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Foreword

This thesis is build on the following publication during my Phd from December 2018 to
May 2025.

• A. Clevenhaus, M. Ehrhardt, M. Günther, and D. Ševčovič. Pricing American
Options with a Non-Constant Penalty Parameter. J. Risk Financial Manag. 13(6)
(2020), 124. DOI: 10.3390/jrfm13060124

As the American early exercise results in a free boundary problem, in this arti-
cle we add a penalty term to obtain a partial differential equation, and we also
focus on an improved definition of the penalty term for American options. We re-
place the constant penalty parameter with a time-dependent function. The novelty
and advantage of our approach consists in introducing a bounded, time-dependent
penalty function, enabling us to construct an efficient, stable, and adaptive numeri-
cal approximation scheme, while in contrast, the existing standard approach to the
penalization of the American put option-free boundary problem involves a constant
penalty parameter. To gain insight into the accuracy of our proposed extension,
we compare the solution of the extension to standard reference solutions from the
literature. This illustrates the improvement of using a penalty function instead of
a penalizing constant.

Used in Chapter 2, 4, 6

• A. Clevenhaus, M. Ehrhardt, and M. Günther. An ADI Sparse Grid method for
pricing efficiently American Options under the Heston model. Adv. Appl. Math.
Mech. 13 (2021), 1384-1397. DOI: 10.4208/aamm.OA-2020-0317

One goal of financial research is to determine fair prices on the financial market.
As financial models and the data sets on which they are based are becoming ever
larger and thus more complex, financial instruments must be further developed
to adapt to the new complexity, with short runtimes and efficient use of memory
space. Here we show the effects of combining known strategies and incorporating
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new ideas to further improve numerical techniques in computational finance. In this
paper we combine an alternating direction implicit (ADI) scheme for the temporal
discretization with a sparse grid approach and the combination technique. The later
approach considerably reduces the number of ’spatial’ grid points. The presented
standard financial problem for the valuation of American options using the Heston
model is chosen to illustrate the advantages of our approach, since it can easily be
adapted to other more complex models.

Used in Chapter 2, 3, 6

• A. Clevenhaus, M. Ehrhardt, and M. Günther. The Parareal Algorithm and the
Sparse Grid Combination Technique in the Application of the Heston Model. In:
M. Ehrhardt and M. Günther (eds.), Progress in Industrial Mathematics at ECMI
2021, pages 477–483, Cham, 2022. Springer International Publishing, 2023. DOI:
10.1007/978-3-031-11818-0_62

The sparse grid combination technique is an efficient method to reduce the curse
of dimensionality for high-dimensional problems, since it uses only selected grids
for spatial discretization. To further reduce the computational complexity in the
temporal dimension, we choose the Parareal algorithm, a parallel-in-time algorithm.
For the coarse and fine solvers in time, we use an efficient implementation of the
Alternating Direction Implicit (ADI) method, which is an unusual choice due to the
larger computational cost compared to the usual choice of one-step or Runge-Kutta
methods. In this paper we combine both approaches and therefore obtain a even
more efficient computational method for parallelism. The application problem is
to determine a fair price of a Put option using the Heston model with correlation.
We analyze this model as an example to illustrate this advantageous combination
of the sparse grid with the Parareal algorithm. Finally, we present further ideas to
improve this advantageous combination of methods.

Used in Chapter 2, 3, 6

• A. Clevenhaus, C. Totzeck, and M. Ehrhardt. A numerical study of the effects of
different boundary conditions on the variance of the Heston model. In: K. Burnecki,
J. Szwabiński, and M. Teuerle (eds.), Progress in Industrial Mathematics at ECMI
2023. Springer, 2025.

The well-posedness analysis of a parabolic partial differential equation (PDE), such
as the Heston PDE, requires the proper definition of an initial condition and bound-
ary conditions. In contrast to the asset boundary conditions, the variance boundary
conditions cannot be directly derived. In the literature different approaches to the

https://doi.org/10.1007/978-3-031-11818-0_62
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variance boundary conditions are discussed, for example they consider the challenge
of singularities when the variance approaches zero. This work focuses on the sen-
sitivity of numerical approximations of the solution with respect to the variance
boundary conditions.

Used in Chapter 3, 4, 6

• A. Clevenhaus, C. Totzeck, and M. Ehrhardt. A gradient-based calibration method
for the Heston model. Int. J. Comput. Math., 101(9-10) (2024), 1094–1112. DOI:
10.1080/00207160.2024.2353189

The Heston model is a well-known two-dimensional financial model. Because the
Heston model contains implicit parameters that cannot be determined directly from
real market data, calibrating the parameters to real market data is challenging. In
addition, some of the parameters in the model are non-linear, which makes it diffi-
cult to find the global minimum of the optimization problem within the calibration.
In this paper, we present a first step towards a novel space mapping approach for
parameter calibration of the Heston model. Since the space mapping approach re-
quires an optimization algorithm, we focus on deriving a gradient descent algorithm.
To this end, we determine the formal adjoint of the Heston PDE, which is then used
to update the Heston parameters. Since the methods are similar, we consider a
variation of constant and time-dependent parameter sets. Numerical results show
that our calibration of the Heston PDE works well for the various challenges in the
calibration process and meets the requirements for later incorporation into the space
mapping approach. Since the model and the algorithm are well known, this work is
formulated as a proof of concept. Used in Chapter 4, 5, 6

• A. Clevenhaus, C. Totzeck, and M. Ehrhardt. A Space Mapping approach for the
calibration of financial models with the application to the Heston model. arXiv
preprint arXiv:2501.14521 (January 2025), submitted to J. Comput. Finance. DOI:
10.48550/arXiv.2501.14521

Used in Chapter 4, 5, 6

• A. Clevenhaus, M. Ehrhardt and M. Günther, A parallel Sparse Grid Combination
Technique using the Parareal Algorithm, Preprint 21/18, June 2021. https://www.
imacm.uni-wuppertal.de/fileadmin/imacm/preprints/2021/imacm_21_18.pdf

Used in Chapter 2, 3, 6

https://doi.org/10.1080/00207160.2024.2353189
https://doi.org/10.48550/arXiv.2501.14521
https://www.imacm.uni-wuppertal.de/fileadmin/imacm/preprints/2021/imacm_21_18.pdf
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List of Symbols

Mathematical symbols

exp Exponential

∂u
∂t

Partial derivative of u w.r.t. t
∫

Integral

log Natural logarithm

Cα,β Denotes the smoothness/differentiability of a function

d Differential

∇ Gradient

∂ Boundary

sinh Hyperbolic sine

√ Square Root

∑ Sum

⊤ Transposed Matrix

−1 Inverse

Sets

N Set of natural numbers without zero

N0 Set of natural numbers with zero

R Set of real numbers
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X Set of all possible calibration parameters ξ

Vectors and Matrices

∆ Temporal spacing for the Parareal

η d-dimensional vector with intermediate results for the grid transformation

γ d-dimensional vector of the transformation coefficient to the unit interval

λ d-dimensional Lagrangian multiplier for the ADI-IT schemes

µ(X, t) Drift term of a stochastic process

σ(X, t) Diffusion term of a stochastic process
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x = (x1, . . . , xd) d-dimensional vector of the spatial dimensions
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α Constant
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δ Finite difference stencil

δ(τ) Affine function

δ(τ) Time dependent affine function within the penalty term

ϵ > 0 Constant within the projected Armijo rule

Γ Spatial boundary for a specific spatial direction

γ Transformation coefficient
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ε > 0 Constant

φ Lagrangian multiplier function within the space mapping
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A Spatial operator for the second order derivatives
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J Cost functional operator for the space mapping

L Spatial operator of a parabolic PDE

N Normal distributed

O Order

P Projection operator within the projected Armijo rule
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Q Risk-neutral measure
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M Number of slice for a spatial direction

m Index variable for a grid node

N Constant for the number of slices for the coarse temporal discretization

n Index variable for the fine temporal discretization

s Integral index

U Fully discrete solution for u

v Integral index

z Integral index

a Boundary condition case for νmin

b Boundary condition case for νmin

c Boundary condition case for νmax

d Boundary condition case for νmax

e Boundary condition case for νmax

f Boundary condition case for νmax

p Index variable for a specific path

d1, d2 Intermediate results for the semi-analytical solution of the BS

V Hierarchical surplus within the sparse grids

a Constant within the affine function in the time dependent penalty term

a(x, t) Function for the second derivative

A(S, T ) Averaging function within Asian options

B Constant for the Binary option

b Constant within the affine function in the transformed time-dependent penalty
term
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D Continuous dividend rate

d Number of dimensions
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Chapter 1

Introduction

The financial market reflects the changes in the world. Therefore, politics, economics
and even nature have a direct impact on the prices and stability of the financial market.
These interdependencies lead to many uncertainties in the market, which in the worst
case can cause rapid price changes. A historical example is the tulip mania starting in
1634, when tulips were traded at extraordinary high prices. When this speculative bubble
collapsed in 1637, it was the first recorded asset bubble in history. To this day, the term
"tulip mania" is used as a metaphor for any major economic bubble in which asset prices
deviate from their intrinsic value. Since then, the world has faced several financial crises,
such as the Wall Street Crash of 1929, which started the Great Depression (1929-1939),
as well as the global financial crisis of 2007-2009, which led to the international banking
crisis [105]. Today, we are facing the global economic consequences of the COVID-19
pandemic. Thus, financial mathematics has a direct impact on our daily lives.

1.1 Options

In finance, derivatives can be understood either as a kind of insurance or as a tool for
profiting from risk speculations. A derivative is a right whose price depends on the market
price of an underlying asset. Generally, an underlying is also a financial instrument, so
it can be a derivative itself. Other common types of underlyings are indices, currencies
or securities. We focus on options, a special type of derivatives. Other derivatives are
futures or swaps. An option is a contract between a writer and a holder. The writer sets
the terms of the contract and sells the option. The holder buys the option from the writer
for the market value, also known as the premium. The option contract gives the buyer

1
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the right, but not the obligation, to exercise the exchange trade by the predetermined
expiration date T > 0. Thus, we are dealing with a time t with 0 ≤ t ≤ T . The contract
specifies whether the buyer wants to buy (Call) or sell (Put) a predefined amount of an
underlying asset S at a predefined exercise price K. The exercise price is also called the
strike price. Since the price of the underlying S varies over time, we write S(t) to denote
the price at time t. We will focus on European and American plain vanilla options, as
well as Asian options, and include other exotic options to give an overall perspective. We
will start with European plain vanilla options.

1.1.1 European Options

European plain vanilla options describe a contract between a holder and a writer, [106].

Definition 1 (European call/put option).
A European call/put is a contract between the writer (the party that sells the option)
and the holder (the party that buys the option). The contract gives the buyer the right,
but not the obligation, to buy (Call option) or sell (Put option) an underlying asset S at
an agreed fixed strike price K > 0 on a specific date T > 0.

Since the holder has no obligation to exercise the option, his biggest loss is the premium,
the cost of the option itself. On the other hand, the writer must commit to exercising
the option if the holder wishes to exercise it. Therefore, the risk analysis and the corre-
sponding mathematical methods are different from the point of view. Since there is an
asymmetry between writing and owning an option, there are different points of view. In
this thesis, we focus on the long position, the holder’s point of view.

Whether the holder exercises the option depends on the difference between the underlying
and the strike. A Call option is exercised if S > K holds because the spot price S is higher
than the strike price. The profit is measured by S−K. If the spot price is lower than the
market price, the holder buys the underlying at the market price and does not exercise
the option. For Put options, the exercise range is K − S, because if S > K, the holder
will sell to the market at the higher spot price. If K = S, both options are worthless
because the market price is equal to the strike.

Definition 2 (Payoff-function European call/put option).
The payoff-function ϕ of the European call/put option is given by

ϕ(S(T )) =

max
(
S(T ) −K, 0

)
, for S(T ) ≥ 0 (Call),

max
(
K − S(T ), 0

)
, for S(T ) ≥ 0 (Put).

(1.1)



1.1. OPTIONS 3

Figure 1.1: European payoff-function for S ∈ [0, 250] with K = 100. On the left side is
the payoff-function for the Put option and on the right for the Call option. The dashed
line marks the strike.

where S(T ) ∈ [0,∞[.

Since the strike price separates the At-The-Money (ATM), In-The-Money (ITM), and
Out-The-Money (OTM) options, we have a region of interest around the strike price K.
The ATM option is given when K = S, regardless of whether it’s a Call or Put option
type. An option is ITM when it makes a profit and OTM when it is worthless. The
in-the-money and out-the-money regions are swapped for Put and Call options, since for
a Call option the region where S > K is in-the-money and for Put options out-the-money,
since the value of the Put option is zero if S > K. For the region S < K, a Put option is
in-the-money and a Call option is out-the-money. The most interesting part is the region
around the strike price, because that is where the region swap is. So one tries to get a
lot of grid points around the strike price or since the spot price is often close to the strike
price.

Let ω be the value of an option. The value depends at least on the underlying and the
time, e.g. for the one dimensional case where the underlying is given by S, we obtain
ω(S(t), t) : R≥0 × [0, T ] → R≥0. Later we will consider more complex models, so ω will
depend on other parameters as well. Our goal is to determine the fair price of an option
value. When we refer to a specific option, we specify the option value. For a European
call option, we denote the value by ωEC, and for a European put option, by ωEP.

A market is considered arbitrage free if there is no strategy to make a certain profit
without risk. Since we are assuming an arbitrage-free market, these assumptions about
the market follow immediately:

• No arbitrage possible.

• No dividends are paid on the underlying.
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• The risk-free interest rate for cash investments and loans is the same and is r > 0
for continuous interest.

• The market is liquid and trading is possible at all times.

By assuming a continuous interest rate, we can determine the price we have to invest now
to get back the amount K at time T . Therefore, we discount K with exp(−rT ).

Proposition 1. Put-Call-Parity
Under the principle of non-arbitrage and the resulting market conditions

S(t) + ωEP(S(t), t) − ωEC(S(t), t) = K exp
(

− r(T − t)
)

(1.2)

holds for 0 < t < T .

From the Put-Call-Parity, we can derive bounds for the option values for European op-
tions.

Proposition 2. European options are bounded by

• max
(
S(t) −K exp

(
− r(T − t)

)
, 0
)

≤ ωEC(S(t), t) ≤ S(t)

• max
(
K exp

(
− r(T − t)

)
− S(t)t, 0

)
≤ ωEP(S(t), t) ≤ K exp

(
− r(T − t)

)

1.1.2 American Options

In addition to European options, we will also discuss American options. However, both
options can be exercised in Europe and America. The difference between European and
American options is the ability to exercise the option. While European options can only
be exercised at expiration T , American options can be exercised at any time before t < T

and at expiration t = T . Thus, for the value of American options ωA and European
options ωE, the relation

ωA(S(t), t) ≥ ωE(S(t), t) (1.3)

must hold, and the bounds for American options are derived.

Proposition 3. American options are bounded by

• ωAC
(
S(t), t

)
≥ ωEC

(
S(t), t

)
, equality holds if no dividends are paid



1.1. OPTIONS 5

• K exp
(

− r(T − t)
)

≤ S(t) + ωAP
(
S(t), t

)
− ωAC

(
S(t), t

)
≤ K

•
(
K exp

(
− r(T − t)

)
− S(t), 0

)
≤ ωAP

(
S(t), t

)
≤ K

From the non-arbitrage principle, the consistency of the option values and the European
payoff-function, we conclude that

ωAP
(
S(t), t

)
≥ max

(
K − S(t), 0

)
and ωAC

(
S(t), t

)
≥ max

(
S(t) −K, 0

)
,

ωAP
(
S(t), t

)
≥ ϕ

(
S(T )

)
and ωAC

(
S(t), t

)
≥ ϕ

(
S(T )

)
.

Thus, there exists an intersection Sf of the option value with the payoff. Due to the
convexity of the option value, the existence and uniqueness of the intersection point is
guaranteed. The contact point divides the function into a continuation region and a
stopping region. Within the continuation region, exercising the option would result in
an immediate loss, so the holder does not exercise the option and the option contract
continues. Within the stop region, the exercise of the option results in a profit, so the
holder exercises the option and terminates the contract.

1.1.3 Asian and Exotic Options

Other options are called exotic options. Exotic options are divided into path-dependent
and path-independent options. Options that depend on the underlying for a certain period
of time are called path-dependent, e.g. Asian options.

Asian options are path-dependent exotic options. For Asian options, the payoff de-
pends on the average of the asset value S over the time interval T , where A(S) refers to
the averaging function. The payoff ϕAS is given by

ϕAs
(
A(S)

)
=

max
(
A(S) −K, 0

)
, for call,

max
(
K − A(S), 0

)
, for put.

, (1.4)

There are different types of Asian options that are characterized by the definition of A(S),
e.g. arithmetic or geometric. In the following, we will use the arithmetic-average Asian
option with

A(S) = 1
T

∫ T

0
S(t) dt
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and S(t) > 0. Note that there are several different ways to define the payoff as well as
the averaging function.

Binary options are path-independent options. The execution of the option depends
only on a predefined bound K. The value of the option is given by the asset-independent
constant B. The payoff-function for a European binary put option is given by

ϕBi(S(T )) =

B, for S(T ) < K,

0, for S(T ) ≥ K
,

analogously for call options. Other exotic options can be of European or American type,
depending on the possibility of exercising the option. The exotic options listed above
are single-asset options because they depend on only one asset value. However, there are
several types of options that depend on several different assets, called multi-asset options,
e.g. Rainbow or Basket options. Note that there are many other option types that can
be used for pricing, for more see [35, 91].

1.2 Financial Models and Stochastic Calculus

The asset is influenced by real circumstances, so one approach is to model the asset
behavior by a stochastic process. We discuss the general idea of stochastic processes and
the derivation of the corresponding parabolic partial differential equations, e.g. convection-
diffusion equations. We start with the definition of a Brownian motion.

Definition 3 (Brownian motion [34]). A standard one-dimensional Brownian motion on
[0, T ] is a stochastic process {W(t), 0 ≤ t ≤ T} with the following properties.

• W(0) = 0;

• the mapping t 7→ W(t) is, with probability 1, a continuous function on [0, T ];

• the increments {W(t1) − W(t0),W(t2) − W(t1), . . . ,W (tk) −W (tk−1)} are indepen-
dent for any k and any 0 ≤ t0 < t1 < · · · < tk ≤ T ;

• W(t) − W(s) ∼ N (0, t− s) for any 0 ≤ s < t ≤ T .

In a d-dimensional setting we get X = (X1,X2, . . . ,Xd), where X contains the financial
model variables. Let Xa denote the variable describing the asset, e.g. in a one-dimensional
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setting X = Xa = S. Usually X1 = Xa holds. In general, we can define a stochastic
differential equation (SDE) for modeling the asset as in Definition 4.

Definition 4 (General SDE Model). Let X = (X1,X2, . . . ,Xd) be a d-dimensional vari-
able and W = (W1,W2, . . . ,Wd) a d-dimensional Brownian motion with given determin-
istic functions µ(X, t), as the drift term µ : Rd × [0, T ] → Rd, and σ(X, t) as the diffusion
coefficient σ : Rd×d × [0, T ] → Rd×d. Then X at time t is represented by a general d-
dimensional time-homogeneous stochastic differential equation (SDE), more precisely an
Itô process

dXt = µ(Xt, t) dt+ σ(Xt, t) dWt, (1.5)

with X0 = Xinit ∈ Rd given or component-wise

dXi
t = µi(Xt, t) dt+

d∑
j=1

σij(Xt, t) dW j
t , 1 ≤ i ≤ d. (1.6)

The drift term µ and the diffusion term σ are given by the underlying model for the
asset. To determine the fair price of the option at the current time t = 0, we compute

ω(X, 0) = exp(−rT )E
(
Ψ(X)

)
, (1.7)

where X is the solution for (1.5) and Ψ is the payoff-function, e.g. (1.1). To derive a partial
differential equation (PDE) formulation of the pricing problem, we can either use Itô’s
Lemma in combination with standard no-arbitrage arguments, or use the Feynmac-Kac
formulation [86]. Let u(x, t) : Rd × [0, T ] → R and a C2,1-smooth function with derivatives
in x be bounded, f : Rd × [0, T ] → R is bounded and Ψ(X) twice differentiable, as well
as c : Rd × [0, T ] → R bounded from below [86, 40]. Then u admits the Feynman-Kac
representation over the expectation value E

u(x, t) = E

[ ∫ T

t
exp

(
−
∫ s

t
c(Xt,x

v , v)dv
)
f(Xt,x

s , s) ds

+ exp
(

−
∫ T

t
c(Xt,x

v , v) dv
)

Ψ(Xt,x
T )
] (1.8)

for all (x, t) ∈ Rd × [0, T ] and Xt,x
s the solution to the SDE. Note that X is the SDE

equivalent representation of x. Then, equation (1.8) represents the SDE (1.5) and is a
solution to a linear parabolic PDE, defined in Definition 5.
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Definition 5 (Parabolic PDE). A linear PDE

∂

∂t
u(x, t) − L

[
u](x, t) = f(x, t)

u(x, T ) = Ψ(x)
(1.9)

with the spatial operator L : C2(Ω) → C0(Ω)

L[u](x, t) = A[u](x, t) −
d∑

i=1
bi(x, t)

∂

∂xi

u(x, t) + c(x, t) · u(x, t) (1.10)

where the spatial operator A : C2(Ω) → C0(Ω) is defined by

A[u](x, t) = −1
2

d∑
i=1

d∑
j=1

aij(x, t)
∂2

∂xi∂xj

u(x, t) (1.11)

and
ai,j(x, t) =

d∑
k=1

σik(x, t)σkj(x, t)

bi(x, t) = µi(x, t)
(1.12)

is (uniform) parabolic, if A is (uniform) elliptic. Given the matrix A = (ai,j) from A, it
is called

• elliptic, if A is positive definite for each x ∈ Ωd, i.e., it holds

ϱ⊤A(x, t)ϱ > 0 for all ϱ ∈ Rd. (1.13)

• uniform elliptic, in Ω ⊂ Rd, if a constant ε > 0 exists such that

ϱ⊤A(x, t)ϱ ≥ ε||ϱ||22 for all ϱ ∈ Rd and all x ∈ Ω. (1.14)

If u(x, t) is a bounded solution to equation (1.9), then u(x, t) = u(x, t). Thus it has an
unique solution [86, 40].

The parabolic PDE can be rewritten into the divergent form given by

∂

∂t
u(x, t) − ∇ · A(x, t)∇u(x, t) + b(x, t)∇u(x, t) + c(x, t)u(x, t) = f(x, t) (1.15)

For option pricing problems, the payoff is generally non-smooth and not twice differ-
entiable, so smoothing techniques must be used to make it applicable [40]. Under the
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risk-neutral measure Q, for European options we get f(x, t) = 0 and in finance we usu-
ally get c(x, t) = r. Note that most of the time we are interested in the fair price of a
particular point, namely the spot point denoted by xspot.

Since we obtain a terminal condition at t = T , we reverse the time τ = T − t ∈ [0, T ] to
obtain an initial condition. For the payoff-function, we assume without loss of generality,
that xa = s. Since if the condition is not fulfilled, we can either transform xa to s or
the payoff condition itself, see Section 4.1. As mathematical problem a Initial Boundary
Value Problem (IBVP) arises and we obtain a definition for IBVPs for a European plain
vanilla option problem, see Definition 6.

Definition 6 (IBVP for European plain vanilla options). The d-dimensional option pric-
ing IBVP for European plain vanilla options with x = (x1, x2, . . . , xd) is given by

∂

∂τ
u(x, τ) = L

[
u
]
(x, τ)

u(x, 0) = ϕ(s).
(1.16)

The ‘spatial’ boundary conditions as well as L depend on the underlying model.

American options are more expensive than European options because American options
give the holder the right to exercise the option before the expiration date T , see Sec-
tion 1.1.2. To price an American put option u, we look for

(
u(x, τ),xf (τ)

)
such that the

Definition 1.18 is satisfied. Since xf is a priori unknown, it must also be determined. Let
xa be the spatial variable for the asset, e.g. xa = S. To guarantee consistency for xf (τ),
we get the condition for xa

∂u

∂xa

(
xaf (τ)

)
= −1 (1.17)

because u(x, τ) tangentially touches the payoff-function. This is also called a high-contact
condition or smooth pasting. The additional ’spatial’ boundary conditions are determined
by the underlying model and are the same for American and European options. The con-
tact point xf exists for each time step and xf (τ) gives the early exercise curve, separating
the holding and stopping regions. The curve is continuously differentiable. For a Put op-
tion it is non-decreasing and asymptotically bounded [102, 103]. Mathematically speaking,
the contact point is a free boundary value.

Definition 7 (Linear Complementary Problem for American options). The d-dimensional
option pricing Linear Complementary Problem (LCP) for American options with x =
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(x1, x2, . . . , xd) is given by

∂

∂τ
u(x, τ) − L

[
u
]
(x, τ) ≥ 0, 0 ≤ τ ≤ T,

u(x, τ) ≥ ϕ(s)(
∂

∂τ
u(x, τ) − L

[
u
]
(x, τ)

)(
u(x, τ) − ϕ(s)

)
= 0

u(x, 0) = ϕ(s)

(1.18)

where ϕ(s) is the initial condition given from the payoff-function of the corresponding
European option. The ‘spatial’ boundary conditions as well as L depend on the underlying
model defining x as well.

For the one-dimensional case with xa describing the asset, the penalty term approach
is an alternative. In this approach, the inequality is rewritten as an equality due to an
additional term, the penalty term. The resulting problems are nonlinear IBVPs. The
penalty term forces the free boundary condition to be satisfied asymptotically and should
be zero for the continuation region and positive in the stopping region where it penalizes
the problem by a factor [93, 108, 67].

Definition 8 (Penalty Term Approach). With the introduction of a penalty term
g
(
u(xa, τ)

)
, the American option pricing problem is given by

∂

∂τ
u(xa, τ) − L

[
u
]
(xa, τ) = g

(
u(xa, τ)

)
. (1.19)

Note that there are other problem representations that refer to other numerical solvers,
such as numerical integration [8, 28].

In addition to the determination of the option price itself, the calibration of parameters to
real market data is also an area of research. As financial models aim to approximate the
real market behavior of various underlyings. Since most model parameters are implicit in
the real market data, calibrating the model parameters to the real market data is chal-
lenging [20, 48, 71, 79, 81, 96]. Furthermore, the challenge increases with the complexity
of the model [97]. A general calibration problem is given in Definition 9.

Definition 9 (Calibration problem). Let ξ denote the vector of the parameters which
should be calibrated and X be the subset of all possible parameter sets, s.t. ξ ∈ X. The
solution of the underlying model with respect to the parameters in ξ is given by u(ξ) and
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udata represents the given data. The calibration problem is

min
ξ∈X

J (u(ξ), udata), (1.20)

where J denotes an operator of a cost functional.

1.3 Numerical Methods

In general, analytical solutions are not available for the financial models and therefore
numerical methods are needed. Since the financial methods can be rewritten in the
generalized form of either the SDE or the PDE representation, see Definitions 4 and 5,
the standard numerical methods can be applied to many problems in finance and other
research areas. Unfortunately, the methods usually can’t be applied directly to financial
problems, e.g. the initial conditions for European and Barrier options are only continuous.
Therefore, adjustments are made by using grid transformations or smoothing techniques,
see Section 4.1. In addition, the boundary conditions are sometimes also adapted to the
criteria of the numerical technique, as discussed in Section 4.4. Since we can overcome
these shortcomings of the original model, we begin by stating standard numerical methods
for solving the mathematical problems of computing a fair price.

Monte Carlo methods are standard numerical solvers for SDEs [34, 35, 91, 96]. These
methods are based on the central limit theorem for independent and identically distributed
random numbers. Within the simulation, several different random walks are computed,
and then the mean of the random walks provides the input for the payoff-function. An
advantage is that the simulation is almost independent of the number of dimensions, but
it suffers from a low convergence rate when considering one-step discretizations as Euler-
Maruyama schemes [34, 35, 91]. Multistep methods, e.g. the Milstein method or even
Runge-Kutta stochastic schemes are also available, but more complex to implement, espe-
cially for a high number of dimensions [34, 35, 91]. Regardless of whether the mathemati-
cal problem is an IBVP or an LCP, the PDEs arising from financial models are convection-
diffusion equations [40]. The first approach for temporal discretization is the θ-method
[35]. Unfortunately, it results in a discretization matrix with a large bandwidth. To over-
come this, we can split the spatial operator, e.g. by using Locally One-Dimensional (LOD)
methods, fractional step methods, component-wise splitting schemes as well as alternating
direction implicit (ADI) schemes. For a general overview and analysis of such methods
we refer to [53, 74]. The ADI schemes are widely used in financial research [38, 57, 61].
In 2004, Ikonen and Toivanen adapted the ADI techniques for LCPs and introduced the
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ADI-IT schemes [54, 55, 39]. An alternative approach for solving one-dimensional Ameri-
can option pricing problems is the penalty approach [83, 35, 104, 93, 108, 67]. Due to the
restriction to one dimension, the θ-discretization is a feasible discretization for this type of
problem [35]. Since the American option pricing problem results in a free boundary value
problem, the contact point is a priori unknown and therefore interpreted as "free". These
problems have to be solved numerically [19, 83]. Among the methods mentioned above,
these schemes are proposed to solve the problem, e.g. the projected SOR scheme [19], the
binomial method, front-fixing schemes [83] as well as Monte Carlo simulation techniques
[86]. These schemes implicitly compute the free boundary value. Other researchers have
focused on an explicit representation of the free boundary value [93, 108, 67].

For the spatial discretization, finite differences and finite element methods are standard
[38, 39, 56, 109]. Finally, after temporal and spatial discretization, a system of equa-
tions is derived. These systems can be solved by standard numerical methods, e.g.
Gauß-algorithm, LU-decomposition, also iterative methods, e.g. the PSOR, Gauß-Seidel-
algorithm, can be considered [35]. In the spatial dimension we observe an exponential
growth of grid points with increasing dimension, since a complete tensor-based grid con-
tains O(Nd) grid nodes (’curse of dimensionality’). This shows that the number of equa-
tions is directly related to the number of dimensions, and the complexity of the solver
is directly related to the bandwidth of the matrices, which depends on the temporal
solver and the number of dimensions. Therefore, these approaches are computationally
expensive when applied to high-dimensional problems.

In computational finance, we look for new ways to reduce memory and run time as models
become more complex, and we strive for higher stability and accuracy as run time and
memory increase with the number and dimension of models. We then present advanced
and combined methods. For the spatial discretization, high-order schemes can be con-
sidered, there are also approaches to reduce the bandwidth of the high-order schemes
by introducing high-order compact schemes [22, 23, 24, 41, 45]. Another approach is to
combine different types of standard techniques with a hierarchy. A spatial example is the
Richardson extrapolation [73, 88]. In our case, we focus on the same hierarchy approach
for the spatial and temporal discretizations, namely the multi-grid approach. Within the
multi-grid approach, different sets of grids are defined and combined to obtain the desired
results. The algorithm chosen for the temporal hierarchical approach is the Parareal de-
veloped by Lions, Mayday and Turinici [70]. The Parareal works on a fine and a coarse
grid and consists of a parallel computation followed by a serial correction step. Therefore,
it can be considered as a multiple shooting method as well. To reduce the number of grid
points in space, other grid structures have been developed, such as multigrid methods,
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within which sparse grids are a special case [5, 10, 31, 84]. We focus on the sparse grid
approach using the combination technique to reduce the effects of increasing the dimen-
sion. Sparse grids were developed by Smolyak [92] for numerical integration purposes.
Later the approach was extended in [5, 89, 90, 107] and Hendricks et al. [41] used the
approach for financial applications. Within the sparse grid approach, several sparse grids
are computed individually and the solution is given by the combination technique for the
sparse grids. By combining the sparse grid combination technique and the parareal, we
can apply improvement strategies [12, 13]. One strategy is to also compute the sparse
grids in parallel in the serial part of the algorithm. The other idea is to reduce the com-
putational cost by reusing intermediate results from either the fine or coarse solver for
the other solver.

Since our goal today is to compute the fair price of an option, and the parameters of the
model are directly influenced by the environment, it is necessary to fit the parameters
to the real market data. This calibration process is challenging since most of the model
parameters are only implicitly contained in the real market data and there are various
calibration techniques for financial models available in the literature [20, 48, 71, 79, 81, 96].
In our case we focus on a specific two-dimensional financial model, the Heston model,
see Section 4.3. For the Heston model in the setting of constant parameters and for
very specific use cases, there are approaches based on the closed-form valuation formula
[81, 20]. These are fast and provide information about the global minimum. For more
general cases, the stochastic nature of the Heston model allows Monte Carlo optimization
methods [96], which can also be used to calibrate the stock price and variance. The Monte
Carlo theory is well established, but the approaches are computationally expensive and do
not provide information about global or local minima. Recently, calibration approaches
using neural networks, deep learning strategies, and parallel GPU implementation of the
Heston model have been proposed [48, 71, 72, 68, 30]. The networks must be trained
individually for each model, and training requires appropriate data. Again, there is no
information about global or local minima. An advantage is that once the neural networks
are trained, they can be evaluated quickly. Our calibration algorithm for the Heston
model is independent of a specific characteristic function and easily extendable to time-
dependent parameters [16]. The core of the algorithm is based on space mapping [2], a
new approach in the context of financial research that uses an iterative procedure that
minimizes the residuum of a fine and a coarse model. In fact, to calibrate the parameters
of the fine model, the coarse model is optimized and the fine model is only evaluated. For
the optimization we use techniques from [47, 100] and derive a gradient descent algorithm
for the Heston model [14]. The gradient descent algorithms have previously been used
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only implicitly in the context of neural network approximations for the Heston model
[72]. As a calibration problem, we choose an Asian short maturity option problem as the
fine model, and since the European option problem is an approximation to it, it provides
the coarse model. To our knowledge, there is only one paper dealing with the calibration
of Asian options under the Heston model, Khalife et al. [63]. Overall, in this thesis
we discuss three different hierarchical approaches, a spatial and a temporal one, both
using multigrid representations, as well as a hierarchical calibration approach between
two financial problems.

1.4 Outline

The next Chapter 2 deals with the temporal discretization. We introduce the Monte
Carlo approach for SDEs and apply the Euler-Maruyama discretization. We then focus
on the temporal discretization of IBVPs and LCPs and present the θ-method as a stan-
dard introduction to temporal differentiation schemes for PDEs. This is followed by a first
standard improvement technique, the splitting of the spatial operator, which leads to the
ADI schemes for IBVPs and ADI-IT schemes for LCPs. However, for high-dimensional
problems, even for the split schemes, serial computation is slower than parallel computa-
tion. Therefore, we introduce our first hierarchical multi-grid approach, the Parareal. The
improvement within Parareal is the possibility of partial parallelism of the computation.

Chapter 3 focuses on the spatial discretization for the PDEs. First, two spatial grids
are introduced and we present the well-known standard finite difference method for the
derivative approximation. In addition to the standard central second-order differences,
we introduce the upwind stencil for the diffusion term, since the diffusion term of the
Heston model undergoes a sign change. We then introduce the course of dimensionality
resulting from standard methods, e.g. finite differences, and a possible curse, namely the
sparse grid approach. The sparse grid approach is a multi-grid approach and combines
different sparse grids to derive the solution. The combination technique is derived within
the approach as well as a discussion of the required error splitting structure. Within this
approach, we introduce a grid transformation and add a short discussion about different
transformations. Furthermore, we present an additional approach that combines the
sparse grid technique and the Parareal to further reduce the computational time.

Before introducing the explicit financial model in Chapter 4, we present techniques that
allow the application of the numerical methods introduced earlier. We begin with smooth-
ing techniques, followed by a discussion of grid transformations. The Black-Scholes model,
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the Heston model, and transformations for the Heston model are then presented. The
Black-Scholes model is a one-dimensional SDE model that considers Brownian motion
for the asset, and the Heston model is a two-dimensional model that considers volatility
as an additional stochastic process. Both models are well known in financial research.
The corresponding mathematical problems arising from different option pricing strategies
are also presented. For the Black-Scholes model, we introduce a time-dependent penalty
term for option pricing. For the Heston model, we discuss European, American and Asian
option pricing.

Finally Chapter 5 introduces the last hierarchical approach, the space mapping. As a con-
trol problem, we define the calibration problem of the Asian put option as the fine model,
while the coarse model is given by the corresponding European put option problem. For
both option pricing problems, we consider the Heston model as the underlying financial
model for the asset simulation, but in the SDE formulation for the fine model and in
the PDE representation for the coarse model. We introduce the general idea of space
mapping in the application of the control problem. Since the space mapping approach
requires coarse model optimization, in our case a calibration method for the Heston PDE,
we derive a gradient descent algorithm. Finally, the chapter 5 ends with the overall space
mapping algorithm for the control problem.

Now that all the theory is covered, we can present the numerical results for our various
advanced hierarchical methods in the Chapter 6. The results are organized according to
the underlying financial model. Thus, the Black-Scholes model is discussed first, followed
by the hierarchical approaches with the Heston model. Finally, the thesis ends with a
conclusion and an outlook, see Chapter 7. In this chapter a conclusion about the different
hierarchical approaches is presented as well as ideas for future topics within these research
areas.
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Chapter 2

Temporal Discretization

In Chapter 1, we introduced standard problems used in financial modeling, namely SDEs,
PDEs, and LCPs. In this section, we will introduce a time discretization and a solver for
each type of mathematical problem. We solve the SDEs forward in time using t and the
PDEs and LCPs backward in time using τ = T − t. Thus we have the same time interval
t, τ ∈ [0, T ]. Furthermore, we use a uniform discretization for both time representations,
which is described in the corresponding sections.

2.1 The Monte Carlo Method

We are interested in a fair price for an option whose payoff Ψ(X) depends on the discount
factor exp(−rT ) and the expectation value E

(
Ψ(X)

)
. Therefore, we need to compute

the expectation value based on the solution X of the underlying financial SDE modeled
with the corresponding stochastic variables Xt = (X1

t ,X2
t . . . ,Xd

t ). We use the Monte
Carlo method to derive the expectation value. Within the Monte Carlo method, the
expectation value is given by

E
(
Ψ(X)

)
≈ Ψ(XP ), (2.1)

with the Monte Carlo estimate

Ψ(XP ) =
∑P

p=1 Ψ(Xp)
P

, (2.2)

where Xp is a simulated random path of the SDE for X and P is the number of paths
generated. Note, that each path is independent from the other paths. This technique is
based on the law of large numbers [34], as it ensures that the estimate converges to the

17
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correct value as the number of paths P increases

XP → E(X) with probability 1 as P → ∞. (2.3)

From the central limit theorem an information about the likely magnitude of the error
in the estimate after a finite number of paths is provided. Each path is created using
random numbers, where a sequence of Z1,Z2, . . . is created with the criteria

• for normalization purposes Zi are uniformly distributed between 0 and 1;

• the Zi are independent of each other.

The uniformly distributed random variables can be transformed to any other distribution
needed, which is usually easier than generating random numbers within this distribution
directly. Since the computation of the random number is done by an algorithm, and thus
after generating enough random numbers, one can guess the Zi+1 from Z1, . . . ,Zi [34].
Thus, the independence of the random variables is directly related to the underlying algo-
rithm used to generate the sequence of numbers. A good algorithm aims for a large i up
to which the sequence Z1, . . . ,Zi resembles an independent random number. Therefore,
the algorithms for generating random numbers are called pseudo-random number genera-
tors. Thus, it is possible to use the uniformly distributed random variables, since for this
distribution advanced pseudo-random number generators are available. These numbers
are used to simulate the Brownian motion. From the definition of the Brownian motion
in Definition (3), it follows

W(t) ∼ N (0, t). (2.4)

Therefore we have to adjust the random numbers by multiplying
√

dt to simulate the
desired distribution for the Brownian motion.

For the temporal discretization, we use the well-known Euler-Maruyama scheme [35]. Let
Zt = Z1,Z2 . . . ,Zd be a d-dimensional vector of random numbers generated for the time
t, we get

dWt ≈
√

∆tZt (2.5)

component wise. Now we discretize the time uniformly with tn = n∆t with ∆t = T
Nt

with
Nt ∈ N and n = 0, 1, . . . , Nt. The Euler-Maruyama discretization scheme is

Xn+1 = Xn + µ
(
Xn, tn

)
∆t + σ

(
Xn, tn

)√
∆tZn (2.6)

where Xn is the solution of X at tn. The Euler scheme has a strong order of convergence
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of 0.5 and a weak order of convergence of 1. To improve accuracy, one can either increase
the number of paths P , but for a reduction of one decimal point one needs ten times the
number of paths used before [34, 35]. This behavior is costly in terms of computation.
Another approach is to reduce the variance either by separating the main part or by
using antithetic variables [34, 35]. We apply variance reduction by introducing a so-called
antithetic path X−

X−
n+1 = X−

n + µ
(
X−

n , tn
)

∆t − σ
(
X−

n , tn
)√

∆tZn. (2.7)

This approach leads to

Ψ(XP ) =
∑P

p=1 Ψ(Xp)
P

, where Xp is simulated by (2.6) and

Ψ(X−
P ) =

∑P
p=1 Ψ(Xp−)

P
, where Xp− is simulated by (2.7).

(2.8)

Then the payoff-function is then given using the antithetic variable

Ψ∓(XP ,X
−
P ) = 1

2
(
Ψ(XP ) + Ψ(X−

P )
)
, (2.9)

and the fair price of the option is given by

ω∓
(
XP ,X

−
P , 0) = exp(−rT ) · Ψ∓(XP ,X

−
P ). (2.10)

Note that there are higher order schemes, such as the Milstein scheme [34] or stochastic
Runge-Kutta schemes [35].

2.2 Temporal Discretization for Mathematical Prob-
lems with PDEs

Under the SDE representation, we learned about IBVPs and LCPs, both of which contain
a parabolic PDE. Within the PDE we use the reversed time τ and also the uniform
discretization with τn = n∆τ with ∆τ = T

Nτ
with Nτ ∈ N and n = 0, . . . , Nτ . Note that

for some numerical treatment Nτ = Nt holds. We define u(x, τn) as the solution at time
step τn.
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2.2.1 Methods for IBVPs

For IBVPs resulting from the penalty approach, we obtain the general form

∂

∂τ
u(xa, τn) − L

[
u
]
(xa, τn) = g

(
u(xa, τ)

)
τ > 0, (2.11)

supplied with appropriate initial and boundary data. The next step is to choose an
appropriate time discretization method, we start with the θ-discretization. It is given by

u(xa, τn+1) = u(xa, τn)+(1−θ)∆τ L[u](xa, τn)+θ∆τ L[u](xa, τn+1)+∆τg
(
u(xa, τn)

)
, (2.12)

where θ > 0 denotes the implicitness of the scheme. Depending on the choice of θ, different
standard schemes can be derived. For θ = 0, we get the explicit Euler scheme and for
θ = 1 the implicit Euler scheme. Both Euler schemes exhibit first order accuracy in time.
The second order accuracy scheme, the Crank-Nicolson scheme, is given by θ = 0.5. For
the European option cases, the θ-method can also be used; to adapt the method, the
right-hand term has to be set to zero. Unfortunately, for high-dimensional problems, the
computational cost increases significantly due to the large bandwidth of the corresponding
discretization matrices. To reduce the bandwidth, we apply a splitting technique for the
spatial operator, namely the Alternating Direction Implicit (ADI) schemes. As those
schemes are only applied to IBVPS arising from European option pricing where the right
hand side is zero, the general d−dimensional IVBP reduces to

∂

∂τ
u(x, τn) = L

[
u
]
(x, τn) τn > 0, (2.13)

with the splitting of the operator L given by

L
[
u
]
(x, τn) = L0

[
u
]
(x, τn) + L1

[
u
]
(x, τn) + . . .+ Ld

[
u
]
(x, τn), (2.14)

with

L0[u](x, τn) = 1
2

d∑
i=1

d∑
j=1
j ̸=i

aij(x, τn) ∂2

∂xi∂xj

u(x, τn)

Li[u](x, τn) = 1
2aii(x, τn, )

∂2

∂x2
i

u(x, τn) + bi(x, τn) ∂

∂xi

u(x, τn) + 1
d
c(x, τn)u(x, τn),

(2.15)

for i = 1, . . . , d. The four well-known ADI schemes are the Douglas (DO) scheme (2.16),
the Craig-Sneyd (CS) scheme (2.17), the modified Craig-Sneyed (mCS) scheme (2.18),
and the Hundsdorfer-Verwer (HV) scheme (2.19).
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Douglas (DO) scheme


Y0 = u(x, τn) + ∆τ L
[
u
]
(x, τn),

Yi = Yi−1 + θ ∆τ

(
Li

[
Yi

]
− Li

[
u
]
(x, τn)

)
, for i = 1, . . . , d

u(x, τn+1) = Yd.

(2.16)

Craig-Sneyed (CS) scheme


Y0 = u(x, τn) + ∆τ L
[
u
]
(x, τn),

Yi = Yi−1 + θ ∆τ

(
Li

[
Yi

]
− Li

[
u
]
(x, τn)

)
, for i = 1, . . . , d,

Ỹ0 = Y0 + 1
2 ∆τ

(
L0
[
Yd

]
− L0

[
u
]
(x, τn)

)
,

Ỹi = Ỹi−1 + θ ∆τ

(
Li

[
Ỹi

]
− Li

[
u
]
(x, τn)

)
, for i = 1, . . . , d,

u(x, τn+1) = Ỹd.

(2.17)

modified Craig-Sneyed (mCS) scheme


Y0 = u(x, τn) + ∆τ L
[
u
]
(x, τn),

Yi = Yi−1 + θ ∆τ

(
Li

[
Yi

]
− Li

[
u
]
(x, τn)

)
, for i = 1, . . . , d,

Ŷ0 = Y0 + θ ∆τ

(
L0
[
Yd

]
− L0

[
u
]
(x, τn)

)
,

Ỹ0 = Ŷ0 + (1
2 − θ) ∆τ

(
L
[
Yd

]
− L

[
u
]
(x, τn)

)
,

Ỹi = Ỹi−1 + θ ∆τ

(
Li

[
Ỹi

]
− Li

[
u
]
(x, τn)

)
, for i = 1, . . . , d,

u(x, τn+1) = Ỹd.

(2.18)

Hundsdorfer-Verwer (HV) scheme


Y0 = u(x, τn) + ∆τ L
[
u
]
(x, τn),

Yi = Yi−1 + θ ∆τ

(
Li

[
Yi

]
− Li

[
u
]
(x, τn)

)
, for i = 1, . . . , d,

Ỹ0 = Y0 + 1
2 ∆τ

(
L0
[
Yd

]
− L0

[
u
]
(x, τn)

)
,

Ỹi = Ỹi−1 + θ ∆τ

(
Li

[
Ỹi

]
− Li

[
Yd

])
, for i = 1, . . . , d,

u(x, τn+1) = Ỹd.

(2.19)
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In the DO schemes, a forward Euler predictor step is followed by d implicit but unidi-
rectional corrector steps that serve to stabilize the predictor step. Since the first step is
explicit, the bandwidth of the matrix is secondary to the dimension of the problem itself,
with respect to (w.r.t.) the complexity. Due to the unidirectional structure, the band-
width is reduced for an implicit step and thus the complexity of the system of equations
is reduced. Since the first two lines of all ADI models are equivalent, one can consider
the DO scheme as the basic scheme and the CS, mCS, and HV as extensions to it. These
extensions have the similarity of a second predictor step followed by d unidirectional cor-
rection steps. If no mixed derivatives are considered, e.g. because the spatial directions are
uncorrelated, the CS scheme is reduced to the DO scheme. The advanced ADI schemes
differ in the choice of the second predictor and the correction step. More precisely, the CS
scheme uses the same structure as the DO scheme, but only twice. In the mCS scheme,
the second predictor step actually contains two successive correction steps. For θ = 0.5
these steps are combined into the second correction step for the CS scheme and thus
in this and only in this case the mCS and CS schemes are the same. Finally, the HV
scheme considers the second unidirectional steps w.r.t. an intermediate result instead of
the solution of the last step. Since the mixed derivatives have a higher bandwidth, they
are always considered explicitly.

The order of consistency differs between the schemes. While the DO scheme is only
consistent of order one for any θ, the mCS and HV schemes are consistent of order
two, as is the CS scheme if and only if θ = 0.5. The low order consistency for the DO
scheme results from the explicit and singular treatment of the mixed derivative term. The
stability of the ADI schemes has been treated in [57, 61, 62, 58] in the von Neumann sense.
The underlying problems were multidimensional convection-diffusion problems with mixed
derivative terms. The results show a stability that is independent of the time step ∆τ

but dependent on the choice of θ. Depending on the number of spatial dimensions and
the spatial dimensions themselves, a lower bound for the unconditional stability can be
derived. Lower bounds for θ for the unconditional stability of the different ADI schemes
based on the theoretical results and numerical experiments in [38, 37, 56] are given in
Table 2.1.

Historically, McKee and Mitchell generalized the original ADI scheme for two-dimensional
diffusion equations in [21, 85] first to diffusion and later to convection-diffusion equations
with mixed derivatives and derived the DO scheme [77, 78]. To obtain a stable second-
order ADI scheme with mixed derivatives, Craig and Sneyd developed the CS scheme
[18]. In’t Hout and Welfert [57] constructed the second order mCS scheme to obtain more
freedom in the choice of θ compared to the CS scheme. The HV scheme was designed
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Scheme d = 2 d = 3
DO 0.5 2

3
CS 0.5 0.5

mCS 1
3 max

{
1
3 ,

2
13(2 max{ρ} + 1)

}
HV 1

2 + 1
6
√

3 1
2 + 1

6
√

3

Table 2.1: Lower stability bounds for θ, with max{ρ} as the maximum of the correlation
values between the spatial dimensions.

by Hundsdorfer [52, 53] and Verwer et al. [101] for the numerical solution of convection-
diffusion-reaction equations without mixed derivative terms. The integration of mixed
derivative terms was initiated by [57, 59]. Note that the intelligent implementation of the
ADI schemes [95] already reduces the runtime further.

2.2.2 Temporal Discretization for LCPs

For 0 < τn < T , the solution u(x, τn) of the semi-discrete Partial Differential Comple-
mentary Problem (PDCP) resulting from the American option pricing problem gives an
approximation for u(x, τn):



∂
∂τ
u(x, τn) − L

[
u
]
(x, τn) ≥ 0,

u(x, τ) ≥ ϕ(s),(
∂

∂τ
u(x, τn) − L

[
u
]
(x, τn)

)(
u(x, τn) − ϕ(s)

)
= 0,

u(x, 0) = ϕ(s),

(2.20)

for n = 0, . . . , Nτ . We use the Ikonen-Toivanen (IT) splitting technique to approach the
problem considering a two-step system [54, 55, 60]. In the first step we solve a system of
linear equations and in the second step a variable update is performed.

In the first step we solve the ODE equation with the additional Lagrangian multiplier λ ∈
Rd using the alternating direction implicit schemes (2.16)–(2.19) for the time discretization
[56]. Depending on the chosen time discretization, one obtains to solve several linear
systems. In our case, one of the ADI schemes presented above, where the first line is
extended with an additional term for the Lagrangian multiplier. Since the first equation
of the ADI schemes is similar, the following equation holds for all schemes

Y0 = u(x, τn) + ∆τ L
[
u
]
(x, τn) +∆τ λn , (2.21)
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and the rest of the schemes remains the same. The second fractional step updates the
λ and u(x, τn) so that they satisfy the constraints. The variable update can be done
component-wise by using

u(x, τn+1) = max
(
u(x, 0) , ũ(x, τn+1) − ∆τ λn

)
,

λn+1 = max
(
0 ,λn + u(x,0)−ũ(x,τn+1)

∆τ

)
,

(2.22)

where ũ(x, τn+1) is an intermediate solution; the solution of the ADI scheme with equation
(2.21). If an initial condition is given, λ0 is set as the zero vector. Finally, we can combine
both steps and obtain the overall scheme ADI-IT schemes. The DO-IT scheme is given
in (2.23), the CS-IT scheme in (2.24), and the mCS-IT scheme in (2.25), and finally the
HV-IT scheme is given by (2.26).

DO-IT scheme



Y0 = u(x, τn) + ∆τ L
[
u
]
(x, τn) +∆τ λn ,

Yi = Yi−1 + θ ∆τ

(
Li

[
Yi

]
− Li

[
u
]
(x, τn)

)
, for i = 1, . . . , d

ũ(x, τn+1) = Yd
u(x, τn+1) = max

(
u(x, 0) , ũ(x, τn+1) − ∆τ λn

)
,

λn+1 = max
(
0 ,λn + u(x,0)−ũ(x,τn+1)

∆τ

)
,

(2.23)

CS-IT scheme



Y0 = u(x, τn) + ∆τ L
[
u
]
(x, τn) +∆τ λn ,

Yi = Yi−1 + θ ∆τ

(
Li

[
Yi

]
− Li

[
u
]
(x, τn)

)
, for i = 1, . . . , d,

Ỹ0 = Y0 + 1
2 ∆τ

(
L0
[
Yd

]
− L0

[
u
]
(x, τn)

)
,

Ỹi = Ỹi−1 + θ ∆τ

(
Li

[
Ỹi

]
) − Li

[
u
]
(x, τn)

)
, for i = 1, . . . , d,

ũ(x, τn+1) = Ỹd
u(x, τn+1) = max

(
u(x, 0) , ũ(x, τn+1) − ∆τ λn

)
,

λn+1 = max
(
0 ,λn + u(x,0)−ũ(x,τn+1)

∆τ

)
,

(2.24)
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mCS-IT scheme



Y0 = u(x, τn) + ∆τ L
[
u
]
(x, τn) +∆τ λn ,

Yi = Yi−1 + θ ∆τ

(
Li

[
Yi

]
− Li

[
u
]
(x, τn)

)
, for i = 1, . . . , d,

Ŷ0 = Y0 + θ ∆τ

(
L0
[
Yd

]
− L0

[
u
]
(x, τn)

)
,

Ỹ0 = Ŷ0 + (1
2 − θ) ∆τ

(
L
[
Yd

]
− L

[
u
]
(x, τn)

)
,

Ỹi = Ỹi−1 + θ ∆τ

(
Li

[
Ỹi

]
− Li

[
u
]
(x, τn)

)
, for i = 1, . . . , d,

ũ(x, τn+1) = Ỹd
u(x, τn+1) = max

(
u(x, 0) , ũ(x, τn+1) − ∆τ λn

)
,

λn+1 = max
(
0 ,λn + u(x,0)−ũ(x,τn+1)

∆τ

)
,

(2.25)

HV-IT scheme



Y0 = u(x, τn) + ∆τ L
[
u
]
(x, τn) +∆τ λn ,

Yi = Yi−1 + θ ∆τ

(
Li

[
Yi

]
− Li

[
u
]
(x, τn)

]
, for i = 1, . . . , d,

Ỹ0 = Y0 + 1
2 ∆τ

(
L0
[
Yd

]
− L0

[
u
]
(x, τn)

)
,

Ỹi = Ỹi−1 + θ ∆τ

(
Li

[
Ỹi

]
− Li

[
Yd

])
, for i = 1, . . . , d,

ũ(x, τn+1) = Ỹd
u(x, τn+1) = max

(
u(x, 0) , ũ(x, τn+1) − ∆τ λn

)
,

λn+1 = max
(
0 ,λn + u(x,0)−ũ(x,τn+1)

∆τ

)
,

(2.26)

The computational cost of the ADI and ADI-IT schemes are almost similar, since the
additional part in the ADI-IT schemes can be done in an explicit and even parallel way
[60].

2.3 The Parareal Approach

The Parareal was developed by Lions, Maday, and Turinici and can be viewed as either a
multigrid or a multiple shooting method [70]. It is an iterative parallel-in-time algorithm
using two temporal operators, where the operator F represents a fine solver running in
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parallel over several time slices and the operator G is used to represent a coarse solver
performing a serial update and correction step. Both solvers are assumed to be convergent
and stable for the chosen step size. Within the parareal, G is the bottleneck for speedup
and convergence rate, since this solver is of lower order than F .

Below the fine and coarse solvers, this advanced technique works on two temporal grids,
as in the Definition 10.

Definition 10 (Parareal grid). We consider the time domain [0, T ] in a continuous setting,
(τ, τ ) ∈ [0, T ], where τ gives the point w.r.t. the coarse time grid and τ for the fine time
grid. Using the multi-indices

N = (Nτ ,Nτ ) ∈ N2,

n = (n, n) ∈ N2,
(2.27)

with n = 0, . . . , Nτ and n = 0, . . . ,Nτ . We can define a grid on [0, T ] with

∆ =
∆τ ,

∆τ

Nτ

. (2.28)

With Nτ and n we divide the interval into Nτ equal slices, defining the coarse grid. Within
each slice [τn, τn+1] we define a fine grid with Nτ , n. We obtain

τ n = τn + n · ∆τ

Nτ

= ∆τ (n+ n
Nτ

) (2.29)

for the fine grid. So n denotes the grid point within the coarse grid from which the interval
starts and n gives the grid node within the interval.

Example: With N = (3, 4) we observe three coarse intervals each with five fine grid
points, where the first τ (0,0) and τ (0,4) overlap with τ0 and τ1, the interval boundary.
There are also points defined twice, e.g. τ (0,4) and τ (1,0). This example is shown in
Figure 2.1. We will see later that the value can be different for both values.
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τ0 τ1 τ2 τ3

τ 0,0 τ 0,1 τ 0,2 τ 0,3 τ 0,4 τ 2,0 τ 2,1 τ 2,2 τ 2,3 τ 2,4

τ (1,4), τ (2,0)

τ 1,0 τ 1,1 τ 1,2 τ 1,3 τ 1,4

Figure 2.1: The discrete temporal grid for the Parareal with N = (3, 4).

The number of time steps in each slice is defined by the corresponding temporal solver,
NG and NF respectively. Let Uk

n denote the semi-discrete solution at the k-th iteration
and the n−th time step for u(x, τn). Since we have an initial condition, we set Uk

0 =
u(x, 0) and compute initial values for each time slice using the coarse solver, s.t. U0

n+1 =
G(U0

n, τn, τn+1). Now the iterative procedure starts with a parallel computation of the
solution of each time slice with the fine solver Ũk

n+1 = F(Uk
n , τn, τn+1). The parallel

computation is followed by a serial correction update step with the coarse solver Uk+1
n =

G(Uk+1
n , τn, τn+1) + Ũk

n+1 − Ûk
n+1, where Ûk

n+1 = G(Uk
n , τn, τn+1) is given from the last

iteration. The short formulation of the iterative procedure is given by

Uk+1
n+1 = G(Uk+1

n , τn, τn+1) + F(Uk
n , τn, τn+1) − G(Uk

n , τn, τn+1)

= Ûk+1
n︸ ︷︷ ︸

serial update

+ Ũk
n︸︷︷︸

computed in parallel

+ Ûk
n︸︷︷︸

given from the last iteration

. (2.30)

Algorithm 1 visualizes the Parareal. Note that in the k-th iteration, the k-th interval is
solved similar to a serial calculation. Thus at least after Nτ iterations the same accuracy
of the serial computation is reached. Therefore kmax ≤ Nτ holds and kmax ≪ Nτ should be
assumed. This allows us to restrict the iterative procedure to work only on the intervals
k ≤ n ≤ Nτ − 1. Besides a termination by the iteration count, one can also consider
implementing an accuracy restriction.

Now we look at the speedup. In the analysis we neglect the initialization time and
compare the results with the theoretical results about the speedup of Parareal without
communication costs [33]. Following the approach of Minion [82]. Let cF and cG be the
computation time for one time step for the fine and coarse solvers. The number of time
steps for each interval [τn, τn+1] for the different solvers is denoted by NF and NG and
NSerial = Nτ ·NF represents the number of serial time steps needed for a serial computation
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Algorithm 1: The Parareal.
Initialize the first time value by the initial condition for each iteration
for k = 0 : kmax do

Uk
0 = u(x, 0)

end
Compute initial values for each time interval
for n = 1 : Nτ − 1 do

U0
n+1 = G(U0

n, τn, τn+1)
end
Iterative procedure of the Parareal
k=0
while k < kmax do

Parallel Approximation
for n = k : Nτ − 1 do

Ũk
n+1 = F(Uk

n , τn, τn+1)
end
Serial Update
for n = k : Nτ − 1 do

Ûk+1
n+1 = G(Uk

n , τn, τn+1)
Uk+1

n+1 = Ûk+1
n+1 + Ũk

n+1 − Ûk
n+1

end
k = k + 1

end
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with the same accuracy. We get the runtime for the serial computation of

CSerial = NSerial · cF . (2.31)

Now we determine the computation time of the Parareal. In a first step, the intermediate
approximations of τn are computed by the coarse solver, resulting in a computation time
of NG · cG for each of the Nτ time slices, then the iteration starts. One iteration of the
Parareal consists of one run of the fine solver in parallel with a serial time of Nτ ·NF · cF

distributed over NP ∈ N processors and a serial run of the coarse solver. We obtain the
following pattern for the computation time

k = 0 : Nτ ·NGcG

k = 1 : Nτ ·NGcG + k · NτNF

NP

cF

k = 2 : (Nτ − 1) ·NGcG + k · (Nτ − 1)NF

NP

cF

k = 3 :(Nτ − 2) ·NGcG + k · (Nτ − 2)NF

NP

cF

(2.32)

Assuming we have k iterations, we can compute the computation time of the Parareal

CParareal = (k + 1) ·Nτ ·NGcG + k · NτNF

NP

cF −
k∑

i=1
(k − 1)

(
NGcG + NF

NP

cF

)

= (k + 1) ·Nτ ·NGcG + k · NSerial

NP

cF − k(k − 1)
2

(
NGcG + NF

NP

cF

)
=
(

(k + 1)Nτ − k(k − 1)
2

)
·NGcG +

(
kNτ − k(k − 1)

2

)
NF

NP

cF

From the serial and parallel computation, we can derive a lower and an upper bound for
k ≥ 1 the speedup. The lower bound is given by

CSerial

CParareal
= NSerial · cF(

(k + 1)Nτ − k(k−1)
2

)
·NGcG +

(
kNτ − k(k−1)

2

)
NF
NP

cF

= NSerial · cF

(k + 1) ·Nτ ·NG︸ ︷︷ ︸
≤NSerial

·cG + k · NSerial
NP

· cF

≥ cF

(k + 1) · cG︸︷︷︸
≤cF

+ k
NP

· cF + 1

≥ 1
(k + 1) + k

NP

= NP

kNP + 1k +NP

.

(2.33)
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We observe that the lower bound shows that if the computation time of the coarse and
fine solvers is the same, we don’t get any speedup. On the contrary, we slow down the
algorithm with each iteration. The upper bound can be derived analogously

CSerial

CParareal
= NSerial · cF(

(k + 1)Nτ − k(k−1)
2

)
·NGcG +

(
kNτ − k(k−1)

2

)
· NF

NP︸︷︷︸
≥ NG

NP

· cF︸︷︷︸
cG

≤ NSerial · cF(
(k + 1)Nτ − k(k−1)

2

)
·NG · cG +

(
kNτ − k(k−1)

2

)
· NG

NP
· cG

= NSerial · cF(
(k + 1 + k

NP
)Nτ − k(k−1)

2 − k(k−1)
2NP

)
·NG · cG

= Nτ(
(k + 1 + k

NP
)Nτ − k(k − 1)

2︸ ︷︷ ︸
≤ 1

2 k2

− k(k − 1)
2NP︸ ︷︷ ︸
≤ 1

2 k2

)NF · cF

NG · cG

= Nτ

(k + 1 + k
NP

)Nτ − k2
NF · cF

NG · cG

(2.34)

It shows that the speedup is directly related to the difference in computational time for
the fine and coarse solvers. As NF > NG and cF > cG is assumed, the second part is
always larger one. Now we focus on the first term

Nτ

(k + 1 + k
NP

)Nτ − k2 ≥ 1

Nτ ≥
(
k + 1 + k

NP

)
Nτ − k2

(
1 − k − 1 − k

NP

)
Nτ ≥ −k2

−k
(

1 + 1
NP

)
Nτ ≥ −k2

Nτ ≤ k

1 + 1
NP

= NPk

NP + 1

(2.35)

Therefore if the condition above is violated, the speedup is reduced, as

lim
NP →∞

NPk

NP + 1 = k (2.36)

is given and kmax ≪ Nτ is assumed previously, the number of processors and time slices
has to be chosen carefully to obtain a minimal slowdown from this part.



Chapter 3

Spatial Discretization

In the introduction in Chapter 1, we presented the general notation for mathematical
models that arise in financial modeling. We observe that in both European and Amer-
ican option pricing problems, a parabolic PDE operator L is given by the underlying
model. Thus, we present the spatial grid for u(x, τn) with x = (x1, x2, . . . , xd) and the
discretization as well as the sparse grid idea using a general d-dimensional parabolic oper-
ator formulation. On a rectangular domain Ωd × [0, T ] with suitable initial and boundary
conditions, the spatial operator is given by

L
[
u
]
(x, τn) =

d∑
i,j=1

aij(x, τn) ∂2

∂xi∂xj

u(x, τn) +
d∑

i=1
bi(x, τn) ∂

∂xi

u(x, τn) + c(x, τn) · u(x, τn).

(3.1)
In this chapter, we assume that the models satisfy these requirements without loss of
generality. A general grid is presented in the first section. In the second section, we
discuss the derivation of the local approximation of the derivatives. We present the
standard finite difference method, considering second-order central and upwind schemes.
Then, the combination technique for sparse grids is introduced. With this method, the
number of grid points and thus the computational effort can be reduced.

3.1 Spatial Grids

For all spatial grids we consider a uniform grid spacing as given in Definition 11. Note that
other non-uniform grid spacings are also used [44, 57]. Often, transformations between
non-uniform and uniform grids are used to obtain the desired numerical structure [44, 57].
These transformations are presented and applied to financial models in Chapter 4.

31
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x2

x1

xmin
2

xmax
2

xmin
1 xmax

1

x(7,3),(1,3)

x(7,3),(4,1)

x(7,3),(7,2)

Figure 3.1: The discrete grid Ω(7,3) with the example points x(7,3),(4,1) in red, x(7,3),(1,3) in
blue and x(7,3),(7,2) in green.

Definition 11 (Uniform grid). We consider a d-dimensional domain Ωd in a continuous
setting, x ∈ Ωd is given by x = (x1, x2, . . . , xd), where xi is the point with respect to the
i-th coordinate direction for i = 1, . . . , d. Using the multi-indices

M = (M1,M2, . . . ,Md) ∈ Nd, (3.2)

m = (m1,m2, . . . ,md),∈ Nd
0 (3.3)

with mi = 0, . . . ,Mi for i = 1, . . . , d, we define a tensor based grid ΩM. The grid nodes
are given by

xM,m = (xM1,m1 , xM2,m2 , . . . , xMd,md
), (3.4)

where mi = 0, 1, . . . ,Mi corresponds to the mi-th node in the i-th coordinate. For a
truncated domain ΩM = [xmin

1 , xmax
1 ] × [xmin

2 , xmax
2 ] × · · · × [xmin

d , xmax
d ], we get the spacing

h = (h1, h2, . . . , hd) =
(xmax

1 − xmin
1

M1
,
xmax

2 − xmin
2

M2
, . . . ,

xmax
d − xmin

d

Md

)
. (3.5)

Example of a general uniform grid: Let Ω(7,3) be given on the truncated rectangular
domain [xmin

1 , xmax
1 ] × [xmin

2 , xmax
2 ]. We observe M = (7, 3) and thus m1 = 0, 1, . . . , 7 and

m2 = 0, 1, . . . , 3. We will now present certain grid points on this grid, namely x(7,3),(1,3),
x(7,3),(4,1) and x(7,3),(7,2). Figure 3.1 visualizes the grid ΩM = Ω(7,3) with the example
points.

Definition 12 (Sparse grid). We consider the grid given by Definition 11 and add an
additional indice

l = (l1, l2, . . . , ld) ∈ N2
0, (3.6)
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such that

Ml = (Ml1 ,Ml2 , . . . ,Mld) = (2l1 , 2l2 , . . . , 2ld). (3.7)

We define a similar tensor-based grid ΩMl with the grid nodes

xMl,m = (xM1,m1 , xM2,m2 , . . . , xMd,md
), (3.8)

where mli = 0, 1, . . . ,Mli = 2li corresponds to the mi-th node in the i-th coordinate. With
ΩMl = [0, 1]d, we gain

hl = (h1, h2, . . . , hd) = (2−l1 , 2−l2 , . . . , 2−ld). (3.9)

Thus, any sparse grid is a uniform grid, but not vice versa. Furthermore, the d-dimensional
sparse grid is restricted to the domain [0, 1]d with the number of grid points in the i−th
direction is given by Mli + 1, where Mli is a power of 2.

Example for a sparse grid: Let Ω(4,8) be on the rectangular domain [0, 1] × [0, 1]. We
observe l = (l1, l2) = (2, 3). For the first grid coordinate we get Ml1 = 2l1 = 22 = 4.
Thus, the five grid points are represented by ml1 = 0, 1, . . . , 4 and the grid spacing on
the unit domain results in h1 = 2−l1 = 0.25. Similarly for the second dimension with
Ml2 = 2l2 = 23 = 8, the nine grid points are represented by ml2 = 0, 1, . . . , 8 with a grid
spacing of h2 = 2−l2 = 2−3 = 0.125. Now we have defined the tensor grid Ω(4,8) and we
can show a certain grid point on this grid. The point x(4,8),(1,4), refers to the grid point
(m1 · 2l1 ,m2 · 2l2) = (1 · 2−2, 4 · 2−3) = (0.25, 0.5). And the grid point (0.75, 0.125) =
(3 · 2−2, 1 · 2−3) is represented by x(4,8),(3,1) and x(4,8),(2,8) = (0.5, 1). Figure 3.2 visualizes
the grid ΩMl = Ω(2,3) with the example points.

3.2 Finite Difference Methods

The spatial derivatives can be approximated in different ways, e.g. with finite differences
[38, 39, 56], finite-element-finite-volume [109], multigrid [10, 11] or spectral methods [44].
We will focus on finite differences. The finite difference stencils are derived using a Taylor
expansion under the assumption that u is sufficiently smooth. As a first step, we present
the second-order central difference stencils for the first, second, and mixed derivatives. The
stencil for the first and second derivatives in the spatial direction i with the corresponding
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x2

x1

x(4,8),(1,4)

x(4,8),(3,1)

x(4,8),(2,8)

0.25

0.50

0.75

1

0 0.25 0.50 0.75 1

Figure 3.2: The discrete sparse grid Ω(4,8) with the example points x(4,8),(1,4) in red,
x(4,8),(2,8) in green and x(4,8),(3,1) in blue.

unit vector ei at the grid point (xM,m, τn) is given by

δ0
i u(xM,m, τn) = 1

2hi

(
u(xM,m + hiei, τn) − u(xM,m − hiei, τn)

)
= ∂

∂xi

u(xM,m, τn) + O(h2
i )

δ2
i u(xM,m, τn) = 1

h2
i

(
u(xM,m + hiei, τn) − 2u(xM,m, τn) + u(xM,m − hiei, τn)

)
= ∂2

∂x2
i

u(xM,m, τn) + O(h2
i )

(3.10)

The second-order mixed derivative stencil is derived by using the first derivative stencil
in two different directions i, j = 1, 2, . . . , d with i ̸= j. It reads

δ0
i δ

0
ju(xM,m, τn) = 1

4hihj

(
u(xM,m + hiei + hjej, τn) − u(xM,m − hiei + hjej, τn)

− u(xM,m + hiei − hjej, τn) + u(xM,m − hiei − hjej, τn)
)

= ∂2

∂xi∂xj

u(xM,m, τn) + O(h2
i ) + O(h2

j) + O(h2
i h2

j)

(3.11)

Unfortunately, some financial models are fully or only for a restricted parameter range
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convection-dominated [94, 57, 9]. The implementation of schemes capable of handling
convection-dominated PDEs in option pricing is a topic of current research [9]. The most
common strategy for a parameter restricted convection-domination is a grid transforma-
tion [57, 94]. In our case we use the upwind scheme presented by LeVeque [69]. Let ad(xi)
be the advection term in the i−th spatial direction. In the case ad(xi) > 0, the second
order backward stencil

δ−
i u(xM,m, τn) = 1

2hi

(
3u(xM,m, τn) − 4u(xM,m − hiei, τn) + u(xM,m − 2hiei, τn)

)
= ∂

∂xi

u(xM,m, τn) + O(h2
i )

(3.12)

is used, and if ad(xi) < 0 the second order forward stencil

δ+
i u(xM,m, τn) = 1

2hi

(
− 3u(xM,m, τn) + 4u(xM,m + hiei, τn) − u(xM,m + hiei, τn)

)
= ∂

∂xi

u(xM,m, τn) + O(h2
i ).

(3.13)

To avoid the explicit computation of the sign change, one can use a combined stencil

δ±
i u(xM,m, τn) = ad(xi)

2hi

(1
2u(xM,m − 2hiei, τn) − 2u(xM,m − hiei, τn) + 3u(xM,m, τn)

− 2u(xM,m + hiei, τn) + 1
2u(xM,m + 2hiei, τn)

)
+ |ad(xi)|

2hi

(1
2u(xM,m − 2hiei, τn) − 2u(xM,m − hiei, τn)

+ 2u(xM,m + hiei, τn) − 1
2u(xM,m + 2hiei, τn)

)
= ∂

∂xi

u(xM,m, τn) + O(h2
i ).

(3.14)

for linear systems. Besides the presented second-order stencils, there are higher-order
stencils with more grid points, as well as compact high-accuracy stencils with fewer grid
points than the corresponding normal stencils of the same order [41, 42].

A uniform tensor grid discretization with M ∈ N grid points in each direction corresponds
to O(Md) grid points in total for d dimensions. This increase for higher dimensions
leads to excessive memory requirements and is therefore computationally expensive. This
growth is referred to as the ’curse of dimensionality’ as for higher dimensions, we on the
one hand gain a better model accuracy and on the other hand enhance the computa-
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tional complexity significantly. To reduce the number of grid points, sparse grids and the
combination technique are used and combined. This is the topic of the next section.

3.3 Sparse Grids

To introduce the sparse grid combination technique, we follow the approach of Reisinger
[89] and Hendricks [40]. Therefore, we discuss the approach in detail for the two-dimensional
case and then generalize it to d dimensions. For the two-dimensional case, the grid do-
main is fixed to Ω2 = [0, 1]2 with the grids ΩMl being the tensor-based grids introduced in
Definition 12. The solution ul is defined on ΩMl with l = (l1, l2) ∈ N2

0 and M = (2l1 , 2l2)
with mesh width h = (h1, h2) = (2−l1 , 2−l2).

To use the combination technique, we consider the error splitting

u− ul = h2
1w1(h1) + h2

2w2(h2) + h2
1h2

2w1,2(h1, h2), (3.15)

where w1 depends only on h1 similarly w2 depends only on h2. Furthermore, h1 and
h2 are independent of each other. Each of w1, w2, w1,2 is bounded. Since the error-
splitting structure is the key assumption within the combination technique, we need to
check whether the second-order finite differences satisfy this requirement. The splitting
of finite differences of a linear scheme has been analyzed by [6, 89, 43]. Bungartz et al. [6]
showed that the second-order central difference scheme satisfies the splitting structure for
the two-dimensional Laplace equation. Reisinger [89] extended this framework for a wider
class of PDEs and proved the desired splitting structure for the poison equation with the
second-order central difference scheme with homogeneous Dirichlet boundary conditions.
He also derived conditions under which the sparse grid approach is advantageous. The
error splitting structure of the fourth-order high-compact scheme was analyzed by Hen-
dricks et al. [43]. The discrete solutions of the finite difference schemes of the sparse grids
are combined by interpolation. Since the error splitting structure must be preserved over
the entire domain to achieve the desired accuracy, the interpolation must also preserve
the splitting structure. For second-order finite differences, a multi-linear interpolation
preserves the desired error structure. Hendricks et al. [43] showed that multi-linear in-
terpolation is insufficient for fourth-order schemes because it reduces the convergence at
the interpolated points to second order. Only the points contained in all grids converge
to the desired order. Unfortunately, this is only true for the center point with (0.5, 0.5).
Therefore, univariate cubic spline interpolations were used.
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In summary, the derivation of the desired error splitting scheme depends on the form
of the truncation error for the discretization as well as on the interpolation and the
smoothness of the solution, so that the higher derivatives are bounded for the discrete
solutions. Hendricks [40] states the key property formulation of Reisinger [89] for general
finite difference methods with an order of accuracy p. For a two-dimensional linear PDE
with the discrete operator Ll with xMl,m the domain ΩMl , the requirements are reduced
to

1. The scheme has a point-wise truncation error of the form

(L − Ll)u(xMl,m) =
2∑

k1=1

2∑
k2=1

wmk1 ,mk2
(xMl,m; hmk1

, hmk2
)hp

mk1
· hp

mk2
(3.16)

2. Stability of the discretization scheme.

3. Sufficiently smooth initial data and compatible boundary data, such that the mixed
derivatives of required order are bounded.

Note that in the case of p = 2 the error splitting structure in (3.16) reduces to (3.15).
In our case, the error splitting structure is given [89, 43], as well as the stability of the
scheme. As mentioned before, the smoothness of the solution for financial problems is
not given for all problems. Because for many options the payoff-function as an initial
condition is not smooth, e.g. for the European plain vanilla options. Thus, we must apply
smoothing techniques to recover the desired bounds, see Section 4.1.

Assuming that the conditions are met and the required error splitting structure is given,
the next step in deriving the combination technique is to define a hierarchical surplus

V(ul) = ul − ul−e1 − ul−e2 + ul−e1−e2 , e1 = (1, 0), e2 = (0, 1). (3.17)

Inserting it into the error splitting, with

|l|1 =
d∑

i=1
li (3.18)
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we obtain

V(u− ul) = h2
1w1(h1) + h2

2w2(h2) + h2
1h2

2w1,2(h1, h2) − 4h2
1w1(2h1)

− h2
2w2(h2) − 4h2

1h2
2w1,2(2h1, h2) − h2

1w1(h1) − 4h2
2w2(2h2)

− 4h1
1h2

2w1,2(h1, 2h2) + 4h2
1w1(2h1) + 4h2

2w2(2h2)

+ 16h2
1h2

2w1,2(2h1, 2h2)

= h2
1h2

2w1,2(h1, h2) − 4h2
1h2

2w1,2(2h1, h2) − 4h2
1h2

2w1,2(h1, 2h2)

+ 16h2
1h2

2w1,2(2h1, 2h2)

= O(h2
1h2

2) = O(2−2l1 · 2−2l2) = O(2−2(l1+l2)) = O(2−2|l|1).

(3.19)

The surplus can be interpreted as the information gain of the solution ul on the sparse
grid ΩMl with Ml = (2l1 , . . . , 2ld). The solutions ul where |l|1 are the same, have the same
number of grid nodes as well as the same surplus and therefore the same information
gain. The combination technique is motivated by getting the highest information gain
from the subsolutions. Therefore subsolutions with a high information gain corresponding
to a high surplus are used. The combined sparse grid solution us

m is defined as the sum
of all surpluses with |l|1 ≤ m for m ∈ N0

us
m =

∑
|l|1≤m

V(ul) =
∑

|l|1=m

ul −
∑

|l|1=m−1
ul (3.20)

The upper error bound can be found by including the surpluses of all subsolutions that
are not used to compute us

m.

||us
m − u|| ≤

∑
|l|1>m

||V(ul)|| (3.21)

as they have a higher surplus |l|1 > m. Since the number of grids with the same surplus
is given by |l|1 + 1, and since these grids have the same order of accuracy O(2−2|l|1), see
equation (3.19), we derive the upper bound

||us
m − u|| ≤

∑
|l|1>m

||V(ul)|| =
∑

|l|1>m

O(2−2|l|1)

=
∑
q>m

O((q + 1)2−2q) = O(m2−2m).
(3.22)

A closer look at the subsolutions within the combined sparse grid solution shows that the
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Figure 3.3: Subgrids and corresponding sparse grids for |l|1 = 0, 1, 2, 3, 4. The separating
line between the second and third row contains all grids with lmin = 2 and the other
separating line before the last row contains all subgrids with lmin = 3.

sparse grid combination formula at the level m is given by

us
m =

∑
|l|1≤m

V(ul) =
m∑

q=0

( ∑
|l|1=q

ul − 2
∑

|l|1=q−1
q−1≥0

ul +
∑

|l|1=q−2
q−2≥0

ul

)

=
∑

|l|1=m

ul −
∑

|l|1=m−1
ul

(3.23)

We observe that all subsolutions with |l|1 < m− 1 cancel out. Figure 3.3 shows that the
sparse grid solution also contains highly disordered grids. To avoid numerical instability
due to sensitivity to this, we set a minimum mesh width in our numerical experiments
with li ≥ lmin for i = 1, 2, . . . , d. To have at least 9 grid points in each dimension, we set
lmin = 3.

Additionally for some applications, e.g. the Heston model in Section 4.3, it is sufficient to
have more grid point in one spatial direction than in another. Therefore we introduce the
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concept of limitation. Through the limitation, we set individually constraints between li
and lj for i, j = 1, . . . , d and i ̸= j, e.g. l1 > l2.

Now we generalize the approach for a d-dimensional setting on the domain Ωd = [0, 1]d.
With the family of Cartesian grids ΩMl defined by the sparse grid in Definition 12. The
hierarchical surplus has been extended from the two-dimensional case in equation (3.17)
to

V(ul) = V1V2 . . . Vdul, (3.24)

with ei denoting the unit vector in the i−th spatial direction

Viul =

ul − ul−ei
, li > 0

ul, li = 0.
(3.25)

This corresponds to an error splitting of the form

u− ul =
d∑

k=1

∑
{j1,...,jk}
⊆{1,...,d}

wj1,...,jk
(·; hj1 , . . . , hjk

)hp
j1 , . . . , h

p
jk

(3.26)

it holds

V(ul) = O(hp
1 · hp

2 · · · · · hp
d)

= O(2−l1·p · 2−l2·p · · · · · 2−ld·p)

= O(2−p|l|1).

(3.27)

Therefore the equation for the first criteria for the error splitting changes from (3.16) to

(L − Ll)u(xMl,m) =
d∑

k=1

∑
{j1,...,jk}
⊆{1,...,d}

wj1,...,jk
(xMl,m; hj1 , . . . , hjk

)hp
j1 , . . . , h

p
jk
, (3.28)

see also [89, 40]. The other criteria stay the same and have to hold as well.

For the derivation of the upper bound, we follow the same steps as in the two-dimensional
case. We have the estimate

||u− us
m|| ≤

∑
|l|1>m

||V(ul)||, (3.29)
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and determine the number of d-dimensional grids with |l|1 ∈ N0|l|1 + d− 1
d− 1

 = O(|l|d−1
1 ). (3.30)

We derive the upper error bound of

||u− us
m|| ≤

∑
|l|1>m

||V(ul)||

=
∑
q>m

O(qd−1

(3.30)
· 2−p·q

(3.27)
) = O(md−12−p·m).

(3.31)

From the cancellation of the subgrids, the sparse grid is given by

us
m =

∑
|l|1<m

= V(ul) =
d−1∑
q=0

 d− 1
q

 ∑
|l|1=m−q

ul (3.32)

For a more detailed derivation, see [40]. Now we can compare the number of grid points
for the full tensor grid and the sparse grid approach. Within the full tensor grid we get
O(md) points. While for the sparse grid approach we get O(md−1) grids to compute the
solution and each grid has O(2m) points. This results in a reduced total number of grid
points of O(md−12m). Now we can combine the two hierarchical multigrid approaches.

3.4 Combination of the Sparse Grids and the Parareal

We use the Parareal on a sparse grid. Within this combination, we use the same temporal
solver for F and G and define the only difference between these solvers over the underlying
grid. The solver F is defined as a temporal integrator for us

mF
(x, τ), the sparse grid

solution of level mF , and G for us
mG

(x, τ), the solution on mG. We assume mF ≥ mG.
Besides the direct combination of the Parareal with the sparse grids, more advanced
combinations can be considered by exploiting the special properties of the combination
technique. We start with the naive combination of the Parareal algorithm with the sparse
grids combination technique.

Let cm be the computation time of a sparse grid combination technique for level m for
one time step and NSerial ∈ N time steps be denoted by

Cs
Serial = NSerial · c(m), with c(m) = (m+ 1) · cm +m · cm−1,
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as the two-dimensional combination technique combines all solutions on the sparse grid
level m and m−1, which are m+1 and m sparse grids, respectively. For the computation
time of the Parareal we get

Cs
Parareal =

(
(k+ 1) ·Nτ − k(k − 1)

2 )
)

·NGc(mG) +
(
kNτ − k(k − 1)

2 ) · NF

NP

c(mF). (3.33)

From the speedup bounds of the general Parareal from the equations (2.33) and (2.34),
we get the bounds for the combination

NP

kNP + k +NP

≤ Cs
Serial

Cs
Parareal

≤ NFc(mF)
NGc(mG)

Nτ

(k + 1 + k
NP

)Nτ − k2 . (3.34)

A further inspection of the speedup of the sparse grid computation on different grids gives
c(mF) and c(mG)

c(mF)
c(mG) = (mF + 1) · cmF +mF · cmF −1

mG · cmG + (mG − 1) · cmG

, (3.35)

and thus we get the bounds

1 ≤ 2mF + 1
2mG − 1

cF

cG
≤ c(mF)

c(mG − 1) ≤ 2mF + 1
2mG − 1

cmF

cmG−1
. (3.36)

Now we want to reduce the computational cost and focus on the combination technique.
For the fine solver with mF we have

us
mF

=
∑

|l|1=mF

ul −
∑

|l|1=mF −1
ul. (3.37)

Our first idea is to take advantage of the two surpluses which are incorporated within the
sparse grid solution. So we set mF = m as the sparse grid level for F and mG = m− 1 for
G. Therefore the fine solver has the higher information gain and from the combination
technique, we get for F

us
m =

∑
|l|1=m

ul −
∑

|l|1=m−1
ul

and for G
us

mG
=

∑
|l|1=mG

ul −
∑

|l|1=mG−1
ul =

∑
|l|1=m−1

ul −
∑

|l|1=m−2
ul.

The boxed sums are identical up to the used solver. The speedup in (3.35) changes to

c(mF)
c(mG) = c(m)

c(m− 1) = (m+ 1) · cm +m · cm−1

(m− 1) · cm−1 + (m− 1) · cm−2
, (3.38)
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c(m) c(m− 1)
Original (m+ 1) · cm +m · cm−1 m · cm−1 + (m− 1) · cm−2

Reuse of Ûm−1 (m+ 1) · cm +m · cm−1 (m− 1) · cm−2
Reuse of Ũm−1 (m+ 1) · cm m · cm−1 + (m− 1) · cm−2

Table 3.1: Changes in the computation time for the sparse grid in the Parareal and the
improved algorithms.

with
1 ≤ 2m+ 1

2m− 1 ≤ c(m)
c(m− 1) ≤ 2m+ 1

2m− 1
cm

cm−2
. (3.39)

This change worsens the speedup in contrast to where mF ≫ mG. But from the combina-
tion technique, we observe that both solvers compute the solution on the same grids, as
the surplus for m−1. This indicates that we can reuse the computed solution for either the
fine or the coarse solver within the algorithm. Let Um denote the sum of all subsolutions
with surplus m, so Uk

m,n denotes the sum of these at time step τn within the k-iteration.
Therefore we obtain Ûk

m−1,n from the coarse computation used in F̂(Uk
n , Û

k
m−1,n, τn, τn+1)

and Ũk
m−1,n from the fine computation used in G̃(Uk

n , Ũ
k
m−1,n, τn, τn+1). Now the computa-

tion time for the level m is given by

ĉ(m) = (m+ 1) · cm. (3.40)

if reusing Ûm−1 and analogously for the reuse of Ũm−1, we get

c̃(m− 1) = (m− 1) · cm−2. (3.41)

We start by reusing the coarse computation within the fine solver, see Algorithm 2. This
approach is only feasible if both solvers are of the same order of accuracy. Since we have
assumed that the computation for the time step is identical for each sparse grid, we have
to set NF = NG to simulate the difference.

The algorithm using the fine subsolutions is given in Algorithm 3. Since the serial com-
putation is the bottleneck of the speedup, this kind of incorporation is more feasible than
the other way around. As it speeds up the serial computation without reducing the accu-
racy. Furthermore, NF ≫ NG can still hold, which increases the speedup instead of the
condition NF = NG. Both computation times in (3.40) and (3.41) are smaller, than the
considered computation time in (3.33) and thus gain a better speedup, this is visualized
in the Table 3.1.

Finally, we come to the last improvement achieved by the combination technique. As
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Algorithm 2: Iterative procedure of the Parareal reusing the computation of Ûm−1
from the coarse solver.
k = 0
while k < kmax do

Parallel Approximation
for n = k : Nτ − 1 do

Ũk
n+1 = F̂(Uk

n , Û
k
m−1,n , τn, τn+1)

end
Serial Update
for n = k : Nτ − 1 do

Ûk+1
n+1 , Û

k+1
m−1,n+1 = G(Uk+1

n , τn, τn+1)
Uk+1

n+1 = Ûk+1
n+1 + Ũk

n+1 − Ûk
n+1

end
k = k + 1

end

Algorithm 3: Iterative procedure of the Parareal reusing the computation of Ũm−1
from the fine solver.
k = 0
while k < kmax do

Parallel Approximation
for n = k : Nτ − 1 do

Ũk
n+1, Ũ

k
m−1,n+1 = F(Uk

n , τn, τn+1)
end
Serial Update
for n = k : Nτ − 1 do

Ûk+1
n+1 = G̃(Uk+1

n , Ũk
m−1,n+1 , τn, τn+1)

Uk+1
n+1 = Ûk+1

n+1 + Ũk
n+1 − Ûk

n+1
end
k = k + 1

end
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mentioned before, serial computation is the bottleneck of the speedup. Fortunately, we
can reduce the computation time even further because the sparse grid solution is the result
of a sum of independent subsolutions. Therefore, we can parallelize the computation of
those subsolutions. For simplicity reasons, we use the same number of processors NP as
before. It would also be feasible to use another number of processors. The optimized
computation time is

C̃s

Parareal = 2(k + 1)Nτ − k(k − 1)
2NP

NG c̃(m− 1) + 2kNτ − k(k − 1)
2NP

NFc(m)

= 1
2NP

(
(2(k + 1)Nτ − k(k − 1))NG c̃(m− 1) + (2kNτ − k2 − k)NFc(m)

)
(3.42)

We analyze the speedup again in detail

Cs
Serial

C̃s

Parareal
= NτNFc(m)

2(k+1)Nτ −k(k−1)
2P

NG c̃(m− 1) + 2kNτ −k(k−1)
2P

NFc(m)

= 2NPNFc(m)
2(k + 1)Nτ − k(k − 1))NG c̃(m− 1) + (2kNτ − k(k − 1))NFc(m) .

(3.43)

A lower bound is given by

Cs
Serial

C̃s

Parareal
= 2NPNτNFc(m)

2(k + 1)Nτ − k(k − 1))NG c̃(m− 1) + (2kNτ − k(k − 1))NFc(m)

≥ NPNFc(m)
(k + 1) · NG︸︷︷︸

≤NF

·c̃(m− 1) + k ·NF · c(m)

≥ NP c(m)
(k + 1) · c̃(m− 1)︸ ︷︷ ︸

<<c(m)

+k · c(m)

≥ NP

2k + 1 .

(3.44)

This lower bound depends only on the properties of the Parareal, so one can directly
optimize the choice of NP and kmax. Since NP ≫ 2k + 1 should hold to get a profitable
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speedup. The upper bound is

Cs
Serial

C̃s

Parareal
= 2NPNτNFc(m)

2(k + 1)Nτ − k(k − 1))NG c̃(m− 1) + (2kNτ − k(k − 1)) NF︸︷︷︸
≥NG

c(m)︸ ︷︷ ︸
≥c̃(m−1)

≤ 2NPNτNFc(m)
((4k + 2)Nτ − 2k(k − 1))NG c̃(m− 1)

= NPNτNFc(m)
((2k + 1)Nτ − k(k − 1))NG c̃(m− 1)

≤ NPNτ

(2k + 1)Nτ − k2
NFc(m)

NG c̃(m− 1)

(3.45)

We see that the upper bound is also larger than before, and it’s directly scalable with the
right choice of NP and kmax

To determine the correct choice of NP , we must also consider the communication time. So
far, we have neglected communication time, but since parallel computations involve addi-
tional expensive communication, communication is the bottleneck of parallelism. There-
fore, we now focus on speedup while taking communication time into account. Since
the communication time depends on the length of the communicated message, it can be
described by

ccom(l) = αcom + βcom · l,

where αcom is the initialization time for parallelism, βcom is the communication cost per
length of message transmitted, and l is the length of bytes in the message. Both αcom

and βcom are predefined by the computer architecture and are constant. Since each grid
in the sparse grid level m consists of 2m grid points stored as 32 floating point numbers,
we can specify l = 2m · 32 = 2m+5. We assume that the communication time is minimized
because we only communicate the sum of the subgrids instead of each subgrid solution,
and thus we only need to communicate one subsolution. Including the communication
cost in the Parareal increases the computation time per iteration by 2NP ccom(m), since
we communicate with each processor twice. Once when we initiate the process and once
when the processor returns the result. In each iteration, we have Nτ communications from
the parallelism in the serial computation for each time slice, as well as one communication
from the parallel update. We get a computation time with communication time given by

Ccom
Parareal = C̃s

Parareal + (k +Nτ (k + 1)) · 2NP · ccom(m)

= C1

2NP

+ C2 · 2NP .
(3.46)
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Let all parameters expect NP be fixed, we search for NP processors that minimize the
computation time for the Parareal with communication

N∗
P = argminNP ∈N Ccom

P

The result must be a unique positive integer solution. The continuous optimal solution is
given by

N∗
P =

√
C1

C2
, (3.47)

the optimal integer solution is either NP = ⌊N∗
P ⌋ or NP = ⌈N∗

P ⌉. Using the continuous
solution a lower bound for the computation time can be derived

Ccom
Parareal ≥ 2

√
C1 · C2

and thus an upper bound for the speedup

Cs
Serial

Ccom
Parareal

≤ NSerial · c(m)
2
√

C1 · C2

= 1
2 ·
√
NSerialc(m)

C1 · C2

= 1
2 ·
√
NSerialc(m)

C1

1√
C2

= 1
2 ·

√√√√ Cs
Serial

2NP C̃s

Parareal

1√
C2

= 1
2
√
NP C2

√√√√ Cs
Serial

2C̃s

Parareal

(3.48)

As expected, taking into account the computation time significantly reduces the speedup
and therefore has to be considered when choosing NP .

This approach can easily be extended to multidimensional sparse grids. Then the fine
solver would contain only Um and the coarse solver only the grids at the level Um−d−1.
Since more terms cancel out, the speedup would also improve. With the d−dimensional
combination technique (3.32), the speedup from c(m)

c̃(m−1) enhances to

cd(m)
c̃d(m− d− 1) ≫ 1, (3.49)
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with
cd(m) =

d−1∑
q=0

(
d− 1
q

)(
m− q + d− 1

d− 1

)
︸ ︷︷ ︸

(3.30)

c(m− q)

c̃d(m− 1) =
(
m− d− 2
d− 1

)
c(m− d− 2).

(3.50)



Chapter 4

Financial models

The option price depends on the underlying asset model. The dynamics of the asset price
can be modeled by a SDE or the corresponding PDE. In the following, we will focus on
Put option pricing problems; the derivation for Call options is analogous.

The next question we focus on is how to model the asset, and therefore we present two well-
known financial models. The Black-Scholes-(Merton) model is a one-dimensional model
and was developed in 1973 [3, 80]; Black and Merton won the Nobel Prize in Economics
in 1997 for its derivation, since Scholes died in 1995. The Heston model is a stochastic
volatility model and was developed nearly 20 years later and includes a second stochastic
dimension, volatility. In the Black-Scholes(-Merton) model, volatility is assumed to be
constant. Another extension of the Black-Scholes(-Merton) model is the use of a local
volatility function [26, 103]. Thus, the Heston model can be seen as an extension of the
Black-Scholes model. These models are standard models in financial research. Of course,
there are several other models that consider other parameters as nonconstant, e.g. the
Heston-Hull-White model [49] or the Heston model with stochastic correlation [96]. As
well as other stochastic volatility models such as the stochastic alpha, beta, rho (SABR)
models [64].

4.1 Adjustment for Financial Models

Since the region of interest is around the strike price, we want to gather many grid points
there. A common grid transformation is the log-transformation where x = log(S) and
the log-normalized transformation z = log(S/K) [35, 91]. The log-transformation is used
within the Heston model and the log-normalized transformation with the Black-Scholes

49
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model.

For the sparse grid approach, a uniform grid on [0, 1]d is assumed and a nonuniform grid
for both the asset and the variance is considered. Therefore, we use a uniform grid on
[0, 1]d, in our case the sparse grid ΩMl with the spatial variable vector y, and reconstruct
the nonuniform grid for the transformed spatial variables x by a smooth transformation
acting component wise for for each dimension. Let the transformation be given by

x = Θ(y), (4.1)

where [ymin,ymax] = [0, 1]d is mapped to the arbitrary interval [xmin,xmax] with xmin,xmax ∈
Rd and xmin < x0 < xmax by

x = x0 + γ · sinh
(
y · (η − ζ) + ζ

)
,

ζ = sinh−1
(xmin − x0

γ

)
,

η = sinh−1
(xmax − x0

γ

)
.

(4.2)

Small values of γ lead to a very nonuniform grid structure in x, while large values of
γ lead to a uniform distribution of grid points [56, 94]. Additionally we need Θ−1, for
the transformation of the non-uniform financial variable set to the variables on the unit
square. We have

y = Θ−1(x) =
ζ + sinh−1

(
x0−x

γ

)
ζ − η

(4.3)

These grids are tensor grids. A comparison of the grid transformations w.r.t. S is shown
in Figure 4.1. Other transformations that can be considered are spectral methods [44, 7],
in some applications a Fast Fourier Transformation is also used [20].

As we have seen, numerical methods, e.g. sparse grids, rely on the smoothness of the
solution and hence of the initial data. In financial option pricing, the payoff-function
often has discontinuities at the strike price, e.g., European options or Binary options.
These discontinuities lead to large errors in the region of interest. Pooley et al. [87]
state and compare three different methods for the one-dimensional case of second-order
accuracy: averaging the initial conditions, shifting the mesh, and projecting the initial
conditions. The supposedly simplest method is mesh shifting. In this method, the strike
price is at the midpoint of the neighboring grid points. Then the discontinuity is not
visible for the grid and the option price at the strike is recovered by interpolation [94].
Unfortunately, increasing the accuracy by using more grid points isn’t as easy as when
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Figure 4.1: Different transformations for S ∈ [K · exp (−2), K · exp (2)] with 17 discrete
points, where K = 10. The first distribution is a uniform discretization on S, the second
shows S = exp(x) with xmin = −2 and xmax = 2. The third and fourth distributions show
the transformation with the equations (4.1) and γ = 0.25, where in the third one y0 = K
and in the last one y0 = S̃ = 8.

the strike price has to be from the grid even for finer grids. Another simple approach is to
average the initial data, where the grid point of the strike price is replaced by an average
[65, 98]. Without loss of generality, we denote xK as the grid point in the asset direction
matching the strike price and the corresponding spacing hK

Ψ(xK , t) = 1
(xK + 0.5hk) − (xK − 0.5hK)

∫ xK+0.5hk

xK−0.5hK

Ψ(v, t) dv

= 1
hK

∫ xK+0.5hk

xK−0.5hK

Ψ(v, t) dv.
(4.4)

An advanced method is the projection of the initial condition [88, 73], where a L2 pro-
jection onto a set of basis functions is performed for the initial payoff profile. Adapting
projection and mesh shifting approach for the d-dimensional case is nontrivial. For the
grid shift, it’s difficult to guarantee the desired structure in higher dimensions. The pro-
jection faces difficulties when the discontinuity is not on a grid point. The averaging
function has been successfully applied in the two- and three-dimensional case [23, 42] and
can be easily extended to arbitrary dimensions via a tensor product of one-dimensional
convolutions [40]. Since the problems presented in the next sections have only up to two
dimensions in space and the payoff-functions considered are independent of the second
spatial dimension, we restrict ourselves to the approach of Kreiss et al. and use (4.4) with
adjustments given corresponding to the chosen boundary conditions, see Section 4.4.



52 CHAPTER 4. FINANCIAL MODELS

4.2 The Black-Scholes Model

To derive their model, Black and Scholes required the following market conditions

• There are no arbitrage opportunities.

• The market is frictionless.

• The asset price follows a geometric Brownian motion.

• The risk-free interest rate r > 0 and the volatility σs > 0 of the asset are constant
for 0 ≤ t ≤ T . No dividends D > 0 are paid during this period.

• The option is European.

The Black-Scholes model is based on a geometric Brownian motion for the dynamics of
the price

dSt = rSt dt+ σsSt dWS
t , S0 > 0. (4.5)

Therefore, in the Black-Scholes model x = S. In the case of a continuous dividend D, we
consider the Black-Scholes-Merton model [80] with the drift term (r − D)St. Using the
reversed time τ = T − t, the Black-Scholes PDE formulation for the fair price u(x, τ) =
u(s, τ) of a European put option is

∂u

∂τ
(s, τ) = LBS

[
u
]
(s, τ) 0 < τ ≤ T, (4.6)

with the spatial operator

LBS
[
u
]

= 1
2σss

2∂
2u

∂s2 + rs
∂u

∂s
− ru, s ≥ 0, (4.7)

and the initial condition at τ = 0

u(s, 0) = max(K − s, 0), s ≥ 0. (4.8)

At s = 0 and s → ∞ Dirichlet boundary conditions are considered

s = 0 : u(0, τ) = K exp(−rτ), s → ∞ : u(s, τ) = 0. (4.9)

The Black-Scholes PDE has a semi-analytical solution because it can be transformed into
the heat equation for which the semi-analytic solution exists. The semi-analytical solution
for a Put option with initial condition in (4.8) and the boundary conditions in equation
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(4.9) is given by

u(s, T − τ) = K exp(−rτ)Φ(−d2) − sΦ(−d1), s > 0, 0 ≤ τ < T, (4.10)

where Φ is a probability function of the standard normal distribution

Φ(x) = 1√
2π

∫ x

−∞
exp(−v2/2) dv, x ∈ R, (4.11)

and d1 and d2 are given by

d1 =
log(s/K) + (r + 1

2σ
2
s)τ

σs

√
τ

,

d2 =
log(s/K) + (r − 1

2σ
2
s)τ

σs

√
τ

.

The American put option problem can be divided into two regions. In the one-dimensional
Black-Scholes model, the exercise region is determined by 0 ≤ s ≤ sf (τ) and the holding
region is s > sf (τ). In the holding region, the American put option problem with the
Black-Scholes equation is equivalent to the European put option problem (4.6). For the
other region, u(s, τ) = max(K − s, 0) must hold. Substituting this condition into (4.6)
we get

∂

∂τ
max(K − s, 0) − LBS[max(K − s, 0)] = rs+ r(K − s) = rK > 0, (4.12)

that satisfies the condition from Definition 1.18. We get a case system

∂

∂τ
u(s, τ) − LBS[u](s, τ) = g(s, τ) =

rK, 0 < s ≤ sf (τ),

0, s > sf (τ).
(4.13)

To simplify the computation, we transform the case system (4.13) in such a way that we
obtain the heat equation on the left side. This transformation is known from the European
options, since the heat equation has a semi-analytical solution. Since our right-hand side
is unequal to zero in contrast to the European option case, we sketch the transformation
in more detail. For the transformation of the case system (4.13), we use the well-known
transformations

z = log
(
s

K

)
, τ̂ = σ2

s

2 τ, v(z, τ̂) = u(s, τ)
K

, T̂ = σ2
s

2 T, (4.14)
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and obtain by using the chain rule

−σ2
s

2 K
∂v

∂τ̂
+ σ2

s

2 s
2K

s2

(
∂2v

∂z2 − ∂v

∂z

)
+ rs

K

s

∂v

∂z
− rKv =

rK, z ≤ zf (τ̂),

0, z > zf (τ̂),

where zf (τ̂) = log(sf (τ̂)/K) is the free boundary value for z. We simplify this equation
and divide by −σs/2

∂v

∂τ̂
− ∂2v

∂z2 +
(

1 − 2r
σ2

s

)
∂v

∂z
+ 2r
σ2

s

v =

− 2r
σ2

s
, z ≤ zf (τ̂),

0, z > zf (τ̂).
(4.15)

In the last transformation step we use the transformation w(z, τ̂) = exp(αz + βτ̂)v(z, τ̂),
where

α = −1
2

(2r
σ2

s

− 1
)

and β = −1
4

(2r
σ2

s

+ 1
)2
. (4.16)

Finally, we get the transformed case system

∂w

∂τ̂
− ∂2w

∂z2 = ĝ(z, τ̂) = exp(−αz − βτ̂)

− 2r
σ2

s
z ≤ zf (τ̂),

0, z > zf (τ̂).
(4.17)

The transformed initial condition reads

ϕ̂(z, τ̂) = exp
(

−αz − βτ̂
)

max
(
1 − exp(z), 0

)
. (4.18)

The obtained transformed American put option price problem in a case system formulation
is

wτ̂ − wzz = ĝ(z, τ̂), (4.19)

supplied with the initial and boundary conditions

w(z, 0) = ϕ̂(z, 0), z ∈ R, lim
z→±∞

(
w(z, τ̂) − ϕ̂(z, τ̂)

)
= 0, 0 ≤ τ̂ ≤ T̂ . (4.20)

As penalty term, we choose an affine function δ(τ). Since at τ = 0 the initial condition
(4.8) and (4.12) must hold, we obtain

δ(τ) = aτ + 1, (4.21)
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so that the penalty function is given by

p(s, τ) = δ(τ) · g(s, τ). (4.22)

This choice preserves the novelty of this approach, since the known penalty terms are
neither bounded nor independent of the solution itself [83, 35]. The penalized case system
for (4.13) is

∂

∂τ
u(s, τ) − LBS[u](s, τ) = δ(τ) · g(s, τ). (4.23)

For the transformed system we also choose an affine function δ̂(τ̂) = âτ̂+b̂ as a penalization
term for the penalty function p̂ = δ̂(τ̂)ĝ(z, τ̂) for the transformed case system (4.17). Since
the relation between w(z, τ̂) and p(s, τ) is given by

w(z, τ̂) = 1
K

exp
(

−αz − βτ̂
)
u(s, τ)

the same relation must hold for the penalized right hand side. We focus only on the
exercise region, since the holding region is always zero. Since we go backward in time
with t and forward with τ , we can assume 1

K
exp(−αz − βτ̂)p(s, τ) = −p̂(z, τ̂). We get

1
K

exp(−αz − βτ̂)(aτ + 1) · (−rK) = −(âτ + b̂) exp(−αz − βτ̂)2r
σ2

s

(4.24)

aτ + 1 = (âτ̂ + b) 2
σ2

s

(4.25)

aτ + 1 = (âσ
2
s

2 τ + b) 2
σ2

s

(4.26)

aτ + 1 = âτ + 2
σ2

s

b (4.27)

Since the equation has to hold at τ = 0 as, well we get

σ2
s

2 = b. (4.28)

The transformed case system with the bounded penalty function is given by

∂w

∂τ
− ∂2w

∂z2 = p̂(z, τ̂) =
(
âτ̂ + σ2

s

2

)− 2r
σ2

s
exp(−αz − βτ̂), z ≤ zf

0, z > zf

(4.29)

supplied with the initial and boundary conditions from (4.20).

Our approach requires an initial guess for the free boundary value. Since the price of
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an American option is greater than or equal to the price of the corresponding European
option, we can use the intersection between the payoff and the solution of the European
put option as the initial guess for the free boundary value zf , with the result that the
bounded penalty term forces the PDE (4.23) to satisfy the conditions from the LCP in
Definition 1.18 asymptotically. Since the free boundary approximation and the analysis
of the approximation is one of the main research areas in the field of American options,
well-known approximation formulas can be found in the literature. Just to mention the
approximations of Zhou [108], Starmicar [93] and Evans et al. [27]. Each of these for-
mulations can be considered to obtain the initial values. Since the penalization is based
on the initial choice of free boundary, the choice of formula for computing the initial free
boundary has a large effect on the accuracy of the method. A detailed analysis of the
choice of the initial free boundary computed by different approximation formulas from
the literature is part of future research. After calculating the penalty term with the initial
free boundary value, we solve the penalized heat equation (4.29). The solution obtained
is the solution of the American option problem.

4.3 The Heston Model

The Heston model was developed by Heston in 1993 [46] and describes the dynamics
of the underlying asset by a two-dimensional SDE that includes a stochastic process for
the underlying asset S and one for the volatility σs. This model is an extension of the
well-known Black-Scholes-Merton model [3, 80], in that it assumes constant volatility.
Instead of the volatility itself, he considered a stochastic process for the variance Υ, since
by definition the variance is the square of the volatility of the asset, Υ = σ2

s . Heston
modeled the variance with a mean reversion process, the Cox-Ingersoll-Ross process. The
SDE system of Heston’s model under the risk-neutral measure is


dSt = (r −D)St dt+

√
ΥtSt dWS

t , S0 > 0,

dΥt = κ(µ− Υt) dt+ συ

√
Υt dWΥ

t , Υ0 > 0,

dWS
t dWΥ

t = ρ dt

(4.30)

where κ > 0 is the mean reversion rate, µ > 0 is the long-term mean, and συ > 0 is the
volatility-of-variance. Note that we are working with risk-neutralized pricing probabilities
[46]. Since the Brownian motions are correlated by the constant ρ ∈ [−1, 1], we rewrite
the SDE system, such that the Brownian motions are independent. Otherwise, Monte
Carlo methods can’t be applied directly. From (4.30) we get the symmetric correlation
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matrix

Corr =
1 ρ

ρ 1

 (4.31)

with its Cholesky decomposition Corr = Col · Col⊤

Col =
1 0
ρ

√
1 − ρ

 . (4.32)

This decomposition is used to reformulate the SDE system (4.30) w.r.t. the two indepen-
dent Brownian motions W1

t and W2
t dSt = (r −D)St dt+

√
ΥtSt dW1

t , S0 > 0,

dΥt = κ(µ− Υt) dt+ ρσυ

√
Υt dW1

t +
√

1 − ρσυ

√
Υt dW2

t , Υ0 > 0,
. (4.33)

We observe that the family of symmetric instantaneous covariance matrices for Xt =
(St,Υt) reads as follows

σ(Xt)σ(Xt)⊤ =
 ΥtS

2
t ρσυΥtSt

ρσυΥtSt σ2
υΥt

 . (4.34)

For the variance process to be positive, the Feller condition 2κµ ≥ σ2
υ must be satisfied.

If the condition is violated, problems arise in computing the square root because it is
complex. For Asian options, we obtain the fair price by

ω((S, υ)), 0) = exp(−rT )E[ϕAs(A(S))]. (4.35)

Using the Feynman-Kac formula (1.8) and time reversal, we derive the Heston PDE
formulation for the fair price of a European put option u(x, τ) = u

(
(υ, s), τ

)
under the

risk-neutral measure
∂

∂τ
u
(
x, τ

)
= LH

[
u
](

x, τ
)
, (4.36)

with the spatial operator

LH[u] = υ

2s
2∂

2u

∂s2 + 1
2σ

2
υυ
∂2u

∂υ2 + (r −D)s∂u
∂s

+ κ(µ− υ)∂u
∂υ

+ συυsρ
∂2u

∂s∂υ
− ru. (4.37)

and initial condition given by the payoff-function for the European put option (1.1).
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Heston proposed boundary conditions for Put options [46].

s = 0 : u
(
(υ, 0), τ

)
= K exp

(
−rτ

)
(4.38)

s → ∞ : u
(
(υ, s), τ

)
∼ 0 (4.39)

υ = 0 : ∂

∂τ
u
(
(s, 0), τ

)
= (r −D)s ∂

∂s
u
(
(0, s), τ

)
+ κµ

∂

∂υ
u
(
(0, s), τ

)
− ru

(
(0, s), τ

)
(4.40)

υ → ∞ : u
(
(υ, s), τ

)
∼ K exp

(
−rτ

)
. (4.41)

For the Heston model, we observe the advection term ad(υ) = κ(µ− υ) in the coordinate
direction υ. This term has a sign change at ad(υ) = 0, which corresponds to the point
where υ = µ. Thus, the advection direction changes at υ = µ. Therefore we later use the
combined stencil for the differentiation within this coordinate direction.

At S = 0 and υ = 0, the diffusion terms vanish and we use Fichera theory to determine
the necessity of boundary conditions [4, 66]. Therefore we rewrite the Heston PDE (4.36)
into divergence form (1.15) and from the underlying operator LH we get

AH = 1
2υ

ρσυs σ2

s2 ρσυs

 , bH = −

κ(µ− υ) − 1
2σ

2
υ − 1

2ρσυυ

(r −D)s− υs− 1
2ρσυs

 . (4.42)

At the boundary s = 0 the Fichera condition is given by

lim
s→0+

bH ·
(

0
−1

)
=
(

(r −D)s− υs− 1
2ρσυs

)
= 0.

This corresponds to an (unconditional) outflow boundary, and thus no boundary con-
dition is required from an analytical point of view. Nevertheless, a natural boundary
condition arises from the financial context, which is used as a closure condition within
the Section 4.4. Considering the boundary υ = 0, the Fichera condition is given by

lim
υ→0+

bH ·
(

−1
0

)
= lim

υ→0+

(
κ(µ− υ) − 1

2σ
2
υ − 1

2ρσυυ
)

= κµ− 1
2σ

2
υ. (4.43)

Hence, we have the following cases at υ = 0:

• outflow boundary: if κµ ≥ 1
2σ

2
υ we must not supply any analytical boundary

condition at υ = 0.

• inflow boundary: if κµ < 1
2σ

2
υ we have to supply an analytical boundary condition

at υ = 0.
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We obtain an outflow boundary if and only if the Feller condition is satisfied, which is
assumed below. However, for the implementation we need to specify a numerical closure
condition for s = 0 and υ = 0. Since at s = 0 a closure condition can be derived directly
from the financial model, we use the Dirichlet condition proposed by Heston, which is
also used in the Black-Scholes model. A discussion of the choice of closure conditions at
υ = 0 is given in [15].

The American put option problem is treated as an LCP and is therefore solved using the
reformulation of Ikonen and Toivanen [54, 55, 60] with an auxiliary variable λ



∂
∂τ
u
(
(υ, s), τ

)
− LH

[
u
(
(υ, s), τ

)]
= λ,

λ ≥ 0, u
(
(υ, s), τ

)
− max(K − s, 0) ≥ 0,(

u
(
(υ, s), τ

)
− max(K − s, 0)

)
λ = 0,

(4.44)

for
(
(υ, s), τ

)
∈ Ω2 × [0, T ] with the initial and boundary conditions [55]. The result is a

mixed formulation of the LCP problem, where λ plays the role of a Lagrange multiplier.
The advantage of the LCP formulation of the American option problem is that it avoids
explicit computation of the free boundary value (υ, s)f .

4.4 Transformations of the Heston Model

To zoom into the particularly interesting price range near K, where the region changes
from ITM to ATM and further to OTM, we use the variable transformation X = log(S)
for the asset. As usually the spot asset is near the strike. We get the log-transformed
Heston SDE 

dXt = (r −D − 1
2Υt) dt+

√
Υt dWX

t ,

dΥt = κ(µ− Υt) dt+ συ

√
Υt dWΥ

t ,

dWX
t dWΥ

t = ρ dt

(4.45)

on the semi-unbounded domain X ∈ R, Υ ≥ 0, 0 ≤ t ≤ T with the initial condition given
by the corresponding payoff-function. Similar to the original system, the log-transformed
system can be rewritten in terms of independent Brownian motions

dXt = (r −D − 1
2Υt) dt+

√
Υt dW1

t ,

dΥt = κ(µ− Υt) dt+ ρσυ

√
Υt dW1

t +
√

1 − ρσυ
√
υt dW2

t .
(4.46)
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and leads to the corresponding log-transformed Heston PDE under the risk-neutral mea-
sure for European options with the spatial operator LH̄

LH̄[u] = υ

2
∂2u

∂x2 + 1
2σ

2
υυ
∂2u

∂υ2 +
(
r −D − υ

2

)
∂u

∂x
+ κ(µ− υ)∂u

∂υ
+ συυρ

∂2u

∂x∂υ
− ru,

(4.47)
where x = (υ, x) and u(x, τ) is the fair price of the option. The payoff-function as the
initial condition must also be transformed, in the case of the European put option we get

ϕ̄(x) = max
(
K − exp(x), 0

)
. (4.48)

We consider the boundary conditions proposed by Heston and apply the log-transformation
to obtain

x → −∞ : u
(
(υ, x), τ

)
∼ K exp(−rτ), (4.49)

x → ∞ : u
(
(υ, x), τ

)
∼ 0, (4.50)

υ = 0 : ∂

∂τ
u
(
(0, x), τ

)
= (r −D − υ

2 ) ∂
∂x
u
(
(0, x), τ

)
+ κµ

∂

∂υ
u
(
(0, x), τ

)
− ru

(
(0, x), τ

)
,

(4.51)

υ → ∞ : u
(
(υ, x), τ

)
∼ K exp(−rτ). (4.52)

Heston also proposed a closed-form solution [46]. In this formulation, the PDE only
degenerates to a first-order hyperbolic PDE at υ = 0. Therefore, a boundary condition at
x → −∞ is needed and is already provided by Heston. Further, we need to consider the
Fichera theory [4, 66] to assess whether it is necessary to provide an analytic boundary
condition at υ = 0 or not, again. From the divergent form, we get

AH̄ = 1
2υ

 σ2
υ συρ

συρ 1

 , bH̄ =
 κ(µ− υ) − 1

2σ
2
υ

r −D − υ
2 − 1

2συρ

 . (4.53)

The Fichera condition at υ = 0

lim
υ→0+

bH̄ ·
(

−1
0

)
= κ(µ− υ) − 1

2σ
2
υ (4.54)

is the same as before, thus at υ = 0 we get an outflow boundary if the Feller condition
holds, otherwise we get an inflow boundary. In addition to the Heston PDE with constant
parameters for the variance process, we also consider time-dependent parameters κ̃, µ̃υ,
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σ̃υ, and ρ̃, and the corresponding spatial operator LH̃ for u
(
(υ, x), τ

)
which is

LH̃[u] = υ

2
∂2u

∂x2 + 1
2 σ̃

2
υυ
∂2u

∂υ2 + (r −D − υ

2 )∂u
∂x

+ κ̃(µ̃− υ)∂u
∂υ

+ συtυρ̃
∂2u

∂x∂υ
− ru, (4.55)

with the initial condition (5.5) and the boundary conditions from equations (4.49), (4.50)
and (4.52). From the Fichera theory we gain, that the Feller condition must hold for
all τ , such that we get a pure outflow boundary again. Therefore even if for the log-
transformed Heston model with and without constant parameters, we don’t need an ana-
lytical boundary condition at υ = 0 as long as the Feller condition holds. However, once
we compute the solutions, we need closure conditions when we truncate the domain to
[υmin, υmax] × [xmin, xmax]. Note that the boundary condition at x → ∞ must be interpo-
lated w.r.t. the variance boundary conditions. For the closure condition at υ = υmin we
consider two different cases. The Dirichlet boundary condition

u
(
(υmin, x), τ

)
= ϕ̄(x) exp(−rτ) (a)

and, since we have a pure outflow boundary here, an extrapolation via a ghost layer at
υ = υmin − h1 leads to

u
(
(υmin − h1, x), τ

)
= u

(
(υmin, x), τ

)
. (b)

For the boundary conditions at υ = υmax, we consider four different cases. The first
condition was proposed by Heston himself

u
(

(υmax, x), τ
)

= K exp(−rτ). (c)

This boundary condition causes a jump between u
(
(υ, xmax), τ

)
and u

(
(υmax, xmax), τ

)
.

Therefore, one can use the linear interpolation considered in case (a) or an exponential
fit at xmax [76] with parameter γ > 0 given by

ϑ = 1 + ν, and ν =

(
exp(υ − υmax)

)z

1 −
(

exp(υ − υmax)
)γ , (4.56)

which leads to the condition

u
(
(υmax, x), τ

)
= K exp(−rτ), u

(
(υ, xmax), τ

)
= ϑ

(
exp(υ − υmax)

)z
− υ. (d)
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Note that a high value for γ corresponds to a slope where the option price is zero for
most variance values, resulting in a better fit to Heston’s boundary conditions. In the
following, we use the rather large value γ = 20. Another approach [76] is to include a
dependence on x in the Heston condition, for example

u
(
(υmax, x), τ

)
= exp(−rτ)

(
1 − exp(x) − exp(xmin)

2
(

exp(xmax) − exp(xmin)
)) (e)

combined with a linear interpolation in xmax.

The final approximation at υ = υmax, we consider the proposition by Kùtik and Mikula [66]
and use artificial homogeneous Neumann boundary conditions. The choice is motivated
by the independence from the variance of Heston’s original boundary conditions, given a
sufficiently large υmax = O(1). Thus, we perform an extrapolation over the ghost layer at
υ = υmax + h1 to obtain

u
(
(υmax, x), τ

)
= u

(
(υmax + h1, x), τ

)
. (f)

The second transformation considered in this thesis for the Heston model is the transfor-
mation to the unit square (4.2)to apply the sparse grid approach with the Heston model.
We consider x = (υ, s) and transform it to y = (y1, y2) with y ∈ [0, 1]2 For the grid
transformation one either uses x0 = (υspot, K) or the spot asset x0 = (, υspot, sspot) and
generates x from y in [0, 1]d. Note that when using the first approach, the strike price is
definitely a grid point and therefore a smoothing technique is required. Further, for the
first choice more smoothing techniques can be applied since the requirement of the strike
price matching a grid point is satisfied. The spatial operator for u(y, τ) is

LĤ[u] = 1
2υs

2
(
∂Θ−1(x)

∂s

)2
∂2u

∂y22 +
(

(r −D)s∂Θ−1(x)
∂s

+ 1
2υs

2∂
2Θ−1(x)
∂s2

)
∂u

∂y2

+ ρ
∂Θ−1(x)

∂s

∂Θ−1(x)
∂υ

συsυ
∂2u

∂y1∂y2
+ 1

2σ
2
υυ

(
∂Θ−1(x)
∂υ

)2
∂2u

∂y12

+
(
κ(µυ − ν)∂Θ−1(y)

∂υ
+ 1

2σ
2
υυ
∂2Θ−1(x)
∂υ2

)
∂u

∂y1
(4.57)
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with
∂Θ−1(x)
∂xi

= − 1

γi

√
(x0

i −xi)2

γ2
i

+ 1

∂2Θ−1(x)
∂xi

2 = − x0
i − xi

γ3
i

 (y0
i −xi)2

γi

2
+ 1

 3
2

(4.58)

for i = 1, . . . , d. The sparse grid approach requires Dirichlet boundary conditions, so we
are limited in the choice of boundary conditions. We use the closure conditions

y1 = 0 : u
(
x, τ

)
= ϕ(Θ−1(y2)) exp(−rτ)

y1 = 1 u
(
x, τ

)
= K exp(−rτ),

y2 = 0 : u
(
x, τ

)
= K exp(−rτ),

y2 = 1 : u
(
x, τ

)
= 0.

(4.59)
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Chapter 5

Space Mapping

In finance, calibrating model parameters to fit real market data is challenging because
most model parameters are implicit in the real market data [20, 48, 71, 79, 81, 96].
The Heston model contains at least four parameters implicit in the market data, namely
κ, µ, συ, ρ and sometimes a fifth parameter, the spot volatility υspot. It has a closed-form
valuation formula for this model. Some calibration techniques are based on this formula
[81, 20].

The purpose of space mapping is to optimize (or calibrate) an accurate and computa-
tionally expensive model (fine) that can be optimized using a surrogate model (coarse)
for which efficient optimization algorithms are available. Our control problem is the
calibration of the parameters for an Asian option under the Heston model with SDE
representation. More specifically, while we want to calibrate the parameters of the SDE
for the Asian put option, we will optimize the deterministic PDE model of the European
option, which can be solved using techniques from optimization with PDE. In each iter-
ation of the calibration process, we will evaluate the SDE to compute the residuum of
the two models. We measure the difference between the fair price given by the numerical
solution of our model and the reference data, the subsequent market data, in the cost
function. The PDE-constrained optimization problem is solved using a gradient descent
method. We formally derive an adjoint-based gradient descent algorithm for the Heston
PDE model.

65
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5.1 The Space Mapping Approach

In our case, the accurate model is the Heston SDE for Asian put option pricing and the
coarse model is the Heston PDE for European put option pricing. Since we are using
the log-transformed Heston model as our representation, we restate the corresponding
problems.

Definition 13 (Asian Put Option Problem with the log-transformed Heston Model). For
Asian options, the fair price ω∓

(
X,X−, t

)
today at t = 0 is given by

ω∓
(
X,X−, 0

)
= exp(−rT )E

(1
2ϕ

As
(
A(exp(X))

)
+ 1

2ϕ
As
(
A(exp(X−)

))
(5.1)

using the discounted expectation value with the transformed payoff

ϕAs
(
A(exp(X))

)
= max

(
K − 1

T

∫ T

0
exp(Xt) dt, 0

)
(5.2)

which holds at the maturity. The stochastic variable Xt is modeled by
 dXt = (r −D − 1

2Υt) dt+
√

Υt dW1
t ,

dΥt = κ(µ− Υt) dt+ ρσυ

√
Υt dW1

t +
√

1 − ρσυ

√
Υt dW2

t .
(5.3)

Definition 14 (European Put Option Problem with the log-transformed Heston Model).
The fair price u(x, τ) of the two-dimensional option pricing PDE for European plain
vanilla put options with x = (υ, x) is given by

∂

∂τ
u(x, τ) = L

[
u(x, τ)

]
,

u(x, 0) = ϕ̄(x),
(5.4)

with the transformed payoff-function

ϕ̄(x) = max
(
K − exp(x), 0

)
. (5.5)

Since the underlying model is determined as the log-transformed Heston model, we obtain
the following spatial operator in the case of constant parameters

LH̄[u] = υ

2
∂2u

∂x2 + 1
2σ

2
υυ
∂2u

∂υ2 + συυρ
∂2u

∂x∂υ
+
(
r −D − υ

2

)
∂u

∂x
+ κ(µ− υ)∂u

∂υ
− ru,

(5.6)
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and

LH̃[u] = υ

2
∂2u

∂x2 + 1
2 σ̃

2
υυ
∂2u

∂υ2 + σ̃υυρ̃
∂2u

∂x∂υ
+ (r −D − υ

2 )∂u
∂x

+ κ̃(µ̃− υ)∂u
∂υ

− ru, (5.7)

in the nonconstant case. We assume that the Feller condition is satisfied and thus for
both cases the spatial boundary conditions

x → −∞ : u
(

(υ, x), τ
)

∼ K exp(−rτ), (5.8)

x → ∞ : u
(

(υ, x), τ
)

∼ 0, (5.9)

υ → ∞ : u
(

(υ, x), τ
)

∼ K exp(−rτ) (5.10)

hold. From the operators we obtain either

AH̄ = 1
2υ

 σ2
υ συρ

συρ 1

 , bH̄ =
 κ(µ− υ) − 1

2σ
2
υ

r −D − υ
2 − 1

2συρ

 , (5.11)

or

AH̃ = 1
2υ

 σ2
υ συρ

συρ 1

 , bH̃ =
 κ(µ− υ) − 1

2σ
2
υ

r −D − υ
2 − 1

2συρ

 (5.12)

for the divergent form.

In the following, we will refer to the Asian option pricing problem from Definition 13 as
the fine model, and the coarse model is given in Definition 14. For both models, we are
interested in the single price for the spot variable xspot = (υspot, xspot). The predefined
asset is part of the contract, but υspot must be determined implicitly from the market data
or, as in our case, predefined by a guess. We want to calibrate ξ = (συ, ρ, κ, µ) ∈ X ⊂
R4 with the advantage that both models contain the parameters we want to calibrate.
Although we expect the optimal values of the parameters to be different for the two
models, the space mapping technique helps us to calibrate the parameters of the fine
model while only optimizing the coarse model. In the following, we distinguish between
ξf ∈ Xf , the parameter vector for the fine model, and ξc ∈ Xc, the parameter vector for the
coarse model. In the subsets of all possible solutions, we denote Xf and Xc, respectively.
Similarly, we denote the option price of the fine model by uf and the option price of the
coarse model by uc.

Since we are using real market data udata as ground truth for the calibration, we define
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the cost function as follows

J (u(ξ);udata) = 1
2

∫ T

0
∥u− udata∥2 dτ, (5.13)

where ξ denotes the parameters for calibration. Now we want to approximate the solution
of the fine calibration problem

min
ξf∈Xf

J (uf(ξf);udata)

subject to

uf solves the problem from Definition 13

(5.14)

Note that we do not solve the fine optimization problem, but only evaluate the cost func-
tional for given parameter sets ξf during the space mapping algorithm. The optimization
problem aimed at calibrating the coarse model for given real market data is given by

min
ξc∈XC

J (uc(ξc);udata)

subject to

uc solves the problem from Definition 14.

(5.15)

In the following we assume that both problems (5.14) and (5.15) admit a unique solution
with a unique minimizer

ξ∗
f = argminξf∈Xf

J (uf(ξf);udata) and ξ∗
c = argminξc∈XC

J (uc(ξc);udata). (5.16)

The solution of the coarse calibration problem will be our initial guess for the optimal
parameter set of the fine model. However, in the space mapping approach we want to
iteratively improve the parameter values of the fine model and we exploit the approxi-
mation properties of the coarse model. Let’s assume that there exists a so-called space
mapping function s : Xf → Xc, ξf 7→ s(ξf), which satisfies

s(ξf) := argminξc∈Xc r
(
uc(ξc), uf(ξf)

)
= argminξc∈Xc ∥uc(ξc) − uf(ξf)∥, (5.17)

for some misalignment function r.

Assuming that the coarse model is a good approximation of the fine model, and choosing
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J as the misalignment function, we expect the following condition to be satisfied

s(ξ∗
f ) = argminξc∈Xc J

(
uc(ξc);uf(ξ∗

f )
)

(5.18)

≈ argminξc∈Xc J
(
uc(ξc);uc(ξ∗

c)
)

(5.19)

≈ argminξc∈Xc J
(
uc(ξc);udata

)
= ξ∗

c. (5.20)

The underlying assumption is, that the optimal states uf and uc are both good approxi-
mations of the ground truth udata, each for the respective model.

The strategy of the space mapping algorithm is to solve

s(ξ∗
f ) − ξ∗

c = 0. (5.21)

Note that we will not approximate the entire function s, but only evaluate it along the
iterations. Fully approximating s is a much harder and probably an ill-posed task.

For the numerical results we use the Aggressive Space Mapping (ASM) algorithm [75].
In fact, we use a simplified version of the ASM algorithm [75], since due to the linearity
of the state problems (4.45) and (4.47) we can approximate the Jacobian of the space
mapping function by the identity [1]. Since the parameter domain for κ, µ, συ and ρ is
restricted, as well as the constraint that the Feller condition must be satisfied, we use
the projected Armijo rule [100]. In the projected Armijo rule, we choose the maximum
σι ∈ {1, 1/2, 1/4, . . . } for which

J
(
u(P(ξι)), udata

)
− J

(
u(ξk), udata

)
≤ − ϵ

σι

∥∥∥∥P(ξι) − ξk
∥∥∥∥2

2
, (5.22)

with
ξk+1 = P(ξι), ξι = ξk − σιhk and hk = −

(
s(ξk

f ) − ξ∗
c

)
(5.23)

Here ϵ ∈ (0, 1) is a numerical constant that depends on the problem and is typically
chosen to be ϵ = 10−4. We will use this value for the numerical results later. Finally, we
get the adapted ASM, see Algorithm 4. The main ideas of the space mapping approach
are summarized, for more details we recommend [2, 25, 99, 75].

5.2 Optimal Control of the Coarse Model

In the following, we formally derive the first-order optimality system of the coarse calibra-
tion problem that we solve in step (1b) of Algorithm 4. For notational convenience, we
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Algorithm 4: The simplified Aggressive Space Mapping (ASM) Algorithm.
Result: optimized ξf
ξ0

f = ξ∗
c = argminξc∈Xc J (uc(ξc), udata);

for k = 0, 1, . . . do
1) evaluate space mapping function s(ξk

f ) by ;
(a) evaluate fine model from Definition 13 to obtain uf with ξk

f
(b) Perform a coarse model optimization

s(ξk
f ) = argminξc∈Xc J

(
uc(ξc);uf(ξk

f )
)

2) Compute hk = −
(
s(ξk

f ) − ξ∗
c

)
3) Update control ξk+1

f = ξk
f + hk using the projected Armijo rule (5.22) to

restrict ξk+1
f to the boundary

while ∥s(ξk
f ) − ξ∗

c∥ > tolerance;
end

use the abbreviation J(u, ξ) = for J
(
u(ξ);udata)

)
in the derivation, since the algorithm

calibrates to a given data set, regardless of whether that data is derived from the market
or some other model. Specifically, we formally derive a gradient-based algorithm using a
Lagrangian approach to solve (5.15).

5.2.1 First-order optimality conditions for the Heston model

Let us denote the Lagrange multipliers by ψ = (φ, φa, φb, φc, φd), set Ω = (0,∞) ×
(−∞,∞) and split the boundary ∂Ω into

Γa = ∂Ω ∩ {x = −∞}, Γb = ∂Ω ∩ {x = ∞}, (5.24)

Γc = ∂Ω ∩ {υ = 0}, Γd = ∂Ω ∩ {υ = ∞}. (5.25)

First, we focus on the log-transformed Heston equation with constant parameters (4.47)
and write

∂u

∂τ
− ∇ · A∇u− b · ∇u+ ru = 0, (5.26)

where A and b are either given by AH̄,bH̄ or AH̃,bH̃ as in Definition 14. Next, we
define the operator E that will represent the constraint in the Lagrangian. Since at Γc

no boundary condition needs to be given, we introduce Ω̃ = Ω ∩ Γc and the operator E is
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implicitly defined by

〈
E(u, ξ), ψ

〉
=
∫ T

0

∫
Ω̃

[
∂u

∂τ
− ∇ · A∇u− b · ∇u+ ru

]
φ dz dτ

+
∫ T

0

∫
Γa

[
u− exp(−rτ)

]
φa ds dτ +

∫ T

0

∫
Γb
uφb ds dτ

+
∫ T

0

∫
Γd

[
u− exp(−rτ)

]
φd ds dτ

=: I1 + I2 + I3 + I4.

(5.27)

The Lagrangian for the constrained parameter calibration problem is then given by

L(u, ξ, ψ) = J(u, ξ) −
〈
E(u, ξ), ψ

〉
. (5.28)

We formally compute the first-order optimality conditions by setting dL = 0. For details
on the method we refer to [47, 100]. Before computing the Gâteaux derivatives of L in
arbitrary directions [47], we note that by Green’s first identity it holds

∫
Ω
(b · ∇u)φ dz =

∫
∂Ω

(b · n⃗)uφ ds −
∫

Ω
u∇ · (bφ) dz. (5.29)

Therefore, we can rewrite

I1 =
∫ T

0

∫
Ω̃
φuτ + A∇u · ∇φ− 1

2b · ∇uφ+ 1
2ub · ∇φ+

(
r + 1

2∇ · b
)
uφ dz (5.30)

−
∫

∂Ω
(A∇u) · n⃗φ ds − 1

2

∫
∂Ω

(b · n⃗)uφ ds dτ (5.31)

=
 ∫

Ω
φu dz

τ=T

τ=0

+
∫ T

0

∫
Ω̃
u
[

− ∂φ

∂τ
− ∇ · A⊤∇φ+ b · ∇φ+ (r + ∇ · b)φ

]
dz (5.32)

+
∫

∂Ω

[
(A⊤∇φ) · n⃗ − (b · n⃗)φ

]
u ds −

∫
∂Ω

(A∇u) · n⃗φ ds dτ. (5.33)

As e is linear in u, the Gâteaux derivative in some arbitrary direction h reads

du

〈
E(u, ξ), ψ

〉
[h] =

[ ∫
Ω
φh dz

]τ=T

τ=0
(5.34)

+
∫ T

0

∫
Ω
h
[

− ∂φ

∂τ
− ∇ · A⊤∇φ+ b · ∇φ+ (r + ∇ · b)φ

]
dz

(5.35)

+
∫

∂Ω

[
(A⊤∇φ) · n⃗ − (b · n⃗)φ

]
h ds −

∫
∂Ω

(A∇h) · n⃗φ ds dτ (5.36)

+
∫ T

0

∫
Γa
hφa ds dτ +

∫ T

0

∫
Γb
hφb ds dτ +

∫ T

0

∫
Γd
hφd ds dτ. (5.37)
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For the cost functional we have

duJ(u, ξ)[h] =
∫ T

0

∫
Ω
h(u− udata) dz dτ. (5.38)

To identify the adjoint equation, we consider

0 = duL(u, ξ, ψ)[h]

=
∫ T

0
h
[∫

Ω
(u− udata) + ∂φ

∂τ
+ ∇ · A⊤∇φ− b · ∇φ− (r + ∇ · b)φ

]
dz dτ.

(5.39)

for arbitrary h. Note that we are not allowed to vary u at u(x, 0) as the initial condition
is fixed. Therefore we have h(x, 0) ≡ 0.

For choosing h ≡ 0 on ∂Ω and h(x, T ) = 0, we find with the Variational Lemma

∂φ

∂τ
+ ∇ · A⊤∇φ− b · ∇φ− (r + ∇ · b)φ = −(u− udata) on Ω. (5.40)

Now, choosing h(x, T ) ̸= 0, we then obtain the terminal condition φ(x) = 0.

We consider the four boundary conditions separately. At Γc, also the parabolic adjoint
PDE degenerates to a first-order hyperbolic PDE, and thus we have to consider the Fichera
theory [4, 66] for the variance again.

The Fichera condition with respect to the variance at υ = 0 of the adjoint is the same as
before. Therefore, no analytic boundary condition is supplied for this boundary, since we
assume that the Feller condition holds.

On Γa we have

0 =
∫

Γa

[
(A⊤∇φ) · n⃗ − (b · n⃗)φ

]
h− (A∇h) · n⃗φ+ hφa ds. (5.41)

Choosing h ≡ const ̸= 0 yields

0 =
∫

Γa
h
[
(A⊤∇φ) · n⃗ − (b · n⃗)φ+ φa

]
ds, (5.42)

hence (A⊤∇φ) · n⃗ − (b · n⃗)φ+ φa = 0. On the other hand, choosing ∇h ̸= 0 (5.41) must
still hold. This yields φ = 0 on Γa and

φa = −(A⊤∇φ) · n⃗ = −(A⊤∇φ) ·
(

0
−1

)
= 1

2υσυρ
∂φ

∂υ
+ 1

2υ
∂φ

∂x
= 1

2υ
∂φ

∂x
(5.43)
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As u
(
(υ, x), 0

)
≈ exp(−rτ) if x → −∞ is given and independent of x, we obtain ∂φ

∂x
= 0

there and thus φa = φ = 0 at this boundary. Similarly, we find on Γb that

0 =
∫

Γb

[
(A⊤∇φ) · n⃗ − (b · n⃗)φ

]
h− (A∇h) · n⃗φ+ hφb ds. (5.44)

With the same arguments, we obtain φ = 0 and φb = 0 on Γb as well. Following the
same arguments for Γd we obtain (A⊤∇φ) · n⃗ − (b · n⃗)φ+φd = 0 with φ = 0 and thus it
reduces to

φd = −(A⊤∇φ) · n⃗ = −(A⊤∇φ) ·
(

1
0

)
= −1

2υσ
2
υ

∂φ

∂υ
+ 1

2υσυρ
∂φ

∂x
= −1

2υσ
2
υ

∂φ

∂υ
. (5.45)

As u
(
(υ, x), τ

)
≈ exp(−rτ) is given if υ → ∞ and independent of υ, we obtain ∂φ

∂υ
= 0

there and thus φd = φ = 0 at this boundary.

Altogether, the adjoint equation reads

∂φ

∂τ
+ ∇ · A⊤∇φ− b · ∇φ− (r + ∇ · b)φ = −(u− udata) on Ω, (5.46)

with terminal condition φ(x, T ) = 0 and φ = 0 on the boundaries Γa, Γb and Γd and the
outflow boundary at υ = 0. Since, we obtain an terminal condition, we reverse the time
again to the original time t and obtain the IBVP given in Definition 15

Definition 15 (Adjoint of the log-transformed Heston model).

∂

∂t
φ(x, t) = L

[
φ
]
(x, t), (5.47)

and initial condition
φ(x, 0) = 0, (5.48)

and the boundary conditions

x → −∞ : φ
(
(υ, x), t

)
∼ 0, (5.49)

x → ∞ : φ
(
(υ, x), t

)
∼ 0, (5.50)

υ → ∞ : φ
(
(υ, x), t

)
∼ 0, (5.51)

with an outflow boundary at υ → 0. The spatial operator L is given by either
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LĀ[φ] = −
(
u− udata

)
− 1

2υσ
2
υ

∂2φ

∂υ2 − υσυρ
∂2φ

∂x∂υ
− 1

2υ
∂2φ

∂x2 −
(
σ2

υ − κ(µ− υ)
)∂φ
∂υ

−
(
q − r + υ

2 + συρ
)
∂φ

∂x
−
(
κ− r

)
φ, (5.52)

in the constant parameter case or in the nonconstant case

LÃ[φ] = −(u− udata) − 1
2υσ̃υ

2∂
2φ

∂υ2 − υσ̃υρ̃
∂2φ

∂υ∂x
− 1

2υ
∂2φ

∂x2 −
(
σ̃2

υ − κ̃(µ̃− υ)
)∂φ
∂υ

−
(
q − r + υ

2 + σ̃υρ
)
∂φ

∂x
−
(
κ̃− r

)
φ. (5.53)

5.2.2 Derivation of the Gradient and the Gradient Descent Al-
gorithm for Parameter calibration

Let ξ = (συ, ρ, κ, µ) be the parameters to be identified, since r and D are given by
the data. We compute the optimality condition by setting dξL(u, ξ, ψ) = 0. Since the
boundaries Γa, Γb and Γd are zero, we focus on Ω̃. In the following, the derivatives with
respect to the different parameters are given separately. For συ we get

dσυ

〈
E(u, ξ), ψ

〉
=
∫ T

0

∫
Ω̃
u
[
−συυ

∂2φ

∂υ2 − 2συ
∂φ

∂υ
− ρ

∂φ

∂x
− ρυ

∂2φ

∂x∂υ

]
dz dτ. (5.54)

Similarly, we obtain for the other derivatives

dρ

〈
E(u, ξ), ψ

〉
=
∫ T

0

∫
Ω̃
u
[
−συ

∂φ

∂x
− συυ

∂2φ

∂x∂υ

]
dz dτ, (5.55)

dκ

〈
E(u, ξ), ψ

〉
=
∫ T

0

∫
Ω̃
u
[
(µ− υ)∂φ

∂υ
− φ

]
dz dτ, (5.56)

dµ

〈
E(u, ξ), ψ

〉
=
∫ T

0

∫
Ω̃
κu
∂φ

∂υ
dz dτ. (5.57)

Note that dξL(u, ξ, ψ)[hξ] = 0 needs to hold for arbitrary directions hξ. Therefore, we
can read off the gradient from the above expressions.

We extend this gradient formulation for time-dependent parameter ξ̃ = (σ̃υ, ρ̃, κ̃, µ̃), where
u and φ are the solutions of the problems defined in Definitions 14 and 15 with LH̃ and
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LÃ. The gradient is then time-dependent as well and given by

dσ̃υ

〈
E(u, ξ̃), ψ

〉
=
∫

Ω̃
u
[
−σ̃υυ

∂2φ

∂υ2 − 2σ̃υ
∂φ

∂υ
− ρ̃

∂φ

∂x
− ρ̃υ

∂2φ

∂x∂υ

]
dz dτ, (5.58)

dρ̃

〈
E(u, ξ̃), ψ

〉
=
∫

Ω̃
u
[
−σ̃υ

∂φ

∂x
− σ̃υυ

∂2φ

∂x∂υ

]
dz dτ, (5.59)

dκ̃

〈
E(u, ξ̃), ψ

〉
=
∫

Ω̃
u
[
(µ̃− υ)∂φ

∂υ
− φ

]
dz dτ, (5.60)

dµ̃

〈
E(u, ξ̃), ψ

〉
=
∫

Ω̃
κ̃u
∂φ

∂υ
dz dτ. (5.61)

Solving the first-order optimality condition all at once is difficult due to the forward-
backward structure. Therefore, in the following, we propose a gradient descent algorithm.
For a given initial parameter set ξinit, we can solve the state equation for the Heston
model with constant control variable ξ (5.6) or time-dependent parameter ξ̃ (5.7). With
the state solution at hand, we can compute the corresponding adjoint equation with ξ

using (5.52) or (5.53) using ξ̃. Then we have all the information we need to compute the
gradient and update the parameter set with a gradient step. The procedure is outlined
in the Algorithm 5.

Algorithm 5: The gradient descent method for Heston parameter calibration.
Result: calibrated parameters for Heston model
initialize parameters;
while ∥gradient∥ > ϵ do

solve the problem given in Definition 14 either with LH̄ (5.6) or LH̃ (5.7);
solve the adjoint equation in Definition 15 either with LĀ (5.52) or LÃ (5.53);
compute the gradient;
line search for step size with the projected Armijo rule (5.22) ;
update the parameter set;

end
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Chapter 6

Numerical Results

Within the numerical results, we use the mean square error (MSE), a relative improvement
percentage and an average function. On the spatial grid with M, we get in total MG grid
points, computed by

MG =
d∑

i=1
(Mi + 1). (6.1)

Now let U denote the computed discrete solution of the grid M, and Ui the i−th gridnode,
with g = 1, . . . ,MG, we define the discrete ℓ2 as

ℓ2 :
∥∥∥U∥∥∥

2
=
(MG∑

g=1
U2

g

) 1
2
, (6.2)

For the MSE, let Uref denote a discrete reference solution and U the corresponding nu-
merical approximation,

MSE = 1
MG

∥∥∥Uref − U
∥∥∥

2
. (6.3)

For the relative improvement we compare the percentage reduction of the cost functional
w.r.t. a given parameter set ξinit, which in the calibration produces the optimized pa-
rameter set ξopt, with the cost functional J (U(ξopt), udata). This improvement is denoted
by

r(ξinit) = 100 ·
(

1 − J (U(ξopt), udata)
J (U(ξinit), udata)

)
. (6.4)

Last, we use the mean for the average improvement of ξinit over Ncases test cases

Mean =
∑Ncases

n=1 rn(ξinit)
ncases

(6.5)

77
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The numerical results begin with an analysis of the penalty term within the American
put option pricing with the Black-Scholes model. We then discuss the Heston model and
the different hierarchical approaches. Within the numerical results of the Heston model,
we begin with a discussion of the different closure conditions for the model. We then
focus on the sparse grid combination technique and the combination with the Parareal,
and its extensions are also applied to the pricing of American put options. Since the
Parareal is already introduced with the sparse grid combination technique as a spatial
discretization, we start with the numerical results of the combination technique with a
subsequent temporal discretization. Finally, we analyze the introduction of the space
mapping approach as a calibration method. Therefore, we must first discuss the gradient
descent algorithm, followed by the numerical results for the space mapping itself.

6.1 The Penalty Term for the Black-Scholes Model

For the numerical setup of the penalty term from Section 4.2, we use a uniform grid
spacing w.r.t. to space and time. For the numerical temporal solver, we use the θ-method.
We consider the example of pricing American put options from Nielson et al. [83]. All
results are computed on an Intel® Core™ i7-5557U CPU running at 3.10 GHz. We choose
zmin = −4, zmax = 4, M = 5000, and use the parameter sets from Table 6.1. Due to
the initial guess, the only unknown parameter is â. Since a deterministic expression for
â is a goal of our future research, the penalty parameter â is obtained by optimization.
The optimization is done by minimizing the MSE of the solution corresponding to â. The
MSE between the solution of the PSOR algorithm and the solution of our problem. Since
the PSOR method does not use a penalty term, we also compute the MSE of the solution
of the penalized PDE

∂w

∂τ̂
(z, τ̂) − ∂2w

∂z2 (z, τ̂) −
max

(
ϕ̂(z) − w(z, τ̂), 0

)
pc

= 0, (6.6)

using a well known penalty term [35] with the penalty constant pc. Since the example
parameter set 2 is widely used in research, we compare the free boundary value of pa-
rameter set 2 with the free boundary solution of Nielson [83], Fazio [29] and Company et
al. [17]. The value for the free boundary solution obtained by Nielson is SN

f = 0.8622,
Fazio obtained SF

f = 0.86274, and the free boundary value of Company et al. is 0.8628,
while our approach with a finer optimization gives 0.86269 and â = 10.11 × 10−4. This
comparison illustrates the high accuracy of this method with state-of-the-art research.
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Example T K r σs Nτ â(×10−4) sf MSE

1 3 100 0.08 0.2
1000 7.5 81.87 9.6 × 10−3

2500 7.4 82.00 6.2 × 10−3

2 1 1 0.1 0.2
1000 10.2 0.862 5.2 × 10−5

2500 10.0 0.863 3.3 × 10−5

3 0.05 10 0.1 0.25
1000 8.0 9.158 3.5 × 10−5

2500 8.5 9.142 3.5 × 10−5

4 0.1 100 0.1 0.3
1000 5.5 86.59 1.2 × 10−3

2500 5.4 86.87 7.6 × 10−4

5 1 100 0.1 0.4
1000 2.6 66.49 1.4 × 10−2

2500 2.63 66.60 9.2 × 10−3

6 0.05 50 0.1 0.4
1000 3.0 42.61 3.8 × 10−4

2500 3.1 42.61 2.5 × 10−4

Table 6.1: Numerical results for the time dependent penalty term.

Our numerical results illustrate the accuracy of the method. The best results are obtained
by the sample sets with low volatility and short maturity. The observation of the short
maturity is based on the fact that the number of points is different. The dependence on
the volatility is caused by the simplification of the term p, since we cancel σ2

s/2 and include
2/σ2

2 in â. We observed that the differences are in the range between the estimated free
boundary value and the final free boundary value. They are caused by the time-dependent
movement of the free boundary position. There are several ways to analyze this approach
in detail. As approximation formulas for the initial guess one can choose the formulas in
[108, 93, 27].

6.2 Sparse Grids for American Put Options in the
Heston Model

For the American put option pricing problem with the Heston model as the underlying
model, we use the LCP representation. The time discretization is done with Nτ = 100 and
the different ADI-IT schemes: the DO-IT scheme (2.23), the CS-IT scheme (2.24), the
mCS-IT scheme (2.25) and finally the HV-IT scheme (2.26). Furthermore, let θ > 0 be
a given real parameter, depending on the stability constraints of the method, we choose
θ = 0.5 for DO-IT and CS-IT, θ = 1

3 for mCS-IT and for HV-IT the choice is θ = 1
2 + 1

6
√

3,
cf. [50, 51]. To reduce memory and runtime, we use a more intelligent implementation
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with the same stability and accuracy as the naive implementation [95].

To approximate the spatial derivatives, we use second-order finite differences. We intro-
duce x = (x1, x2) ∈ [0, 1]2 and consider a uniform grid for x, due to the choice of γ we
get a highly non-uniform mesh of s and υ with grid points concentrated around sspot and
υspot, see Figure 4.1. For the sparse grid for x we set |l|1 = 9, lmin = 3 and for the grid
transformation to y = (s, υ) we use

ymin = (0, 0), ymax = (3K, 3), y0 = (sspot, υspot) γ = (2, 2). (6.7)

Due to our choice of γ = (2, 2) we get a very nonuniform grid in s and υ direction.

Since numerical experiments for the Heston model have shown that for efficiency reasons
it is sufficient to use only half as many spatial grid points in the volatility direction as
in the asset direction: M1 = M2/2, cf. [39]. Therefore, for the sparse grids we introduce
an limitation for l, which leads to a reduced grid resolution in the volatility direction.
Due to the special setting for the grid points, where the number of grid points is given by
(M1,M2) = (2l1 , 2l2), we can easily adapt the restriction on the number of grid points for
the volatility by setting l1 > l2. Since we use sparse grids, we solve the Heston PDE on
several different grids using the same spatial approximations for the derivatives, namely
central difference quotients of order two in each direction. In addition, we consider the
forward and backward second-order difference quotients at the boundaries for the variance.
Note that the mixed derivative at the boundaries for υ = 0 is zero, as is the diffusion
term, so it is treated trivially. First, we focus on the analysis of the limitation on the
number of grid points in the sparse grids. Therefore, we consider the parameter set

T = 0.25, K = 10, κ = 5, µ = 0.16, συ = 0.9, ρ = 0.1, r = 0.1, D = 0. (6.8)

This parameter set satisfies the Feller condition and is widely used in the literature, cf.
[11, 39, 54, 55, 84]. Since Haentjens and in’t Hout [39] also solved this example set with
ADI-IT methods, but on a full grid structure, we compare our results with their solution.
The accuracy of the model is shown in Table 6.2 and Table 6.3. Our solution of this
test set was computed without smoothing the initial data because we use the spot price
for the grid transformation and therefore the strike price doesn’t match a grid point. As
expected, the results obtained with the limited sparse grid setting are in the same accuracy
range as the common set, the main advantage of the limitation being the reduction in
runtime. To compare the runtime between the full sparse grid and the reduced sparse
grid, we compute a reference solution using the Crank-Nicolson scheme and initial data
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smoothing. We further discretize using a second-order stencil on a grid of (129, 33) grid
points and 10, 000 time steps. Figure 6.1 shows the effect of reducing the grid resolution
in the volatility direction on the runtime for sparse grid settings for the test set (6.8)
in comparison to the accuracy. The reduced spare grid approach has a smaller runtime
up until an accuracy of O(10−5), then the full grid approach needs a smaller runtime, as
the reduced number of grid points and thus the reduced information effects the accuracy.
We used Julia as the computational language and ran the computations on an Intel(R)
Core(TM) i7-8700K CPU @ 3.70 GHz.

υspot = 0.0625
sspot 8 9 10 11 12
[39] 2.0000 1.1081 0.5204 0.2143 0.0827

without limitation
DO-IT 2.0011 1.1095 0.5203 0.2131 0.0821
CS-IT 2.0011 1.1095 0.5202 0.2131 0.0820

mCS-IT 2.0011 1.1093 0.5199 0.2129 0.0821
HV-IT 2.0012 1.1101 0.5215 0.2136 0.0818

with limitation
DO-IT 2.0006 1.1085 0.5176 0.2132 0.0821
CS-IT 2.0006 1.1085 0.5176 0.2131 0.0820

mCS-IT 2.0005 1.1083 0.5172 0.2130 0.0821
HV-IT 2.0005 1.1091 0.5188 0.2136 0.0816

Table 6.2: Fair prices for the different spot asset and spot volatility υspot = 0.0625 for the
parameter set (6.8) with and without limitation.
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υspot = 0.25
sspot 8 9 10 11 12
[39] 2.0788 1.3339 0.7962 0.4486 0.2433

without limitation
DO-IT 2.0787 1.3339 0.7962 0.4481 0.2430
CS-IT 2.0787 1.3338 0.7961 0.4481 0.2430

mCS-IT 2.0785 1.3334 0.7956 0.4476 0.2427
HV-IT 2.0792 1.3346 0.7928 0.4371 0.2415

with limitation
DO-IT 2.0786 1.3336 0.7961 0.4483 0.2431
CS-IT 2.0786 1.3336 0.7961 0.4483 0.2430

mCS-IT 2.0783 1.3331 0.7955 0.4479 0.2428
HV-IT 2.0791 1.3343 0.7935 0.4368 0.2270

Table 6.3: Fair prices for the different spot asset and spot volatility υspot = 0.25 for the
parameter set (6.8) with and without limitation.

Figure 6.1: Runtime comparison between the sparse grid solution with and without lim-
itation for the parameter set (6.8). The runtime of mCS is shown, where the line with
the star represents the runtime of the sparse grid solution without any limitation and the
dashed line with the circles corresponds to the runtime for the sparse grid with reduced
grid resolution.
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6.3 Parareal and the Combination with the Sparse
Grids for the Heston Model

We analyze the effect of combining the Parareal with the sparse grids approach, first the
effect of reducing the grid resolution in the volatility direction and then the approaches
with the reuse of the sparse grid intermediate results. For both sets we use the following
financial parameter set

T = 0.25, K = 10, ρ = 0.1, r = 0.1, κ = 5, µ = 0.16, συ = 0.9.

as before in 6.2 The set of parameters is often used and is therefore chosen to provide
a comparison for the results [11, 38, 39, 84]. We start with the analysis of the effect
of reducing the grid resolution in the volatility direction on the accuracy as well as the
application of the Parareal to the runtime. We use (6.7) for the grid transformation and
set

|l|1 = 12, lmin = 3,

for the sparse grid as well as

Nτ = 16, NF = 100, NG = 25, NP = 3,

for the Parareal. Table 6.4 contains the computed Put option prices for different grid
resolutions, for each resolution the results are very close to the reference values obtained
in [38]. Furthermore, we see that even for very small volatility values and a high reduction
in resolution, the results are comparable to the sparse grid solution, including solutions
with l1 = l2, which requires almost twice the number of grid points as the restricted sparse
grids and thus twice the computational time.

υspot = 0.0625
sspot 8 9 10 11 12
[38] 2.0000 1.1081 0.5204 0.2143 0.0827 Grids

0 2.0000 1.1078 0.5202 0.2138 0.0821 13
ldiff 1 2.0000 1.1078 0.5202 0.2138 0.0821 11

2 2.0000 1.1075 0.5202 0.2138 0.0821 9
3 2.0000 1.1076 0.5201 0.2137 0.0821 7

Table 6.4: Fair prices for the American put option for the different spot assets for the
parameter sets compared to reference values computed by the Parareal using sparse grids.
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Figure 6.2: Runtime for the sparse grids with and without the Parareal. The dashed line
corresponds to the constant serial runtime using sparse grids and the solid line represents
the runtime for the Parareal with sparse grids with 4, 8, 12 and 16 parallel processors and
ldiff = 0.

Figure 6.2 shows the runtime results for different parallel processors using the same pa-
rameter set as before, but with different |l|1 values. We observe that the sparse grid
technique is more efficient than the combination with the Parareal, due to the increased
communication time. To underline this fact, we observe that the runtime increases al-
most linearly with the number of processors. Note that we choose ldiff = 0 for a fair
comparison, since the increase of ldiff > 1 is only suitable for the Parareal. Using such
an increased sparse grid as the underlying grid structure for the Parareal, we would get a
smaller runtime. This is just one of many improvement strategies that can be applied to
get a benefit even for smaller problems.

For the second analysis of the effect of reusing the intermediate results of the combination
technique, we set the sparse grid level to m = |l|1 = 13 with lmin = 3 to get a large
computational effort to show the effects of our ideas. For the grid transformation to y,
we use (6.7) and fix sspot = 10 and υspot = 0.0625. The time parameters for the Parareal
are NSerial = 1200 and NG = 25. From the equation (3.47) we get for 1, 2 and 3 iterations
the following optimal number of processors

k = 1 : N∗
P ≈ 2.44, k = 2 : N∗

P ≈ 2.82, k = 3 : N∗
P ≈ 2.99,

using βcom = 8 GT/s, c(13) = 0.22 s, c(12) = 0.07 s, and c(11) = 0.02 s. Besides
the optimal number of processors, we test other numbers of processors to qualify the
theoretical results.
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Table 6.5 shows the accuracy results for the Parareal denoted by "Original", and the
improved algorithms using the intermediate results of either the fine or coarse solver,
denoted by "Fine solver" and "Coarse solver" respectively. The accuracy is determined by
the MSE between the reference solution and our approximation. The reference solution
is computed by the sparse grid approach using the modified Craig-Sneyd scheme, i.e. the
results are not affected by either the underlying grid structure or the temporal solver.

The accuracy results show that using the intermediate results of the fine solver increases
the accuracy compared to the original algorithm, regardless of the number of processors
and the number of iterations. On the other hand, the accuracy resulting from the use of
the coarse solver is in the same accuracy range as the Parareal and depends strongly on
the number of processors and the number of iterations. This behavior results from the
incorporation of the less accurate results of the coarse solver into the result of the fine
solver at each iteration. Since the parallelism of the sparse grid computation in the coarse
solver does not affect the accuracy, the accuracy with and without this parallelism is the
same and is therefore not shown.

Table 6.6 and Table 6.7 show the runtime obtained by a benchmark time function. The
runtime results show that using the coarse intermediate results significantly reduces the
runtime for a small number of iterations. Using the fine results reduces the runtime only
for a small number of iterations compared to the number of processors. The additional
use of parallelism in the computation of the sparse grid results in the coarse solver is only
feasible in combination with a large number of processors and a relatively high number of
iterations. All results are computed on an Intel(R) Core(TM) i7-8700K CPU @ 3.70 GHz
using the Julia programming language.

MSE
Processors Iterations Original Fine solver Coarse solver

2 1 6.6789 1.2412 7.7833
3 1 5.6220 0.9744 3.8067
3 2 3.3258 0.6123 10.322
4 1 4.6047 0.7494 2.2978
4 2 3.3196 0.5671 6.1924
4 3 2.0428 0.4046 8.9811

Table 6.5: Accuracy results of the Parareal and the adapted algorithms with the reuse
of the intermediate results with the serial computation of the solution on a sparse grid,
scaled by 10−7.
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Parareal
Processors Iterations Original Fine solver Coarse solver

2 1 258.249 269.187 326.535
3 1 192.820 220.193 164.886
3 2 355.484 543.789 277.481
4 1 202.859 196.057 188.723
4 2 405.618 385.204 321.038
4 3 415.204 415.362 416.229

Table 6.6: Runtime in seconds of the Parareal and the adapted algorithms with the reuse
of the intermediate results of the sparse grid combination technique.

Parareal and Sparse Parallelism
Processors Iterations Original Fine solver Coarse solver

2 1 417.688 307.761 281.320
3 1 273.177 285.214 163.901
3 2 425.464 465.500 379.796
4 1 213.585 223.042 176.093
4 2 351.261 332.840 271.047
4 3 485.966 404.208 370.041

Table 6.7: Runtime in seconds of the Parareal and its adapted versions with the additional
parallelism of the serial computation of the coarse solver.

6.4 Boundary Conditions for the Heston Model

Table 6.8 summarizes the different boundary cases for the log-transformed Heston model
presented in Section 4.4. The initial condition has to be adjusted by interpolation w.r.t.
the boundary conditions, and we use finite differences as well as the HV scheme with
θ = 0.75 for the discretization of the European put option problem.

We compare the numerical results with Heston’s closed-form solution [46] by calculating
the MSE over the entire domain including the boundary itself, instead of only using the
region of interest, as it is done in [40]. For the simulation, we consider two different
parameter sets denoted by P1 and P2, see Table 6.9 and five different grids resulting from
Table 6.10. Note that P1 is taken from [66] with strike K set to 1.
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Boundary cases υmin υmax xmin xmax

B1 (a) (c) (c) exp(−rτn)
B2 (a) (d) (d) exp(−rτn)
B3 (a) (e) (e) exp(−rτn)
B4 (a) (f) (f) exp(−rτn)
B5 (b) (c) (c) exp(−rτn)
B6 (b) (d) (d) exp(−rτn)
B7 (b) (e) (e) exp(−rτn)
B8 (b) (f) (f) exp(−rτn)

Table 6.8: Different test cases for the boundary conditions for the log-transformed Heston
model from the different equations.

Parameter case xmin xmax υmin υmax θ T K r συ µ κ ρ

P1 [66] -7 3 0.01 1 0.75 0.05 1 0.1 0.5 0.07 5 −0.5
P2 [76] -7 3 0.01 1 0.75 1 1 0.05 0.3 0.2 2 −0.5

Table 6.9: Two parameter sets with their reference for the analysis of the effect of different
boundary conditions.

Discretization set D1 D2 D3 D4 D5
M1 20 40 80 160 320
M2 10 20 40 80 160
Nτ 1 4 16 64 256

Table 6.10: Different discretization grids for the computation of the solution w.r.t. the
eight different boundary cases.

The numerical results show that all considered boundary cases converge, see Figure 6.3.
The plot shows that the influence of the different parameter sets is small. The boundary
cases B4 and B8 give the best results with respect to both test cases, i.e., using the
extrapolation at υmax approximates the solution better than the Dirichlet BCs.
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Figure 6.3: Visualization for the MSE presented in Table 6.11 and Table 6.12 as well as
MSE vs runtime (s).

Using the extrapolation also for υmin further improves the MSE, see Table 6.11 and Ta-
ble 6.12. The increased computational cost can be neglected, as Figure 6.3 shows.

If one is restricted to using Dirichlet BCs, the best choice for υmax is the BC proposed by
Heston in combination with an exponential fit of xmax.

P1 D1 D2 D3 D4 D5
B1 13.305 6.092 2.839 1.367 0.671
B2 13.666 5.924 2.751 1.331 0.655
B3 7.224 3.300 1.523 0.731 0.358
B4 2.618 1.514 0.362 0.174 0.085
B5 14.630 6.635 3.051 1.456 0.711
B6 13.746 6.029 2.803 1.349 0.662
B7 7.720 3.502 1.604 0.763 0.372
B8 2.650 1.500 0.355 0.172 0.085

Table 6.11: MSE scaled by 103 between the semi-analytical solution from Heston and the
approximation using the different boundary conditions (Table 6.8) for the different grids
corresponding to Table 6.10 and the two parameter cases from Table 6.9.
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P2 D1 D2 D3 D4 D5
B1 19.364 9.582 4.768 2.380 1.189
B2 15.972 7.586 3.698 1.827 0.909
B3 10.885 5.439 2.720 1.361 0.681
B4 1.532 0.698 0.331 0.162 0.080
B5 20.544 9.928 4.862 2.404 1.195
B6 16.695 7.882 3.817 1.878 0.932
B7 11.577 5.637 2.773 1.374 0.684
B8 1.531 0.697 0.331 0.162 0.080

Table 6.12: MSE scaled by 103 between the semi-analytical solution from Heston and the
approximation using the different boundary conditions (Table 6.8) for the different grids
corresponding to Table 6.10 and the two parameter cases from Table 6.9.

6.5 Gradient Descent Algorithm for the Heston Model

Following [15], we use the values

K = 1.0, r = 0.1, ξref = (5.0, 0.07, 0.5,−0.5), (6.9)

to generate an artificial udata for each time step τn. For the discretization, we use the
parameters M1 = 79, M2 = 39, Nτ = 59. As bounds for the projected Armijo rule for
ξ = (συ, ρ, κ, µ), we set 0 < κ < 8, 0 < µ < 1, 0 < συ < 1, −1 < ρ < 1. Note that the
projected Armijo rule ensures that the Feller condition holds within each optimization
step. So we are in the case of an outflow boundary. We set the maximum iteration
value for the calibration to 20. For the initial guesses ξinit = (σinit

υ , ρinit, κinit, µinit, ) we
used generated random numbers within a maximum percentage difference from ξref . The
calibrated parameters are denoted by cal. We use four different percentages 10, 25, 50
and 75 and generate five sets for each, denoted by T1, T2, T3, T4 and T5. The initial
parameters as well as the calibrated parameters in the constant case are given in Table 6.13
for κ, Table 6.14 for µ, Table 6.15 for συ, and Table 6.16 for ρ.
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ρinit T1 T2 T3 T4 T5 ρcal T1 T2 T3 T4 T5
10 -0.550 -0.485 -0.520 -0.520 -0.495 10 -0.483 -0.547 -0.404 -0.460 -0.384
25 -0.410 -0.490 -0.605 -0.585 -0.380 25 -0.370 -0.390 -0.690 -0.829 -0.159
50 -0.555 -0.465 -0.350 -0.685 -0.725 50 -0.258 -0.242 -0.207 -0.441 -0.847
75 -0.695 -0.205 -0.775 -0.655 -0.150 75 -0.743 -0.972 -0.990 -0.990 -0.437

Table 6.16: Five initial values sets for ρinit for the different percentages and the corre-
sponding calibrated values ρcal for C0.

κinit T1 T2 T3 T4 T5 κcal T1 T2 T3 T4 T5
10 4.60 5.15 4.50 4.70 4.50 10 4.60 5.15 4.51 4.70 4.50
25 4.75 4.60 5.25 5.90 4.45 25 4.75 4.60 5.24 5.88 4.45
50 4.10 3.25 3.55 2.90 7.00 50 4.11 3.26 3.55 2.94 6.95
75 5.70 7.30 7.00 7.50 6.60 75 5.69 7.29 6.85 7.40 6.60

Table 6.13: Five initial values sets for κinit for the different percentages and the corre-
sponding calibrated values κcal for C0.

µinit T1 T2 T3 T4 T5 µcal T1 T2 T3 T4 T5
10 0.0679 0.0637 0.0735 0.0714 0.0714 10 0.0598 0.0727 0.0575 0.0632 0.0577
25 0.0721 0.0777 0.0616 0.0630 0.0868 25 0.0655 0.0610 0.0720 0.0836 0.0615
50 0.1001 0.0406 0.0840 0.0448 0.0434 50 0.0476 0.0148 0.0484 0.0136 0.0882
75 0.0742 0.0532 0.0448 0.0399 0.0490 75 0.0847 0.1069 0.1005 0.1064 0.0928

Table 6.14: Five initial values sets for µinit for the different percentages and the corre-
sponding calibrated values µcal for C0.

σinit
υ T1 T2 T3 T4 T5 σcal

υ T1 T2 T3 T4 T5
10 0.465 0.545 0.510 0.515 0.480 10 0.451 0.559 0.484 0.502 0.455
25 0.575 0.570 0.505 0.415 0.480 25 0.565 0.546 0.523 0.455 0.429
50 0.580 0.360 0.630 0.345 0.655 50 0.501 0.292 0.581 0.261 0.713
75 0.705 0.470 0.235 0.350 0.565 75 0.718 0.562 0.390 0.489 0.630

Table 6.15: Five initial values sets for σinit
υ for the different percentages and the corre-

sponding calibrated values σcal
υ for C0.

We observe that the calibration leaves κ almost untouched, while the other parameter
values are significantly changed. This can be explained by the structure of the drift term
κ(µ − υ), since κ and µ are multiplied. As an optimization measure, we compute the
relative reduction (6.4) of the cost functional using ξinit and ξcal. Table 6.17 shows the
relative reduction of the cost functional for the different test cases for ξinit.
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C0 T1 T2 T3 T4 T5
10 43.12 77.38 65.22 63.22 52.75
25 58.46 78.38 62.14 66.06 64.53
50 83.09 20.84 52.76 30.98 72.62
75 16.23 72.89 82.89 82.09 80.43

Table 6.17: Relative reduction of the cost functional computed with 6.4 using the different
test cases for ξinit and ξcal in the constant calibration setting (C0).

Figure 6.4: Cost functional evolution per iteration for the test cases within the constant
parameter calibration (C0).

Since the calibrated values vary across the test cases, it is reasonable to assume that we
find only local minima. Nevertheless, the results are remarkable. Since in the real market
the parameters are not considered constant, we improve the approach by considering dif-
ferent parameters and some parameter sets as time-dependent. From the relative change
in the constant calibration setting, we select the following (additional) test cases, which
are listed in Table 6.18. The table also contains the links to the cost functional reduction
tables and cost functional evolution figures for the different cases.
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κ µ συ ρ

C0 constant constant constant constant
C1 time-dependent constant constant constant
C2 constant time-dependent constant constant
C3 constant constant time-dependent constant
C4 constant constant constant time-dependent
C5 time-dependent time-dependent time-dependent time-dependent
C6 constant time-dependent time-dependent time-dependent
C7 constant time-dependent constant time-dependent

Table 6.18: Different scenario cases for the calibration setting.

For each case of the time-dependent test cases udata is generated as before and ξinit is
assumed to be constant and thus also the same as before.

Figure 6.5: Cost functional evolution per iteration for different test sets in scenario C1.
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Figure 6.6: Cost functional evolution per iteration for different test sets in scenario C2.

Figure 6.7: Cost functional evolution per iteration for different test sets in scenario C3.
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Figure 6.8: Cost functional evolution per iteration for different test sets in scenario C4.

Figure 6.9: Cost functional evolution per iteration for different test sets in scenario C5.
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Figure 6.10: Cost functional evolution per iteration for different test sets in scenario C6.

Figure 6.11: Cost functional evolution per iteration for different test sets in scenario C7.
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C1 T1 T2 T3 T4 T5
10 44.48 78.75 64.91 64.12 54.03
25 58.97 78.98 62.96 66.77 63.96
50 83.13 19.59 45.71 33.45 72.84
75 16.59 72.80 82.14 81.13 80.94

Table 6.19: Relative cost function reduction for the C1 calibration.

C2 T1 T2 T3 T4 T5
10 42.96 77.85 63.17 62.09 53.05
25 58.03 77.05 63.09 68.46 70.00
50 82.90 20.79 51.89 29.79 73.66
75 16.05 74.64 82.95 82.43 78.89

Table 6.20: Relative cost function reduction for the C2 calibration.

In general, the Figures 6.4–6.11 show the same cost functional evolution. The first test
cases with the initial guess closest to the reference set have the smallest initial cost func-
tional value. As the distance to the reference set increases, so does the initial value of
the cost functional. Accordingly, the final cost function value is higher for the sets with a
more distant initial guess. However, the 75 % deviation within the initial guess shows the
greatest cost functional reduction within the first few steps. This is due to the existence
of different minima, as these sets find the closest minima instead of the optimal minima.
Overall, the cost functional reduction per iteration decreases as the number of iterations
increases. The number of iterations within the different test cases with 10 % deviation is
the same for all scenarios, except for T2 where it varies between 7 and 8. The scenarios
with 75 % deviation give the same number of iterations in cases T1, T2 and T5, for cases
T3 and T4 we observe iteration numbers with a total difference of one from each other.
For the deviation of 25 % we observe the same number of iterations for T1, a difference
of one iteration for T2, T3 and T4, and a difference of two for the last case T5. The
largest difference in the number of iterations is found in the 50 % deviation. While T5
has the same number of iterations and T2 has a total difference of 2 for all cases. For the
other test cases, the Table 6.26 shows the number of iterations. These are the only cases

C3 T1 T2 T3 T4 T5
10 44.22 77.89 64.50 64.04 53.52
25 58.49 78.76 61.62 65.92 64.50
50 83.05 20.97 52.49 30.55 72.23
75 15.96 72.91 82.71 82.10 80.44

Table 6.21: Relative cost function reduction for the C3 calibration.
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C4 T1 T2 T3 T4 T5
10 49.03 75.90 66.62 66.49 56.81
25 60.42 77.71 62.64 68.50 62.96
50 78.54 18.24 52.63 30.29 74.03
75 20.89 73.59 81.75 80.49 79.74

Table 6.22: Relative cost function reduction for the C4 calibration.

C5 T1 T2 T3 T4 T5
10 47.63 75.50 65.79 64.45 57.08
25 60.70 76.67 62.36 68.51 71.33
50 82.32 20.89 58.63 31.72 72.96
75 20.79 73.10 78.14 77.71 78.76

Table 6.23: Relative cost function reduction for the C5 calibration.

C6 T1 T2 T3 T4 T5
10 47.91 76.08 65.50 64.77 56.43
25 60.27 76.39 63.37 70.16 68.91
50 80.94 19.19 57.15 29.38 73.71
75 20.84 74.74 81.70 80.74 79.10

Table 6.24: Relative cost function reduction for the C6 calibration.

C7 T1 T2 T3 T4 T5
10 47.79 75.66 65.50 64.66 56.48
25 60.21 76.37 62.80 69.43 69.29
50 81.08 19.35 57.16 30.05 73.02
75 20.62 74.55 80.59 80.09 78.89

Table 6.25: Relative cost function reduction for the C7 calibration.
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where we see an increase in the number of iterations due to considering time-dependent
parameters, since the number of iterations increases when µ is considered time-dependent.
These are highlighted in bold in the table. If we look at the corresponding Figures 6.6,
6.9, 6.10 as well as 6.11, we observe that the reduction of the cost functional in the end is
very small, s.t. the gain of ten iterations forward is almost negligible. Thus, in all cases,
10 iterations are sufficient for a sufficient reduction of the cost functional.

Test cases C0 C1 C2 C3 C4 C5 C6 C7
T1 12 12 13 12 12 17 16 16
T3 6 6 5 6 6 17 15 15
T4 9 9 19 9 9 19 19 19

Table 6.26: Number of iterations for the different case scenarios for cases T1, T3, and
T4 within the 50 % percentage difference in the initial parameter set. The bold cases
illustrate the scenarios where µ is considered time-dependent.

Comparing the relative cost functional values for each case gives an absolute difference
between the reductions, see Table 6.27. We observe that in 9 cases the difference is less
than three, while in eight cases it is between three and five, and only in three cases it
is greater than five. These are T1 with a deviation of 10 % with a difference of 5.91, a
difference of 8.37 for T5 with a deviation of 25 %, and T4 with a deviation of 50 % with
the highest difference of 12.93. Overall, we observe that the reductions between C0–C4
and C5–C7 are comparable, while a larger difference can be seen between these two case
sets.

Difference T1 T2 T3 T4 T5
10 5.91 2.39 2.12 3.27 4.33
25 2.67 2.61 1.75 4.24 8.37
50 4.59 2.73 12.92 4.07 1.41
75 4.93 1.94 4.81 4.29 2.85

Table 6.27: Absolute difference between the largest and smallest relative cost functional
reduction.

To quantify the general behavior for the different calibrations, we compute the average
relative cost functional using (6.5) and summarize the results in Table 6.28. Note, that
all cost function reduction averages are huge. We observe that a time-dependent cali-
bration for only one parameter (C1–C4) doesn’t improve the cost functional reduction
significantly. The first slight improvement can be found by using at least two time-
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dependent parameters (C5–C7). Surprisingly, C7, where κ is the only variable calibrated
as a constant, gives the best calibration results, even though it has only twice the smallest
cost functional reduction and never the largest, and C5, where all parameters are cali-
brated as time-dependent, gives the least improvement when considering combinations of
time-dependent parameter calibrations. The fact that udata is generated with constant
parameters and the best case considers time-dependent parameters indicates that time
dependence is a good way to overcome the local minima. These results are in line with
the literature [81, 96].

Case Setup C0 C1 C2 C3 C4 C5 C6 C7
Mean 61.30 61.31 61.49 61.34 61.86 62.25 62.36 66.12
Table 6.17 6.19 6.20 6.21 6.22 6.23 6.24 6.25
Figure 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11

Table 6.28: Average cost functional reduction in percentage for the different cases over
the 20 test cases, a list for the corresponding relative cost functional reduction and the
figures of the cost functional evolution.

6.6 Space Mapping for the Heston Model

From the Put options on the Nikkei 300 index on December 31, 2012, we get one sspot

and five different sets, each with the following parameters r, q, and K. Thus, we specify
K1, K2, K3, K4 and K5 for the different market data sets. Since the maturity must be
small to use the European option price as a proxy for the Asian option price, we focus on
T = 0.25. For the spatial discretization we set x = (υ, x) with xmax = (1, log(1.2) · sspot)),
M = (100, 120) and xmin = xmax/M. We also choose υspot = 0.05. As a result of this
discretization, the strike price (and thus the kink in the payoff-function) is approximated
at a grid point. Therefore, we smooth the initial condition using the operator from Kreiss
et al. [65] The time discretization uses a uniform time discretization, with Nτ = 170. We
consider six different initial guesses for the algorithm, see Table 6.29; each parameter set
satisfies the Feller condition.

First, we focus on the gradient descent algorithm. For the algorithm, we set the itera-
tion maximum to 51 and the terminal condition to J(uc, ξc) < 10−3. Since we are using
a gradient-based algorithm, we can only expect to converge to a local minimum, so to
evaluate the descent over iterations we use the relative reduction of the cost functional
with the initial guess ξinit

c from Table 6.29 and ξcal. Table 6.30 shows the cost functional
reduction of the last and/or optimal cost function value. The bold values indicate cases
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Guess κ µ συ ρ
1 3.0 0.3 0.1 -0.2
2 5.0 0.6 0.2 -0.3
3 4.5 0.8 0.5 -0.15
4 2.0 0.4 0.45 -0.2
5 4.0 0.5 0.15 -0.35
6 3.5 0.35 0.5 -0.5

Table 6.29: Different initial guess sets for the initial coarse model calibration.

where the maximum number of iterations was reached. We observe that the gradient
descent algorithm calibrates the parameter ξc almost perfectly, even if we can’t guarantee
to find the global minimum. In Table 6.31, which shows the optimal value of the cost
functional, we observe that for most test cases we reach the terminal condition of the gra-
dient algorithm. The cases where the condition is not reached at the iteration maximum
are shown in bold. The cases with the highest cost functional values correspond to the
smallest cost function reduction. To illustrate the cost functional reduction per iteration,
Figure 6.12 shows the value for the first 10 iterations. We observe that the maximum
number of iterations can be significantly reduced depending on the desired accuracy.

K \Guess 1 2 3 4 5 6
1 99.97 99.91 99.98 99.66 99.99 99.95
2 99.97 99.92 99.98 99.81 99.98 99.96
3 99.97 99.51 99.69 99.50 99.98 99.93
4 99.97 99.75 99.97 99.72 99.96 99.87
5 99.96 99.92 99.98 99.92 96.15 99.49

Table 6.30: Cost functional reduction for the initial calibration of the coarse model to
obtain ξ∗

c.

K \Guess 1 2 3 4 5 6
1 0.888 0.861 0.578 0.808 0.289 1.058
2 0.928 0.845 0.680 0.603 0.401 0.892
3 0.933 4.638 9.914 0.516 0.461 1.702
4 0.906 1.639 1.248 0.678 0.707 3.542
5 1.031 0.928 0.988 0.689 56.160 17.323

Table 6.31: Cost functional value for the optimal calibration of the coarse model
J (uc(ξ∗

c), udata). (scaled by 103).
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Figure 6.12: Cost functional evolution for the first 10 iterations for the initial calibration
for the coarse model.
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These results show that the presented gradient descent algorithm is a viable choice for
calibration to real market data. For a more detailed analysis of the gradient descent
algorithm, see [14]. Within the space mapping, we limit ourselves to a maximum of four
iterations, since the evaluation of the fine model is expensive. As a calibration measure
we again use the relative cost functional reduction, the results are presented in Table 6.32.
The results show that the space mapping approach has only slightly lower reduction rates
as the gradient descent algorithm itself, except for K5. One can improve this value by
choosing a smaller υspot, as can be observed in K5a, where we choose υspot = 0.03. Note
that the choice of υspot is limited by the grid structure. In addition, the calibration to
υspot can be included in the gradient descent algorithm.

Table 6.33 shows the total cost functional reduction relative to the initial guess and
Table 6.32 shows the optimal cost functional value. Similar to the gradient algorithm,
we observe that when the cost functional reduction is small, the cost functional value is
larger.

K \Guess 1 2 3 4 5 6
1 98.57 98.75 99.07 96.73 99.52 99.89
2 99.66 99.21 99.96 72.41 98.93 99.22
3 98.01 99.64 99.98 98.33 91.67 99.39
4 92.42 99.20 93.42 98.44 98.05 99.74
5 28.22 53.71 64.48 52.74 42.48 71.84
5a 44.01 46.58 43.52 61.80 73.26 79.14

Table 6.32: Cost functional reduction the calibration of the space mapping with for ξinit
c

and ξ∗
f .

Since J (uc(ξ∗
c);udata) ≈ J (uf(ξ0

f );udata) can be significantly worse than J (uf(ξinit
c );udata),

we present two figures. One figure shows the reduction of the cost functional per iteration,
w.r.t. the initial guess ξinit

c , see Figure 6.13, and the other figure shows w.r.t. the optimal
calibration parameters resulting from the initial coarse model calibration ξ∗

c = ξ0
f , see

Figure 6.14. The Figures 6.13 and 6.14 and Table 6.34 show that even if ξ0
f results in

a higher cost functional value for the space mapping at iteration 0, the space mapping
reduces the cost functional significantly, e.g. Guess 1 with K4, Guess 4 with K2 as well
as Guess 5 with K3.
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K \Guess 1 2 3 4 5 6
1 0.021 0.006 0.012 0.007 0.005 0.001
2 0.004 0.002 0.001 0.003 0.009 0.009
3 0.012 0.001 0.022 0.011 0.015 0.0110
4 0.027 0.010 0.2010 0.024 0.014 0.007
5 1.159 1.124 1.480 1.290 1.110 1.046
5a 0.574 0.641 1.001 0.699 0.593 0.492

Table 6.33: Cost functional value for the optimal calibration of the space mapping;
J (uf(ξ∗

f ), udata).

K \Guess 1 2 3 4 5 6
1 96.12 92.53 97.73 41.27 93.00 87.99
2 84.12 20.39 86 01 -1069.14 78.50 85.35
3 -28.13 -113.55 64.14 -5.97 -314.86 58.95
4 -317.71 -21.38 49.87 5.85 -100.91 43.96
5 -53.76 -1.80 39.41 10.54 -28.04 35.00

Table 6.34: Cost functional reduction for the initial guess ξinit
c and the calibration of the

coarse model ξ∗
c.
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Figure 6.13: Cost functional reduction within the space mapping algorithm for the fine
model ξ∗

f adjusted to ξinit
c .
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Figure 6.14: Cost functional reduction within the space mapping algorithm for the fine
model ξ∗

f adjusted to ξ0
f = ξ∗

c.
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Chapter 7

Conclusion and Outlook

In this thesis, hierarchical numerical approaches, as well as different option pricing tech-
niques, have been addressed. First, we give an individual conclusion to the specific nu-
merical test cases and then we summarize conclusions for the application of hierarchical
in general. We then present an outlook for each topic individually. This is followed by a
more general outlook.

7.1 Conclusion

For the penalty term approach, the numerical results provide clear evidence that the use
of a non-constant penalty parameter δ(τ) is both feasible and beneficial. In this thesis we
have shown that the numerical results of the grid transformation on the spot price with the
reduced resolution in the direction of volatility are satisfactory even without smoothing.
Even the additional constraint l1 > l2 with ldiff large, which leads to a high resolution
reduction in the direction of volatility, is feasible. As in this setting, the best improvement
was achieved by using the spot price as the accumulation point of the transformation
(instead of the strike price). Furthermore, we achieved a runtime improvement by reducing
the grid resolution in the direction of volatility, even though we have already worked on a
sparse grid structure and runtime-optimized implementations. Combining the sparse grid
approach with the Parareal algorithm, the numerical results show that for high numbers
of processors and iterations, it is recommended to use the intermediate results of the
fine solver and to compute the sparse grids in parallel. This statement is true for both
accuracy and runtime aspects. For small numbers of iterations, the coarse solver is useful
due to the small loss in accuracy compared to the speedup in runtime. Overall, all the

107
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ideas presented improve the original Parareal algorithm. The application and the goal of
the program will determine which improvement should be chosen.

For the boundary condition we conclude that in case of a free choice it is feasible to use
the extrapolation BC for the variance since it has the smallest error in terms of runtime.
Especially when the solution depends on the whole domain and not on a single value
inside it. If one is limited to Dirichlet BCs due to the numerical method, e.g. sparse
grids, one should use the boundary condition B3, see Table 6.8. The gradient descent
algorithm as well as the space mapping for the Heston model lead to remarkable relative
cost function reductions, although we can expect to find only local minima. Furthermore,
the assumption of at least time-dependent parameters within the calibration is better
suited to the real market situation, since in the real market almost no parameter is
constant. The numerical results show the feasibility of the space mapping approach as a
new calibration method in financial research.

Overall, advanced methods based on hierarchical structures are useful within financial
research and a combination of them enhances their potential for further improvement.

7.2 Outlook

The inclusion of the free boundary movement in the time-dependent penalty term is a
future task. Since a sensitive point of the presented method is the choice of the initial
free boundary value, an interesting approach for future research is a detailed analysis of
the effect of the choice of the approximation formulas to the solution. As approximation
formulas for the initial guess, one can choose the formulas in [108, 93, 27]. Another idea
is to consider an iterative scheme. In this idea, the free boundary value of the obtained
solution is used as an initial guess for a second iteration of the solution of the penalized
American Put problem.

For the sparse grid and Parareal combinations, the ideas can be extended to multidimen-
sional cases, where the improvement is more visible as the total computational cost is
higher. The use of the Multigrid-In-Time (MGRIT) approach [32, 36] is also possible.
Finding the correct boundary conditions for the variance in the Heston model, especially
when the Feller condition is not satisfied, is the subject of future research. Furthermore,
a study of the effects of artificial boundary conditions on the variance would be beneficial
when restricted to small computational domains.

For the space mapping approach, we recognize that there is much room for improve-
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ment, such as an extension to time-dependent parameters, see [14] for details on the
PDE-constrained optimization problem. In particular, the gradient descent algorithm
can be easily adapted to account for time-dependent parameters to improve space map-
ping for pricing Asian options since they are time-dependent, see [14]. The space mapping
approach can be applied to various other hierarchical problems in finance, e.g. model, tem-
poral and spatial, as well as option hierarchies. However, the algorithm can be optimized
by using faster or more accurate techniques for solving the Heston PDE and its adjoint
equations, as well as for Heston calibration. In addition, further combinations between
hierarchical approaches can be invented and analyzed.
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