounds are

Z1
(
u1
)

= z1, Z2
(
u1
)

= d2, Z3
(
u1
)

= d3,
Z1
(
u2
)

= d1, Z2
(
u2
)

= z1, Z3
(
u2
)

= d3,
Z1
(
u3
)

= d1, Z2
(
u3
)

= d2, Z3
(
u3
)

= z1.

and zmax
(
u1
)

= (m, 5, 7), zmax
(
u2
)

= (3,m, 7), and zmax
(
u3
)

= (3, 5,m). Then at the
second iteration, the point z2 = (6, 2, 4) strictly dominates u2 and u3 and we have:

z2
1 > zmax

1

(
u2
)
, z2

2 > zmax
2

(
u2
)
, z2

3 ≤ zmax
3

(
u2
)

z2
1 > zmax

1

(
u3
)
, z2

2 ≤ zmax
2

(
u3
)
, z2

3 > zmax
3

(
u3
)
,

thus we obtain again the four new local upper bounds u21 =
(
z2

1 , u
2
−1

)
, u22 =

(
z2

2 , u
2
−2

)
,

u31 =
(
z2

1 , u
3
−1

)
, and u33 =

(
z2

2 , u
3
−2

)
, i.e., U

({
z1, z2

})
=
{
u1, u21, u22, u31, u33

}
.
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Figure 3.7: Tri-objective Example.

Worst-case Complexity Decomposing the search region S(N) into |U(N)| pairwise non-
redundant search zones allows for solving a single-objective subproblem for each corre-
sponding zone, aiming to either discover new nondominated points or determine the ab-
sence of further nondominated points within each zone. Consequently, the cardinality of
U(N) dictates the number of subproblems to solve, impacting the computational com-
plexity of Algorithm 5. Therefore, in Algorithm 5 the cardinality of U(N) decisive the
number of subproblems that need to be solved.

Theorem 3.11. The number of local upper bounds is bounded by

|U(N)| = O(|N |b
p
2
c) for p ≥ 2.

The proof can be derived from results of Boissonnat et al. [1998] and Kaplan et al. [2008].
This bound is tight [Klamroth et al., 2015]. However, different point sets generally induce
different numbers of search zones. In the case of p = 3 objectives and points given
in general position (i.e., for each objective, no pair of points shares the same value),
the number of search zones is precisely equal to 2n + 1 irrespective of the position of
the given point set, see Dächert and Klamroth [2015]. The connection between local
upper bounds and their defining points can be utilized to derive relationships between
search zones and subproblems. Utilizing this information towards coordinated search zone
selection and subproblem formulation leads to significant speed-ups in scalarization-based
algorithms [Tamby, 2018].

A scalarization method is considered suitable if it either discovers a new nondominated
point or identifies the respective search zone as empty (thereby excluding it from further
consideration) during the solution of an appropriate scalarization within a search zone.
Notably, as seen in Section 3.2, this property is fulfilled by widely used methods such as
the ε-constraint method and the weighted Tchebycheff method. Thus, when the num-
ber of objectives p is fixed and the natural decomposition is combined with a suitable
scalarization method, Theorem 3.11 indicates a polynomial bound on the total number of
iterations of Algorithm 5. The following theorem and proof is presented in Dächert et al.
[2024].
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Theorem 3.12 (Dächert et al., 2024). When the natural decomposition of the search
region into non-redundant search zones is combined with an suitable scalarization method,
the total number of iterations of Algorithm 5 can be bounded by

O
(
|YN |b

p
2
c
)

for p ≥ 2,

which is polynomial in the size of the nondominated set |YN | when p is fixed.

Proof. Due to Theorem 3.11 in each iteration, the procedure only investigates at most
O(kb

p
2
c) search zones, where k is the number of already determined nondominated points.

Thus, if the complete set of nondominated points YN is determined, the procedure has
to investigate at most O(| YN |b

p
2
c) remaining search zones to prove that they are empty.

If one of these empty search zones is detected as empty in an earlier iteration of the
procedure it is removed and not changed in a later iteration. Indeed, only those search
zones are updated and split that contain a newly detected nondominated point, and this
situation can not occur when the considered search zone is empty. Therefore, the number
of iterations can be bounded by

O
(
|YN |+ |YN |b

p
2c
)

= O
(
|YN |b

p
2c
)

for p ≥ 2.

We now consider the complexity of Algorithm 6. Initially, the approach computes the set
A of local upper bounds whose associated search zones contain z̄. This involves |U(N)|
dominance tests if U(N) is maintained as a simple linked list. Subsequently, we consider
p|A| candidate locate upper bounds. The values zmax

j (u) need to be computed just prior to
they are needed, each of which takes constant time. Furthermore, updating the references
to the p points that define each local upper bound takes constant time for each new upper
bound. Step 14 entails considering at most |N | points in a set Zk(u). This yields a
worst-case complexity of O(|N ||A|).

To the best of our knowledge, this approach stands as the only objective space method
with a provably polynomial bound on the number of required solver calls while maintaining
simplicity in these solver calls, without relying on disjunctive constraints and/or additional
integer variables.

Reduction of Search Zone when Using ε-Scalarization After addressing the update of
the search region upon discovering a new nondominated point, our next step is to examine
the selection of the search region (Line 3 of Algorithm 5). Making use of a specific
property of the ε-constraint method and incorporating it into Line 4 of Algorithm 5, we
can present a selection criterion outlined in Dächert et al. [2024] to further refine the search
region. Instead of choosing the search zone arbitrarily but according to some criterion,
it allows the removal of a newly created search zone directly in every iteration where a
new nondominated point is determined. Here fore, we need the notion of neighbor from
Definition 3.6 in Dächert et al. [2017], as defined below:
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Algorithm 5: Defining Point Algorithm (similar to Algorithm 1 from Klamroth
et al. [2015])

Data: MOCO problem
Result: Set of nondominated points YN

1 [zI , zM ]← ObtainBounds // Compute Ideal point and global upper bound

2 u← CreateInitialBox(zM ) // Initialize u
3 N ← ∅; U(N)← {u} // Initialize lists of upper bounds U and

nondominated points N
4 while U(N) 6= ∅ do
5 Select u ∈ U(N)
6 Solve chosen scalarization within the search zone C(u)
7 if problem is feasible then
8 Let z̄ be an optimal point
9 N ← N ∪ {z̄} // save new nondominated point

10 Update U(N) by Algorithm 6 // update search region

11 else
12 U(N)← U(N) \ {u} // remove explored search zone from search

region

13 return YN = N

Definition 3.13 (Dächert et al., 2024). Two local upper bounds u, u′ ∈ U(N) are called
neighbors if they share p−1 defining points, among which exactly one changes its position
from some j ∈ {1, . . . , p} to some k ∈ {1, . . . , p}, k 6= j. That is, there are two indices j, k
with j 6= k such that zj(u) = zk (u′) while zi(u) = zi (u′) for all i ∈ {1, . . . , p}\{j, k}. We
then say that u is a j-neighbor of u′, and that u′ is a k-neighbor of u.

With this definition of neighbors, we can present the following minimum component se-
lection criterion.

Theorem 3.14. If, in every iteration of Algorithm 5, a search zone ū is selected, which
is minimal in some component i ∈ {1, . . . , p}, i.e., for which

ūi = min {ui : u ∈ U(N)}

for some i ∈ {1, . . . , p} holds, and if we then solve an ε-constraint method , then, whenever
there is a solution z̄ ∈ YN with z̄ < ū, the i-child of ū exists, i.e., ūi ∈ U(N ∪ {z̄}).
Moreover, ūi can not contain further nondominated points, i.e.,

{
z ∈ YN : z < ūi

}
= ∅.

Consequently, we can remove one search zone per iteration when a new nondominated
point is discovered.

Another selection criterion is presented in Tamby and Vanderpooten [2020], a search
zone u∗ is selected by computing
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Algorithm 6: Algorithm 5 from Klamroth et al. [2015]

Data: U(N) together with Zj(u) for all j ∈ {1, . . . , p}, z̄
// Set of local upper bounds and associated defining points, new

point

Result: U(N ∪ {z̄})
1 A← {u ∈ U(N) : z̄ < u}
// Search zones that contain z̄

2 P ← ∅
3 for u ∈ U(N ) and j ∈ {1, . . . , p} such that z̄j = uj and z̄−j < u−j do
4 Zj(u)← Zj(u) ∪ {z̄}
5 for u ∈ A do
6 for j ∈ {1, . . . , p} do
7 zmax

j (u)← maxk 6=j min{zj : z ∈ Zk(u)}
8 Check for the condition of Theorem 3.9
9 if z̄j > zmax

j (u) then

10 P ← P ∪ {uj}
11 Let uj ← (z̄j , u−j)
12 Zj(uj)← {z̄} for k ∈ {1, . . . , p} \ {j} do
13 Zk(uj)← {z ∈ Zk(u) : zj < z̄j}

14 U(N ∪ {z̄})← (U(N) \A) ∪ P

(i∗, u∗) =

{
(1, (M, . . . ,M)) if N = ∅,
arg max{h(i, u) : u ∈ U(N), i ∈ {1, . . . , p}, ui 6= M} otherwise,

(3.14)

where
h(i, u) =

∏
j 6=i

(
uj − zIj

)
The index i∗ serves to make use of starting solutions. Note that we could additionally
choose the index i, which then determines the index to be optimized in the ε-constraint
method in the first approach. Then, previously generated nondominated points can be
used as starting solutions.

We can now formulate the selection criterion presented by Tamby and Vanderpooten
[2020], which selects the search zone with the largest projected hypervolume. Note that,
except in the first iteration, a product consisting of p − 1 terms has to be computed for
every search zone with ui 6= M .

Theorem 3.15 (Dächert et al., 2024). If, in every iteration of Algorithm 5, a search zone ū
according to 3.14 is selected, and if we then solve an ε-constraint method , then, whenever
there is a solution z̄ ∈ YN with z̄ < ū, the i-child of ū exists, i.e., ūi ∈ U(N ∪ {z̄}).
Moreover, ūi can not contain further nondominated points, i.e.,

{
z ∈ YN : z < ūi

}
= ∅.
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This demonstrates that the selection criterion of Tamby and Vanderpooten [2020] possesses
the same beneficial property as the selection criterion of Dächert et al. [2024]. However,
the selection criterion of Dächert et al. [2024] is simpler since it is only based on one
component value of a search zone and does not require any computations, such as the
projected hypervolumes.

3.5.2.3 Disjunctive Constraints and Alternative Search Strategies

In our previous chapters, we emphasized the formal description of the search region and its
subdivision into search zones, implying decomposition-based algorithms. While objective
space methods can be distinguished in their search for nondominated outcome vectors
within the objective space, particularly within the search region, we now want to examine
alternative search strategies.

In MOCO problems, disjunctive programming can be used when defining the search
region as a union of rectangular sets and combining all parts of the feasible set by ’or’
statements. Disjunctive constraints are often reformulated using a big-M approach along-
side binary variables to activate or deactivate parts of the feasible set. By considering all
parts simultaneously, a new nondominated point can be found by solving only one integer
programming problem. However, as new nondominated points emerge, the computational
complexity increases due to additional constraints and binary variables.

As in the bi-objective case, we could formulate the search region with disjunctive con-
straints as in Sylva and Crema [2004] or their extension in Sylva and Crema [2007]. By
introducing additional binary variables it is possible to represent the union of the rectan-
gular search zones explicitly. Let Mj be an upper bound on zj for every j = 1, . . . , p and
x1, . . . , xk−1 denote the efficient solutions found in the previous iterations. Then, the set
of constraints

zj(x) ≤
(
zj(x

i)− 1
)
yij +Mj(1− yij), j = 1, . . . , p, i = 1, . . . , k − 1,

p∑
j=1

yij ≥ 1, i = 1, . . . , k − 1,

yij ∈ {0, 1}, j = 1, . . . , p, i = 1, . . . , k − 1,

(3.15)

describes the search region. These constraints are added to the scalarization. With every
efficient solution, two additional binary variables, as well as, three additional constraints,
have to be added to the formulation. Therefore, the underlying IPs become more and
more costly to be solved.

Klein and Hannan [1982] use the disjunctive constraints to simultaneously consider all
remaining parts of the search region. In each iteration with s ≥ 1 non-dominated points
already known, the authors solve a problem by incorporating p− 1 disjunctive constraints

s−1∧
i=1

 ∨
j=1,...,p
j 6=k

zj(x) ≤ zj(xi)− δj

 .
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Here, an arbitrarily chosen objective zk, where k ∈ {1, . . . , p}, is minimized.

Sylva and Crema [2004] revisit the concept introduced by Klein and Hannan [1982],
altering the objective by employing a weighted sum to avoid weakly nondominated points.
Additionally, they reformulate the disjunctive constraints using binary variables. However,
with each iteration, this approach adds p binary variables and p + 1 constraints, which
makes this approach computationally demanding. In fact, Sylva and Crema [2004] only
generate complete representations for the bi-objective case. For three objectives, they
limit the numerical study to the generation of in-complete representations. This approach
is refined in Sylva and Crema [2007] where the binary variables are derived directly from
the disjunctive optimization problem and are optimized independently. As a result of this
refinement, the computational time of the approach is significantly reduced compared to
their earlier work in 2004.

Lokman and Köksalan [2013] present two algorithms. The first algorithm extends the
method proposed by Sylva and Crema [2004] by incorporating all other objectives scaled
by a small constant directly into the objective function. This adjustment justifies the
omission of one constraint and one binary variable in each iteration. However, the algo-
rithm still suffers from the issue of a rapidly growing number of constraints and binary
variables. Conversely, the second algorithm capitalizes on the insight that for every fea-
sible point, at most one constraint from the disjunctive formulation suffices for each of
the p–1 objectives. Given s nondominated points, a set of ns + 1 ε-constraint problems
with augmentation terms are solved in the next iteration. The specific values on the
right-hand side depend on components derived from previously determined nondominated
points. Consequently, this approach can also be considered a method based on epsilon-
constraint scalarizations as discussed above. The theoretical upper bound on the number
of subproblems is O(|YN |p−1). They demonstrate that their second approach surpasses
the algorithms of Sylva and Crema [2004], their own enhancement of it, and the algorithm
of Özlen and Azizoğlu [2009]. Furthermore, for m = 3, an average of 2.13 subproblems
are solved per nondominated point across randomly generated instances of multi-objective
knapsack, minimum spanning tree, and shortest path problems.

In Bektas [2018] a closer examination of the disjunctive constraints formulated by Klein
and Hannan [1982] reveals that only certain conjunctions of disjunctive constraints need
to be considered. Others that lead to dominated sets of inequalities can be excluded via
a filtering step in the proposed algorithm. The computational experiments demonstrate
that their prosposed algorithm is competitive with the method by Kirlik and Sayın, 2014
for smaller instances, but its relative performance improves as the number of objectives
increases or when the problem is more constrained.

Several methods incorporate recursion to reduce the dimensionality of the objective
space and, hence, the search region until bi- or single-objective problems are obtained.
This recursive approach can be executed in various ways. One method involves selecting
two objectives and computing all nondominated points relative to these two objectives
while iteratively narrowing the upper bounds of other objectives in each recursion level.
This is the basic idea of Chalmet et al. [1986] and Özlen and Azizoğlu [2009] and Özlen et
al. [2014]. Alternatively, some methods compute all possible combinations of recursions.
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They tackle all p corresponding (p − 1)-dimensional optimization problems and so on,
creating a tree with bicriteria optimization problems in its leaf nodes. It has been demon-
strated by Ehrgott and Skriver [2003] that the points obtained by solving all (p−1)-criteria
problems represent a subset of the nondominated set of the original problem. This recur-
sive strategy has been employed, for instance, in Tenfelde-Podehl [2003] and Dhaenens
et al. [2010] and Przybylski et al. [2010b]. However, a drawback of recursive algorithms is
that nondominated points are typically computed several times since they are often opti-
mal for multiple recursive subproblems. Given the costly nature of solving such problems,
performance must avoid the repetition of already known nondominated points.

Hybrid methods combine ideas from the aforementioned categories. For instance, Boland
et al. [2016] propose the L-shape search method for tri-objective problems, integrating
disjunctive constraints and decomposition. The idea is to use disjunctive constraints
only concerning the lastly generated nondominated point, which results in an L-shape
element that is investigated with priority and shrunk quickly towards the Ideal point.
Unexplored rectangular sets are saved for later investigation during the algorithm. Boland
et al. [2017a] extend this approach to any number of objectives. Similarly, the method
proposed by Boland et al. [2017b] for tri-objective optimization problems merge recursion
and decomposition. It deals with upper-bound vectors similar to other decomposition
approaches. However, for a certain sequence of problems to be solved, it keeps the bound
on one of the objectives fixed, as in a recursive method.

3.5.3 Examples

In this part, we want to use the p-objective assignment problem (pAP), a special case of the
minimum cost flow problem, to illustrate the methods presented above. The assignment
problem can be formally defined as:

min zk(x) =
n∑
i=1

n∑
j=1

ckijxij k = 1, . . . , p

n∑
i=1

xij = 1 j = 1, . . . , n

n∑
j=1

xij = 1 i = 1, . . . , n

xij ∈ {0, 1} i, j = 1, . . . , n.

where all objective function coefficients ckij are non-negative integers and x is the n × n
matrix of decision variables with xij = 1 if task i is assigned to agent j, and 0 otherwise.
In our examples, we consider three-dimensional assignment problems, i.e. the case n = 3.
Note that the feasible set then consists of six feasible elements, namely the six possible
permutations of {1, 2, 3}, each representing a feasible assignment of tasks to agents. These
assignments can be written as:

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1),
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where the i-th entry in the permutation indicates the agent j assigned to task i. For
instance, the permutation (2, 3, 1) means that task 1 is assigned to agent 2, task 2 to
agent 3, and task 3 to agent 1. Thus in this example, it holds x12 = 1, x23 = 1, x31 = 1,
and x11, x13, x21, x22, x32, x33 = 0.

We start by illustrating Algorithm 4 on an instance of a three-dimensional assignment
problem with two objectives, i.e. p = 2.

Example 3.16. For this, consider the following cost matrices

C1 =

 1 3 1
3 2 1
4 2 0

 , and C2 =

 4 1 4
2 2 1
0 1 2

 .

Algorithm 4 first computes x∗ = argmin{z1(x) : x ∈ X} and x∗∗ = argmin{z2(x) : x ∈ X},
obtaining the points z(x∗) = (3, 8)> and z(x∗∗) = (8, 2)>. Consequently, we derive zI =
(3, 2)> and zM = (8, 8)>, which define the first zone of interest, as shown in Figure 3.8.
Note that we set ε = zM1 + 1 = 9 in the first iteration since it is unclear whether (3, 8)> is
a nondominated solution at this stage.

In the first iteration of the while loop (lines 4-7) in Algorithm 4, we identify the point
z1 = (3, 8)> as a nondominated point. For the next iteration, we set ε = 7.5 and solve
for x̄ = arg minx∈X {z1(x) + ρz2(x), z2(x) ≤ ε}, obtaining the second nondominated point
z2 = (4, 6)>. Note that ρ was chosen as ρ = 1

zM2 −zI2+1
= 1

8−7.5+1 = 0.4.

Continuing with ε = 5.5, we find two more nondominated points z3 = (6, 5)> and
z4 = (8, 2)> in subsequent iterations. This process yields the complete set of nondominated
points S = {z1, z2, z3, z4}. The first three iterations are illustrated in Figure 3.8.

Among the six feasible solutions, four are nondominated and two are dominated. The
corresponding permutations (feasible assignments) and their objective vectors are presented
in the table below.

Permutation Assignment (nonzero xij) z(x) Label

(1,2,3) x11, x22, x33 z1 = (3, 8) nondominated
(1,3,2) x11, x23, x32 z2 = (4, 6) nondominated
(2,1,3) x12, x21, x33 z3 = (6, 5) nondominated
(2,3,1) x12, x23, x31 z4 = (8, 2) nondominated
(3,1,2) x13, x21, x32 (6, 7) dominated
(3,2,1) x13, x22, x31 (7, 6) dominated

Table 3.1: Objective values and dominance status for all 6 feasible assignments in the 3x3
bi-objective assignment problem.

In order to illustrate Procedure 5, we add a third objective function.
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Figure 3.8: The fist two iterations of Algorithm 4 on the Instance of Example 3.16.
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Figure 3.9: The first three iterations of Algorithm 4 on the Instance of Example 3.16, and
the final nondominated set.

Example 3.17. Consider the following instance of the assignment problem with three
objectives

C1 =

 1 3 1
3 2 1
4 2 0

 , C2 =

 4 1 4
2 2 1
0 1 2

 , and C3 =

 3 4 1
0 3 1
2 1 2

 .

We start with the initial box. To keep the illustrations simple, we use the origin and
the point zM = (10, 10, 10)> as the initial starting box, which is slightly bigger than the
box obtained from zI and zM . Therefore, we have three dummy points d1 = (M, 0, 0)>,
d2 = (0,M, 0)>, and d3 = (0, 0,M)>, and U(N) = {u = (10, 10, 10)>} before starting
the while loop. In this example, we choose the ε-constraint method with minimization
of the first objective. Then, the first iteration yields the point z1 = (3, 8, 8)>. We obtain
N = {z1} and U(N) = {u1, u2, u3}. Figure 3.10 shows how the upper bound set is updated.

However, after the selection criterion Theorem 3.14, u1 cannot contain any further non-
dominated point and thus may be omitted from further investigation. Hence, for the next
iteration u2 may be selected, and an ε-constraint scalarization minimizing the first objec-
tive over C(u2) can be applied to determine z2 = (4, 6, 5)>. It holds z2 < u2, and z2 < u3,
therefore u2 and u3 need to be updated. Figure 3.11 displays again the updating of the up-
per bound set. Again u21 cannot contain further nondominated points after Theorem 3.14
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Figure 3.10: Updating of the upper bound set after adding z1 to N . Above an local upper
bound u the set of defining points (Z1(u), Z2(u), Z3(u)) are shown, while
below the vector zmax(u) is displayed. We omit transposed signs to simplify
the notation.
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Figure 3.11: Updating of the upper bound set after adding z2 to N .

that for the sake of completeness, we include the upper bounds u1 and u21. However,
as established after the selection criterion, the corresponding search zones do not contain
any further nondominated points. In the following, all upper bounds shown in parentheses
share this property.

In the third iteration of the while loop, z3 = (6, 5, 6)> is detected, and it only holds
z3 < u22 and therefore only u22 needs an updating. We have N = {z1, z2, z3} and
U(N) = {u1, u21, u221, u222, u223, u31, u33}. In the subsequent iteration, z4 = (8, 2, 7)>

is determined. Only u222 = (M, 5,M) needs an update. Therefore, N = {z1, z2, z3, z4}
and U(N) = {u1, u21, u221, u2221, u2222, u2223u223, u31, u33}. After that, the nondominated
point z5 = (6, 7, 2)> is found and only u33 needs an update. Afterwards, no other non-
dominated point exists for any of the search zones determined by the local upper bounds.
Hence, the complete set of nondominated points for the given assignment problem is given
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Figure 3.12: Updating of the upper bound set after adding z3 to N .
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Figure 3.13: Updating of the upper bound set after adding z4 to N .

by N = {z1, z2, z3, z4, z5}. Thus, by introducing the third objective, one of the previously

z2z3
z4

z5

d1
d2

d3

u1z1
u21

u221

u2221
u2222

u2223

u223
u331

u332

u333

u31

z1

z2

z3

u33 = (10, 10, 5)
(d1, d2, z2)

(4, 6,m)

z5 = (6, 7, 2)

(z5, d2, z2)

u331 = (6,M, 5)
(4, 6, 2)

(d1, z5, z2)

u332 = (M, 7, 5)
(4, 6, 2)

(d1, d2, z5)

u333 = (M, 6, 6)
(4, 6,m)

z
5
1
> z

max
1

(u
33 )

z52 > zmax
2 (u33)

z 5
3 > zmax

3 (u33
)

Figure 3.14: Updating of the upper bound set after adding z5 to N .

dominated solutions in Example 3.16 becomes nondominated in the tri-objective setting.

To illustrate the variability in the number of local upper bounds induced by different sets
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Permutation Assignment (nonzero xij) z(x) Label

(1,2,3) x11, x22, x33 z1 = (3, 8, 8) nondominated
(1,3,2) x11, x23, x32 z2 = (4, 6, 5) nondominated
(2,1,3) x12, x21, x33 z3 = (6, 5, 6) nondominated
(2,3,1) x12, x23, x31 z4 = (8, 2, 7) nondominated
(3,1,2) x13, x21, x32 z5 = (6, 7, 2) nondominated
(3,2,1) x13, x22, x31 (7, 6, 6) dominated

Table 3.2: Objective vectors and dominance status for all 6 feasible assignments in the
3× 3 tri-objective assignment problem.

of nondominated points with the same cardinality in higher dimensions, we will consider
two sets of three four-dimensional nondominated points.

Example 3.18. Consider the sets of nondominated points N1 = {z1 = (3, 8, 8, 2), z2 =
(4, 6, 5, 3), z3 = (6, 5, 6, 7)} and N2 = {z1, z2, z4} with z4 = (6, 5, 9, 1). The induced local
upper bounds (after applying a redundancy avoidance step) for these sets are as follows: For
N1, the local upper bounds are: U(N1) = {u1 = (3,M,M,M), u21 = (4, 8,M,M), u221 =
(6, 6,M,M), u222 = (M, 5,M,M), u223 = (M, 6, 6,M), u224 = (M, 6,M, 7),
u24 = (M, 8,M, 3), u31 = (4,M, 8,M), u33 = (M,M, 5,M), u34 = (M,M, 8, 3), u4 =
(M,M,M, 2)}. This results in |U(N1)| = 11 local upper bounds. Without redundancy
avoidance, there would be two additional local upper bounds u23 and u32.

However for N2, the local upper bounds are: U(N2) = {u1 = (3,M,M,M), u21 =
(4, 8,M,M), u221 = (6, 6,M,M), u222 = (M, 5,M,M), u223 = (M, 6, 9,M),
u241 = (6, 8,M, 3), u243 = (M, 8, 9, 3), u31 = (4,M, 8,M), u33 = (M,M, 5,M), u34 =
(M,M, 8, 3), u41 = (6,M,M, 2), u43 = (M,M, 9, 2), u44 = (M,M,M, 1) }. This results
in |U(N2)| = 13 local upper bounds. Without redundancy avoidance, there would be four
additional local upper bounds: u224, u242, u244, and u42. Therefore, we have |U(N1)| <
|U(N2)|.

The number of intermediate local upper bounds in Procedure 5 can vary depending on
the order in which the nondominated points are added, or in which the respective search
zones are explored. For instance, while it holds that |U(N1∪{z4})| = |U(N2∪{z3})| = 14,
adding the points in the order N1 = {z1, z2, z3} results in 11 local upper bounds, whereas
adding the points in order N2 results in 13 bounds, as shown before.

3.6 Conclusion

This chapter presented the most common scalarization methods, which play an important
role in multi-objective optimization. These methods use the strengths of single-objective
solvers by transforming the multi-objective problem into a single-objective problem. Var-
ious scalarization techniques exist, each differing in complexity and the quality of the
solution set obtained. While the weighted-sum method, one of the oldest and more
straightforward scalarizations, offers simplicity but may only determine the set of sup-
ported efficient solutions, more complex scalarizations like the ε-constraint or weighted
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Tchebycheff method can find every efficient solution for multi-objective combinatorial op-
timization problems.

The focus extended to the description of the search region, particularly in its natural de-
composition in a finite set of axis-parallel hyperrectangles known as search zones. By com-
bining scalarization methods with coordinated search zone selection, generic scalarization-
based approaches that offer flexibility and applicability are introduced. These algorithms
operate through iterative searches for new nondominated points, dynamically updating
the search region.

For multi-objective problems, we highlight the defining point algorithm introduced
in Klamroth et al. [2015], which effectively updates the search region upon discovering
new nondominated points to eliminate redundancies.

Integrating this algorithm with suitable scalarization methods, such as those presented
in Tamby and Vanderpooten [2020] or Dächert et al. [2024], yields a versatile approach
to computing the nondominated set of multi-objective integer programming problems.
This approach provides a competitive balance between the number of required solver calls
and the numerical complexity of each call, with the number of solver calls bounded by a
polynomial in the number of nondominated points in the worst case. At the same time,
subproblems are kept simple by using the ε-constraint method or weighted Tchebycheff
method. Comparative analyses presented in Dächert et al. [2024] demonstrate its clear
superiority in terms of CPU time over other state-of-the-art implementations of generic
scalarization-based algorithms presented in Kirlik and Sayın [2014] and Özlen et al. [2014]
and Boland et al. [2017a].

Furthermore, they explored the performance differences between the ε-constraint method
and the weighted Tchebycheff method. While the augmented ε-constraint method proves
superior when generating the entire nondominated set due to its reduced number of inte-
ger programming problems, the weighted Tchebycheff method may be more advantageous
when generating only a subset of the nondominated set, known as an incomplete repre-
sentation.

Additionally, the chapter discussed other search strategies, such as disjunctive con-
straints and hybrid approaches, outlining their advantages and limitations. Overall, this
chapter underscores the importance of generic approaches in solving multi-objective opti-
mization problems and explores various implementation possibilities.

As computational time increases with the number of objectives, future research should
focus on developing parallel variants of the defining point algorithm. Parallel variants
based on other algorithms have been proposed by Pettersson and Ozlen [2019b] and Turgut
et al. [2019], and it remains to be seen how a parallel defining point algorithm competes
against these approaches.

MOCO belongs to the class of computationally intractable problems [Ehrgott, 2005].
Most MOCO problems involve a huge set of nondominated points, resulting in high com-
putational effort, particularly for high-dimensional problems or large instances. The non-
supported nondominated points, which lie in the interior of the upper image, often out-
number those on the nondominated frontier (see, e.g., Visée et al. 1998). Consequently,
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researchers frequently focus on identifying representative subsets, such as the supported
nondominated points.

The following chapters of this thesis present results on the representation, definition, and
computation of supported nondominated points, with a particular emphasis on MOIMCF
problems.
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4 On Supportdness in Multi-Objective
Combinatorial Optimization

This chapter addresses an inconsistency in various definitions of supported nondomi-
nated points within multi-objective combinatorial problems (MOCO). MOCO problems
are known to contain supported and nonsupported nondominated points, with the latter
typically outnumbering the former. Supported nondominated points are, in general, more
straightforward to determine, can serve as representations, and are used in two-phase
methods to generate the entire nondominated point set. Despite their importance, several
different characterizations for supported efficient solutions (and supported nondominated
points) are used in the literature.

While these definitions are equivalent for multi-objective linear problems, they can yield
different sets of supported nondominated points for MOCO problems. We show by an
example that these definitions are not equivalent for MOCO or general multi-objective
optimization problems. Moreover, we analyze the structural and computational properties
of the resulting sets of supported nondominated points. These considerations motivate us
to summarize equivalent definitions and characterizations for supported efficient solutions
and to introduce a distinction between supported and weakly supported efficient solutions.

The result of this chapter is joint work with Michael Stiglmayr and is available as a
technical report Könen and Stiglmayr [2025b], which has been accepted for publication in
the Journal of Multi-Criteria Decision Analysis.

4.1 Introduction

The set of efficient solutions and the set of nondominated points are often decomposed
into the sets of supported and nonsupported efficient solutions and nondominated points,
respectively. Supported solutions are typically defined as solutions that can be obtained
as optimal solutions of a weighted sum scalarization. The computation of nonsupported
nondominated points requires different scalarization techniques and is often computation-
ally more expensive. Moreover, for MOCO problems, the nonsupported nondominated
points typically outnumber the supported ones, as observed in Visée et al. [1998]. The
determination of supported nondominated points has gained attention for several reasons.
First, these points are generally easier to determine than the nonsupported nondominated
points. Second, they can serve as a foundation for the second phase of two-phase meth-
ods, which aims to generate the entire nondominated point set using information derived
from the supported nondominated points (see, e.g., Pasternak and Passy 1973; Visée et al.
1998; Hamacher et al. 2007b; Przybylski et al. 2008; Eusébio and Figueira 2009b; Przy-
bylski et al. 2010b; Dai and Charkhgard 2018). Recently, a computational study Sayın
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[2024] showed that the set of supported nondominated points can be used as a high-quality
representation in multi-objective discrete optimization problems, focusing specifically on
binary knapsack and assignment problems. In Chapter 5, we show that this also holds for
network flow problems.

Several studies focus on identifying or analyzing the supported or extreme supported
nondominated point set across various combinatorial problems, including bi- and multi-
objective integer network flow problems [Eusébio and Figueira, 2009b; Medrano and
Church, 2015; Raith and Sedeño-Noda, 2017; Könen and Stiglmayr, 2025a; Könen and
Stiglmayr, 2023], bi- and multi-objective minimum spanning trees [Sourd et al., 2006;
Silva and Cĺımaco, 2007; Correia et al., 2021], bi- and multi-objective shortest path prob-
lems [Edwin Romeijn and Smith, 1999; Sedeño-Noda and Raith, 2015; Medrano and
Church, 2014], bi- and multi-objective combinatorial unconstrained problems [Bökler,
2018; Schulze et al., 2019], bi- and multi-objective knapsack problems [Visée et al., 1998;
Argyris et al., 2011; Schulze, 2017], and bi- and multi-objective assignment problems [Tuyt-
tens et al., 2000; Gandibleux et al., 2003; Przybylski et al., 2010b]. Additional work on
general MOCO problems can be found in Gandibleux et al. [2001], Jesus [2015], and Sayın
[2024], among others.

Beyond MOCO problems, there is research on the identification of supported solutions
in multi-objective mixed integer problems [Özpeynirci and Köksalan, 2010; Pettersson
and Ozlen, 2019a; Bökler et al., 2024] or addressing supportedness in non-convex prob-
lems [The Luc, 1995; Liefooghe et al., 2014; Liefooghe et al., 2015]. Summarizing, sup-
ported nondominated points are often more straightforward to determine, can serve as
high-quality representations, and can be used in two-phase methods to generate the entire
nondominated point set.

However, despite their importance, several characterizations exist for supported efficient
solutions and analogously for supported nondominated points. These different definitions
differ in the literature and sometimes even within a single publication. While these def-
initions are equivalent in the case of multi-objective linear problems [Isermann, 1974;
Ehrgott, 2005], they can lead to different sets of supported efficient solutions and thus
supported nondominated point sets.

Supported nondominated points for MOCO problems are often characterized as non-
dominated points that lie on the boundary of the upper image and that they only lie on the
nondominated frontier, whereas nonsupported solutions are characterized as nondominated
points that lie in the interior of the upper image [Eusébio and Figueira, 2009b; Przybylski
et al., 2010a]. However, depending on the definition, nonsupported nondominated points
may exist that lie on the boundary of the upper image or supported nondominated points
that lie on weakly nondominated faces and thus do not lie on the nondominated frontier.
In this case, they cannot be obtained as optimal solutions of a weighted sum problem with
weights strictly greater than zero.

This motivates us to distinguish between supported efficient solutions and weakly sup-
ported efficient solutions. An efficient solution is denoted as weakly supported if it is an
optimal solution of a weighted sum scalarization with non-negative weights. In contrast
to the definition of supportedness, weakly supportedness allows single weights to have
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a value of zero. Note that the terminology weakly supported efficient solutions, despite
the fact that these solutions are still efficient, is motivated by geometric considerations:
any weakly supported nondominated point that is not a supported nondominated point
lies on a weakly nondominated face, but not on a nondominated face. In contrast, sup-
ported points necessarily lie on nondominated faces. A nonsupported efficient solution
is then defined as an efficient solution that is neither supported nor weakly supported.
Then the following characterizations for MOCO problems hold: While weakly supported
nondominated points lie on the boundary of the upper image, supported nondominated
points lie only on the nondominated frontier, i. e., only on maximally nondominated faces.
The nonsupported nondominated points lie in the interior of the upper image. We will
present an example where the set of supported efficient solutions is a proper subset of all
weakly efficient solutions in Section 4.2. The clear distinction between the sets of sup-
ported nondominated and weakly supported nondominated solutions is also necessary, as
the corresponding problems may differ in their output time complexity. In particular,
in the case of the multi-objective integer minimum cost flow problem, Chapter 7 shows
that supported efficient solutions can be determined in output-polynomial time, whereas
this is not the case for the weakly supported solutions unless P = NP. Note that the
computation of the weakly supported solutions is as “hard” as the determination of all
nondominated points.

While the above characterization of supported nondominated points applies to MOCO
problems, they do not extend to general MOO problems, as illustrated in Example 3.14
in Ehrgott [2005]. This distinction arises because the weighted sum scalarization method
with weights strictly positive is only capable of identifying supported nondominated points
that are also properly nondominated in the sense of Geoffrion [Geoffrion, 1968], as dis-
cussed in Ehrgott [2005]. For MOCO problems, the distinction between efficient and
properly efficient solutions vanishes since every efficient solution is also properly efficient
[Ehrgott, 2005]. However, for general MOO problems, the set of properly nondominated
points may form a strict subset of the nondominated points on the nondominated frontier,
highlighting the limitations of the weighted sum approach in capturing the entire set of
supported solutions in general MOO problems [Ehrgott, 2005].

This chapter focuses on the supportedness in multi-objective discrete problems. How-
ever, further investigation into the supportedness of general MOO problems remains
sparse and presents an important area for future research. A recent study in Chlumsky-
Harttmann [2025] provided a first approach toward a categorization of supportedness
definitions for general MOO problems.

The remainder of the chapter is structured as follows. In Section 4.2, the different
definitions and characterizations found in the literature are presented. A counterexample
is given that shows that these definitions are not equivalent for MOCO or general non-
convex multi-objective optimization problems. Additionally, it discusses the distinction
between supported and weakly supported nondominated points.
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4.2 Supported and Weakly Supported Nondominated Points

Several definitions and characterizations of supported nondominated points exist in the
literature.

Definition 4.1 (Conflicting Definitions of Supportedness). A point y′ ∈ Y is called sup-
ported

(1) if y′ is nondominated and y′ lies on the boundary of the upper image Y= := conv(YN+
Rp=), i.e., y′ ∈ YN∩∂Y= [Eusébio and Figueira, 2009a; Eusébio and Figueira, 2009b;

Liefooghe et al., 2014; Liefooghe et al., 2015; Correia et al., 2021]. The correspond-
ing set of supported nondominated points is denoted by YS∂.

(2) if y′ is nondominated and y′ is located on the nondominated frontier defined as the
set {y ∈ conv(YN ) : conv(YN ) ∩ (y − Rp=) = {y}} [Hamacher et al., 2007b], the set

supported nondominated points according to this definition is denoted by YSNF .

(3) if y′ is the image of a supported efficient solution, which are those efficient solutions
that can be obtained as optimal solutions of a weighted sum scalarization with weights
strictly greater zero, i.e. y is an image of a solution x ∈ arg minPλ for a λ ∈
Λp [Visée et al., 1998; Ehrgott, 2005; Raith and Ehrgott, 2009; Przybylski et al.,
2010a; Argyris et al., 2011; Raith and Sedeño-Noda, 2017]. The set of supported
nondominated points obtained with respect to this definition is denoted by YSλ.

Note that some publications adopt the definition related to YSλ but allowing λ ∈ Λ0
p,

provided that y is nondominated, see, e.g. Gandibleux et al. [2001] and Liefooghe et al.
[2015]. Regarding definition YSNF , Hamacher et al. [2007b] uses the wording efficient
frontier instead of the nondominated frontier. There also exist definitions based on convex
combinations of the nondominated points as given in Özpeynirci and Köksalan [2010].
Furthermore, note that YSNF equals YS from Definition 2.49.

Isermann [1974] showed that for a MOLP, the set of nonsupported efficient solutions
coincides with the set of optimal solutions of the weighted sum method with weights strictly
greater than zero, i.e., in MOLP, the weighted sum scalarization achieves completeness
when varying λ within Λp. Consequently, for a MOLP, it holds YS∂ = YSNF = YSλ.

Theorem 4.2. For a MOLP it holds YS∂ = YSNF = YSλ.

Proof. According to Theorem 2.46, any nondominated point y′ ∈ Y in MOLP can be
obtained as the image of an optimal solution x ∈ arg minPλ with λ ∈ Λp, and with The-
orem 2.44 we obtain YSλ = YN . Any point ŷ ∈ YS∂ or ŷ ∈ YSNF is nondominated per
definition and therefore ŷ ∈ YSλ. It follows

YSλ ⊇ YS∂ and YSλ ⊇ YSNF .

Note that for an MOLP, Y is polyhedral and thus Y = conv(Y). Consider ŷ ∈ YSλ, i.e.,
ŷ is an image of an optimal solution x′ ∈ arg minPλ with λ ∈ Λp. Since Y is polyhedral,
ŷ must lie in a face of conv(Y) [Nemhauser and Wolsey, 1999]. Hence, ŷ ∈ ∂ conv(Y)
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and from Theorem 2.44 it follows ŷ ∈ YN . Thus, it follows ŷ ∈ ∂ conv(YN ) ∩ YN , and
hence ŷ ∈ Y∂ . Furthermore, since conv(YN ) is a nonempty convex set, it holds that ŷ is a
minimal element of conv(YN ) induced by the cone −Rp= [Boyd and Vandenberghe, 2004]

and we can conclude that ((ŷ − Rp=)\ŷ) ∩ conv(YN ) = ∅. Consequently, it follows that

ŷ ∈ YSNF . Together it holds,

YSλ ⊆ YS∂ and YSλ ⊆ YSNF .

This concludes YS∂ = YSNF = YSλ.

However, this equivalence does not hold for the discrete or the non-linear case. In the
literature, supported nondominated points for MOCO are often characterized as non-
dominated points on the boundary of the upper image and that they only lie on the
maximally nondominated faces, i.e., the nondominated frontier. In contrast, the nondom-
inated are characterized as nondominated points that lie in the interior of the upper image,
e.g., [Eusébio and Figueira, 2009b; Przybylski et al., 2010a; Correia et al., 2021].

Suppose a supported vector is defined according to Definition 4.1 (2) and (3), i.e.,
considering the sets YSλ and YSNF . In that case, nondominated points may exist on the
boundary of the upper image. Conversely, if a supported nondominated point is defined
according to (1), i.e., points contained in YS∂ , there may exist supported nondominated
points on the boundary of the upper image which are not lying on the nondominated
frontier, i. e., which lie on weakly nondominated faces. This inconsistency motivates us
to develop new, consistent definitions of supported and weakly supported nondominated
points.

Definition 4.3 (Supported/Weakly Supported). An efficient solution is called a weakly
supported efficient solution if it is an optimal solution of a weighted-sum scalarization
Pλ for some weight λ ∈ Λ0

p. Moreover, if the weight is strictly positive λ ∈ Λp it is
called supported efficient solution. The corresponding image is called weakly supported
or supported (nondominated) vector, respectively.

Note that the terminology weakly supported efficient solutions, despite the fact that these
solutions are still efficient, is motivated by geometric considerations: any weakly supported
nondominated point that is not a supported nondominated point lies on a weakly non-
dominated face, but not on a nondominated face. In contrast, supported nondominated
points necessarily lie on nondominated faces.

Let YS and YwS be the set of all supported nondominated points and the set of all
weakly supported nondominated points, respectively. Accordingly, XS (XwS) is the set of
all (weakly) supported efficient solutions. We denote the cardinality of XS by |XS | = S.
With these definitions, the following characterizations for MOILPs hold: While weakly
supported nondominated points lie on the boundary of the upper image, supported non-
dominated points lie only on the nondominated frontier, i. e., only on maximally non-
dominated faces. The unsupported nondominated points lie in the interior of the upper
image.

Theorem 4.4. YwS = YS∂
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Proof. We follow the proofs of Theorem 3.4 and Theorem 3.5 in Ehrgott [2005] with slight
modifications. To prove the equality of the two sets, we show that the subset relation
holds in both directions.

• YwS ⊆ YS∂ : Let ŷ ∈ YwS , i.e., there exists a λ ∈ Λ0
p such that ŷ is an image of an

optimal solution of (Pλ) and ŷ is nondominated.

Suppose that ŷ /∈ YS∂ , i.e., ŷ /∈ ∂ conv(YN + Rp=). Then ŷ must lie in the interior

of conv(YN + Rp=). Thus, there exists an ε-neighborhood B(ŷ, ε) of ŷ, defined as

B(ŷ, ε) := ŷ+B(0, ε) ⊂ conv(YN +Rp=), where B(0, ε) is an open ball with radius ε

centered at the origin. Let d ∈ Rp>. Then we can choose some α ∈ R, 0 < α < ε such
that αd ∈ B(0, ε). Now, y′ = ŷ−αd ∈ conv(YN +Rp=) with y′k < ŷk for k = 1, . . . , p

and
p∑

k=1

λk y
′
k <

p∑
k=1

λk ŷk,

because at least one of the weights λk must be positive. This contradiction implies
the result.

• YS∂ ⊆ YwS : Let ŷ ∈ YS∂ =⇒ ŷ ∈ ∂ conv(YN +Rp=) and ŷ is nondominated, hence it

exists a supporting hyperplane {y ∈ Rp : λ>y = λ>ŷ} with λ ∈ Rp \{0} and it holds
λ>y ≥ λ>ŷ for all y ∈ conv(YN + Rp=). Furthermore, by applying the separation

theorem to the disjoint sets {y + d : d ∈ Rp>} and {ŷ − d′ : d′ ∈ Rp>}, we obtain:

λ>(y + d− ŷ) ≥ 0 ≥ λ>(−d′)

for all y ∈ conv(YN +Rp=), and d, d′ ∈ Rp>. Choose d′ = ek + ε e, where ek is the k-th

unit vector, e = (1, . . . , 1)> ∈ Rp. With ε > 0 arbitrary small we see that λk ≥ 0 for
all k = 1, . . . , p. Thus, ŷ is the image of an optimal solution to Pλ with λ ∈ Λp0 and
is nondominated. It follows ŷ ∈ YwS .

Theorem 4.5. For MOCO problems, it holds YS = YSNF .

Proof. YS ⊆ YSNF : Let ŷ ∈ YS = YSλ, i.e., ŷ is the image of an optimal solution of
Pλ with λ ∈ Λp. Since conv(YN ) is a nonempty convex set, ŷ is a minimal element of
conv(YN ) induced of the cone −Rp= and hence it holds ((ŷ−Rp=)\ŷ)∩conv(YN ) = ∅ [Boyd

and Vandenberghe, 2004]. Consequently, it follows that ŷ ∈ YSNF .

YS ⊇ YSNF : Any point ŷ ∈ YSNF is a minimal element of the set conv(YN ) induced
by the cone −Rp=. Thus ŷ is a nondominated point for the set conv(YN ). If we define the

relaxation MOLP of the given MOCO problem by

min
x∈conv(X )

C x,

it follows that ŷ, is an image of an optimal solution for the reduced MOLP. According
to Theorem 2.46, there is a λ ∈ Λp such that ŷ is the image of an optimal solution to Pλ
and hence ŷ ∈ YS .

94



4.2 Supported and Weakly Supported Nondominated Points

Consequently, Definition 4.1 (1) includes the weakly supported nondominated points for
general MOO problems, while Definitions (2) and (3) only contain the supported non-
dominated points (in the discrete case). Hence, in the discrete case, the weakly supported
nondominated points lie on the boundary of the upper image while the supported ones lie
only on the nondominated frontier, i. e., on maximally nondominated faces.

Example 4.6. To illustrate the geometrical properties of weakly supported nondominated
points, consider the outcome vectors in Figure 4.1. The outcome vectors are partitioned
into two layers based on their value in the third component. The nondominated points
y1 = (2, 9, 1)>, y2 = (3, 6, 1)>, y3 = (8, 3, 1)>, and y4 = (6, 5, 1)> all share a minimum
value of c3 = 1 in their third component (pink layer), while there are other nondominated
points having a value of 5 in the third component (blue layer).

Among them, only y1, y2, and y3 lie on the nondominated frontier and can be obtained
as optimal solutions of a weighted-sum scalarization with λ ∈ Λd. In contrast, y4 does
not lie on the nondominated frontier but is still on the boundary of the upper image (on a
weakly nondominated face). It can be obtained as an optimal solution of a weighted-sum
scalarization where some weights are zero, e.g., obtained as an optimal solution of Pλ with
λ> = (0, 0, 1)>, making y4 a weakly supported but not a supported nondominated point.

y3

y1

y2

y3 = 5

y3 = 1

y1

y2

y4

y3

y1

y2

y3 = 1

y1

y2

y4

y3

Figure 4.1: Outcome space with nondominated points y1, . . . , y4, each with the value of 1
in the third component and the two-dimensional projection of the plane c3 = 1.

Theorem 4.7. Let YS and YwS be the sets of supported and weakly supported nondomi-
nated points of a MOCO problem, respectively. Then, YS ⊆ YwS and there exist instances
where YS ⊂ YwS, i. e., the set of supported nondominated points is a proper subset of the
set of the weakly supported nondominated points.

Proof. The inclusion YS ⊆ YwS holds per definition. Consider the outcome set Y =
{y1, y2, y3, y4} with y1 = (2, 9, 1)>, y2 = (3, 6, 1)>, y3 = (8, 3, 1)>, and y4 = (6, 5, 1)>,
which represents the pink layer of the outcome set in Example 4.6, displayed in Figure 4.1.
It is straightforward to construct an artificial MOCO problem with this outcome set.
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All points yi with i ∈ {1, . . . , 4} are weakly supported nondominated points since their
preimages are optimal solutions of a weighted sum problem Pλ with λ = (0, 0, 1)>. Since
y1,y2 and y3 are also supported nondominated points, since their preimages are optimal
solutions of the respective weighted sum problems Pλ1 with λ1 = (0.7, 0.1, 0.2)>, Pλ2 with
λ2 = (0.4, 0.4, 0.2)>, and Pλ3 with λ3 = (0.1, 0.8, 0.1)>, respectively. The corresponding
(projected) weight space decomposition is illustrated in Figure 4.2. Note that, for example,
(6, 4.2, 1)> ∈ conv(YN )∩ (y4−Rp=) implying y4 /∈ {y ∈ conv(YN ) : conv(YN )∩ (y−Rp=) =

{y}}. By Theorem 4.5, it follows that y4 /∈ YS , although y4 ∈ YwS . Thus, the set of
weakly supported nondominated points is YwS = {y1, y2, y3, y4}, while the set of supported
nondominated points is YS = {y1, y2, y3}. Hence, in this example, the set of supported
nondominated points is a proper subset of the set of weakly supported nondominated
points YS ⊂ YwS .

λ2

λ1

1

1

0.5

0
0.5

Λ(y3)

Λ(y2)

Λ(y1)

Figure 4.2: Projected weight space decomposition to the upper image of Y =
{(2, 9, 1)>, (3, 6, 1)>, (8, 3, 1)>, (6, 5, 1)>} with λ3 := 1 − λ2 − λ1. The set of
weighting vectors associated with a point y ∈ Y is given by Λ(y) := {λ ∈
Λ0
p : λ>y ≤ λ>y′ for all y′ ∈ Y≥}. For a comprehensive overview of the weight

space decomposition, we refer to Przybylski et al. [2010a].

Note that in the bi-objective case YS = YwS as the following lemma shows.

Lemma 4.8. Every weakly supported nondominated point of a biobjective integer opti-
mization problem is supported nondominated.

Proof. Let ȳ = f(x̄) ∈ R2 be a weakly supported but not supported nondominated point
of a bi-objective integer optimization problem and x̄ the corresponding preimage. Then
there is a weighting vector λ ∈ Λ0 such that x̄ is an optimal solution of the weighted sum
problem Pλ. Since ȳ is not supported nondominated, one of the components of λ must be
zero, w.l.o.g. let λ = (1, 0)>.

Since y is nondominated, there does not exist a feasible outcome vector y = (y1, y2)>,
with y1 = ȳ1 and y2 < ȳ2. Thus, x̄ is also an optimal solution of the weighted sum
problem Pλ′ with λ′ = (1 − ε, ε)> for ε > 0 sufficiently small, which makes ȳ supported
nondominated.

96



4.2 Supported and Weakly Supported Nondominated Points

The clear distinction between the sets of supported nondominated and weakly supported
nondominated solutions (Definition 4.3) is also necessary as the corresponding problems
may differ in their output time complexity. For instance, as we will see in Section 7.3,
in the case of the minimum cost flow problem, it can be shown that supported efficient
solutions can be determined in output-polynomial time, while this is not the case for weakly
supported solutions, unless P = NP.

Theorem 4.9. The determination of all weakly-supported nondominated points for a
MOCO problem with p+ 1 objectives is as hard as the determination of all nondominated
points for a MOCO with p objectives.

Proof. Assume an algorithm exists to determine all weakly supported nondominated points
for a given MOCO problem with p+ 1 objectives. Let Mp be a MOCO with p objectives.
Suppose we add an artificial objective cp+1 = 0 to our MOCO problem and denote it by
Mp+1. In that case, we obtain a weakly efficient facet for Mp+1, where all nondominated
points for Mp are weaklysupported nondominated points for Mp+1. Therefore, even the
nonsupported nondominated points for Mp are weaklysupported nondominated points for
Mp+1 since they are part of the boundary of the upper image for Mp+1. Consequently,
any algorithm that can determine all weakly supported nondominated points for Mp+1

can determine all nondominated points for Mp.

While the above characterization of supported nondominated points holds for MOCO
problems, it does not extend to general MOO problems, and it can be shown that in the
case of general MOO problems it may hold YS ⊂ YSNF . This distinction arises because the
weighted sum scalarization for λ ∈ Λp method determines only supported nondominated
points that are also properly nondominated in the sense of Geoffrion [Geoffrion, 1968],
as discussed in Ehrgott [2005]. Note that for MOCO problems every efficient solution
is also properly efficient [Ehrgott, 2005]. However, for general MOO problems, the set
of properly nondominated points may form a strict subset of the nondominated points
on the nondominated frontier. The following example, similar to the ones in Boyd and
Vandenberghe [2004] or Ehrgott [2005], illustrates this.

Example 4.10. Consider the following MOO problem

min x1 + 2

min x2 + 2

s.t. x2
1 + x2

2 ≤ 1

Consider the points y1 = (1, 2)> and y2 = (2, 1)>, which can be obtained with λ1 = (0, 1)>

and λ2 = (1, 0)>, respectively. It holds y1, y2 ∈ YSNF but y1 and y2 are not optimal
solutions for Pλ for any λ ∈ Λ [Boyd and Vandenberghe, 2004; Ehrgott, 2005]. Thus,
y1, y2 /∈ YS. However, any point on the left lower boundary without the points (1, 2)> and
(2, 1)> are both contained in YSNF and YS. Therefore, in this example, YS ⊂ YSNF . The
example is illustrated in Figure 4.3
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f2

f1

y2 − R2
=

y1 − R2
=

Y
y1 = ( 1

2 )

y2 = ( 2
1 )

Figure 4.3: Illustration of Example 4.10 highlighting the points y1, y2 the points that con-
tains the points that are both in YSNF and YSλ (bold curve), which together
with y1 and y2 gives the nondominated frontier.

Theorem 4.11. For general MOO problems it holds YSλ ⊆ YSNF and there exist instances
where YSλ ⊂ YSNF .

Proof. YSλ ⊆ YSNF follows directly from the proof of Theorem 4.5. Furthermore, as
demonstrated in Example 4.10, there exist instances where YSλ ⊂ YSNF .

The distinction between supported and weakly supported is sufficient for MOCO problems.
However, in the context of general MOO, it may be worthwhile to introduce a finer clas-
sification, distinguishing between properly supported, supported, and weakly supported
nondominated points. While this work primarily focuses on the supportedness in MOCO
problems, a comprehensive analysis of supportedness in general MOO problems remains
an important area for future research. Notably, recent advancements in this direction have
been discussed in Chlumsky-Harttmann [2025].

4.3 Conclusion

Some previous literature use inconsistent characterizations of supported nondominated
points for MOCO problems. Through counterexamples and theoretical analysis, this chap-
ter proves that these definitions, while being equivalent in the context of MOLP, diverge
in MOCO problems, yielding distinct sets of supported nondominated points with differ-
ing structural and computational properties. This emphasizes the need for precise and
consistent definitions. Hence, this chapter proposes the definition of weakly supported
nondominated points and establishes a clear distinction between weakly supported and
supported nondominated points. This is particularly important for MOCO problems with
more than two objectives.

Using these refined definitions, the following characterizations for MOCO problems hold:
While the weakly supported nondominated points lie on the boundary of the upper image,
the supported nondominated points lie only on the nondominated frontier, i. e., only on
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maximally nondominated faces, and the nonsupported nondominated points lie in the
interior of the upper image. However, these characterizations do not extend directly to
general MOO problems. Hence, future research should aim to extend the characterization
of supportedness beyond MOCO problems to generall MOO contexts, addressing the gaps
highlighted by this chapter. An approach towards a categorization of supportedness in
the context of general multi-objective optimization has been presented in [Chlumsky-
Harttmann, 2025].

Nonsupported solutions may be reasonable compromise solutions and should thus not be
neglected completely. Note that the difficulty in computing unsupported solutions arises
in many integer and combinatorial optimization problems and is one reason for their
computational complexity, in general [Ehrgott, 2000; Figueira et al., 2017]. One way to
overcome this computational burden—at least to a certain degree—could be to determine
unsupported solutions only in regions of the Pareto front that are not well represented by
the set of supported non-dominated points.
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5 Supported Nondominated Points as a
Representation for Multi-Objective Integer
Minimum Cost Flow Problems

While multi-objective linear optimization problems only contain supported nondominated
points, the nondominated point set of multi-objective combinatorial optimization prob-
lems, such as network flow problems, also contain weakly supported and nonsupported
nondominated points. These points generally outnumber the supported ones and are more
challenging to determine, as they cannot be obtained as optimal solutions of weighted sum
problems with weights strictly greater than zero.

This chapter considers the supported and extreme supported nondominated points as
representations for the complete nondominated point set in network flow problems. Vari-
ous quality metrics, such as coverage error, hypervolume ratio, and ε-indicator, are used
to analyze and compare the quality of these representations. Multiple classes of network
flow problems are generated to evaluate the representations. The results indicate that the
supported nondominated points consistently provide high-quality representations, while
considering only the extreme supported nondominated points may only yield sufficiently
good representations in network flow problems where the arc capacities are quite small.

The content of this chapter is based on joint work with Lara Löhken, Michael Stiglmayr,
and Kathrin Klamroth and will be submitted.

5.1 Introduction

As outlined in the chapters before, MOCO and MOIMCF belong to the class of compu-
tationally intractable problems, often containing a huge set of nondominated points. This
results in high computational effort, particularly for high-dimensional problems or large
instances, highlighting the need for approximation techniques and alternative methods to
represent the entire nondominated point set. To address this challenge, researchers explore
representation techniques that integrate quality measures (see, e.g., Sayın 2000). Several
studies focus on representation methods or approximations in bi- or MOCO problems that
includes approaches to assess their quality (see, e.g., Hamacher et al. 2007a; Vaz et al.
2015; Domı́nguez-Ŕıos et al. 2021; Mesquita-Cunha et al. 2023; Sayın 2024; “Generating
representative sets for multiobjective discrete optimization problems with specified cov-
erage errors” 2025). For a comprehensive overview of representations in multi-objective
optimization and related methods, we refer to Faulkenberg and Wiecek [2010] and Herzel
et al. [2021]

In MOIMCF problems, even the number of extreme supported nondominated points
can grow exponentially with the number of vertices in the network [Ruhe, 1988]. Further-
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more, Raith and Ehrgott [2009] shows that in integer bi-objective network flow problems,
the number of nonsupported nondominated points is typically much larger than that of
supported or extreme supported solutions, making efficient representation methods even
more important. While Eusébio et al. [2014] investigates representations for BOIMCF
problems, research on representations specifically for MOIMCF problems remains scarce
[Hamacher et al., 2007b], underscoring the need for further studies in this area.

A recent research by Sayın [2024] demonstrated that the set of supported nondomi-
nated points can already provide high-quality representations in multi-objective discrete
optimization problems, focusing specifically on binary knapsack and binary assignment
problems, where the latter is a special case of the minimum cost flow problem. Beyond
their representational advantages, supported nondominated points are also appealing due
to their relatively straightforward computation compared to nonsupported points, which
typically far outnumber them (see, e.g., Visée et al. 1998; Raith and Ehrgott 2009), and
can serve as a foundation for two-phase methods (see, e.g., Pasternak and Passy 1973;
Visée et al. 1998; Hamacher et al. 2007b; Przybylski et al. 2008; Przybylski et al. 2010b;
Eusébio and Figueira 2009b; Dai and Charkhgard 2018).

Several studies focus on identifying or analyzing the supported or extreme supported
nondominated point set across various network flow or graph problems, including bi- and
multi-objective integer network flow problems [Eusébio et al., 2014; Medrano and Church,
2015; Raith and Sedeño-Noda, 2017; Könen and Stiglmayr, 2025a; Könen and Stiglmayr,
2023], bi- and multi-objective minimum spanning trees [Sourd et al., 2006; Silva and
Cĺımaco, 2007; Correia et al., 2021], bi- and multi-objective shortest path problems [Edwin
Romeijn and Smith, 1999; Sedeño-Noda and Raith, 2015; Medrano and Church, 2014],
and bi- and multi-objective assignment problems [Tuyttens et al., 2000; Gandibleux et al.,
2003; Przybylski et al., 2010b]. Additional work on general MOCO problems can be found
in Gandibleux et al. [2001], Jesus [2015], and Sayın [2024], among others.

In the study of Sayın [2024], it is shown that |YS | and |YES | are identical across all
knapsack problem instances and nearly identical for all (binary) assignment problems.
Consequently, the impact on the quality metrics is minimal when nonextreme supported
nondominated points are added to the representation set. This implies that, for these
problem classes, the extreme supported nondominated points already provide high-quality
representations, and there is no need to determine further non-extreme supported non-
dominated points to improve the quality of the representations significantly.

However, this behavior does not extend to MOIMCF or general network problems with
higher arc capacities due to the structure of such networks. As shown in Property 2.66, dif-
ferent solutions of the minimum cost flow problem differ only on combinations of residual
cycles. Transitioning from one extreme efficient solution to another, where the correspond-
ing extreme supported nondominated points are adjacent, might be obtained by augment-
ing flow along a single residual cycle. While this augmentation may affect only one cycle,
the corresponding residual capacity of this cycle might be large. As a result, augmenting
flow incrementally along this cycle can generate a substantial number of supported non-
dominated points on the face connecting these two extreme points. Additionally, other
combinations of residual cycles can yield further supported nondominated points on the
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same face.

Therefore, for MOIMCF problems with arc capacities greater than one, the number of
supported nondominated points is expected to significantly exceed the number of extreme
supported ones. The numerical experiments presented in Section 5.3 will confirm this
observation.

This chapter investigates the quality of the set of (extreme) supported nondominated
points as a representation of the entire nondominated set for MOIMCF problems. Various
quality metrics, such as coverage error and hypervolume ratio, are used to analyze and
compare the quality of these representations. Moreover, approximation indicators will
be used as the ε-indicator in order to qualify the supported set as an approximation of
the entire nondominated point set. The numerical results show that across various test
instances, supported solutions consistently demonstrated superior representational quality,
as measured by hypervolume ratio and coverage error. For all instances, the hypervolume
ratio of the supported nondominated points as representations always are close to one
and provides minor coverage errors. In contrast, extreme supported nondominated points
yielded significantly lower quality measures, particularly as arc capacities increase.

This chapter is organized as follows. Section 5.2 gives an introduction to the mathemati-
cal definitions of the quality measures for representations and approximations. Section 5.3
describes the different instances of varying sizes and a variety of data generation schemes
for the considered graph problems and reports the results of the computational experi-
ments. The results are summarized and concluded in Section 5.4.

5.2 Representations

This section presents the most important definitions and evaluation techniques for ana-
lyzing a representation R ⊆ YN of the nondominated point set. Note that some authors
allow representations to include solutions that are not efficient [Bazgan et al., 2017].

Different quality measures are used to evaluate the representations while aiming for
high-quality representations. For the remainder of this study, the nondominated point
set YN of the considered problem is assumed to be known. This set can be determined,
for example, using the open-source implementation of the Defining Point Algorithm as
described in Dächert et al. [2024].

This chapter focuses on the quality of the set of (extreme) supported nondominated
points as a representation of the entire nondominated set for MOIMCF problems. These
points are particularly suitable as representations due to their advantageous structure,
i.e., lying on the nondominated frontier, and as demonstrated by Visée et al. [1998], for
multi-objective combinatorial optimization (MOCO) problems, the number of supported
solutions typically grows linearly in practice, while the size of the nondominated set grows
exponentially, often outnumbering the supported nondominated points. In Section 5.3,
not only are the quality measures analyzed, but also the sheer number of supported and
extreme supported points compared to the number of all nondominated points.
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5.2.1 Quality Metrics and Evaluation

In order to evaluate the quality of a representation R ⊆ YN , several measures are used. In
addition to the measures presented in Sayın [2024] we use measures from the literature and
introduce new ones. These metrics ensure that the representation accurately reflects the
characteristics of the nondominated point set, such as diversity, uniformity, and coverage.

Coverage Error The first considered metric is the coverage error introduced in Sayın
[2000]. The coverage error CE(R) is a metric used to evaluate the quality of a representa-
tion R ⊆ YN , defined as the maximum distance from any nondominated point y ∈ YN to
its closest representation point r ∈ R. The coverage error is computed as:

CE(R) = max
y∈YN

min
r∈R

d(y, r),

where d(·, ·) denotes the weighted Tchebycheff distance where the weights are inversely
proportional to the criteria ranges. Therefore, for j = 1, . . . , p, the weights are given by

wj =
1

maxy∈YN yj −miny∈YN yj

and the distance is given by d
(
y1, y2

)
= maxj=1,...,pwj |y1

j − y2
j |.

A small coverage means that, for any nondominated point, there should be a solution
in the representation whose image is sufficiently close. This metric corresponds to the
one-sided Hausdorff distance between the sets R and YN . Since R ⊆ YN in this study, the
Hausdorff distance in the opposite direction equals zero. Consequently, CE(R) is precisely
the Hausdorff distance between R and YN , making it a topological measure.

As a pessimistic measure, CE(R) focuses on the worst-case scenario within the non-
dominated set, ensuring a robust representation quality. However, also the Median Er-
ror and Mean Error of the coverage error will be examined, as introduced in Schutze
et al. [2012] and Sayın [2024]. The coverage error is computed for a particular ȳ ∈
YN , as minr∈R d(ȳ, r), determined by a representative point closest to it. The Median
Error ME(R) for the set R is the median of these errors, while the Mean Error MEAN(R)
is the average over all these errors. The ME(R) reflects that regardless of how errors are
distributed across the elements of YN , we can say that half of the points in the nondom-
inated set are covered with an error of ME(R) or less, and the other half are covered
with an error between ME(R) and CE(R). Note that the error can be equal to zero if the
nondominated point is included in the representation. Therefore, the median error can be
zero if the representation contains more than half of the nondominated point set.

To evaluate the performance of a representation R in terms of its cardinality, the fol-
lowing measure is introduced:

OCER(R) =
minR∗⊆YN :|R∗|=|R|CE(R∗)

CE (R)
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The term minR∗⊆YN :|R∗|=|R|CE(R∗) represents the representation with exactly |R| points
that minimizes the coverage error. Consequently, CE(R∗) is the smallest achievable cov-
erage error for any representation containing |R| points. This term is closely connected
to the coverage representation problem presented in Vaz et al. [2015], as it would be an
optimal solution to this problem. The error is denoted by optimal coverage error ratio
(OCER).

By computing OCER(R), we obtain a normalized error metric that indicates how close
the representation coverage error CE(R) is to the best possible representation’s coverage
error with the same number of points. A value of OCER(R) = 1 indicates that R has the
best possible coverage error among all representations of size |R|, while values closer to zero
indicate a bigger gap between CE(R) and CE(R∗). For example, a value OCER(R) = 0.5
represents that the optimal error is only half of the actual error given by the representation
R, i.e., almost twice as big as the best achievable error with this amount of points. This
normalization provides an interpretable and comparable way to evaluate the quality of
representations R, particularly when considering the trade-off between cardinality and
representation quality. Such measures are crucial in applications where the size of the
representation is constrained.

Figure 5.1 illustrates the coverage error measures of the given BOIMCF problem pre-
sented earlier in Section 2.5 in Figure 2.8, depicting the supported nondominated or ex-
treme supported nondominated points as representations.

Hypervolume Ratio The second measure we used is the so-called hypervolume ratio. The
hypervolume ratio for a representation R is defined as

HVR(R) =
HV(R)

HV (YN )
,

where HV(R) represents the widely used hypervolume indicator for the representation
R. This indicator is a well-established metric in evolutionary multi-objective optimization
(see, e.g., Zitzler et al. 2003). The hypervolume indicator measures the volume of the region
dominated by a set of representative points and bounded by a pre-specified reference point.
Often, the Nadir point is used as the reference point. A larger hypervolume indicates a
greater dominated region, reflecting a higher-quality approximation of the solution set.
In our tests, we use the hypervolume ratio to quantify the quality of the representation
R relative to the complete nondominated set YN . A ratio closer to 1 indicates that the
representation R closely approximates the entire nondominated set, providing a robust
measure.

Note that the selection of the reference point can significantly influence the calculated
hypervolume. For example, in a bi-objective setting, if the Nadir point is used as the
reference, the two lexicographic optimal solutions will not contribute to the hypervolume.
In our test instances, we use the Nadir point shifted by plus one unit in each component as
the reference point. However, the influence of the lexicographical minima remains limited.
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Due to the hypervolume’s sensitivity to the reference point, we also consider the range
ratio as a complementary indicator. The range ratio is independent of the reference point
and evaluates the extent of the objective space covered by the representation set relative
to the ideal achievable range.

Range Ratio The Range Ratio, also used in Sayın [2024], is defined as

RR(R) =
1

p

p∑
j=1

maxy∈R yj −miny∈R yj
maxy∈YN yj −miny∈YN yj

,

where p is the number of objective functions. This measure quantifies how well a repre-
sentation R spans the range of each objective function compared to the full nondominated
set YN .

A value of RR(R) = 1 indicates that the representation R covers the full range of the ob-
jective values for each objective function, matching the extent of the entire nondominated
set. Conversely, values closer to zero imply that the representation fails to adequately
cover the range of objective values, leaving gaps in its coverage at the problem’s bound-
aries. The Range Ratio is particularly useful for assessing the ability of a representation
to reach the extremes of the nondominated set. This is important in multi-objective op-
timization, where capturing the boundary values often provides valuable insights into the
trade-offs between competing objectives. Moreover, some solution algorithms fail to reach
these extremal solutions. By averaging across all objective functions, the Range Ratio
provides a comprehensive view of the representation’s ability to reflect the problem’s full
scope.

However, since this work considers the supported nondominated points as the represen-
tation set, which includes all extreme supported nondominated points, the Range Ratio is
expected to be close to 1. Notably, for bi-objective problems, the Range Ratio will always
equal 1, as the representation (with extreme supported nondominated points) fully spans
the range of each objective function. Figure 5.2 illustrates the hypervolume and range ra-
tios of the given BOIMCF problem of Figure 2.8, depicting the supported nondominated
or extreme supported nondominated points as representations.

ε-indicator The last metric presented is the ε-indicator, a widely recognized performance
measure in multi-objective optimization, particularly for heuristic solution methods and
approximation algorithms [Papadimitriou and Yannakakis, 1991]. This indicator evaluates
how well a representation setR approximates the target set YN by determining the smallest
factor ε by which the elements of YN must be scaled so that for each y ∈ YN there exists a
r ∈ R which weakly dominates YN . The ε-indicator is calculated following the definitions
provided in Zitzler et al. [2003] and Vaz et al. [2015] as:

Iε(R) = max
y∈YN

min
r∈R

ε(r, y),

where

ε(r, y) = max
i∈(1,...,p]

ri

yi
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z1

z2

CE(YSN ) = 0.075
MECE(YSN ) = 0

MeanCE(YSN ) = 0.0216
OCVR(YSN ) = 1

z1

z2

CE(YES) = 0.267
MECE(YES) = 0.075

MeanCE(YES) = 0.0941
OCVR(YES) = 0.749

Figure 5.1: Illustration of the coverage error for the nondominated point set of the bi-
objective integer minimum cost flow (BOIMCF) problem from Figure 2.8. In
the left figure, the supported nondominated points are used as representation,
while the right figure depicts the extreme supported nondominated points.
Among all nondominated points, the representative points are highlighted as
colored rectangles.

This formulation guarantees that for every y ∈ YN , there exists an r ∈ R such that r weakly
dominates y. The ε-indicator provides an intuitive measure of approximation quality. If
R = YN it holds Iε(R) = 1. Also note that the factor Iε defined above corresponds to the
approximation ratio (1 + ε) typically used in the context of approximation schemes; see,
for example, Papadimitriou and Yannakakis [1991].

This concept is closely related to the coverage representation problem; achieving good
coverage often corresponds to obtaining a good ε-indicator, and vice versa, as demon-
strated in Vaz et al. [2015].

To further assess the quality of a representation R with respect to its cardinality and
to normalize the result to a value between 0 and 1, we introduce the optimal ε-indicator
ratio as

O Iε(R) =
1

Iε (R)
min

R∗⊆YN :|R∗|=|R|
Iε(R

∗).

For the problem shown in Figure 2.8 it holds Iε(YS) = 1.025 and Iε(YES) ≈ 1.0965,
considering YS and YES as respective representations.

5.3 Numerical Experiments

This section presents the implementation details and provides a numerical evaluation of
the quality of the two representation sets, YS and YES . Their effectiveness as represen-
tations is evaluated across a diverse set of test instances. The section aims to report and

107



Chapter 5 Supported Nondominated Points as a Representation
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Figure 5.2: Illustration of the hypervolume ratio for the nondominated point set of the bi-
objective integer minimum cost flow (BOIMCF) problem from Figure 2.8. In
the left figure the supported nondominated points are used as representation,
while the right figure depicts the extreme supported nondominated points.
Among all nondominated points, the representative points are highlighted as
colored rectangles. The reference point r is chosen as the Nadir point with
plus one in each component.

compare the results using several quality metrics, providing a comprehensive analysis of
the quality of the supported nondominated and extreme supported nondominated points
as representations under different schemes for MOIMCF problems.

The general setup of the computational experiments is as follows. For each problem
instance, the complete nondominated point set is computed using the open-source im-
plementation of the Defining Point Algorithm from Dächert et al. [2024]. The subsets
of supported and extreme supported nondominated points are extracted from those non-
dominated sets by solving the subproblems introduced in Sayın [2024], as detailed in Sec-
tion 5.3.1. These subproblems are solved using a C++ code that uses a CPLEX Callable
Library.

The resulting sets are then evaluated using the set of metrics presented in the previous
section. Metric evaluations related to coverage and the ε-indicator are implemented in
C++. For hypervolume computations, we use the instance-specific Nadir point shifted by
one unit in each coordinate as the reference point. The hypervolume values are computed
using the open-source C implementation (Version 1.3) described in Fonseca et al. [2006].

All computations are conducted on a computer with an Intel® Core™i8-8700U CPU 3.20
GHz processor with 32 GB RAM, using a LINUX operating system. As this is primarily an
empirical study focused on representation quality, we do not report runtime performance.
However, we note that computing the full nondominated set becomes computationally
intensive even for moderately sized instances. In particular, we encountered scalability
limitations for large instances or instances with more than five objectives, where generating
the entire nondominated set was too computationally demanding.

108



5.3 Numerical Experiments

The remainder of this section is structured as follows. This section describes how to
extract the supported and extreme supported nondominated points from the full set of
nondominated points. Then, it presents the generation process of different test instance
classes, followed by a detailed analysis and discussion of the numerical results.

5.3.1 Identifying Supported and Extreme Supported Nondominated Points

Given the complete list of nondominated points, the two linear programs introduced
in Sayın [2024] are used to identify the sets of all supported and extreme supported non-
dominated points. These LP formulations serve as subproblems for classification and rely
on input from the entire nondominated set or its supported subset.

Identifying Supported Nondominated Points To identify whether a nondominated point
yk ∈ YN is supported, i.e., yk ∈ YS , the linear program, denoted by Syk , is solved.
Importantly, this check requires the complete nondominated set YN as input.

min zk = max

p∑
i=1

λi

s.t.

p∑
i=1

λiy
k
i ≤

p∑
i=1

λiy
j
i j = 1, . . . , |YN |

p∑
i=1

λi = 1

λi ≥ 0 i = 1, . . . , p

(Syk)

This linear program contains p non-negative variables, representing the weights in a
weighted sum subproblem (Pλ). The first set of constraints ensures that yk is at least
as good as any other nondominated point under the weighted objective. The constraint∑p

i=1 λi = 1 guarantees that the weight vector is normalized. Consequently, this formu-
lation checks whether a weight vector exists for which yk corresponds to the image of an
optimal solution to (Pλ). In this case, yk is a supported nondominated point. The result of
this test is revealed by the optimal objective value, as captured in the following theorem.

Theorem 5.1 (Sayın 2024). A nondominated point yk is supported, i.e., yk ∈ YS if and
only if zk = 1 in Syk .

Identifying Extreme Supported Nondominated Points To determine whether a sup-
ported nondominated point yk ∈ YES , the following linear program, denoted by Eyk , is
solved. This check requires the complete set of supported nondominated points as input.
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min zk = minαk

s.t.

|YS |∑
j=1

αjy
j
i = yki i = 1, . . . , p

|YS |∑
j=1

αj = 1

αj ≥ 0 j = 1, . . . , |YS |

(Eyk)

This formulation is a linear program with YS non-negative variables. The first constraint
represents the nondominated point yk as a linear combination of all nondominated points,

while
∑|YS |

j=1 αj = 1, together with the non-negativity constraints, ensures that yk is ex-
pressed as a convex combination of certain nondominated points. Again, the classification
result is determined by the optimal objective value.

Theorem 5.2 (Sayın 2024). A nondominated point yk ∈ YN is extreme supported, i.e.,
yk ∈ YES if and only if zk = 1 in Eyk .

5.3.2 Test Instances

The first set of computational experiments summarized in Table 5.1 evaluates MOIMCF
problem classes generated using the NETGEN network generator [Klingman et al., 1974].
In total, 11 problem classes were considered, with each class comprising 15 randomly
generated instances.

Each NETGEN instance is defined by several parameters, including the number of nodes
and arcs, the number of supply and sink nodes, as well as upper bounds for arc costs, arc
capacities, and the total network supply. These 11 problem classes differ in the number
of nodes and arcs, ranging from 20 to 2000 nodes and 40 to 4000 arcs, to explore their
influence on the structure of the nondominated set. Given their strong impact on the
number of supported nondominated points and efficient solutions, these two parameters
were treated as independent variables. All other NETGEN parameters were held constant
across the instances to isolate the effects of the network size. Specifically, each instance
was configured with two nodes acting as supply nodes and two as sink nodes, a maximum
arc cost of 10 for all three objectives, a maximum upper capacity of 50, and a total supply
of 50. Note that we ensured to generate no instances with a feasible ideal point.

The results for these NETGEN-generated instances are presented in Table 5.1. For
each problem class, the table displays the number of extreme supported nondominated
points, supported nondominated points, supported efficient solutions, their ratio, and
the hypervolume indicator as well as the range ratio for the supported nondominated
and extreme supported nondominated points as representations. In addition, Table 5.2
reports the coverage error and ε-indicator for the same instances. We display the minimum,
maximum, and mean for each class across the 15 instances. An overall summary of these
aggregated metrics across all 11 classes is provided in Table 5.3.
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We fixed the number of nodes n = 50 for the second set of test instances while keeping
all other NETGEN parameters consistent with those used in the first experiment. The
only parameter varied was the number of arcs, allowing a systematic evaluation of how the
density, i.e., the arc-to-node ratio influences the structure and quality of the representation
sets, as well as the corresponding ratios of |YS |/|YN | and |YES |/|YN |. The results are
summarized in Table 5.5, and the trends are visualized in Figure 5.3.

The third set of instance classes consists of networks with a fixed number of nodes
n = 50 and m = 200 arcs, while all other parameters remain identical to those used in
the first experiment. In this experiment, the only parameter varied is the maximum arc
capacity, denoted cmax, which takes values in {1, 5, 50, 100}. Notably, when cmax = 1,
the problem becomes a binary problem. The results for these instances are summarized
in Table 5.6, with the corresponding trends illustrated in Figure 5.4.

The fourth set of instance classes investigates the impact of dimensionality by varying
the number of objectives from 3 to 5. Here, we use smaller networks with n = 10 nodes
and m = 20 arcs, keeping all other parameters fixed. Due to the increased computational
complexity with higher dimensions, we encountered performance limitations and were un-
able to extend this analysis to larger instances or problems with more than five objectives.
Table 5.7 summarizes the results.

In the fifth set of instances classes, we study the effect of cost correlation between
objectives. We consider bi-objective problems and adopt the cost construction approach
introduced in Sayın [2024], maintaining all other NETGEN parameters constant. We
consider different classes with varying numbers of nodes but the same arc-to-node ratio.
The number of nodes takes values in [20, 50, 100, 200, 400], and the number of arcs equals
m = 4n. For correlation levels ` ∈ {1, 2, 3}, we generate a core cost matrix T = (tij), where
each tij is randomly drawn from the interval [1, 5`]. For each arc (i, j) ∈ A, additional
noise terms ĉkij are sampled uniformly from [1, 20− 5`], and the final cost components are

defined as ckij = tij + ĉkij for each objective k = 1, 2. In the case of no correlation, cost
components for both objectives are generated independently and uniformly from the range
[1, 20]. Note that we do not guarantee non-feasibility of the ideal point in these instances.
In fact, for higher correlation levels, it was frequently observed that the ideal point was
feasible, and therefore, in these instances, it holds that |YN | = 1. Table 5.8 shows the
mean values over all instances for each class and each correlation level.

For all bi-objective instances with no correlation level (` = 0), we compute OCER(YS)
and OCER(YES) to assess the quality of YS and YES as representations in terms of their
cardinality. All results are presented in Table 5.9. These computations were implemented
in Python using the dynamic programming approach of Vaz et al., 2015. Note that the
weighted Tchebycheff distance is used once again. We do not present the values for O Iε(R)
as they do not provide new insights compared to OCER(R).

The final test classes consist of Netgen instances constructed using parameters based
on the test sets N01, N04, N07, and N12 from Raith and Ehrgott, 2009. These instances
feature a greater number of supply, source nodes, and sink nodes compared to those
considered previously. Due to the higher supply and fewer transshipment nodes with zero
demand/supply, the ratio of YS to YN is expected to be lower than in the earlier test sets.
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The following parameters are fixed across all problem instances: mincost = 0, maxcost
= 100, capacitated = 100, mincap = 0, and maxcap = 50. The varying parameters are
summarized in Table 5.10. Each class again includes 15 instances per parameter setting.
Table 5.11 and Table 5.12 present the results for the bi-objective and tri-objective cases,
respectively. Notably, for p = 3, we were only able to generate results for class N01.
For classes N04, N07, and N12, the number of nondominated points increased drastically,
making the computation too demanding. For instance, class N04 consists of an average
of 37,100.53 nondominated points across the 15 instances, illustrating the rapid growth in
solution complexity even with only three objectives.

The following section presents a detailed discussion of the role and influence of each
parameter setting across the different instance classes.

Table 5.1: Numerical results for the different instance classes generated with NETGEN.

Class p = 3 |YN | |YS | |YES |
|YS |
|YN |

|YES |
|YN |

HVR(YS) HVR(YES) RR(YS) RR(YES)

1 min 3.0 3.0 2.0 0.234 0.006 0.972 0.213 0.954 0.954
n = 20 max 3269.0 1352.0 19.0 1.0 0.667 1.0 0.881 1.0 1.0
m = 40 mean 361.0 183.0 6.6 0.804 0.156 0.997 0.645 0.994 0.994

2 min 38.0 13.0 5.0 0.195 0.006 0.986 0.591 0.97 0.97
m = 20 max 6952.0 1359.0 77.0 1.0 0.158 1.0 0.944 1.0 1.0
m = 80 mean 1995.067 579.2 26.8 0.5 0.036 0.996 0.85 0.997 0.997

3 min 2.0 2.0 2.0 0.242 0.018 0.918 0.065 0.933 0.933
n = 50 max 2037.0 492.0 36.0 1.0 1.0 1.0 1.0 1.0 1.0
m = 100 mean 489.4 197.333 14.867 0.627 0.143 0.992 0.703 0.992 0.992

4 min 69.0 52.0 7.0 0.109 0.005 0.979 0.575 0.991 0.991
n = 50 max 21248.0 2317.0 115.0 1.0 0.145 1.0 0.953 1.0 1.0
m = 200 mean 2599.867 531.2 35.467 0.444 0.04 0.995 0.87 0.998 0.998

5 min 3.0 3.0 2.0 0.229 0.02 0.977 0.634 0.941 0.941
n = 100 max 2710.0 621.0 64.0 1.0 0.667 1.0 0.942 1.0 1.0
m = 200 mean 600.333 218.267 21.2 0.541 0.102 0.994 0.843 0.993 0.993

6 min 150.0 84.0 14.0 0.159 0.006 0.991 0.79 0.972 0.972
n = 100 max 15317.0 2497.0 225.0 0.886 0.2 0.999 0.971 1.0 1.0
m = 400 mean 4123.933 886.533 60.067 0.377 0.035 0.997 0.912 0.996 0.996

7 min 30.0 14.0 9.0 0.111 0.006 0.978 0.774 0.943 0.943
n = 200 max 7262.0 1447.0 72.0 0.672 0.41 0.999 0.982 1.0 1.0
m = 400 mean 2418.733 468.6 32.267 0.337 0.092 0.992 0.89 0.993 0.993

8 min 41.0 37.0 8.0 0.085 0.006 0.99 0.632 0.974 0.974
n = 200 max 21579.0 1840.0 174.0 0.902 0.244 1.0 0.97 1.0 1.0
m = 800 mean 5851.467 942.333 77.133 0.264 0.035 0.996 0.905 0.998 0.998

9 min 422.0 151.0 23.0 0.102 0.01 0.984 0.794 0.973 0.973
n = 1000 max 4252.0 801.0 106.0 0.391 0.081 0.998 0.983 1.0 1.0
m = 2000 mean 1912.933 403.733 54.267 0.247 0.035 0.994 0.925 0.996 0.996

10 min 176.0 107.0 17.0 0.11 0.003 0.993 0.76 0.956 0.956
n = 1000 max 25648.0 3021.0 312.0 0.608 0.125 0.999 0.98 1.0 1.0
m = 4000 mean 8484.333 1384.467 128.2 0.204 0.024 0.996 0.939 0.995 0.995

11 min 49.0 49.0 3.0 0.078 0.007 0.985 0.397 0.968 0.968
n = 2000 max 10348.0 979.0 140.0 1.0 0.077 1.0 0.976 1.0 1.0
m = 4000 mean 2646.8 428.2 58.6 0.393 0.039 0.995 0.867 0.996 0.996

5.3.3 Results

In the study of Sayın [2024], it is shown that YS and YES yield high-quality representations
for the binary knapsack and the binary assignment problem. However, in these problem
classes, the sizes of the sets |YS | and |YES | were identical across all knapsack instances
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Table 5.2: Numerical results for the different instance classes generated with NETGEN.

Class p = 3 CE(YS) CE(YES) ME(YS) ME(YES) MEAN(YS) MEAN(YES) Iε(YS) Iε(YES)

1 min 0.0 0.289 0.0 0.0 0.0 0.098 1.0 1.009
n = 20 max 0.187 0.5 0.024 0.232 0.024 0.221 1.005 1.111
m = 40 mean 0.059 0.396 0.003 0.149 0.007 0.165 1.002 1.046

2 min 0.0 0.161 0.0 0.04 0.0 0.049 1.0 1.021
n = 20 max 0.107 0.464 0.074 0.229 0.059 0.242 1.009 1.085
m = 80 mean 0.037 0.289 0.011 0.104 0.01 0.109 1.004 1.055

3 min 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
n = 50 max 0.4 0.8 0.2 0.4 0.175 0.374 1.006 1.04
m = 100 mean 0.093 0.323 0.019 0.137 0.022 0.138 1.002 1.026

4 min 0.0 0.138 0.0 0.047 0.0 0.048 1.0 1.022
n = 50 max 0.146 0.361 0.031 0.136 0.033 0.143 1.01 1.084
m = 200 mean 0.058 0.247 0.009 0.084 0.01 0.091 1.005 1.055

5 min 0.0 0.15 0.0 0.0 0.0 0.039 1.0 1.002
n = 100 max 0.36 0.5 0.051 0.141 0.043 0.167 1.005 1.081
m = 200 mean 0.101 0.293 0.012 0.084 0.014 0.107 1.003 1.026

6 min 0.027 0.12 0.0 0.033 0.002 0.038 1.003 1.011
n = 100 max 0.164 0.423 0.015 0.096 0.023 0.102 1.01 1.113
m = 400 mean 0.078 0.242 0.006 0.061 0.009 0.07 1.006 1.056

7 min 0.031 0.141 0.0 0.029 0.007 0.053 1.001 1.002
n = 200 max 0.345 0.439 0.071 0.175 0.073 0.125 1.005 1.072
m = 400 mean 0.094 0.27 0.014 0.083 0.02 0.088 1.003 1.025

8 min 0.019 0.094 0.0 0.03 0.002 0.033 1.002 1.014
n = 200 max 0.127 0.437 0.026 0.077 0.023 0.122 1.01 1.103
m = 800 mean 0.064 0.204 0.009 0.05 0.009 0.06 1.006 1.048

9 min 0.042 0.098 0.006 0.026 0.007 0.029 1.002 1.006
n = 1000 max 0.173 0.418 0.027 0.204 0.026 0.201 1.004 1.038
m = 2000 mean 0.101 0.204 0.014 0.061 0.014 0.068 1.003 1.018

10 min 0.019 0.077 0.0 0.017 0.006 0.021 1.004 1.022
n = 1000 max 0.133 0.388 0.015 0.143 0.02 0.138 1.012 1.249
m = 4000 mean 0.062 0.187 0.008 0.05 0.009 0.056 1.006 1.051

11 min 0.0 0.105 0.0 0.028 0.0 0.034 1.0 1.006
n = 2000 max 0.208 0.483 0.026 0.217 0.03 0.231 1.008 1.316
m = 8000 mean 0.067 0.257 0.009 0.083 0.01 0.093 1.003 1.06

and nearly identical across all binary assignment instances. Consequently, the impact
of non-extreme supported nondominated points on quality metrics was minimal. This
indicates that, for these specific problem classes, the extreme supported nondominated
points alone already constitute a high-quality representation, and there is little to no
benefit in identifying additional non-extreme supported points to improve representation
quality.

This behaviour, however, does not extend to the MOIMCF or general network problems
with higher arc capacities due to the structure of such networks. As seen in Schrijver, 2003;
Könen et al., 2022b, different solutions of the minimum cost flow problem differ only on
combinations of residual cycles (or a linear number of induced cycles). Transitioning from
one extreme efficient solution to another, where the corresponding extreme supported
nondominated points are adjacent, might be obtained by augmenting flow along a single
residual cycle. Although such augmentation may involve only one cycle, the residual
capacity of that cycle can be large. Incrementally augmenting the flow along this cycle
can therefore generate a substantial number of supported nondominated points on the face
connecting these two extreme points. Moreover, other combinations of residual cycles can
yield additional supported nondominated points on the same face. The results of all test
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Table 5.3: Overall mean values across all
instance classes.

Metric Mean

|YS |
|YN | 0.431
|YES |
|YN | 0.067

HVR(YS) 0.995
HVR(YES) 0.858
CE(YS) 0.074
CE(YES) 0.265
Iε(YS) 1.004
Iε(YES) 1.042

Table 5.4: Inverted ratio of selected met-
rics.

Metric Ratio Value

|YS |
|YN |/

|YES |
|YN | 6.43

HVR(YS)
HVR(YES) 1.16
CE(YS)

CE(YES) 0.28
Iε(YS)
Iε(YES) 0.96

Table 5.5: Numerical results for class n = 50 but differing numbers of arcs. All classes
again contain 15 instances.

Class p = 3 |YN | |YS | |YES |
|YS |
|YN |

|YES |
|YN |

HVR(YS) HVR(YES) CE(YS) CE(YES)

m = 100 min 2.0 2.0 2.0 0.242 0.018 0.918 0.065 0.0 0.0
max 2037.0 492.0 36.0 1.0 1.0 1.0 1.0 0.4 0.8
mean 489.4 197.333 14.867 0.627 0.143 0.992 0.703 0.093 0.323

m = 200 min 69.0 52.0 7.0 0.109 0.005 0.979 0.575 0.0 0.138
max 21248.0 2317.0 115.0 1.0 0.145 1.0 0.953 0.146 0.361
mean 2599.867 531.2 35.467 0.444 0.04 0.995 0.87 0.058 0.247

m = 300 min 319.0 198.0 14.0 0.131 0.005 0.992 0.56 0.018 0.139
max 18304.0 2745.0 147.0 0.715 0.125 0.999 0.967 0.105 0.382
mean 6282.2 1424.8 64.667 0.326 0.019 0.997 0.893 0.043 0.232

m = 400 min 289.0 142.0 8.0 0.124 0.004 0.994 0.76 0.017 0.113
max 20014.0 9593.0 230.0 0.732 0.048 1.0 0.975 0.064 0.447
mean 7584.867 2074.733 74.4 0.347 0.016 0.997 0.909 0.042 0.202

m = 600 min 995.0 442.0 22.0 0.178 0.005 0.996 0.893 0.016 0.115
max 19155.0 4670.0 159.0 0.616 0.036 0.999 0.968 0.071 0.304
mean 8653.6 2294.267 80.467 0.31 0.013 0.998 0.93 0.036 0.201

instances discussed in the previous section form the foundation for this argumentation.

Based on the results from the first set of problem classes, presented in Tables 5.1 and 5.2
and summarized in Tables 5.3 and 5.4, several key observations can be made. In this in-
stances, we observe a substantial difference between YS and YES , with |YS | being signifi-
cantly larger than |YES |. This outcome aligns with expectations, given the high maximum
arc capacity of 50. On average across all instance classes, the ratio |YS |/|YN | was 43.1%,
while |YES |/|YN | was only 6.7%, making YS approximately 6.43 times larger than YES in
terms of cardinality.

This disparity is reflected in the evaluation metrics, which demonstrate the superior
representational quality of YS . Across all test instances, the mean hypervolume ratio
HVR(YS) reached 99.5%, indicating that YS captures nearly the entire achievable hyper-
volume. In contrast, HVR(YES) averaged 85.5%, a significantly lower value. On average,
across 11 three-dimensional test classes, each consisting of 15 instances, the hypervolume
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Figure 5.3: Mean values for instances with varying arc numbers (n = 50, p = 3).

ratio of supported nondominated points was about 16% higher than that of the extreme
supported points. Note that the Range Ratio was identical for both sets and almost equal
to one in each instance. Hence, both sets can cover the full range of the objective values.

Additionally, this performance advantage is mirrored in the coverage error metric. The
mean coverage error for YS was only 28% of that for YES , further underscoring its su-
perior quality. Specifically, the coverage error CE(YS) over all instance classes was just
0.074, indicating that the coverage error given by the supported nondominated points as
representation was quite small.

Due to the high ratio of supported nondominated points in the overall set, the mean of

Table 5.6: Numerical results for class 2 but with differing numbers of maximal capacity.
All classes again contain 15 instances.

Class p = 3 |YN | |YS | |YES |
|YS |
|YN |

|YES |
|YN |

HVR(YS) HVR(YES) CE(YS) CE(YES)

cmax = 1 min 3.0 3.0 3.0 0.464 0.464 0.879 0.879 0.0 0.0
max 28.0 14.0 14.0 1.0 1.0 1.0 1.0 0.565 0.565
mean 11.8 7.4 7.333 0.722 0.711 0.977 0.972 0.237 0.256

cmax = 5 min 55.0 27.0 25.0 0.188 0.121 0.98 0.947 0.089 0.106
max 882.0 166.0 129.0 0.519 0.455 0.997 0.995 0.218 0.277
mean 308.333 82.0 59.267 0.352 0.264 0.987 0.971 0.14 0.182

cmax = 50 min 69.0 52.0 7.0 0.109 0.005 0.979 0.575 0.0 0.138
max 21248.0 2317.0 115.0 1.0 0.145 1.0 0.953 0.146 0.361
mean 2599.867 531.2 35.467 0.444 0.04 0.995 0.87 0.058 0.247

cmax = 100 min 23.0 12.0 3.0 0.099 0.003 0.994 0.626 0.019 0.186
max 30454.0 3027.0 81.0 0.949 0.13 1.0 0.956 0.177 0.468
mean 4880.467 840.733 30.533 0.442 0.027 0.997 0.842 0.056 0.308
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Figure 5.4: Mean values for the instances with varying maximal capacity (p = 3).

Table 5.7: Numerical results for (n = 10,m = 20) with different number of objectives.
The classes again contain 15 instances.

|YN | |YS | |YES |
|YS |
|YN |

|YES |
|YN |

HVR(YS) HVR(YES) CE(YS) CE(YES)

p = 3 min 2.0 2.0 2.0 0.379 0.016 0.945 0.015 0.0 0.0
max 1023.0 388.0 16.0 1.0 1.0 1.0 1.0 0.133 0.5
mean 126.867 76.6 4.933 0.833 0.2 0.994 0.575 0.041 0.371

p = 4 min 2.0 2.0 2.0 0.469 0.008 0.995 0.002 0.0 0.0
max 2743.0 1286.0 23.0 1.0 1.0 1.0 1.0 0.316 0.5
mean 296.267 178.933 6.867 0.856 0.173 0.999 0.692 0.066 0.381

p = 5 min 14.0 14.0 2.0 0.392 0.003 0.994 0.002 0.0 0.234
max 15364.0 6024.0 44.0 1.0 0.429 1.0 0.843 0.16 0.5
mean 1211.467 535.267 9.533 0.797 0.104 0.998 0.64 0.061 0.426

the median coverage error ME(YS) across all classes was approximately 1
11

∑11
i=1 ME(YSi) ≈

0.01036, which is about 12% of the corresponding mean for ME(YES), which was 0.086.
Similarly, the average value of MEAN(YS) was 0.01218, representing approximately 12.8%
of the value for the extreme supported solutions.

Furthermore, the ε-indicator also confirms the quality advantage of the supported non-
dominated points as a representative approximation. The average values were Iε(YS) was
1.004 and Iε(YES) was 1.042. This small ε-value indicates that only a marginal vector
multiplied with each nondominated point such that the solutions in YS (weakly) dominate
the entire nondominated point set.

The higher mean ratio of |YS |/|YN | with 43.1% may be explained by the fact that
the considered graphs are relatively sparse, and only a few source and sink nodes are
involved. As shown in Table 5.1, a clear trend can be observed when examining the
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Table 5.8: Numerical results for bi-objective instances with correlated cost objectives. The
classes again contains 15 instances.

Class p = 2 |YN | |YS | |YES |
|YS |
|YN |

|YES |
|YN |

HVR(YS) HVR(YES) CE(YS) CE(YES)

n = 20,m = 80 ` = 0 80.467 42.2 7.0 0.6 0.113 0.994 0.803 0.026 0.272
` = 1 64.6 29.067 5.333 0.632 0.157 0.993 0.664 0.02 0.344
` = 2 23.267 14.933 4.133 0.83 0.388 0.994 0.711 0.017 0.284
` = 3 7.867 7.4 2.133 0.984 0.652 1.0 0.807 0.001 0.172

n = 50,m = 200 ` = 0 107.4 46.067 8.667 0.479 0.168 0.992 0.882 0.029 0.215
` = 1 66.2 35.4 6.667 0.654 0.191 0.993 0.766 0.03 0.299
` = 2 32.467 21.933 5.0 0.781 0.263 0.995 0.78 0.033 0.288
` = 3 5.933 5.733 2.0 0.968 0.625 0.993 0.698 0.026 0.238

n = 100,m = 400 ` = 0 165.867 50.133 13.8 0.438 0.121 0.996 0.927 0.029 0.174
` = 1 79.867 32.267 7.8 0.551 0.15 0.99 0.804 0.039 0.242
` = 2 47.6 24.133 6.0 0.766 0.279 0.991 0.76 0.029 0.311
` = 3 10.0 7.867 3.133 0.875 0.56 0.993 0.808 0.048 0.242

n = 200,m = 800 ` = 0 244.533 61.267 14.533 0.306 0.069 0.994 0.913 0.03 0.195
` = 1 67.667 30.267 8.2 0.539 0.151 0.993 0.887 0.045 0.254
` = 2 36.2 20.8 5.867 0.674 0.202 0.987 0.736 0.048 0.289
` = 3 9.6 8.2 2.867 0.907 0.517 0.992 0.686 0.04 0.295

n = 400,m = 1600 ` = 0 248.133 60.6 19.533 0.287 0.089 0.994 0.938 0.029 0.169
` = 1 103.133 38.533 12.0 0.45 0.175 0.991 0.922 0.036 0.178
` = 2 57.133 24.533 7.267 0.59 0.234 0.992 0.845 0.039 0.256
` = 3 22.467 13.067 4.333 0.734 0.322 0.989 0.797 0.035 0.274

arc-to-node ratio. In all instance classes where the number of arcs was four times the
number of nodes, i.e., classes i ∈ {2, 4, 6, 8, 10}, not only was the number of nondominated
points significantly higher compared to the remaining classes i ∈ {1, 3, 5, 7, 9, 11}, where
the number of arcs was only twice as high as the number of nodes, but also the ratio of
supported nondominated points to the entire nondominated set decreased.

The results obtained from the second test class presented in Table 5.5 and visualized
in Figure 5.3, where the maximum arc capacity is increased, confirm the initial expecta-
tions. The sets YS and YES are identical for the instance class with a maximum capacity
of one. In this case, even the extreme supported set YES already provides high-quality
approximations, which aligns well with the findings reported in Sayın [2024].

However, as the maximum arc capacity increases, both the number of nondominated
points and supported nondominated points grow substantially. The ratio |YS |/|YN | re-
mains relatively stable across all capacity levels, whereas the ratio |YES |/|YN | decreases
significantly. This behaviour matches the expectations; increasing the maximum arc capac-
ity does not introduce new cycle structures in the residual graph, but those combinations
go from one solution to another over augmenting the full residual capacity of this cycle,
creating many more intermediate solutions. These additional intermediate solutions in-
crease both supported and total nondominated points without significantly altering their
relative proportion, whereas |YES |/|YN | decreases as expected.

Moreover, while the hypervolume ratio for YS steadily increases with higher capacities,
remaining close to 1 in all instance classes, the opposite trend is observed for YES . The
hypervolume ratio decreases, and its coverage error increases. In the final instance classes
with cmax = 100, the hypervolume ratio of YS is about 18% higher than that of YES , and
the coverage error of YS is only about 13% of the error measured for YES . These results
strongly indicate that in networks with high arc capacities, supported nondominated points
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Table 5.9: Numerical results of OCVR for bi-objective instances. Each class again contain
15 instances.

Class p = 2 OCER(YS) OCER(YES)

n = 20,m = 80 min 0.322 0.25
max 1.0 0.644
mean 0.735 0.453

n = 50,m = 200 min 0.091 0.261
max 1.0 1.0
mean 0.687 0.429

n = 100,m = 400 min 0.264 0.237
max 1.0 0.6
mean 0.578 0.408

n = 200,m = 800 min 0.097 0.195
max 0.838 0.506
mean 0.481 0.327

n = 400,m = 1600 min 0.267 0.154
max 0.8 0.4
mean 0.491 0.278

Overall min 0.091 0.154
max 1.0 1.0
mean 0.594 0.379

Table 5.10: Netgen parameters for the different classes with more supply, sources and
sinks, given as in Raith and Ehrgott, 2009.

Name n m Sources Sinks Supply Transhipment sources Transshipment sinks

N01 20 60 9 7 90 4 3

N04 40 120 18 14 180 9 7

N07 60 180 27 21 270 14 10

N12 80 400 35 38 350 17 14

(YS) yield better representations than the extreme supported points (YES). It is worth
emphasizing that even a maximum arc capacity of 100 is still relatively small in practical
terms, suggesting that these observed trends could be even more pronounced in larger,
real-world networks.

Based on the findings presented in Table 5.7, it can be observed that even in higher
dimensions, where the number of nondominated points increases significantly, the perfor-
mance metrics remain relatively stable. Both the ratios of supported to total nondomi-
nated points and the hypervolume ratios show only minimal variation. While there is a
slight increase in the coverage error for the sets YS with increasing dimension, it remains
relatively small, with a mean value of just 0.061 even in the case of p = 5. These obser-
vations suggest that the effectiveness of supported nondominated points as high-quality
representations persists even in higher-dimensional settings.

As shown in Table 5.8, where different levels of cost correlation ` are considered, it can
be observed that as the correlation level increases, the number of nondominated points
decreases, while the ratio of supported nondominated points to the total set steadily in-
creases. This indicates that higher correlation among objectives tends to simplify the
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Table 5.11: Numerical results for bi-objective instances with more supply, sinks, and
sources. The classes are similar to the one from Raith and Ehrgott [2009].
The classes again contain 15 instances.

Class p = 2 |YN | |YS | |YES |
|YS |
|YN |

|YES |
|YN |

HVR(YS) HVR(YES) CE(YS) CE(YES)

N01 min 29.0 19.0 7.0 0.068 0.02 0.948 0.805 0.023 0.098
max 353.0 54.0 18.0 0.655 0.31 0.999 0.98 0.084 0.361
mean 162.867 33.867 12.267 0.258 0.098 0.988 0.918 0.043 0.174

N04 min 120.0 30.0 15.0 0.103 0.033 0.99 0.933 0.021 0.068
max 819.0 91.0 30.0 0.271 0.133 0.997 0.982 0.051 0.274
mean 388.533 58.4 22.4 0.175 0.069 0.993 0.965 0.029 0.115

N07 min 452.0 66.0 33.0 0.08 0.03 0.993 0.973 0.018 0.048
max 1455.0 117.0 49.0 0.195 0.086 0.996 0.987 0.03 0.124
mean 736.067 85.2 40.067 0.123 0.058 0.995 0.982 0.023 0.073

N12 min 1192.0 96.0 65.0 0.063 0.034 0.995 0.984 0.01 0.028
max 2577.0 188.0 95.0 0.099 0.059 0.998 0.995 0.023 0.06
mean 1895.533 142.867 79.667 0.076 0.043 0.997 0.992 0.017 0.045

Table 5.12: Numerical results for same instances as in Table 5.12 but with 3 objectives.
The class again contain 15 instances.

Class p = 3 |YN | |YS | |YES |
|YS |
|YN |

|YES |
|YN |

HVR(YS) HVR(YES) CE(YS) CE(YES)

N01 min 512.0 159.0 28.0 0.075 0.009 0.983 0.828 0.072 0.122
max 8443.0 769.0 125.0 0.311 0.055 0.998 0.971 0.262 0.262
mean 3647.467 438.933 60.4 0.154 0.022 0.991 0.915 0.119 0.209

structure of the Pareto front, making it easier to represent the solution set through sup-
ported nondominated points. Notably, for ` = 3 the supported points constitute the dom-
inant share of the nondominated set across all instance classes, and in many cases only
very few nonsupported solutions remain. Hence, at high correlation levels, the Pareto
front becomes almost entirely supported, implying that weighted-sum scalarization can
capture most of the front with only minor loss of accuracy. These findings highlight the
significant impact of objective correlation on the complexity of multi-objective solution
spaces and confirm that highly correlated objectives lead to more other types of Pareto
fronts. For each correlation level `, the supported nondominated points reach an almost
complete hypervolume approximation and small coverage errors, while maintaining com-
paratively low coverage errors, underlining their suitability as compact representatives of
the full nondominated set.

Based on the results presented in Table 5.9, several observations can be made. Across
all instance classes, the mean values of OCER(YS) range from approximately 0.491 to
0.74, indicating that the supported nondominated points achieve a large fraction of the
optimal coverage attainable with the same number of points. This confirms that supported
solutions provide a strong and reliable coverage-oriented approximation of the Pareto
front. In contrast, the mean values of OCER(YS) are clearly lower. This suggests that
instead of considering only extreme supported points, it may be beneficial to include other
nondominated points to enhance representation quality.
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For the test classes N01, N04, N07, and N12, Table 5.11 and Table 5.12 show that, as
expected, the number of nondominated points increases when the total amount of supply,
source nodes, and sink nodes is increased. The instances with three objectives illustrate
more significantly the rapid growth in the number of nondominated points. For instance,
the mean number of nondominated points for N01 was about 3647.5, while for N04, the
mean increased drastically to 37,100.53 across the 15 instances, which is already more than
twenty times larger than the mean of 162.9 observed for N01 in the bi-objective setting.
This increase in nondominated points made the computation for the remaining classes,
N07 and N12, computationally too demanding.

Additionally, as anticipated, the ratio of noticeably |YS |/|YN | is smaller compared to
the ratios observed in the previous test classes. The mean ratio across all four problem
classes ranges only from 0.076 to 0.258, indicating that the supported set represents a
comparatively small fraction of all nondominated solutions. However, despite this lower
ratio, YS still provides high-quality representations. In the bi-objective cases shown in Ta-
ble 5.11, the mean of HVR(YS) is 99.3%, and the mean coverage error remains minor at
0.028. This indicates that YS represents the solution set with high quality, maintaining
a near-perfect hypervolume and low coverage error, even when it represents only a small
subset of it.

Interestingly, while HVR(YES) increases to 96.4% in these instances, it remains smaller
than that of YS . The mean coverage error for YES 0.102, which is about 3.6 larger than
the coverage error for YS . These results suggest that even in instances with higher supply
and more complex data structures, where the ratio of supported nondominated points is
quite small, YS still represents the solutions at a very high quality. The high hypervolume
ratio and minimal coverage error demonstrate that YS remains superior to YES as a
representation.

Thus, even when the problem instances become more complex, with an increasing num-
ber of nondominated points and smaller ratios, the representation provided by YS remains
highly effective and reliable, with HVR(YS) close to 1 and a minimal coverage error.

In total, the results demonstrate that supported nondominated points YS consistently
yield high-quality representations across all considered instances, especially in network
settings with higher arc capacities. Unlike the extreme supported subset YES , which
performs well in binary problems, YS significantly outperforms in terms of hypervolume
and coverage error when the problem complexity increases. These findings highlight that
the structural properties of the network, such as sparsity, arc capacity, and cost correlation,
strongly influence the representation quality, with YS adapting much better across diverse
scenarios. Thus, supported nondominated points provide a robust representation even in
high-dimensional or densely structured MOIMCF problems.

5.4 Conclusion

The key finding of this chapter is the role of supported nondominated points as high-quality
representations of the complete nondominated point set in MOIMCF. Across various test
instances, supported solutions consistently demonstrated superior representational quality,
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as measured by hypervolume ratio and coverage error. For all instances, the hypervolume
ratio of the supported nondominated points as representations always are close to one
and provides minor coverage errors. In contrast, extreme supported nondominated points
yielded significantly lower quality measures, notably as arc capacities increased. Unlike the
extreme supported subset YES , which performs well in binary problems, YS significantly
outperforms in terms of hypervolume and coverage error when the problem complexity
increases. These findings highlight that the structural properties of the network, such as
sparsity, arc capacity, and cost correlation, strongly influence the representation quality,
with YS adapting much better across diverse scenarios. Thus, supported nondominated
points provide a robust representation even in high-dimensional or densely structured
MOIMCF problems.

Beyond their representational advantages, the supported nondominated are generally
more straightforward to compute than nonsupported ones and can serve as a foundation
for two-phase methods. Although supported nondominated points provide high-quality
representations, their number can still be numerous and sometimes constitute a signif-
icant part of the complete nondominated point set in MOIMCF problems. Future re-
search could explore whether a strategically chosen subset of the supported nondominated
points, potentially derived from intermediate solutions, could provide sufficiently high-
quality representations while reducing computational effort. However, as indicated by the
mean values of OCER(YS), adding unsupported nondominated points might sometimes
be beneficial instead of supported ones. Hence, new general representation methods for
MOIMCF problems could be of interest.

Additionally, it would be valuable to investigate whether strategically chosen nonsup-
ported nondominated points might enhance the representation quality. As observed in bi-
nary problems like the binary knapsack and binary MOIMCF, extreme supported nondom-
inated points alone already provide high-quality representations. It would be particularly
interesting to evaluate the effectiveness of extreme supported or supported nondominated
points in other MOCO problems, especially other network flow problems, and to derive
criteria for identifying when supported nondominated points are necessary for high-quality
representations or whether extreme supported nondominated points are sufficient.
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6 Finding all Minimum Cost Flows

This Chapter addresses the problem of determining all optimal integer solutions of a linear
integer network flow problem, referred to as the all optimal integer flow (AOF) problem.
An algorithm with a time complexity of O(|F |(m+ n) +mn+ ζ) is derived to determine
the set F of all optimal integer flows in a directed network with n nodes and m arcs, where
ζ represents the time required to find a single minimum cost flow.

It is worth noting that if the well-known method presented in Hamacher [1995] for
finding the k best integer flows is stopped at the first sub-optimal flow, the resulting
algorithm for solving the AOF problem has a running time of O(|F |m(n log n+m) + ζ).
Our improvement is essentially made possible by replacing the shortest path sub-problem
with a more efficient way to determine a so-called proper zero cost cycle using a modified
depth-first search technique.

Additionally, the analysis provides an enhanced algorithm for determining the k best
integer flows, which runs in O(kn3 + ζ). Furthermore, lower and upper bounds for the
number of all optimal integer and feasible integer solutions are established based on the
fact that any optimal solution can be derived from an initial optimal tree solution com-
bined with a conical combination of incidence vectors of all induced cycles with bounded
coefficients.

The results in this Chapter were obtained in collaboration with Daniel Schmidt and
Christane Spisla and have been published in Könen et al. [2022a]. Note that some ideas
in this chapter are also based on Könen [2019].

6.1 Introduction

Being a fundamental and abstract model, minimum cost flows tend to ignore certain
aspects of applications. For instance, drawing a planar graph on a rectangular grid with a
minimum number of edge bends can be modeled as a minimum cost flow problem [Battista
et al., 1998; Mendonça Neta et al., 2012; Jünger and Mutzel, 2004]. The result of this bend-
minimization process affects indirectly and not predictably other properties of the final
drawing, like the drawing area, the aspect ratio, or the total edge length. Consequently,
different minimum cost flows can yield graph drawings all, with the minimum number of
bends but completely different appearances.

The above criteria (and others) define the readability and goodness of a drawing, but
eventually, whether a given drawing is good lies in the eye of the beholder. In situations
like these, devising algorithms is a non-trivial task; particularly if no formal model for
adherence exists and recognizing suitable solutions is up to the user. Here, a quick hands-
on answer is to enumerate all minimum cost flows, i.e., all possibilities for a bend minimal
drawing, and let the user decide on the details.
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Christofides and Valls [1986] proposes an algorithm that enumerates all basic integer
minimum cost flows. However, the algorithm may enumerate the same solution multiple
times, prompting the need for a more efficient enumeration procedure. Here, the best we
can hope for is an algorithm whose worst-case running time is polynomial in n,m and the
number of enumerated flows, which generally, might be exponential in n and m. To ensure
that each solution is only enumerated once, Hamacher [1995] proposes a binary partition
approach and considers the k best integer flow problem: If f1, f2, . . . are all feasible flows
in some order of non-decreasing cost, Hamacher’s algorithm will return f1, . . . , fk in time
O
(
km(n log n + m) + ζ

)
, where ζ is the time needed to find one minimum cost flow.

Sedeño-Noda and Espino-Mart́ın [2013] propose another algorithm with the same running
time but a reduced memory space requirement of O(k +m). Both algorithms essentially
reduce to solving O(km) shortest path problems.

This chapter proposes an algorithm that finds all |F | many optimal integer flows, i.e.,
all minimum cost flows, in output-polynomial time O(|F |(m + n) + mn + ζ), where F is
the set of all optimal flows. Notably, stopping Hamacher’s (or Sedeño-Noda and Espino-
Mart́ın’s) algorithm at the first sub-optimal flow results in an algorithm with a running
time of O(|F |m(n log n+m)+ ζ). The key improvement here lies in replacing the shortest
path sub-problem with a more efficient method for identifying a proper zero cost cycle
using a modified depth-first search technique.

While alternative solutions play a pivotal role in multi-objective optimization, we will
demonstrate how the resulting algorithm facilitates the identification of solution sets within
this framework. It is a crucial part in the Algorithm to determine all supported efficient
solutions which will be presented in Section 7.2.

In addition to the primary algorithm, this chapter presents an enhanced algorithm for
the k best flow problem, running in O(kn3 + ζ), with the same space requirements as
Hamacher’s algorithm and compatible with Sedeño-Noda and Espino-Mart́ın’s improve-
ments.

The relevance of finding all optimal (or the k best) solutions extends to various combina-
torial optimization problems across different applications, as detailed in Hamacher [1995].
The determination of the k best flows has numerous applications, such as dynamic lot
size problems [Hamacher, 1995], multi-objective minimum cost flow problems [Hamacher
et al., 2007b], and solving minimum cost flow problems with additional constraints [Yan
and Tu, 2002]. Further examples of the practical importance of identifying alternative
optimal solutions can be found in Galle [1989] and Baste et al. [2019].

The organization of the chapter is as follows: Section 6.2 begins by introducing the
problem and most important definitions for the subsequent chapters. Section 6.3 takes
a given minimum cost flow and shows how to obtain another one with a modified DFS
based procedure, while Section 6.4 presents the algorithm for the all optimal flow prob-
lem. Section 6.5 uses the algorithm to derive a procedure for the k best flow problem.
Finally, upper and lower bounds on the number of feasible and optimal flows are discussed
in Section 6.6.
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Figure 6.1: Example of an augmentation on a 0-cycle with one unit. (a) Graph D, the
arcs of which are labeled with (fij , uij , cij). Here, the lower bound lij = 0 for
all arcs (i, j) ∈ A. The 0-cycle CD is marked in yellow. (b) The residual graph
Df with cij(f) as arc labels and the cycle C ⊂ Df in yellow, where CD is the
equivalent cycle in D. (c) The graph D with new flow values f ′ = f + χ(C).

6.2 Problem Definition and Notation

Definition 6.1. The all optimal integer flow problem (AOF problem) consists of deter-
mining all integer flows which are optimal.

After Property 2.66 it holds, that two feasible integer flows only differ on directed cycles
in the residual graph, i.e., if f and f ′ are two feasible integer flows, then it holds:

f ′ = f +
k∑
j=1

λjχ(Cj),

c(f ′) = c(f) +
k∑
j=1

λjc(f, Cj)

for directed cycles C1, . . . , Ck in Df and integers λ1, . . . λk > 0. In particular, two optimal
integer flows f and f ′ can only differ on directed cycles Cj in Df with zero cost.

Definition 6.2. A 0-cycle is a zero cost cycle C ⊂ Df , i.e., a cycle C ⊂ Df with
c(f, C) = 0. We call a 0-cycle C ⊂ Df proper if for all arcs (i, j) ∈ C we have (j, i) 6∈ C.

Then, obtaining a second optimal flow seems to be very simple: Identify a 0-cycle C ⊂ Df

and augment f along C by λ as defined above, i.e., f ′ = f +λχ(C) (see, Figure 6.1 for an
example).
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Unfortunately, augmenting f along a 0-cycle C does not necessarily yield a different
flow f ′; for instance, we have f = f ′ if we augment along C = ((i, j), (j, i)). In order to
avoid this technical problem, we only consider proper 0-cycles C ⊂ Df .

In the exposition of this thesis, we assume that D contains no anti-parallel arcs, i.e., if
(i, j) ∈ A then (j, i) /∈ A, to avoid any confusion with the notation. However, the only
difficulty with multiple arcs between a pair of nodes is to keep track of the relation that
links residual arcs with original arcs, which can be done as mentioned in Sedeño-Noda and
Espino-Mart́ın [2013]. It is straightforward to modify the algorithms in further sections to
deal with graphs that contain multiple arcs between a pair of nodes. Note that a proper
cycle is then defined as a cycle C that does not contain a pair of symmetric arcs, i.e.,
{(i, j), (j, i)} ∈ Df where both refer to the same arc (i, j) ∈ D. After Property 2.69 it
holds, that the cost of a cylce C in Df

c(f, C) = c(f, C).

Therefore, it makes no difference whether we search for cycles in Df with zero cost or
zero reduced cost. Again we assume that any node potential π is optimal, i.e., satisfying
the complementary slackness optimality conditions and thus satisfying cij(f) ≥ 0 for all
(i, j) ∈ Df .

6.3 Getting From one Minimum Cost Flow to Another

The idea behind the algorithm presented in Section 6.4 is to find proper 0-cycles efficiently.
For this purpose, we will reduce the network D. To do so we will use a well-known property
about the arcs in a proper 0-cycle. This result will help us reduce the network and obtain a
flow problem in which every feasible solution will yield an optimal solution for the original
MCF problem.

The following property is well-known (see, e.g., Christofides and Valls [1986] and Calvete
and Mateo [1996]).

Property 6.3. Let f and f ′ be two optimal integer flows. Then, f and f ′ only differ on
arcs with cij = 0. Or, in other words, if fij 6= f ′ij then cij = 0.

Let X := {(i, j) ∈ A : cij 6= 0} be the set of arcs with non-zero reduced cost. We may
remove all arcs in X and obtain a reduced network. However, it may be that the arcs in
X carry flow. Consequently, we have to adjust the demand vector accordingly to maintain
a feasible flow. Consider the reduced network D′ = (V,A′) with A′ = A\X and new flow
balance values b′i = bi−

∑
(i,j)∈X fij +

∑
(j,i)∈X fji. We can easily limit any feasible flow in

D to a feasible flow in D′ by simply adopting all flow values. For a flow f ∈ D, we always
refer by f ∈ D′ to the reduced flow where all flow values are copied for all arcs a ∈ A′.
We denote by Γ′ the set of all feasible integer flows of the reduced network D′. The fact
that there is only a finite number of flows in Γ′ follows from the assumption that there is
no arc (i, j) with uij =∞. For a feasible solution f ′ ∈ Γ′, we define

f∗(a) =

{
f ′(a), if a ∈ A′,
f(a), if a ∈ X.
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The next Lemma demonstrates how every optimal flow in D can be obtained from the
combination of an initial optimal flow and some feasible flow in D′.

Lemma 6.4. Let f be an optimal integer solution. If f ′ is a feasible integer solution in
D′ and f∗ is defined as above, then f∗ is an optimal solution in D and vice versa.

Proof.

f ′ is feasible in D′

⇐⇒ f and f ′ differ on a set of cycles in D′f (Property 2.66)

⇐⇒ f and f ′ differ on a set of cycles in D′f

with reduced cost equal to zero (Definition of D′)

⇐⇒ f and f∗ differ on a set of cycles in Df

with reduced cost equal to zero (cycles in D′f also exist in Df )

⇐⇒ f∗ is optimal (Optimal flows only differ

on zero cycles and Property 2.69)

Given a feasible flow f in D′, we can compute another feasible flow by finding a proper
cycle in the residual network of D′. Therefore, we can determine an additional optimal
flow in D by finding a proper cycle in D′f instead of finding a proper 0-cycle in Df . This
gives us the following theorem:

Theorem 6.5. Let f be an optimal integer flow. Then every proper cycle in D′f induces
another optimal integer flow in D.

Proof. Any cycle in D′f has zero cost in Df .

We now show that we can determine such a proper cycle with the following depth-first
search (DFS) technique. Recall the different arc types in a directed DFS-forest. Tree arcs
are the arcs in the trees of the DFS-forest. Backward arcs are the arcs (i, j) connecting
a vertex i to an ancestor j in the same DFS-tree. Non-tree arcs (i, j) are called forward
arcs if the arc connects a vertex i to a descendant j in the same DFS-tree. All other arcs
are called cross arcs.

In order to find a proper cycle in D′, let Γ be a DFS-forest of D′. Recall that πi is
the predecessor of node i ∈ T ⊆ Γ and dfs(i) denote the DFS number (compare discovery
time in Cormen et al. [2001]) of node i, i.e., the number when node i is visited during the
DFS process. There cannot exist a cross arc (i, j) with dfs(i) < dfs(j), i.e., a cross arc
from a node i that is visited before the arc’s sink node j. In other words, if we assume
that the children of each node are drawn from left to right and the different trees of the
DFS-forest are also drawn from left to right, a cross arc always goes from the right to the
left. Therefore, there can be cross arcs connecting two different trees of the DFS-forest,
but those arcs can never be included in a cycle. Then the following nice property hold.:
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Figure 6.2: (a) The residual graph with a proper cycle marked in yellow and (b) the
corresponding DFS tree with the proper backward cycle.

(a) (b)

Figure 6.3: Proper cycles in a tree of Γ without containing a long backward arc. (a) A
proper forward cycle and (b) a proper cross cycle.

Property 6.6 (Cormen et al., 2001). Each cycle C in D contains at least one backward
arc and no cycle can contain an arc connecting two different trees of Γ, i.e., there is no
arc (i, j) ∈ C with i ∈ Tl and j ∈ Tk for Tl, Tk ∈ Γ with k 6= l.

We call a backward arc (i, j) with πi 6= j a long backward arc. Otherwise, we call it a
short backward arc. If there exists a long backward arc, we immediately have determined
a proper cycle formed by the long backward arc (i, j) and the distinct path from j to
i in T (see Figure 6.2). However, even without the existence of such a backward arc,
there can exist proper cycles, possibly containing a forward or a cross arc. See Figure 6.3
for examples. However, every proper cycle contains at least one cross, forward or long
backward arc.

Definition 6.7. Let Γ be a DFS-forest of a directed graph D. A proper backward cycle
in D is a proper cycle which is formed by a long backward arc (i, j) and the unique path
from j to i in the corresponding tree T .
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A proper forward cycle in D is a proper cycle formed by a forward arc (i, j) and the path
from j to i only consisting of short backward arcs.
A proper cross cycle in D is a proper cycle formed by a cross arc (i, j), the path from a
to i in the tree T , where a is the first common ancestor of the nodes i and j in T , and the
path from j to a only consisting of short backward arcs.

Figure 6.2 and Figure 6.3 show examples of the above definitions. In the next step, we
will show that it is enough to search only for these kinds of proper cycles to detect one
proper cycle.

Lemma 6.8. If there exists a proper cycle in D′f , then there also exists a proper backward,
forward or cross cycle.

Proof. Let C be a proper cycle in D′f . We know that every cycle contains at least one
backward arc and cannot contain arcs connecting different trees of the forest.

Case 1: There is at least one long backward arc in C. In this case, we have a proper
backward cycle.

Case 2: There is no long backward arc in C, but at least one cross arc. To simplify, we can
replace all forward arcs by tree arcs so that our cycle has only cross arcs, tree arcs
and short backward arcs. Now, let l be the node with the least depth in C and let C
start with node l. Further, let (i, j) be the last used cross arc in C. We want to show
that a path made from short backward arcs from j to the lowest common ancestor a
of i and j exists in the DFS-forest. Then, together with the tree arcs-path from a to
i, we have a proper cross cycle. Since (i, j) is the last cross arc in C before returning
to l, we have a path from j to l only consisting of short backward arcs. Suppose that
a has less depth than l. It follows that i is in a different sub-tree than the one rooted
at l. To get from l to i, cycle C must contain a cross arc leading to the sub-tree of
i, because in C we cannot change sub-trees by going up the tree above the depth
of l. The definition of cross arcs gives us dfs(i) < dfs(l) and dfs(j) < dfs(i) and we
have dfs(l) < dfs(j) because of the backward arcs-path from j to l – a contradiction.
So a must have a greater or equal depth than l and therefore is reachable from j by
short backward arcs.

Case 3: The cycle C contains no long backward arcs, no cross arcs but at least one forward
arc. The only other kinds of arcs left are tree arcs and short backward arcs. Cycle
C must contain short backward arcs, especially the ones from the sink of a forward
arc to its source to close the cycle. Thus, we have at least one proper forward cycle.
In fact, C cannot contain tree arcs since it is proper and we have no long backward
arcs.

6.4 The All Optimal Integer Flow Algorithm

This section presents an algorithm that, given an initial optimal integer solution f to the
MCF, determines the set F of all optimal integer flows in O(|F |(m+n)+mn) time. First,
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we specify how to find an optimal flow different from the given one. Then, we show how
we can partition the solution space of the AOF problem in D, given two optimal solutions.
This gives us two smaller AOF problems and, recursively, we can find all optimal integer
flows.

First, we provide an algorithm to determine a second feasible flow by determining one
proper cycle of the aforementioned kinds. Herefore, we define a variable SBAlow(i) for
each node i ∈ V in the DFS-forest defined as the dfs number of the node closest to the
root reachable from i only using short backward arcs. We may compute the SBAlow value
analogously to the lowpoint as in Hopcroft and Tarjan [1973] during the DFS-procedure:
Whenever the DFS visits a node i, we check whether there is a short backward arc (i, πi). If
so, we set SBAlow(i) = SBAlow(πi); otherwise, SBAlow(i) = dfs(i). With these variables,
we can quickly check if a path exists that only consists of short backward arcs from one
node to another. This will help us to decide if proper forward or cross cycles exist.

We use Lemma 6.8, which guarantees that if any proper cycle exists, there is either a
proper forward, backward or cross cycle. Therefore, it suffices to check for these three
kinds of cycles only. If one long backward arc exists, we have already determined a proper
backward cycle. For any forward arc (i, j), we test if a path from j to i exists only
containing short backward arcs by checking if SBAlow(j) ≤ dfs(i). In this case, we know
that there exists a path from j to i only consisting of short backward arcs, and hence
we have determined a proper forward cycle. For any cross arc (i, j) we have to test if
SBAlow(j) ≤ dfs(a), where a is the first common ancestor of i and j. If so, we know
that a path from j to a exists only containing short backward arcs. In this case, we have
determined a proper cross cycle. The following Algorithm 7 determines a proper cycle if
one exists and in this case returns a second feasible solution.

Lemma 6.9. Given a feasible integer flow f in D, Algorithm 7 determines another feasible
integer flow different from f in time O(m+ n) or decides that no such flow exists.

Proof. The algorithm finds one proper backward, forward or cross cycle, if one exists, and
therewith constructs a feasible flow distinct from f . The correctness follows from Theo-
rem 6.5 and Lemma 6.8.

We can create the residual network and a DFS-forest in time O(m+n). Determining the
kinds of arcs (tree, forward, backward or cross arcs) can also be accomplished in O(m+n)
time: During the computation of the DFS-forest, we mark all tree arcs. If for a non-tree
arc (i, j) we have dfs(i) < dfs(j), then (i, j) is a forward arc. Otherwise, we check the
lowest common ancestor of i and j. If it is j, we have a backward arc, otherwise (i, j) is a
cross arc. The lowest common ancestor queries can be answered in constant time provided
a linear preprocessing time [Harel and Tarjan, 1984]. The determination of the SBAlow
values can also be accomplished during the DFS-procedure in O(m+ n) time.

Let m = m1 ∪̇m2 ∪̇m3 ∪̇m4 be a partition of m, where m1 are all tree arcs, m2 all
backward arcs, m3 all forward arcs and m4 all cross arcs in the DFS forest. We test for
all backward arcs (i, j) in O(1) time whether πi 6= j. In this case, we encounter a long
backward arc and we need additional O(n) time to create the proper backward cycle Cij
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Algorithm 7: FindAnotherFeasibleFlow

Data: feasible flow f in D
Result: Another feasible flow f ′ with f ′ 6= f , if one exists.

1 Df ← BuildResidualNetwork(D)
2 Γ← BuildDFSForest(Df ) // Also determines all SBAlow values

3 Preprocess(Γ) // Determine forward, backward and cross arcs

4 for all backward arcs (i, j) do
5 if πi 6= j then

// (i, j) is long backward arc

// Build cycle from backward arc and j-i tree path

6 Cij ← proper backward cycle (i, j) + j-i tree arcs path
7 f ′ ← f + χ(Cij)
8 return f ′

9 for all forward arcs (i, j) do
10 if SBAlow(j) ≤ dfs(i) then

// Build cycle from forward arc and j-i short backward arcs path

11 Cij ← proper forward cycle (i, j) + Pji
12 f ′ ← f + χ(Cij)
13 return f ′

14 for all cross arcs (i, j) do
15 a← LowestCommonAncestor(i, j)
16 if SBAlow(j) ≤ dfs(a) then

// Build cycle from cross arc and j-i short backward arcs path

17 Cij ← proper cross cycle (i, j) + Pja + a-i tree arcs path
18 f ′ ← f + χ(Cij)
19 return f ′

// No cycle found and therefore no other flow

20 return null
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Algorithm 8: FindAnotherOptimalFlow

Data: optimal flow f in D and the reduced costs c
Result: Another optimal flow f∗ with f∗ 6= f , if one exists.

// Reduce network

1 D′ ← D
2 A′ ← {(i, j) ∈ A | cij = 0}
3 b′ ← AdaptDemandVector(f , D′)

4 f ′ ← FindAnotherFeasibleFlow(f , D′)
5 if f ’ = null then Stop
6 for all arcs a ∈ D do
7 if a ∈ A′ then f∗(a)← f ′(a)
8 else f∗(a)← f(a)

9 return f∗

and adapt the flow. So, we need O(m2) time for all backward arcs. For a forward arc,
we also test in time O(1) if SBAlow(j) ≤ dfs(i). Overall, we need O(m3) time for all
forward arcs. As discussed before, the construction of a possible proper forward cycle and
the returned flow take O(n) time. We also check if SBAlow ≤ dfs(a) in O(1) time for
cross edges. The lowest common ancestor a is determined in O(1) time. Again, a proper
cross cycle and the flow f ′ can be created in O(n) time. Altogether, we have a run time
of O(m2) + O(m3) + O(m4) + O(n). The last term corresponds to the construction of
Cij and f ′. Thus, the algorithm determines another feasible integer flow in O(n + m) or
decides that none exists.

However, there is no need to first build the DFS-forest and then test if a proper cycle exists
for the different arc sets. We may also integrate all checks during the DFS-procedure,
ending with a probably faster algorithm in practice. We choose the presented formulation
of Algorithm 7 for better readability.

Next we describe how we use Algorithm 7 to determine another optimal flow in a
network. Due to Lemma 6.4, any feasible flow in the reduced network D′ is an optimal
flow in D. Therefore, we only need to reduce the network and compute a second feasible
flow to determine another optimal flow different from an initial optimal flow. Algorithm 8
follows this procedure.

Lemma 6.10. Given an initial optimal integer flow f in D and the reduced costs c, Al-
gorithm 8 determines another optimal integer flow different from f in O(m + n) time or
decides that no such solution exists.

Proof. The algorithm reduces the network D following the description from the paragraph
prior to Lemma 6.4. Thereafter, it computes another feasible flow f ′ in the reduced
network given an optimal flow f in D, which is naturally feasible in D′. Then, f ′ can be
transformed into another optimal flow f∗ in D. The correctness of Algorithm 8 follows
from Lemma 6.4.
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Algorithm 9: FindAllOptimalFlows

Data: optimal flow f in D and the reduced costs c
Result: All optimal integer flows in D

1 f∗ ← FindAnotherOptimalFlow(f , c, D)
2 if f∗ = null then Stop

3 Print(f∗)
// Partition solution space and find new optimal flow

4 a← arc a with f(a) 6= f∗(a)
5 if f(a) < f∗(a) then
6 FindAllOptimalFlows(f , c, D) with ua = f(a)
7 FindAllOptimalFlows(f∗, c, D) with la = f(a) + 1

8 else
9 FindAllOptimalFlows(f , c, D) with la = f(a)

10 FindAllOptimalFlows(f∗, c, D) with ua = f(a)− 1

We can reduce the network in O(m) time, and due to Lemma 6.9, determine another
feasible flow in the reduced network in O(m′ + n) time using the initial flow f as input.
Here, m′ denotes the number of arcs in D′. Therefore, we can find another optimal solution
in time O(m+ n) or decide that none exists.

Since we can compute a second optimal flow in D, we can now apply the binary partition
approach as used in Hamacher [1995] or Sedeño-Noda and Espino-Mart́ın [2013]. Let F
be the set of optimal flows in D, which we also call the optimal solution space, and let
f1, f2 ∈ F . Algorithm 9 determines all optimal flows, by recursively dividing F into F1 and
F2 such that f1 and f2 are optimal flows in F1 and F2, respectively, and then seeks more
flows in F1 and F2. This can easily be done by identifying some arc (i, j) with f1,ij 6= f2,ij .
Such an arc must exist since f1 6= f2. Assume w.l.o.g. that f1,ij < f2,ij . We set

F1 := {z ∈ F : zij ≤ f1,ij}

and
F2 := {z ∈ F : zij ≥ f1,ij + 1}.

This partitioning implies that each of the new minimum cost flow problems is defined in
a modified flow network with an altered upper or lower capacity of a single arc (i, j). By
dividing the new solution spaces again until no more other optimal flow exists, all optimal
solutions are found, whose number we denote by |F |. Our main result follows:

Theorem 6.11. Given an initial optimal integer solution f and the reduced costs c, Algo-
rithm 9 solves the AOF problem in O(|F |(m+ n)) time, where F is the set of all optimal
integer flows.

Proof. In each recursive call of Algorithm 9, a new optimal integer flow different from
the input one is found if one exists. Now let Fi be the current optimal solution space in
an algorithm call and let Fj and Fk be the optimal solution spaces of the two following
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calls. Every optimal flow is found since Fi = Fj ∪ Fk and no flow is found twice because
Fj ∩ Fk = ∅.

We will now show that we need O(|F |) calls of Algorithm 9 to find all optimal integer
flows. We associate each algorithm call with one optimal flow. If we find another optimal
solution, we associate this call with the newly found flow. Otherwise, we associate the call
with the input flow. Because each flow induces exactly two more calls, there are at most
three calls associated with one optimal flow. The primary time effort of Algorithm 9 is the
computation of another optimal flow (Algorithm 8), which takes O(m + n) time. We do
not have to determine the reduced cost again, since changing the flow value on arcs with
zero reduced cost maintains their reduced costs. So in total, we solve the AOF problem
in O(|F |(m+ n)) time.

6.4.1 Remarks

The initial optimal integer flow may be obtained by using, for example, the network
simplex algorithm or the enhanced capacity scaling algorithm [Ahuja et al., 1993; Orlin,
1993]. The latter determines an optimal flow in O((m log n)(m+n log n)), i.e., in strongly
polynomial time Orlin [1993].

Since we can compute the node potential as described in Section 2.5.2 by a shortest
path problem in Df , possibly containing arcs with negative cost, we need O(mn) time to
determine the nodes’ potentials. Given these potentials, we can determine the reduced
costs in O(m) time. Then, an algorithm for the determination of all |F | many integer
flows needs O(|F |(m+ n) +mn) time.

Using the network-simplex algorithm yields a so-called basic feasible solution in which
an optimal node potential can be obtained in O(n) time (see Ahuja et al. [1993]). Then, an
algorithm for the determination of all |F |many integer flows reduces toO(|F |(m+n)) time.
Sedeño-Noda and Espino-Mart́ın introduce techniques in Sedeño-Noda and Espino-Mart́ın
[2013] to reduce the memory space of the partitioning algorithm. With these techniques,
it is possible to implement Algorithm 9 to run in space O(|F |+m). Furthermore, it is not
necessary to reduce the graph at each call of Algorithm 8. Instead, it is sufficient to reduce
the network D once in the beginning and to determine all feasible solutions in the same
network D′ because arcs with zero reduced cost maintain their reduced costs. However,
this does not affect the asymptotical running time. We shall use this implementation
of Algorithm 8 in the next chapter. The algorithm may also be used to determine all
circulations, all feasible flows and all s-t flows with given value φ since these flow problems
may be transformed into each other.

6.5 Improved Running Time for the k-Best Flow Problem

In the present section, we will improve the k best flow algorithm by Hamacher [1995] and
derive a new one with running time O(kn3) or O(k(n2 log n + mn)) for sparse graphs,
instead of O(k(mn log n+m2)).
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Definition 6.12 (Sedeño-Noda and Espino-Mart́ın, 2013). The k best integer flow (KBF)
problem consists of determining the k best integer solutions of the MCF problem. In other
words, identifying k different integer flows fi with i ∈ {1, . . . , k} such that c(f1) ≤ c(f2) ≤
· · · ≤ c(fk) and there is no other integer flow fp 6= fi with i ∈ {1, . . . , k} with c(fp) < c(fi).

As in Hamacher’s algorithm [Hamacher, 1995], we want to determine a second optimal
flow by determining a proper cycle of minimal cost. Using results from the previous
sections, we can find this cycle more efficiently. Recall that we obtain a second-best flow
by augmenting an optimal flow over a proper minimal cycle with one flow unit. After this,
we will use the binary partition approach, as presented in Hamacher [1995] or Sedeño-Noda
and Espino-Mart́ın [2013].

Hamacher introduces an idea to improve the average complexity of his algorithm: Let
D = (dji) be the distance table of Df concerning c(f), i.e., dji is the length of the shortest
path Pji from j to i in Df with length c(f, Pji). The distance table may be computed in
time O(n3) using the Floyd-Warshall algorithm or in time O(n2 log n+mn) by (essentially)
repeated calls to Dijkstra’s algorithm; the latter is more efficient on sparse graphs.

Definition 6.13 (Hamacher, 1995). We define a proper (i, j)-cycle C ∈ Df as a proper
cycle that contains the arc (i, j). In addition, a proper (i, j)-cycle C ∈ Df is called minimal
if it has minimal cost overall proper (i, j)-cycles.

Hamacher shows the following property for proper minimal (i, j)-cycles:

Property 6.14 (Hamacher, 1995). For any arc (i, j) ∈ Af with (j, i) /∈ Af , i.e., for any
arc with no anti-parallel arc in Af , the cost of a proper minimal (i, j)-cycle C ∈ Df is
given by c(f, C) = cij(f) + dji.

When using Hamacher’s idea, the problem is that it only applies to arcs with no anti-
parallel arc in Af . For all other arcs, the cost of the corresponding proper minimal (i, j)-
cycle has to be computed by finding a shortest path in Df \{(j, i)}. In the following result,
we show that we can use the previously obtained Algorithm 9 and the complementary
slackness optimality conditions (Theorem 2.71) of an optimal solution to overcome this
problem and restrict ourselves to consider only arcs with no anti-parallel arcs in Df .

Lemma 6.15. Given an initial optimal integer flow f , Algorithm 10 determines a second-
best flow in O(n3) time or decides that no such flow exists.

Proof. Let f be an optimal integer solution. Assume that there exists another optimal
solution f ′ in D. Then Df contains at least one proper 0-cycle. Since we can compute one
proper 0-cycle with Algorithm 8 by Lemma 6.10, we can determine a second-best integer
flow.

So assume that there exists no other optimal flow different from f . Let C be a minimal
proper cycle. No proper 0-cycle can exist in Df due to Theorem 6.5. So c(C, f) > 0,
because there cannot be a cycle with negative costs due to the negative cycle optimality
conditions. Therefore, there exists an arc (i, j) ∈ C with cij(f) > 0. Since f is an optimal
solution, the complementary slackness optimality conditions (Theorem 2.71) give us that
cij(f) > 0 only holds if (i, j) ∈ D and fij = lij or (j, i) ∈ D and fji = uji. Therefore, we
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Algorithm 10: FindSecondBestFlow

Data: optimal flow f in D
Result: A second-best flow f ′ with f ′ 6= f , if one exists.

1 y ← ComputeNodePotential(f , D)
2 c ← ComputeReducedCost(y, D)
3 f ′ ← FindAnotherOptimalFlow(f , c, D)
4 if f ′ = null then

5 (D,P )← DetermineDistanceTableAndPaths(c, f,D)

6 A← {(i, j) ∈ Df : (i, j) ∈ D with fij = lij or (j, i) ∈ D with fji = uji}
7 C ← arg min{c(f, C) = cij + dji : C = {(i, j)} ∪ Pji with (i, j) ∈ A}
8 if C = null then Stop
9 f ′ ← f + χ(C)

10 return f ′

have that (i, j) ∈ A := {(i, j) ∈ Df : (i, j) ∈ D with fij = lij or (j, i) ∈ D with fji = uji}
and (j, i) /∈ Df , (since the flow value of the corresponding arc of (i, j) in D is equal to the
upper or lower capacity of this arc). Since (j, i) /∈ Df it holds that c(C, f) = cij + dji due
to Property 6.14. So Algorithm 10 finds a minimal proper cycle and hence a second-best
optimal flow.

Now for the run time. Computing the node potentials by solving a shortest path problem
in Df as described in Section 2.5.2 takes O(mn) time because of possible negative arc cost.
Given these potentials, we can determine the reduced costs in O(m) time. If there exists a
proper 0-cycle, we can determine one in time O(m+ n) by Lemma 6.10 or decide that no
proper 0-cycle exists. After that, we compute the distance table in O(n3) time. Notice that
this approach also provides the paths Pji in addition to the cost dji. The minimal proper
cycle is given by arg min{c(f, C) : C = {(i, j)} ∪ Pji : (i, j) ∈ A}. Given the distances dji
and the reduced costs cij(f) for all (i, j) in Df we can determine c(f, C) = cij + dji in
O(1) and can determine the arg min in O(m) time.

As a result, we can compute a minimal proper cycle and, therefore a second-best integer
flow in time O(n3).

Since we are able to find a second-best flow in O(n3) time and by using the binary partition
approach as in Hamacher [1995] or Sedeño-Noda and Espino-Mart́ın [2013], we obtain the
following result:

Theorem 6.16. Given an optimal integer flow f , Algorithm 11 determines the k best
integer solutions for a given MCF problem in time O(kn3).

Proof. The while loop iterates at most k − 1 times. Due to Lemma 6.15, the second-best
flow determination takes O(n3) time in each iteration. The binary heap insertion and the
extraction operations require O(m logm) time [Sedeño-Noda and Espino-Mart́ın, 2013].
So the algorithm needs O(kn3) time overall. The uniqueness of any flow follows from the
used partitioning approach [Hamacher et al., 2007b].

136



6.6 Bounds on the Number of Feasible and Optimal Flows

Algorithm 11: FindKBestFlows

Data: optimal flow f in D
Result: k best flows

1 i← 1
2 f ′ ← FindSecondBestFlow(f , D)
// Insert f and f ′ in binary heap with c(f ′) as key

3 if f ′ 6= null then B ← B ∪ {(f, f ′, D)}
4 while B 6= ∅ and i ≤ k do
5 i+ +
6 (f1

i , f
2
i , Di)← ExtractMin(B)

7 Print(f2
i )

8 if i = k then break
// Partition solution space by adjusting upper and lower bounds so

that f1
i is optimal flow in D1

i and f2
i is optimal flow in D2

i

(compare Algorithm 9)

9 {D1
i , D

2
i } ← Partition(f1

i , f
2
i , Di)

10 f ′ ← findSecondBestFlow(f1
i , D

1
i )

11 if f ′ 6= null then B ← B ∪ {f1
i , f

′, D1
i }

12 f ′′ ← findSecondBestFlow(f2
i , D

2
i )

13 if f ′′ 6= null then
14 B ← B ∪ {f2

i , f
′′, D2

i }

6.6 Bounds on the Number of Feasible and Optimal Flows

In this section, we will introduce further theoretical results. We then use these results to
give an upper and a lower bound for the number of all optimal and of all feasible integer
flows. The main characteristics of the obtained bounds bases on the fact that any optimal
solution can be obtained by an initial optimal tree-solution plus a conical combination of
all incidence vectors of the zero cost induced cycles with bounded coefficients. Again, we
only consider integer flows for the remaining of this thesis.

The general idea for the upper and lower bound is based on the fact that we can represent
any undirected cycle CD in D as a composition of some unique cycles Cij induced by arcs
(i, j) ∈ CD \ T (see Definition 2.74). This result is well-known and the base for several
algorithms for finding a so-called fundamental set of cycles of a graph, see, e.g., Welch
[1966]. Here, we define a composition of two sets of arcs as the symmetric difference of
the two sets

A ◦B = (A ∪B)\(A ∩B).

Recall that any simple path P (cycle C) in Df corresponds to an undirected path PD
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(cycle CD) in D and we had defined the incidence vector of P as

χij(P ) :=


1, if P traverses (i, j) in Df ,

−1, if P traverses (j, i) in Df ,

0, otherwise

for all (i, j) ∈ A.

We also want to define such a (directed) incidence vector in the same manner for paths
that does not necessarily exist in Df .

Definition 6.17. For an undirected path Pu,v from node u to v in D, we define χ(Pu,v) ∈
{−1, 0, 1}A as the (directed) incidence vector of Pu,v as

χij(Pu,v) :=


1, if Pu,v traverses (i, j) in its forward direction,

−1, if Pu,v traverses (i, j) in its backward direction,

0, otherwise

for all (i, j) ∈ A.

We also define the cost of the path as c(Pu,v) =
∑

(i,j)∈A χij(Pu,v)cij, i.e., the cost of an
arc traversed in forward direction contributes positively to the total cost, whereas the cost
of a backwards-traversed arc contributes negatively. The incidence vector and the cost of
a cycle C in D (with a given orientation) are defined analogously.

These definitions can be seen as also allowing forward and backward arcs in Df even if
the flow value equals the lower or upper capacity, i.e., A+ := {(i, j) : (i, j) ∈ A, fij ≤
uij} and A− := {(j, i) : (i, j) ∈ A, fij ≥ lij}. Then, any undirected path PD corresponds
to a directed path P (with not necessarily free capacity) in Df and χ(P ) = χ(PD). This
leads to the following property.

Property 6.18. Let P (C) be a directed path (cycle) in Df and PD (CD) its equivalent
in D. Then χ(P ) = χ(PD) (χ(C) = χ(CD)) and c(f, P ) = c(PD) (c(f, C) = c(CD)).

With these definitions we can prove the following results:

Theorem 6.19. Each undirected cycle CD in D can be represented by a composition of
the unique induced cycles

Cij for all (i, j) ∈ CD \ T.

Proof. Let CD be an undirected cycle inD. First, we decompose the cycle CD into non-tree
arcs ak = (ik, jk) and possibly empty tree paths P Tjl,il+1

:

CD = {a1, P
T
j1,i2 , a2, P

T
j2,i3 , . . . , at, P

T
jt,i1}
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i1 = j2

j1

r
i2CD

(a)

i1 = j2

j1

r
i2Ci1j1

(b)

i1 = j2

j1

r
i2Ci2j2

(c)

Figure 6.4: (a) A graph with an (undirected) cycle CD and (b) (c) the two induced cycles
whose composition equals CD. Non-tree arcs are marked as dashed line. It
holds CD = (i1, j1) ◦ P Tj1,i1 ◦ (i2, j2) ◦ P Tj2,i1 = Ci1j1 ◦ Ci2j2 . Here P Tj2i1 = ∅.

Now we consider the composition of the induced cycles Cak

Ca1 ◦ Ca2 ◦ · · · ◦ Cat
=a1 ◦ P Tj1,i1 ◦ a2 ◦ P Tj2,i2 ◦ · · · ◦ at ◦ P

T
jt,it (Ck = ak ◦ P Tjk,ik)

=a1 ◦ P Tj1,r ◦ P
T
r,i1 ◦ a2 ◦ P Tj2,r ◦ P

T
r,i2 ◦ · · · ◦ at ◦ P

T
jt,r ◦ P

T
r,it (P Tjk,ik = P Tjk,r ◦ P

T
r,ik

)

=a1 ◦ P Tj1,r ◦ P
T
r,i2 ◦ a2 ◦ P Tj2,r ◦ · · · ◦ P

T
r,it ◦ at ◦ P

T
jt,r ◦ P

T
r,i1 (◦ is commutative)

=a1 ◦ P Tj1,i2 ◦ a2 ◦ P Tj2,i3 ◦ · · · ◦ P
T
jt−1,it ◦ at ◦ P

T
jt,i1 (P Tjk,r ◦ P

T
r,ik+1

= P Tjk,ik+1
)

={a1, P
T
j1,i2 , a2, P

T
j2,i3 , . . . , at, P

T
jt,i1} (all components are disjoint)

=CD

For illustration see Figure 6.4.

Any cycle C ∈ Df yields an undirected cycle CD which can be represented by a composition
of the unique cycles Cij for all i, j ∈ CD \ T . We can extend this result by showing that
the incidence vector and the cost are closed under this composition. For simplicity, we
will denote an arc (i, j) /∈ T by a in the following.

Lemma 6.20. For any cycle C ∈ Df let CD be the undirected equivalent cycle in D.
Then, it holds that:

χ(C) =
∑

a∈CD\T

χ(Ca) and c(C, f) =
∑

a∈CD\T

c(Ca),
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where χ(Ca) ∈ {−1, 0, 1}A is defined by

χij(Ca) :=


1, if (i, j) ∈

−→
Ca,

−1, if (i, j) ∈
←−
Ca,

0, otherwise

for all (i, j) ∈ A.

Proof. Let C be a cycle in Df , CD the corresponding cycle in D and let a be a non-tree
arc in CD \ T . If a = (i, j) ∈ L, the cycle CD traverses it in the forward direction, since
only (i, j) is present in Df but (j, i) is not. Similarly, if a ∈ U then CD traverses it in its
backward direction. So by Definition 2.74 we have χa(CD) = χa(Ca) =

∑
a∈CD\T χa(Ca).

Now we can follow the previous proof. Note that each time the sub-paths canceled each
other out by the composition, they could be seen as the same sub-path but traversed in
opposite directions. This way, the incidence vectors would sum up to zero for these sub-
paths. The tree-paths CD ∩T are traversed in the correct direction by the composition of
cycles Cak due to their correct orientation.

Formally, let χa(Ca) be the vector having only χa(Ca) in the a-component, i.e., χaa(Ca) =
χa(Ca) and 0 otherwise. So we have χ(Ca) = χa(Ca) + χ(P Tj,i). Again, suppose that

CD = {a1, P
T
j1,i2

, a2, P
T
j2,i3

, . . . , at, P
T
jt,i1
}. Then

χ(Ca1) + χ(Ca2) + · · ·+ χ(Cat)

=χa1(Ca1) + χ(P Tj1,i1) + χa2(Ca2) + χ(P Tj2,i2) + · · ·+ χat(Cat) + χ(P Tjt,it)

=χa1(Ca1) + χ(P Tj1,r) + χ(P Tr,i1) + χa2(Ca2) + χ(P Tj2,r) + χ(P Tr,i2)

+ · · ·+ χat(Cat) + χ(P Tjt,r) + χ(P Tr,it)

=χa1(Ca1) + χ(P Tj1,r) + χ(P Tr,i2) + χa2(Ca2) + χ(P Tj2,r)

+ · · ·+ χ(P Tr,it) + χat(Cat) + χ(P Tjt,r) + χ(P Tr,i1)

=χa1(Ca1) + χ(P Tj1,i2) + χa2(Ca2) + χ(P Tj2,i3) + · · ·+ χ(P Tjt−1,it) + χat(Cat) + χ(P Tjt,i1)

=χa1(CD) + χ(P Tj1,i2) + χa2(CD) + χ(P Tj2,i3) + · · ·+ χ(P Tjt−1,it) + χat(CD) + χ(P Tjt,i1)

=χ(CD)

So we have χ(CD) =
∑

a∈CD\T χ(Ca). To show that the cost is equivalent is now easy:

c(CD) =
∑

(i,j)∈A

χij(CD)cij =
∑

(i,j)∈A

∑
a∈CD\T

χij(Ca)cij

=
∑

a∈CD\T

∑
(i,j)∈A

χij(Ca)cij =
∑

a∈CD\T

c(Ca)

Now we want to show that we can express any optimal flow by an initial optimal tree
solution and a conical combination of certain Ca. Let f be an optimal tree solution. Prop-
erty 2.66 gives us that any feasible integer flow f ′ can be written as f ′ = f+

∑k
i=1 µiχ(Ci)
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for some Ci ∈ Df and integers µi > 0. Lemma 6.20 yields

f ′ = f +
k∑
i=1

µiχ(Ci) = f +
k∑
i=1

µi
∑

a∈Ci\T

χ(Ca).

Rearranging the sums and summarizing the cycles and coefficients yields

f ′ = f +
∑
a/∈T

λaχ(Ca).

Here, each cycle Ca is unique and different from the other induced cycles Ca′ with a 6= a′.
Because the cycle Ca only consists of tree arcs and the arc a /∈ T (Property 2.75), a is not
included in any of the other induced cycles Ca′ with a 6= a′. Hence, since f ′ is a feasible
flow, it must hold that 0 ≤ λa ≤ ua. Otherwise, the flow value fa of the arc a would not
satisfy its lower or upper boundary. This yields a maximum of (ua + 1) different values
for λa.

Suppose now that f ′ is an optimal integer solution, then it holds that c(f ′) = c(f).
Again by Property 2.66 and Lemma 6.20 we can show analogously that

c(f ′) = c(f) +
∑
a/∈T

λac(Ca).

Due to the optimality of f it holds that c(Ca) ≥ 0 and therefore we have λa = 0 for all
arcs a /∈ T with c(Ca) > 0. Let the set S consist of all non-tree arcs with zero reduced
cost, i.e.,

S = {a /∈ T | ca = 0}.

Then with Property 2.75, we can reformulate the above equation for any other optimal
integer flow f ′ and an initial optimal tree solution f as

f ′ = f +
∑
a∈S

λaχ(Ca).

We formalize the above argumentation in Theorem 6.21.

Theorem 6.21. Let f be an optimal tree solution with an associated tree structure (T, L, U)
and let f∗ be another integer flow. Then f∗ is optimal if and only if

f∗ = f +
∑
a∈S

λaχ(Ca)

with

(i) λa ∈ Z with 0 ≤ fe +
∑

a∈S λaχe(Ca) ≤ ue ∀ e ∈ A,

(ii) the set S consists of all non-tree arcs with zero reduced cost: S = {a /∈ T | ca = 0}.

141



Chapter 6 Finding all Minimum Cost Flows

Proof. “⇒”: Property 2.66 gives us f∗ = f +
∑k

i=1 µiχ(Ci) for some Ci in Df and µi > 0.
With Property 6.18, we can express f∗ through the corresponding cycles CD,i in D:

f∗ = f +
k∑
i=1

µiχ(CD,i)
Lemma 6.20

= f +
k∑
i=1

µi
∑

a∈CD,i\T

χ(Ca)

Rearranging the sums and summarizing the cycles and coefficients yield

f∗ = f +
∑
a/∈T

λaχ(Ca)

Since f∗ is optimal and thereby in particularly feasible f∗ satisfies the capacity constraint
of all arcs, which is expressed by (i).

The cost of f∗ equals the cost of f and we can show in a similar way like above that
c(f∗) = c(f) +

∑
a/∈T λac(Ca). Therefore the cost of all considered cycles Ca must be zero.

Remember that no cycle can have negative cost because of the negative cycle optimality
condition. Property 2.75 gives us that c(Ca) = ca or −ca. So only arcs a ∈ S according
to (ii) can be considered for representing f∗.

“⇐”: Now consider f∗ = f +
∑

a∈S λaχ(Ca) with (i) and (ii) holding. Then f∗ satisfies
the capacity constraints because of (i). It also satisfies the flow balance constraints because
we augmented the flow on cycles, so the flow balance at every node remains. The cost of
each cycle that is used for augmentation is zero because of (ii) and Property 2.75. So the
cost of f∗ is c(f) +

∑
a∈S λac(Ca) = c(f) and therefore f∗ is optimal.

Moreover, we can show the following:

Lemma 6.22. Let f be an optimal tree solution, f1 = f +
∑

a∈S λ
1
aχ(Ca) and f2 =

f +
∑k

a∈S λ
2
aχ(Ca). If λ1 6= λ2 then it holds f1 6= f2.

Proof. Let a′ ∈ S be an arc, such that λ1
a′ 6= λ2

a′ . Since a′ is contained in the cycle Ca′ and
cannot be contained in any other induced cycle, it follows that f1 = f+

∑
a∈S λ

1
aχ(Ca) and

f2 = f +
∑

a∈S λ
2
aχ(Ca) have different flow values on the arc a′. So we have f1

a′ 6= f2
a′ .

With the above considerations, any optimal integer solution can be obtained from an
initial optimal tree solution and a conical combination of incidence vectors of all zero cost
induced cycles with bounded integer coefficients. Since any λa for an arc a ∈ S can take
at most (ua + 1) different values this gives the following result.

Theorem 6.23. Let |F | be the number of all optimal integer flows in D. Then

|F | ≤ max(1,
∏
a∈S

(ua + 1)).
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Figure 6.5: Two graphs whose arcs are labeled by (fij , uij , cij). Arcs in yellow represent
the tree arcs.

We also can give a lower bound for |F |. Let f be an optimal flow. Considering one induced
cycle Ca with a ∈ S, we can generate at least as many new optimal flows as the maximum
free capacity of the cycle, denoted with u(Ca) allows. Each unit of flow that is added or
removed from the cycle yields another flow. Considering another induced cycle Ca′ instead
of Ca gives u(Ca′) many different flows. Since we can augment over each induced cycle
separately, we get the following lower bound for |F |.

Theorem 6.24. Let |F | be the number of all optimal integer flows in D. Then

min(1,
∑
a∈S

u(Ca)) ≤ |F |.

With the same argumentation, we can give the following bounds for the total number of
feasible integer flows, denoted by |F|. Here, we do not have to restrict ourselves to induced
cycles with zero reduced cost.

min(1,
∑
a/∈T

u(Ca)) ≤ |F| ≤ max(1,
∏
a/∈T

(ua + 1)).

We close this chapter with an example that shows that the bound in Theorem 6.23 can
be tight, but is not necessarily so.
Consider Figure 6.5. In (a), the arc (c, d) is the only arc not in T with cij = 0. We can
augment ten times over this arc with one flow unit each time. Since there are no more
0-cycles, we get 11 optimal flows, and we have |F | = δ := max(1,

∏
a∈S(ua + 1)).

In (b), we have the same 0-cycle. However, due to the available capacities and flow values
on other arcs, we cannot augment over it. There is only one optimal flow, but δ = 10 and
thus |F | < δ. If we increase the arc (c, d) capacities to an arbitrarily large value, we get
|F | � δ.
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6.7 Conclusion

This chapter presented the main theoretical bases and implementation of an algorithm
to determine all optimal solutions of a linear integer minimum cost flow problem. For
a given optimal solution, the algorithm efficiently determines proper zero cost cycles by
using a depth-first search in a reduced network, leading to a new optimal solution. The
presented algorithm requires O(|F |(m+ n) +mn+ ζ) time to solve the AOFP. Using the
proposed algorithm, a new method is derived to solve the k best flow problem with an
improved running time of O(kn3 + ζ). Besides, lower and upper bounds for the number of
all optimal integer solutions are shown, which is based on the fact that any optimal integer
flow can be obtained from an initial optimal tree solution plus a conical combination of
all zero cost induced cycles with bounded coefficients.

Future research could focus on structured combinatorial ways to efficiently explore these
conical combinations to derive an improved algorithm for determining alternative solutions
in network flow problems. An extension of the ideas and techniques presented here to meth-
ods for determining supported and nonsupported solutions in BOIMCF and MOIMCF
problems will be presented in the following chapters.
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7 Output-sensitive Complexity for
Multi-Objective Integer Minimum Cost
Flow Problems

This chapter addresses the output-sensitive complexity of the MOIMCF problem, provid-
ing insights into the time complexity to enumerate all supported efficient solutions and all
supported nondominated points. An output-polynomial time algorithm is derived to de-
termine all supported efficient solutions for MOIMCF problems. This is the first approach
to solve this general problem in output-polynomial time.

Furthermore, the chapter proves that that an output-polynomial time algorithm for
determining all weakly supported nondominated points (or all weakly supported efficient
solutions) in a MOIMCF problem with a fixed number of d ≥ 3 objectives cannot exist
unless P = NP. Additionally, it establishes that there cannot exist an output-polynomial
time algorithm that enumerate all supported nondominated points in lexicographic order
in the outcome space unless P = NP.

The results presented in Chapter 7 and Chapter 8 are the outcome of joint work with
Michael Stiglmayr. They have resulted in a publication Könen and Stiglmayr [2025a] and
a technical report Könen and Stiglmayr [2023], the latter of which has been submitted to
the Journal of Combinatorial Optimization.

7.1 Introduction

This chapter focuses on a-posteriori methods, aiming to determine (all) or a suitable subset
of the efficient solutions or nondominated points; for a summary of solution concepts in
multi-objective optimization, see Serafini [1986].

The subset of interest in this chapter, is the set of all supported efficient solutions.
As described in Section 2.3, MOCO problems contain only supported efficient solutions,
while the efficient solution set of multi-objective combinatorial optimization problems, such
as MOIMCF, also contains nonsupported efficient solutions. The nonsupported efficient
solutions typically outnumber the supported ones, where the latter are more straightfor-
ward to determine, can serve as high-quality representations [Sayın, 2024], and can be
used as a foundation for two-phase methods to generate the entire nondominated point
set.

As described in Chapter 4, MOCO problems can have supported, as well as weakly
supported solutions. Example 7.1 illustrates an instance of the MOIMCF problem where
weakly supported nondominated points exist, and the supported nondominated points
form a proper subset of the weakly supported solutions.
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1 0 3 0 −4(0, 4, 52 ) (0, 4, 52 ) (1, 1, 18 ) (1, 1, 18 )

(4, 4, 5) (3, 1, 54 )

Figure 7.1: The Graph corresponds to a tri-objective MOIMCF problem. Thereby, lij = 0
and uij = 4 for all arcs (i, j) ∈ A. The arcs are labeled with their cost
coefficients (c1

ij , c
2
ij , c

3
ij) and the nodes are labeled with their supply/demand

bi.

Example 7.1. The MOIMCF problem shown in Figure 7.1 has three extreme supported
nondominated points y1 = (8, 16, 6)>, y2 = (12, 12, 6)>, y3 = (16, 8, 10)> and in addition
the following nondominated points s1 = (9, 15, 7)>, s2 = (10, 14, 8)>, s3 = (11, 13, 9)>, s4 =
(13, 11, 7)>, s5 = (14, 10, 8)>, s6 = (15, 9, 9)> and as well one dominated point d1 =
(12, 12, 10)>. The different points in objective space and their convex hull are illustrated
in Figure 7.2. All points si with i ∈ {1, . . . , 6} are weakly supported nondominated points
since their preimages are optimal solutions of the corresponding weighted sum problem Pλ
with λ = (0.5, 0.5, 0)>. The points s4, s5, s6 are also supported nondominated points since
they are optimal solutions of (Pλ2) with λ2 = (0.25, 0.5, 0.25)>. However, s1, s2, s3 are not
optimal for any weighted sum problem Pλ with λ ∈ Λd. Hence, the set of weakly supported
nondominated points is YwS = {y1, y2, y3, s1, s2, s3, s4, s5, s6}. While the set of supported
nondominated points is YS = {y1, y2, y3, s4, s5, s6}. Thus, in this example, the set of sup-
ported nondominated points is a proper subset of the set of weakly supported nondominated
points YS ⊂ YwS. It is easy to see that there do not exist weights λ ∈ Λd such that s1,
s2, or s3 are optimal solutions for Pλ using the weight space decomposition which will be
formally introduced in Section 7.2.2. Figure 4.2 shows the weight space decomposition of
the upper image of the MOIMCF instance given in Figure 7.1.

The clear distinction between the sets of supported nondominated and weakly supported
nondominated solutions is also necessary as the corresponding problems differ in their
output time complexity. Eusébio and Figueira [2009b] introduced an algorithm that enu-
merates all supported nondominated points/efficient solutions for MOIMCF problems (as-
suming extreme supported solutions and corresponding weight vectors are given), based
on zero-cost cycles in the incremental graph associated with the corresponding parametric
network flow problems. They conclude that their proposed algorithm is the first step in
developing further zero-cost cycle algorithms for solving MOIMCF problems. However,
they do not provide a specific method for determining those zero-cost cycles. Eusébio
and Figueira [2009b] rely on a definition, which is equivalent to what we define as weakly
supported nondominated points. However, their proposed algorithm computes only sup-
ported efficient solutions whose images lie in the maximally nondominated faces. We refer
to Example 7.1.

This chapter will show that there is no output-polynomial time algorithm to determine
all weakly supported nondominated points (or weaklysupported efficient solutions) for
a MOIMCF problem with a fixed number of objectives, unless P = NP. This is proven
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c1(f)

c2(f)

c3(f)

d1

y1
y2

y3

s1
s2
s3

s6

s5

s4

Figure 7.2: The figure shows the convex hull conv(Y) of the given problem in Figure 7.1 in
blue, all its integer vectors and the hyperplane h = {y ∈ Y : 0.5 y1+0.5 y2 = 12}
in gray. The red rectangles on the edge between (y2, y3) are the vectors s4, s5,
and s6. The light red rectangles on the edge between the edge (y1, d1) are the
vectors s1, s2, and s3, which would be dominated in the non-integer case by
the points on the edge (y1, y2). The maximally nondominated faces are the
edges (y1, y2) and (y2, y3). Note that s1,s2, and s3 would lie on conv(Y) but
not in any of the maximally nondominated faces. The vectors s1, s2, and s3

would also lie on the boundary of the upper image.

147



Chapter 7 Output-sensitive Complexity

by showing that an output-polynomial algorithm cannot exist for the multi-objective s-t-
path problem (MOSP) with more than two objectives. Additionally, it shows that there
cannot exist an output-polynomial time algorithm for the enumeration of all supported
nondominated points that determine the points in an lexicographically ordered way in the
outcome space unless P = NP. In contrast, we derive output-polynomial enumeration
algorithms to determine all supported efficient solutions, first for the bi-objective case and
afterward for every fixed number of objectives.

The approach consists of two phases: First, the algorithm determines all extreme sup-
ported nondominated points of the upper image and the associated weight vector for each
maximally nondominated face. Hence, the approach successively determines all efficient
solutions for each maximally nondominated face by determining all optimal solutions for
the linear weighted-sum scalarization (single-objective parametric network flow) problem
with the corresponding weight vector using the previously presented Algorithm 9 in Sec-
tion 6.4 to determine all optimum integer flows in a network. The method successively
searches for proper zero-cost cycles in linear time by using a modified depth-first search
technique.

Given a BOIMCF problem and using the enhanced parametric network approach [Raith
and Sedeño-Noda, 2017] to determine all N extreme nondominated points in O(N ·n(m+
n log n)) time in a first step, results in an O(N ·n(m+n log n)+S(m+n)) time algorithm
to determine all S supported efficient solutions to a BOIMCF problem.

Given a MOIMCF problem with a fixed number of d objectives, the dual Benson’s
algorithm Ehrgott et al. [2012] can be used for the first phase. In addition, while the
lexicographic MCFP can be solved in polynomial time Hamacher et al. [2007b], we can
use the lexicographic dual Benson’s algorithm presented in Bökler and Mutzel [2015], which
determines all extreme supported nondominated points, all facets of the upper image and

the weight space decomposition in O(N b
d
2
c(poly(n,m) + N logN)). Note that in phase

two, the corresponding image of some solutions may lie in more than one maximally
nondominated face and, therefore, are included in more than one face. The approach
yields an O(N b

p
2
c(poly(n,m) + N logN + N b

p
2
cS(m + n + N b

p
2
cp)) time algorithm to

determine all S supported efficient solutions for a d-objective MOIMCF problem. To our
knowledge, this is the first output-polynomial time algorithm to determine the complete
set of supported efficient solutions.

The following table summarizes the contribution of the chapter and the existing results
from the literature on the existence of output-polynomial time algorithms for the MOIMCF
problem w.r.t. the different subsets of interest. A check mark indicates existence, a cross
indicates that the existence of such an algorithm can be ruled out unless P = NP, and
the question mark indicates that this problem remains an open question.

Note that an output-polynomial time algorithm for determining all supported efficient
solutions is insufficient for the computation of all supported nondominated points in
output-polynomial time since there may be exponentially many solutions mapping to
the same points. It is easy to check that all extreme supported efficient solutions can
be determined in output-polynomial time due to the existence of the output-polynomial
time algorithm for the extreme supported nondominated points. Note that the algorithm
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Table 7.1: Results on the existence of output-polynomial time algorithms for the MOIMCF
problem w.r.t. the different subsets of interest.

extreme
supported

supported
weakly
supported

all

nondominated
points

31 ? 72 73

efficient
solutions

34 35 72 76

1 Bökler and Mutzel [2015] and Ehrgott et al. [2012]
2 Transferable from Bökler and Mutzel [2015] and Ehrgott
et al. [2012].
3 Theorem 7.6
4 Theorem 7.4
5 Bökler et al. [2017]
6 Transferable from Bökler et al. [2017], see Lemma 7.5

in Eusébio and Figueira [2009b] would also determine all supported efficient solutions in
output-polynomial time when all maximally nondominated faces and corresponding weight
vectors are already given.

The remainder of the chapter is structured as follows. Section 7.2 presents the algo-
rithms to determine all supported efficient solutions for BOIMCF problems as well as
supported efficient solutions for MOIMCF problems in output-polynomial time. In con-
trast, Section 7.3 proves that an output-polynomial time algorithm for determining all
weakly supported solutions cannot exist unless P = NP. Furthermore, it establishes that
no output-polynomial time algorithm for the enumeration of all supported nondominated
points that determine the vectors in an lexicographically ordered way in the outcome space
can exist unless P = NP.

7.2 An Output-Polynomial Time Algorithm to Determine all
Supported Efficient Solutions

In this section, output-polynomial time algorithms are derived that determine all sup-
ported efficient flows for MOIMCF. The algorithms are based on the determination of all
optimal flows for a sequence of single-objective parametric network flow problems, each
corresponding to a maximally nondominated face. The approach consists of two phases
and relies on the following widely known fact for any integer supported flow, see, e.g., Gal
[1977].

Theorem 7.2. A flow f is contained in FX , i. e., its image of c(f) lies on a maximally
nondominated face FY w. r. t. an associated weight vector λ ∈ Λp, if f is an optimal
solution to the parametric network flow program (weighted-sum scalarization) (Pλ).

Any image of a supported flow must lie in at least one maximally nondominated face, and
any integer point in a maximally nondominated face corresponds to a supported integer
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flow. Assuming that for each maximally nondominated face Fi ∈ {F1, . . . , Ft} one optimal
solution f i and the corresponding weighting vectors λi are given, the problem of deter-
mining all supported flows reduces to determining all optimal flows for each parametric
single-objective problem (Pλi). These optimal solutions can be determined by using Algo-
rithm 9 for determining all optimum flows for single-objective minimum cost flow problems
presented in Section 6.4, which we refer to as the all optimum flow (AOF) algorithm. As
described in Section 6.4, the AOF algorithm successively searches for so-called proper zero-
cost cycles efficiently by using a modified depth-first search technique. By Theorem 6.11
it follows that given an initial optimal integer flow f , we can determine all optimal inte-
ger flows in O(|F |(m+ n) +mn) time for a single-objective minimum cost flow problem,
where F is the set of all optimal integer flows. Therefore, we divide the approach into two
phases: In phase one, we determine all extreme supported nondominated points and one
weighting vector for each maximally nondominated face. In phase two, we apply the AOF
algorithm to the corresponding weighted-sum program for each maximally nondominated
face.

The extreme nondominated points and the weighting vectors for each maximally non-
dominated face can be determined much easier in the case of two objectives. Therefore,
we start by deriving an algorithm for BOIMCF problems and consider the general case
of MOIMCF problems afterward.

7.2.1 Bi-Objective Minimum Cost Flow Problem

In the bi-objective case, the set of supported flows is equal to the set of weakly supported
flows since every weakly nondominated face contains exactly one nondominated point
(namely an extreme supported nondominated point), which dominates the complete face.

First, we determine all |YES | extreme supported nondominated points and precisely
one corresponding extreme supported flow by using the enhanced parametric programming
approach in O(ζ+|YES |n(m+n log n)) time given in Raith and Sedeño-Noda [2017], where
ζ denotes the time required to solve a given single-objective minimum cost flow problem.
Also, the algorithm stores one extreme flow for each extreme supported nondominated
point.

In the bi-objective case, every maximally nondominated face FY of conv(Y) is a line
segment connecting two adjacent extreme supported nondominated points if there is more
than one nondominated point (|YN | > 1). A maximally nondominated face can only have
dimension zero if there is only one extreme supported nondominated point, which implies
that there is only one nondominated point (or, in other words, the Ideal point is feasible).

In the following, we will derive a procedure to determine the complete set of all sup-
ported efficient flows. For that, we will determine all supported flows whose images lie on
the maximally nondominated edges. Let y1, . . . , y|YES | be the extreme supported nondom-
inated points obtained by the enhanced parametric programming approach [Raith and
Sedeño-Noda, 2017] and let f1, . . . , f |YES | be a set of corresponding extreme supported
flows each mapping to one extreme supported point. Moreover, we sort the set of extreme
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supported nondominated points and flows {yi = (c1(f i), c2(f i)), f i : i ∈ {1, . . . , |YES |}} by
non-decreasing values of c1. For each pair of consecutive extreme points yi and yi+1, we
determine the weighting vector λi ∈ Λ2 that corresponds to the normal of the maximally
nondominated facet Fi connecting the extreme points yi and yi+1:

λi :=

(
c2(f i)− c2(f i+1)
c1(f i+1)− c1(f i)

)
Then f i and f i+1 are both optimal flows for the single-objective weighted-sum (MCF)
program (Pλi) [Eusébio and Figueira, 2009a]. Hence, determining all optimal solutions
for (Pλi) gives all supported efficient flows whose image lies in between Fi. Figure 7.3
illustrates the objective function of the weighted-sum problem (Pλi) and the maximally
nondominated face between two consecutive extreme points in the outcome space.

c1(f)

c2(f)
conv(Y + R2

=)

yi

yi+1

(λi)>C

Fi

Figure 7.3: Illustration of two neighboring extreme points yi and yi+1, the maximally
nondominated edge Fi in blue and the cost vector of (λi)>C.

Theorem 7.3. Given the directed network (D, l, u, b, (c1, c2)>), Algorithm 12 determines
the set of all supported flows XS in O(|YES |n(m+ n log n) + |XS |(m+ n)) time.

Proof. Any supported nondominated point must lie at least on one maximally nondomi-
nated edge, and only extreme supported nondominated points yi for i = 2, . . . , |YES |−1 lie
in two maximally nondominated edges, namely Fi and Fi+1. According to Theorem 7.2,
all supported flows can be determined as optimal flows for the different weighted-sum
problems (Pλi). Moreover, nonsupported flows correspond to suboptimal solutions for
all weighted-sum problems. Since we only store flows for i = 2, . . . , |YES | − 1 where
c1(f) 6= c1(f i), no supported flow is stored twice. Hence, Algorithm 12 determines the
complete set of all supported flows.

The enhanced parametric network approach in Raith and Sedeño-Noda [2017] requires
O(|YES |n(m+ n log n) + ζ) time, where ζ is the time required to solve a single-objective
minimum cost flow problem. Since the algorithm determines the extreme points in a
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Algorithm 12: FindAllSupportedEfficientFlowsBiObjective

Data: (D, l, u, b, c1, c2)
Result: The set of all supported flows XS

1 XS = ∅
// Determine all |YES | extreme supported nondominated points yi and for

each one corresponding extreme flow f i, sorted non-decreasingly in

c1(f)
2 {(yi, f i) : i ∈ {1, . . . , |YES |}} = EnhancedParametricNetworkAlgortihm(D)
3 for i = 1, . . . , |YES | − 1 do
4 λi1 = c2(f i)− c2(f i+1); λi2 = c1(f i+1)− c1(f i)
5 c̄← Determine reduced costs
6 XS = XS ∪FindAllOptimalFlows(Pλi , f

i)
// Return only flows with c1(f) 6= c1(f i) to avoid repetitions.

7 return XS .

decreasing order of c1(f), we do not need additional time to sort the extreme points.
Defining the weight vectors λi for i = 1, . . . , |YES | − 1 and building the network with
the corresponding cost function takes O(|YES |(n+m)) time. Determining all Fi optimal
flows for one weighted-sum problem (Pλi) using the Algorithm 9, requires O(Fi(m+ n) +
mn) time, where f i is a corresponding optimal solution to Fi. Since the image of every
supported efficient solution lies at most on two maximally nondominated faces, it holds

that
∑|YES |−1

i=1 Fi < 2S. We must consider |YE |−1 of these single-objective minimum cost
flow problems corresponding to the maximally nondominated faces. Hence, Algorithm 12
requires overall O(|YES |n(m+ n log n) + |XS |(m+ n)) time.

Note that the determination of all supported efficient flows could easily be integrated dur-
ing the enhanced parametric network approach [Raith and Sedeño-Noda, 2017]. Whenever
a new extreme supported nondominated point is found, determine all optimal flows to (Pλi)
with the AOF algorithm.

7.2.2 Multi-Objective Minimum Cost Flow Problems

In the following, we derive an algorithm to determine the complete set of all supported ef-
ficient flows, and hence, all supported nondominated points for the multi-objective integer
minimum cost flow problem.

First, we need to determine the set of extreme supported nondominated points and
the associated weight space decomposition. We can determine all extreme supported
nondominated points using the dual Benson’s algorithm [Ehrgott et al., 2012]. How-
ever, since the lexicographic version of a MOIMCF problem can be solved in polynomial
time [Hamacher et al., 2007b], we may also use the lexicographic dual Benson’s algorithm
recently presented in Bökler and Mutzel [2015]. Both versions work with the upper image
Y= := conv(Y + Rd≥) and its dual polyhedron, or lower image D.
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While we work with normalized weight vectors λ ∈ Λp, it suffices to consider the so-

called projected weight space {(λ1, . . . , λp−1) ∈ Λp−1 :
∑p−1

i=1 λi < 1} and calculate the

normalized weighting vector `(v) := (v1, . . . , vp−1,
∑p−1

i=1 vi) of a projected weight v when
needed. The dual problem (Dλ) of the weighted sum scalarization (Pλ) is given by

max b>u
s.t. A>u = C>λ

u ∈ Rm≥ .
(Dλ)

The dual polyhedron D then consists of vectors (λ1, . . . , λp−1, b
>u) with λ ∈ Λ0

p and
solutions u of (Dλ). Following the duality theory of polyhedra, there exists a bijective
mapping Ψ between the set of all faces of Y= and the set of all faces of D such that Ψ is
order reversing, i. e., if two faces F1 and F2 of Y= satisfy F1 ⊆ F2 then Ψ(F1) ⊇ Ψ(F2)
and Ψ(F1) and Ψ(F2) are faces of D, see e.g., Schulze et al. [2019]. Thus, an supported
solution of D corresponds to a facet of Y=, and an supported solution of Y= corresponds
to a facet of D. The dual Benson’s algorithm solves a MOLP by computing the extreme
points of D. For more details on the dual Benson’s algorithm or its lexicographic version,
we refer to Bökler and Mutzel [2015] and Ehrgott et al. [2012].

Thus, we obtain all extreme supported nondominated points and one corresponding
extreme efficient solution for each of the extreme supported nondominated points, as well
as all facets of Y=. On this basis, we yield the weight space decomposition using the dual
(lexicographic) Benson’s algorithm. The set of weighting vectors associated with a point
y ∈ Y is given by

W(y) :=
{
w ∈ Λ0

p : w>y ≤ w>y′ for all y′ ∈ Y=
}
.

Note that the facets of Y= may only be weakly nondominated, i. e., they might contain
dominated (integer feasible) points. Recall that all supported nondominated points can be
determined by a parametric MCF problem (Pλ) for some weight vector λ ∈ Λp. However,
the weight vectors corresponding to the facets of Y= might have components equal to zero
λi = 0 for i ∈ {1, . . . , p}, i. e., λ ∈ Λ0

p. In the following, we describe a recursive algorithm
to obtain the weight vectors for all maximally nondominated faces.

Let U be the set of all extreme points in the lower image D and {λu : u ∈ U} the set of
corresponding weight vectors. Let, furthermore, be Fu the facet of Y= corresponding to
u ∈ U . Then, we call two extreme points u and u′ of D adjacent, if dim(Fu ∩Fu′) = p− 2.
In the following, we will denote the set of adjacent extreme points for u ∈ U by Qu ⊆ U .

Recall that the intersection of k adjacent facets yield a p−k dimensional face. For each
λu ∈ Λp (i. e., λu > 0) we know that all points on the facet Fu are supported nondominated
points. Thus, we only have to solve the all-optimum flow problem on (Pλu). Since some
solutions may lie in the same sub-faces of adjacent facets, we have to ensure that no
solution is stored twice. In order to do so, we keep track of the neighboring extreme
points during Benson’s algorithm and store all already processed adjacent extreme points
of u ∈ U in a list δu.
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Figure 7.4: Weight space decomposition to the upper image of Figure 7.2. Here it holds
λ3 = 1− λ2 − λ1.

There may exist maximally nondominated faces (with dimension less than p−1), which
are intersections of a number of facets for which the corresponding weight vector equals zero
in at least one component. We call these facets weakly nondominated facets of Y=. In order
to determine all supported efficient solutions, we investigate nondominated faces which are
intersections of weakly supported facets. With U> := {u ∈ U : λu > 0} we denote the
set of extreme points of D corresponding to nondominated facets and with U0 := {u ∈
U : λu ≥ 0} the set of extreme points corresponding to all weakly nondominated facets
(U> ⊆ U0). Note that weakly nondominated faces can contain supported nondominated
points only at its (relative) boundary, while nonsupported nondominated points can be
located also in its (relative) interior.

Figure 7.4 presents the weight space decomposition for the example given in Example 7.1
and illustrated in Figure 7.2. Any point in the weight space decomposition corresponds to
an λu for each u ∈ U . Here U> = ∅. However, there do exist weights in the lines in the
interior connecting two adjacent extreme points of D which correspond to the maximally
nondominated faces [y1, y2] and [y2, y3].

Theorem 7.4. Given the directed network (D, l, u, b, c), Algorithm 13 determines the com-

plete set of all supported flows in O(|YES |b
p
2
c(poly(n,m)+|YES | log |YES |+|YES |b

p
2
c|XS |(m+

n+ |YES |b
p
2
cp)) time.

Proof. Correctness: Any supported efficient flow must lie in at least one maximally efficient
face. However, a supported efficient flow can lie in multiple face. Due to Theorem 7.2,
all supported flows are found by determining all optimal flows for each weight vector λi

corresponding to a maximally nondominated face. Moreover, no weakly supported flow
can be optimal for a parametric network flow problem with one of these cost functions.
While the algorithm iterates through all maximally nondominated faces, only flows are
stored that have not been considered yet. Thus, Algorithm 13 determines the complete
set of all supported efficient solutions.

Run-time: Benson’s Algorithm requires O(|YES |b
p
2
c(poly(n,m) + |YES | log |YES |)) time

154



7.2 Output-Polynomial Time Algorithm

Algorithm 13: FindAllSupportedEfficientFlows

Data: (D, l, u, b, c)
Result: The complete set of all supported efficient flows

1 {U,Qu, Fu, λu, fu : u ∈ U} = BensonLex(D, l, u, b, c)
// Determine all extreme points of D, the corresponding facets of P,

and weight vectors.

2 δu ← ∅ ∀u ∈ U
3 for u ∈ U> do
4 XS ← XS ∪ FindAllOptimalFlows(Pλu , f

u)
// In FindAllOptimalFlows (Algorithm 9) only store flows f for which

〈λu, C f〉 6= min{〈λu′ , C f ′〉 : f ′ ∈ X} for any u′ ∈ δu
5 for u′ ∈ Qu do
6 δu′ ← δu′ ∪ {u}

7 wu ← {λu
′
: u′ ∈ δu} ∀u ∈ U

8 B ← ∅
9 for u ∈ U0\U> do

10 Ũ ← {u}
11 XS ← XS ∪ ConsiderSubFaces(Ũ , U0\U>, B,Qu, δu, λu, fu, wu ∀u ∈ U)
12 B ← B ∪ {u}
13 return XS

[Bökler and Mutzel, 2015]. Thereafter, we consider each face at most once. The number

of all faces can be bounded by O(|YES |b
p
2
c) [Bökler and Mutzel, 2015]. We check for each

weakly nondominated face if a strict convex combination with adjacent weight vectors
yields a weight vector λ > 0 component-wise strictly greater than zero. In this case,
we call Algorithm 14. Note that λ is not part of the input of Algorithm 13. However,
it can be shown that these encoding lengths can be bounded by O(poly(n,m)) [Bökler

and Mutzel, 2015]. The convex combination can be computed in O(|YES |b
p
2
cp). First, we

must create the weight vector through a strictly convex combination for each maximally
nondominated face, which is not a facet. Afterwards, we solve the AOF problem for Pλ
for all of these maximally nondominated faces in time O(Fi(m+ n+ |YES |b

p
2
cp)) +mn),

where Fi is the number of optimal solutions for the current weighted sum problem Pλ.
Additionally, it takes O(|YES |b

p
2
cp) time to check if the flow is also optimal for an adjacent

already considered maximally nondominated face. Since each flow may be contained in all
faces, we obtain the bound

∑
Fi ≤ O(|YES |b

p
2
c|XS |). Hence, Algorithm 13 requires overall

O(|YES |b
p
2
c(poly(n,m) + |YES | log |YES |+ |YES |b

p
2
c|XS |(m+ n+ |YES |b

p
2
cp)) time.
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Algorithm 14: ConsiderSubFaces

Data: (Ũ , U0\U>, B,Qu, δu, λu, fu, wu) ∀u ∈ U
Result: The set X̄ of all supported efficient flows in the maximally

nondominated sub-faces of the facet Fu of P, which are not lying in an
already investigated faces

1 Let Ū ← {u′ ∈ (
⋂
u∈Ũ Qu ∩ U0\U>)\(B ∪ Ũ)}

2 X̄ ← ∅
3 for u ∈ Ū do

4 Ũ ← Ũ ∪ {u}
5 if |Ũ | ≤ p− 1 then

6 λk ←
∑|Ũ |

i=1 `i λ
ũi for an

` ∈ {
∑|Ũ |

i=1 `i = 1, `i > 0 ∀i ∈ {1, . . . , |Ũ |}}, ũi ∈ Ũ
7 if λk > 0 then
8 X̄ ← X̄ ∪ FindAllOptimalFlows(Pλk , f

ũ1)
// Only store flows f for which

〈λk, Cf〉 6= {min{〈λu′ , Cf ′〉 : f ′ ∈ X} : λu
′ ∈
⋃
u∈Ũ wu}

9 for u′ ∈ ∪u∈ŨQu do
10 wu′ ← wu′ ∪ {λk}

11 else

12 X̄ ← X̄ ∪ ConsiderSubFaces(Ũ , U0\U>, B,Qu, δu, λu, fu, wu ∀u ∈ U)

13 B ← B ∪ {u}
14 return X̄

7.3 Output-Sensitive Analysis For Supported Nondominated
Points

Section 7.2 presents an output-polynomial time algorithm for determining all efficient sup-
ported flows for MOIMCF. Unfortunately, this approach is insufficient for computing all
supported nondominated points in output-polynomial time, as a single point may corre-
spond to an exponential number of flows.

Analyzing the output-sensitive complexity of specific problems has gained importance
in recent years. Several combinatorial problems have been studied, e.g., multi-objective
shortest path [Bökler et al., 2017], multi-objective spanning tree problems [Bökler et al.,
2017; Okamoto and Uno, 2011], general multi-objective combinatorial optimization prob-
lems, and multi-objective linear programs [Bökler and Mutzel, 2015].

The purpose of this section is to give insights into the time complexity for the enu-
meration of all supported nondominated points for MOIMCF. The section shows that no
output-polynomial algorithm to determine all weakly supported solutions can exist, unless
P = NP. Furthermore, it establishes that there cannot exist an output-polynomial time
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Figure 7.5: Showing the reduction in the proof of Theorem 2.62 with modified costs in
order to proof Lemma 7.5. Here ε = 1/(n + 1) and arcs with no label have
cost 0. Determining another efficient s-t path to the two with cost equal to
(k1 + 1, 0) and (0, c2>1− k2 + 1) would be an instance of the (KP) problem.

algorithm for the enumeration of all supported nondominated points that determine the
points in an lexicographically ordered way in the outcome space unless P = NP.

7.3.1 Weakly Supported Nondominated Points

As shown in Theorem 4.9, the determination of all weakly supported nondominated points
for a MOCO problem with p + 1 objectives is as hard as the determination of all non-
dominated points for a MOCO problem with p objectives.

It is well known that the multi-objective shortest path problem (MOSP), a special case
of the minimum cost flow problem, is intractable (see Theorem 2.61) and there could not
be an output-polynomial algorithm to determine all nondominated points, even in the
bi-objective case (see Theorem 2.62).

The determination of all nondominated points of a MOSP, as well as the determination
of all efficient solutions of a MOSP can be formulated as an enumeration problem [Bökler
et al., 2017]. Again, we denote the finished decision problem for the determination of
all nondominated points of a MOSP as MOSPFIN

Y and the determination of all efficient
solutions of a MOSP as MOSPFin

X , respectively.

The same reduction that is used in the proof of Theorem 2.62 given in Bökler et al.
[2017] can be extended to show that the MOSPFIN

X is also co-NP-hard and thus there
cannot exist an output-polynomial time algorithm to determine all efficient solutions for
the MOSP. However, we have to adjust the costs of some weights. In Figure 7.5, an
example of the reduction is given, similar to the one used in the proof of Theorem 2.62 to
show the following Lemma. For the sake of simplicity, we do not give a formal proof here.
For more details, we refer to the proof of Theorem 2.62 or Bökler et al. [2017].

Lemma 7.5. There is no output-polynomial time algorithm to determine all efficient
solutions for the MOSP problem unless P = NP.
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The multi-objective shortest path problem (MOSP) is a special case of the multi-objective
minimum cost flow problem Ahuja et al. [1993]. The s-t path problem can be transformed
into a minimum cost flow problem by setting all arc capacities to one and sending one
unit of flow from s to t, with bs = 1, bt = −1, and bv = 0 for all v ∈ V \{s, t}. In
this modified network, an optimal flow corresponds to the shortest path from s to t.
Consequently, the finished or canonical decision problem of the multi-objective minimum
cost flow problem is NP-hard, and the enumeration problem is intractable even in the
case of two objectives. Showing that another nondominated points or efficient flow exists
would solve the complement of the knapsack problem.

Thus, due to Theorem 2.62, Lemma 7.5 and Theorem 4.9, it holds that there is no
output-polynomial algorithm to determine all weakly supported nondominated points or
weakly supported efficient solutions for the MOIMCF problem with a fixed number of
p ≥ 3 objectives.

Theorem 7.6. Unless P = NP, there is no output-polynomial algorithm to determine
all weakly supported nondominated points (or weakly supported efficient solutions) for
the MOIMCF problem with a fixed number of p ≥ 3 objectives.

7.3.2 Supported Nondominated Points

To analyze the time complexity of enumerating all supported nondominated points for MOIMCF
problems, we examine the case of BOIMCF problems. As a preliminary step, we introduce
new problems in single-objective integer MCF, which we abbreviate as MCIF.

Definition 7.7. Given a single-objective Minimum Cost Integer Flow Problem (MCIF)
and an integer k ∈ Z. Then the exact flow problem (EF) asks whether there exists a flow
f with cost c(f) = k.

We prove that this decision problem is NP-complete by reducing it to the well-known
NP-complete subset sum problem (SSP), as introduced in Definition 2.4. For clarity and
convenience, we repeat the definition here.

Given a set N = {1, . . . , n} of n items with positive integer weights w1, . . . , wn and a
real value k, the subset sum problem is to find a subset of N such that the corresponding
total weight is exactly equal to k. The formal definition is given by

n∑
j=1

wj xj = k

xj ∈ {0, 1} ∀j ∈ {1, . . . , n}

Theorem 7.8. The exact flow problem is NP-complete.

Proof. Take an instance of the subset sum problem. Create the following instance of an
exact flow problem. Create a node i for each i ∈ N and an additional node n+ 1. Create
two arcs (i, i+ 1) ∀i ∈ {1, . . . , n}, one with cost equal to zero and one with cost equal to
wi. All arcs get lower and upper capacities equal to zero and one, respectively. We define
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the nodes 1 = s and n + 1 = t. We set bs = −1, bt = 1 and bi = 0 for all other nodes.
A construction of this instance is illustrated in Figure 7.6. Note that artificial nodes and
arcs could be added to prevent multi-arcs.

If we can decide whether a flow f ∈ X with c(f) = k exists in polynomial time, we would
also be able to solve the subset sum problem in polynomial time. Assume the subset sum
problem is solvable, i.e.,

∑n
j=1wjxj = k. For each xi = 1 we take the arc (i, i + 1) with

cost ci,i+1 = wi. For each xi = 0, we take the arcs (i, i+ 1) with a cost equal to zero. This
is a feasible s-t path (feasible flow) with a cost equal to k. On the other side, considering
a path P (flow) with cost equal to k, we set xi = 1 if (i, i + 1) ∈ P that have cost equal
wi and xi = 0 if not. Then x solves the subset problem with the same argumentation as
above.

s = 1 2 3 t0 0

w1 w2

. . .

. . .

Figure 7.6: The instance of the exact flow problem corresponding to a given subset sum
instance.

Theorem 7.8 implies that it is also NP-complete to determine if a flow f exists with
k1 < c(f) < k2 with k1, k2 ∈ Z .

In addition, we can prove the following statement.

Theorem 7.9. The problems to determine the k-th best flow or the k-th smallest distinct
cost of a flow are NP-hard.

Proof. Let the time of finding the k-th best or k-th smallest distinct cost of a flow be T (n).
Consider the instance of the exact flow problem for a given subset sum problem as in the
proof above. Deciding whether a flow f exists with c(f) = l would solve the subset sum
problem. At most, 2n different flows (item i could be selected or not) could exist. Thus,
a binary search for a given flow value is O(n). It can be concluded that the complexity of
the subset sum problem, known to be NP-complete, is O(nT (n)). Therefore, the problem
of determining the k-th best or k-th smallest distinct cost of a flow is NP-hard.

Next, we will prove that we can determine all distinct costs of the flows for a single-
objective minimum cost flow problem in output-polynomial time if we can determine all
supported nondominated points for a bi-objective integer minimum cost flow problem in
output-polynomial time and vice versa.

Definition 7.10. Given a single-objective MCIF, the all distinct cost value flow problem
(ACVF) determines a minimal set of flows that includes all existing different cost values
of all feasible flows. In other words, it identifies k different flows f1, . . . , fk such that

c
(
f1
)
< . . . < c

(
fk
)

and there exists no flow fp such that c(fp) /∈ {c(f1), . . . , c(fk)}.
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Theorem 7.11. If we can solve the ACVF in output-polynomial time, then we can deter-
mine all supported nondominated points of a BOIMCF in output-polynomial time.

Proof. Each supported nondominated point lies on a maximal nondominated facet of the
upper image since its preimage is an optimal solution to a weighted sum scalarization Pλ
for a λ ∈ Λp (i.e., weights are strictly positive). Note that in the bi-objective case, every
maximally nondominated face FY of conv(Y) is a line segment connecting two adjacent
extreme supported nondominated points if there is more than one nondominated point
(|YN | > 1). A maximally nondominated face can only have dimension zero if there is only
one extreme supported nondominated point, implying that there is only one nondominated
point. In other words, the Ideal point, where each objective attains its optimal value, is
feasible. In the following, we assume that (|YN | > 1). All |YES | extreme points and
precisely one corresponding extreme flow can be determined by using the enhanced para-
metric programming approach in O(ζ+|YES |n(m+n log n)) time [Raith and Sedeño-Noda,
2017], where ζ denotes the time required to solve a given single-objective minimum cost
flow problem. Also, the algorithm stores one extreme flow for each extreme nondominated
point.

In Section 7.2, it is shown that for each maximal nondominated facet, we can create a
reduced single-objective integer flow problem in which each image of a feasible flow lies
on the maximal nondominated face. If we assume that we can solve the ACVF in output-
polynomial time, we could determine for a maximal nondominated face all supported
nondominated points whose images lie on this facet in output-polynomial time. Thus, we
solve the ACVF on the reduced network with only the first objective function. Solving the
ACVF successively for the reduced single-objective minimum cost integer flow problems
for each |YES | − 1 maximal nondominated facets would yield all supported nondominated
points for the given BOIMCF. Note that some points may lie in more than one maximal
nondominated facet, namely the extreme supported nondominated points, and therefore,
we have to ensure that we only store these flows once. In total, we would obtain all
supported nondominated points in output-polynomial time.

Theorem 7.12. If we can determine all supported nondominated points for a bi-objective
minimum cost integer flow problem in output-polynomial time, then we can solve the ACVF
in output-polynomial time.

Proof. Consider an instance of the ACVF. Construct a BOIMCF by setting the objective
as (c(f),−c(f)) on the same instance. That is, for each arc a ∈ A, assign the cost vector
(ca,−ca). Any distinct flow vector remains distinct, is nondominated, and lies on the
hyperplane {y : y1 + y2 = 0}. If we could determine all supported nondominated points
in output-polynomial time, we could also solve the ACVF for the original single-objective
MCIF.

Let ACFVFIN denote the decision problem of ACFV, i.e., given a set of distinct cost values
{c(f1), . . . , c(fk)} of some feasible flows, decide if there exists a feasible flow fp with a
distinct cost value to the given ones c(fp) /∈ {c(f1), . . . , c(fk)}. Suppose we can show
that ACFVFIN is not solvable in polynomial time. In that case, there does not exist an
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output-polynomial time algorithm to determine all supported nondominated points unless
P = NP.

Using these results, we can show that if we have given two distinct supported nondom-
inated points y1, y2 with y1

1 < y2
1 for a bi-objective integer minimum cost flow problem

(BOIMCF), it is NP-hard to decide if another supported nondominated point y3 exists,
which has higher cost in the first objective for y1 and lower cost in the first objective for
y2.

Theorem 7.13. Given two different supported nondominated points y1 and y2 of a BOIMCF
with y1

1 < y2
1, the problem of deciding whether another supported nondominated point y3

with y1
1 < y3

1 < y2
1 exists, i.e., in between the supported nondominated point y1 and y2 is

NP-complete.

Proof. The NP-completeness of the problem is established by reduction from the subset
sum problem (SSP). Consider an instance of the (SSP) and construct the single-objective
minimum cost integer flow problem (MCIF) as in the proof of Theorem 7.8, with the cor-
responding construction shown in Figure 7.6. An optimal flow for this instance has a cost
of 0, while the highest cost of a feasible flow is

∑
i∈N wi. Transforming the single-objective

MCIF into a BOIMCF, as done in the proof of Theorem 7.12, ensures that all nondomi-
nated points are supported nondominated points and lie on the same edge between the two

extreme supported nondominated points (0, 0)> and
(∑

i∈N wi,−
∑

i∈N wi
)>

. Introduce
two arcs (s, t), one with cost (k − 1,−(k − 1)) and the other with (k + 1,−(k + 1)). This
construction results in the two supported nondominated points y1 = (k− 1,−(k− 1)) and
y2 = (k + 1,−(k + 1)). Any supported nondominated point y3 satisfying y1

1 < y1
3 < y1

2

would have a cost equal to k. Determining the existence of such a y3 in polynomial time
would allow solving the (SSP) in polynomial time, leading to a contradiction.

Theorem 7.13 also implies that it is NP-hard to determine the next best supported non-
dominated point regarding the first or second objective for a given supported nondomi-
nated point of a BOIMCF. This means it is impossible to determine all supported nondom-
inated points in a lexicographically ordered way regarding the first (or second) objective in
output-polynomial time. However, this theorem is insufficient to show that the supported
nondominated point could not be obtained in output-polynomial time, and it remains an
open question.

Consider the BOIMCF of a subset sum instance in the proof of Theorem 7.13. We
have shown that given a supported nondominated point, it is NP-hard to determine the
next best supported nondominated point for this instance. However, for this instance of
a BOIMCF, we can determine all supported-nondominated points in output-polynomial
time using a similar algorithm to the pseudo-polynomial labeling algorithm presented in
Pisinger [1999] to solve the subset sum problem .

7.4 Conclusion

This chapter discusses the time complexity of enumerating all supported nondominated
points for MOIMCF. It concludes that there is no output-polynomial algorithm for a
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MOIMCF problem with a fixed number of p objectives that determines all weakly sup-
ported nondominated points unless P = NP. Moreover, it shows that there cannot
exist an output-polynomial time algorithm for the enumeration of all supported nondomi-
nated points that determine the points in an ordered manner in the outcome space unless
P = NP. However, the question of whether an output-polynomial time algorithm exists
remains open and could be tackled in future.

In contrast, this chapter presents output-polynomial time algorithms for determining
all supported efficient solutions for BOIMCF problems and general MOIMCF problems
with a fixed number of objectives. First, the approach determines all extreme supported
nondominated points and the weighting vectors for each maximally nondominated face.
Then, it successively determines all supported efficient solutions in the preimage of each
maximally nondominated face by determining all optimal solutions for the corresponding
single-objective parametric network flow problem using the all optimum flow algorithm
recently presented in the previous chapter.

However, it might be that many supported efficient flows may be mapped to the same
vector in the objective space. Thus, often, a minimal complete set (all nondominated
points and one (efficient) preimage for each of them) is considered as a solution to a multi-
objective optimization problem Serafini [1986]. The following chapter will present outcome
and decision space methods for determining all nondominated points more efficiently.

Even though an output-polynomial time algorithm to determine all nondominated points
for MOIMCF problems does not exist, even for the bi-objective case Bökler et al. [2017], fu-
ture research could focus on new approaches to compute also nonsupported nondominated
points/efficient solutions in bi- or even multi-objective MCF problems. Nonsupported so-
lutions may be good compromise solutions and should thus not be neglected completely.
Note that the difficulty in computing nonsupported solutions is not a specific property
of multi-objective integer network flow problems but arises in many integer and com-
binatorial optimization problems and is one reason for their computational complexity,
in general Ehrgott [2000] and Figueira et al. [2017]. One way to overcome this computa-
tional burden—at least to a certain degree—could be to determine nonsupported solutions
only in regions of the Pareto front that are not well represented by the set of supported
nondominated points.
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8 Determining the Supported
Nondominated Points for Bi-Objective
Integer Minimum Cost Flow Problems

This chapter introduces novel methods for identifying supported nondominated points in
bi-objective integer minimum cost flow (BOIMCF) problems, accompanied by a numerical
comparison between decision-space and objective-space methods. A novel, equivalent,
and more compact formulation of the minimum cost flow ILP formulation used in the
ε-constraint scalarization approach is presented, demonstrating enhanced efficiency in the
numerical tests.

The results presented in this Chapter are the outcome of joint work with Michael
Stiglmayr and is available as a technical report Könen and Stiglmayr [2023], which has
been submitted for publication.

8.1 Introduction

In addition to Algorithm 12 in Section 7.2, this chapter shows that the next best distinct
cost flow can be determined in O(n3) given an initial optimal flow. This result leads to
an improved algorithm for enumerating all supported nondominated points for BOIMCF
to Algorithm 12 if the number of branches needed is significantly smaller than the number
of supported efficient solutions. An example is given in which the adjusted algorithm saves
an exponential amount of considered flows to obtain all supported nondominated points.

While Algorithm 12 is a decision-space method, the chapter also introduces objective-
space methods based on the ε-constraint scalarization for determining all supported non-
dominated points. Additionally, it presents a more compact and equivalent formulation
for the ILP used in the ε-constraint method, improving computational efficiency. The
ε-constraint approach can also be extended to get all nondominated points, even in higher
dimensions, e.g., using generic scalarization based methods as discussed in Chapter 3. The
adjusted algorithm can be seen as a combination of a decision-space and objective-space
method.

The remainder of the chapter is structured as follows.In Section 8.2, we derive an ad-
justed algorithm to determine all supported nondominated points. In addition, in Sec-
tion 8.3 a method is presented to use objective-space methods like the ε-constraint scalar-
ization to determine all supported nondominated points. Section 8.4 presents a more com-
pact formulation for the ILP used in the ε-constraint scalarization. Numerical results by
these algorithms on different instances are reported in Section 8.5.
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Chapter 8 Determining the Supported Nondominated Points

8.2 Adjusted Algorithm

In the current version of Algorithm 12, we search for a proper cycle in the reduced network
to obtain a second supported efficient solution. Note that in the reduced network, any
cycle would have a cost equal to zero regarding the weighted sum scalarization with a
weight vector λ corresponding to the current maximal nondominated face Fi. However,
we will now consider the first objective. We then search for a minimal proper cycle in
the reduced network, i.e., a proper cycle with minimum cost regarding the first objective
under all proper cycles in D′λ. A proper zero cost cycle regarding the first objective
in D′λ would yield a supported efficient solution whose images map to the same vector
as the initial solution (in the bi-objective case). Since we want, in the best case, only
one flow per vector, we search for a minimal proper cost cycle under all proper cycles
that have costs greater than zero. We then would obtain a distinct cost second-best flow
regarding the first objective. Using the complementary slackness condition, we prove that
we could obtain such a cycle in O(n3). Using this fact, we could adjust the previously
presented Algorithm 12 in Section 7.2 to find the supported nondominated points more
efficiently.

We want to find all supported nondominated points for each maximally face Fi (in this
case, given by an edge between two consecutive extreme points). For that, we want to
determine all supported nondominated points between the edge of the two extreme points
yi and yi+1. In Figure 7.3, an example is shown.

For yi, let f ′ be a corresponding optimal flow. Considering the edge Fi, we know that
f ′ is not only an optimal flow for the weight vector λ, but as well f ′ is an optimal flow
regarding the first objective c1 in D′λ. So for f ′, there cannot be a negative cycle regarding
the cost of c1 in D′λ,f ′ and the complementary slackness conditions hold.

In order to find the next nondominated point on the edge Fi, we determine the minimal
proper cycle C := argmin{c1(C) : c1(C) > 0, C ∈ D′λ,f ′}. Using techniques from Sec-

tion 6.5 like Lemma 6.15 this can be done in O(n3). Note that this is feasible only for
the first and last supported nondominated point on a maximally nondominated face since
it requires an optimal solution w.r.t. the first or second objective function to start with.
Thus, this procedure cannot be extended to iteratively generate supported nondominated
points along the face in an ordered way.

Let D = (dji) be the distance table of Dλ,f concerning c1(f), i.e., dji is the length of
the shortest path Pji from j to i in Df with length c1(f, Pji). The distance table may be
computed in time O(n3) using the Floyd-Warshall algorithm or in time O(n2 log n+mn)
by (essentially) repeated calls to Dijkstra’s algorithm; the latter is more efficient on sparse
graphs Hamacher [1995].

Property 6.14 shows the following for proper minimal (i, j)-cycles. For any anti-parallel
arc in Af , i.e., (i, j) ∈ Af with (j, i) /∈ Af , the cost of a proper minimal (i, j)-cycle C ∈ Df

is given by c(f, C) = cij(f) + dji.

Using the idea of Property 6.14 presented by Hamacher [1995], the problem is that it
only applies to arcs with no anti-parallel arc in Af . For all other arcs, the cost of the
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8.2 Adjusted Algorithm

corresponding proper minimal (i, j)-cycle has to be computed by finding a shortest path
in Df \{(j, i)}. In the following result, we show that we can use the complementary slack-
ness optimality conditions of an optimal solution to overcome this problem and restrict
ourselves to consider only arcs with no anti-parallel arcs in Dλ,f .

Theorem 8.1. We can determine the minimal cost cycle

C := argminC∈D′
λ,f ′
{c1(C) : c1(C) > 0}

over all cycles with strictly positive weight in O(n3).

Proof. Let C be a minimal proper cycle with the property c1(C) 6= 0. So c1(C, f) > 0,
because there cannot be a cycle with negative costs due to the negative cycle optimality
conditions. Therefore, there exists an arc (i, j) ∈ C with cij(f) > 0. Since f is an optimal
solution, the complementary slackness optimality conditions ensure that c1

ij(f) > 0 only
holds if (i, j) ∈ A and fij = lij or (j, i) ∈ D and fji = uji. Therefore, we have that
(i, j) ∈ A := {(i, j) ∈ Af : (i, j) ∈ A with fij = lij or (j, i) ∈ A with fji = uji} and
(j, i) /∈ Df , (since the flow value of the corresponding arc of (i, j) in D is equal to the
upper or lower capacity of this arc).

Since (j, i) /∈ Df it holds that c1(C, f) = cij +dji due to Property 6.14. Since c1
ij(f) ≥ 0

any cycle C with c1(C) has at least one of such an arc. Consequently, we can determine
a minimal proper cycle C := argmin{c1(C) : c1(C) > 0, C ∈ D′λ,f ′} by just choosing

C = argmin{c(f, C) = cij + dji : C = {(i, j)} ∪ Pji with (i, j) ∈ A}. We can compute the
distance table in O(n3) time. Notice that this approach also provides the paths Pji in
addition to the cost dji.

Given all pairwise distances dji and the reduced costs c1
ij(f) for all (i, j) in D1

f we can

determine c1(f, C) = c1
ij + dji in constant time O(1) and can determine the argmin in

O(m) time. As a result, we can compute a minimal proper cycle with c1(C) 6= 0 in time
O(n3).

So let C be chosen as above. Let f ′′ = f ′+χ(C). The flow f ′′ is supported, and its image
lies on the edge Fi. We are going to prove that f ′′ is the next nondominated point on Fi
regarding the cost of c1, i.e., there does not exist a flow f̄ whose image lies on Fi with the
property c1(f ′) < c1(f̄) < c1(f ′′).

Theorem 8.2. There exists no flow f̄ whose image c1(f̄) lies on F1 between the images
of f ′ and f ′′, i.e., c1(f ′) < c1(f̄) < c1(f ′′).

Proof. It holds that

f ′′ = f ′ + χ(C) and thus c1(f ′′) = c1(f ′) + c1(C)

and we know that any flow f̄ on F1 can be written as

f̄ = f ′ +
∑

Ci∈D′λ,f ′

χ(Ci) c1(f̄) = c1(f ′) +
∑

Ci∈D′λ,f ′

c1(Ci).

=⇒ c1(f ′) < c1(f ′) + c1(C) = c1(f ′′) ≤ c1(f ′) +
∑

Ci∈D′λ,f ′

c1(Ci) = c(f̄).
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The inequality
∑

Ci∈D′λ,f ′
c1(Ci) ≥ c1(C) holds since the sum contains the positive cost of

at least one cycle regarding the first objective. Since C was chosen as the minimal cost
cycle

C := argminC∈D′
λ,f ′
{c1(C) : c1(C) > 0},

it holds that c1(f ′′) ≤ c1(f̄).

Since we can compute the next supported nondominated point in D′λ, we can now ap-
ply the binary partition approach as used in Hamacher [1995] and Section 6.5 using an
arc with positve costs. Thereby, we substitute FindAnotherOptimalFlow in Algorithm 9
by Algorithm 15. This adjusted algorithm can be more efficient in determining all sup-

Algorithm 15: FindSecondDistinctCostBestFlow

Data: optimal flow f in Pλi
Result: A second distinct cost-best flow f ′ with c(f ′) 6= c′(f), if one exists.

1 y ← ComputeNodePotential(f , D)
2 c ← ComputeReducedCost(y, D)

3 (D,P )← DetermineDistanceTableAndPaths(c, f,D)
4 C ← argmin{c(f, C)} = argminC∈D′

λ,f ′
{c1(C) : c1(C) > 0}

5 if C = null then return ∅
6 f ′ ← f + χ(C)

7 return f ′

ported nondominated points than by determining all supported efficient flows, as the next
example will show, since we might have an exponential number of supported efficient flows
that we would not consider with this new technique.

Example 8.3. Consider a graph D with nodes {1, . . . , k}, parameters L,M ∈ N and an
optimal flow f w.r.t. the first objective. Node 1 has b1 = 2 and node k has bk = −2. For
all other nodes i ∈ {2, . . . , k − 1} we have bi = 0. The graph D contains arcs

• (i, i+ 1) for all i ∈ {1, . . . , k − 1} with ui,i+1 = (k − 3)M + (L+ 2), fi,i+1 = 2 and
reduced costs c̄1

i,i+1 = c̄2
i,i+1 = 0,

• arcs (k − i, k − i − 2) for all i ∈ {1, . . . k − 3} with uk−i,k−i−2 = M , fk−i,k−i−2 = 0
and c̄1

k−i,k−i−2 = c̄2
k−i,k−i−2 = 0, and

• one arc (k, k − 2) with uk,k−2 = L, fk,k−2 = 0 and c̄1
k,k−2 = 1, c̄2

k,k−2 = −1.

Figure 8.1 illustrates this example for k = 5. There are L+ 1 nondominated points, which
are all supported. However, we would have (M +1)k−3(L+1) efficient flows, which are all
supported. However, using the branching technique described above, we would have only
L+ 1 leaves at the end of our branching.
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2 −2

(M, 0, 0, 0)(M, 0, 0, 0)

(L, 0, 1,−1)

Figure 8.1: Graph D of the BMCIF in Example 8.3 with an optimal flow f w.r.t. the first
objective. The arcs are labeled with (ua, fa, c̄

1
ij , c̄

2
ij). Here lij = 0 for all arcs

and (ua = (k− 3)M + (L+ 2), fa = 2, c̄1
ij = 0, c̄2

ij = 0) for all arcs that are not
labeled. The nodes are labeled with bi and bi = 0 for all nodes which are not
labeled. M > L.

However, as shown in the following example, we might find supported efficient flows (even
exponentially many) with images corresponding to supported nondominated points already
found in other branches.

Example 8.4. Consider a graph D with nodes {1, . . . , k}, parameter L ∈ N and an optimal
flow f w.r.t. the first objective. Node 1 has b1 = 2 and node k has bk = −2. All other
nodes i ∈ {2, . . . , k − 1} are transshipment nodes, bi = 0. The graph D contains arcs

• (i, i + 1) for all i ∈ {1, . . . , k − 1} with ui,i+1 = L + 2, fi,i+1 = 2 and reduced costs
c̄1
i,i+1 = c̄2

i,i+1 = 0, and

• (k, k − i) for all i ∈ {2, . . . , k − 1} with uk,k−1 = L, fk,k−1 = 0 and reduced costs
c̄1
k,k−1 = 1, c̄2

k,k−i = −1.

Figure 8.2 illustrates the graph D for k = 5. Then, this BMCIF has L+ 1 nondominated
points, and all of them are supported. However, we have

∑L
i=0

(
(k−2)+i−1

i

)
supported effi-

cient flows, and all of them would yield a leave of our branching technique. This number
can be exponential. Assume that L > k, then it holds that

L∑
i=0

(
(k − 2) + i− 1

i

)
>

k∑
i=0

(
k − 3 + i

i

)
>

k∑
i=0

(
k − 3

i

)
= 2k−3.

Since k ∈ O(m), we have an exponential amount of flows to consider.

8.3 Epsilon-Scalarizations on Reduced Networks

One decision-space method for determining nondominated points for general multi-objective
linear programs is the well-known ε-constraint method [Haimes et al., 1971]. In the ε-
constraint method, there is no aggregation of criteria as in the weighted sum scalarization.
Instead, only one of the original objectives is minimized while the others are transformed
into constraints.
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2 −2

(L, 0, 1,−1)

(L, 0, 1,−1)

(L, 0, 1,−1)

Figure 8.2: Graph D of the BMCIF in Example 8.4 with an optimal flow f w.r.t. the first
objective. The arcs labeled with (ua, fa, c̄

1
ij , c̄

2
ij). Here lij = 0 for all arcs and

(ua = L + 2, fa = 2, c̄1
ij = 0, c̄2

ij = 0) for all arcs that are not labeled. The
nodes are labeled with bi and bi = 0 for all nodes which are not labeled.

c1(f)

c2(f)
conv(Y + R2

=)

ε

Figure 8.3: An example of the ε-constraint scalarization {minf∈X c
1(f) : c2(f) ≤ ε} for a

BMCIF.

The ε-constraint scalarization of (MOIMCF) can be represented as:

min cj(f)
s.t. ck(f) ≤ εk ∀k ∈ {1, . . . , d}, k 6= j

f ∈ X

An illustration of the ε-constraint for a bi-objective minimum cost integer flow problem
can be found in Figure 8.3.

For the BOIMCF, all nondominated points can be found by solving a sequence of ε-
constraint problems. Starting with the lexicographically minimal solution
lexmin{c1(f), c2(f)} regarding the first objective, which can be determined in polynomial
time, we can determine the next nondominated point using the ε-constraint. After each
newly generated point, we update ε until the last nondominated point lexmin{c2(f), c1(f)}
is generated. In Eusébio and Figueira [2009a], an implicit enumeration algorithm for
BOIMCF is given, which solves such a sequence of ε-constraint problems by computing
optimal non-integer solutions with a network simplex algorithm and then determining
optimal integer solutions with a branch-and-bound technique.
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We also could use this ε-constraint method to obtain the complete set of supported
nondominated points for the BOIMCF, in which we have to solve one ε-constraint prob-
lem for each supported nondominated point. Thereby, we solve the ε-constraint method
on each maximally nondominated face. Let XD′ be the set of all feasible flows for the
reduced network for one maximal nondominated face, i.e., all solutions whose image lies
on this maximal nondominated face. Any solution in the reduced network is a supported
efficient solution. Using the ε-constraint method on all of these facets would determine all
supported nondominated points. We only must solve one ε-constraint problem for each
supported nondominated vector. Let T (ε) be the longest time required to solve such a
ε-constraint problem.

Theorem 8.5. For a given BOIMCF, we can determine all S supported nondominated
points in time O(|YES |n(m+ nlogn) + ζ + S(T (ε)).

Proof. The enhanced parametric network approach [Raith and Ehrgott, 2009] requires
O(|YES |n(m+ n log n) + ζ) time, where ζ is the time required to solve a single-objective
minimum cost integer flow problem, and |YES | is the number of extreme supported non-
dominated points. Since the algorithm determines the extreme points in decreasing order
of c1(f), no additional time is needed for sorting. Defining the weight vectors λi for
i = 1, . . . , |YES | − 1 and constructing the network with the corresponding cost function
takes O(|YES |(n + m)) time. Determining all Si supported nondominated points on the
maximally nondominated face Fi requires solving Si − 1 ε-constraint problems. Doing so
for each maximally nondominated face requires O(ST (ε)) time.

8.4 A more Compact Formulation for the ILP in the
Epsilon-Constraint Method

The ε-constraint problem contains m variables and 2m + n + 1 constraints. However,
according to Theorem 6.21, each flow f∗ can be written by an initial optimal tree solu-
tion f and a conical combination of incidence vectors of all induced cycles with bounded
coefficients, i.e.,

f∗ = f +
∑
a/∈T

λa χ(Ca)

for some λ ∈ Z and it holds that

c(f∗) = c(f) +
∑
a/∈T

λa c(Ca).

Therefore, instead of solving a constrained minimum cost integer flow problem, we could
also solve the following ILP, which searches for the best combination of induced cycles
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such that the capacity constraints are satisfied.

min
∑
a/∈T

λa c
1(Ca) (c-MOIMCF)

s.t. 0− fij ≤
∑

a:(i,j)∈Ca

λa χij(Ca) ≤ uij − fij ∀(i, j) ∈
⋃
a/∈T

Ca∑
a/∈T

λa c
2(Ca) ≤ ε

Theorem 8.6. For ε sufficiently large, the set of feasible solutions of (MOIMCF) and
(c-MOIMCF) coincide.

Proof. Let f be an initial optimal tree solution. Assume that f∗ is a feasible solu-
tion for MOIMCF. After Theorem 6.21, the solution f∗ can be written as f∗ = f +∑

a/∈T λ
∗
a χ(Ca) for some λ ∈ Z. Let λ∗a for a /∈ T be the solution for c-MOIMCF, then

0− fij ≤
∑

a:(i,j)∈Ca λa χij(Ca) ≤ uij − fij for all (i, j) ∈
⋃
a/∈T Ca would be satisfied, since

otherwise an arc (u, v) exists where the capacity constraint 0 ≤ f∗uv ≤ uuv would not hold.
A contradiction of the feasibility of f∗. Now assume that λ′a for a /∈ T is a feasible solution
of c-MOIMCF. Let f ′ = f +

∑
a/∈T λ

′
a χ(Ca). Since f was an initial optimal tree solution

and we only change flow on cycles, it holds that
∑

j:(i,j)∈A f
′
ij −

∑
j:(j,i)∈A f

′
ji = bi for all

i ∈ V . The boundaries of 0 ≤ fij ≤ uij for all (i, j) ∈ A are also satisfied, since otherwise
uij − fij for one arc (i, j) ∈

⋃
a/∈T Ca would not be satisfied. A contradiction.

This ILP has n variables and at least n−1 constraints less than the standard ε-constraint
problem. According to Theorem 6.21, the respective sets of feasible solutions coincide.
In Section 8.5, we evaluate numerically which approach is faster in practice, the standard ε-
constraint method or the combination approach of the induced cycles. We also compare the
running times to determine all supported nondominated points compared to Algorithm 12
in Section 7.2 and Section 8.2.

8.5 Numerical Experiments

This section presents the implementation and numerical evaluation of the four methods.
The section aims to report and compare the results, providing a comprehensive under-
standing of their behaviors.

All computations are conducted on a computer with an Intel® Core™i8-8700U CPU
3.20 GHz processor with 32 GB RAM, using a LINUX operating system. The algorithms
are implemented and run in Python (Version 3.11). In addition, for solving the ε-constraint
scalarizations, Gurobi 12.1 embedded in Python is used. To ensure fair comparisons, the
ILPs in Gurobi were solved using a single thread.

For the computational experiments, we utilized test instances from Figure 8.1 and Fig-
ure 8.2, as well as minimum cost integer flow problem classes generated by the NETGEN
network generator [Klingman et al., 1974]. The entire test comprised 11 problem classes,
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with each class consisting of a set of 15 randomly generated network problems. The pa-
rameters that allowed the random generation of each NETGEN instance are the number
of nodes, arcs, and nodes acting as supply or sink nodes, respectively, the greatest cost,
greatest capacity, and the total supply in each network. In each problem class, the number
of arcs and nodes varies. The instances ranged from 50 to 5000 nodes with 100 to 10000
arcs. These variables were chosen as independent variables due to their direct influence
on the number of possible supported nondominated points or supported efficient solutions
and, therefore, influencing the different number of iterations of the different methods. All
the other parameters that NETGEN can accept were kept constant. All instances have
two nodes acting as supply nodes and two as sink nodes, a maximum arc cost of 10 for
both objective functions, a maximum upper capacity of 50, and a total supply of 50.

Results for the NETGEN instance classes are presented in Table 8.1, while the results
of the test instances from Figure 8.1 and Figure 8.2 are summarized in Table 8.2 and Ta-
ble 8.3. These tables display the number of extreme supported nondominated points,
supported nondominated points, supported efficient solutions, and CPU time for all four
methods. We display the min, max, and mean of the times and numbers of the 15 network
problems. Note that we only consider problem instances with at least two nondominated
points.

2 3 4 5 6 7 8 9 10

10−2

10−1

101

102

Computation Time

TAO
TDS
Tε

TNew-ε

Figure 8.4: Line graph showing the comparison of average computation times for the dif-
ferent methods across the problem instances from Table 8.1. The x-axis repre-
sents different problem instances, while the y-axis (logarithmic scale) indicates
the computation time.

Table 8.2 indicates, as expected, that the adjusted algorithm outperforms the all opti-
mal flow algorithm when the number of branches needed is significantly smaller than the
number of supported efficient solutions. However, when the number of branches needed
equals the number of efficient solutions, the all optimal algorithm outperforms the adjusted
algorithm, as evident in Table 8.3. The high computational cost of the Floyd-Warshall
algorithm used in each branch contributes to the adjusted algorithm’s suboptimal per-
formance, as highlighted in Table 8.1, and indicates that this algorithm performs poorly
in practice. Despite this, when the number of supported nondominated points and sup-
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ported efficient solutions equals, and therefore, the all optimal flow algorithm would run in
output-polynomial time to determine the number of all supported nondominated points,
the objective-space methods clearly outperform this algorithm.

The observed differences in running times of the outcome space methods against the
decision space methods can, in part, be attributed to the nature of the implementations.
Gurobi, a highly optimized solver, benefits from extensive engineering and decades of
refinement. In contrast, the other algorithms in our study were implemented from scratch
in Python, which inherently results in slower execution times due to the interpreted nature
of the language and the absence of low-level optimizations.

It is important to emphasize that developing a high-performance, C-based implemen-
tation of our proposed algorithms is beyond the scope of this chapter. However, our
results still provide valuable insights into the relative efficiency of different approaches
independent of implementation-specific optimizations. It is important to note that de-
spite the existence of high-performance implementations for outcome space methods, the
development of new decision space methods should not be overlooked.

To foster reproducibility and further research, our code and benchmark instances can be
found in an open repository under the following link to allow other researchers to replicate
our findings, test alternative implementations, and explore further optimizations.

On a positive note, the more compact formulation of the ε-constraint scalarization
surpasses the classic formulation in each instance, as shown in Table 8.4. The mean CPU
time needed in the more compact formulation for the ε-constraint scalarization across all
instance classes is 4.244 times faster than the standard formulation, demonstrating its
efficiency. The time gap may increase in instances including more nodes and arcs. This
is a nice result since the more compact formulation can also be used in any ε-constraint
scalarization method for multi-objective minimum cost integer flow problems with d ≥ 3
objectives or the determination of all nondominated points for minimum cost integer flow
problems.

In conclusion, the computational experiments provide valuable insights into the strengths
and weaknesses of the implemented algorithms. The more compact formulation of ε-
constraint scalarization presents a promising direction for future research, offering faster
computation times and potential applications in multi-objective minimum cost integer
flow problems with three or more objectives.

8.6 Conclusion

This chapter proposes novel methods for identifying supported nondominated points in bi-
objective minimum cost flow problems accompanied by a numerical comparison between
decision- and objective-space methods. A novel, equivalent, and more compact formulation
of the minimum cost flow ILP formulation used in the ε-constraint scalarization approach
is introduced.

The numerical tests show that the outcome space methods clearly outperform the
decision-space methods, even if they do not run in output-polynomial time. The compact
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8.6 Conclusion

formulation of the ILP for the ε-method shows a significant time improvement compared to
the conventional ILP. The new formulation can also be used to compute all nondominated
points in multidimensional minimum cost integer flow problems and could be investigated
in the future.

For MOIMCF, supported nondominated points are often only a minor part of the com-
plete set of nondominated points, even for the bi-objective case. However, determining
supported nondominated points is often needed as a first step in two-phase exact methods
and for population-based heuristics. The development of improved two-phase methods
that compute all nondominated points for MOIMCF could be explored in the future.
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Table 8.1: Numerical results for the different instance classes generated with NETGEN.
T-|YES | displays the time needed to determine the number of extreme points.
T-AO, T-DS, T-ε, T-New-ε refers to the CPU time in seconds needed for Algo-
rithm 12, the adjusted version with Algorithm 15, the ε-Method, and the new
more compact ε-Method. Empty entries (–) reflect a CPU time of over 500
seconds and have not been recorded.

Class |YES | T-|YES | |YS | |XS | T-AO T-DS T-ε T-New-ε

1 min 2 0.027 4 4 0.0058 0.1010 0.0049 0.0027
n = 50 max 10 0.163 41 47 0.0887 1.1871 0.0287 0.0161
m = 100 mean 4.9 0.074 20.7 22.2 0.0269 0.5565 0.0131 0.0072

2 min 4 0.125 23 29 0.0408 0.7778 0.0156 0.0097
n = 50 max 15 0.589 97 227 0.3906 8.0199 0.1056 0.0296
m = 200 mean 9.2 0.340 42.3 58.5 0.0984 1.8382 0.0399 0.0181

3 min 2 0.103 3 3 0.0123 0.3989 0.0045 0.0027
n = 100 max 14 0.912 49 99 0.3557 15.524 0.1011 0.0365
m = 200 mean 6.47 0.389 25.3 36.1 0.1353 4.9246 0.0562 0.0176

4 min 6 0.718 20 20 0.1110 4.2690 0.0634 0.0164
n = 100 max 36 4.959 128 154 0.8094 33.2009 0.3805 0.1197
m = 400 mean 12.6 1.488 53.6 68.6 0.3025 10.9926 0.1601 0.0354

5 min 4 0.825 4 4 0.0701 4.9458 0.0823 0.0140
n = 200 max 17 3.876 86 86 1.1996 109.7116 0.4540 0.0794
m = 400 mean 9.4 2.164 35.8 36.6 0.4217 44.5244 0.2223 0.0414

6 min 2 0.669 5 5 0.0625 5.4639 0.0311 0.0052
n = 200 max 24 10.279 128 311 4.4925 380.9636 0.6182 0.1250
m = 800 mean 13.4 5.379 64.6 82.4 1.1090 111.4111 0.3150 0.0664

7 min 4 19.586 10 10 3.2243 – 0.4168 0.0870
n = 1000 max 18 102.092 64 64 18.9144 – 2.3113 0.4913
m = 2000 mean 11.8 62.721 32.6 33.4 10.8732 – 1.4042 0.2709

8 min 4 39.428 7 7 2.6272 – 0.4336 0.0963
n = 1000 max 32 341.543 112 121 41.6134 – 4.0621 0.9461
m = 4000 mean 18.6 195.961 55.4 61.4 22.8661 – 2.5020 0.5284

9 min 7 75.994 9 9 16.1292 – 1.3056 0.2225
n = 2000 max 24 516.131 73 124 139.9464 – 9.3591 1.5732
m = 4000 mean 14.8 300.958 38.6 48.6 55.7729 – 5.0278 0.8677

10 min 9 359.654 17 17 27.3013 – 0.5476 0.5476
n = 2000 max 26 1090.674 142 220 279.7599 – 10.7284 1.9579
m = 8000 mean 17.2 716.485 67.6 80.8 112.5519 – 6.5519 1.1404

11 min 6 777.874 14 14 106.6934 – 11.3873 1.4136
n = 5000 max 21 2741.023 110 160 1010.9983 – 44.9173 6.2393
m = 10000 mean 13.6 1666.410 47.9 48.34 332.6101 – 26.8930 3.6720
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Table 8.2: Numerical results for the different instances of Figure 8.1. Each instance has
|YES | = 2 extreme supported nondominated and |YS | = 6 supported nondom-
inated points. For the first 5 instances, it holds M = 10, L = 5. For the last,
it holds M = 1, L = 5. In these instances the adjusted algorithm needs only
|YS | = 6 branches.

Class |XS | T-AO T-DS T-ε T-New-ε

n = 5 726 0.0587 0.0012 0.0018 0.0013
n = 6 7986 0.6490 0.0016 0.0017 0.0012
n = 7 87846 7.8305 0.0019 0.0223 0.0013
n = 8 966306 95.4091 0.0025 0.0193 0.0013
n = 9 10629366 1133.3333 0.0028 0.0191 0.0013
n = 20 786432 165.3812 0.0136 0.0219 0.0020

Table 8.3: Numerical results for the different instances of Figure 8.2. Each instance has
|YES | = 2 extreme supported nondominated and |YS | = 6 supported nondomi-
nated points. For the first six instances, it holds L = 5. For the last L = 3. In
this instances the adjusted algorithm needs exactly |XS | branches.

Class |XSN | T-AO T-DS T-ε T-New-ε

n = 5 56 0.0048 0.0120 0.0016 0.0012
n = 6 126 0.0133 0.0356 0.0016 0.0012
n = 7 252 0.0427 0.0864 0.0019 0.0013
n = 8 462 0.0641 0.1954 0.0020 0.0014
n = 9 792 0.1257 0.4160 0.0021 0.0014
n = 10 1287 0.2221 0.8041 0.0202 0.0016
n = 20 33649 12.9121 84.201 0.0195 0.0027

Table 8.4: Displays the time difference of the ε-epsilon method versus the more compact
formulation of the mean for each randomly generated NETGEN class instances
of Table 8.1.

Class T-ε / T-New-ε

1 1.82
2 2.20
3 3.19
4 4.52
5 5.37
6 4.74
7 5.18
8 4.74
9 5.79
10 5.73
11 7.87
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9 Conclusion

This thesis has explored the complexities and challenges of supportedness and determin-
ing representations or the entire nondominated point set in multi-objective combinatorial
optimization, focusing mainly on multi-objective integer minimum cost flow problems.

The thesis presents exact generic scalarization-based algorithms for MOCO problems.
These methods decompose the problem into a series of scalarized single-objective subprob-
lems, which can be solved using existing single-objective (IP-)solvers. Various implemen-
tation strategies are examined, including choices regarding the sequence of subproblems,
scalarization techniques, and decisions about computing the entire nondominated point
set or a representative subset.

However, MOCO and MOIMCF belong to the class of computationally intractable prob-
lems, often containing a huge set of nondominated points. This results in high compu-
tational effort, particularly for high-dimensional problems or large instances, highlighting
the need for approximation techniques and alternative methods to represent the entire
nondominated point set.

Therefore, this thesis focuses on determining subsets of the entire nondominated point
set and investigates the existence of output-polynomial time algorithms for different solu-
tion concepts in MOIMCF problems. A key finding of this thesis is the role of supported
nondominated points as high-quality representations of the complete nondominated point
set in MOIMCF. Across various test instances, supported solutions consistently demon-
strated superior representational quality, as measured by hypervolume ratio and coverage
error. For all instances, the hypervolume ratio of the supported nondominated points as
representations always are close to one and provides minor coverage errors. In contrast,
extreme supported nondominated points yielded significantly lower quality measures, par-
ticularly as arc capacities increased. On average, across 11 three-dimensional test classes
comprising 15 instances each, the hypervolume ratio of supported nondominated points
was 16% higher than that obtained from extreme supported nondominated points. Fur-
thermore, the mean coverage error of supported points was only 28% of that of extreme
supported points, further demonstrating their superior representational quality.

Beyond their representational advantages, the supported nondominated points are more
straightforward to compute than the nonsupported ones and can serve as a foundation
for two-phase methods. Despite the importance of supportedness, several different char-
acterizations for supported efficient solutions (and supported nondominated points) are
used in the literature. This thesis addresses these inconsistencies in the literature re-
garding definitions of supported nondominated points. Through theoretical analysis and
counterexamples, it demonstrates that while various definitions are equivalent in multi-
objective linear problems, they produce distinct sets of supported nondominated points
in combinatorial settings, leading to structural and computational properties differences.
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This thesis formally introduces the distinction between supported and weakly supported
efficient solutions.

The thesis further examines the computational complexity of enumerating all supported
nondominated points for MOIMCF. It concludes that there is no output-polynomial al-
gorithm for a MOIMCF problem with a fixed number of p objectives that determines all
weakly supported nondominated points unless P = NP. Moreover, it shows that there
cannot exist an output-polynomial time algorithm for the enumeration of all supported
nondominated vectors that determine the vectors in an ordered manner in the outcome
space unless P = NP. However, the question of whether an output polynomial time
algorithm exists remains open and could be tackled in the future.

In contrast, this thesis presents output-polynomial time algorithms for determining all
supported efficient solutions for BOIMCF problems and general MOIMCF problems with
a fixed number of objectives. It also proposes novel methods for identifying supported non-
dominated points in bi-objective minimum cost flow problems accompanied by a numerical
comparison between decision- and objective-space methods. The numerical tests highlight
that the outcome space methods clearly outperform the decision-space methods, even if
they do not run in output-polynomial time. The compact formulation of the ILP for the
ε-method shows a significant time improvement compared to the conventional ILP. The
new ILP formulation for the ε-method demonstrates significant time improvements over
the conventional ILP formulation and may also be useful for computing all nondominated
points in MOIMCF, and should be investigated in future.

Looking forward, several promising research directions arise from this work. Enhancing
parallel computing techniques could improve the efficiency of defining point algorithms and
other generic scalarization-based methods for MOCO problems, addressing scalability con-
cerns in high-dimensional settings. Additionally, structured combinatorial approaches for
selectively computing nonsupported nondominated solutions in underrepresented regions
of the Pareto front could mitigate computational challenges while preserving solution qual-
ity. Moreover, extending the characterization of supportedness to broader multi-objective
optimization contexts remains an open challenge.

For MOIMCF specifically, future research could explore structured combinatorial ap-
proaches to efficiently analyze the conical combinations of induced cycles, potentially
leading to improved algorithms for network flow problems. Given the significant time
improvements observed with the new ILP formulation for the ε-constraint method, it
would be valuable to investigate whether this formulation can enhance computational ef-
ficiency when integrated into generic scalarization-based methods, such as the defining
point algorithm for MOIMCF problems.

Although supported nondominated points yield high-quality representations, they are
still numerous (however, being only a minor part of the complete entire set of nondomi-
ated points). Future research could explore whether a strategically chosen subset of the
supported nondominated points, potentially derived from intermediate solutions, could
provide sufficiently high-quality representations while reducing computational effort.

Even though an output-polynomial time algorithm to determine all nondominated points
for MOIMCF problems does not exist, even for the bi-objective case, future research could
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focus on new approaches to compute also nonsupported nondominated points/efficient
solutions in bi- or even multi-objective MCF problems. Nonsupported solutions may be
good compromise solutions and should thus not be overlooked entirely. Furthermore, the
open question of whether supported nondominated points can be determined in output-
polynomial time remains an important direction of research.

In summary, this thesis significantly contributes to the study of MOCO and especially
MOIMCF by advancing algorithmic methodologies, refining theoretical foundations, and
offering insights into computational complexity. By addressing gaps in the literature and
proposing novel approaches, it lays the groundwork for further advancements in MOIMCF
research.
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Baste, J., M. R. Fellows, L. Jaffke, T. Masaŕık, M. O. de Oliveira, G. Philip, and F. A. Rosa-
mond (2019). “Diversity in combinatorial optimization”. In: CoRR abs/1903.07410.
arXiv: 1903.07410.

Battista, G. D., P. Eades, R. Tamassia, and I. G. Tollis (1998). Graph Drawing: Algorithms
for the Visualization of Graphs. 1st. USA: Prentice Hall PTR.

Bauß, J., S. N. Parragh, and M. Stiglmayr (2024). “On improvements of multi-objective
branch and bound”. In: EURO Journal on Computational Optimization 12, p. 100099.
doi: 10.1016/j.ejco.2024.100099.

Bazgan, C., F. Jamain, and D. Vanderpooten (2017). “Discrete representation of the non-
dominated set for multi-objective optimization problems using kernels”. In: European
Journal of Operational Research 260.3, pp. 814–827. doi: 10.1016/j.ejor.2016.
12.038.

Bektas, T. (2018). “Disjunctive programming for multiobjective discrete optimisation”.
In: INFORMS Journal on Computing, pp. 1–18. doi: 10.1287/ijoc.2017.0804.

Benson, H. P. (1978). “Existence of efficient solutions for vector maximization problems”.
In: Journal of Optimization Theory and Applications 26.4, 569–580. doi: 10.1007/
BF00933152.

Bertsekas, D. P. (1998). Network Optimization. Continuous and Discrete Methods. Athena
Scientific, p. 593.

Boissonnat, J.-D., M. Sharir, B. Tagansky, and M. Yvinec (1998). “Voronoi diagrams
in higher dimensions under certain polyhedral distance functions”. In: Discrete &
Computational Geometry 19, pp. 485–519. doi: 10.1007/PL00009366.

Boland, N., H. Charkhgard, and M. Savelsbergh (2016). “The L-shape search method for
triobjective integer programming”. In: Mathematical Programming Computation 8,
pp. 217 –251. doi: 10.1007/s12532-015-0093-3.

181

https://doi.org/10.1088/1742-6596/1490/1/012061
https://doi.org/10.1088/1742-6596/1490/1/012061
https://doi.org/10.1287/mnsc.25.1.73
https://doi.org/10.1007/s10898-010-9541-9
https://doi.org/10.1007/s10898-010-9541-9
https://arxiv.org/abs/1903.07410
https://doi.org/10.1016/j.ejco.2024.100099
https://doi.org/10.1016/j.ejor.2016.12.038
https://doi.org/10.1016/j.ejor.2016.12.038
https://doi.org/10.1287/ijoc.2017.0804
https://doi.org/10.1007/BF00933152
https://doi.org/10.1007/BF00933152
https://doi.org/10.1007/PL00009366
https://doi.org/10.1007/s12532-015-0093-3


Chapter 9 Bibliography

Boland, N., H. Charkhgard, and M. Savelsbergh (2017a). “A new method for optimizing a
linear function over the efficient set of a multiobjective integer program”. In: European
Journal of Operational Research 260.3, pp. 904 –919. doi: 10.1016/j.ejor.2016.
02.037.

Boland, N., H. Charkhgard, and M. Savelsbergh (2017b). “The Quadrant Shrinking Method:
A simple and efficient algorithm for solving tri-objective integer programs”. In: Eu-
ropean Journal of Operational Research 260.3, pp. 873 –885. doi: 10.1016/j.ejor.
2016.03.035.

Boyd, S. and L. Vandenberghe (2004). Convex Optimization. Cambridge university press.

Bökler, F. (Apr. 2018). “Output-sensitive Complexity of Multiobjective Combinatorial Op-
timization Problems with an Application to the Multiobjective Shortest Path Prob-
lem”. PhD thesis.

Bökler, F., M. Ehrgott, C. Morris, and P. Mutzel (Jan. 2017). “Output-sensitive complexity
of multiobjective combinatorial optimization”. In: Journal of Multi-Criteria Decision
Analysis 24.1-2, 25–36. doi: 10.1002/mcda.1603.

Bökler, F. and P. Mutzel (2015). “Output-Sensitive Algorithms for Enumerating the
Extreme Nondominated Points of Multiobjective Combinatorial Optimization Prob-
lems”. In: Algorithms - ESA 2015. Ed. by N. Bansal and I. Finocchi. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 288–299. doi: 10.1007/978-3-662-48350-3_25.

Bökler, F., S. N. Parragh, M. Sinnl, and F. Tricoire (2024). “An outer approximation
algorithm for generating the Edgeworth–Pareto hull of multi-objective mixed-integer
linear programming problems”. In: Mathematical Methods of Operations Research
100.1, 263–290. doi: 10.1007/s00186-023-00847-8.

Calvete, H. I. and P. M. Mateo (1996). “A sequential network-based approach for the
multiobjective network flow problem with preemptive priorities”. In: Multi-Objective
Programming and Goal Programming - Theory and Applications. Ed. by M. Tamiz.
Vol. 432. Lecture Notes in Economics and Mathematical Systems. Berlin: Springer
Verlag, pp. 74–86. doi: 10.1007/978-3-642-87561-8_7.

Camerini, P. M., G. Galbiati, and F. Maffioli (1984). “The complexity of multi-constrained
spanning tree problems”. In: Theory of Algorithms. Ed. by L. Lovasz. North-Holland,
Amsterdam, pp. 53–101.

Chalmet, L., L. Lemonidis, and D. Elzinga (1986). “An algorithm for the bi-criterion
integer programming problem”. In: European Journal of Operational Research 25,
pp. 292–300. doi: 10.1016/0377-2217(86)90093-7.

Chlumsky-Harttmann, F. (2025). “Robust Multi-Objective Optimization: Analysis and Al-
gorithmic Approaches”. doctoralthesis. Rheinland-Pfälzische Technische Universität
Kaiserslautern-Landau, pp. XI, 109. doi: 10.26204/KLUEDO/8859.

Christofides, N. and V. Valls (1986). “Finding all optimal solutions to the network flow
problem”. In: Netflow at Pisa. Ed. by G. Gallo and C. Sandi. Berlin, Heidelberg:
Springer Berlin Heidelberg, 209–212. doi: 10.1007/BFb0121096.

Cook, S. A. (1971). “The complexity of theorem-proving procedures”. In: Proceedings
of the 3rd Annual ACM Symposium on Theory of Computing, pp. 151–158. doi:
10.1145/800157.805047.

182

https://doi.org/10.1016/j.ejor.2016.02.037
https://doi.org/10.1016/j.ejor.2016.02.037
https://doi.org/10.1016/j.ejor.2016.03.035
https://doi.org/10.1016/j.ejor.2016.03.035
https://doi.org/10.1002/mcda.1603
https://doi.org/10.1007/978-3-662-48350-3_25
https://doi.org/10.1007/s00186-023-00847-8
https://doi.org/10.1007/978-3-642-87561-8_7
https://doi.org/10.1016/0377-2217(86)90093-7
https://doi.org/10.26204/KLUEDO/8859
https://doi.org/10.1007/BFb0121096
https://doi.org/10.1145/800157.805047


Cook, W. J., W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver (1998). Combina-
torial Optimization. John Wiley & Sons, New York.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2001). Introduction to Algo-
rithms. 2nd. The MIT Press.

Correia, P., L. Paquete, and J. R. Figueira (2021). “Finding multi-objective supported effi-
cient spanning trees”. In: Computational Optimization and Applications 78.2, 491–528.
doi: 10.1007/s10589-020-00251-6.
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Dächert, K. (2014). “Adaptive Parametric Scalarizations in Multicriteria Optimization”.
Dissertation. Bergische Universität Wuppertal.
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Eusébio, A. and J. Figueira (Sept. 2009a). “Finding non-dominated solutions in bi-objective
integer network flow problems”. In: Computers & Operations Research 36, 2554–2564.
doi: 10.1016/j.cor.2008.11.001.
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